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ABSTRACT

Real-time operations management of emerging mobility systems requires designing and devel-
oping efficient algorithms to support fast decision-making with provable performance guarantees
using minimal resources. This dissertation discusses the challenges of operating ride-hailing sys-
tems and centrally-controlled intersections as two examples of large-scale operations in emerging
mobility systems and presents policies to improve the system’s performance.

The first chapter describes our proposed policy for the operations management of ride-hailing
systems. With the development of shared mobility (e.g., ride-hailing systems such as Uber and
Lyft), there has been a growing interest in pricing and empty vehicle relocation to maximize system
performance. The impatience of passengers during waiting is an important feature of such systems,
but it has been neglected in most studies due to the complexities it introduces. In this study, we
develop a provably near-optimal dynamic pricing and empty vehicle relocation policy for a ride-
hailing system with limited passenger patience. We model the ride-hailing system as a network
of double-ended queues. To derive a near-optimal control policy, we first establish a fluid limit
of the network in a large market regime where the demand for rides and vehicle supply is large,
and show that the fluid-based optimal solution provides an upper bound for the performance of
the original ride-hailing system among all dynamic policies. Then, we develop a specific dynamic
policy based on the fluid solution for the original problem and investigate the performance of
this policy. Among the results, we answer two open questions raised in the literature: (i) the
performance of our dynamic policy converges to that of the true optimal value exponentially fast in
time when the market size is large [Braverman et al., 2019], and (ii) the passenger loss of our policy
decreases to zero exponentially fast when demand size increases [Banerjee et al., 2018a]. Further,
we show that our dynamic policy can balance supply utilization and customer waiting times under
the Square Root Safety (SRS) rule. The effectiveness of the proposed policy is demonstrated
through a numerical experiment using empirical data from DiDi Chuxing.

The second chapter investigates the potential of vehicle motion control to improve intersection
control. As the bottleneck of transportation networks, the safety and efficiency of transportation
networks depend on intersection control. While intersections take up a small portion of the road
segments, more than 50% percent of fatal and injury crashes (combined) occur at or near inter-
sections. Intersection control aims to coordinate conflicting traffic movements under safety and

xi



kinodynamic constraints in real-time to maximize intersection throughput or minimize traffic de-
lay. This study aims to optimally control intersections to maximize throughput in the presence of
trajectory control. These problems have existed as cornerstones of traffic control for over a cen-
tury. In the current practice, the task is accomplished by heuristic right-of-way allocation rules or
principles. For example, traffic signal control has been the primary means of controlling critical
intersections with high traffic demand for almost a century. We leverage the graph coloring tech-
niques to devise a control approach that provides an approximation algorithm to the intersection
control problem. For an intersection with a sufficiently large footprint, we prove that the proposed
algorithm provides a fully polynomial-time approximation scheme for the throughput maximiza-
tion problem.

xii



CHAPTER 1

Dynamic Joint Pricing and Empty Relocation
Policies For Ride-hailing Systems

With the proliferation of shared mobility (e.g., ride-hailing systems such as Uber and Lyft), there
has been an increasing interest in developing optimal policies to maximize the system performance
(e.g., revenue, throughput, social welfare) of ridesharing systems. Compared with other resource
allocation problems, the modeling and optimization of ride-hailing systems are challenging due
to two significant complexities. First, as ride-hailing systems are two-sided markets consisting of
drivers and passengers, it is crucial for the model to capture the endogenous system dynamics on
each side as well as their interactions. Second, there are spatial and temporal supply externalities
that need to be captured in the ride-hailing system, e.g., fulfilling demand in a region can generate
supply in its destination in a future time. Furthermore, the passenger waiting experience is im-
portant and should be incorporated in the search for optimal solution. Indeed, the platform has to
consider the passenger’s waiting time and limited patience, as a passenger would leave the system
for other alternatives when the waiting time becomes long.

In a ride-hailing network, there is a finite number of vehicles, and passengers arrive randomly
and request to move from an origin to a destination. The passenger demand is price-sensitive
such that an increase in the platform’s announced price for an origin-destination (OD) pair lowers
their willingness to ride. The platform matches an arriving passenger with an available driver in
the same region upon arrival; and if there is no available driver, the arriving passengers form a
queue to be served, typically on a first-come-first-served (FCFS) basis. The passengers waiting in
a queue renege the system when their patience runs out. A critical inefficiency hindering system
performance in ride-hailing systems is the imbalance generated by the origin-destination demand
pattern, which is widely referred to as “OD unbalancedness” [Bimpikis et al., 2019]. In that, the
number of vehicles that enter some regions is higher than the demand leaving them, resulting in the
accumulation of supply units in the absence of a proper rebalancing strategy. To balance supply
with demand, pricing is a commonly used lever [Bimpikis et al., 2019]. However, pricing alone
cannot resolve the OD unbalancedness. Rebalancing strategies such as empty vehicle relocation
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have to be employed to optimize system performance. We illustrate the necessity of a proper empty
relocation policy in the presence of pricing schemes in a simple two-region example below.

A two-region example. The following two-region network is often used to illustrate supply-
demand imbalance (see e.g., Braverman et al. 2019). Consider the time horizon of morning rush
hour with region 1 representing the residential district and region 2 representing the business dis-
trict. The demand for rides from region 1 to region 2 is price sensitive such that with the price
increase, demand for rides decreases. Suppose the demand from region 2 to region 1 is negligible
during the morning rush hour, even when the price is very low. In this scenario, a pricing-only pol-
icy is ineffective since a low price in region 1 leads to an accumulation of supply in region 2, and
a high price leads to no rides in the network and an accumulation of supply in region 1. Therefore,
having a joint pricing-empty relocation policy is inevitable to optimize the system performance.

Figure 1.1: Two region city

Because of its practical importance, many research works have been done on optimizing ride-
hailing systems (see our literature review in Section 2). For example, Braverman et al. [2019]
considers an empty vehicle relocation problem with no pricing decision. The authors develop a
static empty vehicle relocation policy and establish its asymptotic optimality. They observe a long
convergence time to the optimal performance, and list the development of rigorous time-varying
(dynamic) policies as interesting future research to resolve the convergence issue. Banerjee et al.
[2018a] considers a dynamic matching problem (with no pricing or empty vehicle relocation) and
investigates the asymptotic passenger loss rate. Assuming “demand arrival rates satisfying an

approximate balance condition”, the authors obtain an exponentially small passenger loss rate
when the market size becomes large. They further show that their balance condition is necessary
for achieving the exponentially small passenger loss. In the presence of passenger waiting but
no passenger reneging, Besbes et al. [2021a] analyzes a stylized model and under a balanced
OD demand assumption, the authors find the minimum required fleet size to balance the server
utilization and wait times. They show that for their model the square root safety (SRS) rule does
not lead to such a balance in spatial systems, and they leave the study on the effects of passenger
reneging and OD unbalancedness on the required excess capacity for future research.

In this paper, we close these gaps through a systematic study of a dynamic joint pricing-empty
relocation policy in a ride-hailing network. We address the following research questions: (1) How
much faster can dynamic policies converge to their equilibrium state than static policies? (2) Can
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we find policies with tight optimality gaps in finite time and finite supply? (3) Can dynamic policies
reduce the expected passenger loss compared to static policies? (4) what is the minimum excess
supply to reach a quality-driven (QD) regime in the presence of passenger queues? To address
these questions, we formulate the problem as a double-ended queueing network with passenger
impatience and develop a dynamic policy based on a simple solution derived from a fluid model.
We show that (i) the system performance of the proposed policy converges exponentially fast in
time to the true optimal value when the market size is large; (ii) the passenger loss decreases to
zero exponentially fast when demand size increases under general OD demand patterns (so no
balancing conditions are required); and (iii) with our empty vehicle relocation policy, a near SRS
rule achieves the minimum required excess capacity to balance supply utilization and customer
waiting times.

Since the ride-hailing problem gives rise to a complex queueing network stochastic process, to
develop an efficient control policy we first study a fluid-based model that describes the equilibrium
state under a given policy. Then, by conducting a queueing analysis of the ride-hailing system that
properly models passengers’ patience, we establish a process level convergence of the scaled queue
length process to the equilibrium state. We formulate the problem of optimizing the dynamic joint
pricing-empty relocation policy as a concave maximization problem, and prove that the resulting
policy is optimal in the set of all dynamic joint pricing-empty relocation policies. Lastly, we prove
that under our optimized policy, expected passenger loss decreases exponentially fast as the market
size tends to infinity.

Major Contributions. At a high level, the major contributions of this paper can be summarized
as follows:

(a) Exponentially fast convergence in time.
Banerjee et al. [2021] considers a single-node problem with the objective of maximizing

throughput, and the authors show that the gap between the asymptotic utility rate of optimal dy-
namic policy and the optimal objective value of the fluid-based optimization cannot be less than
Ω(N−1/2). In this paper, we consider a general ride-hailing network with an arbitrary utility func-
tion (including e.g., revenue, throughput, social welfare). We develop a fluid model for the problem
and show that the optimal objective value for the fluid problem is an upper bound to the asymptotic
utility rate of all feasible dynamic policies. We propose a dynamic policy for the ride-hailing prob-
lem based on the fluid solution and prove that the utility rate for our proposed policy converges to
any small neighborhood of O(N−1/2+ϵ) (for any arbitrarily small ϵ > 0) of the true optimal value
exponentially fast over time.

The theoretical result of exponentially fast convergence has significant practical implications.
It has been observed in the analysis of Braverman et al. [2019] that, while their static policies
are asymptotically optimal, the convergence in time is relatively slow; and in practice, the study
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horizon is shorter than static policies’ required convergence time. For example, in the case study
of Braverman et al. [2019], the rush hour duration is approximately 2 hours, while the convergence
time is approximately 10 hours, as noted in Braverman et al. [2019]:

“The Didi dataset we use suggests it is reasonable to assume constant parameters

over time windows 1-2 hours in length; see Figure 4. However, numerical experiments

suggest that for certain choices of parameters and initial conditions, convergence of

our system to equilibrium can occur on timescales on the order of 10 hours. With the

rate at which parameters vary, and the slow convergence to equilibrium, the system

never really reaches steady-state.”

We close this gap by presenting the first dynamic policy that converges to its equilibrium at an
exponentially fast rate in time. Practically, our proposed class of policies is effective even for short
time horizon, as observed in our numerical study using the DiDi dataset in Section 1.4.

(b) Exponentially small passenger loss. While there has been an extensive investigation on
control policies that reduce the expected passenger loss, the general problem has remained un-
solved. Banerjee et al. [2018a] studies this problem under “an approximate balance condition” on
the demand arrival rates similar to the complete resource pooling (CRP) condition in the queueing
literature.

Under the CRP condition, Banerjee et al. [2018a] proposes a set of dynamic policies for the re-
source pooling problem that reduces the passenger loss exponentially fast in the market size. They
further demonstrate that the demand balance condition is necessary for their setting. Additionally,
they prove that the best reduction in passenger loss with static policies would be polynomial in
market size. We close this gap. Specifically, we develop the first utility-optimized policy and show
that it simultaneously decreases the expected passenger loss exponentially fast in the market size
without imposing any supply demand condition.

(c) Square Root Safety (SRS) capacity rule for QD regimes. The research literature on
waiting probability for passengers has studied the so-called quality-driven (QD) and efficiency-
driven (ED) regimes. In the former, the probability of waiting for a passenger is vanishingly small,
while in the latter, the probability of waiting for passengers approaches one, as the system scales.

In the presence of passenger waiting but no passenger reneging, Besbes et al. [2021a] shows
that the excess supply required for achieving a QD regime is Ω(N2/3), and the authors propose
two future research directions: (i) “Analyzing the case when customers are impatient and might

abandon the system if not served after some time is a natural extension”, and (ii) “Another in-

teresting extension is to study how the results in this study can be generalized to cases where

origin-destination demand patterns generate imbalances in the system. In this case, the additional

workload stemming from pickups might be even larger. How would this impact capacity sizing?”
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This paper tries to answer these questions in its different setting through optimal empty vehicle
relocation in a double-ended queueing network. Our result shows that a simple dynamic relocation
policy achieves a QD regime with an excess supply of Ω(N1/2+ε) (ε can be arbitrarily small), or it
(almost) follows the SRS rule, when passengers have finite patience.

Methodological contributions. This paper also makes a number of methodological contri-
butions. Among others, it establishes the convergence of a family of dynamical systems and the
ergodicity for a family of infinite-state Markov chains. These contributions are summarized as
follows:

(i) Network-level control and passenger queues. Previous studies on ride-hailing systems
under limited patience behaviors (completely impatient/patient) have recognized the challenge of
incorporating passengers’ patience time. When coupled with ride-hailing controls like empty re-
location policies, further complexity rises [Besbes et al., 2021a]. In this paper, we formulate a
framework to model passengers’ patience using double-ended queues and extend this contribution
by proposing a set of dynamic policies to optimize the system performance.

(ii) Unconditional process-level convergence. We develop a fluid model that describes the
equilibrium state under the given policy, and establish process-level convergence of the scaled
queue process to the equilibrium state. Specifically, we prove an O(N−1/2) convergence rate for
the scaled queue length process. We believe this is the first unconditional convergence result for
the joint pricing and empty vehicle relocation (for empty vehicle routing with no pricing decisions,
this has been established in Braverman et al. 2019). Furthermore, this paper is the first to conduct
a rigorous analysis of the passenger queueing process under general demand patterns.

(iii) A family of LCP-based Lyapunov functions. We introduce a Lyapunov function ap-
proach to establish the convergence of the fluid model based on the solution to a linear comple-

mentary problem. To the best of our knowledge, we are the first to utilize such an approach to
establishing the stability of dynamical systems. Moreover, due to its unique feature, this approach
is a valuable toolbox for studying networks of double-ended queues in other settings/applications.
In this paper we prove the ergodicity result of the resulting CTMC by adopting a Foster-Lyapunov

approach.
(iv) Network-level analysis of double-ended queues. We are the first to generalize the analysis

and control of double-ended queues to a network setting. This is a challenging task partly because
establishing the convergence results for the dynamical system that describes the evolution of the
fluid model is relatively challenging; see Liu [2019] for analysis of single-node double-ended
queue.

Organization. The remainder of this paper is organized as follows. In Section 1.1, we discuss
the relevant literature. Section 1.2 presents the problem formulation and our proposed dynamic
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policy. In Section 1.3, we present our main results on the performance of our optimized fluid-
based dynamic policy and discuss their managerial insights. In Section 1.4, we report the results
of several numerical experiments on a real dataset. In Section 1.5, we outline the proof of the
main theoretical results. We conclude the paper with a discussion about future research in Section
2.7. Finally, all the technical proofs are presented in the Appendix. Throughout the paper, for any
positive integer n, we denote by Dn the set of all Cadlag functions x : R+ → Rn, right continuous
functions with left limit. Also for a function f : R → Rn, we use ḟ(t) : t ∈ R to denote
the derivative of f at t when it exists. For given positive functions f(t) and g(t), the notation
f(t) = O(g(t)) means that there exists some constant c such that f(t) ≤ cg(t) for all t ≥ 0, while
f(g) = o(g(t)) means limt→∞ f(t)/g(t) = 0. For any real number x, we denote x+ = max{x, 0}
and x− = max{−x, 0}. Finally, for any x(t) = (x1(t), . . . , xn(t)) ∈ Dn with 0 ≤ t ≤ T , the
infinite norm is denoted by

∥x∥T = max
1≤i≤n

sup
0≤t≤T

|xi(t)|.

1.1 Literature Review
The closest works related to ours are Braverman et al. [2019], Banerjee et al. [2021], and Banerjee
et al. [2018a]. We first review these several papers in relationship with this paper and then discuss
the main streams of research related to our work. In the review below, we use N to denote market
size.

In Braverman et al. [2019], the authors study optimization of empty vehicle relocation policies
in a setting where a passenger immediately leaves the station when no driver is available. There is
no pricing decisions. They propose a family of static fluid-based policies to optimize the system-
wide performance and design a fluid-based convex optimization problem to optimize the policy.
They further show that the optimal static empty relocation policy asymptotically outperforms all
dynamic empty relocation policies when the market size grows. They observe that static policies
demonstrate a poor convergence rate in time, so they propose a set of dynamic heuristics to address
this issue and leave a rigorous analysis of dynamic policies and their potential in improving the
convergence rate in time to future research. Also, assuming that passengers do not wait, Banerjee
et al. [2021] considers the problem of joint pricing-empty relocation optimization to maximize
the system-wide utility at equilibrium. They prove that their optimized static policy attains an
O(N−1/2) optimality gap in the infinite horizon. Compared with these two papers, our problem
involves joint pricing and empty vehicle relocation, and passengers can wait but with finite patience
time, leading to double-ended queues. Our performance guarantees are valid for a finite time
and finite supply, and our Lyapunov approach shows that our proposed dynamic pricing-empty
relocation policy attains an O(N−1/2+ϵ + e−αMT ) optimality gap, where T represents the time, ϵ is
an arbitrary small positive number and αM is a positive constant independent of N and T .

6



Banerjee et al. [2018a] considers a dynamic matching problem with no pricing or empty vehicle
relocation, and the objective is to minimize the asymptotic passenger loss. In particular, upon
arrival of a passenger demand at a node, the decision maker can choose the empty vehicle from
an adjacent node to instantaneously serve the demand. This is similar to empty vehicle relocation
with zero traveling time from a neighboring region. Similar to Braverman et al. [2019], Banerjee
et al. [2021] consider a setting where passengers immediately leave the station when no driver is
available. They prove that no static policy results in passenger loss less than Ω(N−2). Then, under
the condition of “complete resource pooling” (CRP), they propose a dynamic policy and show that
the passenger loss under the proposed policy drops to zero exponentially fast in the market size N .
The authors further prove that the CRP condition is necessary for achieving the exponentially fast
passenger loss and point out that the empirical data from Manhattan violates the CRP condition.
In contrast with Banerjee et al. [2018a], our pricing and empty vehicle relocation relaxes zero
traveling time assumption between neighboring regions for empty vehicle relocation and drops the
CRP condition. Nonetheless, we prove that the passenger loss under our policy decreases to zero
exponentially fast. Another key difference is that this paper analyzes the loss of finite time horizon
system performance. This is an extension to and more general than the infinite time horizon loss
considered in Banerjee et al. [2018a].

Besbes et al. [2021a] investigates capacity planning for an asymptotically optimal control pol-
icy (nearest neighbor) in a stylized setting that approximates the network dynamics by considering
passengers arriving with origin/destinations uniformly drawn from a uniform distribution in a two-
dimensional square. Assuming the passengers never leave the system, they obtain the minimum
excess supply required for achieving the QD regime is Ω(N2/3). They leave the question of model-
ing the passenger reneging and the effect of OD unbalancedness for future research. In comparison,
our network-level double-ended queueing analysis enables us to consider the passenger reneging
and model network dynamics. Also, we provide the minimum excess supply required for achieving
a QD regime under our proposed pricing-empty relocation policy. Specifically, we show that by
enabling empty relocation, we can achieve the QD regime with an excess of supply Ω(N1/2).

Closed queueing network control in ride-hailing systems. There is a young but growing
literature on the applications of closed queueing network control in ride-hailing systems. We
categorize the literature based on their modeling approach into two main streams:

The first stream approximates the endogenous system dynamics by aggregated exogenous Pois-
son processes. In this stream of research, the queueing analysis is built on the fixed population
mean idea introduced by Whitt [1984] where they cut each link in the closed queueing network
and assume, in aggregate, the individual driver decisions yield a Poisson arrival to each region.
For example, Brooks et al. [2013] utilizes this approach to derive policies for matching debris
removal vehicles to routes following natural disasters. However, it only provides performance
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guarantees in restricted settings. Özkan and Ward [2020] exploits aggregated approximation to
devise continuous linear programming-based policy for the joint pricing and matching decisions.
The second stream considers system performance when supply and demand, referred to as the
market size, simultaneously grow. These studies propose asymptotically optimal policies derived
from a set of fluid optimization problems and provide performance guarantees. Moreover, they
prove that the optimality gap for the proposed fluid-based policies tightens as the market size in-
creases. The performance guarantees in initial investigations in this stream are asymptotic both
in time and market size [George and Xia, 2011, Iglesias et al., 2019, Zhang and Pavone, 2016,
Waserhole and Jost, 2016, Iglesias et al., 2019, Braverman et al., 2019]. Banerjee et al. [2021]
and Benjaafar and Shen [2022] investigate the problem of optimizing pricing and empty relocation
policies and provide performance guarantees that are asymptotic in time for a finite-size market.
Kanoria and Qian [2019] investigates the pricing and assignment decision optimization problem
to maximize system-wide utility when pickup and service time are instantaneous. They propose a
family of Mirror Backpressure control policies that provide performance guarantees when the de-
mand pattern changes smoothly in time, independent of information on the exact demand pattern.
They require a strong connectivity assumption on the demand pattern and demonstrate that this
constraint is less restrictive than CRP. Our extensions are mainly motivated by the second stream
of research. The introduction of passenger queues with abandonment enables us to develop a dy-
namic policy that converges exponentially fast to its equilibrium and the passenger loss decreases
to zero exponentially fast with market size.

Double ended queueing models. A separate line of research on stylized models in ride-hailing
systems aims to formulate stylized queueing models that relate drivers’ closed queueing network
and passengers’ open queueing network by approximating endogenous system dynamics such as
pick-up time and travel time via aggregated exponential distributions. Besbes et al. [2021a] studies
higher-level strategic capacity sizing. Wang et al. [2019] and Castillo et al. [2017], assuming fixed
pricing, study admission control based on a pickup-time threshold in a two-sided model with an
open rider-side queue and a closed driver-side queue that captures space in reduced form. Com-
pared to the double-ended queueing models, our network-level double-ended queueing analysis
enables us to study the performance of fine-grained optimized policies that outperforms asymptot-
ically optimal coarse-grained policies like the nearest neighbor.

Fluid-based models. Another stream considers the fluid-based models where supply units are
infinitesimally small. Compared to the first approach, these models assume a different approach
in modeling the driver repositioning. Bimpikis et al. [2019] studies pricing under steady-state
conditions in a network where drivers behave in equilibrium and decide whether and when to
provide service and reposition. They are the first to identify the “balancedness” property of the
demand pattern and investigate the potential benefits of employing spatial price discrimination to
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maximize the system-wide utility. Afeche et al. [2018] studies the demand admission controls
and drivers’ repositioning in a two-location network without pricing and indicates that the value
of the controls is significant when capacity is moderate, and demand is imbalanced. Ma et al.
[2021] proposes an optimal and incentive-aligned spatio-temporal pricing mechanism for the finite-
horizon problem with complete information. Özkan [2020] studies asymptotically optimal policies
for assigning customers to nearby drivers in an open and time-varying system.

Empirical studies. Papers in this stream use ride-hailing data or taxi data. For example, using
Uber data, Chen and Sheldon [2016] demonstrates that surge pricing persuades drivers to work
longer and consequently increases efficiency; Hall et al. [2017] finds that the driver supply is highly
elastic to wage and underlying fare changes. Yan et al. [2020] review operational matching and
dynamic pricing techniques and discuss a dynamic waiting mechanism inspired by Uber. Using
NYC taxi data, Buchholz [2015] and Ata et al. [2019] analyze the dynamic spatial equilibrium
with strategic taxi drivers and study the effects of matching and spatial pricing on performance.
Buchholz [2022] indicates that matching technology can improve performance significantly even
under optimized pricing, which supports the value of studying the impact of operational controls.

Other related literature on ride-hailing. In addition to the above literature, extensive litera-
ture focuses on specific controls on ride-hailing systems such as pricing, matching, empty reloca-
tion, and their joint controls. Interested reader is referred to, e.g., [Balseiro et al., 2021, Besbes
et al., 2021b, Guda and Subramanian, 2019, Banerjee et al., 2015, Hu and Zhou, 2022, Özkan,
2020, Gurvich and Ward, 2015].

1.2 Problem Formulation
The ride-hailing system under consideration consists of S > 0 regions, and each region is called
a node. There is a fixed number of vehicles in the system, which we denote by N . We model the
system as a network of infinite-server and double-ended queues. The vehicles traveling or empty
relocating between two nodes are modeled as an infinite-server queue, with travel time being the
service time. The vehicles or passengers waiting in a node are modeled as a double-ended queue,
i.e., the passenger and vehicle queues do not coexist simultaneously1. For convenience we denote
the set of double ended queues by S = {1, 2, . . . , S}, and denote the set of infinite server queues,
or the links connecting nodes, by I. We use i ∈ S to denote node, and use ij ∈ I or (i, j) ∈ I,
denote the connecting links.

It is worthy noting that, viewing the system from the standpoint of vehicles, vehicles circulate
through the network neither enter nor exit the system, similar to that in a closed queueing network.
On the other hand, when viewing from the standpoint of passengers, the passengers in each queue

1When an empty vehicle is matched with a passenger, the time it takes to pick up the passenger is modeled as part
of the traveling time between the passenger’s origin and destination.
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leave the system after being served or reach the limit of their waiting patience, so they constitute
an opening queueing network with customer reneging.

Passenger demand. Passenger demand for O-D pair (i, j) occurs according to a Poisson pro-
cess with a price-sensitive rate. Upon the arrival of a passenger at node i, if there is an empty
vehicle available in the node, we match them immediately. If no empty vehicle is available, arriv-
ing passengers form a queue in that node and are served according to the FCFS rule (that is, when
an empty vehicle becomes available at the node, it serves the customer at the head of the passenger
queue). The waiting passengers have limited patience, and a passenger waiting at node i reneges
the system after an exponentially distributed time with rate θi if still not yet matched. We assume
that cWj ($/hr) is the per-hour waiting cost for a passenger in node j. Similar to passengers, when
vehicles arrive at node i with no passenger waiting, they also form a queue and are matched to the
arriving passengers on an FCFS basis.

Traveling time. We assume that the traveling times from node i to node j, for both occupied and
empty vehicles, are random with a general probability distribution; we denote the mean traveling
time by 1/µij , ij ∈ I.

State of system. To keep track of the system dynamics, we define the system state as

X(t) = (Xi(t), Xij(t), Zij(t) : i ∈ S, (i, j) ∈ I),

where Xij(t) ≥ 0 and Zij(t) ≥ 0 denote the number of full vehicles and number of empty vehicles
traveling from node i to node j at time t, and if Xi(t) ≥ 0 then it denotes the number of drivers
waiting in node i at time t, if Xi(t) ≤ 0 then −Xi(t) is the number of passengers waiting in node
i at time t. Note that under such a definition, the resulting stochastic process is Markovian only
when the traveling times are exponentially distributed (otherwise it can be augmented to become
Markovian). Let the state space be denoted by X . Pricing. Let cij denote the announced origin-
destination price from node i to node j. When the price is cij , the passenger demand rate is λij(cij)
which is assumed to be strictly decreasing. Thus, there is a one-to-one correspondence between
the platform’s announced price and the demand rate for each pair of nodes; we denote its inverse
function by cij(λij). With some abuse of notation, we interchangeably use cij = cij(λij) and
λij = λij(cij), and ccc = (cij)S×S and λλλ = (λij)S×S . All these decisions can be time and state
dependent.

Empty vehicle relocation. We model empty vehicle relocation by two sets of parameters:
a time-to-relocate vector γγγ = (γi; i ∈ S), and a relocation probability matrix QQQ = (qij)S×S .
Specifically, we assume that after a vehicle dwells in node i for exponentially distributed amount
of time with mean 1/γi, if still not matched with a passenger yet, it will be relocated to node j with
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probability qij , j ∈ S. Here, both γγγ andQQQ are decisions2 to be made and they can be time and state
dependent. Clearly,

∑
j∈S qij = 1, i ∈ S , and qii denote the probability for the vehicle to continue

to wait at node i for arriving passengers. There is a vehicle relocation cost, defined by cVij($/trip),
that is the per-trip cost for relocating an empty vehicle from node i to node j.

Performance measures. The system measure we consider includes a reward component asso-
ciated with the trips the platform serves and a cost element associated with empty vehicle relocation
and passenger waiting. we denote the per-ride reward function by Iij : R → R, which corresponds
to the reward obtained from a customer taking a ride from i to j. Considering the bijection that re-
lates the price and the rate of passenger requests for each pair of nodes, we use Iij(cij) and Iij(λij)
interchangeably to refer to the reward per ride.

Three important canonical reward functions often considered in the literature are

i) Throughput: Iij(λij) = 1, ij ∈ I

ii) Revenue: Iij(λij) = cij(λij), ij ∈ I

iii) Social Welfare: Iij(λij) = E[λij(c̃ij)c̃ij|c̃ij ≥ cij(λij)], ij ∈ I

The throughout rate for a ride is always 1 regardless of its price, and it is concerned with the
number of trips served. The revenue rate associated with a ride is the price the rider pays cij(λij).
For social welfare, we follow the definition of Banerjee et al. [2021] and Benjaafar and Shen
[2022], where E[λij(c̃ij)c̃ij|c̃ij ≥ cij(λij)] represents the average trip valuation for the passengers
willing to pay the platform announced price cij(λij). Following the ride-hailing literature (see e.g.,
Banerjee et al. 2021, Bimpikis et al. 2019, Kanoria and Qian 2019), we assume the average revenue
function λijIij(λij) is concave in λij .

To compute the objective function, we let Kji(t, T ) denote the number of passengers’ request
from node j to node i by time t and completed by time T . Also, we let Jji(t) denote the number
of empty vehicles relocated from node j to node i by time t. Then, the objective function that we
intend to maximize is

U(T,N) =
1

N
E

[∑
ji∈I

ˆ T

0

Iji(λji(t))dKji(t, T )−
∑
ji∈I

ˆ T

0

cVjidJji(t)−
∑
j∈S

ˆ T

0

cWj X
−
j (t)dt

]
.

(1.1)
The first term on the right hand side is the reward received from the served trips by time T ,

the second term represents the total empty vehicle relocation cost, while the last is total passenger
waiting cost. Clearly, (1.1) is the expected total net-utility value up to time T per vehicle (e.g.,
total profit if I represents revenue).

2An alternative but equivalent definition for relocation decision is vij = γiqij , i.e., each empty vehicle in node i is
relocated to j after exponentially distributed amount of time with mean 1/vij if still not yet matched.
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Objective. Our goal is to find the pricing ccc, the relocation rates rates γγγ, and the relocation
probabilities matrixQQQ, to maximize the objective function (1.1).

1.3 Main Results
The optimization problem as presented in the previous section is too complex to solve. Indeed,
finding the exact optimal policy for the problem is challenging even in its very special cases. For
example, Braverman et al. [2019] considered a network with two nodes and fixed static pricing, and
no passenger reneging, and they demonstrated that optimizing the relocation policy withN = 2000

vehicles is not solvable to optimality with a commercial solver. Our approach in this paper is to first
analyze a simplified version of the problem and derive a policy for the simplified problem. Then,
we develop a solution for the original problem based on that of the simplified problem. Finally,
we prove that the solution for the original problem performs very well and near-optimality. This
simplified model is the fluid limit of the original network when the market size is large.

1.3.1 Fluid optimization and construction of dynamic policy
We analyze the problem with a large market size N . To that end, we define the scaled queue length
process as queue lengths divided by N . From now on, to emphasize the dependency on the market
size, whenever necessary we use a superscript (N) to refer to the system when the number of
vehicles in system is N and demand arrival rates are Nλji(cji), ji ∈ I.

Given a joint pricing-empty relocation policy, we first present a set of constraints that explicitly
characterizes the equilibrium for the scaled queue length process. Denote by fj, j ∈ S , as the
equilibrium portion of vehicles waiting in the queue in node j, and by fji, eji, (j, i) ∈ I the number
of full and empty vehicles traveling from node j to i. Let βj denote the average passenger queue
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length at node j. Then, the constraints that characterize the fluid model are∑
kj∈I

µkjfkj +
∑
kj∈I

µkjekj =
∑
ji∈I

µjifji +
∑
ji∈I

µjieji; ∀j ∈ S (vehicle flow balance) (1.2a)

µjifji ≤ λji; ∀ji ∈ I (passenger flow) (1.2b)

µjifji
∑
k∈S

λjk = λji
∑
k∈S

µjkfjk; ∀j ∈ S (rate balance) (1.2c)(∑
ji∈I

λji −
∑
ji∈I

µjifji

)
fj = 0; ∀j ∈ S (complementary slackness)

(1.2d)

βj = (
∑
ji∈I

λji −
∑
ji∈I

µjifji)/θj; ∀j ∈ S (Little’s law) (1.2e)∑
ji∈I

fji +
∑
ji∈I

eji +
∑
j∈S

fj = 1 (unit mass) (1.2f)

fji, eji, fj, λji, βj ≥ 0 (non-negativity) (1.2g)

Constraint (1.2a) ensures the vehicle flow balance for each node j ∈ S. This is because the
inflow rates for full vehicles and empty vehicles from node k to node j equals µkjfkj and µkjekj ,
respectively. Constraint (1.2b) guarantees that full vehicle departure rates do not exceed the pas-
senger request rate from node j to i. Constraint (1.2c) ensures that the probability a full vehicle
departing node i for destination j is equal to the probability a passenger requesting a ride in node i
for destination j. The complementarity constraint (1.2d) implies that passenger and driver queues
do not coexist in a node. The constraint (1.2e) represents Little’s law for passenger queue in node
i, i.e., the passenger queue length βj equals the product of their average waiting time 1/θj and the
passenger reneging rate

∑
i,ji∈I(λji − µjifji). Finally, constraint (1.2f) is the unit mass constraint,

and (1.2g) is the standard non-negativity constraint. A solution that satisfies constraints (1.2a) to
(1.2g), denoted by f = (λλλ,fff,eee,βββ) is called a fluid solution.

We formulate the fluid optimization problem as maximizing objective function (1.1) subject to
the constraints that characterize the fluid scaled queue lengths at equilibrium, which in equilibrium
can be expressed as

max
λλλ,fff,eee,βββ

∑
ji∈I

µjifjiIij(λji)−
∑
ji∈I

cVjiµjieji −
∑
j∈S

cWj βj (1.3)

s.t. 1.2a− 1.2g (1.4)

To show the equivalence between (1.1) and (1.3) in equilibrium, we first note that Little’s law
applied to the infinite-server queues implies limT→∞Kji(T )/T = µjifji and limT→∞ Jji(T )/T =
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µjieji. For the equality of third terms in (1.1) and (1.3), it suffices to note that eji represents the
equilibrium scaled queue length process for Zji, and βj is the equilibrium scaled queue length
process for X−

j .
The optimization problem (1.3) and (1.4) is not a convex optimization problem as the objective

function is not concave, and the constraints do not give rise to a convex set because of the com-
plementarity slackness condition. We next show that the problem can be converted to a convex
optimization problem. In the following lemma, we first show that some conditions are always
satisfied by the optimal solution of (1.3) and (1.4), thus we can modify the objective function as
well as the constraints using them. Its proof, as well as all other omitted proofs, are given in the
Appendix.

Lemma 1. Any optimal solution f = (λλλ,fff,eee,βββ) to the fluid optimization problem (1.3) and (1.4)

satisfies µjifji = λji for all ji ∈ I.

Before discussing the implications of Lemma 1 on the optimization problem, we first shed
some lights on why this result is expected. When passenger arrival rate is higher than full vehicle
departure rate, we can slightly increase the price to lower the passenger arrival rate, serving the
same number of customers with a higher objective function value. Thus at optimum, arrival rate
and departure rate balance. Also note that, Lemma 1 implies βj = 0 for j ∈ S , which shows that,
under an optimal solution, the number of customers waiting in the fluid model is zero in every
node.

To simplify the optimization problem, we consider (1.3) and (1.4) within the subset of feasible
region that satisfies µjifji = λji. Then, the optimization problem becomes

max
λλλ,fff,eee

∑
ji∈I

λjiIji(λji)−
∑
ji∈I

cVjiµjieji

s.t.
∑
kj∈I

λkj +
∑
kj∈I

µkjekj =
∑
ji∈I

λji +
∑
ji∈I

µjieji; ∀j ∈ S∑
ji∈I

λji/µji +
∑
ji∈I

eji +
∑
i∈S

fi = 1,

eji, fj, λji ≥ 0

This optimization problem only has decision variables λji, eji for ji ∈ I, and fi for i ∈ S. Further,
by our assumption, the objective function is a separately concave function of λji and linear in eji.
Hence it is a convex optimization problem that can be efficiently solved.

After solving the convex optimization problem with optimal solution λji, eji for ji ∈ I, we set
fji = λji/µji for all ji ∈ I, and βi = 0 for all i ∈ S to obtain a feasible solution for problem (1.3)
and (1.4), which is also the optimal solution for the fluid model.
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Construction of the fluid-based dynamic policy. After obtaining the optimal solution for
problem (1.3) and (1.4), we are ready to construct a dynamic pricing and empty vehicle relocation
policy for our original problem (1.1).

As the first step to finding a dynamic policy, we set the price to cji(λji), which leads to arrival
rate of λji for the passenger requests from node j to node i. We define

qji =
µjieji∑

k, jk∈I µjkejk
, ji ∈ I (1.5)

when the denominator is not zero, and qji = 0 otherwise. This gives the empty relocation policy
QQQ. Lastly, let

γi =

∑
k, ik∈I µikeik

fi
, i ∈ S (1.6)

be the dwell time parameter at node i before relocating the empty vehicles.

Remark 1. It is clear from (1.6) that the policy requires fi > 0 for all i. We point out that this is

not necessary. In the case fi = 0, we can introduce a network transformation to make the policy

feasible and all the results in the paper remain to hold. For details the reader is referred to Section

A.2 in the Appendix.

Why is this pricing-empty vehicle relocation policy dynamic? Our proposed policy is dy-
namic because the relocation rate of empty vehicles in a node depends on the number of empty
vehicles in the node. To see that, note that the rate at which we relate an empty vehicle at node
i is γi. This means that when there are ni empty vehicles in the node i at time t, the total rate of
relocating an empty vehicle to other nodes is niγi, which is linear in the number of empty vehicles
waiting.

The key question is how well does this dynamic policy perform in terms of system measure.
This is answered in the following subsection.

1.3.2 Theoretical performance guarantees
We presented a fluid model in the previous subsection, but have not established its formal connec-
tion with the original problem. In this subsection, we first show that the model is indeed the fluid
limit of the original problem when the market size becomes large.

Let (λλλ,fff,eee,βββ) be a feasible solution for the fluid optimization problem (1.2) and let (QQQ,γγγ, ccc(λλλ))
be its associated dynamic policy described in the previous subsection. We first show that, under the
policy (QQQ,γγγ, ccc(λλλ)), the scaled queue length process X(N)(T )/N of the original stochastic system
converges to the fluid solution (λλλ,fff,eee,βββ) as we scale the market size N . Additionally, we will
unveil the relationship between the convergence speed, time, and the market size.
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We make the following assumption, which we impose throughout the paper.
Assumption 1. A matrix Q̃̃Q̃Q of dimension |S| with its j-th row being the j-th row of either matrix
λλλ or matrixQQQ is irreducible.

Note that when all the rows of Q̃̃Q̃Q are that of matrix λλλ, then Assumption 1 implies that the
demand from each node should be able to reach any other node, though that may need to go
through other nodes. On the other hand, when all the rows of Q̃̃Q̃Q are that of QQQ, then it means that
empty vehicle allocation from any node is reachable to any other node as well, though that may
need many transitions. These are plausible assumptions. We remark that Assumption 1 is weaker
than those in Braverman et al. [2019], where the authors assume that all entries of λλλ and QQQ are
strictly positive, though they conjecture (in their Remark 2) that their condition can be relaxed.

