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ABSTRACT

Quantum algorithms require quantum computers performing logical operations on a sufficiently

large number of entangled qubits. Unfortunately, state-of-the-art quantum computers can only

operate on tens of qubits. A solution to this scalability challenge is to employ the distributed

paradigm, where a network of small-scale quantum computers are used in a distributed manner.

It is the aim of my work to study the fundamental limits of distributed quantum problems and to

further enhance their performance by exploiting the structure inherent to these problems employing

asymptotically good Algebraic codes. This thesis consists of two parts.

The first part studies the task of faithfully simulating a distributed quantum measurement,

wherein we provide a protocol for the three parties, Alice, Bob and Charlie, to simulate a repeated

action of a distributed quantum measurement using a pair of non-product approximating measure-

ments by Alice and Bob, followed by a stochastic mapping at Charlie. The objective of the protocol

is to utilize minimum resources, in terms of classical bits needed by Alice and Bob to communicate

their measurement outcomes to Charlie, and the common randomness shared among the three par-

ties, while faithfully simulating independent repeated instances of the original measurement. We

characterize a set of sufficient communication and common randomness rates required for asymp-

totic simulatability in terms of single-letter quantum information quantities. We further improve

the results obtained in the above by exploiting the structure present in the Charlie’s stochastic

bivariate mapping using random structured POVMs based on asymptotically good algebraic codes.

The algebraic structure of these codes is matched to that of the bivariate function that models

the action of Charlie. This leads to the computation being performed on the fly, thus obviating

the need to reconstruct individual measurement outcomes at Charlie. We provide examples to

illustrate the information-theoretic gains attained by endowing POVMs with algebraic structure.

As an application of the distributed measurement compression problem, we also demonstrate a

multi-party purity distillation protocol.

Concluding this part, we consider the lossy quantum source coding problem where the objective

xii



is to compress a given quantum source below its von Neumann entropy. Inspired by the duality

connections between the rate-distortion and channel coding problems in the classical setting, we

propose a new formulation for the lossy quantum source coding problem. We require that the recon-

struction of the compressed quantum source fulfill a global error constraint and employ the notion

of a “posterior reference map” to measure the reconstruction error. Using these, we characterize

the asymptotic performance limit of this problem in terms of single-letter coherent information of

the given posterior reference map.

In the second part of this thesis, we study the advantage algebraic structured codes can provide,

to the class of the classical-quantum network problems. In particular, we investigate two problems.

Firstly, we consider the problem of communicating a general bivariate function of two classical

sources observed at the encoders of a classical-quantum multiple access channel. We propose and

analyze a coding scheme based on algebraic structured coset codes that enables the decoder to

recover the desired function without recovering the sources themselves. We derive a new set of

sufficient conditions that are weaker than the current known for identified examples. In addition,

we analyze the performance of these algebraic codes toward studying the capacity of a special class

of 3-user classical-quantum interference channel.

xiii



CHAPTER I

Introduction

1.1 Quantum information theory

Quantum information theory is a branch of information theory that deals with the study of

representation, transmission, manipulation, and processing of information using quantum mechan-

ics. It considers the fundamental differences between classical and quantum information, as well as

the potential benefits and limitations of quantum systems for information processing tasks. Based

on the number of agents (or parties) involved in the system, the information processing tasks can

be broadly classified as (i) point-to-point (PtP) and (ii) multi-terminal. We refer to PtP as prob-

lems involving two parties. Problems that involve more than two parties are referred to (in this

thesis) as multi-terminal ones. Since these multi-terminal setups can be varying in terms of how

each agent is connected to the other, we describe them formally in the respective chapters. Our

main focus in this thesis is to characterize performance limits of different multi-terminal problems

(involving three or four agents) from an information theoretic approach. At times, we also consider

PtP problems when they can serve as providing insights to the underlying idea without getting

impeded by the technical details.

1.2 Quantum network information theory

A quantum network is a system that consists of multiple quantum systems connected by either

quantum or classical channels (aka links) that are perhaps noiseless or noisy, allowing for transfer

of information between different systems. Quantum network information theory, or multi-terminal

quantum information theory, investigates the performance limits of these problems from an funda-

1



mental and theoretical perspective, and provides a way to study the distribution and manipulation

of information between multiple parties. These problems are important for the development of

quantum communication and quantum networking technologies, as they allow for the study of

quantum information processing in more complex and realistic scenarios.

From the analogous works in classical information theory pertaining to multi-terminal problems,

we observe that analysis of multi-terminal problems do not trivially follow from the results on PtP

problems. The former are known to necessitate new fundamental techniques, and many of them

still remain unsolved in terms of exact characterization of performance limits. A similar phenomena

is observed in the quantum setting prompting researchers to comprehensively investigate a variety

of multi-terminal quantum information theoretic problems.

Secondly, these problems are also valuable in their own right. In multi-terminal quantum infor-

mation problems, the parties involved may have different goals or objectives, and their interactions

can result in non-trivial quantum correlations. There are several examples where the study of multi-

terminal quantum information problems can also lead to a deeper understanding of the foundations

of quantum mechanics and the nature of quantum entanglement. One example is the phenomenon

of quantum nonlocality, which refers to the non-classical correlations that can exist between dis-

tant quantum systems. The study of multi-terminal quantum information problems, has provided

evidence for the existence of quantum nonlocality (beyond the standard Bell non-locality) Šupić

et al. (2022).

Finally, there is another reason, specific to the quantum setting and relating to this thesis,

why a detailed study of such multi-terminal problems is useful. A generic feature witnessed in the

classical setting is that the results obtained for the point-to-point problems often provide insights

towards analyzing the multi-terminal problems. But in the quantum setting, the opposite is also

sometimes true: a study of multi-terminal problem can help in the characterizing fundamental

limits of a PtP problem. A prime example of this is the Devetak’s proof Devetak (2005b) which

characterizes the capacity of a PtP quantum communication problem. Devetak’s inspiration was

the theorem he had developed to characterize the private classical capacity of a quantum channel,

a multi-terminal problem involving three distributed agents.

The question now is whether there are any more instances of such intriguing behavior. In this

thesis, we provide yet another such example. By examining the multi-terminal variants of the

2



measurement compression and classical communication over quantum channel problems, we char-

acterize the asymptotic performance of the lossy quantum source compression problem. Details

on this contribution are provided in this chapter’s contribution section, and complete results are

outlined in Chapter V. These developments serve as inspirations for further advancements in quan-

tum network information theory, highlighting how multi-terminal quantum information problems

provide a challenging and promising area of study that can lead to both theoretical and practical

progress in the field of quantum information.

1.3 Algebraic structure in multi-terminal information theory

A significant advancement toward improving the understanding of multi-terminal problems was

the use of algebraic structured codes. In the stationary memoryless scenario, there are two typical

ways for determining the performance limits of communication problems. One is based on ran-

dom coding and involves so-called independent and identically distributed (IID) code ensembles,

with performance measured in terms of single-letter information quantities. The other is based on

random coding in a one-shot context, with performance measured using smooth entropic values.

Because the codes in these ensembles lack global structure, we refer to them as random coding

approaches based on unstructured code ensembles. Unstructured code ensembles may not always

achieve optimality for distributed multi-terminal settings. One of the early works by Korner and

Marton Korner and Marton (1979) demonstrated this sub-optimality for a multi-terminal setup in-

volving three agents. Motivated by this, a framework for constructing structured coding ensembles

and improving the performance limits for classical problems have been the focus of many works.

A few prominent among them include Korner and Marton (1979); Nazer and Gastpar (2007);

Padakandla and Pradhan (2013); Padakandla et al. (2016); Pradhan et al. (2021). For the quan-

tum setting, such a framework is still under development with a few recent works like Hayashi and

Vázquez-Castro (2021). Inspired by this, this thesis aim at developing structured coding ensem-

bles for the task for performing communication and compression for the quantum multi-terminal

problems. It builds a broad theoretical framework, but it also predicts very specific effects.
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1.4 Organization and contributions of this thesis

This thesis is divided into two parts. The first part deals with the quantum compression

problems: from quantum-to-classical (QC) compression to pure quantum compression. The second

part delves into quantum communication problems. In Section 1.5, we begin by formally stating

the point-to-point measurement compression problem as was first introduced by Winter in Winter

(2004). We highlight here the relevant work that preceded this work and also discuss the results

that follow it. These include the different variants with respect resources and the problem setups,

discussed in the literature and also the various applications, including the famous quantum-to-

classical rate distortion theory Datta et al. (2013b), where the measurement compression problem

is utilized.

In the next chapter, Chapter II, we introduce the setup of a distributed measurement compres-

sion problem involving three parties, and then formulate a protocol, in terms of available resources,

allowed actions, and the objective the protocol needs to achieve, for the same Atif et al. (2022a).

We build this chapter with the aim of providing an inner bound to the asymptotic performance

limit of non-feedback distributed measurement compression. Toward this, we first provide two re-

sult for the feedback distributed compression problem: a one-shot and an n-letter characterization.

We then formulate a distributed quantum-to-classical rate distortion problem ,and provide an inner

and an outer bound to the rate distortion function (region) using the n-letter result of the feedback

problem. Finally, we conclude this chapter with the main result of the non-feedback problem. A

mutual covering lemma and a mutual packing lemma also form contributions of this chapter.

In Chapter III, we set out with an aim of constructing an algebraic framework to further improve

on the results obtained in Chapter II. We introduce the notion of algebraic structured quantum

measurements that exploits the structure that may be inherently present with a distributed prob-

lem formulation Atif and Pradhan (2021). Toward this, we first recall Unionized Coset Codes

(UCC) Pradhan et al. (2021) and then construct approximating quantum measurements build us-

ing these code ensembles. A peculiar feature of these measurements is that their ensembles are

only pairwise independent. Considering this constraint, we develop an alternative covering lemma

which facilitates us to first achieve the point-to-point measurement compression result of Winter

(2004) using the structured measurements. Subsequently, by developing a mutual packing lemma,
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we demonstrate the improvement in the rate region compared to the result of Chapter II. We also

illustrate these improvements using toy examples to establish the significance of the results.

Chapter IV moves on to analyzing an application of the measurement compression called purity

distillation. It discusses the history of purity distillation problem, and details into the interesting

advancement made by Devetak in Devetak (2005a). Devetak expanded the horizon of LOCC pro-

tocols by allowing the use of catalytic pure qubits with the promise of returning these at the end

of the protocol. This assumption allowed a measurement to be used by one party and as a result

increased the overall rate of purity distillation. The work was soon followed by Krovi and Devetak

(2007), where the measurement compression protocol was employed to further reduce rate of clas-

sical communication required by the protocol. Our objective in this chapter is to devise a protocol

that can extract purity from a three party setup. Similar to Devetak (2005a), we allow for the

use of catalytic pure qubits, and also incorporate the constraint from Krovi and Devetak (2007) to

minimize the classical communication used by the protocol. As will be discussed in detail, although

the protocol is an application of the distributed measurement compression problem (developed in

Chapter II), the latter cannot simply be used as a black box. For instance, measurement com-

pression protocols focuses on the post-measured reference state, while the current protocols relies

on the post-measured state of the system being measured to extract purity. Similarly, the former

allows an additional resource of common randomness while the latter does not Atif and Pradhan

(2022).

The next chapter, Chapter V, deals with an important problem in quantum information theory:

the lossy quantum source coding problem. The objective here is to compress a given quantum

source below its von Neumann entropy. Motivated by the results obtained so far, in this chapter,

we provide a new formulation for the lossy quantum source coding problem. Another inspiration

for this formulation is drawn from the profound duality results and the development of theory

revolving around the relation between backward test channels and good source codes for the classical

setting Pradhan (2004); Cuff et al. (2010). A well known existing formulation of this problem is

the quantum rate distortion theory, which has been extensively studied in the literature. The

formulation we develop differs from the existing quantum rate-distortion theory in two aspects.

Firstly, we require that the reconstruction of the compressed quantum source fulfill a global error

constraint as opposed to the sample-wise local error criterion used in the standard rate-distortion
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setting. A global error criterion is a condition defined on the entire block of data. Secondly,

instead of a distortion observable, we employ the notion of a backward quantum channel, which

we refer to as a “posterior reference map”, to measure the reconstruction error. As the name

suggests, this map operates on the reference system of the output of a given channel to produce

the reference of the input. The asymptotic performance limit of the lossy quantum source coding

problem is characterized in terms of single-letter coherent information of the posterior reference

map. We do so by demonstrating a protocol to encode and decode at the specified rate, achieving the

asymptotic performance limit while satisfying the global error criterion. The protocol is constructed

by decomposing coherent information as a difference of two Holevo information quantities, inspired

from prior works in quantum communication problems. This protocol stands on the two basic but

fundamental principles of information theory: covering and packing, and demonstrates an exquisite

duality with the proof of quantum channel capacity problem constructed in Devetak (2005b). Then,

we provide a single-letter converse in terms of the above stated coherent information. We also

provide various examples to further motivate the formulation, and shed light on its connection to

the standard rate-distortion formulation wherever possible.

In the next part of the thesis, we revisit the algebraic structured measurements and investigate

their performance for Classical-Quantum (CQ) channel coding problems. In particular, in Chapter

VI, we consider the problem of communicating a generic bivariate function of two classical sources

observed at the encoders of a classical-quantum multiple access channel. An inner bound to the

asymptotic performance characterization of a classical-quantum multiple access channel was first

provided in Winter (2001). If we employ the approach developed in the latter to compute the given

bivariate function, it would require recovering both the sources. However, we ask here if we could

recover the function without completely recovering both the sources, and as a result enlarge the

rate region for this problem. Building on the techniques developed for the case of a classical channel

Padakandla and Pradhan (2013), in this chapter, we aim to propose and analyze a coding scheme

based on coset codes that enables the decoder recover the desired function without recovering the

sources themselves. Toward this, we first develop a Nested Coset Code (NCC) Pradhan et al. (2021)

based communication scheme for a CQ PTP channel and analyze its performance. Leveraging

this building block, we design and analyze the performance of an NCC-based coding scheme for

computing sum over a general CQ-MAC Atif et al. (2021c). Going further we generalize this idea
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for computing arbitrary functions over a general CQ-MAC. We also identify examples where the

new set of sufficient conditions are weaker than the current known for this problem.

In the next chapter (Chapter VII), we consider the problem of characterizing an inner bound to

the capacity region of a 3-user classical-quantum interference channel (3-CQIC) Atif et al. (2021b).

The best known coding scheme for communicating over CQICs is based on unstructured random

codes and employs the techniques of message splitting and superposition coding. For classical 3-

user interference channels (ICs), it has been proven that coding techniques based on coset codes -

codes possessing algebraic closure properties - strictly outperform all coding techniques based on

unstructured codes. Motivated by this, we consider a special subclass of 3-user CQICs, and analyze

their performance employing techniques developed in the previous chapter. We derive a new inner

bound to the capacity region of 3to1-CQICs that subsume the current known largest. We also

identify examples where we observe strict improvement demonstrating the efficacy of the approach.

During my Phd, I had the opportunity to collaborate on few other problems which are not

part of this thesis. These include (i) classical formulation of the measurement compression problem

Atif et al. (2022b) and (ii) further improvement in the inner bounds for the problem of computing

arbitrary bivariate functions over CQ-MAC Sohail et al. (2022).

1.5 The Quantum Measurement Compression Problem

Measurements interface the intricate quantum world with the perceivable macroscopic classi-

cal world by associating a classical attribute to a quantum state. However, quantum phenomena,

such as superposition, entanglement, and non-commutativity contribute to uncertainty in the mea-

surement outcomes. A key concern, from an information-theoretic standpoint, is to quantify the

amount of “relevant information” conveyed by a measurement of a quantum state.

Winter’s measurement compression theorem Winter (2004) (also elaborated in Wilde et al.

(2012)) quantifies the “relevant information” as the amount of resources needed to faithfully sim-

ulate the output of a quantum measurement applied on a given state in an asymptotic sense. In

this chapter, we aim to introduce the measurement compression problem Winter (2004), provide a

brief overview of related work in this regards, and then formally state the problem and the result.
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1.5.1 Introduction

The measurement compression problem formulated in Winter (2004) is as follows. Imagine that

an agent (Alice) performs a measurement M on a quantum state ρ, and sends a set of classical

bits to a receiver (Bob). Bob intends to faithfully recover the outcomes of Alice’s measurements

without having access to ρ, while preserving the correlation with the post-measured state of Alice’s

reference. The major contribution of Winter’s work (as elaborated in Wilde et al. (2012)) was in

specifying an optimal rate region in terms of classical communication and common randomness

needed to faithfully simulate the action of repeated independent measurements performed on many

independent copies of the given quantum state. One of the salient features of the measurement

compression theorem is that it achieves the following asymptotic performance. If at least quantum

mutual information (I(X;R)) amount of classical information and conditional entropy (S(X|R))

amount of common shared randomness are available, then one can achieve faithful simulation of the

measurement M with respect to the quantum state ρ, where R denotes a reference of the quantum

state, and X denotes the auxiliary register corresponding to the random measurement outcome.

The measurement compression theorem Winter (2004) finds its applications in several quantum

paradigms. It is a predecessor to the quantum reverse Shannon theorem Bennett et al. (2002); Berta

et al. (2011); Bennett et al. (2014), useful in determining the communication cost of the local purity

distillation protocol Horodecki et al. (2003a, 2005a); Devetak (2005a); Krovi and Devetak (2007),

and also helpful in the first step of the so-called grandmother protocol Devetak et al. (2008) which

involves distillation of entanglement from noisy bipartite states.

The measurement compression theorem was also used by Datta, et al. Datta et al. (2013b)

to develop a QC rate-distortion theory. The problem involved lossy compression of a quantum

information source into classical bits, with the task of compression performed by applying a mea-

surement on the source. In this problem, the objective is to minimize the storage of the classical

outputs resulting from the measurement, while being able to recover the quantum state (from clas-

sical bits) within a fixed level of distortion as measured by an observable. To achieve this, the

authors in Datta et al. (2013b) advocated the use of the measurement compression protocol, and

subsequently characterized the so-called rate-distortion function in terms of single-letter quantum

mutual information quantities. The authors further established that by employing a naive approach
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of measuring individual output of the quantum source, and then applying Shannon’s rate-distortion

theory to compress the classical data obtained is insufficient to achieve optimal rates.

1.5.1.1 Related Work

Wilde et al. Wilde et al. (2012) extended the measurement compression problem by considering

additional resources available to each of the participating parties. One such formulation allows Bob

to further process the information received from Alice using local private randomness. In analogy

with Bennett et al. (2014), this problem formulation is referred to as non-feedback measurement

simulation, while the former is termed as simulation with feedback. This quantified the benefit

of private randomness in terms of enhancing the trade-off between classical bits communicated

and common random bits consumed. In particular, the use of private randomness increases the

requirement of classical communication bits, while reducing the common randomness constraint.

Further, the problem of measurement compression in the presence of quantum side informa-

tion was also studied in Wilde et al. (2012). The authors here combined the ideas from Winter

(2004) and Devetak and Winter (2003) to reduce the classical communication rate and common

randomness needed to simulate a measurement in presence of quantum side information.

The problem of quantifying the information gain of a measurement has been studied extensively.

Early works include Groenewold (1971); Lindblad (1972); Ozawa (1986). Later on, Buscemi et al.

Buscemi et al. (2008); Luo (2010); Shirokov (2011) proposed the quantum mutual information with

respect to a classical-quantum state as the measure to characterize the corresponding information

gain. Subsequently, Berta et al. Berta et al. (2014) provided a universal measurement compression

theorem, generalizing the Winter’s measurement compression theorem for arbitrary inputs. They

identified the quantum mutual information of a measurement as the information gained by perform-

ing the measurement, independent of the input state on which it is performed. The proof was based

on a new “classically coherent state merging protocol” - a variation of the quantum state merging

protocol Horodecki et al. (2005b, 2007), and the post-selection technique for quantum channels

Christandl et al. (2009). Recently, Anshu et al. Anshu et al. (2019) considered the problem of

measurement compression with side information in the one-shot setting. They presented a protocol

employing convex-split lemma for classical-quantum states Anshu et al. (2017a, 2014) and position

based decoding Anshu et al. (2018b), and bounded the communication in terms of smooth max
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and hypothesis testing relative entropies. On a similar note, Renes and Renner Renes and Renner

(2012) studied the problem sending classical messages in the presence of quantum side information

in the one-shot setting. We direct an interested reader to Tomamichel (2015); Khatri and Wilde

(2020) for a detailed discussion and results pertaining to one-shot quantum information theory.

Recently, authors in Anshu et al. (2019) came up with a completely different technique for

analyzing the measurement simulation protocols, while considering the problem of quantum mea-

surement compression with side information. They provide a protocol based on convex-split and

position-based decoding, and bound rates from above in terms of smooth max and hypothesis

testing relative entropies (defined in Anshu et al. (2019)).

1.5.2 Preliminaries

We here establish all our notations, and briefly state few necessary definitions. Notation:

Given any natural number n, let the finite set {1, 2, · · · , n} be denoted by [1, n]. Let B(H) denote

the algebra of all bounded linear operators acting on a finite-dimensional Hilbert space H. Further,

let D(H) denote the set of all unit trace positive operators acting on H. Let I denote the identity

operator. The trace distance between two operators A and B is defined as ∥A−B∥1 =∆ Tr |A−B|,

where for any operator Λ we define |Λ| =∆
√
Λ†Λ. The von Neumann entropy of a density operator

ρ ∈ D(H) is denoted by S(ρ). The quantum mutual information for a bipartite density operator

ρAB ∈ D(HA ⊗HB) is defined as

I(A;B)ρ =∆ S(ρA) + S(ρB)− S(ρAB).

Given any ensemble {pi, ρi}i∈[1,m], the Holevo information, as in Holevo (2012), is defined as

χ
(
{pi, ρi}

)
=∆ S

(∑
i

piρi

)
−
∑
i

piS(ρi).

A positive operator-valued measure (POVM) acting on a Hilbert space H is a collection M =∆

{Λx}x∈X of positive operators in B(H) that form a resolution of the identity:

Λx ≥ 0,∀x ∈ X ,
∑
x∈X

Λx = I,

10



where X is a finite set. If instead of the equality above, the inequality
∑

x Λx ≤ I holds, then the

collection is said to be a sub-POVM. A sub-POVMM can be completed to form a POVM, denoted

by [M ], by adding the operator Λ0 =
∆ (I −

∑
x Λx) to the collection. Let Ψρ

RA denote a purification

of a density operator ρ ∈ D(HA). Given a POVM M =∆ {ΛA
x }x∈X acting on ρ ∈ D(HA), the

post-measurement state of the reference together with the classical outputs is represented by

(id⊗M)(Ψρ
RA) =

∆
∑
x∈X

|x⟩⟨x| ⊗ TrA{(IR ⊗ ΛA
x )Ψ

ρ
RA}. (1.1)

Consider two POVMs MA = {ΛA
x }x∈X and MB = {ΛB

y }y∈Y acting on HA and HB, respectively.

Define MA ⊗MB =∆ {ΛA
x ⊗ ΛB

y }x∈X ,y∈Y . With this definition, MA ⊗MB is a POVM acting on

HA ⊗HB. By M
⊗n denote the n-fold tensor product of the POVM M with itself.

1.5.3 Problem Statement

Measurement compression theorem quantifies the “relevant information” of a measurement M

by measuring the minimum amount of classical information bits needed to “simulate” the repeated

action of M on a quantum state ρ. In this context, an agent (Alice) performs an approximating

measurement M̃ (n) on a quantum state ρ⊗n and sends a set of classical bits to a receiver (Bob).

In addition, Alice and Bob share some amount of common randomness. Bob intends to faithfully

recover the outcomes of the original measurement M without having access to the quantum state

based on the bits received from Alice and the common randomness. The objective is to minimize

the rate of classical bits under the constraint that the approximating measurement M̃ (n) is faithful

to the actual measurement M⊗n with respect to the state ρ⊗n. This is formally defined in the

following.

Definition I.1 (Faithful simulation Wilde et al. (2012)). Given a sub-POVMM =∆ {Λx}x∈X acting

on a Hilbert space HA and a density operator ρ ∈ D(HA), a sub-POVM M̃ =∆ {Λ̃x}x∈X acting on

HA is said to be ϵ-faithful to M with respect to ρ, for ϵ > 0, if the following holds:

Ξρ(M,M̃) =∆
∑
x∈X

∥∥∥√ρ(Λx − Λ̃x)
√
ρ
∥∥∥
1

+Tr

{
(I −

∑
x

Λx)ρ

}
+Tr

{
(I −

∑
x

Λ̃x)ρ

}
≤ ϵ. (1.2)
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Alternatively, one can complete the POVMs M and M̃ by associating I −
∑

x∈X Λx and I −∑
x∈X Λ̃x with additional symbols 0 and 0̃, respectively, and thus obtaining POVMs [M ] and [M̃ ],

defined on X
⋃
{0, 0̃}. Stating the above definition for [M ] and [M̃ ] gives the same as in (Wilde

et al., 2012, Definition 3). Further, the above trace norm constraint can be equivalently expressed

in terms of a purification of state ρ using the following lemma.

Lemma I.2. (Wilde et al., 2012, Lemma 4) For any state ρ ∈ D(H) with any purification Ψρ
RA,

and any pair of POVMs M and M̃ acting on H, the following identity holds

∥(id⊗M)(Ψρ
RA)− (id⊗ M̃)(Ψρ

RA)∥1 =
∑
x

∥√ρ(Λx − Λ̃x)
√
ρ∥1, (1.3)

where Λx and Λ̃x are the operators associated with M and M̃ , respectively.

Theorem I.3. (Winter , 2004, Theorem 2) For any ϵ > 0, any density operator ρ ∈ D(HA), any

POVM M acting on the Hilbert space HA, and for all sufficiently large n, there exists a collection

of POVMs M̃ (n,µ) for µ ∈ [1, N ], each acting on H⊗n
A , and having at most 2nR outcomes such that

M̃ (n) =∆ 1
N

∑
µ M̃

(n,µ) is ϵ-faithful to M⊗n with respect to ρ⊗n if

R > I(U ;R)σ, and
1

n
log2N +R > S(U)σ,

where σRU =∆ (id⊗M)(Ψρ
RA).

Remark I.4. A strong converse of the above result is also provided in (Winter , 2004, Theorem 8).

1.5.4 Conclusion

This section briefly introduced the measurement compression problem. The aim of the next

chapters is to consider the problem in distributed settings and obtain achievable rate regions to-

ward faithful simulation of distributed quantum measurements. The subsequent chapters form the

contribution of this thesis.
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Part I

Quantum Measurement Compression
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CHAPTER II

Distributed Measurement Compression

In this chapter, we consider scenarios where the quantum measurements are performed in a

distributed fashion on bipartite entangled states, and quantify “relevant information” for these

distributed quantum measurements in an asymptotic sense. As shown in Fig. 2.1, a composite

bipartite quantum system AB is made available to two agents, Alice and Bob, where they have

access to the sub-systems A and B, respectively. Two separate measurements, one for each sub-

system, are performed in a distributed fashion with no communication taking place between Alice

and Bob. Imagine that there is a third party, Charlie, who is connected to Alice and Bob via

two separate classical links. The objective of the three parties is to simulate the action of repeated

independent measurements performed on many independent copies of the given composite state. To

achieve this objective, Alice and Bob send classical bits to Charlie at rate R1 and R2, respectively.

Further, pairwise common randomness at rates C1 and C2 are also shared between Alice and

Charlie, and Bob and Charlie, respectively. Charlie performs classical processing of the received

bits and common randomness. We study two settings, based on whether or not Charlie has access to

private randomness, namely the feedback case and the non-feedback case, respectively. The private

randomness can enable Charlie to employ random stochastic decoders (aka probabilistic decoders)

for decoding the measurement outcomes. As an application of this quantification, we consider the

QC distributed rate distortion problem where Charlie is allowed to use classical quantum (CQ)

channels. In this chapter, we focus on memoryless quantum systems in finite-dimensional Hilbert

spaces.

The contributions of this chapter can be summarized as follows:
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Figure 2.1:
The diagram of a distributed quantum measurement applied to a bipartite quantum
system AB. A tensor product measurement MA ⊗MB is performed on many copies of
the observed quantum state. The outcomes of the measurements are given by two clas-
sical bit streams. The receiver functions as a classical-to-quantum channel β mapping
the classical data to a quantum state.

• We formulate the problem of faithful simulation of distributed quantum measurements that

can be decomposed as a convex-linear combination (incorporating Charlie’s stochastic pro-

cessing) of separable measurements, as stated in Definition II.1. The asymptotic performance

limit for this problem is given by the set of all communication rates (R1, R2) and all common

randomness rates C1 and C2, referred to as the achievable rate region, under which the above-

stated measurement is distributively simulated. We devise a distributed simulation protocol

for this problem, and provide a quantum-information theoretic inner bound to the achievable

rate region in terms of computable single-letter information quantities (see Theorem II.33).

This is the first main result of the paper.

• In the special case of the above problem formulation, where the Charlie’s action is restricted

to a deterministic mapping, we develop a one-shot performance characterization of the dis-

tributed faithful simulation problem (see Theorem II.4). This characterization is based on a

modular approach. As a corollary to this result, we develop a characterization of an inner

bound to the asymptotic performance limit (see Theorem II.6).

• As an immediate application of our results on the simulation of distributed measurements,

we develop an approach for a distributed quantum-to-classical rate distortion theory, where

the objective is to reconstruct a quantum state at Charlie, with the quality of reconstruction

measured using an additive distortion observable. The asymptotic performance limit is given

by the set of all communication rate pairs (R1, R2) at which the distortion D is achieved.
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For the achievability part, we characterize an inner bound in terms of single-letter quantum

mutual information quantities (see Theorem II.20). This is the second main result of the

paper. The classical version of this result is called the Berger-Tung inner bound Berger

(1977).

• We then develop a technique for deriving converse bounds based on a combination of tensor-

product and direct-sum Hilbert spaces (also referred to as a multi-particle system). Using

this technique, we derive a single-letter outer-bound on the optimal rate distortion region

(see Theorem II.22), by converting a multi-letter expression into a single-letter expression.

This is the third main result of the paper.

As was pointed out in Krovi and Devetak (2007), the measurement compression theorem Win-

ter (2004) is a generalization of the classical reverse Shannon theorem [14] and can be viewed as

a quantum-to-classical channel simulation problem. Similarly, the distributed measurement com-

pression problem addressed in this chapter can be viewed as a distributed multi-party quantum-

to-classical channel simulation problem. This can pave the way to considering the multi-party

extensions of problems such as entanglement distillation and remote state preparation. In fact,

as will be shown in IV, we use the distributed measurement compression protocol to construct a

multi-party purity distillation protocol. Further, this work also develops new tools such as the

mutual covering lemma and the mutual packing lemma which can be promising tools for many

emerging quantum network applications. Moreover, in the recent applications of the distributed

paradigms, a network of limited qubit-capacity quantum computers, connected through classical

and quantum channels, are used to solve problems in a distributed manner by casting known cen-

tralized algorithms into their distributed versions Yimsiriwattana and Lomonaco Jr (2004); Beals

et al. (2013); Van Meter and Devitt (2016); Denchev and Pandurangan (2008).

The organization of this chapter is as follows. In Section 1.5.2, we set the notation and state

requisite definitions. Toward developing the main result of this chapter, for pedagogical reasons,

we first consider a special case in Section 2.2.2. For this special case, we restrict the processing at

Charlie to a deterministic function and characterize the performance of a faithful simulation protocol

in a one-shot setting. We achieve this by first obtaining a one-shot measurement compression

theorem in a point-to-point setting (Theorem II.9), wherein Bob is absent. Then we employ this
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result on the individual components (MA and MB) of the joint measurement MAB, separately, to

obtain a theorem characterizing the performance of a distributed measurement compression protocol

(see Theorem II.4). As a corollary, we further provide an asymptotic quantum information-theoretic

inner bound to the achievable rate region of the distributed measurement compression problem

(see Theorem II.6). As a result, faithful simulation of MA is possible when at least nI(U ;RA)

classical bits of communication and nS(U |RA) bits of common randomness are available between

Alice and Charlie. Similarly, a faithful simulation of MB is possible with nI(V ;RB) classical bits

of communication and nS(V |RB) bits of common randomness between Charlie and Bob, where

RA and RB are purifications of the sub-systems A and B, respectively, and U and V denote the

auxiliary registers corresponding to their measurement outcomes. The challenge here is that the

direct use of single-POVM compression theorem for each individual POVMs, MA and MB, does

not necessarily ensure a “distributed” faithful simulation of the overall measurement, MAB. To

accomplish this, we develop a Mutual Covering Lemma (see Lemma II.12), which also helps in

converting the information quantities in terms of the reference R of the joint state ρAB.

Further, an interesting aspect about the distributed setting is that one can further reduce the

amount of classical communication by exploiting the statistical correlations between Alice’s and

Bob’s measurement outcomes. The challenge here is that the classical outputs of the approximating

POVMs (operating on n copies of the state ρAB) are not independent identically distributed (IID)

sequences — rather they are codewords generated from random coding. For this we develop a

proposition for mutual packing (Proposition II.15), that characterizes the binning rates in term

of single-letter information quantities. This issue also arises in classical distributed source coding

problem which was addressed by Wyner-Ahlswede-Körner Berger (1977) by developing the Markov

lemma and the Mutual packing lemma. The idea of binning in quantum setting has been explored

from a different perspective in Devetak and Winter (2003) and Anshu et al. (2018a) for quantum

data compression involving side information. Toward the end of the section, we also provide an

example to illustrate the inner bound to the achievable rate region.

In Section 2.3.3, we apply this special setting of the distributed measurement simulation with

deterministic processing to the QC distributed rate distortion problem. Since the proof of the inner

bound of this rate distortion problem requires only the special case of distributed measurement

simulation, this is another reason for providing the special case in the previous section.
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In Section 2.4, we consider the non-feedback measurement compression problem for the point-

to-point setting. The authors in Wilde et al. (2012) have discussed this formulation and provided a

rate region with a proof of achievability and converse. However, in their proof, the authors assume

two inequalities (Wilde et al., 2012, Eq. 53 and 54), which may not necessarily be true Wilde

(Aug 2019) (further details are provided in Section 2.4). A stronger version of this theorem is also

developed in Berta et al. (2014) using a different technique, wherein the authors have extended the

Winter’s measurement compression for fixed independent and identically distributed inputs Winter

(2004) to arbitrary inputs. Since the result is crucial for the distributed simulation problem with

stochastic processing, to be proved in the next section (Section 2.5.2), we formally state the problem

and provide an alternative proof of the direct part for completeness (see Theorem II.27).

Finally, the above proof of non-feedback simulation in the point-to-point setting provides us

with necessary tools for the next task, namely, distributed quantum measurement simulation with

stochastic processing. The objective of incorporating the additional processing at the decoder is to

reduce the required shared randomness. Our objective in the distributed problem, considered in

Section 2.2, was to simulate MA⊗MB. We achieve this by proving that a pair of POVMs that can

faithfully simulate MA and MB individually, can also faithfully simulate MA⊗MB (Lemma II.12).

However, it will be shown that, because of the presence of Charlie’s stochastic processing, decoupling

the current problem into two symmetric point-to-point problems is not feasible. Therefore, we

perform a non-symmetric partitioning while being analytically tractable. Toward this we develop a

non-product covering lemma (see Proposition II.41). Moreover, we provide a single-letter achievable

inner bound that is symmetric with respect to Alice and Bob. We conclude the chapter with a few

remarks in Section 2.6.

2.1 Notations and Definitions

Definition II.1 (Joint Measurements). A POVM MAB =∆ {ΛAB
z }z∈Z , acting on the joint state

ρAB ∈ D(HA ⊗HB), is said to have a separable decomposition with stochastic integration if there

exist POVMs MA =∆ {ΛA
u }u∈U and MB =∆ {ΛB

v }v∈V and a stochastic mapping PZ|U,V : U × V → Z

such that

ΛAB
z =∆

∑
u,v

PZ|U,V (z|u, v)ΛA
u ⊗ ΛB

v , ∀z ∈ Z,
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where U ,V and Z are some finite sets. Further, if the mapping PZ|U,V is a deterministic function

then the POVM is said to have a separable decomposition with deterministic integration.

2.2 One Shot Distributed Simulation of POVMS with deterministic processing

We begin by considering the simulation of distributed POVMs with deterministic processing.

Recall from the discussion in Section 1.5.1 that the motivation behind the restriction to determin-

istic processing is that the proof becomes modular, and also forms a first pedagogical step towards

the distributed simulation with stochastic processing (Theorem II.33). Due to the modularity of

the proof, we were able to develop a one-shot version of the proof. In the following, we state the

problem formulation and provide the theorem statement.

2.2.1 Problem Formulation

In this formulation, Charlie’s processing is restricted to a deterministic mapping. More precisely,

Definition II.2 (Distributed Protocol). For a given finite set Z, and a Hilbert space HA ⊗ HB,

a distributed protocol with deterministic processing with parameters (n,Θ1,Θ2, N1, N2) is charac-

terized by

1) a collection of Alice’s sub-POVMs M̃
(µ1)
A , µ1 ∈ [1, N1] each acting on H⊗n

A and with outcomes

in [1,Θ1].

2) a collection of Bob’s sub-POVMs M̃
(µ2)
B , µ2 ∈ [1, N2] each acting on H⊗n

B and with outcomes in

[1,Θ2].

3) a collection of Charlie’s classical decoding maps f (µ1,µ2) : [1,Θ1] × [1,Θ2] → Zn for µ1 ∈

[1, N1], µ2 ∈ [1, N2].

The overall sub-POVM of this distributed protocol, given by M̃AB, is characterized by the following

operators:

Λ̃zn =∆
1

N1N2

∑
µ1,µ2

∑
l1∈[1,Θ],
l2∈[1,Θ]

1{f (µ1,µ2)(l1,l2)=zn}Λ
A,(µ1)
l1

⊗ Λ
B,(µ2)
l2

(2.1)

∀zn ∈ Zn, where Λ
A,(µ1)
l1

and Λ
B,(µ2)
l2

are the operators corresponding to the sub-POVMs M̃
(µ1)
A

and M̃
(µ2)
B , respectively.
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In the above definition, (Θ1,Θ2) determines the amount of classical bits communicated from

Alice and Bob to Charlie, respectively. N1 and N2 denote the amount of pairwise common ran-

domness. The classical maps f (µ1,µ2) represent the action of Charlie on the received classical bits.

Definition II.3 (Achievability). Given a POVM MAB acting on HA⊗HB, and a density operator

ρAB ∈ D(HA ⊗ HB), a quadruple (R1, R2, C1, C2) is said to be achievable, if for all ϵ > 0 and

for all sufficiently large n, there exists a distributed protocol with deterministic processing with

parameters (n,Θ1,Θ2, N1, N2) such that its overall sub-POVM M̃AB is ϵ-faithful to M⊗n
AB with

respect to ρ⊗n
AB (see Definition I.1), and

1

n
log2Θi ≤ Ri + ϵ, and

1

n
log2Ni ≤ Ci + ϵ, i = 1, 2.

The set of all achievable quadruples (R1, R2, C1, C2) is called the achievable rate region.

2.2.2 Inner Bounds

We now provide two theorems characterizing the performance of faithful simulation protocols,

one in a one-shot and the other in an asymptotic quantum information theoretic settings for faithful

simulation of distributed measurements with deterministic processing. The proofs of these theorems

are provided in Section 2.2.4 and 2.2.5.

Theorem II.4. (One-shot Distributed Faithful Simulation). Consider a density operator ρAB ∈

D(HA ⊗ HB) and a sub-POVM MAB =∆ {ΛA
u ⊗ ΛB

v }u∈U ,v∈V acting on HA ⊗ HB. Suppose there

exists total subspace projectors ΠρA, ΠρB , and codeword subspace projectors {ΠA
u }u∈U , {ΠA

v }v∈V ,

acting on HA and HB, respectively, satisfying:

Tr{ΠρA ρ̂
A
u } ≥ 1− ϵ1, Tr{ΠρB ρ̂

B
v } ≥ 1− ϵ2, Tr{ΠA

u ρ̂
A
u } ≥ 1− ϵ1, Tr{ΠB

v ρ̂
B
v } ≥ 1− ϵ2, (2.2a)

Tr{ΠρA} ≤ D1, Tr{ΠρB} ≤ D2, ΠA
u ρ̂

A
uΠ

A
u ≤ 1

d1
ΠA

u , ΠB
v ρ̂

B
v Π

B
v ≤ 1

d2
ΠB

v , (2.2b)

ΠρAρAΠρA ≤ ρA, ΠρBρBΠρB ≤ ρB, ΠA
u ρ̂

A
uΠ

A
u ≤ ρ̂Au , ΠB

v ρ̂
B
v Π

B
v ≤ ρ̂Bv , (2.2c)

ΠρAρAΠρA ≤ 1

F1
ΠρA ,

√
ρA

−1ΠρA

√
ρA

−1 ≤ f1ΠρA ,

ΠρBρBΠρB ≤ 1

F2
ΠρB ,

√
ρB

−1ΠρB

√
ρB

−1 ≤ f2ΠρB , (2.2d)
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where ϵi ∈ (0, 12), 0 < di < Di, and fi, Fi > 0 for i = 1, 2, and ρ̂Au and ρ̂Bv are defined in (2.37). Let

W ⊆ U×V be an arbitrary set. Let K1 and K2 be arbitrary positive integers such that |U| ≥ K1 and

|V| ≥ K2. Then for any Ti ≤ Ki for i = 1, 2, there exists a distributed protocol with deterministic

processing for the finite set U×V and the Hilbert space HA⊗HB, with parameters (1, T1, T2, N1, N2)

such that

ΞρAB (MAB, M̃AB) ≤ αA + αB + αP ,

where

αA(ϵ1, N1,K1) =
∆ 2

(1 + ϵ1)
√
N1K1

∑
u∈U

√
λAu +

2ϵ1
ϵ1 + 1

+ f(ϵ1, θ1) + 4D1N1 exp

[
−K1ϵ

3
1d1D

−1
1

4 ln 2

]
+ 2θ1,

(2.3)

αB(ϵ2, N2,K2) =
∆ 2

(1 + ϵ2)
√
N2K2

∑
v∈V

√
λBv +

2ϵ2
ϵ2 + 1

+ f(ϵ2, θ2) + 4D2N2 exp

[
−K2ϵ

3
2d2D

−1
2

4 ln 2

]
+ 2θ2,

(2.4)

αP (ϵ1, ϵ2,K1,K2, N1, N2, T1, T2,W) =∆ 2αA + 2αB + 2λAB(Wc) +
2

(1 + ϵ1)(1 + ϵ2)

×
[

λAmλ
B
m|W|K1K2

(1− θ1)(1− θ2)T1T2
+
K1WAλ

A
m

(1− θ1)T1

(
1 +

λBmK2

(1− θ2)

)
+
K2WBλ

B
m

(1− θ2)T2

(
1 +

λAmK1

(1− θ1)

)]
f1f2
F1F2

,

(2.5)

and λAB
u,v =∆ Tr

(
ρAB(Λu ⊗ Λv)

)
with marginals (λAu , λ

B
v ), WA =∆ maxv∈V |{u : (u, v) ∈ W}|, and

WB =∆ maxu∈U |{v : (u, v) ∈ W}|, λAm =∆ maxu λ
A
u , and λBm =∆ maxv λ

B
v , θ1 =∆ 1 −

∑
u∈U λ

A
u ,

θ2 =∆ 1 −
∑

v∈V λ
B
v , f(ϵ, θ) =

∆
[
4
√
ϵ+ 4

√
ϵ+ 2

√
ϵ+ 4

√
2(1− θ)

√
ϵ+

√
ϵ
]
/(1 + ϵ), and λAB(Wc) =∆∑

(u,v)∈Wc λAB
u,v .

Remark II.5. Note that the terms αA and αB can be identified as the one-shot expressions for

the errors induced in approximating each of the sub-POVMs {ΛA
u }u∈U and {ΛB

v }v∈V , using their

respective approximations. This approximation employs the one-shot version of the measurement

compression theorem (Theorem II.9), which is developed as a part of the proof in Section 2.2.4.

Within αA, the exponential term corresponds to the error probability that the approximating

operators do not constitute a valid sub-POVMs in random coding, the term involving square-root

of the probabilities corresponds to the classical soft covering error, and the term f(ϵ, θ) corresponds
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to the error incurred because of the use of gentle measurement lemma with regard to the total

subspace and codeword subspace projectors. Likewise, the term αP captures the additional error

introduced by compressing the classical outcomes of the above distributed measurement using the

technique of binning. The binning is used to reduce the rate of transmission by exploiting the

classical correlations present in the measurement outcomes, using a many-to-one transformation.

The information lost in this transformation is recovered at the receiver using a relation modeled

by a bipartite sub-graph W of U × V. The twice of αA + αB within αP captures the effect of

binning on the event corresponding to not being able to cover the sources using the approximating

sub-POVMs. λAB(Wc) captures the event where under the original sub-POVM, the measurement

outcomes do not satisfy the above set relation. The final term captures the error due to binning of

the approximating sub-POVMs.

As a corollary to the above theorem, we obtain the following asymptotic inner bound to the

achievable rate region.

Theorem II.6 (Distributed Faithful Simulation). Given a density operator ρAB ∈ D(HA ⊗ HB)

and a POVM MAB =∆ {ΛAB
z }z∈Z acting on HA ⊗HB, and having a separable decomposition with

deterministic integration (as in Definition II.1), a quadruple (R1, R2, C1, C2) is achievable if the

following inequalities are satisfied:

R1 ≥ I(U ;RB)σ1 − I(U ;V )σ3 , (2.6a)

R2 ≥ I(V ;RA)σ2 − I(U ;V )σ3 , (2.6b)

R1 +R2 ≥ I(U ;RB)σ1 + I(V ;RA)σ2 − I(U ;V )σ3 ,

R1 + C1≥ S(U |V )σ3 , (2.6c)

R2 + C2≥ S(V |U)σ3 , (2.6d)

R1 +R2 + C1≥ I(V ;RA)σ2 + S(U |V )σ3 , (2.6e)

R1 +R2 + C2≥ I(U ;RB)σ1 + S(V |U)σ3 , (2.6f)

R1 +R2 + C1 + C2≥ S(U, V )σ3 , (2.6g)

for some decomposition with POVMs MA = {ΛA
u }u∈U and MB = {ΛB

v }v∈V and a function g :

U ×V → Z, where the information quantities are computed for the auxiliary states σRUB
1 =∆ (idR ⊗
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MA ⊗ idB)(Ψ
ρAB
RAB), σ

RAV
2 =∆ (idR ⊗ idA ⊗MB)(Ψ

ρAB
RAB), and σ

RUV
3 =∆ (idR ⊗MA ⊗MB)(Ψ

ρAB
RAB),

with ΨρAB
RAB being a purification of ρAB.

Remark II.7. An alternative characterization of the above rate region can be obtained in terms of

Holevo information. Using the canonical ensemble, we obtain

I(U ;RB)σ1 = S(RB)σ1 − S(RB|U)σ1

= S(
∑
u∈U

λAu ρ̂
A
u )−

∑
u∈U

λAuS(ρ̂
A
u ) = χ

({
λAu , ρ̂

A
u

})
,

where the second equality follows by noting S(RB)σ1 = S(ρA), ρA =
∑

u∈U λ
A
u ρ̂

A
u , and using

the result from (Wilde, 2013a, Eq. 11.54). Similarly, we get I(V ;RA)σ2 = χ
({
λBv , ρ̂

B
v

})
. Also,

I(U ;V )σ3 , and S(U, V )σ3 are equal to the classical mutual information and joint entropy with

respect to the joint distribution {λAB
uv }, respectively.

2.2.3 Overview of Proof Technique and an Illustrative Example

Before providing a proof in the next section, we briefly discuss two corner points of the rate

region with respect to the common randomness available. To reduce the number of free parameters,

let C =∆ C1 + C2. Firstly, consider the regime where the sum rate (R1 + R2) is at its minimum

achievable, i.e., equation (2.6c) is active. This requires the largest amount of common randomness,

given by the constraint C ≥ S(U |RB)σ1 + S(V |RA)σ2 . Next, let us consider the regime where

C = 0. This implies R1 +R2 ≥ S(U, V )σ3 . This regime corresponds to the quantum measurement

MA ⊗MB followed by classical Slepian-Wolf compression Slepian and Wolf (July 1973). Fig. 2.2

demonstrates the achievable rate region in these cases.

We encounter two challenges in developing the single-letter inner bound to the achievable rate

region as stated in Theorem II.6: 1) The direct use of single-POVM compression theorem, proved

using random coding arguments as inWinter (2004), for each individual POVMs,MA andMB, does

not necessarily ensure a “distributed” faithful simulation for the overall measurement, MA ⊗MB.

This issue is unique to the quantum settings. One of the contributions of this work is to prove this

when the two sources A and B are not necessarily independent, i.e., ρAB ̸= ρA ⊗ ρB (see Lemma

II.12).
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Figure 2.2:
The inner bound to the achievable rate region given in Theorem II.6 at two planes:
1) with no common randomness, i.e., C = 0 (green color), and 2) with at least
S(U |RB)σ1 + S(V |RA)σ2 amount of common randomness (blue color). As a result,
the latter region contains the former.

2) The classical outputs of the approximating POVMs (operating on n copies of the source) are

not independently and identically distributed (IID) sequences - rather they are codewords generated

from random coding. The Slepian-Wolf scheme Slepian and Wolf (July 1973) (also referred to

as binning in the literature) is developed for distributed compression of IID source sequences.

Applicability of such an approach to the problem requires that the classical outputs produced from

the two approximating POVMs are jointly typical with high probability. This issue also arises

in classical distributed source coding problem which was addressed by Wyner-Ahlswede-Korner by

developing the Markov Lemma and the Mutual Packing Lemma (Lemma 12.1 and 12.2 in El Gamal

and Kim (2011)). Building upon these ideas, we develop quantum-classical counterparts of these

lemmas for the multi-user quantum measurement simulation problem (see the discussion in Section

2.5.3.3 and Proposition II.15).

Let us consider an example to illustrate the above inner bound.

Example II.8. Suppose the composite state ρAB on HA ⊗HB is described as

ρAB =∆
1

2
(|00⟩⟨00|AB + |11⟩⟨11|AB) .

Since πA = TrB ρ
AB and πB = TrA ρ

AB, Alice and Bob would perceive each of their particles in
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maximally mixed states πA = IA

2 and πB = IB

2 , respectively. Upon receiving the quantum state,

the two parties wish to independently measure their states, using identical POVMs MA and MB,

given by
{
1
2 |0⟩⟨0| ,

1
2 |1⟩⟨1| ,

1
2 |+⟩⟨+| , 12 |−⟩⟨−|

}
. Alice and Bob together with Charlie are trying to

simulate the action ofMA⊗MB using the classical communication and common randomness as the

resources available to them (as described earlier). We compute the constraints given in Theorem

II.6. Let ΨRAB
ρ , the purification of ρAB, be defined as

ΨRAB
ρ =∆

(
|000⟩RAB + |111⟩RAB√

2

)(
⟨000|RAB + ⟨111|RAB√

2

)
.

Considering the first constraint from (2.6a), we evaluate σRUB
1 as

σRUB
1 =

1

4

(
|0⟩⟨0|U ⊗ |00⟩⟨00|RB + |1⟩⟨1|U ⊗ |11⟩⟨11|RB

+ |2⟩⟨2|U ⊗
(
|00⟩RB + |11⟩RB√

2

)(
⟨00|RB + ⟨11|RB√

2

)
+ |3⟩⟨3|U ⊗

(
|00⟩RB − |11⟩RB√

2

)(
⟨00|RB − ⟨11|RB√

2

))
,

where the vectors {|0⟩U , |1⟩U , |2⟩U , |3⟩U} denote a set of orthogonal states on the space HU . Based

on this state, we get

S(σRUB
1 ) = 2, S(σRB

1 ) = 1, S(σU1 ) = 2.

This gives I(U ;RB)σ1 to be equal to 1 bit. Similarly, from the symmetry of the example, we also

get I(V ;RA)σ2 to be equal to 1 bit. Similarly, we can evaluate σUV
3 as

σUV
3 =

1

16

(
3∑

i=0

3∑
j=0

|i⟩⟨i|U ⊗ |i⟩⟨i|V +
(
|0⟩⟨0|U ⊗ |0⟩⟨0|V + |1⟩⟨1|U ⊗ |1⟩⟨1|V

)

−
(
|0⟩⟨0|U ⊗ |1⟩⟨1|V + |1⟩⟨1|U ⊗ |0⟩⟨0|V

))
,

which gives

S(U, V )σ3 = 3.75 and I(U ;V )σ3 = 0.25.
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Therefore, we can write the constraints given in Theorem II.6 as

R1 ≥ 0.75, R2 ≥ 0.75, R1 +R2 ≥ 1.75, R1 + C1 ≥ 1.75,

R2 + C2 ≥ 1.75, R1 +R2 + C1 ≥ 2.75,

R1 +R2 + C2 ≥ 2.75, and R1 +R2 + C1 + C2 ≥ 3.75.

Consider the case when C = C1+C2 ≥ 2 is available. By approximating MA and MB individually,

we receive a gain of 1 bit, decreasing the rate from S(U)σ1 = 2 bits to I(U ;RB)σ1 = 1 bit and

similarly from S(V )σ2 = 2 bits to I(V ;RA)σ2 = 1 bit. Binning of these approximating POVMs (as

discussed in Section (2.5.3.3)), gives an additional gain of a quarter bit, which is characterized by

I(U ;V )σ3 = 0.25, thus giving us the achievable sum-rate of 1.75 bits.

2.2.4 Proof of One-Shot Inner Bound (Theorem II.4)

We begin the proof of the theorem by restating the measurement compression theorem (Theorem

I.3) in a one-shot quantum information theoretic setting. This restatement allows us to develop

a one-shot mutual covering lemma, which is a crucial part of the current proof. The theorem is

stated as follows:

Theorem II.9. (One-shot Point-to-point Faithful Simulation). Consider a density operator ρ ∈

D(H) and a sub-POVM M =∆ {Λx}x∈X acting on H, and let {λx, ρ̂x}x∈X be the canonical ensemble1

of M with respect to ρ. Suppose there exists a total subspace projector Πρ and codeword subspace

projectors {Πx}x∈X acting on H satisfying:

Tr{Πρρ̂x} ≥ 1− ϵ (2.7a)

Tr{Πxρ̂x} ≥ 1− ϵ (2.7b)

Tr{Πρ} ≤ D (2.7c)

Πxρ̂xΠx ≤ 1

d
Πx (2.7d)

Πxρ̂xΠx ≤ ρ̂x (2.7e)

ΠρρΠρ ≤ ρ, (2.7f)

1Note that {λx}x∈X is a sub-probability vector, i.e., a vector of non-negative real numbers whose sum is not
greater than 1.
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where ϵ ∈ (0, 12), 0 < d < D. Then there exists a collection of sub-POVMs M̃ (µ) for µ ∈ [1, N ] each

with at most K outcomes, with K ≤ |X |, and acting on H such that

Ξρ(M, M̃) ≤ 2

(1 + ϵ)
√
NK

∑
x∈X

√
λx +

2ϵ

ϵ+ 1
f(ϵ, θ) + 4DN exp

[
−Kϵ

3dD−1

4 ln 2

]
+ 2θ,

where M̃ =∆ 1
N

∑
µ M̃

(µ), θ =∆ 1−
∑

x∈X λx, and

f(ϵ, θ) =∆
[
4
√
ϵ+ 4

√
ϵ+ 2

√
ϵ+ 4

√
2(1− θ)

√
ϵ+

√
ϵ

]
/(1− ϵ).

Proof. The proof is provided in Appendix A.1.

Moving ahead with the proof of the current theorem, assume that the operators of the original

sub-POVM MAB =MA⊗MB are denoted by {ΛA
u }u∈U and {ΛB

v }v∈V , respectively, where U and V

are two finite sets. The proof follows by constructing a protocol for faithful simulation ofMA⊗MB.

