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ABSTRACT

This dissertation consists of two major parts. The first part is concerned with high-

dimensional testing and involves both a methodological and theoretical results. The

methodology portion is centered around the detection of anomalous Internet traffic.

It is motivated by and applied to network telescopes or “Darknet” type data, which

is Internet traffic obtained by monitoring a large number of streams corresponding to

“unused” Internet address space. We propose an algorithm for the synchronous on-

line detection of abnormal Internet traffic, based on recent theoretical developments,

and evaluate its performance both in the detection and the identification aspects.

The remainder of the first part involves theoretical contributions which solve an open

problem in probability on the rates of convergence of maxima for dependent Gaussian

triangular arrays. These technical results on the rates allow us to establish that the

concentration of maxima phenomenon holds in more general, not necessarily Gaus-

sian, models. The latter phenomenon is the key to an important phase transition

result that characterizes the statistical limits in the exact support recovery problem

for a sparse high-dimensional signal observed in additive, light-tailed noise. Thus,

our theoretical results make direct contributions to high-dimensional statistics. The

second part of this dissertation is focused on the non-parametric estimation of the

spectral density of space-time random field processes taking values in a separable

Hilbert space. The estimator relies on kernel smoothing and is applicable to spatial

sampling schemes where data are not necessarily observed at regular spatial loca-

tions. In a mixed-domain asymptotic setting and under general conditions, rates for

the bias and variance of the estimator are obtained which lead to rates for its consis-

xii



tency. Considering practical applications, where complete functional data are usually

unavailable, our asymptotic results are specialized to the case of discretely-sampled

functional data taking values in a reproducing kernel Hilbert space. Further, it is

shown that when the data are observed on a regular spatial grid, the optimal rate

of the estimator matches the minimax rate for the class of covariance functions that

decay according to a power law. Finally, the asymptotic normality of the spectral den-

sity estimator is also established under general conditions for Gaussian Hilbert-space

valued processes.
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CHAPTER I

Introduction

The rapid development of information technology over the recent years has enabled

researchers to collect and manipulate immense volumes of data at unparalleled speeds

and at a fraction of the cost, compared to the past. As cliché as it might sound, we

live in the era of Big Data. In this era, the biggest challenge in data analysis does

not lie in the traditional scarcity of data to collect, but in the efficient and flexible

manipulation of the overabundant data. The volume of collected data and its analysis

is limited only by the constraints of the modern computational power and shall only

grow with the latest developments in technology.

1.1 Part I

The unprecedented computational power, leading to the plethora of available data,

has radically transformed the way that the vast majority of the scientific community

approaches research problems. Traditionally, in the hypothesis-experiment-analysis

cycle, a hypothesis is made, based on which experiments are being conducted to collect

the necessary data to conduct an analysis. In direct contrast to this model, nowadays

scientists are granted access to ample data, often before even a specific scientific

question has been formulated. The data themselves contribute to the formulation of a

large number of questions. Checking the simultaneous plausibility of these hypotheses
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is known as multiple testing and is a procedure that arises in a great variety of fields.

For example, one might look into genome-wide association studies (GWAS) (Sun

et al., 2006; Mieth et al., 2016) or engineering applications, including voice activity

recognition (Ramı́rez et al., 2007) and spectrum misuse detection (Zhang et al., 2017).

One main example of multiple testing problems emerge in cybersecurity. The

synchronous and online monitoring of millions of Internet Protocol (IP) addresses

is a central task in this sector. A typical example of what the traffic looks like in

this domain is presented in Figure 1.1. This heatmap depicts the number of unique

sources that target each monitored TCP/UPD port per minute, for the full month

of September 2006. We order these ports by the volume of total traffic and show

the top-50 ports. These data are obtained through Merit Network’s ORION network

telescope (Merit Network, Inc., 2022) and consist of communication requests from

valid source IP addresses destined to unoccupied (dark) IP addresses controlled by

Merit Network. Therefore such traffic is referred to as Darknet traffic. The observed

Darknet traffic can be due to misconfigured computers, but in its majority is due to

malicious scanning activity originating from ill-purposed actors. Detecting anomalies

in the Darknet can thus help identify new types of cyber attacks (see e.g. (Antonakakis

et al., 2017)).

Commonly in cybersecurity, many different ports/streams of data are being mon-

itored concurrently, with the main task being the discovery of possible anomalies in

the Internet traffic. The smaller the time window allowed for the discovery, the more

challenging the problem becomes, but also the more useful the results are. Many

algorithms have been developed (Xie et al., 2017; Lin et al., 2020) for the detection

of these anomalies, with often two goals in mind. Firstly, spotting whether there is an

anomaly in the total traffic under consideration, and secondly, locating the streams

where this deviation from the non-anomalous standard traffic occurs.

In Chapter II we focus on a methodological problem pertaining to the discussion

2



Figure 1.1: Log-transformed raw Internet traffic obtained from the ORION Net-
work Telescope (Merit Network, Inc., 2022). The top 50 ports are displayed on the
heatmap, ordered with respect to the total volume of traffic. The dataset spans the
entire month of September 2016.

above. The main goal is to detect sparse anomalies embedded in a high-dimensional

low-rank background, i.e., our observations are of the form

xt “ Bft ` ut ` ϵt. (1.1)

Here, xt “ txtpiqu
p
i“1 is a vector-time series denoting a collection of p data streams

observed at time-bin t, while ϵt “ tϵtpiqu
p
i“1 models the “benign” background noise.

The vector ft “ tftpjqukj“1 denotes the kp! pq periodic over time (diurnal, weekly,

etc) trends that are shared across some of the streams and the matrix B P Rpˆk

contains k linearly independent columns that indicate which factors ft affect each

stream. Finally, the vector ut “ tutpiqu
p
i“1 represents the anomalous “signal” at time

t for the streams 1, . . . , p. When there are no anomalies, ut “ 0.

Our methodology involves learning the matrix B over time, with focus on a se-

quential update of its estimate pB, every time that new data are received. To this end
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we utilize sequential PCA techniques. This allows us to estimate the rank-k subspace

spanned by the columns of B without having to store large amounts of historical

data. At the same time, sequential PCA allows us to adapt this estimate with new

information and to changes in the low-rank space modeling the background. After

obtaining pB, we project the observed data onto the orthogonal complement of the

subspace span
´

pB
¯

. Under some assumed incoherence conditions, the projected data

will follow the canonical signal-plus-noise model

xt “ µt ` ϵt, (1.2)

where ϵt is the background noise as in (1.1) and the signal µt “ pµtpiqq
p
i“1 is a p-

dimensional vector with s non-zero components. The non-zero components are called

the support set S “ ti : µpiq ‰ 0u, while ϵ “ tϵpiqu
p
i“1 is a random error vector. In

high-dimensional statistics, as well as in Chapter II, the goal is twofold:

(I) Signal Detection: The detection of non-zero components in µ. Namely, test the

global hypothesis µ “ 0.

(II) Support Recovery: Estimation of the support set S. It is otherwise known as

support estimation or signal identification problem.

The algorithm we implement uses the aforementioned projections to perform detec-

tion and identification of the anomalies jointly. We evaluate the performance of the

algorithm against classical anomaly detection methods on a synthetic dataset, while

we also demonstrate our methodology on a Darknet data application. Finally, based

on the synthetic data, we provide a guide to the practitioner for the use of our algo-

rithm. This concludes the most applied part of this thesis.

In Chapter III we solve an open theoretical problem motivated by the exact sup-

port recovery problem. This problem is directly motivated by and applicable to the

anomaly identification context of Chapter II. It is, however, of independent interest
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in high-dimensional statistics. In the identification problem, there have been multiple

approaches. Other works aim at estimating the support set S under many different

criteria. For example, Butucea et al. (2018) use the Hamming loss, while Arias-Castro

and Ying (2018) aim at approximate recovery of the support set using the |pS△S|{|S|

metric. Our goal is the exact recovery of the support set of the anomaly, when the sig-

nal µ “ µt in (1.2) is considered sparse, we have n “ 1 observation and the dimension

p grows to infinity. Namely, we want to find pSp such that

P
´

pSp “ Sp

¯

Ñ 1, as p Ñ 8, (1.3)

for the case where the signal µ in (1.2) is sparse. By sparse, we mean that

|Sp| — sp „
X

p1´β
\

, as p Ñ 8,

where β P p0, 1s is a sparsity parameter. The larger the β, the fewer the non-zero

signal entries in S, and the sparser the signal.

It was recently shown by Gao and Stoev (2020) that the exact support recovery

problem obeys a phase transition phenomenon at the limit of p Ñ 8, when threshold-

ing estimators are utilized. This phase transition result shows that there is a certain

boundary function of the sparsity parameter β such that piq exact support recovery

is possible for signal amplitudes above the boundary and piiq exact support recovery

is impossible otherwise (cf Section 3.2.1). In Gao and Stoev (2020), the errors in

(1.2) follow the Gaussian distribution, and although this problem had been studied

extensively for independent errors (cf e.g. Arias-Castro and Chen (2017); Cai et al.

(2007)), the errors therein are studied under dependence. Gao and Stoev (2020) prove

that the exact support recovery is feasible when the errors are assumed to be Uni-

formly Relative Stable. It is also shown that in the Gaussian case, Uniform Relative

Stability (URS) is equivalent to the Uniformly Decreasing Dependence condition.
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In Chapter III we examine the rate at which the URS occurs, namely at what rate

a properly normalized maximum of a triangular array of Gaussian random variables

converges in probability to the constant 1. We establish an upper bound on this rate,

which curiously depends on the normalizing constants of the maximum. Moreover,

through this rate we expand the range of models obeying URS, to a variety of models

obtained through transformations of the Gaussian random variables. This leads to a

much broader variety of models that undergo the phase transition phenomenon with

regards to the exact recovery problem.

1.2 Part II

Apart from the multiple hypothesis testing, a field impacted by the growing avail-

ability of data is the domain of Spatial Statistics. Data related to Spatial Statistics are

not only concerned with observations indexed by geographic (spatial) location. They

are often indexed by time as well as space, and involve multiple attributes. Some

scientific areas, where spatial data are of interest, include oceanography (see, e.g.,

the Argo Project(ARGO , 2020)), geology (Tian et al., 2018) and real estate (Pace

et al., 1998). Figure 1.2 shows an example of such type of functional data arising in

oceanography. The plot is obtained through the R shiny app of Yarger (2020a) (see

also Yarger et al. (2022)). The data used therein come from the Argo program, an

international program that measures water properties across the world’s ocean. To

collect these measurements, robotic instruments, called floats, drift with the currents

and move up and down in the water, periodically measuring temperature, salinity and

other variables as a function of depth (pressure). The spatial distribution of these

floats as of January 2023 is given in Figure 1.3.

In the analysis of stationary spatial data, one of the main interests lies in ex-

amining their covariance structure. In the function-valued setting (see e.g. Rudin

(1991); Hsing and Eubank (2015)), this amounts to studying either their operator-
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Figure 1.2: Profiles of Argo data for January 15, 2019 in the area of the Aegean Sea of
Greece. The plots contain measurements at different pressure levels (depth levels) for
the temperature, the salinity level, the potential density and the density respectively.
Each line in the plots corresponds to an individual float.

valued auto-covariance or equivalently, the operator-valued spectral density. These

two problems are duals of each other, meaning that estimation of either function

suffices for the characterization of the second-order characteristics of the stochastic

process under consideration.

In Chapter IV, we introduce a lag-window type estimator of the spectral density

function. This estimator is defined in the very general case of stochastic processes tak-

ing values in separable Hilbert spaces, which can in particular be finite-dimensional

or infinite-dimensional spaces of functions. Moreover, our estimator is defined on ar-

bitrarily and irregularly sampled data in space, in contrast to existing periodogram-

based estimators for functional time series (Panaretos and Tavakoli , 2013; Politis ,

2011). In this chapter, we focus on establishing upper bounds on the rates of consis-

tency of our estimator and also describing a potential modification with regards to

discretely observed functional data.

Let X “ tXptq, t P Rdu be a process taking values in the separable Hilbert space

7



Figure 1.3: Locations of the fleet of operational floats of the Argo project, as of
January 2023. The floats cover extensively the world’s ocean. Copyrights for this
image belong to ARGO (2020).

H and let fpθq, pfnpθq denote the true spectral density and our estimator, respectively

at the point θ P Rd. The main goal of this chapter is to prove that pfnpθq is a

consistent estimator of fpθq, and obtain rates on the consistency. Namely, using the

Hilbert-Schmidt norm, we establish the rate at which the following quantity vanishes

(uniformly for θq:

E} pfnpθq ´ fpθq}HS.

To do so, we first use a bias-variance decomposition (using the Hilbert-Schmidt inner

product)

E
›

›

›
f̂npθq ´ fpθq

›

›

›

2

HS
“

›

›

›
Ef̂npθq ´ fpθq

›

›

›

2

HS
` E

›

›

›
f̂npθq ´ Ef̂npθq

›

›

›

2

HS
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and explore the bias and variance vanish rates.

The rates we initially obtain for these quantities are quite general, as we work

under a very broad framework of mixed-domain asymptotics with irregularly sampled

data. In particular, the rate for the bias, under our assumptions, depends on the tail

decay of the autocovariance operator of the stochastic process under consideration. In

order to further study the optimality of the estimator, we focus on processes sampled

over a rectangular grid and examine the class of the power-law decaying covariance

operators. The known tail-decay leads to explicit consistency rates; we take advantage

of this explicit form to optimally choose the bandwidth parameter of our estimator.

The abstract results when the observations take values in a Hilbert space are not

directly useful in practice. Indeed, in applications one observes only discrete samples

of functional data. In Section 4.6, we extend our estimator and results to this case,

where the functional data are observed on discrete points and H is a Reproducing

Kernel Hilbert Space.

In Chapter V, we study the minimax optimal rates of the spectral density es-

timation problem for Hilbert space valued processes. Specifically, we focus on the

aforementioned power-law decaying class of covariance operators. For this class, in

both cases of processes sampled on a fixed grid and when the grid becomes denser,

we derive minimax lower bounds for the rates of any estimator. Then, we show that

our estimators pfnpθq are minimax rate-optimal. To the best of our knowledge, the

minimax rate results obtained in this chapter are the first to be established for the

pointwise inference of the spectral density for Hilbert space valued processes.

Finally, in Chapter VI we explore the asymptotic distribution of the estimator

pfnpθq. We impose the extra assumption that X is a Gaussian H-valued process (cf

Section 2 of Rao (2014)). Under this assumption, we establish a Central Limit The-

orem type result for pfnpθq and obtain a stochastic representation of the limit. The

proof is based on showing the convergence of all moments using a new type of Isserlis
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(Isserlis , 1918) formula that we establish.
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Part I

Anomaly Identification and High

Dimensional Testing

CHAPTER II

Anomaly Detection

In this chapter, we are concerned with the multiple hypothesis testing problem in

high dimensions, as it appears in the scope of cybersecurity. In this context, timely

detection and identification of “anomalous” Internet traffic is of essence to the prompt

termination of any cyberthreats. A unique window into observing Internet-wide scan-

ners and other malicious entities is offered by network telescopes, commonly known as

“Darknets”. However, monitoring Darknets for timely detection of coordinated and

heavy scanning activities is a challenging task. The challenges mainly arise due to the

non-stationarity and the dynamic nature of Internet traffic and, more importantly, the

fact that one needs to monitor high-dimensional signals (e.g., all TCP/UDP ports) to

search for “sparse” anomalies. We propose statistical methods to address both chal-

lenges in an efficient and “online” manner; our work is validated both with synthetic

data and with real-world data from a large network telescope.
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2.1 Darknet and cyberthreats

The Internet has evolved into a complex ecosystem, comprised of a plethora of

network-accessible services and end-user devices that are frequently mismanaged, not

properly maintained and secured, and outdated with untreated software vulnerabili-

ties. Adversaries are increasingly becoming aware of this ill-secure Internet landscape

and leverage it to their advantage for launching attacks against critical infrastructure.

Examples abound: foraging for mismanaged NTP and DNS open resolvers (or other

UDP-based services) is a well-known attack vector that can be exploited to incur volu-

metric reflection-and-amplification distributed denial of service (DDoS) attacks (Czyz

et al., 2014; Rossow , 2014; Kührer et al., 2014); searching for and compromising inse-

cure Internet-of-Things (IoT) devices (such as home routers, Web cameras, etc.) has

led to the outset of the Mirai botnet back in 2016 that was responsible for some of the

largest DDoS ever recorded (Antonakakis et al., 2017; Krebs , 2021a; Paganini , 2016;

Perlroth); variants of the Mirai epidemic still widely circulate (e.g., the Mozi (Klop-

sch et al., 2020) and Meri (Krebs , 2021b) botnets) and assault services at a global

scale; cybercriminals have been exploiting the COVID-19 pandemic to infiltrate net-

works via insecure VPN teleworking technologies that have been deployed to facilitate

work-from-home opportunities (DHS CISA and NCSC , 2020).

Notably, the initial phase of the aforementioned attacks is network scanning, a step

that is necessary to detect and afterwards exploit vulnerable services/hosts. Against

this background, network operators are tasked with monitoring and protecting their

networks and germane services utilized by their users. While many enterprises and

large-scale networks operate sophisticated firewalls and intrusion detection systems

(e.g., Zeek, Suricata or other non-open-source solutions), early signs of malicious

network scanning activities may not be easily noticed from their vantage points. Large

Network Telescopes or Darknets (Moore et al., 2004; Merit Network, Inc., 2022),

however, can fill this gap and can provide early warning notifications and insights
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for emergent network threats to security analysts. Network telescopes consist of

monitoring infrastructure that receives and records unsolicited traffic destined to vast

swaths of unused but routed Internet address spaces (i.e., millions of IPs). This traffic,

coined as “Internet Background Radiation” (Pang et al., 2004; Wustrow et al., 2010),

captures traffic from nefarious actors that perform Internet-wide scanning activities,

malware and botnets that aim to infect other victims, “backscatter” activities that

denote DoS attacks (Wustrow et al., 2010), etc. Thus, Darknets offer a unique lens

into macroscopic Internet activities and timely detection of new abnormal Darknet

behaviors is extremely important.

In this thesis, we consider Darknet data from the ORION Network Telescope

operated by Merit Network, Inc. (Merit Network, Inc., 2022), and construct multi-

variate signals for various TCP/UDP ports (as well as other types of traffic) that

denote the amount of packets sent to the Darknet towards a particular port per mon-

itoring interval (e.g., minutes) (see Figure 2.1.) Our goals are to detect when an

“anomaly” occurs in the Darknet1 and to also accurately identify the culprit port(s);

such threat intelligence would be invaluable in diagnosing emerging new vulnera-

bilities (e.g., “zero-day” attacks). Our algorithms are based on the state-of-the-art

theoretical results on the sparse signal support recovery problem in a high-dimensional

setting (see, e.g., (Gao and Stoev , 2020) and the recent monograph (Gao and Stoev ,

2021)). Our main contributions are: 1) we showcase, using simulated as well as

real-world Darknet data, that signal trends (e.g., diurnal or weekly scanning patterns)

can be filtered out from the multi-variate scanning signals using efficient sequential

PCA techniques (Arora et al., 2012a); 2) using recent theory (Gao and Stoev , 2020),

we demonstrate that simple thresholding techniques applied individually on each uni-

variate time-series exhibit better detection power than competing methods proposed

1All traffic captured in the Darknet can be considered “anomalous” since Darknets serve no real
services; however, henceforth we slightly abuse the terminology and refer to traffic “anomalies” in
the statistical sense.
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in the literature for diagnosing network anomalies (Lakhina et al., 2004); 3) we propose

and apply a non-parametric approach as a thresholding mechanism for the recovery

of sparse anomalies; and 4) we illustrate our methods on real-world Darknet data

using techniques amenable to online/streaming implementation.

2.1.1 Related Work

Network telescopes have been widely employed by the networking community

to understand various macroscopic Internet events. E.g., Darknet data helped to

shed light into botnets (Antonakakis et al., 2017; Dainotti et al., 2015), to obtain

insights about network outages (Benson et al., 2012; Dainotti et al.), to understand

denial of service attacks (Moore et al.; Jonker et al., 2017; Czyz et al., 2014), for

examining the behavior of IoT devices (Shaikh et al., 2018), for observing Internet

misconfigurations (Czyz et al., 2013; Wustrow et al., 2010), etc.

Mining of meaningful patterns in Darknet data is a challenging task due to the

dimensionality of the data and the heterogeneity of the “Darknet features” that one

could invoke. Several studies have resorted to unsupervised machine learning tech-

niques, such as clustering, for the task at hand. Niranjana et al. (2020) propose using

Mean Shift clustering algorithms on TCP features to cluster source IP addresses to

find attack patterns in Darknet traffic. Ban et al. (2012) present a monitoring system

that characterizes the behavior of long term cyber-attacks by mining Darknet traffic.

In this system, machine learning techniques such as clustering, classification and func-

tion regression are applied to the analysis of Darknet traffic. Bou-Harb et al. (2014)

propose a multidimensional monitoring method for source port 0 probing attacks by

analyzing Darknet traffic. By performing unsupervised machine learning techniques

on Darknet traffic, the activities by similar types of hosts are grouped by employing a

set of statistical-based behavioral analytics. This approach is targeted only for source

port 0 probing attacks. Nishikaze et al. (2015) present a machine learning approach
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for large-scale monitoring of malicious activities on Internet using Darknet traffic. In

the proposed system, network packets sent from a subnet to a Darknet are collected,

and they are transformed into 27-dimensional Traffic Analysis Profile (TAP) feature

vectors. Then, a hierarchical clustering is performed to obtain clusters for typical

malicious behaviors. In the monitoring phase, the malicious activities in a subnet are

estimated from the closest TAP feature cluster. Then, such TAP feature clusters for

all subnets are visualized on the proposed monitoring system in real time to identify

malicious activities. Ban et al. (2016) present a study on early detection of emerging

novel attacks. The authors identify attack patterns on Darknet data using a clus-

tering algorithm and perform nonlinear dimension reduction to provide visual hints

about the relationship among different attacks.

Another family of methods rely on traffic prediction to detect anomalies. E.g.,

Zakroum et al. (2022) infer anomalies on network telescope traffic by predicting prob-

ing rates. They present a framework to monitor probing activities targeting network

telescopes using Long Short-Term Memory deep learning networks to infer anomalous

probing traffic and to raise early threat warnings.

2.2 Methodology

2.2.1 Problem Formulation

Consider a vector time series x⃗t “ txtpiqu
p
i“1 modelling a collection of p data

streams (e.g., scanning activity against p ports). In network traffic monitoring ap-

plications, the data streams involve a highly non-stationary “baseline” traffic back-

ground signal θ⃗t “ tθtpiqu
p
i“1, which could be largely unpredictable and highly vari-

able. Considering Internet traffic specifically, this “baseline” traffic often includes

diurnal or weekly periodic trends that can be modeled by a small number of common

factors. We encode these periodic phenomena through the classic linear factor model.
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Figure 2.1: (a) Incoming unique source IP traffic coming to port 5353, from 16
September, 0639 UTC to 23 September, 0719 UTC in 2016. (b) Incoming traffic for
the same port after stabilization through log-transform. Another event is now visible
despite diurnal trends in traffic denoted by a spike around 17 September 14:00 UTC.
(c) Residuals for the same port from the traffic model. The large event is flagged by
our algorithm. Our method adapts to the change of regime after the second event
and does not flag the whole remaining time series as anomaly. Moreover, the periodic
trend until 21 September is clearly filtered out after the application of the algorithm.

Namely, we make the assumption that θ⃗t “ Bf⃗t, where B “ p⃗b1 . . . b⃗kqpˆk is a matrix

of kpď pq linearly independent columns that express the affected streams. Moreover,

f⃗t “ tftpjqukj“1 are the (non-stationary) factors, or periodic trends, that appear in

these different streams. That is, the anomaly free regime can be modeled as

x⃗t “ Bf⃗t ` ϵ⃗t, (2.1)

where ϵ⃗t “ tϵtpiqu
p
i“1 is a vector time-series modeling the “benign” noise. The time-

series t⃗ϵtu may and typically does have a non-trivial (long-range) dependence struc-

ture Willinger et al. (2001), but may be assumed to be stationary. Additional as-

sumptions on the dependence structure of ϵt may be used in Section 2.4 as needed.

Anomalies such as aggressive network scanning may be represented (in a suitable
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feature space) by a mean-shift vector u⃗t “ tutpiqu
p
i“1, which is sparse, i.e., it affects

only a relatively small and unknown subset of streams St – ti P rps : utpiq ‰ 0u.

Thus, in the anomalous regime, one observes

x⃗t “ Bf⃗t ` u⃗t ` ϵ⃗t. (2.2)

The general problems of interest are twofold:

(i) Detection: Timely detection of the presence of the anomalous component u⃗t.

(ii) Identification: The estimation of the sets St of the streams containing anomalies.

2.2.2 An Algorithm for Joint Detection and Identification

We provide a high level summary of the algorithm we implement in our analysis.

We examine high-dimensional data sourced from Darknet traffic observations and our

goal is the joint detection and identification of any nefarious activity that might be

present in the dataset.

In order to achieve our goals, we utilize sequential PCA techniques (i.e., incre-

mental PCA or iPCA) attempting to estimate the factor subspace spanned by the

common periodic trends. Once an estimate of this space is obtained, we project the

new vector of data (one observation in each port signal) on this subspace and retain

the residuals of the data minus their projections. Using an individual threshold for

each stream, pertaining to the stream’s marginal variance and a control limit chosen

by the operator (see Section 2.3.1.3 for guidance in system tuning), observations are

flagged as anomalies individually.

The algorithm can be broken down in five phases.

1. Input. Tuning parameters include the length of the warm-up period (n0)

and smoothing parameters for some Exponentially Weighted Moving Aver-

age (EWMA) steps Lucas et al. (1990); λ, λµ, λσ denote the memory parameters
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Algorithm 1 Online identification of sparse anomalies

Require: smoothing parameters λ, λµ, λσ;
control limit L; effective subspace dimension k;
initial subspace estimates pB; initial mean estimates pν⃗x, pν⃗r
initial residual marginal variance estimates pσ⃗2

r ,
iPCA forget factor η, robust estimation guard R.
for new data x⃗t “ pxtpjqq

p
j“1 P Rp do

for j R pSt´1 do
pνxpjq Ð p1 ´ λqpνxpjq ` λxtpjq Ź Update mean estimates

end for
r⃗t Ð pI ´ pBp pBJ

pBq´1
pBJqpx⃗t ´ pν⃗xq Ź Projection step

pB Ð iPCApx⃗t, pB, pν⃗x, kq Ź Update subspace
for j: |rtpjq| ă R ¨ pσrpjq do

pνrpjq Ð p1 ´ λµqpνrpjq ` λµrtpjq
end for
for j: |rtpjq ´ pνrpjq| ă R ¨ pσrpjq do

pσ2
rpjq Ð p1 ´ λσqpσ2

rpjq ` λσprtpjq ´ pνrpjqq2 Ź Update residual variances
end for
pSt Ð tj | |rtpjq ´ pνrpjq| ą L ˆ pσpjqu

if pSt ‰ Ø then
Raise alert on pSt

end if
end for

for the EWMA of the mean of the data x⃗t, the mean of the residuals r⃗t and the

marginal variance of the residuals ppσ⃗2
rq. Additionally, the memory parameter

of the iPCA (namely, η) can be chosen by the user. Moreover, one can choose

the control limit L, used in the alert phase, the variance cut-off percentage π

and the robust guard estimation (REG) parameter R, controlling the sequential

update of the EWMAs.

2. Initialization. The “warm-up” dataset, undergoes a batch PCA. Using the

percentage π that denotes the fraction of variance “explained”, one can deter-

mine the effective dimension k of the factor subspace to be estimated, which

dictates the trends that would be filtered out. The mean of the data ppν⃗xq, the

mean ppν⃗rq and the marginal variance ppσ⃗2
rq of the residuals are initialized based

on the training data.
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3. Sequential Update. A new vector of data px⃗tq is observed and passed through

the algorithm. We update the estimated factor subspace pB using incremental

PCA Arora et al. (2012a). The vector pν⃗x is updated using EWMA.

4. Residuals. Depending on whether there is an ongoing anomaly, we center x⃗t

as x⃗
p0q

t “ x⃗t´pν⃗x. We project the centered data onto the orthogonal complement

of pB and obtain the residual pr⃗tq. Thus, the residuals are defined as

r⃗t “ Projcolp pBq

´

x⃗
p0q

t

¯

“ pI ´ pBp pBJ
pBq

´1
pBJ

q

´

x⃗
p0q

t

¯

(2.3)

If any coordinate of r⃗t is smaller in magnitude than R times the marginal

variance, then the appropriate elements of both pν⃗r and pσ⃗2
r are updated via

EWMA.

5. Alerts. Finally, if any coordinate in the centered residuals exceeds in magnitude

the corresponding element in L ˆ pσ⃗r, an alert is raised.

There are two important points that we would like to make regarding the effec-

tiveness of the proposed Algorithm.

• First, non-stationarity in the form of e.g. diurnal cycles in the data is absorbed

in the projection step, and not with a time-series model.

• The sparse anomalous signals remain largely unaffected by the projection step.

This can be quantified with the help of an incoherence condition (see Proposi-

tion II.3 and its proof in Section 2.4) that is generally satisfied in network traffic

monitoring problems. This then leaves us with the residuals approximating the

signals

r⃗t « u⃗t ` ϵ⃗t, (2.4)

and enables us to detect and locate sparse anomalies.
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Moreover, the sequentially and non-parametrically updated estimate of the vari-

ance pσ⃗2
r on Step (4) of the algorithm can be shown to be a consistent estimator in the

special case that our residuals tr⃗tu
8
t“1 form a Gaussian time series. (More general cases

could be examined as future work.) Indeed, let trtpjq, t P Z, j P rps – t1, . . . , puu

be a zero-mean stationary Gaussian time series, with some correlation structure

ρtpjq “ Corprtpjq, r0pjqq “ Corprt`hpjq, rhpjqq, (2.5)

for t P Z, j P rps, @h P Z. We propose the estimator

pσ2
t pjq “ p1 ´ λσqpσ2

t´1pjq ` λσr
2
t pjq, (2.6)

in order to estimate the unknown variance of r⃗t non-parametrically. Namely for the

estimation of this variance, we implement an EWMA on the squares of the zero-mean

stationary series tr⃗t, t P Zu, which the following Proposition II.1 proves consistent.

Proposition II.1. Let tpσ2
t , t P Zu be defined as in (2.6) and tρt, t P Zu as in (2.5)

(we have dropped the index j to keep the notation uncluttered). If
ř8

t“´8
ρ2t ă 8,

then the estimator pσ2
t is consistent.

The proof of this Proposition is presented in Section 2.4.3.

Remark II.2. Note that at first glance the EWMA estimator for the variance of the

residuals in (2.6) seems inconsistent with the one in Algorithm 1, due to the lack of

the centering term pνrpjq. Recall that our method firstly projects the original data in

the orthogonal complement of the estimated subspace pB, obtaining the residuals pr⃗t,

which are then centered. The centered residuals correspond to the residuals that we

utilize in the proof and setting of Proposition II.1, i.e., we assume they are a zero-

mean Gaussian stationary time series with square summable correlation structure.

Thus, the update of pσ2
rpjq in (2.6) does not require the existence of a centering factor.
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We now proceed to elaborate on the incoherence condition, which ensures that

the sparse anomalies are largely retained by the projection step.

2.2.3 Incoherence conditions

Disentangling sparse errors from low rank matrices has been a topic of extensive

research since the last decade. While there are seminal works on recovering sparse

contamination from a low-rank matrix exactly, they all resort to solving a convex

program or a program with convex regularization terms (Candès and Recht , 2012;

Candès et al., 2011; Xu et al., 2010). The form that most closely resembles the set-up

of our problem is Zhou et al. (2010), where the model has both a Gaussian error term

and a sparse corruption; see also Xu et al. (2010), Candès et al. (2011) and references

therein.

This line of literature often criticizes the classical PCA in the face of outliers and

data corruptions. However, to the best of our knowledge, there has been no analysis

documenting just how or when the classical PCA becomes brittle in recovering sparse

errors when the training period itself is contaminated. Our empirical and theoretical

findings point to the contrary.

Secondly, rarely can such convex optimization-based methods be made “online”.

Our approach here is to separate sparse errors from streaming data rather than stacked

vectors of observations (i.e., measurement matrices) collected over long stretches of

time. The low-rank matrix completion line of work faces challenges when data comes

in streams rather than in batches, because the matrix nuclear norm often used in

such problems closely couples all data points. In a notable effort by Feng et al.

(2013) an iterative algorithm was proposed to solve the optimization problem with

streaming data. However, implementing the algorithm requires extensive calibration

and tuning which makes it impractical for non-stationary data streams with ever-

shifting structures.
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We now make formal the following statement: under the suitable structural as-

sumption on the factor loading matrix B stated below, PCA is still a resilient tool

for recovery of the low-rank component and the sparse errors on observations x⃗t. Our

results provide theoretical guarantees on the error in recovering the locations and

magnitudes of sparse anomalies.

We analyze the faithfulness of residuals in (2.4) in recovering sparse anomalies

under the following assumptions.

λminpBJBq ě ϕppq, for some function ϕ of p. (2.7)

Entries of B are bounded by a constant C, uniformly in p:

|Bpi, jq| ď C, @i P rps – t1, . . . , pu, j P rks (2.8)

Conditions (2.7) & (2.8) are closely linked to the so-called incoherence conditions

in high-dimensional statistics (Candès and Recht , 2012). Notice that for (2.7) and

(2.8) to hold simultaneously, we need ϕppq ď Cp. These conditions are important for

the theoretical guarantees in the high-dimensional asymptotics regime where p Ñ 8

but in practice they are quite mild and natural.

Condition (2.7) ensures that the background signal in the factor model Bf⃗t has

enough energy or a “ground-clearance” relative to the dimension. In the context

of Internet traffic monitoring, this is not a restrictive condition since otherwise the

background signal can be modeled with a lower-dimensional factor model with smaller

value of k. The second assumption (2.8), taken together with (2.7) ensures that the

columns of B are not sparse and consequently the background traffic is not concen-

trated on one or a few ports. This is also natural. Indeed, if the background was

limited to a sparse subset of ports, then they would always behave differently than

the majority of the ports and one can simply analyze these ports separately using
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a lower-dimensional model with smaller value of p, where we no longer have sparse

background.

Let now Σ “ BBJ and pΣ be an estimate of Σ obtained for example, by performing

iPCA and taking the top-k principal components. (Alternatively, one can simply take

pΣ – n´1
řn

t“1 x⃗tx⃗
J
t , for a window of n past observations.)

Proposition II.3 (Resilience of PCA). Assume (2.7) and (2.8) hold and let r⃗t be

defined as in (2.3). Then, for any k and p, and for each coordinate i P rps,

Eprtpiq ´ pϵtpiq ` utpiqqq
2

ď

«

´

E}pΣ ´ Σ}
2
¯1{2 2

?
kp

ϕppq

˜

cfCk ` 1 `

d

trpΣuq

p

¸

`

?
kC

ϕppq

´

1 `
a

kpC}Σu}
1{2
¯

ff2

(2.9)

where Σu “ Eru⃗tu⃗
J
t s and pE}f⃗t}q2 ď c2fk. Moreover, in ℓ2-norm, we have

E}r⃗t ´ p⃗ϵ ` u⃗q}
2

ď

«

pE}pΣ ´ Σ}
2
q
1{22

?
pk

ϕppq

˜

cfCk ` 1 `

d

trpΣuq

p

¸

`
?
k `

a

mintk}Σu}, trpΣuqu

ff2

(2.10)

In Section 2.4.1, we provide a proof for this proposition.

This result shows that if
?
p “ Opϕppqq, with k and Σu bounded, the upper bounds

in (2.9) converge to zero, as the dimension p grows. That is, the anomaly signal

u⃗t “passes through” to the residuals r⃗t and the approximation in (2.4)

can be quantified. Indeed, assuming k is fixed for a moment, (2.9) entails that

the point-wise bound on mean-squared difference between the unobserved anomaly-

plus-noise signal utpiq ` ϵtpiq and the residuals rtpiq obtained from our algorithm is

OpEp}pΣ´Σ}2qp{ϕ2ppqq. This means that in practice, provided Σ “ BBJ is estimated

well, anomalies utpiq of magnitudes exceeding
?
p{ϕppq will be present in the residuals
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rtpiq. As seen in the lower bound in Eq. (2.14), this is a rather mild restriction. Thus,

in view of Theorem II.4, provided ϕppq "
a

p{ logppq, the theoretically optimal exact

identification of all sparse anomalies is unaffected by the background signal Bf⃗t.

In practice, however, the key caveat is the accurate estimation of Σ, which can

be challenging if the noise ϵ⃗t and/or the factor signals f⃗t are long-range dependent.

Further analysis, not presented here, establishes upper bounds on Er}pΣ ´ Σ}2s via

the Hurst long-range dependence parameter of the time-series tϵtpiqu, conditions on

tftu, and the length of the training window n. It shows that even in the presence

of long-range dependence, provided the training window and the memory of iPCA

are sufficiently large, the background signal can be effectively filtered out without

affecting the theoretical boundary for exact support recovery discussed in the next

section.

2.2.4 Statistical Limits in Sparse Anomaly Identification

As argued in the previous section using for example PCA-based filtering methods,

one can remove complex non-sparse spatio-temporal background/trend signal without

affecting significant sparse anomalies. Therefore, the sparse anomaly detection and

identification problems can be addressed transparently in the context of the signal-

plus-noise model. Namely, assume that we have a way to filter out the background

traffic Bf⃗ induced by multivariate non-sparse trends2 in (2.2). Thus, we suppose that

we directly observe the term:

x⃗ “ ϵ⃗ ` u⃗,

where u⃗ is a sparse vector with s ! p non-zero entries. In this context, we have two

types of problems:

2We drop the time subscript to keep the notation uncluttered.

24



• Detection problem. Test the hypotheses

H0 : u⃗ “ 0 (no anomalies) vs H1 : u⃗ ‰ 0. (2.11)

• Identification problem. Estimate the sparse support set

S “ Sp – ti P rps : upiq ‰ 0u (2.12)

of the locations of the anomalies in u⃗.

Starting from the seminal works of Ingster (1998b) and Donoho and Jin (2004b) the

fundamental statistical limit of the detection problem has been studied extensively

under the so-called high-dimensional asymptotic regime p Ñ 8 (see, e.g., Theorem

3.1 in the recent monograph (Gao and Stoev , 2021) and the references therein). The

identification problem and more precisely the exact recovery of the support Sp have

only been addressed recently (Butucea et al., 2018; Gao and Stoev , 2020). To illus-

trate, suppose that the errors have standard Gaussian distributions ϵtpiq „ N p0, 1q

and are independent in i (more general distributional assumptions and results on de-

pendent errors have been recently developed in (Gao and Stoev , 2021)). Consider the

following parameterization of the anomalous signal support size and amplitude as a

function of the dimension p:

• Support sparsity. For some β P p0, 1s,

|S| — p1´β, as p Ñ 8. (2.13)

The larger the β, the sparser the support.
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• Signal amplitude. The non-zero signal amplitude satisfies

a

2r logppq ď upiq ď
a

2r logppq, for all i P Sp. (2.14)

We have the following phase-transition result (see, e.g., Theorem 3.2 in Gao and Stoev

(2021)).

Theorem II.4 (Exact support recovery). Let the signal u⃗ satisfy the sparsity and

amplitude parameterization as in (2.13) and (2.14), and let

gpβq “ p1 `
a

1 ´ βq
2, β P r0, 1s.

1. If r ă gpβq, then for any signal support estimator pSp, we have

lim
pÑ8

P
”

pSp “ Sp

ı

“ 0.

2. If gpβq ă r, then for the thresholding support estimator pS – tj P rps : xpjq ą

tpu with Prϵpiq ą tps „ αppq{p, with αppq Ñ 0 such that αppqpδ Ñ 8, @δ ą 0,

we have

lim
pÑ8

P
”

pSp “ Sp

ı

“ 1.

The above result establishes the statistical limits of the anomaly identification

problem known as the exact support recovery problem as p Ñ 8. It shows that for

β-sparse signals with amplitudes below the boundary gpβq, there are no estimators

that can fully recover the support. At the same time if the amplitude is above that

boundary, suitably calibrated thresholding procedures are optimal and can recover

the support exactly with probability converging to 1 as p Ñ 8. Based on the con-

centration of maxima phenomenon, this phase transition phenomenon was shown to

hold even for strongly dependent errors ϵpiq’s for the broad class of thresholding proce-
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dures (Theorem 4.2 in (Gao and Stoev , 2021)). This recently developed theory shows

that “simple” thresholding procedures are optimal in identifying sparse anomalies. It

also shows the fundamental limits for the signal amplitudes as a function of sparsity

where signals with insufficient amplitude cannot be fully identified in high dimension

by any procedure. These results show that our thresholding-based algorithms for

sparse anomaly identification are essentially optimal in high-dimensions provided the

background signal can be successfully filtered out. More on the sub-optimality of

certain popular detection procedures can be found in Section 2.3.2.

2.3 Performance evaluation

Next, we provide experimental assessments of our methodology using both syn-

thetic and real-world traffic traces. We utilize two criteria to provide answers to the

two-fold objective of our analysis. For the detection problem, we are only interested

on whether any observation at a fixed time point is flagged as an anomaly. If so, the

whole vector is treated as an anomalous vector and any F1-scores or ROC curves are

“global” (i.e., for any port) and time-wise. On the other hand, for the identification

problem, we are also interested in correctly flagging the positions of the anomalous

data. Namely, looking at a vector of observations, representing the port space at a

specific time point, we want to correctly find which individual ports/streams include

the anomalous activity. We report a percentage of correct anomaly identifications per

time unit.

2.3.1 Performance and Calibration using Synthetic Data

2.3.1.1 Linear Factor Model

We simulate “baseline” traffic data of 5 weeks via the linear factor model of Eq. 2.2,

obtaining one observation every 2 minutes. This leads to a total of 25200 observa-
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tions. The baseline traffic is created as a fractional Gaussian noise (fGn) with Hurst

parameter H “ 0.9 and variance set to 1, leading to a long range dependent sequence.

An extensive analysis not shown here yields long-range dependence exponents around

H “ 0.9.

Together with the fGn, five extra sinusoidal curves—representing traffic trends—

are blended in to create the final time-series. These sinusoidal curves reflect the

diurnal and weekly trends that show up in real world Internet traffic. The first two

inserted trends are daily, the third one is weekly and the last two of them have a

period of 6 and 4.8 hours respectively. These trends do not affect every port in the

same way; they all have a random offset and only influence the ports determined

by our factor matrix B. In this matrix every row represents a port and the column

specifies the trend; a presence of 1 in the position pi, jq means that the j-th trend

is inserted in the i-th port. The matrix B is created by having all elements of the

first column equal to 1, meaning that all ports are affected by the first trend. The

number of ones in the rest of the columns is equal to p1 ´ tpj ´ 1q{kuq ˚ 100%, where

j is the index of the trend and k the total number of them. The ones are distributed

randomly in the columns.

We simulate traffic data that pertain to N distinct ports, leading to a matrix

of observations of dimensions N ˆ 25200 (e.g., N “ 100). Since we are interested

in tuning the parameters of our model, we create 5 independent replications of this

dataset. The first two weeks of observations, namely the first 10080 observations, are

used as the warm-up period where the initial batch PCA is run in order to determine

the number of principal components we will work with in the incremental PCA and

proceed with initialization.

The anomaly is inserted in the start of the fourth week; the magnitude is deter-

mined by the signal to noise ratio (snr) and the number of anomalous observations

depends on the given duration. We have three choices of snr and two choices of
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duration in this simulation setup, leading to six combinations. The options for snr

are 2, 3 and 7, leading to an additional traffic of size 2, 3 and 7 times the empirical

standard deviation of the corresponding port the anomaly is inserted into. Moreover,

the duration of the anomalies we use is 1 hour for our “short” anomalies, or 30 obser-

vations in this specific data, and 6 hours for our “long” anomalies; 180 observations

respectively. The anomalies are always inserted in the first 3 simulated ports.

2.3.1.2 Demonstration of Sequential PCA

Figure 2.2 illustrates the performance of the incremental PCA algorithm as a

function of its memory parameter—the reciprocal of the current time index parameter

in Arora et al. (2012b); Degras and Cardot (2019). Since our methodology depends on

how well we approximate the factor subspace, we need to measure distance between

subspaces of Rp. We do so in terms of the largest principal angle =pxW,W q (Bjorck

et al. (1973); Yu et al. (2015)) between the known true subspaceW and the estimated

one xW , defined as:

=pxW,W q – acospσ1q, where σ1 “ max
ˆ⃗wPxW, w⃗PW

} ˆ⃗w}“}w⃗}“1

w⃗J
pw⃗.

As we can see in Figure 2.2, there is a “trade-off” with regards to the length of

the memory and the performance. If this parameter is chosen to be too big, the

angle of the two subspaces becomes the largest. This could be explained as relying

too much on the latest observations, estimating a constantly changing subspace. If

the memory is too long, then the impact of new observations is minimal, leading to

very little adaptability of our estimator. In Figure 2.2, for the data used here, using

10 weeks worth of observations and 10 replications of the data, the best memory

parameter seems to be 10´5. Moreover, as expected a full PCA estimated subspace

has smaller angle than the iPCA estimated one (see Figure 2.2). Some theoretical
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Figure 2.2: The largest principal angle between estimated and true subspace for
iPCA (cf Bjorck et al. (1973); Yu et al. (2015)). The horizontal line (in red) shows
the largest principal angle between the true subspace and the batch PCA estimated
one.

derivations regarding upper bounds on this angle between the space B (as in (2.2))

and the estimator pB, based on the expected distance between the covariance and the

estimated covariance matrix of the data, can be found in Section 2.4.2.

2.3.1.3 Parameter Tuning: Operator’s Guide

Next, we proceed with hyper-parameter tuning for Algorithm 1. Our grid search

for tuning involves the following parameters and values. We have an EWMA memory

parameter for the data (λ), keeping track of their mean, so that this mean can be

utilized in the incremental PCA. We also have an EWMA parameter keeping track of

the mean of the residuals (λµ) in our algorithm. Both of these parameters are explored

over the values 10´2, 10´3 and 10´4. Additionally, there is an EWMA parameter for

the sequential updating of the marginal variance of the residuals (λσ); the possible

values we examine are 10´4, 10´5 and 10´6. Finally, we explore the values of control
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Table 2.1: Recommendations for the choice of tuning parameters

snr duration L REG ewma data ewma mean ewma var
2 1 5 4 0.0010 0.0001 0.00010
5 1 7 5 0.0010 0.0010 0.00001
7 1 7 5 0.0001 0.0100 0.00010
2 6 5 3 0.0001 0.0010 0.00010
5 6 7 5 0.0010 0.0010 0.00001
7 6 7 3 0.0001 0.0100 0.00010

limit (L) that work best with the detection of anomalies in this data; we have a list

of values including 0, 10´4, 10´3, 10´2, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 20.

The best choices for our tuning parameters are evaluated based on a combination

of F1-score and area under curve (AUC) value and can be found on Table 2.1. We

start by selecting a combination of snr and duration and we find the AUC for each

different combination of the rest of the tuning parameters with respect to L. We

choose the parameters that lead to the largest AUC and then elect the control limit

that corresponds to the largest F1-score. Our definition of F1-score is based on

individual flagging of observations as discoveries or not; namely we look at the 15120ˆ

100 “test” observations as a vector of 1512000 observations and each one of them is

categorized as true/false positive or true/false negative.

2.3.2 Sub-optimality of classic Chi-square statistic detection methods

The detection problem can be understood transparently in the signal-plus-noise

setting. Namely, thanks to Proposition II.3, suppose that we observe a high dimen-

sional vector as x⃗t “ u⃗t ` ϵ⃗t, where u⃗t “ putpiqq
p
i“1 is a (possibly zero) anomaly signal.

Then, the detection problem can be cast as a (multiple) testing problem

H0 : putpiqq
p
i“1 “ 0⃗ vs Ha : utpiq ‰ 0, for some i P rps.

Under the assumption that ϵ⃗t „ Np0,Σpˆpq, one popular statistic for detecting an
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anomaly (on any port), i.e., testing H0 is:

Q “ x⃗JΣ´1x⃗ „ χ2
p, under H0.

Note that the statistic is a function of time, but from now on, for simplicity we shall

suppress the dependence on t. Using this statistic we have the following rule: We

reject the H0 at level α ą 0, if Q ą χ2
p,1´α.

Coming back to our algorithm, we have a control limit L, which we can use to

raise alerts in our alert matrix. Namely, we raise an alert on port i at time t, if the

i-th residual at time t is bigger than L times the marginal variance of these residuals.

Note that at every time-point, Algorithm 1 (i.e., the iPCA-based method) gives us

individual alerts for anomalous ports, while the Q-statistic only flags presence/absence

of an anomaly over the port dimension. To perform a fair comparison of the two

methods, we use the following definition of true positives and false negatives for

Algorithm 1. We declare an alert at time t a true positive, if there is at least one

anomaly in the port space at time t and Algorithm 1 raises at least one alarm at time

t; not necessarily at a port where the anomaly is taking place. A false negative takes

place if an anomaly is present at the port space, but no alerts are being raised across

the port space at time t.

To compare the two methods, we start with an initial warm-up period which we

apply a batch PCA approach to. Then, we use the estimate of the variance for the

Q-statistic method, while we also obtain the number of principal components to keep

track of during the iPCA, using the number of principal components that explain

90% of the variability of this warm sample. We choose the tuning parameters for

iPCA based on the recommendations provided in Section 2.3.1.3.

Figure 2.3 illustrates the performance of the two methods as the number of ports

increases, while the sparsity of the anomalies in the simulated traffic remains the
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Figure 2.3: ROC curves of Algorithm 1 (iPCA-based) and Q-statistic for long duration
anomaly (6 hour) of low magnitude (snr=2) in synthetic data.

same. The sparsity parameter β (see Gao and Stoev (2021)) is used to control the

sparsity of the anomalies; for a number of ports p we insert anomalies in tp1´βu ports,

where β “ 3{4. As is evident from the plots, Algorithm 1 significantly outperforms

the Q-statistic as the port dimension grows.

This sub-optimality phenomenon is well-understood in the high-dimensional infer-

ence literature (see (Fan, 1996) and Theorem 3.1 in (Gao and Stoev , 2021)). Namely,

as p Ñ 8, the Q´statistic based detection method will have vanishing power in de-

tecting sparse anomalies in comparison with the optimal methods such as Tukey’s

higher-criticism statistic. As shown in Theorem 3.1 in (Gao and Stoev , 2021), the

thresholding methods like Algorithm 1 are also optimal in the very sparse regime

β P r3{4, 1s in the sense that they can discover anomalous signals with magnitudes

down to the theoretically possible detection boundary (cf Ingster (1998b)). This

explains the growing superiority of our method as the port dimension

increases, as depicted in Figure 2.3.
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Table 2.2: Performance of Algorithm 1 on Synthetic Data. Observe the high True
Positive Rate (TPR) and low False Positive Rate (FPR) for carefully chosen thresh-
olds L.

L tpr rows fpr rows tpr indiv fpr indiv
2 1.00 1.00 1.00 1.00
3 1.00 0.92 1.00 0.92
4 1.00 0.11 0.99 0.11
5 1.00 0.00 0.97 0.00
6 1.00 0.00 0.93 0.00
7 1.00 0.00 0.87 0.00

20 0.08 0.00 0.02 0.00

At the same time, the proposed iPCA-based method also has the advantage of

providing us with extra information in comparison to the Q-statistic. Indeed, using

the individual time/space alerts, one can identify what percentage of individual true

positives/false negatives exist in the time/port space. An example of this information

is shown on Table 2.2, where the “rows” variables refer to the detection problem and

“indiv” variables refer to the identification one. Namely, the “rows” variables are

only concerned with temporal events, while the “indiv” variables take into account

the spatial structure as well.

2.3.3 Application to real-world Darknet data

Finally, we demonstrate the performance of our method on real-world data ob-

tained from the ORION Network Telescope Merit Network, Inc. (2022). The dataset

spans the entire month of September 2016 and includes the early days of the infamous

Mirai botnet Antonakakis et al. (2017). We constructed minute-wise time series for

all TCP/UDP ports present in our data that represent the number of unique sources

targeting a port at a given time. For the analysis here, we focused on the top-50

ports based on their frequency in the duration of a month. We implement the algo-

rithm on the data by utilizing the calibrated tuning parameters suggested in 2.3.1.3.

