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Abstract 
 

 
Microbiomes, the collective communities of microorganisms in a particular 

habitat, play critical roles in host-associated, natural, and built environments. The cell-

cell interactions in microbiomes form expansive and complex networks, driving 

community structure and behavior. However, they are difficult to characterize, which 

prevents the rational design of interventions. As an emerging technology for elucidating 

interactions in microbiomes, microfluidic droplets (microdroplets), which are nanoliter-

scale, monodisperse water-in-oil emulsions, show tremendous promise. Microdroplets 

enable reductionist, high-throughput study of interactions by encapsulating subsets of 

communities for co-growth and analysis. Yet, major barriers to realizing this potential 

include: (1) deficiencies in our understanding of how microdroplet parameters affect 

microbial co-growth, and (2) the lack of generalizable approaches for high-throughput 

and high-resolution characterization of co-cultivated sub-communities in microdroplets. 

One critical parameter in droplet-enabled co-cultivation that has evaded 

evaluation is the droplet size. Given the same number of initial cells, a larger droplet 

increases the length scale secreted metabolites must diffuse and dilutes the initial 

concentration of cells, impacting community dynamics. To evaluate the effect of droplet 

size on a spectrum of syntrophic interactions, we cultivated a synthetic model system 

consisting of two E. coli auxotrophs, whose interactions could be modulated through 

supplementation of related amino acids in the medium. Our results demonstrate that the 
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droplet size impacts numerous aspects of the growth of a cross-feeding bi-culture, 

particularly the growth capacity, growth rate, and lag time, depending on the degree of 

the interaction. This work suggests that the droplet size should be more carefully 

evaluated based on the system of study or research objectives. 

The first approach to address the lack of technical capabilities is the utilization of 

metagenomic shot-gun sequencing for individual droplets. We demonstrated this 

approach with the encapsulation and co-cultivation of droplet sub-communities from a 

human fecal sample. From a selection of 22 droplets, we observed this approach 

provides accessibility to previously uncharacterized gut commensals. We applied 

metagenomic sequencing for the de novo reconstruction of genomes from one droplet 

sub-community and demonstrated the capability to dissect sub-communities with high 

genomic resolution. Genomic characterization of one novel member of the family 

Neisseriaceae revealed novel pathways such as the production of atherogenic 

intermediates. Future adaptation and application of this approach would enable the 

inference of specific interactions based on genomic complementarity. 

The second approach is droplet-resolved, quantitative 16S amplicon sequencing 

to profile the absolute abundance of thousands of droplet subcommunities. The 

eventual application of this methodology would be to infer interactions in co-cultivated 

droplet sub-communities based on membership and the degree of co-growth in each 

droplet. We developed novel microfluidic and molecular biology workflows for high-

throughput, droplet-based barcoding of 16S sequences and the incorporation of 

molecular standards. We benchmarked the workflow throughput and accuracy with 

constructed mock communities. The benchmarking data showed good accuracy in 
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terms of relative community composition, but further work is needed to assess absolute 

quantification and improve even amplification and sequencing depth across droplets. 

Additionally, for wide applicability across biological systems, the degree of throughput 

and generalizability need to be improved.  

In summary, we have expanded the understanding and technical capabilities 

regarding the utilization of microdroplets in deciphering interactions in microbiomes, 

enabling the technology to further advance fundamental discoveries in the field of 

microbiome science. 
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Chapter 1 : Research Background and Objective 
 

1.1 Microbiomes 

"Microbes rule the world." 

Originally coined from Bernard Dixon in 1998 (1), this statement highlights the 

importance and prevalence of the microbial world despite remaining largely hidden from 

the naked eye. Our findings since then demonstrate that this statement has only been 

proved even more true. The collective of bacteria, fungi, viruses, and protists present in 

natural systems, coined the "microbiome", house the majority of the function (2–4) and 

diversity of life (5,6) and are the most likely progenitors of complex eukaryotic life (7). 

Microbiomes are generally categorized into host-associated, environmental systems, 

and engineered systems. 

1.1.1 Host-associated systems 

Just within the human body, bacterial cells outnumber human cells by a factor of 

10 (8) and are essential for health. In the context of the gut, the microbiome contributes 

the majority of carbohydrate-degrading enzymes for the digestion of complex fibers that 

we consume (9,10) and act as our first primers for our immune response (11). The 

vaginal microbiome, in a healthy state, inhibits the growth of unwanted anaerobic 

bacteria and decreases the chances of contracting sexually-transmitted infections 

(12,13). Studies of the microbiomes of our closest evolutionary relatives – bonobos and 
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chimpanzees –  reveal that our microbiomes have specifically co-evolved over millions 

of years with us (14), suggesting that this intimate partnership is a major factor in 

human evolution. 

Studies into various animal microbiomes show intimate functional connections as 

well. Termites rely on highly efficient bacteria for the degradation of consumed wood 

and the fixation of nitrogen for growth (15). Many marine fish and squids acquire and 

house bioluminescent bacteria from surrounding water for cloaking strategies to evade 

predators (16,17). Even the simplest multicellular organisms, sponges, have dense 

microbiomes comprising 30% of their body mass. The sponge microbiome produces 

various biologically-active secondary metabolites to protect sponge from predators and 

acts as a major reservoir for natural products for biotechnological development (18). 

Lastly, plant microbiomes are based on complex signaling systems for the 

selection of specific rhizosphere bacteria from the soil (19) and are known for their 

importance for disease-resistance (20), nitrogen-fixation (21), and even salt tolerance 

(22). 

1.1.2 Environmental systems 

Terrestrial, aquatic, and oceanic systems are major reservoirs for 

biogeochemical cycles (23,24). A stunning portion of biologically-mediated 

biogeochemistry is microbially-mediated (25).  

For example, ocean microbiomes, which are estimated to be 90% of biomass in 

the ocean (26), are critical for the flux of global carbon. The cyanobacteria 

Prochlorococcus and Synechococcus are the most abundant photosynthesizers, and 

their activity is hypothesized to account for around 30% of all global primary production 
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(27). The sedimentation of microbial mass to the ocean floor is a long-term reservoir for 

the sequestration of carbon dioxide (28,29). However, the lysis of marine bacteria by 

bacteriophage though the “viral shunt” (30) greatly influences how much of this fixed 

carbon becomes sequestered and quantifying this is highly desired.  

Aquatic freshwater systems, such as lakes and rivers, are similar to oceanic 

systems in regard to their contributions to biogeochemical cycles, but one major 

distinction is that aquatic systems are source waters for drinking water. The 

contamination of these bodies by certain pathogens or biological agents requires proper 

disinfection and treatment. For example, Microcystis aeruginosa is a globally-prevalent 

cyanobacteria and contributor of cyanobacterial harmful algae blooms (cHABs) which 

can produce potent toxins and compounds that foul freshwater bodies (31). 

In terrestrial forests, the largest carbon reservoirs are bacterial and fungal 

biomass in soils (32). In permafrost, the rate of accumulation of carbon fixation greatly 

exceeds respiration, making these systems some of the largest global carbon reservoirs 

(33). Of major concern regarding global climate change is the observation that 

increasing temperatures increases rates of respiration, making these largely recalcitrant 

reservoirs labile (26). Additionally, soil microbiomes are a largely untapped source of 

natural products (34) and have provided novel families of antibiotics critical for 

outpacing the rate of antibiotic resistance (35). Lastly, the transformations of iron, 

especially in acid mine drainage (36), and many other heavy metals are microbially-

mediated (37,38) and have important considerations in their mobility and toxicity. 

1.1.3 Engineered systems 
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Many microbiomes include those that have naturally inhabited or are intentionally 

inoculated into anthropomorphically constructed infrastructure. This can include large 

centralized systems such as municipal drinking water treatment. While drinking water 

disinfection deactivates a large portion of organisms, they also select for organisms that 

can resist disinfection systems such as chlorination (39). Additionally, distribution 

systems for drinking water hold microbial biofilms that contribute to microbially-mediated 

corrosion of pipes (40). In addition to physiochemical processes for the removal of 

contaminants, many wastewater treatment facilities depend on microbiomes. For 

example, aerobic communities comprised mostly of Zoogleoa flocs to absorb the large 

amounts of organic carbon from municipal wastewater (41), while Accumulibacter 

removes phosphorus (42), and consortia under certain redox conditions remove 

nitrogen through nitrification and denitrification (43). Instead of only being used for 

removal, anaerobic microbiomes are also being used for the recovery of energy and 

nutrients from waste streams in processes such as anaerobic digestion or chain 

elongation (44). 

Many microbiomes inhabit our built infrastructure, including the air and surfaces 

in our homes, transportation systems, schools, and workplaces. Increases in heat and 

humidity can increase the degree of metabolite production by the microbiome of our 

living spaces, which has been associated with certain diseases, such as eczema, onset 

and exacerbation of asthma, and hypersensitivity pneumonitis (45). 

In inspiration from natural systems, the biochemical production of certain 

commodity chemicals and fuels from waste streams is performed by microbial 

communities (46,47). These systems are different in that they are not natural 
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communities but are curated and constructed synthetically for the optimization of 

specific metabolic outputs. 

1.2 Microbial Interactions 

To perform their ecosystem function in many of the above-described systems, 

microbiomes operate as highly interconnected and spatiotemporally complex units. 

Studies of multiple microbiomes show diverse physical arrangements and network 

structures, but most microbiomes follow a division of labor strategy at multiple levels. 

Typically, there is a linear trophic flow of energy from one level to the next. In Figure 

1.1, this is illustrated as the degradation of complex polysaccharides to shorter chains, 

monosaccharides, and eventually fermentation to short-chain fatty acids, such as 

butyrate and acetate. Each step is performed by a different set of microbes at each 

trophic level. While this illustration is highly simplistic, some variation on this structure is 

observed in most natural systems. Another layer of complexity is the exchange of 

metabolites between different trophic levels. Auxotrophs, organisms that acquire 

required metabolites from the environment or from other organisms, are prevalent in 

natural communities and typically exchange amino acids and vitamins. Other complex 

interactions exist, such as inhibition in which organisms produce bacteriocidal 

compounds such as antibiotics to inhibit the growth of other organisms. This illustration 

also did not consider other essential elements, such as nitrogen, iron, and oxygen, 

which provide further dimensions of complexity. 

 



 6 

 

Figure 1.1: Example microbiome interaction network to demonstrate generalized microbiome structure, 
comprising of a linear trophic cascade for the flow of carbon and metabolite exchange between 
auxotrophs between the different trophic levels. “Arg” is shorthand for the amino acid arginine. Figure 
adapted from (48). 

 

The exchange of metabolites between cells is generally referred to as syntrophy. 

The titular example of syntrophy is in anaerobic communities (Figure 1.2a): when 

secondary fermenters utilize short chain fatty acids, they produce hydrogen as a waste 

product which serves as an electron source for methanogens or sulfate-reducers who 

utilize this residual hydrogen for their own metabolism. This process is mutualistic: 

excess hydrogen is utilized which renders fermentation by syntrophs thermodynamically 

favorable and the hydrogenotrophic organisms receive their electron source (Figure 

1.1b). This mutualistic metabolic cross-feeding is quite physically-intimate (49,50) 

(Figure 1.1c). Outside of this specific context, a very common observation in many 

microbiomes is that the production of amino acids or amino acid precursors is divided 

amongst many different species, with no one single species self-sufficient on the 

production of all amino acids (51). These syntrophic interactions are ubiquitous in 

microbiomes based on computation predictions (52) and observational studies (53–55). 
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Figure 1.2: Microbial syntrophy in a natural context. (a) General trophic structure in anaerobic 
communities. (b) Example of syntrophic coupled metabolism in which interspecies hydrogen transfer 
removes the side-product hydrogen from ethanol fermentation and renders the metabolism as 
thermodynamically favorable. (c) Fluorescence microscopy demonstrating close physical association 
between methanogen Methanobrevibacter smithii (blue) and acetate-producing and butyrate-producing 
Christensenella minuta (red). Scale bar represents 10 µm. Figures adapted from (56). Microscopy image 
taken from (50). 

 

1.3 Predicting and Manipulating Microbiomes 

While many microbiomes contribute to healthy functioning, many of them can 

also contribute to disease, ecosystem damage, and inefficiency within designed 

systems. Of particular interest are the unhealthy, "dysbiotic" states of the human 
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microbiome that lead to inflammation (57) and predisposition to disease (12,58) (Figure 

1.3a). In environmental systems, due to warming temperatures and higher nutrient 

runoff, large, toxic cyanobacterial blooms caused by Microcystis aeruginosa and its 

associated microbiome are prevalent in freshwater lakes globally (59). One of the 

largest examples of this in Lake Erie of the Laurentian Great Lakes (Figure 1.3b) has 

resulted in the disruption of the ecosystem, drinking water systems, and economies that 

rely on the lake such as fishing and tourism (60). Lastly, in the context of wastewater 

treatment, the enrichment of a specific filamentous bacterium Microthrix parvicella 

causes bulking and foaming in secondary treatment processing, decreasing overall 

water quality (61) (Figure 1.3c).  

In each of these examples, there is desire to manipulate the system to shift the 

microbiome composition and function away from this “diseased” state to a desired 

“heathy” state. However, unlike traditional infectious diseases which rely on one 

causative agent which can be eradicated or inhibited to return a system to a healthy 

state, these systems are much more complex. They comprise of thousands to millions 

of species over spatiotemporal bounds with extensive interactions to form highly 

complex networks in which higher order, non-intuitive emergent outcomes result. With 

the perspective that they are ecological networks, they have proven notoriously difficult 

to understand and provide interventions for (62).  
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 Figure 1.3: Examples of “unhealthy” dysbiotic microbiome states (a) The healthy (left) and dysbiotic 
(right) state of the human vaginal microbiome. The healthy state is characterized by higher abundance of 
Lactobacillus sp. and a lower abundance of other anaerobic bacteria and other viral and bacterial 
sexually-transmitted infections. The dysbiotic state is characterized by the opposite: high abundances of 
anaerobic bacterium contributing to a pro-imflammatory response, mucin degradation, and increased 
susceptibility to infections. Figure adapted from (12). (b) Large cyanobacterial harmful algal blooms in 
Lake Erie caused by Microcystis aeruginosa.  (c) Foaming and bulking in wastewater treatment plants by 
Microthrix parvicella. Scale bar represents 10 µm. Figures adapted from (56) and (61). 

 

Reaching a mechanistic and predictive understanding of microbiomes must be 

reached. However, even understanding one organism in isolation requires immense 

time and study. As you increase the number of organisms in the system, characterizing 

emergent properties from complex systems requires an understanding of not only the 

individual organism’s behavior but also altered behavior as a result of the interactions 

between them. As a response to this need in 2016, the microbial ecology community 

called for two things: (1) new tools to understand microbial interactions and (2) the 

synthesis of experimental and observational studies and computational strategies to 

generate predictive models (63). Despite the advances since then, the challenges have 

hardly changed. What has been demonstrated more prominently is the methodological 

deficiency: we do not have the tools to study interactions between cells at the resolution 

needed for adequate microbiome science due to two primary challenges: (1) culturability 

and (2) complexity. 

1.4 Barriers and Recent Advances 

1.4.1 Culturability 

Traditional microbiological techniques relied heavily on the ability to cultivate 

microbes on agar plates and liquid culture. However, one major challenge to this was 

the "Great Plate Anomaly", where the number of cells that could be counted on the plate 
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did not match the total number of metabolically active bacteria (64,65). The study of 

environmental microorganisms was limited greatly by the availability of medium 

formulations that could grow cells of interest, which were largely created through a 

laborious trial and error process. 

However, with booming sequencing capabilities, it became possible to sequence 

environmental DNA extracted from cells. This "metagenomic" approach allowed for the 

study of both phylogenetic and functional diversity in an environment without the need 

to culture (66). Utilizing the 16S SSU rRNA gene sequence which is universally and 

phylogenetically conserved in bacterial and archaeal lineages, it was possible to identify 

which microbial species were present in a natural sample (67) (Figure 1.4a). While this 

answered the question of "who is there?" it provided very limited insight into functional 

potential. To provide more genome-resolved information, it became possible to utilize 

sequencing coverage (68) and genome-specific signatures, such as GC content (69) or 

tetranucleotide frequency (70) to resolve and reconstruct individual genomes de novo 

from metagenomic libraries (Figure 1.4b). These approaches expanded the study of 

microbiology away from the limited culture-limited view of the microbial world. Other 

culture-independent 'omic approaches, such as metatranscriptomics (71), metabolomics 

(72), and proteomics (73) sought to provide other critical information into gene 

expression, secreted and present metabolites, and present protein profiles, respectively 

of the environments. 
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Figure 1.4: Overview of sequencing-based, culture-independent methods to study microbial communities. 
Both methods require the extraction of the total community DNA from a sample. (a) For phylogenetic 
characterization of a community, a single marker gene, commonly the gene encoding the 16S rRNA, is 
amplified with PCR, sequenced, and used with reference databases to provide community compositions. 
(b) The entire DNA is fragmented and shot-gun sequenced. De novo genome reconstruction can 
assemble draft genomes, revealing membership and functional potential. Figure adapted from (56). 

 

In addition, other culture-independent assays to study spatial organization and 

function were developed. Fluorescence in situ hybridization (FISH) uses specific marker 

gene probes to identify cell types in natural samples, allowing the biogeographical study 

of microbial habitats and aggregates (74–76). Even further, in order to study certain 

metabolic activity on these spatial scales, research groups have developed tools such 

as nanoSIMS (77) and BONCAT (78) in combination with FISH to resolve to a 
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previously unprecedented degree the spatial complexity and functional activity of 

microbial habitats. 

However, what is lost from all these culture-independent studies is phenotypic 

observations. Information regarding the microbe's growth rate, life strategy, specific 

metabolic physiology, and substrate preferences (79) is informative for understanding 

an organism's ecology and how it may have evolved to survive within a community and 

environmental context. Additionally, metabolic activity may not necessarily correspond 

to growth, and understanding growth in an environmental and community context is 

necessary for developing a predictive understanding of microbiome dynamics over time. 

1.4.2 Complexity 

As described before, due to the sheer number of individual members and 

spatiotemporal factors, culture-independent data is severely obscured. For example, 

without extensive sampling and differential coverage information (80), it is difficult to 

resolve strain-level draft genomes. There are also studies that have been able to 

resolve an ecological signal within genomes of the same species by differentiating lower 

coverage regions as genomic islands (81) and regions of high horizontal gene transfer 

(82), but these approaches require extensive sequencing effort. 

Some ‘omics studies have yielded insightful findings by studying simple natural 

communities. This can be performed by studying smaller scales of spatial resolution to 

reduce the total complexity (83). Leventhal et al. did so by studying individual millimeter-

scale granular biofilms to study community composition and diversity at the strain-level 

(84). In a collaborative effort with microbial ecologists, we also did a similar study on 

individual cyanobacterial-heterotroph aggregates (85). 
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Some groups have approached microbial ecology from another end, utilizing 

isolated, well-characterized microbes in simplified, constructed communities to reduce 

the complexity. For example, the Venturelli et al. has done extensive work to 

characterize pairwise interactions between a synthetic human gut community to provide 

a detailed interaction network constructed from growth-informed kinetic models and 

show that these pairwise interactions explain co-existence at the community level (86) 

(Figure 1.5). They then expand this framework with more community members to 

optimize a synthetic community for short-chain fatty acid production (87) and apply 

machine learning models (88). From this resolved analysis, certain properties of 

community behavior, such as coexistence, could be explained. Ponomarova et al. utilize 

a three-member synthetic community comprised of two lactic acid bacteria and S. 

cerevisiae to elucidate mutualistic interactions between the bacteria and yeast cell 

through physiological observations (89). At this resolution, carefully constructed 

experiments paired with metabolomics and transcriptomics and highly resolved genetic 

analyses provide a very high-resolution look into this mutualism that could not be 

determined from ‘omics studies of the natural community alone.  

 The main criticism of the synthetic ecology approach is its reductionism and the 

infeasibility of its scalability. Cultured representatives may not necessarily be good 

representatives of the system of study, and many natural systems simply lack cultured 

representatives. Additionally, first principles of microbial community behavior and 

assembly may be elucidated, but it is difficult to posit whether these principles in these 

simplified studies are even relevant in an in vivo context where complex spatiotemporal 

scales are at play. The scalability is also an issue; while all 45 pairwise interactions 
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between 10 members may be manageable, 100 members increases the total of 

possible pairwise interactions to 4950, which becomes much less manageable in terms 

of manual labor. 

 

 

Figure 1.5: Study design from Venturelli et al. to investigate microbial interactions and emergent 
community behavior with a synthetic ecology approach. (a) Venturelli et al. designed a 12 member 
synthetic community from human gut microbiome isolates. The synthetic ecology approach involves a 
high-throughput co-culture platform of different pairwise combinations to generate kinetic growth data. (b) 
Kinetic growth data from various pairwise combinations. Each growth plot is the relative abundance of the 
two members (red and blue) over time. (c) From the growth data, different interactions between the 
different members are inferred and general community structure is determined. Figure adapted from (86). 

 

1.4.3 The methodological divide 

As such, the study of microbiomes is primarily divided into two methodological 

approaches (Figure 1.6): (1) top-down approaches such as the application of culture-

a b

c
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independent techniques to the study of complex natural communities and (2) bottom-up 

approaches which involve constructing synthetic communities from cultivated isolates to 

study emergent properties. Top-down approaches provide a sense of natural diversity, 

the communities of study are ecologically very stable and robust, and this scale allows 

modeling of ecosystem phenomenon. However, these studies lack strain-level and 

phenotypic resolution. Bottom-up approaches are very tractable and allow for genetic 

manipulation and resolved metabolic modelling, but are limited by cultivability, 

ecological translatability, and scalability. While both are key to understanding microbial 

communities, methodologies are needed that better bridge the gap between the 

reductionistic synthetic, laboratory-constructed nature of bottom-up approaches with the 

ecologically relevant observational, low-resolution nature of top-down studies. 
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Figure 1.6: Overview of top-down and bottom-up approaches to study microbiomes. Figure adapted from 
(90) and images are from Illumina and (86). 

 

1.5 Microdroplets 

Microfluidics provides a means to bridge that gap. Microfluidic droplets 

("microdroplets") which are water-in-oil emulsions, typically between 40 and 150 

microns in diameter, can be produced by co-flow through a narrow microfluidic orifice in 

an ultra-high-throughput manner – up to 1000 droplets per sec – (Figure 1.7a) and 

serve as miniaturized, localized bioreactors for microbial cultivation, rendering high-

throughput investigation. Cells from a sample are encapsulated randomly according to 

Poisson statistics (Figure 1.7b) (91) and can be co-encapsulated and co-cultivated, 

resulting in high-throughput generation of droplet sub-communities. As a proof-of-

concept, a fluorescent E. coli auxotrophic bi-culture system, one strain with a genetic 

knockout for tryptophan and the other with a genetic knockout for tyrosine, was grown in 

these microdroplets (92) (Figure 1.7c). Droplets with both members present had 

abundance co-growth while droplets with only one member did not. 

Microfluidics provide the ability to study interactions at relevant length scales. 

While bacteria are typically only microns large, the smallest scale that we typically find 

comfortable to work with is at the microliter scale (e.g. micropipettes). Interrogating 

microorganisms at length scales comfortable for us has impeded our ability to study 

these systems intimately. Studies with interacting communities in biofilms demonstrate 

that the length scale relevant to interacting communities can be limited to a couple of 

microns (93). Because of the ability for limited encapsulation of a small number of cells 

to limit diffusion of molecules only to whatever is contained the droplet, microdroplets 
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are a great environment for the contained study of microbial interactions at the length-

scale relevant for the subject of study. 

Microdroplets can bridge top-down approaches and bottom-up approaches. In 

the study of natural communities, if the cells of interest are present in the sample at a 

reasonable abundance, co-encapsulation and the high-throughput generation of 

microdroplets can provide co-encapsulation of that cell type in pairwise or higher order 

combinations with other members of the community. Complexity is also quickly reduced, 

decomposing complex communities into smaller sub-communities with more 

discernable ecological signals that may be enabled by now-possible strain-level 

metagenomic reconstruction. Bottom-up approaches are benefited by the sheer 

throughput that increases the scalability of synthetic ecology studies by orders of 

magnitudes, making the study of more complex synthetic communities less manually 

intensive. 