We start by generating the canonical ensembles2 corresponding to MA and MB. Let ΠρA and ΠρB

denote the total projectors for marginal density operators ρA and ρB, respectively. Also, for any

u ∈ U and v ∈ V, let ΠA
u and ΠB

v denote the codeword projectors. Let the canonical ensembles be

{λAu , ρ̂Au } and {λBv , ρ̂Bv }. For each u ∈ U and v ∈ V define

ρ̃A
′

u =∆ ΠρAΠ
A
u ρ̂

A
uΠ

A
uΠρA , ρ̃B

′
v =∆ ΠρBΠ

B
v ρ̂

B
v Π

B
v ΠρB . (2.8)

With the notation above, define σA
′
and σB

′
as

σA
′
=∆

1

(1− θ1)

∑
u∈U

λAu ρ̃
A′
u , σB

′
=∆

1

(1− θ2)

∑
v∈V

λBv ρ̃
B′
v . (2.9)

Let Π̂A and Π̂B be the projectors onto the subspaces spanned by the eigenstates of σA
′
and σB

′

corresponding to eigenvalues that are larger than ϵ1/DA and ϵ2/DB, respectively. Lastly, define

ρ̃Au =∆ Π̂Aρ̃A
′

u Π̂A, and ρ̃Bv =∆ Π̂B ρ̃B
′

v Π̂B, (2.10)

for all u ∈ U , and v ∈ V and σA = Π̂AσA
′
Π̂A, σB = Π̂BσB

′
Π̂B.

2Note that {λA
u }u∈U and {λB

v }v∈V are sub-probability vectors.
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2.2.4.1 Construction of Random POVMs

In what follows, we construct two random POVMs one for each encoder. Fix positive integers

K1, K2, N1 and N2. Let µ1 ∈ [1, N1] denote the common randomness shared between the first

encoder and the decoder, and let µ2 ∈ [1, N2] denote the common randomness shared between

the second encoder and the decoder. For each µ1 ∈ [1, N1] and µ2 ∈ [1, N2], randomly and

independently select K1×K2 pairs denoted by (U (µ1)(l), V (µ2)(k)) from the set U ×V according to

the distribution:

P
(
(U (µ1)(l), V (µ2)(k)) = (u, v)

)
=

λAu λ
B
v

(1− θ1)(1− θ2)
, (2.11)

for u ∈ U , v ∈ V. Let C(µ1,µ2) denote the collection {U (µ1)(l), V (µ2)(k)}{l∈[1,K1],k∈[1,K2]}. Construct

operators3

A(µ1)
u =∆ γ(µ1)

u

(
√
ρA

−1ρ̃Au
√
ρA

−1

)
and B(µ2)

v =∆ ζ(µ2)
v

(
√
ρB

−1ρ̃Bv
√
ρB

−1

)
, (2.12)

where

γ(µ1)
u =∆

(1− θ1)

(1 + ϵ1)K1
|{l : U (µ1)(l) = u}| and ζ(µ2)

v =∆
(1− θ2)

(1 + ϵ2)K2
|{k : V (µ2)(k) = v}|. (2.13)

Let 1{sP-1} denote the indicator random variable corresponding to the event that {A(µ1)
u : u ∈ U}

forms a sub-POVM for all µ1 ∈ [1, N1]. Similarly define 1{sP-2} with regard to {B(µ2)
v : v ∈ V}. If

1{sP-1} = 1, then, for each µi ∈ [1, Ni] construct M
(µi)
i , for i = 1, 2, as in the following:

M
(µ1)
1 =∆ {A(µ1)

u : u ∈ U}, M
(µ2)
2 =∆ {B(µ2)

v : v ∈ V}.

These collections M
(µ1)
1 and M

(µ2)
2 are completed using the operators A

(µ1)
0U

=∆ I −
∑

u∈U A
(µ1)
u

and B
(µ2)
0V

=∆ I −
∑

v∈V B
(µ2)
v , and these operators are associated with symbols 0U and 0V . In the

case of the complementary event, i.e., 1{sP-i} = 0, we define M
(µi)
i =∆ {I}, for i = 1, 2, and denote

the output as 0U or 0V , respectively. Hence by construction M
(µ1)
1 and M

(µ2)
2 are sub-POVMs for

all µi ∈ [1, Ni], for i = 1, 2. For a fixed {C(µ1,µ2)}µ1∈[1,N1],µ2∈[1,N2], the probability distribution P

3The inverse used in
√
ρ−1 refers to the generalized inverse as defined in (Holevo, 2012, Section 5.6).
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induced on (U ∪ {0U})× (V ∪ {0V }) has the following salient features.

P{(u, v)} = 1{sP-1}1{sP-2}
1

N1N2

∑
µ1,µ2

γ(µ1)
u ζ(µ2)

v Ωu,v,

if (u, v) ∈ U × V, and

P
(
(U ∪ {0U})× (V ∪ {0V })\(U × V)

)
= 1{sP-1}1{sP-2}

(
1− 1

N1N2

∑
µ1,µ2

∑
u,v

γ(µ1)
u ζ(µ2)

v Ωu,v

)
+
(
1− 1{sP-1}1{sP-2}

)
,

where Ωu,v is defined as

Ωu,v =∆ Tr
{√

ρA ⊗ ρB
−1

(ρ̃Au ⊗ ρ̃Bv )
√
ρA ⊗ ρB

−1
ρAB

}
. (2.14)

Binning of POVMs: We introduce the quantum counterpart of the so-called binning technique

which has been widely used in the context of classical distributed source coding. Fix positive

integers (T1, T2) and choose a (µ1, µ2) pair. For each symbol u ∈ U assign an index from [1, T1]

randomly and uniformly, such that the assignments for different sequences are done independently.

Perform a similar random and independent assignment for all v ∈ V with indices chosen from [1, T2].

Repeat this assignment for every µ1 ∈ [1, N1] and µ2 ∈ [1, N2]. For each i ∈ [1, T1] and j ∈ [1, T2],

let B(µ1)
1 (i) and B(µ2)

2 (j) denote the ith and the jth bins, respectively. More precisely, B(µ1)
1 (i) is

the set of all u symbols with assigned index equal to i, and similar is B(µ2)
2 (j). Define the following

operators:

Γ
A,(µ1)
i =∆

∑
u∈B(µ1)

1 (i)

A(µ1)
u , Γ

B,(µ2)
j =∆

∑
v∈B(µ2)

2 (j)

B(µ2)
v ,

for all i ∈ [1, T1] and j ∈ [1, T2]. Using these operators, we form the following collection:

M
(µ1)
A =∆ {ΓA,(µ1)

i }i∈[1,T1], M
(µ2)
B =∆ {ΓB,(µ2)

j }j∈[1,T2]. (2.15)

Note that if M
(µ1)
1 and M

(µ2)
2 are sub-POVMs, then so are M

(µ1)
A and M

(µ2)
B . This is due to the
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relations ∑
i

Γ
A,(µ1)
i =

∑
u∈U

A(µ1)
u , and

∑
j

Γ
B,(µ2)
j =

∑
v∈V

B(µ2)
v .

To make M
(µ1)
A and M

(µ2)
B complete, we define Γ

A,(µ1)
0 and Γ

B,(µ2)
0 as Γ

A,(µ1)
0 = I −

∑
i Γ

A,(µ1)
i

and Γ
B,(µ2)
0 = I −

∑
j Γ

B,(µ2)
j , respectively4. Now, we intend to use the completions [M

(n,µ1)
A ] and

[M
(n,µ2)
B ] as the POVMs for each encoder. In event that 1sP-i = 0, for i = 1, 2, then the symbols 0U

and 0V are mapped to 0. Also, note that the effect of the binning is in reducing the communication

rates from (log(K1 + 1), log(K2 + 1)) to (log(T1 + 1), log(T2 + 1)).

Decoder mapping: Note that the operators {A(µ1)
u ⊗B

(µ2)
v }u∈U ,v∈V are used to simulate MA ⊗

MB. Binning can be viewed as partitioning of the set of classical outcomes into bins. Suppose

an outcome (U, V ) occurred in the measurement process. Then, if the bins are small enough, one

might be able to recover the outcomes by knowing the bin numbers. For that we create a decoder

that takes as an input a pair of bin numbers and produces a pair of symbols (U, V ). More precisely,

we define a mapping F (µ1,µ2), for (µ1, µ2), acting on the outputs of [M
(µ1)
A ]⊗ [M

(µ2)
B ] as follows. On

observing (µ1, µ2) and the classical indices (i, j) ∈ [1, T1] × [1, T2] communicated by the encoders,

the decoder populates

D
(µ1,µ2)
i,j =∆

{
(u, v) ∈C(µ1,µ2) : (u, v) ∈ W and (u, v) ∈ B(µ1)

1 (i)× B(µ2)
2 (j)

}
,

where W is an arbitrary subset of U × V. For every µl ∈ [1, Nl], for l = 1, 2, and i ∈ [1,K1]

and j ∈ [1,K2], define the function F (µ1,µ2)(i, j) = (u, v) if (u, v) is the only element of D
(µ1,µ2)
i,j ;

otherwise F (µ1,µ2)(i, j) = (0U , 0V ). Further, F (µ1,µ2)(i, j) = (0U , 0V ) for i = 0 or j = 0. With this

mapping, we form the following collection of operators, denoted by M̃AB,

Λ̃AB
u,v =∆

1{sP-1}1{sP-2}

N1N2

N1∑
µ1=1

N2∑
µ2=1

∑
(i,j):F (µ1,µ2)(i,j)=(u,v)

Γ
A,(µ1)
i ⊗ Γ

B,(µ2)
j

+ (1− 1{sP-1}1{sP-2})(I ⊗ I)1{(u,v)=(0U ,0V )},

∀(u, v) ∈ (U
⋃
{0U})× (V

⋃
{0V }). Note that by construction M̃AB is a sub-POVM.

4Note that Γ
A,(µ1)
0 = I −

∑
i Γ

A,(µ1)
i = I −

∑
u∈U A

(µ1)
u and Γ

B,(µ2)
0 = I −

∑
j Γ

B,(µ2)
j = I −

∑
v∈V B

(µ2)
v .
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2.2.4.2 Analysis of POVM and Trace Distance

We show that M̃AB is a sub-POVM that is faithful to the sub-POVM MA ⊗MB, with respect

to ρAB. More precisely, we provide a bound on

GρAB =∆ Ξ(MAB, M̃AB). (2.16)

Step 1: M
µ1)
1 and M

(µ2)
2 are sub-POVMs and individually approximating. As a first

step, one can show that M
(µ1)
1 and M

(µ2)
2 individually approximate the corresponding POVMs in

the expected sense. More precisely the following lemma holds.

Lemma II.10. For the POVM ensemble described above, we have

E(ΞρA(MA,M1)) ≤ αA(ϵ1,K1, N1),

E(ΞρB (MB,M2)) ≤ αB(ϵ2,K2, N2),

where M1 =
∆ 1

N1

∑
µ1
M

(µ1)
1 , and M2 =

∆ 1
N2

∑
µ2
M

(µ2)
2 .

Proof. Follows from the proof of Theorem II.9, as the assumptions of that theorem (which MA and

MB have to satisfy) are met as a part of the current theorem statement (see (2.2a-2.2c)).

Step 2: Isolating the effect of un-binned approximating measurements. In this step,

we separate out the effect of un-binned approximating measurements from G in (2.16). This is

done by adding and subtracting an appropriate term within the trace norm and applying triangle

inequality, which bounds G as G ≤ S1 + S2, where

S1 =
∆

∥∥∥∥(id⊗ [MA]⊗ [MB])(Ψ
ρ
RAB)−

1

N1N2

∑
µ1,µ2

(id⊗ [M
(µ1)
1 ]⊗ [M

(µ2)
2 ])(Ψρ

RAB)

∥∥∥∥
1

,

S2 =
∆

∥∥∥∥ 1

N1N2

∑
µ1,µ2

(id⊗ [M
(µ1)
1 ]⊗ [M

(µ2)
2 ])(Ψρ

RAB)− (id⊗ [M̃AB])(Ψ
ρ
RAB)

∥∥∥∥
1

, (2.17)

where S1 captures the effect of using approximating sub-POVMs M1 and M2 instead of the actual

sub-POVMs MA and MB, while S2 captures the error introduced by binning these approximating

sub-POVMs. Before we proceed further, we provide the following lemma which will be useful in

the rest of the paper.
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Lemma II.11. Given a density operator ρAB ∈ D(HAB), a sub-POVM MY =∆
{
ΛB
y : y ∈ Y

}
acting

on HB, for some set Y, and any Hermitian operator ΓA acting on HA, we have

∑
y∈Y

∥∥√ρAB

(
ΓA ⊗ ΛB

y

)√
ρAB

∥∥
1
≤
∥∥√ρA ΓA√ρA

∥∥
1
, (2.18)

with equality if
∑
y∈Y

ΛB
y = I, where ρA =∆ TrB{ρAB}.

Proof. The proof is provided in Appendix A.2.

Next, we provide a bound on S1 using the following Mutual Covering Lemma.

Lemma II.12. (Mutual Covering Lemma) Suppose a sub-POVM M̂X is ϵX-faithful to MX with

respect to ρX , and a sub-POVM M̂Y is ϵY -faithful toMY with respect to ρY , where ρX = TrY {ρXY }

and ρY = TrX {ρXY }. Then the sub-POVM M̂X⊗M̂Y is (ϵX+ϵY )-faithful to the POVM MX⊗MY

with respect to ρXY .

Proof. The proof is provided in the Appendix A.3.

Using Lemma II.12 with ρXY = ρAB, M̂X = 1
N1

∑
µ1
M

(µ1)
1 , M̂Y = 1

N2

∑
µ2
M

(µ2)
2 , MX = [MA]

and MY = [MB], and Lemma II.10, we have E(S1) ≤ αA(ϵ1, N1,K1) + αB(ϵ2, N2,K2). For later

convenience, we state the following lemma which will be used in analyzing the binning operation:

Lemma II.13. We have

∑
u∈U

∑
v∈V

∣∣∣∣λAB
u,v − 1

N1N2

∑
µ1,µ2

γ(µ1)
v ζ(µ2)

v Ωu,v1{sP−1}1{sP−2}

∣∣∣∣
+ 1{sP−1}1{sP−2}(1−

1

N1N2

∑
u,v

∑
µ1,µ2

γ(µ1)
v ζ(µ2)

v Ωu,v) + (1− 1{sP−1}1{sP−2}) ≤ S1, (2.19)

where Ωu,v is defined as in (2.14).

Proof. The proof follows from Lemma 2 in Wilde et al. (2012).

Step 3: Analyzing the effect of Binning. In this step, we provide an upper bound on S2.

For (u, v) ∈ B(µ1)
1 (i)× B(µ2)

2 (j), define e(µ1,µ2)(u, v) =∆ F (µ1,µ2)(i, j). For any (u, v) /∈ C(µ!,µ2) define

e(µ1,µ2)(u, v) = (0U , 0V ). Note that e(µ1,µ2) captures the overall effect of the binning followed by
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the decoding function F (µ1,µ2). For all u ∈ U and v ∈ V, let Φu,v =∆ |u, v⟩⟨u, v|. With this notation,

we simplify S2 using the following proposition.

Proposition II.14. S2 can be simplified as

S2 = S3 +
2

N1

∑
µ1

Tr

((
I −

∑
u∈U

A(µ1)
u

)
ρA

)

+
2

N2

∑
µ2

Tr

((
I −

∑
v∈V

B(µ2)
v

)
ρB

)
+ 2

(
2− 1{sP-1} − 1{sP-2}

)
,

where

S3 =
∆
1{sP-1}1{sP-2}

1

N1N2

∑
µ1,µ2

∑
u∈U

∑
v∈V

∥∥∥∥Φu,v − Φe(µ1,µ2)(u,v)

∥∥∥∥
1

γ(µ1)
u ζ(µ2)

v Ωu,v.

Proof. The proof is provided in Appendix A.6.

In the next proposition we provide a bound on the expectation of S2.

Proposition II.15 (Mutual Packing). We have

E[S2] ≤ αP (ϵ1, ϵ2,K1,K2, N1, N2, T1, T2,W).

Proof. The proof is provided in Appendix A.7.

Combining the results from the mutual covering and mutual packing lemmas we obtain

G ≤ αA + αB + αP .

This completes the proof of the theorem.

2.2.5 Proof of Second Inner Bound (Theorem II.6)

We develop a proof as a corollary to Theorem II.4. Assume that the operators of the original

POVM MAB are decomposed as

ΛAB
z =∆

∑
u,v

1{g(u,v)=z}Λ
A
u ⊗ ΛB

v , ∀z ∈ Z, (2.20)
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for some POVMs MA and MB with operators denoted by {ΛA
u }u∈U and {ΛB

v }v∈V , respectively, and

for some function g : U × V → Z where U ,V and Z are three finite sets. In what follows, we show

the existence of an (n, T1, T2, N1, N2) distributed protocol with the associated sub-POVM M̃
(n)
AB

that is ϵ-faithful to MAB with respect to ρ⊗n
AB (according to Definition I.1), where ϵ > 0 can be

made arbitrarily small for all sufficiently large n. More precisely, we plan to show that

∑
zn

∥
√
ρ⊗n
AB

(
ΛAB
zn − Λ̃AB

zn

)√
ρ⊗n
AB∥1 ≤ ϵ. (2.21)

Next we claim that it is sufficient to show that there exists a distributed protocol for the finite set

U ×V and the Hilbert space HA⊗HB, with parameters (n, T1, T2, N1, N2) such that the associated

sub-POVM M̃
(n)
AB = {Λ̃AB

un,vn}un∈Vn,vn∈Vn satisfies Ξρ⊗n
AB

(M⊗n
A ⊗M⊗n

B , M̃
(n)
AB) ≤ ϵ. This is because

one can always apply the function g(·, ·) componentwise on (un, vn) to yield a sub-POVM with

operators

Λ̃zn =∆
∑

un∈Un

∑
vn∈Vn

1{gn(un,vn)=zn}Λ̃
AB
un,vn , ∀zn ∈ Zn,

that satisfies the constraint (2.21) as

∑
zn

∥∥∥∥ ∑
un,vn

1{gn(un,vn)=zn}

(√
ρ⊗n
AB(Λ

A
un ⊗ ΛB

vn − Λ̃AB
un,vn)

√
ρ⊗n
AB

)∥∥∥∥
1

≤
∑
zn

∑
un,vn

1{gn(un,vn)=zn}

∥∥∥∥√ρ⊗n
AB(Λ

A
un ⊗ ΛB

vn − Λ̃AB
un,vn)

√
ρ⊗n
AB

∥∥∥∥
1

=
∑
un,vn

∥∥∥∥√ρ⊗n
AB(Λ

A
un ⊗ ΛB

vn − Λ̃AB
un,vn)

√
ρ⊗n
AB

∥∥∥∥
1

.

Fix three free parameters δ > 0, ϵ1 > 0, and ϵ2 > 0. We make the following identification with

regard to Theorem II.4. (a) Let ρAB ↔ ρ⊗n
AB, MA ↔ M⊗n

A , and MB ↔ M⊗n
B , which implies that

λAu ↔ λAun , λBv ↔ λBvn and λAB
uv ↔ λAB

unvn . (b) Let U ↔ T (n)
δ (U), V ↔ T (n)

δ (V ), andW ↔ T (n)
δ (U, V ),

where T (n)
δ (U), T (n)

δ (V ) and T (n)
δ (U, V ) are the δ-typical sets defined for {λAu }, {λBv } and {λAB

uv },

respectively. (c) Furthermore, let ΠρA ↔ ΠρA,δ ΠρB ↔ ΠρB ,δ, Π
A
u ↔ ΠA

un,δ, and ΠB
v ↔ ΠB

vn,δ, where

ΠρA,δ and ΠρB ,δ denote the δ-typical projectors (as in (Wilde, 2013a, Def. 15.1.3)) for marginal

density operators ρA and ρB, respectively
5. Also, for any un ∈ T (n)

δ (U) and vn ∈ T (n)
δ (V ), let ΠA

un,δ

5Note that ΠρA,δ and ΠρB ,δ also depend on n, however, for ease of notation, we do not make this explicit.
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and ΠB
vn,δ denote the strong conditional typical projectors (as in (Wilde, 2013a, Def. 15.2.4)) for

the canonical ensembles {λAu , ρ̂Au } and {λBv , ρ̂Bv }, respectively.

With the above identification, and using the property of typical sets and typical projectors,

we now find the values of the variables D1, D2, d1, d2, F1, F2, f1 and f2 that satisfy the hypotheses

of Theorem II.4. Firstly, using the properties of strong typical and conditional typical projec-

tors (Wilde, 2013a, Properties 15.2.4 and 15.2.7) we have the first four inequalities (hypotheses

(2.2a)) satisfied for all ϵ1, ϵ2 ∈ (0, 1), and for all sufficiently large n. Next, using (Wilde, 2013a,

Property 15.1.2), there exist functions δ1(δ), δ2(δ) ↘ 0 as δ ↘ 0, such that for all sufficiently

large n, the first two inequalities of hypotheses (2.2b) are satisfied for D1 =∆ 2n(S(RB)σ1+δ1(δ))

and D2 =∆ 2n(S(RA)σ2+δ2(δ)). Further, using (Wilde, 2013a, Property 15.2.3), there exist functions

δ3(δ), δ4(δ) ↘ 0 as δ ↘ 0, such that for all sufficiently large n, the next two inequalities of hy-

potheses (2.2b) are satisfied for d1 =∆ 2n(S(RB|U)σ1−δ3(δ)), d2 =∆ 2n(S(RA|V )σ2−δ4(δ)). The next four

inequalities of hypotheses (2.2c) follow from the definition of projectors ΠρA,δ, ΠρB ,δ, Π
A
un,δ and

ΠB
vn,δ. And finally, the four inequalities of hypotheses (2.2d) are satisfied by using (Wilde, 2013a,

Property 15.1.3) and by defining F1 =∆ 2n(S(RB)σ1−δ1(δ)), F2 =∆ 2n(S(RA)σ2−δ2(δ)), and f1 =∆ D1 and

f2 =
∆ D2.

This implies the existence of a distributed protocol with parameters (n, T1, T2, N1, N2) with

ΞρAB (MAB, M̃AB) ≤ αA + αB + αP . We now evaluate the upper bound. For this we let Ti = 2nRi ,

Ni = 2nCi , andKi = 2nR̃i , for some non-negative real numbers Ri, Ci, and R̃i for i = 1, 2. Moreover,

we assume that S(U)σ3 ≥ R̃1 and S(V )σ3 ≥ R̃2. If not, then faithful simulation can be achieved in

a trivial way.

Using the property of strongly typical sets, note that for all sufficiently large n we have

|U| ≤ 2n(S(U)σ3+δ5(δ)), |V| ≤ 2n(S(V )σ3+δ5(δ)), λAm ≤ 2−n(S(U)σ3−δ5(δ)) λBm ≤ 2−n(S(V )σ3−δ5(δ)). Fur-

thermore, we have the bounds: |W| ≤ 2n(S(U,V )σ3+δ5(δ)), WA ≤ 2n(S(U |V )σ3+δ5(δ)), and WB ≤

2n(S(V |U)σ3+δ5(δ)), where δ5(δ) ↘ 0 as δ ↘ 0. For all sufficiently large n we have θi ≤ ϵi for i = 1, 2.

Hence for i = 1, 2, the term (2ϵi/(1 + ϵi)) + f(ϵi, θi) can be made arbitrarily small by a suitable

choice of ϵi and n.
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Next we see that

1√
N1K1

∑
u∈U

√
λAu ≤ 2[−

n
2
(R̃1+C1−S(U)σ3−3δ5)], and

1√
N2K2

∑
v∈V

√
λBv ≤ 2[−

n
2
(R̃2+C2−S(V )σ3−3δ5)],

and hence can be made arbitrarily small for all sufficiently large n if

R̃1 + C1 > S(U)σ3 + 3δ5 and R̃2 + C2 > S(V )σ3 + 3δ5.

Moving on, we have

D1N1 exp

[
−K1ϵ

3
1d1D

−1
1

4 ln 2

]
≤ 2n(S(RB)σ1+C1+δ1) exp

[
−2n(R̃1−I(RB;U)σ1−δ1−δ3)ϵ31

4 ln 2

]
,

D2N2 exp

[
−K2ϵ

3
2d2D

−1
2

4 ln 2

]
≤ 2n(S(RA)σ2+C2+δ2) exp

[
−2n(R̃2−I(RA;V )σ2−δ2−δ4)ϵ32

4 ln 2

]
,

which can be made arbitrarily small for all sufficiently large n if

R̃1 > I(U ;RB)σ1 + δ1 + δ3, and R̃2 > I(V ;RA)σ2 + δ2 + δ4.

Next we have

λAB(Wc) =
∑

(un,vn)/∈Tδ(U,V )

λAB
un,vn ,

which can be made arbitrarily small for sufficiently large n. Finally, we have

[
λAmλ

B
m|W|K1K2

(1− θ1)(1− θ2)T1T2
+
K1WAλ

A
m

(1− θ1)T1

(
1 +

λBmK2

(1− θ2)

)
+
K2WBλ

B
m

(1− θ2)T2

(
1 +

λAmK1

(1− θ1)

)]
f1f2
F1F2

≤ 22n(δ1+δ2)

(1− θ1)(1− θ2)

[
2[n(R̃1+R̃2−R1−R2−I(U :V )σ3+3δ5)]

+ 2[n(R̃1−R1−I(U :V )σ3+2δ5)] + 2[n(R̃1+R̃2−R1−I(U :V )σ3−S(V )σ3+3δ5)]

+ 2[n(R̃1+R̃2−R2−I(U :V )σ3−S(U)σ3+3δ5)] + 2[n(R̃2−R2−I(U :V )σ3+2δ5)]
]
,
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which again can be made arbitrarily small for all sufficiently large n if

R̃1 + R̃2 −R1 −R2 < I(U ;V )σ3 − 3δ5 − 2(δ1 + δ2).

To sum-up, we have showed that the trace distance inequality in (2.21) holds for all sufficiently

small δ, ϵ1, and ϵ2, and all sufficiently large n, if the following bounds hold:

R̃1 > I(U ;RB)σ1 , R̃2 > I(V ;RA)σ2 ,

C1 + R̃1 > S(U)σ3 , C2 + R̃2 > S(V )σ3 ,

(R̃1 −R1) + (R̃2 −R2) < I(U ;V )σ3 ,

R̃1 ≥ R1 ≥ 0, R̃2 ≥ R2 ≥ 0,

C1 ≥ 0, C2 ≥ 0. (2.22)

Therefore, there exists a distributed protocol with parameters (n, 2nR1 , 2nR2 , 2nC1 , 2nC2) such that

its overall POVM M̃
(n)
AB is ϵ-faithful to M⊗n

AB with respect to ρ⊗n
AB. Lastly, we complete the proof of

the theorem using the following lemma.

Lemma II.16. Let R1 denote the closure of the set of all (R1, R2, C1, C2) for which there exists

(R̃1, R̃2) such that the sextuple (R1, R2, C1, C2, R̃1, R̃2) satisfies the inequalities in (2.22). Let, R2

denote the set of all quadruple (R1, R2, C1, C2) that satisfies the inequalities in (2.6) given in the

statement of the theorem. Then, R1 = R2.

Proof. The proof follows by Fourier-Motzkin elimination Ziegler (2012).

2.3 Q-C Distributed Rate Distortion Theory

As an application of faithful simulation of distributed measurements (Theorem II.6), we con-

sider the distributed extension of QC rate distortion coding Datta et al. (2013b). This problem

is a quantum counterpart of the classical distributed source coding. In this setting, consider a

memoryless bipartite quantum source, characterized by ρAB ∈ D(HA ⊗HB). Alice and Bob have

access to sub-systems A and B, characterized by ρA ∈ D(HA) and ρB ∈ D(HB), respectively,

where ρA = TrB{ρAB} and ρB = TrA{ρAB}. They both perform a measurement on n copies of
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their sub-systems and send the classical bits to Charlie. Upon receiving the classical bits sent by

Alice and Bob, a reconstruction state is produced by Charlie. The objective of Charlie is to produce

a reconstruction of the source ρAB within a targeted distortion threshold which is measured by a

given distortion observable.

2.3.1 Problem Formulation

We first formulate this problem as follows. For any quantum information source, characterized

by ρAB ∈ D(HA ⊗HB), denote its purification by ΨρAB
RAB.

Definition II.17 (q-c source coding setup). A QC source coding setup is characterized by a triple

(ΨρAB
RAB,HX̂ ,∆), where ΨρAB

RAB ∈ D(HR⊗HA⊗HB) is a purification of ρAB, HX̂ is a reconstruction

Hilbert space, and ∆ ∈ B(HR ⊗HX̂), which satisfies ∆ ≥ 0, is a distortion observable.

Next, we formulate the action of Alice, Bob and Charlie by the following definition.

Definition II.18 (q-c protocol). An (n,Θ1,Θ2) QC protocol for a given input and reconstruction

Hilbert spaces (HA⊗HB,HX̂) is defined by POVMs M
(n)
A and M

(n)
B acting on H⊗n

A and H⊗n
B with

Θ1 and Θ2 number of outcomes, respectively, and a set of reconstruction states Si,j ∈ D(H⊗n

X̂
) for

all i ∈ [1,Θ1], j ∈ [1,Θ2].

The overall action of Alice, Bob and Charlie, as a QC protocol, on a quantum source ρAB is

given by the following operation

NAnBn 7→X̂n : ρ⊗n
AB 7→

∑
i,j

Tr{(ΛA
i ⊗ ΛB

j )ρ
⊗n
AB} Si,j , (2.23)

where {ΛA
i } and {ΛB

j } are the operators of the POVMs M
(n)
A and M

(n)
B , respectively. With this

notation and given a q-c source coding setup as in Definition II.17, the distortion of a (n = 1,Θ1,Θ2)

QC protocol is measured as

d(ρAB,NAB 7→X̂) =∆ Tr
{
∆
(
(idR ⊗NAB 7→X̂)(ΨρAB

RAB)
)}
.
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For an n-letter protocol, we use symbol-wise average distortion observable defined as

∆(n) =
1

n

n∑
i=1

∆RiX̂i
⊗ I

⊗[n]\i
RX̂

, (2.24)

where ∆RiX̂i
is understood as the observable ∆ acting on the ith instance space HRi ⊗HX̂i

of the

n-letter space H⊗n
R ⊗ H⊗n

X̂
. With this notation, the distortion for an (n,Θ1,Θ2) QC protocol is

given by

d(ρ⊗n
AB,NAnBn 7→X̂n) =

∆ Tr
{
∆(n)(id⊗NAnBn 7→X̂n)(Ψ

ρAB
RnAnBn)

}
,

where ΨρAB
RnAnBn is the n-fold tensor product of ΨρAB

RAB which is the given purification of the source.

The authors in Datta et al. (2013b) studied the point-to-point setup of the above formulation

wherein Bob is absent. They considered a special distortion observable of the form ∆ =
∑

x̂∈X̂ ∆x̂⊗

|x̂⟩⟨x̂| , where ∆x̂ ≥ 0 acts on the reference Hilbert space and X̂ is the reconstruction alphabet (please

see (Datta et al., 2013b, Sec. 4) for more details). In this paper, we allow ∆ to be any non-negative

and bounded operator acting on the appropriate Hilbert spaces. Moreover, we allow for the use of

any c-q reconstruction mapping as the action of Charlie.

Definition II.19 (Achievability). For a QC source coding setup (ΨρAB
RAB,HX̂ ,∆), a rate-distortion

triplet (R1, R2, D) is said to be achievable, if for all ϵ > 0 and all sufficiently large n, there exists

an (n,Θ1,Θ2) QC protocol satisfying

1

n
log2Θi ≤ Ri + ϵ, i = 1, 2,

d(ρ⊗n
AB,NAnBn 7→X̂n) ≤ D + ϵ,

whereNAnBn 7→X̂n is defined as in (2.23). The set of all achievable rate-distortion triplets (R1, R2, D)

is called the achievable rate-distortion region.

Our objective is to characterize the achievable rate-distortion region using single-letter infor-

mation quantities.
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2.3.2 An Inner Bound

We provide an inner bound to the achievable rate-distortion region which is stated in the

following theorem. We employ a q-c protocol based on a randomized faithful simulation strategy

involving a time sharing classical random variable Q that is independent of the quantum source.

This can be viewed as a conditional version of the faithful simulation problem considered in Section

2.2. The proof of the theorem in provided in Section 2.3.3.

Theorem II.20. For a given QC source coding setup (ΨρAB
RAB,HX̂ ,∆), any rate-distortion triplet

(R1, R2, D) satisfying the following inequalities is achievable

R1 ≥ I(U ;RB|Q)σ1 − I(U ;V |Q)σ3 ,

R2 ≥ I(V ;RA|Q)σ2 − I(U ;V |Q)σ3 ,

R1+R2 ≥ I(U ;RB|Q)σ1 + I(V ;RA|Q)σ2 − I(U ;V |Q)σ3 ,

D ≥ d(ρAB,NAB 7→X̂),

for POVM of the form MAB =
∑

q∈Q PQ(q)M
q
A ⊗M q

B, where for every q ∈ Q, M q
A =∆{ΛA,q

u }u∈U

and M q
B =∆ {ΛB,q

v }v∈V are POVMs acting on HA⊗HB, and reconstruction states {Su,v,q} with each

state in D(HX̂), and some finite sets U ,V and Q. The quantum mutual information quantities

are computed according to the auxiliary states σRUBQ
1 =∆

∑
q∈Q PQ(q)(idR ⊗M q

A ⊗ idB)(Ψ
ρAB
RAB) ⊗

|q⟩⟨q|, σRAV Q
2 =∆

∑
q∈Q PQ(q)(idR ⊗ idA ⊗M q

B)(Ψ
ρAB
RAB)⊗ |q⟩⟨q|, and σRUV Q

3 =∆
∑

q∈Q PQ(q)(idR ⊗

M q
A ⊗ M q

B)(Ψ
ρAB
RAB) ⊗ |q⟩⟨q| , where (U, V ) represents the output of MAB, and NAB 7→X̂ : ρAB 7→∑

u,v,q PQ(q) Tr{(ΛA,q
u ⊗ ΛB,q

v )ρAB} Su,v,q.

Remark II.21. Note that for the auxiliary state σ1, we have

σRQ
1 = TrUB{σRUBQ

1 } =
∑
q

PQ(q) TrUAB

{∑
u∈U

{(IRB ⊗ Λq
u)(Ψ

ρAB
RAB)} ⊗ |u⟩⟨u|

}
⊗ |q⟩⟨q|

=
∑
q

PQ(q) TrAB

{{
(IRB ⊗

∑
u∈U

Λq
u)(Ψ

ρAB
RAB)

}}
⊗ |q⟩⟨q|

= ρR ⊗
∑
q

PQ(q) |q⟩⟨q| ,
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which gives I(R;Q)σ1 = 0. Similar statements hold for the states σ2 and σ3.

One can observe that the rate region in Theorem II.20 matches in form with the classical Berger-

Tung region when ρAB is a mixed state of a collection of orthogonal pure states. Note that the rate

region is an inner bound for the set of all achievable rates. The single-letter characterization of

the set of achievable rates is still an open problem even in the classical setting. Some progress has

been made recently on this problem which provides an improvement over Berger-Tung rate region

Shirani and Pradhan (2014).

Proof. In the interest of brevity, we provide the proof for the special case, when the time sharing

random variable is trivial, i.e., Q is empty. An extension to the more general case is straightforward

but tedious. For the special case, the proof follows from Theorem II.6. Fix POVMs (MA,MB) and

reconstruction states Su,v as in the statement of the theorem. Let NAB 7→X̂ be the mapping corre-

sponding to these POVMs and the reconstruction states. Then, d(ρAB,NAB 7→X̂) ≤ D. According

to Theorem II.6, for any ϵ > 0, there exists an (n, 2nR1 , 2nR2 , N1, N2) distributed protocol for ϵ-

faithful simulation of M⊗n
A ⊗M⊗n

B with respect to ρ⊗n
AB such that (R1, R2) satisfies the inequalities

in (2.6). Let M̃
(µ1)
A , M̃

(µ2)
B , µi ∈ [1, Ni], for i = 1, 2, and f (µ1,µ2) be the POVMs and the determin-

istic decoding functions of this protocol with Z = U × V. We use these POVM’s and mappings to

construct a QC protocol for distributed quantum source coding.

For each µi ∈ [1, Ni], for i = 1, 2, consider the QC protocol with parameters Θi = 2nRi , i = 1, 2,

and POVMs M̃
(µ1)
A , M̃

(µ2)
B . Moreover, we use n-length reconstruction states

Si,j =
∆
∑
un,vn

1
{
f (µ1,µ2)(i, j) = (un, vn)

}
Sun,vn ,

where Sun,vn = ⊗iSui,vi . Further, let the corresponding mappings be denoted as Ñ (µ1,µ2)

AnBn 7→X̂n
.

With this notation, for the average of these random protocols, the following bounds hold:

1

N1N2

∑
µ1,µ2

d(ρ⊗n
AB, Ñ

(µ1,µ2)

AnBn 7→X̂n
)

=
1

N1N2

∑
µ1,µ2

Tr
{
∆(n)(id⊗ Ñ (µ1,µ2)

AnBn 7→X̂n
)ΨρAB

RnAnBn

}
= Tr

{
∆(n)(id⊗N⊗n

AB 7→X̂
)ΨρAB

RnAnBn

}
+Tr

{
∆(n)(id⊗ (ÑAnBn 7→X̂n −N⊗n

AB 7→X̂
))ΨρAB

RnAnBn

}
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(a)

≤ Tr
{
∆
(
(idR ⊗NAB 7→X̂)(ΨρAB

RAB)
)}

+ ∥∆(n)(id⊗ (N⊗n

AB 7→X̂
− ÑAnBn 7→X̂n))Ψ

ρAB
RnAnBn∥1

(b)

≤ D+∥∆(n)∥∞∥(id⊗(N⊗n

AB 7→X̂
−ÑAnBn 7→X̂n))Ψ

ρAB
RnAnBn∥1

(c)

≤ D + ∥∆(n)∥∞∥(id⊗ (M⊗n
A ⊗M⊗n

B − M̃AB))Ψ
ρAB
RnAnBn∥1

(d)

≤ D + ϵ∥∆∥∞,

where ÑAB 7→X̂ is the average of Ñ (µ1,µ2)

AB 7→X̂
, and M̃AB is the overall POVM of the underlying dis-

tributed protocol as given in (2.1). The inequality (a) holds by the fact that |Tr{A}| ≤ ∥A∥1. (b)

follows from the fact that for any two operators A and B acting on a Hilbert space H the following

inequalities hold.

∥BA∥1 ≤ ∥B∥∞∥A∥1, and ∥AB∥1 ≤ ∥B∥∞∥A∥1,

(see in (Wilde, 2013a, Exercise 12.2.1) for a proof). (c) is due to the monotonicity of the trace-

distance Wilde (2013a) with respect to the quantum channel given by id⊗ L⊗n

UV 7→X̂
, where

LUV 7→X̂(ω) =∆
∑
u,v

⟨u, v|ω |u, v⟩Su,v.

And (d) follows by Theorem II.6, and the fact that ∥∆(n)∥∞ ≤ ∥∆∥∞. Hence using the collection of

codebooks {C(µ1,µ2)}µ1∈[1,N1],µ2∈[1,N2], constructed in Theorem II.6, and averaged over the common

randomness, the distortion constraint 1
N1N2

∑
µ1,µ2

d(ρ⊗n
AB, Ñ

(µ1,µ2)

AnBn 7→X̂n
) ≤ D+ϵ∥∆∥∞ is met. Hence

there must exist a realization of the common randomness (µ1, µ2), and the corresponding codebook

C(µ1,µ2) that achieves this distortion. This completes the proof of the theorem, since ∆ is a

bounded operator.

2.3.3 An Outer Bound

In this section, we provide an outer bound for the achievable rate-distortion region. The proof

of this theorem is provided in Section 2.3.3.

Theorem II.22. Given a QC source coding setup (ΨρAB
RAB,HX̂ ,∆), if any triplet (R1, R2, D) is
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achievable, then the following inequalities must be satisfied

R1 ≥ I(W1;R|W2, Q)σ, (2.25a)

R2 ≥ I(W2;R|W1, Q)σ, (2.25b)

R1 +R2 ≥ I(W1,W2;R|Q)σ, (2.25c)

D ≥ Tr
{
∆σRX̂

}
, (2.25d)

for some state σW1W2RQX̂ which can be written as

σW1W2QRX̂ = (id⊗NAB 7→W1W2QX̂)(ΨρAB
RAB),

where W1,W2 and Q represent auxiliary quantum states, and NAB 7→W1W2QX̂ is a quantum test

channel with I(R;Q)σ = 0.

Remark II.23. One may question the computability of the outer bound provided in Theorem II.22.

The computability of this bound depends on the dimensionality of the auxiliary space HQ defined

in the theorem. Currently, we are unable to bound the dimension of the Hilbert space HQ, but aim

to provide one in our future work. As a matter of fact, the current outer bounds for the equivalent

classical distributed rate distortion problem still suffers from the computability issue. The first outer

bound to the classical problem was provided in Berger (1977) and a recent substantial improvement

was made by authors in Wagner and Anantharam (2008). Both of these bounds suffer from the

absence of cardinality bounds on at least one of the variables used, and hence cannot be claimed

to be computable using finite resources.

Proof. Suppose the triplet (R1, R2, D) is achievable. Then, from Definition II.19, for all ϵ > 0,

there exists an (n,Θ1,Θ2) q-c protocol satisfying the inequalities in the definition. Let MA =∆

{ΛA
l1
}l1∈[1,Θ1], MB =∆ {ΛB

l2
}l2∈[1,Θ2], and Sl1,l2 ∈ D(H⊗n

X̂
) be the corresponding POVMs and recon-

struction states. Let L1, L2 denote the outcomes of the measurements. Then, for Alice’s rate, we

obtain

n(R1 + ϵ) ≥ H(L1) ≥ H(L1|L2) ≥ I(L1;R
n|L2)τ=

n∑
j=1

I(L1;Rj |L2, R
j−1)τ ,
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where the state τ is defined as τL1L2RnX̂n
=∆

∑
l1,l2

|l1, l2⟩⟨l1, l2| ⊗ TrAnBn

{
(id⊗ ΛA

l1 ⊗ ΛB
l2)Ψ

ρAB
RnAnBn

}
⊗ Sl1,l2 ,

and the inequalities follow from L1 and L2 being classical. Note that for each j the corresponding

mutual information above is defined for a state in the Hilbert space HL1 ⊗HL2 ⊗H⊗j
R . Next, we

convert the above summation into a single-letter quantum mutual information term. For that we

proceed with defining a new Hilbert space using direct-sum operation.

Let us recall the definition of direct-sum of Hilbert spaces Conway (1985). With this definition,

consider the following single-letterization:

1

n

n∑
j=1

I(L1;Rj |L2, R
j−1)τ

(a)
= I(L1;RJ |L2, R

J−1, J)σ=I(L1;R|L2, Q)σ,

where the state σ is defined as:

σL1L2RQX̂ =∆
∑
l1,l2

|l1, l2⟩⟨l1, l2|
n

⊗
( n∑

j=1

(
TrRn

j+1A
nBn

{
(id

⊗ ΛA
l1 ⊗ ΛB

l2)Ψ
ρAB
RnAnBn

}
⊗ |j⟩⟨j| ⊗ TrX̂n∼j{Sl1,l2}

))
, (2.26)

and TrX̂n∼j denotes tracing over (X̂⊗j−1 ⊗ X̂⊗n
j+1), and Q =∆ (RJ−1, J), and J is an averaging

random variable which is uniformly distributed over [1, n]. We have attached a quantum register

for this classical random variable yielding the state σ. The equality (a) follows from the following

lemma.

Lemma II.24. Consider the classical-quantum state

σJABC =∆
n∑

j=1

PJ(j) |j⟩ ⟨j| ⊗ ρjABC ,

where {|j⟩}j∈[1,n] is an orthonormal set in some Hilbert space HJ , ρ
j
ABC ∈ D(Hj

A ⊗ Hj
B ⊗ Hj

C),

where {Hj
A⊗Hj

B⊗Hj
C}j∈[1,n] is a collection of finite-dimensional Hilbert spaces. Note that σABC =

TrJ(σXABC) is a state on
⊕n

j=1(H
j
A ⊗Hj

B ⊗Hj
C). Then I(A;B|C, J)σ =

∑n
j=1 PJ(j)I(A;B|C)ρj .
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Proof. The proof is provided in Appendix A.4.

We elaborate on the Hilbert space associated with Q as follows. Suppose {|ϕi⟩}i∈I is an or-

thonormal basis for HR. Then, a basis for H⊗k
R is given by

|ϕik⟩ =
∆ |ϕi1⟩ ⊗ |ϕi2⟩ ⊗ · · · ⊗ |ϕik⟩ ,

for all ik ∈ Ik. Consider the direct-sum of the Hilbert spaces
⊕n

k=1H
⊗k
R and the Hilbert space

HJ ⊗H⊗k
R . With this definition, define HQ, as the Hilbert space which is spanned by |j⟩⊗ |ϕi(j−1)⟩ ,

for all j ∈ [1, n] and i(j−1) ∈ I(j−1). Therefore, HQ is isometrically isomorphic to the direct-sum⊕
k H

⊗k
R . Note that HQ can be viewed as a multi-particle Hilbert space, which is a truncated

version of the so-called Fock space Meyer (2006).

Similarly, for Bob’s rate we have

R2 + ϵ ≥ I(L2;R|L1, Q)σ.

For the sum-rate, the following inequalities hold

n(R1 +R2 + 2ϵ) ≥ H(L1, L2) ≥ I(L1, L2;R
n)τ

=
n∑

j=1

I(L1, L2;Rj |Rj−1)τ

= nI(L1, L2;R|Q)σ,

where the inequalities follow from L1 and L2 being classical. In addition, the distortion of this q-c

protocol satisfies d(ρ⊗n
AB,NAnBn 7→X̂n) ≤ D+ϵ, where NAnBn 7→X̂n is the quantum channel associated

with the protocol. Therefore, as the distortion observable is symbol-wise additive, we obtain

D + ϵ ≥ 1

n

n∑
j=1

Tr
{(

∆RjX̂j
⊗ I

⊗[n]\j
RX̂

) (
id⊗NAnBn 7→X̂n

)
(ΨρAB

RnAnBn)
}

=
1

n

n∑
j=1

Tr
{(

∆RjX̂j
⊗ I

Rj−1
1

⊗ IRn
j+1X̂

n∼j

) (
id⊗NAnBn 7→X̂n

)
(ΨρAB

RnAnBn)
}

=
1

n

n∑
j=1

Tr
{(

∆RjX̂j
⊗ I

Rj−1
1

)(
TrRn

j+1X̂
n∼j{(id⊗NAnBn 7→X̂n)(Ψ

ρAB
RnAnBn)}

)}
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(a)
= Tr{(∆⊗ IQ)σ

RQX̂},

where (a) holds because of the following argument. From (2.26), one can show by partially tracing

over (L1, L2), that

σRQX̂ = TrL1,L2{σL1L2RQX̂}

=
n∑

j=1

1

n
|j⟩⟨j| ⊗ TrRn

j+1X̂
n∼j{(id⊗NAnBn 7→X̂n)(Ψ

ρAB
RnAnBn)},

and IQ =∆
∑n

j=1

(
I
⊗(j−1)
R ⊗ |j⟩⟨j|

)
. Then, IQ is the identity operator acting on HQ. Therefore, the

right-hand side of the equality (a) above can be written as

Tr{(∆⊗ IQ)σ
RQX̂} = Tr

{
∆σRX̂

}
.

Let us identify the single-letter quantum test channel as given in the statement of the theorem.

First, due to the distributive property of tensor product over direct sum operation, we can rewrite

σL1L2RQX̂ as

σL1L2RQX̂ =
( n∑

j=1

1

n

∑
l1,l2

|l1, l2⟩⟨l1, l2| ⊗
(
TrRn

j+1A
nBn

{
(id

⊗ ΛA
l1 ⊗ ΛB

l2)Ψ
ρAB
RnAnBn

}
⊗ |j⟩⟨j| ⊗ TrX̂n∼j{Sl1,l2}

))
.

Next, we identify a quantum channel NAB 7→L1L2QX̂ : ρAB 7→ σL1L2QX̂ . For that and for any j

define the following intermediate quantum channels:

N (j)

AB 7→L1L2R(j−1)X̂
(ωAB)

=∆
∑
l1,l2

|l1, l2⟩⟨l1, l2| ⊗
(
TrRn

j+1A
nBn

{
(idRn∼j⊗ΛA

l1 ⊗ ΛB
l2)(ωAB ⊗ Ej)

}
⊗TrX̂n∼j{Sl1,l2}

)
,

where Ej = ΨρAB

(RAB)n∼j . One can verify that N (j)

AB 7→L1L2R(j−1)X̂
is indeed a quantum channel. With
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these definitions, let

NAB 7→L1L2QX̂(ωAB) =
∆
∑
j

1

n

(
N (j)

AB 7→L1L2R(j−1)X̂
(ωAB)⊗ |j⟩⟨j|

)
.

Using the property of direct-sum operation, one can verify that NAB 7→L1L2QX̂ is a valid quantum

channel, and moreover,

σL1L2RQX̂ = (id⊗NAB 7→L1L2QX̂)(ΨρAB
RAB).

Lastly, we show that the condition I(R;Q)σ = 0 is also satisfied. By taking the partial trace of σ

over (L1, L2, X̂) we obtain the following state

σRQ = TrL1L2X̂
(σL1L2RQX̂)

=

n∑
j=1

1

n

∑
l1,l2

(
TrRn

j+1A
nBn

{
(id⊗ ΛA

l1 ⊗ ΛB
l2)Ψ

ρAB
RnAnBn

})
⊗ |j⟩⟨j|

=

n∑
j=1

1

n

(
TrRn

j+1A
nBn

{
ΨρAB

RnAnBn

})
⊗ |j⟩⟨j|

=
n∑

j=1

1

n

(
TrAB{ΨρAB

RAB}
)⊗j

⊗ |j⟩⟨j|

= TrAB{ΨρAB
RAB} ⊗

 n∑
j=1

1

n

(
TrAB{ΨρAB

RAB}
)⊗(j−1)

⊗ |j⟩⟨j|

,
where the last equality is due to the distributive property of tensor product over direct sum

operation. Hence, σRQ is in a tensor product of the form σR ⊗ σQ, and therefore, I(R;Q)σ = 0.

The proof completes by identifying W1 and W2 with L1 and L2, respectively.

2.4 Simulation of P2P POVMs with Stochastic Processing

Before we detail into the distributed setup, in this section, we discuss an extension of the

Winter’s point-to-point measurement compression scheme Winter (2004), incorporating additional

stochastic processing at the receiver. This problem was first discussed in Wilde et al. (2012), where

a theorem characterizing the achievable rate region was provided. The results were also rederived
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in (Anshu et al., 2019, Corollary 4) and Berta et al. (2014) for the same problem. Since this

problem provides us with some of the tools required for the proof of the final result of this chapter

(Theorem II.33), developed in sequel (Section 2.5.2), we rederive the achievability of its rate region

using the approximating POVMs developed in Winter (2004). This will serve as a building block

toward proving the main result. In this problem, the receiver (Bob) has access to additional private

randomness, and he is allowed to use this additional resource to perform any stochastic mapping

of the received classical bits. In fact, the overall effect on the quantum state can be assumed to

be a measurement which is a concatenation of the POVM Alice performs and the stochastic map

Bob implements. Hence, Alice in this case, does not remain aware of the measurement outcome.

It is for this reason that Wilde et al. (2012) describes this as a non-feedback problem, with the

sender not required to know the outcomes of the measurement. With the availability of additional

resources, such a formulation is expected to help reduce the overall resources needed.

2.4.1 Problem Formulation

Definition II.25 (Protocol). For a given finite set X , and a Hilbert space HA, a measurement

simulation protocol with stochastic processing with parameters (n,Θ, N) is characterized by

1) a collection of Alice’s sub-POVMs M̃ (µ), µ ∈ [1, N ] each acting on H⊗n
A and with outcomes in

[1,Θ], and

2) a collection of Bob’s classical stochastic maps P (µ)(xn|l) for all l ∈ [1,Θ], xn ∈ X n and µ ∈ [1, N ].

The overall sub-POVM of this protocol, given by M̃ , is characterized by the following operators:

Λ̃xn =∆
1

N

∑
µ,l

P (µ)(xn|l) Λ(µ)
l , ∀xn ∈ X n, (2.27)

where Λ
(µ)
l are the operators corresponding to the sub-POVMs M̃ (µ).

In the above definition, Θ characterizes the amount of classical bits communicated from Alice

to Bob, and the amount of common randomness is determined by N , with µ being the common

randomness bits distributed among the parties. The classical stochastic mappings induced by P (µ)

represents the action of Bob on the received classical bits.

Definition II.26 (Achievability). Given a POVM M acting on HA, and a density operator ρ ∈
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D(HA), a pair (R,C) is said to be achievable, if for all ϵ > 0 and for all sufficiently large n, there

exists a measurement simulation protocol with stochastic processing with parameters (n,Θ, N)

such that its overall sub-POVM M̃ is ϵ-faithful to M⊗n with respect to ρ⊗n (see Definition I.1),

and

1

n
log2Θ ≤ R+ ϵ,

1

n
log2N ≤ C + ϵ.

The set of all achievable pairs is called the achievable rate region.

2.4.2 Achievable Rate Region

The following theorem characterizes the achievable rate region.

Theorem II.27. For any density operator ρ ∈ D(HA) and any POVMM =∆ {Λx}x∈X acting on the

Hilbert space HA, a pair (R,C) is achievable if and only if there exist a POVM MA =∆ {ΛA
w}w∈W ,

with W being a finite set, and a stochastic map PX|W : W → X such that

R ≥ I(R;W )σ and R+ C ≥ I(RX;W )σ,

Λx =∆
∑
w∈W

PX|W (x|w)ΛA
w, ∀x ∈ X .

where σRWX =∆
∑

w,x

√
ρΛA

w
√
ρ⊗ PX|W (x|w) |w⟩⟨w| ⊗ |x⟩⟨x|.

Remark II.28. An alternative characterization of the above rate region can also be obtained in

terms of Holevo information. For this, we define the following ensemble {λx, ρ̂x} as

λx =
∑
w∈W

λAwPX|W (x|w) and ρ̂x =
∑
w∈W

PW |X(w|x)ρ̂Aw,

for
{
λAw, ρ̂

A
w

}
being the canonical ensemble associated with the POVMM and the state ρ as defined

in (2.37). With this ensemble, we have

I(R;W )σ = χ
({
λAw, ρ̂

A
w

})
and

I(RX;W )σ = I(X;W )σ + I(R;XW )σ − I(R;X)σ

= I(X;W )σ + χ
({
λAw, ρ̂

A
w

})
− χ ({λx, ρ̂x}) ,
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where we have used the Markov Chain R−W −X which is evident from the structure of σRWX .

Remark II.29. As was pointed out in Section 1.5.1, a proof of achievability and converse for Theorem

II.27 was provided by Wilde et al. in (Wilde et al., 2012, Section III). With regards to the proof

of achievability, the authors assume (Wilde et al., 2012, Eqns. 53 and 54) to be true, but do not

provide a proof for it. Due to the presence of the cut-off operator, which is constructed for the

ensemble and not for the individual operators, these equations may not always be true. Since

the proof hinges on these two equations and we do not see a straightforward way to prove the

two assumptions made (also confirmed in Wilde (Aug 2019)), we provide an alternate proof for

achievability below. For the proof of converse, we refer the readers to (Wilde et al., 2012, Section

III.3).

Proof. Suppose there exist a POVM MA and a stochastic map PX|W : W → X , such that M can

be decomposed as

Λx =∆
∑
w

PX|W (x|w)ΛA
w, ∀x ∈ X . (2.28)

We begin by defining a canonical ensemble corresponding to MA as {λAw, ρ̂Aw}w∈W . Similarly. for

each wn ∈ Wn, we also define

ρ̃Awn =∆ Π̂ΠρΠwn ρ̂AwnΠwnΠρΠ̂,

where ρ̂Awn =∆
⊗

i ρ̂
A
wi
, Πρ denotes the δ-typical projector (as in (Wilde, 2013a, Def. 15.1.3))

corresponding to the density operator ρ, Πwn denotes the strong conditional typical projector (as

in (Wilde, 2013a, Def. 15.2.4)) corresponding to the canonical ensemble {λAw, ρ̂Aw}w∈W , and Π̂

denotes the projector onto the subspace spanned by the eigenstates of

∑
wn∈T (n)

δ (W )

λAwn

(1− ε)
ΠρΠwn ρ̂AwnΠwnΠρ

corresponding to eigenvalues larger than ε2−n(S(ρ)+δ1), where δ1(δ) is such that Tr(Πρ) ≤ 2n(S(ρ)+δ1),

and ε =∆
∑

wn /∈T (n)
δ (W )

λAwn
6, and δ1 ↘ 0 as δ ↘ 0.

Using the above definitions, we now construct the approximating POVM.

