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ABSTRACT

Quantum algorithms require quantum computers performing logical operations on a sufficiently
large number of entangled qubits. Unfortunately, state-of-the-art quantum computers can only
operate on tens of qubits. A solution to this scalability challenge is to employ the distributed
paradigm, where a network of small-scale quantum computers are used in a distributed manner.
It is the aim of my work to study the fundamental limits of distributed quantum problems and to
further enhance their performance by exploiting the structure inherent to these problems employing
asymptotically good Algebraic codes. This thesis consists of two parts.

The first part studies the task of faithfully simulating a distributed quantum measurement,
wherein we provide a protocol for the three parties, Alice, Bob and Charlie, to simulate a repeated
action of a distributed quantum measurement using a pair of non-product approximating measure-
ments by Alice and Bob, followed by a stochastic mapping at Charlie. The objective of the protocol
is to utilize minimum resources, in terms of classical bits needed by Alice and Bob to communicate
their measurement outcomes to Charlie, and the common randomness shared among the three par-
ties, while faithfully simulating independent repeated instances of the original measurement. We
characterize a set of sufficient communication and common randomness rates required for asymp-
totic simulatability in terms of single-letter quantum information quantities. We further improve
the results obtained in the above by exploiting the structure present in the Charlie’s stochastic
bivariate mapping using random structured POVMs based on asymptotically good algebraic codes.
The algebraic structure of these codes is matched to that of the bivariate function that models
the action of Charlie. This leads to the computation being performed on the fly, thus obviating
the need to reconstruct individual measurement outcomes at Charlie. We provide examples to
illustrate the information-theoretic gains attained by endowing POVMs with algebraic structure.
As an application of the distributed measurement compression problem, we also demonstrate a
multi-party purity distillation protocol.

Concluding this part, we consider the lossy quantum source coding problem where the objective

xii



is to compress a given quantum source below its von Neumann entropy. Inspired by the duality
connections between the rate-distortion and channel coding problems in the classical setting, we
propose a new formulation for the lossy quantum source coding problem. We require that the recon-
struction of the compressed quantum source fulfill a global error constraint and employ the notion
of a “posterior reference map” to measure the reconstruction error. Using these, we characterize
the asymptotic performance limit of this problem in terms of single-letter coherent information of
the given posterior reference map.

In the second part of this thesis, we study the advantage algebraic structured codes can provide,
to the class of the classical-quantum network problems. In particular, we investigate two problems.
Firstly, we consider the problem of communicating a general bivariate function of two classical
sources observed at the encoders of a classical-quantum multiple access channel. We propose and
analyze a coding scheme based on algebraic structured coset codes that enables the decoder to
recover the desired function without recovering the sources themselves. We derive a new set of
sufficient conditions that are weaker than the current known for identified examples. In addition,
we analyze the performance of these algebraic codes toward studying the capacity of a special class

of 3-user classical-quantum interference channel.
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CHAPTER I

Introduction

1.1 Quantum information theory

Quantum information theory is a branch of information theory that deals with the study of
representation, transmission, manipulation, and processing of information using quantum mechan-
ics. It considers the fundamental differences between classical and quantum information, as well as
the potential benefits and limitations of quantum systems for information processing tasks. Based
on the number of agents (or parties) involved in the system, the information processing tasks can
be broadly classified as (i) point-to-point (PtP) and (ii) multi-terminal. We refer to PtP as prob-
lems involving two parties. Problems that involve more than two parties are referred to (in this
thesis) as multi-terminal ones. Since these multi-terminal setups can be varying in terms of how
each agent is connected to the other, we describe them formally in the respective chapters. Our
main focus in this thesis is to characterize performance limits of different multi-terminal problems
(involving three or four agents) from an information theoretic approach. At times, we also consider
PtP problems when they can serve as providing insights to the underlying idea without getting

impeded by the technical details.

1.2 Quantum network information theory

A quantum network is a system that consists of multiple quantum systems connected by either
quantum or classical channels (aka links) that are perhaps noiseless or noisy, allowing for transfer
of information between different systems. Quantum network information theory, or multi-terminal

quantum information theory, investigates the performance limits of these problems from an funda-



mental and theoretical perspective, and provides a way to study the distribution and manipulation
of information between multiple parties. These problems are important for the development of
quantum communication and quantum networking technologies, as they allow for the study of
quantum information processing in more complex and realistic scenarios.

From the analogous works in classical information theory pertaining to multi-terminal problems,
we observe that analysis of multi-terminal problems do not trivially follow from the results on PtP
problems. The former are known to necessitate new fundamental techniques, and many of them
still remain unsolved in terms of exact characterization of performance limits. A similar phenomena
is observed in the quantum setting prompting researchers to comprehensively investigate a variety
of multi-terminal quantum information theoretic problems.

Secondly, these problems are also valuable in their own right. In multi-terminal quantum infor-
mation problems, the parties involved may have different goals or objectives, and their interactions
can result in non-trivial quantum correlations. There are several examples where the study of multi-
terminal quantum information problems can also lead to a deeper understanding of the foundations
of quantum mechanics and the nature of quantum entanglement. One example is the phenomenon
of quantum nonlocality, which refers to the non-classical correlations that can exist between dis-
tant quantum systems. The study of multi-terminal quantum information problems, has provided
evidence for the existence of quantum nonlocality (beyond the standard Bell non-locality) Supic
et al. (2022).

Finally, there is another reason, specific to the quantum setting and relating to this thesis,
why a detailed study of such multi-terminal problems is useful. A generic feature witnessed in the
classical setting is that the results obtained for the point-to-point problems often provide insights
towards analyzing the multi-terminal problems. But in the quantum setting, the opposite is also
sometimes true: a study of multi-terminal problem can help in the characterizing fundamental
limits of a PtP problem. A prime example of this is the Devetak’s proof Devetak (2005b) which
characterizes the capacity of a PtP quantum communication problem. Devetak’s inspiration was
the theorem he had developed to characterize the private classical capacity of a quantum channel,
a multi-terminal problem involving three distributed agents.

The question now is whether there are any more instances of such intriguing behavior. In this

thesis, we provide yet another such example. By examining the multi-terminal variants of the



measurement compression and classical communication over quantum channel problems, we char-
acterize the asymptotic performance of the lossy quantum source compression problem. Details
on this contribution are provided in this chapter’s contribution section, and complete results are
outlined in Chapter V. These developments serve as inspirations for further advancements in quan-
tum network information theory, highlighting how multi-terminal quantum information problems
provide a challenging and promising area of study that can lead to both theoretical and practical

progress in the field of quantum information.

1.3 Algebraic structure in multi-terminal information theory

A significant advancement toward improving the understanding of multi-terminal problems was
the use of algebraic structured codes. In the stationary memoryless scenario, there are two typical
ways for determining the performance limits of communication problems. One is based on ran-
dom coding and involves so-called independent and identically distributed (IID) code ensembles,
with performance measured in terms of single-letter information quantities. The other is based on
random coding in a one-shot context, with performance measured using smooth entropic values.
Because the codes in these ensembles lack global structure, we refer to them as random coding
approaches based on unstructured code ensembles. Unstructured code ensembles may not always
achieve optimality for distributed multi-terminal settings. One of the early works by Korner and
Marton Korner and Marton (1979) demonstrated this sub-optimality for a multi-terminal setup in-
volving three agents. Motivated by this, a framework for constructing structured coding ensembles
and improving the performance limits for classical problems have been the focus of many works.
A few prominent among them include Korner and Marton (1979); Nazer and Gastpar (2007);
Padakandla and Pradhan (2013); Padakandla et al. (2016); Pradhan et al. (2021). For the quan-
tum setting, such a framework is still under development with a few recent works like Hayashi and
Vazquez-Castro (2021). Inspired by this, this thesis aim at developing structured coding ensem-
bles for the task for performing communication and compression for the quantum multi-terminal

problems. It builds a broad theoretical framework, but it also predicts very specific effects.



1.4 Organization and contributions of this thesis

This thesis is divided into two parts. The first part deals with the quantum compression
problems: from quantum-to-classical (QC) compression to pure quantum compression. The second
part delves into quantum communication problems. In Section 1.5, we begin by formally stating
the point-to-point measurement compression problem as was first introduced by Winter in Winter
(2004). We highlight here the relevant work that preceded this work and also discuss the results
that follow it. These include the different variants with respect resources and the problem setups,
discussed in the literature and also the various applications, including the famous quantum-to-
classical rate distortion theory Datta et al. (2013b), where the measurement compression problem
is utilized.

In the next chapter, Chapter II, we introduce the setup of a distributed measurement compres-
sion problem involving three parties, and then formulate a protocol, in terms of available resources,
allowed actions, and the objective the protocol needs to achieve, for the same Atif et al. (2022a).
We build this chapter with the aim of providing an inner bound to the asymptotic performance
limit of non-feedback distributed measurement compression. Toward this, we first provide two re-
sult for the feedback distributed compression problem: a one-shot and an n-letter characterization.
We then formulate a distributed quantum-to-classical rate distortion problem ,and provide an inner
and an outer bound to the rate distortion function (region) using the n-letter result of the feedback
problem. Finally, we conclude this chapter with the main result of the non-feedback problem. A
mutual covering lemma and a mutual packing lemma also form contributions of this chapter.

In Chapter III, we set out with an aim of constructing an algebraic framework to further improve
on the results obtained in Chapter II. We introduce the notion of algebraic structured quantum
measurements that exploits the structure that may be inherently present with a distributed prob-
lem formulation Atif and Pradhan (2021). Toward this, we first recall Unionized Coset Codes
(UCC) Pradhan et al. (2021) and then construct approximating quantum measurements build us-
ing these code ensembles. A peculiar feature of these measurements is that their ensembles are
only pairwise independent. Considering this constraint, we develop an alternative covering lemma
which facilitates us to first achieve the point-to-point measurement compression result of Winter

(2004) using the structured measurements. Subsequently, by developing a mutual packing lemma,



we demonstrate the improvement in the rate region compared to the result of Chapter II. We also
illustrate these improvements using toy examples to establish the significance of the results.

Chapter IV moves on to analyzing an application of the measurement compression called purity
distillation. It discusses the history of purity distillation problem, and details into the interesting
advancement made by Devetak in Devetak (2005a). Devetak expanded the horizon of LOCC pro-
tocols by allowing the use of catalytic pure qubits with the promise of returning these at the end
of the protocol. This assumption allowed a measurement to be used by one party and as a result
increased the overall rate of purity distillation. The work was soon followed by Krovi and Devetak
(2007), where the measurement compression protocol was employed to further reduce rate of clas-
sical communication required by the protocol. Our objective in this chapter is to devise a protocol
that can extract purity from a three party setup. Similar to Devetak (2005a), we allow for the
use of catalytic pure qubits, and also incorporate the constraint from Krovi and Devetak (2007) to
minimize the classical communication used by the protocol. As will be discussed in detail, although
the protocol is an application of the distributed measurement compression problem (developed in
Chapter II), the latter cannot simply be used as a black box. For instance, measurement com-
pression protocols focuses on the post-measured reference state, while the current protocols relies
on the post-measured state of the system being measured to extract purity. Similarly, the former
allows an additional resource of common randomness while the latter does not Atif and Pradhan
(2022).

The next chapter, Chapter V, deals with an important problem in quantum information theory:
the lossy quantum source coding problem. The objective here is to compress a given quantum
source below its von Neumann entropy. Motivated by the results obtained so far, in this chapter,
we provide a new formulation for the lossy quantum source coding problem. Another inspiration
for this formulation is drawn from the profound duality results and the development of theory
revolving around the relation between backward test channels and good source codes for the classical
setting Pradhan (2004); Cuff et al. (2010). A well known existing formulation of this problem is
the quantum rate distortion theory, which has been extensively studied in the literature. The
formulation we develop differs from the existing quantum rate-distortion theory in two aspects.
Firstly, we require that the reconstruction of the compressed quantum source fulfill a global error

constraint as opposed to the sample-wise local error criterion used in the standard rate-distortion



setting. A global error criterion is a condition defined on the entire block of data. Secondly,
instead of a distortion observable, we employ the notion of a backward quantum channel, which
we refer to as a “posterior reference map”, to measure the reconstruction error. As the name
suggests, this map operates on the reference system of the output of a given channel to produce
the reference of the input. The asymptotic performance limit of the lossy quantum source coding
problem is characterized in terms of single-letter coherent information of the posterior reference
map. We do so by demonstrating a protocol to encode and decode at the specified rate, achieving the
asymptotic performance limit while satisfying the global error criterion. The protocol is constructed
by decomposing coherent information as a difference of two Holevo information quantities, inspired
from prior works in quantum communication problems. This protocol stands on the two basic but
fundamental principles of information theory: covering and packing, and demonstrates an exquisite
duality with the proof of quantum channel capacity problem constructed in Devetak (2005b). Then,
we provide a single-letter converse in terms of the above stated coherent information. We also
provide various examples to further motivate the formulation, and shed light on its connection to
the standard rate-distortion formulation wherever possible.

In the next part of the thesis, we revisit the algebraic structured measurements and investigate
their performance for Classical-Quantum (CQ) channel coding problems. In particular, in Chapter
VI, we consider the problem of communicating a generic bivariate function of two classical sources
observed at the encoders of a classical-quantum multiple access channel. An inner bound to the
asymptotic performance characterization of a classical-quantum multiple access channel was first
provided in Winter (2001). If we employ the approach developed in the latter to compute the given
bivariate function, it would require recovering both the sources. However, we ask here if we could
recover the function without completely recovering both the sources, and as a result enlarge the
rate region for this problem. Building on the techniques developed for the case of a classical channel
Padakandla and Pradhan (2013), in this chapter, we aim to propose and analyze a coding scheme
based on coset codes that enables the decoder recover the desired function without recovering the
sources themselves. Toward this, we first develop a Nested Coset Code (NCC) Pradhan et al. (2021)
based communication scheme for a CQ PTP channel and analyze its performance. Leveraging
this building block, we design and analyze the performance of an NCC-based coding scheme for

computing sum over a general CQ-MAC Atif et al. (2021¢). Going further we generalize this idea



for computing arbitrary functions over a general CQ-MAC. We also identify examples where the
new set of sufficient conditions are weaker than the current known for this problem.

In the next chapter (Chapter VII), we consider the problem of characterizing an inner bound to
the capacity region of a 3-user classical-quantum interference channel (3-CQIC) Atif et al. (2021b).
The best known coding scheme for communicating over CQICs is based on unstructured random
codes and employs the techniques of message splitting and superposition coding. For classical 3-
user interference channels (ICs), it has been proven that coding techniques based on coset codes -
codes possessing algebraic closure properties - strictly outperform all coding techniques based on
unstructured codes. Motivated by this, we consider a special subclass of 3-user CQICs, and analyze
their performance employing techniques developed in the previous chapter. We derive a new inner
bound to the capacity region of 3tol-CQICs that subsume the current known largest. We also
identify examples where we observe strict improvement demonstrating the efficacy of the approach.

During my Phd, I had the opportunity to collaborate on few other problems which are not
part of this thesis. These include (i) classical formulation of the measurement compression problem
Atif et al. (2022b) and (ii) further improvement in the inner bounds for the problem of computing

arbitrary bivariate functions over CQ-MAC Sohail et al. (2022).

1.5 The Quantum Measurement Compression Problem

Measurements interface the intricate quantum world with the perceivable macroscopic classi-
cal world by associating a classical attribute to a quantum state. However, quantum phenomena,
such as superposition, entanglement, and non-commutativity contribute to uncertainty in the mea-
surement outcomes. A key concern, from an information-theoretic standpoint, is to quantify the
amount of “relevant information” conveyed by a measurement of a quantum state.

Winter’s measurement compression theorem Winter (2004) (also elaborated in Wilde et al.
(2012)) quantifies the “relevant information” as the amount of resources needed to faithfully sim-
ulate the output of a quantum measurement applied on a given state in an asymptotic sense. In
this chapter, we aim to introduce the measurement compression problem Winter (2004), provide a

brief overview of related work in this regards, and then formally state the problem and the result.



1.5.1 Introduction

The measurement compression problem formulated in Winter (2004) is as follows. Imagine that
an agent (Alice) performs a measurement M on a quantum state p, and sends a set of classical
bits to a receiver (Bob). Bob intends to faithfully recover the outcomes of Alice’s measurements
without having access to p, while preserving the correlation with the post-measured state of Alice’s
reference. The major contribution of Winter’s work (as elaborated in Wilde et al. (2012)) was in
specifying an optimal rate region in terms of classical communication and common randomness
needed to faithfully simulate the action of repeated independent measurements performed on many
independent copies of the given quantum state. One of the salient features of the measurement
compression theorem is that it achieves the following asymptotic performance. If at least quantum
mutual information (I(X; R)) amount of classical information and conditional entropy (S(X|R))
amount of common shared randomness are available, then one can achieve faithful simulation of the
measurement M with respect to the quantum state p, where R denotes a reference of the quantum
state, and X denotes the auxiliary register corresponding to the random measurement outcome.

The measurement compression theorem Winter (2004) finds its applications in several quantum
paradigms. It is a predecessor to the quantum reverse Shannon theorem Bennett et al. (2002); Berta
et al. (2011); Bennett et al. (2014), useful in determining the communication cost of the local purity
distillation protocol Horodecki et al. (2003a, 2005a); Devetak (2005a); Krovi and Devetak (2007),
and also helpful in the first step of the so-called grandmother protocol Devetak et al. (2008) which
involves distillation of entanglement from noisy bipartite states.

The measurement compression theorem was also used by Datta, et al. Datta et al. (2013b)
to develop a QC rate-distortion theory. The problem involved lossy compression of a quantum
information source into classical bits, with the task of compression performed by applying a mea-
surement on the source. In this problem, the objective is to minimize the storage of the classical
outputs resulting from the measurement, while being able to recover the quantum state (from clas-
sical bits) within a fixed level of distortion as measured by an observable. To achieve this, the
authors in Datta et al. (2013b) advocated the use of the measurement compression protocol, and
subsequently characterized the so-called rate-distortion function in terms of single-letter quantum

mutual information quantities. The authors further established that by employing a naive approach



of measuring individual output of the quantum source, and then applying Shannon’s rate-distortion

theory to compress the classical data obtained is insufficient to achieve optimal rates.

1.5.1.1 Related Work

Wilde et al. Wilde et al. (2012) extended the measurement compression problem by considering
additional resources available to each of the participating parties. One such formulation allows Bob
to further process the information received from Alice using local private randomness. In analogy
with Bennett et al. (2014), this problem formulation is referred to as non-feedback measurement
simulation, while the former is termed as simulation with feedback. This quantified the benefit
of private randomness in terms of enhancing the trade-off between classical bits communicated
and common random bits consumed. In particular, the use of private randomness increases the
requirement of classical communication bits, while reducing the common randomness constraint.

Further, the problem of measurement compression in the presence of quantum side informa-
tion was also studied in Wilde et al. (2012). The authors here combined the ideas from Winter
(2004) and Devetak and Winter (2003) to reduce the classical communication rate and common
randomness needed to simulate a measurement in presence of quantum side information.

The problem of quantifying the information gain of a measurement has been studied extensively.
Early works include Groenewold (1971); Lindblad (1972); Ozawa (1986). Later on, Buscemi et al.
Buscemi et al. (2008); Luo (2010); Shirokov (2011) proposed the quantum mutual information with
respect to a classical-quantum state as the measure to characterize the corresponding information
gain. Subsequently, Berta et al. Berta et al. (2014) provided a universal measurement compression
theorem, generalizing the Winter’s measurement compression theorem for arbitrary inputs. They
identified the quantum mutual information of a measurement as the information gained by perform-
ing the measurement, independent of the input state on which it is performed. The proof was based
on a new “classically coherent state merging protocol” - a variation of the quantum state merging
protocol Horodecki et al. (2005b, 2007), and the post-selection technique for quantum channels
Christandl et al. (2009). Recently, Anshu et al. Anshu et al. (2019) considered the problem of
measurement compression with side information in the one-shot setting. They presented a protocol
employing convex-split lemma for classical-quantum states Anshu et al. (2017a, 2014) and position

based decoding Anshu et al. (2018b), and bounded the communication in terms of smooth max



and hypothesis testing relative entropies. On a similar note, Renes and Renner Renes and Renner
(2012) studied the problem sending classical messages in the presence of quantum side information
in the one-shot setting. We direct an interested reader to Tomamichel (2015); Khatri and Wilde
(2020) for a detailed discussion and results pertaining to one-shot quantum information theory.
Recently, authors in Anshu et al. (2019) came up with a completely different technique for
analyzing the measurement simulation protocols, while considering the problem of quantum mea-
surement compression with side information. They provide a protocol based on convex-split and
position-based decoding, and bound rates from above in terms of smooth max and hypothesis

testing relative entropies (defined in Anshu et al. (2019)).

1.5.2 Preliminaries

We here establish all our notations, and briefly state few necessary definitions. Notation:
Given any natural number n, let the finite set {1,2,--- ,n} be denoted by [1,n]. Let B(H) denote
the algebra of all bounded linear operators acting on a finite-dimensional Hilbert space . Further,
let D(H) denote the set of all unit trace positive operators acting on H. Let I denote the identity
operator. The trace distance between two operators A and B is defined as ||A — B[y £ Tr|A — B,
where for any operator A we define |A| 2 /ATA. The von Neumann entropy of a density operator
p € D(H) is denoted by S(p). The quantum mutual information for a bipartite density operator

paB € D(Ha ® Hp) is defined as
I(4; B), £ S(pa) + S(pB) — S(pan)-
Given any ensemble {p;, pi }ic[1,m], the Holevo information, as in Holevo (2012), is defined as
x({pipi}) £ S(Zpipi) - Zpis(ﬂi)-

A positive operator-valued measure (POVM) acting on a Hilbert space H is a collection M A

{Az}zex of positive operators in B(?) that form a resolution of the identity:

Ay >0,Vz € X, d A =1,
reX

10



where X is a finite set. If instead of the equality above, the inequality ) A, < I holds, then the
collection is said to be a sub-POVM. A sub-POVM M can be completed to form a POVM, denoted
by [M], by adding the operator Ag £ (I — >, Az) to the collection. Let ¥%,, denote a purification
of a density operator p € D(H4). Given a POVM M £ {A%},cx acting on p € D(H,), the

post-measurement state of the reference together with the classical outputs is represented by

. A
(d@ M)(Wh) 23 [aa] © Teal (17 @ AD)Wh, ). (1.1)
reX
Consider two POVMs My = {A2},cx and Mp = {Af}yey acting on H 4 and Hp, respectively.
Define M4 ® Mp a {AM® Af}xex,yey- With this definition, M4 ® Mp is a POVM acting on
Ha @ Hp. By M®™ denote the n-fold tensor product of the POVM M with itself.

1.5.3 Problem Statement

Measurement compression theorem quantifies the “relevant information” of a measurement M
by measuring the minimum amount of classical information bits needed to “simulate” the repeated
action of M on a quantum state p. In this context, an agent (Alice) performs an approximating

" and sends a set of classical bits to a receiver (Bob).

measurement M on a quantum state p®
In addition, Alice and Bob share some amount of common randomness. Bob intends to faithfully
recover the outcomes of the original measurement M without having access to the quantum state
based on the bits received from Alice and the common randomness. The objective is to minimize
the rate of classical bits under the constraint that the approximating measurement M ™) ig faithful

to the actual measurement M®" with respect to the state p®". This is formally defined in the

following.

Definition I.1 (Faithful simulation Wilde et al. (2012)). Given a sub-POVM M £ {A,},cx acting
on a Hilbert space 4 and a density operator p € D(H4), a sub-POVM M £ {A,},cx acting on

H 4 is said to be e-faithful to M with respect to p, for € > 0, if the following holds:

=, (M, 01) 2 3 || Vahe = o)

reX

+ Tr {(I—ZAm)p} + Tr {(I—Z[Xx)p} <e (1.2)
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Alternatively, one can complete the POVMs M and M by associating I — Y wex Ao and T —
Y ozex A, with additional symbols 0 and 0, respectively, and thus obtaining POVMs [M] and [M],
defined on X |J{0,0}. Stating the above definition for [M] and [M] gives the same as in ( Wilde
et al., 2012, Definition 3). Further, the above trace norm constraint can be equivalently expressed

in terms of a purification of state p using the following lemma.

Lemma I.2. (Wilde et al., 2012, Lemma 4) For any state p € D(H) with any purification V%, ,,

and any pair of POVMs M and M acting on H, the following identity holds
I(id @ M)(V5,) — (id @ M)(W5 ) =Y IvVe(Ae — Ar) Vo1, (1.3)

where A, and A, are the operators associated with M and M, respectively.

Theorem 1.3. (Winter, 2004, Theorem 2) For any € > 0, any density operator p € D(H4), any
POVM M acting on the Hilbert space Ha, and for all sufficiently large n, there exists a collection
of POVMs M) for 1 € [1, N], each acting on 7—[%’”, and having at most 2™% outcomes such that

M® A % ZM M) s e-faithful to M®™ with respect to p&" if
1
R>I(U;R),, and ~logy N + R > S(U)e,

where oy 2 (id ® M) (¥ ,).

Remark 1.4. A strong converse of the above result is also provided in ( Winter, 2004, Theorem 8).

1.5.4 Conclusion

This section briefly introduced the measurement compression problem. The aim of the next
chapters is to consider the problem in distributed settings and obtain achievable rate regions to-
ward faithful simulation of distributed quantum measurements. The subsequent chapters form the

contribution of this thesis.
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Part 1

Quantum Measurement Compression
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CHAPTER I1

Distributed Measurement Compression

In this chapter, we consider scenarios where the quantum measurements are performed in a
distributed fashion on bipartite entangled states, and quantify “relevant information” for these
distributed quantum measurements in an asymptotic sense. As shown in Fig. 2.1, a composite
bipartite quantum system AB is made available to two agents, Alice and Bob, where they have
access to the sub-systems A and B, respectively. Two separate measurements, one for each sub-
system, are performed in a distributed fashion with no communication taking place between Alice
and Bob. Imagine that there is a third party, Charlie, who is connected to Alice and Bob via
two separate classical links. The objective of the three parties is to simulate the action of repeated
independent measurements performed on many independent copies of the given composite state. To
achieve this objective, Alice and Bob send classical bits to Charlie at rate Ry and Ra, respectively.
Further, pairwise common randomness at rates C; and Cs are also shared between Alice and
Charlie, and Bob and Charlie, respectively. Charlie performs classical processing of the received
bits and common randomness. We study two settings, based on whether or not Charlie has access to
private randomness, namely the feedback case and the non-feedback case, respectively. The private
randomness can enable Charlie to employ random stochastic decoders (aka probabilistic decoders)
for decoding the measurement outcomes. As an application of this quantification, we consider the
QC distributed rate distortion problem where Charlie is allowed to use classical quantum (CQ)
channels. In this chapter, we focus on memoryless quantum systems in finite-dimensional Hilbert
spaces.

The contributions of this chapter can be summarized as follows:

14
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Figure 2.1:
& The diagram of a distributed quantum measurement applied to a bipartite quantum

system AB. A tensor product measurement M4 ® Mp is performed on many copies of
the observed quantum state. The outcomes of the measurements are given by two clas-
sical bit streams. The receiver functions as a classical-to-quantum channel S mapping
the classical data to a quantum state.

e We formulate the problem of faithful simulation of distributed quantum measurements that
can be decomposed as a convex-linear combination (incorporating Charlie’s stochastic pro-
cessing) of separable measurements, as stated in Definition II.1. The asymptotic performance
limit for this problem is given by the set of all communication rates (R, R2) and all common
randomness rates C7 and Cy, referred to as the achievable rate region, under which the above-
stated measurement is distributively simulated. We devise a distributed simulation protocol
for this problem, and provide a quantum-information theoretic inner bound to the achievable
rate region in terms of computable single-letter information quantities (see Theorem I1.33).

This is the first main result of the paper.

e In the special case of the above problem formulation, where the Charlie’s action is restricted
to a deterministic mapping, we develop a one-shot performance characterization of the dis-
tributed faithful simulation problem (see Theorem II.4). This characterization is based on a
modular approach. As a corollary to this result, we develop a characterization of an inner

bound to the asymptotic performance limit (see Theorem I1.6).

e As an immediate application of our results on the simulation of distributed measurements,
we develop an approach for a distributed quantum-to-classical rate distortion theory, where
the objective is to reconstruct a quantum state at Charlie, with the quality of reconstruction
measured using an additive distortion observable. The asymptotic performance limit is given

by the set of all communication rate pairs (R, R2) at which the distortion D is achieved.
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For the achievability part, we characterize an inner bound in terms of single-letter quantum
mutual information quantities (see Theorem I1.20). This is the second main result of the
paper. The classical version of this result is called the Berger-Tung inner bound Berger

(1977).

e We then develop a technique for deriving converse bounds based on a combination of tensor-
product and direct-sum Hilbert spaces (also referred to as a multi-particle system). Using
this technique, we derive a single-letter outer-bound on the optimal rate distortion region
(see Theorem 11.22), by converting a multi-letter expression into a single-letter expression.

This is the third main result of the paper.

As was pointed out in Krovi and Devetak (2007), the measurement compression theorem Win-
ter (2004) is a generalization of the classical reverse Shannon theorem [14] and can be viewed as
a quantum-to-classical channel simulation problem. Similarly, the distributed measurement com-
pression problem addressed in this chapter can be viewed as a distributed multi-party quantum-
to-classical channel simulation problem. This can pave the way to considering the multi-party
extensions of problems such as entanglement distillation and remote state preparation. In fact,
as will be shown in IV, we use the distributed measurement compression protocol to construct a
multi-party purity distillation protocol. Further, this work also develops new tools such as the
mutual covering lemma and the mutual packing lemma which can be promising tools for many
emerging quantum network applications. Moreover, in the recent applications of the distributed
paradigms, a network of limited qubit-capacity quantum computers, connected through classical
and quantum channels, are used to solve problems in a distributed manner by casting known cen-
tralized algorithms into their distributed versions Yimsiriwattana and Lomonaco Jr (2004); Beals
et al. (2013); Van Meter and Devitt (2016); Denchev and Pandurangan (2008).

The organization of this chapter is as follows. In Section 1.5.2, we set the notation and state
requisite definitions. Toward developing the main result of this chapter, for pedagogical reasons,
we first consider a special case in Section 2.2.2. For this special case, we restrict the processing at
Charlie to a deterministic function and characterize the performance of a faithful simulation protocol
in a one-shot setting. We achieve this by first obtaining a one-shot measurement compression

theorem in a point-to-point setting (Theorem I1.9), wherein Bob is absent. Then we employ this
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result on the individual components (M4 and Mp) of the joint measurement M 4p, separately, to
obtain a theorem characterizing the performance of a distributed measurement compression protocol
(see Theorem I1.4). As a corollary, we further provide an asymptotic quantum information-theoretic
inner bound to the achievable rate region of the distributed measurement compression problem
(see Theorem I1.6). As a result, faithful simulation of My is possible when at least nI(U; Ry)
classical bits of communication and nS(U|R4) bits of common randomness are available between
Alice and Charlie. Similarly, a faithful simulation of Mp is possible with nl(V; Rp) classical bits
of communication and nS(V|Rpg) bits of common randomness between Charlie and Bob, where
R4 and Rp are purifications of the sub-systems A and B, respectively, and U and V denote the
auxiliary registers corresponding to their measurement outcomes. The challenge here is that the
direct use of single-POVM compression theorem for each individual POVMs, M4 and Mp, does
not necessarily ensure a “distributed” faithful simulation of the overall measurement, Map. To
accomplish this, we develop a Mutual Covering Lemma (see Lemma I1.12), which also helps in
converting the information quantities in terms of the reference R of the joint state pap.

Further, an interesting aspect about the distributed setting is that one can further reduce the
amount of classical communication by exploiting the statistical correlations between Alice’s and
Bob’s measurement outcomes. The challenge here is that the classical outputs of the approximating
POVMs (operating on n copies of the state pap) are not independent identically distributed (IID)
sequences — rather they are codewords generated from random coding. For this we develop a
proposition for mutual packing (Proposition I1.15), that characterizes the binning rates in term
of single-letter information quantities. This issue also arises in classical distributed source coding
problem which was addressed by Wyner-Ahlswede-Korner Berger (1977) by developing the Markov
lemma and the Mutual packing lemma. The idea of binning in quantum setting has been explored
from a different perspective in Devetak and Winter (2003) and Anshu et al. (2018a) for quantum
data compression involving side information. Toward the end of the section, we also provide an
example to illustrate the inner bound to the achievable rate region.

In Section 2.3.3, we apply this special setting of the distributed measurement simulation with
deterministic processing to the QC distributed rate distortion problem. Since the proof of the inner
bound of this rate distortion problem requires only the special case of distributed measurement

simulation, this is another reason for providing the special case in the previous section.
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In Section 2.4, we consider the non-feedback measurement compression problem for the point-
to-point setting. The authors in Wilde et al. (2012) have discussed this formulation and provided a
rate region with a proof of achievability and converse. However, in their proof, the authors assume
two inequalities (Wilde et al., 2012, Eq. 53 and 54), which may not necessarily be true Wilde
(Aug 2019) (further details are provided in Section 2.4). A stronger version of this theorem is also
developed in Berta et al. (2014) using a different technique, wherein the authors have extended the
Winter’s measurement compression for fixed independent and identically distributed inputs Winter
(2004) to arbitrary inputs. Since the result is crucial for the distributed simulation problem with
stochastic processing, to be proved in the next section (Section 2.5.2), we formally state the problem
and provide an alternative proof of the direct part for completeness (see Theorem 11.27).

Finally, the above proof of non-feedback simulation in the point-to-point setting provides us
with necessary tools for the next task, namely, distributed quantum measurement simulation with
stochastic processing. The objective of incorporating the additional processing at the decoder is to
reduce the required shared randomness. Our objective in the distributed problem, considered in
Section 2.2, was to simulate M4 ® Mp. We achieve this by proving that a pair of POVMs that can
faithfully simulate M4 and Mp individually, can also faithfully simulate M4 ® Mp (Lemma I1.12).
However, it will be shown that, because of the presence of Charlie’s stochastic processing, decoupling
the current problem into two symmetric point-to-point problems is not feasible. Therefore, we
perform a non-symmetric partitioning while being analytically tractable. Toward this we develop a
non-product covering lemma (see Proposition I1.41). Moreover, we provide a single-letter achievable
inner bound that is symmetric with respect to Alice and Bob. We conclude the chapter with a few

remarks in Section 2.6.

2.1 Notations and Definitions

Definition II.1 (Joint Measurements). A POVM Map £ {A2B} ..z, acting on the joint state
paB € D(Ha ® Hp), is said to have a separable decomposition with stochastic integration if there
exist POVMs M4 2 {A2},ey and Mp 2 {AB},cy and a stochastic mapping Pruy :UXV — Z
such that

AAB & ZPZ|U7V(z|u,v)Af @AB, vze 2z,
u,v

18



where U,V and Z are some finite sets. Further, if the mapping Py is a deterministic function

then the POVM is said to have a separable decomposition with deterministic integration.

2.2  One Shot Distributed Simulation of POVMS with deterministic processing

We begin by considering the simulation of distributed POVMs with deterministic processing.
Recall from the discussion in Section 1.5.1 that the motivation behind the restriction to determin-
istic processing is that the proof becomes modular, and also forms a first pedagogical step towards
the distributed simulation with stochastic processing (Theorem I1.33). Due to the modularity of
the proof, we were able to develop a one-shot version of the proof. In the following, we state the

problem formulation and provide the theorem statement.

2.2.1 Problem Formulation

In this formulation, Charlie’s processing is restricted to a deterministic mapping. More precisely,

Definition I1.2 (Distributed Protocol). For a given finite set Z, and a Hilbert space Ha ® Hp,
a distributed protocol with deterministic processing with parameters (n, ©1, 02, N1, No) is charac-
terized by

1) a collection of Alice’s sub-POVMs Mj(f 1), p1 € [1, Nq] each acting on HE™ and with outcomes
in [1,04].

2) a collection of Bob’s sub-POVMs M éﬂ 2),u2 € [1, N3] each acting on H5" and with outcomes in
[1,02].

3) a collection of Charlie’s classical decoding maps f(#1#2) : [1,0,] x [1,09] — 2" for pu; €
[1, N1], p2 € [1, N2].

The overall sub-POVM of this distributed protocol, given by Mg, is characterized by the following

operators:
= 1
= A1) o A Bi(n2)
An _N1N2 Z Z ]]-{f(ﬂlvl‘Q)(ll7l2):Zn}All ®Al2 (2.1)
K142 11€[1,0)],
l2€[1,@}

Vz" € Z", where Aﬁ’(“ 1) and Ag’(“ 2) are the operators corresponding to the sub-POVMs Mf(‘“ 1)

and M g‘ 2), respectively.
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In the above definition, (01, 02) determines the amount of classical bits communicated from
Alice and Bob to Charlie, respectively. N1 and Ny denote the amount of pairwise common ran-

domness. The classical maps f(#1:#2) represent the action of Charlie on the received classical bits.

Definition I1.3 (Achievability). Given a POVM M4p acting on H 4 ® Hp, and a density operator
paB € D(Ha ® Hp), a quadruple (R1, Ro,C7,C5) is said to be achievable, if for all € > 0 and
for all sufficiently large n, there exists a distributed protocol with deterministic processing with
parameters (n,©1,02, N1, Na) such that its overall sub-POVM Map is e-faithful to Mffg with

respect to pG7 (see Definition I.1), and
1 1 .
—logy ®; < R;j+¢, and —logaN; <Ci+e¢, 1=1,2.
n n

The set of all achievable quadruples (R;, Re, C1, C2) is called the achievable rate region.

2.2.2 Inner Bounds

We now provide two theorems characterizing the performance of faithful simulation protocols,
one in a one-shot and the other in an asymptotic quantum information theoretic settings for faithful
simulation of distributed measurements with deterministic processing. The proofs of these theorems

are provided in Section 2.2.4 and 2.2.5.

Theorem I1.4. (One-shot Distributed Faithful Simulation). Consider a density operator pap €
D(Ha @ Hp) and a sub-POVM Mg a (A ® Af}ueu,uev acting on Ha ® Hp. Suppose there
exists total subspace projectors 1l,,, I1,,, and codeword subspace projectors (T wer, {TTAY ey,

acting on Ha and Hp, respectively, satisfying:

Te{Il,, pi} > 1 — e, T{IL,, p0} > 1 — e, Te{II2p} > 1 — e, TH{IIE P} > 1 — 62,  (2.22)

Te{Il,,} < Dy, Tr{ll,,} < Dy, TI2pimI < deA nepEns < deB (2.2b)
papally, < pa, Topppll,, < pp, Tp0T0 < po, TPpPTID < 5, (22¢)

1 _
Hp,pall,, S Hp,, Vpa~ HPAVpA t< Jillp s

1 _
I BpBHpB S pB7 \/pB HpB\/pB ! < fZHpgv (2'2d)
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where €; € (0,3), 0 < d; < D;, and f;, F; >0 fori=1,2, and p;} and pZ are defined in (2.37). Let
W CUXYV be an arbitrary set. Let K1 and Ko be arbitrary positive integers such that |U| > K1 and
|V| > Ka. Then for any T; < K; for i = 1,2, there exists a distributed protocol with deterministic

processing for the finite set U xV and the Hilbert space H Q@ Hp, with parameters (1,11, To, N1, N3)

such that
EpAB(MAB7MAB) <ag+ap+ap,
where
2 261 [ KlegdlDil_
Ny, Kp) 2 \/;A 0,) + 4D N et e Y (N /)
calen M, ) (1+e1)\/mz%{ g T ) AD N exp | =T B |26,
(2.3)
9 2€s [ Kye3de Dy
Ny, Ky) 2 \/;B 05) + 4Dy N: SRR 199
RElEaRa ) (1+62)\/m1§ ° +62+1+f(62’ 2) +4D; 2950 | iz |7
(2.4)

2

(14 e)(1+e2)

MNEAB WK K K\ Wl ( B Ko KoWgAB, M K1 fifo
( (

ap(er, ea, K1, Ko, N1, No, T1, To, W) £ 204 + 2ap + 2248 (W°) +

(1 — 91)(1 — 02)T1T2 (1 — 01)T1 1-— 92) (1 — 92)T2 1-— 91) FIFQ’
(2.5)
and )\ff 2 Tr(pAB(Ay ® Ay)) with marginals (A, A5), Wa 2 maxyey [{u : (u,0) € WY, and
Wg 2 maxuey [{v : (u,v) € WY, A, & max, A2, and A3, £ max, A5, 6, £ 1 — S weu N

02 21— ey M, (e,0) 2 [4VE+4V/e 426+ 4v2(1 = 0)/e+ V| /(1 +€), and ME(ve) &
Z:(u,v)EVVC )\97]5

Remark 11.5. Note that the terms a4 and ap can be identified as the one-shot expressions for
the errors induced in approximating each of the sub-POVMs {A4},cs and {AB},cy, using their
respective approximations. This approximation employs the one-shot version of the measurement
compression theorem (Theorem I1.9), which is developed as a part of the proof in Section 2.2.4.
Within a4, the exponential term corresponds to the error probability that the approximating
operators do not constitute a valid sub-POVMs in random coding, the term involving square-root

of the probabilities corresponds to the classical soft covering error, and the term f(e, ) corresponds
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to the error incurred because of the use of gentle measurement lemma with regard to the total
subspace and codeword subspace projectors. Likewise, the term ap captures the additional error
introduced by compressing the classical outcomes of the above distributed measurement using the
technique of binning. The binning is used to reduce the rate of transmission by exploiting the
classical correlations present in the measurement outcomes, using a many-to-one transformation.
The information lost in this transformation is recovered at the receiver using a relation modeled
by a bipartite sub-graph W of U x V. The twice of a4 + ap within ap captures the effect of
binning on the event corresponding to not being able to cover the sources using the approximating
sub-POVMs. AB(W®) captures the event where under the original sub-POVM, the measurement
outcomes do not satisfy the above set relation. The final term captures the error due to binning of
the approximating sub-POVMs.

As a corollary to the above theorem, we obtain the following asymptotic inner bound to the

achievable rate region.

Theorem II.6 (Distributed Faithful Simulation). Given a density operator pap € D(Ha @ Hp)
and « POVM Map a {AfB}Zeg acting on Ha ® Hp, and having a separable decomposition with
deterministic integration (as in Definition II.1), a quadruple (R1, Re,C1,C2) is achievable if the

following inequalities are satisfied:

Ry > I(U;RB)y, — I(U:V)sy, (2.62)
Ry > I(V; RA)O’Q - I(U; V)O’:S) (26b)

Ri+ Ry > I(U; RB) g, + [(V; RA) 5y — I(U; V) s,

R+ C1> SUV)o,, (2.6¢)

Ry + Cy> S(V|U)ys, (2.6d)

Ri+ Ry +C1> I(V;RA) gy + S(U|V ) g, (2.6e)

Ry + Ry + Co> I(U; RB)y, + S(V|U)os, (2.6f)
Ri+ Ry + C1 + Cy> S(U, V), (2.6g)

for some decomposition with POVMs My = {A2}uey and Mp = {AB}ey and a function g :

U xV — Z, where the information quantities are computed for the auziliary states ol?UB a (idrp ®
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My ®idg)(V5Ys), é%AV £ (idr ® ida ® Mp)(V35), and O'RUV S (idr ® Ma @ Mp)(955),

with W5, being a purification of pap.

Remark 11.7. An alternative characterization of the above rate region can be obtained in terms of

Holevo information. Using the canonical ensemble, we obtain

I(U;RB)s, = S(RB)s, — S(RB|U),,

= SO M) =D A = x ({NLae))

ueU ueU

where the second equality follows by noting S(RB)s, = S(pa), pa = D ucu MpA ) and using
the result from (Wilde, 2013a, Eq. 11.54). Similarly, we get I(V;RA),, = x ({\5,p5}). Also,
I(U;V)sy, and S(U,V),, are equal to the classical mutual information and joint entropy with

respect to the joint distribution {\2B}, respectively.

2.2.3 Overview of Proof Technique and an Illustrative Example

Before providing a proof in the next section, we briefly discuss two corner points of the rate
region with respect to the common randomness available. To reduce the number of free parameters,
let C & Oy + Cy. Firstly, consider the regime where the sum rate (R1 + R2) is at its minimum
achievable, i.e., equation (2.6¢) is active. This requires the largest amount of common randomness,
given by the constraint C > S(U|RB)s, + S(V|RA),,. Next, let us consider the regime where
C = 0. This implies R; + Ra > S(U,V)s,. This regime corresponds to the quantum measurement
My ® Mp followed by classical Slepian-Wolf compression Slepian and Wolf (July 1973). Fig. 2.2
demonstrates the achievable rate region in these cases.

We encounter two challenges in developing the single-letter inner bound to the achievable rate
region as stated in Theorem I1.6: 1) The direct use of single-POVM compression theorem, proved
using random coding arguments as in Winter (2004), for each individual POVMs, M4 and Mp, does
not necessarily ensure a “distributed” faithful simulation for the overall measurement, M4 @ Mp.
This issue is unique to the quantum settings. One of the contributions of this work is to prove this
when the two sources A and B are not necessarily independent, i.e., pap # pa ® pp (see Lemma

11.12).
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R,
m c=0

S(V)U'a [~
I(V; RA),, <~}

B C>SWUIRB),, +SVIRA),,

SUV)g,

I(V; RA)g, — 1(U, V), fe=F-=mt===

‘ : S
| SW0)g, i S(U)g, R
v v 1

I(U; RB),, — I(U,V),, I(U;RB),,

Fi 2.2:
1BHe The inner bound to the achievable rate region given in Theorem II.6 at two planes:

1) with no common randomness, i.e., C = 0 (green color), and 2) with at least
S(U|RB)g, + S(V|RA)s, amount of common randomness (blue color). As a result,
the latter region contains the former.

2) The classical outputs of the approximating POVMs (operating on n copies of the source) are
not independently and identically distributed (IID) sequences - rather they are codewords generated
from random coding. The Slepian-Wolf scheme Silepian and Wolf (July 1973) (also referred to
as binning in the literature) is developed for distributed compression of IID source sequences.
Applicability of such an approach to the problem requires that the classical outputs produced from
the two approximating POVMs are jointly typical with high probability. This issue also arises
in classical distributed source coding problem which was addressed by Wyner-Ahlswede-Korner by
developing the Markov Lemma and the Mutual Packing Lemma (Lemma 12.1 and 12.2 in El Gamal
and Kim (2011)). Building upon these ideas, we develop quantum-classical counterparts of these
lemmas for the multi-user quantum measurement simulation problem (see the discussion in Section
2.5.3.3 and Proposition I1.15).

Let us consider an example to illustrate the above inner bound.

Example I1.8. Suppose the composite state pap on Ha ® Hp is described as

AB 2~ (J00)00] 455 + [11)(11] 45) -

N =

p

Since 74 = Trp p*P and 78 = Try pAP, Alice and Bob would perceive each of their particles in
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maximally mixed states 74 = % and 78 = g, respectively. Upon receiving the quantum state,
the two parties wish to independently measure their states, using identical POVMs M4 and Mp,
given by {20)0], 3 [1X1], 3 [+X+|, 5 [-X—|}. Alice and Bob together with Charlie are trying to
simulate the action of M 4 ® Mp using the classical communication and common randomness as the
resources available to them (as described earlier). We compute the constraints given in Theorem

11.6. Let \I/,f”AB, the purification of pAZ, be defined as

g RAB A <\000>RAB + ’111>RAB> <<000|RAB + <111’RAB>
’ V2 V2

Considering the first constraint from (2.6a), we evaluate o?UB as

1
ofP = - ( 0X0lr @ [00X00| g + [1)1]y @ [11X11| g

+12)2ly ® (|OO>RBJ§|11>RB) (<00|RB\‘/|‘§<11|RB)

T sl @ <|oo>RBJ—§|n>RB> <<00|RB\;§<11|RB> )

where the vectors {|0);;, 1)y, |2),[3)} denote a set of orthogonal states on the space Hy. Based

on this state, we get
S(ef"P) =2, S(o7¥) =1, S(of)=2.

This gives I(U; RB),, to be equal to 1 bit. Similarly, from the symmetry of the example, we also

get I(V; RA),, to be equal to 1 bit. Similarly, we can evaluate 0¥V as

3 3
otV = 116(22|z'><z'rU® i)ily + (100l @ [0X0l,, + 1)1, @ [1X1],,)
i=0 j=0

— (10Xl ® 1)1}y + 11}y ro><orv)),

which gives

S(U,V)gy =375 and I(U;V)g, = 0.25.
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Therefore, we can write the constraints given in Theorem I1.6 as

R, >0.75, Ro>0.75, Ri+ Ry >1.75, Ry+C;>1.75,
Ro+Cy > 1.75, Ri+ Ry + Cqp > 2.75,

Ri+ Ry +Cy>275 and Ry + Ry+ Cq+Cy > 3.75.

Consider the case when C' = C7 + C2 > 2 is available. By approximating M4 and Mp individually,
we receive a gain of 1 bit, decreasing the rate from S(U),, = 2 bits to I(U; RB),, = 1 bit and
similarly from S(V),, = 2 bits to I(V; RA),, = 1 bit. Binning of these approximating POVMs (as
discussed in Section (2.5.3.3)), gives an additional gain of a quarter bit, which is characterized by

I(U;V)s, = 0.25, thus giving us the achievable sum-rate of 1.75 bits.

2.2.4 Proof of One-Shot Inner Bound (Theorem II.4)

We begin the proof of the theorem by restating the measurement compression theorem (Theorem
[.3) in a one-shot quantum information theoretic setting. This restatement allows us to develop
a one-shot mutual covering lemma, which is a crucial part of the current proof. The theorem is

stated as follows:

Theorem I1.9. (One-shot Point-to-point Faithful Simulation). Consider a density operator p €
D(H) and a sub-POVM M 2 {Az}eex acting on H, and let {\z, pz }zex be the canonical ensemble!
of M with respect to p. Suppose there exists a total subspace projector 11, and codeword subspace

projectors {11, }rex acting on H satisfying:

Tr{llpps} > 1~ ¢ (2.7a)
Te{llp.} > 1—¢ (2.7b)
Tr{Il,} < D (2.7¢)
I, .11, < %Hw (2.7d)
o po1lz < fo (2.7¢)
IppIl, < p, (2.7f)

Note that {Az}zex is a sub-probability vector, i.e., a vector of non-negative real numbers whose sum is not
greater than 1.
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where € € (0, %), 0 < d < D. Then there exists a collection of sub-POVMs M™ for yu € [1, N] each

with at most K outcomes, with K < |X|, and acting on H such that

. Ke3dD™1
= < _aetab
(M, NI) < o ﬁ § Vet (e 9)+4DNexp{ T3 ] 20,

where M 2 %Z“M(“), ESE Y owex Az, and

fle,0) & [4ﬁ+4\/e+2\/2+4\/§(1 —0)\/e+ \/E] /(1—e).

Proof. The proof is provided in Appendix A.1. O

Moving ahead with the proof of the current theorem, assume that the operators of the original
sub-POVM Mg = M4 ® Mp are denoted by {A2},cr and {AB},cy, respectively, where U and V
are two finite sets. The proof follows by constructing a protocol for faithful simulation of M4 ® Mp.
We start by generating the canonical ensembles? corresponding to M4 and Mp. Let II,, and II,,
denote the total projectors for marginal density operators ps and pp, respectively. Also, for any
u €U and v € V, let TT2 and TIZ denote the codeword projectors. Let the canonical ensembles be

{4 p24) and {\B, pB}. For each u € U and v € V define

pr A, mApdndn,,, pP A, nubPubn,, (2.8)
With the notation above, define o and 0P as
A ABE 2.9
o’ 1_012 o, of 1—922 (2.9)
uelU veY

Let IT4 and IIZ be the projectors onto the subspaces spanned by the eigenstates of o’ and B

corresponding to eigenvalues that are larger than €; /D4 and eo/Dp, respectively. Lastly, define
i = f[Aﬁf,f[A, and pP 2 2188 f[B, (2.10)

for all u € U, and v € V and o4 = T4 T4, o8 = 18515,

2Note that {\4 }ueu and {AF},cy are sub-probability vectors.
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2.2.4.1 Construction of Random POV Ms

In what follows, we construct two random POVMs one for each encoder. Fix positive integers
Ki, K3, Ny and Ny. Let py € [1, V] denote the common randomness shared between the first
encoder and the decoder, and let puy € [1, No| denote the common randomness shared between
the second encoder and the decoder. For each p; € [1,N1] and ps € [1, Na|, randomly and
independently select K x Ks pairs denoted by (U#1) (1), V(#2)(k)) from the set U x V according to
the distribution:

AANB
(1—61)(1—6y)

P (U0 (1), V) (k) = (u,0)) = (211)
for u € U,v € V. Let C#1#2) denote the collection {U#1) (1), V(M)(k)}{le[l,Kl],ke[l,Kg]}- Construct

operators3

A&’“)évﬁ“l)<m_lﬁf\/ﬁ_l> and B#”écé“”(\@‘lﬁfm—l) (2.12)
where

(1—106)

A =00 o )y () & _(1—09)

(1+e)K, [{k: VI (k) = v} (2.13)

Let 1 (sP-13 denote the indicator random variable corresponding to the event that {Aq(f“) cu €U}

forms a sub-POVM for all g € [1, N1]. Similarly define 1gp-gy with regard to {Bg“z) cveVH If

]l{sP-l} = 1, then, for each u; € [1, N;] construct M-(’”), for i = 1,2, as in the following:

M) B LA ueuy, My 2B v e V).

These collections Ml(” ") and MQ(“ 2) are completed using the operators A(()’; DAy Al

ueU
and Bé’f) A7 Y vey Bq(,uz), and these operators are associated with symbols Oy and Oy . In the
case of the complementary event, i.e., ﬂ{sP—i} =0, we define Mi(’”) A {I}, for i = 1,2, and denote

the output as Oy or Oy, respectively. Hence by construction Ml(” 1 and MQ(” 2) are sub-POVMs for

all u; € [1,N;], for i = 1,2. For a fixed {C(MM)}me[l,Nl],uze[l,Nz]v the probability distribution P

3The inverse used in \/ﬁfl refers to the generalized inverse as defined in (Holevo, 2012, Section 5.6).
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induced on (U U {0r}) x (VU {0y }) has the following salient features.

1
P{(u,0)} = Ligpy Lsp-2y s 2 WD,

1,142

if (u,v) €U x V, and

P(UUA{0g}) x (VU{0y P\ x V)

1
= ]l{SP—l}]l{SP—Q} <1 — 7N1N2 Z ZV&M)Q(,W)Q“W) + (1 — l{SP—l}ﬂ{SP—Q}) s

B1,H2 Uy

where 2, ,, is defined as

Qo 2 Tf{\/pA®prl(ﬁf ® py)V/pa ®pB*1pAB}- (2.14)

Binning of POVMs: We introduce the quantum counterpart of the so-called binning technique
which has been widely used in the context of classical distributed source coding. Fix positive
integers (7T7,7%) and choose a (u1,u2) pair. For each symbol u € U assign an index from [1, 7]
randomly and uniformly, such that the assignments for different sequences are done independently.
Perform a similar random and independent assignment for all v € V with indices chosen from [1, T5].
Repeat this assignment for every py € [1, N1] and ug € [1, Na|. For each i € [1,T3] and j € [1,T3],
let B%“ (i) and Bg“ 2)(j) denote the " and the j* bins, respectively. More precisely, BE“ D) is
the set of all 4 symbols with assigned index equal to i, and similar is Bé“ 2)( 7). Define the following
operators:

1—‘;4’(#1) é Z Aq(ju)v Fij(/Q) é Z B’L()u2)7

ueBH ) (4) veB?) ()

for all 7 € [1,71] and j € [1,T5]. Using these operators, we form the following collection:
A (A, A (B,
M,Exul) = {Fi (M)}ie[l,Tl]a M/(BM) = {Pj (M)}je[l,Tg]- (2~15)
Note that if Ml(’“) and MQ(’”) are sub-POVMs, then so are MX“) and Ml(gm). This is due to the
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relations

ZF;‘L(M) _ ZA?(ZM)’ and ZF?(M) _ ZBq(}uz)'
i J

ueU veY

To make MX“) and M](Bm) complete, we define Fgl’(’“) and Ff’(’m as Fg"(’“) =1-5, F?’(’“)

and ]_“68’(“2) =1->; I‘f’(’u), respectively?. Now, we intend to use the completions [Mj(f”“)]

and
[Mén,uz)] as the POVMs for each encoder. In event that 1gp_; = 0, for i = 1,2, then the symbols Oy
and Oy are mapped to 0. Also, note that the effect of the binning is in reducing the communication
rates from (log(K + 1),log(K2 + 1)) to (log(T1 + 1),log(T + 1)).

Decoder mapping: Note that the operators {Aq(j“) ® qu‘”)}u@L%v are used to simulate My ®
Mp. Binning can be viewed as partitioning of the set of classical outcomes into bins. Suppose
an outcome (U, V') occurred in the measurement process. Then, if the bins are small enough, one
might be able to recover the outcomes by knowing the bin numbers. For that we create a decoder
that takes as an input a pair of bin numbers and produces a pair of symbols (U, V). More precisely,
we define a mapping F(#1:#2) for (uy, pi2), acting on the outputs of [MIE‘M)] ® [Mg”)] as follows. On

observing (u1, p2) and the classical indices (7, 7) € [1,T1] x [1,T3] communicated by the encoders,

the decoder populates

Dg;l’“?) a {(u, v) €CWr2) : (y, ) € W and (u,v) € BV (i) x B§“2>(j)},

where W is an arbitrary subset of U x V. For every p; € [1,N], for I = 1,2, and i € [1, K{]
and j € [1, Ks], define the function F#1:#2) (i, j) = (u,v) if (u,v) is the only element of Dl(f;l’w);
otherwise F(#1:£2)(; j) = (0y,0y). Further, F(#1:#2)(4, ) = (O, 0y) for i = 0 or j = 0. With this

mapping, we form the following collection of operators, denoted by Mg,

i a LsP-1y1(sP-2y i f: T pe) o B
uv NN i J
=L ua=1 (i) F 12 i) = ()

+ (1= Lpo1y Lisp-2)) (L @ 1)L m)=(0y,00)}

Y(u,v) € (U J{0r}) x (VW J{0v}). Note that by construction Mup is a sub-POVM.

4Note that FE)‘\’(Ml) — I Zz FiA’(’“) S Zueu ASLM) and Pf’(’”") —J— Zj Pf’WQ) S Zvev Bz()’Q).
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2.2.4.2 Analysis of POVM and Trace Distance

We show that M AB is a sub-POVM that is faithful to the sub-POVM M4 ® Mp, with respect

to pap. More precisely, we provide a bound on

GPAB = E(MABa MAB)- (2.16)

Step 1: M{“) and MQ(M) are sub-POVMs and individually approximating. As a first
step, one can show that Ml(” Y and MQ(” 2) individually approximate the corresponding POVMs in

the expected sense. More precisely the following lemma holds.

Lemma I1.10. For the POVM ensemble described above, we have

E(EPA(MAa Ml)) < OéA(El, K, Nl)a

E(EpB (MB, MQ)) < OLB(EQ,K2, NQ)a

where M; 2 N% > Ml(ul), and My & N% > MQ(M).

Proof. Follows from the proof of Theorem I1.9, as the assumptions of that theorem (which M4 and

Mp have to satisfy) are met as a part of the current theorem statement (see (2.2a-2.2¢)). O

Step 2: Isolating the effect of un-binned approximating measurements. In this step,
we separate out the effect of un-binned approximating measurements from G in (2.16). This is
done by adding and subtracting an appropriate term within the trace norm and applying triangle

inequality, which bounds G as G < 57 + So, where

S & (id @ [Ma] @ [MB])(¥hap) — ]\711]\& Z (id ® [Ml(m)] ® [MQ(M)])(‘IIG)%AB> .
11,42
S, & N11N2 Mlzm(ld ® [MI(M)] ® [MQ(HQ)])(\II?%AB) (id ® [MaB])(Yhag) ; (2.17)

where S; captures the effect of using approximating sub-POVMs M; and M, instead of the actual
sub-POVMs M4 and Mp, while Sy captures the error introduced by binning these approximating
sub-POVMs. Before we proceed further, we provide the following lemma which will be useful in

the rest of the paper.
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Lemma I1.11. Given a density operator pap € D(Hag), a sub-POVM My 2 {A;JB :y € V} acting

on Hp, for some set Y, and any Hermitian operator T4 acting on H ., we have

> Ivpas (M @A) vpas, < lvea Tyl . (2.18)

yey

with equality if ZAf =1, where py = Tre{pan}.
yeY

Proof. The proof is provided in Appendix A.2. O
Next, we provide a bound on S; using the following Mutual Covering Lemma.

