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ABSTRACT

A self-excited system (SES) has the property that constant inputs produce oscillatory out-
puts. SES arise in biochemical systems, aeroelasticity, and combustion. In particular, gas-turbine
combustors are SES since a constant fuel rate yields thermoacoustic oscillations. This behavior
arises due to the interaction between combustion and acoustics, and it can result in performance
degradation and failure.

In practice, the dynamics of a thermoacoustic system may change due to varying operating
conditions as well as hardware and environmental changes. With this motivation, the present work
applies adaptive control to thermoacoustic systems. Although first-principles models capture the
physics of these systems, model-based control methods require details that may be impossible to
obtain in practice due to unpredictable changes in the hardware and environment. To address these
challenges, this dissertation applies retrospective cost adaptive control (RCAC) to thermoacoustic
systems under extremely limited modeling information and actuator limitations.

The first part of the dissertation analyzes discrete-time Lur’e systems that are self-excited in
the sense that 1) for all initial conditions the response is bounded, and 2) for almost all initial
conditions, the response is nonconvergent. These models capture the behavior of SES, and they are
reminiscent of thermoacoustic systems in the sense that the acoustic dynamics are typically linear
and the combustion/heat dynamics are nonlinear. The main contribution of this section is a proof
that, under specific assumptions on the linear dynamics and feedback nonlinearity, discrete-time
Lur’e systems are self-excited.

The second part of the dissertation develops a system identification method based on discrete-
time, self-excited Lur’e models. The main contribution of this section is the application of mixed-
integer optimization to automating the selection of parameters needed for the identification proce-
dure. This method is applied to illustrative examples as well as to experimental data from the Dual
Independent Swirl Combustor (DISCo), which is a gas-turbine model combustor.

The third part of the dissertation applies RCAC to a Rijke-tube experiment, which is an SES
due to the interaction between the heat source and the acoustics dynamics. The main contribution
of this section is the demonstration of a design methodology wherein an initial set of hyperparam-
eters required by RCAC is determined by a rudimentary model fit using open-loop data from a
single experimental scenario. Using the single, fixed choice of hyperparameters, adaptive control

xix



experiments show that RCAC achieves an oscillation suppression greater than 45 dB over a range
of operating conditions. Further tests are performed to examine the effect of modified hyperparam-
eters on the time it takes for the adaptive controller to suppress oscillations, the performance and
robustness of the frozen-gain adaptive controller, the ability of the adaptive controller to readapt
under changes in working conditions, the stability of the adaptive controller under changes in its
gain, and the effect of the relative degree of the closed-loop target model on the level of suppres-
sion. The experimental scenarios are designed to test the robustness of the adaptive controller
under off-nominal perturbations that reflect real-world conditions.

The final part of the dissertation applies RCAC to DISCo; this application differs fundamentally
from the Rijke-tube experiment due to significantly more complex physics as well as constraints on
the bandwidth of the control actuation. In particular, the control inputs to DISCo are air-injection
inputs with 5-Hz bandwidth, which is significantly below the oscillation frequencies of DISCo, the
lowest of which is approximately 274 Hz. The main contribution of this section is the development
and demonstration of an extension of RCAC that accounts for the actuator bandwidth limitation;
this extension is called quasi-static RCAC (QSRCAC). Using modeling information given by the
pressure RMS and combustor exit-temperature maps versus inner and outer swirler air mass-flow
rate, QSRCAC uses an extended Kalman filter to estimate the gradient of the effect of the actuation
on the performance variables. QSRCAC is then applied to DISCo in a multi-input, multi-output
setting, with two input signals corresponding to inner and outer swirler air-injection valves, and
two output signals given by pressure and temperature sensors. For experimental testing, DISCo
uses methane as fuel and is operated at atmospheric pressure (1 atm) and constant power, with a
constant fuel mass-flow rate of 0.4 g/s, while maintaining the equivalence ratio between 0.6 and 1.1
to prevent flameout. Experimental results show that QSRCAC achieves an oscillation suppression
of 28 dB while reaching a specified exit temperature corresponding to a desired flame length.

xx



CHAPTER 1

Introduction

1.1 Background and Motivation

A self-excited system (SES) has the property that constant inputs produce oscillatory outputs. These
oscillations arise from a combination of destabilizing and stabilizing effects. Roughly speaking,
destabilization causes the response to grow from the vicinity of an equilibrium, whereas, far from
the equilibrium, the effective feedback gain decreases, leading to oscillations [1]. Self-excited
systems arise in biochemical systems [2,3], aeroelasticity [4–6], and combustion [7,8]. Overviews
of SES are given in [9, 10]. As in the case of a wind turbine, whose blades spin in response to
the ambient wind flow, self-excited dynamics can be extremely useful. In other cases, however,
SES dynamics may be undesirable, as demonstrated by the destruction of the Tacoma-Narrows
bridge [11]. Hence, a typical control objective for SES is suppression of the oscillations, and SES
provide motivation for developing new techniques for modeling and control [12–17].

A particular type of SES are thermoacoustic systems, which are self-oscillating due to the fact
that a constant input (fuel rate in gas-turbine combustors, for example) yields an asymptotically
oscillatory acoustic response. This behavior arises from the interaction between combustion and
acoustics, resulting in thermoacoustic oscillations. One of the earliest studied systems that demon-
strated this phenomenon was the Rijke tube, whose physics have been extensively analyzed, with
the original work by Rijke [18] and subsequent work of Lord Rayleigh [19]. In particular, Rayleigh
showed that, under certain conditions involving heat and geometry, thermoacoustic oscillations
arise from the feedback interaction of the expansion and compression of the air and the heat flux.
In thermoacoustic oscillations, the positive feedback between the acoustic field of the system and
the unsteady rate of heat release from combustion creates pressure waves whose amplitude in-
creases until it is limited by nonlinear effects. Extensive research has been devoted to modeling
thermoacoustic oscillations [1, 20–26].

Gas turbine combustors are typical thermoacoustic systems in aerospace applications and a
primary source of power generation in aircraft propulsion. While traditional diffusion approaches,
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such as rich-quench-lean combustion [27, 28] produce highly stable and flashback-free operation
of the combustor, these fail to meet evolving emission regulations, especially NOx [29], which
motivates the adoption of lean combustion by the industry. Lean combustion however is prone
to thermoacoustic oscillations. The underlying mechanism responsible for these instabilities is
a combination of of convective and acoustic dynamics, each supported by and coupled to the
dynamics of the turbulent and vortical flowfield, the acoustic properties of the combustor, and the
interaction of the chemistry with the turbulent and acoustic fields [30–33]. All of these effects may
be present in a given configuration, although their onset depends on the conditions of operation,
and, as operation is shifted among operating points, one or more of these instability mechanisms
may develop. These instabilities cause large-amplitude pressure oscillations of the flowfield, which
may result in flameout, thermal cycling, thermal NOx growth, structural fatigue, and combustion
efficiency reduction, which can negatively impact the performance and structural integrity of the
turbomachinery. Redesigning the hardware of the combustors, such as the fuel and air injectors or
the combustor geometry, and placing acoustic dampers, has been proposed to prevent or reduce these
oscillations [34–37]. However, as mentioned in [38], these methods only work effectively within
a range of operation, and design modifications usually result in high costs and time-consuming
activities. This motivates the development of feedback control laws for thermoacoustic oscillation
mitigation in gas turbine combustors [39–45]. As mentioned in [12], model-based controllers
require detailed modeling information about the system in order to achieve closed-loop stability and
robustness, and, while model-based controllers may suffer loss of performance due to uncertainty
or changes in operating conditions, adaptive controllers can achieve suppression over a wide range
of operating conditions. Hence, a data-driven, adaptive controller that requires minimal modeling
information is desirable.

The objective of this dissertation is thus the development of a digital adaptive controller for
suppressing thermoacoustic oscillations; in particular, restorspective cost adaptive control (RCAC)
is applied to thermoacoustic systems under extremely limited modeling infromation and actuator
limitations. A crucial aspect of data-driven algorithms is the selection of hyperparameters [46–49],
which motivates the development of a model-based methodology for selecting adaptive controller
hyperparameters. The models used for hyperparameter selection are constructed to approximate
the behavior of the studied system without relying on overly complex mechanisms [50]. Hence, a
model structure that exhibits self-excited oscillations is developed to abstract key properties.

1.2 Dissertation Outline

The dissertation is organized in two sections. the first section provides a study of self-excited
oscillations using discrete-time Lur’e models (Chapters 2 and 3), and the second section develops
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a model-based hyperparameter selection methodology for adaptive control implementation on
systems exhibiting thermoacoustic oscillations (Chapters 4 and 5). Figure 1.1 provides an outline
dependence diagram, in which the dependencies between chapters are shown. A summary of each
chapter is provided next.

Chapter 2

This chapter analyzes the self-excited dynamics of discrete-time Lur’e models with affinely con-
strained, piecewise-C1 feedback nonlinearities. The Lur’e model is chosen as a candidate model
structure due to its ability to exhibit self-oscillation and because it is reminiscent of thermoacoustic
systems in the sense that acoustic dynamics are typically linear and the combustion/heat dynamics
are nonlinear. Discrete-time models are considered in support of system identification, which is
covered in Chapter 3. The main result provides sufficient conditions under which a discrete-time
Lur’e model is self-excited in the sense that its response is 1) bounded for all initial conditions, and
2) nonconvergent for almost all initial conditions. The content of this chapter is based on [51, 52].

Chapter 3

In this chapter, nonlinear identification of self-excited systems is considered using a modified
version of the Lur’e model structure introduced in Chapter 2. To facilitate identification, the
nonlinear feedback function is assumed to be continuous and piecewise affine, and thus piecewise-
C1. The main contribution is a technique that uses least-squares optimization to estimate the
coefficients of the linear dynamics and the slope vector of the nonlinearity, as well as mixed-integer
optimization to estimate the order of the linear dynamics and the breakpoints of the nonlinear
function. This method is applied to illustrative examples as wel as to experimental data from
the Dual Independent Swirl Combustor (DISCo), which is a gas-turbine model combustor. The
successful application of this identification technique validates the choice of the Lur’e model
structure for modelling self-excited systems. The content of this chapter is based on [53, 54] and
represents joint research with Y. Yang.

Chapter 4

This chapter introduces an adaptive suppression algorithm to reduce the thermoacoustic oscillations
in a Rijke-tube experiment. Retrospective cost adaptive control (RCAC) is introduced in this chapter
and implemented in a digital controller to modulate the Rijke-tube experiment oscillations. The
main contribution of this chapter is the development of a design methodology wherein an initial
set of hyperparameters required by RCAC is determined by using a rudimentary model fit using
open-loop data from a single experimental scenario. The model structure is constructed using the
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self-excitation properties abstracted in Chapter 2 and validated in Chapter 3. Using the single, fixed
choice of hyperparameters, adaptive control experiments show that RCAC achieves an oscillation
suppression greater than 45 dB over a range of operating conditions. Further tests are performed
to examine the effect of modified hyperparameters on the time it takes for the adaptive controller
to suppress oscillations, the performance and robustness of the frozen-gain adaptive controller,
the ability of the adaptive controller to readapt under changes in working conditions, the stability
of the adaptive controller under changes in its gain, and the effect of the relative degree of the
closed-loop target model on the level of suppression. The experimental scenarios are designed to
test the robustness of the adaptive controller under off-nominal perturbations that reflect real-world
conditions. The content of this chapter is based on [55, 56].

Chapter 5

This chapter applies RCAC to DISCo; this application differs fundamentally from the Rijke-tube
experiment due to significantly more complex physics as well as constraints on the bandwidth
of the control actuation. In particular, the control inputs to DISCo are air-injection inputs with
5-Hz bandwidth, which is significantly below the oscillation frequencies of DISCo, the lowest
of which is approximately 274 Hz. The main contribution of this section is the development
and demonstration of an extension of RCAC that accounts for the actuator bandwidth limitation;
this extension is called quasi-static RCAC (QSRCAC). Using modeling information given by the
pressure RMS and combustor exit-temperature maps versus inner and outer swirler air mass-flow
rate, QSRCAC uses an extended Kalman filter to estimate the gradient of the effect of the actuation
on the performance variables. QSRCAC is then applied to DISCo in a multi-input, multi-output
setting, with two input signals corresponding to inner and outer swirler air-injection valves, and
two output signals given by pressure and temperature sensors. For experimental testing, DISCo
uses methane as fuel and is operated at atmospheric pressure (1 atm) and constant power, with a
constant fuel mass-flow rate of 0.4 g/s, while maintaining the equivalence ratio between 0.6 and 1.1
to prevent flameout. Experimental results show that QSRCAC achieves an oscillation suppression
of 28 dB while reaching a specified exit temperature corresponding to a desired flame length. The
content of this chapter is based on [57, 58].

Nomenclature and Terminology for the Dissertation. R △= (−∞, ∞), N △= {1, 2, . . .}, N0
△
=

{0, 1, 2, . . .}, C denotes the complex numbers. ∥ · ∥ denotes the Euclidean norm on C𝑛, and z ∈ C
denotes the Z-transform variable. Positive-definite and positive-semidefinite matrices are assumed
to be symmetric. For 𝐴 ∈ R𝑛×𝑚, ∥𝐴∥ denotes the maximum singular value of 𝐴, and vec 𝐴 ∈ R𝑛𝑚

is the vector formed by stacking the columns of 𝐴, such that vec−1 satisfies 𝐴 = vec−1(vec 𝐴).
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CHAPTER 2

Self-Excited Dynamics of Discrete-Time Lur’e
Models

A self-excited system (SES) has the property that its response to a constant input is bounded
and nonconvergent. Although an undamped oscillator as well as some linear systems with time
delay are self-excited, these systems lack structural robustness in the sense that arbitrarily small
perturbations of the dynamics can lead to either a convergent (damped) or divergent (unbounded)
response. Structurally robust SES’s are thus nonlinear. A Lur’e model consists of linear dynamics
with memoryless nonlinear feedback [59]. Many SES are modeled by Lur’e models that have
unstable equilibria and bounded response. The ability of Lur’e models to exhibit self-oscillation
has been widely studied [10, 60–65]. A classical example is the Lur’e model of a Rijke tube, in
which acoustic waves interact through feedback with the flame dynamics to produce thermoacoustic
oscillations [1, 8].

Self-excited oscillations in continuous-time Lur’e models have been studied in [66–70]. In
particular, using the bounded real lemma, continuous-time Lur’e models with superlinear feedback
and minimum-phase linear dynamics with relative degree 1 or 2 are shown in [68] to possess
bounded solutions. Related results are given in [69] based on dissipativity theory as well as in [70]
using Lyapunov methods.

In contrast to [66–70], this chapter focuses on discrete-time, self-excited Lur’e models, with the
property that, for all constant inputs, the response is 1) bounded for all initial conditions, and 2)
nonconvergent for almost all initial conditions. The main contribution of this study is the derivation
of sufficient conditions for this behavior to arise in Lur’e models with a specific class of nonlinear
feedback functions. The analogous property for continuous-time Lur’e models is not addressed in
the literature.

It is important to stress the distinctions between continuous-time and discrete-time Lur’e models
that exhibit self-excited behavior. In particular, since superlinear feedback has unbounded gain,
the linear dynamics of a continuous-time Lur’e model must be high-gain stable. From a root locus
perspective, this means that the linear dynamics must be minimum phase, the relative degree cannot
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exceed 2, and, when the relative degree is 2, the root locus center must lie in the open left half plane.
These conditions, which are invoked in [68] for continuous-time dynamics, do not imply high-gain
stability for discrete-time systems with strictly proper linear dynamics. As discussed in [71],
bounded response of a discrete-time Lur’e model with superlinear feedback requires positive-real,
and thus relative-degree-zero, linear dynamics. Superlinear feedback is thus incompatible with
discrete-time Lur’e models of SES.

The main objective of this chapter is to prove that a class of discrete-time Lur’e models with
affinely constrained feedback are self-excited in the sense that 1) all trajectories are bounded and 2)
the set of initial conditions for which the state trajectory is convergent has measure zero. Although
an affinely constrained function need not be bounded or even sector-bounded, it must have linear
growth, thus ruling out superlinear nonlinearities, as necessitated by the fact that discrete-time
strictly proper linear systems are not high-gain stable. By bounding the feedback gain, the linear-
growth assumption enables self-oscillating discrete-time Lur’e models with unbounded feedback
nonlinearities. As a benefit of this setting, the linear discrete-time dynamics of the Lur’e model
need not be minimum phase, which is assumed in [68] for continuous-time systems.

An additional novel feature of the discrete-time Lur’e model considered in this chapter is the
structural assumption that the linear dynamics possess a zero at 1. This assumption, which places
a washout filter in the loop, blocks the DC component arising from the constant exogenous input
to the system and ensures that the nonlinear closed-loop system have a unique equilibrium for each
constant, exogenous input. Most importantly, this property prevents the Lur’e model from having
an additional equilibrium with a nontrivial domain of attraction.

Theorem 2.2.6 provides conditions under which the set of initial conditions for which the tra-
jectories of the Lur’e model are convergent has measure zero, and this is the main contribution of
this chapter. This result is applicable to discrete-time Lur’e models with piecewise-C1 (piecewise-
continuously differentiable (PWC1)) nonlinearities for which the Jacobian of the closed-loop dy-
namics may be singular on a set of measure zero. The need to consider PWC1 nonlinearities is
motivated by their role in nonlinear system identification [54, 72–74]. Under the stronger assump-
tions of C1 nonlinearities and everywhere-nonsingular Jacobian, Theorem 2 in [75] is applicable.
Theorem 2.2.6 thus extends Theorem 2 in [75] to the case where the nonlinearity is PWC1 (and
thus not necessarily C1) and the Jacobian of the closed-loop dynamics may be singular on a set of
measure zero.

The contents of this chapter are as follows. Section 2.1 introduces the discrete-time Lur’e model,
which involves asymptotically stable linear dynamics in feedback with a memoryless nonlinearity,
and analyzes its equilibrium properties. Section 2.2 defines affinely constrained nonlinearities and
provides sufficient conditions under which the discrete-time Lur’e model possesses a bounded,
nonconvergent response for almost all initial conditions. In particular, Theorem 2.2.9 provides a
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sufficient condition for the Lur’e model to be self-excited. Theorem 2.2.9 depends on Theorem
2.2.6, which provides conditions under which the set of initial conditions for which the state
trajectory converges has measure zero. In the case where the feedback nonlinearity is C1 and the
Jacobian of the closed-loop dynamics is nonsingular at all points, Theorem 2.2.6 follows from
Theorem 2 in [75]. The case where the feedback nonlinearity is only PWC1 is required for system
identification as considered in Chapter 3, where the identified feedback nonlinearity is constructed
to be piecewise affine. Section 2.3 presents numerical examples that illustrate the conditions for
self-excitation presented in Section 2.2. Finally, Section 2.4 presentd conclusions to this chapter.
Figure 2.1 shows the dependencies of the results in this chapter.

Proposition 2.1.4

Proposition 2.1.5

Lemma 2.2.2

Proposition 2.2.4

Lemma 2.2.5

Theorem 2.2.6

Theorem 2.2.9

Figure 2.1: Result dependencies.

Nomenclature and Terminology for this Chapter. For G ⊆ R𝑛, acc(G) denotes the set of
accumulation points of G (Definition 2.2.1). For G ⊆ R𝑛, dim(G) denotes the dimension of G,
and, for (Lebesgue) measurable G ⊆ R𝑛, 𝜇(G) denotes the measure of G. For 𝑥 ∈ R𝑛 and 𝜀 > 0,
B𝜀 (𝑥) denotes the open ball of radius 𝜀 centered at 𝑥. For 𝐴 ∈ R𝑛×𝑛, spr(𝐴) denotes the spectral
radius of 𝐴, and, if 𝐴 is positive definite, then 𝜆min(𝐴) denotes the eigenvalue of 𝐴 of minimum
magnitude and 𝜆max(𝐴) denotes the eigenvalue of 𝐴 of maximum magnitude. The terminology
“lim𝑘→∞ 𝛼𝑘 exists” implies that the indicated limit is finite.

2.1 Analysis of the Lur’e Model

Let 𝐺 (z) = 𝐶 (z𝐼 − 𝐴)−1𝐵 be a strictly proper, discrete-time single-input, single-output (SISO)
transfer function with 𝑛th-order minimal realization (𝐴, 𝐵, 𝐶) and state 𝑥𝑘 ∈ R𝑛 at step 𝑘, let
𝜓 : R→ R, and let 𝑢 ∈ R. Then, for all 𝑘 ≥ 0, the discrete-time Lur’e (DTL) model in Fig. 2.2 has
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the closed-loop dynamics

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵(𝜓(𝑦𝑘 ) + 𝑢), (2.1)

𝑦𝑘 = 𝐶𝑥𝑘 , (2.2)

and thus

𝑦𝑘 = 𝐶𝐴
𝑘𝑥0 +

𝑘−1∑︁
𝑖=0

𝐶𝐴𝑘−1−𝑖𝐵(𝜓(𝑦𝑖) + 𝑢). (2.3)

Note that (2.1), (2.2) can be written as

𝑥𝑘+1 = 𝑓 (𝑥𝑘 ), (2.4)

where 𝑓 (𝑥) △= 𝐴𝑥 + 𝐵(𝜓(𝐶𝑥) + 𝑢). Henceforth, we assume that 𝑛 ≥ 2.

+ 𝐺 (z)

𝜓

𝑢 𝑦

Figure 2.2: Discrete-time Lur’e (DTL) model.

Definition 2.1.1 (2.1), (2.2) is self-excited if, for all 𝑢 ∈ R, the following statements hold:

𝑖) For all 𝑥0 ∈ R𝑛, (𝑥𝑘 )∞𝑘=1 is bounded.

𝑖𝑖) For almost all 𝑥0 ∈ R𝑛, lim𝑘→∞ 𝑥𝑘 does not exist.

Note that ii) holds if and only if {𝑥0 ∈ R𝑛 : lim𝑘→∞ 𝑥𝑘 exists} has measure zero. The following
result concerns the measure of the set of initial conditions for which the output converges.

Proposition 2.1.2 Assume that spr(𝐴) < 1, and, for all 𝑢 ∈ R, {𝑥0 ∈ R𝑛 : lim𝑘→∞ 𝑥𝑘 exists} has
measure zero. Then, {𝑥0 ∈ R𝑛 : lim𝑘→∞ 𝑦𝑘 exists} has measure zero.

Proof: Suppose that 𝑋0
△
= {𝑥0 ∈ R𝑛 : lim𝑘→∞ 𝑦𝑘 exists} has positive measure. For all 𝑥0 ∈ 𝑋0,

lim𝑘→∞(𝜓(𝑦𝑘 ) + 𝑢) exists, and thus, since spr(𝐴) < 1, it follows from (2.1) and input-to-state
stability for linear time-invariant discrete-time systems [76, Example 3.4] that, for all 𝑥0 ∈ 𝑋0,

lim𝑘→∞ 𝑥𝑘 exists, which is a contradiction. □

Definition 2.1.3 𝑥 ∈ R𝑛 is an equilibrium of (2.1), (2.2) if 𝑥 is a fixed point of 𝑓 , that is,

𝑥 = 𝐴𝑥 + 𝐵(𝜓(𝐶𝑥) + 𝑢). (2.5)

9



When 𝐼 − 𝐴 is nonsingular, define

𝑥e
△
= (𝐼 − 𝐴)−1𝐵𝑢 (2.6)

and note that
𝐶𝑥e = 𝐺 (1)𝑢. (2.7)

The following result establishes useful properties of 𝐺 and 𝜓.

Proposition 2.1.4 Assume that 𝐼 − 𝐴 is nonsingular. Then, the following statements hold:

𝑖) 𝑥 ∈ R𝑛 is an equilibrium of (2.1), (2.2) if and only if

𝑥 = (𝐼 − 𝐴)−1𝐵(𝜓(𝐶𝑥) + 𝑢). (2.8)

𝑖𝑖) If 𝑥 ∈ R𝑛 is an equilibrium of (2.1), (2.2), then the following statements hold:
𝑎) 𝐶𝑥 = 𝐺 (1) (𝜓(𝐶𝑥) + 𝑢).
𝑏) 𝜓(𝐶𝑥) = −𝑢 if and only if 𝑥 = 0.
𝑐) If𝐺 (1) = 0, then𝐶𝑥 = 0 and 𝑥 = (𝐼 − 𝐴)−1𝐵(𝜓(0) +𝑢) is the unique equilibrium of (2.1),
(2.2).
𝑑) If 𝐶𝑥 = 0, then either 𝐺 (1) = 0 or 𝑢 = −𝜓(0).
𝑒) If 𝜓(𝐶𝑥) = 0, then 𝑥 = 𝑥e.

𝑖𝑖𝑖) The following statements are equivalent:
𝑎) 𝑥e is an equilibrium of (2.1), (2.2).
𝑏) 𝜓(𝐶𝑥e) = 0.
𝑐) 𝜓(𝐺 (1)𝑢) = 0.

𝑖𝑣) Assume that 𝐺 (1) ≠ 0. Then, the following statements are equivalent:
𝑎) 𝑥e is an equilibrium of (2.1), (2.2).
𝑏) 𝜓(𝐶𝑥e) = 0.
𝑐) 𝑢 ∈ 1

𝐺 (1)𝜓
−1({0}).

𝑣) Assume that 𝐺 (1) = 0. Then, the following statements are equivalent:
𝑎) 𝜓(0) = 0.
𝑏) 𝑥e is an equilibrium of (2.1), (2.2).
𝑐) 𝑥e is the unique equilibrium of (2.1), (2.2).

Proof: To prove 𝑖), note that, since 𝐼 − 𝐴 is nonsingular, it follows that (2.5) and (2.8) are
equivalent.
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To prove 𝑖𝑖)𝑎), note that 𝑖) implies 𝐶𝑥 = 𝐶 (𝐼 − 𝐴)−1𝐵(𝜓(𝐶𝑥) + 𝑢) = 𝐺 (1) (𝜓(𝐶𝑥) + 𝑢).
To prove necessity in 𝑖𝑖)𝑏), note that (2.8) implies 𝑥 = 0. To prove sufficiency in 𝑖𝑖)𝑏), note that

(2.8) implies 𝐵(𝜓(𝐶𝑥) + 𝑢) = 0. Since 𝐵 is nonzero, it follows that 𝜓(𝐶𝑥) = −𝑢.
To prove 𝑖𝑖)𝑐), note that, since𝐺 (1) = 0, it follows that 𝑖𝑖)𝑎) implies𝐶𝑥 = 𝐺 (1) (𝜓(𝐶𝑥)+𝑢) = 0.

Furthermore, since 𝐼 − 𝐴 is nonsingular, (2.8) implies that 𝑥 = (𝐼 − 𝐴)−1𝐵(𝜓(0) + 𝑢) is the unique
equilibrium of (2.1), (2.2).

To prove 𝑖𝑖)𝑑), note that, since 𝐶𝑥 = 0, it follows from 𝑖𝑖)𝑎) that 𝐺 (1) (𝜓(0) + 𝑢) = 0, which
implies that either 𝐺 (1) = 0 or 𝑢 = −𝜓(0).

To prove 𝑖𝑖)𝑒), note that, since 𝜓(𝐶𝑥) = 0, (2.6) and (2.8) imply 𝑥 = 𝑥e.

To prove 𝑖𝑖𝑖), note that (2.7) implies 𝑖𝑖𝑖)𝑏) ⇐⇒ 𝑖𝑖𝑖)𝑐). Next, we show that 𝑖𝑖𝑖)𝑎) =⇒ 𝑖𝑖𝑖)𝑏) and
𝑖𝑖𝑖)𝑏) =⇒ 𝑖𝑖𝑖)𝑎). To prove 𝑖𝑖𝑖)𝑎) =⇒ 𝑖𝑖𝑖)𝑏), note that (2.8) implies 𝑥e = (𝐼 − 𝐴)−1𝐵(𝜓(𝐶𝑥e) + 𝑢) =
(𝐼 − 𝐴)−1𝐵𝑢, which implies 𝜓(𝐶𝑥e) = 0. To prove 𝑖𝑖𝑖)𝑏) =⇒ 𝑖𝑖𝑖)𝑎), note that 𝑥e = (𝐼 − 𝐴)−1𝐵𝑢 =

(𝐼 − 𝐴)−1𝐵(𝜓(𝐶𝑥e) + 𝑢). Hence, 𝑖) implies 𝑥e is an equilibrium.
𝑖𝑣) follows from 𝑖𝑖𝑖) in the case 𝐺 (1) ≠ 0.
To prove 𝑣), we show 𝑣)𝑐) =⇒ 𝑣)𝑏) =⇒ 𝑣)𝑎) =⇒ 𝑣)𝑐). 𝑣)𝑐) =⇒ 𝑣)𝑏) is immediate. Next, since

𝐺 (1) = 0, 𝑖𝑣) implies 𝐶𝑥e = 𝐺 (1)𝑢 = 0. Hence, 𝑖𝑖𝑖) with 𝐶𝑥e = 0 implies 𝑣)𝑏) =⇒ 𝑣)𝑎). Finally,
since 𝐺 (1) = 0, 𝑖𝑖) 𝑐) implies that 𝑥 = (𝐼 − 𝐴)−1𝐵(𝜓(0) + 𝑢) is the unique equilibrium of (2.1),
(2.2). In the case 𝜓(0) = 0, 𝑥 = (𝐼 − 𝐴)−1𝐵𝑢 = 𝑥e is the unique equilibrium of (2.1), (2.2), and
thus 𝑣)𝑎) =⇒ 𝑣)𝑐). □

Note that the converse of Proposition 2.1.4𝑖𝑖)𝑒) is true and is given by 𝑖𝑖𝑖). In the following
result, the first statement implies that every convergent state trajectory of (2.1), (2.2) converges
to an equilibrium solution. Under stronger conditions, the second statement implies that every
convergent state trajectory of (2.1), (2.2) converges to the unique equilibrium solution given by
(2.6).

Proposition 2.1.5 Assume that 𝐼 − 𝐴 is nonsingular and 𝜓 is continuous. Then, the following
statements hold:

𝑖) If 𝑥∞
△
= lim𝑘→∞ 𝑥𝑘 exists, then 𝑥∞ is an equilibrium of (2.1), (2.2).

𝑖𝑖) Assume that 𝐺 (1) = 0 and 𝜓(0) = 0. Then, the following statements hold:
𝑎) If 𝑥∞

△
= lim𝑘→∞ 𝑥𝑘 exists, then 𝑥∞ = 𝑥e.

𝑏) {𝑥0 : lim𝑘→∞ 𝑥𝑘 exists} = {𝑥0 : lim𝑘→∞ 𝑥𝑘 = 𝑥e}.

Proof: To prove 𝑖), note that, since 𝜓 is continuous, it follows that 𝑓 is continuous. Hence, (2.4)
implies that 𝑥∞ = lim𝑘→∞ 𝑥𝑘 = lim𝑘→∞ 𝑓 (𝑥𝑘 ) = 𝑓 (𝑥∞).