6Note that Πρ,Πwn and Π̂ depend on n, and δ however, for ease of notation, we do not make this explicit.
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2.4.2.1 Construction of Random POVMs

In what follows, we construct a collection of random POVMs. Fix R and C as two positive

integers. Let µ ∈ [1, 2nC ] denote the common randomness shared between the sender and receiver.

For each µ ∈ [1, 2nC ], randomly and independently select 2nR sequences Wn,(µ)(l) from the set Wn,

according to the pruned distributions, i.e.,

P
(
Wn,(µ)(l) = wn

)
=∆


λAwn

(1− ε)
for wn ∈ T (n)

δ (W )

0 otherwise

. (2.29)

Let the collection of operators M̃
(n,µ)
A be defined as {A(µ)

wn : wn ∈ T (n)
δ (W )} for each µ ∈ [1, 2nC ],

where A
(µ)
wn is defined as

A
(µ)
wn =∆ γ

(µ)
wn

(
√
ρ−1ρ̃Awn

√
ρ−1

)
and γ

(µ)
wn =∆

1

2nR

2nR∑
l=1

(1− ε)

(1 + η)
1{Wn,(µ)(l)=wn}, (2.30)

with η ∈ (0, 1) determining the probability that M̃
(n,µ)
A does not form a sub-POVM, for all µ ∈

[1, 2nC ]. Since the construction is very similar to the one used in Section 2.2.4 and 2.2.5, we

make a claim similar to the one in Lemma II.10 (also see Proposition A.1). This claim gives us

the first constraint on the classical rate of communication R, which ensures that the operators

constructed above for all µ ∈ [1, 2nC ] are valid sub-POVMs with high probability. Let 1{sP}

denote the indicator random variable corresponding to this event. The claim is as follows. For

any ϵ ∈ (0, 1), η ∈ (0, 1), any δ ∈ (0, 1) sufficiently small, and any n sufficiently large, we have

E[1{sP}] ≥ (1 − ϵ) if R > I(R;W )σ, where the definition of σRWX follows from the statement of

theorem. From this, let [M̃
(n,µ)
A ] denote the completion of the corresponding sub-POVM M̃

(n,µ)
A

for µ ∈ [1, 2nC ]. Let the operators completing these POVMs, given by I −
∑

wn∈T (n)
δ (W )

A
(µ)
wn , be

denoted by A
(µ)
wn

0
for some wn

0 /∈ T (n)
δ (W ), for all µ ∈ [1, 2nC ], and A

(µ)
wn = 0 for wn /∈ T (n)

δ (W )
⋃
{wn

0 }.

We use the trivial POVM {I} in the case of the complementary event that the operators do not

form sub-POVMs for all µ, and associate it with the sequence {wn
0 }. The POVM is given by

{1{sP}A
(µ)
wn + (1 − 1{sP})1{wn=wn

0 }I}wn∈Wn . Using this construction, we define the intermediate
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approximating POVM M̃
(n)
A as M̃

(n)
A =

1

2nC
∑

µ M̃
(n,µ)
A and the operators of M̃

(n)
A as

Λ̃A
wn =∆

(
1

2nC

∑
µ

A
(µ)
wn

)
1{sP} + (1− 1{sP})1{wn=wn

0 }I.

Now, we define Bob’s stochastic map as Pn
X|W , yielding the operators of the final approximating

POVM as

∑
wn∈Wn

Pn
X|W (xn|wn)Λ̃A

wn , xn ∈ X n.

2.4.2.2 Trace Distance

Fix an arbitrary ϵ ∈ (0, 1). Now, we compare the action of this approximating POVM on

the input state ρ⊗n with that of the given POVM M⊗n, using the characterization provided in

Definition I.1. Specifically, we show using the expressions for canonical ensemble that, under

certain conditions on (R,C), for all sufficiently large n we have E[G] ≤ ϵ, where

G =∆
∑

xn∈Xn

∥∥∥∥∥ ∑
wn∈Wn

Pn
X|W (xn|wn)

√
ρ⊗n(ΛA

wn − Λ̃A
wn)
√
ρ⊗n

∥∥∥∥∥
1

. (2.31)

As a first step, we split and bound G as G ≤ S1 + S2 + 2(1− 1{sP}), where

S1 =
∆
∑
xn

∥∥∥∥∑
wn

λAwn ρ̂AwnPn
X|W (xn|wn)− 1

2nC

∑
wn ̸=wn

0

2nC∑
µ=1

γ
(µ)
wn ρ̃AwnPn

X|W (xn|wn)

∥∥∥∥
1

,

S2 =
∆
∑
xn

∥∥∥∥Pn
X|W (xn|wn

0 )
1

2nC
×

2nC∑
µ=1

√ρ⊗n(I −
∑

wn ̸=wn
0

A
(µ)
wn )
√
ρ⊗n

∥∥∥∥
1

. (2.32)

Now we bound S1 by adding and subtracting an appropriate term and using triangle inequality

as S1 ≤ S11 + S12, where S11 and S12 are given by

S11 =
∆

∥∥∥∥∑
xn

[∑
wn

λAwn ρ̂AwnPn
X|W (xn|wn)⊗ |xn⟩⟨xn| − 1

2nC

∑
wn ̸=wn

0

2nC∑
µ=1

γ
(µ)
wn ρ̂AwnPn

X|W (xn|wn)⊗ |xn⟩⟨xn|
]∥∥∥∥

1

,

S12 =
∆

∥∥∥∥∑
xn

∑
wn ̸=wn

0

[
1

2nC

2nC∑
µ=1

γ
(µ)
wn ρ̂AwnPn

X|W (xn|wn)− 1

2nC

2nC∑
µ=1

γ
(µ)
wn ρ̃AwnPn

X|W (xn|wn)

]
⊗ |xn⟩⟨xn|

∥∥∥∥
1

.
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Note that in the above expressions, we have used an additional triangle inequality for block operators

(which is in fact an equality) to move the summation over X n inside the trace norm. Firstly, we

show E[S11] is small. To simplify the notation, we define σwn =
∑

xn Pn
X|W (xn|wn) |xn⟩⟨xn| which

gives S11 as

S11 =

∥∥∥∥∑
wn

λAwn ρ̂Awn ⊗ σwn −
1

2n(R+C)

(1− ε)

(1 + η)

∑
l,µ

ρ̂A
Wn,(µ)(l)

⊗ σWn,(µ)(l)

∥∥∥∥
1

.

We develop the following lemma to bound this term.

Lemma II.30. Consider an ensemble given by {P̃Wn(wn), Twn}, where P̃Wn(wn) is the pruned

distribution as defined in (2.29) and Twn is any tensor product state of the form Twn =
⊗n

i=1 Twi.

Then, for any ϵ2 ∈ (0, 1), and for all η, δ ∈ (0, 1) sufficiently small, and n sufficiently large, we

have

E

∥∥∥∥∥∥∥
∑
wn

λAwnTwn −
1

2n(R+C)

(1− ε)

(1 + η)

∑
l,µ

TWn,(µ)(l)

∥∥∥∥∥∥∥
1

≤ ϵ2, (2.33)

if R+C > S(
∑

w λ
A
wTw)−

∑
w λ

A
wS(Tw) = χ

(
{λAw, Tw}

)
, where {Wn,(µ)(l) : l ∈ [1, 2nR], µ ∈ [1, 2nC ]}

are independent random vectors generated from Wn according to the pruned distribution given in

(2.29).

Proof. The proof of the lemma is provided in Appendix A.5

Therefore, using the lemma above with Twn =∆ ρ̂Awn ⊗ σwn , for any ϵ ∈ (0, 1), any η, δ ∈ (0, 1)

sufficiently small, and any n sufficiently large, we have E[S11] ≤ ϵ if R+C > S(
∑

w λ
A
wρ̂

A
w ⊗ σw)−∑

w λ
A
wS(ρ̂

A
w ⊗ σw) = χ

(
{λAw}, {ρ̂Aw ⊗ σw}

)
= I(RX;W )σ, where σ is as defined in the statement

of the theorem. Secondly, we bound S12 by applying expectation with respect to the codebook

generation, and using Gentle Measurement Lemma Wilde (2013a) as follows,

E [S12]
(a)

≤ 1

2nC

2nC∑
µ=1

∑
xn

∑
wn ̸=wn

0

Pn
X|W (xn|wn)E

[
γ
(µ)
wn

∥∥(ρ̂Awn − ρ̃Awn)
∥∥
1

]

53



(b)
=

1

2nC

2nC∑
µ=1

∑
wn∈T (n)

δ (W )

λAwn

(1 + η)

∥∥ρ̂Awn − ρ̃Awn

∥∥
1

=
1

(1 + η)

∑
wn∈T (n)

δ (W )

λAwn

∥∥∥ρ̂Awn − Π̂ΠρΠwn ρ̂AwnΠwnΠρΠ̂
∥∥∥
1

(c)

≤
(1− ε)

(1 + η)
(2
√
ε′ + 2

√
ε′′) =∆ ε3, (2.34)

where (a) is obtained by using triangle inequality and the linearity of expectation, (b) is obtained

by marginalizing over xn and using the fact that E[γ(µ)wn ] =
λA
wn

(1+η) , and finally (c) uses repeated

application of the average gentle measurement lemma, by setting ε3 = (1−ε)
(1+η)(2

√
ε′ + 2

√
ε′′) with

ε3 ↘ 0 as n → ∞ for all sufficiently small δ > 0, and, ε′ =∆ εp + 2
√
εp and ε′′ =∆ 2εp + 2

√
εp for

εp =
∆ 1−min

{
Tr
{
Πρρ̂

A
wn

}
,Tr
{
Πwn ρ̂Awn

}
, 1− ε

}
(see (35) in Wilde et al. (2012) for details).

Finally, we show that the term corresponding to S2 can also be made arbitrarily small. This

term can be simplified as follows

S2 ≤
1

2nC

2nC∑
µ=1

∑
xn

Pn
X|W (xn|wn

0 )

∥∥∥∥∑
wn

λAwn ρ̂Awn −
∑

wn ̸=wn
0

√
ρ⊗nA

(µ)
wn

√
ρ⊗n

∥∥∥∥
1

,

≤ 1

2nC

2nC∑
µ=1

∥∥∥∥∥∥
∑
wn

λAwn ρ̂Awn −
∑

wn ̸=wn
0

γ
(µ)
wn ρ̂Awn

∥∥∥∥∥∥
1

+
1

2nC

2nC∑
µ=1

∑
wn ̸=wn

0

γ
(µ)
wn

∥∥ρ̂Awn − ρ̃Awn

∥∥
1

= S21 + S22,

where

S21 =
∆ 1

2nC

2nC∑
µ=1

∥∥∥∥∥∥∥
∑
wn

λAwn ρ̂Awn −
(1− ε)

(1 + η)

1

2nR

2nR∑
l=1

ρ̂A
Wn,(µ)(l)

∥∥∥∥∥∥∥
1

,

S22 =
∆ 1

2nC

2nC∑
µ=1

∑
wn ̸=wn

0

γ
(µ)
wn

∥∥ρ̂Awn − ρ̃Awn

∥∥
1
. (2.35)

Now, for the first term in (2.35) we use Lemma II.30 and claim that for any ϵ ∈ (0, 1), any
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η, δ ∈ (0, 1), sufficiently small, any n sufficiently large, we have E[S21] ≤ ϵ, if

R > S

(∑
w∈W

λAwρ̂w

)
+
∑
w∈W

λAwS(ρ̂w) = I(R;W )σ,

where σ is as defined in the statement of the theorem. Note that the requirement we obtain on R

was already imposed when claiming the collection of operators A
(µ)
wn forms a sub-POVM. As for the

second term in (2.35) we again use the gentle measurement Lemma and bound its expected value

as

E

 1

2nC

2nC∑
µ=1

∑
wn ̸=wn

0

γ
(µ)
wn

∥∥ρ̂Awn − ρ̃Awn

∥∥
1

 =
∑

wn∈T (n)
δ (W )

λwn

(1 + η)

∥∥ρ̂Awn − ρ̃Awn

∥∥
1
≤ ε3,

where ε3 is defined in (2.34).

In summary, we have performed the following sequence of steps. Firstly, we argued that M̃
(n,µ)
A

forms a valid sub-POVM for all µ ∈ [1, 2nC ], with high probability, when the rate R satisfies

R > I(R;W )σ. Secondly, we moved onto bounding the trace norm between the states obtained

after the action for these approximating POVMs when compared with those obtained from the

action of actual POVM M , characterized as G using Definition I.1. As a first step in establishing

this bound, we showed thatG ≤ S1+S2+2(1−1{sP}). Firstly, we have shown that E[1{sP}] ≥ (1−ϵ)

if R > I(R;W )σ. Then considering S1, we used the triangle inequality and divided it into two terms:

S11 and S12. Then, using Lemma II.30, we showed that for any given ϵ ∈ (0, 1), E[S11] can be made

smaller than ϵ, if R+ C > I(RX;W )σ. As for S12, we showed that it goes to zero in the expected

sense using (2.34). Finally, for the term given by S2, we bounded this as a sum of two trace norms

S21 and S22 given in (2.35). We showed that they can be made arbitrarily small in the expected

sense if R > I(R;W )σ for all sufficiently large n.

Hence for any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) sufficiently small, and any n sufficiently large we have

E[G] ≤ 6ϵ if

R+ C > I(RX;W )σ, and R > I(R;W )σ.

Therefore, using random coding arguments, there exists at least one collection of sub-POVMs with

the above construction satisfying the statement of Theorem II.27.
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2.5 Simulation of Distributed POVMs with Stochastic Processing

This brings us to the final result of this chapter. We begin by considering the simulation of

distributed POVMs with stochastic processing. Consider a bipartite composite quantum system

(A,B) represented by a Hilbert Space HA ⊗ HB. Let ρAB be a density operator on HA ⊗ HB.

Consider a joint measurement MAB on the system. Imagine that three parties, named Alice, Bob

and Charlie, are trying to collectively simulate the joint measurement, using two measurements, one

applied on each sub-system. The resources available to these parties are: some amount of classical

common randomness pairwise shared among them, and classical communication links of specified

rates between Alice and Charlie, and Bob and Charlie. Alice and Bob perform measurements

M̃
(n)
A =∆ {ΛA

l1
} and M̃

(n)
B =∆ {ΛB

l2
} on n copies of sub-systems A and B, respectively. The measure-

ments are performed in a distributed fashion with no communication taking place between Alice

and Bob. Based on their respective measurements and the common randomness, Alice and Bob

send some classical bits to Charlie. Upon receiving these classical bits, Charlie applies a stochastic

processing operation on them, given by P (·|l1, l2), and then wishes to produce an n-letter classical

sequence. The objective is to construct n-letter measurements M̃
(n)
A and M̃

(n)
B that minimize the

classical communication and common randomness bits while ensuring that the overall measurement

induced by the action of the three parties is close to M⊗n
AB. Further, the operators of the given

measurement MAB admit a decomposition of the form given in Definition II.1. We formally define

the problem as follows.

2.5.1 Problem Formulation

The problem is defined in the following.

Definition II.31 (Distributed Protocol). For a given finite set Z, and a Hilbert space HA⊗HB, a

distributed protocol with stochastic processing with parameters (n,Θ1,Θ2, N1, N2) is characterized

by

1) a collection of Alice’s sub-POVMs M̃
(µ1)
A , µ1 ∈ [1, N1] each acting on H⊗n

A and with outcomes

in [1,Θ1].
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Figure 2.3:
The diagram depicting the distributed POVM simulation problem with stochastic pro-
cessing. In this setting, Charlie additionally has access to unlimited private randomness.

2) a collection of Bob’s sub-POVMs M̃
(µ2)
B , µ2 ∈ [1, N2] each acting on H⊗n

B and with outcomes in

[1,Θ2].

3) a collection of Charlie’s classical stochastic maps P (µ1,µ2)(zn|l1, l2) for all l1 ∈ [1,Θ1], l2 ∈

[1,Θ2], z
n ∈ Zn, µ1 ∈ [1, N1], and µ2 ∈ [1, N2].

The overall sub-POVM of this distributed protocol, given by M̃AB, is characterized by the following

operators:

Λ̃zn =∆
1

N1N2

∑
µ1,µ2

∑
l1∈[1,Θ1],l2∈[1,Θ2]

P (µ1,µ2)(zn|l1, l2)ΛA,(µ1)
l1

⊗ Λ
B,(µ2)
l2

, ∀zn ∈ Zn,

where Λ
A,(µ1)
l1

and Λ
B,(µ2)
l2

are the operators corresponding to the sub-POVMs M̃
(µ1)
A and M̃

(µ2)
B ,

respectively.

In the above definition, (Θ1,Θ2) determines the amount of classical bits communicated from

Alice and Bob to Charlie, respectively. N1 and N2 denote the amount of pairwise common ran-

domness. The classical stochastic maps P (µ1,µ2)(zn|l1, l2) represent the action of Charlie on the

received classical bits.

Definition II.32 (Achievability). Given a POVMMAB acting on HA⊗HB, and a density operator

ρAB ∈ D(HA⊗HB), a quadruple (R1, R2, C1, C2) is said to be achievable, if for all ϵ > 0 and for all

sufficiently large n, there exists a distributed protocol with stochastic processing with parameters

(n,Θ1,Θ2, N1, N2) such that its overall sub-POVM M̃AB is ϵ-faithful to M⊗n
AB with respect to ρ⊗n

AB
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(see Definition I.1), and

1

n
log2Θi ≤ Ri + ϵ, and

1

n
log2Ni ≤ Ci + ϵ, i = 1, 2.

The set of all achievable quadruples (R1, R2, C1, C2) is called the achievable rate region.

2.5.2 An Inner Bound

The following theorem provides an inner bound to the achievable rate region. The proof of the

theorem is provided below, while some of the tools required for the proof are borrowed from Section

2.4.

Theorem II.33. Given a density operator ρAB ∈ D(HA ⊗HB), and a POVM MAB = {ΛAB
z }z∈Z

acting on HA ⊗HB having a separable decomposition with stochastic integration (as in Definition

II.1), a quadruple (R1, R2, C1, C2) is achievable if the following inequalities are satisfied:

R1 ≥ I(U ;RB)σ1 − I(U ;V )σ3 ,

R2 ≥ I(V ;RA)σ2 − I(U ;V )σ3 ,

R1+R2 ≥ I(U ;RB)σ1 + I(V ;RA)σ2−I(U ;V )σ3 ,

R1+C1 ≥ I(U ;RZ)σ3 − I(U ;V )σ3 ,

R2+C2 ≥ I(V ;RZ)σ3 − I(U ;V )σ3 ,

R1+R2+C1 ≥ I(U ;RZ)σ3 + I(V ;RA)σ2−I(U ;V )σ3 ,

R1+R2+C2 ≥ I(V ;RZ)σ3 + I(U ;RB)σ1−I(U ;V )σ3 ,

R1+R2+C1+C2 ≥ I(UV ;RZ)σ3 , (2.36)

for some decomposition with POVMs MA = {ΛA
u }u∈U and MB = {ΛB

v }v∈V and a stochastic

map PZ|U,V : U × V → Z, where the above information quantities are computed for the auxil-

iary states σRUB
1 =∆ (idR ⊗MA ⊗ idB)(Ψ

ρAB
RAB), σ

RAV
2 =∆ (idR ⊗ idA ⊗MB)(Ψ

ρAB
RAB), and σ

RUV Z
3 =∆∑

u,v,z[
√
ρAB

(
ΛA
u ⊗ ΛB

v

)√
ρAB]

R⊗PZ|U,V (z|u, v) |u⟩⟨u|⊗ |v⟩⟨v|⊗ |z⟩⟨z|, and ΨρAB
RAB is a purification7

of ρAB.

7The information theoretic quantities remain independent of the purification used in their definitions.
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Remark II.34. An alternative characterization of the above rate region can be obtained in terms of

Holevo information. For this, we use the canonical ensembles
{
λAu , ρ̂

A
u

}
,
{
λBv , ρ̂

B
v

}
and

{
λAB
uv , ρ̂

AB
uv

}
defined as

λAu =∆ Tr{ΛA
u ρA}, λBv =∆ Tr{ΛB

v ρB},

λAB
uv =∆ Tr{(ΛA

u ⊗ ΛB
v )ρAB}, and

ρ̂Au =∆
1

λAu

√
ρAΛ

A
u

√
ρA, ρ̂Bv =∆

1

λBv

√
ρBΛ

B
v

√
ρB,

ρ̂AB
uv =∆

1

λAB
uv

√
ρAB(Λ

A
u ⊗ ΛB

v )
√
ρAB. (2.37)

Note that the post-measurement states corresponding to the outcomes u and v are given by

(ρ̂Au )
T , (ρ̂Bv )

T and (ρ̂AB
uv )T , where transposes are defined with respect to the eigenbasis of the cor-

responding density operators. This entails that the states ρ̂Au , ρ̂
B
v and ρ̂AB

uv defined above have the

same spectrum as the states induced on the purifying reference R after the measurement. However,

these canonical states are not on the same “operational level” as the latter. Further, we define the

following ensemble {λz, ρ̂z} as

λz =
∆
∑
u∈U

∑
v∈V

λAB
uv PZ|UV (z|u, v) and ρ̂z =

∆
∑
u∈U

∑
v∈V

PUV |Z(u, v|z)ρ̂AB
uv ,

with PUV |Z(u, v|z) = λAB
uv · PZ|UV (z|u, v)/λz for all (u, v, z) ∈ U × V × Z. With this ensemble, we

have I(U ;RB)σ1 = χ
({
λAu , ρ̂

A
u

})
, I(V ;RA)σ2 = χ

({
λBv , ρ̂

B
v

})
, and I(UV ;RZ)σ3 = I(UV ;Z) +

χ
({
λAB
uv , ρ̂

AB
uv

})
− χ ({λz, ρ̂z}).
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2.5.3 Proof of the Inner Bound

2.5.3.1 Construction of An Ensemble of POVMs

Suppose there exist POVMs MA =∆ {ΛA
u }u∈U and MB =∆ {ΛB

v }v∈V and a stochastic map PZ|UV :

U × V → Z, such that MAB can be decomposed as

ΛAB
z =

∑
u,v

PZ|UV (z|u, v)ΛA
u ⊗ ΛB

v , ∀z ∈ Z. (2.38)

Note that the proof technique here is very different to the one used in Section 2.2.5 for proving

Theorem II.6. Recall that in Theorem II.6 we initiated the proof by constructing a protocol to

faithfully simulate M⊗n
A ⊗ M⊗n

B . However, here we are not interested in faithfully simulating

M⊗n
A ⊗M⊗n

B . Instead, by carefully exploiting the private randomness Charlie possesses, manifested

in terms of the stochastic processing applied by him on the classical bits received, i.e., PZ|U,V ,

we aim to strictly reduce the sum rate constraints compared to the ones obtained in (2.6e) of

Theorem II.6. This requires a considerably different methodology. More specifically, Lemma I.2

was employed in Theorem II.6, which guaranteed that any two point-to-point POVMs that can

individually approximate their corresponding original POVMs, can also faithfully approximate a

measurement formed by the tensor product of the original POVMs performed on any state in

the tensor product Hilbert space. Such a lemma cannot be developed in the setting involving

a stochastic decoder. This is due to the fact that bits received from Alice and Bob are jointly

perturbed by the stochastic decoder which does not allow a straightforward segmentation into

two point-to-point problems. The problem becomes analytically tractable using an asymmetric

partitioning.

2.5.3.2 Random Coding

We start by generating the canonical ensembles corresponding to MA and MB, as given in

(2.37). With this notation, corresponding to each of the probability distributions, we can associate

a δ-typical set. Let us denote T (n)
δ (U), T (n)

δ (V ) and T (n)
δ (UV ) as the δ-typical sets defined for

{λAu }, {λBv } and {λAB
uv }, respectively. Let ΠρA and ΠρB denote the δ-typical projectors (as in

(Wilde, 2013a, Def. 15.1.3)) for marginal density operators ρA and ρB, respectively. Also, for any
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un ∈ Un and vn ∈ Vn, let ΠA
un and ΠB

vn denote the strong conditional typical projectors (as in

(Wilde, 2013a, Def. 15.2.4)) for the canonical ensembles {λAu , ρ̂Au } and {λBv , ρ̂Bv }, respectively. For

each un ∈ Un and vn ∈ Vn define

ρ̃A
′

un =∆ ΠρAΠ
A
un ρ̂AunΠA

unΠρA , ρ̃B
′

vn =∆ ΠρBΠ
B
vn ρ̂

B
vnΠ

B
vnΠρB , (2.39)

where ρ̂Aun =∆
⊗

i ρ̂
A
ui

and ρ̂Bvn =∆
⊗

i ρ̂
B
vi

8.

With the notation above, define σA
′
and σB

′
as

σA
′
=∆

∑
un∈T (n)

δ (U)

λAun

(1− ε)
ρ̃Aun , σB

′
=∆

∑
vn∈T (n)

δ (V )

λBvn

(1− ε′)
ρ̃Bvn , (2.40)

where ε =
∑

un∈T (n)
δ (U)

λAun and ε′ =
∑

vn∈T (n)
δ (V )

λBvn . Note that σ
A′

and σB
′
defined above are ex-

pectations with respect to the pruned distribution Wilde (2013a). Let Π̂A and Π̂B be the projectors

onto the subspaces spanned by the eigenstates of σA
′
and σB

′
corresponding to eigenvalues that are

larger than ε2−n(S(ρA)+δ1) and ε′2−n(S(ρB)+δ1), where δ1 > 0 is such that Tr(ΠρA) ≤ 2n(S(ρA)+δ1),

and Tr(ΠρB ) ≤ 2n(S(ρB)+δ1), and δ1 ↘ 0 as δ ↘ 0. Lastly, define

ΛA
un =∆ Π̂Aρ̃A

′
unΠ̂A, and ΛB

vn =∆ Π̂B ρ̃B
′

vnΠ̂
B. (2.41)

In what follows, we construct two random POVMs one for each encoder. Fix a positive integer N

and positive real numbers R̃1 and R̃2 satisfying R̃1 < S(U)σ3 and R̃2 < S(V )σ3 , where σ3 is defined

as

σRUV
3 =∆ (idR ⊗MA ⊗MB)(Ψ

ρAB
RAB),

with ΨρAB
RAB being any purification of ρAB. Let µ1 ∈ [1, N1] denote the common randomness shared

between the first encoder and the decoder, and let µ2 ∈ [1, N2] denote the common randomness

shared between the second encoder and the decoder. Let µ̃1 ∈ [1, Ñ1] and µ̃2 ∈ [1, Ñ2] denote

additional pairwise shared randomness used for random coding purposes. This randomness is only

8Note that ρ̃Aun and ρ̃Bvn are not tensor products operators.
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used to show the existence of a desired distributed protocol (as defined in Definition II.31), and

is used only for bounding purposes. We denote µ̄i =
∆ (µi, µ̃i), and N̄i =

∆ Ni · Ñi for i = 1, 2. For

each µ̄1 ∈ [1, N̄1] and µ̄2 ∈ [1, N̄2], randomly and independently select 2nR̃1 and 2nR̃2 sequences

(Un,(µ̄1)(l), V n,(µ̄2)(k)) according to the pruned distributions, i.e.,

P
(
(Un,(µ̄1)(l), V n,(µ̄2)(k)) = (un, vn)

)
=


λAun

(1− ε)

λBvn

(1− ε′)
for un ∈ T (n)

δ (U), vn ∈ T (n)
δ (V )

0 otherwise

.

(2.42)

Let C(µ̄1,µ̄2) denote the codebook containing all pairs of codewords (Un,(µ̄1)(l), V n,(µ̄2)(k)). Con-

struct operators

A
(µ̄1)
un =∆ γ

(µ̄1)
un

(
√
ρA

−1ΛA
un

√
ρA

−1

)
and B

(µ̄2)
vn =∆ ζ

(µ̄2)
vn

(
√
ρB

−1ΛB
vn
√
ρB

−1

)
, (2.43)

where

γ
(µ̄1)
un =∆

1− ε

1 + η
2−nR̃1 |{l : Un,(µ̄1)(l) = un}| and ζ

(µ̄2)
vn =∆

1− ε′

1 + η
2−nR̃2 |{k : V n,(µ̄2)(k) = vn}|,

(2.44)

where η ∈ (0, 1) is a parameter that determines the probability of not obtaining sub-POVMs. Then,

for each µ̄1 ∈ [1, N̄1] and µ̄2 ∈ [1, N̄2], construct M
(n,µ̄1)
1 and M

(n,µ̄2)
2 as in the following

M
(n,µ̄1)
1 =∆ {A(µ̄1)

un : un ∈ T (n)
δ (U)}, and M

(n,µ̄2)
2 =∆ {B(µ̄2)

vn : vn ∈ T (n)
δ (V )}. (2.45)

We show later that M
(n,µ̄1)
1 and M

(n,µ̄2)
2 form sub-POVMs, with high probability, for all µ̄ ∈ [1, N̄1]

and µ̄2 ∈ [1, N̄2], respectively. These collections M̃
(n,µ̄1)
1 and M̃

(n,µ̄2)
2 are completed using the op-

erators I −
∑

un∈T (n)
δ (U)

A
(µ̄1)
un and I −

∑
vn∈T (n)

δ (V )
B

(µ̄2)
vn , and these operators are associated with

sequences un0 and vn0 , which are chosen arbitrarily from Un\T (n)
δ (U) and Vn\T (n)

δ (V ), respectively.

For (µ̃1, µ̃2) ∈ [1, Ñ1]× [1, Ñ2], let 1{sP-i}(µ̃1, µ̃2) denote the indicator random variable correspond-

ing to the event that M
(n,µi,µ̃i)
i form sub-POVM for all µi ∈ [1, Ni] for i = 1, 2. We use the trivial

POVM {I} in the case of the complementary event and associate it with un0 and vn0 as the case
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maybe. In summary, the POVMs are given by {1{sP-1}A
(µ̄1)
un +(1−1{sP-1})1{un=un

0 }I}un∈Un , and

{1{sP-2}B
(µ̄2)
vn + (1− 1{sP-2})1{vn=vn0 }I}vn∈Vn .

2.5.3.3 Binning of POVMs

Fix binning rates (R1, R2) and choose a (µ̄1, µ̄2) pair. For each sequence un ∈ T (n)
δ (U) assign an

index from [1, 2nR1 ] randomly and uniformly, such that the assignments for different sequences are

done independently. Perform a similar random and independent assignment for all vn ∈ T (n)
δ (V )

with indices chosen from [1, 2nR2 ]. Repeat this assignment for every µ̄1 ∈ [1, N̄1] and µ̄2 ∈ [1, N̄2].

For each i ∈ [1, 2nR1 ] and j ∈ [1, 2nR2 ], let B(µ̄1)
1 (i) and B(µ̄2)

2 (j) denote the ith and the jth bins,

respectively. More precisely, B(µ̄1)
1 (i) is the set of all un sequences with assigned index equal to i,

and similar is B(µ̄2)
2 (j). Moreover let ι

(µ̄1)
1 : T (n)

δ (U) → [1, 2nR1 ], and ι
(µ̄2)
2 : T (n)

δ (V ) → [1, 2nR2 ],

denote the corresponding random binning functions. Define the following operators:

Γ
A,(µ̄1)
i =∆

∑
un∈B(µ̄1)

1 (i)

A
(µ̄1)
un , and Γ

B,(µ̄2)
j =∆

∑
vn∈B(µ̄2)

2 (j)

B
(µ̄2)
vn ,

for all i ∈ [1, 2nR1 ] and j ∈ [1, 2nR2 ]. Using these operators, we form the following collections:

M
(n,µ̄1)
A =∆ {ΓA,(µ̄1)

i }i∈[1,2nR1 ], M
(n,µ̄2)
B =∆ {ΓB,(µ̄2)

j }j∈[1,2nR2 ].

Note that if M
(n,µ̄1)
1 and M

(n,µ̄2)
2 are sub-POVMs, then so are M

(n,µ̄1)
A and M

(n,µ̄2)
B . This is due to

the relations ∑
i

Γ
A,(µ̄1)
i =

∑
un∈T (n)

δ (U)

A
(µ̄1)
un ,

∑
j

Γ
B,(µ̄2)
j =

∑
vn∈T (n)

δ (V )

B
(µ̄2)
vn .

To makeM
(n,µ̄1)
A andM

(n,µ̄2)
B complete, we define Γ

A,(µ̄1)
0 and Γ

B,(µ̄2)
0 as Γ

A,(µ̄1)
0 = I−

∑
i Γ

A,(µ̄1)
i and

Γ
B,(µ̄2)
0 = I −

∑
j Γ

B,(µ̄2)
j , respectively9. In the event that the operators do not form sub-POVM,

the sequence un0 and vn0 are mapped to 0. Now, we intend to use the completions [M
(n,µ̄1)
A ] and

[M
(n,µ̄2)
B ] as the POVMs for each encoder. Also, note that the effect of the binning is in reducing

the communication rates from (R̃1, R̃2) to (R1, R2).

9Note that Γ
A,(µ̄1)
0 = I−

∑
i Γ

A,(µ̄1)
i = I−

∑
un∈T

(n)
δ

(U)
A

(µ̄1)
un and Γ

B,(µ̄2)
0 = I−

∑
j Γ

B,(µ̄2)
j = I−

∑
vn∈T

(n)
δ

(V )
B

(µ̄2)
vn .
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2.5.3.4 Decoder mapping

We define a mapping F (µ̄1,µ̄2) acting on the outputs of [M
(n,µ̄1)
A ] ⊗ [M

(n,µ̄2)
B ] as follows. On

observing (µ̄1, µ̄2), and the classical indices (i, j) ∈ [1 : 2nR1 ] × [1 : 2nR2 ] communicated by the

encoders, the decoder creates a set as follows:

D
(µ̄1,µ̄2)
i,j =∆

{
(un, vn) ∈ C(µ̄1,µ̄2) : (un, vn) ∈ T (n)

δ (UV ) and (un, vn) ∈ B(µ̄1)
1 (i)× B(µ̄2)

2 (j)

}
.

For every µ̄i ∈ [1 : N̄i], i ∈ [1 : 2nR1 ] and j ∈ [1, 2nR2 ] define the function F (µ̄1,µ̄2)(i, j) = (un, vn) if

(un, vn) is the only element of D
(µ̄1,µ̄2)
i,j ; otherwise F (µ̄1,µ̄2)(i, j) = (un0 , v

n
0 ) Further, F

(µ̄1,µ̄2)(i, j) =

(un0 , v
n
0 ) for i = 0 or j = 0. Finally, the decoder produces zn ∈ Zn according to the stochastic

map Pn
Z|UV (z

n|F (µ̄1,µ̄2)(i, j)). With this mapping, we form the following collections of operators,

for every (µ̃1, µ̃2),

Λ̃AB
un,vn(µ̃1, µ̃2) =

∆
1{sP-1}1{sP-2}

1

N1N2

N1∑
µ1=1

N2∑
µ2=1

∑
(i,j):F (µ̄1,µ̄2)(i,j)=(un,vn)

(
Γ
A,(µ̄1)
i

⊗ Γ
B,(µ̄2)
j

)
+(1−1{sP-1}1{sP-2})(I⊗I)1{(un,vn)=(un

0 ,v
n
0 )},

for all (un, vn) ∈ Un × Vn. Note that for

Λ̃AB
un,vn(µ̃1, µ̃2) = 0 for (un, vn) /∈ (T (n)

δ (U)× T (n)
δ (V ))

⋃
{(un0 , vn0 )}.

We use the stochastic mapping to define the approximating sub-POVM M̃
(n)
AB(µ̃1, µ̃2) =

∆ {Λ̂zn(µ̃1, µ̃2)}

as

Λ̂AB
zn (µ̃1, µ̃2) =

∆
∑
un,vn

Λ̃AB
un,vn(µ̃1, µ̃2)P

n
Z|U,V (z

n|un, vn),

∀zn ∈ Zn. The performance of the above ensemble is bounded from above as

1

Ñ1Ñ2

∑
µ̃1,µ̃2

Ξρ⊗n
AB

(M⊗n
AB, M̃

(n)
AB(µ̃1, µ̃2)) ≤

1

Ñ1Ñ2

∑
µ̃1,µ̃2

[
G(µ̃1, µ̃2)1{sP-1}(µ̃1, µ̃2))1{sP-2}(µ̃1, µ̃2)

+ 2(1− 1{sP-1}(µ̃1, µ̃2)1{sP-2}(µ̃1, µ̃2))
]
,
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where

G(µ̃1, µ̃2)

=∆
∑
zn

∥∥∥∥ ∑
un,vn

√
ρ⊗n
AB

(
ΛA
un ⊗ ΛB

vnP
n
Z|U,V (z

n|un, vn)− Λ̃AB
un,vn(µ̃1, µ̃2)P

n
Z|U,V (u

n, vn)

)√
ρ⊗n
AB

∥∥∥∥
1

.

(2.46)

In what follows, under the conditions on the rates given in the theorem, we show the existence of a

pair (µ̃1, µ̃2), and codebooks C(µ̄1,µ̄2) and binning functions ι
(µ̄i)
i , for µi ∈ [1, Ni], i = 1, 2, such that

the ϵ-faithfulness is satisfied for an arbitrary ϵ > 0 for all sufficiently large n.

2.5.3.5 Performance Analysis

Step 0: Operators form sub-POVM: Fix an arbitrary ϵ > 0. To start with, for all (µ̃1, µ̃2) ∈

[1, Ñ1]× [1, Ñ2], one can show using a result similar to Lemma II.10 the following proposition.

Proposition II.35 (sub-POVM). For any ϵ ∈ (0, 1), any η ∈ (0, 1), any δ ∈ (0, 1) sufficiently

small, and any n sufficiently large, we have

1

Ñ1Ñ2

∑
µ̃1,µ̃2

2
(
1− E

[
1{sP-1}(µ̃1, µ̃2)1{sP-2}(µ̃1, µ̃2)

])
< 2ϵ,

if R̃1 > I(U ;RB)σ1 and R̃2 > I(V ;RA)σ2, where σ1, σ2 are defined as in the statement of the

theorem.

Proof. We skip the proof for brevity.

Next we focus on G.

Step 1: Isolating the effect of error induced by not covering

Consider the second term within G(µ̃1, µ̃2), which, under the event 1{sP-1} = 1 and 1{sP-2} = 1,

can be written as

∑
un,vn

√
ρ⊗n
ABΛ̃

AB
un,vn(µ̃1, µ̃2))

√
ρ⊗n
ABP

n
Z|U,V (u

n, vn)

=
1

N1N2

∑
µ1,µ2

∑
i,j

√
ρ⊗n
AB

(
Γ
A,(µ̄1)
i ⊗ Γ

B,(µ̄2)
j

)√
ρ⊗n
ABP

n
Z|U,V (z

n|F (µ̄1,µ̄2)(i, j))
∑
un,vn

1{F (µ̄!,µ̄2)(i,j)=(un,vn)}︸ ︷︷ ︸
=1
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= T (µ̃1, µ̃2) + T̃ (µ̃1, µ̃2),

where

T (µ̃1, µ̃2) =
∆ 1

N1N2

∑
µ1,µ2

∑
i,j>0

√
ρ⊗n
AB

(
Γ
A,(µ̄1)
i ⊗ Γ

B,(µ̄2)
j

)√
ρ⊗n
ABP

n
Z|U,V (z

n|F (µ̄1,µ̄2)(i, j)),

T̃ (µ̃1, µ̃2) =
∆ 1

N1N2

∑
µ1,µ2

∑
i=0 or j=0

√
ρ⊗n
AB

(
Γ
A,(µ̄1)
i ⊗ Γ

B,(µ̄2)
j

)√
ρ⊗n
ABP

n
Z|U,V (z

n|un0 , vn0 ).

Hence, we have

G(µ̃1, µ̃2)1{sP-1}1{sP-2} ≤ [S(µ̃1, µ̃2) + S̃(µ̃1, µ̃2)]1{sP-1}1{sP-2}, (2.47)

where S(µ̃1, µ̃2) =
∆

∑
zn

∥∥∥∥ ∑
un,vn

√
ρ⊗n
AB

(
ΛA
un ⊗ ΛB

vnP
n
Z|U,V (z

n|un, vn)
)√

ρ⊗n
AB − T (µ̃1, µ̃2)

∥∥∥∥
1

, (2.48)

and S̃(µ̃1, µ̃2) =
∆ ∑

zn ∥T̃ (µ̃1, µ̃2)∥1. Note that S̃ captures the error induced by not covering the

state ρ⊗n
AB.

Remark II.36. The terms corresponding to the operators that complete the sub-POVMs M
(n,µ̄1)
A

and M
(n,µ̄2)
B , i.e., I −

∑
un∈T (n)

δ (U)
A

(µ̄1)
un and I −

∑
vn∈T (n)

δ (V )
B

(µ̄2)
vn are taken care of in T̃ . The

expression T excludes the completing operators. Therefore, in the analysis of the term S, we

use A
(µ̄1)
un and B

(µ̄2)
vn to denote the operators corresponding to un ∈ T (n)

δ (U) and vn ∈ T (n)
δ (V ),

respectively.

Step 2: Isolating the effect of error induced by binning

Noting that e(µ̄1,µ̄2)(un, vn) = F (µ̄1,µ̄2)(i, j), for each (un, vn) ∈ B(µ̄1)
1 (i) × B(µ̄2)

2 (j) and (un, vn) ∈

C(µ̄1,µ̄2). For any (un, vn) /∈ C(µ̄1,µ̄2) let e(µ̄1,µ̄2)(un, vn) = (un0 , v
n
0 ). This simplifies T as

T (µ̃1, µ̃2)

=
1

N1N2

∑
µ1,µ2

∑
i>0,
j>0

√
ρ⊗n
AB

( ∑
un∈B(µ̄1)

1 (i)

A
(µ̄1)
un ⊗

∑
vn∈B(µ̄2)

2 (j)

B
(µ̄2)
vn

)√
ρ⊗n
ABP

n
Z|U,V (z

n|F (µ̄1,µ̄2)(i, j))
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=
1

N1N2

∑
µ1,µ2

∑
un,vn

√
ρ⊗n
AB

(
A

(µ̄1)
un ⊗B

(µ̄2)
vn

)√
ρ⊗n
AB

×
∑
i>0,
j>0

1{
un∈B(µ̄1)

1 (i),vn∈B(µ̄2)
2 (j)

}Pn
Z|U,V (z

n|e(µ̄1,µ̄2)(un, vn))

=
1

N1N2

∑
µ1,µ2

∑
un,vn

√
ρ⊗n
AB

(
A

(µ̄1)
un ⊗B

(µ̄2)
vn

)√
ρ⊗n
ABP

n
Z|U,V (z

n|e(µ̄1,µ̄2)(un, vn)),

where we use the fact that
∑

un∈B(µ̄1)
1 (i)

A
(µ̄1)
un =

∑
un A

(µ̄1)
un 1{

un∈B(µ̄1)
1 (i)

} and
∑

i>0 1
{
un∈B(µ̄1)

1 (i)
} =

1 for all un ∈ T (n)
δ (U), and a similar argument holds for the sub-POVM {B(µ̄2)

vn }. Note that the

(un, vn) that appear in the above summation is confined to (T (n)
δ (U)× T (n)

δ (V )), however for ease

of notation, we do not make this explicit. We substitute the above expression into S as in (2.48)

to obtain

S(µ̃1, µ̃2) =
∑
zn

∥∥∥∥ ∑
un,vn

√
ρ⊗n
AB

(
ΛA
un ⊗ ΛB

vn
)√

ρ⊗n
ABP

n
Z|U,V (z

n|un, vn)

− 1

N1N2

∑
µ1,µ2

√
ρ⊗n
AB

(
A

(µ̄1)
un ⊗B

(µ̄2)
vn

)√
ρ⊗n
ABP

n
Z|U,V (z

n|e(µ̄1,µ̄2)(un, vn))

∥∥∥∥
1

.

Recall that µ̄i = (µi, µ̃i) for i = 1, 2. We add and subtract an appropriate term within S and apply

triangle inequality to isolate the effect of binning as S ≤ S1 + S2, where

S1(µ̃1, µ̃2) =
∆
∑
zn

∥∥∥∥∑
un,vn

√
ρ⊗n
AB

(
ΛA
un ⊗ ΛB

vn − 1

N1N2

∑
µ1,µ2

A
(µ̄1)
un ⊗B

(µ̄2)
vn

)√
ρ⊗n
ABP

n
Z|U,V (z

n|un, vn)
∥∥∥∥
1

,

S2(µ̃1, µ̃2) =
∆
∑
zn

∥∥∥∥ 1

N1N2

∑
µ1,µ2

∑
un,vn

√
ρ⊗n
AB

(
A

(µ̄1)
un ⊗B

(µ̄2)
vn

)√
ρ⊗n
AB

×
(
Pn
Z|U,V (z

n|un, vn)− Pn
Z|U,V

(
zn|e(µ̄1,µ̄2)(un, vn)

))∥∥∥∥
1

. (2.49)

This gives

G1{sP-1}1{sP-2} ≤ [S1 + S2 + S̃]1{sP-1}1{sP-2}.

Note that the term S1 characterizes the error introduced by approximation of the original POVM

with the collection of approximating sub-POVMs M
(n,µ̄1)
1 and M

(n,µ̄2)
2 , and the term S2 charac-

terizes the error caused by binning of these approximating sub-POVMs. Next, we analyze S2 and

prove the following proposition.
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Proposition II.37 (Mutual Packing). For any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) sufficiently small, and

any n sufficiently large n, we have

1

Ñ1Ñ2

∑
µ̃1,µ̃2

E
[
S2(µ̃1, µ̃2)1{sP-1}(µ̃1, µ̃2)1{sP-2}(µ̃1, µ̃2)

]
< 5ϵ,

if R̃1 > I(U ;RB)σ1, R̃2 > I(V ;RA)σ2, R̃1 + 1
n log

(
N̄1

)
> S(U)σ3, R̃2 + 1

n log
(
N̄2

)
> S(V )σ3,

R̃1 + R̃2 − R1 − R2 < I(U ;V )σ3, where σi for i = 1, 2, 3, is the auxiliary state defined in the

theorem.

Proof. The proof is provided in Appendix A.8

Hence there must exist a pair (µ̃1, µ̃2) such that

2
(
1− E

[
1{sP-1}(µ̃1, µ̃2)1{sP-2}(µ̃1, µ̃2))

])
+ E

[
S2(µ̃1, µ̃2)1{sP-1}(µ̃1, µ̃2)1{sP-2}(µ̃1, µ̃2)

]
< 7ϵ,

for the rates satisfying the constraints in Propositions II.35 and II.37. For the rest of the proof, we

fix (µ̃1, µ̃2) to be this pair. The dependence of functions defined in the sequel on this pair is not

made explicit for ease of notation.

Remark II.38. Since the shared randomness given by (µ̃1, µ̃2) is only used for random coding

purposes, two of the constraints in Proposition II.37, given by R̃1 +
1
n log

(
N̄1

)
> S(U)σ3 , R̃2 +

1
n log

(
N̄2

)
> S(V )σ3 , are superfluous.

For the term corresponding to S̃, we prove the following result.

Proposition II.39. For any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) sufficiently small, and any n sufficiently

large, we have

E
[
S̃1{sP-1}1{sP-2}

]
< 8ϵ,

if R̃1 > I(U ;RB)σ1 and R̃2 > I(V ;RA)σ2 , where σ1 and σ2 are auxiliary states defined in the

theorem.

Proof. The proof is provided in Appendix A.9.
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Step 3: Isolating the effect of Alice’s approximating measurement

In this step, we separately analyze the effect of approximating measurements at the two distributed

parties in the term S1. For that, we split S1 as S1 ≤ Q1 +Q2, where

Q1 =
∆
∑
zn

∥∥∥∥ ∑
un,vn

√
ρ⊗n
AB

(
ΛA
un ⊗ ΛB

vn − 1

N1

N1∑
µ1=1

A
(µ1)
un ⊗ ΛB

vn

)√
ρ⊗n
ABP

n
Z|U,V (z

n|un, vn)
∥∥∥∥
1

,

Q2 =
∆
∑
zn

∥∥∥∥ 1

N1

N1∑
µ1=1

∑
un,vn

√
ρ⊗n
AB

(
A

(µ1)
un ⊗ ΛB

vn − 1

N2

N2∑
µ2=1

A
(µ1)
un ⊗B

(µ2)
vn

)√
ρ⊗n
ABP

n
Z|U,V (z

n|un, vn)
∥∥∥∥
1

.

With this partition, the terms within the trace norm of Q1 differ only in the action of Alice’s

measurement. And similarly, the terms within the norm of Q2 differ only in the action of Bob’s

measurement. Showing that these two terms are small forms a major portion of the achievability

proof.

Analysis of Q1: To show Q1 is small, we compute rate constraints which ensure that an upper

bound to Q1 can be made to vanish in an expected sense. Furthermore, this upper bound be-

comes convenient in obtaining a single-letter characterization for the rate needed to make the term

corresponding to Q2 vanish. For this, we define J as

J =∆
∑
zn,vn

∥∥∥∥∑
un

√
ρ⊗n
AB

ΛA
un ⊗ ΛB

vn − 1

N1

N1∑
µ1=1

A
(µ1)
un ⊗ ΛB

vn

√ρ⊗n
ABP

n
Z|U,V (z

n|un, vn)
∥∥∥∥
1

. (2.50)

By defining J and using triangle inequality for block operators (which holds with equality), we

add the sub-system V to RZ, resulting in the joint system RZV , corresponding to the state σ3

as defined in the theorem. Then we approximate the joint system RZV using an approximating

sub-POVM M
(n)
A producing outputs on the alphabet Un. To make J small for all sufficiently large

n, we expect the sum of the rate of the approximating sub-POVM and common randomness, i.e.,

R̃1 + C1, to be larger than I(U ;RZV )σ3 . We seek to prove this in the following.

Proposition II.40. For any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) sufficiently small, and any n sufficiently

large, we have E [Q1] ≤ E[J ] < 2ϵ, if R̃1 + C1 > I(U ;RZV )σ3, where the auxiliary state σ3 is

defined in the theorem.

Proof. The proof is provided in Appendix A.10.
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Now we move on to bounding Q2.

Step 4: Analyzing the effect of Bob’s approximating measurement

Step 3 ensured that the sub-system RZV is close to a tensor product state in trace-norm. In

this step, we approximate the state corresponding to the sub-system RZ using the approximating

POVM M
(n)
B , producing outputs on the alphabet Vn. We proceed with the following proposition.

Proposition II.41 (Non-product Covering Lemma). For any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) suffi-

ciently small, and any n sufficiently large, we have

E
[
Q21{sP-1}1{sP-2}

]
< 4ϵ,

if R̃1 + C1 > I(U ;RZV )σ3, and R̃2 + C2 > I(V ;RZ)σ3, where the auxiliary state σ3 is defined in

the theorem.

Proof. The proof is provided in Appendix A.11.

2.5.3.6 Rate Constraints

To sum-up, we showed that the trace distance satisfies:

Ξρ⊗n
AB

(M⊗n
AB, M̃

(n)
AB(µ̃1, µ̃2)) ≤ 21ϵ,

if the following bounds hold:

R̃1 > I(U ;RB)σ1 , R̃2 > I(V ;RA)σ2 ,

R̃1 + C1 > I(U ;RZV )σ3 , R̃2 + C2 > I(V ;RZ)σ3 ,

(R̃1 −R1) + (R̃2−R2) < I(U ;V )σ3 ,

R̃1 ≥ R1 ≥ 0, R̃2 ≥ R2 ≥0, C1 ≥ 0, C2 ≥ 0. (2.51)

Let us denote the above achievable rate-region by R1. By doing an exact symmetric analysis, but

by replacing the first encoder by a product distribution instead of the second encoder in S1 (as

defined in (2.49)), all the constraints remain the same, except that the constraints on R̃1 +C1 and
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R̃2 + C2 change as follows

R̃1 + C1 ≥ I(U ;RZ)σ3 , R̃2 + C2 ≥ I(V ;RZU)σ3 . (2.52)

Let us denote the above region byR2. By time sharing between the any two points ofR1 andR2 one

can achieve any point in the convex closure of (R1
⋃
R2). The following lemma gives a symmetric

characterization of the closure of convex hull of the union of the above achievable rate-regions.

Lemma II.42. For the above defined rate regions R1 and R2, we have

R3 = Convex Closure(R1

⋃
R2),

where R3 is given by the set of all the sextuples (R̃1, R̃2, R1, R2, C1, C2) satisfying the following

constraints:

R̃1 ≥ I(U ;RB)σ1 , R̃2 ≥ I(V ;RA)σ2 ,

R̃1 + C1 ≥ I(U ;RZ)σ3 , R̃2 + C2 ≥ I(V ;RZ)σ3 ,

R̃1 + R̃2 + C1 + C2 ≥ I(U ;RZ)σ3 + I(V ;RZ)σ3 + I(U ;V |RZ)σ3 ,

R̃1+R̃2 − (R1 +R2) ≤ I(U ;V )σ3

0 ≤R1 ≤ R̃1 0 ≤ R2 ≤ R̃2 C1 ≥ 0, C2 ≥ 0. (2.53)

Proof. The proof follows from elementary convex analysis.

Lemma II.43. Let R̄3 denote the set of all quadruples (R1, R2, C1, C2) for which there exists

(R̃1, R̃2) such that the sextuple (R1, R2, C1, C2, R̃1, R̃2) satisfies the inequalities in (2.53). Let RF

denote the set of all quadruples (R1, R2, C1, C2) that satisfy the inequalities in (2.36) given in the

statement of the theorem. Then, R̄3 = RF .

Proof. This follows by Fourier-Motzkin elimination Ziegler (2012).
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2.6 Conclusion

We have developed a distributed measurement compression protocol where we introduced the

technique of mutual covering and random binning of distributed measurements. Using these tech-

niques, a set of communication rate-pairs and common randomness rate is characterized for faith-

ful simulation of distributed measurements. We further developed an approach for a distributed

quantum-to-classical rate-distortion theory, and provided single-letter inner and outer bounds. As

a part of future work, we intend to improve the outer bound by providing a dimensionality bound

on the auxiliary Hilbert space involved in the expression. In the next chapter, we aim to improve

the achievable rate region by using structured POVMs based on algebraic codes.
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CHAPTER III

Algebraic Structured Distributed Measurement Compression

3.1 Introduction

We begin this chapter by asking the following question: If one is interested in solely recon-

structing a given function of the distributively stored measurement outcomes, can the rate of

communication be further reduced? This chapter answers this in affirmative. For this, we employ

structured coding techniques and impose further structure on these approximating POVMs. This

ensures that the joint decoder (Charlie) is able to reconstruct a lower dimensional quantum state

with minimal use of the classical communication resource. In particular, the structure of the POVM

is aligned to match with the structure of the function being computed.

As been highlighted earlier, there are two conventional approaches for deriving performance

limits of communication problems in the stationary memoryless setting. One is based on random

coding involving IID code ensembles, and characterizing the performance in terms of single-letter

information quantities. And the other is based on random coding in the one-shot setting, and

characterizing the performance using smooth entropic quantities. Since there is no global structure

in the codes in these ensemble, we refer to them as random coding techniques based on unstruc-

tured code ensembles. The work by Korner-Marton Korner and Marton (1979) demonstrated that

unstructured code ensembles may not always achieve optimality for distributed multi-terminal set-

tings. In particular, this work showed sub-optimality for the problem of classical distributed lossless

compression with the objective of computing the sum of the sources. The standard approach that

conventional codes take is to recover the individual messages and then compute the function. How-

ever, it is known that this technique cannot characterize the performance limit. Korner and Marton
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considered a special binary symmetric case, and using random linear codes (based on finite fields)

derived the performance limits in terms of single-letter information quantities. Their idea was to

perform coding in a way that allows computing the function directly without the need to recover

each individual messages.

Traditionally, algebraic-structured codes have been used extensively in information coding prob-

lems toward achieving computationally efficient (polynomial-time) encoding and decoding algo-

rithms. However, in multi-terminal communication problems, even if computational complexity is

a non-issue (which is generally the assumption in an information theoretic setting), there are many

instances were random algebraic structured codes can be preferred. The works in Krithivasan and

Pradhan (2011); Nazer and Gastpar (2007); Philosof and Zamir (2009); Jafarian and Vishwanath

(2012) have considered multi-terminal setups and showed that random algebraic structured codes

outperform random unstructured codes in terms of achieving improved asymptotic rate regions.