Lemma I1.12. (Mutual Covering Lemma) Suppose a sub-POVM My is ex -faithful to Mx with
respect to px, and a sub-POVM My is ey -faithful to My with respect to py, where px = Try {pxy }
and py = Trx {pxy}. Then the sub-POVM Mx ® My is (ex + ey )-faithful to the POVM Mx @ My

with respect to pxy .
Proof. The proof is provided in the Appendix A.3. O

Using Lemma IL12 with pxy = pap, Mx = 3= 3, M{"™), My = &5 My"™) | My = [My]
and My = [Mp], and Lemma I1.10, we have E(S1) < aa(e1, N1, K1) + ap(e, No, K3). For later

convenience, we state the following lemma which will be used in analyzing the binning operation:

Lemma I1.13. We have

2D

1
AB
Nl N, 2 75“1)@“2)9“:1)1{@—1}l{sP—2}

ueU veV M1, 2
+LspoyyLispog (1 NlN2 DD AP Q0) + (1= LigpyyLgpogy) < 1, (2.19)
u,v {142
where C, ,, is defined as in (2.14).
Proof. The proof follows from Lemma 2 in Wilde et al. (2012). O

Step 3: Analyzing the effect of Binning. In this step, we provide an upper bound on Ss.
For (u,v) € B(“l)( ) X B(“Z)( ), define e(#1:12) (y, v) & Fp2) (i 5). For any (u,v) ¢ C##2) define

emir2) (y, v) = (0y,0y). Note that e(#1:#2) captures the overall effect of the binning followed by
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the decoding function F(#1:#2), For all u € U and v € V), let ®,,, 2 |u, v)u, v|. With this notation,

we simplify Sy using the following proposition.
Proposition I1.14. S5 can be simplified as

2
Sy :Sg+N1%:Tr ((1—2Agﬂl>)pA>

ueU

2
+ M%;TI‘ <<I_ZB§”2))pB> +2 (2— ]l{SP—J} — H{SP—Q})’

veY

where

1
S5 2 VP LisP-gy oy, Do 2o 2o

p1,p2 ued vey

(I)u,’u - (I)e(HLNQ)(u,U) 7£MI)C5N2)Qu,v.
1

Proof. The proof is provided in Appendix A.6. O

In the next proposition we provide a bound on the expectation of Ss.

Proposition I1.15 (Mutual Packing). We have
E[SQ] S OéP(El, €2, Kl, KQ, Nl, NQ, Tl, TQ, W)

Proof. The proof is provided in Appendix A.7. O

Combining the results from the mutual covering and mutual packing lemmas we obtain
G <as+ap+ap.

This completes the proof of the theorem.

2.2.5 Proof of Second Inner Bound (Theorem II.6)

We develop a proof as a corollary to Theorem I1.4. Assume that the operators of the original

POVM M 4p are decomposed as

AP AN 1 e A @ AD V2 € 2, (2.20)

u,v
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for some POVMs M4 and Mp with operators denoted by {A2},cys and {AB1,cy), respectively, and
for some function g : U x V — Z where U,V and Z are three finite sets. In what follows, we show
the existence of an (n,T1,T5, N1, N2) distributed protocol with the associated sub-POVM MX}B)
that is e-faithful to M4p with respect to pff% (according to Definition I.1), where ¢ > 0 can be

made arbitrarily small for all sufficiently large n. More precisely, we plan to show that

ST y/o (ASF = A27) \Jonlh < e (2.21)
Zn

Next we claim that it is sufficient to show that there exists a distributed protocol for the finite set
U x V and the Hilbert space H 4 ® Hp, with parameters (n, T1, Ta, N1, N2) such that the associated
sub-POVM Mgg = {Aﬁn‘ivn}unevnyvneyn satisfies Ep%, (M$" ® Mg”,MXg) < €. This is because

one can always apply the function g(-,-) componentwise on (u",v") to yield a sub-POVM with

operators

Azn e Z Z ]l{gn(unmn)zzn}[\fn'ivn, V" e 27,

uneU vmreYn

that satisfies the constraint (2.21) as

S| X vigrananseem (VoA 4% - K /o5 )

L

Z’,L ’ll,n,'l)"
A B AAB /
< Z Z ﬂ{g”(u",v”):z"} P%%(Aun ® Av" - Au”,v") p%%
AL TR L 1
A B AAB
= > |WeSEAEm @ AL — AL\ T
un,vn 1

Fix three free parameters § > 0, €; > 0, and €2 > 0. We make the following identification with
regard to Theorem I1.4. (a) Let pap <> p%’;‘?, My < MS™ and Mp <> ME™, which implies that
A o A AB & AB and MP o MB (b)) Let U + T,V(U), V o TL(V), and W < T (U, V),
where 7:5(n)(U ) ’7:5(n) (V) and 7;(n)(U, V) are the d-typical sets defined for {A\2}, {AB} and {\AF},
respectively. (c) Furthermore, let IT,, <> II,, 5 I1,, <> 1L, s, I < H;‘n’é, and IT2 anﬁ, where

II,, s and I, 5 denote the d-typical projectors (as in (Wilde, 2013a, Def. 15.1.3)) for marginal

density operators p4 and pp, respectively®. Also, for any u" € 7:3(n)(U ) and v" € 7:;(71)(\/), let H;‘n s

®Note that T, , s and I, s also depend on n, however, for ease of notation, we do not make this explicit.

34



and an s denote the strong conditional typical projectors (as in (Wilde, 2013a, Def. 15.2.4)) for

A

the canonical ensembles {\4, 521 and {\Z, 5B}, respectively.

v

With the above identification, and using the property of typical sets and typical projectors,
we now find the values of the variables D1, Do, dy,ds, F1, Fo, f1 and fo that satisfy the hypotheses
of Theorem II.4. Firstly, using the properties of strong typical and conditional typical projec-
tors (Wilde, 2013a, Properties 15.2.4 and 15.2.7) we have the first four inequalities (hypotheses
(2.2a)) satisfied for all €;,e3 € (0,1), and for all sufficiently large n. Next, using (Wilde, 2013a,
Property 15.1.2), there exist functions d1(d),02(0) N\, 0 as & N\, 0, such that for all sufficiently
large n, the first two inequalities of hypotheses (2.2b) are satisfied for D; A 9n(S(RB)o, +61(9))
and Dy 2 2n(S(BA)o;+62(9)) Further, using ( Wilde, 2013a, Property 15.2.3), there exist functions
93(0),04(6) N\, 0 as 0 N\ 0, such that for all sufficiently large n, the next two inequalities of hy-
potheses (2.2b) are satisfied for dy £ 2M(SEBU)s~85(9)) g, & on(S(RAV)o,~04(9))  The next four
inequalities of hypotheses (2.2c) follow from the definition of projectors 1I,, 5, II,, 5, an, 5 and
HUBTL’ s5- And finally, the four inequalities of hypotheses (2.2d) are satisfied by using ( Wilde, 2013a,
Property 15.1.3) and by defining Fy = on(S(EB)oy —01(9)) | I, = o(S(FA)o;=0200)) " and f, 2 D, and
fo & Da.

This implies the existence of a distributed protocol with parameters (n, 77, T, N1, N3) with
Epas(Map, MAB) < ag +ag+ ap. We now evaluate the upper bound. For this we let T; = 27/t
N; =270 and K; = 2”Ri, for some non-negative real numbers R;, C;, and RZ for s = 1,2. Moreover,
we assume that S(U),, > Ry and S(V)g, > Ry. If not, then faithful simulation can be achieved in
a trivial way.

Using the property of strongly typical sets, note that for all sufficiently large n we have
U] < 27(5We3+:00)) Y| < 2n(S(V)e3+d5(0) N4 < 2=(S(U)o5—05(0)) \B < 9=US(V)o5—=05(9))  pyr-
thermore, we have the bounds: |W| < 2MS(UV)es+:(9)) 17, < 2n(SWIV)e3+509)) - and Wp <
2(S(VIU)o3+95(9))  wwhere 95(0) \( 0 as § \, 0. For all sufficiently large n we have 6; < ¢; for i =1, 2.
Hence for i = 1,2, the term (2¢;/(1 + €;)) + f(€;,0;) can be made arbitrarily small by a suitable

choice of ¢; and n.
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Next we see that

M < [~ 5 (R1i+C1—S(U)o—385)] 41
N1K1 Z \/ , an

/\B < 2 %(R2+C2—S(V)o‘3_355)],

veY
and hence can be made arbitrarily small for all sufficiently large n if

Ri+C1 > 8(U)y, +305 and Ry +Co > S(V),, + 305.

Moving on, we have

-1 Ry — U)o —61—06
DlNl exp [_KlE%dlDl :| S 2n(S(RB)01+Cl+51) exp [_2”(R1 I(RB U) 1 1 3)6:{)] 7

4In2 4In2
Kye3da Dyt g on(Ra—I(RA;V) gy —02—64) .3
Do N _ 2272727 | < on(S(RA)gy+Ca+82) _ 2
i 26Xp[ 42 |~ o A2 ’

which can be made arbitrarily small for all sufficiently large n if
Ry > I(U;RB)g, + 61 + 03, and Ry > I(V; RA),, + 02 + 04.

Next we have

MEWw = Y A,
(u",v")éTtg(U,V)

which can be made arbitrarily small for sufficiently large n. Finally, we have

AWK Ky | KaWadi, (1 MoKz \ |, KoWedin (1 MK\ ] fife
( (

1—0)(1— 61T " (1— 60T 1—062)) " (1—6)T» 1-01)) | FiFs
- 22n(51+52) I:Q[n(él—‘rﬁz—Rl—RQ—I(U:V)0-3+355)]
- (1 — 91)(1 — 92)

+ 2[n(R~17R171(U:V)03+255)] + 2[n(l§1+Rng171(U:V)03fS(V)O—s +305)]

I

+ 2[n(R'1+R27R27[(U:V)03fS(U)03+365)] + Q[n(égRgl(U:V)03+255)]:|
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which again can be made arbitrarily small for all sufficiently large n if
Ri+Ry— Ry — Ry < I(U;V)o, — 305 — 2(61 + 62).

To sum-up, we have showed that the trace distance inequality in (2.21) holds for all sufficiently

small J, €1, and €9, and all sufficiently large n, if the following bounds hold:

Ry > I(U;RB)y,, Ry>I(V;RA),,,
C1+ Ry > SU)sy, Cot+ Ry>S(V)gy,
(R — R1) 4 (Ry — Ry) < I(U; V) gy,

Ri >R >0, Ry>Ry>0,

C1 >0, Cy>0. (2.22)

Therefore, there exists a distributed protocol with parameters (n, 2"%t, 2nf2 onCi 2"02) such that
its overall POVM Mgg is e-faithful to Mg@g with respect to p%%. Lastly, we complete the proof of

the theorem using the following lemma.

Lemma I1.16. Let Ry denote the closure of the set of all (R1, Ra,C1,C3) for which there exists
(Rl,Rg) such that the sextuple (Rl,Rg,Cl,Cg,fil,Rg) satisfies the inequalities in (2.22). Let, Ro
denote the set of all quadruple (Ry, R, C1,C3) that satisfies the inequalities in (2.6) given in the

statement of the theorem. Then, R1 = Rs.

Proof. The proof follows by Fourier-Motzkin elimination Ziegler (2012). O

2.3 Q-C Distributed Rate Distortion Theory

As an application of faithful simulation of distributed measurements (Theorem I1.6), we con-
sider the distributed extension of QC rate distortion coding Datta et al. (2013b). This problem
is a quantum counterpart of the classical distributed source coding. In this setting, consider a
memoryless bipartite quantum source, characterized by pap € D(H4 ® Hp). Alice and Bob have
access to sub-systems A and B, characterized by ps € D(Ha) and pp € D(Hp), respectively,

where pg = Trp{pap} and pp = Tra{pap}. They both perform a measurement on n copies of
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their sub-systems and send the classical bits to Charlie. Upon receiving the classical bits sent by
Alice and Bob, a reconstruction state is produced by Charlie. The objective of Charlie is to produce
a reconstruction of the source pap within a targeted distortion threshold which is measured by a

given distortion observable.

2.3.1 Problem Formulation

We first formulate this problem as follows. For any quantum information source, characterized

by pap € D(Ha ® Hp), denote its purification by W35

Definition I1.17 (g-c source coding setup). A QC source coding setup is characterized by a triple
(\I"IO{XABE Hy, A), where \11%433 € D(HrR®Hs®Hp) is a purification of pap, H ¢ is a reconstruction

Hilbert space, and A € B(Hg ® H ), which satisfies A > 0, is a distortion observable.
Next, we formulate the action of Alice, Bob and Charlie by the following definition.

Definition I1.18 (g-c protocol). An (n,01,02) QC protocol for a given input and reconstruction
Hilbert spaces (Ha ® Hp,H ) is defined by POVMs MXL) and M é") acting on HG" and H5" with
©1 and ©2 number of outcomes, respectively, and a set of reconstruction states S; ; € D(’H?{”) for

alli € [1,04],7 € [1,04].

The overall action of Alice, Bob and Charlie, as a QC protocol, on a quantum source pap is

given by the following operation

Nopngnesin s 55 = Y Tr{(Af @ AP)pSEY Siy, (2.23)

]

where {A#} and {Af } are the operators of the POVMs MXL) and M gz), respectively. With this
notation and given a g-c source coding setup as in Definition I1.17, the distortion of a (n = 1,01, ©3)

QC protocol is measured as

dpap. Nyp ) &2 Te{A ((dr ® N g, 5 ) (TR}
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For an n-letter protocol, we use symbol-wise average distortion observable defined as

1 n
(n) _ . ®[n]\i
A = - E_l ARZ_XZ_ ® IRX , (2.24)

where A r. %, is understood as the observable A acting on the ith instance space Hr, ® H 5. of the
n-letter space 7-[%” ® H?f(”. With this notation, the distortion for an (n,01,05) QC protocol is

given by

(P35 N an gy xn) 2 Tr {A(n) (ide NAanHXn)(‘I’%’?&an)}v

where U735, 5., is the n-fold tensor product of U4, which is the given purification of the source.

The authors in Datta et al. (2013b) studied the point-to-point setup of the above formulation
wherein Bob is absent. They considered a special distortion observable of the form A =3 cr Bz ®
|2)(&| , where Az > 0 acts on the reference Hilbert space and X is the reconstruction alphabet (please
see (Datta et al., 2013b, Sec. 4) for more details). In this paper, we allow A to be any non-negative
and bounded operator acting on the appropriate Hilbert spaces. Moreover, we allow for the use of

any c-q reconstruction mapping as the action of Charlie.

Definition I1.19 (Achievability). For a QC source coding setup (U447, H ¢, A), a rate-distortion
triplet (R1, Re, D) is said to be achievable, if for all € > 0 and all sufficiently large n, there exists

an (n,01,02) QC protocol satisfying

1
—logy©; < R;+¢€, i=1,2,
n

dpip Nangnoin) < D+,

where N, is defined as in (2.23). The set of all achievable rate-distortion triplets (Ry, Ra, D)

anHXn

is called the achievable rate-distortion region.

Our objective is to characterize the achievable rate-distortion region using single-letter infor-

mation quantities.
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2.3.2 An Inner Bound

We provide an inner bound to the achievable rate-distortion region which is stated in the
following theorem. We employ a g-c protocol based on a randomized faithful simulation strategy
involving a time sharing classical random variable () that is independent of the quantum source.
This can be viewed as a conditional version of the faithful simulation problem considered in Section

2.2. The proof of the theorem in provided in Section 2.3.3.

Theorem 11.20. For a given QC' source coding setup (W%@BB,HX,A), any rate-distortion triplet

(R1, Ra, D) satisfying the following inequalities is achievable

Ry > I(U; RB|Q)y, — I(U; V|Q) s,
Ry > I(V; RAIQ) 6, — L(U;V|Q) s,
Ri+Ry > I(U; RB|Q), + I(V; RA|IQ) o, — I(U; VIQ) o,

D Z d(pABvNAB;_))A(%

for POVM of the form Map = > .o Po(q)M% @ M}, where for every ¢ € Q, M} é{Af’q}ueu

qeQ
and M}, A {Af’q}vey are POVMs acting on Ha @ Hp, and reconstruction states {Sy.q} with each
state in D(Hy), and some finite sets U,V and Q. The quantum mutual information quantities
are computed according to the auziliary states UfUBQ = > geo Po(@)(idr ® M} @ idp)(Pp) ©
la)al, o5 ORYS o Polq)(idr @ida ® MB)(W0A5) ® lq)al, and o5""? 2 55 o Po(q)(idg ®
M5 @ ME)(95) @ |a)Xq|, where (U, V) represents the output of Mag, and N,p ¢ : paB —

> g Pa(@) Tr{(AL? @ AT )paB} Suwg-

Remark 11.21. Note that for the auxiliary state o1, we have

o1 = Tryp{of"P% =3 Polq) Truas {Z{(IRB ® AL (P8} @ \u><ur} ® |q)gl
q uelU

= Polq) Trap {{(IRB ®) AZ)(‘I’%‘ZBB)}} ® |g)q]

ueU

= pr @Y Polg)la)al,

q
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which gives I(R; Q)s, = 0. Similar statements hold for the states oy and o3.

One can observe that the rate region in Theorem I1.20 matches in form with the classical Berger-
Tung region when p4p is a mixed state of a collection of orthogonal pure states. Note that the rate
region is an inner bound for the set of all achievable rates. The single-letter characterization of
the set of achievable rates is still an open problem even in the classical setting. Some progress has
been made recently on this problem which provides an improvement over Berger-Tung rate region

Shirani and Pradhan (2014).

Proof. In the interest of brevity, we provide the proof for the special case, when the time sharing
random variable is trivial, i.e., Q is empty. An extension to the more general case is straightforward
but tedious. For the special case, the proof follows from Theorem I1.6. Fix POVMs (M4, Mp) and
reconstruction states Sy, as in the statement of the theorem. Let N, 5 . ¢ be the mapping corre-
sponding to these POVMs and the reconstruction states. Then, d(pap, N,z , ) < D. According
to Theorem IL.6, for any ¢ > 0, there exists an (n,2"%1 27"R2 N, N,) distributed protocol for e-
faithful simulation of M} " Mg" with respect to ,0 " such that (R, R2) satisfies the inequalities
n (2.6). Let Mg“l),Ml(gm),ui € [1,Ny], for i = 1,2, and f#1:#2) be the POVMs and the determin-
istic decoding functions of this protocol with Z =U x V. We use these POVM’s and mappings to
construct a QC protocol for distributed quantum source coding.

For each u; € [1, N;], for i = 1,2, consider the QC protocol with parameters ©; = ol j—=1,2,

and POVMs M s ), é 2) Moreover, we use n-length reconstruction states

Si; 2 L{ f0#2) (G, §) = (u™,0™) } Sun om

n n
u™,v

where Syn yn = ®;Sy, ;. Further, let the corresponding mappings be denoted as A A‘fl IB‘: 2:) 2n

With this notation, for the average of these random protocols, the following bounds hold:

m,uz)
N1N Z pAB’ A"B"»—)X")

H1,42
1
_ (n H1,2 PAB
= T {a® o) e,
1,42
— Ty { AP (id @ NE X)\pgﬁ,nm} +Tr { AM (A @ (N o g s 5 — NngX))ngﬁan}
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(a) N

< Tr{A ((dr @ N 5, ) (TN} + AN (d ® N s = Nangno ) Cnpalln

() . .
< D+ A oo |(d @NER =N g g ) Vi |1

(c) -
< D+ |AM™] o ]|(id © (M§" © ME"— Map)) W45, 5l

(4)
< D+ €| Allo,

where N ABx is the average of NXE:?, and Mg is the overall POVM of the underlying dis-
tributed protocol as given in (2.1). The inequality (a) holds by the fact that | Tr{A}| < ||A]|;. (b)
follows from the fact that for any two operators A and B acting on a Hilbert space H the following

inequalities hold.
IBAllL < |1BllollAllr,  and  [|AB|[1 < [ Bllool|All1,

(see in (Wilde, 2013a, Exercise 12.2.1) for a proof). (c) is due to the monotonicity of the trace-

XN

Vs X where

distance Wilde (2013a) with respect to the quantum channel given by id ® £

EUVHX(W) = Z <’LL, U‘ w |u7 U> Suﬂ)'
u,v
And (d) follows by Theorem I1.6, and the fact that [|A"™||o < ||A|ls. Hence using the collection of
codebooks {C(’“’“?)} 1 €[1,N1],u2€[1,N]» constructed in Theorem II.6, and averaged over the common

randomness, the distortion constraint ﬁ > s d(p37, Nzglliljgliixn) < D+¢€||Al|oo is met. Hence

there must exist a realization of the common randomness (11, p2), and the corresponding codebook
C(m1:12) that achieves this distortion.  This completes the proof of the theorem, since A is a

bounded operator. ]

2.3.3 An Outer Bound

In this section, we provide an outer bound for the achievable rate-distortion region. The proof

of this theorem is provided in Section 2.3.3.

Theorem I1.22. Given a QC source coding setup (U555, H, A), if any triplet (R1, Ry, D) is
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achievable, then the following inequalities must be satisfied

Ry > I(Wy; R[W, Q)o, (2.25a)
Ry > I(Wo; RIW1, Q) (2.25b)
Ry + Ro > I(W1, Wa: RIQ)s, (2.25¢)
D>Tr {AURX}, (2.25d)

WiWaRQX

for some state o which can be written as

WiW2QRX _ ¢ P
g MHIVQRX (AN g s wox) (YEAR):
where W1, Wa and Q represent auziliary quantum states, and NABI—>W1W2QX s a quantum test

channel with I(R;Q), = 0.

Remark 11.23. One may question the computability of the outer bound provided in Theorem II1.22.
The computability of this bound depends on the dimensionality of the auxiliary space H¢ defined
in the theorem. Currently, we are unable to bound the dimension of the Hilbert space Hg, but aim
to provide one in our future work. As a matter of fact, the current outer bounds for the equivalent
classical distributed rate distortion problem still suffers from the computability issue. The first outer
bound to the classical problem was provided in Berger (1977) and a recent substantial improvement
was made by authors in Wagner and Anantharam (2008). Both of these bounds suffer from the
absence of cardinality bounds on at least one of the variables used, and hence cannot be claimed

to be computable using finite resources.

Proof. Suppose the triplet (R1, Ra, D) is achievable. Then, from Definition II.19, for all € > 0,
there exists an (n,©1,02) g-c¢ protocol satisfying the inequalities in the definition. Let M4 A
{Aﬁ}lle[l,el]’ Mg & {Ag}beu,ezp and Sy, 1, € D(’H?ﬁ(”) be the corresponding POVMs and recon-

struction states. Let L1, Lo denote the outcomes of the measurements. Then, for Alice’s rate, we

obtain
n

n(Ry+€) > H(Ly) > H(L1|Lg) > I(L1; R"|Lo)-= Y I(Ly; Ry| Lo, RI™ )5,
j=1
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where the state 7 is defined as 7L L2R"X" &

S la) lo] @ Tran e {(id @ Aft @ AR)DGA L o b & S,
I,l2
and the inequalities follow from L; and Ly being classical. Note that for each j the corresponding
mutual information above is defined for a state in the Hilbert space Hr, ® Hr, ® ’H%j . Next, we
convert the above summation into a single-letter quantum mutual information term. For that we
proceed with defining a new Hilbert space using direct-sum operation.
Let us recall the definition of direct-sum of Hilbert spaces Conway (1985). With this definition,

consider the following single-letterization:

1 « 1\ (a _
EZI(LhR‘]‘LQuR] 1)7'(:)I(L1;RJ’L27RJ lﬂj)U:I(Ll;R’L27Q)07

=1
where the state o is defined as:

n

O_LILQRQX é Z |lhl2>ﬂw ® <Z (TrR?+1A"B” {(ld

l1,l2 j=1
® A @ AP)wras @ 15)] @ Tr gn 451 1)) (2.26)
11 lo Rn AN BN JINI anN] l1,l2 ) .
and Try, , denotes tracing over (X®i-1 g )A(;Tl), and Q £ (R77!,J), and J is an averaging
random variable which is uniformly distributed over [1,n]. We have attached a quantum register
for this classical random variable yielding the state o. The equality (a) follows from the following

lemma.

Lemma I1.24. Consider the classical-quantum state

n
A N j
oyaBc 2 Pi(i)1d) (| ® Pypes
j=1

where {|j)}je(1,n) s an orthonormal set in some Hilbert space My, ,OQBC € D("Hf;‘ ® "H% ® Hé),
where {'HQ@’H% ®’Hjc}j€[1’n} 15 a collection of finite-dimensional Hilbert spaces. Note that o apc =

Try(ocxaBc) is a state on @?:1(7-[{4 ® ’H% ® HJC) Then I(A; BIC, J)g = >_7_1 Py(§)I1(A; B|C),5 .
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Proof. The proof is provided in Appendix A.4. O

We elaborate on the Hilbert space associated with @ as follows. Suppose {|¢;)}iez is an or-

thonormal basis for Hp. Then, a basis for ’H%k is given by

6i) £ |01) ® |¢in) @ -~ @ |¢)

for all i* € 7F. Consider the direct-sum of the Hilbert spaces D, H%k and the Hilbert space
Hy ®H%k . With this definition, define H¢, as the Hilbert space which is spanned by |j) ® |¢;5-1)) ,
for all j € [1,n] and iU~1) € ZU=1), Therefore, Hg is isometrically isomorphic to the direct-sum
D, ”H%k. Note that Hg can be viewed as a multi-particle Hilbert space, which is a truncated
version of the so-called Fock space Meyer (2006).

Similarly, for Bob’s rate we have
R2 +e= I(L27 R|L1> Q)o-
For the sum-rate, the following inequalities hold

n(R1 + Rz + 26) Z H(Ll,LQ) Z I(Ll,LQ;Rn)T

I(Ly, Lo; Rj|RP7Y),

I
NE

1

[
Il

= nI(Ll, LQ; R’Q)a’7

where the inequalities follow from L; and L being classical. In addition, the distortion of this q-c
protocol satisfies d(pﬁ%,/\/’ angnesxn) < DA€, where Ny, g, ¢ is the quantum channel associated

with the protocol. Therefore, as the distortion observable is symbol-wise additive, we obtain

D+te> % Smr { (AR]XJ_ ® Ifj;‘]\j) (id @ N g o, ) (\Ifﬁ%ﬁnm)}
j=1

1 ¢ .
T n ZTr{ (ARij ® IR{_l ®1 ?+1X"~j> (d @ N o g,y ) (‘Iﬂl)%i]fann)}
j=1
1 n

= o { (B, @ gt (T g (00 Mo ) (Vi o)} )
=1
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WA ® Ig)oReX),

where (a) holds because of the following argument. From (2.26), one can show by partially tracing

over (L, L), that

RQX L1LoRQX
g @ :TthLz{U 1L2RQ }

n
1,..,. .
= Z n |7)d| ® TrR?+l)2an{<1d®NAanHXn)(lI/%‘£4an)}7
j=1

and I A > i (Ig(jfl) ®17)(j| ). Then, I is the identity operator acting on H¢. Therefore, the

right-hand side of the equality (a) above can be written as
Tr{(A ® Ig)oROX} = Tr {AURX} .

Let us identify the single-letter quantum test channel as given in the statement of the theorem.

First, due to the distributive property of tensor product over direct sum operation, we can rewrite

o1 L2RQX o
N "1
glile - ( 1T 1, l2)l1, 12| ® (TerHA B {<ld
= 1,62

J

® Aff ® A )wmnm} © 1) ® TanNj{Sh,zQ}))-

Next, we identify a quantum channel NABHLlLQQX : PAB ol1L2QX  For that and for any j

define the following intermediate quantum channels:

N(j) (WAB)

AB—LiLoRG-DX

23 "l baXh bo| ® (Trge,  anpn {(ianNj@)A;} ®AL)(waB ® Ej)}®TanNj{Slm}),

l1,l2

= \I/€ A Bynj® One can verify that A/ () is indeed a quantum channel. With

here FE; A
Where £ AB—L1LyRG-DX
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these definitions, let

1

A N -

Naponiraax @am) &7 0 (N0 oo (@an) ©13))
J

Using the property of direct-sum operation, one can verify that N, . [ 120% is a valid quantum

channel, and moreover,

LlL?RQX (1d®NAB,_>L1L2Qx)(\I’;})iXABB)‘

Lastly, we show that the condition I(R; @), = 0 is also satisfied. By taking the partial trace of o

over (Lq, Lo, X ) we obtain the following state

RQ _ (~L1LaRQX
o = TYL1L2X(U )

S (Trmy, anme {(d@ A @ ARV }) @ 1))

l1,l2

<
Il
—

I I
= 1]+
S 3ie

<
I
-

®jJ .
(Teas{wiss}) " @ Ll

Il
SRS

<
I
—

n .
1 ®U-1) .
= Tap{Wii} @ | 2~ (Tas{if)) @il
j=1
where the last equality is due to the distributive property of tensor product over direct sum
operation. Hence, o%? is in a tensor product of the form ¢ ® 0%, and therefore, I(R;Q), = 0.

The proof completes by identifying W7 and W5 with L1 and Lo, respectively.

2.4 Simulation of P2P POVMs with Stochastic Processing

Before we detail into the distributed setup, in this section, we discuss an extension of the
Winter’s point-to-point measurement compression scheme Winter (2004), incorporating additional
stochastic processing at the receiver. This problem was first discussed in Wilde et al. (2012), where

a theorem characterizing the achievable rate region was provided. The results were also rederived
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in (Anshu et al., 2019, Corollary 4) and Berta et al. (2014) for the same problem. Since this
problem provides us with some of the tools required for the proof of the final result of this chapter
(Theorem I1.33), developed in sequel (Section 2.5.2), we rederive the achievability of its rate region
using the approximating POVMs developed in Winter (2004). This will serve as a building block
toward proving the main result. In this problem, the receiver (Bob) has access to additional private
randomness, and he is allowed to use this additional resource to perform any stochastic mapping
of the received classical bits. In fact, the overall effect on the quantum state can be assumed to
be a measurement which is a concatenation of the POVM Alice performs and the stochastic map
Bob implements. Hence, Alice in this case, does not remain aware of the measurement outcome.
It is for this reason that Wilde et al. (2012) describes this as a non-feedback problem, with the
sender not required to know the outcomes of the measurement. With the availability of additional

resources, such a formulation is expected to help reduce the overall resources needed.

2.4.1 Problem Formulation

Definition I1.25 (Protocol). For a given finite set X', and a Hilbert space H 4, a measurement
simulation protocol with stochastic processing with parameters (n, ©, N) is characterized by

1) a collection of Alice’s sub-POVMs M®, ;i € [1, N] each acting on H%" and with outcomes in
[1,0], and

2) a collection of Bob’s classical stochastic maps P (2|l) for all [ € [1,0], " € X™ and u € [1, N].

The overall sub-POVM of this protocol, given by M, is characterized by the following operators:

~ 1
Ron & © 37 PUIEn ) AP, v € A, (2.27)
,l

where Al(“ ) are the operators corresponding to the sub-POVMs MW,

In the above definition, © characterizes the amount of classical bits communicated from Alice
to Bob, and the amount of common randomness is determined by N, with u being the common
randomness bits distributed among the parties. The classical stochastic mappings induced by P*)

represents the action of Bob on the received classical bits.

Definition I1.26 (Achievability). Given a POVM M acting on H 4, and a density operator p €
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D(Ha), a pair (R,C) is said to be achievable, if for all € > 0 and for all sufficiently large n, there
exists a measurement simulation protocol with stochastic processing with parameters (n,©, N)
such that its overall sub-POVM M is e-faithful to M®" with respect to p®" (see Definition 1.1),

and
1 1
—logs ® < R+e, ElogQNSCjLe.
n

The set of all achievable pairs is called the achievable rate region.

2.4.2 Achievable Rate Region
The following theorem characterizes the achievable rate region.

Theorem I1.27. For any density operator p € D(H4) and any POVM M 2 {Az}zex acting on the
Hilbert space Ha, a pair (R,C) is achievable if and only if there exist a POVM M4 A {Aﬁ}wew,

with VW being a finite set, and a stochastic map Pxw : W — X such that

R>I1(R;W), and R+C>I(RX;W),,

é ZPX‘W |w A, Vo e X.
weWw

where o™VX & 55, /NS5 @ Py (alw) [w)u| © |2z,

Remark 11.28. An alternative characterization of the above rate region can also be obtained in

terms of Holevo information. For this, we define the following ensemble {\;, o, } as

Az = Z Ao Pxjw (zlw) and  p, = Z Py x (w]z)py,
weW weW

for { s pA} being the canonical ensemble associated with the POVM M and the state p as defined

n (2.37). With this ensemble, we have

I(R;W)o = x ({ N, p}) and

I(RX; W)y = I(X; W) + I(R; XW )y — I(R; X),

— I(X;W)e + x (A4, 521) = x (s e}
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where we have used the Markov Chain R — W — X which is evident from the structure of otWX,

Remark 11.29. As was pointed out in Section 1.5.1, a proof of achievability and converse for Theorem
I1.27 was provided by Wilde et al. in (Wilde et al., 2012, Section III). With regards to the proof
of achievability, the authors assume (Wilde et al., 2012, Eqns. 53 and 54) to be true, but do not
provide a proof for it. Due to the presence of the cut-off operator, which is constructed for the
ensemble and not for the individual operators, these equations may not always be true. Since
the proof hinges on these two equations and we do not see a straightforward way to prove the
two assumptions made (also confirmed in Wilde (Aug 2019)), we provide an alternate proof for
achievability below. For the proof of converse, we refer the readers to ( Wilde et al., 2012, Section

I11.3).

Proof. Suppose there exist a POVM M4 and a stochastic map Py : W — &, such that M can

be decomposed as

A 2 Py (zlw)Af, Vo € X. (2.28)

We begin by defining a canonical ensemble corresponding to M4 as {2, 52t} wew. Similarly. for
each w" € W", we also define

Pt & T T yn pA T T,

where pA, 2 & P, T, denotes the &-typical projector (as in (Wilde, 2013a, Def. 15.1.3))
corresponding to the density operator p, II,» denotes the strong conditional typical projector (as

in (Wilde, 2013a, Def. 15.2.4)) corresponding to the canonical ensemble {A2, A}, cyy, and II

w

denotes the projector onto the subspace spanned by the eigenstates of

A, .
> mHprn pian Ty L,

wreT™ (W)

corresponding to eigenvalues larger than €2~ (5(P)+91) swhere §; (§) is such that Tr(IT,) < 2(S(P)+01)

and e £ %" MA.6 and 6; N\, 0 as 6 \, 0.

wn gn(") (W)

Using the above definitions, we now construct the approximating POVM.

5Note that II,, II,~» and I depend on n, and § however, for ease of notation, we do not make this explicit.
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2.4.2.1 Construction of Random POV Ms

In what follows, we construct a collection of random POVMs. Fix R and C as two positive
integers. Let u € [1,2"C] denote the common randomness shared between the sender and receiver.
For each p € [1,2"¢], randomly and independently select 2" sequences W™ (1) from the set W™,

according to the pruned distributions, i.e.,

or w" n)
]P’(W”’(“)(l):w">é -9 €T (2.29)

0 otherwise

Let the collection of operators Mj(f’”) be defined as {AE;Q HEDICNS %(n)(W)} for each u € [1,2"¢],

where A(“ 72 is defined as

2nR

Ai(ffn) e 'ywn <\f ,own _1> and fyw“n) A QnRZ Ly (1) =am ) (2.30)

with n € (0,1) determining the probability that Mgn’“ ) does not form a sub-POVM, for all u €
[1,2"C]. Since the construction is very similar to the one used in Section 2.2.4 and 2.2.5, we
make a claim similar to the one in Lemma I1.10 (also see Proposition A.1). This claim gives us
the first constraint on the classical rate of communication R, which ensures that the operators
constructed above for all u € [1,2"C] are valid sub-POVMs with high probability. Let 1 (sP}
denote the indicator random variable corresponding to this event. The claim is as follows. For
any € € (0,1), n € (0,1), any § € (0,1) sufficiently small, and any n sufficiently large, we have
E[IL{SP}] > (1—¢)if R > I(R;W),, where the definition of orwx follows from the statement of
theorem. From this, let [Mzg"’” )] denote the completion of the corresponding sub-POVM M (r:11)
AW e

wreT{M (W) Fw
denoted by A% for some w{ ¢ 7:5(n)(W), for all 4 € [1,2"C], and Al(fﬁi) =0 for w" ¢ E(n)(W) U{wi -

for u € [1,2"C]. Let the operators completing these POVMs, given by I — >
We use the trivial POVM {I} in the case of the complementary event that the operators do not

form sub-POVMs for all p, and associate it with the sequence {wg}. The POVM is given by

{IL{SP}AI(;Q + (1 - ]]_{SP})]]_{wn:wg}I}wnewn. Using this construction, we define the intermediate
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- - 1 - -
approximating POVM Mg”) as Mgn) = 5ne o MXL’“ ) and the operators of Mzg”) as

ja a L ()
o

Now, we define Bob’s stochastic map as P} yielding the operators of the final approximating

X|W>
POVM as

Z P (@ 2w AL, 2t e X"
wnhewn

2.4.2.2 Trace Distance

Fix an arbitrary e € (0,1). Now, we compare the action of this approximating POVM on
the input state p®" with that of the given POVM M®", using the characterization provided in
Definition I.1. Specifically, we show using the expressions for canonical ensemble that, under

certain conditions on (R, ('), for all sufficiently large n we have E[G] < €, where

G2 D PR @ w™) Ve (Ad — Aja)V/p®" (2.31)
CE"EX" ’ll)"EW" 1
As a first step, we split and bound G as G < 57 + Sz + 2(1 — ]l{sP})v where
onC
S1 = w" w"PX\W( z"|w") 2nc Z Z’Ywn w"PX\W( " |w" )’ )
wrFwl p=1
onC
S2 = X (2" [wg) an X Z V(I Z Ay 1)/ pon 1 (2.32)
wFwy

Now we bound S; by adding and subtracting an appropriate term and using triangle inequality

as S1 < 511 + S12, where S11 and Si9 are given by

onC

A ~A
R DN PR P CA et © DD wecl PO e
wFwy p=1 1
onc onC
A
DI [nCvanpwn i (2" ") 2n027wnpwn o (oo & "o 1

™ wnhFwg
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Note that in the above expressions, we have used an additional triangle inequality for block operators
(which is in fact an equality) to move the summation over X™ inside the trace norm. Firstly, we
show E[S11] is small. To simplify the notation, we define oyn = )" . Py (@ | w™) |z ¥a™| which

gives S11 as

1

Sll - w”ﬁw” & Own — 2 R+C prn (,u 0] ® Oyyn, (M)(l)

1

We develop the following lemma to bound this term.

Lemma I1.30. Consider an ensemble given by {]5Wn (w™), Tun '}, where Py (w™) is the pruned
distribution as defined in (2.29) and Tyn is any tensor product state of the form Tyn = @iy Tu, -
Then, for any ea € (0,1), and for all n,6 € (0,1) sufficiently small, and n sufficiently large, we

have

1 —

1

fRAC > S(3, N Tw) =20 MaS(Tow) = x ({N2, Tow}), where {W™W(1) : 1 € [1,2"F], € [1,27C]}
are independent random vectors generated from W™ according to the pruned distribution given in

(2.29).
Proof. The proof of the lemma is provided in Appendix A.5 O

Therefore, using the lemma above with Tyn A ﬁﬂn ® oyn, for any € € (0,1), any 7,0 € (0,1)
sufficiently small, and any n sufficiently large, we have E[S11] < e if R+ C > S(3>, Mapi @ 04) —
S NS (P @ o) = x ({NE}, {p ® 0w}) = I(RX;W),, where o is as defined in the statement
of the theorem. Secondly, we bound Si2 by applying expectation with respect to the codebook

generation, and using Gentle Measurement Lemma Wilde (2013a) as follows,

onC

5l € e XX 3 BB 2 6

p=1 ™ wrFwd

— )l
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OIS Y
onC — (1+77) wn w™ (|1

) 2 X

wreT™M (W)

pA. — I, pgnnwnnpﬁHl

—~
—_
~—

— &
- (2Ve +2Ve") & g3, (2.34)
"

where (a) is obtained by using triangle inequality and the linearity of expectation, (b) is obtained

A
by marginalizing over ™ and using the fact that E[’yl(ulfz) | = (/1\177),

and ﬁnally (c) uses repeated

(2\/> + 2\/>’) with
g3 \, 0 as n — oo for all sufficiently small § > 0, and, ¢/ £ ep + 2,/&p and g a 2¢p + 2,/5, for

application of the average gentle measurement lemma, by setting 3 = 1 +77

ep 21— min {Te{I,p. }, Te{Tlymptn }, 1 — €} (see (35) in Wilde et al. (2012) for details).
Finally, we show that the term corresponding to So can also be made arbitrarily small. This

term can be simplified as follows

2nC
S2 > an ZZP)TAW n’wO w“pw” - p®n
p=1 zn wnFEwp
2nC 2nC
— 2nC Z Z)‘w"pw" - Z ’leil)ﬁﬁn 2nC Z Z ’yw” pw"”1
wn wnEw p=lwrFwf
= So1 + Sa2,
where
on¢ (1- 2R
2 g | S (|
1
2nC
22 2nC Z Z PYw" pw"H1 (235)
u=1wn#wy

Now, for the first term in (2.35) we use Lemma I1.30 and claim that for any ¢ € (0,1), any
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n,0 € (0,1), sufficiently small, any n sufficiently large, we have E[S9;] < ¢, if

R>S (Z Aﬁ@) + Y A (puw) = I(R; W),

weWw weWwW

where o is as defined in the statement of the theorem. Note that the requirement we obtain on R
was already imposed when claiming the collection of operators Agﬁ? forms a sub-POVM. As for the
second term in (2.35) we again use the gentle measurement Lemma and bound its expected value

as

2nC )\
1 A N "o )
Eloe> S Aot -l = X ||t = |, < e,
2 (1+n)
n=1wr g wn T (W)

where €3 is defined in (2.34).

In summary, we have performed the following sequence of steps. Firstly, we argued that M}f’“ )
forms a valid sub-POVM for all p € [1,27C], with high probability, when the rate R satisfies
R > I(R;W),. Secondly, we moved onto bounding the trace norm between the states obtained
after the action for these approximating POVMs when compared with those obtained from the
action of actual POVM M, characterized as G using Definition I.1. As a first step in establishing
this bound, we showed that G < 51—1—52—1—2(1—]1{SP}). Firstly, we have shown that IE[]l{SP}] > (1—¢)
if R > I(R; W),. Then considering S1, we used the triangle inequality and divided it into two terms:
Si1 and S12. Then, using Lemma I1.30, we showed that for any given € € (0, 1), E[S11] can be made
smaller than ¢, if R+ C > I(RX;W),. As for Si2, we showed that it goes to zero in the expected
sense using (2.34). Finally, for the term given by S2, we bounded this as a sum of two trace norms
So1 and Say given in (2.35). We showed that they can be made arbitrarily small in the expected
sense if R > I(R; W), for all sufficiently large n.

Hence for any € € (0,1), any 7,9 € (0, 1) sufficiently small, and any n sufficiently large we have
E[G] < 6¢ if

R+C>I(RX;W),, and R>I(R;W),.

Therefore, using random coding arguments, there exists at least one collection of sub-POVMs with

the above construction satisfying the statement of Theorem I1.27.
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2.5 Simulation of Distributed POVMs with Stochastic Processing

This brings us to the final result of this chapter. We begin by considering the simulation of
distributed POVMs with stochastic processing. Consider a bipartite composite quantum system
(A, B) represented by a Hilbert Space Ha ® Hp. Let pap be a density operator on Hy ® Hp.
Consider a joint measurement M 4p on the system. Imagine that three parties, named Alice, Bob
and Charlie, are trying to collectively simulate the joint measurement, using two measurements, one
applied on each sub-system. The resources available to these parties are: some amount of classical
common randomness pairwise shared among them, and classical communication links of specified
rates between Alice and Charlie, and Bob and Charlie. Alice and Bob perform measurements
Mj(f) = {Aﬁ} and M gl) = {Ag } on n copies of sub-systems A and B, respectively. The measure-
ments are performed in a distributed fashion with no communication taking place between Alice
and Bob. Based on their respective measurements and the common randomness, Alice and Bob
send some classical bits to Charlie. Upon receiving these classical bits, Charlie applies a stochastic
processing operation on them, given by P(:|l1,l2), and then wishes to produce an n-letter classical
sequence. The objective is to construct n-letter measurements MI(A‘") and M ](3”) that minimize the
classical communication and common randomness bits while ensuring that the overall measurement
induced by the action of the three parties is close to Mffg. Further, the operators of the given
measurement M 4p admit a decomposition of the form given in Definition II.1. We formally define

the problem as follows.

2.5.1 Problem Formulation

The problem is defined in the following.

Definition I1.31 (Distributed Protocol). For a given finite set Z, and a Hilbert space H4 @ Hp, a
distributed protocol with stochastic processing with parameters (n, ©1, 02, N1, N) is characterized
by

1) a collection of Alice’s sub-POVMs Mf(‘” 1)7 p1 € [1, Nq] each acting on HE™ and with outcomes

in [1,@1].
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The diagram depicting the distributed POVM simulation problem with stochastic pro-
cessing. In this setting, Charlie additionally has access to unlimited private randomness.

Figure 2.3:

2) a collection of Bob’s sub-POVMs M g” 2),/@ € [1, V2] each acting on HE™ and with outcomes in
[1,09].
3) a collection of Charlie’s classical stochastic maps P#1#2) (27|11, 1y) for all I; € [1,04],1s €
[1,02],2" € 2", u € [1,Ny], and po € [1, Nqj.
The overall sub-POVM of this distributed protocol, given by Mg, is characterized by the following
operators:

R 3 ) (o ) A @ AP0 yn e 2,

N1N7
H1,H42 116[1,@1]7126[1,@2]

where Aﬁ’(“ Y and Ag’(“ 2) are the operators corresponding to the sub-POVMs Ml(f D and M é“ 2),

respectively.

In the above definition, (01, 02) determines the amount of classical bits communicated from
Alice and Bob to Charlie, respectively. N; and Ny denote the amount of pairwise common ran-
domness. The classical stochastic maps P(#1:#2)(27|l1,1y) represent the action of Charlie on the

received classical bits.

Definition I1.32 (Achievability). Given a POVM My p acting on H 4 ®H p, and a density operator
paB € D(HA®Hp), a quadruple (R1, Ra, C1,Cy) is said to be achievable, if for all e > 0 and for all
sufficiently large n, there exists a distributed protocol with stochastic processing with parameters

(n, 01,02, N1, No) such that its overall sub-POVM M 4p is e-faithful to Mfg with respect to pf%
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(see Definition I.1), and
1 1 :
—logy ®; < R;j+¢€, and —logaN; <Ci+e¢, 1=1,2.
n n

The set of all achievable quadruples (R1, Ra, C1,C3) is called the achievable rate region.

2.5.2 An Inner Bound

The following theorem provides an inner bound to the achievable rate region. The proof of the

theorem is provided below, while some of the tools required for the proof are borrowed from Section

2.4.

Theorem I1.33. Given a density operator pap € D(Ha ® Hg), and a POVM Map = {AfB}Zez
acting on Ha @ Hp having a separable decomposition with stochastic integration (as in Definition

I1.1), a quadruple (R, Ro, C1,C5) is achievable if the following inequalities are satisfied:

Ry =2 I(U; RB)o, — I(U; V)0,
Ry > I(V;RA) 6, — I(U; V) gy,
Ri+Ry > I(U; RB)g, + I(V; RA) 6, I(U; V)4,
Ri+C1 > I(U; RZ) gy — I(U; V) gy,
Ro+Coy > I(V;RZ )5y — 1(U; V) g,
Ri+Ry+Cy 2 I(U; RZ) gy + I(V; RA) 6y — I(U; V) oy,
Ri+Ro+Cy > I(V; RZ) gy 4+ I(U; RB) g, —I(U; V) g,

Ri+Ro+C1+Cy > I(UV; RZ) 5y, (2.36)

for some decomposition with POVMs Ma = {A}}uey and Mp = {ABY,cy and a stochastic
map Pziyy : U xV — Z, where the above information quantities are computed for the auwil-
iary states ofVB 2 (idp @ My ® idp)(W95,), ohAY 2 (idp ® idg @ Mp)(V4E,), and ofUVZ &
> w2 V/PAB (A @ AB) VPABIE® Py y (2|u, v) [ufu| @ [o)(v]| @ |2)(z|, and Vi, is a purification”

of paB-

"The information theoretic quantities remain independent of the purification used in their definitions.
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Remark 11.34. An alternative characterization of the above rate region can be obtained in terms of
Holevo information. For this, we use the canonical ensembles {)\u , pf} {\5,p5} and {)\W , pAB }

defined as

MR Te{A2pa), AP 2T {ABpp),

MAB & Tef(AY @ AP)pap}, and

a1
& )\A VPANpA, B S 5 VPEA] Vs,

puy 2 /\AB VoA ® AJ)/pas. (2.37)

Note that the post-measurement states corresponding to the outcomes u and v are given by
(pHT, (pBYT and (pAB)T, where transposes are defined with respect to the eigenbasis of the cor-
responding density operators. This entails that the states pu ,pE and pAB defined above have the
same spectrum as the states induced on the purifying reference R after the measurement. However,
these canonical states are not on the same “operational level” as the latter. Further, we define the

following ensemble {\,, p.} as

A N .
= Z Z A2 Py (2lu,v) and  p, 2 Z ZPUV\Z(%U’Z)PJ?E,

ueld vey uel vey

with Py z(u,v|z) = \AB Pyuv(zlu,v) /X, for all (u,v,2) €U x V x Z. With this ensemble, we
have I(U RB),, = X({)\u,pf}) (ViRA)s, = x ({AF,08}), and I(UV;RZ)o, = I(UV; Z) +
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2.5.3 Proof of the Inner Bound
2.5.3.1 Construction of An Ensemble of POVMs

Suppose there exist POVMs My 2 {A2} ey and Mp 2 {AB},cy and a stochastic map Py :

U xV — Z, such that M4p can be decomposed as

AB =" Prpv(2lu,0)Af @ AF, vz e 2. (2.38)
v

Note that the proof technique here is very different to the one used in Section 2.2.5 for proving
Theorem I1.6. Recall that in Theorem I1.6 we initiated the proof by constructing a protocol to
faithfully simulate Mgm ® Mg". However, here we are not interested in faithfully simulating
Mﬁ?" ® Mg’". Instead, by carefully exploiting the private randomness Charlie possesses, manifested
in terms of the stochastic processing applied by him on the classical bits received, i.e., Py,
we aim to strictly reduce the sum rate constraints compared to the ones obtained in (2.6e) of
Theorem II.6. This requires a considerably different methodology. More specifically, Lemma 1.2
was employed in Theorem I1.6, which guaranteed that any two point-to-point POVMs that can
individually approximate their corresponding original POV Ms, can also faithfully approximate a
measurement formed by the tensor product of the original POVMs performed on any state in
the tensor product Hilbert space. Such a lemma cannot be developed in the setting involving
a stochastic decoder. This is due to the fact that bits received from Alice and Bob are jointly
perturbed by the stochastic decoder which does not allow a straightforward segmentation into
two point-to-point problems. The problem becomes analytically tractable using an asymmetric

partitioning.

2.5.3.2 Random Coding

We start by generating the canonical ensembles corresponding to M4 and Mp, as given in
(2.37). With this notation, corresponding to each of the probability distributions, we can associate
a O-typical set. Let us denote 7:5(n)(U )s 7:5(n)(V) and 7:5(n)(UV) as the d-typical sets defined for
A, {AP} and {\4P}, respectively. Let II,, and II,, denote the d-typical projectors (as in

(Wilde, 2013a, Def. 15.1.3)) for marginal density operators p4 and pp, respectively. Also, for any
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u" € U™ and v" € V", let 14, and TIZ, denote the strong conditional typical projectors (as in
(Wilde, 2013a, Def. 15.2.4)) for the canonical ensembles {\:}, p2} and {\Z, p2}, respectively. For

each u™ € U™ and v™ € V" define

pa AT, A A A, pB 2, uspkubn,,, (2.39)

A A 5A B A ~B 8
where pyn = @), pr; and pyn = Q; Py, -

With the notation above, define o A" and 0P as

A A ut g B A v
2 E - = § 2.40
VvV

_ A ’_ B A’ B’
where ¢ = Zu"ef;")(U) Aon and €' = Zv"eT;")(V) Apn- Note that o and o defined above are ex-
pectations with respect to the pruned distribution Wilde (2013a). Let I14 and 12 be the projectors
onto the subspaces spanned by the eigenstates of o4 and &’ corresponding to eigenvalues that are
larger than 27 (5(P4)+01) and /2-7((PB)+01) wwhere §; > 0 is such that Tr(II,,) < 27(S(Pa)to)

and Tr(IT,,) < 27(50B)+01) "and §; N\, 0 as § \, 0. Lastly, define
AL A TAGATIA, and AB 2 1IPpB1I5. (2.41)

In what follows, we construct two random POVMs one for each encoder. Fix a positive integer N
and positive real numbers R, and Rj satisfying Ry < S (U)o, and Ry < S (V) oy, where o3 is defined

as
ofUV 2 (idp © My @ Mp)(U55,),

with W75, being any purification of pap. Let p1 € [1, N1] denote the common randomness shared
between the first encoder and the decoder, and let pg € [1, N3] denote the common randomness
shared between the second encoder and the decoder. Let ji; € [1,Ni] and fia € [1,Na] denote

additional pairwise shared randomness used for random coding purposes. This randomness is only

8Note that ﬁfn and pZ. are not tensor products operators.
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used to show the existence of a desired distributed protocol (as defined in Definition I1.31), and
is used only for bounding purposes. We denote [i; A (i, fi;), and N; a N; - N; for i = 1,2. For
each fiy € [1,N7] and fiz € [1, Ns], randomly and independently select onki and onfiz sequences
(U™ ) (1), V™(2) (k) according to the pruned distributions, i.e.,

M. AB

P (@ m@), v () = (u,v")) = 4 L= (1=<)
0 otherwise

for u" e T(U), 0" € TL(V)

(2.42)

Let C#1:72) denote the codebook containing all pairs of codewords (U™ (1), V™(#2)(k)).  Con-

struct operators

AU A ) (\/,oA_lAfn./pA_l) and B2 & ¢lh2) (N/pB_lAUBn pB_l), (2.43)
where

Al_gl —nR n,(fi2) n
& TS gy v () = o,

(1) A 1 €5—nR . lfn,(ﬁl) _.n (f12)

(2.44)

where 7 € (0, 1) is a parameter that determines the probability of not obtaining sub-POVMs. Then,

for each fi; € [1,N7] and fip € [1, N3], construct Ml(n’ﬁl) and Mén’ﬁ” as in the following
M)A ARy e )Y, and MY A (BUR) o e TV (V). (2.45)

We show later that Ml(n’ﬂ 1) and Mén’ﬂ 2) form sub-POVMs, with high probability, for all i € [1, N]
and fiz € [1, No], respectively. These collections Ml(n’ﬂ Y and Mz(n’ﬂ 2) are completed using the op-
erators I — Zuneﬁ(”)(U) Afﬁl) and I — Zv“eﬁ(") W) Bff;?), and these operators are associated with
sequences vy and v, which are chosen arbitrarily from L{”\’E(”)(U ) and V"\'E(n)(V), respectively.
For (fi1, fig) € [1, N1] x [1, Ny], let 1sp-iy (fi1, fr2) denote the indicator random variable correspond-
ing to the event that Mi("’“i’[”) form sub-POVM for all u; € [1, N;] for i = 1,2. We use the trivial

POVM {I} in the case of the complementary event and associate it with uj and v as the case
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maybe. In summary, the POVMs are given by {]l{sp_l}AEﬁ,,l) +(1- ]]_{SP_l})]]_{un:ug}I}uneun, and

{H{SP—Q}Bl()lZ2) + (1 - H{sP-Q})H{v”:US}I}U"EV"-

2.5.3.3 Binning of POVMs

Fix binning rates (R, R2) and choose a (fi1, fi2) pair. For each sequence u" € 7:;(n)(U ) assign an
index from [1,2"%1] randomly and uniformly, such that the assignments for different sequences are
done independently. Perform a similar random and independent assignment for all v™ € 7:5(n)(V)
with indices chosen from [1,2"F2]. Repeat this assignment for every fi; € [1, N1] and fiz € [1, Na).
For each i € [1,2"F1] and j € [1,2"%], let Bgﬂl)(i) and Bé’b)(j) denote the it and the j** bins,
respectively. More precisely, Bgﬂ 1)(i) is the set of all 4™ sequences with assigned index equal to ¢,
and similar is ng)(j). Moreover let Lgﬂl) : 7:5(n)(U) — [1,27F1], and L;ﬁQ) : ’7:5(")(‘/) — [1,27F2]
denote the corresponding random binning functions. Define the following operators:

F?»(ﬁl)é Z A oq Ff,(ﬁz)é Z Bz()ﬁtz)7

un

ureB (i) omeB?) ()

for all i € [1,2"F1] and j € [1,2"F2]. Using these operators, we form the following collections:
77 A A: L 77 A B: L
M}gn A1) 2 {1‘\2 (ul)}ie[l,Q"Rl]? Mgl A2) 2 {Fj (uQ)}jE[l,Q”Rﬂ .

Note that if Ml(n’[“) and M2(n,ﬁ2) are sub-POVMs, then so are MXL’[“) and Mgl”h). This is due to
the relations
ZF?(/ZI) _ Z Aq(ﬁll), erv(ﬂz) _ Z BT(}QQ).
i uneT{™M (U) j vneT™ (V)
To make Mﬁln’[“) and Mgl”b) complete, we define F(‘;"(ﬂl) and FOB’(’ZQ) as Fgl’(ﬂl) =I-3%, F?’(ﬂl) and
FOB’(ﬂ . - > I‘f’(ﬂ 2), respectively”. In the event that the operators do not form sub-POVM,
the sequence ug and vy are mapped to 0. Now, we intend to use the completions [Mzgn’ﬁ 1)] and

[M gl’ﬂ 2)] as the POVMs for each encoder. Also, note that the effect of the binning is in reducing

the communication rates from (Ry, R2) to (R, Ra).

9 A,(B1) _ A, (A1) _ (A1) B,(f2) _ B,(h2) _ (A2)
Note that Ty =I->,T; = I_Zu"eTén)(U) ALY and Ty =1->,T; = I—ZU"GT;TL)(V) Bn?.
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2.5.3.4 Decoder mapping

We define a mapping F(#1:#2) acting on the outputs of [M My ”“)] ® [M](Sn’ﬂz)] as follows. On
observing (fi1, fiz), and the classical indices (4,7) € [1 : 2] x [1 : 2"f2] communicated by the

encoders, the decoder creates a set as follows:

/L’]

plAniz) é{(u”,v") e ClBLR2) - (4" ") € %(n)(UV) and (u",v") € Bgﬁl)(i) X Bg’b)(j)}.

For every fi; € [1: Ny], i € [1:2™%] and j € [1,2™%] define the function F#1F2) (3 5) = (u™, v™) if
(u™,v™) is the only element of Dggl’ﬁZ); otherwise F(#172) (i j) = (ull,v@) Further, FUAR2) (4 j) =
(ug,vy) for i = 0 or j = 0. Finally, the decoder produces 2" € Z" according to the stochastic
map P%Uv(z'”\F(ﬁl*ﬁ?)(i, 7). With this mapping, we form the following collections of operators,

for every (fi1, fi2),

Ny Na

AB - (A1)
Au" v"(Ml»HZ) - H{SP 1} sP-2} N NS N1N2 Z Z (
pn1=1p2=1 (4,5):F(A1:02) (4 §)=(u™ w™)

B, (fi2)
® T, “2)+(1 Lisp-1ysp-2p) U OD L om)=(u o)

for all (u™,v™) € U™ x V™. Note that for

AP (i, fiz) = 0 for (u",0") ¢ (T3 (U) x T (V)) UL (uf, o) )

We use the stochastic mapping to define the approximating sub-POVM MX;S) (fi1, f12) a {f\zn (i1, fi2) }

as

e
AP (i, o) & 7 A (s i) PRy (7, 07,

umnun

Vz™ € Z™. The performance of the above ensemble is bounded from above as

1 - (n 1 . o -
T O S T < e 3 |Gl ) oty in ) g )

1,42 21,42

+2(1 = Lgp_qy (A1, fi2) L gpogy (fin, fi2)) |
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where

G(fn, fi2)

=

Z \V P’%E( P§|U,V(Z”|Una V") — Aﬁ%n (fi1, ﬂz)P§|U,v(una Un)) V Pf%

u™ un

1

(2.46)

In what follows, under the conditions on the rates given in the theorem, we show the existence of a
pair (fi1, fiz), and codebooks C(#1/72) and binning functions L(Mz) for p; € [1, N;], i = 1,2, such that

the e-faithfulness is satisfied for an arbitrary ¢ > 0 for all sufficiently large n.