Hsu et al. applied the high-throughput nature of microdroplets to quantitatively 

infer interactions on fluorescence model cultures co-cultivated in different combinations 

and environments with imaging and cell quantification (94). While these were very 

important studies to demonstrate the potential of microdroplets, they were limited to 

cultured, genetically modified strains with fluorescence markers. The further application 

of microdroplets to deconvolute and study interactions in natural communities is 

technically challenging and requires methodological advances. 
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Figure 1.7: Microfluidic droplets (microdroplets) and their demonstration in the high-throughput co-
cultivation of encapsulated cells. (a) Droplet generation in a two-phase water in oil flow-focusing device. 
Image from (95). (b) Poisson distributions with different λ values. The probability distribution function P(x) 
represents the probability of the number of x particles (e.g. cells) per droplet. Figure from (91). (c) Co-
cultivation of mutualistic co-growth between an auxotrophic pair of E. coli, one auxotrophic for tyrosine 
and the other for tryptophan. Both are distinctively fluorescently labelled. Figure from (92). 

 

As already established, utilizing co-growth in microdroplets to study microbial 

interactions is a critical step in the microbial ecology toolkit. However, there are critical 

gaps in both our understanding and our methodology. The first gap is in our 

understanding of the experimental parameters in droplet cultivation. There are two main 

parameters in droplet cultivation, the number of average cells per droplet and the 

droplet size. Specifically, in droplet co-cultivation, when encapsulating cells in droplets 

for the study of pairwise interactions, the target is a low number of initial cells in each 

droplet to limit the number of cell types. However, droplet size is chosen based on 
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convention. In many laboratory groups – including my own – size is based on previous 

studies and the size of droplets that can be produced in-house. The assumption is that 

droplet size does not have large difference on microbial co-cultivation outcome. This is 

a spurious assumption: size affects the effective initial cellular concentration, which has 

drastic effects on the outcome of the co-cultivation studies, yet very few studies have 

looked into these effects in a droplet context. 

The second gap is the lack of technical capability to apply sequencing 

technologies to study droplet sub-communities. Applying sequencing will extend 

microdroplet-enabled interaction inference beyond synthetic, fluorescently labelled 

communities. While many techniques such as 16S amplicon sequencing and 

metagenomic shot-gun sequencing make it theoretically possible to study natural sub-

communities, no one has incorporated these technologies into the microfluidic droplet 

workflow. Given a fixed amount of sequencing effort, there are two approaches in 

applying this technology: (1) studying a smaller number of droplets, one-by-one with 

metagenomic shot-gun sequencing and (2) profiling droplets in a high-throughput 

manner in parallel with 16S amplicon sequencing. The first approach allows for 

genomic-level resolution and the inference of metabolic capabilities of whatever 

community is being studied. However, metagenomic reconstruction requires a 

comprehensive sequencing effort. With a limited sequencing effort, shot-gun 

sequencing a large number of droplets may not recover enough sequencing coverage 

and genomic signal per droplet for effective metagenomic reconstruction per droplet. In 

the second approach, a more high-throughput analysis of droplets is possible with 16S 

marker gene sequencing. However, inference of the interaction mechanisms based on 
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genomic information is not possible if metagenomic genome reconstruction has not 

been performed on the community beforehand. Both approaches require technical 

advances beyond what is capable currently. 

1.6 Dissertation Overview 

This dissertation provides advances addressing these gaps and is summarized in 

Figure 1.8. The main body of the dissertation is comprised of Chapters 2-4: Chapter 2 

centers on the investigation of the droplet parameters on droplet co-cultivation, and 

Chapter 3 and 4 discuss method development for the study of microbial interactions 

with co-growth in microdroplets. More specifically, Chapter 2 details the effect of 

changing the droplet size on the growth of syntrophic microbial co-cultures. Using 

fluorescently labelled co-cultures, the growth of each member can be tracked, 

parameterized, and compared under different conditions. In the analysis, droplet-to-

droplet variation of co-cultures and monocultures is also measured and studied. 

Chapter 3 and 4 address methodological advances to study co-growth in a small 

number of microdroplets with metagenomic shot-gun sequencing and in a larger library 

of droplets with 16S amplicon sequencing, respectively. Chapter 3, the investigation of a 

small number of droplets with metagenomic shot-gun sequencing and genome 

reconstruction, was performed in collaboration with Dr. Sida Wang and applied to 

human fecal samples as a demonstration on a natural community. It involves the 

utilization of droplet-separation microfluidic technology that Dr. Wang developed and a 

bioinformatics pipeline using available, open-source metagenomics software. Chapter 4, 

the study of growth in a larger number of droplets with 16S amplicon sequencing 

incorporates the development of droplet-barcoding sequencing technology to preserve a 
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signal for the resolution of individual droplets as well as a quantitative signal so that 

droplets with growth could be distinguished from droplets without growth. A preliminary 

benchmarking was performed with mock communities of different cell types and 

abundance profiles to evaluate the accuracy and sensitivity of the method. Chapter 5 is 

a summary of the dissertation work, perspectives on future work, and reflections on 

performing interdisciplinary work within the scientific community. 
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Figure 1.8: Overview of the dissertation. Chapter 2 is an investigation into the microdroplet as a co-
cultivation environment for syntrophic growth by using variable droplet size and fixed number of initial 
cells and fluorescence assays to measure growth response. Chapter 3 and 4 are focused on 
methodology development to analyze microbial interactions in microdroplets. Chapter 3 is about the study 
of a small number of droplets with deep shot-gun metagenomic sequencing. Chapter 4 is concerning the 
high-throughput study of droplets with 16S amplicon sequencing and droplet barcoding.
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Chapter 2 : Characterizing the Effect of Droplet Size on Syntrophic Dynamics 
 

This chapter is modified from a previously published work (96). 

2.1 Summary 

A critical parameter in droplet-enabled co-cultivation that has evaded appropriate 

evaluation is the droplet size. Given the same number of initial cells, a larger droplet 

size can increase the length scale secreted metabolites must diffuse as well as dilute 

the initial concentration of cells and exchanged metabolites, impacting the community 

dynamics. To evaluate the effect of droplet size on a spectrum of syntrophic 

interactions, we cultivated a synthetic model system consisting of two E. coli 

auxotrophs, whose interactions could be modulated through supplementation of related 

amino acids in the medium. Our results demonstrate that the droplet size impacts 

substantially numerous aspects of the growth of a cross-feeding bi-culture, particularly 

the growth capacity, maximum specific growth rate, and lag time, depending on the 

degree of the interaction. This work heavily suggests that one droplet size does not fit 

all types of interactions; this parameter should be carefully evaluated and chosen in 

experimental studies that aim to utilize droplet-enabled co-cultivation to characterize or 

elucidate microbial interactions. 
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2.2 Introduction 

One key assumption in previous studies utilizing microdroplets to co-cultivate and 

analyze microbial communities is that the droplet environment experienced by the co-

encapsulated cells is representative of relevant bulk conditions. This assumption has 

not been fully validated or assessed in previous studies. In natural systems, transport of 

extracellular metabolites occurs along a continuum between convective and diffusive 

mass transfer. For example, the human gut is relatively homogenous and well-mixed 

(74), whereas in marine environments, chemotaxic symbionts exploit chemical gradients 

primarily established through diffusion (97). In homogenous, well-mixed environments, 

convective mass transfer is efficient and is seldom a limiting factor. In contrast, in the 

microdroplet environment, unless actively applied, convective mass transfer is not 

present. At micron-scales, nevertheless, diffusion is able to transfer mass in relatively 

short times. Based on statistical mechanics, the time (t) required for a molecule to travel 

a distance (L) in three dimensions can be calculated as 𝑡 = 𝐿!/6𝐷. For instance, in 

specific scenarios investigated in this study where valine serves as a metabolite 

exchanged between cells and has a diffusivity (𝐷) of approximately 800 μm2/sec (98), 

we can estimate that the time taken for a valine molecule to travel the maximum 

distance in a droplet increases from ~0.63 second in the smallest droplets we examine, 

of 55 μm diameter, to  ~4.7 minutes in the largest ones, of 150 μm diameter. It remains 

to be investigated whether or not the potential delay incurred by diffusion in droplets of 

larger sizes is significant enough to alter growth dynamics. 

In designing experiments for the growth of microbial communities in 

microdroplets, two parameters to consider are: a) the lambda (λ) value, i.e. the average 
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number of cells per microfluidic droplet according to the Poisson distribution (91), and b) 

the droplet size. These two parameters combined govern the cellular density, which in 

turn determines the average path length required for diffusion to facilitate transport. The 

λ value is manipulated to control the number of initial cell density given a droplet size. 

This value is chosen based on the objective of the experiment. If the objective is single 

cell encapsulation, λ can be set at 0.1 or 0.2 (i.e. 1 out of 10, or 1 out of 5 droplets 

contains one cell on average). However, if the objective is co-culturing, the λ could be 

set at 5 for all cell types so that each droplet contains at least one of each cell type for 

proper representation of diversity in every droplet. Typically, the λ value is kept as low 

as possible to maintain single-cell or small population resolution, keeping in accordance 

to the sensitivity and capacity considerations of microdroplets. For droplet size, there 

have been a wide range of droplet sizes used in microbial co-cultivation studies, such 

as 40 μm (99), 55 μm (100), 120 μm (92,101), 135 μm (102), and 150 μm (103) for 

different types of communities with different mechanisms of interaction. The droplet size 

utilized for a microfluidic study is highly dependent on the needs of downstream droplet 

processing, such as whether the droplet will fit into channels or be compatible with 

optics and sensors, as in the case for fluorescence activated droplet sorting (FADS) 

(104). As a result, droplet size can be limited by experimental constraints rather than 

being evaluated as a key factor for the biological system in question. However, the 

optimal droplet size for the system of study is not a trivial parameter to determine. This 

can be highly dependent on multiple factors: the secretion and uptake rate of metabolite 

exchanges, the diffusivity and affinity of the metabolite being exchanged, and the 

cellular requirement for the metabolite in question. 
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We hypothesized that metabolite exchanges in one droplet size may elicit very 

different growth dynamics from the same interacting co-culture in another droplet size 

due to altered length scales relevant for diffusion. To systematically evaluate the effect 

of droplet size on co-culture dynamics, this study utilizes a two-member E. coli amino 

acid auxotroph cross-feeding system (100) in a range of droplet sizes. These two E. coli 

strains are fluorescently labelled to allow real-time monitoring of growth dynamics. We 

first examine the growth of a monoculture in different droplet sizes as a baseline. Then, 

we study the two-member co-culture in a similar manner to study the dynamics of 

growth as a result of amino acid exchange and the effect of droplet size on these 

dynamics. We also alter the environment to modulate the extent of cross-feeding and 

investigate three scenarios (low, medium, and high degrees of interaction). Overall, we 

characterize the difference in dynamics across different droplet sizes using this model 

system, demonstrating that droplet size has a profound impact on co-culture dynamics. 

In addition, we observe that the low initial cell number arising from droplet encapsulation 

leads to a significant degree of droplet-to-droplet stochasticity, which should be taken 

into consideration while analyzing growth patterns in droplets. 

2.3 Materials and Methods 

2.3.1 Strains and culturing conditions 

The E. coli strains, S1 ΔilvD and S2 ΔlysA, were constructed by Saleski et al. 

(100). The full genotype of S1 ΔilvD is K12 ΔilvD::FRT ΔgalK::cfp-bla pSAS31, and S2 

ΔlysA is JCL260 ΔlysA::FRT pSA69/pBT1-proD-mCherry, derived from JCL260 

(105,106). pSAS31 was constructed by Schott Scholz (107), and pBT1-proD-mCherry 

was acquired from Michael Lynch (Addgene plasmid #65823). Both strains have 
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constitutively-expressed fluorescent protein reporters, mNeonGreen and mCherry for 

S1 ΔilvD and S2 ΔlysA, respectively. 

Strains were maintained as glycerol stocks kept at -80°C. New cultures were 

inoculated from cryostocks into LB broth (Miller) with appropriate antibiotics and 

incubated overnight at 37°C at 250 rpm. S1 ΔilvD was grown on ampicillin (100 μg/mL) 

and kanamycin (50 μg/mL), while S2 ΔlysA was grown on ampicillin (100 μg/mL), 

kanamycin (50 μg/mL), and tetracycline (10 μg/mL). 1 mL of each culture was harvested 

by centrifugation at 4,000 g for 5 minutes, washed twice, and resuspended in 1 mL M9. 

To determine cellular concentration, both strain suspensions were quantified through 

cell counting on a disposable C-Chip haemocytometer (SKC Inc, C-Chip) through phase 

contrast light microscopy on an inverted light microscope (Nikon Eclipse Ti-S). Based 

on the volumes of a 55 μm, 75 μm, 100 μm, 125 μm, 150 μm diameter sphere, 5 

different suspensions were created to achieve a λ value of 5 cells of each strain per 

droplet. 

M9, consisting of M9 salts (47.8 mM Na2HPO4, 22.0 mM KH2PO4, 8.55 mM NaCl, 

9.35 mM NH4Cl, 1 mM MgSO4, 0.3 mM CaCl2), micronutrients (2.91 nM (NH4)2MoO4, 

401.1 nM H3BO3, 30.3 nM CoCl2, 9.61 nM CuSO4, 51.4 nM MnCl2, 6.1 nM ZnSO4, 

0.01 mM FeSO4), thiamine HCl (3.32 μM) and dextrose (D-glucose) at 5 g/L, was used 

as the base medium. When both strains were grown together, ampicillin and kanamycin 

were supplied at the concentrations previously specified. Amino acids, when specified, 

were supplemented as follows: (1) 3 mM isoleucine, (2) 3 mM valine and 3 mM leucine, 

and (3) no additional amino acids. All amino acids were the enantiopure L-isomer. 
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When S2 ΔlysA was co-cultivated with S1 ΔilvD, 0.1 mM IPTG was added to induce 

amino acid production in S2.  

2.3.2 Microfluidic device fabrication 

To fabricate the microfluidic devices, polydimethylsiloxane (PDMS) base 

elastomer and curing agent (10:1 ratio of elastomer to curing agent by mass) was 

poured onto SU-8 molds with the microfluidic device features (Fig S1). The molds with 

uncured PDMS were vacuumed to remove air bubbles, and heated at 65°C overnight to 

solidify the polymer. The PDMS layer was removed off of the SU-8 molds, and devices 

were cut to size. To complete the fabrication, the devices were punched with holes by a 

biopsy punch (1.0 mm inner diameter) to create openings for channel flow, and bonded 

on the PDMS base via plasma-activated bonding using a corona discharge wand. The 

devices were silanized with (tridecafluoro-1,1,2,2,-tetrahydrooctyl)-1-trichlorosilane 

using a desiccator, and used for droplet generation as described below. 

2.3.3 Microfluidic droplet generation 

Strains were diluted to achieve a λ of 5 cells per droplet for each strain for 55 μm, 

75 μm, 100 μm, 125 μm, and 150 μm droplets. The oil phase was composed of Novec 

HFE-7500 fluorinated oil (3M) with 2% PEG-PFPE amphiphilic block copolymer 

surfactant (Ran Biotechnologies, 008-FluoroSurfactant). The aqueous cell suspension 

and the oil phase were loaded into 1 mL and 3 mL syringes, respectively, with 23-gauge 

Luer Lock syringe needles (BD 305145) attached. PTFE tubing (0.022” ID, Cole-

Parmer) was used to connect the syringe needle to the droplet generation device. Kent 

Scientific GenieTouch syringe pumps were used to infuse the oil phase and cell 
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suspension phase into the device to generate the droplets. Two flow-focusing droplet 

generation devices of different channel dimensions (Figure A.1) were used with different 

oil/aqueous flow rates to create the full range of droplet sizes. For all droplet sizes, the 

aqueous phase flow was fixed at 20 μL/min aqueous, but the oil phase flow was 

adjusted to achieve the desired size. For 55, 75, 100, 125, 150 μm diameter droplets, 

the oil phase flow was set to 45, 22, 30, 19, 12 μL/min, respectively. For each droplet 

condition, approximately 450 μL of droplets were collected for approximately 23 minutes 

after steady-state droplet generation was reached in 1.5 mL microcentrifuge tubes from 

the outflow of the droplet generation device through additional PTFE tubing. Excess oil 

was removed to improve pipetting of droplets into microwells in 96-microwell plates. 100 

μL additional fluorinated oil with 2% surfactant and 100 μL of droplets were carefully 

pipetted into individual wells in a black clear-bottom microplate (Greiner 655090) and 

sealed with a Mylar plate sealer (Thermo-ScientificTM 5701). The plate was loaded into a 

microplate reader (BioTek Synergy H1) at 37°C reading fluorescence green 

fluorescence (excitation and emission wavelength: 450 nm, 550 nm, respectively) and 

red fluorescence (excitation and emission wavelength: 587 nm, 615 nm, respectively) 

every ten minutes. 

2.3.4 Image analysis 

For imaging of droplets, 10 μL of droplets/oil were pipetted into a C-Chip 

chamber, sealed with epoxy, and incubated a 37°C incubator. To ensure that droplets 

were not squeezed under visualization in the C-Chip, the “Neubauer Improved” grid type 

was used for droplets with diameters 100 μm or less and the “Fuchs Rosenthal” grid 

type was used for droplets with diameters larger than 100 μm. Phase contrast and 
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fluorescence images were taken by viewing the droplets with an inverted light 

microscope (Nikon Eclipse Ti-S) with a Nikon Intensilight C-HGFI epi-fluorescence 

illuminator. Red and green filters were used in conjunction for fluorescence imaging of 

the mCherry and mNeonGreen fluorescent cells, respectively. Images were taken with 

QCapture Pro 7 software using the QImaging EXi-Blue fluorescence microscopy 

camera with standardized laser intensity and exposure settings of 250 ms and 500 ms 

for green and red fluorescence, respectively with an objective lens of 10X. All imaging, 

besides the initial timepoint due to low cell densities and fluorescence, followed these 

settings to standardize fluorescence intensity. 

Images were processed to increase the brightness of raw output images from 

QCapture using ImageJ (2.0.0-rc-69/1.52i) to the same degree of augmentation for all 

green images and for all red images to maintain standardization. The red and green 

images were merged into one image for each droplet/time point. Using custom scripts in 

MATLAB, these fluorescence and phase contrast images were analyzed to extract the 

fluorescence intensity normalized of over 100 droplets for droplet sizes of 55, 100, and 

150 μm diameter. Fluorescence intensity of individual droplets was normalized by the 

area of the respective droplet in the image. The processed images and MATLAB scripts 

are available at: https://github.com/jamesyitan/coculture-droplet-size. 

2.3.5 Growth kinetics analysis 

Growth kinetic data during cultivation in droplets was recorded through the 

BioTek Synergy H1 microplate reader.  In most experiments, a fixed λ value was 

employed across different conditions and hence the initial fluorescence/volume of 

droplets across droplet sizes are different. For comparison across different droplet 
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sizes, the background fluorescence was removed from growth data and were 

normalized by the fluorescence value at the initial time point, which resulted in growth 

curves representing fold changes and starting at a value of 1.  

Growth curves of monocultures were fitted to the logistic growth equation in 

MATLAB using the curve fitting toolbox: 

𝑵(𝒕) =
𝑲

𝟏 + .𝑲 − 𝑷𝟎
𝑷𝟎

1	𝒆#𝒓𝒕
 

where N(t) is the population size at time t, K is the carrying capacity, P0 is the initial 

population (which is set to 1 due to the normalization), and r is the maximum specific 

growth rate. Because of the long lag periods observed in the growth curves, we 

modified the logistic growth equation to account for lag time: 

𝑵(𝒕) =
𝑲

𝟏 + .𝑲 − 𝑷𝟎
𝑷𝟎

1	𝒆#𝒓(𝒕#𝝉)
 

where τ is the lag time, the duration from inoculation to start of the exponential growth 

phase. A curve fitting function in MATLAB would fit growth curve data to this modified 

logistic growth equation and generate three parameter values: K, r, and τ. The raw and 

normalized data, as well as the MATLAB scripts and functions used to calculate these 

values, are available at https://github.com/jamesyitan/coculture-droplet-size.  

For cross-feeding bi-cultures, it was not obvious how the growth should be 

quantified. Nevertheless, it was observed that the growth profile of each auxotroph in 

the bi-culture exhibited the "S"-shape, characteristic of logistic growth commonly 

assumed for monocultures. To determine whether or not growth dynamics of the cross-

feeding auxotrophs can be empirically approximated by the logistic equation, we carried 



 33 

out dynamic simulation of the cross-feeding bi-culture using an extended version of the 

ODE model in Kerner et al. (108) and fit the resulting growth curves to the logistic 

equation (Note A.1 and Figure A.2). It was found that the logistic equation was a 

satisfactory fit. Therefore, despite differences in the exact molecular and cellular 

process underlying bi-culture and mono-culture dynamics, throughout this work, we use 

the logistic equation to empirically characterize cell growth and fit associated model 

parameters to the experimental data. In addition, the ODE model was used to 

investigate the effect of increasing droplet volume on growth kinetics by varying the 

initial cell density. The MATLAB scripts and functions for the dynamic simulation are 

available at: https://github.com/jamesyitan/coculture-droplet-size. 

2.4 Results 

2.4.1 Monoculture growth dynamics 

Before we investigate co-cultures consisting of cross-feeding partners, it is 

important to understand the effect of droplet size on simple monocultures as a baseline. 

We therefore selected a fluorescently labeled E. coli strain we developed previously 

(100), S1 ΔilvD, and cultivated it axenically in microdroplets of three sizes (55 μm, 100 

μm, and 150 μm in diameter) with a λ value of 5 cells/droplet in M9 medium 

supplemented with amino acids required by this strain (i.e. 3 mM each of isoleucine, 

leucine, and valine). A λ value of 5 cells/droplets was specifically chosen to encapsulate 

a small number of cells in each droplet while allowing almost all droplets to have at least 

one cell. 

As shown in Figure 2.1a, for all three droplet sizes, extensive growth was 

observed in a majority of the droplets. In the meantime, it was noted that there was 
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substantial droplet-to-droplet heterogeneity after cultivation. The distributions of droplet 

fluorescence normalized by droplet area were empirically determined and showed 

quantitatively the heterogeneity (Figure 2.1b). These histograms reveal that across 

different droplet sizes, the ranges of final cell density were similar, but the exact 

distribution within the range was dependent on the droplet size. The distributions of 55 

μm and 100 μm diameter droplets were comparable (student’s two-tailed t-test, p-value 

= 0.509), but the difference between 150 μm droplets and the others (100 μm, p-value = 

0.041 and 55 μm, p-value = 0.079) was more pronounced. In particular, the distribution 

of 150 μm droplets exhibited a much larger variance. 
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Figure 2.1: Monoculture growth of S1 ΔilvD in a range of microdroplet sizes with λ=5 cells/droplet. (a) 
Representative images of overlays of fluorescence microscopy and phase contrast at the initial and post-
cultivation time points for microdroplets of diameters 55, 100, and 150 μm. (b) Histograms of the post-
cultivation fluorescence normalized by droplet area (a.u./pixel) for images of microdroplets for a total of 
167 droplets analyzed per droplet size, with associated mean and standard deviation. (c) Growth curves 
averaging replicate wells containing monoculture microdroplets for each droplet size. Within a single well 
in a 96-well plate, the number of droplets can range from 70,000 (for 150 μm diameter) to 1,500,000 (for 
55 μm diameter). Replicates are shown in Fig S3. (d) Growth model parameters extracted from the 
growth curve measurements. Growth capacity is the fold increase of cellular density after cultivation in the 
microdroplets, using fluorescence as a proxy. Statistical significance is indicated by a p-value of less than 
0.05 (*), less than 0.01 (**), and less than 0.001 (***), determined through a two-tailed student’s t-test. 
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Kinetic data of growth in droplets were obtained through real-time fluorescence 

measurements of droplet populations in wells of microplates. Fig 1c illustrates the 

change of fluorescence averaging across three or four wells, each of which contained 

approximately 850,000, 140,000, and 42,000 droplets, for 55, 100, and 150 μm 

diameter droplets, respectively. The full set of growth curves, with well replicates, are in 

Figure A.3. From these monoculture growth curves, we extracted three parameters, the 

growth capacity, maximum specific growth rate, and lag time. While we cannot 

approximate the carrying capacity, i.e. the exact cell density at saturation, from the 

fluorescence measurements alone, the fold increase of fluorescence is a metric that 

quantifies the degree of growth possible in a microdroplet as a function of its size. This 

metric is referred to as the “growth capacity” of the droplet in the rest of the study. In 

monoculture, the maximum specific growth rate is extracted from the growth curve and 

is informative in determining whether or not growth is facilitated or hampered. Finally, 

the lag time is defined as being the time between the inoculation and the start of 

detectable exponential growth. While the lag time has a physiological basis, the 

molecular mechanisms for the duration of a lag time is not always obvious. 