To prove 𝑖𝑖)𝑎), note that 𝑖) implies that 𝑥∞ is an equilibrium of (2.1), (2.2). Since 𝐺 (1) = 0
and 𝜓(0) = 0, Proposition 2.1.4𝑣) implies that 𝑥e is the unique equilibrium of (2.1), (2.2). Hence,
𝑥∞ = 𝑥e.
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To prove 𝑖𝑖)𝑏), note that “⊆” follows from 𝑖𝑖)𝑎). Finally, “⊇” is immediate. □

2.2 Self-Excited Dynamics of the Lur’e Model

This section presents sufficient conditions under which the Lur’e model (2.1), (2.2) with an affinely
constrained nonlinearity is self-excited.

2.2.1 Preliminary Results

Definition 2.2.1 Let B ⊆ R𝑛. Then, 𝑧 ∈ B is an isolated point of B if there exists 𝜀 > 0 such
that B𝜀 (𝑧) ∩ (B\{𝑧}) = ∅. Furthermore, 𝑧 ∈ R𝑛 is an accumulation point of B if, for all 𝜀 > 0,
B𝜀 (𝑧) ∩ (B\{𝑧}) ≠ ∅. The set of accumulation points of B is denoted by acc(B), and the set of
isolated points of B is denoted by iso(B).

It can be seen that 𝑧 ∈ acc(B) if and only if there exists (𝑥𝑖)∞𝑖=1 ⊆ B\{𝑧} such that lim𝑖→∞ 𝑥𝑖 = 𝑧.

Note that 𝑧 ∈ acc(B) need not be an element of B. In fact, cl(B)\B ⊆ cl(B)\iso(B) = acc(B),
and thus acc(B) = ∅ if and only if B = iso(B).

Lemma 2.2.2 Let A ⊆ R, assume that acc(A) = ∅, and define B △= {𝑥 ∈ R𝑛 : 𝐶𝑥 ∈ A}. Then,
the following statements hold:

𝑖) B has measure zero.

𝑖𝑖) B is closed.

Proof: Both statements are true whenA is empty; hence assume thatA is not empty. To prove
𝑖), note that B is the union of hyperplanes, each of which has measure zero. Since acc(A) = ∅,
A is countable, and thus B is a countable union of sets, each with measure zero. Therefore, B has
measure zero. To prove 𝑖𝑖), note that, since acc(A) = ∅, it follows that A = iso(A), and thus A
is closed. Hence, B is closed. □

2.2.2 Piecewise-C1 Functions

Definition 2.2.3 𝜓 is piecewise continuously differentiable (PWC1) if the following conditions
hold:

𝑖) 𝜓 is continuous.

𝑖𝑖) Define R △
= {𝑦 ∈ R : 𝜓′(𝑦) exists and 𝜓′ is continuous at 𝑦}. Then, S △

= R\R has no
accumulation points.
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𝑖𝑖𝑖) For all 𝑦 ∈ S, lim𝑡↑0 𝜓
′(𝑦 + 𝑡) and lim𝑡↓0 𝜓

′(𝑦 + 𝑡) exist.

Note that, if 𝜓 is C1, then S = ∅.
As an example, consider 𝜓(𝑦) = 𝑦2 sin(1/𝑦) for 𝑦 ≠ 0 and 𝜓(0) = 0. Then, 𝜓′(𝑦) =

2𝑦 sin(1/𝑦) − cos(1/𝑦) for 𝑦 ≠ 0 and 𝜓′(0) = 0. Hence, R = R\{0} and S = {0}. However,
neither lim𝑡↑0 𝜓

′(𝑡) nor lim𝑡↓0 𝜓
′(𝑡) exists, and thus 𝜓 is not PWC1.

It can be shown that, if𝜓′(𝑦), lim𝑡↑0 𝜓
′(𝑦+𝑡), and lim𝑡↓0 𝜓

′(𝑦+𝑡) exist, then𝜓′(𝑦) = lim𝑡↑0 𝜓
′(𝑦+

𝑡) = lim𝑡↓0 𝜓
′(𝑦 + 𝑡), and thus 𝜓′ is continuous at 𝑦. Therefore, if 𝜓 is PWC1 and 𝑦 ∈ S, then 𝜓′(𝑦)

does not exist. Furthermore, ii) holds if and only if each bounded subset of R contains a finite
number of elements of S.

Assume that 𝜓 is PWC1. Then, define D △
= {𝑥 ∈ R𝑛 : 𝐶𝑥 ∈ R} and E △= {𝑥 ∈ R𝑛 : 𝐶𝑥 ∈ S} =

R𝑛\D so that R = 𝐶D and S = 𝐶E . If 𝑥 ∈ D, then 𝑓 ′(𝑥) = 𝐴 + 𝜓′(𝐶𝑥)𝐵𝐶. Note that, in the case
where 𝐺 (1) = 0, 𝑓 ′(𝑥e) = 𝑓 ′(0) = 𝐴 + 𝜓′(0)𝐵𝐶. Finally, define

D0
△
= {𝑥 ∈ D : 𝑓 ′(𝑥) is singular} (2.9)

and
R0
△
= 𝐶D0. (2.10)

It thus follows that
R0 = {𝑦 ∈ R : 𝐴 + 𝜓′(𝑦)𝐵𝐶 is singular} ⊆ R. (2.11)

Proposition 2.2.4 Assume that 𝜓 is PWC1 and acc(R0) = ∅. Then,D0 and E are closed and have
measure zero.

Proof: Write

D0 =
⋃
𝑦∈R0

{𝑥 ∈ R𝑛 : 𝐶𝑥 = 𝑦},

E =
⋃
𝑦∈S
{𝑥 ∈ R𝑛 : 𝐶𝑥 = 𝑦}.

Since acc(R0) = acc(S) = ∅, 𝑖) and 𝑖𝑖) of Lemma 2.2.2 imply that D0 and E are closed and have
measure zero. □

Next, define 𝑓 1 △= 𝑓 and, for all 𝑘 ≥ 1, 𝑓 𝑘+1 △= 𝑓 ◦ 𝑓 𝑘 . Furthermore, for allM ⊆ R𝑛, define
𝑓 −1(M) △= {𝑥 ∈ R𝑛 : 𝑓 (𝑥) ∈ M} and, for all 𝑘 ≥ 1, 𝑓 −𝑘−1(M) △= 𝑓 −1( 𝑓 −𝑘 (M)).

Lemma 2.2.5 Assume that 𝜓 is PWC1 and acc(R0) = ∅, and let M ⊂ R𝑛 have measure zero.
Then, for all 𝑘 ≥ 1, 𝜇( 𝑓 −𝑘 (M)) = 0.
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Proof: Proposition 2.2.4 implies thatD0 and E are closed, and thusU △
= R𝑛\(D0 ∪ E) is open.

Next, sinceU∩ (D0 ∪E) = ∅, it follows that 𝑓 is C1 onU and 𝑓 ′(𝑥) is nonsingular for all 𝑥 ∈ U.
The inverse function theorem thus implies that, for all 𝑥 ∈ U, there exists an open neighborhood
𝑈𝑥 ⊆ U of 𝑥 and 𝑉𝑥 ⊂ R𝑛 of 𝑓 (𝑥) such that 𝑉𝑥 = 𝑓 (𝑈𝑥), 𝑓 is bijective on 𝑈𝑥 , and 𝑓 −1 is C1 on
𝑉𝑥 [77, Theorem 9.17], which implies that, for all 𝑥 ∈ U, 𝑓 : 𝑈𝑥 → 𝑉𝑥 is a C1 diffeomorphism.
Note that ∪𝑥∈U𝑈𝑥 is an open covering of U and R𝑛 is a Lindel¥of space [78, p. 96]. Hence, there
exists a countable subset J ⊂ U such thatU ⊆ ∪𝑥∈J𝑈𝑥 and thus, for all 𝑥 ∈ J , 𝑓 : 𝑈𝑥 → 𝑉𝑥 is a
C1 diffeomorphism.

Next, let P ⊂ R𝑛 be a measurable set such that 𝜇(P) > 0. Then, since 𝜇(D0) = 𝜇(E) = 0 and
D0, E, andU are disjoint,

𝜇(P) = 𝜇(P ∩ D0) + 𝜇(P ∩ E) +
∑︁
𝑥∈J

𝜇(P ∩U𝑥) =
∑︁
𝑥∈J

𝜇(P ∩U𝑥),

which implies that there exists 𝜒 ∈ J such that 𝜇(P ∩𝑈𝜒) > 0. Since, for all 𝑥 ∈ 𝑈𝜒, 𝑓
′(𝑥) exists,

the change of variables theorem implies

𝜇( 𝑓 (P ∩𝑈𝜒)) =
∫
𝑓 (P∩U𝜒 )

𝑑𝜇(𝑦) =
∫
P∩U𝜒

| det 𝑓 ′(𝑥) |𝑑𝜇(𝑥) > 0.

Hence, 𝜇( 𝑓 (P)) > 0.
Next, suppose 𝜇( 𝑓 −1(M)) > 0. Since 𝑓 ( 𝑓 −1(M)) ⊆ M, it follows that

0 < 𝜇( 𝑓 ( 𝑓 −1(M))) ≤ 𝜇(M) = 0,

which is a contradiction. Hence, 𝜇( 𝑓 −1(M)) = 0. Finally, induction implies that, for all 𝑘 ≥ 1,
𝜇( 𝑓 −𝑘 (M)) = 0. □

The following theorem, which is the central result of this chapter, provides sufficient conditions
under which the set of initial conditions for which the state trajectory of (2.1), (2.2) converges has
measure zero.

Theorem 2.2.6 Assume that 𝐼 − 𝐴 is nonsingular, 𝐺 (1) = 0, 𝜓(0) = 0, 𝜓 is PWC1, 𝜓′(0) exists,
acc(R0) = ∅, spr( 𝑓 ′(𝑥e)) > 1, and 𝑓 ′(𝑥e) is nonsingular. Then, 𝜇({𝑥0 : lim𝑘→∞ 𝑥𝑘 exists}) = 0.

Proof: Proposition 2.1.4𝑣) implies that 𝑥e is a fixed point of 𝑓 . Since spr( 𝑓 ′(𝑥e)) > 1, define
X △

= 𝑥e + Y, where Y is the proper subspace of R𝑛 spanned by the generalized eigenvectors
associated with the eigenvalues of 𝑓 ′(𝑥e) whose magnitude is less than or equal to 1.

Since 𝑓 ′(𝑥e) is nonsingular, the inverse function theorem implies that there exist open neighbor-
hoods 𝑈 ⊂ R𝑛 of 𝑥e ∈ 𝑈 and 𝑉 ⊂ R𝑛 of 𝑓 (𝑥e) such that 𝑉 = 𝑓 (𝑈), 𝑓 is bijective on 𝑈, and 𝑓 −1 is
continuously differentiable on 𝑉 [77, Theorem 9.17]. Then, the stable manifold theorem (Theorem
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III.7 in [79, pp. 65, 66]) implies that there exist a local 𝑓 -invariant C1 embedded diskW ⊂ R𝑛

and a ball B𝑥e around 𝑥e in an adapted norm such thatW is tangent to X at 𝑥e, 𝑓 (W) ∩B𝑥e ⊂ W,

W𝑥e
△
= ∩∞

𝑝=0 𝑓
−𝑝 (B𝑥e) ⊂ W, and, since spr( 𝑓 ′(𝑥e)) > 1,W has codimension of at least 1, and

thus 𝜇(W) = 0. Furthermore, sinceW𝑥e ⊂ W, 𝜇(W𝑥e) = 0.
Next, let 𝜒0 ∈ {𝑥0 : lim𝑘→∞ 𝑥𝑘 = 𝑥e}, and note that there exists 𝑘 l ≥ 1 such that, for all

𝑘 ≥ 𝑘 l, 𝑓
𝑘 (𝜒0) ∈ B𝑥e , which in turn implies that 𝑓 𝑘 l (𝜒0) ∈ W𝑥e . This, in turn, implies that

𝜒0 ∈ ∪∞𝑘=0 𝑓
−𝑘 (W𝑥e), and thus {𝑥0 : lim𝑘→∞ 𝑥𝑘 = 𝑥e} ⊆ ∪∞𝑘=0 𝑓

−𝑘 (W𝑥e).Hence, since 𝜇(W𝑥e) = 0,
Lemma 2.2.5 implies that

𝜇({𝑥0 : lim
𝑘→∞

𝑥𝑘 = 𝑥e}) ≤ 𝜇
( ∞⋃
𝑘=0

𝑓 −𝑘 (W𝑥e)
)

=

∞∑︁
𝑘=0

𝜇( 𝑓 −𝑘 (W𝑥e)) = 0,

which, with Proposition 2.1.5𝑖𝑖)𝑏), implies that

𝜇({𝑥0 : lim
𝑘→∞

𝑥𝑘 exists}) = 0. □

2.2.3 Boundedness of Solutions of the Lur’e Model

The following definition will be used to obtain conditions for the boundedness of solutions of (2.1),
(2.2).

Definition 2.2.7 𝜓 is affinely constrained if there exist 𝛼l, 𝛼h, 𝑠l, 𝑠h ∈ R and 𝜌 > 0 such that 𝑠l < 𝑠h

and such that, for all 𝑦 ≤ 𝑠l, |𝜓(𝑦) − 𝛼l𝑦 | < 𝜌 and, for all 𝑦 ≥ 𝑠h, |𝜓(𝑦) − 𝛼h𝑦 | < 𝜌. Furthermore,
𝜓 is affinely constrained by (𝛼l, 𝛼h).

Example 2.2.8 This example illustrates Definition 2.2.7. Let 𝛾, 𝜁 , 𝜂, 𝜇, 𝑠l, 𝑠h ∈ R, where 𝜇 ≠ 0,
𝑠l < 0 < 𝑠h, let 𝜓(𝑦) = 𝑔(𝑦) + ℎ(𝛾𝑦), where 𝑔, ℎ : R→ R are given by

𝑔(𝑦) △= 𝜁 tanh(𝑦) sin(𝜂𝑦) + 𝑦
√

2𝜋𝜇3
𝑒
−𝑦2

2𝜇2 , (2.12)

ℎ(𝑦) △=


𝑠2

l + 2𝑠l(𝑦 − 𝑠l), 𝑦 ≤ 𝑠l,

𝑦2, 𝑦 ∈ (𝑠l, 𝑠h),

𝑠2
h + 2𝑠h(𝑦 − 𝑠h), 𝑦 ≥ 𝑠h.

(2.13)

Since lim|𝑦 |→∞ 𝑔(𝑦) = 0 it follows that 𝜓 is affinely constrained by (2𝛾𝑠l, 2𝛾𝑠h). Fig. 2.3 shows
𝜓(𝑦) for all 𝑦 ∈ [−3, 3] when 𝛾 = 4, 𝜁 = 3, 𝜂 = 20, 𝜇 = 0.125, 𝑠l = −1, 𝑠h = 1.5. In this case, 𝜓 is
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affinely constrained by (−8, 12).

Figure 2.3: Plot of 𝜓(𝑦) = 𝑔(𝑦) + ℎ(𝛾𝑦), where 𝑔 and ℎ are given by (2.12) and (2.13), and
𝛾 = 4, 𝜁 = 3, 𝜂 = 20, 𝜇 = 0.125, 𝑠l = −1, 𝑠h = 1.5. In this case, 𝜓 is affinely constrained by (𝛼l, 𝛼h),
where 𝛼l = 2𝛾𝑠l = −8 is the slope of the red, dashed line segments, and 𝛼h = 2𝛾𝑠h = 12 is the
slope of the green, dashed line segments.

The following result provides sufficient condition under which (2.1), (2.2) is self-excited.

Theorem 2.2.9 Assume that 𝐼 − 𝐴 is nonsingular, 𝐴 is asymptotically stable, 𝐺 (1) = 0, 𝜓 is
continuous, and 𝜓(0) = 0, let 𝛼l, 𝛼h ∈ R, assume that 𝜓 is affinely constrained by (𝛼l, 𝛼h), assume
that 𝐴l

△
= 𝐴 + 𝛼l𝐵𝐶 and 𝐴h

△
= 𝐴 + 𝛼h𝐵𝐶 are asymptotically stable, and assume that there exists a

positive-definite matrix 𝑃 ∈ R𝑛×𝑛 such that 𝑃 − 𝐴T𝑃𝐴, 𝑃 − 𝐴T
l 𝑃𝐴l, and 𝑃 − 𝐴T

h𝑃𝐴h are positive
definite. Then, the following statements hold:

𝑖) For all 𝑥0 ∈ R𝑛, (𝑥𝑘 )∞𝑘=1 is bounded.

𝑖𝑖) Assume that 𝜓 is PWC1 and differentiable at 0, acc(R0) = ∅, spr( 𝑓 ′(𝑥e)) > 1, and 𝑓 ′(𝑥e) is
nonsingular. Then, (2.1), (2.2) is self-excited.

Proof: To prove 𝑖), let 𝑠l, 𝑠h ∈ R and 𝜌 > 0 be such that 𝑠l < 𝑠h and such that, for all 𝑦 ∈ (−∞, 𝑠l],
|𝜓(𝑦) −𝛼l𝑦 | < 𝜌 and, for all 𝑦 ∈ [𝑠h,∞), |𝜓(𝑦) −𝛼h𝑦 | < 𝜌. For all 𝑘 ≥ 0, (2.1) can be rewritten as

𝑥𝑘+1 =



(𝐴 + 𝛼l𝐵𝐶)𝑥𝑘
+𝐵(𝜓(𝐶𝑥𝑘) − 𝛼l𝐶𝑥𝑘 + 𝑢), 𝐶𝑥𝑘 ≤ 𝑠l,

𝐴𝑥𝑘 + 𝐵(𝜓(𝐶𝑥𝑘) + 𝑢), 𝐶𝑥𝑘 ∈ (𝑠l, 𝑠h),

(𝐴 + 𝛼h𝐵𝐶)𝑥𝑘
+𝐵(𝜓(𝐶𝑥𝑘) − 𝛼h𝐶𝑥𝑘 + 𝑢), 𝐶𝑥𝑘 ≥ 𝑠h.

(2.14)
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Furthermore, defining

𝐴𝑘
△
=


𝐴l, 𝐶𝑥𝑘 ≤ 𝑠l,

𝐴, 𝐶𝑥𝑘 ∈ (𝑠l, 𝑠h),

𝐴h, 𝐶𝑥𝑘 ≥ 𝑠h,

𝜈𝑘
△
=


𝜓(𝐶𝑥𝑘 ) − 𝛼l𝐶𝑥𝑘 + 𝑢, 𝐶𝑥𝑘 ≤ 𝑠l,

𝜓(𝐶𝑥𝑘 ) + 𝑢, 𝐶𝑥𝑘 ∈ (𝑠l, 𝑠h),

𝜓(𝐶𝑥𝑘 ) − 𝛼h𝐶𝑥𝑘 + 𝑢, 𝐶𝑥𝑘 ≥ 𝑠h,

(2.14) can be written as
𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝜈𝑘 . (2.15)

Since 𝜓 is continuous and affinely constrained by (𝛼l, 𝛼h), it follows that (𝜈𝑘 )∞𝑘=0 is bounded. Next,
define the positive-definite matrices

𝑄l
△
= 𝑃 − 𝐴T

l 𝑃𝐴l, 𝑄
△
= 𝑃 − 𝐴T𝑃𝐴, 𝑄h

△
= 𝑃 − 𝐴T

h𝑃𝐴h,

and 𝑉 : R𝑛 → R such that, for all 𝑥 ∈ R𝑛, 𝑉 (𝑥) △= 𝑥T𝑃𝑥. Then, for all 𝑘 ≥ 0, (2.15) implies

𝑉 (𝑥𝑘+1) −𝑉 (𝑥𝑘)

=


−𝑥T

𝑘
𝑄l𝑥𝑘 + 2𝑥T

𝑘
𝐴T

l 𝑃𝐵𝜈𝑘 + 𝜈
T
𝑘
𝐵T𝑃𝐵𝜈𝑘 , 𝐶𝑥𝑘 ≤ 𝑠l,

−𝑥T
𝑘
𝑄𝑥𝑘 + 2𝑥T

𝑘
𝐴T𝑃𝐵𝜈𝑘 + 𝜈T

𝑘
𝐵T𝑃𝐵𝜈𝑘 , 𝐶𝑥𝑘 ∈ (𝑠l, 𝑠h),

−𝑥T
𝑘
𝑄h𝑥𝑘 + 2𝑥T

𝑘
𝐴T

h𝑃𝐵𝜈𝑘 + 𝜈
T
𝑘
𝐵T𝑃𝐵𝜈𝑘 , 𝐶𝑥𝑘 ≥ 𝑠h.

Hence, for all 𝑘 ≥ 0,
𝑉 (𝑥𝑘+1) −𝑉 (𝑥𝑘 ) ≤ −𝛾(∥𝑥𝑘 ∥) + 𝜁 (∥𝜈𝑘 ∥),

where 𝛾 : [0,∞) → [0,∞) and 𝜁 : [0,∞) → [0,∞) are defined by

𝛾(𝑟) △= 1
2 min({𝜆min(𝑄l), 𝜆min(𝑄), 𝜆min(𝑄h)})𝑟2,

𝜁 (𝑟) △=
[

max
{

2|𝐴T
l 𝑃𝐵|

2

𝜆min (𝑄l) ,
2|𝐴T𝑃𝐵|2
𝜆min (𝑄) ,

2|𝐴T
h𝑃𝐵|

2

𝜆min (𝑄h)

}
+ |𝐵T𝑃𝐵|2

]
𝑟2.

Since, for all 𝑥 ∈ R𝑛, 𝜆min(𝑃)∥𝑥∥22 ≤ 𝑉 (𝑥) ≤ 𝜆max(𝑃)∥𝑥∥22, 𝛾 and 𝜁 are continuous and strictly
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increasing, 𝛾(0) = 𝜁 (0) = 0, and 𝜁 (𝑟) → ∞ as 𝑟 →∞, Lemma 3.5 of [76] implies that (2.15) with
input 𝜈 is input-to-state stable. Since (𝜈𝑘 )∞𝑘=0 is bounded, it follows that, for all 𝑥0 ∈ R𝑛, (𝑥𝑘 )∞𝑘=1 is
bounded.

Finally, 𝑖𝑖) follows from 𝑖) and Theorem 2.2.6. □

Note that Theorem 2.2.9 assumes that the linear matrix inequality (linear matrix inequality
(LMI)) 

𝑃 0 0 0
0 𝑃 − 𝐴T𝑃𝐴 0 0
0 0 𝑃 − 𝐴T

l 𝑃𝐴l 0
0 0 0 𝑃 − 𝐴T

h𝑃𝐴h


> 0 (2.16)

is feasible, that is, there exists 𝑃 ∈ R𝑛×𝑛 such that the 4𝑛 × 4𝑛 matrix in (2.16) is positive definite.
The following result provides sufficient conditions under which (2.16) is satisfied.

Proposition 2.2.10 Assume that ∥𝐴∥ < 1, ∥𝐴l∥ < 1, and ∥𝐴h∥ < 1. Then, (2.16) is satisfied with
𝑃 = 𝐼 .

Proof: Since ∥𝐴∥ < 1, ∥𝐴l∥ < 1, and ∥𝐴h∥ < 1, it follows that

𝐼 − 𝐴T𝐴 > 0, 𝐼 − 𝐴T
l 𝐴l > 0, 𝐼 − 𝐴T

h 𝐴h > 0,

which, in turn, implies that (2.16) is satisfied with 𝑃 = 𝐼 . □

The following is a corollary of Theorem 2.2.9𝑖𝑖) when 𝜓 is bounded.

Corollary 2.2.11 Assume that 𝐼 − 𝐴 is nonsingular, 𝐺 (1) = 0, and 𝜓(0) = 0. Furthermore,
assume that 𝐴 is asymptotically stable, 𝜓 is PWC1, differentiable at 0, and bounded, acc(R0) = ∅,
spr( 𝑓 ′(𝑥e)) > 1, and 𝑓 ′(𝑥e) is nonsingular. Then, (2.1), (2.2) is self-excited.

2.3 Numerical examples

Although the conditions of Theorem 2.2.9 and Corollary 2.2.11 are not necessary, the numerical
examples in this section show that, when some of these conditions are not met, the response of
(2.1), (2.2) may yield a convergent or divergent response for a nonnegligible set of initial conditions.
Examples 2.3.1 to 2.3.4 concern cases in which some of these conditions are not met. Table 2.1
summarizes these examples and their objectives. In these examples, the feasibility of the LMI in
(2.16) is determined by using the Matlab function feasp, which is also used to compute a feasible
solution when it exists.

18



Table 2.1: Summary of Numerical Examples

Example Nonlinearity type Objective
2.3.1 Bounded, C1 Shows that Corollary 2.2.11 is false if 𝐺 (1) = 0 is omitted

2.3.2
Unbounded, C1,

affinely constrained by (𝛼, 𝛼)
Shows that Theorem 2.2.9 is false if either

spr(𝐴 + 𝛼𝐵𝐶) < 1 or spr( 𝑓 ′(𝑥e)) > 1 is omitted

2.3.3
Unbounded, PWC1,

affinely constrained by (𝛼l, 𝛼h)
Shows that Theorem 2.2.9 is false if either

spr(𝐴 + 𝛼l𝐵𝐶) < 1 or spr(𝐴 + 𝛼h𝐵𝐶) < 1 is omitted

2.3.4
Unbounded, PWC1,

affinely constrained by (𝛼l, 𝛼h)
Shows that Theorem 2.2.9 is false if
the feasibility of (2.16) is omitted

Example 2.3.1 This example shows that Corollary 2.2.11 is false if the assumption that 𝐺 (1) = 0
is omitted. Let 𝑢 = 5, 𝜓(𝑦) = tanh(𝑦), and 𝐺 (z) = −1/(z2 − z + 0.5) with minimal realization

𝐴 =

[
1 −0.5
1 0

]
, 𝐵 =

[
1
0

]
, 𝐶 =

[
0 −1

]
.

Note that 𝜓 is 𝐶1, bounded, and 𝜓(0) = 0. Root-locus properties imply that 𝐴 + 𝜓′(𝑦)𝐵𝐶 is
singular if and only if 𝜓′(𝑦) = −0.5. Since, for all 𝑦 ∈ R, 𝜓′(𝑦) = sech2(𝑦) ∈ [0, 1], it follows
that 𝐴 + 𝜓′(𝑦)𝐵𝐶 is nonsingular, and thus acc(R0) = ∅. Furthermore, 𝐼 − 𝐴 is nonsingular, 𝐴
is asymptotically stable, and spr( 𝑓 ′(𝑥e)) > 1. Since 𝐺 (1) ≠ 0, it follows that the assumptions of
Corollary 2.2.11 are not satisfied. Accordingly, Fig. 2.4 shows that, for the indicated initial states,
the response of (2.1), (2.2) converges.

Next, let 𝐺 (z) = −(z − 1)/(z2 − z + 0.5) with minimal realization

𝐴 =

[
1 −0.5
1 0

]
, 𝐵 =

[
1
0

]
, 𝐶 =

[
1 −1

]
.

Root-locus properties imply that 𝐴 + 𝜓′(𝑦)𝐵𝐶 is singular if and only if 𝜓′(𝑦) = −0.5. Since, for
all 𝑦 ∈ R, 𝜓′(𝑦) = sech2(𝑦) ∈ [0, 1], it follows that 𝐴 + 𝜓′(𝑦)𝐵𝐶 is nonsingular, that is, R0 = ∅.
Furthermore, 𝐼−𝐴 is nonsingular, 𝐴 is asymptotically stable, and spr( 𝑓 ′(𝑥e)) > 1. Since𝐺 (1) = 0,
all of the assumptions of Corollary 2.2.11 are satisfied. Accordingly, Fig. 2.5 shows that, for the
indicated initial states except the equilibrium, the response of (2.1), (2.2) does not converge and is
bounded. ^

Example 2.3.2 This example shows that Theorem 2.2.9 is false if either spr(𝐴 + 𝛼𝐵𝐶) < 1 or
spr( 𝑓 ′(𝑥e)) > 1 is omitted. Let 𝑢 = 5, 𝛼, 𝛽 ∈ R, where 𝛽 ≠ 0, 𝜓(𝑦) = 𝛼𝑦 + 𝛽 sin(𝑦), and
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Figure 2.4: Example 2.3.1: Response of (2.1), (2.2) for𝐺 (z) = −1
z2−z+0.5 , 𝑢 = 5, and𝜓(𝑦) = tanh(𝑦).

For all 𝑘 ∈ [0, 20], 𝑎) shows 𝑦𝑘 for 𝑥0 = [0.5 0.5]T. For all 𝑘 ∈ [0, 20], 𝑏) shows 𝑥𝑘 for all
𝑥0 ∈ {4, 5, . . . , 16} × {4, 5, . . . , 16}. The gray lines follow the trajectory from each initial state.
Note that all state trajectories converge to 𝑥 = [8 8]T,which is an asymptotically stable equilibrium.

Figure 2.5: Example 2.3.1: Response of (2.1), (2.2) for𝐺 (z) = −(z−1)
z2−z+0.5 , 𝑢 = 5, and𝜓(𝑦) = tanh(𝑦).

For all 𝑘 ∈ [0, 60], 𝑎) shows 𝑦𝑘 for 𝑥0 = [0.5 0.5]T. For all 𝑘 ∈ [0, 60], 𝑏) shows 𝑥𝑘 for all
𝑥0 ∈ {4, 5, . . . , 16} × {4, 5, . . . , 16}. The gray lines follow the trajectory from each initial state.
Note that each state trajectory is bounded and does not converge, except for the state trajectory for
𝑥0 = [10 10]T = 𝑥e, which is an unstable equilibrium.

𝐺 (z) = (z − 1)/(z2 − z + 0.5) with minimal realization

𝐴 =

[
1 −0.5
1 0

]
, 𝐵 =

[
1
0

]
, 𝐶 =

[
1 −1

]
.

Note that 𝜓 is C1 and affinely constrained by (𝛼, 𝛼) since, for all 𝑦 ∈ R, |𝜓(𝑦) −𝛼𝑦 | = |𝛽 sin(𝑦) | ≤
|𝛽 |. Next, root-locus properties imply that 𝐴 + 𝜓′(𝑦)𝐵𝐶 is singular if and only if 𝜓′(𝑦) = −0.5
Then, since 𝜓′(𝑦) = 𝛼 + 𝛽 cos(𝑦), R0 = {𝑦 ∈ R : cos(𝑦) = (−0.5 − 𝛼)/𝛽} is countable and
thus acc(R0) = ∅. Furthermore, 𝐼 − 𝐴 is nonsingular, 𝐴 is asymptotically stable, 𝐺 (1) = 0, and
𝜓(0) = 0.

