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ABSTRACT

This dissertation consists of two major parts. The first part is concerned with high-
dimensional testing and involves both a methodological and theoretical results. The
methodology portion is centered around the detection of anomalous Internet traffic.
It is motivated by and applied to network telescopes or “Darknet” type data, which
is Internet traffic obtained by monitoring a large number of streams corresponding to
“unused” Internet address space. We propose an algorithm for the synchronous on-
line detection of abnormal Internet traffic, based on recent theoretical developments,
and evaluate its performance both in the detection and the identification aspects.
The remainder of the first part involves theoretical contributions which solve an open
problem in probability on the rates of convergence of maxima for dependent Gaussian
triangular arrays. These technical results on the rates allow us to establish that the
concentration of maxima phenomenon holds in more general, not necessarily Gaus-
sian, models. The latter phenomenon is the key to an important phase transition
result that characterizes the statistical limits in the exact support recovery problem
for a sparse high-dimensional signal observed in additive, light-tailed noise. Thus,
our theoretical results make direct contributions to high-dimensional statistics. The
second part of this dissertation is focused on the non-parametric estimation of the
spectral density of space-time random field processes taking values in a separable
Hilbert space. The estimator relies on kernel smoothing and is applicable to spatial
sampling schemes where data are not necessarily observed at regular spatial loca-
tions. In a mixed-domain asymptotic setting and under general conditions, rates for

the bias and variance of the estimator are obtained which lead to rates for its consis-
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tency. Considering practical applications, where complete functional data are usually
unavailable, our asymptotic results are specialized to the case of discretely-sampled
functional data taking values in a reproducing kernel Hilbert space. Further, it is
shown that when the data are observed on a regular spatial grid, the optimal rate
of the estimator matches the minimax rate for the class of covariance functions that
decay according to a power law. Finally, the asymptotic normality of the spectral den-
sity estimator is also established under general conditions for Gaussian Hilbert-space

valued processes.
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CHAPTER I

Introduction

The rapid development of information technology over the recent years has enabled
researchers to collect and manipulate immense volumes of data at unparalleled speeds
and at a fraction of the cost, compared to the past. As cliché as it might sound, we
live in the era of Big Data. In this era, the biggest challenge in data analysis does
not lie in the traditional scarcity of data to collect, but in the efficient and flexible
manipulation of the overabundant data. The volume of collected data and its analysis
is limited only by the constraints of the modern computational power and shall only

grow with the latest developments in technology.

1.1 Partl

The unprecedented computational power, leading to the plethora of available data,
has radically transformed the way that the vast majority of the scientific community
approaches research problems. Traditionally, in the hypothesis-experiment-analysis
cycle, a hypothesis is made, based on which experiments are being conducted to collect
the necessary data to conduct an analysis. In direct contrast to this model, nowadays
scientists are granted access to ample data, often before even a specific scientific
question has been formulated. The data themselves contribute to the formulation of a

large number of questions. Checking the simultaneous plausibility of these hypotheses



is known as multiple testing and is a procedure that arises in a great variety of fields.
For example, one might look into genome-wide association studies (GWAS) (Sun
et al., 2006; Mieth et al., 2016) or engineering applications, including voice activity
recognition (Ramirez et al., 2007) and spectrum misuse detection (Zhang et al., 2017).

One main example of multiple testing problems emerge in cybersecurity. The
synchronous and online monitoring of millions of Internet Protocol (IP) addresses
is a central task in this sector. A typical example of what the traffic looks like in
this domain is presented in Figure 1.1. This heatmap depicts the number of unique
sources that target each monitored TCP/UPD port per minute, for the full month
of September 2006. We order these ports by the volume of total traffic and show
the top-50 ports. These data are obtained through Merit Network’s ORION network
telescope (Merit Network, Inc., 2022) and consist of communication requests from
valid source IP addresses destined to unoccupied (dark) IP addresses controlled by
Merit Network. Therefore such traffic is referred to as Darknet traffic. The observed
Darknet traffic can be due to misconfigured computers, but in its majority is due to
malicious scanning activity originating from ill-purposed actors. Detecting anomalies
in the Darknet can thus help identify new types of cyber attacks (see e.g. (Antonakakis
et al., 2017)).

Commonly in cybersecurity, many different ports/streams of data are being mon-
itored concurrently, with the main task being the discovery of possible anomalies in
the Internet traffic. The smaller the time window allowed for the discovery, the more
challenging the problem becomes, but also the more useful the results are. Many
algorithms have been developed (Xie et al., 2017; Lin et al., 2020) for the detection
of these anomalies, with often two goals in mind. Firstly, spotting whether there is an
anomaly in the total traffic under consideration, and secondly, locating the streams
where this deviation from the non-anomalous standard traffic occurs.

In Chapter II we focus on a methodological problem pertaining to the discussion
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Figure 1.1: Log-transformed raw Internet traffic obtained from the ORION Net-
work Telescope (Merit Network, Inc., 2022). The top 50 ports are displayed on the
heatmap, ordered with respect to the total volume of traffic. The dataset spans the
entire month of September 2016.

above. The main goal is to detect sparse anomalies embedded in a high-dimensional

low-rank background, i.e., our observations are of the form

Ty = Bft + up + €. (11)

Here, x; = {z,(i)}!_, is a vector-time series denoting a collection of p data streams
observed at time-bin ¢, while ¢, = {¢(i)}}_; models the “benign” background noise.
The vector f; = {fi(j) le denotes the k(« p) periodic over time (diurnal, weekly,
etc) trends that are shared across some of the streams and the matrix B € RP**
contains k linearly independent columns that indicate which factors f; affect each
stream. Finally, the vector u;, = {u;(i)}’_; represents the anomalous “signal” at time
t for the streams 1,...,p. When there are no anomalies, u; = 0.

Our methodology involves learning the matrix B over time, with focus on a se-

quential update of its estimate é, every time that new data are received. To this end



we utilize sequential PCA techniques. This allows us to estimate the rank-k subspace
spanned by the columns of B without having to store large amounts of historical
data. At the same time, sequential PCA allows us to adapt this estimate with new
information and to changes in the low-rank space modeling the background. After
obtaining B , we project the observed data onto the orthogonal complement of the
subspace span <§> . Under some assumed incoherence conditions, the projected data

will follow the canonical signal-plus-noise model
Ty = Ut + €4, (12)

where ¢; is the background noise as in (1.1) and the signal pu; = (u(i))t_; is a p-
dimensional vector with s non-zero components. The non-zero components are called
the support set S = {i : (i) # 0}, while € = {€(i)}}_; is a random error vector. In

high-dimensional statistics, as well as in Chapter II, the goal is twofold:

(I) Signal Detection: The detection of non-zero components in p. Namely, test the

global hypothesis y = 0.

(I) Support Recovery: Estimation of the support set S. It is otherwise known as

support estimation or signal identification problem.

The algorithm we implement uses the aforementioned projections to perform detec-
tion and identification of the anomalies jointly. We evaluate the performance of the
algorithm against classical anomaly detection methods on a synthetic dataset, while
we also demonstrate our methodology on a Darknet data application. Finally, based
on the synthetic data, we provide a guide to the practitioner for the use of our algo-
rithm. This concludes the most applied part of this thesis.

In Chapter 11T we solve an open theoretical problem motivated by the ezact sup-
port recovery problem. This problem is directly motivated by and applicable to the

anomaly identification context of Chapter II. It is, however, of independent interest



in high-dimensional statistics. In the identification problem, there have been multiple
approaches. Other works aim at estimating the support set S under many different
criteria. For example, Butucea et al. (2018) use the Hamming loss, while Arias-Castro
and Ying (2018) aim at approximate recovery of the support set using the |S A S|/|9)|
metric. Our goal is the exact recovery of the support set of the anomaly, when the sig-
nal p = p; in (1.2) is considered sparse, we have n = 1 observation and the dimension

p grows to infinity. Namely, we want to find §p such that

P (gp = Sp> — 1, asp— o, (1.3)
for the case where the signal p in (1.2) is sparse. By sparse, we mean that

|Spl = sp ~ lpl_ﬂJ ; a8 p — 00,

where § € (0,1] is a sparsity parameter. The larger the (3, the fewer the non-zero
signal entries in S, and the sparser the signal.

It was recently shown by Gao and Stoev (2020) that the exact support recovery
problem obeys a phase transition phenomenon at the limit of p — oo, when threshold-
ing estimators are utilized. This phase transition result shows that there is a certain
boundary function of the sparsity parameter [ such that (i) exact support recovery
is possible for signal amplitudes above the boundary and (iz) exact support recovery
is impossible otherwise (cf Section 3.2.1). In Gao and Stoev (2020), the errors in
(1.2) follow the Gaussian distribution, and although this problem had been studied
extensively for independent errors (cf e.g. Arias-Castro and Chen (2017); Cai et al.
(2007)), the errors therein are studied under dependence. Gao and Stoev (2020) prove
that the exact support recovery is feasible when the errors are assumed to be Uni-
formly Relative Stable. It is also shown that in the Gaussian case, Uniform Relative

Stability (URS) is equivalent to the Uniformly Decreasing Dependence condition.



In Chapter III we examine the rate at which the URS occurs, namely at what rate
a properly normalized maximum of a triangular array of Gaussian random variables
converges in probability to the constant 1. We establish an upper bound on this rate,
which curiously depends on the normalizing constants of the maximum. Moreover,
through this rate we expand the range of models obeying URS, to a variety of models
obtained through transformations of the Gaussian random variables. This leads to a
much broader variety of models that undergo the phase transition phenomenon with

regards to the exact recovery problem.

1.2 Part I1

Apart from the multiple hypothesis testing, a field impacted by the growing avail-
ability of data is the domain of Spatial Statistics. Data related to Spatial Statistics are
not only concerned with observations indexed by geographic (spatial) location. They
are often indexed by time as well as space, and involve multiple attributes. Some
scientific areas, where spatial data are of interest, include oceanography (see, e.g.,
the Argo Project(ARGO, 2020)), geology (Tian et al., 2018) and real estate (Pace
et al., 1998). Figure 1.2 shows an example of such type of functional data arising in
oceanography. The plot is obtained through the R shiny app of Yarger (2020a) (see
also Yarger et al. (2022)). The data used therein come from the Argo program, an
international program that measures water properties across the world’s ocean. To
collect these measurements, robotic instruments, called floats, drift with the currents
and move up and down in the water, periodically measuring temperature, salinity and
other variables as a function of depth (pressure). The spatial distribution of these
floats as of January 2023 is given in Figure 1.3.

In the analysis of stationary spatial data, one of the main interests lies in ex-
amining their covariance structure. In the function-valued setting (see e.g. Rudin

(1991); Hsing and Eubank (2015)), this amounts to studying either their operator-
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Figure 1.2: Profiles of Argo data for January 15, 2019 in the area of the Aegean Sea of
Greece. The plots contain measurements at different pressure levels (depth levels) for
the temperature, the salinity level, the potential density and the density respectively.
Each line in the plots corresponds to an individual float.

valued auto-covariance or equivalently, the operator-valued spectral density. These
two problems are duals of each other, meaning that estimation of either function
suffices for the characterization of the second-order characteristics of the stochastic
process under consideration.

In Chapter IV, we introduce a lag-window type estimator of the spectral density
function. This estimator is defined in the very general case of stochastic processes tak-
ing values in separable Hilbert spaces, which can in particular be finite-dimensional
or infinite-dimensional spaces of functions. Moreover, our estimator is defined on ar-
bitrarily and irregularly sampled data in space, in contrast to existing periodogram-
based estimators for functional time series (Panaretos and Tavakoli, 2013; Politis,
2011). In this chapter, we focus on establishing upper bounds on the rates of consis-
tency of our estimator and also describing a potential modification with regards to
discretely observed functional data.

Let X = {X(t), t € R} be a process taking values in the separable Hilbert space
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Figure 1.3: Locations of the fleet of operational floats of the Argo project, as of
January 2023. The floats cover extensively the world’s ocean. Copyrights for this
image belong to ARGO (2020).

H and let f(6), fn(G) denote the true spectral density and our estimator, respectively
at the point § € R? The main goal of this chapter is to prove that fn(Q) is a
consistent estimator of f(#), and obtain rates on the consistency. Namely, using the
Hilbert-Schmidt norm, we establish the rate at which the following quantity vanishes

(uniformly for 6):
E| fa(6) = f(6)|ns.

To do so, we first use a bias-variance decomposition (using the Hilbert-Schmidt inner

product)

~ 2
E| [E40) - 1), + B

2
HS

f0) = 10)



and explore the bias and variance vanish rates.

The rates we initially obtain for these quantities are quite general, as we work
under a very broad framework of mixed-domain asymptotics with irregularly sampled
data. In particular, the rate for the bias, under our assumptions, depends on the tail
decay of the autocovariance operator of the stochastic process under consideration. In
order to further study the optimality of the estimator, we focus on processes sampled
over a rectangular grid and examine the class of the power-law decaying covariance
operators. The known tail-decay leads to explicit consistency rates; we take advantage
of this explicit form to optimally choose the bandwidth parameter of our estimator.

The abstract results when the observations take values in a Hilbert space are not
directly useful in practice. Indeed, in applications one observes only discrete samples
of functional data. In Section 4.6, we extend our estimator and results to this case,
where the functional data are observed on discrete points and H is a Reproducing
Kernel Hilbert Space.

In Chapter V, we study the minimax optimal rates of the spectral density es-
timation problem for Hilbert space valued processes. Specifically, we focus on the
aforementioned power-law decaying class of covariance operators. For this class, in
both cases of processes sampled on a fixed grid and when the grid becomes denser,
we derive minimax lower bounds for the rates of any estimator. Then, we show that
our estimators J?n(é’) are minimax rate-optimal. To the best of our knowledge, the
minimax rate results obtained in this chapter are the first to be established for the
pointwise inference of the spectral density for Hilbert space valued processes.

Finally, in Chapter VI we explore the asymptotic distribution of the estimator
fn(9) We impose the extra assumption that X is a Gaussian H-valued process (cf
Section 2 of Rao (2014)). Under this assumption, we establish a Central Limit The-
orem type result for fn(Q) and obtain a stochastic representation of the limit. The

proof is based on showing the convergence of all moments using a new type of Isserlis



(Isserlis, 1918) formula that we establish.
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Part I
Anomaly Identification and High

Dimensional Testing

CHAPTER II

Anomaly Detection

In this chapter, we are concerned with the multiple hypothesis testing problem in
high dimensions, as it appears in the scope of cybersecurity. In this context, timely
detection and identification of “anomalous” Internet traffic is of essence to the prompt
termination of any cyberthreats. A unique window into observing Internet-wide scan-
ners and other malicious entities is offered by network telescopes, commonly known as
“Darknets”. However, monitoring Darknets for timely detection of coordinated and
heavy scanning activities is a challenging task. The challenges mainly arise due to the
non-stationarity and the dynamic nature of Internet traffic and, more importantly, the
fact that one needs to monitor high-dimensional signals (e.g., all TCP/UDP ports) to
search for “sparse” anomalies. We propose statistical methods to address both chal-
lenges in an efficient and “online” manner; our work is validated both with synthetic

data and with real-world data from a large network telescope.
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2.1 Darknet and cyberthreats

The Internet has evolved into a complex ecosystem, comprised of a plethora of
network-accessible services and end-user devices that are frequently mismanaged, not
properly maintained and secured, and outdated with untreated software vulnerabili-
ties. Adversaries are increasingly becoming aware of this ill-secure Internet landscape
and leverage it to their advantage for launching attacks against critical infrastructure.
Examples abound: foraging for mismanaged NTP and DNS open resolvers (or other
UDP-based services) is a well-known attack vector that can be exploited to incur volu-
metric reflection-and-amplification distributed denial of service (DDoS) attacks (Czyz
et al., 2014; Rossow, 2014; Kiihrer et al., 2014); searching for and compromising inse-
cure Internet-of-Things (IoT) devices (such as home routers, Web cameras, etc.) has
led to the outset of the Mirai botnet back in 2016 that was responsible for some of the
largest DDoS ever recorded (Antonakakis et al., 2017; Krebs, 2021a; Paganini, 2016;
Perlroth); variants of the Mirai epidemic still widely circulate (e.g., the Mozi (Klop-
sch et al., 2020) and Meri (Krebs, 2021b) botnets) and assault services at a global
scale; cybercriminals have been exploiting the COVID-19 pandemic to infiltrate net-
works via insecure VPN teleworking technologies that have been deployed to facilitate
work-from-home opportunities (DHS CISA and NCSC, 2020).

Notably, the initial phase of the aforementioned attacks is network scanning, a step
that is necessary to detect and afterwards exploit vulnerable services/hosts. Against
this background, network operators are tasked with monitoring and protecting their
networks and germane services utilized by their users. While many enterprises and
large-scale networks operate sophisticated firewalls and intrusion detection systems
(e.g., Zeek, Suricata or other non-open-source solutions), early signs of malicious
network scanning activities may not be easily noticed from their vantage points. Large
Network Telescopes or Darknets (Moore et al., 2004; Merit Network, Inc., 2022),

however, can fill this gap and can provide early warning notifications and insights

12



for emergent network threats to security analysts. Network telescopes consist of
monitoring infrastructure that receives and records unsolicited traffic destined to vast
swaths of unused but routed Internet address spaces (i.e., millions of IPs). This traffic,
coined as “Internet Background Radiation” (Pang et al., 2004; Wustrow et al., 2010),
captures traffic from nefarious actors that perform Internet-wide scanning activities,
malware and botnets that aim to infect other victims, “backscatter” activities that
denote DoS attacks (Wustrow et al., 2010), etc. Thus, Darknets offer a unique lens
into macroscopic Internet activities and timely detection of new abnormal Darknet
behaviors is extremely important.

In this thesis, we consider Darknet data from the ORION Network Telescope
operated by Merit Network, Inc. (Merit Network, Inc., 2022), and construct multi-
variate signals for various TCP/UDP ports (as well as other types of traffic) that
denote the amount of packets sent to the Darknet towards a particular port per mon-
itoring interval (e.g., minutes) (see Figure 2.1.) Our goals are to detect when an
“anomaly” occurs in the Darknet! and to also accurately identify the culprit port(s);
such threat intelligence would be invaluable in diagnosing emerging new vulnera-
bilities (e.g., “zero-day” attacks). Our algorithms are based on the state-of-the-art
theoretical results on the sparse signal support recovery problem in a high-dimensional
setting (see, e.g., (Gao and Stoev, 2020) and the recent monograph (Gao and Stoev,
2021)). Our main contributions are: 1) we showcase, using simulated as well as
real-world Darknet data, that signal trends (e.g., diurnal or weekly scanning patterns)
can be filtered out from the multi-variate scanning signals using efficient sequential
PCA techniques (Arora et al., 2012a); 2) using recent theory (Gao and Stoev, 2020),
we demonstrate that simple thresholding techniques applied individually on each uni-

variate time-series exhibit better detection power than competing methods proposed

LAll traffic captured in the Darknet can be considered “anomalous” since Darknets serve no real
services; however, henceforth we slightly abuse the terminology and refer to traffic “anomalies” in
the statistical sense.
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in the literature for diagnosing network anomalies ( Lakhina et al., 2004); 3) we propose
and apply a non-parametric approach as a thresholding mechanism for the recovery
of sparse anomalies; and 4) we illustrate our methods on real-world Darknet data

using techniques amenable to online/streaming implementation.

2.1.1 Related Work

Network telescopes have been widely employed by the networking community
to understand various macroscopic Internet events. E.g., Darknet data helped to
shed light into botnets (Antonakakis et al., 2017; Dainotti et al., 2015), to obtain
insights about network outages (Benson et al., 2012; Dainotti et al.), to understand
denial of service attacks (Moore et al.; Jonker et al., 2017; Czyz et al., 2014), for
examining the behavior of IoT devices (Shaikh et al., 2018), for observing Internet
misconfigurations (Czyz et al., 2013; Wustrow et al., 2010), etc.

Mining of meaningful patterns in Darknet data is a challenging task due to the
dimensionality of the data and the heterogeneity of the “Darknet features” that one
could invoke. Several studies have resorted to unsupervised machine learning tech-
niques, such as clustering, for the task at hand. Niranjana et al. (2020) propose using
Mean Shift clustering algorithms on TCP features to cluster source IP addresses to
find attack patterns in Darknet traffic. Ban et al. (2012) present a monitoring system
that characterizes the behavior of long term cyber-attacks by mining Darknet traffic.
In this system, machine learning techniques such as clustering, classification and func-
tion regression are applied to the analysis of Darknet traffic. Bou-Harb et al. (2014)
propose a multidimensional monitoring method for source port 0 probing attacks by
analyzing Darknet traffic. By performing unsupervised machine learning techniques
on Darknet traffic, the activities by similar types of hosts are grouped by employing a
set of statistical-based behavioral analytics. This approach is targeted only for source

port 0 probing attacks. Nishikaze et al. (2015) present a machine learning approach
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for large-scale monitoring of malicious activities on Internet using Darknet traffic. In
the proposed system, network packets sent from a subnet to a Darknet are collected,
and they are transformed into 27-dimensional Traffic Analysis Profile (TAP) feature
vectors. Then, a hierarchical clustering is performed to obtain clusters for typical
malicious behaviors. In the monitoring phase, the malicious activities in a subnet are
estimated from the closest TAP feature cluster. Then, such TAP feature clusters for
all subnets are visualized on the proposed monitoring system in real time to identify
malicious activities. Ban et al. (2016) present a study on early detection of emerging
novel attacks. The authors identify attack patterns on Darknet data using a clus-
tering algorithm and perform nonlinear dimension reduction to provide visual hints
about the relationship among different attacks.

Another family of methods rely on traffic prediction to detect anomalies. E.g.,
Zakroum et al. (2022) infer anomalies on network telescope traffic by predicting prob-
ing rates. They present a framework to monitor probing activities targeting network
telescopes using Long Short-Term Memory deep learning networks to infer anomalous

probing traffic and to raise early threat warnings.

2.2 Methodology

2.2.1 Problem Formulation

Consider a vector time series #; = {x:(¢)}_; modelling a collection of p data
streams (e.g., scanning activity against p ports). In network traffic monitoring ap-
plications, the data streams involve a highly non-stationary “baseline” traffic back-
ground signal 6, = {6,(i)}"_,, which could be largely unpredictable and highly vari-
able. Considering Internet traffic specifically, this “baseline” traffic often includes
diurnal or weekly periodic trends that can be modeled by a small number of common

factors. We encode these periodic phenomena through the classic linear factor model.
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Figure 2.1: (a) Incoming unique source IP traffic coming to port 5353, from 16
September, 0639 UTC to 23 September, 0719 UTC in 2016. (b) Incoming traffic for
the same port after stabilization through log-transform. Another event is now visible
despite diurnal trends in traffic denoted by a spike around 17 September 14:00 UTC.
(c) Residuals for the same port from the traffic model. The large event is flagged by
our algorithm. Our method adapts to the change of regime after the second event
and does not flag the whole remaining time series as anomaly. Moreover, the periodic
trend until 21 September is clearly filtered out after the application of the algorithm.

Namely, we make the assumption that 0, = Bf:, where B = (51 . I;k)pxk is a matrix
of k(< p) linearly independent columns that express the affected streams. Moreover,
fi = {10) k_, are the (non-stationary) factors, or periodic trends, that appear in

these different streams. That is, the anomaly free regime can be modeled as
7, = Bfi + &, (2.1)

where € = {¢(i)},_; is a vector time-series modeling the “benign” noise. The time-
series {€} may and typically does have a non-trivial (long-range) dependence struc-
ture Willinger et al. (2001), but may be assumed to be stationary. Additional as-
sumptions on the dependence structure of ¢, may be used in Section 2.4 as needed.

Anomalies such as aggressive network scanning may be represented (in a suitable
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feature space) by a mean-shift vector @; = {u;(7)}}_,, which is sparse, i.e., it affects
only a relatively small and unknown subset of streams S; = {i € [p]| : u,(i) # 0}.

Thus, in the anomalous regime, one observes
7, = Bfi + U, + &. (2.2)

The general problems of interest are twofold:

(i) Detection: Timely detection of the presence of the anomalous component ;.

(ii) Identification: The estimation of the sets S; of the streams containing anomalies.

2.2.2 An Algorithm for Joint Detection and Identification

We provide a high level summary of the algorithm we implement in our analysis.
We examine high-dimensional data sourced from Darknet traffic observations and our
goal is the joint detection and identification of any nefarious activity that might be
present in the dataset.

In order to achieve our goals, we utilize sequential PCA techniques (i.e., incre-
mental PCA or iPCA) attempting to estimate the factor subspace spanned by the
common periodic trends. Once an estimate of this space is obtained, we project the
new vector of data (one observation in each port signal) on this subspace and retain
the residuals of the data minus their projections. Using an individual threshold for
each stream, pertaining to the stream’s marginal variance and a control limit chosen
by the operator (see Section 2.3.1.3 for guidance in system tuning), observations are
flagged as anomalies individually.

The algorithm can be broken down in five phases.

1. Input. Tuning parameters include the length of the warm-up period (ng)
and smoothing parameters for some Exponentially Weighted Moving Aver-

age (EWMA) steps Lucas et al. (1990); A, A,, A, denote the memory parameters
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Algorithm 1 Online identification of sparse anomalies

Require: smoothing parameters A\, A, As;
control limit L; effective subspace dimension £;
initial subspace estimates B initial mean estlmates l/a;, Vr
initial residual marginal variance estimates ¢
iPCA forget factor 7, robust estimation guard R.
for new data 7; = (2,(j))}_, € R? do

for j ¢ S, do

Ur(3) — (1= N)0.(4) + Az () = Update mean estimates
end for . R

«— (I - B(B' B) LB (% — ) > Projection step

B — iPCA(%,, B Uy, k) > Update subspace

for j: [r(j)| < R-o:(j) d
u(J) = (L= A)we(4) + )\;ﬂ“t(J)
end for
for J: |r() — 5,(j)| < B -5,(j) do
02(7) < (1 = Xo)32(5) + Ao (re(4) — 0(5))? > Update residual variances
end for

S 17 1 Irg) = ()| > L x 3(5))
if S; # O then
Raise alert on S;
end if
end for

for the EWMA of the mean of the data #;, the mean of the residuals 7; and the
marginal variance of the residuals (33) Additionally, the memory parameter
of the iPCA (namely, 1) can be chosen by the user. Moreover, one can choose
the control limit L, used in the alert phase, the variance cut-off percentage m

and the robust guard estimation (REG) parameter R, controlling the sequential

update of the EWMASs.

2. Initialization. The “warm-up” dataset, undergoes a batch PCA. Using the
percentage 7 that denotes the fraction of variance “explained”, one can deter-
mine the effective dimension k of the factor subspace to be estimated, which
dictates the trends that would be filtered out. The mean of the data ( ), the
mean (5}) and the marginal variance (gf) of the residuals are initialized based

on the training data.

18



3. Sequential Update. A new vector of data (&;) is observed and passed through
the algorithm. We update the estimated factor subspace B using incremental

PCA Arora et al. (2012a). The vector 7, is updated using EWMA.

4. Residuals. Depending on whether there is an ongoing anomaly, we center
as fﬁo) =T — 13}; We project the centered data onto the orthogonal complement

of B and obtain the residual (7}). Thus, the residuals are defined as

~ ~

7, = Proj. s (fﬂ”) — (I - B(B™B)'B") <f§0)> (2.3)

If any coordinate of 7} is smaller in magnitude than R times the marginal

=2

variance, then the appropriate elements of both 57, and ZJ\'T are updated via

EWMA.

5. Alerts. Finally, if any coordinate in the centered residuals exceeds in magnitude

the corresponding element in L x &,., an alert is raised.

There are two important points that we would like to make regarding the effec-

tiveness of the proposed Algorithm.

e First, non-stationarity in the form of e.g. diurnal cycles in the data is absorbed

in the projection step, and not with a time-series model.

e The sparse anomalous signals remain largely unaffected by the projection step.
This can be quantified with the help of an incoherence condition (see Proposi-
tion I1.3 and its proof in Section 2.4) that is generally satisfied in network traffic
monitoring problems. This then leaves us with the residuals approximating the
signals

and enables us to detect and locate sparse anomalies.
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Moreover, the sequentially and non-parametrically updated estimate of the vari-
ance gf on Step (4) of the algorithm can be shown to be a consistent estimator in the
special case that our residuals {7}};2, form a Gaussian time series. (More general cases
could be examined as future work.) Indeed, let {ry(j), t € Z, j € [p] = {1,...,p}}

be a zero-mean stationary Gaussian time series, with some correlation structure

pi(5) = Cor(ry(j), 0(7)) = Cor(riea(5), ra(4)), (2.5)

for teZ, je|p|, Vh € Z. We propose the estimator

6;:(7) = (1= A)51 1 (4) + Aor (7). (2.6)

in order to estimate the unknown variance of 7, non-parametrically. Namely for the
estimation of this variance, we implement an EWMA on the squares of the zero-mean

stationary series {7}, ¢ € Z}, which the following Proposition II.1 proves consistent.

Proposition II.1. Let {57, t € Z} be defined as in (2.6) and {p;,t € Z} as in (2.5)
(we have dropped the index j to keep the notation uncluttered). If .2 p? < oo,

then the estimator 07 is consistent.

The proof of this Proposition is presented in Section 2.4.3.

Remark 11.2. Note that at first glance the EWMA estimator for the variance of the
residuals in (2.6) seems inconsistent with the one in Algorithm 1, due to the lack of
the centering term 7,.(j). Recall that our method firstly projects the original data in
the orthogonal complement of the estimated subspace B , obtaining the residuals TA_’},
which are then centered. The centered residuals correspond to the residuals that we
utilize in the proof and setting of Proposition II.1, i.e., we assume they are a zero-
mean Gaussian stationary time series with square summable correlation structure.

Thus, the update of 52(j) in (2.6) does not require the existence of a centering factor.

20



We now proceed to elaborate on the incoherence condition, which ensures that

the sparse anomalies are largely retained by the projection step.

2.2.3 Incoherence conditions

Disentangling sparse errors from low rank matrices has been a topic of extensive
research since the last decade. While there are seminal works on recovering sparse
contamination from a low-rank matrix ezactly, they all resort to solving a convex
program or a program with convex regularization terms (Candés and Recht, 2012;
Candes et al., 2011; Xu et al., 2010). The form that most closely resembles the set-up
of our problem is Zhou et al. (2010), where the model has both a Gaussian error term
and a sparse corruption; see also Xu et al. (2010), Candes et al. (2011) and references
therein.

This line of literature often criticizes the classical PCA in the face of outliers and
data corruptions. However, to the best of our knowledge, there has been no analysis
documenting just how or when the classical PCA becomes brittle in recovering sparse
errors when the training period itself is contaminated. Our empirical and theoretical
findings point to the contrary.

Secondly, rarely can such convex optimization-based methods be made “online”.
Our approach here is to separate sparse errors from streaming data rather than stacked
vectors of observations (i.e., measurement matrices) collected over long stretches of
time. The low-rank matrix completion line of work faces challenges when data comes
in streams rather than in batches, because the matrix nuclear norm often used in
such problems closely couples all data points. In a notable effort by Feng et al.
(2013) an iterative algorithm was proposed to solve the optimization problem with
streaming data. However, implementing the algorithm requires extensive calibration
and tuning which makes it impractical for non-stationary data streams with ever-

shifting structures.
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We now make formal the following statement: under the suitable structural as-
sumption on the factor loading matrix B stated below, PCA is still a resilient tool
for recovery of the low-rank component and the sparse errors on observations z;. Our
results provide theoretical guarantees on the error in recovering the locations and
magnitudes of sparse anomalies.

We analyze the faithfulness of residuals in (2.4) in recovering sparse anomalies

under the following assumptions.
Amin(BTB) = ¢(p), for some function ¢ of p. (2.7)
Entries of B are bounded by a constant €', uniformly in p:

1B, 7| <C, Viel[p]={1,...,p}, e[k (2.8)

Conditions (2.7) & (2.8) are closely linked to the so-called incoherence conditions
in high-dimensional statistics (Candés and Recht, 2012). Notice that for (2.7) and
(2.8) to hold simultaneously, we need ¢(p) < Cp. These conditions are important for
the theoretical guarantees in the high-dimensional asymptotics regime where p — oo
but in practice they are quite mild and natural.

Condition (2.7) ensures that the background signal in the factor model B j:,; has
enough energy or a “ground-clearance” relative to the dimension. In the context
of Internet traffic monitoring, this is not a restrictive condition since otherwise the
background signal can be modeled with a lower-dimensional factor model with smaller
value of k. The second assumption (2.8), taken together with (2.7) ensures that the
columns of B are not sparse and consequently the background traffic is not concen-
trated on one or a few ports. This is also natural. Indeed, if the background was
limited to a sparse subset of ports, then they would always behave differently than

the majority of the ports and one can simply analyze these ports separately using
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a lower-dimensional model with smaller value of p, where we no longer have sparse
background.

Let now & = BBT and ¥ be an estimate of & obtained for example, by performing
iPCA and taking the top-k principal components. (Alternatively, one can simply take

Y=n"tY" &, for a window of n past observations.)

Proposition II.3 (Resilience of PCA). Assume (2.7) and (2.8) hold and let 7 be

defined as in (2.3). Then, for any k and p, and for each coordinate i € [p],

E(’r’t(l) - <€t(l) + ut(l)))Q < [ (Eni . EH2) 1/2 %}? <Cf0k +1+ t?”(ju))

ViC ™
+W(1+vk‘pczuw)] (2.9)

where ¥, = B[@,@]] and (E||f])? < cik. Moreover, in ly-norm, we have

S o 12 A_ 2 1/22\/177]{7 tT(EU)
E|r — (€+ )| <[(E\E 1) —¢(p) <chk+1+ Y

+ VE + 4/min{k[2,], tr(Eu)}] (2.10)

In Section 2.4.1, we provide a proof for this proposition.

This result shows that if \/p = O(¢(p)), with k£ and ¥, bounded, the upper bounds
in (2.9) converge to zero, as the dimension p grows. That is, the anomaly signal
i; “passes through” to the residuals 7, and the approximation in (2.4)
can be quantified. Indeed, assuming k is fixed for a moment, (2.9) entails that
the point-wise bound on mean-squared difference between the unobserved anomaly-
plus-noise signal u;(i) + €(i) and the residuals (i) obtained from our algorithm is
O(E(Hi —%|?)p/®*(p)). This means that in practice, provided ¥ = BB" is estimated

well, anomalies (i) of magnitudes exceeding ,/p/¢(p) will be present in the residuals
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r¢(7). As seen in the lower bound in Eq. (2.14), this is a rather mild restriction. Thus,
in view of Theorem II.4, provided ¢(p) > \/m , the theoretically optimal exact
identification of all sparse anomalies is unaffected by the background signal B ﬁ :

In practice, however, the key caveat is the accurate estimation of ¥, which can
be challenging if the noise € and/or the factor signals ft are long-range dependent.
Further analysis, not presented here, establishes upper bounds on IE[||§] — X|?] via
the Hurst long-range dependence parameter of the time-series {¢;(i)}, conditions on
{f:}, and the length of the training window n. It shows that even in the presence
of long-range dependence, provided the training window and the memory of iPCA
are sufficiently large, the background signal can be effectively filtered out without
affecting the theoretical boundary for exact support recovery discussed in the next

section.

2.2.4 Statistical Limits in Sparse Anomaly Identification

As argued in the previous section using for example PCA-based filtering methods,
one can remove complex non-sparse spatio-temporal background /trend signal without
affecting significant sparse anomalies. Therefore, the sparse anomaly detection and
identification problems can be addressed transparently in the context of the signal-
plus-noise model. Namely, assume that we have a way to filter out the background
traffic B f induced by multivariate non-sparse trends? in (2.2). Thus, we suppose that
we directly observe the term:

T =€+,

where 1 is a sparse vector with s « p non-zero entries. In this context, we have two

types of problems:

2We drop the time subscript to keep the notation uncluttered.
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e Detection problem. Test the hypotheses

Ho : @ =0 (no anomalies) vs H; : u # 0. (2.11)

e Identification problem. Estimate the sparse support set

S =238,="{ie[p] : u(i)# 0} (2.12)

of the locations of the anomalies in .

Starting from the seminal works of Ingster (1998b) and Donoho and Jin (2004b) the
fundamental statistical limit of the detection problem has been studied extensively
under the so-called high-dimensional asymptotic regime p — o (see, e.g., Theorem
3.1 in the recent monograph (Gao and Stoev, 2021) and the references therein). The
identification problem and more precisely the exact recovery of the support S, have
only been addressed recently (Butucea et al., 2018; Gao and Stoev, 2020). To illus-
trate, suppose that the errors have standard Gaussian distributions €,(i) ~ N(0,1)
and are independent in ¢ (more general distributional assumptions and results on de-
pendent errors have been recently developed in (Gao and Stoev, 2021)). Consider the
following parameterization of the anomalous signal support size and amplitude as a

function of the dimension p:

e Support sparsity. For some (€ (0,1],

S| =p'", asp— . (2.13)

The larger the [, the sparser the support.
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e Signal amplitude. The non-zero signal amplitude satisfies

2rlog(p) < u(i) < +/27log(p), forallie S, (2.14)

We have the following phase-transition result (see, e.g., Theorem 3.2 in Gao and Stoev

(2021)).

Theorem I1.4 (Exact support recovery). Let the signal i satisfy the sparsity and

amplitude parameterization as in (2.13) and (2.14), and let

= (1++/1=B)? Belo,1].

1. If 7 < g(B), then for any signal support estimator §p, we have

;LI&IP’ [S = Sp] = 0.

2. If g(B) < r, then for the thresholding support estimator S = {7€lp] : =(j) >
t,} with Ple(i) > t,] ~ a(p)/p, with a(p) — 0 such that a(p)p® — 0,¥§ > 0,
we have

lim P[3, = 5, | = 1.

p—©

The above result establishes the statistical limits of the anomaly identification
problem known as the exact support recovery problem as p — oo. It shows that for
p-sparse signals with amplitudes below the boundary ¢(f), there are no estimators
that can fully recover the support. At the same time if the amplitude is above that
boundary, suitably calibrated thresholding procedures are optimal and can recover
the support exactly with probability converging to 1 as p — c0. Based on the con-
centration of maxima phenomenon, this phase transition phenomenon was shown to

hold even for strongly dependent errors €(i)’s for the broad class of thresholding proce-
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dures (Theorem 4.2 in (Gao and Stoev, 2021)). This recently developed theory shows
that “simple” thresholding procedures are optimal in identifying sparse anomalies. It
also shows the fundamental limits for the signal amplitudes as a function of sparsity
where signals with insufficient amplitude cannot be fully identified in high dimension
by any procedure. These results show that our thresholding-based algorithms for
sparse anomaly identification are essentially optimal in high-dimensions provided the
background signal can be successfully filtered out. More on the sub-optimality of

certain popular detection procedures can be found in Section 2.3.2.

2.3 Performance evaluation

Next, we provide experimental assessments of our methodology using both syn-
thetic and real-world traffic traces. We utilize two criteria to provide answers to the
two-fold objective of our analysis. For the detection problem, we are only interested
on whether any observation at a fixed time point is flagged as an anomaly. If so, the
whole vector is treated as an anomalous vector and any F1-scores or ROC curves are
“global” (i.e., for any port) and time-wise. On the other hand, for the identification
problem, we are also interested in correctly flagging the positions of the anomalous
data. Namely, looking at a vector of observations, representing the port space at a
specific time point, we want to correctly find which individual ports/streams include
the anomalous activity. We report a percentage of correct anomaly identifications per

time unit.

2.3.1 Performance and Calibration using Synthetic Data
2.3.1.1 Linear Factor Model

We simulate “baseline” traffic data of 5 weeks via the linear factor model of Eq. 2.2,

obtaining one observation every 2 minutes. This leads to a total of 25200 observa-
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tions. The baseline traffic is created as a fractional Gaussian noise (fGn) with Hurst
parameter H = 0.9 and variance set to 1, leading to a long range dependent sequence.
An extensive analysis not shown here yields long-range dependence exponents around
H =0.9.

Together with the fGn, five extra sinusoidal curves—representing traffic trends—
are blended in to create the final time-series. These sinusoidal curves reflect the
diurnal and weekly trends that show up in real world Internet traffic. The first two
inserted trends are daily, the third one is weekly and the last two of them have a
period of 6 and 4.8 hours respectively. These trends do not affect every port in the
same way; they all have a random offset and only influence the ports determined
by our factor matrix B. In this matrix every row represents a port and the column
specifies the trend; a presence of 1 in the position (i,j) means that the j-th trend
is inserted in the i-th port. The matrix B is created by having all elements of the
first column equal to 1, meaning that all ports are affected by the first trend. The
number of ones in the rest of the columns is equal to (1 — |(j — 1)/k]) = 100%, where
J is the index of the trend and k the total number of them. The ones are distributed
randomly in the columns.

We simulate traffic data that pertain to N distinct ports, leading to a matrix
of observations of dimensions N x 25200 (e.g., N = 100). Since we are interested
in tuning the parameters of our model, we create 5 independent replications of this
dataset. The first two weeks of observations, namely the first 10080 observations, are
used as the warm-up period where the initial batch PCA is run in order to determine
the number of principal components we will work with in the incremental PCA and
proceed with initialization.

The anomaly is inserted in the start of the fourth week; the magnitude is deter-
mined by the signal to noise ratio (snr) and the number of anomalous observations

depends on the given duration. We have three choices of snr and two choices of
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duration in this simulation setup, leading to six combinations. The options for snr
are 2, 3 and 7, leading to an additional traffic of size 2, 3 and 7 times the empirical
standard deviation of the corresponding port the anomaly is inserted into. Moreover,
the duration of the anomalies we use is 1 hour for our “short” anomalies, or 30 obser-
vations in this specific data, and 6 hours for our “long” anomalies; 180 observations

respectively. The anomalies are always inserted in the first 3 simulated ports.