Nevertheless, the lag time is a very important growth parameter dependent on the 

stress or unfavourability of a condition to cell growth (109). We extracted these three 

parameters from the growth curves (Figure 2.1d). As expected, the 150 μm diameter 

droplets were capable of supporting the most growth (598.9 ± 56.0 sd fold increase), 

followed by the 100 μm (269.7 ± 27.5 sd), and then the 55 μm diameter droplets (73.0 ± 

3.4 sd). Interestingly, there were statistically significant differences between the 
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maximum specific growth rate of the monoculture in different sized droplets. As droplet 

diameter increased, the maximum specific growth rate decreased from 0.79 ± 0.01 (sd) 

to 0.69 ± 0.01 (sd) to 0.63 ± 0.01 (sd) hr-1 as the diameter increased from 55 μm to 100 

μm to 150 μm, respectively. The lag time also lengthened as the droplet size increased, 

from 1.3 ± 0.01 (sd) to 3.1 ± 0.04 (sd) hr. While unintuitive at first, population-level 

interactions among bacterial cells mediated by diffusible small molecules, such as 

competition for limited nutrients or cell-to-cell communication, have been documented 

extensively (110,111) and are likely underlying these findings. 

To gain further insight on how the droplet size impacts the cell growth dynamics, 

we carried out a separate experiment where S1 ΔilvD was inoculated at the same initial 

cell density across the different droplet sizes, as opposed to the same λ value (i.e. the 

average number of cells per droplet). It was observed that when the initial cell density 

was fixed across droplet sizes, the growth capacity, maximum specific growth rate, and 

lag time remained largely unchanged (Figure A.4). The only exception was a slightly 

higher growth capacity in the 55 μm diameter droplets than that in the 100 μm (with a 

modestly statistically significant p-value of 0.045). These findings suggest that the effect 

of droplet size on cell growth is likely facilitated through changing the average cell-to-

cell distance in the droplet microenvironment, which could influence various factors 

affecting cell growth such as quorum sensing or diffusion of exchanged molecules. 

Another interesting observation was the droplet-to-droplet variability observed in 

Figure 2.1a. Despite containing cells of the same genotype and the same medium, 

some droplets had extensive proliferation, some had moderate growth, while some had 

virtually none. We hypothesized that the variation was due to the cell-to-cell 
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stochasticity that amplified under the small-number condition of λ=5 cells/droplet, and if 

the initial number of cells was higher, this variability would decrease. To test this 

hypothesis, we conducted a monoculture droplet cultivation of S1 ΔilvD at λ=5 and λ=20 

cells/droplets to compare the variability between the two droplet populations. We 

observed that when λ was increased from 5 to 20, the standard deviation of the 

distribution of the droplets’ normalized fluorescence was decreased by 48% in droplets 

of 100 μm diameter (Figure 2.2) and by 32% in both 55 μm and 150 μm droplets (Figure 

A.5). Interestingly, not only were the proportion of droplets without growth reduced, but 

also those with higher-than-average fluorescence. These results suggest that cell-to-cell 

stochasticity in relevant properties, particularly viability, growth and fluorescence, is 

indeed a major contributor to droplet-to-droplet variation. 
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Figure 2.2: Droplet-to-droplet variation of fluorescence for cultivation of S1 ΔilvD with λ=5 and λ=20 
cells/droplet in droplets in droplets of 100 μm diameter. Droplet-to-droplet variation is illustrated in 
representative images of populations of droplets after cultivation for 24 hours under both conditions. 
Image analysis of a large population of droplets (248 droplets under each condition) was performed to 
quantify the degree of droplet-to-droplet fluorescence variation through histograms with associated 
statistics (mean and standard deviation). The distribution and statistics of the population under the λ=5 
initial condition is in magenta with a solid boundary; while those under the λ=20 condition in blue with a 
dashed boundary. 

 

2.4.2 A model system of cross-feeding amino acid auxotrophs 

To study co-cultures in droplets, we made use of a model system consisting of 

two cross-feeding E. coli strains previously developed by our group (100). The two 

strains are: S1 ΔilvD and S2 ΔlysA, called S1 and S2 due to their roles as 

complementary secretors. S1 ΔilvD requires extracellular valine, leucine, and isoleucine 

due to its knockout of ilvD, which encodes a dihydroxy-acid dehydratase responsible for 

converting 2,3-dihydroxy-isvalerate into 2-ketoisovalerate, a precursor of valine and 

leucine, as well as 2,3-dihydroxy-3-methylvalerate to 2-keto-3-methylvalerate, a 

precursor of isoleucine. Similarly, S2 ΔlysA is auxotrophic for lysine and requires 

extracellular lysine. In this study, three amino acid supplementation conditions were 

utilized to represent conditions of low, medium, and high degrees of interaction between 

the two auxotrophs: the addition of isoleucine; valine and leucine; and no addition, 

respectively. Because of differences in related biosynthetic pathways for these amino 

acids, isoleucine is the more biosynthetically-expensive amino acid for a cell to produce, 

with lysine, leucine, and valine following in order (55). In bulk cultivation (e.g. in 200 μL 

in microplate wells), the co-culture grows much faster when supplemented with 

isoleucine than when supplied with valine and leucine, and the slowest condition is 

when no amino acid is supplemented (Figure A.6). With different extents of interaction 
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in the microdroplet, we expected the interaction dynamics to be unequally affected by 

changes in droplet size. Under all these conditions, a λ value of 5 cells/droplet for each 

strain was chosen to ensure that almost all droplets would contain at least one cell of 

each strain. 

2.4.3 Lowest degree of interaction  

We started with the co-culture condition of supplementing isoleucine in the 

medium, removing the most biosynthetically-expensive metabolite from syntrophic 

exchange (Figure 2.3a). We observed under this condition of low degree of interaction 

that the composition of bi-cultures in droplets was dominated by S1 ΔilvD, which relied 

less on S2 ΔlysA for syntrophic exchange than S2 ΔlysA relied on it, as shown by the 

heavily green fluorescent droplets and significantly higher fold increase of fluorescence 

from S1 ΔilvD over that from S2 ΔlysA (Figure 2.3b,c). Similar to the monoculture 

cultivation, droplet-to-droplet variation is noticeable, most likely arising from the low 

number of initial cells of each strain in each droplet, introducing significant variations 

(Figure 2.3b). 
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Figure 2.3: Co-growth of S1 ΔilvD and S2 ΔlysA under the low degree of interaction (with 
supplementation of 3 mM isoleucine, the most biosynthetically-expensive cross-fed amino acid) in a 
range of droplet sizes with λ=5 cells/droplet. (a) The cross-feeding between S1 ΔilvD and S2 ΔlysA under 
isoleucine supplementation. (b) Fluorescence microscopy and phase contrast overlays of droplets of 55, 
100, and 150 μm after co-cultivation, with representative images illustrating the bi-culture densities. S1 
ΔilvD has a constitutively-expressed mNeonGreen (green) fluorescence reporter and S2 ΔlysA has a 
constitutively-expressed mCherry (red) fluorescence reporter on a plasmid. (c) Average growth curves of 
the bi-culture. For each droplet size, there are two growth curves, for S1 ΔilvD (bold line) and S2 ΔlysA 
(dotted line), respectively. Each curve represents the average growth of the strain in co-culture across 
multiple wells in a microtiter plate, each of which contains thousands of droplets. Full replicates are 
shown in Fig S7. (d) Logistic equation parameters extracted from the growth curves for both S1 ΔilvD 
(light green) and S2 ΔlysA (light red). Growth capacity is the fold increase of cell density after cultivation 
in the droplets, using fluorescence as a proxy. Apparent maximum growth rate is the fitted value for 
maximum growth rate from the growth curve, acknowledging that the growth dynamics of a cross-feeding 
co-culture is not exactly a standard logistical growth curve (Note S1 and Fig S2). Statistical significance is 
defined by a p-value of higher than 0.05 (ns), less than 0.05 (*), less than 0.01 (**), and less than 0.001 
(***), determined through a two-tailed student’s t-test. 

 

In terms of the effects of droplet size on growth under this condition, they were 

quite noticeable and reflected in the growth dynamics of both S1 ΔilvD and S2 ΔlysA. 

Both strains demonstrated higher growth capacity when in larger droplets up until 150 

μm, with the trends of S1 ΔilvD being much more statistically significant than those of 

S2 ΔlysA (Figure 2.3d). The most interesting trend was in the apparent maximum 

specific growth rate (Fig 3d). In the range of droplet diameters from 55 to 100 μm, both 

strains’ apparent maximum specific growth rates remained largely constant. In sharp 

contrast, when the droplet diameter further increased to the range of 125 - 150 μm, both 

strains showed reduced maximum specific growth rates, about 20% slower than those 

in the smaller droplets. It was also interesting that we did not observe a gradual 

decrease of the maximum specific growth rate while the droplet size increased as 

previously seen in the monoculture baseline experiment (Figure 2.1d). Lag time 

increased as droplet size increased (Figure 2.3d), similar to the trend observed in the 

monoculture. However, the range of lag times observed in the bi-culture with isoleucine 

supplementation (up to 12 hr) was much wider than observed in the monoculture (up to 
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3 hr). We also examined whether the final community composition changed when the 

droplet size increased while all other factors (amino acid supplementation and λ value) 

were kept constant. Looking into the ratio between fold increase of S1 ΔilvD and S2 

ΔlysA with isoleucine supplementation, we noted that increasing the droplet size shifted 

the bi-culture towards one more dominated by S1 ΔilvD (Figure A.8). 

As an attempt to dissect mechanisms underlying the above observations, we co-

cultivated S1 ΔilvD and S2 ΔlysA from the same initial cell density across different 

droplet sizes, as opposed to the same λ value, which was similar to efforts described 

earlier for monocultures. Specifically, the average initial cell number (i.e. λ value of the 

Poisson distribution) for each strain was 5, 30, and 100 cells/droplet in the 55, 100, and 

150 μm diameter droplets, respectively. Under this condition, we found that the 

previously observed effects of droplet size on the bi-culture growth when λ was kept 

constant vanished. In fact, the trend was even reversed to some extent. Specifically, the 

growth capacity decreased as the droplet size increased, whereas the apparent 

maximum specific growth rate increased when the droplet size was increased from 55 

to 100 μm in diameter (Figure A.9). These findings are in partial agreement with 

observations in the monoculture experiments, suggesting again that the cell-to-cell 

distance in the droplet microenvironment is a key factor determining growth dynamics. 

Furthermore, the impact of this factor is even more profound when cells need to interact 

through exchange of primary metabolites essential for growth, like in our model cross-

feeding bi-culture.   

2.4.4 Moderate degree of interaction 
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We next investigated the growth dynamics of the cross-feeding bi-culture under 

the condition of moderate degree of interaction, by supplementing leucine and valine in 

the medium. This requires the more biosynthetically-expensive amino acid, isoleucine, 

to be cross-fed in exchange for lysine (Figure 2.4a). In comparison to the previous 

experiment with isoleucine supplementation, this condition increased the dependence of 

S1 ΔilvD on S2 ΔlysA, which subsequently reduced the ratio of S1 ΔilvD over S2 ΔlysA 

and led to bi-culture compositions that were more balanced between the two strains 

(Figure 2.4b,c). Interestingly, the morphology of E. coli cells was notably filamentous 

under this condition, signifying cellular stress as previously observed under other 

stressful conditions (112).  
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Figure 2.4: Co-growth of S1 ΔilvD and S2 ΔlysA under the intermediate degree of interaction (with 
supplementation of 3 mM leucine and 3 mM valine, which are intermediately biosynthetically-expensive 
amino acids to produce) in a range of droplet sizes with λ=5 cells/droplet. (a) The cross-feeding between 
S1 ΔilvD and S2 ΔlysA under leucine and valine supplementation. (b) Fluorescence microscopy and 
phase contrast overlays of droplets of 55, 100, and 150 μm after co-cultivation, with representative 
images illustrating the bi-culture densities. (c) Average growth curves of the bi-culture. For each droplet 
size, there are two growth curves, for S1 ΔilvD (bold line) and S2 ΔlysA (dotted line), respectively. Each 
curve represents the average growth of the strain in co-culture across multiple wells in a microtiter plate, 
each of which contains thousands of droplets. Full replicates are shown in Fig S7. (d) Logistic equation 
parameters extracted from the growth curves for both S1 ΔilvD (light green) and S2 ΔlysA (light red). 
Statistical significance is defined by a p-value of higher than 0.05 (ns), less than 0.05 (*), less than 0.01 
(**), and less than 0.001 (***), determined through a two-tailed student’s t-test. 

 

The three sets of parameters obtained from fitting the logistic equation to the 

growth data were shown in Figure 2.4d. Growth capacity followed the typical trend 

exhibited in previous experiments, with less of an increase in 125 and 150 μm diameter 

droplets. The apparent maximum specific growth rates under this condition, however, 

exhibited different features. First, as expected, these rates were substantially lower than 

those in the previous experiment with isoleucine supplementation (Figure 2.3d). 

Intriguingly, in contrast to the abrupt decrease of growth rates from 100 to 125 μm 

diameter droplets under the isoleucine-supplemented condition, here we observed a 

gradual decrease of the growth rates in the full range of droplet sizes, with the most 

significant reduction of approximately 23% occurring in the transition from 55 to 75 μm 

droplets and a 40% reduction from 55 to 150 μm diameter. Finally, trends of lag time 

across increasing droplet size were not as evident or statistically strong as in the 

previous experiment with isoleucine supplementation, particularly with S2 ΔlysA. We 

also examined the effect of droplet size on the final community composition and noted 

that increasing the droplet size had no significant effect on the community composition, 

a trend unlike in the previous experiment (Figure A.8). This may be due to the higher 
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degree of interdependence between the two strains, which could dominantly govern 

their ratio and obscure the effect of other factors including the droplet size. 

2.4.5 Highest degree of interaction 

Lastly, we investigated the bi-culture growth dynamics under a third condition of 

the most strenuous interaction, in which no amino acids were supplied externally 

(Figure 2.5a). It was observed that the bi-culture only showed the ability to co-grow 

reliably in small droplets of diameter 55 μm, whereas in larger droplets (diameters 100 

and 150 μm) there was a stark divergence between droplets with and without significant 

co-growth (Figure 2.5b). This high variation was not only visible in images of the 

droplets, but also reflected in the widened distribution of size-normalized fluorescence 

(Figure 2.5c). More specifically, the variance was substantially higher for the larger 

droplets of diameters 100 and 150 μm; and the distribution shape was significantly 

distinct from that of the 55 μm droplets (student two tailed t-test, p-values < 0.005). In 

sharp contrast to the previous two experiments with amino acid supplementation, we 

were not able to obtain high-quality growth curves from droplet pools in wells of 

microtiter plates, due to the large subpopulation of droplets that failed to establish bi-

culture growth. 
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Figure 2.5: Co-growth of S1 ΔilvD and S2 ΔlysA under the high degree of interaction (no supplemented 
amino acids) in a range of droplet sizes with λ=5 cells/droplet. (a) The cross-feeding between S1 ΔilvD 
and S2 ΔlysA under no amino acid supplementation. (b) Fluorescence microscopy and phase contrast 
overlays of microdroplets of 55, 100, and 150 μm after co-cultivation, with representative images 
illustrating the bi-culture densities. (c) Histograms of the post-cultivation total fluorescence normalized by 
droplet area (a.u./pixel) for a total of 183 droplets analyzed per droplet size, with associated mean and 
standard deviation.           
 

2.5 Discussion 

2.5.1 Interaction response in growth to changes in droplet size 

In this study, we observed that the effect of droplet size on cross-feeding growth 

dynamics was highly dependent on the degree of the interaction. Under all conditions, 

the growth capacity generally increased as the droplet size increased, as expected, due 

to larger droplets giving rise to lower initial cell densities and hence allowing more 

doublings in cell growth before reaching saturation. In terms of the effect on growth 

rates and lag times, we noted that there were two very different types of trends. In one 
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type (Type 1), there is no significant change in the growth rate whereas the lag time is 

lengthened as the droplet size increases, as observed under the isoleucine 

supplemented condition when the droplet diameter was increased from 55 to 100 μm 

(Figure 2.3). In the other type of trends (Type 2), there is a continual gradual decrease 

in the growth rate with no significant change in the lag time, as observed under the 

valine and leucine supplemented condition (Figure 2.4).  

The mechanisms underlying these distinct growth profiles are not obvious. It is 

possible that diffusion plays some role as droplet size increases, but the order-of-

magnitude calculations suggest that while diffusion may take longer in larger droplets, 

the time scale required for diffusion in the largest droplet (estimated to be about a few 

minutes) is still very short compared to the time scale associated with cell growth (i.e. 

hours). Another possibility may be that the variety of growth dynamics arise from the 

inherent complexity of this ecosystem consisting of interacting subpopulations. To 

explore this possibility, we utilized the ODE model detailed in Note A.1 and carried out 

simulations with a range of parameter values related to the secretion and growth 

requirement of cross-fed metabolites. We found that these parameters could have a 

profound impact on the growth dynamics of the simulated bi-culture. Furthermore, the 

two types of trends noted above regarding how the droplet size affects the bi-culture 

growth dynamics could be recapitulated in silico to a large extent (Figure A.10). 

Specifically, it can be shown that the lag time increases with insignificant change of the 

maximum specific growth rate as the initial cell density decreases, characteristic of the 

experimentally observed Type 1 trend, under the condition that cellular secretion of the 

cross-fed molecules is of low level (i.e. value of the α parameter in the ODE model is 



 50 

relatively small). In contrast, the lag time is largely not affected by the initial cell density 

under the condition that cellular requirement for the cross-fed molecule is high (i.e. 

value of the β parameter in the ODE model is relatively large), replicating in part the 

experimentally observed Type 2 trend. In light of these findings from ODE modeling 

which assumes diffusion is instantaneous, we speculate that inherent properties related 

to intercellular interactions in complex ecosystems, besides molecular diffusion, may 

play an important role in shaping the growth dynamics of co-cultures in microdroplets. 

We do recognize that our ODE model could not explain all the experimental 

observations, such as the step-like decrease of the maximum specific growth rate when 

droplet diameter was increased from 100 to 125 μm in Fig 3. As another example, even 

with the same initial cell density, we observed noticeable changes in the growth 

capacity and maximum specific growth rate when changing the droplet size, especially 

for the bi-culture (Figure A.9). The mechanism underlying these different growth 

dynamics is not clear. Future investigations, both experimental and computational ones, 

will be needed to elucidate the full spectrum of mechanisms driving co-culture dynamics 

in droplets. One promising direction would be to develop a more advanced 

mathematical model to incorporate additional potential mechanisms, e.g. transport of 

key molecules exchanged between cells, through diffusion and/or other means. In 

particular, recent studies have revealed that certain bacteria have evolved direct cell-to-

cell contact for transporting metabolites more efficiently (113,114). It would be an 

interesting topic for future research to investigate how droplet size affects co-culture 

growth dynamics with this alternative mechanism for cross-feeding. 

2.5.2 Droplet-to-droplet variation 
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As demonstrated in this work and previous literature, substantial droplet-to-

droplet variation is an inherent feature of microbial cultivation in microfluidic droplets. 

One of the major advantages of droplet based co-cultivation is the ability to study 

interactions between a small number of cells. However, the inclusion of only a small 

number of cells also introduces stochasticity from cell-to-cell variation and 

encapsulation statistics. We observed that despite a λ of 5 cells/droplet, a large portion 

of droplets did not show growth, potentially due to a significant portion of non-viable 

cells. Increasing the λ value reduced the number of these no-growth droplets, but also 

reduced the number of droplets exhibiting higher-than-average fluorescence, 

suggesting that at sufficiently large λ, cell-to-cell differences average out and reduce 

droplet-to-droplet stochasticity. One source of significant cell-to-cell variations in our 

experimental system may be caused by plasmid variability and stability. In particular, 

the fluorescent proteins in both strains and three enzymes for enhanced-production of 

cross-fed molecules in S2 ΔlysA are encoded by genes carried on plasmids, which can 

introduce a large degree of cell-to-cell variability (115,116). As such, at low λ, droplets 

can be exploited for investigating single-cell level differences, but one should not expect 

the exact dynamics of a community in one droplet to be exactly reproduced in another. 

As evidenced by other microfluidic studies (117,118), even in a single population, these 

dynamics are quite stochastic due to cell-specific quorum sensing capability and 

expression (117). This stochasticity must be considered appropriately in studies which 

cultivate populations or communities from low cell numbers. For instance, Hsu et al. 

(99) addressed this issue by determining the strength of interactions in a three-member 

system with statistical inference across a large number of droplets. 
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The precise control of the λ value in this work allowed us to study cell populations 

at low cell numbers, with one particular observation being the effect of low initial cell 

numbers on the lag time. Our results are consistent with previous studies that used 

empirical data from single cells of E. coli K12 and showed that at low cell number 

inocula (1 to 100 cells) in a fixed volume, the lag time would increase as the inoculum 

size was lowered (119). E. coli K12, the base strain of the auxotrophs utilized in this 

study, has been demonstrated to be affected by quorum sensing. In particular, 

autoinducer-2 (120,121) could be one of many signaling molecules involved. 

2.5.3 Implications for utilizing co-cultivation in droplets to infer interactions 

Inappropriate selection of the droplet size for the specific system of study or 

objective can result in failure to capture the intricacy of ecological interactions. 

Practically, we acknowledge that the objectives of microfluidic co-cultivation studies are 

diverse, and how thorough the consideration of droplet size should be will depend on 

the questions being investigated. For example, microdroplets are being utilized in ultra-

high throughput screening (100,122,123). In these scenarios, the objective is usually to 

identify and retrieve droplets in the top percentile of a vast droplet pool analyzed by 

single droplet measurements such as fluorescence or optical density. While a larger 

droplet may allow for a larger dynamic range for screening due to the higher growth 

capacity, too large a droplet may not be able to reliably render intercellular interactions, 

as we observed with our model bi-culture system under the no-supplementation 

condition. Another popular application is the investigation of individual communities 

encapsulated in single droplets. Due to the difficulty in tracking single droplets, most 

droplet-based investigations have not focused on the growth of the same individual 
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droplets over time. For instance, in this study, the growth dynamics in a large population 

of droplets was studied through the use of averaged characteristics. We expect, 

however, as droplet technologies continue to advance, future work studying microbial 

community dynamics would shift to the finer single-droplet resolution and it would be 

crucial to take into full account the effect of droplet size as well as the inherent 

stochasticity arising from cell-to-cell variations and random encapsulation, while 

designing specific experiments.
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Chapter 3 : High-resolution Metagenomic Dissection on Selected Microdroplets to 
Study Microbial “Dark Matter” 

 

This chapter is modified from a previously published work (124). 

3.1 Summary 

While the “unculturable” majority of the bacterial world is accessible with culture-

independent tools, the inability to study these bacteria using culture-dependent 

approaches has severely limited our understanding of their ecological roles and 

interactions. To circumvent cultivation barriers, we utilize microfluidic droplets as 

localized, nanoliter-size bioreactors to co-cultivate subsets of microbial communities. 

This co-localization can support ecological interactions between a reduced number of 

encapsulated cells. We demonstrated the utility of this approach in the encapsulation 

and co-cultivation of droplet sub-communities from a fecal sample collected from a 

healthy human subject. With the whole genome amplification and metagenomic shotgun 

sequencing of co-cultivated sub-communities from 22 droplets, we observed that this 

approach provides accessibility to uncharacterized gut commensals for study. The 

recovery of metagenome-assembled genomes from one droplet sub-community 

demonstrated the capability to dissect the sub-communities with high genomic 

resolution. In particular, genomic characterization of one novel member of the family 

Neisseriaceae revealed implications regarding its participation in fatty acid degradation 

and production of atherogenic intermediates in the human gut. The demonstrated 
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genomic resolution and accessibility to the microbial “dark matter” with this methodology 

can be applied to study the interactions of rare or previously uncultivated members of 

microbial communities. 

3.2 Introduction 

A combination of top-down culture-independent approaches and bottom-up 

culture dependent approaches holds promise for addressing the challenges in microbial 

ecology (2,23,125–127). However, there are numerous barriers to traditional cultivation 

(128), including microbial lifestyles such as obligate syntrophy (129) and slow-growth 

(130), competition, and extremely low abundances in diverse natural communities. 