In particular, for 𝛼 = 0.25 and 𝛽 = 0.05, it follows that spr(𝐴 +𝛼𝐵𝐶) < 1 and spr( 𝑓 ′(𝑥e)) < 1.
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Hence, the assumptions of Theorem 2.2.9 are not satisfied. Accordingly, Fig. 2.6 shows that, for
the indicated initial states, the response of (2.1), (2.2) converges.

Furthermore, for 𝛼 = 0.75 and 𝛽 = 0.5, it follows that spr(𝐴 + 𝛼𝐵𝐶) > 1 and spr( 𝑓 ′(𝑥e)) > 1.
Hence, the assumptions of Theorem 2.2.9 are not satisfied. Accordingly, Fig. 2.7 shows that, for
the indicated initial states except the equilibrium, the response of (2.1), (2.2) diverges.

Finally, for 𝛼 = 0.25 and 𝛽 = 0.5, it follows that spr(𝐴 + 𝛼𝐵𝐶) < 1 and spr( 𝑓 ′(𝑥e)) > 1.
Furthermore, (2.16) is feasible with

𝑃 =

[
2.24 −1.32
−1.32 1.62

]
.

Hence, the assumptions of Theorem 2.2.9 are satisfied. Accordingly, Fig. 2.8 shows that, for the
indicated initial states except the equilibrium, the response of (2.1), (2.2) does not converge and is
bounded. ^

Figure 2.6: Example 2.3.2: Response of (2.1), (2.2) for 𝐺 (z) = (z − 1)/(z2 − z + 0.5), 𝑢 = 5,
𝜓(𝑦) = 𝛼𝑦 + 𝛽 sin(𝑦), and 𝛼 = 0.25, 𝛽 = 0.05. For all 𝑘 ∈ [0, 60], 𝑎) shows 𝑦𝑘 for 𝑥0 = [0.5 0.5]T.
For all 𝑘 ∈ [0, 60], 𝑏) shows 𝑥𝑘 for all 𝑥0 ∈ {6, 6.5, . . . , 14} × {6, 6.5, . . . , 14}. The gray lines
follow the trajectory from each initial state. Note that all state trajectories converge to 𝑥 = [10 10]T,
which is an asymptotically stable equilibrium.

Example 2.3.3 This example shows that Theorem 2.2.9 is false if either spr(𝐴 + 𝛼l𝐵𝐶) < 1 or
spr(𝐴 + 𝛼h𝐵𝐶) < 1 is omitted. Let 𝑢 = 5, let 𝜇, 𝑠l, 𝑠h ∈ R, where 𝜇 ≠ 0, 𝑠l < 0 < 𝑠h, let
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Figure 2.7: Example 2.3.2: Response of (2.1), (2.2) for 𝐺 (z) = (z − 1)/(z2 − z + 0.5), 𝑢 = 5,
𝜓(𝑦) = 𝛼𝑦 + 𝛽 sin(𝑦), and 𝛼 = 0.75, 𝛽 = 0.5. For all 𝑘 ∈ [0, 40], 𝑎) shows 𝑦𝑘 for 𝑥0 = [0.5 0.5]T.
For all 𝑘 ∈ [0, 40], 𝑏) shows 𝑥𝑘 for all 𝑥0 ∈ {6, 6.5, . . . , 14} × {6, 6.5, . . . , 14}. The gray lines
follow the trajectory from each initial state. Note that all state trajectories diverge, except for the
state trajectory with 𝑥0 = [10 10]T = 𝑥e, which is an unstable equilibrium.

𝜓(𝑦) = 𝑔(𝑦) + ℎ(𝑦), where 𝑔, ℎ : R→ R are given by

𝑔(𝑦) △= 𝑦
√

2𝜋𝜇3
𝑒
−𝑦2

2𝜇2 , (2.17)

ℎ(𝑦) △=


𝑠2

l + 𝑠l(𝑦 − 𝑠l), 𝑦 ≤ 𝑠l,

𝑦2, 𝑦 ∈ (𝑠l, 𝑠h),

𝑠2
h + 𝑠h(𝑦 − 𝑠h), 𝑦 ≥ 𝑠h,

(2.18)

and let 𝐺 (z) = z(z−1)
z3−0.5z2+0.25 with minimal realization

𝐴 =


0.5 0 −0.25
1 0 0
0 1 0

 , 𝐵 =


1
0
0

 , 𝐶 =

[
1 −1 0

]
.

Note that 𝜓 is not C1 but it is PWC1 with S = {𝑠l, 𝑠h} and, since lim|𝑦 |→∞ 𝑔(𝑦) = 0, 𝜓 is affinely
constrained by (𝑠l, 𝑠h). Next, since 𝐺 (0) = 0, root-locus properties imply that, for all 𝑦 ∈ R,
𝐴 + 𝜓′(𝑦)𝐵𝐶 is nonsingular, and thus acc(R0) = ∅. Furthermore, 𝐼 − 𝐴 is nonsingular, 𝐴 is
asymptotically stable, 𝐺 (1) = 0, and 𝜓(0) = 0.

In particular, for 𝜇 = 0.5, 𝑠l = −2, and 𝑠h = 0.2, it follows that spr(𝐴 + 𝑠l𝐵𝐶) > 1, spr(𝐴 +
𝑠h𝐵𝐶) < 1, and, since 𝜓′(0) = 𝑔′(0) = 3.19, spr( 𝑓 ′(𝑥e)) > 1. Hence, the assumptions of Theorem
2.2.9 are not satisfied. Accordingly, Fig. 2.9 shows that, for some initial states, the response of
(2.1), (2.2) is unbounded.

Furthermore, for 𝜇 = 0.5, 𝑠l = −0.4, and 𝑠h = 0.2, it follows that spr(𝐴 + 𝑠l𝐵𝐶) < 1,
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Figure 2.8: Example 2.3.2: Response of (2.1), (2.2) for 𝐺 (z) = (z − 1)/(z2 − z + 0.5), 𝑢 = 5,
𝜓(𝑦) = 𝛼𝑦 + 𝛽 sin(𝑦), and 𝛼 = 0.25, 𝛽 = 0.5. For all 𝑘 ∈ [0, 60], 𝑎) shows 𝑦𝑘 for 𝑥0 = [0.5 0.5]T.
For all 𝑘 ∈ [0, 60], 𝑏) shows 𝑥𝑘 for all 𝑥0 ∈ {6, 6.5, . . . , 14} × {6, 6.5, . . . , 14}. The gray lines
follow the trajectory from each initial state. Note that each state trajectory is bounded and does not
converge, except for the state trajectory for 𝑥0 = [10 10]T = 𝑥e, which is an unstable equilibrium.

spr(𝐴 + 𝑠h𝐵𝐶) < 1, and, since 𝜓′(0) = 3.19, spr( 𝑓 ′(𝑥e)) > 1. Furthermore, (2.16) is feasible with

𝑃 =


105.65 −20.67 −7.47
−20.67 68.99 −6.21
−7.47 −6.21 34.77

 .
Hence, the assumptions of Theorem 2.2.9 are satisfied. Accordingly, Fig. 2.9 shows that, for the
indicated initial states, the response of (2.1), (2.2) is bounded and does not converge. ^

Example 2.3.4 This example shows that Theorem 2.2.9 is false if the assumption that (2.16) is
feasible is omitted. Let 𝑢 = 5, let 𝛾, 𝜇, 𝜂, 𝑠l, 𝑠h ∈ R, where 𝜇, 𝜂 are nonzero and 𝑠l < 0 < 𝑠h, let 𝜓
be given by

𝜓(𝑦) =


𝑠l (𝑠2

l + 𝛾) + 3𝑠2
l (𝑦 − 𝑠l) + 𝜇 sin(𝜂(𝑦 − 𝑠l)), 𝑦 ≤ 𝑠l,

𝑦3 + 𝛾𝑦, 𝑦 ∈ (𝑠l, 𝑠h),

𝑠l (𝑠2
h + 𝛾) + 3𝑠2

h (𝑦 − 𝑠h) + 𝜇 sin(𝜂(𝑦 − 𝑠h)), 𝑦 ≥ 𝑠h,

(2.19)

and let
𝐺 (z) = z3−1.1z2+0.88z−0.78

z4+0.1z3+0.77z2−10−3z−7.8·10−3 (2.20)
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Figure 2.9: Example 2.3.3: Response of (2.1), (2.2) for 𝐺 (z) = z(z−1)
z3−0.5z2+0.25 , 𝑢 = 5, 𝜓(𝑦) =

𝑔(𝑦) + ℎ(𝑦), where 𝑔 and ℎ are given by (2.17) and (2.18), and 𝜇 = 0.5, 𝑠l = −2, 𝑠h = 0.2. For all
𝑘 ∈ [0, 40], 𝑎) shows 𝑦𝑘 for 𝑥0 = [4 10 0]T. For all 𝑘 ∈ [0, 40], 𝑏) shows 𝑦𝑘 for 𝑥0 = [10 4 0]T.
For all 𝑘 ∈ [0, 40], 𝑐) shows 𝑥𝑘 for all 𝑥0 ∈ {4, 5, . . . , 10} × {4, 5, . . . , 10} × {0}. 𝑑) is a magnified
version of 𝑐). The gray lines follow the trajectory from each initial state. Note that, while some
state trajectories remain bounded, the response of (2.1), (2.2) is unbounded for some initial states.

with minimal realization

𝐴 =


−0.1 −0.77 10−3 7.8 · 10−3

1 0 0 0
0 1 0 0
0 0 1 0


, 𝐵 =


1
0
0
0


,

𝐶 =

[
1 −1.1 0.88 −0.78

]
.

Note that 𝜓 is not C1 but it is PWC1 with S = {𝑠l, 𝑠h}, for all 𝑦 ≤ 𝑠l, |𝜓(𝑦) − 3𝑠2
l 𝑦 | = |𝜇 sin(𝜂(𝑦 −

𝑠l)) − 2𝑠3
l | ≤ |𝜇 | + 2|𝑠l |3, and, for all 𝑦 ≥ 𝑠h, |𝜓(𝑦) − 3𝑠2

h𝑦 | = |𝜇 sin(𝜂(𝑦 − 𝑠l)) − 2𝑠3
h | ≤ |𝜇 | + 2|𝑠h |3.

Hence, 𝜓 is affinely constrained by (3𝑠2
l , 3𝑠

2
h). Next, root-locus properties imply that 𝐴 + 𝜓′(𝑦)𝐵𝐶
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Figure 2.10: Example 2.3.3: Response of (2.1), (2.2) for 𝐺 (z) = z(z−1)
z3−0.5z2+0.25 , 𝑢 = 5, 𝜓(𝑦) =

𝑔(𝑦) + ℎ(𝑦), where 𝑔 and ℎ are given by (2.17) and (2.18), and 𝜇 = 0.5, 𝑠l = −0.4, 𝑠h = 0.2. For all
𝑘 ∈ [0, 100], 𝑎) shows 𝑦𝑘 for 𝑥0 = [4 10 0]T. For all 𝑘 ∈ [0, 100], 𝑏) shows 𝑦𝑘 for 𝑥0 = [10 4 0]T.
For all 𝑘 ∈ [0, 100], 𝑐) shows 𝑥𝑘 for all 𝑥0 ∈ {4, 5, . . . , 10} × {4, 5, . . . , 10} × {0}. The gray lines
follow the trajectory from each initial state. Note that each state trajectory is bounded and does not
converge.

is singular if and only if 𝜓′(𝑦) = 0.01. For all 𝑦 ∈ R, 𝜓′ is given by

𝜓′(𝑦) =


3𝑠2

l + 𝜇𝜂 cos(𝜂(𝑦 − 𝑠l)), 𝑦 < 𝑠l,

3𝑦2 + 𝛾, 𝑦 ∈ (𝑠l, 𝑠h),

3𝑠2
h + 𝜇𝜂 cos(𝜂(𝑦 − 𝑠h)), 𝑦 > 𝑠h,

which implies that

R0 ⊂{−
√︁
|0.01 − 𝛾 |/3,

√︁
|0.01 − 𝛾 |/3}

∪ {𝑦 ∈ R : 𝑦 < 𝑠l and 0.01 − 3𝑠2
l = 𝜇𝜂 cos(𝜂(𝑦 − 𝑠l))}

∪ {𝑦 ∈ R : 𝑦 > 𝑠h and 0.01 − 3𝑠2
h = 𝜇𝜂 cos(𝜂(𝑦 − 𝑠h))},

which in turn implies thatR0 is countable and thus acc(R0) = ∅. Furthermore, 𝐼−𝐴 is nonsingular,
𝐴 is asymptotically stable, 𝐺 (1) = 0, and 𝜓(0) = 0.

In particular, for 𝛾 = 1.5, 𝜇 = 0.1, 𝜂 = 40, 𝑠l = −0.29, 𝑠h = 0.62, it follows that spr(𝐴+3𝑠2
l 𝐵𝐶) <

25



1, spr(𝐴+3𝑠2
h𝐵𝐶) < 1, and spr( 𝑓 ′(𝑥e)) > 1.However, (2.16) in infeasible. Hence, the assumptions

of Theorem 2.2.9 are not satisfied. Accordingly, Fig. 2.11 shows that the response of (2.1), (2.2) is
unbounded for some initial states.

Furthermore, for 𝛾 = 1.5, 𝜇 = 0.1, 𝜂 = 40, 𝑠l = −0.29, 𝑠h = 0.29, it follows that spr(𝐴 +
3𝑠2

l 𝐵𝐶) < 1, spr(𝐴 + 3𝑠2
h𝐵𝐶) < 1, and spr( 𝑓 ′(𝑥e)) > 1. Furthermore, (2.16) is feasible with

𝑃 =


2.34 −1.05 · 10−1 1.14 −1.13 · 10−1

−1.04 · 10−1 1.74 −1.07 · 10−1 6.35 · 10−1

1.14 −1.07 · 10−1 1.21 −3.58 · 10−2

−1.13 · 10−1 6.35 · 10−1 −3.58 · 10−2 6.10 · 10−1


.

Hence, the assumptions of Theorem 2.2.9 are satisfied. Accordingly, Fig. 2.12 shows that, for the
indicated initial states, the response of (2.1), (2.2) is bounded and does not converge. ^

Figure 2.11: Example 2.3.4: Response of (2.1), (2.2) for 𝐺 given by (2.20), 𝑢 = 5, 𝜓 is given by
(2.19), and 𝛾 = 1.5, 𝜇 = 0.1, 𝜂 = 40, 𝑠l = −0.29, 𝑠h = 0.62. For all 𝑘 ∈ [0, 600], 𝑎) shows 𝑦𝑘 for
𝑥0 = [2 4 4 2]T. For all 𝑘 ∈ [0, 600], 𝑏) shows 𝑦𝑘 for 𝑥0 = [−2 4 − 4 2]T. For all 𝑘 ∈ [0, 600],
𝑐) shows 𝑥𝑘 for all 𝑥0 ∈ {−4,−3, . . . , 4} × {4} × {−4,−3, . . . , 4} × {2}. 𝑑) is a magnified version
of 𝑐). For all 𝑘 ∈ [580, 600], the gray lines follow the trajectory from each initial state. Note that,
while some state trajectories remain bounded, the response of (2.1), (2.2) is unbounded for some
initial states.
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Figure 2.12: Example 2.3.4: Response of (2.1), (2.2) for 𝐺 given by (2.20), 𝑢 = 5, 𝜓 is given by
(2.19), and 𝛾 = 1.5, 𝜇 = 0.1, 𝜂 = 40, 𝑠l = −0.29, 𝑠h = 0.29. For all 𝑘 ∈ [0, 300], 𝑎) shows 𝑦𝑘 for
𝑥0 = [2 4 4 2]T. For all 𝑘 ∈ [0, 300], 𝑏) shows 𝑦𝑘 for 𝑥0 = [−2 4 −4 2]T. For all 𝑘 ∈ [0, 300],
𝑐) shows 𝑥𝑘 for all 𝑥0 ∈ {−4,−3, . . . , 4} × {4} × {−4,−3, . . . , 4} × {2}. 𝑑) is a magnified version
of 𝑐). For all 𝑘 ∈ [200, 300], the gray lines follow the trajectory from each initial state. Note that
each state trajectory is bounded and does not converge.

2.4 Conclusions

This chapter considered discrete-time Lur’e models whose response is self-excited in the sense that
it is 1) bounded for all initial conditions, and 2) nonconvergent for almost all initial conditions.
These models involve asymptotically stable linear dynamics with a washout filter connected in
feedback with a piecewise-C1 affinely constrained nonlinearity. The model structure properties
derived in this chapter will be validated via system identification in Chapter 3 and used to construct
a SES model in Chapter 4.
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CHAPTER 3

Identification of Self-Excited Systems Using
Discrete-Time Lur’e Models

As shown in Chapter 2, a Lur’e model exhibits self-excited behavior when the linear dynamics are
asymptotically stable, the nonlinear feedback function is sigmoidal, and the loop gain is sufficiently
high. In effect, high loop gain renders the zero equilibrium unstable, driving the state to the
saturation region, where the system operates as an open-loop system driven by a step input. A
washout filter (an asymptotically stable transfer function with a zero at 1 and thus zero asymptotic
step response) drives the state of the open-loop asymptotically stable dynamics back into the linear
region, which yields an oscillatory response. This chapter applies nonlinear system identification
to construct a Lur’e model for SES. This approach does not assume or require that the SES possess
a Lur’e structure; rather, the goal is to estimate a linear model 𝐺 and a nonlinear feedback function
𝜓 that, when combined into a Lur’e model, capture the nonconvergent behavior of the SES. For
example, although the van der Pol oscillator is a Lur’e model with a 2-input, 1-output nonlinear
feedback function, the present chapter uses a Lur’e model with a 1-input, 1-output nonlinear
feedback function for system identification.

For nonlinear system identification, the present chapter applies a variation of the technique
in [72]. As in [72], the nonlinear feedback function is parameterized as a continuous, piecewise-
affine (CPA) function, a type of PWC1 function where the slope of each segment is estimated for a
given partition of the domain of the CPA function. Although the domain of 𝜓 is known from data,
the number and locations of the breakpoints of the CPA function were determined in [53] by trial
and error. In this chapter, mixed-integer optimization is used to automate and optimize a subset
of the parameters needed for the identified Lur’e model, while using least-squares optimization
to estimate the remaining parameters. By encompassing both continuous and discrete variables,
the present chapter shows that mixed integer optimization [80, 81] is advantageous for identifying
Lur’e models with a CPA nonlinear feedback function. Mixed integer optimisation has been used
for system identification in [82–85].

Since the objective of this chapter is to identify self-excited systems, the input is assumed to
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be constant. However, the approach of the present chapter does not require knowledge of the
constant input, and thus measurements of only the output are needed. Numerical examples show
that measurements of the self-excited response of the system, including the transient and asymptotic
response for systems that are asymptotically periodic, is sufficient for identifying a Lur’e model
that reproduces the asymptotic waveform and, in many cases, the shape of the nonlinearity as well.

The contents of this chapter are as follows. Section 3.1 introduces the filtered time-delayed
DTL (FTDDTL) system as a special case of the DTL system. Section 3.2 introduces the discrete-
time Lur’e identification (DTLI) model, which has the form of the FTDDTL, as well as the
parameterization of the CPA function used to approximate the nonlinear feedback function. Section
3.3 presents the nonlinear least-squares technique used for identifying SES using the DTLI model,
which is an modification of the technique presented in [53]. Section 3.4 presents the mixed-
integer optimization framework used in this chapter for identifying SES using the DTLI model.
Section 3.5 presents resents the results obtained from applying the proposed identification technique
on numerical and experimental data, including experimental data obtained from a gas turbine
combustor. Finally, Section 3.6 presents conclusions to this chapter.

Nomenclature and Terminology for this Chapter. ∥𝐴∥F is the Frobenius norm of 𝐴. 1𝑛×𝑚 ∈
R𝑛×𝑚 is a matrix whose entries are all ones.

3.1 Filtered Time-Delayed DTL System

In this section we consider a special case of the DTL system structure. In particular, the filtered
time-delayed DTL (FTDDTL) system shown in Figure 3.1 includes a transfer function 𝐺, a time
delay 𝐺d, a washout filter 𝐺f , and a nonlinear feedback function 𝜓. Under suitable assumptions, it
is shown in [51] that this structure gives rises to self-excited oscillations.

The 𝑛th-order, asymptotically stable, strictly proper transfer function 𝐺 has the form

𝐺 (q) = B(q)A(q) =
𝑏1q−1 + · · · + 𝑏𝑛q−𝑛

1 + 𝑎1q−1 + · · · + 𝑎𝑛q−𝑛
, (3.1)

where q is the forward-shift operator (used in place of the Z-transform variable in order to include
both the free and forced response), the time delay 𝐺d is given by

𝐺d(q) = q−𝑑 , (3.2)

where 𝑑 is a nonnegative integer, the washout filter 𝐺f is given by

𝐺f (q) =
q − 1

q
= 1 − q−1, (3.3)
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and the nonlinear feedback function 𝜓 : R→ R satisfies

𝑣𝑘 = 𝜓(𝑧𝑘 ). (3.4)

+ 𝐺 (q)

𝐺f (q) 𝐺d(q)𝜓

𝑢

𝑣

𝑦

𝑦d𝑧

Figure 3.1: Filtered time-delayed discrete-time Lur’e (FTDDTL) system with input 𝑢, asymptoti-
cally stable plant 𝐺 (q), time delay 𝐺d(q), washout filter 𝐺f (q), and nonlinear feedback function
𝜓.

Using 𝑦𝑘 = 𝐺 (q) (𝑢𝑘 + 𝑣𝑘 ), it follows that

A(q)𝑦𝑘 = B(q) (𝜓(𝑧𝑘 )) + 𝑢𝑘 ), (3.5)

and thus, for all 𝑘 ≥ 𝑛 + 𝑑 + 1,

𝑦𝑘 =(1 − A(q))𝑦𝑘 + B(q) (𝜓(𝑧𝑘 ) + 𝑢𝑘 )
= − 𝑎1𝑦𝑘−1 − · · · − 𝑎𝑛𝑦𝑘−𝑛 + 𝑏1𝜓(𝑧𝑘−1) + · · · + 𝑏𝑛𝜓(𝑧𝑘−𝑛) + 𝑏1𝑢𝑘−1 + · · · + 𝑏𝑛𝑢𝑘−𝑛, (3.6)

where
𝑧𝑘 = 𝑦𝑘−𝑑 − 𝑦𝑘−𝑑−1, (3.7)

is the input of 𝜓 in this chapter, with the initial output values 𝑦0, . . . , 𝑦𝑛+𝑑 .

3.2 Discrete-Time Lur’e Identification Model

To facilitate identification, we consider the discrete-time Lur’e identification (DTLI) model, which
has the form of the FTDDTL. The DTLI model, which is shown in Figure 3.2, incorporates the
𝑛̂th-order, asymptotically stable, strictly proper linear dynamics

𝐺̂ (q) = B̂(q)
Â(q)

=
𝑏̂1q−1 + · · · + 𝑏̂𝑛̂q−𝑛̂

1 + 𝑎̂1q−1 + · · · + 𝑎̂𝑛̂q−𝑛̂
, (3.8)

the constant input 𝑢̂, the time delay
𝐺̂d(q) = q−𝑑 , (3.9)
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where 𝑑 is a nonnegative integer, the washout filter 𝐺f given by (3.3), and the nonlinear feedback
function 𝜓̂ : R→ R written as

𝑣̂𝑘 = 𝜓̂(𝑧𝑘 ). (3.10)

+ 𝐺̂ (q)

𝐺f (q) 𝐺̂d(q)𝜓̂

𝑢̂

𝑣̂

𝑦̂

𝑦̂d𝑧

Figure 3.2: Discrete-time Lur’e identification (DTLI) model with constant input 𝑢̂, asymptotically
stable plant 𝐺̂ (q), time delay 𝐺̂d(q), washout filter𝐺f (q), and nonlinear feedback function 𝜓̂. The
structure of the DTLI model coincides with the structure of the FTDDTL system.

Using 𝑦̂𝑘 = 𝐺̂ (q) (𝑢̂ + 𝑣̂𝑘 ), it follows that

Â(q) 𝑦̂𝑘 = B̂(q) (𝜓̂(𝑧𝑘 ) + 𝑢̂), (3.11)

and thus, for all 𝑘 ≥ 𝑛̂ + 𝑑 + 1,

𝑦̂𝑘 = (1 − Â(q)) 𝑦̂𝑘 + B̂(q) (𝜓̂(𝑧𝑘 ) + 𝑢̂)
= −𝑎̂1 𝑦̂𝑘−1 − · · · − 𝑎̂𝑛̂ 𝑦̂𝑘−𝑛̂ + 𝑏̂1𝜓̂(𝑧𝑘−1) + · · · + 𝑏̂𝑛̂𝜓̂(𝑧𝑘−𝑛̂) + (𝑏̂1 + · · · + 𝑏̂𝑛̂)𝑢̂, (3.12)

where
𝑧𝑘 = 𝑦̂𝑘−𝑑 − 𝑦̂𝑘−𝑑−1. (3.13)

Since 𝑢̂ is not measured in output-only identification and the input to 𝐺̂ is 𝜓̂(𝑧𝑘 ) + 𝑢̂, the range
space of 𝜓̂ can be shifted arbitrarily. Hence, we assume without loss of generality that 𝜓̂(0) = 0.

For system identification, we use a continuous, piecewise-affine (CPA) model 𝜓̂ of 𝜓 with the
following parameterization. Let (−∞, 𝑐1], (𝑐1, 𝑐2], . . . , (𝑐𝑝−1, 𝑐𝑝], (𝑐𝑝,∞) be a partition of the
domain R of 𝜓̂, and define the vector

𝑐
△
= [𝑐1 · · · 𝑐𝑝]T ∈ R𝑝 . (3.14)

Since 𝜓̂(0) = 0, let 𝑐𝑟 = 0, where 𝑟 ∈ [1, 𝑝], and thus 𝜓̂(𝑐𝑟) = 𝜓̂(0) = 0. Furthermore, for all
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𝑖 ∈ [1, 𝑝 + 1], let 𝜇̂𝑖 denote the slope of 𝜓̂ in the 𝑖-th partition interval, and define the slope vector

𝜇̂
△
= [𝜇̂1 · · · 𝜇̂𝑝+1]T ∈ R𝑝+1. (3.15)

Then, for all 𝑧 ∈ R, 𝜓̂ can be written as

𝜓̂(𝑧) = 𝜇̂T𝜂(𝑧), (3.16)

where 𝜂 : R→ R𝑝+1 is given by

𝜂(𝑧) △=

𝜂1(𝑧), 𝛿(𝑧) < 𝑟 + 1,

𝜂2(𝑧), 𝛿(𝑧) ≥ 𝑟 + 1,
(3.17)

𝛿(𝑧) ∈ [1, 𝑝 + 1] is the index of the partition interval containing 𝑧, and

𝜂1(𝑧)
△
= [01×(𝛿(𝑧)−1) 𝑧 − 𝑐𝛿(𝑧) 𝑐𝛿(𝑧) − 𝑐𝛿(𝑧)+1 · · · 𝑐𝑟−1 − 𝑐𝑟 01×(𝑝+1−𝑟)]T, (3.18)

𝜂2(𝑧)
△
= [01×𝑟 𝑐𝑟+1 − 𝑐𝑟 · · · 𝑐𝛿(𝑧)−1 − 𝑐𝛿(𝑧)−2 𝑧 − 𝑐𝛿(𝑧)−1 01×(𝑝+1−𝛿(𝑧))]T. (3.19)

Figure 3.3 illustrates the parameterization of the CPA function 𝜓̂ in terms of 𝑐, 𝜇̂, and 𝑟.

𝜓̂(𝑧)

𝑧𝑐1 𝑐2 𝑐𝑟−2 𝑐𝑟−1 𝑐𝑟 𝑐𝑟+1 𝑐𝑟+2 𝑐𝑝−1 𝑐𝑝
𝜇̂1

𝜇̂2
𝜇̂𝑟−1

𝜇̂𝑟

𝜇̂𝑟+1 𝜇̂𝑟+2

𝜇̂𝑝 𝜇̂𝑝+1

Figure 3.3: Parameterization of the CPA function 𝜓̂. Note that 𝑐𝑟 = 0 and 𝜓̂(𝑐𝑟) = 𝜓̂(0) = 0.

Next, consider DTLI/CPA, which is DTLI with CPA 𝜓̂. It thus follows from (3.12) and (3.16)
that

𝑦̂𝑘 = −𝑎̂1 𝑦̂𝑘−1 − · · · − 𝑎̂𝑛̂ 𝑦̂𝑘−𝑛̂ + 𝑏̂1 𝜇̂
T𝜂(𝑧𝑘−1) + · · · + 𝑏̂𝑛̂ 𝜇̂T𝜂(𝑧𝑘−𝑛̂) + 11×𝑛̂ 𝑏̂𝑢̂, (3.20)
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where

𝑎̂
△
=


𝑎̂1
...

𝑎̂𝑛̂

 , 𝑏̂
△
=


𝑏̂1
...

𝑏̂𝑛̂

 . (3.21)

Then, (3.20) can be written as

𝑦̂𝑘 = −𝜑̂T
𝑘 𝑎̂ + 𝜑̂

T
𝜂,𝑘 𝑏̂ + 11×𝑛̂ 𝑏̂𝑢̂ = 𝜑̂T

𝑘𝜃, (3.22)

where

𝜑̂𝑘
△
=


−𝜑̂ 𝑦̂,𝑘
𝜑̂𝜂,𝑘

1

 ∈ R
𝑛̂(𝑝+2)+1, 𝜃

△
=


𝑎̂

vec( 𝜇̂𝑏̂T)
11×𝑛̂ 𝑏̂𝑢̂

 ∈ R
𝑛̂(𝑝+2)+1 (3.23)

and

𝜑̂ 𝑦̂,𝑘
△
=


𝑦̂𝑘−1
...

𝑦̂𝑘−𝑛̂

 ∈ R
𝑛̂, 𝜑̂𝜂,𝑘

△
=


𝜂(𝑧𝑘−1)

...

𝜂(𝑧𝑘−𝑛̂)

 ∈ R
𝑛̂(𝑝+1) . (3.24)

3.3 Nonlinear Least-Squares Optimization for System Identifi-
cation

In this section, we use a technique based on least squares to construct a DTLI/CPA modelM that
approximates the response of the self-excited system S. This technique is a variation of the method
used in [72]. The objective is to determine a transfer function 𝐺̂, delay 𝑑, and CPA function 𝜓̂ such
that the response of the identified modelM approximates the response ofS. This technique requires
a choice of 𝑛̂, 𝑑, 𝑐, 𝑟; these values are then used to obtain parameter estimates 𝑎̂, 𝑏̂, 𝑢̂, 𝜇̂. In the
next section, an optimization technique is used to update the parameter estimates 𝑛̂, 𝑑, 𝑐, 𝑟. In the
special case where S is a FTDDTL system with CPA function 𝜓, the parameters 𝑛̂, 𝑑, 𝑐, 𝑟, 𝑎̂, 𝑏̂, 𝑢̂, 𝜇̂
are estimates of 𝑛, 𝑑, 𝑐, 𝑟, 𝑎, 𝑏, 𝑢, 𝜇.