2.3.1.2 Demonstration of Sequential PCA

Figure 2.2 illustrates the performance of the incremental PCA algorithm as a
function of its memory parameter—the reciprocal of the current time index parameter
in Arora et al. (2012b); Degras and Cardot (2019). Since our methodology depends on
how well we approximate the factor subspace, we need to measure distance between
subspaces of R?. We do so in terms of the largest principal angle L(W, W) (Bjorck
et al. (1973); Yu et al. (2015)) between the known true subspace W and the estimated

one W, defined as:

L(W,W) = acos(cy), where oy = max ' w.
weW , weW
@] =@ =1

As we can see in Figure 2.2, there is a “trade-off” with regards to the length of
the memory and the performance. If this parameter is chosen to be too big, the
angle of the two subspaces becomes the largest. This could be explained as relying
too much on the latest observations, estimating a constantly changing subspace. If
the memory is too long, then the impact of new observations is minimal, leading to
very little adaptability of our estimator. In Figure 2.2, for the data used here, using
10 weeks worth of observations and 10 replications of the data, the best memory
parameter seems to be 107°. Moreover, as expected a full PCA estimated subspace

has smaller angle than the iPCA estimated one (see Figure 2.2). Some theoretical
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Figure 2.2: The largest principal angle between estimated and true subspace for
iPCA (cf Bjorck et al. (1973); Yu et al. (2015)). The horizontal line (in red) shows
the largest principal angle between the true subspace and the batch PCA estimated
one.

derivations regarding upper bounds on this angle between the space B (as in (2.2))
and the estimator B , based on the expected distance between the covariance and the

estimated covariance matrix of the data, can be found in Section 2.4.2.

2.3.1.3 Parameter Tuning: Operator’s Guide

Next, we proceed with hyper-parameter tuning for Algorithm 1. Our grid search
for tuning involves the following parameters and values. We have an EWMA memory
parameter for the data (1)), keeping track of their mean, so that this mean can be
utilized in the incremental PCA. We also have an EWMA parameter keeping track of
the mean of the residuals (),) in our algorithm. Both of these parameters are explored
over the values 1072,1073 and 10~*. Additionally, there is an EWMA parameter for
the sequential updating of the marginal variance of the residuals ()\,); the possible

values we examine are 1074, 107° and 107%. Finally, we explore the values of control
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Table 2.1: Recommendations for the choice of tuning parameters

snr duration L REG ewma_data ewma_mean ewma_var
2 1 5 4 0.0010 0.0001 0.00010
5 1 7 5 0.0010 0.0010 0.00001
7 1 7 5 0.0001 0.0100 0.00010
2 6 5 3 0.0001 0.0010 0.00010
5 6 7 5 0.0010 0.0010 0.00001
7 6 7 3 0.0001 0.0100 0.00010

limit (L) that work best with the detection of anomalies in this data; we have a list
of values including 0,107%,1072,1072,0.1,0.5,1,2,3,4, 5,6, 7, 20.

The best choices for our tuning parameters are evaluated based on a combination
of Fl-score and area under curve (AUC) value and can be found on Table 2.1. We
start by selecting a combination of snr and duration and we find the AUC for each
different combination of the rest of the tuning parameters with respect to L. We
choose the parameters that lead to the largest AUC and then elect the control limit
that corresponds to the largest F'l-score. Our definition of F'l-score is based on
individual flagging of observations as discoveries or not; namely we look at the 15120 x
100 “test” observations as a vector of 1512000 observations and each one of them is

categorized as true/false positive or true/false negative.

2.3.2 Sub-optimality of classic Chi-square statistic detection methods

The detection problem can be understood transparently in the signal-plus-noise
setting. Namely, thanks to Proposition I1.3, suppose that we observe a high dimen-
sional vector as Ty = U, + €, where @, = (u,(i))}_; is a (possibly zero) anomaly signal.

Then, the detection problem can be cast as a (multiple) testing problem

Ho = (u(i))y =0 vs Ha : u(i) # 0, for some i€ [p].

Under the assumption that & ~ N(0, X,«,), one popular statistic for detecting an
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anomaly (on any port), i.e., testing Hy is:
Q=227 ~ X;, under H.

Note that the statistic is a function of time, but from now on, for simplicity we shall
suppress the dependence on t. Using this statistic we have the following rule: We
reject the Hy at level a > 0,if Q > x2, .

Coming back to our algorithm, we have a control limit L, which we can use to
raise alerts in our alert matrix. Namely, we raise an alert on port ¢ at time ¢, if the
i-th residual at time ¢ is bigger than L times the marginal variance of these residuals.
Note that at every time-point, Algorithm 1 (i.e., the iPCA-based method) gives us
individual alerts for anomalous ports, while the Q-statistic only flags presence/absence
of an anomaly over the port dimension. To perform a fair comparison of the two
methods, we use the following definition of true positives and false negatives for
Algorithm 1. We declare an alert at time t a true positive, if there is at least one
anomaly in the port space at time ¢ and Algorithm 1 raises at least one alarm at time
t; not necessarily at a port where the anomaly is taking place. A false negative takes
place if an anomaly is present at the port space, but no alerts are being raised across
the port space at time t.

To compare the two methods, we start with an initial warm-up period which we
apply a batch PCA approach to. Then, we use the estimate of the variance for the
Q-statistic method, while we also obtain the number of principal components to keep
track of during the iPCA, using the number of principal components that explain
90% of the variability of this warm sample. We choose the tuning parameters for
iPCA based on the recommendations provided in Section 2.3.1.3.

Figure 2.3 illustrates the performance of the two methods as the number of ports

increases, while the sparsity of the anomalies in the simulated traffic remains the
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Figure 2.3: ROC curves of Algorithm 1 (iPCA-based) and Q-statistic for long duration
anomaly (6 hour) of low magnitude (snr=2) in synthetic data.

same. The sparsity parameter B (see Gao and Stoev (2021)) is used to control the
sparsity of the anomalies; for a number of ports p we insert anomalies in |p'~#| ports,
where = 3/4. As is evident from the plots, Algorithm 1 significantly outperforms
the Q-statistic as the port dimension grows.

This sub-optimality phenomenon is well-understood in the high-dimensional infer-
ence literature (see (Fan, 1996) and Theorem 3.1 in (Gao and Stoev, 2021)). Namely,
as p — o, the ()—statistic based detection method will have vanishing power in de-
tecting sparse anomalies in comparison with the optimal methods such as Tukey’s
higher-criticism statistic. As shown in Theorem 3.1 in (Gao and Stoev, 2021), the
thresholding methods like Algorithm 1 are also optimal in the very sparse regime
p € [3/4,1] in the sense that they can discover anomalous signals with magnitudes
down to the theoretically possible detection boundary (cf Ingster (1998b)). This
explains the growing superiority of our method as the port dimension

increases, as depicted in Figure 2.3.
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Table 2.2: Performance of Algorithm 1 on Synthetic Data. Observe the high True
Positive Rate (TPR) and low False Positive Rate (FPR) for carefully chosen thresh-
olds L.

L tprrows fprorows tpr.indiv fpr_indiv
2 1.00 1.00 1.00 1.00
3 1.00 0.92 1.00 0.92
4 1.00 0.11 0.99 0.11
5 1.00 0.00 0.97 0.00
6 1.00 0.00 0.93 0.00
7 1.00 0.00 0.87 0.00
20 0.08 0.00 0.02 0.00

At the same time, the proposed iPCA-based method also has the advantage of
providing us with extra information in comparison to the Q-statistic. Indeed, using
the individual time/space alerts, one can identify what percentage of individual true
positives/false negatives exist in the time/port space. An example of this information
is shown on Table 2.2, where the “rows” variables refer to the detection problem and
“indiv” variables refer to the identification one. Namely, the “rows” variables are
only concerned with temporal events, while the “indiv” variables take into account

the spatial structure as well.

2.3.3 Application to real-world Darknet data

Finally, we demonstrate the performance of our method on real-world data ob-
tained from the ORION Network Telescope Merit Network, Inc. (2022). The dataset
spans the entire month of September 2016 and includes the early days of the infamous
Mirai botnet Antonakakis et al. (2017). We constructed minute-wise time series for
all TCP/UDP ports present in our data that represent the number of unique sources
targeting a port at a given time. For the analysis here, we focused on the top-50
ports based on their frequency in the duration of a month. We implement the algo-
rithm on the data by utilizing the calibrated tuning parameters suggested in 2.3.1.3.
We use the first 5000 observations, roughly three and a half days, as our burn-in

period to initialize the algorithm. Thus, we have a matrix of 43200 x 50 Darknet data
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observations.

The selected dataset includes important security incidents. Indeed, as Fig-
ure 2.4 shows, we detect the onset of scanning activities against TCP /2323
(Telnet for IoT) around September 6th that can be attributed to the Mirai
botnet. We also detect some interesting ICMP-related activities (that we represent
as port-0) towards the end of the month. We are unsure of exactly what malicious
acts these activities represent; however, upon payload inspection we found them to
be related with some heavy DNS-related scans (payloads with DNS queries were
encapsulated in the ICMP payloads).

In Figures 2.4 and 2.5, we are looking for large anomalies (snr=7) of long duration
(6 hours). Moreover, inspecting the full alert matrix in Figure 2.5, we observe a few
more alerts for anomalies that deserve further investigation. Some of them might
be false positives, although there is no definitive “ground truth” in real-world data
and all alerts merit some further forensics analysis. The encouraging observations
from Figures 2.4and 2.5 are that the incidents beknownst to us are revealed, and
that the elected hyper-parameters avoid causing the so-called “alert-fatigue” to the
analysts. At the same time, the analysts could tune Algorithm 1 to their preferences,
and prioritize which alerts to further investigate based on attack severity, duration,
number of concurrently affected ports, etc. All this information is readily available

from our methodology.

2.4 Theoretical Results

2.4.1 Proof for Proposition I1.3

We introduce some further notations before we present the proof.

— — — —

Let b(j) be the j-th column of B, j € [k]; bo(j) = b(j)/|b(7)| the factor loadings

normalized; By = [bozl), N (k)] We shall denote by B and By the corresponding
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Figure 2.4: Residuals and detection boundaries (top) and raw traffic (bottom) for
ports 0 and 2323. Red color in bottom plots shows the detected anomalies.

estimates of B and By obtained for example by the iPCA algorithm.
For the purpose of the following theoretical results, we shall assume that B and

éo are obtained using singular value decomposition of the sample covariance matrix
o I, ot
> = EZ T (2.15)

Proof. Residuals 7 from projecting observations onto the space spanned by the first

k eigenvectors, are

—

7= (T, Pg)(Bf ++7)

=(Z, - 'Pé\o)Bf +(Z, - PBB)E_’_ (Z, — 'PEB)Q_[
or equivalently, we can write

F—&—ii= (I, Pg)Bf — Pgé — Pyil
—_— Y~ Y~
I s a1
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Figure 2.5: Alert matrix for the Darknet dataset for September 2016 (
Red color indicates detection.

We will establish upper bounds on all three terms. The first term,

I =(Z,— Pp, + P, — P5,)Bf
= (T, — Pp,)Bf + (Pg, — Pz )Bf

= —(Pg, — Pr,)BS.

Using the relationship

-----

and (2.8) we obtain that |B| < v/pkC, and also (E|f])2 < E[|f]?]
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Corollary I1.6 discussed below,

E|(Pg, - Ps) B < E|(Pg, - Pr)lIBIIFI
1/2 L oN1/2
< |BI(EIPg, - P, ) (EHfH?)
< fccf\rzf (E||2 5| )

IIllIl

ZCfC]f\/i
o(p)

\

<]EHE ] ) (2.16)

where we used (2.7) in the last inequality and which also provides a bound on each
coordinate.

For the second term, II, decomposed as € — Pp,€ — (Pg, — Pg, )€, notice that
Pp,€ = BOBOTE’i Byé, where E¢, = 0 and Eéé; = I. The second moment of the

1th coordinate is bounded by

Dﬂ?r
:
Q
//\
7
Q

PBO€>2

because |By(i, )| < C/v/Amin- While in £, norms, E|Pp,€|? = Etr(ByB, é€' BoB, ) =
k. The last part is controlled similarly as in /. Indeed, by the Cauchy-Schwartz

inequality, Corollary 11.6 and (2.7), we obtain

2
(EI(Pg, ~ Ps)dl) < E|Pg, - Pa,|*Elel?

4KE[S - Z)%p
o(p)?

For the third term, we need the von Neumann’s trace inequality: for two matrices
X and Y, |tr(XY)| < (7(X),d(Y)), where (X), 7(Y) are vectors of the singular
values of X and Y. By Holder inequality, [tr(XY)| < [6/(X)]1[|6(Y)] e = tr(X)|Y],
for real symmetric positive definite matrices.

Decompose III as @ — Ppyi — (Pg, — Pp,)u. The second moment of the I-th
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coordinate

P k 2
PBO 12 = (Zuz Z l] BO@])))
=1 =1
azl
p
Z agu; | = tr(@a Baa")
Gl KChp|Z.|
O e
where @ = (ay,...,ay)", and the last inequality because |a;| < kC?/Apim. In Iy

norm, E||Pg,@|? = tr(BoBy X,) < min{k|X,[,tr(X,)}. The last part in III, again
using Corollary 1.6 and (2.7), is bounded by

(E|(Pg, — Pg,)ul)* < E|Pg, — Pp,|*Etr(ua")

_ AKE|S — S|t (S,)
N ¢(p)?

Taken together,

E(F—é— @)’ < [\/E 2 /E(IL)? + +/E(III,) ]

2¢;Cky/pk 2\/% o w2\ V2

o (BB N 20 (EIE-1)
VEiC . kC2, /B, 2 . 2Vk (EHi] — ZH2> v tr(X,) ?
o(p) o(p) o(p)
_ [(E\i—m )’ 2;6 ( ¢;Ck + “"2%”)
VkC ™~
T 0 <1+\/k>p0\|2u\| )

and
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2
Bl — & @ < | VEJI? + VEJH? + E[I]|
20;CkyEp(E|S — S22 2y/Ep(E|S — S|)Y2

N ¢(p) i ¢(p) Vi
S YI2)Y2, fir 2
+ A/min{k||S, [, tr(Z.)} + 2VkE] - 2) tr(Z)
¢(p)
_ S 2 1/2@ c tr(_Eu)
= !(E\Z %) () <f0k—|—1+ » >

+@+wmwzwm&q

m
2.4.2 Bounds on difference of projection operators
~T
Let 01 = --- = o} be the singular values of By By. The k dimensional vector
(cos™'(a1), ..., cos" (o)), called the principal angles, are a generalization of the acute

angles between two vectors. Let @(E), By) be the k x k diagonal matrix with j-th
diagonal entry the j-th principal angle, then a measure of distance between the space
spanned by E) and By is sin @(E), By), where sin is taken entry-wise.

The following variant of Davis-Kahan theorem Yu et al. (2015) provides a bound

for the distances between eigenspaces.

Theorem IL.5 (Variant of Davis-Kahan sin 6 theorem). Let ¥, 5 e RP*P be sym-

metric, with eigenvalues \y = ... = )\, and Xl > ... = Xp respectively. Fiz
1 < k < p and assume that Ay — A\p+1) > 0, where we define \,y1 = —0. Let
V = (), 1h,...,0) € RP* and V= (13’1, 52, . ,2}) e RP** have orthonormal columns

satisfying Xv; = \;U; and iﬁ’] = S\jg} forj=1,2,..., k. Then

2612 — 3|

sin © ‘A/,V <
JsinO(7. V)l < S5 —
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For our purpose, a more meaningful measure of distances between subspaces is
the operator norm of the difference of the projections. Let Pg., Pg, be projections

onto the column spaces of 1/3\0 and By respectively, we have the following

Corollary I1.6. Under assumptions (2.7) and (2.8) with Bo, By, S and S as defined

in (2.15), we have
ME[S — 3|2

EH,PE;B - PBOHQ < A2
k

(2.17)

Proof of Corollary I1.6 . It can be shown that the [, operator norm of the difference
between two projection matrices Pz and Pp, is determined by the maximum prin-

cipal angle between the two subspaces (see, e.g. Meyer (2000) Chapter 5.15). That

P, — Ps,| = sin(arccos(oy)) = \/;‘

Consequently, we have

is,

k
1Pg, = ool < (D1~ 02) = |sin©(Bo, Bo)l? (2.18)
j=1
Then applying Theorem I1.5 and using the fact that A\p,; = 0 completes the proof. [

2.4.3 Consistency of EWMA updated marginal variance

In this section we present the proof of Proposition II.1.
Let {ry, t € Z} be a zero-mean stationary time series, with some correlation
structure

pr = Cor(ry,m9) = Cor(ripn,rn), t € Z, Yh e Z.

We want to handle the following problem: we want to estimate the unknown
variance of X} non-parametrically and show that our estimator is consistent. For the

estimation of this variance, we implement an additional EWMA on the squares of the
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zero-mean stationary series {Xj, k € Z}. Our proposed estimator is
62 = (1= Ng)o7 | + T2 (2.19)

To prove the consistency of this estimator, it suffices to show that the following two

properties hold
5
E [67] 2P 62 = Var(ry)

t—0

Var( ) gy}

Starting with the expectation, we have that

E[67] = Y Al =XV E[r} ] =07 > Aol

j=0 Jj=0
1—(1—=X,)t!

— 52 o _ 42 1—(1— t+1

AT T A o (1= (1= A)™)

=% 52

since 0 < A\, < 1. Here we have used the expression
t .
67 = Y A1 =217,

j=0

since we have a finite horizon on this EWMA.
Our second goal is to show that the variance of 67 vanishes. We start by finding

an explicit expression of this variance. We have in general that

Var O’t = Var (Z Ao ( Yr? J>
t
Z o) Var (r;_ j)
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~I—ZZ)\2 Ao) ™ Cov (r7_ ],rf ) -

1=05=0
i#j

We make the following core assumption to continue our calculations.

Assumption I1.7. The process {ry, t € Z} is Gaussian.

Using the fact that E(r;) = 0, one can immediately obtain that

Var (7"2 ) =E [rf_j] -E [rf_j]z =30} —oF =200

t—j

Now, we need to explore the covariance in the second summand of the above expres-

sion. Let

We know that

Zy * pZy+1—p?Zs,

where Z5 and Z3 are independent standard Normal random variables.. Then, we have

that

Cov(22,20) =E[2223] -E[2}] -E[22] =E[2222] —1
~E[ (523 + (1= )25 + 2071 2 2:25) 231 - 1

=3p° + (1 — p?) — 1 = 2p°.
Using the above one immediately has that

Var at = 207} Z A2 (1 o)+ 2042 Z A2 (1 o) T [Cor (re_j, i Z)]2

=0 7=0
1#]
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1—10(1=\ 27t+1
:2(7;1)\3 [( o)’] + %5 4)\222 H‘JPZ -

1—(1—X)? P Jear)
27&3
1 — 1_)\0215-&-1
:20,3)\0_ [(2_)\)] _1_20,4)\222 Z+]pZ s
g 1=04j=0
itj

where in the second equality we used the stationarity of {r;, t € Z}.

We take the limit as ¢ — o0 in the above expression, and we have that

2 20-4)\ 2 4 z+]
tlirg Var (67) = 5 —|— 2X\ 0 ZZ P2 -
1=05=0
i#]

We need a condition on {p;, t € Z} in order to proceed.
We propose the following condition in order to secure the consistency of the vari-

alnce.

Condition II.8. Assume that the sequence {p;, t € Z} is square summable, namely

that

0
> <o

t=—c0

Under this condition, we have the following proposition.

Proposition I1.9. Let {r;, t € Z} and {67, t € Z} be defined as in the start of
Section 2.4.3 and (2.19) respectively. If Condition II.8 holds, then the estimator 67

18 consistent.

Proof. The proof is based on the discussion preceding Proposition 11.9 and the fol-

lowing. Let

A =2)\2o ZZ (1= X)) p7 .

1=07=0
1#]
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Then

Z Z )7

1=045=0

2k min{t,v}
NI N I YR

v=0 n=max{—t,v—2t}

2t [¢)

W2t 1A Y 2

v=0 n=-—0oo

0 0 0
<2020t Y (1=X)" D Pl =2)\00 Y b,

v=0 n=—o n=—0o

where we have used the change of variables v = i+ j,n = i — j in the second equality.

Using the relationship

Var (67) = 204\, - L]0 - )\U)Z]tﬂ

2— A,
+2X2 Z Z Ao) M p?
1=07=0
i#]
we have that
o 200N,
Var(at) < 3 A + 2),0, n_z_]oopn

Because of Condition IL.8, letting A\, — 0, we obtain the desired property, namely

that Var (67) vanishes. O
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CHAPTER III

Concentration Rates

Consider the maxima of a sequence of random variables and assume that there
exists a sequence of constants, so that the maxima divided by these constants converge
in probability to one. This property, known as relative stability of maxima, has been
thoroughly studied in the case of independence. However, little is known for this
otherwise referred to as concentration of maxima phenomenon, when the maxima
are taken over dependent random variables. Only recently, Gao and Stoev (2020)
established that this phenomenon is the key to solving the exact sparse support
recovery problem in high dimensions. In this chapter, we obtain bounds on the rate
of concentration of maxima in Gaussian triangular arrays in the context of dependence
over space. These results are used to establish sufficient conditions for the uniform
relative stability of functions of Gaussian arrays, leading to a variety of new models
that exhibit phase transitions in the exact support recovery problem. Recall that the
latter problem is closely related to the identification problem studied in Chapter II,
as the canonical signal-plus-noise model, that is assumed for the residuals therein, is
also utilized here. Finally, the optimal rate of concentration for Gaussian arrays is
studied under general assumptions implied by the classic condition of Berman (1964).
This chapter is based on an already published paper in the Extremes (Kartsioukas
et al., 2021).
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3.1 Relative stability and dependence

Let Z;, ¢ = 1,2,... be independent and identically distributed (iid) standard
Normal random variables. It is well known that their maxima under affine normal-
ization converge to the Gumbel extreme value distribution. If, however, one chooses
to standardize the maxima by only dividing by a sequence of positive numbers, then

the only possible limits are constants. Specifically, for all a, ~ +/2log(p), we have

— maxZ; —— 1, asp— o, (3.1)
Qap i€[p]
where [p] = {1,---,p} and in fact the convergence is valid almost surely. This

property, known as relative stability, dates back to the seminal work of Gnedenko
(1943) who has characterized it in terms of rapid variation of the law of the Z;’s
(see Section 3.2.2 below, as well as Barndorff-Nielsen (1963); Resnick and Tomkins
(1973); Kinoshita and Resnick (1991)).

In contrast, if the Z;’s are iid and heavy-tailed, i.e., P[Z; > z]ocz™®, for some
a > 0, with a,ocp/®, we have

1
— max 7Z; -5 €, (3.2)

a, ielp]
where ¢ is a random variable with the a-Fréchet distribution.

Comparing (3.1) and (3.2), we see that the maxima have fundamentally different
asymptotic behavior relative to rescaling with constant sequences. In the light-tailed
regime, they concentrate around a constant in the sense of (3.1), whereas in the
heavy-tailed regime they disperse according to a probability distribution viz (3.2).

Although this concentration of maxima phenomenon may be well-known under
independence, we found that it is virtually unexplored under dependence. In this
chapter, we will focus on Gaussian sequences, and in fact, more generally, Gaussian
triangular arrays € = {€,(i), 7 € [p], p € N}, where the ¢,(i)’s are marginally standard

Normal but possibly dependent. Let u, be the (1 — 1/p)-th quantile of the standard

47



Normal distribution, i.e., p®(u,) == p (1 — ®(u,)) = 1, where ® is the corresponding
cumulative distribution function. We say that the array &£ is uniformly relatively
stable (URS), if

1

N P
——maxe€,(i) — 1, as |5, — o, 3.3
o masal) )| (33)

for every choice of growing subsets S, = {1,--- , p}. Note that u, ~ 1/21log(p) (see e.g.
Lemma II1.6). Certainly, the relative stability property shows that all iid Gaussian
arrays are trivially URS. The notion of uniform relative stability, however, is far from
automatic or trivial under dependence. In the recent work of Gao and Stoev (2020), it
was found that URS is the key to establishing the fundamental limits in sparse-signal
support estimation in high-dimensions. Specifically, under URS, a phase-transition
phenomenon was shown to take place in the support recovery problem. For more
details, see Section 3.2.1 below.

Theorem 3.1 in Gao and Stoev (2020) gives a surprisingly simple necessary and
sufficient condition for a Gaussian array £ to be URS. As an illustration, in the
special case where €,(i) = Z;, i € N form a stationary Gaussian time series, the array

& is URS if and only if the auto-covariance vanishes, i.e.,
Cov(Zy, Zy) — 0, as k — 0. (3.4)

That is, (3.1) holds (with a, ~ 4/2log(p)), for any stationary Gaussian time series
7 = {Z;} with vanishing auto-covariance, no matter the rate of decay. The “if” part
of (3.4) appeared in Theorem 4.1 in Berman (1964).

Condition (3.4) should be contrasted with the classic Berman condition,

1
log(k)

Cov(Zy, Zy) = o < ) , as k — oo,

which entails distributional convergence under affine normalization. Here, our focus
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is not on distributional limits but on merely the concentration of maxima under
rescaling, which can take place under much more severe dependence. In fact, unlike
Berman, here we are not limited to the time-series setting. For a complete statement
of the characterization of URS, see Section 3.2.2, below.

While Gao and Stoev (2020) characterized the conditions under which the conver-
gence (3.3) takes place, the rate of this convergence remained an open question. In
this chapter, our goal is to establish bounds on the rate of concentration for maxima

of Gaussian arrays. Specifically, we establish results of the type

|

where 9, — 0 decays at a certain rate. The rate of the sequence 9, is quantified

L nace, (i) — 1‘ > 51,] ., (3.5)

Up i€[p]

explicitly in terms of the covariance structure of the array. More precisely, the packing
numbers N (7) associated with the UDD condition introduced in Gao and Stoev (2020)
will play a key role. These packing numbers arise from a Sudakov-Fernique type
construction, which appear to be close to optimal, although at this point we do not
know if the so obtained bounds on the rates can be improved (cf Conjecture II1.11,
below). After concluding the paper (Kartsioukas et al., 2021), we became aware
of the important results of Tanguy (2015), which are closely related to ours in the
special case of stationary time series. Our approach, however, is technically different
and yields explicit rates for the general case of Gaussian triangular arrays. For more

details, see Remark II1.33, below.

Our general results are illustrated with several models, where explicit bounds on
the rates of concentration are derived. In Section 3.3, we study the optimal rate of
concentration and show that under rather broad dependence conditions (including
the iid setting), (3.5) holds if and only if 6, » 1/log(p). Somewhat curiously, the

constant u, matters and the popular choice of u, = 4/2log(p) leads to the slower
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rates of log(log(p))/log(p).

Our bounds on the rate of concentration find important application in the study
of uniform relative stability for functions of Gaussian arrays. Specifically, let 1, (i) =
f(e,(7)), where € = {¢€,(3), i € [p], p € N} is a Gaussian triangular array and f is a
given deterministic function. In Section 3.4.2; using our results on the rate of concen-
tration for the array &£, we establish conditions which imply the uniform relative sta-
bility of the array H = {n,(i), i € [p], p € N}. Consequently, we establish that many
dependent log-normal and y2?-arrays are URS, and hence obey the phase-transition

result of Gao and Stoev (2020).

This chapter is structured as follows. In Section 3.2, we review the statistical
inference problem motivating the study of the concentration of maxima phenomenon.
Recalled is the notion of uniform decreasing dependence involved in the characteriza-
tion of uniform relative stability for Gaussian arrays. A brief discussion on the optimal
rate of concentration is given in Section 3.3. Section 3.4 contains the statement of the
main result as well as some examples and applications. Section 3.5 contains proofs

and technical results, which may be of independent interest.

3.2 Concentration of maxima and high-dimensional inference

In this section, we start with the statistical inference problem that motivated us
to study the concentration of maxima phenomenon. Readers who are convinced that
this is a phenomenon of independent interest can skip to Section 3.2.2, where concrete

definitions and notions are reviewed.

3.2.1 Fundamental limits of support recovery in high dimensions

Our main motivation to study the relative stability or concentration of maxima
under dependence is the fundamental role it plays in recent developments on high-

dimensional statistical inference, which we briefly review next. Consider the classic
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signal plus noise model

2p(1) = pp(i) + (@), i€ [p], (3.6)

where g, = (p,(7)) € RP is an unknown high-dimensional “signal” observed with
additive noise. The noise is modeled with a triangular array € = {¢€,(i), i € [p], p €
N}, where for concreteness, all €,(i)’s are standardized to have the same marginal
distribution F'. However, this noise can have arbitrary dependence structure, in
principle.

One popular and important high-dimensional inference context, is the one where
the dimension p grows to infinity and the signal is sparse. Namely, the signal support

set S, = {i € [p] : pp(i) # 0} is of smaller order than its dimension:

S, ~ p*?, for some B e (0,1).

The parameter  controls the degree of sparsity; if g is larger, the signal is more
sparse, i.e., has fewer non-zero components. In this context, many natural questions
arise such as the detection of the presence of non-zero signal or the estimation of its
support set (see, e.g., Ingster (1998a); Donoho and Jin (2004a); Ji and Jin (2012);
Arias-Castro and Chen (2017)). Here, as in Gao and Stoev (2020), we focus on the
fundamental support recovery problem. Particularly, under what conditions on the

signal magnitude we can have exact support recovery in the sense that

P[S, =S, — 1, asp— .

Gao and Stoev (2020) showed that a natural solution to this problem can be obtained

using the concentration of maxima phenomenon. Specifically, consider the class of all
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thresholding support estimators:

Sp=1{jelpl : 2,(j) > ty(a)}, (3.7)

where ¢,(z) is possibly data-dependent threshold. For simplicity of exposition, sup-

pose also that the signal magnitude is parametrized as follows

/Lp(i) =/2r log(p), i€ Sp,

where r > 0. Consider also the function

9(B) = (1+ /1= B).

Theorems 2.1 and 2.2 of Gao and Stoev (2018) entail that if £ is URS (see Definition

I11.2 below), then we have the phase-transition:

~ 1, if r > g(f) for suitable §p as in (3.7)
P[p:Sp]—’ , asp— .

0, ifr < g(B) for all §p as in (3.7)

That is, for signal magnitudes above the boundary, thresholding (Bonferonni-
type) estimators recover the support perfectly, as p — oo; whereas for signals below
the boundary, no thresholding estimators can recover the support with positive prob-
ability. Further, as shown in Gao and Stoev (2020), thresholding estimators are
optimal in the iid Gaussian setting and hence the above phase-transition applies to
all possible support estimators leading to minimax-type results. Interestingly, both
Gaussian and non-Gaussian noise arrays are addressed equally well, provided that
they satisfy the uniform relative stability property. While URS is a very mild condi-

tion, except for the Gaussian case addressed in Gao and Stoev (2020), little is known

in general. Here, we will fill this gap for a class of functions of Gaussian arrays (see
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Figure 3.1: Phase transition boundary on the exact support recovery problem. If
r > g(/3), and so in the green area, then we can find a thresholding estimator, so that
exact support recovery is attainable, whether £ is URS or not. If r < g(8), in the
brown area, and £ is URS, then no matter the thresholding estimator, the probability
of exactly estimating S, vanishes as p grows to infinity.

Section 3.4.2), using our new results on the rates of concentration.

3.2.2 Concentration of maxima

In this section, we recall some definitions and a characterization of URS in Gao

and Stoev (2020). We start by presenting the notion of relative stability.

Definition ITI.1. (Relative stability). Let €, = (¢,(j))}-; be a sequence of random
variables with identical marginal distributions F'. Define the sequence (u,),”; to be

the (1 — 1/p)-th quantile of F, i.e.,
u, = F~(1—-1/p). (3.8)
The triangular array € = {¢,, p € N} is said to have relatively stable (RS) maxima if
1 1

N P
= — —1 3.9
“ o 5%, e(1) = 1, (3.9)
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as p — 0.

Note that by Proposition 1.1 of Gao and Stoev (2020), we have for the standard

Normal distribution, that

u, = 27 (1—1/p) ~ A/2log(p). (3.10)

While relative stability is not directly used in this chapter, it is a natural prerequisite

to introducing the following generalization.

Definition ITI.2. (Uniform Relative Stability (URS)). Under the notations estab-
lished in Definition III.1, the triangular array € = {€,(¢), ¢ € [p]} is said to have uni-
form relatively stable (URS) maxima if for every sequence of subsets S, < {1,...,p}

such that |S,| — oo, we have

1 1 P
——Mg = —— maxe,(1) — 1, as p— 0. 3.11
s T gy B 1y

Definition II1.3. (Uniformly Decreasing Dependence (UDD)).A Gaussian triangular
array £ with standard normal marginals is said to be uniformly decreasingly depen-
dent (UDD) if for every 7 > 0 there exists a finite Ng(7) < oo, such that for every

ie{l,...,p}, and p e N, we have
{ke{l,...,p}: Cov(ey(k),€y(i)) > 1} < Ng(r), forall 7> 0. (3.12)

That is, for any coordinate j, the number of coordinates which are more than -

correlated with €,(j) does not exceed Ng(7).

The next result provides the equivalence between uniform relative stability and

uniformly decreasing dependence.
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Theorem III.4 (Theorem 3.1 in Gao and Stoev (2020)). Let £ be a Gaussian trian-
gular array with standard Normal marginals. The array € is URS if and only if it is

UDD.

Theorem II1.4 is the starting point of the rate investigations in this disserta-
tion. Our main result, Theorem III.13, below, extends the former by providing upper
bounds on the rate of concentration. Before that, though, in Section 3.3 we study

cases where the optimal rate can be formally established.

Remark 1115 (On the use of the term “upper bound”). Fix a positive sequence 9> | 0.
We refer to d; as an upper bound on the rate of concentration when (3.5) holds for

any sequence 9, » o5. Further, for two positive sequences «, and 3, we write a;, = f3,
if

Y Y

Br

0 < ¢; < liminf
p—®

< lim sup
p—0

< ¢y < 00.

p
Let 45 be an upper bound on the rate of concentration and 4, > d,. Then, natu-

rally, (3.5) holds with 8, replaced by 4, for any 8, = 6.

3.3 On the optimal rate of concentration

In this section, we provide some general comments on the fastest possible rates
of concentration for maxima of Gaussian variables. Somewhat surprisingly, the rate
depends on the choice of the normalizing sequence u,. As it turns out poor choices
of normalizing sequences can lead to arbitrarily slow rates. On the other hand, for a
wide range of dependence structures (including the iid case), the best possible rate
will be shown to be 1/log(p). The question of whether the maxima of dependent
Gaussian arrays can concentrate faster than that rate, however unlikely this may be,
is open, to the best of our knowledge (cf Conjecture II1.11, below).

Consider a Gaussian array £ = {¢,(i), i € [p]} with standard Normal marginal.
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We shall assume that £ is (uniformly) relatively stable, so that in particular,

1 M
— maxe,(i) = —- L,
Up i€[p] Up

as p — oo, where u, == ® (1 — 1/p) is the (1/p)-th tail quantile of the standard
Normal distribution.

We consider the iid case first and, for clarity, let M denote the maximum of p
independent standard Normal random variables. Suppose that for some a, > 0 and

a,, b, € R, we have
®(a, 'z + by)? — A(x) = exp{—e "}, asp— o,
for all z € R. That is, we have
ap(M* —b,) -5 ¢, asp — o, (3.13)

where ( has the standard Gumbel distribution A. The next result is well-known. We
give it here since it summarizes and clarifies the possible choices of the normalizing

constants a, and b, for (3.13) to hold.

Lemma II1.6. (i) We have that
Uy, (M, — ) 4, ¢ if and only if p®(T,) — 1, (3.14)
as p — . In this case, U, ~ 1/2log(p) and more precisely

v/ 2log(p) (i, — uy) — 0, asp— o, (3.15)
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where

/3T _ log(log(p)) + log(47)
u? = 4/21og(p) (1 1 1o8(7) ) (3.16)

(i) Relation (3.13) holds if and only if

a, ~+/2log(p) and p®(b,) — 1.

In particular, by part (i), we have that (3.13) holds with a, = b, and (3.15) holds

with U, = by,.

Proof. Part (i). Observe that by the Mill's ratio (cf Lemma II1.28), p®(@,) — 1 is

equivalently expressed as follows:

p@(ﬂp) ~ pw — 1, asp— oo,
Up

where ¢(x) = exp{—x?/2}/+/27 is the standard Normal density. By taking logarithms,

the above asymptotic relation is equivalent to having
U -~ 1
log(p) — — — log(@,) — 3 log(27) — 0. (3.17)

We first prove the “if” direction of part (i). Suppose that p®(%,) — 1, or equiva-
lently, (3.17) holds. Then, one necessarily has %, — c. It is easy to see that (3.13)

holds with a, = @, and b, = 4,, provided that, for all z € R,

T p
o <ﬁp + ~—> — A(z), asp— . (3.18)

Up

The latter, upon taking logarithms and using the fact that log(1 + 2) ~ z, as z — 0,

is equivalent to having

»® (ap + §) — —log(A(z)) = e, (3.19)

Up
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To prove that (3.19) holds, as argued above, using the Mill’s ratio, it is equivalent to

verify that
1 . ~ 2 ~ ~ 1
Ay = log(p) — 5 (U, + 2/tip)” — log (1, + 2/T,) — 5 log(27) — 2,

as p — o0. Note that, upon expanding the square and manipulating the logarithm,

we obtain

~2
U ~ 1 ~ ~
A, =log(p) — % — log(@,) — 5 log(27) — x — 2%/(2@,)°) — log(1 + x/aT,%).

In view of (3.17) and the fact that @, — oo, we obtain that A, — —z, which yields
(3.19) and completes the proof of the “if” direction of part (i).

Now, to show the “only if” direction of part (i), suppose that (3.13) holds with
a, = b, == 1y, or, equivalently (3.18) holds. By letting x = 0 in Relation (3.18), we
see that 4, — o0, and then, upon taking logarithms, necessarily p@(ﬂp) — 1, which

completes the proof of (3.14).

We now show (3.15). First, one can directly verify that (3.17) holds with u,
replaced by w in (3.16). This, as argued above, is equivalent to p@(uz) — 1. Sup-
pose now that, for another sequence ,, we have p@(ﬁp) — 1. Then, by the shown

equivalence in (3.14),

* * %\ d ~ * ~ d
uy (M —uy) = ¢ and  @,(M, —,) = C.

Thus, the convergence of types theorem (see, e.g., Theorem 14.2 in Billingsley (1995))
yields

* ~ * * ~
uy ~ Uy and  uy(u, — i,) — 0.

The last convergence implies the claim of part (ii) since in view of (3.16), we have

uy ~ 4/2log(p).
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Part (ii) is a direct consequence of the convergence to types theorem, as argued

in the proof of part (i). O

The following result characterizes the optimal rate of concentration under an ad-
ditional distributional convergence assumption, which holds under the Berman con-

dition for e.g. the case of stationary time series.

Proposition III.7. Suppose that £ is a dependent triangular Gaussian array, such
that
d
G = ap(M, —b,) — (, asp— o, (3.20)

for some non-degenerate random wvariable , with the same constants as in the iid
case (3.13). Suppose also that P(( < z) >0 and P (¢ > z) > 0 for all x € R.
Let now the sequence 6, — 0, be an upper bound on the rate of concentration, i.e.,

we have

P<%—1'>5P>—>0, p — 0. (3.21)

ap

The following two statements hold.

(a) When limsup,,_,, a,|b, — a,| < 0, Relation (3.21) holds if and only if

1
0p » — +
ap

b _ 1' — oo, (3.22)

Qp

(b) When limsup, ., ap|b, — a,| = o0, Relation (3.21) holds if and only if

o 0
hzlgglf lfﬁt — 1] (1 + apylb, — ap|) = . (3.23)

Proof. (a) We will start with the “if” direction. Relation (3.20) implies that

1 b
—M, = C—;’ + 2.
ap as  ap

29



Since by assumption the constants a, and b, are the same as in the iid case (3.13),

Lemma II1.6 entails that b, ~ a, ~ +/2log(p). Hence

L= Cp (— - 1> 0, (3.24)

ap Qp

which shows that the distributional limit in (3.20) entails concentration of the maxima

M,/a, to 1. Relations (3.22) and (3.24), however imply that

M, \=0p<5p>,

which entails (3.21) by Slutsky (or also Lemma II1.9, below.)
Now, for the converse direction, suppose that (3.21) holds for some 6, 5;’pt. This
means that we can find a subsequence p(n) so that 0,0, < 6;{’:; Vn € N, for a

positive constant ¢ that does not depend on n. In view of (3.21), this would mean

Hn::IP’(

: : "
Moreover, since limsup,, ., a,|b, — a,| < o, and a, > 0, the sequence (a,|b, — a,|);~,

that
Mp(n)

Ap(n)

opt
— 1| > cép(n)> — 0, n— o.

is bounded. Namely, there exists M > 0, such that 0 < a,|b, —a,| < M, for all p e N.

However, we have that

M n) | bpn
9n>P(ﬁ—1> 5;{5)=P<$+M—1> St

Ap(n) Upmy — Ap(n) Up(n)

=P (Gp(n) + ap(m) (Dp(m) = Ap(m)) = €|ty (bpn) — Ap(my)| > €)
P (Gpmy — (€ + L)apmybppny — apim| > €)
P (Comy > € + (€ + 1)y bpmy = apm) )
P(Cpny > ¢+ (c+ 1)M)

—>P((>c+(c+1)M) >0,
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where the last convergence holds because (p) 4 (. This is a contradiction and the

proof is complete.