2.5.3.5 Performance Analysis

Step 0: Operators form sub-POVM: Fix an arbitrary ¢ > 0. To start with, for all (g1, fi2) €

[1, N1] x [1, No], one can show using a result similar to Lemma I1.10 the following proposition.

Proposition I1.35 (sub-POVM). For any ¢ € (0,1), any n € (0,1), any § € (0,1) sufficiently

small, and any n sufficiently large, we have

1

N1 Ny ;1;;12 ’ <1 —E [H{SP-J}([%ﬂz)]l{sp_g}(ﬂhﬂg)b <2

if Ry > I(U;RB),, and Ry > I(V;RA),,, where 1,09 are defined as in the statement of the

theorem.

Proof. We skip the proof for brevity. O

Next we focus on G.
Step 1: Isolating the effect of error induced by not covering
Consider the second term within G(fi1, fi2), which, under the event H{SP—l} =1 and H{SP—Q} =1,

can be written as

D PABA G (A, i)y PPy (0" 0")

u™ un

N1 w2 2oV eih (T @ T ) o Py (M E D (6 ) S oy iy

H1,p2 4, umn

=1
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= T(fur, fiz) + T (ju, i2),

where

l>

T, o) 2 3 3 o (T @ TP i (G ),

pi,p2 1,7>0

NlNQZ Z Vp%?( M@F Mz)\/pABPZWV "ug s vp)-

p1,p2 =0 or j=0

Hl>

T(ﬂl? ,U’Q
Hence, we have

G(p, fi2) L sp_1y Ligpgy < [S(in, fi2) + g(ﬂh%)]l{sp_l}ﬂ{spg}, (2.47)

where S(ji1, fig) &

22 @( ® A Py (2 n‘un7vn)> \/@—T(ﬁhﬂz)

unun

, (2.48)

1

Zn

and S(ji1, fig) £ Yon |T(fi1, fi2)||1.  Note that S captures the error induced by not covering the

state p%4%
Remark 11.36. The terms corresponding to the operators that complete the sub-POVMs Mf(ln’ﬂ 1)
(n,i2) . (B1) (B2) i
and Mg ™", ie., I — Zuneﬁ(")(U) A’ and I — Evnef}”)(V) B,»*’ are taken care of in 7. The
expression T' excludes the completing operators. Therefore, in the analysis of the term S, we

(f1)

use A,n  and Bl(f;?) to denote the operators corresponding to u™ € 7:5(n)(U ) and 0™ € 7:5(n)(V),

respectively.

Step 2: Isolating the effect of error induced by binning
Noting that e(#1F2) (y" ") = FELE2) (G 5), for each (u”,v") € Bgﬂl)(i) X B;ﬂz)(j) and (u™,v") €

C(Aui2) | For any (u™,v™) ¢ CUALR2) Jet e(AvF2) (y" ™) = (ufl,vd). This simplifies T' as

T(fi1, ﬂz)

NlN Z Z \/ IO%%( A(ﬂl) Z B(H2)> g\UV( n|F(ﬁ17ﬁ2)(i7j))

papa i weB @) oneBl ()
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N1N2 S \/@(Awl)@By») \/@

P12 u™om

X Z { n€B<u1) ”eBé‘h)(j)}Pg\U’V(zn]e(ﬂl”b)(u”7v”))
>0,
]>0

NlN Z Z @(‘4(#1) Mz}) P%Yé §|U,V(Zn\€(ﬂ1’ﬂ2)(un7U")),

1,42 un ’U"

where we use the fact that ZuneBiﬁl)( Ay (i) =3 un A { neBY_‘l)(i)} and >, ¢ ﬂ{uneBYLl)(i)} =
1 for all u" € 7:5(")(U ), and a similar argument holds for the sub-POVM {B%Z)}. Note that the
(u™,v™) that appear in the above summation is confined to (7:;(n)(U) X 7:;(n)(V)), however for ease
of notation, we do not make this explicit. We substitute the above expression into S as in (2.48)

to obtain

S(MlaﬂQ

Z \V P%% IOABPZ|UV( 2" u", o)
umn,on
N1N2 Z VP igl)%( ®B e ) \V pABPZ\UV 2"l (u ™))

K102

1

Recall that fi; = (u, f1;) for i = 1,2. We add and subtract an appropriate term within S and apply

triangle inequality to isolate the effect of binning as S < S1 + So, where

S| Vo (e Ak - g 3 A0 B )\ fogp Py (o).

u™,um 1,402

Sz(ﬂlaﬂz)éZH DD \/pj%%( "o BIY )\

p1,p2 u™um

S (:u’lv /'LQ

2n

X (P§|U7V(z”|u", V") = Pyuy (z”|e(ﬁ1’ﬁ2)(u”,v")>) (2.49)

1
This gives
Glgp1yLispgy < [S1+ 82+ ST gp 1y 1isp.gy-

Note that the term S7 characterizes the error introduced by approximation of the original POVM
with the collection of approximating sub-POVMs Ml(n’ﬁl) and MQ(n’ﬁ 2), and the term S, charac-
terizes the error caused by binning of these approximating sub-POVMs. Next, we analyze Sy and

prove the following proposition.
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Proposition I1.37 (Mutual Packing). For any e € (0,1), any n,6 € (0,1) sufficiently small, and

any n sufficiently large n, we have

1

— E | Sa(fi1, fi2) g p- o (i1, fi2) Ly g p_on (fi1, fi2)| < 5,
NlN?ﬁlz,;z { {sP-1} {sP-2} }

if Ri > I(U;RB)o,, Ry > I(V;RA)s,, Ri + L1og(N1) > S(U)sy, Ro + 2log(N2) > S(V)oy,
Rl + Rg — Ry — Ry < I(U;V)gy,, where o; for i = 1,2,3, is the auziliary state defined in the

theorem.
Proof. The proof is provided in Appendix A.8 O

Hence there must exist a pair (fi1, fiz) such that

2 (1 ~E []l{sp_l}(ﬁhﬂ2)ﬂ{sp_2}(ﬂ1,ﬂ2))})

+E [SQ(/]L/12)]1{513-1}(/117ﬂZ)H{sP_Q}(ﬂh[@)} < Te,

for the rates satisfying the constraints in Propositions I1.35 and I1.37. For the rest of the proof, we
fix (fi1, f12) to be this pair. The dependence of functions defined in the sequel on this pair is not

made explicit for ease of notation.

Remark 11.38. Since the shared randomness given by (fi1, fi2) is only used for random coding
purposes, two of the constraints in Proposition I1.37, given by Ry + %log(]\_fl) > S(U)gs, Ro +

Llog(N3) > S(V)s,, are superfluous.

For the term corresponding to S , we prove the following result.

Proposition 11.39. For any € € (0,1), any 0,0 € (0,1) sufficiently small, and any n sufficiently

large, we have

E S]l{SP—]}]l{SP—Q}} < 8e,

if R > I(U;RB)s, and Ry > I(V;RA),,, where o1 and oo are auziliary states defined in the

theorem.

Proof. The proof is provided in Appendix A.9. O
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Step 3: Isolating the effect of Alice’s approximating measurement
In this step, we separately analyze the effect of approximating measurements at the two distributed

parties in the term S;. For that, we split S7 as S1 < @1 + @2, where

Ql—

Z Vp§%< - Z A > panPruy (2" u",v") ;

um™,un ,ul 1

1
’ Z Z \/ P%%(Al%) Z A ngﬁ?)) p%z? g\U,V(Zanvvn)

#1=1 u™, o u2 1

1

Z"

With this partition, the terms within the trace norm of ) differ only in the action of Alice’s
measurement. And similarly, the terms within the norm of Qo differ only in the action of Bob’s
measurement. Showing that these two terms are small forms a major portion of the achievability
proof.

Analysis of @Q1: To show @) is small, we compute rate constraints which ensure that an upper
bound to )1 can be made to vanish in an expected sense. Furthermore, this upper bound be-
comes convenient in obtaining a single-letter characterization for the rate needed to make the term

corresponding to Q2 vanish. For this, we define J as

Z\/ P%g ZAu" PABP2|Uv( 2" |u",v™)

Hll

(2.50)

1

FAAR L

By defining J and using triangle inequality for block operators (which holds with equality), we
add the sub-system V to RZ, resulting in the joint system RZV, corresponding to the state o3
as defined in the theorem. Then we approximate the joint system RZV using an approximating
sub-POVM Mﬁln) producing outputs on the alphabet ™. To make J small for all sufficiently large
n, we expect the sum of the rate of the approximating sub-POVM and common randomness, i.e.,

Ry + C1, to be larger than I(U; RZV),,. We seek to prove this in the following.

Proposition 11.40. For any € € (0,1), any 0,0 € (0,1) sufficiently small, and any n sufficiently
large, we have E[Q1] < E[J] < 2¢, if Ry + Cy > I(U; RZV),,, where the auziliary state o3 is

defined in the theorem.

Proof. The proof is provided in Appendix A.10. O
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Now we move on to bounding ()s.
Step 4: Analyzing the effect of Bob’s approximating measurement
Step 3 ensured that the sub-system RZV is close to a tensor product state in trace-norm. In
this step, we approximate the state corresponding to the sub-system RZ using the approximating

POVM M ](3"), producing outputs on the alphabet V. We proceed with the following proposition.
Proposition I1.41 (Non-product Covering Lemma). For any ¢ € (0,1), any n,0 € (0,1) suffi-

ciently small, and any n sufficiently large, we have

E1Qolsp.nlispgy| <4
if Ri+C; > I({U;RZV )g,, and Ry + Cy > I(V;RZ)s,, where the auxiliary state o3 is defined in
the theorem.

Proof. The proof is provided in Appendix A.11. O

2.5.3.6 Rate Constraints

To sum-up, we showed that the trace distance satisfies:

= o (M5, M) (1, fi2)) < 21,

Xn
PAB

if the following bounds hold:

Ry > I(U;RB)y,, Ry >I(V;RA),,,
Ry +C1>I(U;RZV)y,, Ry+Cy>I1(V;RZ)s,,
(Ry — R1) + (Ra—Ry) < I(U; V),

Ry >Ry >0, Ry>Ry>0, C1>0, Cp>0. (2.51)

Let us denote the above achievable rate-region by R;. By doing an exact symmetric analysis, but
by replacing the first encoder by a product distribution instead of the second encoder in S; (as

defined in (2.49)), all the constraints remain the same, except that the constraints on Ry + C; and
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Rg + (5 change as follows
Ry +Cy > I(U;RZ)s,, Ro+Co>I(V;RZU),,. (2.52)

Let us denote the above region by Ro. By time sharing between the any two points of R; and Ro one
can achieve any point in the convex closure of (R1|JRz2). The following lemma gives a symmetric

characterization of the closure of convex hull of the union of the above achievable rate-regions.

Lemma I1.42. For the above defined rate regions R1 and Ro, we have
R3 = Convex Closure(R; URQ),

where Ra is given by the set of all the sextuples (Rl,Rg,Rl,RQ,C’l,Cg) satisfying the following

constraints:

Ry > I(U;RB)y,, Ry>I(V;RA),,,
Ry +Cy >I(U;RZ)y,, Ry+Cy>1(V;RZ)gs,,
Ri+Ry+C1+Co>I(U;RZ) gy + I(V;RZ) gy + I(U; V|RZ) oy,
Ri+Ry — (Ry + Ro) < I(U; V)4,

0<Ri <R 0<Ry<Ry C;>0,Cy>0. (2.53)

Proof. The proof follows from elementary convex analysis. O

Lemma I1.43. Let R3 denote the set of all quadruples (Ry, Re,C1,Cs) for which there exists
(Rl,Rg) such that the sextuple (Rl,RQ,Cl,CQ,Rl,RQ) satisfies the inequalities in (2.53). Let Rp
denote the set of all quadruples (Ry, Ra, C1,C2) that satisfy the inequalities in (2.36) given in the

statement of the theorem. Then, R3 = Rp.

Proof. This follows by Fourier-Motzkin elimination Ziegler (2012). O
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2.6 Conclusion

We have developed a distributed measurement compression protocol where we introduced the
technique of mutual covering and random binning of distributed measurements. Using these tech-
niques, a set of communication rate-pairs and common randomness rate is characterized for faith-
ful simulation of distributed measurements. We further developed an approach for a distributed
quantum-to-classical rate-distortion theory, and provided single-letter inner and outer bounds. As
a part of future work, we intend to improve the outer bound by providing a dimensionality bound
on the auxiliary Hilbert space involved in the expression. In the next chapter, we aim to improve

the achievable rate region by using structured POVMs based on algebraic codes.
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CHAPTER III

Algebraic Structured Distributed Measurement Compression

3.1 Introduction

We begin this chapter by asking the following question: If one is interested in solely recon-
structing a given function of the distributively stored measurement outcomes, can the rate of
communication be further reduced? This chapter answers this in affirmative. For this, we employ
structured coding techniques and impose further structure on these approximating POVMs. This
ensures that the joint decoder (Charlie) is able to reconstruct a lower dimensional quantum state
with minimal use of the classical communication resource. In particular, the structure of the POVM
is aligned to match with the structure of the function being computed.

As been highlighted earlier, there are two conventional approaches for deriving performance
limits of communication problems in the stationary memoryless setting. One is based on random
coding involving IID code ensembles, and characterizing the performance in terms of single-letter
information quantities. And the other is based on random coding in the one-shot setting, and
characterizing the performance using smooth entropic quantities. Since there is no global structure
in the codes in these ensemble, we refer to them as random coding techniques based on unstruc-
tured code ensembles. The work by Korner-Marton Korner and Marton (1979) demonstrated that
unstructured code ensembles may not always achieve optimality for distributed multi-terminal set-
tings. In particular, this work showed sub-optimality for the problem of classical distributed lossless
compression with the objective of computing the sum of the sources. The standard approach that
conventional codes take is to recover the individual messages and then compute the function. How-

ever, it is known that this technique cannot characterize the performance limit. Korner and Marton
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considered a special binary symmetric case, and using random linear codes (based on finite fields)
derived the performance limits in terms of single-letter information quantities. Their idea was to
perform coding in a way that allows computing the function directly without the need to recover
each individual messages.

Traditionally, algebraic-structured codes have been used extensively in information coding prob-
lems toward achieving computationally efficient (polynomial-time) encoding and decoding algo-
rithms. However, in multi-terminal communication problems, even if computational complexity is
a non-issue (which is generally the assumption in an information theoretic setting), there are many
instances were random algebraic structured codes can be preferred. The works in Krithivasan and
Pradhan (2011); Nazer and Gastpar (2007); Philosof and Zamir (2009); Jafarian and Vishwanath
(2012) have considered multi-terminal setups and showed that random algebraic structured codes
outperform random unstructured codes in terms of achieving improved asymptotic rate regions.

Motivated by this, in this chapter, we consider the quantum distributed faithful measurement
simulation problem in the memoryless setting using algebraic structured coding techniques. There
are two main challenges in using these algebraic structured codes toward an asymptotic analysis in
quantum information theory. The first challenge is to be able to induce arbitrary empirical single-
letter distributions. For example, if we were to send codewords from a linear code with uniform
probability, then the induced empirical distribution of codeword symbols (single-letter distribution
on the symbols of the codewords) is uniform. To address this challenge, we use a collection of
cosets of a linear code called Unionized Coset Codes (UCCs) Pradhan et al. (2021). The second
challenge is that unlike the random unstructured codes, the codewords generated from a random
linear code are only pairwise-independent Gallager (1968). This renders the some of techniques
that are developed for standard measurement compression problem unusable. These mainly include
the technique of operator Chernoff bound and the covering lemma. Similarly, the mutual covering
and the mutual packing lemmas developed in Chapter II also require a new analysis. Since our
approach relies on the use of UCCs for generating the approximating POVMs, the binning of these
POVM elements is performed in a correlated fashion as governed by these structured codes. This
is in contrast to the common technique of independent binning. Due to the correlated binning, the
pairwise-independence issue gets exacerbated.

We address these challenges using three main ideas summarized as follows:
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e Random structured generation of pruned POVMs - We generate a collection of alge-
braic structured approximating POVMs randomly using the above described UCC technique,
and then prune them. This pruning ensures that these POVMs form a positive resolution of
identity, and thus eliminates any need for the operator Chernoff inequality. However, such
pruning comes at the cost of additional approximating error. To bound the approximating
error caused by pruning the POVMs, we develop a new operator inequality which provides
a handle to convert the pruning error in the form of covering error expression which is dealt

within the next idea.

e Covering lemma with change of measure for pairwise-independent ensemble - Since
the traditional covering lemma is based on the Chernoff inequality, we develop an alternative
form of the aforementioned covering lemma ( Wilde, 2013a, Lemma 17.2.1). This alternative
form is based on a second-order analysis using the operator trace inequalities and hence

requires the operators to be only pairwise-independent.

e Multi-partite Packing Lemma - We develop a binning technique for performing computa-
tion on the fly so as to achieve a low dimensional reconstruction of a function at the location
of Charlie. In an effort towards analysing this binning technique, we develop a multi-partite

packing Lemma for the structured POVMs.

Combining these techniques, we provide a multi-party distributed faithful simulation and func-
tion computation protocol in a quantum information theoretic setting. We provide a characteriza-
tion of the asymptotic performance limit of this problem in terms of an inner bound expressed using
computable single-letter quantum information quantities, which is the main result of the paper (see
Theorem II1.22). This new inner bound subsumes the inner bound developed in Theorem I1.33 of
Chapter II, derived using random unstructured coding techniques. Further, we identify examples
where the current inner bound strictly improves upon the former.

The organization of the paper is as follows. In Section 3.2, we set the notation, state requisite
definitions, and also provide related results. In Section 3.3, for pedagogical reasons, we consider
the point-to-point setup, and provide a theorem characterizing the rate-region using algebraic
structured codes, while developing a new Covering lemma with change of measure for pairwise-

independent ensembles in Section 3.3.2. In Section 3.4, we state our main result of this chapter on
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the distributed measurement compression and provide the theorem (Theorem I11.22) characterizing
the rate-region. We prove the main result (Theorem II1.22) in Section 3.5 using the point-to-point

result as a building block. Finally, we conclude the chapter in Section 3.6.

3.2 Preliminaries

Notation: We use the notation developed in Chapters 1.5 and II. In addition, let IF,, denote the
prime finite field of size p with addition operation given by +.

We recall Lemma I1.11 below for convenience.

Lemma III.1. Given a density operator pap € D(Ha ® Hp), a sub-POVM My A {A;JB ty € y}

acting on Hp, for some set'Y, and any Hermitian operator T4 acting on Ha, we have

>_ IIveas (04 @ A7) Voas]|, < [[Veal*voal, (3.1)

yey

with equality if ZA? =1, where pa = Trp{pan}.
yeY

Below we present a lemma which will be used extensively in the sequel.

Definition III.2 (Pruning Operator). Consider an operator A > 0 acting on Hilbert space H4.
We say that a projector P prunes A with respect to Identity 14 on H 4, if P is a projector on to

the non-negative eigenspace of I4 — A. Further, observe that Tr{I4 — P} < Tr{A}.

Lemma II1.3. (Pruning Trace Inequality) Consider the above random operator X > 0 acting on
a Hilbert space H 4. Further, suppose E[X]| < (1 —n)I4 forn € (0,1). Let P be a pruning operator

for X with respect to 14, as in Definition I11.2. Then, we have
1
E[Tr{ls — P}] < ;E [IX —E[X][|] -

Proof. Note that X > 0, implies E[X] > 0. Therefore, if P prunes X, then PXP < P, and
P(X — E[X])P < P, and thus P also prunes X — E[X]. This implies

Te{I4 — P} < Tr{X — E[X]} < Te{|X — E[X]|} = || X — E[X]]. (3.2)
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3.3 Point-to-point Measurement Compression using Structured Random POV Ms

Before presenting the main result of this chapter, i.e., a distributed measurement compression
theorem using algebraic structured code ensembles, as a pedagogical first step, we consider the
non-feedback measurement compression problem in the point-to-point setup. This problem was
addressed in Wilde et al. (2012), where the performance limits were derived using unstructured
random POVM ensembles. An alternate approach for this problem was also developed in Chapter
IT (Section 2.4) using unstructured coding ensembles. Here, we redrive the performance limit using
random algebraic structured POVM ensembles. Since the algebraic structured codes can only
induce a uniform distribution, we consider a collection of cosets of a random linear code for this
task. The problem setup is described as follows. An agent (Alice) performs a measurement M on a
quantum state p, and sends a set of classical bits to a receiver (Bob). Bob has access to additional
private randomness, and he is allowed to use this additional resource to perform any stochastic
mapping of the received classical bits. The overall effect on the quantum state can be assumed to
be a measurement which is a concatenation of the POVM Alice performs and the stochastic map
Bob implements. This problem serves as a building block toward the proof of the main result of

this chapter (Theorem II1.22). Formally, the problem is stated as:

3.3.1 Problem Formulation and Main Result

Definition III.4. For a given finite set Z, and a Hilbert space H, a measurement simulation
protocol with parameters (n,©, N) is characterized by

1) a collection of codes cwW C wn for u e [1, N], such that |C(“)| < O, and W, a finite set, is
called the code alphabet,

2) a collection of Alice’s sub-POVMs M® |y € [1, N] each acting on H®" and with outcomes in
cm,

3) a collection of Bob’s classical stochastic maps P (z"|w™) for all w™ € C, 2" € Z" and

w € [1, N].
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The overall sub-POVM of this protocol, given by M, is characterized by the following operators:

N
A 2 %Z ST PWEn ) AL, vt e 2n (3.3)
=1 ynecn)

where {A(“) :w™ € CW} is the set of operators corresponding to the sub-POVM M #). Let C()(3)

wmn

denote the ith codeword of C(¥).

In the above definition, © characterizes the amount of classical bits communicated from Alice
to Bob, and the amount of common randomness is determined by N, with p being the common
randomness bits distributed among the parties. The classical stochastic mappings induced by
P represents the action of Bob on the received classical bits. In building the code, we use the
Unionized Coset Code (UCC) Pradhan et al. (2021) defined below. These codes involve two layers
of codes (i) a coarse code and (ii) a fine code. The coarse code is a coset of the linear code and the
fine code is the union of several cosets of the linear code.

For a fixed k x n matrix G € F’;X” with £ < n, and p being a prime number, and a 1 X n vector

B € T}, define the coset code as
C(G,B) & {z" : 2" = "G + B, for some d* € F’;} (3.4)

In other words, C(G, B) is a shift of the row space of the matrix G. The row space of G is a linear

code. If the rank of G is k, then there are p* codewords in the coset code.

Definition IT1.5. An (n,k,l,p) UCC is characterized by a pair (G, h) consisting of a k x n matrix
G e F’;X", and a mapping h : Fé, — [}y, and the code is the following union: UmeF; C(G, h(m)),
where C(-,-) is defined in (3.4).

Definition ITI.6. Given a finite set Z, and a Hilbert space H, an (n,0,x, N,p) UCC-based
measurement simulation protocol is a pair of (n, 0, N) measurement simulation protocol and a
collection of N UCCs with parameters (n, k,[,p) characterized by {(G, h(“))}ue[l,N] such that (i)
the code alphabet of the protocol W C F,, (with suitable relabeling), (ii) x = Pk, © = pl, and (iii)

for all m € Fﬁ,, we have CW(m) € {a*G 4+ ¥ (m) : d* € F’;}.

Definition III.7. The UCC grand ensemble is the ensemble of N UCCs where G, and {h(u)}ue[l,N]
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are chosen randomly, independently and uniformly, where the latter is chosen from the set of all

mappings with replacement.

Definition III.8. Given a POVM M acting on H, and a density operator p € D(H), a tuple
(R, R1,C,p) is said to be achievable using the grand UCC ensemble, if for all ¢ > 0 and for all
sufficiently large n, there exists an ensemble of UCC-based measurement simulation protocols with
parameters (n, 0, k, N,p) (based on the UCC grand ensemble) such that their overall sub-POVM

M is e-faithful to M®" with respect to p®™ in the expected sense:

E

<,

> [VoT (e =R ||+ e = 3 A}

where the expectation is with respect to the ensemble, and

1 1 1
—logy ©® < R +e, ‘logm—Rl <e —logg N <C+e.
n n n

Define Zycc as Zycc A {(R,R1,C,p) : (R, Ry,C,p) is achievable using the UCC grand ensem-
ble}.

Remark I11.9. The appearance of the modulus in the second constraint needs justification. Note
that R is the rate of transmission of information from Alice to Bob and C is the rate of the common
information shared between them. So if (R, Ry, C,p) is achievable, then it is clear that any (R, C’)
is also achievable if R > R and C' > C. However R, is a parameter of the UCC grand ensemble,
and there is no natural order on Ry, i.e., it does not naturally follows that (R, Ry, C, p) is achievable

for all Ry > R;.

The following theorem characterizes the achievable rate region which characterizes the asymp-

totic performance of the UCC grand ensemble.

Theorem II1.10. For any density operator p € D(H) and any POVM M 2 {A.}.ez acting
on the Hilbert space H, a tuple (R, R1,C,p) is achievable using the UCC grand ensemble, i.e.,
(R, R1,C,p) € Zyoc if there exist a POVM M2 {A Y wew, with [W| < p, and a stochastic map
Pzw : W = Z such that A, =, oy Priw (zlw)Aw, Vz € Z, and the following holds:

Rl + R Z I(Wa R)U - S(W)O' + logl%
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Ri+R+C>I(W;RZ)y — S(W), + logp,

Ry <logp—S(W),, (3.5)

and Ry, R,C > 0, where cfBWZ 2 D wz VPA P @ Py (zlw) lw)Xw] @ |2)z|, for some orthogonal

sets {|w) }wew and {|2)}.cz.

Remark 111.11. Choosing Ry = logp — S(W),, we recover the rate region of Wilde et. al ( Wilde

et al., 2012, Theorem 9).

Proof. The proof is provided in Section 3.3.3. O

3.3.2 Covering Lemma with Change of Measure for Pairwise-Independent Ensemble

The proof of the theorem is based on a construction of algebraic-structured POVM ensemble
where the elements are only pairwise independent and not mutually independent. To analyze these
POVMs we retreat back to first principles and develop a new one-shot Covering Lemma based on a
change of measure technique and a second order analysis. This lemma, which can be of independent
interest, is one of the main contributions of this work. Although we have developed this lemma
in a one-shot setting, this forms a minor component in the proof of the faithful simulation result,

which is realized in the n-letter setting using asymptotically good coset codes.

Lemma IT1.12 (Covering Lemma). Let {\,, 0, }.cx be an ensemble, with o, € D(H) for allx € X,
X being a finite set, and 0 =Yy A\pg0g. Further, suppose we are given a total subspace projector

IT and a collection of codeword subspace projectors {11, }zex which satisfy the following hypotheses

Tr{llo,} > 1 e, (3.6a)
Tr{[lo,)} > 1 — e, (3.6b)
vt < D, (3.6¢)
1,011, < éﬂx, and (3.6d)
0,10, < o, (3.6¢)

for some € € (0,1) and d < D. Let M be a finite non-negative integer. Additionally, assume

80



that there exists some set X containing X, with o, 2 0 (null operator) and Ay £ 0 for z € X\X.
Suppose { s}z be any distribution on the set X such that the distribution is {\; }zex is absolutely
continuous with respect to the distribution {pz}zc5. Further, assume that A\y/p, < K for allz € X.
Let a random covering code C = {Cm}mefi,m be defined as a collection of codewords Cy, that are

chosen pairwise independently according to the distribution {uz}zc5. Then we have

M
1 /\Cm kD
Eo ||| X heow = 57 32 Semoa ||| <4/ 575+ 2000, (8:7)
zeX m=1 m

where §(e) = 4y/e. Futhermore, for &, defined as G, a I, 0,111, we have

1 & kD

~ Cm ~

Bo || X2 e — 37 30 20| | <y 37 (3:8)
zeX m=1

Proof. The proof is provided in Appendix B.1 O

3.3.3 Proof of the Main Result (Theorem II1.10) Using UCC Code Ensemble

As stated earlier, the main objective of proving this theorem is to build a framework for the
main theorem of the paper (Theorem II1.22). In doing so, we observe that the structured POVMs
constructed below are only pairwise independent. Since the results in Atif et al. (2021a) are based
on the assumption that approximating POVMs are all mutually independent, the proof below
becomes significantly different from Atif et al. (2021a).

Suppose there exist a POVM M 2 {Aw}wew and a stochastic map Pziw : W — Z, such that

M2 {A.}.cz can be decomposed as
AR Z Pyw (zlw)A,, VzeZ. (3.9)
weW
We generate the canonical ensemble corresponding to M as

_ R 1 _
)‘w é TI“{Awp}, Pw é )\7\/5‘/\10\/5 (310)

Let 7;(n) (W) denote a 0-typical set associated with the probability distribution induced by {A,, }wew,
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corresponding to a random variable W. Let II, denote the d-typical projector (as in ( Wilde, 2013a,
Def. 15.1.3)) corresponding to the density operator p £ > wew Awhy» and Il,» denote the strong
conditional typical projector (as in (Wilde, 2013a, Def. 15.2.4)) corresponding to the canonical
ensemble { Ay, Py bwew. For each w™ € E(n)(W), define

Pron 2 T yn puyn My 1,
and fyn = 0, for w & T (W), with pun 2 @, pu,-

3.3.3.1 Construction of Structured POV Ms

We now construct random structured POVM elements. Fix a block length n > 0, a pos-
itive integer N, and a finite field F, with p > [W|. Without loss of generality, we assume
W 2 {0,1,---,|W| — 1}. Furthermore, we assume A\, = 0 for all [W| —1 < w < p. From
now on, we assume that W takes values in F), with this distribution. Let p € [1, N] denote the
common randomness shared between the encoder and decoder. In building the code, we use the
UCCs Pradhan et al. (2021) as defined in Definition II1.5 .

For every u € [1,N], consider a UCC (G,h™) with parameters (n,k,l,p). For each p, the
generator matrix G along with the function h(*) generates p**! codewords. Each of these codewords
are characterized by a triple (a,i, u), where a € F’; and ¢ € F é correspond to the coarse code and
the coset indices, respectively. Let W"’(“)(a, i) denote the codewords associated with the encoder

(Alice), generated using the above procedure, where

W) (a,i) = aG + KW (i). (3.11)
Now, construct the operators
AR A g (/580 funn/pon e & L P (3.12)

with n € (0,1) being a parameter to be determined. Note that, following the definition of jyn,

W) — 0 for wn ¢ %(n)(W). Having constructed the operators A% e normalize these

we have A,n = W
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operators, so that they constitute a valid sub-POVM. To do so, we define
VAW, G A W e = un))

Now, we define IT* as the pruning operator for 2 with respect to II, using Definition IIL.2. Note
that, the pruning operator IT* depends on the pair (G, h(“)). For ease of analysis, the subspace
of II* is restricted to II, and hence II* is a projector onto a subspace of II,. Using these pruning

operators, for each p € [1, N|, construct the sub-POVM MMk a9
N & £y 8 ALY cn, (3.13)

where Aq(u) = H“A(“)H“ Further, using II* we have ) . 'Ywn Aq(f,? = II*SWTI* < I, < I, and
thus M) is a valid sub-POVM for all w € [1, N]. Moreover, the collection M) is completed

using the operators I — )" . yn ’yl(lffi) Afﬁg .

3.3.3.2 Binning of POVMs

The next step is to bin the above constructed sub-POVMs. Since, UCC is a union of several
cosets, we associate a bin to each coset, and hence place all the codewords of a coset in the same
bin. For each i € Fg,, let B# (i) & C(G,h™(5)) denote the ith bin. Further, for all i € Iﬁ‘é, we
define

&3 > A e hm i —uny

wneWn aGFk

Using these operators, we form the collection M (m#) £ {1‘;4’(“ )}z’eF;, . Note that if the collection
M) is a sub-POVM for each u € [1, N], then so is the collection M (™" which is due to the
relation Zie]Fl FA’(”) =Y wmewn ny’QAﬁ < I. To complete M ™" we define FOA’(”) as FS"(“) =

I-5%, F (W) 1 Now, we intend to use the completions [M (1] as the POVM for the encoder.

"Note that T = 1 = 2, T = T = 55 o ) vl AR
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3.3.3.3 Decoder mapping

We create a decoder which, on receiving the classical bits from the encoder, generates a sequence

wn e ]FZ as follows. The decoder first creates a set DZ(“ ) and a function F®W defined as

DY A fa e B aG + () e (W)} and

aG +h()  if DM = {a}

(>

) (4) (3.14)

n

wy otherwise ,

where wy is an arbitrary sequence in IFZ\Z;(?Z)(W). Further, F(") (i) = wy for i = 0. Given this and
the stochastic processing Pzyy, we obtain the approximating sub-POVM M®™) with the following

operators.

A éfz S S MR e, Vit e 2

p=1w"€Fy i: F(W) (§)=wn

The generator matrix G and the function h(*) are chosen randomly uniformly and independently.

3.3.3.4 Trace Distance

In what follows, we show that M is e-faithful to M®" with respect to p®" (according to

Definition I.1), where € > 0 can be made arbitrarily small. More precisely, using (3.9), we show

that, E[K] < ¢, where

pE™

A VPP Pl (2" ™) = \/pE A/ pEr

, (3.15)
1

where the expectation is with respect to the codebook generation.
Step 1: Isolating the effect of error induced by not covering

Consider the second term within K, which can be written as

. 1 ~
VPO L/ p®T = ~ E : § : p®n1“;4’(ﬂ) /p®npglw(zn|F(H)(i)) E Lipoo (yewny = T+ T,
Q Q wn

=1
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where

1 ~ 1
TAZN TN VTP (M FW ), T A ST Py (" ).
7

uo1>0

Hence, we have K < S + S , where

P A,

, (3.16)
1

and § & don |T|1. Note that S captures the error induced by not covering the state p®". We

further bound S as

~ 1 1
< 0 P ) |V V|| < 230 Hm Z%‘QAW NrD
poozn iz

1

which gives S < §1 + 52 where

glé w”Pw”*Z p®n7(u A(NF
1
5.8 3 S Vi (- a2)

To provide a bound for the term S, we (i) develop a n-letter version of Lemma II1.12 and (ii)

provide a proposition bounding the term corresponding to §1, using this n-letter lemma.

Lemma II1.13. Let {\,, 0y twew be an ensemble, with 0,, € D(H) for allw € W, W C F, for
some finite prime p. Then, for any €. € (0,1), and for any n,0 € (0,1) sufficiently small, and any

n sufficiently large, we have

?

if (%) logp+ Llog N' > I(W; R) s, — S(W )y, +log p, where Oyn 2 @1, Oy and Agn 2 T Ay,

k+l N/ZZZ 1_|_77 O m Ly o) (a,m)=wn}y

p=1 w" am

wn

} < e, (3.17)

ofW = S wew Awlw ® [wXw], for some orthogonal set {|w)}wew, and {W™W (a,m) :a € Fk m e
! nC : : : :
I, € [2"%]} are as defined in (3.11), with G and R generated randomly uniformly and inde-

pendently.
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Proof. The proof of the lemma is provided in Appendix B.2 O

Now we provide the following proposition.

Proposition II1.14. For any € € (0,1), any n,d € (0,1) sufficiently small, and any n sufficiently
large, we have we have E[S)] < ¢, if % logp > I(W;R); — S(W)s +logp, where o is the auziliary

state defined in the theorem.

Proof. The proof is provided in Appendix B.3. O
Now we provide a bound for gg. For that, we first develop another n-letter lemma as follows.

Lemma III1.15. For ’yI(U’fL),A( 4 and A(“) as defined above, we have

w™

5ok (12 ) v

1_
<22%% | Hy + iM\/Hl + Hy + Hj |,
1 (1+mn)

where

Hy A ‘A(IL) — E[A(“)]‘ , Hi a Tl“{(Hp - HM)Z Aw"ﬁw"}a

(1)
~ Oy n
w"pw"_(1_€)§ v T Puwn

— E[AW] 7 7
(1) (1)
A _ Oéwnﬁy’w" ~ _ Ay Yyym n
Hy = (1-¢) ; Al P = 2 A | (3.18)
AW — Zw"ef;(”)(W) awnfygﬁ)’ c2 Zw"éﬂw(W) Awn and 6,(8) 0 as 6 \, 0.
Proof. The proof is provided in Appendix B.4 O

Using the above lemma on S, gives
N
~ 2 (1—¢)
So < =N 2% | Hy+ Y——2/Hi + Hy + Hs | .
Y (0 YO VT

Let us first consider Hy. By observing >, n Aynpun < H,p®"II, < 2*”(3(/))*59)1'[/), we bound H;
as Hy < 277(S(0)=%) Tp{(T1, — TI*)}. Note that

1 —1_ -1 II
Zaww Vo pun /o ] a+n D A/ pun/pEn < —-
w’ﬂ

T (1+n)
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Now, we use the Pruning Trace Inequality developed in Lemma II1.3 on () with n € (0,1) to

obtain

E[H] < 2—n(S(p)—6p)(1+n77)]E [Hg(u) _ E[Z(”)]Hl}

a0 (00 [y | E”Zaw%n pon = B[S ol | (||
oo

1

2né (1""77) Awn Pron 1
<2l |52 e 2 D A )

n w™  a,i 1

= 22”59(1;5)IE[H], (3.19)

where the second inequality follows from Hdélders inequality, and the equality follows by defining

H as

~ on
A w
H= Z (1 _ E Pumn — k+l Z Z Pw ]l{W” ) (a,i)=wn}|| - (3'20)

w™  a,n
1

Similarly, using E[A®)] = (i;;), Hj can be simplified as
> A pun — M Z Z A Brun L gy (a.6) = wn} =(1—-¢)H. (3.21)
wn wﬂ/

Now we consider Hs and convert it into a similar expression as Hy.

1
) E[A(u)]

—(1+7) ‘A(“) —EAM)| = (1 +n)H,.  (3.22)

(1—¢) Z aw'y

wreT{™ (W)

Using the above simplification and the concavity of square-root function we obtain:

E[S, 23"5 Z ( V=g (1—¢) <2Mp - 1) E[H] + (1 + n)E[H0]>

1+77) n
g) |(2%% ~ (1-¢)
306, Z( M)\/( ; +1>E[H]+\/(1+77) IE[HO})

The following proposition provides a bound on the above term.

IN
2\
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Proposition IT1.16. For any € € (0,1), any n,d € (0,1) sufficiently small, and any n sufficiently
large, we have E |:§2} <e, if % logp > I(W;R), — S(W), + logp, where o is the auziliary state

defined in the theorem.
Proof. The proof is provided in Appendix B.5 O

Remark TI1.17. The term corresponding to the operators that complete the sub-POVMs M (#)
ie., I — zwneT(’” W) fﬁ? A(2 is taken care in 7. The expression T excludes these completing
8

operators.

Step 2: Isolating the effect of error induced by binning

For this, we simplify T as

N eSS S VT AN P M ) 10 )
poow™ >0 acFk
We substitute the above expression into S defined in (3.16), and isolate the effect of binning by
adding and subtracting an appropriate term within S and applying triangle inequality to obtain

S < 57+ 59, where

I

1

Sy £ Z %ZZZV pEm ALy PP G h () (i) =wn} (P§|W(Zn’wn) - Py (ZH\F(“) (i)>>

2™ poa,i>0wn

Sléz ZW(A NZ,YH)A(H>\/WP71 n‘w

ZTL w"

1

where F(®)(.) is as defined in (3.14). Note that the term S; characterizes the error introduced by
approximation of the original POVM with the collection of approximating sub-POVM M (#) and
the term Sy characterizes the error caused by binning this approximating sub-POVM. In this step,

we analyze S and prove the following proposition.

Proposition IT1.18. For any € € (0,1), any n,d € (0,1) sufficiently small, and any n sufficiently
large, we have E[So] < e, if % logp — R < logp — S(W),, where o is the auxiliary state defined

in the statement of the theorem.

Proof. The proof is provided in Appendix B.6 O
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Step 3: Isolating the effect of approximating measurement
In this step, we finally analyze the error induced from employing the approximating measurement,
given by the term S;. We add and subtract appropriate terms within S; and use triangle inequality

to obtain S7 < S11 + S12 + Sis, where

N ()
_ 1 nY, o -
S]_]_ é E § V p®n Awn N g aw ,}/’w A,wn \V p®nP2|W |w 9
w™ pn=1

n
# 1

52 3 |V S SV (S >A<ﬂ)¢pw )|

n n
z p=1 w 1

N
513 2 Y0 3037 Vi (YA — 4 ALY) /o B ()

zZ" p=1 wn"

Now with the intention of employing Lemma II1.13, we express Si1 as

S = Z)\w”ﬁw" ®¢w" - N 1+"7 k+l ZZ Z IL{I/Vn (1) (a,3) wn}pw" ®¢w" )

wn poow™ a,i#0 1

where the equality above is obtained by defining ¢yn =) .. Z|W( 2" |w™) @ |2")2"| and using the

definitions of aun, yf,fi)

and p,n, followed by using the triangle inequality for the block diagonal
operators, Note that the triangle inequality becomes an equality for such block diagonal operators.
By identifying 6,, with p, ® ¢, in Lemma II1.13 we obtain the following: for all ¢ > 0 and
7,0 € (0,1) sufficiently small, and any n sufficiently large, E[S11] < e, if %logp + %logN >
I(W;R,Z), +logp — S(W),, where o is the auxiliary state defined in the theorem.

Now we consider the term corresponding to Sio, and prove that its expectation is small. Re-

calling Sto, we get

)

1

1 al n ny, n Oéwn’)/q(ﬁl) A () 7(u)
S12 < N ZZZPZIW(Z [w™) ||V p®" TAw" = Yo A pe"

u—l w™ 2"

- N Z Z O‘“’"%v"

p=1 wn"

—1
Vo (A N/ PN=D > VP

1

where the inequality above is obtained by using triangle inequality. Applying the expectation, we
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get

)

1

1 - —1_ -1
o <)\Aw” = VP Pun/ pT ) po
w™

A ~ 1 R
Yo A llper = Al + s D Aw llpun s

1
E[S)s] < A
1

<

(1 + 17) nGT(n) (W) (1 + 77) nQT(n)(W)
wres wrE s
< Ve +2vVe") +e .
SR

where we have used the fact that E[awn'yl(u’i) | = (i‘i;;), and the last inequality is obtained by the

repeated usage of the Average Gentle Measurement Lemma Wilde (2013a) and setting es, =

(lJlrn) (2\/?%— 2/e + ) with eg,, \, 0 as n — oo and &’ a e; +2,/¢), and g A 26;, + 2, /e}, for

£p 2 1 — min {Tr{Il,pun }, Tr{Tyn pun }, 1 — €} (see (35) in Wilde et al. (2012) for details). Now,

we move on to bounding the last term within S, i.e., S13. We start by applying triangle inequality

to obtain

N
S < 3 Y P ") || 5 30 Vo (244 - 18 AL) v/
zn w™ p=1 1
N
< 3 Ve (48 - AR) V| =5 (3.23)
pu=1 wn

Since the above term is exactly same as 5’2, we obtain the same rate constraints as in 52 to bound
Sis, i.e., for all € > 0 and 0,6 € (0,1) sufficiently small, and any n sufficiently large, E[S13] < € if
Etllogp > I(W;R)y + logp — S(W),.

Since S7 < 51145124513, S1 can be made arbitrarily small for sufficiently large n, if % logp+
Llog N > I(W;RZ), — S(W), + logp and %logp > I(W;R), — S(W)s + logp.

3.3.3.5 Rate Constraints

To sum-up, we showed E[K] < € holds for sufficiently large n if the inequalities in (3.5) provided
in the statement of the theorem are satisfied, where Ry a % log p and C 2 % logy N, and R = % log p.
Therefore, there exists a distributed protocol with parameters (n, onkt. 2”0) such that its overall

POVM M is e-faithful to M®" with respect to p®. This completes the proof of the theorem.
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3.4 Distributed Measurement Compression using Structured Random POV Ms

Let pap be a density operator acting on a composite Hilbert Space H4 ® Hp. Consider two
measurements M4 and Mp on sub-systems A and B, respectively. Imagine again that we have
three parties, named Alice, Bob and Charlie, that are trying to collectively simulate the action of
a given measurement M 4p performed on the state p4p, as shown in Fig. 3.1. Charlie additionally

has access to unlimited private randomness. The problem is defined in the following.

R

L
PaB \ P(z"ly, 1) —
2 o L

The diagram depicting the distributed POVM simulation problem with stochastic pro-
cessing. In this setting, Charlie additionally has access to unlimited private randomness.

Figure 3.1:

3.4.1 Problem Formulation

Definition II1.19. For a given finite set Z, and a Hilbert space Ha ® Hp, a distributed protocol
with stochastic processing with parameters (n, ©1, 0y, N1, Na) is characterized by

1) a collection of Alice’s sub-POVMs Mé” 2 p1 € [1,N1] each acting on H%"™ and with outcomes
in a subset £ satisfying |£1] < O;.

2) a collection of Bob’s sub-POVMs M é” 2),,u2 € [1, V] each acting on HE™ and with outcomes in
a subset Lo, satisfying |L2| < Os.

3) a collection of Charlie’s classical stochastic maps P(“L“?)(z”\ll, ly) for all iy € L4,ly € L9,2™ €
Z" pp € [1,N1] and pe € [1, No|.

The overall sub-POVM of this distributed protocol, given by Mg, is characterized by the following

operators:

- 1 1
An A A Z ZP(M’M)(ZRULl2)A£’(M) ®Ag7(#2)v Vot e 27,
1 2

H1,p2 Uyl
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where Aﬁ’(“ ) and Ag’(“ 2) are the operators corresponding to the sub-POVMs ME{L Y and M é“ 2),

respectively.

In the above definition, (01, 02) determines the amount of classical bits communicated from
Alice and Bob to Charlie. The amount of pairwise shared randomness is determined by N; and
Ny. The classical stochastic maps P#1:#2)(2"|l1, 1) represent the action of Charlie on the received

classical bits.

Definition III.20. Given a POVM Mup acting on H4 ® Hp, and a density operator pap €
D(Ha ® Hp), a quadruple (Ry, Re,Cy,C2) is said to be achievable, if for all € > 0 and for all
sufficiently large n, there exists a distributed protocol with stochastic processing with parameters
(n, 01,02, N1, No) such that its overall sub-POVM Mg is e-faithful to Mf?g with respect to p%%

(see Definition I.1), and
1 1 .
—logs ©; < R; +¢, and —logy N; <Cij+e, i=1,2.
n n

The set of all achievable quadruples (R;, Re, C1, C2) is called the achievable rate region.

Definition III.21 (Joint Measurements). A POVM Map = {A2B}.cz, acting on a Hilbert
space Ha ® Hp, is said to have a separable decomposition with stochastic integration given by
(Ma, Mg, Pys7) if there exist POVMs My = {A2}ses and Mp = {AP}ic7 and a stochastic

mapping Pzsr: S X T — Z such that

AAB = ZPZ|S7T(Z‘S,t)/_X;4 ®AB, Vze 2z,

s,t

where S, T, and Z are finite sets.

3.4.2 An Inner Bound

The following theorem provides an inner bound to the achievable rate region, which is proved

in Section 3.5. This is one of the main results of this paper.

Theorem II1.22. Consider a density operator pap € D(Ha ® Hp), and a POVM Map =

{AfB}Zez acting on Ha ® Hp having a separable decomposition with stochastic integration (as
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in Definition I11.21), yielding POVMs Ma = {Al}ses and Mp = {AP}ie7 and a stochastic map
Pyis1: S X T — Z. Define the auziliary states oFSB 2 (idp @ My ®idp)(VE), oSV 2 (idg®
id s © Mp)(WhtEy), and o572 2 %, /o5 (A © AP) BB ® Prjsir(2ls. 1) sYsl @ el @ |22
for some orthonormal sets {|s)}ses, {|t) hreT, and {|2)}.cz, where WAL, is a purification of pap.
A quadruple (Ry, Ra,C1,C3) is achievable if there exists, a pair of finite sets U and V, a pair
of mappings fs : S — U and fr : T — V, and a stochastic mapping Pz : W — Z yielding
U= fs(S), V= fr(T), and either W =U +V, for some finite field F, and a prime p, such that

Pyisr(zls,t) = Pyw(z|fs(s) + fr(t), Vse€S,teT,z€Z,
or W = (U,V) such that

Pyisr(zls,t) = Prw (2| fs(s), fr(t)), Vse€S,teT,z€Z,
and the following inequalities are satisfied:

Ry > I(U;R,B)g, + IW;V)gy — I({U; V)0,
Ry > I(ViR, A)gy + IW:U) gy — I(U; V) s,
Ri+ Ry > I(U;R,B)oy+ I(Vi R, A)gy— I(U; V) gyt IW3 V) gyt LW U )y —I(U3V )y,
Ri+Cy 2 I(UiR, Z)oy + I(W;V)gy — I(U; V),
Ro+ Cy > I(ViR, Z)gyt I(W; Uy — (U3 V),
Ri+Ry +Cy 2 I(U; R, Z) gy + I(V; R, A) gy = LU V )y + I(W;U) g+ I(W3 V) = I(U3V ) 5
Ri+Ry+Cy > I(V;R, Z)gy+ I(U; R, B) gy — U Vs + I(W;U) iy + I(W: V)i = LUV ) s,

Ri+Ry+C1+Co > (U, VR, Z) gy + IW;U) gy + L(W;V)y — L(U; V). (3.24)

where I(W;U) gy = I(W;U0) g, IW;5V ) gy = IW;5V )y, and I(U; V) gy = I(U; V) gy if W =U +V
and IW;U) gy = I(W;V)gy = I(U;V)gy =0 if W = (U, V).
Proof. Observe that the theorem involves two different cases of W, one being equal to the sum

U + V, and another being the pair (U,V). We provide a complete proof for the former case in

Section 3.5. The proof for the latter follows from the proof of Theorem I1.33 provided in Chapter
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II. O

Remark 111.23. Note that the rate-region obtained in Theorem II.33 using unstructured random

code ensembles, contains the constraint Ry + Ry + C1 + Cy > I(U,V; R, Z),,. Hence when

IW;5U)os + I(W;V)oy = I(U;V)gy = 25U + V) gy — S(U, V) <0,

the above theorem gives a lower sum rate constraint. As a result, the rate-region above contains
points that are not contained within the rate-region provided by Theorem I1.33. To illustrate this

fact further, consider the following example.
Remark 111.24. In the above theorem, we restrict our attention to prime finite fields for ease of

exposition. The results can be generalized to arbitrary finite fields in a straight-forward manner.

Example II1.25. Suppose the composite state pap is described using one of the Bell states on

Ha®Hp as

pag = 5(100) 45 + [11) 4 5) ({00 45 + (11[ 45) -

N

Since 74 = Trp pA8 and ©P = Try pAP, Alice and Bob would perceive each of their particles in

maximally mixed states 74 = %A and 78 = %B, respectively. Upon receiving the quantum state,

the two parties wish to independently measure their states, using identical POVMs M4 and Mp,
given by My & {I_Xf}ses,MB = {Af}teT’ where S =T = {0,1}, and

A _ABA 0.9501 0.0826 + 20.1089 A _\BA 0.0499 —0.0826 — 20.1089
AO —AO — 1 _Al - .

)

0.0826 —40.1089 0.0615 —0.0826 +-¢0.1089 0.9385

Alice and Bob together with Charlie are trying to simulate the action of Map 2 {I‘ZAB } using

zeZ?

classical communication and common randomness as the resources available, where Z = {0, 1}, and

rib 2 Y Y Pygr(zls,t) (M e AP, (3.25)
s€{0,1} te{0,1}

for z € {0,1}, and Pz 7(0[0,0) = Pz57(0[1,1) = 1 = Pz57(0[0,1) = 1 — Pz57(0[1,0) = A, with
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A € (0,1). Note that the above POVM M4p admits a separable decomposition as defined in the

statement of Theorem I11.22 with respect to the prime finite field Fo, with U = S and V =T, and
Pziw (0[0) =1 — Pz (0[1) = A.

Hence the above theorem can be employed. This gives S(U+V )y, = 0.5155, S(U)gy, = S(V )0y =
0.9999, S(U,V)s, = 1.5154, and I(U,V),, = 0.4844, where o3 is as defined in the statement of
Theorem I11.22. Since S(U)py — S(U + V)gy = S(V)oy — S(U +V)py = I(U,V)4,, the constraints
on Ry, Ry, Ri1 + C and Ry + C are the same as obtained in Theorem I1.33. However, with
2S(U+V)g, —S(U,V)sy = —0.4844 < 0, the constraint on Rj + Ro + C1 + Cs in the above theorem
(3.24) is strictly weaker than the constraint obtained using random unstructured codes in Theorem
I1.33 of Chapter II. Therefore, the rate-region obtained above using random structured codes in

Theorem I11.22 is strictly larger than the rate-region obtained in Theorem I1.33.

Example II1.26. For the same state p4p as in the above example, consider the following identical

POVMs My 2 {Al} o and Mp 2 {AP}, . where S =T = {0,1}, and

A _ AB A 0.4974  0.0471 + :0.4975 Ad_ABA 0.5026 —0.0471 — 30.4975
0 — ‘0 — ) 1 — 1 = .
0.0471 —:0.4975 0.5026 —0.0471 +:0.4975 0.4974

Let the joint measurement that Alice and Bob are trying to simulate be given by

282 N N Pysr(zlst) (A @ AP), (3.26)
se{0,1} te{0,1}

for z € {0,1} where Pz g7 : {0,1} — [0, 1] is a conditional PMF on Z x S x T with Py g7(0]0,0) =
do € (0,1) and Pzg7(0[0,1) = Pz57(0[1,0) = Pzs7r(0[1,1) = 61 € (0,1). Note that Pygr
depends on the variables (s,t) only through s V ¢, the logical OR function. Now, we define the
random variables U and V on the prime finite field F3 with the identity mappings U = S and
V =T, while noting that U and V take values in Fg with P(U = 2) = P(V = 2) = 0. Now with
W = U +V, we identify the mapping Py as Pz (0|0) = do, and Py (0]1) = Pz (0[2) = 01.
For this identification, we obtain 25(U + V') — S(U,V) = —0.9039 < 0, which gives the constraint

on Ry + Ry + C1+ C5 in the above theorem (3.24) strictly weaker than the corresponding constraint
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obtained using random unstructured codes in Theorem I1.33. Since this is a biting constraint, the

above rate-region is strictly larger than the former for this example.

Example IT1.27. Building upon Example I11.26, we explore more points in the POVM space such
that the above theorem provides constraints (3.24) that are strictly weaker than the corresponding
constraint obtained in Theorem I1.33 of Chapter II. For this, we consider the same state pap, as
above and the following identical POVMs M, £ {AsA}ses and Mp £ {]\F}te’r’ where S =T =
{0,1}, and

01 O + 103

A = AP = L AP =AB =T A}
0y —ifs 1—0;

for 0; € [-1,1]?. Figure 3.2 illustrates the surface where 2S(U + V) = S(U, V) and therefore the
region inside the surface has 25(U + V) — S(U, V) < 0, where the POVMs obtained provides the
constraint on R; 4+ Ry + C1+ Cs in the above theorem (3.24) strictly weaker than the corresponding

constraint obtained in Theorem I1.33.

Ay AVAVAV, > o
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AN ety
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W Vv, 2% K7
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0.44
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\\‘“\‘\‘k“‘@kg%“peg
NEtYavray,
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Figure 3.2: . . Lo
Shown above is a (61, 62, 03)-surface with POVMs satisfying 25(U + V) = S(U,V).

Although the surface is symmetric in 3, but for the ease of illustration only the upper
half of the surface is shown.

Remark 111.28. Note that for POVMs contained in the above (61, 62, 63)-surface of Example I11.27,
the sum rate constraint R; + Re + C1 + (s is strictly weaker than the corresponding constraint

obtained in Theorem I1.33, and vice-versa outside.

2The above parametrization is only for illustrative purposes and do not constitute all the two dimensional POVMs.
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3.5 Proof of the Inner Bound (Theorem I11.22)

Suppose there exists a finite field IF,, for a prime p, a pair of mappings fs : § — F, and

Jr: T — Fp, and a stochastic mapping Py : F;, — Z such that
Pyisr(zls,t) = Pyiw (2|fs(s) + fr(t)), VseS,teT,z€Z,

yielding U = fs(S), and V = fp(T). This implies, we have POVMs M4 £ {A%},c and Mp 2
ABY ey withid =V 2 F and a stochastic map Py : F, — Z, such that M 45 can be decomposed
v P | P
as

ALB = Z Py (z]u + V)AL @ AB, vz, (3.27)

u,v
where W is defined as W = U + V. The coding strategy used here is based on Unionized Coset
Codes, similar to the one employed in the point-to-point proof (Section 3.3.3), but extended to a
distributed setting. Further, the structure in these codes provide a method to exploit the structure
present in the stochastic processing applied by Charlie on the classical bits received, i.e., Pz v
Using this technique, we aim to strictly reduce the rate constraints compared to the ones obtained
in Theorem I1.33. Also note that, the results in the former are based on the assumption that
approximating POVMs are all mutually independent. However, since the structured construction
of the POVMs only guarantees pairwise independence among the operators of the POVM, the
proofs below become significantly different from the proof of Theorem I1.33.

We start by generating the canonical ensembles corresponding to M4 and Mp, defined as

NS T {Alpa}, A2 Te{ATpp), AW 2 T{(AJ @ A)pap}, and

. 1 - R 1 - ) 1 _ _
pa & avVeARivpa, bl = VAL e = apVPas(A @A) pap.  (3.28)

v

With this notation, corresponding to each of the probability distributions, we can associate a 6-
typical set. Let us denote 7:;(”)(U ), %(n)(V) and 7g(n)(U V) as the d-typical sets defined for {\1},
{AB} and {\AB}, respectively.

Let I, and II,,,, denote the d-typical projectors (as in ( Wilde, 2013a, Def. 15.1.3)) for marginal

density operators p4 and pp, respectively. Also, for any u” € U™ and v™ € V", let TI4, and TI5,
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denote the strong conditional typical projectors (as in ( Wilde, 2013a, Def. 15.2.4)) for the canonical
ensembles {2, pA} and {\B, P}, respectively.
For each u" € 7:;(n)(U ) and 0" € E(n)(V) define
~A A N ~B A ~
pfn - HpAHﬁnpanﬁanA, pfn - HpBanpananpB,
and j = 0, and p5, = 0 for u” ¢ 7:5(n)(U ) and v" ¢ E(”)(V), respectively, with pa, £ &, pi. and

N A ~
pin = Q; Py,
3.5.1 Construction of Structured POV Ms

In what follows, we construct the random structured POVM elements. Fix a block length
n > 0, positive integers Ny and Na, and a finite field F,,. Let p; € [1,Ni] denote the common
randomness shared between the first encoder and the decoder, and let pg € [1, N3] denote the
common randomness shared between the second encoder and the decoder. Let ji; € [1,Ni] and
a2 € [1, NQ] denote additional pairwise shared randomness used for random coding purposes. This
randomness is only used to show the existence of a desired distributed protocol (as defined in
Definition II1.19), and is used only for bounding purposes. We denote fi; a (pi, fii), and N; a
N; - N; for i = 1,2. Further, let U and V be random variables defined on the alphabets ¢/ and V,
respectively, where Y =V = F,. In building the code, we use the Unionized Coset Codes (UCCs)
Pradhan et al. (2021) as defined above in Definition IIL.5.

For every (fi1, fi2), consider two UCCs (G, hgﬁl)) and (G, hg’b)), each with parameters (n, k, [1,p)
and (n, k,l2,p), respectively. Note that, for every (i1, fi2), they share the same generator matrix
G.