Microfluidic droplet technology presents a unique solution to circumvent many of these 

barriers by manipulating microbial communities at the nanoliter scale. While used 

extensively in the past for the high-throughput encapsulation and manipulation of single 

cells (131,132), microfluidic droplets can also be utilized as micron-scale bioreactors to 

encapsulate and propagate subsets of natural microbial communities, decomposing a 

bulk community into a large number of much smaller sub-communities. This 

compartmentalization limits complexity while allowing the study of microbe-microbe 

interactions. While microfluidic droplets have been employed for single-cell or “mini-

metagenomic” investigation of the microbial dark matter (133–137) or for synthetic 

systems (94,101), these studies did not incorporate co-cultivation for the investigation of 

microbial communities. Microfluidic co-cultivation of microorganisms provides a bridge 

between culture-dependent and -independent tools, allowing for the exploration of 

ecological interactions between cells through co-growth at microscopic scales. This 

circumvents technical difficulties of culture-dependent work while enabling use of high-
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resolution ‘omics tools in studies of interacting microbial consortia comprised largely of 

uncultured species.  

To demonstrate the potential of utilizing microfluidic droplets to study the “dark 

matter” of natural communities, this study uses microfluidic droplets to dissect a 

complex human fecal sample into subcommunities for highly parallel co-cultivation. 

Afterwards, 22 individual droplets with strong bacterial co-growth were selected with 

microfluidic techniques. Multiple displacement amplification (MDA), a whole genome 

amplification method, amplified nucleic acid from individual droplet sub-communities for 

16S rRNA amplicon sequencing, and one sub-community was metagenomically 

shotgun sequenced. Of particular interest relating to the human gut microbiome, a 

partial-genome of a representative of a novel genus within the Neisseriaceae was found 

in this droplet, highlighting the capability of microfluidic co-cultivation to access and 

study uncharacterized microbial diversity. 

3.3 Materials and Methods 

3.3.1 Microfluidic devices and fabrication 

The work here utilizes two microfluidic devices: a droplet generation device and a 

droplet spacing device. The droplet generation device is a modified cross-flow droplet 

generation device made from polydimethylsiloxane (PDMS) as described previously by 

Carruthers et al. (103). The droplet spacing device used to separate individual droplets 

is a modified droplet generation device with three layers to construct a pressure-

controlled membrane valve to precisely manipulate droplet flow through a cross-flow 

junction (Figure B.1) (138,139). The valve is controlled manually by an external 

pressure pump to switch on and off the flow of individual droplets. When pressure is on, 
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the membrane valve closes and stops the flow of droplets while allowing the oil phase 

flow to continue. 

To fabricate molds with the microfluidic device features, photo-mask creation and 

SU-8 mold etching were performed in the Lurie Nanofabrication Facility at the University 

of Michigan. SU-8 molds were made by negative etching on a silicon wafer, which was 

spin-coated with SU-8 2035 at a thickness of 50 μm. The wafer was pre-baked at 65°C 

and at 95°C, exposed, and post-exposure baked at 95°C. After baking, the wafer was 

silanized with tridecafluoro-1,1,2,2,-tetrahydrooctyl-1-trichlorosilane in a desiccator. For 

the PDMS layers with device features, PDMS with Sylgard® 184 curing agent (10:1 

mass ratio of PDMS to curing agent) was poured on top of respective SU-8 molds, 

vacuumed to remove air bubbles, and heated at 70°C to solidify the polymer overnight. 

The devices were then cut to size. The membrane between the valve layer and the 

channel layers for the spacing device was made from PDMS (15:1 mass ratio of PDMS 

monomer to curing agent) spun on a glass wafer at 1000 rpm to create a 50 μm 

membrane. The membrane was heated to 80°C for 15 min and plasma-activated 

bonded to the other layers of the spacing device using a corona discharge wand. To 

complete the fabrication, the devices were punched with holes by a biopsy punch (1.25 

mm ID) to create openings for channel flow, cleaned with acetone and rinsed with 

water, and bonded on cleaned glass microscope slides via plasma-activated bonding. 

3.3.2 Droplet generation, cultivation, and processing 

All droplet work was performed in an anaerobic chamber (Coy© vinyl anaerobic 

chamber) with an atmosphere of 5% hydrogen, 10% carbon dioxide, and balance 

nitrogen to protect and provide favorable conditions for obligate anaerobes in our 
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sample. To remove any trace oxygen, a fan box to recirculate air through a Coy© 

palladium catalyst Stak-Pak is employed in the chamber. The cellular suspension for 

flow through the droplet generation microfluidic device was derived from a fecal sample 

obtained from a healthy human subject at the University of Michigan Hospital in October 

2011. The fecal sample was stored at -80°C in a 2 mL cryovial and thawed 

anaerobically. 1.5 mL of phosphate buffer saline (PBS) was added to the fecal sample, 

and the mixture was centrifuged at 1000 rpm to separate fecal debris from the bacterial 

suspension for microfluidic droplet generation. The cell density of the bacterial 

suspension was determined with a hemocytometer (C-Chip™ disposable 

hemacytometer, Fisher Scientific 22-600-100) under a Nikon inverted contrast phase 

microscope (Nikon Eclipse Ti-S) and was determined to be 1.9x108 cells/mL. The 

suspension was diluted to the appropriate concentration determined by the desired 

average cell number per droplet (λ) divided by the volume of droplet. To provide 

different droplet sub-community complexities, two λ values were used for droplet 

generation: 2 and 10. Control droplets without cells from the fecal sample were also 

generated to demonstrate no bacterial contamination from reagents was present (Figure 

B.2). To dilute the volume and provide the nutrients for growth, two different media for 

the cultivation of anaerobic intestinal bacteria were used: Brain Heart Infusion (BHI) 

(140) (Becton-Dickinson) and the Schaedler Medium (SM) (141,142) (Oxoid).  

Droplet generation was performed in the anaerobic chamber. The droplet 

generation device was placed on a lab compound microscope (Amscope, M150C) with 

a USB connected camera. Syringes were connected to tubing (Cole-Parmer, EW-

0641721) leading to the droplet generation device and placed on a syringe pump (CMA 
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102 Syringe Pump). Oil phase – fluorocarbon oil (HFE-7500, 3M) containing 2% 

perfluoropolyether-polyethyleneglycol surfactant (RAN Biotechnologies) – was placed 

into one syringe and the bacterial suspension in the other. The syringe pumps adjusted 

oil and aqueous flows to achieve generation on-chip. Droplets generated flowed 

outwards from the droplet generation device into Eppendorf tubes attached with tubing. 

Approximately 500 μL of droplets were collected for each sample and covered with 

sterile mineral oil to prevent evaporation. The droplets were incubated at 37°C in the 

anaerobic chamber for one week, which provided sufficient time for co-growth to occur. 

For imaging of droplets, 10 μL of droplets were inserted into a C-Chip hemocytometer 

before and after incubation and visualized under the inverted phase contrast 

microscope. 

3.3.3 Spacing of high cell density droplets 

Incubated droplets were stored and transferred in 1.5 mL micro-centrifuge tubes 

using two ports installed in the tube lid. In one port, Teflon tubing was inserted to the 

bottom of the tube, and the other port had a syringe needle. Droplets were transferred 

from the bottom of the tube to the spacing device by applying pressure through the 

syringe tip. Droplets were introduced into the middle junction of the device and held at 

the junction by flowing 1.5% surfactant in HFE oil while the membrane valve was 

closed. After the device reached steady state, Teflon tubing was inserted into the outlet 

channel. Spacing of individual droplets was performed through manual control of a 

pressure pump connected by tubing to the valve channel. After the spacing of a droplet, 

the membrane valve was shut for 1 minute to ensure the isolated droplet had traveled 

through the entirety of the tubing and was collected into a 1.5 mL microcentrifuge tube. 
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While in the spacing device, droplets were individually visualized with microscopy for 

identification of droplets with clear bacterial co-growth (Figure B.3). Through usage of 

the spacing device, chosen droplets were isolated into separate 1.5 mL microcentrifuge 

tubes and kept for downstream processing. Droplets not selected were discarded. 

3.3.4 Cell lysis and whole genome amplification of isolated droplets  

For each isolated droplet, 5 μL of surfactant destabilizer (RainDance 

Technologies, RDT 1000 droplet destabilizer), an additional 4 μL of PBS, and 3 μL of 

cell lysis solution (3 μL) was added to each tube. After a 10-minute incubation period at 

65°C and the addition of a lysis stopping solution (3 μL), the multiple displacement 

amplification (MDA) reaction mixture (Single Cell Repli-G kit, Qiagen 150343) for whole 

genome amplification was added to the aqueous phase, and the reaction was allowed 

to proceed for eight hours at 30°C. The polymerase was deactivated by heating the 

solution to 65°C, and amplified DNA was collected from the mixture by pipetting out the 

aqueous phase and then diluted 100-fold. 

3.3.5 16S and metagenomic shotgun sequencing 

The V4 region of the 16S rRNA gene was amplified and sequenced from MDA-

amplified samples for all 22 droplet samples at the University of Michigan Center for 

Microbial Systems Sequencing Core using a dual-index PCR library preparation and 

sequencing strategy as specified by Kozich et al. (143). Information on the library 

preparation procedure is found at 

https://github.com/SchlossLab/MiSeq_WetLab_SOP/blob/master/MiSeq_WetLab_SOP_

v4.md. 
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Metagenomic sequencing was conducted on a selected MDA-amplified sample 

at the University of Michigan Advanced Genomics Core. Sequencing core staff 

prepared barcoded Illumina libraries of a target fragment size of 450 bp using the 

IntegenX Apollo 324 PrepX ILM DNA Library kit and custom Illumina compatible 

BioScientific barcoded adapters. Libraries were amplified with the KAPA library 

amplification kit, quality controlled on the Advanced Analytical Fragment Analyzer, 

quantified using the KAPA Illumina library quantification kit, and then sequenced for 

paired end 150 cycle Illumina HiSeq 4000 sequencing. 

3.3.6 16S OTU clustering and analysis  

16S V4 reads were processed for quality control, chimera removal, and analysis 

with mothur (144) according to the MiSeq standard operating procedure 

(https://www.mothur.org/wiki/MiSeq_SOP). Classification was performed with the 

Ribosomal Database Project (145) v.16 training set from February 2016 

(https://www.mothur.org/wiki/RDP_reference_files). Operational taxonomic units (OTUs) 

were clustered at the 97% similarity with OTUs less than 78 reads, 1 percent of the 

lowest sample’s sequencing depth, removed. To determine if these droplet OTUs were 

abundant in the bulk fecal sample, the partial V4 region overlap between previously 

performed 16S V45 454-pyrosequencing reads (processed through mothur according to 

https://www.mothur.org/wiki/454_SOP, resulting in 8017 reads from the bulk) and the 

droplet amplicons was compared. Distances less than 0.05 signified matching of a 

droplet OTU to an OTU from bulk sequencing.  

3.3.7 Analysis of metagenomic shotgun sequencing data 
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Metagenomic shotgun reads were processed in the University of Michigan’s high-

performance computing (HPC) cluster Flux. To improve quality of the sequence reads, 

reads for both microdroplet samples underwent dereplication (script available at 

https://github.com/Geo-omics/scripts/blob/master/DerepTools/dereplicate.pl), Illumina 

adapter residual removal by Scythe (v. 0.993) (https://github.com/vsbuffalo/scythe), low 

quality region removal by Sickle (v. 1.33.6) (https://github.com/ucdavis-

bioinformatics/sickle), and interleaving (script available at https://github.com/Geo-

omics/scripts/blob/master/AssemblyTools/interleave.pl) to associate forward and 

reverse reads. FASTQC (v. 0.10.1) 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to assess quality 

of the reads before quality control and after.  

To normalize the highly nonuniform coverage of reads generated from stochastic 

amplification of MDA across the sample and subsequently improve assembly, 

bbnorm.sh from BBTools (http://jgi.doe.gov/data-and-tools/bbtools/bb-tools-

userguide/bbnorm-guide) was used to remove high coverage reads to a target k-mer 

coverage of 50 and remove reads with a k-mer coverage less than two. Before 

metagenomic assembly, bbsplit.sh from BBTools was used to remove sequence reads 

from the human genome by mapping to a reference genome provided by the 1000 

Genomes Project (146). This resulted in removal of 36 Gb of reads associated with the 

human genome and a remainder of around 6 Gb presumably prokaryotic-associated. 

Metagenomic assembly of these cleaned reads was done with metaSPAdes (v. 3.9.0) 

(147), using the flags “sc” for MDA amplified DNA and “meta” for metagenomic reads. 

As suggested for a multi-cell data set with longer Illumina paired reads lengths, the 
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iterative k-mer lengths used for assembly were: 21, 33, 55, 77, 99, and 127. QUAST (v. 

4.3) (148) was used to check assembly quality. Visualization and manual binning of 

scaffolds was done with anvi’o (v. 2.3.0), following the metagenomic workflow (149). 

Due to uneven MDA amplification, coverage information was not relevant for binning; 

therefore, read mapping information and the anvi-merge command were not used. As a 

result, anvi-profile was run with the “--blank-profile” parameter as specified 

(http://merenlab.org/2016/06/06/working-with-contigs-only/). Binning was performed 

using the automatically generated tree based on tetranucleotide frequency profiles and 

assisted with taxonomic information provided by Centrifuge (150) for contig splits in 

anvi-interactive visualization. Bin assessment was performed initially with anvi’o, 

utilizing the marker gene set from Campbell et al. (151), and finally with CheckM (152) 

to determine degree of genome completeness and contamination.  

Annotation of genes for genomes of high completeness and low contamination 

was performed using RAST (153). Pathway inference and subsequent visualization and 

analysis was performed with the PathoLogic (154) component of Pathway Tools (155) 

utilizing the MetaCyc database (v.22.0) (156). A custom python script was used to 

convert the Genbank annotation files for each individual metagenomic scaffold for each 

genome from RAST into files compatible for PathoLogic genome inference. 

Incorporation of genomes into the microbial tree of life was done with PhyloPhlAn (157), 

which uses percent identity of proteins from reconstructed microbial genomes with 

conserved protein sequences from microbial genomes from the Integrated Microbial 

Genomes (IMG). 

3.3.8 Data availability 



 64 

All draft genomes recovered from metagenomic assembly are available in 

GenBank under Bioproject ID PRJNA597463. 

3.4 Results 

3.4.1 General workflow 

We present a microfluidic droplet based technological pipeline that extends 

previous development in droplet co-cultivation and single-droplet processing (138,139) 

with metagenomic sequencing (Figure 3.1). A complex environmental sample, in this 

case a human fecal sample, has been processed to form a microbial suspension that 

flows through a microfluidic droplet generation device (92) (Figure 3.1a). The 

microfluidic device utilizes biphasic flows of the aqueous microbial suspension and an 

oil phase through a T-junction to generate monodispersed, nanoliter-sized microdroplets 

at a rate of 1 to 500 droplets/second (Figure 3.1b). The distribution of cells 

encapsulated in individual droplets follows Poisson statistics and can be manipulated 

through droplet size and initial cell concentration of the microbial suspension. 

Afterwards, the droplets are incubated under appropriate conditions (Figure 3.1c) and 

visualized with microscopy. Droplets meeting selection criterion are isolated and 

transferred to a separate receptacle using a microfluidic droplet spacing device (Figure 

3.1d). Lysis reagents and droplet destabilizer are added to the droplets to release and 

lyse cells, and MDA is used to amplify minute amounts of DNA to a quantity required for 

sequencing (Figure 3.1e). Based on results from 16S amplicon sequencing, droplets 

containing sub-communities with interesting taxa can be selected for metagenomic 

shotgun sequencing (Figure 3.1f) for further study, followed by bioinformatic analysis. 
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Figure 3.1: Overview of the microfluidic droplet cultivation and processing pipeline. (a) A microbial 
suspension derived from a human fecal sample is prepared. (b) Using biphasic flows of aqueous and oil 
phases, random combinations of bacteria are encapsulated in microdroplets at frequencies according to a 
Poisson distribution. (c) These droplets are incubated anaerobically for a week to allow for co-cultivation 
of the sub-communities. (d) With a droplet spacing device, microdroplets are isolated and processed 
individually. (e) Upon droplet destabilization, cells released from individual droplets are lysed and their 
genomes are amplified with multiple displacement amplification (MDA) to generate sufficient nucleic acid 
material for downstream sequencing. (f) 16S amplicon and metagenomic libraries are prepared with 
amplified DNA and sequenced. 16S profiling of individual droplets is used to determine which droplet to 
submit for metagenomic shotgun sequencing.  

 

3.4.2 Highly parallel co-cultivation of microbial sub-communities 

Two rich media for anaerobe cultivation, brain heart infusion (BHI) and the 

Schaedler medium (SM), were used to cultivate microbial sub-communities in individual 

droplets (Figure 3.2). Initially, most sampled droplets contained only a few cells (Figures 
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3.2a and 3.2c,), but a subset of droplets exhibited substantial co-growth after incubation 

(Figures 3.2b and 3.2d). A range of morphologies were observed across these 

cultivated sub-communities. For instance, some droplets showed communities with 

distinctly long-rod morphologies (Figure 3.2b-3, 3.2d-8), while others consist of 

communities with distinct cocci morphologies (Figure 3.2b-4, 3.2d7). Interestingly, only 

a subset of droplets supported growth in rich media and with a high λ of 10 to ensure all 

droplets contained viable cells, demonstrating that not all sub-communities 

encapsulated were capable of co-growth in these conditions. Droplets that were 

individually selected from droplet spacing based on dense co-growth are shown in 

Figure B.4. 
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Figure 3.2: Microbial sub-communities in generated microfluidic droplets before and after co-cultivation. A 
sample pool of droplets with encapsulated microbial sub-communities before (a, c) and after anaerobic 
cultivation for a week (b, d). Droplets were cultivated in two rich media: brain heart infusion (BHI) (a,b) 
and Schadler media (SM) (c,d). Droplets are not tracked over time, so each droplet viewed is distinct. 
Dashed boxes on the left correspond to the magnified droplets in each subpanel on the right, identified by 
the numerical marker. Arrows distinguish single cells in the pre-incubation microfluidic droplet. Scale bar 
is 100 microns. 
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3.4.3 High variation in sub-community composition 

A total of 22 droplets with high cell densities at the end of the incubation period 

were isolated and underwent 16S amplicon sequencing. Because amplification bias 

introduced with MDA heavily obscures any quantitative signal in sequencing (158), 

OTUs were analyzed by presence or absence to compare community composition 

across droplet sub-communities. The community membership of these 22 droplets was 

highly variable between droplets (Figure 3.3). Due to the stochastic nature of cell 

encapsulation during droplet generation and the high diversity of the original human gut 

microbiome sample, a relatively large number of OTUs appear in a relatively small 

number of co-cultivated sub-communities. However, OTUs of certain genera, such as 

Staphylococcus (OTU1), Propionibacterium (OTU27), and Corynebacterium (OTU4) 

(Table B.1), are pervasive across these sub-communities. Hierarchal clustering of 

droplet sub-communities demonstrated that two major clusters emerged, partitioning 

generally by growth medium. While this clustering is not significant (unbiased p-value < 

95%) most likely due to the relatively small number of droplets analyzed, certain OTUs 

are highly associated with SM, such as Parabacteroides (OTU5) (indicator value = 90.9, 

p-value = 0.021) and Butyricimonas (OTU3) (indicator value = 75.3, p-value = 0.046) 

(Supplementary Table 2). This suggests that the medium composition is one factor 

determining which microbes are co-cultivated in the droplets. 
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Figure 3.3: 16S OTU profiles of 22 isolated droplets sub-communities. OTU classification and bootstrap 
values are provided. Droplet identity nomenclature is based on Schaedler media (S) or BHI media (B) and 
with the initial λ value (2 or 10) and a numerical identifier. Because MDA introduced significant bias, 
quantitative information is not shown and OTUs are presented as either present (black) or absent (light 
gray) in a sample. Hierarchical clustering of the droplet taxonomic profiles provides two distinct clusters. 
P-values provided by pvclust in R do not signify statistical significance (AU < 95%). 
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Interestingly, while the droplets were generated such that the average initial cell 

number per droplet (λ) was either two or ten, most of the selected and analyzed  sub-

communities were found to each contain more than 10 OTUs. In fact, the difference in 

the species richness between droplets with λ of 2 and those of 10 was not statistically 

significant (p-value = 0.711, student’s two-tailed T-test). In terms of community 

composition, a subset of the λ=10 droplets appeared to group together in the cluster 

dominated by droplets with SM, but no obvious  patterns emerged in the other cluster 

dominated by droplets with BHI (Figure 3.3). Additionally, statistical testing showed that 

there were no strong associations between individual OTUs and either group of droplets 

with a specific λ (Table B.2). There are several possible reasons for this somewhat 

unexpected result. First, it is important to note that even when the λ value is 2 in the 

Poisson distribution, there are still droplets that each contain a relatively large number 

of cells (e.g. droplets containing 6 or more cells per droplet exist at a frequency of over 

1.6% theoretically). Second, the droplets generated in this study were non-uniform, 

resulting in higher variation in the distribution of cell numbers than we would expect 

theoretically; in particular, larger droplets had more cells per droplet than expected and 

smaller droplets had less. Finally, our criterion for selecting droplets heavily favored 

those with strong bacterial co-growth. All these factors combined likely have led to the 

observed high diversity of the analyzed droplets, even those from the experiment with a 

low λ value of 2. 

It is also important to note that the incubation time was one week, biasing our 

analysis towards sub-communities that demonstrated co-growth by the end of the 
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incubation time. Given a longer period, slower-growing bacteria could have been 

enriched and included in the analysis as well. 

3.4.4 Accessibility to low-abundance microbial “dark matter” 

Many genera observed in the droplet sub-communities are representative gut 

commensals. For example, representatives of the glycan-degrading Bacteroides and 

Prevotella (9,10,159), Akkermansia (160,161), and lactic acid bacteria (162,163) have 

established functional roles in host health that are relatively well understood as a result 

of culturing-dependent experimentation. However, commensals of the Neisseriaceae 

(164) and Clostridiales (165) are present in droplet sub-communities and have low 

sequence identities to NCBI 16S representatives (Table B.1). In addition to many of 

these members being largely uncharacterized, many of them are low-abundance 

members. To demonstrate this, we compared the amplicons in the droplet sub-

communities with those in the bulk fecal sample from which our microfluidic droplet sub-

communities were derived. A small fraction (15/44) of the OTUs in droplet sub-

communities were detected in the bulk community, and 9 OTUs of those were 

represented at an abundance lower than 0.1% in the bulk sample (Table B.3). This 

result demonstrated the ability of microfluidic droplets to encapsulate and co-cultivate 

representatives at very low abundances in microbial communities.  

3.4.5 Metagenomic reconstruction of a single droplet sub-community  

We performed metagenomic shotgun sequencing, assembly, and binning on an 

individual droplet sub-community of interest (B2-2) (Table 3.1). B2-2 was chosen for 

further analysis due to the presence of lactic acid bacteria and several phyla that have 
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been characterized to a very limited extent. From 16S V4 amplicon sequencing, 13 

OTUs were detected in B2-2. Out of 13 metagenomically assembled genomes (MAGs), 

6 were of high quality (completeness above 75% and contamination below 10%) were 

recovered, 6 were of lower quality, and 1 (Alistipes) was missing. Additionally, it is 

interesting to note that in the metagenomic library, a partial Lactobacillus genome was 

recovered despite Lactobacillus not being detected in the 16S library of this droplet sub-

community. We also report high degree of contamination by host DNA: 85.5% (347 

million out of 406 million pair-end reads) of metagenomic reads mapped onto the 

human genome, resulting in a small fraction of sequencing effort contributing toward 

recovery of the bacterial community. Nevertheless, even from this relatively small 

fraction of sequencing reads, a substantial portion of the droplet sub-community, 

including several nearly complete genomes, was recovered. 

 

 

Table 3.1: Assembly statistics of genome bins recovered from the bacterial sub-community in droplet B2-
2 and their inferred taxonomies from CheckM and NCBI BLASTN. 