We use the first 5000 observations, roughly three and a half days, as our burn-in

period to initialize the algorithm. Thus, we have a matrix of 43200ˆ50 Darknet data
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observations.

The selected dataset includes important security incidents. Indeed, as Fig-

ure 2.4 shows, we detect the onset of scanning activities against TCP/2323

(Telnet for IoT) around September 6th that can be attributed to the Mirai

botnet. We also detect some interesting ICMP-related activities (that we represent

as port-0) towards the end of the month. We are unsure of exactly what malicious

acts these activities represent; however, upon payload inspection we found them to

be related with some heavy DNS-related scans (payloads with DNS queries were

encapsulated in the ICMP payloads).

In Figures 2.4 and 2.5, we are looking for large anomalies (snr=7) of long duration

(6 hours). Moreover, inspecting the full alert matrix in Figure 2.5, we observe a few

more alerts for anomalies that deserve further investigation. Some of them might

be false positives, although there is no definitive “ground truth” in real-world data

and all alerts merit some further forensics analysis. The encouraging observations

from Figures 2.4and 2.5 are that the incidents beknownst to us are revealed, and

that the elected hyper-parameters avoid causing the so-called “alert-fatigue” to the

analysts. At the same time, the analysts could tune Algorithm 1 to their preferences,

and prioritize which alerts to further investigate based on attack severity, duration,

number of concurrently affected ports, etc. All this information is readily available

from our methodology.

2.4 Theoretical Results

2.4.1 Proof for Proposition II.3

We introduce some further notations before we present the proof.

Let ⃗bpjq be the j-th column of B, j P rks; ⃗b0pjq “ ⃗bpjq{} ⃗bpjq} the factor loadings

normalized; B0 – r ⃗b0p1q, . . . , ⃗b0pkqs. We shall denote by pB and pB0 the corresponding
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Figure 2.4: Residuals and detection boundaries (top) and raw traffic (bottom) for
ports 0 and 2323. Red color in bottom plots shows the detected anomalies.

estimates of B and B0 obtained for example by the iPCA algorithm.

For the purpose of the following theoretical results, we shall assume that pB and

pB0 are obtained using singular value decomposition of the sample covariance matrix

pΣ –
1

n

n
ÿ

t“1

x⃗tx⃗
J
t . (2.15)

Proof. Residuals r⃗ from projecting observations onto the space spanned by the first

k eigenvectors, are

r⃗ “ pIp ´ P
xB0

qpBf⃗ ` ϵ⃗ ` u⃗q

“ pIp ´ P
xB0

qBf⃗ ` pIp ´ P
xB0

q⃗ϵ ` pIp ´ P
xB0

qu⃗

or equivalently, we can write

r⃗ ´ ϵ⃗ ´ u⃗ “ pIp ´ P
xB0

qBf⃗
looooooomooooooon

I

´ P
xB0
ϵ⃗

loomoon

II

´ P
xB0
u⃗

loomoon

III
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Figure 2.5: Alert matrix for the Darknet dataset for September 2016 (Mirai onset).
Red color indicates detection.

We will establish upper bounds on all three terms. The first term,

I “ pIp ´ PB0 ` PB0 ´ P
xB0

qBf⃗

“ pIp ´ PB0qBf⃗ ` pPB0 ´ P
xB0

qBf⃗

“ ´pP
xB0

´ PB0qBf⃗.

Using the relationship

}B} ď
?
p max
i“1,...,p

˜

k
ÿ

j“1

B2
i,j

¸1{2

and (2.8) we obtain that }B} ď
?
pkC, and also pE}f⃗}q2 ď Er}f⃗}2s ď c2fk. By
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Corollary II.6 discussed below,

E}pP
xB0

´ PB0qBf⃗} ď E
”

}pP
xB0

´ PB0q}}B}}f⃗}

ı

ď }B}

´

E}P
xB0

´ PB0}
2
¯1{2´

E}f⃗}
2
¯1{2

ď
a

pkC
cf

?
k

λmin

2
?
k
´

E}pΣ ´ Σ}
2
¯1{2

ď
2cfCk

?
pk

ϕppq

´

E}pΣ ´ Σ}
2
¯1{2

(2.16)

where we used (2.7) in the last inequality and which also provides a bound on each

coordinate.

For the second term, II, decomposed as ϵ⃗ ´ PB0 ϵ⃗ ´ pP
xB0

´ PB0 q⃗ϵ, notice that

PB0 ϵ⃗ “ B0B
J
0 ϵ⃗

d
„ B0ϵ⃗k where Eϵ⃗k “ 0 and Eϵ⃗k ϵ⃗J

k “ Ik. The second moment of the

ith coordinate is bounded by

EpPB0 ϵ⃗q
2
i “ Ep

k
ÿ

j“1

B0pi, jqϵkpjqq
2

ď
kC2

λmin

because |B0pi, jq| ď C{
?
λmin. While in ℓ2 norms, E}PB0 ϵ⃗}

2 “ EtrpB0B
J
0 ϵ⃗⃗ϵ

JB0B
J
0 q “

k. The last part is controlled similarly as in I. Indeed, by the Cauchy-Schwartz

inequality, Corollary II.6 and (2.7), we obtain

´

E}pP
xB0

´ PB0 q⃗ϵ}
¯2

ď E}P
xB0

´ PB0}
2E}⃗ϵ}2

ď
4kE}pΣ ´ Σ}2p

ϕppq2
.

For the third term, we need the von Neumann’s trace inequality: for two matrices

X and Y , |trpXY q| ď xσ⃗pXq, σ⃗pY qy, where σ⃗pXq, σ⃗pY q are vectors of the singular

values of X and Y . By Holder inequality, |trpXY q| ď }σ⃗pXq}1}σ⃗pY q}8 “ trpXq}Y },

for real symmetric positive definite matrices.

Decompose III as u⃗ ´ PB0u⃗ ´ pP
xB0

´ PB0qu⃗. The second moment of the l-th
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coordinate

EpPB0uq
2
l “ E

˜

p
ÿ

i“1

ui

´

k
ÿ

j“1

B0pljqB0pijq

loooooooomoooooooon

ail

¯

¸2

“ E

˜

p
ÿ

i“1

ailui

¸2

“ trp⃗ala⃗
J
l Eu⃗u⃗J

q

ď trp⃗ala⃗
J
l q}Σu} ď

k2C4p}Σu}

λ2min

,

where a⃗l “ pa1l, . . . , aplq
J, and the last inequality because |ail| ď kC2{λmin. In l2

norm, E}PB0u⃗}2 “ trpB0B
J
0 Σuq ď mintk}Σu}, trpΣuqu. The last part in III, again

using Corollary II.6 and (2.7), is bounded by

pE}pP
xB0

´ PB0qu⃗}q
2

ď E}P
xB0

´ PB0}
2Etrpu⃗u⃗J

q

ď
4kE}pΣ ´ Σ}2trpΣuq

ϕppq2

Taken together,

Epr⃗ ´ ϵ⃗ ´ u⃗q
2
i ď

”

a

EpIiq2 `
a

EpIIiq2 `
a

EpIIIiq2
ı2

ď

«

2cfCk
?
pk

ϕppq

´

E}pΣ ´ Σ}
2
¯1{2

`
2
?
kp

ϕppq

´

E}pΣ ´ Σ}
2
¯1{2

`

?
kC

ϕppq
`
kC2?p}Σu}1{2

ϕppq
`

2
?
k
´

E}pΣ ´ Σ}2
¯1{2a

trpΣuq

ϕppq

ff2

“

«

´

E}pΣ ´ Σ}
2
¯1{2 2

?
kp

ϕppq

˜

cfCk ` 1 `

d

trpΣuq

p

¸

`

?
kC

ϕppq

´

1 `
a

kpC}Σu}
1{2
¯

ff2

and
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E}r⃗ ´ ϵ⃗ ´ u⃗}
2

ď

”

a

E}I}2 `
a

E}II}2 `
a

E}III}2
ı2

ď

«

2cfCk
?
kppE}pΣ ´ Σ}2q1{2

ϕppq
`

2
?
kppE}pΣ ´ Σ}2q1{2

ϕppq
`

?
k

`
a

mintk}Σu}, trpΣuqu `
2
?
kpE}pΣ ´ Σ}2q1{2

a

trpΣuq

ϕppq

ff2

“

«

pE}pΣ ´ Σ}
2
q
1{22

?
pk

ϕppq

˜

cfCk ` 1 `

d

trpΣuq

p

¸

`
?
k `

a

mintk}Σu}, trpΣuqu

ff2

2.4.2 Bounds on difference of projection operators

Let σ1 ě ¨ ¨ ¨ ě σk be the singular values of xB0

J

B0. The k dimensional vector

pcos´1pσ1q, . . . , cos
´1pσkqq, called the principal angles, are a generalization of the acute

angles between two vectors. Let ΘpxB0, B0q be the k ˆ k diagonal matrix with j-th

diagonal entry the j-th principal angle, then a measure of distance between the space

spanned by xB0 and B0 is sinΘpxB0, B0q, where sin is taken entry-wise.

The following variant of Davis-Kahan theorem Yu et al. (2015) provides a bound

for the distances between eigenspaces.

Theorem II.5 (Variant of Davis-Kahan sin θ theorem). Let Σ, pΣ P Rpˆp be sym-

metric, with eigenvalues λ1 ě . . . ě λp and pλ1 ě . . . ě pλp respectively. Fix

1 ď k ď p and assume that λk ´ λk`1q ą 0, where we define λp`1 “ ´8. Let

V “ pν⃗1, ν⃗2, . . . , ν⃗kq P Rpˆk and pV “ ppν⃗1, pν⃗2, . . . , pν⃗kq P Rpˆk have orthonormal columns

satisfying Σν⃗j “ λj ν⃗j and pΣpν⃗j “ pλjpν⃗j for j “ 1, 2, . . . , k. Then

} sinΘppV , V q}F ď
2k1{2}pΣ ´ Σ}

λk ´ λk`1
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For our purpose, a more meaningful measure of distances between subspaces is

the operator norm of the difference of the projections. Let P
xB0
, PB0 be projections

onto the column spaces of xB0 and B0 respectively, we have the following

Corollary II.6. Under assumptions (2.7) and (2.8) with pB0, B0, pΣ and Σ as defined

in (2.15), we have

E}P
xB0

´ PB0}
2

ď
4kE}pΣ ´ Σ}2

λ2k
. (2.17)

Proof of Corollary II.6 . It can be shown that the l2 operator norm of the difference

between two projection matrices P
xB0

and PB0 is determined by the maximum prin-

cipal angle between the two subspaces (see, e.g. Meyer (2000) Chapter 5.15). That

is,

}P
xB0

´ PB0} “ sinparccospσkqq “

b

1 ´ σ2
k.

Consequently, we have

}P
xB0

´ PB0}
2

ď

´

k
ÿ

j“1

1 ´ σ2
j

¯

“ } sinΘpxB0, B0q}
2
F (2.18)

Then applying Theorem II.5 and using the fact that λk`1 “ 0 completes the proof.

2.4.3 Consistency of EWMA updated marginal variance

In this section we present the proof of Proposition II.1.

Let trt, t P Zu be a zero-mean stationary time series, with some correlation

structure

ρt “ Corprt, r0q “ Corprt`h, rhq, t P Z, @h P Z.

We want to handle the following problem: we want to estimate the unknown

variance of Xk non-parametrically and show that our estimator is consistent. For the

estimation of this variance, we implement an additional EWMA on the squares of the
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zero-mean stationary series tXk, k P Zu. Our proposed estimator is

σ̂2
t “ p1 ´ λσqσ̂2

t´1 ` λσr
2
t . (2.19)

To prove the consistency of this estimator, it suffices to show that the following two

properties hold

E
“

σ̂2
t

‰

tÑ8
λσÑ0
ÝÑ σ2

r – Varprtq

Var
`

σ̂2
t

˘

tÑ8
λσÑ0
ÝÑ 0.

Starting with the expectation, we have that

E
“

σ̂2
t

‰

“

t
ÿ

j“0

λσp1 ´ λσq
jE

“

r2t´j

‰

“ σ2
r

t
ÿ

j“0

λσp1 ´ λσq
j

“ σ2
rλσ

1 ´ p1 ´ λσqt`1

1 ´ p1 ´ λσq
“ σ2

r

`

1 ´ p1 ´ λσq
t`1

˘

tÑ8
ÝÑ σ2

r ,

since 0 ă λσ ă 1. Here we have used the expression

σ̂2
t “

t
ÿ

j“0

λσp1 ´ λσq
jr2t´j,

since we have a finite horizon on this EWMA.

Our second goal is to show that the variance of σ̂2
t vanishes. We start by finding

an explicit expression of this variance. We have in general that

Var
`

σ̂2
t

˘

“ Var

˜

t
ÿ

j“0

λσp1 ´ λσq
jr2t´j

¸

“

t
ÿ

j“0

λ2σp1 ´ λσq
2jVar

`

r2t´j

˘
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`

t
ÿ

i“0

t
ÿ

j“0

i‰j

λ2σp1 ´ λσq
i`jCov

`

r2t´j, r
2
t´i

˘

.

We make the following core assumption to continue our calculations.

Assumption II.7. The process trt, t P Zu is Gaussian.

Using the fact that Eprtq “ 0, one can immediately obtain that

Var
`

r2t´j

˘

“ E
“

r4t´j

‰

´ E
“

r2t´j

‰2
“ 3σ4

r ´ σ4
r “ 2σ4

r .

Now, we need to explore the covariance in the second summand of the above expres-

sion. Let

¨

˚

˝

Z1

Z2

˛

‹

‚

„ N

¨

˚

˝

0,

¨

˚

˝

1 ρ

ρ 1

˛

‹

‚

˛

‹

‚

.

We know that

Z1
d
“ ρZ2 `

a

1 ´ ρ2Z3,

where Z2 and Z3 are independent standard Normal random variables.. Then, we have

that

Cov
`

Z2
1 , Z

2
2

˘

“ E
“

Z2
1Z

2
2

‰

´ E
“

Z2
1

‰

¨ E
“

Z2
2

‰

“ E
“

Z2
1Z

2
2

‰

´ 1

“ E
”´

ρ2Z2
2 ` p1 ´ ρ2qZ2

3 ` 2ρ
a

1 ´ ρ2Z2Z3

¯

Z2
2

ı

s ´ 1

“ 3ρ2 ` p1 ´ ρ2q ´ 1 “ 2ρ2.

Using the above one immediately has that

Var
`

σ̂2
t

˘

“ 2σ4
t

t
ÿ

j“0

λ2σp1 ´ λσq
2j

` 2σ4
r

t
ÿ

i“0

t
ÿ

j“0

i‰j

λ2σp1 ´ λσq
i`j

rCor prt´j, rt´iqs
2
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“ 2σ4
rλ

2
σ

1 ´ rp1 ´ λσq2s
t`1

1 ´ p1 ´ λσq2
` 2σ4

rλ
2
σ

t
ÿ

i“0

t
ÿ

j“0

i‰j

p1 ´ λσq
i`jρ2i´j

“ 2σ4
rλσ ¨

1 ´ rp1 ´ λσq2s
t`1

2 ´ λσ
` 2σ4

rλ
2
σ

t
ÿ

i“0

t
ÿ

j“0

i‰j

p1 ´ λσq
i`jρ2i´j,

where in the second equality we used the stationarity of trt, t P Zu.

We take the limit as t Ñ 8 in the above expression, and we have that

lim
tÑ8

Var
`

σ̂2
t

˘

“
2σ4

rλσ
2 ´ λσ

` 2λ2σσ
4
r

8
ÿ

i“0

8
ÿ

j“0

i‰j

p1 ´ λσq
i`jρ2i´j.

We need a condition on tρt, t P Zu in order to proceed.

We propose the following condition in order to secure the consistency of the vari-

ance.

Condition II.8. Assume that the sequence tρt, t P Zu is square summable, namely

that
8
ÿ

t“´8

ρ2t ă 8.

Under this condition, we have the following proposition.

Proposition II.9. Let trt, t P Zu and tσ̂2
t , t P Zu be defined as in the start of

Section 2.4.3 and (2.19) respectively. If Condition II.8 holds, then the estimator σ̂2
t

is consistent.

Proof. The proof is based on the discussion preceding Proposition II.9 and the fol-

lowing. Let

At – 2λ2σσ
4
t

t
ÿ

i“0

t
ÿ

j“0

i‰j

p1 ´ λσq
i`jρ2i´j.
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Then

At ď 2λ2σσ
4
t

t
ÿ

i“0

t
ÿ

j“0

p1 ´ λσq
i`jρ2i´j

“ 2λ2σσ
4
r

2k
ÿ

v“0

p1 ´ λσq
v

mintt,vu
ÿ

n“maxt´t,v´2tu

ρ2n

ď 2λ2σσ
4
r

2t
ÿ

v“0

p1 ´ λσq
v

8
ÿ

n“´8

ρ2n

ď 2λ2σσ
4
r

8
ÿ

v“0

p1 ´ λσq
v

8
ÿ

n“´8

ρ2n “ 2λσσ
4
r

8
ÿ

n“´8

ρ2n,

where we have used the change of variables v “ i` j, n “ i´ j in the second equality.

Using the relationship

Var
`

σ̂2
t

˘

“ 2σ4
rλσ ¨

1 ´ rp1 ´ λσq2s
t`1

2 ´ λσ

` 2λ2σ

t
ÿ

i“0

t
ÿ

j“0

i‰j

p1 ´ λσq
i`jρ2i´j,

we have that

Var
`

σ̂2
t

˘

ď
2σ4

rλσ
2 ´ λσ

` 2λσσ
4
r

8
ÿ

n“´8

ρ2n.

Because of Condition II.8, letting λσ Ñ 0, we obtain the desired property, namely

that Var pσ̂2
kq vanishes.

45



CHAPTER III

Concentration Rates

Consider the maxima of a sequence of random variables and assume that there

exists a sequence of constants, so that the maxima divided by these constants converge

in probability to one. This property, known as relative stability of maxima, has been

thoroughly studied in the case of independence. However, little is known for this

otherwise referred to as concentration of maxima phenomenon, when the maxima

are taken over dependent random variables. Only recently, Gao and Stoev (2020)

established that this phenomenon is the key to solving the exact sparse support

recovery problem in high dimensions. In this chapter, we obtain bounds on the rate

of concentration of maxima in Gaussian triangular arrays in the context of dependence

over space. These results are used to establish sufficient conditions for the uniform

relative stability of functions of Gaussian arrays, leading to a variety of new models

that exhibit phase transitions in the exact support recovery problem. Recall that the

latter problem is closely related to the identification problem studied in Chapter II,

as the canonical signal-plus-noise model, that is assumed for the residuals therein, is

also utilized here. Finally, the optimal rate of concentration for Gaussian arrays is

studied under general assumptions implied by the classic condition of Berman (1964).

This chapter is based on an already published paper in the Extremes (Kartsioukas

et al., 2021).
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3.1 Relative stability and dependence

Let Zi, i “ 1, 2, . . . be independent and identically distributed (iid) standard

Normal random variables. It is well known that their maxima under affine normal-

ization converge to the Gumbel extreme value distribution. If, however, one chooses

to standardize the maxima by only dividing by a sequence of positive numbers, then

the only possible limits are constants. Specifically, for all ap „
a

2 logppq, we have

1

ap
max
iPrps

Zi
P

ÝÑ 1, as p Ñ 8, (3.1)

where rps – t1, ¨ ¨ ¨ , pu and in fact the convergence is valid almost surely. This

property, known as relative stability, dates back to the seminal work of Gnedenko

(1943) who has characterized it in terms of rapid variation of the law of the Zi’s

(see Section 3.2.2 below, as well as Barndorff-Nielsen (1963); Resnick and Tomkins

(1973); Kinoshita and Resnick (1991)).

In contrast, if the Zi’s are iid and heavy-tailed, i.e., PrZi ą xs9x´α, for some

α ą 0, with ap9p1{α, we have

1

ap
max
iPrps

Zi
d

ÝÑ ξ, (3.2)

where ξ is a random variable with the α-Fréchet distribution.

Comparing (3.1) and (3.2), we see that the maxima have fundamentally different

asymptotic behavior relative to rescaling with constant sequences. In the light-tailed

regime, they concentrate around a constant in the sense of (3.1), whereas in the

heavy-tailed regime they disperse according to a probability distribution viz (3.2).

Although this concentration of maxima phenomenon may be well-known under

independence, we found that it is virtually unexplored under dependence. In this

chapter, we will focus on Gaussian sequences, and in fact, more generally, Gaussian

triangular arrays E “ tϵppiq, i P rps, p P Nu, where the ϵppiq’s are marginally standard

Normal but possibly dependent. Let up be the p1 ´ 1{pq-th quantile of the standard
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Normal distribution, i.e., pΦpupq – p p1 ´ Φpupqq “ 1, where Φ is the corresponding

cumulative distribution function. We say that the array E is uniformly relatively

stable (URS), if

1

u|Sp|

max
iPSp

ϵppiq
P

ÝÑ 1, as |Sp| Ñ 8, (3.3)

for every choice of growing subsets Sp Ă t1, ¨ ¨ ¨ , pu. Note that up „
a

2 logppq (see e.g.

Lemma III.6). Certainly, the relative stability property shows that all iid Gaussian

arrays are trivially URS. The notion of uniform relative stability, however, is far from

automatic or trivial under dependence. In the recent work of Gao and Stoev (2020), it

was found that URS is the key to establishing the fundamental limits in sparse-signal

support estimation in high-dimensions. Specifically, under URS, a phase-transition

phenomenon was shown to take place in the support recovery problem. For more

details, see Section 3.2.1 below.

Theorem 3.1 in Gao and Stoev (2020) gives a surprisingly simple necessary and

sufficient condition for a Gaussian array E to be URS. As an illustration, in the

special case where ϵppiq ” Zi, i P N form a stationary Gaussian time series, the array

E is URS if and only if the auto-covariance vanishes, i.e.,

CovpZk, Z0q ÝÑ 0, as k Ñ 8. (3.4)

That is, (3.1) holds (with ap „
a

2 logppq), for any stationary Gaussian time series

Z “ tZiu with vanishing auto-covariance, no matter the rate of decay. The “if” part

of (3.4) appeared in Theorem 4.1 in Berman (1964).

Condition (3.4) should be contrasted with the classic Berman condition,

CovpZk, Z0q “ o

ˆ

1

logpkq

˙

, as k Ñ 8,

which entails distributional convergence under affine normalization. Here, our focus
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is not on distributional limits but on merely the concentration of maxima under

rescaling, which can take place under much more severe dependence. In fact, unlike

Berman, here we are not limited to the time-series setting. For a complete statement

of the characterization of URS, see Section 3.2.2, below.

While Gao and Stoev (2020) characterized the conditions under which the conver-

gence (3.3) takes place, the rate of this convergence remained an open question. In

this chapter, our goal is to establish bounds on the rate of concentration for maxima

of Gaussian arrays. Specifically, we establish results of the type

P
„
ˇ

ˇ

ˇ

ˇ

1

up
max
iPrps

ϵppiq ´ 1

ˇ

ˇ

ˇ

ˇ

ą δp

ȷ

ÝÑ 0, (3.5)

where δp Ñ 0 decays at a certain rate. The rate of the sequence δp is quantified

explicitly in terms of the covariance structure of the array. More precisely, the packing

numbersNpτq associated with the UDD condition introduced inGao and Stoev (2020)

will play a key role. These packing numbers arise from a Sudakov-Fernique type

construction, which appear to be close to optimal, although at this point we do not

know if the so obtained bounds on the rates can be improved (cf Conjecture III.11,

below). After concluding the paper (Kartsioukas et al., 2021), we became aware

of the important results of Tanguy (2015), which are closely related to ours in the

special case of stationary time series. Our approach, however, is technically different

and yields explicit rates for the general case of Gaussian triangular arrays. For more

details, see Remark III.33, below.

Our general results are illustrated with several models, where explicit bounds on

the rates of concentration are derived. In Section 3.3, we study the optimal rate of

concentration and show that under rather broad dependence conditions (including

the iid setting), (3.5) holds if and only if δp " 1{ logppq. Somewhat curiously, the

constant up matters and the popular choice of up –
a

2 logppq leads to the slower
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rates of logplogppqq{ logppq.

Our bounds on the rate of concentration find important application in the study

of uniform relative stability for functions of Gaussian arrays. Specifically, let ηppiq “

fpϵppiqq, where E “ tϵppiq, i P rps, p P Nu is a Gaussian triangular array and f is a

given deterministic function. In Section 3.4.2, using our results on the rate of concen-

tration for the array E , we establish conditions which imply the uniform relative sta-

bility of the array H “ tηppiq, i P rps, p P Nu . Consequently, we establish that many

dependent log-normal and χ2-arrays are URS, and hence obey the phase-transition

result of Gao and Stoev (2020).

This chapter is structured as follows. In Section 3.2, we review the statistical

inference problem motivating the study of the concentration of maxima phenomenon.

Recalled is the notion of uniform decreasing dependence involved in the characteriza-

tion of uniform relative stability for Gaussian arrays. A brief discussion on the optimal

rate of concentration is given in Section 3.3. Section 3.4 contains the statement of the

main result as well as some examples and applications. Section 3.5 contains proofs

and technical results, which may be of independent interest.

3.2 Concentration of maxima and high-dimensional inference

In this section, we start with the statistical inference problem that motivated us

to study the concentration of maxima phenomenon. Readers who are convinced that

this is a phenomenon of independent interest can skip to Section 3.2.2, where concrete

definitions and notions are reviewed.

3.2.1 Fundamental limits of support recovery in high dimensions

Our main motivation to study the relative stability or concentration of maxima

under dependence is the fundamental role it plays in recent developments on high-

dimensional statistical inference, which we briefly review next. Consider the classic
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signal plus noise model

xppiq “ µppiq ` ϵppiq, i P rps, (3.6)

where µp “ pµppiqq P Rp is an unknown high-dimensional “signal” observed with

additive noise. The noise is modeled with a triangular array E “ tϵppiq, i P rps, p P

Nu, where for concreteness, all ϵppiq’s are standardized to have the same marginal

distribution F . However, this noise can have arbitrary dependence structure, in

principle.

One popular and important high-dimensional inference context, is the one where

the dimension p grows to infinity and the signal is sparse. Namely, the signal support

set Sp – ti P rps : µppiq ‰ 0u is of smaller order than its dimension:

|Sp| „ p1´β, for some β P p0, 1q.

The parameter β controls the degree of sparsity; if β is larger, the signal is more

sparse, i.e., has fewer non-zero components. In this context, many natural questions

arise such as the detection of the presence of non-zero signal or the estimation of its

support set (see, e.g., Ingster (1998a); Donoho and Jin (2004a); Ji and Jin (2012);

Arias-Castro and Chen (2017)). Here, as in Gao and Stoev (2020), we focus on the

fundamental support recovery problem. Particularly, under what conditions on the

signal magnitude we can have exact support recovery in the sense that

PrpSp “ Sps ÝÑ 1, as p Ñ 8.

Gao and Stoev (2020) showed that a natural solution to this problem can be obtained

using the concentration of maxima phenomenon. Specifically, consider the class of all
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thresholding support estimators:

pSp – tj P rps : xppjq ą tppxqu, (3.7)

where tppxq is possibly data-dependent threshold. For simplicity of exposition, sup-

pose also that the signal magnitude is parametrized as follows

µppiq “
a

2r logppq, i P Sp,

where r ą 0. Consider also the function

gpβq – p1 `
a

1 ´ βq
2.

Theorems 2.1 and 2.2 of Gao and Stoev (2018) entail that if E is URS (see Definition

III.2 below), then we have the phase-transition:

PrpSp “ Sps ÝÑ

$

’

&

’

%

1, if r ą gpβq for suitable pSp as in (3.7)

0, if r ă gpβq for all pSp as in (3.7)
, as p Ñ 8.

That is, for signal magnitudes above the boundary, thresholding (Bonferonni-

type) estimators recover the support perfectly, as p Ñ 8; whereas for signals below

the boundary, no thresholding estimators can recover the support with positive prob-

ability. Further, as shown in Gao and Stoev (2020), thresholding estimators are

optimal in the iid Gaussian setting and hence the above phase-transition applies to

all possible support estimators leading to minimax-type results. Interestingly, both

Gaussian and non-Gaussian noise arrays are addressed equally well, provided that

they satisfy the uniform relative stability property. While URS is a very mild condi-

tion, except for the Gaussian case addressed in Gao and Stoev (2020), little is known

in general. Here, we will fill this gap for a class of functions of Gaussian arrays (see
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Figure 3.1: Phase transition boundary on the exact support recovery problem. If
r ą gpβq, and so in the green area, then we can find a thresholding estimator, so that
exact support recovery is attainable, whether E is URS or not. If r ă gpβq, in the
brown area, and E is URS, then no matter the thresholding estimator, the probability
of exactly estimating Sp vanishes as p grows to infinity.

Section 3.4.2), using our new results on the rates of concentration.

3.2.2 Concentration of maxima

In this section, we recall some definitions and a characterization of URS in Gao

and Stoev (2020). We start by presenting the notion of relative stability.

Definition III.1. (Relative stability). Let ϵp “ pϵppjqq
p
j“1 be a sequence of random

variables with identical marginal distributions F . Define the sequence pupq8
p“1 to be

the p1 ´ 1{pq-th quantile of F , i.e.,

up “ FÐ
p1 ´ 1{pq. (3.8)

The triangular array E “ tϵp, p P Nu is said to have relatively stable (RS) maxima if

1

up
Mp –

1

up
max
i“1,...,p

ϵppiq
P

Ñ 1, (3.9)
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as p Ñ 8.

Note that by Proposition 1.1 of Gao and Stoev (2020), we have for the standard

Normal distribution, that

up “ ΦÐ
p1 ´ 1{pq „

a

2 logppq. (3.10)

While relative stability is not directly used in this chapter, it is a natural prerequisite

to introducing the following generalization.

Definition III.2. (Uniform Relative Stability (URS)). Under the notations estab-

lished in Definition III.1, the triangular array E “ tϵppiq, i P rpsu is said to have uni-

form relatively stable (URS) maxima if for every sequence of subsets Sp Ď t1, . . . , pu

such that |Sp| Ñ 8, we have

1

u|Sp|

MSp –
1

u|Sp|

max
iPSp

ϵppiq
P

ÝÑ 1, as p Ñ 8. (3.11)

Definition III.3. (Uniformly Decreasing Dependence (UDD)).A Gaussian triangular

array E with standard normal marginals is said to be uniformly decreasingly depen-

dent (UDD) if for every τ ą 0 there exists a finite NEpτq ă 8, such that for every

i P t1, . . . , pu, and p P N, we have

∣∣∣tk P t1, . . . , pu : Covpϵppkq, ϵppiqq ą τu

∣∣∣ ď NEpτq, for all τ ą 0. (3.12)

That is, for any coordinate j, the number of coordinates which are more than τ -

correlated with ϵppjq does not exceed NEpτq.

The next result provides the equivalence between uniform relative stability and

uniformly decreasing dependence.
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Theorem III.4 (Theorem 3.1 in Gao and Stoev (2020)). Let E be a Gaussian trian-

gular array with standard Normal marginals. The array E is URS if and only if it is

UDD.

Theorem III.4 is the starting point of the rate investigations in this disserta-

tion. Our main result, Theorem III.13, below, extends the former by providing upper

bounds on the rate of concentration. Before that, though, in Section 3.3 we study

cases where the optimal rate can be formally established.

Remark III.5 (On the use of the term “upper bound”). Fix a positive sequence δ‹
p Ó 0.

We refer to δ‹
p as an upper bound on the rate of concentration when (3.5) holds for

any sequence δp " δ‹
p. Further, for two positive sequences αp and βp we write αp — βp

if

0 ă c1 ď lim inf
pÑ8

ˇ

ˇ

ˇ

ˇ

αp

βp

ˇ

ˇ

ˇ

ˇ

ď lim sup
pÑ8

ˇ

ˇ

ˇ

ˇ

αp

βp

ˇ

ˇ

ˇ

ˇ

ď c2 ă 8.

Let δ‹
p be an upper bound on the rate of concentration and δp " δ‹

p. Then, natu-

rally, (3.5) holds with δp replaced by δ̃p, for any δ̃p — δp.

3.3 On the optimal rate of concentration

In this section, we provide some general comments on the fastest possible rates

of concentration for maxima of Gaussian variables. Somewhat surprisingly, the rate

depends on the choice of the normalizing sequence up. As it turns out poor choices

of normalizing sequences can lead to arbitrarily slow rates. On the other hand, for a

wide range of dependence structures (including the iid case), the best possible rate

will be shown to be 1{ logppq. The question of whether the maxima of dependent

Gaussian arrays can concentrate faster than that rate, however unlikely this may be,

is open, to the best of our knowledge (cf Conjecture III.11, below).

Consider a Gaussian array E “ tϵppiq, i P rpsu with standard Normal marginal.
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We shall assume that E is (uniformly) relatively stable, so that in particular,

1

up
max
iPrps

ϵppiq —
Mp

up

P
ÝÑ 1,

as p Ñ 8, where up – Φ´1p1 ´ 1{pq is the p1{pq-th tail quantile of the standard

Normal distribution.

We consider the iid case first and, for clarity, let M˚
p denote the maximum of p

independent standard Normal random variables. Suppose that for some ap ą 0 and

ap, bp P R, we have

Φpa´1
p x ` bpq

p
Ñ Λpxq – expt´e´x

u, as p Ñ 8,

for all x P R. That is, we have

appM˚
p ´ bpq

d
ÝÑ ζ, as p Ñ 8, (3.13)

where ζ has the standard Gumbel distribution Λ. The next result is well-known. We

give it here since it summarizes and clarifies the possible choices of the normalizing

constants ap and bp for (3.13) to hold.

Lemma III.6. (i) We have that

ruppM˚
p ´ rupq

d
ÝÑ ζ if and only if pΦprupq Ñ 1, (3.14)

as p Ñ 8. In this case, rup „
a

2 logppq and more precisely

a

2 logppqprup ´ u˚
pq Ñ 0, as p Ñ 8, (3.15)
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where

u˚
p –

a

2 logppq

ˆ

1 ´
logplogppqq ` logp4πq

4 logppq

˙

. (3.16)

(ii) Relation (3.13) holds if and only if

ap „
a

2 logppq and pΦpbpq Ñ 1.

In particular, by part (i), we have that (3.13) holds with ap – bp and (3.15) holds

with rup – bp.

Proof. Part (i). Observe that by the Mill’s ratio (cf Lemma III.28), pΦprupq Ñ 1 is

equivalently expressed as follows:

pΦprupq „ p
ϕprupq

rup
Ñ 1, as p Ñ 8,

where ϕpxq “ expt´x2{2u{
?
2π is the standard Normal density. By taking logarithms,

the above asymptotic relation is equivalent to having

logppq ´
rup

2

2
´ logprupq ´

1

2
logp2πq Ñ 0. (3.17)

We first prove the “if” direction of part (i). Suppose that pΦprupq Ñ 1, or equiva-

lently, (3.17) holds. Then, one necessarily has rup Ñ 8. It is easy to see that (3.13)

holds with ap – rup and bp – rup, provided that, for all x P R,

Φ

ˆ

rup `
x

rup

˙p

Ñ Λpxq, as p Ñ 8. (3.18)

The latter, upon taking logarithms and using the fact that logp1 ` zq » z, as z Ñ 0,

is equivalent to having

pΦ

ˆ

rup `
x

rup

˙

Ñ ´ logpΛpxqq “ e´x. (3.19)
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To prove that (3.19) holds, as argued above, using the Mill’s ratio, it is equivalent to

verify that

Ap – logppq ´
1

2
prup ` x{rupq

2
´ log prup ` x{rupq ´

1

2
logp2πq Ñ ´x,

as p Ñ 8. Note that, upon expanding the square and manipulating the logarithm,

we obtain

Ap “ logppq ´
rup

2

2
´ logprupq ´

1

2
logp2πq ´ x ´ x2{p2 rup

2
q ´ logp1 ` x{ rup

2
q.

In view of (3.17) and the fact that rup Ñ 8, we obtain that Ap Ñ ´x, which yields

(3.19) and completes the proof of the “if” direction of part (i).

Now, to show the “only if” direction of part (i), suppose that (3.13) holds with

ap “ bp – rup, or, equivalently (3.18) holds. By letting x “ 0 in Relation (3.18), we

see that rup Ñ 8, and then, upon taking logarithms, necessarily pΦprupq Ñ 1, which

completes the proof of (3.14).

We now show (3.15). First, one can directly verify that (3.17) holds with rup

replaced by u˚
p in (3.16). This, as argued above, is equivalent to pΦpu˚

pq Ñ 1. Sup-

pose now that, for another sequence rup, we have pΦprupq Ñ 1. Then, by the shown

equivalence in (3.14),

u˚
ppM˚

n ´ u˚
pq

d
Ñ ζ and ruppM˚

n ´ rupq
d

Ñ ζ.

Thus, the convergence of types theorem (see, e.g., Theorem 14.2 in Billingsley (1995))

yields

u˚
p „ rup and u˚

ppu˚
p ´ rupq Ñ 0.

The last convergence implies the claim of part (ii) since in view of (3.16), we have

u˚
p „

a

2 logppq.
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Part (ii) is a direct consequence of the convergence to types theorem, as argued

in the proof of part (i).

The following result characterizes the optimal rate of concentration under an ad-

ditional distributional convergence assumption, which holds under the Berman con-

dition for e.g. the case of stationary time series.

Proposition III.7. Suppose that E is a dependent triangular Gaussian array, such

that

ζp – appMp ´ bpq
d

ÝÑ ζ, as p Ñ 8, (3.20)

for some non-degenerate random variable ζ, with the same constants as in the iid

case (3.13). Suppose also that P pζ ă xq ą 0 and P pζ ą xq ą 0 for all x P R.

Let now the sequence δp Ñ 0, be an upper bound on the rate of concentration, i.e.,

we have

P
ˆ
ˇ

ˇ

ˇ

ˇ

Mp

ap
´ 1

ˇ

ˇ

ˇ

ˇ

ą δp

˙

Ñ 0, p Ñ 8. (3.21)

The following two statements hold.

(a) When lim suppÑ8 ap|bp ´ ap| ă 8, Relation (3.21) holds if and only if

δp "
1

a2p
`

ˇ

ˇ

ˇ

ˇ

bp
ap

´ 1

ˇ

ˇ

ˇ

ˇ

— δoptp . (3.22)

(b) When lim suppÑ8 ap|bp ´ ap| “ 8, Relation (3.21) holds if and only if

lim inf
pÑ8

„

δp

δoptp

´ 1

ȷ

p1 ` ap|bp ´ ap|q “ 8. (3.23)

Proof. (a) We will start with the “if” direction. Relation (3.20) implies that

1

ap
Mp “

ζp
a2p

`
bp
ap
.
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Since by assumption the constants ap and bp are the same as in the iid case (3.13),

Lemma III.6 entails that bp „ ap „
a

2 logppq. Hence

1

ap
Mp ´ 1 “

ζp
a2p

`

ˆ

bp
ap

´ 1

˙

Ñ 0, (3.24)

which shows that the distributional limit in (3.20) entails concentration of the maxima

Mp{ap to 1. Relations (3.22) and (3.24), however imply that

ˇ

ˇ

ˇ

ˇ

Mp

ap
´ 1

ˇ

ˇ

ˇ

ˇ

“ oP pδpq,

which entails (3.21) by Slutsky (or also Lemma III.9, below.)

Now, for the converse direction, suppose that (3.21) holds for some δp " δoptp . This

means that we can find a subsequence ppnq so that δppnq ď c ¨ δoptppnq
, @n P N, for a

positive constant c that does not depend on n. In view of (3.21), this would mean

that

θn – P
ˆ
ˇ

ˇ

ˇ

ˇ

Mppnq

appnq

´ 1

ˇ

ˇ

ˇ

ˇ

ą cδoptppnq

˙

Ñ 0, n Ñ 8.

Moreover, since lim suppÑ8 ap|bp ´ ap| ă 8, and ap ą 0, the sequence pap|bp ´ ap|q8
p“1

is bounded. Namely, there exists M ą 0, such that 0 ď ap|bp ´ap| ď M, for all p P N.

However, we have that

θn ě P
ˆ

Mppnq

appnq

´ 1 ą cδoptppnq

˙

“ P

˜

ζppnq

a2ppnq

`
bppnq

appnq

´ 1 ą
c

a2ppnq

` c

ˇ

ˇ

ˇ

ˇ

bppnq

appnq

´ 1

ˇ

ˇ

ˇ

ˇ

¸

“ P
`

ζppnq ` appnqpbppnq ´ appnqq ´ c|appnqpbppnq ´ appnqq| ą c
˘

ě P
`

ζppnq ´ pc ` 1qappnq|bppnq ´ appnq| ą c
˘

ě P
`

ζppnq ą c ` pc ` 1qappnq|bppnq ´ appnq|
˘

ě Ppζppnq ą c ` pc ` 1qMq

Ñ Ppζ ą c ` pc ` 1qMq ą 0,
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where the last convergence holds because ζppnq
d

Ñ ζ. This is a contradiction and the

proof is complete.

(b) We have that

P
ˆ
ˇ

ˇ

ˇ

ˇ

Mp

ap
´ 1

ˇ

ˇ

ˇ

ˇ

ą δp

˙

“ P
`

ap |Mp ´ ap| ą δpa
2
p

˘

“ P
`

|ζp ` appbp ´ apq| ą δpa
2
p

˘

“ P
`

ζp ă ´δpa
2
p ´ appbp ´ apq

˘

` P
`

ζp ą δpa
2
p ´ appbp ´ apq

˘

— Appq ` Bppq.

Note, however, that (3.21) entails that both Appq and Bppq vanish to 0, as p Ñ 8.

This in turn means that

lim inf
pÑ8

pδpa
2
p ´ appbp ´ apqq “ 8 and lim inf

pÑ8
pδpa

2
p ` appbp ´ apqq “ 8, (3.25)

because of the distributional convergence (3.20). We will work with Bppq. The result

for Appq can be obtained by similar arguments. At first, for Bppq to vanish to 0, we

do need δpa
2
p ą appbp ´ apq eventually. Suppose that lim infpÑ8pδpa

2
p ´ appbp ´ apqq “

c ă 8, where c ě 0. This would mean that there is a subsequence ppnq such that

δppnqa
2
ppnq ´ appnqpbppnq ´ appnqq Ñ c, p Ñ 8.

But then,

Bpppnqq “ P
`

ζppnq ą δppnqa
2
ppnq ´ appnqpbppnq ´ appnqq

˘

Ñ Ppζ ą cq ą 0,

which contradicts the fact that Bppq Ñ 0, as p Ñ 8.

Finally, note that (3.25) is equivalent to lim infpÑ8pδpa
2
p ´ ap|bp ´ ap|q “ 8, which
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with straightforward algebra can be expressed as (3.23). Indeed,

δpa
2
p ´ ap|bp ´ ap| “ a2p

„

δp ´

ˇ

ˇ

ˇ

ˇ

bp
ap

´ 1

ˇ

ˇ

ˇ

ˇ

ȷ

“ a2p
“

δp ´ δoptp

‰

` 1

“ a2pδ
opt
p

„

δp

δoptp

´ 1

ȷ

` 1

“

„

δp

δoptp

´ 1

ȷ

p1 ` ap|bp ´ ap|q ` 1,

which completes the proof.

Remark III.8 (On the optimality of the rate δoptp ). The rate δoptp can be viewed as

“the” optimal rate of concentration in (3.21) in the sense of (3.22) and (3.23). The

distributional convergence in (3.20) (whenever it takes place) is much more informa-

tive than a simple concentration of maxima type convergence. Specifically, by Lemma

III.6 (ii), one can take up “ ap “ bp, and in this case Relation (3.24) implies that

1{a2p91{ logppq is both an upper and lower bound on the rate of concentration. That

is, the rate δoptp “ 1{a2p91{ logppq cannot be improved and in this sense is the optimal

rate at which the maxima can concentrate. The rate of concentration, though, does

depend on the choice of the normalization sequence up. We elaborate on this point

next.

The role of the sequence up. It is well-known that under quite substantial

dependence, the convergence in distribution (3.20) holds, with the same constants as

in the independent case. For example, suppose that ϵppiq “ Zpiq, i P Z come from

a stationary Gaussian time series, which satisfies the so-called Berman condition

(Berman, 1964):

CovpZpkq, Zp0qq “ o

ˆ

1

logpkq

˙

, as k Ñ 8.

62



Notice, by Lemma III.6 (ii), however, we also have rζp – bppMp ´ bpq
d

Ñ ζ, and

1

bp
Mp ´ 1 “

rζp
b2p

“ OP

ˆ

1

logppq

˙

. (3.26)

Compare Relations (3.24) and (3.26). Since ap „ bp „
a

2 logppq, from (3.26),

we have that the rate of concentration of Mp relative to the sequence bp is 1{ logppq.

On the other hand, while the first term in the right-hand side of (3.24) is of order

1{ logppq the presence of the second term can only make the rate of concentration

therein slower. Indeed, this is formally established in Lemma III.9. To gain some

more intuition that the poor choice of a sequence ap can lead to a slower rate of

concentration, suppose that ap “ bp{p1 ` gppqq, for an arbitrary sequence gppq ą ´1,

such that gppq Ñ 0. Then, by (3.24),

1

ap
Mp ´ 1 “

ζp
a2p

` gppq.

One can take gppq Ñ 0 arbitrarily slow. Finally, as a more concrete example, one

typically uses bp – u˚
p “

a

2 logppqp1 ´ plogplogppqq ` logp4πqq{4 logppqq and ap –

a

2 logppq. It is easily seen that bp “ app1 ` gppqq, where

gppq “ ´
logplogppqq ` logp4πq

4 logppq
9
logplogppqq

logppq
.

This shows that, in particular, in the case of iid maxima (as well as in the general

case where (3.20) holds) the normalization
a

2 logppq does not lead to the optimal

rate, since

1
a

2 logppq
M˚

p ´ 19P
logplogppqq

logppq
,

where ξp9Pηp means that ξp{ηp Ñ c in probability, for some positive constant c.

The optimal rate is 1{ logppq and it is obtained by normalizing with any sequence

bp such that pΦpbpq Ñ 1. This follows from the next simple result, which shows that
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the rate of concentration in (3.24) is the slower of the rates 1{a2p and pbp ´ apq{ap.

Lemma III.9. Suppose that for some random variables ζp, we have ζp
d

Ñ ζ, as

p Ñ 8, where ζ is a non-constant random variable. Then, for all sequences αp and

βp, we have

αpζp ` βp
P

ÝÑ 0 ðñ |αp| ` |βp| ÝÑ 0.

That is, the rate of αpζp ` βp is always the slower of the rates of tαpu and tβpu.

Proof. The “ð” direction follows from Slutsky. To prove “ñ”, it is enough to show

that for every ppnq Ñ 8, there is a further sub-sequence qpnq Ñ 8, tqpnqu Ă tppnqu,

such that

|αqpnq| ` |βqpnq| ÝÑ 0.

In view of Skorokhod’s representation theorem (Theorem 6.7, page 70 in Billingsley

(2013)), we may suppose that ζ˚
p Ñ ζ˚, with probability one, where ζ˚

p
d
“ ζp and

ζ˚ d
“ ζ. Also, assuming that αppnqζ

˚
ppnq

` βppnq Ñ 0, in probability, implies that there

is a further sub-sequence qpnq Ñ 8, such that

αqpnqζ
˚
qpnqpωq ` βqpnq Ñ 0, as qpnq Ñ 8, (3.27)

for P -almost all ω. Since also ζ˚
qpnq

pωq Ñ ζ˚pωq, for P -almost all ω, and since ζ˚ is

non-constant, we have ζ˚
qpnq

pωiq Ñ ζ˚pωiq, i “ 1, 2 for some ζ˚pω1q ‰ ζ˚pω2q.

Thus, by subtracting two instances of Relation (3.27) corresponding to ω “ ω1

and ω “ ω2, we obtain

αqpnqpζ
˚
qpnqpω1q ´ ζ˚

qpnqpω2qq Ñ 0,

which since pζ˚
qpnq

pω1q ´ ζ˚
qpnq

pω2qq Ñ ζ˚pω1q ´ ζ˚pω2q ‰ 0, implies αqpnq Ñ 0. This, in

view of (3.27) yields βqpnq Ñ 0, and completes the proof.
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Remark III.10. The above considerations establish the optimal rate of concentration

of the maxima Mp “ maxiPrps ϵppiq, whenever the limit in distribution (3.20) holds.

We have shown that this optimal rate is 1{ logppq and is in fact obtained, when

considering Mp{up, for pΦpupq „ 1. The rate of concentration of Mp{
a

2 logppq is

logplogppqq{ logppq, which is only slightly sub-optimal.

On the other hand, as we know by Theorem III.4, uniform relative stability is

equivalent to UDD and hence the concentration of maxima phenomenon takes place

even if (3.20) fails to hold. At this point, we do not know what is the optimal rate

in general. In Section 3.4, we provide upper bounds on this rate. We conjecture,

however, the presence of more severe dependence can only lead to slower rates of

concentration and in particular the optimal rate of concentration for UDD arrays

cannot be faster than 1{ logppq – the one for independent maxima.

Conjecture III.11. Let E be a Gaussian URS array. Relation (3.30) implies δp "

1{ logppq.

3.4 Rates of uniform relative stability

3.4.1 Gaussian arrays

Throughout Sections 3.4 and 3.5, E “ tϵppiq, i P rpsu will be a Gaussian array

with standard Normal marginals, unless stated otherwise. We shall also assume that

E is URS. For simplicity of notation and without loss of generality we will work with

Sp “ rps (see Remark III.15). We will obtain upper bounds on the rate, i.e., sufficient

conditions on the dependence structure of E , which ensure certain rates. These results

are of independent interest and will find concrete applications in Section 3.4.2, where

conditions ensuring the URS of functions of Gaussian arrays are established.

The following definition is an ancillary tool for the comparison of the rates of two

vanishing sequences and introduces some notation for this purpose.
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Definition III.12. Let pαpq8
p“1 and pβpq8

p“1 be two positive sequences converging to

0. We will say that αp is of lower order than βp (or slower than βp) , denoted by

αp " βp, if βp{αp Ñ 0, as p Ñ 8, i.e., βp “ opαpq.

The next theorem constitutes the main result of this chapter.

Theorem III.13. Consider a UDD Gaussian triangular array E “ tϵppiq, i P rpsu

with standard Normal marginals and let NEpτq be as in Definition III.3. Let τppq Ñ 0

be such that

αppq – logNEpτppqq{ logppq Ñ 0, as p Ñ 8. (3.28)

Then, for all δp ą 0 such that

δp " αppq ` τppq `
1

logppq
, (3.29)

we have

P
ˆ
ˇ

ˇ

ˇ

ˇ

maxiPrps ϵppiq

up
´ 1

ˇ

ˇ

ˇ

ˇ

ą δp

˙

Ñ 0, as p Ñ 8. (3.30)

Here up is defined as in (3.8) taking F “ Φ, the cumulative distribution function of

standard Normal distribution.

The proof of Theorem III.13 depends on a number of technical results, which will

be presented and proved in Section 3.5. In order to make the proof easier for the

reader to follow, we postpone its demonstration until Section 3.5. We proceed next

with several comments and examples.

Remark III.14. Note that in Theorem III.13 the covariance structure of E appears only

through NEpτq. The collection tNEpτq, τ P p0, 1qu constitutes a collection of uniform

upper bounds on the number of covariances in each row of the triangular array E that

exceed the threshold τ . This means that the ordering of the p random variables in

each row of E is irrelevant.
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Remark III.15. The support recovery results of Gao and Stoev (2020) require URS

in the sense of (3.11) for a subsequence Sp Ă rps, with |Sp| Ñ 8. By the previous

remark, upon relabelling the triangular array E , Theorem III.13 applies in this setting

with p replaced by |Sp|, and entails rates on the convergence in (3.11).

The preceding Theorem III.13 gives us an upper bound on the rate at which

the convergence in (3.11) takes place for a UDD Gaussian array E . Observe that

this bound depends crucially on the covariance structure of E through NEpτq. This

dependence will be illustrated in the following examples, where the upper bound

stated in (3.29) is obtained for three specific covariance structures.