For each (fi1, fi2), the generator matrix G along with the function h(ll2 Y and hgﬁ 2) generates
pFtiand pFt2 codewords, respectively. Each of these codewords are characterized by a triple
(a;, m;, 1;), where a; € IF]; and m; € Fé’i corresponds to the coarse code and the fine code indices,

respectively, for i € [1,2]. Let U™ ) (ay, i) and V™(2)(ay, j) denote the codewords associated with

Alice and Bob, generated using the above procedure, respectively, where

U™ (a1,i) 2 G+ B 6)  and V) (ag, 5) £ 090G + B ().
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Now, construct the operators

[18# = ayn (\/pA Pum/ 1) and ng?) A <\/,OB ,Ovm/ 1), (3.29)
where

yn 2 L P A and pS a P \B
un" — (1+n) pk+l1 un v — (1_’_77) pk-‘rlz L)

(3.30)

with 7 € (0,1) being a parameter to be determined. Having constructed the operators flfﬁf) and
Bz(f:?), we normalize these operators, so that they constitute a valid sub-POVM. To do so, we first

define
I Z ALY and xYP 4 Zg(“Q)B )
where 'y(” " and Cff;f” are defined as

YA 2 {(ar,i) : U (ar,i) = wmY and (B2 [{(ag, ) : V) (ag, j) = v"}.

Now, we define Hf_f‘l and H’g as pruning operators for Effl) and ng), with respect to 1I,, and

I1,,, respectively (see Definition II1.2). Note that, these pruning operators, Hil and H’]?, depend

PB>
on the triple (G, hgﬂl), hgﬁQ)). Using these pruning operators, for each ji1 € [1, N1] and ji € [1, N2,
construct the sub-POVMs Ml(n’[“) and M( mif2) o
n,fi1) (Ml) (B1) . n n (n.i2) A Mz) .o n

8 (DAY oy ey}, and M, {(v vt e V', (3.31)

,Un

where A(’;ﬁl) = 114, 1[1(5?)11“ ! and B(?) = II% QB(‘;?)H“ 2. Further, using these operators IT§' and
%2, we have 3. 7Y AU — s < 1 and Y, (W2 BYY) = m2slniz < 1) and
thus Ml(n”“) and MQ(n”Q) are valid sub-POVMs for all iy € [1,N;] and jia € [1, Ny]. Further,
these collections M, (1) and MQ(n’ﬂ 2 are completed using the operators I —" . mn ’y(nl)A( ) and

u
I =3 ey Ci2 BUE2),
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3.5.2 Binning of POVMs

We next proceed to binning the above constructed collection of sub-POVMs. Since, UCC
is already a union of several cosets, we associate a bin to each coset, and hence place all the
codewords of a coset in the same bin. For each i € F! and j € F2, let Bgﬁl)(i) 2 ¢(a, hgﬁl)(i))
and Bgﬂ 2)( ) 2 C(a, h(“ 2)( ) denote the i** and the j** bins, respectively. Formally, we define the

following operators:

B S(B2) A _
Z Z A1 {a1G+h{"D) (i)=un}’ - Zv B {a2G+h§“2)(j)=vn}’

um€U™ a1 €Fk az€F

for all 7 € IE‘%} and j € IE‘;}. Using these operators, we form the following collection:

MXW_M) A {FAv(ﬁl)

UYL MG A i)y
P

jexts (3.32)

Note that if Ml(n’ﬂl) and Mz(n’ﬂz) are sub-POVMs, then so are MXL’I“) and M](Bn”b), which is due

to the relations

Z F?’(’“ Z Yoin G A(“l) <I, and Z Ff’(m Z CU Un <I (3.33)

iGIFi} uneun ]'GIFLQ prepn
To make M( ") and M( h2) complete, we define v () and Fgg’(’b) as Fé’(’jl) =I->. Ff’(ﬂl)
and I’B’(“Q) =1-3,T; Byf2)  pespectively’. Now, we intend to use the completions [Mgn’ﬂl)]
and [M (n K 2)] as the POVMs for encoders associated with Alice and Bob, respectively. Also, note

that the effect of the binning is in reducing the communication rates from (kinl1 log p, % logp) to

(R1, R2), where R; a %logp,i € {1,2}. Now, we move on to describing the decoder.

3.5.3 Decoder mapping

We create a decoder that takes as an input a pair of bin numbers and produces a sequence
W™ € F}. More precisely, we define a mapping F(B1:52) -acting on the outputs of [M(gn’“ 1)]® [Mgl’“ 2)]

as follows. On observing (fi1, fiz) and the classical indices (i,7) € IF;} X ]FéQ communicated by the

3Note that T5(#1) = -y 74D — 13~ et @) ALY and g7 = 1-y° TP = -7 B2,

oner{™ (v)
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encoder, the decoder constructs D1:/72) and FALR2)(. ) as,

1,]

D(“l’M)é{aGFk aGJrh(ul)( )Jrhuz (j )GTn)( )},

o aG + h(ﬁl)(i) + h(ﬂQ)(j) if DZ@-l’ﬁQ) = {a}
F(m,uz)(Z ) A ! 2 J (3.34)

n

wy otherwise ,

where § = pé and w}} is an arbitrary sequence in Fg\%(n)(W). Further, F(F1:72) (4, ) = wf for i = 0

or j = 0. Given this, we obtain the sub-POVM M 4p with the following operators.

371_? A N1N2 Z Z Z 11A,(ﬁl) ®Ff,(ﬁ2)7

p1=1 p2=1 (; ). F(A1:A2) (4 5)=wn

vw" € Fy J{wy}. Now, we use the stochastic mapping Pz to define the approximating sub-

POVM M) 2 {A.n} as
AAB A ZA Py (2"w™), V2" € 2",

Note that A2B = 0 for w™ ¢ T, (W) U{wl}.
UCC Grand Ensemble: The generator matrix G and the functions hgﬁ Y and héﬁ 2) are chosen

randomly uniformly and independently, for ji; € [1, N1] and fig € [1, Na).

3.5.4 Trace Distance

In what follows, we show that Mﬁ{g is e-faithful to M55 with respect to p57% (according to

Def. 1.1), where ¢ > 0 can be made arbitrarily small. More precisely, using (3.27), we show that,
E[K] < €, where

K23

: (3.35)

> /AABA W PSPy (2" [u" + v™) = \/ oS BARE [ oX
1

u™ un

and the expectation is with respect to the codebook generation.

Step 1: Isolating the effect of error induced by not covering
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Consider the second term within K, which can be written as
@n {AB | ®
Z papNun \ PR g|W(Zn|wn)

1 n A,(f B, (g n pn n A1,02) (5 7
NN, > D /A (Fi W er; (M)) VORBP R (0 0) DL gt 1=y

1,02 1,5

~~

=1

which can be written as T + f, where

1>

T

T X e (T e T ) oSy P (PG, ),

ARz (>0} ({5>0}

1 / A1) o pBy(A2)\ |/
NN, Z Z P%E (Fi & QL m) P%%PE\W(Zn‘wg)-

b fi=op (=0}

1>

T

Hence, we have K < S + S , where

S oy (A & A PR + o)) o - T

n n
um™,v

: (3.36)
1

say”

and S & n |T||1. Note that S captures the error induced by not covering the state Py

Remark 111.29. The terms corresponding to the operators that complete the sub-POVMs Mj(f’ﬂ 1)

and M](gn”b), e, I -3 (ﬂl)Afgf) and I —

wneT™ ) Tur W) C£ﬁ2)B£’i2) are taken care in 7.

om e’];(")

The expression 1" excludes these completing operators.

Step 2: Isolating the effect of error induced by binning

We begin by simplifying T" as

1 n f .
T=%r, 2 2 Z@( > Y AR ©BEN o

[, u™, o™ Z>%, a1l G]FI; as EF’;
7>

% 1{a2G+h§”2)(j):vn}> PAE g\w(zn\F(m’M(i,j))-

Note that the (u",v") that appear in the above summation is confined to (7 n)(U) X 7:;n)(V)),
however for ease of notation, we do not make this explicit. We substitute the above expression

into S as in (3.36), and add and subtract an appropriate term within S and apply the triangle
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inequality to isolate the effect of binning as S < S7 + Sz, where

n 1 i i ft i n pn ny,,n n
Z \/@( N1N2 Z (ﬁl)Ai!fll)@C%Q)B%Z)) P%B Z\W(Z [u™ +0") {

umn,un B1,fi2

5 Z HNlNQ 222 2y p%( (m)) pABﬂ{mGMY‘“(i):un,a2G+h§”)(j):v"}

1,02 z>0 ay,az u™, "

X (Pg‘w(z"|u”+v") - Pg|W(ZH|F(ﬂ17ﬂ2)(i’j))>

1

Note that the term S; characterizes the error introduced by approximation of the original POVM
with the collection of approximating sub-POVMs Ml(n’ﬂ Y and MQ(n”1 2), and the term Sy character-
izes the error caused by binning of these approximating sub-POVMs. In this step, we analyze S

and prove the following proposition.

Proposition ITI.30 (Mutual Packing). For any ¢ € (0,1), any 7,0 € (0,1) sufficiently small,
and any n sufficiently large, we have E[So] < e, if k:;—lllogp > I(U;RB)s, — S(U)ss + logp,
kb logp > I(V; RA) gy — S(V)oy +logp, Bt logp+ L log N1 > logp, 22 logp+ Llog Ny > logp,
glogp < logp — S(W)s,, where 01,02 and o are the auzxiliary states as defined in the statement

of the theorem.
Proof. The proof is provided in Appendix B.7 0

Since averaged over ji; € [1, N1, jig € [1, Ny, the quantity E[So] can be made arbitrarily small,
there must exist a pair (fi1, fiz) such that E[Ss] is small for this pair of (fi1, fiz). For the rest of the
proof, we fix (fi1, fi2) to be this pair. The dependence of functions defined in the sequel on this pair
is not made explicit for ease of notation. For the term corresponding to S , we prove the following

result.

Proposition IT1.31. For any € € (0,1), any n,d € (0,1) sufficiently small, and any n sufficiently
large, we have E[S] < ¢, if % logp > I(U; RB)y, — S(U)y, +logp and % logp > I(V; RA)s, —

S(V)s, + logp, where o1 and o9 are auziliary states defined in the statement of the theorem.
Proof. The proof is provided in Appendix B.8. O

Step 3: Isolating the effect of Alice’s approximating measurement
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In this step, we separately analyze the effect of approximating measurements at the two distributed

parties in the term S;. For that, we split S7 as S1 < @1 + @2, where

Ny
v/ PR A A 1 A / ®n pn ny|, n n

z™m Hu™on p1=1
@AY | 55 S i [ 0 38— 3 A o 5
pr=1lumom 2,u2 1

(3.37)

PapPaw (" u" + ")
1

With this partition, the terms within the trace norm of ) differ only in the action of Alice’s
measurement. And similarly, the terms within the norm of Qo differ only in the action of Bob’s
measurement. Showing that these two terms are small forms a major portion of the achievability
proof.

Analysis of Q1: To prove ()7 is small, we characterize the rate constraints which ensure that an
upper bound to @1 can be made to vanish in an expected sense. In addition, this upper bound
becomes lucrative in obtaining a single-letter characterization for the rate needed to make the term

corresponding to Q2 vanish. For this, we define J as

Z VP§%< - Z’Vm A(m )\/ P%%PZW Z"u" 4+ v )

Mll

(3.38)

FALR UG

By defining J and using triangle inequality for block operators (which holds with equality), we
add the sub-system V to RZ, resulting in the joint system RZV, corresponding to the state o3
as defined in the theorem. Then we approximate the joint system RZV using an approximating
sub-POVM Mf(ln) producing outputs on the alphabet U™. To make J small for sufficiently large
n, we expect the sum of the rate of the approximating sub-POVM and common randomness, i.e.,
kinll logp + %log N1y, to be larger than I(U; RZV'),,. We prove this in the following.

Note that from the triangle inequality, we have @)1 < J. Further, we add and subtract appro-

104



priate terms within J, and again use the triangle inequality to obtain J < J; + Jo2, where

ney Z\/ﬂ%( A viﬁl)A£¢1)®Afn> PRB Py (" " + o)
PR 1

ne Y S5V (vun VAL © K~ ““A%“@Aﬁ) PR Phw (" + ")
PACRLY pi=1 u” 1

Now we use the following proposition to bound the term corresponding to Jj.

Proposition IT1.32. For any € € (0,1), any n,d € (0,1) sufficiently small, and any n sufficiently
large, we have E[J1] < € if % logp + 2log Ny > I(U; RZV )4, +1ogp — S(U)o,, where o3 is the

auziliary state defined in the statement of the theorem.
Proof. The proof of proposition is provided in Appendix B.9. O

Now we move on to bounding the term corresponding to Jo. We start by applying triangle

inequality followed by Lemma II.11 on J> to obtain

REY Y Bl ol 35 i (44 A 82 i

Zn un pn L= 1
un y Z \/@( ('Yunl)A p1) %(ﬂﬂA(Ml)) ®A§n> \/@ 1
Z > A W@ (A% — al) \Jor (3.39)
Li=1 um 1

Now we use the following proposition to bound the term corresponding to Jo.

Proposition IT1.33. For any € € (0,1), any n,d € (0,1) sufficiently small, and any n sufficiently
large, we have E[Js] < € if k%lllogp > I(U;RB)s, +logp — S(U)y,, where o1 and o3 are the

auxiliary states defined in the statement of the theorem.
Proof. The proof is provided in Appendix B.10. O

Since @1 < J < Jj + Jo, hence E[J], and consequently E[Q1], can be made arbitrarily small

for sufficiently large n, if ktfl logp + %logNl > [(U;RZV )5y — S(U)y, + logp and % logp >

I(U;RB)s, —S(U)g, + logp. Now we move on to bounding (s.
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Step 4: Analyzing the effect of Bob’s approximating measurement
Step 3 ensured that the sub-system RZV is close to a tensor product state in trace-norm. In
this step, we approximate the state corresponding to the sub-system RZ using the approximating

POVM M gl), producing outputs on the alphabet V. We proceed with the following proposition.

Proposition I11.34. For any e € (0,1), any n,d € (0,1) sufficiently small, and any n sufficiently

large, we have E[Q2] < €, if kj;—lllogp + %10g Ny > I(U;RZV )5y, — S(U)o, + logp, ktls 1og p +

n

%log Ny > I(V7 RZ)Us - S(V)Ug +10gp; % Ing > I(Ua RB)U1 - S(U)cr3 —I—logp, and % logp >
I(V;RA) gy — S(V)oy + logp where 01,02, o3 are the auziliary states defined in the statement of

the theorem.

Proof. The proof is provided in Appendix B.11. O

3.5.5 Rate Constraints

To sum-up, we showed E[K] < € holds for sufficiently large n if the following bounds hold:

R+ Ry > I(U;RB)y, — S(U)g, + logp, (3.40a)

R+ Ry > I(V;RA)y, — S(V)y, + logp, (3.40b)

R+ R+ Cy>I({U;RZV )y — S(U)g, + logp, (3.40¢)
R+ Ry+Cy > I1(V;RZ) gy — S(V)y, + logp, (3.40d)
0<R<logp—S(U+V)g,, (3.40e)

C1 >0, Cy>0, (3.40f)

where C; a %logz N;,i € {1,2} and R 2 glog p. Therefore, there exists a distributed protocol
with parameters (n,2nf1 2nft2 9nC1 9nCa) gych that its overall POVM Map is e-faithful to M
with respect to p5 .

Let us denote the above achievable rate-region by R;. By doing an exact symmetric analysis,
but by replacing the first encoder by a product distribution instead of the second encoder in S (as

performed in (3.37)), all the constraints remain the same, except that the constraints on R+ Ry +C}
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and R+ Ry + Cy change as follows

R+ Ry +Cy > I(U; RZ)y — S(U) gy + logp,

R+ Ry+Cy > I(V;RZU) gy — S(V) g, + log p. (3.41)

Let us denote the above achievable rate-region by Ro. By time sharing between the any two points
of Ry and Ry one can achieve any point in the convex closure of (R |JR2). The following lemma
gives a symmetric characterization of the closure of convex hull of the union of the above achievable

rate-regions.

Lemma IT1.35. For the above defined rate regions R1 and Ra, we have
R3 = Convex Closure(Rq URQ),

where R3 is given by the set of all the quintuples (R, R1, Ry, C1,Cy) satisfying the following con-

straints:

R+ Ry > I(U;RB)y, — S(U)y, + logp,
R+ Ry > I(ViRA)s, — S(V)o, + logp,
R+Ri+Cy>I(U;RZ) gy — S(U) g, + logp,
R+ Ry+Co > I(V;RZ) gy — S(V)oy + log p,
2R+Ri+ Ry +C1 4+ Cy > I(UV;RZ) g, — S(U,V)o, + 2logp,
0< R<logp—SU+ V),

R >0,Ry >0 C1>0,C9>0. (3.42)
Proof. The proof follows from elementary convex analysis. O

Lastly, we complete the proof of the theorem using the following lemma.

Lemma II1.36. Let R3 denote the set of all quadruples (Ry, Ra, C1,Co) for which there exists R

such that the quintuple (Ry, Ra, C1,Ca, R) satisfies the inequalities in (3.42). Let Rp denote the

set of all quadruples (R1, Ra,C1,C3) that satisfy the inequalities in (3.24) given in the statement
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of the theorem. Then, R3 = Rp.

Proof. The proof follows from Fourier-Motzkin elimination Ziegler (2012). O

3.6 Conclusion

In this chapter, we developed a technique of randomly generating structured POVMs using
algebraic codes. Using this technique, we demonstrated a new achievable information-theoretic
rate-region for the task of faithfully simulating a distributed quantum measurement and function
computation. We further devised a Pruning Trace inequality which is a tighter version of the
known operator Markov inequality, and a covering lemma which is independent of the operator
Chernoff inequality, so as to analyse pairwise-independent POVM elements. Finally, combining
these techniques, we demonstrated rate gains for this problem over traditional coding schemes, and

provided a multi-party distributed faithful simulation and function computation protocol.

108



CHAPTER IV

Multi-party Purity Distillation

4.1 Introduction

In Chapters II and III the focus of our work was mainly QC setups. In this chapter, we will
investigate distilling a quantum resource called purity. A primary task in quantum information
theory is to quantify the amount of local and non-local information present within a quantum
information source. For instance, the task of entanglement distillation aims at capturing the non-
local correlations to transform a noisy shared state pAZ into pure bell states (in particular, the ebit
|®T)), in an aymptotic sense. A complementary notion to this task is the paradigm of local purity
distillation, where pure ancilla qubits are distilled from a distributed state p*” using local unitary
operations.

Although it may seem unusual, local pure states cannot be considered as a free resource. One
may argue that pure states can be obtained from a mixed state by performing a measurement, but
this is only true after a measurement apparatus is initialized in a pure state. For this reason, the
second law of thermodynamics recognizes purity as indeed a resource Alicki et al. (2004); Horodecki
et al. (2005a). In this regard, the idea of distilling of local purity was first introduced in Oppenheim
et al. (2002); Horodecki et al. (2003a) where the aim was to manipulate the qubits and concentrate
the existing diluted form of purity. Two version of this problem have been introduced, (i) a single-
party variant and (ii) a distributed version. In the former single-party scenario, also called as
local purity concentration, many copies of a noisy state p? are provided to Alice, and she aims at
concentrating or extracting purity using only unitary operations. The authors in Horodecki et al.

(2003b) characterized the asymptotic performance limit of this protocol (k(p?)) as the difference
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between the number of qubits describing the system and the von Neumann entropy of the state p*.
For the latter case of distilling purity from a non-local distributed state, commonly termed as local
purity distillation, two parties, Alice and Bob, share many copies of the noisy state p and aim at
jointly distilling pure ancilla qubits. Again, they are allowed to perform only local unitaries and but
can communicate classically (LOCC), possibly through the use of a dephasing channel Oppenheim
et al. (2002). Further, the protocols for both the variants require isolation (Closed-LOCC) from the
environment which eliminated the possibility of unlimited consumption of the pure ancilla qubits.
The authors in Horodecki et al. (2003a) provided bounds for this problem in the one-way and the
two-way classical communication scenarios.

Later, Devetak in Devetak (2005a) considered a new paradigm called 1-CLOCC’, which was
defined as an extension of Closed-LOCC, with (i) the allowance of using additional catalytic pure
ancilla as long as these are returned back to the system, and (ii) the unlimited bidirectional classical
communication replaced by unlimited one-way communication from Alice to Bob. Devetak obtained
an information theoretic characterization of the distillable purity in the 1-CLOCC’ setting (allowing
additional catalysts) and highlighted its connection to the earlier known one-way distillable common
randomness measure Devetak and Winter (2004). The usage of catalytic resource to improve the
quantum information tasks was first introduced in Jonathan and Plenio (1999). This further
was extensively studied in a multitude of works, including but not limited to Daftuar and Klimesh
(2001); van Dam and Hayden (2002); Turgut (2007); Aubrun and Nechita (2008); Sanders and Gour
(2009); Brandao et al. (2015); Duarte et al. (2016); Bu et al. (2016); Shiraishi and Sagawa (2021);
Lipka-Bartosik and Skrzypczyk (2021); Ding et al. (2021); Takagi and Shiraishi (2021). Building
upon the work of Devetak (2005a), the authors in Krovi and Devetak (2007) extended the result to
a setting with bounded one-way classical communication, again allowing for the additional catalytic
resource. They improved upon the classical communication rate by using the Winter’s approximate
measurement Winter (2004), instead of an n-letter product measurement, and extracted purity for
the states obtained thereby.

In this work, we revisit the task of distilling purity and consider a three-party setup. We ask

ABC shared among

the question of how many ancilla qubits can be distilled from a noisy state p
three parties, Alice, Bob and Charlie. Similar to earlier problem formulation, we only allow local

unitary operations at each party in a closed setting but permit the use of additional catalytic

110



ancillas with the promise of returning them at the end of the protocol. In addition, similar to
Krovi and Devetak (2007), we only allow limited classical communication, which we model using a
one-way multiple-access dephasing channel, with Alice and Bob as the senders and Charlie as the
centralized receiver.

The contributions of this chapter can be summarized as follows. We first formulate a three-
party purity distillation problem, and develop a 1-CLOCC’ multi-party purity distillation protocol
for this problem capable of extracting purity from n copies of the noisy shared state pi?%c, using
only local unitary operations and a one-way multiple-access dephasing channel. Further, for p%%(ﬁ
we define the asymptotic performance limit of the problem as the set of all triples (P, Ry, R2),
where P denotes the amount of purity that can be distilled from pAB¢ using R; and Ry bits of
classical communication. Then we characterize a quantum-information theoretic inner bound to
the achievable rate region in terms of computable single-letter information quantities (see Theorem
IV.4).

Toward the development of the results, we encounter two main challenges. The first challenge
is in the compression of the joint measurements. Since the classical communication allowed by
the protocol is limited, the joint measurements, that Alice and Bob employ, are required to be
compressed. Although a distributed measurement compression protocol for compressing a joint
measurement was developed in Chapter II, one cannot directly use this protocol as a complete
black box. The reason for this is that the measurement compression protocol also requires addi-
tional resource of common randomness which the current purity distillation protocol does not allow.
Apart from this, the measurement compression protocols provided in Winter (2004); Wilde et al.
(2012) and Chapters II and III shows the “faithfulness” of the post-measurement state of the refer-
ence along with the classical-quantum register storing the measurement outcome. These protocols
remain unconcerned about the post-measurement state of the system on which the measurement
is performed. However, in the current problem the closeness of the latter is needed. To overcome
this, we identify appropriate purifications of the post-measurement reference states and argue an
existence of a collection of unitary operations achieving the latter (see Lemma IV.8 in the sequel).

The second major challenge is that after the application of the compressed measurement, the
states across the three parties are not necessary separable. This is because a compressed measure-

ment is usually not a “sharp” rank-one measurement. In Devetak (2005a) rank-one measurements
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are employed which makes the states separable and hence eases the analysis. To handle this, we
develop a result that captures how much a purity extracting protocol can disturb other correlated

subsystems (see Lemma IV.10).

4.2 Preliminaries and Problem Formulation

4.2.1 Notation

We supplement the notations of the earlier chapters with the following. Recall that, given any
natural number M, the finite set {1,2,---, M} is denoted by [1, M]. Let B(H), D(H) denote the
algebra of all bounded and density operators acting on H, respectively. Further, let D(H) denote
the set of all unit trace positive operators acting on H. Let I denote the identity operator. Let
m(pA) denote the asymptotic purity distillable by local purity concentration protocols from p*

Oppenheim et al. (2002); Horodecki et al. (2003a). We know (p?) = log dim(H4) — S(p?).

4.2.2 Problem Formulation

In the following we describe the problem statement. Let pAPC be a density operator acting on
Ha®Hp ® Heo. Consider two measurements M 4 and Mp on sub-systems A and B, respectively.
Imagine that we have three parties, named Alice, Bob and Charlie, trying to distill local purity
from the noisy joint state pAB¢. The resources available to these parties are (i) the classical
communication links of specified rates between Alice and Charlie, and Bob and Charlie, modelled
as a multiple-access dephasing channel, and (ii) an additional triple of pure catalytic quantum
systems Ao, Bo and Cg available to Alice, Bob and Charlie, respectively. Given the distributed
nature of the problem, no communication is possible between Alice and Bob. The problem is

formally defined in the following.

Definition IV.1. For a given finite set Z, and a Hilbert space Ha Q@ Hp @ Hc, a distributed purity

distillation protocol with parameters (n, ©1, ©2, K1, K2, K3, L1, L2, L3) is characterized by

1. a unitary operation on Alice’s system Ua: H3"®@Ha, = Ha, @Hx, ®Ha,, with dim(H 4, ) =
k1, dim(Ha.) = 1, and dim(Hx,) = O;.
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2. a unitary operation on Bob’s system Up: H%n @Hp. — Hp, ®Hx, ®Hp,, with dim(Hp,) =

ko, dim(Hp.) = t2, and dim(Hy,) = Os.
3. a multiple access dephasing channel N': Hyx, @ Hx, — Hx, ® Hx,.

4. a unitary operation on Charlie’s system Uc: HE" @ He, @ Hx, ®Hx, = He, Q@He, ®Hx, ®

Hx,, with dim(Hc,) = 13 and dim(Hc¢,) = k3.

Definition IV.2. Given a quantum state pB¢ € D(H4 ® Hp ® C), a triple (P, Ry, Ry) is said
to be achievable, if for all ¢ > 0 and for all sufficiently large n, there exists a distributed purity

distillation protocol with parameters (n,©1,©2, k1, k2, K3, L1, L2, t3) such that

G £ €4 BC — |0)0]" @ [0)(0[Pr @ |0)X0|“? || < e,

1 1
—1 i < Ry 1€ 2], — 1 i— 1 i) > P —€,
nog2® Ri+e€:i€[2] ng[g](ogzﬁ 089 L) €

where [¢€) £ UcNUBU AU ABCE “and [w§m)ABCH is a purification of (p*P¢)®". The set of all

achievable triples (P, R, R2) is called the achievable rate region.

Givena POVM M 2 {A4},cx acting on p, the post-measurement state of the reference together

with the classical outputs is represented by (id @ M)(¥%, ) & > per 2Nz @ Tra{(I% @ A2)UY .}

Definition IV.3. Consider a quantum state pAB¢ ¢ D(Has ® Hp ® He), and a POVM Myp =
Ms ® Mg acting on Ha ® Hp where My = {]\?}seg and Mp = {AP}ic7. Define the auxiliary

states

P98 £ (idp @ My @ idpe) (WEAEC),
o AT & (idp ® idac ® Mp)(PEAPC),  and

oFST 2N /pAB (A2 @ AP) VpAB @ [s)s| @ |e)t]
s,t

for some orthonormal sets {|s)}ses and {|t)}ie7, where \IJEABC is a purification of pABC. Let
Ry (pAPC, M 4p) be defined as the set of all pairs (Ry, R) such that there exists finite sets I and

V and a pair of mappings fs : S — U and fr : T — V, yielding U = fs(S), V = fr(T), and
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W = (U,V), and the following inequalities are satisfied:

Ry > I(U; RBO)y, — L (U; V) s,
Ry > I(V, RAC)UQ - Ib(Ua V)o‘g)

Ri+ Ry > I(U; RBC) g, + I(V; RAC) 6y, — (U3 V) s,
where Iy(1)e = b x I(+),

4.3 Achievable purity and communication rates: An Inner Bound

Theorem IV.4. Given a quantum state p*B¢ € D(HA@Hp@Hc), a triple (R1, R, P) is achiev-
able if there exists a POVM Map = My ® Mp acting on Ha @ Hp with POVMs My = {Af}seg

and Mp = {APYic7 Ha ® Hp and a real number b € [0,1] such that the following holds:
P < k(pa) + k(pB) + £(pc) + 1(C;U,V)o — I(U; V) gy,
and (Ry, Ry) € Ry(pABY, Mag), where
oRCST & (idp ® ide @ My ® Mp)(TFAB).

Proof. The proof is provided in Section 4.4. O

Definition IV.5. Given a quantum state pAB¢ € D(H4 ® Hp ® Hc), and a dephasing chan-
nel with communication links of rates R; and Rp define 1-way distillable distributed local purity

ki (pABY Ri, Ry) as the supremum of the sum of all the locally distillable purity.

Corollary IV.6. Given a quantum state pAB¢ € D(Ha @ Hp @ Hc), let

PP (pAPC R Ry) 2 max {I(C;U,V)g — I(U;V)g : (R1, Ry) € Ry(pBC, Mup)}.
MAB,bE[O,l]

With the above definitions, we have k', (pAP¢ Ry, Ro) < ks (pABY Ry, Ry). In other words, for
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any communication rates (R1, Ry), k1, (pABY, Ry, Ry) amount of purity can be jointly distilled from

the three parties using the protocol defined in Def. IV.1.

Proof. The proof follows from Theorem IV.4 and performing regularization. O

4.4 Proof of the Inner Bound (Theorem IV .4)

The proof is mainly composed of two parts. In the first part, we construct a protocol by devel-
oping all the actions of the three parties, and describe them as unitary evolution (as these are the
only actions allowed by the protocol, Def. IV.1). Simultaneously, we also provide necessary lemmas
needed for the next part. The second part deals with characterizing the action of the developed
unitary operators on the shared quantum state pAZ¢ and then bounding the error between the final
state and the desired pure state. Since our result is derived for a bounded communication channel,
we start by approximating the measurements to achieve a decreased outcome set, while preserving
the statistics of the measurement. Let M4 £ {A} and Mp £ {AB} denote the POVMs after the

maps fg and fr, respectively.

4.4.1 Approximation of the measurement M4 ® Mp

We start by generating the canonical ensembles corresponding to M4 and Mp, defined as

a2 Tr{AdptY, AP 2 T{ADpP}, AP 2 T{(Af @ AD)p*PY, and

) Al ) 1
pZ‘—AA\ﬁAA\/ Py S pVRPATVR . 00 S Ve P (A @ ADVeAB (42)

B

Let II,, and II,,,, denote the d-typical projectors (as in (Wilde, 2013a, Def. 15.1.3)) for marginal
density operators p4 and p?, respectively. Also, for any u” € Y™ and v™ € V™, let an and I15,
denote the strong conditional typical projectors (as in ( Wilde, 2013a, Def. 15.2.4)) for the canonical
ensembles {2, pA} and {\B, pP}, respectively.

For each u" € 7;” (U) and v™ € 7;” (V) define

~A/ 2 IT, Hu"pu"H nIlpy, ~1]?" 2 1T, Hv"pv"HB 1

un — PB

and g = 0, and pB, = 0 for u" ¢ 7:5(n)(U) and v" ¢ Tén)(V), respectively, with p2, = ® Pu,
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and pB, & &, #%. Randomly and independently select onfi and 27F2 sequences om™(1),V™(k))

according to the pruned distributions, i.e.,

oV SRS s PR
P((U™(1), V"'(k)) = (u", ") ={ (L—e)(1—-¢) ! €70, G%(m, (4.3)

0 otherwise

where ¢ = > M, and ¢ = Doun T (V) AB,. Let C denote the codebook containing all

uneT{™M (U)
pairs of codewords (U™ (1), V™(k)). Further, define 0" and ¢ as

Ak AB,
AT A ~A! B A v =B
2 L 2 " 4.4
o E = )pu , O g = )pv , (4.4)

ureT{™(U) meT™M (V)

where e = wneT™ (W) M, and ¢/ Zv"E’T(;n) W) AE.. Note that 04" and 0P’ defined above are ex-
pectations with respect to the pruned distribution Wilde (2013a). Let I14 and 12 be the projectors
onto the subspaces spanned by the eigenstates of o and &’ corresponding to eigenvalues that are
larger than £27(5(P4)+01) and ¢'277(5(PB)+01) wwhere §; > 0 is such that Tr(TI,,) < 2n(S(Pa)+dy)

and Tr(II,,) < 27(S(pB)+01) “and §; \, 0 as 6 \, 0. Lastly, define

pa A TAGATA, and pB 2 1IPpB 115,

Using these definitions, for any given e € (0, 1), and sufficiently large n and sufficiently small §, we

have

STy 2 1—e S Mot bl <e S ABE - Bl <e  (45)

uneyn unreyn pnrepn

(A detailed proof of the statement can be found in (Wilde et al., 2012, Eqs 28 and 35).) Using

these definitions, construct operators

Aun—vun<\/p7 Pun/pa~ 1) and an—cvn<\@ ponn/PB~ 1>, (4.6)
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where

A 1 € 5-nR n n A 1-¢ —nR n n
Yun = —2 L U™MI) =u and (pn = ——2 2k V™ k) = s 4.7
1 n |{ () }| C 1 n |{ ( ) v }| ( )

and n € (0,1) is a parameter that determines the probability of not obtaining sub-POVMs. Then

construct Mln) and Mz(n) as in the following
MM A (A u® € W), MY 2 {Byn: o™ € TV(V)),

We show later that M- 1(n) and Mz(n) form sub-POVMSs, with high probability, These collections M. 1(n)
and M2(”) are completed using the operators I_Zunefs(")(U) Ay,n and I_Zv"efs(”)(V) Byn, and these
operators are associated with sequences ug and vfy, which are chosen arbitrarily from Z/{”\E(")(U )
and V”\%(n)(V), respectively. Let 1 (sP-i} denote the indicator random variable corresponding
to the event that Mi(n) form sub-POVM for ¢ = 1,2. We use the trivial POVM {I} in the case
of the complementary event and associate it with ug and vy as the case maybe. In summary,
the POVMs are given by {ll{sp_l}Aun +(1—- ﬂ{sp_l})Il{un:ug}l}uneun, and {H{SP_Q}BM +(1—-
1gp-9y) Lion=up 3L bomevn.

Now, we intend to use the completions [Ml(nﬂ 1)] and [Ménﬂ 2)] in constructing the unitaries Ug
and Up, as described in the protocol (Def. IV.1), for Alice and Bob, respectively. Before concluding
the discussion on the POVMs, we provide two lemmas which would be useful in the sequel. The
first lemma deals with bounding from below the probability that the constructed collection of
operators indeed form a sub-POVM. Toward this, observe that the collections of approximating
POVMs, {Apny} and {Byny)}, constructed in this work are identical to the ones employed in
Winter (2004) (c.f. Chapter II) which allows us to use the Operator Chernoff Bound to establish
that these collections form a sub-POVM with high probability. Toward this consider, the following

proposition.

Proposition IV.7. For any e € (0,1), any n € (0,1), any 6 € (0,1) sufficiently small, and any n

sufficiently large, we have

E ]l{sP—J}ﬂ{SP—Q}} >1-e

if Ri > I(U;RB),, and Ry > I(V;RA),,, where 01,09 are defined as in the statement of the
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theorem.

Proof. Observe that the collections { Ayn ()} and { Byn(y) } satisfy all the hypotheses of the operator
Chernoff bound Ahlswede and Winter (2002) after identifying II as the cut-off operator employed

in Winter (2004). Now by following identical steps as in Winter (2004), the result follows. O

The second lemma provides a unitary to show closeness of the post-measurement states obtained
from approximating measurements and the actual measurements. Note that the faithful simulation
results Winter (2004); Wilde et al. (2012) and of Chapters II and IIT show the closeness of states
in the reference system, but the current result proves the closeness of the post-measurement states.
The main elements of the proof is in identifying appropriate purifications and using the Uhlmann’s

Theorem Wilde (2013a). Before stating the lemma, consider the following definitions. Let,

Apynq SN pUn WP A" and Byag) = 2¢vps! Pvn \/93717

for 7 =9 +772 k1 and = A 11 +f7 2" The lemma is as follows.

Lemma IV.8. Using the above definitions, for alll € [2“R1] and k € [2”R2], let

ABC’R
(l)) ‘\I]p E >ABCR

AAE A ~AE A (I AU”(Z)) ‘\IIP®"

and 0j

Ao val rﬁ“{ﬁén(z) }

(&,?F and 6£F defined analogously) where E and F' denotes the system BCR and AC R, respectively,

then for each l € [2”R1] and k € [2”R2], there exists a pair of unitaries UA(I) and UP(k), such that

. - 1 _
VFGHE, (B UADGHE) 21— Slof — it — 5 [1 = Tr{pi'}], and

VFGER (1Fe UB(R)GEF) 21~ L5 — il — 5 1~ Te{aP}.

Proof. The proof is provided in Appendix C.1. O

We now move on to characterizing the unitaries U4 and Up.
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4.4.2 Action of Alice and Bob

Using the approximating POVMs constructed above, as a first unitary operation, Alice and Bob

perform a coherent version of the approximating POVM. This is defined as

Ut e > A ey, Ubre \/ Bvar) @ k)
]

le[2nf ke[2nfiz]

From now on, for ease of notation, we use Af‘, AE, )\f‘, )\f,Al, Bk,ﬁlA, &E,’yl, and (i to denote the
corresponding n—letter objects constructed for the codewords U"(l) and V" (k), respectively.

Although the operators defined above are isometry operators, but with the help of additional
catalyst qubits, these can be implemented as unitary operators. The rate at which these catalytic
ancilla are used will be characterized and subtracted from the total rate at which the protocol
produces them. Now, to extract purity from the states obtained after performing the measurements
we employ the approach of Krovi and Devetak (2007). More formally, we define the collection of
unitaries {U]‘;‘(l)}le[zml] and {UpB(k)}kepmﬂ as those that can extract purity for the collection of
states {67} lef2nfi] and {65} kelanfa)’ respectively. Note that since ;' and 62 are product states, we
use a type based construction (similar to one proposed in Krovi and Devetak (2007)) in designing
the unitary operators U;;‘(l) and UP (k).

Now we characterize the complete action at Alice and Bob as
Uy 2 UM UAUAY and Up 2 UPKUPRUDK, (4.8)
where UAL and Ué““ are controlled unitary operators defined as

UME N vt e, UEE DT UA @I, (4.9)
le[2nf] lef2rfa]

and similar is true for UPX and UPK. This gives

Us= Y. UOUADVA@), Up= Y UYRUPKEVBL k).

le[2nfa] ke[2nR2]

Before introducing the action of Charlie, we provide two useful lemmas. The first lemma
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characterizes the purity that can be extracted individually by Alice and Bob, and the second
lemma integrates the action of the two parties and provides a way to cumulatively analyze the

effect of the two parties on the overall state. The first lemma can be stated as follows:

Lemma IV.9. Using the above defined unitary operations, let Ns : ’H%" — Ha, correspond to the

protocol that extracts purity from pa using the above defined unitaries, i.e.,
Na(pa) A Tra,r {(IRBC ® UA)p%m(IRBC ® UA)T} .
Then, for any given € € (0,1), we have

Ea [||Na(pa) = 10X0L4, | Tomy] < €. (4.10)
where HE™ = Ha, @Ha, and %log dimH,, <logdimHa -, MAS(pd), for all sufficiently large
n, and sufficiently small n,§ > 0.

Proof. The proof is provided in Appendix C.2. O
The second lemma is stated as follows:

Lemma IV.10. Given a protocol N4 : 'H?};n — Ha, (as described above) capable of extracting

purity from pa, let Vu : H%” — Ha, ® Ha, ® Hy be a Stinespring’s dilation of Na. Then,

E,4 [H([AR @ VAT © V)l = paa, yo)<oyApM < 4\/1[2,4 [[[Vatoa) = 10xoL,

J

(4.11)
where
pArA,L = Tra, {(IAR ® VA)W?§:(IAR ® VA)T} ;
and \Ifﬁé’f s a purification of pf".
Proof. The proof is provided in Appendix C.3. O
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4.4.3 Transmission over the Dephasing Channel N

Before we proceed to employ the dephasing channel, observe that the classical registers created
by the coherent measurement contains correlations across Alice and Bob. These correlations could
be exploited which can further reduce the communication needed over the dephasing channel. For
this, we employ the traditional binning operation. Begin by fixing the binning rates (Ri, Ra2),
with Ry < R; and Ry < Ry. For each sequence u" € 7:5(n)(U ) assign an index from [1,27%]
randomly and uniformly, such that the assignments for different sequences are done independently.
Perform a similar random and independent assignment for all v" € 7:;(71)(‘/') with indices chosen
from [1,2"%2]. For each i € [1,2"%] and j € [1,2"%2], let By (i) and Ba(j) denote the i** and the ;"
bins, respectively. More precisely, B1(7) is the set of all u™ sequences with assigned index equal to i,
and similar is By(j). Also, note that the effect of the binning is in reducing the communication rates
from (Ry, Ry) to (Ri, Ry). Moreover, let ¢y : T (U) — [1,2781], and 5 : T\ (V) — [1,2782),
denote the corresponding random binning functions. With this, we can denote |I) for [ € [2”R1] as
1 = lu(D)r, |Bu(l)), and similarly, |k) for k € [2”R2] as k) e = |ta(k)) e, 1BV (K)),", where the
functions Sy and By describe the remaining Ry — Ry and Ry — Ra qubits, respectively. Now the
qubits in the state |¢1(+)) and |.2(+)) are sent over the multiple-access dephasing channel A, each

requiring rates of Ry and Ry qubits, respectively. Let

O,ABCRLK A N(\IflABCRLK).

With this, we move on to describing the action of Charlie.

4.4.4 Action of Charlie

Charlie begins by undoing the binning operation. For this, let
Dij £{(L k) : (U"(0), V" (k) € T(UV) and (U(0), V"(k)) € Ba(i) x Ba(j) }-

For every i € [1,2"%1] and j € [1,2"%%2] define the function F(i,j) = (I,k) if (I,k) is the

only element of D;j; otherwise F(i,j) = (0,0) Further, F(i,5) = (0,0) for ¢ = 0 or j = 0.

!Note that ¢1(1) = ¢1(U™(1)), and similar holds for the functions t2, v, Bv.
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Using the qubits received from Alice and Bob, and the above definition of F'(, 7), Charlie aims at
undoing the binning operations. This can be characterized as an isometric map US : Hy, @ Hy, —

Hy, ® Hy, ® HF defined as

USE D > PG (il (4.12)

i€[2nf] je[2nFz]
where F() is such that dim(Hp) = Ry £ Ry — Ry + Ry — Ry. Note that, since binning decreased
the total number of qubits transmitted by Ry, to implement the above isometry, Charlie would
need Ry, number of additional catalytic qubits present in the pure state. As the protocol allows for
the use of additional catalysts, as long as they are returned successfully, such an isometry can be

implemented as a unitary.

Remark TV.11. As will be shown in the sequel, the error analysis gives an upper bound on Ry,.
As this is only an upper bound, one can choose to not bin at the maximum rate and can save on
the catalytic qubits needed. However, this would increase the communication rates by equivalent

factors. This is modelled in the theorem statement using the real number b € [0, 1].

After the complete identification of the measurement outcomes of Alice and Bob, Charlie now
extracts the purity from his state, conditioned on these outcomes. For this, he develops a collection

of unitary operations {US (I, k)} el analogous to the earlier ones, with respect to the

2nR1 ] 7k€ [2111?2} ?

state &lck defined as

Trrap { (I @ Aft @ AB)YUABCR(IRC @ A o AB)T}

A A
o1 2 v (4.13)
Lk
Although &lck is defined as an n-letter state, it can be written as ®?:1&5i ;> Where &5: ,» is defined
correspondingly. Further, he constructs the controlled unitary USK defined as
USRS NN US k) @ |1 kXL K (4.14)

le[2nfr] ke[2nfe]

This characterizes Charlie’s unitary as Uc = USTEUS | and gives
¢ABCRLK A (I ® UCLEYC)gABCRLK ([ o CLK [TVt
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At this point, we have the characterized the actions of all the three parties as unitary operations.
The next step is to measure the distance between the obtained state and the desired pure state, and
establish the G can be made arbitrary small. Let 1¢,py 41 (sP—1}L{sp_2}. Using the boundedness

of the trace distance, it suffices to show
E[G] 2 E |[|¢* %% Lopy — [0XO[ 57 |1 | < e,
where

4B £ Tepy o, i {TAPR @ Uo)N (IFC 0 Ug @ Up) W en (IR0 Us @ Ug)) (17420 Up)T).
(4.15)

4.4.5 Analysis of Trace Distance

We first provide a proof for the case assuming the encoders do not perform any binning (i.e,
b = 0), and later incorporate the analysis for the setting when b is non-zero. With this assumption,

we define
&" & Trpr,c{IR@US @ Us ® Up)Wib (1" @ UF @ Ua @ Up)'}, (4.16)

where we have replaced Ug with an identity transformation, and T, E Y 4, ® Hp, ® He, and

Ty A Ha, ® Hp, ® Hco,. Now we show the closeness of this state with ff” defined as
1 & T, {1 0 UR)@TCH (17 0 U} @ |0)014, 5, (4.17)
where
HRABOLE & ([RC o 7, & UB)\I,;x@BHCR(IRC © Ua @ Up)T,

and RCLK & Trap {@RABCLK}. Let ﬂ{sp} A ﬂ{sP—l} . ﬂ{sp_g}.
Step 1: Closeness of 55" and f;fp : As a first step, we show that 5?” can be made arbitrary

close to §Zp, in trace distance, for sufficiently large n, in the expected sense. Toward this, we
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perform the following analysis under the event {Il{s Py = 1}.

67" = &7l < [ Tra,z, { (1% © Ua @ Up) W BRI © U © Up)' | — @5OEK @ |0X01 1, 5, |

< Sx+ 8B, (4.18)
where

Sa s H Tra,n, {(IRC ® Ua®@ U)W ECH (I @ Us @ UB)T}

— Trag, {(IRC @ Ua® U)W ECH (I @ UL @ UB)T} ©[0)0] 4,

bl

I

Sp & H Teag, {(I°C & Ua  Up)WpECR (170 @ Us @ Up)'} @ [0)0],4, — @K & [0)01, 5,

(4.19)

Now our objective is to show that S4 and Sp can be made arbitrarily small for all sufficiently large
n, and sufficiently small 7, § > 0, in the expected sense, under the event {11{3 py = 1}. Again using
the monotonicity and isometric invariance of trace distance, we obtain

E [SA H{SP}] < E |:H T‘[‘Ag {(IRBC R UA)‘P;’:&OR(IRC ® UA)T}

— Ty {(IRBC 2 UA)\I/;!&CR(IRBC ® UA)T} ® |0><0|Ap Lisp_1)

1] < 4v/e,

(4.20)

where the last inequality follows by using the results of Lemma IV.9 and Lemma IV.10. Similarly,

we have

E [SB ]]_{sp}] <E |:H TI'Bg {(IRAC ® UB)\IJ?QgLCR(IRAC ® UB)T} _ (PRACLK ® |0><0’Bp ]]-{sP—Q}

J

where ®RACLE & Ty {CIDRABCLK } Again using the results of Lemma IV.9 and Lemma IV.10, we

get E [Sp Il{sp}] < 4,/e. This implies, E [Hgfp — be”Hl]l{sp}] < 84/e for all sufficiently large n and
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sufficiently small 7, > 0, while obtaining purity that satisfies

1 1
—logdimHa, < logdimH 4 — zu: MAS(ph, —logdim Hp, < logdim Hpp — zﬂ: MS(pB),
(4.21)

With the above result, we now move on to the next step. For this define,
& 2 Trrape,Li{(I" ® US © Uy ® U)W pon (1" @ UF @ Uy @ Up) '} ® |0X01,, 5,

where
A () /AlA AMelly, Us2 Y UPk 1/AB AB g k).
lE[Qan] ! k‘G[?”RZ

Note that, although U’y and U}; are not unitary operators, they are introduced for analysis purposes.
In other words, the non-product unitary corresponding to the coherent measurement U ]{} followed
by the n-letter rotation operator U ﬁ is replaced by its corresponding product measurement, and
similarly for U]\Ej[. In the next step, it will become clear how this operator is used in the analysis.

Step 2: Closeness of 5?” and {g P: consider the following set of inequalities:

T, T,
Hfzp - §1p||1ﬂ{sp}

.
— (U, @ Up) U iR (1" o U) U,’g)] (I8 & Ug)f}Hlﬂ{sp}
Z (P oUul k))[rﬁAB{(IRc@JXZ@JE)W?@QLCR(IRc@\/E@\/Bfk)T}
L,k
)\XiB Tr B{ (1% @ \/A7 APYWISCR(17C @ N@ \/E)TH (1P Ul (k)

n n A B
Z pip(Ar® By) \/P(EB )\A)\B PaB(A @ AY) \/PAB

Lk

TraBLK {(IRAB ®US) {(IRC @ Up @ Up)WABCR(I7C 0 Uq @ Up)

1

< Ta+ T, (4.22)
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where

Ty 2 Pan (A1 @ Be)\/pA — \/ P (Al ® AD AB) \ PAB K
Ts 2L (Al Y AB> VP = /\A/\B PAp (AT @ AY) ;

To bound T4 and Tg, we use the following lemma from Chapter II.

Lemma IV.12 (Lemma II.11 Chapter II). Given a density operator pap € D(Hap), a sub-POVM
My 2 {Af/3 ty € y} acting on Hp, for some set Y, and any Hermitian operator T'4 acting on Ha,

we have

> Iveas (04 @A) vpas], < |lvea T4 veal, (4.23)

yeY
with equality if ZAyB =1, where pa 4 Trp{paB}-

yey

Using Lemma V.12, we can now simplify T4 and T as

5B o (M) Vo

for all sufficiently large n, and all sufficiently small 1, > 0, where the last inequality follows from

E[TA < E

] =E [Zcuﬁf - ﬁf‘lh] <e (4.24)
1 k

(4.5). For T'g, we obtain

E[TB]
¢ o -
=Ea|>, D Esllymp- v"}]/\ Pas (Ar @ Al ) /o — A pS (A @ AL, \/pAB
lk? "ET(n)( )
1 n n n A
ST P H A (49 A2) i — oo 0 42 i |
! "ET<"

1 Y A
< E4 H PR AN PR — S AL
(1 + 77) Z A A )\24 A M

- [Zva it < )
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for all sufficiently large n, and all sufficiently small n,§ > 0, where the last inequality follows from
(4.5). This implies, E[H&QTP - £1Tp||1]l{sp}] < 2¢, for all sufficiently large n, and all sufficiently small
1,0 > 0.

Step 3: Closeness of §2T” and [0)0], :

T 8ls R

l&s” = 100k, Il = || D= Ml Tre, {UF (L RSHUS W R} = 100006, || < Q1+ Qa,
Lk 7Lk

’ 1

(4.26)

where 6le is as defined in 4.13, and

A2y /\Zf\B)\ka e, {U5 @ R)EEWUE @R~ 0X0l,|
Lk I 'k

)
1

>

Q2

76
> im0l = [0X0l, | =
Lk U7k

From the definition of UI? (I, k), it follows that

Bl Yy U ‘gﬁ(jﬂg £2) \ap

Tre, {US (W 0)6G o (U W, 0)1 = 1001, |
(un’vn)eﬂ(”) (U,V)

A
+2 > B
(W o) g T (U V)

< 3¢, (4.27)

for all sufficiently large n and sufficiently small 7,d > 0, and for %log dimHg, < logdimHgo —

Zu?v MBS(6C). For the term corresponding to Qo, we provide the following proposition.

Proposition IV.13. For any e € (0,1), any n € (0,1), any § € (0,1) sufficiently small, and any
n sufficiently large, we have E [Qs] <€, if Ry + Ry > I(U; V).

Proof. The proof follows from using a similar set of arguments developed in (Cuff, 2009, Lemma

19). O

This implies, E ||§§p — [0X0, ||1] < 4e, for any given € € (0,1), and for sufficiently large n,

and sufficiently small 1, > 0.
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Now as a final step, we consider the case when Alice and Bob chooses to bin their measurement
outcomes before sending over the dephasing channel, i.e., the case when b > 0. We term the error
introduced by this process as the binning error.

Step 4: Closeness of bep and £77: In this step, we bound the error that is introduced when
Charlie tries to undo the binning operation by performing the unitary Ur. We show that Charlie
will be successful if the rate at which binning is performed is constrained by a non-trivial bound (to
be obtained in Proposition IV.14), and hence the error involved in undoing the binning operation
can be made arbitrary small, in an expected sense, for all sufficiently large n.

Forl el e [2"R1] and k € k € [Z"RQ], define d(I,k) £ F(i,j), such that (U™(1),V™(k)) €
B1(i) x Ba(j). Note that d(-,-) captures the overall effect of the binning followed by the decoding

function F. Further, for [ €[ € [2"[%1] and k € k € [2"R2], define

@ A (IRC®\/Al®Bk)\I/p®n(IRC®\/Al®Bk)
P =
Y€k

Using these definitions, we obtain

e — &7 < 3 H(IR ® U (OUA (1) @ Up(k)UP (k) (UE (1 B)W o (U (1, K))
Lk

~UE (L k) B o @ US (@1 0)T) (17 @ UAOUAD) @ Up()UF (k)|

= HU,? (1 k)T jon (UC (1, k)T = UC(d(1, k) pon @ UC (d(1, k))TH . (4.28)
L.k

Now, consider the following proposition.

Proposition IV.14. For any € € (0,1), and sufficiently large n and sufficiently small n,6 > 0, we
have E[||¢% — &7 |)] < € if Ry — Ry + Ro — Ry > I(U; V).

Proof. The proof is provided in Appendix C.4. O

Finally, we complete the proof by combining the results from all the above steps in the following.

Using this, we have

T T, T, T T, T
1€ L gy — [0)XOI"7 |11 < [HST” =& I+ 167 = &7+ 11€7 = &7 | Lispy + 162" = 10XO0I™ |1,
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Taking expectation of the above inequality and using (i) the closeness of trace norm proved in each
of the steps, and (ii) the result from Proposition IV.7, we have the desired result. This completes

the proof.

4.5 Conclusion

In this chapter, we considered the task of distilling local purity from a noisy quantum state
pABC . We provided a protocol for three parties, Alice, Bob and Charlie, to distill local purity (at
a rate P) from many independent copies of a given quantum state pAZC¢. The three parties have

access to their respective subsystems of pABC

, and are provided with pure ancilla catalytically,
i.e., with the promise of returning them unaltered after the end of the protocol. In addition, Alice
and Bob can communicate with Charlie using a one-way multiple-access dephasing channel of link
rates R; and Rs, respectively. The objective of the protocol was to minimize the usage of the
dephasing channel (in terms of rates R; and Ry) while maximizing the asymptotic purity that can
be jointly distilled from pAB¢. To achieve this, we employed ideas from distributed measurement
compression protocols, and in turn, characterized a set of sufficient conditions on (P, R;, R2) in
terms of quantum information theoretic quantities such that P amount of purity can be distilled
using rates R; and Ry. Moreover, we observed a continuous trade-off between communication rate
and purity, expressed in terms of the variable b. This variable captures the correlations present in
the measurement outcomes across the distributed subsystems. We provided a way to exploit these

correlations by a technique similar to classical binning, undoing which results in a tradeoff between

distillable purity and communication rates.

129



CHAPTER V

Lossy Quantum Source Coding

5.1 Introduction

In Chapters II and III, apart from our objective of measurement compression, we also obtained
QC distributed compression results. In this chapter, we turn our attention to a fully quantum prob-
lem. A fundamental problem from an quantum information theoretic perspective is the asymptotic
characterization of the rate required to compress a quantum source that can be recovered to a
certain measurable degree. Such a problem is referred to as quantum source coding or a quan-
tum data compression problem. In the lossless regime, Schumacher Schumacher (1995); Jozsa and
Schumacher (1994) proved that a quantum source could be compressed at a rate given by von
Neumann entropy while incurring a very small error between the reconstruction and the source
state. The error in this model is defined for the entire block, also called as block error or global
error. Considering the block error, a strong converse was also proved in the lossless regime Winter
(1999), which states that it is impossible to achieve any rate below von Neumann entropy even
when the asymptotic probability of block error is relaxed from being (almost) zero.

As for the lossy regime, where the objective is to further reduce the rate at the expense of
increased but bounded error, Barnum Barnum (2000) conjectured minimal coherent information
as a candidate in characterizing the asymptotic performance limit. Generalizing the formulation
from the classical rate-distortion theory Shannon et al. (1959), Barnum in Barnum (2000) intro-
duced a local distortion criterion as averaged symbol-wise entanglement fidelity based on marginal
operations (partial trace) between the reconstruction and the reference of the original source. In

Datta et al. (2013a), Datta et. al obtained a regularized expression for the quantum rate-distortion
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distortion function in terms of the entanglement of purification. Further, the authors also formu-
lated the entanglement-assisted quantum rate-distortion problem and characterized its asymptotic
performance limit using a single-letter expression. Wilde et. al further refined the characterization
of the quantum rate-distortion function in terms of regularized entanglement of formation, and
also generalized the problem setup to various scenarios, including side information in Wilde et al.
(2013). Works toward the asymptotic simulation of a memoryless quantum channel in Berta et al.
(2011); Bennett et al. (2014) have shown to be useful in achieving the above results, in particular,
the entanglement-assisted formulations. Authors in Datta et al. (2013b) formulated a quantum-
to-classical rate-distortion problem and provided a single-letter formula. A rate-distortion version
of the quantum state redistribution task Devetak and Yard (2008); Luo and Devetak (2009) was
considered in Khanian and Winter (2021). Investigations on a rate-distortion framework of generic
mixed quantum sources have been the focus of Khanian and Winter (2022); Baghali Khanian et al.
(2022). Other works that addressed related problems include Koashi and Imoto (2001); Devetak
and Berger (2002); Winter (2002); Datta et al. (2013c); Hsieh and Watanabe (2016); Salek et al.
(2018); Anshu et al. (2019).

In this work, we consider a new formulation of the problem of lossy quantum source coding, and
characterize a rate function, no larger than von Neumann entropy, while allowing for bounded error
in the reconstruction. We use a global error criterion as opposed to the approach of local symbol-
wise error studied in the literature. The problem we consider is without any shared entanglement
resources between the encoder and the decoder. We motivate this formulation with the following
observations.

An important component of any source coding problem is the error criterion employed in the
formulation of the problem. The local error criterion in the quantum rate-distortion framework is
inspired by the corresponding additive local single-letter distortion criterion in the classical source
coding formulation of Shannon Shannon et al. (1959), where a single-letter characterization is
available. The motivation for considering a local criterion is the strong converse of the lossless
source coding theorem which states that the entropy bound cannot be breached even when the
asymptotic probability of block error is relaxed to any number in (0, 1) (Csiszdr and Korner, 2011,
Theorem 1.1). Although the strong converse precludes any relaxation of probability of block error

criterion, it does not prevent adopting alternative global error definitions for formulating a lossy
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source coding problem.

In Shannon et al. (1959); Csiszar and Korner (2011), a duality connection between the source
coding problem and the channel coding problem was observed. These problems were interpreted in
terms of a covering versus packing perspective. In both problems, the same information measure,
namely the mutual information, captures the asymptotic performance limits. A similar duality con-
nection exists between the classical-quantum communication problem Holevo (1998); Schumacher
and Westmoreland (1997) and the quantum-classical source coding problem Winter (2004); Datta
et al. (2013b), with the performance limits of both problems characterized in terms of single-letter
Holevo information quantities Holevo (2019). This has been further explored in Cheng et al. (2019).
In the fully quantum setting, from this standpoint, its well known that the quantum channel coding
problem has an asymptotic performance limit characterized using regularized coherent information
Lloyd (1997); Shor (2002); Devetak (2005b); Hayden et al. (2008). Among others, Devetak de-
veloped a proof of this result by employing a coherent approach to covering and packing, and
combined them cohesively, inspired by his work on the private channel capacity problem Devetak
(2005b). Coherent information can be interpreted in terms of packing of subspaces as elucidated
in Lloyd (1997). Quantum error-correcting codes have been extensively studied along these lines
in the coding theory literature, e.g., quantum Hamming bound Nielsen and Chuang (2002). This
leads us to the question: why is such a limit based on coherent information absent for the lossy
quantum source compression problem?