Motivated by this, in this chapter, we consider the quantum distributed faithful measurement

simulation problem in the memoryless setting using algebraic structured coding techniques. There

are two main challenges in using these algebraic structured codes toward an asymptotic analysis in

quantum information theory. The first challenge is to be able to induce arbitrary empirical single-

letter distributions. For example, if we were to send codewords from a linear code with uniform

probability, then the induced empirical distribution of codeword symbols (single-letter distribution

on the symbols of the codewords) is uniform. To address this challenge, we use a collection of

cosets of a linear code called Unionized Coset Codes (UCCs) Pradhan et al. (2021). The second

challenge is that unlike the random unstructured codes, the codewords generated from a random

linear code are only pairwise-independent Gallager (1968). This renders the some of techniques

that are developed for standard measurement compression problem unusable. These mainly include

the technique of operator Chernoff bound and the covering lemma. Similarly, the mutual covering

and the mutual packing lemmas developed in Chapter II also require a new analysis. Since our

approach relies on the use of UCCs for generating the approximating POVMs, the binning of these

POVM elements is performed in a correlated fashion as governed by these structured codes. This

is in contrast to the common technique of independent binning. Due to the correlated binning, the

pairwise-independence issue gets exacerbated.

We address these challenges using three main ideas summarized as follows:
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• Random structured generation of pruned POVMs - We generate a collection of alge-

braic structured approximating POVMs randomly using the above described UCC technique,

and then prune them. This pruning ensures that these POVMs form a positive resolution of

identity, and thus eliminates any need for the operator Chernoff inequality. However, such

pruning comes at the cost of additional approximating error. To bound the approximating

error caused by pruning the POVMs, we develop a new operator inequality which provides

a handle to convert the pruning error in the form of covering error expression which is dealt

within the next idea.

• Covering lemma with change of measure for pairwise-independent ensemble - Since

the traditional covering lemma is based on the Chernoff inequality, we develop an alternative

form of the aforementioned covering lemma (Wilde, 2013a, Lemma 17.2.1). This alternative

form is based on a second-order analysis using the operator trace inequalities and hence

requires the operators to be only pairwise-independent.

• Multi-partite Packing Lemma - We develop a binning technique for performing computa-

tion on the fly so as to achieve a low dimensional reconstruction of a function at the location

of Charlie. In an effort towards analysing this binning technique, we develop a multi-partite

packing Lemma for the structured POVMs.

Combining these techniques, we provide a multi-party distributed faithful simulation and func-

tion computation protocol in a quantum information theoretic setting. We provide a characteriza-

tion of the asymptotic performance limit of this problem in terms of an inner bound expressed using

computable single-letter quantum information quantities, which is the main result of the paper (see

Theorem III.22). This new inner bound subsumes the inner bound developed in Theorem II.33 of

Chapter II, derived using random unstructured coding techniques. Further, we identify examples

where the current inner bound strictly improves upon the former.

The organization of the paper is as follows. In Section 3.2, we set the notation, state requisite

definitions, and also provide related results. In Section 3.3, for pedagogical reasons, we consider

the point-to-point setup, and provide a theorem characterizing the rate-region using algebraic

structured codes, while developing a new Covering lemma with change of measure for pairwise-

independent ensembles in Section 3.3.2. In Section 3.4, we state our main result of this chapter on
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the distributed measurement compression and provide the theorem (Theorem III.22) characterizing

the rate-region. We prove the main result (Theorem III.22) in Section 3.5 using the point-to-point

result as a building block. Finally, we conclude the chapter in Section 3.6.

3.2 Preliminaries

Notation: We use the notation developed in Chapters 1.5 and II. In addition, let Fp denote the

prime finite field of size p with addition operation given by +.

We recall Lemma II.11 below for convenience.

Lemma III.1. Given a density operator ρAB ∈ D(HA ⊗HB), a sub-POVM MY =∆
{
ΛB
y : y ∈ Y

}
acting on HB, for some set Y, and any Hermitian operator ΓA acting on HA, we have

∑
y∈Y

∥∥√ρAB

(
ΓA ⊗ ΛB

y

)√
ρAB

∥∥
1
≤
∥∥√ρAΓA√ρA

∥∥
1
, (3.1)

with equality if
∑
y∈Y

ΛB
y = I, where ρA = TrB{ρAB}.

Below we present a lemma which will be used extensively in the sequel.

Definition III.2 (Pruning Operator). Consider an operator A ≥ 0 acting on Hilbert space HA.

We say that a projector P prunes A with respect to Identity IA on HA, if P is a projector on to

the non-negative eigenspace of IA −A. Further, observe that Tr{IA − P} ≤ Tr{A}.

Lemma III.3. (Pruning Trace Inequality) Consider the above random operator X ≥ 0 acting on

a Hilbert space HA. Further, suppose E[X] ≤ (1− η)IA for η ∈ (0, 1). Let P be a pruning operator

for X with respect to IA, as in Definition III.2. Then, we have

E[Tr{IA − P}] ≤ 1

η
E [∥X − E[X]∥1] .

Proof. Note that X ≥ 0, implies E[X] ≥ 0. Therefore, if P prunes X, then PXP ≤ P , and

P (X − E[X])P ≤ P , and thus P also prunes X − E[X]. This implies

Tr{IA − P} ≤ Tr{X − E[X]} ≤ Tr{|X − E[X]|} = ∥X − E[X]∥. (3.2)
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3.3 Point-to-point Measurement Compression using Structured Random POVMs

Before presenting the main result of this chapter, i.e., a distributed measurement compression

theorem using algebraic structured code ensembles, as a pedagogical first step, we consider the

non-feedback measurement compression problem in the point-to-point setup. This problem was

addressed in Wilde et al. (2012), where the performance limits were derived using unstructured

random POVM ensembles. An alternate approach for this problem was also developed in Chapter

II (Section 2.4) using unstructured coding ensembles. Here, we redrive the performance limit using

random algebraic structured POVM ensembles. Since the algebraic structured codes can only

induce a uniform distribution, we consider a collection of cosets of a random linear code for this

task. The problem setup is described as follows. An agent (Alice) performs a measurement M on a

quantum state ρ, and sends a set of classical bits to a receiver (Bob). Bob has access to additional

private randomness, and he is allowed to use this additional resource to perform any stochastic

mapping of the received classical bits. The overall effect on the quantum state can be assumed to

be a measurement which is a concatenation of the POVM Alice performs and the stochastic map

Bob implements. This problem serves as a building block toward the proof of the main result of

this chapter (Theorem III.22). Formally, the problem is stated as:

3.3.1 Problem Formulation and Main Result

Definition III.4. For a given finite set Z, and a Hilbert space H, a measurement simulation

protocol with parameters (n,Θ, N) is characterized by

1) a collection of codes C(µ) ⊆ Wn, for µ ∈ [1, N ], such that |C(µ)| ≤ Θ, and W, a finite set, is

called the code alphabet,

2) a collection of Alice’s sub-POVMs M̃ (µ), µ ∈ [1, N ] each acting on H⊗n and with outcomes in

C(µ).

3) a collection of Bob’s classical stochastic maps P (µ)(zn|wn) for all wn ∈ C(µ), zn ∈ Zn and

µ ∈ [1, N ].
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The overall sub-POVM of this protocol, given by M̃ , is characterized by the following operators:

Λ̃zn =∆
1

N

N∑
µ=1

∑
wn∈C(µ)

P (µ)(zn|wn) Λ
(µ)
wn , ∀zn ∈ Zn, (3.3)

where {Λ(µ)
wn : wn ∈ C(µ)} is the set of operators corresponding to the sub-POVM M̃ (µ). Let C(µ)(i)

denote the ith codeword of C(µ).

In the above definition, Θ characterizes the amount of classical bits communicated from Alice

to Bob, and the amount of common randomness is determined by N , with µ being the common

randomness bits distributed among the parties. The classical stochastic mappings induced by

P (µ) represents the action of Bob on the received classical bits. In building the code, we use the

Unionized Coset Code (UCC) Pradhan et al. (2021) defined below. These codes involve two layers

of codes (i) a coarse code and (ii) a fine code. The coarse code is a coset of the linear code and the

fine code is the union of several cosets of the linear code.

For a fixed k×n matrix G ∈ Fk×n
p with k ≤ n, and p being a prime number, and a 1×n vector

B ∈ Fn
p , define the coset code as

C(G,B) =∆ {xn : xn = akG+B, for some ak ∈ Fk
p}. (3.4)

In other words, C(G,B) is a shift of the row space of the matrix G. The row space of G is a linear

code. If the rank of G is k, then there are pk codewords in the coset code.

Definition III.5. An (n, k, l, p) UCC is characterized by a pair (G, h) consisting of a k×n matrix

G ∈ Fk×n
p , and a mapping h : Fl

p → Fn
p , and the code is the following union:

⋃
m∈Fl

p
C(G, h(m)),

where C(·, ·) is defined in (3.4).

Definition III.6. Given a finite set Z, and a Hilbert space H, an (n,Θ, κ,N, p) UCC-based

measurement simulation protocol is a pair of (n,Θ, N) measurement simulation protocol and a

collection of N UCCs with parameters (n, k, l, p) characterized by {(G, h(µ))}µ∈[1,N ] such that (i)

the code alphabet of the protocol W ⊆ Fp (with suitable relabeling), (ii) κ = pk, Θ = pl, and (iii)

for all m ∈ Fl
p, we have C(µ)(m) ∈ {akG+ h(µ)(m) : ak ∈ Fk

p}.

Definition III.7. The UCC grand ensemble is the ensemble of N UCCs where G, and {h(µ)}µ∈[1,N ]
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are chosen randomly, independently and uniformly, where the latter is chosen from the set of all

mappings with replacement.

Definition III.8. Given a POVM M acting on H, and a density operator ρ ∈ D(H), a tuple

(R,R1, C, p) is said to be achievable using the grand UCC ensemble, if for all ϵ > 0 and for all

sufficiently large n, there exists an ensemble of UCC-based measurement simulation protocols with

parameters (n,Θ, κ,N, p) (based on the UCC grand ensemble) such that their overall sub-POVM

M̃ is ϵ-faithful to M⊗n with respect to ρ⊗n in the expected sense:

E

[∑
zn

∥∥∥√ρ⊗n(Λzn−Λ̃zn)
√
ρ⊗n

∥∥∥+Tr{I −
∑
zn

Λ̃zn}

]
≤ ϵ,

where the expectation is with respect to the ensemble, and

1

n
log2Θ ≤ R+ ϵ,

∣∣∣∣ 1n log κ−R1

∣∣∣∣ ≤ ϵ,
1

n
log2N ≤ C + ϵ.

Define RUCC as RUCC =∆ {(R,R1, C, p) : (R,R1, C, p) is achievable using the UCC grand ensem-

ble}.

Remark III.9. The appearance of the modulus in the second constraint needs justification. Note

that R is the rate of transmission of information from Alice to Bob and C is the rate of the common

information shared between them. So if (R,R1, C, p) is achievable, then it is clear that any (R̃, C̃)

is also achievable if R̃ ≥ R and C̃ ≥ C. However R1 is a parameter of the UCC grand ensemble,

and there is no natural order on R1, i.e., it does not naturally follows that (R, R̃1, C, p) is achievable

for all R̃1 ≥ R1.

The following theorem characterizes the achievable rate region which characterizes the asymp-

totic performance of the UCC grand ensemble.

Theorem III.10. For any density operator ρ ∈ D(H) and any POVM M =∆ {Λz}z∈Z acting

on the Hilbert space H, a tuple (R,R1, C, p) is achievable using the UCC grand ensemble, i.e.,

(R,R1, C, p) ∈ RUCC if there exist a POVM M̄ =∆ {Λ̄w}w∈W , with |W| ≤ p, and a stochastic map

PZ|W : W → Z such that Λz =
∑

w∈W PZ|W (z|w)Λ̄w, ∀z ∈ Z, and the following holds:

R1 +R ≥ I(W ;R)σ − S(W )σ + log p,
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R1 +R+ C ≥ I(W ;RZ)σ − S(W )σ + log p,

R1 ≤ log p− S(W )σ, (3.5)

and R1, R, C ≥ 0, where σRWZ =∆
∑

w,z

√
ρΛ̄w

√
ρ⊗ PZ|W (z|w) |w⟩⟨w| ⊗ |z⟩⟨z| , for some orthogonal

sets {|w⟩}w∈W and {|z⟩}z∈Z .

Remark III.11. Choosing R1 = log p − S(W )σ, we recover the rate region of Wilde et. al (Wilde

et al., 2012, Theorem 9).

Proof. The proof is provided in Section 3.3.3.

3.3.2 Covering Lemma with Change of Measure for Pairwise-Independent Ensemble

The proof of the theorem is based on a construction of algebraic-structured POVM ensemble

where the elements are only pairwise independent and not mutually independent. To analyze these

POVMs we retreat back to first principles and develop a new one-shot Covering Lemma based on a

change of measure technique and a second order analysis. This lemma, which can be of independent

interest, is one of the main contributions of this work. Although we have developed this lemma

in a one-shot setting, this forms a minor component in the proof of the faithful simulation result,

which is realized in the n-letter setting using asymptotically good coset codes.

Lemma III.12 (Covering Lemma). Let {λx, σx}x∈X be an ensemble, with σx ∈ D(H) for all x ∈ X ,

X being a finite set, and σ =
∑

x∈X λxσx. Further, suppose we are given a total subspace projector

Π and a collection of codeword subspace projectors {Πx}x∈X which satisfy the following hypotheses

Tr{Πσx} ≥ 1− ϵ, (3.6a)

Tr{Πxσx} ≥ 1− ϵ, (3.6b)

∥Π
√
σ∥21 ≤ D, (3.6c)

ΠxσxΠx ≤ 1

d
Πx, and (3.6d)

ΠxσxΠx ≤ σx. (3.6e)

for some ϵ ∈ (0, 1) and d < D. Let M be a finite non-negative integer. Additionally, assume
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that there exists some set X̄ containing X , with σx =∆ 0 (null operator) and λx =∆ 0 for x ∈ X̄\X .

Suppose {µx̄}x̄∈X̄ be any distribution on the set X̄ such that the distribution is {λx}x∈X is absolutely

continuous with respect to the distribution {µx̄}x̄∈X̄ . Further, assume that λx/µx ≤ κ for all x ∈ X .

Let a random covering code C =∆ {Cm}m∈[1,M ] be defined as a collection of codewords Cm that are

chosen pairwise independently according to the distribution {µx̄}x̄∈X̄ . Then we have

EC

∥∥∥∑
x∈X̄

λxσx −
1

M

M∑
m=1

λCm

µCm

σCm

∥∥∥
1

≤√ κD

Md
+ 2δ(ϵ), (3.7)

where δ(ϵ) = 4
√
ϵ. Futhermore, for σ̃x defined as σ̃x =∆ ΠΠxσxΠxΠ, we have

EC

∥∥∥∑
x∈X̄

λxσ̃x −
1

M

M∑
m=1

λCm

µCm

σ̃Cm

∥∥∥
1

 ≤
√
κD

Md
. (3.8)

Proof. The proof is provided in Appendix B.1

3.3.3 Proof of the Main Result (Theorem III.10) Using UCC Code Ensemble

As stated earlier, the main objective of proving this theorem is to build a framework for the

main theorem of the paper (Theorem III.22). In doing so, we observe that the structured POVMs

constructed below are only pairwise independent. Since the results in Atif et al. (2021a) are based

on the assumption that approximating POVMs are all mutually independent, the proof below

becomes significantly different from Atif et al. (2021a).

Suppose there exist a POVM M̄ =∆ {Λ̄w}w∈W and a stochastic map PZ|W : W → Z, such that

M =∆ {Λz}z∈Z can be decomposed as

Λz =
∆
∑
w∈W

PZ|W (z|w)Λ̄w, ∀z ∈ Z. (3.9)

We generate the canonical ensemble corresponding to M̄ as

λw =∆ Tr{Λ̄wρ}, ρ̂w =∆
1

λw

√
ρΛ̄w

√
ρ. (3.10)

Let T (n)
δ (W ) denote a δ-typical set associated with the probability distribution induced by {λw}w∈W ,
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corresponding to a random variable W . Let Πρ denote the δ-typical projector (as in (Wilde, 2013a,

Def. 15.1.3)) corresponding to the density operator ρ =∆
∑

w∈W λwρ̂w, and Πwn denote the strong

conditional typical projector (as in (Wilde, 2013a, Def. 15.2.4)) corresponding to the canonical

ensemble {λw, ρ̂w}w∈W . For each wn ∈ T (n)
δ (W ), define

ρ̃wn =∆ ΠρΠwn ρ̂wnΠwnΠρ,

and ρ̃wn = 0, for wn /∈ T (n)
δ (W ), with ρ̂wn =∆

⊗
i ρ̂wi

.

3.3.3.1 Construction of Structured POVMs

We now construct random structured POVM elements. Fix a block length n > 0, a pos-

itive integer N, and a finite field Fp with p ≥ |W|. Without loss of generality, we assume

W =∆ {0, 1, · · · , |W| − 1}. Furthermore, we assume λw = 0 for all |W| − 1 < w < p. From

now on, we assume that W takes values in Fp with this distribution. Let µ ∈ [1, N ] denote the

common randomness shared between the encoder and decoder. In building the code, we use the

UCCs Pradhan et al. (2021) as defined in Definition III.5 .

For every µ ∈ [1, N ], consider a UCC (G,h(µ)) with parameters (n, k, l, p). For each µ, the

generator matrix G along with the function h(µ) generates pk+l codewords. Each of these codewords

are characterized by a triple (a, i, µ), where a ∈ Fk
p and i ∈ Fl

p correspond to the coarse code and

the coset indices, respectively. Let Wn,(µ)(a, i) denote the codewords associated with the encoder

(Alice), generated using the above procedure, where

Wn,(µ)(a, i) = aG + h(µ)(i). (3.11)

Now, construct the operators

Ā
(µ)
wn =∆ αwn

(√
ρ⊗n

−1
ρ̃wn

√
ρ⊗n

−1
)
, αwn =∆

1

(1 + η)

pnλwn

pk+l
, (3.12)

with η ∈ (0, 1) being a parameter to be determined. Note that, following the definition of ρ̃wn ,

we have Ā
(µ)
wn = 0 for wn /∈ T (n)

δ (W ). Having constructed the operators Ā
(µ)
wn , we normalize these
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operators, so that they constitute a valid sub-POVM. To do so, we define

Σ(µ) =∆
∑
wn

γ
(µ)
wn Ā

(µ)
wn , γ

(µ)
wn =∆ |{(a, i) :Wn,(µ)(a, i) = wn}|.

Now, we define Πµ as the pruning operator for Σ(µ) with respect to Πρ using Definition III.2. Note

that, the pruning operator Πµ depends on the pair (G,h(µ)). For ease of analysis, the subspace

of Πµ is restricted to Πρ and hence Πµ is a projector onto a subspace of Πρ. Using these pruning

operators, for each µ ∈ [1, N ], construct the sub-POVM M̃ (n,µ) as

M̃ (n,µ) =∆ {γ(µ)wnA
(µ)
wn}wn∈Wn , (3.13)

where A
(µ)
wn =∆ ΠµĀ

(µ)
wnΠµ. Further, using Πµ we have

∑
wn γ

(µ)
wnA

(µ)
wn = ΠµΣ(µ)Πµ ≤ Πρ ≤ I, and

thus M̃ (n,µ) is a valid sub-POVM for all µ ∈ [1, N ]. Moreover, the collection M̃ (n,µ) is completed

using the operators I −
∑

wn∈Wn γ
(µ)
wnA

(µ)
wn .

3.3.3.2 Binning of POVMs

The next step is to bin the above constructed sub-POVMs. Since, UCC is a union of several

cosets, we associate a bin to each coset, and hence place all the codewords of a coset in the same

bin. For each i ∈ Fl
p, let B(µ)(i) =∆ C(G,h(µ)(i)) denote the ith bin. Further, for all i ∈ Fl

p, we

define

Γ
A,(µ)
i =∆

∑
wn∈Wn

∑
a∈Fk

p

A
(µ)
wn1{aG+h(µ)(i)=wn}.

Using these operators, we form the collection M (n,µ) =∆ {ΓA,(µ)
i }i∈Fl

p
. Note that if the collection

M̃ (n,µ) is a sub-POVM for each µ ∈ [1, N ], then so is the collection M (n,µ), which is due to the

relation
∑

i∈Fl
p
Γ
A,(µ)
i =

∑
wn∈Wn γ

(µ)
wnA

(µ)
wn ≤ I. To complete M (n,µ), we define Γ

A,(µ)
0 as Γ

A,(µ)
0 =

I −
∑

i Γ
A,(µ)
i

1. Now, we intend to use the completions [M (n,µ)] as the POVM for the encoder.

1Note that Γ
A,(µ)
0 = I −

∑
i Γ

A,(µ)
i = I −

∑
wn∈T (n)

δ
(W )

γ
(µ)
wnA

(µ)
wn .
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3.3.3.3 Decoder mapping

We create a decoder which, on receiving the classical bits from the encoder, generates a sequence

Wn ∈ Fn
p as follows. The decoder first creates a set D

(µ)
i and a function F (µ) defined as

D
(µ)
i =∆

{
ã ∈ Fk

p : ãG + h(µ)(i) ∈ T (n)
δ (W )

}
and

F (µ)(i) =∆


ãG + h(µ)(i) if D

(µ)
i ≡ {ã}

wn
0 otherwise ,

(3.14)

where wn
0 is an arbitrary sequence in Fn

p\T
(n)
δ (W ). Further, F (µ)(i) = wn

0 for i = 0. Given this and

the stochastic processing PZ|W , we obtain the approximating sub-POVM M̂ (n) with the following

operators.

Λ̂zn =
∆ 1

N

N∑
µ=1

∑
wn∈Fn

p

∑
i:F (µ)(i)=wn

Γ
A,(µ)
i Pn

Z|W (zn|wn), ∀zn ∈ Zn.

The generator matrix G and the function h(µ) are chosen randomly uniformly and independently.

3.3.3.4 Trace Distance

In what follows, we show that M̂ (n) is ϵ-faithful to M⊗n with respect to ρ⊗n (according to

Definition I.1), where ϵ > 0 can be made arbitrarily small. More precisely, using (3.9), we show

that, E[K] ≤ ϵ, where

K =∆
∑
zn

∥∥∥∥∥∑
wn

√
ρ⊗nΛ̄wn

√
ρ⊗nPn

Z|W (zn|wn)−
√
ρ⊗nΛ̂zn

√
ρ⊗n

∥∥∥∥∥
1

, (3.15)

where the expectation is with respect to the codebook generation.

Step 1: Isolating the effect of error induced by not covering

Consider the second term within K, which can be written as

√
ρ⊗nΛ̂zn

√
ρ⊗n =

1

N

∑
µ

∑
i

√
ρ⊗nΓ

A,(µ)
i

√
ρ⊗nPn

Z|W (zn|F (µ)(i))
∑
wn

1{F (µ)(i)=wn}︸ ︷︷ ︸
=1

= T + T̃ ,
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where

T =∆
1

N

∑
µ

∑
i>0

√
ρ⊗nΓ

A,(µ)
i

√
ρ⊗nPn

Z|W (zn|F (µ)(i)), T̃ =∆
1

N

∑
µ

√
ρ⊗nΓ

A,(µ)
0

√
ρ⊗nPn

Z|W (zn|wn
0 ).

Hence, we have K ≤ S + S̃, where

S =∆
∑
zn

∥∥∥∥∥∑
wn

√
ρ⊗nΛ̄wn

√
ρ⊗nPn

Z|W (zn|wn)− T

∥∥∥∥∥
1

, (3.16)

and S̃ =∆
∑

zn ∥T̃∥1. Note that S̃ captures the error induced by not covering the state ρ⊗n. We

further bound S̃ as

S̃ ≤ 1

N

∑
µ

∑
zn

Pn
Z|W (zn|wn

0 )
∥∥∥√ρ⊗nΓ

A,(µ)
0

√
ρ⊗n

∥∥∥
1
≤ 1

N

∑
µ

∥∥∥∥∥√ρ⊗n(I −
∑
wn

γ
(µ)
wnA

(µ)
wn )
√
ρ⊗n

∥∥∥∥∥
1

,

which gives S̃ ≤ S̃1 + S̃2 where

S̃1 =
∆ 1

N

∑
µ

∥∥∥∥∥∑
wn

λwn ρ̂wn −
∑
wn

√
ρ⊗nγ

(µ)
wn Ā

(µ)
wn

√
ρ⊗n

∥∥∥∥∥
1

,

S̃2 =
∆ 1

N

∑
µ

∑
wn

∥∥∥√ρ⊗nγ
(µ)
wn

(
Ā

(µ)
wn −A

(µ)
wn

)√
ρ⊗n

∥∥∥
1
.

To provide a bound for the term S̃1, we (i) develop a n-letter version of Lemma III.12 and (ii)

provide a proposition bounding the term corresponding to S̃1, using this n-letter lemma.

Lemma III.13. Let {λw, θw}w∈W be an ensemble, with θw ∈ D(H) for all w ∈ W, W ⊆ Fp for

some finite prime p. Then, for any ϵc ∈ (0, 1), and for any η, δ ∈ (0, 1) sufficiently small, and any

n sufficiently large, we have

E
[∥∥∥∥∑

wn

λwnθwn − pn

pk+l

1

N ′

N ′∑
µ=1

∑
wn

∑
a,m

λwn

(1 + η)
θwn1{Wn,(µ)(a,m)=wn}

∥∥∥∥
1

]
≤ ϵc, (3.17)

if
(
k+l
n

)
log p+ 1

n logN ′ > I(W ;R)σθ
−S(W )σθ

+ log p, where θwn =∆
⊗n

i=1 θwi and λwn =∆ Πn
i=1λwi,

σRW
θ =∆

∑
w∈W λwθw ⊗ |w⟩⟨w|, for some orthogonal set {|w⟩}w∈W , and {Wn,(µ)(a,m) : a ∈ Fk

p,m ∈

Fl
p, µ ∈ [2nC ]} are as defined in (3.11), with G and h(µ) generated randomly uniformly and inde-

pendently.
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Proof. The proof of the lemma is provided in Appendix B.2

Now we provide the following proposition.

Proposition III.14. For any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) sufficiently small, and any n sufficiently

large, we have we have E[S̃1] ≤ ϵ, if k+l
n log p > I(W ;R)σ −S(W )σ + log p, where σ is the auxiliary

state defined in the theorem.

Proof. The proof is provided in Appendix B.3.

Now we provide a bound for S̃2. For that, we first develop another n-letter lemma as follows.

Lemma III.15. For γ
(µ)
wn , Ā

(µ)
wn ,and A

(µ)
wn as defined above, we have

∑
wn

γ
(µ)
wn

∥∥∥√ρ⊗n
(
Ā

(µ)
wn −A

(µ)
wn

)√
ρ⊗n

∥∥∥
1
≤ 2 23nδρ

(
H0 +

√
(1− ε)

(1 + η)

√
H1 +H2 +H3

)
,

where

H0 =
∆
∣∣∣∆(µ)− E[∆(µ)]

∣∣∣ , H1 =
∆ Tr

{
(Πρ −Πµ)

∑
wn

λwn ρ̃wn

}
,

H2 =
∆

∥∥∥∥∥∑
wn

λwn ρ̃wn − (1− ε)
∑
wn

αwnγ
(µ)
wn

E[∆(µ)]
ρ̃wn

∥∥∥∥∥
1

,

H3 =
∆ (1− ε)

∥∥∥∥∥∑
wn

αwnγ
(µ)
wn

∆(µ)
ρ̃wn −

∑
wn

αwnγ
(µ)
wn

E[∆(µ)]
ρ̃wn

∥∥∥∥∥
1

, (3.18)

∆(µ) =
∑

wn∈T (n)
δ (W )

αwnγ
(µ)
wn , ε =

∆ ∑
wn /∈T (n)

δ (W )
λwn and δρ(δ) ↘ 0 as δ ↘ 0.

Proof. The proof is provided in Appendix B.4

Using the above lemma on S̃2 gives

S̃2 ≤
2

N

N∑
µ=1

23nδρ

(
H0 +

√
(1− ε)

(1 + η)

√
H1 +H2 +H3

)
.

Let us first consider H1. By observing
∑

wn λwn ρ̃wn ≤ Πρρ
⊗nΠρ ≤ 2−n(S(ρ)−δρ)Πρ, we bound H1

as H1 ≤ 2−n(S(ρ)−δρ)Tr{(Πρ −Πµ)}. Note that

E[Σ(µ)] = E

[∑
wn

αwnγ
(µ)
wn

√
ρ⊗n

−1
ρ̃wn

√
ρ⊗n

−1

]
=

1

(1 + η)

∑
wn

λwn

√
ρ⊗n

−1
ρ̃wn

√
ρ⊗n

−1
≤ Πρ

(1 + η)
.
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Now, we use the Pruning Trace Inequality developed in Lemma III.3 on Σ(µ), with η ∈ (0, 1) to

obtain

E[H1] ≤ 2−n(S(ρ)−δρ) (1 + η)

η
E
[
∥Σ(µ) − E[Σ(µ)]∥1

]
≤ 2−n(S(ρ)−δρ) (1 + η)

η

∥∥∥Πρ

√
ρ⊗n

−1
∥∥∥
∞
E

[∥∥∥∥∥∑
wn

αwnγ
(µ)
wn ρ̃wn − E

[∑
wn

αwnγ
(µ)
wn ρ̃wn

]∥∥∥∥∥
1

]∥∥∥Πρ

√
ρ⊗n

−1
∥∥∥
∞

≤ 22nδρ
(1 + η)

η
E

∥∥∥∥∥∥
∑
wn

λwn ρ̃wn

(1 + η)
− 1

(1 + η)

pn

pk+l

∑
wn

∑
a,i

λwn ρ̃wn1{Wn,(µ)(a,i)=wn}

∥∥∥∥∥∥
1


= 22nδρ

(1− ε)

η
E[H̃], (3.19)

where the second inequality follows from Hólders inequality, and the equality follows by defining

H̃ as

H̃ =∆

∥∥∥∥∥∥
∑
wn

λwn

(1− ε)
ρ̃wn − pn

pk+l

∑
wn

∑
a,i

λwn

(1− ε)
ρ̃wn1{Wn,(µ)(a,i)=wn}

∥∥∥∥∥∥
1

. (3.20)

Similarly, using E[∆(µ)] = (1−ε)
(1+η) , H2 can be simplified as

H2 =

∥∥∥∥∥∥
∑
wn

λwn ρ̃wn − pn

pk+l

∑
wn

∑
a,i

λwn ρ̃wn1{Wn,(µ)(a,i)=wn}

∥∥∥∥∥∥
1

= (1− ε)H̃. (3.21)

Now we consider H3 and convert it into a similar expression as H0.

H3 ≤ (1− ε)
∑

wn∈T (n)
δ (W )

αwnγ
(µ)
wn

∣∣∣∣ 1

∆(µ)
− 1

E[∆(µ)]

∣∣∣∣ = (1 + η)
∣∣∣∆(µ) − E[∆(µ)]

∣∣∣ = (1 + η)H0. (3.22)

Using the above simplification and the concavity of square-root function we obtain:

E[S̃2] ≤
2

N
23nδρ

N∑
µ=1

(
E[H0] +

√
(1− ε)

(1 + η)

√
(1− ε)

(
22nδρ

η
+ 1

)
E[H̃] + (1 + η)E[H0]

)

≤ 2

N
23nδρ

N∑
µ=1

(
E[H0] +

(1− ε)

(1 + η)

√(
22nδρ

η
+1

)
E[H̃] +

√
(1− ε)

(1 + η)

√
E[H0]

)
.

The following proposition provides a bound on the above term.

87



Proposition III.16. For any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) sufficiently small, and any n sufficiently

large, we have E
[
S̃2

]
≤ ϵ, if k+l

n log p > I(W ;R)σ − S(W )σ + log p, where σ is the auxiliary state

defined in the theorem.

Proof. The proof is provided in Appendix B.5

Remark III.17. The term corresponding to the operators that complete the sub-POVMs M (n,µ),

i.e., I −
∑

wn∈T (n)
δ (W )

γ
(µ)
wnA

(µ)
wn is taken care in T̃ . The expression T excludes these completing

operators.

Step 2: Isolating the effect of error induced by binning

For this, we simplify T as

T =
1

N

∑
µ

∑
wn

∑
i>0

∑
a∈Fk

p

√
ρ⊗nA

(µ)
wn

√
ρ⊗nPn

Z|W (zn|F (µ)(i))1{aG+h(µ)(i)=wn}.

We substitute the above expression into S defined in (3.16), and isolate the effect of binning by

adding and subtracting an appropriate term within S and applying triangle inequality to obtain

S ≤ S1 + S2, where

S1 =
∆
∑
zn

∥∥∥∥∥∑
wn

√
ρ⊗n

(
Λ̄wn − 1

N

∑
µ

γ
(µ)
wnA

(µ)
wn

)√
ρ⊗nPn

Z|W (zn|wn)

∥∥∥∥∥
1

,

S2 =
∆
∑
zn

∥∥∥∥∥∥ 1

N

∑
µ

∑
a,i>0

∑
wn

√
ρ⊗nA

(µ)
wn

√
ρ⊗n1{aG+h(µ)(i)=wn}

(
Pn
Z|W (zn|wn)− Pn

Z|W

(
zn|F (µ)(i)

))∥∥∥∥∥∥
1

,

where F (µ)(·) is as defined in (3.14). Note that the term S1 characterizes the error introduced by

approximation of the original POVM with the collection of approximating sub-POVM M̃ (n,µ), and

the term S2 characterizes the error caused by binning this approximating sub-POVM. In this step,

we analyze S2 and prove the following proposition.

Proposition III.18. For any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) sufficiently small, and any n sufficiently

large, we have E [S2] ≤ ϵ, if k+l
n log p − R < log p − S(W )σ, where σ is the auxiliary state defined

in the statement of the theorem.

Proof. The proof is provided in Appendix B.6
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Step 3: Isolating the effect of approximating measurement

In this step, we finally analyze the error induced from employing the approximating measurement,

given by the term S1. We add and subtract appropriate terms within S1 and use triangle inequality

to obtain S1 ≤ S11 + S12 + S13, where

S11 =
∆
∑
zn

∥∥∥∥∥∥
∑
wn

√
ρ⊗n

Λ̄wn − 1

N

N∑
µ=1

αwnγ
(µ)
wn

λwn
Λ̄wn

√ρ⊗nPn
Z|W (zn|wn)

∥∥∥∥∥∥
1

,

S12 =
∆
∑
zn

∥∥∥∥∥∥ 1

N

N∑
µ=1

∑
wn

√
ρ⊗n

(
αwnγ

(µ)
wn

λwn
Λ̄wn− γ

(µ)
wn Ā

(µ)
wn

)√
ρ⊗nPn

Z|W (zn|wn)

∥∥∥∥∥∥
1

,

S13 =
∆
∑
zn

∥∥∥∥∥∥ 1

N

N∑
µ=1

∑
wn

√
ρ⊗n

(
γ
(µ)
wn Ā

(µ)
wn − γ

(µ)
wnA

(µ)
wn

)√
ρ⊗nPn

Z|W (zn|wn)

∥∥∥∥∥∥
1

.

Now with the intention of employing Lemma III.13, we express S11 as

S11 =

∥∥∥∥∥∥
∑
wn

λwn ρ̂wn ⊗ ϕwn − 1

N

1

(1 + η)

pn

pk+l

∑
µ

∑
wn

∑
a,i ̸=0

1{Wn,(µ)(a,i)=wn}ρ̂wn ⊗ ϕwn

∥∥∥∥∥∥
1

,

where the equality above is obtained by defining ϕwn =
∑

zn P
n
Z|W (zn|wn)⊗ |zn⟩⟨zn| and using the

definitions of αwn , γ
(µ)
wn and ρ̂wn , followed by using the triangle inequality for the block diagonal

operators, Note that the triangle inequality becomes an equality for such block diagonal operators.

By identifying θw with ρ̂w ⊗ ϕw in Lemma III.13 we obtain the following: for all ϵ > 0 and

η, δ ∈ (0, 1) sufficiently small, and any n sufficiently large, E [S11] ≤ ϵ, if k+l
n log p + 1

n logN >

I(W ;R,Z)σ + log p− S(W )σ, where σ is the auxiliary state defined in the theorem.

Now we consider the term corresponding to S12, and prove that its expectation is small. Re-

calling S12, we get

S12 ≤
1

N

N∑
µ=1

∑
wn

∑
zn

Pn
Z|W (zn|wn)

∥∥∥∥∥√ρ⊗n

(
αwnγ

(µ)
wn

λwn
Λ̄wn − γ

(µ)
wn Ā

(µ)
wn

)√
ρ⊗n

∥∥∥∥∥
1

,

=
1

N

N∑
µ=1

∑
wn

αwnγ
(µ)
wn

∥∥∥∥√ρ⊗n

(
1

λwn
Λ̄wn −

√
ρ⊗n

−1
ρ̃wn

√
ρ⊗n

−1
)√

ρ⊗n

∥∥∥∥
1

,

where the inequality above is obtained by using triangle inequality. Applying the expectation, we
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get

E[S12] ≤
1

(1 + η)

∑
wn

λwn

∥∥∥∥√ρ⊗n

(
1

λwn
Λ̄wn −

√
ρ⊗n

−1
ρ̃wn

√
ρ⊗n

−1
)√

ρ⊗n

∥∥∥∥
1

,

≤ 1

(1 + η)

∑
wn∈T (n)

δ (W )

λwn ∥(ρ̂wn − ρ̃wn)∥1 +
1

(1 + η)

∑
wn /∈T (n)

δ (W )

λwn ∥ρ̂wn∥1

≤ (2
√
ε′ + 2

√
ε′′) + ε

(1 + η)
= ϵS12

,

where we have used the fact that E[αwnγ
(µ)
wn ] =

λwn

(1+η) , and the last inequality is obtained by the

repeated usage of the Average Gentle Measurement Lemma Wilde (2013a) and setting ϵS12
=

1
(1+η)(2

√
ε′ + 2

√
ε′′ + ε) with ϵS12

↘ 0 as n → ∞ and ε′ =∆ ε′p + 2
√
ε′p and ε′′ =∆ 2ε′p + 2

√
ε′p for

ε′p =∆ 1 − min {Tr{Πρρ̂wn},Tr{Πwn ρ̂wn}, 1− ε} (see (35) in Wilde et al. (2012) for details). Now,

we move on to bounding the last term within S1, i.e., S13. We start by applying triangle inequality

to obtain

S13 ≤
∑
zn

∑
wn

Pn
Z|W (zn|wn)

∥∥∥∥∥∥ 1

N

N∑
µ=1

√
ρ⊗n

(
γ
(µ)
wn Ā

(µ)
wn − γ

(µ)
wnA

(µ)
wn

)√
ρ⊗n

∥∥∥∥∥∥
1

≤ 1

N

N∑
µ=1

∑
wn

γ
(µ)
wn

∥∥∥√ρ⊗n
(
Ā

(µ)
wn −A

(µ)
wn

)√
ρ⊗n

∥∥∥
1
= S̃2. (3.23)

Since the above term is exactly same as S̃2, we obtain the same rate constraints as in S̃2 to bound

S13, i.e., for all ϵ > 0 and η, δ ∈ (0, 1) sufficiently small, and any n sufficiently large, E[S13] ≤ ϵ if

k+l
n log p > I(W ;R)σ + log p− S(W )σ.

Since S1 ≤ S11+S12+S13, S1 can be made arbitrarily small for sufficiently large n, if k+l
n log p+

1
n logN > I(W ;RZ)σ − S(W )σ + log p and k+l

n log p > I(W ;R)σ − S(W )σ + log p.

3.3.3.5 Rate Constraints

To sum-up, we showed E[K] ≤ ϵ holds for sufficiently large n if the inequalities in (3.5) provided

in the statement of the theorem are satisfied, where R1 =
∆ k

n log p and C =∆ 1
n log2N , and R = l

n log p.

Therefore, there exists a distributed protocol with parameters (n, 2nR, 2nC) such that its overall

POVM M̂ is ϵ-faithful to M⊗n with respect to ρ⊗n. This completes the proof of the theorem.
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3.4 Distributed Measurement Compression using Structured Random POVMs

Let ρAB be a density operator acting on a composite Hilbert Space HA ⊗ HB. Consider two

measurements MA and MB on sub-systems A and B, respectively. Imagine again that we have

three parties, named Alice, Bob and Charlie, that are trying to collectively simulate the action of

a given measurement MAB performed on the state ρAB, as shown in Fig. 3.1. Charlie additionally

has access to unlimited private randomness. The problem is defined in the following.

Figure 3.1:
The diagram depicting the distributed POVM simulation problem with stochastic pro-
cessing. In this setting, Charlie additionally has access to unlimited private randomness.

3.4.1 Problem Formulation

Definition III.19. For a given finite set Z, and a Hilbert space HA ⊗HB, a distributed protocol

with stochastic processing with parameters (n,Θ1,Θ2, N1, N2) is characterized by

1) a collection of Alice’s sub-POVMs M̃
(µ1)
A , µ1 ∈ [1, N1] each acting on H⊗n

A and with outcomes

in a subset L1 satisfying |L1| ≤ Θ1.

2) a collection of Bob’s sub-POVMs M̃
(µ2)
B , µ2 ∈ [1, N2] each acting on H⊗n

B and with outcomes in

a subset L2, satisfying |L2| ≤ Θ2.

3) a collection of Charlie’s classical stochastic maps P (µ1,µ2)(zn|l1, l2) for all l1 ∈ L1, l2 ∈ L2, z
n ∈

Zn, µ1 ∈ [1, N1] and µ2 ∈ [1, N2].

The overall sub-POVM of this distributed protocol, given by M̃AB, is characterized by the following

operators:

Λ̃zn =∆
1

N1

1

N2

∑
µ1,µ2

∑
l1,l2

P (µ1,µ2)(zn|l1, l2)ΛA,(µ1)
l1

⊗ Λ
B,(µ2)
l2

, ∀zn ∈ Zn,
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where Λ
A,(µ1)
l1

and Λ
B,(µ2)
l2

are the operators corresponding to the sub-POVMs M̃
(µ1)
A and M̃

(µ2)
B ,

respectively.

In the above definition, (Θ1,Θ2) determines the amount of classical bits communicated from

Alice and Bob to Charlie. The amount of pairwise shared randomness is determined by N1 and

N2. The classical stochastic maps P (µ1,µ2)(zn|l1, l2) represent the action of Charlie on the received

classical bits.

Definition III.20. Given a POVM MAB acting on HA ⊗ HB, and a density operator ρAB ∈

D(HA ⊗ HB), a quadruple (R1, R2, C1, C2) is said to be achievable, if for all ϵ > 0 and for all

sufficiently large n, there exists a distributed protocol with stochastic processing with parameters

(n,Θ1,Θ2, N1, N2) such that its overall sub-POVM M̃AB is ϵ-faithful to M⊗n
AB with respect to ρ⊗n

AB

(see Definition I.1), and

1

n
log2Θi ≤ Ri + ϵ, and

1

n
log2Ni ≤ Ci + ϵ, i = 1, 2.

The set of all achievable quadruples (R1, R2, C1, C2) is called the achievable rate region.

Definition III.21 (Joint Measurements). A POVM MAB = {ΛAB
z }z∈Z , acting on a Hilbert

space HA ⊗ HB, is said to have a separable decomposition with stochastic integration given by

(M̄A, M̄B, PZ|S,T ) if there exist POVMs M̄A = {Λ̄A
s }s∈S and M̄B = {Λ̄B

t }t∈T and a stochastic

mapping PZ|S,T : S × T → Z such that

ΛAB
z =

∑
s,t

PZ|S,T (z|s, t)Λ̄A
s ⊗ Λ̄B

t , ∀z ∈ Z,

where S, T , and Z are finite sets.

3.4.2 An Inner Bound

The following theorem provides an inner bound to the achievable rate region, which is proved

in Section 3.5. This is one of the main results of this paper.

Theorem III.22. Consider a density operator ρAB ∈ D(HA ⊗ HB), and a POVM MAB =

{ΛAB
z }z∈Z acting on HA ⊗ HB having a separable decomposition with stochastic integration (as
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in Definition III.21), yielding POVMs M̄A = {Λ̄A
s }s∈S and M̄B = {Λ̄B

t }t∈T and a stochastic map

PZ|S,T : S × T → Z. Define the auxiliary states σRSB
1 =∆ (idR ⊗ M̄A ⊗ idB)(Ψ

ρAB
RAB), σ

RTV
2 =∆ (idR ⊗

idA⊗M̄B)(Ψ
ρAB
RAB), and σ

RSTZ
3 =∆

∑
s,t,z

√
ρAB

(
Λ̄A
s ⊗ Λ̄B

t

)√
ρAB⊗PZ|S,T (z|s, t) |s⟩⟨s|⊗|t⟩⟨t|⊗|z⟩⟨z| ,

for some orthonormal sets {|s⟩}s∈S , {|t⟩}t∈T , and {|z⟩}z∈Z , where ΨρAB
RAB is a purification of ρAB.

A quadruple (R1, R2, C1, C2) is achievable if there exists, a pair of finite sets U and V, a pair

of mappings fS : S → U and fT : T → V, and a stochastic mapping PZ|W : W → Z yielding

U = fS(S), V = fT (T ), and either W = U + V , for some finite field Fp and a prime p, such that

PZ|S,T (z|s, t) = PZ|W (z|fS(s) + fT (t)), ∀s ∈ S, t ∈ T , z ∈Z,

or W = (U, V ) such that

PZ|S,T (z|s, t) = PZ|W (z|fS(s), fT (t)), ∀s ∈ S, t ∈ T , z ∈Z,

and the following inequalities are satisfied:

R1 ≥ I(U ;R,B)σ1 + Ī(W ;V )σ3 − I(U ;V )σ3 ,

R2 ≥ I(V ;R,A)σ2 + Ī(W ;U)σ3 − I(U ;V )σ3 ,

R1 +R2 ≥ I(U ;R,B)σ1+ I(V ;R,A)σ2− I(U ;V )σ3+ Ī(W ;V )σ3+ Ī(W ;U)σ3−Ī(U ;V )σ3 ,

R1 + C1 ≥ I(U ;R,Z)σ3 + Ī(W ;V )σ3 − I(U ;V )σ3 ,

R2 + C2 ≥ I(V ;R,Z)σ3+ Ī(W ;U)σ3− I(U ;V )σ3 ,

R1+R2 + C1 ≥ I(U ;R,Z)σ3+ I(V ;R,A)σ2− I(U ;V )σ3+ Ī(W ;U)σ3+ Ī(W ;V )σ3−Ī(U ;V )σ3 ,

R1+R2 + C2 ≥ I(V ;R,Z)σ3+ I(U ;R,B)σ1− I(U ;V )σ3+ Ī(W ;U)σ3+ Ī(W ;V )σ3−Ī(U ;V )σ3 ,

R1+R2 + C1 + C2 ≥ I(U, V ;R,Z)σ3 + Ī(W ;U)σ3 + Ī(W ;V )σ3 − Ī(U ;V )σ3 . (3.24)

where Ī(W ;U)σ3 = I(W ;U)σ3 , Ī(W ;V )σ3 = I(W ;V )σ3, and Ī(U ;V )σ3 = I(U ;V )σ3 if W = U + V

and Ī(W ;U)σ3 = Ī(W ;V )σ3 = Ī(U ;V )σ3 = 0 if W = (U, V ).

Proof. Observe that the theorem involves two different cases of W , one being equal to the sum

U + V , and another being the pair (U, V ). We provide a complete proof for the former case in

Section 3.5. The proof for the latter follows from the proof of Theorem II.33 provided in Chapter
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II.

Remark III.23. Note that the rate-region obtained in Theorem II.33 using unstructured random

code ensembles, contains the constraint R1 +R2 + C1 + C2 ≥ I(U, V ;R,Z)σ3 . Hence when

I(W ;U)σ3 + I(W ;V )σ3 − I(U ;V )σ3 = 2S(U + V )σ3 − S(U, V )σ3 < 0,

the above theorem gives a lower sum rate constraint. As a result, the rate-region above contains

points that are not contained within the rate-region provided by Theorem II.33. To illustrate this

fact further, consider the following example.

Remark III.24. In the above theorem, we restrict our attention to prime finite fields for ease of

exposition. The results can be generalized to arbitrary finite fields in a straight-forward manner.

Example III.25. Suppose the composite state ρAB is described using one of the Bell states on

HA ⊗HB as

ρAB =
1

2
(|00⟩AB + |11⟩AB) (⟨00|AB + ⟨11|AB) .

Since πA = TrB ρ
AB and πB = TrA ρ

AB, Alice and Bob would perceive each of their particles in

maximally mixed states πA = IA
2 and πB = IB

2 , respectively. Upon receiving the quantum state,

the two parties wish to independently measure their states, using identical POVMs M̄A and M̄B,

given by M̄A =∆
{
Λ̄A
s

}
s∈S , M̄B =∆

{
Λ̄B
v

}
t∈T , where S = T = {0, 1}, and

ΛA
0 =ΛB

0 =∆

 0.9501 0.0826 + i0.1089

0.0826− i0.1089 0.0615

, ΛA
1 =ΛB

1 =∆

 0.0499 −0.0826− i0.1089

−0.0826 + i0.1089 0.9385

.
Alice and Bob together with Charlie are trying to simulate the action of MAB =∆

{
ΓAB
z

}
z∈Z , using

classical communication and common randomness as the resources available, where Z = {0, 1}, and

ΓAB
z =∆

∑
s∈{0,1}

∑
t∈{0,1}

PZ|S,T (z|s, t)
(
ΛA
s ⊗ ΛB

t

)
, (3.25)

for z ∈ {0, 1}, and PZ|S,T (0|0, 0) = PZ|S,T (0|1, 1) = 1−PZ|S,T (0|0, 1) = 1−PZ|S,T (0|1, 0) = λ, with
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λ ∈ (0, 1). Note that the above POVM MAB admits a separable decomposition as defined in the

statement of Theorem III.22 with respect to the prime finite field F2, with U = S and V = T , and

PZ|W (0|0) = 1− PZ|W (0|1) = λ.

Hence the above theorem can be employed. This gives S(U +V )σ3 = 0.5155, S(U)σ3 = S(V )σ3 =

0.9999, S(U, V )σ3 = 1.5154, and I(U, V )σ3 = 0.4844, where σ3 is as defined in the statement of

Theorem III.22. Since S(U)σ3 − S(U + V )σ3 = S(V )σ3 − S(U + V )σ3 = I(U, V )σ3 , the constraints

on R1, R2, R1 + C and R2 + C are the same as obtained in Theorem II.33. However, with

2S(U +V )σ3 −S(U, V )σ3 = −0.4844 < 0, the constraint on R1+R2+C1+C2 in the above theorem

(3.24) is strictly weaker than the constraint obtained using random unstructured codes in Theorem

II.33 of Chapter II. Therefore, the rate-region obtained above using random structured codes in

Theorem III.22 is strictly larger than the rate-region obtained in Theorem II.33.

Example III.26. For the same state ρAB as in the above example, consider the following identical

POVMs MA =∆
{
Λ̄A
s

}
s∈S and MB =∆

{
Λ̄B
t

}
t∈T , where S = T = {0, 1}, and

ΛA
0 = ΛB

0 =∆

 0.4974 0.0471 + i0.4975

0.0471− i0.4975 0.5026

, ΛA
1 = ΛB

1 =∆

 0.5026 −0.0471− i0.4975

−0.0471 + i0.4975 0.4974

.
Let the joint measurement that Alice and Bob are trying to simulate be given by

ΓAB
z =∆

∑
s∈{0,1}

∑
t∈{0,1}

PZ|S,T (z|s, t)
(
ΛA
s ⊗ ΛB

t

)
, (3.26)

for z ∈ {0, 1} where PZ|S,T : {0, 1} → [0, 1] is a conditional PMF on Z×S×T with PZ|S,T (0|0, 0) =

δ0 ∈ (0, 1) and PZ|S,T (0|0, 1) = PZ|S,T (0|1, 0) = PZ|S,T (0|1, 1) = δ1 ∈ (0, 1). Note that PZ|S,T

depends on the variables (s, t) only through s ∨ t, the logical OR function. Now, we define the

random variables U and V on the prime finite field F3 with the identity mappings U = S and

V = T , while noting that U and V take values in F3 with P (U = 2) = P (V = 2) = 0. Now with

W = U + V , we identify the mapping PZ|W as PZ|W (0|0) = δ0, and PZ|W (0|1) = PZ|W (0|2) = δ1.

For this identification, we obtain 2S(U + V )− S(U, V ) = −0.9039 < 0, which gives the constraint

on R1+R2+C1+C2 in the above theorem (3.24) strictly weaker than the corresponding constraint
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obtained using random unstructured codes in Theorem II.33. Since this is a biting constraint, the

above rate-region is strictly larger than the former for this example.

Example III.27. Building upon Example III.26, we explore more points in the POVM space such

that the above theorem provides constraints (3.24) that are strictly weaker than the corresponding

constraint obtained in Theorem II.33 of Chapter II. For this, we consider the same state ρAB, as

above and the following identical POVMs MA =∆
{
Λ̄A
s

}
s∈S and MB =∆

{
Λ̄B
t

}
t∈T , where S = T =

{0, 1}, and

ΛA
0 = ΛB

0 =

 θ1 θ2 + iθ3

θ2 − iθ3 1− θ1

 , ΛA
1 = ΛB

1 = I − ΛA
0

for θi ∈ [−1, 1]2. Figure 3.2 illustrates the surface where 2S(U + V ) = S(U, V ) and therefore the

region inside the surface has 2S(U + V ) − S(U, V ) < 0, where the POVMs obtained provides the

constraint on R1+R2+C1+C2 in the above theorem (3.24) strictly weaker than the corresponding

constraint obtained in Theorem II.33.

Figure 3.2:
Shown above is a (θ1, θ2, θ3)-surface with POVMs satisfying 2S(U + V ) = S(U, V ).
Although the surface is symmetric in θ3, but for the ease of illustration only the upper
half of the surface is shown.

Remark III.28. Note that for POVMs contained in the above (θ1, θ2, θ3)-surface of Example III.27,

the sum rate constraint R1 + R2 + C1 + C2 is strictly weaker than the corresponding constraint

obtained in Theorem II.33, and vice-versa outside.
2The above parametrization is only for illustrative purposes and do not constitute all the two dimensional POVMs.
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3.5 Proof of the Inner Bound (Theorem III.22)

Suppose there exists a finite field Fp, for a prime p, a pair of mappings fS : S → Fp and

fT : T → Fp, and a stochastic mapping PZ|W : Fp → Z such that

PZ|S,T (z|s, t) = PZ|W (z|fS(s) + fT (t)), ∀s ∈ S, t ∈ T , z ∈ Z,

yielding U = fS(S), and V = fT (T ). This implies, we have POVMs M̄A =∆ {Λ̄A
u }u∈U and M̄B =∆

{Λ̄B
v }v∈V with U = V =∆ Fp and a stochastic map PZ|W : Fp → Z, such thatMAB can be decomposed

as

ΛAB
z =

∑
u,v

PZ|W (z|u+ v)Λ̄A
u ⊗ Λ̄B

v , ∀z, (3.27)

where W is defined as W = U + V . The coding strategy used here is based on Unionized Coset

Codes, similar to the one employed in the point-to-point proof (Section 3.3.3), but extended to a

distributed setting. Further, the structure in these codes provide a method to exploit the structure

present in the stochastic processing applied by Charlie on the classical bits received, i.e., PZ|U+V .

Using this technique, we aim to strictly reduce the rate constraints compared to the ones obtained

in Theorem II.33. Also note that, the results in the former are based on the assumption that

approximating POVMs are all mutually independent. However, since the structured construction

of the POVMs only guarantees pairwise independence among the operators of the POVM, the

proofs below become significantly different from the proof of Theorem II.33.

We start by generating the canonical ensembles corresponding to M̄A and M̄B, defined as

λAu =∆ Tr{Λ̄A
u ρA}, λBv =∆ Tr{Λ̄B

v ρB}, λAB
uv =∆ Tr{(Λ̄A

u ⊗ Λ̄B
v )ρAB}, and

ρ̂Au =∆
1

λAu

√
ρAΛ̄

A
u

√
ρA, ρ̂Bv =∆

1

λBv

√
ρBΛ̄

B
v

√
ρB, ρ̂AB

uv =∆
1

λAB
uv

√
ρAB(Λ̄

A
u ⊗ Λ̄B

v )
√
ρAB. (3.28)

With this notation, corresponding to each of the probability distributions, we can associate a δ-

typical set. Let us denote T (n)
δ (U), T (n)

δ (V ) and T (n)
δ (UV ) as the δ-typical sets defined for {λAu },

{λBv } and {λAB
uv }, respectively.