Example III.16. The iid case and optimality of the rate bounds.

Suppose that all ϵppjq’s are iid. Then, we can pick τppq “ 0 or τ ă 1 vanishing to 0

arbitrarily fast, and we would have that NEpτq “ 1, because of the strict inequality

in (3.12). This implies that αppq “ logpNEpτqq{ logppq “ 0. Thus, in this case, the

upper bound in (3.29) becomes 1{ logppq. Observe that this rate matches the optimal

rate in Conjecture III.11.

Example III.17. Power-law covariance decay.

Consider, first, the simple case where E comes from a stationary Gaussian time series,

ϵppκq “ ϵpκq, with auto-covariance

ρpκq “ Covpϵpκq, ϵp0qq9κ´γ, γ ą 0. (3.31)

Then, the classic Berman condition ρpκq “ op1{ logpκqq holds and as shown in the

discussion after Proposition III.7, the optimal rate in (3.11) is 1{ logppq.

In this example, we will demonstrate that our result [Theorem III.13] leads to the

nearly optimal rate logplogppqq{ logppq. As in the previous remark, we see that this

is in fact the optimal rate if up in (3.11) is replaced by
a

2 logppq. (See Section 3.3).

Note, however, that our arguments apply in greater generality and do not depend on
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the stationarity assumption. Indeed, assume that E is a general Gaussian triangular

array such that (UDD1) of Gao and Stoev (2020) holds, i.e.,

|Covpϵppiq, ϵppjqq| ď c |πppiq ´ πppjq|
´γ (3.32)

for suitable permutations πp of t1, . . . , pu, where c does not depend on p. (Note that

(3.32) entails (3.31) for πp “ id, where id is the identity permutation.) Then, one can

readily show that NEpτq “ Opτ´1{γq, as τ Ñ 0. Thus,

αppq “
logpNEpτqq

logppq
9
logpτ´1{γq

logppq
“ ´

logpτq

γ logppq
.

Using this αppq, the upper bound on the rate in Theorem III.13 becomes

αppq ` τppq `
logplogppqq

logppq
9 ´

logpτq

logppq
` τppq `

1

logppq
— ´

logpτq

logppq
` τppq. (3.33)

This is minimized by taking τppq “ 1{ logppq in (3.33) and the upper bound on the

rate becomes

αppq ` τppq `
1

logppq
9
logplogppqq

logppq
`

1

logppq
—

logplogppqq

logppq
.

Recall that in the case when E has iid components, the optimal rate of concentration

of the maxima is 1{ logppq and in fact it becomes logplogppqq{ logppq when one uses

the normalization
a

2 logppq in place of up. Therefore, this example shows that under

mild power-law type covariance decay conditions, Gaussian triangular arrays continue

to concentrate at the nearly optimal rates for the iid setting.

Example III.18. Logarithmic covariance decay.

Following suit from Example III.17, we consider first the case where the errors come
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from a stationary time series with auto-covariance

ρpκq “ Covpϵpκq, ϵp0qq9 plogpκqq
´ν , as κ Ñ 8, (3.34)

for some ν ą 0. Note that for 0 ă ν ă 1, the Berman condition ρpκq “ op1{ logpκqq

is no longer satisfied and the results from Section 3.3 cannot be applied to establish

the optimal rate in (3.11). Using Theorem III.13, we will see that an upper bound

on this rate is δ‹
p – plogppqq

´ ν
ν`1 .

Indeed, consider the more general case where E is a Gaussian triangular array,

such that (UDD1) of Gao and Stoev (2020) holds, i.e.,

|Covpϵppiq, ϵppjqq| ď c plog p|πppiq ´ πppjq|qq
´ν , (3.35)

for suitable permutations πp of t1, . . . , pu and c does not depend on p. Again, note

that (3.35) implies (3.34) for the identity permutation. One can show that in this

case NEpτq “ O
´

eτ
´1{ν

¯

, as τ Ñ 0 and thus,

αppq “
logpNEpτqq

logppq
9

log
´

eτ
´1{ν

¯

logppq
“

1

τ 1{ν logppq
, as p Ñ 8.

To find the best bound on the rate in the context of (3.29) we minimize

αppq ` τppq `
1

logppq
9

1

τ 1{ν logppq
` τ `

1

logppq
,

with respect to τ. Considering p fixed, basic calculus gives us that the r.h.s. is

minimized for τppq “ pν logppqq
´ ν

ν`1 . With this choice of τ the fastest upper bound

from Theorem III.13 becomes

”

ν´ ν
ν`1 ` ν´ 1

ν`1

ı

¨ plogppqq
´ ν

ν`1 `
1

logppq
9plogppqq

´ ν
ν`1 .
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It only remains to show that the choice of τ actually allows us to pick NEpτq “

O
´

eτ
´1{ν

¯

. A sufficient condition would be p ě c̃¨eτ
´1{ν

for a suitably chosen constant

c̃ not depending on either p or τ . Substituting τ “ pν logppqq
´ ν

ν`1 , we equivalently

need

p ě c̃ ¨ epν logppqq
1

ν`1
.

It is readily checked, by taking logarithms in both sides, that this holds for p suffi-

ciently large and thus, the fastest upper bound for this kind of dependence structure

is plogppqq
´ ν

ν`1 .

Observe that as ν Ñ 8 this upper bound approaches asymptotically the optimal

rate 1{ logppq achieved under the Berman condition (see Section 3.3). Our results

yield, however, an upper bound on the rate of concentration in (3.11) for the case

0 ă ν ă 1, where the Berman condition does not hold.

3.4.2 Functions of Gaussian arrays

The main motivation behind the work in this section is to determine when the

concentration of maxima property is preserved under transformations. Specifically,

consider the triangular array

H “ tηppjq “ fpϵppjqq, j P rps, p P Nu , (3.36)

where E “ tϵppjq, j P rps, p P Nu is a Gaussian triangular array with standard Nor-

mal marginals.

Given that (3.30) holds, our goal is to find bounds on a sequence dp Ó 0, such that

P
ˆ
ˇ

ˇ

ˇ

ˇ

maxjPrps ηppjq

vp
´ 1

ˇ

ˇ

ˇ

ˇ

ą dp

˙

Ñ 0, as p Ñ 8, (3.37)

where vp “ fpupq and up is as in (3.8). We first address the case of monotone non-
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decreasing transformations.

Proposition III.19. Asssume that f is a non-decreasing differentiable and eventually

strictly increasing function, with limxÑ8 fpxq ‰ 0 and the derivative f 1pxq is either

eventually increasing or eventually decreasing as x Ñ 8. If (3.30) holds with some

δp ą 0, then (3.37) holds provided that

dp ě d‹
p –

upδp max t|f 1pupp1 ´ δpq|, |f 1pupp1 ` δpq|u

|fpupq|
. (3.38)

Proof. Since up Ò 8, by the monotonicity of f and the fact that it is eventually

strictly increasing, one can show that fpupq “ vp “ FÐ
η p1 ´ 1{pq, for p large enough.

We start by noticing that

ˇ

ˇ

ˇ

ˇ

maxjPrps ηppjq

vp
´ 1

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

maxjPrps fpϵppjqq ´ fpupq

fpupq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

f
`

maxjPrps ϵppjq
˘

´ fpupq

fpupq

ˇ

ˇ

ˇ

ˇ

ˇ

,

(3.39)

where the second equality follows by the monotonicity of f .

Now recall that f is differentiable. By the Mean Value Theorem, there exists a

possibly random θp between up and maxjPrps ϵppjq, such that

ˇ

ˇ

ˇ

ˇ

ˇ

f
`

maxjPrps ϵppjq
˘

´ fpupq

fpupq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1

fpupq
f 1

pθpq

ˆ

max
jPrps

ϵppjq ´ up

˙
ˇ

ˇ

ˇ

ˇ

. (3.40)

Combining (3.39) and (3.40), we obtain

P
ˆ
ˇ

ˇ

ˇ

ˇ

maxjPrps ηppjq

vp
´ 1

ˇ

ˇ

ˇ

ˇ

ą dp

˙

“ P
ˆ
ˇ

ˇ

ˇ

ˇ

upf
1pθpq

fpupq

ˇ

ˇ

ˇ

ˇ

¨

ˇ

ˇ

ˇ

ˇ

maxjPrps ϵppjq

up
´ 1

ˇ

ˇ

ˇ

ˇ

ą dp

˙

“ P
ˆ
ˇ

ˇ

ˇ

ˇ

maxjPrps ϵppjq

up
´ 1

ˇ

ˇ

ˇ

ˇ

ą
dp|fpupq|

up|f 1pθpq|

˙

,

where the second equality follows from the fact that f 1pθpq ‰ 0 over the event of

interest, since dp ą 0. This shows that for any non-negative sequence δp vanishing to
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0, such that (3.30) holds, we have that

P
ˆˇ

ˇ

ˇ

ˇ

maxjPrps ηppjq

vp
´ 1

ˇ

ˇ

ˇ

ˇ

ą d̃p

˙

Ñ 0, as p Ñ 8, (3.41)

where

d̃p –
upδp|f 1pθpq|

|fpupq|
. (3.42)

Now, we know by (3.30) that

|θp ´ up| ď

ˇ

ˇ

ˇ

ˇ

max
jPrps

ϵppjq ´ up

ˇ

ˇ

ˇ

ˇ

ď upδp

with probability going to 1, as p Ñ 8. This implies that

P pupp1 ´ δpq ď θp ď upp1 ` δpqq Ñ 1, as p Ñ 8,

In turn, by the eventual monotonicity of f 1, the last convergence implies that

P p|f 1
pθpq| ď max t|f 1

pupp1 ´ δpqq| , |f 1
pupp1 ` δpqq|uq Ñ 1, as p Ñ 8,

and equivalently

P
´

d̃p ď d‹
p

¯

Ñ 1, as p Ñ 8. (3.43)

By (3.42) and (3.43) we conclude that (3.41) holds with d̃p substituted by d‹
p. This

shows that d‹
p is an upper bound of the optimal rate of concentration, i.e., (3.38)

implies (3.37).

A typical and very important case where Proposition III.19 applies is when the

array E undergoes an exponential transformation, illustrated in the following example.
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Example III.20. Let E be as in Proposition III.19 and consider

HE “
␣

ηppjq – eϵppjq, j P rps, p P N
(

, (3.44)

which is a triangular array with lognormal marginal distributions. This is sometimes

referred to as the multivariate lognormal model (Halliwell , 2015). Let δp be such that

(3.30) holds. Then, an immediate application of Proposition III.19 shows that as long

as upδp Ñ 0, an upper bound on the rate of convergence in (3.37) is

d‹
p “ upδpe

upδp „ upδp „ δp
a

2 logppq.

That is, lognormal arrays can have relatively stable maxima, provided that the un-

derlying maxima of the Gaussian array concentrate at a rate δp “ o
´

1{
a

logppq

¯

.

Popular models like the ones with χ2
1 marginals can be obtained from Proposi-

tion III.19 with the monotone transformation fpxq – F´1 pΦpxqq, where F is the

cdf of the desired distribution. The classic multivariate χ2
1-models, however, are ob-

tained by squaring the elements of the Gaussian array, i.e., via the non-monotone

transformation fpxq “ x2. Such models are addressed in the next result.

Corollary III.21. Let all the assumptions of Proposition III.19 hold and let d‹
p be

defined as before. Assume now that f is an even (fpxq “ fp´xq) differentiable and

eventually strictly increasing function, with limxÑ8 fpxq ‰ 0. Assume also that f is

monotone non-decreasing on p0,8q. Then, the conclusion (3.38) still holds.

Proof. We start by observing that

P
ˆ
ˇ

ˇ

ˇ

ˇ

maxjPrps ηppjq

fpupq
´ 1

ˇ

ˇ

ˇ

ˇ

ą dp

˙

“ P
ˆ
ˇ

ˇ

ˇ

ˇ

maxjPrps fpϵppjqq ´ fpupq

fpupq

ˇ

ˇ

ˇ

ˇ

ą dp

˙

ď P
ˆˇ

ˇ

ˇ

ˇ

fpminjPrps ϵppjqq ´ fpupq

fpupq

ˇ

ˇ

ˇ

ˇ

ą dp

˙

` P
ˆˇ

ˇ

ˇ

ˇ

fpmaxjPrps ϵppjqq ´ fpupq

fpupq

ˇ

ˇ

ˇ

ˇ

ą dp

˙

,

(3.45)
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because the symmetry and monotonicity of f on p0,8q imply that maxjPrps fpϵppjqq

equals either f
`

maxjPrps ϵppjq
˘

or f
`

minjPrps ϵppjq
˘

.

By Proposition III.19 we can readily obtain that for dp ě d‹
p the second term of

(3.45) converges to 0. Now, we handle the first term of (3.45). By the symmetry of

f we have that

fpmin
jPrps

ϵppjqq “ fp´min
jPrps

ϵppjqq “ fpmax
jPrps

p´ϵppjqq.

Notice that by verifying the equality of the covariance structures, we have

t´ϵppjq, j P rpsu
d
“ tϵppjq, j P rpsu .

Hence maxjPrpsp´ϵppjqq
d
“ maxjPrps ϵppjq, and again by Proposition III.19 we get that

for dp ě d‹
p the first term of (3.45) also converges to 0. This completes the proof.

Using Corollary III.21 we can now treat the multivariate χ2 model introduced in

Dasgupta and Spurrier (1997).

Example III.22. Let E be as in Proposition III.19 and consider

HE “
␣

ηppjq – ϵ2ppjq, j P rps, p P N
(

,

a triangular array with χ2
1 marginal distributions. Let δp be as in (3.30). Then, a

simple application of Corollary III.21 implies (3.37), provided

dp ě d‹
p “ 2δpp1 ` δpq „ 2δp.

In contrast to Example III.20, taking squares does not lead to a slower rate of conver-

gence. Indeed, in Example III.20 our estimate of the rate is slowed down by a factor

of
a

logppq, while in the χ2 case it remains δp.
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We shall now see that the rate of convergence is not slowed down by any power

transformation x ÞÑ xλ, for any λ ą 0.

Example III.23. Power-Law Transformations.

Let once again E be as in Proposition III.19 and consider the power transformations

fpxq “ xλ, λ ą 0. In the cases where λ R N, we use the functions fλ
1 pxq “ |x|λ or

fλ
2 pxq “ xăλą “ signpxq ¨ |x|λ. Note that differentiability at 0 is not needed in any of

the proofs, so using fλ
1 does not violate any of the assumptions. Let also δp be as in

(3.30), i.e., a rate sequence for the convergence in (3.11). Then, a suitable application

of Proposition III.19 or Corollary III.21, shows that an upper bound on the rate of

convergence in (3.37) is

d‹
p “ λδpp1 ` δpq

λ´1
„ λδp or d‹

p “ λδpp1 ´ δpq
λ´1

„ λδp.

In view of Examples III.16, III.17 and III.18, we now show how the rate d‹
p „ λδp

is affected under different correlation structures of the underlying Gaussian array

E . Recall that in the iid case of Example III.16 we have that the optimal rate is

δp " δoptp “ 1{ logppq. This implies that an upper bound on the rate of concentration

is

d‹
p „ λδp "

λ

logppq
.

Moreover, for the power-law covariance decay covariance structure (Example III.17),

we observe that compared to the iid case, the rate of concentration δp is scaled by

a factor of logplogppqq. Namely, for the power-law transformations we get that the

upper bound is

d‹
p „ λδp „

λ logplogppqq

logppq
.

Finally, we examine the logarithmic covariance decay (Example III.18). Remem-

ber that in this case the rate we have for E is δp “ plogppqq
´ ν

ν`1 . This implies that
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the upper bound of the rate of concentration for the power-law transformations is

d‹
p „ λδp „

λ

plogppqq
ν

ν`1

.

Observe that in this case, d‹
p is a valid upper bound aside from the value of ν. We

will see in the following Example III.24, that the same is not true for the exponential

power-law transformations.

In the last example of this section, we explore exponential power transformations

and how they affect our bounds on the rate of convergence.

Example III.24. Exponential Power-Law Transformations.

Let E be as in Proposition III.19 and consider the exponential power transformations

fpxq “ ex
λ
, λ ą 0, λ ‰ 1. (Note that λ “ 1 is the lognormal case which we have alredy

seen in Example III.20). In the cases where λ R N, we use the functions fλ
1 pxq “ e|x|λ

or fλ
2 pxq “ ex

ăλą

“ esignpxq¨|x|λ . Similarly to Example III.23, differentiability at 0 is not

needed in any of the proofs, so using fλ
1 does not violate any of the assumptions. Let

also δp be as in (3.30). Then, suitable applications of Proposition III.19 or Corollary

III.21 show that as long as uλpδp Ñ 0, an upper bound on the rate of convergence in

(3.37) is

d‹
p “ λuλpδpp1 ` δpq

λ´1eu
λ
prp1`δpqλ´1s, if λ ě 1

and

d‹
p “ λuλpδpp1 ´ δpq

λ´1eu
λ
prp1´δpqλ´1s, if 0 ă λ ă 1.

In both cases we have d‹
p „ λδpp2 logppqqλ{2, as p Ñ 8. As a generalization of

the lognormal case (λ “ 1), we see that the iid rate δp is scaled by a factor of
´

a

logppq

¯λ

. This means that this kind of arrays would still have relatively stable

maxima, provided that the underlying maxima of the Gaussian array concentrate at

a rate δp “ o
`

1{plogppqqλ{2
˘

.
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At this point, we examine how the rate d‹
p „ λδpp2 logppqqλ{2 adjusts under the

varying covariance structures of E in Examples III.16, III.17 and III.18. In an analo-

gous manner to Example III.23, we get that for the iid case, an upper bound on the

rate of concentration is

d‹
p „ λδpu

λ
p " 2

λ
2 λ plogppqq

λ
2

´1 ,

while for the power-law covariance decay covariance structure we obtain

d‹
p „ λδpu

λ
p „ 2

λ
2 λ plogppqq

λ
2

´1 logplogppqq.

In the previous two instances we notice that the covariance structure does not

impose any restrictions on the values of λ, in order to guarantee concentration of

maxima for the transformed triangular array. This is not the case for the logarithmic

covariance decay, since the upper bound becomes

d‹
p „ λδpu

λ
p „ 2

λ
2 λ plogppqq

λ
2

´ ν
ν`1 .

The aforementioned d‹
p is a a sensible upper bound for the rate of concentration

in this case, only if d‹
p Ñ 0, as p Ñ 8. This is so, when ν ą λ

2`λ
. Thus, our results

imply that in the lognormal case (λ “ 1q, ν ą 1
3
guarantees that the transformed

array is relatively stable.

Remark III.25. In Conjecture III.11, we posit that the fastest rate of convergence for

a UDD Gaussian array is bounded above by 1{ logppq. Nevertheless, from Example

III.16 for the iid case, our bound in (3.29) is again 1{ logppq. Since up „
a

2 logppq,

we see that we can get an upper bound on the rate of fpxq “ ex
λ
only for 0 ă λ ă 2.

The range λ P p0, 2q is also natural, because one can show that the transformation

fpxq “ ex
λ
, for λ ě 2, leads to heavy power-law distributed variables ηppjq. Heavy-
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tailed random variables no longer have relatively stable maxima, which makes the

question about the rate of concentration of maxima meaningless.

We will end this section with a corollary, readily obtained by the discussion in the

end of Example III.24.

Corollary III.26. Suppose that H – tηppjq, j P rps, p P Nu is a multivariate log-

normal array as in (3.44). Suppose that

|Cov pηppjq, ηppkqq| ď c ¨
1

plogp|πppjq ´ πppkq|qq
ν , (3.46)

for some ν ą 1{3, permutations πp of t1, . . . , pu and a constant c independent of p.

Then the array H is URS.

Proof. Let E “ tϵppjq, j P rps, p P Nu be the underlying Gaussian array. Then, we

have that ηppjq “ eϵppjq for every j P rps. Thus,

Covpηppjq, ηppkqq “ Cov
`

eϵppjq, eϵppkq
˘

“ E
`

eϵppjq`ϵppkq
˘

´ E
`

eϵppjq
˘

E
`

eϵppkq
˘

. (3.47)

Recall that the moment generating function for a Normal random variable X „

Npµ, σ2q is Mptq “ E
`

etX
˘

“ eµt`σ2t2{2. Since ϵppiq follow the standard Normal

distribution, we have ϵppjq ` ϵppkq „ Np0, 2 ` 2Covpϵppjq, ϵppkqqq, and hence (3.47)

becomes

Covpηppjq, ηppkqq “ e ¨
`

eCovpϵppjq,ϵppkqq
´ 1

˘

. (3.48)

In turn, (3.48) along with (3.46) implies that

ˇ

ˇe ¨
`

eCovpϵppjq,ϵppkqq
´ 1

˘ˇ

ˇ ď
c

e
¨

1

plogp|πppjq ´ πppkq|qq
ν . (3.49)

Using the inequality |x| ď e|ex´1|, x P r´1, 1s in (3.49), since |Covpϵppjq, ϵppkqq| ď 1,
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we finally obtain that

|Covpϵppjq, ϵppkqq| ď
c

e
¨

1

plogp|πppjq ´ πppkq|qq
ν .

The last relation implies that E has a logarithmic covariance decay covariance struc-

ture (see Example III.18). Combined with the discussion in the end of Example III.24,

the proof is complete.

3.5 Technical proofs

In this section we present the proof of the capstone Theorem III.13. Recall that

we desire to find an upper bound on the rate of positive vanishing sequences δp, such

that

P
ˆˇ

ˇ

ˇ

ˇ

maxiPrps ϵppiq

up
´ 1

ˇ

ˇ

ˇ

ˇ

ą δp

˙

Ñ 0, as p Ñ 8.

To this end, let

ξp –
1

up
max
iPrps

ϵppiq, (3.50)

where E “ tϵppiq, i P rpsu is a URS Gaussian array with standard Normal marginals.

Observe that

Pp|ξp ´ 1| ą δpq “ Ppξp ą 1 ` δpq ` Ppξp ă 1 ´ δpq

— Ipδpq ` IIpδpq. (3.51)

Thus, to obtain the desired rate we need to recover a bound on the rate of Ipδpq

and IIpδpq. Note that in our endeavor to secure upper bound on the term IIpδpq we

will use the expectation of ξp. The integrability of ξp is ensured by Appendix A.2 of

Chatterjee (2014), or Pickands III (1968) in conjunction with (3.3).

Term Ipδpq. In the following proposition, we find an upper bound on the rate of δp
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in Ipδpq of (3.51). Interestingly, the following result does not involve the dependence

structure of the array E .

Proposition III.27. Let E “ tϵppiq, i P rpsu be an arbitrary Gaussian triangular

array, where the marginal distributions are standard Normal and let ξp be defined as

in (3.50). If δp Ñ 0 is a positive sequence such that

δp "
1

logppq
(3.52)

then, regardless of the dependence structure of E , we have

lim
pÑ8

`

δ´1
p Epξp ´ 1q`

˘

“ 0, (3.53)

and consequently Ppξp ą 1 ` δpq Ñ 0, as p Ñ 8.

We need the following simple bound for the Mill’s ratio (see also (1.2.2) or (2.1.1) in

Adler and Taylor (2009)).

Lemma III.28. For all u ą 0, we have

1 ´
1

1 _ u2
ď

Φpuq

ϕpuq{u
ď 1,

where ϕpuq “ e´u2{2{
?
2π and Φpuq “

ş8

u
ϕpxqdx.

Proof. We have

Φpuq

ϕpuq{u
“

u

ϕpuq

ż 8

u

ϕpxqdx “ u

ż 8

u

e´x2´u2

2 dx

“ u

ż 8

0

e´
pz`uq2´u2

2 dz “

ż 8

0

e´ z2

2 ue´uzdz “ Ere´E2{p2u2q
s,

where E is an exponentially distributed random variable with unit mean, and we used

the change of variables z – x´ u. Observing that 1 ´ x ď e´x ď 1, for all x ě 0, we
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get

1 ´
E2

2u2
ď e´E2{p2u2q

ď 1.

The result follows upon taking expectation and recalling that ErE2s “ 2.

Proposition III.27. Note first that (3.53) implies Ppξp ą 1 ` δpq Ñ 0. Indeed, this

follows from the Markov inequality:

Ppξp ´ 1 ą δpq “ Pppξp ´ 1q` ą δpq ď δ´1
p Epξp ´ 1q`.

Now, we focus on proving (3.53). We can write

1

δp
Epξp ´ 1q` “

1

δp

ż 8

0

Ppξp ´ 1 ą zqdz

“

ż 8

0

Ppξp ą 1 ` δpxqdx — Jpδpq, (3.54)

where in the last integral we used the change of variables z “ δpx.

Recalling that ξp “ u´1
p maxiPrps ϵppiq, by the union bound, for the last integrand

we have that

Ppξp ą 1 ` δpxq ď pΦpupp1 ` δpxqq “
Φpupp1 ` δpxqq

Φpupq
. (3.55)

By Lemma III.28, we further obtain that

Φpupp1 ` δpxqq

Φpupq
ď

1

1 ´ 1{p1 _ u2pq
¨
ϕpupp1 ` δpxqq

p1 ` δpxqϕpupq

ď
1

1 ´ 1{p1 _ u2pq
exp

!

´
u2p
2

´

p1 ` δpxq
2

´ 1
¯)

ď Bp expt´u2pδpxu, (3.56)

where Bp – p1 ´ 1{p1 _ u2pqq´1 Ñ 1, as p Ñ 8, is a constant independent of x ě 0

and in the last inequality we also used the simple bound p1 ` δpxq2 ´ 1 ě 2δpx.
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Condition (3.52) means that there is a sequence γppq diverging to infinity slower

than logppq such that

δppq “
γppq

logppq
.

Thus, by Relation (3.56) and the facts that u2p „ 2 logppq and Bp „ 1, as p Ñ 8, we

obtain

Φpupp1 ` δpxqq

Φpupq
ď 2 ¨ e´2γppqx,

for all sufficiently large p. Since γppq Ñ 8, Relation (3.55) and the Dominated

Convergence Theorem applied to (3.54), implies

lim
pÑ8

Jpδpq ď lim
pÑ8

ż 8

0

2e´2γppqxdx “ 0.

This completes the proof of (3.56).

Term IIpδpq. Handling term II of (3.51) is more involved and this is where the

dependence structure of the array plays a role. We start by presenting a more careful

reformulation of Lemma B.1 in Gao and Stoev (2018).

Lemma III.29. Let pXiq
p
i“1 be p iid random variables with distribution F and density

f , such that

EpXiq´ ” Epmaxt´Xi, 0uq ă 8.

Denote the maximum of the Xi’s as Mp – maxi“1,...,pXi. Suppose that f is eventually

decreasing, i.e., there exists a C0 such that fpx1q ě fpx2q whenever C0 ď x1 ď x2,

then

EMp

up`1

ě p1 ´ F p
pC0qq `

ErX1|X1 ă C0s

up`1

F p
pC0q,

where up`1 “ FÐp1 ´ 1{pp ` 1qq.

Proof. For the proof, refer to the proof of Lemma B.1 in Gao and Stoev (2018).
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Recall that a Gaussian triangular array E “ tϵppjqu
p
j“1 with standard Normal

marginals is said to be UDD if for every τ ą 0,

NEpτq – sup
pPN

max
i“1,...,p

|tκ P rps : Covpϵppiq, ϵppκqq ą τu| ă 8. (3.57)

That is, for every p and i P rps, there are at most NEpτq indices κ, such that the

covariance between ϵppiq and ϵppκq exceeds τ .

The function NEpτq encodes certain aspects of the dependence structure of the

array E . It will play a key role in the derivation of the upper bound on the rate of

concentration of maxima. The next result is an extension of Proposition A.1 in Gao

and Stoev (2018) tailored to our needs. For the benefit of the reader, we reproduce

the key argument involving a packing construction and the Sudakov-Fernique bounds,

which may be of independent interest.

Proposition III.30. For every UDD Gaussian array E, and any subset SpĎt1, . . . , pu

with q “ |Sp|, and τ P p0, 1q, we have that

E

»

—

–

max ϵppjq
jPSp

uq

fi

ffi

fl

ě
uq{NEpτq`1

uq

?
1 ´ τ

˜

1 ´
1

2q{Nϵpτq
´

a

2{π

uq{Nϵpτq`1

¨
1

2q{Nϵpτq

¸

(3.58)

– 1 ´ Rq, (3.59)

where NEpτq is given in (3.57).

Remark III.31. Note that without loss of generality we can assume Sp “ t1, . . . , pu.

We prove a slightly more general result, but the only application in this chapter will

be for q “ p.

Proof. Define the canonical (pseudo) metric on Sp,

dpi, jq “
a

Epϵpiq ´ ϵpjqq2.
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This metric takes values between 0 and 2, since ϵppiq, i “ 1, . . . , p, have zero means

and unit variances. Fix τ P p0, 1q, take γ “
a

2p1 ´ τq and let Γ be a γ-packing of Sp.

That is, let Γ be a subset of Sp, such that for any i, j P Γ, i ‰ j, we have dpi, jq ą γ,

i.e.,

dpi, jq “

b

2 p1 ´ Σppi, jqq ě γ “
a

2p1 ´ τq,

or equivalently, Σppi, jq ď τ. We claim that we can find a γ-packing Γ whose number

of elements is at least

|Γ| ě
q

NEpτq
. (3.60)

Indeed, Γ can be constructed iteratively as follows:

Step 1: Set S
p0q
p – Sp and Γ – tj1u, where j1 P S

p0q
p is an arbitrary element. Set

k – 1.

Step 2: Set S
pkq
p – S

pk´1q
p zBγpjkq, where

Bγpjkq – ti P Sp : dpi, jkq ă γu.

Step 3: If S
pkq
p ‰ H, pick an arbitrary jk`1 P S

pkq
p , set Γ – ΓYtjk`1u, and k – k`1,

go to Step 2; otherwise stop.

By the definition of UDD, there are at most NEpτq coordinates whose covariance with

ϵppjq exceed τ. Therefore, at each iteration, |Bγpjkq| ď NEpτq, and hence

|Spkq
p | ě |Spk´1q

p | ´ |Bγpjkq| ě q ´ kNEpτq.

The construction can continue for at least q{NEpτq iterations, which implies (3.60).

Now, we define on this γ-packing Γ an independent Gaussian process tηpjqujPΓ,

ηpjq “
γ

?
2
Zpjq, j P Γ,
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where the Zpjq’s are iid standard Normal random variables. The increments of the

new process are smaller than that of the original in the following sense,

Epηpiq ´ ηpjqq
2

“ γ2 ď d2pi, jq “ Epϵppiq ´ ϵppjqq
2,

for all i ‰ j, i, j P Γ. Applying the Sudakov-Fernique inequality (see, e.g., Theorem

2.2.3 in Adler and Taylor (2009)) to tηpjqujPΓ and tϵppjqujPΓ, we have

E
„

max
jPΓ

pηpjqq

ȷ

ď E
„

max
jPΓ

pϵppjqq

ȷ

ď E
„

max
jPSp

pϵppjqq

ȷ

.

This implies

E
„

1

uq
max
jPSp

ϵppjq

ȷ

ěE
„

1

u|Γ|`1

max
jPΓ

ηpjq

ȷ

¨
u|Γ|`1

uq
ě
u|Γ|`1

uq
¨
?
1 ´ τ ¨E

„

1

u|Γ|`1

max
jPΓ

Zpjq

ȷ

.

Now, the application of Lemma III.29 to the standard Normal distribution for C0 “ 0

entails that,

E rmaxjPΓ Zpjqs

u|Γ|`1

ě 1 ´
1

2|Γ|
´

a

2{π

u|Γ|`1

¨
1

2|Γ|
.

Since |Γ| ě q{NEpτq the desired lower bound in (3.58) is obtained.

We are now interested in the rate at which the lower bound in (3.58) converges

to 1. Equivalently, we desire to find the rate of decay of Rq. This rate is obtained in

the following Lemma.

Lemma III.32. Let Rq, αpqq be defined as in (3.59) and (3.28) respectively. Then

Rq — αpqq ` τpqq ` 2´q1´αpqq

, as q Ñ 8. (3.61)

Proof. Note that by definition Rq Ñ 0, as q Ñ 8. This implies that Rq „ logp1´Rqq,
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as q Ñ 8, so we just need the rate of

logp1 ´ Rqq “ log

˜

uq{NEpτq`1

uq
¨
a

1 ´ τpqq ¨

˜

1 ´
1

2q{Nϵpτq
´

a

2{π

uq{Nϵpτq`1

¨
1

2q{Nϵpτq

¸¸

“ log

ˆ

uq{NEpτq`1

uq

˙

`
1

2
logp1 ´ τpqqq ` log

˜

1 ´
1

2q{Nϵpτq
´

a

2{π

uq{Nϵpτq`1

¨
1

2q{Nϵpτq

¸

.

Now, the facts that αpqq “ logpNEpτqq{ logpqq and uq „
a

2 logpqq imply that

uq{NEpτq`1

uq
„

d

2 logp1 ` q1´αpqqq

2 logpqq
„

d

logpq1´αpqqq

logpqq
“
a

1 ´ αpqq,

where we used the relation

q1´αpqq
“ elogpqq´logpNEpτqq

“
q

NEpτq
. (3.62)

However, since αpqq “ logpNEpτpqqq{ logpqq Ñ 0 and τpqq Ñ 0, we have

logp1 ´ αpqqq “ ´αpqq ` opαpqqq,

logp1 ´ τpqqq “ ´τpqq ` opτpqqq,

and by (3.62)

log

˜

1 ´
1

2q{Nϵpτq
´

a

2{π

uq{Nϵpτq`1

¨
1

2q{Nϵpτq

¸

“ log

˜

1 ´ 2´q1´αpqq

´

a

2{π

uq{Nϵpτq`1

¨ 2´q1´αpqq

¸

“ 2´q1´αpqq

` o
´

2´q1´αpqq
¯

.

As a result, we have

Rq — αpqq ` τpqq ` 2´q1´αpqq

` o
´

max
!

αpqq, τpqq, 2´q1´αpqq
)¯

, (3.63)

which completes the proof.
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Proof of Theorem III.13. We are now in position to complete the proof of

Theorem III.13, which consists of a combination of the results that have already been

established in Section 3.5.

Proof. Recall the definition of ξp in (3.50) and that

Pp|ξp ´ 1| ą δpq “ Ipδpq ` IIpδpq,

where Ipδpq and IIpδpq are defined as in (3.51). We shall show that both terms vanish.

Proposition III.27, along with (3.29), imply that Ipδpq “ Ppξp ą 1 ` δpq Ñ 0, as

p Ñ 8. Observe that the term Ipδpq “ Ppξp ą 1 ` δpq vanishes, regardless of the

dependence structure of the array E . The dependence plays a key role in the rate of

the term IIpδpq.

We now steer our focus towards term IIpδpq. The Markov inequality yields

IIpδpq “ Ppξp ă 1 ´ δpq ď
Epξp ´ 1q´

δp
.

Since Epξp ´ 1q´ ď Epξp ´ 1q` `
∣∣Epξp ´ 1q

∣∣, we have

IIpδpq ď
1

δp

`

Epξp ´ 1q` `
∣∣Epξp ´ 1q

∣∣˘
“

1

δp
pEpξp ´ 1q` ` rEpξp ´ 1qs` ` rEpξp ´ 1qs´q

ď
1

δp
p2Epξp ´ 1q` ` rEpξp ´ 1qs´q , (3.64)

where the last inequality follows from the fact that rEpξp ´ 1qs` ď Epξp ´ 1q`.

Proposition III.27 and (3.29) imply that the term δ´1
p Epξp´1q` in (3.64) vanishes.

Moreover, Proposition III.30 entails

rEpξp ´ 1qs´ “ maxt0,´Epξp ´ 1qu ď |Rp|.

87



Thus, the term IIpδpq vanishes, provided that Rp{δp Ñ 0. This follows, however, from

Lemma III.32 and (3.29), since for αppq Ñ 0, we have

1

logppq
" 2´p1´αppq

, as p Ñ 8

and the proof is complete.

Remark III.33. After submitting the paper this chapter is based on to Extremes, we

became aware of the important work of Tanguy (2015). According to their paper, in

the stationary case, the upper bound of Theorem III.13 above partially follows from

their Theorem 3. However, our work is in the general setting of triangular arrays

and does not require stationarity. The result in Theorem 5 of Tanguy (2015), could

in principle, be used to derive bounds on rates of concentration of maxima for non-

stationary arrays. This, however, requires verifying two technical conditions. Our

approach, based on the UDD condition yields rates that can be explicitly related to

the covariance structure of the array. The in-depth comparison of the two approaches

merits an independent study beyond the scope of the present work.
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Part II

Spectral Inference for Functional

Spatial Data

CHAPTER IV

The Lag-Window Estimator

The spectral density function describes the second-order properties of a stationary

stochastic process on Rd. In this chapter, we are interested in the nonparametric

estimation of the spectral density of a continuous-time stochastic process taking values

in a separable Hilbert space. Our estimator is based on kernel smoothing and can be

applied to a wide variety of spatial sampling schemes including those in which data

are observed at irregular spatial locations. Thus, it finds immediate applications in

Spatial Statistics, where irregularly sampled data naturally arise. The rates for the

bias and variance of the estimator are obtained under general conditions in a mixed-

domain asymptotic setting. Finally, with a view towards practical applications the

asymptotic results are specialized to the case of discretely-sampled functional data in

a reproducing kernel Hilbert space.
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4.1 The spectral density estimation problem

Historically, the study of signals, such as electromagnetic or acoustic waves, in

physics naturally led to the investigation of the spectral density. The current lit-

erature on the inference problem of the spectral density contains an abundance of

well-established estimators and algorithms (see, e.g., Hannan, 1970; Brillinger , 2001;

Brockwell and Davis , 2006; Percival and Walden, 2020, and the references therein).

The most classical approach is based on the periodogram (Schuster , 1898), which is

at the core of the majority of the procedures that are known today. However, alter-

native approaches that involve, for instance, the inversion of the empirical covariance

(see, e.g., the review paper of Robinson, 1983) and wavelets (Percival and Walden,

2006; Bardet and Bertrand , 2010) have also been extensively considered.

The traditional statistical research on spectral density estimation considers scalar-

valued processes. Modern scientific applications involve, however, high-dimensional

or even function-type data, which are typically indexed by space and/or time. Re-

cently, there has been a growing interest in functional time series in general, where

data are observed at times 1, 2, . . . , T ; see Hörmann and Kokoszka (2012), Panaretos

and Tavakoli (2013), Horváth et al. (2014), Li et al. (2020), Zhu and Politis (2020),

to mention a few. In particular, Panaretos and Tavakoli (2013) and Zhu and Politis

(2020) both address the inference of the spectral density of functional time series.

Panaretos and Tavakoli (2013) considers the smoothed periodogram estimator where

the notion of periodogram kernel is introduced for functional data taking values in

L2r0, 1s. Zhu and Politis (2020) considers the same estimator, but focuses on a par-

ticular type of kernel, called flat-top kernel, in performing nonparametric smoothing.

A flat kernel is a higher-order kernel that annihilates polynomials up to a prescribed

degree and therefore leads to better rate of the bias in nonparametric estimation (at

the expense of potentially more stringent assumptions on the process).

This thesis studies the nonparametric estimation of the spectral density for a

90



continuous-time stationary process X “ tXptq, t P Rdu taking values in some Hilbert

space H. More information will be given in Section 4.2 regarding H and the definition

of second-order stationarity. One of the novelties of the thesis is the consideration of

functional data Xptq sampled at irregular spatial locations t1, . . . , tn P Rd as opposed

to at regular grid points, e.g., t “ 1, 2, . . . as in functional time series. In general,

spatial data are not gridded data. An excellent example is provided by the Argo

dataset which has recently become an important resource for oceanography and cli-

mate research (cf. Roemmich et al., 2012) and has inspired new approaches in spatial

statistics (see, e.g., Kuusela and Stein, 2018; Yarger et al., 2022).

For spatial data observed at irregular locations, periodogram-based approaches do

not easily generalize. We consider in this thesis a so-called lag-window estimator (cf.

Brockwell and Davis , 2006; Zhu and Politis , 2020) based on estimating the covariance,

which can accommodate rather general observational schemes. The performance of

the estimator will be evaluated by asymptotic theory. In doing so, we will assume the

framework of the so-called mixed-domain asymptotics, which means that the sampling

locations become increasingly dense and the sampling region becomes increasingly

large as the number of observations increases; see, e.g., Hall and Patil (1994); Fazekas

and Kukush (2000); Matsuda and Yajima (2009); Chang et al. (2017); Maitra and

Bhattacharya (2020). The rate bound of the mean squared error of our estimator

will be developed for a rather general mixed-domain setting. However, when data

are observed on a regular grid assuming a specific covariance model, the rate bound

calculations can be made precise, paving the way for assessing the optimality of the

estimator. In particular, we establish the minimax rate optimality of our estimator

based on gridded data if the decay of the covariance function is bounded by a power

law.

We now provide a summary of each of the sections below. In Section 4.2, we

describe the general notion of second-order stationarity for a process taking values
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in a complex Hilbert space H. Despite the prevalence of multidimensional spatial

data, this notion is understood much less well than the corresponding notion in the

one-dimensional case. In particular, we will explain the subtlety of why the scalar

field of H must be taken as complex in order to conduct the spectral analysis of

the process. We will also review Bochner’s Theorem which facilitates the definition

of spectral density. Section 4.3 introduces the key assumptions and defines the lag-

window estimator that is the main focus of this chapter. In Section 4.4, we establish

upper bounds on the rate of decay of the bias and variance, and hence the mean

squared error of the spectral density estimator under general conditions. These rates

are made more precise in Section 4.5 for the setting of gridded data, where the grid

size either stays fixed or shrinks to zero with sample size and we focus mainly on a

class of covariance functions that are dominated by a power law. A class of covariance

functions dominated by an exponential power law is also examined. In Section 4.6,

we consider the issue of incomplete functional data in the reproducing kernel Hilbert

space (RKHS) setting. Finally, Section 4.7 briefly summarizes the results in Panaretos

and Tavakoli (2013) and Zhu and Politis (2020), and provides some comparisons with

the ones in this thesis.

Whenever feasible, we will provide an outlined proof immediately after stating a

result. However, all the detailed proofs are included in Section 4.8.

4.2 Covariance and spectral density of a stationary process

in a Hilbert space

Throughout this thesis, let H be a separable Hilbert space over the field of complex

numbers C. Common examples of H in functional-data applications include L2 spaces

of functions and RKHS’s (see for example Bosq (2000); Ferraty and Vieu (2006);

Horváth and Kokoszka (2012) and Ramsay and Silverman (2005)). However, with
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the exception of Section 4.6, no additional assumptions will be made on H.

The inner product and norm of H are denoted by x¨, ¨y and } ¨ }, respectively. In

a small number of instances, we will denote these by x¨, ¨yH and } ¨ }H for clarity. The

main purpose of this section is to recall some fundamental results for the spectral

analysis of stochastic processes X “ tXptq, t P Rdu taking values in H.

4.2.1 Second-order stationary

We first address the notion of second-order stationarity or covariance stationarity

for a process taking values in a complex Hilbert space. We begin by considering a

zero-mean Gaussian process X with H “ C. Let ℜpXptqq and ℑpXptqq denote the

real and imaginary parts of Xptq, respectively. Recall that X is strictly stationary if

and only if the two-dimensional real Gaussian process

Y ptq “ pXRptq, XIptqq
T – pℜpXptqq,ℑpXptqqq

J
P R2,

is second-order stationary, i.e., the covariance function CY pt, sq – E
“

Y ptqY psqJ
‰

is a

function of t ´ s. Let

Cpt, sq “ ErXptqXpsqs and Čpt, sq “ ErXptqXpsqs.

It follows that

Cpt, sq “ ErXRptqXRpsqs ` ErXIptqXIpsqs ´ i
`

ErXRptqXIpsqs ´ ErXIptqXRpsqs
˘

,

Čpt, sq “ ErXRptqXRpsqs ´ ErXIptqXIpsqs ` i
`

ErXRptqXIpsqs ` ErXIptqXRpsqs
˘

.

Observe that tCpt, sq, Čpt, sq, t, s P Rdu contains the same information as that in

tCY pt, sq, t, s P Rdu. In particular, Y is second-order stationary if and only if both

Cpt, sq and Čpt, sq are functions of t ´ s. The functions, Cpt, sq and Čpt, sq, are
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commonly referred to as the covariance function and pseudo-covariance function,

respectively, which are equal if and only if X is real valued. Going beyond the

Gaussian setting, we shall take this as the definition of second-order stationarity for

a general complex-valued process X with finite second moments, where the inference

on the covariance of X can be conducted on CY or C and Č combined. While the

stationary covariance C is positive definite, which provides a basis for inference in

the spectral domain, it is not the case for Č. Thus, the spectral inference on X must

be carried out on the real process Y unless X itself is real, in which case we can

simply focus on C. The discussion above extends in a straightforward manner to

the finite-dimensional case H “ Cp for any finite p, for which the outer-product is

xyJ, x, y P Cp (cf. Hannan, 1970; Brillinger , 2001; Tsay , 2013).

If H is an infinite-dimensional Hilbert space over C, then the cross-product (or

outer-product) of x, y P H is the linear operator defined as

rx b yspzq “ x ¨ xz, yy, z P H, (4.1)

and, provided that Er}Xptq}2s ă 8 for all t, we can define the covariance operator of

X as

Cpt, sq – ErXptq b Xpsqs. (4.2)

Note that Cpt, sq takes values in the space of trace-class operators T and is well-defined

in the sense of Bochner in the Banach space pT, } ¨ }trq. More information on T will be

given below in Section 4.2.2. However, the discussion on stationarity for the finite-

dimensional case and especially the notion of pseudo-covariance requires modification

since an immediate notion of “complex conjugate” does not exist. Following Shen

et al. (2022), we fix a complete orthonormal system (CONS) teju of H and refer to

it as the real CONS. Then, for each x P H such that x “
ř

jxx, ejyej, define the
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complex conjugate conjpxq ” x as

x –
ÿ

j

xx, ejyej.

Thus, conj : H ÞÑ H is an anti-linear operator, i.e.,

conjpαx ` βyq “ αconjpxq ` βconjpyq, x, y P H, α, β P C.

Also, for x P H, define its real and imaginary parts:

ℜpxq –
x ` x

2
, ℑpxq –

x ´ x

2i
.

This construction allows us to view the complex Hilbert space H as

H “ HR ` iHR, (4.3)

where HR – tx P H : ℑpxq “ 0u is the real Hilbert space of real elements of H (see,

e.g., Cerovecki and Hörmann, 2017). Consequently, x will be called real if x P HR.

Define the pseudo-covariance operator for a second-order process tXptqu as

Čpt, sq – ErXptq b Xpsqs. (4.4)

The definition of second-order stationarity for a process in H can now be stated

as follows.

Definition IV.1. A zero-mean stochastic process X “ tXptq, t P Rdu taking values

in H is said to be an L2- or second-order process if Er}Xptq}2s ă 8. The process X

will be referred to as second-order stationary or covariance stationary if both Cpt, sq

and Čpt, sq depend only on the lag t ´ s. In this case, we write Cphq – Cpt ` h, tq

and Čphq – Čpt ` h, tq, which are referred to as the stationary covariance operator

95



and stationary pseudo-covariance operator, respectively.

It is important to note that while the definition of Čpt, sq depends on the desig-

nated real basis, whether Čpt, sq is a function of the lag is basis independent; this can

be seen using a change-of-basis formula (cf Section 4.8.3).

We end this section with the following two remarks.

Remark IV.2. As in the one-dimensional case, one can equivalently define stationarity

in terms of the real process Y ptq – pℜpXptqq, ℑpXptqqq taking values in the product

Hilbert space HR ˆ HR over R. It follows that X is second-order stationary if and

only if Y is. For much of the rest of this thesis, we shall assume for simplicity that the

process X is real (based on some CONS), i.e., it takes values in HR Ă H (cf. (4.3)),

in which case, Cphq “ Čphq. This simplification does not lead to less generality since

all the results apply to Y . Two exceptions are Section 4.2.2 and Section 6.1 where

we present more general results by considering a complex X.

Remark IV.3. In view of the last remark, a careful reader might wonder why we choose

to work with the framework of complex Hilbert space in the first place. An important

reason for that is because the spectral density of a process X, real or complex, in H

will in general take values in T`, the space of positive trace-class operators over the

complex Hilbert space H. To demonstrate the point, consider the following simple

example. Let tZptq, t P Ru be a real, scalar-valued zero-mean Gaussian process with

auto-covariance γptq “ ErZptqZp0qs. Let a ą 0, and define Xaptq – pZptq, Zpt`aqqJ.

Then, Xa “ tXaptq, t P Ru is a stationary process in R2, with auto-covariance

Captq – ErXaptqXap0q
J

s “

¨

˚

˝

γptq γpt ´ aq

γpt ` aq γptq

˛

‹

‚

.

This shows that so long as γpt ` aq ‰ γpt ´ aq, for all t, i.e., the auto-covariance

does not vanish on p´a{2, a{2q, we have that Captq ‰ Cap´tq ” CaptqJ, namely, the
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process Xa is not time-reversible. Remark IV.5 below then shows that the spectral

density cannot be real-valued. The simple example illustrates that a complex spectral

density is a norm rather than an exception if d ‰ 1.

4.2.2 Bochner’s Theorem

This subsection discusses the notion of spectral density for a second-order station-

ary process X in H. First, we briefly review some basic facts on trace-class operators.

The reader is referred to the standard texts on linear operators (e.g., Simon, 2015)

for details. Denote by T the collection of trace-class operators on H, namely, linear

operators T : H Ñ H, with finite trace norm:

}T }tr –

8
ÿ

j“1

xpT ˚T q
1{2ej, ejy ă 8, (4.5)

where teju is an arbitrary CONS on H, and T ˚ denotes the adjoint operator of T ,

i.e., defined by xT ˚f, gy “ xf, T gy, f, g P H. The trace norm does not depend on

the choice of the CONS, and the space T equipped with the trace norm is a Banach

space. By the definitions of the outer product (4.1) and trace norm (4.5), we have

}Xptq b Xpsq}tr “ }Xptq}}Xpsq}. The fact that X is second order then implies that

Er}Xptq b Xpsq}trs ď
a

Er}Xptq}2sEr}Xpsq}2s ă 8.

Consequently, the covariance operator Cpt, sq in (4.2) is well defined in T in the sense

of Bochner; see, e.g., Lemma S.2.2 of Shen et al. (2022).

Recall that T is self-adjoint if T “ T ˚. Also T is positive definite (or just

positive), denoted T ě 0, if T is self-adjoint and xf, T fy ě 0, for all f P H. The class

of positive, trace-class operators will be denoted by T`.

The classical Bochner’s Theorem (cf. Bochner , 1948; Khintchine, 1934), which

characterizes positive-definite functions, has provided a fundamental tool for con-
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structing useful models for stationary processes. Below we state an extension of that

classical result for our infinite-dimensional setting. To do so, we need the notion of

integration with respect to a T`-valued measure which we now briefly describe. Let

BpRdq denote the σ-field of Borel sets in Rd. We say that µ : BpRdq ÞÑ T` is a

T`-valued measure on BpRdq if µ is σ-additive. Note that, a fortiori, µpHq “ 0 and µ

is finite in the sense that 0 ď µpBq ď µpRdq P T`, B P BpRdq, where for T1, T2 P T`,

T1 ď T2 means that T2 ´ T1 P T`. Integration of a C-valued measurable function on

Rd with respect to such µ can be defined along the line of Lebesgue integral (see, e.g.,

Shen et al., 2022, for details).

Theorem IV.4. Let X be a second-order stationary process taking values in H, and

let Cphq, h P Rd, be its T-valued stationary covariance function defined in Definition

IV.1. Assume that C is continuous at 0 in trace norm. Then, there exists a unique

T`-valued measure ν such that

Cphq “

ż

Rd

e´ihJθνpdθq, h P Rd.

In particular, we have that }νpRdq}tr “ tracepνpRdqq ă 8.

If, moreover,
ş

hPRd }Cphq}trdh ă 8, then the measure ν has a density with respect

to the Lebesgue measure given by

fpθq –
1

p2πqd

ż

Rd

eih
JθCphqdh, θ P Rd, (4.6)

where the last integral is understood in the sense of Bochner.

The density function f in (4.6) is referred to as the spectral density of the station-

ary process. The detailed proof of Theorem IV.4 can be found in Shen et al. (2022),

where the role of separability and complex scalar field are made clear.