Toward answering this question, we take a closer look at the classical discrete memoryless
setting. We find that in addition to Shannon’s pioneering work of characterizing the rate-distortion
problem Shannon et al. (1959); Berger (1975), there have been several works discussing the lossy
source compression problem. A concept that has received particular attention is the notion of
a backward channel (Csiszdar and Kdorner, 2011, Problem 8.3), which characterizes the posterior
distribution of the source given the reconstruction. The structure of this channel has been studied
in Gallager (1968); Berger (1971); Gerrish (1963). Although the forward channel, relating the
reconstruction to the source, achieving the rate-distortion function need not be unique, the resulting
backward channel is indeed unique. Moreover, the rate-distortion achievability result in (Csiszdr
and Korner, 2011, Theorem 2.3) is shown by constructing a channel code for a backward channel

with a large probability of error and by using the encoder of the latter as a decoder of the former
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and vice versa. Highlighting this duality further, inspired by results on the output statistics of
good channel codes Shamai and Verdd (1997), the following was shown in Pradhan (2004). The n-
letter actual posterior conditional distribution of the source vector given the reconstruction vector
of any rate-distortion achieving code converges in normalized divergence to the n-product of the
unique minimum-mutual-information backward channel conditional distribution. In other words,
although the encoder and decoder are block operations, the induced posterior n-letter channel
becomes discrete memoryless in the asymptotic limit for a rate-distortion achieving code. For
further developments on this concept see Weissman and Ordentlich (2005); Cuff et al. (2010);
Schieler and Cuff (2013); Kostina and Verdd (2015). This channel also plays a fundamental
role in Bayesian estimation and detection theory Poor (1998), e.g., maximum a posteriori (MAP)
estimation. Therefore, we ask the question, can we use such a channel to formulate a lossy source
coding problem?
Contributions of this work: In light of this, in this chapter, we explore a new formulation of
the source compression problem in the memoryless setting. This formulation is based on the notion
of a posterior channel that produces the reference of the source from that of the reconstruction.
Instead of a single-letter distortion function, now, we are given a single-letter posterior channel
that characterizes the nature of the loss incurred in the encoding and decoding operations. More
precisely, we want to construct an encoder and a decoder such that the joint effect of encoding
and decoding — to produce a reconstruction sequence from the source sequence — is close to the
effect of the n-product posterior channel acting on the non-product reconstruction sequence.The
closeness is measured using the trace distance in the quantum case and the total variation in the
classical case, manifesting as a global error constraint. A related concept is the Petz recovery map
which has found significant relevance in information-theoretic problems Petz (1986); Barnum and
Knill (2002); Hayden et al. (2004). However, we take a different approach and consider a quantum
channel, i.e., a CPTP map, acting on the reference of the reconstruction to produce the reference of
the source, whose existence is guaranteed using Uhlmann’s theorem. We refer to this as a posterior
reference map.

As one of the main contributions of our work, we provide a single-letter characterization of the
asymptotic performance limit of this source coding problem using the minimal coherent information

of the posterior reference map, where the minimization is over all reconstructions (see Theorem
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V.9). Furthermore, our work establishes a duality connection between quantum lossy compression
and the quantum channel coding problem. Our proof is based on the coherent application of two
fundamental tools of quantum information theory, namely, packing and covering, implying a duality
relationship with Devetak’s proof for the channel coding problem Devetak (2005b) (also see Shor
(2002); Hayden et al. (2008)).

At one end of the spectrum, when the posterior reference map is specified as the identity
transformation, our rate expression in the quantum case reduces to the von Neumann entropy of the
given quantum source, demonstrating the connection with the Schumacher’s lossless compression
Schumacher (1995). In fact, with Schumacher’s formulation also based on a global error criterion,
the latter and the current formulations enjoys a stronger relationship of equivalence at this extreme.
On the other end, when the specified posterior reference map is such that coherent information is
negative for some reference of the reconstruction, we characterize the asymptotic performance limit
of the lossy quantum source coding problem to be zero.

The techniques employed to prove our results can be summarized as follows. For the achiev-
ability of the Theorem V.9, we first construct a posterior reference isometry V (as in Definition
V.1) and decompose it as a coherent measurement. We then make use of Winter’s measurement
compression protocol Winter (2004), and apply it in a coherent fashion to compress the output
of the above isometry. This involves using the Uhlmann’s Theorem Uhlmann (1976) (or ( Wilde,
2011, Theorem 9.2.1)) followed by incorporating additional phases to achieve a coherent faithful
simulation of the posterior reference map. To further decrease the compression rate, we exploit
the fact that a noiseless quantum channel can preserve arbitrary superpositions. Therefore, we
perform additional encoding to embed the information at the output of V' as superpositions within
itself. This requires availing the HSW classical communication result Holevo (1998); Schumacher
and Westmoreland (1997) to construct information decoding POVMs, and Naimark’s extension
theorem to construct a unitary from POVM elements. The method used for expurgation is another
interesting feature of the proof. The protocol as it stands only permits operations that are unitary
or isometric, followed by partial tracing. It can be challenging to guarantee this when there are
repeated codewords in a code. A similar phenomenon was observed in the Devetak’s proof Devetak
(2005b). For the converse of Theorem V.9, we use the quantum data processing inequality for

coherent information, the Fannes-Audenart inequality, and monotonicity results. such as the quan-
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Figure 5.1:
& Figure demonstrating the construction of the posterior reference map W from the isom-

etry V (the Stinespring’s dilation of Ny/) and the source state p®.

tum data processing inequality, the concavity of conditional quantum entropy, and the continuity
of quantum mutual information (AFW inequality).

The chapter is organized as follows. We provide some necessary definitions and useful lemmas
in Section 5.2. In Section 5.3, we formulate the problems and provide the main results (Theorem
V.9). We provide examples corresponding to the main result in section 5.4. In Sections 5.6 and 5.7

we provide proofs of the main results. Finally, Section 5.8 concludes the chapter.

5.2 Preliminaries and Notations

We supplement our notations so far with the following. Let I4 denote the identity operator
acting on a Hilbert space H4. The set of density operators on H4 are denoted by D(H4), and
linear operators by £L(H 4). We denote H 4,, as the Hilbert space associated with the reference space
of Ha, with dimH 4, = dimH 4. In this work, we focus exclusively on references obtained from
canonical purifications of quantum states ( Winter, 2004, Lemma 14 (Pretty Good Purifications)),
and define canonical purification |1ij>ARA of pA as |¢p>ARA = (Iay, ® \/pM)Tapa, where T, a
is defined as the unnormalized maximally entangled state. We use \I/fRA to denote the density

>ARA. As is the convention, for two states acting on the same Hilbert

operator corresponding to [,
space, we use the same I' when defining their canonical purifications. We denote the finite alphabet
of a source as X, and the set of probability distributions on the finite alphabet X as P(X). Let
(O] A {1,2,---,0}. For a CPTP map N : H4 — Hp, and an input density operator p € D(H.),

we use I.(N, p4) to denote the coherent information of N with respect to p™.

Definition V.1 (Posterior Reference Map). Given a source p? € D(Hp) and a channel Ay :

Hp — Ha, let pA 2 Ny (pP). Let V : Hp — Ha ® Hg be a Stinespring’s isometry corresponding
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to the CPTP map Ny with dim(Hg) > dim(Ha), such that Ny (-) = Tre{V(-)VT}. As shown
in Figure 5.1, define the “posterior reference map” of V with respect to p# as the CPTP map
Nw Ha, — Hpy corresponding to the isometry W : Ha, — Hp, ® Hg satisfying (W ®
I4) |@Dp>ARA =(Ip,®V) |¢p)BRB where \1/1P>ARA and |¢p>BRB are the canonical purifications of p?

and p?, respectively.

Remark V.2 (Existence of a Posterior Reference Map). Using the equivalence of purifications, one
can guarantee the existence of such a posterior reference isometry W : Ha, — Hp, ® HEg. Since V'
is an isometry with dim(Hg) > dim(#4), and since \wp>ARA and W,,>BRAE = (Ip, @ V)|, PP
are purifications of p? (as Trg(VpPVT) = pA), from (Wilde, 2011, Theorem 5.1.1), there exists an
isometry W : Ha, — Hp, ® H such that (W ® 14) Wp>ARA = |wp>BRAE.

5.2.1 Useful Lemmas

Lemma V.3 (Fuchs and Van De Graaf (1999), Theorem 9.3.1 Wilde (2011)). Given two states

p,0 € D(H), we have

1
1=V FE(p.o) < Slp=olly = V1= Flp,0).

Lemma V.4. For pP o8 € D(Hp), the following inequality holds:

2
Fllp) s o)) > <1 e aBul) , (5.1)

where [1b,) and |1by) are the canonical purifications of pP and oB, respectively.
Proof. We provide a proof in Appendix D.1. ]

The above lemma is a slight tightening of the Lemma 14 (“Pretty good purifications”) of Winter
(2004).

Lemma V.5 (Naimark’s extension theorem Naimark (1940), ( Wilde, 2013b, Theorem 2.1)). Given
a POVM {T';}.ex acting on the system H 4, there exists a unitary Uaar acting on the system H

and auxiliary system H 4 and an orthonormal basis {|$>A/}xex such that

Te {To(p" @ [0)0]4) } = Tr(Tap™),
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Figure 5.2: Illustration of Lossy Quantum Compression protocol

where {T, £ LA, (Ia® \m)(x!A/)UAA/} are orthogonal projectors acting on system Ha @ H 4. And,

\O>A/ is some fived state in Har, independent of Ty and p?.

5.3 Main Result: Characterization of the Achievable Rate Region

We first formulate a quantum source coding problem as follows. For any memoryless quantum
information source, characterized by p® € D(Hp), denote its canonical purification by W,)B Br,

Let pBr & TrB[\I/pBRB].

Definition V.6 (Quantum Source Coding Setup). A quantum source coding setup is characterized
by a triple (p?, H 4, M), where pP € D(Hp) is a density operator, H 4 is a reconstruction Hilbert
space, and Ny is a single-letter CPTP map from H 4 » t0 Hpy, where H 4, and Hp, are reference

spaces corresponding to H 4 and Hp, respectively.

Definition V.7 (Lossy Quantum Compression Protocol). For a given input and reconstruction
Hilbert spaces (Hp,Ha4), an (n,0) lossy quantum compression protocol consists of a encoding
CPTP map Ng(n) : Hpn — Hyr and a decoding CPTP map ./\/'gl) : Hayr — Han, such that

dim(#Hs) = ©, as shown in Figure 5.2.

Definition V.8 (Achievability). For a quantum source coding setup (p?,Ha, M), a rate R is
said to be achievable, if for all e > 0 and all sufficiently large n, there exists an (n, ©) lossy quantum

compression protocol satisfying

n oAn An AR
[ — (A @ Ly wih

. <, (5.2)
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BRB"

and %logG < R + ¢, where wBrA™ & (I ®Né"))(_f ®Nén))(\1,p ), and \1,5%3" and \I,:\E%A“

are

the canonical purifications of p? “" and wA" | respectively.

In other words, the protocol ensures that the joint state of the reconstruction on H%n and
the original reference H%Z is close to the effect of the n-product posterior channel acting on the
reference of the non-product reconstruction sequence. Our objective is to characterize the set of all

achievable rates using single-letter quantum information quantities.

Theorem V.9 (Lossy Quantum Compression Theorem). For a (pP,Ha, Nw) quantum source

coding setup, a rate R is achievable if and only if S(p®, Nw) is non empty, and

R > min IF (N, pR),
pARES(pB Nw ) e ( F)

where for any real x, xT a max(x,0) and
S(p®, Nw) 2 {p*" € D(Ma,) : Nww(p™®) = pPr}.

Proof. A proof of the achievability is provided in Sections 5.5 and 5.6, and a proof of converse is

provided in Section 5.7. 0

Remark V.10 (Covering of Subspaces). The asymptotic rate obtained in the statement of Theorem
V.9 can be interpreted using a subspace covering argument. Let us assume we are given a source
pP and a CPTP map Ny whose coherent information is positive for all pA7 € S(pB, My). Let W :
Ha,, — Hp,@HE be a Stinespring’s dilation of Njy. This implies I.(Nw, pA%) = S(Br)s —S(E).,
where oBrE & W pARWT for pAr € S(pB, Nyy). We know that the n-product source state p? “" can
be compressed using Schumacher compression to a subspace of normalized logarithmic dimension
S(BRr)s with high probability. In order to further reduce the rate, we use the posterior reference

Br such that its action on the source produces the state p*. Each

map of W with respect to p
basis vector in the reconstruction space can be thought of as covering a subspace of normalized
logarithmic dimension of S(E), in the reference space. Therefore, one needs a rate of coherent

information (which is the difference of the two entropies) to cover the entire source space with high

probability. A similar observation was made for the quantum channel coding problem in Lloyd
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(1997).

Remark V.11 (Comparison with Schumacher’s lossless compression). Schumuacher’s compression

BnAn_qlB B™

Schumacher (1995) requires lim,, o |[|[w”E || = 0. In the current formulation, if one

chooses the identity map as the posterior reference map, ie., Ny = Ia,p,, we require the
condition lim,, o [|wBRA™ — \IJA A || = 0. Using Lemma V.4, monotonicity of the trace norm, and
the triangle inequality, one can show that the two conditions are equivalent. Subsequently, both
formulations yield the same asymptotic performance limit of von Neumann entropy. Observe that
the standard source coding formulation using the average single-letter distortion criterion at zero

distortion level is not equivalent to Schumacher’s compression.

Remark V.12 (Comparison with average single-letter rate distortion). Given any sequence of (n, ©)
lossy quantum compression protocol for a quantum source coding setup (pB , Ha, Nw) that achieves
the optimality in Theorem V.9, we observe that the following is true. Let wBrA™ £ (I ®./\/'én))(l ®
N, én))(\I/f’%Bn) be the induced state of the n-letter reference and the reconstruction by the protocol.
Since the protocol satisfies (5.2), by monotonicity of trace distance, we obtain

lim [JwBrid — Ny @ I4)(WARAN |, =0, V1<i<n,

n—o0

AR A™

U, 77 . It is worth noting that gnid

where \I'f} ridi A Ty is not necessarily a pure state.

An\iA;;\i[
Moreover, this does not necessarily provide any guarantee on the average single-letter distortion
between the reference and the reconstruction as considered in the standard formulation of the
problem (Datta et al., 2013a, Lemma 1), where a single-letter purification of the source is taken

into account. From this perspective, the current formulation is more “optimistic” in terms of

measuring the quality of the reconstruction.

Remark V.13 (Comparison with Entanglement Assistance). We note that

L(Nw,p"") = S [I(Br; A)g — 1(4; E)] < 51(Br; Ao,

M\H
DN |

where oBrAE 2 (] @ V)\I/pBRB(I @ V), and V : Hp — Ha @ Hp is a posterior reference map of
W with respect of pBr. It was shown in Datta et al. (2013a) that 31(Bg;A), characterizes the

asymptotic performance limit for the rate-distortion problem (with a local single-letter distortion
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function) with unlimited entanglement assistance. Hence, this also provides a lower bound on the
asymptotic performance limit for the corresponding problem in the unassisted case. Fortunately,
this does not lead to any contradiction, as the current formulation differs from the former by being

more optimistic.

5.4 Illustrative Examples

Example V.14 (Quantum Source Coding using Bit-Flip Channel). In this example, we analyze
the performance of a lossy quantum compression protocol corresponding to a quantum source
coding setup (p?, Ha, Nw ), where p? is chosen as the maximally mixed state (p® = I5/2), and
Nw: Ha, — Hp, is specified as a bit-flip channel. An isometry W: Ha, — Hp, ® Hg for Nw

can be specified as

W=1-plo|0)"+pX o |1)",
where Ny (p47) = Trg(WpArWT) for all p € (0,1/2). Note that the canonical purification |¢),) 7"
of pP is given by

1
V2

) P17 = == (10077 10)” + 1P 1)) (5.3)

where |0)%% 2 (I ® (0/%) |1)P2B . This implies, pB% = Ip, /2. To compute the asymptotic perfor-
mance of the protocol for this source coding setup, as characterized by Theorem V.9, we first need
to identify a pA% such that Ny (pA®) = pPR. A simple computation reveals S(p?, My) = {14,,/2}.
This gives

min IjN,AR =I.Nw,14,./2) = S(Br)se — S(E)q,
pARES(pB Nw) N, o) (Nw, 145/2) (Br) (E)

where o PrE = WpArRW T, Note that o7 = I, /2 and o = (1 —p) [0Y0|" 4 p[1X1|”, which gives
I.(Nw,14,/2) =1 — hy(p), where hy(p) 2 _plog(p) — (1 — p)log(1 — p). Therefore, a maximally
mixed source can be compressed at a rate 1 — hy(p) while satisfying the error criterion as defined

in (5.2).

Example V.15 (Quantum Source Coding using Depolarizing Channel). In this example, we study

the performance of another candidate channel, namely a depolarising channel. We again proceed
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with the objective of compressing a maximally mixed state pPr = %, with Ny defined as

3
Nw (p?m) = <1 - f) pir + g(XpARXT +YptryT 4+ Zphnzh).

for some p € [0,1]. A simple calculation to satisfy Ny (pAr) = pPr = IB% reveals S(pB, M) =

{Ia,/2}, for all p € (0,1). Analogous to the above example, finding an isometric extension of Ny

gives

mi — 3p
111 IH(Nw, p7) = IH (N, 14, /2) = max {0,1 — hy(3p/4) — == log(3)}.
pARES(pB Niw) © ( pr) =1 Nw, Lag /2) { b(3p/4) 1 g(3)}

Example V.16 (Hamming codes for quantum source compression). In this example, we look at
how Hamming codes perform when evaluated using the standard single-letter (local) entanglement
fidelity criterion. Hamming codes are perfect codes, and achieve the Delsarte upper bound on the
covering radius Mattson Jr (2012). Again, let p? = %B. Let a maximally entangled bipartite state

[ty ) BRB | defined as

)57 = = (00)%7 4 1107 (5.4)

be the purification of p. Let Fy denote a binary finite field, and let G € IFIQ“X" be the generator
matrix of a Hamming code. To encode p®, we appeal to the duality perspective, and use the
decoder of a Hamming code. Then the encoding is defined as £(z™) £ argmin i {wg (u* G & z™)},
for all 2™ € F3, where wy denotes the Hamming weight. Similarly, the decoder can be described
as mapping D o £((z")) = E(z")G. We describe this encoding as an isometric action Vi : H5" —
HE" @ HE™ taking the basis 125" to a vector |E(z")" @ |2 & E(z")F" € HY" @ HE™, where
the subsystem Hf" stores the reconstruction and H%n is eventually traced out, and H 4 is assumed

to be an isomorphic copy of Hp. This implies that the encoded state can be characterized as
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Using

Vir [p5m) i7" = Z ") gy, [E(2™) an 2" @ E(")) o

2TL

mn n n n
\/27 Z Z " @e >Bg ") an |€") n

creC enelFwy(en)<1

we can simplify pBrA" as

n n 1
PP = D et eer ol () (5.5)

Cn,Cln,en

where C denotes the set of codewords of the Hamming code. To compute the single-letter entan-

glement fidelity, we compute

PBR =Tr BN An\i {PB"AH Z |ci @ €3) (i @ il ® |cq) (cil (5.6)

c™,em
where tracing is performed on all the subsystems except corresponding to Bz\ifln\i7 and the second
equality follows from using the fact that minimum Hamming distance of any Hamming code is

three. This gives,
. 11
(B | pPridi |y Prly — Ja9m Y [Lewem0.c=0) + Lepei=tei=1}] = 2n+1 > lie—oy (5.7
cem cem

Therefore,

1 BgrB| Br.A; B B |C|n2 n
E Z<1’Z} . |P i ’¢ 8 2n+1 Z Z ]l{ez 0} 2n+1n = 2. 2nfk' (5'8)

i=1 chem ;=1

We know that for Hamming codes £k = 2" — r — 1 and n = 2" — 1, which simplifies as

1 — or —1
=3 PRy, PR = S (5.9)

and goes to half as r goes to infinity. Note that r — oo serves as both a demonstration of the
code’s asymptotic performance and the condition for the rate k/n to reach unity. This results in a

discontinuous asymptotic performance, since at rate exactly one, trivial identity encoding can be
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used to achieve the average single-letter fidelity of unity. Further, note that S(E™) = log(n + 1) =
r. Hence the normalized amount of qubits that is dissipated, given by @, approaches zero
as r — oo, indicating that there is significant entanglement between the reconstruction and the
reference.

As was demonstrated in Example V.14, it is possible to compress a maximally mixed source
in a continuous fashion, when the error is measured in accordance with the suggested definition in

(5.2),

5.5 Achievability Proof Overview

We provide a brief overview of the achievability proof before formally presenting one. The proof
we present here is inspired by Devetak’s work in Devetak (2005b) for the quantum channel commu-
nication problem (also detailed in ( Wilde, 2011, Chapter 24)). An integral component of that work
is the decomposition of coherent information as the difference of two Holevo information quantities.
We intend to perform a similar decomposition, but from the perspective of the given map Ny, . To-
ward this, for the given source p?, we first search for a pA% € D(H ,,), satisfying Ny (pA7) = pPr.
Once found, using the spectral decomposition, we expand pA% as pAr = Y A\ la)a| 7, for
some finite set .A. Observe that since |a)a| " is pure, S(Nyy (la)a|1?)) = S(/\/’{}V(|a><a|AR)), where
Ny : Ha, — Hp is a complementary CPTP map of Ny, defined using the Stinespring’s dilation

W :Ha, = Hp, ® HE corresponding to Ny . This also means that

Y SN (Ja)al 7)) = D ALS(AG (la)al 7).
acA acA

Furthermore, from the linearity of CPTP maps, we see

D N Nw (la)al'®) = N (p*7) and > T NSNS (Ja)alt®) = A (o).
acA acA

This implies, we can rewrite I.(Nyy, p7) as

LN, pR) = S(Nw (p"7)) = SN (1))
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= ls(Nw(PAR)) -> S(Awa(laXG\AR))] - [S(chv(PAR)) — > NS (la)al ')
acA acA

= x ({2 N (laal ) } ) = x (Xl Ao (a)al ™) }) (5.10)

Now our aim is to show the achievability of a rate equal to the above difference. After obtaining
a similar decomposition, Devetak achieved the performance limit by applying a coherent version of
the CQ packing lemma ( Wilde, 2011, Chapter 16) followed by an application of the QC covering
lemma ( Wilde, 2011, Chapter 17). Inspired by this, and the duality connections between the two
problems, we achieve the difference obtained in (5.10). In particular, we start with the objective
of applying a coherent version of the QC covering lemma (or the measurement compression result
Winter (2004)). Toward this, as shown in Figure 5.1, we first obtain a posterior reference map V'
corresponding to the isometry . Then we identify the action of V on the state p? as a coherent
quantum measurement. Now, using the approximating POVMs constructed in Winter (2004), we
perform a coherent covering that allows us to compress the obtained measurement, and in turn the
output of V, at rate given by the first Holevo information. The compression is performed while
faithfully simulating the action of V, giving a reconstruction satisfying the error criterion (as in
(5.2)). This procedure is delineated in Step 1.1 where an encoder is constructed to perform coherent
covering and in Step 2.1 where the effect of covering is analyzed, and a rate corresponding to the
first Holevo information is achieved.

To get the needed coherent information, the rate corresponding to the second Holevo information
must be further decreased. This entails diffusing more data or qubits into the environment (partial
tracing). However, as will be demonstrated in the proof below, such an action would destroy
quantum correlations present in the source, possibly turning it into a classical mixture. Therefore,
before such partial tracing operation, in Step 1.2 (Section 5.6) we construct a unitary operation
that can condense the information into fewer qubits in the form of entanglement, and thus allowing
for further decrease in the rate. This includes using the coherent post-measurement state of the
subsystem FE as side information available at the encoder. The Step 2.2 of Section 5.6 details this
procedure and achieves the desired rate. Finally, an additional step (Step 2.3) is required to show
the intended closeness as required in (5.2).

Another intriguing aspect of the proof is the technique used for expurgation. As clear from
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the definition of the protocol, it only allows unitary or isometric operations, followed by partial
tracing. When a code contains repeated codewords, it can be difficult to guarantee this. An
approach to removing all repetitions is to perform expurgations. This is achieved by finding a good
code (satisfying all its constraints) while allowing a small fraction of repeats and then expurgating
just this fraction of the code. However, if there are exponentially many constraints, it becomes
challenging to finding a good code. The exponentially many covering constraints in Devetak’s
problem have a doubly exponential decreasing probability of error, which Devetak was able to take
advantage of. In the current problem we instead have exponentially many packing constraints which
only have an exponential decay. In order to combat this, we construct our proof to just require one
packing constraint: the average of all exponentially many packing constraints. This enables us to
find a good code and successfully expurgate it. We now formally construct the arguments toward

proving the statement of the theorem.

5.6 Proof of Achievability

The proof is mainly composed of four parts. In the first part, we develop the necessary single-
letter ensembles required in the proof. In the next part, we provide the random coding setup and
the distributions on the ensembles with which the codewords are generated. We also state here
the constraints that a good code must satisfy and argue the existence of one code with non-zero
probability. We further use an expurgation strategy to make all the codewords distinct. In the
third part, we construct a protocol by developing all the actions of the encoder and the decoder
and describing them as unitary (or isometry) evolutions. Note that the only actions allowed by
the protocol (Definition V.7) are quantum channels which can be described as unitary or isometric
evolutions followed by partial trace operations. In parallel, we also provide the necessary lemmas
needed for the next part. The last part deals with analyzing the action of encoding and decoding
operations on the source p?, and then bounding the trace distance as in Definition V.7.

Toward this, fix two positive integers M and K, and € € (0,1). Let M and K denote the sets
[0, M — 1] and [0, K — 1], respectively. Given a quantum source coding setup (p?,H.a, M), let
|1/1p>BRB be the canonical purification of pB and pBr 2 Trp{¥,%7B}. Moreover, let H4, be the

reference space associated with H4. Now choose pA% € S(pP Ny ). Let Hg denote the Hilbert
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space such that W : H4,, = Hp, ® HE forms an isometric extension (or Stinespring’s dilation) of
Ny according to (Wilde, 2011, Definition 5.2.1) with dim(Hg) > dim(Hp,,). As shown in Figure
5.1, define the posterior reference isometry of W with respect to p®® (according to Definition V.1)
as the isometry V : Hp — Ha ® Hp satisfying (W ® I4) |¢p>ARA = (I, ®V) \1/1P>BRB where

|1j}p>ARA is the canonical purification of pA%7. Let pA & Trg, p{(I ® V), PrB(1 @ V).

5.6.1 Defining the ensembles

In this section, we construct the single-letter ensembles corresponding to two Holevo information
quantities used in the decomposition of coherent information discussed in Section 5.5. We begin

by using the definition of W to obtain,

(I, ® V) [1hp) 1P = (W @ L) [,) 74 =Y " /MW [a)*7 @ |a)* | (5.11)
acA
alt

where we use p? = 3, 1A\ |a¥a|” as its spectral decomposition, and define la)*" & (I, ®

(a|) |T)A74 for a € A, for some finite set A. This also gives,

W ayAR — ((a]* ® Ipup) B, ® V) |¢p>BRB. (5.12)

v

Using the spectral decomposition of p? as pP = 37, s AP |bY(b]?, for b € B for some finite set B,

we can rewrite the action of V on p? as

(e @ V) [,)77 =3 /A D)% @ V [b)”

beB
) (IBR @lpe ) ’“><“'A> S e v in®
acA beB
=2 > VMM ©a)?, (5.13)
acAbeB

where we define |b)57 £ (Ip, ® (bP)|0)YPRE and M, : Hp — Hp as

M, 2 (Ig ® (a|*)V. (5.14)
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By defining a POVM A £ {MJMa}ae A, we can identify a coherent measurement (isometry) Uy

corresponding to A with Uy £ Y aea Mo ® |a>A, and therefore express the action of V as
(I, @ V) [,) P77 = (Ip, @ Up) [10p) P27 . (5.15)

Now our objective is to faithfully simulate the action of the isometry (or the coherent measurement)
Up while using an exponentially smaller subspace in H 4». Equivalently, we intend to minimize the
amount of qubits needed to represent the quantum state in the Hilbert space Han. Employing
Schumacher’s compression Schumacher (1995), one can only achieve a rate of Von-Neumann en-
tropy while faithfully simulating Uy. However, since Uy is a coherent measurement, we employ
a coherent version of the measurement compression protocol Winter (2004) and demonstrate a
faithful simulation of the isometry while further decreasing the resource requirement. In particular,
an approximating coherent measurement (henceforth referred to as the covering isometry) Upy is
constructed to faithfully simulate the action of Up while requiring the rate equal to Holevo quantity
corresponding to the canonical ensemble {\4, 5571 where

MiM,)T
ABR A \/7 )\A and (MaTMa)T é Z |b> <b/|BR<b/‘(M;rMa) |b>B ) (516)
b,b

Observe that using the definition of M, from (5.14), it follows

To{ M Mo} = T (T © )V 100 P28 VY 1) © T )
- Z AANA Tr{ (b Wa') (o] W |b>}

= AN (al W) Wa') = A Tyamary, (5.17)
b

for all a,a’ € A, where the first equality uses the definition of M,, and the second follows from

using the relation (5.11). Using the simplification from (5.12), it is useful to note

(T ® Ma) 1)

Ve

W |a)*7 = (5.18)
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For the second Holevo information, we define the packing ensemble {\Z 7E} as
E A Trpg (IBR ® Ma)\I/,?RB<IBR @ Maﬁ ]WQpB]\J;f B A A
e B =—F and A\, = A (5.19)
a a

The discussion on how this ensemble is employed to reduce the rate follows in the sequel.

5.6.2 Random Coding and Expurgation

In this section, we construct the random coding argument, and simultaneously, define all the
conditions that pertain to the construction of a good random code. Subsequently, we randomly
generate one code that satisfies these constraints. We then expurgate this code to ensure no repeti-
tions are present. Toward constructing an approximating coherent measurement Uay, randomly and

independently select | M| x |K| sequences A™(m, k) according to the following pruned distribution

Ak
i for a" € 7:5(n) (A)
P(A"(m, k) =a") ={ (1—¢) (5.20)

0 otherwise,

where ¢ = Zan ¢T™ (4) A, 7:5(n) (A) is the d-typical set corresponding to the distribution A7 on
5
the set A, and A4, £ H?:Mfi- Let C™) denote the codebook {A"(m, k)}rex for a given m, and C

denote the collection of all codebooks {C(™},,c . Further, for each a” € 7:5(71) (A) define
ﬁg{? é ’fFﬂ'pBR anpa an’iTpBRﬂ', (521)

and o = 0, for a” ¢ 7:;(n)(A), where pBr ® pEr, w ,8r and mgn are the §—typical and
conditionally typical projectors defined as in ( Wilde, 2011, Def. 15.1.3) and (Wilde, 2011, Def.
15.2.4), with respect to pPr = Y ach )\;4[)5”13 and ,E)aBR, respectively, and 7 is the cut-off projector as
defined in Winter (2004). Using the Average Gentle Measurement Lemma (Wilde, 2011, Lemma

9.4.3), for any given € € (0,1), and all sufficiently large n and all sufficiently small §, we have

S AR — 7P < (5.22)
aneAn

A detailed proof of the above statement can be found in (Wilde et al., 2012, Eq. 35). Using these
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definitions, construct operators

— —1
BY% n n n n
Al & ygn (\/pBR® & PR > Yan 1+77|M||’C|H(m k)t A" (m, k) = a"}|, (5.23)

and n € (0,1) is a parameter that determines the probability of not obtaining a sub-POVM. Note

that in the definition of AB;Lz the right hand side operates on H gr, however, we define A,» belonging

to L(Han). To obtain this, we transform Aan as

Agn = 3 (0" AGE 6" g [67) (875
b o

Then construct a sub-POVM I'™) as
T 2 (s a” € TV (A)). (5.24)
Let 1 (sP} denote the indicator random variable corresponding to the event that T forms a sub-

POVM. We have the following result.

Proposition V.17. For any € € (0,1), any n € (0,1), any § € (0,1) sufficiently small, and any n
sufficiently large, we have E |:]]‘{SP}} >1—e€ if % (log M +1log K) > x(\Br pBr),

Proof. The result follows from Winter (2004). O]

Define the code dependent random variables Fy and FEs as

E 2 Z Z(’MHKD_lTr{ﬁi’fk}, and B, & Z Z(‘MH’CD_ HﬁiRk ﬁﬁRk

meM kel meM kel

where p kv and p k: are used as shorthand notations to denote pan (k) and p respectively.

a”(m k)’
Further, using the results (Wilde et al., 2012, Eq. (28) and Eq. (35)), for all € € (0,1), we have
E[F1] > 1 — ¢, and E[E»] < ¢, for all sufficiently large n and all sufficiently small § > 0.

Now, considering the ensemble {\Z, 7£}, we construct the operators {r%, (m } using the code-

book C and the distribution defined in (5.20), where 71

= ® TEj . For this ensemble, we construct

a collection of n-letter POVMs, one for each m € M, capable of decoding the message k € K. In
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particular, we employ the Holevo POVMs Holevo (2019) defined as

—1/2 —-1/2
g e wa 52 () @ (vdr) . e

kel kel

where 77 is the d—typical projector (as in (Wilde, 2011, Def. 15.1.3)) defined for the density
(m)

ErE and 7, denotes the strong conditional typical projectors (as in ( Wilde,

operator T £ > aea AF
2011, Def. 15.2.4)) for the operators T,n(y, 1). For these POVMs, we know the average probability

of error can be made arbitrarily small. More formally, we have the following.

Proposition V.18. Given the ensemble {\E 7EY and the collection of POVMs {E,gm)}k, for any

€ (0,1),

E | Z Tr{ }] >1—e (5.26)

kek

for sufficiently small 6 > 0 and for all sufficiently large n, and for all m € M, if %logK <

Xx({AE 7BV where T,Em) is used as a shorthand for Tan(m i)

a?a

Proof. The proof follows from the result of classical communication over quantum channels Holevo
(2019) or the packing lemma of (Wilde, 2011, Lemma 16.3.1) while making the following iden-
tification. For each m € M, identify M with K, X with T (A), {o¢,, bm with {7}, TI
with «7, II, with w,im), d with 2”(S(E‘A)*+‘§), D with 2”(S(E)*_S), and A, with E,(cm), where

%AEéZaAE a)(a]A®Tf and 5(5) N0 as 6\, 0. 0

The above result also implies a weaker average result which suffices here. This can be stated as

E[E3] > 1 — e, for sufficiently small § > 0 and for all sufficiently large n, if 1 log K < y({\¥

ava )7

where

(>

E3

ML ZA:AZ;C {Hk 7l } (5.27)

Finally, toward finding a good code, we need one last property which is that all its codewords are
distinct. In the dual, the quantum channel communication problem Devetak (2005b), Devetak used

the double exponential decay of the covering error to argue the existence of an expurgated code for
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exponentially many covering constraints. However, in the current problem, we have exponentially
many packing constraints, with each having only an exponential decay in the error. To resolve this
issue, we develop a proof that only requires the average of the packing constraints. However, in such
a case, it becomes unclear as to what should be the expurgation strategy. For this, we introduce
another event that captures the non-distinctness of the codebook, and expurgate with respect to
this event. Precisely, we define a codeword A™(m, k) is bad if there exists (m/, k') # (m, k) such
that A™(m, k) = A™(m/, k). Let

||l>

1
MK Z Z {An(m,k) is bad}"
eEM ke

Computing its expectation, we get

1
E[E,] =E MK Z Z ﬂ{a(mf,kf);é(mk) such that A7 (m,k)=An(m/k")}
meM ke

c 71 b —n(S(AA)=¢
S MR 2 Y E[lpanmm=any] B [Lpan(m py=any] S ME2TMERD70 < e (5.28)
;m’eM an (n)
w;cj;cl’elc €75 (A)
(b )

for all sufficiently large n and sufficiently small § > 0 if 2 (log M + log K) < S(\2), where (a) uses
the mutual independence of the codewords, and (b) define d; as 6;(d,¢) 0 as d,e 0. Using the

Markov inequality and the union bound, we have

IP’({H{SP}_l}m{El21—\£}m{Eggﬁ}m{Egz1—ﬁ}m{E4§\/E}> >1-5/e

Therefore, for all € € (0,1/25), and for all sufficiently small § > 0, for all sufficiently large n there ex-
ists a code C that satisfies the conditions {]l{sP} =1L {E1 >1— e}, {Es < e}, {Es>1— [},

and {E4 < e}, simultaneously if
1 Br »Br 1 1 A
g(lOgM+10gK)>X(Aa s Pa )7 logK<X({Aa7 Ta )7 E(logM+logK)<S()‘a) (S_O)

At this point, we choose one such code C satisfying all the above conditions, and fix it for the rest

of the analysis.
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Toward showing that this chosen code achieves the asymptotic performance stated in the the-
orem statement, we expurgate the code C with respect to the random variable F,, ensuring that
the code has all distinct codewords. The assumption of codebook being distinct becomes crucial at
multiple places in the proof and will be highlighted as necessary. Since {E4 < /€} ensures at most
VEMK codewords in C are not distinct, we remove /e M K codewords from C. This is performed
by first removing all the non-distinct codewords, and then further removing some more from the
distinct ones arbitrarily (if needed) until we remain with a total of (1 — \/e)M K codewords. Let
the expurgated set (the remainder of the codewords) be denoted by Cg, and define the sets C((gm)
as Cém) 2 Ce N C™). Observe that, all the codewords in Cg¢ are distinct. However, as opposed
to C which was consistent with regards to the size of C(™ (equal to K for all m € M), C¢ has

(m)

varying sizes. Therefore, we define K7, to denote the size of C;’ and M’ to denote number of
non-empty sets in the collection {Cém)}me M- Note that for some m € M, K/ may be zero. Let
M’ denote the subset of M for which K/, > 0, and let /), denote the corresponding Hilbert
space with dim(#;) = M’ + 1. As is evident, >\, K, = (1 — \ﬁ)MK In addition, define
the set of indices corresponding to the expurgated codebook as I = {k a™(m, k) € C£ } and

Ip 2 {(m,k) : a"(m, k) € Ce}. Further, for the expurgated code, we have

A ~B
B2 \MH/C\ m;; Z;m) {oma} =1-2ve (5:29)
A > Y [l -] < <o (5.30)
i- wwmw, o e Pl S T e

B & ik o Z o=} 2 1 - 2ve (5:3)

meM’ . (m)

where the inequalities above uses the fact that codebook C satisfies {E1 > 1 — \/e},{E2 < \/€}
and {E3 > 1 — y/e} and that only /e fraction of the code is expurgated. Observe that the event

{1 (sP} = 1} remains true for the expurgated Cg. Define the collection

(n) A
FS = {Aa"(m7k)}m6/\/l’,kel'§.m)'

The collection I‘(gn) is completed using the operator I —3% Zk€I<m) Agn(m,k)» and the operator
£
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is associated with sequence afj chosen arbitrarily from A”\%(n)(A), ie.,

Ag 21— 3 > Awinpy:

eM’ (m)
m kez."

Corresponding to this expurgated code, we now construct our encoding and decoding operations.

5.6.3 Encoding and Decoding Isometries

The encoding isometry Ug is constructed by concatenating three isometries: (i) the covering
isometry Upnq @ Hpn — Hpn @ H)yy ® Hi, (i) the rotation isometry Ug : Hpn @ Hyy @ Hig —
Hen @HY @Mk, and (iii) the packing isometry Up : Hpn QHpQH);@H K — HEn QHH OH K,
where H,, Hx and Hj are auxiliary Hilbert spaces with dimensions M’ + 1, K + 1, and K + 1,
respectively.

Step 1.1: Covering Isometry

To define the covering isometry Uay, we use the completion [Fén)] as

Ums D, Y \/W®!m>®\k>+\/ffg®\M’>M®|K>K. (5.32)

meM’ kel-ém>

Note that, for the chosen code, the event {1 (sP} = 1} makes Uy a valid isometry. From now on,

Br

for the ease of notation, we use M, p, A",

and A,, 1 to denote the corresponding n—letter objects
constructed for the codewords A™(m, k).

Step 1.2: Rotation Isometry

Although the above covering unitary aims to cover the source, it only does so for the reference
system. To be able to apply the next step of packing, we wish to use the post-measured state as
side information. This could be possible if the post-measured state also looks close to being product.
For this, we employ a rotation unitary. A similar operation is discussed in (Anshu et al., 2017b, Fact

6) with regards to classical-quantum states obtained post measurement. The construction below

generalizes this to a coherent application of a measurement. More formally, for the expurgated
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code Cg, we construct the states

nE™ A (I®Mm,k) n\BnB"
L S Y T vy 147 @ ) and
me./\/l’k I(m) m,

Gy PRETME A KN ! SRAVEIL), [WEMIRE @ im, k), (5.33)

WEM/k:eIém) \/ 1 —/¢e)|M]IK]| \/5mk

A B®n | ~B A 1-e_ 1 o ;
where 4., 1 = Tr{Amkp } = 7Tr{pm?k}, and v £ ﬁ\MIIKl' For brevity in notation, we
skip the sets in the summations over m or k when summations are performed over the codewords

n mn
\BRE"MK 54

belonging to the set Z¢ corresponding to the expurgated codebook Cg. Clearly, |6
|6>B§B”MK are valid states. Now to construct Ug, consider the following lemma which upper

bounds the fidelity.

Lemma V.19. For any ¢,n € (0,1), there exists a collection of isometries {U,(m,k) : Hpn —
Hpn} and a collection of phases Oy, 1, such that F(|6)PRE"ME (15 @ Ug) |6)PRE"™MEY > 1 _4,/¢,

for all sufficiently large n and all sufficiently small § > 0, where

Ugr & Z Z e 0mrk U, (m, k) @ [mXm|,, @ [k)k|x - (5.34)
meM/U{M'} keKU{K}

and Up(m, k) =1 and Oy, =0 for all (m, k) € (M x K) such that a™(m, k) ¢ Ce.

Proof. The proof of the lemma follows using (5.29), (5.30) and from the Lemma D.1. For com-

pleteness, we detail the proof in Appendix D.2. ]

Step 1.3: Packing Isometry

Observe that by coherently performing the covering and rotation operations, one can show that
the source pp can be successfully recovered by the quantum registers {|m, k)}. This implies that
the quantum states {|m, k)} can be used by the decoder to faithfully reconstruct the source as per
Definition V.7. As a result, we would require a rate of %logM + %logK which has to be greater
than the Holevo information x(AP%, pPR) as constrained by Proposition V.17. However, we intend
to further reduce the rate from this Holevo information to the coherent information provided in
the statement of the theorem.

One can perhaps argue why we cannot simply release the information in the Hy system into
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the environment (partial tracing)? But as expected for a purely quantum setup, this would lead to
the protocol becoming incoherent. More precisely, the subsystem Hgr» that the encoder has in its
possession is entangled with the subsystem H g, and tracing out the latter without decoupling the
two systems would render the former in a mixed state. Once this entanglement is lost, the decoder
would not be able to faithfully reconstruct the source by using such a (mixed) state.

Therefore, a major task here is to successfully decouple the system Hy before releasing it to
the environment. To achieve this, we introduce the notion of coherent packing or coherent binning.
This notion is built on the idea that the post-measured system present in ‘Hg» contains information
about the quantum state |k),, and hence, conditioned on the state |m), a copy of the state |k)
can be recovered from the state present in subsystem Hpgn, albeit with a small probability of error.
Using this copy, we intend to decouple the existing copy of |k) from the latter. However, this
new copy can erase (decouple) the original, but will itself still remain. Therefore, as will become
evident in the sequel, we perform the process of erasing the information in H g intrinsically without
producing any additional copies.

Toward this, we employ the packing code consisting of the sub-POVMs {E,gm)} kezi™> generated

for the ensemble {\Z 7E}. We complete this sub-POVM for each m € M’ as

[1]
a5
>
~
|
A1
3

kez{™

In addition, we also make use of Naimark’s extension theorem (also provided in Lemma V.5). This
lemma gives us a collection of orthogonal projectors {H,(Cm)} each acting on Hgn» @H g, corresponding

to the collection {E,(Cm)}k, such that
T (™ @ 10)olp) = Te{Em A, (5.35)

for all m € M’ and k € Iém) U{K}, and dimHz = K + 1. Finally, we define the packing unitary

Up as

ZXD S D SR CET oD D

(k— k') mod (K + 1)) (K| ) ®|m)m|
meM’ kelém)U{K} kIGKU{K}
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+ Ipnpr @ [M'XM'|, (5.36)

where the phases {a,(cm)} are introduced for later convenience, and will be specified in the sequel®.
Note that by using H,(Cm) in the above definition, instead of E,(Cm) ensures that UPU;) = I, implying
Up is a valid unitary.

As a result, we can express the encoding CPTP map N, g(n) as

(1 @ N7 (o Yugm PR

& Teppue (1 UpUrUn) [ "Yug"| " @ |0)0]5 (1 @ UpUrUM)') . (5.37)

The quantum state in H’, is now sent to the decoder.
Step 1.4: Decoding Isometry:

The following decoding isometry is applied on the state in H/,:

Z (m, k>>) (ml + ag) (0], (5.38)

Dém%(F

where the phases {ﬁ,(cm)} will be identified in the continuation. Observe that, to argue Up is a valid
isometric operation, we need the vectors {|a"(m, k))} to be distinct. By expurgating the codebook
to generate C¢, and only using the codewords from Cg ensures this distinctness. With the definitions
of encoder and decoder, we move on to bounding the error incurred by the protocol (as defined in

Definition 5.2).

5.6.4 Trace Distance

We begin by defining the following terms

By B"

) PREEATE & (1 © Up)(I ® Up)(I © UrUs) [45") 757" 10) .

) BRE"A™ & (W @ [) [, ) ARA" (5.39)

"Moving forward, we implicitly assume the modulus operation rather than explicitly mentioning it for the purpose
of brevity.
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where? [14,)%4" is the canonical purification of w?”. Let

G & [lWPRA" - (PRA".

Following Definition 5.2, our objective now is to show G can be made arbitrarily small for all
sufficiently large n for the code Cg.

Step 2.1: Closeness of |w) and (I ® Up)(I ® Up) |5) :

Recall the definitions of |6) and |5) from (5.33), and let |wy) £ (I @ UrUn) |¢,,)BEB" and £, £
(1—¢)/(1+mn). Consider

JF (|w1>B%E”MK (I 0 Ug) [6)HE" 1K)

Z <77Z}p| (I b2y Ur(m, k)\/ Am,k)T((I ® Ur(ma k) \/ Am,k) |d}p>
\/ 1— /) M]IK] VO

/g ~ 1 .
= m Z; |Mi;q Tr{pm,k > \/1—7\/62% /\\/{I&EQ Tr{pm,k} > \/amu - 2&)7

(5.40)

where we note that there is no overlap between the term corresponding to \/Aun @ [M'); ® [K)
of w1 )BRE"ME and the state (Ug ® I) |5)PRE"ME " and the last inequality follows from (5.29).

Using Lemma V.3, and the inequality (5.40) , we get ?

L 1 e |

§2\/1—(1—\@)(1—2ﬁ)2<1—71712> 2,/1 S LhVe<6We,  (541)

for all sufficiently large n and sufficiently small 1,6 > 0. Further, using the unitary invariance of

trace distance, we get the closeness of the states:

H(I ® UpUp)wr PH7" M5 @ |00 5 (I © UpUp)'

—(I ® UpUpUR)&BRE™ MK & 00| 5 (I ® UDUPUR)THI < 6e. (5.42)

. B B"
2For conciseness, we drop the ®n from |w;®"> £ when understood from context.

3At times, the subspace notation is omitted when it is clear from the context.
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Using Lemma V.19 and the fact that trace norm is invariant under isometric transformations, we

have

HU ® UpUp)a PR ME @ 0)(0| 5 (I © UpUp)

—(I ® UpUpUg)a 7P MK & 10)0] 5 (I @ UDUPUR)THI

& — (I®UR)G(I® Ug) H <2/1-F(6),I®Ug)a)) < 4¥e. (5.43)
Using triangle inequality and inequalities (5.42) and (5.43), we obtain
|wPRE"EAK (1 & UpUR) (6PRE" M & [0)0] ) (I © UpUp)T| < 109, (5-1)

for all sufficiently large n and sufficiently small 5, > 0, which concludes Step 2.1.

For the next step, define |()BRE"EMEK g

‘QBEEMKA Z Z \/1_ ’qu 0Bk ( )\ki| p>®|m>M®\O>K®|O>E

meM’ kez'ém)

(5.44)

where the phases Blim) will be specified shortly. Observe that |é )BlgEnEM K is a valid pure state due
o (i) the distinctness of codewords in C¢ and (ii) the identity (5.17). Furthermore, in its definition,
the information in the subsystem H g is decoupled from the remaining subsystems. Since Up acts
on Hgn ® Hf, an additional pure ancilla is attached for appropriate comparisons. We aim to show
that this state is close to the action of (I ® Up) on the state |5) |0) 5.

Step 2.2: Closeness of (I ® Up)|5)|0)5 and |() :

We begin by simplifying (I ® Up)|5) |0) as

ia(m> m
ToUn = 3 Y —— WW e @ m)y

meM’ jez(m)
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where

> (I @ T My i) [900) 10) 5
vV )‘m,k

(™) A E @ |k — k), forall k€ Z{™ and m € M. (5.45)

keI UK}

Similarly, let

A (& Mpi) [¥)10)5

vV )\m,k

l() m
By @ fm) e, ™)

®10) ., (5.46)

Z VA !MH’C!

for al m € M’ and k € Iém), and the phases {/B,gm)} are the same phases incorporated in the

construction of the decoding isometry Up. Further, from (5.35), we know for all m € M’,

1 m m 1 —(m m
o D (e ™) = o D Tr{:; )7 ’}. (5.47)
™ kezim ™ ezl

Now the fidelity between |¢) and (I ® Up)|6) |0) 5 can be written as

> (dmlxm)

meM’

V(o)) 0:.10) = 1 , (5.49

where, for all m € M/,

o™ (m i3m)
bm) 2 e S0 @ o) and ) 2e Y AT M),

kez{™ kez{™

M/

A _
and ¢ =\ /SRR

Toward a lower bound on the fidelity, we provide the following proposition.

Proposition V.20. For any € € (0,1), there exists phases {a,(gm)}, and {6,(;%)} such that

o Y (b 2 1-28, (5.49)

memM’

for all sufficiently small § > 0 and all sufficiently large n.
Proof. The proof is provided in Appendix D.4. O

Observe that, using the relation in Lemma V.3, and the result of Proposition V.20 and (5.48), we
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get

|(r @ vp)e @ 00l (T Up) — || <2\/1 F((Up®1)[6)10)5,10)) <4,

for all sufficiently large n, and sufficiently small n,§ > 0. Observe that |¢

‘O>KE7 and hence \@B}%E"M

(S-2)

>B"E"MK |<>B"E"M ®

remains pure after partial tracing over the subsystem Hx ®@H . Finally,

we are left with showing the closeness of the state (I ® Up)|C)BEE™M with the state |¢)PRE"A"

Step 2.3: Closeness of (I ® Up)|()BRE"™M and |¢)PRE"4" .

We begin by defining 04" as
0" & Trp g {(I ® Up)CBREM (1 @ Up) T,

and perform the simplification

(m)_ a(m)y Tr (MmkpBMT, )
=U Z(ﬁk By’ m'k / UT
D( PP \MHICI ' Do ] JUp

mm’kk’

- K/, m " Wb () | A7
- (Z,n:( e " ) -2 e o

m

(5.50)

where the second equality uses (5.17) and the crucial condition that the codebook Cg obtained after

expurgation is distinct, and last equality defines |6 (m))*" as

n An 1 —i (m) AM
" (m)*" 2 N > e ja (m, k)
" pez(™

for all m € M’. This implies, we can write the canonical purification of ¢4 as

ARA™ A (1o g AT | TEnARAT K,
‘¢0> (IAR® o )‘F > ;\/(1_ﬁ)M"K

=I®UA") ; \/(1 — \/IE{);TM||IC| 1" (m))1% @ m)™M

| o™ (m) % @ (57 (m)) "

(5.51)

(5.52)

where the first equality follows by defining |b"(m))% £ (I An ® b (m) ") |F®”)A%An. Using the
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relation from (5.18) and definition (5.51), we can write

m 1 o) (T ®Mm ®n
W®n|bn( ) R — Z Zﬁ,(c )W®n‘a (m k)) R _ / ZG’LB/(C )( Br ,k)‘wp >

VK A ’
kez<m " kez(™ Ak

for all m € M’, which gives

on o 7, Apan _ An Ky D1 15 (VAR @ [y M
(W= @ Lan) [¢o) (I®UD);\/(1—\/E)|M||IC|W 0" (m))" % @ |m)

1\ BT B"
D
e T Ny
= (I Up")|Q)PRF"M, (5.53)

where the last equality follows from the definition of [()BRE"M in (5.44). Observing that
Q) FREAT = (W @ Lan ) [¢h) 154"

we are left with showing the closeness of [, ) #4" and [1,,) 4" Using (S-1) and (S-2), the triangle
inequality, the monotonicity of trace distance, and identification of appropriate purifications, we

obtain for all sufficiently large n and sufficiently small 1,d > 0,
lw?™” = 0|y < [JwPEE" A" — (I'® Up)PRE"™M(I @ Up)T||y < 143/,
This implies,

= oA — g, MR
< 2\/1— () A" 40, [y) A" k)
S0/t — oty < 2/ 14e <8V, ($3)

| ugnesE s o ugyr - o

1

for all sufficiently large n and sufficiently small n,d > 0, where (a) follows from the isometric
invariance of trace distance, (b) uses Lemma V.3, and (c) uses Lemma V.4, which concludes this

step.
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In summary, combining results of (S-0), (S-1), (S-2) and (S-3), we have showed that there exist
a code C satisfying G < 14/e + 8-/¢ with the following rate constraints:

SO > L

1 1 1
— (log M +log K) > x(\J7, p2%), —log K < x({AL,77'}), —logM >0, —logK >0,
n n n n

a’'a

for all sufficiently large n and sufficiently small ,§ > 0, where we have also included the necessary
non-negativity constraints. Eliminating %logK using Fourier-Motzkin elimination Ziegler (2012)
gives

1 1
—log M > x(\2®, pF7) — x({AL,7F}), and —logM >0,
n n

where we remove the redundant constraints. This completes the proof.

Remark V.21 (Zero performance rate). The coherent information I.(Nyy, pA%) is negative when
the Holevo information quantities are such that x(AP® pBr) < y({\F 7F}). The asymptotic
performance limit for these situations is zero, according to the statement of the theorem. We must
therefore demonstrate that a rate of zero is feasible. To put it another way, we must construct a
protocol (see Definition (V.7)) that satisfies (5.2) with a rate that can be made arbitrarily close
to zero. The constraints imposed by the preceding proof are still met if we select M = 1 and
Llog K = x(ABr, pBr) + 60 < x({\E,7E}), while achieving a rate of log(2)/n, for a sufficiently
small dg. This rate (1/n) can be made arbitrarily close to zero (i.e., smaller than the provided
€) for any given e, for all sufficiently large n and sufficiently small 1,6 > 0. Similarly, when the

ETE

a’’'a

coherent information I.(Ny, pR) is exactly zero, i.e., x(\B®, pBr) = y({\ ), we choose M

and K such that %logM = 26y, and %logK = x({\E,7EY) — &y. This gives a rate of 20y which
can be again made arbitrarily close to zero. Therefore, even though the coherent information is not

necessarily positive, the rate in the theorem can still be achieved.

5.7 Proof of Converse

Let R be an achievable rate. Then from Definition V.8, given a triple (pg, Ha, Nw), for all

e > 0, and all sufficiently large n, there exists (n, ®) lossy compression protocol with an encoding
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CPTP map N, g(") and a decoding CPTP map /\/'gl) that satisfies the following constraints:
o : %log@ <R+4e, and ¢ [[wPrA" —0BRA" ) <, (5.54)
where wPh4" £ (1@ N3) (1 ® NE) (1) P57,
VBRAY = Typn {PRATE"} A Ty, {(W®” ® UL (Wen g I)T} ,

and |1/)w>AnARn is the canonical purification of wA”, and W is the Stinespring’s dilation of the CPTP
map Nyy. Let w?% 2 Tryn (\I/an%).

Step 1: Quantum Data Processing Inequality: Let M denote the quantum state at the output
of the encoder. Let Vg(n) tHpn = Hu @ Hg, and Vén) tHM = Han @ Hp, be Stinesping dilations
of encoding and decoding maps N, g(") and Nl()"), respectively, such that dim(Hz ) > dim(H ) and

dim(H,) > dim(H an), as shown in Figure 5.3(a). Let

n - n B™ B n
w PRME 2 (1 @ VIR (I © V)

WPREERAT A Uppi, ® Vén))(wlBﬁﬁlM)(IB}éEl @ Vpt. (5.55)

Let |1, )MEM denote the canonical purification of the quantum state wf’. Let Wg(n)  Hury —
Hpy ®Hp, denote the posterior reference isometry (see Definition V.1) of Vg(n) with respect to wi’,
as shown in Figure 5.3(b). Moreover, let Wg”) : Hap, — Hug ® H, denote the posterior reference
isometry of Vén) with respect to w", as shown in Figure 5.3(c). Let My, () = Trg, (Wg(n) . (Wgn))T)

and Ny, (1) = Trp, (Wl()n) . (ng))T) be the induced CPTP maps. Let

Using the quantum data processing inequality for coherent information (Wilde, 2011, Theorem
11.3.2), we obtain

IC(NWD,LUAE) > Ic(/\/wg ONWD,wA%).
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Fi 5.3:
1BHre Lossy quantum source coding protocol and the associated CPTP maps and their Stine-

spring dilations.

Expanding the coherent information in terms of Von Neuman entropy, we get

S(MR)GA - S(EN‘Z)GH > S(Blr%)w - S(EIEZ)wa

which implies that
S(M)w, = S(BR)w — S(BRA™ ). (5.56)

Step 2: Implication of the constraints ¢y and c;: Consider the following sequence of inequal-

ities:

nR >log® —ne > S(M),, —ne (5.57)
> S(BL)y — S(BL, A™)., — ne (5.58)
2 S(BR). — S(BL, A™)y — ne — néy (5.59)
— S(BR)w — S(E™)y — ne — néy (5.60)
> S(BL)y — Zn: S(E;)y — ne — néy (5.61)
i=1
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LN S(Bri)w — Y S(Ei)y — ne — néy (5.62)
=1 =1

> " S(Bri)o— Y _ S(Ei)y — ne — néy — néy (5.63)
i=1 =1

L3 LW, wm) — ne —néy — né (5.64)
=1

% n min I.(Nw, p®) — ne — né; — nés, (5.65)

pAREDHap ):llpPR—Nw (p"R)|[1<e

where the inequalities are argued as follows. (a) follows from (5.56). (b) follows from the con-
dition ¢; and the Fannes-Audenaert inequality (Wilde, 2011, Theorem 11.10.1) by defining ¢é; a
elog |[Hal|HB| + hy(e). (c) follows from the subadditivity of entropy. (d) follows from the memoy-
lessness of the quantum source. (e) follows from condition co and the Fannes-Audenaert inequality

(Wilde, 2011, Theorem 11.10.1), where condition
cy - HwBRi _UBRiHl <e V1<i<n,

is implied by ¢; using the monotonicity of trace distance with respect to partial trace. €s is defined
as & 2 elog|Hp| + hy(e). (f) follows from the fact that vBriE = WwARWT. (g) follows from

condition ¢y which can also be stated as
ca PP = N (w1 <€, V1<i<n,

and the fact that coherent information is continuous, and the constraint set is closed and bounded.
The continuity follows from the following arguments: for the fixed CPTP map Ny, let a function f :
D(Ha,) — R be defined as f(p®) = I.(Nyw, p%). One can establish the continuity of f for a fixed
Nw by writing I.(Ny, pAr) = S(BRr)w parwt — S(E)w parwt, and using the Fannes-Audenaert
Inequality (Wilde, 2011, Theorem 11.10.2), where W is the Stinespring’s extension of the given
CPTP map Ny .