16S V4 OTU identity Genome identity Length (Mb) # of contigs GC% Completeness (%) Contamination (%)

Propionibacterium  (100) Propionibacterium acnes 2.8 70 60.01 99.35 2.01

Corynebacterium (100) Corynebacterium  sp. 2.4 54 58.65 98.46 0.37

Actinomycetales unclassified (100) Lawsonella  sp. 1.6 25 52.4 95 0

Staphylococcus (100) Staphylococcus  sp.1 2.6 95 32.65 94.76 14.93

Lactococcus (100) Lactococcus lactis 1 2.1 198 35.81 85.72 13.26

Neisseriaceae unclassified (99) Neisseriaceae  nov. gen. nov. sp. 1.7 127 42.29 76.05 8.56

Streptococcus (100) Streptococcus  sp. 3 115 39.73 97.72 81.63

Enterobacteriaceae unclassified (100) Escherichia  sp. 3.9 249 50.86 69.17 2.96

N/A Lactobacillus  sp. 1.2 124 46.47 36.21 0

Enterobacteriaceae unclassified (99) Klebsiella  sp. 2.3 171 55.77 30.7 0

Chryseobacterium  (100) Chryseobacterium  sp. (100) 1.5 143 38.35 25.16 5.17

Bacteroides  (100) Bacteroides  sp. (100) 2.4 283 43.61 22.41 3.45

Bacteroides  (100) Bacteroides  sp. (100) 1 119 38.27 8.88 1.75

Alistipes sp. Not detected in metagenomic dataset

1. Contamination values are below 10% for alternative marker gene set (40)

Table 1. Assembly statistics of genome bins recovered from the bacterial sub-community in 

droplet B2-2 and their inferred taxonomies from CheckM and NCBI BLASTN. 
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3.4.6 Study of novel functional and phylogenetic diversity 

From droplet B2-2, we recovered the genome sequence of an uncultivated 

member of the Neisseriaceae. Several lines of evidence indicate that this genome 

represents a novel genus within the family Neisseriaceae. BLASTN results against the 

NCBI 16S rRNA database signify the closest phylogenetic match as Snodgrassella alvi 

with 93% identity (Table B.1, OTU21). By phylogenetic analysis of a comprehensive set 

of conserved bacterial proteins (166), this member clearly falls within the Neisseriacaea 

but is quite distinct from other representatives (Figure 3.4a).  

As its phylogeny suggests, the functional diversity of this novel representative of 

the Neisseriaceae is also distinct from other members of this family and the gut 

microbiome as a whole. Key metabolic characteristics from pathway reconstruction 

include a complete fatty acid oxidation pathway, acetate fermentation from pyruvate via 

acetyl-CoA, complete glyoxylate cycle, and carnitine degradation (Figure 3.4b). Fatty 

acids are primarily absorbed in the small intestine; however, under high fat diets, a 

significant fraction of fatty acids reach the large intestine and affect the microbiome and 

host health (167–169). Noting that the genome of this member was not completely 

recovered, it is still worth pointing out that the TCA cycle, among the best characterized 

and documented pathways, was not detected. This along with the presence of the 

acetate fermentation pathway suggests an anaerobic lifestyle, like many other members 

of the distal gut microbiota. In addition, the pathway for the conversion of carnitine, a 

nutrient in red meat, to γ-butyrobetaine (γBB) was present. γBB is an important 

intermediate for the microbe-dependent conversion to trimethylamine (TMA) (170,171), 
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which is eventually converted to trimethylamine-N-oxide (TMAO). TMAO has been 

demonstrated to increase risk to cardiovascular diseases (172,173), and the utilization 

of carnitine by gut microbiota has been demonstrated to play a crucial role in 

accelerating atherosclerosis in mouse models and potentially in human hosts as well 

(171). 

 

 

Figure 3.4: Phylogenetic and metabolic description of a novel member Neisseriaceae observed in droplet 
B2-2. (a) Phylogenetic tree comparing conserved protein sequences between the recovered genome with 
other Betaproteobacteria genomes from IMG. (b) Metabolic reconstruction of the most distinctive 
pathways. 

 

3.5 Discussion 

3.5.1 Summary 

Recognizing the fact that bacterial species rarely live in isolation, we utilized 

microfluidic techniques and metagenomic approaches to dissect, cultivate, screen, and 

analyze complex communities comprised of uncharacterized bacteria. Rare and 
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uncharacterized members of the microbiome were analyzed with this methodology, 

including a novel Neisseriaceae with metabolic characteristics potentially important for 

human host health. The detection of this novel representative, which has complete fatty 

acid oxidation and carnitine degradation pathways, suggests possible niches that 

members of the Neisseriaceae occupy in the gut. This study is also the first to apply 

whole genome amplification, sequencing, and state-of-the-art bioinformatic tools to 

reconstruct and resolve multiple genomes from a co-cultivated sub-community in a 

microfluidic droplet. This approach can be used to address questions in a variety of 

natural systems where bacteria cannot be studied with traditional cultivation methods, 

such as those that have slow-growing or fastidious life styles.  

We would like to note the improved genome recovery of certain MAGs (up to 

99% completeness) in this study compared to previous studies using MDA to amplify 

single cell genomes, which recovered an estimated 70-78% of the total genome 

(174,175). This improvement is enabled by droplet co-cultivation, which allows growth-

mediated “amplification” from a small number of single cells to populations, thereby 

increasing the DNA material and aiding the recovery of nearly complete genomes. 

While other microfluidic studies to recover genomes from complex microbiomes were 

able to achieve a completeness of 90% or higher, they required multiple droplets for 

sequencing and an amalgamation of contigs from the sequencing of multiple droplets 

(133,134). In contrast, all the draft genomes reconstructed in this study were from 

sequencing a single droplet. 

3.5.2 Limitations 
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As much potential as this approach has, there are technical limitations. Because whole 

genome amplification, demonstrated here with MDA, introduces significant stochastic 

amplification bias, quantitative insights regarding community composition are lost. 

Alternative 16S amplification methods which better preserve quantitative community 

composition could be employed in parallel with MDA-enabled metagenomic sequencing. 

For example, touchdown polymerase chain reaction (TD-PCR) has been used to study 

low-biomass microbial systems (176) and could be applied to 16S amplicon sequencing 

of individual microfluidic droplets. In addition, although bacterial contamination was not 

present in appropriate co-cultivation controls (Supplementary Fig. 2), contamination 

during metagenomic sequencing and genomic recovery of droplet sub-communities was 

present, which is common for amplification from low-biomass samples. In addition to 

MDA indiscriminately amplifying host DNA from the human fecal sample, highly 

pervasive OTUs, such as Staphylococcus, Propionibacterium, Corynebacterium, and 

other members of Actinomycetales, are more typically skin commensals (177) and are 

suspicious of being molecular contamination as well. In the future, more thorough 

washing steps to reduce nucleic acid contamination from microbial suspensions and 

extensive sequencing controls of reagents should be performed as well. 

One crucial aspect of the workflow demonstrated in this work is how co-cultivated 

sub-communities in individual droplets are selected for further sequencing and analysis. 

We carried out manual selection using a previously developed microfluidic device for 

droplet spacing (138,139). Future enhancement could leverage automated droplet 

sorting (104,178) to increase the throughput and robustness of the technology pipeline. 

It is also important to note that we selected droplets with high cell densities 
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hypothesizing that a high biomass yield may be the result of positive interactions 

between bacteria, which are prevalent in natural systems (52) and have been shown to 

occur effectively, for instance in the form of metabolic cross-feeding, in the microfluidic 

droplet environment (92,100). However, due to the complexity of the growth media 

employed in this work, inferring what ecological mechanisms led to enhanced co-growth 

is difficult. In addition, most of the analyzed droplet sub-communities comprised of a 

relatively large number of species, in part due to our selection criteria for high total 

biomass after co-cultivation. Communities with a higher diversity corresponding to a 

higher biomass productivity is a typical ecological phenomenon (179). Possible 

mechanisms for higher productivity increasing with species richness in these droplets 

include higher overall usage of droplet resources through niche complementarity, 

facilitation through cross-feeding, and higher chances of including faster-growing 

members that grow abundantly regardless of surrounding microbial partners. While the 

methodology demonstrates potential for microbial co-cultivation in droplets and the 

resolution of analysis, the specific experimental design is limited in capacity to 

determine mechanisms for co-growth. 

3.5.3 Conclusion 

With more specific questions, metagenomic analyses of co-cultivated sub-communities 

in microfluidic droplets has the capability to shed light on the ecology of many 

uncharacterized microbial systems. In particular, cross-feeding is believed to be 

widespread throughout complex bacterial communities (48,52), but most demonstrated 

examples of this are in highly-simplified synthetic communities (55,89,180). Such 

ecological interactions can be studied not just for simple synthetic systems, but sub-
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communities of naturally occurring complex microbiomes, including those which have 

eluded cultivation-based efforts. Possible applications of this methodology can 

especially be applied to less complex, yet undefined, natural communities. Dissecting 

and co-cultivating these communities in droplets in defined media can elucidate 

complementarity of genomic pathways across species which leads to co-growth. Further 

development of single droplet resolution applied to bacterial transcriptomics and 

metabolomics would provide the means to elucidate mechanisms for even more 

complex systems. 
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Chapter 4 : High-throughput Quantitative 16S Profiling for Droplet-based 
Combinatorial Decomposition  

 

4.1 Summary 

The ability to infer interactions in microbiomes has been limited to genomic 

inference from metagenomic data and in laboratory-constructed synthetic co-culture of 

representative isolates. Both approaches are limited, by the complexity of natural 

systems and metagenomic resolution and of tractability and characterization in the 

laboratory. By quickly reducing the complexity and due to the random encapsulation 

statistics, microdroplets can quickly decompose a natural community into highly parallel 

combinatorial subsets and allow for the inference of interactions within these subsets. 

Doing so requires the ability to evaluate many droplets for statistical inference and for 

each, analyzing the membership of droplets and evaluate the extent of co-growth to 

determine if an interaction is present. This chapter elaborates the methodological 

development of a droplet-resolved, quantitative 16S amplicon sequencing library 

preparation workflow for application on the combinatorial decomposition and co-

cultivation of a natural community. To demonstrate the capability of the method, we 

generated two mock community droplet libraries of known microbial composition with 

different abundance profiles and applied the method on them. This is the first 

development of this methodology and has implications for the establishment of 
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microdroplets as a staple tool in microbial ecology and the study of microbial 

interactions. 

4.2 Introduction 

One of the major limitations of culture-independent approaches is the lack of 

phenotypic data. While genomic information can be quite powerful, it on its own is 

insufficient to provide certainty if cells are indeed interacting. However, the major 

limitation of culture-dependent approaches such as synthetic ecology is the scalability. 

Many synthetic ecology studies center around the technical ability to manipulate 

different isolate cultures to grow different sets of combinations and analyze the resulting 

co-cultures to analyze metabolites and community composition (86). However, as the 

number of members increases, the total number of combinations increases dramatically 

more. For a community of ten members, the total number of combinations is 210 = 

1,024. For 20 members, the total number if 220 =1,048,576. Even for automation by a 

liquid handling robot, this can quickly become a large task. One of the main advantages 

of microdroplets is its ultra-high-throughput. The production of droplet is on the range of 

1000 per second and can more easily generate the different combinations of cell types 

due to the stochastic encapsulation statistics, given that the cells of interest are of 

reasonably relative abundance in the community. Microfluidic encapsulation also allows 

for the manipulation of these cell types without the need to isolate individual members, 

which can very quickly become a labor-intensive effort on its own. With this 

implementation, synthetic ecology could be performed on natural samples of varying 

diversity and of varying previous characterization efforts.  
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As demonstrated in Chapter 3 of this dissertation, while co-cultivation of sub-

communities has much potential, there is still limited information that can be gathered 

from one single sub-community. In contrast, this chapter is focused on the development 

of a platform to study the membership and co-cultivation of thousands of droplets, 

regardless of the degree of co-growth exhibited. For around two decades, 16S 

sequencing has allowed microbial ecologists to study membership of different 

environments (67), and advances in spike-in standards has allowed for quantitative 

amplicon sequencing (181). However, how can this be applied when the different 

samples are distinct droplets and how does one add a spike-in standard? This is a 

difficult technical microfluidics and molecular workflow problem. The most similar work 

to date is Sheth et al. which uses droplet microfluidics and barcoding to perform high-

throughput biogeography mapping of the gut microbiome (182). This work was able to 

demonstrate the use of droplet microfluidics in combination with 16S sequencing to 

answer the basic question of "who is next to whom?". This study was highly creative 

and novel, but it did not incorporate co-cultivation or a quantitative signal. Incorporating 

a quantitative signal has been demonstrated in numerous transcriptomic droplet studies 

(183). However, these do not incorporate cultivation and the molecular workflow for 16S 

sequencing is very different from eukaryotic transcriptomics. Hsu et al. (94) 

demonstrated microbial interaction network inference in microdroplets (MINI-Drop) 

which used statistical analysis across a large number of droplets to quantify the 

magnitude of interactions between model co-cultures with fluorescence microscopy and 

computer vision to determine the absolute composition of cells in each droplet after co-

cultivation and co-cultivation. However, while the proof of concept of interaction 
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inference using droplets was demonstrated well, the generalization of this method to 

natural communities is limited due to its reliance on fluorescence markers in each of the 

community members. 

This chapter details the methodological workflow we developed to extend the 

conceptual motivation of MINI-Drop with sequencing (MINI-Drop-seq) for the study of 

interaction networks in natural communities. We benchmark the technical workflow of 

MINI-Drop-seq, specifically its ability to determine the absolute abundance of thousands 

of individual droplet communities. To do so, we applied MINI-Drop-seq on droplet 

communities derived from mock communities of defined compositions to benchmark its 

efficiency and accuracy. Finally, we suggest improvements to the current workflow for 

better sequencing efficiency and generalizability for different microbial systems. We also 

propose further benchmarking to better characterize the MINI-Drop-seq workflow and 

future microbial systems to study. 

4.3 Materials and Methods 

4.3.1 Microbial cultures 

Benchmarking was performed with five microbial cultures: E. coli K12 BW25113, 

B. subtilis 168, P. putida KT2440, B. thetaiotaomicron VPI-5482, and L. crispatus ATCC 

33820 to test the workflow on cells with different cell physiologies. E. coli K12 

BW25113, B. subtilis 168, and P. putida KT2440 were grown overnight in LB miller 

media; E. coli and B. subtilis were grown at 37°C, and P. putida at 30°C. B. 

thetaiotaomicron VPI-5482 was grown overnight in RUM (modified YCFA) media (184) 

supplemented with 4 g/L of fructose at 37°C anaerobically. L. crispatus was grown 

overnight in MRS media at 37°C anaerobically. Anaerobic growth was performed in an 
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aerobic chamber (Coy) with a 5% carbon dioxide, 2-4% hydrogen, and balance nitrogen 

atmosphere. For each cell culture, 1 mL of overnight culture was centrifuged in a 1.5 mL 

microcentrifuge tube at 4000xg for 5 minutes, the supernatant was decanted, and the 

cell pellet was resuspended twice in PBS. Each washed culture was appropriately 

diluted and quantified with a C-Chip disposable haemocytomer (Fisher Scientific, #22-

600-100) under a Nikon Ti-S microscope on the “Ph2” filter with a 40X objective lens. 

Mock communities were composed of four members - E. coli, B. subtilis, P. putida, and 

B. thetaiotaomicron - and were mixed together according to twice the desired 

community compositions for the two mock communities: (1) the “even” community with 

a λ of 50 cells of each species per droplet after 2 times dilution and (2) the “log” 

community with a λ of 180, 18, 1.8, and 0.2 cells per droplets after 2 times dilution, 

respectively. Monoculture suspensions were prepared for all cultures to a λ of 100 cells 

per droplet after 2 times dilution. 

4.3.2 Droplet encapsulation 

Microdroplet cell encapsulation was performed in a modified large oven incubator 

(VWR Scientific 1535) to maintain a temperature between 37-40ºC to keep low melting 

agarose suspensions liquid. To limit heat loss, the incubator had the outer door 

removed and the inner glass door replaced with an equivalent-sized, clear acrylic sheet 

(Optix, 30"x36"x.22") with holes cut out for the entry and exit of hands for the exchange 

of suspensions or adjustment of syringe pumps (Figure C.1). A 3% agarose solution 

with 30% Optiprep in PBS was prepared by melting low melting-point temperature 

(SeaPlaque GTG, Lonza) in 30% Optiprep in PBS at 70ºC in 50 mL Falcon tube in a 

water bath, filtering the solution through a sterile 0.45 µm PDVF filter into a new Falcon 
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tube, and keeping the tube at 70ºC in the water bath until use. Right before 

encapsulation, the 3% agarose solution was mixed with the cell suspensions in PBS in 

a 1:1 volume ratio to obtain the appropriate cell suspensions in 15% Optiprep and 1.5% 

agarose in PBS for droplet generation. Around 600 µL of cell suspension was quickly 

withdrawn into a sterile 1 mL syringe with a 24 G x 1" syringe needle (Terumo), any air 

bubbles were removed, and the syringe was placed into the heated incubator oven to 

equilibrate with temperature. Two syringe pumps (Kent Scientific Genie Touch) in the 

incubator were used to flow the cell suspension and the oil phase comprising of 

HFE7500 Novec engineering oil with 2% fluorosurfactant (008-fluorosurfactant, RAN 

Biotechnologies, Inc.) into the microfluidic device. The microfluidic device is a flow-

focusing device with channel heights of 50 µm and channel widths of 25 µm (Figure 

A.1). The flow rate of the oil phase and agarose suspension into the microfluidic device 

is 10 µL/min and 5 µL/min, respectively. PFTE tubing (23g) is used to flow each phase 

into the inlets of the device and generated droplets and oil at the outlet to a 

microcentrifuge tube for collection. Approximately 200 µL of droplets were generated for 

each mock community and monoculture suspension and were set as microgels in 

droplets by placing the collection tube after generating ice for 10-20 minutes. 

4.3.3 Agarose microdroplet processing 

Oil phase below droplets in the collection tube was removed with a micropipette 

and 200 µL gel loading tip. We added 500 µL of PBS-wash buffer (1X PBS, 0.1% Triton 

X-100) and 500 µL of 20% perfluorooctanol in HFE7500 oil to the remaining droplet 

emulsion, vortexed well, centrifuged for 1 min at 300xg, and removed as much oil phase 

as possible without removing aqueous phase holding the collected microgels. We then 
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added 500 µL of 1% Span-80 in hexane, vortexed well, and centrifuged for 1 min at 

300xg. The clear hexane layer on top was removed and residual hexane-water cloudy 

emulsion below was left. The residual hexane was removed by adding 500 µL of PBS-

wash, vortexing, centrifuging, and skimming off the frothy/milky layer on top with a 

pipette tip. This was repeated 3 times until the supernatant is clear and the microgels 

formed a distinct pellet at the bottom. The suspension was mixed by pipetting and 

transferred to a clean 1.5 mL microcentrifuge tube. The tube was centrifuged, and 

supernatant was removed by pipetting without disturbing the gel pellet. Gels were 

washed with 1 mL 10 mM Tris-HCl three times; the resulting gel suspension was mixed 

with a 2X lysis buffer in a 1:1 ratio for a final concentration of 1 mM DTT, 1 mM Tris-HCl 

pH 8.0, 2.5 mM EDTA, 100 mM NaCl, 0.8% ready-lyse lysozyme (Lucigen, R1804M); 

and incubated in a 37°C incubator shaker overnight. Lysis buffer was removed from 

gels after centrifugation, and gels were washed three times in 10 mM Tris-HCl pH 8.0. 

The resulting suspension was mixed with a 2X digestion buffer in a 1:1 ratio for a final 

concentration of 30 mM Tris-HCl pH 8.0, 10 mM EDTA, 0.8% Triton X-100 (v/v), 0.5% 

SDS, 1 ug/µL proteinase K (Lucigen, MPRK092), and incubated in a heat block for 30 

minutes at 50°C. To deactivate proteinase, gels were centrifuged; digestion buffer was 

removed; the remaining gels were washed in 10 mM Tris-HCl pH 8.0, 10 mM EDTA, 

0.1% Tween-20 (v/v), 5 mM phenylmethylsulfonyl fluoride (PMSF) (Sigma-Aldrich 

93482) and washed in 10 mM Tris-HCl pH 8.0, 10 mM EDTA, 0.1% Tween-20 (v/v) 

(TET buffer) five times; and stored at 4°C until use. Occasionally, a fine, white 

precipitate would form when the digestion buffer was added. Since the precipitate was 

much smaller than the gels, it would settle at the bottom of the tube during 
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centrifugation and the gels would sit on top. The gels would be carefully removed by 

pipetting the microgel layer without removing precipitate into a separate microcentrifuge 

tube. 

 To check that genomic DNA was immobilized in the microgels after cell lysis, 10 

µL of packed microgels were incubated for 30 minutes in 1 mL of 10 mM Tris HCl with 

1X SYBR stain in the dark. Afterwards, gels were pelleted by centrifugation and washed 

in TET buffer three times, and visualized in a disposable haemocytomer under 

fluorescence microscopy with a FITC filter. 

4.3.4 Barcode bead synthesis 

 Barcode hydrogel beads were purchased as a unit of 1 million suspended in TET 

buffer (RAN Biotechnology, CustomSeqReady-1M). The functional oligonucleotides on 

the beads do not include the 16S V4 forward primer, so it needs to be extended onto 

the oligonucleotides after purchase. 16S 515f primer extension is based off the protocol 

from Zilonis et al. (183) for barcode extension on hydrogel beads. The purchased 1 

million beads were centrifuged at 1000xg; washed three times in hydrogel bead wash 

buffer (5 mM Tris-HCl pH 8.0, 5 mM EDTA, 0.05% Tween 20); and incubated in 1X 

isothermal amplification buffer (NEB B0537S), Bst 2.0 DNA polymerase (350 U/mL) 

(NEB M0537S), dNTP mix (650 µM each), and 10 µM of the extension oligo comprising 

of the annealing region to the existing oligonucleotide and 16S 515f primer overhang 

(5'-TTACCGCGGCKGCTGRCACCTCCTGTCATCTCACTCCTG) for 1 hour at 60ºC 

protected from light. Beads were centrifuged, supernatant was removed, incubated in 

STOP-25 buffer (10 mM Tris-HCl pH 8.0, 25 mM EDTA, 0.1% Tween-20, 0.1 M KCl) at 

room temperature for 30 minutes, and washed and incubated in STOP-10 buffer (10 
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mM Tris-HCl pH 8.0, 12.5 mM EDTA, 0.1% Tween-20, 0.1 M KCl) three times at room 

temperature. To remove any annealed oligo on the beads, beads were washed and 

incubated in denaturation solution (0.15 M NaOH, 0.5% Brij-35) three times and then 

washed with neutralization buffer (100 mM Tris-HCl pH 8.0, 10 mM EDTA, 0.1% Tween-

20, 0.1 M NaCl) twice. Beads were washed three times with hydrogel bead wash buffer 

and washed three times with hybridization buffer (10 mM Tris-HCl pH 8.0, 0.1 mM 

EDTA, 0.1% Tween-20, 0.33 M KCl). Any unelongated oligonucleotides on the bead are 

removed by ExoI clean-up. To do so, beads are incubated for 30 minutes with 20 µM of 

protective oligos complementary to the 16S 515f reverse region, and then incubated in 

1X ExoI buffer and ExoI (0.27 U/µL) (Thermo Fisher Scientific, EN0581) for two hours at 

room temperature for digestion of any single stranded oligos without hybridization of the 

protective oligo. To remove the protective oligos, beads were washed in STOP-25 

buffer, incubated, washed in STOP-10 buffer three times, incubated and washed in 

denaturation buffer three times, washed in neutralization buffer twice, and washed in 

TET buffer three times for storage at 4ºC. 

 After the extension protocol, barcode beads were validated to ensure proper 16S 

forward primer addition on oligonucleotides. Two aliquots of 5 µL of packed, extended 

barcode beads were taken from the finished tube after centrifugation and placed in 

separate 1.5 mL microcentrifuge tubes, one for checking the extended 515f forward 

region and the other for the preexisting PE1 region. Respective FAM oligo probes 

(purchased from Integrated DNA Technologies, 5-/56-

FAM/TTACCGCGGCKGCTGRCAC for the 515f region and 5-/56-

FAM/AGATCGGAAGAGCGTCGTGTAGGGAAAGAG for the PE1 region) were 
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annealed to the bead oligonucleotides at a concentration of 10 µM in 1 mL QC buffer (5 

mM Tris-HCl pH 8.0, 5 mM EDTA, 0.05% Tween-20, 1 M KCl) in each tube, incubated 

for 20 minutes at room temperature in the dark, and washed with QC buffer three times 

to wash off free FAM probes. Beads were concentrated with centrifugation and 

visualized on C-Chip cell count haemocytomers (SKC, Inc., DHCN015) for fluorescence 

with FITC filters to confirm the presence of both regions on the beads. 