For system identification, we use measurements of 𝑦 from a data window, which may include
portions of the transient and asymptotic response. To define the data window, let 𝑙u ≥ 𝑙l ≥ 𝑛̂+𝑑 +1,
and assume that measurements of 𝑦𝑘 are available for all 𝑘 ∈ [𝑙l − 𝑛̂ − 𝑑 − 1, 𝑙u] . The objective
is to minimize a cost function involving, for all 𝑘 ∈ [𝑙l, 𝑙u], the difference 𝑦𝑘 − 𝑦̂𝑘 between the
measurement 𝑦𝑘 from S and the output 𝑦̂𝑘 of the DTLI/CPA modelM, where 𝑦̂𝑘 is obtained by
propagating (3.20), where, for all 𝜅 ∈ [𝑘 − 𝑑 − 𝑛̂ − 1, 𝑘 − 1], the initial values are given by 𝑦̂𝜅 = 𝑦𝜅 .
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Hence, we define the least-squares cost

𝐽 (𝑎̂, 𝑏̂, 𝑢̂, 𝜇̂) △= ∥𝑌 − 𝜓𝜃∥2, (3.25)

where 𝜃 is defined by (3.23),

𝑌
△
=


𝑦𝑙l
...

𝑦𝑙u

 ∈ R
𝑙u−𝑙l+1 (3.26)

and
𝜓
△
=

[
−𝜓𝑦 𝜓𝜂 1(𝑙u−𝑙l+1)×1

]
∈ R(𝑙u−𝑙l+1)×(𝑛̂(𝑝+2)+1) , (3.27)

where

𝜓𝑦
△
=


𝜑𝑦,𝑙l
...

𝜑𝑦,𝑙u

 ∈ R
(𝑙u−𝑙l+1)×𝑛̂, 𝜓𝜂

△
=


𝜑𝜂,𝑙l
...

𝜑𝜂,𝑙u

 ∈ R
(𝑙u−𝑙l+1)×(𝑛̂(𝑝+1)) , (3.28)

and, for all 𝑘 ∈ [𝑙l, 𝑙u],

𝜑𝑦,𝑘
△
=

[
𝑦𝑘−1 · · · 𝑦𝑘−𝑛̂

]
∈ R1×𝑛̂, (3.29)

𝜑𝜂,𝑘
△
=

[
𝜂(𝑦𝑘−𝑑−1 − 𝑦𝑘−𝑑−2) · · · 𝜂(𝑦𝑘−𝑑−𝑛̂ − 𝑦𝑘−𝑑−𝑛̂−1)

]
∈ R1×(𝑛̂(𝑝+1)) . (3.30)

Since 𝜃 defined by (3.23) is a nonlinear function of 𝑏̂, 𝑢̂, 𝜇̂, we derive an upper bound for 𝐽,
which is subsequently minimized by means of a two-step process. To do this, let 𝜃 𝜇̂ ∈ R𝑛̂(𝑝+1) be
an approximation of vec( 𝜇̂𝑏̂T) and define

𝜃𝑢̂
△
= 11×𝑛̂ 𝑏̂𝑢̂ ∈ R, (3.31)

𝜃
△
=


𝑎̂

𝜃 𝜇̂

𝜃𝑢̂

 ∈ R
𝑛̂(𝑝+2)+1, (3.32)

and the cost functions

𝐽1(𝜃)
△
= ∥𝑌 − 𝜓𝜃∥2, (3.33)

𝐽2(𝜃 𝜇̂, 𝜇̂, 𝑏̂)
△
= ∥𝜃 𝜇̂ − vec( 𝜇̂𝑏̂T)∥2. (3.34)
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Proposition 3.3.1 Let 𝜃 𝜇̂ ∈ R𝑛̂(𝑝+1) , define 𝜃 by (3.32), and define 𝐽, 𝐽1, and 𝐽2 by (3.25), (3.33),
and (3.34). Then,

𝐽 (𝑎̂, 𝑏̂, 𝑢̂, 𝜇̂) ≤ 𝐽1(𝜃) + | |𝜓𝜂 | |𝐽2(𝜃 𝜇̂, 𝜇̂, 𝑏̂). (3.35)

Proof: Note that (3.25) can be written as

𝐽 (𝑎̂, 𝑏̂, 𝑢̂, 𝜇̂) = ∥𝑌 − 𝜓𝜃 + 𝜓𝜂𝜃 𝜇̂ − 𝜓𝜂𝜃 𝜇̂∥2
= ∥𝑌 + 𝜓𝑦 𝑎̂ − 𝜓𝜂 vec( 𝜇̂𝑏̂T) − 1(𝑙u−𝑙l+1)×1𝜃𝑢̂ + 𝜓𝜂𝜃 𝜇̂ − 𝜓𝜂𝜃 𝜇̂∥2
= ∥𝑌 − 𝜓𝜃 + 𝜓𝜂 (𝜃 𝜇̂ − vec( 𝜇̂𝑏̂T))∥2,

which implies that

𝐽 (𝑎̂, 𝑏̂, 𝑢̂, 𝜇̂) ≤ ∥𝑌 − 𝜓𝜃∥2 + ∥𝜓𝜂 (𝜃 𝜇̂ − vec( 𝜇̂𝑏̂T))∥2
≤ ∥𝑌 − 𝜓𝜃∥2 + ||𝜓𝜂 | |∥𝜃 𝜇̂ − vec( 𝜇̂𝑏̂T)∥2
= 𝐽1(𝜃) + | |𝜓𝜂 | |𝐽2(𝜃 𝜇̂, 𝜇̂, 𝑏̂). □

The upper bound for 𝐽 given by (3.35) is minimized by sequentially minimizing 𝐽1 and 𝐽2. First,
𝐽1 is minimized to obtain 𝜃, such that

𝜃 =


𝑎̂

𝜃 𝜇̂

𝜃𝑢̂

 = argmin
𝜃∈R𝑛̂( 𝑝̂+2)+1

𝐽1(𝜃). (3.36)

Since 𝐽1 is a linear least-squares function of 𝜃, we use recursive least squares (recursive least
squares (RLS)) [86] with 𝑃0 = 106.

Next, using 𝜃 𝜇̂ given by (3.36), we rewrite (3.34) as

𝐽2(𝜃 𝜇̂, 𝜇̂, 𝑏̂) = ∥ vec−1(𝜃 𝜇̂) − 𝜇̂𝑏̂T∥F. (3.37)

Then, [87, Fact 11.16.39, p. 906] implies that the rank-1 approximation of 𝜇̂𝑏̂T that minimizes 𝐽2

is given by
𝜇̂𝑏̂T = | | vec−1(𝜃 𝜇̂) | |𝜓l,1(vec−1(𝜃 𝜇̂))𝜓r,1(vec−1(𝜃 𝜇̂))T, (3.38)

where 𝜓l,1(𝐴) denotes the first left singular vector of 𝐴 and 𝜓r,1(𝐴) denotes the first right singular
vector of 𝐴. Since 𝜇̂ and 𝑏̂ are not separately identifiable from (3.38), choosing an arbitrary nonzero
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scaling parameter 𝛽 ∈ R and using it to separate (3.38) yields

𝜇̂ = 𝛽𝜎max(vec−1(𝜃 𝜇̂))𝜓l,1(vec−1(𝜃 𝜇̂)), (3.39)

𝑏̂ =
1
𝛽
𝜓r,1(vec−1(𝜃 𝜇̂)). (3.40)

Finally, if 𝜃𝑢̂ given by (3.36) is nonzero, then it follows from (3.31) that 11×𝑛̂ 𝑏̂ is nonzero, and thus
𝑢̂ is given by

𝑢̂ =
𝜃𝑢̂

11×𝑛̂ 𝑏̂
. (3.41)

Note that 𝛽 is unidentifiable, and thus it can be chosen arbitrarily.

3.4 Mixed-Integer Optimization for System Identification

The minimization of (3.25) in Section 3.3 depends on the chosen model parameters 𝑛̂, 𝑑, 𝑐, and 𝑟.
In this section, a mixed-integer approach is used to determine optimal model parameters 𝑛̂, 𝑑, 𝑐,
and 𝑟 such that the output of the identified modelM parameterized by the estimates 𝑎̂, 𝑏̂, 𝑢̂, and 𝜇̂
matches the output of S.

In order to constrain the width of the partitions in 𝑐 used to define CPA function 𝜓, let 𝜀 > 0
denote the minimum partition width. Furthermore, let 𝜆̂ be an integer such that 𝜆̂𝜀 is the uniform
distance between consecutive break points in 𝑐, and let 𝜈̂n and 𝜈̂p denote the number of negative
and positive components in 𝑐, respectively. With this notation, (3.14) can be written as

𝑐 = 𝜀 [−𝜈̂n𝜆̂ − (𝜈̂n − 1)𝜆̂ · · · (𝜈̂p − 1)𝜆̂ 𝜈̂p𝜆̂]T ∈ R𝜈̂n+𝜈̂p+1, (3.42)

and thus 𝑝 = 𝜈̂n + 𝜈̂p + 1 and 𝑟 = 𝜈̂n + 1. Since 𝜀 is arbitrarily chosen, note that (3.42) requires
estimates of only 𝜆̂, 𝜈̂n, and 𝜈̂p. In this chapter, 𝜀 = 10−3.

Next, suppose 𝑦𝑘 for all 𝑘 ∈ [0, 𝑙max] are the measurements available to use for identification,
such that 𝑙max ≥ 𝑙u.Given 𝑛̂, 𝑑, 𝜆̂, 𝜈̂n, 𝜈̂p, let 𝑎̂, 𝑏̂, 𝑢̂, 𝜇̂minimize (3.25), let 𝑙MIO,u > 𝑙MIO,l ≥ 𝑛̂+𝑑+1,
such that 𝑙MIO,u ≤ 𝑙max and let 𝑙shift,max be the maximum time-step shift. Then, we define the cost
function

𝐽MIO
△
= ∥𝑌MIO − 𝑌MIO,𝑙shift ∥2, (3.43)
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where

𝑌MIO
△
=


𝑦𝑙MIO,l
...

𝑦𝑙MIO,u

 ∈ R
𝑙MIO,u−𝑙MIO,l+1, (3.44)

𝑌MIO,𝑙shift
△
=


𝑦̂𝑙MIO,l−𝑙shift

...

𝑦̂𝑙MIO,u−𝑙shift

 ∈ R
𝑙MIO,u−𝑙MIO,l+1, (3.45)

𝑙shift
△
= argmin
𝑙shift∈[0,𝑙shift,max]

∥𝑌MIO − 𝑌MIO,𝑙shift ∥2, (3.46)

subject to

𝑑 ≥ 0, (3.47)

𝑛̂, 𝜆̂, 𝜈̂n, 𝜈̂p > 0, (3.48)

𝑛̂, 𝑑, 𝜆̂, 𝜈̂n, 𝜈̂p ∈ N0. (3.49)

Note that 𝐽MIO considers shifts of 𝑦̂ relative to 𝑦 by up to 𝑙shift,max steps using data 𝑦𝑘 for all
𝑘 ∈ [𝑙MIO,l, 𝑙MIO,u], and that (3.25) is computed using 𝑦𝑘 for all 𝑘 ∈ [𝑙l, 𝑙u] . Figure 3.4 illustrates
the data sets used to compute 𝐽MIO.
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𝑘 (step)

𝑦𝑘 , 𝑦̂𝑘

S
M

𝑙l 𝑙u

𝑙MIO,l 𝑙MIO,u

0 𝑙max

0 𝑙MIO,u + 𝑙shift,max

𝑙shift

Figure 3.4: Output 𝑦𝑘 of system S for all 𝑘 ∈ [0, 𝑙max] available for MIO-ID and output 𝑦̂𝑘 of
estimated DTLI/CPA modelM for all 𝑘 ∈ [0, 𝑙MIO,u + 𝑙shift,max] obtained by propagating (3.12).
𝐽 in (3.25) is computed using 𝑦𝑘 for all 𝑘 ∈ [𝑙l, 𝑙u], and 𝐽MIO in (3.43) is computed using 𝑦𝑘 for
all 𝑘 ∈ [𝑙MIO,l, 𝑙MIO,u] . To compute 𝐽MIO, the output 𝑦̂ ofM is shifted by up to 𝑙shift,max − 1 steps
to minimize the difference between 𝑦̂ and the output 𝑦 of S. Note that 𝑙shift is the number of shift
steps that minimize the difference between 𝑦 and 𝑦̂.

To perform mixed-integer-optimization identification (MIO-ID), we use an integer optimiza-
tion algorithm to minimize 𝐽MIO over 𝑛̂, 𝑑, 𝜆̂, 𝜈̂n, and 𝜈̂p. At each iteration, a DTLI/CPA
model is estimated along with its associated 𝐽MIO cost. Let ℓ ∈ N0 be an MIO-ID iteration,
and let 𝑛̂ℓ, 𝑑ℓ, 𝜆̂ℓ, 𝜈̂n,ℓ, 𝜈̂p,ℓ, 𝑎̂ℓ, 𝑏̂ℓ, 𝑢̂ℓ, 𝜇̂ℓ and 𝐽MIO,ℓ be the DTLI/CPA parameters estimated at
the ℓ-th MIO-ID iteration and their associated cost obtained using (3.43). For all ℓ ≥ 1,
𝑛̂ℓ, 𝑑ℓ, 𝜆̂ℓ, 𝜈̂n,ℓ, 𝜈̂p,ℓ are determined by a 1-step mixed-integer search (1SMIS) algorithm with in-
put 𝐽MIO,𝑖, 𝑛̂𝑖, 𝑑𝑖, 𝜆̂𝑖, 𝜈̂n,𝑖, 𝜈̂p,𝑖 for all 𝑖 ∈ [0, ℓ − 1] . For ℓ = 0, the 1SMIS function initializes
𝑛̂0, 𝑑0, 𝜆̂0, 𝜈̂n,0, 𝜈̂p,0 randomly. Then, for all ℓ ∈ N0, Algorithm 1 shows how 𝐽MIO,ℓ, 𝑎̂ℓ, 𝑏̂ℓ, 𝑢̂ℓ,

and 𝜇̂ℓ, are computed using 𝑛̂ℓ, 𝑑ℓ, 𝜆̂ℓ, 𝜈̂n,ℓ, 𝜈̂p,ℓ as input. Note that 𝑎̂ℓ, 𝑏̂ℓ, 𝑢̂ℓ, and 𝜇̂ℓ are esti-
mated by minimizing (3.25) using the least-squares optimization technique in Section 3.3. The
MIO-ID process terminates at step ℓ ≥ 1 when either 𝐽MIO,ℓ−1 < 𝐽min or ℓ > ℓmax, where 𝐽min is
a chosen minimal cost function value and ℓmax is the chosen maximum number of optimization
iterations. Then, the identified DTLI/CPA modelM is characterized by the estimated parameters
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𝑛̂ = 𝑛̂ 𝑗 , 𝑑 = 𝑑 𝑗 , 𝜆̂ = 𝜆̂ 𝑗 , 𝜈̂n = 𝜈̂n, 𝑗 , 𝜈̂p = 𝜈̂p, 𝑗 , 𝑎̂ = 𝑎̂ 𝑗 , 𝑏̂ = 𝑏̂ 𝑗 , 𝑢̂ = 𝑢̂ 𝑗 , and 𝜇̂ = 𝜇̂ 𝑗 , where

𝑗 = argmin
𝑖∈[0,ℓ−1]

𝐽MIO,𝑖 . (3.50)

The flow chart shown in Figure 3.5 summarizes MIO-ID.
The 1SMIS algorithm, which searches through the 𝑛̂, 𝑑, 𝜆̂, 𝜈̂n, 𝜈̂p variable space, is a single step

of a derivative-free mixed-integer optimization algorithm. To reduce the optimization time, the
search space is constrained by setting minimum and maximum feasible values of 𝑛̂, 𝑑, 𝜆̂, 𝜈̂n, and
𝜈̂p, which implies that the values of 𝑙l and 𝑙MIO,l need to be chosen to be greater than the sum of the
maximum values set for 𝑛̂ and 𝑑. In this chapter, the 1SMIS algorithm consists of a single step of
a mixed-integer genetic algorithm and is implemented in Matlab by running a single optimization
iteration of the surrogateopt function. Note that surrogateopt chooses the initial values of
𝑛̂, 𝑑, 𝜆̂, 𝜈̂n, and 𝜈̂p based on their corresponding minimum and maximum feasible values.

The choice of certain optimization parameters can determine the resulting identified DTLI/CPA
model. In that regard, the following suggestions may improve the identification results:

• Choosing 𝑙l and 𝑙u to include the transient response of system S.

• In most cases, choosing 𝑙l = 𝑙MIO,l and 𝑙u = 𝑙MIO,u will suffice. However, in cases where the
oscillatory behavior displayed by the output of system S is irregular, 𝑙l and 𝑙u may be chosen
to include a representative waveform, while 𝑙MIO,l and 𝑙MIO,u may be chosen to include more
periods of the waveform.

• Increasing the maximum values of 𝑛̂ and 𝑑 in the case where the output of system S displays
richer frequency content.

• Let 𝑧 be given by (3.7) with 𝑦 as the output of system S and 𝑑 = 0. Then, the maximum
values of 𝜆̂, 𝜈̂n, and 𝜈̂p can be chosen so that the values of 𝑧 are within −𝜀𝜈̂n𝜆̂ and 𝜀𝜈̂p𝜆̂.
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Algorithm 1 Computation of 𝐽MIO,ℓ

Input: 𝑛̂ℓ, 𝑑ℓ, 𝜆̂ℓ, 𝜈̂n,ℓ, 𝜈̂p,ℓ
Output: 𝐽MIO,ℓ, 𝑎̂ℓ, 𝑏̂ℓ, 𝑢̂ℓ, 𝜇̂ℓ

1: 𝑐ℓ ← 𝜀 [−𝜈̂n,ℓ𝜆̂ℓ − (𝜈̂n,ℓ − 1)𝜆̂ℓ · · · (𝜈̂p,ℓ − 1)𝜆̂ℓ 𝜈̂p,ℓ𝜆ℓ]T
2: 𝑎̂ℓ, 𝑏̂ℓ, 𝑢̂ℓ, 𝜇̂ℓ← argmin𝑎∗,𝑏∗,𝑣∗,𝜇∗ 𝐽 (𝑎∗, 𝑏∗, 𝑣∗, 𝜇∗) 8
⊲Given 𝑛̂ℓ, 𝑑ℓ, 𝑐ℓ, and 𝑦𝑘 for all 𝑘 ∈ [𝑙l, 𝑙u],minimize (3.25) using the least-squares optimization
technique in Section 3.3.

3: 𝑦̂←
[
0 · · · 0

]T ∈ R𝑙MIO,u+𝑙shift,max

4: for k← 𝑛̂ℓ + 𝑑ℓ + 1 to 𝑙MIO,u + 𝑙shift,max do
5: 𝑦̂𝑘 ← 𝜑̂T

𝑘

[
𝑎̂T
ℓ
(vec( 𝜇̂ℓ 𝑏̂T

ℓ
))T 𝑢̂ℓ11×𝑛̂ℓ 𝑏̂ℓ

]T

6: end for 8
⊲ Simulates DTL model with identified parameters given 𝑛̂ℓ, 𝑑ℓ, and 𝑐ℓ .

7: NaNFlag← isNaN(𝑦̂) 8
⊲ Determines whether the output of the simulated model yields a NaN response.

8: 𝐽MIO,ℓ ←∞
9: if NaNFlag is true then

10: return 𝐽MIO,ℓ, 𝑎̂ℓ, 𝑏̂ℓ, 𝑢̂ℓ, 𝜇̂ℓ
11: end if
12: for 𝑗 ← 0 to 𝑙shift do
13: 𝑠temp←

∑𝑙MIO,u
𝑘=𝑙MIO,l

(
𝑦𝑘 − 𝑦̂𝑘+ 𝑗

)2

14: if 𝑠temp < 𝐽MIO,ℓ then
15: 𝐽MIO,ℓ ← 𝑠temp
16: end if
17: end for 8

⊲ Local cost function computation with shift to account for the phase shift of the identified
model.

18: return 𝐽MIO,ℓ, 𝑎̂ℓ, 𝑏̂ℓ, 𝑢̂ℓ, 𝜇̂ℓ

40



Start

ℓ ← −1, 𝐽MIO,−1 ←∞

ℓ ← ℓ + 1

EndFlag← 𝐽MIO,ℓ−1 < 𝐽min or ℓ > ℓmax

EndFlag is True?

𝑛̂ℓ, 𝑑ℓ, 𝜆̂ℓ, 𝜈̂n,ℓ, 𝜈̂p,ℓ ←
1SMIS((𝐽MIO,𝑖)ℓ−1

𝑖=0 , (𝑛̂𝑖)
ℓ−1
𝑖=0 , (𝑑𝑖)

ℓ−1
𝑖=0 ,

(𝜆̂𝑖)ℓ−1
𝑖=0 , (𝜈̂n,𝑖)ℓ−1

𝑖=0 , (𝜈̂p,𝑖)ℓ−1
𝑖=0 , ℓ)

𝐽MIO,ℓ, 𝑎̂ℓ, 𝑏̂ℓ, 𝑢̂ℓ, 𝜇̂ℓ ← Computation of 𝐽MIO,ℓ (𝑛̂ℓ, 𝑑ℓ, 𝜆̂ℓ, 𝜈̂n,ℓ, 𝜈̂p,ℓ)

End

𝑛̂← 𝑛̂ 𝑗 , 𝑑 ← 𝑑 𝑗 , 𝜆̂← 𝜆̂ 𝑗 ,

𝜈̂n ← 𝜈̂n, 𝑗 , 𝜈̂p ← 𝜈̂p, 𝑗 , 𝑎̂ ← 𝑎̂ 𝑗 ,

𝑏̂ ← 𝑏̂ 𝑗 , 𝑢̂ ← 𝑢̂ 𝑗 , 𝜇̂← 𝜇̂ 𝑗

𝑗 ← argmin
𝑖∈[0,ℓ−1]

𝐽MIO,𝑖

Mixed-Integer Optimization

No

Yes

Figure 3.5: Flow chart of mixed-integer-optimization identification (MIO-ID).

3.5 Application of MIO-ID to Numerical and Experimental
Data

In this section, we present examples to illustrate the application of MIO-ID to data obtained
from numerical simulations from discrete-time and continuous-time systems, and via experiments
from sensor data sets. The figures in the following examples provide qualitative evidence of the
performance of MIO-ID in producing an estimated modelM whose response approximates that of
the studied system S. Table 3.1 summarizes the details of the considered systems.

In the case where S is a FTDDTL system (Example 3.5.1), the accuracy of MIO-ID is evaluated
by comparing the estimates 𝐺̂ and 𝜓̂ with 𝐺 and 𝜓, respectively, and the unidentifiable parameter
𝛽 is chosen to minimize the root-mean-square (RMS) fit between 𝜓 and 𝜓̂. Furthermore, the power
spectral density (PSD) and the waveforms of the outputs, the nonlinearities, and the frequency
responses of the linear dynamics of the studied system S and the estimated DTLI/CPA modelM
are compared.
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In the rest of the examples, (Examples 3.5.2, 3.5.3, 3.5.4), since no true nonlinearity is available,
the scaling parameter is chosen to be 𝛽 = 1. Furthermore, the phase portrait of the responses of
both the studied system S and the estimated model M are displayed to better visualize how the
response ofM approximates the limit-cycling behavior of S, in which an estimate of the output
derivative is used, such that, for all 𝑘 > 1,

¤𝑦𝑘
△
=
𝑦𝑘+1 − 𝑦𝑘−1

2𝜏s
, (3.51)

¤̂𝑦𝑘
△
=
𝑦̂𝑘+1 − 𝑦̂𝑘−1

2𝜏s
, (3.52)

where 𝜏s denotes the sampling time.

Table 3.1: Summary of Examples of MIO-ID Application

Example System Type of S CT or DT 𝝉s (s) Type of Data

3.5.1 FTDDTL DT –

Numerical3.5.2 van der Pol Oscillator
CT 0.1

3.5.3 Lotka-Volterra Model

3.5.4
Gas-Turbine Combustor

Experiment (DISCo)
– 1 / 15000 Experimental

Example 3.5.1: Numerical Data from FTDDTL system

Consider the FTDDTL system S with 𝑑 = 4,

𝐺 (q) = q − 0.5
q2 − 1.6q + 0.8

, (3.53)

and the CPA, monotonic, odd 𝜓 shown in Figure 3.6. The domain of 𝜓 is partitioned by

𝑐 =

[
−10 −9 · · · 9 10

]T
, and 𝜓 is constructed such that, for all 𝑖 ∈ [1, 21], 𝜓(𝑐𝑖) =

18.75 tanh(1.2𝑐𝑖/2.5). To obtain data for identification, 𝑦𝑘 is generated by simulating S sub-
ject to 𝑣 = 37.5. For MIO-ID, we let 𝑛̂ ∈ [1, 10], 𝑑 ∈ [0, 10], 𝜆̂ ∈ [1, 2000], 𝜈̂n ∈ [1, 30], and
𝜈̂p ∈ [1, 30], with 𝑙l = 𝑙MIO,l = 100, 𝑙u = 500, and 𝑙MIO,u = 10000, that is, 𝑦𝑘 for all 𝑘 ∈ [100, 500]
is used for least-squares optimization, and 𝑦𝑘 and 𝑦̂𝑘 for all 𝑘 ∈ [100, 10000] is used to compute
𝐽MIO.

Figure 3.7 compares the response of the modelM identified using MIO-ID with the response
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of S. The estimated DTLI/CPA model parameters are

𝐺̂ (q) = 1.0002q − 0.4996
q2 − 1.6000q + 0.8001

, (3.54)

𝑑 = 4, 𝑢̂ = 37.46, 𝜈̂n = 20, 𝜈̂p = 26, and 𝜓̂ shown in Figure 3.7. The optimization process required
30.29 s, during which 𝐽MIO was computed 263 times. The minimum values of 𝐽MIO up to each
optimization iteration ℓ are shown in Figure 3.8. Furthermore, the response of the identified model
as the number of optimization iterations increase is displayed in Figure 3.9 at three snapshots during
MIO-ID, that is, for all ℓ ∈ {1, 50, 250}.

Figure 3.6: Example 3.5.1: Continuous piecewise-affine feedback mapping 𝜓(𝑧) partitioned by 𝑐
and the estimated 𝜓̂(𝑧) partitioned by 𝑐.

Figure 3.7: Example 3.5.1: MIO-ID of FTDDTL system using noiseless measurements. (a)
compares the PSD of the output of S with the PSD of the output ofM. (b) shows 𝜓 of S and 𝜓̂ of
M . (c) shows the output 𝑦𝑘 of S with 𝑣 = 37.5 for all 𝑘 ∈ [0, 100] . (d) shows the output 𝑦̂𝑘 ofM
with 𝑢̂ = 37.46. (e) shows the output 𝑦𝑘 of S and the output 𝑦̂𝑘 ofM for all 𝑘 ∈ [800, 900]. (f)
and (g) compare the frequency responses 𝐺 and 𝐺̂.
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Figure 3.8: Example 3.5.1: Minimal cost min
𝑖∈[0,ℓ]

𝐽MIO,𝑖 up to iteration ℓ used in MIO-ID. The

identified modelM, whose response is shown in Figure 3.7 is obtained by minimizing (3.43).

Figure 3.9: Example 3.5.1: Responses of S and the identified model M that minimizes 𝐽MIO
as the number of optimization iterations increases. The responses of M are displayed for all
ℓ ∈ {1, 50, 250}.

Now, consider the output of S with sensor noise with standard deviation
√

1.5, which yields an
output signal with 30 dB SNR. Figure 3.10 compares the response of the modelM identified using
MIO-ID in the presence of noisy measurements with the response of S. The estimated DTLI/CPA
model parameters are

𝐺̂ (q) = 1.0911q2 − 0.1186q − 0.2134
q3 − 1.2092q2 + 0.1745q + 0.3128

, (3.55)

𝑑 = 4, 𝑢̂ = 34.345, 𝜈̂n = 4, 𝜈̂p = 12, and 𝜓̂ shown in Figure 3.10. The optimization process required
95.55 s, during which 𝐽MIO was computed 767 times.
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Figure 3.10: Example 3.5.1: MIO-ID of FTDDTL system using noisy measurements. (a) compares
the PSD of the output of S with the PSD of the output of M. (b) shows 𝜓 of S and 𝜓̂ of M .

(c) shows the output 𝑦𝑘 of S with 𝑣 = 37.5 for all 𝑘 ∈ [0, 100] . (d) shows the output 𝑦̂𝑘 of M
with 𝑢̂ = 34.345 for all 𝑘 ∈ [0, 100] . (e) shows the output 𝑦𝑘 of S and the output 𝑦̂𝑘 ofM for all
𝑘 ∈ [800, 900]. (f) and (g) compare the frequency responses of 𝐺 and 𝐺̂.

Figure 3.11 shows the time domain responses of identified models estimated via MIO-ID by
fixing 𝑛̂ and 𝑑, such that {𝑛̂, 𝑑} ∈ {1, 2, 3} × {2, 3, 4} . Note that small changes in 𝑛̂ and 𝑑 can yield
significantly different responses and thus different values of 𝐽MIO. The complex changes of 𝐽MIO

over the 𝑛̂, 𝑑, 𝜆̂, 𝜈̂l, 𝜈̂p parameter space motivated the use of a genetic algorithm for mixed-integer
optimization. Furthermore, note that, in the cases where 𝑑 = 𝑑 and 𝑛̂ > 𝑛, the responses of the
identified models are very similar to those of S, which implies that, under appropriate coefficients,
higher order linear systems can approximate the response of lower order linear systems. ⋄

45



Figure 3.11: Example 3.5.1: MIO-ID of FTDDTL system with fixed 𝑛̂ and 𝑑, such that {𝑛̂, 𝑑} ∈
{1, 2, 3} × {2, 3, 4} . These plots compare the output 𝑦̂𝑘 of the identified modelM with the output
𝑦𝑘 of system S for all 𝑘 ∈ [0, 400].