Step 3: Continuity Argument: We have shown that

Re ()

e>0
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where we have defined for all € > 0,
7.2 {R:3 P27 € S.(pP, Ny ) such that R > I (N, pA%) — g(e)}, (5.66)
and
80" Nw) 2 {p*% € D(Hay) : [Naw (0™7) — pP |1 < e}, (5.67)

g(e) 2 ¢+ & +&. Condition ¢y ensures that the set S, is non-empty for all € > 0. Now, by arguing

continuity of Z. at ¢ = 0, we obtain the desired result.

Lemma V.22. For the above definitions of Se and I., we have So(p®, Nyw) non-empty, and

%:ﬂ@

e>0

Proof. This is a standard argument used in the literature Dueck (1981); Ahlswede and Cai (2006);

Cuff (2013). A proof is provided in Appendix D.5 for completeness. O

This completes the proof.

5.8 Conclusion

In this work, we explored a new formulation of the lossy quantum source coding problem. The
two ingredients that make our formulation different from the standard rate-distortion problem are
(i) the usage of a global error criterion to measure the quality of reconstruction, and (ii) the notion
of a posterior reference channel defined as a CPTP map acting on the reference of the reconstruction
to produce the reference of the source. Instead of a single-letter distortion function, a global error
criterion measures the error incurred by using the given single-letter posterior channel. The given
channel characterizes the nature of the loss incurred in the encoding and decoding operations.

As our main result, we provide a single-letter characterization of the asymptotic performance
limit of this source coding problem using the minimal coherent information of the posterior reference
map, where the minimization is over all reconstructions. Even though the formulation uses a global

error criterion, it sheds light on an “optimistic” perspective of the lossy source coding theory. In
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this regard, our results provide the missing duality pair of the quantum channel coding problem,
and also broadens the framework of performing lossy quantum source compression. Investigation
of this formulation to other variants of lossy source coding problem can be an interesting research
avenue to pursue. Similarly, it would be interesting to explore other techniques of establishing the

achievability and converse of this limit.
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Part 11

Classical Communication Over

Quantum Channels
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CHAPTER VI

Computation over a Classical-Quantum Multiple Access Channel

6.1 Introduction

Early research in quantum state discrimination led to the investigation of the information
carrying capacity of quantum states. Suppose Alice - a sender - can prepare any one of the states
in the collection {p; € D(Hy) : = € X'} and Bob - the receiver - has to rely on a measurement
to infer the label x of the state, then what is the largest sub-collection C C X of states that
Bob can distinguish perfectly? Studying this question in a Shannon-theoretic sense, Schumacher,
Westmoreland Schumacher and Westmoreland (1997) and Holevo Holevo (1998) characterized the
exponential growth of this sub-collection, thereby characterizing the capacity of a classical-quantum
(CQ) point-to-point (PTP) channel. In the following years, generalizations of this question with
multiple senders and/or receivers have been studied with an aim of characterizing the corresponding
information carrying capacity of quantum states in network scenarios Winter (2001).

In this chapter, we consider the problem of computing functions of information sources over a
CQ multiple access channel (MAC). Let (pz,2, € D(Hy) : (z1,22) € X1 x X2) model a CQ-MAC.
Sender j - the party having access to the choice of label x; € &) - observes a classical information
stream Sj; € S; : t > 1. The pairs (S1¢,S9) : t > 1 are independent and identically distributed
(IID) with a single-letter joint distribution Wg, g,. The receiver, who is provided with the prepared
quantum state, intends to reconstruct a specific function f(Si,S2) of the information observed by
the senders. The question of interest is under what conditions, specified in terms of the CQ-MAC,
Ws,s, and f, can the receiver reconstruct the desired function losslessly?

The conventional approach to characterizing sufficient conditions for this problem relies on
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Figure 6.1: CQ-MAC used for computing sum of classical sources.

enabling the receiver reconstruct the pair of classical source sequences. Since the receiver is only
interested in recovering the bivariate function f, and not the pair, this approach can be strictly sub-
optimal. Can we exploit this and design a more efficient communication strategy, thereby weakening
the set of sufficient conditions? In this work, we present one such communication strategy for a
general CQ-MAC that is more efficient than the conventional approach. This strategy is based
on asymptotically good random nested coset codes. We analyze its performance and derive new
sufficient conditions for a general problem instance and identify examples for which the derived
conditions are strictly weaker.

Our findings here are built on the ideas developed in the classical setting. Focusing on a source
coding formulation, i.e. a noiseless MAC, Korner and Marton Korner and Marton (1979) devised
an ingenious coding technique that enabled the receiver recover the sum of the sources without
recovering either source. In Nazer and Gastpar (2007), the linearity of the Kérner-Marton (KM)
source coding map was further exploited to enable the receiver recover the sum of the sources using
only the sum of the KM indices, not even requiring the pair. Leveraging this observation and
focusing on the subclass of additive MACs, specific MAC channel coding techniques are devised in
Nazer and Gastpar (2007) that enabled the receiver recover the sum of two channel coding message
indices.

The techniques of Korner and Marton (1979), Nazer and Gastpar (2007) are instances of a
broader framework of coding strategies. Decoding functions of sources or channel inputs efficiently
require codes endowed with algebraic closure properties. To emphasize, the conventional approach
of deriving inner bounds/achievable rate region by analyzing expected performance of IID random
codes is incapable of yielding performance limits - capacity or rate-distortion regions as the case
may be- in network communication scenarios. To improve upon this, it is necessary to analyze the

expected performance of random codes endowed with algebraic closure properties. In a series of
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works Pradhan et al. (2021), an information theoretic study of the latter codes has been carried
out yielding new inner bounds for multiple network communication scenarios.

In this work, we embark on developing these ideas in the CQ setup. After having provided the
problem statement in Sec. 6.2, we focus on a simplified CQQ MAC and illustrate the core idea of our
coding scheme. The latter relies on developing a nested coset code (NCC) based communication
scheme for a CQ PTP channel and analyzing its performance (Sec. 6.4). Leveraging this building
block, we design and analyze the performance of an NCC-based coding scheme for computing sum
over a general CQ-MAC (Sec. 6.6). Going further we generalize this idea for computing arbitrary

functions over a general CQ-MAC.

6.2 Preliminaries and Problem Statement

We supplement the notation in Wilde (2013a) with the following. For positive integer n, [n] A

{1,---,n}. For a Hilbert space H, L(H), P(H) and D(H) denote the collection of linear, positive
and density operators acting on H, respectively. The von Neumann entropy of a density operator
p € D(H) is denoted by S(p). Given any ensemble {p;, pi}ic[1,m], the Holevo information Holevo
(2012) is denoted as x({pi; pi}). A POVM acting on H is a collection Ay 2 {A;}zex of positive
operators that form a resolution of the identity: ) __, Az = I, where X" is a finite set. We employ
an underline notation to aggregate objects of similar type. For example, s denotes (si,s2), "
denotes (z',z%), S denotes the Cartesian product S; x Ss.

Consider a (generic) CQ-MAC (pz,z, € D(Hy) : (x1,x2) € X1 X As) specified through (i) finite
sets X : j € [2], (ii) Hilbert space Hy, and (iii) a collection (pg, z, € D(Hy) : (z1,22) € X1 X X)
of density operators. This CQ-MAC is employed to enable the receiver reconstruct a bivariate
function of the classical information streams observed by the senders. Let S1,Ss be finite sets and
(S1,852) € 81 x Sy distributed with PMF Wg, g, models the pair of information sources observed
at the encoders. Specifically, sender j observes the sequence S;; € S; : t > 1 and the sequence
(S1t, So2t) : t > 1 are IID with single-letter PMF Wg, g,. The receiver aims to recover the sequence
f(S1,S2) : t > 1 losslessly, where f: 81 x Sy — R is a specified function.

A CQ-MAC code ¢y = (n, e1, €2, Agn) of block-length n for recovering f consists of two encoders

maps e; : 8" — A" 1 j € [2], and a POVM Agn = {An € P(HY") : ™ € R™}. The average error
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probability of the CQ-MAC code c; is

Eep) = 1= D0 Weg (st ) Tr(Ampln)

s f(sm)=rn

Qn A

where poin S @1 pryi(s)ani(sy)> Where e5(s7) = z51(s]), xja(s]), -+, zjn(s]) for j € [2].

A function f of the sources Wg, g, is said to be reconstructible over a CQ-MAC if for € > 0, 3
a sequence C;n) = (n, egn), eén), Arn) :n > 1 such that lim, oo E(cgen)) =0.

In this article, we are concerned with the problem of characterizing sufficient conditions under
which a function f of the sources Wg, g, is reconstructible over a generic MAC (pg,5, € D(Hy) :
(x1,22) € X1 X Aa). One of our findings - Proposition VI.10 - provides a characterization of
sufficient conditions in terms of a computable function of the associated objects- density operators
that characterize the CQ-MAC, function f and the source distribution Wg, g,.

As we shall see, the specific problem of computing sum of sources will play an important
role in our work. In this case, S = &1 = S = F; is a finite field with ¢ elements and the
receiver aims to reconstruct f(Si,S2) = S1 @4 S2 where @, denotes addition in F;. A CQ-MAC
code cg = (n,e1,e2, A\sn) of block-length n for recovering the sum consists of two encoders maps
ej : 8" = Al j € [2], and a POVM Agn = {Asn € P(HY") : s" € S"}.

Restricting f to a sum, we say the sum of sources Wg, g, over field F, is reconstructible over
a CQ-MAC if § = S = F, and the function f(S1,S52) = S1 @y S2 is reconstructible over the
CQ-MAC. The problem of characterizing sufficient conditions under which a sum of sources is
reconstructible over a CQ-MAC plays an important role in this work. One of our findings - Theorem
VI.9 - provides a computable characterization of a set of sufficient conditions under which a sum
of sources is reconstructible over a CQ-MAC. As the reader will note, this encapsulates the central
element of our characterization in Proposition VI.10.

We also formalize the notions of a CQ-PTP and CQ-MAC codes for communicating uniform
messages. A CQ-MAC code ¢, = (n,Z1,Zs,€e1,e2, A1) for a CQ-MAC (p, € D(Hy) : z € X)
consists of (i) index sets Z; : j € [2], (ii) encoder maps e; : Z; — AJ' : j € [2] and a decoding
POVM Az = {\n € P(Hg”) :m € I; x Iy}, For m € Iy x Ty, we let p?& A @ Pars,ae; Where
ej(mj) = xj1---xj, for j € [2].

A CQ-PTP code ¢, = (n,Z,e, A1) for a CQ-PTP (p, € D(Hy) : x € X) consists of (i) an index
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set Z, (ii) and encoder map e : T — X™ and a decoding POVM Az = {\,,, € P(HY") : m € T}. For

m € Z, we let p?jf% a Q@1 pz, Where e(m) = x1 - xp,.

6.3 The Central Idea

Let us consider the specific problem of reconstructing the sum of sources each taking values in
S = F4. We begin by reviewing the KM coding scheme for the case of a noiseless classical MAC. It
was shown in Korner and Marton (1979) the existence of linear code with a parity matrix H € S*"
and decoder map d : ]:é — 8" such that 3 o on W (™) Lia(rsra, Hep)£sr@gsn) < € for any € > 0,
and sufficiently large n, so long as “O% > H(S1®¢S2). This implies that a receiver equipped with
the decoding map d can recover the sum if it possesses the sum M! @, M} of the Kérner-Marton
indices M]l = HS;- 1j€2].

We are therefore led to building an efficient CQ-MAC coding scheme that enables the receiver
only reconstruct the sum of the two message indices. Indeed, if the two senders send the KM indices
to such a CQ-MAC channel code and the receiver employs the above source decoder d on the decoded
sum of the KM indices, it can recover the sum of sources. To illustrate the design of the desired
CQ-MAC channel code, let us consider a CQ-MAC (pg,2, € D(Hy) : (21,22) € X1 X Ap) wherein
X1 = Xy = F; and the collection p; : © € X satisfies py 2, = ps,2, Whenever 1 ©g 2 = 1 By 2.
Consider a CQ-PTP (X = Fy, 0, : u € X) where 0y, = pg,@q, for any (21, z2) satisfying z1®q422 = u.
Suppose we are able to communicate over this CQ-PTP via a linear CQ-PTP code C C X™.
Specifically, suppose there exists a generator matrix G € X*™ and a POVM {\, 1 : m! € ]-"é} so that
1—q 'Y Tr()\mz JSL?G) < e. for any € > 0 and sufficiently large n, where U%G =04 ® R0y,
where m!G = z". We can then use this linear CQ-PTP code as our desired CQ-MAC channel

code. Indeed, observe that, suppose both senders employ this same linear CQ-PTP code, then

sender 7 maps its KM index mé = Hs? to the channel codeword z7} = mé-G. Observe that the
. . ®n _ ®n _ ® .
structure of the CQ-MAC implies Panap = Oanear = Ol ouml)G" If the receiver employs the

POVM {\,; : m! € ]:Cll} designed for the CQ-PTP, it ends up decoding the sum of the KM indices
mll Dq mé, and consequently, recover the sum of the sources.
A careful analysis of the above idea reveals that two MAC channel codes employed by the

encoders do not ‘blow up’ when added, is crucial to the efficiency of the above scheme. A linear
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code being algebraically closed enables this. However, the codewords of a random linear code are
uniformly distributed and cannot achieve the capacity of an arbitrary classical PTP channel, let
alone a CQ-PTP channel. We are therefore forced to enlarge a linear code to identify sufficiently
many codewords of the desired empirical distribution. We are thus led to a nested coset code
(NCC)Padakandla and Pradhan. A NCC comprises of cosets of a coarse linear code within a fine
code. Within each coset, we can identify a codeword of the desired empirical distribution. We
choose as many cosets as the number of messages. Analogous to our illustration above where we
chose a linear code that achieves the capacity of the CQ-PTP (X = F,,0, : u € X), our first step
(Sec. 6.4) is to design a NCC with its POVM that can achieve capacity of an arbitrary CQ PTP.
Our second step is to endow both senders with this same NCC and analyze decoding the sum of
the messages. This gets us to our next challenge - How do we analyze decoding their message
sum, for a general CQ-MAC p, : € X for which z1 ©4 2 = &1 ©4 22 does not necessarily imply
Pziws = Piidq- 1IN Sec. 6.5, we address this challenge, leverage our findings in Sec. 6.4 and generalize

the idea for a general CQ-MAC.

6.4 Nested Coset Codes Achieve Capacity of CQ-PTP

We begin by formalizing the structure of an NCC.

Definition VI.1. An (n,k,1,91,90/1,b") NCC built over a finite field V = JF,; comprises of (i)
generator matrices gy € VF*™, goyr € VX7 (ii) a bias vector b, an encoder map e : V! — VF. We
let v"(a,m) = agr ®y mgo/r ©q 0" : (a,m) € VF x V! denote elements in the range space of the
generator matrix [g} g, / i

Definition VI.2. A CQ-PTP code (n,Z = fé,e,)\z) is an NCC CQ-PTP if there exists an
(n,k,91,90/1,b™) NCC such that e(m) € {u"(a,m) : a € F¥} for all m € F}.

Theorem VI.3. Given a CQ-PTP (p, € D(Hy) : v € Fy) and a PMF py on F4, € > 0 there
exists a CQ-PTP code c = (n,Z = ]:é,e, A7) such that (i) ¢~ ZmE[I] Zm#ﬂ\{m} Tr()\mp?ffn) <,
(ii) ¢ = (n,T = Fle,\1) is a NCC CQ-PTP, (iii) *%529 > log,q — H(V) and ¥Hl820 o
logo g — H(V) + x({pv, pv}) for all n sufficiently large.

Proof. In order to achieve a rate R = x({py, pv}), the standard approach is to pick 2% codewords

uniformly and independently from T§'(py ). However, the resulting code is not algebraically closed.
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nR

Togy 7 whose entries
2

On the other hand, if we pick a random generator matrix G € ]:éxn, with [ =
from F, are IID uniform, then its range space - the resulting collection of 2" codewords - are
uniformly distributed and pairwise independent but not py —typical.

To satisfy the dual requirements of algebraically closure and py —typicality, we observe the
following. If a collection of ¢* codewords are uniformly distributed in Fg and pairwise independent,
as we found the range space of G to be, then the expected number of codewords that are py —typical

is Z—:|T§L (pv)| = exp{nlog, q (% - [1 - gg(;;/ﬂ)} This indicates that if we pick a generator matrix

H(V)
logy g7

G € FF>" with entries uniformly distributed and IID, such that % >1-— then its range space

will contain codewords that are py-typical. The latter codewords can be used for communication.

H(V)
log, g

Each coset of G; € F**" where % >1-— will play an analogous role as a single codeword

in a conventional IID random code. Just as we pick 2™ of the latter, we consider 2™ cosets of G
G
within a larger linear code with generator matrix G = € ]:q(kH)X” with | = lonéfq' The
Goyr

messages index the 2™ cosets of G. A predetermined element in each coset that is py —typical is
the assigned codeword for the message and chosen for communication." A formal proof we provide
below has two parts - error probability analysis for a generic fixed code followed by an upper bound

on the latter via code randomization.

Upper bound on Error Prob. for a generic fized code : Consider a generic NCC (n, k,1, g1, 90/1,b")
with its range space v"(a,m) = agr ©q mgo/r Bg b" : (a,m) € VE x V!, We shall use this and
define a CQ-PTP code (n,Z = ]-"é, e, A7) that is an NCC CQ-PTP. Towards that end, let 6(m) a

Paevk Lon(amyers (py)) A0d

() & {a € VE :v"(a,m) € T (py)} if O(m) > 1

{0%} if (m) =0

for each m € V!. For m € V! a predetermined element a,, € s(m) is chosen. On receiving

message m € V', the encoder prepares the quantum state p=" = p?n”( am,m) = @11 Puy(am,m) and 18

communicated. The encoding map e is therefore determined via the collection (a,, € s(m):m €V').

!The reader is encouraged to relate to the bounds stated in theorem statement and induced bounds on the rate
of communication “O%.
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Towards specifying the decoding POVM let p, = ZyeyPY\V(?/|U) !ey|v> y‘v‘ be a spectral
decomposition for v € V. We let pyy 2 pvpy|y. For any v" € V", let myn be the conditional
typical projector as in (Wilde, 2013a, Defn. 15.2.4) with respect to the ensemble {p, : v € V}

and distribution py. Similarly, let 7, be the (unconditional) typical projector of the state p a

1>

> pey PV (v)py as defined in (Wilde, 2013a, Defn. 15.1.3). For (a,m) € V¥ x V!, we let mqm

A
Ton (a,m) L{on (am)eTp(py)}- We let Az = {>aevr Aam :m € =V A1}, where

1/2

dn2 (X ) (X Sa) (6.1)

acVkmep! acVk mey!

A 27— Y omevt 2aevk Aaym and Yo m N TpTamTp. Since 0 < ¥4, < I, we have 0 < Ay < 1.
The latter lower bound implies Az C P(#). The same lower bound coupled with the definition of
the generalized inverse implies 7 > >k > eyt Adaym > 0. We thus have 0 < A_; < I. It can now
be verified that Az is a POVM. In essence, the elements of this POVM is identical to the standard
POVMs except the POVM elements corresponding to a coset have been added together. Indeed,
since each coset corresponds to one message, there is no need to disambiguate within the coset.
We have thus associated an NCC (n, k,[, g1, go,r,b") and a collection (am, € s(m) : m € Vh

with a CQ-PTP code. The error probability of this code is
thr ((I - Z)\am ) <gq thr — Napm) P, (6.2)
meZl acVk meZl

Denoting event & = {f#(m) < 1}, its complement &° and the associated indicator functions 1 ¢, 1 sc

respectively, a generic term in the RHS of the above sum satisfies

tr((I — A, m)Pm Mge +tr((1 — /\am,m)P%n)]lé”

< dge+ ZT%, where Ty1 = 2tr((I — Ya,, m)po") e,

4Ztr f)/a mpm ]1(@7 T23 42 Ztr Va, mpm

aFam m#m a

where we have used Hayashi-Nagaoka inequality Hayashi and Nagaoka (2003).
Distribution of the Random Code : The objects g; € VkX”,go/I € VX7 p € Y™ and the

collection (a,, € s(m) : m € V') specify an NCC CQ-PTP code unambiguously. A distribution
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for a random code is therefore specified through a distribution of these objects. We let upper case

letters denote the associated random objects, and obtain

Gr=91,Go/r = goyr (k1) H
=b" Ap=ap,: m e S(m) evl®

and analyze the expectation of & and the terms Th;;i € [1,3] in regards to the above random
code. We begin by Ep[&] = P(>_,cpr Livnamyery (ov)} < 1). For this, we provide the following

proposition.

Proposition V1.4. There exist e, (6),d7,(0), such that for all sufficiently small 6 and sufficiently

large n, we have Ep [&] < er,(0), zf% >logq— H(V)+ g, where €g,55 N\ 0 as 0 N\, 0.

Proof. The proof follows from Appendix B of Padakandla and Pradhan (2017) with the identifica-
tion of § = ¢. O

We now consider T5;. An upper bound on T5; is derived by obtaining a lower bound on
Tr(Aa,, mpo). This follows by an argument that is colloquially referred to as ‘pinching’. Lemma
E.1 in Appendix E.1 proves the existence of A > 0 such that Ep{T5;} < exp{—nAd?} for sufficiently
large n. We now analyze Ep[Th2]. Denoting the event

©O(m)>1,V™*(a,m)=a"

Je ck
Ap=d,V"™(d,m) = z" V™(d,m)

Vn(a,m) ="

>
I
—
&
w
~—

we perform the following steps.

Ep[Tao] = > Ep[tr(Tampi) L pem>13 1 {azan))
aeVvk

=2 2 > ) E[r(Tampi)lazals]

deVFk aeVk aneT (py) Znevn

=22 2 > E[u(amils]

deVk aFd zneT (py) ZnEV™

where the restriction of the summation 2" to T§'(py) is valid since S(m) > 1 forces the choice
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Ay, € S(m) such that V"(A,,, m) € T§'(py). Going further, we have

p[Tee] = Z Z Z [tr(m,manmopon ) 1 7]

d,aeVk an €Ty (pyv) 2ne€Ty (pv)
a;éd

= > > Y t(mmmmei)PJ)

d,a:a#dzneTy (py) 2neT§ (pv)

< S S te(manm,)P(T)2 SO H ) bev]

da:a£d 2 TP (py)

(b)
< Z Z tr(ﬂfcnﬂp)P(IC)Q_”[S(P)—H(pV)+ev]

d,a:a£d EneT? (py)
1
Z Z tr(mnﬁp)ﬁg—n[s(p)—H(pv)ﬁv]
da:a#d EneT? (py) q

(é) o—n[x({pvipu})+ey —2H (pyv)— 2% log g+2log q] (6.4)

where the restriction of the summation 2" to 7§ (py) follows from the fact that mz» is the zero

projector if " ¢ T5'(pv ), (a) follows from the operator inequality

Z Tppan Ty < Qn(H(Pv)+€v(5))ﬂ-pp®n7rp < 2"(H(Pv)+€v(5)—5(f>))ﬂ-p
zneTs(pv)

found in (Wilde, 2017, Eqn. 20.34, 15.20), (b) follows from Def. 6.3, (c) follows from pairwise
independence of the distinct codewords, and (d) follows from 7, < I and (Wilde, 2013a, Eqn.

15.77) and ey () \( 0 as § \, 0. We now derive an upper bound on Ep[Tp3]. We have

p[T3] = Z Z Z [tl" Tp amePAmm)ﬂj

d,aEVFE m#EmM ™ 2" e
Tgl(pv)

Z Z Z tr(ﬂinﬂppfcgg”p)p(J)

d,a€Vk m#m 2" " €T (py)

< Z Z Z tr(ﬁjnwp)P(j)2*”[S(P)*H(pv)+ev]

daeVk m#m " eTy (py)

<Y DY wr(mem,)P(K)2 SR Hv)Tev]

d,aeVk m#m " €Ty (py)

=3 Y Y u(mem,) 72 nIS(p)—H(py)+ev]

d,aeVk m#m 2" €Ty (pyv)
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_ 2k+l
n

< 9—n[x({pvipu})+2logy ¢—2H (pv) log, g+ev |

where the inequalities above uses similar reasoning as in (6.4).

We have therefore obtained three bounds % >1 - Hev) 2k 9 + XUpvipeH)=2H(pv) ~ 2k+l

logog’ n logs g Y n
o —2H . . . . kE H
9 4 XUpv plo];q (ev) A rate of x({pv:pv}) — € is achievable by choosing = = 1 — %;Vq) + 5,
= x{pvip “l’jg);; 1982 vV thus completing the proof. O

6.5 Decoding Sum over CQ-MAC

Throughout this section, the source alphabets & £8 =8 = Fy is a finite field with ¢ elements
and the receiver intends to reconstruct the sum f(Si,S2) = S1 &4 So of the sources. As discussed
in Sec. 6.3, we propose a ‘separation based’ coding scheme consisting of a Kérner Marton (KM)
source code followed by a CQ MAC channel code designed to communicate the sum of the message
indices input at the channel code encoders. The focus of this section is to design, analyze and
thereby characterize performance of the latter CQ MAC channel code tasked to communicate the

sum of messages. Towards that end, we begin with a definition.

Definition VL.5. Let V = F, be a finite field and (pz,2, € D(Hy) : (z1,22) € X1 X A,) be a
CQ-MAC. A CQ-MAC code ¢ppg = (n, 7y =1y = Fé, e1, €, )\[qz]) of block-length n for recovering
F,—sum of messages consists of two encoders maps e; : V! — Al j € [2], and a POVM Ay =
{Am € P(HY™) :m € VI

An F,—message-sum rate R > 0 is achievable if given any sequence I(n) € N : n € N such that
lim sup,,_,~ l(")% < R, any sequence p%}z Mo of PMFs on ]-"é(n) X }“é(n), there exists a CQ-MAC
code 67(771% =n,I=11 =1, = ]:é(n), egn), egn), A7) of block-length n for recovering ]:é(n)—sum of

messages such that for every § > 0, have

Tim E(eh) = m 1= 3" panpas (m1,m2) Tr(Amyomapim) = 0
(m1,m2)
€1 X1Is
A :
where pS7 = @1 Py (m1)aas(me), Where ej(my) = xj1(my), xja(my), - -+, xjn(my) for j € [2]. The

closure of the set of all achievable F;,—message-sum rates is the message-sum capacity of the CQ-

MAC.
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From our discussion in Sec. 6.3 and the above definition, a road map for characterizing sufficient
conditions for computing the sum over a CQ-MAC must be evident. Referring back to Sec. 6.3,
we note that is joint PMF Wg, g, of the sources is such that H(S; @4 S2) is dominated by the
message-sum capacity of the CQ-MAC, then the corresponding sum of sources can be reconstructed
over the CQ-MAC. Therefore, if R > 0 is an achievable message-sum rate over a CQ-MAC, then
H(S1 ®¢ S2) < R is a sufficient condition. We now state the main contribution of this section - a
lower bound on the message-sum capacity of a CQ-MAC. Following its proof, we leverage the above

argument in Thm. V1.9 to characterize sufficient conditions for reconstructing sum of sources over

an arbitrary CQ-MAC.

Definition VI.6. Given a CQ-MAC px £ (pp,e, € D(Hy) : (21,22) € X1 X X5) and a prime

power ¢, let Z(px,q)

PViXiPVaXs isa PMF on V x A} xV X XQ,V = Fq,

PVivaU (U1, V2, u) = Z Pvix (U1, 21)Pvs x5 (V2, 22) L fu—v @y 0s)
T1,T2€X

A
Pu = Z ZleVQ\U(vbv2lu)pvlv21{vl®qv2:u}’
Ule]'—q UQEJ'—q

1>

(Pvive, pu s u € V)

A
,01;11;2 = Z le\Vl (xl|U1)pX2|V2(x2‘U2)pxlx2
T1EX],x2EX

For (pV1V2U7Pu tu € ]:q) € ‘@(pia Q)7 let

‘@(plezUa PV) = min{H(V1)7 H(VQ)} - H(U) + X({pU; pu}) and

R(px.q) & sup Z(Pvivau, p) (6.5)
PVl V2U7PVE‘@(p£7q)

Lemma VL.7. F,—message-sum rate Z(px,q) is achievable over a CQ-MAC px = (pzizo €
D(Hy) : (z1,72) € X1 X Xy).

Proof. Let (pv,vuou, pu:u € V) € P(px,q) with associated collection (py, v, : (v1,v2) € Vi X V) of
density operators and PMF py, x,pv,x, on Vi X X1 x Vo x Ao where Vi = Vp = F.

We now describe the coding scheme in terms of a specific code. It is instructive to revisit
Sec. 6.3, wherein we specified the import of both encoders employing cosets of the the same linear

code. In order to choose codewords of a desired empirical distribution py;, we employ NCCs (as
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was done for the same reason in Sec. 6.4). Following the same notation as in proof of Thm. VI.3,
we now specify the random coding scheme.

Let Gy € ffX”,GO/I € FéX",Bj € F; : j € [2] be mutually independent and uniformly dis-
tributed on their respective range spaces. Through out this proof, we let & = &¢. Let V}(a, m;) a
aGré&m;Go/ & BY : (a,mj) € ]-"5” for j € [2] and U"(a,m) & aGr@mGo,r®BY © By : (a,m) €
FiFL For j € [2], let

{acVF: Vit(a,m;) € Tg'(pv;)}  if Z
Sj(my) £ wevt

{0%} otherwise, i.e Z 1

acVk

Hvramperpong)} =1

{vp@mperyov,)} = °

for each m; € V'. For m; € V!, a predetermined element Ajm; € Sj(my) is chosen. We let
©,(m;) = |S;(mj)|. For m; € V!, a predetermined X} (mj) € A" is chosen. As we shall see later,

the choice of X7'(my) is based on V;*(4;,,m;). We are thus led to the encoding rule.

Encoding Rule: On receiving message (m1,ms) € V! x V!, the quantum state

A A on
Pmima = PX7(m1) X5 (m2) = ®t:1pX1t(m1)X2t(m2)

is (distributively) prepared.

Distribution of the Random Code: The distribution of the random code is completely specified
through the distribution P(-) of Gr,Go/1, BY, By, (A1m, @ m1 € VO, (Agmy + m2 € V) and
(XJ(mj) :m; € V. We let

(Al,m1 = a1,m, - M1 € Vl)a (AQJTLQ = a2,my M2 € Vl)’
P By =bp:je2,(Xi(m)=af(m) :m € V),

G1=91.Gos1 = goy1, (Xa2(ma) = 2% (ma) : mg € V')

gy es1(mn)} o, .
H WPXH% (7 (ma) v (a1,my, m1))

mi

1
{az2,mq€52(m2)} 1 n !
% [I | WPXQ\VQ(%(T”? vy <a2,m27m2)] X gEntinTan (6.6)

m2
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Towards specifying a decoding POVM, we state the associated density operators modeling the

quantum systems, their spectral decompositions and projectors. Let

pP= Z SY(y) ‘hy> <hy’ y Prize = ZPY|X1X2 (y’.%'l,.ilﬁg) ‘ey|x1x2> <ey\x1x2‘ : (1'1, x2) € &
yey yey

Poivy = Z Oy vivs W01, v2) | Fyfonws ) {Fylores| © (V1,02) €V, py = Zryw(y!u) |Gylu) {Gylu] s v €U,
yey yey

Decoding POVM: Unlike a generic CQ-MAC decoder Winter (2001), which aims at decoding

both the classical messages from the quantum state received, the decoder here is designed to

decode only the sum of messages transmitted. For this, the decoder employs the nested coset code

(n,k,1,G1,Goyr, B"), where B" = BT @ By. We define U"(a, m) 2 4Gy +mGo,r+ B" to represent

a generic codeword. We let Il ,, = Ty (a,m) where py is as defined in the the-

L @m)ers™ oy
orem statement. The decoder is provided with a sub-POVM Az a {Anm a YoacrkNam im e .7:;}
q

where

Aam 2 < > Fd,m>_1/2ra,m< >N Fa,m>_1/2,

acFk meF; acFk meFl

A2T— Zaeﬂc Zmefg Aam and T p, 2 Tpll(4m)Tp. We note that
n n
A A
Tp = Z ® ’hyt> <hyt’ and myn = Z ® ‘gytIUt> <gytIUt‘
yneTy (sy) t=1 y™:(unym)ETY (pury ) t=1

denote the typical and conditional typical projectors (as stated in Definition 15.2.4 Wilde (2013a))

with respect to p £ > uer, Pu(u)pu and (py : u € U), respectively.

Error Analysis: We derive upper bounds on Ep{&(cne)}. Our derivation will be similar to those

adopted in proof of Thm. VI.3. Let us define event

VI'(A1my, ma), X7 (ma),

o
1>

Vi ( Ay, ma), X5 (ms), € Tes(pvixivax2U) ¢ - (6.7)

VI (At1mg, m1) © V3 (A2.my, m2)
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We have

Ep {Z ZleMg (ml, m2) TI“([I - AmlGBmQ])p%ng }

mi m2

<Ep {Z > panyam (ma, ma) Te([I — Aml@mg])l)%?mg]lfc}

mi1 mo
Ty
+Ep {Z D pasa (mi, ma) Tr([1 - Aml@m])p;?;?mgng} .
mi meo
T

In regards to T3y, the sub-POVM nature of Az and the fact that p;‘%ﬁ"mZ is a density operator
enables us conclude 71 < Ep{lgc}. Furthermore, observe that X;(m; is distributed with PMF
Px,|v, conditionally on V' (Ajm;m;)- (See (6.6). In addition, pv; x,v,x, = Pvix,Pvsx, implies that,

standard conditional typicality arguments yields

Ep{ls} <Ep {Zle (m1) Lo, (my)=0y + > P (m2)]l{@1(m2)0}} +exp{—nd},  (6.8)

mi m2

where ¢ is chosen appropriately. In the above inequality, the second term on the RHS is an
upper bound on the probability of the event (XT7'(m1, X5 (m2)) ¢ T5 (v, x,vaxou|vl, vy, v @ v3)
conditioned on (V{*(A1.m,, m1), V5 (A2.my, m2), VI (A1.my,m1) & V5 (A2.m,, m2)) = (VF, 05,07 &
vy) € T§(pviveu) and the first term provides an upper bound on the complement of the latter
event. An upper bound on T; therefore reduces to deriving an upper bound on the first term on
the RHS of (6.8). This task - deriving an upper bound on the first term on the RHS of (6.8) -
being a classical analysis, has been detailed in several earlier works Padakandla (2014); Padakandla
et al. (2016); Padakandla and Pradhan (2017, 2018) and in particular (Pradhan et al., 2021, Proof

of Thm. 2.5). Following this, we have
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thereby ensuring 7T} < 2exp{—nd} if

klogq

- 2 max{logg — H(V1),logq — H(V2)} = logq — min{H(V1), H (V2)}. (6.9)

We now analyze T>. Applying the Hayashi-Nagaoka inequality, we have
Ty < Ep[Tor + Tho + Ths], (6.10)

where

Ty £ 22 ZleMz (m1,mg) Tr([f - FA%,m@]p%?W])]lg’

mi m2

Ty & 422 Z Pty Mz (M1, ma) Tr(Dg e P, ) Lé

mma a8,

T23é4zz Z Z leMQ(ml,mg)Tr(Fa,mp%?mQ)]lé%

m1 M2 £ AP mAM

and A% a Aty @Az m, € VE m® A 1y @ms € V. We note that (6.10) follows from an argument
analogous to the one in (6.2). We now analyze T51, Ty and Th3.

We begin with T51. For each mq and mo, denote the events

A n o ,.n
J= { <V1”(A1.ml,m1),X?(m1), V2"(A2.m2,m2),X§(m2)) = (?}1 ,.%‘1,1}2,1}2) € Té(pV1X1V2X2)} )

VE (VM aj,my) =g 2}, VE{V(a® m @mo) =18}, A2 {Ajm, =a;:j€[2]},
abbreviating vy, = vi ® vy, a® = a1 @ ay. We have

Ep[TQﬂ =1- Z Z Z pM(m) Tr(ﬂvnﬂpp%l?zgﬂp>Ep []1‘7]1_,4]1\)]1)}] S €

m aya2 (v"z)€
Ts(pvx)

for all sufficiently large n and sufficiently small §, where the last inequality follows from the pinching
argument, also provided in Lemma E.1 (see Appendix E.1). Set A =V = F,, B =X, pap =
Pvievs,x and the density operators correspondingly.

The proposition below bounds the terms Thy and Th3 as follows.
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Proposition VI.8. For any e € (0,1), and for all sufficiently small § > 0 and sufficiently large n,

we have Ep[Ths + Ths] < € if the following inequalities hold:

k
logq < Blogg + 1(V: 2)y — H(Vi, Vs) ~ H(V) — ¢

3k +1
R0 g < Slogg + 1(v: 2)y — HVA,V2) ~ H(V) —c.
Proof. The proof is provided in Appendix E.2. O
This completes the proof of the claimed statement. O

We conclude this section with our final result of this chapter in regards to decoding sum of
sources. The proof of the following theorem follows from the discussion provided just prior to
Definition VI.6. We therefore omit a detailed proof but just state the encoding and decoding

techniques for completeness.

Theorem VI.9. The sum of a pair of sources distributed with PMF Wg, g, can be reconstructed

on a CQ-MAC px = (puyzs € D(Hy) : (z1,22) € X1 X Xo) if H(S1 &4 S2) < Z(px,q).

Proof. We begin with an outline of our coding scheme. As stated in Sec. 6.3, we propose a ‘separa-
tion based approach’ with two modules - source and channel. The source coding module employs
a (distributed) Korner Marton (KM) source code. Specifically, Korner and Marton (1979) guar-
antees the existence of a parity check matrix h € ]:éX" = S and a decoder map d : }"é — S”
such that > e gn WE(8™")L{g(nsr@qhsn)£simgsn) < € for any € > 0, and sufficiently large n, so long
as 129 > (S, @, Sy).

Both encoders of this KM source coding module employ one such parity check matrix h € féxn.
The decoder of the KM source code employs the corresponding decoder map d. KM Source encoder
7 outputs M]l = h(SJn). If the KM source decoder is provided M{ Dq Mé, then it can reconstruct
ST @q Sy with reliability at least 1 —e. The task of the CQ-MAC channel coding module is to
make M! @, M} available to the KM source decoder. We are thus confronted with the problem
of designing a CQ-MAC channel coding module that can reliably communicate the sum of the
messages indices that are input at the encoders.

Specifically, this channel coding module must communicate M{ Dq Mé € ]:é within n channel

uses. If we can prove that there exists a MAC channel coding module for sufficiently large n so
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long as

ROB2 L minff (V2), H (Vo)) ~ H(U) +x({pus pu})

for any choice of auxiliary

The source module employs the KM code. The corresponding KM decoder at the receiver only
requires the sum of the message indices output by the KM code. The CQ-MAC channel coding
module needs to communicate only the sum of the two message indices input by the two encoders.
Given ¢, we seek to identify a CQ-MAC code ¢ = (n, e, e, M) such that £(c) < ..
Encoding: The process of mapping source sequences to the CQ-MAC channel inputs is divided
into two stages. In the first stage, a distributed source code proposed in Korner and Marton
(1979) is employed which maps the n—length source sequences to message indices taking values
over ]-'é. For the second stage we develop functions mapping these message indices to channel input
codewords. We begin by defining the first stage of encoding which relies on Lemma 1 of Padakandla

(n)xn

and Pradhan. This lemma guarantees the existence of a parity check matrix h € ]-"é and a

map d : ]—'é(n) — JFy, for a sufficiently large n, such that (i) @ < H(S1 ©¢ 52) + 5 and (ii)
P(d(hST © hS3) # ST © S3) < %. We use one such parity matrix which satisfies the above
conditions and define M; = hS;, for j = 1,2. This forms our first stage encoder.

Moving on to the second stage encoder, let us denote the maps of the two encoders as x; :
.7-"; — X'+ j = 1,2.. For this stage, we use the NCC encoding developed in Section 6.4 for a
CQ-PTP. Consider two NCCs with parameters (n, k., g1, go/1,0}) : j € {1,2} with range spaces
as v (a,m;) 2 agr ® mjgosr ® by 1 j € {1,2}, respectively. Note that the two NCCs share the
common g7 and go,r, but not necessarily the bias vector b7. Encoder j then constructs its NCC
CQ-PTP code (n,Z = ]-"é, ej, )\JI) using the corresponding NCC (n, k, 1, 91, 90,1, b;‘) as described in
Definition 6.1. This defines the second stage encoding. Integrating the two stages, we obtain the
following. To transmit the source sequence pair (s, s§) the sequence pair (e1(hsy), e2(hsy)) is send
over the CQ-MAC channel which produces the quantum state Pey(hst),ea(hsy) 88 the output.

After performing the measurement and decoding the message 7, the decoder then employs the

KM decoder d(.) to obtain the sum of sources d(72). An analysis of this coding scheme is provided

in the Proof of Lemma VI.7.
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6.6 Decoding arbitrary functions over CQ-MAC

Leveraging the technique developed in Theorem VI.9, in this section we provide the following

proposition to reconstruct an arbitrary function of the sources

Proposition VI1.10. The function f : S — S of sources Wg, g, can be reconstructed on a CQ-MAC
(Pz1ze € D(Hy) : (x1,22) € X1 X Xo) if there exists functions hj : S5 — Fy for j : 1,2, a function
g:Fy— S, and a PMF pyiv,x, X, = PV X, PVaX, 0N V1 X X1 X Vo X Xo, where Vi = Vi = Fy,such that
f(s1,82) = g(ha(s1) ®ha(s2)) and H(h1(S1) ®qh2(S2)) < min{H (V1), H(V2)}—=H(U) +x{pu; pu}),

where py and p, are as defined in Theorem VI.9.

Proof. The proof follows from the proof of Theorem VI.9. O

Example VL11. Let X} = X =8 = S = X = {0,1}, H = C?, and py; 20 = (1 — Q)0 (zyvas) +
Q0 (3, nz2), Where op,01 € D(H) be arbitrary. Let p(q) 2 (1 — q)og + qo1. Consider correlated
symmetric individually uniform sources with Wg, g,(1/0) = Wg,s,(0[1) = p for p € (0,1). Let
f(S1,82) = S1V Sy. Consider the sufficient conditions given by the unstructured coding scheme:
H(51,52) < X({Px,,X2s Pz1,22}), With X; and X, being independent, which can be simplified as
1+hy(p) < S(p(0.5))—S(p(g)). This implies that the f is not reconstructible using the unstructured
codes. We embed f in the ternary field. In other words, the encoders and decoder work toward
reconstructing S @3 S2. The sufficient condition given by the algebraic coding scheme turns out
to be

H(Sl S2R! 52) <H(X1) - H(Xl ®3 XQ) + X({le@st’ Pz1®32 })a

for some px,,x,, which can be simplified as

he(2p — p?) + (2p — p*)he(p/(2 — p)) <

maxlhy(0) — hy (26 — 0%) — (20 — 6*)hy(6/(2 — 0))

+8(p((20 = 6°) * q)) — S(p(a))]-

One can show that there exists choices for p, ¢, o9 and o7 such that this condition is satisfied.
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CHAPTER VII

Structured Codes for 3—User Classical-Quantum Interference

Channel

7.1 Introduction

We consider the scenario of communicating over a 3—user classical-quantum interference channel
(3—CQIC) (Fig. 7.1). We undertake a Shannon-theoretic study for characterizing an inner bound
to its capacity region. The current known coding schemes for CQICs Sen (2012); Savov (2012);
Sen (2018a); Hirche et al. (2016) are based on unstructured codes. In this chapter, we propose a
new coding scheme for a 3—CQIC based on nested coset codes (NCCs) - codes possessing algebraic
structure. Analyzing its performance, we derive a new inner bound (Sec. 7.4) to the capacity
region of 3tol—CQIC - a sub-class of 3—CQICs. The inner bound is proven to subsume any
current known inner bounds based on unstructured codes. Furthermore, we identify examples of
3tol—CQICs for which the derived inner bound is strictly larger. These findings are a first step
towards characterizing a new inner bound to the capacity region of a general 3—CQIC.

The current approach of characterizing the performance limits of CQ channels is based on un-
structured codes, which remained for several decades the de facto ensemble of codes for information-
theoretic study of any classical channels. Inspired by the work in Korner and Marton (1979) and
followed by findings in a multitude of network communication scenarios Krithivasan and Pradhan
(2011); Nazer and Gastpar (2007); Philosof and Zamir (2009); Jafarian and Vishwanath (2012);
Padakandla et al. (2016); Padakandla and Pradhan (2013), it has been analytically proven that cod-
ing schemes designed using codes endowed with algebraic closure properties can strictly outperform

all known unstructured coding schemes.
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Figure 7.1: Communication over 3—CQIC.

The goal of this chapter is to build on this and enhance the current known coding schemes in
the context of CQ channels. Our experience with classical channels suggests that a first step toward
this is to design and analyze coding schemes for basic building block channels. Indeed, the ensemble
of NCCs studied in the simple context of point-to-point (PTP) channels form an important element
of this work Pradhan et al. (2021). On the other hand, the mathematical complexity of analyzing
CQ channels makes it challenging to generalize even well known coding schemes to the CQ setting.
In the light of this, our work maybe viewed as a first step in designing new coding schemes for
network CQ channels based on coset codes.

In the context of CQICs, the focus of current research is on 2—user. There has been considerable
effort in Fawzi et al. (2012); Sen (2012); Savov (2012); Hirche et al. (2016); Sen (2018b,a) at
proving the achievability of the Han-Kobayashi rate-region (CHK) Han and Kobayashi (1981) for
2—user ICs. Analogous to these, one can leverage all known coding techniques - message splitting,
superposition coding, Marton’s binning - and derive an achievable rate region for a 3—CQIC. See
discussion in (Padakandla et al., 2016, Sec. III). This rate region, henceforth referred to as the
W SB—region contains the largest current known inner bound for any 3—CQIC. In this work, we
focus on 3tol1—CQICs (Defn. VII.3) - a subclass of 3—IC in which only one receiver (Rx) experiences
interference. We propose a coding scheme based on NCCs and derive an inner bound for this sub-
class that subsumes the ZSB—region in general, and strictly larger for identified examples (see
Ex. VIL.6). Our analysis of this simultaneous decoder builds on the technique proposed in Fawzi
et al. (2012). In the next step, we leverage these building blocks and employ a multi-terminal

simultaneous decoder Sen (2018b) to derive a new achievable rate region for 3tol1—CQICs.
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7.2 Preliminaries and Problem Statement

We supplement our notation thus far with the following. For n € N, [n] A {1,---,n}. We let
an underline denote an appropriate aggregation of objects. For example, X a X1 X Xy X X3, a
(1,22, 23) € X and in regards to Hilbert spaces Hy, : i € [3], we let Hy 2 @3, Hy.. We abbreviate
the Positive Operator Valued Measure and Block-Length as POVM and B-L, respectively.

Consider a (generic) 3—CQIC (py € D(Hy) : x € X,K; : j € [3]) specified through (i) three
finite sets A : j € [3], (ii) three Hilbert spaces Hy; : j € [3], (iii) a collection of density operators
(pe € D(Hy) : € X) and (iv) three cost functions x; : X; — [0,00) : j € [3]. The cost function
is assumed to be additive, i.e., cost expended by encoder j in preparing the state ®i 0z, 00,23 15
-

Ry A % > i £j(xj¢). Reliable communication on a 3—CQIC entails identifying a code.

Definition VII.1. A 3—CQIC code ¢ = (n, M, e, \) of B-L n consists of three (i) message index
sets [M] : j € [3], (il) encoder maps e; : [M;] — A : j € [3] and (iii) POVMs ), = {Njm 7—[?" —
7-[;9” :m € [M;]}: j € [3]. The average probability of error of the 3—CQIC code (n, M, e, A\Bl) is

1

_ Tr( A, pS0 ).
MiMaoMs m%.:/\/l r( 7/)(:,@)

HEPIESE

where ), £ ®§:1)\j,mj, PEm L Q1 Prrseares, Where (zjt 1 1 <t <n)=aj(my) = e;j(m;) for j € [3].
Average cost per symbol of transmitting message m € M € 7(eJm) £ (E;L(ej (mj)) :j € [3]) and
the average cost per symbol of 3—CQIC code is 7(e) £ ﬁ > mem Ilelm).
Definition VII.2. A rate-cost vector (Ry, Ry, R3, 71,72, 73) € [0,00)¢ is achievable if there exists
a sequence of 3—CQIC code (n,M(”),g(”),A(”)) for which lim E(g(”),g(”)) =0,

n—oo

lim n_llog./\/l(n) = Rj, and lim 7(e); < 715:4 € [3].

n—o00 J n—oo

The capacity region C(p, : z € &) of the 3—CQIC (p, € D(Hy) : z € X) is the set of all

achievable rate-cost vectors. We define below the sub-class of 3to1—CQICs.

Definition VIL.3. A 3—CQIC (p; € D(Hy) : z € X) is a 3tol—CQIC if (i) for every A € P(Hy,),
F'eP(Hy,), Tr((I @ A® 1) pgizgzs) = Tr((I @ A ® I)ps,ay24) for every z, & € X satisfying xo = 22,
and (i) Tr(({ ® I @ ') pgyzozs) = Tr((I @ I @ I')ps, 2024) for every z, & € X satistying x5 = Z3.
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7.3 Illustration of the Central Idea

The goal here is to demonstrate the utility of algebraic closure in coding schemes for 3—ICs.
While, we state Ex. VII.4 in the context of 3tol—CQICs, we discus in the context of a classical

3tol—IC. The latter provides an exposition on the utility of algebraic closure in network scenarios.

Example VIL4. Let X; = X = {0,1},H; = H, o)) € D(H) for j € [3] and b € X. For z € X, let

Pz A 09(611)€Bz2®a:3 ® 05(522) ® Ug). For z € {0,1}, we let k1(x) = z and ki(z) =0 for k = 2,3.

Let H = C2, op(n) & (1= n) [b) (b + 7|1 —b) (1 —b| for b€ X, n € [0,1]. Let 0" 2 6,(5;) and
052) = 0'153) 2 54(8) for b € X and some specified 8,61 € (0,1) . In addition, let 7 € (0, 3) specify a
Hamming cost constraint on Tx 1’s input. With this choice, one identifies the above example with a
3tol-IC Y, = X1 & Xo® X3 Ny, YV = Xk ® Ny, : k = 2,3 with Ny ~ Ber(d1), Nk, ~ Ber(d) k =2,3
being independent. Tx k € {2, 3} splits its information into Uy, Xi. Rx 1 decodes Uy, Us, X7, while
Rx k € {2,3} decodes Uy, Xj. So long as H(Uk|Xy) > 0 for either k € {2,3}, it can be shown
that H(X2 @ X3|Uz,Us) > 0 implying Tx-Rx 1 cannot achieve hy(01 % 7) — hy(d1) - its interference
free cost constrained capacity. If hy(d1 % 7) — hp(01) + 2(1 — hp(0)) > 1 — hp(d1), it can be shown
that H(Uk|Xy) > 0 for either & € {2,3} precluding Tx-Rx 1 achieving a rate hy(d1 * 7) — hy(d1)
using unstructured coding. Suppose users 2,3 employ codes of rate 1 — hy(d) that are cosets of
the same linear code, then the above condition does not preclude Tx-Rx 1 from achieving a rate
hp(61 % 7) — hy(d1), so long as 7% 6 < 6, even if 1 + hy(7 * d1) > 2hy(0). The reason is, user 2 and
3’s codebooks when added is another coset of the same rate 1 — h4(d). Rx 1 can just decode this
interference if hy(61 * 7) — hy(61) + 1 — hy(6) < 1 — hy(81) which is equivalent to 7% 8§ < § < 1.
Hence, for this 3to1—IC, if hy(01 * 7) — hp(61) + 2(1 — hp(8)) > 1 — hy(61) and 75 < § < 3 hold,

then coset codes are strictly more efficient than unstructured codes.

7.4 Rate region using Coset Codes for 3tol-CQIC

In this section we consider the above described 3tol-CQIC and provide an achievable rate-region.

Theorem VIL.5. Given a3tol-CQIC (py € D(Hy) : x € X, kj : j € [3]) and a PMF py,v, x, Xo X5 =

PX1PVeXaDVs X5 0N Vo X V3 X Xo X X3 where Vo = V3 = Fy, a rate-cost triple (R1, R, Ro, 71,72, 73)
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1s achievable if it satisfies the following

Ry SI(YI;Xl‘U)O'I? Rj SI(}/]';VJ')UW
Ry < min{H(V), H(Va)} — H(U) + I(Yi; U X1}

Ry + Rj < min{H (V2), H(V3)} — H(U) + 1(Y1;V1U)o,

for j =2,3, and E[k;(X;)] <75 : j € [3], where

==
12

Y. pxa(@)pu (e, @ ez © [u)ul,
1 EX1,ueF,

>~<
1>

Y
Priu E E pvg,vg,x27X3|U(U2,113,$27333’”)/)2

V2,V3 T2,T3

o2 = Z PxVaVs (&, 02, v3) Py @ [v2)va] @ 3 ) (3],

v1,02,03
for UL Vo @ Vi, and {|va)}, {|vs)} as some orthonormal basis on Hy .

Example VIL.6. Let X; = X = {0,1},H; = C? and let

2/3 0 1/2 1/6
/ ,andalé / /

0 1/3 1/6 1/2

1>

Pz = [(1 - 51)0$1€9I2€B$3 + 5109616913269963@1] ® [(1 - 5)0062 + 501‘2@1} ® [(1 - 5)01’5 + 60963691]’

for z € X, where Ni, Ny and N3 are mutually independent Bernoulli random variables with
biases d1,0 and ¢, respectively. We let 61,0 € (0,0.5). For z € {0,1}, we let x1(z) = = and
kr(x) =0 for k = 2,3. Let p(p) := poo + (1 — p)o1. Note that p(p) and p(1 — p) do not commute
except for p = 0.5. It can be checked that S(p(p)) is a symmetric concave function of p € (0, 1).
Consider the case when 7 % §; < §. Using NCC, the three users can achieve their PTP capacities
simultaneously: S(p(7 % 1)) —S(p(d1)), S(p(0.5)) — S(p()), and S(p(0.5)) — S(p(d)), respectively.
These correspond to the rates given by I(Xi; B1| X2 @ X3), I(Xo;Y2), and I(X3;Y3). One can
show that if S(p(7 % d1)) — S(p(61)) + 2(S(p(0.5)) — S(p(d))) > S(p(0.5)) — S(p(d1)), then using
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unstructured codes, all three users cannot achieve their respective capacities simultaneously. This
condition is equivalent to the condition: S(p(7 * 1)) + S(p(0.5)) > 25(p(d)). Hence by choosing
Txd0; = 6, and & < 0.5, we see that NCC-based coding scheme enables all users achieve their

respective capacities simultaneously, while this is not possible in unstructured coding scheme.

Proof. We divide the proof into three parts entailing the encoding, decoding and error analysis

techniques.

7.4.1 Encoding Technique

Consider a PMF py,y; x on Vo x V3 x X with Vo = V3 = F, and choose n and R; : j = [3] as non-
negative integers. For encoder 1, we use the random coding strategy and construct a codebook Cy a
{x1(m1) : my € [21]} on A using the marginal PMF P, Let e1(m) 2 z1(my) : my € [27]
denote this encoding map. However, to construct the codebooks for encoders 2 and 3, we employ
a technique based on nested coset codes. Since, the structure and encoding rules are identical for
the these two encoders, we describe it using a generic index j € {2,3}. Let e; : 7y, — X =12

denote the encoding maps. We define an NCC as follows.

Definition VIL.7. An (n,k,l,gr,90/1,b") NCC built over a finite field V = F; comprises of (i)
generator matrices g; € V¥*", g, /1 € VX7 (i) a dither /bias vector b”, an encoder map e : V! — VF,

We let v"(a,m) = agr ©q mgo,r g 0" : (a,m) € VE x V! denote elements in its range space.

Consider two NCCs with parameters (n, k., g1, go/1,Y}") : j € {2,3} defined using the above
definition, with their range spaces denoted by v?(aj,mj) : j € {2,3}, respectively. Note that the

choice of g and g, are identical for the two NCCs. Further, let

(m;) &
0;(m;) Z l{v;‘(aj,mj)eﬂ(")(pvj)}'
aje]-"§
For every message m; the encoder j looks for a codeword in the coset v}l(aj, mj):aj € .7'"5 that is
typical according to py,. If it finds at least one such codeword, one of them, say vjn(aj(mj), m;j), is
chosen randomly and uniformly. e;(m;) is generated according to p&jﬂ/j (|07 (aj(my),m;)) and is

transmitted on the CQIC. Otherwise, if it finds none in the coset that is typical according to py;,,,
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and error is declared. This specifies the encoding rule for the three encoders. Now we describe the

decoding rule.

7.4.2 Decoding Description

We begin the describing first decoder. Unlike a generic 3 CCIC decoding technique of re-
covering the three messages, the decoder here is constructs its POVM to recover its own mes-
sage and only a bi-variate function of the two interfering messages. Since, the POVMs here
require joint typicality of two messages, we employ the POVM construction similar to Fawzi
et al. (2012), while incorporating the bi-variate function being decoded. For this, we equip the
decoder 1 with the NCC (n,k,l,gr,90/1,0"), where b" = by @ Y5'.. We define u"(a,l) as the

range space of the above NCC. Toward specifying the decoding POVM, we let m,,, A T (ma)

1 at A o 1
@) un (@ )eTiM (pr)y M T TR (ma) (@) T @n (my)un (@) €T (px, 0) )

ditional typical projectors (as defined in (Wilde, 2013a, Def. 15.2.4)) with respect to the states

Ta,l a Tun denote the con-

Y1 JAN

p}& 23 pu(w)ptt 4 Py =2 . Pxy (z1)p3!,, and p)l ., respectively, where p)1  is as defined in

the theorem statement. In addition, let 7T'};1 denote the typical projector with respect to the state

p 2 > uPXa (z1)pu (u)p}? - Using these projectors, we define the POVM /\2 = {)\3;117(1,[}, where

1/2 —1/2
a2 (2 X ) (X X )
m1€ ae]-‘k m1€ aE]-'k
2n 2n

le]—" le]—"

PRI g 2 mie[nti] Zaeféc Zle]—‘}] /\El,a,l and Yk & 7, T, Tt Ty . Having described the first
decoder, we move on to describing the other two. Since these two decoders are identical, we use a
generic variable j to refer to each of these. We define ﬂz and 7, ;ym; as the typical (Wilde, 2013a, Def.
15.1.3) and the conditional typical projectors ( Wilde, 2013a, Def. 15.2.4) with respect to the states
pYi a Zvj PV, (vj)pvyjf and pvyj’f, respectively. Using this, we construct the POVM /\2 a {)\X{jﬂj},

for encoder j as

1/2 1/2

M 2 (20 D Gam) G (X0 DGam)

djeFhm;eF] djeFhm;eFl
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)\1_91 - YoVl Dacvk A}:ﬂm and (o m; & Zj,mng. Lastly, we provide the distribution of the

random NCC.

Distribution of the Random Coset Code : The objects g; € VkX”,gO/I € VX" b € Y™ and
the collection (a,, € s(m) : m € V) specify a NCC CQ-PTP code unambiguously. A distribution
for a random code is therefore specified through a distribution of these objects. We let upper case

letters denote the associated random objects, and obtain

D Gr = g1, GO/I =90/1 _ q_(k+l+1)n 1

— — . l
B} =07, aj(m;) = a; : m; € F, meFl

7.4.3 Error Analysis

As in a general information theoretic setting, we derive upper bounds on probability of error

&(e, \) by averaging over the random code of the first user and the ensemble of nested coset codes

used by the other two users. The error probability of this code is given by

— 1
DY 21—75 Tr(ALp®7). 7.1
eM
Using the inequality
Y Y YaY: Y Y1Y: Y: Y1Y:
(I =XAgp) ST =X ) @I+ (I =XN2) @I + (I = N7 ) @172, (7.2)

from Abeyesinghe et al. (2009), we get £(e, A) < Sy + So + S3, where

5,81 ﬁ(((I—AZ{j)@gIX\Bi) p?j;) Lje3l.
meM

Using the definition of 3tol-CQIC, we can further simplify S5 and S3 as

S] = ,/\il] ZT‘T<(I - A%ﬁ)pe(mﬂ) 1j € {273}

m;

We first consider the terms Ss,.S3 . Note that, due to the nature of the 3tol—CQIC problem
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definition, the terms So and S3 are identical to a point-to-point (PTP) setup. Therefore, to bound
these terms we construct a CQ-PTP problem setup in the sequel (see Sec. 6.4) and employ that as

a module in bounding S, .S3. The following proposition formalizes this.