Theorem 1. (Convergence to fluid model) Let f = (fj, fji, eji, λji; j ∈ S, ji ∈ I) be a feasible

solution to the fluid optimization problem (1.3) and (1.4). Consider the associated dynamic policy

(QQQ,γγγ, ccc(λλλ)) described in Section 1.3.1. There exists a unique x = (xji(t), zji(t), xj(t); ji ∈ I, j ∈
S) representing the fluid-based dynamical system approximation, such that for any t ≥ 0,

lim
N→∞

N
1
2
−ϵ E

[∣∣∣∣X(N)
ji (t)

N
− xji(t)

∣∣∣∣] = 0, ∀ji ∈ I (1.7a)

lim
N→∞

N
1
2
−ϵ E

[∣∣∣∣Z(N)
ji (t)

N
− zji(t)

∣∣∣∣] = 0, ∀ji ∈ I (1.7b)

lim
N→∞

N
1
2
−ϵ E

[∣∣∣∣X(N)
j (t)

N
− xj(t)

∣∣∣∣] = 0, ∀j ∈ S (1.7c)

Moreover, there exists constant αM > 0, such that for any time t > 0,∑
j∈S

|x+j (t)− fj|+
∑
ji∈I

|xji(t)− fji|+
∑
ji∈I

|zji(t)− eji| = O(e−αM t)

∑
j∈S

|x−j (t)− βj| = O(t−1) (1.8)

Remark 2. To the best of our knowledge, Theorem 1 provides the first fluid limit result for a

network of double-ended queues. Limiting result for single-node doubled-ended queue has been

reported in Liu et al. [2015], Liu [2019].

We will refer to the process x(t) = (xji(t), zji(t), xj(t); ji ∈ I, j ∈ S) as the transient fluid
solution of the original network, while f = (fj, fji, eji, λji, βj; j ∈ S, ji ∈ I) is the steady state
limit of the fluid process. Theorem 1 indicates that the scaled queueing length process of the orig-
inal ride-hailing network at any time t converges to the transient fluid solution at the rate of nearly
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O(N−1/2); the transient fluid process of vehicle queueing length processes at each node and each
traveling link, as well as the the rate of lost passengers, converge their steady state exponentially
fast, while transient fluid process of the number of passengers waiting for vehicles converges to
steady state at rate O(1/T ). Putting all these results together, Theorem 1 confirms that under the
set of dynamic policies considered in this paper, the scaled queueing length process converges to
the fluid steady state solution f = (fj, fji, eji, βj) at their respective rate.

Remark 3. The numerical results in Braverman et al. [2019] show that their static policies con-

verge in time to their fluid limit but very slowly. For example, the numerical results of a case study

in Braverman et al. [2019] demonstrates that while the peak hour is roughly 2 hours, it might take

up to 10 hours for a static policy to converge to its fluid limit. They state that

“it would be very interesting to be able to say something rigorous about time-varying policies.

Along this line, studying the transient control problem would also be of interest (given the long

time it takes the fluid to converge to equilibrium from certain initial conditions). Even studying the

fluid transient control problem is non-trivial, because the fluid model is a non-linear dynamical

system.”

This paper proposes the first dynamic policy that reaches an optimality gap of O(1/N1/2−ϵ) expo-

nentially fast in time. The numerical experiments in Section 1.4 demonstrate that it also converges

very fast numerically.

One important question is, how well does our fluid-based policy perform compared to other
dynamic policies? And how does the performance of the policy change/improve when the market
size and time vary? These questions are answered in the following theorem.

Theorem 2. (Optimality gap) Consider the dynamic policy derived from the optimization solution

of fluid problem (1.3) and (1.4), (QQQ∗,λλλ∗, γγγ∗). Let U∗ be the optimal objective value to the fluid

optimization problem (1.3) and (1.4).

a) For any dynamic policy that imposes a single recurrent class on the system states X , its long

run performance is upper bounded by U∗, i.e.,

lim sup
T→∞

1

T
U(T,N) ≤ U∗.

Furthermore, the long run performance of our proposed policy, which we denote by

UQQQ∗,λλλ∗,γγγ∗(T,N), achieve U∗, i.e.,

lim sup
T,N→∞

1

T
UQQQ∗,λλλ∗,γγγ∗(T,N) = U∗.
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b) There exists a constant αS > 0, such that for any positive constant δ > 0, it holds that

∂UQQQ∗,λλλ∗,γγγ∗(T,N)

∂T
≥
[
1−O

(
N−1/2+δ + e−αST

)]
U∗. (1.9)

Therefore, we have

UQQQ∗,λλλ∗,γγγ∗(T,N)

T
≥
[
1−O

(
N−1/2+δ +

1

T

)]
U∗.

Part (a) of Theorem 2 states that, in terms of long run utility rate, no dynamic policy can
outperform that of the optimal fluid problem (1.2), while our proposed policy achieves just that. For
part (b), since the left hand side represents the utility rate at time T for a system with market sizeN ,
the result claims that the utility rate converges to an O(N−1/2+δ) neighborhood of the optimal long
run utility rate exponentially fast in time for arbitrarily given small δ > 0. Theorem 2 presents
the first performance guarantee result for a finite-time and finite-supply system. Banerjee et al.
[2021] considers the infinite time horizon problem and shows that the best asymptotic optimality
gap of infinite horizon long-run average for any dynamic policy is Ω(N−1/2). Our results extend
the literature on performance bound to finite time by establishing that our dynamic policy achieves
the (any small neighborhood of) long-run average rate exponentially fast over time.

Recall from Lemma 1 that the limiting passenger queue associated with an optimal fluid-based
policy at each station is zero. Thus, Theorem 1 suggests that, under an optimal policy, the proba-
bility of having a passenger queue at each node converges to 0 as the market size grows. This result
motivates us to consider another assessment measure that how fast the passenger loss converges to
zero as the market size grows. This criterion has been studied in Banerjee et al. [2018a] in which
the authors search for policies that minimize the asymptotic expected passenger loss. Since the
passengers’ patience times are exponentially distributed, the rate of passengers reneging from the
queue at station j is θjX

(N)−
j (t) at each time t ≥ 0. Therefore, the expected passenger loss in a

time interval [t1, t2] can be computed as

L(t1, t2) = E
[∑

j∈S

ˆ t2

t1

θjX
(N)−
j (t)dt

]
.

The passenger loss under our policy turns out to be very small, as the next result illustrates.

Theorem 3. (Passenger loss rate) Consider the optimal solution (λλλ,fff,eee,βββ) to fluid optimization

problem (1.3) and (1.4) and its associated dynamic policy (QQQ,γγγ, ccc(λλλ)). The expected passenger

loss decreases exponentially with the market size N . That is, there exist constants αL and t0, such

that for any fixed T > t0,

L(t0, T ) = O(e−αLN). (1.10)
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Theorem 3 shows that the dynamic policy derived from fluid model (1.2) not only maximizes
the objective function (revenue, social welfare, throughput), it also exhibits the important property
that, under the policy the passenger loss goes to zero exponentially fast when market size increases.
The most relevant study of this property is Banerjee et al. [2018b], where the authors minimize the
asymptotic expected passenger loss by proposing a dynamic ride-pooling mechanism. Assuming
a demand pattern condition called complete resource pooling (CRP) is satified and immediate
relocation between neighboring nodes, they prove that the asymptotic expected passenger loss per
unit of time decreases to zero exponentially fast when the market size grows. Furthermore, they
explain the importance of relaxing the CRP condition as follows:

“We leave the cases where demand is time-varying or violates CRP for future research. Our

numerical study in Section 6.4 regarding transient performance may be seen as a first step towards

the time-varying case, and for a setting where CRP is violated, we conjecture that a back-pressure

type policy that generalizes SMW could work well.”

Our result in Theorem 3 addresses the question left open in Banerjee et al. [2018b] by extending
that to general demand and finite time. In fact, we can show that the exponential passenger loss
can be achieved by the dynamic policy derived from any feasible solution of the fluid optimization
problem (1.3) and (1.4), as long as the condition fj > 0 is satisfied for all j.

Theorems 2 and 3 present the theoretical performance guarantee of our proposed dynamic pol-
icy for the network when the arrival rates are Nλλλ and the number of vehicles in system is N . Now,
we address the following question: Assuming the arrival rates remain Nλλλ, can the same perfor-
mance guarantee be achieved using few number of vehicles? To answer this question, we consider
the system with passenger arrival rates Nλλλ but the number of vehicles is changed to N ′. With a
slight abuse of notation, we let the objective function for the system be denoted by U(T,N,N ′):

U(T,N,N ′) =
1

N
E

[∑
ji∈I

ˆ T

0

Iji(λji(t))dKji(t, T )−
∑
ji∈I

ˆ T

0

cVjidJji(t)−
∑
j∈S

ˆ T

0

cWj X
−
j (t)dt

]
.

We want to find the minimum number of vehicles N ′ to achieve the optimal objective NU∗.
The results in Theorems 2 and 3 suggest that, to achieve objective value NU∗, the number of

vehicles we require is at leastN
∑

ji∈I(fji+eji) which is less than or equal toN . We are interested
in the case that this minimum capacity requirement is strictly less than N or

∑
ji∈I(fji + eji) < 1.

We show that the additional number of vehicles required to reach the same level of service is
|S|N1/2+ε, where ε is an arbitrarily small positive number. That is,

N ′ = N
∑
ji∈I

(fji + eji) + |S|N1/2+ε. (1.11)
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Note that N ′ is much smaller than N . For this part only, we refer to N as market size.
We present the result formally in the following Theorem.

Theorem 4. (Capacity planning) Consider a ride-hailing network with the passenger arrival rate

Nλλλ and number of vehicles (1.11). Using the optimal solution of the fluid optimization problem

(1.3) and (1.4), (fj, βj, fji, eji, λji, j ∈ S, ji ∈ I), we define a joint pricing-empty relocation

policy (QQQ,γγγ, ccc(λλλ)) by (1.5) and (1.6) but (1.6) is replaced by

γi = N1/2−ε
∑

k, ik∈I

µikeik, i ∈ S.

Then, there exists constant αS > 0, such that for arbitrary positive δ > 0 with δ < ϵ, we have

∂UQQQ,λλλ,γγγ(T,N,N
′)

∂T
≥
[
1−O

(
N−1/2+δ + e−αST

)]
U∗,

and

lim sup
T,N→∞

1

T
UQQQ,λλλ,γγγ(T,N,N

′) = U∗.

Furthermore, under the policy (QQQ,γγγ, ccc(λλλ)), there exist constants t0, αV > 0 such that for any time

T ≥ t0 the probability of having passenger waiting at time T is

P {Xj(T ) < 0 for some j ∈ S} = O(|S| e−αV Nε

).

In essence, in Theorem 4 we modify the policy by reducing the average empty vehicle dwelling
time at each station i, 1/γi, as the market size increases. As a result, we achieve the same long
run objective value using fewer number of vehicles while simultaneously having an exponentially
small passenger waiting probability in terms of market size N .

This result differs from the result of Besbes et al. [2021a], where the authors use a stylized
model with OD randomly drawn from a uniform distribution in a two-dimensional square to in-
vestigate the minimum vehicle supply for achieving a balance between vehicle utilization and pas-
senger waiting time. Assuming no passenger abandonment, the authors show that the minimum
excess supply required for a near-optimal policy to have passenger waiting probability converging
to zero as market size N increases is of the order Ω(N2/3). They further raise the question on the
impact on the capacity sizing rule when customers are impatient and might abandon the system
if not served after some time. Theorem 4 addresses their question by showing that our dynamic
policy achieves an exponentially small passenger loss probability with only Ω(N1/2+ε) excess sup-
ply (where ε can be arbitrarily small), which is more consistent with the staffing literature on QD
regime (see e.g., Halfin and Whitt [1981]).
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1.4 Numerical Experiments
In this section, we evaluate the performance of our joint pricing-empty relocation policy in optimiz-
ing the platform’s objective. To ground the study, we use the data from the Di-Tech challenge held
by DiDi Research Institute in 2016. The original data set containing individual trip order informa-
tion from January 1, 2016, to January 21, 2016, in a city in China is no longer publicly available.
Therefore, we utilize the data for our numerical experiments for the 5 PM-6 PM evening rush hour
in the nine-region network extracted from the original data set by Braverman et al. [2019].

Benchmark. Our benchmark for performance comparison is the optimal static policy devel-
oped in Banerjee et al. [2021] because i) their results guarantee the system performance to be
asymptotically optimal for long-run average criterion, and ii) for a given pricing scheme, Braver-
man et al. [2019] has shown that the static relocation policy outperforms a set of intuitive, dynamic
routing heuristics. Hence, we compare our results with those of Banerjee et al. [2021] to showcase
our policy’s performance and discuss managerial insights.

Simulation setup. We simulate the system introduced in Section 1.2 to evaluate the perfor-
mance measures based on market size and length of time horizon. In our basic setting, we consider
a two-hour time horizon and N = 2000 vehicles. Following Braverman et al. [2019], we assume
vehicle travel time follows an exponential distribution. Using the data presented in Ridesharing-
Driver [2018] website, we consider 25% of the platform’s announced price for the estimation of
the empty relocation cost. Following Bimpikis et al. [2019], we assume passengers’ willingness
to pay for each pair of nodes follows an exponential distribution, and we adopt the same method
as Bimpikis et al. [2019] to estimate its parameter. Also, following the study of Goldszmidt et al.
[2020] on the value of time for riders on the Lyft platform, we consider 120 (CNY/h) as the pas-
senger’s waiting cost. Throughout this section, the system is initialized by assuming all cars are
idle and distributing them across nodes uniformly.

1.4.1 Throughput, social welfare, and revenue
In addition to comparing the results of optimal static policy from Banerjee et al. [2021], we also
present the theoretical upper bound for the performance measures in Theorem 2.

Performance change with market size. First, to ensure the irreducibility of the empty relo-
cation matrix QQQ, we enforce a constraint to the fluid optimization problem (1.2). The constraint
requires the limiting number of empty vehicles along a closed cycle in the network is at least 1% of
all vehicles. Figures 1.2-1.4 demonstrate the performance (revenue, social welfare, and through-
put) of our optimized dynamic policy compared to the benchmarks. In these figures, we consider
a fixed time horizon of 2 hours, and vary the market size N from 200 to 2000.

It is seen from the numerical results that, the performance measures quickly converge to the
optimal value in Theorem 2 under our optimized policy in the two hour time horizon when the
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market size N increases. More importantly, it is clear that our (dynamic) policy significantly
outperforms the benchmark solution in all the three performance measures: throughout, revenue
and social welfare.

We also make an interesting observation from our numerical results: It is shown in Banerjee
et al. [2021] that, under optimized static policies over infinite time horizon, the performance mea-
sures converge to the fluid-based optimal value when the market size increases. However, the speed
of convergence is unclear. Our numerical results in Figures 1.2-1.4 indicates that performance of
the static policy is distant from the theoretical upper bound in the 2 hour time horizon (and also
much lower that that of our dynamic policy), suggesting that the speed of convergence may be
rather slow. This is in line with the observations of Braverman et al. [2019] that static policies
require a time scale on the order of 10 hours to reach their optimal performance. To further investi-
gate the convergence time of our policy in comparison to the static policy, we analyze performance
measure values over time in the following section.

Figure 1.2: Throughput as market size grows Figure 1.3: Revenue as market size grows
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Figure 1.4: Social welfare as market size grows

Performance change with time. Next, we fix the market size N and test the performance
of our dynamic policy when time horizon T varies. Again, we compare the three performance
measures: Throughput, Revenue, and Social Welfare. Figures 1.5-1.7 present the results of our
dynamic policy and benchmark static policies of Banerjee et al. [2021] for a fixed market size
N = 2000. The time horizon changes from 1 hour to 10 hours. Similar to Braverman et al. [2019],
we observe that convergence of optimized static policies to equilibrium occurs on timescales of
around 10 hours. In contrast, our optimized dynamic policy reaches a 10% optimality gap within
1 hour for the revenue and social welfare and 3 hours for throughput.

We offer an explanation why the static policy converges slowly, but dynamic policy converges
very fast. This is because in static policies the outflow of empty vehicles from a station is pro-
portionate to the inflow of full vehicles. However, in our dynamic policy it is proportionate to the
number of idle vehicles in that node. Therefore, when more empty vehicles gather at one region,
they are more quickly relocated to other regions in need of them.
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Figure 1.5: Throughput over time Figure 1.6: Revenue over time

Figure 1.7: Social welfare over time

1.4.2 Passenger loss rate
We now analyze the passenger loss rate when either market size or time horizon changes. In Figure
1.8 the time horizon is fixed at 2 hours, and the market size again varies from 200 to 2000. The
results demonstrate that the passenger loss indeed drops exponentially when market size increases,
and in this example it reduces to nearly zero when the market sizes reaches 800. This confirms
our theoretical results in Theorem 3. It is also observed from Figure 1.8 that the loss rate under
optimal static policy decreases rather slowly, and it confirms the result of Banerjee et al. [2018a]
that the best reduction in passenger loss for a static policy is polynomial in market size.

Figure 1.9 demonstrates that passenger loss decreases over time for both static and dynamic
policies. However, we observe that passenger loss is significantly lower in dynamic policies than
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in static policies.

Figure 1.8: Passenger loss as market size grows Figure 1.9: Passenger loss over time

Sensitivity to passenger patience parameter. Next, we analyze the sensitivity of passenger
loss to passenger waiting patience time. In Figure 1.10, we compute the percentage of loss for three
patience parameters, θ = 3, 6, and 12, so the passengers are becoming increasingly impatient. The
time horizon is 2 hours, and we present the results when the market size increases from 200 to
2000.

As seen from Figure 1.10, the numerical results are consistent with our intuition: Passenger
loss generally decreases with an increase in their waiting patience. Furthermore, the loss decreases
linearly in the logarithmic scale of market size. This confirms our theoretical results in Theorem 3.

Figure 1.10: Sensitivity analysis on the patience
threshold

Capacity planning. We now numerically illustrate the results of Theorem 4. After enforc-
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ing the irreducibility constraint by limiting number of empty vehicles along a closed cycle in the
network to be at least 4% of all vehicles, we solve the optimization problem in (1.3) and (1.4)
to obtain the parameters for the policy in Theorem 4. We consider three scenarios indicated by
ϵ ∈ {0.05, 0.1, 0.2} such that in each scenario, we set the number of vehicles to

N ′ = N
∑
ji∈I

(fji + eji) +
|S|
3
N1/2+ε.

In Figures 1.11 and 1.12, the time horizon is fixed at 3 hours and the market size varies from 500
to 5000. The curves in Figures 1.11 and 1.12 present the probability of waiting and the revenue in
(in Chinese yuan) per market size for the three scenarios. As shown, the numerical and theoretical
results are consistent. The probability of waiting for passengers is in the order of O(e−αV Nε

).
Specifically, for ϵ = 0.05 the probability of waiting reduces from 12% to 7%. For ϵ = 0.1, it
reduces from 10.5% for N = 500 to 3.8% for N = 5000; while for ϵ = 0.2, it reduces from 2.2%

for N = 500 to 0.02% for N = 5000. By increasing ϵ, the probability of waiting for passengers
converges to zero at the corresponding exponential rate. Additionally, Figure 1.12 shows that the
revenues per market size for all three scenarios are within 4% gap of the theoretical optimal value
when the market range varies from 500 to 5000 vehicles.

Figure 1.13 displays the number of vehicles N ′ as N changes from 500 to 5000. This figure
confirms that the number of vehicles in the system is substantially smaller than N in the three
scenarios. For example, for ϵ = 0.1 when N = 1000, we have N ′ = 799, and when N = 5000,

we have N ′ = 3542. The result shows that we can achieve almost the same objective function and
passenger loss probability with much few number of vehicles.

Figure 1.11: Probability of waiting Figure 1.12: Revenue over time
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Figure 1.13: Capacity

1.5 Outline of Proofs of Main Results
In this section, we outline the main steps in proving Theorems 1 to 3. The proof for Theorem 4
follows the same procedure as those for Theorem 2 and Theorem 3, so it it not discussed here. The
details of all the proofs are provided in the Appendix. We first present the system dynamics of the
ride-hailing problem.

1.5.1 System dynamics
To prepare for the proof of the main results, we need to write down the system dynamics. For
illustration, we assume that the travel time for vehicles moving from node j to node i are i.i.d. with
exponential distribution of rate µji. For general traveling time distributions, the typical approach is
to replace the links in the original network with a sub-network of infinite and double-ended queues
using that mixtures of Erlang distributions that are dense among all continuous distributions. We
discuss this transformation in detail in Section A.3.

Passengers originate at node j with destination node i according to a Poisson process with rate
denoted by λji. To model the passenger arrival process, we introduce unit rate Poisson Processes
Ai = {Ai(t), t ≥ 0} , i ∈ S. That means we denote the number of passenger requests with origin j
and destination i until the time t by Ai(λjit). To compute passengers’ reneging after their patience
runs out, we define unit rate Poison Processes Gi = {Gi(t), t ≥ 0} , i ∈ S . Given that, calculation
of the number of passengers who renege from node j by the time t is

Gj

(
θj

ˆ t

0

X
(N)−
j (s)ds

)
.

Among the first n full vehicles dispatched from the station j, we denote the number of those with
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destination i by ϕji(n), ji ∈ I. Note that the probability that a full vehicle departing node j for
destination i is equivalent to the probability that the destination of a passenger arriving at j is i,
thus

P {ϕji(n)− ϕji(n− 1) = 1} =
λji∑
k λjk

= pji, P {ϕji(n)− ϕji(n− 1) = 0} = 1− λji∑
k λjk

.

Similarly, to compute the number of empty relocation from each node, we define the unit rate
Poison processes Hi = {Hi(t), t ≥ 0} , i ∈ S. So, the number of empty vehicles from i to j by the
time t is

Hj

(
γj

ˆ t

0

X
(N)+
j (s)ds

)
.

Let σji(n) denote the number of the first n empty vehicles that left node j to destination node
i, ji ∈ I, then

P {σji(n)− σji(n− 1) = 1} = qji, P {σji(n)− σji(n− 1) = 0} = 1− qji.

Finally, let Fji(t) and Eji(t) denote unit rate Poisson processes, then the number of full and empty
vehicles that enter destination node j from node i can be expressed as

Fji

(
µji

ˆ t

0

X
(N)
ji (s)ds

)
, Eji

(
µji

ˆ t

0

Z
(N)
ji (s)ds

)
.

Recall that in the scaled system N , the arrival rates are Nλji. We have the following system
dynamics for the double-ended queue i of the network:

X
(N)
i (t) = X

(N)
i (0)− Ai

(
Nλit

)
+
∑
ji∈I

Fji

(
µji

ˆ t

0

X
(N)
ji (s)ds

)
+
∑
ji∈I

Eji

(
µji

ˆ t

0

Z
(N)
ji (s)ds

)
+Gi

(
θi

ˆ t

0

X
(N)−
i (s)ds

)
−Hi

(
γi

ˆ t

0

X
(N)+
i (s)ds

)
, i ∈ S, (1.12)

whereX(N)
i (0) is the state of the system at station i at the time 0,Ai(Nλit) is the passenger arrivals

to station i by the time t,
∑

ji∈I Fji

(
µji

´ t
0
X

(N)
ji (s)ds

)
represents the number of completed trips

of full vehicles travelling from node j to i by the time t, and
∑

ji∈I Eji

(
µji

´ t
0
Z

(N)
ji (s)ds

)
denotes

the number of empty vehicles arriving to node i from node j by the time t.
Next, we present the system dynamics for the infinite server stations to model the full vehicles
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traveling on each link ji, and it is given by

X
(N)
ji (t) = X

(N)
ji (0)− Fji

(
µji

ˆ t

0

X
(N)
ji (s)ds

)
+ϕji

( ∑
k,kj∈I

Fkj

(
µkj

ˆ t

0

X
(N)
kj (s)ds

)
+
∑

k,kj∈I

Ekj

(
µkj

ˆ t

0

Z
(N)
kj (s)ds

)

+X
(N)+
j (0)−X

(N)+
j (t)−Hj

(
γj

ˆ t

0

X
(N)+
j (s)ds

))
, ji ∈ I, (1.13)

where X(N)
ji (0) is the initial number of full vehicles travelling from node j to i at time 0. Note

that the output of term ϕji gives the total number of full vehicles leaving their trips from j to-
ward i up to time t, and the quantity in the open brackets of ϕji(·) represents the total num-
ber of departures from node j by time t. This is because, following the conservation law
for vehicles, the input to ϕji calculates the number of full vehicles departing j by the time t.
Specifically,

∑
kj∈I Fkj(µkj

´ t
0
X

(N)
kj (s)ds) indicates the number of completed trips to node j,∑

kj∈I Ekj(µkj

´ t
0
Z

(N)
kj (s)ds) denotes the number of completed empty trips to node j, X(N)+

j (0)

represents the initial number of vehicles in node j, X(N)+
j (t) characterizes the number of current

vehicles in node j, and Hj(γj
´ t
0
X

(N)+
j (s)ds) denotes the total number of empty vehicles reneged

from node j by time t.
Lastly, we note the defining equations for the system dynamics in the infinite server stations to

model the travel of empty vehicles on link ji, as follows

Z
(N)
ji (t) = Z

(N)
ji (0) + σji

(
Hj

(
γj

ˆ t

0

X
(N)+
j (s)ds

))
− Eji

(
µji

ˆ t

0

Z
(N)
ji (s)ds

)
, ji ∈ I.

(1.14)
Here, Z(N)

ji (0) is the initial number of full vehicles travelling from node j to i at the time 0, the
second term on the right hand side is the total number of empty vehicles relocated from j to i by
time t, while the third term is the total number of empty vehicles from j to i that have arrived node
i by time t.

Fluid system dynamics. We now rewrite the system dynamics by separating the stochastic
and deterministic terms so that each stochastic term has a mean of 0. For each stochastic term, we
subtract its mean from it so all stochastic will have mean 0. For convenience, we use the notation
“˜” to indicate the centered stochastic components:

Ãi(t) = Ai(t)− t; Ẽij(t) = Eij(t)− t; F̃ij(t) = Fij(t)− t;

G̃i(t) = Gi(t)− t; H̃i(t) = Hi(t)− t;

ϕ̃ij(n) = ϕij(n)− pjin; σ̃ij(n) = σij(n)− qijn.
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Then, for a double-ended queue at station i, the centered stochastic term of system dynamics (1.12)
can be expressed as

X̃
(N)
i (t) = −Ãi

(
Nλit

)
+
∑
ji∈I

F̃ji

(
µji

ˆ t

0

X
(N)
ji (s)ds

)
+
∑
ji∈I

Ẽji

(
µji

ˆ t

0

Z
(N)
ji (s)ds

)
+G̃i

(
θi

ˆ t

0

X
(N)−
i (s)ds

)
− H̃i

(
γi

ˆ t

0

X
(N)+
i (s)ds

)
, i ∈ S. (1.15)

We similarly obtain the stochastic terms of X̃(N)
ji (t),∀ji ∈ I and Z̃

(N)
kl (t),∀kl ∈ I. Refer to

Appendix A.4 for detailed expressions.
To proceed, we introduce the following deterministic dynamic system for give process x̃(t):

xi(t) = xi(0) + x̃i(t)− λit+
∑
ji∈I

µji

ˆ t

0

xji(s)ds+
∑
ji∈I

µji

ˆ t

0

zji(s)ds

+θi

ˆ t

0

x−i (s)ds− γi

ˆ t

0

x+i (s)ds, i ∈ S (1.16)

xji(t) = xji(0) + x̃ji(t)− µji

ˆ t

0

xji(s)ds+ pji
∑
kj∈I

µkj

ˆ t

0

xkj(s)ds

+pji
∑
kj∈I

µkj

ˆ t

0

zkj(s)ds+ pjix
+
j (0)− pjix

+
j (t)− pjiγj

ˆ t

0

x+j (s)ds, ji ∈ I(1.17)

zji(t) = zji(0) + z̃ji(t)− µji

ˆ t

0

zji(s)ds+ qjiγj

ˆ t

0

x+j (s)ds, ji ∈ I (1.18)

Note that X(N)/N satisfies these equations with x̃(t) = X̃(N)(t)/N .
The following result provides the properties of solution to the system (1.16-1.18).

Lemma 2. There exists a unique solution to the dynamical system (1.16-1.18), and the solution is

Lipschitz continuous in the process x̃(t).

Outline of proof of Theorem 1.
We first prove that, under the policy (QQQ,γγγ, ccc(λλλ)), the scaled queue length process X(N)(T )/N

converges to the fluid solution x(t) that is defined as the solution of system (1.16-1.18) with x̃ = 0

as N → ∞. We make use of the Lipschitz continuity property of the solution to dynamical system
(1.16-1.18) presented in Lemma 2 to bound the difference between the scaled queue length process
and the centered system (1.16-1.18) as follows:

E
[∣∣∣∣X(N)(t)

N
− x(t)

∣∣∣∣] ≤ C ′ E
[∥∥∥∥X̃(N)

N

∥∥∥∥
t

]
(1.19)

for some constant C ′. Then, we apply Donsker’s theorem to bound the magnitude of X̃(N)/N (see
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details in Lemma 7 in the Appendix) to prove that, for an arbitrary small ϵ > 0, we have

lim
N→∞

N1/2−ϵE
[∥∥∥∥X̃(N)

N

∥∥∥∥
t

]
= 0.

We next prove that the solution to (1.16-1.18) with x̃ = 0 converges to its equilibrium solution
(λλλ,fff,eee,βββ) at the respective rates presented in (1.8). We first show that a Linear Complementar-
ity Problem (LCP) that describes the equilibrium vehicle queue length x+ under a given policy
(QQQ,γγγ, ccc(λλλ)) has a unique solution with any given total supply Θ. Then, we construct a Lyapunov
function using the maximum value of Θ for which the solution to the LCP is a lower bound of the
vehicle queue length x+. We iteratively bound the rate of improvement in the Lyapunov function
using the convergence rate of a weakly diagonally dominant linear dynamical system. Finally we
use the Cheeger inequality for the second largest eigenvalue of the linear dynamical system, that
determines the convergence rate, to show that the Lyapunov function converges exponentially in
time. The linear convergence of the passenger queue length follows subsequently by letting time
go to infinity. The proof of these statements are technical and are laid out in Lemmas 8 to 16 in the
Appendix. This concludes the proof for Theorem 1.

Remark 4. Establishing the uniqueness of the solution to LCPs is typically a challenging task.

Due to the unique structure of the coefficient matrix in our LCP, we are able to solve it in closed

form and then prove its uniqueness (see Lemma 8 in the Appendix). To the best of our knowledge,

this paper is the first to use LCP based approach to construct a Lyapunov function in establishing

the stability of a dynamical system.

Outline of proof of Theorem 2.
Part (a) in Theorem 2 is proved in three steps. First, in Lemma 18 in the Appendix, we use

the Foster-Lyapunov Theorem to show that every dynamic policy that impose a single recurrent
class on the system states leads to an infinite-state Continuous Time Markov Chain (CTMC) that
is ergodic, hence it has a stationary distribution. Second, in Lemma 19 in the Appendix, we show
that the expected scaled stationary queue length E[XN(∞)/N ] satisfies the constraints in the fluid
optimization in (1.3) and (1.4). Third, in Lemma 20 in the Appendix, we prove that the objective
value associated with the long-run system performance measures is upper bounded by the objective
value of the fluid optimization in (1.3) and (1.4).

The proof for part (b) of Theorem 2 is more involved. It is clear that it suffices to prove∣∣∣∣∣∂UQQQ∗,λ∗λ∗λ∗,γ∗γ∗γ∗(T,N)

∂T
− U∗

∣∣∣∣∣ ≤ O
(
N−1/2+δ + e−αST

)
. (1.20)

Since we fix the pricing decisions in our dynamic joint pricing empty relocation policy, the rate
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of objective function at the time t can be written as

∂UQQQ,λλλ,γγγ(T,N)

∂T
=

1

N
E
[∑
ji∈I

µjiX
(N)
ji (t)Iji(λji)−

∑
ji∈I

cVjiµjiZ
(N)
ji (t)−

∑
j∈S

cWj X
(N)−
j (t)

]
.

Recall that U∗ is the optimal objective value to the fluid optimization problem in (1.3) and (1.4),
we have

U∗ =
∑
ji∈I

µjif
∗
jiIij(λji)−

∑
ji∈I

cVjiµjie
∗
ji −

∑
j∈S

cWj β
∗
j ,

here f∗ = (f ∗
j , f

∗
ji, e

∗
ji, β

∗
j , λ

∗
ji, j ∈ S, ji ∈ I) is the optimal solution to the fluid optimization

problem in (1.3) and (1.4). Subtracting we bound the left hand side using triangle inequality as
follows∣∣∣∂UQQQ∗,λ∗λ∗λ∗,γ∗γ∗γ∗(T,N)

∂T
− U∗

∣∣∣ ≤ 1

N

∑
ji∈I

µjiIji(λji)E
[∣∣∣X(N)

ji (T )−Nf ∗
ji

∣∣∣]
+

1

N

∑
ji∈I

cVjiµjiE
[∣∣∣Z(N)

ji (T )−Ne∗ji

∣∣∣]+ 1

N

∑
j∈S

cWj E
[∣∣∣X(N)−

j (T )
∣∣∣]

≤ 1

N

∑
ji∈I

µjiIji(λji)

ˆ ∞

0

P
{∣∣∣X(N)

ji (T )−Nf ∗
ji

∣∣∣ > ξ
}
dξ

+
1

N

∑
ji∈I

cVjiµji

ˆ ∞

0

P
{∣∣∣Z(N)

ji (T )−Ne∗ji

∣∣∣ > ξ
}
dξ

+
1

N

∑
j∈S

cWj

ˆ ∞

0

P
{∣∣∣X(N)−

ji (T )
∣∣∣ > ξ

}
dξ, (1.21)

where the first inequality follows from β∗
j = 0 for all j, the second inequality follows from the

continuous tail sum formula.
To complete the proof of Theorem 2, we need to evaluate the three tail probabilities in (1.21).

We will only illustrate the first one. In Lemma 22 of the Appendix, we have done, by making use
of Schilder’s and Mogulskii’s theorems, that there exist constant αS > 0 and m > 0 such that for
ξ ≥ N1/2+δ, we have

P
{
|XN(T )−Nf ∗| > ξ +mNe−αST

}
= O(e−αU ξ2/N). (1.22)
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Substituting, we obtain

ˆ ∞

0

P
{∣∣∣X(N)

ji (T )−Nf ∗
ji

∣∣∣ > ξ
}
dξ

=

ˆ N1/2+δ+mNe−αST

0

P
{∣∣∣X(N)

ji (T )−Nf ∗
ji

∣∣∣ > ξ
}
dξ

+

ˆ ∞

N1/2+δ+mNe−αST

P
{∣∣∣X(N)

ji (T )−Nf ∗
ji

∣∣∣ > ξ
}
dξ

≤ O(N1/2+δ) +O(Ne−αST ) +

ˆ ∞

N1/2+δ

P
{∣∣∣X(N)

ji (T )−Nf ∗
ji

∣∣∣ > ξ +mNe−αST
}
dξ

≤ O(N1/2+δ) +O(Ne−αST ) +

ˆ ∞

0

O(e−αU ξ2/N)dx

= O(N1/2+δ) +O(Ne−αST ),

where the first inequality is obtained by replacing P{(·)} in the first term by 1, the second inequal-
ity follows from (1.22), and the last equality is obtained by including O(N1/2) in O(N1/2+δ).

Similar results are obtained for the second and third integral in (1.21). Substituting these results
in (1.21) we obtain (1.20). This completes the proof of Theorem 2.

Outline of proof of Theorem 3.
We want to show that there exist αL > 0 and t0 > 0, such that for any T ≥ t0, (1.10) is satisfied.

By Lemma 16 in the Appendix, we know that xi(t) converges to fi, thus there exists a t0 > 0 such
that |xi(t) − fi| < fi/2 for t ≥ t0, thus xi(t) ≥ fi/2. We first upper bound the left hand side of
(1.10) by

E
[∑

j∈S

ˆ T

t0

θjX
(N)−
j (t)dt

]
≤ (T − t0)

∑
j∈S

θjE
[

sup
t0≤t≤T

X
(N)−
j (t)

]
. (1.23)
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We upper bound the expectation on the right hand side as follows

E
[

sup
t0≤t≤T

X
(N)−
j (t)

]
=

∞∑
k=0

P
{

sup
t0≤t≤T

X
(N)−
j (t) ≥ k

}
=

∞∑
k=0

P
{

sup
t0≤t≤T

{
−X

(N)
j (t)

}
≥ k

}
=

∞∑
k=0

P
{

sup
t0≤t≤T

{
−X

(N)
j (t) +N

fj
2

}
≥ k +N

fj
2

}
≤

∞∑
k=0

P
{

sup
t0≤t≤T

{
−X

(N)
j (t) +Nxj(t)

}
≥ k +N

fj
2

}
≤

∞∑
k=0

P
{

sup
t0≤t≤T

∣∣∣X(N)
j (t)−Nxj(t)

∣∣∣ ≥ k +N
fj
2

}
≤

∞∑
i=0

(i+1)N−1∑
k=iN

P
{

sup
t0≤t≤T

∣∣∣X(N)
j (t)−Nxj(t)

∣∣∣ ≥ k +N
fj
2

}
≤ N

∞∑
i=0

P
{

sup
t0≤t≤T

∣∣∣X(N)
j (t)−Nxj(t)

∣∣∣ ≥ iN +N
fj
2

}
≤ N

∞∑
k=0

P

{∥∥∥XN
j

N
− xj

∥∥∥
T
≥ k +

fj
2

}

≤ N
∞∑
k=0

P
{∥∥∥XN

N
− x
∥∥∥
T
≥ k +

fj
2

}
, (1.24)

where the first equality follows the tail sum formula for the non-negative integer valued random
variable supt0≤t≤T X

(N)−, the second equality follows from the fact that the summand k is positive,
the first inequality follows from the fact that xj > fj/2, and the fifth inequality follows from the
definition of infinity norm.

By Lipschitz continuity of xj(t) (see Lemma 2), we have

∥∥∥XN

N
− x
∥∥∥
T
≤ C ′

∥∥∥X̃N

N

∥∥∥
T
,

Where C ′ is the Lipschitz constant introduced in Lemma 2. Thus

P
{∥∥∥XN

N
− x
∥∥∥
T
≥ k +

fj
2

}
≤ P

{∥∥∥X̃N

N

∥∥∥
T
>
k + fj/2

C ′

}
.

In Lemma 25 in the Appendix, we will show that for a positive constant α > 0 and any positive
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ϵ > 0

P
{∥∥∥X̃N

N

∥∥∥
T
> ϵ
}
= O

(
e−2αϵ2N

)
. (1.25)

Setting ϵ = (k + fj/2)/C
′ and αL = α(fj/2C

′)2 in (1.25) and substituting the result in (1.24), we
obtain

E
[

sup
t0≤t≤T

X
(N)−
j (t)

]
≤ N

∞∑
k=0

O
(
e
−2α

(
k+fj/2

C
′

)2

N
)
= O(e−αLN), (1.26)

where the last term follows from that N = elogN ≤ ek+αLN for some constant k. Finally, substi-
tuting (1.26) into (1.23) concludes the proof of Theorem 3.
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CHAPTER 2

A Unifying Graph-Coloring Approach for
Intersection Control in a Connected and Automated

Vehicle Environment

2.1 Introduction

Vehicular traffic control at at-grade intersections has been extensively studied in the traffic science
and engineering literature. Intersections are where conflicting traffic movements compete for the
right-of-way, and thus delay or accidents will likely occur. The essence of intersection control
is resource/right-of-way allocation. In general, the problem involves determining spatio-temporal
trajectories for vehicles approaching the intersection to maximize throughput or minimize delay
while ensuring a safe buffer between these trajectories in the space-time prism. Moreover, these
spatio-temporal trajectories must respect certain kinodynamic constraints such as maximum accel-
eration, deceleration, or speed (these constraints can be reflected by the limits on curvature and
slope of a spatio-temporal trajectory). Finding optimal intersection control belongs to the class of
NP-complete problems even under various simplifying assumptions such as relaxing the accelera-
tion/deceleration limits [Dasler and Mount, 2015].