The following is a follow-up remark to Remark IV.3.
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Remark IV.5. Theorem IV.4 holds for a general second-order stationary process X

in H. Let us consider an interesting property of the spectral density if the process is

real (defined according to some fixed CONS). To do that, define the conjugate A of

an operator A : H Ñ H by A : x ÞÑ Apxq, x P H; accordingly, define

ℜpAq –
A ` A

2
, ℑpAq –

A ´ A
2i

.

Thus, A will be called real if ℑpAq “ 0. Suppose now X is real (cf. Remark (IV.2)).

By the simple fact that x b y is real if both x and y are real, we have Cphq “ Cphq.

It then follows from (4.6) that the time-reversed process Y “ tXp´tq, t P Rdu has

the spectral density

fY pθq “ fXpθq, θ P Rd.

The uniqueness of the spectral density entails that X and Y have the same auto-

covariance if and only if fY pθq “ fXpθq “ fXpθq, that is, fXpθq is a real operator,

for all θ P Rd. This is a special property that is automatically true only when H is

one-dimensional. For further discussions, see Section 4.3 of Shen et al. (2022).

4.3 Spectral density estimation based on irregularly sampled

data

Our inference problem focuses on a second-order real process X “ tXptq, t P Rdu

taking values in H. Following Definition IV.1, we define the stationary covariance

operator C and assume that the following holds.

Assumption C. Let C “ tCphq, h P Rdu be the T-valued stationary covariance

operator of the second-order stationary real process X “ tXptq, t P Rdu taking values

in H. Assume that

(a)
ş

hPRd }Cphq}trdh ă 8, and
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(b) Cphq is L1-γ-Hölder in the following sense:

ż

xPRd

´

sup
y : }x´y}ďδ

}Cpyq ´ Cpxq}tr

¯

dx ď |||C|||γ ¨ δγ, (4.7)

for some 0 ă γ ď 1 and some (and hence all) δ ą 0, where |||C|||γ ă 8 is a fixed

constant.

Property (a) in Assumption C guarantees the existence of the spectral density f

given by (4.6). Property (b) will be needed to compute the bias of our estimator

which is based on discretely observed data. It can be seen that Condition (b) holds

with γ “ 1 if C has an integrable and smoothly varying derivative.

We next introduce our sampling framework. As mentioned above, we adopt the

mixed-domain asymptotics framework, which means that both the domain and the

density of the data increase with sample size. Assume that the process tXptq, t P Rdu

is observed at distinct locations tn,i, i “ 1, . . . , n. Let Tn – ttn,iu
n
i“1, and Tn denote

the closed convex hull of Tn. We refer to Tn as the sampling region, which contains

points where Xptq could potentially be observed. However, as seen in our proofs,

other contiguous regions may also be used for Tn. For our purpose, it is convenient

to view Tn as a tessellation comprising disjoint cells, V ptn,iq, that are “centered” at

the tn,i:

Tn “

n
ď

i“1

V ptn,iq, where tn,i P V ptn,iq and |V ptn,iq X V ptn,jq| “ 0, i ‰ j.

Here and elsewhere, |A| denotes the Lebesgue measure of a measurable set A Ă Rd.

Denote V “ tV ptn,iq, i “ 1, . . . , nu. The Voronoi tessellation (Voronoi , 1908) is

a natural example of such tessellation and can also be efficiently constructed (Yan

et al., 2013). While our results hold for a wide class of tessellations, to fix ideas we

will adopt the Voronoi tessellation in the sequel.
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Figure 4.1: Example of the Voronoi tessellation. Every cell includes a single sampling
time point as a representative. A cell is defined as the part of the sampling domain
containing all the time points that are closer to its representatives compared to all
other representatives, based on the Euclidean metric on Rd. The figure also shows
the sampling framework imposed by Assumption S(a). Indeed, the sampling domain
inflates, while the sample time points are denser and denser as the sample size grows;
equivalently δn becomes smaller with the increase of the sample size.

Define the diameter of the Voronoi tessellation as

δn – diamTnpttn,iuq “ max
i“1,...,n

sup
tPV ptn,iq

}t ´ tn,i}2, (4.8)

where } ¨ }2 denotes the Euclidean norm in Rd. The parameter δn can be thought

of as a measure of the maximal size of the tessellation cells, and can be equivalently

written as

δn “ sup
tPTn

min
i“1,...,n

}t ´ tn,i}2.

Throughout, we will assume the following rather general sampling framework.

Assumption S.

(a) The sequence δn defined in (4.8) tends to zero as n Ñ 8. Moreover, |Tn| Ñ 8

as n Ñ 8.

101



(b) The sample design is such that

Tn
|Tn|1{d

Ñ T, as n Ñ 8, (4.9)

holds in probability, in the Hausdorff metric, for some fixed bounded convex set

T with non-empty interior.

The condition (a) above describes the mixed-domain asymptotics framework alluded

to earlier. Relation (4.9) in (b) essentially imposes a regularity condition on the

boundary points of Tn; for instance, if Tn “ t1, 2, . . . , nud then T “ r0, 1sd.

The definition of our proposed estimator involves a kernel function, which satisfies

the following standard conditions.

Assumption K. The kernel K is a continuous function from Rd to R` satisfying

(a) The support SK – tt P Rd : Kptq ą 0u of K is a bounded set containing 0;

(b) }K}8 – supuPSK
Kpuq “ Kp0q “ 1;

(c) K is differentiable in an ϵ-neighborhood of 0 for some fixed ϵ ą 0, with

}∇K}
pϵq
8 – sup

}u}2ăϵ

}∇Kpuq}2 ă 8,

where ∇ stands for the gradient operator.

The estimator. In this thesis, we focus on the following non-parametric estima-

tor of the spectral density fpθq:

f̂npθq “
1

p2πqd

ÿ

tPTn

ÿ

sPTn

eipt´sqJθ Xptq b Xpsq

|Tn X pTn ´ pt ´ sqq|

¨ K

ˆ

t ´ s

∆n

˙

¨ |V ptq| ¨ |V psq|,

(4.10)
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where ∆n ą 0 is a bandwidth parameter, the purpose of which is providing weighted

averaging over observations that are at most ∆n ¨ |SK | apart. The choice of ∆n that

will lead to satisfactory estimation results depends on both δn and |Tn|.

The estimator in (4.10) can be applied to the general setting of functional data

sampled irregularly over space and time, which is frequently encountered in applica-

tions (see, e.g., Yarger et al., 2022). In the special case where Tn is a regular grid,

which includes the time-series setting, the terms V ptq are constant for any t P Tn and

hence |V psq| and |V ptq| can be factored out of the summation in f̂n (see Section 4.5).

In this case, the estimator in (4.10) is related to the so-called lag window estimator in

time-series analysis; see Robinson (1983), Zhu and Politis (2020) and the discussions

in Section 4.7.1 below.

To gain some insight into the definition (4.10), consider the idealized setting where

the full sample path of tXptq, t P Tnu is available. In view of (4.6), one would naturally

use the estimator

gnpθq “
1

p2πqd

ż

tPTn

ż

sPTn

eipt´sqJθ Xptq b Xpsq

|Tn X pTn ´ pt ´ sqq|
K

ˆ

t ´ s

∆n

˙

dtds. (4.11)

Since the full sample path is not available in practice one must consider approxima-

tions such as f̂npθq, which can be viewed as a Riemann sum for the integral defining

gnpθq. The function gnpθq motivates the definition of f̂npθq and in fact arises in the

proofs of the asymptotic theory.

We end the section with the following remarks.

Remark IV.6. In our data scheme, we assume a fixed design where the observation

points tn,i are nonrandom. Our results can be modified in a straightforward manner to

include the case of a random design that is independently generated from the process

tXptqu. In this case, the definition of the estimator in (4.10) needs to be modified

slightly to incorporate the probability densities of the sample design in place of the
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volume elements (cf., for example, Matsuda and Yajima, 2009).

Remark IV.7. The normalization |Tn X pTn ´ pt ´ sqq| in (4.10) and (4.11) might

seem unusual at first glance, whereas the simpler normalization by |Tn| would seem

more natural. It turns out that the use of the latter normalization leads to a bias

with a higher order in the spatial context d ě 2. Similar phenomenon arises for

periodogram-based estimators in time series when data are observed over a regular

lattice (Guyon, 1982).

Remark IV.8. The estimator f̂n is defined assuming that we have fully observed

functional data Xptq, t P Tn. If H is infinite dimensional, then the functional data

Xptq can never be observed in its entirety. In that case, we need to approximate

Xptq b Xpsq in some manner based on what is actually observed for the functional

data, which may affect the performance of the estimator. We will discuss this point

in more detail in Section 4.6.

4.4 Asymptotic properties

We start our investigation of f̂npθq defined in Section 3 by first developing the

asymptotic bounds for its bias and variance. This will yield results on the consistency

and rate of convergence of the estimator. Although fpθq and f̂npθq are trace-class

operators on H, in order to facilitate the variance calculation, it is more natural to

work with the Hilbert-Schmidt (HS) norm. Let X denote the class of Hilbert-Schmidt

operators on H. The Hilbert-Schmidt inner product of the linear operators A,B P X

is defined as

xA,ByHS “ trace pA˚Bq

and }A}HS –
a

}A˚A}tr (see, e.g., Simon, 2015).
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It is straightforward to establish the following bias-variance decomposition

E
›

›

›
f̂npθq ´ fpθq

›

›

›

2

HS
“ E

›

›

›
f̂npθq ´ Ef̂npθq

›

›

›

2

HS
`

›

›

›
Ef̂npθq ´ fpθq

›

›

›

2

HS

— Var
´

f̂npθq

¯

` Bias
´

f̂npθq

¯2

.

(4.12)

4.4.1 Asymptotic bias

In this subsection, we evaluate the rate of the bias of f̂npθq for large n. We start

with a general bound, which is made more informative in the sequel. Consistent with

(4.12), the bounds in the following Theorem IV.9 are stated in the Hilbert-Schmidt

norm. However, we note that the result remains valid if the stronger trace norm is

used throughout.

Theorem IV.9. Let Assumptions C, K, and S hold. Choose ∆n Ñ 8 such that

∆n ¨ SK Ă Tn ´ Tn , for all n

where A´B – ta´ b : a P A, b P Bu for sets A,B Ă Rd. Then, for any bounded set

Θ

sup
θPΘ

›

›

›
Ef̂npθq ´ fpθq

›

›

›

HS
“ O

´

δγn ` B1p∆nq ` B2p∆nq

¯

, (4.13)

where

B1p∆nq –

›

›

›

›

ż

hP∆n¨SK

eih
JθCphq

ˆ

1 ´ K

ˆ

h

∆n

˙˙

dh

›

›

›

›

HS

,

B2p∆nq –

›

›

›

›

ż

hR∆n¨SK

eih
JθCphqdh

›

›

›

›

HS

.

(4.14)

Proof (Outline). The complete proof of Theorem IV.9 is given in Section 4.8.1.1.

Here, we provide a brief outline. Let gnpθq be defined by (4.11). By the triangle
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inequality,

›

›

›
Ef̂npθq ´ fpθq

›

›

›

HS
ď

›

›

›
Ef̂npθq ´ Egnpθq

›

›

›

HS
`

›

›

›
Egnpθq ´ fpθq

›

›

›

HS
.

It is immediate from the representation (4.6) for f and the inclusion ∆n ¨SK Ă Tn´Tn,

that

}Egnpθq ´ fpθq}HS ď B1p∆nq ` B2p∆nq.

To complete the proof one needs to show that

›

›

›
Ef̂npθq ´ Egnpθq

›

›

›

HS
“ Opδγnq. (4.15)

To evaluate
›

›

›
Ef̂npθq ´ Egnpθq

›

›

›

HS
, let

hnpt, s; θq – eipt´sqJθ Xptq b Xpsq

|Tn X pTn ´ pt ´ sqq|
K

ˆ

t ´ s

∆n

˙

,

and write

gnpθq ´ f̂npθq

“
1

p2πqd

ÿ

wPTn

ÿ

vPTn

ż

tPV pwq

ż

sPV pvq

phnpt, s; θq ´ hnpw, v; θqq1ptPV pwq,sPV pvqqdtds.
(4.16)

This implies that

›

›

›
Egnpθq ´ Ef̂npθq

›

›

›

HS

ď
1

p2πqd

ÿ

wPTn

ÿ

vPTn

ż

tPV pwq

ż

sPV pvq

}Ehnpt, s; θq ´ Ehnpw, v; θq}HSdtds.

Then, using the regularity conditions on K and C, routine but technical analysis

shows that the last sum is of order Opδγnq. This yields (4.15) and completes the proof

of (4.13).
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Several remarks are in order.

Remark IV.10. Theorem IV.9 provides a general bound on the bias. Under the

assumptions of the theorem, the bias vanishes as n Ñ 8. We briefly discuss the

terms δγn and B1p∆nq ` B2p∆nq which arise for different reasons.

1. As can be seen from the above sketch of the proof, the terms B1p∆nq and B2p∆nq

in (4.13) control the bias of the idealized estimator gnpθq based on the idealized

data. A more specific but crude bound of B1p∆nq and B2p∆nq is the following:

B1p∆nq ď

ż

|h|ďϵ∆n

}Cphq}tr

ˇ

ˇ

ˇ

ˇ

1 ´ K

ˆ

h

∆n

˙
ˇ

ˇ

ˇ

ˇ

dh `

ż

|h|ąϵ∆n

}Cphq}trdh

ď }∇K}
pϵq
8 ϵ

ż

}Cphq}trdh `

ż

|h|ąϵ∆n

}Cphq}trdh.

(4.17)

The first term on the rhs depends only on the kernel, whereas the second term,

which dominates B2p∆q for any small ϵ ă 1, depends on the decay rate of

}Cphq}tr. Thus, the rate of B1p∆nq ` B2p∆nq is bounded by

inf
ϵ

`

ϵ _ ψpϵ∆nq
˘

where ψpuq –

ż

|h|ąu

}Cphq}trdh.

More explicit bounds can be obtained by imposing specific assumptions on the

behavior of ψpuq for large u, as will be demonstrated in Section 4.5.

2. In view of (4.15), the term Opδγnq controls the bias due to discretization, which

arises from sampling the process at the discrete set Tn Ă Tn. In settings such

as time series where the data are sampled on a regular grid, this term will be

eliminated from the bias (cf. Theorem IV.16).

4.4.2 Asymptotic variance

In view of the form of f̂npθq, a “fourth-moment” condition of X is needed to

evaluate the variance of f̂n.
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Recall the definition of cumulant for random variables: For real-valued random

variables Yj, j “ 1, . . . , k,

cum pY1, . . . , Ykq –
ÿ

ν“pν1,...,νqq

p´1q
q´1

pq ´ 1q!
q
ź

l“1

E

˜

ź

jPνl

Yj

¸

, (4.18)

provided all the expectations on the rhs are well defined, where the sum is taken over

all unordered partitions ν of t1, . . . , ku.

We now define a notion of fourth-order cumulant for complex Hilbert space valued

random variables Y1, Y2, Y3, Y4 with mean zero.

Definition IV.11. Let Y1, Y2, Y3, Y4 take values in H. Then the fourth-order cumu-

lant is defined as

cum pY1, Y2, Y3, Y4q – E xY1 b Y2, Y3 b Y4yHS ´ xEpY1 b Y2q,EpY3 b Y4qyHS

´ E xY1, Y3y ¨ E xY4, Y2y ´
@

EpY1 b Y4q,EpY3 b Y2q
D

HS
,

whenever the expression is well defined and finite.

Note that cum pY1, Y2, Y3, Y4q is well defined and finite if E}Yi}
4 ă 8 for each i

(cf. Proposition VI.10). It is easy to check that this definition reduces to (4.18) with

k “ 4 if H “ R.

Some properties immediately follow from Proposition VI.10. First,

xY1 b Y2, Y3 b Y4yHS “ xY1, Y3y xY4, Y2y , (4.19)

and hence we can express the fourth-order cumulant as

cum pY1, Y2, Y3, Y4q “ Cov pxY1, Y3y , xY2, Y4yq ´ xEpY1 b Y2q,EpY3 b Y4qyHS

´
@

EpY1 b Y4q,EpY3 b Y2q
D

HS
.
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Next, for any CONS teju of H, and with Yi,j – xYi, ejy,

cum pY1, Y2, Y3, Y4q “
ÿ

i

ÿ

j

cumpY1,i, Y2,j, Y3,i, Y4,jq. (4.20)

Observe that, unless H is one dimensional, cum pY1, Y2, Y3, Y4q generally depends on

the order in which the Yi’s appear in the arguments.

For the real process X that we consider in our inference problem, assuming

E}Xptq}4 ă 8 for all t, we have

cum pXptq, Xpsq, Xpwq, Xpvqq

– E xXptq b Xpsq, Xpwq b XpvqyHS ´ xCpt, sq, Cpw, vqyHS

´ E xXptq, XpwqyH ¨ E xXpvq, XpsqyH ´ xCpt, vq, Cpw, sqyHS .

(4.21)

The following assumption will be needed to evaluate the variance of f̂npθq.

Assumption V. Suppose that the process X is real and such that:

(a) E}Xptq}4 ă 8 for all t;

(b) cum pXpt ` τq, Xps ` τq, Xpw ` τq, Xpv ` τqq “ cum pXptq, Xpsq, Xpwq, Xpvqq

for all t, s, w, v, τ ;

(c) for some small enough δ ą 0,

sup
wPRd

ż

uPRd

ż

vPRd

sup
λiPBp0,δq
i“1,2,3

|cum pXpλ1 ` uq, Xpλ2 ` vq, Xpλ3 ` wq, Xp0qq|dvdu ă 8.

The following are a few remarks regarding Assumption V.

Remark IV.12. 1. Part (b) of this assumption can be thought of as “fourth-order

cumulant stationarity”, which is implied by but more general than strict sta-

tionarity. For a second-order stationary process X, by (4.19) and (4.21), part
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(b) amounts to

EpxXptq, XpsqyxXpwq, Xpvqyq

“ EpxXpt ` τq, Xps ` τqyxXpw ` τq, Xpv ` τqyq for all t, s, w, v, τ .

2. Part (c) of Assumption V is a variant of the cumulant condition “Cp0, 4q” of

Panaretos and Tavakoli (2013) for functional time series (see Remark VI.11 for

more details).

3. For Gaussian processes, by (4.20), the fourth-order cumulants vanish and hence

Assumption V is trivially satisfied under stationarity.

The variance bound of f̂npθq is provided by the following result.

Theorem IV.13. Let X “
␣

Xptq, t P Rd
(

be a real process taking values in H, which

has mean zero and is second-order stationary. Suppose that Assumptions C, K, S,

and V hold. Also, assume that ∆n satisfies

∆n ¨ SK Ă Tn ´ Tn for all n, and ∆d
n{|Tn| Ñ 0 as n Ñ 8.

Then

sup
θPΘ

E
´
›

›

›
f̂npθq ´ Ef̂npθq

›

›

›

2

HS

¯

“ O
ˆ

∆d
n

|Tn|

˙

, as n Ñ 8. (4.22)

Proof (Outline). The complete proof of Theorem IV.13 is presented in Section 4.8.1.2.

Here, we sketch the main steps. First,

E
›

›

›
f̂npθq ´ Ef̂npθq

›

›

›

2

HS

“
1

p2πq2d

ÿ

tPTn

ÿ

sPTn

ÿÿ

hPr∆¨SK sXpTn´tq
h1Pr∆¨SK sXpTn´sq

eiph´h1qJθK

ˆ

h

∆

˙

K

ˆ

h1

∆

˙

¨ |V pt ` hq| ¨ |V ptq| ¨ |V ps ` h1
q| ¨ |V psq|

¨
Cov pXpt ` hq b Xptq, Xps ` h1q b Xpsqq

|T X pT ´ hq||T X pT ´ h1q|

(4.23)
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where

Cov pXpt ` hq b Xptq, Xps ` h1
q b Xpsqq

– E xXpt ` hq b Xptq ´ Cphq, Xps ` h1
q b Xpsq ´ Cph1

qyHS .

By (4.21),

Cov pXpt ` hq b Xptq, Xps ` h1
q b Xpsqq

“ ExXpt ` hq, Xps ` h1
qyH ¨ E xXpsq, XptqyH

` xCpt ´ s ` hq, Cps ` h1
´ tqyHS

` cum pXpt ` hq, Xptq, Xps ` h1
q, Xpsqq .

(4.24)

In our detailed proof (presented in Section 4.8), the components of the variance

involving the cumulants will be evaluated using Assumption V, while the other two

terms are handled using the integrability condition of the covariance of Assumption

C.

4.4.3 Rates of convergence

The results in Sections 4.4.1 and 4.4.2 allow us to obtain bounds on the rate

of consistency of the estimator f̂npθq. The following result is immediate from the

bias-variance decomposition (4.12).

Theorem IV.14. Let the assumptions of Theorem IV.13 hold. Then, for any bounded

Θ Ă Rd, we have

sup
θPΘ

ˆ

E
›

›

›
f̂npθq ´ fpθq

›

›

›

2

HS

˙1{2

“ O

˜

δγn ` B1p∆nq ` B2p∆nq `

d

∆d
n

|Tn|

¸

, (4.25)

as n Ñ 8, where B1p∆nq and B2p∆nq are as defined in Theorem IV.9.

Theorem IV.14 provides general bounds on the rate of consistency of the estimator
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f̂npθq. More explicit rates and their minimax optimality can be obtained under further

conditions on the dependence structure of the process. We conclude with several

comments.

Remark IV.15. 1. The bound on the rate of consistency for the estimator f̂npθq

in (4.25) depends on the quantities δn,∆n and |Tn|. Among them, δn and Tn

consist of artifacts of the sample design, while ∆n is a tuning parameter which

can be controlled. Under the assumptions of the theorem, any choice of the

bandwidth with ∆n Ñ 8 and ∆d
n{|Tn| Ñ 0 yields a consistent estimator f̂npθq.

2. As discussed in Remark IV.10, B1p∆nq and B2p∆nq in the rate mostly reflect the

tail-decay of the covariance. They are not present in the bound on the variance

(4.22), where smaller values of ∆n lead to smaller variances of the estimator.

The bound in (4.25) reflects a natural bias-variance trade-off, where the optimal

bound is obtained by picking ∆n that balances the contribution of the bias and

the variance.

3. Establishing rate-optimal choices of ∆n depends on both the sampling design

and the stochastic process under consideration. Indeed, the choice of ∆n op-

timizing the bounds in (4.25) depends both on δn and Tn, as well as on the

covariance structure of the process. In Section 4.5, we will compute B1p∆nq

and B2p∆nq and consider the choice of ∆n for certain classes of covariance

structures.
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4.5 Data observed on a regular grid

In this section, we focus on data observed on a regular grid, namely, the sampling

set is

Tn “

d
ą

ℓ“1

tδn, . . . , nℓδnu, (4.26)

where δn is the grid size. In our asymptotic theory in the next two subsections, we

let nℓ Ñ 8, ℓ “ 1, . . . , d, and consider both cases of fixed δn and δn Ñ 0.

In this setting, for convenience, we slightly modify our general estimator f̂npθq

defined in (4.10) and consider

f̂npθq –
δ2dn

p2πqd

ÿ

tPTn

ÿ

sPTn

eipt´sqJθ Xptq b Xpsq

|Tn X pTn ´ pt ´ sqq|
K

ˆ

t ´ s

∆n

˙

. (4.27)

Under the condition

ÿ

kPZd

}Cpkδnq}tr ă 8,

we have

Cpkδnq “

ż

θPr´π{δn,π{δnsd

e´ikJθδnfpθ; δnqdθ, k P Zd, (4.28)

where

fpθ; δnq –
δd

p2πqd

ÿ

kPZd

eik
JθδnCpkδnq, θ P r´π{δn, π{δns

d, (4.29)

which is a positive trace-class operator since tCpkδnq, k P Zdu is positive definite. The
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proof of (4.28) follows easily using the fact that the complex exponentials

ϕkpθq – eik
Jθδnpδn{2πq

d{21r´π{δn,π{δnsdpθq, k P Zd

constitute a CONS of L2pr´π{δn, π{δnsdq. By Theorem IV.4, (4.28) also holds if

fpθ; δnq is replaced by the folded spectral density

ffoldpθq – 1r´π{δn,π{δnsdpθq
ÿ

kPZd

fpθ ` 2πk{δnq.

Utilizing again the fact that tϕkpθq, k P Zdu is a CONS of L2pr´π{δn, π{δnsdq, fpθ; δnq

is equal to the folded spectral density. Thus, the knowledge of Cpkδnq, k P Zd, only

allows us to identify the folded spectral density. In fact, this is reflected by our

estimator f̂n since

f̂npθ ` 2πk{δnq “ f̂npθq, θ P r´π{δn, π{δns
d,

for any vector k P Zd.

For the purpose of estimating the folded spectral density, we define the following

analogs of Assumptions C and V.

Assumption C1. The trace-norm of the operator auto-covariance is summable:

sup
n

#

δdn
ÿ

kPZd

}Cpδnkq}tr

+

ă 8.

Assumption V1. The process tXpδntq, t P Zdu satisfies

(a) supn E}Xpδntq}4 ă 8 for all t;
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(b) for all t, s, w, v, τ ,

cum pXpδnpt ` τqq, Xpδnps ` τqq, Xpδnpw ` τqq, Xpδnpv ` τqqq

“ cum pXpδntq, Xpδnsq, Xpδnwq, Xpδnvqq ;

(c) supn

!

δ2dn supwPZd

ř

uPZd

ř

vPZd |cum pXpδnuq, Xpδnvq, Xpδnwq, Xp0qq|

)

ă 8.

Comparing with Assumptions C and V, the modifications in Assumptions C1 and V1

are motivated by the fact that discrete approximations of integrals is no longer an

issue if our target of inference is the folded spectral density. We will apply these

conditions in the time series context in Section 4.5.1.

As before, Assumption V1 holds trivially for Gaussian processes since the 4th order

cumulants vanish. More generally, it holds for a wide class of short-memory H-valued

processes (see Example IV.41 in Section 4.8).

Note that our assumptions on the cumulants in Assumption V1 are different from

but related to the assumption based cumulant kernels employed on page 571 in

Panaretos and Tavakoli (2013). For more details, see Remark VI.11.

4.5.1 The case of fixed grid

Consider the case where δn in (4.26) is fixed. Without loss of generality, let

δn ” 1. The discussion in the previous section shows that we can only identify

the folded spectral density on r´π, πsd. As such, without loss of generality, focus

on a stochastic processes tXptqu indexed by t P Zd. This framework includes time

series (for d “ 1), and, more generally, many random fields observed at discrete

locations/times. The spectral density f in this case is defined by (4.29). With the

normalization |Tn X pTn ´ pt ´ sqq| replaced by |Tn|, f̂npθq recovers the classical lag-

window estimator (cf. Robinson, 1983).
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The following result on the rate of f̂npθq is the analog to Theorem IV.14 for the

gridded setting.

Theorem IV.16. Let tXptq, t P Zdu be a real process taking values in H, which

has mean zero and is second-order stationary. Suppose that Assumption K holds,

Assumptions C1 and V1 hold with δn ” 1, and

∆n ¨ SK X Zd
Ă Tn ´ Tn for all n, and ∆d

n{|Tn| Ñ 0 as n Ñ 8.

Then,

sup
θPr´π,πsd

›

›

›
Ef̂npθq ´ fpθq

›

›

›

HS
ď B1p∆nq ` B2p∆nq (4.30)

sup
θPr´π,πsd

E
›

›

›
f̂npθq ´ Erf̂npθqs

›

›

›

2

HS
“ O

ˆ

∆d
n

|Tn|

˙

, (4.31)

where

B1p∆nq –

›

›

›

›

›

›

ÿ

kPp∆n¨SKqXZd

eik
JθCpkq

ˆ

1 ´ K

ˆ

k

∆n

˙˙

›

›

›

›

›

›

HS

,

B2p∆nq –

›

›

›

›

›

›

ÿ

kPZdzp∆n¨SKq

eik
JθCpkq

›

›

›

›

›

›

HS

.

Consequently,

sup
θPr´π,πsd

´

E
›

›

›
f̂npθq ´ fpθq

›

›

›

2

HS

¯1{2

“ O

˜

B1p∆nq ` B2p∆nq `
∆

d{2
n

a

|Tn|

¸

, as n Ñ 8.

In this result, the derivation of the bias bound (4.30) is more straightforward than

that for the general case since it does not involve a Riemann approximation as in

(4.16). Here, the first term on the rhs of (4.13) is no longer present and the other

two terms, B1p∆nq and B2p∆nq, are similar to (4.14), with sums replacing integrals.

The derivation of the variance bound (4.31) is also simpler than that of (4.22), where
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the term involving δn is no longer needed. For completeness, the variance bound is

established in Proposition IV.35 of Section 4.8.

The bias bounds B1p∆nq, B2p∆nq in Theorem IV.16 hold for a very general class

of models. However, more precise expressions of the bias can be obtained for specific

models. We illustrate this next by considering a class of covariances that decay like

the power law. The power-law decay class, PDpβ, Lq, for the discrete-time processes

is defined as

PDpβ, Lq –

#

fpθq “ p2πq
´d

ÿ

kPZd

Cpkqeiθ
Jk :

ÿ

kPZd

}Cpkq}trp1 ` }k}
β
2 q ď L

+

, (4.32)

for β, L ą 0. By the theory of the Fourier transform, larger values of β in this

condition correspond to a higher order of smoothness of the spectral density at θ “ 0;

see, e.g., Bingham et al. (1989).

Below we establish an explicit upper bound on the rate of f̂npθq for this class

by focusing on the bias terms B1p∆nq and B2p∆nq of Theorem IV.16. First, we

introduce an additional smoothness condition on the kernel K that is compatible

with the covariance model in PDpβ, Lq. Let α “ pα1, . . . , αdq P Zd
` and define the

partial derivative

B
αKphq “

BαKphq

Bhα1
1 . . . Bhαd

d

.

Then, for an integer λ ě 1, define the condition

B
αKp0q “ 0 for all α with 1 ď |α| –

d
ÿ

i“1

αi ď λ, and

sup
h

|B
αKphq| ă 8 for all α with |α| “ λ ` 1.

(4.33)

Theorem IV.17. Let all the conditions of Theorem IV.16 hold. Moreover, assume

that the spectral density f belongs to PDpβ, Lq for some β ą 0 and L ą 0, and that

(4.33) holds for some integer λ ą 0_ pβ´ 1q. Then, the following is a uniform bound
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on the rate of the bias of f̂npθq:

sup
fPPDpβ,Lq

sup
θPr´π,πsd

›

›

›
Ef̂npθq ´ fpθq

›

›

›

HS
“ O

`

∆´β
n

˘

, as n Ñ 8. (4.34)

Combining this with the variance bound ∆d
n{|Tn| in (4.31) and choosing bandwidth

∆n “ |Tn|
1

2β`d , the following uniform bound on the mean squared error of f̂npθq holds:

sup
fPPDpβ,Lq

sup
θPr´π,πsd

´

E
›

›

›
f̂npθq ´ fpθq

›

›

›

2

HS

¯1{2

“ O
´

|Tn|
´

β
2β`d

¯

. (4.35)

The proof of this result is given in Section 4.8.2. An important motivation for

singling out the class PDpβ, Lq is that is covers a broad range of realistic covariance

models whose tail-decay can be controlled by the parameter β. Moreover, in Section

5.1 we establish a minimax lower bound for this class which matches the upper bound

on the rate in (4.35). In this sense, our estimator with the oracle choice of the

bandwidth is minimax rate-optimal.

4.5.2 Dense gridded data

We now turn to the setting (4.26) where we assume δn Ñ 0. In doing so, we

continue to focus on the estimator f̂npθq in (4.27) for gridded data. However, unlike

the δn “ 1 case, here we are in a position to estimate the full spectral density as

opposed to the folded spectral density. As in the previous subsection, we also study a

similar power law decay class. However, some slight modifications are necessary. The

continuous time power law decay class PCpβ, Lq where β, L ą 0, contains spectral

densities for the continuous-time process, defined by

PCpβ, Lq –

!

fpθq “ p2πq
´d

ż

Rd

eix
JθCpxqdx :

ż

Rd

p1 ` }x}
β
2 q}Cpxq}trdx ď L

)

.

(4.36)
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Mimicking the approach in Section 4.5.1, the following result can be stated for this

class.

Theorem IV.18. Let all the assumptions of Theorem IV.14 hold and assume that

the spectral density fpθq belongs in PCpβ, Lq for some β, L ą 0. Suppose that (4.33)

holds for some integer λ ą 0 _ pβ ´ 1q. Then, for every f P PCpβ, Lq and bounded

Θ Ă Rd, the rate of the bias is

sup
θPΘ

›

›

›
Ef̂npθq ´ fpθq

›

›

›

HS
“ O

`

δγn ` ∆´β
n

˘

, as n Ñ 8.

In conjunction with Theorem IV.14, with the rate-optimal choice of ∆n – |Tn|1{p2β`dq,

we obtain the overall rate bound:

sup
θPΘ

ˆ

E
›

›

›
f̂npθq ´ fpθq

›

›

›

2

HS

˙1{2

“ O
´

δγn _ |Tn|
´β{p2β`dq

¯

. (4.37)

The proof of Theorem IV.18 is given in Section 4.8.2.

Remark IV.19. Observe that, in contrast to Theorem IV.17, the rate bounds in The-

orem IV.18 are not uniform over the class PCpβ, Lq. This is mainly because the con-

stant |||C|||γ in (4.7) of Assumption C (b) cannot be bounded uniformly in PCpβ, Lq,

since the tail behavior of }Cpxq}tr does not regulate the smoothness of Cpxq. At this

point, we do not know whether there is an adaptive estimator for which the rate could

be shown to be uniform.

Remark IV.20. To interpret the bound on the rate in (4.37), suppose, for example,

that δn – n´α for some α P p0, 1q, which controls the sampling frequency relative to

the sample size. The greater the value of α, the finer the grid. Also, assume that the

grid is square with nℓ “ n, for all ℓ, so that |Tn| „ pnδqd. Let

αβ,γ “

ˆ

1 `

ˆ

2

d
`

1

β

˙

γ

˙´1

(4.38)
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and consider the following two regimes:

• (fine sampling) When α ě αβ,γ, then δ
γ
n “ Op|Tn|´β{p2β`dqq, and the rate bound

in (4.37) is

O
´

pnδnq
´βd{p2β`dq

¯

“ O
´

n´βdp1´αq{p2β`dq
¯

.

• (coarse sampling) When 0 ă α ă αβ,γ, then |Tn|´β{p2β`dq “ Opδγnq and the rate

bound becomes

Opδγnq “ Opn´αγ{2
q.

In the fine-sampling regime, the rate is the same as the minimax lower bound es-

tablished in Theorem V.3 below. By (4.38), a larger γ (i.e., a smoother C) leads to

a wider range of sampling rates under which the minimax rate can be achieved by

f̂npθq. Similarly, a larger d or larger β (i.e., faster tail decay of C) leads to a narrower

range of sampling rates in order to achieve the minimax rate.

4.5.3 One more covariance class

In this subsection, we present explicit rate bounds on the bias for one more class

of covariances. We focus on a class of covariances that decay like the exponential

power law. For η, L ą 0, the exponential power-law decay class, EPDpη, Lq, for the

discrete-time processes is defined as

EPDpη, Lq –

#

fpθq “ p2πq
´d

ÿ

kPZd

Cpkqeiθ
Jk : }Cpkq}tr ď L ¨ e´}k}

η
2

+

. (4.39)

In the following theorem we establish an explicit upper bound on the rate of f̂npθq

for this class. As in the case of PDpβ, Lq, the proof concentrates on the bias terms

B1p∆nq and B2p∆nq of Theorem IV.16. We need an extra smoothness condition,
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different from (4.40) this time. In this case, we have the condition

Kphq “ O
`

e´1{}h}2
˘

, (4.40)

that we will use in this subsection.

Theorem IV.21. Let all the conditions of Theorem IV.16 hold. Moreover, assume

that the spectral density f belongs to EPDpη, Lq for some η ą 0 and L ą 0, and that

(4.40) holds. Then, the following is a uniform bound on the rate of the bias of f̂npθq:

sup
fPPDpβ,Lq

sup
θPr´π,πsd

›

›

›
Ef̂npθq ´ fpθq

›

›

›

HS
“ O

ˆ

∆
td´ηu`
η`1

n e´∆
η

η`1
n

˙

, as n Ñ 8. (4.41)

Combining this with the variance bound ∆d
n{|Tn| in (4.31) and choosing bandwidth

∆n “ plog |Tn|q
η`1
η , the following uniform bound on the mean squared error of f̂npθq

holds:

sup
fPPDpβ,Lq

sup
θPr´π,πsd

´

E
›

›

›
f̂npθq ´ fpθq

›

›

›

2

HS

¯1{2

“ O

˜

plog |Tn|q
dpη`1q

2η

a

|Tn|

¸

. (4.42)

We present the proof of this result in Section 4.8.2.

Continuing along the lines of Section 4.5.2, we focus on the setting (4.26) where

we assume δn Ñ 0. The continuous time exponential power law decay class EPCpη, Lq

where η, L ą 0, contains spectral densities for the continuous-time process, defined

by

EPCpη, Lq –

!

fpθq “ p2πq
´d

ż

Rd

eix
JθCpxqdx : }Cphq}tr ď L ¨ e´}h}

η
2

)

. (4.43)

Similarly to EPDpη, Lq, the following result can be stated for this class.

Theorem IV.22. Let all the assumptions of Theorem IV.14 hold and assume that

the spectral density fpθq belongs in EPCpη, Lq for some η, L ą 0. Suppose also that
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(4.40) holds. Then, for every f P EPCpβ, Lq and bounded Θ Ă Rd, the rate of the

bias is

sup
θPΘ

›

›

›
Ef̂npθq ´ fpθq

›

›

›

HS
“ O

ˆ

δγn ` ∆
td´ηu`
η`1

n e´∆
η

η`1
n

˙

, as n Ñ 8.

In conjunction with Theorem IV.14, and choosing ∆n – plog |Tn|q
η`1
η , we obtain the

overall rate bound:

sup
θPΘ

ˆ

E
›

›

›
f̂npθq ´ fpθq

›

›

›

2

HS

˙1{2

“ O

˜

δγn _
plog |Tn|q

dpη`1q

2η

a

|Tn|

¸

. (4.44)

The proof of this theorem is almost the same as the one of Theorem IV.21 and

will be skipped.

Remark IV.23. Like in the power-law decay class, the rate bounds in Theorem IV.22

are not uniform over the class EPCpη, Lq, as opposed to Theorem IV.21. The reason-

ing is the same here (cf Remark IV.19 for details).

Remark IV.24. Kernel Choice. Observe that in Proposition IV.21 we require the

kernel to satisfy (4.40). By careful examination of the proof of Theorem IV.21, if we

instead use kernels satisfying (4.33), one can see that the order of the rate would be

slowed down, becoming

sup
θPΘ

}Egnpθq ´ fpθq}HS “ O
ˆ

1

∆λ`1
n

` ∆d´η
n e´pmK∆nqη

˙

.

This emphasizes the importance of the right choice of the kernel with regard to

the covariance structure. The consistency rates are directly affected by the smooth-

ness/differentiability of the kernel at zero. As a result, we can see that there is not

a single choice of kernels that fits every model. As expected, unfortunate choices of

kernels could slow down the consistency rates substantially.
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4.6 An RKHS formulation based on discretely-observed

functional data

In this section, we specialize the obtained results for an abstract Hilbert space to

the case where H is a space of functions. In real-data applications complete functions

are not available and instead each of the functional data Xptiq is observed on a finite

set of points. A natural space for this setting may be when H is a RKHS. Unlike

the more commonly considered space L2ra, bs, an RKHS H allows us to view H-

valued random elements as bona fide functions, since the point-evaluation functionals

are well-defined and continuous. This enables a seamless interface between the theory

that we have developed up to this point and applications based on discretely observed

data. The literature on RKHS is extremely rich. For a quick overview on the role of

RKHS in functional data analysis, the reader is referred to Hsing and Eubank (2015).

Let H be an RKHS containing functions on a compact set E, where the kernel

Rp¨, ¨q is continuous on E ˆ E. The reproducing property states that

gpuq “ xg,Rpu, ¨qyH, u P E.

Now, let tXptq, t P Rdu be a stationary H-valued process with covariance function

C and spectral density f . Then, it can be viewed as a bivariate stochastic process

tXpu, tq – xXptq, Rpu, ¨qyH, u P E, t P Rdu. We have

CovpXpu, t ` hq, Xpv, tqq “ xCphqRpu, ¨q, Rpv, ¨qyH

“

ż

Rd

e´ihJθfu,vpθqdθ,
(4.45)

where

fu,vpθq “ xfpθqRpu, ¨q, Rpv, ¨qyH.
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In view of (4.45), it may be convenient to refer to fu,vpθq as a spectral density.

However, there is no guarantee that it is nonnegative for u ‰ v. By the Cauchy-

Schwartz inequality, our estimation rates on the operator fpθq translate immediate

to fu,vpθq for all u, v.

Assume that the process is observed on a common discrete set of points Dn “

tun,j, j “ 1, . . . ,mnu for all t P Tn. To relate the partially observed functional data

to complete functional data in H, a possible approach is the following. Assume that

the matrix

Rn – tRpun,i, un,jqu
mn
i,j“1 (4.46)

is invertible for each n. Let Hn be the subspace of H spanned by tRpu, ¨q, u P Dnu

and Πn is the projection operator onto Hn. Then, for any g P H,

g̃ – Πng

interpolates g at the points in Dn and is in fact the minimum norm interpolant of g

on Dn; see Wahba (1990) or Proposition IV.36.

The covariance of the stationary process t rXptqu is rCphq – ΠnCphqΠn. First note

that

} rCphq}tr ď }Cphq}tr.

This follows from Lemma IV.37 (i), since x rCphq,WyHS “ xCphq,ĂWyHS, where ĂW “

ΠnWΠn is unitary for every unitaryW . Thus, the condition
ş

}Cphq}trdh ă 8 ensures

that the spectral density f̃ of t rXptqu is well defined, and satisfies

f̃pθq “
1

p2πqd

ż

Rd

eih
Jθ

rCphqdh.
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Following the approach in (4.10) based on the data rXptiq, define

f̃npθq “ Πnf̂npθqΠn.

Consider the estimation of f̃ by f̃n. To keep the presentation simple we focus on the

Gaussian case. The following result follows readily from Theorem IV.14.

Theorem IV.25. Let the process
␣

Xptq, t P Rd
(

be a zero-mean stationary Gaus-

sian process taking values in H. Suppose that Assumptions C, K, and S hold. If,

additionally we have

∆n ¨ SK Ă Tn ´ Tn for all n.

Then, for any bounded set Θ,

sup
θPΘ

´

E
›

›

›
f̃npθq ´ f̃pθq

›

›

›

2

HS

¯1{2

“ O

˜

δγn ` B1p∆nq ` B2p∆nq `

d

∆d
n

|Tn|

¸

, (4.47)

as n Ñ 8.

Note that, in (4.47), we bounded rB1p∆nq, rB2p∆nq, the counterparts of B1p∆nq,

B2p∆nq where Cphq therein is replaced by rCphq, by B1p∆nq, B2p∆nq, respectively.

This is achieved using the simple fact that }T1T2}HS ď }T1}}T2}HS where }T1} stands

for the operator norm of T1. In view of Theorem IV.25, to find the rate of E}f̃npθq ´

fpθq}2HS, it is sufficient to consider the bias }f̃pθq ´ fpθq}HS, which must be evaluated

case by case, depending on the type of a RKHS being considered. Below, we consider

an example that leads to a specific rate.

Consider the Sobolev space H “ W1r0, 1s which consists of functions on the inter-

val r0, 1s of the form c `
ş1

0
pt ^ uqhpuqdu, c P R and h integrable (cf. Wahba, 1990).

The inner-product in this space is xf, gyH – fp0qgp0q `
ş1

0
f 1ptqg1ptqdt, yielding the
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norm

}g}
2
H “ gp0q

2
`

ż 1

0

pg1
ptqq

2
dt.

In context, we can state the following result for E}f̃npθq ´ fpθq}2HS.

Theorem IV.26. Let the positive trace-class operator fpθq have the eigen decompo-

sition:

fpθq “

8
ÿ

j“1

νjϕj b ϕj,

where the eigenvalues νj are summable (since fpθq P T`). Assume that, for each j,

the derivative ϕ1
j is Lipschitz continuous with |ϕ1

jpsq ´ ϕ1
jptq| ď Cj|s ´ t| for some

finite constant Cj where
ř8

j“1Cjν
2
j ă 8. Also, assume that the sampling design is

un,i “ i{mn, 0 ď i ď mn. Then,

}f̃pθq ´ fpθq}HS “ Opm´1{2
n q.

The proof of Theorem IV.26 is given in Section 4.8.4.

4.7 Related work and discussions

In this section we highlight the approaches in Panaretos and Tavakoli (2013) and

Zhu and Politis (2020) focusing on the time-series setting and we explain how they

relate to our approach.

4.7.1 Relation to flat-top kernel estimators

The flat-top kernel estimators have been advocated in the works of Politis (2011);

Zhu and Politis (2020), among others. According to Relation (15) of Zhu and Politis

(2020) the alternate estimator proposed in Section 3.1 therein takes the form

1

2π

ÿ

|u|ăT

λpBTuqr̂upτ, σqe´iωu,
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where

r̂upτ, σq “
1

T

ÿ

0ďt,t`uďT´1

Xt`upτqXtpσq and λpsq “

ż 8

´8

Λpxqe´isxdx

for some Λpxq. In the time-series setting with d “ 1, an asymptotically equivalent

adaptation of our estimator in (4.27) is given by:

f̂T pθq “
1

2π
¨
1

T

ÿ

|u|ăT

K

ˆ

u

∆T

˙

¨ e´iuθ
ÿ

0ďt,t`uďT´1

Xt`u b Xt. (4.48)

See Remark IV.7. Thus, the two estimators are essentially the same, with ω corre-

sponds to θ, BT to 1{∆T , and λ to K. Zhu and Politis (2020) focuses on p-times

differentiable flat-top kernels λ with λptq “ 1, for all }t} ď ϵ, for some ϵ ą 0, where p

is adapted to the tail decay of the covariance function. Such kernels reduce the bias

of the kernel spectral density estimator in essentially the same way as do the kernels

K satisfying (4.33) in the present thesis. One can get a rough idea about that by the

crude calculations in (4.17).

Moreover, in Section 5 of Zhu and Politis (2020), an effective data-dependent

choice of the bandwidth parameter BT is developed. The authors base their selection

on the functional version of correlogram/cross-correlogram. Using this quantity, an

empirical rule is proposed for the choice of BT . In practice, we recommend using flat-

top kernels and a similar methodology for the selection of ∆T “ 1{BT . The thorough

investigation of the data-driven, adaptive choice of ∆T in our setting of irregularly

sampled data, however, merits further theoretical and methodological investigation.

4.7.2 Periodogram-based estimators for functional time series

The seminal work of Panaretos and Tavakoli (2013) considers function-valued time

series, taking values in pL2r0, 1s,Rq. They develop comprehensive theory and method-

ology for inference of the spectral density operator extending the classic periodogram-
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based approach to the functional time series setting. The proposed estimator therein

is:

f pT q
ω pτ, σq “

2π

T

T´1
ÿ

s“1

W pT q

ˆ

ω ´
2πs

T

˙

p
pT q

2πs{T pτ, σq, (4.49)

where

W pT q
pxq “

ÿ

jPZ

1

BT

W

ˆ

x ` 2πj

BT

˙

,

with W being a taper weight function of bounded support. Here,

ppT q
ω pτ, σq “ rXpT q

ω pτq rX
pT q

´ω pσq

is the periodogram, where

rXpT q
ω “

1
?
2πT

T´1
ÿ

t“0

Xtpτqe´iωt,

is the discrete Fourier transform (DFT). This is referred to as the smoothed peri-

odogram estimator (cf. Robinson, 1983).

The asymptotic properties of these periodogram-based estimators are studied us-

ing the following general cumulant-based assumptions:

Condition Cpℓ, kq. For each j “ 1, . . . , k ´ 1,

8
ÿ

t1,...,tk´1“´8

p1 ` |tj|
ℓ
q}cumpXt1 , . . . , Xtk´1

, X0q}2 ă 8.

For example, by Theorem 3.6 in Panaretos and Tavakoli (2013), if Cp1, 2q and Cp1, 4q

hold, the mean squared error of f
pT q
ω p¨, ¨q for ω ‰ 0,˘π is:

E}F pT q
ω ´ Fω}

2
HS “ O

´

B2
T ` B´1

T T´1
¯

,
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where F pT q
ω and Fω are the operators with kernels f

pT q
ω and fω, respectively. The

rate-optimal choice of BT is T´1{3, which yields the bound on the rate of consistency

of the estimator OpT´1{3q.

Our results provide more detailed estimates on the rates under simple structural

assumptions on the covariances. Indeed, observe that the condition Cp1, 2q corre-

sponds to our condition PDpβ, Lq with β “ 1 in (4.32). Our Theorem IV.17 (see

Relation (4.35) with d “ 1) yields the rate of consistency bound of OpT´β{p2β`1qq,

which for β “ 1 matches the rate-optimal bound in Panaretos and Tavakoli (2013).

Our condition (4.32), however, allows for a wider range of covariance structures than

Condition Cp1, 2q, where we allow for β ą 0 to be less than 1. As discussed in Section

5.1, the rate OpT´β{p2β`1qq is minimax optimal in the class PDpβ, Lq.

As observed in Section 3 of Zhu and Politis (2020), one can relate the time-domain

and frequency-domain (periodogram-based) estimators. Indeed, one can argue that

our estimator in (4.48) corresponds asymptotically to the periodogram-based estima-

tor in (4.49) with taper

W pxq “
1

2π

ż 8

´8

eitxKptqdt,

where ∆T „ 1{BT . In this case, we have 2π}W }22 “ }K}22 and the asymptotic covari-

ances of the estimators in (4.48) and (4.49) are identical (compare, e.g., Theorem 3.7

of Panaretos and Tavakoli , 2013, and our Corollary VI.3). Theorem 3.7 in Panaretos

and Tavakoli (2013) establishes the asymptotic normality of the periodogram-based

estimators under conditions Cp1, 2q and Cp1, 4q, as well as Cp0, kq, for all k ě 2. In

Theorem VI.1 we adopt the stronger assumption that the underlying process is Gaus-

sian. We establish, however, the asymptotic normality of our estimators under milder

tail-decay conditions on the operator covariance and pseudo-covariance functions.
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4.8 Proofs

4.8.1 Proofs for Section 4.4

We begin by recalling some key notation. The spectral density of the H-valued

second order stationary process X “ tXptq, t P Rdu is:

fpθq –
1

p2πqd

ż

Rd

eih
JθCphqdh, θ P Rd, (4.50)

where the last integral is understood in the sense of Bochner, and where Cptq “

ErXptq b Xp0qs is the operator auto-covariance function of X.

The estimator of the spectral density is defined as:

f̂npθq “
1

p2πqd

ÿ

tPTn

ÿ

sPTn

eipt´sqJθ Xptq b Xpsq

|Tn X pTn ´ pt ´ sqq|

¨ K

ˆ

t ´ s

∆n

˙

¨ |V ptq| ¨ |V psq|.

(4.51)

Introduce also the auxiliary, idealized estimator based on the continuously sampled

path tXptq, t P Tnu:

gnpθq “
1

p2πqd

ż

tPTn

ż

sPTn

eipt´sqJθ Xptq b Xpsq

|Tn X pTn ´ pt ´ sqq|
K

ˆ

t ´ s

∆n

˙

dtds. (4.52)

4.8.1.1 Proof of Theorem IV.9

We begin by recalling the statement.

Theorem IV.27 (Theorem IV.9). Let Assumptions C, K, and S hold and suppose

δn _ |Tn|´1 Ñ 0. Choose ∆n Ñ 8 such that

∆n ¨ SK Ă Tn ´ Tn for all n,

where A´B – ta´ b : a P A, b P Bu for sets A,B Ă Rd. Then, for any bounded set
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Θ Ă Rd, we have

sup
θPΘ

›

›

›
Ef̂npθq ´ fpθq

›

›

›

HS
“ O pδγn ` B1p∆nq ` B2p∆nqq , (4.53)

where

B1p∆nq –

›

›

›

›

ż

hP∆n¨SK

eih
JθCphq

ˆ

1 ´ K

ˆ

h

∆n

˙˙

dh

›

›

›

›

HS

,

B2p∆nq –

›

›

›

›

ż

hR∆n¨SK

eih
JθCphqdh

›

›

›

›

HS

.