(b) We have that

M
P ( —r_ 1‘ > §p) =P (ap|M, — ap| > 6pa3) = P (|G, + ap(b, — a,)| > 6,a2)

ap

(Cp < _510“?: — ap(by — ap)) + P (Cp > 510“;27 — ap(by — ap))

—P
= A(p) + B(p).

Note, however, that (3.21) entails that both A(p) and B(p) vanish to 0, as p — .

This in turn means that

liminf(6,a — a,(b, — ap)) = 0 and  liminf(d,a’ + ay(b, — a,)) = 0,  (3.25)

p—© p—®©0

because of the distributional convergence (3.20). We will work with B(p). The result
for A(p) can be obtained by similar arguments. At first, for B(p) to vanish to 0, we
do need d,a> > a,(b, — a,) eventually. Suppose that lim inf, .. (dpa’ — a,(b, — a,)) =

¢ < o0, where ¢ = 0. This would mean that there is a subsequence p(n) such that
51)(%)&12)(71) = ap(n) (bp(n) — Gpm)) = ¢, P — 0.
But then,
B(p(n)) =P (Co) > o) Tp(m) — o) (pm) — pimy)) — P(C > €) > 0,

which contradicts the fact that B(p) — 0, as p — .

Finally, note that (3.25) is equivalent to liminf,_,(dya2 — ay|b, — a,|) = co, which
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with straightforward algebra can be expressed as (3.23). Indeed,

2—”—1” _ 2[5, - 5] + 1
P

Spaz — aplb, — ay| = a’ l5p -

= 25t lé—p - 1] +1

p°p 5;pt
Op
= S0Pt =1 (1+ ap|bp - ap|) + 1,
P
which completes the proof. O]

Remark TIL.8 (On the optimality of the rate 510}"5). The rate 5§pt can be viewed as
“the” optimal rate of concentration in (3.21) in the sense of (3.22) and (3.23). The
distributional convergence in (3.20) (whenever it takes place) is much more informa-
tive than a simple concentration of maxima type convergence. Specifically, by Lemma
I11.6 (ii), one can take u, = a, = b,, and in this case Relation (3.24) implies that
1/a2oc1/log(p) is both an upper and lower bound on the rate of concentration. That
is, the rate 0" = 1/a2oc1/log(p) cannot be improved and in this sense is the optimal
rate at which the maxima can concentrate. The rate of concentration, though, does
depend on the choice of the normalization sequence u,. We elaborate on this point

next.

The role of the sequence u,. It is well-known that under quite substantial
dependence, the convergence in distribution (3.20) holds, with the same constants as
in the independent case. For example, suppose that €,(i) = Z(i), i € Z come from
a stationary Gaussian time series, which satisfies the so-called Berman condition

(Berman, 1964):

1
log(k)

Cov(Z(k), Z(0)) = o ( ) , ask — o,
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Notice, by Lemma II1.6 (ii), however, we also have Ep = b,(M, —b,) 4 ¢, and

1 & 1
p, 1 2 Or <10g(p)> ' (3:20)

Compare Relations (3.24) and (3.26). Since a, ~ b, ~ /2log(p), from (3.26),
we have that the rate of concentration of M, relative to the sequence b, is 1/log(p).
On the other hand, while the first term in the right-hand side of (3.24) is of order
1/log(p) the presence of the second term can only make the rate of concentration
therein slower. Indeed, this is formally established in Lemma III.9. To gain some
more intuition that the poor choice of a sequence a, can lead to a slower rate of

concentration, suppose that a, = b,/(1 + g(p)), for an arbitrary sequence g(p) > —1,

such that g(p) — 0. Then, by (3.24),

1 G
M, —1=2> .
oM a§+g(p)

One can take g(p) — 0 arbitrarily slow. Finally, as a more concrete example, one
typically uses b, = uy = 4/2log(p)(1 — (log(log(p)) + log(4n))/4log(p)) and a, =
v/2log(p). It is easily seen that b, = a,(1 + g(p)), where

log(log(p)) + log(4m) log(log(p
o(p) = — g(log(p)) + log(4m) _log(log(p))
4log(p) log(p)
This shows that, in particular, in the case of iid maxima (as well as in the general
case where (3.20) holds) the normalization 4/2log(p) does not lead to the optimal
rate, since

1 log(1
M - 1oy og(log(p))

21log(p) log(p)
where &,0cpn, means that £,/n, — c in probability, for some positive constant c.
The optimal rate is 1/log(p) and it is obtained by normalizing with any sequence

b, such that p®(b,) — 1. This follows from the next simple result, which shows that
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the rate of concentration in (3.24) is the slower of the rates 1/a> and (b, — a,)/a,.

Lemma IIL.9. Suppose that for some random variables (,, we have (, KA ¢, as
p — o0, where ¢ is a non-constant random variable. Then, for all sequences o, and
Bp, we have

Gy + fp 50— || + |8y — 0.
That is, the rate of a,(, + B, is always the slower of the rates of {a,} and {B,}.

Proof. The “<" direction follows from Slutsky. To prove “=", it is enough to show
that for every p(n) — oo, there is a further sub-sequence ¢(n) — o, {q(n)} < {p(n)},
such that

|| + [ By(ny| — 0.

In view of Skorokhod’s representation theorem (Theorem 6.7, page 70 in Billingsley
(2013)), we may suppose that (¥ — (*, with probability one, where (¥ 4 ¢, and
¢* 4 (. Also, assuming that Olp(n)C;(n) + By — 0, in probability, implies that there

is a further sub-sequence ¢(n) — oo, such that

() Cny (W) + Bymy — 0, as g(n) — o, (3.27)

for P-almost all w. Since also (7, (w) — (*(w), for P-almost all w, and since ¢* is
non-constant, we have (7, (w;) — (*(w;), @ = 1,2 for some (*(w1) # (*(w2).
Thus, by subtracting two instances of Relation (3.27) corresponding to w = w

and w = wy, we obtain

aq<n><C;“(n) (wi) — C;(n) (w2)) — 0,

which since (¢, (w1) = (5, (w2)) = (*(w1) — ¢*(w2) # 0, implies ayn) — 0. This, in

view of (3.27) yields B4n) — 0, and completes the proof. ]
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Remark I11.10. The above considerations establish the optimal rate of concentration
of the maxima M, = maxXcp,) €,(¢), whenever the limit in distribution (3.20) holds.
We have shown that this optimal rate is 1/log(p) and is in fact obtained, when
considering M, /u,, for p®(u,) ~ 1. The rate of concentration of M,/1/2log(p) is
log(log(p))/log(p), which is only slightly sub-optimal.

On the other hand, as we know by Theorem III.4, uniform relative stability is
equivalent to UDD and hence the concentration of maxima phenomenon takes place
even if (3.20) fails to hold. At this point, we do not know what is the optimal rate
in general. In Section 3.4, we provide upper bounds on this rate. We conjecture,
however, the presence of more severe dependence can only lead to slower rates of
concentration and in particular the optimal rate of concentration for UDD arrays

cannot be faster than 1/log(p) — the one for independent maxima.

Conjecture II1.11. Let € be a Gaussian URS array. Relation (3.30) implies 6, >

1/1og(p).

3.4 Rates of uniform relative stability

3.4.1 Gaussian arrays

Throughout Sections 3.4 and 3.5, £ = {e,(i), i € [p]} will be a Gaussian array
with standard Normal marginals, unless stated otherwise. We shall also assume that
& is URS. For simplicity of notation and without loss of generality we will work with
Sy = [p] (see Remark II1.15). We will obtain upper bounds on the rate, i.e., sufficient
conditions on the dependence structure of £, which ensure certain rates. These results
are of independent interest and will find concrete applications in Section 3.4.2, where
conditions ensuring the URS of functions of Gaussian arrays are established.

The following definition is an ancillary tool for the comparison of the rates of two

vanishing sequences and introduces some notation for this purpose.
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Definition III.12. Let (a,),2, and (3,),2, be two positive sequences converging to

0. We will say that o, is of lower order than (3, (or slower than 3,) , denoted by

a, » By, it B,/a, = 0, as p — o0, ie., B, = o(ay,).
The next theorem constitutes the main result of this chapter.

Theorem II1.13. Consider a UDD Gaussian triangular array € = {€,(i),i € [p]}
with standard Normal marginals and let Ng(T) be as in Definition I11.5. Let T(p) — 0

be such that

a(p) = log Ne(7(p))/log(p) — 0, as p — o0, (3.28)

Then, for all 6, > 0 such that

1
0, » a(p) + 7(p) + , 3.29
p > alp) +7(0) + s (3.29)
we have
]}D(’w_l >5p> — 0, asp— . (330)
Up

Here u, is defined as in (3.8) taking F' = ®, the cumulative distribution function of

standard Normal distribution.

The proof of Theorem II1.13 depends on a number of technical results, which will
be presented and proved in Section 3.5. In order to make the proof easier for the
reader to follow, we postpone its demonstration until Section 3.5. We proceed next

with several comments and examples.

Remark 111.14. Note that in Theorem II1.13 the covariance structure of £ appears only
through Ng(7). The collection {Ng(7), 7€ (0,1)} constitutes a collection of uniform
upper bounds on the number of covariances in each row of the triangular array £ that
exceed the threshold 7. This means that the ordering of the p random variables in

each row of &€ is irrelevant.
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Remark 111.15. The support recovery results of Gao and Stoev (2020) require URS
in the sense of (3.11) for a subsequence S, < [p], with |S,| — <. By the previous
remark, upon relabelling the triangular array £, Theorem I11.13 applies in this setting

with p replaced by |S,|, and entails rates on the convergence in (3.11).

The preceding Theorem III.13 gives us an upper bound on the rate at which
the convergence in (3.11) takes place for a UDD Gaussian array £. Observe that
this bound depends crucially on the covariance structure of £ through Ng(7). This
dependence will be illustrated in the following examples, where the upper bound

stated in (3.29) is obtained for three specific covariance structures.

Example I11.16. The iid case and optimality of the rate bounds.

Suppose that all €,(j)’s are iid. Then, we can pick 7(p) = 0 or 7 < 1 vanishing to 0
arbitrarily fast, and we would have that Ng¢(7) = 1, because of the strict inequality
in (3.12). This implies that a(p) = log(Ng(7))/log(p) = 0. Thus, in this case, the
upper bound in (3.29) becomes 1/log(p). Observe that this rate matches the optimal

rate in Conjecture III.11.

Example II1.17. Power-law covariance decay.
Consider, first, the simple case where £ comes from a stationary Gaussian time series,

€p(k) = €(k), with auto-covariance

p(k) = Cov(e(k),e(0))ock™, > 0. (3.31)

Then, the classic Berman condition p(k) = o(1/log(x)) holds and as shown in the
discussion after Proposition II1.7, the optimal rate in (3.11) is 1/log(p).

In this example, we will demonstrate that our result [Theorem II1.13] leads to the
nearly optimal rate log(log(p))/log(p). As in the previous remark, we see that this
is in fact the optimal rate if u, in (3.11) is replaced by 4/2log(p). (See Section 3.3).

Note, however, that our arguments apply in greater generality and do not depend on
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the stationarity assumption. Indeed, assume that &£ is a general Gaussian triangular

array such that (UDD’) of Gao and Stoev (2020) holds, i.e.,

Cov(ep(i), € (7)) < clmp(i) = mp(4)[ (3.32)

for suitable permutations 7, of {1,...,p}, where ¢ does not depend on p. (Note that
(3.32) entails (3.31) for m, = id, where id is the identity permutation.) Then, one can
readily show that Ng(7) = O(77Y/7), as 7 — 0. Thus,

_ log(Ng(7)) log(r™"7) _ log()
log(p) log(p) vlog(p)

a(p)

Using this a(p), the upper bound on the rate in Theorem III.13 becomes

log(log(p))OC ~ log(7) 1 log(r) ]
log(p) log(p) (p) + log(p) - log(p) +7(p)- (3.33)

a(p) + 7(p) +

This is minimized by taking 7(p) = 1/log(p) in (3.33) and the upper bound on the

rate becomes

1 log(log(p)) 1 _ log(log(p))
log(p) ~ log(p) log(p) log(p)

a(p) + 7(p) +

Recall that in the case when &£ has iid components, the optimal rate of concentration
of the maxima is 1/log(p) and in fact it becomes log(log(p))/log(p) when one uses
the normalization 4/2log(p) in place of u,. Therefore, this example shows that under
mild power-law type covariance decay conditions, Gaussian triangular arrays continue

to concentrate at the nearly optimal rates for the iid setting.

Example III.18. Logarithmic covariance decay.

Following suit from Example I11.17, we consider first the case where the errors come
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from a stationary time series with auto-covariance
p(k) = Cov(e(k),e(0))ec (log(k)) ™", as k— o0, (3.34)

for some v > 0. Note that for 0 < v < 1, the Berman condition p(x) = o(1/log(x))
is no longer satisfied and the results from Section 3.3 cannot be applied to establish
the optimal rate in (3.11). Using Theorem II1.13, we will see that an upper bound
on this rate is §; = (log(p))~7+1.

Indeed, consider the more general case where £ is a Gaussian triangular array,

such that (UDD’) of Gao and Stoev (2020) holds, i.e.,

|Cov(ey(1), ep(4))| < e (log (Imy (i) — mp(5)1) ™, (3.35)

for suitable permutations m, of {1,...,p} and ¢ does not depend on p. Again, note
that (3.35) implies (3.34) for the identity permutation. One can show that in this

case Ng(1) = O (eTﬁl/V>, as 7 — 0 and thus,

7_71/1/
log(N log (e 1
a(p) = o8 S(T»OC ( > = , asp— ow.

log(p) log(p) 71/ log(p)

To find the best bound on the rate in the context of (3.29) we minimize

a(p) +7(p) + — ! +T+L),

+ o
log(p) 7/vlog(p) log(p

with respect to 7. Considering p fixed, basic calculus gives us that the r.h.s. is
minimized for 7(p) = (vlog(p))” 7+1. With this choice of 7 the fastest upper bound

from Theorem III1.13 becomes

(log(p)) 7.

[ v | logo)) e

69



It only remains to show that the choice of 7 actually allows us to pick Ng(7) =
@) (eTﬁl/V> . A sufficient condition would be p > ¢-e™ " for a suitably chosen constant
¢ not depending on either p or 7. Substituting 7 = (vlog(p)) 71, we equivalently
need

D> G W) T

It is readily checked, by taking logarithms in both sides, that this holds for p suffi-
ciently large and thus, the fastest upper bound for this kind of dependence structure
is (log(p)) 71

Observe that as v — oo this upper bound approaches asymptotically the optimal
rate 1/log(p) achieved under the Berman condition (see Section 3.3). Our results
yield, however, an upper bound on the rate of concentration in (3.11) for the case

0 < v < 1, where the Berman condition does not hold.

3.4.2 Functions of Gaussian arrays

The main motivation behind the work in this section is to determine when the
concentration of maxima property is preserved under transformations. Specifically,

consider the triangular array

H = () = Flenli)). j € [p), pe Ny, (3.36)

where € = {€,(j), j € [p], p € N} is a Gaussian triangular array with standard Nor-
mal marginals.

Given that (3.30) holds, our goal is to find bounds on a sequence d,, | 0, such that

P(‘wle%) 0, asp— o, (3.37)

Up

where v, = f(u,) and wu, is as in (3.8). We first address the case of monotone non-
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decreasing transformations.

Proposition IT1.19. Asssume that f is a non-decreasing differentiable and eventually
strictly increasing function, with lim, o f(z) # 0 and the derivative f'(x) is either
eventually increasing or eventually decreasing as x — 0. If (3.30) holds with some

0, > 0, then (3.37) holds provided that

4> d = up0p max {| /' (up(1 — 0y)|, [f'(up(1 + 6p)[}
ror | f (up)] '

(3.38)

Proof. Since w, 1 o0, by the monotonicity of f and the fact that it is eventually
strictly increasing, one can show that f(u,) = v, = ;" (1 —1/p), for p large enough.

We start by noticing that

maxepp] f(€(7)) — f(up)
f(up)

maxXie[p] 7lp (J)
Up

4

_|f (maxepy) €p(5)) — f(up)
f(up) 7

(3.39)

where the second equality follows by the monotonicity of f.
Now recall that f is differentiable. By the Mean Value Theorem, there exists a

possibly random 6, between u, and max;cp, €,(J), such that

‘f (mane[p} Z(pj))) — flup)| _ ‘f(ip) £16,) (Tﬁjf &) — up> ‘ , (3.40)

Combining (3.39) and (3.40), we obtain

P (’w —1|>d ) —P ( up/"(6p)| ‘maxje[ﬂ %) 1‘ >d )
Up ? S (up) Up "
maxje[p] €p(J) dp| f (up)] )
_Pp — 1| > B
(\ u, T w6,

where the second equality follows from the fact that f’(6,) # 0 over the event of

interest, since d, > 0. This shows that for any non-negative sequence ¢, vanishing to
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0, such that (3.30) holds, we have that

P <‘ maXie[p] Mp (])

- 1‘ > dp> — 0, asp— o, (3.41)
Up

where

d, = 2P P (3.42)

Now, we know by (3.30) that

|‘9p - up| < '1;[1&}( ep(J) — Up

< Uyo
o pOp

with probability going to 1, as p — oo. This implies that
P(u,(1—96,) <6, <u,(1+4,) —>1, asp— oo,
In turn, by the eventual monotonicity of f’, the last convergence implies that

P(1f(0p)] < max {|f"(up(1 = 6,))|, |/ (up(L + 6p))[}) = 1, as p— 0,
and equivalently
P (d;, < d;) — 1, asp— ow. (3.43)

By (3.42) and (3.43) we conclude that (3.41) holds with d, substituted by dy. This
shows that dj is an upper bound of the optimal rate of concentration, i.e., (3.38)

implies (3.37). O

A typical and very important case where Proposition I11.19 applies is when the

array & undergoes an exponential transformation, illustrated in the following example.
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Example II1.20. Let £ be as in Proposition II1.19 and consider

He = {n,(j) = e, je[p], pe N}, (3.44)

which is a triangular array with lognormal marginal distributions. This is sometimes
referred to as the multivariate lognormal model (Halliwell, 2015). Let §, be such that
(3.30) holds. Then, an immediate application of Proposition I11.19 shows that as long

as u,d, — 0, an upper bound on the rate of convergence in (3.37) is

dy, = Up0,€" "% ~ Uy, ~ 6p0/21log(p).

That is, lognormal arrays can have relatively stable maxima, provided that the un-

derlying maxima of the Gaussian array concentrate at a rate 6, = o <1 / «/log(p)> .

Popular models like the ones with y? marginals can be obtained from Proposi-
tion TI1.19 with the monotone transformation f(x) == F~!(®(z)), where F is the
cdf of the desired distribution. The classic multivariate x?-models, however, are ob-
tained by squaring the elements of the Gaussian array, i.e., via the non-monotone

transformation f(z) = 2. Such models are addressed in the next result.

Corollary II1.21. Let all the assumptions of Proposition II1.19 hold and let d; be
defined as before. Assume now that f is an even (f(x) = f(—x)) differentiable and
eventually strictly increasing function, with lim,_,o, f(z) # 0. Assume also that f is

monotone non-decreasing on (0,00). Then, the conclusion (3.38) still holds.

Proof. We start by observing that

<P (‘f (minje[zﬂ];(pij))) — fluy)

- dp) _p (‘mane[p] f J(ce(,;fj))) — f(up? y dp>
> dp) 4P (‘ f(maxjeb}ingj))) — f(up)

>dp>,

(3.45)
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because the symmetry and monotonicity of f on (0,00) imply that max;ep, f(€y(J))
equals either f (maxjep) €,(j)) or f (minjep) ,(5)) -

By Proposition II1.19 we can readily obtain that for d, > dy the second term of
(3.45) converges to 0. Now, we handle the first term of (3.45). By the symmetry of

f we have that

f(g,rel[i;]l (7)) = f(— gn[lzg (7)) = f(rjgﬁgf(—ep(j))-

Notice that by verifying the equality of the covariance structures, we have

N d N
{=& (i), jelpl} ={e(), jelpl}-

Hence maxepy)(—€,(7)) ul maxey] €,(j), and again by Proposition I11.19 we get that

for d,, > d3 the first term of (3.45) also converges to 0. This completes the proof. [

Using Corollary II1.21 we can now treat the multivariate x? model introduced in

Dasgupta and Spurrier (1997).

Example I11.22. Let £ be as in Proposition II1.19 and consider

He = {np(j) = 612)(])7 JE€ [p]7 pe N}a

a triangular array with y? marginal distributions. Let §, be as in (3.30). Then, a
g 1 P

simple application of Corollary I11.21 implies (3.37), provided

d, >, = 26,(1 + 5,) ~ 26,.

p

In contrast to Example I11.20, taking squares does not lead to a slower rate of conver-

gence. Indeed, in Example II1.20 our estimate of the rate is slowed down by a factor

of 4/log(p), while in the x? case it remains d,,.
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We shall now see that the rate of convergence is not slowed down by any power

transformation z +— 2, for any A > 0.

Example 111.23. Power-Law Transformations.

Let once again £ be as in Proposition II1.19 and consider the power transformations
f(z)
fx) = x=*> = sign(x) - |x|*. Note that differentiability at 0 is not needed in any of

2, A > 0. In the cases where A ¢ N, we use the functions f{}(z) = |z|* or

the proofs, so using f}* does not violate any of the assumptions. Let also d, be as in
(3.30), i.e., a rate sequence for the convergence in (3.11). Then, a suitable application
of Proposition I11.19 or Corollary I11.21, shows that an upper bound on the rate of
convergence in (3.37) is

dy = A0p(1+ 6, ~ A5, or  d=A5,(1—6,)N ! ~ NG,

p

In view of Examples III.16, IT1.17 and III.18, we now show how the rate dj ~ Aj,
is affected under different correlation structures of the underlying Gaussian array
E. Recall that in the iid case of Example II1.16 we have that the optimal rate is
dp » 531“ = 1/log(p). This implies that an upper bound on the rate of concentration
is

. A
dp ~ )\5]3 > m

Moreover, for the power-law covariance decay covariance structure (Example I11.17),
we observe that compared to the iid case, the rate of concentration ¢, is scaled by
a factor of log(log(p)). Namely, for the power-law transformations we get that the

upper bound is

Alog(log(p)) ‘

d* ~ N\, ~
P P log(p)

Finally, we examine the logarithmic covariance decay (Example I11.18). Remem-

ber that in this case the rate we have for £ is 6, = (log(p))” 7+ . This implies that
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the upper bound of the rate of concentration for the power-law transformations is

. A
dy ~ Ay ~ ———.

(log(p)) 1

Observe that in this case, dj is a valid upper bound aside from the value of v. We
will see in the following Example I11.24, that the same is not true for the exponential

power-law transformations.

In the last example of this section, we explore exponential power transformations

and how they affect our bounds on the rate of convergence.

Example 111.24. Ezponential Power-Law Transformations.

Let &€ be as in Proposition I11.19 and consider the exponential power transformations
f(z) = e N>0, \# 1L (Note that A = 1 is the lognormal case which we have alredy
seen in Example I11.20). In the cases where A ¢ N, we use the functions f(z) = el*!’
or fMx) = e = et Similarly to Example I11.23, differentiability at 0 is not
needed in any of the proofs, so using f; does not violate any of the assumptions. Let
also 0, be as in (3.30). Then, suitable applications of Proposition II1.19 or Corollary
IT1.21 show that as long as u;}&p — 0, an upper bound on the rate of convergence in
(3.37) is

d5 = Mds,(1 + 8, e [0 1] ip A >

and

ds = Mg, (1 — g, e[ 0= ip g < A < 1,

In both cases we have df ~ Ad,(2log(p))V?, as p — 0. As a generalization of

the lognormal case (A = 1), we see that the iid rate ¢, is scaled by a factor of
A

< log(p)) . This means that this kind of arrays would still have relatively stable

maxima, provided that the underlying maxima of the Gaussian array concentrate at

a rate , = o (1/(log(p))?) .
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At this point, we examine how the rate dj ~ AJ,(2 log(p))?

adjusts under the
varying covariance structures of £ in Examples I11.16, II1.17 and I11.18. In an analo-
gous manner to Example I11.23, we get that for the iid case, an upper bound on the

rate of concentration is
d ~ Aoyl » 22\ (log(p))
P ~ pup > 42 (Og(p)) )
while for the power-law covariance decay covariance structure we obtain
d ~ Al ~ 22\ (log(p))? ' log(l
b ~ Adpu, ~ 22X (log(p)) 2 log(log(p))-

In the previous two instances we notice that the covariance structure does not
impose any restrictions on the values of A\, in order to guarantee concentration of
maxima for the transformed triangular array. This is not the case for the logarithmic

covariance decay, since the upper bound becomes
4" ~ \o,u ~ 23\ (1 bRy
p ~ pup ~ ( Og(p)) .

The aforementioned dj is a a sensible upper bound for the rate of concentration

in this case, only if dj — 0, as p — 0. This is so, when v > 2%\ Thus, our results
imply that in the lognormal case (A = 1), v > % guarantees that the transformed

array is relatively stable.

Remark 111.25. In Conjecture II1.11, we posit that the fastest rate of convergence for
a UDD Gaussian array is bounded above by 1/log(p). Nevertheless, from Example
I11.16 for the iid case, our bound in (3.29) is again 1/log(p). Since u, ~ 1/21log(p),
we see that we can get an upper bound on the rate of f(z) = ¢* only for 0 < A < 2.
The range A € (0,2) is also natural, because one can show that the transformation

f(z) = e*", for A > 2, leads to heavy power-law distributed variables n,(j). Heavy-
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tailed random variables no longer have relatively stable maxima, which makes the

question about the rate of concentration of maxima meaningless.

We will end this section with a corollary, readily obtained by the discussion in the

end of Example I11.24.

Corollary II1.26. Suppose that H = {n,(j), j € [p], p € N} is a multivariate log-

normal array as in (3.44). Suppose that

1

’COV (Up(])aﬁp(k))’ sc (10g(’ﬂ'p(]) . ﬂ_p(k,)D)l/? (346)

for some v > 1/3, permutations m, of {1,...,p} and a constant ¢ independent of p.

Then the array H is URS.

Proof. Let €& = {€,(j), j € [p], p € N} be the underlying Gaussian array. Then, we

have that 1,(j) = e\ for every j € [p]. Thus,

Cov(1,(5), p(k)) = Cov (e, er®))

=K (efp(j)'*'ep(k)) —E (eep(j)) E (eep(k)> . (347)

Recall that the moment generating function for a Normal random variable X ~
N(u,0?) is M(t) = E(eX) = em*o°*/2 Since ¢,(i) follow the standard Normal
distribution, we have €,(j) + €,(k) ~ N(0,2 + 2Cov(e,(7), €,(k))), and hence (3.47)
becomes

Cov(np(j), 1p(k)) = e - (7o) —1). (3.48)
In turn, (3.48) along with (3.46) implies that

1

(og(m () — mp (RN (3.49)

_(Cov(ep(i)en(k)) ‘.
’e (e P )ep 1)‘ < c

Using the inequality |z| < e|e” —1|, z € [—1,1] in (3.49), since |Cov(e,(7), €,(k))| < 1,
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we finally obtain that

1
(log(|mp(5) — mp(k)1))"

[Cov(ey(i), ep(k)| < =

The last relation implies that £ has a logarithmic covariance decay covariance struc-
ture (see Example I11.18). Combined with the discussion in the end of Example 111.24,

the proof is complete. n

3.5 Technical proofs

In this section we present the proof of the capstone Theorem II1.13. Recall that
we desire to find an upper bound on the rate of positive vanishing sequences ¢,, such

that
p(’w_1‘>ap> L0, asp— oo

Up
To this end, let
1
& = — max€,(i), (3.50)

Up i€[p]
where € = {¢,(i), 7 € [p]} is a URS Gaussian array with standard Normal marginals.

Observe that

P(|£p - 1‘ > 5p) = ]P)(gp >1+ 5117) + ]P)(gp <1- 517)

= 1(5,) + 11(5,). (3.51)

Thus, to obtain the desired rate we need to recover a bound on the rate of 1(J,)
and II(d,). Note that in our endeavor to secure upper bound on the term II(d,) we
will use the expectation of §,. The integrability of &, is ensured by Appendix A.2 of
Chatterjee (2014), or Pickands III (1968) in conjunction with (3.3).

Term 1(6,). In the following proposition, we find an upper bound on the rate of d,
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in I(d,) of (3.51). Interestingly, the following result does not involve the dependence

structure of the array &.

Proposition II1.27. Let £ = {¢,(i), i € [p]} be an arbitrary Gaussian triangular
array, where the marginal distributions are standard Normal and let £, be defined as

n (3.50). If 6, — 0 is a positive sequence such that

1

dp > 3.52
" log(p) (352)

then, regardless of the dependence structure of £, we have
lim (0,'E(¢, —1)4) =0, (3.53)

p—0

and consequently P(&, > 1+ 6,) — 0, as p — 0.

We need the following simple bound for the Mill’s ratio (see also (1.2.2) or (2.1.1) in
Adler and Taylor (2009)).

Lemma II1.28. For all uw > 0, we have

where ¢(u) = e~*/2/\/21 and D(u =" oz

Proof. We have

aiiy/)u Ju Jw¢() =uLooe”22“2dx

0¢]
(Z+u) —u? 22 2 2
uf e z—f e~ Tue dz = E[e B/,
0 0

where E is an exponentially distributed random variable with unit mean, and we used

the change of variables z = x — u. Observing that 1 —x < e ™ < 1, for all x = 0, we
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get

E2 E2 2
_ = —E%/(2u%)
1 02 <e < 1.
The result follows upon taking expectation and recalling that E[E?] = 2. O

Proposition 111.27. Note first that (3.53) implies P(§, > 1 + 0,) — 0. Indeed, this

follows from the Markov inequality:

P& —1>06,) =P((& — 1)+ > ) < 5;1E(§p — 1)+

Now, we focus on proving (3.53). We can write

(%IE( — 1), = f & — 1> 2)dz
_J P(¢, > 1+ d,x)dx = J(J,), (3.54)

where in the last integral we used the change of variables z = J,.

Recalling that &, = u,, ! max;ep) €,(¢), by the union bound, for the last integrand

we have that

= P (up(1 + d,7))

P(&, > 14 0,7) < pP(uy(1 +d,x)) = B(a,) (3.55)
Up
By Lemma III.28, we further obtain that
D (u,y(1+ 6,7)) _ 1 O(up(1 + b))
Ty S I-vad) (1 +om)elu,)
1 u?
ST a) exp{ = ((+ 60 1)}
< By exp{—u2d,z}, (3.56)

where B, = (1 —1/(1 v u}))™" — 1, as p — 0, is a constant independent of z > 0

and in the last inequality we also used the simple bound (1 + §,x)* — 1 = 26,
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Condition (3.52) means that there is a sequence ~(p) diverging to infinity slower

than log(p) such that

v(p)
o) = log(p)

Thus, by Relation (3.56) and the facts that u) ~ 2log(p) and B, ~ 1, as p — o0, we

obtain

D (u,(1+ 6,7))
6(up)

for all sufficiently large p. Since v(p) — o0, Relation (3.55) and the Dominated

Convergence Theorem applied to (3.54), implies

a0
lim J(5,) < lim | 2e"2P2dy = 0.
p—00 p—0 Jo

This completes the proof of (3.56). [

Term 11(9,). Handling term II of (3.51) is more involved and this is where the
dependence structure of the array plays a role. We start by presenting a more careful

reformulation of Lemma B.1 in Gao and Stoev (2018).

Lemma I11.29. Let (X;)?_; be p iid random variables with distribution F and density
f, such that

E(X,)_ = E(max{—X,0}) < o.

Denote the mazimum of the X;’s as M, = max;_1 ., X;. Suppose that f is eventually

77777

decreasing, i.e., there exists a Cy such that f(x1) = f(x2) whenever Cy < x1 < 9,

then
EM E[X,|X
v (1- P (Cy) + PP =Gl
Up+1 Up+1

where u,+1 = F(1—1/(p+1)).

Proof. For the proof, refer to the proof of Lemma B.1 in Gao and Stoev (2018). [
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Recall that a Gaussian triangular array & = {¢,(j)}]_, with standard Normal

marginals is said to be UDD if for every 7 > 0,

Ng(7) = sup max |{k € [p]: Cov(ey(i),ep(k)) > T} < 0. (3.57)

peN i=1,...,p

That is, for every p and i € [p], there are at most Ng(7) indices k, such that the
covariance between €,(i) and €,(k) exceeds 7.

The function Ng(7) encodes certain aspects of the dependence structure of the
array £. It will play a key role in the derivation of the upper bound on the rate of
concentration of maxima. The next result is an extension of Proposition A.1 in Gao
and Stoev (2018) tailored to our needs. For the benefit of the reader, we reproduce
the key argument involving a packing construction and the Sudakov-Fernique bounds,

which may be of independent interest.

Proposition II1.30. For every UDD Gaussian array £, and any subset S,<{1, ..., p}

with ¢ = |S,|, and 7 € (0,1), we have that

o S YN+t

Uqg Uq

max €,(7)
(1 ! 2/m ! ) (3.58)

20N g (g 20N

~1-R, (3.59)

where Ng(T) is given in (3.57).

Remark 111.31. Note that without loss of generality we can assume S, = {1,...,p}.
We prove a slightly more general result, but the only application in this chapter will

be for ¢ = p.

Proof. Define the canonical (pseudo) metric on S,

d(i, 5) = VE(e(i) — €(j))%.
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This metric takes values between 0 and 2, since €,(i), ¢ = 1,...,p, have zero means
and unit variances. Fix 7 € (0,1), take v = 4/2(1 — 7) and let I" be a y-packing of S,,.
That is, let I" be a subset of S, such that for any i,j € I', i # j, we have d(i, j) > 7,

ie.,

(i, ) = /21 = 5,(0.)) 2 v = V2(1 - 7),

or equivalently, ¥,(i,j) < 7. We claim that we can find a y-packing I' whose number
of elements is at least

e

AT (3.60)

Indeed, I' can be constructed iteratively as follows:

Step 1: Set S;,(;O) =S, and I' = {j1}, where j; € S]go) is an arbitrary element. Set
k:=1.

Step 2: Set S = S,(,k_l)\Bv(jk), where
B,(ji) = {ie S, :d(i,jr) <}

Step 3: If S]()k) # (J, pick an arbitrary jp,1 € S;(,k), set ' =T U{jpu1},and k == k+1,

go to Step 2; otherwise stop.

By the definition of UDD, there are at most Ng¢(7) coordinates whose covariance with

€p(j) exceed 7. Therefore, at each iteration, |B,(ji)| < Ng(7), and hence
391 = S5 = | B, (ju)| = g — kNe().

The construction can continue for at least ¢/Ng(7) iterations, which implies (3.60).

Now, we define on this y-packing I" an independent Gaussian process {1(j)}er,

n(j) = %Z(y’), jer,
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where the Z(j)’s are iid standard Normal random variables. The increments of the

new process are smaller than that of the original in the following sense,

E(n(i) —n(j)* = 7" < d*(i,5) = E(&(i) — 6(4))%,

for all @ # j, i,7 € I'. Applying the Sudakov-Fernique inequality (see, e.g., Theorem
2.2.3 in Adler and Taylor (2009)) to {n(j)}er and {€,(j)}jer, we have

B |max(r(7)| < & | max(e, ()| < B |maxtey i)

gerl’

This implies

1
maxn(j)]-m>w-\/l—7-]}€{ maxZ(j)] :

Urj+1 J€0 Uq Uq Up|+1 g€

E [i maxep(j)] >E[

uq jESp

Now, the application of Lemma II1.29 to the standard Normal distribution for Cy = 0

entails that,

E [maxjer Z(j)] - 1 2/m 1
Ujr|+1 T2 gy 20T
Since |I'| = ¢/Ng(1) the desired lower bound in (3.58) is obtained. O

We are now interested in the rate at which the lower bound in (3.58) converges
to 1. Equivalently, we desire to find the rate of decay of R,. This rate is obtained in

the following Lemma.

Lemma II1.32. Let R,, a(q) be defined as in (3.59) and (3.28) respectively. Then
1—a(q)

R,=a(q) +7(q) +271 ,  as q— oo. (3.61)

Proof. Note that by definition R, — 0, as ¢ — co. This implies that R, ~ log(1—R,),
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as ¢ — o0, so we just need the rate of

Ug/No(rya1 29/

; 1 2 1
log(1 — R,) — log (M =) - (1 S /7 ))

Uq
Ug/N. (7—)_;,_1 1 1 2/71— 1
— log( —NeM* ) 4 Zog(1 — +1log[ 1 — - : .
Og( Uq ) 5 Og( T(q)) og 9¢/Ne(r) Ug/Nu(r) 41 9¢/Ne(r)

Now, the facts that a(q) = log(Ng(7))/log(q) and u, ~ 4/2log(q) imply that

—a(q),

Uq/Ne(r)+1 2log(1 4 ¢'—(@) N log(q'—*(@) A
Uq 21log(q) log(q)

where we used the relation

1-a(q) _ Jog(q)—log(Ne(r)) _ 94 3.62

However, since a(q) = log(Neg(7(q))/log(q) — 0 and 7(¢) — 0, we have

log(1 — a(q)) = —a(q) + o(a(q)),

log(1 —7(q)) = —7(q) + o(7(q)),

and by (3.62)

1 \2 1 —alq \/2 —alq
log<1— /™ )zlog(l—Z_q1 U—iﬂ_ql U)

20N g N 1 20N

_ g—g @ <2_q1—a<q)) ‘
As a result, we have
Ry =alq) +7(q) + 277" + o (max{a(g), 7(q), 277" "}) | (3.63)

which completes the proof. O
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Proof of Theorem III.13. We are now in position to complete the proof of
Theorem II1.13, which consists of a combination of the results that have already been

established in Section 3.5.

Proof. Recall the definition of &, in (3.50) and that
P(|€p - 1‘ > 517) = I<5p) + H@p)a

where 1(d,) and I1(9,) are defined as in (3.51). We shall show that both terms vanish.
Proposition II1.27, along with (3.29), imply that 1(,) = P(§, > 1+ 6,) — 0, as
p — . Observe that the term 1(5,) = P(§, > 1 + ¢,) vanishes, regardless of the
dependence structure of the array £. The dependence plays a key role in the rate of
the term I1(d,).
We now steer our focus towards term II(d,). The Markov inequality yields

E(fp B 1)—.

11(d,) = P(§ <1—0) < S

Since E(&, — 1)- < E(& — 1)4 + |E(& — 1)|, we have

H((Sp) < 5_117 (E(fp - 1)+ + ‘E(gp - 1)|)
_ 51 (B(&, — 1), + [E(&, — D], + [E(&, — 1)].)
<+ (2B(& — 1), +[E(6 ~ 1)), (3.64)

where the last inequality follows from the fact that [E(§, — 1)]+ <E(§ —1)+.
Proposition I11.27 and (3.29) imply that the term &, 'E(§, — 1), in (3.64) vanishes.

Moreover, Proposition II1.30 entails

[E(& — D]~ = max{0, —E(&, — 1)} < [,
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Thus, the term I1(d,) vanishes, provided that R,/d, — 0. This follows, however, from

Lemma I11.32 and (3.29), since for a(p) — 0, we have

_pl—a(p)
> 27P , asp— o

log(p)
and the proof is complete. n

Remark 111.33. After submitting the paper this chapter is based on to Extremes, we
became aware of the important work of Tanguy (2015). According to their paper, in
the stationary case, the upper bound of Theorem III1.13 above partially follows from
their Theorem 3. However, our work is in the general setting of triangular arrays
and does not require stationarity. The result in Theorem 5 of Tanguy (2015), could
in principle, be used to derive bounds on rates of concentration of maxima for non-
stationary arrays. This, however, requires verifying two technical conditions. Our
approach, based on the UDD condition yields rates that can be explicitly related to
the covariance structure of the array. The in-depth comparison of the two approaches

merits an independent study beyond the scope of the present work.
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Part 11

Spectral Inference for Functional

Spatial Data

CHAPTER IV

The Lag-Window Estimator

The spectral density function describes the second-order properties of a stationary
stochastic process on R%. In this chapter, we are interested in the nonparametric
estimation of the spectral density of a continuous-time stochastic process taking values
in a separable Hilbert space. Our estimator is based on kernel smoothing and can be
applied to a wide variety of spatial sampling schemes including those in which data
are observed at irregular spatial locations. Thus, it finds immediate applications in
Spatial Statistics, where irregularly sampled data naturally arise. The rates for the
bias and variance of the estimator are obtained under general conditions in a mixed-
domain asymptotic setting. Finally, with a view towards practical applications the
asymptotic results are specialized to the case of discretely-sampled functional data in

a reproducing kernel Hilbert space.
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4.1 The spectral density estimation problem

Historically, the study of signals, such as electromagnetic or acoustic waves, in
physics naturally led to the investigation of the spectral density. The current lit-
erature on the inference problem of the spectral density contains an abundance of
well-established estimators and algorithms (see, e.g., Hannan, 1970; Brillinger, 2001;
Brockwell and Davis, 2006; Percival and Walden, 2020, and the references therein).
The most classical approach is based on the periodogram (Schuster, 1898), which is
at the core of the majority of the procedures that are known today. However, alter-
native approaches that involve, for instance, the inversion of the empirical covariance
(see, e.g., the review paper of Robinson, 1983) and wavelets (Percival and Walden,
2006; Bardet and Bertrand, 2010) have also been extensively considered.