In practice, this daunting task is accomplished by heuristic right-of-way allocation rules or
principles. For example, a stop-sign control allocates the intersection’s entire space-time prism
to a single vehicle during its passage to ensure safety. It is designed for low-traffic intersections
and thus yields low throughput and high delay when implemented at intersections with high traffic
demand. Traffic signal control (TSC), on the other hand, has served as the primary means of con-
trolling critical, high-traffic intersections for almost a century. Its right-of-way allocation principle
decomposes the traffic demand into a number of movement groups (each group is a union of spa-
tially non-conflicting movement streams; a movement stream is a group of through/turning lanes
with the same entering and exiting road/approach). It then allocates the right-of-way to one group
at a time while keeping all other groups waiting. Typically, this allocation is cyclic, and thus signal
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timing aims to optimize the length of the cycle and its allocation among movement streams (the
so-called green split) [Urbanik et al., 2015].

The advancement of connected and automated vehicle (CAV) technology has motivated re-
searchers to investigate whether the technology can be leveraged to transform intersection control.
In addition to the provision of real-time vehicle location information, the CAV technology substan-
tially decreases the required buffer in the space-time prism between two moving vehicles to ensure
a safe passage. More importantly, in a fully CAV environment, the right-of-way allocation rule can
be more complex, to the point that would otherwise confuse a human driver. The proposed control
on this quest usually consists of two stages: a planning/scheduling algorithm puts the approach-
ing CAVs into an order, and then a cooperative longitudinal motion controller controls the motion
of CAVs for their passage of the intersection. Below we elaborate on two most relevant control
approaches investigated in the literature: reservation-based schemes and rhythmic control. For a
more comprehensive review, see, e.g., Rios-Torres and Malikopoulos [2016].

Initiated by Dresner and Stone [2008], the reservation-based scheme requires vehicles ap-
proaching an intersection to send a reservation request to an intersection manager, which sub-
sequently decides whether it is safe to accommodate the request. If positive, the manager accepts
the reservation and provides a motion control plan that satisfies the safety and kinodynamic con-
straints. Otherwise, the intersection manager rejects the request and responds with a counter offer.
Fundamentally, this scheme performs a grid decomposition of the space-time prism of the intersec-
tion into reservation tiles. Then, it finds a safe passage for a new vehicle by ensuring the associated
tiles for the movement of this vehicle do not overlap with those reserved by previously confirmed
requests. The reservation-based scheme inherently follows the first-come-first-served principle to
process the requests. Several follow-up studies aim to improve upon this principle by batching
the requests and optimizing the sequence in which the intersection manager processes them [Levin
et al., 2016, Levin and Rey, 2017]. However, it has been pointed out that finding an optimal se-
quence is not tractable, especially for high traffic regimes. That being said, the reservation-based
scheme has been demonstrated to effectively reduce intersection delay as compared to TSC in low
traffic regimes.

Recently, Chen et al. [2021] proposed a novel rhythmic control scheme that redesigns the inter-
section layout and performs a pre-decomposition of the space-time prism into a union of spatio-
temporal trajectories. Then, vehicles approaching the intersection would traverse through the first
unassigned spatio-temporal trajectory. This scheme has been shown to substantially outperform
TSC reasonably balanced traffic demand patterns using simulation. A balanced traffic demand
pattern is one in which the per-lane demand for each movement stream, turning or through, is the
same. However, the scheme shows an inferior performance when dealing with unbalanced demand
patterns. Moreover, it imposes several restrictive assumptions on vehicles’ specifications and in-
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tersection layout to facilitate the pre-decomposition of the space-time prism. These restrictions
include homogeneous vehicle dimensions and increased lane spacing, among others.

2.1.1 Contributions

Given the NP-hardness of the intersection control problem, a control with a guaranteed approxi-
mation factor would be desirable. Unfortunately, to the best of our knowledge, there is no known
control scheme that can guarantee a near-optimal throughput for a generic traffic demand pattern.
This paper aims to fill this void by proposing an approximation algorithm that leverages graph
coloring techniques. We hereinafter refer to this algorithm as graph coloring control (GCC). GCC
is unifying because it includes as a special case the traditional signal control for manually driven
vehicles, several reservation-based schemes, and the rhythmic control for automated vehicles. Con-
sider the two main objectives of an efficient intersection control, namely maximizing throughput
and minimizing delay. For the former, given a sufficiently large footprint for the intersection and a
generic demand pattern, GCC provides a polynomial-time approximation scheme for the through-
put maximization problem. For the latter, with stationary, admissible vehicle arrivals, the delay
that each vehicle experiences is less than a constant value that linearly depends on the number of
movement streams and the inverse of the approximation algorithm’s precision factor. Moreover,
this constant value is independent of the number of lanes within each movement stream and the
intersection’s demand pattern.

2.1.2 Organization

Section 2.2 states the problem and the study assumptions. Section 2.3 presents the approxima-
tion algorithm and its performance guarantees for a simplified version of the intersection control
problem. Section 2.4 generalizes the algorithm and its performance guarantees to the most gen-
eral case of the problem. Section 2.5 discusses the relationships between GCC and other controls.
Section 2.6 presents simulation results to demonstrate the performance of GCC in various scenar-
ios. Lastly, Section 2.7 summarizes our GCC algorithm and generalizes it to solve a subclass of
job-shop scheduling problems with sequence-dependent setup times.

2.2 Problem Statement

Consider a generic intersection layout. Let L represent the set of all left-turn, through, and right-
turn lanes. If the intersection includes merged, shared, or diverged lanes, we consider them as
separate lanes in L. Let N be the set of conflict points representing the crossing locations of these
lanes. The nodes in N divide each lane l ∈ L into a set of consecutive directed segments, Al. Let
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Figure 2.1: Representation of a lane and its segments inside an intersection

us denote by A = ∪lAl the union of these segments and indicate by G = (N,A) the underlying
digraph of the intersection. Also, we call the first and last segment of each lane the entrance and
exit segment of that lane, respectively. We refer to other segments as intermediate. Figure 2.1
demonstrates an intersection with eight lanes, where the through lane l1 is highlighted. The set of
its intermediate segments {(2, 3), (3, 4), (4, 5)} are shown by solid lines, and its entrance and exit
segments {(1, 2), (5, 6)} are shown by dashed lines. Dotted lines show other segments.

Now consider a set of CAVs of different sizes crossing the intersection. The intersection man-
ager assigns an entrance time and an acceleration/deceleration profile that satisfies safety and kin-
odynamic constraints for each vehicle approaching the intersection to maximize the throughput
of the intersection. For a meaningful representation of the intersection throughput, we adopt the
concept of reserve capacity, defined as the greatest common multiplier of the existing traffic de-
mand pattern that can be accommodated subject to lane capacity and other constraints [Allsop,
1972]. The reserve capacity has also been utilized to measure the capacity for signal-controlled
traffic networks [Wong and Yang, 1997]. Finding the reserve capacity for general networks with
multi-commodity flows is known as the maximum concurrent flow problem [Shahrokhi and Mat-
ula, 1990].

Given an intersection layout and its underlying traffic demand pattern, we attempt to devise an
intersection control to maximize the reserve capacity of the intersection. To mathematically define
this problem, we discretize the study horizon, say, one hour, into time intervals of length δt to form
a set T = {t1, t2, . . . , tr}, where ti ∈ T represents the ith ordered time interval. The intersec-
tion manager assigns an entrance time and a pre-specified acceleration/deceleration profile upon
each vehicle’s arrival. To model each vehicle’s acceleration/deceleration profile, we discretize
each segment a ∈ Al by introducing additional tracking points. The vehicle moves forward to the
next tracking point along its lane during each time interval. The intersection manager must en-
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sure the existence of an acceptable longitudinal motion control that can materialize the discretized
movement plan. Note that the segment discretization is vehicle-specific and may differ between
vehicles passing over the same segment. More specifically, the longitudinal motion control must
satisfy kinodynamic constraints such as respecting the maximum acceleration, deceleration, and
speed. Moreover, to ensure a safe passage, define a following headway as the minimum safe tip-to-
tail time difference between the passage of two vehicles from the same lane over the same conflict
point. We assume this time difference is the same for all pairs of vehicles traveling on the same
lane and denote it by hf . Also, define a crossing headway as the minimum safe tip-to-tail time
difference between the passage of two vehicles from two different lanes over the same conflict
point. Although the crossing headway may differ between different pairs of vehicles, we denote by
hc its maximum for all pairs of vehicles in the system. Considering vehicle dynamics and control,
we know that these two headways are not necessarily equal and hf is likely less than hc.

We now formulate a linear program to find an upper bound on the reserve capacity of the
intersection. The idea is that the right-of-way at each conflict point of the intersection can be
allocated to at most one vehicle at any time during the study period. As vehicles in the system may
have different lengths, we denote by Ul the sum of lengths of all vehicles in the demand for lane
l during the study horizon, and by dl the demand for lane l in the number of vehicles during the
study horizon. To compute an upper bound on the reserve capacity of the intersection, we define
Problem 2.1 as follows:

max α (2.1a)

s.t. H ≥ α
∑

l:e=(j,i)∈l

(
Ul

vmax

+ dlhf ); ∀i ∈ N (2.1b)

where objective 2.1a is to maximize the reserve capacity. H is the length of the study horizon
and Ul

vmax
+ dlhf is the minimum time required for a set of dl vehicles with total length Ul to pass

through a conflict point with headway hf . For constraint 2.1b, note that the right-of-way of conflict
point i is allocated to the lanes crossing it during the study time H . For a control to have a reserve
capacity of α, it must allocate the right-of-way of conflict point i to each lane l crossing it for at
least α(

∑
l:e=(j,i)∈l

Ul

vmax
+ dlhf ) time.

Lastly, unless explicitly specified, we focus on simple intersections defined as follows:

Definition 1. In a simple intersection, starting from each intermediate segment a ∈ A, for all lanes

passing the segment a, there is a unique way to exit the intersection. An intersection is complicated

otherwise.

Figure 2.2 presents examples of simple and complicated intersections. In the complicated in-
tersection on the right, the segments, depicted in solid red lines, are shared by lanes that exit the
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(a) A simple intersection layout (b) A complicated intersection layout

Figure 2.2: At-grade road intersection layouts

intersection from different outbound approaches.
Note that an intersection with merged lanes, like the merged left-turn and through lanes, can

be a simple intersection. The key difference between simple and complicated intersections is to
consider the intermediate segments in the underlying digraph of the intersection. Additionally, if
a left-turn lane is merged with a through lane, the intersection is still simple as long as the two
lanes do not diverge along an intermediate segment. We further note that complicated intersections
are not common in practice. They typically appear when a one-lane street intersects with a multi-
lane street (the case in Figure 2.2(b)). Although, our method can be modified to accommodate
complicated intersection, it cannot achieve the same performance guarantees as the ones we present
for simple intersections.

2.3 GCC for Dimensionless Vehicles

To facilitate the presentation of our scheme, we start with a simplified setting where vehicles are di-
mensionless, and both the following and crossing headways are set equal to the time discretization
unit, δt.

2.3.1 Motivating Example and Intuition

In this section, we provide a motivating example to illustrate how graph coloring can be leveraged
to avoid collision when routing spatially conflicting traffic movements. Consider a directed gird
network Ĝ (Figure 2.3a) with six set of vehicles traveling from their origin to their destination
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(Oi, Di), i = 1, 2, ..., 6. We now route these vehicles to traverse the network without collision, i.e.,
ensuring that no two vehicles occupy the same node at the same time. We first decompose these
six sets of vehicles into three movement groups while assigning a path for each set of vehicles. The
decomposition is shown in Figure 2.3b, where we assign the same color to the paths belonging to
the same movement group.

We subsequently assign three colors to the vertices of Ĝ with color 1 illustrated by cyan, color
2 by red, and color 3 by yellow (Figure 2.3b). Note that the colors are assigned to nodes of the
digraph such that each edge is directed from a node with color r ≡ (mod 3) to a node with color
r + 1 ≡ (mod 3). Additionally, the start nodes O1 and O2 posses color 1, start nodes O3 and O4

posses color 2, and start nodes O5 and O6 posses color 3. We discretize the time horizon into time
steps t ∈ {t1, t2, . . . , tr}. Then, we release one vehicle at each of the start nodes at the beginning
of the j-th time interval if and only if j ≡ 0(mod 3). Then, vehicles in each set are required
to follow their associated path from their start to end node moving one node forward during each
time interval. Consequently, we can observe that at the start of any time interval t, all vehicles
with endpoints (O1, D1) and (O2, D2) are in nodes of color 1 + t ≡ (mod 3), all vehicles with
endpoints (O3, D3) and (O4, D4) are in nodes of color 2 + t ≡ (mod 3) and all vehicles with
endpoints (O5, D5) and (O6, D6) are in nodes of color t ≡ (mod 3).

Note that there are two types of potential collisions. The first type is between two vehicles
assigned to the same movement group, and the other is between two vehicles assigned to different
movement groups. We implicitly avoid the first type of collision by enforcing vehicles in each
of the six groups to follow their associated paths that are spatially non-conflicting. To prevent
the second type of collisions, observe that at each time step t ∈ {t1, t2, . . . , tr}, the vehicles that
occupy nodes of the same color are from the same movement group. So there is no collision
between vehicles from different movement groups. As a result, no two vehicles will be at the same
node at the same time.

In this example, to route spatially conflicting traffic movements, we first decompose them into
three movement groups; each group contains movements that follow spatially non-conflicting
paths. Afterward, we color the underlying digraph of the network with three colors and lever-
age the graph coloring property of the network to allocate the right-of-way of each node to one
movement group during each time step. Finally, we allow the vehicles from each movement group
to enter an entrance node at time steps that right-of-way of the entrance node is allocated to their
associated group. Then, these vehicles can continue their movement along their associated path
moving forward one node during each time step.

In the same spirit, our GCC algorithm for intersection control follows these three steps, as
illustrated in Figure 2.4. At the first step, GCC decomposes the traffic demand to be served into
groups of non-conflicting movements. This step appears similar to what traditional traffic signal
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(a) The grid network (b) colored grid network

Figure 2.3: Collision-free example

control or TSC does, but the key difference is that in TSC, the movement along each lane, e.g.,
a left-turn movement, needs to be entirely contained in at least one of these groups. To ensure
each lane is covered the same number of times with the movement groups, this entirety inclusion
constraint may increase the number of required movement groups to serve the intersection demand.
As we will show later, the number of groups in the decomposition phase of GCC is directly related
to the throughput associated with each movement group. In particular, if we decompose the traffic
demand into k groups and implement GCC on a k-colorable digraph, we can admit traffic from
each group for 1

k
fraction of the study horizon. Section 2.3.2 discusses how demand decomposition

is implemented in a generic directed graph.
At the second step, we exploit graph coloring techniques to allocate the right-of-way at conflict

points of the intersection. In particular, note that a key feature in the motivating example in Section
2.3.1 is that the vertices in the underlying digraph of the intersection can be colored with three
colors such that for each node of color i ≡ (mod 3) all outgoing edges are connected to nodes of
color i+1 ≡ (mod 3). We exploit this feature to allocate the right-of-way at each node with color
i at time step t ≡ ( mod 3) to the movement group i−t ≡ ( mod 3). Section 2.3.3 generalizes this
idea into periodic k-colorable digraphs and discusses how to modify the right-of-way allocation in
this general case.

At the third step, GCC assigns the movement of each vehicle along each segment of its lane
to one of the decomposition movement groups. Doing so, some vehicles might switch between
movement groups while crossing the intersection. Therefore, it is essential to ensure that vehi-
cles do not block each others’ movement when awaiting to switch to another movement group.
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Figure 2.4: Overview of the GCC algorithm

Note that vehicles in each movement group can continue their movement along a path entirely
contained in their movement group moving forward one node during each time step and the cyclic
right-of-way allocation can ensure collision avoidance. However, as a result of breaking the en-
tirety inclusion constraint, the vehicles traveling along some of the lanes must switch between the
movement groups. Section 2.3.4 illustrates the details of this procedure.

2.3.2 Step 1: Demand Decomposition

As aforementioned, the demand decomposition component in GCC deliberately removes the en-
tirety inclusion constraint by breaking each through or turn lane into its segments. Then, it finds
a set of non-conflicting movement groups that can cover the demand for these segments. The in-
tent of this key difference is to reduce the number of decomposition groups, thereby improving
the intersection’s throughput. To be specific, GCC considers an optimal solution, α∗, to Prob-
lem 2.1 and breaks the right-of-way allocation to each lane, i.e., α∗( Ul

vmax
+ dlhf ), into segment

allocated right-of-way da =
∑

l:a∈l α
∗( Ul

vmax
+ dlhf ) : a ∈ A. Here, the summation is over the

set of lanes that include segment a. Then, GCC discretizes the segment allocated right-of-way
to exploit the graph decomposition techniques that can find a set of non-conflicting movement
groups covering the demand for those segments. To do so, denote by ∆ the maximum number
of lanes that pass through a node i ∈ N . Then, GCC discretizes the segment allocated right-of-
way into multiples of H/(k − ∆ + 1), i.e., for each segment a ∈ A, we replace segment a with∑

l:a∈l

⌈
α∗(

Ul
vmax

+dlhf )(k−∆+1)

H

⌉
parallel edges between the endpoints of a in the original digraph

G. This yields a new directed multigraph G̃ such that the number of parallel edges between the
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endpoints of a segment is an index of demand for that segment. Subsequently, GCC decomposes
G̃ into a union of non-conflicting movement groups. Note that a non-conflicting movement group
is a union of mutually exclusive directed paths and directed cycles, which are defined as directed
{1, 2}-factors [Chiba and Yamashita, 2018] in the graph theory literature. Thus, we hereinafter
refer to non-conflicting movement groups by directed {1, 2}-factors.

Definition 2. [Chiba and Yamashita, 2018] A directed {1, 2}-factor Di in a directed graph is a

directed subdigraph formed by the union of directed cyclesC =
⋃
Ci and directed paths P =

⋃
Pi

that do not include common nodes.

Definition 3. [Chiba and Yamashita, 2018] A directed 2-factor of a digraph is a spanning subdi-

graph in which every component is a directed cycle.

To decompose the directed multigraph G̃ into a union of directed {1, 2}-factors, we utilize the
2-factor theorem introduced by Lovász and Plummer [2009]:

Theorem 5. [Lovász and Plummer, 2009] Let G be a directed graph whose nodes have in-degree

and out-degree equal to k. Then the edges of G can be partitioned into k edge-disjoint 2-factors.

Theorem 5 implies that for regular digraphs G̃, a digraph whose nodes have the same in-degree
and out-degree, the number of subflow groups required to cover edges in G̃ equals the maximum
in/out-degree of G̃. Therefore, we find an upper bound on the degree of a node i ∈ G̃ in Lemma 3.

Lemma 3. The maximum in-degree and out-degree for the digraph G∗ is at most k.

Proof. Proof. See Appendix A.15.

To use Theorem 5 on directed multigraph G̃, we are required to add edges to G̃ to construct a
directed multigraph G∗ whose nodes have in-degree and out-degree equal to k. This can be done
in an iterative procedure where we add a virtual directed edge from a node v with out-degree less
than k to a node u, possibly the same as v, with in-degree less than k. As the total in-degree and
total out-degree of a digraph are equal and as the in/out degree of all vertices are less than or equal
to k, there is a node with in-degree less than k if and only if there is a node with out-degree less
than k. Finally, we utilize Theorem 5 to decompose the edges inG∗ into k 2-factors. Removing the
edges in G∗ \ G̃ we obtain a {1, 2}-factor decomposition of G̃. To be self-contained, we provide
a brief description of the algorithm adopted from Lovász and Plummer [2009] in Appendix A.16.
For brevity, hereinafter, we refer to the edges ẽ ∈ Ã resulted from applying the decomposition
algorithm on segment e ∈ A as parallel edge copies of e. Also, to avoid confusion, we refer to
elements of A as segments and to elements of Ã as edges.
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2.3.3 Step 2: Making Underlying Digraph Periodic k-colorable

To generalize the graph coloring feature exploited in the motivating example in Section 2.3.1, we
define a periodic k-colorable digraph as follows:

Definition 4. A digraph is periodic k-colorable if its vertices can be colored with k colors such

that for each node with color i ≡ (mod k) all outgoing edges are connected to nodes with color

i+ 1 ≡ (mod k).

Trivially, not all digraphs are periodic k-colorable. However, Theorem 6 shows how to add
tracking points to any generic network to construct a modified periodic k-colorable digraph.

Theorem 6. Consider a multigraph G, and assume there exist the same number of initial tracking

points along any two parallel edges. We can add additional tracking points to transform G into

a periodic k-colorable digraph. Moreover, the numbers of tracking points along parallel edges

remain equal.

Proof. Proof. See Appendix A.17.

Next, we discuss how to allocate the right-of-way at each node to directed {1, 2}-factors cross-
ing that node in a periodic k-colorable digraph. For each edge ã ∈ Ã, denote by z1ã the number of
tracking points required to traverse it with the maximum allowable speed vmax, this value can be
obtained by dividing the time it takes to traverse ã with maximum allowable speed by the length
of the time intervals δt. Add z1ã tracking points along each edge ã ∈ Ã and apply the algorithm
presented in Theorem 6 to obtain the periodic k-colorable digraph Ḡ. Decompose Ḡ into k di-
rected {1, 2}-factors Dp : p ∈ {1, 2, . . . , k}. Consider a set of vehicles whose routes belong to one
of these directed {1, 2}-factors. We allocate the right-of-way of a node v ∈ Ḡ possessing color
i ≡ (mod k) to vehicles travelling along Dp only in time intervals t ≡ i−p(mod k). As a result,
we ensure at any time step t ≡ (mod k) all vehicles traveling along a path contained in Dp are
at nodes possessing color i ≡ t + p(mod k). Hence, we can make sure each node i cannot be
occupied by vehicles from more than one directed {1, 2}-factor Dp. Doing so, we associated a set
of time intervals to directed {1, 2}-factors that pass through each node. In other words, we allocate
the right-of-way at each node as a resource to directed {1, 2}-factors crossing that node.

2.3.4 Step 3: Movement Synchronization

This last step of GCC is to devise a scheduling algorithm that synchronizes the movement of
vehicles through the intersection to ensure a collision-free route assignment while obtaining a
throughput for the intersection close to the upper bound obtained in Problem 2.1.
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The graph coloring control, upon arrival of each vehicle at the intersection, considers its associ-
ated lane. Then, it assigns the movement of that vehicle along each segment of the associated lane
to a directed {1, 2}-factor. Afterward, the vehicle crosses each node, including its entrance node
to the intersection, according to the right-of-way allocation presented in Section 2.3.3. In partic-
ular, it crosses each node during a time interval that the right-of-way is allocated to the directed
{1, 2}-factor containing the movement on the segment directed out from that node.

Note that if the scheduling algorithm assigns the movement of a vehicle along each segment of
its associated lane to the same directed {1, 2}-factor, the vehicle can move forward one tracking
point during each time step and the scheduling algorithm ensures collision avoidance. To conclude
that, we should consider two cases. First, the right-of-way allocation in section 2.3.3 ensures that
vehicles from different {1, 2}-factors do not collide. Second, each directed {1, 2}-factor resulted
from the decomposition phase does not intersect itself, so vehicles travelling along a {1, 2}-factor
do not collide.

Furthermore, recall from Section 2.3.2 that we break the demand for each lane into demand
for its segments. Thus, we cannot make sure each of the final {1, 2}-factors contains a parallel
edge copy of all segments for a lane. As such, the vehicles crossing the intersection might switch
between different {1, 2}-factors. Consider a vehicle moving along lane l aims to switch from an
edge ã ∈ Ã to an edge b̃ ∈ Ã at a node v with color i. Also, ã belongs to the directed {1, 2}-factor
Dp and b̃ belongs to the directed {1, 2}-factor Dq. If we add p − q ≡ (mod k) virtual tracking
points on the last edge on Dp, ã, prior to transition to Dq, we can ensure this vehicle will cross the
transition node during a time interval t that satisfies t ≡ i−p+(p−q) ≡ i−q(mod k). Thus, this
vehicle can start its movement on Dq upon completion of its switch from Dp to Dq. The right-of-
way allocation presented in Section 2.3.3 ensures that if vehicles move forward one tracking point
during each time step no two vehicle from different {1, 2}-factors appear at a node of the digraph
during the same time interval. The only remaining caveat is to ensure these vehicles will not block
each other’s paths while waiting to switch between directed {1, 2}-factors. To address this caveat,
we first restate the problem of assigning the vehicle movement along each segment of its lane to a
directed {1, 2}-factor as an instance of the general matching problem.

To mathematically approach this problem, for each edge ã ∈ Ã recall z1ã is the number of
tracking points required to traverse it with the maximum allowable speed vmax. Also, denote by z2ã
the number of additional points on ãwe obtain from implementing Theorem 6 to make the directed
multigraph G̃ periodic k-colorable. For each entrance/intermediate edge ẽ ∈ Ã denote by A+(ẽ)

the set of edges in Ã that follow ẽ along any lane l. As we consider simple intersections, all edges
in the set A+(ẽ) are parallel edge copies of the same segment b ∈ A.

To find a feasible switching scheme, we define a new graph Ǧ = (V̌ , Ǎ) where each interme-
diate edge ã ∈ Ã is replaced by two vertices v+(ẽ), v−(ẽ) ∈ V̌ , each entrance edge is replaced by
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one vertex v+(ẽ) and each exit edge is replaced by one vertex v−(ẽ). Also, there is a directed edge
ǎ ∈ Ǎ from each node v+(ẽ) ∈ V̌ to all nodes v−(b̃) ∈ V̌ corresponding to edges b̃ ∈ A+(ẽ).

Furthermore, for each edge ǎ ∈ Ǎ between nodes corresponding to a pair of consecutive edges
ẽ, f̃ ∈ Ã, define w′

ẽ,f̃
≡ z2ẽ + p− q(mod k), and denote by wẽ,f̃ = w

′(1+ϵ)

ẽ,f̃
the weight of ǎ. Here, ẽ

and f̃ belong to the {1, 2}-factors p and q, respectively. Also, ϵ > 0 is a sufficiently small positive
number. Finally, we implement standard algorithms, such as the blossom algorithm by Edmonds
[1965a,b], to find a minimum weight perfect matching in Ǧ.

Lemma 4. The graph Ǧ contains at least one perfect matching.

Proof. Proof. See Appendix A.20.

Note that each edge (v+(ẽ), v−(f̃)) in a perfect matching in graph Ǧ corresponds to a switch
between the {1, 2}-factor containing ẽ to the {1, 2}-factor containing f̃ . Therefore, each interme-
diate edge in G̃ is matched with an incoming edge as well as an outgoing edge in G̃. Also, each
entrance and exit edge is matched with an outgoing and incoming edge in G̃, respectively. Follow-
ing GCC, vehicles from each lane form a queue before entering the intersection. Then, assuming
we are at time step t, we determine the entrance time t1 of the vehicle in front of a queue behind
start segment a ∈ A to intersection according to the right-of-way allocation in Section 2.3.3. In
particular, the vehicle enters a node with color i at the minimum time step t1 ≥ t that satisfies
t1 ≡ (i − p)(mod k) for a {1, 2}-factor Dp that contains a parallel edge copy of segment a, i.e,
ã. Then the vehicle travels along its lane by moving forward one tracking point in G̃ at each time
interval. When the vehicle traversed all z1ẽ tracking points on an edge ẽ it will switch to an edge
f̃ such that the edges v+(ẽ) and v−(f̃)) are matched in the minimum weight perfect matching ob-
tained. Furthermore, to switch from ẽ to f̃ we should add wẽ,f̃ additional tracking points on e. As
the intersection is a simple intersection, all lanes that contain a section a ∈ A will coincide with
the unique way to exit the intersection. Therefore, vehicles do not deviate from their associated
lane when switching between edges. For readers convenience, we provide a brief description of
the process of finding a feasible switching scheme, presented in this section, as Algorithm 3 pre-
sented in Appendix A.24. Finally, Lemma 5 proves that following this procedure no vehicle blocks
another vehicles’ path while waiting to switch between segments.

Lemma 5. If we follow the switching scheme presented in Section 2.3.4, we can ensure no vehicle

blocks another vehicle’s movement.

Proof. Proof. See Appendix A.18.
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For readers convenience, we provide a brief description of dimensionless GCC in Algorithm 1.

Algorithm 1 Dimensionless Graph Coloring Control

1. Solve Problem 2.1 in intersection underlying digraph G to find maximum reserve capacity
α∗.
2. Replace each edge e ∈ G by

∑
l:a∈l

⌈
α∗(

Ul
vmax

+dlhf )(k−∆+1)

H

⌉
parallel edges to find multigraph

G̃.
3. Decompose G̃ into a union of k mutually exclusive {1, 2}-factors, D1, D2, . . . , Dk.
4. Add z2ẽ tracking points on each edge ẽ ∈ G̃ to modify G̃ into a periodic k-colorable digraph.
5. Allocate the right-of-way of a node v ∈ Ḡ possessing color i ≡ (mod k) to a vehicle
travelling along Dp only in time intervals t ≡ i− p(mod k).
6. Construct the weighted graph Ǧ. Then, obtain a feasible switching scheme as a minimum
weight perfect matching Ǧ.
7. Find entrance time to intersection for a vehicle according to the right-of-way allocation rule.
8. The vehicle travels along its lane by moving forward one tracking point in G̃ during each time
interval. When traversed all z1ẽ tracking points on ẽ it will switch to an edge f̃ such that v+(ẽ)
and v−(f̃) are matched in Ǧ (To switch from ẽ to f̃ we should add wẽ,f̃ tracking points on ẽ).

Theorem 7. Algorithm 1 obtains an objective value of at least k−∆+1
k

α∗ where α∗ is the optimal

value of the optimization problem 2.1.

Proof. Proof. See Appendix A.19.

For an illustrative example of GCC for dimensionless vehicles we refer readers to Appendix
A.21. Also, we refer the readers to the supporting materials (2.7.2) for a video demonstrating the
operations of dimensionless graph coloring control. Note that, at each moment, the color of a
vehicle indicates the {1, 2}-factor associated with the movement of the vehicle on G̃.

2.4 Generalizing GCC for Practical Implementation

This section generalizes GCC by allowing arbitrary vehicle length and different following and
crossing headways. We also discuss the issues regarding the intersection space limitation for ac-
commodating additional tracking points.

As mentioned in Section 2.1, the following headway is expected to be shorter than the crossing
headway, and the upper bound obtained in Problem 2.1 can be achieved under the condition that
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Figure 2.5: four traffic units moving in parallel lanes

all consecutive vehicles must maintain the following headway hf . Thus, it is intuitive that in order
to improve the objective value we may want that most of the consecutive vehicles passing over the
same node belong to the same lane, forming a platoon of vehicles. Furthermore, because vehicles
in the system may have different lengths, it is desirable to find a way to normalize the demand for
each lane to facilitate the operations of a proposed control. Thus, GCC introduces the concept of
traffic unit. The idea is to decompose the demand for each lane into units of traffic with the same
time length, u, i.e., the difference between the time that the tip of a traffic unit passes over a node
and the time its tail passes the point is u time steps of length δt. Then, within each traffic unit, the
vehicles’ tip-to-tail headway equals the minimum following headway hf . Figure 2.5 demonstrates
four traffic units of the same length moving in parallel lanes. As demonstrated in Figure 2.5, in
real-time operations it may happen that a traffic unit is not fully utilized, either due to the low
demand magnitude or the configuration of consecutive vehicle’s lengths.

To address the issue of arbitrary vehicle length and different headway for following and cross-
ing vehicles, we find a collision-free routing scheme for a set of traffic units consisting of a leading
vehicle followed by a number of following vehicles that together can fit into a traffic unit of length
u − δ time steps of length δt. Here, δ represents the difference between the following and cross-
ing headways in time steps, hc−hf

δt
. This difference accounts for the potential offset in curvilinear

position between two vehicles in merging/crossing paths. Thus, the safe following headway is
implicitly satisfied since it is inherent to the definition of traffic units. Moreover, the crossing
headway is satisfied since we discard headway δ time steps from the tail of each traffic unit. Be-
low, we provide a motivating example to demonstrate the basic idea that ensures a minimum safe
distance between leading vehicles released from each lane.

2.4.1 Motivating Example

Recall the network Ĝ and six groups of vehicles in the motivating example in Section 2.3.1. Also,
assume all vehicles in the system move forward to the next tracking point along their associated
paths. Consider a set of traffic units with the same time length equal to two time steps. The
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Figure 2.6: Minimum distance example

basic idea is to synchronize the movement of the leading vehicles in each traffic unit such that two
main criteria are satisfied: first, no two vehicles occupy the same node in Ĝ; second, the distance
between any two nodes occupied by leading vehicles is at least the length of a traffic unit. As such,
it takes at least two time steps for each leading vehicle to be at the location of another leading
vehicle. Thus, the traffic units are non overlapping. To achieve this aim, we modify the routing
assignment presented in Section 2.3.1 to ensure that the distance between any two leading vehicles
is a multiple of the traffic unit length.

To illustrate the new approach, we modify the graph coloring presented in Section 2.3.1 to
become a 6-coloring such that each edge is directed from a node with color r ≡ (mod 6) to a
node with color r + 1 ≡ (mod 6). Figure 2.6 demonstrates such coloring by separating each
of the three colors presented in Figure 2.3b into two groups demonstrated by circles and crosses.
Note that the distance between any two circles and any two crosses is an even number.

Furthermore, we release one vehicle at a circle start node Oi at any time interval t = 3k, k ∈ N
if and only if t ≡ 0(mod 2). Also, we release one vehicle at a cross start node Oi at any time
interval t = 3k, k ∈ N if and only if t ≡ 1(mod 2). As a result, at any time step t, either all
vehicles in the system are on circle nodes or cross nodes. This means the distance between any
two vehicles in the system at any time is an even number. Additionally, from the analysis in the
motivating example in Section 2.4.1, we know that these vehicles do not collide. This is because
we release a subset of vehicles routed in the motivating example in Section 2.3.1. In conclusion,
we can ensure all vehicles in the system maintain a minimum safe distance of two nodes.

In this second example, to accommodate traffic units, we modify some of the steps presented
in Section 2.3.1. First, similar to dimensionless GCC, we decompose the intersection demand into
three non-conflicting movement groups. In the next step, unlike the dimensionless GCC, we color
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the underlying digraph of the network with six colors and leverage the graph coloring property of
the network to allocate the right-of-way at each node to one traffic unit leader during each time
step such that the traffic unit leaders maintain a minimum distance of two. Finally, Similar to
dimensionless GCC, we allow the vehicles from each movement group to enter an entrance node
at time steps that right-of-way at the entrance node is allocated to their associated group. Then,
these vehicles can continue their movement along their associated path moving forward one node
during each time step.

In sum, the idea in generalizing GCC is to follow the dimensionless GCC to decompose the
traffic demand into k groups of non-conflicting movements. Then, modify the underlying digraph
so that it admits a periodic ku-coloring. Finally, GCC exploits the periodic ku-coloring of the
directed network to allocates the right-of-way at each node to tip of traffic units. In particular,
GCC ensures the tip of every two traffic unit has a distance that is a non-zero multiple of u.
Section 2.4.2 discusses these modifications in further details that enable the dimensionless GCC to
accommodate the traffic units.

Note that introducing the concept of traffic units makes the control more robust in response to
the online variations in safety measures, such as an increase in the minimum safety gap between
vehicles caused by adverse weather and environmental conditions. After realizing any changes to
the safety gap, we can recompute the number of allowable vehicles within each traffic unit that
maintain the minimum safe distance. The control remains valid as long as traffic unit time length
fits into the design length.

2.4.2 General GCC Movement Synchronization

Here, we discuss how to utilize the idea presented in the motivating example in Section 2.4.1 to
generalize the design in Section 2.3. As most steps are similar to GCC for dimensionless vehicles,
we focus on the differences between the two methods and omit the repetitive steps. To mathemati-
cally formalize this idea, we first follow GCC for dimensionless vehicles to decompose the traffic
demand into a union of k separate {1, 2}-factors. Then, we implement Theorem 6 on directed
multigraph G̃ resulted from the decomposition phase to make it a periodic ku-colorable digraph
and denote by z2ẽ the number of additional points on edge ẽ obtained during this procedure. To
regulate the right-of-way of nodes, we allocate the right-of-way of a node v ∈ Ḡ possessing color
i ≡ (mod ku) to a traffic unit travelling along Dp only at time intervals t ≡ i− pu(mod ku). To
find an acceptable switching scheme, we follow the idea presented in the dimensionless GCC with
a minor modification. For a switch between two consecutive edges ẽ ∈ Ã and f̃ ∈ A+(ẽ), we de-
fine w′

ẽ,f̃
≡ z2ẽ + pu− qu(mod ku), and denote by wẽ,f̃ = w

′(1+ϵ)

ẽ,f̃
the weight of this switch. Then,

we follow the dimensionless GCC to implement Edmonds’ blossom algorithm to find a minimum
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weight perfect matching on the modified graph Ǧ.
Similar to dimensionless GCC, traffic units from each lane form a queue before entering the

intersection. Then, assuming we are at time step t, we determine the entrance time t1 of the tip
of a traffic unit in front of a queue behind start segment a ∈ A to intersection. In particular, the
tip of the traffic unit enters a node with color i at the minimum time step t1 ≥ t that satisfies
t1 ≡ (i − pu)(mod ku) for a {1, 2}-factor Dp that contains a parallel edge copy of segment a,
i.e, ã. Then, the tip of traffic units travels along its lane by moving forward one tracking point in
G̃ during each time interval. When a traffic unit traversed all z1ẽ tracking points on an edge ẽ it
switches to an edge f̃ such that the edges v+(ẽ) and v−(f̃) are matched in the minimum weight
perfect matching obtained. Furthermore, to switch from ẽ to f̃ we should add wẽ,f̃ additional
tracking points on e. As the intersection is a simple intersection, all lanes that contain a section
a ∈ A will coincide with the unique way to exit the intersection. Therefore, the tip of traffic units
do not deviate from their associated lane when switching between edges. As the routing scheme
for the tip of traffic units is a subset of routes in a dimensionless GCC with ku colors, the result of
Lemma 5 still holds for the tip of traffic units. Therefore, no traffic unit blocks another traffic unit
while waiting to switch between segments. Finally, we can accompany the leading vehicle in each
traffic unit with a set of following vehicles that together can fit into a traffic unit of length u − δ.
Note that at each time interval t the tip of all traffic units occupy a node with color i ≡ t(mod u).
Thus, they maintain a distance that is a multiple of u. For the readers convenience, we summarize
the general GCC algorithm for traffic units as follows:

Algorithm 2 General Graph Coloring Control

1. Steps (1-3) are the same as Algorithm 1
4. Add z2ẽ tracking points on each edge ẽ ∈ G̃ to transfer G̃ into a periodic ku-colorable digraph.
5. Allocate the right-of-way of a node v ∈ Ḡ possessing color i ≡ (mod ku) to a traffic unit
travelling along Dp only in time intervals t ≡ i− pu(mod ku).
6. Construct the weighted graph Ǧ. Then, obtain a feasible switching scheme as a minimum
weight perfect matching in Ǧ.
7. Find entrance time of tip of a traffic unit to intersection by the right-of-way allocation rule.
8. The tip of traffic unit travels along its lane moving forward one tracking point in G̃ during
each time interval. When traversed all z1ẽ tracking points on ẽ, it switches to f̃ such that v+(ẽ)
and v−(f̃)) are matched in Ǧ(To switch from ẽ to f̃ , we must add wẽ,f̃ tracking points on ẽ) .
10. Within each traffic unit, a leading vehicle is followed by a set of following vehicles with
total time length less than u− δ.
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Note that the spacing between the added tracking points within each section is not necessar-
ily homogeneous. Finding the optimal spacing between these tracking points and an associated
acceleration/deceleration profile that respects the kinodynamic constraints is an optimal control
problem, which is out of the scope of this paper [Feng et al., 2018, Chen et al., 2021]. However,
given an intersection with a sufficient footprint, we present a feasible acceleration/deceleration
profile in Appendix A.22. We conclude this section by establishing the optimality guarantee of the
general GCC algorithm in Theorem 8 and Lemma 5.