Proof. By the triangle inequality,

›

›

›
Ef̂npθq ´ fpθq

›

›

›

HS
ď

›

›

›
Ef̂npθq ´ Egnpθq

›

›

›

HS
` }Egnpθq ´ fpθq}HS .

It is immediate from (4.50) for f and the inclusion ∆n ¨ SK Ă Tn ´ Tn, that

}Egnpθq ´ fpθq}HS ď B1p∆nq ` B2p∆nq.

To complete the proof one needs to show that

}Ef̂npθq ´ Egnpθq}HS “ Opδγnq. (4.54)

To evaluate }Ef̂npθq ´ Egnpθq}HS, first denote the integrand in (4.52) by

hnpt, s; θq – eipt´sqJθ Xptq b Xpsq

|Tn X pTn ´ pt ´ sqq|
K

ˆ

t ´ s

∆n

˙

.

In view of (4.51) and since |V pwq| ¨ |V pvq| “
ş

tPV pwq

ş

sPV pvq
1ptPV pwq,sPV pvqqdtds, this
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allows us to write:

gnpθq ´ f̂npθq

“
1

p2πqd

ÿ

wPTn

ÿ

vPTn

ż

tPV pwq

ż

sPV pvq

phnpt, s; θq ´ hnpw, v; θqq dtds.

This implies that

›

›

›
Egnpθq ´ Ef̂npθq

›

›

›

HS

ď
1

p2πqd

ÿ

wPTn

ÿ

vPTn

ż

tPV pwq

ż

sPV pvq

}Ehnpt, s; θq ´ Ehnpw, v; θq}HSdtds.
(4.55)

In the rest of the proof we will make use of the smoothness of K and C, and routine

but technical analysis to show that the last sum is of order Opδγnq. This will yield

(4.54) and complete the proof of (4.53).

Recall that SK denotes the bounded support of the kernel function K. This means

that

K

ˆ

t ´ s

∆n

˙

“ 0, whenever t ´ s R ∆n ¨ SK .

In each integral in the sums of (4.55) we have that t P V pwq and s P V pvq. Thus,

t ´ s “ t ´ w ` w ´ v ` v ´ s P w ´ v ` Bp0, 2δnq,

where we used that maxt}t ´ w}, }s ´ v}u ď δn, by the definition of δn (4.8) and

Bp0, rq “ tx P Rd : }x}2 ă ru.

By (4.55), we have

}Egnpθq ´ Ef̂npθq}HS ď
1

p2πqd

ÿ

wPTn

ÿ

vPTn

ĳ

t,sPTn

}Cpt ´ sq ´ Cpw ´ vq}HS|Lnpw ´ vq|dtds

`
1

p2πqd

ÿ

wPTn

ÿ

vPTn

ĳ

t,sPTn

}Cpt ´ sq}HS|Lnpt ´ sq ´ Lnpw ´ vq|dsdt
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— In ` Jn, (4.56)

where

Lnpxq –
eix

Jθ

|Tn X pTn ´ xq|
K
´ x

∆n

¯

, x P Rd.

Observe that since Kpx{∆nq “ 0 for x R ∆n ¨ SK , and ∆d
n{|Tn| Ñ 0, Lemma IV.30

implies that |TnXpTn´xq| „ |Tn| uniformly in x P ∆n ¨SK . This and the boundedness

of the kernel K imply

sup
xPRd

|Lnpxq| “ O
´ 1

|Tn|

¯

. (4.57)

Recall that by (4.7) in Assumption C, we have

ż

Rd

sup
yPBpx,δq

}Cpyq ´ Cpxq}trdx ď |||C|||γ ¨ δγ, δ P p0, 1q (4.58)

Thus, for the term In in (4.56), using Relations (4.57) and (4.58), and the change of

variables x – t ´ s, we obtain

In ď
1

p2πqd

ż

tPTn

ż

sPTn

sup
}t1´t}ďδn
}s1´s}ďδn

}Cpt ´ sq ´ Cpt1 ´ s1
q}HS ¨ sup

τPRd

|Lnpτq|dtds

ďc
1

|Tn|

ż

sPTn

´

ż

xPs`Tn

sup
y : }x´y}ď2δn

}Cpxq ´ Cpyq}HSdx
¯

ds

ďc
1

|Tn|

ż

sPTn

|||C|||γ ¨ δγnds “ Opδγnq.

Next, focus on the term Jn in (4.56). We will show below that

sup
}x´y}ď2δn

|Lnpxq ´ Lnpyq| “ O
´ δn

|Tn|

¯

. (4.59)

Thus, recalling that }t´s´pw´vq} ď 2δn, whenever t P V pwq and s P V pvq, Relation
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(4.59) for the term Jn in (4.56) implies

Jn ďc
δn

|Tn|

ż

tPTn

ż

sPTn

}Cpt ´ sq}HSdtds “ Opδnq,

where the last relation follows from a change of variables x – t ´ s and Assumption

C (a).

To complete the proof, it remains to establish (4.59). By adding and subtracting

terms, we obtain

|Lnpxq ´ Lnpyq| ď |Kpx{∆nq|

ˇ

ˇ

ˇ

1

|Tn X pTn ´ xq|
´

1

|Tn X pTn ´ yq|

ˇ

ˇ

ˇ
(4.60)

`
|Kpx{∆nq ´ Kpy{∆nq|

|Tn X pTn ´ yq|
`

|Kpy{∆nq|

|Tn X pTn ´ yq|

ˇ

ˇ

ˇ
eix

Jθ
´ eiy

Jθ
ˇ

ˇ

ˇ
(4.61)

— A ` B ` C. (4.62)

Note that Kpy{∆nq and Kpx{∆nq vanish whenever x and y are outside ∆n ¨ SK .

Therefore, since δn Ñ 0 and ∆n Ñ 8, the right-hand side of (4.60) vanishes for all

}x ´ y} ď 2δn such that }y} ě const ¨ ∆n. Therefore, the supremum in (4.59) does

not change if it is taken over the set

In – tpx, yq : }x ´ y} ď 2δn, }y} ď const ¨ ∆nu.

Thus, we restrict our attention to px, yq P In. By Lemma IV.30, we have |Tn X pTn ´

yq| „ |Tn|, uniformly in px, yq P In. This fact and the Lipschitz property of the

complex exponentials and the kernel K (by (c) of Assumption K), immediately imply

that

B ďc
δn{∆n

|Tn|
and C ďc

δn
|Tn|

,

uniformly in px, yq P In.

Now, for term A, exploiting the boundedness of the kernel and the fact that
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}x ´ y} ď 2δn, we obtain

A ď }K}8

ˇ

ˇ

ˇ
|Tn X pTn ´ xq| ´ |Tn X pTn ´ yq|

ˇ

ˇ

ˇ

|Tn X pTn ´ xq| ¨ |Tn X pTn ´ yq|

ď }K}8

|Tn ` Bp0, 2δnq| ´ |Tn|

|Tn X pTn ´ xq| ¨ |Tn X pTn ´ yq|

ďc
|Tn ` Bp0, 2δnq| ´ |Tn|

|Tn|2
“ O

ˆ

δn
|Tn|1`1{d

˙

,

where the last inequality follows from Lemma IV.30 and Assumption S. Note that

the last bound is uniform in px, yq P In. Combining the above bounds on the terms

A,B, and C, we obtain (4.59). This completes the proof.

4.8.1.2 Proof of Theorem IV.13

For easy referencing, we begin by recalling the statement of Theorem IV.13.

Theorem IV.28 (Theorem IV.13). Let X “
␣

Xptq, t P Rd
(

be a zero-mean, strictly

stationary real H-valued process. Suppose that Assumptions C, K, S, and V hold.

Also, assume that ∆n satisfies

∆n ¨ SK Ă Tn ´ Tn for all n, and δn ` ∆d
n{|Tn| Ñ 0 as n Ñ 8.

Then

sup
θPΘ

E}f̂npθq ´ Ef̂npθq}
2
HS “ O

ˆ

∆d
n

|Tn|

˙

, as n Ñ 8.

Proof. In what follows we will use ∆ and T instead of ∆n and Tn respectively. Recall
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(4.23) and (4.24). Namely, we have

E}f̂npθq ´ Ef̂npθq}
2
HS “

1

p2πq2d

ÿ

tPTn

ÿ

sPTn

ÿÿ

hPr∆¨SK sXpTn´tq
h1Pr∆¨SK sXpTn´sq

eiph´h1qJθK

ˆ

h

∆

˙

K

ˆ

h1

∆

˙

¨ |V pt ` hq| ¨ |V ptq| ¨ |V ps ` h1
q| ¨ |V psq|

¨
Cov pXpt ` hq b Xptq, Xps ` h1q b Xpsqq

|T X pT ´ hq||T X pT ´ h1q|

(4.63)

where

Cov pXpt ` hq b Xptq, Xps ` h1
q b Xpsqq

– E xXpt ` hq b Xptq ´ Cphq, Xps ` h1
q b Xpsq ´ Cph1

qyHS .

By Definition IV.11, since X is real C “ Č, and

Cov pXpt ` hq b Xptq, Xps ` h1
q b Xpsqq

“ ExXpt ` hq, Xps ` h1
qyH ¨ ExXpsq, XptqyH

` xCpt ´ s ` hq, Cps ` h1
´ tqyHS

` cum pXpt ` hq, Xptq, Xps ` h1
q, Xpsqq .

(4.64)

For simplicity of notation, write cumps, t, u, vq “ cum pXpsq, Xptq, Xpuq, Xpvqq. We

fix a real CONS teju and use the representation in Proposition VI.10 (see also (4.20)).

Next, we split the sum on the right-hand side of (4.63) into three terms corresponding

to the decomposition (4.64). Namely, we define

A –
ÿ

tPTn

ÿ

sPTn

ÿÿ

hPr∆¨SK sXpTn´tq
h1Pr∆¨SK sXpTn´sq

eiph´h1qJθK

ˆ

h

∆

˙

K

ˆ

h1

∆

˙

¨ |V pt ` hq| ¨ |V ptq|

¨ |V ps ` h1
q| ¨ |V psq| ¨

E xXpt ` hq, Xps ` h1qyH ¨ E xXpsq, XptqyH
|T X pT ´ hq||T X pT ´ h1q|

,
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B –
ÿ

tPTn

ÿ

sPTn

ÿÿ

hPr∆¨SK sXpTn´tq
h1Pr∆¨SK sXpTn´sq

eiph´h1qJθK

ˆ

h

∆

˙

K

ˆ

h1

∆

˙

¨ |V pt ` hq| ¨ |V ptq|

¨ |V ps ` h1
q| ¨ |V psq| ¨

xCpt ´ s ` hq, Cps ´ t ` h1qyHS

|T X pT ´ hq||T X pT ´ h1q|

and

C –
ÿ

tPTn

ÿ

sPTn

ÿÿ

hPr∆¨SK sXpTn´tq
h1Pr∆¨SK sXpTn´sq

eiph´h1qJθK

ˆ

h

∆

˙

K

ˆ

h1

∆

˙

¨ |V pt ` hq| ¨ |V ptq|

¨ |V ps ` h1
q| ¨ |V psq|

cum pXpt ` hq, Xptq, Xps ` h1q, Xpsqq

|T X pT ´ hq||T X pT ´ h1q|
.

Thus,

p2πq
dE}f̂npθq ´ Ef̂npθq}

2
HS “ A ` B ` C. (4.65)

In the sequel, the bounds we shall obtain are based on the summation of the abso-

lute values of the summands. Therefore, in view of Lemma IV.30 (below) and the

assumption ∆d “ op|T |q, the denominators in A,B,C can be replaced by |T |´2.

We start with the term C. Lemma IV.34 entails that

C “ O
ˆ

N p∆n ¨ SK ,Tnq

|Tn|

˙

“ O
ˆ

∆d
n

|Tn|

˙

, (4.66)

where the last relation follows from Lemma IV.29.

The term B is bounded above by

|B| ď
1

|Tn|2

ÿ

t,sPTn

uPTnXpt`∆¨SKq

vPTnXps`∆¨SKq

}Cpu ´ sq}HS}Cpv ´ tq}HS ¨ |V ptq| ¨ |V psq| ¨ |V puq| ¨ |V pvq|,

where we have implemented the change of variables u “ t`h and v “ s`h1. Applying

Lemma IV.33, we immediately obtain that

B “ O
ˆ

N p∆n ¨ SK ,Tnq2

|Tn|2

˙

“ O
ˆ

∆2d
n

|Tn|2

˙

, (4.67)
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where we applied Lemma IV.29.

Finally, we steer our attention to the term A. Observe that

|ExX, Y y| “ |E trace pX b Y q| “ |trace pErX b Y sq| ď }ErX b Y s}tr (4.68)

by (iii) of Lemma IV.37. Thus,

|A| ďc
}K}28

|T |2

ÿ

tPTn

ÿ

sPTn

ÿÿ

hPr∆¨SK sXpTn´tq
h1Pr∆¨SK sXpTn´sq

}ErXpt ` hq b Xps ` h1
qs}tr

¨ }ErXpsq b Xptqs}tr ¨ |V pt ` hq| ¨ |V ptq| ¨ |V ps ` h1
q| ¨ |V psq|

“
}K}28N p∆ ¨ SK ,Tnq

|T |
¨ A1 ¨ A2,

where

A1 “
1

|T |

ÿ

tPTn

ÿ

sPTn

}Cps ´ tq}tr ¨ |V ptq| ¨ |V psq|

and

A2 “
1

N p∆ ¨ SK ,Tnq

ÿÿ

hPr∆¨SK sXpTn´tq
h1Pr∆¨SK sXpTn´sq

}Cpt ´ s ` h ´ h1
q}tr ¨ |V pt ` hq| ¨ |V ps ` h1

q|.

Now

A2 ď
1

N p∆ ¨ SK ,Tnq
max
t,sPTn

ÿ

uPTnXpt`∆¨SKq

vPTnXps`∆¨SKq

}Cpu ´ vq}tr ¨ |V puq| ¨ |V pvq|.

By Lemma IV.32 we obtain that A2 “ O p1q . Moreover, a close inspection of the

proof of Lemma IV.32 shows that A1 is also of the order O p1q. Keeping only the
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dominating bounds for A, we have that

A “ O
ˆ

N p∆ ¨ SK ,Tnq

|T |

˙

“ O
ˆ

∆d
n

|Tn|

˙

, (4.69)

by Lemma IV.29. In view of (4.65), gathering all the bounds in (4.66), (4.67), and

(4.69), we complete the proof of the theorem.

4.8.1.3 Lemmas used in the proofs of Theorems IV.9 and IV.13

For the next lemmas, we need to define the quantity:

N pA,Tnq – max
wPTn

ˇ

ˇYvPTn,w´vPA`Bp0,2δnqV pvq
ˇ

ˇ . (4.70)

This is the maximum volume over w of the unions of all tessellation cells for which

the representatives v’s are in the 2δn inflated A neighborhood of w.

Lemma IV.29. Let N p∆n ¨ SK ,Tnq be defined as in (4.70) and suppose that (a) of

Assumption S holds. Then

N p∆n ¨ SK ,Tnq “ O
`

∆d
n

˘

, as ∆n Ñ 8.

Proof. Indeed, let Zptq – YsPTn,t´sP∆n¨SK`Bp0,2δnqV psq and t0 P Tn.We will show that

Zpt0q Ď Bpt0, 3δn ` ∆n ¨ MKq, (4.71)

where Mk “ suphPSK
}h}2. Suppose u P Zpt0q. Then, there is su P Tn such that

}t0 ´ su}2 ď ∆n ¨ MK ` 2δn

139



with u P V psuq. Thus,

}u ´ t0}2 ď }u ´ su}2 ` }su ´ t0}2 ď δn ` ∆nMK ` 2δn “ 3δn ` ∆nMK ,

which implies (4.71). This entails that,

N p∆n ¨ SK ,Tnq “ max
tPTn

|Zptq| ď |Bp0, 3δn ` ∆nMKq|

“ O
`

p∆n ` δnq
d
˘

“ O
`

∆d
n

˘

,

as ∆n Ñ 8, where the last relation follows from (a) of Assumption S.

Lemma IV.30. Under Assumption S, for }h}2 ď |Tn|1{d we have that

|Tn| ´ |Tn X pTn ´ hq|

|Tn|
“ O

ˆ

}h}2

|Tn|1{d

˙

, as n Ñ 8.

Consequently, if suphPAn
}h}d “ o p|Tn|q , we have that

sup
hPAn

|Tn X pTn ´ hq|

|Tn|
“ Op1q.

Proof. We will make critical use of the Steiner formula from convex analysis (see, e.g.

Gruber , 2007). We have that

|Tn| ´ |Tn X pTn ´ hq|

|Tn|
ď

|Tn ` Bp0, }h}2q| ´ |Tn|

|Tn|
.

An application of Steiner formula to the convex set Tn entails that

|Tn ` Bp0, }h}2q| “

d
ÿ

j“0

µjpTnq}h}
d´j
2 ,
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where µjp¨q denote the intrinsic volumes of order j. Note that µdpTnq “ |Tn|. Thus,

|Tn ` Bp0, }h}2q| ´ |Tn|

|Tn|
“

d´1
ÿ

j“0

µjpTnq}h}
d´j
2

|Tn|

“

d´1
ÿ

j“0

µj

ˆ

Tn
|Tn|1{d

˙

¨

ˆ

}h}2

|Tn|1{d

˙d´j

,

where the last equality follows from the homogeneity of the intrinsic volumes.

Assumption S, part (b), along with the continuity of the intrinsic volumes in the

Hausdorff metric on the set of convex bodies see, e.g., Section 1.2.2 in Lotz et al. (2018)

or Theorem 6.13(iii) in Gruber (2007) and the fact that }h}2 ď |Tn|1{d complete the

proof.

The following remark shows that the order of the bounds in Lemma IV.30 obtained

using the Steiner formula cannot be improved.

Remark IV.31. For the case d “ 2 and d “ 3, when Tn is a circle and a sphere

respectively, we can evaluate the desired volume exactly. Indeed, for d “ 2, we have

that

|Tn| ´ |Tn X pTn ´ hq|

|Tn|
“ 1 ´

2

π
arccos

ˆ

}h}2

2|Tn|1{2

˙

`
1

2|Tn|1{2
}h}2

d

4 ´

ˆ

}h}2

|Tn|1{2

˙2

“ O
ˆ

}h}2

|Tn|1{2

˙

,

and for d “ 3 we have that

|Tn| ´ |Tn X pTn ´ hq|

|Tn|
“

3

4

}h}2

|Tn|1{3
´

1

16

ˆ

}h}2

|Tn|1{3

˙3

“ O
ˆ

}h}2

|Tn|1{3

˙

.

These two cases provide evidence that the application of Steiner formula is not

giving us a loose upper bound, at least when Tn is an n-dimensional ball.

Now, when Tn is a square, and assuming that Sn is the side of the square, we have
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that

max
|Tn| ´ |Tn X pTn ´ hq|

|Tn|
“
Sn ¨ }h}2 ¨

?
2 ´ }h}22{2

S2
n

“ O
ˆ

}h}2

|Tn|1{2

˙

.

Finally, when Tn is a cube of side Sn, we have

max
|Tn| ´ |Tn X pTn ´ hq|

|Tn|
“

3
2

¨ S2
n ¨ }h}2 ´

?
2
2

¨ }h}32

S3
n

“ O
ˆ

}h}2

|Tn|1{3

˙

.

This suggests that using n-dimensional cubes leads indeed to the same rates as for

the n-dimensional balls.

Lemma IV.32. Let tAnu be a growing sequence of open sets such that An Ò Rd, as

n Ñ 8. Moreover, let Tn be the set of representatives of a tessellation of Tn, with the

diameter δn Ñ 0, as n Ñ 8, where Tn is as in (4.10). Also, let Assumptions C, K

and S hold. Then

1

N pAn,Tnq
max
t,sPTn

ÿ

uPTnXpt`Anq

vPTnXps`Anq

}Cpu ´ vq}tr ¨ |V puq| ¨ |V pvq| “ O pδγn ` 1q “ Op1q,

as n Ñ 8, where N p¨, ¨q is defined in (4.70).

Proof. Using the inequality

ˇ

ˇ

ˇ
max

i“1,¨¨¨ ,m
ai ´ max

j“1,¨¨¨ ,m
bj

ˇ

ˇ

ˇ
ď max

i“1,¨¨¨ ,m
|ai ´ bi|,

valid for all ai, bi P R, i “ 1, ¨ ¨ ¨ ,m, we obtain

ˇ

ˇ

ˇ

ˇ

ˇ

max
t,sPTn

ÿ

uPTnXpt`Anq

vPTnXps`Anq

}Cpu ´ vq}tr ¨ |V puq| ¨ |V pvq|

´ max
t,sPTn

ĳ

hPYuPTnXpt`AnqV puq

h1PYvPTnXps`AnqV pvq

}Cph ´ h1
q}trdh

1dh

ˇ

ˇ

ˇ

ˇ

ˇ

142



ď max
t,sPTn

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

uPTnXpt`Anq

vPTnXps`Anq

}Cpu ´ vq}tr ¨ |V puq| ¨ |V pvq|

´

ĳ

hPYuPTnXpt`AnqV puq

h1PYvPTnXps`AnqV pvq

}Cph ´ h1
q}trdh

1dh

ˇ

ˇ

ˇ

ˇ

ˇ

“ max
t,sPTn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

uPTnXpt`Anq

vPTnXps`Anq

ĳ

hPV puq

h1PV pvq

}Cpu ´ vq}tr ´ }Cph ´ h1
q}trdh

1dh

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
sPTn

ÿ

vPTnXps`Anq

ż

h1PV pvq

ż

xPRd

˜

sup
y : }x´y}ď2δn

ˇ

ˇ

ˇ
}Cpyq ´ Cpxq}tr

ˇ

ˇ

ˇ
dx

¸

dh1

ď |||C|||γp2δnq
γ

¨ max
sPTn

ÿ

vPTnXps`Anq

ż

h1PV pvq

dh1

ď |||C|||γp2δnq
γN pAn,Tnq,

where we made the change of variables x – h ´ h1 and enlarged the domain of

integration over x P Rd. The last two inequalities follow from (4.7) and definition of

N p¨, ¨q in (4.70).

To complete the proof, we show that

1

N pAn,Tnq
max
t,sPTn

ĳ

hPYuPTnXpt`AnqV puq

h1PYvPTnXps`AnqV pvq

}Cph ´ h1
q}trdh

1dh “ O p1q .

With the change of variables x “ h ´ h1, we have that the aforementioned term is

equal to

1

N pAn,Tnq
max
t,sPTn

ĳ

xPrYuPTnXpt`AnqV puq´YvPTnXps`AnqV pvqs

h1PrYvPTnXps`AnqV pvqsXrYuPTnXpt`AnqV puq´xs

}Cpxq}trdh
1dx

ď max
t,sPTn

ż

xPrYuPTnXpt`AnqV puq

´YvPTnXps`AnqV pvqs

}Cpxq}tr

ˇ

ˇrYvPTnXps`AnqV pvqs X rYuPTnXpt`AnqV puq ´ xs
ˇ

ˇ

N pAn,Tnq
dx
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ď

ż

wPRd

}Cpxq}trdx “ Op1q,

by Assumption C (a). The proof is complete.

The next lemma is similar to Lemma IV.32. It is used for the term B in the proof of

Theorem IV.28.

Lemma IV.33. Let all the assumptions of Lemma IV.32 hold. Then

1

|Tn|2

ÿ

t,sPTn

uPTnXpt`Anq

vPTnXps`Anq

}Cpu ´ sq}HS}Cpt ´ vq}HS ¨ |V ptq| ¨ |V psq| ¨ |V puq| ¨ |V pvq|

“ O
ˆ

N pAn,Tnq2

|Tn|2

˙

,

(4.72)

as n Ñ 8, where N p¨, ¨q is defined in (4.70).

Proof. For any w in Tn, let τw denote the point tn,i P Tn that is in the same cell as

w; if w is on the boundary of a cell, then let τw be any of the tn,i P Tn in adjacent

cells. Thus, }w ´ τw}2 ď δn. It follows that

ÿ

t,sPTn

uPTnXpt`Anq

vPTnXps`Anq

}Cpu ´ sq}HS}Cpt ´ vq}HS ¨ |V ptq| ¨ |V psq| ¨ |V puq| ¨ |V pvq|

“

żżżż

w, xPTn

hPYuPTnXpτw`AnqV puq

h1PYvPTnXpτx`AnqV pvq

}Cpτh ´ τxq}HS}Cpτw ´ τh1q}HSdh
1dhdxdw

ď

żżżż

w, xPTn

hPw`An`Bp0,2δnq

h1Px`An`Bp0,2δnq

}Cpτh ´ τxq}HS}Cpτw ´ τh1q}HSdh
1dhdxdw

ď

żżżż

w, xPTn

hPw`An`Bp0,2δnq

h1Px`An`Bp0,2δnq

sup
λiPBp0,2δnq,

i“1,2

}Cpλ1 ` h ´ xq}HS}Cpλ2 ` w ´ h1
q}HSdh

1dhdxdw
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“

żżżż

w, xPTn

h̃PAn`Bp0,2δnq

h̃1PAn`Bp0,2δnq

sup
λiPBp0,2δnq,

i“1,2

}Cpλ1 ` h̃ ` w ´ xq}HS}Cpλ2 ` w ´ h̃1
´ xq}HSdh̃

1dh̃dxdw

ď

ĳ

h̃PAn`Bp0,2δnq

h̃1PAn`Bp0,2δnq

˜

ż

xPRd

sup
λPBp0,2δnq

}Cpλ ` xq}HSdx

¸2

dh̃1dh̃

“ |An ` Bp0, 2δnq|
2

˜

ż

xPRd

sup
λPBp0,2δnq

}Cpλ ` xq}HSdx

¸2

which in view of Assumption C implies (4.72) and completes the proof, since

|An ` Bp0, 2δnq| — N pAn,Tnq, (4.73)

because δn{|An| Ñ 0(recall (4.70).

Finally, we state a lemma to handle term C in the proof of Theorem IV.28.

Lemma IV.34. Let the assumptions of Lemma IV.32 and Assumption V hold. More-

over, assume that the process tXptqu is strictly stationary. Then,

1

|Tn|2

ÿ

t,sPTn

uPTnXpt`Anq

vPTnXps`Anq

ˇ

ˇ

ˇ
cum pXpuq, Xptq, Xpvq, Xpsqq

ˇ

ˇ

ˇ
¨ |V ptq| ¨ |V psq| ¨ |V puq| ¨ |V pvq|

is of the order OpN pAn,Tnq{|Tn|q, where N p¨, ¨q is defined in (4.70).

Proof. Proceeding as in Lemma IV.33, It follows that

ÿ

t,sPTn

uPTnXpt`Anq

vPTnXps`Anq

|cumpu, t, v, sq|
ź

τPtt,s,v,uu

|V pτq|

“

żżżż

w, xPTn

hPYuPTnXpτw`AnqV puq

h1PYvPTnXpτx`AnqV pvq

|cumpτh, τw, τh1 , τxq|dh1dhdxdw
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ď

żżżż

w, xPTn

hPτw`An`Bp0,δnq

h1Pτx`An`Bp0,δnq

|cumpτh, τw, τh1 , τxq|dh1dhdxdw

ď

żżżż

w, xPTn

hPw`An`Bp0,2δnq

h1Px`An`Bp0,2δnq

|cumpτh, τw, τh1 , τxq|dh1dhdxdw.

Applying (b) of Assumption V, the last expression becomes

żżżż

w, xPTn

hPw`An`Bp0,2δnq

h1Px`An`Bp0,2δnq

|cumpτh ´ τx, τw ´ τx, τh1 ´ τx, 0q|dh1dhdxdw

ď

żżżż

w, xPTn

hPw`An`Bp0,2δnq

h1Px`An`Bp0,2δnq

sup
λiPBp0,2δnq,

i“1,2,3

|cumpλ1 ` h ´ x, λ2 ` w ´ x, λ3 ` h1
´ x, 0q|dh1dhdxdw

“

żżżż

w, xPTn

h̃,h̃1PAn`Bp0,2δnq

sup
λiPBp0,2δnq,

i“1,2,3

|cumpλ1 ` h̃ ` w ´ x, λ2 ` w ´ x, λ3 ` h̃1, 0q|dh̃1dh̃dxdw

“

¡

yPTn´Tn

h̃,h̃1PAn`Bp0,2δnq

|Tn X pTn ´ yq| sup
λiPBp0,2δnq,

i“1,2,3

|cumpλ1 ` h̃ ` y, λ2 ` y, λ3 ` h̃1, 0q|dh̃1dh̃dy

ď |Tn|

ż

h̃1PAn`Bp0,2δnq

sup
zPRd

ĳ

yPTn´Tn

h̃PAn`Bp0,2δnq

sup
λiPBp0,2δnq,

i“1,2,3

|cumpλ1 ` h̃ ` y, λ2 ` y, λ3 ` z, 0q|dh̃1dh̃dy

“ OpN pAn,Tnq ¨ |Tn|q,

where the last relation is justified by Assumption V (b) and (4.73). Note that we

have applied two changes of variables; first h̃ “ h ´ τw and h̃1 “ h1 ´ x, and second

v “ w̃ ´ x. This completes the proof of the lemma.
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4.8.2 Proofs for Section 4.5

We start this section obtaining rates on the variance of f̂npθq in Section 4.5. We

first establish a result that is more general than what is needed for the proofs of

Section 4.5. We will use it to evaluate the variance of f̂npθq in the time-series setting

where δn ” 1.

Proposition IV.35. Let the process tXptqutPδn¨Zd be strictly stationary and suppose

that Assumptions C1, S, and V1 hold. Then, for the estimator f̂npθq defined in (4.27),

we have the following upper bound on the rate of the variance

sup
θPΘ

E}f̂npθq ´ Ef̂npθq}
2
HS “ O

ˆ

∆d
n

|Tn|

˙

, as n Ñ 8,

where Tn “ δn ¨ r0, nsd and |Tn| “ pnδnqd.

Proof. As before, we will use that }A}HS ď }A}tr throughout. Recall that Tn “

δn ¨ t1, ¨ ¨ ¨ , nud is a discrete set of nd samples, while Tn “ δn ¨ r0, nsd is a hypercube

of side nδn.

We start with

f̂npθq ´ Ef̂npθq

“
δ2dn

p2πqd

ÿ

tPTn

ÿ

sPTn

eipt´sqJθXptq b Xpsq ´ Cpt ´ sq

|Tn X pTn ´ pt ´ sqq|
K

ˆ

t ´ s

∆n

˙

“
δ2dn

p2πqd

ÿ

tPTn

ÿ

hP∆nSKXδn¨Zd

eih
JθXpt ` hq b Xptq ´ Cphq

|Tn X pTn ´ hq|
K

ˆ

h

∆n

˙

¨ 1ph ` t P δn ¨ Zd
q.

This means that

f̂npθq ´ Ef̂npθq

“
δ2dn

p2πqd

ÿ

tPTn

ÿ

hP∆nSKXpTn´tq

eih
JθXpt ` hq b Xptq ´ Cphq

|Tn X pTn ´ hq|
K

ˆ

h

∆n

˙

.
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Then, the variance becomes

E}f̂npθq ´ Ef̂npθq}
2
HS

“
δ4dn

p2πq2d

ÿ

tPTn

ÿ

sPTn

ÿÿ

hPr∆n¨SK sXpTn´tq
h1Pr∆n¨SK sXpTn´sq

eiph´h1qJθK

ˆ

h

∆n

˙

K

ˆ

h1

∆n

˙

¨
Cov pXpt ` hq b Xptq, Xps ` h1q b Xpsqq

|Tn X pTn ´ hq| ¨ |Tn X pTn ´ h1q|
.

By Proposition VI.10 we obtain that Cov pXpt ` hq b Xptq, Xps ` h1q b Xpsqq is

equal to

ÿ

iPI

ÿ

jPI

cum pXipt ` hq, Xjptq, Xips ` h1
q, Xjpsqq

` E xXpt ` hq, Xps ` h1
qyH ¨ E xXptq, XpsqyH ` xCpt ´ s ` hq, Cps ´ t ` h1

qyHS .

In an analogous manner to the proof of Theorem IV.13, we define the quantities

A – δ4dn
ÿ

tPTn

ÿ

sPTn

ÿÿ

hPr∆n¨SK sXpTn´tq
h1Pr∆n¨SK sXpTn´sq

eiph´h1qJθK

ˆ

h

∆n

˙

K

ˆ

h1

∆n

˙

¨
E xXpt ` hq, Xps ` h1qyH ¨ E xXpsq, XptqyH

|Tn X pTn ´ hq| ¨ |Tn X pTn ´ h1q|
,

B – δ4dn
ÿ

tPTn

ÿ

sPTn

ÿÿ

hPr∆n¨SK sXpTn´tq
h1Pr∆n¨SK sXpTn´sq

eiph´h1qJθK

ˆ

h

∆n

˙

K

ˆ

h1

∆n

˙

¨
xCpt ´ s ` hq, Cps ´ t ` h1qyHS

|Tn X pTn ´ hq| ¨ |Tn X pTn ´ h1q|

and

C – δ4dn
ÿ

tPTn

ÿ

sPTn

ÿÿ

hPr∆n¨SK sXpTn´tq
h1Pr∆n¨SK sXpTn´sq

eiph´h1qJθK

ˆ

h

∆n

˙

K

ˆ

h1

∆n

˙

¨
ÿ

iPI

ÿ

jPI

cum pXipt ` hq, Xjptq, Xips ` h1q, Xjpsqq

|Tn X pTn ´ hq| ¨ |Tn X pTn ´ h1q|
.
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We start with term A. Bounding terms by their norm (using (4.68)) and changing

variables, we obtain

|A| ď δ4dn
ÿ

tPTn

ÿ

sPTn

ÿÿ

hPr∆n¨SK sXpTn´tq
h1Pr∆n¨SK sXpTn´sq

|E xXpt ` hq, Xps ` h1qyH ¨ E xXpsq, XptqyH |

|Tn X pTn ´ hq| ¨ |Tn X pTn ´ h1q|

ď δ4dn
ÿ

tPTn

ÿ

sPTn

ÿÿ

hPr∆n¨SK sXpTn´tq
h1Pr∆n¨SK sXpTn´sq

}Cph ´ h1 ` t ´ sq}tr ¨ }Cps ´ tq}tr

|Tn X pTn ´ hq| ¨ |Tn X pTn ´ h1q|

“ δ4dn
ÿ

tPTn

ÿ

sPTn

}Cps ´ tq}tr

ÿÿ

hPr∆n¨SK sXpTn´tq
h1Pr∆n¨SK sXpTn´sq

}Cph ´ h1 ` t ´ sq}tr

|Tn X pTn ´ hq| ¨ |Tn X pTn ´ h1q|

“ δ4dn
ÿ

wPTn´Tn

}Cpwq}tr

ÿ

xPTnXpTn´wq

ÿÿ

uPr∆n¨SKXpTn´pw`xqqs´r∆n¨SKXpTn´xqs

vPr∆n¨SKXpTn´xqsXtr∆n¨SKXpTn´pw`xqqs´uu

}Cpu ` wq}tr

|Tn X pTn ´ pu ` vqq| ¨ |Tn X pTn ´ vq|
,

where the last equality is obtained through the change of variables w “ s ´ t, x “

s, u “ h ´ h1, v “ h1.

By Lemma IV.30, in view of Assumption S(ii), and inflating slightly the sums by

dropping the intersections in the summations of u, v we obtain that

|A| ďc
δ2dn ˆ δ2dn

|Tn|2

ÿ

wPTn´Tn

}Cpwq}tr

ÿ

xPTnXpTn´wq,

ÿ

uP∆npSK´SKq

}Cpu ` wq}tr

ÿ

vPp∆nSKqXp∆nSK´uqXδn¨Zd

1

ďc
δ2dn

|Tn|2

ÿ

wPTn´Tn

}Cpwq}tr ¨ |Tn X pTn ´ wq|

ˆ
ÿ

uP∆npSK´SKqXδn¨Zd

}Cpu ` wq}tr ¨ |p∆nSKq X p∆nSK ´ uq|

ďc
∆d

n

|Tn|
ˆ δdn

ÿ

wPδn¨Zd

}Cpwq}tr ˆ δdn
ÿ

uPδn¨Zd

}Cpuq}tr “ O
ˆ

∆d
n

|Tn|

˙

,
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by Assumption C1, where we used that δdn
ř

t 1ttPTnu „ |Tn| and

δdn
ÿ

t

1ttPp∆n¨SKqXp∆n¨SK´uqXδn¨Zdu ď 2|∆nSK | “ Op∆d
nq.

Now, we shift to term B. Using the change of variables w – t ´ s, the Cauchy-

Schwartz inequality, we obtain

|B| ď δ4dn
ÿ

wPTn´Tn

ÿ

s

1tTnXpTn´wqupsq
ÿÿ

hPr∆n¨SK sXδn¨Zd

h1Pr∆n¨SK sXδn¨Zd

K

ˆ

h

∆n

˙

K

ˆ

h1

∆n

˙

¨
}Cph ` wq}HS}Cph1 ´ wq}HS

|Tn X pTn ´ hq| ¨ |Tn X pTn ´ h1q|

ďc
δ3dn
|Tn|

ÿ

wPTn´Tn

ÿÿ

hPr∆n¨SK sXδn¨Zd

h1Pr∆n¨SK sXδn¨Zd

}Cph ` wq}HS}Cph1
´ wq}HS,

where we used that δdn
ř

s 1tTnXpTn´wqupsq “ Op|Tn|q, and Lemma IV.30 to conclude

that |Tn X pTn ´ hq| „ |Tn X pTn ´ h1q| „ |Tn|, uniformly in h, h1 P ∆n ¨ SK . Now,

with the change of variables u – h ` w, and expanding the range of summation, we

further obtain

|B| ďc
δ3dn
|Tn|

ÿ

uPδn¨Zd

}Cpuq}HS

ÿ

h1P∆nSKXδn¨Zd

ÿ

hP∆nSKXpu´pTn´Tnqq

}Cph1
´ u ` hq}HS

ď
1

|Tn|

´

ÿ

uPδn¨Zd

δdn}Cpuq}HS

¯´

δdn
ÿ

h1P∆nSKXδn¨Zd

1
¯´

ÿ

hPδn¨Zd

δdn}Cphq}HS

¯

“ O
ˆ

∆d
n

|Tn|

˙

,

in view of Assumption C1.

Finally, we look at term C. An application of Lemma IV.30, again gives us that

|C| ďc
δ4dn

|Tn|2

ÿ

tPTn

ÿ

sPTn

ÿÿ

hPr∆n¨SK sXpTn´tq
h1Pr∆n¨SK sXpTn´sq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPI

ÿ

jPI

cum pXipt ` hq, Xjptq, Xips ` h1
q, Xjpsqq

ˇ

ˇ

ˇ

ˇ

ˇ
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ď
δ4dn

|Tn|2

ÿ

tPTn

ÿ

sPTn

ÿÿ

hP∆n¨SKXδn¨Zd

h1P∆n¨SKXδn¨Zd

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPI

ÿ

jPI

cum pXiph ` t ´ sq, Xjpt ´ sq, Xiph
1
q, Xjp0qq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
δ3dn
|Tn|

ÿ

wPTn´Tn

ÿÿ

hP∆n¨SKXδn¨Zd

h1P∆n¨SKXδn¨Zd

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPI

ÿ

jPI

cum pXiph ` wq, Xjpwq, Xiph
1
q, Xjp0qq

ˇ

ˇ

ˇ

ˇ

ˇ

ďc
∆d

n

|Tn|
sup

h1Pδn¨Zd

δ2dn
ÿ

wPδn¨Zd

ÿ

hPδn¨Zd

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPI

ÿ

jPI

cum pXiph ` wq, Xjpwq, Xiph
1
q, Xjp0qq

ˇ

ˇ

ˇ

ˇ

ˇ

“ O
ˆ

∆d
n

|Tn|

˙

,

where we used that δdn
ř

h1P∆n¨SKXδn¨Zd 1 “ Op|∆n|dq, the fact that δdn
ř

sPTnXTn
“

Op|Tn|q, and Assumption V1. This completes the proof.

Proof of Theorem IV.17: As indicated, by following the proof of Proposition

IV.35, we see that the variance bound Op∆d
n{|Tn|q is uniform in f P PDpβ, Lq. There-

fore, to prove (4.34), by Relation (4.30) in Theorem IV.16, it is enough to bound

terms B1p∆nq and B2p∆nq, uniformly in f P PDpβ, Lq. LetMk and mk be the radii of

the smallest ball that contains SK and the largest ball contained in SK respectively.

Starting with term B2 we have,

sup
fPPDpβ,Lq

B2p∆nq ď
ÿ

}h}2ě∆nmk

sup
fPPDpβ,Lq

}Cphq}HS}h}
β
2}h}

´β
2

ď p∆nmkq
´β

ÿ

}h}2ě∆nmk

sup
fPPDpβ,Lq

}Cphq}HS}h}
β
2

ď p∆nmkq
´β

¨ L “ Op∆´β
n q,

in view of (4.32). Recalling that Kp0q “ 1, we have that for λ ` 1 ą β,

sup
fPPDpβ,Lq

B1p∆nq ď
ÿ

0ă}h}2ď∆nMK

sup
fPPDpβ,Lq

}Cphq}HS

„

1 ´ K

ˆ

h

∆n

˙ȷ

ď c̃
ÿ

0ă}h}2ď∆nMK

sup
fPPDpβ,Lq

}Cphq}HS

}h}
λ`1
2

∆λ`1
n
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ď c̃∆´β
n Mλ`1´β

K

ÿ

0ă}h}2ď∆nMK

sup
fPPDpβ,Lq

}Cphq}HS }h}
β
2 “ Op∆´β

n q,

where the second inequality follows from the multivariate Taylor Theorem since (4.33)

holds. Indeed, under this condition and using that Kp0q “ 1, we obtain

K

ˆ

h

∆n

˙

“ 1 ` R0,λ

ˆ

h

∆n

˙

,

where |R0,λphq| ď L1

pλ`1q!
}h}

λ`1
2 .

Collecting the bounds for B1p∆nq and B2p∆nq, we obtain that the bias is of order

Op∆β
nq, uniformly over the class PDpβ, Lq. Now, by Theorem IV.16, the variance is

of order Op∆d
n{|Tn|q and picking ∆n “ |Tn|1{p2β`dq, we obtain the rate-optimal bound

in (4.35).

Proof of Theorem IV.18. In view of Theorem IV.27, one only needs to bound

the terms B1p∆nq and B2p∆nq appropriately. Starting with term B2, if mK denotes

the radius of the largest ball contained in SK , we have

B2p∆nq ď

ż

xR∆n¨SK

}Cpxq}HSdx

ď p∆n ¨ mKq
´β

¨

ż

}x}ą∆n¨mK

}x}
β
2 ¨ }Cpxq}HSdx

ď p∆n ¨ mKq
´β

¨ L “ Op∆´β
n q.

Next, recall that

B1p∆nq –

›

›

›

›

ż

hP∆n¨SK

e´ihJθCphq

ˆ

1 ´ K

ˆ

h

∆n

˙˙

dh

›

›

›

›

HS

.
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Since Kp0q “ 1 and (4.33) holds, by the Taylor theorem, we have that

K

ˆ

h

∆n

˙

“ 1 ` R0,λ

ˆ

h

∆n

˙

,

where |R0,λphq| ď L1

pλ`1q!
}h}

λ`1
2 . Thus, with MK denoting the radius of the smallest

ball centered at the origin that contains SK , the term B1 is bounded by

B1p∆nq ď
L1

pλ ` 1q!

ż

hP∆n¨SK

}Cphq}HS

´

}h}2

∆n

¯λ`1

dh

ď
L1 ¨ pMK ¨ ∆nqλ`1´β

pλ ` 1q! ¨ ∆λ`1
n

ż

hP∆n¨SK

}Cphq}HS}h}
β
2dh “ Op∆´β

n q,

since λ ` 1 ą β and in view of (4.36).

Collecting the bounds for B1 and B2, we get B1p∆nq `B2p∆nq “ O
`

∆´β
n

˘

. Now,

the optimal choice of ∆n is the one which balances the last bound with the rate of

the variance, that is, ∆d
n{|Tn| „ ∆´2β

n . This is achieved with

∆n – |Tn|
1{p2β`dq

” pnδnq
d{p2β`dq,

which upon substitution yields the rate δγn _∆´β
n “ δγn _ pnδnq´βd{p2β`dq in (4.37).

Proof of Theorem IV.21: Following the proof of Theorem IV.17, we only need

bound the terms B1p∆nq and B2p∆nq (in Theorem IV.16) uniformly in f P EPDpη, Lq.

Let Mk and mk be the radii of the smallest ball that contains SK and the largest ball

contained in SK respectively. Starting with term B2 we have,

sup
fPEPDpη,Lq

B2p∆nq ď
ÿ

}h}2ě∆nmk

sup
fPEPDpη,Lq

}Cphq}HS

ď
ÿ

}h}2ě∆nmk

sup
fPEPDpη,Lq

L ¨ e´}h}
η
2

ď L ¨

ż

}h}2ěp∆n´1qmk

e´}h}
η
2dh,
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where using hyperspherical coordinates, we obtain that

sup
fPEPDpη,Lq

B2p∆nq ď L ¨
πd{2

Γpd{2 ` 1q
¨
1

η
¨ Γ

ˆ

d

η
, rmkp∆n ´ 1qs

η

˙

,

with Γps, xq being the upper incomplete Gamma function. Now, for term B1p∆nq,

sup
fPEPDpη,Lq

B1p∆nq “ sup
fPEPDpη,Lq

›

›

›

›

›

›

ÿ

hP∆nSKXZd

eih
JθCphq

ˆ

1 ´ K

ˆ

h

∆n

˙˙

›

›

›

›

›

›

HS

ď sup
fPEPDpη,Lq

ÿ

hP∆nSKXZd

}Cphq}HS

ˇ

ˇ

ˇ

ˇ

1 ´ K

ˆ

h

∆n

˙
ˇ

ˇ

ˇ

ˇ

ď sup
fPEPDpη,Lq

´

ÿ

}h}2ďα

}Cp0q}HS

ˇ

ˇ

ˇ

ˇ

1 ´ K

ˆ

h

∆n

˙ˇ

ˇ

ˇ

ˇ

`
ÿ

αď}h}2ď∆nMk

L ¨ e´}h}
η
2

ˇ

ˇ

ˇ

ˇ

1 ´ K

ˆ

h

∆n

˙ˇ

ˇ

ˇ

ˇ

¯

ď L ¨
ÿ

}h}2ďα

ˇ

ˇ

ˇ

ˇ

1 ´ K

ˆ

h

∆n

˙
ˇ

ˇ

ˇ

ˇ

` L ¨
ÿ

αď}h}2ď∆nMk

e´}h}
η
2

ˇ

ˇ

ˇ

ˇ

1 ´ K

ˆ

h

∆n

˙
ˇ

ˇ

ˇ

ˇ

,

for some positive fixed constant 0 ă α ă 1. Recalling that Kp0q “ 1 and since we are

using a kernel satisfying Condition (4.40), there is a positive constant rcK ą 0 such

that

sup
fPEPDpη,Lq

B1p∆nq ď rcK ¨ L ¨
ÿ

}h}2ďα

e
´

∆n
}h}2 ` rcK ¨ L ¨

ÿ

αď}h}2ď∆nMk

e´}h}
η
2e

´
∆n

}h}2

ď rcK ¨ L ¨

ż

}h}2ďα

e
´

∆n
}h}2 dh ` rcK ¨ L ¨

ż

αď}h}2ď∆nMk

e
´}h}

η
2´

∆n
}h}2 dh

ď πd´1
¨ L ¨ rcK ¨

«

∆d
n ¨ Γ

ˆ

´d,
∆n

α

˙

`

ż ∆n¨MK

r“α

rd´1e´rη´
∆n
r dr

ff

,

where we used hyperspherical coordinates in the last integral. We only need to bound

the remaining integral of the upper bound. We discern cases for η. Let η ą d and
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X „ Expp1q. We split the integral in two regions. We have,

ż 1

r“α

rd´1e´rη´
∆n
r dr ď

ż 1

r“α

rd´1e´
∆n
r dr “ ∆d

n

„

Γ p´d,∆nq ´ Γ

ˆ

´d,
∆n

α

˙ȷ

.

Also, for υ “ η{pη ` 1q

ż ∆n¨MK

r“1

rd´1e´rη´
∆n
r dr “

ż p∆n¨MKqη

x“1

1

η
x

d
η

´1e
´x´

∆n

x1{η dx ď

ż p∆n¨MKqη

x“1

1

η
e

´x´
∆n

x1{η dx

ď

ż ∆υ
n

x“1

1

η
e

´x´
∆n

x1{η dx `

ż p∆n¨MKqη

x“∆υ
n

1

η
e

´x´
∆n

x1{η dx

ď
1

η
e´∆

1´ υ
η

n PrX ď ∆υ
ns `

1

η

ż p∆n¨MKqη

x“∆υ
n

e´xdx

ď
1

η
e´∆

1´ υ
η

n PrX ď ∆υ
ns `

1

η

”

e´∆υ
n ´ e´p∆n¨MKqη

ı

“ O
ˆ

e´∆
η

η`1
n

˙

.

Consider now 0 ă η ď d. Then, we have that

ż ∆n¨MK

r“α

rd´1e´rη´
∆n
r dr “

ż p∆n¨MKqη

x“αη

1

η
x

d
η

´1e
´x´

∆n

x1{η dx ď
1

η
E
”

X
d
η

´1e
´

∆n

X1{η

ı

ď
1

η
∆

υ¨p d
η

´1q
n e´∆

1´ υ
η

n PrX ď ∆υ
ns `

1

η
E
”

X
d
η

´1
1pX ě ∆υ

n

ı

ď
1

η
∆

υ¨p d
η

´1q
n e´∆

1´ υ
η

n `
1

η

ż 8

x“∆υ
n

x
d
η

´1e´xdx

“
1

η
∆

υ¨p d
η

´1q
n e´∆

1´ υ
η

n `
1

η
¨ Γ

ˆ

d

η
,∆υ

n

˙

„
1

η
∆

υ¨p d
η

´1q
n e´∆

1´ υ
η

n `
1

η
p∆υ

nq
d
η

´1e´∆υ
n

The asymptotic relationship

Γps, xq

xs´1e´x
Ñ 1, as x Ñ 8,
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entails that

B1p∆nq ` B2p∆nq “ O
ˆ

∆
rd´ηs`
η`1

n e´∆
η

η`1
n ` ∆d´η

n e´pmK∆nqη

˙

“ O
ˆ

∆
rd´ηs`
η`1

n e´∆
η

η`1
n

˙

,

and the proof is complete.

4.8.3 Basis Independence of Second-order Stationarity

In this section, we demonstrate that the definition of second-order stationarity for

a process in H (recall Definition IV.1) is independent of the CONS under considera-

tion. Namely, we show that whether Cpt, sq and Čpt, sq, as defined in (4.2) and (4.4)

respectively, are a function of the lag t ´ s, is independent of the basis we consider.

Let H be a complex Hilbert space and tei, i “ 1, 2, . . .u, tfj, j “ 1, 2, . . .u be two

CONS of H. Using teiu we create the “real” Hilbert space

HR – th “
ÿ

hiei, hi P R,
ÿ

h2i ă 8u.

Thus, teiu consists a “real” basis of the space

H “ HR ` iHR.

In this setting, we can express the CONS tfju as

fj “
ÿ

i

rRepxfj, eiyq ` iImpxfj, eiyqs ei

“
ÿ

i

“

fR
j,i ` if I

j,i

‰

ei,
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where fR
j,i, f

I
j,i P R. We also have that

Xptq “
ÿ

i

rRepxXptq, eiyq ` iImpxXptq, eiyqs ei

“
ÿ

j

rRepxXptq, fjyq ` iImpxXptq, fjyqs fj.