4.3.5 16S standard design and quantification 

The 16S standard is an oligonucleotide composed of a modified 16S V4 

sequence from Thermus thermophilus ATCC 33923. The full sequence is as follows: 

GTGCCAGCAGCCGCGGTAANNNNNNNGGCGCGAGCGTTACCCGGATTCACTGGG

CGTAAAGGGCGTGTAGGCGGCCTGGGGCGTCCCATGTGAAAGACCACGGCTCAA

CCGTGGGGGAGCGTGGGATACGCTCAGGCTAGACGGTGGGAGAGGGTGGTGGA

ATTCCCGGAGTAGCGGTGAAATGCGCAGATACCGGGAGGAACGCCGATGGCGAA

GGCAGCCACCTGGTCCACCCGTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAAC

CGGATTAGATACCCGGGTAGTCC. The first 19 and last 20 nucleotides of the 

sequence are conserved for annealing of the standard 16S 515f and 16S 816r primer, 

respectively, and the seven nucleotides directly after the 515f region are replaced with 

seven degenerate oligonucleotides for use as unique molecular identifiers. The 16S 

standard was purchased from GenScript as a single strand DNA (ssDNA) lyophilized 

stock with PAGE purification and verification for quality control. The ssDNA stock was 

resuspended in molecular-grade water and quantified with an in-house digital droplet 

polymerase chain reaction (ddPCR) to determine the concentration of functional 16S 

standard molecules. To do so, we diluted the stock 104 to 109 fold and made PCR 
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reactions for each. The PCR reaction was composed of 0.6 µL of 816r 16S V4 reverse 

primer (10 µM), 0.6 µL of 515f 16S forward primer (10 µM), 5 µL of 5X SuperFi II Buffer, 

0.6 µL of 10 mM dNTP (each) mixture, 0.6 µL of Platinum SuperFi II DNA polymerase, 

0.375 µL of 20 mg/mL bovine serum albumin (BSA), 3 µL of 10% Pluronic F-68, 3 µL of 

16S standard dilution, and 15.225 µL of molecular-grade water. This reaction volume 

was run through the flow-focusing microfluidic device with QX200 Droplet Generation 

Oil for EvaGreen (Biorad, cat # 1864005) to produce droplets with a diameter of 

approximately 40 µm in diameter. The droplets were collected in a 0.2 mL PCR tube for 

each dilution, excess oil was removed, and covered with 50 µL of mineral oil. The 

droplets were thermocycled using the following program: 95ºC for 2 min, 98 for 30 sec, 

30 cycles of (98 for 10 seconds, 60 for 10 seconds, and 72 for 30 sec) with a 2 ºC/s 

ramp rates between steps and no lid heating. Mineral oil was removed, and the oil 

phase was replaced with 10X SYBR in 2% surfactant in HFE7500 oil (0.2 µm filtered to 

remove excess SYBR in DMSO) and incubated for 20 minutes and was washed twice in 

fresh 2% surfactant in HFE7500 for 30 minutes. Droplets were viewed in a C-Chip 

under a FITC filter to identify the correct dilution that would provide a λ of 0.1 template 

molecules/droplet. This condition was imaged, and images were processed with a 

custom MATLAB script to determine the concentration of functional 16S standard in the 

standard stock. The stock 16S standard concentration was approximately 2.91x106 

molecules/nL. 

4.3.6 Droplet barcoding 

515f-extended barcode beads were washed in bead buffer (10 mM Tris HCl pH 

8.0, 0.1% Tween 20, 50 mM KCl) by washing in 0.5 mL PCR tubes by centrifugation at 
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1000 g for 1 minute three times, and a gel-loading pipette tip was used to remove as 

much liquid as possible after centrifugation at 3000 g for 2 minutes. Mock community 

agarose gels were washed in 10 mM Tris-HCl pH 8.0 by centrifugation at 1000 g for 1 

minute three times and as much liquid was removed with a gel-loading pipette tip. 

Agarose gels were diluted 1:2 by volume with 1.5X agarose gel suspension buffer (15% 

OptiPrep, 1.5% (w/v) Pluronic F-68, 0.45 mg/mL BSA, 15 mM Tris-HCl pH 8.0) for a 

33% agarose suspension by volume in a 0.5 mL PCR tube. 

A 2x concentrated PCR mastermix solution was made by combining 6 µL of PE2-

816r reverse primer (10 µM) (for a final concentration of 0.4 µM), 60 µL of 5X SuperFi II 

buffer, 6 µL of 10 mM dNTPs (for a final concentration of 400 µM each base), 6 µL of 

Platinum SuperFi II DNA polymerase, 18 µL of 10% Pluronic F-68 (v/v), 2.25 µL of 20 

mg/mL bovine serum albumin (BSA), 29.1 µL of the 10-4 dilution of the 16S standard 

stock, and 22.65 µL of molecular-grade water. The desired λ for the 16S standard was 

50 molecules/droplet. 

The device used for droplet barcoding is modified device available from Droplet 

Genomics Inc (purchase upon request). The device was originally designed for dual 

encapsulation of 60-70 µm diameter polyacrylamide beads. However, because our 

workflow requires the encapsulation of both polyacrylamide beads and agarose 

microgels, modifications were made (Figure C.2). Specifically, because of the 

differences in viscoelastic flow properties between a polyacrylamide bead suspension 

and an agarose microgel suspension, the inlet for the agarose microgel suspension was 

punched in a different location than originally designed. 
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The microscope used to monitor droplet encapsulation of beads and microgels 

was a Nikon Ti-S inverted microscope. A red band-pass filter (Midopt, BP635) was 

equipped into the condenser filter to prevent exposure of trace amount of UV-light from 

the microscope onto the UV-light sensitive barcode beads. For syringe pumps (three 

GenieTouch syringe pumps from Kent Scientific and one from KD Scientific) were used 

for microfluidic operation. 

The barcoding device has four inlets for the PCR reagent carrier phase, the 

packed barcode beads, the agarose microgel suspension, and the oil, as well as one 

outlet for the droplets. For each inlet phase, each is controlled by a syringe pump with 

an Air-Tite 1 mL plastic syringe filled with Biorad droplet generation oil with syringe 

needle. To draw up each phase into PFTE tubing, PFTE tubing is cut and a transfer 

syringe - an empty syringe with needle - is inserted into one end of the tubing and is 

used to manually draw an appropriate amount of each phase from a microcentrifuge 

tube into the PFTE tubing without drawing up air. Before withdrawing the barcode bead 

or agarose microgel suspension, the suspensions are pulse-vortexed 10 times to 

ensure homogenous distribution and break up clusters of gels or beads. The end of the 

tubing is removed from the transfer syringe and placed onto the end of the syringe and 

needle filled completely with oil, without any air between the liquid interface and the 

needle syringe with oil. The other end of the PFTE tubing is attached to the inlet of the 

device. The syringe pump is run to slowly prime the liquid suspension to the inlet of the 

device at a steady flow of 10 µL/min. Approximately 100 µL of packed barcode beads 

were loaded into the PFTE tubing and covered with a black tubing sheath (McMaster-



 92 

Carr) to protect the barcode beads from light. Around 30 µL of agarose microgel 

suspension was loaded, and approximately 100 µL of 2X PCR mix was loaded. 

The flow rates for the syringe pumps were as follows: the oil flow was 5 µL/min, 

the barcode beads at 0.5 µL/min, the agarose suspension at 1.5 µL/min, and PCR 

reagent at 2 µL/min. Occasionally, due to particle arching or larger microgels getting 

stuck, the flow for the agarose suspension needed pulsing manually to keep the 

suspension flowing. 

For each condition, we collected 6 min of barcoded droplets from the outlet in 0.5 

mL PCR tubes. For droplet thermocycling in 0.2 mL PCR tubes, each condition had 20 

µL of Biorad oil and 30 µL of droplets from barcoding. Droplets were exposed to UV-

light on ice under a 365-nm UV-light (Ted Pella Blak-Ray) for 10 min (with the lamp pre-

heated for 10 minutes beforehand). 50 µL of mineral oil was placed on top of the 

droplets and the reaction tubes were briefly centrifuged on the mini-centrifuge. Droplets 

were thermocycled using the following program: 95 ºC for 2 min; 98 ºC for 30 sec; and 

30 cycles of 98 ºC for 10 seconds, 60 ºC for 10 seconds, and 72 ºC for 30 sec), with a 2 

ºC/s ramp rates between all steps with no lid heating. Mineral oil was removed 

immediately after thermocycling finished and as much excess oil was removed with a 

gel-loading pipette tip. 

For PCR clean-up, 40 µL 1X ExoI buffer with 1 U/µL ExoI and 30 µL of 

perfluorooctanol was added for each condition and briefly centrifuged to merge droplets 

and incubated at 37 ºC for 30 minutes. Approximately 50 µL of aqueous phase was 

transferred without any oil to new 0.2 PCR tubes for clean-up with AMPure XP beads. 
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Following the AMPure XP protocol (Table C.1), we then eluted in 20 µL of 10 mM Tris 

HCl 8.0. 

4.3.7 Library preparation and sequencing 

Library preparation was performed with PCR in a 50 µL reaction comprising of 

2.5 µL of each library primer with appropriate indices (0.5 µM stock) (Table C.2), 25 µL 

of 2X NEBNext Q5 HotStart HiFi PCR MasterMix, 0.125 µL of BSA (20 mg/mL), 9.875 

µL of molecular grade water, and 10 µL of DNA clean-up elution. The thermocycler 

program was as follows: 98 ºC for 30 seconds; 10 cycles of 98 ºC for 10 seconds, 68 ºC 

for 20 seconds, and 65 ºC for 30 seconds; 65 ºC for 2 minutes; and a 12 ºC hold. PCR 

product was verified on a 1.5% agarose gel after running gel electrophoresis at 100 mV 

for 50 minutes, ethidium bromide staining, and 5 minute wash in TAE buffer. For PCR 

clean-up and removal of non-specific amplification, we used the QIAEXII Gel Extraction 

kit to selectively purify the expected ~490 bp DNA band. To ensure that the product was 

correct, the primer-library mix was sent to Eurofins Sequencing for Sanger sequencing 

with the P5 and P7 Illumina adaptors as primers. Verified libraries were sent to the 

University of Michigan Advanced Genomics Core for sequencing with the Illumina 

NextSeq 2000 with P1 300 cycle chemistry. Paired end sequencing was done with 

asymmetric read lengths, the forward read with 260 base pairs and the reverse with 40 

base pairs.  

4.3.8 Bioinformatics 

A custom python script from Zilionis et al. (183) originally used for single-cell 

transcriptomics was modified and used to demultiplex droplet libraries and trim 
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barcodes, adaptors, and the 16S 515f forward primer from reads. A 16S V4 reference 

database for the cultured representatives and T. thermophilus for the 16S standard was 

generated with the pcr.seqs command in mothur with the reference genomes in NCBI. 

The operational taxonomic unit (OTU) table was produced by running the query reads 

from demultiplexing and trimming against the 16S V4 database with the usearch_global 

command in vsearch (v.2.13) (185). Samples with less than 100 reads were removed. 

Any samples with more than 90% and 75% of the reads for the “even” and “log” mock 

community libraries, respectively, identifying as 16S standard were considered droplets 

without genomic DNA and removed. In addition, any samples with less than 10 total 

16S standard reads were also removed. Distances between individual mock community 

samples were calculated and a principle component analysis was performed in mothur 

(v.1.44.1) (144). Relative abundances calculations accounted for 16S copy numbers 

retrieved from rrnDB (186). 

4.4 Results 

4.4.1 Workflow overview 

To provide insight into the community interactions responsible for co-growth, the 

developed workflow needs to answer two questions: "who is in each droplet?" and "to 

what extent did they grow?". To answer who is in each droplet, we can apply recent and 

established advances in 16S sequencing (67,143). However, having droplet-resolution, 

particularly of who is present is much more technically challenging and requires further 

methodological development. To do so, we used hydrogel beads with bead-unique 

oligonucleotides barcodes utilized in similar studies (182,183). These beads are 

encapsulated approximately one-to-one in microdroplets with the template DNA of 
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interest to allow for droplet-specific barcoding after tagmentation or extension of the 

barcodes onto sequences. To answer to what extent did they grow for each droplet 

necessitates a quantitative 16S sequencing platform. Typically 16S Illumina sequencing 

provides relative abundances of the communities in question, but studies using spike-in 

internal standards allow for the interpretation of absolute abundance (181). Typically for 

these internal standards, a known amount of a sequence standard is added to the 

sample, and this allows for reconstruction of the absolute abundances from relative 

abundance data based on the spike-in ratio. A similar strategy could be applied to 

droplets for individual 16S droplet quantitative sequencing, but one complication is the 

stochasticity of the number of exact standard molecules introduced in the droplets due 

to Poisson statistics. To be an effective standard, the precise number of standard 

molecules needs to be known for each droplet. One approach relevant from recent 

sequencing workflows is the usage of unique molecular identifiers (UMIs) (187). Unique 

molecular identifiers are degenerate oligonucleotide regions introduced in sequences 

that are randomly generated in the oligonucleotide synthesis process to quantify reads 

on a molecular level even after sequence amplification. Due to the sheer number of 

unique UMIs – determined by 4n where n is the number of degenerate base pairs – the 

probability of the same UMI reoccurring twice in a small pool of UMIs is very low. Taking 

inspiration from this, we designed a 16S standard by introducing a UMI region into a 

known 16S sequence derived from the organism Thermus thermophilus, ordered as a 

ssDNA oligo, quantified the stock concentration of this oligo precisely with digital droplet 

polymerase chain reaction (ddPCR) for encapsulation into droplets. 
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The workflow incorporating both methodological strategies is shown in Figure 

4.1. Sub-communities are generated by microdroplet generation, co-cultivated at 

appropriate conditions, and cells from each droplet are immobilized in an agarose 

microgel, microgels are collected, and cells are lysed in the microgels. The agarose 

matrix for each microgel prevents the diffusion of large molecular weight particles, 

including cells and genomic DNA. This allows everything to be suspended in one 

convenient aqueous phase yet still discretized in biologically-meaningful units that can 

be physically handled downstream for individual analysis. Droplet barcoding takes the 

lysed genomes immobilized in agarose microgels and co-encapsulates them in droplets 

with the barcode beads in a liquid phase containing the required PCR reagents and the 

16S standard molecules with UMIs for quantification downstream. Droplet-specific 

barcodes are attached to the 16S V4 amplicons during droplet PCR. The PCR buffer is 

formulated to keep droplets stable during thermocycling to prevent barcode cross-talk in 

merged droplets. The droplets are then merged, barcoded 16S V4 amplicons are 

washed with a PCR clean-up protocol, and then sequencing libraries are generated with 

another PCR. After sequencing, droplet libraries are demultiplexed bioinformatically and 

quantified on an absolute basis with the spike-in 16S standard. Using presence and 

absence and the large number of samples, statistical inference is used to determine 

which co-culture combinations have interactions. Monoculture libraries can be 

generated from the microbial sample with a low-λ droplet encapsulation (e.g. 0.1 

cells/droplet) and cultivation to compare with co-cultivation libraries to determine which 

co-cultures result in better growth compared with monoculture. 
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Figure 4.1: Workflow overview. Droplets are used to decompose a natural community into subset 
communities and are co-cultivated and immobilized in an agarose microgel. The agarose microgel allows 
for fixation of the cells and their genomic material during lysis and washing in the microgel. During droplet 
barcoding, the microgels are paired with barcode beads to introduce droplet-specific signals and a 16S 
standard with a unique molecular identifier (UMI) for absolute quantification after sequencing. To attach 
and amplify 16S regions, droplet PCR is performed, and droplets are pooled and subject to library 
preparation for Illumina paired-end sequencing. Bioinformatic analysis is used to determine the relative 
abundance of each droplet community and the number of unique standards based on 16S standard 
UMIs. Together this information is used to determine the absolute abundance of members in each droplet 
community for interaction inference. 

 

4.4.2 Design of barcode beads 

The detailed bead barcode design is presented in Figure 4.2. When purchased, 

the oligonucleotides compose of a photocleavable spacer, a T7 promoter, a PE1 region 

for downstream library preparation, two barcode regions connected by an adaptor 

sequence, a 6 base pair UMI sequence, and another adaptor. Two regions of the 

oligonucleotide on the beads are unutilized in our workflow: the T7 promoter sequence 

and the UMI. The original molecular design for these beads is for a single-cell 
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transcriptomics workflow which utilizes linear amplification with the T7 promoter region 

and absolute quantification of transcripts with the 6 bp UMI region (183). The original 

design uses a dual index "split and pool" design to generate 147,456 unique bead 

barcodes from two sets of barcode libraries comprising of 384 unique barcodes each 

(183). The last "custom sequence adaptor” is meant as a universal adaptor for users to 

extend their own region of interest onto the oligo. To do so, we hybridized an oligo with 

a region complementary to the custom sequence adaptor with a 16S V4 515f forward 

primer overhang and extended the oligo on beads to incorporate the 16S forward 

primer. The extension oligo is removed and to verify the addition of the 16S forward 

primer, we hybridized a fluorescent probe complementary to the 16S forward primer 

onto oligos on the barcode beads to ensure correct hybridization (Figure 4.2b). After 

droplet encapsulation of the beads with microgels with genomic material, the 

oligonucleotides are cleaved off the bead with UV-light for droplet PCR to amplify the 

16S V4 region with the released oligo and 16S 816r reverse primer, and then library 

preparation is used to amplify the entire construct. 
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Figure 4.2: Barcode bead design. Barcodes are dual-index, composed of pairwise combinations between 
two sets of 384 barcodes for a total of 147,456 possible unique barcodes. The 16S primer is attached by 
hybridization and extension by polymerase. Bead oligonucleotides include a T7 promoter and a unique 
molecular identifier (UMI) which are not utilized in our workflow. During droplet barcoding, 
oligonucleotides are released from the bead by UV-light treatment. During library PCR, library adaptors 
(P5 and P7) are annealed onto the PE1 and PE2 regions. Microscopy image on the top right shows 
barcode beads after 16S extension with 16S primer FAM probes. 

 

4.4.3 Microfluidic and molecular biology workflow 

Since agarose is being using as the gelation agent in this workflow, all steps prior 

to gelation must be done at elevated temperatures. In particular, low-melting point 

temperature agarose remains liquid at 37 ºC. To do so, all relevant steps are performed 

in a modified oven incubator, described in the “Materials and Methods” section. After 
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gelation, microgels are distinct units that can be recovered from droplets and 

suspended in aqueous media (Figure 4.3a). 

Cell lysis of the immobilized cells within the microgels is limited to enzymatic and 

chemical treatment since bead beating would break the microgels as well. To test the 

capability of cell lysis in microgels, we tested a broad cell lysis protocol on different cell 

cultures, both gram-positive and gram-negative and from different environments, 

encapsulated in microgels at a lambda of 100. For most strains – E .coli, P. putida, B. 

subtilis, and B. thetaiotaomicron - lysis was very efficient, with very little remaining intact 

cells left (Figure 4.3b). Staining these gels with a double-stranded DNA stain 

demonstrated that high-molecular weight genomes from lysed cells were retained in the 

microgel (Figure 4.3b). One strain of the five tested, L. crispatus, a gram-positive 

isolate, remained intact after the cell lysis protocol (Figure 4.2b). This demonstrates the 

need to understand the efficiency of lysis on the biological system of interest and 

optimize lysis protocols. Additional enzymes and chemical reagents could be used to 

target the specific physiology of L. crispatus (188), but this demonstration validates the 

proof-of-concept. 

Droplet barcoding hinges on the pairing of the barcode beads with agarose 

microgels. The efficiency was determined and is presented in Figure 4.3c. There were 

four types of resulting droplets: empty droplets, droplets with one barcode bead, 

droplets with one agarose microgel, and droplets with both. The distribution of empty 

droplets and droplets with only agarose microgels do not result in any amplified 

sequences due to the lack of a forward primer from the barcode bead. However, 

sequencing inefficiency is introduced by droplets with just barcode beads; due to the 
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presence of the 16S standard, even without genomic template from the agarose 

microgels, there will be amplification of the 16S standard alone. Based on these 

encapsulation statistics, around 33-47% of droplets sequenced will be from informative 

droplet libraries, while the rest is from redundant 16S standard amplification. 

The PCR amplification of the 16S V4 sequences in droplets is illustrated in 

Figure 4.3d. After exposure to UV light and high temperature to cleave oligos off the 

barcode bead and release microbial genomes from the agarose microgel, respectively, 

16S amplification is performed in droplet, attaching barcodes to 16S amplicons. 

Droplets are merged and then subject to library preparation for Illumina sequencing. 
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Figure 4.3: Detailed microfluidic and molecular workflow. (a) Droplets are generated with cells in a water 
and oil flow-focusing microfluidic device. The aqueous suspension is cells in a 1.5% low melting-point 
agarose suspension in the media or buffer of choice. To maintain the agarose as a liquid, the generation 
and co-cultivation environment is maintained at 37 C. After co-cultivation, droplets are incubated at room 
temperature or on ice for gelation. Photos show cells in droplets before gelation (left) and microgels after 
gelation suspended in an aqueous phase (right). (b) Cells are lysed in the microgels and nucleic acid is 
immobilized inside. To demonstrate, five different cell types were encapsulated in different gels, exposed 
to lysis and imaged before and after. Gels with lysed cells were stained with SYBR to stain double 
stranded genomic DNA. (c) Individual microgels are then barcoded by co-encapsulation with barcode 
beads. The carrier phase is a PCR reagent with the reverse primer and 16S standard for quantification. 
Microscopy images show examples of droplets from barcoding. Above the image are encapsulation 
statistics for empty droplets, droplets with just agarose microgels, droplets with just barcode beads, and 
both, respectively from left to right. (d) Molecular workflow for droplet PCR and attachment of barcodes to 
16S amplicons and library preparation. 

 

4.4.4 Benchmarking with mock communities 

To assess the developed workflow, we applied it to defined mock communities. 

These mock communities were comprised of four cultured representatives comprising of 

E. coli, B. subtilis, P. putida, and B. thetaiotaomicron, which were verified to be 

effectively lysed by our workflow. There were two mock communities: (1) the “even” 

community with a λ of 50 cells of each species per droplet and (2) the “log” community 

with a λ of 180, 18, 1.8, and 0.2 cells per droplets, respectively (Figure 4.4). The “even” 

community is comprised of a somewhat equal portion of these different species in each 

droplet at a lambda of 50 cells of each type, although Poisson encapsulation statistics 

introduces quite a large amount of variability. The “log” community is much more 

uneven, being primarily dominated by E. coli with fewer members of B. subtilis, with the 

occasional P. putida, and even more rare B. thetaiotamicron. Due to random Poisson 

statistics, the exact composition of individual droplets is indeterminable, but the overall 

expected distribution can be used to compare with the distribution generated from 

sequencing the final libraries generated from the workflow. 
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Figure 4.4: Mock communities utilized in benchmarking. Both are composed of the same four members, 
but in different community compositions. The “even” community has an approximately 1:1:1:1 ratio 
between the four members and the “log” community is expected to have E. coli and B. subtilis in each, P. 
putida in a fraction, and B. thetaiotaomicron occasionally.  

 

Considerations for benchmarking included verifying the distribution of sequencing 

across different droplets after 16S amplification and sequencing and the accuracy of the 

community composition data. Based on the number of droplets generated and the 

proportion of droplets with the correct encapsulation of both the agarose microgel and 

barcode bead, we expected around 7000 droplets to be present in the sequencing 

dataset. We wanted to verify if approximately that number of droplets was represented 

in the sequencing or not. Additionally, the accuracy of the data needs to be validated as 

well. This includes checking if the distribution of community composition resembles the 

expected distribution from the mock communities. From our quantification of the 16S 

standard, we expected a λ of 50 unique 16S standards per droplet and would be 

compared with actual distributions after bioinformatic processing. 

The sequencing depth across droplets from the “even” mock community is 

presented in Figure 4.5. After removing droplet libraries with less than 100 reads, there 

were 1325 droplets barcoded, less than expected by an approximate scale of five. 

There is a high level of variation in sequencing depth across droplets, with most 
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droplets being sequenced at depths of 100-300, with a long tail-end of certain samples 

that amplified to depths of tens of thousands. Although not shown here, a large 

proportion of droplets were removed when samples with less than 100 reads were 

removed. While 7000 droplets may have been processed, some droplets were amplified 

much more than others, resulting in a reduction of total droplets effectively sequenced. 

Although the barcoding is done in monodisperse droplets which are largely very uniform 

and identical in composition, the degree of variability of the number of functional oligos 

per barcode bead observed in Figure 4.2 may explain some of the variation between 

droplets. 

 

 

Figure 4.5: Histogram for the number of reads associated with each barcode in the “even” mock 
community after demultiplexing. Sequence from droplets with less than 100 sequences are not included. 

 

 Another aspect of the sequencing dataset that is nontrivial is the determination of 

sequences resulting from real barcoded droplets with the mock community versus 

droplets with just the 16S standard. A large portion of droplet libraries have reads from 
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the 16S standard contributing higher than 90% of the total reads. Droplets that only 

amplified the 16S standard and not genomic DNA comprise a significant part of this. 