Theorem 8. If we implement Algorithm 2 on an intersection with a generic demand pattern and

layout, we can obtain a reserve capacity of at least u−δ−um

u
k−∆+1

k
α∗ where α∗ is the optimal value

of the optimization problem 2.1 and um is the maximum tip-to-tail time length of a vehicle under

maximum speed, vmax, in the system.

Proof. Proof. See Appendix A.23.

Remark 5. If ∆ = 1, Algorithm 2 provides a PTAS for the throughput maximization problem at a

generic intersection with sufficiently large footprint.

Proof. Proof. Set ∆ = 1 and choose u ≥ δ+um

ϵ
to obtain the reserve capacity of the intersection as

u−δ−um

u
k−∆+1

k
α∗(1− ϵ) = (1− ϵ)2α∗.

2.4.3 Restricted Regions and Maximum Delay

As mentioned previously, given an intersection with a sufficiently large footprint, there exists a fea-
sible acceleration/deceleration profile to accommodate GCC, presented in Appendix A.22. How-
ever, to attain such acceleration/deceleration profile we might be required to add tracking points
along some edges beyond their physical capacity. Moreover, it is preferred that the spacing between
parallel lanes be minimized in the vicinity of entrance and exit sections of lanes to enhance safety
and facilitation of the motion control of vehicles approaching/exiting the intersection. While the
space limitation may affect the main results presented in the previous sections, due to the unique
features of road intersections, we present a few remedies that can address the space limitation is-
sues for most of the real-world instances. A common location for edges with limited capacity is in
the intersection area of two sets of parallel lanes belonging to two movement streams. We call these
regions restricted regions. Figure 2.7 demonstrates four restricted regions inside an intersection.

In what follows, we first demonstrate how to modify GCC to avoid the addition of any tracking
points along the edges in restricted regions. Then, we present a few heuristic remedies to address
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Figure 2.7: Demonstration of restricted zones inside an intersection

the space limitation problem outside the restricted regions. Lastly, we provide an upper bound on
the maximum delay incurred by vehicles crossing the intersection while following GCC design.

To avoid the addition of tracking points in restricted regions, we modify Algorithm 2. Recall
from Section 2.4.2 that we add w′

ẽ,f̃
≡ pu − qu + z2ẽ(mod ku) tracking point along an edge ẽ if

we switch from ẽ to a segment f̃ in the matching step of Algorithm 2. Thus, it suffices to modify
Algorithm 2 so that both z2ẽ and qu− pu equal to zero.

Lemma 6. We can modify the algorithm in Theorem 6 such that z2ẽ = 0 for all edges ẽ in the

intersection of two movement streams.

Proof. Proof. See Appendix A.26.

To satisfy qu − pu = 0, we must modify the matching step in Algorithm 2. The idea is
to ensure the segments of a single lane within each restricted region are not included in dif-
ferent {1, 2}-factors, and so p = q. Note that as each restricted region results from the inter-
section of two movement streams, the conflict points in the intersection of these lanes are en-
tirely contained in these two movement streams. Denote by L1 and L2 the set of lanes in the

first and second movement stream, respectively. Define x = maxl∈L1

⌈
α∗(

Ul
vmax

+dlhf )(k−∆+1)

H

⌉
and

y = maxl∈L2

⌈
α∗(

Ul
vmax

+dlhf )(k−∆+1)

H

⌉
. Also, note that as each node i in the restricted region satis-

fies constraint 2.1b and any two lanes in L1 and L2 intersect, x+y ≤ k. Therefore, we can remove
the edges connected to nodes inside the restricted regions for all k {1, 2}-factors and replace those
edges with x copies of L1 and y copies of L2 inside the restricted region. We briefly elaborate on
the detailed procedure for modifying the decomposition algorithm to respect the restricted regions
in Algorithm 4 presented in Appendix A.25.
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Figure 2.8: Step 1 Figure 2.9: Step 2 Figure 2.10: Steps 3 and 4

Figure 2.11: Demonstration of the steps in Algorithm 4

A heuristic remedy to address the space limitation issue is to release an inscribed traffic unit with
length u′ within the design traffic unit with length u. Therefore, we can add/remove a few tracking
points along each lane in the GCC design. In particular, the addition/removal of a tracking point
along a lane moves the inscribed traffic unit one time step backward/forward within the design
traffic unit. Therefore, as long as the number of additions/removals along each lane does not
exceed u− u′, the design remains valid.

Another greedy heuristic approach to address this issue is to avoid releasing one traffic unit at
all entrance times associated with a lane during each cycle of length ku. In this case, we can still
utilize GCC while regulating right-of-way allocation to avoid any collision. In particular, for some
lanes we can release a traffic unit every two cycles at the associated entrance times for them.

In the last part of this section, Theorem 9 finds an upper bound on the delay each vehicle
experiences while crossing the intersection by analyzing the number of tracking points added along
each lane.

Theorem 9. The required additional tracking points along each lane to accommodate an optimal

GCC linearly depends on the number of movement streams.

Proof. Proof. See Appendix A.31.

To realize the implication of Theorem 9, we call a stationary vehicle arrival admissible if and
only if the demand for each lane l during the study horizon H does not exceed the maximum
number of traffic units admitted by GCC, calculated in Theorem 8. Proposition 1 presents an upper
bound on the delay each vehicle experiences under GCC when the vehicle arrival is admissible.
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Proposition 1. our scheme ensures that under stationary, admissible vehicle arrivals, the delay

each vehicle experiences is less than a constant that linearly depends on the number of movement

streams and the inverse of the approximation algorithm’s precision factor.

Proof. Proof. The proof follows directly from Theorem 9 and the fact that no queues will be
formed under an stationary admissible vehicle arrival.

We refer interested readers to Appendix A.27 for an Illustrative Example of the general GCC.

2.5 Relationships Between GCC and Other Controls

GCC provides a general framework that allows us to derive a unifying insight on several controls
proposed for intersection management. In this section, we present the traditional signal control or
TSC as a special case of GCC and compare the performance of optimal GCC and TSC. We also
present rhythmic control as a special case of GCC with parameters k = 2 and l = 1. Moreover,
we present several reservation based-schemes as special cases of GCC. For brevity, we include the
detailed discussions on rhythmic control and reservation-based schemes in Appendix A.30.

In Theorem 10, we show that for any given TSC, there exists a GCC with the intersection
capacity at least as high as an intersection capacity of the given TSC. The idea in Theorem 10 is
to replace the demand decomposition phase of GCC with that of a signalized intersection and find
the parameters in Algorithm 2, k and u, so that the resulted GCC can ensure to replicate a similar
performance as the considered TSC.

Theorem 10. For any given TSC, we can modify the demand decomposition phase in Algorithm

2 to construct a corresponding solution to GCC control with intersection reserve capacity at least

as high as that of the given TSC.

Proof. Proof. See Appendix A.28.

Next, we compare the throughput of an optimized GCC and an optimized TSC, consider an
R-way intersection where the number of lanes for each movement stream is proportionate to its
associated demand. Theorem 11 quantifies the improvement we obtain from implementing an
optimal GCC over an optimal TSC.

Theorem 11. For an R-way intersection with sufficient footprint to implement GCC, under a

balanced demand pattern, an optimal GCC multiplies the throughput of the intersection by the

factor R
2

over an optimal TSC.
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Proof. Proof. See Appendix A.29.

Now, we showcase the improvement for a generic demand pattern in a 4-way intersection. As
the right-turn lanes do not directly intersect with other movement streams, we focus on left turn
and through movement streams. First, we note that we can group the intersection lanes into 8
through and left-turn movement streams. Without loss of generality, we assume the demand for all
lanes belonging to the same movement stream is the same since they share the same in- and out-
bound approach. Note that at each stage of the signal cycle, we may allocate right-of-way to at
most two of the eight streams. Denote by M the set of movement streams, and by M1 the set of
pairs of non-intersecting movement streams.

Then, neglecting the loss time between signal stages, we can find the maximum reserve capacity
of a TSC by solving the following linear programming:

Max α (2.2a)

s.t.
∑

i,j∈M1

(Hηij)1i,j,l ≥ α(
Ul

vmax

+ dlhf ); ∀l ∈M (2.2b)∑
i,j∈M1

ηij = 1; (2.2c)

where ηij represents the fraction of a cycle that right-of-way allocation is dedicated to a stage with
streams i and j. Also, 1i,j,l equals one if l ∈ {i, j}; i.e., stream l is either stream i or j. The
constraint set 2.2b ensures the served demand from each stream l is at most the sum of admitted
demand in stages that include this stream. The constraint set 2.2c ensures the cycle length equals
the sum of time duration allocated to the set of stages.

Although the number of lanes within each movement stream is usually designed proportionate
to the demand for that stream, the problem’s day-to-day dynamic nature prevents us from achieving
this 100% improvement [Yin, 2008]. Indeed, if the average demand per lane varies within 50% to
150% of a target demand per lane, we can utilize Theorem 8 and the solution to Problem 2.2 to
compute the improvement from TSC to GCC if the footprint of intersection is sufficiently large.
The results are shown in Figure 2.12.

2.6 Simulation Comparison

This section presents simulation results to demonstrate the performance of GCC in various scenar-
ios. The benchmarks include TSC and RC. We consider a 4-way intersection with three through
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Figure 2.12: Reserve capacity improvement of GCC in comparison with TSC

Figure 2.13: GCC Intersection Layout

lanes and two left turn lanes for each approach adopted from Chen et al. [2021], under a demand
pattern αd where α is the demand level and d is the demand vector as follows:

d = [2600, 1400, 1400, 1400, 400, 400, 400, 400]

Here, the first and the last four elements represent the per-lane demand for the four through
approaches and the four left-turn approaches, respectively.

While we implement TSC and RC on the 20-lane intersection, we integrate the demand for the
two left-turn lanes into a single left-turn lane to shrink the required footprint for the GCC layout
into 16 lanes in GCC implementation. In this new design, demonstrated in Figure 2.13, the required
footprint is less than the footprint of a typical intersection designed based on the AASHTO Green
Book [Hancock and Wright, 2013]. We refer the readers to appendix A.32 for a comprehensive
description of the simulation settings.

Denote by GCC(k, u) a GCC with parameters k and u. Also, denote by GCC(k, Inf) a GCC
with parameter k and u = 20 implemented on a sufficiently large intersection that can accommo-
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(a) Comparison between RC, TSC, GCC with space
limitation and GCC with no space limitation

(b) Sensitivity Analysis for GCC on the parameter k

Figure 2.14: Sensitivity analysis results

date all additional tracking points. First, we present the results of GCC design comparison with
the other controls in Figure 2.14a and then we perform sensitivity analysis on the number of col-
ors used in GCC. We observe that performance of GCC does not monotonically increase with the
number of colors for some demand patterns, while the worst case performance guarantee for the
GCC provided by Theorem 7 improves with the number of colors k. We refer the readers to the
supporting materials (2.7.2) for a video demonstrating the operations of the graph coloring control
and traffic signal control. Note that at each moment the color of a vehicle indicates the {1, 2}-factor
associated with the movement of its traffic unit on G̃.

2.7 Concluding Remarks

2.7.1 Summary

In this paper, we have investigated the problem of designing an efficient intersection control in a
fully CAV environment that respects safety and kinodynamic constraints. The main three results
of the paper are as follows: 1) for an intersection with a sufficiently large footprint, we prove
that our algorithm provides a PTAS for the throughput maximization problem; 2) with stationary
admissible vehicle arrivals, our scheme ensures the delay each vehicle experiences is less than
a constant value that linearly depends on the number of movement streams and the inverse of
the approximation algorithm’s precision factor; and 3) we prove in an R-way intersection where
the number of lanes for each movement stream is proportionate to its associated demand, our
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scheme multiplies the reserve capacity of the intersection by the factor R
2

over an optimal TSC.
Furthermore, the proposed algorithm is robust in handling a set of vehicles with heterogeneous
dimensions and addressing the online variations in safety measures.

The results presented in this paper suggest that an optimal intersection layout design may not
follow the traditional way of designing at-grade intersections. For example, the opposite left turns
may not be required to avoid each other to maximize the intersection throughput. This suggests
that the intersection layout design must be adapted to the CAV environment. The layout design
is a strongly complicated problem that we aim to investigate in our future research. Additionally,
we show that GCC achieves the reserve capacity of our headway-based LP relaxation. While we
can formulate a similar LP relaxation to define the reserve capacity of a network with multiple
intersections, when applying GCC to network control, the resilience aspects remains a challenging
question we aim to address in our future research.

2.7.2 GCC for General Job Shop Problems with Family Dependent Setup
Times

It is worth mentioning that the application of GCC is not limited to intersection control, which
bears similarity with mobile robot scheduling [Lozano-Perez, 1983, Siméon et al., 2002, Altché
et al., 2016], automated guided vehicle traffic control [Evers and Koppers, 1996, Lombard et al.,
2016] and constant delay lattice train schedules [De Carufel et al., 2021]. In fact, Algorithm 2
provides a PTAS to solve a more general job-shop problem. Here, we discuss the connection
between these two problems and how we can formulate the problem of finding an optimal traffic
control as an instance of job-shop scheduling.

In a general job-shop scheduling, we are given n jobs J1, J2, . . . , Jn of varying processing
times, which need to be scheduled on m machines with varying processing power, while trying
to optimize an objective function, e.g., the total length of the schedule, i.e., the time for all the
jobs processed). In the specific variant known as job-shop scheduling, each job consists of a set
of operations O1, O2, ..., On that need to be processed in a specific order. Each operation has a
specific machine that it needs to be processed on, and only one operation in a job can be processed
at a given time.

Algorithm 2 can be applied to a more general scheduling problem. Using the scheduling well-
known three field notation [Graham et al., 1979], the general job shop problem we are interested
in is Jm|fmls, s, pj|Cmax. In this instance of the job shop problem, the n jobs belong to F dif-
ferent job families. Jobs from the same family can be processed on a machine one after another
without requiring any setup time in between. However, if the machine switches over from one
family to another, say from family g to family h, then a setup time equal to s is required. The
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objective Cmax to minimize is to the completion time of the last job to leave the system. Accord-
ing to the survey study Allahverdi et al. [2008], most of the proposed solution methodologies for
sequence-dependent machine-scheduling problems are based on heuristics- such as tabu search
and simulated annealing. That being said, even if we relax the sequence dependent setup time
constraints, most of the proposed exact algorithms for different variants of the job shop problem
are mixed-integer linear programming formulations [Lamorgese and Mannino, 2015, Lamorgese
et al., 2016, Lamorgese and Mannino, 2019]. Although these formulations provide a high quality
solution for several applications, they are inherently unscalable when faced a high traffic applica-
tion such as designing an intersection control. This urges the need for investigating more scalable
approaches.

Now, we discuss the connection between the two problems. First note that, the passage of
vehicles over conflict points of an intersection can be viewed as the jobs in the job shop problem.
The families of jobs are the vehicles crossing the intersection using the same lane. The processing
time of a job is denoted as the time length of the vehicle with addition of the following headway
hf . Besides, the difference between following and crossing headway is associated with the setup
time required to switch from one family to another one. Also, note that in the intersection control
problem the vehicles from the same lane while passing over the same segment between two conflict
points have to respect the first come first served principle. However, since in the general job-
shop instance Jm|fmls, s, pj|Cmax the queues between consecutive machines are not required to
respect the first come first served principle, we do not have to restrict our approach to the job shop
environment satisfying the simple intersection assumption stated in definition 1.

Assuming GCC can provide a θ-approximation, θ ≤ 1, for maximizing the reserve capac-
ity problem, we can modify GCC to provides a 1+ϵ

θ
-approximation for minimizing the makespan

problem. To do so, set the time horizon length in Problem 2.1 as H = Hopt where Hopt is defined
as the optimal makespan and realize that α∗, the optimal solution to Problem 2.1, satisfies α∗ ≥ 1.
Now, repeat the optimal GCC for

⌈
Hopt(1+ϵ)

ku

⌉
cycles of length ku. Theorem 8 yields that the re-

serve capacity of the intersection is at least α∗

(1+ϵ)
. Therefore, during the time [0,

⌈
Hopt(1+ϵ)

ku

⌉
ku] we

admit at least α∗(1+ϵ)
(1+ϵ)

≥ 1 multiples of demand while following GCC. This concludes the proof.

Supporting Materials

• This illustrative video demonstrates the operations of dimensionless GCC.

• This illustrative video demonstrates the operations of general GCC, as well as the queue
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process comparison with TSC.
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Appendix A

Appendix

In this Appendix, we provide the detailed proofs for all the results presented in the main body of
the paper. For clarity, some proofs that are purely algebraic are postponed to Section A.13.

A.1 Proof of Lemma 1
Consider an optimal solution to the optimization problem in (1.3) and (1.4). First note that if for
one ji ∈ I we have λji = µjifji, then equations (1.2b) and (1.2c) ensure that for all ji ∈ I we
have λji = µjifji. Therefore, it suffices to consider the case λji < µjifji,∀ji ∈ I. Set

ϵj = min
i,ji∈I

µjifji − λji
λji

.

Then, substituting λ′ji = λji(1− ϵj) we obtain a new solution to the optimization problem in (1.3)
and (1.4). Note that according to (1.2e), βj is decreased and the new solution has a higher objective
value.

A.2 General case with some with or all fi = 0

We prove that the problem with some or all fj = 0, that is discussed in Remark 1, can be converted
to another network problem with all fj values positive.

First, if for at least one station j ∈ S we have fj > 0. Then, we can adjust the solution to the
optimization problem (1.3) and (1.4) without decreasing its objective value by substituting

f ′
j =

∑
j∈S fj

|S|
, ∀j ∈ S.

Therefore, to conclude the discussion on the feasibility of our policy it is sufficient to consider the
case where fj = 0,∀j ∈ S. In the following, we define a secondary system and show that how the
system dynamics in the original system correspond to the system dynamics in a related secondary
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system with finite γj,∀j ∈ S . In particular, for this transformation we allow the vehicles to match
with the upcoming passengers waiting at their destination when they are close to it.

Next, consider each link ji ∈ I and denote by t̃ji the random variable that represents its travel
time. In Lemma 33 we prove that there exists an exponential random variable t̂ ∼ exp τ such that
for each link ji ∈ I, there exists a non-negative random variable t̃′ji that satisfies

t̃ji = t̃′ji + t̂.

Then, divide each trip along a link ji ∈ I into two parts such that the first part is distributed
according to t̃′ji and the second part is distributed according to t̂. Note that the second part for all
trips has the same distribution.

Now, let the vehicles in the base system travelling on a link ji ∈ I to match with upcoming
passengers at station i when they are within t̂ time to arrive at i. Consider a secondary system
with stations S ′, I ′

1, I ′
2. For each station i ∈ S we have an associated station in the secondary

system that, with abuse of notation, we show by i′ ∈ S ′. Also, for each station ji ∈ I we have
two associated station in the secondary system that, with abuse of notation, we show by j ′1i

′
1 ∈ I ′

1

and j ′2i
′
2 ∈ I ′

2. Here, j′ ∈ S ′ in the secondary system represents a vehicle in the base system that
completed the first part of its trip toward station j and is currently in the second part of its trip.
Also, j ′1i

′
1 in the secondary system demonstrates a full vehicle in the base system assigned to a

passenger at j′ with destination i′ and is either in the second part of its trip toward j′ or arrived at j′

and started the first part of its travel toward i′. Also, j ′2i
′
2 in the secondary system demonstrates an

empty vehicle in the base system that is relocating in the first part of its travel toward i′. Therefore,
dwell times at stations are t̂. The travel times for infinite servers j ′1i

′
1 ∈ I ′

1 are t̃ji and travel times
for infinite servers j ′2i

′
2 ∈ I ′

2 are t̃′ji.
The two system are related in the following sense: a vehicle at station i′ ∈ S ′ in the secondary

system represents a vehicle in the base system that completed the first part of its trip toward station
i and is currently in the second part of its trip. An empty vehicle at station j′2i

′
2 ∈ I ′

2 in the
secondary system represents a vehicle in the base system that is empty relocating in the first part
of its travel toward i′. Also, a full vehicle at station j′1i

′
1 ∈ I ′

1 in the secondary system represents
a vehicle in the base system that is assigned to a passenger at j′ with destination i′ and either in
the second part of its trip toward j′ or arrived at j′ and started its travel toward i′. Similarly we
can describe the associated system dynamics for the two systems. In particular, for each vehicle
currently at station i′ ∈ S ′ two cases may happen. If it will match with an upcoming passenger
within t̂ time it takes its associated vehicle to arrive at i, then it picks up the passenger from i′ and
travels out of i′. Otherwise, the vehicle departs i immediately after arriving. Therefore, the system
dynamics in the base system when we allow the vehicles to match with upcoming passengers
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within t̂ time to arrive at their destination corresponds to a secondary system with γj = τ, ∀j ∈ S ′.
As γγγ > 0, the results of Theorems 1, 2, and 3 are valid for this secondary system.

A.3 Relaxing the exponential travel times
To model the travel times drawn from general distributions, we first note that mixtures of Erlang
distributions are dense among all distributions. Next, consider a link ji ∈ I in the original network,
and denote its original travel time distribution by t̃ji. As mixtures of Erlang distribution yields are
dense, there exists a set (kl, ρl); l ∈ L such that∥∥∥t̃ji −∑

l∈L

Erlang(kl, ρl)
∥∥∥ ≤ ϵ

2

We state the proof for the case where for all l ∈ L we have kl ≡ 0(mod2). Then, we show how
to extend the proof to the case where the values kl are odd numbers. To do so, replace each link
ji ∈ I in the original network with L parallel paths ji(l); l ∈ L. Then along each path ji(l) we
present kl/2 double-ended queueing stations ji(l, r); 1 ≤ r ≤ kl/2. such that for all stations we
have λji(l,r) = 0 and γji(l,r) = ρl. Moreover, each two consecutive stations ji(l, r) and ji(l, r + 1)

are connected with an infinite server link with travel time exp(ρl). Finally, to extend the results
to the case where we have kl ≡ 1(mod2), we perform a similar procedure for kl + 1 with the
exception that we set the travel time on the last infinite server link on each path that is connected
to i by exp(ϵ/2). Finally, note that Assumptions 1 remains valid under this transformation. In
particular, this transformation replaces the links in the associated directed graph of Q̃̃Q̃Q by a directed
sub network. Thus, under this transformation Q̃̃Q̃Q remains irreducible.

A.4 Rewriting system dynamic equations
For all infinite servers that model full vehicle trips from node j to node i, define

X̃
(N)
ji (t) = −F̃ji(µji

ˆ t

0

X
(N)
ji (s)ds) + ϕ̃ji((

∑
kj∈I

Fkj(µkj

ˆ t

0

X
(N)
kj (s)ds)) + (

∑
kj∈I

Ekj(µkj

ˆ t

0

Z
(N)
kj (s)ds))

+X
(N)+
j (0)−X

(N)+
j (t)−Hj(γj

ˆ t

0

X
(N)+
j (s)ds)) + pji(

∑
kj∈I

F̃kj(µkj

ˆ t

0

X
(N)
kj (s)ds))

+pji(
∑
kj∈I

Ẽkj(µkj

ˆ t

0

Z
(N)
kj (s)ds))− pjiH̃j(γj

ˆ t

0

X
(N)+
j (s)ds), ji ∈ I
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And all infinite servers that model empty vehicle trips from node j to node i, let

Z̃
(N)
ji (t) = −Ẽji(µji

ˆ t

0

Z
(N)
ji (s)ds) + σ̃ji(Hj(γj

ˆ t

0

X
(N)+
j (s)ds))

+qjiH̃j(γj

ˆ t

0

X
(N)+
j (s)ds), ji ∈ I

Then, we can rewrite the set of equations that define system dynamics by differentiating the
stochastic and deterministic terms for single servers as follows

X
(N)
i (t)

N
=

X
(N)
i (0)

N
+
X̃

(N)
i (t)

N
− (λit) +

∑
ji∈I

µji

ˆ t

0

X
(N)
ji (s)

N
ds+

∑
ji∈I

µji

ˆ t

0

Z
(N)
ji (s)

N
ds

+θi

ˆ t

0

X
(N)−
i (s)

N
ds− γi

ˆ t

0

X
(N)+
i (s)

N
ds, i ∈ S(A.1)

X
(N)
ji (t)

N
=

X
(N)
ji (0)

N
+
X̃

(N)
ji (t)

N
− µji

ˆ t

0

X
(N)
ji (s)

N
ds

+pji
∑
kj∈I

µkj

ˆ t

0

X
(N)
kj (s)

N
ds+ pji

∑
kj∈I

µkj

ˆ t

0

Z
(N)
kj (s)

N
ds

+pji
X

(N)+
j (0)

N
− pji

X
(N)+
j (t)

N
− pjiγj

ˆ t

0

X
(N)+
j (s)

N
ds, ji ∈ I(A.2)

Z
(N)
ji (t)

N
=

Z
(N)
ji (0)

N
+
Z̃

(N)
ji (t)

N
− µji

ˆ t

0

Z
(N)
ji (s)

N
ds+ qjiγj

ˆ t

0

X
(N)+
j (s)

N
ds, ji ∈ I(A.3)

A.5 Proof of Lemma 2
In this section, we first rewrite the system dynamic equations in matrix format and then establish
existence, uniqueness, and Lipschitz continuity of a fluid limit to the resulting dynamical system
for any given initial system state.

To start, we rewrite the system of equations (1.16-1.18) in matrix format by defining three
matrices J1, J2, and J3 as square matrices with size |S|+ 2|I|. To facilitate the illustration we use
S, I1 and I2 to refer to the state of the system at the stations, the full vehicles traveling on infinite
servers, and empty vehicles traveling on infinite servers, respectively. To define each matrix, set
i ∈ S , ji ∈ I1 and kl ∈ I2 to indicate the rows of these matrices associated to the single servers,
infinite servers representing full vehicles travel and infinite servers representing empty vehicles

67



travel, respectively. In particular, we define the elements of matrix J1 as follows

J1(i, v) =


−γi, v = i ∈ S
µji, v = ji ∈ I1

µji, v = ji ∈ I2

0, otherwise

J1(ji, v) =



−µji, j ̸= i&v = ji

piiµii − µii, j = i&v = ii ∈ I1

pjiµmj, v = mj ̸= ji ∈ I1

pjiµmj, v = mj ∈ I2

0, otherwise

J1(kl, v) =


qklγk, v = k ∈ S
−µkl, v = kl ∈ I2

0, otherwise

Next, we define matrix J2 as follows

J2(i, v) =


θi − γi, v = i ∈ S
qklγk, v = kl ∈ I2

0, otherwise

J2(ji, v) = 0 J2(kl, v) = 0

Lastly, we define the matrix J3 as follows

J3(i, v) = 0 J3(ji, v) =

{
pji, v = ji

0, otherwise
J3(kl, v) = 0

Besides, define the time dependent vector q(t) with size |S|+ |I1|+ |I2| as follows

qi(t) = xi(0)− λit qji(t) = xji(0) + pjix
+
j (0) qkl(t) = xkl(0)

Therefore, we can rewrite the dynamical system (1.16-1.18) in matrix format as follows

x(t) = q(t) + J1

ˆ t

0

x(s)ds+ J2

ˆ t

0

x−(s)ds− J3x
+(t) (A.4)

Now, define the vector of variables y(t) = x(t) + J3x
+(t), and note that y−(t) = x−(t). Set J4 as

follows

J4(i, v) = 0 J4(ji, v) =

{
1

1+pji
, v = ji

0, otherwise
J4(kl, v) = 0

Next, observe that x(t) = J4y
+(t) + y−(t) = J4y(t) + (I − J4)y

−(t). Then, we can rewrite (A.4)
as follows

y(t) = q(t) + J1J4

ˆ t

0

y(s)ds+ (J1(I − J4) + J2)

ˆ t

0

y−(s)ds
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Therefore, we can define matrices J5 and J6 to write the system (A.4) as follows

y(t) = q(t) + J5

ˆ t

0

y(s)ds+ J6

ˆ t

0

y−(s)ds (A.5)

Therefore, it suffices to prove existence uniqueness and liptictiz continuity for y(t) the solution
to the system of (A.5). First, we prove that there exists a solution to the dynamical system (A.5).
Consider y0(t) = 0, then define yn+1(t) = q(t)+J5

´ t
0
yn(s)ds+J6

´ t
0
yn−(s)(s)ds. Next, compute

the consecutive differences ∥yn+1 − yn∥t as follows

∥∥yn+1 − yn
∥∥
t

= J5

ˆ t

0

(yn+1 − yn)(s1)ds1 + J6

ˆ t

0

(yn+1− − yn−)(s1)ds1

≤ |J5|
ˆ t

0

∥∥yn − yn−1
∥∥
s1
ds1 + |J6|

ˆ t

0

∥∥yn+1− − yn−
∥∥
s1
ds1

As we have ∥yn+1− − yn−∥s1 ≤ ∥yn − yn−1∥s1 . If we define C = ∥J5∥+ ∥J6∥ we have

∥∥yn+1 − yn
∥∥
t

≤ C

ˆ t

0

∥∥yn − yn−1
∥∥
s1
ds1

≤ C2

ˆ t

0

ˆ s1

0

∥∥yn−1 − yn−2
∥∥
s2
ds2ds1

≤ Cn

ˆ t

0

ˆ s1

0

. . .

ˆ sn−1

0

∥∥y1 − y0
∥∥
sn
dsn . . . ds1

≤ Cn

ˆ t

0

ˆ s1

0

. . .

ˆ sn−1

0

∥∥y1 − y0
∥∥
t
dsn . . . ds1

≤ (C ∥y1 − y0∥t)n

n!

Thus, for any epsilon there exist a large n such that ∥yn+1 − yn∥t ≤ ϵ. This shows that the sequence
of functions {yn(t)}∞n=1 is a Cauchy sequence in the space of Cadlag functions. As the space of
Cadlag functions is complete we have there exist a limit for the sequence {yn(t)}∞n=1 that is a
solution to the dynamical system (13).

To prove uniqueness, we assume there exist two solutions y(t) and ỹ(t) for the same input q(t).
Then using the same recursive argument we have

∥y − ỹ∥t ≤ |J5|
ˆ t

0

∥y − ỹ∥s1 ds1 + |J6|
ˆ t

0

∥∥y− − ỹ−
∥∥
s1
ds1

≤ C

ˆ t

0

∥y − ỹ∥s1 ds1

≤ (C ∥y − ỹ∥t)n

n!
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Hence, for any epsilon there exists a large n such that ∥y − ỹ∥t ≤ ϵ. As such ỹ(t) = y(t),∀t ∈
R+. Lipschitz continuity can be established by considering two inputs q(t) and q̃(t) and their
corresponding solutions y(t) and ỹ(t) and applying the same recursive argument as the ones for
existence and uniqueness.

∥y − ỹ∥t ≤ ∥q − q̃∥t + |J5|
ˆ t

0

∥y − ỹ∥s1 ds1 + |J6|
ˆ t

0

∥∥y− − ỹ−
∥∥
s1
ds1

≤ ∥q − q̃∥t + C

ˆ t

0

∥y − ỹ∥s1 ds1

≤ ∥q − q̃∥t
n−1∑
i=0

(
(Ct)i

i!
) +

(Ct ∥y − ỹ∥t)n

n!

Choosing n large enough, we obtain ∥y − ỹ∥t ≤ eCt ∥q − q̃∥t .

A.6 Proof of Lemma 7

Lemma 7. Consider the system dynamics presented in Theorem 1, Then for any t ≥ 0 we have

lim
N→∞

N1/2−ϵE
[∣∣∣∣X(N)(t)

N
− x(t)

∣∣∣∣] = 0.

Proof. According to Lemma 2, we bound the difference between the solution to the dynamical
system and the scaled queue length process as follows

lim
N→∞

E
[∥∥∥XN

i

N
− xi

∥∥∥
T

]
≤ lim

N→∞
eCTE

[∥∥∥X̃N

N

∥∥∥
T

]
Hence, it suffices to prove that for some ϵ1 > 0 we have

lim
N→∞

E
[∥∥∥X̃N

N

∥∥∥
T

]
= O(N−1/2+ϵ1) (A.6)

Considering the linearity of expectation, to prove the lemma statement it suffices to prove the
following three statements

• limN→∞ E[∥ X̃N
i

N
∥T ] = O(N−1/2+ϵ1); ∀i ∈ S

• limN→∞ E[∥ X̃N
ji

N
∥T ] = O(N−1/2+ϵ1); ∀ji ∈ I

• limN→∞ E[∥ Z̃N
kl

N
∥T ] = O(N−1/2+ϵ1); ∀kl ∈ I
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First, for all single servers i the linearity of expectation yields

E
[
∥X̃N

i ∥T
]

≤ E
[

sup
0≤t≤T

∣∣∣Ãi(Nλit)
∣∣∣]+∑

ji∈I

E
[

sup
0≤t≤T

∣∣∣F̃ji(µji

ˆ t

0

X
(N)
ji (s)ds)

∣∣∣]
+
∑
ji∈I

E
[

sup
0≤t≤T

∣∣∣Ẽji(µji

ˆ t

0

Z
(N)
ji (s)ds)

∣∣∣]+ E
[

sup
0≤t≤T

∣∣∣H̃i(γi

ˆ t

0

X
(N)+
i (s)ds)

∣∣∣]
+E
[

sup
0≤t≤T

∣∣∣G̃i(θi

ˆ t

0

X
(N)−
i (s)ds)

∣∣∣]
Next, we note that X(N)+

j , X(N)
ji , and Z(N)

ji are positive and their sum,∑
j∈S

X
(N)+
j +

∑
ji∈I

X
(N)
ji +

∑
ji∈I

Z
(N)
ji = N

, is invariant over time and equals the market size N . Therefore we can upper bound the above
equation as follows:

E
[
∥X̃N

i ∥T
]

≤ E
[

sup
0≤t≤T

∣∣∣Ãi(Nλit)
∣∣∣]+∑

ji∈I

E
[

sup
0≤t≤T

∣∣∣F̃ji(µjiNt)
∣∣∣]

∑
ji∈I

E
[

sup
0≤t≤T

∣∣∣Ẽji(µjiNt)
∣∣∣]+ E

[
sup

0≤t≤T

∣∣∣H̃i(γiNt)
∣∣∣]

E
[

sup
0≤t≤T

∣∣∣G̃i(θi

ˆ t

0

X
(N)−
i (s)ds)

∣∣∣]
Applying Exercise II.1.16 in Revuz and Yor [2013] to the first four terms yields

E
[∥∥X̃N

i

∥∥
T

]
≤ O

(e(1 + E[Ãi(NλiT )log
+(Ãi(NλiT ))])

e

)
+ E

[
sup

0≤t≤T

∣∣∣G̃i

(
θi

ˆ t

0

X
(N)−
i (s)ds

)∣∣∣]
Noting that X logX = O(X1+ϵ), and E[Ãi(NλiT )

1+ϵ] = O(N1/2+ϵ1). We can further upper
bound the right hand side as follows

E
[∥∥X̃N

i

∥∥
T

]
≤ O(N1/2+ϵ1) + E

[
sup

0≤t≤T

∣∣∣G̃i

(
θi

ˆ t

0

X
(N)−
i (s)ds

)∣∣∣]
Next, we can upper bound the last term as follows

E
[∥∥X̃N

i

∥∥
T

]
≤ O(N1/2+ϵ1) + E

[∣∣∣G̃i

(
θiT∥X̃N

i ∥T
)1+ϵ∣∣∣]

Now we can expand the right hand side using the Law of the unconscious statistician (LOTUS) as
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follows
E[|G̃i(θiT∥X̃N

i ∥T )1+ϵ|] =
ˆ ∞

−∞
E[|G̃i(s)|1+ϵ] dP

{
θiT∥X̃N

i ∥T = s
}

Therefore,

E[|G̃i(θiT∥X̃N
i ∥T )1+ϵ|] =

ˆ ∞

−∞
O(s1/2+ϵ) dP

{
θiT∥X̃N

i ∥T = s
}

≤ O(E[∥X̃(N)
i ∥1/2+ϵ1

T ])

where the first inequality also folows from Exercise II.1.16 in Revuz and Yor [2013]. Therefore,

E[∥X̃N
i ∥T ] = O(N1/2+ϵ1)

Similarly, for infinite servers ji ∈ I we write

E[∥X̃(N)
ji ∥T ]

≤ E[ sup
0≤t≤T

∥F̃ji

(
µji

ˆ t

0

X
(N)
ji (s)ds

)
∥]

+
∑
kj∈I

E
(
pji sup

0≤t≤T

∣∣∣F̃kj

(
µkj

ˆ t

0

X
(N)
kj (s)ds

)∣∣∣)
+
∑
kj∈I

E
(
pji sup

0≤t≤T

∣∣∣Ẽkj

(
µkj

ˆ t

0

Z
(N)
kj (s)ds

)∣∣∣)
+E
(
sup0≤t≤T

∣∣∣ϕ̃ji

(∑
kj∈I Fkj

(
µkj

´ t
0
X

(N)
kj (s)ds

)
+
∑

kj∈I Ekj

(
µkj

´ t
0
Z

(N)
kj (s)ds

)
.+X

(N)+
j (0)−X

(N)+
j (t)−Hj

(
γj
´ t
0
X

(N)+
j (s)ds

))∣∣∣)
Similar to the case for single servers we can upper bound the first three terms by O(N1/2+ϵ1). To
upper bound the last term define

T5 =
∑
kj∈I

sup
0≤t≤T

Fkj(µkjNt) +
∑
kj∈I

sup
0≤t≤T

Ekj(µkjNt) +N − sup
0≤t≤T

Hj(γjNt)

Then, we upper bound the last term as E
(
sup0≤s≤T5

|ϕ̃ji(s)|
)

. For 0 < ϵ < ϵ1, this can be further

upper bounded by E
(
∥ϕ̃ji∥1+ϵ

T5

)
Now, we can expand this expression using LOTUS as follows

ˆ ∞

−∞
E
(
|ϕ̃ji(s)|1+ϵ

)
dP {T5 = s}
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Thus,
ˆ ∞

−∞
s1/2+ϵ dP {T5 = s} ds = E[T 1/2+ϵ

5 ] ≤ O(N1/2+ϵ1)

where the last inequality follows from Exercise II.1.16 in Revuz and Yor [2013]. Therefore similar
to single server queues we conclude that

E
(
∥X̃(N)

ji ∥T
)
= O(N1/2+ϵ1)

Lastly, for all infinite servers that model empty vehicle trips from node j to node i set

E
(
∥Z̃(N)

ji ∥T
)

≤ E
(

sup
0≤t≤T

∣∣∣Ẽji(µji

ˆ t

0

Z
(N)
ji (s)ds)

∣∣∣)
+E
(

sup
0≤t≤T

∣∣∣σ̃ji(Hj(γj

ˆ t

0

X
(N)+
j (s)ds))

∣∣∣)
+E
(

sup
0≤t≤T

∣∣∣qjiH̃j(γj

ˆ t

0

X
(N)+
j (s)ds)

∣∣∣)
Following the same procedure for single servers and infinite servers, it is straight forward to show
that for arbitrarily small ϵ > 0 all three terms are bounded by O(N1/2+ϵ1) This concludes the
proof.