The traditional statistical research on spectral density estimation considers scalar-
valued processes. Modern scientific applications involve, however, high-dimensional
or even function-type data, which are typically indexed by space and/or time. Re-
cently, there has been a growing interest in functional time series in general, where
data are observed at times 1,2,...,T; see Hormann and Kokoszka (2012), Panaretos
and Tavakoli (2013), Horvdth et al. (2014), Li et al. (2020), Zhu and Politis (2020),
to mention a few. In particular, Panaretos and Tavakoli (2013) and Zhu and Politis
(2020) both address the inference of the spectral density of functional time series.
Panaretos and Tavakoli (2013) considers the smoothed periodogram estimator where
the notion of periodogram kernel is introduced for functional data taking values in
L?[0,1]. Zhu and Politis (2020) considers the same estimator, but focuses on a par-
ticular type of kernel, called flat-top kernel, in performing nonparametric smoothing.
A flat kernel is a higher-order kernel that annihilates polynomials up to a prescribed
degree and therefore leads to better rate of the bias in nonparametric estimation (at
the expense of potentially more stringent assumptions on the process).

This thesis studies the nonparametric estimation of the spectral density for a
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continuous-time stationary process X = {X(t),t € R%} taking values in some Hilbert
space H. More information will be given in Section 4.2 regarding H and the definition
of second-order stationarity. One of the novelties of the thesis is the consideration of
functional data X (¢) sampled at irregular spatial locations ¢, ..., t, € R? as opposed
to at regular grid points, e.g., t = 1,2,... as in functional time series. In general,
spatial data are not gridded data. An excellent example is provided by the Argo
dataset which has recently become an important resource for oceanography and cli-
mate research (cf. Roemmich et al., 2012) and has inspired new approaches in spatial
statistics (see, e.g., Kuusela and Stein, 2018; Yarger et al., 2022).

For spatial data observed at irregular locations, periodogram-based approaches do
not easily generalize. We consider in this thesis a so-called lag-window estimator (cf.
Brockwell and Davis, 2006; Zhu and Politis, 2020) based on estimating the covariance,
which can accommodate rather general observational schemes. The performance of
the estimator will be evaluated by asymptotic theory. In doing so, we will assume the
framework of the so-called mixed-domain asymptotics, which means that the sampling
locations become increasingly dense and the sampling region becomes increasingly
large as the number of observations increases; see, e.g., Hall and Patil (1994); Fazekas
and Kukush (2000); Matsuda and Yagima (2009); Chang et al. (2017); Maitra and
Bhattacharya (2020). The rate bound of the mean squared error of our estimator
will be developed for a rather general mixed-domain setting. However, when data
are observed on a regular grid assuming a specific covariance model, the rate bound
calculations can be made precise, paving the way for assessing the optimality of the
estimator. In particular, we establish the minimax rate optimality of our estimator
based on gridded data if the decay of the covariance function is bounded by a power
law.

We now provide a summary of each of the sections below. In Section 4.2, we

describe the general notion of second-order stationarity for a process taking values
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in a complex Hilbert space H. Despite the prevalence of multidimensional spatial
data, this notion is understood much less well than the corresponding notion in the
one-dimensional case. In particular, we will explain the subtlety of why the scalar
field of H must be taken as complex in order to conduct the spectral analysis of
the process. We will also review Bochner’s Theorem which facilitates the definition
of spectral density. Section 4.3 introduces the key assumptions and defines the lag-
window estimator that is the main focus of this chapter. In Section 4.4, we establish
upper bounds on the rate of decay of the bias and variance, and hence the mean
squared error of the spectral density estimator under general conditions. These rates
are made more precise in Section 4.5 for the setting of gridded data, where the grid
size either stays fixed or shrinks to zero with sample size and we focus mainly on a
class of covariance functions that are dominated by a power law. A class of covariance
functions dominated by an exponential power law is also examined. In Section 4.6,
we consider the issue of incomplete functional data in the reproducing kernel Hilbert
space (RKHS) setting. Finally, Section 4.7 briefly summarizes the results in Panaretos
and Tavakoli (2013) and Zhu and Politis (2020), and provides some comparisons with
the ones in this thesis.

Whenever feasible, we will provide an outlined proof immediately after stating a

result. However, all the detailed proofs are included in Section 4.8.

4.2 Covariance and spectral density of a stationary process
in a Hilbert space

Throughout this thesis, let H be a separable Hilbert space over the field of complex

numbers C. Common examples of H in functional-data applications include L? spaces

of functions and RKHS’s (see for example Bosq (2000); Ferraty and Vieu (2006);

Horvdth and Kokoszka (2012) and Ramsay and Silverman (2005)). However, with
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the exception of Section 4.6, no additional assumptions will be made on H.

The inner product and norm of H are denoted by {:,-) and | - |, respectively. In
a small number of instances, we will denote these by (-, )y and || - | for clarity. The
main purpose of this section is to recall some fundamental results for the spectral

analysis of stochastic processes X = {X(t),t € R?} taking values in H.

4.2.1 Second-order stationary

We first address the notion of second-order stationarity or covariance stationarity
for a process taking values in a complex Hilbert space. We begin by considering a
zero-mean Gaussian process X with H = C. Let R(X(¢)) and (X (¢)) denote the
real and imaginary parts of X (¢), respectively. Recall that X is strictly stationary if

and only if the two-dimensional real Gaussian process
Y(t) = (Xgr(t), Xi(1)" = (R(X(1)), S(X(1)))" € R?,

is second-order stationary, i.e., the covariance function Cy (¢, s) = E [V (t)Y (s)"] is a

function of t — s. Let
C(t,s) = E[X(t)Y(s)] and C’(t, s) =E[X(t)X(s)].
It follows that

C(t,s) = E[Xg(t)Xr(s)] + E[X1(t) X1 (s)] — 1 (E[Xr() X1 (s)] — E[X7(t) XR(s)]),

Observe that {C(t,s),C(t,s),t,s € R?} contains the same information as that in
{Cy(t,s), t,s € R}, In particular, Y is second-order stationary if and only if both

C(t,s) and C(t,s) are functions of t — s. The functions, C(t,s) and C(t,s), are
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commonly referred to as the covariance function and pseudo-covariance function,
respectively, which are equal if and only if X is real valued. Going beyond the
Gaussian setting, we shall take this as the definition of second-order stationarity for
a general complex-valued process X with finite second moments, where the inference
on the covariance of X can be conducted on Cy or C' and C' combined. While the
stationary covariance C' is positive definite, which provides a basis for inference in
the spectral domain, it is not the case for C'. Thus, the spectral inference on X must
be carried out on the real process Y unless X itself is real, in which case we can
simply focus on C. The discussion above extends in a straightforward manner to
the finite-dimensional case H = CP for any finite p, for which the outer-product is
2y, x,y € CP (cf. Hannan, 1970; Brillinger, 2001; Tsay, 2013).

If H is an infinite-dimensional Hilbert space over C, then the cross-product (or

outer-product) of z,y € H is the linear operator defined as

[t ®y](z) =z -{z,y), z€H, (4.1)

and, provided that E[| X (¢)|?] < oo for all ¢, we can define the covariance operator of

X as

C(t,s) = E[X(t) ® X(s)]. (4.2)

Note that C'(¢, s) takes values in the space of trace-class operators T and is well-defined
in the sense of Bochner in the Banach space (T, | - [|s;). More information on T will be
given below in Section 4.2.2. However, the discussion on stationarity for the finite-
dimensional case and especially the notion of pseudo-covariance requires modification
since an immediate notion of “complex conjugate” does not exist. Following Shen
et al. (2022), we fix a complete orthonormal system (CONS) {e;} of H and refer to

it as the real CONS. Then, for each x € H such that x = },(z,¢;)e;, define the
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complex conjugate conj(x) =T as
T = Z (x,e;)e;.
J
Thus, conj : H — H is an anti-linear operator, i.e.,
conj(ax + By) = @conj(x) + Beonj(y), =,y € H, a,B e C.

Also, for x € H, define its real and imaginary parts:

T+ T —7
R(x) = ==, S(@) =

This construction allows us to view the complex Hilbert space H as

H = Hg + iHg, (4.3)

where Hg = {z € H : J(z) = 0} is the real Hilbert space of real elements of H (see,
e.g., Cerovecki and Hormann, 2017). Consequently, = will be called real if x € Hg.

Define the pseudo-covariance operator for a second-order process {X(t)} as

C(t,s) = E[X(t) ® X(s)]. (4.4)

The definition of second-order stationarity for a process in H can now be stated

as follows.

Definition IV.1. A zero-mean stochastic process X = {X(t), t € R¢} taking values
in H is said to be an L?- or second-order process if E[| X (¢)[?] < o0. The process X
will be referred to as second-order stationary or covariance stationary if both C'(t, s)
and C(t,s) depend only on the lag t — s. In this case, we write C'(h) == C(t + h, 1)

and C(h) == C(t + h,t), which are referred to as the stationary covariance operator
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and stationary pseudo-covariance operator, respectively.

It is important to note that while the definition of C/(t,s) depends on the desig-
nated real basis, whether C (t,s) is a function of the lag is basis independent; this can
be seen using a change-of-basis formula (cf Section 4.8.3).

We end this section with the following two remarks.

Remark IV.2. Asin the one-dimensional case, one can equivalently define stationarity
in terms of the real process Y (t) = (R(X(¢)), (X (¢))) taking values in the product
Hilbert space Hr x Hyg over R. It follows that X is second-order stationary if and
only if Y is. For much of the rest of this thesis, we shall assume for simplicity that the
process X is real (based on some CONS), i.e., it takes values in Hg < H (cf. (4.3)),
in which case, C(h) = C(h). This simplification does not lead to less generality since
all the results apply to Y. Two exceptions are Section 4.2.2 and Section 6.1 where

we present more general results by considering a complex X.

Remark IV.3. In view of the last remark, a careful reader might wonder why we choose
to work with the framework of complex Hilbert space in the first place. An important
reason for that is because the spectral density of a process X, real or complex, in H
will in general take values in T, the space of positive trace-class operators over the
compler Hilbert space H. To demonstrate the point, consider the following simple
example. Let {Z(t),t € R} be a real, scalar-valued zero-mean Gaussian process with
auto-covariance y(t) = E[Z(t)Z(0)]. Let a > 0, and define X,(t) = (Z(t), Z(t+a))".

Then, X, = {X,(t),t € R} is a stationary process in R?, with auto-covariance

) At —a)

Wt +a) ()

This shows that so long as y(t + a) # v(t — a), for all ¢, i.e., the auto-covariance

does not vanish on (—a/2,a/2), we have that C,(t) # C,(—t) = Co(t)", namely, the
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process X, is not time-reversible. Remark IV.5 below then shows that the spectral
density cannot be real-valued. The simple example illustrates that a complex spectral

density is a norm rather than an exception if d # 1.

4.2.2 Bochner’s Theorem

This subsection discusses the notion of spectral density for a second-order station-
ary process X in H. First, we briefly review some basic facts on trace-class operators.
The reader is referred to the standard texts on linear operators (e.g., Simon, 2015)
for details. Denote by T the collection of trace-class operators on H, namely, linear

operators T : H — H, with finite trace norm:
[ee}
[Tl = D ((T*T) e, e5) < o0, (4.5)
j=1

where {e;} is an arbitrary CONS on H, and 7* denotes the adjoint operator of T,
i.e., defined by (T*f, 9> = {f,Tg), f,g € H. The trace norm does not depend on
the choice of the CONS, and the space T equipped with the trace norm is a Banach
space. By the definitions of the outer product (4.1) and trace norm (4.5), we have
| X () @ X(8)|er = | X ()| X (s)|. The fact that X is second order then implies that

E[|X (1) ® X(s)|u] < VE[IX®)PIE[IX (s)[2] < o0

Consequently, the covariance operator C(t, s) in (4.2) is well defined in T in the sense
of Bochner; see, e.g., Lemma S.2.2 of Shen et al. (2022).

Recall that T is self-adjoint if 7 = T*. Also T is positive definite (or just
positive), denoted T = 0, if T is self-adjoint and (f, T f) = 0, for all f € H. The class
of positive, trace-class operators will be denoted by T, .

The classical Bochner’s Theorem (cf. Bochner, 1948; Khintchine, 1934), which

characterizes positive-definite functions, has provided a fundamental tool for con-
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structing useful models for stationary processes. Below we state an extension of that
classical result for our infinite-dimensional setting. To do so, we need the notion of
integration with respect to a T, -valued measure which we now briefly describe. Let
B(R?) denote the o-field of Borel sets in R?. We say that p : B(R?) — T, is a
T -valued measure on B(R?) if p is o-additive. Note that, a fortiori, u(Z) = 0 and p
is finite in the sense that 0 < u(B) < u(R%) € T,, B e B(RY), where for T;,7; € T,
T1 < 7> means that 75 — 77 € T,. Integration of a C-valued measurable function on
R? with respect to such i can be defined along the line of Lebesgue integral (see, e.g.,

Shen et al., 2022, for details).

Theorem IV.4. Let X be a second-order stationary process taking values in H, and
let C'(h), heRY, be its T-valued stationary covariance function defined in Definition
1V.1. Assume that C is continuous at 0 in trace norm. Then, there exists a unique

T, -valued measure v such that
C(h) = f e 0y(df), heR
Rd

In particular, we have that |[v(R%)|;, = trace(v(R?)) < co.
If, moreover, §, o, |C(h)|wdh < o, then the measure v has a density with respect

to the Lebesque measure given by

£(0) — (2;)0[ JR OO, 0 e R, (4.6)

where the last integral is understood in the sense of Bochner.

The density function f in (4.6) is referred to as the spectral density of the station-
ary process. The detailed proof of Theorem IV.4 can be found in Shen et al. (2022),
where the role of separability and complex scalar field are made clear.

The following is a follow-up remark to Remark IV.3.
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Remark IV.5. Theorem IV.4 holds for a general second-order stationary process X
in H. Let us consider an interesting property of the spectral density if the process is
real (defined according to some fixed CONS). To do that, define the conjugate A of

an operator A : H — H by A: 2 — A(Z), = € H; accordingly, define

A+ A A—A
R(A) = , S(A) = 5

Thus, A will be called real if (A) = 0. Suppose now X is real (cf. Remark (IV.2)).
By the simple fact that = ® y is real if both x and y are real, we have C(h) = C(h).
It then follows from (4.6) that the time-reversed process Y = {X(—t), t € R?} has

the spectral density

fy(0) = fx(0), 0O¢€ R?.

The uniqueness of the spectral density entails that X and Y have the same auto-
covariance if and only if fy(0) = fx(0) = fx(0), that is, fx(#) is a real operator,
for all § € R?. This is a special property that is automatically true only when H is

one-dimensional. For further discussions, see Section 4.3 of Shen et al. (2022).

4.3 Spectral density estimation based on irregularly sampled

data

Our inference problem focuses on a second-order real process X = {X(t), t € R}
taking values in H. Following Definition IV.1, we define the stationary covariance

operator C' and assume that the following holds.

Assumption C. Let C' = {C(h), h € R%} be the T-valued stationary covariance
operator of the second-order stationary real process X = {X(¢), t € R%} taking values

in H. Assume that

(a) SheRd |C(h)|dh < oo, and
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(b) C(h) is L'-y-Holder in the following sense:

LeRd ( sup  [C(y) — C(:E)Htr>dx <licll, - 67, (4.7)

y:llz—yl<o

for some 0 < v < 1 and some (and hence all) 6 > 0, where [[|C]|, < o0 is a fixed

constant.

Property (a) in Assumption C guarantees the existence of the spectral density f
given by (4.6). Property (b) will be needed to compute the bias of our estimator
which is based on discretely observed data. It can be seen that Condition (b) holds
with v = 1 if C' has an integrable and smoothly varying derivative.

We next introduce our sampling framework. As mentioned above, we adopt the
mixed-domain asymptotics framework, which means that both the domain and the
density of the data increase with sample size. Assume that the process {X (t), t € R¢}
is observed at distinct locations t,,;,% = 1,...,n. Let T,, = {t,,;}I,, and T}, denote
the closed convex hull of T,,. We refer to T,, as the sampling region, which contains
points where X () could potentially be observed. However, as seen in our proofs,
other contiguous regions may also be used for 7;,. For our purpose, it is convenient
to view T), as a tessellation comprising disjoint cells, V' (¢,;), that are “centered” at

the ¢, ;:
T, =|JV(tn:), where t,;€V(ty;) and [V(tn:) 0 V(ta,)| =0, i #j
=1

Here and elsewhere, |A| denotes the Lebesgue measure of a measurable set A < R%.
Denote V = {V(t,;), ¢ = 1,...,n}. The Voronoi tessellation (Voronoi, 1908) is
a natural example of such tessellation and can also be efficiently constructed (Yan
et al., 2013). While our results hold for a wide class of tessellations, to fix ideas we

will adopt the Voronoi tessellation in the sequel.
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Figure 4.1: Example of the Voronoi tessellation. Every cell includes a single sampling
time point as a representative. A cell is defined as the part of the sampling domain
containing all the time points that are closer to its representatives compared to all
other representatives, based on the Euclidean metric on R?. The figure also shows
the sampling framework imposed by Assumption S(a). Indeed, the sampling domain
inflates, while the sample time points are denser and denser as the sample size grows;
equivalently 9,, becomes smaller with the increase of the sample size.

Define the diameter of the Voronoi tessellation as

0, = diamg, ({t,;}) = max sup [t —t,]2, (4.8)
=L ev(t, ;)
where || - || denotes the Euclidean norm in R?. The parameter 6, can be thought

of as a measure of the maximal size of the tessellation cells, and can be equivalently
written as

0, =sup min |t —t,;o.
teT, i=1,..,n

Throughout, we will assume the following rather general sampling framework.

Assumption S.

(a) The sequence 0,, defined in (4.8) tends to zero as n — . Moreover, |T,| — o

as n — 0.
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(b) The sample design is such that

T,

W — T, as n — oo, (49)

holds in probability, in the Hausdorff metric, for some fixed bounded convex set

T with non-empty interior.

The condition (a) above describes the mixed-domain asymptotics framework alluded
to earlier. Relation (4.9) in (b) essentially imposes a regularity condition on the
boundary points of T,; for instance, if T,, = {1,2,...,n}? then T = [0, 1]¢.

The definition of our proposed estimator involves a kernel function, which satisfies

the following standard conditions.

Assumption K. The kernel K is a continuous function from R? to R satisfying
(a) The support Sk = {t € R? : K(t) > 0} of K is a bounded set containing 0;
(b) 1Ko = supyes, K (u) = K(0) = 1;

(¢) K is differentiable in an e-neighborhood of 0 for some fixed € > 0, with

VK]S = sup [VE ()]s < o0,

lulz<e

where V stands for the gradient operator.

The estimator. In this thesis, we focus on the following non-parametric estima-

tor of the spectral density f(6):

Py Li(t=s)T0 X(t)® X (s)
[a(0) (2m)4 t;;n s;ﬂ T, N (T, — (t — s))]
(4.10)

K <tA—:) V@ V),
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where A,, > 0 is a bandwidth parameter, the purpose of which is providing weighted
averaging over observations that are at most A,, - |Sk| apart. The choice of A,, that
will lead to satisfactory estimation results depends on both 4,, and |T5,].

The estimator in (4.10) can be applied to the general setting of functional data
sampled irregularly over space and time, which is frequently encountered in applica-
tions (see, e.g., Yarger et al., 2022). In the special case where T, is a regular grid,
which includes the time-series setting, the terms V' (¢) are constant for any ¢ € T,, and
hence |V (s)| and |V ()| can be factored out of the summation in f, (see Section 4.5).
In this case, the estimator in (4.10) is related to the so-called lag window estimator in
time-series analysis; see Robinson (1983), Zhu and Politis (2020) and the discussions
in Section 4.7.1 below.

To gain some insight into the definition (4.10), consider the idealized setting where
the full sample path of { X (¢),t € T,,} is available. In view of (4.6), one would naturally

use the estimator

= 1 RGON X(t) ® X(s) t—s .
gn(0) (2r)? LTn LTn T (T, - (t—s))|K( A )dtd . (411)

Since the full sample path is not available in practice one must consider approxima-
tions such as f,(0), which can be viewed as a Riemann sum for the integral defining
gn(0). The function g, () motivates the definition of f,(0) and in fact arises in the
proofs of the asymptotic theory.

We end the section with the following remarks.

Remark IV.6. In our data scheme, we assume a fixed design where the observation
points ¢, ; are nonrandom. Our results can be modified in a straightforward manner to
include the case of a random design that is independently generated from the process
{X(t)}. In this case, the definition of the estimator in (4.10) needs to be modified

slightly to incorporate the probability densities of the sample design in place of the
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volume elements (cf., for example, Matsuda and Yajima, 2009).

Remark IV.7. The normalization |T,, n (T,, — (t — s))| in (4.10) and (4.11) might
seem unusual at first glance, whereas the simpler normalization by |7T,,| would seem
more natural. It turns out that the use of the latter normalization leads to a bias
with a higher order in the spatial context d > 2. Similar phenomenon arises for

periodogram-based estimators in time series when data are observed over a regular

lattice (Guyon, 1982).

Remark IV.8. The estimator fn is defined assuming that we have fully observed
functional data X(t),t € T,. If H is infinite dimensional, then the functional data
X(t) can never be observed in its entirety. In that case, we need to approximate
X (t) ® X(s) in some manner based on what is actually observed for the functional
data, which may affect the performance of the estimator. We will discuss this point

in more detail in Section 4.6.

4.4 Asymptotic properties

We start our investigation of fn(e) defined in Section 3 by first developing the
asymptotic bounds for its bias and variance. This will yield results on the consistency
and rate of convergence of the estimator. Although f(0) and f,(6) are trace-class
operators on Hl, in order to facilitate the variance calculation, it is more natural to
work with the Hilbert-Schmidt (HS) norm. Let X denote the class of Hilbert-Schmidt
operators on H. The Hilbert-Schmidt inner product of the linear operators A, B € X

is defined as

(A, Byys = trace (A*B)

and [ A|ps = /| A* Al (see, e.g., Simon, 2015).
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It is straightforward to establish the following bias-variance decomposition

2

RO -10) ~E

HS

2

HS (4.12)

E

fu0) - E40)] -+ [B7.0) - 1(6)]
=: Var (fn(9)> + Bias (fn(0)>2 :
4.4.1 Asymptotic bias

In this subsection, we evaluate the rate of the bias of fn(ﬁ) for large n. We start
with a general bound, which is made more informative in the sequel. Consistent with
(4.12), the bounds in the following Theorem IV.9 are stated in the Hilbert-Schmidt
norm. However, we note that the result remains valid if the stronger trace norm is

used throughout.

Theorem IV.9. Let Assumptions C, K, and S hold. Choose A, — oo such that
A, -SxkcT,—1T, ,foralln

where A— B = {a—0b: ae A be B} for sets A, B < R Then, for any bounded set
O

sup [Ef,(6) — 1(0)] = O(57+ Bi(&) + Ba(y)). (4.13)
where
Bi(A,) = J MO0 (h) (1 ~ K (i» dh| |
heBn B Ao s (4.14)
By(A,) = J M 0C(h)dh
h¢An-Sk HS

Proof (Outline). The complete proof of Theorem IV.9 is given in Section 4.8.1.1.

Here, we provide a brief outline. Let g,(0) be defined by (4.11). By the triangle
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inequality,

[EL0) = 10 <[Ef(®) —Egu(®)]| -+ [Egu(0) - 1)

HS

It is immediate from the representation (4.6) for f and the inclusion A,,-Sx < T,,—T,,

that

[Egn(0) = f(O)as < Bi(An) + Ba(An).

To complete the proof one needs to show that
[Ef.(0) ~Eg.(0)] = O). (4.15)

To evaluate HEfn(G) - Egn(G)HHS, let

5:0) = lt=s)70 X(t)® X(s) t— s
ho(t, 5:0) T (t*SmK( N ) ,

and write

gn(0 )—fn( )

= J J n(t,5:0) — hn(w,v;0)) 1ev (w),sev w))dtds.
teV(w) JseV (v

weT veTy,

(4.16)

This implies that

ot 110
HS

Eh,(t,s;0) — Eh,(w,v;0 dtds.
0 2 2 [ [ Bt 50) B, 0

weTy, veTy, t

Then, using the regularity conditions on K and C|, routine but technical analysis
shows that the last sum is of order O(¢)). This yields (4.15) and completes the proof

of (4.13). O
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Several remarks are in order.

Remark IV.10. Theorem IV.9 provides a general bound on the bias. Under the
assumptions of the theorem, the bias vanishes as n — o0. We briefly discuss the

terms o) and Bi(A,) + By(A,,) which arise for different reasons.

1. As can be seen from the above sketch of the proof, the terms By (A,,) and By(A,,)
in (4.13) control the bias of the idealized estimator g, (f) based on the idealized

data. A more specific but crude bound of B;(A,) and By(A,,) is the following:

h
Bia) < [ jemlufi-x (5 )an+ [ e
|h|<eAp n |h|>eAn (417)
< |VK| Qe j IC(R) |udh + J| . lefuan

The first term on the rhs depends only on the kernel, whereas the second term,
which dominates By(A) for any small € < 1, depends on the decay rate of

|C(h)|ltr- Thus, the rate of By1(A,) + Ba(A,) is bounded by

inf (e v 1(eA,)) where (u) = J IC(h) |wwdh.

|h]|>u

More explicit bounds can be obtained by imposing specific assumptions on the

behavior of ¢ (u) for large u, as will be demonstrated in Section 4.5.

2. In view of (4.15), the term O(¢]) controls the bias due to discretization, which
arises from sampling the process at the discrete set T,, < T,,. In settings such

as time series where the data are sampled on a regular grid, this term will be

eliminated from the bias (cf. Theorem IV.16).

4.4.2 Asymptotic variance

In view of the form of f,(f), a “fourth-moment” condition of X is needed to

evaluate the variance of f,,.
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Recall the definition of cumulant for random variables: For real-valued random

variables Y;, 7 =1,... K,
q
cam (Y, ) = Y () e [E (v ), 418)
v=(v1,...,Vq) =1 jey

provided all the expectations on the rhs are well defined, where the sum is taken over
all unordered partitions v of {1,..., k}.
We now define a notion of fourth-order cumulant for complex Hilbert space valued

random variables Y7, Y5, Y3, Y, with mean zero.
Definition IV.11. Let Y7,Y5, Y3, Y, take values in H. Then the fourth-order cumu-

lant is defined as

cum (V1,Y3,Y3,Yy) = E(Y1 ® Y3, Y3 ® Ya)ys — (E(Y1 ® Y2), E(Y3 ® Yi) )ms

—E(Y3,Ys) E(Yy, Vo) —(E(Y1 Y1), E(V3®Y2) )y

whenever the expression is well defined and finite.

Note that cum (Y3, Ys, Y3, Y,) is well defined and finite if E||Y;|* < oo for each ¢
(cf. Proposition VI.10). It is easy to check that this definition reduces to (4.18) with
k=4if H=R.

Some properties immediately follow from Proposition VI.10. First,

and hence we can express the fourth-order cumulant as

cum (}/17}/27}/37}/;1) = Cov (<)/17}/3>7<§/27m>) - <E(Y1 ®}/2)7E(}/:3 ®Y;1)>HS

—(E(Y1 ®Y2), E(Ys @ V2) g -
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Next, for any CONS {e;} of H, and with Y; ; == (Y;, e;),
cum (Y1, Y3, Y3, Y3) = > > eum(Yy;, Yo 5, Vs, Yay). (4.20)
i g
Observe that, unless H is one dimensional, cum (Y7, Ys, Y3, Yy) generally depends on
the order in which the Y;’s appear in the arguments.

For the real process X that we consider in our inference problem, assuming

E|X(t)]* < oo for all ¢, we have

cum (X (), X(s), X(w), X (v))
=E{X () ® X(s), X (0) ® X (v))yg — {C(t, ), C(w,v)dns (4.21)

—EX(1), X(w))g - E(X (), X(s))g = (C(t,0), Cw, )y -
The following assumption will be needed to evaluate the variance of f,(6).
Assumption V. Suppose that the process X is real and such that:
(a) E||X(t)]* < oo for all ¢;

(b) cum (X(t+7), X(s+7),X(w+7),X(v+ 7)) = cum (X (t), X(s), X (w), X(v))

for all ¢, s, w,v, T;

(c) for some small enough ¢ > 0,

Supf J sup |cum (X (A + u), X (A2 +v), X (A3 + w), X(0))|dvdu < 0.
weR?JueRd JveRa\;€B(0,0)
i=1,2,3

The following are a few remarks regarding Assumption V.

Remark 1V.12. 1. Part (b) of this assumption can be thought of as “fourth-order
cumulant stationarity”, which is implied by but more general than strict sta-

tionarity. For a second-order stationary process X, by (4.19) and (4.21), part
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(b) amounts to

E((X (1), X (8) (X (w), X (v)))
=E({X({t+7),X(s+7T)XX(w+7),X(v+7))) forallt,s,w,v,rT.

2. Part (c) of Assumption V is a variant of the cumulant condition “C(0,4)” of
Panaretos and Tavakoli (2013) for functional time series (see Remark VI.11 for

more details).

3. For Gaussian processes, by (4.20), the fourth-order cumulants vanish and hence
Assumption V is trivially satisfied under stationarity.
The variance bound of f,(f) is provided by the following result.
Theorem IV.13. Let X = {X (t),te Rd} be a real process taking values in H, which

has mean zero and is second-order stationary. Suppose that Assumptions C, K, S,

and V hold. Also, assume that A,, satisfies
A, -SxkcT,—T, foralln, and A%/|T,| — 0 asn — 0.

Then

fa(0) — Efn(Q)HQ ) =0 (éj) , asn — oo. (4.22)

HS

sup E <
0O

Proof (Outline). The complete proof of Theorem IV.13 is presented in Section 4.8.1.2.

Here, we sketch the main steps. First,

E|fu(0) - Efu(0)],

HS

“Eml I XY () k()

teTy, s€Ty he[A-S (Tp—t
WelA Sl (T (4.23)

AVE+ RV Vs + 1] [V(s)|

Cov (X(t +h) @ X(8), X(s + 1) ® X(s))
T~ (T —h)[|T (T —1)
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where

Cov(X(t+h)@X(t),X(s+h)®X(s))

= EX(t+h)@X(t) = C(h), X(s + h) @ X(s) = C(W) s

By (4.21),

Cov(X(t+h)®@X(t),X(s+h")®X(s))
=EX(t+h),X(s+h)m-E{X(s), X(t))y
(4.24)
+{(C(t —s+h),C(s+h" —t))us

+ cum (X (t + h), X(t), X (s + h'), X(s)).

In our detailed proof (presented in Section 4.8), the components of the variance
involving the cumulants will be evaluated using Assumption V, while the other two
terms are handled using the integrability condition of the covariance of Assumption

C. ]

4.4.3 Rates of convergence

The results in Sections 4.4.1 and 4.4.2 allow us to obtain bounds on the rate
of consistency of the estimator f,(#). The following result is immediate from the

bias-variance decomposition (4.12).

Theorem IV.14. Let the assumptions of Theorem IV.13 hold. Then, for any bounded

O c RY, we have

sup (E fa0) - f<9>H;) "o (52 T+ Bi(An) + Ba(A) + \/?:O . (4.25)

as n — oo, where By(A,) and By(A,) are as defined in Theorem IV.9.

Theorem V.14 provides general bounds on the rate of consistency of the estimator
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fn (0). More explicit rates and their minimax optimality can be obtained under further
conditions on the dependence structure of the process. We conclude with several

comments.

Remark TV.15. 1. The bound on the rate of consistency for the estimator f,(6)
in (4.25) depends on the quantities d,, A, and |T,|. Among them, ¢,, and T,
consist of artifacts of the sample design, while A,, is a tuning parameter which
can be controlled. Under the assumptions of the theorem, any choice of the

bandwidth with A, — o and A%/|T,| — 0 yields a consistent estimator f,(6).

2. Asdiscussed in Remark IV.10, By (A,,) and Bs(A,,) in the rate mostly reflect the
tail-decay of the covariance. They are not present in the bound on the variance
(4.22), where smaller values of A, lead to smaller variances of the estimator.
The bound in (4.25) reflects a natural bias-variance trade-off, where the optimal
bound is obtained by picking A,, that balances the contribution of the bias and

the variance.

3. Establishing rate-optimal choices of A, depends on both the sampling design
and the stochastic process under consideration. Indeed, the choice of A, op-
timizing the bounds in (4.25) depends both on 6, and 7,,, as well as on the
covariance structure of the process. In Section 4.5, we will compute B;(A,,)
and Bs(A,) and consider the choice of A, for certain classes of covariance

structures.
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4.5 Data observed on a regular grid

In this section, we focus on data observed on a regular grid, namely, the sampling

set is

d
Ty = X {Sn, - .., 000}, (4.26)

l=1

where 9,, is the grid size. In our asymptotic theory in the next two subsections, we
let n, —> o0, =1,...,d, and consider both cases of fixed 9,, and §,, — 0.
In this setting, for convenience, we slightly modify our general estimator f,,(6)

defined in (4.10) and consider

o — 572}1 eﬁ(tfs)TG X(t) X X(s) t—s
fn(e) : (27T)d 2 2 |Tn A (Tn — (t— s))|K( A ) ) (4_27)

teT,, s€Ty

Under the condition

2 IO o < o0,

keZd
we have
C(ké,) = f e iR 00 £(0:8,)dO, ke Z°, (4.28)
0c[—/8n,m/6n]4
where
¢ ik 068 d
£(6:6,) = ay e C(kby,), 0 € [—7/6n,7/0,]%, (4.29)

keZd

which is a positive trace-class operator since {C(kd,), k € Z?} is positive definite. The
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proof of (4.28) follows easily using the fact that the complex exponentials
On(0) = €700 (00/2m) P U s s 10(0), K € 2

constitute a CONS of L*([-7n/d,, 7/6,]¢). By Theorem IV.4, (4.28) also holds if

f(6;0,) is replaced by the folded spectral density

ff01d<9) = ]l[_ﬂ/gmﬂ/(;n]d(Q) Z f(g + 271']{3/(5”)

keZd

Utilizing again the fact that {¢(0), k € Z} is a CONS of L*([—7/5,, 7/6,]%), f(6;6,)
is equal to the folded spectral density. Thus, the knowledge of C(kd,), k € Z<, only
allows us to identify the folded spectral density. In fact, this is reflected by our

estimator fn since
Ful0 + 27K /5,) = fu(6), 0 € [~7/6n, 7/5,]%,

for any vector k € Z.
For the purpose of estimating the folded spectral density, we define the following

analogs of Assumptions C and V.

Assumption C’. The trace-norm of the operator auto-covariance is summable:

sup {52 > ||C’(6nk:)||tr} < 0.

keZd

Assumption V'. The process {X (6,t),t € Z¢} satisfies

(a) sup, E| X (5,t)|* < oo for all t;
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(b) for all ¢, s, w,v,T,

cum (X (0,(t + 7)), X(6n(s + 7)), X (0p(w + 7)), X (0p(v + 7)))

= cum (X (0,t), X (6,8), X (6,w), X (5,0)) ;

() sp,, {824 SUD et Y eza Dz lerm (X (810), X (300), X (8,0), X (0))] | < 0.

Comparing with Assumptions C and V, the modifications in Assumptions C" and V’
are motivated by the fact that discrete approximations of integrals is no longer an
issue if our target of inference is the folded spectral density. We will apply these
conditions in the time series context in Section 4.5.1.

As before, Assumption V' holds trivially for Gaussian processes since the 4th order
cumulants vanish. More generally, it holds for a wide class of short-memory H-valued
processes (see Example IV.41 in Section 4.8).

Note that our assumptions on the cumulants in Assumption V' are different from
but related to the assumption based cumulant kernels employed on page 571 in

Panaretos and Tavakoli (2013). For more details, see Remark VI.11.

4.5.1 The case of fixed grid

Consider the case where 9, in (4.26) is fixed. Without loss of generality, let
0, = 1. The discussion in the previous section shows that we can only identify
the folded spectral density on [—m, w]¢. As such, without loss of generality, focus
on a stochastic processes {X(¢)} indexed by ¢ € Z¢. This framework includes time
series (for d = 1), and, more generally, many random fields observed at discrete
locations/times. The spectral density f in this case is defined by (4.29). With the
normalization |T}, ~ (T, — (t — s))| replaced by |T,|, f.(0) recovers the classical lag-

window estimator (cf. Robinson, 1983).

115



The following result on the rate of fn(Q) is the analog to Theorem IV.14 for the

gridded setting.

Theorem IV.16. Let {X(t), t € Z} be a real process taking values in H, which
has mean zero and is second-order stationary. Suppose that Assumption K holds,

Assumptions C' and V' hold with 6,, = 1, and

A, SgnZ'<T, —T, for all n, and A%/|T,| — 0 as n — .

Then,
sup  |Ef.(6) — f(e)H < Bi(A,) + Ba(Ay) (4.30)
Oe[—m,m]e HS
[ 7.0) - Elhon] -0 (55) (431
su n - n = ) .
ee[ffﬁ]d HS T,
where
ikTo k
1 n) — - N )
Bi(A,) : Yoo o) (1-K A
ke(An-Sk)NZ4 " s
By(An) = > MIC(k)
keZN(An-Sk) HS
Consequently,
E|f.(6 o’ Y=o B, + Bya A
n - = n) + n) t —F/—— ) — 0.
e (B[40 - 7o) ) 1(8) + Ba ) + == | as

In this result, the derivation of the bias bound (4.30) is more straightforward than
that for the general case since it does not involve a Riemann approximation as in
(4.16). Here, the first term on the rhs of (4.13) is no longer present and the other
two terms, Bi(4,) and By(4,), are similar to (4.14), with sums replacing integrals.

The derivation of the variance bound (4.31) is also simpler than that of (4.22), where
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the term involving §,, is no longer needed. For completeness, the variance bound is
established in Proposition IV.35 of Section 4.8.

The bias bounds By (A,,), B2(4,) in Theorem IV.16 hold for a very general class
of models. However, more precise expressions of the bias can be obtained for specific
models. We illustrate this next by considering a class of covariances that decay like
the power law. The power-law decay class, Pp(f3, L), for the discrete-time processes

is defined as

Pp(B, L) = {f(Q) = 2m) ™ Y CR)eF s Y ICHE) (L + [k]3) < L}, (4.32)

keZd keZd

for §,L > 0. By the theory of the Fourier transform, larger values of [ in this
condition correspond to a higher order of smoothness of the spectral density at 6 = 0;
see, e.g., Bingham et al. (1989).

Below we establish an explicit upper bound on the rate of fn(ﬁ) for this class
by focusing on the bias terms Bi(A,) and By(4,) of Theorem IV.16. First, we
introduce an additional smoothness condition on the kernel K that is compatible
with the covariance model in Pp(B, L). Let a = (a,...,aq) € Z% and define the

partial derivative
0*K (h)

K = G e

Then, for an integer A > 1, define the condition

0*K(0) =0 for all @ with 1 < || = Zai < A, and
o (4.33)
sup |0*K (h)| < oo for all & with || = A + 1.
h

Theorem IV.17. Let all the conditions of Theorem IV.16 hold. Moreover, assume
that the spectral density f belongs to Pp(B, L) for some f > 0 and L > 0, and that

(4.33) holds for some integer A > 0v (8 —1). Then, the following is a uniform bound

117



on the rate of the bias of fn(H)

=0 (A%), as n— . (4.34)

Efa(0) - £00)|

sup sup

fePp(B,L) be[—m,x]4 HS

Combining this with the variance bound A%/|T,| in (4.31) and choosing bandwidth

A, = \TnWﬁ, the following uniform bound on the mean squared error of f,(0) holds:

Lo o ) =o(mrE). @)

HS

sup sup (E
fePp(B,L) e[—m,m]?

The proof of this result is given in Section 4.8.2. An important motivation for
singling out the class Pp(5, L) is that is covers a broad range of realistic covariance
models whose tail-decay can be controlled by the parameter . Moreover, in Section
5.1 we establish a minimax lower bound for this class which matches the upper bound
on the rate in (4.35). In this sense, our estimator with the oracle choice of the

bandwidth is minimax rate-optimal.

4.5.2 Dense gridded data

We now turn to the setting (4.26) where we assume 9, — 0. In doing so, we
continue to focus on the estimator f,(#) in (4.27) for gridded data. However, unlike
the 6, = 1 case, here we are in a position to estimate the full spectral density as
opposed to the folded spectral density. As in the previous subsection, we also study a
similar power law decay class. However, some slight modifications are necessary. The
continuous time power law decay class Po (5, L) where §, L > 0, contains spectral

densities for the continuous-time process, defined by

——

Po(B. 1) = {0) = 20 | T C@n : [ (14 el)IC@)ode < 1

(4.36)
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Mimicking the approach in Section 4.5.1, the following result can be stated for this

class.

Theorem IV.18. Let all the assumptions of Theorem IV.14 hold and assume that
the spectral density f(0) belongs in Po(B, L) for some B, L > 0. Suppose that (4.33)
holds for some integer A > 0 v (8 — 1). Then, for every f € Pc(f,L) and bounded
© < RY, the rate of the bias is

selelg HEfn(G) - f(Q)HHS =05 +4A,%), as n—ow.

In conjunction with Theorem IV.1/, with the rate-optimal choice of A, = |T,|"/(28+)

we obtain the overall rate bound:

2

fa0) = 1(6)]

1/2
— Y —B/(28+d)
Hs) o(an v |Tn| ) (4.37)

sup (E
0e©
The proof of Theorem IV.18 is given in Section 4.8.2.