Let ΠρA and ΠρB denote the δ-typical projectors (as in (Wilde, 2013a, Def. 15.1.3)) for marginal

density operators ρA and ρB, respectively. Also, for any un ∈ Un and vn ∈ Vn, let ΠA
un and ΠB

vn
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denote the strong conditional typical projectors (as in (Wilde, 2013a, Def. 15.2.4)) for the canonical

ensembles {λAu , ρ̂Au } and {λBv , ρ̂Bv }, respectively.

For each un ∈ T (n)
δ (U) and vn ∈ T (n)

δ (V ) define

ρ̃Aun =∆ ΠρAΠ
A
un ρ̂AunΠA

unΠρA , ρ̃Bvn =∆ ΠρBΠ
B
vn ρ̂

B
vnΠ

B
vnΠρB ,

and ρ̃Aun = 0, and ρ̃Bvn = 0 for un /∈ T (n)
δ (U) and vn /∈ T (n)

δ (V ), respectively, with ρ̂Aun =∆
⊗

i ρ̂
A
ui

and

ρ̂Bvn =∆
⊗

i ρ̂
B
vi .

3.5.1 Construction of Structured POVMs

In what follows, we construct the random structured POVM elements. Fix a block length

n > 0, positive integers N1 and N2, and a finite field Fp. Let µ1 ∈ [1, N1] denote the common

randomness shared between the first encoder and the decoder, and let µ2 ∈ [1, N2] denote the

common randomness shared between the second encoder and the decoder. Let µ̃1 ∈ [1, Ñ1] and

µ̃2 ∈ [1, Ñ2] denote additional pairwise shared randomness used for random coding purposes. This

randomness is only used to show the existence of a desired distributed protocol (as defined in

Definition III.19), and is used only for bounding purposes. We denote µ̄i =∆ (µi, µ̃i), and N̄i =∆

Ni · Ñi for i = 1, 2. Further, let U and V be random variables defined on the alphabets U and V,

respectively, where U = V = Fp. In building the code, we use the Unionized Coset Codes (UCCs)

Pradhan et al. (2021) as defined above in Definition III.5.

For every (µ̄1, µ̄2), consider two UCCs (G,h
(µ̄1)
1 ) and (G,h

(µ̄2)
2 ), each with parameters (n, k, l1, p)

and (n, k, l2, p), respectively. Note that, for every (µ̄1, µ̄2), they share the same generator matrix

G.

For each (µ̄1, µ̄2), the generator matrix G along with the function h
(µ̄1)
1 and h

(µ̄2)
2 generates

pk+l1 and pk+l2 codewords, respectively. Each of these codewords are characterized by a triple

(ai,mi, µ̄i), where ai ∈ Fk
p and mi ∈ Fli

p corresponds to the coarse code and the fine code indices,

respectively, for i ∈ [1, 2]. Let Un,(µ̄1)(a1, i) and V
n,(µ̄2)(a2, j) denote the codewords associated with

Alice and Bob, generated using the above procedure, respectively, where

Un,(µ̄1)(a1, i) =
∆ a1G + h

(µ̄1)
1 (i) and V n,(µ̄2)(a2, j) =

∆ a2G + h
(µ̄2)
2 (j).
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Now, construct the operators

Ā
(µ̄1)
un =∆ αun

(
√
ρA

−1ρ̃Aun

√
ρA

−1

)
and B̄

(µ̄2)
vn =∆ βvn

(
√
ρB

−1ρ̃Bvn
√
ρB

−1

)
, (3.29)

where

αun =∆
1

(1 + η)

pn

pk+l1
λAun , and βvn =∆

1

(1 + η)

pn

pk+l2
λBvn , (3.30)

with η ∈ (0, 1) being a parameter to be determined. Having constructed the operators Ā
(µ̄1)
un and

B̄
(µ̄2)
vn , we normalize these operators, so that they constitute a valid sub-POVM. To do so, we first

define

Σ
(µ̄1)
A =∆

∑
un

γ
(µ̄1)
un Ā

(µ̄1)
un and Σ

(µ̄2)
B =∆

∑
vn

ζ
(µ̄2)
vn B̄

(µ̄2)
vn ,

where γ
(µ̄1)
un and ζ

(µ̄2)
vn are defined as

γ
(µ̄1)
un =∆ |{(a1, i) : Un,(µ̄1)(a1, i) = un}| and ζ

(µ̄2)
vn =∆ |{(a2, j) : V n,(µ̄2)(a2, j) = vn}|.

Now, we define Πµ̄1

A and Πµ̄2

B as pruning operators for Σ
(µ̄1)
A and Σ

(µ̄2)
B , with respect to ΠρA and

ΠρB , respectively (see Definition III.2). Note that, these pruning operators, Πµ̄1

A and Πµ̄2

B , depend

on the triple (G,h
(µ̄1)
1 , h

(µ̄2)
2 ). Using these pruning operators, for each µ̄1 ∈ [1, N̄1] and µ̄2 ∈ [1, N̄2],

construct the sub-POVMs M
(n,µ̄1)
1 and M

(n,µ̄2)
2 as

M
(n,µ̄1)
1 =∆ {γ(µ̄1)

un A
(µ̄1)
un : un ∈ Un}, and M

(n,µ̄2)
2 =∆ {ζ(µ̄2)

vn B
(µ̄2)
vn : vn ∈ Vn}, (3.31)

where A
(µ̄1)
un = Πµ1

A Ā
(µ̄1)
un Πµ1

A and B
(µ̄2)
vn = Πµ2

B B̄
(µ̄2)
vn Πµ2

B . Further, using these operators Πµ̄1

A and

Πµ̄2

B , we have
∑

un γ
(µ̄1)
un A

(µ̄1)
un = Πµ̄1

A Σ
(µ̄1)
A Πµ̄1

A ≤ I and
∑

vn ζ
(µ̄2)
vn B

(µ̄2)
vn = Πµ̄2

B Σ
(µ̄2)
B Πµ̄2

B ≤ I, and

thus M
(n,µ̄1)
1 and M

(n,µ̄2)
2 are valid sub-POVMs for all µ̄1 ∈ [1, N̄1] and µ̄2 ∈ [1, N̄2]. Further,

these collections M
(n,µ̄1)
1 and M

(n,µ̄2)
2 are completed using the operators I−

∑
un∈Un γ

(µ̄1)
un A

(µ̄1)
un and

I −
∑

vn∈Vn ζ
(µ̄2)
vn B

(µ̄2)
vn .
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3.5.2 Binning of POVMs

We next proceed to binning the above constructed collection of sub-POVMs. Since, UCC

is already a union of several cosets, we associate a bin to each coset, and hence place all the

codewords of a coset in the same bin. For each i ∈ Fl1
p and j ∈ Fl2

p , let B(µ̄1)
1 (i) =∆ C(G,h(µ̄1)

1 (i))

and B(µ̄2)
2 (j) =∆ C(G,h(µ̄2)

2 (j)) denote the ith and the jth bins, respectively. Formally, we define the

following operators:

Γ
A,(µ̄1)
i =∆

∑
un∈Un

∑
a1∈Fk

p

A
(µ̄1)
un 1{a1G+h

(µ̄1)
1 (i)=un}, Γ

B,(µ̄2)
j =∆

∑
vn∈Vn

∑
a2∈F

k2
p

B
(µ̄2)
vn 1{a2G+h

(µ̄2)
2 (j)=vn},

for all i ∈ Fl1
p and j ∈ Fl2

p . Using these operators, we form the following collection:

M
(n,µ̄1)
A =∆ {ΓA,(µ̄1)

i }
i∈Fl1

p
, M

(n,µ̄)
B =∆ {ΓB,(µ̄2)

j }
j∈Fl2

p
. (3.32)

Note that if M
(n,µ̄1)
1 and M

(n,µ̄2)
2 are sub-POVMs, then so are M

(n,µ̄1)
A and M

(n,µ̄2)
B , which is due

to the relations

∑
i∈Fl1

p

Γ
A,(µ̄1)
i =

∑
un∈Un

γ
(µ1)
un A

(µ̄1)
un ≤ I, and

∑
j∈Fl2

p

Γ
B,(µ̄2)
j =

∑
vn∈Vn

ζ
(µ2)
vn B

(µ̄2)
vn ≤ I. (3.33)

To make M
(n,µ̄1)
A and M

(n,µ̄2)
B complete, we define Γ

A,(µ̄1)
0 and Γ

B,(µ̄2)
0 as Γ

A,(µ̄1)
0 = I −

∑
i Γ

A,(µ̄1)
i

and Γ
B,(µ̄2)
0 = I −

∑
j Γ

B,(µ̄2)
j , respectively3. Now, we intend to use the completions [M

(n,µ̄1)
A ]

and [M
(n,µ̄2)
B ] as the POVMs for encoders associated with Alice and Bob, respectively. Also, note

that the effect of the binning is in reducing the communication rates from (k+l1
n log p, k+l2

n log p) to

(R1, R2), where Ri =
∆ li

n log p, i ∈ {1, 2}. Now, we move on to describing the decoder.

3.5.3 Decoder mapping

We create a decoder that takes as an input a pair of bin numbers and produces a sequence

Wn ∈ Fn
p . More precisely, we define a mapping F (µ̄1,µ̄2), acting on the outputs of [M

(n,µ̄1)
A ]⊗[M

(n,µ̄2)
B ]

as follows. On observing (µ̄1, µ̄2) and the classical indices (i, j) ∈ Fl1
p × Fl2

p communicated by the

3Note that Γ
A,(µ̄1)
0 = I−

∑
i Γ

A,(µ̄1)
i = I−

∑
un∈T

(n)
δ

(U)
A

(µ̄1)
un and Γ

B,(µ̄2)
0 = I−

∑
j Γ

B,(µ̄2)
j = I−

∑
vn∈T

(n)
δ

(V )
B

(µ̄2)
vn .
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encoder, the decoder constructs D(µ̄1,µ̄2) and F (µ̄1,µ̄2)(·, ·) as,

D
(µ̄1,µ̄2)
i,j =∆

{̃
a ∈ Fk

p : ãG + h
(µ̄1)
1 (i) + h

(µ̄2)
2 (j)∈T (n)

δ̂
(W )

}
,

F (µ̄1,µ̄2)(i, j) =∆


ãG + h

(µ̄1)
1 (i) + h

(µ̄2)
2 (j) if D

(µ̄1,µ̄2)
i,j ≡ {ã}

wn
0 otherwise ,

(3.34)

where δ̂ = pδ and wn
0 is an arbitrary sequence in Fn

p\T
(n)

δ̂
(W ). Further, F (µ̄1,µ̄2)(i, j) = wn

0 for i = 0

or j = 0. Given this, we obtain the sub-POVM M̃AB with the following operators.

Λ̃AB
wn =∆

1

N̄1N̄2

N̄1∑
µ̄1=1

N̄2∑
µ̄2=1

∑
(i,j):F (µ̄1,µ̄2)(i,j)=wn

Γ
A,(µ̄1)
i ⊗ Γ

B,(µ̄2)
j ,

∀wn ∈ Fn
p

⋃
{wn

0 }. Now, we use the stochastic mapping PZ|W to define the approximating sub-

POVM M̂
(n)
AB =∆ {Λ̂zn} as

Λ̂AB
zn =∆

∑
wn

Λ̃AB
wn Pn

Z|W (zn|wn), ∀zn ∈ Zn.

Note that Λ̃AB
wn = 0 for wn /∈ T (n)

δ (W )
⋃
{wn

0 }.

UCC Grand Ensemble: The generator matrix G and the functions h
(µ̄1)
1 and h

(µ̄2)
2 are chosen

randomly uniformly and independently, for µ̄1 ∈ [1, N̄1] and µ̄2 ∈ [1, N̄2].

3.5.4 Trace Distance

In what follows, we show that M̂
(n)
AB is ϵ-faithful to M⊗n

AB with respect to ρ⊗n
AB (according to

Def. I.1), where ϵ > 0 can be made arbitrarily small. More precisely, using (3.27), we show that,

E[K] ≤ ϵ, where

K =∆
∑
zn

∥∥∥∥ ∑
un,vn

√
ρ⊗n
AB(Λ̄

A
un ⊗ Λ̄B

vn)
√
ρ⊗n
ABP

n
Z|W (zn|un + vn)−

√
ρ⊗n
ABΛ̂

AB
zn

√
ρ⊗n
AB

∥∥∥∥
1

, (3.35)

and the expectation is with respect to the codebook generation.

Step 1: Isolating the effect of error induced by not covering
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Consider the second term within K, which can be written as

∑
wn

√
ρ⊗n
ABΛ̃

AB
wn

√
ρ⊗n
ABP

n
Z|W (zn|wn)

=
1

N̄1N̄2

∑
µ̄1,µ̄2

∑
i,j

√
ρ⊗n
AB

(
Γ
A,(µ̄1)
i ⊗ Γ

B,(µ̄2)
j

)√
ρ⊗n
ABP

n
Z|W (zn|F (µ̄1,µ̄2)(i, j))

∑
wn

1{F (µ̄1,µ̄2)(i,j)=wn}︸ ︷︷ ︸
=1

,

which can be written as T + T̃ , where

T =∆
1

N̄1N̄2

∑
µ̄1,µ̄2

∑
{i>0}

⋂
{j>0}

√
ρ⊗n
AB

(
Γ
A,(µ̄1)
i ⊗ Γ

B,(µ̄2)
j

)√
ρ⊗n
ABP

n
Z|W (zn|F (µ̄1,µ̄2)(i, j)),

T̃ =∆
1

N̄1N̄2

∑
µ̄1,µ̄2

∑
{i=0}

⋃
{j=0}

√
ρ⊗n
AB

(
Γ
A,(µ̄1)
i ⊗ Γ

B,(µ̄2)
j

)√
ρ⊗n
ABP

n
Z|W (zn|wn

0 ).

Hence, we have K ≤ S + S̃, where

S =∆
∑
zn

∥∥∥∥ ∑
un,vn

√
ρ⊗n
AB

(
Λ̄A
un ⊗ Λ̄B

vnP
n
Z|W (zn|un + vn)

)√
ρ⊗n
AB − T

∥∥∥∥
1

, (3.36)

and S̃ =∆
∑

zn ∥T̃∥1. Note that S̃ captures the error induced by not covering the state ρ⊗n
AB.

Remark III.29. The terms corresponding to the operators that complete the sub-POVMs M
(n,µ̄1)
A

and M
(n,µ̄2)
B , i.e., I −

∑
un∈T (n)

δ (U)
γ
(µ̄1)
un A

(µ̄1)
un and I −

∑
vn∈T (n)

δ (V )
ζ
(µ̄2)
vn B

(µ̄2)
vn are taken care in T̃ .

The expression T excludes these completing operators.

Step 2: Isolating the effect of error induced by binning

We begin by simplifying T as

T =
1

N̄1N̄2

∑
µ̄1,µ̄2

∑
un,vn

∑
i>0,
j>0

√
ρ⊗n
AB

( ∑
a1∈Fk

p

∑
a2∈Fk

p

A
(µ̄1)
un ⊗B

(µ̄2)
vn 1{a1G+h

(µ̄1)
1 (i)=un}

×1{a2G+h
(µ̄2)
2 (j)=vn}

)√
ρ⊗n
ABP

n
Z|W (zn|F (µ̄1,µ̄2)(i, j)).

Note that the (un, vn) that appear in the above summation is confined to (T (n)
δ (U) × T (n)

δ (V )),

however for ease of notation, we do not make this explicit. We substitute the above expression

into S as in (3.36), and add and subtract an appropriate term within S and apply the triangle
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inequality to isolate the effect of binning as S ≤ S1 + S2, where

S1 =
∆
∑
zn

∥∥∥∥ ∑
un,vn

√
ρ⊗n
AB

(
Λ̄A
un ⊗ Λ̄B

vn − 1

N̄1N̄2

∑
µ̄1,µ̄2

γ
(µ̄1)
un A

(µ̄1)
un ⊗ ζ

(µ̄2)
vn B

(µ̄2)
vn

)√
ρ⊗n
ABP

n
Z|W (zn|un + vn)

∥∥∥∥
1

,

S2 =
∆
∑
zn

∥∥∥∥ 1

N̄1N̄2

∑
µ̄1,µ̄2

∑
i>0
j>0

∑
a1,a2

∑
un,vn

√
ρ⊗n
AB

(
A

(µ̄1)
un ⊗B

(µ̄2)
vn

)√
ρ⊗n
AB1{a1G+h

(µ̄1)
1 (i)=un,a2G+h

(µ̄2)
2 (j)=vn}

×
(
Pn
Z|W (zn|un+vn)− Pn

Z|W

(
zn|F (µ̄1,µ̄2)(i, j)

))∥∥∥∥
1

.

Note that the term S1 characterizes the error introduced by approximation of the original POVM

with the collection of approximating sub-POVMs M
(n,µ̄1)
1 and M

(n,µ̄2)
2 , and the term S2 character-

izes the error caused by binning of these approximating sub-POVMs. In this step, we analyze S2

and prove the following proposition.

Proposition III.30 (Mutual Packing). For any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) sufficiently small,

and any n sufficiently large, we have E [S2] ≤ ϵ, if k+l1
n log p > I(U ;RB)σ1 − S(U)σ3 + log p,

k+l2
n log p > I(V ;RA)σ2 −S(V )σ3 +log p, k+l1

n log p+ 1
n log N̄1 > log p, k+l2

n log p+ 1
n log N̄2 > log p,

k
n log p < log p − S(W )σ3, where σ1, σ2 and σ3 are the auxiliary states as defined in the statement

of the theorem.

Proof. The proof is provided in Appendix B.7

Since averaged over µ̃1 ∈ [1, Ñ1], µ̃2 ∈ [1, Ñ2], the quantity E[S2] can be made arbitrarily small,

there must exist a pair (µ̃1, µ̃2) such that E[S2] is small for this pair of (µ̃1, µ̃2). For the rest of the

proof, we fix (µ̃1, µ̃2) to be this pair. The dependence of functions defined in the sequel on this pair

is not made explicit for ease of notation. For the term corresponding to S̃, we prove the following

result.

Proposition III.31. For any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) sufficiently small, and any n sufficiently

large, we have E[S̃] ≤ ϵ, if k+l1
n log p > I(U ;RB)σ1 − S(U)σ1 + log p and k+l2

n log p > I(V ;RA)σ2 −

S(V )σ2 + log p, where σ1 and σ2 are auxiliary states defined in the statement of the theorem.

Proof. The proof is provided in Appendix B.8.

Step 3: Isolating the effect of Alice’s approximating measurement
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In this step, we separately analyze the effect of approximating measurements at the two distributed

parties in the term S1. For that, we split S1 as S1 ≤ Q1 +Q2, where

Q1 =
∆
∑
zn

∥∥∥∥∑
un,vn

√
ρ⊗n
AB

(
Λ̄A
un ⊗ Λ̄B

vn − 1

N1

N1∑
µ1=1

γ
(µ1)
un A

(µ1)
un ⊗ Λ̄B

vn

)√
ρ⊗n
ABP

n
Z|W (zn|un + vn)

∥∥∥∥
1

,

Q2 =
∆
∑
zn

∥∥∥∥ 1

N1

N1∑
µ1=1

∑
un,vn

√
ρ⊗n
AB

γ(µ1)
un A

(µ1)
un ⊗ Λ̄B

vn − 1

N2

N2∑
µ2=1

γ
(µ1)
un A

(µ1)
un ⊗ ζ

(µ2)
vn B

(µ2)
vn


×
√
ρ⊗n
ABP

n
Z|W (zn|un + vn)

∥∥∥∥
1

. (3.37)

With this partition, the terms within the trace norm of Q1 differ only in the action of Alice’s

measurement. And similarly, the terms within the norm of Q2 differ only in the action of Bob’s

measurement. Showing that these two terms are small forms a major portion of the achievability

proof.

Analysis of Q1: To prove Q1 is small, we characterize the rate constraints which ensure that an

upper bound to Q1 can be made to vanish in an expected sense. In addition, this upper bound

becomes lucrative in obtaining a single-letter characterization for the rate needed to make the term

corresponding to Q2 vanish. For this, we define J as

J =∆
∑
zn,vn

∥∥∥∥∑
un

√
ρ⊗n
AB

(
Λ̄A
un ⊗ Λ̄B

vn − 1

N1

N1∑
µ1=1

γ
(µ1)
un A

(µ1)
un ⊗ Λ̄B

vn

)√
ρ⊗n
ABP

n
Z|W (zn|un + vn)

∥∥∥∥
1

. (3.38)

By defining J and using triangle inequality for block operators (which holds with equality), we

add the sub-system V to RZ, resulting in the joint system RZV , corresponding to the state σ3

as defined in the theorem. Then we approximate the joint system RZV using an approximating

sub-POVM M
(n)
A producing outputs on the alphabet Un. To make J small for sufficiently large

n, we expect the sum of the rate of the approximating sub-POVM and common randomness, i.e.,

k+l1
n log p+ 1

n logN1, to be larger than I(U ;RZV )σ3 . We prove this in the following.

Note that from the triangle inequality, we have Q1 ≤ J. Further, we add and subtract appro-
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priate terms within J , and again use the triangle inequality to obtain J ≤ J1 + J2, where

J1 =
∆
∑
zn,vn

∥∥∥∥∑
un

√
ρ⊗n
AB

(
Λ̄A
un ⊗ Λ̄B

vn − γ
(µ1)
un Ā

(µ1)
un ⊗ Λ̄B

vn

)√
ρ⊗n
ABP

n
Z|W (zn|un + vn)

∥∥∥∥
1

,

J2 =
∆
∑
zn,vn

∥∥∥∥ 1

N1

N1∑
µ1=1

∑
un

√
ρ⊗n
AB

(
γ
(µ1)
un Ā

(µ1)
un ⊗ Λ̄B

vn − γ
(µ1)
un A

(µ1)
un ⊗ Λ̄B

vn

)√
ρ⊗n
ABP

n
Z|W (zn|un + vn)

∥∥∥∥
1

.

Now we use the following proposition to bound the term corresponding to J1.

Proposition III.32. For any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) sufficiently small, and any n sufficiently

large, we have E [J1] ≤ ϵ if k+l1
n log p + 1

n logN1 > I(U ;RZV )σ3 + log p − S(U)σ3, where σ3 is the

auxiliary state defined in the statement of the theorem.

Proof. The proof of proposition is provided in Appendix B.9.

Now we move on to bounding the term corresponding to J2. We start by applying triangle

inequality followed by Lemma II.11 on J2 to obtain

J2 ≤
∑
zn

∑
un,vn

Pn
Z|W (zn|un + vn)

∥∥∥∥ 1

N1

N1∑
µ1=1

√
ρ⊗n
A

((
γ
(µ1)
un Ā

(µ1)
un − γ

(µ1)
un A

(µ1)
un

)
⊗ Λ̄B

vn

)√
ρ⊗n
A

∥∥∥∥
1

=
∑
un,vn

∥∥∥∥ 1

N1

N1∑
µ1=1

√
ρ⊗n
A

((
γ
(µ1)
un Ā

(µ1)
un − γ

(µ1)
un A

(µ1)
un

)
⊗ Λ̄B

vn

)√
ρ⊗n
A

∥∥∥∥
1

≤ 1

N1

N1∑
µ1=1

∑
un

γ
(µ1)
un

∥∥∥∥√ρ⊗n
A

(
Ā

(µ1)
un −A

(µ1)
un

)√
ρ⊗n
A

∥∥∥∥
1

. (3.39)

Now we use the following proposition to bound the term corresponding to J2.

Proposition III.33. For any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) sufficiently small, and any n sufficiently

large, we have E [J2] ≤ ϵ if k+l1
n log p > I(U ;RB)σ1 + log p − S(U)σ3, where σ1 and σ3 are the

auxiliary states defined in the statement of the theorem.

Proof. The proof is provided in Appendix B.10.

Since Q1 ≤ J ≤ J1 + J2, hence E[J ], and consequently E[Q1], can be made arbitrarily small

for sufficiently large n, if k+l1
n log p + 1

n logN1 > I(U ;RZV )σ3 − S(U)σ3 + log p and k+l1
n log p >

I(U ;RB)σ1 − S(U)σ3 + log p. Now we move on to bounding Q2.
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Step 4: Analyzing the effect of Bob’s approximating measurement

Step 3 ensured that the sub-system RZV is close to a tensor product state in trace-norm. In

this step, we approximate the state corresponding to the sub-system RZ using the approximating

POVM M
(n)
B , producing outputs on the alphabet Vn. We proceed with the following proposition.

Proposition III.34. For any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) sufficiently small, and any n sufficiently

large, we have E[Q2] ≤ ϵ, if k+l1
n log p + 1

n logN1 > I(U ;RZV )σ3 − S(U)σ3 + log p, k+l2
n log p +

1
n logN2 > I(V ;RZ)σ3 −S(V )σ3 + log p, k+l1

n log p > I(U ;RB)σ1 −S(U)σ3 + log p, and k+l2
n log p >

I(V ;RA)σ2 − S(V )σ3 + log p where σ1, σ2, σ3 are the auxiliary states defined in the statement of

the theorem.

Proof. The proof is provided in Appendix B.11.

3.5.5 Rate Constraints

To sum-up, we showed E[K] ≤ ϵ holds for sufficiently large n if the following bounds hold:

R̃+R1 > I(U ;RB)σ1 − S(U)σ3 + log p, (3.40a)

R̃+R2 > I(V ;RA)σ2 − S(V )σ3 + log p, (3.40b)

R̃+R1 + C1 > I(U ;RZV )σ3 − S(U)σ3 + log p, (3.40c)

R̃+R2 + C2 > I(V ;RZ)σ3 − S(V )σ3 + log p, (3.40d)

0 ≤ R̃ < log p− S(U + V )σ3 , (3.40e)

C1 ≥ 0, C2 ≥ 0, (3.40f)

where Ci =∆ 1
n log2Ni, i ∈ {1, 2} and R̃ =∆ k

n log p. Therefore, there exists a distributed protocol

with parameters (n, 2nR1 , 2nR2 , 2nC1 , 2nC2) such that its overall POVM M̂AB is ϵ-faithful to M⊗n
AB

with respect to ρ⊗n
AB.

Let us denote the above achievable rate-region by R1. By doing an exact symmetric analysis,

but by replacing the first encoder by a product distribution instead of the second encoder in S1 (as

performed in (3.37)), all the constraints remain the same, except that the constraints on R̃+R1+C1
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and R̃+R2 + C2 change as follows

R̃+R1 + C1 ≥ I(U ;RZ)σ3 − S(U)σ3 + log p,

R̃+R2 + C2 ≥ I(V ;RZU)σ3 − S(V )σ3 + log p. (3.41)

Let us denote the above achievable rate-region by R2. By time sharing between the any two points

of R1 and R2 one can achieve any point in the convex closure of (R1
⋃
R2). The following lemma

gives a symmetric characterization of the closure of convex hull of the union of the above achievable

rate-regions.

Lemma III.35. For the above defined rate regions R1 and R2, we have

R3 = Convex Closure(R1

⋃
R2),

where R3 is given by the set of all the quintuples (R̃, R1, R2, C1, C2) satisfying the following con-

straints:

R̃+R1 ≥ I(U ;RB)σ1 − S(U)σ3 + log p,

R̃+R2 ≥ I(V ;RA)σ2 − S(V )σ3 + log p,

R̃+R1 + C1 ≥ I(U ;RZ)σ3 − S(U)σ3 + log p,

R̃+R2 + C2 ≥ I(V ;RZ)σ3 − S(V )σ3 + log p,

2R̃+R1+R2 + C1 + C2 ≥ I(UV ;RZ)σ3 − S(U, V )σ3 + 2 log p,

0 ≤ R̃ ≤ log p− S(U + V )σ3 ,

R1 ≥ 0, R2 ≥ 0 C1 ≥ 0, C2 ≥ 0. (3.42)

Proof. The proof follows from elementary convex analysis.

Lastly, we complete the proof of the theorem using the following lemma.

Lemma III.36. Let R̄3 denote the set of all quadruples (R1, R2, C1, C2) for which there exists R̃

such that the quintuple (R1, R2, C1, C2, R̃) satisfies the inequalities in (3.42). Let RF denote the

set of all quadruples (R1, R2, C1, C2) that satisfy the inequalities in (3.24) given in the statement
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of the theorem. Then, R̄3 = RF .

Proof. The proof follows from Fourier-Motzkin elimination Ziegler (2012).

3.6 Conclusion

In this chapter, we developed a technique of randomly generating structured POVMs using

algebraic codes. Using this technique, we demonstrated a new achievable information-theoretic

rate-region for the task of faithfully simulating a distributed quantum measurement and function

computation. We further devised a Pruning Trace inequality which is a tighter version of the

known operator Markov inequality, and a covering lemma which is independent of the operator

Chernoff inequality, so as to analyse pairwise-independent POVM elements. Finally, combining

these techniques, we demonstrated rate gains for this problem over traditional coding schemes, and

provided a multi-party distributed faithful simulation and function computation protocol.
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CHAPTER IV

Multi-party Purity Distillation

4.1 Introduction

In Chapters II and III the focus of our work was mainly QC setups. In this chapter, we will

investigate distilling a quantum resource called purity. A primary task in quantum information

theory is to quantify the amount of local and non-local information present within a quantum

information source. For instance, the task of entanglement distillation aims at capturing the non-

local correlations to transform a noisy shared state ρAB into pure bell states (in particular, the ebit

|Φ+⟩), in an aymptotic sense. A complementary notion to this task is the paradigm of local purity

distillation, where pure ancilla qubits are distilled from a distributed state ρAB using local unitary

operations.

Although it may seem unusual, local pure states cannot be considered as a free resource. One

may argue that pure states can be obtained from a mixed state by performing a measurement, but

this is only true after a measurement apparatus is initialized in a pure state. For this reason, the

second law of thermodynamics recognizes purity as indeed a resource Alicki et al. (2004); Horodecki

et al. (2005a). In this regard, the idea of distilling of local purity was first introduced in Oppenheim

et al. (2002); Horodecki et al. (2003a) where the aim was to manipulate the qubits and concentrate

the existing diluted form of purity. Two version of this problem have been introduced, (i) a single-

party variant and (ii) a distributed version. In the former single-party scenario, also called as

local purity concentration, many copies of a noisy state ρA are provided to Alice, and she aims at

concentrating or extracting purity using only unitary operations. The authors in Horodecki et al.

(2003b) characterized the asymptotic performance limit of this protocol (κ(ρA)) as the difference
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between the number of qubits describing the system and the von Neumann entropy of the state ρA.

For the latter case of distilling purity from a non-local distributed state, commonly termed as local

purity distillation, two parties, Alice and Bob, share many copies of the noisy state ρAB and aim at

jointly distilling pure ancilla qubits. Again, they are allowed to perform only local unitaries and but

can communicate classically (LOCC), possibly through the use of a dephasing channel Oppenheim

et al. (2002). Further, the protocols for both the variants require isolation (Closed-LOCC) from the

environment which eliminated the possibility of unlimited consumption of the pure ancilla qubits.

The authors in Horodecki et al. (2003a) provided bounds for this problem in the one-way and the

two-way classical communication scenarios.

Later, Devetak in Devetak (2005a) considered a new paradigm called 1-CLOCC′, which was

defined as an extension of Closed-LOCC, with (i) the allowance of using additional catalytic pure

ancilla as long as these are returned back to the system, and (ii) the unlimited bidirectional classical

communication replaced by unlimited one-way communication from Alice to Bob. Devetak obtained

an information theoretic characterization of the distillable purity in the 1-CLOCC′ setting (allowing

additional catalysts) and highlighted its connection to the earlier known one-way distillable common

randomness measure Devetak and Winter (2004). The usage of catalytic resource to improve the

quantum information tasks was first introduced in Jonathan and Plenio (1999). This further

was extensively studied in a multitude of works, including but not limited to Daftuar and Klimesh

(2001); van Dam and Hayden (2002); Turgut (2007); Aubrun and Nechita (2008); Sanders and Gour

(2009); Brandao et al. (2015); Duarte et al. (2016); Bu et al. (2016); Shiraishi and Sagawa (2021);

Lipka-Bartosik and Skrzypczyk (2021); Ding et al. (2021); Takagi and Shiraishi (2021). Building

upon the work of Devetak (2005a), the authors in Krovi and Devetak (2007) extended the result to

a setting with bounded one-way classical communication, again allowing for the additional catalytic

resource. They improved upon the classical communication rate by using the Winter’s approximate

measurement Winter (2004), instead of an n-letter product measurement, and extracted purity for

the states obtained thereby.

In this work, we revisit the task of distilling purity and consider a three-party setup. We ask

the question of how many ancilla qubits can be distilled from a noisy state ρABC , shared among

three parties, Alice, Bob and Charlie. Similar to earlier problem formulation, we only allow local

unitary operations at each party in a closed setting but permit the use of additional catalytic
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ancillas with the promise of returning them at the end of the protocol. In addition, similar to

Krovi and Devetak (2007), we only allow limited classical communication, which we model using a

one-way multiple-access dephasing channel, with Alice and Bob as the senders and Charlie as the

centralized receiver.

The contributions of this chapter can be summarized as follows. We first formulate a three-

party purity distillation problem, and develop a 1-CLOCC′ multi-party purity distillation protocol

for this problem capable of extracting purity from n copies of the noisy shared state ρ⊗n
ABC , using

only local unitary operations and a one-way multiple-access dephasing channel. Further, for ρ⊗n
ABC ,

we define the asymptotic performance limit of the problem as the set of all triples (P,R1, R2),

where P denotes the amount of purity that can be distilled from ρABC , using R1 and R2 bits of

classical communication. Then we characterize a quantum-information theoretic inner bound to

the achievable rate region in terms of computable single-letter information quantities (see Theorem

IV.4).

Toward the development of the results, we encounter two main challenges. The first challenge

is in the compression of the joint measurements. Since the classical communication allowed by

the protocol is limited, the joint measurements, that Alice and Bob employ, are required to be

compressed. Although a distributed measurement compression protocol for compressing a joint

measurement was developed in Chapter II, one cannot directly use this protocol as a complete

black box. The reason for this is that the measurement compression protocol also requires addi-

tional resource of common randomness which the current purity distillation protocol does not allow.

Apart from this, the measurement compression protocols provided in Winter (2004); Wilde et al.

(2012) and Chapters II and III shows the “faithfulness” of the post-measurement state of the refer-

ence along with the classical-quantum register storing the measurement outcome. These protocols

remain unconcerned about the post-measurement state of the system on which the measurement

is performed. However, in the current problem the closeness of the latter is needed. To overcome

this, we identify appropriate purifications of the post-measurement reference states and argue an

existence of a collection of unitary operations achieving the latter (see Lemma IV.8 in the sequel).

The second major challenge is that after the application of the compressed measurement, the

states across the three parties are not necessary separable. This is because a compressed measure-

ment is usually not a “sharp” rank-one measurement. In Devetak (2005a) rank-one measurements
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are employed which makes the states separable and hence eases the analysis. To handle this, we

develop a result that captures how much a purity extracting protocol can disturb other correlated

subsystems (see Lemma IV.10).

4.2 Preliminaries and Problem Formulation

4.2.1 Notation

We supplement the notations of the earlier chapters with the following. Recall that, given any

natural number M , the finite set {1, 2, · · · ,M} is denoted by [1,M ]. Let B(H),D(H) denote the

algebra of all bounded and density operators acting on H, respectively. Further, let D(H) denote

the set of all unit trace positive operators acting on H. Let I denote the identity operator. Let

κ(ρA) denote the asymptotic purity distillable by local purity concentration protocols from ρA

Oppenheim et al. (2002); Horodecki et al. (2003a). We know κ(ρA) = log dim(HA)− S(ρA).

4.2.2 Problem Formulation

In the following we describe the problem statement. Let ρABC be a density operator acting on

HA ⊗HB ⊗HC . Consider two measurements MA and MB on sub-systems A and B, respectively.

Imagine that we have three parties, named Alice, Bob and Charlie, trying to distill local purity

from the noisy joint state ρABC . The resources available to these parties are (i) the classical

communication links of specified rates between Alice and Charlie, and Bob and Charlie, modelled

as a multiple-access dephasing channel, and (ii) an additional triple of pure catalytic quantum

systems AC , BC and CC available to Alice, Bob and Charlie, respectively. Given the distributed

nature of the problem, no communication is possible between Alice and Bob. The problem is

formally defined in the following.

Definition IV.1. For a given finite set Z, and a Hilbert space HA⊗HB⊗HC , a distributed purity

distillation protocol with parameters (n,Θ1,Θ2, κ1, κ2, κ3, ι1, ι2, ι3) is characterized by

1. a unitary operation on Alice’s system UA : H⊗n
A ⊗HAC

→ HAp⊗HX1⊗HAg , with dim(HAp) =

κ1, dim(HAC
) = ι1, and dim(HX1) = Θ1.
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2. a unitary operation on Bob’s system UB : H⊗n
B ⊗HBC

→ HBp ⊗HX2 ⊗HBg , with dim(HBp) =

κ2, dim(HBC
) = ι2, and dim(HX2) = Θ2.

3. a multiple access dephasing channel N : HX1 ⊗HX2 → HX1 ⊗HX2 .

4. a unitary operation on Charlie’s system UC : H⊗n
C ⊗HCC

⊗HX1 ⊗HX2 → HCp ⊗HCg ⊗HX1 ⊗

HX2 , with dim(HCC
) = ι3 and dim(HCp) = κ3.

Definition IV.2. Given a quantum state ρABC ∈ D(HA ⊗ HB ⊗ C), a triple (P,R1, R2) is said

to be achievable, if for all ϵ > 0 and for all sufficiently large n, there exists a distributed purity

distillation protocol with parameters (n,Θ1,Θ2, κ1, κ2, κ3, ι1, ι2, ι3) such that

G =∆ ∥ξApBpCp − |0⟩⟨0|Ap ⊗ |0⟩⟨0|Bp ⊗ |0⟩⟨0|Cp ∥1 ≤ ϵ,

1

n
log2Θi ≤ Ri + ϵ : i ∈ [2],

1

n

∑
i∈[3]

(log2 κi − log2 ιi) ≥ P − ϵ,

where |ξ⟩ =∆ UCNUBUA|Ψ⊗n
ρ ⟩ABCR, and |Ψ⊗n

ρ ⟩ABCR is a purification of (ρABC)⊗n. The set of all

achievable triples (P,R1, R2) is called the achievable rate region.

Given a POVMM =∆ {ΛA
x }x∈X acting on ρ, the post-measurement state of the reference together

with the classical outputs is represented by (id⊗M)(Ψρ
RA) =

∆ ∑
x∈X |x⟩⟨x| ⊗TrA{(IR ⊗ΛA

x )Ψ
ρ
RA}.

Definition IV.3. Consider a quantum state ρABC ∈ D(HA ⊗ HB ⊗ HC), and a POVM MAB =

M̄A ⊗ M̄B acting on HA ⊗ HB where M̄A = {Λ̄A
s }s∈S and M̄B = {Λ̄B

t }t∈T . Define the auxiliary

states

σRBCS
1 =∆ (idR ⊗ M̄A ⊗ idBC)(Ψ

RABC
ρ ),

σRACT
2 =∆ (idR ⊗ idAC ⊗ M̄B)(Ψ

RABC
ρ ), and

σRST
3 =∆

∑
s,t

√
ρAB

(
Λ̄A
s ⊗ Λ̄B

t

)√
ρAB ⊗ |s⟩⟨s| ⊗ |t⟩⟨t| ,

for some orthonormal sets {|s⟩}s∈S and {|t⟩}t∈T , where ΨRABC
ρ is a purification of ρABC . Let

Rb(ρ
ABC ,MAB) be defined as the set of all pairs (R1, R2) such that there exists finite sets U and

V and a pair of mappings fS : S → U and fT : T → V, yielding U = fS(S), V = fT (T ), and
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W = (U, V ), and the following inequalities are satisfied:

R1 ≥ I(U ;RBC)σ1 − Ib(U ;V )σ3 ,

R2 ≥ I(V ;RAC)σ2 − Ib(U ;V )σ3 ,

R1 +R2 ≥ I(U ;RBC)σ1 + I(V ;RAC)σ2 − Ib(U ;V )σ3 ,

where Ib(·)σ = b× I(·)σ

4.3 Achievable purity and communication rates: An Inner Bound

Theorem IV.4. Given a quantum state ρABC ∈ D(HA⊗HB⊗HC), a triple (R1, R2, P ) is achiev-

able if there exists a POVM MAB = M̄A ⊗ M̄B acting on HA ⊗HB with POVMs M̄A = {ΛA
s }s∈S

and M̄B = {ΛB
t }t∈T HA ⊗HB and a real number b ∈ [0, 1] such that the following holds:

P ≤ κ(ρA) + κ(ρB) + κ(ρC) + I(C;U, V )σ − Ib(U ;V )σ3 ,

and (R1, R2) ∈ Rb(ρ
ABC ,MAB), where

σRCST =∆ (idR ⊗ idC ⊗ M̄A ⊗ M̄B)(Ψ
RABC
ρ ).

Proof. The proof is provided in Section 4.4.

Definition IV.5. Given a quantum state ρABC ∈ D(HA ⊗ HB ⊗ HC), and a dephasing chan-

nel with communication links of rates R1 and R2 define 1-way distillable distributed local purity

κ→(ρABC , R1, R2) as the supremum of the sum of all the locally distillable purity.

Corollary IV.6. Given a quantum state ρABC ∈ D(HA ⊗HB ⊗HC), let

κI→(ρABC , R1, R2) =
∆ κ(ρA) + κ(ρB) + κ(ρC) + PD

→(ρABC , R1, R2),

PD
→(ρABC , R1, R2) =

∆ 1

n
lim
n→∞

P̄D
→((ρABC)⊗n, nR1, nR2),

P̄D
→(ρABC , R1, R2) =

∆ max
MAB ,b∈[0,1]

{I(C;U, V )σ − Ib(U ;V )σ : (R1, R2) ∈ Rb(ρ
ABC ,MAB)}.

With the above definitions, we have κI→(ρABC , R1, R2) ≤ κ→(ρABC , R1, R2). In other words, for
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any communication rates (R1, R2), κ
I
→(ρABC , R1, R2) amount of purity can be jointly distilled from

the three parties using the protocol defined in Def. IV.1.

Proof. The proof follows from Theorem IV.4 and performing regularization.

4.4 Proof of the Inner Bound (Theorem IV.4)

The proof is mainly composed of two parts. In the first part, we construct a protocol by devel-

oping all the actions of the three parties, and describe them as unitary evolution (as these are the

only actions allowed by the protocol, Def. IV.1). Simultaneously, we also provide necessary lemmas

needed for the next part. The second part deals with characterizing the action of the developed

unitary operators on the shared quantum state ρABC and then bounding the error between the final

state and the desired pure state. Since our result is derived for a bounded communication channel,

we start by approximating the measurements to achieve a decreased outcome set, while preserving

the statistics of the measurement. Let MA =∆ {ΛA
u } and MB =∆ {ΛB

v } denote the POVMs after the

maps fS and fT , respectively.

4.4.1 Approximation of the measurement MA ⊗MB

We start by generating the canonical ensembles corresponding to MA and MB, defined as

λAu =∆ Tr{ΛA
u ρ

A}, λBv =∆ Tr{ΛB
v ρ

B}, λAB
uv =∆ Tr{(ΛA

u ⊗ ΛB
v )ρ

AB}, and

ρ̂Au =∆
1

λAu

√
ρAΛA

u

√
ρA, ρ̂Bv =∆

1

λBv

√
ρBΛB

v

√
ρB, ρ̂AB

uv =∆
1

λAB
uv

√
ρAB(ΛA

u ⊗ ΛB
v )
√
ρAB. (4.2)

Let ΠρA and ΠρB denote the δ-typical projectors (as in (Wilde, 2013a, Def. 15.1.3)) for marginal

density operators ρA and ρB, respectively. Also, for any un ∈ Un and vn ∈ Vn, let ΠA
un and ΠB

vn

denote the strong conditional typical projectors (as in (Wilde, 2013a, Def. 15.2.4)) for the canonical

ensembles {λAu , ρ̂Au } and {λBv , ρ̂Bv }, respectively.

For each un ∈ T (n)
δ (U) and vn ∈ T (n)

δ (V ) define

ρ̃A
′

un =∆ ΠρAΠ
A
un ρ̂AunΠA

unΠρA , ρ̃B
′

vn =∆ ΠρBΠ
B
vn ρ̂

B
vnΠ

B
vnΠρB ,

and ρ̃Aun = 0, and ρ̃Bvn = 0 for un /∈ T (n)
δ (U) and vn /∈ T (n)

δ (V ), respectively, with ρ̂Aun =∆
⊗

i ρ̂
A
ui
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and ρ̂Bvn =∆
⊗

i ρ̂
B
vi . Randomly and independently select 2nR̃1 and 2nR̃2 sequences (Un(l), V n(k))

according to the pruned distributions, i.e.,

P ((Un(l), V n(k)) = (un, vn)) =


λAun

(1− ε)

λBvn

(1− ε′)
for un ∈ T (n)

δ (U), vn ∈ T (n)
δ (V )

0 otherwise

, (4.3)

where ε =
∑

un∈T (n)
δ (U)

λAun and ε′ =
∑

vn∈T (n)
δ (V )

λBvn . Let C denote the codebook containing all

pairs of codewords (Un(l), V n(k)). Further, define σA
′
and σB

′
as

σA
′
=∆

∑
un∈T (n)

δ (U)

λAun

(1− ε)
ρ̃A

′
un , σB

′
=∆

∑
vn∈T (n)

δ (V )

λBvn

(1− ε′)
ρ̃B

′
vn , (4.4)

where ε =
∑

un∈T (n)
δ (U)

λAun and ε′ =
∑

vn∈T (n)
δ (V )

λBvn . Note that σ
A′

and σB
′
defined above are ex-

pectations with respect to the pruned distribution Wilde (2013a). Let Π̂A and Π̂B be the projectors

onto the subspaces spanned by the eigenstates of σA
′
and σB

′
corresponding to eigenvalues that are

larger than ε2−n(S(ρA)+δ1) and ε′2−n(S(ρB)+δ1), where δ1 > 0 is such that Tr(ΠρA) ≤ 2n(S(ρA)+δ1),

and Tr(ΠρB ) ≤ 2n(S(ρB)+δ1), and δ1 ↘ 0 as δ ↘ 0. Lastly, define

ρ̃Aun =∆ Π̂Aρ̃A
′

unΠ̂A, and ρ̃Bvn =∆ Π̂B ρ̃B
′

vnΠ̂
B.

Using these definitions, for any given ϵ ∈ (0, 1), and sufficiently large n and sufficiently small δ, we

have

∑
un∈Un

λAun Tr
{
ρ̃Aun

}
≥ 1− ϵ,

∑
un∈Un

λAun∥ρ̂Aun − ρ̃Aun∥1 ≤ ϵ,
∑

vn∈Vn

λBvn∥ρ̂Bvn − ρ̃Bvn∥1 ≤ ϵ. (4.5)

(A detailed proof of the statement can be found in (Wilde et al., 2012, Eqs 28 and 35).) Using

these definitions, construct operators

Aun =∆ γun

(
√
ρA

−1ρ̃Aun

√
ρA

−1

)
and Bvn =∆ ζvn

(
√
ρB

−1ρ̃Bvn
√
ρB

−1

)
, (4.6)
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where

γun =∆
1− ε

1 + η
2−nR̃1 |{l : Un(l) = un}| and ζvn =∆

1− ε′

1 + η
2−nR̃2 |{k : V n(k) = vn}|, (4.7)

and η ∈ (0, 1) is a parameter that determines the probability of not obtaining sub-POVMs. Then

construct M
(n)
1 and M

(n)
2 as in the following

M
(n)
1 =∆ {Aun : un ∈ T (n)

δ (U)},M (n)
2 =∆ {Bvn : v

n ∈ T (n)
δ (V )}.

We show later thatM
(n)
1 andM

(n)
2 form sub-POVMs, with high probability, These collectionsM

(n)
1

andM
(n)
2 are completed using the operators I−

∑
un∈T (n)

δ (U)
Aun and I−

∑
vn∈T (n)

δ (V )
Bvn , and these

operators are associated with sequences un0 and vn0 , which are chosen arbitrarily from Un\T (n)
δ (U)

and Vn\T (n)
δ (V ), respectively. Let 1{sP-i} denote the indicator random variable corresponding

to the event that M
(n)
i form sub-POVM for i = 1, 2. We use the trivial POVM {I} in the case

of the complementary event and associate it with un0 and vn0 as the case maybe. In summary,

the POVMs are given by {1{sP-1}Aun + (1 − 1{sP-1})1{un=un
0 }I}un∈Un , and {1{sP-2}Bvn + (1 −

1{sP-2})1{vn=vn0 }I}vn∈Vn .

Now, we intend to use the completions [M
(n,µ̄1)
1 ] and [M

(n,µ̄2)
2 ] in constructing the unitaries UA

and UB, as described in the protocol (Def. IV.1), for Alice and Bob, respectively. Before concluding

the discussion on the POVMs, we provide two lemmas which would be useful in the sequel. The

first lemma deals with bounding from below the probability that the constructed collection of

operators indeed form a sub-POVM. Toward this, observe that the collections of approximating

POVMs, {AUn(l)} and {BV n(k)}, constructed in this work are identical to the ones employed in

Winter (2004) (c.f. Chapter II) which allows us to use the Operator Chernoff Bound to establish

that these collections form a sub-POVM with high probability. Toward this consider, the following

proposition.

Proposition IV.7. For any ϵ ∈ (0, 1), any η ∈ (0, 1), any δ ∈ (0, 1) sufficiently small, and any n

sufficiently large, we have

E
[
1{sP-1}1{sP-2}

]
> 1− ϵ,

if R̃1 > I(U ;RB)σ1 and R̃2 > I(V ;RA)σ2, where σ1, σ2 are defined as in the statement of the
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theorem.

Proof. Observe that the collections {AUn(l)} and {BV n(k)} satisfy all the hypotheses of the operator

Chernoff bound Ahlswede and Winter (2002) after identifying Π as the cut-off operator employed

in Winter (2004). Now by following identical steps as in Winter (2004), the result follows.

The second lemma provides a unitary to show closeness of the post-measurement states obtained

from approximating measurements and the actual measurements. Note that the faithful simulation

results Winter (2004); Wilde et al. (2012) and of Chapters II and III show the closeness of states

in the reference system, but the current result proves the closeness of the post-measurement states.

The main elements of the proof is in identifying appropriate purifications and using the Uhlmann’s

Theorem Wilde (2013a). Before stating the lemma, consider the following definitions. Let,

AUn(l) =
∆ γ

√
ρA

−1ρ̃AUn(l)

√
ρA

−1 and BV n(k) =
∆ ζ

√
ρB

−1ρ̃BV n(k)

√
ρB

−1,

for γ =∆ 1−ε
1+η2

−nR̃1 and ζ =∆ 1−ε′

1+η 2
−nR̃2 . The lemma is as follows.

Lemma IV.8. Using the above definitions, for all l ∈ [2nR̃1 ] and k ∈ [2nR̃2 ], let

σ̂AE
l =∆

(IE ⊗
√

ΛA
Un(l))

∣∣Ψρ⊗n

〉ABCR√
λUn(l)

and σ̃AE
l =∆

(IE ⊗
√
AUn(l))

∣∣Ψρ⊗n

〉ABCR

√
γ

√
Tr
{
ρ̃AUn(l)

} ,

(σ̂BF
k and σ̃BF

k defined analogously) where E and F denotes the system BCR and ACR, respectively,

then for each l ∈ [2nR̃1 ] and k ∈ [2nR̃2 ], there exists a pair of unitaries UA
r (l) and UB

r (k), such that

√
F (σ̂AE

l , (IE⊗ UA
r (l))σ̃AE

l ) ≥ 1− 1

2
∥ρ̂Al − ρ̃Al ∥1 −

1

2

∣∣1− Tr
{
ρ̃Al
}∣∣ , and√

F (σ̂BF
k , (IF⊗ UB

r (k))σ̃BF
k ) ≥ 1− 1

2
∥ρ̂Bk − ρ̃Bk ∥1 −

1

2

∣∣1− Tr
{
ρ̃Bk
}∣∣ .

Proof. The proof is provided in Appendix C.1.

We now move on to characterizing the unitaries UA and UB.
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4.4.2 Action of Alice and Bob

Using the approximating POVMs constructed above, as a first unitary operation, Alice and Bob

perform a coherent version of the approximating POVM. This is defined as

UAL
M =∆

∑
l∈[2nR̃1 ]

√
AUn(l) ⊗ |l⟩ , UBK

M =∆
∑

k∈[2nR̃2 ]

√
BV n(k) ⊗ |k⟩ .

From now on, for ease of notation, we use ΛA
l ,Λ

B
k , λ

A
l , λ

B
k , Al, Bk, σ̂

A
l , σ̂

B
k , γl, and ζk to denote the

corresponding n−letter objects constructed for the codewords Un(l) and V n(k), respectively.

Although the operators defined above are isometry operators, but with the help of additional

catalyst qubits, these can be implemented as unitary operators. The rate at which these catalytic

ancilla are used will be characterized and subtracted from the total rate at which the protocol

produces them. Now, to extract purity from the states obtained after performing the measurements

we employ the approach of Krovi and Devetak (2007). More formally, we define the collection of

unitaries {UA
p (l)}

l∈[2nR̃1 ]
and {UB

p (k)}
k∈[2nR̃2 ]

as those that can extract purity for the collection of

states {σ̂Al }l∈[2nR̃1 ]
and {σ̂Bk }k∈[2nR̃2 ]

, respectively. Note that since σ̂Al and σ̂Bk are product states, we

use a type based construction (similar to one proposed in Krovi and Devetak (2007)) in designing

the unitary operators UA
p (l) and UB

p (k).

Now we characterize the complete action at Alice and Bob as

UA =∆ UAL
P UAL

R UAL
M and UB =∆ UBK

P UBK
R UBK

M , (4.8)

where UAL
P and UAL

R are controlled unitary operators defined as

UAL
P =∆

∑
l∈[2nR̃1 ]

UA
p (l)⊗ |l⟩⟨l| , UAL

R =∆
∑

l∈[2nR̃1 ]

UA
r (l)⊗ |l⟩⟨l| , (4.9)

and similar is true for UBK
P and UBK

R . This gives

UA =
∑

l∈[2nR̃1 ]

UA
p (l)UA

r (l)
√
Al ⊗ |l⟩ , UB =

∑
k∈[2nR̃2 ]

UB
p (k)UB

r (k)
√
Bk ⊗ |k⟩ .

Before introducing the action of Charlie, we provide two useful lemmas. The first lemma
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characterizes the purity that can be extracted individually by Alice and Bob, and the second

lemma integrates the action of the two parties and provides a way to cumulatively analyze the

effect of the two parties on the overall state. The first lemma can be stated as follows:

Lemma IV.9. Using the above defined unitary operations, let NA : H⊗n
A → HAp correspond to the

protocol that extracts purity from ρA using the above defined unitaries, i.e.,

NA(ρA) =
∆ TrAgL

{
(IRBC ⊗ UA)ρ

⊗n
A (IRBC ⊗ UA)

†
}
.

Then, for any given ϵ ∈ (0, 1), we have

EA

[∥∥∥NA(ρA)− |0⟩⟨0|Ap

∥∥∥
1
1{sP}

]
≤ ϵ, (4.10)

where H⊗n
A = HAg ⊗HAp and 1

n log dimHAp < log dimHA −
∑

u λ
A
uS(ρ

A
u ), for all sufficiently large

n, and sufficiently small η, δ > 0.

Proof. The proof is provided in Appendix C.2.

The second lemma is stated as follows:

Lemma IV.10. Given a protocol NA : H⊗n
A → HAp (as described above) capable of extracting

purity from ρA, let VA : H⊗n
A → HAp ⊗HAg ⊗HL be a Stinespring’s dilation of NA. Then,

EA

[∥∥∥(IAR ⊗ VA)Ψ
ARA

ρ⊗n
A

(IAR ⊗ VA)
† − ρARAgL ⊗ |0⟩⟨0|Ap

∥∥∥
1

]
≤ 4

√
EA

[∥∥∥NA(ρA)− |0⟩⟨0|Ap

∥∥∥
1

]
,

(4.11)

where

ρARAgL = TrAp

{
(IAR ⊗ VA)Ψ

ARA

ρ⊗An
(IAR ⊗ VA)

†
}
,

and ΨARA

ρ⊗n
A

is a purification of ρ⊗n
A .