A.7 Proof of Theorem 1
To prepare for the proof of Lemma 16, we first identify the limit for the dynamical system (1.16-
1.18). Define a Lyapunov function based on the solution to a Linear Complimentary Problem
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(LCP) as follows∑
i

µjiuji +
∑
i

µjivji =
∑
k

µkjukj +
∑
k

µkjvkj ∀j ∈ S (A.7a)

ujiµji = pji
∑
k

µjkujk, ∀i, j ∈ R (A.7b)∑
k

µjkujk ≤ λj, ∀i, j ∈ R (A.7c)

(λj −
∑
k

µjkujk)uj = 0, ∀i, j ∈ R (A.7d)

µjivji = qjiγjuj, ∀i, j ∈ R (A.7e)∑
ji∈I

uji +
∑
ji∈I

vji +
∑
j∈S

uj = Θ (A.7f)

uji, vji, uj ≥ 0, ∀j, i ∈ R (A.7g)

It is worth noting that the system of equations (A.7) is equivalent to the system of equations (1.2)
except that we substitute the unit mass equation with a Θ ∈ [0, 1] and replace λji/λj , where
λj =

∑
k λjk, by pji in LCP (A.7). Intuitively, this corresponds to equilibrium under the same

control when the total vehicle flow in the system is reduced from unity 1 to Θ.
In Lemma 8, we will prove that for any given Θ > 0, there exists a unique solution u(Θ) =

(uji(Θ), vji(Θ), uj(Θ)) to the system (A.7), and uji(Θ), ji ∈ I, vji(Θ), ji ∈ I, uj(Θ), j ∈ S are
continuous piece-wise linear and increasing functions. Moreover, the number of pieces of each
function is at most |S|.

A.8 Uniqueness of the solution to the LCP problem
In this section, we establish the uniqueness of the solution for the LCP problem. The result is
forally stated below.

Lemma 8. For Θ > 0, the system (A.7) has a unique solution u(Θ) = (uji(Θ), vji(Θ), uj(Θ))

such that

• The unique functions uji(Θ), ji ∈ I, vji(Θ), ji ∈ I, uj(Θ), j ∈ S are continuous piece-wise

linear and increasing and number of pieces of each function is at most |S|.

• The right limit slope for the functions uj(Θ), j ∈ S is strictly positive unless uj(Θ) = 0.

• The right limit slope for the functions vji(Θ), ji ∈ I is strictly positive unless vji(Θ) = 0.

• The right limit slope for the functions uji(Θ), ji ∈ I is strictly positive unless uji(Θ) ∈
{0, uji(1)}.
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• The minimum nonzero right limit slope for the functions uji(Θ), ji ∈ I, vji(Θ), ji ∈
I, uj(Θ), j ∈ S is ι1 such that

ι1 ≥
1

|I|+ |S|
min

(
minji,lm,λji>0 λjiµlm

maxk,lm λkµlm

,
minji,k,λji>0 λjiγk

maxk,lm λkµlm

,

minji,lm,qji>0 qjiµlm

maxlm µlm

,
minji,k,qji>0 qjiγk

maxlm µlm

,
minlm µlm

maxj γj
, 1

)

• The maximum nonzero right limit slope for the functions uji(Θ), ji ∈ I, vji(Θ), ji ∈
I, uj(Θ), j ∈ S is ι2 such that ι2 ≤ 1.

Definition 5. Set ι1 and ι2 as the minimum nonzero and maximum slopes of the piecewise linear

functions uji(Θ), ji ∈ I, vji(Θ), ji ∈ I, uj(Θ), j ∈ S.

Lyapunov Function. Define the Lyapunov function L(x) for a state x =

(xji(t), zji(t), xj(t); ji ∈ I, j ∈ S) as follows

L(x) = sup
Θ,u(Θ)≤x+(t)

Θ,

where, with some abuse of notation, we use “≤” to also denote component-wise inequality. Let
Θ(i) = min(1, arg supΘ{ui(Θ) ≤ 0}), i ∈ S. This is the maximum value for Θ such that the mass
of vehicles at station i is 0 obtained from solving the LCP (A.7). Without loss of generality, we
assume Θi is non-decreasing in i, and let Θ|S|+1 = 1. To prove the convergence of the solution
to dynamical system (1.16-1.18) to the solution of the fluid equilibrium (1.2), we first present two
basic properties of the function L in the following lemma.

Lemma 9. The Lyapunov function L(x(.)) satisfies the following monotonicity and drift condi-

tions:

• Monotonicity: L(x(t)) is increasing in t.

• Drift condition: If the unique solution to the dynamical system (1.16-1.18) with initial con-

dition x(0) satisfies Θi ≤ L(x(t)) < Θi+1 and xj(t) ≥ 0,∀j ∈ S, uj(Θi+1) > 0, then there

exists constants ι > 0 and T2 such that

L(x(t′)) ≥ Θj+1 − (Θj+1 − L(x(t)))(1− ι/4),∀t′ ≥ t+ T2.

Also, ι ≥ ι1 is at least greater than the minimum slope of functions uji, vji, ji ∈ I.

Informally speaking, the drift condition ensures the Lyapunov function is continually increas-
ing, and as long as the Lyapunov function at the current state lies between two of the breakpoints
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in the LCP (A.7), it reaches the next breakpoint in an exponentially short time. Justifying the
improvement results when the system state is close to a breakpoint requires a detailed algebraic
derivation that we discuss in the proof for Lemma 16.

A.9 Stability of the dynamical system
In this section we prove the stability of the deterministic dynamic system (1.16-1.18). The proof
if quite long and involved, hence we divide that into a sequence of lemmas. First, we establish a
number of properties for the system (1.16-1.18) in Lemmas 10 to 14. The proof of these lemmas
are purely algebraic hence they are provided in Sections A.13 to A.14.4.

Lemma 10. For any given t ≥ 0 the solution to the dynamical system (1.16-1.18) starting from

initial condition xji(0) ≥ 0, zji(0) ≥ 0,∀ji ∈ I satisfies the following conditions:

a) The following invariant equation is satisfied:∑
ji∈I

xji(t) +
∑
ji∈I

zji(t) +
∑
i∈S

x+i (t) =
∑
ji∈I

xji(0) +
∑
ji∈I

zji(0) +
∑
i∈S

x+i (0)

b) The solution to dynamic system for any t ≥ 0 satisfies

xji(t) ≥ 0, ∀ji ∈ I, zji(t) ≥ 0,∀ji ∈ I

c) The functions x+j (t), xji(t) and zji(t) are lipschitz continuous.

d) For the positive constant C2 = max{x−i (0), λi/θi} we have x−i (t) ≥ −C2,∀t ≥ 0

Lemma 11. Decompose the set of single servers S into two subsets S1 and S2 such that λi =

0,∀i ∈ S1 and λi > 0,∀i ∈ S2. Then, for i ∈ S1 and the constant C2 defined in Lemma 10 we

have

a) If xi(0) ≥ 0, Then, xi(t) ≥ 0,∀t ≥ 0

b) If xi(0) < 0, Then, xi(t) ≥ −min(|xi(0)|, C2)e
−θit,∀t ≥ 0

Definition 6. We denote by Ψ(x, t); t ≥ 0 the unique solution x(t); t ≥ 0 to the dynamical system

(1.16-1.18) with initial state x(0).

Lemma 12. L(x(t)) is an increasing function. Moreover, if L(x(t)) ≥ Θi, then we have xi(t′) ≥
−min(xi(0), C2)e

−θi(t
′−t),∀t′ ≥ t. Here, C2 is a constant defined in Lemma 10.
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Proposition 2. Assume x(t) = Ψ(x(0), t), the unique solution to the dynamical system (1.16-

1.18), satisfies Θi ≤ L(x(t)) . For an arbitrarily small δ > 0 t, There exists a time T1 ≥ 1 such

that

xi(t
′) ≥ −δ, ∀t′ ≥ t+ T1

Proof. Setting T1 = 1
θj
log(C2

δ
) in Lemma 12 leads to the desired result.

Lemma 13. Decompose the set of single servers S into two subsets S1 and S2 such that λi =

0,∀i ∈ S1 and λi > 0,∀i ∈ S2. Consider two solutions to the dynamical system (1.16-1.18) with

different initial conditions:

i) x(t) = (xi(t), xji(t), zkl(t), i ∈ S, ji ∈ I, kl ∈ I), with initial condition x(0).

ii) y(t) = (yi(t), yji(t), wkl(t), i ∈ S, ji ∈ I, kl ∈ I), with initial condition y(0).

Such that
∑

ji∈I yji(t)+
∑

ji∈I wji(t)+
∑

i∈S y
+
i (t) ≤ minj∈S2 λj/2, and y+(0) < x+(0). Further,

assume that yi(t) ≤ 0,∀i ∈ S2;∀t ≥ 0 and xi(t), yi(t) ≥ 0,∀i ∈ S1;∀t ≥ 0. Then, x+(t) ≥
y+(t),∀t ≥ 0.

Lemma 14. Decompose the set of single servers S into two subsets S1 and S2 such that λi =

0,∀i ∈ S1 and λi > 0,∀i ∈ S2. Starting from initial solution with conditions

max
ji

µji

(∑
ji∈I

xji(0) +
∑
ji∈I

zji(0) +
∑
i∈S

x+i (0)
)
<

1

2
λmin

and xi(0) = 0,∀i ∈ S, the dynamical system (1.16-1.18) is exponentially stable, and the limit is

the unique solution to LCP (A.7) by setting

Θ =
∑
ji∈I

xji(0) +
∑
ji∈I

zji(0) +
∑
i∈S

x+i (0).

Besides the exponential rate of convergence is at least min2(pmin, qmin).

Now we are ready to prove Lemma 9.

Proof of Lemma 9. Set Θ = L(x(t)). Therefore, x+(t) ≥ u(Θ) and Lemma 10 implies that∑
ji∈I

(xji(t)− uji(Θ)) +
∑
ji∈I

(zji(t)− vji(Θ)) +
∑
i∈S

(x+i (t)− ui(Θ))) ≥ Θi −Θ

Define
λmin = min

i∈S:
λi ̸=

∑
j,ji∈I uji(Θ)

(λi −
∑
j,ji∈I

uji(Θ)).
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As such, there exists a system state y(t) such that u(Θ) ≤ y+(t) ≤ x+(t), and y(t) ≤ x(t) and

∑
ji∈I

(yji(t)− uji(Θ)) +
∑
ji∈I

(wji(t)− vji(Θ)) +
∑
i∈S

(y+i (t)− ui(Θ))) =
λmin

2

Define the initial states x̃(0) = x(t) − u(Θ) and ỹ(0) = y(t) − u(Θ). Then, consider x̃(t) =

(x̃i, x̃ji, z̃kl) the unique solution to the following system of equations

x̃i(t) = x̃i(0)− (λi − λ′i)t+
∑
ji∈I

µji

ˆ t

0

x̃ji(s)ds+
∑
ji∈I

µji

ˆ t

0

z̃ji(s)ds

+θi

ˆ t

0

x̃−i (s)ds− γi

ˆ t

0

x̃+i (s)ds, i ∈ S

x̃ji(t) = x̃ji(0)− µji

ˆ t

0

x̃ji(s)ds

+pji
∑
kj∈I

µkj

ˆ t

0

x̃kj(s)ds+ pji
∑
kj∈I

µkj

ˆ t

0

z̃kj(s)ds

+pjiy
+
j (0)− pjix̃

+
j (t)− pjiγj

ˆ t

0

x̃+j (s)ds, ji ∈ I

z̃ji(t) = z̃ji(0)− µji

ˆ t

0

z̃ji(s)ds+ qjiγj

ˆ t

0

x̃+j (s)ds, ji ∈ I

Similarly, define the dynamical system that uniquely determines ỹ by substituting the elements
of x̃ by elements of ỹ in above equations. Note that in the proof for Lemma 12 we prove that
x̃(t′ − t) = x(t′) − u(Θ), ỹ(t′ − t) = y(t′) − u(Θ)∀t′ ≥ t, ũ(Θ′) = u(Θ′ + Θ) − u(Θ), and
L̃(x̃(t′)) = L(x(t′))−Θ.

Moreover, from Lemma 14, we know that

L̃(ỹ(t′))− λmin

2
≥ λmine

−min(pmin,qmin)
2(t′−t).

Therefore,

L(y(t′)) ≥ Θ+
λmin

2
− λmine

−min(pmin,qmin)
2(t′−t).

Also, from Lemma 13 we know that x+(t′) ≥ y+(t′), we have,

L(x(t′)) ≥ Θ+
λmin

2
− λmine

−min(pmin,qmin)
2(t′−t)

Now, set T2 = 2/min2(pmin, qmin) to conclude that

L(x(t′)) ≥ Θ+
λmin

4
,∀t′ ≥ t+ T2.

78



Lastly, note that

λmin ≥ λi −
∑
j,ji∈I

uji(Θ) =
∑
j,ji∈I

(uji(Θ
j)− uji(Θ)) ≥ ι|Θj −Θ|.

This concludes the proof. Also, note that ι is at least greater than the minimum slope of functions
uji, vji, ∀ji ∈ I.

Lemma 15. Starting from an initial solution |x0| ≤ M , there exists a positive constants t4, αM

such that the solution to the dynamical system (1.16-1.18) satisfies∣∣∣x+(t+ t4)− f
∣∣∣ ≤ ι2

ι1

∣∣∣x+(0)− f
∣∣∣e−αM t

Also, ∣∣∣L(x(t+ t4))− 1
∣∣∣ ≤ ∣∣∣L(x(0))− 1

∣∣∣e−αM t

Proof. Consider δ such that
δ ≤ ι21min

i
(Θi+1 −Θi)/8eCT2 . (A.8)

Set the precision parameter in Proposition 2 as δ/2 to obtain T1 = 1
minj θj

log( C2

δ/2
). Consider

δ1 =
δ(C/minj θj)+1

2(C/minj θj)+1C
C/minj θj
2

. (A.9)

Note that

T1 =
1

minj θj
log(

C2

δ/2
) = (C/min

j
θ2j )log(1/δ1) +O(1) (A.10)

More over, consider the minimum integer di such that

( 16ι21
eCT2ι2

)|S|−i

δ1e
CT2 ≤ ι21/8(1− ι1/8)

di−2(Θi+1 −Θi) (A.11)

Define d = mini:0≤i≤|S| di. Taking logarithm from both sides in (A.11) yields

d log
1

1− ι1/8
= log(1/δ1) +O(1)

Therefore,

d =
log(1/δ1)

log 1
1−ι1/8

+O(1) (A.12)

Also, note that if for k ∈ I we have uk(Θi) = uk(Θ
i+1) > 0, then Lemma 8 yields uk(Θi) =
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uk(Θ
|S|+1). Next, consider the set {t(i,j) : 0 ≤ i ≤ |S|, 0 ≤ j ≤ di} such that

t(i,0) =
i∑

k=0

(T1 + (dk − 1)T2)

t(i,j) = t(i,0) + T1 + (j − 1)T2; 1 ≤ j ≤ d− 1

To prove the lemma, we first use induction on i ∈ [0, |S|+ 1] to show that for t ≥ t(i,0) we have

x+(t) +
( 16ι21
eCT2ι2

)|S|−i

δ1111 ≥ u(Θi)

For the induction base, i = 0, note that

x+(0) +
( 16ι21
eCT2ι2

)|S|
δ1 ≥ u(Θ0) = 000.

Assume the induction hypothesis is correct for i, in the following three steps we prove that the
induction hypothesis is correct for i+ 1

Step 1. From induction hypothesis we have for t ≥ t(i,0)

x+(t) +
( 16ι21
eCT2ι2

)|S|−i

δ1111 ≥ u(Θi). (A.13)

In this step, for each l such that ul(Θi+1) > 0 and for t ≥ t(i,1) we prove that

xl(t) ≥ ψ(x(i,0) + δ1111, T1)l − δ1e
CT1

≥ −δ/2− δ/2

≥ −δ (A.14)

where, for y(t) = (yji(t), wji(t), yi(t)) the unique solution to the dynamical system (1.16-1.18),
with abuse of notation we denote ψ(y, t)l = yl(t). To proceed, note that for t ≥ t(i,1) we have
t− T1 ≥ ti,0. Then, Lemma 2 yields

|ψ(x(t− T1), T1)− ψ(x(t− T1) + δ1111, T1)| ≤ δ1e
CT1

Next, Lemma 10 and Proposition 2 yield for each l ∈ S such that ul(Θi+1) > 0 and for t ≥ t(i,1),

(ψ(x(t− T1) + δ1111, T1))l ≥ −δ/2

Combining with (A.9), for each l such that ul(Θi+1) > 0 and (A.14) satified.
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Step 2. From induction hypothesis and Step 1 we have for t ≥ t(i,1),

x+(t) +
( 16ι21
eCT2ι2

)|S|−i

δ1111 ≥ u(Θi),

and (A.14) holds for all l ∈ S such that ul(Θi+1) > 0. In this step we prove that ∀l ∈ S, ul(Θi+1) >

0 and for t ≥ t(i,2),
xl(t) ≥ 0 (A.15)

To proceed, for t ≥ t(i,2) Lemma 2 yields

|ψ(x(t− T2), T2)− ψ(x(t− T2) + δ111, T2)| ≤ δeCT2

Next, Lemma 9 yields

L(ψ(x(t− T2) + δ111, T2)) ≥ Θi+1 − (1− ι1/4)(Θ
i+1 −Θi)

Therefore, for all k ∈ S such that 0 < uk(Θ
i+1) and for t ≥ t(i,2)we have

xk(t) ≥ (ψ(x(t− T2) + δ111, T2))k − δeCT2

≥ uk(Θ
j+1 − (Θj+1 −Θj)(1− ι1/4))− δeCT2

As the minimum nonzero slope in the piece wise linear functions u(.) is ι1 we can lower bound the
right hand side as follows

uk(Θ
j+1 − (Θj+1 −Θj)(1− ι1/8)) + ι21(Θ

j+1 −Θj)/8− δeCT2

≥ uk(Θ
j+1 − (Θj+1 −Θj)(1− ι1/8))

Therefore, it follows from (A.8) that ∀l ∈ S, ul(Θi+1) > 0 and (A.15) holds.
Step 3. In this step we complete the induction proof by showing that for t ≥ t(i+1,0),

x+(t) +
( 16ι21
eCT2ι2

)|S|−i−1

δ1111 ≥ u(Θi+1) (A.16)

To proceed, note that the maximum slope in the piece-wise linear functions uk is ι2. Therefore

u(Θi+1 − (1− ι1/8)
di−2(Θi+1 −Θi))111 ≥ u(Θi+1)− ι2(1− ι1/8)

di−2(Θi+1 −Θi)111
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Thus, to prove (A.16), it is sufficient to prove for t ≥ t(i+1,0),

x(t)+ (
ι1

eCT2ι2
)|S|−i−1δ1111− ι2(1− ι1/8)

di−2(Θi+1−Θi)111 ≥ u(Θi+1− (1− ι1/8)
di−2(Θi+1−Θi))

Also, note that (A.11) yields(
16ι21
eCT2ι2

)|S|−i−1

δ1 − ι2(1− ι1/8)
di−2(Θi+1 −Θi)

≥
( 16ι21
eCT2ι2

)|S|−i−1

δ1 −
8ι2
ι21

(
16ι21
eCT2ι2

)|S|−i+2δ1e
CT2 ≥

( 16ι21
eCT2ι2

)|S|−i

δ1

Thus, to prove (A.16) it suffices to prove for each 2 ≤ j ≤ di and t ≥ t(i,j),

x(t) +

(
16ι21
eCT2ι2

)|S|−i

δ1111 ≥ u
(
Θi+1 − (1− ι1/8)

j−2(Θi+1 −Θi)
)

(A.17)

Note that in Step 2 we have proved (A.17) holds for j = 2. Next, we prove (A.17) in an iterative
argument. To proceed, assume (A.17) holds for j and we want to prove it holds for j + 1 ≤ di.
Lemma 9 yields

L
(
ψ
(
x(t− T2) +

( 16ι21
eCT2ι2

)|S|−i

δ1111, T2

))
≥ Θi+1 − (1− ι1/4)(1− ι1/8)

j−2(Θi+1 −Θi)

Next, the Lipschitz continuity of the function ψ(.) at x(t− T2) for t ≥ t(i,j) yields

∣∣∣ψ(x(t− T2), T2)− ψ
(
x(t− T2) +

( 16ι21
eCT2ι2

)|S|−i

δ1111, T2

)∣∣∣ ≤ ( 16ι21
eCT2ι2

)|S|−i

δ1e
CT2

For all k ∈ S ∪ I such that 0 < uk(Θ
i) < uk(Θ

i+1) we have

xk(t) ≥ ψ
(
x(t− T2) +

( 16ι21
eCT2ι2

)|S|−i

δ111, T2

)
k
−
( 16ι21
eCT2ι2

)|S|−i

δ1e
CT2

≥ uk(Θ
i+1 − (1− ι1/4)(1− ι1/8)

j−2(Θi+1 −Θi))−
( 16ι21
eCT2ι2

)|S|−i

δ1e
CT2

Similarly, For all k ∈ I such that 0 < vk(Θ
i) < vk(Θ

i+1) we have

zk(t) ≥ ψ
(
x(t− T2) +

( 16ι21
eCT2ι2

)|S|−i

δ111, T2

)
k
−
( 16ι21
eCT2ι2

)|S|−i

δ1e
CT2

≥ vk(Θ
i+1 − (1− ι1/4)(1− ι1/8)

j−2(Θi+1 −Θi))−
( 16ι21
eCT2ι2

)|S|−i

δ1e
CT2

As the minimum nonzero slope in the piece-wise linear functions uk and vk is ι1, we can lower
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bound the right-hand sides as follows (to avoid repetition we only present the lower bounds for the
functions u)

uk(Θ
i+1 − (1− ι1/8)

j−1(Θi+1 −Θi)) + ι21(1− ι1/8)
j−2(Θi+1 −Θi)/8

−
( 16ι21
eCT2ι2

)|S|−i

δ1e
CT2

≥ uk(Θ
i+1 − (1− ι1/8)

j−1(Θi+1 −Θi))

The last inequality follows from (A.11). Therefore,

x(t) +
( 16ι21
eCT2ι2

)|S|−i

δ1111 ≥ u(Θi+1 − (1− ι1/8)
j−1(Θi+1 −Θi))

This concludes the proof for the three steps of the induction proof.
Next, note that the induction result yields, for t ≥ t(|S|,d−1),

x(t) + δ1111 ≥ u(Θ|S|+1) = u(1)

Furthermore, note that

t(|S|,d−1) ≤ (|S|+ 1)(T1 + (d− 1)T2)

≤ |S|
(
(C/min

j
θ2j ) +

1

log 1
1−ι1/8

)
log(1/δ1) +O(1)

Therefore, we conclude there exists a constant T ′ > 0 such that for T ≥ T ′

∣∣∣x+(|S|[(C/min
j
θ2j ) +

1

log 1
1−ι1/8

] log(1/δ1) + T
)

.− u
( ∑

ji∈I1

xji(0) +
∑
ji∈I2

zji(0) +
∑
i∈S

x+i (0)
)∣∣∣

≤ δ1 = e−log(1/δ1)

Also, note that if we set

α
′

M =
(
|S|[(C/min

j
θ2j ) +

1

log 1
1−ι1/8

] log(1/δ1)
)−1

Then, as δ1 can be chosen arbitrarily small, we conclude that∣∣∣x+(t+ T ′)− u(
∑
ji∈I

xji(0) +
∑
ji∈I

zji(0) +
∑
i∈S

x+i (0))
∣∣∣ ≤ e−α

′
M t
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Now, consider t4 > T ′ + log(Θ|S|+1−Θ|S|)

α
′
M

to realize that

max(L(x+(t),Θ|S|) < L(x+(t+ t4))

Therefore, as Θ|S|+1 = 1, and by lemma 9 we conclude

1− L(x(t4 + kT2)) ≤
(
1− L(x(t+ t4))

)
(1− ι1/4)

k

The increasing property of the Lyapunov function L yields

1− L(x(t+ t4)) ≤
(
1− L(x(0))

)
e

t
T2

log(1−ι1/4)

As the minimum slope of the functions u(.) is ι1 we conclude

|x+(t+ t4)− f | ≤ 1

ι1

∣∣∣1− L(x(0))
∣∣∣e t

T2
log(1−ι1/4) ≤ ι2

ι1

∣∣∣x+(0)− f
∣∣∣e t

T2
log(1−ι1/4).

Now, we set

αM = − log(1− ι1/4)

T2
= −

log(1− ι1/4)minji,j
λji

λj

2

to conclude the proof.

Lemma 16. There exists constants ι1, ι2, t4 > 0 and αM > 0, such that starting from an initial

solution |x0| ≤M the solution to the dynamical system (1.16-1.18) satisfies

a) |x+(t+ t4)− f | ≤ ι2
ι1
|x+(0)− f |e−αM t

b) |x−(t)− β| = O(t−1)

Proof. Note that part a) is proved in Lemma 15. Next, to prove part b), note that if fi > 0, then
(1.2d) and (1.2e) yield βi = 0. Therefore, Lemma 11 concludes the proof for this case.

Next, we consider the case fi ≤ 0. In this case, (1.2e) yields θiβi = −λi +
∑

ji µjifji. Thus, to
conclude the Lemma statement it is sufficient to prove the following two equations

θixi(t) ≥ −λi +
∑
ji∈I

µjifji −O(t−1). (A.18)

θixi(t) ≤ −λi +
∑
ji∈I

µjifji +O(t−1). (A.19)

Also, note that Lemma 10 part d) yields

|xi(t)|
t

≤ C2

t
.
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Thus, (1.16) and Lemma 15 yield ∀i ∈ S

xi(t)

t
≤ −λi +

∑
ji∈I

µjifji + θi

´ t
0
x−i (s)ds

t
+ C2

ι2
ι1t
e−αM t

(
2
∑
ji

µji + 1
)

(A.20)

xi(t)

t
≥ −λi +

∑
ji∈I

µjifji + θi

´ t
0
x−i (s)ds

t
− C2

ι2
ι1t
e−αM t

(
2
∑
ji

µji + 1
)
. (A.21)

Next, Consider

t0 = max

(
1,

1

αM

log
( ι1t

C2ι2(2
∑

ji µji + 1)

))
.

Note that t0 = O(log(t)). From (A.21) we have

θi

´ t
t0
x−i (s)ds

t
≤ λi −

∑
ji∈I

µjifji + t−1.

So, there exists s ≤ t such that s ≥ t0 and

θix
−
i (s) ≤ λi −

∑
ji∈I

µjifji + 2t−1.

Rearranging the terms yields

θixi(s) ≥ −λi +
∑
ji∈I

µjifji − 2t−1.

Define t2 as follows:

t2 = inf
{
t ≥ s|θixi(t) ≤ −λi +

∑
ji∈I

µjifji − 4t−1
}

If t2 = ∞ we obtain (A.18). Otherwise, define t1 as follows:

t1 = sup
{
t ≤ t2|θixi(t) ≥ −λi +

∑
ji∈I

µjifji − 2t−1
}
. (A.22)
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Note that t1 ̸= −∞ because s satisfies (A.22). As a result,

−t−1 ≥ xi(t2)− xi(t1)

=

ˆ t2

t1

ẋi(s)ds

=

ˆ t2

t1

(
− λi +

∑
ji∈I

µjixji(s) +
∑
ji∈I

µjizji(s) + θix
−
i (s)− γix

+
i (s)

)
ds

≥
ˆ t2

t1

(1/t)ds

> 0

where, the first and second inequality follow from the definition of t1 and t2 and the fact that t2
is finite. We proved the third equation as part of the proof of Lemma 11 (details are presented in
(A.68)). The fourth inequality follows from Lemma 15 and definition of t1 and t2. This contradic-
tion concludes t2 = ∞. As such, (A.18) is satisfied. For βi < 0, a completely similar procedure
yields (A.19). Also, for βi = 0 (A.18) together with x−i (t) ≥ 0 concludes the proof. Thus,

|x−i (t)− βi| = O(t−1).

A.10 Lemmas used in the proof of Theorem 2

To start note that for each state dependent policy (λλλ,QQQ,γγγ), we write the system dynamics to define
a continuous time Markov chain on the system state space as follows:
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Table A.1: Markov Chain Transition Rates

Description Transition Rate

Passenger arrives to node j and joins passenger queue Xj − 1
∑

i,ji∈I λji1(X
−
j )

Passenger arrives to node j and matches a waiting driver
in node j and travels to node i

Xi − 1

Xik + 1
λji1(X+

j )

Passenger reneges from the passenger queue in node i Xi + 1 θiX
−
i

Vehicle reneges empty from the vehicle queue in node i
toward node k

Xi − 1

Zik + 1
γiX

+
i qik

Full vehicle drops off a passenger at node i, originally
picked up from node j. Then, it picks up a passenger

from node i and departs toward destination k.

Xji − 1

Xik + 1

Xi + 1

µjiXji(
λik∑
l λil

)1(X−
i )

Full vehicle drops off a passenger at node i,
originally picked up from node j. Then, it joins

the vehicle queue at node j.

Xji − 1

Xi + 1
µjiXji1(X+

i )

Empty vehicle drops off a passenger at node i,
originally picked up from node j. Then, it picks up

a passenger from node i with destination k

Zji − 1

Xik + 1

Xi + 1

µjiZji(
λik∑
l λil

)1(X−
i )

Empty vehicle drops off a passenger at node i,
originally picked up from node j. Then, it joins

the vehicle queue at node j.

Zji − 1

Xi + 1
µjiZji1(X+

i )

Also, recall from Section 1.3 that we can consider (1.3) and (1.4) within the subset of feasible
region that satisfies µjifji = λji to rewrite the optimization problem as follows:

max
λλλ,fff,eee

∑
ji∈I

µjifjiIji(µjifji)−
∑
ji∈I

cVjiµjieji (A.23)

s.t.
∑
kj∈I

µkjfkj +
∑
kj∈I

µkjekj =
∑
ji∈I

µjifji +
∑
ji∈I

µjieji; ∀j ∈ S (A.24)∑
ji∈I

fji +
∑
ji∈I

eji +
∑
i∈S

fi = 1, (A.25)

eji, fj, fji ≥ 0 (A.26)

The key in proving the ergodicity of the CTMC is applying Foster-Lyapunov theorem (see e.g.,
Tweedie 1975), which is stated as follows.

Lemma 17. (Foster-Lyapunov Theorem for CTMCs) Consider an irreducible CTMC on a count-

able state space X having a transition rate matrix R with elements rXY for pairs X, Y ∈ X .
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Then,

(i) The Markov chain is positive recurrent if there exists a Lyapunov function V : X → R and

a partition of X into two subsets including a finite subset X1 and an infinite subset X2 that

satisfy the following two conditions:∑
j∈X

rXY V (Y ) ≤ −1 ∀X ∈ X1∑
j∈X

rXY V (Y ) <∞ ∀X ∈ X2∑
X∈X

1(V (X) < M) ≤ ∞ ∀M ∈ R

(ii) The embedded discrete time Markov chain (E-DTMC) associated with the original CTMC is

positive recurrent if there exists a Lyapunov function V ′ : X → R and a partition of X into

two subsets including a finite subset X1 and an infinite subset X2 that satisfy the following

two conditions: ∑
Y ∈X

rXY V
′(Y ) ≤ rXX ∀X ∈ X1∑

Y ∈X

rXY

rXX

V ′(Y ) <∞ ∀X ∈ X2

Lemma 18. Under any dynamic joint pricing and empty relocation policy, the resulting CTMC

and its embedded DTMC are positive recurrent.

Proof. We first define the value function

V (X) = |S|max
i∈S

X−
i +

∑
j∈S

1X−
j =maxi∈S X−

i

Then, we set X2 to be the states X such that

max
i∈S

X−
i ≤ 2

mini θi
|2I + 2S|N(max

ji∈I
µji +max

i
λi +max

i
γi)|S|+ 2

Next, consider a state X ∈ X1. Note that the number of states Y with a nonzero transition rate
from X to Y is bounded by |2I + 2S|. Then, consider a state Y with a nonzero transition from
state X to Y , rXY > 0. Consider the following three cases:

• V (Y ) > V (X): in this case we have rXY ≤ N(maxji∈I µji +maxi λi +maxi γi)
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• V (Y ) < V (X): in this case we have rXY ≥ (mini θi)
(

V (X)
|S| − 1

)
Thus we have∑

Y ∈X

rXY V (Y ) =
∑
Y ∈X :

V (Y )>V (X)

rXY (V (Y )− V (X)) +
∑
Y ∈X :

V (Y )=V (X)

0

+
∑
Y ∈X :

V (Y )<V (X)

rXY (V (Y )− V (X))

≤ |2I + 2S|N(max
ji∈I

µji +max
i
λi +max

i
γi)|S| − (min

i
θi)
(V (X)

|S|
− 1
)

≤ −1

2
(min

i
θi)
(V (X)

|S|
− 1
)
≤ −1

Thus, Lemma 17 implies that the continuous time markov chain is ergodic and therefore, denote
by π : X → R the stationary probability distribution of the continuous time markov chain. To
prove the ergodicity of the E-DTMC set

V ′(X) = 4|2I + 2S|V (X)|S|maxi θi
mini θi

Next, note that for each X ∈ X1 we have

|rXX | ≤ |2I + 2S|(max
i
θi)(max

i
X−

i )

Then similar to the proof scheme for ergodicity of the CTMC we have

∑
Y ∈X

rXY V (Y ) ≤ −1

2
(min

i
θi)
(V (X)

|S|
− 1
)
≤ −rXX .

Lemma 19. The expected steady-state scaled queue length E[X(∞)/N ] satisfies all the con-

straints of fluid optimization problem (A.23-A.26).

Proof. To prove this lemma we take the same approach as Braverman et al. [2019] by applying
Proposition 3 of Glynn and Zeevi [2008]. Specifically, if a CTMC with rate matrix R imposses
a stationary distribution π and moreover if Rg is π integrable, then πRg = 0. Lemma 18 proves
exsistence of stationary distribution π and π integrablity of Rg for any bounded test function g.
Now, we prove that the CTMC satisfies the constraints in the fluid optimization problem (A.23-
A.26). First, to prove (A.24), we consider the test function g(X) = X+

i (X) +
∑

ikXik(X) +
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∑
ik Zik(X). Doing so, πRg = 0 yields∑

X

π(X)Rg(X)

=
∑
X,Y

π(X)rX,Y g(Y )

=
∑
X

∑
Y :rXY >0,

g(Y )=g(X)−1

π(X)rXY (−1) +
∑
X

∑
Y :rXY >0

g(Y )=g(X)+1

π(X)rXY (1)

=
∑
X

π(X)(
∑
ik

µikXik(X) +
∑
ik

µikZik(X))(−1)

+
∑
X

π(X)(
∑
ji

µjiXji(X) +
∑
ji

µjiZji(X))(1)

=
∑
X,Y

π(X)
(
−
∑
ik

µikXik(X)−
∑
ik

µikZik(X) +
∑
ji

µjiXji(X) +
∑
ji

µjiZji(X)
)

= 0

The last equality gives (A.24). Second, it is straightforward to see that constraint (A.25) is sat-
isfied, since the total number of vehicles is invariant according to the transitions demonstrated
in Table A.1. Lastly, the (A.26) is satisfies since the transitions demonstrated in Table A.1 yield
Xji(T ), Zji(T ), X

+
ji(T ) ≥ 0.

Lemma 20. The long-run average utility rate of any dynamic policy is upper bounded by the

optimal objective value of the fluid optimization in (A.23-A.26).

Proof. Consider a Dynamic policy (λλλ,QQQ,γγγ). Denote by λ(s)ji the rate of passenger arrivals for OD
pair (j, i), when system state is s ∈ X . We refer to a passenger who enters the system in state s as
a type s passenger and the system reward when serving a type s passenger with OD pair (j, i) is
I(λ

(s)
ji ). To prove the lemma statement, it suffices to prove that

lim sup
T→∞

1

NT
E

[∑
ji∈I

ˆ T

0

Iji(λji(t))dKji(t, T )−
∑
ji∈I

ˆ T

0

cVjidJji(t)−
∑
j∈S

ˆ T

0

cWj X
−
j (t)dt

]
≤

∑
ji∈I

µjiE[Xji(∞)/N ]Iji(µjiE[Xji(∞)/N ])−
∑
ji∈I

cVjiµjiE[Zji(∞)/N ] (A.29)

We prove (A.29) in three steps. In the first step, define

ζ
(s,T )
ji =

#completed trips of type s from j to i by time T

Nλ
(s)
ji T

90



Note that we can rewrite the reward portion of the objective function as follows:

lim sup
T→∞

1

NT
E

[∑
ji∈I

ˆ T

0

Iji(λji(t))dKji(t, T )

]
= lim sup

T→∞
E[
∑
ji∈I

∑
s∈X

ζ
(s,T )
ji λ

(s)
ji Iji(λ

s
ji)](A.30)

Next, we upper bound the number of type s completed trips with the number of type s requests
made by time T , and apply uniform law of large numbers to conclude

lim sup
T→∞

ζ
(s,T )
ji ≤ lim

T→∞

Nπsλ
(s)
ji T

Nλ
(s)
ji T

= πs (A.31)

Furthermore, note that

lim sup
T→∞

∑
s∈X

ζ
(s,T )
ji λ

(s)
ji = µjiE[Xji(∞)/N ] (A.32)

where the first term is the total number of completed trips from node j to node i by time T divided
by NT . As the first term represents the average arrival rate of full vehicles from j to i divided
by N , the equality follows from proposition 1.1 in Little [1961]. As the functions λjiIji(λji) are
concave in λji, Jensen’s inequality yields

∑
ji∈I

∑
s∈X

ζ
(s,T )
ji λ

(s)
ji Iji(λ

s
ji) ≤

∑
ji∈I

(∑
s∈X

ζ
(s,T )
ji

)(∑
s∈X

ζ
(s,T )
ji λ

(s)
ji Iji

(∑
s∈X ζ

(s,T )
ji λ

(s)
ji∑

s∈X ζ
(s,T )
ji

))
Combining with (A.31),

∑
s∈X πs = 1, and the fact that Iji(λji) are non-increasing in λji yields

lim sup
T→∞

∑
ji∈I

∑
s∈X

ζ
(s,T )
ji λ

(s)
ji Iji(λ

(s)
ji ) ≤ lim sup

T→∞

∑
ji∈I

(
∑
s∈X

ζ
(s,T )
ji λ

(s)
ji )Iji(

∑
s∈X

ζ
(s,T )
ji λ

(s)
ji )

Note that the non-increasing property follows from the concave reward assumption, see e.g., Baner-
jee et al. [2021]. Combining with (A.32), we upper bound the right hand side in (A.30) as follows:∑

ji∈I

µjiE[Xji(∞)/N ]Iji(µjiE[Xji(∞)/N ])

In the second step, to compute the empty relocation cost in the objective function, we refer to a
vehicle who completes its empty relocation in state s as a type s empty relocation. Now, define

ζ
′(s,T )
ji =

#empty relocation of type s by time T
NµjiT
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Next, we lower bound the empty relocation portion of the objective function as follows:

lim sup
T→∞

1

NT
E

[
−
∑
ji∈I

ˆ T

0

cVjidJji(T )

]
= lim sup

T→∞
E
[
−
∑
ji∈I

ζ
′(s,T )
ji µjic

V
ji

]
(A.33)

Also, we apply proposition 1.1 in Little [1961] to conclude

lim inf
T→∞

ζ
′(s,T )
ji = lim

T→∞

πsµjiZji(s)T

NµjiT
= πs

Zji(s)

N
(A.34)

Then, we upper bound the right hand side in (A.33) as follows:

lim sup
T→∞

E
[
−
∑
ji∈I

ζ
′(s,T )
ji µjic

V
ji

]
=
∑
ji∈I

µji
E[Zji(∞)]

N
cVji

In the third step, note that for the third part of the objective we have

lim sup
T→∞

1

NT
E[−

∑
j∈S

ˆ T

0

cWj X
−
j (t)dt] ≤ 0

This concludes the proof.