Remark TV.19. Observe that, in contrast to Theorem IV.17, the rate bounds in The-
orem V.18 are not uniform over the class P (5, L). This is mainly because the con-
stant [[C]|, in (4.7) of Assumption C (b) cannot be bounded uniformly in Pc(8, L),
since the tail behavior of |C(x)]|s does not regulate the smoothness of C'(x). At this
point, we do not know whether there is an adaptive estimator for which the rate could

be shown to be uniform.

Remark IV.20. To interpret the bound on the rate in (4.37), suppose, for example,
that d,, == n~* for some « € (0, 1), which controls the sampling frequency relative to
the sample size. The greater the value of «, the finer the grid. Also, assume that the

grid is square with n, = n, for all £, so that |T,,| ~ (nd)¢. Let

gy = (1 + (% + %) v) R (4.38)
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and consider the following two regimes:

o (fine sampling) When o > ag,, then 6] = O(|T,,|~#/*7+¥), and the rate bound
in (4.37) is
o <(n(5n)—ﬂd/(2ﬁ+d)> _0 <n—5d(l—a)/(2,8+d)> '

e (coarse sampling) When 0 < a < ., then |T,,|7#2#*+4) = O(§7) and the rate
bound becomes

O(87) = O(n="72),

In the fine-sampling regime, the rate is the same as the minimax lower bound es-
tablished in Theorem V.3 below. By (4.38), a larger v (i.e., a smoother C) leads to
a wider range of sampling rates under which the minimax rate can be achieved by
fn(e) Similarly, a larger d or larger /3 (i.e., faster tail decay of C') leads to a narrower

range of sampling rates in order to achieve the minimax rate.

4.5.3 One more covariance class

In this subsection, we present explicit rate bounds on the bias for one more class
of covariances. We focus on a class of covariances that decay like the exponential
power law. For n, L > 0, the exponential power-law decay class, EPp(n, L), for the

discrete-time processes is defined as

EPp(n, L) = { £(0) = @2m)" Y Clk)e? * o |OK) o < L - e—k;’}. (4.39)

kezd

In the following theorem we establish an explicit upper bound on the rate of fn(ﬁ)
for this class. As in the case of Pp(3, L), the proof concentrates on the bias terms

Bi(A,) and Bs(A,) of Theorem IV.16. We need an extra smoothness condition,
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different from (4.40) this time. In this case, we have the condition
K(h) = O (e7IM2) | (4.40)

that we will use in this subsection.

Theorem IV.21. Let all the conditions of Theorem IV.16 hold. Moreover, assume
that the spectral density f belongs to EPp(n, L) for some n > 0 and L > 0, and that

(4.40) holds. Then, the following is a uniform bound on the rate of the bias of fn(Q)

ld—nl4

Ef,(0) - f(e)HHS ~0 (An”“eML> . as n— o, (4.41)

sup sup
f€Pp(B,L) be[—m,m]?

Combining this with the variance bound A%/|T,| in (4.31) and choosing bandwidth

A, = (log |Tn|)n7+1, the following uniform bound on the mean squared error of fn(Q)

holds:

sup sup (]E
fEPD (ﬁvL) 96[_7r77r]d

d(n+1)
o - o )" =0 (%) o u)

We present the proof of this result in Section 4.8.2.
Continuing along the lines of Section 4.5.2, we focus on the setting (4.26) where
we assume 0,, — 0. The continuous time exponential power law decay class EP¢(n, L)

where n, L > 0, contains spectral densities for the continuous-time process, defined

by

ePcn. 1) = {10) = 2m)* |

R4

e 00(2)dz : [C(R)]w < L-e*HhHS’}. (4.43)

Similarly to EPp(n, L), the following result can be stated for this class.

Theorem IV.22. Let all the assumptions of Theorem IV.14 hold and assume that

the spectral density f(0) belongs in EPc(n, L) for some n, L > 0. Suppose also that
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(4.40) holds. Then, for every f € EPc(B,L) and bounded © = RY, the rate of the
bias is

sup HEfn(Q) - f(@)HHS =0 ((57 + A%e&gil) , as m— .

0e®

n+l
n

In conjunction with Theorem IV.14, and choosing A, = (log|T,|) ™ , we obtain the

overall rate bound:

d(n+1)

£.0)— 1) )1/2 o <5g y %> (e

sup | E
90 < i T

The proof of this theorem is almost the same as the one of Theorem IV.21 and

will be skipped.

Remark 1V.23. Like in the power-law decay class, the rate bounds in Theorem V.22
are not uniform over the class EP¢(n, L), as opposed to Theorem IV.21. The reason-

ing is the same here (cf Remark IV.19 for details).

Remark 1V.24. Kernel Choice. Observe that in Proposition IV.21 we require the
kernel to satisfy (4.40). By careful examination of the proof of Theorem IV.21, if we
instead use kernels satisfying (4.33), one can see that the order of the rate would be

slowed down, becoming

1 d—n ,—(mgAn)"
Sup IEgn(0) — f()|lys = O (Aﬁ“ + A e :

This emphasizes the importance of the right choice of the kernel with regard to
the covariance structure. The consistency rates are directly affected by the smooth-
ness/differentiability of the kernel at zero. As a result, we can see that there is not
a single choice of kernels that fits every model. As expected, unfortunate choices of

kernels could slow down the consistency rates substantially.
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4.6 An RKHS formulation based on discretely-observed

functional data

In this section, we specialize the obtained results for an abstract Hilbert space to
the case where H is a space of functions. In real-data applications complete functions
are not available and instead each of the functional data X (¢;) is observed on a finite
set of points. A natural space for this setting may be when H is a RKHS. Unlike
the more commonly considered space L*[a,b], an RKHS H allows us to view H-
valued random elements as bona fide functions, since the point-evaluation functionals
are well-defined and continuous. This enables a seamless interface between the theory
that we have developed up to this point and applications based on discretely observed
data. The literature on RKHS is extremely rich. For a quick overview on the role of
RKHS in functional data analysis, the reader is referred to Hsing and Eubank (2015).

Let H be an RKHS containing functions on a compact set E, where the kernel

R(-,-) is continuous on E x E. The reproducing property states that

g(u) =<9, R(u,-))m, ue E.

Now, let {X(t), t € R?} be a stationary H-valued process with covariance function
C and spectral density f. Then, it can be viewed as a bivariate stochastic process

{X (u,t) = (X(t), R(u,))m,ue E,t e RY}. We have

Cov(X(u,t + h), X(v,t)) = {C(h)R(u,-), R(v, ))m

. (4.45)
= J e 0r, L (6)do,

where

fu,v(‘g) = <f(0>R<u7 ‘)7 R(U7 )>IHI
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In view of (4.45), it may be convenient to refer to f,,(f) as a spectral density.
However, there is no guarantee that it is nonnegative for u # v. By the Cauchy-
Schwartz inequality, our estimation rates on the operator f(f) translate immediate
to fu.(0) for all u,wv.

Assume that the process is observed on a common discrete set of points D, =
{unj,j =1,...,m,} for all t € T,,. To relate the partially observed functional data
to complete functional data in H, a possible approach is the following. Assume that
the matrix

R, = {R(upn,i, un )} (4.46)

1,j=1

is invertible for each n. Let H, be the subspace of H spanned by {R(u,-),u € D,}

and II,, is the projection operator onto H,,. Then, for any g € H,

g = Hng

interpolates ¢g at the points in D,, and is in fact the minimum norm interpolant of ¢
on D,; see Wahba (1990) or Proposition IV.36.
The covariance of the stationary process {)N( (1)} is C (h) = I1,C(h)IL,. First note

that
IC(R) e < |C() -

This follows from Lemma IV.37 (i), since (C(h), Whus = (C(h), W)ns, where W =
I, WII,, is unitary for every unitary W. Thus, the condition §||C'(h)[wdh < o0 ensures

that the spectral density f of {X(¢)} is well defined, and satisfies

f(0) = ! Jeﬂh”’é(h)dh.
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Following the approach in (4.10) based on the data X (¢;), define

fn(‘g) = ann(e)nn'

Consider the estimation of f by f,. To keep the presentation simple we focus on the

Gaussian case. The following result follows readily from Theorem IV.14.

Theorem IV.25. Let the process {X(t),t € ]Rd} be a zero-mean stationary Gaus-
sian process taking values in H. Suppose that Assumptions C, K, and S hold. If,

additionally we have
A, Sk cT,—1T, foralln.

Then, for any bounded set O,

sup (E| f (0)—f(9))2 )1/2 _ 0 (674 Bi(A) + Ba(Ay) + 4| 2 (4.47)
96(1;)) n HS n 1 n 2 n ‘Tn| s .
as n — o0.

Note that, in (4.47), we bounded B;(A,), Bo(A,), the counterparts of By(A,),
Bs(A,) where C(h) therein is replaced by C(R), by Bi(A,), Bo(A,), respectively.
This is achieved using the simple fact that |7:72|us < |71]l[|72/us where | 71| stands
for the operator norm of 77. In view of Theorem IV.25, to find the rate of E| f, () —
£(0)|34s, it is sufficient to consider the bias | f(#) — f(#)|us, which must be evaluated
case by case, depending on the type of a RKHS being considered. Below, we consider
an example that leads to a specific rate.

Consider the Sobolev space H = W,[0, 1] which consists of functions on the inter-

val [0, 1] of the form ¢ + Sé (t A u)h(u)du,c € R and h integrable (cf. Wahba, 1990).

The inner-product in this space is {f,¢)u = f(0)g(0) + Sé f'(t)g'(t)dt, yielding the
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9l = g(0)% + j (¢ (1) dt.

In context, we can state the following result for E||f,(6) — f(6)]3s.

Theorem IV.26. Let the positive trace-class operator f(0) have the eigen decompo-
sition:

0

F0) = vig; @y,

j=1
where the eigenvalues v; are summable (since f(0) € T ). Assume that, for each j,
the derivative ¢ is Lipschitz continuous with |¢(s) — ¢%(t)] < Cjls —t| for some
finite constant C; where Zj.ozl C’jl/]2 < 0. Also, assume that the sampling design is

Upi = 1/Mp, 0 < i < my. Then,

1F(8) = F(O) s = O(m;, %)

The proof of Theorem IV.26 is given in Section 4.8.4.

4.7 Related work and discussions

In this section we highlight the approaches in Panaretos and Tavakoli (2013) and
Zhu and Politis (2020) focusing on the time-series setting and we explain how they

relate to our approach.

4.7.1 Relation to flat-top kernel estimators

The flat-top kernel estimators have been advocated in the works of Politis (2011);
Zhu and Politis (2020), among others. According to Relation (15) of Zhu and Politis
(2020) the alternate estimator proposed in Section 3.1 therein takes the form

1

o7 Z )\(BTU)TAU(Ta U)eiﬁwuu

lu|<T
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where

oe]

Z Xipu(7)Xi(0) and /\(s)zf Az)e ™ dx

o<t t+us<T—1 —©

Tu(T,0) =

for some A(x). In the time-series setting with d = 1, an asymptotically equivalent

adaptation of our estimator in (4.27) is given by:

[ I el <i> e N XL, ® X, (4.48)

0<tt+us<T—1
See Remark IV.7. Thus, the two estimators are essentially the same, with w corre-
sponds to 0, Br to 1/Ap, and X to K. Zhu and Politis (2020) focuses on p-times
differentiable flat-top kernels A with A(t) = 1, for all ||| < ¢, for some € > 0, where p
is adapted to the tail decay of the covariance function. Such kernels reduce the bias
of the kernel spectral density estimator in essentially the same way as do the kernels
K satisfying (4.33) in the present thesis. One can get a rough idea about that by the
crude calculations in (4.17).

Moreover, in Section 5 of Zhu and Politis (2020), an effective data-dependent
choice of the bandwidth parameter By is developed. The authors base their selection
on the functional version of correlogram/cross-correlogram. Using this quantity, an
empirical rule is proposed for the choice of By. In practice, we recommend using flat-
top kernels and a similar methodology for the selection of Ap = 1/B7. The thorough
investigation of the data-driven, adaptive choice of A7 in our setting of irregularly

sampled data, however, merits further theoretical and methodological investigation.

4.7.2 Periodogram-based estimators for functional time series

The seminal work of Panaretos and Tavakoli (2013) considers function-valued time
series, taking values in (L?[0, 1], R). They develop comprehensive theory and method-

ology for inference of the spectral density operator extending the classic periodogram-
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based approach to the functional time series setting. The proposed estimator therein

18:

T—
2m 2ms
(. —?2 " (=22 iDatrio). (4.49)

where

@) T+ 2mj
W) = YW (S

JEZ T

with W being a taper weight function of bounded support. Here,

pN(r,0) = XD(1) X1 (0)

—w

is the periodogram, where

fnwt
w \/ 2n’T Z

is the discrete Fourier transform (DFT). This is referred to as the smoothed peri-
odogram estimator (cf. Robinson, 1983).

The asymptotic properties of these periodogram-based estimators are studied us-
ing the following general cumulant-based assumptions:

Condition C'(¢, k). For each j =1,... k—1,

e
Z (1 + |tj|£)||cum(Xt1a cee >th_1a XO)H2 < 00.

t1,.5lg—1=—00

For example, by Theorem 3.6 in Panaretos and Tavakoli (2013), if C(1,2) and C(1,4)

hold, the mean squared error of fo(JT)(-, -) for w # 0, +7 is:

B - Folfhs = O( B+ BF'T™),
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where ) and F., are the operators with kernels fU(JT) and f,, respectively. The

1/3 which yields the bound on the rate of consistency

rate-optimal choice of By is T~
of the estimator O(T~'/3).

Our results provide more detailed estimates on the rates under simple structural
assumptions on the covariances. Indeed, observe that the condition C(1,2) corre-
sponds to our condition Pp (S, L) with f = 1 in (4.32). Our Theorem IV.17 (see
Relation (4.35) with d = 1) yields the rate of consistency bound of O(T~#/(2f+1))
which for § = 1 matches the rate-optimal bound in Panaretos and Tavakoli (2013).
Our condition (4.32), however, allows for a wider range of covariance structures than
Condition C(1,2), where we allow for 5 > 0 to be less than 1. As discussed in Section
5.1, the rate O(T—#/(24+1)) is minimax optimal in the class Pp(3, L).

As observed in Section 3 of Zhu and Politis (2020), one can relate the time-domain
and frequency-domain (periodogram-based) estimators. Indeed, one can argue that
our estimator in (4.48) corresponds asymptotically to the periodogram-based estima-

tor in (4.49) with taper
1 [°
W(z) J ¢ K (1)t

=5 »
where Ar ~ 1/Bp. In this case, we have 2||W |3 = | K||? and the asymptotic covari-
ances of the estimators in (4.48) and (4.49) are identical (compare, e.g., Theorem 3.7
of Panaretos and Tavakoli, 2013, and our Corollary VI.3). Theorem 3.7 in Panaretos
and Tavakoli (2013) establishes the asymptotic normality of the periodogram-based
estimators under conditions C'(1,2) and C(1,4), as well as C(0, k), for all k > 2. In
Theorem VI.1 we adopt the stronger assumption that the underlying process is Gaus-
sian. We establish, however, the asymptotic normality of our estimators under milder

tail-decay conditions on the operator covariance and pseudo-covariance functions.
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4.8 Proofs

4.8.1 Proofs for Section 4.4

We begin by recalling some key notation. The spectral density of the H-valued

second order stationary process X = {X(t), t € R} is:

1

f(@) = (27T)d

JR d " C(h)dh, 6eRY, (4.50)

where the last integral is understood in the sense of Bochner, and where C(t) =
E[X(t) ® X(0)] is the operator auto-covariance function of X.

The estimator of the spectral density is defined as:

N _ 1 eﬁ(t—s)TQ X(t)®X(S)
SURSC=TIDN T o (T — (¢ — )]
(4.51)

K () e vl

Introduce also the auxiliary, idealized estimator based on the continuously sampled

path {X(t), te T,}:

— 1 eﬂ(t—s)Te X(t) & X(S) t—s .
gn(0) (2 LTn LeTn T (T — S))’K ( A ) dtds.  (4.52)

4.8.1.1 Proof of Theorem IV.9

We begin by recalling the statement.

Theorem IV.27 (Theorem 1V.9). Let Assumptions C, K, and S hold and suppose

8o v |[T,|7t — 0. Choose A,, — o such that
A, Sk cT,—1T, foralln,

where A— B = {a—0b: ae A be B} for sets A, B < Re. Then, for any bounded set
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© c RY, we have

sup [Ef(6) — £(6)] = O (5] + Bi(&) + Ba(A,) (453)

where

Bl (An) =

)
HS

LeAn-sK rom (1 o (Ain)) o

J M0 (h)dh
h¢An-Sk

BQ(An) =

HS

Proof. By the triangle inequality,
EL0) = 1O)] < |EF(6) —Egu(6)|  +[Ega(6) = F(O)lus
It is immediate from (4.50) for f and the inclusion A,, - S < T, — T,,, that
|Egn(0) — f(0)[us < Bi(An) + Ba(A).
To complete the proof one needs to show that
[Efa(6) = Egn(0) s = O(37). (4.54)

To evaluate |Ef,(#) — Egn(0)|us, first denote the integrand in (4.52) by

5:0) = it=s)"0 X(t) ®X(s) I — s
it ‘Tnﬂ(Tn—(t—S))\K< A, )

In view of (4.51) and since |V (w)| - |V (v)| = Ste\/(w) Ssev(v) Litev (w),sev (v))dtds, this
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allows us to write:

gn(0 )—fn( )
= G Z Z LV()(hn(t,s;e)—hn(w,v;e))dtds.

weTy, veT, eV (w

This implies that

HE% O ~E£0),,

%d > 2 J f |Ehy(t, 8;0) — Ehy, (w, v; 0)| nsdtds.

weT,, veTy,

(4.55)

teV (w) seV (v)

In the rest of the proof we will make use of the smoothness of K and C', and routine
but technical analysis to show that the last sum is of order O(0)). This will yield
(4.54) and complete the proof of (4.53).

Recall that Sk denotes the bounded support of the kernel function K. This means

that

t_
K( AS) = (0, whenever t — s ¢ A, - Sk.

In each integral in the sums of (4.55) we have that ¢t € V(w) and s € V(v). Thus,
t—s=t—w+w—-v+v—sew—v+ B(0,20,),

where we used that max{|t — w|,||s — v|} < J,, by the definition of J,, (4.8) and
B(0,7) = {x eR? : |z|y < r}.
By (4.55), we have

[E60(6) ~ Efo(®)lis < Gz 2 0 f f IC(t = ) — Clw — v) 5| Lu(w — )| dtds

weTy, 'L}E'[[‘nt

DI H It = 5)lus| Lt = 5) = Lo — )]st

weT, ve']l'nt seT),
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where

L) = L _g(L), sems
n(T) = — ), z .
O AT o A,

Observe that since K(x/A,) = 0 for x ¢ A, - Sk, and A4/|T,,| — 0, Lemma IV.30
implies that |T,, N (T,, —x)| ~ |T},| uniformly in x € A,,- Sk. This and the boundedness

of the kernel K imply
1
sup | Ln ()] = o( ) (4.57)

zeR4 |Tn‘

Recall that by (4.7) in Assumption C, we have

|, sw 1c0) - C@lote < liCl, -5, 5e (0.1 (458)

d yeB(z,0)

Thus, for the term [, in (4.56), using Relations (4.57) and (4.58), and the change of

variables x := t — s, we obtain

1
I, < (27)d J J - Su”p(S |IC(t—s)—C({t' —s)|us - suR% |L,(7)|dtds
teT,, JseTy, |[t'—t|<on TE

8" —s]|<bn

1
<c 7 B Y
|n|MﬂLwﬂ sup [ C(x) = Cy)lsdr ) s

Y|z -yl <20n

1
< Il - 05ds = O(6y)-

xXCc T 1
’Tn‘ SeT),

Next, focus on the term J, in (4.56). We will show below that
On
sup  [La(x) = Lu(y)| = O(). (4.59)

lo—y]<26n T |

Thus, recalling that |t —s—(w—v)| < 2J,, whenever t € V(w) and s € V(v), Relation
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(4.59) for the term J, in (4.56) implies

On
e || 1et s)iusdras - 06,
‘Tn| teTy, JseTy,
where the last relation follows from a change of variables x := t — s and Assumption
C (a).

To complete the proof, it remains to establish (4.59). By adding and subtracting

terms, we obtain

1 1
L(2) = Lalo)| < 1K /Ao ~ = (4:60)
|K(z/An) — K(y/A,) K (y/An) w0 _ iyT0
Ton @9 T (T -0 oy
— A+ B+C. (4.62)

Note that K(y/A,) and K(z/A,) vanish whenever x and y are outside A, - Sk.
Therefore, since §,, — 0 and A,, — o0, the right-hand side of (4.60) vanishes for all
|z — y| < 20, such that ||y| = const - A,,. Therefore, the supremum in (4.59) does

not change if it is taken over the set

T, = {(x.y) © o~y <26, |y < const - A,}.

Thus, we restrict our attention to (z,y) € Z,. By Lemma IV.30, we have |T,, n (T}, —
y)| ~ |T,|, uniformly in (x,y) € Z,. This fact and the Lipschitz property of the
complex exponentials and the kernel K (by (c¢) of Assumption K), immediately imply

that

on/ Ay, O
B<,.—— and (C <, ,
T, | To

uniformly in (z,y) € Z,.

Now, for term A, exploiting the boundedness of the kernel and the fact that
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|z —y| < 20,, we obtain

T, (To = )| = [T~ (T = )|
T (T — )| - T 0 (T — )
T, + B(0,26,)| — |1,
T (T — )| | T 0 (T — )|

=c |Tn|2 - |Tn|1+1/d

A< K]

< [ Koo

where the last inequality follows from Lemma IV.30 and Assumption S. Note that
the last bound is uniform in (z,y) € Z,. Combining the above bounds on the terms

A, B, and C, we obtain (4.59). This completes the proof. a

4.8.1.2 Proof of Theorem IV.13
For easy referencing, we begin by recalling the statement of Theorem 1V.13.

Theorem IV.28 (Theorem IV.13). Let X = {X(t),t € R?} be a zero-mean, strictly
stationary real H-valued process. Suppose that Assumptions C, K, S, and V hold.

Also, assume that A,, satisfies

A, -SxcT,~T, foraln, and 6, + A%/|T,| — 0 asn — .

Then

X X Ad
SupE|fo(0) — Efu(0)|2s = O ( z ) , asn— .
0O T,

Proof. In what follows we will use A and T instead of A,, and T,, respectively. Recall

135



(4.23) and (4.24). Namely, we have

BLLO) ~ELOs - rm 5 Y XY <K (@K(%)

teT, s€Ty, he[A Sk]n(Tn—t)
"e[A-Sk]N(Trn—s)

AVE+ VLV (s + 1) [V (s)]

Cov (X(t+h)@X(t),X(s + 1) ®X(s))
T (T = WIT (T = 1)

(4.63)
where
Cov(X(t+h)®@X(t),X(s+h')® X(s))
=EX{t+h)@X(t)—Ch),X(s+h)®X(s) —C(h))ys -
By Definition IV.11, since X is real C' = C, and
Cov(X(t+h)®X(t),X(s+h)® X(s))
— B(X(t+h), X(s + ') - E(X (s), X (£)>g
(4.64)

+{(C(t—s+h),C(s+h —t))us

+eum (X (t+ h), X(£), X (s + 1), X (s)) .

For simplicity of notation, write cum(s,¢,u,v) = cum (X (s), X (¢), X (u), X (v)). We
fix a real CONS {e;} and use the representation in Proposition VI.10 (see also (4.20)).
Next, we split the sum on the right-hand side of (4.63) into three terms corresponding

to the decomposition (4.64). Namely, we define

A=) 22 =0 ¢ (%) K (%) AV (E+h)|- V(1))

teTy s€Tr hE[A SK —t)
'e[A-Sk]n (Tn 5)

EX(t+h),X(s+ )y EX(s), X(t)yg
T~ (T —h)||T (T —H)| ’

V(s + [ V(s)]-
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2P oo ()& () v nl vl

teT,, seT, he[A SN (Trn—t)
'e[A-Sk]n(Trn—s)

C(t—=s5+h),C(s—t+h))yg

Vs 4 W) V) - e e

and
C=> > ZZ =)0 p¢ <ﬁ> K (ﬁ/) AVt +h)] V()]
A A
teTy s€Trn he[A-Sk]n(Tyn—t)
We[A-Sk]n (Tn s)
, cum (X (t+ h), X(t), X(s + 1), X(s))
|V(S+h>| |V<S)| |Tﬂ(T—h)||Tﬂ(T—h/)|
Thus,

(2m) B[ fa(0) — Efa(0)[fis = A+ B + C. (4.65)

In the sequel, the bounds we shall obtain are based on the summation of the abso-
lute values of the summands. Therefore, in view of Lemma IV.30 (below) and the
assumption A% = o(|T|), the denominators in A, B, C' can be replaced by |T'|72.

We start with the term C. Lemma V.34 entails that

c=o (MR <o (). (4.66)

where the last relation follows from Lemma IV.29.

The term B is bounded above by

1
1Bl < THE Y, 0@ =s)us|Clv—Bus - VO] [V(s)] - [V(w)] - [V(v)],
uETnf:?fEZSK)
vETLN(s+A-Sk)

where we have implemented the change of variables u = t+h and v = s+ h’. Applying

Lemma IV.33, we immediately obtain that

N(A, - Sk, T,)? A2
poo (M) o (7)) o7
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where we applied Lemma IV.29.

Finally, we steer our attention to the term A. Observe that

|E(X,Y)| = |E trace (X ® V)| = |trace (E[X @ Y])| < |E[X QY]] (4.68)

by (iii) of Lemma IV.37. Thus,

A< ZENS TR EXC+noXs L,

teTy s€Tyn he[A-Sk]n(Tn—t)
he[A- SK]m('JTn s)

EX () @ X ()], - [V (E+ D) [V - [V (s + R - [V(s)]

2 .
_ IK|ZN(A - Sk, Ty) A A,
T
where
Z S IC(s — )] - V)] V(3)]
te'ﬂ‘nse’ﬂ‘n
and
1
Az = SIS O s+ h W)y VRV (s + ).
N(A - Sx, Tn) helASic|n (T,
[ASK] (Tn S)
Now

1
Az < max > [Clu—0)|u V(W) [V(0)]:
N(A ’ SK’ Tn) #,9€Tn u€TnN(t+A-Sk)

vETLN(s+A-Sk)

By Lemma IV.32 we obtain that A; = O (1). Moreover, a close inspection of the

proof of Lemma IV.32 shows that A; is also of the order O (1). Keeping only the
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dominating bounds for A, we have that

o) o).

by Lemma IV.29. In view of (4.65), gathering all the bounds in (4.66), (4.67), and

(4.69), we complete the proof of the theorem. ]

4.8.1.3 Lemmas used in the proofs of Theorems IV.9 and 1V.13

For the next lemmas, we need to define the quantity:

N(A, Tn) = max ‘Uve'ﬂ'n,w—veA+B(0,25n)V(U)‘ . (470)

weT,

This is the maximum volume over w of the unions of all tessellation cells for which

the representatives v’s are in the 24,, inflated A neighborhood of w.

Lemma IV.29. Let N(A, - Sk, T,) be defined as in (4.70) and suppose that (a) of
Assumption S holds. Then

N(A, - Sk, T,) =0 (Ai) . as A, — .
Proof. Indeed, let Z(t) = User, t—sea,-sx+B(0,:26,)V (s) and tg € T,,. We will show that
Z(to) < B(to, 30, + A, - Mk), (4.71)
where M}, = supjcg,. [h]2. Suppose u € Z(ty). Then, there is s, € T,, such that

”f}() — SUHQ < An . MK + 2611
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with u € V(s,). Thus,
HU, — to”g < HU, - SUHQ + HSU - tOHQ < 571 + AnMK + 2571 = 3571 + AnMK,
which implies (4.71). This entails that,

N(A, - Sk, T,) = max|Z(t)| < |B(0,35, + A, M)

teTy,

= O ((An+38,)) =0 (A7)

as A, — o0, where the last relation follows from (a) of Assumption S. O

Lemma IV.30. Under Assumption S, for ||h|y < |T,|"* we have that

Tl — T A (T, —
L] = T 0 (T h)!:(9<|h|2

‘Tn| |Tn’]‘/d> ) as n — 0.

Consequently, if supyey |h|* = o (|Ty|), we have that

T, (T, —h
o 120 (T = 1)

= O(1).
o — (1)

Proof. We will make critical use of the Steiner formula from convex analysis (see, e.g.

Gruber, 2007). We have that

Lol = [To 0 (T = W[ _ [To + BQO, |All2)] — [T
T Tl

An application of Steiner formula to the convex set T, entails that

d
(T + B0, [hl2)] = Y ms(Ta)Ihll5 ™,

§=0
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where y;(+) denote the intrinsic volumes of order j. Note that p4(75,) = |T5|. Thus,

7o + B0, [2]2)] = [T] Zm W) IRl
7] Tl

_ d—i
N (T (e Y
ati\jr e )\ wi)

where the last equality follows from the homogeneity of the intrinsic volumes.

Assumption S, part (b), along with the continuity of the intrinsic volumes in the
Hausdorff metric on the set of convex bodies see, e.g., Section 1.2.2 in Lotz et al. (2018)
or Theorem 6.13(iii) in Gruber (2007) and the fact that k] < |T},|"/¢ complete the

proof. O]

The following remark shows that the order of the bounds in Lemma I'V.30 obtained

using the Steiner formula cannot be improved.

Remark TV.31. For the case d = 2 and d = 3, when T, is a circle and a sphere
respectively, we can evaluate the desired volume exactly. Indeed, for d = 2, we have

that

T — T 0 (T, — )| 2 |7 1 Ih2 \?
T —1—%arccos SIALE +2|Tn|1/2HhH2 4 — —|Tn|1/2

_ [72]

and for d = 3 we have that

Tl = [Tue (Go=h)| 3 [hle 1 (ks \*_ (Il
T, AR 16 \[1, 7 T3 )

These two cases provide evidence that the application of Steiner formula is not

giving us a loose upper bound, at least when 7,, is an n-dimensional ball.

Now, when T, is a square, and assuming that S,, is the side of the square, we have
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that

Tal =T 0 (Ta = W) _ Su- hlo- V2= [BI3/2 _ ( P )

max = ’Tn|1/2

|T] Si

Finally, when T,, is a cube of side S,,, we have

o Tl =1 Tw 0 (T = )| _ 5 S3- [hlla =3 - IRl _ ) ([
|T,| - q3 - T3 )"

n

This suggests that using n-dimensional cubes leads indeed to the same rates as for

the n-dimensional balls.

Lemma IV.32. Let {A,} be a growing sequence of open sets such that A, 1 R?, as
n — o0. Moreover, let T,, be the set of representatives of a tessellation of T,,, with the
diameter 8, — 0, as n — oo, where T,, is as in (4.10). Also, let Assumptions C, K

and S hold. Then

1
e max > O =) V()] V(W) = O8] + 1) = O(1),
N(An’ Tn) t,5€Tn u€Ty, N (t+An)

vETR N (s+Ar)

as n — o0, where N(-,-) is defined in (4.70).

Proof. Using the inequality

ax a; — max b;j| < max |a; — b,
[ J_l i:lv"'vm

=1, m =1,--,m

valid for all a;,b; € R, i =1,---,m, we obtain

max Y, lC=0)u- V()| - |V()

uETy N (t+An)
vETL N (s+An)

~ max J J IC(h — 1) |wdh dh

t,seTy,
REU ety A (t+An) V (1)
h/EUUETn N(s+An) V(U)

142



< max
t,s€Ty,

Y =)l V)] V(w)

u€Ty,N(t+Ar)
veET, N (s+An)

— fj |IC(h — h')|wdh'dh

REU ey, A(t+Aan)V (1)
hlEUveTnm(s+An)V(v)

—max| > H IC(w — )| — |C(h — 1) |dhdh

t,s€Ty,
u€Tp N (t+Ap) heV (u)
WeV (v)

vET, N (s+AR)
< max | j < sup \HO(y) - @l
s€Ty 'eV(v) JxeRd \ y:|lz—y|<20n

vET, N ( s+A

< ICI.(26,)" - max j
K seT WeV (v

" V€T, N( s+A

dx) dh/’

< ICI, (200)" N (A, T),

where we made the change of variables x = h — b’ and enlarged the domain of

integration over x € R%. The last two inequalities follow from (4.7) and definition of
N(-,-) in (4.70).

To complete the proof, we show that

1 / /
voomme [ et mpaa - o).

REUueTy A (t+Aan)V (1)
h/EUvETn m(s+An)V(v)

With the change of variables © = h — A/, we have that the aforementioned term is

equal to

1 /
N f | IO (e it ds

IE[UuEan\(t+An)V UveTnﬁ(s+An)V(v)]
' E[UvETnn(s+An V(”)] [UuEan\(t+An)V(u)7‘r]
‘[UveTnm(erAn)V(v)] N [UueTnm(t+An)V(u) - ZE]‘
< r
mx [ @l N dr

xe[uue’]l‘nr\(tJrAn)V(u)
_Uve'ﬂ‘nm(s+An)V(v)]
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< f IC(@)|ude = O(1),
weRa

by Assumption C (a). The proof is complete. H

The next lemma is similar to Lemma IV.32. It is used for the term B in the proof of

Theorem IV.28.

Lemma IV.33. Let all the assumptions of Lemma IV.32 hold. Then

1 Y 0= 8)us|C = v)us - V@) - [V(s)] - V()] [V ()]

2
‘Tn | t,seTy,

ueT N (t+An
Tt (4.72)

(N(ALT,)
‘O< TP )

as n — o0, where N(-,-) is defined in (4.70).

Proof. For any w in T,,, let 7,, denote the point ¢,,; € T,, that is in the same cell as
w; if w is on the boundary of a cell, then let 7,, be any of the ¢,;, € T, in adjacent

cells. Thus, |w — T, |2 < 0,. It follows that

D Cw = 9)usICt = v)us - V(O] - [V (s)] - [V (u)] - [V (v)]
ue']I‘irswe(’tH‘—T-An)
veETLN(s+An)

- Jﬂj |IC (7 — 72) 18] C (T — i) | s dh dhdzdw

w, z€Ty,
heUuETnﬁ(Tw +An)V(u)
h/eu'ue']l‘n N(Tz+An) V(U)

ﬂﬂ 1O — 7)€ (ra — 70 sl Az

w, x€Th,
hew+An+B(0 20n)
hex+A,+B(0,26r)

N

< f f f f sup  [C(M 4+ h—2)|us|C (A2 + w — ') |usdh dhdzdw
w, €T, )\.EB_(({%&")’

hew+An+B(0,26,)
hex+A,+B(0,26r)
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- ffff Sup ”O(/\l + B +w— x)||HS“C()‘2 +w — 71/ — ZE)HHsdibldidedw
wreT, i eB_O 3571)

he An+B(0,25,)
h'e An+B(0,26,)

2
J] (J sup  [|[C(A+ x)||Hsdm> dh'dh
zeR4 AeB(0,26r,)

he An+B(0,25,)
h'eAn+B(0,26,)

N

2
= |A, + B(0,25,) (J sup  ||C(A+ x)HHde)

cR4d A\e B(0,245,)

which in view of Assumption C implies (4.72) and completes the proof, since
|A,, + B(0,26,)] = N(A,, T,), (4.73)

because d,/|A,,| — O(recall (4.70). O
Finally, we state a lemma to handle term C' in the proof of Theorem IV.28.

Lemma IV.34. Let the assumptions of Lemma IV.32 and Assumption V hold. More-

over, assume that the process {X(t)} is strictly stationary. Then,

1 >, ‘Cum (X (u), X(1), X (v), X () | - V(D) - [V(s)] - [V(w)] - [V ()]

T
t,seTh,
u€TnN(t+An)
vET, N (s+Ap)

is of the order O(N (A, T,)/|T,|), where N(-,-) is defined in (4.70).

Proof. Proceeding as in Lemma 1V.33, It follows that

> lcum (u, t,v, s)| [T v

t SETn TE{t,S,U,U}
ue'ﬂ'nm(t-i-A
veETLN(s+An)

- J‘UJ lcum (7, T, Tw, 7o) |dh dhdzdw

w, x€T,
hEUuETnn(Tw +An)v(u)
h/EUUETn (T2 +An)V(v)
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N

Jfff |cum (74, T, The, T2 ) |dR' dhdzdw

w, x€Th,
heTyw+An +B( 5 )
hery+An+B(0

s ffjf jeum (7, 7o, Th, 7o) |dh/dhdxdw,

w, x€Ty
hew+An+B(0,26n)
h'ex+An+B(0,26,)

Applying (b) of Assumption V, the last expression becomes

cuim Th - T{L‘7 T’w - Tx, Th’ - Tw, O dh/dhdxdw
|cum(

w, x€Ty,
hew+An+B (0,265,)
Wex+An+B(0,25,)

< ﬂﬂ sup  |eum(A\; +h — 2, Ay + w — 2, A3 + W' — x,0)|dh' dhdxdw
w, z€T, Ai€‘€(10,22§n),

hew+ A+ B(0,26,)
h'ex+An+B(0,26,)

.
= JJJ sup  |eum(A; + h 4+ w —z, Ao + w — x, A3 + 1, 0)|dW dhdzdw
J NEB(0,26,),

o w,zeTy =1,2,3

hoh'€An+B(0,25,)
= JJJ T, (T, —y)| sup Jeum(A + h +y, Ao + y, A3 + h', 0)|dh/dhdy

A€B(0,26n),
yeTn—Tn 1=1,2,3

h,h'€An+B(0,26,)

N

T J sup JJ sup  |eum(Ay + k4 y, Ay + y, A + z,0)|dh/ dhdy
2cRd \i€B(0,26,),
h'eAn+B(0,26,) yelTn—Tn  i=1,2,3
hEAn"rB(O 25n)

= O(N(Aan) ) |Tn|)>
where the last relation is justified by Assumption V (b) and (4.73). Note that we

have applied two changes of variables; first h = h — 7, and i/ = I/ — z, and second

v = w — x. This completes the proof of the lemma. m
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4.8.2 Proofs for Section 4.5

We start this section obtaining rates on the variance of f,(6) in Section 4.5. We
first establish a result that is more general than what is needed for the proofs of
Section 4.5. We will use it to evaluate the variance of fn(H) in the time-series setting

where 9,, = 1.

Proposition IV.35. Let the process {X (t)}ies,.z4 be strictly stationary and suppose
that Assumptions C', S, and V' hold. Then, for the estimator fn(e) defined in (4.27),

we have the following upper bound on the rate of the variance

R R Ad
sup E|| f,.(0) — Efn(9)||%{s =0 (—") , as n — o,
0c® |Tn|

where T, = &, - [0,n]¢ and |T,,| = (nd,)%.

Proof. As before, we will use that | Allgs < |Afi throughout. Recall that T, =
w41, -+ n}?is a discrete set of n? samples, while T}, = 4, - [0,n]? is a hypercube
of side nd,,.

We start with

Fa(0) = Ef,(6)

LS 3 e X0OX0) O (s
dZZ T, N (T, — (t — )| K(An)

teT,, seT,

) 52d o XA+ M@ X () —C(h) [ h | € b, L1
= dZ Z h)| K(An> Hhr e 5

t€Tn he Ap Sk Ny -Z4 ’Tn a (Tn o

This means that

fa (0) —Ef.(6)

e X(t+h)®X(t)—C(h) h
- dZ 2 e T, (T, — )] K(E)‘

t€Ty heAn S A (Tn—t)
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Then, the variance becomes

IEan(@) —Efu(0) s

BNy Y e (L) (L)

teTy, s€Tyn he[A Sr]n(Tn—t)
"e[An-Sk]n(Tn—s)

Cov (X(t+h)®@X(1), X(s + 1) ® X(s))
T 0 (T = W) - [T 0 (T, = W)

By Proposition VI.10 we obtain that Cov (X (¢t + h) ® X (), X(s + 1) ® X(s)) is

equal to

ZZCum (Xa(t + ), X;(1), X(s + h'), X;(s))

+EX({t+h), X(s+ 1))y EXX(t), X(s)g +{Ct—s5+h),C(s —t+h))yg -

In an analogous manner to the proof of Theorem IV.13, we define the quantities

A=ty Y Ty () e (5)

teTy, seTy, he[A -S| (Tn—t)
"e[An sK] (’]I‘n )

. EX(t+h),X(s+h))y EX(s), X()yg
T, N (T, — h)| - | T 0 (T, — W) ’

ey wx evn(b)s(l)

teTy s€Tn he[An-Sr]N(Tn—t)
he[An-Sk]n (']l'n—s)

' Ct—s+h),C(s—t+h))ys
T, (T, — h)| - | T 0 (T, — )|

and

~EL Y NN () ()

t€Ty, s€Ty he[An-Sk]n(Tn—t)
We[An SK] (’]l‘n 5)

cum ( t+h)X()X(s+h’)X-(s))
22 !nﬂ WAT o (To =11

el jel
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We start with term A. Bounding terms by their norm (using (4.68)) and changing

variables, we obtain

ey Y Yy EECE X )y BOCE) X))
t€Ty, €Ty he[An-Sx]n(Ty—t) T 0 (T = B)| - [T 0 (T = 1))
he[An-Sk]A(Tn—s)

<513 Y DY [C(h =W+t —s)]u-|C(s = )|
t€Tn s€Ty he[An-Sk]n(Tp—t) [T (T = B T 0 (T = )
We[An-Sk]N(Tp—s)

Ch—h+t—35)|u

=543 SO — 1) 22 |

teT,, s€Ty, he[An-Sk]A(Trn—t) ‘Tn N (Tn - h)| : ‘Tn N (Tn - h/)|
We[An-Sk]n ('Jl‘n s)

=0 Y e Y 2.2

weTn—Thp €T N (Trn—w)  ue[Apn Sk N (Trn—(w+z))]—[An-Sk N (Tp—2z)]
VE[An- SN (Tn—z) | {[An-Sk N (Tn—(w+z))]—u}

[Cu + W)
T 0 (T — (u+ )| - [T 2 (T — )|

where the last equality is obtained through the change of variables w = s —t,z =
s,u=h—"h"v="n.
By Lemma IV.30, in view of Assumption S(ii), and inflating slightly the sums by

dropping the intersections in the summations of u, v we obtain that

Al <T Yolcw) Y > Cu+ w)
n weT,—Th 2ET, N (Tp—w), ueAp (Sx—Sk)
> 1
VE(ARSK)N(Ap Sk —u)Ndy-Z4
52d
<c !TnIQ e - T o (T — w)
1 weT,—Tx

Y Ot W [(BaSk) A (AuSk — )
UEAR (Sk—SK)N6pn-Z2

Ad d d Ad
<ciphcdt 3 lo@lhex st 3 ICle =0 (7).