Now,

xXptq, fjy “ xXptq,
ÿ

i

“

fR
j,i ` if I

j,i

‰

eiy “
ÿ

i

“

fR
j,i ´ if I

j,i

‰

xXptq, eiy

“
ÿ

i

“

fR
j,i ´ if I

j,i

‰

rRepxXptq, eiyq ` iImpxXptq, eiyqs

“
ÿ

i

fR
j,iRepxXptq, eiyq ` f I

j,iImpxXptq, eiyq

` i
“

fR
j,iImpxXptq, eiyq ´ f I

j,iRepxXptq, eiyq
‰

.

So,

RepxXptq, fjyq “
ÿ

i

“

fR
j,iRepxXptq, eiyq ` f I

j,iImpxXptq, eiyq
‰

ImpxXptq, fjyq “
ÿ

i

“

´f I
j,iRepxXptq, eiyq ` fR

j,iImpxXptq, eiyq
‰

.

Let

aei “ pei, 0q bei “ p0, eiq

afj “ pfj, 0q bfj “ p0, fjq

and we have that

Y ptq “
ÿ

i

RepxXptq, eiyqaei `
ÿ

i

ImpxXptq, eiyqbei .
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Thus,

C
peq

Y ptq “ EY ptq b Y p0q

“ E

˜

ÿ

k

RepxXptq, ekyqaek `
ÿ

k

ImpxXptq, ekyqbek

¸

b

˜

ÿ

ℓ

RepxXp0q, eℓyqaeℓ `
ÿ

ℓ

ImpxXp0q, eℓyqbeℓ

¸

“ E

«

ÿ

k,ℓ

RepxXptq, ekyqRepxXp0q, eℓyqaek b aeℓ

`
ÿ

k,ℓ

RepxXptq, ekyqImpxXp0q, eℓyqaek b beℓ

`
ÿ

k,ℓ

ImpxXptq, ekyqRepxXp0q, eℓyqbek b aeℓ

`
ÿ

k,ℓ

ImpxXptq, ekyqImpxXp0q, eℓyqbek b beℓ

ff

.

Using the CONS tfju, we similarly have that

C
pfq

Y ptq “ E

«

ÿ

k,ℓ

RepxXptq, fkyqRepxXp0q, fℓyqafk b afℓ

`
ÿ

k,ℓ

RepxXptq, fkyqImpxXp0q, fℓyqafk b bfℓ

`
ÿ

k,ℓ

ImpxXptq, fkyqRepxXp0q, fℓyqbfk b afℓ

`
ÿ

k,ℓ

ImpxXptq, fkyqImpxXp0q, fℓyqbfk b bfℓ

ff

.

For the coordinates, we have

RepxXptq, fkyqRepxXp0q, fℓyq “
ÿ

i,j

fR
k,if

R
ℓ,jRepxXptq, eiyqRepxXp0q, ejyq

`
ÿ

i,j

fR
k,if

I
ℓ,jRepxXptq, eiyqImpxXp0q, ejyq
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`
ÿ

i,j

f I
k,if

R
ℓ,jImpxXptq, eiyqRepxXp0q, ejyq

`
ÿ

i,j

f I
k,if

I
ℓ,jImpxXptq, eiyqImpxXp0q, ejyq

RepxXptq, fkyqImpxXp0q, fℓyq “ ´
ÿ

i,j

fR
k,if

I
ℓ,jRepxXptq, eiyqRepxXp0q, ejyq

`
ÿ

i,j

fR
k,if

R
ℓ,jRepxXptq, eiyqImpxXp0q, ejyq

´
ÿ

i,j

f I
k,if

I
ℓ,jImpxXptq, eiyqRepxXp0q, ejyq

`
ÿ

i,j

f I
k,if

R
ℓ,jImpxXptq, eiyqImpxXp0q, ejyq

ImpxXptq, fkyqRepxXp0q, fℓyq “ ´
ÿ

i,j

f I
k,if

R
ℓ,jRepxXptq, eiyqRepxXp0q, ejyq

´
ÿ

i,j

fR
k,if

I
ℓ,jRepxXptq, eiyqImpxXp0q, ejyq

`
ÿ

i,j

fR
k,if

R
ℓ,jImpxXptq, eiyqRepxXp0q, ejyq

`
ÿ

i,j

fR
k,if

I
ℓ,jImpxXptq, eiyqImpxXp0q, ejyq

ImpxXptq, fkyqImpxXp0q, fℓyq “
ÿ

i,j

f I
k,if

I
ℓ,jRepxXptq, eiyqRepxXp0q, ejyq

´
ÿ

i,j

f I
k,if

R
ℓ,jRepxXptq, eiyqImpxXp0q, ejyq

´
ÿ

i,j

fR
k,if

I
ℓ,jImpxXptq, eiyqRepxXp0q, ejyq

`
ÿ

i,j

fR
k,if

R
ℓ,jImpxXptq, eiyqImpxXp0q, ejyq.

Let now

C
peq

1 ptq “

´

ERe pxXptq, eiyqRe pxXp0q, ejyq

¯

i,jPN

C
peq

2 ptq “

´

ERe pxXptq, eiyq Im pxXp0q, ejyq

¯

i,jPN

C
peq

3 ptq “

´

EIm pxXptq, eiyqRe pxXp0q, ejyq

¯

i,jPN
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C
peq

4 ptq “

´

EIm pxXptq, eiyq Im pxXp0q, ejyq

¯

i,jPN

and

fR
k “

´

fR
k,i

¯

iPN
, f I

k “

´

f I
k,i

¯

iPN

FR “ pfR
1 , f

R
2 , . . .q, FI “ pf I

1 , f
I
2 , . . .q

Denoting

rC
peq

Y ptq “

¨

˚

˝

C
peq

1 ptq C
peq

2 ptq

C
peq

3 ptq C
peq

4 ptq

˛

‹

‚

one can see that all the coordinates taken into account in the Hilbert-Schmidt norm

can be found in the matrix

¨

˚

˝

FJ
R FJ

I

´FJ
I FJ

R

˛

‹

‚

rC
peq

Y ptq

¨

˚

˝

FR ´FI

FI FR

˛

‹

‚

.

Thus, if C
peq

Y ptq (and of course C
peq

X ptq) depends only on the lag t, then the same

is true for C
pfq

Y ptq as well. Similarly, one can show that this holds for the pseudo-

covariance as well.

4.8.4 Proofs for Section 4.6

As in Section 4.6, Hn denotes the space spanned by tRpu, ¨q, u P Dnu and Πn is the

projection operator onto Hn. Although the following result is standard, we include it

here for the sake of completeness.

Proposition IV.36. Assume that the matrix Rn “ tRpun,i, un,jqu
mn
i,j“1 is invertible.

Let g P H and g “ pgpun,1q, . . . , gpun,mnqqJ. Then, the following hold.

(i) The projection g̃ “ Πng “
ř

i ciRpun,i, ¨q where c – pc1, . . . , cmnqJ “ R´1
n g,
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and g̃pun,iq “ gpun,iq for all un,i P Dn. Moreover, }g ´ g̃}
2
H “ }g}2H ´ gJR´1

n g.

(ii) |g̃puq ´ gpuq| ď }g}H infu1PDn

a

Rpu, uq ´ 2Rpu, u1q ` Rpu1, u1q.

Proof.

(i) By the property of projection,

g̃ “ argmin
hPHn

}g ´ h}H.

For h “
ř

i ciRpun,i, ¨q, the reproducing property entails

}g ´ h}
2
H “ }g}

2
H ´ 2cJg ` cJRnc,

from which we conclude the minimizer c is R´1
n g. It then follows that

g̃ – pg̃pun,1q, . . . , g̃pun,mnqq
J

“ Rnc “ g.

(ii) Applying again the fact that g ´ g̃ K Rpu1, ¨q for all u1 P Dn, we have for any

arbitrary u P E,

g̃puq ´ gpuq “ xg̃ ´ g,Rpu, ¨qyH “ xg̃ ´ g,Rpu, ¨q ´ Rpu1, ¨qyH, u
1

P Dn.

By (i) and the Cauchy-Schwarz inequality

|g̃puq ´ gpuq| ď }g}H inf
u1PDn

}Rpu, ¨q ´ Rpu1, ¨q}H,

where

}Rpu, ¨q ´ Rpu1, ¨q}
2
H “ Rpu, uq ´ 2Rpu, u1

q ` Rpu1, u1
q.
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Proof of Theorem IV.26: First,

}f̃pθq ´ fpθq}HS “ }ΠnfpθqΠn ´ fpθq}HS

ď }ΠnfpθqΠn ´ Πnfpθq}HS ` }Πnfpθq ´ fpθq}HS

ď }fpθqpΠn ´ Iq}HS ` }pΠn ´ Iqfpθq}HS

“ 2}pΠn ´ Iqfpθq}HS

“ 2

˜

8
ÿ

j“1

ν2j }pΠn ´ Iqϕj}
2
H

¸1{2

.

Next, we consider }pΠn ´ Iqg}2H “ }g̃ ´ g}2H for a function g P H with a Lipschitz

continuous derivative. The derivation of this depends little on the value of gp0q.

To simplify notation, let us make the simplification that the Sobolev space contains

functions g with gp0q “ 0. Thus, we take the kernel as Rps, tq “ s ^ t, i.e., the

covariance kernel of the standard Brownian motion. Then the matrix Rn in (4.46) is

indeed invertible. By Proposition IV.36,

}g̃ ´ g}
2
H “ }g}

2
H ´ gJR´1

n g (4.74)

where g “ pgpun,iqq
mn
i“1 contains the values of g at the un,i. It follows that Rn has the

Cholesky decomposition

Rn “ m´1
n LnL

J
n , (4.75)
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where Ln is a lower triangular matrix of 1’s and has inverse

L´1
n “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 ¨ ¨ ¨ 0 0

´1 1 0 ¨ ¨ ¨ 0 0

0 ´1 1 ¨ ¨ ¨ 0 0

...
...

...
. . .

...
...

0 0 0 ¨ ¨ ¨ 1 0

0 0 0 ¨ ¨ ¨ ´1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Indeed, by the independence and the stationarity of the increments of the standard

Brownian motion B, we have Z “
?
mnpL´1

n qJB, where B “

´

Bpi{mnq ´ Bppi ´

1q{mnq

¯mn

i“1
and Z „ N p0, Imnq is a standard Normal random vector. Since Rn “

ErBBJ
s, we obtain Imn “ mnpL´1

n qJRnL
´1
n , which yields (4.75). Thus,

gJR´1
n g “ mng

J
pL´1

n q
JL´1

n g “ mn

mn
ÿ

i“1

pgpi{mnq ´ gppi ´ 1q{mnqq
2, (4.76)

which is a Riemann approximation of }g}2H “
ş1

0
pg1ptqq2dt (recall gp0q “ 0). Since

|g1psq ´ g1ptq| ď C|s ´ t|, it follows from (4.74) and (4.76) that

}g̃ ´ g}
2
H ď Cm´1

n .

Indeed, by the mean value theorem, we have gpi{mnq ´ gppi ´ 1q{mnq “ g1pξn,iqm
´1
n ,

for some ξn,i P rpi ´ 1q{mn, i{mns, and hence

}g ´ rg}
2
H “

ż 1

0

pg1
ptqq

2dt ´
1

mn

mn
ÿ

i“1

pg1
pξn,iqq

2

ď

mn
ÿ

i“1

ż i{mn

pi´1q{mn

|g1
ptq ´ g1

pξn,iq| ¨ |g1
ptq ` g1

pξn,iq|dt

ď
C

mn

˜

ż 1

0

|g1
ptq|dt `

1

mn

mn
ÿ

i“1

|g1
pξn,iq|

¸

“ O
`

m´1
n

˘

,
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where in the last relation we used the fact that the Riemann sum converges to the

integral
ş1

0
|g1ptq|dt ă 8, as mn Ñ 8. Applying this bound and by the assumption

on the ϕj, we obtain

8
ÿ

j“1

ν2j }pΠn ´ Iqϕj}
2
H ď m´1

n

8
ÿ

j“1

Cjν
2
j .

This completes the proof.

4.8.5 Some properties of the trace norm

We collect some elementary facts of the trace norm in the following lemma.

Lemma IV.37. Let A be a trace class operator on the Hilbert space H. Then

(i) }A}tr “ supW:unitary |xA,WyHS|;

(ii)
ř

i |xAfi, giy| ď }A}tr for any CONS tfiu and tgiu;

(iii)
ř

i |xAei, eiy| ď }A}tr for any CONS teiu.

Proof. (i) Suppose A has the SVD

A “
ÿ

j

λjvj b wj, (4.77)

where λj ě 0 and tvju, twju are CONS of H. Then, we can write

A “

˜

ÿ

j

λjvj b vj

¸˜

ÿ

k

vk b wk

¸

— PU ,

which is a polar decomposition of A. It follows that

}A}tr “ tracepPq “ tracepAU˚
q “ xA,UyHS.
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Suppose W is unitary and has the SVD W “
ř

k ak b bk. Then

|xA,WyHS| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

k

xAbk,Wbky

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

ÿ

k

λjxpvj b wjqbk, aky

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

λj
ÿ

k

xvj, akyxbk, wjy

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

j

λj

by the Cauchy-Schwarz inequality.

(ii) By (4.77),

ÿ

i

|xAfi, giy| “
ÿ

i

|
ÿ

j

λjxvj, giyxwj, fiy|

ď
ÿ

j

λj
ÿ

i

|xvj, giyxwj, fiy|,

and the result again follows from the Cauchy-Schwarz inequality.

(iii) This is a special case of (ii) with fi “ gi.

4.8.6 Examples

In this section, we discuss several concrete examples that illustrate the breadth

and scope of the conditions imposed in various results in this thesis.

4.8.6.1 An example of the class PDpβ, Lq

We consider in this section with an example of a class of covariance structures,

where the rate of consistency nearly matches the optimal rate of PDpβ, Lq. This class

consists of regularly varying covariance structures, as follows.

165



Example IV.38. Consider d “ 1 and the scalar-valued case H “ C. Let

Cpkq “ |k|
´β´1Sp|h|q, β ą 0, k P Z

where S is a slowly varying function at infinity. It is not hard to see that the corre-

sponding spectral densities f P PDpβ ` ϵ, Lq for any ϵ ą 0, depending on the value of

L. Also, assume that the kernel function is of the form

Kphq “ r1 ´ |h|
λ`1

s`, h P R

for some λ ą 0. We work in the discrete time setting, so we are using the estimator

f̂npθq.

Thus, we have that

p2πqrfpθq ´ Ef̂npθqs “
ÿ

|k|ě∆n

eikθCpkq `
ÿ

|k|ă∆n

eikθCpkq

„

1 ´ K

ˆ

k

∆n

˙ȷ

Consider θ “ 0. Then, the previous expression is equal to

2
ÿ

kě∆n

k´β´1Spkq ` 2
ÿ

kă∆n

k´β´1Spkq ¨
kλ`1

∆λ`1
n

Using the fact that for p ą ´1,

ż x

α

tpSptqdt „ pp ` 1q
´1xp`1Spxq, as x Ñ 8

and for p ă ´1,
ż 8

x

tpSptqdt „ |p ` 1|
´1xp`1Spxq, as x Ñ 8
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we obtain that for 0 ă β ă mint1, λ ` 1u :

p2πqrfp0q ´ Ef̂np0qs „
∆´β

n Sp∆nq

β
`

∆´β
n Sp∆nq

λ ` 1 ´ β
“ O

`

∆´β
n ¨ Sp∆nq

˘

Also, for β ą 1, the same expression can be evaluated to be of the same order

O
`

∆´β
n ¨ Sp∆nq

˘

.

Compare this to the rate of Proposition IV.17 for 0 ă β ‰ 1.

We shift our interest now to the variance. At first, using T and ∆ in place of Tn

and ∆n respectively, we have

f̂np0q´Ef̂np0q “
1

2π
¨

T
ÿ

t“0

T
ÿ

s“0

K

ˆ

t ´ s

∆

˙

Xptq ¨ Xpsq ´ Cpt ´ sq

|T ´ pt ´ sq|

“
1

2π
¨

T
ÿ

v“0

∆
ÿ

h“´∆

K

ˆ

h

∆

˙

Xpv ` hq ¨ Xpvq ´ Cphq

|T ´ h|
¨ 1p0 ď h ` v ď T q,

by the change of variables h “ t ´ s, v “ s. Thus,

p2πq
2E

ˇ

ˇ

ˇ
f̂np0q ´ Ef̂np0q

ˇ

ˇ

ˇ

2

“

T
ÿ

v“0

T
ÿ

w“0

ÿ

|h|ď∆

ÿ

|h̃|ď∆

K

ˆ

h

∆

˙

K

˜

h̃

∆

¸

E
!

rXpv ` hq ¨ Xpvq ´ Cphqs

”

X
´

w ` h̃
¯

¨ Xpwq ´ C
´

h̃
¯ı)

|T ´ h|

ˇ

ˇ

ˇ
T ´ h̃

ˇ

ˇ

ˇ

¨ 1 p0 ď h ` v ď T q ¨ 1

´

0 ď h̃ ` w ď T
¯

After using Isserlis’ lemma for the expectation in the middle we finally obtain that

p2πq
2E

ˇ

ˇ

ˇ
f̂np0q ´ Ef̂np0q

ˇ

ˇ

ˇ

2

“
1

T 2
¨

T
ÿ

v“0

T
ÿ

w“0

ÿ

|h|ď∆

ÿ

|h̃|ď∆

K

ˆ

h

∆

˙

K

˜

h̃

∆

¸
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C
´

v ´ w ` h ´ h̃
¯

Cpv ´ wq ` Cpv ´ w ` hqC
´

w ´ v ` h̃
¯

|T ´ h|

ˇ

ˇ

ˇ
T ´ h̃

ˇ

ˇ

ˇ

¨ 1p0 ď h ` v ď T q ¨ 1

´

0 ď h̃ ` w ď T
¯

.

We have already shown that both of these terms are absolutely of the order O
`

∆
T

˘

.

Hence, showing asymptotic equivalence of just one of these integrals with a term of

order ∆{T is enough to show that the variance as a whole is of the same order. We

focus on the first summand and have with the change of variables x “ v ´ w, y “

w, z “ h ´ h̃, u “ h̃, that

T
ÿ

v“0

T
ÿ

w“0

ÿ

|h|ď∆

ÿ

|h̃|ď∆

K

ˆ

h

∆

˙

K

˜

h̃

∆

¸

C
´

v ´ w ` h ´ h̃
¯

Cpv ´ wq

|T ´ h|

ˇ

ˇ

ˇ
T ´ h̃

ˇ

ˇ

ˇ

¨ 1 p0 ď h ` v ď T q ¨ 1

´

0 ď h̃ ` w ď T
¯

“

T
ÿ

x“´T

2∆
ÿ

z“´2∆

Cpx ` zqCpzq ¨

∆^p∆´zq
ÿ

u“´∆_p´∆´zq

K
´z ` u

∆

¯

K
´ u

∆

¯

¨
|T ´ x|

|T ´ pz ` uq||T ´ u|

T^pT´xq
ÿ

y“0_p´xq

1px ` y ` z ` u P r0, T sq1pu ` y P r0, T sq.

Observing that

1

T

T^pT´xq
ÿ

y“0_p´xq

1px ` y ` z ` u P r0, T sq1pu ` y P r0, T sq ď 1 ´
|x|

T

1

2∆

∆^p∆´zq
ÿ

u“´∆_p´∆´zq

K
´z ` u

∆

¯

K
´ u

∆

¯

ď 1 ´
|z|

2∆

|T ´ x|

|T ´ pz ` uq||T ´ u|
ď

1

|T |

and the fact that ´T ď x ď T and ´2∆ ď z ď 2∆, we see that the aforementioned
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terms are bounded by 1. Also, by Assumption C1, we have that

T
ÿ

x“´T

2∆
ÿ

z“´2∆

Cpx ` zqCpzqdzdx ă 8.

Using the Dominated Convergence Theorem, we obtain that the quadruple summa-

tion, divided by 2∆{T converges to a constant. Thus, it is asymptotically equivalent

to ∆{T as desired.

This, for λ ` 1 ą β ą 0, leads to the consistency rate

O

˜
d

∆n

|Tn|
` ∆´β

n ¨ Sp∆nq

¸

.

Considering 0 ă β ‰ 1, we see that the optimal consistency rate in this case essentially

matches the one in Theorem IV.17.

Observe that the regular variation only played a role in establishing asymptotic

equivalence of the bias vanish rate. Indeed, for the rate of the variance, we only

needed the integrability of the Covariance operator and the regular variation was not

used. Also, recall that here the spectral density f P PDpβ ` ϵ, Lq. So the rate we

should be comparing to is

|Tn|
´

β`ϵ
2pβ`ϵq`1 .

4.8.6.2 Examples on Assumptions V and V1

We present some examples of non-trivial processes that satisfy the Assumptions V

and V1, so as to demonstrate that the assumptions are not vacuous. We first consider

an example that satisfies Assumption V.

Example IV.39. Consider the process

Xptq “ Zptq2 ´ 1,

169



where Z – tZptq, t P Rdu is a zero-mean, real-valued stationary Gaussian process with

standard normal marginals. Denote the stationary covariance of Z by CZp¨q which we

assume to satisfy
ş

uPRd supλPBp0,2δq |CZpλ ` uq|du ă 8, for some small enough δ ą 0.

This condition is quite mild and can be satisfied by covariances that are integrable

and sufficiently smooth in the tail. We verify that Assumption V holds for X. We

start by considering rXptq “ Zptq2. It follows that

(a) Er rXptqs “ 1

(b) Er rXpt1q rXpt2qs “ 1 ` 2CZpt1 ´ t2q
2

(c) Er rXpt1q rXpt2q rXpt3qs “ 15a22a
2
3 ` 3a22b

2
3 ` 3a22c

2
3 ` 3b22a

2
3 ` 3b22b

2
3 ` b22c

2
3 ` 6a3b3a2b2,

(d) Er rXpt1q rXpt2q rXpt3q rXpt4qs “ 105a22a
2
3a

2
4 ` 15a22a

2
3b

2
4 ` 15a22a

2
3c

2
4 ` 15a22a

2
3d

2
4

` 15a22b
2
3a

2
4 ` 9a22b

2
3b

2
4 ` 3a22b

2
3c

2
4 ` 3a22b

2
3d

2
4

` 15a22c
2
3a

2
4 ` 3a22c

2
3b

2
4 ` 9a22c

2
3c

2
4 ` 3a22c

2
3d

2
4

` 30a22a3b3a4b4 ` 30a22a3c3a4c4 ` 6a22b3c3b4c4

` 15b22a
2
3a

2
4 ` 9b22a

2
3b

2
4 ` 3b22a

2
3c

2
4 ` 3b22a

2
3d

2
4

` 9b22b
2
3a

2
4 ` 15b22b

2
3b

2
4 ` 3b22b

2
3c

2
4 ` 3b22b

2
3d

2
4

` 3b22c
2
3a

2
4 ` 3b22c

2
3b

2
4 ` 3b22c

2
3c

2
4 ` b22c

2
3d

2
4

` 36b22a3b3a4b4 ` 12b22a3c3a4c4 ` 12b22b3c3b4c4

` 60a2b2a
2
3a4b4 ` 36a2b2a4b4b

2
3 ` 12a2b2c

2
3a4b4

` 60a2b2a3b3a
2
4 ` 36a2b2a3b3b

2
4 ` 12a2b2a3b3c

2
4

` 12a2b2a3b3d
2
4 ` 24a2b2a3b3d

2
4 ` 24a2b2a3c3b4c4 ` 24a2b2b3c3a4c4,

where

a2 “ CZpt1 ´ t2q

a3 “ CZpt1 ´ t3q
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b2 “
a

1 ´ CZpt1 ´ t2q2

b3 “
CZpt2 ´ t3q ´ CZpt1 ´ t2q ¨ CZpt1 ´ t3q

a

1 ´ CZpt1 ´ t2q2

c3 “

d

1 ´ CZpt1 ´ t3q2 ´
rCZpt2 ´ t3q ´ CZpt1 ´ t2q ¨ CZpt1 ´ t3qs

2

1 ´ CZpt1 ´ t2q2

a4 “ CZpt1 ´ t4q

b4 “
CZpt2 ´ t4q ´ CZpt1 ´ t2qCZpt1 ´ t4q

a

1 ´ CZpt1 ´ t2q2

c4 “
CZpt3 ´ t4q ´ CZpt1 ´ t3qCZpt1 ´ t4q ´ b3b4

c3

d4 “

b

1 ´ a24 ´ b24 ´ c24.

After centering the process as Xptq “ rXptq ´ 1 and simplifying the aforementioned

expressions, we end up with the following moments:

(a) ErXptqs “ 0

(b) ErXpt1qXpt2qs “ 2CZpt1 ´ t2q
2

(c) ErXpt1qXpt2qXpt3qs “ 8CZpt1 ´ t2qCZpt1 ´ t3qCZpt2 ´ t3q,

(d) ErXpt1qXpt2qXpt3qXpt4qs “ 4CZpt1 ´ t2q
2CZpt3 ´ t4q

2

` 4CZpt1 ´ t3q
2CZpt2 ´ t4q

2
` 4CZpt1 ´ t4q

2CZpt2 ´ t3q
2

` 16CZpt1 ´ t3qCZpt1 ´ t4qCZpt2 ´ t3qCZpt2 ´ t4q

` 16CZpt1 ´ t2qCZpt1 ´ t4qCZpt2 ´ t3qCZpt3 ´ t4q

` 16CZpt1 ´ t2qCZpt1 ´ t3qCZpt2 ´ t4qCZpt3 ´ t4q .

Using (d) above, we obtain that

E|Xptq|
4

“ 60CZp0q
4

“ 60 ă 8,

showing that (a) of Condition V holds.
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By the definition of the cumulants in Definition VI.8 we obtain that

cumpXpt1q, Xpt2q, Xpt3q, Xpt4qq “ 16CZpt1 ´ t3qCZpt1 ´ t4qCZpt2 ´ t3qCZpt2 ´ t4q

` 16CZpt1 ´ t2qCZpt1 ´ t4qCZpt2 ´ t3qCZpt3 ´ t4q

` 16CZpt1 ´ t2qCZpt1 ´ t3qCZpt2 ´ t4qCZpt3 ´ t4q.

Then, Assumption V(b) is also satisfied, since

sup
wPRd

ż

uPRd

ż

vPRd

sup
λ1,λ2,λ3PBp0,δq

|cumpXpλ1 ` uq, Xpλ2 ` vq, Xpλ3 ` wq, Xp0qq|dvdu

ď 16 sup
wPRd

ż

uPRd

ż

vPRd

sup
λ1,λ2,λ3PBp0,δq

!

|CZpλ1 ´ λ3 ` u ´ wqCZpλ1 ` uqCZpλ2 ´ λ3 ` v ´ wqCZpλ2 ` vq|

` |CZpλ1 ´ λ2 ` u ´ vqCZpλ1 ` uqCZpλ2 ´ λ3 ` v ´ wqCZpλ3 ` wq|

` |CZpλ1 ´ λ2 ` u ´ vqCZpλ1 ´ λ3 ` u ´ wqCZpλ2 ` vqCZpλ3 ` wq|

)

dvdu

ď 16|CZp0q|
2

ż

uPRd

ż

vPRd

sup
λ1,λ2PBp0,δq

!

|CZpλ1 ` uqCZpλ2 ` vq|

` |CZpλ1 ´ λ2 ` u ´ vqCZpλ1 ` uq|

` |CZpλ1 ´ λ2 ` u ´ vqCZpλ2 ` vq|

)

dvdu

ď 48|CZp0q|
2

˜

ż

uPRd

sup
λPBp0,2δq

|CZpλ ` uq|du

¸2

ă 8.

Next, we present an example inspired by the linear processes in Proposition 4.1

of Panaretos and Tavakoli (2013). Assume that H is a separable (typically infinite-

dimensional) Hilbert space. Let ϵt, t P Z be iid random elements of H such that

E}ϵ0}
4 ă 8 and consider a sequence of bounded linear operators As : H Ñ H, s P Z.

Define

Xptq “
ÿ

sPZ

Asϵt´s, t P Z. (4.78)
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In the following lemma, we show that the real process Xptq is well defined under

a mild square-summability condition on the operator norms of the coefficients. To

this end, let L2pHq denote the Hilbert space of H-valued random elements equipped

with the inner product xA,ByL2 “ ExA,By for all H-valued random elements A and

B such that Er}A}2 ` }B}2s ă 8. The resulting norm in L2pHq will be denoted by

} ¨ }L2pHq.

Lemma IV.40. Assume that the operator norms of tAs, s P Zu are square summable,

namely that
ÿ

sPZ

}As}
2
op ă 8. (4.79)

Then, the series in (4.78) converges in } ¨ }L2pHq and the process tXptq, t P Zu defined.

Proof. Let Σϵ “ Erϵ0 b ϵ0s be the covariance operator of every ϵt, t P Z. We start by

defining

XpNq
ptq “

ÿ

|s|ďN

Asϵt´s and X´pNq
ptq “

ÿ

|s|ąN

Asϵt´s. (4.80)

We have that

ExXpNq
ptq, XpNq

ptqy “
ÿ

|s1|ďN

ÿ

|s2|ďN

ExAs1ϵt´s1 , As2ϵt´s2y

“
ÿ

|s|ďN

ExAsϵt´s, Asϵt´sy “
ÿ

|s|ďN

Exϵt´s, A
‹
sAsϵt´sy,

where the second equality follows by the independence of the ϵ’s. Let now teju be a

CONS of H that diagonalizes Σϵ. Then, we can express the ϵ’s as

ϵt´s “

8
ÿ

j“1

Zt´s,jej,

where Zs,j – xϵs, ejy, are independent in s because the ϵs’s are iid. Also, because of

the choice of teju as the eigenvectors of the covariance operator Σϵ, we have that for
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each fixed s, the Zs,j’s are uncorrelated in j:

E
“

Zs,iZs,j

‰

“ λi ¨ δi´j.

Using those, we obtain

E
@

XpNq
ptq, XpNq

ptq
D

“
ÿ

|s|ďN

E

C

ÿ

k

ekZt´s,k, A
‹
sAs

ÿ

ℓ

eℓZt´s,ℓ

G

“
ÿ

|s|ďN

ÿ

k

ÿ

ℓ

E
“

Zt´s,kZt´s,ℓ

‰

¨ xek, A
‹
sAseℓy

“
ÿ

|s|ďN

ÿ

k

λk ¨ xek, A
‹
sAseky ď

ÿ

k

λk
ÿ

|s|ďN

xek, A
‹
sAseky

ď trpΣϵq ¨
ÿ

|s|ďN

}A‹
sAs}op ď trpΣϵq ¨

ÿ

|s|ďN

}As}
2
op ă 8.

(4.81)

With a similar argument to (4.81), one has that for M ă N

E}XpNq
ptq ´ XpMq

ptq}
2

ď trpΣϵq
ÿ

Mă|s|ďN

}As}
2
op Ñ 0,

as N,M Ñ 8. This shows that the sequence tXpNqptquNPN is a Cauchy sequence

in the Hilbert space pL2pHq, x¨, ¨yL2q, where xA,ByL2 “ ExA,By for A,B random

elements of H. Thus, the limit of this sequence exists and

XpNq
ptq Ñ Xptq P L2

pHq,

which completes the proof.

Proposition IV.41. Let Xptq defined as in (4.78). Assume that tAs, s P Zu are

Hilbert-Schmidt operators with
ř

sPZ }As}HS ă 8. Moreover, letting Zs,j “ xϵs, ejy,
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where teju is a CONS diagonalizing Σϵ – Erϵ0 b ϵ0s, assume that

ÿ

ℓ1,ℓ2,ℓ3,ℓ4

cumpZ0,ℓ1 , Z0,ℓ2 , Z0,ℓ3 , Z0,ℓ4q
2

ď B ă 8.

Then, the process tXptq, t P Zu satisfies Assumption V1.

Proof. Recall that part paq of Assumption V1 entails the finite fourth moment of

}Xptq}.

Let XpNqptq and X´pNqptq be as defined in (4.80). Then, for every k P N such that

E}ϵt}
k ă 8, we have that

E
›

›X´pNq
ptq

›

›

k
ď

ÿ

|s1|,...,|sk|ąN

}As1}op . . . }Ask}opE p}ϵt´s1} . . . }ϵt´sk}q

ď
ÿ

|s1|,...,|sk|ąN

}As1}op . . . }Ask}opE
`

}ϵt´s1}
k
˘1{k

. . .E
`

}ϵt´sk}
k
˘1{k

“ E}ϵ0}
k

¨
ÿ

|s1|,...,|sk|ąN

}As1}op . . . }Ask}op

“ E}ϵ0}
k

¨

¨

˝

ÿ

|s|ąN

}As}op

˛

‚

k

Ñ 0, as N Ñ 8,

(4.82)

where the inequality in the second line follows from the generalized Hölder inequality

(cf. Theorem 11 of Hardy et al., 1952) and we used that }As}op ď }As}HS. Hence, we

have LkpHq-convergence of X
pNq

t to Xt, in the sense that

lim
NÑ8

´

E
›

›Xptq ´ XpNq
ptq

›

›

k

H

¯1{k

“ 0.

These previous calculations also show directly that E}Xt}
k ă 8. Specifically, for

k “ 4, part paq is proved.

Now, for part pbq, as in the proof of Lemma IV.40, letting teju be a CONS diag-

175



onalizing Σϵ “ Erϵ0 b ϵ0s, we write

As “
ÿ

i,j

aijpsqei b ej and ϵt´s “
ÿ

k

Zt´s,kek,

with Zs,k – xϵs, eky. Note that tei b eju is a CONS in the Hilbert space X of

Hilbert-Schmidt operators on H equipped with x¨, ¨yHS and the above expression for

As converges in } ¨ }HS. Let also

As,i¨ –
ÿ

j

aijpsqei b ej

Xiptq – xXptq, eiy “
ÿ

sPZ

ÿ

j

aijpsqZt´s,j “
ÿ

sPZ

As,i¨ϵt´s,

so that Xptq “
ř

iXiptqei. Recall the representation in Proposition VI.10 (see also

(4.20)). For notational simplicity suppose that the process Xptq is real relative to the

CONS teiu, i.e., all the Xiptq’s are real random variables.

We start by exploiting the multilinearity of the cumulants and the fact that ϵt’s

are iid. We have by Proposition VI.10 that cum pXpuq, Xpvq, Xpwq, Xp0qq equals:

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

ÿ

j

cum pXipuq, Xjpvq, Xipwq, Xjp0qq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

ÿ

j

cum

˜

ÿ

s1PZ

As1,i¨ϵu´s1 ,
ÿ

s2PZ

As2,j¨ϵv´s2 ,
ÿ

s3PZ

As3,i¨ϵw´s3 ,
ÿ

s4PZ

As4,j¨ϵ´s4

¸
ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

ÿ

j

cum

˜

ÿ

s1PZ

Au´s1,i¨ϵs1 ,
ÿ

s2PZ

Av´s2,j¨ϵs2 ,
ÿ

s3PZ

Aw´s3,i¨ϵs3 ,
ÿ

s4PZ

A´s4,j¨ϵs4

¸
ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

ÿ

j

ÿ

s1PZ

ÿ

s2PZ

ÿ

s3PZ

ÿ

s4PZ

cum pAu´s1,i¨ϵs1 , Av´s2,j¨ϵs2 , Aw´s3,i¨ϵs3 , A´s4,j¨ϵs4q

ˇ

ˇ

ˇ

ˇ

ˇ

(4.83)

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

ÿ

j

ÿ

sPZ

cum pAu´s,i¨ϵs, Av´s,j¨ϵs, Aw´s,i¨ϵs, A´s,j¨ϵsq

ˇ

ˇ

ˇ

ˇ

ˇ

, (4.84)

where (4.84) follows from the fact that ϵt’s are iid and (4.83) will be justified in the
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end of this proof.

Continuing, (4.84) is equal to

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

ÿ

j

ÿ

sPZ

ÿ

ℓ1,ℓ2,ℓ3,ℓ4

aiℓ1pu ´ sqajℓ2pv ´ sqaiℓ3pw ´ sqajℓ4p´sqcum pZs,ℓ1 , Zs,ℓ2 , Zs,ℓ3 , Zs,ℓ4q

ˇ

ˇ

ˇ

ˇ

ˇ

(4.85)

or, equivalently

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

ÿ

j

ÿ

sPZ

ÿ

ℓ1,ℓ2,ℓ3,ℓ4

aiℓ1pu ´ sqajℓ2pv ´ sqaiℓ3pw ´ sqajℓ4p´sqcum pZ0,ℓ1 , Z0,ℓ2 , Z0,ℓ3 , Z0,ℓ4q

ˇ

ˇ

ˇ

ˇ

ˇ

.

(4.86)

Changing the order of summation and applying the Cauchy-Schwarz inequality

over
ř

ℓ1,¨¨¨ ,ℓ4
, we have that (4.86) is bounded above by

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s

d

ÿ

ℓ1,¨¨¨ ,ℓ4

cumpZ0,ℓ1 , Z0,ℓ2 , Z0,ℓ3 , Z0,ℓ4q2

¨

d

ÿ

ℓ1,¨¨¨ ,ℓ4

´

ÿ

i,j

”

aiℓ1pu ´ sqajℓ2pv ´ sqaiℓ3pw ´ sqajℓ4p´sq
ı¯2

ˇ

ˇ

ˇ

ˇ

ˇ

ď B
ÿ

sPZ

«

ÿ

ℓ1,¨¨¨ ,ℓ4

´

ÿ

i

aiℓ1pu ´ sq2
¯´

ÿ

i

aiℓ3pw ´ sq2
¯

¨

´

ÿ

j

ajℓ2pv ´ sq2
¯´

ÿ

j

ajℓ4p´sq2
¯

ff1{2

,

“ B
ÿ

sPZ

}Au´s}HS}Av´s}HS}Aw´s}HS}A´s}HS,

where the above inequality follows by applying the Cauchy-Schwarz inequality twice –

once over
ř

i and once over
ř

j. The last relation follows from the fact that }At}
2
HS “

ř

ℓ,i aiℓptq
2.
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Thus, we finally obtain:

sup
wPZ

ÿ

uPZ

ÿ

vPZ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

ÿ

j

cum pXipuq, Xjpvq, Xipwq, Xjp0qq

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
wPZ

ÿ

uPZ

ÿ

vPZ

B
ÿ

sPZ

}Au´s}HS}Av´s}HS}Aw´s}HS}A´s}HS

ď B sup
wPZ

}Aw}HS ¨

˜

ÿ

sPZ

}Au´s}HS

¸3

ă 8.

Now, it only remains to justify the equality (4.83). We will use XpNqptq and

X´pNqptq again. The calculations in (4.82) imply again by the generalized Hölder

inequality and the Dominated Convergence Theorem that

E
”

lim
NÑ8

X
pNq

i puqX
pNq

j pvqX
pNq

i pwqX
pNq

j p0q

ı

“ lim
NÑ8

E
”

X
pNq

i puqX
pNq

j pvqX
pNq

i pwqX
pNq

j p0q

ı

.

To this end, we introduce some notation. For each pair m “ pm1,m2q P tpu, iq,

pv, jq, pw, iq, p0, jqu, we write XN
m for XN

m2
pm1q. For example, for m “ pu, iq we have

that X
pNq
m “ X

pNq

i puq. Thus, using the definition of cumulants, we obtain

cum pXipuq, Xjpvq, Xipwq, Xjp0qq

“
ÿ

ν“pν1,...,νqq

p´1q
q´1

pq ´ 1q!
q
ź

l“1

E

«

ź

mPνl

lim
NÑ8

XpNq
m

ff

“
ÿ

ν“pν1,...,νqq

p´1q
q´1

pq ´ 1q!
q
ź

l“1

E

«

lim
NÑ8

ź

mPνl

XpNq
m

ff

“ lim
NÑ8

ÿ

ν“pν1,...,νqq

p´1q
q´1

pq ´ 1q!
q
ź

l“1

E

«

ź

mPνl

XpNq
m

ff

“ lim
NÑ8

cum

˜

ÿ

|s1|ď|N |

As1,i¨ϵu´s1 ,
ÿ

|s2|ď|N |

As2,j¨ϵv´s2 ,

ÿ

|s3|ď|N |

As3,i¨ϵw´s3 ,
ÿ

|s4|ď|N |

As4,i¨ϵ´s4

¸
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“ lim
NÑ8

ÿ

|s1|,|s2|,|s3|,|s4|ď|N |

cum pAs1,i¨ϵu´s1 , As2,j¨ϵv´s2 , As3,i¨ϵw´s3 , As4,i¨ϵ´s4q

“
ÿ

|s1|,|s2|,|s3|,|s4|PZ

cum pAs1,i¨ϵu´s1 , As2,j¨ϵv´s2 , As3,i¨ϵw´s3 , As4,i¨ϵ´s4q ,

where the sum is over all unordered partitions of tpu, iq, pv, jq, pw, iq, p0, jqu. The proof

is complete.
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CHAPTER V

Minimax Rates

In this chapter we continue examining the setting of gridded data, where the grid

size either stays fixed or shrinks to zero as the sample size increases (cf Section 4.5).

Moreover, we focus our interest on PDpβ, Lq, a class of covariance functions that are

dominated by a power law as in (4.32). For this class of covariance functions, we

were able to obtain explicit rates (upper bounds) on the consistency of our proposed

lag-window estimator. By comparing with these carefully computed rates, we show

that our spectral density estimator is minimax rate optimal for spectral densities in

PDpβ, Lq. These minimax rate results, to the best of our knowledge, are the first to

be established for the pointwise inference of the spectral density of functional time

series or function-valued, continuous-time processes observed at discrete time points.

The ideas behind the proofs of these results are heavily influenced by Samarov (1977).

5.1 Minimax rates

The minimax rates for the spectral density estimation problem have received some

attention. A few examples of such studies for times series include Samarov (1977),

Bentkus (1985), and Efromovich (1998), among others. The continuous-time set-

ting, however, appears to have been less studied (see, e.g., Ginovyan, 2011, and the

references therein). To the best of our knowledge, results on minimax rates for the
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pointwise inference of the spectral density of functional time series or function-valued,

continuous-time processes observed at discrete time points have not yet been estab-

lished. Also, we are not aware of such results for random fields indexed by Zd or Rd,

d ą 1.

Assuming tXptqu is Gaussian, below we extend the work of Samarov (1977) by

focusing on the classes PDpβ, Lq and PCpβ, Lq considered in Section 4.5. As in Section

4.5, we assume the data are observed on a grid. Our first result is concerned with the

case δn “ 1, where, in accordance with Section 4.5.1, we consider a discrete parameter

process tXptq, t P Zdu.

Theorem V.1. Assume that tXptq, t P Zdu is a stationary Gaussian process with

spectral density function f . Let Mn be the class of all possible estimators fn of f based

on the observations Xptq, t P t1, . . . , nud. Then, for any interior point θ0 P p´π, πqd

and β, L ą 0,

lim inf
nÑ8

inf
fnPMn

sup
fPPDpβ,Lq

P
´

}fnpθ0q ´ fpθ0q}HS ě n´
dβ

2β`d

¯

ą 0, (5.1)

where PDpβ, Lq is defined in (4.32).

Remark V.2. Note that |Tn| “ nd for Tn “ t1, . . . , nud. Hence, by Theorem IV.17, the

estimator f̂npθ0q achieves the minimax rate |Tn|´β{p2β`dq “ n´pdβq{p2β`dq uniformly over

the class PDpβ, Lq. Thus, in the setting of processes indexed by Zd, our estimators

are rate-optimal in a uniform sense, for the power-law class and for all dimensions

d ě 1.

Proof of Theorem V.1 (Outline). The detailed proof of Theorem V.1 is given in Sec-

tion 5.2. We describe the key elements of the proof here. First, for any member ei

of the real CONS, consider the (scalar) real-valued process Xeiptq – xXptq, eiyH and

let Ceipxq and feipθq be its stationary covariance and spectral density, respective. If
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f P PDpβ, Lq then

ż

Rd

p1 ` }x}
β
2 q|Ceipxq|dx ď L and |f̂eipθ0q ´ feipθ0q| ď }f̂pθ0q ´ fpθ0q}HS.

These follow from the simple fact that |xAϕ, ϕyH| ď }A}op for any bounded linear

operator A and unitary ϕ P H. Thus, it suffices to prove Theorem V.1 by focusing on

scalar, real-valued processes. ϕ “ ei, the real basis. The crucial step of the proof is

constructing two functions f0,n, f1,n in PDpβ, Lq such that the distance between them

accurately measures the complexity of the estimation problem. Let

f0,npθq “ L{2 ¨ 1pθ P r´π, πs
d
q.

For θ “ pθiq
d
i“1 P Rd, define the function

gpθq “ ϵ ¨

d
ź

i“1

φpθiq, where φpxq “ exp

ˆ

´
1

1 ´ px{πq2

˙

1p|x| ă πq, x P R,

for some ϵ ą 0. Note that the so-called “bump” function g is compactly supported

and infinitely differentiable. Consider

gnpθq “ hβng

ˆ

θ ´ θ0
hn

˙

,

where hn “ M ¨ n´d{p2β`dq for some appropriate constant M . Now, let †

f1,npθq “ f0,npθq ` rgnpθq ` gnp´θqs.

Thus, the distance between f0,npθq and f1,npθq is gnpθq ` gnp´θq “ Opn´dβ{p2β`dqq.

We then apply Theorem 2.5(iii) in Tsybakov (2008) to obtain the desired result by

verifying the following:

(1) f0n, f1n P PDpβ, Lq;
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(2) f1npθ0q´f0npθ0q “ cθ0n
´dβ{p2β`dq for n large enough, where cθ0 “ Mβp1`1pθ0 “

0qq ą 0;

(3) supn KLpP1n,P0nq ă 8, where KL stands for the Kullback-Leibler divergence

and P0,n and P1,n are probability distributions under f0,n and f1,n respectively.

The most technically challenging part of the proof is the computation of KLpP1,n,P0,nq

in part (3), which is accomplished by following and extending an approach introduced

in Samarov (1977). For details, see Sections 5.2 and 5.3.

The next result gives the minimax rate for the continuous-parameter Gaussian

process whose spectral density belongs to PCpβ, Lq, defined in (4.36).

Theorem V.3. Let tXptq, t P Rdu be a stationary Gaussian process with spectral

density f . Let Mn be the class of all possible estimators fn of f based on the obser-

vations Xpkδnq, k P t1, . . . , nud. Then, for each θ0 P Rd and β, L ą 0,

lim inf
nÑ8

inf
fnPMn

sup
fPPCpβ,Lq

P
`

}fnpθ0q ´ fpθ0q}HS ě pnδnq
´dβ{p2β`dq

˘

ą 0, (5.2)

where PCpβ, Lq is defined in (4.36).

The proof of Theorem V.3 is similar to that of Theorem V.1 and is presented in

Section 5.3. We conclude this section with several remarks.

Remark V.4. Comparing the minimax lower bounds in (5.1) and (5.2), one can inter-

pret pnδnqd as the “effective” sample size in the case of mixed-domain asymptotics:

δn Ñ 0 and nδn Ñ 8.

1. Recall Remark IV.20 and observe that, in the fine sampling regime, the rate

of f̂npθq obtained in (4.37) matches the minimax lower bound in (5.2). To the

best of our knowledge, this is the first result on the minimax rate for spectral

density estimation in a mixed-domain setting.
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2. An open problem is the construction of a narrower class PC , which reflects both

the tail-decay of the auto-covariance (through β) and its smoothness (through

γ) so that the upper- and lower-bounds on the rate of the estimators match in

both the fine- and coarse-sampling regimes (cf. Remark IV.20).

5.2 Proof for discrete time

For any member ei of the real CONS, consider the (scalar) real-valued process

Xeiptq – xXptq, eiyH

and let Ceipxq and feipθq be its stationary covariance and spectral density, respectively.

If f P PDpβ, Lq then

ż

Rd

p1 ` }x}
β
2 q|Ceipxq|dx ď L and |f̂eipθ0q ´ feipθ0q| ď }f̂pθ0q ´ fpθ0q}HS.

These follow from the simple fact that |xAϕ, ϕyH| ď }A}op for any bounded linear

operator A and unitary ϕ P H. Thus, it suffices to prove Theorems V.1 and V.3 for

scalar, real-valued processes, which we do below.

Proof of Theorem V.1. Let } ¨ } denote the Euclidean norm in Rd and Cg be the

covariance that corresponds to the spectral density g. Fix an interior point θ0 P

p´π, πqd and let f0,npθq “ L{p2 ¨ p2πqdq ¨ 1pθ P r´π, πsdq. Then,

Cf0,npkq “

ż

θPr´π,πsd

e´iθJk L

2 ¨ p2πqd
dθ “ 1pk “ 0qL{2, (5.3)

and therefore
ÿ

kPZ2

|Cf0,npkq|p1 ` }k}
β
q “ Cf0,np0q “ L{2 ă L. (5.4)
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Let for θ “ pθiq
d
i“1 P Rd,

gpθq “ ϵ ¨

d
ź

i“1

φpθiq, where φpxq “ exp

ˆ

´
1

1 ´ px{πq2

˙

1p|x| ă πq, px P Rq (5.5)

for some ϵ ą 0, which is to be determined. The function φ is a type of a “bump”

function that belongs to C8
0 pRq (the class of infinitely differentiable functions with

compact support). The support of φ is the compact interval r´π, πs. Hence g P

C8
0 pRdq and its support is r´π, πsd. Consider the function

gnpθq “ hβng

ˆ

θ ´ θ0
hn

˙

, (5.6)

where 0 ă hn ď 1 and tends to 0 at a rate to be determined later. Observe that since

θ0 P p´π, πqd, the support of gn is included in θ0 ` hn ¨ r´π, πsd Ă p´π, πqd, for all

sufficiently small hn.

Now, consider the “alternative” spectral density models:

f1,npθq “ f0,npθq ` rgnpθq ` gnp´θqs —
L

2
¨ 1p´π,πqdpθq ` rnpθq, θ P r´π, πs

d.

We will choose the sequence hn and the constant ϵ ą 0 such that the following three

properties hold.

Properties:

(1) f0,n, f1,n P PDpβ, Lq, where the class PDpβ, Lq is defined in (4.32).

(2) For all n large enough, we have

f1,npθ0q ´ f0,npθ0q “ hβnrgp0q ` gp2θ0{hnqs “ gp0qp1 ` 1pθ0 “ 0qq ¨ hβn. (5.7)

(3) KLpP1n,P0nq ď C ă 8, where KL stands for the Kullback-Leibler distance and

P0n and P1n are probability distributions of the data tXpkq, k P t1, ¨ ¨ ¨ , nudu
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under f0,n and f1,n respectively.

Proof of Property (1). We have already shown that f0,n P PDpβ, Lq. Recalling (4.32),

and in view of (5.3) and (5.4), to prove f1,n P PDpβ, Lq, it is enough to show that

ÿ

kPZd

|Cgnpkq|p1 ` }k}
β
q ă

L

4
, (5.8)

where Cgnpkq “
ş

θPr´π,πsd
e´iθJkgnpθqdθ.

We have that for all k “ pkiq
d
i“1 P Zd,

Cgnpkq “

ż

θPr´π,πsd

e´iθJkhβng

ˆ

θ ´ θ0
hn

˙

dθ

“ hβ`d
n ¨ e´iθJ

0 k

ż

xPr´π,πsd

e´ixJkhngpxqdx

“ ϵ ¨ hβ`d
n ¨ e´iθJ

0 k
d
ź

i“1

pφpkihnq,

(5.9)

where we used the change of variables x “ pθ ´ θ0q{hn and the fact that θ0 ` hn ¨

r´π, πsd Ă p´π, πqd, for all sufficiently small hn. The last relation follows from (5.5),

where pφpxq –
şπ

´π
e´ixuφpuqdu denotes the Fourier transform of the bump function

φ. Now using the fact that the derivatives of φ vanish at ˘π, i.e., φpℓqp˘πq “ 0, for

all ℓ “ 0, 1, . . ., integration by parts yields

pφpxq “
1

p´ixqℓ

ż π

´π

e´ixuφpℓq
puqdu, ℓ “ 0, 1, . . .