Example 3.5.2: Numerical Data from van der Pol Oscillator

Let S be the continuous-time van der Pol system, given by

¤𝑥(𝑡) =
[

0 1
−1 0

]
𝑥(𝑡) +

[
0
𝛾

]
𝜓(𝑥(𝑡)), (3.56)

𝑦(𝑡) =
[
1 0

]
𝑥(𝑡), (3.57)

𝜓(𝑥(𝑡)) = (1 − 𝑥2
1 (𝑡))𝑥2(𝑡), (3.58)
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where, for all 𝑡 ≥ 0, 𝑥(𝑡) = [𝑥1(𝑡) 𝑥2(𝑡)]T, 𝑦(𝑡) = 𝑥1(𝑡), 𝛾 = 1, 𝑥1(0) = 𝑦(0) = 0.1, and 𝑥2(0) = 0.
To obtain data for identification, for all 𝑡 > 0, the van der Pol model is simulated using ode45,
and the output is sampled with sampling time 𝜏s = 0.1 s. The integration accuracy of ode45 is
set so that approximately 160 integration steps are implemented within each sample interval. For
identification, we let 𝑛̂ ∈ [1, 20], 𝑑 ∈ [0, 25], 𝜆̂ ∈ [10, 1000], 𝜈̂n ∈ [1, 15], and 𝜈̂p ∈ [1, 15], with
𝑙l = 𝑙MIO,l = 500, 𝑙u = 3000, and 𝑙MIO,u = 20000 that is, 𝑦𝑘 for all 𝑘 ∈ [500, 3000] is used for
least-squares optimization, and 𝑦𝑘 and 𝑦̂𝑘 for all 𝑘 ∈ [500, 20000] is used to compute 𝐽MIO.

Figure 3.12 compares the response of the modelM identified using MIO-ID in the presence of
noiseless measurements with the response of S. Figure 3.12 also compares the phase portraits of
the continuous-time system S, and the identified modelM using (3.51) and (3.52) to approximate
the derivative of the output. The estimated DTLI/CPA model parameters are 𝑛̂ = 13, 𝑑 = 11,
𝜈̂n = 9, 𝜈̂p = 10, 𝑢̂ = −70.77 · 10−4, 𝐺̂ with a frequency response shown in Figure 3.13, and 𝜓̂
shown in Figure 3.13.

Figure 3.12: Example 3.5.2: MIO-ID of the continuous-time van der Pol oscillator using noiseless
measurements. For the sampling time 𝜏s = 0.1 s, (a) compares the PSD of the output of S with the
PSD of the output ofM. (b) shows the phase portraits of the response 𝑦 of the continuous-time
van der Pol system S and the response 𝑦̂ of the identified modelM. The derivatives of the outputs
are approximated using (3.51) and (3.52) with 𝜏s = 0.1 s. (c) shows the output 𝑦𝑘 of S for all
𝑘 ∈ [0, 500] . (d) shows the output 𝑦̂𝑘 ofM with 𝑢̂ = −70.77 · 10−4 for all 𝑘 ∈ [0, 500] . (e) shows
the sampled output 𝑦𝑘 of S for all 𝑘 ∈ [500, 1000], and the output 𝑦̂𝑘 ofM for all 𝑘 ∈ [521, 1021].
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Figure 3.13: Example 3.5.2: MIO-ID of the continuous-time van der Pol oscillator using noiseless
measurements. (a) and (b) show the frequency response of 𝐺̂. (c) shows the estimated nonlinearity
𝜓̂ ofM.

Next, consider the output of S with sensor noise that yields an output signal with 30 dB SNR.
Figure 3.14 compares the response of the model M identified using MIO-ID in the presence of
noisy measurements with the response of S. Figure 3.14 also compares the phase portraits of the
continuous-time system S, with and without sensor noise, and the identified modelM using (3.51)
and (3.52) to approximate the derivative of the output. The estimated DTLI/CPA model parameters
are 𝑛̂ = 47, 𝑑 = 7, 𝜈̂n = 16, 𝜈̂p = 10, 𝑢̂ = −0.4624, 𝐺̂ with a frequency response shown in Figure
3.15, and 𝜓̂ shown in Figure 3.15. ⋄
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Figure 3.14: Example 3.5.2: MIO-ID of the continuous-time van der Pol oscillator with 30 dB
SNR. For the sampling time 𝜏s = 0.1 s, (a) compares the PSD of the output of S with the PSD
of the output of M. (b) shows the phase portraits of the response 𝑦 of the continuous-time van
der Pol system S with sensor noise, response of the continuous-time van der Pol system S without
sensor noise in green, and the response 𝑦̂ of the identified modelM. The derivatives of the outputs
are approximated using (3.51) and (3.52) with 𝜏s = 0.1 s. (c) shows the output 𝑦𝑘 of S for all
𝑘 ∈ [0, 500] . (d) shows the output 𝑦̂𝑘 ofM with 𝑢̂ = 0.6444 for all 𝑘 ∈ [0, 500] . (e) shows the
sampled output 𝑦𝑘 of S for all 𝑘 ∈ [500, 1000], and the output 𝑦̂𝑘 ofM for all 𝑘 ∈ [490, 990].

Figure 3.15: Example 3.5.2: MIO-ID of the continuous-time van der Pol oscillator with 30 dB
SNR. (a) and (b) show the frequency response of 𝐺̂. (c) shows the estimated nonlinearity 𝜓̂.
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Example 3.5.3: Numerical Data from Lotka-Volterra Model

Let S be the continuous-time Lotka-Volterra model, given by

¤𝑥(𝑡) =
[
𝛼 0
0 −𝛾

]
𝑥(𝑡) +

[
−𝜁
𝜉

]
𝜓(𝑥(𝑡)), (3.59)

𝑦(𝑡) =
[
1 0

]
𝑥(𝑡), (3.60)

𝜓(𝑥(𝑡)) = 𝑥1(𝑡)𝑥2(𝑡), (3.61)

where, for all 𝑡 ≥ 0, 𝑥(𝑡) = [𝑥1(𝑡) 𝑥2(𝑡)]T, 𝑦(𝑡) = 𝑥2(𝑡), 𝛼 = 2/3, 𝛾 = 1, 𝜁 = 4/3, 𝜉 = 1, and
𝑥1(0) = 𝑥2(0) = 𝑦(0) = 1. To obtain data for identification, for all 𝑡 > 0, the Lotka-Volterra
model is simulated using ode45, and the output is sampled with sampling time 𝜏s = 0.1 s. The
integration accuracy of ode45 is set so that approximately 160 integration steps are implemented
within each sample interval. For identification, we let 𝑛̂ ∈ [1, 30], 𝑑 ∈ [0, 30], 𝜆̂ ∈ [10, 5000],
𝜈̂n ∈ [1, 10], and 𝜈̂p ∈ [1, 10], with 𝑙l = 𝑙M,l = 100 and 𝑙u = 𝑙M,u = 10000, that is, 𝑦𝑘 for all
𝑘 ∈ [100, 10000] is used for identification. Figure 3.16 compares the response of the modelM,

identified using MIO-ID, with the response of S. Figure 3.16 also compares the phase portraits of
the continuous-time system S and the identified modelM using (3.51) and (3.52) to approximate
the derivative of the output. The estimated DTLI/CPA model parameters are 𝑛̂ = 14, 𝑑 = 16,
𝜈̂n = 7, 𝜈̂p = 7, 𝑢̂ = 0.258, 𝐺̂ with a frequency response shown in Figure 3.17, and 𝜓̂ shown in
Figure 3.17.
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Figure 3.16: Example 3.5.3: MIO-ID of the continuous-time Lotka-Volterra model using noiseless
measurements. (a) compares the PSD of the output of S with sampling time 𝜏s = 0.1 s, with the
PSD of the output ofM. (b) shows the phase portraits of the response 𝑦 of the continuous-time
van der Pol system S and the response 𝑦̂ of the identified modelM. The derivatives of the outputs
are approximated using (3.51) and (3.52) with 𝜏s = 0.1 s. (c) shows the output 𝑦𝑘 of S for all
𝑘 ∈ [0, 500] . (d) shows the output 𝑦̂𝑘 of M with 𝑢̂ = 0.258 for all 𝑘 ∈ [0, 500] . (e) shows the
sampled output 𝑦𝑘 of S for all 𝑘 ∈ [2500, 3000], and the output 𝑦̂𝑘 ofM for all 𝑘 ∈ [2487, 2987] .

Figure 3.17: Example 3.5.3: MIO-ID of the continuous-time Lotka-Volterra model using noiseless
measurements. (a) and (b) show the frequency response of 𝐺̂. (c) shows the estimated nonlinearity
𝜓̂.

Next, consider the output of S with sensor noise that yields an output signal with 30 dB SNR.
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Figure 3.18 compares the response of the model M identified using MIO-ID in the presence of
noisy measurements with the response of S. Figure 3.18 also compares the phase portraits of the
continuous-time system S, with and without sensor noise, and the identified modelM using (3.51)
and (3.52) to approximate the derivative of the output. The estimated DTLI/CPA model parameters
are 𝑛̂ = 48, 𝑑 = 25, 𝜈̂n = 7, 𝜈̂p = 12, 𝑢̂ = −3.3042, 𝐺̂ with a frequency response shown in Figure
3.19, and 𝜓̂ shown in Figure 3.19. ⋄

Figure 3.18: Example 3.5.3: MIO-ID of the continuous-time Lotka-Volterra model with 30 dB
SNR. (a) compares the PSD of the output of S with sampling time 𝜏s = 0.1 s, with the PSD of
the output ofM. (b) shows the phase portraits of the response 𝑦 of the continuous-time van der
Pol system S with sensor noise, response of the continuous-time Lotka-Volterra model S without
sensor noise in green, and the response 𝑦̂ of the identified modelM. The derivatives of the outputs
are approximated using (3.51) and (3.52) with 𝜏s = 0.1 s. (c) shows the output 𝑦𝑘 of S for all
𝑘 ∈ [0, 500] . (d) shows the output 𝑦̂𝑘 of M with 𝑢̂ = 0.258 for all 𝑘 ∈ [0, 500] . (e) shows the
sampled output 𝑦𝑘 of S for all 𝑘 ∈ [2500, 3000], and the output 𝑦̂𝑘 ofM for all 𝑘 ∈ [2487, 2987] .
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Figure 3.19: Example 3.5.3: MIO-ID of the continuous-time Lotka-Volterra model with 30 dB
SNR. (a) and (b) show the frequency response of 𝐺̂. (c) shows the estimated nonlinearity 𝜓̂.

Example 3.5.4: Experimental Data of Thermoacoustic Oscillations from Gas-
Turbine Combustor

In this example, experimental data obtained from a recording of the sound generated by thermoa-
coustic oscillations during the operation of a gas-turbine combustor is used for identification. Let
S be the Dual Independent Swirl Combustor Facility (DISCo), featured in [88] and in Chapter
5. More information abuot DISCo wil be provided in Chapter 5. The data used for identification
was obtained from a microphone (Kulite type MIC-190L) placed in the combustion chamber, as
is shown in Figure 3.20, with a sensitivity of 9 Pa/mV, computed after the signal is amplified.
The pressure measurements from this sensor were acquired at a sampling rate of 15 kHz. The
microphone measurements used for identification are obtained from a run of the DISCo system in
which the manipulated mass flow rates are kept constant and are shown in Figure 3.21.
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Figure 3.20: Example 3.5.4: DISCo facility. a) Commissioned DISCo facility in atmospheric
condition. b) Placement of microphone in the combustion chamber used for pressure data recording.

Figure 3.21: Example 3.5.4: Original signal from DISCo combustor

For identification, we let 𝑛̂ ∈ [1, 75], 𝑑 ∈ [0, 75], 𝜆̂ ∈ [1, 20000], 𝜈̂n ∈ [1, 30], and 𝜈̂p ∈ [1, 30],
with 𝑙l = 2505, 𝑙u = 2685, 𝑙MIO,l = 1000, and 𝑙MIO,u = 60000 that is, 𝑦𝑘 for all 𝑘 ∈ [2505, 2685]
is used for least-squares optimization, and 𝑦𝑘 and 𝑦̂𝑘 for all 𝑘 ∈ [1000, 60000] is used to compute
𝐽MIO. This arrangement was chosen due to the irregularity of the oscillatory behavior displayed
by the data. A representative waveform from the available data is chosen to minimize 𝐽, and
this waveform is used to determine the accuracy of the identified model. Figure 3.22 compares
the response of the model identified using MIO-ID with the measurements obtained from the
combustor. Furthermore, Figure 3.22 compares the phase portraits of the combustor data (system
S) and the identified modelM using (3.51) and (3.52) to approximate the derivative of the output
with 𝜏s = 1/15000 s. The estimated DTLI/CPA model parameters are 𝑛̂ = 59, 𝑑 = 26, 𝜈̂n = 9,
𝜈̂p = 8, 𝑢̂ = 0.7765, the frequency response of 𝐺̂ is shown in Figure 3.23, and 𝜓̂ is shown in Figure
3.23. ⋄
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Figure 3.22: Example 3.5.4: MIO-ID using the data from a recording of sound generated by
thermoacoustic oscillations during the operation of a gas-turbine combustor. (a) compares the PSD
of the sampled output of S with the PSD of the output of M. (b) shows the estimated phase
portraits of the response 𝑦 of S and the response 𝑦̂ of the identified modelM. The derivatives of
the outputs of S andM are approximated using (3.51) and (3.52) with 𝜏s = 1/ 𝑓s s and 𝑓s = 15 kHz.
(c) shows the output 𝑦𝑘 of S for all 𝑘 ∈ [0, 1000] . (d) shows the output 𝑦̂𝑘 ofM with 𝑢̂ = 0.7765
for all 𝑘 ∈ [0, 1000] . (e) shows the output 𝑦𝑘 of S for all 𝑘 ∈ [1600, 1900], and the output 𝑦̂𝑘 of
M for all 𝑘 ∈ [1611, 1911].

Figure 3.23: Example 3.5.4: MIO-ID using the data from a recording of sound generated by
thermoacoustic oscillations during the operation of a gas-turbine combustor. (a) and (b) show the
frequency response of linear dynamics 𝐺̂ ofM. (c) shows the estimated nonlinearity 𝜓̂ ofM.
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3.6 Conclusions

This chapter presented a framework for identifying SES’s based on a DTL model. The nonlinear
feedback function was chosen to be CPA parameterized by its slope in each interval of a partition of
the real line. A mixed-integer optimization approach was used for parameter estimation within the
DTLI model as an extension of the technique presented in [53]. This approach allows optimization
of the model parameters that were previously chosen manually, thus improving the identification
accuracy and reducing the effort required by the user. Numerical examples included both discrete-
time and continuous-time systems with noiseless and noisy sampled data. Finally, the MIO-ID was
applied to a data set obtained from DISCo, which resulted in a DTLI model that closely reproduced
the oscillatory behavior displayed by the combustor. Although the combustor does not have the
structure of a DTL model, the system identification technique was able to approximately reproduce
the phase-plane dynamics of these systems. The successful implementation of MIO-ID validates
the choice of Lur’e models and model properties obtained in Chapter 2. The self-excitation model
properties obtained in the previous two chapter will be used to construct a SES model in Chapter 4.
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CHAPTER 4

Adaptive Suppression of Thermoacoustic
Oscillations in a Rijke Tube

As mentioned in the introduction to this dissertation, a widely studied SES is the Rijke tube,
which consists of a cylinder and a heating element. A Rijke tube is a spatially one-dimensional
thermoacoustic system that is highly susceptible to thermoacoustic oscillation. Under constant
heating, the Rijke tube undergoes self-excited oscillations due to the interaction between the heat
source and fluid dynamics. The physics of the Rijke tube have been extensively analyzed, with the
original work by Rijke [18] and subsequent work of Lord Rayleigh [19]. In particular, Rayleigh
showed that, under certain conditions involving heat and geometry, thermoacoustic oscillations
arise from the feedback interaction of the expansion and compression of the air and the heat flux. In
thermoacoustic oscillations, the positive feedback between the acoustic field of the system and the
unsteady rate of heat release from combustion creates pressure waves whose amplitude increases
until it is limited by nonlinear effects. Self-excited pressure oscillations can cause structural
vibrations within a combustor, which results in premature component wear and thus reduced
lifespan of the combustor, reduced efficiency, and possible system failure [30, 89, 90] [91, pp.
3–26].

A Rijke tube provides an ideal venue for developing and implementing modeling and control
techniques for SES. In particular, a laboratory-scale Rijke tube requires only a suitable tube
and heating element; for feedback control, a microphone and speaker provide high-authority,
high-bandwidth sensing and actuation. All of these components are inexpensive and accessible
to classroom demonstrations. Most importantly, control experiments involving a Rijke tube are
safe to run since no damage is incurred when the feedback controller inadvertently amplifies the
thermoacoustic oscillations. The most expensive component needed for digital feedback control is
the processor for controller implementation. For the adaptive control experiments reported in the
present work, we use a dSpace Scalexio system; low-power embedded processors are sufficient,
however, for implementing fixed-gain control laws.

Extensive research has been devoted to modeling thermoacoustic oscillations [1, 20–26] and
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suppressing these instabilities using a wide variety of techniques [12, 92, 93]. Experimental ap-
plications of various control algorithms are reported; in particular, [94–96] implement phase-shift
controllers, [97] implements an LMS controller, [98] implements LQG and 𝐻∞ controllers, [99]
implements self-tuning regulators, [100] implements a time-averaged gradient controller, [101]
implements an LQG controller and a Nussbaum adaptive controller, [102] implements an adap-
tive controller based on dynamic compensation, [103] implements a neural-network controller,
and [104] proposes a backstepping-based controller. An interesting aspect of these control studies
is the fact that, although a Rijke tube is an SES and thus is nonlinear, all of the techniques applied
to the Rijke tube in [1, 94–96, 98, 101] are based on linear models and methodologies. These re-
sults show that linear controllers are effective for this nonlinear system. Furthermore, as mentioned
in [12], while model-based controllers may suffer loss of performance due to uncertainty or changes
in operating conditions, adaptive controllers can achieve suppression over a wide range of operat-
ing conditions. However, model-based controllers require detailed modeling information about the
system in order to achieve closed-loop stability and robustness. To reduce the need for modeling,
a data-driven, adaptive controller that requires minimal modeling information is desirable.

The goal of this chapter is to experimentally investigate the modeling requirements, perfor-
mance, and robustness of retrospective cost adaptive control (RCAC) [105, 106] for suppressing
thermoacoustic oscillations in a Rijke tube. The focus of this chapter is on the experimental appli-
cation of data-driven control. Stability analysis for RCAC is discussed in [107]; however, within
the current experimental data-driven context, no theoretical truth model is available. A crucial
aspect of the adaptive controller is the selection of hyperparameters, which determine the speed of
adaptation, the assumed modeling information, and the controller order. Hence, a hyperparameter
selection procedure based on closed-loop numerical simulation is developed in this chapter. For
this purpose, a physical model is constructed in this chapter using the insight on SES’s gained
in Chapters 2 and 3; in particular, a linear feedback model for a Rijke tube is augmented with a
nonlinearity in a feedback to yield parameterically stable nonlinear oscillations, as suggested by
the results shown in Chapters 2 and 3. After the hyperparameter selection procedure, the adaptive
controller is implemented in a physical Rijke tube experiment. The main goal of these experiments
is to examine the properties of the controller under various experimental scenarios, including the
effect of modified hyperparameters on the time it takes for the adaptive controller to suppress
oscillations, the performance and robustness of the frozen-gain adaptive controller, the ability of
the adaptive controller to readapt under changes in working conditions, the stability of the adaptive
controller under changes in its gain, and the effect of the relative degree of the closed-loop target
model on the level of suppression. The experimental scenarios are designed to test the robustness of
the adaptive controller under off-nominal perturbations that reflect real-world conditions. The level
of suppression of the thermoacoustic oscillations, referred to as oscillation suppression, is used
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to evaluate the performance of the controller, which is defined to be the ratio of the steady-state
open-loop maximum time-domain pressure amplitude to the steady-state closed-loop maximum
time-domain pressure amplitude in dB.

The contents of this chapter are as follows. Section 4.1 presents the Rijke-tube physical experi-
mental. Section 4.2 presents an overview of the hyperparameter selection methodology applied to
the Rijke-tube experiment. Section 4.3 presents a Rijke-tube model, in which the insight obtained
from Chapters 2 and 3 is used to augment the physics-based model proposed in [20, 95]. Section
4.4 presents the parameters used in the Rijke-tube model given in Section 4.3 to obtain a Rijke-tube
simulation model. Section 4.5 describes the adaptive control law considered in this chapter for
adaptive suppression. Section 4.6 considers the approach under which the discrete-time adaptive
controller interacts with continuous-time systems. To determine the initial hyperparameters, Sec-
tion 4.7 presents numerical examples where the adaptive controller suppresses the thermoacoustic
oscillations in the simulation model of the Rijke tube. Section 4.8 presents physical closed-loop
Rijke-tube experiments. Finally, Section 4.9 presents conclusions to the chapter.

4.1 Description of the Rijke-tube physical experiment

The Rijke-tube physical experiment is shown in Figure 4.1, where a heating element is placed inside
a vertical Pyrex tube whose length is 1.2 m and whose inner cross-sectional area is 4.6 · 10−3 m2,

similarly to the setup in [1]. The heating element is a coil made from 22-gauge Kanthal wire with
a resistance of 22 ohms. The coil is attached by a Kevlar rope to a DC motor, which is used to
reposition the coil. A Variac is used as a power supply to control the voltage supplied to the coil.
To measure pressure oscillations, a microphone is placed at the top of the tube and connected to a
preamplifier. The microphone was calibrated using a sound pressure level meter to convert voltage
measurements to pascals (Pa). To provide the control input, a speaker is placed at the bottom of the
tube and connected to an amplifier. Note that, since the speaker and microphone are not colocated,
the linearized plant dynamics have NMP zeros, as shown in [1]. Consequently, passivity arguments
cannot be used to guarantee closed-loop stability.

Pressure oscillations are created within the Rijke-tube physical experiment by supplying voltage
to the heating element, as noted by Rijke in [18] and subsequently elucidated by Rayleigh [19,108].
As explained in [108–110] [111, pp. 232-234], pressure oscillations are created and become self-
excited if and only if the heating element is placed in the lower half of the tube and sufficient
power is provided to the heating element to overcome the acoustic damping. Furthermore, pressure
oscillations are more easily created when the heat source is placed at one quarter of the length
of the tube from its bottom and become harder to create as the heat source is moved from this
position [108]. The chosen Rijke-tube physical experiment exhibits thermoacoustic oscillations,
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whose characteristics depend on the vertical position of the heating element and the voltage provided
to the heating element, as shown in Figures 4.2 and 4.3.

Microphone

Heating
Element

Speaker

Figure 4.1: Rijke-tube physical experiment. The heating element can be raised or lowered by a DC
motor (not shown) to vary the dynamics of the system.

Figure 4.2: Pressure measurements from the open-loop Rijke-tube physical experiment obtained at
the coil positions 𝑥us ∈ {0.3, 0.35, 0.4} m and the AC voltage levels 𝑉RMS ∈ {70, 80, 90} V, where
𝑥us is the distance of the coil from the bottom of the tube, and𝑉RMS is the root-mean-square (RMS)
voltage provided by the Variac.
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Figure 4.3: Amplitude spectra of the pressure measurements from the open-loop experiment at
each setting considered in Figure 4.2.

4.2 Overview of the hyperparameter selection methodology

A hyperparameter selection procedure based on closed-loop numerical simulation is shown in
Figure 4.4. First, physical Rijke-tube experiments are conducted in an open-loop configuration (no
feedback control) to obtain pressure measurements. Then, a fit procedure is applied, where the
parameters of the Rijke-tube model are chosen to capture the frequency and magnitude of the highest
peak of the open-loop pressure measurements. This procedure yields a rudimentary simulation
model, which is used for adaptive closed-loop numerical simulations to select hyperparameters
based on achieved oscillation suppression. The selected hyperparameters are then used in physical
closed-loop Rijke-tube experiments. For these experiments, the adaptive controller is implemented
on a dSpace Scalexio system to suppress thermoacoustic oscillations generated by the coil heat
for various coil positions and voltage levels. Note that the simulation model is used only to select
an initial set of hyperparameters for adaptation, and is otherwise not used or needed for feedback
control.
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Open-loop
Pressure

Measurements

Rudimentary
Simulation

Model

Microphone and
Preamplifier

Speaker and
Amplifier

RCAC

A/D

D/A
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Experiments

Selected
Hyperparameters

Figure 4.4: Hyperparameter selection procedure. The objective is to select initial hyperparameters
by applying the adaptive controller to a rudimentary simulation model of the Rijke-tube physical
experiment.
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4.3 Physics-based model of the Rijke tube

A schematic of the Rijke-tube physical experiment is shown in Figure 4.5. The tube has length 𝐿
and cross-sectional area 𝐴. The heating element is positioned 𝑥ds m below the top of the tube and
𝑥us m above the bottom of the tube; note that 𝐿 = 𝑥ds + 𝑥us. The microphone is positioned 𝑥mic

m above the heating element, and the speaker is placed below the tube. In Figure 4.5, 𝑓1 and 𝑔1

represent the bidirectional acoustic pressure propagation in the upstream portion of the tube, and
𝑓2 and 𝑔2 represent the bidirectional acoustic pressure propagation in the downstream portion of
the tube.

0
Heating

Zone

Downstream

Upstream

𝑥

𝑥ds

𝑥mic

-𝑥us

Speaker

Microphone

𝑓2 𝑔2

𝑓1 𝑔1

Figure 4.5: Schematic of the Rijke-tube model.

The Rijke-tube model (4.12)–(4.15) is based on the ducted-flame model given in [7] and further
developed in [20, 95]. A key difference between the models developed in [7] and [20, 95] is that,
in [7], a nonlinearity is added before the linear flame dynamics. This feature is congruent with
the insight obtained in Chapters 2 and 3, and is included in (4.12)–(4.15), where the saturation
function used in [7] is replaced by a hyperbolic tangent to improve numerical stability. Note that
these nonlinearities are distinct from the square-root function used in [1] within the context of a
different model. Let 𝑥 ∈ [−𝑥us, 𝑥ds] denote a position within the tube in m, where 𝑥 = 0 m is the
position of the heating element in the tube. Let 𝑝 and 𝑣 be the airflow pressure and velocity such
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that

𝑝(𝑡, 𝑥) △=

𝑝1 + 𝑝1(𝑡, 𝑥), 𝑥 ∈ [−𝑥us, 0],

𝑝2 + 𝑝2(𝑡, 𝑥), 𝑥 ∈ (0, 𝑥ds],
(4.1)

𝑣(𝑡, 𝑥) △=

𝑣̄1 + 𝑣̃1(𝑡, 𝑥), 𝑥 ∈ [−𝑥us, 0],

𝑣̄2 + 𝑣̃2(𝑡, 𝑥), 𝑥 ∈ (0, 𝑥ds],
(4.2)

where 𝑝1, 𝑝2 > 0 are the mean airflow pressure in the upstream and downstream portions, re-
spectively, 𝑣̄1, 𝑣̄2 > 0 are the mean airflow velocities in the upstream and downstream portions,
respectively, and, for all 𝑖 ∈ {1, 2},

𝑝𝑖 (𝑡, 𝑥)
△
= 𝑓𝑖 (𝑡 − 𝑥

𝑐𝑖
) + 𝑔𝑖 (𝑡 + 𝑥

𝑐𝑖
), (4.3)

𝑣̃𝑖 (𝑡, 𝑥)
△
= 1

𝜌̄𝑖𝑐𝑖
[ 𝑓𝑖 (𝑡 − 𝑥

𝑐𝑖
) − 𝑔𝑖 (𝑡 + 𝑥

𝑐𝑖
)], (4.4)

where 𝑐1, 𝑐2 > 0 are the mean wave speeds in the upstream and downstream portions, respectively,
and 𝜌̄1, 𝜌̄2 > 0 are the mean air densities in the upstream and downstream portions, respectively.
Furthermore, 𝑓1 and 𝑔2 are given by

𝑓1(𝑡) = 𝑅us𝑔1(𝑡 − 𝜏us) + 𝑝spk(𝑡 − 𝜏us
2 ), (4.5)

𝑔2(𝑡) = 𝑅ds 𝑓2(𝑡 − 𝜏ds), (4.6)

where 𝑅us, 𝑅ds ∈ R are reflection coefficients, 𝜏us
△
=

2𝑥us
𝑐1
, 𝜏ds

△
=

2𝑥ds
𝑐2
, and 𝑝spk ∈ R is the speaker

pressure.
Next, the dynamics of the heat release rate perturbations of the coil 𝑄̃ are modeled by

𝑏 ¤̃𝑄(𝑡) + 𝑄̃(𝑡) = 𝑎𝜓(𝑣̃1(𝑡, 0)), (4.7)

where 𝑎, 𝑏 ∈ (0,∞) and 𝜓 : R→ R is given by

𝜓(𝑣̃1(𝑡, 0))
△
= 𝛿 tanh(𝜂𝑣̃1(𝑡, 0)), (4.8)

where 𝛿, 𝜂 ∈ (0,∞). Then, define

𝐹
△
= 𝑋−1

[
𝑌

0
1
𝐴𝑐1

]
∈ R2×3,
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where 𝑋,𝑌 ∈ R2×2, and let 𝑔1 and 𝑓2 be given by

[
𝑔1(𝑡)
𝑓2(𝑡)

]
= 𝐹


𝑓1(𝑡)
𝑔2(𝑡)
𝑄̃(𝑡)

 . (4.9)

Since the Mach numbers are assumed to be low [20, 95], it follows from the expressions for 𝑋 and
𝑌 given in the appendix of [7] that

𝑋
△
=

[
−1 1

1
𝛾̄−1

𝑐2
𝑐1

1
𝛾̄−1

]
, 𝑌

△
=

[
1 −1
1
𝛾̄−1

𝑐2
𝑐1

1
𝛾̄−1

]
, (4.10)

where 𝛾̄ is the adiabatic ratio of dry air at room temperature. Finally, the acoustic pressure 𝑝mic

measured by the microphone is given by

𝑝mic(𝑡)
△
= 𝑝2(𝑡, 𝑥mic) = 𝑓2(𝑡 − 𝑥mic

𝑐2
) + 𝑔2(𝑡 + 𝑥mic

𝑐2
)

= 𝑓2(𝑡 − 𝜏mic) + 𝑅ds 𝑓2(𝑡 − (𝜏ds − 𝜏mic)), (4.11)

where 𝜏mic
△
=
𝑥mic
𝑐2
.