WESy,-Z4 uEdy - Z4
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by Assumption C’, where we used that 62 Y, 1ger,; ~ |T,| and

522 Lite(An-S5)n(An-Sk—u)min-zd) < 2| DSk | = O(AL).
t

Now, we shift to term B. Using the change of variables w := t — s, the Cauchy-

Schwartz inequality, we obtain

Bl<at Y Dlmnmeen(s) D>, K (%) K (A%)

weTy,—Tp s he[An-SK]N6n-Z2
Re[An-Sk]N6n 72

€+ w)|us|C(h — w)|lns
T, N (T, — h)| - | T, 0 (T, — )|

a! :
e 7] > DT ICh+ w)|us|C (R — w) s,

wETn—Tn he[An-Sk]N6n-Z2
h'e[An-Sk]Non-Z°

where we used that 02 3 1¢r, A1, —w)(s) = O(|Ty]), and Lemma IV.30 to conclude
that |T,, n (T, — h)| ~ |T 0 (T, — 1')| ~ |T},|, uniformly in h,h' € A, - Sk. Now,
with the change of variables v := h + w, and expanding the range of summation, we

further obtain

53
B Se T D IC () |us > > [C(h" —u+ h)|us
" uesy, zd heAn Sk Non-Z8 heA, Sk (u—(Tn—Tx))
1
71( X acwls) (s N 1)( X aomis)
UESy - Z4 heA,Sg b, 74 hed, 7.4

Ad
=@( )
|75

in view of Assumption C'.

Finally, we look at term C'. An application of Lemma IV.30, again gives us that

S DID DN

teTy s€Ty he Ap-Sk]n(Typ—t)
[A Sk]n(Tn—s)

DU eum (X(t + h), X;(t), Xi(s + 1), X;(s))

i€l jel
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IIDINEDI)

teTn s€Tn heAn S on-Z%
h'€An-Sk 6n-Z3

2 2

wWETn—Tn heA,-Sknop-Z%
heAy,-Sgnby,-24

ZZcum J(h+t—s), Xj(t—5>,Xi(h/)>Xj(0))|

2
|T | el jel

ZZ(zum i(h +w), X; (w),Xi(h,)an(O))|

n el jel

A

<c |— up (52d Z Z

€on L Wwedn-70  hedn-74

S

ZZcum i(h +w), X (w)7Xi(h/)an(0)>‘

el jel

h
Al

where we used that 0% 3 cn g nsze 1 = O(An]%), the fact that o7 3

SET,,NTH =

O(|T,|), and Assumption V’. This completes the proof. O

Proof of Theorem IV.17: As indicated, by following the proof of Proposition
V.35, we see that the variance bound O(A%/|T,|) is uniform in f € Pp(S, L). There-
fore, to prove (4.34), by Relation (4.30) in Theorem IV.16, it is enough to bound
terms By (A,,) and By(A,,), uniformly in f € Pp(f, L). Let M and my be the radii of
the smallest ball that contains Sk and the largest ball contained in Sk respectively.

Starting with term By we have,

sup By(A,) < )] sup O (A)us |k ]52]z"
fePp(B,L) Ihl2>Anmy f€PD(B.L)

<(Qum)™? Y sup [O(R)us|hls

|2]l2=Anmy, fePp(B,L)

< (Anmk)fﬁ L= O(A;ﬁ),
in view of (4.32). Recalling that K(0) = 1, we have that for A + 1 > f,

o 5002 % o[- ()]

fePp(B,L) 0<|h|2<An My fEPD(BL) A,
g |5+
<é ) sup  [[C(h)yg AN
0<[|hl2<An My SEPD(BL) o
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< EAgﬁMI);H_B Z sup  [|C()|us HhHg = O(Agﬁ)a
0<|hlla<AnMg fePp(B,L)
where the second inequality follows from the multivariate Taylor Theorem since (4.33)

holds. Indeed, under this condition and using that K(0) = 1, we obtain

h h
(x) =t (50)

where [Rp (h)] < ﬁ”h”%‘“

Collecting the bounds for By (A,,) and Bs(A,,), we obtain that the bias is of order
O(AP), uniformly over the class Pp(,L). Now, by Theorem V.16, the variance is
of order O(A4/|T,|) and picking A, = |T,,|'/?%+9 we obtain the rate-optimal bound

in (4.35). O

Proof of Theorem IV.18. In view of Theorem IV.27, one only needs to bound
the terms B;(A,) and By(4,) appropriately. Starting with term Bs, if my denotes

the radius of the largest ball contained in Sk, we have

By(A,) < J C(@) usde

r¢Ap-Sk

< (A - mi)? j Izl - 1C (@) lusde

|z|>An-mE

< (A, -mg)? - L=0(AP).
Next, recall that

Bl (An) =

Jowgy e (10 (5) )

HS
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Since K(0) = 1 and (4.33) holds, by the Taylor theorem, we have that

h h
K(A_n) = 1+R0,)\ <A—n),

where |Ro(h)| < A+1 JR]a™t. Thus, with My denoting the radius of the smallest

ball centered at the origin that contains Sk, the term Bj; is bounded by

Ly |h]2\ A1
B8 < 55 j . ol ((52)" an

Ly - (Mg - A)MF )
= I(A(ﬁ)!-a)m LA . |C(B) sl dh = O(A,P),

since A + 1 > [ and in view of (4.36).
Collecting the bounds for By and By, we get Bi(A,) + By(A,) = O (A,‘LB) . Now,
the optimal choice of A,, is the one which balances the last bound with the rate of

the variance, that is, A?/|T,,| ~ A;2%. This is achieved with

_ ‘Tn|1/(26+d) — (n5n>d/(26+d)7

which upon substitution yields the rate ) v A% = §7 v (né,) P42+ in (4.37). O

Proof of Theorem IV.21: Following the proof of Theorem IV.17, we only need
bound the terms By (A,,) and By(A,,) (in Theorem IV.16) uniformly in f € EPp(n, L).
Let M, and my be the radii of the smallest ball that contains Sk and the largest ball

contained in Sk respectively. Starting with term B, we have,

sup By(A,) < ), sup  |C'(h)]us
fe€Pp(n.L) |h]2>Anmy, fEEPD (ML)

<)) sup L -eIhE
[hlle=Anmy fe€Pp(n,L)

<. J e IRl3 g,
Il2>(An—1)m
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where using hyperspherical coordinates, we obtain that

d
su By(A,) <L ——-—- =T =, [m(A, -1 7’),
fengI()n,L) (&) L(d/2+1) n <77 [ )

with ['(s, z) being the upper incomplete Gamma function. Now, for term B;(A,,),

sip Bi(Ay) = s | Y C(n) (“K(i))

fGSPD(WﬂL) ngPD(T],L) hEAnSKﬁZd An
h
1-K|—
(2.)
h
1-K|—
()

-5 (1))
a<||ha<An My "
h n
<L- 1-K|(—|)|+L- e~ Ikl
|h|zzio¢ (An>' Z

OéthH2<A7LMk

HS

< sup Y, o

fe€Pp(n,L) heAn Sk NZd

< s (X IO

Y

- (s)

for some positive fixed constant 0 < o < 1. Recalling that K(0) = 1 and since we are

using a kernel satisfying Condition (4.40), there is a positive constant ¢x > 0 such

that
5 “ifs 43 ~ bl o
sup Bi(A,) <¢y-L- Z e Tha + - L - Z e~ IBlz o~ TRl
feePon.L) Ihlz<a o< h2<An My
e “ifsdh + 7 ~Ihlg- A
<cg-L- e Tadh + ¢k - L - e 1Mz 1nl; qp
[Rllz<c a<|h|2a<An M,

d—1 ~
<7 L -Cp -

Ap-My
A‘i T <—d, ﬁ) + J rd_le_M_Arndr],
a rT=x

where we used hyperspherical coordinates in the last integral. We only need to bound

the remaining integral of the upper bound. We discern cases for n. Let n > d and
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X ~ Ezp(1). We split the integral in two regions. We have,

1 1
J rd=le=m" =52 r < f rd=le=S2 dr = Al [F (=d,A,)-T <—d,

r=«

Also, for v =n/(n+1)

f rd=le=m" =52 g = lx%fle_x_ﬁ/" dr < J —e
r=1 r=1 n r=1 n
n 1 A (An-Mg)" 1 An
< J —e © ondr + J —e © ondy
z=117] r=AY n
1

Consider now 0 < n < d. Then, we have that

Ap Mg (An'MK)n 1
Anp d_ 1 _._ An 1 d_ 1 __An
J rd= e =S dr =J Zgn e ndy < R [Xn e Xl/’i]

r=« =o' 77 77
1 v(2- n 1 d
<A - a iy < A4 LB [X (X = A;;]
n
1 v (22— 1_% 1 ©
< -A, © 1)6_A” + —J 1 e % dg
n n =AY
1 v 1_17; 1 d
__An(n 1)6—A —F< 7A$L)
n n
]_ v — 772] ]. a v
~ _An (77 1)67An + (AZ) d—lefAn
n

The asymptotic relationship

[(s,x)

—— =1, as x — o,
xs—le—a:
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entails that

and the proof is complete. O

4.8.3 Basis Independence of Second-order Stationarity

In this section, we demonstrate that the definition of second-order stationarity for
a process in H (recall Definition IV.1) is independent of the CONS under considera-
tion. Namely, we show that whether C(,s) and C(t, s), as defined in (4.2) and (4.4)
respectively, are a function of the lag ¢ — s, is independent of the basis we consider.

Let H be a complex Hilbert space and {e;,i = 1,2,...},{f;,7 = 1,2,...} be two

CONS of H. Using {e;} we create the “real” Hilbert space
Hy = {h = Y hie;, hie R, Y h? < oo},
Thus, {e;} consists a “real” basis of the space
H = Hy + 1iHg.
In this setting, we can express the CONS {f;} as

fi= Z [Re({f, €:)) + 2lm({f;, €:))] €;
= Z ;T 11f €i,
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where ffi, fJIZ e R. We also have that

X(t) = 3 [Re((X (8), ) + im((X (), e)] e

7

- Z [Re((X(t), £;)) + ilm((X (£), F;))] f-

Now,
K, fiy = X, L+ eo = 2114 X0, )
= Z [f% = 5] [Re((X (1), e0)) + AIm((X (1), €5))]
ZfRRe (X (1), e)) + f7Im((X(2), e))
+ 1 [fEIm((X (1), ) — f;,Re((X (1), e:))] .
So,
Re((X (1), f;)) = Z [fiiRe((X (1), e)) + f7Im(CX (1), e5))]
Im(CX (1), f)) = Z [ fiiRe((X (1), e)) + fiiIm((X (1), )] .
Let

and we have that

_ 2 Re((X (1), e;))al + Z Im({X (1), e:))be.
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Thus,
Gy (1) = EY () @Y (0)
-E (Z Re((X (1), en)af + D Im(X (1) ek>>bz>
® (2 Re((X(0), e0)e + 3 Im((X(0), ez>>bz>
- E[Z Re((X(t), ex))Re(X (0), en))af @ a;
+ ;;;Re«X(t), ew)Im((X (0), e))aj, @ bf

+ D Im((X (1), e))Re(CX (0. )l @
+ Z Tm((X (£), ex)Im((X (0), e0)bf @ b |
Using the CONS {f;}, we similarly have that
CY(0) = B| DRe((X(0), i)RelCX(0) faf @

+ ) Re((X (1), fi)Im((X(0), fo))af ®b]

+ > Im((X (1), fi))Re(<X(0), fo))b] ® af
+ > Tm((X (1), fip)Im((X(0), fo)bl @ b] |-
k.l

For the coordinates, we have

Re((X(#), fi))Re((X(0), fy) = Z feafiRe((X (1), e))Re((X(0), e;)

n Z FEFLRe((X (t), e))Im((X(0), e;))
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Re((X (1), fi))Im((X(0), fr)) =

Im(CX(#), fr))Re(C(X(0), fr)) =

Im(CX (), fi)Im(CX(0), fr)) =

Let now

(1) = (ERe (X (1), ) Re (X (0),¢,)) )
C (1) = (BRe ((X (1), e) I ((X(0), ¢,)) )

G (1) = (EIm (X (1), ) Re (X (0), ;) )

+ Zj] FLEIM(CX (£), e)Re(¢X (0), €;))
+ Z;‘ FiafETm((X (1), e)Im((X(0), ;)
_ Z} FEFLRe((X (1), €))Re((X(0), €5))
+ Zj FEFERe((X (1), e)Im((X(0), e;))
- Zj fraf{ Im((X (1), e))Re((X(0), e;))
+ ZJ fafBIm(X (t), e)Im((X(0), e;)
_ ZJ FLFERe((X (1), e))Re((X(0), €,))
_ Zj FEFLRe((X (1), ) Im((X(0), ;)
+ Zj FEFRIM((X (), e))Re((X(0), ;)
+ Zj: FEFLIM((X (), ) Im((X (0), ;)
Z]: Frafi Re((X (1), e))Re((X(0), ¢;))

. Z L FERe((X (1), €)Im((X(0), €;))
-~ 2]] Feafi Im(CX (1), e))Re((X(0), e5))

+ D Fi S (X (1), ) (X (0), €)).

i,jeN
1,7eN
i,j€EN
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C17 () = (BIm ((X (1), e) I ((X(0), ) )

1,jEN

and

=) = ()
Fr= (FR 00, Fr= (LA

Denoting

SRONEH0

GO0 ()

one can see that all the coordinates taken into account in the Hilbert-Schmidt norm

can be found in the matrix

FY Ff Fp —F,

()
~F B Fr  Fg

Thus, if C'}(f )(t) (and of course C’ﬁf) (t)) depends only on the lag ¢, then the same
is true for Cl(/f ) (t) as well. Similarly, one can show that this holds for the pseudo-
covariance as well.

4.8.4 Proofs for Section 4.6

As in Section 4.6, H,, denotes the space spanned by {R(u,-),u € D,} and II,, is the
projection operator onto H,,. Although the following result is standard, we include it

here for the sake of completeness.

Proposition IV.36. Assume that the matriz R, = {R(uni, un )}, is invertible.

Let ge H and g = (g(un1), -+ 9(tnm,))". Then, the following hold.

(i) The projection § = I,g = >, ¢;R(uns,-) where ¢ = (c1,...,cm,)" = R;'g,
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and G(un;) = g(un;) for all u,,; € D,,. Moreover, |g — f]”]?{ =gl — gTRglg.

(i) |9(u) = g(u)| < |gluinfuep, v/ Rlu, u) = 2R(u,w') + R(u', /).
Proof.

(i) By the property of projection,
g = argmin |g — hg.
heH,,
For h = Y. ¢;R(uy,, ), the reproducing property entails
lg =2l = lglii — 2¢"g + ¢' Rue,
from which we conclude the minimizer ¢ is R, 'g. It then follows that

g = (§(tn1), -, G(tnm,)) = Ruc = g.

(ii) Applying again the fact that ¢ — g L R(«/,-) for all v’ € D,,, we have for any

arbitrary v € F,

9(u) —g(u) = (g =g, R(u,-)yu = g — g, R(u,-) = R(t,-) ), u' € Dn.

By (i) and the Cauchy-Schwarz inequality

3(u) = 9(w)| < lgls jnf |R(u.) = R/, )

where

IR(u,-) — R(W, )& = R(u,u) — 2R(u,u') + R(u', u).
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Proof of Theorem 1V.26: First,

|£(8) = £(8)lus = ITL.f(O)IL, — £(6) s
< [ f () — T f(0) s + |11 f(0) — f(0)llms
< [IF(O)(IL, = Dfas + [(IL, — 1) f(0)]us

= 2|(IL, = 1) f(0)[ s

- 1/2
=2 (Z v2|(IL, — 1)@-\%) -
j=1

Next, we consider |(IT, — I)g|4 = |g — g|% for a function g € H with a Lipschitz
continuous derivative. The derivation of this depends little on the value of ¢(0).
To simplify notation, let us make the simplification that the Sobolev space contains
functions g with ¢g(0) = 0. Thus, we take the kernel as R(s,t) = s A t, i.e., the
covariance kernel of the standard Brownian motion. Then the matrix R,, in (4.46) is

indeed invertible. By Proposition IV.36,

19— gl =9l —9"R.'g (4.74)

where g = (g(un,i))ir contains the values of g at the u, ;. It follows that R,, has the
Cholesky decomposition
R,=m,'L,L, (4.75)
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where L, is a lower triangular matrix of 1’s and has inverse

1 0 0 0 0
-1 1.0+ 0 0
N 0 0
0 0 0 1 0
0 0 0 - —11

Indeed, by the independence and the stationarity of the increments of the standard

Brownian motion B, we have Z = /m,(L,")" B, where B = (B(z/mn) — B((i —

1)/mn)> "and Z ~ N(0,1,,,) is a standard Normal random vector. Since R, =

E[BB'], we obtain I,,, = m,(L,")TR,L;", which yields (4.75). Thus,

mMn

9'R.'g =mag (L") L, g = my Y (g(i/mn) — g((i — 1)/mn))?,

=1

which is a Riemann approximation of [g|4 = So t))%dt (recall g(0) =
' (s) — ¢'(t)] < Cls —t], it follows from (4.74) and (4.76) that
|9 =gl < Cmy,".

Indeed, by the mean value theorem, we have g(i/m,) — g((i — 1)/m,,) =

for some &,,; € [(i — 1)/my,, i/m,], and hence

1 &

lo =1k - | (@ OFdt -~ 360

=1

Mn  r~i/my,
<3 f 19/(t) — 9'(6u)| - 19/(1) + o' (60)

1)/mn

(f lg'(t Idt+—nZ|g fm>= (m,'),
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where in the last relation we used the fact that the Riemann sum converges to the
integral Sé |¢'(t)|dt < o0, as m,, — 0. Applying this bound and by the assumption

on the ¢;, we obtain

0 0
D I, = Dgyllf < my' Y Civs.
j=1 j=1
This completes the proof. O

4.8.5 Some properties of the trace norm

We collect some elementary facts of the trace norm in the following lemma.
Lemma IV.37. Let A be a trace class operator on the Hilbert space H. Then
(1) [Allr = subyy.unitary [(A W)ns|;
(ii) 22 [KASi, gi)l < | Al for any CONS {fi} and {g:};
(1it) >, |(Ae;, e < | Al for any CONS {e;}.

Proof. (i) Suppose A has the SVD
A= Z /\jvj ® wy, (477)
J

where \; > 0 and {v;}, {w,} are CONS of H. Then, we can write

A= <;Ajvj®vj) (ka®wk) = PU,

k

which is a polar decomposition of A. It follows that

| At = trace(P) = trace(AU™) = (A, U)us.
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Suppose W is unitary and has the SVD W = >, aj, ® by. Then

K-Aa W>HS‘ = Z<Abk, ka>
k

— Z Z Al (vj @ wj)by, ag)
Tk

— 2)\ Z<’Uj,ak><bk;wj> Z/\j

J

by the Cauchy-Schwarz inequality.
(ii) By (4.77),

2 1CATs g0l = 251 2325, g, £i)
< 20 25 K5, gaxuy, £

and the result again follows from the Cauchy-Schwarz inequality.

(iii) This is a special case of (ii) with f; = g;.

4.8.6 Examples

In this section, we discuss several concrete examples that illustrate the breadth
and scope of the conditions imposed in various results in this thesis.
4.8.6.1 An example of the class Pp(S, L)

We consider in this section with an example of a class of covariance structures,
where the rate of consistency nearly matches the optimal rate of Pp(8, L). This class

consists of regularly varying covariance structures, as follows.
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Example IV.38. Consider d = 1 and the scalar-valued case H = C. Let
C(k) = |k[771S(|h]), 8> 0,k e Z

where S is a slowly varying function at infinity. It is not hard to see that the corre-
sponding spectral densities f € Pp(S + ¢, L) for any € > 0, depending on the value of

L. Also, assume that the kernel function is of the form
K(h)=[1—[a*"]1,heR

for some A > 0. We work in the discrete time setting, so we are using the estimator

fa(0).
Thus, we have that

@m)f(0) ~Efu(®)] = ), MCH)+ Y, MOK) [1_K(Aﬁn>]

k|=A, k<A,
Consider 6 = 0. Then, the previous expression is equal to

kA+1

A+1
Aj

2 3 kPSR 42 ) kTS(k) -

k=An k<Anpn

Using the fact that for p > —1,

J tPS(t)dt ~ (p+ 1) 2Pt S(x), as x — o

and for p < —1,

Q0
J tPS(t)dt ~ [p + 1| 12?15 (x), as z — o

T
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we obtain that for 0 < § < min{1, A + 1} :

_ATS(A) | APS(A)
6] A+1-7

(2m)[£(0) — Efa(0)] =0 (A7 5(An))

Also, for 8 > 1, the same expression can be evaluated to be of the same order

Compare this to the rate of Proposition IV.17 for 0 < § # 1.
We shift our interest now to the variance. At first, using 7" and A in place of T,

and A,, respectively, we have

£u(0)—E£,(0) _ L ZK(t_S> X(t) - X(s) = C(t —s)

2 t=0s=0 A |T o <t N S>|
1 e h\ X(v+h)- X () —C(h)
_%.;)EAK(Z) = O<h+o<T),

o
2
(V)
=
o
=
|
=
ET
|
eI
ok
ok
]
]
=
VN
| =
N———
=
N
| =
N——
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C(U—w+h—ﬁ)C(v—w)+0(v—w+h)0<w—v+ﬁ>
|T—mﬁ—ﬂ

mm<h+v<Tyﬂ@<ﬁ+w<T)

We have already shown that both of these terms are absolutely of the order O (%)
Hence, showing asymptotic equivalence of just one of these integrals with a term of
order A/T is enough to show that the variance as a whole is of the same order. We
focus on the first summand and have with the change of variables x = v — w,y =

w,zzh—ﬁ,uzﬁ, that

=

.1m<h+v<Ty1@<ﬁ+w<T)

i i AA(ZAZ) <z+u> <u)
= Cz+2)C(2) - K K(—
z=—T z=—2A u=—Av(—A-z) S A
|T—ZE| TA(T—x)
. 1 ThH1 T)).
T ol a2 Mty tue DTNy 0T

Observing that

1 TA(T—x)
7 I(z+y+z+uel0,T)I(u+ye[0,T]) < — 7

y=0v(—z)

1 z4+u u ||
m n KE)r(R) st
T — x| _ L
T — G +w)|T—u| ~ [T

and the fact that —7 < x < T and —2A < z < 2A, we see that the aforementioned
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terms are bounded by 1. Also, by Assumption C’; we have that
T  2A
Z Z C(z + 2)C(2)dzdr < .
rz=—T z=—2A

Using the Dominated Convergence Theorem, we obtain that the quadruple summa-
tion, divided by 2A/T converges to a constant. Thus, it is asymptotically equivalent
to A/T as desired.

This, for A+ 1 > 8 > 0, leads to the consistency rate

O ( = + A7 S(An)) :

Tl

Considering 0 < 8 # 1, we see that the optimal consistency rate in this case essentially
matches the one in Theorem IV.17.

Observe that the regular variation only played a role in establishing asymptotic
equivalence of the bias vanish rate. Indeed, for the rate of the variance, we only
needed the integrability of the Covariance operator and the regular variation was not
used. Also, recall that here the spectral density f € Pp(5 + €, L). So the rate we

should be comparing to is

T, e,

4.8.6.2 Examples on Assumptions V and V’

We present some examples of non-trivial processes that satisfy the Assumptions V
and V', so as to demonstrate that the assumptions are not vacuous. We first consider

an example that satisfies Assumption V.

Example IV.39. Consider the process
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where Z = {Z(t),t € R%} is a zero-mean, real-valued stationary Gaussian process with

standard normal marginals. Denote the stationary covariance of Z by Cz(-) which we

assume to satisfy § o, Subycp(025) [Cz(A + u)|du < oo, for some small enough ¢ > 0.

This condition is quite mild and can be satisfied by covariances that are integrable

and sufficiently smooth in the tail. We verify that Assumption V holds for X. We

start by considering X () = Z(t)%. It follows that

(t1) X (t2)] = 1 + 205 (t1 — t2)?

(t1) X (t2) X (t3)] = 15a2a2 + 3a2b2 + 3a2c2 + 3b2a2 + 3b2b2 + b2c2 + 6asbsasbs,

(d) E[X (t1) X (t2) X (t3) X (t4)] = 105a2a2a? + 15a2a2b? + 15a2a2c? + 15a3a3d>

where

+ 15a3b3a3 + 9a3b3b; + 3asbic + 3asbid;

+ 15a3cial + 3ascsb; + 9aicach + 3azcad;

+ 30a§a363a4b4 + 30a§a303a4c4 + 6agbgcgb4c4

+ 15b3azal + 9b3a3b; + 3biaics + 3biaid:

+ 9bsb3aj + 15b3b3b5 + 3b3bich + 3b3bsds

+ 3bycia; + 3bscab] + 3bycsc; + bycsds

+ 36b§a3b3a4b4 + 12b§a303a404 + 12b§bgcgb4c4
+ 60a2b2a§a4b4 + 36a2b2a4b4b§ + 12a2bgc§a4b4
+ 60agbyazbzal + 36asbyazbsbi + 12asbyazbscy

+ 12(12()2@3()3612 + 24&2[)2@363(1421 + 24(12()2@30364&1 + 24@2()2[)303@404,

a9 = Cz(tl — tg)

as = Cy(ty —t3)
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by = A/1 — Cy(ty — t5)?
Cylts —t3) — Oty — ta) - Cyty — t3)
V1= Cz(t; —t)?

c3 = \/1 — Cy(ty —t3)? — [Cz(ta —t3) ;_Cé(zt(ltl__tQt)Q‘)QCZ(tl —t3)]

bs =

ay = Cz(ty — ty)
Cylts —ts) — Cylty — t2)Cr(ty — t4)
V1= Cz(t; —t)?
Cyz(ts —ty) — Cz(t1 — t3)Cz(t; — tg) — b3by
C3

di=J1—af — 83— .

by =

Cqy =

After centering the process as X (t) = X (t) — 1 and simplifying the aforementioned

expressions, we end up with the following moments:
(a) E[X()] =0
(b) E[X(t:1)X (t2)] = 2C7(t: — t2)?
(c) B[X ()X (t2) X (t3)] = 8C(t1 — t2)C(ty — t5)Cly(ts — ts),

(d) E[X (1) X (t2) X (t3) X (ts)] = 4Cz(t1 — t9)*C(ts — ta)?
+ 405 (t) — t3)2Cg(ty — t4)* +4C5(t; — t4)*Cy(ty — t3)?
+ 160 (ty — t3)Cy(ty — t4)Cy(ty — t3)Cr(ty — ty)
+ 160ty — t)Cy(ty — t)Cy(ty — t3)Cr(ts — ty)

+ 1602(t1 — t2)02<t1 — tg)CZ(tQ — t4)Cz(t3 — t4)

Using (d) above, we obtain that
E|X(t)|* = 60C4(0)* = 60 < oo,
showing that (a) of Condition V holds.
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By the definition of the cumulants in Definition VI.8 we obtain that

Cum(X(tl), X(tz), X(t3), X(t4>> = 16CZ(t1 — tg)CZ(tl - t4)CZ<t2 - t3)CZ(tQ — t4)
+ 16oz(t1 — tQ)CZ(tl — t4)Cz(t2 — tg)Cz(tg — t4)

+ 1602(t1 — tQ)CZ(tl — tg)Cz(tg — t4)Cz(t3 — t4).
Then, Assumption V(b) is also satisfied, since

sup J J sup lcum(X (A + u), X (A2 + v), X (A3 + w), X(0))|dvdu
ueRd JveRd Aq,

weRd A2,A3€B(0,5)

< 16 sup f J sup
weR? JueRd JveRa A1,A2,A3€B(0,6)

{|CZ(A1 gt u—w)Cr (M + w)Cr(Na — Ag + v — w)Cr(Ag + 0)]
+ ’CZ()\l — X+ u— "U)Oz()\l + U)Cz()\g — A3 +v— w)Cz()\g + ’LU)|

F1C7 (M — Ao+ 1 — 0) O\ — Mg + 1w — w)Cr(ha + 0)Cr(Ag + w)|}dvdu

< 16/C(0) f f sup {1020 + )0 (00 + )
ueRd JveR4 Ay,

)\QGB 05
+ |Cz(A1 — Ao +u —0)Cz(N\ + u)|

10 = Ao + 1 — 0)Cy( g + U)\}dvdu

2
< 48|C4(0)[? (J sup |Cz(\ + u)|du) < 0.

eR4 \eB(0,26)

Next, we present an example inspired by the linear processes in Proposition 4.1
of Panaretos and Tavakoli (2013). Assume that H is a separable (typically infinite-
dimensional) Hilbert space. Let €, t € Z be iid random elements of H such that
E|eo|* < o0 and consider a sequence of bounded linear operators A, : H — H, s € Z.

Define
= > Ay, te L. (4.78)

SEL
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In the following lemma, we show that the real process X (¢) is well defined under
a mild square-summability condition on the operator norms of the coefficients. To
this end, let £?(H) denote the Hilbert space of H-valued random elements equipped
with the inner product (A, B),2 = E(A, B) for all H-valued random elements A and

B such that E[|A|? + || B|?] < . The resulting norm in £?(H) will be denoted by

I ez

Lemma IV.40. Assume that the operator norms of {As, s € Z} are square summable,

namely that

DAL, < 0. (4.79)

SEL

Then, the series in (4.78) converges in |- |2y and the process {X(t), t € Z} defined.

Proof. Let ¥, = E[ey ® €9] be the covariance operator of every €, t € Z. We start by

defining
XM)y= Y Ao, and X M) = Y A (4.80)

[s|<N |s|>N

We have that

EXM (), XM ()y = Y7 >0 ElAyerms, Ayis,)

|81‘<N ‘82|SN

= Z E<As€t—57As€t—s> = Z E<€t—57A;As€t—s>7

|s|<N [s|<N

where the second equality follows by the independence of the €’s. Let now {e;} be a

CONS of H that diagonalizes Y.. Then, we can express the €’s as

o0
€t—s = Z Zt—s,jeja
j=1

where Z; ; == (€5, €;), are independent in s because the €,’s are iid. Also, because of

the choice of {e;} as the eigenvectors of the covariance operator X., we have that for
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each fixed s, the Z; ;’s are uncorrelated in j:

E[Z:Zs ;] = N\i - 65y

Using those, we obtain

E<X(N)(t),X(N)(t)> = Z E Zethsyk,A;AszeeZts,£>
¢

[s|<N k
= Z ZZE [ths,thfs,Zl ex, AL Aser)

[s|l<N k £ (481)
= D0 DM en ATAsery < 3 A Y lew, AsAser)

[s|<N k k |s|<N

<t

=

(Ze) ’ Z HA:ASHOP < tr(zs) ' Z HAS”?)p < .

[s|<N [s|<N

With a similar argument to (4.81), one has that for M < N

E[XM() - XM@)P <t(S) D) |AJE -0,

M<|s|<N

as N,M — oo. This shows that the sequence {X®)()}yey is a Cauchy sequence
in the Hilbert space (L2(H),{:,-)z2), where (A, By;» = E(A, B) for A, B random

elements of H. Thus, the limit of this sequence exists and
XM (1) - X(t) e L2(H),

which completes the proof. O

Proposition IV.41. Let X (t) defined as in (4.78). Assume that {As, s € Z} are

Hilbert-Schmidt operators with Y. . |As|us < 0. Moreover, letting Zs; = {es, €;),
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where {e;} is a CONS diagonalizing . = Eley ® €], assume that

2
2 Cum(ZO,KN ZO,EQ; Z07Z37 ZO,£4) < B < 0.
£1,42,03,04

Then, the process {X(t), t € Z} satisfies Assumption V.

Proof. Recall that part (a) of Assumption V' entails the finite fourth moment of
X @]
Let XM)(¢) and X~)(#) be as defined in (4.80). Then, for every k € N such that

E|e|* < o0, we have that
_ k
EIX ™" < > 1Aalop- - [AslopE (lee—sy - fee—s )
1/k 1/k
< 2 1Aalop I AGNE (Jeemsi 1) - E (ler—s,]1¥)

= EHEOHk : Z | Asyllop - - - [ Asy lop

=Eleol*- [ Y] |Aslop | =0, as N — o,

[s|>N

(4.82)

where the inequality in the second line follows from the generalized Holder inequality
(cf. Theorem 11 of Hardy et al., 1952) and we used that |Asop < [|As|lus. Hence, we
have £*(H)-convergence of X\ to X,, in the sense that

lim (B | X(1) - XN (1)) oo

N—o0

These previous calculations also show directly that E|X;|* < oo. Specifically, for
k = 4, part (a) is proved.

Now, for part (b), as in the proof of Lemma IV.40, letting {e;} be a CONS diag-
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onalizing ¥, = E[ey ® €], we write

A, = Zaij(s)ei ®e; and €_ = Z Zi_s k€,

1,J k
with Z, ) = (e, e;). Note that {e; ® e;} is a CONS in the Hilbert space X of
Hilbert-Schmidt operators on H equipped with (-, )gs and the above expression for

A, converges in | - |ps. Let also

Agi= Y aij(s)e; ®e;

J

Xi(t) = (X(t),e;) = Zzazj(S)Zt—s,j = 2 Agi€—s,

SEL j SEZL

so that X (t) = >, X;(t)e;. Recall the representation in Proposition VI.10 (see also
(4.20)). For notational simplicity suppose that the process X (t) is real relative to the
CONS {e;}, i.e., all the X;(t)’s are real random variables.

We start by exploiting the multilinearity of the cumulants and the fact that ¢’s
are iid. We have by Proposition VI.10 that cum (X (u), X (v), X (w), X(0)) equals:

| cum (Xi(u), X;(v), Xi(w), X;(0))

S1€Z So€EZ S3€Z S4EL

— chum<2 Ag i€y SI,ZASQJEU SQ,ZASMQU 33721454]6 54>
= ZZcum<Z Au 81168172’41) 52]652,21410 33163372 A_s4]654>

51€Z SQEZ SgEZ S4€Z
= ZZ Z Z Z Z cum (Ay—s,.i-€sys Avsyj €spr Awsyi-€sqs Asy j€s,)|  (4.83)
7 ] 81€ZSQEZS3GZS4EZ
= 2 Z Z cumnl (Aufs,ifs; Avfs,ij’ Awfs,i-em Afs,j-es) ) (484>
i J SEZL

where (4.84) follows from the fact that ¢;’s are iid and (4.83) will be justified in the
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end of this proof.

Continuing, (4.84) is equal to

ZZ Z Z a’lfl ajf2( S>ai53 (w - S)ajf4(_s>cum (Zs,éu Lty Ls ts ZS,&;)

7 ] SEZ fl ZQ f3 Z4

(4.85)

or, equivalently

Z Z Z 2 al@l a]£2( S)aws (w - S)CLJ'@4(—S)CHIH (ZO,‘€17 Z0,€27 ZO,ng 20754) :

7 j SEZ 61 EQ 63 é4
(4.86)

Changing the order of summation and applying the Cauchy-Schwarz inequality

over >, ., we have that (4.86) is bounded above by

2
> cum(Zog,, Zoy: Zos: Zo,)
L

\/ Z azél = 8)aje, (v = 8)aie, (w — 5>aﬂ4<_s>])2
5] (e e

SEZL %

1/2
JOXTACEDY (Zam—s)?)] ,

=B Z ”AU—SHHSHAv—SHHSHAw—8||HSHA—SHHS>

SEZL

where the above inequality follows by applying the Cauchy-Schwarz inequality twice —

once over Y. and once over > .. The last relation follows from the fact that | A;|?« =
7 i HS

Ze,i a(t)?.
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Thus, we finally obtain:

SUPZZ

WweZ UEZ veL

< sup Z Z B Z HAu—sHHSHAU—SHHSHAUJ—SHHSHA—SHHS

wEZ

ZZ cum (X;(u), X;(v), X;(w), Xj(o))‘

iog

u€EZ veL SEZL

3
< Bsug | Awllas - (Z ||Au—s||HS> < .
wEe

SEZL

Now, it only remains to justify the equality (4.83). We will use X™(¢) and
X~WM)(t) again. The calculations in (4.82) imply again by the generalized Holder
inequality and the Dominated Convergence Theorem that

IE[ tim X (u) XV (U)X.(M(w)X;M(O)] — lim E[Xfm(u)X;N’(v)XFN) (w)X;M(O)].

i i
N—ow N—o0

To this end, we introduce some notation. For each pair m = (mq,msy) € {(u,1),
(v,7), (w,4),(0,7)}, we write XY for XN (my). For example, for m = (u,i) we have

that X\ = X Z.(N)(u). Thus, using the definition of cumulants, we obtain

v=(v1,...,Vq) =1 mey; ]
= lim cum( Z Agi€usys Z A, €o—sys
N—o0
|s1|<|N| |s2|<|N|

Z A53,i~€w—837 Z A547i-6—34)

ls3|<|N] |sal<|N|
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= lim 2 cum (A817i~6u—81a Asg,j'ev—sgv AS3,Z"€’UJ—S37 AS4,i~6—S4)

—00
|51|7|52|7|53|7|S4|<‘N|

= Z cum (Asl,i-eu—sla ASQ,j-Ev—827 AS3,i-€w—S37 A34,i-€—34) )

‘51|7‘32|7|33|7|34|€Z

where the sum is over all unordered partitions of {(u, ), (v, j), (w,?), (0,7)}. The proof

is complete.

179



CHAPTER V

Minimax Rates

In this chapter we continue examining the setting of gridded data, where the grid
size either stays fixed or shrinks to zero as the sample size increases (cf Section 4.5).
Moreover, we focus our interest on Pp(, L), a class of covariance functions that are
dominated by a power law as in (4.32). For this class of covariance functions, we
were able to obtain explicit rates (upper bounds) on the consistency of our proposed
lag-window estimator. By comparing with these carefully computed rates, we show
that our spectral density estimator is minimax rate optimal for spectral densities in
Pp(B,L). These minimax rate results, to the best of our knowledge, are the first to
be established for the pointwise inference of the spectral density of functional time
series or function-valued, continuous-time processes observed at discrete time points.

The ideas behind the proofs of these results are heavily influenced by Samarov (1977).

5.1 Minimax rates

The minimax rates for the spectral density estimation problem have received some
attention. A few examples of such studies for times series include Samarov (1977),
Bentkus (1985), and Efromovich (1998), among others. The continuous-time set-
ting, however, appears to have been less studied (see, e.g., Ginovyan, 2011, and the

references therein). To the best of our knowledge, results on minimax rates for the
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pointwise inference of the spectral density of functional time series or function-valued,
continuous-time processes observed at discrete time points have not yet been estab-
lished. Also, we are not aware of such results for random fields indexed by Z¢ or R¢,
d>1.

Assuming {X(¢)} is Gaussian, below we extend the work of Samarov (1977) by
focusing on the classes Pp(8, L) and Pe (S, L) considered in Section 4.5. As in Section
4.5, we assume the data are observed on a grid. Our first result is concerned with the
case 0, = 1, where, in accordance with Section 4.5.1, we consider a discrete parameter

process {X (t),t € Z%}.

Theorem V.1. Assume that {X(t),t € Z%} is a stationary Gaussian process with
spectral density function f. Let M, be the class of all possible estimators f, of f based
on the observations X (t),t € {1,...,n}%. Then, for any interior point 0y € (—m,7)?

and 3,L > 0,

tminf inf  sup P (|1a(0) — S(00)lys =0 ) >0, (5.1)
n—o0 fHEM"fGPD(,B,L)

where Pp(B, L) is defined in (4.32).

Remark V.2. Note that |T,| = n? for T,, = {1,...,n}% Hence, by Theorem IV.17, the
estimator f,,(6) achieves the minimax rate |T,,|~#/(28+d) — p~(48)/(25+d) ypiformly over
the class Pp(3,L). Thus, in the setting of processes indexed by Z¢, our estimators

are rate-optimal in a uniform sense, for the power-law class and for all dimensions

d=1.

Proof of Theorem V.1 (Outline). The detailed proof of Theorem V.1 is given in Sec-
tion 5.2. We describe the key elements of the proof here. First, for any member e¢;
of the real CONS, consider the (scalar) real-valued process X, (t) = (X (t), e;ym and

let C,,(x) and f,(0) be its stationary covariance and spectral density, respective. If
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fePp(f,L) then
JRd(l + [29)|Ce,(@)|dzr < L and | fe,(60) = fe,(0)] < |f(60) — £(60) us.