Indeed, for all ℓ, the derivative φpℓqpxq is continuous and supported on r´π, πs, and

thus

|pφpxq| ď c0 ^ p|x|
´ℓcℓq, where cℓ –

ż π

´π

|φpℓq
puq|du.
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In view of (5.9), we have

|Cgnpkq| ď ϵ ¨ hβ`d
n

d
ź

i“1

ˆ

c0 ^
cℓ

|kihn|ℓ

˙

. (5.10)

We will choose ℓ ě 2 and ϵ ą 0 to satisfy (5.8) for all sufficiently small hn. Notice

that }k}β ď dpβ´1q_0
řd

i“1 |ki|
β. Hence, (5.8) follows from

dpβ´1q_0
d
ÿ

i“1

ÿ

kPZd

|Cgnpkq|p1 ` |ki|
β
q “ dβ_1

ÿ

kPZd

|Cgnpkq|p1 ` |k1|
β
q ă

L

4
,

where k “ pkiq
d
i“1. Indeed, this follows from the observation that, by (5.9), we have

d
ÿ

i“1

ÿ

kPZd

|Cgnpk1, ¨ ¨ ¨ , kdq||ki|
β

“ d
ÿ

kPZd

|Cgnpk1, ¨ ¨ ¨ , kdq||k1|
β.

Thus, it suffices to show that

ÿ

kPZd

|Cgnpkq|p1 ` |k1|
β
q ď |Cgnp0q| ` 2

ÿ

k“pkiqdi“1PZd

|Cgnpkq||k1|
β

ď
L

4pdβ_1q
.

(5.11)

Since hn P p0, 1q, (5.10) readily implies that

|Cgnp0q| ď ϵ ¨ cd0.

187



Also, applying (5.10),

ÿ

k“pkiqdi“1PZd

|Cgnpkq||k1|
β

ď ϵ ¨
ÿ

kPZd

«

hβ`1
n |k1|

β

ˆ

c0 ^
cℓ

|k1hn|ℓ

˙

¨ hd´1
n

d
ź

i“2

ˆ

c0 ^
cℓ

|kihn|ℓ

˙

ff

“ ϵ ¨

«

hn ¨
ÿ

jPZ

|jhn|
β

ˆ

c0 ^
cℓ

|jhn|ℓ

˙

ff

ˆ

«

hn
ÿ

jPZ

ˆ

c0 ^
cℓ

|jhn|ℓ

˙

ffd´1

— ϵ ˆ An ˆ pBnq
d´1.

(5.12)

Observe that An and Bn are Riemann sums for the integrals

A –

ż

xPR
|x|

β

ˆ

c0 ^
cℓ

|x|ℓ

˙

dx and B –

ż

xPR

ˆ

c0 ^
cℓ

|x|ℓ

˙

dx,

which are clearly finite for ℓ ě tβu ` 2. Taking such a value of ℓ and using the fact

that An Ñ A and Bn Ñ B, as hn Ñ 0, we obtain that the right hand side of (5.12)

is bounded above by 2ϵ ˆ A ˆ Bd´1 for all sufficiently small hn. Therefore, we can

ensure that (5.11) holds by picking ϵ ą 0 such that

0 ă ϵ ¨

”

cd0 ` 4A ˆ Bd´1
ı

ď
L

4pdβ_1q
.

This shows that f1,n P PDpβ, Lq and completes the proof of Property (1).

Proof of Property (2). This is immediate. Relation (5.7) holds for all sufficiently

large n since gpθ0{hnq Ñ gp0q1pθ0 “ 0q, as hn Ñ 0, by the fact that g is supported

on r´π, πs.

Proof of Property (3). LetDn and Bn,ξ be the covariance matrices of the dataXptq, t P

t1, . . . , nud, that correspond to, respectively, the spectral densities rnpθq “ gnpθq `
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gnp´θq and f0,npθq ` ξrnpθq, for some ξ P r0, 1s. By Lemma V.6,

KLpP1n,P0nq ď
1

2
}Dn}

2
F}B´1

n,ξ}
2
op, (5.13)

where } ¨ }F is the Frobenius norm and } ¨ }op is the matrix operator norm induced

by the Euclidian vector norm. It follows from part (iii) of Lemma V.5 applied to

An – Dn that

1

nd
}Dn}

2
F ď p2πq

d

ż

θPr´π,πsd

r2npθqdθ.

Thus, recalling rnpθq “ gnpθq`gnp´θq, Relation (5.6), and using a change of variables,

we obtain:

1

nd
}Dn}

2
F ď p2πq

dh2β`d
n

"

4

ż

θPr´π,πsd

g2pθqdθ

*

“ 4 ¨ p2πq
d

¨ ϵ2h2β`d
n }φ}

2d
L2 , (5.14)

where we used (5.5). Applying (i) and (ii) of Lemma V.5, we obtain

}B´1
n,ξ}op ď

1

p2πqd
sup

θPr´π,πsd

rf0npθq ` ξrnpθqs
´1

ď
2

L
, (5.15)

since rnpθq ě 0 and f0npθq “ L{p2 ¨ p2πqdq, θ P r´π, πs. Combining (5.13) - (5.15),

KLpP1n,P0nq ď
1

2
}Dn}

2
F }B´1

n,ξ}
2
op ď

ˆ

8 ¨ p2πqdϵ2}g}2L2

L2

˙

ndh2β`d
n ,

which is bounded, if we set

hn “ M ¨ n´d{p2β`dq.

By picking M “ Mθ0 so that rgp0q ` gp0q1pθ0 “ 0qs ¨ Mβ “ 1, we have that for all

sufficiently large n,

|f1npθ0q ´ f0npθ0q| “ rgp0q ` gp0q1pθ0 “ 0qs ¨ Mβ
¨ n´

dβ
2β`d “ n´

dβ
2β`d ,
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which is a lower bound in the estimation error. The proof is complete by appealing

to Theorem 2.5(iii) of Tsybakov (2008).

5.3 Proof for continuous time

In this section, we present the proof of Theorem V.3. Recall that for this theorem

we are interested in processes whose spectral density belongs in PCpβ, Lq.

Proof of Theorem V.3. As argued in the proof of Theorem V.1, it suffices to fo-

cus on the case of scalar-valued processes tXptq, t P Rdu. As for the discrete-time

case, we will introduce two models with spectral densities f0,npθq and f1,npθq, and

corresponding auto-covariances C0,nptq and C1,nptq. Consider the function:

f0,npθq – ϵ ¨

d
ź

i“1

ϕpδnθiq, θ “ pθiq
d
i“1 P Rd, (5.16)

where ϕpzq “ e´z2{2{
?
2π, z P R is the standard Normal density.

With a straightforward change of variables, we obtain:

C0,npxq “

ż

Rd

e´ixJθf0,npθqdθ “ ϵp2πq
d{2

¨ δ´d
n

d
ź

i“1

ϕpxi{δnq, (5.17)

where we used the fact that
ş

R e
´ixuϕpuqdu “

?
2πϕpxq.

As in the time-series setting, let

f1,npθq “ f0,npθq ` hβn

„

g

ˆ

θ ´ θ0
hn

˙

` g

ˆ

θ ` θ0
hn

˙ȷ

, (5.18)

where g is as in (5.5). Following the proof of Theorem V.1, we will verify the following.

Properties:

(1) f0,n, f1,n P PCpβ, Lq, where the class PCpβ, Lq is defined in (4.36).
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(2) The functions f0,n and f1,n satisfy Relation (5.7).

(3) The KL-divergence is bounded, i.e., supnKLpP1n,P0nq ă 8, where Pi,n are

the probability distributions of the data tXpδnkq, k P t1, ¨ ¨ ¨ , nudu under the

models fi,n, i “ 0, 1.

Property (2) above is immediate by definition since the difference f0,npθq ´ f1,npθq

is constructed as in the proof of Theorem V.1.

Proof of Property (1): The fact that f0,n P PCpβ, Lq is straightforward. Indeed,

by (5.17), we have

ż

Rd

p1 ` }x}
β
q|C0,npxq|dx ďc ϵ ¨ δ´d

n

ż

Rd

p1 ` }x}
β
qe´}x}2{2δ2ndx

“ ϵ

ż

Rd

p1 ` }δn ¨ u}
β
qe´}u}2{2du ď ϵ

ż

Rd

p1 ` }u}
β
qe´}u}2{2du ď L{2,

(5.19)

for all δn P p0, 1q and for a sufficiently small ϵ ą 0. This follows from the fact that

with δn P p0, 1q, we have }δnu}β ď }u}β and the fact that
ş

Rdp1` }u}βqe´}u}2{2du ă 8.

This ensures that (4.36) holds with C replaced by C0,n and L by L{2. That is,

f0,n P PCpβ, Lq.

Now, we show that f1,n defined in (5.18) belongs to PCpβ, Lq, by perhaps lowering

the value of ϵ ą 0. Let

Cgnpxq –

ż

Rd

e´iθJxgnpθqdθ,

where gn is as in (5.6). As argued in the proof of Theorem V.1, in view of (5.19), it

suffices to show that
ż

Rd

`

1 ` }x}
β
˘

|Cgnpxq|dx ď
L

4
. (5.20)

Note that Relation (5.10) remains valid if k P Zd therein is replaced with x P Rd.
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Therefore, (5.20) follows by picking a possibly smaller value of ϵ ą 0, provided

hβ`d
n

ż

Rd

`

1 ` }x}
β
˘

d
ź

i“1

ˆ

c0 ^
cℓ

|hnxi|ℓi

˙

dx ă 8,

for some ℓ P N, i “ 1, ¨ ¨ ¨ , d. Notice that for hn P p0, 1s, we have hβnp1 ` }x}βq ď

`

1 ` }hnx}β
˘

, and hence the last integral is bounded above by

hdn

ż

Rd

`

1 ` }hnx}
β
˘

d
ź

i“1

ˆ

c0 ^
cℓ

|hnxi|ℓ

˙

dx “

ż

Rd

`

1 ` }u}
β
˘

d
ź

i“1

ˆ

c0 ^
cℓ

|ui|ℓ

˙

du,

where we used the change of variables u – hnx. Clearly, the last integral is finite

provided ℓ ě tβu ` 2. This implies that (5.20) holds with a suitably chosen ϵ ą 0,

showing that f1,n P PCpβ, Lq and completing the proof of Property (2).

Proof of Property (3): Now, as in the proof of Theorem V.1 we will bound the KL-

divergence KLpP1,n,P0,nq, where Pi,n is the law of the Gaussian vector tXipδnkq, k P

t1, ¨ ¨ ¨ , nudu under the model fi,n, i “ 0, 1.

Observe that the Zd-indexed stationary process tXipδnkq, k P Zdu has the so-called

folded spectral density

rfi,hpθq – δ´d
n

ÿ

ℓPZd

fi,n

ˆ

θ ` 2πℓ

δn

˙

, θ P r´π, πs
d, i “ 0, 1. (5.21)

We shall apply the same argument as in the proof of Theorem V.1 based on Samarov’s

Lemmas V.6 and V.5 applied to the folded spectral densities.

For ξ P r0, 1s, let Dn and Bn,ξ be the covariance matrices of zero-mean Gaussian

vectors having spectral densities rrnpθq – rf1,npθq ´ rf0,npθq and rf0,npθq ` ξrrnpθq, θ P

r´π, πsd, respectively, where

rrnpθq “ hβnδ
´d
n

ÿ

ℓPZd

„

g

ˆ

θ ` 2πℓ

hnδn
´
θ0
hn

˙

` g

ˆ

θ ` 2πℓ

hnδn
`
θ0
hn

˙ȷ

.
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Then, by Lemma V.6, we have

KLpP1,n,P0,nq ď
1

2
}Dn}

2
F}B´1

n,ξ}
2
op, (5.22)

for some ξ P r0, 1s. As in (5.14) from Lemma V.5(iii) applied to An – Dn, we obtain

}Dn}
2
F ď p2πq

d
¨ nd

ż

r´π,πsd

rrnpθq
2dθ

ď 4 ¨ p2πq
d

¨ ndh2βn δ
´2d
n

ż

r´π,πsd

ÿ

ℓPZd

g

ˆ

θ ` 2πℓ

hnδn
´
θ0
hn

˙2

dθ

“ 4 ¨ p2πq
d

¨ ndh2βn δ
´d
n

ż

Rd

g

ˆ

u

hn
´
θ0
hn

˙2

du

“ 4 ¨ p2πq
d

¨ ndh2β`d
n δ´d

n }g2}
2
L2 “ 4ϵ ¨ p2πq

d
¨ ndh2β`d

n δ´d
n }φ}

2d
L2 ,

(5.23)

where in the last two integrals we made changes of variables, and the last relation

follows from the definition of g in (5.5).

Now, we deal with bounding }B´1
n,ξ}op. Notice that Bn,ξ is the covariance matrix

of a Gaussian vector tXξpδnkq, k P t1, ¨ ¨ ¨ , nudu coming from a stationary process

Y pkq “ Xξpδnkq, k P Zd with spectral density rf0,npθq ` ξrrnpθq, θ P r´π, πsd, where

rrnpθq ě 0 and ξ P r0, 1s. By Lemma V.5(ii), we then have that

}B´1
n,ξ}op} ď sup

θPr´π,πsd

”

rf0npθq ` ξrrnpθq

ı´1

ď sup
θPr´π,πsd

”

rf0npθq

ı´1

.

Recalling the definition of f0,n in (5.16) and the folded spectral density in (5.21), we

obtain rf0,npθq ě ϵδ´d
n

śd
i“1 ϕpθiq ě ϵδ´d

n e´dπ2{2{p2πqd{2 for θ P r´π, πsd. Hence

}B´1
n,ξ}op ď

1

p2πqd
sup

θPr´π,πsd

”

rf0npθq

ı´1

ď
edπ

2{2

p2πqd{2 ¨ ϵ
¨ δdn (5.24)

Finally, by (5.22), (5.23), and (5.24),

KLpP1n,P0nq ď
1

2
}Dn}

2
F}B´1

n,ξ}
2
op ď c ¨ ndh2β`d

n δ´d
n ¨ δ2dn “ c ¨ pnδnq

dh2β`d
n ,
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where c “ 2ϵ´1}φ}2dL2edπ
2
. Thus, the KL-divergence is uniformly bounded if we set

hn “ M ¨ pnδnq
´d{p2β`dq.

Picking M so that gp0qp1 ` 1pθ0 “ 0qq ¨ Mβ “ 1, we have that

|f1npθ0q ´ f0npθ0q| “ gp0qp1 ` 1pθ0 “ 0qq ¨ Mβ
¨ pnδnq

´
dβ

2β`d “ pnδnq
´

dβ
2β`d ,

which, by appealing to Theorem 2.5(iii) of Tsybakov (2008), yields the desired lower

bound in estimation error in (5.2).

5.4 Samarov-type lemmas

The technical lemmas needed in the above proofs come from Samarov (1977). The

first is a slight extension to the d-dimensional case. We provide proofs below for the

sake of completeness.

Lemma V.5. Let aj, j P Zd be a sequence of numbers such that
ř

jPZd |aj|
2 ă 8 and

aj “ a´j. Let also An be a matrix of dimensions ndˆnd, whose pj, kq-th element equals

aj´k, where j and k are multi-indices that belong to r0 : n ´ 1sd – t0, 1, ¨ ¨ ¨ , n ´ 1ud

(i.e., the pj, kq-th element based on a natural ordering of the multi-indices of r0 :

n´ 1sd). Finally, define αpλq “ p2πq´d
ř

jPZd aje
ijJλ, for λ P r´π, πsd. Then, for the

norms of An, the following claims are true.

(i) }An}op ď p2πqd ¨ supλPr´π,πsd |αpλq|.

(ii) If An is positive definite, then }A´1
n }op ď p2πq´d ¨ supλPr´π,πsd |1{αpλq|.

(iii) n´d}An}2F ď
ř

jPZd |aj|
2 “ p2πqd

ş

r´π,πsd
α2pλqdλ.

Proof. Let N – nd and use the notation r0 : n ´ 1sd – t0, 1, ¨ ¨ ¨ , n ´ 1ud. We will

follow the arguments in Samarov (1977).
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(i) Since An is a symmetric matrix, we have that

}An}op “ sup
␣

|xJAny| : }x}2 “ }y}2 “ 1, x, y P RN
(

,

where is the matrix (operator) norm induced by the Euclidian vector norm.

Now, let x “ pxiqiPr0:n´1sd and y “ pyiqiPr0:n´1sd . By Fourier inversion, we have

that

aj´k “

ż

r´π,πsd

e´ipj´kqJλαpλqdλ.

Therefore,

|xJAny| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPr0:n´1sd

ÿ

kPr0:n´1sd

ż

r´π,πsd

xje
´ipj´kqJλykαpλqdλ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

r´π,πsd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPr0:n´1sd

xje
ijJλ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨ |αpλq| ¨

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPr0:n´1sd

eik
Jλyk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dλ

ď sup
λPr´π,πsd

|αpλq| ¨

¨

˝

ż

r´π,πsd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPr0:n´1sd

xje
ijJλ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

dλ

˛

‚

1{2

ˆ

¨

˝

ż

r´π,πsd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPr0:n´1sd

yke
ikJλ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

dλ

˛

‚

1{2

“ p2πq
d

¨ sup
λPr´π,πsd

|αpλq| ¨ }x}2 ¨ }y}2,

The second inequality follows from the Cauchy-Schwarz inequality and the last

equality follows by Parseval’s identity, since the functions φkpλq–p2πq´d{2eik
Jλ,

λ P r´π, πs, k P r0 : pn ´ 1qsd, are orthonormal in L2pr´π, πsd;Cq.

(ii) If An is also positive definite, then An is invertible.

Since } ¨ }op is the spectral norm, we have that

}A´1
n }op “ maxσipA

´1
n q “ max

1

σipAnq
“ sup

! 1

xJAnx
: }x}2 “ 1, x P RN

)
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where the last equality follows from Rayleigh quotient optimization results,

when An is positive definite.

As in part (1), with z‹ denoting the complex conjugate of z, we have that

|xJAnx| “ xJAnx “

ż

r´π,πsd

¨

˝

ÿ

jPr0:n´1sd

xje
ijJλ

˛

‚αpλq

¨

˝

ÿ

kPr0:n´1sd

eik
Jλyk

˛

‚dλ

“

ż

r´π,πsd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPr0:n´1sd

xje
´ijJλ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

αpλqdλ

ě inf
λPr´π,πsd

|αpλq|

ż

r´π,πsd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPr0:n´1sd

xje
´ijλ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

dλ

“

´

sup
λPr´π,πsd

|α´1
pλq|

¯´1

¨ }x}
2
2 ¨ p2πq

d,

and the result follows.

(iii) It follows that

}An}
2
F “

ÿ

iPr0:n´1sd

ÿ

jPr0:n´1sd

|ai´j|
2

“
ÿ

kPr´pn´1q:pn´1qsd

d
ź

i“1

pn ´ |ki|q|ak|
2,

where r´pn ´ 1q : pn ´ 1qsd – t´pn ´ 1q, ¨ ¨ ¨ , n ´ 1ud. Thus,

1

nd
}An}

2
F “

ÿ

kPr´pn´1q:pn´1qsd

d
ź

i“1

´

1 ´
|ki|

n

¯

|ak|
2

ď
ÿ

jPZd

|aj|
2

“ p2πq
d

ż

r´π,πsd

α2
pλqdλ,

by Parseval’s identity.

Lemma V.6. Let B0 and B1 be symmetric, positive definite nˆn matrices such that

D – B1´B0 is non-negative definite. Let P0 and P1 be the probability distributions of

zero-mean Gaussian vectors with covariance matrices B0 and B1, respectively. Then,
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there is a ξ P r0, 1s such that

KLpP1, P0q ď
1

2
}D}

2
F}B´1

ξ }
2
op,

where Bξ – B0 `ξD, and where } ¨ }F stands for the matrix Frobenius norm and } ¨ }op

stands for the matrix operator norm induced by the Euclidean vector norm.

Proof. Since the data is assumed Gaussian, we can immediately obtain that

KLpP1, P0q “
1

2

␣

trpB1B
´1
0 ´ Eq ` log |B0| ´ log |B1|

(

, (5.25)

where trpAq and |A| are the trace and determinant of the matrix A and E is the

identity matrix of dimensions n ˆ n. Notice that Bλ – B0 ` λD, λ P r0, 1s is a

positive definite covariance matrix. The expression in (5.25) can be rewritten as

KLpP1, P0q “
1

2

␣

trrB1pB
´1
0 ´ B´1

1 qs ` log |B0| ´ log |B1|
(

. (5.26)

We define the function ϕpλq “ trpB1B
´1
λ q` log |Bλ| and note that by the intermediate

value theorem, we have

KLpP1, P0q “
ϕp0q ´ ϕp1q

2
“ ´

1

2
¨ ϕ1

pξq,

for some ξ P r0, 1s. Using the following differentiation rules

d

dλ
A´1

pλq “ ´A´1
pλq

ˆ

d

dλ
Apλq

˙

A´1
pλq,

d

dλ
log |Apλq| “ tr

ˆ

A´1
pλq

d

dλ
Apλq

˙

,
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and the fact that dBλ{dλ “ D, we obtain that (5.26) becomes:

KLpP1, P0q “
1

2
¨ tr

“

B1B
´1
ξ DB´1

ξ ´ DB´1
ξ

‰

“
1

2
¨ tr

“

pB1 ´ BξqB
´1
ξ DB´1

ξ

‰

,

(5.27)

for some ξ P r0, 1s. To estimate the rhs of (5.27) we will use the following inequalities

(see, e.g., Davies , 1973):

|trpABq| ď }A}F ¨ }B}F. (5.28)

If the matrices A and B are symmetric, then

}BA}F “ }AB}F ď }A}op}B}F, (5.29)

where

}A}F “

˜

ÿ

i,j

a2ij

¸1{2

, }A}op “ supt}Ax}2; }x}2 “ 1, x P Rn
u.

From (5.27) with the help of (5.28) and (5.29) we obtain:

KLpP1, P0q ď
1

2
}B1 ´ Bξ}F}D}F}B´1

ξ }
2
op ď

1

2
}D}

2
F}B´1

ξ }
2
op.
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CHAPTER VI

Asymptotic Normality

In this chapter, we investigate the asymptotic distribution of the spectral density

estimator introduced in Chapter IV. We adopt the extra assumption that the process

X in the complex Hilbert space H is Gaussian. With this assumption in place, we

establish that the asymptotic distribution of our proposed estimator is also Gaussian,

in what can be considered a Central Limit Theorem result. The proof is based on the

computation of all the moments of the standardized estimator, which we achieve by

establishing a novel Isserlis type formula.

6.1 Asymptotic distribution

In this chapter, we continue to consider the case of gridded data described by

(4.26) and (4.27). The goal here is to present a central limit theorem for our spectral

density estimator f̂npθq assuming that tXptqu is a stationary Gaussian process, where

in this section we do not restrict X to be real in H. However, due to the technical

nature of this topic, we will focus on the case d “ 1. As discussed in Remark IV.7,

for d “ 1 the normalization |Tn X pTn ´ pt ´ sqq| in f̂npθq does not affect the rate.

Thus, for convenience, we will eliminate that and consider instead

f̂npθq “
δn
2πn

n
ÿ

i,j“1

eipi´jqδnθXpδniq b XpδnjqK

ˆ

i ´ j

∆n

¨ δn

˙

. (6.1)
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We will prove a central limit theorem for f̂npθq assuming that δn Ñ some δ8 P r0,8q

as n Ñ 8. The time-series and mixed-domain cases are covered by δ8 “ 1 and 0,

respectively.

Interestingly, the asymptotic distribution of f̂npθq involves the notion of pseudo-

covariance. Recall that from (4.4) the pseudo-covariance function is defined as Čphq “

ErXpt ` hq b Xptqs. In accordance with (4.6) and (4.29), define the pseudo-spectral

density:

f̌pθq “
1

2π

ż

R
e´iθxČpxqdx, θ P R,

and, for δ ą 0, the folded pseudo-spectral density:

f̌pθ; δq –
δ

2π

8
ÿ

k“´8

e´ikJθδČpkδq, θ P r´π{δ, π{δs.

Note that f̌pθq and f̌pθ; δq are well defined assuming that
ş

R }Čpxq}trdx ă 8 and
ř8

k“´8
}Čpkδq}tr ă 8, respectively. For convenience, also write fpθ; 0q “ fpθq and

f̌pθ; 0q “ f̌pθq.

Let now teju be an arbitrary fixed CONS of H, and define

Ck,ℓptq “ xCptqek, eℓy “ ErxXptq, eℓyxXp0q, ekys,

Čk,ℓptq “ xČptqek, eℓy “ ErxXptq, eℓyxXp0q, ekys.

The following assumption will be needed for establishing the central limit theorem.

Assumption CLT. Let the grid size δn and bandwidth ∆n satisfy δn Ñ some

δ8 P r0,8q and pnδnq{∆n Ñ 8. Also, assume that there exist positive constants Ln

such that

Lnδn Ñ 8, Ln{∆n Ñ 0,

and for which the following hold:

(a) supn δn
ř8

x“´8
}Cpδnxq}tr ă 8 and δn

ř

|x|ąLn
}Cpδnxq}tr Ñ 0;
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(b) }fpθ; δnq ´ fpθ; δ8q}tr Ñ 0;

(c) supn δn
ř8

x“´8
}Čpδnxq}tr ă 8 and δn

ř

|x|ąLn
}Čpδnxq}tr Ñ 0;

(d) }f̌pθ; δnq ´ f̌pθ; δ8q}tr Ñ 0;

(e) δ2n
ř8

x1,x2“´8
|Ck,kpδnx1q| ¨ |Cℓ,ℓpδnx2q| ď ak,ℓ, such that

ř

k,ℓ ak,ℓ ă 8;

(f) δ2n
ř8

x1,x2“´8
|Čk,ℓpδnx1q| ¨ |Čk,ℓpδnx2q| ď bk,ℓ, such that

ř

k,ℓ bk,ℓ ă 8.

Note that if δn “ δ8 P p0,8q for all n, then the conditions (a)-(f) follow from
ř8

x“´8
}Cpδ8xq}tr ă 8 and

ř8

x“´8
}Čpδ8xq}tr ă 8. For δ8 “ 0, the conditions

(a) and (c) in the above assumption are related to the notion of directly Riemann

integrability (dRi) (cf., e.g., Feller , 2008); if, in addition, Cpxq and Čpxq are functions

in C, then the dRi of Cpxqeixθ and Čpxqe´ixθ also implies (b) and (d) respectively.

The following modified assumption on the kernel K is also needed.

Assumption K1. The nonnegative kernel K has compact support, is symmetric

about 0, and is of bounded variation.

The following result is a central limit theorem for f̂npθq, where the weak conver-

gence is defined in the space X of Hilbert-Schmidt operators on H.

Theorem VI.1. Consider the stationary zero-mean Gaussian process tXptq, t P Ru

and assume that Assumptions CLT and K1 hold. Define

Tnpθq –

c

nδn
∆n

”

f̂npθq ´ Ef̂npθq

ı

, θ P R,

where f̂npθq is given in (6.1). Then, for any θ P r´π{δ8, π{δ8s, which is taken as R

if δ8 “ 0,

Tnpθq
d

Ñ T pθq in X,

201



where T pθq is a zero-mean Gaussian element of X, such that for every finite collection

tgℓ, ℓ “ 1, . . . ,mu, and positive numbers taℓ, ℓ “ 1, . . . ,mu,

Var

˜

m
ÿ

ℓ“1

aℓ xT pθqgℓ, gℓy

¸

“ }K}
2
2

m
ÿ

ℓ1,ℓ2“1

aℓ1aℓ2

”

|xfpθ; δ8qgℓ2 , gℓ1y|
2

` cpθq
ˇ

ˇ

@

f̌pθ; δ8qgℓ2 , gℓ1
D
ˇ

ˇ

2
ı

,

(6.2)

where }K}22 “
ş

K2pxqdx, and cpθq “ Ipθ“0q if δ8 “ 0 and Ipθ“0,˘π{δ8q if δ8 ą 0.

Remark VI.2. 1. Observe that the quantity
řm

ℓ“1 aℓ xT pθqgℓ, gℓy in (6.2) is real

since K is assumed symmetric.

2. The variances in (6.2) for all choices of taℓu and tgℓu completely characterize

the distribution of T . The expression
@

f̌pθqgℓ2 , gℓ1
D

in (6.2) does not depend on

the choice of real CONS, since

xČpt, sqg, hy “ ExXptq, hyxg,Xpsqy “ ExXptq, hyxXpsq, gy, g, h P H.

The proof of this result, given in Section 6.2, is based on verifying the convergence

of “all moments” of the estimator together with a tightness condition.

The previous result does not provide an explicit representation of the limit. In

what follows, we obtain such an explicit, stochastic representation of T pθq for cpθq “ 0,

where cpθq as in (6.2). Define the complex Gaussian random variables Zi,j’s as follows:

Zi,j “ ξi,j ` iηi,j, i ă j, (6.3)

where ξi,j and ηi,j are iid Np0, 1{2q and Zj,i – Zi,j. For i “ j, we have the Zi,i’s are

real and Np0, 1q, independent from the Zi,j’s, for i ‰ j. Then, one obtains that the
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Zi,j’s are zero-mean complex Gaussian variables such that

Zi,j “ Zj,i and ErZi,jZi1,j1s “ δpi,jq,pi1,j1q. (6.4)

Corollary VI.3. Let cpθq “ 0 in (6.2) and assume the conditions of Theorem VI.1.

Let teipθqu be the (not necessarily real) CONS diagonalizing fpθq, i,.e.,

fpθq “
ÿ

i

λipθqeipθq b eipθq.

The random variable T pθq has the stochastic representation

T pθq
d
“ }K}2

ÿ

i,j

b

λipθqλjpθqZi,jeipθq b ejpθq, (6.5)

where Zi,j as defined in (6.3). In particular, the covariance operator of T pθq is

ErT pθq bHS T pθqs “ }K}
2
2

ÿ

i,j

λipθqλjpθqpeipθq b ejpθqq bHS peipθq b ejpθqq.

Proof. Let gℓ, ℓ “ 1, ¨ ¨ ¨ ,m be arbitrary in H and suppose

gℓ “
ÿ

i

xipℓqei, xipℓq P C.

Then, by Theorem VI.1, it is enough to verify that the representation of T in (6.5)

satisfies

Var
´

m
ÿ

ℓ“1

aℓxT gℓ, gℓy
¯

“ }K}
2
2

ÿ

ℓ1,ℓ2

aℓ1aℓ2 |xfpθqgℓ2 , gℓ1y|
2, (6.6)

for real constants aℓ P R, ℓ “ 1, . . . ,m. Observe that

xT gℓ, gℓy “ }K}2

ÿ

i,j

a

λiλjZi,jxipℓqxjpℓq.
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Thus, in view of (6.4), the LHS of (6.6) equals

}K}
2
2

ÿ

ℓ1,ℓ2

aℓ1aℓ2
ÿ

i,i1,j,j1

xipℓ1qxjpℓ1qxi1pℓ2qxj1pℓ2q
a

λiλjλi1λj1ErZi,jZi1,j1s

“ }K}
2
2

ÿ

ℓ1,ℓ2,i,j

aℓ1aℓ2λiλjxipℓ1qxjpℓ2qxjpℓ1qxipℓ2q.

(6.7)

The latter expression is the RHS of (6.6). On the other hand,

xfpθqgℓ2 , gℓ1y “
ÿ

i

λixipℓ1qxipℓ2q.

Thus, it is easy to see that that the right-hand sides of (6.6) and (6.7) are the

same.

We end this section with the following remark.

Remark VI.4. Observe that T pθq, for cpθq “ 0 in (6.2), is a zero-mean random ele-

ment in the Hilbert space X of Hilbert-Schmidt operators. Therefore, Relation (6.5)

provides its Karhunen-Loéve type representation. That is, the covariance operator of

T pθq is diagonalized in the basis ei,jpθq – eipθq b ejpθq, pi, jq P N2, where teipθqu is

the CONS of H diagonalizing the operator fpθq. The eigenvalues of the covariance

operator ErT pθq b T pθqs are precisely λi,jpθq – λipθqλjpθq, where the λipθq’s are the

eigenvalues of fpθq.

6.2 Overview of Central Limit Theorem proof

This section presents the proof of Theorem VI.1. The proof relies on the stan-

dardized estimator tTnu satisfying two properties; flat concentration and convergence

of moments. Because of the complexity of the verification of these properties for tTnu,

we establish them separately, in Sections 6.3 and 6.4 respectively.

As stated in Section 6.1, tXptq, t P Ru is a stationary Gaussian process in the
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complex Hilbert space H, we observe X at t “ kδn, k “ 1, . . . , n, where nδn Ñ 8. We

will focus on the case δn ” 1, which contains the main ideas of the proof. The proof

for the general case follows from a straightforward adaptation of the special case.

As mentioned, we focus on the case δn ” 1, which is essentially the time-series

setting (cf. Section 4.5.1). Thus, we consider a discrete-time stationary process X “

tXptq, t P Zu, where Xptq are Gaussian elements of the complex Hilbert space H. We

explained in Section 6.1 that the conditions (a)-(f) in Assumption CLT hold in this

case if

8
ÿ

x“´8

“

}Cpxq}tr ` }Čpxq}tr
‰

ă 8, (6.8)

which we assume below. Note that C and Č are defined in (4.2) and (4.4) respectively.

Recall that X denotes the Hilbert space of Hilbert-Schmidt operators A : H Ñ H,

equipped with the HS-inner product xA,ByHS – tracepB˚Aq, A, B P X, and corre-

sponding norm }A}HS “ xA,Ay
1{2
HS . The spectral and pseudo spectral density functions

in this case are given by

fpθq “
δ

2π

8
ÿ

k“´8

eik
JθδCpkq, f̌pθq “

δ

2π

8
ÿ

k“´8

e´ikJθδČpkq, θ P r´π, πs.

Also,

Tnpθq –

c

n

∆n

´

f̂npθq ´ Ef̂npθq

¯

,

where

f̂npθq “
1

2πn

n
ÿ

i,j“1

eipi´jqθXpiq b XpjqK

ˆ

i ´ j

∆n

˙

, θ P r´π, πs.

For this special setting, we will establish the following theorem:
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Theorem VI.5. Let X “ tXptq, t P Zu be a stationary Gaussian process of the com-

plex Hilbert space H. Let ∆n Ñ 8,∆n{n Ñ 0, and assume that (6.8) and Assumption

K1 hold. Define

Tnpθq –

c

n

∆n

”

f̂npθq ´ Ef̂npθq

ı

, θ P R,

where f̂npθq is given in (6.1). Then, for any θ P r´π, πs,

Tnpθq
d

Ñ T pθq in X,

where T pθq is a zero-mean Gaussian element of X, such that for every finite collection

tgℓ, ℓ “ 1, . . . ,mu, and positive numbers taℓ, ℓ “ 1, . . . ,mu,

Var

˜

m
ÿ

ℓ“1

aℓ xT pθqgℓ, gℓy

¸

“ }K}
2
2

m
ÿ

ℓ1,ℓ2“1

aℓ1aℓ2

”

|xfpθqgℓ2 , gℓ1y|
2

` Ipθ“0,˘πq

ˇ

ˇ

@

f̌pθqgℓ2 , gℓ1
Dˇ

ˇ

2
ı

.

The following proposition describes the roadmap for proving this result. For

simplicity of notation, we will henceforth suppress the argument θ in Tnpθq since

it is fixed.

Proposition VI.6. Let the assumptions of Theorem VI.5 hold. Also, let tei, i ě 1u

be a CONS of H. Assume that

(i) for any ϵ, δ ą 0, there exists u P Z` such that

sup
ně1

Pp}pI ´ ΠuqTn}HS ą ϵq ă δ,

where Πu : X Ñ X is the orthogonal projection operator on Xu – spanpei b

ej, i, j ď uq, and
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(ii) for all aℓ P R and gℓ P H, we have

E

«

m
ÿ

ℓ“1

aℓ xTngℓ, gℓy

ffk

„

$

’

’

&

’

’

%

O
´

`

∆n

n

˘
1
2

¯

, k odd,

pk ´ 1q!!
“

σ2
a,g

‰
k
2 , k even,

(6.9)

where

σ2
a,g – }K}

2
2

m
ÿ

ℓ1,ℓ2“1

aℓ1aℓ2

´

|xfpθqgℓ1 , gℓ2y|
2

` 1t0,˘πupθq
ˇ

ˇ

@

f̌pθqgℓ1 , gℓ2
D
ˇ

ˇ

2
¯

.

Then there exists a Gaussian process T in X that fulfills the description of Theorem

VI.5.

Proof. First, we state a useful identity for a complex Hilbert space. Write

xTn, ei b ejyHS “ xTnej, eiyH — Tnpej, eiq,

By Lemma A.8 of Shen et al. (2022),

Tnpej, eiq “
i ´ 1

2
pTnpej, ejq ` Tnpei, eiqq `

1

2
Tnpej ` ei, ej ` eiq

´
i

2
Tnpiej ` ei, iej ` eiq.

(6.10)

Also, recall that tei b ej, i, j ě 1u is a CONS of X. Thus, (i) implies the flat con-

centration condition of Condition 1 of Theorem 7.7.4 of Hsing and Eubank (2015).

It follows from (ii), applying (6.10) plus Markov’s inequality, that Condition 2 of

Theorem 7.7.4 of Hsing and Eubank (2015) also holds. Thus, tTn, n ě 1u is tight

and hence relatively compact. To show that Tn converges in distribution to some T ,

it suffices to show that if Tn1
d

Ñ T along some subsequence tn1u, then T does not

depend on the subsequence. Now, by the continuous mapping theorem, (6.9) and a
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standard uniform integrability argument, we have

E

«

m
ÿ

ℓ“1

aℓ xTn1gℓ, gℓy

ffk

Ñ E

«

m
ÿ

ℓ“1

aℓ xT gℓ, gℓy

ffk

for all k,

where the limiting moments entail that
řm

ℓ“1 aℓxT gℓ, gℓy is distributed asNp0, σ2
a,gq (cf.

Theorem 30.1 of Billingsley , 2012). Relation (6.10) shows that the finite-dimensional

distributions of the real Gaussian process txT gℓ, gℓy, gℓ P Hu determine the finite-

dimensional distributions of txT g, hy, g, h P Hu, which in turn characterize the law

of the X-valued random element T . The result thus follows.

We will complete the proof of Theorem VI.5 by verifying the conditions (i) and

(ii) of Proposition VI.6, which will be established in Sections 6.3 and 6.4, respectively.

6.3 Flat concentration

In this section, we establish that (i) of Proposition VI.6 holds for tTnu under the

assumptions of the Proposition. This property is known as the flat concentration of

tTnu.

By Markov’s inequality,

Pp}pI ´ ΠuqTn}HS ą ϵq ď ϵ´2E}pI ´ ΠuqTn}
2
HS.

Since

E}pI ´ ΠuqTn}
2
HS “

ÿ

k_ℓąu

E|xTn, ek b eℓyHS|
2, (6.11)

it is sufficient to show that

ÿ

k,ℓ

sup
n

E |xTn, ek b eℓyHS|
2

ă 8, (6.12)

208



which implies (i) of Proposition VI.6 by (6.11).

Without loss of generality suppose that the CONS tej, j P Nu of H is real and thus

Xptq “
ř

jPNXjptqej, where Xjptq “ xXptq, ejyH are complex zero-mean Gaussian

random variables. Also, let

Ck,ℓpxq “ xCpxq, ek b eℓyHS “ xCpxqeℓ, eky. (6.13)

It follows that

xTn, ek b eℓyHS

“
p2πq´1

?
n∆n

n
ÿ

i,j“1

xXpiq b Xpjq ´ Cpi ´ jq, ek b eℓyHS e
iθpi´jqK

ˆ

i ´ j

∆n

˙

“
p2πq´1

?
n∆n

n
ÿ

i,j“1

”

XkpiqXℓpjq ´ Ck,ℓpi ´ jq
ı

eiθpi´jqK

ˆ

i ´ j

∆n

˙

,

where Ck,ℓpi ´ jq “ ErXkpiqXℓpjqs. By Lemma VI.12, we have

ErXkpi1qXℓpj1qXkpi2qXℓpj2qs “ Ck,ℓpi1 ´ j1qCk,ℓpi2 ´ j2q ` Čk,ℓpi1 ´ j2qČk,ℓpi2 ´ j1q

` Ck,kpi1 ´ i2qCℓ,ℓpj1 ´ j2q.

Thus,

E |xTn, ek b eℓyHS|
2

“
p2πq´2

n∆n

ÿ

i1,j1

ÿ

i2,j2

eiθpi1´j1´i2`j2qK

ˆ

i1 ´ j1
∆n

˙

K

ˆ

i2 ´ j2
∆n

˙

ˆ E
!”

Xkpi1qXℓpj1q ´ Ck,ℓpi1 ´ j1q
ı ”

Xkpi2qXℓpj2q ´ Ck,ℓpi2 ´ j2q
ı)

“
p2πq´2

n∆n

ÿ

i1,j1

ÿ

i2,j2

eiθpi1´j1´i2`j2qK

ˆ

i1 ´ j1
∆n

˙

K

ˆ

i2 ´ j2
∆n

˙

ˆ Ck,kpi1 ´ i2qCℓ,ℓpj1 ´ j2q (6.14)

209



`
p2πq´2

n∆n

ÿ

i1,j1

ÿ

i2,j2

eiθpi1´j1´i2`j2qK

ˆ

i1 ´ j1
∆n

˙

K

ˆ

i2 ´ j2
∆n

˙

ˆ Čk,ℓpi1 ´ j2qČk,ℓpi2 ´ j1q

— Ak,ℓ ` Bk,ℓ.

We start with Ak,ℓ. With the change of variables

x1 “ i1 ´ i2, x2 “ j1 ´ j2,

y1 “ i1 ´ j1, y2 “ i1,

we obtain

Ak,ℓ “
p2πq´2

n∆n

n´1
ÿ

x1,x2“1´n

Ck,kpx1qCℓ,ℓpx2qeiθpx1´x2q

ˆ

∆n^pn´1`x1´x2q
ÿ

y1“p´∆nq_p1´n`x1´x2q

K

ˆ

y1
∆n

˙

K

ˆ

´x1 ` x2 ` y1
∆n

˙ n^pn`y1q
ÿ

y2“1_p1`y1q

1

“
p2πq´2

n∆n

n´1
ÿ

x1,x2“1´n

Ck,kpx1qCℓ,ℓpx2qeiθpx1´x2q

ˆ

∆n^pn´1`x1´x2q
ÿ

y1“p´∆nq_p1´n`x1´x2q

K

ˆ

y1
∆n

˙

K

ˆ

´x1 ` x2 ` y1
∆n

˙

pn ´ |y1|q.

Thus, with }K}8 – maxt |Kptq|, we obtain

|Ak,ℓ| ď
}K}28

2π2

n´1
ÿ

x1,x2“1´n

|Ck,kpx1q||Cℓ,ℓpx2q|

ď
}K}28

2π2

8
ÿ

x1,x2“´8

|Ck,kpx1q||Cℓ,ℓpx2q| — αk,ℓ.

By (6.13) and (ii) of Lemma IV.37, we have

ÿ

k,ℓ

αk,ℓ ď
}K}28

2π2

˜

8
ÿ

x“´8

}Cpxq}tr

¸2

ă 8. (6.15)
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We now turn to Bk,ℓ in (6.14). With the change of variables

x1 “ i1 ´ j2, x2 “ i2 ´ j1,

y1 “ i1 ´ j1, y2 “ i1,

Bk,ℓ “
p2πq´2

n∆n

n´1
ÿ

x1,x2“1´n

Čk,ℓpx1qČk,ℓpx2qeiθp´x1´x2`2y1q

ˆ

∆n^pn´1`x1`x2q
ÿ

y1“p´∆nq_p1´n`x1`x2q

K

ˆ

y1
∆n

˙

K

ˆ

x1 ` x2 ´ y1
∆n

˙ n^pn`y1q
ÿ

y2“1_p1`y1q

1

“
p2πq´2

n∆n

n´1
ÿ

x1,x2“1´n

Čk,ℓpx1qČk,ℓpx2qeiθp´x1´x2`2y1q

ˆ

∆n^pn´1`x1`x2q
ÿ

y1“p´∆nq_p1´n`x1`x2q

K

ˆ

y1
∆n

˙

K

ˆ

x1 ` x2 ´ y1
∆n

˙

pn ´ |y1|q.

Thus,

|Bk,ℓ| ď
}K}28

2π2

n´1
ÿ

x1,x2“1´n

ˇ

ˇČk,ℓpx1q
ˇ

ˇ

ˇ

ˇČk,ℓpx2q
ˇ

ˇ

ď
}K}28

2π2

n´1
ÿ

x1,x2“1´n

ˇ

ˇČk,ℓpx1q
ˇ

ˇ

ˇ

ˇČk,ℓpx2q
ˇ

ˇ — βk,ℓ.

Applying the Cauchy-Schwarz inequality and in view of the definition of the Hilbert-

Schmidt inner product,

ÿ

k,ℓ

βk,ℓ ď
}K}28

2π2

8
ÿ

x1,x2“´8

ÿ

k,ℓ

ˇ

ˇČk,ℓpx1q
ˇ

ˇ

ˇ

ˇČk,ℓpx2q
ˇ

ˇ

ď
}K}28

2π2

8
ÿ

x1,x2“´8

d

ÿ

k,ℓ

ˇ

ˇČk,ℓpx1q
ˇ

ˇ

2
d

ÿ

k,ℓ

ˇ

ˇČk,ℓpx2q
ˇ

ˇ

2

“
}K}28

2π2

˜

8
ÿ

x“´8

}Čpxq}HS

¸2

ď
}K}28

2π2

˜

8
ÿ

x“´8

}Čpxq}tr

¸2

ă 8.

(6.16)
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Since the upper bounds αk,ℓ and βk,ℓ do not depend on n, we have

sup
n

E |xTn, ek b eℓyHS|
2

ď αk,ℓ ` βk,ℓ,

and Relations (6.15) and (6.16) imply (6.12).

6.4 Convergence of moments

The proof of (ii) of Proposition VI.6 is quite lengthy, and constitutes the core of

the central limit theorem proof. In Section 6.4.1, we will first focus on showing (ii)

for the case that X is scalar, i.e., X take values in C. There we will take advantage of

this simple setting to explain the ideas of the proof. In Section 6.4.2 , we will prove

the proposition for the general case of X P H.

6.4.1 The scalar case

In this section, we focus on a zero-mean, stationary Gaussian time-series taking

values in C and compute the moments of Tn. The purpose of this section is to develop

technical tools for the general moment calculations needed to prove (ii).

In this setting, Cpt ´ sq “ ErXptqXpsqs, Čpt ´ sq – ErXptqXpsqs and

fpθq “
1

2π

8
ÿ

x“´8

Cpxqeixθ. (6.17)

Also, (6.8) becomes
8
ÿ

x“´8

”

|Cpxq| ` |Čpxq|

ı

ă 8. (6.18)

Observe that since Cpxq “ Cp´xq in this case, we have that fpθq is real, even though

the process tXt, t P Zu is complex-valued. We shall also need the so-called pseudo-
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spectral density, defined as:

f̌pθq “
1

2π

8
ÿ

x“´8

Čpxqe´ixθ. (6.19)

Recall also that the spectral density estimator is

f̂npθq “
1

2πn

n
ÿ

i,j“1

XiXjKθpi ´ jq,

where

Kθpyq “ eiyθKpy{∆nq.

The following proposition gives the asymptotic expression of EpT k
n q for the scalar

case.

Proposition VI.7. Assume that the conditions of Proposition VI.6 hold for the set-

ting H “ C. Then,as n Ñ 8,

EpT k
n q “

$

’

’

&

’

’

%

O
´

`

∆n

n

˘
1
2

¯

, k odd,

p1 ` op1qqpk ´ 1q!!
“

pfpθq2 ` 1t0,˘πupθq|f̌pθq|2q}K}22

‰

k
2 , k even,

where fpθq and f̌pθq are as in (6.17) and (6.19).

Proof. Assume without loss of generality that the support of K is r´1, 1s.

The case k “ 2

By Lemma VI.13 (for N “ 0, M “ 2, i.e., see (6.27)),

p2πq
2EpT 2

n q “
1

n∆n

n
ÿ

i1,j1“1

n
ÿ

i2,j2“1

Kθ pi1 ´ j1qKθ pi2 ´ j2q

ˆ E
“`

Xi1Xj1 ´ Cpi1 ´ j1q
˘ `

Xi2Xj2 ´ Cpi2 ´ j2q
˘‰

“
1

n∆n

n
ÿ

i1,j1“1

n
ÿ

i2,j2“1

Kθ pi1 ´ j1qKθ pi2 ´ j2q

213



ˆ

”

Cpi1 ´ j2qCpi2 ´ j1q ` Čpi1 ´ i2qČpj1 ´ j2q
ı

— rA2 ` A2,

where

rA2 –
1

n∆n

n
ÿ

i1,j1“1

n
ÿ

i2,j2“1

Kθ pi1 ´ j1qKθ pi2 ´ j2q ¨ Cpi1 ´ j2qCpi2 ´ j1q,

and

A2 –
1

n∆n

n
ÿ

i1,j1“1

n
ÿ

i2,j2“1

Kθ pi1 ´ j1qKθ pi2 ´ j2q ¨ Čpi1 ´ i2qČpj1 ´ j2q.

The two terms have somewhat different properties and we start with rA2. With the

change of variables

x1 “ i1 ´ j2, x2 “ i2 ´ j1,

y1 “ i1 ´ j1, y2 “ i1,

we have

rA2 “
1

n∆n

n´1
ÿ

x1,x2“´n`1

Cpx1qCpx2qe
ix1θeix2θ

ˆ

pn´1q^pn´1`x1`x2q
ÿ

y1“p1´nq_p1´n`x1`x2q

K

ˆ

y1
∆n

˙

K

ˆ

x1 ` x2 ´ y1
∆n

˙ n^pn`y1q
ÿ

y2“1_p1`y1q

1

“
1

n∆n

n´1
ÿ

x1,x2“´n`1

Cpx1qCpx2qe
ix1θeix2θ

ˆ

pn´1q^pn´1`x1`x2q
ÿ

y1“p1´nq_p1´n`x1`x2q

K

ˆ

y1
∆n

˙

K

ˆ

x1 ` x2 ´ y1
∆n

˙

¨ pn ´ |y1|q

“
1

∆n

ÿ

|x1|_|x2|ďL

Cpx1qCpx2qe
ix1θeix2θ
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ˆ

pn´1q^pn´1`x1`x2q
ÿ

y1“p1´nq_p1´n`x1`x2q

K

ˆ

y1
∆n

˙

K

ˆ

x1 ` x2 ´ y1
∆n

˙

n ´ |y1|

n

`
1

∆n

ÿ

|x1|_|x2|ěL

Cpx1qCpx2qe
ix1θeix2θ

ˆ

pn´1q^pn´1`x1`x2q
ÿ

y1“p1´nq_p1´n`x1`x2q

K

ˆ

y1
∆n

˙

K

ˆ

x1 ` x2 ´ y1
∆n

˙

n ´ |y1|

n

— B1 ` B2,

for some L “ Ln Ñ 8 and L “ op∆nq. One can easily see that

|B2| ď
}K}8

∆n

ÿ

|x1|_|x2|ěL

|Cpx1q||Cpx2q|

n´1
ÿ

y1“´n`1

K

ˆ

y1
∆n

˙

ď 2}K}8

ÿ

|x1|_|x2|ěL

|Cpx1q||Cpx2q| “ o p1q , as L Ñ 8,

by (6.18). Now, adding and subtracting the same term in B1, one obtains that

B1 “ C1 ` C2, where

C1 –
1

∆n

ÿ

|x1|_|x2|ďL

Cpx1qCpx2qeix1θeix2θ

pn´1q^pn´1`x1`x2q
ÿ

y1“p1´nq_p1´n`x1`x2q

K2

ˆ

y1
∆n

˙

n ´ |y1|

n

and

C2 –
1

∆n

ÿ

|x1|_|x2|ďL

Cpx1qCpx2qeix1θeix2θ

ˆ

pn´1q^pn´1`x1`x2q
ÿ

y1“p1´nq_p1´n`x1`x2q

K

ˆ

y1
∆n

˙„

K

ˆ

x1 ` x2 ´ y1
∆n

˙

´ K

ˆ

y1
∆n

˙ȷ

ˆ
n ´ |y1|

n
.

We examine C1 first.