Proposition VIL.8. There exists €5(6),0s(6), such that for all § and sufficiently large n, we have
E [S2 + S3] < es(0), if Rj < I(Y};Vj)gy + 0517 = 2,3, where €g,65 N\, 0 as 6 \, 0.

Proof. The proof is provided in Section 6.4. O

Now, we move on to bounding the term S;. Let & £ {6;(m1) = 0 or 65(ms) = 0}. By noting
that S; < 1, we obtain S} < S + Lg, where S A S1 - Lge. As a first step, we bound the indicator

1 using the following proposition.

Proposition VIIL.9. There exist eg(d),0r(0), such that for all & and sufficiently large n, we have
Ep [£] < ep(6), if £ > logq — min{H(V1), H(Va)} + 6, where eg,dp \, 0 as § \, 0.

Proof. The proof follows from (Padakandla and Pradhan, 2017, App. B). O

Now considering the term S, and using the linearity of trace while ignoring some negative

terms, we get

1
S <o Te (7= A 0) © 1) i ) e
— meM
1
< Tr<(I Ml pglmngl) Lge + Si1, (7.3)
— meM

where the second inequality defines the following S71 a wanll pZLﬂngl — pzflm

A
1 ap(}:flm = TrY2Y3 (p§&)7
a £ ai(m1) ® az(ms), and I £ my @ my and uses the inequality Tr(Ap) < Tr(Ao) + ||p — ol|; which
holds for all 0 < p,0, A < 1. Before we begin the proof, we provide the following lemma based on

the pinching for non-commutating operators Wilde (2013a); Sutter (2018).

Lemma VII.10. For W%ll,ﬂml,wl“ and 7, as defined above, we have
tr(n%l p¥ )y > 1—¢,,(8), t LY > 1—€p,(8), tr(mfpll) > 1—e€p, (), tr(mppil,) > 1—¢p, (6
7(Trmlloc,m) = 6171( )7 r(ﬂ-mlpc,m) = 6172( )7 7n(ﬂ-l pc,m) = 6p3( )7 r(ﬂ—ﬂpc,m) = 6p4( )7

where €p,(6) 11 € [4] \, 0 as 6 \, 0.
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Proof. The proof follows from using the ideas of pinching as provided in Lemma E.1 provided in

the Appendix E.1. O

Using the above lemma, we first bound the term corresponding to Si1. Applying the gentle

operator lemma (Wilde, 2013a, Lem. 9.4.2) on S11, we obtain

St & ||afpl,md — o2, < 2\/1 = Te(nfolin ) <21/ (0). (7.4)

Considering the first term in the right hand side of (7.3), let 7" denote a generic term within its

summation, defined as
A Y
TAT((1 = N, )riol i) Lse.

This term can be bounded using the Hayashi-Nagaoka inequality Wilde (2013a) as T' < 2(1—T1)+
4715, where

1>

A al _a YT _a adl _a Vi _a
Ty =Tr (’le m pc,lmﬂ-l )7 T Z Tr (’lel M pc,lmﬂ-l )

(m/l 7a/’l/);é(m1 ,(l,l)

Note the objective now is to prove T3 is close to one and T is close to zero. Consider the following

proposition in regards to 717.

Proposition VII.11. There exist er, (3), 07, (0), such that for all sufficiently small § and sufficiently

large n, we have E[T1] > 1 — ep,(9), where ery, o, \(0 as § 0.

Proof. Using Tr(Ap) > Tr(Ao) — ||p — o], for 0 < p,o, A < I, we have

1 Y] Y Y] Y; Y] Y Y;
Ty = T (mid ol ) = [7ppimms = Pl — |7 P2t = Pl = Ioms P, = P2
> Ty (W%{ipifh) - 2\/1 - Tr<7rpp§1m> - 2\/1 _ Tr(wlapglm) - 2\/1 T (wmlpZ}m)

where the second inequality follows from the gentle opertor lemma and the last inequality uses the

above Lemma VII.10 by defining er, = €pr +2(\/€ps + \/Eps + +/€ps)- This completes the proof. [

197



Now, we move on to bounding the term T5. Firstly, note that the summation in 75 can be split
into seven different summations based on how many indices within the summation over the triple
(mf},d,l") are equal to (m1,a,l). However, only three of these seven provide binding constraints on

the rate triple (R;, Ro, R3). Building on this we perform the split Ty = T + T + T3 + T3, where

A a,l \% A " oa Y,
T = Z Tr<'ym,17'r?,0¢’lm7T?), Tn = Z Tr<7$7b11 Wlapc’lmwzl)’

my#my a'#a,l'#l
A al' _a Y1 _a
Ths = E TY(’YmII T Pem Tl )
mi#mi,
a’'#a,l'#l

represents the rate constraining (binding) terms while T3 A2y — 2?21 T5; represents the inactive
terms (with respect to constraining the rate). We provide the following set of propositions bounding

each of these terms Ty; : i € [3].

Proposition VIL.12. There exists ep,, (9), 07y, (9), such that for all sufficiently small § and suffi-
ciently large n, we have E [To1] < ep,, (6) if R1+ % logq < 2logq—H(Vy,Va)+1(Y1; X1|U)gy + 907,
where eq,,, 07, (0 as d 0.

Proof. The proof is provided in Appendix F.1 O

Now, we provide the proposition for Tyo as follows.

Proposition VII.13. There exists er,,(0),d1,,(9), such that for all sufficiently small 6 and suffi-
ciently large n, we have E [Ths] < €7y, (6) if 2 logq < 3logq— H(V1, Vo) — H(U) +1(Y1; U|X1)o, +
0Ty, where €,y , 01y, N\ 0 as 6 N\ 0.

Proof. The proof is provided in Appendix F.2 O

Proposition VII.14. There exists €r,,(0),d1,4(0), such that for all sufficiently small § and suf-
ficiently large n, we have E[Ths] < er,(6) if Ri + 3t logg < 3logq — H(Vi,Va) — H(U) +
I(Y1; X1,U) g, + 075, where er,y, 01,5 (0 as § 0.

Proof. The proof is provided in Appendix F.3 O
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For the terms in the expression T3, we split T3 as T3 a T31 + T30 + 133 + T34, where

A "1 _a Y A U _a Y,
T3 = Z Tr <7511 Wflpc,lmwla)v T = Z Tr (%211 7TZlﬂ@}ﬂﬁ?)’

a/;éa l/;ﬁl
A 'l Y] vy Y]
T Tr(yj;,l wfpc}mw;l), Tl Tr<7j;,1 wfpcfmwf). (7.6)
mi#mi, mi#ma,
a/;éa l/;él

As mentioned earlier, the analysis of these term follows from the analysis performed for the terms
T5,i € [3], and further these terms do not contribute to any new additional rate constraints.
However, for the sake of completeness, we briefly indicate how each of these term scan be bounded
using the ones corresponding to 75. To begin with, consider the terms 737 and T33. One can

perform identical analysis as for the term Ty (see Appendix F.2) and obtain the following bounds.

3k
E[T31] < exp, <n logg — (3logq — H(V1,V2) — H(U) +I(Y1;U|X1)s, + 5T22)> ; (7.7)

kE+1

n

2
E[T?)Q] < €XPo < logq - (3 logq - H(‘/la VQ) - H(U) + I()/la U|X1)O'1 + 5T22)> ) (78)

where exp,(z) £ 27, Note that the exponents in the right hand side terms (7.7) and (7.8) are always
negative given the bound in Proposition VII.13 is true. Hence 7T5; and 732 can be made arbitrarily
small for sufficiently large n without any additional constraints.

Similarly, consider the terms T33 and T34. Using an identical analysis as for the term T3 (see

Appendix F.3) we obtain

3k
E[T33] < exp, <R1 + ;logq — (Blogg— H(V4, Vo) — HWU) + 1(Y1; X1,U) 0, + 5T23)> , (7.9)

2k +1
n

E[T32] < expy <R1 + logq — (3logq — H(V1, Vo) — H(U) + 1(Y1; X1,U)4, + 5T23)) , (7.10)

Again observe that the exponents in the right hand side of (7.9) and (7.10) are always negative
given the bound in Proposition VII.14 is true. Hence T33 and T34 can be made arbitrarily small for
sufficiently large n without any additional constraints. Having completed the proof for the terms
in T, we now provide the result stating: NCC codes achieve capacity of a CQ-PTP channel (as

discussed in the proof of Proposition VII.8). 0
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7.5 Rate-region using NCC and message splitting for 3to1-CQIC

Theorem VII.15. Given a 3tol-CQIC (py € D(Hy) : x € X) and a PMF py,v,vavsXoXs =
PUsVa XoPUsVa X5 0N UL X V1 X X1 X Us X Vo X Xo where Vi = Vo = Fy, a rate triple is achievable if

it satisfies the following: R; < I(U;X;;Yj)o,,

R < 12 n{0, H\U;) — HW|Y1)o, } + I(X1; WY1)o,

Rt Ry <I(Xj; V51U ) oyt (X0 W, Y1)t H(US) — H(W[Y1),,

for j = 2,3, where

Y A
or S Y px(E)pw (W) 4 @ lea)e] @ fw)w]
z1€X1,WEF
v A Y
Priw S D PV valsts o X w (V2, U3, Uz, us, 2, 23w) oy,
u2,v2,r2
u3,v3,r3

02—5 PUUsVaVs X (U2, U3, v2, U3, )P;? = —o [ug, zjXuj, z;]

v1,v2,V3

for W & Uy & Us, and {luj)} and {|x;)} as some orthonormal basis on Hy for j =2,3.

Proof. In view of the detailed proof provided for Thms. VII.5, V1.3, we only provide an outline.
A complete proof of this theorem is beyond the scope of this thesis and can be constructed using
techniques developed in Sen (2021); Sohail et al. (2022).

In the coding scheme of Thm. VIL.5, Rx 1 decodes a bivariate function of Tx 2 and Tx 3’s
inputs. In general, decoding just a bivariate function of Tx 2 and Tx 3’s inputs is insufficient. It is
necessary for the coding scheme to permit Rx 1 decode univariate functions of the Tx 2 and Tx 3’s
inputs as well. Therefore an enhanced coding scheme, will split Tx 2 and Tx 3’s transmissions into
two parts respectively. For j = 2,3, let U;, V; denote the splitting of Tx j’s input. Here, U, Us € F
take values in a common finite field. Us and Us are communicated via a common nested coset code.
Vo, V3, X1 are built via conventional unstructured codes. Since this is a 3tol—IC, Tx 1 does not
split its input Xj.

Observe that, for j € 2,3, Rx j has to decode a U}, V;, one component of which is encoded via a

nested coset code, and the other component which is encoded via a conventional unstructured code.
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The analysis of its decoding is similar to the analysis of Tx 1’s decoding in proof of Theorem VIIL.5.
Indeed, in proof of Theorem VIL.5, Tx 1 decoded from its unstructured code and the bivariate
component of the interference that was encoded via a nested coset code. This provides the outline
for the analysis of Rx 2 and 3. Rx 1 has to decode 4 components - 1 structured (Us & Us) and 3
unstructured Vo, V3, X7. We adopt successive-simultaneous decoding wherein two code words are

decoded at each stage of a 2 stage process. O

By choosing W = ¢, we can recover the % SB—rate region from the above inner bound.

7.6 Conclusion

In this chapter, we considered the problem of characterizing an inner bound to the capacity re-
gion of a 3—user classical-quantum interference channel (3—CQIC). The best known coding scheme
for communicating over CQICs is based on unstructured random codes and employs the techniques
of message splitting and superposition coding. For classical 3—user interference channels (ICs), it
has been proven that coding techniques based on coset codes - codes possessing algebraic closure
properties - strictly outperform all coding techniques based on unstructured codes. In this work,
we developed analogous techniques based on coset codes for 3tol—CQICs - a subclass of 3—user
CQICs. We analyzed its performance and derived a new inner bound to the capacity region of
3tol—CQICs that subsumes the current known largest and strictly enlarges the same for identified

examples.
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APPENDIX A

Proofs of Chapter I1

A.1 Proof of Theorem I1.9

Note that 6 = 1 — 32 3 Ay. Define f, 2 TI,I1,p, 11,11, and o’ 2 {155 . A f,. Further
let II be the projector onto the subspace spanned by the eigenspace of ¢’ corresponding to the
cigenvalues greater than e¢/D. Let j, 2 I7.11, and o 2 TIo/11.

Construction of Random POVMS: Define a collection of of random codes C £ {cW} for
€ [1, N], where C(®) 2 {X (1, 1) }ie1, k), and X (I, p) are chosen randomly, independently according
to the distribution {\;/(1 — 6)}zcx. Using this, define

wa(d-0)

1 1-60)1
Vo (1 +6) ?Hl : X(l,/«L) = l'}| = ( ))KZIL{X(LM)JC}’

(1+e —

and A;(L«“ ) A 'y;g“ ) ﬁ_l [)zﬁ_l, where \/ﬁ_l refers to the generalized inverse as defined in (Holevo,
2012, Section 5.6). Now for each p € [1,N], construct a collection of non-negative operators

M(M) é {Aﬂ(ﬁu)}xez\%

Proposition A.1. M® forms a sub-POVM for all p € [1,N] with probability exceeding 1 —

2N D exp {—%} .

Proof. We use the operator Chernoff bound Wilde (2013a). Note that
e < d”MITLILITIT < d7 I,
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where we used the hypothesis (2.7d) assumed in the theorem statement. Moreover,

PN €

E[px (] = o'l > BH

Applying the operator Chenoff bound on {dpx ;) }ie[1,x], We obtain

K
1 . Ke3dD 1!
P{(]. — 6)0' < Klz;pX(l’“) < (1 +€)O'} > 1-— 2DeXp |:_4h’12:| 5
for all u € [1, N], where we used the fact that Tr (f[) < Tr(Il,) < D (using the hypothesis (2.7c)
of the theorem statement). Now we have

1
o=1T <o < ﬁﬂppﬂp_ - ep,

using the hypothesis (2.7e) and (2.7f) of the theorem statement. This results in (1-0)\/p 'o/p ' <

I. This implies that with probability exceeding 1 —2D exp [— K ffl‘fgfl}, we have

K
L 11— ) B
DAY =D W 1:K((1+e;\/5 ' <§ :pX(l,#)> vp i<
=1

zeX reX
Hence using the union bound, we see that with probability exceeding 1 — 2N D exp [—%},
we have {Agﬂ)}we;{ forming a sub-POVM for all p € [1, N]. O

Let M 2 {Aylsen, M@ 2 1AW 5. where A, 2 %Zﬁ;l AP Let L py denote the
indicator random variable corresponding to the event that M forms a sub-POVM for all u €
[1, N]. The completion of the sub-POVM is given by I — 3" A,. We use the trivial POVM {I}

in the case of the complementary event. Using this construction, we have

EP(Ma M)

< ]l{SP} Z H\/E(Ax - Ax)\/ﬁul + Tr ((I - Z Az)ﬂ)

reX zeX

1 N
< Z APz — N 23179(cu)px
M:

+2(1 - 1gpy) +6

Zv “)ﬁz

reX 1
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< Z mpx_NZV Px ‘1‘2 mpx—NZ% P 2(1 - ]l{sP})+29

reX zeX 1

(t) N =S
<2 Z ApPz — N Z’Y;Sc#)px +2 Z Z’Yx#)pr prlli +2(1 — ]l{SP}) + 260

zeEX p=1 xGX p=1

© 2[S1 + 8o +2(1 — L gpy) + 26,

where (a) follows by triangle inequality, (b) follows by adding and subtracting % > L 'yéu ) Pz, and

(c) follows by defining

N N
Sléz Axﬁx_%z%(c#)ﬁx ) SQé Z%ZV"’(EH)”ﬁx_ﬁle
pn=1

zeX 1 zeX pn=1

We work on the first term S; as follows. Note that

< s < S €
sz (1) Eoveso (5%

reX
where
1A 1 (1
S1_1+€Z>‘ T NK ZH{X (Lw)=z}| -
reX wl
Note that
1 . ; N A
E[S]] = E ||P(x) — E[P < Var(P(z 2,
5= g 2, 1P@) ~EP@)] < 5 PR X‘/NK

where we have defined P(z) £ (]1\”?) 1y L{x(1u)=x}- Hence

1 €
E[S1] < W%m‘i‘ <1+E>

Moving on to Sa, consider the following.

2E[S)

Z/\ 1z — ﬁ&’1+z>\x||ﬁ;—ﬁm||1]

1 e
+ xeEX reX

q Jlr 5 [4ﬁ+ 4m+ 4V/2(1 - e)m]

<
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= f(€79)a

where we have used the ensemble gentle measurement lemma Wilde (2013a). Combining all the

arguments, we see that

~ 2 2
E(S,(M, M) < 3" /Ay + — + f(e,0) + ADN exp [_
pt e+1

KeSd,D_l} 99
(1+e)VNK £

4In2

There must exists a collection of sub-POVMs whose average performance is at least as good.

A.2 Proof of Lemma II.11

Consider the left hand side of (2.18). We define an operator Ay, which completes the sub-

POVM {Ay} ey as Ay, 27-% A,. Further, let the set YT 2 Y U{yo}. Since trace norm is

yeY

invariant to transposition with respect to pap, we can write for any y € Y,

|voas(ct @ A7) voas| = Veas (1 & A7) voas] |
_ H@((FA)T ® (AyB)T) \/@Hl. (A1)

One can easily prove for any I'4 (not necessarily positive) that

(voas (0" @ (") @)R — Trap {({d@T* @ AZ) Upap}, (A.2)

where Wpap is the canonical purification of pap defined as Wrap = Zx,x’ VAz A |2) (2| 45 @
|z) (2'| for the spectral decomposition of pap given as pap = Y., A\ |2) x| 45 and (-)F represents

a state in the reference Hilbert space R. Now, using (A.2) we perform the following simplification

S Iz (M@ aB) vaasl, £ Y vaas (T4 © A2) s,

yey yeY+t

= Z H Trag {(idgr ®I4 ®A5) UraB} Hl
yey+

- H ZFrAB {(idrp @ T7) (idpa @ AY) Wrap © |y><y‘}H1
yey
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- HTrA{ (idry ® T*) < > [l @ Trp { (idra @ AY) ‘I’RAB})}

yey+

9| Tea { Gy @ T4) ray ),

1

D || Teaz { (dry © T4 @ 1idz) 8547, 3, (A3)

where (a) follows from the fact that Hw/,OAB (FA ® Aﬁj) */IOABH1 is always non-negative, (b) uses

the triangle inequality for block diagonal operators, (c) uses o4y defined as
oray = Y [y)Xyl @ Trp {(idra ® A)) Tran},
yeY+

and finally, (d) uses ®%%}Y, defined as the canonical purification of opay. Note that the above
inequality becomes an equality when Zyey Ay = I. Using similar sequence of arguments as used

in (A.1) and (A.2), we have

ITraz {(idry @ T @idz) O35},

= [ v/ronrz w2 (i

\ — A Tyl
1

This completes the proof.

A.3 Proof of Lemma I1.12

Let the operators of My and My be denoted by {AX},ez and {A}/}je 7, respectively, and let
the operators of Mx and My be denoted by {AX} and {A}/}, respectively, for some finite sets Z

and J. With this notation, we need to show the following inequality
G2 Y |var s e AY - AX @ AY)vaxv]) + Tr{ (1-YA¥e A;)m} < (ex + ).
i, 2%
Next, by adding and subtracting appropriate terms, we get

a<Y Hmmff @AY —AX ®A]Y)\/,WH1 +Tr{<[— ZAf)pX}
7,7 ]

(2

207



+ 3 |lVarr A @AY - X 0 A1) vy
+Tr{<[ —ZA;“)W} —I—Tr{(l S AYeAY)
_Tr{(z_ZAg)pX} _ﬁ{(f_zmpy}

< ZHM(AZX —Af)ﬂ“l+Tr{(1_ZA§

)
)

)
+ 3 Vo) - & vev], + 1 { (1- 04 o
(ST 8 RN (T R (1
< (ex +ev) iTr{(ZAX _ZAy>)pXY}—Tr{(z_ZA;)pr}
< (ex +ev), | |

where the second inequality follows by applying Lemma II.11 twice, the third inequality follows
from the hypotheses of the lemma, and the final inequality uses the fact that M~ and MY are

sub-POVMs. This completes the proof of the lemma.

A.4 Proof of Lemma 11.24

Proof. Using the chain rule of quantum mutual information we see that
I(A;B|C,J)s = S(ACJT) s + S(BCJ)s — S(ABCJ)s — S(CJ),.

The eigenvectors of the state o4pcy are of the form (0,...,0,]j) ®

vf> ,0,...,0), with eigenvalue

Pj(j))\g , where ‘vi > is an eigenvector of state pil pe With eigenvalue )\g . Hence

S(ABCJ) = = 3" Py(j)X log<PJ( ))\9>
45t
W HP)+ ] Pi) SN log ]
j=1 i
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+ZPJ ABCpJ7

where in (a) we used the grouping axiom of entropy. Applying similar arguments for S(AC/J),

S(BCJ), and S(CJ) we get the desired result. O

A.5 Proof of Lemma I1.30

Proof. Consider the trace norm expression given in (2.33). This expression can be bounded from

above using the triangle inequality as

1

Z )\wnlﬁu" - TC‘) Z Wns(1) (1)

1

T — ) > Py (w") T

(1+m) &= )
W)
~ 1
ZPWn (’u)n)’]:un — Wz Twn,(p,)(l) (A4)
whe Ly 1
7 w)
The first term in the right-hand side is bounded from above as
(1—-¢) ~
)\ w™ — P n n wn
[y X Awew T,
wreT{™ (W)
P e S R P
wreTy" wrg T (W)
n
Sl X ATl X e [Tl
wreT™M (W) e wrg T (W) -1
<[ < ‘ A5
=15, +e<n+e 5 (A.5)

for all n sufficiently small and n sufficiently large. Now consider the second term in (A.4). Using

the covering lemma from Wilde (2013a), this can be bounded as follows. For w" € %(n)(W),
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let II and II,» denote the projectors onto the typical subspace of T®" and Tyn, respectively,
where 7 = >, n AwnTwn. From the definition of typical projectors, for any €; € (0,1) we have for

sufficiently large n, the following inequalities satisfied for all w™ & 7:;(n)(W) :

TT{H’]:UW.} 2 1— €1,
TI'{Hwn’]ZUn} Z 1-— €1,
Te{II} < D,

1
L L (A.6)

where D = 27(8(M+81) and g = 2"[(Zw ’\”S(Tw))f‘h], and 01(0) N\, 0,02(8) \, 0 as § \ 0. From the
statement of the covering lemma, we know that for an ensemble {Pyyn(w™), Ton bunewyn, if there
exists projectors IT and II,» such that they satisfy the set of inequalities in (A.6), then for all

sufficiently large n, if n(R + C) > log, %, the obfuscation error, defined as

9

1

B 1
ZPW(“’ )T = on(R+C) ZTW"W(I)
w™ L

can be made smaller than e; +4,/€1 + 24 /ey with high probability. This gives us the the following
rate constraints R+ C > S(3_,, A Tw) — Dy AwS(Tw) + 61 + 02 = x ({Aw}s {Pw ® 0w}) + 01 + da.

Using this constraint and the bound from (A.5), the result follows. O

A.6 Proof of Proposition 11.14

The second term in the trace distance in S5 can be expressed as

(id @ [Map])(Ph4p)

1 - Ay (1) B,(u2)
= Lisp-1314sP-2y NN, > Z@wm,m(i,g‘) ®Irap {(ld @I T ) Wh,p
1,42 2,7

+ (1= Tspo1y Lsp-2))®oop.0v) ® Trap {(id @id @ id) W 4 5 }

= ﬂ{sP-l}]l{sP-2}
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T Y Y G © T { e AR & B )
1 H17M2Z]>1( )EB(Hl)()XB(HQ)( )

NlN Y>> @(OU,OV)@@TI«AB{(id@Ag’;l)@BW)\p%AB}

pisp2 j>1 EB(NQ ( )

i (p2)
N1N2 Z Z Z (I)(OU,Ov) ® Trap {(1d®Aq(ﬂ1) ®Bo?,2 )‘Ilg%AB}

1,042 ’L>1 B(Ml)( )

NlN ZCI)OU’OV)®TIAB{(1d®A( M) @ B2 >)ng3}
K142

+ (1= Tsp-13 1(sp-2))@(0y0v) @ Trap {(id @ id @ i)W 4 } - (A7)

Similarly, for the first term within the trace distance in S5, we have

T 2 (4 M) ) (9,15)

1,142

= H{SP 1} (sP-2} [NlN Z ZZ@ (uw) ® Trap {(1d®A(M1) ®B(u2)>\1/%AB}
B2 uel veyY

N1N2 Z Z <I>(OU ) ® Trap {(ld X A(“l) ® B( ))\IJ%AB}

H1,p2 veEV
1 .
i 2 O Py ® Trap { (4 AL @ By, )
H1,p2 ueU

+ N1N2 Z ‘I’(OU 0y) ®TTAB{(1d®A(“1) ( ))‘II%AB}
Hi,p2

+ (1= Tsp_1y) lspo 2}N Z Z (00,0) @ Trap{id ® id @ BY™))Upap}
M2 veVU{0y }

+ (1= 1gp_oy)lsp_ 1}N S> T @0y ©@Traplid® AP @id)Trap)
M1 uEuU{DU}

+ (1 — H{SP—2})(1 — ]l{SP—l})(I)(OUyov) TI“AB{(id ®id® id)\IfRAB}. (AS)

By replacing the terms in So using the corresponding expansions from (A.7) and (A.8), we observe
that the fourth terms on the right hand side of (A.7) get canceled with the corresponding terms

on the right hand side of (A.8). Next we take the second term in (A.7) and apply the triangle
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inequality and bound from above its [; norm by

1
I ueU

Similarly, we can bound the rest of the terms in (A.7), (A.8), except the first terms. The [; norm

of the difference of the first terms in (A.7), (A.8) can be written as

{SP 1} {sP- 2}N1N2 Z ZZ

p1,p2 ueld vey

= 1,p.1y L. 2}N1NQZ >SS 1P — Poers |y % Trras {(id@ A Bgu2>)ngB}
1,42 ueUvEY

(uw) — e(ﬂlﬁm)(u,v)) ® TrAB {(ld ® A’EL/Jl) ® BI()'UQ))\II%AB}

1

1
= Lisp-1y P2y s X 2 2 2 [ Puw = Pty [l 6 R

p1,p2 ued vey

where the first equality is obtained by using the definition of trace norm and the last equality follows
from the definition of A" and B 2), with €, , as given in the statement of the proposition. This

completes the proof.

A.7 Proof of Proposition 11.15

Using the proof of Theorem I1.9, one can show that

2 2
ﬁlzrﬁ“ ((I—ZA&M))P;D +EZ Tr ((I —ZBf;“z))PB> +22- Lgp.1y— Ligpogy) < @a+ap.
%1 H2

ueU veyY

Recall from Proposition I1.14 that S3 can be simplified as

53 {SP 1} {SP 2} NlN Z Z Z Hq)uy - e(#l ©2) uv)Hlfyunl)CvMQ U,V

pi,p2 ueld veV

For any (u,v), the 1-norm above can be bounded from above by the following quantity:

IR0 = Do n) w11 < 2[Lgupgwy + L2 (w,0)),
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where 11(”1’“2)(% v) A

1 {El(ﬂ, 0,14, 7):(u,v) € Bgul)(i) X 85“2)(3'),(@, ) eClr) W,

(i) € B (i) x BY) (). (i, ) # <u,v>}.

Using such indicator functions, S3 can be bounded from above as S3 < 5S4 + S5, where

54 o H{SP 1} {SP 2} N1N2 E qu Z 1{( QW}»'Y “1)C ,U42

(u,v) M1, 2

a_(1-6)01=6,) (1122 (1)
a2 o 10K2) (4 )1 1 _ 12) _
Ss Ita)(+ ki Z %}: N1N2 MZM (u, ) L{U (1) = u, V#2) (k) = v},

where we have bounded the indicator random variables in S5. We provide bounds on the expectation
of S4 and S5. For that we take the expectation of the indicator functions with respect to random

variables which are independent of each other and distributed according to {A2},cy, and {AB},cy.

First consider the following argument:

Sy < |S54—2 Z )\f7 +2 Z )\

(uvv)€W (UU €W
(a) AB
< D> | - Lgpay Lsp- 2}N ~ > Al “”Qu,v‘
ueU veV 1 1542
+ Lgp_1y Isp_gy (1 N1N2 SO Ay,
U, v K142
AB
+ (1= 1p_plgpgy) +2 DI e
(u,0)gW

(<)Sl—|-2 Z )‘uv>

(u,0)gW

where (a) follows from the two different definitions of variational distance between probability

distributions, (b) follows from Lemma II.13. Taking expectation we obtain

E[Si < (0a+ap)+2 Y b, (A.9)
(u0) @W
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where we used the bound developed earlier on S7 in the mutual covering lemma. For S5 we have

E[ﬂ(#h/&)(u’ V)1 {U(ul)(l) — u, V2 (k) = UH
(a)

<Y Y VE [1{(,0) € B () x BY ()}

(@,0)EW  4.J (Lk)
(@,0)7#(u,v)

x]l{(u 7) € B () x BY?(j )}]1 {U(’“)(l) =, V) () = v} 1 {U(’“)(f) = a, V) (f) = vH

© NANE [ MOAE WK K, KWl
- (1 — (91)(1 — 92) (1 — 91)(1 — (92)T1T2 (1 — GI)TI

< (1 QIBEI;)) ! g—wf?}% 1+ @IAﬁ)) | (4.10)

where (a) follows from the union bound, and (b) follows by noting that there are 5 cases to consider,
and by evaluating the expectation of the indicator functions while recalling W4 = max,eyp [{u :
(u,v) € W}, and Wy = max,ey |{v : (u,v) € W}|, A\, = max, A\, M5, = max, \E. This implies

that

E[Ss] < 2 [ MOAE WK1 K,
B (

(1+61)(1+62) 1 —91)(1—92)T1T2

K\ WM}, ( B Ky ) KoWgAE ( MK > } ANB
+ — 11+ + x |1+ QuuAy Ay -
(1—061)T1 (1—09) (1—62)T3 (1—061) UEZL{UEZV

We have the following lemma.

Lemma A.2. We have
0, NAP < fife
ZZ WYt o —= RFE

ueU vey

Proof. Firstly, note that

S N = 1e{ [ (S i) vt e i () vonoan . (4

ueU ueU veY
veY

Consider,

> Nipy =111, (Z AT ““HA> I, 14

ueU ueU
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()A

A Aa TA
i, (S adot

b NNCIE L, @)1
< T4, , pall,, 114 < THAHMHA <yl

—~
=

pa-

where (a) follows from the hypothesis TI2pATIA < p7t, (b) from the fact that M, is a sub-POVM,
and (c) from the hypothesis II,,pall,, < F%H,,A, and (d) from the commutativity of II4 and
I1,,, where the commutativity follows from the fact that 14 is a cut-off projector on the subspace

determined by II,,. This implies that

1 _ _
(Z Aunpu) S Ve T oa T S T, (A.12)

ueU

where the last inequality follows by using the hypothesis ./pA_IHpA oAt < fill,,. Using the

same arguments for the operators acting on Hp, we have

(Z )‘v"pv> = F \//E HPB\/i < PB' (A‘l?’)

vey

Using (A.12) and (A.13) in (A.11), gives

fife

A o N1l B
ZQU7U>\U>\’U — T{( PA®HPB) AB}_ F1F27

J1f2
F\F: - WF

which is the desired result.

A.8 Proof of Proposition 11.37

Fix an arbitrary € > 0, and 71,6 € (0,1) sufficiently small. Recalling Sa(fi1, fi2), we have

S (Mlmu2

Z|UV ‘u”7 U") _P§|U,V (Zn|€(ﬂ1’ﬁ2)(un, Un)) ‘
Ml w2 2™ uoom

pAB<A( D g B ))\/@ 1

(B1) ~(2) n ny,n ,n\ __ pn n|,(f@1,82) (,n ,n
N1N2 Z Z Yur Com Q“"’”";)PZU,V(Z [u™, v") PZ\U,V (Z et H2) (u v )))

H1,p2 w T
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Z Z ( (um o™) T(n)(U )} + ]]'(ﬁljﬁQ)(un? Un)) %5%1)9(]52)9“717”", (A14)

1,42 u™omn

- N1N2

where Qn yn and 1(F0E2) (4" y™) are defined as

Qo 2T {07 005" (A @A) o @r 153},

L) (2, o7) & ﬂ{aw", i) (o) € B i< B ), (o) € e N T ),

(un ~n) c B(Ml)( ) % B(#Q)( ) (an’f}n) # (un’vn)}'

Now we can use the bound Sy < So; + S22, where

Sa1(fn, fi2) é {(u” vn)¢T(n)(Uv)}7£’fL1)Cvg2) i n s
u1,,u2u" v
Saa(fin, fi2) é 1(#1,#2 (u", v )%n C(uz)Q

u1 p2 u™,omn

We begin by bounding the term corresponding to Ss;. Consider the following argument.

W D Sulgp 1y1ispgy

2 iy, iz

A
< N1 Z Sa1lgp_13 Lisp-2y — Z 2\t | +

Ny 2=
2 o (wrom)gT" (UV)

ureT M (U), v”ET(")(V)

> 2

(un o) gT{M (UV)

(@) AB (i2) AB
S 2 Z Z Aun’vn - {SP 1} {SP 2}N N Z Q- 2 Qun Jon Z 2)\11,,’()
un€7—6(n)(U) ’v"€7:;<n)(V) A1,p42 (u",v”)gﬂ(n)(UV)
b .
<28 +2 > Al on,
(ur o) g7 ™ (U V)
where
& Al n n n 1 . T z n
Si 2 ||i[de MS™ @ Mg™)(Uh,5)°" — A Z (id ® [Ml(’“)] ® [M2(u2)]>(\p%AB)® 7
h1,p2 1

(a) follows by applying the triangle inequality, and (b) follows from Lemma II.13. Note that in S,

the average over the entire common information sequence (fi1, fi2) is inside the norm. Using the
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Lemmas I1.10 and I1.12, and the proof of Theorem I1.9, for any e € (0,1), and any 1,6 € (0,1)

sufficiently small, and any n sufficiently large, if

Ry > I(U;RB),,, Ry >1I(V;RA),,,

~ 1 _ - 1 _
Ry + Elog(Nl) > S(U)US, Ry + Elog(Ng) > S(V)gg, (A.15)

then E[S)] < e. Consequently, we have

1

A E SQl(ﬂlaﬂQ)]l - (/117/]2)]1 - (:&’17:&’2) < 4e.
NN, [“271;2 { {sP-1} {sP-2}

Now considering the term Saz, using a simplification similar to (A.10) we obtain

E

[—

L (FR2) () v")]l{Un»W(zFu"}R{V”’“‘?)(’ﬂ)ﬂ"}]

A B - -
5 )‘u”Av” —n(I(U;V)—361)9n(R1—R1)9n(R2—Rz2)
{a 12(1 2 2 2 2 .
— & — &

IN

Substituting this in the expression for Soo gives

9—n(I(U;V)—381)gn(R1—R1) gn(Ra—Rz

(1+7)?(1 —-e)*(1-¢)?

)
> Qunan A AT

n n
um v

E[S22] < 10

2—n([(U;V)—351—§A3)2n(R1—R1)2TL(R2—RQ)

R (R (e ()

where the second inequality above uses arguments similar to Lemma A.2. Therefore, if
Ri+Ry— R — Ry <I(U;V)o, — 36, — 6ap — 0, (A.16)

then we have E[Sa2] < 10 0 5 <6 for all sufficiently large n. Hence

2
(1+n)2(1-e)(1-<)

1

== E(Sa(fi1, fi2) Ligp_11 (1, f12) Lrgp_oa(f1, fi2)) < 5,
Ny N ;212,;;2 {sP-1} {sP-2}

for all sufficiently large n, if (A.15) and (A.16) are satisfied.
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A.9 Proof of Proposition 11.39

We bound S as S < 52 + §3 + 54, where

52 \NN 3 3o (0 o ) By o)
14V2 X
p1,p2 i>0
~ A 5
53 :‘ N1N. Z Z pf?i%( . ®L; (Mg)) pABPZ|UV( 2"|ug, vg)||
11V2 )
p1,p42 3>0
58 LS i (5 0 20 e
N1N2 — PAB PAB Z\UV( |ug, vg) X

Analysis of §2: We have

Sa ]l{sP—l} IL{SP—Q}

Lisp-131sP- 2}N1N2 >N PRy fug,vp)
H1,p2 2"

T (Z Al ®r§’“‘2>) N

Vi (e e i

>0

1

(@) 1
= ]l{sP—l}ﬂ{sP—2}m >

H1,142 1
(p1) B,(
< Lsp-1y Lysp- 2}N O D |V eE (4l @) \fpin
152 pi,p2 u™ 1
® 1 5
< @npBi(p2) [ @n
— N1N2 Z B ~0 PB .
K142
1
=1 |2 N — Z 5B\ oy
2 M2 v 1
© 1 5B (1 g
< Ny Z AP = n) onfs Z Py | T o ZZCU o (A7)
p2 || o™ k=1 p2 U™

v~

Saa

where (a) uses the fact that >, T () =Y .n Au’ﬁf), (b) uses the fact that under the event
{H{SP—l} = 1}, we have ) Afﬁf) < I, and Lemma II.11. Finally (c) follows from adding and
subtracting an appropriate term. Regarding the first term in (A.17) using Lemma I1.30 we claim
that for for any € € (0,1), any 7,5 € (0,1) sufficiently small, and any n sufficiently large, the

term can be made smaller than e, if Ry > I(V; RA),,, where oy is as defined in the statement

of the theorem. Note that the requirement we obtain on Rs here was already imposed earlier in
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Proposition I1.35. And as for the second term, we use the gentle measurement lemma and bound

its expected value as

Af’n
ZZC =A%, 2 gl Al < s
p2 ™

oeT™M (V)

where the inequality is based on the repeated usage of the average gentle measurement lemma by

setting ez, = 1+n) (24/el5+2¢/ep) with ez, \(Oasn — oo and ey = £,+2, /¢, and e}y = 2¢,,+2, /¢],
for 5;, 21— min {Tr{Hpovn}, Tr{anp,Un}, 1—¢ } Hence E |:S2:H.{SP_1} {SP-2}:| < 2e.

Analysis of S3: Due to the symmetry in S, and 53, the analysis of Ss follows very similar
arguments as that of S, and hence we skip it.

Analysis of Ss: We have

S4]l{sP-1}1{sP-2}

< Ligp-1y LysP- 2}N1N2 SN PRy ug,vf) H\/P% (FOA’(’”) ®F§’(“2)) \/ P 1
pi,p2 2™
Ip-
(o) 5,
{SPX{]\EPQ}ZZ \/@( m) g gl )%/@1’

p1,p2 O™
where the inequalities above are obtained by a straight forward substitution and use of triangle

(A.18)

inequality. With the above constraints on ]:21 and Rg, we have 0 < T° é’(“ 1) <JTand0< I‘f (p2) <.

This simplifies the first term in (A.18) as

\/@ (r (1) o I) pAB

Similarly, the second term in (A.18) simplifies using Lemma II.11 as

A
‘ /p§% s(p1) ® B uz)) pAB

1
NNy Z

K152

N

]l{sP—l} H{SP—Q}
N1 N,

A(Ml)Fl

Ml H2 V™
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Using these simplifications, we have

A:
pfn (FO (k1 )) pgn

~ 2
Salispo131sp-2y < EZ

p1 1

The above expression is similar to the one obtained in the simplification of 52 and hence we can

bound §4 using the same constraints as 5’2.

A.10 Proof of Proposition I1.40

Note that from triangle inequality, we have ()1 < J. Further, we add and subtract an appropriate

term within J and use triangle inequality obtain J < J; + Jo, where J; and Jy are defined as

N
UEDS Z\/ﬁ%( - 7;:‘ Al @ A >\/pABPZ|UV Hu”,v )
N ()
Jo é Z\/ P%E( %n AA A = Z A fﬂ)\/ P%%PE\U,V(ZHWTLW”) .

L=t

Now with the intention of employing Lemma I1.30, we express J; as

Jy =

AB A (1—¢) 1
Z )\unanpuy?vn ®PE‘U7\/(Z”’U”7UH) ‘Un><yn|®|zn><zn| B (1 — 77) 2n(R1+CI)

FARR VARG

AP n
~AB
%Y D Mty i Prten @ Py (20 00" @ 27"

wi,l 2™ u"v"

1

where the equality above is obtained by using the definitions of 7(“ 1 and ﬁfffvn, followed by using
the triangle inequality for the block diagonal operators, which in fact becomes an equality. Let us
define T, as
A AAB A
(VALOLLIIN
T 2 i, Pt @ Py (27", ) [0 )" | @ 27K 2"

n n
Z" v
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Note that the above definition of 7,» contains all the elements in product form, and thus it can be

written as Tyn = Qi Tu,. This simplifies J; as

—£)
Z )‘u" %n — ) 2n(R1+C1) Z TUn (M1> 1)

Ml? 1

Now, using Lemma I1.30 we get the following bound. For any € € (0, 1), any 7,9 € (0, 1) sufficiently

small, and any n sufficiently large, we have E(J;) < € if

R +C>8 <Z Am;) +Y MNS(To) = I(U; RZV ), (A.19)

ueU ueU

where 03 = ), oy u7; ® |u)(ul.
Now, we consider the term corresponding to Jo and prove that its expectation with respect to

the Alice’s codebook is small. Recalling Jo, we get

)

Z ZZPZ\UV "t o) |1V 05 VS — Ak @ AL — ALY @ AL |\ /o5

L= 1umon 2n
s B ) o),

where the inequality is obtained by using triangle and the next equality follows from the fact that

1

K DIDI

Ml 1um™om

)

don Pyuv(z 2"u™ v™) = 1 for all ™ € U™ and v € V" and using the definition of Agﬁl). By

applying expectation of Jo over the Alice’s codebook, we get

in((snt Vo ) ol ) o]

)

A
where we have used the fact that E[vffil)] = (1\]‘;7). To simplify the above equation, we employ

Lemma I1.11 from Section 2.2.4.2 that completely discards the effect of Bob’s measurement. Since
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> ,n AB =1, from Lemma I1.11 we have for every u" € 7:5(n) (A),

2

1

1

This simplifies E[J5] as

1 A —1 A -1
(AAAun—\/an Aun\//)%n )

E[Jy] < 1+n Z A

(n)

(2¢/€y +24/€)) = €4,

AA <(1;€
U”)Hl — (1+ )

1+nz)\

"ET(n)

where the last inequality is obtained by the repeated usage of the average gentle measurement

lemma by setting €,, = 1 E” (2y/€'y +24/€’)) with €;, \, 0 as n — oo and 5A—£p+2\ﬁ and

€' = 2ep +2,/5, for g, 21— min {Tr{HpApun},Tr{Hunpun}, 1—¢}. Since Q1 < J < J1 + Ja,
hence J, and consequently @1, can be made arbitrarily small for sufficiently large n, if Ry + C; >

I(U;RZV),,.

A.11 Proof of Proposition I1.41

We start by adding and subtracting the following terms in Q2

i) Z \VASE (A @ AL \ PR E PRy (2" u", v™)

um,on
(p2)
Xn U" AB P 2™ "
(i) PAB PAB Zov (2w, 0")
un ’U" #2 1

(p2
C
20 Z 1]\72 Z\/ f% A(“l) AB pABPZ|UV( 2" u™ ™).

umn,un P12
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This gives us Q2 < Q21 + Q22 + Q23 + Q24, where

Ny
1
A
Qu 2y | X oin | |5 2o AW ) @Al - Ak @ AL | ok PRuy "l o))
2" ||u™,om 1;“:1 1
1 No C(NQ)
A A v
Q2 :Z Z 1/p§% A ®A§n —Afn@) E Z B Afn p%% E‘U,V(zﬂu”,v”) )
Zn unﬂ}n “2:1 (g
1
1 No C(HZ)
A / ®n A v B
Q23 - zn: nz:n pAB Aun ® E z_: TQ%A,U’IL
z u™,v p2=1
1 (Mz
( ) ®
NN > At @ w | PasEzuy (" 0]
1 2#1#2
1
(M2)
Q24 2 Z 1N2 Z \/ P%g M) AB Agil) ® B%Q) PABPZ|UV( 2" u",u™)

Zn o ||u™un M1, 12
1

We start by analyzing Q1. Note that Qo1 is exactly same as ()1 and hence using the same rate

constraints as (01, this term can be bounded. Next, consider (Q92. Substitution of Cé’f) gives

Q22 = Z )‘u" v”ﬁanv" & Pg|U,V(Zn|un, U") |Z”><Zn’
u™, o, z"
(1 B 8/) 1 )\AB

n pyn
u™ v AR

TL n n n n
T A a2 2 Lyt o) 3B Pt © Py (0 [N

iz ko2

1

where the equality uses the triangle inequality for block operators. From here on, we use Lemma

11.30 to bound @)93. For this, let us define 7T,n as

N Aanv"AAB . o e
Ton 2 Z N, — 5 Puram @ Py (2" u",0") [2"K2" .

n n
un,z

Note that T,» can be written in tensor product form as Tyn = ®?:1 Ty, This simplifies Q22 as

1—5’)

( 1
Q22 - Z)\ v" - R2+Cz) Z T\/n (uz) k)

G H2,k

1
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Using Lemma I1.30, for any € € (0,1), any 7,0 € (0,1) sufficiently small, and any n sufficiently

large, we have E(Q22) < e, if

Ro+Cy> S (Z Afﬁ,) > APS(Ty) = I(RZ; V), (A.20)

veyY veY

where o3 is defined in the statement of the theorem.
Now, we move on to consider Qq3. Taking expectation with respect to the codebook Ct1:#2) —

(C%M 1),C§“ 2)) gives the following bounds.

1 Cv”
E[Qa3] < Z Z Pan (A @ ADL) Pas Py (2" ", o)
AN v”
1
- Z V i (N ZA%) ® Afn) PABPZ|UV( 2’ 0")
um 1 M1 1
2 E [ )
—Ee [ LY ¢z [ an G pn (nn )
Cy N PAB vn PaAB Z\UV
AR 2 po=1
1
N (N > A Af?n) o ()
um 1 M1 1
= EC1 p%% un vn \/ p%%PZlUV ‘U v )
z",v"
_Z Vp§%< ) \//)%%PZWV 2" u", v )
J
(L+n)|’

where the inequality is obtained by using the triangle inequality, and the first equality follows as
C%“ Y and Cé” 2) are generated independently. The last equality follows from the definition of J as

n (2.50). Hence, we use the result obtained in bounding E[J] in the proof of Proposition II.40.
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Finally, we consider (Qo4.

( 2)

- > /e (A e 71\ P

Ml 2

—1 —1
_ N11N2 Z @(A%)@Cﬁ‘é” Q/@ AZ o ))@ ,

1,142

Qas < Z ZPZ\UV "a o™

umun 2™

<3 o o ZA ®fA ot
p2 u™on
P%( S ale (W%” B ))\/pAB

where the inequalities above are obtained by substituting in the definition of Bfﬁﬁ and using

I

multiple triangle inequalities. Taking expectation of Qo4 with respect to the second codebook

generation, we get
Ec, Q24]1{sP 1} {sP- 2}] < H{SP 1}2 1 _|_77

Vi (e o) i
neT(m()
—@<;2A5w®(@ i) )|

—
S]
N

—1
< <AB — g Afn\/pgn >\/p%"
or <n> 1
)\5” ~B B
- Z 1+1) |pon = A,
wneTM (V)
(6)
<

(1 — 5/) / "
T VB 220 = can (A.21)

where (a) follows by using Lemma II.11 and the fact that under the event {1 (sP-1} = 1} we have

S o N 2 Aun i) < I, and (b) uses the result based on the average gentle measurement lemma

by setting e, = 1+n 2\/ + 24/ep) with €g,, \y 0 as n — oo and €3 = ¢, + 2,/5, and
= 2¢p + 2,/8p, for g 21— min {Tr{Hpovn},Tr{anpvn}, 1—¢ } . This completes the proof

for Q24 and hence for all the terms corresponding to @s.
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APPENDIX B

Proofs of Chapter III

B.1 Proof of Lemma II11.12

Proof. We begin by defining the ensemble {\;, 5, },cx where &, = I, 0, 1,1 for all z € X.
Further, let .S be defined as

A 1 e A
5= H PR 21 PR

reX rEX m=

1.

By adding an subtracting appropriate terms within the trace norm of S and using the triangle

inequality we obtain, S < S7 + Sy + S3, where

TEX TEX m=1" me
A . 1 M Az .
S5 2 [ 2 Aee = 37 D D ol cn=nly
zeX zeX m=1""

We begin by bounding the term corresponding to S7 and Sy as follows:

S1 <Y Aellow = Mo, LTI <Y Aellow — TouTIf|, + > Ae||To,IT — T, 0, T 1T
zeX reX reX

zeX
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where the first two inequalities use the triangle inequality, the third uses the gentle measurement
lemma (given the assumption (3.6a) from the statement of the Lemma) for the first term, and
operator Holder’s inequality (Exercise 12.2.1 in Wilde (2013a)) for the second term. The last
inequality follows again from the gentle measurement given the assumption (3.6b). Similarly, for

S we have

M M
E¢[S] <E Z Z 7]1{0 —x}HUz Gall1| = Z Z olloz = zlli < 4Ve = d(e),
m=1 X m: ex

(B.2)

where we use the fact that E¢[ly.,—z}] = pa, and the last inequality uses similar arguments

as in (B.1). Finally, we proceed to bound the term corresponding to Ss. Firstly, note that,

ACy, ~ - L
EC[% S #gizacm] =Y sex Ae0z. This gives

1 Ao, - 1 Ao, -
Ec[Ss] < Trq |Ec <M %: P Ec [M ) e 0Cm

2
1 Ao, . 2 A, 0C )\C ,UC ’ 1 AC,,0C
=Tr —s ]E(]j (mO'Cm> E@ L Ul — | — E@ —n -7
M? %: [C Z HCm — HC,. M ; HCo
L mm
m#£m/

1 Mo Go )2 1 < [)\C 50]>2 1 (/\C Go )2
—Tr! | —F 270 | - = (R | 292 <Td | =—E A7 . (B.3
M v [( HCy M © Hcy o M v Hcy ( )

where the first inequality follows from concavity of operator square-root function (Léwner-Heinz
theorem, see Theorem 2.6 in Carlen (2010)). The last equality uses the fact that codewords of the
random code C are pairwise independent, and the last inequality follows from monotonicity of the
operator square-root function (Theorem 2.6 in Carlen (2010)).

Moving on, we now bound the operator within the square root of (B.3) as

Ec

A ~ 2
(C;“Cl> ] Z . 62 <N kA2 = K ATl (0, 11,) T (I, 0, 11,) T,
Cq x

TeEX zeX reX

where we use the assumption ;\Ti <k forall x € X.
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Further since, II < I, we have (II,0,11;) II (I1,0,11,) < (Hxaxﬂx)Q, which gives

(5e)
ey

Moreover, using the assumption 3.6d, i.e., Il o, I, < él‘[x < é[, we get

Ec <KDY A (0,11, ) 11

zeX

(Ip0.11,)? = /a0, (po,11,) /oI, < chazﬂz, for all z € X.

)\ ~ 2
Thus, Ee (Cl"cl> ] g (Z)\ 0,11, >H< ~loTl, (B.4)

Her zeX

where the second inequality uses the assumption (3.6e) from the statement of the Lemma. Sub-
stituting the simplification obtained in (B.4) into (B.3) and using the monotonicity of square-root

operator, we obtain

E@[Sg]gTr{ z\;dH"H}S ;\%, (B.5)

where the second inequality uses the assumption (3.6¢). Combining the bounds (B.1), (B.2), and

(B.5) we get the desired result.

B.2 Proof of Lemma I11.13

We begin by defining L as

LA

Z)‘wnew"_ 1+77 k+zN/ZZZ)‘w"GW"1{W" ) (a,m)= Wl

p=1am wm™

Further, let 6 a > wew Mwbyw and let Ilp and 112 . denote the d-typical projector of # and conditional

typical projector of f,n, respectively. Define Ayn = ’1\32 for w™ € T;n)(W), and 0 otherwise, where
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€= Awn. Using the triangle inequality we can bound L as L < L1 + Ly + L3, where

angﬁ(n) (W)

Ly = Z)\wngw" - Z )\wnew"
Loy £ || 3 dun b = k+l N Z 222w Oun Lm0 (a,m)= wr |

p=1a,m w™

L8 | Hm TS (e = 25 ) o Ly

nooam wn

‘ 1

We begin by bounding the term corresponding to L; as

e
Li< Y M7= [Bunly + > A [fun |y = 2e. (B.6)
wreT{" (W) 1 wgT W) 2

Now consider the term corresponding to Lo, for which we employ Lemma II1.12. Toward this,
we consider the following identification: A, with Ayn, oy with O, X with T, (W), X with F?, o
with § & D wm )\wnﬁwn II with IIy, II, with Hwn, and p, = # for all z € X. Since the collection

of random variables {W™ () (a,m)} are generated using Unionized Coset Codes, we have

1 n mn
P (Lm0 (agmjuny = 1) = o forall w" ey,

Note that 1/“”; < 27 USW)og—logp—du) for all w" € [, where 6,,(9) 0 as 0 \, 0, and oy is defined
in the statement of the lemma. With these, we check the hypotheses of Lemma I11.12. Firstly, using
the pinching arguments described in ( Wilde, 2013a, Property 15.2.7), we have Tr{Ilpf,n} > 1 — ¢
for all € € (0,1),0 > 0 and sufficiently large n, satisfying hypothesis (3.6a). Secondly, (3.6b) and

(3.6¢) are satisfied from the construction of I1%,,. Next, we consider the hypothesis (3.6c). We have

B < g { ) <

%

(1-¢)

and using the operator monotonicty of the square-root function (Theorem 2.6 in Carlen (2010)).

where the first inequality above follows from the fact that >, A Oy < ﬁ Y wmn Awnbyn =

The second inequality follows from the property of the typical projector for some §/, such that
8, N\ 0 as § \, 0. This gives D = 9US(R)o+9,)  Finally, the hypotheses (3.6d) is satisfied from
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the property of conditional typical projectors for d = 2% (BIW)og—0u) where N0 as 0\, 0 (see
(Wilde, 2013a, Property 15.2.6)). Next we check the pairwise independence of W™ (a,m) and
W”’(“)(d,ﬁl). Since these are constructed using randomly and uniformly generated G and h(®),
we have {W™(#) (avm)}aeF’;,meFlp,ue[l:N/] to be pairwise independent for each (see Pradhan et al.

(2021) for details). Therefore, employing Lemma II1.12 we get

on(S(R)og+51,) 9—n(S(W)oy —log p—buw)
E[Ly] < \/ : : +8Ve

N'p k+19n(S(RIW)oq —07)

k+1 1
<exp2[ 2< ;L‘_ 10gp—|—nlogN'—I(R;W)UQ—10gp+S(W)ge—6w—5;}—5Z,>}+8ﬁ,

(B.7)
where expa(x) 2 97 Asfor Ls, taking expectation and using E[H{W"M)(a,m):wn}] = # gives

n+e € _n+2e

Bl < ey Y e = Tra

(B.8)
Combining the bounds from (B.6), (B.7) and (B.8) gives the desired result.
B.3 Proof of Proposition II1.14

Applying the triangle inequality on Sy gives S1 < S+ §12, where

1
A
Sn £ BRI At Y P — P |

poown

wnpwn — Z awn’}/wn pwn

For the first term §11, we use Lemma I11.30, and identify 0,n» with p,» and N’ = 1. Using this
lemma, we obtain the following: For any € > 0, and any 7, € (0,1) sufficiently small and any n
sufficiently large, E[S11] < €, if the Etllogp > I(W; R), — S(W), + log p, where o is defined in the
statement of the theorem. As for the second term 512, we use the gentle measurement lemma and

bound its expected value as

1 W) |1~ . Auwrn . Auwrn
szaw"%ﬂ [own = punly | < Z m [ pwn — pumly + Z 1+7) < €5y,

Boown wne']’é(")(w) w"¢7:;(n)(W)
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where the inequality is based on the repeated usage of the average gentle measurement lemma by
setting €5, = (1+n (2\/>—|—2\/ ") with €5, \(Oasn — oo and ' = 5 +2,/¢), and ol — 25 +2,/e,
for &), £ 1 min {Te{I1,pun }, Tr{Ilyn pun },1 — €} (see (35) in Wilde et al. (2012) for more detalls).

B.4 Proof of Lemma III.15

We begin by using the Hélder’s inequality Wilde (2013a); Carlen (2010) for operator norm, i.e.,
(IIAB]|1 < ||Alls||B]l1), and defining Aym = p®”_ ﬁwm/p@”_ . This gives

S (-4

Zo‘w”'yw“ /P& R/ pE L, = T/ p ST Ay 1T /=011, H
< Z awn’)/wn s 00
S(p)=0p) Zawnfy “)2\/Tr{(HpA —HH’)Awn}Tr{Awn}7

M = e,

where the equality follows from the fact that II, and II* commute, the first inequality follows from

the Holder’s inequality, and the second inequality uses the following bounds

Agn — TT# A yn ITH

< HAW —IFAgn
1

< \/ﬁ {(Hp - Hu)2]\wn} Tr {[\wn} + \/T&" {Hu[an} Tr {f\wn (I, — H#)2}
< 2\/Tr{(np _ Hu)[\wn} Tr{[\wn},

where the second inequality uses Cauchy-Schwarz inequality along with the polar decomposition

n HH“[\wn _ H“[\wnH“H
1 1

(see the usage in (Wilde, 2013a, Lemma 9.4.2)) and the last inequality uses the arguments: (i) IT#
is a projector onto a subspace of II, and (ii) TI'{H,’LAwn} < Tr{f&wn } Further, using the fact that
for w" € %(n)(W),

- . ~1 B -1 -1
Tr{Aw"} = ||HpAw"HpH1 < HHp\/ pEn Hoo ||pw"”1 ”Hp V P Hoo < ||Hp\/ pE™ Hgo < 2n(S(p)+5p)’

<1
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it follows that

ZV(“ HW( >\/p@Tn < 2.275(5(p)=45) Za nyyh )\/Tr{(H — TI#)A,, }

)
< 2.2 AW |5 O‘“JA" (7‘”" Te{(I1, — T14)fopn }

AW

wn

)
— 9.93n% <A(“)—E[A(“)]+E[A(”)]> Tr (HP_HM)Z LA,

(1)
< 2. 230 E[AW)] Tr{(Hp — 1) Y A T ﬁwn} 2. 230 | AW E[A(“)]‘

A

w ~~

Hy

V(1 —e¢)
<o o9 (g VU9
< ( o+ 1+ 1+Ho+ Hs |,

where the second inequality above follows by defining A = Zw"eT(")(W) avawa’fL) and using the
8

concavity of the square-root function, the third inequality follows by using the fact that

(1)

awnvwn awRan
Z; o T, pwn}<z Tr{pun} < 1, (B.9)

and defining Hy as above. and the last one follows by first using E[A(“)] = (=9 and then defining

— (+n)
Hy, Hy and Hj as in the statement of the lemma and using the inequality Tr{A(w — o)} < [[A(w —

o)|lh < [|A]|ool|lw — |l1- This completes the proof.