The block diagram in Figure 4.6 summarizes the dynamics of the Rijke-tube model, where the
control input 𝑢 = 𝑝spk is the speaker pressure, and the measurement 𝑦 = 𝑝mic is the microphone
signal. These dynamics can be written as

¤̃𝑄(𝑡) = −1
𝑏
𝑄̃(𝑡) + 𝑎

𝑏
𝜓(𝑣̃1(𝑡, 0)), (4.12)

𝑣̃1(𝑡, 0) =
1
𝜌̄1𝑐1

[
1 −1 𝑅us

] 
𝑝spk(𝑡 − 𝜏us/2)

𝑔1(𝑡)
𝑔1(𝑡 − 𝜏us)

 , (4.13)

[
𝑔1(𝑡)
𝑓2(𝑡)

]
= 𝐹


1 0 0 0
0 1 𝑅us 0
0 0 0 𝑅ds




𝑄̃(𝑡)
𝑝spk(𝑡 − 𝜏us/2)
𝑔1(𝑡 − 𝜏us)
𝑓2(𝑡 − 𝜏ds)


, (4.14)

𝑝mic(𝑡) =
[
1 𝑅ds

] [
𝑓2(𝑡 − 𝜏mic)

𝑓2(𝑡 − (𝜏ds − 𝜏mic))

]
. (4.15)

Note that (4.12)–(4.15) are delay differential equations (DDEs) with state 𝑄̃, input 𝑝spk, output
𝑝mic, and time varying parameters 𝑔1 and 𝑓2. Furthermore, the placement of the speaker and the
microphone relative to the coil result in input and output time delays, as shown in (4.14), (4.15),
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and Figure 4.6.

𝑒
− 𝜏us

2 𝑠 +
Linear
Map
𝐹

𝑒−𝜏ds𝑠

𝑒−𝜏us𝑠

𝑅ds

𝑅us

+

1
𝜌̄1 𝑐̄1𝜓𝑎

𝑏𝑠+1

𝑒−𝜏mic𝑠

𝑒−(𝜏ds−𝜏mic)𝑠𝑅ds

+

𝑢 = 𝑝̃spk
𝑓1

−

𝑣̃1 (𝑡 , 0)

𝑄̃

𝑓2

𝑦 = 𝑝̃mic

𝑔1

𝑔2

Figure 4.6: Block diagram of the Rijke-tube model. The control input 𝑢 = 𝑝spk is the speaker
pressure, and the microphone signal 𝑦 = 𝑝mic is the measurement. This block diagram is executed
in Simulink.

4.4 Rijke-tube model parameter fit

The parameters for the Rijke-tube model introduced in Section 4.3 and shown in Figure 4.6 are
chosen to emulate the characteristics of the Rijke-tube physical experiment. In particular, with the
coil placed 0.4 m above the bottom of the tube and the RMS Variac voltage set to 𝑉RMS = 70 V, the
simulation model captures the amplitude and frequency of the highest magnitude of the spectrum of
the pressure measurements obtained from open-loop experiments. The constants 𝜌̄1 and 𝛾̄ denote
the density and adiabatic ratio of dry air at room temperature, respectively, 𝑐1 and 𝑐2 are chosen
as in [95], and 𝑥us, 𝑥ds, and 𝑥mic are based on the configuration used in open-loop experiments.
Hence, 𝐿 = 1.2 m, 𝑥us = 0.4 m and 𝑥ds = 1.2 m − 0.4 m = 0.8 m. Since the microphone is placed
approximately 0.1 m below the top of the tube, 𝑥mic = 𝑥ds − 0.1 m = 0.7 m. 𝑅us and 𝑅ds are fixed to
values that induce a self-excited response in the model output more easily. Then, 𝑎 𝑏, 𝛿, and 𝜂 are
manually adjusted to match the pressure measurements obtained from the open-loop experiments.
The chosen parameters for the Rijke-tube simulation model are shown in Table 4.1.

Numerical simulations of the simulation model are performed in Simulink using fixed-step
integration with step size 10−4 s/step.Linear interpolation is used to calculate the delayed values of
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𝑝spk, 𝑔1, and 𝑓2. For all 𝑡 ≤ 0, 𝑝spk(𝑡) = 𝑔1(𝑡) = 𝑓2(𝑡) = 0. The value of 𝑄̃(0) is randomly selected
and provides the initial disturbance to generate the oscillations.

The open-loop (𝑢 ≡ 0) response of the simulation model and the experimental data are shown
in Figure 4.7. The highest magnitude peaks of the amplitude spectra of the open-loop experiment
and the simulation model match at 140 Hz, as shown in Figure 4.7. As can be seen, the magnitude
peaks of the amplitude spectrum of the emulation model match only the peaks corresponding to the
odd harmonics of the amplitude spectrum of the open-loop experiment. Although this mismatch
is inconsistent with the reflection coefficients 𝑅us and 𝑅ds, which model open-open boundary
conditions, the predictions of a linear acoustic model are not valid for the emulation model, which
is nonlinear. While the emulation model output only roughly matches the data, Subsection 4.8.1
shows that this emulation model is sufficient for hyperparameter tuning.

Table 4.1: Parameters of the Rijke-tube Simulation Model

Parameter Value Units Comment
𝜌̄1 1.225 kg/m3

Based on the
Rijke-tube physical experiment

𝛾̄ 1.4 −
𝑐1 340 m/s
𝑐2 360 m/s
𝐴 4.6 · 10−3 m2

𝐿 1.2 m
𝑥us 0.4 m
𝑥ds 𝐿 − 𝑥us m
𝑥mic 𝑥ds − 0.1 m
𝑅us -0.99 −

Based on open-loop
pressure measurements

𝑅ds -0.99 −
𝑎 375 −
𝑏 2 · 10−3 −
𝛿 0.1128 m/s
𝜂 3.21 −

4.5 Review of Retrospective Cost Adaptive Control

RCAC is described in detail in [105]. In this section we summarize the main elements of this
method.

Consider the strictly proper, discrete-time, input-output controller

𝑢𝑘 =

𝑙c∑︁
𝑖=1

𝑃𝑖,𝑘𝑢c,𝑘−𝑖 +
𝑙c∑︁
𝑖=1

𝑄𝑖,𝑘 𝑧𝑘−𝑖, (4.16)
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Figure 4.7: Comparison of the time responses and amplitude spectra of the open-loop experiment
and the rudimentary simulation model. Note that the amplitude spectra of the data and simulation
model match only at the first peak. The parameters used for the simulation model are given in Table
4.1.

where 𝑘 ≥ 0 is the current discrete time step, 𝑢𝑘 ∈ R𝑙𝑢 is the controller output and thus the control
input, 𝑢c,𝑘 ∈ R𝑙𝑢 is the constrained control input, 𝑧𝑘 ∈ R𝑙𝑧 is the measured performance variable, 𝑙c
is the controller-window length, and, for all 𝑖 ∈ {1, . . . , 𝑙c}, 𝑃𝑖,𝑘 ∈ R𝑙𝑢×𝑙𝑢 and 𝑄𝑖,𝑘 ∈ R𝑙𝑢×𝑙𝑧 are the
controller coefficient matrices. In particular, 𝑢c,𝑘 results from applying system constraints to 𝑢𝑘 ,
which depends on the studied system. The controller (4.16) can be written as

𝑢𝑘 = 𝜙𝑘𝜃𝑘 , (4.17)

where

𝜙𝑘
△
=

[
𝑢T

c,𝑘−1 · · · 𝑢
T
c,𝑘−𝑙c 𝑧T

𝑘−1 · · · 𝑧
T
𝑘−𝑙c

]
⊗ 𝐼𝑙𝑢 ∈ R𝑙𝑢×𝑙𝜃 , (4.18)

𝜃𝑘
△
= vec

[
𝑃1,𝑘 · · · 𝑃𝑙c,𝑘 𝑄1,𝑘 · · · 𝑄𝑙c,𝑘

]
∈ R𝑙𝜃 , (4.19)

𝑙𝜃
△
= 𝑙c𝑙𝑢 (𝑙𝑢 + 𝑙𝑧), 𝜃𝑘 is the vector of controller coefficients, which are updated at each time step 𝑘 ,

and ⊗ is the Kroenecker product.
If 𝑧𝑘 and 𝑢𝑘 are scalar, then the SISO transfer function of (4.16) from 𝑧𝑘 to 𝑢𝑘 is given by

𝐺c,𝑘 (q) =
𝑄1,𝑘q𝑙c−1 + · · · +𝑄𝑙c,𝑘

q𝑙c − 𝑃1,𝑘q𝑙c−1 − · · · − 𝑃𝑙c,𝑘
, (4.20)

where q is the forward-shift operator.
Next, define the retrospective cost variable

𝑧𝑘 (𝜃)
△
= 𝑧𝑘 − 𝐺f (q) (𝑢𝑘 − 𝜙𝑘𝜃), (4.21)
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where 𝐺f is an 𝑙𝑧 × 𝑙𝑢 asymptotically stable, strictly proper transfer function, and 𝜃 ∈ R𝑙𝜃 is the
controller coefficient vector determined by optimization below. The rationale underlying (4.21)
is to replace the applied past control inputs with the re-optimized control input 𝜙𝑘𝜃 so that the
closed-loop transfer function from 𝑢𝑘 − 𝜙𝑘𝜃𝑘+1 to 𝑧𝑘 matches 𝐺f [105, 106]. Consequently, 𝐺f

serves as a closed-loop target model for the adaptation process.
In this dissertation, 𝐺f is chosen to be a finite-impulse-response transfer function of window

length 𝑙f of the form

𝐺f (q)
△
=

𝑙f∑︁
𝑖=1

𝑁𝑖,𝑘q−𝑖, (4.22)

where 𝑁1,𝑘 , . . . , 𝑁𝑙f ,𝑘 ∈ R𝑙𝑧×𝑙𝑢 . We can thus rewrite (4.21) as

𝑧𝑘 (𝜃) = 𝑧𝑘 − 𝑁𝑘 (𝑈c,𝑘 −Φ𝑘𝜃), (4.23)

where

Φ𝑘
△
=


𝜙𝑘−1
...

𝜙𝑘−𝑙f

 ∈ R𝑙f 𝑙𝑢×𝑙𝜃 , 𝑈c,𝑘
△
=


𝑢c,𝑘−1
...

𝑢c,𝑘−𝑙f

 ∈ R𝑙f 𝑙𝑢 , (4.24)

𝑁𝑘
△
=

[
𝑁1,𝑘 · · · 𝑁𝑙f ,𝑘

]
∈ R𝑙𝑧×𝑙f 𝑙𝑢 . (4.25)

The choice of 𝑁𝑘 includes all required modeling information. When the plant is SISO, that is,
𝑙𝑧 = 𝑙𝑢 = 1, this information consists of the sign of the leading numerator coefficient, the relative
degree of the sampled-data system, and all nonminimum-phase (NMP) zeros [105, 106]. Since
zeros are invariant under feedback, omission of a NMP zero from 𝐺f may entail unstable pole-zero
cancellation. Cancellation can be prevented, however, by using the control weighting 𝑅𝑢 introduced
below, as discussed in [105,112]. In most applications, 𝑁𝑘 is constant and is determined by features
of the system being controlled, as mentioned in [105]. Other applications may require 𝑁𝑘 to be
constructed and updated online using data, as mentioned in [106].

Using (4.21), we define the cumulative cost function

𝐽R,𝑘 (𝜃)
△
=

𝑘∑︁
𝑖=0
[𝑧T
𝑖 (𝜃)𝑧𝑖 (𝜃) + (𝜙𝑖𝜃)T𝑅𝑢𝜙𝑖𝜃] + (𝜃 − 𝜃0)T𝑃−1

0 (𝜃 − 𝜃0), (4.26)

where 𝑃0 ∈ R𝑙𝜃×𝑙𝜃 is positive definite and 𝑅𝑢 ∈ R𝑙𝑢×𝑙𝑢 is positive semidefinite. As can be seen
from (4.17), 𝑅𝑢 serves as a control weighting, which prevents RCAC from cancelling unmodeled
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NMP zeros, and the matrix 𝑃−1
0 defines the regularization term and initializes the recursion for 𝑃𝑘

defined below.
The following result uses recursive least squares (RLS), as mentioned in [113] and [114], to

minimize (4.26), where, at each step 𝑘, the minimizer of (4.26) provides the update 𝜃𝑘+1 of the
controller coefficient vector 𝜃𝑘 .

Proposition. Let 𝑃0 be positive definite, and 𝑅𝑢 be positive semidefinite. Then, for all 𝑘 ≥ 0,
(4.26) has the unique global minimizer 𝜃𝑘 given by

𝑃𝑘 = 𝑃𝑘−1 − 𝑃𝑘−1

[
𝑁𝑘−1Φ𝑘−1
𝜙𝑘−1

]T

Γ𝑘−1

[
𝑁𝑘−1Φ𝑘−1
𝜙𝑘−1

]
𝑃𝑘−1, (4.27)

𝜃𝑘 = 𝜃𝑘−1 − 𝑃𝑘

[
𝑁𝑘−1Φ𝑘−1
𝜙𝑘−1

]T

𝑅̄

[
𝑧𝑘−1 − 𝑁𝑘−1(𝑈c,𝑘−1 −Φ𝑘−1𝜃𝑘−1)

𝜙𝑘−1𝜃𝑘−1

]
, (4.28)

where

Γ𝑘−1
△
= 𝑅̄ − 𝑅̄

[
𝑁𝑘−1Φ𝑘−1

𝜙𝑘−1

] ©­«𝑃−1
𝑘−1 +

[
𝑁𝑘−1Φ𝑘−1

𝜙𝑘−1

]T

𝑅̄

[
𝑁𝑘−1Φ𝑘−1

𝜙𝑘−1

]ª®¬
−1 [

𝑁𝑘−1Φ𝑘−1

𝜙𝑘−1

]T

𝑅̄

∈ R(𝑙𝑧+𝑙𝑢 )×(𝑙𝑧+𝑙𝑢 ) , (4.29)

𝑅̄
△
= diag(𝐼𝑙𝑧 , 𝑅𝑢) ∈ R(𝑙𝑧+𝑙𝑢 )×(𝑙𝑧+𝑙𝑢 ) . (4.30)

For all of the numerical simulations and physical experiments in this paper, 𝜃𝑘 is initialized
as 𝜃0 = 0𝑙𝜃×1 to reflect the absence of additional prior modeling information. Aside from the
selection of hyperparameters discussed above, no other modeling information is used by RCAC.
For convenience, we set 𝑃0 = 𝑝0𝐼𝑙𝜃 , where the scalar 𝑝0 > 0 determines the initial rate of
adaptation.

4.6 Sampled-Data Implementation of the Adaptive Control
Law

For the Rijke-tube experiment, the adaptive controller is implemented as a sampled-data controller.
Figure 4.8 shows a block diagram of the sampled-data closed-loop system, where 𝑦 ∈ R is the output
of the continuous-time systemM, 𝑦𝑘 is the sampled output, 𝑟𝑘 ∈ R is the discrete-time command,
𝑒𝑘
△
= 𝑟𝑘 − 𝑦𝑘 is the command-following error, 𝑢 ∈ R is the input ofM, and 𝜏s > 0 is the sampling

period. For all adaptive controller experiments in this chapter, 𝜏s = 0.001 s/step. Since the system
is SISO, 𝑙𝑦 = 𝑙𝑢 = R. The digital-to-analog (digital-to-analog (D/A)) and analog-to-digital (analog-
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to-digital (A/D)) interfaces, which are synchronous, are zero-order-hold (zero-order-hold (ZOH))
and sampler, respectively. For this work, 𝑟 ≡ 0 reflects the desire to suppress oscillations in the
measured signal. Finally, in this chapter,M represents a Rijke-tube model introduced in Section
4.3 for numerical simulations and the Rijke-tube experiment introduced in Section 4.1 for physical
experiments.

For this application, for all 𝑘 ≥ 0, 𝑢c,𝑘 = 𝑢𝑘 . Furthermore, the measured performance variable
𝑧𝑘 ∈ R, which is used for adaptation, is the normalized error

𝑧𝑘
△
= N(𝑒𝑘 )

△
=

𝑒𝑘

1 + 𝜈 |𝑒𝑘 |
, (4.31)

where 𝜈 ∈ [0,∞). We fix 𝜈 = 0.2 throughout this chapter. The adaptive controller 𝐺c,𝑘 operates
on 𝑧𝑘 to produce the discrete-time control 𝑢𝑘 ∈ R. Hence, 𝑙𝑢 = 𝑙𝑧 = 1. 𝐺c,𝑘 and 𝑢𝑘 are updated at
each sampling time 𝑡𝑘

△
= 𝑘𝜏s.

In numerical simulations and physical experiments, the controller and adaptation are enabled and
disabled in various ways. In particular, for the experimental scenarios, we consider the following
modes of operation starting at step 𝑘0 ≥ 0:

𝑖) Mode 1: The controller and adaptation are disabled. For all 𝑘 ≥ 𝑘0, 𝑢𝑘 = 0, 𝜃𝑘+1 = 𝜃𝑘 , and
𝑃𝑘+1 = 𝑃𝑘 .

𝑖𝑖) Mode 2: The controller and adaptation are enabled. For all 𝑘 ≥ 𝑘0, 𝑢𝑘 , 𝜃𝑘+1, and 𝑃𝑘+1 are
updated by (4.17), (4.27), and (4.28), respectively.

𝑖𝑖𝑖) Mode 3: The controller is enabled, but adaptation is disabled, yielding a fixed-gain controller.
For all 𝑘 ≥ 𝑘0, 𝑢𝑘 is updated by (4.17), 𝜃𝑘+1 = 𝜃𝑘 , and 𝑃𝑘+1 = 𝑃𝑘 .

Mode 1 is employed when the user requires that the open-loop system reach a desired behavior
before control is applied, such as fully developed thermoacoustic oscillations. Mode 2 corresponds
to normal operation of the adaptive controller. Mode 3 is useful for probing the properties of the
controller at a given time step; in effect, at step 𝑘, the gains of 𝐺c,𝑘 are frozen, and the controller
operates as a fixed-gain controller, called the frozen-gain adaptive controller.

Implementation of the adaptive controller requires selection of the closed-loop target model 𝐺f ,

which captures the properties mentioned in Section 4.5 [105]. In addition, the hyperparameters
𝑙c, 𝑝0, and 𝑅𝑢 must be selected depending on the system and performance requirements. Note
that 𝑅𝑢 is scalar since 𝑙𝑢 = 1. As mentioned in the Section 4.2, all of these quantities are selected
for the Rijke-tube physical experiments after performing closed-loop numerical simulations with a
simulation model.
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+ N 𝐺c,𝑘 ZOH M
𝑢𝑘 𝑢

𝜏s

𝑦𝑟𝑘

𝑦𝑘

-
𝑒𝑘 𝑧𝑘

Figure 4.8: Adaptive control of a continuous-time system M . For this work, 𝑟 ≡ 0 reflects the
desire to suppress oscillations in the measured signal, N is the normalization function (4.31), and
M represents the Rijke-tube model introduced in Section 4.3 for numerical simulations and the
Rijke-tube experiment introduced in Section 4.1 for physical experiments.

4.7 Numerical simulation of the Rijke-tube model for hyperpa-
rameter selection

In this section, the simulation model is used to select hyperparameters, such that the adaptive
controller suppresses the self-excited response of the Rijke-tube simulation model in three cases,
where the heating element is placed at three different positions along the tube by changing the
positive values of 𝑥ds and 𝑥us, such that 𝑥us ∈ {0.3, 0.35, 0.4} m and 𝑥ds = 𝐿 − 𝑥us. Hence, the
parameters used for the simulation model are given in Table 4.1, except for 𝑥us, for which three
different values are considered. For simplicity in controlling the Rijke tube, we fix 𝑁𝑘 , such that,
for all 𝑘 ≥ 0, 𝑁𝑘 = 𝑁 = −1, and thus𝐺f (q) = −1/q, where the minus sign reflects sign information
and the relative degree is set to 1. Hence, only 𝑙c, 𝑝0, and 𝑅𝑢 need to be selected. As mentioned in
the introduction to this chapter, the level of suppression of the thermoacoustic oscillations, referred
to as oscillation suppression, is used to evaluate the performance of the controller, which is defined
to be the ratio of the steady-state open-loop maximum time-domain pressure amplitude to the
steady-state closed-loop maximum time-domain pressure amplitude in dB.

The controller initially operates in Mode 1, and the experiment transitions to Mode 2 at 𝑡 = 15 s,
which is sufficient time for the oscillatory response of the open-loop models to fully develop. Several
simulations are performed, in which the hyperparameters 𝑙c, 𝑝0, and 𝑅𝑢 are manually adjusted until
at least 40 dB of oscillation suppression is obtained across all scenarios (𝑥us ∈ {0.3, 0.35, 0.4} m).
The selected hyperparameters are given by 𝑙c = 5, 𝑝0 = 10−5, and 𝑅𝑢 = 1.

The results of the numerical simulations using the selected hyperparameters are shown in Figures
4.9, 4.10, 4.11, and 4.12. Figure 4.9 shows that, in all cases, the adaptive controller suppresses
the oscillations; in particular, for 𝑥us ∈ {0.4, 0.35, 0.3} m, the adaptive controller suppresses the
oscillations by 72.74 dB, 59.63 dB, and 54.70 dB, respectively. Figure 4.10 shows that, in all
cases, the adaptive controller suppresses the highest magnitude peak of the amplitude spectra
corresponding to the open-loop response of the simulation model. Figure 4.11 shows that the poles
of the adaptive controller evolve in a similar manner in all cases. In contrast, the zeros evolve
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differently in different cases, which shows that the response of the adaptive controller depends on
the operating conditions. Note that none of the poles lie close to the unit circle, which shows
that, in contrast to the standard approach for harmonic disturbance rejection in linear systems, the
adaptive controller does not exploit an internal-model strategy for oscillation suppression [115].
Furthermore, Figure 4.12 shows that the magnitude of the adaptive controller indicates high gain
near 𝜋/4 rad/sample, which is equivalent to 125 Hz given 𝜏s. The high-gain response of the adaptive
controller thus corresponds to the first harmonic of the open-loop amplitude spectra, which occurs
near 140 Hz, as shown in Figure 4.10. The hyperparameters used in these examples are initially
used in the physical experiments.

Figure 4.9: Adaptive control of the simulated Rijke-tube model. The experiment transitions from
Mode 1 to Mode 2 at 𝑡 = 15 s, as indicated by the vertical red lines. Each row shows the responses
for 𝑥us ∈ {0.3, 0.35, 0.4}m, for 𝑡 ∈ [0, 40] s. The first, second, and third columns show the pressure
measurements 𝑝mic, the requested speaker pressure 𝑝spk, and the adaptive controller coefficients 𝜃,
respectively.

4.8 Physical Adaptive Control Experiments

The closed-loop Rijke-tube physical experiment shown in Figure 4.13 is used in the following
subsections to perform physical adaptive control experiments. The hyperparameters determined
in Section 4.7 are initially used for the adaptive controller. In particular, Subsection 4.8.1 shows
experiments in which the Rijke-tube setup parameters are kept constant, Subsection 4.8.2 shows
the effects of hyperparameter perturbation on the RCAC rate of adaptation and suppression per-
formance, Subsection 4.8.3 evaluates the suppression performance of the frozen-gain adaptive
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Figure 4.10: Amplitude spectra of the simulated Rijke-tube model. The amplitude spectra of the
pressure measurements obtained from the open-loop simulations and the closed-loop simulations
using the adaptive controller are shown for 𝑥us ∈ {0.3, 0.35, 0.4} m.

Figure 4.11: Evolution of the poles and zeros of the adaptive controller during the simulation of
the closed-loop system with the Rijke-tube model. Each column shows the poles and zeros for
𝑥us ∈ {0.3, 0.35, 0.4} m and 𝑡 ∈ [15, 40] s. The top row displays the poles as crosses, the middle
row displays the zeros as circles, and the bottom row shows zoomed-in versions of the plots in the
middle row.

controller resulting from an initial implementation of RCAC, Subsection 4.8.4 shows experiments
in which the parameters of the Rijke-tube setup are modified during closed-loop operation, and
Subsections 4.8.5 and 4.8.6 provide experiment-based stability analyses of RCAC.
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Figure 4.12: Evolution of the frequency response of the adaptive controller during the simulation
of the closed-loop system with the Rijke-tube model. The magnitude responses of the adaptive
controller are shown for 𝑥us ∈ {0.3, 0.35, 0.4} m and 𝑡 ∈ {16, 20, 30} s.

Microphone and
Preamplifier

Speaker and
Amplifier

RCAC

A/D

D/A

Figure 4.13: Closed-loop Rijke-tube physical experiment.

4.8.1 Rijke-tube fixed-parameter experiments

We now consider experimental scenarios where the coil position and supplied voltage are kept
constant. In total, 9 combinations are considered, such that 𝑥us ∈ {0.3, 0.35, 0.4} m and 𝑉RMS ∈
{70, 80, 90} V, which are the cases shown in Figures 4.2 and 4.3. Through testing, it is determined
that the oscillations are more difficult to suppress as 𝑥us moves closer to 0.3 m (a quarter of the tube
length from its bottom, as mentioned in Section 4.1) and 𝑉RMS increases. The experiment begins
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in Mode 1 and transitions to Mode 2 after the oscillations are formed.
Since it is mentioned in [1] and [95] that a constant-gain proportional controller can be used

to suppress the oscillations, the constant-gain proportional controller in Figure 4.14 is also im-
plemented for comparison, where 𝐾 is the constant proportional gain and the sampling rate is
𝜏s/20 s/step. A small sampling rate is chosen to allow the digital computer to better approximate
the continuous-time implementations considered in [1] and [95]. For all 𝑘 ≥ 0, 𝑢𝑘 = 0 in the
case where the constant-gain proportional controller is disabled and 𝑢𝑘 = 𝐾𝑒𝑘 in the case where
the constant-gain proportional controller is enabled. The constant-gain proportional controller is
used in the 4 corner cases of the 9 cases considered, using 4 different values of 𝐾. The results
of the suppression experiments with the constant-gain proportional controller in Figure 4.14 for
𝑥us ∈ {0.3, 0.4} m, 𝑉RMS ∈ {70, 90} V, and 𝐾 ∈ {0.025, 0.05, 0.075, 0.01} are shown in Figure
4.15. In all of these experiments, the oscillation suppression is at most 45.73 dB, and no suppression
is achieved in 9 cases.

For the adaptive controller implementation, the hyperparameters are the same as the ones
determined from the numerical simulations using the simulation model, that is, 𝑙c = 5, 𝑝0 = 10−5,
𝑅𝑢 = 1, and 𝐺f (q) = −1/q. The results of the adaptive suppression experiments for 𝑥us ∈
{0.3, 0.35, 0.4} m and 𝑉RMS ∈ {70, 80, 90} V are shown in Figures 4.16, 4.17, 4.18, 4.19, and
4.20. In all of these experiments, the oscillation suppression is at least 45.85 dB. Hence, as in
Section 4.7, oscillation suppression greater than 45 dB is achieved using the same hyperparameters
in all tests. Furthermore, Figure 4.20 shows that the magnitude of the adaptive controller indicates
high gain near 𝜋/4 rad/sample, which is equivalent to 125 Hz given 𝜏s. The high-gain response of
the adaptive controller thus corresponds to the first harmonic of the open-loop amplitude spectra,
which occurs near 140 Hz, as shown in Figure 4.17 and similarly to Section 4.7.

+ 𝐾 ZOH M
𝑢𝑘 𝑢

𝜏s/20

𝑦𝑟𝑘

𝑦𝑘

-
𝑒𝑘

Figure 4.14: Constant-gain proportional control of the continuous-time systemM . For this work,
𝑟 ≡ 0 reflects the desire to suppress oscillations in the measured signal. M represents the Rijke-tube
physical experiment.

4.8.2 Hyperparameter perturbation experiments

We now consider experimental scenarios where the hyperparameters 𝑝0 and 𝑅𝑢 are modified, start-
ing from the values determined in Section 4.7. In particular, the adaptive controller is implemented
in the case where 𝑥us = 0.3 m and𝑉RMS = 90 V for 𝑝0 ∈ {10−5, 10−4, 10−3} and 𝑅𝑢 ∈ {0.5, 0.75, 1}.
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Figure 4.15: Rijke-tube fixed-parameter experiments. Pressure measurements 𝑝mic from the closed-
loop experiments using the constant-gain proportional controller in Figure 4.14 are shown for
𝑥us ∈ {0.3, 0.4} m, 𝑉RMS ∈ {70, 90} V, and 𝐾 ∈ {0.025, 0.05, 0.075, 0.01}. The constant-gain
proportional controller is initially disabled and is enabled at the time indicated by the vertical red
lines. In order to render the details discernible, different time windows are used in each plot.

Figure 4.16: Rijke-tube fixed-parameter experiments. Pressure measurements 𝑝mic from the closed-
loop experiments using the adaptive controller are shown for 𝑥us ∈ {0.3, 0.35, 0.4} m and 𝑉RMS ∈
{70, 80, 90} V. Each experiment transitions from Mode 1 to Mode 2 at the time indicated by the
vertical red line. The same hyperparameters are used in all tests.
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Figure 4.17: Rijke-tube fixed-parameter experiments. Amplitude spectra of the Rijke-tube physical
experiment. The amplitude spectra of the pressure measurements obtained from the open-loop
experiments and the closed-loop experiments using the adaptive controller are shown for 𝑥us ∈
{0.3, 0.35, 0.4} m and 𝑉RMS ∈ {70, 80, 90} V. The same hyperparameters are used in all closed-
loop tests.

Figure 4.18: Rijke-tube fixed-parameter experiments. The requested speaker voltage 𝑝spk from the
closed-loop experiments using the adaptive controller is shown for 𝑥us ∈ {0.3, 0.35, 0.4} m and
𝑉RMS ∈ {70, 80, 90} V. Each experiment transitions from Mode 1 to Mode 2 at the time indicated
by the vertical red line. The same hyperparameters are used in all tests.
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Figure 4.19: Rijke-tube fixed-parameter experiments. The controller coefficients 𝜃 from the closed-
loop experiments using the adaptive controller are shown for 𝑥us ∈ {0.3, 0.35, 0.4} m and 𝑉RMS ∈
{70, 80, 90} V. Each experiment transitions from Mode 1 to Mode 2 at the time indicated by the
vertical red line. The same hyperparameters are used in all tests.

Figure 4.20: Rijke-tube fixed-parameter experiments. The magnitude responses of the adaptive
controller from the closed-loop experiments are shown for 𝑥us ∈ {0.3, 0.35, 0.4} m, 𝑉RMS ∈
{70, 80, 90} V, and the times indicated in each legend. The same hyperparameters are used in all
tests.
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As in Subsection 4.8.1, 𝑙c = 5 and𝐺f (q) = −1/q. The experiment begins in Mode 1 and transitions
to Mode 2 after the oscillations are established.

The results for all hyperparameter combinations are shown in Figures 4.21, 4.22, 4.23, and 4.24.
In all of these experiments, the oscillation suppression is at least 31.13 dB. Furthermore, Figure
4.24 shows that, for all hyperparameter combinations, the magnitude of the adaptive controller
indicates a gain higher than 0 dB near 𝜋/4 rad/sample. Note that increasing 𝑝0 and decreasing
𝑅𝑢 results in faster suppression, as shown in Figure 4.21, which requires larger speaker signal
amplitudes, as shown in Figure 4.22.