Proof. The proof is provided in Appendix C.3.
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4.4.3 Transmission over the Dephasing Channel N

Before we proceed to employ the dephasing channel, observe that the classical registers created

by the coherent measurement contains correlations across Alice and Bob. These correlations could

be exploited which can further reduce the communication needed over the dephasing channel. For

this, we employ the traditional binning operation. Begin by fixing the binning rates (R1, R2),

with R1 ≤ R̃1 and R2 ≤ R̃2. For each sequence un ∈ T (n)
δ (U) assign an index from [1, 2nR1 ]

randomly and uniformly, such that the assignments for different sequences are done independently.

Perform a similar random and independent assignment for all vn ∈ T (n)
δ (V ) with indices chosen

from [1, 2nR2 ]. For each i ∈ [1, 2nR1 ] and j ∈ [1, 2nR2 ], let B1(i) and B2(j) denote the i
th and the jth

bins, respectively. More precisely, B1(i) is the set of all u
n sequences with assigned index equal to i,

and similar is B2(j). Also, note that the effect of the binning is in reducing the communication rates

from (R̃1, R̃2) to (R1, R2). Moreover, let ι1 : T (n)
δ (U) → [1, 2nR1 ], and ι2 : T (n)

δ (V ) → [1, 2nR2 ],

denote the corresponding random binning functions. With this, we can denote |l⟩ for l ∈ [2nR̃1 ] as

|l⟩L = |ι1(l)⟩L1
|βU (l)⟩L2

and similarly, |k⟩ for k ∈ [2nR̃2 ] as |k⟩K = |ι2(k)⟩K1
|βV (k)⟩K2

1, where the

functions βU and βV describe the remaining R̃1 − R1 and R̃2 − R2 qubits, respectively. Now the

qubits in the state |ι1(·)⟩ and |ι2(·)⟩ are sent over the multiple-access dephasing channel N , each

requiring rates of R1 and R2 qubits, respectively. Let

σABCRLK =∆ N (Ψ1
ABCRLK).

With this, we move on to describing the action of Charlie.

4.4.4 Action of Charlie

Charlie begins by undoing the binning operation. For this, let

Di,j =
∆{(l, k) : (Un(l), V n(k)) ∈ T (n)

δ (UV ) and (Un(l), V n(k)) ∈ B1(i)× B2(j)
}
.

For every i ∈ [1, 2nR1 ] and j ∈ [1, 2nR2 ] define the function F (i, j) = (l, k) if (l, k) is the

only element of Di,j ; otherwise F (i, j) = (0, 0) Further, F (i, j) = (0, 0) for i = 0 or j = 0.

1Note that ι1(l) = ι1(U
n(l)), and similar holds for the functions ι2, βU , βV .
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Using the qubits received from Alice and Bob, and the above definition of F (i, j), Charlie aims at

undoing the binning operations. This can be characterized as an isometric map UC
F : HY1 ⊗HY2 →

HY1 ⊗HY2 ⊗HF defined as

UC
F =∆

∑
i∈[2nR1 ]

∑
j∈[2nR2 ]

|F (i, j)⟩ ⟨i, j| , (4.12)

where F () is such that dim(HF ) = Rtb =
∆ R̃1 − R1 + R̃2 − R2. Note that, since binning decreased

the total number of qubits transmitted by Rtb, to implement the above isometry, Charlie would

need Rtb number of additional catalytic qubits present in the pure state. As the protocol allows for

the use of additional catalysts, as long as they are returned successfully, such an isometry can be

implemented as a unitary.

Remark IV.11. As will be shown in the sequel, the error analysis gives an upper bound on Rtb.

As this is only an upper bound, one can choose to not bin at the maximum rate and can save on

the catalytic qubits needed. However, this would increase the communication rates by equivalent

factors. This is modelled in the theorem statement using the real number b ∈ [0, 1].

After the complete identification of the measurement outcomes of Alice and Bob, Charlie now

extracts the purity from his state, conditioned on these outcomes. For this, he develops a collection

of unitary operations {UC
p (l, k)}

l∈[2nR̃1 ],k∈[2nR̃2 ]
, analogous to the earlier ones, with respect to the

state σ̂Cl,k defined as

σ̂Cl,k =∆
TrRAB

{
(IRC ⊗ ΛA

l ⊗ ΛB
k )Ψ

ABCR
ρ⊗n (IRC ⊗ ΛA

l ⊗ ΛB
k )

†
}

λAB
l,k

. (4.13)

Although σ̂Cl,k is defined as an n-letter state, it can be written as ⊗n
i=1σ̂

C
ui,vi , where σ̂

C
u,v is defined

correspondingly. Further, he constructs the controlled unitary UCLK
P defined as

UCLK
P =∆

∑
l∈[2nR̃1 ]

∑
k∈[2nR̃2 ]

UC
p (l, k)⊗ |l, k⟩⟨l, k| . (4.14)

This characterizes Charlie’s unitary as UC = UCLK
P UC

F , and gives

ξABCRLK =∆ (I ⊗ UCLK
P UC

F )σABCRLK(I ⊗ UCLK
P UC

F )†.
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At this point, we have the characterized the actions of all the three parties as unitary operations.

The next step is to measure the distance between the obtained state and the desired pure state, and

establish the G can be made arbitrary small. Let 1{sP} =
∆
1{sP−1}1{sP−2}. Using the boundedness

of the trace distance, it suffices to show

E[G] =∆ E
[
∥ξApBpCp1{sP} − |0⟩⟨0|ApBpCp ∥1

]
≤ ϵ,

where

ξApBpCp =∆TrRAgBgCgLK{(IABR ⊗ UC)N
(
IRC⊗ UA ⊗ UB)Ψρ⊗n(IRC⊗ UA ⊗ UB)

)
(IRAB⊗ UC)

†}.

(4.15)

4.4.5 Analysis of Trace Distance

We first provide a proof for the case assuming the encoders do not perform any binning (i.e,

b = 0), and later incorporate the analysis for the setting when b is non-zero. With this assumption,

we define

ξ
Tp

b =∆ TrRTgLK{(IR ⊗ UC
P ⊗ UA ⊗ UB)Ψ

ABCR
ρ⊗n (IR ⊗ UC

P ⊗ UA ⊗ UB)
†}, (4.16)

where we have replaced UC
F with an identity transformation, and Tp =∆ HAp ⊗ HBp ⊗ HCp and

Tg =∆ HAg ⊗HBg ⊗HCg . Now we show the closeness of this state with ξ
Tp

1 defined as

ξ
Tp

1 =∆ TrCgRLK

{
(IR ⊗ UC

P )ΦRCLK(IR ⊗ UC
P )†
}
⊗ |0⟩⟨0|ApBp

, (4.17)

where

ΦRABCLK =∆ (IRC ⊗ UA ⊗ UB)Ψ
ABCR
ρ⊗n (IRC ⊗ UA ⊗ UB)

†,

and ΦRCLK =∆ TrAB

{
ΦRABCLK

}
. Let 1{sP} =

∆
1{sP−1} · 1{sP−2}.

Step 1: Closeness of ξ
Tp

b and ξ
Tp

1 : As a first step, we show that ξ
Tp

1 can be made arbitrary

close to ξ
Tp

b , in trace distance, for sufficiently large n, in the expected sense. Toward this, we

123



perform the following analysis under the event
{
1{sP} = 1

}
.

∥ξTp

1 − ξ
Tp

b ∥1 ≤
∥∥∥TrAgBg

{
(IRC ⊗ UA ⊗ UB)Ψ

ABCR
ρ⊗n (IRC ⊗ UA ⊗ UB)

†
}
− ΦRCLK ⊗ |0⟩⟨0|ApBp

∥∥∥
1

≤ SA + SB, (4.18)

where

SA =∆
∥∥∥∥TrAgBg

{
(IRC ⊗ UA ⊗ UB)Ψ

ABCR
ρ⊗n (IRC ⊗ UA ⊗ UB)

†
}

− TrABg

{
(IRC ⊗ UA ⊗ UB)Ψ

ABCR
ρ⊗n (IRC ⊗ UA ⊗ UB)

†
}
⊗ |0⟩⟨0|Ap

∥∥∥∥
1

,

SB =∆
∥∥∥∥TrABg

{
(IRC ⊗ UA ⊗ UB)Ψ

ABCR
ρ⊗n (IRC ⊗ UA ⊗ UB)

†
}
⊗ |0⟩⟨0|Ap

− ΦRCLK ⊗ |0⟩⟨0|ApBp

∥∥∥∥
1

,

(4.19)

Now our objective is to show that SA and SB can be made arbitrarily small for all sufficiently large

n, and sufficiently small η, δ > 0, in the expected sense, under the event
{
1{sP} = 1

}
. Again using

the monotonicity and isometric invariance of trace distance, we obtain

E
[
SA 1{sP}

]
≤ E

[∥∥∥∥TrAg

{
(IRBC ⊗ UA)Ψ

ABCR
ρ⊗n (IRC ⊗ UA)

†
}

− TrA

{
(IRBC ⊗ UA)Ψ

ABCR
ρ⊗n (IRBC ⊗ UA)

†
}
⊗ |0⟩⟨0|Ap

1{sP−1}

∥∥∥∥
1

]
≤ 4

√
ϵ,

(4.20)

where the last inequality follows by using the results of Lemma IV.9 and Lemma IV.10. Similarly,

we have

E
[
SB 1{sP}

]
≤ E

[∥∥∥∥TrBg

{
(IRAC ⊗ UB)Ψ

ABCR
ρ⊗n (IRAC ⊗ UB)

†
}
− ΦRACLK ⊗ |0⟩⟨0|Bp

1{sP−2}

∥∥∥∥
1

]
,

where ΦRACLK =∆ TrB
{
ΦRABCLK

}
. Again using the results of Lemma IV.9 and Lemma IV.10, we

get E
[
SB 1{sP}

]
≤ 4

√
ϵ. This implies, E

[
∥ξTp

1 − ξ
Tp

b ∥11{sP}

]
≤ 8

√
ϵ for all sufficiently large n and
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sufficiently small η, δ > 0, while obtaining purity that satisfies

1

n
log dimHAp < log dimHA −

∑
u

λAuS(ρ
A
u ),

1

n
log dimHBp < log dimHB −

∑
v

λAv S(ρ
B
v ),

(4.21)

With the above result, we now move on to the next step. For this define,

ξ
Tp

2 =∆ TrRABCgLK{(IR ⊗ UC
P ⊗ U ′

A ⊗ U ′
B)Ψρ⊗n(IR ⊗ UC

P ⊗ U ′
A ⊗ U ′

B)
†} ⊗ |0⟩⟨0|ApBp

,

where

U ′
A =∆

∑
l∈[2nR̃1 ]

UA
p (l)

√
γ

λAl

√
ΛA
l ⊗ |l⟩ , U ′

B =∆
∑

k∈[2nR̃2 ]

UB
p (k)

√
ζ

λBk

√
ΛB
k ⊗ |k⟩ .

Note that, although U ′
A and U ′

B are not unitary operators, they are introduced for analysis purposes.

In other words, the non-product unitary corresponding to the coherent measurement UA
M followed

by the n-letter rotation operator UA
R is replaced by its corresponding product measurement, and

similarly for UB
M . In the next step, it will become clear how this operator is used in the analysis.

Step 2: Closeness of ξ
Tp

1 and ξ
Tp

2 : consider the following set of inequalities:

∥ξTp

2 − ξ
Tp

1 ∥11{sP}

≤
∥∥∥∥TrABLK

{
(IRAB ⊗ UC

P )
[
(IRC ⊗ UA ⊗ UB)Ψ

ABCR
ρ⊗n (IRC ⊗ UA ⊗ UB)

− (IRC ⊗ U ′
A ⊗ U ′

B)Ψ
ABCR
ρ⊗n (IRC ⊗ U ′

A ⊗ U ′
B)
]
(IRAB ⊗ UC

P )†
}∥∥∥∥

1

1{sP}

≤
∑
l,k

∥∥∥∥(IR ⊗ UC
p (l, k))

[
TrAB

{
(IRC ⊗

√
Al ⊗

√
Bk)Ψ

ABCR
ρ⊗n (IRC ⊗

√
Al ⊗

√
Bk)

†
}

− γζ

λAl λ
B
k

TrAB

{
(IRC ⊗

√
ΛA
l ⊗

√
ΛB
k )Ψ

ABCR
ρ⊗n (IRC ⊗

√
ΛA
l ⊗

√
ΛB
k )

†
}]

(IR ⊗ UC
p (l, k))†

∥∥∥∥
1

=
∑
l,k

∥∥∥∥√ρ⊗n
AB(Al ⊗Bk)

√
ρ⊗n
AB − γζ

λAl λ
B
k

√
ρ⊗n
AB(Λ

A
l ⊗ ΛB

k )
√
ρ⊗n
AB

∥∥∥∥
1

≤ TA + TB, (4.22)
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where

TA =∆
∑
l,k

∥∥∥∥√ρ⊗n
AB(Al ⊗Bk)

√
ρ⊗n
AB −

√
ρ⊗n
AB

(
Al ⊗

ζ

λBk
ΛB
k

)√
ρ⊗n
AB

∥∥∥∥
1

,

TB =∆
∑
l,k

∥∥∥∥√ρ⊗n
AB

(
Al ⊗

ζ

λBk
ΛB
k

)√
ρ⊗n
AB − γζ

λAl λ
B
k

√
ρ⊗n
AB(Λ

A
l ⊗ ΛB

k )
√
ρ⊗n
AB

∥∥∥∥
1

,

To bound TA and TB, we use the following lemma from Chapter II.

Lemma IV.12 (Lemma II.11 Chapter II). Given a density operator ρAB ∈ D(HAB), a sub-POVM

MY =∆
{
ΛB
y : y ∈ Y

}
acting on HB, for some set Y, and any Hermitian operator ΓA acting on HA,

we have

∑
y∈Y

∥∥√ρAB

(
ΓA ⊗ ΛB

y

)√
ρAB

∥∥
1
≤
∥∥√ρA ΓA√ρA

∥∥
1
, (4.23)

with equality if
∑
y∈Y

ΛB
y = I, where ρA =∆ TrB{ρAB}.

Using Lemma IV.12, we can now simplify TA and TB as

E[TA] ≤ E

[∑
k

∥∥∥∥√ρ⊗n
B Bk

√
ρ⊗n
B −

√
ρ⊗n
B

(
ζ

λBk
ΛB
k

)√
ρ⊗n
B

∥∥∥∥
1

]
= E

[∑
k

ζ∥ρ̃Al − ρ̂Al ∥1

]
≤ ϵ, (4.24)

for all sufficiently large n, and all sufficiently small η, δ > 0, where the last inequality follows from

(4.5). For TB, we obtain

E[TB]

= EA

∑
l,k

∑
vn∈T (n)

δ (V )

EB[1{V n(k)=vn}]
ζ

λBvn

∥∥∥∥√ρ⊗n
AB

(
Al ⊗ ΛB

vn
)√

ρ⊗n
AB − γ

λAl

√
ρ⊗n
AB(Λ

A
l ⊗ ΛB

vn)
√
ρ⊗n
AB

∥∥∥∥
1


≤ 1

(1 + η)
EA

∑
l

∑
vn∈T (n)

δ (V )

∥∥∥∥√ρ⊗n
AB

(
Al ⊗ ΛB

vn
)√

ρ⊗n
AB − γ

λAl

√
ρ⊗n
AB(Λ

A
l ⊗ ΛB

vn)
√
ρ⊗n
AB

∥∥∥∥
1


≤ 1

(1 + η)
EA

[∑
l

∥∥∥∥√ρ⊗n
A Al

√
ρ⊗n
A − γ

λAl

√
ρ⊗n
A ΛA

l

√
ρ⊗n
A

∥∥∥∥
1

]

≤ 1

(1 + η)
EA

[∑
l

γ
∥∥ρ̃Al − ρ̂Al

∥∥
1

]
≤ ϵ, (4.25)
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for all sufficiently large n, and all sufficiently small η, δ > 0, where the last inequality follows from

(4.5). This implies, E[∥ξTp

2 − ξ
Tp

1 ∥11{sP}] ≤ 2ϵ, for all sufficiently large n, and all sufficiently small

η, δ > 0.

Step 3: Closeness of ξ
Tp

2 and |0⟩⟨0|Tp
:

∥ξTp

2 − |0⟩⟨0|Tp
∥1 =

∥∥∥∥∥∥
∑
l,k

γζ

λAl λ
B
k

λAB
l,k TrCp

{
UC
p (l, k)σ̂Cl,k(U

C
p (l, k))†

}
− |0⟩⟨0|Cp

∥∥∥∥∥∥
1

≤ Q1 +Q2,

(4.26)

where σ̂Cl,k is as defined in 4.13, and

Q1 =
∆
∑
l,k

γζ

λAl λ
B
k

λAB
l,k

∥∥∥TrCp

{
UC
p (l, k)σ̂Cl,k(U

C
p (l, k))†

}
− |0⟩⟨0|Cp

∥∥∥
1
,

Q2 =
∆

∥∥∥∥∥∥
∑
l,k

γζ

λAl λ
B
k

λAB
l,k |0⟩⟨0|Cp

− |0⟩⟨0|Cp

∥∥∥∥∥∥
1

=

∣∣∣∣∑
l,k

γζ

λAl λ
B
k

λAB
l,k − 1

∣∣∣∣.
From the definition of UC

p (l, k), it follows that

E[Q1] ≤
∑

(un,vn)∈T (n)
δ (U,V )

(1− ε1)(1− ε2)

(1 + η)2
λAB
unvn

∥∥∥TrCp

{
UC
p (un, vn)σ̂Cun,vn(U

C
p (un, vn))†

}
− |0⟩⟨0|Cp

∥∥∥
1

+ 2
∑

(un,vn)/∈T (n)
δ (U,V )

λAB
unvn

≤ 3ϵ, (4.27)

for all sufficiently large n and sufficiently small η, δ > 0, and for 1
n log dimHCp < log dimHC −∑

u,v λ
AB
uv S(σ̂

C
uv). For the term corresponding to Q2, we provide the following proposition.

Proposition IV.13. For any ϵ ∈ (0, 1), any η ∈ (0, 1), any δ ∈ (0, 1) sufficiently small, and any

n sufficiently large, we have E [Q2] ≤ ϵ, if R̃1 + R̃2 > I(U ;V ).

Proof. The proof follows from using a similar set of arguments developed in (Cuff , 2009, Lemma

19).

This implies, E
[
∥ξTp

2 − |0⟩⟨0|Tp
∥1
]
≤ 4ϵ, for any given ϵ ∈ (0, 1), and for sufficiently large n,

and sufficiently small η, δ > 0.
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Now as a final step, we consider the case when Alice and Bob chooses to bin their measurement

outcomes before sending over the dephasing channel, i.e., the case when b > 0. We term the error

introduced by this process as the binning error.

Step 4: Closeness of ξ
Tp

b and ξTp : In this step, we bound the error that is introduced when

Charlie tries to undo the binning operation by performing the unitary UF . We show that Charlie

will be successful if the rate at which binning is performed is constrained by a non-trivial bound (to

be obtained in Proposition IV.14), and hence the error involved in undoing the binning operation

can be made arbitrary small, in an expected sense, for all sufficiently large n.

For l ∈ l ∈ [2nR̃1 ] and k ∈ k ∈ [2nR̃2 ], define d(l, k) =∆ F (i, j), such that (Un(l), V n(k)) ∈

B1(i) × B2(j). Note that d(·, ·) captures the overall effect of the binning followed by the decoding

function F . Further, for l ∈ l ∈ [2nR̃1 ] and k ∈ k ∈ [2nR̃2 ], define

Ψ̃ρ⊗n =∆
(IRC ⊗

√
Al ⊗Bk)Ψρ⊗n(IRC ⊗

√
Al ⊗Bk)

γlζk
.

Using these definitions, we obtain

∥ξTp − ξ
Tp

b ∥1 ≤
∑
l,k

γlζk

∥∥∥(IR ⊗ UA
p (l)UA

r (l)⊗ UB(k)U
B
r (k))

(
UC
p (l, k)Ψ̃ρ⊗n(UC

p (l, k))†

−UC
p (d(l, k))Ψ̃ρ⊗n ⊗ UC

p (d(l, k))†
)
(IR ⊗ UA

p (l)UA
r (l)⊗ UB(k)U

B
r (k))†

∥∥∥
=
∑
l,k

γlζk

∥∥∥UC
p (l, k)Ψ̃ρ⊗n(UC

p (l, k))† − UC
p (d(l, k))Ψ̃ρ⊗n ⊗ UC

p (d(l, k))†
∥∥∥ . (4.28)

Now, consider the following proposition.

Proposition IV.14. For any ϵ ∈ (0, 1), and sufficiently large n and sufficiently small η, δ > 0, we

have E[∥ξTp − ξ
Tp

b ∥1] ≤ ϵ if R̃1 −R1 + R̃2 −R2 ≥ I(U ;V )σ3.

Proof. The proof is provided in Appendix C.4.

Finally, we complete the proof by combining the results from all the above steps in the following.

Using this, we have

∥ξTp1{sP} − |0⟩⟨0|Tp ∥1 ≤
[
∥ξTp − ξ

Tp

b ∥1 + ∥ξTp

b − ξ
Tp

1 ∥1 + ∥ξTp

1 − ξ
Tp

2 ∥1
]
1{sP} + ∥ξTp

2 − |0⟩⟨0|Tp ∥1,
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Taking expectation of the above inequality and using (i) the closeness of trace norm proved in each

of the steps, and (ii) the result from Proposition IV.7, we have the desired result. This completes

the proof.

4.5 Conclusion

In this chapter, we considered the task of distilling local purity from a noisy quantum state

ρABC . We provided a protocol for three parties, Alice, Bob and Charlie, to distill local purity (at

a rate P ) from many independent copies of a given quantum state ρABC . The three parties have

access to their respective subsystems of ρABC , and are provided with pure ancilla catalytically,

i.e., with the promise of returning them unaltered after the end of the protocol. In addition, Alice

and Bob can communicate with Charlie using a one-way multiple-access dephasing channel of link

rates R1 and R2, respectively. The objective of the protocol was to minimize the usage of the

dephasing channel (in terms of rates R1 and R2) while maximizing the asymptotic purity that can

be jointly distilled from ρABC . To achieve this, we employed ideas from distributed measurement

compression protocols, and in turn, characterized a set of sufficient conditions on (P,R1, R2) in

terms of quantum information theoretic quantities such that P amount of purity can be distilled

using rates R1 and R2. Moreover, we observed a continuous trade-off between communication rate

and purity, expressed in terms of the variable b. This variable captures the correlations present in

the measurement outcomes across the distributed subsystems. We provided a way to exploit these

correlations by a technique similar to classical binning, undoing which results in a tradeoff between

distillable purity and communication rates.
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CHAPTER V

Lossy Quantum Source Coding

5.1 Introduction

In Chapters II and III, apart from our objective of measurement compression, we also obtained

QC distributed compression results. In this chapter, we turn our attention to a fully quantum prob-

lem. A fundamental problem from an quantum information theoretic perspective is the asymptotic

characterization of the rate required to compress a quantum source that can be recovered to a

certain measurable degree. Such a problem is referred to as quantum source coding or a quan-

tum data compression problem. In the lossless regime, Schumacher Schumacher (1995); Jozsa and

Schumacher (1994) proved that a quantum source could be compressed at a rate given by von

Neumann entropy while incurring a very small error between the reconstruction and the source

state. The error in this model is defined for the entire block, also called as block error or global

error. Considering the block error, a strong converse was also proved in the lossless regime Winter

(1999), which states that it is impossible to achieve any rate below von Neumann entropy even

when the asymptotic probability of block error is relaxed from being (almost) zero.

As for the lossy regime, where the objective is to further reduce the rate at the expense of

increased but bounded error, Barnum Barnum (2000) conjectured minimal coherent information

as a candidate in characterizing the asymptotic performance limit. Generalizing the formulation

from the classical rate-distortion theory Shannon et al. (1959), Barnum in Barnum (2000) intro-

duced a local distortion criterion as averaged symbol-wise entanglement fidelity based on marginal

operations (partial trace) between the reconstruction and the reference of the original source. In

Datta et al. (2013a), Datta et. al obtained a regularized expression for the quantum rate-distortion
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distortion function in terms of the entanglement of purification. Further, the authors also formu-

lated the entanglement-assisted quantum rate-distortion problem and characterized its asymptotic

performance limit using a single-letter expression. Wilde et. al further refined the characterization

of the quantum rate-distortion function in terms of regularized entanglement of formation, and

also generalized the problem setup to various scenarios, including side information in Wilde et al.

(2013). Works toward the asymptotic simulation of a memoryless quantum channel in Berta et al.

(2011); Bennett et al. (2014) have shown to be useful in achieving the above results, in particular,

the entanglement-assisted formulations. Authors in Datta et al. (2013b) formulated a quantum-

to-classical rate-distortion problem and provided a single-letter formula. A rate-distortion version

of the quantum state redistribution task Devetak and Yard (2008); Luo and Devetak (2009) was

considered in Khanian and Winter (2021). Investigations on a rate-distortion framework of generic

mixed quantum sources have been the focus of Khanian and Winter (2022); Baghali Khanian et al.

(2022). Other works that addressed related problems include Koashi and Imoto (2001); Devetak

and Berger (2002); Winter (2002); Datta et al. (2013c); Hsieh and Watanabe (2016); Salek et al.

(2018); Anshu et al. (2019).

In this work, we consider a new formulation of the problem of lossy quantum source coding, and

characterize a rate function, no larger than von Neumann entropy, while allowing for bounded error

in the reconstruction. We use a global error criterion as opposed to the approach of local symbol-

wise error studied in the literature. The problem we consider is without any shared entanglement

resources between the encoder and the decoder. We motivate this formulation with the following

observations.

An important component of any source coding problem is the error criterion employed in the

formulation of the problem. The local error criterion in the quantum rate-distortion framework is

inspired by the corresponding additive local single-letter distortion criterion in the classical source

coding formulation of Shannon Shannon et al. (1959), where a single-letter characterization is

available. The motivation for considering a local criterion is the strong converse of the lossless

source coding theorem which states that the entropy bound cannot be breached even when the

asymptotic probability of block error is relaxed to any number in (0, 1) (Csiszár and Körner , 2011,

Theorem 1.1). Although the strong converse precludes any relaxation of probability of block error

criterion, it does not prevent adopting alternative global error definitions for formulating a lossy
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source coding problem.

In Shannon et al. (1959); Csiszár and Körner (2011), a duality connection between the source

coding problem and the channel coding problem was observed. These problems were interpreted in

terms of a covering versus packing perspective. In both problems, the same information measure,

namely the mutual information, captures the asymptotic performance limits. A similar duality con-

nection exists between the classical-quantum communication problem Holevo (1998); Schumacher

and Westmoreland (1997) and the quantum-classical source coding problem Winter (2004); Datta

et al. (2013b), with the performance limits of both problems characterized in terms of single-letter

Holevo information quantities Holevo (2019). This has been further explored in Cheng et al. (2019).

In the fully quantum setting, from this standpoint, its well known that the quantum channel coding

problem has an asymptotic performance limit characterized using regularized coherent information

Lloyd (1997); Shor (2002); Devetak (2005b); Hayden et al. (2008). Among others, Devetak de-

veloped a proof of this result by employing a coherent approach to covering and packing, and

combined them cohesively, inspired by his work on the private channel capacity problem Devetak

(2005b). Coherent information can be interpreted in terms of packing of subspaces as elucidated

in Lloyd (1997). Quantum error-correcting codes have been extensively studied along these lines

in the coding theory literature, e.g., quantum Hamming bound Nielsen and Chuang (2002). This

leads us to the question: why is such a limit based on coherent information absent for the lossy

quantum source compression problem?

Toward answering this question, we take a closer look at the classical discrete memoryless

setting. We find that in addition to Shannon’s pioneering work of characterizing the rate-distortion

problem Shannon et al. (1959); Berger (1975), there have been several works discussing the lossy

source compression problem. A concept that has received particular attention is the notion of

a backward channel (Csiszár and Körner , 2011, Problem 8.3), which characterizes the posterior

distribution of the source given the reconstruction. The structure of this channel has been studied

in Gallager (1968); Berger (1971); Gerrish (1963). Although the forward channel, relating the

reconstruction to the source, achieving the rate-distortion function need not be unique, the resulting

backward channel is indeed unique. Moreover, the rate-distortion achievability result in (Csiszár

and Körner , 2011, Theorem 2.3) is shown by constructing a channel code for a backward channel

with a large probability of error and by using the encoder of the latter as a decoder of the former
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and vice versa. Highlighting this duality further, inspired by results on the output statistics of

good channel codes Shamai and Verdú (1997), the following was shown in Pradhan (2004). The n-

letter actual posterior conditional distribution of the source vector given the reconstruction vector

of any rate-distortion achieving code converges in normalized divergence to the n-product of the

unique minimum-mutual-information backward channel conditional distribution. In other words,

although the encoder and decoder are block operations, the induced posterior n-letter channel

becomes discrete memoryless in the asymptotic limit for a rate-distortion achieving code. For

further developments on this concept see Weissman and Ordentlich (2005); Cuff et al. (2010);

Schieler and Cuff (2013); Kostina and Verdú (2015). This channel also plays a fundamental

role in Bayesian estimation and detection theory Poor (1998), e.g., maximum a posteriori (MAP)

estimation. Therefore, we ask the question, can we use such a channel to formulate a lossy source

coding problem?

Contributions of this work: In light of this, in this chapter, we explore a new formulation of

the source compression problem in the memoryless setting. This formulation is based on the notion

of a posterior channel that produces the reference of the source from that of the reconstruction.

Instead of a single-letter distortion function, now, we are given a single-letter posterior channel

that characterizes the nature of the loss incurred in the encoding and decoding operations. More

precisely, we want to construct an encoder and a decoder such that the joint effect of encoding

and decoding – to produce a reconstruction sequence from the source sequence – is close to the

effect of the n-product posterior channel acting on the non-product reconstruction sequence.The

closeness is measured using the trace distance in the quantum case and the total variation in the

classical case, manifesting as a global error constraint. A related concept is the Petz recovery map

which has found significant relevance in information-theoretic problems Petz (1986); Barnum and

Knill (2002); Hayden et al. (2004). However, we take a different approach and consider a quantum

channel, i.e., a CPTP map, acting on the reference of the reconstruction to produce the reference of

the source, whose existence is guaranteed using Uhlmann’s theorem. We refer to this as a posterior

reference map.

As one of the main contributions of our work, we provide a single-letter characterization of the

asymptotic performance limit of this source coding problem using the minimal coherent information

of the posterior reference map, where the minimization is over all reconstructions (see Theorem
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V.9). Furthermore, our work establishes a duality connection between quantum lossy compression

and the quantum channel coding problem. Our proof is based on the coherent application of two

fundamental tools of quantum information theory, namely, packing and covering, implying a duality

relationship with Devetak’s proof for the channel coding problem Devetak (2005b) (also see Shor

(2002); Hayden et al. (2008)).

At one end of the spectrum, when the posterior reference map is specified as the identity

transformation, our rate expression in the quantum case reduces to the von Neumann entropy of the

given quantum source, demonstrating the connection with the Schumacher’s lossless compression

Schumacher (1995). In fact, with Schumacher’s formulation also based on a global error criterion,

the latter and the current formulations enjoys a stronger relationship of equivalence at this extreme.

On the other end, when the specified posterior reference map is such that coherent information is

negative for some reference of the reconstruction, we characterize the asymptotic performance limit

of the lossy quantum source coding problem to be zero.

The techniques employed to prove our results can be summarized as follows. For the achiev-

ability of the Theorem V.9, we first construct a posterior reference isometry V (as in Definition

V.1) and decompose it as a coherent measurement. We then make use of Winter’s measurement

compression protocol Winter (2004), and apply it in a coherent fashion to compress the output

of the above isometry. This involves using the Uhlmann’s Theorem Uhlmann (1976) (or (Wilde,

2011, Theorem 9.2.1)) followed by incorporating additional phases to achieve a coherent faithful

simulation of the posterior reference map. To further decrease the compression rate, we exploit

the fact that a noiseless quantum channel can preserve arbitrary superpositions. Therefore, we

perform additional encoding to embed the information at the output of V as superpositions within

itself. This requires availing the HSW classical communication result Holevo (1998); Schumacher

and Westmoreland (1997) to construct information decoding POVMs, and Naimark’s extension

theorem to construct a unitary from POVM elements. The method used for expurgation is another

interesting feature of the proof. The protocol as it stands only permits operations that are unitary

or isometric, followed by partial tracing. It can be challenging to guarantee this when there are

repeated codewords in a code. A similar phenomenon was observed in the Devetak’s proof Devetak

(2005b). For the converse of Theorem V.9, we use the quantum data processing inequality for

coherent information, the Fannes-Audenart inequality, and monotonicity results. such as the quan-
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Figure 5.1:
Figure demonstrating the construction of the posterior reference mapW from the isom-
etry V (the Stinespring’s dilation of NV ) and the source state ρB.

tum data processing inequality, the concavity of conditional quantum entropy, and the continuity

of quantum mutual information (AFW inequality).

The chapter is organized as follows. We provide some necessary definitions and useful lemmas

in Section 5.2. In Section 5.3, we formulate the problems and provide the main results (Theorem

V.9). We provide examples corresponding to the main result in section 5.4. In Sections 5.6 and 5.7

we provide proofs of the main results. Finally, Section 5.8 concludes the chapter.

5.2 Preliminaries and Notations

We supplement our notations so far with the following. Let IA denote the identity operator

acting on a Hilbert space HA. The set of density operators on HA are denoted by D(HA), and

linear operators by L(HA). We denote HAR
as the Hilbert space associated with the reference space

of HA, with dimHAR
= dimHA. In this work, we focus exclusively on references obtained from

canonical purifications of quantum states (Winter , 2004, Lemma 14 (Pretty Good Purifications)),

and define canonical purification |ψρ⟩ARA of ρA as |ψρ⟩ARA =∆ (IAR
⊗
√
ρA)ΓARA, where ΓARA

is defined as the unnormalized maximally entangled state. We use ΨARA
ρ to denote the density

operator corresponding to |ψρ⟩ARA. As is the convention, for two states acting on the same Hilbert

space, we use the same Γ when defining their canonical purifications. We denote the finite alphabet

of a source as X, and the set of probability distributions on the finite alphabet X as P(X). Let

[Θ] =∆ {1, 2, · · · ,Θ}. For a CPTP map N : HA → HB, and an input density operator ρA ∈ D(HA),

we use Ic(N , ρA) to denote the coherent information of N with respect to ρA.

Definition V.1 (Posterior Reference Map). Given a source ρB ∈ D(HB) and a channel NV :

HB → HA, let ρ
A =∆ NV (ρ

B). Let V : HB → HA ⊗HE be a Stinespring’s isometry corresponding
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to the CPTP map NV with dim(HE) ≥ dim(HA), such that NV (·) = TrE{V (·)V †}. As shown

in Figure 5.1, define the “posterior reference map” of V with respect to ρA as the CPTP map

NW : HAR
→ HBR

corresponding to the isometry W : HAR
→ HBR

⊗ HE satisfying (W ⊗

IA) |ψρ⟩ARA = (IBR
⊗V ) |ψρ⟩BRB where |ψρ⟩ARA and |ψρ⟩BRB are the canonical purifications of ρA

and ρB, respectively.

Remark V.2 (Existence of a Posterior Reference Map). Using the equivalence of purifications, one

can guarantee the existence of such a posterior reference isometry W : HAR
→ HBR

⊗HE . Since V

is an isometry with dim(HE) ≥ dim(HA), and since |ψρ⟩ARA and |ψρ⟩BRAE =∆ (IBR
⊗ V ) |ψρ⟩BRB

are purifications of ρA (as TrE(V ρ
BV †) = ρA), from (Wilde, 2011, Theorem 5.1.1), there exists an

isometry W : HAR
→ HBR

⊗HE such that (W ⊗ IA) |ψρ⟩ARA = |ψρ⟩BRAE .

5.2.1 Useful Lemmas

Lemma V.3 (Fuchs and Van De Graaf (1999), Theorem 9.3.1 Wilde (2011)). Given two states

ρ, σ ∈ D(H), we have

1−
√
F (ρ, σ) ≤ 1

2
∥ρ− σ∥1 ≤

√
1− F (ρ, σ).

Lemma V.4. For ρB, σB ∈ D(HB), the following inequality holds:

F (|ψρ⟩ , |ψσ⟩) ≥
(
1− 1

2

∥∥ρB − σB
∥∥
1

)2

, (5.1)

where |ψρ⟩ and |ψσ⟩ are the canonical purifications of ρB and σB, respectively.

Proof. We provide a proof in Appendix D.1.

The above lemma is a slight tightening of the Lemma 14 (“Pretty good purifications”) of Winter

(2004).

Lemma V.5 (Naimark’s extension theorem Naimark (1940), (Wilde, 2013b, Theorem 2.1)). Given

a POVM {Γx}x∈X acting on the system HA, there exists a unitary UAA′ acting on the system HA

and auxiliary system HA′ and an orthonormal basis {|x⟩A
′
}x∈X such that

Tr
{
Γx(ρ

A ⊗ |0⟩⟨0|A′)
}
= Tr

(
Γxρ

A
)
,
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Figure 5.2: Illustration of Lossy Quantum Compression protocol

where {Γx =∆ U †
AA′(IA⊗ |x⟩⟨x|A

′
)UAA′} are orthogonal projectors acting on system HA⊗HA′. And,

|0⟩A
′
is some fixed state in HA′, independent of Γx and ρA.

5.3 Main Result: Characterization of the Achievable Rate Region

We first formulate a quantum source coding problem as follows. For any memoryless quantum

information source, characterized by ρB ∈ D(HB), denote its canonical purification by |ψρ⟩BBR .

Let ρBR =∆ TrB[Ψ
BRB
ρ ].

Definition V.6 (Quantum Source Coding Setup). A quantum source coding setup is characterized

by a triple (ρB,HA,NW ), where ρB ∈ D(HB) is a density operator, HA is a reconstruction Hilbert

space, and NW is a single-letter CPTP map from HAR
to HBR

, where HAR
and HBR

are reference

spaces corresponding to HA and HB, respectively.

Definition V.7 (Lossy Quantum Compression Protocol). For a given input and reconstruction

Hilbert spaces (HB,HA), an (n,Θ) lossy quantum compression protocol consists of a encoding

CPTP map N (n)
E : HBn → HM and a decoding CPTP map N (n)

D : HM → HAn , such that

dim(HM ) = Θ, as shown in Figure 5.2.

Definition V.8 (Achievability). For a quantum source coding setup (ρB,HA,NW ), a rate R is

said to be achievable, if for all ϵ > 0 and all sufficiently large n, there exists an (n,Θ) lossy quantum

compression protocol satisfying

∥∥∥ωBn
RAn − (N⊗n

W ⊗ IAn)Ψ
An

RAn

ω

∥∥∥
1
≤ ϵ, (5.2)
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and 1
n logΘ ≤ R + ϵ, where ωBn

RAn
=∆ (I ⊗ N (n)

D )(I ⊗ N (n)
E )(Ψ

Bn
RBn

ρ ), and Ψ
Bn

RBn

ρ and Ψ
An

RAn

ω are

the canonical purifications of ρB
⊗n

and ωAn
, respectively.

In other words, the protocol ensures that the joint state of the reconstruction on H⊗n
A and

the original reference H⊗n
BR

is close to the effect of the n-product posterior channel acting on the

reference of the non-product reconstruction sequence. Our objective is to characterize the set of all

achievable rates using single-letter quantum information quantities.

Theorem V.9 (Lossy Quantum Compression Theorem). For a (ρB,HA,NW ) quantum source

coding setup, a rate R is achievable if and only if S(ρB,NW ) is non empty, and

R ≥ min
ρAR∈S(ρB ,NW )

I+c (NW , ρ
AR),

where for any real x, x+ =∆ max(x, 0) and

S(ρB,NW ) =∆ {ρAR ∈ D(HAR
) : NW (ρAR) = ρBR}.

Proof. A proof of the achievability is provided in Sections 5.5 and 5.6, and a proof of converse is

provided in Section 5.7.

Remark V.10 (Covering of Subspaces). The asymptotic rate obtained in the statement of Theorem

V.9 can be interpreted using a subspace covering argument. Let us assume we are given a source

ρB and a CPTP map NW whose coherent information is positive for all ρAR ∈ S(ρB,NW ). Let W :

HAR
→ HBR

⊗HE be a Stinespring’s dilation of NW . This implies Ic(NW , ρ
AR) = S(BR)σ−S(E)σ,

where σBRE =∆ WρARW †, for ρAR ∈ S(ρB,NW ). We know that the n-product source state ρB
⊗n

can

be compressed using Schumacher compression to a subspace of normalized logarithmic dimension

S(BR)σ with high probability. In order to further reduce the rate, we use the posterior reference

map of W with respect to ρBR such that its action on the source produces the state ρA. Each

basis vector in the reconstruction space can be thought of as covering a subspace of normalized

logarithmic dimension of S(E)σ in the reference space. Therefore, one needs a rate of coherent

information (which is the difference of the two entropies) to cover the entire source space with high

probability. A similar observation was made for the quantum channel coding problem in Lloyd
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(1997).

Remark V.11 (Comparison with Schumacher’s lossless compression). Schumuacher’s compression

Schumacher (1995) requires limn→∞ ∥ωBn
RAn − Ψ

Bn
RBn

ρ ∥ = 0. In the current formulation, if one

chooses the identity map as the posterior reference map, i.e., NW = IAR→BR
, we require the

condition limn→∞ ∥ωBn
RAn −Ψ

An
RAn

ω ∥ = 0. Using Lemma V.4, monotonicity of the trace norm, and

the triangle inequality, one can show that the two conditions are equivalent. Subsequently, both

formulations yield the same asymptotic performance limit of von Neumann entropy. Observe that

the standard source coding formulation using the average single-letter distortion criterion at zero

distortion level is not equivalent to Schumacher’s compression.

Remark V.12 (Comparison with average single-letter rate distortion). Given any sequence of (n,Θ)

lossy quantum compression protocol for a quantum source coding setup (ρB,HA,NW ) that achieves

the optimality in Theorem V.9, we observe that the following is true. Let ωBn
RAn

=∆ (I ⊗N (n)
D )(I ⊗

N (n)
E )(Ψ

Bn
RBn

ρ ) be the induced state of the n-letter reference and the reconstruction by the protocol.

Since the protocol satisfies (5.2), by monotonicity of trace distance, we obtain

lim
n→∞

∥ωBRiAi − (NW ⊗ IA)(Ψ
ARiAi
ω )∥1 = 0, ∀ 1 ≤ i ≤ n,

where Ψ
ARiAi
ω =∆ Tr

An\iA
n\i
R

[Ψ
An

RAn

ω ]. It is worth noting that Ψ
ARiAi
ω is not necessarily a pure state.

Moreover, this does not necessarily provide any guarantee on the average single-letter distortion

between the reference and the reconstruction as considered in the standard formulation of the

problem (Datta et al., 2013a, Lemma 1), where a single-letter purification of the source is taken

into account. From this perspective, the current formulation is more “optimistic” in terms of

measuring the quality of the reconstruction.

Remark V.13 (Comparison with Entanglement Assistance). We note that

Ic(NW , ρ
AR) =

1

2
[I(BR;A)σ − I(A;E)σ] ≤

1

2
I(BR;A)σ,

where σBRAE =∆ (I ⊗ V )ΨBRB
ρ (I ⊗ V )†, and V : HB → HA ⊗ HE is a posterior reference map of

W with respect of ρBR . It was shown in Datta et al. (2013a) that 1
2I(BR;A)σ characterizes the

asymptotic performance limit for the rate-distortion problem (with a local single-letter distortion
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function) with unlimited entanglement assistance. Hence, this also provides a lower bound on the

asymptotic performance limit for the corresponding problem in the unassisted case. Fortunately,

this does not lead to any contradiction, as the current formulation differs from the former by being

more optimistic.

5.4 Illustrative Examples

Example V.14 (Quantum Source Coding using Bit-Flip Channel). In this example, we analyze

the performance of a lossy quantum compression protocol corresponding to a quantum source

coding setup (ρB,HA,NW ), where ρB is chosen as the maximally mixed state (ρB = IB/2), and

NW : HAR
→ HBR

is specified as a bit-flip channel. An isometry W : HAR
→ HBR

⊗HE for NW

can be specified as

W =
√
1− pI ⊗ |0⟩E +

√
pX ⊗ |1⟩E ,

where NW (ρAR) = TrE(WρARW †) for all p ∈ (0, 1/2). Note that the canonical purification |ψρ⟩BRB

of ρB is given by

|ψρ⟩BRB =
1√
2

(
|0⟩BR |0⟩B + |1⟩BR |1⟩B

)
, (5.3)

where |0⟩BR =∆ (I ⊗ ⟨0|B) |Γ⟩BRB. This implies, ρBR = IBR
/2. To compute the asymptotic perfor-

mance of the protocol for this source coding setup, as characterized by Theorem V.9, we first need

to identify a ρAR such that NW (ρAR) = ρBR . A simple computation reveals S(ρB,NW ) = {IAR
/2}.

This gives

min
ρAR∈S(ρB ,NW )

I+c (NW , ρ
AR) = Ic(NW , IAR

/2) = S(BR)σ − S(E)σ,

where σBRE =WρARW †. Note that σBR = IBR
/2 and σE = (1− p) |0⟩⟨0|E + p |1⟩⟨1|E , which gives

Ic(NW , IAR
/2) = 1 − hb(p), where hb(p) =

∆ −p log(p) − (1 − p) log(1− p). Therefore, a maximally

mixed source can be compressed at a rate 1 − hb(p) while satisfying the error criterion as defined

in (5.2).

Example V.15 (Quantum Source Coding using Depolarizing Channel). In this example, we study

the performance of another candidate channel, namely a depolarising channel. We again proceed
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with the objective of compressing a maximally mixed state ρBR =
IBR
2 , with NW defined as

NW (ρAR) =

(
1− 3p

4

)
ρAR +

p

4
(XρARX† + Y ρARY † + ZρARZ†).

for some p ∈ [0, 1]. A simple calculation to satisfy NW (ρAR) = ρBR =
IBR
2 reveals S(ρB,NW ) =

{IAR
/2}, for all p ∈ (0, 1). Analogous to the above example, finding an isometric extension of NW

gives

min
ρAR∈S(ρB ,NW )

I+c (NW , ρ
AR) = I+c (NW , IAR

/2) = max
{
0, 1− hb(3p/4)−

3p

4
log(3)

}
.

Example V.16 (Hamming codes for quantum source compression). In this example, we look at

how Hamming codes perform when evaluated using the standard single-letter (local) entanglement

fidelity criterion. Hamming codes are perfect codes, and achieve the Delsarte upper bound on the

covering radius Mattson Jr (2012). Again, let ρB = IB
2 . Let a maximally entangled bipartite state

|ψm⟩BRB, defined as

|ψm⟩BRB =
1√
2

(
|00⟩BRB + |11⟩BRB

)
, (5.4)

be the purification of ρB. Let F2 denote a binary finite field, and let G ∈ Fk×n
2 be the generator

matrix of a Hamming code. To encode ρB, we appeal to the duality perspective, and use the

decoder of a Hamming code. Then the encoding is defined as E(xn) =∆ argminuk{wH(uk G⊕ xn)},

for all xn ∈ Fn
2 , where wH denotes the Hamming weight. Similarly, the decoder can be described

as mapping D ◦ E((xn)) = E(xn)G. We describe this encoding as an isometric action VH : H⊗n
B →

H⊗n
A ⊗H⊗n

E taking the basis |xn⟩B
n

to a vector |E(xn)⟩A
n

⊗ |xn ⊕ E(xn)⟩E
n

∈ H⊗n
A ⊗H⊗n

E , where

the subsystem H⊗n
A stores the reconstruction and H⊗n

E is eventually traced out, and HA is assumed

to be an isomorphic copy of HB. This implies that the encoded state can be characterized as

ρB
n
RAn

= TrEn

{
VH
∣∣ψ⊗n

m

〉〈
ψ⊗n
m

∣∣Bn
RBn

V †
H

}
.
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Using

VH
∣∣ψ⊗n

m

〉Bn
RBn

=
1√
2n

∑
xn

|xn⟩Bn
R
|E(xn)⟩An |xn ⊕ E(xn)⟩En

=
1√
2n

∑
cn∈C

∑
en∈Fn

2 :wH(en)≤1

|cn ⊕ en⟩Bn
R
|cn⟩An |en⟩En ,

we can simplify ρB
n
RAn

as

ρB
n
RAn

=
1

2n

∑
cn,c′n,en

|cn ⊕ en⟩ ⟨c′n ⊕ en| ⊗ |cn⟩ ⟨c′n|, (5.5)

where C denotes the set of codewords of the Hamming code. To compute the single-letter entan-

glement fidelity, we compute

ρBRi
Ai = Tr

B
n\i
R An\i

{
ρB

n
RAn}

=
1

2n

∑
cn,en

|ci ⊕ ei⟩ ⟨ci ⊕ ei| ⊗ |ci⟩ ⟨ci| , (5.6)

where tracing is performed on all the subsystems except corresponding to B
n\i
R An\i, and the second

equality follows from using the fact that minimum Hamming distance of any Hamming code is

three. This gives,

⟨ψBRB
m |ρBRi

Ai |ψBRB
m ⟩ = 1

2

1

2n

∑
cnen

[
1{ci⊕ei=0,ci=0} + 1{ci⊕ei=1,ci=1}

]
=

1

2n+1

∑
cnen

1{ei=0}. (5.7)

Therefore,

1

n

n∑
i=1

⟨ψm
BRB|ρBRi

Ai |ψm
BRB⟩ = 1

2n+1n

∑
cnen

n∑
i=1

1{ei=0} =
|C|n2

2n+1n
=

n

2 · 2n−k
. (5.8)

We know that for Hamming codes k = 2r − r − 1 and n = 2r − 1, which simplifies as

1

n

n∑
i=1

⟨ψm
BRB|ρBRi

Ai |ψm
BRB⟩ = 2r − 1

2 · 2r
, (5.9)

and goes to half as r goes to infinity. Note that r → ∞ serves as both a demonstration of the

code’s asymptotic performance and the condition for the rate k/n to reach unity. This results in a

discontinuous asymptotic performance, since at rate exactly one, trivial identity encoding can be
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used to achieve the average single-letter fidelity of unity. Further, note that S(En) = log(n+ 1) =

r. Hence the normalized amount of qubits that is dissipated, given by S(En)
n , approaches zero

as r → ∞, indicating that there is significant entanglement between the reconstruction and the

reference.

As was demonstrated in Example V.14, it is possible to compress a maximally mixed source

in a continuous fashion, when the error is measured in accordance with the suggested definition in

(5.2),

5.5 Achievability Proof Overview

We provide a brief overview of the achievability proof before formally presenting one. The proof

we present here is inspired by Devetak’s work in Devetak (2005b) for the quantum channel commu-

nication problem (also detailed in (Wilde, 2011, Chapter 24)). An integral component of that work

is the decomposition of coherent information as the difference of two Holevo information quantities.

We intend to perform a similar decomposition, but from the perspective of the given map NW . To-

ward this, for the given source ρB, we first search for a ρAR ∈ D(HAR
), satisfying NW (ρAR) = ρBR .

Once found, using the spectral decomposition, we expand ρAR as ρAR =
∑

a∈A λ
A
a |a⟩⟨a|AR , for

some finite set A. Observe that since |a⟩⟨a|AR is pure, S(NW (|a⟩⟨a|AR)) = S(N c
W (|a⟩⟨a|AR)), where

N c
W : HAR

→ HE is a complementary CPTP map of NW , defined using the Stinespring’s dilation

W : HAR
→ HBR

⊗HE corresponding to NW . This also means that

∑
a∈A

λAa S(NW (|a⟩⟨a|AR)) =
∑
a∈A

λAa S(N c
W (|a⟩⟨a|AR)).

Furthermore, from the linearity of CPTP maps, we see

∑
a∈A

λAaNW (|a⟩⟨a|AR) = NW (ρAR) and
∑
a∈A

λAaN c
W (|a⟩⟨a|AR) = N c

W (ρAR).

This implies, we can rewrite Ic(NW , ρ
AR) as

Ic(N , ρAR) = S(NW (ρAR))− S(N c
W (ρAR))
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=

[
S(NW (ρAR))−

∑
a∈A

S(λAaNW (|a⟩⟨a|AR))

]
−

[
S(N c

W (ρAR))−
∑
a∈A

λAa S(N c
W (|a⟩⟨a|AR))

]

= χ
({
λAa ,NW (|a⟩⟨a|AR)

})
− χ

({
λAa ,N c

W (|a⟩⟨a|AR)
})

. (5.10)

Now our aim is to show the achievability of a rate equal to the above difference. After obtaining

a similar decomposition, Devetak achieved the performance limit by applying a coherent version of

the CQ packing lemma (Wilde, 2011, Chapter 16) followed by an application of the QC covering

lemma (Wilde, 2011, Chapter 17). Inspired by this, and the duality connections between the two

problems, we achieve the difference obtained in (5.10). In particular, we start with the objective

of applying a coherent version of the QC covering lemma (or the measurement compression result

Winter (2004)). Toward this, as shown in Figure 5.1, we first obtain a posterior reference map V

corresponding to the isometry W . Then we identify the action of V on the state ρB as a coherent

quantum measurement. Now, using the approximating POVMs constructed in Winter (2004), we

perform a coherent covering that allows us to compress the obtained measurement, and in turn the

output of V , at rate given by the first Holevo information. The compression is performed while

faithfully simulating the action of V , giving a reconstruction satisfying the error criterion (as in

(5.2)). This procedure is delineated in Step 1.1 where an encoder is constructed to perform coherent

covering and in Step 2.1 where the effect of covering is analyzed, and a rate corresponding to the

first Holevo information is achieved.

To get the needed coherent information, the rate corresponding to the second Holevo information

must be further decreased. This entails diffusing more data or qubits into the environment (partial

tracing). However, as will be demonstrated in the proof below, such an action would destroy

quantum correlations present in the source, possibly turning it into a classical mixture. Therefore,

before such partial tracing operation, in Step 1.2 (Section 5.6) we construct a unitary operation

that can condense the information into fewer qubits in the form of entanglement, and thus allowing

for further decrease in the rate. This includes using the coherent post-measurement state of the

subsystem E as side information available at the encoder. The Step 2.2 of Section 5.6 details this

procedure and achieves the desired rate. Finally, an additional step (Step 2.3) is required to show

the intended closeness as required in (5.2).

Another intriguing aspect of the proof is the technique used for expurgation. As clear from
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the definition of the protocol, it only allows unitary or isometric operations, followed by partial

tracing. When a code contains repeated codewords, it can be difficult to guarantee this. An

approach to removing all repetitions is to perform expurgations. This is achieved by finding a good

code (satisfying all its constraints) while allowing a small fraction of repeats and then expurgating

just this fraction of the code. However, if there are exponentially many constraints, it becomes

challenging to finding a good code. The exponentially many covering constraints in Devetak’s

problem have a doubly exponential decreasing probability of error, which Devetak was able to take

advantage of. In the current problem we instead have exponentially many packing constraints which

only have an exponential decay. In order to combat this, we construct our proof to just require one

packing constraint: the average of all exponentially many packing constraints. This enables us to

find a good code and successfully expurgate it. We now formally construct the arguments toward

proving the statement of the theorem.

5.6 Proof of Achievability

The proof is mainly composed of four parts. In the first part, we develop the necessary single-

letter ensembles required in the proof. In the next part, we provide the random coding setup and

the distributions on the ensembles with which the codewords are generated. We also state here

the constraints that a good code must satisfy and argue the existence of one code with non-zero

probability. We further use an expurgation strategy to make all the codewords distinct. In the

third part, we construct a protocol by developing all the actions of the encoder and the decoder

and describing them as unitary (or isometry) evolutions. Note that the only actions allowed by

the protocol (Definition V.7) are quantum channels which can be described as unitary or isometric

evolutions followed by partial trace operations. In parallel, we also provide the necessary lemmas

needed for the next part. The last part deals with analyzing the action of encoding and decoding

operations on the source ρB, and then bounding the trace distance as in Definition V.7.