B.5 Proof of Proposition II1.16

To provide a bound for §2, we individually bound the terms corresponding to Hy and H in an
expected sense. Let us first consider H. To provide a bound for H we use Lemma I11.12 with the
following identification: \, with 4225, o, with pun, & with T, (W), X with F2, 1T with I1,, TI,

with [T, and p, with L

Firstly, we have 1/“”; < 9~ (S(W)o—logp—bu) for all " € [y, where 8,,(0) N\ 0 as § \, 0, which gives
k = 27SW)o—logp—du) VWith these, we check the hypotheses of Lemma II11.12. As for the first
hypothesis (3.6a), using the pinching arguments described in ( Wilde, 2013a, Property 15.2.7), we

have Tr{Il,p,n} > 1—¢€for all e € (0,1),6 > 0 and sufficiently large n. Then the hypotheses (3.6b)
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and (3.6e) are satisfied from the construction of IL,». Next, consider the hypothesis (3.6¢c). We

have

L (2w

wreT ™ (W)

where the first inequality above follows from using Zw"eﬁ(”) W) %ﬁwn < O%S)p@’" and the
operator monotonicty of the square-root function. The second inequality follows from the property
of the typical projector for some §;, such that &;, 0 as § N\, 0. This gives D = 2(S(R)o+05)  where
o is as defined in the statement of the theorem. Finally, the hypotheses (3.6d) is satisfied from the
property of conditional typical projectors for d = 2MS(EIW)o=00)  where o1 N\ 0 as § N\, 0. Next
we check the pairwise independence of W™ (a,m) and W™ (@, ). Since these are constructed
using randomly and uniformly generated G and h(®), we have {W™ ) (q, m)}angvaM Juel1,n) to be
pairwise independent (see Pradhan et al. (2021) for details). Therefore, employing inequality (3.8)

of Lemma II1.12, we get

S(R)o+64)9— — —
E[H] < \/ 2o +;)2(;§(WW)) ’ ;Ofp P) g5 (B togpt L log N—I(R:W )o —logp4-S(W)o—5u—5) 51
- N2nS2n o= - '

Next, consider Hy and perform the following simplification

(1—¢) Awn
ElHo = T > -9 k+l > Z ]l{wnw(az) =ur}
)

wreT™( w"GT(”)(W) @
_ (1 - 8) >\w” ®n
T _H7)E Z (1— 5) k-l—l Z Z L w0 (a,)=um}Wo X
wreT{™ (W) w”GT(n)(W) ot
(B.10)

where wy € D(H) is any state independent of W. We again apply Lemma II1.12 to the above

Yt o with w§™, X with 7" (W), X with Fy,

II and II, with Identity operator I, and p, with ﬁ. With this identification, x remains as above,

term with the following identification: A, with i

k = 27 SW)o—logp=duw) and D = d = 1. Hence, using in inequality (3.8) of Lemma II1.12, we
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obtain
E[H,] < 2~ 5 (5 logp—logp+S(W)s —du) |
This completes the proof.

B.6 Proof of Proposition III1.18

We begin using the definition of Af,ﬁi? and applying triangle inequality to Sy to obtain

52 1 +17 Z Z Z k+l ]l{aG+h(u) y=wn}

pooai>0wn, 2™

‘,/p®n1‘[#‘/ n pw" /p®n H/J, /p®n

< Py ) — Py (15000
} (17|

22n6
S DN Z > Z T HaGh ()=wny Pyw (2" |w") = Pz <2n|F(“)(i))’
pnooa,i>0wn, 2™
n6
1+; NZ > 22 oA ]1{aG+hw>() Wy 18 (W™, 4), (B.11)

uoa,i>0 wn

where the second inequality above uses the following arguments

H, / p®n I+, /p®n_1ﬁwn‘ /p®n_1HH, [ p®n = H /p®anH#, /p®n_1ﬂpﬁwnnp, /p®n_1H#Hp‘ / p&n )
< V] mae i w v
o0 o0

—1 —1
< 2SO R, [T Mypun /5| < 2% el < 27, (Ba2)

where the above inequalities follow from the Hélder’s inequality. Finally, the last inequality in

(B.11) follows by defining 10 (w", ) as

1) (w", 5) & 1{3(@”,&“) LB = @G+ hW (i), 0" € TV (W), 0" # w"}.
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Observe that

1
]E[]]-(#)( )ﬂ{aGJrh(“ ) (i)= wn} Z Z o’
a€Fy e (W )p P
wAEwW"

which follows from the pairwise independence of the codewords. Using this, we obtain

9 92nd, anRpk+l

ElS < (L+mn) p"

ktl o
Z Z )\wn <2 2n( = logp—R logp—‘,-S(W)U_i_(SSQ)’
ﬁ)n€7:5(n) (W) wn 67:;(”>(W)

where dg, \, 0 as 6 0, and o is as defined in the statement of the theorem. This completes the

proof.

B.7 Proof of Proposition II1.30

Recalling Sa, we have Sy < S91 + Soo, where

A (A1) ~(

Sy 2 NlN >0 > auw B G U"’v”ﬂ{(unwwﬁ"’(uvﬂ’
H1,f2 u™um

Syp £ Z Z aunﬂunV Qun o T2 (07 4 0™, 4, ),

N1N2

h1,p2 u™,um

where Qn n and 1(#0E2) (w4 j) are defined as

—1 —1
O 2 { | (T 0 T) i 0 " (i BN 0 (05 1) | 53,

1) (' i, >—n{a< b, a") s = @G ) Y (), € T+ V), "#w}

We begin by bounding the term corresponding to S1. Consider the following argument.

(ul) AB
Z nzn Olyyn /an’y u”,v” 1{(u”,v")€7’5(")(U,V)} - Z 2)\11,” o
;Ufl p2 u™,v (un7’l}”)€7:;(n> (UV)

wreT{™ (U)o eT ™M (V)
AB
+ E 2\ i yn

(un o) g™ (UV)
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)\AB

unon T NlN Z Oéunﬁ,unf)/ C(MQ)Qu” o Z 2)\{?’§

FH (un,vn)g’/;(")(UV)

DD

uneyn vmeyn

®
<251 +2 > A n
(un o) g T (UV)

where

S &

I

1

(d® MF" @ MEM(Whap)™" — 5 O (4@ M @ M) (W5, 5)°"

(a) follows by applying the triangle inequality, and (b) follows from the Lemma B.1 given below.
Note that in Sj, the average over the entire common information sequence (fi1, fiz) is inside the

norim.

Lemma B.1. We have

S % e S et @@ <5 @)
unteyn vrepn 1452 1,2
Proof. The proof follows from Lemma 2 in Wilde et al. (2012). O

Next we use Theorem IIL.10 twice with (a) p = pa, M = Ma, W =U, Z = U and Py (z|lw) =
1{z = w}, and (b) p = pp, M = Mg, W=V, Z =V and Py (z|lw) = 1{z = w}, and the mutual
covering lemma (Lemma I1.12) developed in Chapter II to yield the following: for any e € (0, 1),

and any 7,0 € (0,1) sufficiently small, and any n sufficiently large E[S;] < 2e if %logp >

I(U; RB)g, — S(U)gy +logp, ¥2logp > I(V; RA) 5y — S(V)oy +log p, “:8 log p+ L log Ny > log p,
kinlz logp + %log Ny > log p, where 01,09 and o3 are defined as in the statement of the theorem.
Consequently, we have E[Ss1] < 4e for all sufficiently large n.

In regards to S99, note that

(/111/]2) n n

E[1 W+ 0% 5D G ) mumy HasGeh§? ) v"}} 2 2 prppt
a€ly  weT ™ (U+V)
ata WU v"
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Using this, we obtain

2 pk—l—ll 2nR1

A
(I+n)2 pn Z Z Z A Xon Qum

o 67%(”>(U+V) un 67:5(") (U) pn 67:;(”) (V)

E[Sp»] <

k+1q

2 on(—;
<
- (1+n)? ’

log p—R1—~log p+S(U+V )o5+6p 4 5 +5W)

where dy \, 0 as  \, 0 and the above inequality follows from the following lemma (Lemma B.2).

Hence, E[S91] < € if the conditions in the proposition are satisfied.

Lemma B.2. For A, A5, and Qun n as defined above, we have

Z Z Qun n A AB, < 9M%0an

wreT M (U) vreT™ (V)
for some 6,,, \ 0 as d 0.

Proof. Firstly, note that

~ ~ -1 -1
5 il - {[<H‘ff o 1) (v A (S b o
—1 B B
(zAvnpvn)\/ P e )] @)
We know, S . A\ pih < 27”(3(“)7‘5914)1_[%, where d,, N\, 0 as 0 \, 0. This implies,
] ] ] -1 -1
o (Z Aunpun) O L R L O AT Y/
< 270eaTIHM, T < 22M0ea Tl B.15
= A TTPATTA — A ( : )

-1 -1
where the second inequality appeals to the fact that \/,0%” I1, Ag/pf" < 2”(5("A)+5PA)HP "

Similarly, using the same arguments above for the operators acting on Hp, we have

/o (Z AD pvn> o2 H’}; < 220rpTIR?, (B.16)
where 6,, \, 0 as d \, 0. Using (i) the simplifications in (B.15) and (B.16), and (ii) the fact that
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for Ay > By >0 and Ay > By >0, (A1 ® A2) > (B1 ® Bs) in (B.14), gives

D Qurn A AT < 2200 t0os) Te{ (T @ TIZ) pS b < 27"0a™0n) Te{p§7 ) = 27"(Oratrn),

n n
un v

Substituting d,,, = 2(6,, + 6,5) gives the result.

B.8 Proof of Proposition II1.31

We bound S as S < 52 + §3 + §4, where

3 A
52 = ZZ p%%( ) g e )) PaE Py (" wg)]|
NlN 1
pi,p2 1>0
3 A
S3 = E: E: pfg( o) ®T; ol )> PAE g\U+V(2n|w(T)L) )
NlN 1
p1,p2 3>0
g A ® B,(u2)
52 PR ol (10 & 10 ) \ Pl ()|

Analysis of §2: We have

Z\U+V 2" wg)

Vo (£ o) oy |

u1,u2 >0 2"

1
= NN, Z

1,2

Z Z)\vnpun Z\/@C(W)B 12 \/7
+EZ PIRVLL Ko (B§ﬁ2>_35gz>> \/@

H2 vn

> NQ Z Z;)‘v"pv" -

®nF(J]3,(u2) p%n

1

1

1

1

k+12 Z Z )‘U"p”U" ]l{w2 (a2,ma,p2)=v"}

v ag,j
1

§21
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)

1

F ST 7R 5 S

p2 v” p2 U™

‘ \/@Cw <u2>) \/g

§22 §23

(B.17)

where the first inequality uses triangle inequality. The next inequality follows by using Lemma
1.1 where we use the fact that ) . T A(n) < I. Finally, the last two inequalities follows again
from triangle inequality.

Regarding the first term in (B.17), using Lemma II1.13 we claim that for all € > 0, and 1,6 € (0,1)

sufficiently small, and any n sufficiently large, E[S’gﬂ < e if "“{le logp > I(V; RA) 6, —S(V) oy +1log p,
where 09,03 are as defined in the statement of the theorem. As for the second term, we use the

gentle measurement lemma (as in (B.23)) and bound its expected value as

E[Sa] = Z Z Bun (! —ponll
Mz Ui
= " pv"” +Z " U"H1§6§21’
e T (V v g T (V

where the inequality is based on the repeated usage of the Average Gentle Measurement Lemma
and €z, \(0 as § \, 0 (see (35) in Wilde et al. (2012) for more details). Finally, consider the last

term. To simplify this term, we appeal to Lemma III.15 in Section 3.3.3. This gives us

G 2 238 \/7 B B B
Sys < ~ Z(HO 0T \/H +HP + Hi (B.18)

pa2=1

where

(>

P& Ay - Eal)

, HP A& T{ — 1142) Z)\vnpvn}

HP 2N ADE - Zﬁ’“" BIMPY :
UTL ’U" ]:E 1
HE 2 (1—¢p) L”C“" pB, — L”C“" Bl (B.19)
’ 2. INR ;E[A%‘”] 1

and A%‘) A Zv"e’r(") ﬁvngvf and eg = Zv"§é7’5(n)(v) AB.. Further, using the simplification
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performed in (3.19), (3.21), and (3.22), and the concavity of the square-root function, we obtain,

No 2no
~ 2 (1—¢p) 2% p ~ (1—ep)
E[S. 3—2%5032 E[HP] + ¢< +1>EHB+ ~— —2/\JE[HB] |,
[ 23] Ny et [ O] (1+77) n [ ] (1 +77) [ O]
7B A B -B v”pv"
where H" = T=en) g Ayn Pyn — k+l2 E E (0-cp ]1{,,,2(&277,127“2):071} . (B.20)

m a2,9>0 1

Using Proposition I11.16, for any ¢ € (0,1), any 7,0 € (0,1) sufficiently small, and any n

sufficiently large, we have E [5’23} <eif kt—l? logp > I(V;RA) s, +1ogp — S(V)sy, where o2, 03 are
the auxiliary state defined in the statement of the theorem.
Analysis of Ss: Due to the symmetry in S, and §3, the analysis of Ss follows very similar
arguments as that of S, and hence we obtain the following, for any e € (0,1), any 7,d € (0,1)
sufficiently small, and any n sufficiently large, we have E [5’3} <eif Sy > I(U;RB)y, + logp —
S(U)gy, where o1, 03 are the auxiliary state defined in the statement of the theorem.

Analysis of Ss: We have

S < P whl Xn J(u1) ®F B, (2 )) Xmn
4 N1N2 Z Z; Z\U+V 2" wg H\/PAB \/ PAB )
Hi,p2 2z
1 ( A,(p1) ® ® (1) o plu2) ®
< Jpen (T ®I)\/ nil S/ o ® BY: )\/ s
NN, Z pap (Lo PAB NN PAB PAB ;

1,2 ul p2 v"

(B.21)

where the inequalities above are obtained by a straight forward substitution and use of triangle
inequality. Further, since 0 < Fgl’(“ 2 <TITand 0 < F?’(“ 2) < I, this simplifies the first term in

(B.21) as

A?
\ P4 (Fo k) g I) PAB

Similarly, the second term in (B.21) simplifies using Lemma III.1 as

\//;( () o B( )) pAB

1
NNy Z

K152

S

1

< N A(m)) \/7

N1N2 Z Z

H1,p2 U™

1
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Using these simplifications, we have

o () Vo

- 9
Sy < —
s 1

The above expression is similar to the one obtained in the simplification of 52 and hence we can

bound Sy using similar constraints as 52, for sufficiently large n.

B.9 Proof of Proposition II11.32

We start by applying triangle inequality to obtain J; < Ji; + Ji2, where

N1 (p1)
_ _ 1 Qo Yom | = _
T 3ol (A @ A% = - 30 AL @ AL | P (" ") |
Zn,,vn un 1 //41:1 um 1
N (1)
A 1 @n [ CurVun 1A AB (1) 7(p1) AB RN pn n, n n
Jig = Z EZ Z PAB A Ain @ Ngn — Yyn " Ay @ N |1/ P Z\w('z [u™ + "),
L ui=1 un u™

1

Now with the intention of employing Lemma II1.13, we express Ji1 as

§ : AB AAB
Jll = )\un’vnpunﬂ)n (= ¢u”,v”,z"

u™, v, 2™

- Ayn 1 W M, p1)=um 7’[) nyn ®¢u”,v",z" )
(14 n) pFtia N, Z Z Z un H{wi (a1,m,p1)=um} )\an u™v

H1 u™ o™, 2™ ag,i>0 1

where the equality above is obtained by defining gyr yn on = Pyyp, (2" |[u” + v™) [u"}v"| @ [2")(z"|

and using the definitions of aun,%(ﬁf) and ﬁﬁfvn, followed by using the triangle inequality for the
block diagonal operators. Note that the triangle inequality in this case becomes an equality.

Let us define 7T,» as

A yn
u™, vt AAB
)\A pu",v" (%9 d)u”,v”,z"'
u’n,

Tn &)

n ~n
"z

Note that in the above definition of 7;» we have Tyn > 0 and Tr{7;»} = 1 for all u" € IF;}. Further,

it contains all the elements in product form, and thus can be written as Tyn = @) To,. This
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simplifies Ji; as

Jii =

k+l1 N ZZ Z >‘u" U”ﬂ{m(al,mh#l)_u"}

u™ ap,i>0

Using Lemma II1.13, we claim the following: for any € € (0,1), any n,d € (0, 1) sufficiently small,
and any n sufficiently large, we have E[J11] < e, if % logp+ % log N1 > I(U; RZV ) gy — S(U) 6y +
log p, where o3 is the auxiliary state defined in the statement of the theorem.

Now we consider the term corresponding to Ji2 and prove that its expectation with respect to

the Alice’s codebook is small. Recalling J12, we get

)

1

J12<*Z > D Py + o) p%(au ik A ® A — (“I)Ai’ff)ébl_\fn)\/p%
,u1 1um o™ 2™
L oga [ en” on AB,
PAB NA S Pa Pun Pa ® PAB

33 el
where the inequality is obtained by using triangle and the next equality follows from the fact that

)

,ul 1u™vm

Doan Py (2"u" +0") = 1 for all u" € Y™ and v" € V" and using the definition of A;’#). By

applying expectation of Jio over the Alice’s codebook, we get

~1 -1 B
Pan <<AA VS pa/pS" ) ®Afn> N+
1

I

E[Jio] < )

where we have used the fact that E[aun%(ﬁzl)]

= +77) To simplify the above equation, we employ

Lemma II1.1 which completely discards the effect of Bob’s measurement. Since Y . AZ, = I, from

Lemma III.1 we have for every u”,

£ ((m r r) 02) i3],

This simplifies E[J12] as

E[Ji2] <

L ta g !
H\/pfn (AAAun —\/AA" /PR
un
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1 _
72 Mol g Z Now | (o = P )|l Sea+ ey, (B.22)
“¢T(")(U) ureT ™ (U

where the last inequality is obtained by repeated usage of the Average Gentle Measurement Lemma

and €}, N\ 0 as § \, 0 (see (35) in Wilde et al. (2012) for details). This completes the proof.

B.10 Proof of Proposition 111.33

Noting the similarity between J and the term S, defined in the proof of Theorem III1.10 (see

Section 3.3.3), we begin by further simplifying Jo using Lemma II1.15. This gives us

993nd) N1
Ty < S5 (g + V( \/HA+HA+HA . where
1=1

H1=

Hg‘é‘Afg“LE[A%”]), oita T{ o, — M) Z)\unpun}

(k1)
« n’}/ n ~
unpu" - 1 - EA) E Ufupﬁn
1

(1) (1)
Ht & (1 )| 30 S0 g = S STl
’ Z Ay ;E[Aﬁf”] )

A A
and A%l) = Zu”ET;n)(U) au”’r)/f#l)a EA = Zu”gé’l’a(")( ))\un, and 5 ( ) \ Oasé \ 0. FllI'thEI',
using the simplification performed in (3.19), (3.21), and (3.22), and the concavity of the square-

root function, we obtain,

2 o3nd,, .- Ay, (L—ea) [(2%0%a - (1—ea)
E[Jz]SEZ?’ > (E[H0]+ 0 \/< ; +1> E[HA]+\/M E[H(f‘]),

p1=1

where

At

A4,
Z (1 _UEA pu" 2n5'1 Z Z pU”H{Wl(al,ml,#l):U”}

um um ai, z>0

‘ 1

The proof from here follows from Proposition II1.16.
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B.11 Proof of Proposition 111.34

We start by adding and subtracting the following terms within Qo

) Z \/ P5% (]\f}n @ AL\ PSh i (2" "+ 0™),

un rU’IL
)
0 3 55 30 o (e B R ) r o),
un ’U" “2 1
5 nC n
(ZZZ N Z \/@(’yun un v v AB Pﬁ% g\w(z"‘u”—i—v”),
umn,un 1 2 11,042 U
) Y s 2 Vo (Al @ i BUD) \ogg P (e +07).
u™,un 1,142
This gives us Q2 < Q21 + Q22 + Q23 + Q24 + Q25, Where
On =) )5 Wf%(( Tt A )> ® A% — &b @ &) ) P35 P (" 0|
A | ETAEROLL ,u1 1 1
A A A 1 & B
—_ —_ — /U ’l’L
Qo 2 Z Z \/p§%<l\un ®@AB — AL ® <N2 Z v AB >)\/@Pzw (Z"u" + ")
zm ||um,om p2=1 1
Qg3 2 Z Z [ @n (Ml)A(ul) ® izﬁ” 7(152)1\3 en Pl (2" u™ ™)
23 = PAB N, )\B Paptziw )
n un " 2 1
/8 A D, n
Q2 Y| Y ke Sy (%n a0 (P8 50 ) e e o)
zn |jun,on Ny 11,42 vn 1
Q25 A Z Z NIN Z /P§% (’Yunl)A M1)®<C(M2)B(M2) _ 1(}52)35!52))) p??i% §|W(zn’un+vn) )
zn ||un,on 1,42 1

We start by analyzing @21. Note that Q21 is exactly same as ()1 and hence using the same rate

constraints as ()1, this term can be bounded. Next, consider ()22. Substitution of (;n (12) gives Qoo =

)\AB

"AB un’v’n "AB
E )‘u" n Pyn yn & ¢U" A N E : 2 : Bun E : ]l{WQ (a2,mz,pu2)=v"} A\B Pun pm ® wunﬂ’n’zn ’
Un

un un,zn p2 u™ oz ag,5>0 1
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where 1yn yn on is defined as Pyn yn n = P}"W(z”]u”—kv”) |z")(2"| , and the equality uses the triangle
inequality for block operators. Now we use Lemma II1.13 to bound Q22. Let
)\AB

A u™,v" ~AB
7:)71 = )\B pu",v" ® @/)un’vnzn.
n

n n
un,z

Note that 7,» can be written in tensor product form as Tyn = ®?_1 To,. This simplifies Q92 as

Q22 =

vn

2n52N2 ZZ Z Av”ﬁ)"]l{w(agym%lm) Un}

p2 v ag,j>0

Application of Lemma II1.13 gives the following: for any € € (0,1), any 1,0 € (0,1) sufficiently

small, and any n sufficiently large, we have E[Qa2] < € if

.y
Z 2 logp + — 1ogN2 > (Vi RZ)gy — S(V )y, + logp.

Now, we move on to consider (J23. Taking expectation with respect G, hg’“) p{2) gives

BlQnl<E|Y & zﬁv Hz\/ o (i o P (7 4 7

Zn 7/UTL #27

No E ‘ 51} vn |G
_EGhl Z N2Z th|: }

FAR L po=1

1

Xn
pAB

Pip E\w(znlun + ")

PRt ( e Al @Afn) PABPRw ("l + ")
\z /o (3 P (4 0
- Z \V P PAB ( Ml)A(M) ® Afﬂ) pABPZ\W( 2" " + ™)

1
=Egn

1+77

1
where the inequality above is obtained by using the triangle inequality, and the first equality follows

from hg“ ) and hé“ 2) being generated independently. The last equality follows from the definition
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of J as in (3.38). Hence, we use the result obtained in bounding E[J]. Next, we consider (24.

[ 5 nC n =B
N N2 Z p%% <7u" u" v)\By A pi)%

K112
N1N2 > ot (1A% © pncl? (\@ s ) \osh
K142
ﬁ S Bunh?

/ § : B
2 umomn

n 1 n
— /el (m A @ (WE P/ 1)) i
“1

Qo < Z ZPZIW 2 u™ + o™)

u™un 2"

1

i

1

where the inequalities follow from the definition of Bq(}ﬁz) and using multiple triangle inequalities.

Taking expectation of Q24 with respect to hg” 2)7 we get
Mo || fon (LN Gm) 4Gm) e A\ WA
u™ " 1

AB,
= o [Z (1 +n)

D s Ve (e m/avnrl)@
= X ( H M+ > (1>\fn77)

g T (V) wneT ™ (V)

|

— 5, S en+ € (B.23)

1
AB

where the second inequality follows by using Lemma III.1 and the fact that Z iy D Yan (1 A(“ ) <
I, and the last inequality follows by applying the Average Gentle Measurement Lemma repeated

and g, 0 as d N\, 0 (see (35) in Wilde et al. (2012) for more details). This completes the proof

for the term @o4. Finally, we move onto considering QQ25. Simplifying Qo5 gives
Q25 < N1N2 ZZZPZIW "u™ 4 o™)

Vo (U Al @ (U BUD — (2 BUE)) o
W1,p2 2™ um o
< DX (Ve (e B~ B o

p2 vm
where the first inequality uses traingle inequality and the second inequality uses Lemma III.1 to

1

= 593,
1

remove the affect of approximating Alice’s POVM on Bob’s approximation, and Ss3 is defined in
(B.17) in the proof of Proposition III1.31. Therefore, we have the following: for any € € (0, 1), any

7,0 € (0, 1) sufficiently small, and any n sufficiently large, we have E[Qa5] < €, if Sy > I(V; RA)y, —
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S(V)gy +log p. This completes the proof for Q25 and hence for all the terms corresponding to Q2.
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APPENDIX C

Proofs of Chapter IV

C.1 Proof of Lemma IV.8

We begin by observing the fact that |&un>AE and |5'un>AE are purification of the isometric

~A
versions of states [);;‘n and %, respectively. More precisely,

VERL (VEYT

Tra |Gun)(Gun |2 = VEpL(VE)T and  Tra |Gun)(6un|*F = — 00—,
Tr{pu”}

where we use the fact that

ABCR A A’

E A

| W yen ) V| ,en)™
for some isometry V¥, and |¥ A4 5s th ical ificati f p2". Recall that . is th

y , an | p®n> is the canonical purification of pi". Reca. at p;n is the
post-measurement state of the canonical reference obtained after observing the classical outcome
u™, and thus [);?n € D(’H%n). Also, note that the Hilbert space Hf}{, corresponding to the subsystem
A" purifies the states pin and pin. This implies, from Uhlmann’s theorem, there exists a unitary
U, (1) acting on the subsystem A™, such that, for " = U"(l), we have

F(pA ﬁu" ) <VE' ~A (VE) 7 Tr{ o

(16 ) AE Gun)AEY.
b ) = F(ol® U0 e
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Finally, using the relation ( Wilde, 2013a, Theorem 9.3.1), and the inequality

||pu" - 7”1 = ”pu" ﬁﬁ"”l + (1 - Tr{ﬁﬁ"})?
Tr{p;)

we obtain the desired result. An identical analysis for \?%n)B F and |&vn>B F produces the second

statement of the lemma.

C.2 Proof of Lemma IV.9

Observe that

2nR1

= 3" 1 Tpa, { (U7 2 UAOUAOVA)SECR (I @ UAOUA W) VAN
=1

where F denotes the subsystems corresponding to B, C, and R. Using the triangle inequality and

monotonicity of trace distance, we obtain
[Natpa) = 10301, |, Lory < T+ T2 + T,
where

Y

T A Zﬂ‘mtﬂ‘(z»[ v(5) (1 U052 (1 2 UAD) - 67| (T U )1

B21-3 9y Te{it), T2 YT, (U2 0O )T~ )0, (C.1)
! !
Further, using the trace distance and fidelity relation ( Wilde, 2013a, Theorem 9.3.1)
T <Ty+ Y 7 H(I ® UAW)AE (I @ UAQW))T — &f‘EHI
l
< Ty +2\/1- F(I o UAW)IGE), 161E)). (C.2)
Using the result from Lemma IV.8 and (4.5), and taking expectation, we obtain

E [T} 4+ T3] < 2E[T3] + 2\/ [Z Yt — ﬁful] + E[Ty] < 2¢ 4 2V/2¢ (C.3)
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for all sufficiently large n and all sufficiently small 7,6 > 0. Similarly, E[73] can be upper bounded

from (Devetak, 2005a, Lemma 1).
C.3 Proof of Lemma IV.10
Let ®As4rArL & (T V)\l!?é*nA(I ® V)T. Note that,
1 2
Ea |[F(2%,]0)0]4,)]] > (1 — 5Ea [[Na(pa) = 0X0Ls, ul}) > 1= Ea [[Wa(pa) = [0X0L, Il2] -
This means that there exists an ws4rl € D(H 4, @ HY" ® Hy) such that
F(®,|0)X0] ) = F(®AadrAnt oAadnt qj0)0] , ),

which gives

Ea |l @dorAnt — o Aadnk g 00l 1] < 2\/EA [IIVa(pa) = 0014, 11 )-

Using monotonicity of trace distance, we have

B [l oA < 2 2 [INAG) ~ 001, I (C4)

Therefore, we have the result

E4 |:||(I>ApAgARL B (I)ARAgL ® |0><0|Ap ||1}

<EL |:”(I)ApAgARL o wAgARL ® ’0><0‘Ap ||1] + 4 [HwAgARL - CDAQARLHI]

< 4y B [INa(p) ~ 001, 1] (©5)

C.4 Proof of Proposition I1V.14

We begin by defining J as

J £ {3(571572}.7') L (UM(1), VP(K)) € Bu(i) x Ba (), (U™ (D), V™ (k)) € Bi(d) x Ba(j),
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(O™ (), V() € (U V) }
Using this, consider the following simplification:

1€ = &7l < D kg mypamn 2 | penll
—

Lk <1
2
<2} wulkligy = i) > D Lur@=un yrm=omt L}
I,k u™ o™ [k

Note that, for every (u",v™, 1, k), we have

E (Lo =ur v (k)y=omy L7y ]
< 3 S S E []l{U”(l) — ", V(k) = v} 1{U"() = @, V() = o)

(@, 5m)eTi™ (U V) Lk I

xT{(u", v") € B1(i) x Ba(4)}1{(a",0") € Bu(i) x B2(j)}]

A4 \B, —n(I(U;V)=61) [on(R1—R1)on(Ra—Ra) (R1—R1) (R2—Ry)
S(1—5)2(1—51)22 ’ 1[2 PTIRIQMIRTIR) R T 4 g T

+ 2—n(S(U)—51)2nR1 271(]?2—]{2) + 2—n(S(V)—(51)2nR22n(R1—R1)

AA /\B - -

<5 un Myn 2—n(I(U;V)—261)2n(R1—R1)2n(R2—R2)
T (1-g)2(1—¢)? ’

where §; N\, 0 as § \, 0. The first inequality follows from the union bound. The second inequality

follows by evaluating the expectation of the indicator functions and the last inequality follows from

the inequalities R; < S(U) and Ry < S(V'). This implies,

E[|¢% — e |,] < i 5)21(01 . 8,)22—n(I(U;V)—261)2n(R1—R1)2n(R2—R2),

which completes the proof.
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APPENDIX D

Proofs of Chapter V

D.1 Proof of Lemma V.4

Note that
W) & (Ir @ VpB) D)2, |y,) & (Ir @ VoB) )5

where |I') 5 is the unnormalized maximally entangled pure state: |I') 5 = >, |9) p |7) 5. Consider

the fidelity between the canonical purification states [¢,) and |15):

F(lvp) [¢0) = [ {Whplthe) I* = (TP (Ir @ v/ pBVaB) D) P 2,
¢ 2
L (VPVaR)P 2 (1= 50" - 0®],) 2 1" - 0”],

where (a) follows from the definition of fidelity for a pure state, (b) follows from the definition of
trace, (c) follows from the Power-Stgrmer inequality (Powers and Stormer, 1970, Lemma 4.1), i.e.,

for any positive semi-definite matrices A and B, we have

Te(A) + Tr(B) — ||A — Bl < 2Tr<\/Z\/§).
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D.2 Proof of Lemma V.19

We first provide the following lemma.

Lemma D.1 (Covering superposition states). Consider a finite set U, and a pair of collections
{putueu and {ou}ucy where py, o4 € D(HA) for allu € U. Let {V5}uey and {99 }yey acting on
D(Hr, ®Ha) and D(Hr, ® Ha) be some purifications of {py}ueu and {oy tueu, respectively, with
dim(Hg,) < dim(Hg,). Then there exists a collection of isometric operators {Uy(u) }uey acting on

Hgr, — Hr, and phases {6,} such that

F((Ur®1a)|7p),|70) = F(lmp) s (Up @ La) 75)) 2 1= ) ,bl{‘Hpu — oull1, (D.1)
uel

where

Ug A Ze—iéuU ( )® |u ’ |Tp Z \/W WJP ® |u |7‘U é Z \/W WJU ® |U>

ueU ueU ueU

Proof. We provide a proof in Appendix D.3. O

Now, with the intention of employing the above lemma we perform the following identification.

Identify U with M x K, p, with pmk, oy, with pmk, ) with MW?")BEBn, and [¢7) with

\ )‘m,k

I \/ m, n pn . . . . . . ~
u® k) |¢®">B ®B". Note that the last two identifications are, in fact, the purifications of piRk

F

and p / Tr (pfﬁ), respectively as

@M, ToM 12 \/A, 1® /A, pon
-~ (( ® M) o ,k>> T << /i) o D) _
m, Tr

Vo " i) 7 " (725

k Om, k

Using Lemma D.1, we obtain

1 pon
> 1— ﬁBR m,k
(1= veIM]IK] 2% ok Tr<ﬁBRk) 1

-Bgr
pmk

>1-4ve, (D.2)

=0 f|M||K|ZTr{~BR}‘<

6
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where the last inequality follows from using the bounds in (5.29) and (5.30).

D.3 Proof of Lemma D.1

Consider the following:

2
F(|1p),(Ur ®I )W 76))=

> e Ui )

uel
> 2

T o
( o |t vt 1)
>< ;W’”Pu Uu”1> >1- Z’M‘Hpu Uquv

[I=

1=

2
(Z ‘ Pu, Uu))
ueU
uel

where (a) follows by choosing &, such that e~ (| Ul (u) [2) = | (W4 Ul (u)|42) |, (b) follows
from Uhlmann’s theorem ( Wilde, 2011, Theorem 9.2.1), i.e., there exists some isometry U, (u) such
that F(py,o0u) = F(Up(u) [¢°) ,|17)), and (c) follows from Lemma V.3.

D.4 Proof of Proposition V.20

We begin by defining indexing functions f(™ : [0, K/ —1] — Iém), for each m € M/’, that
uniquely map each element of the [0, K/, — 1] to the set I‘gm) in a monotonic fashion. Let g(™) :
I(m) — [0, K/, — 1] be the inverse of f(™ for each m € M’. Define the transformed vectors

corresponding to the collections {X } and {qbk } as

K, - K]

m 271'2]9 “(m é m_ 2#77;19 (m)
XMy £ e z;) " gy and 197) 2 e z; €5 180w )
J= J=

for s € [0, K], — 1]. It follows from basic algebra that, for all m € M/,

K/ -1 K/ -1

Klf Z <‘25( X —02 Z f(m) f(m>( )> = Z <¢1(cm)|X1(cm)> =c? Z Tr{El(cm)Tlim)}’

kez{™ kez{™
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where the last inequality follows from (5.47). Noting that the right hand side is a real number, we

infer, for all m € M/, there exists at least one value of s, € [0, K], — 1] that follows the inequality:
eiém (QESm 5% (::)> > 2 Z <¢lim)lxl(€m)>, for some phase O,,.
kez{™
Observe that,
2mi(g (™) (&) =g (™) (K)) s

@My = 3 Y e A (@0 I,

kez{™ kezi™

for all m € M’. Choosing a,im) - W;{w and ﬁ]im) - % + 0,,, we obtain

2
% (dmlxm) > Z > =1 Y {7} =1 - 2V,

mem’ e kez(™ meM’ ez m)

where the last inequality uses (5.31) and substitutes the value of ¢, which completes the proof.

D.5 Proof of Lemma V.22

Here we follow arguments similar to the proof of (Cuff, 2013, Lemma VI.5). We begin by

defining Z/ (removing the relaxation in the rate) as, for all € > 0,
7' 2 {R:3 PR € S.(pP, Ny ) such that R > IC(J\/W,,OAR)} , (D.3)

and note from Cuff (2013) that

ﬂ Z. C Closure (ﬂ Ié) .

e>0 >0

Now we prove the following:

Nv) = () Se(o” Niw). (D.4)

e>0
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So(pP . Nw) C Neao Se(pP, Nw) is straightforward. To show the other direction, consider any

pr € Neso Se(p®, Nw). This means, for all € > 0,
A A A
INw (p1'%) = pPR |1 < € = [[Nw(p1 ") = pPR[l = 0 = Mw(p1®) = p"%,  (D.5)

where the second implication follows from the definition of a metric, and hence pr € So(p?, Nw)
and (D.4) is true. Observe that, since the intersection of decreasing sequence of non-empty closed
and bounded sets of a compact (finite-dimensional) metric space is non-empty, So(p?, Njy) is non-
empty. Therefore, using the continuity of f(pA#) = I.(Ny, pA%), and the fact that S, are decreasing

non-empty closed and bounded subsets of a compact (finite-dimensional) metric space gives

F(So(p”, Nw)) = () F(Se(p® , Nw)).

e>0

Noting that the images f(Sc(p?, NMw)) and f(So(p?, Nw)) characterize the rate regions Z/ and Zy,

respectively, and the fact that Zgy is closed completes the proof.
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APPENDIX E

Proofs of Chapter VI

E.1 Characterization of Certain High Probable Subspaces

In this appendix, we characterize certain high probability subspaces of tensor product quantum
states. The statements we prove here are colloquially referred to as ‘pinching’ Wilde (2013a) in the
literature. We prove statements in a form that can be used for use in the proof of both Theorems
VI.3, Lemma E.1. We begin with definitions of typical and conditional typical projectors. We adopt
strong (frequency) typicality. All statements hold for most of the variants of notion of typicality.

For concreteness, the reader may refer to (Pradhan et al., 2021, App. A).

Lemma E.1. Suppose (i) A, B are finite sets, (ii) pap is a PMF on AxB, (iii) (p, € D(H) : b € B)

is a collection of density operators, pq A > venPBla(bla)py for a € A and p = ZpA(a)pa =
acA
ZpB(b)pb. There exists a strictly positive u > 0, whose value depends only on pap, such that for

beB
every § > 0, there exists a N(J) € N such that for alln > N(J), we have

prra™

Tr(l_[‘sl_l‘S ngbn> > 1 — exp{—n\§?}

whenever (a",b") € T} (pap) where 113, is the conditional typical projector of pan = @ pa, (Wilde,
4
2013a, Defn. 15.2.4) and Hi is the unconditional typical projector (Wilde, 2013a, Defn. 15.1.3) of

J
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Proof. We rename A=YV, B=X, pap = pvx, a as v and b as z. We have
Tr (Hiﬂinné pxn) - (Hgﬂgnpxnﬂi) (E.1)

1
> Ty (anpxn) -5

In the following we derive a lower bound on Tr(Hgnpmn) and derive an upper bound on
prn — ngan‘Z,H. Toward the deriving the former, we recall that we have (v",z2") € T5,2" (pvx)-

Let us define:

pY|XV(y|$7U) = <€y|v|pw|ey|v‘€y|v’px|ey|v>7 (EB)

for all (z,v,y) € X xV x ).

Clearly, we have py|xv (y|z,v) > 0, and

ZPY\XV(M%U) = Z <€y|v’pxley\v|ey|v‘px’ey\v> = Tl"(px) =1L
yeY yey

Hence we see that py|xy is a stochastic matrix.

Next we note that

Zpypcv( |z, v)pxv(z,v) ZPXV z,0) (eylolpzleypo| eyl pzleyp)

zeX reX
= pv(U) <eyv‘ ZpX\V(x’v)pr‘eyh) ey\v‘ ZpX|V(x’v)pz‘€y|v>
zeX reX
= pv(U) <6y\v|pv|€y|fu ’ey|v’pv|6y|v> = pV(”)QY\V(?/W)) (E4)

where we have used the spectral decomposition of p,,.

Observe that if (z™,v™) € T(§1/4(vapy|)<v), and y" € T (pxvpy|xv|z",v"), then we have
(x", 0", y") € T§(pxvpy|xv). This implies that we have (v",y") € Tf(pvy), where pyy is the
marginal of pxypy|xy. Using this and (E.4), we see that (v",y") € T§'(pvqy|v). In summary, we

see that if (z",v") € T5/4(pxv), then we have

T (pxvpy|xv]a™ ™) C {y" : (v",y") € T§ (pvay|v) } -
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We are now set to provide the promised lower bound. Consider

TI“(anpxn) =Tr Z ® leyt|vt> <€yt|’0t| ® Px; (E5)
j=1

Ly™: (v y™) €T (py ay|v) t=1

- Z ® ’eyt|vt> <€yt|vt| Py (EG)

Ly (v y)ET (pv gy v) t=1
n

= Z H <6yt|vt‘pxt‘eyz|vz leytlvt‘pxt‘eyzlvt> (E7)

Yy (v y™)ETY (py gy v ) =1

> Z HPY\Xv(yt\xt,vt) (E.8)
yreTS (pxvpy|xv|e™v™)) t=1

2n8?pxvy (%, v*, y*) }
4(log (X[ Y1IV))?2 )~

> 1 20X V|[V]exp {— (£.9)

where we used the definition (E.3) in the last equality.
We next provide the upper bound. Note from the Gentle measurements lemma ( Wilde, 2013a,
Lemma 9.4.2), we have ||pzn — ngangH < 3yeif ’I‘I'(ngxn) > 1 —e. In the following we provide

a lower bound on Tr (ngxn). Recall that Hg = zyneTén( sy) @izt 19y.) {9y |, where

p=2_sv(u)lgy) oyl

yey

is the spectral decomposition of p, and p = > -y px(7)pz. Let py|x(y|z) == (gylpz|9y|9y|px]9y)

for all (z,y) € X x ). Note that Py|x is not related to py|x defined previously. We note that

Pyix(ylz) =0, and 3, v Py x (y2) = >°,cy (9ylpalgylaylpzlgy) = Tr(ps) =1 for all z € X. Thus

we see that py|y is a stochastic matrix. It can also be noted that

> byix(ylo)px (z) = <gy\ > px(@)pelgy

TEX zeX

9l px(w)pm!gy> = (gylplgylgylplgy) = sy (y),
zeX

for all y € Y. This implies that the condition y* € T§'(sy) is equivalent to the condition
y" € T3 (py), where py(y) = ZzeXﬁYlX(wx)pX(x)' Moreover, if z" € Tgl/z(px), and y" €
T3 (pxpy|x|z"™), then we have (z",y") € Tf'(pxPy|x). Consequently, we have y" € Tj*(py ), which

in turn implies that y" € T5'(sy). In essence, we have that if 2" € T35, (px) then TJ (pxpyx|2") C
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T§(sy). Now we are set to provide the lower bound on Tr (H5 pan) as follows:

Tr(Hipxn)zTr > ®Igyt Yoyl pay | = D Hgyt\pm\gytlgytlpztlgm (E.10)

y"GT(S(SY) = "GT(S(SY)t 1
= Z Hﬁnx(yt’wt) > Z Hﬁwx(yt’wt) (E.11)
yn€Ts(sy) t=1 y€Ts (Py | xpx|an) t=1
2n0°p% (¢*)py x ()
| X
>1-—2|X||Y|exp] — . (E.12)
4(log(|X[|V]))?
We therefore have
nd?p% ()3 x (ylz)
5 X Y|X
Pz — Han < 6|X||V|exp ,
and
2n0°p% (¢*)py x (o)
IX
Tr(ILynpen) = 1= 2[X|| V]|V :
o 4(log(|X[|V)))?
thereby permitting us to conclude that
1 2n52p§((x*)ﬁ%|X(y]:1:)
T (5T T ) = T (T ) = 5 llpan — T TS ,
pv Pz r v Pz 2pr Pz H 4(log(\XHy\))2

if (2™, 0") € Tgb/Q(pXV). O

E.2 Proof of Proposition VI.8

We begin by defining the following events:

jé{ <‘/1n(A1.m17m1)7X{L(m1)7 VQn(AQ.TTLQ?mQ)ngL(mQ)) = (0?7‘%71172}27 :1;2) € T85(pV1X1V2X2)} ’

VE(ViMaj,mj) =vl:j €2}, VE{V(a,m @ma) ="}, AL {Ajn, =a;:j€ 2]},
This gives,

Ep[Tye] = Ep

4y > > Z par(m) T (To e Py ) Ly Ta

m a1,a2 g#£a® (v",z)
Tss(pvx)

)
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iy Y Y Y pulm m) T (min oy mp ) Ep {17141y}

m ai,a2 g#£a® (v",z)e MmEV™
Tss(pv x)

(b) 2 .
GEE Y Y Y S ol | Henwee)| (remein) 0. A7)
]:

m a1,a2 G£a® (v")e x"eX" ImeYn
Tgs(pv)

- 42 Z Z Z Z pum(m Tr(w@nwpp%"vgwp)P(V,A,ﬁ)

m a1,a2 g#a® (v™)e IneYy"
Tss(pv)

(d) .
%42 Z Z Z Z pu(m) Tr(ﬂﬁnwpp%"vgﬁpy?(v,]/)

m a1,az g#£a® (v")e mEY"
Tss(pv)

XYY Y S T (romegn)

m a1,az2 G#£a® (v")e ImeEY™ q
Tys(pv)

_n(S(p)—H(V17V2)_61)

EFD 35 DD DI TIL TR

GT&Q a meTgs(V) q
exp{n S(p) — H(V1,V2) — ZPV - H(V) }
< 4 Z ZpM q3n

a17a2

(%)4exp{ {[logq— (ZPV (pv) + H(V) — S(P))

3k
+210gq—H(V1,V2)—;Iogq — 51}},

(E.13)

and (a) follows from a summing over possible choices for V" (a, mi ®msz), (b) follows from evaluating
the expectation, enlarging the summation range of z7, x5 and substituting the distribution of the
random code, (c¢) follows from the definitions of py, 4, : v € V, (d) follows as an upper bound since
one of the events has been enlarged, (e) follows from (Padakandla, 2014, Lemma N.0.21¢) and the

operator inequality Tppant, < 2MHAEVIT0LO)) 7 p@ng < on(H(pv)+610)=5(0)) 7 found in

zneTs(pv)
(Wilde, 2013a, Eqn. 20.34, 15.20), and from the definition of 7y which is the 0 projector if 0"
not typical with respect to py, (f) follows from 7, < I and ( Wilde, 2013a, Eqn. 15.77), and finally

(g) follows by collating all the bounds.
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We now analyze Ths.

Ep[Tos] =Bp<d > > > pu(m) Tr(Tamepim,) 1714

meV2  geV?k (vt,z)e
m#Em1®me aeV* Tss(pvx)

=4 Z Z Z Z pM(m)Tr(”@"WpP%?xg%)EP {17141}

meV2  geV?k (vz)e mevn
m#£Emi1®me ek Tss(pvx)

2
<4 > Z > > parlm) | T o, (@165 | Te(monmoniigmp ) POV, A V)
j=1

meV  aeV? (vM)e zteX" oneVr
m#m1®dme aeVk Tss(py)

DI Z > parm) Tr(mn oo ) PV, A D)

mev?  gep?k (v")e mevn
m#m1®me geVk Tss(py)

<4 Z Z Z Z pym(m Tr(mnﬂpp?ﬁgﬂp)P(V,V)

meV2  geV?k (vh)e nevn
m#£Em1dma geVk Tsa(pv)

<4 Y DY D D pum) Tr(”ﬁ””pﬂ?{lnvgﬂﬂ>q;

merl gerk (yn)e pneyn
m#EmM1&ma geVk Tss(py)

9—n(S(p)—H (V1,V2)—01)
Y Y Sl ey T
mev% gEng pneyn
m#mi1®ma ek

9—n(S(p)—H(V1,V2)—61)

1YY Y pum) Te(remy) T

a%&z a neTs(VidVa)

eXP{—n ls(ﬂ) — H(Vi,Va) =61 = > pv(v)S(py) — H(V)

<4ZZpM per J }

a17a2

< 4exp{—n{ loq — 3" pv(0)S(p) ~ H(V) + S(p)+ 2loq — H(VA,15) — 2T D180 5}}

n

The above sequence of steps are analogous to those used in deriving an upper bound on 752 and
follow from the same set of arguments as provided for the bounds in (E.13). This completes the

proof of the claimed statement.
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APPENDIX F

Proofs of Chapter VII

F.1 Proof of Proposition VII.12

We begin by defining the sets J and K as

Vit (az, m2) = v, as(mg) = az, O1(my) >0
? ? C K 2 {V5'(az, mg) = v§, Vi (a3, m3) = v§}

JAa

Vi'(ag, m3) = vy, az(ms) = az, ©2(mg) >0

(F.1)

. . Y
Now we simplify p.},, as
Y1 o o_ n|, ny, n n|, n\ Y1
Pem = E E E Pxava (25103 P, v, (%\%)Pﬂmgmg
vy VR EFD TV EXT 2 aBEXF QXY
X ]]-{:v?(mﬂ:ac?,vg(ocg(m2),mg)zv?,vg‘(ag(m3),m3):1}§1}

Y7
- Z Z pxilvgv;?ﬂ{w?(m1)=$?’v§‘(Olz(mz),m2)=v§,v5(03(m3),m3)=v§}

n n n n n
vy Uy EF P T EX]

- Z Z Z p;}vgvg]l{x?(ml)zx’f}ﬂja (FQ)

n n n n
7 EXl Vg, Vg E}—; 11,270,36]-—(5C
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where the above two equalities are based on the encoding rules employed by the encoders and the

last one follows from the definition of 7. Using the above simplification in the term T51, we get

7l Y
ST SED DD SRS DR 117 ) EIT

m)#my T EXT vy VFEFY ag,age]-'(;“

=2 > )OI Tr(%nﬂunpxnun nwun)

mhmy 7} B EX] VY 0E EFY ag,azeFp une€Fy

X Lian(my)=ap an(m)) =20} Lun=vpaup 1 17,

n . n
where v, is defined as v}, A TpMan Tan unTanTp Taking expectation of the above term, we obtain
1 1

E[Ty] = Z Z Z Z Tr ('yxn Tyn px wpop ﬂ'un)

m)#my o7, 2T €XT v3 w3 €F uneF]
ag,age]:(;“

X P(mrf(ml) = xrll’ lel(mll) = x?)ﬂ{u”:vgﬁﬂvg‘}]?(j)

—
o
Ny

(]
(]
(]
(]

n Y1
Tr <’Y;7;L’f Ty px% vpop Tur )
mll #mq 7,27 €A a2,a3€]:§ vgen(n) (Va), unez]:s(n)(U)
veT™ (va)
T n T AT
X Px, (xl )le (.%'1 )ﬂ{un:vgeavg}P(’C)

(b) gnRi 2k

u” Y1
=T > 2 Tr|aEme > Pugugey | Tur

e BT EXT ym e (M) (1) B eT ™ (Va),up €T ™ (Va)

X p?ﬁ (:lel)pgl(l (33711) ﬂ{u”:vg@vg}
(c) gnR1 2k

q (H(V2,V3|U)+0usy) n(an

< ————2mrha s u2 Z Py, (Z1)
— 2n X1\t

q gnexn

X Z Tr | vin myn Z P, (27) pxlun Tyn
U"E'-/:S(n> ) e
(i) M n(H(V2,V3|U)+06u,y) no(an u™ Y
- q2n 2 2 Z le (xl) Z Tr VQ?Wunpunﬂun
CHS uneT,™ (U)

Ry 2k
O 2 H VA IU) 60y g (SR —uy) n (an
< T 272 1o Z P, (21) Z

q e unefts(")(U)

x Tr (7Tp7Tj;711 T un Tan T pTyn )
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() gnRy ,2k

q n u -n o1 —Ou no o [(sn
< por on(H(V2,V3|U)+0uy) 9—n(S(V1|U) oy —0ugz) Z Py, (1) Z Tr(%?yun)’ (F.3)

i‘?EXln U"G'E(n) (U)

where (a) follows from the presence of indicators 61(m1) > 0, f2(ma) > 0, and definition of I, (b)

follows by observing that P(K) = -, and (c) follows by using the following arguments for any

qnqn7
ut e TV,

Y1
D Prbugey Lurmugaup
wreT™ (Va),
oreT™ (V3)
S 2TL(H(V2,V3|U)+5u2) Z
vpeT™ (Va),
oneT{™ (V3)

n(H(Va,V3|U)+6y n n ,n|, n\ .Yl
< onl (750020 > 7 Pl (V8 V8 [P g Lun =g ey}

T 4N
Vg U3

n n . nl,n\ . .Y1
Pv2v3|U(Uz ;v u )Px;zygvg ]l{unzvg@vg}

— 2n(H(V2,V3|U)+5u2)

o (F.4)

run’

The equality in (d) follows from the definition of p}} £ Y anexn Py, (71) p;%un, and the inequality

n(s(yl‘U)Ul *5”3)7run, for g1 as

in (e) uses the property of conditional projector i.e., myn pZ&ﬂrun <27
defined in the statement of the theorem. Finally (f) follows using the cyclicity of trace and the fact
that manT,munTpman < Tanmpmen < man < 1.

Using the dimensional bound of a conditional typical projector i.e., Tr (’/Ta}?’un) < (SN X1,U)+6uy)

in (F.3) we obtain

2nR1q2k
E[TQl] S — 2”(H(V2,V3|U)+6u2)2_n(s(Y1‘U)(yl_§u3)2n(S(Y1|X1,U)+61L4)2n(H(U)+5u1)
q
2nR1 2k
_ 2q on(H(V2,V3)+6uy ) 9 —n(I(Y1;:X1|U) oy —bug) 9nduy gndu,
q*n

This completes the proof.
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F.2 Proof of Proposition VII.13

We begin by substituting the simplification performed in (F.2) into the expression corresponding

to The. This gives

T2 = Z Tr <7m1 7Tl pc mTrl )
a’#a,l' #l

- Z Z Z Z Tr <7gnl71ll7r;lp3:}vgvg 7rla) ﬂ{x?(ml)zx?} 1y

@/ #a,l' A T EXT vF VR EFR ag,a3EFF

Z Z Z Z Z Tr( "ﬂ-“npx v”vgﬂun>1{$ 1(mi)=a7}

“l,i‘ll TPEXT yneT{™ (), az,a3€FF U UM EFY
vpeT™ (Va)

IN

Lun=vp@upy Lan=a'gr+1g0 r+b3+05 3 L
Taking expectation over the codebook generation distribution gives

E[T5]

Z Z Z Z Z TI‘( ”ﬂ-unpa: v"v”ﬂ-un>p§1(m?)l{u"—%@vg}

/;ﬁa 14 #l 7 GXfL vy 67:;(”> (‘/2)7 a2,a3€]-"k un, une}‘n
vpeT™ (V)

X ]P)(’lln = (IIG[ + l,Go/[ + B;l + Bg,v;‘ = asGy +m2Go/[ + Bg,vg = a3Gy —{—mgGO/] —I—Bg)

q q 0" Y
Z Xl xl) Z Z TI' ( Z 7;?)7runpz%lv;v§‘7run ]l{un:vg@vg}, (F5)

e U%LE'T&(TL)(VQ),une}—;L ﬁ"e}'q"
oneT ™ (Vs)

where the inequality (a) is obtained by noting that for a’ # as @ as and I’ # my & ms, we have

P(a" = ad' Gy —l—l/Go/[ + By + B3, vy = axGr +m2GO/I + By, vy = a3Gy +m3GO/[ + BY) = —

(F.6)

Now consider the following simplification of » ;.. Fo fygC We have

a™
E Yo = § Tt T un Mg Tp

’EL"EF; ﬁnE%(n)(U)
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(a)
< on(S(V1|X1,U) oy +6uy) Z TpTan Paiun TznTp

aneT{™ (U)

(b)
< 2SMIXLU) oy +0uy) gn(H(U)+0uy) Z Py (U ) TpTpn Papun Tun Ty

areT M (U)

S(Y1|X1,U)oq +0u H(U)+6.
§2n( (V1|1X1,U) 0y 4)2n( ) 1)7rp7rx7f Z pg(un)px?un Ten Ty
aneFy
= onUSOAXLD ) H0u) g H OIS ) e e,

c d
(<) 9n(SMIX1U)ay +0u,) gr(H(U) 80, ) g=n(SMIXD) ~801) 1 o (:) -
— 1 Y

where (a) follows using the following arguments

T um < QH(S(Yl‘leU)Ul+§u4)7rw?’unpx7llunﬂ'x{b’un — on(S(M1|X1,U) gy +0uy) Ten an Parun /Tl un
_ 2n(S(Y1|X1,U)01 +6“4)Px?u"-
The inequalities (b), (c) uses the typicality arguments. Lastly, the inequality (d) follows by using

the fact that m,mn7m, < I and by defining ¢; 2 g(SMV1IX1,U)ay +H (U) =S (V1| X1)+8u; +0us +21)

Substituting the above simplification in (F.5), we obtain

C1q q
]E[TQQ Z Xl ':Ul) Z Z Tr(ﬂunpx"v"unﬂ'wb)ﬂ{u":vg@vg}

T3 EX” ;Lef]:s(n)(v )?’U,HGJ:"
vpeT ™ (Va)

a) e q3k ql
< q?m Z Z 1 {ur=vp@vy}

’USE'T(STO(V )7 unG}—"
oneT ™ (Vs)

—

(b) 3k 1
49 on(+HU)~1(Y1;U|X1)a +6uy +0uy+80; ) on(H(Vi)+H(Va)+60; +8uy)

"

where (a) uses Tr(wun pi}vgvgﬂ'un) < 1, and (a) follows from the definition of ¢; for oy as defined

in the statement of the theorem. This gives the desired rate to bound E[Tss].
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F.3 Proof of Proposition VII.14

Using the simplification performed in (F.2), we obtain

" a4 Y
Tn= Y. > XX (el ™) Lapm=ep ba

my#my, T7EXT V3,03 €FF az,a3€FE

a’#a,l’'#l

a™ Y1
> > > > > T (7@? Wf’r?v&vﬂﬂ")ﬂ{x’f(mnw?}
"/1#7717 e ATEXT yneT{™ V), 2,03 EF ut UM EFY
a'#a,l'#l n
Fal'# B eT™ (Va)

X :H.{w'il(mll):inl@}]]_{un_UQ @U?}ﬂ-{u"—a gj—l-l’go/j—l-b"—l-b"}:ﬂ"c’ (F?)

where the above inequality follows by noting that 7 C K. By taking expectation of the above term

with respect to the codebook generating distributions, we get

E[Tss]

Qn_ Y, X
<Y XX X Y (el e ok @5k G Lo

mﬁ’émlv o7 27 €AY o g7’<" (Vy), a2,a3EF ) u" u" €Fg
a'#a,l' #l (n)
vEEeTs " (V3)

P(a" = d'Gy +l'GO/I + By + By, vy = asG + maGo,r + By, vy = a3Gr +m3Goyr + By)

(a) ontty 3k R
qq R n
DB s o @) S (7( 5 p))n{}
(V2)

q "E?,(i?e‘}(‘i”‘ u",ﬁ"é]—'g vgefts(”) Vo
,U§L€7'6(") (V3)

where the second inequality above uses the claim from (F.6).

Consider the following simplifications.

. an Y,
Z P, (27) Z Tr (%?;L Wu”( Z Pxivgvgﬂ{u"vs@v§}>”un>

x?eXin’ u",ﬁ”e]ﬂ? USE%(") (VQ),
wneT{™ (V3)

(a) .
< gH V2, Vs|U)+0uz) Z Tr | vin 7run< Z P, (27)pyn un>7run

u",ﬁ"eﬁ(")(U) GX"

(;) on(H (Va,Vs|U)+6u,) Z Ty (%n pu”)

un,ﬂn67:;n)( )
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< gnUH (V2 Va|U)+0uy ) gn(H (U)+0u, ) Z Tr Wﬁ;?m?,anm;wp( Z pz(u")pﬁ)wp

aneT "M (U) wreT{™ (U)
(2) on(H (Va,V3|U)+8uy) on(H (U)+8uy ) g—n(S(Y1)o—6) Z T (mzn ) (F.8)
= 1 I .

aneT{™ (U)

where (a) holds from the above bounds obtained in (F.4), (b) follows by the definition of pY% and
by using the inequality munplimen < pih, (c) follows using (i) WP<Eune7;(”)(U) pg(u")pﬁ)% <
TppTp < 2_”(S(Y1)“_5P)7rp and (ii) Tr(mg?wj?ﬁnm?ﬂp) < Tr(ﬂj’il’ﬁn). Using the above simplification

in (F.8) we obtain

2nR1 3k 1
E[ng] S %271(1‘[(‘/27‘/3‘[])4‘61@)Qn(H(U)‘i‘(Sul)2_n(S(Y1)U_6p) Z py)l(l(jjyll) Z T‘r(ﬂ_i?,ﬂn)
rea ﬁ"€7:5(n>(U)
2nR1q3kql
S o 2n(H(V2,V3‘U)+5u2)2n(H(U)+5u1)Q—n(s(yl)a—ép)271(H(U)+6u1)2”(5(Y1|X17U)0'1 +6u4)
q
2nR1q3kql
— an(H(VQ,VB)-i-H(U)—[(Yi;X1,U)o—1+5p+26ul+6uQ+§u4)' (Fg)
q n

This completes the proof.
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