Figure 4.21: Hyperparameter perturbation experiments. Pressure measurements 𝑝mic from the
closed-loop experiments using the adaptive controller are shown for 𝑥us = 0.3 m, 𝑉RMS = 90 V,
𝑝0 ∈ {10−5, 10−4, 10−3}, and 𝑅𝑢 ∈ {0.5, 0.75, 1}. Each experiment transitions from Mode 1 to
Mode 2 at the time indicated by the vertical red line.

4.8.3 Performance evaluation of the frozen-gain adaptive controller

We now consider experimental scenarios where the adaptive controller coefficients are saved and
used to implement a frozen-gain adaptive controller in subsequent experiments. This experiment
is conducted for 𝑥us = 0.3 m and 𝑉RMS = 90 V. The following procedure consisting of five phases
is followed:

• Phase 1: The experiment begins in Mode 1.

• Phase 2: The experiment transitions to Mode 2 after the oscillations are formed.
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Figure 4.22: Hyperparameter perturbation experiments. Requested speaker voltage 𝑝spk from the
closed-loop experiments using the adaptive controller is shown for 𝑥us = 0.3 m, 𝑉RMS = 90 V,
𝑝0 ∈ {10−5, 10−4, 10−3}, and 𝑅𝑢 ∈ {0.5, 0.75, 1}. Each experiment transitions from Mode 1 to
Mode 2 at the time indicated by the vertical red line.

Figure 4.23: Hyperparameter perturbation experiments. The controller coefficients 𝜃 from the
closed-loop experiments using the adaptive controller are shown for 𝑥us = 0.3 m, 𝑉RMS = 90 V,
𝑝0 ∈ {10−5, 10−4, 10−3}, and 𝑅𝑢 ∈ {0.5, 0.75, 1}. Each experiment transitions from Mode 1 to
Mode 2 at the time indicated by the vertical red line.
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Figure 4.24: Hyperparameter perturbation experiments. The magnitude responses of the adaptive
controller from the closed-loop experiments are shown for 𝑥us = 0.3 m, 𝑉RMS = 90 V, 𝑝0 ∈
{10−5, 10−4, 10−3}, 𝑅𝑢 ∈ {0.5, 0.75, 1}, and the times indicated in the legends.

• Phase 3: After no further oscillation suppression is achieved, the experiment transitions to
Mode 3.

• Phase 4: After some time, the experiment transitions to Mode 1, which allows the oscillations
to recover their open-loop amplitude.

• Phase 5: After the oscillations recover their open-loop amplitude, the experiment transitions
to Mode 3.

For this test, 𝑙c = 5, 𝑝0 = 10−4, 𝑅𝑢 = 0.75, and 𝐺f (q) = −1/q are used. Note that the values of
𝑝0 and 𝑅𝑢 are changed from those determined in Section 4.7 since the results of Subsection 4.8.2
showed that these hyperparameters yield faster suppression.

The experimental results are shown in Figure 4.25. At the end of Phase 2, the adaptive
controller suppresses oscillations by 43.75 dB. At the end of Phase 5, the frozen-gain adaptive
controller suppresses the oscillations by 45.31 dB.

4.8.4 Rijke-tube time-varying parameter experiments

We now consider experimental scenarios where the experimental Rijke-tube setup is modified
during closed-loop operation. In particular, the coil position and Variac voltage are changed during
the experiments. The following procedure consisting of seven phases is followed:
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Figure 4.25: Performance evaluation of the frozen-gain adaptive controller. Results from the
closed-loop experiment using the frozen-gain adaptive controller. The pressure measurements
𝑝mic, requested speaker voltage 𝑝spk, and controller coefficients 𝜃 are shown. The white, yellow,
and green shading corresponds to Modes 1, 2, and 3, respectively.

• Phase 1: The experiment begins in Mode 1.

• Phase 2: The experiment transitions to Mode 2 after the oscillations are formed.

• Phase 3: After no further oscillation suppression is achieved, the experiment transitions to
Mode 3.

• Phase 4: Either the coil position is decreased or the Variac voltage is increased.

• Phase 5: After some time, the experiment transitions to Mode 1, which allows oscillations
to recover their open-loop amplitude.

• Phase 6: The experiment transitions to Mode 3 (frozen-gain adaptive controller is imple-
mented) after the oscillations recover their open-loop amplitude.

• Phase 7: After approximately 30 s, the experiment transitions to Mode 2.

For the experiment where the coil voltage is changed, the voltage is changed from 𝑉RMS = 70 V to
𝑉RMS = 90 V with the coil position maintained at 𝑥us = 0.3 m. For the experiment where the coil
position is changed, the position is changed from 𝑥us = 0.4 m to 𝑥us = 0.3 m with the coil voltage
maintained at 𝑉RMS = 90 V. Figure 4.3 shows that the magnitudes of the peaks of the amplitude
spectra increase after each transition.

For comparison, the constant-gain proportional controller introduced in Subsection 4.8.1 and
shown in Figure 4.14 with𝐾 = 0.05 is implemented in the same experimental scenarios. The results
are shown in Figures 4.26 and 4.27. In both experimental scenarios, the oscillation suppression
achieved by the constant-gain proportional controller before either the coil position or the Variac
voltage is changed is at least 38.69 dB. After either the coil position or the Variac voltage is changed,
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the oscillations recover their open-loop amplitude, and the constant-gain proportional controller
yields no suppression.

Figure 4.26: Rijke-tube time-varying parameter experiments. Pressure measurements 𝑝mic from a
closed-loop experiment using the constant-gain proportional controller in Figure 4.14 are shown for
𝐾 = 0.05. In this experiment, the coil voltage transitions from 𝑉RMS = 70 V to 𝑉RMS = 90 V with
the coil position maintained at 𝑥us = 0.3 m. The constant-gain proportional controller is initially
disabled and is enabled at the time indicated by the vertical red line. The red shading denotes the
time interval during which the coil voltage transitions from 𝑉RMS = 70 V to 𝑉RMS = 90 V.

Figure 4.27: Rijke-tube time-varying parameter experiments. Pressure measurements 𝑝mic from a
closed-loop experiment using the constant-gain proportional controller in Figure 4.14 are shown
for 𝐾 = 0.05. In this experiment, the coil position transitions from 𝑥us = 0.4 m to 𝑥us = 0.3 m with
the coil voltage maintained at 𝑉RMS = 90 V. The constant-gain proportional controller is initially
disabled and is enabled at the time indicated by the vertical red line. The red shading denotes the
time interval during which the coil location transitions from 𝑥us = 0.4 m to 𝑥us = 0.3 m.

For the adaptive suppression experiments, 𝑙c = 5, 𝑝0 = 10−4, 𝑅𝑢 = 0.75, and 𝐺f (q) = −1/q
are used, as in Subsection 4.8.3. The adaptive controller suppression results are shown in Figures
4.28, 4.29, 4.30, and 4.31. At the end of Phase 2, the oscillation suppression achieved by the
adaptive controller is at least 43.83 dB in both experimental scenarios. Throughout Phases 3 and
4, the frozen-gain adaptive controller maintains the oscillation suppression obtained at the end of
the previous phase. At the end of Phase 6, the oscillation suppression achieved by the frozen-
gain adaptive controller is at least 1.73 dB. At the end of Phase 7, the oscillation suppression
achieved by the adaptive controller is at least 51.91 dB. Hence, after Phase 6, further adaptation
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suppresses the oscillations. Furthermore, Figures 4.29 and 4.31 show that, in both scenarios, the
peak of the magnitude response of the adaptive controller near 𝜋/4 rad/sample at the end of Phase
3 subsequently increases in magnitude during Phase 7.

Figure 4.28: Rijke-tube time-varying parameter experiments. Results from the closed-loop ex-
periment using the adaptive controller where the coil voltage transitions from 𝑉RMS = 70 V to
𝑉RMS = 90 V with the coil position maintained at 𝑥us = 0.3 m. The pressure measurements 𝑝mic,
requested speaker voltage 𝑝spk, and controller coefficients 𝜃 are shown. The white, yellow, and
green shading corresponds to modes 1, 2, and 3, respectively. The red shading denotes the time
interval during which the coil voltage transitions from 𝑉RMS = 70 V to 𝑉RMS = 90 V.

Figure 4.29: Rijke-tube time-varying parameter experiments. The magnitude response of the
adaptive controller for the closed-loop experiment where the coil voltage transitions from𝑉RMS = 70
V to 𝑉RMS = 90 V with the coil position maintained at 𝑥us = 0.3 m is shown for 𝑡 ∈ {0.6, 5, 100} s.

4.8.5 Gain-Margin Experiments

We now consider experimental scenarios where the gain of the adaptive controller is modified.
These scenarios are conducted for 𝑥us = 0.3 m and𝑉RMS = 90 V. The controller output is multiplied
by 𝛼, as shown in Figure 4.32, which is initially set to 𝛼 = 1. Each scenario begins in Mode 1 and
transitions to Mode 2 after the oscillations are formed. After no further oscillation suppresion is
achieved, two experimental scenarios are considered:
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Figure 4.30: Rijke-tube time-varying parameter experiments. Results from the closed-loop experi-
ment using the adaptive controller where the coil position transitions from 𝑥us = 0.4 m to 𝑥us = 0.3
m with the coil voltage maintained at 𝑉RMS = 90 V. The pressure measurements 𝑝mic, requested
speaker voltage 𝑝spk, and controller coefficients 𝜃 are shown. The white, yellow, and green shading
corresponds to modes 1, 2, and 3, respectively. The red shading denotes the time interval during
which the coil location transitions from 𝑥us = 0.4 m to 𝑥us = 0.3 m.

Figure 4.31: Rijke-tube time-varying parameter experiments. The magnitude response of the
adaptive controller for the closed-loop experiment where the coil position transitions from 𝑥us = 0.4
m to 𝑥us = 0.3 m with the coil voltage maintained at 𝑉RMS = 90 V is shown for 𝑡 ∈ {0.6, 25, 140} s.

• Scenario 1: The experiment continues to operate in Mode 2.

• Scenario 2: The experiment transitions to Mode 3.

After this, in each scenario, the value of 𝛼 is changed when no further suppression is achieved. For
the these experiments, 𝑙c = 5, 𝑝0 = 10−4, 𝑅𝑢 = 0.75, and 𝐺f (q) = −1/q are used, as in Subsection
4.8.3.

Experimental results are shown in Figure 4.33. In Scenario 1, increases in 𝛼 yield a slight
decrease in oscillation suppression, while decreases in 𝛼 yield oscillation suppression similar to the
case where 𝛼 = 1. In Scenario 2, increases in 𝛼 yield a slight decrease in oscillation suppression,
while decreases in 𝛼 yield a noticeable decrease in oscillation suppression. Hence, the adaptive
controller maintains oscillation suppression under changes in its gain.
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Figure 4.32: Adaptive control ofM with controller gain 𝛼.

Figure 4.33: Gain-Margin Tests. Oscillation suppression using the controller architecture in Figure
4.32 is shown for varying values of 𝛼. After no further oscillation suppresion is achieved in the case
where 𝛼 = 1, two experimental scenarios are considered. In Scenario 1, the experiment continues
to operate in Mode 2. In Scenario 2, the experiment transitions to Mode 3. After this, in each
scenario, the value of 𝛼 is changed when no further suppression is achieved.
4.8.6 𝐺f relative-degree experiments

We now consider experimental scenarios involving input delay and changes in the relative degree of
𝐺f . These experiments are conducted for 𝑥us = 0.3 m and 𝑉RMS = 90 V. For these experiments, an
input delay of 𝑑 steps is added to the control architecture, as shown in Figure 4.34. The experiment
begins in Mode 1 and transitions to Mode 2 after the oscillations are formed. Afterwards, the
experiment continues to operate in Mode 2. For this test, the hyperparameters are given by 𝑙c = 5,
𝑝0 = 10−4, and 𝑅𝑢 = 0.75, as in Subsection 4.8.3. Furthermore, 𝐺f (q) = −q−𝑑zu , where 𝑑zu

determines the relative degree of 𝐺f . Note that 𝑑zu = 1 in Subsections 4.8.1 to 4.8.5.
Experimental results are shown in Figure 4.35. For all 𝑑 ∈ {0, 1, 2, 3, 4}, the values of 𝑑zu that

yield the greatest oscillation suppression lie within {𝑑 − 1, 𝑑, 𝑑 + 1}.

+ N 𝐺c,𝑘 q−𝑑 ZOH M
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-
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Figure 4.34: Adaptive control ofM with controller delay of 𝑑 steps.
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Figure 4.35: 𝐺f relative-degree experiments. 𝐺f relative-degree experimental results using the
controller architecture in Figure 4.34 are shown for various values of the input delay 𝑑 and the
relative degree 𝑑zu of 𝐺f .

4.9 Conclusions

This chapter described a Rijke-tube physical experiment and its open-loop response under various
system parameters. For adaptive control, a hyperparameter selection procedure was proposed.
This procedure consists of tuning a Rijke-tube model to emulate the first modal peak of the open-
loop response of the Rijke-tube physical experiment under a single choice of system parameters,
applying the adaptive controller to the simulation model, and running numerical simulations to
determine hyperparameters that suppress the model oscillations. The selected hyperparameters
were then used by the adaptive controller to suppress the oscillatory response of the Rijke-tube
physical experiment under various system parameters. Further experiments showed the effect of
modified hyperparameters on the time it takes for the adaptive controller to suppress oscillations,
the performance and robustness of the frozen-gain adaptive controller, the ability of the adaptive
controller to readapt under changes in working conditions, the stability of the adaptive controller
under changes in its gain, and the effect of the relative degree of the closed-loop target model on
the level of suppression. In Chapter 5, the hyperparameter selection methodology developed in this
chapter will be used to select the hyperparameters of a quasi-static version of the RCAC algorithm
introduced in this chapter to minimize the thermoacoustic oscillations in the DISCo facility.
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CHAPTER 5

Quasi-Static Adaptive Controller Application to Dual
Independent Swirl Combustor

Various methodologies have been proposed for mitigating thermoacoustic oscillations in gas-turbine
combustors. Passive control techniques seek to prevent or reduce these oscillations by redesigning
the hardware of the combustor, such as the fuel and air injectors or the combustor geometry,
and placing acoustic dampers [34–37]. However, since operating-point changes for meeting load
demand and fuel-property variations may induce thermoacoustic oscillations, and since design
modifications entail high costs and time-consuming activities, passive control methods tend to
work effectively only within a limited range of operation [38].

In contrast to passive control methods, active feedback control techniques seek to suppress
thermoacoustic oscillations by modulating actuators, such as fuel and air injectors, using data from
sensors, such as pressure and chemiluminescence measurements, thereby stabilizing the desired
operating point as it changes [39–44]. Since thermoacoustic oscillations typically occur at high
frequency, active feedback controllers typically require actuators with high bandwidth [13, 45].
This requirement can be prohibitive, however, due to the engineering challenges of designing and
implementing such devices within a harsh environment. While open-loop control approaches can be
implemented with low-bandwidth actuators [116–118], these techniques have a limited operational
range, similarly to passive control.

Another approach to low-bandwidth feedback control is operating point control ( [119]), in which
sensor measurements are used to search an operating point that optimizes a metric ( [120–123]).
As mentioned in [124], this approach to feedback control is similar to real-time optimization
techniques since, under slow actuator modulation, the plant dynamics can be represented as a static
map. Henceforth, we’ll refer to these techniques as quasi-static control. Extremum-seeking control
(ESC) falls under this category, in which a gradient estimate is used to search for a local minimum
of a static map [125–132]. Applications of ESC for combustion instability suppression are studied
in [14, 133–137].

The contribution of the present work is the application of a novel quasi-static adaptive controller
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to a laboratory gas-turbine combustor; this technique, called quasi-static RCAC (quasi-static RCAC
(QSRCAC)), is an extension of retrospective cost adaptive control (RCAC) [105, 106]. QSRCAC
is applied in a laboratory-scale experiment to minimize thermoacoustic oscillations in a combustor
while reaching and maintaining a desired thermal power at the exit of the combustor. A preliminary
version of QSRCAC was considered in [138]; the current work extends QSRCAC to use nonnegative
performance variables and estimates of the cost gradient to minimize the performance variables.
As shown in Figure 5.1, implementing RCAC with static𝐺f to the combustor studied in this chapter
does not yield satisfactory results since a MIMO problem requires an online estimate of 𝐺f . This
response motivates the development of QSRCAC.

Figure 5.1: Results of implementing RCAC with static 𝐺f to the combustor studied in this chapter.

The contents of the chapter are as follows. Section 5.1 provides an overview of the combustor,
namely, the Dual Independent Swirl Combustor (DISCo). Section 5.2 specifies the control problem
and describes the experimental configuration of DISCo for the laboratory experiments. Section
5.3 presents the hyperparameter selection procedure developed in Chapter 4 applied to DISCo.
Section 5.4 presents a simulation model for DISCo. Section 5.5 describes an online gradient
estimator based on the extended Kalman filter. Section 5.6 expands RCAC presented in Section
4.5 to include gradient estimates obtained via the technique presented in Section 5.5, resulting in
QSRCAC. Section 5.7 considers the approach under which the discrete-time quasi-static adaptive
controller interacts with the continuous-time DISCo simulation model. Section 5.8 presents the
results of numerical closed-loop simulations with the DISCo simulation model. Section 5.9
describes how QSRCAC interacts with DISCo. Section 5.10 presents the results of closed-loop
experiments in which QSRCAC is applied to DISCo. Finally, Section 5.11 presents conclusions to
this chapter.
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5.1 Overview of DISCo

A brief description of the Dual Independent Swirl Combustor (DISCo) facility is provided in this
section. A more in-depth description of the facility, the swirler, and verification of its thermoacoustic
response is provided in [139]. The single-element model combustor considered in this work
consists of a dual-swirl stabilized burner design that allows for full control of operation of the
swirl parameters, such as the split ratio between inner and outer swirler as well as the strength of
the swirling flow. DISCo is a laboratory scale gas turbine combustor model designed to naturally
exhibit low-frequency thermoacoustic oscillation near the 300 Hz range. DISCo can operate at
atmospheric pressure and at elevated pressures up to 15 atm by adding a custom designed pressure
vessel around the combustion chamber to simulate realistic aircraft combustor scenarios. A 3D
rendering of DISCo and the commissioned DISCo facility are shown in Figure 5.2.

(a) (b) (c)

Figure 5.2: DISCo model facility. (a) 3D rendering of DISCo in atmospheric pressure operation
configuration. (b) 3D rendering of DISCo in elevated pressure operation configuration. (c)
Commissioned DISCo facility in atmospheric conditions.

DISCo allows for the independent manipulation of the mass-flow rate through each of the five
flow paths labelled in Figure 5.3 (a). The outer swirler (A) and inner swirler (B) are the primary air
feeds. Furthermore, there exist secondary air feeds that sidestep the swirl vanes and contain only
axial components for the inner swirler (C) and the outer swirler (D). The fuel is supplied through a
single feed (E), delivering a partially premixed mixture into the combustion chamber. Manipulation
of these mass-flow rates allows us to independently vary the total air mass-flow rate, equivalence
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ratio, inner-to-outer swirler split ratio, and the swirl number of the inner and outer swirlers.
The regulation of the mass-flow rates through each of the flow paths is performed through five

independent TESCOM pressure regulators coupled with ER 3000 pressure controllers, which are
metered by choked orifices positioned downstream of these pressure regulators. Although the
sensor update rate of the ER 3000 controllers is around 25 ms, the response of the entire system
to a change in commanded mass-flow rates is relatively slow due to the inertia of the fluid systems
involved in the process. This is illustrated in Figure 5.4, which shows that the response of a DISCo
pressure regulator 0.5 g/s step command change of in the air lines has a rise time of 0.2 s.

Figure 5.3 (b) shows the position of the high-speed pressure sensors. The outer plenum is
instrumented at positions S5 and S6 with two high-speed differential pressure transducers, which
are Kulite XCS-190L with a maximum differential pressure of 1 atm. Both the inner plenum
and combustion chamber are instrumented with a more sensitive microphone Kulite MIC-190L in
positions S8 and S1, respectively.

Figure 5.3 (c) shows the position of the holes used to place the thermocouples at the combustor
exit. The thermocouples are all bare wire, type B and have a diameter of 0.25 mm. The exit
temperature is computed as the average of the temperatures measured by the three thermocouples.

To verify the frequency content of the thermoacoustic oscillations in DISCo, a Fast Fourier
Transform of the time-resolved pressure data is performed. Figure 5.5 shows the pressure fluctuation
measurements sampled at 15 kHz from the sensor positioned at S1 and its corresponding frequency
domain response for a total air mass-flow rate of 8 g/s, an equivalence ratio of 0.85, and a inner-to-
outer swirler split ratio of 1.6. The theoretical thermal power for this experiment is 21.8 kW. Figure
5.5 (b) shows two sharp peaks at 274 Hz and 548 Hz, which can be attributed to the quarter wave
mode of the inner swirl plenum and the longitudinal mode of the outer swirl plenum. Note that the
peak at 274 Hz validates the design specifications of DISCo.

The pressure regulators operate slowly relative to the combustion dynamics, as shown in Figures
5.4 and 5.5 (b). Obtaining and incorporating actuators with higher bandwidth would be expensive
and may entail hardware redesign. This motivates the development of control strategies for low-
bandwidth actuators.

5.2 Overview of the control objective and experimental config-
uration

The objective of this work is to develop a quasi-static adaptive controller that yields an operating
point under which the thermoacoustic oscillations within the combustion chamber are reduced and
a desired combustor exit temperature is reached. For the quasi-static adaptive control tests in this
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Figure 5.3: Cross-sectional views of DISCo. (a) shows various flowpaths through the dual swirler
that modulate the operation of DISCo. (b) shows the position of the pressure sensors with respect
to the fluid volume. (c) shows the position of the thermocouples at the combustor exit.

Figure 5.4: Air mass-flow rate response of DISCo pressure regulator to a step change command of
0.5 g/s.
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(a) (b)

Figure 5.5: Frequency content verification of DISCo for a total air mass-flow rate of 8 g/s, an
equivalence ratio of 0.85, and a inner-to-outer swirler split ratio of 1.6. (a) shows the pressure
fluctuation measurements obtained from the pressure sensor positioned at S1. (b) shows the
amplitude spectral density plot corresponding to the measurements shown in (a).

work, the mass-flow rate through the secondary air feeds are kept at zero and the fuel mass-flow
rate are kept constant after the initial conditions is reached. Hence, only the outer swirler and the
inner swirler air mass-flow rates will be modulated by the controller.

A supervisory control system modulates the pressure regulators to ignite the combustor and
reach the initial operating point. Control of the pressure regulators is subsequently given to the
dSpace Scalexio digital computer, which implements the quasi-static adaptive controller for physical
closed-loop experiments.

Two types of tests of increasing complexity are performed in this work:

• Two-input, single-output (TISO) test: The controller yields outer swirler and the inner swirler
air mass-flow rates (two system inputs), which reduce the root mean square (RMS) of the
pressure fluctuation measurements (one measured output).

• Two-input, Two-output (TITO) test: The controller yields outer swirler and the inner swirler
air mass-flow rates (two system inputs), which reduce the RMS of the pressure fluctuation
measurements and reach a desired combustor exit temperature (two measured outputs).

The TISO test is used as a preliminary performance assessment of the proposed quasi-static adaptive
controller at reducing the amplitude of thermoacoustic instabilities within DISCo. The TITO test
presents a problem of more practical relevance, that is, reducing the amplitude of thermoacoustic
instabilities and maintaining a constant thermal power at the combustor exit to achieve a desired
flame length. In both tests, the pressure fluctuation measurements from the sensor at S1 are used to
compute the RMS of the thermoacoustic oscillations. In the TITO test, the averaged temperature
measurement from the thermocouples at the exit of the combustor is subtracted from the desired
combustor exit temperature to compute the temperature error.
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Table 5.1 shows the operating conditions of DISCo used for both tests. The air mass-flow rate
per swirler and total air mass-flow rate ranges impose a convex constraint on the inner and outer
swirler mass-flow rates. Note that the air mass-flow rate per swirler range is derived from actuator
constraints, equivalence ratio range is chosen to prevent flameout, and the total air mass-flow rate
range is derived from the chosen fuel mass-flow rate and the equivalence ratio range.

Table 5.1: Operating conditions of DISCo for the physical experiments.

Parameter Value or range
Operating pressure (atm) 1
Fuel mass-flow rate (g/s) 0.4
Air mass-flow rate per swirler (g/s) [0.75, 9]
Total air mass-flow rate (g/s) [7, 11.3]
Equivalence ratio [0.6, 1.1]

5.3 Overview of the methodology

The hyperparameter selection methodology based on closed-loop numerical simulation developed
in Chapter 4 is applied in this chapter and is shown in Figure 5.6.

The methodology as applied to DISCo is described next. First, physical experiments are
conducted in an open-loop configuration (no feedback control) to obtain pressure fluctuation and
temperature measurements from the combustor model facility. Then, a fit procedure is applied,
where the parameters of a rudimentary simulation model are chosen to emulate the amplitude of
the pressure fluctuation measurements and the temperature measurements at given input mass-flow
rates. This procedure yields a simulation model, which is used for quasi-static adaptive closed-loop
numerical simulations to select hyperparameters based on achieved controller performance. The
selected hyperparameters are then used in physical closed-loop experiments.

For these experiments, the quasi-static adaptive controller is implemented on a dSpace Scalexio
system to minimize the oscillations within the combustion chamber and maintain a desired tem-
perature at the exit of the combustor. Note that the simulation model is used only to select
hyperparameters for the controller, and is otherwise not used or needed for feedback control. Fur-
thermore, the simulation model need not be high-fidelity, as is shown in the experimental results in
Section 5.10.
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Figure 5.6: Hyperparameter selection methodology. The objective is to select hyperparameters
by applying the quasi-static adaptive controller to a simulation model of DISCo. The selected
hyperparameters are then used in DISCo laboratory experiments.

5.4 DISCo simulation model

An overview of the dynamics of the DISCo simulation model is given in this section. The block
diagram in Figure 5.7 summarizes these dynamics.

Let ¤𝑚sp(𝑡)
△
=

[
¤𝑚sp,i(𝑡) ¤𝑚sp,o(𝑡)

]T ∈ R2 be the specified air mass-flow rate vector and the model
input, where ¤𝑚sp,i, ¤𝑚sp,o ∈ R are the specified inner and outer swirl air mass-flow rates, respectively.
Then, the dynamics of the pressure regulators are modeled by

¥𝑚(𝑡) = −𝑎 ¤𝑚(𝑡) + 𝑏 ¤𝑚sp(𝑡), (5.1)

where ¤𝑚(𝑡) △= [ ¤𝑚i(𝑡) ¤𝑚o(𝑡)]T ∈ R2 is the air mass-flow rate vector, ¤𝑚i, ¤𝑚o ∈ R are the inner and
outer swirl air mass-flow rates, respectively, and 𝑎, 𝑏 > 0. Next, let F ,G : R2 → R be the static
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maps defined as

F ( ¤𝑚) △= −0.132 ¤𝑚2
i + 0.269 ¤𝑚2

o + 0.361 · 10−2 ¤𝑚i ¤𝑚o

− 0.278 ¤𝑚i − 3.7496 ¤𝑚o + 14.16, (5.2)

G( ¤𝑚) △= 1
32
( ¤𝑚i − ¤𝑚o)2 −

1
32
[ ¤𝑚i + ¤𝑚o − ( ¤𝑚min + ¤𝑚max)]2 + 3, (5.3)

where ¤𝑚min, ¤𝑚max > 0 are the minimum and maximum air mass-flow rates allowed per swirler,
respectively. F is obtained by sampling the RMS of the pressure fluctuation voltage measurements
for 1 s for several values of ¤𝑚i and ¤𝑚o and using these to perform multivariate polynomial regression.
The structure of G is chosen to fit the data using approximate coefficients rounded to integer values.
The output values of F and G for all ¤𝑚i, ¤𝑚o ∈ [1, 9] g/s are shown in Figure 5.8.

Next, define the model output 𝑦(𝑡) △=
[
𝑝′(𝑡) 𝑇 (𝑡)

]T
, where 𝑝′(𝑡) ∈ R is the normalized

combustor pressure fluctuations and 𝑇 (𝑡) > 0 is the normalized combustor exit temperature. The
values of 𝑝′(𝑡) and 𝑇 (𝑡) are normalized such that they follow the voltage measurements obtained
from the pressure and temperature sensors in open-loop experiments. Then, 𝑝′(𝑡) and 𝑇 (𝑡) are
given by

𝑝′(𝑡) = F ( ¤𝑚(𝑡)) sin
(
2𝜋
𝑓0
𝑡

)
+ 𝑤1(𝑡), (5.4)

𝑇 (𝑡) = G( ¤𝑚(𝑡)) + 𝑤2(𝑡), (5.5)

where 𝑓0 > 0, and 𝑤1(𝑡) and 𝑤2(𝑡) are noise signals. In particular, for all 𝑘 ≥ 0 and all
𝑡 ∈ [𝑘𝜏sim, (𝑘 + 1)𝜏sim) , where 𝜏sim > 0 is the simulation time step, 𝑤1(𝑡) and 𝑤2(𝑡) are given by

𝑤1(𝑡) = 𝜔1,𝑘 , (5.6)

𝑤2(𝑡) = 𝜔2,𝑘 , (5.7)

where 𝜔1,𝑘 is a Gaussian random variable with mean 0 and standard deviation 𝜎1, and 𝜔2,𝑘 is a
Gaussian random variable with mean 0 and standard deviation 𝜎2.

Table 5.2 shows the DISCo simulation model parameters, where 𝑎 and 𝑏 are chosen to match the
response of the pressure regulators, and the frequency 𝑓0 corresponds to the second highest peak
shown in Figure 5.5 (b), 𝜎1 and 𝜎2 are chosen to match the signal-to-noise ratio of the pressure
fluctuation and temperature measurements, and 𝜏sim is the sampling rate of the sensors.
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DISCo Simulation Model

¥𝑚(𝑡) = −𝑎 ¤𝑚(𝑡) + 𝑏 ¤𝑚sp(𝑡)

F

G

Sine
Generator +

+

¤𝑚sp(𝑡) ¤𝑚(𝑡)

𝑝′(𝑡)

𝑇 (𝑡)

𝑤1(𝑡)

𝑤2(𝑡)

𝑦(𝑡)

Figure 5.7: DISCo simulation model block diagram.

Figure 5.8: F ( ¤𝑚) and G( ¤𝑚) output values where ¤𝑚 = [ ¤𝑚i ¤𝑚o]T ∈ [1, 9] × [1, 9] g/s. The values
corresponding to F ( ¤𝑚) > 8.2 have been saturated at 8.2 for visualization purposes.

Table 5.2: Parameters of the DISCo simulation model.