Lemma 21. There exists a positive constant α′ > 0 such that for optimal solution to optimization

problem in (1.3) and (1.4) we have

P
{∣∣∣XN(T )

N
− f ∗

∣∣∣ < M

}
≤ 1−O(e−α′N),

where M = 4max
(
C2, 1

)(
2|I|+ |S|

)
and C2 = max{x−i (0), λi/θi} as defined in Lemma 10.

Proof. First note that from Lemma 10 we have

∑
ji

Xji(T )

N
+
Zji(T )

N
+
∑
j∈S

X+
j (T )

N
= 1

Thus, ∑
ji

∣∣∣Xji(T )

N
− f ∗

ji

∣∣∣+∑
ji

∣∣∣Zji(T )

N
− e∗ji

∣∣∣ < 2|I|

Also note that

P

{
XN−

j (T )

N
− β∗

j < M/2

}
≤ P

{
XN−

j (T )

N
< M/2

}
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To prove the lemma, it is sufficient to prove that

P

{
XN−

j (T )

N
<

M

2|S|

}
≤ 1−O(e−α′N) (A.35)

To prove the last statement, for each station i ∈ S we consider a parallel infinite server queue,
M/M/∞, with exponential service time with mean 1/θi. To relate the two systems, whenever
a passenger arrives at a station i in the original system with an exponential patience time with
mean 1/θi, a job arrives in the infinite server queue in the parallel system with mean service time
1/θi. Also, when ever a passenger is served with a vehicle in the original system we mark the
corresponding job in the parallel system. Clearly, the number of unmarked jobs in the parallel
system equals the passenger queue length at station i in the original system. Also, the number of
unmarked jobs in the parallel system is upper bounded by the total number of jobs in the parallel
system. Finally, to derive (A.35) we note that when the system is initialized the maximum passen-
ger queue length is at most M/(4|S|). Therefore, we can upper bound the number of jobs in the
infinite server queue by M/(4|S|) plus the number of jobs arrive after time t = 0. Thus, we use
the transient probability of infinite server queues to derive (A.35) as follows

P

{
XN−

j (T )

N
<

M

2|S|

}
≤ 1− P

{
XN−

j (T )

N
>

M

4|S|

∣∣∣ XN−
j (0)

N
= 0

}

≤ 1−
∞∑

i=MN
4|S|

e−(Nλj/θj)(1−eθjt)

(
Nλj

θj
(1− e−θjt)

)i
i!

≤ 1−O(e−α′N)

where α > 0 is a constant. This concludes the proof.

Lemma 22. There exists positive constants αS, αU ,M > 0 such that we have

P
{∣∣∣XN(T )

N
− f ∗

∣∣∣ > 4N−1/2+δ +Me−αST
}
= O(e−αUNδ

),

where M = 4max
(
C2, 1

)(
2|I|+ |S|

)
and C2 = max{x−i (0), λi/θi} as defined in Lemma 21.

Proof. As we discussed in Section A.2, the problem with some or all f ∗
j = 0, can be converted to

another network problem with all f ∗
j values positive. Hence, it is sufficient to prove the lemma

statement for the case f ∗
j > 0,∀j ∈ S. Set
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T ′ = t4 + α−1
M log

(ι2
ι1

max
(
1,
∣∣XN(0)

N
− f ∗∣∣))

Consider the constant M as defined in Lemma 21. We first consider the case T ≥
T ′ log(MN1/2−δ). From Lemma 21, there exists a positive constant α′ such that

P
{∣∣∣XN(T − T ′ log(MN1/2−δ))

N
− f ∗

∣∣∣ < M

}
≤ 1−O(e−α′N). (A.36)

For k ≤ log(MN1/2−δ), define

XN,k = XN(T + kT ′ − T ′ log(MN1/2−δ))

Setting the time reference at kT ′ and αU = min(αe−2CT ′
, α′),

P
{∣∣∣XN,k+1

N
−Ψ

(XN,k

N
, T ′
)∣∣∣ > N−1/2+δ

}
≤ P

{∣∣∣X̃N(T )

N

∣∣∣
(T ′)

>
N−1/2+δ

2eCT ′

}
= O(e−αUN2δ

).

where the last inequality follows from Lemma 25. Also, from Lemma 16 we know that

∣∣∣Ψ(XN,k

N
, T ′
)
− f ∗

∣∣∣ ≤ ∣∣∣XN,k

N
− f ∗

∣∣∣e−1.

As a result,

P
{∣∣∣XN,k+1

N
− f ∗

∣∣∣ ≤ N−1/2+δ +
∣∣∣XN,k+1

N
− f ∗

∣∣∣e−1
}
= 1−O(e−αUN2δ

)

Iteratively applying this bound yields

P

{∣∣∣XN,log(MN1/2−δ)

N
− f ∗

∣∣∣ ≤ N−1/2+δ(

logMN1/2+δ∑
l=0

e−l) +

∣∣∣XN,0

N
− f ∗

∣∣∣
MN1/2−δ

}
≤ 1− log(MN1/2−δ)O(e−αUN2δ

)

Combining with (A.36) yields

P

{∣∣∣∣XN,log(MN1/2−δ)

N
− f ∗

∣∣∣∣ ≤ 3N−1/2+δ

}
= 1− log(MN1/2−δ)O(e−αUN2δ

)
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As our choice of δ > 0 can be arbitrarily small we conclude

P
{
|X

N(T )

N
− f ∗| > 3N−1/2+δ

}
= O(e−αUNδ

).

Next, consider the case T ≤ T ′ log(MN1/2−δ) similarly for 0 ≤ k ≤ ⌊T/T ′⌋, define

XN,k = XN(kT ′ + {T/T ′}T ′)

where {T/T ′} denotes the fractional part of {T/T ′}. Applying the same iterative procedure we
presented for the previous case we conclude

P

{∣∣∣XN(T )

N
− f ∗

∣∣∣ ≤ N−1/2+δ
( ⌊T/T ′⌋∑

l=0

e−l
)
+

∣∣∣XN,0

N
− f ∗

∣∣∣
e⌊T/T ′⌋

}
≤ 1− (⌊T/T ′⌋)O(e−αUN2δ

)

≤ 1− log(MN1/2−δ)O(e−αUN2δ

)

As our choice of δ > 0 can be arbitrarily small, setting αS = 1/T ′ yields

P
{
|X

N(T )

N
− f ∗| > 4N−1/2+δ +Me−αST

}
= O(e−αUNδ

).

This conclude the proof.

A.11 Lemmas used in the proof of Theorem 3

First, we apply moderate deviation theory (Theorem 3.7.1 of Dembo and Zeitouni 2009) and
Schilder’s theorem for Poisson processes (Exercise 5.2.12 Dembo and Zeitouni 2009) to obtain
the following result.

Lemma 23. (Moderate deviation analysis for Poisson processes) For a unit rate Poisson process

A(t), set Ã = U(t)− t. So, for −1/2 < ϑ < 0 we have

P
{
∥Ã∥T
T

> ϵT ϑ

}
= e−TI1(ϵTϑ) = O(e−1/2ϵ2T 1+2ϑ

)

Here, I1(.) is a rate function.

Then we apply moderate deviation theory and Mogulskii’s theorem on Bernoulli processes
(Theorem 5.1.2 in Dembo and Zeitouni 2009) to obtain the following result.
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Lemma 24. (Moderate deviation analysis for Bernoulli trial) For a unit Bernouli trial ϕji with

success rate pji, set ϕ̃ji = ϕji(N)− pjiN . Then, for −1/2 < ϑ < 0 we have

P
{

sup
1≤n≤N

∣∣∣ ϕ̃ji(n)

N

∣∣∣ > ϵNϑ

}
= e−NI2(ϵNϑ) = O(e−

1
2
(pji−p2ji)

−1ϵ2N1+2ϑ

)

Here, I2(.) is a rate function.

The following is the key result used in the proof of Theorem 3.

Lemma 25. There exists a positive constant α > 0, such that for −1/2 < ϑ ≤ 0, we have

P

{∥∥∥X̃N

NT

∥∥∥
T
>
ϵ(NT )ϑ

2

}
= O

(
e−αϵ2(NT )1+2ϑ)

.

For constant T ≥ 0, taking α′ = α/2T 2, ϑ = 0 and ϵ′ = ϵT , it gives

P
{∥∥∥X̃N

N

∥∥∥
T
> ϵ′

}
= O

(
e−2α′ϵ2N

)
.

Proof. We prove this result in two steps. First, we proves that the input to the Poisson processes
that define the system dynamics are bounded. Then, we prove the probability that a Poisson process
with bounded input generates an extremely large output is exponentially small. According to the
law of total probability, to prove the lemma statement it suffices to prove that there exists α > 0

such that the following three statements hold.

P

{∥∥∥X̃N
i

NT

∥∥∥
T
>

ϵ(NT )ϑ

2|S|+ 4|I|

}
= O(e−αϵ2(NT )1+2ϑ

); ∀i ∈ S;∀ − 1/2 < ϑ ≤ 0

P

{∥∥∥X̃N
ji

NT

∥∥∥
T
>

ϵ(NT )ϑ

2|S|+ 4|I|

}
= O(e−αϵ2(NT )1+2ϑ

); ∀ji ∈ I;∀ − 1/2 < ϑ ≤ 0

P

{∥∥∥ Z̃N
kl

NT

∥∥∥
T
>

ϵ(NT )ϑ

2|S|+ 4|I|

}
= O(e−αϵ2(NT )1+2ϑ

); ∀kl ∈ I;∀ − 1/2 < ϑ ≤ 0
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First, for all single servers i the law of total probabilities yields

P

{∥∥∥X̃N
i

NT

∥∥∥
T
>

ϵ(NT )ϑ

2|S|+ 4|I|

}

≤ P
{∥∥∥X̃N

i

∥∥∥
T
>

ϵ(NT )1+ϑ

2|S|+ 4|I|

}
≤ P

{
sup

0≤t≤T
|Ãi(Nλit)| >

ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
+
∑
ji∈I

P
{

sup
0≤t≤T

∣∣∣F̃ji(µji

ˆ t

0

X
(N)
ji (s)ds)

∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
+
∑
ji∈I

P
{

sup
0≤t≤T

∣∣∣Ẽji(µji

ˆ t

0

Z
(N)
ji (s)ds)

∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
+P
{

sup
0≤t≤T

∣∣∣H̃i(γi

ˆ t

0

X
(N)+
i (s)ds)

∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
+P
{

sup
0≤t≤T

∣∣∣G̃i(θi

ˆ t

0

X
(N)−
i (s)ds)

∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}

where the last inequality follows from (1.15). Next, we note that X(N)+
j , X(N)

ji , and Z
(N)
ji are

positive and their sum, ∑
j∈S

X
(N)+
j +

∑
ji∈I

X
(N)
ji +

∑
ji∈I

Z
(N)
ji = N

, is invariant over time and equals the market size N . We can upper bound the above equation as
follows:

P

{∥∥∥X̃N
i

NT

∥∥∥
T
>

ϵ(NT )ϑ

2|S|+ 4|I|

}

≤ P
{

sup
0≤t≤T

|Ãi(Nλit)| >
ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
+
∑
ji∈I

P
{

sup
0≤t≤T

∣∣∣F̃ji(µjiNt)
∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
+
∑
ji∈I

P
{

sup
0≤t≤T

∣∣∣Ẽji(µjiNt)
∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
+P
{

sup
0≤t≤T

∣∣∣H̃i(γiNt)
∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
+P
{

sup
0≤t≤T

∣∣∣G̃i(θi

ˆ t

0

X
(N)−
i (s)ds)

∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
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Define
α1 =

1

72(|S|+ 2|I|)4max(maxi λi,maxji µji,maxi γi)
·

Then, applying Lemma 23 to the first four terms yields

P

{∥∥∥X̃N
i

NT

∥∥∥
T
>

ϵ(NT )1+ϑ

2|S|+ 4|I|

}
≤ O

(
e−α1ϵ2(NT )1+2ϑ

)
+P
{

sup
0≤t≤T

∣∣∣G̃i(θi

ˆ t

0

X
(N)−
i (s)ds)

∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
·

Next, set χ = 2(maxi |θi| +maxi |λi|) and use the law of total probability to rewrite the last term
as follows

P
{

sup
0≤t≤T

∣∣∣G̃i(θi

ˆ t

0

X
(N)−
i (s)ds)

∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
≤ P

{
sup0≤t≤T

∣∣∣G̃i(θi
´ t
0
X

(N)−
i (s)ds)

∣∣∣ > ϵ(NT )1+ϑ

6(|S|+2|I|)2

∣∣∣θi ´ t0 X(N)−
i (s)ds > χθiNT

2
}
P
{
θi
´ t
0
X

(N)−
i (s)ds > χθiNT

2
}

(A.37)

+P
{
sup0≤t≤T

∣∣∣G̃i(θi
´ t

0
X

(N)−
i (s)ds)

∣∣∣ > ϵ(NT )1+ϑ

6(|S|+2|I|)2

∣∣∣θi ´ t0 X(N)−
i (s)ds ≤ χθiNT

2
}
P
{
θi
´ t
0
X

(N)−
i (s)ds ≤ χθiNT

2
}

(A.38)

Next, we upper bound (A.37) by the event probability. Furthermore, we use the system dynamics
(1.12) to upper bound the event probability as follows

P
{
θi

ˆ t

0

X
(N)−
i (s)ds > χθiNT

2

}
≤ P

{
θi

ˆ t

0

(
Ai(Nλis) +Hi

(
γi

ˆ t

0

X
(N)+
i (s)ds

))
ds > χθiNT

2

}

Noting that X(N)+
i ≤ N , we conclude

P
{
θi

ˆ t

0

X
(N)−
i (s)ds > χθiNT

2

}
≤ P

{
θiT sup

0≤s≤T
Ai(Nλis) + θiT sup

0≤s≤T
Hi(γiNs) > χθiNT

2

}
Define

α2 =
χ2

8max(maxi λi,maxi γi)

Therefore, Lemma 23 yields

P
{
θi

ˆ t

0

X
(N)−
i (s)ds > χθiNT

2

}
= O(e−α2ϵ2NT )
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On the other hand, we upper bound (A.38) by the conditional probability as follows

P
{

sup
0≤t≤T

∣∣∣G̃i(θi

ˆ t

0

X
(N)−
i (s)ds)

∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

∣∣∣∣θi ˆ t

0

X
(N)−
i (s)ds ≤ χθiNT

2

}
≤ P

{
sup

0≤s≤χT 2

∣∣∣G̃i(θiNs)
∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
Define

α3 =
1

72Tχθi(|S|+ 2|I|)4

Using Lemma 23 we can upper bound (A.38) by O(e−α3ϵ2(NT )1+2ϑ
). Also, for infinite servers

ji ∈ I we write

P

{∥∥∥X̃(N)
ji

NT

∥∥∥
T
>

ϵ(NT )ϑ

2|S|+ 4|I|

}

≤ P
{

sup
0≤t≤T

∣∣∣F̃ji(µji

ˆ t

0

X
(N)
ji (s)ds)

∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
+
∑
kj∈I

P
{
pji sup

0≤t≤T

∣∣∣F̃kj(µkj

ˆ t

0

X
(N)
kj (s)ds))

∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
+
∑
kj∈I

P
{
pji sup

0≤t≤T

∣∣∣Ẽkj(µkj

ˆ t

0

Z
(N)
kj (s)ds)

∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}

+P

{
sup

0≤t≤T

∣∣∣ϕ̃ji((
∑
kj∈I

Fkj(µkj

ˆ t

0

X
(N)
kj (s)ds))

+(
∑
kj∈I

Ekj(µkj

ˆ t

0

Z
(N)
kj (s)ds)) +X

(N)+
j (0)

−X(N)+
j (t)−Hj(γj

ˆ t

0

X
(N)+
j (s)ds))

∣∣∣ > ϵ(NT )1+ϑ

6|S + I1 + I2|2

}
.

Similar to the case for single servers we can upper bound the first three elements in the right
hand side by O(e−α1ϵ2(NT )1+2ϑ

). Moreover, we can upper bound the last element by the following
expression

P
{

sup
0≤t≤T

∣∣∣∑
kj∈I

Fkj(µkjNt) +
∑
kj∈I

Ekj(µkjNt) +X
(N)+
j (0)

∣∣∣ ≥ 2NT (1 +
∑
kj∈I

µkj)

}
(A.39)

+ P
{

sup
0≤t≤T

∣∣∣ϕ̃ji

(
2NT (1 +

∑
kj∈I

µkj)
)∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
(A.40)
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We can upper bound (A.39) using Lemma 23 for T ≥ 1 by O(e−NT minkj(µkj)/2). Moreover, define

α4 =
1

144(1 +
∑

kj µkj)2(|S|+ 2|I|)4maxji(pji(1− pji))

Applying Lemma 24, we can upper bound (A.40) as the following expression

P
{

sup
0≤n≤N

∣∣∣ϕ̃ji(2n(1 + T
∑
kj∈I

µkj))
∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
= O(e−α4ϵ2(NT )1+2ϑ

)

Lastly, for all infinite servers that model empty vehicle trips from node j to node i, we have

P
{∥∥∥Z̃(N)

ji

NT

∥∥∥
T
>

ϵ(NT )ϑ

2|S|+ 4|I|

}
≤ P

{
sup

0≤t≤T

∣∣∣Ẽji

(
µji

ˆ t

0

Z
(N)
ji (s)ds

)∣∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
+P
{

sup
0≤t≤T

∣∣∣σ̃ji(Hj

(
γj

ˆ t

0

X
(N)+
j (s)ds

))∣∣∣∣
. >

ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
+P
{

sup
0≤t≤T

∣∣∣qjiH̃j

(
γj

ˆ t

0

X
(N)+
j (s)ds

)∣∣∣∣ > ϵ(NT )1+ϑ

6(|S|+ 2|I|)2

}
·

Following the same procedure for single servers and infinite servers, the first term is upper bounded
by O(e−α1ϵ2(NT )1+2ϑ

). Define

α5 =
1

144(|S|+ 2|I|)4maxji(qji(1− qji))

The second term is upper bounded by

O(e−
1
2
NT minj(γj)) +O(e−α4ϵ2(NT )1+2ϑ

)

Also, the third term is upper bounded by O(e−α1ϵ2(NT )1+2ϑ
). We set

α = max(α1, α2, α3, α4, α5, 1/2min
kj

µkj, 1/2min
j
γj)

This concludes the proof.

A.12 Proof of Theorem 4

First, we need several lemmas.
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Lemma 26. Consider the system defined in Theorem 4, and set

µmax = max
(
max
ji

µji,
2

mini

∑
k, ik∈I µikeik

, 1
)
.

There exists α
′′
> 0 such that for an arbitrary constant Tc and for any T ≤ Tc and any δ ≥ ϵ

P
{

sup
T≤Tc

∣∣∣´ T0 X
(N)+
i (t)dt

T

∣∣∣ ≥ 2µmaxN
1/2+δ

∣∣∣X(N)+
i (0) ≤ µmaxN

1/2+δ

}
= O

(
e−α

′′
Nδ+ε)

Proof. We first upper bound the lemma statement as follows:

P
{

sup
T≤Tc

∣∣∣´ T0 X
(N)+
i (t)dt

T

∣∣∣ ≥ 2µmaxN
1/2+δ

∣∣∣X(N)+
i (0) ≤ µmaxN

1/2+δ

}
≤ P

{
sup
t≤Tc

∣∣∣X(N)+
i (t)

∣∣∣ ≥ 2µmaxN
1/2+δ

∣∣∣X(N)+
i (0) ≤ µmaxN

1/2+δ

}

Assume there exists T ≤ Tc such that X(N)+
i (T ) ≥ µmaxN

1/2+δ and define

T2 = inf
{
T
∣∣∣X(N)+

i (T ) ≥ 2µmaxN
1/2+δ, 0 ≤ T ≤ Tc

}
Also, define

T1 = sup
{
T ′
∣∣∣X(N)+

i (T ′) ≤ µmaxN
1/2+δ, 0 ≤ T ′ ≤ T2

}
Then, we apply (1.12) to yield

X
(N)
i (T2) ≤ X

(N)
i (T1) +

∑
ji∈I

Fji

(
µji

ˆ T2

T1

X
(N)
ji (s)ds

)
+
∑
ji∈I

Eji

(
µji

ˆ T2

T1

Z
(N)
ji (s)ds

)

−Hi

(
γi

ˆ T2

T1

X
(N)+
i (s)ds

)
.

Thus,

µmaxN
1/2+δ ≤

∑
ji∈I

Fji

(
µji

ˆ T2

T1

X
(N)
ji (s)ds

)
+
∑
ji∈I

Eji

(
µji

ˆ T2

T1

Z
(N)
ji (s)ds

)

−Hi

(
γi

ˆ T2

T1

X
(N)+
i (s)ds

)
.
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We upper bound the right hand side by separating the stochastic and deterministic terms as follows

µmaxN
1/2+δ ≤

∑
ji∈I

F̃ji

(
µji

ˆ T2

T1

X
(N)
ji (s)ds

)
+
∑
ji∈I

Ẽji

(
µji

ˆ T2

T1

Z
(N)
ji (s)ds

)

−H̃i

(
γi

ˆ T2

T1

X
(N)+
i (s)ds

)
+
∑
ji∈I

(
µji

ˆ T2

T1

X
(N)
ji (s)ds

)

+

(
µji

ˆ T2

T1

Z
(N)
ji (s)ds

)
−
(
γi

ˆ T2

T1

X
(N)+
i (s)ds

)
.

Recall from Lemma 10 that
∑

ji Z
(N)
ji (s) + X

(N)
ji (s) is bounded above by N . Also, by definition

we have X(N)+
i (s) > 0 for s ∈ [T1, T2]. Hence for large N and δ ≥ ε we conclude

µmaxN
1/2+δ + µmaxN

1+δ−ϵ(T2 − T1)− µmaxN(T2 − T1)

≤
∑
ji∈I

∥∥∥F̃ji

∥∥∥
µji

´ Tc
0 X

(N)
ji (s)ds

+
∑
ji∈I

∥∥∥Ẽji

∥∥∥
µji

´ Tc
0 Z

(N)
ji (s)ds

+
∥∥∥H̃i

∥∥∥
γi
´ T2
0 X

(N)+
i (s)ds

. (A.41)

Note that the probability that a T2 < Tc exists such that X(N)+
i (T2) ≥ N1/2+δ is upper bounded

by the probability that (A.41) holds. We refer to the event in (A.41) as Bi and upper bound its
probability. First, note that Lemma 23 yields

P
{
N1/2+δ/2 ≤

∑
ji∈I

∥∥∥F̃ji

∥∥∥
µjiN(Tc)

+
∑
ji∈I

∥∥∥Ẽji

∥∥∥
µjiN(Tc)

}
= O(e−N2δ/Tc|I|216maxji µji)

Next, Lemma 23 yields

P
{
H̃i

(
γi

ˆ T2

0

X
(N)+
i (s)ds

)
> N1/2+δ/2

}
≤ P

{
H̃i

(
µmaxTcN

1+δ−ε

)
> N1/2+δ/2

}
= O

(
e−Nδ+ε/8Tcµmax

)
Therefore, there exists constant α′′ such that

P{Bi} ≤ O(e−α
′′
Nδ+ε

)

This concludes the proof.

Lemma 27. Consider γi and µmax defined according to Theorem 4 and Lemma 26, respectively.

There exists α
′′
> 0 such that for an arbitrary constant Tc and for any T ≤ Tc and any δ ≥ ϵ

P
{
X

(N)+
i (Tc) ≥ µmaxN

1/2+δ
∣∣∣X(N)+

i (0) ≤ µmaxN
1/2+δ

}
= O

(
e−α

′′
Nδ+ε)
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Proof. We consider two cases. First, if X(N)+
i (T ) ≥ µmaxN

1/2+δ/2,∀0 ≤ T ≤ Tc, then (1.12)
yields

X
(N)
i (Tc) ≤ X

(N)
i (0) +

∑
ji∈I

Fji

(
µji

ˆ Tc

0

X
(N)
ji (s)ds

)
+
∑
ji∈I

Eji

(
µji

ˆ Tc

0

Z
(N)
ji (s)ds

)

−Hi

(
γi

ˆ Tc

0

X
(N)+
i (s)ds

)
.

repeating the same approach as we discussed in the proof for Lemma 26 it is straightforward to
show that this event is bounded by O(e−α

′′
Nδ+ε

) for some α′′
> 0. In the next case, there exists

T < Tc such that X(N)+
i (T ) ≤ µmaxN

1/2+δ/2. Define the stopping time T1 as follows

T1 = inf
T≤Tc

{
T : X

(N)+
i (T ) ≤ µmaxN

1/2+δ/2
}

Then, if there exists a T < Tc such that X(N)+
i (T ) ≤ N1/2+δ/4 the event in the lemma statement

is upper bounded by

P
{
X

(N)+
i (Tc) ≥ µmaxN

1/2+δ
∣∣∣X(N)+

i (T1) ≤ µmaxN
1/2+δ/2

}
However, the proof for Lemma 26 also implies this probability is in the order O(e−α

′′
Nδ+ε

) for
some positive α′′ . This concludes the proof.

Lemma 28. Consider γi and µmax defined according to Theorem 4 and Lemma 26, respectively.

Then for any positive constant Tc ≥ 1 and for δ ≥ ε there exists positive constants t6 ≤ Tc and α1

such that

P
{
X

(N)
i (t6) ≤ µmaxN

1/2+δ,∀i ∈ S
}
= 1−O(e−α1N),∀i ∈ S.

Proof. Seeking contradiction, assume that ∀t6 ≤ Tc for some i ∈ S we have

X
(N)
i (t6) ≥ µmaxN

1/2+δ,∀i ∈ S

Thus, for at least one j ∈ S we have

γj

ˆ Tc

0

X
(N)+
j (s)ds ≥ 2NTc.
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Then, Lemma 23 yields

P
{
Hj

(
γj

ˆ Tc

0

X
(N)+
j (s)ds

)
≥ 5

3
NTc

}
≥ 1− P

{
H̃j

(
γj

ˆ Tc

0

X
(N)+
j (s)ds

)
≥ 1

3
γj

ˆ Tc

0

X
(N)+
j (s)ds

}
= 1−O(e−

1
9
NTc).

As such,

P

{
σji

(
Hj

(
γj

ˆ Tc

0

X
(N)+
j (s)ds

))
≥ 4

3
NTc

}

≤ P

{
σji

(
Hj

(
γj

ˆ Tc

0

X
(N)+
j (s)ds

))
≥ 4

3
NTc

∣∣∣Hj

(
γj

ˆ Tc

0

X
(N)+
j (s)ds

)
≥ 5

3
NTc

}
−O(e−

1
9
NTc)

≤ 1− P

{
σ̃ji

(
Hj

(
γj

ˆ Tc

0

X
(N)+
j (s)ds

))
≥ 1

5
Hj

(
γj

ˆ Tc

0

X
(N)+
j (s)

)

.
∣∣∣Hj

(
γj

ˆ Tc

0

X
(N)+
j (s)ds

)
≥ 5

3
NTc

}
−O(e−

1
9
NTc) = 1−O(e−α1N).

where α1 is a positive constant. As a result, to the system dynamics (1.14) we have with probability
at least 1−O(e−α1N)

Z
(N)
ji (Tc) = Z

(N)
ji (0) + σji

(
Hj

(
γj

ˆ Tc

0

X
(N)+
j (s)ds

))
− Eji

(
µji

ˆ Tc

0

Z
(N)
ji (s)ds

)
≥ 4

3
NTc −NTc − ∥Ẽ∥µjiNTc

Also Lemma 23 yields
P
{
∥Ẽ∥µjiNTc ≥ NTc

}
= O(e−

NTc
2µmax )

On the other hand we know that Z(N)
ji (Tc) ≤ N . This contradiction concludes the proof.

Lemma 29. Consider γi and µmax defined according to Theorem 4 and Lemma 26, respectively.

Also, assume the initial system state satisfies X(N)
i (0) ≤ µmaxN

1/2+δ, then there exists a positive
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constant C3 > 0 such that for an arbitrary constant Tc we conclude

P
{∣∣∣X(N)(Tc)

N
− ψ

(X(N)(0)

N
, Tc

)∣∣∣ ≥ eC3Tc

∥∥∥X̃(N)

N

∥∥∥
Tc

}
= O(e−α

′′
N2ε

)

Proof. We adopt the results in Lemmas 26 and 27, to substitute the system dynamics equations
with upper and lower bounds inequalities that hold with a high probability of at least 1−O(e−N2ε

).
For example, from (1.14) we conclude with probability at least 1 − O(e−N2ε

) for any t ≤ Tc we
have

Z
(N)
ji (t) ≤ Z

(N)
ji (0) + σji

(
Hj

(
2µmaxNt

))
− Eji

(
µji

ˆ t

0

Z
(N)
ji (s)ds

)
, ji ∈ I.

Z
(N)
ji (t) ≥ Z

(N)
ji (0)− σji

(
Hj

(
2µmaxNt

))
− Eji

(
µji

ˆ t

0

Z
(N)
ji (s)ds

)
, ji ∈ I.

Following the same procedure, we can rewrite (A.4) by substituting the terms that contain coef-
ficients γi with two inequalities; i.e., with probability at least 1 − O(e−N2ε

) for any t ≤ Tc we
have

x(t) ≥ q(t) + J1

ˆ t

0

x(s)ds+ J2

ˆ t

0

x−(s)ds− J3x
+(t)− 2µmaxt111

x(t) ≤ q(t) + J1

ˆ t

0

x(s)ds+ J2

ˆ t

0

x−(s)ds− J3x
+(t) + 2µmaxt111

Repeating the same iterative bounding approach we presented in Lemma 2 yields there exists C3

such that

P
{∣∣∣X(N)(Tc)

N
− ψ

(X(N)(0)

N
, Tc

)∣∣∣ ≥ eC3Tc

∥∥∥X̃(N)

N

∥∥∥
Tc

}
= O(e−α

′′
N2ε

).

This concludes the proof of the result.

Lemma 30. If we define γi according to Theorem 4 and the initial system state satisfiesX(N)
i (0) ≤

µmaxN
1/2+δ, then there exists positive constant α

′′′
, such that for any constant T we have

P

{∥∥∥X̃(N)

N

∥∥∥
T
>
ϵ1(N)ϑ

2

}
= O

(
e−α

′′′
min(N2ε,ϵ21N

1+2ϑ)
)
; −1/2 ≤ ϑ ≤ 0.
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Proof. First note that Lemmas 26 and 27 yield

P
{

sup
0≤t≤T

γi

ˆ t

0

X
(N)+
i (s)ds > 2µmaxN

1+δ−ε
}
= O(e−α

′′
Nε+δ

),∀δ ≥ ε.

Thus,

P
{

sup
0≤t≤T

H̃
(
γi

ˆ t

0

X
(N)+
i (s)ds

)
> sup

0≤t≤T
H̃
(
2µmaxN

1+ε−εt
)}

= O(e−α
′′
N2ε

). (A.42)

Repeating the same procedure as Lemma 25 and applying (A.42) we obtain

P

{∥∥∥X̃(N)

N

∥∥∥
T
>
ϵ1N

ϑ

2

}
= O

(
e−min(α

′′
N2ε,αϵ21N

1+2ϑ)
)
; −1/2 ≤ ϑ ≤ 0.

This concludes the proof.

Lemma 31. Considering the system parameters introduced in Theorem 4, the LCP (A.7) has a

unique solution u(N)(Θ) = (u
(N)
ji (Θ), v

(N)
ji (Θ), u

(N)
j (Θ)) that satisfies the following properities.

1. The unique functions u(N)
ji (Θ), ji ∈ I, v(N)

ji (Θ), ji ∈ I, u(N)
j (Θ), j ∈ S are continuous

piece-wise linear and increasing and number of pieces of each function is at most |S|.

2. The right limit slope for the functions u(N)
j (Θ), j ∈ S is strictly positive unless u(N)

j (Θ) = 0.

3. The right limit slope for the functions v(N)
ji (Θ), ji ∈ I is strictly positive unless v(N)

ji (Θ) = 0.

4. The right limit slope for the functions u(N)
ji (Θ), ji ∈ I is strictly positive unless u(N)

ji (Θ) ∈{
0, u

(N)
ji (1)

}
.

5. The maximum value for the functions u(N)
j (Θ), j ∈ S is less than N−1/2+ϵ

∑
j,ji∈I µjieji.

6. For all stations j ∈ S we have Θj ≤ 1−
∑

i,ji∈I eji. Also, set Θ(max) = 1−minj

∑
i,ji∈I eji.

7. The minimum nonzero right limit slope for the functions u(N)
j (Θ), j ∈ S is ι1 introduced in

Lemma 8. So, there exists a positive constant ι
′′′
1 such that ι1 ≥ ι

′′′
1 N

−1/2+ϵ

8. The minimum nonzero right limit slope for the functions u(N)
ji (Θ), ji ∈ I, v(N)

ji (Θ), ji ∈ I is

a constant ι̂1 independent of N such that

ι̂1 ≥
1

|I|+ |S|
min

(minji,lm,λji>0 λjiµlm

maxk,lm λkµlm

,
minji,lm,qji>0 qjiµlm

maxlm µlm

)
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9. The maximum nonzero right limit slope for the functions u(N)
ji (Θ), ji ∈ I, v(N)

ji (Θ), ji ∈ I is

a constant ι2 defined in Lemma 8.

10. The maximum nonzero right limit slope for the functions u(N)
j (Θ), j ∈ S, is a constant ι

′
2

independent of N .

Proof. The proof for the first four parts of the remark are completely the same as Lemma 8. To
prove part 5, note that (A.7e) yields that

qjiN
1/2−ϵu

(N)
j

∑
k, ki∈I

µkieki ≤ µjiv
(N)
ji

This concludes the proof for part 5. To prove part 6, note that for Θ < Θ(j), (A.7e) yields
v
(N)
ji (Θ) = 0. However, (A.7f) yields v(N)

ji (1) = eji. Noting that v(N)
ji (1) − v

(N)
ji (Θ) ≤ 1 − Θ

concludes the proof for this part. Parts 7, 8, 9, and 10 are derived by following the exact same
procedure as presented in the proof for Lemma 8.

Lemma 32. Starting from an initial solution |x0| ≤ M , there exists positive constants t4, αM , ι
′
1

such that the solution to the dynamical system (1.16-1.18) satisfies

|xji(t+ t4)− fji| ≤
1

ι′1

∣∣∣1− L(x(0))
∣∣∣e−αM t, ∀ji ∈ I

|zji(t+ t4)− eji| ≤
1

ι′1

∣∣∣1− L(x(0))
∣∣∣e−αM t, ∀ji ∈ I

Furthermore, ∣∣∣L(x(t+ t4))− 1
∣∣∣ ≤ ∣∣∣L(x(0))− 1

∣∣∣e−αM t

Proof. As the proof outline is very similar to the proof of Lemma 15 here we only present the key
differences.
First, note that for some t ≤ 1

minji µji
we have

xj(t) ≤ 3N−1/2+ϵ|S| maxji µji

minji,qji>0 qji
, ∀j ∈ S

Otherwise, according to (1.18) at least for one ji ∈ I

zji

( 1

minji µji

)
≥ −µji

( 1

minji µji

)
+ 3µji

( 1

minji µji

)
≥ −1 + 3 > 1.

Next, note that the solution to dynamical system (1.16-1.18) satisfies the following equation for
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t′ ≥ t,

xi(t
′) ≤ 3N−1/2+ϵ

(
|S|+ 2|I|

) maxji µji

minji:qji>0 qji
, ∀i ∈ S (A.43)

To realize this, note that the derivative of xi is computed as follows.

ẋ+i (t) = −λi +
∑
ji∈I

µjixji(t) +
∑
ji∈I

µjizji(t) + θix
−
i (t)− γix

+
i (t)− ẋ−j (t), i ∈ S

Therefore, for xi that violates (A.43), ẋ+i (t) < 0. Thus, in a completely similar argument as we
presented in the proof for Lemma 11 part (a), we conclude that (A.43) holds for t′ ≥ t. Using the
transformation presented in Lemma 29, we conclude that there exists a positive constant C3 > 0

such that

∣∣ψ(x+ δ, t)− ψ(x, t)
∣∣ ≤ δeC3T1 (A.44)

The argument follows the same steps in the proof for Lemma 15. First, recall from Lemma 31 that
ι̂1, the minimum slope of functions uji, vji, ji ∈ I, is a constant independent of N . Also, note that
Lemma 9 holds for ι̂ = ι. Next, similar to Lemma 15 we introduce the parameters

δ ≤ ι21min
i
(Θi+1 −Θi)/(8eC3T2). (A.45)

Set the precision parameter in Proposition 2 as δ/2 to obtain T1 = 1
minj θj

log( C2

δ/2
). Consider

δ1 =
δ(C3/minj θj)+1

2(C3/minj θj)+1C
C3/minj θj
2

. (A.46)

More over, consider the minimum integer di such that

( 16ι̂21
eCT2ι2

)|S|−i

δ1e
CT2 ≤ ι̂21/8(1− ι̂1/8)

di−2(Θi+1 −Θi) (A.47)

Set d = mini,0≤i≤|S| di. Also, we consider the set {t(i,j), 0 ≤ i ≤ |S|, 0 ≤ j ≤ di} such that

t(i,0) =
i∑

k=0

(T1 + (dk − 1)T2)

t(i,j) = t(i,0) + T1 + (j − 1)T2; 1 ≤ j ≤ di − 1
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To prove the lemma, we first use induction on i ∈ [0, |S|+ 1] to show that for t ≥ t(i,0) we have

x+ji(t) +
( 16ι̂21
eCT2ι2

)|S|−i

δ1111 ≥ uji(Θ
i)

z+ji(t) +
( 16ι̂21
eCT2ι2

)|S|−i

δ1111 ≥ vji(Θ
i)

and if uj(Θi) > 0 then for t ≥ t(i,0) we have x+j (t) ≥ 000. For the induction base, i = 0, note that

x+(0) +
( 16ι̂21
eCT2ι2

)|S|
δ1 ≥ u(Θ0) = 000.

Assume the induction hypothesis is correct for i, in the following three steps we prove that the
induction hypothesis is correct for i + 1. As the induction steps are very similar to Lemma 15 we
only focus on differences.
Step 1. From induction hypothesis we have for t ≥ t(i,0)

x+(t) +
( 16ι̂21
eCT2ι2

)|S|−i

δ1111 ≥ u(Θi).