However, many droplets have a substantial number of reads from the mock community 

and are still heavily dominated by the 16S standard. Some of this may be due to the 

uneven sequencing depth across droplets, where droplets with only the 16S standard 

are unevenly and heavily sequenced so that a significant portion of free mock 

community DNA is also sequenced. To proceed with analysis, I set a threshold for the 

determination of these standard-only droplets, as explained in the “Material and 

Methods” section of this chapter. In the future, more work should be done to 

characterize this distribution and what can be done to improve it for more rational 

screening. Using the number of unique 16S standards for each may help resolve the 

uneven sequencing depth to some extent but will likely not resolve it entirely. 

 To verify the general accuracy of the method, I analyzed the mock community 

portion of the sequenced droplet libraries. To represent the variation of community 

structures across and between the droplet mock communities, a principle component 

analysis with the Yue and Clayton (189) measure of community dissimilarity is 

presented in Figure 4.6. The expected distributions were generated in silico from the 

Poisson distribution and represented as well. A very stark difference is seen between 

“log” droplets and “even” droplets, with “log” droplets having a relatively low variation 

and “even” droplets having much higher variation. Variation within the “log” communities 

is expected to be much lower because of the smaller degrees of variation contributed by 

less abundant members, while the much higher relative variation contributed from each 

species in the “even” community results in a higher overall community variation. The 
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comparison of the expected distribution with the actual dataset shows relatively good fit. 

The “log” droplets match expectations almost precisely while the “even” droplets 

approximately match their expectations with a much wider distribution. This may be 

explained by deviations from the Poisson distribution during droplet encapsulation due 

to cell adhesion, which may be particularly pronounced in the “even” droplets whereas 

the “log” droplets are much more constrained due to the inherent tighter variation 

imposed by the highly uneven community profile, even with clustering of cells. 

 

 

Figure 4.6: Comparing community compositions between the “even” and “log” mock droplet communities 
in a principal component analysis of Yue and Clayton distances. Expectations from the Poisson 
distribution are provided in lighter corresponding colors. 
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4.5 Discussion 

This method demonstrates the first high-throughput co-cultivation platform for the 

study of microbial interactions for natural microbiomes. We have designed a workflow 

for the combinatorial generation, co-cultivation, and analysis of microbial sub-

communities and benchmarked it on simple mock communities. The quantitative aspect 

of the method is still in the process of benchmarking, particularly the determination of 

unique 16S standards from the sequencing library, but the workflow is expected to 

require some more validation and development. Overall, despite the areas for 

improvement, the methodology demonstrated a significant capability for the high-

throughput, compositional analysis of 4,071 droplets, from both the “even” and “log” 

mock communities. This is a significant technical advancement towards high-throughput 

system biology methods for the study of natural microbial communities. 

4.5.1 Further benchmarking analysis 

Due to time, the distribution of unique 16S standard molecules in each droplet 

was not determined, although the 16S standard is indeed present in each droplet. With 

the datasets already gathered, we will perform this analysis. Because some droplets 

were sequenced more deeply than others, we can perform rarefaction curves to 

analysis how much sequencing depth for each droplet is necessary to recover all unique 

16S standards and the full diversity of the community. This may allow us to set 

thresholds for the minimum number of reads per each droplet community more 

systematically. Mock communities are certainty not just for methodology benchmarking, 

but also for determination of these thresholds and parameters for quality control, just as 

mock communities are routinely sequenced with traditional 16S sequencing. 
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One issue with using droplet mock communities is the high variation from 

Poisson statistics. A precise assessment of the accuracy and precision of the method is 

difficult to assess with the “even” mock community but is more apparent with the “log” 

community where variability is lower. The “log” community libraries seem to suggest that 

the method is quite accurate and precise, even for detecting rare members, but more 

resolved benchmarking is needed. The most ideal benchmark standard is with the 

actual measurement of droplets, instead of being based on expectations from 

distributions. The next benchmarking experiments are to grow a model bi-culture with a 

known interaction in the droplets, measure the growth of each species per each droplet 

with a reliable method, perform our developed workflow in parallel, and then compare 

the sequencing signal with the expectations from the reliable measurement. We plan to 

do this with a B. subtilis and E. coli auxotrophic, syntrophic co-culture from Hsu et al. 

(94). Because each strain is fluorescently labelled, fluorescence imaging will provide 

more accurate expectations from measurement. 

4.5.2 Further technical improvements 

This demonstration is a technical proof-of-concept demonstration. The mock 

community studied has four members, which pale in comparison to most natural 

communities. Additionally, to conserve sequencing effort, Illumina paired end 

sequencing only partially sequenced the V4 region, specifically the first 160 base pairs. 

it was not a very deep sequencing effort, utilizing the NextSeq P1 chemistry that 

provides around 100 million reads. For benchmarking with our simple four-member 

mock community, this resolution was adequate. However, for the phylogenetic 

resolution of a natural community, the entire V4 region is recommended, and much 
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deeper Illumina paired end sequencing efforts are available, such as the NovaSeq 6000 

SP at 800 million reads. 

The variability in droplet sequencing depth has been measured and some 

improvements to the workflow can be made to ameliorate it. This bias is most likely from 

the variability in functionalized barcode beads. One potential strategy to reduce the 

variability is to hybridize fluorescent probes to the functionalized oligonucleotides, sort 

barcode beads based on the degree of functionalization with flow cytometry, and only 

use beads within the top 10% of functionalization for barcoding. Alternatively, if this 

cannot be amended, the variation in sequencing depth can be accounted for in future 

efforts through appropriately deeper sequencing efforts. 

Another consideration is the disparity in amplification between the relatively low 

molecular weight 16S standard and 16S sequence within larger genomic DNA 

fragments. Thermodynamically, it may be more difficult for the annealing of primers onto 

the 16S sequence within larger genomic DNA than on shorter 16S standards. The PCR 

efficiency should be compared between the 16S standard and in genomic DNA, as the 

absolute quantification only works if there is a similar efficiency between the two. If not, 

this efficiency can be measured and accounted for.  

As explained before, the device used to pair barcode beads to the agarose 

microgels was not designed with our workflow in mind, leading to inefficient pairing and 

wasted sequencing. Other designs that better accommodate the flow of an agarose gel 

suspension can inform our design of new devices (190). Improving this aspect will limit 

the number of droplets with excessive signal from the 16S standard and will improve the 

interpretability of data. 
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4.5.3 Generalizability 

The current scheme works given the assumption that the community is agarose-

agnostic, meaning the community does not consume agarose or that agarose does not 

affect the metabolic state of the community. This is certainly not the case in aquatic or 

marine communities in which agarose is a naturally occurring carbon source. In 

addition, to maintain planktonic growth, the community must grow in temperatures 

above 37 ºC. Otherwise, the agarose will set, immobilize cells prematurely, and 

constrain cell growth. The nature of interactions between cells may change if they are 

not allowed to physically-interact. Ultra-low melting point agarose is an alternative 

hydrogel since it can remain liquid at room temperature or 30 ºC. If agarose affects cell 

physiology, an alternative is high-throughput picoinjection of agarose or acrylamide into 

individual aqueous droplets after co-cultivation (191). Lastly, as demonstrated in Aim 1, 

droplet size must be considered for effective growth of certain biological systems. Due 

to this, the droplet sizes utilized in this proof-of-concept method may not be 

generalizable to all biological systems. Droplet dimensions may need to be adjusted 

depending on the system of study and which questions are being investigated. 

4.5.4 Future applications 

One biological system that we are excited to apply this method to with the fewest 

alterations to the technical workflow is the vaginal microbiome. The system is expected 

to be agarose-agnostic and can be co-cultivated at 37 ºC, which is compatible with our 

current workflow. A previous member of our lab has also applied microdroplets of 

similar sizes to the co-cultivation of isolates from the vaginal microbiome (102). The 

vaginal microbiome is a relatively well-characterized system with many interesting 
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biological questions (192,193). For example, we know about the vaginal microbiome's 

high prevalence of negative interaction. Lactobacillus species are known to inhibit the 

growth of other anaerobic bacteria by keeping the vaginal environment acidic through 

the excretion of lactic acid (12). However, Lactobacillus species are also known to 

produce other bactericidal compounds (194), and the specificities of those agents is 

unknown. With our high-throughput interaction inference method, we can co-cultivate 

various Lactobacillus cells from vaginal samples with isolates of known problematic 

vaginal isolates such as Gardnerella, Prevotella, and Mobiluncus to characterize 

negative pairwise interactions in a much more resolved and high-throughput manner. 

The study of more complex communities such as the human gut microbiome with 

this method is possible if the throughput is scalable to the diversity of the system. 

Additionally, with larger, more comprehensive datasets comes the potential to apply 

machine learning, as some research groups have (88), which may help us in 

understanding how these cell-cell interactions contribute to higher-order emergent 

properties.
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Chapter 5 : Concluding Remarks and Perspectives 
 

This chapter will summarize the work in this dissertation, perspectives on future 

work, and reflections regarding parallels between phenomena observed in microbial 

communities and the scientific community studying them. 

5.1 Summaries of Completed Work 

5.1.1 Characterizing the Effect of Droplet Size on Syntrophic Dynamics 

Using a two-member, syntrophic E. coli bi-culture and different droplet sizes 

under different environmental contexts provided much insight regarding the effect of 

droplet size on syntrophic co-growth. The specificity of the response to the change in 

droplet size between the different environmental contexts was particularly stunning. In 

the lowest interaction scenario tested, increasing the droplet size resulted in a 

prolonged lag time with less significant effects on the apparent maximum specific 

growth rate. In the intermediate interaction scenario, increasing the droplet size resulted 

in a more dramatic effect on the apparent maximum specific growth rate and an 

insignificant rate on the lag time. In the most strenuous interaction condition, a very 

drastic binary "establishment or not" effect was seen. These observations inspired 

investigations into the mechanism for these phenomena. However, even with this 

simplified bi-culture system, the mechanisms are not intuitive. These observations can 

be replicated to a limited extent in an ordinary differential equation model consisting of 
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two-members growing in a population-dependent manner according to Monod kinetics 

on limited substrates produced by the other member. Because this model assumes 

immediate mass transfer, these observations are not a result of diffusion but more likely 

due to nonlinear responses to changes in starting parameters which are a function of 

droplet size. The behavior of the system is quite complex, and a more systematic 

numerical analysis to characterize the system response would be helpful. For example, 

in inspiration from fluid mechanics and chemical engineering, dimensionless numbers 

provide a metric to characterize to what extent opposing factors are contributing the 

system behavior. Studying how the availability of specific substrates as a composite of 

secretion and uptake compares with the biosynthetic requirement for growth is one 

potential. Additionally, to verify findings from our numerical analyses, it is important to 

also verify their relevance experimentally, which would require measurement of these 

parameters. 

Additionally, the staggering amount of droplet-to-droplet variation confirms the 

degree of cell stochasticity introduced from low initial cell number populations. The high 

variation observed in the bi-cultures compared to in monoculture conditions suggests 

the sensitivity of the bi-culture to initial parameters. This sensitivity to initial conditions is 

a non-linear behavior known as chaos. This chaotic behavior in co-culture conditions 

has been utilized to select for high secretion strains in co-culture assays, manifesting as 

a signal of much higher total co-culture growth (100). This phenomenon has been 

studied extensively in physics and is characteristic of ecological phenomenon such as 

founder effects. Utilizing droplets is certainly an exciting way to quantify these 

characteristics in microbial systems. 
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Despite their growing popularity, the droplet as a cultivation environment has still 

not been fully investigated. Some anecdotal evidence claims that some strains behave 

differently in microdroplets than in bulk conditions. There probably remains other factors 

that have not been elucidated yet. For example, one major difference is the lack of 

convection on fluid flow. While mass transport may be similar due to the length scales, 

cells may respond differently to different flow regimes. Bulk cultures are subject to 

convective flow for mixing, and cells have been observed to react differently to different 

kinds of flow (195,196).  

5.1.2 High-resolution Metagenomic Dissection on Selected Microdroplets to Study 

Microbial “Dark Matter” 

We successfully applied singlet droplet manipulation, collection, and individual 

droplet shot-gun metagenomics to recover genomes de novo. While other studies have 

applied this to single cell cultivation, to our knowledge, this was the first application to 

the recovery of genomes from a community grown in a single droplet. The experimental 

design and limited number of droplets studied do not allow for interaction inference, but 

it is likely that the organisms that were grown may have benefited from certain 

undefined interactions. The genomes represented uncharacterized diversity and 

demonstrated that microdroplets are indeed a method for the cultivation of rare strains 

that may be outcompeted by cultivation in bulk cultures. 

Assuming that sequencing effort is limited, it is difficult to recover all genomes 

from the sub-community. While the recovery rate of genomes demonstrated here is still 

quite impressive compared to single-cell genomics, multiple displacement amplification 

(MDA) introduces extensive bias in bulk reactions that make the reconstruction of entire 
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communities extremely difficult. Advances such as digital droplet MDA (ddMDA) may 

allow for the unbiased amplification of genomic material from single droplets and 

recovery of more genomes from a limited sequencing effort. Still, metagenomic efforts 

of communities with this method will require significant sequencing effort and will be 

limited to a smaller number (10-100s) of sub-communities. For natural communities of 

exemplary high diversity where recovery of genomes through conventional means may 

not be feasible, reducing the complexity through this methodology to identify 

interactions may be more informative. This could be performed with more targeted 

approaches, such as the selection of droplets with species of interest by flow cytometry 

or droplet sorting (104). For example, there is interest in identifying functional consortia 

for plastic-degradation or carbohydrate degradation and their interactions. This could be 

done by the selection of droplets with a positive signal (e.g. detection of certain 

fluorescent metabolites or the growth of fluorescent reporter strains) and processing of 

individual droplets with this methodology. 

We are currently applying the metagenomic approach with ddMDA on single 

aggregates from the Lake Erie cyanobacterial harmful algal blooms. Single aggregates 

provide an ecologically meaningful unit to study due to their self-aggregation in nature. 

We are using this approach to study interactions between Microcystis aeruginosa hosts 

and their microbiomes through genomic inferences and metabolic complementarity.  

5.1.3 Droplet-based, Quantitative 16S Profiling for High-throughput Combinatorial 

Decomposition  

Chapter 5 demonstrated the design of a quantitative droplet-based 16S profiling 

workflow. The lack of this methodology has limited the application of microfluidic 
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droplets for the high-throughput interaction inferencing of microbiomes. Instead of using 

metagenomic shot-gun sequencing on a smaller pool of droplets, this approach is high-

throughput, targeted sequencing. Utilizing polyacrylamide barcode beads to retain 

barcode signal in sequencing and a 16S standard to quantify community composition 

were the main technical capabilities incorporated. 

The methodology’s ability to study the relative abundance of different droplet 

communities has been demonstrated well with mock communities. We plan to 

benchmarking the accuracy and precision of the workflow by incorporating co-growth 

and more precise validation with fluorescence signals. Analysis of the mock 

communities by absolute quantification has yet to be done and will determine how much 

more prototyping is necessary for accurate quantification. Further work to generalize the 

method for other biological systems will require accounting for different droplet sizes 

and microfluidic picoinjection. 

Additionally, we have realized the utility of mock community droplet standards for 

identifying thresholds for eliminating sequencing noise and sequencing coverage 

required to capture the entire community profile. The addition of a mock community 

droplet library standards should be standard protocol for determining sequencing 

efficiency, distribution across droplet libraries, and error. 

5.2 Future Work 

5.2.1 Study of single-cell level variation on interactions and community outcomes 

Chapter 2 demonstrated how microdroplet cultivation can elucidate high-levels of 

phenotypic resolution with simple mono- or co-cultures. Our study of a model E. coli 

autoxtroph system demonstrated the spectrum of community states that result from 
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supposed single-cell variability and random Poisson encapsulation statistics but is 

unable to decouple the two. One potential research opportunity is how variability at the 

single-cell level contributes to different community structure outcomes. The inoculation 

of an open-niche, localized environment by a small number of establishing organisms 

may have chaotic implications for the succession principles for a community outcomes 

(197). To do so requires the ability to study the initial and final compositions of the same 

microdroplets and visual reporters for strain phenotype. Currently, with our technical 

capability it is difficult to store or track droplets over time and fluorescence reporters are 

constitutively expressed. Adapting microfluidic devices for the storage of individual 

microdroplets (198) and designing strains with genetic circuitry to link fluorescent 

reporters with the biosynthesis of cross-fed metabolites may allow for the higher 

resolution characterization of how strains and their phenotypic properties contribute to 

their interactions and community outcomes. 

5.2.2 Beyond prokaryotic cells 

While this dissertation discussed utilizing microdroplets for the study of 

interactions within microbiomes, all work was exclusively demonstrated or applied to 

prokaryotic systems. Microbiomes include fungi, viruses, and protists as well. However, 

the application of microdroplet technologies to these kingdoms of life will require 

technical advancements and the design of unique microfluidic and molecular biology 

workflows. Specifically, if the high-throughput quantitative droplet profiling approach in 

Chapter 4 is to be applied in this context, it will require the inclusion of other marker 

genes for multiplexed amplification and sequencing. More specifically, barcode beads 

would incorporate not just primers for the 16S gene but other marker genes including 
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the internal transcribed spacer (ITS) region or 18S for fungi and protists and other 

phylogeny-specific genes. This kind of approach is necessary for the study of 

microbiomes associated with different eukaryotic phytoplankton (199) as well as with 

the study of fungal-bacterial interactions for degradation of lignocellulose (200). 

5.2.3 Beyond genomics 

The work presented in this thesis is primarily genomics-driven. While 

metagenomic-approaches have greatly advanced our knowledge of natural systems, 

'omics approaches also include transcriptomics, metabolomics, and proteomics. There 

are certainly new advances in single-cell bacterial transcriptomics (201). The application 

of single-cell eukaryotic transcriptomic workflows to prokaryotic systems was made 

possible by utilizing polyadenylation enzymes for the addition of polyA tails onto 

bacterial mRNA transcripts (202). From this, single cell bacterial transcriptomics have 

been developed but applying them in a low-biomass, community, or high-throughput 

droplet context will be difficult. Regarding metabolomics, high-throughput droplet 

workflows have been developed (203), and one study has applied Raman spectroscopy 

for the identification of pure cultures grown in droplets that produce certain natural 

products (204). A critical challenge is combining metagenomic, transcriptomic, and 

metabolomic workflows. This requires methods to divide individual droplets for analyses 

with different high-throughput droplet platforms and the ability to link metagenomic and 

transcriptomic signals to corresponding spectroscopy and chromatography analyses.  

Even less work has been done to incorporate proteomics for single-cell or water-in-oil 

microdroplet systems due to the amount of sample needed for detection and the precise 

and intensive sample processing required. Sequencing-based workflows, such as 
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metagenomics and transcriptomics, are certainty the easiest to adapt into droplet-based 

methodologies. However, metabolomic approaches are needed for more resolved 

phenotypic information. 

5.3 The Scientific Community and Microbial Communities 

Throughout my PhD, I honed my skills as a methodologist. Many of the questions 

that I asked were along the lines of "what can I do with this technology that I am 

developing?" rather than those of a traditional scientist who desire to answer questions 

to deeply understand a system of interest. There are benefits in being a methodologist. 

For example, scientists are limited to pursuing the questions that can be answered 

rather than which questions are important to answer because of the limitations of 

available methods. Because I am in disciplines that support methodology development, 

I can spend the time to do so. However, the amount of time to answer questions is very 

limited. Scientific disciplines would rather train their students to be competent scientists 

rather than methodologists. As such, doing both is extremely difficult. In this regard, I 

have learned that successful science in microbial ecology is performed by a highly 

mutualistic community. Just as microbial communities form very intimate mutualistic 

interactions, we should as well! The degree of the analogous nature of how interactions 

between cells in microbial communities apply to the scientific community is quite 

extensive. 

5.3.1 Division of labor with frequent cross-feeding and communication 

 Divisions will naturally emerge in science because people are limited in their 

capacity, and this is not a bad thing. Differences in scientific approach have generated 
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the spectrum of top-down and bottom-up investigations explained in Chapter 1. Another 

division has emerged between individuals who are adept at studying the detailed 

mechanisms (e.g. a molecular biologist for a specific disease) and others who are able 

to make generalizations from a broader study of many systems (e.g. ecosystem 

ecologists and their comparison of different biomes). The previously mentioned disparity 

between methodologically-orientated scientists and inquiry-centered scientists is the 

same. One of the strongest disparities is the one between experimental scientists and 

computational/modeling scientists. Like how microbial communities have a strong 

division of labor, our scientific community does as well! However, at least from my 

empirical observations, the lack of progress to answer critical questions most likely 

results from the lack of communication and collaboration between these groups. I have 

been quite fortunate to be part of institutions that realize this and attempt to promote 

collaboration by establishing interdisciplinary centers. Examples for the microbiome 

sciences include the University of Michigan’s Integrated Training for Microbial Systems 

and the Ohio State University’s Center for Microbiome Sciences. However, I would 

argue that the change must be in our individual mentalities, rather than structural 

changes. Being able to communicate interdisciplinary requires a willingness to 

"translate" when certain semantics do not work across disciplinary lines, and even 

inform ourselves about the fundamental principles of something entirely new to us so 

we can discuss.  

The biggest barrier is the acknowledgement that interdisciplinary work may 

require extensive commitment. Developing sustainable collaborations and partnerships 

will not always result in a temporary win on the individual level. Usually, it requires the 
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intensive investment of resources (time, money, personnel) to explore what the 

collaboration might even provide. Starting to see the payoff from the collaboration takes 

at least a couple of years in my experience. Sadly, I believe the structuring of principal 

investigators in academia and funding timelines do not encourage this long-term 

endeavor. Despite this, the community must grow to have a sense of commitment to 

collaborative endeavors and especially to one another. When principal investigators are 

committed beyond convenience, there is more extensive communication and 

commitment between research groups of the principal investigators as well. As 

someone doing methodological work, other research groups and principal investigators 

tend to turn aside when the tool does not address the questions that they are interested 

in. Alternatively, they assume that methodologies developed are "one fit all" solutions to 

all systems without realizing that much development work needs to be done to tailor a 

methodology to the needs of a specific system or question. Reciprocally, I have noticed 

my own dismissal of other's work when my methodology is not applicable either. Strong 

collaborations need a sense of flexibility as well, knowing that methods need time for 

development to tailor workflows to specific questions. High-reward, risky research 

endeavors like this can be difficult to fund, but seed funding grants that foster 

collaboration and innovation are necessary as well. 

5.3.2 Horizontal gene transfer for greater expertise training and reproducibility 

One of the major issues in the adoption of microfluidics is the expertise needed 

to do it. Numerous times when presenting my work, principal investigators and 

researchers want to implement this technology in their own laboratories. However, if a 

laboratory doesn't have some embodying the expertise, they simply cannot implement 
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it. The advances in microfluidic analyses for microbial ecology are impressive but 

despite the impact factor of the journal these advances are published in, they are only 

impactful when reproducible by other research groups. Research equipment companies 

are realizing this deficiency and seek to provide services and goods, but the cost can be 

exorbitantly high (as discovered by myself numerous times when performing this 

dissertation work). Thankfully, most major research institutions have at least one 

research group specializing in micro- or nanofluidics. Additionally, trainees such as 

myself hold the responsibility to train others in other research laboratories. In this way, 

our expertise is exchanged and passed along the entire community, similarly to how a 

plasmid encoding an antibiotic-resistant gene is passed by horizontal gene transfer 

throughout the microbiome. While bacteria rely on phage for transduction or pili for 

conjugation, the scientific community relies on the exchange of trained researchers who 

can provide training to others who will also then provide training to others. 

5.3.3 Functional diversity and niche differentiation 

One tension within the scientific community results from individuals trying to 

answer the same, critical questions. As a result, we are going to overlap in terms of our 

expertise and approach. Competitive exclusive suggests to us that we will inevitably 

outcompete one another if we occupy the same niche. I have experienced this 

personally when talking with another expert in the field doing similar work to myself. I 

found myself getting fearful upon hearing that a similar methodology in Chapter 3 was 

trying to be developed by their laboratory. The first tendency is keep details hidden. And 

while that may need to be the case to a certain extent, even in these relationships, we 

need to be transparent with one another to find the opportunities for niche 
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differentiation. Even when we study the same questions, we approach them from 

different perspectives with different motivations. Instead of getting defensive, we should 

acknowledge and embrace our diversity in scientific approaches and look for ways for 

collaboration rather than competition. Certainly, one of the greatest surprises in 

microbial community research is the degree of coexistence amongst functionally similar 

bacteria and how they differentiate along numerous niche dimensions (205). Functional 

redundancy can certainly also exist and even bolster and stabilize our research 

community. 