These follow from the simple fact that |[(A¢, o)u| < |A|op for any bounded linear
operator A and unitary ¢ € H. Thus, it suffices to prove Theorem V.1 by focusing on
scalar, real-valued processes. ¢ = e;, the real basis. The crucial step of the proof is
constructing two functions fo ,, f1., in Pp(f, L) such that the distance between them

accurately measures the complexity of the estimation problem. Let
fon(0) = L/2-1(0 € [—m,7]%).

For 6 = (6;)%_, € R?, define the function

g(0) = e

d
i=1

©(0;), where p(x) = exp (— ! 2) I(|z| <7), zeR,

1— (z/m)

for some ¢ > 0. Note that the so-called “bump” function g is compactly supported

and infinitely differentiable. Consider

0—0
_pB, (2 Y0
gn(0) hng( W )

where h, = M - n~¥@8+4) for some appropriate constant M. Now, let t

fl,n(9> = fO,n(e) + [gn<0) + gn(_9>]'

Thus, the distance between fo,,(0) and fi,(6) is g,(0) + gn(—0) = O(n=%/26+d),
We then apply Theorem 2.5(iii) in T'sybakov (2008) to obtain the desired result by

verifying the following:
(1) fon, fin € Pp(B, L);
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(2) fin(60) — fon(00) = coyn=B/28+d) for n large enough, where cg, = MP?(1+1(0y =

0)) > 0;

(3) sup,, KL(PPy,, Py,) < o0, where KL stands for the Kullback-Leibler divergence

and Py, and Py, are probability distributions under fy, and f;, respectively.

The most technically challenging part of the proof is the computation of KL(P; ,,, Py ,,)
in part (3), which is accomplished by following and extending an approach introduced

in Samarov (1977). For details, see Sections 5.2 and 5.3. O

The next result gives the minimax rate for the continuous-parameter Gaussian

process whose spectral density belongs to Pc (3, L), defined in (4.36).

Theorem V.3. Let {X(t), t € R} be a stationary Gaussian process with spectral
density f. Let M,, be the class of all possible estimators f, of f based on the obser-

vations X (ké,),k € {1,...,n}%. Then, for each 0y € R and 3, L > 0,

liminf inf  sup P (]| £a(60) — f(00)[us = (nd,) D) > 0, (5.2)
n=0 fn€Mn fepo(B,L)

where Po(B, L) is defined in (4.36).
The proof of Theorem V.3 is similar to that of Theorem V.1 and is presented in
Section 5.3. We conclude this section with several remarks.

Remark V.4. Comparing the minimax lower bounds in (5.1) and (5.2), one can inter-

pret (nd,)? as the “effective” sample size in the case of mixed-domain asymptotics:
0, > 0 and nd, — 0.

1. Recall Remark IV.20 and observe that, in the fine sampling regime, the rate
of f,(f) obtained in (4.37) matches the minimax lower bound in (5.2). To the
best of our knowledge, this is the first result on the minimax rate for spectral

density estimation in a mixed-domain setting.
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2. An open problem is the construction of a narrower class P¢, which reflects both
the tail-decay of the auto-covariance (through ) and its smoothness (through
) so that the upper- and lower-bounds on the rate of the estimators match in

both the fine- and coarse-sampling regimes (cf. Remark IV.20).

5.2 Proof for discrete time

For any member e; of the real CONS, consider the (scalar) real-valued process
Xei(t) = (X (1), es)m

and let C¢, (z) and f.,(0) be its stationary covariance and spectral density, respectively.

If fePp(B,L) then

JRd(l + |2]9)|Ce,(@)lde < L and | fe,(60) = fei(80)] < |/ (60) = £(6o) |-

These follow from the simple fact that |[(A¢, o)u| < |Alop for any bounded linear
operator A and unitary ¢ € H. Thus, it suffices to prove Theorems V.1 and V.3 for

scalar, real-valued processes, which we do below.

Proof of Theorem V.1. Let | - | denote the Euclidean norm in R? and C, be the
covariance that corresponds to the spectral density ¢g. Fix an interior point 6, €

(=, m)% and let fo,(0) = L/(2- (2m)%) - 1(0 € [—m, 7|?). Then,

. L
Cy, . (k :J e 10T do = 1(k = 0)L/2, 5.3
b= G = 1k = 0L/ (53)
and therefore
1 1Ck, () (1 + [E]?) = Cy, . (0) = L/2 < L. (5.4)
keZ?
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Let for 6 = (6;,)L, € R4,

d

g(0) =e€- ng(é’i), where ¢(x) = exp (—ﬁ) I(|z] <7), (zeR) (5.5)

i=1

for some € > 0, which is to be determined. The function ¢ is a type of a “bump”
function that belongs to C°(R) (the class of infinitely differentiable functions with
compact support). The support of ¢ is the compact interval [—m,w]. Hence g €

C(RY) and its support is [—, 7]%. Consider the function

nl0) 2 (1), (5.6)

where 0 < h,, < 1 and tends to 0 at a rate to be determined later. Observe that since

d

0y € (—m,m)%, the support of g, is included in 6y + h,, - [—m, 7]? = (=7, 7)¢, for all

sufficiently small h,,.

Now, consider the “alternative” spectral density models:

fin(0) = fon(0) + [9n(0) + gn(—-0)] = g Amma(0) +7a(0), O € [-m 7]

We will choose the sequence h,, and the constant ¢ > 0 such that the following three

properties hold.
Properties:

(1) fon, fin € Pp(B, L), where the class Pp(f, L) is defined in (4.32).

(2) For all n large enough, we have
J1.0(60) = fon(bo) = halg(0) + g(200/hn)] = g(0)(1 + 1(6 = 0)) - hp. (5.7

(3) KL(Py,,Py,) < C < o0, where KL stands for the Kullback-Leibler distance and

Py, and PPy, are probability distributions of the data {X(k), k € {1,---,n}¢}
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under fy, and f;, respectively.

Proof of Property (1). We have already shown that f;,, € Pp(5, L). Recalling (4.32),

and in view of (5.3) and (5.4), to prove fi, € Pp(f, L), it is enough to show that

L
22 Co (RI+ [K1%) < 7, (5:8)
kezd
where Cy, (k) = §oc_ qa e Fga(0)d0.
We have that for all k = (k;)L, € Z¢,
; 6—40
C,, (k) = f e kRl ( 0) o
og[—m,m]d ho,
= pP+d. 6—ﬂegk e—ﬁkahn (m)dm
o ze[—m,m]d g (59)

d
—c- h£+d . e_ﬂegkl_[@(kihn),

i=1

where we used the change of variables © = (6 — 60y)/h,, and the fact that 6y + h,, -
[—7, m]? = (=, 7)¢, for all sufficiently small h,,. The last relation follows from (5.5),
where @(z) == §"_e ™ p(u)du denotes the Fourier transform of the bump function
¢. Now using the fact that the derivatives of ¢ vanish at +, i.e., p(+7) = 0, for

all £ =0,1,..., integration by parts yields

~ 1 " —izu
p(x) = Cin)t J_W e~ (y)du, €=0,1,...

Indeed, for all £, the derivative ¢¥)(x) is continuous and supported on [—7, 7], and

thus

T

|o(z)| < co A (|x|_£c€), where ¢ = f |<p(€)(u)|du.

—T
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In view of (5.9), we have

1C,. ( h5+d]_[ <c0 o |é> (5.10)

We will choose ¢ > 2 and € > 0 to satisfy (5.8) for all sufficiently small h,,. Notice

that |k||® < d®=Dv0? |k;|. Hence, (5.8) follows from

|

TON D 1CL RI(L + [Kil?) = &7 Y (G, (R)I(L+ [ka]”) <

i=1 kezd kezd

where k = (k;)L,. Indeed, this follows from the observation that, by (5.9), we have

d
Z Z |an(k1"" 7kd)||kl|ﬁ =d Z |an(k1"" vkd>||k1|ﬁ'

i=1 ke7d kezd

Thus, it suffices to show that

D C (B)(L+ [k]?) < 1Co, (O +2 > [Cyp (k)| |
keZd k=(k;){_ €Zd (5.11)

L
S 4@y

Since h,, € (0,1), (5.10) readily implies that

|an(0)| < € Cg'
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Also, applying (5.10),

> Cu Bk

k=(k;)¢_,ezd
<e- RAHL L |8 Ce -1 Ce

| (5.12)

qd-1

[h ]G%!Jh ol? (CO/\ T >] x [hné<COA - |Z)

= ¢ x A, x (Bp)*

Observe that A, and B, are Riemann sums for the integrals

A::J || (COA z) dr and B:zf (c z) dx,
zeR | | zeR | |

which are clearly finite for ¢ > || + 2. Taking such a value of ¢ and using the fact
that A, — A and B,, — B, as h,, — 0, we obtain that the right hand side of (5.12)
is bounded above by 2e x A x B4~ for all sufficiently small h,. Therefore, we can

ensure that (5.11) holds by picking € > 0 such that

L

0<e- [CO+4AXBd1] W

This shows that fi, € Pp(f, L) and completes the proof of Property (1).

Proof of Property (2). This is immediate. Relation (5.7) holds for all sufficiently
large n since g(6y/h,) — g(0)1(6y = 0), as h,, — 0, by the fact that g is supported

on [—m,7].

Proof of Property (3). Let D,, and B,, ¢ be the covariance matrices of the data X (t),t €

{1,...,n}? that correspond to, respectively, the spectral densities 7,(0) = ¢,(0) +
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gn(—0) and fo,(0) + &1, (0), for some € € [0, 1]. By Lemma V.6,

KL (P, Pon) < IID &8, ¢l (5.13)

op?

where | - |r is the Frobenius norm and || - |op is the matrix operator norm induced
by the Euclidian vector norm. It follows from part (iii) of Lemma V.5 applied to

A, = D, that

lDdEsent | e

Thus, recalling 7,(6) = ¢,(0) +g,(—6), Relation (5.6), and using a change of variables,

we obtain:

LDl < @ﬂh””{{ﬁ sﬂmw}=4w%> R (5.14)

e[—m,7]¢

where we used (5.5). Applying (i) and (ii) of Lemma V.5, we obtain

1
B, <
” n,gH P (27T)d

(5.15)

b«lw

sup [ foa(8) + Era(0)]

Oe[—m,x]?

since 7,(0) = 0 and fo,(0) = L/(2- (27)9), 0 € [—n,7|. Combining (5.13) - (5.15),

8- (2n)/?gl?.
KL(Pu Po) = gDl 05 < (0 2 ) i

which is bounded, if we set

By picking M = My, so that [g(0) + g(0)1(6y = 0)] - MP = 1, we have that for all

sufficiently large n,

_aB _dB

|f1n(90) - f()n(go)\ = [9(0) + 9(0)1(90 = 0)] MP.pTm = p T 25+
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which is a lower bound in the estimation error. The proof is complete by appealing

to Theorem 2.5(iii) of Tsybakov (2008). O

5.3 Proof for continuous time

In this section, we present the proof of Theorem V.3. Recall that for this theorem

we are interested in processes whose spectral density belongs in Pa (5, L).

Proof of Theorem V.3. As argued in the proof of Theorem V.1, it suffices to fo-
cus on the case of scalar-valued processes {X(t), t € R?}. As for the discrete-time
case, we will introduce two models with spectral densities fy,,(0) and f1,(6), and

corresponding auto-covariances C ,,(t) and C,(t). Consider the function:
d
fon(0) =e€- H ¢ (0n = (6){_, e RY, (5.16)

=1

where ¢(z) = e */2/A/21, z € R is the standard Normal density.

With a straightforward change of variables, we obtain:

Coml() = J]R 0L (0)d — e(2m)72 dl_[gzﬁ /62), (5.17)

where we used the fact that {; e *“¢(u)du = v/2m¢(x).

As in the time-series setting, let

Fun®) = fonl®) + B2 [g (9 ;f(’) ‘o (9 Z(’)] , (5.18)

where ¢ is as in (5.5). Following the proof of Theorem V.1, we will verify the following.

Properties:

(1) fon, fin€ Pc(B, L), where the class Po(S, L) is defined in (4.36).
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(2) The functions fy, and f;, satisfy Relation (5.7).

(3) The KL-divergence is bounded, i.e., sup, KL(Py,,Py,) < oo, where P;, are
the probability distributions of the data {X(,k), k € {1,---,n}¢} under the

models f;,, 1 =0,1.

Property (2) above is immediate by definition since the difference fy,,(6) — f1..(6)

is constructed as in the proof of Theorem V.1.

Proof of Property (1): The fact that f, € Pc(f, L) is straightforward. Indeed,
by (5.17), we have

f (1 + [2]?)|Con(2)ldz <. € - 5?1[ (14 |2]%)e /2 g

Re Re (5.19)

= ef (1 + (8, - u®)e 1" 2du < ef (1 + [u]®)e 1P 2du < L/2,
R4 R4

for all 6, € (0,1) and for a sufficiently small ¢ > 0. This follows from the fact that
with &, € (0,1), we have ||d,u[? < [u[® and the fact that {5, (1+ [u®)e 1*2du < .
This ensures that (4.36) holds with C' replaced by Cp,, and L by L/2. That is,
fon € Po(B,L).

Now, we show that f;,, defined in (5.18) belongs to Pc(5, L), by perhaps lowering

the value of € > 0. Let

C, . (2) = f =075 g (6)do,
]Rd

where g, is as in (5.6). As argued in the proof of Theorem V.1, in view of (5.19), it
suffices to show that

g. (5.20)

[0 1) C i <

Note that Relation (5.10) remains valid if k& € Z¢ therein is replaced with x € R?.
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Therefore, (5.20) follows by picking a possibly smaller value of ¢ > 0, provided

)dx<oo

for some £ € N, i = 1,---,d. Notice that for h, € (0,1], we have hZ(1 + |z]?) <

d
hﬁ“’J (1+ |z]?) H <co A
Rd

=1

(1 + [hnz|?), and hence the last integral is bounded above by

d

d
d B B G
i, o ) T (o0 g e = [ e i T (oo )

i=1 =1

where we used the change of variables u := h,z. Clearly, the last integral is finite
provided ¢ > |3| + 2. This implies that (5.20) holds with a suitably chosen ¢ > 0,

showing that f;, € Po(8, L) and completing the proof of Property (2).

Proof of Property (3): Now, as in the proof of Theorem V.1 we will bound the KL-
divergence KL(PPy ,,, Py ,,), where IP;,, is the law of the Gaussian vector {X;(0,k), k €
{1,---,n}?} under the model f;,, i =0, 1.

Observe that the Z%-indexed stationary process {X;(0,k), k € Z} has the so-called

folded spectral density

Fn(0) = 672> fim (9 il 2”6) . fe[-m7]?, i=0,1. (5.21)

0
lez4 n

We shall apply the same argument as in the proof of Theorem V.1 based on Samarov’s
Lemmas V.6 and V.5 applied to the folded spectral densities.

For £ € [0,1], let D,, and B, ¢ be the covariance matrices of zero-mean Gaussian
vectors having spectral densities 7,(0) = ﬁn(é’) — fon(8) and fo,(0) + E7,(0), 6 €

4 respectively, where

~ 0+ 2ml 90 0+ 2ml 90
= o, =1
S [o (G ) o ()

[_ﬂ-v 7T]
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Then, by Lemma V.6, we have

1
KL(P1,5, Pon) < §||Dn\|%HB;§||2 (5.22)

op’
for some £ € [0,1]. As in (5.14) from Lemma V.5(iii) applied to A,, == D,,, we obtain

1D, < (20) - nf j 7, (6)%d

[77777r]d

<4-(2m)* - ndp2Ps 2 f
d

[_ﬂ-vﬂ'] le7d

9 2
—4.(27)¢. dh%(s—df LY g

=4 2m)" nh 0 g e = de - (2m)T - n B 25,

0+210  0,\°
Zg( o, _h_n) @

(5.23)

where in the last two integrals we made changes of variables, and the last relation
follows from the definition of ¢ in (5.5).

Now, we deal with bounding | B, éHOp. Notice that B, ¢ is the covariance matrix
of a Gaussian vector {X¢(0,k), k € {1,---,n}?} coming from a stationary process
Y (k) = X¢(6,k), k € Z¢ with spectral density fo,n(e) + &7,(0), 0 € [—m, 7], where
T(0) = 0 and £ € [0,1]. By Lemma V.5(ii), we then have that

Bl < sw [Fu®+ 0] < sw [fu®)]

Oe[—m,x]? Oe[—m,x]d

Recalling the definition of f;, in (5.16) and the folded spectral density in (5.21), we

obtain fo..(0) = €0, T, ¢(6;) = ed; %412 /(21)¥2 for 6 € [, 7] Hence

2
ed7r /2

| B, tllop < i (5.24)

1 ~ ~1
sw [fn®] < G

(27T)d Oe[—m,x]

Finally, by (5.22), (5.23), and (5.24),

1
KL(P1n, Pon) < 5| Dullel Bygloy < c-nhil 16,4 030 = ¢ - (nd) hi™,

193



where ¢ = 267! @[24e?”. Thus, the KL-divergence is uniformly bounded if we set

ho = M - (né,) 5+,

Picking M so that g(0)(1+ 1(6, = 0)) - M” = 1, we have that

a4
[ f1a(80) — fon(60)] = g(0)(1 + L(8p = 0)) - MP - (n,,) ™35 = (nd,) 7+,
which, by appealing to Theorem 2.5(iii) of Tsybakov (2008), yields the desired lower

bound in estimation error in (5.2). O

5.4 Samarov-type lemmas

The technical lemmas needed in the above proofs come from Samarov (1977). The
first is a slight extension to the d-dimensional case. We provide proofs below for the

sake of completeness.

Lemma V.5. Let aj, j € Z be a sequence of numbers such that Djezd |a;|* < oo and

d

a; = a_j. Let also A, be a matriz of dimensions n®xn?, whose (j, k)-th element equals

a1, where j and k are multi-indices that belong to [0 :n —1]% = {0,1,--- ,n — 1}4
(i.e., the (j,k)-th element based on a natural orderz'ng of the multi-indices of [0
n —1]¢). Finally, define a(\) = (2m)~ dZ cga @€l A for X e [—m, w|% Then, for the
norms of A,, the following claims are true.

(i) |Anlop < (27T)d " SUP)\e[—mr,m]d la(A)].

(i) If A, is positive definite, then | A" op < (27) ™% - SUPye[_y a1 [1/(N)].

(iii) n= | A < Xepa lag|? = (20)7§__1a 02(A)dA.

Proof. Let N = n® and use the notation [0 : n — 1]¢ = {0,1,--- ,n — 1}%. We will

follow the arguments in Samarov (1977).
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(i) Since A, is a symmetric matrix, we have that
|Anllop = sup {|a" Auyl : [z =yl = 1, 2,y e RV},

where is the matrix (operator) norm induced by the Euclidian vector norm.
Now, let & = (2i)iejo:n—1)2 and ¥ = (¥i)se[o:mn—17¢- By Fourier inversion, we have
that

aj_j = f e IR A (A)dA.
[—m,m]¢

Therefore,

agl=| 33 j 10, 0(\)dA

€[0:n—1]4 ke[0:n—1]d

< j[ X w0 Y

* |jefom-114 ke(On—1]¢
) 1/2
< sup a(N)]- f >, @
Ae[—m,7]d [—m,m]d je[0:n—1]d
) 1/2
X J Z Z/keﬂkT)\ dA
[—m,m]d ke[0:n—1]¢

= @2m)* sup o)zl - [y,
Ae[—m,m]d

The second inequality follows from the Cauchy-Schwarz inequality and the last
equality follows by Parseval’s identity, since the functions gy, () = (27) %22,
Ae[—m 7], ke[0: (n—1)]% are orthonormal in L*([—m, x| C).

(ii) If A, is also positive definite, then A, is invertible.

Since | - [op is the spectral norm, we have that

1
| A, lop = max o;(A ") = max A lz]o =1,z € RN}



where the last equality follows from Rayleigh quotient optimization results,

when A,, is positive definite.

As in part (1), with z* denoting the complex conjugate of z, we have that

|ITAnZL"| _ :L'TAn.’E :J Z l,jeﬁjT)\ CY()\) Z eﬁkTAyk d\

[—m,m]d je[0:n—1]d ke[0:n—1]
2
_ Z i TA
_ zje a(A)dA
[—m,7]d je[0:n—1]d
2
> 1nf M| J zje A d\
] On 1]d

—(swp |a-1<A>|) |2l - (2m)°,
Ae[—m,m]d

and the result follows.

(iii) It follows that

Al = D0 X ey = >, [ [(n = Ikl

ie[0:n—1]9 je[0:n—1]9 ke[—(n—1):(n—1)]¢ i=1

where [-(n—1) : (n — 1)]¢ = {—(n—1), -+ ,n — 1}%. Thus,

1 d ki
LAz - 0 Bl < 3 = o | a0y

ke[—(n—1):(n—1)]4 i=1 jezd

by Parseval’s identity.

Lemma V.6. Let By and By be symmetric, positive definite n x n matrices such that
D := B;— By is non-negative definite. Let Py and Py be the probability distributions of

zero-mean Gaussian vectors with covariance matrices By and By, respectively. Then,
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there is a & € 0, 1] such that

1 _
KL(P, ) < SIDEIB )

op?

where Be = By+£D, and where || |¢ stands for the matriz Frobenius norm and | - |op

stands for the matriz operator norm induced by the Fuclidean vector norm.

Proof. Since the data is assumed Gaussian, we can immediately obtain that
1
KL(P, Py) = 3 {tr(B1B;' — E) + log | By| — log | B1|}, (5.25)

where tr(A) and |A| are the trace and determinant of the matrix A and FE is the
identity matrix of dimensions n x n. Notice that By = By + AD, A € [0,1] is a

positive definite covariance matrix. The expression in (5.25) can be rewritten as
1
KL(P, Py) = 3 {tr[B1(By" — Bi")] + log | By| — log | By} . (5.26)

We define the function ¢(\) = tr(B; B ') +log|By| and note that by the intermediate

value theorem, we have

KL(P, Py) = —F——2 = —— . ¢/(¢),

for some £ € [0, 1]. Using the following differentiation rules

d 4 -1 d —1
AT = =47 (ﬁA(A)) ATV,
%log [A(N)| = tr (A‘l(/\)%fl()\)) ;
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and the fact that dB,/d\ = D, we obtain that (5.26) becomes:

KL(Py, Py) = - -tr [B1B;'DB;' — DB; |

(5.27)

N — N

tr[(By — BE)BngBgl] ,

for some € € [0, 1]. To estimate the rhs of (5.27) we will use the following inequalities

(see, e.g., Davies, 1973):
tr(AB)| < |Alr - [ B (5.28)
If the matrices A and B are symmetric, then
|BA|r = [AB|r < [|Afop| B, (5.29)

where

1/2
|Allr = (Z a?j> , [[Allop = sup{||Azs; [z]2 =1, = e R"}.

i!j

From (5.27) with the help of (5.28) and (5.29) we obtain:

1 . 1 _
KL(Py, R) < 5Bt = Belle [ DIl Be o < 51 DI5 B¢ 5y
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CHAPTER VI

Asymptotic Normality

In this chapter, we investigate the asymptotic distribution of the spectral density
estimator introduced in Chapter IV. We adopt the extra assumption that the process
X in the complex Hilbert space H is Gaussian. With this assumption in place, we
establish that the asymptotic distribution of our proposed estimator is also Gaussian,
in what can be considered a Central Limit Theorem result. The proof is based on the
computation of all the moments of the standardized estimator, which we achieve by

establishing a novel Isserlis type formula.

6.1 Asymptotic distribution

In this chapter, we continue to consider the case of gridded data described by
(4.26) and (4.27). The goal here is to present a central limit theorem for our spectral
density estimator fn(Q) assuming that {X (¢)} is a stationary Gaussian process, where
in this section we do not restrict X to be real in H. However, due to the technical
nature of this topic, we will focus on the case d = 1. As discussed in Remark IV.7,
for d = 1 the normalization |T, n (T, — (t — s))| in f,(f) does not affect the rate.

Thus, for convenience, we will eliminate that and consider instead

Fu0) = 2 S DX (5,1) @ X (5,0)K (iA_j -5n> | (6.1)
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We will prove a central limit theorem for f, () assuming that d,, — some dy, € [0, 0)
as n — o0. The time-series and mixed-domain cases are covered by d,, = 1 and 0,
respectively.

Interestingly, the asymptotic distribution of fn(G) involves the notion of pseudo-
covariance. Recall that from (4.4) the pseudo-covariance function is defined as C/(h) =
E[X(t + h) ® X (t)]. In accordance with (4.6) and (4.29), define the pseudo-spectral
density:

< 1

f(0) = - JR e C(x)dx, 0eR,

and, for 6 > 0, the folded pseudo-spectral density:

0

F(0;6) = *ﬂ’“T‘)‘SC(ka) e [—x/68,7/d).

27T

Note that f(6) and f(6;6) are well defined assuming that (e [C(2)wdz < oo and
Yoo IC(kd)|w < oo, respectively. For convenience, also write f(6;0) = f(6) and
£(6;0) = f(0).

Let now {e;} be an arbitrary fixed CONS of H, and define

Crelt) = (C(t)er, er) = E[(X (1), er)(X(0), en)),
Cre(t) = {C(t)er, ey = E[(X (1), er){X(0), ex)].
The following assumption will be needed for establishing the central limit theorem.

Assumption CLT. Let the grid size d,, and bandwidth A,, satisfy 9, — some
do € [0,00) and (nd,)/A, — oo. Also, assume that there exist positive constants L,
such that

Lp6, — 0, L,/A, — 0,
and for which the following hold:
(a) sup, 6, Z;O:—oo IC(0n2)[tr < 0 and 4, Z\x|>Ln IC(0nz)[[tx — O;
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(b) [f(8;0n) — f(8; 600) [ex — 0

(€) 5D, 00 512 [CG)he < 5 and 6y Sy p, 1C(502) e — 0

() [ £(8:80) = f(6;00) sx — O;

(e) &2 le e —o0 |Ck(0n1)] - [Cre(On2)| < agy, such that 3, ,age < o0;

(£) 0237 oo o |Cht(6n1)] - |Cro(8n2)| < b, such that Y, , b < 0.

Note that if §,, = 0, € (0,00) for all n, then the conditions (a)-(f) follow from
3 1CGw®) | < 0 and 32 [|C(657) | < 0. For 8, = 0, the conditions
(a) and (c) in the above assumption are related to the notion of directly Riemann
integrability (dRi) (cf., e.g., Feller, 2008); if, in addition, C'(z) and C(z) are functions
in C, then the dRi of C(2)e!*” and C(x)e ™7 also implies (b) and (d) respectively.

The following modified assumption on the kernel K is also needed.

Assumption K’. The nonnegative kernel K has compact support, is symmetric

about 0, and is of bounded variation.

The following result is a central limit theorem for fn(Q), where the weak conver-

gence is defined in the space X of Hilbert-Schmidt operators on H.

Theorem VI.1. Consider the stationary zero-mean Gaussian process {X(t), t € R}

and assume that Assumptions CLT and K hold. Define

T0) =\ [fui0) ~Bfu0)] o<,

where f,(0) is given in (6.1). Then, for any 0 € [—7/6x, /8], which is taken as R
if 0 = 0,

T.(0) 5 T(6) inX,
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where T (0) is a zero-mean Gaussian element of X, such that for every finite collection

{ge, 0 =1,...,m}, and positive numbers {a;, ¢ =1,...,m},

Var (i ar (T (0)ge, ge>>
= (6.2)

= HK”% Z Ay, Ay, [|<f(07 500)9527gfl>|2 + C(@) ’<f<07 500)%7 gfl>‘2] )

0 la=1
where |K |3 = { K*(x)dz, and c(0) = Lo if 0o = 0 and Lip—o,1r/s,) if 00 > 0.

Remark VI.2. 1. Observe that the quantity >,", a¢{(T(0)ge,g¢) in (6.2) is real

since K is assumed symmetric.

2. The variances in (6.2) for all choices of {a,} and {g,} completely characterize
the distribution of 7. The expression { f(6)gz. ge,  in (6.2) does not depend on

the choice of real CONS, since

(C(t,5)g, hy = BX (1), h)(g, X (s)) = BX(¢), h){X(s),9), g,h e H.

The proof of this result, given in Section 6.2, is based on verifying the convergence
of “all moments” of the estimator together with a tightness condition.

The previous result does not provide an explicit representation of the limit. In
what follows, we obtain such an explicit, stochastic representation of 7 (6) for ¢(0) = 0,

where ¢(f) as in (6.2). Define the complex Gaussian random variables Z; ;’s as follows:

Zij =& +inig, <7, (6.3)

where &; ; and 7; ; are iid N(0,1/2) and Z;; = ZJ For ¢ = j, we have the Z;,’s are

real and N (0, 1), independent from the Z;,’s, for ¢ # j. Then, one obtains that the
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Z;;'s are zero-mean complex Gaussian variables such that

Zi,j = Zjﬂ‘ and E[Zi,jZi’,j’] = 5(147]-)’(1-/7]-/). (64)

Corollary VI.3. Let ¢(f) = 0 in (6.2) and assume the conditions of Theorem VI.1.
Let {e;(0)} be the (not necessarily real) CONS diagonalizing f(0), i,.e.,

Z Xi(0)ei(0) ® ei(0).

The random variable T (6) has the stochastic representation

0) < |K|. Z\/ 0) ®e;(0), (6.5)

where Z; ; as defined in (6.3). In particular, the covariance operator of T(6) is
E[T(0) ®us T (0) HKHQZ)‘ i(0) ®@¢;(0)) Rus (e:(0) @ e;(0)).
Proof. Let g;, £ =1,---,m be arbitrary in H and suppose
go = in(é)ei, x;(¢) e C.

Then, by Theorem VI.1, it is enough to verify that the representation of 7 in (6.5)

satisfies
Var( Y aiToe.00) = 1513 Y. anae | @i, 900 (6.:6)
/=1 01,05
for real constants a, € R,/ =1,..., m. Observe that

(T9e:90) = [ K|z Z VAN Z
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Thus, in view of (6.4), the LHS of (6.6) equals

IK13 Y anae, D) wi(t)w;(6)ws (6)ay (L) Nd e Ay B Zi ;7 5]

£1,62 i,1',3,3"

= K3 D, anapXidimi(ly)a; (o) (0)w:(6s).

l1,€24,7

(6.7)

The latter expression is the RHS of (6.6). On the other hand,

<f(6)9€27 gel> = Z /\i%(fl)M-

Thus, it is easy to see that that the right-hand sides of (6.6) and (6.7) are the

same. 0

We end this section with the following remark.

Remark V1.4. Observe that T (), for ¢(f) = 0 in (6.2), is a zero-mean random ele-
ment in the Hilbert space X of Hilbert-Schmidt operators. Therefore, Relation (6.5)
provides its Karhunen-Loéve type representation. That is, the covariance operator of
T (0) is diagonalized in the basis e; ;(0) = e;() @ €;(0), (i,7) € N?, where {¢;(6)} is
the CONS of H diagonalizing the operator f(#). The eigenvalues of the covariance
operator E[T(0) ® T (0)] are precisely A; ;(0) = Xi(0)A;(0), where the \;(6)’s are the

eigenvalues of f(0).

6.2 Overview of Central Limit Theorem proof

This section presents the proof of Theorem VI.1. The proof relies on the stan-
dardized estimator {7,} satisfying two properties; flat concentration and convergence
of moments. Because of the complexity of the verification of these properties for {7,},
we establish them separately, in Sections 6.3 and 6.4 respectively.

As stated in Section 6.1, {X(t),t € R} is a stationary Gaussian process in the
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complex Hilbert space H, we observe X at t = kd,,,k = 1,...,n, where nd,, — 0. We
will focus on the case §,, = 1, which contains the main ideas of the proof. The proof
for the general case follows from a straightforward adaptation of the special case.
As mentioned, we focus on the case 9, = 1, which is essentially the time-series
setting (cf. Section 4.5.1). Thus, we consider a discrete-time stationary process X =
{X(t),t € Z}, where X (t) are Gaussian elements of the complex Hilbert space H. We
explained in Section 6.1 that the conditions (a)-(f) in Assumption CLT hold in this

case if

0e]

>, [Ie@)u +1C@) ] < o, (6.8)

T=—00

which we assume below. Note that C' and C' are defined in (4.2) and (4.4) respectively.
Recall that X denotes the Hilbert space of Hilbert-Schmidt operators A : H — H,
equipped with the HS-inner product (A, B)ys = trace(B*A), A, B e X, and corre-

1/2

sponding norm | Af s = (A, A)ys. The spectral and pseudo spectral density functions

in this case are given by

F(0) = % kio ROk, F(6) = % k:iooeﬁﬂ%é(k), gc[-n x
Also,
To(0) = o5 (1(0) ~Ef.(6))
where

fal0) = —— 3 X (1) @ X () K <ZA;J> PRy

n

For this special setting, we will establish the following theorem:
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Theorem VI.5. Let X = {X(t),t € Z} be a stationary Gaussian process of the com-
plex Hilbert space H. Let A,, — o0, A, /n — 0, and assume that (6.8) and Assumption
K’ hold. Define

7.0 =5 [0 -EL0)]. oer

where fn(H) is given in (6.1). Then, for any 0 € [—m, 7],
T(0) > T(0) in X,

where T (0) is a zero-mean Gaussian element of X, such that for every finite collection

{ge, 0 =1,...,m}, and positive numbers {ap,{ =1,...,m},

Var (i ag (T (0)ge, 9ﬁ>>
=1

= HK”% Z Qg gy [|<f(9)g£27921>’2 + I(GZU,iﬂ') |<]E(9)%7 gzl>|2] :

l1,02=1

The following proposition describes the roadmap for proving this result. For
simplicity of notation, we will henceforth suppress the argument 6 in 7,() since

it 1s fixed.

Proposition V1.6. Let the assumptions of Theorem VI.5 hold. Also, let {e;,i = 1}

be a CONS of H. Assume that

(i) for any €,d > 0, there exists u € Z, such that

sup P(||(I — IL,) T |us > €) < 6,

n=1

where 11, : X — X is the orthogonal projection operator on X, = span(e; ®

e;,1,J <u), and
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(ii) for all ap € R and gy € H, we have

. Folo((an) Lk odd,
E [Z ag{Tnge, 9@>] ~ ( ) . (6.9)
=1 (k=1 [oZ,]* . k even,

where

02y = K3 Y anae (IFO)g0, 90 + Lo.sm (0) [T OV, 900

l1,02=1

Then there exists a Gaussian process T in X that fulfills the description of Theorem

VI5.

Proof. First, we state a useful identity for a complex Hilbert space. Write
(Tn, €i ® ejyus = {Tnej, eipm = Tnlej, €:),

By Lemma A.8 of Shen et al. (2022),

i1
)

Tole; +ei e +e)

N —

Tn(ej €i) (Talej e) + Tales €:) +

(6.10)

771<1'16j + ei,ﬁej + ei).

| =

Also, recall that {e; ® e;,4,7 = 1} is a CONS of X. Thus, (i) implies the flat con-
centration condition of Condition 1 of Theorem 7.7.4 of Hsing and Eubank (2015).
It follows from (ii), applying (6.10) plus Markov’s inequality, that Condition 2 of
Theorem 7.7.4 of Hsing and FEubank (2015) also holds. Thus, {7,,n > 1} is tight
and hence relatively compact. To show that 7, converges in distribution to some T,
it suffices to show that if 7, 4T along some subsequence {n'}, then 7 does not

depend on the subsequence. Now, by the continuous mapping theorem, (6.9) and a
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standard uniform integrability argument, we have

m k m k
E [Z ag T ge, 9€>] —-E [Z ar{T gs, g@] for all k&,

=1 /=1

where the limiting moments entail that »}," | a/{T g, ge) is distributed as N (0,07 ) (cf.

Theorem 30.1 of Billingsley, 2012). Relation (6.10) shows that the finite-dimensional
distributions of the real Gaussian process {(Tgs, gs), g0 € H} determine the finite-
dimensional distributions of {{Tg,h), g,h € H}, which in turn characterize the law

of the X-valued random element 7. The result thus follows. O

We will complete the proof of Theorem VI.5 by verifying the conditions (i) and
(ii) of Proposition VI.6, which will be established in Sections 6.3 and 6.4, respectively.
6.3 Flat concentration

In this section, we establish that (i) of Proposition VI.6 holds for {7,} under the

assumptions of the Proposition. This property is known as the flat concentration of

{Tn}-

By Markov’s inequality,
P(|(I - IL)Talus > €) < e ?E[(I - IL) T s-
Since

E|(I-IL)Talfis = D, EKTn er ®eomsl’, (6.11)

kvi>u

it is sufficient to show that

ZSUPEKE,%@GDHS\Q < o, (6.12)
ot

n
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which implies (i) of Proposition VI.6 by (6.11).
Without loss of generality suppose that the CONS {e;, j € N} of H is real and thus

X(t) = Dlen Xj(t)ej, where X;(t) = (X(t),e;)m are complex zero-mean Gaussian

random variables. Also, let

Cre(z) = (C(2),er @ eppus = (C(x)ey, ex). (6.13)

It follows that

<7;u er ® €e>Hs

_ N X @ X () - C(z‘—j),ek®ee>ﬂse“’“”K(ZA_])
i,j=1 n

Z [Xk )Xo(5) — Cru(i —j)} K <ZA_]> ;

3,7=1 n

V n

M

where Cy (i — j) = E[X(1)X,(j)]. By Lemma VI.12, we have

E[Xk(il)Xé(jl)Xk(iQ)Xe(jQ)] Cy 2(21 - ]1)Ck 6(22 - ]2) + Ck Z(Zl - ]2)0 (22 - ]1)

+ Cri (i1 — 12)Cre(j1 — J2)-

Thus,

E‘<7:17ek®e€>HS|2

Z Z 10(ir—j1—i2+J2) [¢ (il _jl) K (iQ _jQ)
A, A,

11,J1 92,72

x E { [Xk(zl)m — Choliy — j1)] [mXe(jz) — Chlia — j2)]}

Z Z 6“6(11 —J1— Zz+]2 (—ZlA Jl) K (Z2A_nj2)

n
11,J1 92,72

X Cir (i1 — 12)Cre(j1 — J2) (6.14)
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16 21 1—i2+7J2 il_.jl i2_j2
Ea P s L
21]122]2

x Cro(iy — j2)Crolia — j1)

=t Ap¢ + Bre.
We start with Ay ,. With the change of variables
Ty =11 — i3, Ty =J1 — J2,
Y1 =11—J1, Y2 =11

we obtain

(271')*2 n—1 I
nA 2 Cr(1)Cre(x2)e

z1,x2=1—n

Apy =

ApA(n—14+z1—22)
Y1 —T; + T2+ Y1
K|l—|K|————

y1=(—Ap)v(l—n+zi—x2

- Z Ck,k(331)0&@(%2)61'10(11_@)

n x1,x2=1—n

Ap A(n—1421—x2) y ri 4Tty
X D K <—1) K <—1 SRLA
)

An A

y1=(—An)v(l—n+zi—x2

Thus, with | K|y = max; |K ()|, we obtain

HKH2 (S
[Apye| < D [Crkl@n)l|Crelw)|

r1,x2=1—n

K5 < B
< Z |Crge(@1)[|Cre(22)] =t i

272

T1,r2=—0

By (6.13) and (ii) of Lemma IV.37, we have

2
K2
ZW\” e (Z |C(x tr) < .
k.t

T=—00
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ya=1v(1+y1)

) (0=l

(6.15)



We now turn to By, in (6.14). With the change of variables

X1 =11 — J2, T2 =12 — J1,

Y1 =% —J1, Y2 = 11,

or ) n—1 5 _ I
By, = (2r) Z Chop (1) Ch () ! T2+ 201)

nA
x1,x2=1—n
Ap A (n—14z1+22) nAa(ntyi)
_|_ —
3 v K <z_) K <95A#> Y
y1=(—Ap)v(l—n+zi+z2) " " y2=1v(1+y1)
2 —92 n—1 5 _ )
- 72 D1 Cralay)Crplag)ermrat2m)
n

x1,x0=1—n

ApA(n—14z1+22) y b y
1 1 2 Y1

y1=(—An)v(l—n+z1+x2)
Thus,

-1
K% S

K . .
| By, < 27r200 Z |Che(z1)| |Che(a2)|

r1,x2=1—n

2 n-l
< HKHOO Z ‘ék,é(x1)| ‘C’k,ﬂ(l?)} = Bk,f'

r1,x2=1—n

Applying the Cauchy-Schwarz inequality and in view of the definition of the Hilbert-

Schmidt inner product,

9 0
Sh < Bl S S st [Crsta)

kit z1,22=—00 k,l
K2 & : - : :
<o 2y [ ulCedel) |Gl (6.16)
R B kol
2
K% ($ e IKE (%
o sz_Ooua s | <55 x;_w”q Vo | <o
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Since the upper bounds oy, and i, do not depend on n, we have
Sup E (T, e ® edys|” < ke + Bre,
n

and Relations (6.15) and (6.16) imply (6.12).

6.4 Convergence of moments

The proof of (ii) of Proposition VI.6 is quite lengthy, and constitutes the core of
the central limit theorem proof. In Section 6.4.1, we will first focus on showing (ii)
for the case that X is scalar, i.e., X take values in C. There we will take advantage of
this simple setting to explain the ideas of the proof. In Section 6.4.2 |, we will prove

the proposition for the general case of X € H.

6.4.1 The scalar case

In this section, we focus on a zero-mean, stationary Gaussian time-series taking
values in C and compute the moments of 7,,. The purpose of this section is to develop

technical tools for the general moment calculations needed to prove (ii).