In the first step we prove that for t ≥ t(i,1), xl(t) ≥ −δ The proof for step 1 remains the same as
Lemma 15.
Step 2. From induction hypothesis and Step 1 we have for t ≥ t(i,1)

x+(t) +
( 16ι̂21
eCT2ι2

)|S|−i

δ1111 ≥ u(Θi),

and xl(t) ≥ −δ holds for all l ∈ S such that ul(Θi+1) > 0. In this step we prove that ∀l ∈
S, ul(Θi+1) > 0 and for t ≥ t(i,3)

xl(t) ≥ 0 (A.48)

To proceed, for t ≥ t(i,2) Lemma 8 yields

|ψ(x(t− T2), T2)− ψ(x(t− T2) + δ111, T2)| ≤ δeCT2

Next, Lemma 9 yields

L(ψ(x(t− T2) + δ111, T2)) ≥ Θi+1 − (1− ι̂1/4)(Θ
i+1 −Θi)
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This implies that, for all ji ∈ I and for t ≥ t(i,2), we have

xji(t), zji(t) ≥ ψ(x(t− T2) + δ111, T2)k − δeCT2

≥ uk(Θ
j+1 − (Θj+1 −Θj)(1− ι̂1/4))− δeCT2

As the minimum nonzero slope in the piece wise linear functions uji and vji is ι̂1 we can lower
bound the right hand side as follows

uk(Θ
j+1 − (Θj+1 −Θj)(1− ι̂1/8)) + ι̂21(Θ

j+1 −Θj)/8− δeCT2

≥ uk(Θ
j+1 − (Θj+1 −Θj)(1− ι̂1/8))

This together with Assumption 1 yields for each node l ∈ S such that 0 < ul(Θ
i+1) for t ≥ T2

−λl +
∑
jl∈I

µjlxjl(t) +
∑
jl∈I

µjlzjl(t) ≥ ι̂1(Θ
i+1 −Θi)/8

Thus, for t ≥ t(i,2) and xi(t) < 0 we conclude

ẋ+i (t) = −λi +
∑
ji∈I

µjixji(t) +
∑
ji∈I

µjizji(t) + θix
−
i (t)− γix

+
i (t) < ι̂1(Θ

i+1 −Θi)/8

Thus, in a completely same argument as the proof for the proof for Lemma 11 we conclude that
∀l ∈ S, ul(Θi+1) > 0 and that (A.48) is satisfied.
Step 3. In this step we complete the induction proof by showing that for t ≥ ti+1,0 and for kl ∈ I

x+kl(t) +
( 16ι̂21
eCT2ι2

)|S|−i−1

δ1111 ≥ ukl(Θ
i+1)

z+kl(t) +
( 16ι̂21
eCT2ι2

)|S|−i−1

δ1111 ≥ vkl(Θ
i+1)

This step is completely the same as step 3 in Lemma 15 except we only need to prove the inequal-
ities for the functions uji and vji.

The remaining of the proof is s completely the same as we presented in Lemma 15.

Proof of Theorem 4. We first present the proof for the case that the system initial state satisfies
X

(N)
i (0) ≤ µmaxN

1/2+δ. Then, we apply Lemma 28 to generalize the proof to the case the system
initial state is arbitrary. First, consider the probability of waiting for upcoming passengers. We
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define

T ′ = t4 +max

{
α−1
M log

(4|XN (0)
N

− f ∗|
1−Θ(max)

)
, α−1

M log
2ι2
ι1
, µmax

}
Setting t0 = T ′ in Lemma 32 yields

∣∣∣1− L
(
ψ
(X(N)(0)

N
, T ′
))∣∣∣ ≤ 1−Θ(max)

4
.

Next, for positive constant ϵ1 > 0 let

ϖ = min
{
α

′′′
(ϵ1

2− 21−Θ(max)

2

eC3T ′ )2, α
′′
}

From Lemma 29 and Lemma 30 we conclude

P
{∣∣∣X(N)(T ′)

N
− ψ

(X(N)(0)

N
, T ′
)∣∣∣ > ϵ1N

−1/2+ε

}
≤ P

{∣∣∣X̃(N)(T ′)

N

∣∣∣ > ϵ1N
−1/2+ε

eC3T ′

}
+O(e−α

′′
N2ε

)

≤ O(e−ϖN2ε

). (A.49)

Also, from Lemma 32 we have

ψ
(X(N)(0)

N
, T ′
)
≥ u

(
1− 1−Θmax

4

)
(A.50)

Combining (A.49) and (A.50) with parts 6, 7 and 8 of Lemma 31 yields for ji ∈ I and j ∈ S,

P

{
X

(N)
ji (T ′)

N
≤ uji

(
1− 1−Θ(max)

2

)}
= O(e−ϖN2ε

)

P

{
Z

(N)
ji (T ′)

N
≤ vji

(
1− 1−Θ(max)

2

)}
= O(e−ϖN2ε

)

P

{
X

(N)
j (T ′)

N
≤ uj

(
1− 1−Θ(max)

2

)}
= O(e−ϖN2ε

)

Consequently,

P
{
L(
X(N)(T ′)

N
) >

1−Θ(max)

2

}
= O(e−ϖN2ε

).

111



Iteratively applying this bound for consecutive intervals of length T ′ yields

P
{

sup
1≤i≤k

∣∣∣∣L(XN(iT ′)

N

)
− 1

∣∣∣∣ < 1−Θ(max)

2

}
≤ (1−O(e−ϖN2ε

))
T
T ′ ≤ 1−O(Te−ϖN2ε

) ≤ 1−O(e−ϖNε

).

The increasing property of the Lyapunov function L(.) yields for 0 ≤ T
′′ ≤ T ′ and 1 ≤ i ≤ k,

P
{∣∣∣∣L(XN(iT ′ + T

′′
)

N

)
− 1

∣∣∣∣ < 1−Θ(max)

2

}
≤ 1−O(e−ϖNε

).

Therefore, parts 5, 6 and 7 of Lemma 31 imply that for T = O(eϖNε
),

P
{
XN

j (T ) < 0
}

≤ P
{
XN

j (T ) < N−1/2+ε
∑
j,ji∈I

µjieji/2
}
= O(e−ϖNϵ

)

Similarly the probability of having passenger waiting at time T is

P {Xj(T ) < 0 for some j ∈ S} = O(|S| e−ϖNϵ

).

Next, we consider optimality gap. For k ∈ N, define XN,k = XN(kT ′). From Lemma 32 we
have ∣∣∣L(ψ(XN,k

N
, T ′
))

− 1
∣∣∣ ≤ ∣∣∣L(XN,k

N
)− 1

∣∣∣e−2

Also, from Lemma 30 and Lemma 29, we conclude

P
{∣∣∣XN,k+1

N
− ψ

(XN,k

N
, T ′
)∣∣∣ > ϵ1N

−1/2+ε

}
= O(e−ϖN2ε

).

Further, parts 9 and 10 of Lemma 31 yield

P
{∣∣∣XN,k+1

N
− f

∣∣∣ ≥ max
[
N−1/2+ε,

∣∣∣XN,k

N
− f

∣∣∣e−1
]}

= O(e−ϖN2ε

),∀ji ∈ I.

Thus we obtain

P

{
|X

N,log(N1/2−ε)

N
− f | ≥ max

[
N−1/2+ε,

∣∣∣XN,0

N
− f

∣∣∣N−1/2+ε
]}

= O(e−ϖN2ε

logN),∀ji ∈ I.

Next, following completely the same procedure as the proof for Theorem 2, for δ > ε we conclude
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with the probability of at least 1−O(e−αUN2δ
) we have

∂UQQQ,λλλ,γγγ(T,N,N
′)

∂T
≥
[
1−O

(
N−1/2+δ + e−αST

)]
U∗

Lastly, note that according to Lemma 28 there exists a positive t6 ≤ T ′ such that X(N)
i (t6) ≤

µmaxN
1/2+δ. Setting the time reference at t6 concludes the proof.

A.13 Additional proofs

The proof of the following result is a simple algebraic exercise.

Lemma 33. We can find an exponential random variable exp(τ) such that for each link ji ∈ I,

there exists a non-negative random variable t̃′ji such that

t̃ji = t̃′ji + exp(τ),P{t̃′ji < 0} = 0.

Proof. Note that all t̃ji are exponentially distributed with mean µji. Thus, their characteristic
functions are

φt̃ji(t) =
1

1− iµjit

Consider τ = 2
minµji

and note that its characteristic function equals

φt̃ji(t) =
1

1− iτ−1t

Now, if there exists a random variable t̃′ji with characteristic function

φt̃′ji
(t) =

1− iτ−1t

1− iµjit
.

Then,φt̃′ji
φt̃ji = φt̃ji and therefore,

t̃ji = t̃′ji + exp(τ)

which concludes the proof. Now we show that (1− iτ−1t)/(1− iµjit) is the characteristic function
of a random variable. According to Bochner’s theorem it suffices to show that the function (1 −
iτ−1t)/(1 − iµjit) is positive definite. Therefore, we must show that for any n real numbers
x1, . . . , xn the matrix

A = (aij)
n
i,j=1, aij = (1− iτ−1t)/(1− iµjit)
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is a positive definite matrix. However, it is straightforward to conclude

tr(A) > 0, tr(A)2/tr(A2) > n− 1.

Therefore, according to the trace criteria for positive definiteness of Hermitian matrices we con-
clude the proof.

Proof of Lemma 8.
Decompose the set of single servers S into two subsets S1 and S2 such that λi = 0,∀i ∈ S1 and

λi ̸= 0,∀i ∈ S2. We prove lemma statement using induction on the size of the set S2. Specifically,
we prove that the functions uji(Θ), ji ∈ I, vji(Θ), ji ∈ I, uj(Θ), j ∈ S are continuous piecewise
linear, increasing functions. Also, the number of pieces of each function is at most |S2|+ 1.

a) For induction base, consider the case |S2| = 0. Then, inequalities (A.7c) and (A.7g) yield
uji(Θ) = 0, ∀ji ∈ I. Next, we can combine equations (A.7a) and (A.7e) to conclude

γjuj(Θ) =
∑
i,ji∈I

qjiγjuj(Θ) =
∑

k,kj∈I

qkjγkuk(Θ) (A.51)

Define the vector η(Θ) such that ηj(Θ) = γjuj(Θ), ∀j ∈ S . Next, note that (A.51) yields
QQQTη(Θ) = η(Θ). As the matrix QQQT is an irreducible left stochastic matrix, it has a unique unit
eigenvector η(1) with eigenvalue 1; i.e., QQQTη(1) = η(1). Hence, η(Θ) = cη(Θ)η(1), for some real
number cη(Θ). Thus, (A.7f) yields

Θ = cη(Θ)
∑
j∈S

η
(1)
j

(
1

γj
+
∑
i,ji∈I

qji
µji

)
, ∀j ∈ S

Therefore,

uj(Θ) = Θ
η
(1)
j

γj
∑

j∈S η
(1)
j ( 1

γj
+
∑

i,ji∈I
qji
µji

)
∀j ∈ S

vji(Θ) = Θ
qjiη

(1)
j

µji

∑
j∈S η

(1)
j ( 1

γj
+
∑

i,ji∈I
qji
µji

)
∀ji ∈ I

This concludes the proof for the induction base.
b) Then, assume that the lemma statement is valid for all LCP’s of form (A.7) with size |S2| =

n1 − 1, we prove the statement for the case |S2| = n1. Define the matrix Q̃̃Q̃Q as follows: For ji ∈ I,

Q̃̃Q̃Qji =

{
pji; j ∈ S2

qji; j ∈ S1
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As QQQ is irreducible and pji > 0,∀ji ∈ I, Q̃̃Q̃QT is an irreducible left stochastic matrix and has a
unique unit eigenvector ξ(1) with eigenvalue 1; i.e., ξ(1) = Q̃̃Q̃QT ξ(1). Let

W (1) =
∑
j∈S

∑
i,ji∈I

ξ
(1)
j

Q̃̃Q̃Qji

µji

+
∑
j∈S1

ξ
(1)
j

γj
.

Next, set Θ(1) = minj∈S2

λjW
(1)

ξ
(1)
j

. Then, we prove that every solution u(Θ) to LCP (A.7) satisfies

uji(Θ) ≥
Q̃̃Q̃Qjiξ

(1)
j

W (1)µji

min(Θ,Θ(1)), ∀j ∈ S2, ∀ji ∈ I (A.52)

vji(Θ) ≥
Q̃̃Q̃Qjiξ

(1)
j

W (1)µji

min(Θ,Θ(1)), ∀j ∈ S1, ∀ji ∈ I (A.53)

uj(Θ) ≥
ξ
(1)
j

γjW (1)
min(Θ,Θ(1)), ∀j ∈ S1 (A.54)

Note that (A.53) combined with (A.7e) yields (A.54). So it suffices to prove (A.52) and (A.53).
Using contradiction, consider a feasible solution u(Θ) to the LCP (A.7) that violates at least one
of the two inequalities.

Next we divide the set of infinite server stations into two subsets:

I1 =
( ⋃

ji∈I
j∈S2

ji
)
, I2 =

( ⋃
ji∈I
j∈S1

ji
)
.

Consider j̃ ĩ such that if j̃ ĩ ∈ I1 then

uj̃ĩ(Θ)W (1)µj̃ĩ

Q̃̃Q̃Qj̃ĩξ
(1)

j̃

= min

(
min
ji∈I1

uji(Θ)W (1)µji

Q̃̃Q̃Qjiξ
(1)
j

,min
ji∈I2

vji(Θ)W (1)µji

Q̃̃Q̃Qjiξ
(1)
j

)

and if j̃ ĩ ∈ I2 then

vj̃ĩ(Θ)W (1)µj̃ĩ

Q̃̃Q̃Qj̃ĩξ
(1)

j̃

= min

(
min
ji∈I1

uji(Θ)W (1)µji

Q̃̃Q̃Qjiξ
(1)
j

,min
ji∈I2

vji(Θ)W (1)µji

Q̃̃Q̃Qjiξ
(1)
j

)

Also, define

Θmin = min

(
min
ji∈I1

uji(Θ)W (1)µji

Q̃̃Q̃Qjiξ
(1)
j

,min
ji∈I2

vji(Θ)W (1)µji

Q̃̃Q̃Qjiξ
(1)
j

)
.

Without loss of generality we assume that j̃ ĩ ∈ I1. As Θmin < Θ(1), equations (A.7d) and (A.7e)
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ensure that vj̃i = 0,∀j̃i ∈ I. Therefore, we rewrite Θmin as follows

uj̃ĩ(Θ)W (1)µj̃ĩ

Q̃̃Q̃Qj̃ĩξ
(1)

j̃

=
W (1)

∑
i,j̃i∈I uj̃i(Θ)µj̃i

ξ
(1)

j̃

≥
W (1)

∑
k,kj̃∈I

(
ukj̃(Θ) + vkj̃(Θ)

)
µkj̃

ξ
(1)

j̃

=
W (1)

∑
k,kj̃∈I

(
ukj̃(Θ) + vkj̃(Θ)

)
µkj̃∑

k,kj∈I Q̃̃Q̃Qkj̃ξ
(1)
k

,

where the equality follows from (A.7b), the inequality follows from (A.7a), and the second equality
is due to the fact that ξ(1) = (Q̃̃Q̃Q)T ξ(1). Next, we can lower bound the last term as follows:

W (1)
∑

k,kj̃∈I

(
ukj̃(Θ) + vkj̃(Θ)

)
µkj̃∑

k,kj∈I Q̃̃Q̃Qkj̃ξ
(1)
k

≥ W (1)min
(

min
k,kj̃∈I1

ukj̃(Θ)µkj̃

Q̃̃Q̃Qkj̃ξ
(1)
k

, min
k,kj̃∈I2

vkj̃(Θ)µkj̃

Q̃̃Q̃Qkj̃ξ
(1)
k

)
≥

uj̃ĩ(Θ)W (1)µj̃ĩ

Q̃̃Q̃Qj̃ĩξ
(1)

j̃

This means that all inequalities must hold as equality. It follows that

ukj̃(Θ)µkj̃

Q̃̃Q̃Qkj̃ξ
(1)
k

=
uj̃ĩ(Θ)W (1)µj̃ĩ

Q̃̃Q̃Qj̃ĩξ
(1)

j̃

∀k, kj̃ ∈ I1

Similarly, we have
vkj̃(Θ)µkj̃

Q̃̃Q̃Qkj̃ξ
(1)
k

=
uj̃ĩ(Θ)W (1)µj̃ĩ

Q̃̃Q̃Qj̃ĩξ
(1)

j̃

∀k, kj̃ ∈ I2

As the matrix Q̃̃Q̃Q is irreducible, iteratively applying the same procedure to all nodes k, kj̃ ∈ I
yields

Θmin =


uji(Θ)W (1)µji

Q̃̃Q̃Qjiξ
(1)
j

,∀ji ∈ I1

vji(Θ)W (1)µji

Q̃̃Q̃Qjiξ
(1)
j

,∀ji ∈ I2
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Combining this with (A.7e) yields

Θmin =
γjuj(Θ)W (1)

ξ
(1)
j

,∀j ∈ S1

Also, (A.7d) yields uj = 0,∀j ∈ S2. Finally, (A.7f) yields

Θ =
∑
ji∈I

uji +
∑
ji∈I

vji +
∑
j∈S

uj =
∑
ji∈I

ΘminQ̃̃Q̃Qjiξ
(1)
j

W (1)
+
∑
j∈S

Θminξ
(1)
j

γjW (1)
= ΘminW

(1)

W (1)
(A.55)

However, as one of the two equations (A.52) and (A.53) are violated, we conclude Θmin < Θ. This
contradiction proves that all three equations (A.52),(A.53), and (A.54) are satisfied.

Note that (A.55) yields that for Θ < Θ(1) all three equations (A.52),(A.53), and (A.54) hold
with equality, and thus the solution to LCP is unique, continuous and piecewise linear in Θ. Lastly,
if Θ ≥ Θ(1) we can substitute

u′ji(Θ) = uji(Θ)−
Q̃̃Q̃Qjiξ

(1)
j

W (1)µji

Θ(1), ∀j ∈ S2, ∀ji ∈ I (A.56)

v′ji(Θ) = vji(Θ)−
Q̃̃Q̃Qjiξ

(1)
j

W (1)µji

Θ(1),∀j ∈ S1,∀ji ∈ I (A.57)

u′j(Θ) = uj(Θ)−
ξ
(1)
j

γjW (1)
Θ(1),∀j ∈ S1 (A.58)

Observe that u′(Θ) is a solution to the following LCP∑
i

µjiu
′
ji +

∑
i

µjiv
′
ji =

∑
k

µkju
′
kj +

∑
k

µkjv
′
kj ∀j ∈ S (A.59a)

u′jiµji = pji
∑
k

µjku
′
jk, ∀i, j ∈ R (A.59b)∑

k

µjku
′
jk ≤ λ′j, ∀i, j ∈ R (A.59c)

(λ′j −
∑
k

µjku
′
jk)uj = 0, ∀i, j ∈ R (A.59d)

µjiv
′
ji = qjiγjuj, ∀i, j ∈ R (A.59e)∑

ji∈I

u′ji +
∑
ji∈I

v′ji +
∑
j∈S

u′j = Θ′ (A.59f)

u′ji, v
′
ji, u

′
j ≥ 0, ∀j, i ∈ R (A.59g)

Here, λ′j = λj − mini:λi ̸=0 λi. Next, note that for j = argminj∈S2 λjW
(1)/ξ

(1)
j , λ′j = 0 and
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λj ̸= 0. Therefore, the system (A.59) satisfies the induction hypothesis and this concludes the
proof. Next, note that as the size of the set S2 is decreased by at least 1 the number of pieces
in the piecewise linear functions is at most |S| + 1. Also, note that at each step we have uj >
0;∀j ∈ S1, uji(Θ) > 0,∀ji ∈ I, vji(Θ) > 0;∀ji ∈ I. Thus, the right limit slope of the functions
uji(Θ), ji ∈ I, vji(Θ), ji ∈ I, uj(Θ), j ∈ S is strictly positive. Also note that according to (A.52),
(A.53) and (A.54), we have at least one of the following equations hold:

ι1 ≥
1

|I|+ |S|
min

(minji,lm:λji>0 λjiµlm

maxk,lm λkµlm

,
minji,k:λji>0 λjiγk

maxk,lm λkµlm

)
ι1 ≥

1

|I|+ |S|
min

(minji,lm:qji>0 qjiµlm

maxlm µlm

,
minji,k:qji>0 qjiγk

maxlm µlm

)
ι1 ≥

1

|I|+ |S|
min

(minlm µlm

maxj γj
, 1
)

Similarly we can obtain the bounds for ι2.

A.14 Proof of lemma 10.

a) First, we sum (1.17) over all infinite servers in I as follows:

∑
ji∈I

xji(t) =
∑
ji∈I

xji(0)−
∑
ji∈I

µji

ˆ t

0

xji(s)ds

+
∑
j

∑
i,ji∈I

pji(
∑
kj∈I

µkj

ˆ t

0

xkj(s)ds+
∑
kj∈I

µkj

ˆ t

0

zkj(s)ds)

+
∑
j

∑
i,ji∈I

pji(x
+
j (0)− x+j (t)− γj

ˆ t

0

x+j (s)ds), ji ∈ I

However, we have
∑

i,ji∈I pji = 1. As such, we will have

∑
ji∈I

xji(t) =
∑
ji∈I

xji(0)−
∑
ji∈I

µji

ˆ t

0

xji(s)ds

+
∑
kj∈I

µkj

ˆ t

0

xkj(s)ds+
∑
kj∈I

µkj

ˆ t

0

zkj(s)ds

+
∑
j

(x+j (0)− x+j (t)− γj

ˆ t

0

x+j (s)ds), ji ∈ I (A.60)
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Then, we sum (1.18) over all infinite servers in I to obtain

∑
ji∈I

zji(t) =
∑
ji∈I

zji(0)−
∑
ji∈I

µji

ˆ t

0

zji(s)ds+
∑
ji∈I

qjiγj

ˆ t

0

x+j (s)ds, ji ∈ I

Following the same procedure we can rewrite this expression as

∑
ji∈I

zji(t) =
∑
ji∈I

zji(0)−
∑
ji∈I

µji

ˆ t

0

zji(s)ds+
∑
j∈S

γj

ˆ t

0

x+j (s)ds, ji ∈ I (A.61)

Now, we can sum equations (A.60) and (A.61) to conclude the proof.
b) We first prove the statement for zji(t). From Lemma 2 we know that there exists a unique

function zji(t) that satisfies (1.18). Now, define function

ẑji(t) = e−µjit
(
zji(0) +

ˆ t

0

eµjisqjiγjx
+
j (s)ds

)
and realize that it is the unique solution to the following differential equation with initial condition
ẑji(0) = zji(0)

˙̂zji(t) = −µjiẑji(t) + qjiγjx
+
j (t), ji ∈ I (A.62)

Moreover, we take integral from both sides of (A.62) to obtain

ẑji(t) = zji(0)−
ˆ t

0

µjiẑji(s)ds+

ˆ t

0

qjiγjx
+
j (s)ds

Therefore, we conclude zji(.) = ẑji(.). Also,

zji(t) = e−µjit
(
zji(0) +

ˆ t

0

eµjisqjiγjx
+
j (s)ds

)
(A.63)

As such, we conclude zji(t) ≥ 0,∀t ≥ 0. Also if zji(0) > 000, then zji(t) > 0,∀t ≥ 0. Similarly,
for pji = 0, we can prove xji ≥ 0, because the system dynamics for xji with pji = 0 and zji have
the same structure.

Next, note that Lemma 8 yields

xji(t) ≥ ψ(x(0) + δ111, t)ji − δeCt

For ϵ > 0, set δ = e−Ct log(1/ϵ) to realize that

xji(t) ≥ ψ(x(0) + δ111, t)ji − ϵ
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As our choice of ϵ > 0 is arbitrary, to prove the lemma it is sufficient to prove that for arbitrarily
small δ > 0 we have

ψ(x(0) + δ111, t)ji ≥ 0

This shows that it suffices to prove the lemma for a solution x = (xji, zji, xj), such that zji > 000.
As we have shown in the proof for Lemma 8, the functions xji(.) and xj(.) are limits of continuous
functions and hence by Uniform limit theorem are continuous. Also, we compute their derivatives
as follows:

ẋi(t) = lim
ϵ→0

xi(t+ ϵ)− xi(t)

ϵ

= −λi +
∑
ji∈I

µjixji(t) +
∑
ji∈I

µjizji(t) + θix
−
i (t)− γix

+
i (t), i ∈ S (A.64)

Similarly,

ẋji(t) = −µjixji(t) + pji
∑
kj∈I

µkjxkj(t) + pji
∑
kj∈I

µkjzkj(t)− pjiẋ
+
j (t)− pjiγjx

+
j (t), ji ∈ I

As the functions xkj(t) are continuous, we conclude their minimum, minxkj(t), is also continuous.
Assume for some t we have minxkj(t) < 0. Define

t1 = sup
{
t ≥ 0

∣∣∣min
kj∈I

xkj(t
′) ≥ 0,∀t′ ≤ t

}
.

The continuity of minxkj(.) yields minkj xkj(t1) = 0. Without loss of generality, denote ji =
argminkj xkj(t1) and realize that xkj(t1) ≥ 0,∀kj ∈ I. Next, continuity of function xji(.) and
existence of derivative for function xj(.) yields either we have ẋ+j (t1) = 0 and x+j (t1) = 0, or we
have ẋ−j (t1) = 0 and x−j (t1) = 0 (Continuity of xji(.) yields if xj(t1) > 0, then ẋ−j (t1) = 0 and
x−j (t1) = 0. Similarly, if xj(t1) < 0, then ẋ+j (t1) = 0 and x−j (t1) = 0. Also, in case xj(t1) = 0,
then the existence of derivative for xj(t1) yields if ẋj(t1) ≥ 0, then ẋ−j (t1) = 0, similarly, if
ẋj(t1) ≤ 0, then ẋ+j (t1) = 0.) Now, if we have ẋ+j (t1) = 0 and x+j (t1) = 0, then

ẋji(t1) ≥ pji
∑
kj∈I

µkjzkj(t1) > 0

Next, rearrange the (A.64) to obtain∑
kj∈I

µkjxkj(t) +
∑
kj∈I

µkjzkj(t)− ẋ+j (t)− γjx
+
j (t) = λj − ẋ−j (t)− θjx

−
j (t) (A.65)

Therefore, if we have ẋ−j (t1) = 0 and x−j (t1) = 0, then we can lower bound ẋji(t1) applying
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Assumption 1 and pji > 0 as follows:

ẋji(t1) ≥ pjiλj > 0

This shows that, for ϵ small enough we conclude that xji(t1 + ϵ) > 0. This contradicts with the
definition of t1. Thu, we conclude t1 = ∞ and conclude the proof for this case.

c) As the functions x+i (t), xji(t), and zji(t) are limits of continuous functions they should also
be continuous. Now, we prove the functions x+i (t) are Lipschitz continuous. Recall from the proof
for part b) that the derivative of the function x+i (.) exists at any point t and is calculated as follows

ẋ+i (t) = −λi +
∑
ji∈I

µjixji(t) +
∑
ji∈I

µjizji(t) + θix
−
i (t)− γix

+
i (t)− ẋ−j (t), i ∈ S (A.66)

To prove the statement, it suffices to prove that |ẋ+i (t)| is bounded. However, from part b) we know
that if ẋ+i (t) ̸= 0, then we have ẋ−j (t1) = 0 and x−j (t1) = 0. Moreover, we note that from parts a)
and b) we know that the functions x+i (t), xji(t), and zji(t) are positive and bounded. Therefore,
all terms in (A.66) are bounded we conclude that |ẋ+i (t)| is bounded. Next, we prove the functions
xji(t) are Lipschitz continuous. Recall their computed derivative from part b) equals

ẋji(t) = −µjixji(t) + pji
∑
kj∈I

µkjxkj(t) + pji
∑
kj∈I

µkjzkj(t)− pjiẋ
+
j (t)− pjiγjx

+
j (t), ji ∈ I

As we shown, the derivatives ẋ+j (t) are bounded. Hence, the boundedness of functions x+i (t),
xji(t), and zji(t) yields the derivatives ẋji(t) are bounded. Lastly, to prove the functions zji(t) are
Lipschitz continuous, we recall their computed derivative from part b) equals

żji(t) = −µjizji(t) + qjiγjx
+
j (t), ji ∈ I (A.67)

However, due to boundedness of functions x+i (t), xji(t), and zji(t), the derivatives żji(t) are
bounded. Thus, the functions zji(t) are Lipschitz continuous.

d) Set C2 = max{x−i (0), λi/θi}. Assume for t′ ≥ 0 we have xi(t) < −C2. Set

t′′ = sup
t≤t′

{t, xi(t) ≥ −C2} .

The fundamental theorem of calculus yields

xi(t
′)− xi(t

′′) =

ˆ t′

t′′
ẋi(t)dt
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However, for values t′′ ≤ t ≤ t′, we can lower bound ẋi(t) using (A.64) as follows:

ẋi(t) ≥ −λi + θiC2 ≥ 0

This contradiction concludes the proof.

A.14.1 Proof of Lemma 11

a) First, recall from lemma 10 that the derivatives for ẋi(t) can be computed as follows:

ẋi(t) = −λi +
∑
ji∈I

µjixji(t) +
∑
ji∈I

µjizji(t) + θix
−
i (t)− γix

+
i (t)

=
∑
ji∈I

µjixji(t) +
∑
ji∈I

µjizji(t) + θix
−
i (t)− γix

+
i (t) (A.68)

Now, define

yi(t) =
xi(0)

2
−
ˆ t

0

γiyi(s)ds.

Applying Picard–Lindelöf Theorem yields yi(t) = xi(0)e
−γi/2. Next we show that xi(t) > yi(t).

To prove this statement, by contradiction, assume that it does not hold. Next, note that xi(0) >
yi(0). By Lipschitz continuity of x(.) and y(.), consider t′ such that t′ = inf{t : xi(t) ≤ yi(t)}.
Thus

xi(0)

2
+

ˆ t′

0

−γiyi(t)dt = xi(0) +

ˆ t′

0

(∑
ji∈I

µjixji(t) +
∑
ji∈I

µjizji(t) + θix
−
i (t)− γix

+
i (t)

)
dt

However, by definition of t′ we know that

−γiyi(t) <
∑
ji∈I

µjixji(t) +
∑
ji∈I

µjizji(t) + θix
−
i (t)− γix

+
i (t), ∀t ≤ t′

This concludes the proof for part a).
b) Next, consider the case xi(0) < 0 and by contradiction assume xi(t) < −eγit. Therefore,

from part (a), we conclude xi(t) < 0, ∀t′ ≤ t (otherwise xi(t) > 0). Thus, we can compute ẋi(t)
as follows

ẋi(t) =
∑
ji∈I

µjixji(t) +
∑
ji∈I

µjizji(t)− θixi(t)
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Applying the fundamental theorem of calculus yields

xi(t) = e−θit
(
xi(0) +

ˆ t

0

eθis(
∑
ji∈I

µjixji(s) +
∑
ji∈I

µjizji(s))ds
)

Noting that xji ≥ 0 and zji ≥ 0, we conclude

xi(t) ≥ −min(xi(0), C2)e
−θit(xi(0))

A.14.2 Proof of lemma 12

Let Θ = L(x(t)) and decompose the set S into two subsets S1 and S2 such that S1 = {i ∈ S :

L(x(t)) ≥ Θj} and S2 = S \ S1. Furthermore, set λ′i =
∑

k µikuik(Θ) and note that (A.7d) and
the continuity of the function u(.) yields λi = λ′i, ∀i ∈ S1. Now, as u(Θ) is a solution of (A.7),
(A.7e) yields ∑

i,jiI

µjivji(Θ) = γjuj(Θ) (A.69)

Adding λ′i to both sides yields

λ′i + γjuj(Θ) =
∑
k

µikuik(Θ) +
∑
i,jiI

µjivji(Θ)

Using (A.7a) to substitute the right hand side yields

ui(Θ) = ui(Θ)− λ′it+
∑
ji∈I

µji

ˆ t

0

uji(Θ)ds+
∑
ji∈I

µji

ˆ t

0

vji(Θ)ds

+θi

ˆ t

0

u−i (Θ)ds− γi

ˆ t

0

u+i (Θ)ds, i ∈ S (A.70)

Next, we can use (A.7b) to conclude

uji(Θ)µji = pji
∑
k

µjkujk(Θ)

Combining with equations (A.69) and (A.7a) yields

uji(Θ)µji + pjiγjuj(Θ) = pji
∑
k

µjkujk(Θ) + pji
∑
i,jiI

µjivji(Θ)
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Taking integration yields

uji(Θ) = uji(Θ)− µji

ˆ t

0

uji(Θ)ds

+pji
∑
kj∈I

µkj

ˆ t

0

ukj(Θ)ds+ pji
∑
kj∈I

µkj

ˆ t

0

vkj(Θ)ds

+pjiu
+
j (Θ)− pjiu

+
j (Θ)− pjiγj

ˆ t

0

u+j (Θ)ds, ji ∈ I (A.71)

Lastly, taking integration on both sides of (A.69) yields

vji(Θ) = vji(Θ)− µji

ˆ t

0

vji(Θ)ds+ qjiγj

ˆ t

0

u+j (Θ)ds, ji ∈ I (A.72)

Next, consider the modified initial state y(0) = x(t) − u(Θ). Then, consider y(t) = (yi, yji, wkl)

the unique solution to the following system of equations

yi(t) = yi(0)− (λi − λ′i)t+
∑
ji∈I

µji

ˆ t

0

yji(s)ds+
∑
ji∈I

µji

ˆ t

0

wji(s)ds

+θi

ˆ t

0

y−i (s)ds− γi

ˆ t

0

y+i (s)ds, i ∈ S

yji(t) = yji(0)− µji

ˆ t

0

yji(s)ds

+pji
∑
kj∈I

µkj

ˆ t

0

ykj(s)ds+ pji
∑
kj∈I

µkj

ˆ t

0

wkj(s)ds

+pjiy
+
j (0)− pjiy

+
j (t)− pjiγj

ˆ t

0

y+j (s)ds, ji ∈ I

wji(t) = wji(0)− µji

ˆ t

0

wji(s)ds+ qjiγj

ˆ t

0

y+j (s)ds, ji ∈ I

Lemma 11 yields yi(t) ≥ −min(|yi(0)|, C2)e
−θit∀i ∈ S1;∀t ≥ 0. Now, consider a(t) =

(ai, aji, bkl) such that a(t′) = y(t′ − t) + u(Θ);∀t′ ≥ t. We can combine the above equations
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with equations (A.70), (A.71), and (A.72) to conclude

ai(t) = xi(0)− λit+
∑
ji∈I

µji

ˆ t

0

aji(s)ds+
∑
ji∈I

µji

ˆ t

0

bji(s)ds

+θi

ˆ t

0

a−i (s)ds− γi

ˆ t

0

a+i (s)ds, i ∈ S

aji(t) = xji(0)− µji

ˆ t

0

aji(s)ds

+pji
∑
kj∈I

µkj

ˆ t

0

akj(s)ds+ pji
∑
kj∈I

µkj

ˆ t

0

bkj(s)ds

+pjia
+
j (0)− pjia

+
j (t)− pjiγj

ˆ t

0

a+j (s)ds, ji ∈ I

bji(t) = zji(0)− µji

ˆ t

0

bji(s)ds+ qjiγj

ˆ t

0

a+j (s)ds, ji ∈ I

However, this is the unique solution to the system (1.16-1.18) with initial condition x(0). Thus,
a(t′) = x(t′), ∀t′ ≥ t. Thus, for t′ ≥ t we conclude

xi(t
′) = ai(t) = yi(t

′ − t) + ui(Θ) ≥ −min(xi(0), C2)e
−θi(t

′−t) + ui(Θ), ∀i ∈ S1

Similarly
xji(t

′) = aji(t
′) = yji(t

′ − t) + uji(Θ) ≥ uji(Θ), ∀i ∈ I

zji(t
′) = bji(t

′) = wji(t
′ − t) + vji(Θ) ≥ vji(Θ), ∀i ∈ I

This concludes the proof.

A.14.3 Proof of Lemma 13

We prove this lemma by contradiction. Assume the lemma statement does not hold and set

t1 = inf
{
t ≥ 0|x+(t2) ≥ y+(t2),∀t2, 0 ≤ t2 ≤ t

}
.

Note that as y+(0) < x+(0), and the functions x(.) and y(.) are continuous, we conclude t1 > 0.
Also, note that Lemma 10 part (a) together with the assumption x(0) > y(0) yields one of the
following three cases hold:

i) for some j ∈ S we have x+j (t1) > y+j (t1); ii) for some ji ∈ I we have xji(t1) > yji(t1);
iii) for some ji ∈ I we have zji(t1) > wji(t1). In all three cases we prove that x+(t1) > y+(t1),
which contradicts with the choice of t1.
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To do so, for j ∈ S we call all servers ji ∈ I its consecutive servers. Also for each ji ∈ I
such that i ∈ S1 we call i its consecutive server. Lastly, for each ji ∈ I such that i ∈ S2 we call
all servers ik ∈ I its consecutive servers. Next, we prove that if we have x+s1(t1) > y+s1(t1), then
x+s2(t1) > y+s2(t1), where s2 is a consecutive server of s1. As the matrices Q̃̃Q̃Q satisfy Assumption 1,
iteratively applying this argument yields x+(t1) > y+(t1). This contradicts with the choice of t1.
Noting that x(t1) ≥ y(t1), we consider the following cases:

i) x+j (t1) > y+j (t1), j ∈ S, and xji(t1) = yji(t1). First, note that if j ∈ S1, exploiting (A.65)
yields ẋji(t)− ẏji(t) = −µji(xji(t)−yji(t)). Therefore, xji(t)−yji(t) = e−µjit(xji(0)−yji(0)) >
0. Next, for j ∈ S2, (A.65) yields ẋji = pjiλj − µjixji. while, taking partial derivatives for yji
yields

ẏji(t) = −µjiyji(t) + pji
∑
kj∈I

µkjykj(t) + pji
∑
kj∈I

µkjwkj(t)

However, as
pji
∑
kj∈I

µkjykj(t) + pji
∑
kj∈I

µkjwkj(t) ≤ pji min
i:λi ̸=0

λi/2

we conclude
ẏji(t) < pjiλj − µjiyji = ẋji

Thus for some value κ > 0 we have ẋji(t1)− ẏji(t1) = κ < 0. Therefore,

lim
ϵ→0

xji(t1 − ϵ)− yji(t1 − ϵ) = κϵ < 0

This shows that, for small values of ϵ > 0 we have xji(t1 − ϵ) < yji(t1 − ϵ), which contradicts
with the choice of t1.

ii) x+j (t1) > y+j (t1), j ∈ S, and zji(t1) = wji(t1). In this case, from (A.63) we have

zji(t)− wji(t) = e−µjit(zji(0)− wji(0)) +

ˆ t

0

eµjisqjiγj(x
+
j (t)− y+j (t)) (A.73)

Hence zji(t1)− wji(t1) > 0 which concludes the prof of this case.
iii) (xji(t1) > yji(t1) and x+i (t1) = y+i (t1), i ∈ S1) or (zji(t1) > wji(t1) and x+i (t1) =

y+i (t1), i ∈ S1). In this case, noting that λi = 0, ∀i ∈ S1 and xi(t), yi(t) ≥ 0,∀i ∈ S1; ∀t ≥ 0 we
can exploit the derivatives computed in Lemma 10 to conclude

ẋi(t)− ẏi(t) =
∑
ji∈I

µji(xji(t)− yji(t)) +
∑
ji∈I

µji(zji(t)− wji(t))− γi(x
+
i (t)− y+i (t)), i ∈ S1

This concludes ẋi(t) > ẏi(t). As the argument stated in part (a), this is a contradiction with the
choice of t1. d) (xkj(t1) > ykj(t1), i ∈ S2 and xji(t1) = yji(t1)), or (zkj(t1) > wkj(t1), i ∈ S2 and
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xji(t1) = yji(t1)). If xi(t1) < 0 we have

ẋji(t1)− ẏji(t1)

= −µji(xji(t1)− yji(t1)) + pji

(∑
kj∈I

µkj(xkj(t1)− ykj(t1)) +
∑
kj∈I

µkj(zkj(t1)− wkj(t1))
)

Thus, ẋji(t1)− ẏji(t1). As the argument stated in part (a), this is a contradiction with the choice of
t1. Next, if xi(t1) > 0 then from part a) we conclude

ẏji(t) < pjiλj − µjiyji = ẋji

As the argument stated in part (a), this is a contradiction with the choice of t1. e)(xkj(t1) > ykj(t1),
i ∈ S2 and zji(t1) = wji(t1)) or (zkj(t1) > wkj(t1), i ∈ S2 and zji(t1) = wji(t1)). In this case,
similar to part b) we conclude

zji(t)− wji(t) = e−µjit(zji(0)− wji(0)) +

ˆ t

0

eµjisqjiγj(x
+
j (t)− y+j (t)) (A.74)

As a result, zji(t1)− wji(t1) > 0 and it concludes the proof of this case.