Parameter 𝑎 𝑏 𝑓0 𝜎1 𝜎2 𝜏sim

Value 110 110 500 0.1 0.05 10−4

5.5 Online gradient estimator using an Extended Kalman Filter

For all 𝑘 ≥ 0, let 𝐽𝑘
△
= [𝐽1,𝑘 · · · 𝐽𝑙𝐽 ,𝑘 ]T ∈ R𝑙𝐽 be a cost function vector computed from system

measurements, where, for all 𝑖 ∈ {1, . . . , 𝑙𝐽}, 𝐽𝑖,𝑘 ≥ 0 is the 𝑖th component of 𝐽𝑘 , let 𝑢c,𝑘 be the
constrained control input defined in Section 4.5, and let ∇𝐽𝑘

△
= [∇𝐽1,𝑘 · · · ∇𝐽𝑙𝐽 ,𝑘 ]T ∈ R𝑙𝐽×𝑙𝑢 be

the gradient of 𝐽𝑘 over 𝑢c,𝑘 , where, for all 𝑖 ∈ {1, . . . , 𝑙𝐽}, the transpose of ∇𝐽𝑖,𝑘 ∈ R𝑙𝑢 corresponds
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to the 𝑖th row of ∇𝐽𝑘 .
Next, let 𝑖 ∈ {1, . . . , 𝑙𝐽}. Then, the measurement model for 𝐽𝑖,𝑘 is given by

𝐽𝑖,𝑘 = 𝐽b,𝑖 + ∇𝐽T
𝑖,𝑘𝑢c,𝑘 , (5.8)

where 𝐽b,𝑖 ∈ R is a bias variable. Note that (5.8) is an extension of Equation (17) from [125].
Furthermore, let ∇𝐽𝑖,𝑘 ∈ R𝑙𝑢 be an estimate of ∇𝐽𝑖,𝑘 , let 𝐽b,𝑖 ∈ R be an estimate of 𝐽b,𝑖, let

𝑥𝑖,𝑘
△
=

[
∇𝐽T

𝑖,𝑘
𝐽b,𝑖

]T
∈ R𝑙𝑢+1 be an estimate of 𝑥𝑖,𝑘

△
=

[
∇𝐽T

𝑖,𝑘
𝐽b,𝑖

]T
, and let 𝑃𝑖,𝑘 ∈ R(𝑙𝑢+1)×(𝑙𝑢+1) be

the covariance of the estimate 𝑥𝑖,𝑘 of 𝑥𝑖,𝑘 . Then, as indicated by (5.8) and Section 3.1 of [125], the
estimate ∇𝐽𝑖,𝑘 is given by the recursive update of the Extended Kalman Filter (extended Kalman
filter (EKF)), whose prediction and update equations are given, for 𝑖 ∈ {1, . . . , 𝑙𝐽}, by

𝑥𝑖,𝑘 = 𝑥𝑖,𝑘−1 + 𝐾𝑖,𝑘−1
(
𝐺𝑖,𝑘−1 − 𝐻𝑘−1𝑥𝑖,𝑘−1

)
, (5.9)

𝑃𝑖,𝑘 = (𝐼𝑙𝑢+1 − 𝐾𝑖,𝑘−1𝐻𝑘−1) (𝑃𝑖,𝑘−1 +𝑄𝑖), (5.10)

∇𝐽𝑖,𝑘 =
[
𝐼𝑙𝑢 0𝑙𝑢×1

]
𝑥𝑖,𝑘 , (5.11)

where

𝐺𝑖,𝑘−1
△
=


𝐽𝑖,𝑘−1

𝐽𝑖,𝑘−1−𝑘1
...

𝐽𝑖,𝑘−1−𝑘𝑙𝑢


∈ R𝑙𝑢+1, 𝐻𝑘−1

△
=


𝑢T

c,𝑘−1 1
𝑢T

c,𝑘−1−𝑘1
1

...
...

𝑢T
c,𝑘−1−𝑘𝑙𝑢

1


∈ R(𝑙𝑢+1)×(𝑙𝑢+1) ,

𝐾𝑖,𝑘−1
△
= [(𝑃𝑖,𝑘−1 +𝑄𝑖)𝐻T

𝑘−1) (𝐻𝑘−1(𝑃𝑖,𝑘−1 +𝑄𝑖)𝐻T
𝑘−1 + 𝑅𝑖]

−1 ∈ R(𝑙𝑢+1)×(𝑙𝑢+1) ,

𝑄𝑖, 𝑅𝑖 ∈ R(𝑙𝑢+1)×(𝑙𝑢+1) are the constant weighting matrices, and 0 < 𝑘1 < · · · < 𝑘 𝑙𝑢 are indices.
The matrices 𝑄𝑖 and 𝑅𝑖 determine the rate of estimation, and 𝑘1, . . . , 𝑘 𝑙𝑢 are chosen to enhance the
accuracy of the estimate 𝑥𝑖,𝑘 . Finally, the estimate ∇𝐽𝑘 is given by

∇𝐽𝑘
△
=

[
∇𝐽1,𝑘 · · · ∇𝐽𝑙𝐽 ,𝑘

]T ∈ R𝑙𝐽×𝑙𝑢 . (5.12)

For all of the numerical simulations and physical experiments in this chapter, 𝑥𝑖,𝑘 is initialized
as 𝑥𝑖,0 = 0𝑙𝑢×1. The matrices 𝑃𝑖,0, 𝑄𝑖, and 𝑅𝑖 have the form 𝑃𝑖,0 = 𝑝𝑖,0𝐼𝑙𝑢+1, 𝑄𝑖 = 𝑞𝑖 𝐼𝑙𝑢+1, and
𝑅𝑖 = 𝑟𝑖 𝐼𝑙𝑢+1, where the positive scalars 𝑝𝑖,0, 𝑞𝑖, and 𝑟𝑖 determine the rate of estimation.
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5.6 Quasi-static, adaptive control using RCAC

The block diagram for quasi-static RCAC (QSRCAC) shown in Figure 5.9, which includes RCAC
introduced in Section 4.5, the EKF gradient estimator introduced in Section 5.5, a normalization
function, and a gradient conversion function. In this application, 𝑙𝐽 = 𝑙𝑧 and 𝑙f = 𝑙𝑢 . QSRCAC
operates on the previous time step cost function vector 𝐽𝑘−1 ∈ R𝑙𝑧 and 𝑢c,𝑘−1 ∈ R𝑙𝑢 , to produce the
QSRCAC output vector 𝑢̃𝑘 ∈ R𝑙𝑢 . As mentioned in Section 5.5, for all 𝑖 ∈ {1, . . . , 𝑙𝑧}, 𝐽𝑖,𝑘−1 > 0.
Hence, the objective of QSRCAC is to minimize each of the components of 𝐽𝑘 by modulating 𝑢̃𝑘 ,
that is,

min
(𝑢̃𝑛)∞𝑛=0

lim sup
𝑘→∞

𝑙𝑧∑︁
𝑖=1

𝐽𝑖,𝑘 . (5.13)

In order to obtain the performance variable 𝑧𝑘−1 used by RCAC, we normalize the cost function
using

𝑧𝑘−1
△
= [𝐼𝑙𝑧 + 𝜈 diag (𝐽𝑘−1)]−1𝐽𝑘−1, (5.14)

where 𝜈 ∈ [0,∞).We fix 𝜈 = 0.2 throughout this work. Next, the gradient estimator block operates
on 𝐽𝑘−1 and 𝑢𝑘−1 to produce ∇𝐽𝑘 by using the EKF-based estimator described in Section 5.5.
Furthermore, the gradient conversion block yields 𝑁𝑘−1 =

[
𝑁1,𝑘−1 · · · 𝑁𝑙𝑢,𝑘−1

]
, such that, for all

𝑖 ∈ {1, . . . , 𝑙𝑢},

𝑁𝑖,𝑘−1 =


∇𝐽1,𝑖,𝑘

0𝑙𝑧×(𝑖−1)
... 0𝑙𝑧×(𝑙𝑢−𝑖)

∇𝐽𝑙𝑧 ,𝑖,𝑘

 , (5.15)

where, for all 𝑗 ∈ {1, . . . , 𝑙𝑧},

∇𝐽 𝑗 ,𝑖,𝑘
△
=


∇𝐽 𝑗 ,𝑖,𝑘/

����∇𝐽 𝑗 ,𝑘 ���� , ����∇𝐽 𝑗 ,𝑘 ���� ≥ 𝜀
∇𝐽 𝑗 ,𝑖,𝑘/𝜀, otherwise,

(5.16)

∇𝐽 𝑗 ,𝑖,𝑘 is the 𝑖th component of ∇𝐽 𝑗 ,𝑘 , and 𝜀 > 0. We fix 𝜀 = 10−4 throughout this work. Then,
the RCAC block uses 𝑧𝑘−1, 𝑁𝑘−1, and 𝑢𝑘−1 to produce 𝑢𝑘 ∈ R𝑙𝑢 by using the operations shown in
Section 4.5.

Finally, define 𝑢̃𝑘
△
= 𝑢𝑘 + Δ𝑢𝑘 , where Δ𝑢𝑘 ∈ R𝑙𝑢 is a perturbation signal, which is defined in

Section 5.7. Note that 𝑢c,𝑘−1 is shown as an input to QSRCAC since the output 𝑢̃𝑘 may be subject
to constraints. Hence, 𝑢c,𝑘−1 is obtained from 𝑢̃𝑘 after constraints and a 1-step delay is applied.
Note that, while [125] only uses ∇𝐽𝑘 , QSRCAC uses 𝐽𝑘−1 and ∇𝐽𝑘 .

In numerical simulations and physical experiments, the EKF and RCAC are enabled and disabled
in various ways. We consider the following modes of operation starting at step 𝑘0 ≥ 0:
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𝑖) Mode 1: EKF and RCAC are disabled. For all 𝑘 ≥ 𝑘0, 𝜃𝑘 = 𝜃𝑘−1, 𝑃𝑘 = 𝑃𝑘−1, 𝑢𝑘 = 0,
Δ𝑢𝑘 = 0, and, for all 𝑖 ∈ 𝑙𝑧, 𝑥𝑖,𝑘 = 𝑥𝑖,𝑘−1, 𝑃𝑖,𝑘 = 𝑃𝑖,𝑘−1, and ∇𝐽𝑖,𝑘 = 0.

𝑖𝑖) Mode 2: EKF is enabled and RCAC is disabled. For all 𝑘 ≥ 𝑘0, 𝜃𝑘 = 𝜃𝑘−1, 𝑃𝑘 = 𝑃𝑘−1,

𝑢𝑘 = 0, Δ𝑢𝑘 = H(𝑘), where H : {0, 1, . . .} → R𝑙𝑢 is a nonzero, periodic vector function,
and, for all 𝑖 ∈ 𝑙𝑧, 𝑥𝑖,𝑘 , 𝑃𝑖,𝑘 , and ∇𝐽𝑖,𝑘 , are updated by (5.9), (5.10) and (5.11), respectively.

𝑖𝑖𝑖) Mode 3: EKF and RCAC are enabled. For all 𝑘 ≥ 𝑘0, 𝜃𝑘 , 𝑃𝑘 , and 𝑢𝑘 are updated by (4.27),
(4.28), and (4.17), respectively, Δ𝑢𝑘 = 0, and, for all 𝑖 ∈ 𝑙𝑧, 𝑥𝑖,𝑘 , 𝑃𝑖,𝑘 , and ∇𝐽𝑖,𝑘 , are updated
by (5.9), (5.10) and (5.11), respectively.

Note that Δ𝑢𝑘 is nonzero only in Mode 2, unlike in [125], in which the perturbation signal is never
zero over any period of time. Hence, Δ𝑢𝑘 is only used to initialize the EKF and it does not affect
the adaptation of RCAC.

QSRCAC

Gradient Estimator
(5.9), (5.10), (5.11)

Gradient
Conversion

to 𝑁𝑘−1 (5.15)

Normalization
Function (5.14)

RCAC
(4.17), (4.27), (4.28) +𝑢c,𝑘−1

𝐽𝑘−1
∇𝐽𝑘 𝑁𝑘−1 𝑢𝑘 𝑢̃𝑘

𝑧𝑘−1

Δ𝑢𝑘

Figure 5.9: QSRCAC block diagram.

5.7 Sampled-data implementation of QSRCAC for DISCo nu-
merical simulations

QSRCAC presented in Section 5.6 is implemented as a sampled-data controller to control the
response of the DISCo simulation model introduced in Section 5.4. For the current control
problem, 𝑙𝑢 = 2 since both the inner and outer swirl mass-flow rates are modulated. As mentioned
in Section 5.2, the value of 𝑙𝑧 depends on the test being performed; 𝑙𝑧 = 1 for the TISO tests and
𝑙𝑧 = 2 for the TITO tests. Figure 5.10 shows the block diagram of the sampled-data closed-loop
system considered for numerical simulations, where 𝑢 ∈ R2 is the command bias and 𝜏s > 0 is the
adaptive controller sampling period. The command bias 𝑢 encodes the initial operating point set by
the supervisory control system, as mentioned in Section 5.2. The DISCo simulation model output
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measurements are sampled every 𝜏s/2000 s. For all numerical simulations, 𝜏s = 0.2 s/step, such
that 𝜏s = 2000 𝜏sim. The digital-to-analog (D/A) and analog-to-digital (A/D) interfaces, which are
synchronous, are zero-order-hold (ZOH) and sampler, respectively.

Let the requested command 𝑢r,𝑘 be given by

𝑢r,𝑘
△
= 𝑢̃𝑘 + 𝑢. (5.17)

Then, the constraints mentioned in Section 5.2 are applied to 𝑢r,𝑘 to obtain ¤𝑚sp,𝑘 , which is given by

¤𝑚sp,𝑘
△
=

[
¤𝑚sp,i,𝑘 ¤𝑚sp,o,𝑘

]T △
= argmin
𝑣
△
= [𝑣i 𝑣o]T∈R2

| |𝑢r,𝑘 − 𝑣 | |2, (5.18)

subject to
𝑣i, 𝑣o ∈ [ ¤𝑚min, ¤𝑚max], 𝑣i + 𝑣o ∈ [ ¤𝑚t,min, ¤𝑚t,max], (5.19)

|𝑣i − ¤𝑚sp,i,𝑘−1 | ≤ Δ ¤𝑚max, |𝑣o − ¤𝑚sp,o,𝑘−1 | ≤ Δ ¤𝑚max, (5.20)

where ¤𝑚min, ¤𝑚max > 0 denote the minimum and maximum air mass-flow rates allowed per swirler,
¤𝑚t,min, ¤𝑚t,max > 0 denote the minimum and maximum total air mass-flow rates allowed, and
Δ ¤𝑚max > 0 denotes the maximum magnitude change air of mass-flow rate per swirler between
steps. At each adaptive controller step, a convex optimization solver is used to solve (5.18)–(5.20).
Then, the constrained input of QSRCAC is given by

𝑢c,𝑘−1
△
= ¤𝑚sp,𝑘−1 − 𝑢. (5.21)

For all 𝑡 ∈ [𝑘𝜏s, (𝑘 + 1)𝜏s), the DISCo simulation model input is given by

¤𝑚sp(𝑡) = ¤𝑚sp,𝑘 . (5.22)

The Cost Function Evaluation block computes 𝐽𝑘−1 from the sensor measurements. Let 𝑝′rms > 0
be the RMS obtained from 𝑝′ and let 𝑙rms > 0 be the number of samples used to compute the RMS,
such that, for all 𝑡 ≥ 𝑙rms𝜏s/2000,

𝑝′rms(𝑡)
△
=

√√√
1
𝑙rms

𝑙rms∑︁
𝜅=0

[
𝑝′

(
𝑡 − 𝜅 𝜏s

2000

)]2
, (5.23)

Hence, for the TISO tests (𝑙𝑧 = 1),

𝐽𝑘−1 = 𝐾1𝑝
′
rms(𝑘𝜏s), (5.24)
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and, for the TITO tests (𝑙𝑧 = 2),

𝐽𝑘−1 =

[
𝐾1 𝑝

′
rms(𝑘𝜏s)

𝐾2 (𝑇 (𝑘𝜏s) − 𝑇ref)2

]
, (5.25)

where 𝐾1, 𝐾2 > 0, and 𝑇ref > 0 is the normalized temperature reference value that determines the
desired combustor exit temperature in the TITO tests.

Table 5.3 shows the parameters chosen for numerical simulations. Note that 𝜏s is chosen
to approximately match the rise time corresponding to the actuator step response, 𝑢 is chosen
arbitrarily, and𝑇ref is chosen to reflect the thermocouple voltage measurement equivalent to a desired
combustor exit temperature of approximately 1500 K. Furthermore, ¤𝑚min, ¤𝑚max, ¤𝑚t,min, ¤𝑚t,max are
determined from the constraints in Table 5.1, and Δ ¤𝑚max is determined from experimental results to
prevent flameout. Figure 5.11 shows the output values of F , G, andG,whereG( ¤𝑚) △= |G( ¤𝑚)−𝑇ref |,
𝑇ref = 3.7, for all ¤𝑚i, ¤𝑚o ∈ [1, 9] g/s and the convex constraints given by Table 5.1. For the TISO
test, the objective is to reach values of ¤𝑚i and ¤𝑚o that minimize F within the mass-flow rate
constraints. For the TITO test, the objective is to reach values of ¤𝑚i and ¤𝑚o that minimize F and𝐺
within the mass-flow rate constraints. Finally, let the perturbation signal functionH used in Mode
2 of QSRCAC be given by

H(𝑘) = [Tr(𝑘 + 2) Tr(𝑘)]T , (5.26)

where Tr : [0, . . . ,∞) → R is a triangular function such that, for all 𝑘 ≥ 0,

Tr(𝑘) △= 4𝑎
𝑝

���( (𝑘𝜏s −
𝑝

4

)
mod 𝑝

)
− 𝑝

2

��� − 𝑎, (5.27)

in which 𝑝 = 1.6 and 𝑎 = 0.25 are the period and amplitude of the triangular function, respectively,
and mod is the Euclidean modulo operator, as described in [140]. While most extremum seeking
control (ESC) implementations use a sinusoidal function for perturbation signals, the triangular
function is chosen in this work since this allows equally-spaced mass-flow rate steps, as shown in
Figure 5.12.

Table 5.3: Parameters for sampled-data implementation of QSRCAC.

Sampling
Period

Command
Bias

Temperature
Reference

Constraint Enforcement

Parameter 𝜏s 𝑢 𝑇ref ¤𝑚min ¤𝑚max ¤𝑚t,min ¤𝑚t,max Δ ¤𝑚max

Unit s/step g/s – g/s g/s g/s g/s g/s/step
Value 0.2 [3, 5]T 3.7 0.75 9 7 11.3 0.5
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Figure 5.10: Sampled-data implementation of QSRCAC for DISCo simulation.

Figure 5.11: F ( ¤𝑚), G( ¤𝑚), and G( ¤𝑚) △= |G( ¤𝑚) − 𝑇ref | output values where 𝑇ref = 3.7 and
¤𝑚 = [ ¤𝑚i ¤𝑚o]T ∈ [1, 9] × [1, 9] g/s. The black, dashed line segments represent the constraints on
¤𝑚i and ¤𝑚o. The values corresponding to F ( ¤𝑚) > 8.2 and G( ¤𝑚) > 1.2 have been saturated at 8.2

and 1.2, respectively, for visualization purposes.

5.8 Numerical simulation of the DISCo model for hyperparam-
eter selection

In this section, the DISCo simulation model introduced in Section 5.4 is used to select hyperparam-
eters. The controller initially operates in Mode 1. Then, the controller transitions to Mode 2 at 𝑡 = 2
s. Finally, the controller transitions to Mode 3 at 𝑡 = 12 s. Hence, the EKF is initialized near the
initial operating point 𝑢 for 10 s. Several simulations are performed , in which the hyperparameters
are manually adjusted until QSRCAC yields a value of ¤𝑚 such that F is minimized in the TISO test
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Figure 5.12: Plot of Tr(𝑘) for all 𝑘 ∈ [0, 15] .

and 𝐺 is also minimized in the TITO test. The selected hyperparameters are shown in Table 5.4.
The results of the numerical simulations are shown in Figures 5.13, 5.14, and 5.15 for the TISO

test and in Figures 5.16, 5.17, and 5.18 for the TITO test. As shown in Figures 5.13 and 5.16,
QSRCAC yields air mass-flow rates ¤𝑚 that locally minimize F and 𝐺 in both the TISO and the
TITO tests. Hence, the hyperparameters used in these numerical simulations will be used in the
physical experiments.

Table 5.4: Selected hyperparameters for QSRCAC based on simulation results.

RCAC EKF Cost Function
Parameter 𝑙𝑐 𝑟𝑢 𝑝0 𝑝1,0, 𝑝2,0 𝑞1, 𝑞2 𝑟1, 𝑟2 𝑘1 𝑘2 𝑙rms 𝐾1 𝐾2

Value 1 0.35 10−2 10−3 10−1 102 2 6 100 2000 5000

5.9 Sampled-data implementation of QSRCAC for DISCo phys-
ical experiments

QSRCAC presented in Section 5.6 is implemented as a sampled-data controller to control the
response of the DISCo physical facility introduced in Section 5.1. Figure 5.19 shows the block
diagram of the sampled-data, closed-loop system considered for physical experiments. The im-
plementation is similar to the one introduced in Section 5.7 and shown in Figure 5.10. The main
difference is the output of the Digital Computer block, which is the analog voltage signal vector
𝑉 ∈ R𝑙𝑢 used to modulate the Electronic Pressure Controllers, such that in steady state, 𝑓 (𝑉) = ¤𝑚,
where 𝑓 : R𝑙u → R𝑙u is an invertible function that can be determined by calibration. Then, for all
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Figure 5.13: TISO test: Evolution of ¤𝑚sp during the closed-loop numerical simulation for 𝑡 ∈ [0, 30]
s. The output values ofF ( ¤𝑚) for all ¤𝑚 = [ ¤𝑚i ¤𝑚o]T ∈ [1, 9]×[1, 9] g/s are shown in the background.
The black, dashed line segments represent the constraints on ¤𝑚i and ¤𝑚o.

Figure 5.14: TISO test: F ( ¤𝑚) versus time for the the closed-loop numerical simulation. The
transitions from Mode 1 to Mode 2 and from Mode 2 to Mode 3 are indicated by the dashed,
vertical red and yellow lines, respectively.

𝑡 ∈ [𝑘𝜏s, (𝑘 + 1)𝜏s),
𝑉 (𝑡) = 𝑉𝑘 , (5.28)

where 𝑉𝑘 ∈ R𝑙𝑢 is given by
𝑉𝑘 = 𝑓 −1( ¤𝑚sp,𝑘 ). (5.29)
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Figure 5.15: TISO test: ¤𝑚sp versus time for the the closed-loop numerical simulation. The
transitions from Mode 1 to Mode 2 and from Mode 2 to Mode 3 are indicated by the dashed,
vertical red and yellow lines, respectively.

Figure 5.16: TITO test: Evolution of ¤𝑚sp during the closed-loop numerical simulation for 𝑡 ∈ [0, 50]
s. The output values of F ( ¤𝑚) and G( ¤𝑚) with 𝑇ref = 3.7 and for all ¤𝑚 = [ ¤𝑚i ¤𝑚o]T ∈ [1, 9] × [1, 9]
g/s are shown in the background. The black, dashed line segments represent the constraints on ¤𝑚i
and ¤𝑚o.

The rest of the parameters are the same as the ones shown in Section 5.7 and Tables 5.3 and 5.4. As
in Chapter 4, the level of suppression of the thermoacoustic oscillations, referred to as oscillation
suppression, is used to evaluate the performance of the controller, which is defined to be the
ratio of the steady-state open-loop maximum time-domain pressure amplitude to the steady-state
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Figure 5.17: TITO test: F ( ¤𝑚) and G( ¤𝑚) versus time for the the closed-loop numerical simulation.
The transitions from Mode 1 to Mode 2 and from Mode 2 to Mode 3 are indicated by the dashed,
vertical red and yellow lines, respectively. In plot of G( ¤𝑚), the value of 𝑇ref is indicated by the
dashed, horizontal black line

Figure 5.18: TITO test: ¤𝑚sp versus time for the the closed-loop numerical simulation. The
transitions from Mode 1 to Mode 2 and from Mode 2 to Mode 3 are indicated by the dashed,
vertical red and yellow lines, respectively.

closed-loop maximum time-domain pressure amplitude in dB.

5.10 Physical quasi-static adaptive control experimental results

In this section, the quasi-static adaptive controller is used to modulate the dynamics of the DISCo
facility introduced in Section 5.1 with the objective of minimizing the RMS of the pressure
fluctuation measurements in the TISO test and also reaching a desired combustor exit temperature
in the TITO test. The controller initially operates in Mode 1. Then, the controller transitions to
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Figure 5.19: Quasi-static, adaptive control of DISCo facility.

Mode 2 and, after 10 s, the controller transitions to Mode 3. Hence, the EKF is initialized around
the initial operating point for 10 s, as in the numerical simulations. The same hyperparameters used
in Section 5.8 and shown in Tables 5.3 and 5.4 are used in these physical experiments. Let 𝑝′ ∈ R
be the measured pressure fluctuations in kPA, 𝑇 ∈ R be the measured combustor exit temperature
in K, 𝑇ref ∈ R be the reference combustor exit temperature in K, and define

𝑝′rms(𝑡)
△
=

√√√
1
𝑙rms

𝑙rms∑︁
𝜅=0

[
𝑝′

(
𝑡 − 𝜅 𝜏s

2000

)]2
. (5.30)

While their equivalent normalized versions 𝑝′, 𝑇, 𝑇ref , and 𝑝′rms are used by the controller, 𝑝′, 𝑇, 𝑇,
and 𝑝′rms are used in this section to assess the performance of the quasi-static adaptive controller in
a physically significant manner.

The results of the physical experiments are shown in Figures 5.20, 5.21, 5.22, and 5.23 for the
TISO test and in Figures 5.24, 5.25, 5.26, and 5.27 for the TITO test. As shown in Figures 5.20
and 5.24, QSRCAC yields air mass-flow rates ¤𝑚 that achieves an oscillation suppression of 28 dB
in both the TISO and the TITO tests and reduces 𝑇 − 𝑇ref by a factor of approximately 5 in the
TITO test. Furthermore, Figures 5.22 and 5.26 show that QSRCAC manages to suppress the main
frequency peaks of the open-loop response.

5.11 Conclusions

This chapter proposed a quasi-static adaptive controller to modulate the a model combustor facility
in the case where the feedback control law operates with a low bandwidth relative to the open-loop
dynamics of the combustor. The hyperparameter selection methodology developed in Chapter 4 was
presented was used to determine hyperparameters that reduce the RMS of the thermoacoustic os-
cillations and the error between the exit combustor temperature and a reference value. The selected
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Figure 5.20: TISO Test: Evolution of ¤𝑚sp during the closed-loop physical experiment for 𝑡 ∈ [0, 48]
s. The black, dashed line segments represent the constraints on ¤𝑚i and ¤𝑚o.

Figure 5.21: TISO Test: 𝑝′rms versus time for the the closed-loop physical experiment. The
transitions from Mode 1 to Mode 2 and from Mode 2 to Mode 3 are indicated by the dashed,
vertical red and yellow lines, respectively.

hyperparameters were then used by the quasi-static adaptive controller in physical experiments with
the DISCo facility to achieve results similar to those in the numerical simulations.
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Figure 5.22: TISO Test: Amplitude spectra of the combustor pressure measurements obtained
from the open-loop experiments and the closed-loop experiments using the quasi-static adaptive
controller.

Figure 5.23: TISO Test: ¤𝑚sp versus time for the the closed-loop physical experiment The transitions
from Mode 1 to Mode 2 and from Mode 2 to Mode 3 are indicated by the dashed, vertical red and
yellow lines, respectively.
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Figure 5.24: TITO Test: Evolution of ¤𝑚sp during the closed-loop physical experiment for 𝑡 ∈ [0, 56]
s. The black, dashed line segments represent the constraints on ¤𝑚i and ¤𝑚o.

Figure 5.25: TITO Test: 𝑝′rms and 𝑇 versus time for the the closed-loop physical experiment. The
transitions from Mode 1 to Mode 2 and from Mode 2 to Mode 3 are indicated by the dashed, vertical
red and yellow lines, respectively. In the plot of 𝑇, the value of 𝑇ref is indicated by the dashed,
horizontal black line
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Figure 5.26: TITO Test: Amplitude spectra of the combustor pressure measurements obtained
from the open-loop experiments and the closed-loop experiments using the quasi-static adaptive
controller.

Figure 5.27: TITO Test: ¤𝑚sp versus time for the the closed-loop physical experiment. The transitions
from Mode 1 to Mode 2 and from Mode 2 to Mode 3 are indicated by the dashed, vertical red and
yellow lines, respectively.
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CHAPTER 6

Conclusions and Future Work

This dissertation developed a methodology for the implementation of adaptive control for sup-
pression of self-excited oscillations in self-excited systems, which was applied to a gas turbine
combustor. Chapter 2 considered discrete-time Lur’e models that involve asymptotically stable lin-
ear dynamics with a washout filter connected in feedback with a piecewise-C1 affinely constrained
nonlinearity, and whose response is self-excited in the sense that it is 1) bounded for all initial
conditions, and 2) nonconvergent for almost all initial conditions; sufficient conditions involving
the growth rate of the nonlinearity were given under which the system is self-excited. Chapter 3
presented a mixed integer optimization framework for identifying SES’s based on a DTL model
structure with a CPA nonlinearity constructed using the insight gained in Chapter 2; MIO-ID was
applied to numerical and experimental data, which resulted DTLI models that closely reproduced
the oscillatory behavior displayed by the studied systems, thus validating the abstractions derived
in Chapter 2. Chapter 4 developed a hyperparameter selection procedure for implementing a digital
adaptive controller based on RCAC to a Rijke-tube physical experiment; the methodology required
the construction of a simulation model using the results derived in Chapters 2 and 3, which resulted
in the suppression of the oscillatory response of the Rijke-tube physical experiment under various
system parameters. Finally, Chapter 5 implemented the RCAC algorithm in a quasi-static setup
and applied the hyperparameter selection methodology developed in Chapter 4 to a gas turbine
combustor to reduce the RMS of the thermoacoustic oscillations and the error between the exit
combustor temperature and a reference value to yield a desired flame length.

Future work will focus on extending the results obtained in each of the chapters. For the self-
excited dynamics of discrete-time Lur’e models, future work will focus on obtaining conditions for
self-oscillation to accommodate a broader type of nonlinearities and deriving analogous results for
continuous-time Lur’e models. For the SES identification methodology, future research will focus
on adapting this approach to the case where the nonlinearity is a hysteresis to obtain DTLI models
with lower order linear dynamics. For the hyperparameter selection methodology, future research
will focus in applying this to adaptive stabilization of self-excited systems other than the Rijke-tube
and gas-turbine combustors. Finally, for the quasi-static adaptive controller, future work will focus
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on studying the effect of the hyperparameters, and comparing the performance of this methodology
to that of similar control algorithms, such as extremum seeking control.
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