Toward this, fix two positive integers M and K, and ϵ ∈ (0, 1). Let M and K denote the sets

[0,M − 1] and [0,K − 1], respectively. Given a quantum source coding setup (ρB,HA,NW ), let

|ψρ⟩BRB be the canonical purification of ρB and ρBR =∆ TrB{Ψρ
BRB}. Moreover, let HAR

be the

reference space associated with HA. Now choose ρAR ∈ S(ρB,NW ). Let HE denote the Hilbert
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space such that W : HAR
→ HBR

⊗HE forms an isometric extension (or Stinespring’s dilation) of

NW according to (Wilde, 2011, Definition 5.2.1) with dim(HE) ≥ dim(HBR
). As shown in Figure

5.1, define the posterior reference isometry of W with respect to ρBR (according to Definition V.1)

as the isometry V : HB → HA ⊗ HE satisfying (W ⊗ IA) |ψρ⟩ARA = (IBR
⊗ V ) |ψρ⟩BRB where

|ψρ⟩ARA is the canonical purification of ρAR . Let ρA =∆ TrBRE{(I ⊗ V )Ψρ
BRB(I ⊗ V )†}.

5.6.1 Defining the ensembles

In this section, we construct the single-letter ensembles corresponding to two Holevo information

quantities used in the decomposition of coherent information discussed in Section 5.5. We begin

by using the definition of W to obtain,

(IBR
⊗ V ) |ψρ⟩BRB = (W ⊗ IA) |ψρ⟩ARA =

∑
a∈A

√
λAaW |a⟩AR ⊗ |a⟩A , (5.11)

where we use ρA =
∑

a∈A λ
A
a |a⟩⟨a|A as its spectral decomposition, and define |a⟩AR =∆ (IAR

⊗

⟨a|A) |Γ⟩ARA for a ∈ A, for some finite set A. This also gives,

W |a⟩AR =
(⟨a|A ⊗ IBRE)(IBR

⊗ V ) |ψρ⟩BRB√
λAa

. (5.12)

Using the spectral decomposition of ρB as ρB =
∑

b∈B λ
B
b |b⟩⟨b|B, for b ∈ B for some finite set B,

we can rewrite the action of V on ρB as

(IBR
⊗ V ) |ψρ⟩BRB =

∑
b∈B

√
λBb |b⟩BR ⊗ V |b⟩B

=

(
IBR

⊗ IE ⊗
∑
a∈A

|a⟩⟨a|A
)∑

b∈B

√
λBb |b⟩BR ⊗ V |b⟩B

=
∑
a∈A

∑
b∈B

√
λBb |b⟩BR Ma |b⟩B ⊗ |a⟩A , (5.13)

where we define |b⟩BR =∆ (IBR
⊗ ⟨b|B) |Γ⟩BRB, and Ma : HB → HE as

Ma =∆
(
IE ⊗ ⟨a|A

)
V. (5.14)
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By defining a POVM Λ =∆ {M †
aMa}a∈A, we can identify a coherent measurement (isometry) UΛ

corresponding to Λ with UΛ =∆
∑

a∈AMa ⊗ |a⟩A, and therefore express the action of V as

(IBR
⊗ V ) |ψρ⟩BRB = (IBR

⊗ UΛ) |ψρ⟩BRB . (5.15)

Now our objective is to faithfully simulate the action of the isometry (or the coherent measurement)

UΛ while using an exponentially smaller subspace in HAn . Equivalently, we intend to minimize the

amount of qubits needed to represent the quantum state in the Hilbert space HAn . Employing

Schumacher’s compression Schumacher (1995), one can only achieve a rate of Von-Neumann en-

tropy while faithfully simulating UΛ. However, since UΛ is a coherent measurement, we employ

a coherent version of the measurement compression protocol Winter (2004) and demonstrate a

faithful simulation of the isometry while further decreasing the resource requirement. In particular,

an approximating coherent measurement (henceforth referred to as the covering isometry) UM is

constructed to faithfully simulate the action of UΛ while requiring the rate equal to Holevo quantity

corresponding to the canonical ensemble {λAa , ρ̂BR
a }, where

ρ̂BR
a =∆

√
ρBR(M †

aMa)
T
√
ρBR

λAa
and (M †

aMa)
T =∆

∑
b,b′

|b⟩ ⟨b′|BR⟨b′|(M †
aMa) |b⟩B . (5.16)

Observe that using the definition of Ma from (5.14), it follows

Tr
{
M †

a′Maρ
B
}
= Tr

{
(IBRE ⊗ ⟨a|)V |ψρ⟩⟨ψρ|BRB V †(|a′⟩ ⊗ IBRE)

}
=
∑
b

√
λAa λ

A
a′ Tr

{
⟨b|W |a′⟩ ⟨a|W † |b⟩

}
=
∑
b

√
λAa λ

A
a′ ⟨a|W

† |b⟩⟨b|W |a′⟩ = λAa · 1{a=a′}, (5.17)

for all a, a′ ∈ A, where the first equality uses the definition of Ma, and the second follows from

using the relation (5.11). Using the simplification from (5.12), it is useful to note

W |a⟩AR =
(IBR

⊗Ma) |ψρ⟩BRB√
λAa

. (5.18)
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For the second Holevo information, we define the packing ensemble {λEa , τEa } as

τEa =∆
TrBR

(IBR
⊗Ma)Ψ

BRB
ρ (IBR

⊗Ma)
†

λEa
=
Maρ

BM †
a

λEa
, and λEa =∆ λAa . (5.19)

The discussion on how this ensemble is employed to reduce the rate follows in the sequel.

5.6.2 Random Coding and Expurgation

In this section, we construct the random coding argument, and simultaneously, define all the

conditions that pertain to the construction of a good random code. Subsequently, we randomly

generate one code that satisfies these constraints. We then expurgate this code to ensure no repeti-

tions are present. Toward constructing an approximating coherent measurement UM, randomly and

independently select |M| × |K| sequences An(m, k) according to the following pruned distribution

P (An(m, k) = an) =


λAan

(1− ε)
for an ∈ T (n)

δ (A)

0 otherwise,

(5.20)

where ε =
∑

an /∈T (n)
δ (A)

λAan , T
(n)
δ (A) is the δ-typical set corresponding to the distribution λAa on

the set A, and λAan =∆ Πn
i=1λ

A
ai . Let C

(m) denote the codebook {An(m, k)}k∈K for a given m, and C

denote the collection of all codebooks {C(m)}m∈M. Further, for each an ∈ T (n)
δ (A) define

ρ̃BR
an =∆ π̂πρBRπan ρ̂

BR
a πanπρBR π̂, (5.21)

and ρ̃BR
an = 0, for an /∈ T (n)

δ (A), where ρ̂BR
a =∆

⊗
i ρ̂

BR
ai , πρBR and πan are the δ−typical and

conditionally typical projectors defined as in (Wilde, 2011, Def. 15.1.3) and (Wilde, 2011, Def.

15.2.4), with respect to ρBR =
∑

a∈A λ
A
a ρ̂

BR
a and ρ̂BR

a , respectively, and π̂ is the cut-off projector as

defined in Winter (2004). Using the Average Gentle Measurement Lemma (Wilde, 2011, Lemma

9.4.3), for any given ϵ ∈ (0, 1), and all sufficiently large n and all sufficiently small δ, we have

∑
an∈An

λAan∥ρ̂
BR
an − ρ̃BR

an ∥1 ≤ ϵ. (5.22)

A detailed proof of the above statement can be found in (Wilde et al., 2012, Eq. 35). Using these
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definitions, construct operators

A
Bn

R
an =∆ γan

(√
ρBR

⊗n
−1

ρ̃BR
a

√
ρBR

⊗n
−1)

, γan =∆
1− ε

1 + η

1

|M||K|
|{(m, k) : An(m, k) = an}|, (5.23)

and η ∈ (0, 1) is a parameter that determines the probability of not obtaining a sub-POVM. Note

that in the definition of A
Bn

R
an the right hand side operates on HBn

R
, however, we define Aan belonging

to L(HAn). To obtain this, we transform A
Bn

R
an as

Aan =
∑
bn,b̄n

⟨bn|ABn
R

an |b̄n⟩BR
|b̄n⟩ ⟨bn|B .

Then construct a sub-POVM Γ(n) as

Γ(n) =∆ {Aan : a
n ∈ T (n)

δ (A)}. (5.24)

Let 1{sP} denote the indicator random variable corresponding to the event that Γ(n) forms a sub-

POVM. We have the following result.

Proposition V.17. For any ϵ ∈ (0, 1), any η ∈ (0, 1), any δ ∈ (0, 1) sufficiently small, and any n

sufficiently large, we have E
[
1{sP}

]
> 1− ϵ, if 1

n (logM + logK) > χ(λBR
a , ρ̂BR

a ).

Proof. The result follows from Winter (2004).

Define the code dependent random variables E1 and E2 as

E1 =
∆
∑
m∈M

∑
k∈K

(|M||K|)−1Tr
{
ρ̃BR
m,k

}
, and E2 =

∆
∑
m∈M

∑
k∈K

(|M||K|)−1
∥∥∥ρ̃BR

m,k − ρ̂BR
m,k

∥∥∥
1
,

where ρ̂BR
m,k, and ρ̃

BR
m,k are used as shorthand notations to denote ρ̃BR

an(m,k) and ρ̃
BR

an(m,k), respectively.

Further, using the results (Wilde et al., 2012, Eq. (28) and Eq. (35)), for all ϵ ∈ (0, 1), we have

E[E1] ≥ 1− ϵ, and E[E2] ≤ ϵ, for all sufficiently large n and all sufficiently small δ > 0.

Now, considering the ensemble {λEa , τEa }, we construct the operators {τEan(m,k)} using the code-

book C and the distribution defined in (5.20), where τEan =∆
⊗

i τ
E
ai . For this ensemble, we construct

a collection of n-letter POVMs, one for each m ∈ M, capable of decoding the message k ∈ K. In
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particular, we employ the Holevo POVMs Holevo (2019) defined as

ξ
(m)
k =∆ πτπ

(m)
k πτ and Ξ

(m)
k =∆

(∑
k′∈K

ξ
(m)
k′

)−1/2

ξ
(m)
k

(∑
k′∈K

ξ
(m)
k′

)−1/2

, (5.25)

where πτ is the δ−typical projector (as in (Wilde, 2011, Def. 15.1.3)) defined for the density

operator τ =∆
∑

a∈A λ
E
a τ

E
a , and π

(m)
k denotes the strong conditional typical projectors (as in (Wilde,

2011, Def. 15.2.4)) for the operators τan(m,k). For these POVMs, we know the average probability

of error can be made arbitrarily small. More formally, we have the following.

Proposition V.18. Given the ensemble {λEa , τEa } and the collection of POVMs {Ξ(m)
k }k, for any

ϵ ∈ (0, 1),

E

[
1

|K|
∑
k∈K

Tr
{
Ξ
(m)
k τ

(m)
k

}]
≥ 1− ϵ, (5.26)

for sufficiently small δ > 0 and for all sufficiently large n, and for all m ∈ M, if 1
n logK <

χ({λEa , τEa }), where τ (m)
k is used as a shorthand for τan(m,k).

Proof. The proof follows from the result of classical communication over quantum channels Holevo

(2019) or the packing lemma of (Wilde, 2011, Lemma 16.3.1) while making the following iden-

tification. For each m ∈ M, identify M with K, X with T (n)
δ (A), {σCm}m with {τ (m)

k }k, Π

with πτ , Πx with π
(m)
k , d with 2n(S(E|A)τ̄+δ̄), D with 2n(S(E)τ̄−δ̄), and Λm with Ξ

(m)
k , where

τ̄AE =∆
∑

a λ
E
a |a⟩⟨a|A ⊗ τEa and δ̄(δ) ↘ 0 as δ ↘ 0.

The above result also implies a weaker average result which suffices here. This can be stated as

E[E3] ≥ 1− ϵ, for sufficiently small δ > 0 and for all sufficiently large n, if 1
n logK < χ({λEa , τEa }),

where

E3 =
∆ 1

MK

∑
m∈M

∑
k∈K

Tr
{
Ξ
(m)
k τ

(m)
k

}
. (5.27)

Finally, toward finding a good code, we need one last property which is that all its codewords are

distinct. In the dual, the quantum channel communication problem Devetak (2005b), Devetak used

the double exponential decay of the covering error to argue the existence of an expurgated code for
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exponentially many covering constraints. However, in the current problem, we have exponentially

many packing constraints, with each having only an exponential decay in the error. To resolve this

issue, we develop a proof that only requires the average of the packing constraints. However, in such

a case, it becomes unclear as to what should be the expurgation strategy. For this, we introduce

another event that captures the non-distinctness of the codebook, and expurgate with respect to

this event. Precisely, we define a codeword An(m, k) is bad if there exists (m′, k′) ̸= (m, k) such

that An(m, k) = An(m′, k′). Let

E4 =
∆ 1

MK

∑
m∈M

∑
k∈K

1{An(m,k) is bad}.

Computing its expectation, we get

E[E4] = E

[
1

MK

∑
m∈M

∑
k∈K

1{∃(m′,k′ )̸=(m,k) such that An(m,k)=An(m′,k′)}

]
a
≤ 1

MK

∑
m,m′∈M
k,k′∈K

(m,k)̸=(m′,k′)

∑
an∈T (n)

δ (A)

E
[
1{An(m,k)=an}

]
E
[
1{An(m′,k′)=an}

] b
≤MK2−n(S(λA

a )−δ1) ≤ ϵ, (5.28)

for all sufficiently large n and sufficiently small δ > 0 if 1
n (logM + logK) < S(λAa ), where (a) uses

the mutual independence of the codewords, and (b) define δ1 as δ1(δ, ε) ↘ 0 as δ, ε↘ 0. Using the

Markov inequality and the union bound, we have

P
(
{1{sP} = 1} ∩

{
E1 ≥ 1−

√
ϵ
}
∩
{
E2 ≤

√
ϵ
}
∩
{
E3 ≥ 1−

√
ϵ
}
∩
{
E4 ≤

√
ϵ
})

≥ 1− 5
√
ϵ.

Therefore, for all ϵ ∈ (0, 1/25), and for all sufficiently small δ > 0, for all sufficiently large n there ex-

ists a code C that satisfies the conditions {1{sP} = 1}, {E1 ≥ 1−
√
ϵ}, {E2 ≤

√
ϵ}, {E3 ≥ 1−

√
ϵ},

and {E4 ≤ ϵ}, simultaneously if

1

n
(logM + logK) > χ(λBR

a , ρ̂BR
a ),

1

n
logK < χ({λEa , τEa }), 1

n
(logM + logK) < S(λAa ). (S-0)

At this point, we choose one such code C satisfying all the above conditions, and fix it for the rest

of the analysis.
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Toward showing that this chosen code achieves the asymptotic performance stated in the the-

orem statement, we expurgate the code C with respect to the random variable E4, ensuring that

the code has all distinct codewords. The assumption of codebook being distinct becomes crucial at

multiple places in the proof and will be highlighted as necessary. Since {E4 ≤
√
ϵ} ensures at most

√
ϵMK codewords in C are not distinct, we remove

√
ϵMK codewords from C. This is performed

by first removing all the non-distinct codewords, and then further removing some more from the

distinct ones arbitrarily (if needed) until we remain with a total of (1 −
√
ϵ)MK codewords. Let

the expurgated set (the remainder of the codewords) be denoted by CE , and define the sets C(m)
E

as C(m)
E =∆ CE ∩ C(m). Observe that, all the codewords in CE are distinct. However, as opposed

to C which was consistent with regards to the size of C(m) (equal to K for all m ∈ M), CE has

varying sizes. Therefore, we define K ′
m to denote the size of C(m)

E and M ′ to denote number of

non-empty sets in the collection {C(m)
E }m∈M. Note that for some m ∈ M, K ′

m may be zero. Let

M′ denote the subset of M for which K ′
m > 0, and let H′

M denote the corresponding Hilbert

space with dim(H′
M ) = M ′ + 1. As is evident,

∑
m∈M′ K ′

m = (1 −
√
ϵ)MK. In addition, define

the set of indices corresponding to the expurgated codebook as I(m)
E =∆ {k : an(m, k) ∈ C(m)

E } and

IE =∆ {(m, k) : an(m, k) ∈ CE}. Further, for the expurgated code, we have

E′
1 =

∆ 1

(1−
√
ϵ)|M||K|

∑
m∈M′

∑
k∈I(m)

E

Tr
{
ρ̃BR
m,k

}
≥ 1− 2

√
ϵ, (5.29)

E′
2 =

∆ 1

(1−
√
ϵ)|M||K|

∑
m∈M′

∑
k∈I(m)

E

∥∥∥ρ̃BR
m,k − ρ̂BR

m,k

∥∥∥
1
≤

√
ϵ

1−
√
ϵ
≤ 2

√
ϵ, (5.30)

E′
3 =

∆ 1

(1−
√
ϵ)|M||K|

∑
m∈M′

∑
k∈I(m)

E

Tr
{
Ξ
(m)
k τ

(m)
k

}
≥ 1− 2

√
ϵ, (5.31)

where the inequalities above uses the fact that codebook C satisfies {E1 ≥ 1−
√
ϵ} , {E2 ≤

√
ϵ}

and {E3 ≥ 1−
√
ϵ} and that only

√
ϵ fraction of the code is expurgated. Observe that the event

{1{sP} = 1} remains true for the expurgated CE . Define the collection

Γ
(n)
E =∆ {Aan(m,k)}m∈M′,k∈I(m)

E
.

The collection Γ
(n)
E is completed using the operator I−

∑
m∈M′

∑
k∈I(m)

E
Aan(m,k), and the operator
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is associated with sequence an0 chosen arbitrarily from An\T (n)
δ (A), i.e.,

Aan0
=∆ I −

∑
m∈M′

∑
k∈I(m)

E

Aan(m,k).

Corresponding to this expurgated code, we now construct our encoding and decoding operations.

5.6.3 Encoding and Decoding Isometries

The encoding isometry UE is constructed by concatenating three isometries: (i) the covering

isometry UM : HBn → HBn ⊗ H′
M ⊗ HK , (ii) the rotation isometry UR : HBn ⊗ H′

M ⊗ HK →

HEn⊗H′
M⊗HK , and (iii) the packing isometry UP : HEn⊗HĒ⊗H′

M⊗HK → HEn⊗HĒ⊗H′
M⊗HK ,

where H′
M ,HK and HĒ are auxiliary Hilbert spaces with dimensions M ′ + 1,K + 1, and K + 1,

respectively.

Step 1.1: Covering Isometry

To define the covering isometry UM, we use the completion [Γ
(n)
E ] as

UM =∆
∑

m∈M′

∑
k∈I(m)

E

√
Aan(m,k) ⊗ |m⟩ ⊗ |k⟩+

√
Aan0

⊗
∣∣M ′〉

M
⊗ |K⟩K . (5.32)

Note that, for the chosen code, the event {1{sP} = 1} makes UM a valid isometry. From now on,

for the ease of notation, we use Mm,k, λ
BR
m,k, and Am,k to denote the corresponding n−letter objects

constructed for the codewords An(m, k).

Step 1.2: Rotation Isometry

Although the above covering unitary aims to cover the source, it only does so for the reference

system. To be able to apply the next step of packing, we wish to use the post-measured state as

side information. This could be possible if the post-measured state also looks close to being product.

For this, we employ a rotation unitary. A similar operation is discussed in (Anshu et al., 2017b, Fact

6) with regards to classical-quantum states obtained post measurement. The construction below

generalizes this to a coherent application of a measurement. More formally, for the expurgated
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code CE , we construct the states

|σ̂⟩B
n
REnMK =∆

∑
m∈M′

∑
k∈I(m)

E

1√
(1−

√
ϵ)|M||K|

(I ⊗Mm,k)√
λm,k

∣∣ψ⊗n
ρ

〉Bn
RBn

⊗ |m, k⟩ and

|σ̃⟩B
n
RBnMK =∆

∑
m∈M′

∑
k∈I(m)

E

1√
(1−

√
ϵ)|M||K|

(I ⊗
√
Am,k)√

δm,k

∣∣ψ⊗n
ρ

〉Bn
RBn

⊗ |m, k⟩ , (5.33)

where δm,k =∆ Tr
{
Am,kρ

B⊗n
}

= γ Tr
{
ρ̃BR
m,k

}
, and γ =∆ 1−ε

1+η
1

|M||K| . For brevity in notation, we

skip the sets in the summations over m or k when summations are performed over the codewords

belonging to the set IE corresponding to the expurgated codebook CE . Clearly, |σ̂⟩B
n
REnMK and

|σ̃⟩B
n
RBnMK are valid states. Now to construct UR, consider the following lemma which upper

bounds the fidelity.

Lemma V.19. For any ϵ, η ∈ (0, 1), there exists a collection of isometries {Ur(m, k) : HBn →

HEn} and a collection of phases θm,k such that F (|σ̂⟩B
n
REnMK , (IBR

⊗UR) |σ̃⟩B
n
RBnMK) ≥ 1−4

√
ϵ,

for all sufficiently large n and all sufficiently small δ > 0, where

UR =∆
∑

m∈M′∪{M ′}

∑
k∈K∪{K}

e−iθm,kUr(m, k)⊗ |m⟩⟨m|M ⊗ |k⟩⟨k|K . (5.34)

and Ur(m, k) = I and θm,k = 0 for all (m, k) ∈ (M×K) such that an(m, k) /∈ CE .

Proof. The proof of the lemma follows using (5.29), (5.30) and from the Lemma D.1. For com-

pleteness, we detail the proof in Appendix D.2.

Step 1.3: Packing Isometry

Observe that by coherently performing the covering and rotation operations, one can show that

the source ρB can be successfully recovered by the quantum registers {|m, k⟩}. This implies that

the quantum states {|m, k⟩} can be used by the decoder to faithfully reconstruct the source as per

Definition V.7. As a result, we would require a rate of 1
n logM + 1

n logK which has to be greater

than the Holevo information χ(λBR
a , ρ̂BR

a ), as constrained by Proposition V.17. However, we intend

to further reduce the rate from this Holevo information to the coherent information provided in

the statement of the theorem.

One can perhaps argue why we cannot simply release the information in the HK system into
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the environment (partial tracing)? But as expected for a purely quantum setup, this would lead to

the protocol becoming incoherent. More precisely, the subsystem HEn that the encoder has in its

possession is entangled with the subsystem HK , and tracing out the latter without decoupling the

two systems would render the former in a mixed state. Once this entanglement is lost, the decoder

would not be able to faithfully reconstruct the source by using such a (mixed) state.

Therefore, a major task here is to successfully decouple the system HK before releasing it to

the environment. To achieve this, we introduce the notion of coherent packing or coherent binning.

This notion is built on the idea that the post-measured system present in HEn contains information

about the quantum state |k⟩K , and hence, conditioned on the state |m⟩, a copy of the state |k⟩

can be recovered from the state present in subsystem HEn , albeit with a small probability of error.

Using this copy, we intend to decouple the existing copy of |k⟩ from the latter. However, this

new copy can erase (decouple) the original, but will itself still remain. Therefore, as will become

evident in the sequel, we perform the process of erasing the information in HK intrinsically without

producing any additional copies.

Toward this, we employ the packing code consisting of the sub-POVMs {Ξ(m)
k }

k∈I(m)
E

, generated

for the ensemble {λEa , τEa }. We complete this sub-POVM for each m ∈ M′ as

Ξ
(m)
K =∆ I −

∑
k∈I(m)

E

Ξ
(m)
k .

In addition, we also make use of Naimark’s extension theorem (also provided in Lemma V.5). This

lemma gives us a collection of orthogonal projectors {Π(m)
k } each acting onHEn⊗HĒ , corresponding

to the collection {Ξ(m)
k }k, such that

Tr
{
Π

(m)
k (τ

(m)
k ⊗ |0⟩⟨0|Ē)

}
= Tr

{
Ξ
(m)
k τ

(m)
k

}
, (5.35)

for all m ∈ M′ and k ∈ I(m)
E ∪ {K}, and dimHĒ = K + 1. Finally, we define the packing unitary

UP as

UP =∆
∑

m∈M′

 ∑
k∈I(m)

E ∪{K}

Π
(m)
k ⊗

( ∑
k′∈K∪{K}

eiα
(m)

k′
∣∣(k − k′) mod (K + 1)

〉 〈
k′
∣∣ )
⊗|m⟩⟨m|
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+ IEnĒK ⊗
∣∣M ′〉〈M ′∣∣ , (5.36)

where the phases {α(m)
k } are introduced for later convenience, and will be specified in the sequel1.

Note that by using Π
(m)
k in the above definition, instead of Ξ

(m)
k ensures that UPU

†
P = I, implying

UP is a valid unitary.

As a result, we can express the encoding CPTP map N (n)
E as

(
IBn

R
⊗N (n)

E

)(∣∣ψ⊗n
ρ

〉〈
ψ⊗n
ρ

∣∣Bn
RBn

)
=∆ TrĒEnK

(
(I ⊗ UPURUM)

∣∣ψ⊗n
ρ

〉〈
ψ⊗n
ρ

∣∣Bn
RBn

⊗ |0⟩⟨0|Ē (I ⊗ UPURUM)†
)
. (5.37)

The quantum state in H′
M is now sent to the decoder.

Step 1.4: Decoding Isometry:

The following decoding isometry is applied on the state in H′
M :

UD =∆
∑

m∈M′

(
1√
K ′

m

∑
k∈I(m)

E

e−iβ
(m)
k |an(m, k)⟩

)
⟨m|+ |an0 ⟩ ⟨M ′|, (5.38)

where the phases {β(m)
k } will be identified in the continuation. Observe that, to argue UD is a valid

isometric operation, we need the vectors {|an(m, k)⟩} to be distinct. By expurgating the codebook

to generate CE , and only using the codewords from CE ensures this distinctness. With the definitions

of encoder and decoder, we move on to bounding the error incurred by the protocol (as defined in

Definition 5.2).

5.6.4 Trace Distance

We begin by defining the following terms

|ω⟩B
n
REnĒAnK =∆ (I ⊗ UD)(I ⊗ UP)(I ⊗ URUM)

∣∣ψ⊗n
ρ

〉Bn
RBn

|0⟩Ē ,

|ζ⟩B
n
REnAn

=∆ (W⊗n ⊗ I) |ψω⟩A
n
RAn

, (5.39)

1Moving forward, we implicitly assume the modulus operation rather than explicitly mentioning it for the purpose
of brevity.
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where2 |ψω⟩A
n
RAn

is the canonical purification of ωAn
. Let

G =∆ ∥ωBn
RAn − ζB

n
RAn∥1.

Following Definition 5.2, our objective now is to show G can be made arbitrarily small for all

sufficiently large n for the code CE .

Step 2.1: Closeness of |ω⟩ and (I ⊗ UD)(I ⊗ UP) |σ̂⟩ :

Recall the definitions of |σ̂⟩ and |σ̃⟩ from (5.33), and let |ω1⟩ =∆ (I ⊗ URUM) |ψρ⟩B
n
RBn

and ε1 =∆

(1− ε)/(1 + η). Consider

√
F
(
|ω1⟩B

n
REnMK , (I ⊗ UR) |σ̃⟩B

n
REnMK

)
=
∑
m,k

1√
(1−

√
ϵ)|M||K|

⟨ψρ| (I ⊗ Ur(m, k)
√
Am,k)

†((I ⊗ Ur(m, k)
√
Am,k) |ψρ⟩√

δm,k

=
1√

1−
√
ϵ

∑
m,k

√
ε1

|M||K|

√
Tr{ρ̃m,k} ≥ 1√

1−
√
ϵ

∑
m,k

√
ε1

|M||K|
Tr{ρ̃m,k} ≥

√
ε1

√
1−

√
ϵ(1− 2

√
ϵ),

(5.40)

where we note that there is no overlap between the term corresponding to
√
Aan0

⊗ |M ′⟩M ⊗ |K⟩K

of |ω1⟩B
n
REnMK and the state (UR ⊗ I) |σ̃⟩B

n
REnMK , and the last inequality follows from (5.29).

Using Lemma V.3, and the inequality (5.40) , we get 3

∥∥∥ω1
Bn

REnMK − (I ⊗ UR)σ̃
Bn

REnMK(I ⊗ UR)
†
∥∥∥
1

≤ 2

√
1− (1−

√
ϵ)(1− 2

√
ϵ)2
(
1− η + ε

1 + η

)
≤ 2

√
η + ε

1 + η
+ 5

√
ϵ ≤ 6 4

√
ϵ, (5.41)

for all sufficiently large n and sufficiently small η, δ > 0. Further, using the unitary invariance of

trace distance, we get the closeness of the states:

∥∥∥(I ⊗ UDUP)ω1
Bn

REnMK ⊗ |0⟩⟨0|Ē (I ⊗ UDUP)
†

−(I ⊗ UDUPUR)σ̃
Bn

REnMK ⊗ |0⟩⟨0|Ē (I ⊗ UDUPUR)
†
∥∥∥
1
≤ 6 4

√
ϵ. (5.42)

2For conciseness, we drop the ⊗n from
∣∣ψ⊗n

ρ

〉Bn
RBn

when understood from context.
3At times, the subspace notation is omitted when it is clear from the context.
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Using Lemma V.19 and the fact that trace norm is invariant under isometric transformations, we

have

∥∥∥(I ⊗ UDUP)σ̂
Bn

REnMK ⊗ |0⟩⟨0|Ē (I ⊗ UDUP)
†

−(I ⊗ UDUPUR)σ̃
Bn

REnMK ⊗ |0⟩⟨0|Ē (I ⊗ UDUPUR)
†
∥∥∥
1

=
∥∥∥σ̂ − (I ⊗ UR)σ̃(I ⊗ UR)

†
∥∥∥
1
≤ 2
√
1− F (|σ̂⟩ , (I ⊗ UR) |σ̃⟩) ≤ 4 4

√
ϵ. (5.43)

Using triangle inequality and inequalities (5.42) and (5.43), we obtain

∥∥∥ωBn
REnĒAnK − (I ⊗ UDUP)(σ̂

Bn
REnMK ⊗ |0⟩⟨0|Ē)(I ⊗ UDUP)

†
∥∥∥
1
≤ 10 4

√
ϵ, (S-1)

for all sufficiently large n and sufficiently small η, δ > 0, which concludes Step 2.1.

For the next step, define |ζ̂⟩Bn
REnĒMK as

|ζ̂⟩Bn
REnĒMK =∆

∑
m∈M′

∑
k∈I(m)

E

1√
(1−

√
ϵ)|M||K|

eiβ
(m)
k

(I ⊗Mm,k) |ψρ⟩√
λm,k

⊗ |m⟩M ⊗ |0⟩K ⊗ |0⟩Ē ,

(5.44)

where the phases β
(m)
k will be specified shortly. Observe that |ζ̂⟩Bn

REnĒMK is a valid pure state due

to (i) the distinctness of codewords in CE and (ii) the identity (5.17). Furthermore, in its definition,

the information in the subsystem HK is decoupled from the remaining subsystems. Since UP acts

on HEn ⊗HĒ , an additional pure ancilla is attached for appropriate comparisons. We aim to show

that this state is close to the action of (I ⊗ UP) on the state |σ̂⟩ |0⟩Ē .

Step 2.2: Closeness of (I ⊗ UP) |σ̂⟩ |0⟩Ē and |ζ̂⟩ :

We begin by simplifying (I ⊗ UP) |σ̂⟩ |0⟩Ē as

(I ⊗ UP) |σ̂⟩ |0⟩Ē =
∑

m∈M′

∑
k∈I(m)

E

1√
(1−

√
ϵ)|M||K|

eiα
(m)
k |ϕ(m)

k ⟩ ⊗ |m⟩M ,
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where

|ϕ(m)
k ⟩ =∆

∑
k′∈I(m)

E ∪{K}

(I ⊗Π
(m)
k′ Mm,k) |ψρ⟩ |0⟩Ē√

λm,k

⊗
∣∣k′ − k

〉
K
, for all k ∈ I(m)

E and m ∈ M′. (5.45)

Similarly, let

|ζ̂⟩ =
∑
m,k

1√
(1−

√
ϵ)|M||K|

eiβ
(m)
k |χ(m)

k ⟩ ⊗ |m⟩M , |χ(m)
k ⟩ =∆

(I ⊗Mm,k) |ψρ⟩ |0⟩Ē√
λm,k

⊗ |0⟩K , (5.46)

for all m ∈ M′ and k ∈ I(m)
E , and the phases {β(m)

k } are the same phases incorporated in the

construction of the decoding isometry UD. Further, from (5.35), we know for all m ∈ M′,

1

K ′
m

∑
k∈I(m)

E

⟨ϕ(m)
k |χ(m)

k ⟩ = 1

K ′
m

∑
k∈I(m)

E

Tr
{
Ξ
(m)
k τ

(m)
k

}
. (5.47)

Now the fidelity between |ζ̂⟩ and (I ⊗ UP) |σ̂⟩ |0⟩Ē can be written as

√
F
(
(I ⊗ UP) |σ̂⟩ |0⟩Ē , |ζ̂⟩

)
=

1

M ′

∣∣∣∣∣ ∑
m∈M′

⟨ϕm|χm⟩

∣∣∣∣∣ , (5.48)

where, for all m ∈ M′,

|ϕm⟩ =∆ c
∑

k∈I(m)
E

eiα
(m)
k |ϕ(m)

k ⟩ and |χm⟩ =∆ c
∑

k∈I(m)
E

eiβ
(m)
k |χ(m)

k ⟩,

and c =∆
√

M ′

(1−
√
ϵ)|M||K| . Toward a lower bound on the fidelity, we provide the following proposition.

Proposition V.20. For any ϵ ∈ (0, 1), there exists phases {α(m)
k }, and {β(m)

k } such that

∣∣∣∣∣ 1

M ′

∑
m∈M′

⟨ϕm|χm⟩

∣∣∣∣∣ ≥ 1− 2
√
ϵ, (5.49)

for all sufficiently small δ > 0 and all sufficiently large n.

Proof. The proof is provided in Appendix D.4.

Observe that, using the relation in Lemma V.3, and the result of Proposition V.20 and (5.48), we

159



get

∥∥∥(I ⊗ UP)σ̂ ⊗ |0⟩⟨0|Ē (I ⊗ UP)
† − ζ̂

∥∥∥
1
≤ 2

√
1− F

(
(UP ⊗ I) |σ̂⟩ |0⟩Ē , |ζ̂⟩

)
≤ 4 4

√
ϵ, (S-2)

for all sufficiently large n, and sufficiently small η, δ > 0. Observe that |ζ̂⟩Bn
REnMK = |ζ̂⟩Bn

REnM ⊗

|0⟩KĒ , and hence |ζ̂⟩Bn
REnM remains pure after partial tracing over the subsystemHK⊗HĒ . Finally,

we are left with showing the closeness of the state (I ⊗ UD)|ζ̂⟩B
n
REnM with the state |ζ⟩B

n
REnAn

.

Step 2.3: Closeness of (I ⊗ UD)|ζ̂⟩B
n
REnM and |ζ⟩B

n
REnAn

:

We begin by defining σA
n
as

σA
n
=∆ TrBn

REn{(I ⊗ UD)ζ̂
Bn

REnM (I ⊗ UD)
†},

and perform the simplification

σA
n
= UD

( ∑
m,m′

∑
k,k′

1

(1−
√
ϵ)|M||K|

e−i(β
(m)
k −β

(m′)
k′ )Tr

(
Mmkρ

BM †
m′k′

)
√
λmkλm′k′

|m⟩⟨m′|
)
U †
D

= UD

(∑
m

K ′
m

(1−
√
ϵ)|M||K|

|m⟩⟨m|

)
U †
D =

∑
m

K ′
m

(1−
√
ϵ)|M||K|

|bn(m)⟩⟨bn(m)|A
n

, (5.50)

where the second equality uses (5.17) and the crucial condition that the codebook CE obtained after

expurgation is distinct, and last equality defines |bn(m)⟩A
n

as

|bn(m)⟩A
n

=∆
1√
K ′

m

∑
k∈I(m)

E

e−iβ
(m)
k |an(m, k)⟩A

n

, (5.51)

for all m ∈ M′. This implies, we can write the canonical purification of σA
n
as

|ψσ⟩A
n
RAn

=∆ (IAn
R
⊗
√
σAn)

∣∣Γ⊗n
〉An

RAn

=
∑
m

√
K ′

m

(1−
√
ϵ)|M||K|

|bn(m)⟩A
n
R ⊗ |bn(m)⟩A

n

= (I ⊗ UAn

D )
∑
m

√
K ′

m

(1−
√
ϵ)|M||K|

|bn(m)⟩A
n
R ⊗ |m⟩M , (5.52)

where the first equality follows by defining |bn(m)⟩A
n
R =∆ (IAn

R
⊗ ⟨bn(m)|A

n

) |Γ⊗n⟩A
n
RAn

. Using the
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relation from (5.18) and definition (5.51), we can write

W⊗n|bn(m)⟩A
n
R =

1√
K ′

m

∑
k∈I(m)

E

eiβ
(m)
k W⊗n|an(m, k)⟩A

n
R =

1√
K ′

m

∑
k∈I(m)

E

eiβ
(m)
k

(IBR
⊗Mm,k)

∣∣ψ⊗n
ρ

〉Bn
RBn√

λAm,k

,

for all m ∈ M′, which gives

(W⊗n ⊗ IAn) |ψσ⟩A
n
RAn

= (I ⊗ UAn

D )
∑
m

√
K ′

m

(1−
√
ϵ)|M||K|

W⊗n |bn(m)⟩A
n
R ⊗ |m⟩M

= (I ⊗ UAn

D )
∑
m,k

1√
(1−

√
ϵ)|M||K|

eiβ
(m)
k

(IBR
⊗Mm,k)

∣∣ψ⊗n
ρ

〉Bn
RBn√

λAm,k

⊗ |m⟩M

= (I ⊗ UAn

D )|ζ̂⟩Bn
REnM , (5.53)

where the last equality follows from the definition of |ζ̂⟩Bn
REnM in (5.44). Observing that

|ζ⟩B
n
REnAn

= (W⊗n ⊗ IAn) |ψω⟩A
n
RAn

,

we are left with showing the closeness of |ψσ⟩A
n
RAn

and |ψω⟩A
n
RAn

. Using (S-1) and (S-2), the triangle

inequality, the monotonicity of trace distance, and identification of appropriate purifications, we

obtain for all sufficiently large n and sufficiently small η, δ > 0,

∥ωAn − σA
n∥1 ≤ ∥ωBn

REnAn − (I ⊗ UD)ζ̂
Bn

REnM (I ⊗ UD)
†∥1 ≤ 14 4

√
ϵ.

This implies,

∥∥∥(I ⊗ UAn

D )ζ̂B
n
REnM (I ⊗ UAn

D )† − ζB
n
REnAn

∥∥∥
1

a
=
∥∥ψσ

AnAn
R − ψω

AnAn
R

∥∥
1

b
≤ 2

√
1− F (|ψσ⟩A

nAn
R , |ψω⟩A

nAn
R)

c
≤ 2
√

∥ωAn − σAn∥1 ≤ 2

√
14 4

√
ϵ ≤ 8 8

√
ϵ, (S-3)

for all sufficiently large n and sufficiently small η, δ > 0, where (a) follows from the isometric

invariance of trace distance, (b) uses Lemma V.3, and (c) uses Lemma V.4, which concludes this

step.
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In summary, combining results of (S-0), (S-1), (S-2) and (S-3), we have showed that there exist

a code C satisfying G ≤ 14 4
√
ϵ+ 8 8

√
ϵ with the following rate constraints:

S(λAa ) >
1

n
(logM + logK) > χ(λBR

a , ρ̂BR
a ),

1

n
logK < χ({λEa , τEa }), 1

n
logM ≥ 0,

1

n
logK ≥ 0,

for all sufficiently large n and sufficiently small η, δ > 0, where we have also included the necessary

non-negativity constraints. Eliminating 1
n logK using Fourier-Motzkin elimination Ziegler (2012)

gives

1

n
logM > χ(λBR

a , ρ̂BR
a )− χ({λEa , τEa }), and

1

n
logM ≥ 0,

where we remove the redundant constraints. This completes the proof.

Remark V.21 (Zero performance rate). The coherent information Ic(NW , ρ
AR) is negative when

the Holevo information quantities are such that χ(λBR
a , ρ̂BR

a ) < χ({λEa , τEa }). The asymptotic

performance limit for these situations is zero, according to the statement of the theorem. We must

therefore demonstrate that a rate of zero is feasible. To put it another way, we must construct a

protocol (see Definition (V.7)) that satisfies (5.2) with a rate that can be made arbitrarily close

to zero. The constraints imposed by the preceding proof are still met if we select M = 1 and

1
n logK = χ(λBR

a , ρ̂BR
a ) + δ0 < χ({λEa , τEa }), while achieving a rate of log(2)/n, for a sufficiently

small δ0. This rate (1/n) can be made arbitrarily close to zero (i.e., smaller than the provided

ϵ) for any given ϵ, for all sufficiently large n and sufficiently small η, δ > 0. Similarly, when the

coherent information Ic(NW , ρ
AR) is exactly zero, i.e., χ(λBR

a , ρ̂BR
a ) = χ({λEa , τEa }), we choose M

and K such that 1
n logM = 2δ0, and

1
n logK = χ({λEa , τEa }) − δ0. This gives a rate of 2δ0 which

can be again made arbitrarily close to zero. Therefore, even though the coherent information is not

necessarily positive, the rate in the theorem can still be achieved.

5.7 Proof of Converse

Let R be an achievable rate. Then from Definition V.8, given a triple (ρB, HA, NW ), for all

ϵ > 0, and all sufficiently large n, there exists (n,Θ) lossy compression protocol with an encoding
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CPTP map N (n)
E and a decoding CPTP map N (n)

D that satisfies the following constraints:

c0 :
1

n
logΘ ≤ R+ ϵ, and c1 : ∥ωBn

RAn − υB
n
RAn∥1 ≤ ϵ, (5.54)

where ωBn
RAn

=∆ (I ⊗N (n)
D )(I ⊗N (n)

E )(|ψρ⟩B
n
RBn

),

υB
n
RAn

= TrEn

{
υB

n
RAnEn}

=∆ TrEn

{
(W⊗n ⊗ I)Ψ

An
RAn

ω (W⊗n ⊗ I)†
}
,

and |ψω⟩A
nAR

n

is the canonical purification of ωAn
, andW is the Stinespring’s dilation of the CPTP

map NW . Let ωAn
R =∆ TrAn(Ψ

AnAn
R

ω ).

Step 1: Quantum Data Processing Inequality: LetM denote the quantum state at the output

of the encoder. Let V
(n)
E : HBn → HM ⊗HẼ1

and V
(n)
D : HM → HAn ⊗HẼ2

be Stinesping dilations

of encoding and decoding maps N (n)
E and N (n)

D , respectively, such that dim(HẼ1
) ≥ dim(HM ) and

dim(HẼ2
) ≥ dim(HAn), as shown in Figure 5.3(a). Let

ω1
Bn

RMẼ1 =∆ (IBn
R
⊗ V

(n)
E )(Ψ

Bn
RBn

ρ )(IBn
R
⊗ V

(n)
E )†

ωBn
RẼ1Ẽ2An

=∆ (IBn
RẼ1

⊗ V
(n)
D )(ω1

Bn
RẼ1M )(IBn

RẼ1
⊗ V

(n)
D )†. (5.55)

Let |ψω1⟩MRM denote the canonical purification of the quantum state ωM
1 . Let W

(n)
E : HMR

→

HBn
R
⊗HẼ1

denote the posterior reference isometry (see Definition V.1) of V
(n)
E with respect to ωM

1 ,

as shown in Figure 5.3(b). Moreover, let W
(n)
D : HAn

R
→ HMR

⊗HẼ2
denote the posterior reference

isometry of V
(n)
D with respect to wAn

, as shown in Figure 5.3(c). Let NWE (·) = TrẼ1
(W

(n)
E ·(W (n)

E )†)

and NWD(·) = TrẼ2
(W

(n)
D · (W (n)

D )†) be the induced CPTP maps. Let

ω̃MRẼ2An

1 =∆ (W
(n)
D ⊗ IAn)(Ψ

An
RAn

ω )(W
(n)
D ⊗ IAn)†.

Using the quantum data processing inequality for coherent information (Wilde, 2011, Theorem

11.3.2), we obtain

Ic(NWD , ω
An

R) ≥ Ic(NWE ◦ NWD , ω
An

R).
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Figure 5.3:
Lossy quantum source coding protocol and the associated CPTP maps and their Stine-
spring dilations.

Expanding the coherent information in terms of Von Neuman entropy, we get

S(MR)ω̃1 − S(Ẽ2)ω̃1 ≥ S(Bn
R)ω − S(Ẽ1Ẽ2)ω,

which implies that

S(M)ω1 ≥ S(Bn
R)ω − S(Bn

RA
n)ω. (5.56)

Step 2: Implication of the constraints c0 and c1: Consider the following sequence of inequal-

ities:

nR ≥ logΘ− nϵ ≥ S(M)ω1 − nϵ (5.57)

a
≥ S(Bn

R)ω − S(Bn
R, A

n)ω − nϵ (5.58)

b
≥ S(Bn

R)ω − S(Bn
R, A

n)υ − nϵ− nϵ̃1 (5.59)

= S(Bn
R)ω − S(En)υ − nϵ− nϵ̃1 (5.60)

c
≥ S(Bn

R)ω −
n∑

i=1

S(Ei)υ − nϵ− nϵ̃1 (5.61)
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d
=

n∑
i=1

S(BRi)ω −
n∑

i=1

S(Ei)υ − nϵ− nϵ̃1 (5.62)

e
≥

n∑
i=1

S(BRi)υ −
n∑

i=1

S(Ei)υ − nϵ− nϵ̃1 − nϵ̃2 (5.63)

f
=

n∑
i=1

Ic(NW , ω
ARi)− nϵ− nϵ̃1 − nϵ̃2 (5.64)

g
≥ n min

ρAR∈D(HAR
):∥ρBR−NW (ρAR )∥1≤ϵ

Ic(NW , ρ
AR)− nϵ− nϵ̃1 − nϵ̃2, (5.65)

where the inequalities are argued as follows. (a) follows from (5.56). (b) follows from the con-

dition c1 and the Fannes-Audenaert inequality (Wilde, 2011, Theorem 11.10.1) by defining ϵ̃1 =∆

ϵ log |HA||HB|+ hb(ϵ). (c) follows from the subadditivity of entropy. (d) follows from the memoy-

lessness of the quantum source. (e) follows from condition c2 and the Fannes-Audenaert inequality

(Wilde, 2011, Theorem 11.10.1), where condition

c2 : ∥ωBRi − υBRi∥1 ≤ ϵ, ∀ 1 ≤ i ≤ n,

is implied by c1 using the monotonicity of trace distance with respect to partial trace. ϵ̃2 is defined

as ϵ̃2 =∆ ϵ log |HB| + hb(ϵ). (f) follows from the fact that υBRiEi = WωARiW †. (g) follows from

condition c2 which can also be stated as

c2 : ∥ρBR −NW (ωARi)∥1 ≤ ϵ, ∀ 1 ≤ i ≤ n,

and the fact that coherent information is continuous, and the constraint set is closed and bounded.

The continuity follows from the following arguments: for the fixed CPTP mapNW , let a function f :

D(HAR
) → R be defined as f(ρAR) = Ic(NW , ρ

AR). One can establish the continuity of f for a fixed

NW by writing Ic(NW , ρ
AR) = S(BR)WρARW † − S(E)WρARW † , and using the Fannes–Audenaert

Inequality (Wilde, 2011, Theorem 11.10.2), where W is the Stinespring’s extension of the given

CPTP map NW .

Step 3: Continuity Argument: We have shown that

R ∈
⋂
ϵ>0

Iϵ,
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where we have defined for all ϵ ≥ 0,

Iϵ =∆
{
R : ∃ ρAR ∈ Sϵ(ρ

B,NW ) such that R ≥ Ic(NW , ρ
AR)− g(ϵ)

}
, (5.66)

and

Sϵ(ρ
B,NW ) =∆

{
ρAR ∈ D(HAR

) : ∥NW (ρAR)− ρBR∥1 ≤ ϵ
}
, (5.67)

g(ϵ) =∆ ϵ+ ϵ̃1 + ϵ̃2. Condition c2 ensures that the set Sϵ is non-empty for all ϵ > 0. Now, by arguing

continuity of Iϵ at ϵ = 0, we obtain the desired result.

Lemma V.22. For the above definitions of Sϵ and Iϵ, we have S0(ρ
B,NW ) non-empty, and

I0 =
⋂
ϵ>0

Iϵ.

Proof. This is a standard argument used in the literature Dueck (1981); Ahlswede and Cai (2006);

Cuff (2013). A proof is provided in Appendix D.5 for completeness.

This completes the proof.

5.8 Conclusion

In this work, we explored a new formulation of the lossy quantum source coding problem. The

two ingredients that make our formulation different from the standard rate-distortion problem are

(i) the usage of a global error criterion to measure the quality of reconstruction, and (ii) the notion

of a posterior reference channel defined as a CPTP map acting on the reference of the reconstruction

to produce the reference of the source. Instead of a single-letter distortion function, a global error

criterion measures the error incurred by using the given single-letter posterior channel. The given

channel characterizes the nature of the loss incurred in the encoding and decoding operations.

As our main result, we provide a single-letter characterization of the asymptotic performance

limit of this source coding problem using the minimal coherent information of the posterior reference

map, where the minimization is over all reconstructions. Even though the formulation uses a global

error criterion, it sheds light on an “optimistic” perspective of the lossy source coding theory. In
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this regard, our results provide the missing duality pair of the quantum channel coding problem,

and also broadens the framework of performing lossy quantum source compression. Investigation

of this formulation to other variants of lossy source coding problem can be an interesting research

avenue to pursue. Similarly, it would be interesting to explore other techniques of establishing the

achievability and converse of this limit.

167



Part II

Classical Communication Over

Quantum Channels
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CHAPTER VI

Computation over a Classical-Quantum Multiple Access Channel

6.1 Introduction

Early research in quantum state discrimination led to the investigation of the information

carrying capacity of quantum states. Suppose Alice - a sender - can prepare any one of the states

in the collection {ρx ∈ D(HY ) : x ∈ X} and Bob - the receiver - has to rely on a measurement

to infer the label x of the state, then what is the largest sub-collection C ⊆ X of states that

Bob can distinguish perfectly? Studying this question in a Shannon-theoretic sense, Schumacher,

Westmoreland Schumacher and Westmoreland (1997) and Holevo Holevo (1998) characterized the

exponential growth of this sub-collection, thereby characterizing the capacity of a classical-quantum

(CQ) point-to-point (PTP) channel. In the following years, generalizations of this question with

multiple senders and/or receivers have been studied with an aim of characterizing the corresponding

information carrying capacity of quantum states in network scenarios Winter (2001).

In this chapter, we consider the problem of computing functions of information sources over a

CQ multiple access channel (MAC). Let (ρx1x2 ∈ D(HY ) : (x1, x2) ∈ X1 × X2) model a CQ-MAC.

Sender j - the party having access to the choice of label xj ∈ Xj - observes a classical information

stream Sjt ∈ Sj : t ≥ 1. The pairs (S1t, S2t) : t ≥ 1 are independent and identically distributed

(IID) with a single-letter joint distribution WS1S2 . The receiver, who is provided with the prepared

quantum state, intends to reconstruct a specific function f(S1, S2) of the information observed by

the senders. The question of interest is under what conditions, specified in terms of the CQ-MAC,

WS1S2 and f , can the receiver reconstruct the desired function losslessly?

The conventional approach to characterizing sufficient conditions for this problem relies on
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Figure 6.1: CQ-MAC used for computing sum of classical sources.

enabling the receiver reconstruct the pair of classical source sequences. Since the receiver is only

interested in recovering the bivariate function f , and not the pair, this approach can be strictly sub-

optimal. Can we exploit this and design a more efficient communication strategy, thereby weakening

the set of sufficient conditions? In this work, we present one such communication strategy for a

general CQ-MAC that is more efficient than the conventional approach. This strategy is based

on asymptotically good random nested coset codes. We analyze its performance and derive new

sufficient conditions for a general problem instance and identify examples for which the derived

conditions are strictly weaker.

Our findings here are built on the ideas developed in the classical setting. Focusing on a source

coding formulation, i.e. a noiseless MAC, Körner and Marton Korner and Marton (1979) devised

an ingenious coding technique that enabled the receiver recover the sum of the sources without

recovering either source. In Nazer and Gastpar (2007), the linearity of the Körner-Marton (KM)

source coding map was further exploited to enable the receiver recover the sum of the sources using

only the sum of the KM indices, not even requiring the pair. Leveraging this observation and

focusing on the subclass of additive MACs, specific MAC channel coding techniques are devised in

Nazer and Gastpar (2007) that enabled the receiver recover the sum of two channel coding message

indices.

The techniques of Korner and Marton (1979), Nazer and Gastpar (2007) are instances of a

broader framework of coding strategies. Decoding functions of sources or channel inputs efficiently

require codes endowed with algebraic closure properties. To emphasize, the conventional approach

of deriving inner bounds/achievable rate region by analyzing expected performance of IID random

codes is incapable of yielding performance limits - capacity or rate-distortion regions as the case

may be- in network communication scenarios. To improve upon this, it is necessary to analyze the

expected performance of random codes endowed with algebraic closure properties. In a series of
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works Pradhan et al. (2021), an information theoretic study of the latter codes has been carried

out yielding new inner bounds for multiple network communication scenarios.

In this work, we embark on developing these ideas in the CQ setup. After having provided the

problem statement in Sec. 6.2, we focus on a simplified CQ MAC and illustrate the core idea of our

coding scheme. The latter relies on developing a nested coset code (NCC) based communication

scheme for a CQ PTP channel and analyzing its performance (Sec. 6.4). Leveraging this building

block, we design and analyze the performance of an NCC-based coding scheme for computing sum

over a general CQ-MAC (Sec. 6.6). Going further we generalize this idea for computing arbitrary

functions over a general CQ-MAC.

6.2 Preliminaries and Problem Statement

We supplement the notation in Wilde (2013a) with the following. For positive integer n, [n] =∆

{1, · · · , n}. For a Hilbert space H, L(H),P(H) and D(H) denote the collection of linear, positive

and density operators acting on H, respectively. The von Neumann entropy of a density operator

ρ ∈ D(H) is denoted by S(ρ). Given any ensemble {pi, ρi}i∈[1,m], the Holevo information Holevo

(2012) is denoted as χ
(
{pi; ρi}

)
. A POVM acting on H is a collection λX =∆ {λx}x∈X of positive

operators that form a resolution of the identity:
∑

x∈X λx = I, where X is a finite set. We employ

an underline notation to aggregate objects of similar type. For example, s denotes (s1, s2), x
n

denotes (xn1 , x
n
2 ), S denotes the Cartesian product S1 × S2.

Consider a (generic) CQ-MAC (ρx1x2 ∈ D(HY ) : (x1, x2) ∈ X1×X2) specified through (i) finite

sets Xj : j ∈ [2], (ii) Hilbert space HY , and (iii) a collection (ρx1,x2 ∈ D(HY ) : (x1, x2) ∈ X1 × X2)

of density operators. This CQ-MAC is employed to enable the receiver reconstruct a bivariate

function of the classical information streams observed by the senders. Let S1,S2 be finite sets and

(S1, S2) ∈ S1 × S2 distributed with PMF WS1S2 models the pair of information sources observed

at the encoders. Specifically, sender j observes the sequence Sjt ∈ Sj : t ≥ 1 and the sequence

(S1t, S2t) : t ≥ 1 are IID with single-letter PMF WS1S2 . The receiver aims to recover the sequence

f(S1t, S2t) : t ≥ 1 losslessly, where f : S1 × S2 → R is a specified function.

A CQ-MAC code cf = (n, e1, e2, λRn) of block-length n for recovering f consists of two encoders

maps ej : Sn → X n
j : j ∈ [2], and a POVM λRn = {λrn ∈ P(H⊗n

Y ) : rn ∈ Rn}. The average error
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probability of the CQ-MAC code cf is

ξ(cf ) = 1−
∑

sn:f(sn)=rn

Wn
S1S2

(sn1 , s
n
2 ) Tr

(
λrnρ

⊗n
c,sn

)

where ρ⊗n
c,sn =∆ ⊗n

i=1ρx1i(sn1 )x2i(sn2 )
, where ej(s

n
j ) = xj1(s

n
j ), xj2(s

n
j ), · · · , xjn(snj ) for j ∈ [2].

A function f of the sources WS1S2 is said to be reconstructible over a CQ-MAC if for ϵ > 0, ∃

a sequence c
(n)
f = (n, e

(n)
1 , e

(n)
2 , λRn) : n ≥ 1 such that limn→∞ ξ(c

(n)
f ) = 0.

In this article, we are concerned with the problem of characterizing sufficient conditions under

which a function f of the sources WS1S2 is reconstructible over a generic MAC (ρx1x2 ∈ D(HY ) :

(x1, x2) ∈ X1 × X2). One of our findings - Proposition VI.10 - provides a characterization of

sufficient conditions in terms of a computable function of the associated objects- density operators

that characterize the CQ-MAC, function f and the source distribution WS1S2 .