A.14.4 Proof of Lemma 14

Decompose the set of single servers S into two subsets S1 and S2 such that λi = 0,∀i ∈ S1 and
λi > 0,∀i ∈ S2. First, Lemma 11 implies that xi(t) ≥ 0,∀t ≥ 0,∀i ∈ S1. Next, we prove
xi(t) ≤ 0,∀t ≥ 0, ∀i ∈ S2. Using contradiction, assume there exist t ≥ 0;xi(t) > 0. Define

t1 = sup{t ≥ 0; max
i∈S2

(xi(t2)) ≤ 0;∀t2 ≤ t}

As the functions xi(.) are continuous, there exists i ∈ S such that xi(t1) = 0 and for each ϵ > 0

there exists a δ > 0 such that xi(t1 + δ) > 0. Hence, to reach contradiction it suffices to prove that
ẋi(t1) < 0. From Lemma 10 we know that

ẋi(t1) = −λi +
∑
ji∈I

µjixji(t1) +
∑
ji∈I

µjizji(t1) + θix
−
i (t1)− γix

+
i (t1)− ẋ−i (t1), i ∈ S2

Setting xi(t1) = 0 yields

ẋ+i (t1) ≤ −λi + µji(
∑
ji∈I

xji(t1) +
∑
ji∈I

zji(t1)), i ∈ S2
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Next, the lemma assumption yields

−λi + µji(
∑
ji∈I

xji(t1) +
∑
ji∈I

zji(t1))

≤ −λi +max
ji

µji(
∑
ji∈I

xji(0) +
∑
ji∈I

zji(0) +
∑
i∈S

x+i (0)) < 0, i ∈ S2

Taking partial derivative with respect to t in equations (1.17) and (1.18) yields

ẋi(t) =
∑
ji∈I

µjixji(t) +
∑
ji∈I

µjizji(t)− γixi(t), i ∈ S1

ẋji(t) = −µjixji(t) + pji
∑
kj∈I

µkjxkj(t) + pji
∑
kj∈I

µkjzkj(t), ji ∈ I, j ∈ S2

ẋji(t) = −µjixji(t), ji ∈ I, j ∈ S1

żji(t) = −µjizji(t), ji ∈ I, j ∈ S2

żji(t) = −µjizji(t) + qjiγjxj, ji ∈ I, j ∈ S1

Now, let A be a square matrix with size |S1| + 2|I| and refer to rows/columns associated to coef-
ficients of xji as I1, and the ones associated to coefficients of zji as I2. Specifically, we define A
as follows: (We denote each row that corresponds to an element in I1, I2 and S2 by ji, kl, and j,
respectively)

Aj,v =


µji v = ji ∈ I&j ∈ S1

µji v = ji ∈ I&j ∈ S1

−γj v = j&j ∈ S1

0 otherwise

Aji,v =


−µji v = ji

pjiµkj v = kj ∈ I&j ∈ S1

pjiµkj v = kj ∈ I&j ∈ S1

0 otherwise

Akl,v =


−µkl v = kl

qklγk v = k ∈ S1

0 otherwise

Thus, the dynamical system (1.16-1.18) can be transformed into the following linear dynamical
system

ẋ(t) = Ax(t) (A.75)

The sum of the elements in the column of A associated with server ji ∈ I equals∑
v

Av,ji = −µji + µji

∑
l:il

pil = −µkl + µkl = 0.
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Similarly for servers kl ∈ I we have∑
v

Av,kl = −µkl + µji

∑
l:il

pil = −µkl + µkl = 0.

In order to be able to provide a close form for the solution to this dynamical system we have to
investigate the eigenvalues of the matrix A. By gershgorin circle theorem we have all eigenvalues
of the matrix AT belong to one of the circles

|z − Av,v| ≤
∑
ji̸=kl

|Av,v|.

Which can be simplified to

|z + µkl| ≤ µkl; ∀kl ∈ I, |z + γj| ≤ γj;∀j ∈ S.

So their intersection with the imaginary axis is the point 0. Moreover, that eigenvalues of a real
matrix are the same as it’s transpose, so the real part of the eigenvalues of the matrix A are all
negative except for the ones that are exactly equal to 0. Now, we can use the fundamental theorem
for Linear Systems to show that the solution x takes the form

x(t) = Pdiag(eBjt)P−1x0. (A.76)

Where B is the Jordan Canonical form of the matrix A. By Perron–Frobenius Theorem we know
that when t goes to infinity all but one of the blocks of the matrix diag(eBjt) converges to 0. The
only block that does not converge to zero is the one associated with the eigenvalue 0. As the matrix
A has a simple eigenvalue 0, this block, eBjt = e0 = 1, will remain constant over time. So we can
conclude by letting t tend to infinity x(t) will converge exponentially fast to PCP−1x0, where C
is a diagonal matrix with all its diagonal elements equal to zero except for one that is equal to 1.
Next, we apply the Cheeger inequality presented in Theorem 3.2 in Montenegro [2006] and also
in Theorem Theorem 3 in Chung [2005] to obatain the exponential rate as follows:

|x− PCP−1x0| ≤ e−min2(pmin,qmin)(t
′−t).

Here, pmin = minji
λji

λj
and qmin = minji qji. Now that we have proven exponential stability we

just have to show that the equilibrium is unique. However, we have already proved this fact, since
every equilibrium solution, x∗, for this dynamical system satisfies ẋ∗ = Ax∗ = 0.
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A.15 Proof of Lemma 3

Without loss of generality, we prove this statement for the set of incoming edges. A similar ap-
proach for the outgoing edges can result in the bound for the outgoing edges. Consider the set of
lanes that include one of the incoming edges to node n, and denote it by Li =

{
l1, l2, ..., l|Li|

}
.

Note that each lane includes at most one of these segments. As α∗ is a solution to Problem 2.1, we
conclude:

H ≥ α∗
∑
l∈Li

(
Ul

vmax

+ dlhf ) (A.77)

Furthermore, by the definition of the ceil function and the fact that |Li| ≤ ∆, we conclude:

∑
l∈Li

⌈
α∗( Ul

vmax
+ dlhf )(k −∆+ 1)

H

⌉
< ∆+

α∗∑
l∈Li

( Ul

vmax
+ dlhf )(k −∆+ 1)

H

Combining this result with equation A.77 yields:

∑
l∈Li

⌈
α∗( Ul

vmax
+ dlhf )(k −∆+ 1)

H

⌉
< ∆+ k −∆+ 1 = k + 1

The fact that the left-hand side is an integer concludes the proof.

A.16 Obtaining a Directed 2-factor Decomposition

In this section we prove that an algorithm adopted from Lovász and Plummer [2009] finds a di-
rected 2-factor decomposition of G∗ = (N∗, A∗) where G∗ is a directed k regular digraph. To do
so, we construct a directed bipartite graph H = (N1, N2, A12), where N1 and N2 are two copies
of N∗, also for each edge e = (i, j) ∈ A∗ add an edge e′ from the node i in the copy N1 to the
node j in the copy N2. Thus, we observe that the edges in each perfect bipartite matching in H
corresponds to a 2-factor in G̃. Furthermore, the fact that each k regular bipartite graph can be
partitioned into a union of k disjoint perfect matchings concludes the proof [Bondy et al., 1976,
West et al., 2001].

Figure A.1 demonstrates a simple digraphG and its 2-factor decomposition. Figure A.2 demon-
strates the bipartite graph H corresponding to digraph G as well as two matching decompositions
that cover all edges of H . To avoid confusion and redundancy, we have not included the additional
edges we added to G̃ to make it a k-regular digraph in these two figures. We, also, did not include
the entrance/exit edges in these figures to avoid confusion.
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Figure A.1: The graph H and its 2-factor decomposition

Figure A.2: The corresponding bipartite graph H
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A.17 Proof of Theorem 6

Consider a spanning tree T ′ of the underlying undirected counterpart of G, and hang it from one of
its vertices, i. We iteratively define the directed depth d′j of node j in G. In that, the depth of root
node i is zero. Then, for each node j consider its unique immediate predecessor on T ′ and denote
it by k. Also, denote by z the number of initial tracking points on directed edges from k to j in G.
If the parallel edges are directed from k to j, then we compute the directed depth d′j = d′k + z + 1.
Otherwise, d′j = d′k − z − 1.

For each link from a node with depth d′i to a node with depth d′j add d′j − d′i − 1 ≡ (mod k)

tracking points on this link. Denote the resulting directed multigraph by H and assign the color c
to vertices with depth c ≡ (mod k) from the root node i.

A.18 Proof of Lemma 5

First, note that for this condition to happen both vehicles must switch between parallel edge copies
of the same pair of segments in A. Assume that a vehicle switching from a copy of segment a ∈ A

to a copy of segment b ∈ A is blocking another vehicles’ movement between the copies of the
same segments. Furthermore, denote by Dp1 , Dp2 the {1, 2}-factors containing the segments for
the first switch, and byDp3 , Dp4 {1, 2}-factors containing the segments for the second switch. Also
define w1 ≡ z2ẽ + p1 − p2(mod k), w2 ≡ z2ẽ + p3 − p4(mod k), w3 ≡ z2ẽ + p3 − p2(mod k) and
w4 ≡ z2ẽ + p1 − p4(mod k). As the first vehicle arrives to a sooner than the second vehicle and
departs later than the second vehicle, we conclude that w2, w3, w4 < w1 and w1 + w2 ≥ w3 + w4.
Combining these two facts yields w(1+ϵ)

1 +w
(1+ϵ)
2 > w

(1+ϵ)
3 +w

(1+ϵ)
4 . As such, we can improve the

switch found by Algorithm 3 by substituting the original switches with the switches corresponding
to (p3, p2) and (p1, p4) and lower the weight of the obtained perfect matching.

A.19 Proof of Theorem 7

Define zmax to represent the maximum number of tracking points required to traverse any lane
l ∈ L with the maximum allowable speed vmax, this value can be obtained by dividing the time
it takes to traverse any lane with maximum allowable speed by the length of the time intervals
δt. Also note that for each edge ã ∈ Ã the number of additional tracking points we add while
implementing the GCC algorithm is bounded above by k−1. Thus, in total the number of tracking
points along each lane in the final GCC design is less than zmax + (|L|+ 1)(k− 1). Therefore, we
can ensure any vehicle entered the intersection before time step H − zmax − (|L|+1)(k− 1) exits
the intersection during the study horizon. Besides, note that as α∗ is a feasible solution to Problem
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2.1, we can ensure under any feasible control there is a lane l such that the number of vehicles
from lane l that can cross the intersection during the time horizon [0, H] does not exceed α∗dl.

On the other hand, we can compute the number of allocated entrance time intervals to each lane
l ∈ L during the interval [0, H − zmax − (|L|+ 1)(k − 1)] as:⌈

α∗( Ul

vmax
+ dlhf )(k −∆+ 1)

H

⌉⌊
H − zmax − (|L|+ 1)(k − 1)

k

⌋
where, in the dimensionless case, Ul = 0 and hf = 1. For the values of H that satisfy
zmax−(|L|+1)(k−1)

ϵ
< H , we can lower bound the number of allocated entrance time intervals to

each lane l ∈ L by α∗( Ul

vmax
+ dlhf )

k−∆+1
k

(1− ϵ) = α∗dl
k−∆+1

k
(1− ϵ), which concludes the proof.

A.20 Proof of Lemma 4

Consider a segment f ∈ A. Denote by A−(f) the set of segments in A that are directed to-
ward the start node of f along any lane l. As the intersection layout is simple, the sets A−(f)

are mutually exclusive. As mentioned in Section 2.3.2, for each segment e ∈ A−(f) there are∑
l:e∈l

⌈
α∗(

Ul
vmax

+dlhf )(k−∆+1)

H

⌉
parallel edge copies in G̃. Moreover, segment f ∈ A is the unique

segment that follows all segments e ∈ A−(f) along all lanes that contain e. Thus, we conclude that

segment f ∈ A in G is also replaced by
∑

e∈A−(f)

∑
l:e∈l

⌈
α∗(

Ul
vmax

+dlhf )(k−∆+1)

H

⌉
parallel edges in

G̃. Furthermore, all edges in Ǧ are directed edges from a node v+(ẽ) ∈ V̌ to a nodes v−(f̃) ∈ V̌

corresponding to edges f̃ that follow ẽ in G̃. Thus, Ǧ is a union of complete bipartite graphs
with equal cardinality for its two parts. Therefore, Hall’s theorem concludes that Ǧ has a perfect
matching [Bondy et al., 1976, West et al., 2001].

A.21 An Illustrative Example for Dimensionless GCC

Here, we provide an illustrative example to demonstrate different steps of Algorithm 1. The exam-
ple is adopted from Chen et al. [2021], which showed that TSC actually outperforms a reservation
scheme with the first-come-first-served policy and rhythmic control in this example. Furthermore,
as mentioned in Chen et al. [2021], the footprint of the original intersection designed for rhythmic
control is significantly larger than a typical intersection designed for TSC. In our example, we
have made a modification to the original intersection layout in Chen et al. [2021]. In particular,
we integrate the two left-turn lanes for each approach into a single left-turn lane that serves the ag-
gregated demand, yielding a new small intersection layout to serve the same demand. In this new
design, demonstrated in Figure A.3, the required footprint is less than that of a typical intersection
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Figure A.3: Intersection Layout Figure A.4: Intersection Network

designed following the steps in the AASHTO Green Book [Hancock and Wright, 2013]. Note
that this small footprint has resulted from two properties of GCC. First, GCC operates all lanes
simultaneously. This increases the throughput of single left-turn lanes and reduces the number of
required left-turn lanes. Second, GCC does not require the opposite left turns to avoid each other.
As demonstrated in Figure A.3, all four left-turn lanes are crossing each other, while this does not
affect the throughput of the intersection.

Chen et al. [2021] used the following demand for the intersection:

d = [2600, 1400, 1400, 1400, 800, 800, 800, 800]

In the above demand vector d, the first four elements represent the per-lane demand for the four
through approaches, and the last four elements represent the per-lane demand for the four left-
turn approaches. The intersection digraph is demonstrated in Figure A.4. To simplify the design
process, we set vmax = 10(m/s) and δt = 0.3(s) equal to the time required to move between two
adjacent tracking points along a lane with maximum speed.

We implement Step 1-3 of Algorithm 1 to obtain three {1, 2}-factors as demonstrated in Figures
A.5, A.6 and A.7.

Furthermore, we implement Step 4 of Algorithm 1 to obtain the periodic 3-colorable digraph
counterpart of G as demonstrated in Figure A.8.

Implementing Step 5-9, we obtain the final intersection design. As each segment of the in-
tersection belongs to a unique lane, the number of tracking points including the ones required
for switching to the next edge is constant among all parallel edges of the directed multigraph G̃.
Therefore, we depict the final intersection schedule including the tracking points as a simple di-
rected graph in Figure A.9. Also, the entrance time of vehicles into the intersection is demonstrated
in Table A.2. Note that k can be any integer number in the set N. We refer the readers to the sup-
porting materials (2.7.2) for a video demonstrating the operations of dimensionless graph coloring
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Figure A.5: 1st {1, 2}-factor Figure A.6: 2nd {1, 2}-factor Figure A.7: 3rd {1, 2}-factor

Figure A.8: The periodic 3-colorable digraph
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Figure A.9: The final intersection design, including the virtual tracking points

Table A.2: The set of allowable entrance times for each lane.

Lane # Entrance time Lane # Entrance time
lane 1 3(kδ) + 2 & 3(kδ) lane 9 3(kδ) + 2 & 3(kδ)

lane 2 3(kδ) + 1 & 3(kδ) + 2 lane 10 3(kδ) + 1 & 3(kδ) + 2

lane 3 3(kδ) & 3(kδ) + 1 lane 11 3(kδ) & 3(kδ) + 1

lane 4 3(kδ) lane 12 3(kδ)

lane 5 3(kδ) + 1 lane 13 3(kδ) + 1

lane 6 3(kδ) lane 14 3(kδ) + 2

lane 7 3(kδ) + 2 lane 15 3(kδ)

lane 8 3(kδ) + 1 lane 16 3(kδ) + 1

control. Note that, at each moment, the color of a vehicle indicates the {1, 2}-factor associated
with the movement of the vehicle on G̃.

A.22 Finding a Feasible Acceleration/Deceleration Profile

In this section, we prove that inside an intersection with a sufficiently large footprint we can ac-
commodate the required additional tracking points for GCC. In particular, we compute a lower
bound on the number of tracking points we can accommodate along an edge ã ∈ Ã with length β
while respecting the kinodynamic constraints, and prove its derivative with respect to β is either a
positive linear function of β or a positive constant.

To obtain the lower bound we set a few simplifying assumptions. First, the vehicles crossing the
intersection are supposed to enter/depart each edge ã with the maximum allowable speed, and its
speed-time curve must respect the maximum acceleration/deceleration and maximum speed. Next,
We make a conservative assumption that the maximum acceleration and deceleration are equal to
the minimum of the two in magnitude, |γ|. Lastly, we assume the vehicles also respect a minimum
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speed denoted by vmin to ensure a minimum safe tip to tip spatial distance between two consecutive
vehicles. The idea is that any two vehicles that maintain a minimum safe headway hf and travel
with a minimum speed equal to vmin ensure to maintain a minium distance of vminhf . Therefore,
we can compute vmin as the division of the minimum safe spatial distance lmin by the sum of
maximum time length of vehicles in the system and the minimum headway; i.e., vmin = lmin

um+hf
.

Next, we compute tmin the minimum time required for a vehicle to traverse an edge ã as tmin =
β

vmax
. Then, we compute tmax the maximum time it takes a vehicle to traverse ã while respecting

the kinodynamic constraints. Finally, to compute the maximum number of additional tracking
points that we can accommodate along a, we divide the difference tmax − tmin by δt.

To compute tmax, set the entrance time of the vehicle to segment ã equal to zero, t = 0. Denote
its departure time from ã by tmax. According to the kinodynamic constraints, the speed-time curve
of vehicles traversing ã must satisfy three constraints as follows:

v(t) ≥ vmax − |amin|t ∀t ∈ [0, tmax] (A.78a)

v(t) ≥ vmax − |amin|(tmax − t) ∀t ∈ [0, tmax] (A.78b)

v(t) ≥ vmin ∀t ∈ [0, tmax] (A.78c)

Here, Equation A.78a ensures the vehicle enters the segment a with speed vmax and respects the
minimum deceleration −|γ|. Equation A.78b ensures the vehicle departs the segment a with speed
vmax and respects the maximum acceleration |γ|. Lastly, Equation A.78c ensures the speed is al-
ways greater than the minimum speed vmin. Considering different values for the length of segment
a, β, the binding constraints among the three kinodynamic constraints may vary. To compute the
maximum time to traverse a, we investigate the following two cases separately:

• l ≤ v2max−v2min

a
: In this case the constraints A.78a and A.78b are binding. As such, we

compute the speed of the vehicle during the time interval [0, tmax

2
] as vmax − |γ|t. Similarly,

we compute the speed of vehicle during the time interval [ tmax

2
, tmax] as vmax − |γ|(tmax − t).

Thus, the maximum time to traverse a satisfies:

β =

ˆ tmax
2

0

v(t)dt+

ˆ tmax

tmax
2

v(t)dt = vmaxtmax − |γ|t
2
max

4

While by definition we have β = tminvmax. Combining these two together yields:

vmaxtmax − |γ|t
2
max

4
= tminvmax
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We rewrite this expression to obtain:

vmax(tmax − tmin) = |γ|t
2
max

4

Thus:
(tmax − tmin) = |γ|((tmax − tmin) + (tmin))

2

4vmax

This yields:

(tmax − tmin) =
2v2max − βγ − 2vmax

√
v2max − β|γ|

|γ|vmax

Taking partial derivative with respect to β yields:

∂(tmax − tmin)

∂β
= C|γ|( vmax√

v2max − β|γ|
− 1)

= C|γ|2|β|( 1√
v2max − β|γ|(vmax +

√
v2max − β|γ|)

)

We can lower bound the right-hand side to conclude:

C|γ|2|β| 1

2|v2max|
= C1|γ|2|β|

• l ≥ v2max−v2min

a
: In this case all three constraints A.78a, A.78b, and A.78c are binding. As

such, we can compute the speed of vehicle during the interval [0, vmax−vmin

|γ| ] as vmax−|amax|t.
The speed remains the constant, vmin, during the interval [vmax−vmin

|γ| , tmax− vmax−vmin

|γ| ]. Lastly,
we can compute the speed of vehicle during the interval [tmax − vmax−vmin

|γ| , tmax] as vmax −
|amax|(tmax − t).

Thus, the maximum time to traverse a satisfies:

β =

ˆ vmax−vmin
|γ|

0

v(t)dt+

ˆ tmax−
vmax−vmin

|γ|

vmax−vmin
|γ|

v(t)dt+

ˆ tmax

tmax−
vmax−vmin

|γ|

v(t)dt = vmintmax

+
(vmax − vmin)

2

|γ|
(A.79)

While by definition we have β = tminvmax. Combining with equation A.79 yields:

(tmax − tmin) =
vmax − vmin

vmin

(
β|γ|(vmax − vmin)vmin

|γ|vmin

) = Cβ
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A.23 Proof of Theorem 8

Similar to the proof for Theorem 7, let zmax be the maximum number of tracking points required
to traverse any lane l ∈ L with the maximum allowable speed vmax. Also, note that for each
edge ã ∈ Ã the number of additional tracking points we add while implementing Algorithm 7 is
bounded above by ku − 1. Thus, the total number of tracking points along each lane in the final
GCC design is less than zmax+(|L|+1)(ku−1). Therefore, we can ensure any traffic unit entered
the intersection before time step H − um − zmax − (|L|+ 1)(ku− 1) exits the intersection during
the study horizon. Besides, note that as α∗ is an optimal solution to Problem 2.1, we can ensure
under any feasible control there is a lane l such that the greatest common multiplier of the existing
traffic demand that can be accommodated for lane l during the time horizon [0, H] does not exceed
α∗ = H

(
Ul

vmax
+dlhf )

.

On the other hand, we can compute the number of admitted traffic units in lane l ∈ L during
the interval [0, H − um − zmax − (|L|+ 1)(k − 1)] as:⌈

α∗( Ul

vmax
+ dlhf )(k −∆+ 1)

H

⌉⌊
H − um − zmax − (|L|+ 1)(k − 1)

ku

⌋

For the values of H that satisfy u+zmax−(|L|+1)(k−1)
ϵ

< H , we can lower bound the number of
admitted traffic units in lane l ∈ L by α∗( Ul

vmax
+ dlhf )

k−∆+1
ku

(1 − ϵ). Lastly, note that due to the
different lengths of consecutive vehicles entering each lane, we may not be able to utilize the u− δ

length for each traffic unit. Nevertheless, if we cannot add one more vehicle to a traffic unit we
can ensure that the current utilized length of the traffic unit is at least u− um − δ. As such, under
the optimal solution to Algorithm 2 we can accommodate u−δ−um

u
k−∆+1

k
(1− ϵ)α∗ multiple of the

existing traffic demand for each lane l ∈ L during the study horizon [0, H]. This concludes the
proof.
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A.24 Algorithm 3

Algorithm 3 Finding a feasible switching scheme

1. Define a new graph Ǧ = (V̌ , Ǎ) where:

• Each entrance edge ã ∈ Ã is replaced with one vertex v+(ẽ) ∈ V̌ .

• Each intermediate edge ã ∈ Ã is replaced with two vertices v+(ẽ), v−(ẽ) ∈ V̌ .

• Each exit edge ã ∈ Ã is replaced with one vertex v−(ẽ) ∈ V̌ .

• From each node v+(ẽ) ∈ V̌ there is a directed edge ǎ ∈ Ǎ to each node v−(˜̂e) ∈ V̌

corresponding to edges in A+(ẽ).

2. Define w′
ẽ,f̃

≡ z2ẽ + p − q(mod k), for each pair of consecutive edges e, f ∈ Ã. Set

wẽ,f̃ = w
′(1+ϵ)

ẽ,f̃
as the weight of (v+(ẽ), v−(f̃)).

3. Implement the blossom algorithm by Edmonds [1965a,b] to find a minimum weight perfect
matching in Ǧ.

A.25 Algorithm 4

Algorithm 4 Modified {1, 2}-factors Algorithm to respect the restricted regions

1. Add a virtual node along each lanes’ entrance/departure edge to/from each restricted region.
(Figure 2.8)
2. Implement the decomposition algorithm from section 2.3.2.
3. For each one of the k {1, 2}-factors, remove the edges inside the restricted regions.
for each restricted region do

4. Denote by L1, L2 ⊂ L set of lanes in the crossing movement streams. Define x =

maxl∈L1

⌈
α∗(

Ul
vmax

+dlhf )(k−∆+1)

H

⌉
and y = maxl∈L2

⌈
α∗(

Ul
vmax

+dlhf )(k−∆+1)

H

⌉
.

5. Replace the edges connected to nodes inside the restricted region with x copies of L1 and
y copies of L2

end for
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Figure A.10: The periodic 36-colorable Graph

A.26 Proof of Lemma 6

To satisfy z2ẽ = 0, we must modify the initialization step in the algorithm presented in Theorem 6
to include all segments in the restricted regions. Consider the proof for Theorem 6, and note that
the proof remains valid after substituting the spanning tree T ′ with any subgraph that uniquely de-
termines the directed depth of each node. Also, note that as the segments within a restricted region
are formed by the intersection of parallel lanes from two movement streams, the directed distance
between any two nodes within a restricted region along any two paths is invariant. Therefore, we
can initialize Algorithm 6 from a spanning connected subgraph T ′ that can uniquely determine
the directed depth of nodes in G while including all edges in restricted regions. Then, we follow
Algorithm 6 for the remaining steps to transform the directed multigraph into a directed periodic k
colorable multigraph (Undirected subgraph T ′ can be obtained in an iterative procedure. In that, we
start with the union of edges in the restricted regions. Then, we add edges to connect disconnected
components until T ′ is connected).

A.27 An Illustrative Example for General GCC

To illustrate the implementation of the general version of GCC, we demonstrate the results of
implementing Algorithm 2 on the same intersection introduced in Section A.21. As the first 3 steps
of the algorithm are the same, we start our analysis from step 4. First, we set the length of a traffic
unit equal to 12δt. Then, implementing step 4, we find a 36-colorable digraph as demonstrated in
Figure A.10.

When we implement steps 5-10 of Algorithm 2, we realize that, due to the space limitation, the
segments of the intersection cannot accommodate the additional tracking points. As this limitation
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Figure A.11: The final intersection, including the virtual tracking points

is mostly visible in left-turn lanes, we follow the simple remedy presented in Section 2.4.3 to use
the left-turn movements every two cycles. Doing so, within each cycle of length 36 time intervals,
we allocate the right-of-way to two out of the four left-turn approaches (note that when we remove
2 left turns from each cycle the three middle segments of each left turn lane will integrate into
a unified segment). Moreover, to demonstrate the flexibility of GCC, we vary the traffic unit
length among lanes to adjust the number of tracking points and, therefore, avoid any longitudinal
acceleration/deceleration.

Since each segment of the intersection belongs to a unique lane, number of tracking points in-
cluding the ones required for switching to the next edge is the same among all parallel edges of the
directed multigraph G̃. Therefore, we depict the final intersection schedule including the tracking
points as a simple directed graph in Figure A.11. Also, the entrance time of the leading vehicles
to the intersection, the length of the inscribed traffic units, u′, and the number of extra tracking
points to avoid acceleration/deceleration is demonstrated in Table A.3. A positive/negative track-
ing point modification number indicates that we added/removed that number of tracking points
along the edges of G̃, obtained from the final GCC design, to make the number of tracking points
along that lane equal to z1ẽ . This ensures the final design does not require any longitudinal acceler-
ation/deceleration. We refer the readers to the supporting materials (2.7.2) for a video demonstrat-
ing the operations of the graph coloring control. Note that at each moment the color of a vehicle
indicates the {1, 2}-factor associated with the movement of its traffic unit on G̃.

A.28 Proof of Theorem 10

To present TSC as a special case of GCC, we need to adopt a few definitions from the literature
[Allsop, 1972]. In particular, we consider a signalized intersection. Define a stage to be the part of a
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Table A.3: The set of allowable entrance times for each lane in the general GCC.

Lane # Entrance time Extra tracking points u′ Lane # Entrance time Extra tracking points u′

lane 1 36(kδ) + 23 & 36(kδ) + 35 +2 10 lane 9 36(kδ) + 5 & 36(kδ) + 17 +2 10
lane 2 36(kδ) + 22 & 36(kδ) + 34 0 12 lane 10 36(kδ) + 4 & 36(kδ) + 16 0 12
lane 3 36(kδ) + 21 & 36(kδ) + 33 -2 10 lane 11 36(kδ) + 3 & 36(kδ) + 15 -2 10
lane 4 72(kδ) + 20 0 12 lane 12 72(kδ) + 2 0 12
lane 5 36(kδ) + 20 +2 10 lane 13 72(kδ) + 35 0 12
lane 6 36(kδ) + 19 0 12 lane 14 36(kδ) -2 10
lane 7 36(kδ) + 18 -2 10 lane 15 36(kδ) + 1 0 12
lane 8 72(kδ) + 36 + 17 0 12 lane 16 36(kδ) + 2 +2 10

signal cycle associated with one of its non-conflicting movement groups. The duration of the signal
cycle is called the cycle time and is denoted by T . For each stage j, the duration of the signal cycle
is divided into effective red time during which no traffic departs from any lane and effective green
time during which traffic departs from lanes contained in that stage at a steady saturation rate while
there is a queue. For each stage, denote by Γj the proportion of the signal cycle that is effectively
green. Also, set Γmax = maxj Γj . Consider a traffic signal control with stages {1, 2, . . . , r}. Also,
denote by tp : p ∈ {1, 2, . . . , r} the time duration allocated to stage p, and set tmin = minp tp. Note
that the set of lanes included in each stage p can be considered as a {1, 2}-factor for its underlying
digraph. For each stage p, consider

⌊
tp

tminκ

⌋
copies of its corresponding {1, 2}-factor and note that

their union forms a decomposition of the intersection demand with k =
∑r

i=1

⌊
ti

tminκ

⌋
. We can

feed Algorithm 2 with this demand decomposition to convert it to a GCC. Similar to the proof for
theorem 8, we conclude that the the resulting GCC can obtain a reserve capacity of at least

u− δ − um
u

k −∆+ 1

k
min
j

⌊
tj

tminκ

⌋
⌈

tj
tminκ

⌉ α̂
Here α̂ is the reserve capacity computed in optimization problem 2.1 when considering the de-
mand decomposition associated with the optimal TSC design. When we account for the loss time
incurred due to the effective red time, we realize that the reserve capacity of the TSC is upper
bounded by:

α̂Γmax

Note that k ≥ κ. Therefore, we can choose u and κ sufficiently large so that:

u− δ − um
u

κ−∆+ 1

κ
≥ Γmax

it is evident that under such choice of parameters the reserve capacity of the GCC is at least as high
as the considered TSC.
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A.29 Proof of Theorem 11

Consider an R-way intersection, and label the R roads in a counter-clockwise ordering with labels
≡ (mod R). First, note that if the intersection footprint is sufficiently large, we can allocate paths
to intersection lanes such that no more than two lanes intersect at the same conflict point. As the
intersection footprint is sufficiently large, we can use Theorem 8 to prove that GCC can approach
the solution to LP 2.1. As the demand pattern is balanced, the demand for all lanes is the same; i.e.,
following the Problem 2.1 the value U = Ul

vmax
+ dlhf is the same for all lanes of the intersection.

Thus, an optimal solution to the LP 2.1 is α∗ = H
2U

. It suffices to prove that under any signal
control scheme, the reserve capacity cannot exceed α = H

RU
.

In traditional signal control, the approaches that have right-of-way during a phase are not inter-
secting each other. First, we show that the intersection requires at least R phases to accommodate
the demand. To do so, we denote by A the set of proper approaches defined as the set of all move-
ments from a line i to another line j such that i + 1 ̸≡ j(mod R). Note that the set A contains at
least R(R − 2) approaches. Thus, it suffices to prove each phase contains at most (R − 2) proper
approaches.

We use induction to prove this argument. The induction base for R = 3 and R = 4 is trivial.
Assume the induction hypothesis is correct for all integers greater than three and less than R, we
prove it must be correct for R. By contradiction, assume there exists a phase, σ, that covers at least
(R − 1) proper approaches. Denote by (i, j) the approach covered in σ with minimum non-zero
value for j − i ≡ (mod R). Define a congruence interval [i, j]R to include all integers l such that
a ≡ l − i(mod R) is less than b ≡ j − i(mod R). As (i, j) has the minimum non-zero value
for j − i ≡ (mod R), for each i′ ∈ [i, j]R there is no j′ ∈ [i, j]R such that the approach from
i to j is covered in σ. Moreover, as the set of approaches covered in σ are non-intersecting, for
each i′ ∈ [i, j]R there is no j′ /∈ [i, j]R such that the approach from i to j is covered in σ. Thus,
deleting all roads i′ ∈ [i, j]R, i

′ ̸= i, j does not decreases the number of proper approaches in
σ. However, As the approach i, j is a proper approach we conclude the congruent interval [i, j]R
includes at least 1 element excluding i, j. Thus, σ′ includes at least R − 2 approaches which is in
contradiction with the induction hypothesis.

Consider a signal control with reserve capacity is higher than α = H
RU

. Denote by σ1, . . . , σR′ :

R′ > R the phases of the considered signal control. Also, denote by θ1, . . . , θR′ the portion of
a single cycle associated with each phase. As the intersection’s reserve capacity is higher than
α = H

RU
, the total admissible flow for the proper approaches must exceed R(R − 2)U H

RU
=

(R − 2)H . However, during each phase, σi, the total admissible flow for its proper approaches
can be computed as (R− 2)Hθi. Thus, the total admissible flow for the proper approaches can be
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computed as follows:

R′∑
i=1

(R− 2)Hθi = (R− 2)H
R′∑
i=1

θi = (R− 2)H.

This is in contradiction with the assumption that the reserve capacity is higher than H
RU

.

A.30 Relationship with Other Controls

A.30.1 Relationship with Rhythmic Control

In this section, we present rhythmic control or RC [Chen et al., 2021] at isolated intersections as
a restricted special case of GCC. Chen et al. [2021] presented the RC idea from a different per-
spective than the graph coloring control. However, to avoid confusion, in this section we represent
their idea in the GCC terminology.

To present RC, we first need to make three restrictive assumptions. First RC assumes that
the intersection does not contain any conflict point resulted from intersection of more than two
lanes. Second, RC assumes that the platoon of vehicles crossing the intersection contain a single
vehicle; i.e., um + hc = u. Third, the number of {1, 2}-factors in the demand decomposition
phase, k, equals 2. Note that when we set k = 2 we do not need to solve the Problem 2.1 to obtain

an optimal LP solution. This is because constraint set 2.1b concludes
⌈

α∗(
Ul

vmax
+dlhf )(k−∆+1)

H

⌉
= 1

(this is the main reason the RC idea presented in Chen et al., 2021 does not include an optimization
component). Therefore, the right-of-way allocation at each conflict point is alternatively assigned
to the two lanes crossing it.

While the underlying control of the mentioned special case of GCC under the three aforemen-
tioned assumptions is the same as RC, there is a subtle difference between the physical implication
of the two approach. The differences between the two approach is that RC modifies the length
of intersection segments as well as the intersection layout to accommodate the additional tracking
points, while in GCC, we adjust vehicles’ acceleration/deceleration profiles to accommodate them.
This difference enlarges the required footprint of RC substantially greater than that of GCC. On
the other hand, GCC respects the restricted regions of the intersection and so can be applied to
current intersections without incurring any cost to redesign the intersection layout.

In conclusion, RC can be considered as an alternating control that is mostly suitable for balanced
demand patterns where the demand per lane is approximately the same for all intersection lanes,
so the right-of-way allocation to each lane is proportionate to the demand for that lane. Increasing
GCC parameter values, k and l can improve GCC performance over RC in two separate directions.
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The increase in parameter k allows GCC to better respond to imbalanced demands. On the other
hand, the increase in the parameter l help GCC to accommodate large difference between the
following and crossing headway. Furthermore, GCC is robust in handling a set of vehicles of
heterogeneous size and accommodating online variations in safety measures, such as the effect
of weather and environmental conditions on the minimum safety gap between vehicles and its
optimality guarantee will not be compromised when addressing these issues.

A.30.2 Relation with Reservation-based Signal-free Controls

Here, we focus on two well-known reservation-based signal-free schemes for intersection man-
agement introduced by Tachet et al. [2016], namely the fair and batch strategies. To begin, both
proposed strategies consider a fixed acceleration/deceleration profile for the passage of vehicles
through the same lane in the intersection. This simplifying consideration can be translated to our
GCC terminology as enforcing the demand decomposition phase to respect an entirety inclusion
constraint; i.e., the movement along each lane, e.g., a left-turn movement, needs to be entirely
contained in at least one of these groups. Otherwise, the addition of different number of tracking
points in parallel edges in the movement synchronization phase may require the vehicles using the
same lane to follow different acceleration/deceleration profiles.

The fair policy, in a myopic approach, groups the non-conflicting requests and allocates the
right-of-way to the groups according to a first-come-first-served policy. Therefore, fair policy can
be viewed as a TSC whose stages are not cyclic and change over time. As the number of different
configurations for a groups of non-conflicting requests is limited, it is straightforward to realize
that the proof of Theorem 10 holds for the fair policy during a study horizon with length H . That
being said, when applying GCC, we realize that there are two sources of suboptimality. First, due
to its myopic nature, the fair policy might deviate from the demand decomposition that result in
the optimal reserve capacity. Second, GCC allows the vehicles from conflicting lanes to enter the
intersection as long as it can ensure collision avoidance. The batch strategy, intentionally, increases
the minimum time allocated to each stage of the fair policy. The goal is to utilize the fact that the
following headway is shorter than the crossing headway to improve the control performance. This
modification is translated to GCC terminology by increasing the length of traffic units in GCC.

A.31 Proof of Lemma 9

We can apply Algorithm 4 to the intersection of any two movement streams. Doing so, we realize
that the number of edges along a lane that might include additional tracking points equals the
number of movement streams that intersect this lane. Besides, according to Algorithm 2, the
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number of additional tracking points along each segment does not exceed ku− 1, and we may add
one more tracking point to implement algorithm 4. This concludes the proof.

A.32 Simulation Settings

We follow the setting presented in Chen et al. [2021] to consider a stationary vehicle arrival process
which implies that the vehicle arrivals on each lane follow a time invariant process with a headway
that obeys a shifted exponential distribution. We adopt our parameters from Chen et al. [2021].
Therefore, we set hf = 0.1s, vehicle length, L = 4.5m, and the speed at the intersection, vm =

10m/s. Also, we set the distance between parallel lanes equal to 3.6m, and δt = 0.36(s). However,
for the crossing headway we use a conservative design and set hc = 0.57(s). Lastly, in a traffic unit
of length 12∗0.36 = 4.32s, we can accommodate at most 7 vehicles since we have 6∗0.55+0.45+

0.57 = 4.32s. Additionally, we multiply the demand for each lane by a factor α that indicates the
demand level. The optimal GCC design is obtained in Section A.27.

Note that GCC may exhibit a systematic delay in vehicles because of the introduction of virtual
tracking points on the intersection layout. The phase transition time loss is set as two seconds for
the TSC; with this loss, Webster’s method [Webster, 1958] can be adopted to calculate the timing
allocation and cycle length of the TSC. The minimum allowable phase timing is gmin = 4s, and
the maximum allowable cycle length for the TSC is 180s. The CPU time for all computations in
this study did not exceed 1(s).
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