Observe first that the inner sum over y1 is confined to ´∆n ď y1 ď ∆n, since

K is supported on r´1, 1s. Moreover, since L “ op∆nq and ∆n “ opnq, for all

|x1|_|x2| ď L, and all sufficiently large n, we have that p1´nq_p1´n`x1`x2q ď ´∆n
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and ∆n ď pn´ 1q ^ pn´ 1 ` x1 ` x2q. This means, that the inner summation in the

definitions of C1 and C2 is over the range r´∆n,∆ns and it does not depend on x1

and x2. That is, for all sufficiently large n,

C1 “
ÿ

|x1|_|x2|ďL

Cpx1qCpx2qe
ix1θeix2θ ˆ

1

∆n

∆n
ÿ

y1“´∆n

K2
´ y1
∆n

¯

„ 4π2fpθq
2

ż 1

´1

K2
pyqdy, as n Ñ 8,

where the last relation follows from the Riemann integrability of K2 and the fact that
ř

|x|ďLCpxqeixθ Ñ 2πfpθq, as L Ñ 8. Now, focus on the term C2. Using the facts

that K is an even function and

|Kpxq ´ Kpyq| ď c|x ´ y|,

(since K 1 is bounded), we get |Kppx1 ` x2 ´ y1q{∆nq ´ Kpy1{∆nq| ď 2cL{∆, for all

|x1| _ |x2| ď L. Thus, by Condition (6.18) and the Riemann integrability of K, we

obtain

|C2| ď

¨

˝

ÿ

|x|ďL

|Cpxq|

˛

‚

2

1

∆n

∆n
ÿ

y“´∆n

K

ˆ

y

∆n

˙

2Lc

∆n

„
2Lc

∆n

˜

8
ÿ

x“´8

|Cpxq|

¸2
ż 1

u“´1

Kpuqdu “ o p1q ,

since L “ op∆nq. Summarizing, we have that for all θ (including θ “ 0 and θ “ ˘π)

rA2 “ C1 ` C2 ` B2 „ 4π2fpθq
2

ż 1

´1

K2
puqdu.

We next consider A2. Similar to the derivation for rA2, with the change of variables

x1 “ i1 ´ i2, x2 “ j1 ´ j2,
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y1 “ i1 ´ j1, y2 “ i1,

we get

A2 “
1

n∆n

n´1
ÿ

x1,x2“´n`1

Čpx1qČpx2qe
´ix1θeix2θ

¨

pn´1q^pn´1`x1´x2q
ÿ

y1“p1´nq_p1´n`x1´x2q

K

ˆ

y1
∆n

˙

K

ˆ

´x1 ` x2 ` y1
∆n

˙

ei2y1θ
n^pn`y1q
ÿ

y2“1_p1`y1q

1

“
1

∆n

n´1
ÿ

x1,x2“´n`1

Čpx1qČpx2qe´ix1θeix2θ

¨

pn´1q^pn´1`x1´x2q
ÿ

y1“p1´nq_p1´n`x1´x2q

K

ˆ

y1
∆n

˙

K

ˆ

´x1 ` x2 ` y1
∆n

˙

ei2y1θ ¨
n ´ |y1|

n
.

Observe first that for θ “ ˘π or θ “ 0, we have ei2y1θ “ 1, y1 P Z and for the term

A2 with the same argument as for the term rA2, we obtain

A2 „ 4π|f̌pθq|
2
}K}

2
2, where f̌pθq “

1

2π

8
ÿ

x“´8

Čpxqe´ixθ, θ P t0,˘πu.

Suppose now θ ‰ 0 and θ ‰ ˘π, so that the term ei2y1θ is present. By adding and

subtracting a term, we have that A2 “ D1 `D2, where D2 is defined in (6.21) below

and

D1 –
1

∆n

n´1
ÿ

x1,x2“´n`1

Čpx1qČpx2qe´ix1θeix2θ

¨

pn´1q^pn´1`x1´x2q
ÿ

y1“p1´nq_p1´n`x1´x2q

K2

ˆ

y1
∆n

˙

ei2y1θ
n ´ |y1|

n

“ O
ˆ

1

∆n

˙

.

(6.20)

Indeed, write

wnpyq “ K2

ˆ

y

∆n

˙

n ´ |y|

n
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and consider, for any c1, c2 P r1,∆ns,

c2
ÿ

y“c1

wnpyqei2yθpei2θ ´ 1q

“

c2`1
ÿ

y“c1`1

wnpy ´ 1qei2yθ ´

c2
ÿ

y“c1

wnpyqei2yθ

“ wnpc2qe
i2pc2`1qθ

´ wnpc1qe
i2c1θ `

c2
ÿ

y“c1`1

pwnpy ´ 1q ´ wnpyqqei2yθ.

Focusing on the second term,

c2
ÿ

y“c1`1

pwnpy ´ 1q ´ wnpyqqei2yθ

“

c2
ÿ

y“c1`1

ˆ

K2

ˆ

y ´ 1

∆n

˙

n ´ 1 ´ py ´ 1q

n
´ K2

ˆ

y

∆n

˙

n ´ 1 ´ y

n

˙

ei2yθ

“
1

n

c2
ÿ

y“c1`1

K2

ˆ

y ´ 1

∆n

˙

ei2yθ `

c2
ÿ

y“c1`1

ˆ

K2

ˆ

y ´ 1

∆n

˙

´ K2

ˆ

y

∆n

˙˙

n ´ 1 ´ y

n
ei2yθ

— E1 ` E2.

Clearly, E1 “ Op∆n{nq “ op1q uniformly in c1, c2. Also, it follows that

|E2| ď

c2
ÿ

y“c1`1

ˇ

ˇ

ˇ

ˇ

K2

ˆ

y ´ 1

∆n

˙

´ K2

ˆ

y

∆n

˙ˇ

ˇ

ˇ

ˇ

ă 8 uniformly in c1, c2

since K2 is of bounded variation (recall that K 1 is bounded and K is compactly

supported). Thus,

c2
ÿ

y“c1

wnpyqei2yθ

“ pei2θ ´ 1q
´1

˜

wnpc2qeipc2`1qθ
´ wnpc1qe

ic1θ `

c2
ÿ

y“c1`1

pwnpy ´ 1q ´ wnpyqqeiyθ

¸

,

which is uniformly bounded. (Note that here we used the fact that ei2θ ´ 1 ‰ 0,
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since ˘π ‰ θ ‰ 0.) Applying this argument, we see that the inner sum in (6.20) is

uniformly bounded, and hence by Condition (6.18), we obtain that D1 “ op1q.

On the other hand, for the term D2, we obtain

D2 –
1

∆n

n´1
ÿ

x1,x2“´n`1

Čpx1qČpx2qe
´ix1θeix2θ

ˆ

pn´1q^pn´1`x1´x2q
ÿ

y1“p1´nq_p1´n`x1´x2q

K

ˆ

y1
∆n

˙„

K

ˆ

´x1 ` x2 ` y1
∆n

˙

´ K

ˆ

y1
∆n

˙ȷ

ˆ ei2y1θ ¨
n ´ |y1|

n

“ op1q,

(6.21)

using the same arguments as for B2 and C2. Thus,

A2 Ñ 0 for θ ‰ 0 and θ ‰ ˘π.

This completes the derivation for EpT 2
n q.

The case k ě 3

Fix some integer k ě 3. Let P be the set of all possible pairings of tiℓ, jℓ : ℓ “

1, . . . , ku. Then a pairing p P P iff

p “

!

tI, Ju, tI, Ĩu, tJ, J̃u : I ‰ Ĩ P tiℓ, ℓ “ 1, . . . , ku, J ‰ J̃ P tjℓ, ℓ “ 1, . . . , ku

)

,

where all symbols iℓ, jℓ, ℓ “ 1, . . . , k can be used only once.

By Lemma VI.13,

µk – p2πq
kEpT k

n q “
1

pn∆nqk{2

n
ÿ

iℓ,jℓ“1
ℓ“1,...,k

E

«

k
ź

ℓ“1

“

XiℓXjℓ ´ Cpiℓ ´ jℓq
‰

ff

k
ź

ℓ“1

Kθpiℓ ´ jℓq

“
1

pn∆nqk{2

n
ÿ

iℓ,jℓ“1
ℓ“1,...,k

k
ź

ℓ“1

Kθpiℓ ´ jℓq

219



ˆ
ÿ

pPP:
Yk

p“1ttip,jpuuXp“H

ź

ti,juPp

”

CpI ´ Jq1ti,ju“tI,Ju ` ČpI ´ Ĩq1ti,ju“tI,Ĩu

` ČpJ ´ J̃q1ti,ju“tJ,J̃u

ı

,

Let now r ď k and fix a subset of 2r indices ti11, j
1
1, . . . , i

1
r, j

1
ru Ă ti1, j1, ¨ ¨ ¨ , ik, jku,

where pi11, j
1
1q “ piσ1 , jσ1q, ¨ ¨ ¨ , pi1r, j

1
rq “ piσr , jσrq, for some 1 ď σ1 ă ¨ ¨ ¨ ă σr ď k. A

partition of ti11, j
1
1, . . . i

1
r, j

1
ru into pairs will be called a sub-pairing of order r. Namely,

it is a partition into pairs that involves r couples of i1 and/or j1 symbols taken only

from the set ti11, j
1
1, . . . i

1
r, j

1
ru.

A (sub)pairing will be called irreducible, if does not have further sub-pairings, i.e.,

it cannot be broken up into a disjoint union of two or more sub-pairings of lower

order. Let CP,r,k denote the set of all irreducible sub-pairings of order r.

Looking at a single summand of the second sum in µk, one can see that every

pairing p P P is the union of multiple irreducible pairings of the form CP,r,k with

r ě 2. We will argue below that among all pairings in P only the ones involving

irreducible components of order r “ 2 contribute asymptotically, and the remaining

pairings are of lower order, as n Ñ 8.

Let p P P denote a pairing that shows up in the second sum of p2πqdEpT k
n q, and

suppose that

p “ pr1 Y ¨ ¨ ¨ Y prm ,

where the pri P CP,ri,k, ri ě 2, i “ 1, . . . ,m, are the irreducible sub-pairings of p.
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Then,

µk “ p2πq
kEpT k

n q “
1

pn∆nqk{2

n
ÿ

iℓ,jℓ“1
ℓ“1,...,k

!

k
ź

ℓ“1

Kθpiℓ ´ jℓq

ˆ
ÿ

pPP:
Yk

p“1ttip,jpuuXp“H

ź

ti,juPp

”

CpI ´ Jq1ti,ju“tI,Ju ` ČpI ´ Ĩq1ti,ju“tI,Ĩu

` ČpJ ´ J̃q1ti,ju“tJ,J̃u

ı)

—

ˆ

n

∆n

˙k{2
ÿ

pPP
p“pr1Y¨¨¨Yprm , mě1

m
ź

t“1

AP,prt ,k
,

(6.22)

where AP,prt ,k
involves a product of the terms restricted to the irreducible sub-pairing

prt , and where r1 ` ¨ ¨ ¨ ` rm “ k, with ri ě 2, i “ 1, . . . ,m. Namely, assuming that

the subset of indices ti11, j
1
1, ¨ ¨ ¨ , i1r, j

1
ru “ tiσ2 , jσ1 , ¨ ¨ ¨ , iσr , jσru, r ď k, is involved in

the irreducible pairing AP,pr,k we have

AP,pr,k “
1

nr

n
ÿ

i1
ℓ,j

1
ℓ“1

ℓ“1,...,r

r
ź

ℓ“1

Kθpi
1
ℓ ´ j1

ℓqˆ

ź

ti,juPpr

”

CpI ´ Jq1ti,ju“tI,Ju ` ČpI ´ Ĩq1ti,ju“tI,Ĩu

` ČpJ ´ J̃q1ti,ju“tJ,J̃u

ı

.

Let r ě 3, r ď k, and apply the change of variables

xℓ “ i ´ j, i, j P pr

yℓ “ i1ℓ ´ j1
ℓ, ℓ “ 1, . . . , r ´ 1,

yr “ i1r,

where the order of i, j for xℓ is determined by the order they appear in the C, Č and
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Č terms. Note that since the kernel K is non-negative and bounded,

ˇ

ˇ

ˇ

r
ź

ℓ“1

Kθpi
1
ℓ ´ j1

ℓq

ˇ

ˇ

ˇ
ď }K}8

r´1
ź

ℓ“1

K
´ yℓ
∆n

¯

.

Then, letting Dpxq – |Cpxq| _ |Čpxq|, we obtain

|AP,pr,k|

ď
}K}8

nr

n´1
ÿ

xℓ“´n`1
ℓ“1,...,r

r
ź

ℓ“1

Dpxℓq ¨

n´1
ÿ

ym“´n`1
m“1,...,r´1

r´1
ź

m“1

K
´ ym
∆n

¯

n
ÿ

yr“1

1

ď
}K}8

nr´1

˜

ÿ

xPZ

Dpxq

¸r

¨

n´1
ÿ

ym“´n`1
m“1,...,r´1

r´1
ź

m“1

K

ˆ

ym
∆n

˙

“ O

˜

ˆ

∆n

n

˙r´1
¸

.

(6.23)

where we used that by Relation (6.18),
ř

xDpxq ă 8 and the compactness of the

support of K.

Using (6.23), in view of (6.22), one immediately has that

EpT k
n q “ O

¨

˝

´ n

∆n

¯k{2

¨ max
m“1,¨¨¨ ,tk{2u

r1`¨¨¨`rm“k, rtě2

´∆n

n

¯

řm
t“1prt´1q

˛

‚” O

˜

ˆ

∆n

n

˙k{2´M
¸

,

where

M – max
m“1,¨¨¨ ,tk{2u

!

m : r1 ` ¨ ¨ ¨ ` rm “ k, where rt P t2, ¨ ¨ ¨ , ku

)

.

Clearly, if k is odd, then M “ pk´1q{2, we have k{2´M “ 1{2 and by the above

bound, we obtain

ErT k
n s “ Opp∆n{nq

1{2
q,

completing the proof of Proposition VI.7 in this case. Note that this moment vanishes

222



as n Ñ 8.

If k is even, then M “ k{2 and k{2 ´ M “ 0. By the above argument, the only

pairings that do not vanish asymptotically, as n Ñ 8, correspond to r1 “ ¨ ¨ ¨ “ rk{2 “

2. That is, the indices ti1, j1, ¨ ¨ ¨ , ik, jku are paired into k{2 irreducible sub-pairings

of order 2 and this case algebraically reduces to the case k “ 2.

Consider four indices ti1, j1, i2, j2u and let A
pti1,j2u,ti2,j1uq

P,k and A
pti1,i2u,tj1,j2uq

P,k be the

terms of (6.22) corresponding to the subpairings tti1, j2u,ti2, j1uu and tti1, i2u,tj1, j2uu

respectively. Let also

A
pti1,j1,i2,j2uq

P,k – A
pti1,j2u,ti2,j1uq

P,k ` A
pti1,i2u,tj1,j2uq

P,k

By the first part of the proof, the sum of these two order-2 irreducible subpairings

that correspond to the same indices ti1, j1, i2, j2u contributes the following term to

the rate of the expectation:

´ n

∆n

¯1

A
pti1,j1,i2,j2uq

P,k Ñ σ2
f pθq –

´

fpθq
2

` 1t0,˘πupθq|f̌pθq|
2
¯

}K}
2
2,

as n Ñ 8. Therefore, in view of (6.22),

µk “ p2πq
kEpT k

n q “

ˆ

n

∆n

˙k{2
ÿ

pPP
p“pr1Y¨¨¨Yprm , mě1

m
ź

t“1

AP,prt ,k

—

ˆ

n

∆n

˙k{2
ÿ

pPP
p“pr1Y¨¨¨Yprk{2

r1“...“rk{2“2

m
ź

t“1

AP,prt ,k

“

ˆ

n

∆n

˙k{2
ÿ

qPQ2

q“tti1
1,j

1
1,i

1
2,j

1
2u,¨¨¨ ,

ti1
k´1,j

1
k´1,i

1
k,j

1
kuu

ź

ℓ,m“1,...,k
ℓ‰m

´

A
pti1

ℓ,j
1
mu,ti1

m,j1
ℓuq

P,k ` A
pti1

ℓ,i
1
mu,tj1

ℓ,j
1
muq

P,k

¯

“

ˆ

n

∆n

˙k{2
ÿ

qPQ2

q“tti1
1,j

1
1,i

1
2,j

1
2u,¨¨¨ ,

ti1
k´1,j

1
k´1,i

1
k,j

1
kuu

ź

ℓ,m“1,...,k
ℓ‰m

A
pti1

ℓ,j
1
ℓ,i

1
m,j1

muq

P,k
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Ñ N2pkq ˆ

”

σ2
f pθq

ık{2

,

where N2pkq denotes the number of ways one can partition the set ti1, j1, ¨ ¨ ¨ , ik, jku

into k{2 sets of 4 members including both i and j of the same index, and Q2 denotes

the collection of all those partitions.

To complete the proof of Proposition VI.7, it remains to argue that N2pkq “

|Q2| “ pk ´ 1q!!. Note that every q P Q2 is determined by a partition into sets of 4

indices tiℓ1 , jℓ1 , iℓ2 , jℓ2u from the 2k symbols ti1, j1, ¨ ¨ ¨ , ik, jku. Thus, determining the

number N2pkq is equivalent to counting the number of partitions of the set ti1, ¨ ¨ ¨ , iku

into 2´point subsets tiℓ1 , iℓ2u. The number of ways to pick the first pair is
`

k
2

˘

, the

second pair
`

k´2
2

˘

, and so on. Therefore N2pkq equals

1

pk{2q!

ˆ

k

2

˙

¨

ˆ

k ´ 2

2

˙

¨ ¨ ¨

ˆ

2

2

˙

“ pk ´ 1q!!,

where we divide by pk{2q! since the order of the subsets tiℓ1 , iℓ2u does not matter.

6.4.2 The general case

The purpose of this section is to finish the verification of (ii) of Proposition VI.6

for a general H under the assumptions of the Proposition. Recall that we already

verified (ii) for the spatial setting H “ C in the previous subsection. The extension

from the scalar to the general case is actually quite straightforward. We illustrate

this for the second moment.

Recall that Xgℓpiq “ xXpiq, gℓy. Denote p2πq2E r
řm

ℓ“1 aℓ xTngℓ, gℓys
2
by An,2. By

Isserlis’ formula in Lemma VI.12,

An,2 “

m
ÿ

ℓ1,ℓ2“1

aℓ1aℓ2
1

n∆n

n
ÿ

i1,j1“1

n
ÿ

i2,j2“1

Kθpi1 ´ j1qKθpi2 ´ j2q

ˆ E
! ”

Xgℓ1
pi1qXgℓ1

pj1q ´ EXgℓ1
pi1qXgℓ1

pj1q
ı
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ˆ

”

Xgℓ2
pi2qXgℓ2

pj2q ´ EXgℓ2
pi2qXgℓ2

pj2q
ı )

“

m
ÿ

ℓ1,ℓ2“1

aℓ1aℓ2
1

n∆n

n
ÿ

i1,j1“1

n
ÿ

i2,j2“1

Kθpi1 ´ j1qKθpi2 ´ j2q

ˆ

”

EXgℓ1
pi1qXgℓ1

pj1qXgℓ2
pi2qXgℓ2

pj2q

´ EXgℓ1
pi1qXgℓ1

pj1qEXgℓ2
pi2qXgℓ2

pj2q
ı

“

m
ÿ

ℓ1,ℓ2“1

aℓ1aℓ2
1

n∆n

n
ÿ

i1,j1“1

n
ÿ

i2,j2“1

Kθpi1 ´ j1qKθpi2 ´ j2q

ˆ EXgℓ1
pi1qXgℓ2

pj2qEXgℓ2
pi2qXgℓ1

pj1q

`

m
ÿ

ℓ1,ℓ2“1

aℓ1aℓ2
1

n∆n

n
ÿ

i1,j1“1

n
ÿ

i2,j2“1

Kθpi1 ´ j1qKθpi2 ´ j2q

ˆ EXgℓ1
pi1qXgℓ2

pi2qEXgℓ1
pj1qXgℓ2

pj2q

— rAn,2 ` An,2.

Define

Cgℓ1 ,gℓ2
ptq – EXgℓ1

ptqXgℓ2
p0q. (6.24)

Start with θ R t0,˘πu. By the same arguments as in Proposition VI.7, one can focus

only on rA2. By the change of variables

x1 “ i1 ´ j2, x2 “ i2 ´ j1,

y1 “ i1 ´ j1, y2 “ i1,

we have that

rAn,2 “

m
ÿ

ℓ1,ℓ2“1

aℓ1aℓ2
1

n∆n

n´1
ÿ

x1,x2“´n`1

Cgℓ1 ,gℓ2
px1qCgℓ1 ,gℓ2

p´x2q

ˆ

pn´1q^pn´1`x1`x2q
ÿ

y1“p1´nq_p1´n`x1`x2q

Kθpy1qKθpx1 ` x2 ´ y1q

n^pn`y1q
ÿ

y2“1_p1`y1q

1
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“

m
ÿ

ℓ1,ℓ2“1

aℓ1aℓ2

n´1
ÿ

x1,x2“´n`1

Cgℓ1 ,gℓ2
px1qe

ix1θCgℓ1 ,gℓ2
p´x2qe´ix2θ

ˆ
1

∆n

pn´1q^pn´1`x1`x2q
ÿ

y1“p1´nq_p1´n`x1`x2q

Kpy1qKpx1 ` x2 ´ y1q
n ´ |y1|

n

„

m
ÿ

ℓ1,ℓ2“1

aℓ1aℓ24π
2

ż 1

y“´1

K2
pyqdy

ˇ

ˇ

ˇ

8
ÿ

x“´8

Cgℓ1 ,gℓ2
pxqeixθ

ˇ

ˇ

ˇ

2

based on the proof of Proposition VI.7. By (6.24), this is precisely

4π2

ż 1

y“´1

K2
pyqdy

m
ÿ

ℓ1,ℓ2“1

aℓ1aℓ2 | xfpθqgℓ1 , gℓ2y |
2.

The derivations for An,2 are similar. For instance, consider θ “ 0:

An,2 “
1

n∆n

n
ÿ

i1,j1“1

n
ÿ

i2,j2“1

K0pi1 ´ j1qK0pi2 ´ j2q

ˆ

m
ÿ

ℓ1,ℓ2“1

aℓ1aℓ2Čgℓ1 ,gℓ2
pi1 ´ i2qČgℓ1 ,gℓ2

pj1 ´ j2q,

where

Čgℓ1 ,gℓ2
ptq – ErXgℓ1

ptqXgℓ2
p0qs “

A

E
”

Xptq b Xp0q

ı

gℓ2 , gℓ1

E

“ xČptqgℓ2 , gℓ1y.

Making the change of variables

x1 “ i1 ´ i2, x2 “ j1 ´ j2,

y1 “ i1 ´ j1, y2 “ i1,

we have that

An,2 “

m
ÿ

ℓ1,ℓ2“1

aℓ1aℓ2
1

∆n

n´1
ÿ

x1,x2“1´n

Čgℓ1 ,gℓ2
px1qČgℓ1 ,gℓ2

px2q
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ˆ

pn´1q^pn´1q`x1´x2
ÿ

y1“p1´nq_p1´n`x1´x2q

K

ˆ

y1
∆n

˙

K

ˆ

´x1 ` x2 ` y1
∆n

˙

n ´ |y1|

n

„ 4π2

ż 1

y“´1

K2
pyqdy

m
ÿ

ℓ1,ℓ2“1

aℓ1aℓ2
ˇ

ˇ

@

f̌p0qgℓ2 , gℓ1
D
ˇ

ˇ

2
,

using again the arguments of the proof of Proposition VI.7. Thus, we have verified

(ii) of Proposition VI.6 for k “ 2.

By the definition of pseudo-covariance in (4.4),

ErXgℓ1
ptqXgℓ2

p0qs “

A

E
”

Xptq b Xp0q

ı

gℓ2 , gℓ1

E

“ xČptqgℓ2 , gℓ1y “ Čgℓ1 ,gℓ2
ptq.

In a similar manner, the derivation of E r
řm

ℓ“1 aℓ xTngℓ, gℓys
k
for k ě 3 for a general

space H can be extended from that for the scalar case, and the details are omitted.

6.5 Cumulants and Isserlis’ formulas

6.5.1 Cumulants for functional data

This section provides an extension of Isserlis’ theorem to the regime of Hilbert

space valued Gaussian random variables. This extension is critically used in the

verification of property (ii) of Theorem VI.5 in Section 6.4. We start by providing

the definition of the cumulants for scalar random variables taking values in R.

Definition VI.8. Let Y1, . . . , Yk be random variables taking values in R such that

Ep
ś

jPB Yjq is well defined and finite for all subsets B of t1, . . . , ku. Then,

cum pY1, . . . , Ykq –
ÿ

ν“pν1,...,νqq

p´1q
q´1

pq ´ 1q!
q
ź

l“1

E

«

ź

jPνl

Yj

ff

,

where the sum is over all unordered partitions of t1, . . . , ku.

The following lemma follows from the discussion on page 34 of Rosenblatt (1985).
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Lemma VI.9. Let Yi, i “ 1, . . . , k be real random variables such that Ep
ś

jPB Yjq is

well defined and finite for all subsets B of t1, . . . , ku. Then

ErY1 ¨ . . . ¨ Yks “
ÿ

ν“pν1,...,νpq

p
ź

l“1

cumpYi; i P νlq,

where the sum is over all the unordered partitions of t1, . . . , ku.

Proposition VI.10. Let tXptqu be a stochastic process taking values in a Hilbert

space H, where Ep}Xptq}4q ă 8 for all t. Note that we do not assume here X to be

real. Fix an arbitrary real CONS tei, i P Iu of H and denote by Xiptq – xXptq, eiy.

Then for any t, s, w, v P Rd, we have that

cum pXptq, Xpsq, Xpwq, Xpvqq “
ÿ

i

ÿ

j

cumpXjptq, Xipsq, Xjpwq, Xipvqq.

Proof. Recall the definition of cumulant in (IV.11):

cum pXptq, Xpsq, Xpwq, Xpvqq

“ E xXptq b Xpsq, Xpwq b XpvqyHS ´ xEpXptq b Xpsqq,EpXpwq b XpvqqyHS

´ E xXptq, XpwqyH ¨ E xXpvq, XpsqyH

´

A

EpXptq b Xpvqq,EpXpwq b Xpsqq

E

HS
.

For any xp1q, . . . , xp4q P H,

xxp1q b xp2q, xp3q b xp4qyHS “
ÿ

i

xpxp1q b xp2qqei, pxp3q b xp4qqeiyH

“ xxp1q, xp3qyH xxp2q, xp4qyH

“
ÿ

i

ÿ

j

xip1qxip3qxjp2qxjp4q.
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It follows that

xXptq b Xpsq, Xpwq b XpvqyHS “
ÿ

i

ÿ

j

XipsqXipvqXjptqXjpwq.

It suffices to show that

E xXptq b Xpsq, Xpwq b XpvqyHS “
ÿ

i

ÿ

j

EpXipsqXipvqXjptqXjpwqq,

where the interchange of the order of summation and expectation can be justified by

the fourth-moment assumption on the Xptq and Fubini’s Theorem.

Similarly, we have that

xEpXptq b Xpsqq,EpXpwq b XpvqqyHS “
ÿ

i

ÿ

j

EpXipsqXjptqqEpXipvqXjpwqq

and

xEpXptq b Xpvqq,EpXpwq b XpsqqyHS “
ÿ

i

ÿ

j

EpXjptqXipvqqEpXipsqXjpwqq,

where we used the fact that the CONS teju is real in order to writeXpsq “
ř

iXipsqej.

Finally,

E xXptq, XpwqyH ¨ E xXpvq, XpsqyH “
ÿ

i

ÿ

j

EXjptqXjpwqEXipvqXipsq.

Gathering all four terms one can easily see that the cumulant sum

ÿ

i

ÿ

j

cumpXjptq, Xipsq, Xjpwq, Xipvqq

is reconstructed.
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We end this subsection with a remark on the connection with a related but different

notion of cumulant employed in Panaretos and Tavakoli (2013).

Remark VI.11. Panaretos and Tavakoli (2013) defines a notion of cumulant on the

bottom of page 571 of the paper. In this remark, we will attempt to explain the

connection between the condition Cp0, 4q in Panaretos and Tavakoli (2013) with (c)

of Assumption V1.

For simplicity, we shall work with real Hilbert spaces. Recall that in Panaretos and

Tavakoli (2013), the authors consider H “ L2r0, 1s and define the so-called cumulant

kernel:

cumkerpXpt1q, ¨ ¨ ¨ , Xptkqq –
ÿ

ν“pν1,...,νpq

p´1q
p´1

pp ´ 1q!
p
ź

ℓ“1

E
”

ź

jPνℓ

Xpτj; tjq
ı

,

where Xptq – pXpτ ; tq, τ P r0, 1sq P L2pr0, 1sq. For a kernel of order 2k, one can

define the so-called cumulant operator R : L2pr0, 1skq Ñ L2pr0, 1skq, as

Rphq –

ż

r0,1s2

cumkerpXpt1q, ¨ ¨ ¨ , Xpt2kqqpτ1, ¨ ¨ ¨ , τ2kqhpτk`1, ¨ ¨ ¨ , τ2kqdτk`1 ¨ ¨ ¨ dτ2k,

where the latter is understood as a function of pτ1, ¨ ¨ ¨ , τkq that can be shown to

belong to L2pr0, 1skq.

Fixing a CONS teju of L2pr0, 1sq, for k “ 2, we obtain that

cumkerpXpt1q, ¨ ¨ ¨ , Xpt4qq “
ÿ

i,j,k,ℓ

cumpXipt1q, Xjpt2q, Xkpt3q, Xℓpt4qqei b ej b ek b eℓ,

where cum stands for the usual cumulant of random variables, and where Xiptq “

xXptq, eiy are the coordinates of Xptq in the basis teju. Thus, in the basis tei b

eju of L2pr0, 1s2s ” L2pr0, 1sq b L2pr0, 1sq, one can view the cumulant operator R :
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L2pr0, 1sq b L2pr0, 1sq Ñ L2pr0, 1sq b L2pr0, 1sq as

R “
ÿ

i,j,k,ℓ

rpi,jq,pk,ℓqpei b ejq b pek b eℓq,

where rpi,jq,pk,ℓq – cumpXipt1q, Xjpt2q, Xkpt3q, Xℓpt4qq.

From this perspective, by (4.20), we obtain that our notion of a cumulant coincides

with the trace of the Hilbert-Schmidt cumulant operator R:

tracepRq “ cumpXpt1q, Xpt2q, Xpt3q, Xpt4qq “
ÿ

i,j

rpi,jq,pi,jq.

On the other hand, the norm of the cumulant kernel employed in the C(0,4) condition

of Panaretos and Tavakoli (2013) becomes:

}cumkerpXpt1q, ¨ ¨ ¨ , Xpt4qq}
2
L2 “

ÿ

i,j,k,ℓ

cumpXipt1q, Xjpt2q, Xkpt3q, Xℓpt4qq
2.

Whereas, recall that

cumpXpt1q, ¨ ¨ ¨ , Xpt4qq “
ÿ

i,j,k,ℓ

cumpXipt1q, Xjpt2q, Xkpt3q, Xℓpt4qq.

Thus, the condition Cp0, 4q of Panaretos and Tavakoli (2013) that

ÿ

t1,t2,t3

}cumkerpXpt1q, Xpt2q, Xpt3q, Xp0qq}L2 ă 8

is neither strictly weaker nor stronger than our condition (c) in Assumption V1.

6.5.2 Isserlis’ formulas

The following is an extension of the classical Isserlis’ formula to univariate complex

Gaussian variables.
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Lemma VI.12. Let Zj “ Xj ` iYj, j “ 1, 2, ¨ ¨ ¨ be zero-mean, complex jointly Gaus-

sian random variables. That is, Xj, Yj, j “ 1, 2, ¨ ¨ ¨ are zero-mean jointly Gaussian

R-valued random variables. Then, for all m P N, we have Er
ś2m´1

i“1 Zjs “ 0, and

E

˜

2m
ź

j“1

Zj

¸

“
ÿ

π

m
ź

i“1

EpZaπ,i
Zbπ,i

q,

where a pairing π refers to a decomposition of t1, . . . , 2mu into m pairs, which are

denoted as paπ,i, bπ,iq, i “ 1, . . . ,m.

Proof. Recall that Zj “ Xj `iYj, where Xi, Yi are real. Let σ
p0,0q

a,b “ EpXaXbq, σ
p0,1q

a,b “

EpXaYbq, σ
p1,0q

a,b “ EpYaXbq, σ
p1,1q

a,b “ EpYaYbq. Write

E

˜

2m
ź

j“1

pXj ` iYjq

¸

“
ÿ

SĂt1,...,2mu

i|S|E

˜

ź

jRS

Xj

ź

kPS

Yk

¸

.

By the Isserlis formula for real Gaussian random variables introduced by Isserlis

(1918), we have

E

˜

ź

jRS

Xj

ź

kPS

Yk

¸

“
ÿ

π

m
ź

i“1

σ
p1paπ,iPSq,1pbπ,iPSqq

aπ,i,bπ,i
,

and hence

E

˜

2m
ź

j“1

pXj ` iYjq

¸

“
ÿ

π

ÿ

SĂt1,...,2mu

i|S|

m
ź

i“1

σ
p1paπ,iPSq,1pbπ,iPSqq

aπ,i,bπ,i
.
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For any given π and S, we let αi “ 1paπ,i P Sq, βi “ 1pbπ,i P Sq. Therefore,

E

˜

2m
ź

j“1

pXj ` iYjq

¸

“
ÿ

π

ÿ

αi,βi“0,1
i“1,...,m

i
ř

i αi`
ř

i βi

m
ź

i“1

σ
pαi,βiq

aπ,i,bπ,i

“
ÿ

π

m
ź

i“1

ÿ

αi,βi“0,1

iαi`βiσ
pαi,βiq

aπ,i,bπ,i

“
ÿ

π

m
ź

i“1

p1, iqCpaπ,i, bπ,iqp1, iqJ,

(6.25)

where

Cpa, bq “

¨

˚

˝

EpXaXbq EpXaYbq

EpXbYaq EpYaYbq

˛

‹

‚

.

Notice that ErZaZbs “ p1, iqCpa, bqp1, iqJ and thus the right-hand side of (6.25) equals

ÿ

π

m
ź

i“1

EpZaπ,i
Zbπ,i

q,

which shows that the Isserlis formula for complex-valued r.v.’s is exactly the same as

that for real-valued random variables.

Lemma VI.13. Let tXptq, t P Ru be a stationary Gaussian process in C with Cpt ´

sq “ EXptqXpsq and Čpt´sq “ EXptqXpsq. Consider Xptiq, Xpsiq, i “ 1, . . . , N`M

for some N,M P Z, with N ě 0 and M ě 0. Denote by PN,M the class of all pairings

of the set

tti, si|i “ 1, . . . , N ` Mu

and by PN,M,´k the class of all pairings of

tti, si|i “ 1, . . . , N ` Muzttk, sku.
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This means that ũ P PN,M iff

ũ “

!

tτ, σu , tτ, τ̃u , tσ, σ̃u | τ ‰ τ̃ P tti : i “ 1, . . . , N ` Mu,

σ ‰ σ̃ P tsi : i “ 1, . . . , N ` Mu

)

and each symbol ti, si, i “ 1, . . . , N ` M can be used only once. Then,

E

«

N
ź

n“1

XptnqXpsnq ¨

M
ź

m“1

´

XptN`mqXpsN`mq ´ CptN`m ´ sN`mq

¯

ff

“
ÿ

ũPPN,M :

YM
m“1tttN`m,sN`muuXũ“H

ź

ti,juPũ

”

Cpτ ´ σq1ti,ju“tτ,σu ` Čpτ ´ τ̃q1ti,ju“tτ,τ̃u

` Čpσ ´ σ̃q1ti,ju“tσ,σ̃u

ı

.

(6.26)

This Isserlis-type result is used in the proof of Proposition VI.7 (see e.g. (6.22)),

where the kth order moments of the spectral density estimators involve terms as in

(6.26) where N “ 0. The reason we formulate (6.26) for general N ě 0 is to facilitate

the proof of this relation by the method of induction.

Proof of Lemma VI.13. We will prove the desired equality by using induction on N`

M . When N `M “ 1, the equality holds trivially. For the basis of our induction, we

use N ` M “ 2. We look at the three different cases.

(a) N “ 2. The equality trivially holds by the Isserlis’ formula.

(b) N “ M “ 1. We have

E
”

Xpt1qXps1q ¨ pXpt2qXps2q ´ Cpt2 ´ s2qq

ı

“ E
”

Xpt1qXps1qXpt2qXps2q
ı

´ Cpt1 ´ s1qCpt2 ´ s2q

“ E
”

Xpt1qXps1q
ı

E
”

Xpt2qXps2q
ı

` E rXpt1qXpt2qsE
”

Xps1qXps2q
ı

` E
”

Xpt1qXps2q

ı

E
”

Xps1qXpt2q
ı

´ Cpt1 ´ s1qCpt2 ´ s2q
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“ Čpt1 ´ t2qČps1 ´ s2q ` Cpt1 ´ s2qCpt2 ´ s1q

where Isserlis’ formula was used in the second equality.

(c) M “ 2. We have that

E
”

pXpt1qXps1q ´ Cpt1 ´ s1qq ¨ pXpt2qXps2q ´ Cpt2 ´ s2qq

ı

“ E
”

Xpt1qXps1qXpt2qXps2q
ı

´ Cpt1 ´ s1qCpt2 ´ s2q

“ Čpt1 ´ t2qČps1 ´ s2q ` Cpt1 ´ s2qCpt2 ´ s1q

(6.27)

similarly to case pbq.

For the induction hypothesis, we assume that the desired equality holds when

N ` M “ r. Let now N ` M “ r ` 1. We discern two cases.

(a) N “ r ` 1. The result follows directly by Isserlis’ formula.

(b) N ă r ` 1. The following holds

E

«

N
ź

n“1

XptnqXpsnq ¨

M
ź

m“1

´

XptN`mqXpsN`mq ´ CptN`m ´ sN`mq

¯

ff

“ E

«

N`1
ź

n“1

XptnqXpsnq

M
ź

m“2

´

XptN`mqXpsN`mq ´ CptN`m ´ sN`mq

¯

ff

´ E

«

N
ź

n“1

XptnqXpsnq ¨

M
ź

m“2

´

XptN`mqXpsN`mq ´ CptN`m ´ sN`mq

¯

ff

ˆ CptN`1 ´ sN`1q

“ . . .

“ E

«

N`M
ź

n“1

XptnqXpsnq

ff

´

M
ÿ

m“1

CptN`m ´ sN`mqE
”

N`m´1
ź

n“1

XptnqXpsnq

¨

M
ź

k“m`1

´

XptN`kqXpsN`kq ´ CptN`k ´ sN`mq

¯ı
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Applying Isserlis’ formula the first summand is equal to

ÿ

ũPPN,M

ź

ti,juPũ

”

Cpτ ´ σq1ti,ju“tτ,σu ` Čpτ ´ τ̃q1ti,ju“tτ,τ̃u

` Čpσ ´ σ̃q1ti,ju“tσ,σ̃u

ı

.

By applying the induction hypothesis in the second summand, since all terms

involve r factors in total, we have that the second term is equal to

M
ÿ

m“1

CptN`m ´ sN`mq
ÿ

ũPPN,M,´m:

Y
N`M
i“N`m`1ttti,siuuXũ“H

ź

ti,juPũ

”

Cpτ ´ σq1ti,ju“tτ,σu

` Čpτ ´ τ̃q1ti,ju“tτ,τ̃u ` Čpσ ´ σ̃q1ti,ju“tσ,σ̃u

ı

.

Denote the first term of the previous sum as A, the second term as B, write

B –
řM

m“1Bm. Also, let

C ũ
i,j – Cpτ ´ σq1ti,ju“tτ,σu ` Čpτ ´ τ̃q1ti,ju“tτ,τ̃u ` Čpσ ´ σ̃q1ti,ju“tσ,σ̃u.

Then we have that

A ´ BM “
ÿ

ũPPN,M

ź

ti,juPũ

C ũ
i,j ´ CptN`M ´ sN`Mq

ÿ

ũ1PPN,M,´M

ź

ti,juPũ1

C ũ1

i,j

“
ÿ

ũPPN,M :
ttN`M ,sN`M uRũ

ź

ti,juPũ

C ũ
i,j.

Similarly

A ´ BM ´ BM´1 “
ÿ

ũPPN,M :

YM
i“M´1tttN`i,sN`iuuXũ“H

ź

ti,juPũ

C ũ
i,j.

236



Continuing this way for all terms Bj, j “ 1, . . . ,M , we have that the proof is

complete.
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CHAPTER VII

Future Directions

The purpose of this chapter is to succinctly present the core message of the two

parts of this thesis. After summarizing the main contributions of each chapter, we

discuss potential expansions of our work and questions that could be posed as future

research problems, since they yet remain unanswered in this dissertation.

7.1 Anomaly Detection

In Chapter II, we studied the anomaly detection problem for high dimensional data

in the context of Internet traffic. We assumed that the observed traffic x⃗t follows the

linear factor model

x⃗t “ Bf⃗t ` u⃗t ` ϵ⃗t

and we developed Algorithm 1, in order to detect the anomalies u⃗t. The effective-

ness of this algorithm is based on the incoherence conditions of Section 2.2.3, under

which we expect the anomalies to “pass-through” to the residuals, obtained after the

projection step of the algorithm. Mathematically, we have that

r⃗t “ Proj
colp pBq

Kpx⃗tq “ Proj
colp pBq

KpBf⃗t ` u⃗t ` ϵ⃗tq « u⃗t ` ϵ⃗t, (7.1)
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which means that if the estimation of the column subspace of B is sufficiently good,

then the anomalies will not get filtered out after the projection on the orthogonal

complement of colp pBq. This follows from the incoherence conditions, because of which

the anomalies do not belong on the subspace produced by the columns of B.

A theoretical result quantifying the approximation in (7.1) is stated in Proposition

II.3. Note, however, that the inequalities (2.9) and (2.10) both depend on the quantity

E}pΣ ´ Σ}2, where Σ “ BBJ and pΣ is an estimate of Σ. One challenge, that has not

been addressed in Chapter II, is the estimation of bounds for }pΣ´Σ}. Specifically, in

order to complete the result of Proposition II.3, one needs to find appropriate bounds

on E}pΣ ´ Σ}2 under assumptions on the dependence structure of ϵ⃗t.

An additional challenge for this chapter pertains to the efficient application of

Algorithm 1. We have demonstrated the effectiveness of our method in both synthetic

and real-world Darknet data and have also shown its superiority against competing

methods in the literature. In order to further improve the algorithm, we would

like to implement it efficiently in an online fashion. In particular, apart from the

initialization phase, where a big “warm-up” dataset has to be utilized, we would like

to find a way to make the rest of the algorithm absolutely sequential. This would save

resources, in both the aspect of storage space and of computation time, making the

algorithm faster to implement and thus even more suitable for quick identification of

anomalies at their onset.

7.2 Concentration Rates

Our focus in Chapter III is centered on studying the rates of Uniform Relative

Stability (URS) for Gaussian triangular arrays in the context of dependence. As

already discussed, our motivations for studying the concentration rates in the URS

property are twofold. Firstly, as established by Gao and Stoev (2020), this property is

the key to understanding the “0/1” phase-transition phenomenon in the exact support
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recovery problem for the canonical signal-plus-noise model (see (3.6)), irrespective of

the marginal distribution of the error terms ϵppiq. Secondly, utilizing the obtained

upper bounds on the rates of concentration for Gaussian triangular arrays, we want

to explore whether the URS property is preserved under transformations of Gaussian

arrays.

For broad classes of transformations of Gaussian triangular arrays, we have shown

that URS is indeed preserved, as described in Proposition III.19 and Corollary III.21.

This leads to a plethora of models, for the error terms of the signal-plus-noise model,

that obey a phase transition in the exact support recovery problem, namely whether

one can find a thresholding estimator, pSp, that achieves perfect recovery of the sparse

support set of the signal, Sp. Two characteristic models associated with these trans-

formations are the χ2 and the log-Normal model.

One interesting question arises by examining the rate upper bounds on the power

law and on the exponential power law transformations. Indeed, the former transfor-

mations, presented in Example III.23, seem to be an “easy” case in the preservation

of the URS property. The upper bound therein is

d‹,UB
p „ δUB

p ,

which means that if E is URS, then the same holds for H “ fpEq, with the covariance

structure of E playing no role. However, this is not the case for the latter trans-

formations, described in Example III.24. The order of the upper bound for these

transformations is

d‹,UB
p „ δUB

p p2 logppqq
λ{2.

Together with Conjecture III.11, this means that this rate bound is only valid for

0 ă λ ă 2. Moreover, even if λ is in this range, Theorem III.13 cannot be used

to secure that the URS property will be preserved irrespective of the dependence
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structure of E . As an example, let E have logarithmic covariance decay as in Example

III.18. Then, we have established that δUB
p „ plogppqq

´ ν
ν`1 and thus

d‹,UB
p „ plogppqq

λ
2

´ ν
ν`1 .

If ν ď λ{p2´λq, the above rate does not vanish and thus cannot be used as an upper

bound for the URS. With our results so far, whether the resulting array H “ eE
λ
is

URS, if E is URS, remains an open question. An even more general open question is

the characterization of URS for non-Gaussian triangular arrays, that are more general

than transformations of Gaussian noise, under general dependence structures.

Returning to the Gaussian regime for E , an open problem would be to explore

the relative stability of the maxima under an even broader sense of uniformity. In

particular, let the following property hold

max
|S|ěg

SĂt1,...,pu

ˇ

ˇ

ˇ

ˇ

MS

u|S|

´ 1

ˇ

ˇ

ˇ

ˇ

P
Ñ 0, as g Ñ 8,

where MS – maxiPS ϵppiq and u|S| is as defined in (3.8). Relating this property to the

exact support recovery phase transition, as well as examining if any improvements on

the upper bounds of the optimal concentration rates are possible would be a problem

of interest.

One more possible direction for future research would be focusing on applications.

Specifically, we have already mentioned that for a broad class of error models, formed

as transformations of the Gaussian model, a phase transition phenomenon holds in the

exact support recovery problem. This means that for a suitable boundary function,

there is always an appropriate thresholding estimator so that the support set of the

signal can be recovered exactly, if the signal is larger in magnitude than the boundary.

The choice of the threshold of the estimator in practice, ideally through a data-driven

approach, is an unsolved methodological question.
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Finally, all the derivations in Chapter III apply to thresholding estimators of the

signal support set. A natural question to pose is whether results of similar type hold

for support estimators not included in this category. At this time, whether a phase

transition phenomenon holds under dependence for types of estimators than are not

based on a threshold remains an open problem.

7.3 Spectral Inference

In the second part of the thesis, we focused on the estimation of the spectral

density for functional spatial data. Starting with Chapter IV, we presented a unified

approach on pointwise spectral density estimation, with results that are valid for any

finite space/time dimension and any separable Hilbert space. However, a question

that has been left unaddressed is a recommendation for the selection of the bandwidth

parameter ∆n in practice.

An answer to this problem is not trivial to obtain. Zhu and Politis (2020) provide

an empirical recommendation for a data-dependent bandwidth choice for estimators

very similar to ours. Their recommendation in Section 5 therein refers to the so-

called flat-top kernel estimators and the approach is based on the correlogram of the

observed process.

An alternative approach to deciding the bandwidth parameter could be through

the derivation of a cross-validation methodology. Consider fpθ; ∆q an estimate of

the true spectral density fpθq. The key premises of this methodology would be the

following:

1. fpθ; ∆q and fpθ1; ∆q are asymptotically independent for θ and θ1 different!

2. fpθq is “close” to fpθ1q, for θ close to θ1.

3. fpθ; ∆1q has a smaller-order bias for “large” ∆1.
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The proposed methodology would be to define

CVp∆q :“ }fpθ,∆q}
2

´ 2ℜxfpθ1,∆1q, fpθ,∆qy,

where θ1 is “nearby” θ and 0 ă ∆ ! ∆1. The idea would be to hold ∆1 fixed and

optimize CVp∆q over ∆. Alternatively, one could pick a sample of θ1piq, i “ 1, . . . , k

that are different but surround θ and define

CVkp∆q “ }fpθ,∆q}
2

´ 2
1

k

k
ÿ

i“1

ℜxfpθ1
piq,∆1q, fpθ,∆qy.

This way could provide a less-biased estimate of fpθq by averaging fpθ1piq; ∆1q over the

θ1piq’s. This methodology is relatively easy to implement and is rather “cheap” since

it doesn’t involve “leave out”. The idea is that we look at “nearby” θ1piq to break the

dependence between fpθ1; ∆1q and fpθ; ∆q. Also looking at ∆1 " ∆ ensures that the

bias of fpθ1; ∆1q is of smaller order. To the best of our knowledge, such an approach

has not been developed yet.

The development of a data-driven selection method for the bandwidth would pave

the road for the application of the estimator in practice. For this purpose, an effi-

cient algorithmic implementation remains to be constructed. Once this construction

is complete, the estimator pfnpθq could be used for the pointwise estimation of the

spectral density for a wide variety of potentially irregularly sampled functional spa-

tial stochastic processes. Moreover, the estimator could find application in testing

the reversibility of stationary stochastic processes for d ě 1. In this setting, it can

be shown that a process is time reversible if and only if the spectral density is real.

Thus an estimate of the spectral density with very small imaginary part would be a

good indicator that the process under examination is time reversible.

In Chapter V we were able to establish a minimax result for the power law decaying

covariance class, both in the discrete and the continuous time case. However, as stated
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in Remark V.4, there is a “gap” on this minimax rate result in the continuous time

case, for the coarse sampling regime (cf. Remark IV.20). The construction of a class

narrower than PC (cf. (4.36)), still depending on β and γ, so that the upper- and

lower-bounds on the rate of the estimators match in both the fine- and coarse-sampling

regimes is an open problem.

Finally, in Chapter VI we secured a CLT type result for the estimator pfnpθq,

under the extra assumption of Gaussianity of the underlying stochastic process. An

open question related to this chapter is to relax the Gaussianity assumption. In this

direction, Panaretos and Tavakoli (2013) were able to obtain some relevant results

using assumptions on the higher order cumulants of the process. Another idea to

tackle this problem would be by using the fourth moment theorem in the context of

Wiener chaos [see e.g. Peccati and Taqqu (2011)].
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Cerovecki, C., and S. Hörmann (2017), On the CLT for discrete fourier transforms of
functional time series, Journal of multivariate analysis, 154, 282–295.

Chang, C.-H., H.-C. Huang, and C.-K. Ing (2017), Mixed domain asymptotics for a
stochastic process model with time trend and measurement error, Bernoulli, 23 (1),
159–190.

Chatterjee, S. (2014), Superconcentration and related topics, vol. 15, Springer.

Czyz, J., K. Lady, S. G. Miller, M. Bailey, M. Kallitsis, and M. Karir (2013), Under-
standing IPv6 Internet Background Radiation, in IMC 2013.

Czyz, J., M. Kallitsis, M. Gharaibeh, C. Papadopoulos, M. Bailey, and M. Karir
(2014), Taming the 800 Pound Gorilla: The Rise and Decline of NTP DDoS attacks,
in Proceedings of the 2014 Conference on Internet Measurement Conference.

Dainotti, A., R. Amman, E. Aben, and K. C. Claffy (), Extracting Benefit from Harm:
Using Malware Pollution to Analyze the Impact of Political and Geophysical Events
on the Internet, SIGCOMM CCR 2012.

Dainotti, A., A. King, K. Claffy, F. Papale, and A. Pescapé (2015), Analysis of a “/0”
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aléatoire, Annals of Mathematics, pp. 423–453.

Gruber, P. M. (2007), Convex and Discrete Geometry, vol. 336, Springer Science &
Business Media.

Guyon, X. (1982), Parameter estimation for a stationary process on a d-dimensional
lattice, Biometrika, 69 (1), 95–105.

Hall, P., and P. Patil (1994), Properties of nonparametric estimators of autocovariance
for stationary random fields, Probability Theory and Related Fields, 99 (3), 399–424.

Halliwell, L. J. (2015), The Lognormal Random Multivariate, in Casualty Actuarial
Society E-Forum, Spring, p. 5.

Hannan, E. J. (1970), Multiple Time Series, xi+536 pp., John Wiley and Sons, Inc.,
New York-London-Sydney.

249
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Hörmann, S., and P. Kokoszka (2012), Functional time series, in Handbook of statis-
tics, vol. 30, pp. 157–186, Elsevier.
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