In this setting, C(t — s) = E[X ()X (s)], C(t — s) = E[X(t)X (s)] and

£(0) = %ziwc(x)ew (6.17)
Also, (6.8) becomes
3 [yc(x)| + |é<x)\] <. (6.18)

Observe that since C'(z) = C'(—=) in this case, we have that f(6) is real, even though

the process {X;, t € Z} is complex-valued. We shall also need the so-called pseudo-
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spectral density, defined as:

i 1 &
= Z )i, (6.19)

Recall also that the spectral density estimator is

where

Ky(y) = " K (y/A,).
The following proposition gives the asymptotic expression of E(7*) for the scalar
case.

Proposition VI.7. Assume that the conditions of Proposition VI.6 hold for the set-

ting H = C. Then,as n — 0,

o((4)) kodd,

(1 + o) (k = DU[(F(0) + Lio.emy (O)F(O) )| K 3]

k
>k even,

where f(0) and f(0) are as in (6.17) and (6.19).

Proof. Assume without loss of generality that the support of K is [—1,1].

The case k = 2

By Lemma VI.13 (for N =0, M =2, i.e., see (6.27)),

@RPET) = — 3 D Kol - i) Kolia— )

i1,j1=1142,j2=1

x E [(X; X5, — Clir — 1)) (X0, X5, — Clia — ) ]

1 " - , , . .
= A Z Z K@ (21 — jl) K@ (22 - ]2)

i1,j1=112,j2=1
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< [Clir — )Cl — 32) + Clin — i2)Cr — o)

= "Z2 + Z27
where
~ 1 = = . . . . . . . .
Ay = A iljzl—ligjzz—l Ko (11 — j1) Ko (12 — j2) - C(ir — j2)C(i2 — j1),
and

Ayim = D Kol 32) Ko lio— 2) - Clia — )0 — o).

"1, 1=112,j2=1

The two terms have somewhat different properties and we start with Eg. With the

change of variables

X1 =1 — J2, T2 =12 — J1,

Y1 =%t —7J1, Y2 =11,

n—1
Ay = oA, Z C(21)C ()02

z1,x2=—n+1

(n—1)A(n—14xz1+x2) n T1 + T9 — Uy nA(n+y1)

y1=1-n)v(l—-n+z1+x2 yo=1v(1+y1)
1 n—1

— — Z C(x1)0<x2)eﬁ:c10€ﬁz20

z1,x2=—n+1

(n—=1)A(n—14xz1+x2) y R y
1 1 27— 91

y1=(1-n)v(l—n+z1+z2)

1 . .
= — Z C(21)C(wy)e 1% eiw2?

" |z1|v|z2|<L
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(n=1)A(n—14z1+x2)

Y1 T+ T2 — Y1\ 7 — |y
K el
g Z ) (AN)K< A, > n

y1=(1-n)v(l—n+zi+x2

1 . .
ta 2 Cla)Clan)d™ e

" oy |v]za|=L

(n=1)A(n—14z1+x2)

h T+ 22—y \ n— |y
K|(—|K
y1=(1-n)v(l—n+z1+z2)

= Bl + 327

for some L = L,, > 0 and L = o(A,). One can easily see that

mi<lfle 3 jcwice ¥ ox (L)

A
" ay|v]ze|=L y1=—n+1 "

<2Kle D, [C@)|[Caz)] = o(1), as L — oo,

|:E1|V|:E2|>L

by (6.18). Now, adding and subtracting the same term in Bj, one obtains that
By = C} + Oy, where

1 . . (n—1)A(n—14z1+x2) Y N — ’y ’
Cri= o > Cla)Clas)enfe 3 w© (A_> s

" a1 | v|za|<L y1=(1—n)v (1—n+z1+z2

and

Cy = — Z C(21)C (24) e eir2?
n |z1|v|z2|<L

(n—=1)A(n—14z1+x2)

hn T1+ Ty — Y1 U n— !y1|
E K[ < Kl——= 2 ) _K(|Z= R Ll N
y1=(1-n)v(l—n+zi1+z2)

We examine (' first.

Observe first that the inner sum over y; is confined to —A, < y; < A, since
K is supported on [—1,1]. Moreover, since L = o(4A,) and A, = o(n), for all

|z1| v |z2] < L, and all sufficiently large n, we have that (1—n)v (1—n+z;+x2) < —A,
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and A, < (n—1) A (n— 14 x; + x9). This means, that the inner summation in the

definitions of C; and Cjy is over the range [—A,, A, ]| and it does not depend on z;

and z5. That is, for all sufficiently large n,

. . 1
_ iz10 ixo0
Cy = ) |V|Zx1|<L Cla)Cla)e ™ et x Y K (A—n)
1
~4r’f(0)* | K (y)dy, asn — o,
-1

where the last relation follows from the Riemann integrability of K2 and the fact that

lel<L C(z)ei*® — 2w f(#), as L — . Now, focus on the term C,. Using the facts

that K is an even function and

K (2) = K(y)| < clz -y,
(since K’ is bounded), we get |K((z1 + 2 — y1)/An) — K(y1/A,)| < 2¢L/A, for all

|z1| v |x2| < L. Thus, by Condition (6.18) and the Riemann integrability of K, we

obtain
2

1 & y \ 2Lc
cl< | Sicwl) 5 X 8 (L)%

|z|<L " y=—An

QLC(Z O ) J__IK(u)duzo(l),

T=—00 u

since L = o(A,). Summarizing, we have that for all § (including 6 = 0 and 6 = +7)
N 1
Ay =C1 +Cy+ By ~ 472 f(0)* |  K*(u)du.
-1
We next consider A,. Similar to the derivation for 12[2, with the change of variables

Ty =11 — 12, To=7J1— J2,
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=%t —7, Y2 =1,

n—1

é(:ﬁl)é(:pg)e_mleeﬂ“e

nA
T1,2=—n+1

(n—=1)A(n—1+z1—x2) nA(n+yr)
Z K<£)K<—I1+$2+yl>eﬁ2yle Z 1

y1=(1-n)v(l—n+z1—22) An An y2=1v(1+y1)

1 nd . - . .
= — Z C(x1)C (zq)e m1Pelr26

n r1,x2=—n+1

n—1)A(n—1+z1—=x
An An n

y1=(1-n)v(l—n+z1—2)

Observe first that for § = +7 or § = 0, we have €?%19 = 1, 4, € Z and for the term

Ay with the same argument as for the term Eg, we obtain

_ y i 1 & .
Ay ~ Az|f(O)?|K |2,  where :2— Z (z)e 0 0 e {0, +7).

Suppose now 6 # 0 and § # +m, so that the term e'21? is present. By adding and

subtracting a term, we have that Ay = D; + Dy, where Dj is defined in (6.21) below

and
1 n—1 5 _ ) )
D, = A Z C(21)C (wy)e 10 etr2?
T1,x2=—n+1
(n—=1)A(n—14z1—x2)
Z K2 YL pizme™ T 191 |y (6.20)
A, n

y1=(1-n)v(l—n+z1—22)

Indeed, write
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and consider, for any ¢, ¢o € [1, A, ],

y=ci
ca+1 C2
_ Z wn(y N 1)eﬁ2y0 o Z wn(y)eﬂye
y=c1+1 y=ci

C2
= wn(02)6n2(62+1)0 - wn(cl)eﬁcl@ + Z (wn<y - 1) - wn(y))eﬁye'
y=c1+1

Focusing on the second term,

C2

Z (wa(y — 1) —wa(y))e™™”

y=ci1+1

& —1\n—-1—-(y—1) y\n—1—y\ .
_ K2 Y _K2 I 12y6
y=621+1( ( A, ) n (An n c
[N y—1Y\ ; N y—1 y\\n-1-y;
I K2 12y60 K2 _K2 I 12y60
nZJ—;—H ( A )6 " Z ( < Ay ) (An>> n ‘

y=c1+1

= E1 + EQ.

Clearly, £y = O(A,/n) = o(1) uniformly in ¢, co. Also, it follows that

—1
K? (yA ) — K? (Aiﬂ < oo uniformly in ¢y, ¢o

since K? is of bounded variation (recall that K’ is bounded and K is compactly

C2

Bl < )

y=c1+1

supported). Thus,

y=c
c2
= (e -1 (wn@z)eﬁ@ﬁw —wn(e)e ™+ D] (waly — 1) —um(y))ewe) ,
y=c1+1

which is uniformly bounded. (Note that here we used the fact that e — 1 # 0,
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since +m # 6 # 0.) Applying this argument, we see that the inner sum in (6.20) is
uniformly bounded, and hence by Condition (6.18), we obtain that D; = o(1).

On the other hand, for the term D,, we obtain

1 n-l . - . .
D2 = A_ Z C’(x1>0<x2)eﬂmc1961129

n x1,r2=—n+1

(n—1)A(n—1+z1—x2)
Y1 —T1 + T + U1 Y1
K(I) | g (220 g (9
Y R () () - (2)] o

y1=(1-n)v(l—n+z1—x2

¥ gtz T vl
n

= o(1),

using the same arguments as for By and C5. Thus,
Ay —>0 for 0#£0 and 6 # +m.

This completes the derivation for E(7?).

The case k = 3

Fix some integer k£ > 3. Let P be the set of all possible pairings of {is,j, : ¢ =

.,k}. Then a pairing p € P iff
- {{I,J},{I,f},{J,j}:I;éfe{z'g,éz1,...,k},J¢je{jg,£= 1,...,k:}},

where all symbols iy, j,, ¢ = 1,..., k can be used only once.

By Lemma VI.13,

n k k
e = (2m)"E(T,) = nA (A, 2 >E]]X ]e—C(iz—jz)]]HKe(iz—je)
wjg 1 /=1 /=1
21k
k
nA k/2 Z HKe G0 — Jr)
i0,Je=1 =1

¢=1,..k
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X > I 1 [C(I— Nhiij—tr.0y+ CU = Dlj_p
PEP: {i,j}ep
U];:1{{ipvjp}}“1p:®

+C(J - J)ﬂ{i,j}:{J,j}}

Let now r < k and fix a subset of 2r indices {{, 7], ..., j.} < {t1, 51, , ik, Ji},
where (7, 71) = (ioysJoy ), 5 (00 70) = (g, Jo,), for some 1 < 0y < -+ <0, < k. A
partition of {z},j1,...4.,j.} into pairs will be called a sub-pairing of order r. Namely,
it is a partition into pairs that involves r couples of i’ and/or j' symbols taken only
from the set {i},j1,...4.,j.}.

A (sub)pairing will be called irreducible, if does not have further sub-pairings, i.e.,
it cannot be broken up into a disjoint union of two or more sub-pairings of lower
order. Let Cp .\ denote the set of all irreducible sub-pairings of order 7.

Looking at a single summand of the second sum in py, one can see that every
pairing p € P is the union of multiple irreducible pairings of the form Cp, ) with
r = 2. We will argue below that among all pairings in P only the ones involving
irreducible components of order » = 2 contribute asymptotically, and the remaining
pairings are of lower order, as n — 0.

Let p € P denote a pairing that shows up in the second sum of (27)9E(7F), and

suppose that

P=DPrn Y- Ubr,,

where the p,, € Cp,, ik, 7 = 2, © = 1,...,m, are the irreducible sub-pairings of p.
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Then,

| S (TTw
e = (2m)*E(T,)) = (nAA)F2 Z {HKHW ~Jo)
n irje=1 = (=1
=Tk
y D I1 [0 I—Nlgg=pay +CU =Dy _on
PEP: {i,7}ep

ngl{{ipvjp}}ﬁ]}):@

n k/2 m
= (E) > 4w
n t=1

PEP
P=Pri Y "YUPrpm, m=1

(6.22)

where Ap , x involves a product of the terms restricted to the irreducible sub-pairing
DPr,, and where ry + -+ + 1, = k, with r; > 2, ¢ = 1,...,m. Namely, assuming that
the subset of indices {i}, 71, ;i\, J.} = {iogs Jors " »lons Jorts T < k, is involved in

the irreducible pairing Ap p, r we have

App,k = Z HKG ¢ = Jo) %

%Je*l =1
0=1,...,r
H [OI J) L jy— {IJ}+C( )l{w} {1,1}
{7'9.7}EPT

Let r = 3,r < k, and apply the change of variables

Tg=1—17,1,] €Pr
ye=1y—jp,l=1,....,r—1,

-/
y’/‘ = Z'r"

where the order of i, j for x, is determined by the order they appear in the C, C' and
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C terms. Note that since the kernel K is non-negative and bounded,

\Hm (= ) |Koo§f<(§—i).

Then, letting D(z) = |C(x)| v |C(x)|, we obtain

AP b, k]
HKHOO n—1 r—1 y_m n
S Ioer- S [lx () 2
x;:—fnJrlZ 1 szfnJr_llm:I An yr=1

> (6.23)

where we used that by Relation (6.18), >, D(z) < o and the compactness of the
support of K.

Using (6.23), in view of (6.22), one immediately has that

E(T,\) = O (&)m : ng??fk/zj (%)Zl’il(rt—l) _0 (<%) k‘/2—M> |

rit++rm==k, r¢=2

M = max {m:r1+---+7"m=k:, whererte{2,~~,k:}}.
m=1,-,|k/2|

Clearly, if k is odd, then M = (k—1)/2, we have k/2 — M = 1/2 and by the above
bound, we obtain

E[7,] = O((Aa/n)"?),

completing the proof of Proposition VI.7 in this case. Note that this moment vanishes
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as n — oo.

If k is even, then M = k/2 and k/2 — M = 0. By the above argument, the only
pairings that do not vanish asymptotically, as n — oo, correspond tor; = -+ = ry)y =
2. That is, the indices {iy, ji1, - , ik, jr} are paired into k/2 irreducible sub-pairings
of order 2 and this case algebraically reduces to the case k = 2.

Consider four indices {i1, j1, iz, jo} and let Agf,i’h}’{iz’jl}) and A;,{f,i’m’{jl’h}) be the
terms of (6.22) corresponding to the subpairings {{i1, ja},{i2, j1}} and {{i1, i2},{j1, j2}}

respectively. Let also

A;){27317127]2}) — Ag?]:h}’{m’h}) _{_Ag;{’zl:m},{]l,]z})

By the first part of the proof, the sum of these two order-2 irreducible subpairings
that correspond to the same indices {i1, ji, 2, j2} contributes the following term to

the rate of the expectation:

n 1,J1,82,J2 ;
(5 ) AR 25D o 3(0) = (F07 + 10,0y (O FOP ) 1 KT3

as n — 0. Therefore, in view of (6.22),

n k/2 m
- A
) e

PEP
P=Pri VYV "YUDrpy, mz1

> ]_[ P,k

]pEP
P=Prq Y UPry o
r1:...:rk/2:2

k/2
n ) 3 [T (A, gt i)
~ + Al
P,k
A geQ2 ¢m=1,...k

(G b )

k/2

2 H A {ZZ:JW Trsdm })

quQ em 17 7
{ih_ 15 J1todi
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s Ny(k) x [a;(m]k/ °

where Ny(k) denotes the number of ways one can partition the set {iy, j1, -, ik, jr}
into k/2 sets of 4 members including both i and j of the same index, and Qs denotes
the collection of all those partitions.

To complete the proof of Proposition VI.7, it remains to argue that Ny(k) =
|Q2| = (k — 1)!!I. Note that every g € Qs is determined by a partition into sets of 4
indices {i¢,, jo,, iey, jeo, } from the 2k symbols {iy, j1, - , ik, jr}- Thus, determining the
number Ny (k) is equivalent to counting the number of partitions of the set {i1, - - iz}

into 2—point subsets {is,,is,}. The number of ways to pick the first pair is (g), the

k—2

,7), and so on. Therefore N (k) equals

amle) (27) () e

where we divide by (k/2)! since the order of the subsets {iy, , iz, } does not matter. [J

second pair (

6.4.2 The general case

The purpose of this section is to finish the verification of (ii) of Proposition VI.6
for a general H under the assumptions of the Proposition. Recall that we already
verified (ii) for the spatial setting H = C in the previous subsection. The extension
from the scalar to the general case is actually quite straightforward. We illustrate
this for the second moment.

Recall that X, (i) = (X (i), g,). Denote (2m)2E [0, ar{Tngs, 90)]° by Anz. By

Isserlis’” formula in Lemma VI.12,

c 1 < < S S
Aup= > Gy Gez A DD Kolin — 1) Kyliz — j2)

01,0=1 11,j1=112,j2=1

X E{ [Xgel (ﬁ)W —EX,, (@1>m]
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X [X% ()Xo, () — EX g, (12) X, (72) | }

Z e, Ay 2 Z Ko(ir — j1) Ko(iz — j2)

l1,00=1 n’Ll]l 1ig,j2=1

x| X, ()X, G0) X, (12) X, ()

— Engl (il)ngl (jl)EXg£2 (i2>X9£2 <]2)]

n n
2 e, Ay Z Z Ko(ir — j1) Ko(ia — j2)
01,02=1 TL i1,J1=112,j2=1

X EX (il)ng (jZ)Eng (iQ)Xgel <Jl)

+ Z Ay gy Z Z Ko(iy — j1)Ko(iz — j2)

£1,05=1 "11J1 Lig,ja=1

X EXgel (il)Xgez (i2>Eng1 (jl)XQZQ (.72)

= gn,Z + Zn,Q-
Define
Coey a0, (1) = EXy, (t) X, (0). (6.24)

Start with 6 ¢ {0, £7}. By the same arguments as in Proposition V1.7, one can focus

only on A,. By the change of variables

Ty =11 — J2, T2 =12 — J1,

Y1=11—J1, Yo =10
we have that

1 = -
Ao = Z gy Ay nA Z Cgel,ge2 (xl)cgzl,%(_@)

l1,00=1 " z1,w0=—n+1
(n—1)A(n—14z1+x2) nAa(n+y1)
X Z Ko(y1)Ko(z1 + 29 — 1) Z 1
y1=(1-n)v(l—n+z1+x2) y2=1v(1+y1)
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m n—1
_ iz10 _ —ixo6
- E Qg Ay E Cge1 1929 (331)6 Cgel 7952( 5132)6 2

l1,02=1 x1,x2=—n+1

1
X_
A

" y1=(1—n)v(l—n+z1+z2)

~ Z ag, ag,An? KZ(y)dy‘ Z ngl,gz2(x)€m9

01,05=1 y=—1 T=—00

(n=1)A(n—1+z1+z2)

n J—
K(y)K (21 + 22 — 1) ]

based on the proof of Proposition VI.7. By (6.24), this is precisely

1 m
4’ K*(y)dy Y. anan| {f0)ge, ge) |-
y=—1 l1,02=1

The derivations for A, 5 are similar. For instance, consider ¢ = 0:

— 1
Ao =
2 ni\,,

Z Z Ko(i1 — j1) Ko(iz — j2)

i1,j1=112,j2=1

m
X Z e, a6, Cy,. gu, (i1 — 22)(79@1,9[2 (J1 = J2),
l1,05=1

where

Congany (1) = E[Xyy, (11X, 0)] = (E [ X(1) @ X(0)| 7252 90 ) = (C (017790,

Making the change of variables

Ty =11 — 12, Ta=J1— Jo,

Y1 =4u—7, Y =11,

we have that

m n—1
_ 1 3 -
App = 2 gy Qpy A Z 09217922 (xl)cgzl ey (22)
l1,00=1 " x1,xo=1—n
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(n=1)A(n—1)4z1—22 n —r T+ Y\ n— |y1|
K|l-— K
X Z | (An) ( A, ) n

y1=(1-n)v(l—n+z1—x2
m

~ 472 f_1 K?(y)dy Z Ay, g, Kf(())%, 9€1>‘2’

01,09=1

using again the arguments of the proof of Proposition VI.7. Thus, we have verified
(ii) of Proposition VI.6 for k = 2.

By the definition of pseudo-covariance in (4.4),

E[X,, (1) X, (0)] = (B | X () @ X(0)] 9, 90 ) = <C6)5, 90 = Coy (1)

In a similar manner, the derivation of E [> ", a;{T,gr, go]" for k = 3 for a general

space H can be extended from that for the scalar case, and the details are omitted.

6.5 Cumulants and Isserlis’ formulas

6.5.1 Cumulants for functional data

This section provides an extension of Isserlis’ theorem to the regime of Hilbert
space valued Gaussian random variables. This extension is critically used in the
verification of property (ii) of Theorem VI.5 in Section 6.4. We start by providing

the definition of the cumulants for scalar random variables taking values in R.

Definition VI.8. Let Y7,..., Y, be random variables taking values in R such that

E(TT;cpY;) is well defined and finite for all subsets B of {1,...,k}. Then,

q

cum (Yy,...,Y3) = > (=) (g-D!][E

v=(v1,....,Vq) =1

HY]»],

JEV
where the sum is over all unordered partitions of {1, ..., k}.

The following lemma follows from the discussion on page 34 of Rosenblatt (1985).
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Lemma VL.9. Let Y;,;i = 1,...,k be real random variables such that E(] [, Y;) is
well defined and finite for all subsets B of {1,...,k}. Then

E[Y; ... Y] = Z chm(Yi;iem),

v=(v1,....,vp) =1
where the sum is over all the unordered partitions of {1,... k}.

Proposition VI.10. Let {X(t)} be a stochastic process taking values in a Hilbert
space H, where E(| X (¢)|*) < o for all t. Note that we do not assume here X to be
real. Fiz an arbitrary real CONS {e;, i € I} of H and denote by X;(t) = (X(t), ;).

Then for any t,s,w,v € R%, we have that

cum (X (t), X (s), X (w), X (v)) = ZZCum(Xj(t),Xi(s), X, (w), X;(v)).

7

Proof. Recall the definition of cumulant in (IV.11):

cum (X (1), X(s), X(w), X (v))
= EX () ®@X(s), X(w) @ X(v))gs — (E(X () ® X(s)), E(X (w) ® X (v)))ns
—EX (1), X (w))y - EXCX (v), X(5))g

~(EX () ®X[©).EX @) ®X(s))) .
For any x(1),...,x(4) € H,

(1) ®@x(2),2(3) @ x(4))ns = Z<(l‘(1) ®x(2))es, (£(3) @ x(4))ei)u

= (@(1),2(3))u x(2), z(4))y
= Z Z i(1)a:(3)x;(2)x;(4).
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It follows that

(X (1) ® X(s), X (w) @ X(v)yyys = D 2, Xils) Xa(v) X; (1) X (w).

It suffices to show that

E(X(1) @ X(5), X (w) @ X (1)) = 2 2, E(XG(5) Xi(0) X; () X; (w)),

where the interchange of the order of summation and expectation can be justified by
the fourth-moment assumption on the X (¢) and Fubini’s Theorem.

Similarly, we have that

E(X(t) ® X(s)), E(X (w) ® X (v)))ns = Z Z E(Xi(s) X;(0))E(Xi(0) X(w))

and

(EX () ® X(v)), E(X () ® X(s)))us = ZZ E(X; () Xi(0)) E(Xi(s) X (w)),

where we used the fact that the CONS {e;} is real in order to write X (s) = > . X;(s)e;

Finally,

ECX(#), X (w))g - E(X(v) ZZEX X5 (w)EX (0) Xi(s).

Gathering all four terms one can easily see that the cumulant sum

ZZ cum(X; (1), Xi(s), X;(w), X;(v))

is reconstructed. O
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We end this subsection with a remark on the connection with a related but different

notion of cumulant employed in Panaretos and Tavakoli (2013).

Remark VI.11. Panaretos and Tavakoli (2013) defines a notion of cumulant on the
bottom of page 571 of the paper. In this remark, we will attempt to explain the
connection between the condition C'(0,4) in Panaretos and Tavakoli (2013) with (c)
of Assumption V’.

For simplicity, we shall work with real Hilbert spaces. Recall that in Panaretos and
Tavakoli (2013), the authors consider H = L?[0, 1] and define the so-called cumulant

kernel:

e (X (1), X(#) = Y () - D [E[ T X (755,

v=(V1,....Vp) (=1 jevp

where X (t) = (X(7;t), 7 € [0,1]) € L?([0,1]). For a kernel of order 2k, one can

define the so-called cumulant operator R : L?([0, 1]¥) — L2([0, 1]%), as

R(h) = J , Cumker(X(tl)a T 7X(t2k))(7'17 T 77-2k)h(7-k+17 T 77'2k)d77c+1 -+ dTog,
[0,1]

where the latter is understood as a function of (7y,---,7;) that can be shown to
belong to L2([0, 1]*).
Fixing a CONS {e;} of L?([0,1]), for k = 2, we obtain that

cumker(X(tl),'-- ,X(t4)) = 2 CU_m(XZ‘<t1),Xj(t2)7Xk(t3)7Xg(t4))€i®€j®6k®€g,

i7j7k7£

where cum stands for the usual cumulant of random variables, and where X;(t) =
(X(t),e;) are the coordinates of X (t) in the basis {e;}. Thus, in the basis {e; ®
e;j} of L*([0,1]*] = L*([0,1]) ® L*(]0,1]), one can view the cumulant operator R :
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L2([0,1]) ® L*([0,1]) — L*([0,1]) ® L*([0,1]) as

R = Z T(g).k0 (€ @ ej) @ (ex ® er),

7:7‘7‘7’67Z

where T(i,9),(k,0) = Cum(Xi (tl), Xj (tg), Xk(t3>, Xg(t4))
From this perspective, by (4.20), we obtain that our notion of a cumulant coincides

with the trace of the Hilbert-Schmidt cumulant operator R:

trace(R) = cum(X (t1), X (t2), X (t3), X (t4)) = ZT(i,j),(i,j)-

i7j

On the other hand, the norm of the cumulant kernel employed in the C(0,4) condition

of Panaretos and Tavakoli (2013) becomes:

Jeumye (X (1), -, X(8)) 72 = D cum(Xitr), X;(t2), Xi(ts), Xe(ta))*.
1,5,k 0

Whereas, recall that

cum(X (ty), -+, X(ts)) = > cum(X;(th), X;(t2), X(ts), Xe(ts)).
2,9,k 0

Thus, the condition C(0,4) of Panaretos and Tavakoli (2013) that

3 eume (X (1), X (t2), X (t5), X (0))] 22 < o0

t1,t2,t3

is neither strictly weaker nor stronger than our condition (c) in Assumption V’.

6.5.2 Isserlis’ formulas

The following is an extension of the classical Isserlis’ formula to univariate complex

Gaussian variables.
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Lemma VI.12. Let Z; = X; +1Y}, j = 1,2,--- be zero-mean, complex jointly Gaus-
sian random variables. That is, X;,Y;, j = 1,2,--- are zero-mean jointly Gaussian

R-valued random variables. Then, for all m € N, we have ]E[]_[le Y7, =0, and
2m
=([1a) - £[1e. .
j=1 T i=1

where a pairing ™ refers to a decomposition of {1,...,2m} into m pairs, which are

denoted as (ar i br;),i=1,...,m

Proof. Recall that Z; = X; +1Y;, where X;, Y, are real. Let 0(0 :0) =E(X,Xy), (Obl) =

(1

?ab

E(X.Y3), 003 = B(Y, X)), 005 = E(Y,Y;). Write

E <ﬁ(xj +]'1Yj)> = sz}ﬂs']E (]‘[le_[yk> :

j=1 j¢s keS

By the Isserlis formula for real Gaussian random variables introduced by Isserlis

(1918), we have

o (1—[ X, Hyk) _ Z Za7T €9),1( meS))’

¢S keS

and hence
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For any given m and S, we let o; = 1(ar; € 5), 8; = 1(bs; € S). Therefore,

2m m
E <H<XJ + IIY > Z Z 2ot Bi 1_[ C(L?:Zlil)l

Jj=1 T ooy,Bi= i=1

:Eﬁ T gt (6.25)

where

C( b)_ E(XaXb) E<XaYEJ)
7 E(XbYa) E(YaYE)

Notice that E[Z,Z,] = (1,1)C(a,b)(1,1)" and thus the right-hand side of (6.25) equals
SIEC. 2.
T i=1

which shows that the Isserlis formula for complex-valued r.v.’s is exactly the same as

that for real-valued random variables. O]

Lemma VI.13. Let {X(t),t € R} be a stationary Gaussian process in C with C(t —
s) = EX ()X (s) and C(t—s) = EX(t)X(s). Consider X (t;), X (s;),i=1,..., N+ M
for some N, M € Z, with N = 0 and M = 0. Denote by Pn s the class of all pairings
of the set

{tl,Sl|Z:1,,N+M}

and by Py v—k the class of all pairings of

{ti, SZ‘Z = 1, . ,N + M}\{tk, Sk}.
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This means that w € Py iff

ﬂz{{T,J},{T,%},{J,&HT#%e{ti:izl,...,N—FM},

0¢6e{si:i=1,...,N+M}}
and each symbol t;,s;, 1 =1,..., N + M can be used only once. Then,

E [H X(tn)X(Sn) . 1_[ (X(tN+m)X(8N+m) — C(tN+m - SN+m))]

m=1

- 2. II[C“*UHM##M**XT*ﬂMMFhﬂ (6.26)
UEPN, M {i,j}en

U%:l{{tN+msz+m}}mﬂ:®

+C(o - 6)11{1,1}:{0,&}]-

This Isserlis-type result is used in the proof of Proposition VI.7 (see e.g. (6.22)),
where the kth order moments of the spectral density estimators involve terms as in
(6.26) where N = 0. The reason we formulate (6.26) for general N > 0 is to facilitate

the proof of this relation by the method of induction.

Proof of Lemma VI.13. We will prove the desired equality by using induction on N +
M. When N + M = 1, the equality holds trivially. For the basis of our induction, we

use N + M = 2. We look at the three different cases.

(a) N = 2. The equality trivially holds by the Isserlis’ formula.

(b) N =M = 1. We have

E [X(tl)X(sl) (X (t2) X (52) = Clt2 — 82))]

_E [X(tl)X(sl)X(tg)X(s2)] — Ot — 51)C(ta — 52)

_E [X(tl)m] E [X(tQ)X(sz)] +E[X(t)X ()] E [X(SI)X(SZ)]

+E [X(tl)X(SQ)] E [X(sl)X(tz)] — Ot — 51)C(ts — 55)
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= O(tl — tg)é(Sl — 82) + C(tl — 82)0(752 — 81)

where Isserlis” formula was used in the second equality.

(¢) M = 2. We have that

E | (X(0)X(s1) = Ot = 1)) - (X (82)X(52) = Clt2 = 52))

—E [X(tl)X(sl)X(tg)X(SQ)] — Oty — 51)C(ts — 59) (6.27)

= O(tl - t2>c(81 — 82) + C(tl - 82)0(752 — 81)

similarly to case (b).

For the induction hypothesis, we assume that the desired equality holds when

N+ M =r. Let now N + M = r + 1. We discern two cases.

(a) N =r+ 1. The result follows directly by Isserlis’ formula.

(b) N <r+ 1. The following holds

E [H X(t) X () - [ T (X(twem) XCsnam) = Cltwsm = sN+m>)]

3
H
3
I
_

_E [H X ()X (50) [ | (X(tNW)X(st) Oty — 5N+m>)]

) [H X(t)X () - [ (X(tMm)X(st) — Ctysm — 5N+m))]
X C(tN+1 - 5N+1)

“E [NleX ]

n=1

N+m—1

M
Z C tNer SN+m E[ H X X(Sn)

m=1 n=1

1_[ (X tnik) X 3N+k> O(tN+k_5N+m)>]

k=m+1
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Applying Isserlis’ formula the first summand is equal to

Y, 1 [¢6 =0 1ipetor + € = ity

€PN, M {i,j}€0

+O@—®hm#mﬂ

By applying the induction hypothesis in the second summand, since all terms

involve r factors in total, we have that the second term is equal to

M=

C(tn+m — SN-+m) > I 1 [C(T = )i )=o)

1 UEPN, M, —m: {i,5}eu

N+M -
Ui:tv+m+1{{ti75i}}muzg

3
[

+OU—%HWFEH+CW—5HMFmﬁ}

Denote the first term of the previous sum as A, the second term as B, write
B =YY B,. Also, let
Cl o= C(1 — )Ly —froy + C(r— )i jyi—(r7) + C(o — 7)1 jh—fo.5)-

Z7J

Then we have that

A— By = Z H Cly — Cltnen — Sn+mr) Z H Czu;

€PN, M {i,5}€0 WePN,Mm,—Mm {i,5}€0/
— Z | | ot
Z7] :
UEPN, M {i.j}et

{tN+M SN+ M IED

Similarly

A— By — Byo1 = > [T ¢

ﬂGﬁPNJw: {i,j}eft
UM N yisN i} ni=0

236



Continuing this way for all terms B;, j = 1,..., M, we have that the proof is

complete.
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CHAPTER VII

Future Directions

The purpose of this chapter is to succinctly present the core message of the two
parts of this thesis. After summarizing the main contributions of each chapter, we
discuss potential expansions of our work and questions that could be posed as future

research problems, since they yet remain unanswered in this dissertation.

7.1 Anomaly Detection

In Chapter II, we studied the anomaly detection problem for high dimensional data
in the context of Internet traflic. We assumed that the observed traffic Z; follows the
linear factor model

ft:Bﬁ+ﬁt+a

and we developed Algorithm 1, in order to detect the anomalies u;. The effective-
ness of this algorithm is based on the incoherence conditions of Section 2.2.3, under
which we expect the anomalies to “pass-through” to the residuals, obtained after the

projection step of the algorithm. Mathematically, we have that
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which means that if the estimation of the column subspace of B is sufficiently good,
then the anomalies will not get filtered out after the projection on the orthogonal
complement of col(é ). This follows from the incoherence conditions, because of which
the anomalies do not belong on the subspace produced by the columns of B.

A theoretical result quantifying the approximation in (7.1) is stated in Proposition
I1.3. Note, however, that the inequalities (2.9) and (2.10) both depend on the quantity
E|S — ¥|2, where £ = BBT and ¥ is an estimate of ¥. One challenge, that has not
been addressed in Chapter 11, is the estimation of bounds for Hf] — Y| Specifically, in
order to complete the result of Proposition I1.3, one needs to find appropriate bounds
on ]EHf) — Y||* under assumptions on the dependence structure of .

An additional challenge for this chapter pertains to the efficient application of
Algorithm 1. We have demonstrated the effectiveness of our method in both synthetic
and real-world Darknet data and have also shown its superiority against competing
methods in the literature. In order to further improve the algorithm, we would
like to implement it efficiently in an online fashion. In particular, apart from the
initialization phase, where a big “warm-up” dataset has to be utilized, we would like
to find a way to make the rest of the algorithm absolutely sequential. This would save
resources, in both the aspect of storage space and of computation time, making the

algorithm faster to implement and thus even more suitable for quick identification of

anomalies at their onset.

7.2 Concentration Rates

Our focus in Chapter III is centered on studying the rates of Uniform Relative
Stability (URS) for Gaussian triangular arrays in the context of dependence. As
already discussed, our motivations for studying the concentration rates in the URS
property are twofold. Firstly, as established by Gao and Stoev (2020), this property is

the key to understanding the “0/1” phase-transition phenomenon in the exact support
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recovery problem for the canonical signal-plus-noise model (see (3.6)), irrespective of
the marginal distribution of the error terms €,(i). Secondly, utilizing the obtained
upper bounds on the rates of concentration for Gaussian triangular arrays, we want
to explore whether the URS property is preserved under transformations of Gaussian
arrays.

For broad classes of transformations of Gaussian triangular arrays, we have shown
that URS is indeed preserved, as described in Proposition I11.19 and Corollary I11.21.
This leads to a plethora of models, for the error terms of the signal-plus-noise model,
that obey a phase transition in the exact support recovery problem, namely whether
one can find a thresholding estimator, §p, that achieves perfect recovery of the sparse
support set of the signal, S,. Two characteristic models associated with these trans-
formations are the y? and the log-Normal model.

One interesting question arises by examining the rate upper bounds on the power
law and on the exponential power law transformations. Indeed, the former transfor-
mations, presented in Example I11.23, seem to be an “easy” case in the preservation

of the URS property. The upper bound therein is
* UB UB
="~ 0,7,

which means that if £ is URS, then the same holds for H = f(&), with the covariance
structure of £ playing no role. However, this is not the case for the latter trans-
formations, described in Example II1.24. The order of the upper bound for these

transformations is

a5V ~ 8V (2log (p)) V2.

Together with Conjecture II1.11, this means that this rate bound is only valid for
0 < XA < 2. Moreover, even if \ is in this range, Theorem III.13 cannot be used

to secure that the URS property will be preserved irrespective of the dependence
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structure of £. As an example, let £ have logarithmic covariance decay as in Example

I11.18. Then, we have established that 6y ~ (log(p))”#*1 and thus

v

5V ~ (log(p))? v,

If v < A/(2— ), the above rate does not vanish and thus cannot be used as an upper
bound for the URS. With our results so far, whether the resulting array H = £ is
URS, if € is URS, remains an open question. An even more general open question is
the characterization of URS for non-Gaussian triangular arrays, that are more general
than transformations of Gaussian noise, under general dependence structures.
Returning to the Gaussian regime for £, an open problem would be to explore
the relative stability of the maxima under an even broader sense of uniformity. In

particular, let the following property hold

max
|S|=g
Sc{1,...,p}

—S—l‘ﬂo, as g — o0,
s

where Mg = max;eg €,(7) and wg| is as defined in (3.8). Relating this property to the
exact support recovery phase transition, as well as examining if any improvements on
the upper bounds of the optimal concentration rates are possible would be a problem
of interest.

One more possible direction for future research would be focusing on applications.
Specifically, we have already mentioned that for a broad class of error models, formed
as transformations of the Gaussian model, a phase transition phenomenon holds in the
exact support recovery problem. This means that for a suitable boundary function,
there is always an appropriate thresholding estimator so that the support set of the
signal can be recovered exactly, if the signal is larger in magnitude than the boundary.
The choice of the threshold of the estimator in practice, ideally through a data-driven

approach, is an unsolved methodological question.

241



Finally, all the derivations in Chapter III apply to thresholding estimators of the
signal support set. A natural question to pose is whether results of similar type hold
for support estimators not included in this category. At this time, whether a phase
transition phenomenon holds under dependence for types of estimators than are not

based on a threshold remains an open problem.

7.3 Spectral Inference

In the second part of the thesis, we focused on the estimation of the spectral
density for functional spatial data. Starting with Chapter IV, we presented a unified
approach on pointwise spectral density estimation, with results that are valid for any
finite space/time dimension and any separable Hilbert space. However, a question
that has been left unaddressed is a recommendation for the selection of the bandwidth
parameter A, in practice.

An answer to this problem is not trivial to obtain. Zhu and Politis (2020) provide
an empirical recommendation for a data-dependent bandwidth choice for estimators
very similar to ours. Their recommendation in Section 5 therein refers to the so-
called flat-top kernel estimators and the approach is based on the correlogram of the
observed process.

An alternative approach to deciding the bandwidth parameter could be through
the derivation of a cross-validation methodology. Consider f(#;A) an estimate of
the true spectral density f(#). The key premises of this methodology would be the

following:

1. f(6;A) and f(0'; A) are asymptotically independent for § and 6" different!
2. f(0) is “close” to f(#'), for 0 close to 0'.

3. f(6; A1) has a smaller-order bias for “large” A;.
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The proposed methodology would be to define
CV(A) = (0, D)7 = 2R (¢, Av), £(0, A)),

where €' is “nearby” 6 and 0 < A « A;. The idea would be to hold A; fixed and
optimize CV(A) over A. Alternatively, one could pick a sample of 0'(i),i = 1,... k

that are different but surround 6 and define

k
CVA(A) = 70, A) = 20 3 RU(00), A), £0,)).

This way could provide a less-biased estimate of f(#) by averaging f(€'(i); A1) over the
0'(i)’s. This methodology is relatively easy to implement and is rather “cheap” since
it doesn’t involve “leave out”. The idea is that we look at “nearby” #'(i) to break the
dependence between f(6'; A1) and f(0; A). Also looking at A; » A ensures that the
bias of f(#'; A1) is of smaller order. To the best of our knowledge, such an approach
has not been developed yet.

The development of a data-driven selection method for the bandwidth would pave
the road for the application of the estimator in practice. For this purpose, an effi-
cient algorithmic implementation remains to be constructed. Once this construction
is complete, the estimator fn(ﬁ) could be used for the pointwise estimation of the
spectral density for a wide variety of potentially irregularly sampled functional spa-
tial stochastic processes. Moreover, the estimator could find application in testing
the reversibility of stationary stochastic processes for d > 1. In this setting, it can
be shown that a process is time reversible if and only if the spectral density is real.
Thus an estimate of the spectral density with very small imaginary part would be a
good indicator that the process under examination is time reversible.

In Chapter V we were able to establish a minimax result for the power law decaying

covariance class, both in the discrete and the continuous time case. However, as stated
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in Remark V.4, there is a “gap” on this minimax rate result in the continuous time
case, for the coarse sampling regime (cf. Remark IV.20). The construction of a class
narrower than Pg (cf. (4.36)), still depending on § and -y, so that the upper- and
lower-bounds on the rate of the estimators match in both the fine- and coarse-sampling
regimes is an open problem.

Finally, in Chapter VI we secured a CLT type result for the estimator ﬁ(@),
under the extra assumption of Gaussianity of the underlying stochastic process. An
open question related to this chapter is to relax the Gaussianity assumption. In this
direction, Panaretos and Tavakoli (2013) were able to obtain some relevant results
using assumptions on the higher order cumulants of the process. Another idea to
tackle this problem would be by using the fourth moment theorem in the context of

Wiener chaos [see e.g. Peccati and Tagqu (2011)].
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