5.3.4 Conclusion 

Personally, I believe the future for microbial ecology and the community that 

studies it is quite exciting. While the approaches to address them may not be intuitive, 

the challenges moving forward are clear. The ability for us to understand microbiomes is 

not limited only by funding and technological advances, but how well we interact within 

our own research community. May the communities we study challenge ourselves to be 

in intimate, diverse, nuanced, and communicative communities as well. 



 125 

Appendix A. Supporting Information for Chapter 2 
 

 

 

Figure A.1: Schematic layout of the SU-8 molds used to make the flow-focusing microfluidic PDMS 
devices used for droplet generation. There were two devices utilized in the study which had similar design 
features but had different channel dimensions. All devices had an oil inlet (1), cell suspension inlet (2), 
flow-focusing channel intersection (boxed in red), and a droplet outlet (3). The first device mold (left) had 
channel widths of 25 μm and a channel height (blue scale bar) of 50 μm, while the second device mold 
(right) had channel widths of 60 or 70 μm and a channel height (blue scale bar) of 80 μm. The first device 
generated 55 μm and 75 μm diameter droplets, while the second device was used to generate 100, 125, 
and 150 μm diameter droplets. 
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Figure A.2: Comparison between simulated growth dynamics of an auxotroph participating in mutual 
cross-feeding with another auxotroph and the profiles fitted using the logistic equation. The cellular 
requirement for the cross-fed metabolite is represented by β and was adjusted from 100 to 300 and lastly 
to 500 μg/L-OD while all other parameters of the model were kept constant. The simulated growth curves 
of the auxotroph are plotted in dotted lines, while the respective logistic fits are provided in solid ones. 
The R2 value indicative of the quality of the fit is also provided for each fit. 

 

 

Figure A.3: The full set of growth curves for the monoculture microdroplet cultivation of S1 ΔilvD. The 
initial λ was 5 cells/droplet. Each curve is the aggregate growth of droplets within a single well in a 96-well 
plate, representing a large population of droplets. Fluorescence fold increase is the fluorescence at a time 
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point normalized by the initial fluorescence of the sample well. Each condition had 4 replicates, with 3 for 
150 μm diameter droplets due to one replicate having inaccurate initial measurements. 

 

 

Figure A.4: Fig S4. Growth model parameters estimated from fluorescence data of S1 ΔilvD monoculture 
grown with the same initial cell density in droplets of different sizes. The average initial cell number (i.e. λ 
parameter of the Poisson distribution) was 5, 30, and 100 cells/droplet in 55, 100, and 150 μm diameter 
droplets, respectively. * indicates p-value < 0.05 for statistical significance. 
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Figure A.5: Droplet-to-droplet variance of fluorescence for the cultivation of S1 ΔilvD with initial λ=5 and 
λ=20 cells/droplet in droplets with diameters of 55 and 150 μm. Droplet-to-droplet variation is observed in 
representative images of populations of droplets after cultivation for 24 hours under both conditions. 
Image analysis of a large population of droplets (248 droplets for each) was performed to quantify the 
degree of droplet-to-droplet fluorescence variation through histograms with associated statistics (mean 
and standard deviation). The distribution and statistics of the λ=5 cells/droplet condition is magenta with a 
solid boundary. The distribution and statistics of the λ=20 cells/droplet condition is blue with a dashed 
boundary. 
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Figure A.6: Growth of co-cultures of S1 ΔilvD and S2 ΔlysA in bulk. Cultivation was done in microwell 
plates under three different amino acid supplementation conditions to modulate the degree of interaction 
between the two auxotrophic partners: (1) with 3 mM isoleucine, (2) with 3 mM leucine and 3 mM valine, 
and (3) with no addition of amino acids. Each condition had three replicates. 
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Figure A.7: The full set of growth curves from co-cultivation of S1 ΔilvD and S2 ΔlysA in droplets. The 
initial λ value was 5 cells/droplet of each strain under the two amino acid supplementation conditions. 
Each curve is the aggregate growth of droplets within a single well in a 96-well plate, representing a large 
population of droplets. Fluorescence fold increase is the fluorescence at a time point normalized by the 
initial fluorescence in the same well. Each condition had 4 replicates, with 3 for 150 μm diameter droplets 
due to one replicate having inaccurate initial measurements. 
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Figure A.8: The effect of droplet size on community composition between S1 ΔilvD and S2 ΔlysA. 
Community composition is provided as the ratio between fold increases of S1 ΔilvD and S2 ΔlysA in 
droplets of different sizes when 3 mM isoleucine or 3 mM valine and 3 mM leucine is supplemented. For 
each well in the co-cultivation experiments, a ratio between the fold increase of S1 and that of S2 was 
calculated. Statistical significance is defined by a p-value of less than 0.05 (*). 

 

 

 

Figure A.9: Growth model parameters estimated from fluorescence data of S1 ΔilvD grown in co-culture 
with S2 ΔlysA with the same initial cell density in droplets of different sizes. The average initial cell 
number (i.e. λ parameter of the Poisson distribution) was 5, 30, and 100 cells/droplet for each strain in 55, 
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100, and 150 μm diameter droplets, respectively. Lag time was not evaluated due to there being an 
insignificant lag time observed. Statistical significance is defined by a p-value of less than 0.05 (*) and a 
p-value of less than 0.01 (**). 

 

 

 

 

Figure A.10: Different parameter values of a mathematical model lead to different patterns of growth 
dynamics, recapitulating in part experimental observations. (a) Experimental data for S1 ΔilvD in co-
culture with S2 ΔlysA with supplementation of isoleucine and valine/leucine (from Fig 3c and Fig 4c, 
respectively). Under the isoleucine supplemented condition, lag time is extended as droplet size 
increases. Under the valine and leucine supplemented condition, lag time remains largely the same and 
the growth curves overlap during the earliest phase. (b) Growth curves generated from the cross-feeding 
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autotroph ODE model, with different parameter values for amino acid secretion (α) and cellular 
requirement of the other amino acid for growth (β). For each scenario, three sets of initial conditions were 
specified corresponding to changes of the initial cell density when the droplet diameter was increased 
from 55 to 100, and then to 150 μm. It was noted that the growth dynamics in the scenario of α = 0.0001 
and β = 0.001 (top right sub-plot) exhibited qualitatively similar pattens to those in experimental profiles 
under the isoleucine supplemented condition (top sub-plot in a.), whereas the simulated growth profiles in 
the scenario of α = 0.001 and β = 0.05 (bottom center sub-plot) greatly resemble those in experimental 
profiles under the valine and leucine supplemented condition (bottom sub-plot in a.). Other parameters of 
the model were set as: μmax = 1, Ks = 0.1, and K = 100. 

 

Note A: Dynamic model of cross-feeding auxotrophs and parameter fitting 

We observed that the growth profile of each auxotroph in the cross-feeding bi-culture exhibited the "S"-
shape, characteristic of logistic growth commonly assumed for monocultures. To test, from a theoretical 
point of view, the validity of employing the logistic equation to approximate the growth of cross-feeding 
amino acid auxotrophs, we modified the mechanistic dynamic model by Kerner et al. (108) and carried 
out simulations to investigate growth dynamics resulting from interactions between two cross-feeding 
auxotrophs. 

We assumed logistic growth for each auxotroph and the Monod equation relating the specific growth rate 
to the concentration of a limiting substrate (in this case the cross-fed molecule). The governing equations 
are as follows: 
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where dynamic variables 𝑛! and 𝑛" are the cell densities of the two auxotrophs, 𝑐! and 𝑐" are the 
concentrations of the cross-fed amino acids, and 𝜇! and 𝜇" are the (instantaneous) specific growth rates 
of the two auxotrophs. Model parameters 𝐾! and 𝐾" are the carrying capacities of the two strains following 
the logistic growth assumption, 𝛼! and 𝛼" represent the auxotrophs’ export rate of the amino acids, and 𝛽! 
and 𝛽" are their cellular requirement for the corresponding amino acids, respectively. 𝜇!#$% and 𝜇"#$% are 
the maximum specific growth rates of the two strains (i.e. at an infinitely high concentration of the limiting 
substrate); 𝐾&! and 𝐾&" are the “half-rate” constants in the Monod equation (i.e. concentration of the 
limiting substrate at which the growth rate is half of the maximum) for the two strains, respectively.  
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Using the above ordinary differential and algebraic equations with an initial condition of 𝑐! = 𝑐" = 0 (i.e. 
no supplementation of the cross-fed molecules at the start), we carried out dynamic simulations to 
explore various scenarios representing different degrees of interactions between the two cross-feeding 
auxotrophs. Specifically, one of the 𝛽 parameters was changed to represent different levels of demand for 
the cross-fed metabolite. Our simulation results, as illustrated in Fig S2, demonstrate that the growth 
profile of each auxotroph in the cross-feeding bi-culture follows a general S-shape and can be 
approximated reasonably well with a logistic fit (R2 value higher than 0.98). The fit is particularly strong at 
the lowest degree of cross-feeding (i.e. when β is set at the smallest value). 
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Appendix B. Supporting Information for Chapter 3 

 

Figure B.1: Schematic of the droplet spacing device and the dimensions of the channels. The device 
is composed of three layers from bottom to top: the spacing layer, the thin PDMS membrane, and 
the valve layer. When assembled, the layers provide a membrane valve on top of the flow channels. 
When pressure from an external pump is applied, the membrane expands, preventing the flow of 
larger droplets while allowing oil flow to continue. When pressure is closed, the membrane contracts 
back to its normal configuration and allows droplets to pass. Droplets are flowed from the inlet into a 
larger droplet chamber to alleviate droplet merging that occurs with pressure build-up. Spacing oil 
with surfactant flows around to the spacing junction. The spacing junction, specified in the dashed 
box region of the device where spacing oil and droplet flow intersect, has an expanded opening to 
prevent droplets from shearing when passaged. 
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Figure B.2: Control droplets without encapsulated cells to demonstrate absence of cultivation of 
contaminant bacteria from reagents, tubing, and the device. Droplets were generated in the same fashion 
as specified with droplets with λ of 2 or 10, but no cells from the fecal sample were suspended in 
the BHI or Schaedler’s media. Droplets were incubated anaerobically for a week, similarly to the 
droplets with λ of 2 or 10. Scale bar is 100 μm. 



 137 

 

Figure B.3: Images of four selected droplets in the droplet spacing device’s chamber after co-cultivation, 
but before individual droplet spacing. The droplets that were selected for downstream sequencing are 
specified with dashed borders and labels among the other droplets without co-growth. The selected 
droplets have clear degrees of co-growth that other surrounding droplets do not have, allowing for 
relatively easy visual determination of droplet growth and manual selection. Scale bar is 100 μm. 
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Figure B.4: Manually selected droplets with high degree of co-growth from droplet spacing. Individual 
droplets were passaged into separate microcentrifuge tubes, and the communities underwent whole-
genome amplification with MDA. Droplet naming follows the convention of media used (“B” for BHI or 
“S” for Schaedler’s), the initial λ (2 or 10), and a numerical value. All selected droplets are 
present, except for B2-3, whose image was lost due to an error in the imaging software. Scale bar 
is 100 μm. 
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Table B.1: Indicator analysis indicating the strength of the associations of specific OTUs to specific 
groups of droplets. Analysis was done on a binary presence/absence of OTUs. There were three 
comparisons conducted: (1) between the co-cultivated droplets with Schaedler’s Media (S) and droplets 
with Brain-Heart Infusion Media (B), (2) within the Schaedler’s Media droplets, droplets with the initial λ of 
2 (S2) and droplets with the initial λ of 10 (S10), (3) and within the Brain-Heart Infusion Media droplets, 
droplets with the initial λ of 2 (B2) and droplets with the initial λ of 10 (B10). Higher indicator values (up to 
100) signify stronger exclusive association of that OTU to that specific group. 

 

 

 

 

 

 

 

OTU Comparing between groups: Indicator for group: Indicator value p value
Otu005 S vs B S 90.909088 0.021
Otu003 S vs B S 75.248756 0.046
Otu002 S vs B S 61.274506 0.121
Otu027 S vs B B 57.85714 0.191
Otu013 S vs B S 53.571426 0.187
Otu004 S vs B B 51.702126 0.369
Otu006 S vs B S 51.282055 0.182
Otu015 B2 vs B10 B2 62.5 0.326
Otu001 B2 vs B10 B10 55.555557 0.581
Otu004 B2 vs B10 B2 55.555557 0.587
Otu027 B2 vs B10 B2 55.555557 0.587
Otu012 B2 vs B10 B10 53.333328 0.403
Otu016 S2 vs S10 S10 66.666672 0.17
Otu039 S2 vs S10 S2 66.666672 0.182
Otu010 S2 vs S10 S10 59.523808 0.272
Otu001 S2 vs S10 S10 54.545456 0.571
Otu003 S2 vs S10 S10 54.545456 0.57
Otu026 S2 vs S10 S10 53.333336 0.259
Otu041 S2 vs S10 S10 53.333336 0.264
Otu004 S2 vs S10 S2 52.083332 0.403
Otu006 S2 vs S10 S10 52.083332 0.41
Otu005 S2 vs S10 S10 50 1
Otu011 S2 vs S10 S2 50 0.246
Otu036 S2 vs S10 S10 50 0.259
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Table B.2: Nucleotide BLAST identification of the 16S V4 region of the representative OTUs from the 
droplet against the NCBI 16S database. 

 

OTU Number OTU Taxonomy NCBI Top hit Identity Notes
Otu001 Staphylococcus(99) Staphylococcus aureus strain S33 R 16S ribosomal RNA, complete sequence 1

Otu002 Bacteroides(100) Bacteroides timonensis strain AP1 16S ribosomal RNA, partial sequence 1

Otu003 Butyricimonas(100) Butyricimonas faecihominis strain 180-3 16S ribosomal RNA gene, partial sequence 0.99

Otu004 Corynebacterium(100) Corynebacterium tuberculostearicum strain Medalle X 16S ribosomal RNA, partial sequence 1

Otu005 Parabacteroides(100) Parabacteroides merdae strain JCM 9497 16S ribosomal RNA gene, partial sequence 1

Otu006 Alistipes(100) Alistipes shahii strain JCM 16773 16S ribosomal RNA gene, partial sequence 1

Otu007 Bacteria_unclassified(97) Traorella massiliensis strain Marseille-P3110 16S ribosomal RNA, partial sequence 0.99

Otu008 Bacillales_unclassified(96) Bacillus tropicus strain MCCC 1A01406 16S ribosomal RNA, partial sequence 0.99

Otu009 Streptococcus(100) Streptococcus pneumoniae strain NBRC 102642 16S ribosomal RNA gene, partial sequence 0.99

Otu010 Alistipes(100) Alistipes ihumii strain AP11 16S ribosomal RNA, partial sequence 0.97

Otu011 Chryseobacterium(95) Chryseobacterium endophyticum strain CC-YTH209 16S ribosomal RNA, partial sequence 1

Otu012 Enterobacteriaceae_unclassified(80) Escherichia marmotae strain HT073016 16S ribosomal RNA, partial sequence 1

Otu013 Ruminococcaceae_unclassified(82) Ruthenibacterium lactatiformans strain 585-1 16S ribosomal RNA, partial sequence 1

Otu014 Streptococcus(100) Streptococcus dentisani strain 7747 16S ribosomal RNA gene, partial sequence 1

Otu015 Actinomycetales_unclassified(100) Lawsonella clevelandensis strain X1036 16S ribosomal RNA, partial sequence 1

Otu016 Bacteroides(100) Bacteroides thetaiotaomicron strain VPI-5482 16S ribosomal RNA, partial sequence 1

Otu017 Phascolarctobacterium(100) Phascolarctobacterium faecium strain ACM 3679 16S ribosomal RNA gene, partial sequence 1

Otu018 Neisseriaceae_unclassified(67) Neisseria mucosa strain DSM 17611 16S ribosomal RNA gene, partial sequence 1

Otu019 Comamonadaceae_unclassified(90) Comamonas terrigena strain NBRC 12685 16S ribosomal RNA gene, partial sequence 1

Otu020 Lactococcus(100) Lactococcus taiwanensis strain 0905C15 16S ribosomal RNA gene, partial sequence 1 7 Lactococcus lactis  hits at 100% identity

Otu021 Betaproteobacteria_unclassified(61) Snodgrassella alvi strain wkB2 16S ribosomal RNA, complete sequence 0.93

Otu022 Rikenellaceae_unclassified(77) Alistipes ihumii strain AP11 16S ribosomal RNA, partial sequence 1

Otu023 Anaerococcus(100) Anaerococcus nagyae strain ENR0686 16S ribosomal RNA, partial sequence 0.99

Otu024 Acinetobacter(100) Acinetobacter johnsonii strain ATCC 17909 16S ribosomal RNA, partial sequence 1

Otu025 Akkermansia(100) Akkermansia muciniphila strain ATCC BAA-835 16S ribosomal RNA, partial sequence 1

Otu026 Parabacteroides(100) Parabacteroides distasonis strain ATCC 8503 16S ribosomal RNA, partial sequence 0.99

Otu027 Propionibacterium(100) Propionibacterium acnes subsp. elongatum strain K124 16S ribosomal RNA, partial sequence 1

Otu028 Pseudomonas(59) Pseudomonas japonica strain NBRC 103040 16S ribosomal RNA gene, partial sequence 0.99

Otu029 Prevotella(100) Prevotella buccalis strain JCM 12246 16S ribosomal RNA gene, partial sequence 1

Otu030 Enterobacteriaceae_unclassified(100) Klebsiella grimontii strain SB73 16S ribosomal RNA, partial sequence 1

Otu031 Chryseobacterium(100) Chryseobacterium cucumeris strain GSE06 16S ribosomal RNA, partial sequence 1

Otu032 Sphingobacterium(100) Sphingobacterium detergens strain 6.2S 16S ribosomal RNA gene, partial sequence 1

Otu033 Clostridiales_unclassified(80) [Clostridium] cellobioparum strain DSM 1351 16S ribosomal RNA gene, partial sequence 0.9

Otu034 Truepera(100) Truepera radiovictrix strain RQ-24 16S ribosomal RNA, partial sequence 0.95

Otu035 Flavobacterium(100) Flavobacterium johnsoniae strain UW101 16S ribosomal RNA, partial sequence 1

Otu036 Firmicutes_unclassified(100) Papillibacter cinnamivorans strain CIN1 16S ribosomal RNA gene, partial sequence 0.9

Otu037 Pedobacter(89) Pedobacter ureilyticus strain THG-T11 16S ribosomal RNA, partial sequence 1

Otu038 Ezakiella(100) [Bacteroides] coagulans strain EUH 581-73 16S ribosomal RNA gene, partial sequence 0.99 2 hits to Ezakiella  at 95%

Otu039 Bacteria_unclassified(100) Defluviimonas aestuarii strain BS14 16S ribosomal RNA gene, partial sequence 0.76

Otu040 Varibaculum(100) Varibaculum anthropi strain CCUG 31793 16S ribosomal RNA, partial sequence 0.99

Otu041 Bacteria_unclassified(67) Clostridium tepidum strain IEH 97212 16S ribosomal RNA, complete sequence 0.92

Otu042 Comamonadaceae_unclassified(77) Delftia tsuruhatensis strain NBRC 16741 16S ribosomal RNA gene, partial sequence 1

Otu043 Actinomycetales_unclassified(54) Propionibacterium acnes subsp. elongatum strain K124 16S ribosomal RNA, partial sequence 0.96

Otu044 Alistipes(100) Alistipes putredinis strain JCM 16772 16S ribosomal RNA gene, partial sequence 1
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Table B.3: OTUs from the droplet B2-2 that appear in the bulk pyrosequencing library and the relative 
abundances they occur in the bulk. Overlap between representative V4 amplicons of the droplet OTUs 
and the partial V45 bulk pyrosequencing OTUs dataset were examined for distances less than 5% to 
determine whether an OTU was present in the bulk dataset. 

  

Microfluidic OTUs Taxonomy Bulk Pyroseuqencing OTU Taxonomy
Distance 
between

Relative 
abundance in 

patient 
sample (%)

Akkermansia(100) Akkermansia(100) 0.0000 0.01

Parabacteroides(100) Bacteria_unclassified(100) 0.0000 0.01

Comamonadaceae_unclassified(77) Comamonadaceae_unclassified(100) 0.0000 0.01

Bacteroides(100) Bacteroides(100) 0.0074 0.01

Enterobacteriaceae_unclassified(100) Enterobacteriaceae_unclassified(93) 0.0074 11.18

Bacteroides(100) Bacteroides(100) 0.0148 0.16

Bacteria_unclassified(67) Christensenellaceae_unclassified(80) 0.0148 0.85

Rikenellaceae_unclassified(77) Alistipes(95) 0.0148 0.09

Parabacteroides(100) Parabacteroides(100) 0.0148 0.01

Enterobacteriaceae_unclassified(80) Enterobacteriaceae_unclassified(93) 0.0222 11.18

Alistipes(100) Alistipes(97) 0.0222 0.01

Firmicutes_unclassified(100) Clostridiales_vadinBB60_group_ge(96) 0.0222 0.42

Alistipes(100) Alistipes(97) 0.0222 0.01

Clostridiales_unclassified(80) Ruminococcaceae_unclassified(100) 0.0296 0.01

Ruminococcaceae_unclassified(82) Ruminococcaceae_unclassified(100) 0.0370 0.29
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Appendix C. Supporting Information for Chapter 4 
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Figure C.1: Modified oven incubator for processing of agarose microdroplets above 37 ºC (Top) Glass 
door of the oven incubator was replaced with a clear acrylic sheet with holes cut out for entry of hands for 
microfluidic device operation. (Bottom) To prevent excess heat loss through the holes, thin plastic sheets 
with slits were taped onto the holes. 

 

 

 

 

 

 

Figure C.2: Schematic of microfluidic device used for droplet barcoding, specifically the pairing of the 
barcode bead with agarose microgels with immobilized genomic DNA. (Top) Specifications for what each 
inlet and outlet are for. (Bottom) Holes are punched for the inserted of tubing for inlets and outlets to the 
PDMS device. Locations labelled in red are the holes are typically punched according to design 
specifications. For our protocol, an alternative location in blue was punched. Schematic provided by Dr. 
Emilis Gegevicius from Droplet Genomics Inc. 
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Detailed protocol for dsDNA with AMPure XP beads 
Vortex the bottle of AMPure XPs vigorously to ensure all beads have been suspended 
Add 75 uL AMPure XP per 50 uL of the sample you want to clean in individual 0.25 mL PCR tubes 
Mix by pipetting and incubate the mixture at room temp for 20 minutes 
Spin down the mixture briefly and place tubes on magnet rack for at least 10 minutes 
Discard unbound fraction by pipetting 
Wash beads with 200 uL of 80% vol/vol FRESH EtOH twice 
Remove EtOH after beads are pelleted by the magnet rack, remove as much residual EtOH as possible 
with 20 uL pipette tip 
Dry tubes with caps open for 30 minutes (cracking is okay) 
Add and mix each sample’s beads in 20 uL of 10 mM Tris HCl 8.0 by pipette-mixing, vortex, spin down 
briefly 
Incubate at room temperature for 5 min for elution 
Place tubes on magnet to concentrate after 2 minutes, transfer the eluate into a new PCR tube for 
processing downstream, store in fridge overnight 

 

Table C.1: Protocol for clean-up of double-stranded DNA using AMPure XP beads. 

 

 

 

Table C.2: Primers used for library preparation of droplet barcode 16S amplicon libraries. “bc-seq” refers 
to the indices used for demultiplexing after Illumina sequencing. Taken from (182) 

 

primer_name primer_seq bc_seq
p7_1 CAAGCAGAAGACGGCATACGAGATTCGATGAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT CTCATCGA
p7_2 CAAGCAGAAGACGGCATACGAGATAACGATCCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT GGATCGTT
p7_3 CAAGCAGAAGACGGCATACGAGATTAACGTGGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT CCACGTTA
p5_1 AATGATACGGCGACCACCGAGATCTACACTAGATCGCACACTCTTTCCCTACACGACGCTCTTCCGATCT TAGATCGC 
p5_2 AATGATACGGCGACCACCGAGATCTACACCTCTCTATACACTCTTTCCCTACACGACGCTCTTCCGATCT CTCTCTAT 
p5_3 AATGATACGGCGACCACCGAGATCTACACTATCCTCTACACTCTTTCCCTACACGACGCTCTTCCGATCT TATCCTCT 
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