As we shall see, the specific problem of computing sum of sources will play an important

role in our work. In this case, S = S1 = S2 = Fq is a finite field with q elements and the

receiver aims to reconstruct f(S1, S2) = S1 ⊕q S2 where ⊕q denotes addition in Fq. A CQ-MAC

code c⊕ = (n, e1, e2, λSn) of block-length n for recovering the sum consists of two encoders maps

ej : Sn → X n
j : j ∈ [2], and a POVM λSn = {λsn ∈ P(H⊗n

Y ) : sn ∈ Sn}.

Restricting f to a sum, we say the sum of sources WS1S2 over field Fq is reconstructible over

a CQ-MAC if S1 = S2 = Fq and the function f(S1, S2) = S1 ⊕q S2 is reconstructible over the

CQ-MAC. The problem of characterizing sufficient conditions under which a sum of sources is

reconstructible over a CQ-MAC plays an important role in this work. One of our findings - Theorem

VI.9 - provides a computable characterization of a set of sufficient conditions under which a sum

of sources is reconstructible over a CQ-MAC. As the reader will note, this encapsulates the central

element of our characterization in Proposition VI.10.

We also formalize the notions of a CQ-PTP and CQ-MAC codes for communicating uniform

messages. A CQ-MAC code cm = (n, I1, I2, e1, e2, λI) for a CQ-MAC (ρx ∈ D(HY ) : x ∈ X )

consists of (i) index sets Ij : j ∈ [2], (ii) encoder maps ej : Ij → X n
j : j ∈ [2] and a decoding

POVM λI = {λm ∈ P(H⊗n
Y ) : m ∈ I1 × I2}. For m ∈ I1 × I2, we let ρ⊗n

c,m =∆ ⊗n
i=1ρx1i,x2i where

ej(mj) = xj1 · · ·xjn for j ∈ [2].

A CQ-PTP code cm = (n, I, e, λI) for a CQ-PTP (ρx ∈ D(HY ) : x ∈ X ) consists of (i) an index
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set I, (ii) and encoder map e : I → X n and a decoding POVM λI = {λm ∈ P(H⊗n
Y ) : m ∈ I}. For

m ∈ I, we let ρ⊗n
c,m =∆ ⊗n

i=1ρxi where e(m) = x1 · · ·xn.

6.3 The Central Idea

Let us consider the specific problem of reconstructing the sum of sources each taking values in

S = Fq. We begin by reviewing the KM coding scheme for the case of a noiseless classical MAC. It

was shown in Korner and Marton (1979) the existence of linear code with a parity matrix H ∈ S l×n

and decoder map d : F l
q → Sn such that

∑
sn∈Sn Wn

S(s
n)1{d(Hsn1⊕qHsn2 )̸=sn1⊕qsn2 } ≤ ϵ, for any ϵ > 0,

and sufficiently large n, so long as l log2 q
n > H(S1⊕q S2). This implies that a receiver equipped with

the decoding map d can recover the sum if it possesses the sum M l
1 ⊕q M

l
2 of the Körner-Marton

indices M l
j = HSl

j : j ∈ [2].

We are therefore led to building an efficient CQ-MAC coding scheme that enables the receiver

only reconstruct the sum of the two message indices. Indeed, if the two senders send the KM indices

to such a CQ-MAC channel code and the receiver employs the above source decoder d on the decoded

sum of the KM indices, it can recover the sum of sources. To illustrate the design of the desired

CQ-MAC channel code, let us consider a CQ-MAC (ρx1x2 ∈ D(HY ) : (x1, x2) ∈ X1 × X2) wherein

X1 = X2 = Fq and the collection ρx : x ∈ X satisfies ρx1x2 = ρx̂1x̂2 whenever x1 ⊕q x2 = x̂1 ⊕q x̂2.

Consider a CQ-PTP (X = Fq, σu : u ∈ X ) where σu = ρx1⊕x2 for any (x1, x2) satisfying x1⊕qx2 = u.

Suppose we are able to communicate over this CQ-PTP via a linear CQ-PTP code C ⊆ X n.

Specifically, suppose there exists a generator matrix G ∈ X l×n and a POVM {λml : ml ∈ F l
q} so that

1− q−l
∑

ml Tr
(
λmlσ⊗n

mlG

)
≤ ϵ. for any ϵ > 0 and sufficiently large n, where σ⊗

mlG
= σx1 ⊗ · · · ⊗ σxn

where mlG = xn. We can then use this linear CQ-PTP code as our desired CQ-MAC channel

code. Indeed, observe that, suppose both senders employ this same linear CQ-PTP code, then

sender j maps its KM index ml
j = Hsnj to the channel codeword xnj = ml

jG. Observe that the

structure of the CQ-MAC implies ρ⊗n
xn
1 ,x

n
2
= σ⊗n

xn
1⊕xn

2
= σ⊗

(ml
1⊕qml

2)G
. If the receiver employs the

POVM {λml : ml ∈ F l
q} designed for the CQ-PTP, it ends up decoding the sum of the KM indices

ml
1 ⊕q m

l
2, and consequently, recover the sum of the sources.

A careful analysis of the above idea reveals that two MAC channel codes employed by the

encoders do not ‘blow up’ when added, is crucial to the efficiency of the above scheme. A linear
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code being algebraically closed enables this. However, the codewords of a random linear code are

uniformly distributed and cannot achieve the capacity of an arbitrary classical PTP channel, let

alone a CQ-PTP channel. We are therefore forced to enlarge a linear code to identify sufficiently

many codewords of the desired empirical distribution. We are thus led to a nested coset code

(NCC)Padakandla and Pradhan. A NCC comprises of cosets of a coarse linear code within a fine

code. Within each coset, we can identify a codeword of the desired empirical distribution. We

choose as many cosets as the number of messages. Analogous to our illustration above where we

chose a linear code that achieves the capacity of the CQ-PTP (X = Fq, σu : u ∈ X ), our first step

(Sec. 6.4) is to design a NCC with its POVM that can achieve capacity of an arbitrary CQ PTP.

Our second step is to endow both senders with this same NCC and analyze decoding the sum of

the messages. This gets us to our next challenge - How do we analyze decoding their message

sum, for a general CQ-MAC ρx : x ∈ X for which x1 ⊕q x2 = x̂1 ⊕q x̂2 does not necessarily imply

ρx1x2 = ρx̂1x̂2 . In Sec. 6.5, we address this challenge, leverage our findings in Sec. 6.4 and generalize

the idea for a general CQ-MAC.

6.4 Nested Coset Codes Achieve Capacity of CQ-PTP

We begin by formalizing the structure of an NCC.

Definition VI.1. An (n, k, l, gI , gO/I , b
n) NCC built over a finite field V = Fq comprises of (i)

generator matrices gI ∈ Vk×n, gO/I ∈ V l×n (ii) a bias vector bn, an encoder map e : V l → Vk. We

let vn(a,m) = agI ⊕q mgO/I ⊕q b
n : (a,m) ∈ Vk × V l denote elements in the range space of the

generator matrix [gtI g
t
O/I ]

t.

Definition VI.2. A CQ-PTP code (n, I = F l
q, e, λI) is an NCC CQ-PTP if there exists an

(n, k, gI , gO/I , b
n) NCC such that e(m) ∈ {un(a,m) : a ∈ Fk

q } for all m ∈ F l
q.

Theorem VI.3. Given a CQ-PTP (ρv ∈ D(HY ) : v ∈ Fq) and a PMF pV on Fq, ϵ > 0 there

exists a CQ-PTP code c = (n, I = F l
q, e, λI) such that (i) q−l

∑
m∈[I]

∑
m̸̂=[I]\{m}Tr

(
λm̂ρ

⊗n
c,m

)
≤ ϵ,

(ii) c = (n, I = F l
q, e, λI) is a NCC CQ-PTP, (iii) k log2 q

n > log2 q − H(V ) and (k+l) log2 q
n <

log2 q −H(V ) + χ({pv, ρv}) for all n sufficiently large.

Proof. In order to achieve a rate R = χ({pv, ρv}), the standard approach is to pick 2nR codewords

uniformly and independently from Tn
δ (pV ). However, the resulting code is not algebraically closed.
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On the other hand, if we pick a random generator matrix G ∈ F l×n
q , with l = nR

log2 q
, whose entries

from Fq are IID uniform, then its range space - the resulting collection of 2nR codewords - are

uniformly distributed and pairwise independent but not pV −typical.

To satisfy the dual requirements of algebraically closure and pV −typicality, we observe the

following. If a collection of qk codewords are uniformly distributed in Fn
q and pairwise independent,

as we found the range space of G to be, then the expected number of codewords that are pV −typical

is qk

qn |T
n
δ (pV )| = exp{n log2 q

(
k
n −

[
1− H(V )

log2 q

])
}. This indicates that if we pick a generator matrix

GI ∈ Fk×n with entries uniformly distributed and IID, such that k
n > 1− H(V )

log2 q
, then its range space

will contain codewords that are pV -typical. The latter codewords can be used for communication.

Each coset of GI ∈ Fk×n where k
n > 1− H(V )

log2 q
will play an analogous role as a single codeword

in a conventional IID random code. Just as we pick 2nR of the latter, we consider 2nR cosets of GI

within a larger linear code with generator matrix G =

 GI

GO/I

 ∈ F (k+l)×n
q with l = nR

log2 q
. The

messages index the 2nR cosets of GI . A predetermined element in each coset that is pV −typical is

the assigned codeword for the message and chosen for communication.1 A formal proof we provide

below has two parts - error probability analysis for a generic fixed code followed by an upper bound

on the latter via code randomization.

Upper bound on Error Prob. for a generic fixed code : Consider a generic NCC (n, k, l, gI , gO/I , b
n)

with its range space vn(a,m) = agI ⊕q mgO/I ⊕q b
n : (a,m) ∈ Vk × V l. We shall use this and

define a CQ-PTP code (n, I = F l
q, e, λI) that is an NCC CQ-PTP. Towards that end, let θ(m) =∆∑

a∈Vk 1{vn(a,m)∈Tn
δ (pV )} and

s(m) =∆


{a ∈ VK : vn(a,m) ∈ Tn

δ (pV )} if θ(m) ≥ 1

{0k} if θ(m) = 0

for each m ∈ V l. For m ∈ V l, a predetermined element am ∈ s(m) is chosen. On receiving

message m ∈ V l, the encoder prepares the quantum state ρ⊗n
m =∆ ρ⊗n

vn(am,m) =
∆ ⊗n

i=1ρvi(am,m) and is

communicated. The encoding map e is therefore determined via the collection (am∈ s(m) :m ∈V l).

1The reader is encouraged to relate to the bounds stated in theorem statement and induced bounds on the rate
of communication l log2 q

n
.
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Towards specifying the decoding POVM let ρv =
∑

y∈Y pY |V (y|v)
∣∣ey|v〉 〈ey|v∣∣ be a spectral

decomposition for v ∈ V. We let pV Y =∆ pV pY |V . For any vn ∈ Vn, let πvn be the conditional

typical projector as in (Wilde, 2013a, Defn. 15.2.4) with respect to the ensemble {ρv : v ∈ V}

and distribution pV . Similarly, let πρ be the (unconditional) typical projector of the state ρ =∆∑
v∈V pV (v)ρv as defined in (Wilde, 2013a, Defn. 15.1.3). For (a,m) ∈ Vk × V l, we let πa,m =∆

πvn(a,m)1{vn(a,m)∈Tn
δ (pV )}. We let λI =∆ {

∑
a∈Vk λa,m : m ∈ I = V l, λ−1}, where

λa,m=∆
(∑
â∈Vk

∑
m̂∈Vl

γâ,m̂

)−1/2
γa,m

(∑
ã∈Vk

∑
m̃∈Vl

γã,m̃

)−1/2
(6.1)

λ−1 =∆ I −
∑

m∈Vl

∑
a∈Vk λa,m and γa,m =∆ πρπa,mπρ. Since 0 ≤ γa,m ≤ I, we have 0 ≤ λa,m ≤ I.

The latter lower bound implies λI ⊆ P(H). The same lower bound coupled with the definition of

the generalized inverse implies I ≥
∑

a∈Vk

∑
m∈Vl λa,m ≥ 0. We thus have 0 ≤ λ−1 ≤ I. It can now

be verified that λI is a POVM. In essence, the elements of this POVM is identical to the standard

POVMs except the POVM elements corresponding to a coset have been added together. Indeed,

since each coset corresponds to one message, there is no need to disambiguate within the coset.

We have thus associated an NCC (n, k, l, gI , gO/I , b
n) and a collection (am ∈ s(m) : m ∈ V l)

with a CQ-PTP code. The error probability of this code is

q−l
∑
m∈I

tr((I −
∑
a∈Vk

λa,m)ρ⊗n
m ) ≤ q−l

∑
m∈I

tr((I − λam,m)ρ⊗n
m ). (6.2)

Denoting event E = {θ(m) < 1}, its complement E c and the associated indicator functions 1E ,1E c

respectively, a generic term in the RHS of the above sum satisfies

tr((I − λam,m)ρ⊗n
m )1E c + tr((I − λam,m)ρ⊗n

m )1E

≤ 1E c +
3∑

i=1

T2i, where T21 = 2tr((I − γam,m)ρ⊗n
m )1E ,

T22 =4
∑
â̸=am

tr(γâ,mρ
⊗n
m )1E , T23 =4

∑
m̂ ̸=m

∑
ã

tr(γã,m̂ρ
⊗n
m )1E,

where we have used Hayashi-Nagaoka inequality Hayashi and Nagaoka (2003).

Distribution of the Random Code : The objects gI ∈ Vk×n, gO/I ∈ V l×n, bn ∈ Vn and the

collection (am ∈ s(m) : m ∈ V l) specify an NCC CQ-PTP code unambiguously. A distribution
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for a random code is therefore specified through a distribution of these objects. We let upper case

letters denote the associated random objects, and obtain

P

 GI = gI , GO/I = gO/I

Bn =bn, Am=am : m ∈ S(m)

= q−(k+l+1)n
∏

m∈Vl

1

Θ(m)
,

and analyze the expectation of E and the terms T2i; i ∈ [1, 3] in regards to the above random

code. We begin by EP [E ] = P(
∑

a∈Vk 1{V n(a,m)∈Tn
δ (pV )} < 1). For this, we provide the following

proposition.

Proposition VI.4. There exist ϵT1(δ), δT1(δ), such that for all sufficiently small δ and sufficiently

large n, we have EP [E ] ≤ ϵT1(δ), if
k
n ≥ log q −H(V ) + δS, where ϵS , δS ↘ 0 as δ ↘ 0.

Proof. The proof follows from Appendix B of Padakandla and Pradhan (2017) with the identifica-

tion of S = ϕ.

We now consider T21. An upper bound on T21 is derived by obtaining a lower bound on

Tr(λam,mρ
⊗n
m ). This follows by an argument that is colloquially referred to as ‘pinching’. Lemma

E.1 in Appendix E.1 proves the existence of λ > 0 such that EP{T21} ≤ exp{−nλδ2} for sufficiently

large n. We now analyze EP [T22]. Denoting the event

J =∆

Θ(m)≥1,V n(â, m̂)= x̂n

Am=d, V n(d,m) = xn

⊆K=∆

V
n(â, m̂)= x̂n

V n(d,m)=xn

 (6.3)

we perform the following steps.

EP [T22] =
∑
â∈Vk

EP [tr(Γâ,mρ
⊗n
m )1{θ(m)≥1}1{â̸=Am}]

=
∑
d∈Vk

∑
â∈Vk

∑
xn∈Tn

δ (pV )

∑
x̂n∈Vn

E
[
tr(Γâ,mρ

⊗n
m )1â̸=d1J

]
=
∑
d∈Vk

∑
â̸=d

∑
xn∈Tn

δ (pV )

∑
x̂n∈Vn

E
[
tr(Γâ,mρ

⊗n
m )1J

]

where the restriction of the summation xn to Tn
δ (pV ) is valid since S(m) > 1 forces the choice
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Am ∈ S(m) such that V n(Am,m) ∈ Tn
δ (pV ). Going further, we have

EP [T22] =
∑

d,â∈Vk

â̸=d

∑
xn∈Tn

δ (pV )

∑
x̂n∈Tn

δ (pV )

E
[
tr(πρπx̂nπρρ

⊗n
xn )1J

]

=
∑

d,â:â̸=d

∑
xn∈Tn

δ (pV )

∑
x̂n∈Tn

δ (pV )

tr(πρπx̂nπρρ
⊗n
xn )P(J )

(a)

≤
∑

d,â:â̸=d

∑
x̂n∈Tn

δ (pV )

tr(πx̂nπρ)P(J )2−n[S(ρ)−H(pV )+ϵV ]

(b)

≤
∑

d,â:â̸=d

∑
x̂n∈Tn

δ (pV )

tr(πx̂nπρ)P(K)2−n[S(ρ)−H(pV )+ϵV ]

(c)
=

∑
d,â:â̸=d

∑
x̂n∈Tn

δ (pV )

tr(πx̂nπρ)
1

q2n
2−n[S(ρ)−H(pV )+ϵV ]

(d)

≤ 2−n[χ({pV ;ρv})+ϵV −2H(pV )− 2k
n

log q+2 log q] (6.4)

where the restriction of the summation x̂n to Tn
δ (pV ) follows from the fact that πx̂n is the zero

projector if x̂n /∈ Tn
δ (pV ), (a) follows from the operator inequality

∑
xn∈Tδ(pV )

πρρxnπρ ≤ 2n(H(pV )+ϵV (δ))πρρ
⊗nπρ ≤ 2n(H(pV )+ϵV (δ)−S(ρ))πρ

found in (Wilde, 2017, Eqn. 20.34, 15.20), (b) follows from Def. 6.3, (c) follows from pairwise

independence of the distinct codewords, and (d) follows from πρ ≤ I and (Wilde, 2013a, Eqn.

15.77) and ϵV (δ) ↘ 0 as δ ↘ 0. We now derive an upper bound on EP [T23]. We have

EP [T23] =
∑

d,â∈Vk

∑
m̂ ̸=m

∑
xn,x̂n∈
Tn
δ (pV )

E
[
tr(πρΠâ,m̂πρρ

⊗n
Am,m)1J

]

=
∑

d,â∈Vk

∑
m̂ ̸=m

∑
xn,x̂n∈Tn

δ (pV )

tr(πx̂nπρρ
⊗n
xn πρ)P(J )

≤
∑

d,â∈Vk

∑
m̂ ̸=m

∑
x̂n∈Tn

δ (pV )

tr(πx̂nπρ)P(J )2−n[S(ρ)−H(pV )+ϵV ]

≤
∑

d,â∈Vk

∑
m̂ ̸=m

∑
x̂n∈Tn

δ (pV )

tr(πx̂nπρ)P(K)2−n[S(ρ)−H(pV )+ϵV ]

=
∑

d,â∈Vk

∑
m̂ ̸=m

∑
x̂n∈Tn

δ (pV )

tr(πx̂nπρ)
1

q2n
2−n[S(ρ)−H(pV )+ϵV ]
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≤ 2−n[χ({pV ;ρv})+2 log2 q−2H(pV )− 2k+l
n

log2 q+ϵV ]

where the inequalities above uses similar reasoning as in (6.4).

We have therefore obtained three bounds k
n > 1 − H(pV )

log2 q
, 2k

n < 2 + χ({pV ;ρv})−2H(pV )
log2 q

, 2k+l
n <

2 + χ({pV ;ρv})−2H(pV )
log2 q

. A rate of χ({pV ; ρv}) − ϵ is achievable by choosing k
n = 1 − H(pV )

log2 q
+ ϵ

2 ,

l
n =

χ({pV ;ρv})−ϵ log2
√
q

log2 q
thus completing the proof.

6.5 Decoding Sum over CQ-MAC

Throughout this section, the source alphabets S =∆ S1 = S2 = Fq is a finite field with q elements

and the receiver intends to reconstruct the sum f(S1, S2) = S1 ⊕q S2 of the sources. As discussed

in Sec. 6.3, we propose a ‘separation based’ coding scheme consisting of a Körner Marton (KM)

source code followed by a CQ MAC channel code designed to communicate the sum of the message

indices input at the channel code encoders. The focus of this section is to design, analyze and

thereby characterize performance of the latter CQ MAC channel code tasked to communicate the

sum of messages. Towards that end, we begin with a definition.

Definition VI.5. Let V = Fq be a finite field and (ρx1x2 ∈ D(HY ) : (x1, x2) ∈ X1 × X2) be a

CQ-MAC. A CQ-MAC code cm⊕ = (n, I1 = I2 = F l
q, e1, e2, λ[ql]) of block-length n for recovering

Fq−sum of messages consists of two encoders maps ej : V l → X n
j : j ∈ [2], and a POVM λql =

{λm ∈ P(H⊗n
Y ) : m ∈ V l}.

An Fq−message-sum rate R > 0 is achievable if given any sequence l(n) ∈ N : n ∈ N such that

lim supn→∞
l(n) log q

n < R, any sequence p
(n)
M1M2

of PMFs on F l(n)
q × F l(n)

q , there exists a CQ-MAC

code c
(n)
m⊕ = (n, I = I1 = I2 = F l(n)

q , e
(n)
1 , e

(n)
2 , λI) of block-length n for recovering F l(n)

q −sum of

messages such that for every δ > 0, have

lim
n→∞

ξ(c
(n)
m⊕) = lim

n→∞
1−

∑
(m1,m2)
∈I1×I2

pM1pM2(m1,m2) Tr
(
λm1⊕m2ρ

⊗n
c,m

)
= 0

where ρ⊗n
c,m =∆ ⊗n

i=1ρx1i(m1)x2i(m2), where ej(mj) = xj1(mj), xj2(mj), · · · , xjn(mj) for j ∈ [2]. The

closure of the set of all achievable Fq−message-sum rates is the message-sum capacity of the CQ-

MAC.
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From our discussion in Sec. 6.3 and the above definition, a road map for characterizing sufficient

conditions for computing the sum over a CQ-MAC must be evident. Referring back to Sec. 6.3,

we note that is joint PMF WS1S2 of the sources is such that H(S1 ⊕q S2) is dominated by the

message-sum capacity of the CQ-MAC, then the corresponding sum of sources can be reconstructed

over the CQ-MAC. Therefore, if R > 0 is an achievable message-sum rate over a CQ-MAC, then

H(S1 ⊕q S2) < R is a sufficient condition. We now state the main contribution of this section - a

lower bound on the message-sum capacity of a CQ-MAC. Following its proof, we leverage the above

argument in Thm. VI.9 to characterize sufficient conditions for reconstructing sum of sources over

an arbitrary CQ-MAC.

Definition VI.6. Given a CQ-MAC ρX =∆ (ρx1x2 ∈ D(HY ) : (x1, x2) ∈ X1 × X2) and a prime

power q, let P(ρX , q)

=∆


(pV1V2U , ρu : u ∈ V) :

pV1X1pV2X2 is a PMF on V × X1 × V × X2,V = Fq,

pV1V2U (v1, v2, u) =
∑

x1,x2∈X
pV1X1(v1, x1)pV2X2(v2, x2)1{u=v1⊕qv2}

ρu =∆
∑

v1∈Fq

∑
v2∈Fq

pV1V2|U (v1, v2|u)ρv1v21{v1⊕qv2=u},

ρv1v2 =∆
∑

x1∈X1,x2∈X2

pX1|V1
(x1|v1)pX2|V2

(x2|v2)ρx1x2


For (pV1V2U , ρu : u ∈ Fq) ∈ P(ρX , q), let

R(pV1V2U , ρV) =
∆ min{H(V1), H(V2)} −H(U) + χ({pU ; ρu}) and

R(ρX , q) =
∆ sup

pV1V2U ,ρV∈P(ρX ,q)
R(pV1V2U , ρV) (6.5)

Lemma VI.7. Fq−message-sum rate R(ρX , q) is achievable over a CQ-MAC ρX = (ρx1x2 ∈

D(HY ) : (x1, x2) ∈ X1 ×X2).

Proof. Let (pV1V2U , ρu : u ∈ V) ∈ P(ρX , q) with associated collection (ρv1v2 : (v1, v2) ∈ V1 × V2) of

density operators and PMF pV1X1pV2X2 on V1 ×X1 × V2 ×X2 where V1 = V2 = Fq.

We now describe the coding scheme in terms of a specific code. It is instructive to revisit

Sec. 6.3, wherein we specified the import of both encoders employing cosets of the the same linear

code. In order to choose codewords of a desired empirical distribution pVj , we employ NCCs (as
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was done for the same reason in Sec. 6.4). Following the same notation as in proof of Thm. VI.3,

we now specify the random coding scheme.

Let GI ∈ Fk×n
q , GO/I ∈ F l×n

q , Bj ∈ Fn
q : j ∈ [2] be mutually independent and uniformly dis-

tributed on their respective range spaces. Through out this proof, we let ⊕ = ⊕q. Let V
n
j (a,mj) =

∆

aGI ⊕mjGO/I ⊕Bn
j : (a,mj) ∈ Fk+l

q for j ∈ [2] and Un(a,m) =∆ aGI ⊕mGO/I ⊕Bn
1 ⊕Bn

2 : (a,m) ∈

Fk+l
q . For j ∈ [2], let

Sj(mj) =
∆


{a ∈ Vk : V n

j (a,mj) ∈ Tn
δ (pVj )} if

∑
a∈Vk

1{
V n
j (a,mj)∈Tn

δ (pVj )
} ≥ 1

{0k} otherwise, i.e
∑
a∈Vk

1{
V n
j (a,mj)∈Tn

δ (pVj )
} = 0

for each mj ∈ V l. For mj ∈ V l, a predetermined element Aj,mj ∈ Sj(mj) is chosen. We let

Θj(mj) =
∆ |Sj(mj)|. For mj ∈ V l, a predetermined Xn

j (mj) ∈ X n
j is chosen. As we shall see later,

the choice of Xn
j (mj) is based on V n

j (Aj,mj ,mj). We are thus led to the encoding rule.

Encoding Rule: On receiving message (m1,m2) ∈ V l × V l, the quantum state

ρm1m2 =∆ ρXn
1 (m1)Xn

2 (m2) =
∆ ⊗n

t=1ρX1t(m1)X2t(m2)

is (distributively) prepared.

Distribution of the Random Code: The distribution of the random code is completely specified

through the distribution P(·) of GI , GO/I , B
n
1 , B

n
2 , (A1,m1 : m1 ∈ V l), (A2,m2 : m2 ∈ V l) and

(Xn
j (mj) : mj ∈ V l). We let

P


(A1,m1 = a1,m1 : m1 ∈ V l), (A2,m2 = a2,m2 : m2 ∈ V l),

Bn
j = bnj : j ∈ [2], (X1(m1) = xn1 (m1) : m1 ∈ V l),

GI = gI , GO/I = gO/I , (X2(m2) = xn2 (m2) : m2 ∈ V l)


=

[∏
m1

1{a1,m1∈s1(m1)}

Θ(m1)
pnX1|V1

(xn1 (m1)|vn1 (a1,m1 ,m1))

]

×

[∏
m2

1{a2,m2∈s2(m2)}

Θ(m2)
pnX2|V2

(xn2 (m2)|vn2 (a2,m2 ,m2)

]
× 1

qkn+ln+2n
(6.6)
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Towards specifying a decoding POVM, we state the associated density operators modeling the

quantum systems, their spectral decompositions and projectors. Let

ρ =
∑
y∈Y

sY (y) |hy⟩ ⟨hy| , ρx1x2 =
∑
y∈Y

pY |X1X2
(y|x1, x2)

∣∣ey|x1x2

〉 〈
ey|x1x2

∣∣ : (x1, x2) ∈ X

ρv1v2 =
∑
y∈Y

qY |V1V2
(y|v1, v2)

∣∣fy|v1v2〉 〈fy|v1v2∣∣ : (v1, v2) ∈ V, ρu =
∑
y∈Y

rY |U (y|u)
∣∣gy|u〉 〈gy|u∣∣ : u ∈ U ,

Decoding POVM : Unlike a generic CQ-MAC decoder Winter (2001), which aims at decoding

both the classical messages from the quantum state received, the decoder here is designed to

decode only the sum of messages transmitted. For this, the decoder employs the nested coset code

(n, k, l, GI , GO/I , B
n), where Bn = Bn

1 ⊕Bn
2 . We define Un(a,m) =∆ aGI+mGO/I+B

n to represent

a generic codeword. We let Πa,m =∆ πUn(a,m)1{Un(a,m)∈T (n)
δ (pU )}, where pU is as defined in the the-

orem statement. The decoder is provided with a sub-POVM ΛI =∆ {Λm =∆
∑

a∈Fk
q
Λa,m : m ∈ F l

q}

where

Λa,m =∆
( ∑

â∈Fk
q

∑
m̂∈F l

q

Γâ,m̂

)−1/2
Γa,m

( ∑
â∈Fk

q

∑
m̂∈F l

q

Γâ,m̂

)−1/2
,

Λ−1 =
∆ I −

∑
a∈Fk

q

∑
m∈F l

q
Λa,m and Γa,m =∆ πρΠ(a,m)πρ. We note that

πρ =∆
∑

yn∈Tn
δ (sY )

n⊗
t=1

|hyt⟩ ⟨hyt | and πun =∆
∑

yn:(un,yn)∈Tn
δ (pUrY |U )

n⊗
t=1

∣∣gyt|ut

〉 〈
gyt|ut

∣∣
denote the typical and conditional typical projectors (as stated in Definition 15.2.4 Wilde (2013a))

with respect to ρ =∆
∑

u∈Fq
pU (u)ρu and (ρu : u ∈ U), respectively.

Error Analysis: We derive upper bounds on EP{ξ(cm⊕)}. Our derivation will be similar to those

adopted in proof of Thm. VI.3. Let us define event

E =∆




V n
1 (A1.m1 ,m1), X

n
1 (m1),

V n
2 (A2.m2 ,m2), X

n
2 (m2),

V n
1 (A1.m1 ,m1)⊕ V n

2 (A2.m2 ,m2)

 ∈ T8δ(pV1X1V2X2U )

 . (6.7)
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We have

EP

{∑
m1

∑
m2

pM1M2(m1,m2) Tr([I − Λm1⊕m2 ])ρ
⊗n
m1m2

}

≤ EP

{∑
m1

∑
m2

pM1M2(m1,m2) Tr([I − Λm1⊕m2 ])ρ
⊗n
m1m2

1E c

}
︸ ︷︷ ︸

T1

+ EP

{∑
m1

∑
m2

pM1M2(m1,m2) Tr([I − Λm1⊕m2 ])ρ
⊗n
m1m2

1E

}
︸ ︷︷ ︸

T2

.

In regards to T1, the sub-POVM nature of ΛI and the fact that ρ⊗n
m1,m2

is a density operator

enables us conclude T1 ≤ EP{1E c}. Furthermore, observe that Xj(mj) is distributed with PMF

pnXj |Vj
conditionally on V n

j (Aj,mj ,mj ). (See (6.6). In addition, pV1X1V2X2 = pV1X1pV2X2 implies that,

standard conditional typicality arguments yields

EP{1E c} ≤ EP

{∑
m1

pM1(m1)1{Θ1(m1)=0} +
∑
m2

pM2(m2)1{Θ1(m2)=0}

}
+ exp{−nδ}, (6.8)

where δ is chosen appropriately. In the above inequality, the second term on the RHS is an

upper bound on the probability of the event (Xn
1 (m1, X

n
2 (m2)) /∈ Tn

δ (pV1X1V2X2U |vn1 , vn2 , vn1 ⊕ vn2 )

conditioned on (V n
1 (A1.m1 ,m1), V

n
2 (A2.m2 ,m2), V

n
1 (A1.m1 ,m1) ⊕ V n

2 (A2.m2 ,m2)) = (vn1 , v
n
2 , v

n
1 ⊕

vn2 ) ∈ Tn
δ (pV1V2U ) and the first term provides an upper bound on the complement of the latter

event. An upper bound on T1 therefore reduces to deriving an upper bound on the first term on

the RHS of (6.8). This task - deriving an upper bound on the first term on the RHS of (6.8) -

being a classical analysis, has been detailed in several earlier works Padakandla (2014); Padakandla

et al. (2016); Padakandla and Pradhan (2017, 2018) and in particular (Pradhan et al., 2021, Proof

of Thm. 2.5). Following this, we have

EP

∑
mj

pMj (mj)1{Θj(mj)=0}

 ≤ exp

{
−n
(
k log q

n
− [log q −H(Vj)]

)}
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thereby ensuring T1 ≤ 2 exp{−nδ} if

k log q

n
≥ max {log q −H(V1), log q −H(V2)} = log q −min{H(V1), H(V2)}. (6.9)

We now analyze T2. Applying the Hayashi-Nagaoka inequality, we have

T2 ≤ EP
[
T21 + T22 + T23

]
, (6.10)

where

T21 =
∆ 2

∑
m1

∑
m2

pM1M2(m1,m2) Tr
(
[I − ΓA⊕

m,m⊕ ]ρ
⊗n
m1m2

]
)
1E ,

T22 =
∆ 4

∑
m1

∑
m2

∑
â̸=A⊕

m

pM1M2(m1,m2) Tr
(
Γâ,m⊕ρ⊗n

m1m2

)
1E ,

T23 =
∆ 4

∑
m1

∑
m2

∑
â̸=A⊕

m

∑
m̂ ̸=m⊕

pM1M2(m1,m2) Tr
(
Γâ,m̂ρ

⊗n
m1m2

)
1E ,

and A⊕
m =∆ A1,m1 ⊕A2,m2 ∈ Vk,m⊕ =∆ m1⊕m2 ∈ V l. We note that (6.10) follows from an argument

analogous to the one in (6.2). We now analyze T21, T22 and T23.

We begin with T21. For each m1 and m2, denote the events

J =∆
{(

V n
1 (A1.m1 ,m1), X

n
1 (m1), V

n
2 (A2.m2 ,m2), X

n
2 (m2)

)
= (vn1 , x

n
1 , v2, x2) ∈ Tδ(pV1X1V2X2)

}
,

V =∆ {V n
j (aj ,mj) = vnj : j ∈ [2]}, V̂ =∆ {V n(a⊕,m1 ⊕m2) = vn⊕}, A =∆ {Aj,mj = aj : j ∈ [2]},

abbreviating vn⊕ = vn1 ⊕ vn2 , a
⊕ = a1 ⊕ a2. We have

EP [T21] = 1−
∑
m

∑
a1,a2

∑
(vn,x)∈
Tδ(pV X)

pM (m) Tr
(
πvnπρρ

⊗n
xn
1 x

n
2
πρ

)
EP
[
1J 1A1V1V̂

]
≤ ϵ

for all sufficiently large n and sufficiently small δ, where the last inequality follows from the pinching

argument, also provided in Lemma E.1 (see Appendix E.1). Set A = V = Fq, B = X , pAB =

pV1⊕V2,X and the density operators correspondingly.

The proposition below bounds the terms T22 and T23 as follows.
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Proposition VI.8. For any ϵ ∈ (0, 1), and for all sufficiently small δ > 0 and sufficiently large n,

we have EP [T22 + T23] ≤ ϵ if the following inequalities hold:

3k

n
log q ≤ 3 log q + I(V ;Z)σ −H(V1, V2)−H(V )− ϵ

(3k + l)

n
log q ≤ 3 log q + I(V ;Z)σ −H(V1, V2)−H(V )− ϵ.

Proof. The proof is provided in Appendix E.2.

This completes the proof of the claimed statement.

We conclude this section with our final result of this chapter in regards to decoding sum of

sources. The proof of the following theorem follows from the discussion provided just prior to

Definition VI.6. We therefore omit a detailed proof but just state the encoding and decoding

techniques for completeness.

Theorem VI.9. The sum of a pair of sources distributed with PMF WS1S2 can be reconstructed

on a CQ-MAC ρX = (ρx1x2 ∈ D(HY ) : (x1, x2) ∈ X1 × X2) if H(S1 ⊕q S2) < R(ρX , q).

Proof. We begin with an outline of our coding scheme. As stated in Sec. 6.3, we propose a ‘separa-

tion based approach’ with two modules - source and channel. The source coding module employs

a (distributed) Körner Marton (KM) source code. Specifically, Korner and Marton (1979) guar-

antees the existence of a parity check matrix h ∈ F l×n
q = S l×n and a decoder map d : F l

q → Sn

such that
∑

sn∈Sn Wn
S(s

n)1{d(hsn1⊕qhsn2 ) ̸=sn1⊕qsn2 } ≤ ϵ, for any ϵ > 0, and sufficiently large n, so long

as l log2 q
n > H(S1 ⊕q S2).

Both encoders of this KM source coding module employ one such parity check matrix h ∈ F l×n
q .

The decoder of the KM source code employs the corresponding decoder map d. KM Source encoder

j outputs M l
j = h(Sn

j ). If the KM source decoder is provided M l
1 ⊕q M

l
2, then it can reconstruct

Sn
1 ⊕q S

n
2 with reliability at least 1 − ϵ. The task of the CQ-MAC channel coding module is to

make M l
1 ⊕q M

l
2 available to the KM source decoder. We are thus confronted with the problem

of designing a CQ-MAC channel coding module that can reliably communicate the sum of the

messages indices that are input at the encoders.

Specifically, this channel coding module must communicate M l
1 ⊕q M

l
2 ∈ F l

q within n channel

uses. If we can prove that there exists a MAC channel coding module for sufficiently large n so
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long as

l log2 q

n
< min{H(V1),H(V2)}−H(U)+χ({pU ; ρu})

for any choice of auxiliary

The source module employs the KM code. The corresponding KM decoder at the receiver only

requires the sum of the message indices output by the KM code. The CQ-MAC channel coding

module needs to communicate only the sum of the two message indices input by the two encoders.

Given ϵc, we seek to identify a CQ-MAC code c = (n, e1, e2,M) such that ξ(c) ≤ ϵc.

Encoding: The process of mapping source sequences to the CQ-MAC channel inputs is divided

into two stages. In the first stage, a distributed source code proposed in Korner and Marton

(1979) is employed which maps the n−length source sequences to message indices taking values

over F l
q. For the second stage we develop functions mapping these message indices to channel input

codewords. We begin by defining the first stage of encoding which relies on Lemma 1 of Padakandla

and Pradhan. This lemma guarantees the existence of a parity check matrix h ∈ F l(n)×n
q and a

map d : F l
q(n) → Fn

q , for a sufficiently large n, such that (i) l(n)
n ≤ H(S1 ⊕q S2) +

ϵc
2 and (ii)

P(d(hSn
1 ⊕ hSn

2 ) ̸= Sn
1 ⊕ Sn

2 ) ≤ ϵc
2 . We use one such parity matrix which satisfies the above

conditions and define Mj =
∆ hSj , for j = 1, 2. This forms our first stage encoder.

Moving on to the second stage encoder, let us denote the maps of the two encoders as κj :

F l
q → X n

j : j = 1, 2.. For this stage, we use the NCC encoding developed in Section 6.4 for a

CQ-PTP. Consider two NCCs with parameters (n, k, l, gI , gO/I , b
n
j ) : j ∈ {1, 2} with range spaces

as vnj (a,mj) =∆ agI ⊕ mjgO/I ⊕ bnj : j ∈ {1, 2}, respectively. Note that the two NCCs share the

common gI and gO/I , but not necessarily the bias vector bnj . Encoder j then constructs its NCC

CQ-PTP code (n, I = F l
q, ej , λ

j
I) using the corresponding NCC (n, k, l, gI , gO/I , b

n
j ) as described in

Definition 6.1. This defines the second stage encoding. Integrating the two stages, we obtain the

following. To transmit the source sequence pair (sn1 , s
n
2 ) the sequence pair (e1(hs

n
1 ), e2(hs

n
2 )) is send

over the CQ-MAC channel which produces the quantum state ρe1(hsn1 ),e2(hsn2 ) as the output.

After performing the measurement and decoding the message m̂, the decoder then employs the

KM decoder d(.) to obtain the sum of sources d(m̂). An analysis of this coding scheme is provided

in the Proof of Lemma VI.7.
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6.6 Decoding arbitrary functions over CQ-MAC

Leveraging the technique developed in Theorem VI.9, in this section we provide the following

proposition to reconstruct an arbitrary function of the sources

Proposition VI.10. The function f : S → S of sources WS1S2 can be reconstructed on a CQ-MAC

(ρx1x2 ∈ D(HY ) : (x1, x2) ∈ X1 × X2) if there exists functions hj : Sj → Fq for j : 1, 2, a function

g : Fq → S, and a PMF pV1V2X1X2 = pV1X1pV2X2 on V1×X1×V2×X2, where V1 = V1 = Fq,such that

f(s1, s2) = g(h1(s1)⊕h2(s2)) and H(h1(S1)⊕qh2(S2)) ≤ min{H(V1), H(V2)}−H(U)+χ({pU ; ρu}),

where pU and ρu are as defined in Theorem VI.9.

Proof. The proof follows from the proof of Theorem VI.9.

Example VI.11. Let X1 = X2 = S1 = S2 = X = {0, 1}, H = C2, and ρx1,x2 = (1 − q)σ(x1∨x2) +

qσ(x̄1∧x̄2), where σ0, σ1 ∈ D(H) be arbitrary. Let ρ(q) ≜ (1 − q)σ0 + qσ1. Consider correlated

symmetric individually uniform sources with WS1|S2
(1|0) = WS1|S2

(0|1) = p for p ∈ (0, 1). Let

f(S1, S2) = S1 ∨ S2. Consider the sufficient conditions given by the unstructured coding scheme:

H(S1, S2) < χ({PX1,X2 , ρx1,x2}), with X1 and X2 being independent, which can be simplified as

1+hb(p) < S(ρ(0.5))−S(ρ(q)). This implies that the f is not reconstructible using the unstructured

codes. We embed f in the ternary field. In other words, the encoders and decoder work toward

reconstructing S1 ⊕3 S2. The sufficient condition given by the algebraic coding scheme turns out

to be

H(S1 ⊕3 S2)<H(X1)−H(X1 ⊕3 X2) + χ({pX1⊕3X2 , ρx1⊕3x2}),

for some pX1,X2 , which can be simplified as

hb(2p− p2) + (2p− p2)hb(p/(2− p)) <

max
θ

[hb(θ)− hb(2θ − θ2)− (2θ − θ2)hb(θ/(2− θ))

+ S(ρ((2θ − θ2) ∗ q))− S(ρ(q))].

One can show that there exists choices for p, q, σ0 and σ1 such that this condition is satisfied.
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CHAPTER VII

Structured Codes for 3−User Classical-Quantum Interference

Channel

7.1 Introduction

We consider the scenario of communicating over a 3−user classical-quantum interference channel

(3−CQIC) (Fig. 7.1). We undertake a Shannon-theoretic study for characterizing an inner bound

to its capacity region. The current known coding schemes for CQICs Sen (2012); Savov (2012);

Sen (2018a); Hirche et al. (2016) are based on unstructured codes. In this chapter, we propose a

new coding scheme for a 3−CQIC based on nested coset codes (NCCs) - codes possessing algebraic

structure. Analyzing its performance, we derive a new inner bound (Sec. 7.4) to the capacity

region of 3to1−CQIC - a sub-class of 3−CQICs. The inner bound is proven to subsume any

current known inner bounds based on unstructured codes. Furthermore, we identify examples of

3to1−CQICs for which the derived inner bound is strictly larger. These findings are a first step

towards characterizing a new inner bound to the capacity region of a general 3−CQIC.

The current approach of characterizing the performance limits of CQ channels is based on un-

structured codes, which remained for several decades the de facto ensemble of codes for information-

theoretic study of any classical channels. Inspired by the work in Korner and Marton (1979) and

followed by findings in a multitude of network communication scenarios Krithivasan and Pradhan

(2011); Nazer and Gastpar (2007); Philosof and Zamir (2009); Jafarian and Vishwanath (2012);

Padakandla et al. (2016); Padakandla and Pradhan (2013), it has been analytically proven that cod-

ing schemes designed using codes endowed with algebraic closure properties can strictly outperform

all known unstructured coding schemes.
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Figure 7.1: Communication over 3−CQIC.

The goal of this chapter is to build on this and enhance the current known coding schemes in

the context of CQ channels. Our experience with classical channels suggests that a first step toward

this is to design and analyze coding schemes for basic building block channels. Indeed, the ensemble

of NCCs studied in the simple context of point-to-point (PTP) channels form an important element

of this work Pradhan et al. (2021). On the other hand, the mathematical complexity of analyzing

CQ channels makes it challenging to generalize even well known coding schemes to the CQ setting.

In the light of this, our work maybe viewed as a first step in designing new coding schemes for

network CQ channels based on coset codes.

In the context of CQICs, the focus of current research is on 2−user. There has been considerable

effort in Fawzi et al. (2012); Sen (2012); Savov (2012); Hirche et al. (2016); Sen (2018b,a) at

proving the achievability of the Han-Kobayashi rate-region (CHK) Han and Kobayashi (1981) for

2−user ICs. Analogous to these, one can leverage all known coding techniques - message splitting,

superposition coding, Marton’s binning - and derive an achievable rate region for a 3−CQIC. See

discussion in (Padakandla et al., 2016, Sec. III). This rate region, henceforth referred to as the

USB−region contains the largest current known inner bound for any 3−CQIC. In this work, we

focus on 3to1−CQICs (Defn. VII.3) - a subclass of 3−IC in which only one receiver (Rx) experiences

interference. We propose a coding scheme based on NCCs and derive an inner bound for this sub-

class that subsumes the USB−region in general, and strictly larger for identified examples (see

Ex. VII.6). Our analysis of this simultaneous decoder builds on the technique proposed in Fawzi

et al. (2012). In the next step, we leverage these building blocks and employ a multi-terminal

simultaneous decoder Sen (2018b) to derive a new achievable rate region for 3to1−CQICs.
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7.2 Preliminaries and Problem Statement

We supplement our notation thus far with the following. For n ∈ N, [n] =∆ {1, · · · , n}. We let

an underline denote an appropriate aggregation of objects. For example, X =∆ X1 × X2 × X3, x =∆

(x1, x2, x3) ∈ X and in regards to Hilbert spaces HYi : i ∈ [3], we let HY =∆ ⊗3
i=1HYi . We abbreviate

the Positive Operator Valued Measure and Block-Length as POVM and B-L, respectively.

Consider a (generic) 3−CQIC (ρx ∈ D(HY ) : x ∈ X , κj : j ∈ [3]) specified through (i) three

finite sets Xj : j ∈ [3], (ii) three Hilbert spaces HYj : j ∈ [3], (iii) a collection of density operators

(ρx ∈ D(HY ) : x ∈ X ) and (iv) three cost functions κj : Xj → [0,∞) : j ∈ [3]. The cost function

is assumed to be additive, i.e., cost expended by encoder j in preparing the state ⊗n
t=1ρx1tx2tx3t is

κnj =∆ 1
n

∑n
t=1 κj(xjt). Reliable communication on a 3−CQIC entails identifying a code.

Definition VII.1. A 3−CQIC code c = (n,M, e, λ) of B-L n consists of three (i) message index

sets [Mj ] : j ∈ [3], (ii) encoder maps ej : [Mj ] → X n
j : j ∈ [3] and (iii) POVMs λj =

∆ {λj,m : H⊗n
j →

H⊗n
j : m ∈ [Mj ]} : j ∈ [3]. The average probability of error of the 3−CQIC code (n,M, e, λ[3]) is

ξ(e, λ) =∆ 1− 1

M1M2M3

∑
m∈M

Tr
(
λmρ

⊗n
c,m

)
.

where λm =∆ ⊗3
j=1λj,mj , ρ

⊗n
c,m =∆ ⊗n

t=1ρx1tx2tx3t where (xjt : 1 ≤ t ≤ n) = xnj (mj) =
∆ ej(mj) for j ∈ [3].

Average cost per symbol of transmitting message m ∈ M ∈ τ(e|m) =∆
(
κnj (ej(mj)) : j ∈ [3]

)
and

the average cost per symbol of 3−CQIC code is τ(e) =∆ 1
|M|

∑
m∈M τ(e|m).

Definition VII.2. A rate-cost vector (R1, R2, R3, τ1, τ2, τ3) ∈ [0,∞)6 is achievable if there exists

a sequence of 3−CQIC code (n,M(n), e(n), λ(n)) for which lim
n→∞

ξ(e(n), λ(n)) = 0,

lim
n→∞

n−1 logM(n)
j = Rj , and lim

n→∞
τ(e)j ≤ τj : j ∈ [3].

The capacity region C(ρx : x ∈ X ) of the 3−CQIC (ρx ∈ D(HY ) : x ∈ X ) is the set of all

achievable rate-cost vectors. We define below the sub-class of 3to1−CQICs.

Definition VII.3. A 3−CQIC (ρx ∈ D(HY ) : x ∈ X ) is a 3to1−CQIC if (i) for every Λ ∈ P(HY2),

Γ ∈ P(HY3), Tr((I ⊗ Λ⊗ I)ρx1x2x3) = Tr((I ⊗ Λ⊗ I)ρx̂1x̂2x̂3) for every x, x̂ ∈ X satisfying x2 = x̂2,

and (ii) Tr((I ⊗ I ⊗ Γ)ρx1x2x3) = Tr((I ⊗ I ⊗ Γ)ρx̂1x̂2x̂3) for every x, x̂ ∈ X satisfying x3 = x̂3.
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7.3 Illustration of the Central Idea

The goal here is to demonstrate the utility of algebraic closure in coding schemes for 3−ICs.

While, we state Ex. VII.4 in the context of 3to1−CQICs, we discus in the context of a classical

3to1−IC. The latter provides an exposition on the utility of algebraic closure in network scenarios.

Example VII.4. Let Xj = X = {0, 1},Hj = H, σ
(j)
b ∈ D(H) for j ∈ [3] and b ∈ X . For x ∈ X , let

ρx =∆ σ
(1)
x1⊕x2⊕x3

⊗ σ
(2)
x2 ⊗ σ

(3)
x3 . For x ∈ {0, 1}, we let κ1(x) = x and κk(x) = 0 for k = 2, 3.

Let H = C2, σb(η) =
∆ (1− η) |b⟩ ⟨b|+ η |1− b⟩ ⟨1− b| for b ∈ X , η ∈ [0, 1]. Let σ

(1)
b =∆ σb(δ1) and

σ
(2)
b =∆ σ

(3)
b =∆ σb(δ) for b ∈ X and some specified δ, δ1 ∈ (0, 1) . In addition, let τ ∈ (0, 12) specify a

Hamming cost constraint on Tx 1’s input. With this choice, one identifies the above example with a

3to1−IC Y1 = X1⊕X2⊕X3⊕N1, Yk = Xk⊕Nk : k = 2, 3 with N1 ∼ Ber(δ1), Nk ∼ Ber(δ) k = 2, 3

being independent. Tx k ∈ {2, 3} splits its information into Uk, Xk. Rx 1 decodes U2, U3, X1, while

Rx k ∈ {2, 3} decodes Uk, Xk. So long as H(Uk|Xk) > 0 for either k ∈ {2, 3}, it can be shown

that H(X2 ⊕X3|U2, U3) > 0 implying Tx-Rx 1 cannot achieve hb(δ1 ∗ τ)− hb(δ1) - its interference

free cost constrained capacity. If hb(δ1 ∗ τ) − hb(δ1) + 2(1 − hb(δ)) > 1 − hb(δ1), it can be shown

that H(Uk|Xk) > 0 for either k ∈ {2, 3} precluding Tx-Rx 1 achieving a rate hb(δ1 ∗ τ) − hb(δ1)

using unstructured coding. Suppose users 2, 3 employ codes of rate 1 − hb(δ) that are cosets of

the same linear code, then the above condition does not preclude Tx-Rx 1 from achieving a rate

hb(δ1 ∗ τ) − hb(δ1), so long as τ ∗ δ < δ, even if 1 + hb(τ ∗ δ1) > 2hb(δ). The reason is, user 2 and

3’s codebooks when added is another coset of the same rate 1 − hb(δ). Rx 1 can just decode this

interference if hb(δ1 ∗ τ) − hb(δ1) + 1 − hb(δ) < 1 − hb(δ1) which is equivalent to τ ∗ δ < δ < 1
2 .

Hence, for this 3to1−IC, if hb(δ1 ∗ τ)− hb(δ1) + 2(1− hb(δ)) > 1− hb(δ1) and τ ∗ δ < δ < 1
2 hold,

then coset codes are strictly more efficient than unstructured codes.

7.4 Rate region using Coset Codes for 3to1−CQIC

In this section we consider the above described 3to1-CQIC and provide an achievable rate-region.

Theorem VII.5. Given a 3to1-CQIC (ρx ∈ D(HY ) : x ∈ X , κj : j ∈ [3]) and a PMF pV2V3X1X2X3 =

pX1pV2X2pV3X3 on V2 × V3 ×X2 ×X3 where V2 = V3 = Fq, a rate-cost triple (R1, R2, R2, τ1, τ2, τ3)
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is achievable if it satisfies the following

R1 ≤ I(Y1;X1|U)σ1 , Rj ≤ I(Yj ;Vj)σ2 ,

Rj ≤ min{H(V2), H(V3)} −H(U) + I(Y1;U |X1)σ1 ,

R1 +Rj ≤ min{H(V2), H(V3)} −H(U) + I(Y1;V1U)σ1 ,

for j = 2, 3, and E[κj(Xj)] ≤ τj : j ∈ [3], where

σ
Y
1 =∆

∑
x1∈X1,u∈Fq

pX1(x1)pU (u)ρ
Y
x1,u ⊗ |x1⟩⟨x1| ⊗ |u⟩⟨u| ,

ρYx1,u =∆
∑
v2,v3

∑
x2,x3

pV2,V3,X2,X3|U (v2, v3, x2, x3|u)ρ
Y
x

σ2 =
∑

v1,v2,v3

pXV2V3(x, v2, v3)ρ
Y
x ⊗ |v2⟩⟨v2| ⊗ |v3⟩⟨v3| ,

for U =∆ V2 ⊕ V3, and {|v2⟩}, {|v3⟩} as some orthonormal basis on HY .

Example VII.6. Let Xj = X = {0, 1},Hj = C2 and let

σ0 =
∆

 2/3 0

0 1/3

 , and σ1 =∆
 1/2 1/6

1/6 1/2

 .

ρx =∆ [(1− δ1)σx1⊕x2⊕x3 + δ1σx1⊕x2⊕x3⊕1]⊗ [(1− δ)σx2 + δσx2⊕1]⊗ [(1− δ)σx3 + δσx3⊕1],

for x ∈ X , where N1, N2 and N3 are mutually independent Bernoulli random variables with

biases δ1, δ and δ, respectively. We let δ1, δ ∈ (0, 0.5). For x ∈ {0, 1}, we let κ1(x) = x and

κk(x) = 0 for k = 2, 3. Let ρ(p) := pσ0 + (1− p)σ1. Note that ρ(p) and ρ(1− p) do not commute

except for p = 0.5. It can be checked that S(ρ(p)) is a symmetric concave function of p ∈ (0, 1).

Consider the case when τ ∗ δ1 ≤ δ. Using NCC, the three users can achieve their PTP capacities

simultaneously: S(ρ(τ ∗ δ1))− S(ρ(δ1)), S(ρ(0.5))− S(ρ(δ)), and S(ρ(0.5))− S(ρ(δ)), respectively.

These correspond to the rates given by I(X1;B1|X2 ⊕ X3), I(X2;Y2), and I(X3;Y3). One can

show that if S(ρ(τ ∗ δ1)) − S(ρ(δ1)) + 2(S(ρ(0.5)) − S(ρ(δ))) > S(ρ(0.5)) − S(ρ(δ1)), then using
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unstructured codes, all three users cannot achieve their respective capacities simultaneously. This

condition is equivalent to the condition: S(ρ(τ ∗ δ1)) + S(ρ(0.5)) > 2S(ρ(δ)). Hence by choosing

τ ∗ δ1 = δ, and δ < 0.5, we see that NCC-based coding scheme enables all users achieve their

respective capacities simultaneously, while this is not possible in unstructured coding scheme.

Proof. We divide the proof into three parts entailing the encoding, decoding and error analysis

techniques.

7.4.1 Encoding Technique

Consider a PMF pV2V3X on V2×V3×X with V2 = V3 = Fq, and choose n and Rj : j = [3] as non-

negative integers. For encoder 1, we use the random coding strategy and construct a codebook C1 =∆

{x1(m1) : m1 ∈ [2nR1 ]} on X1 using the marginal PMF pnX1
. Let e1(m1) =

∆ x1(m1) : m1 ∈ [2nR1 ]

denote this encoding map. However, to construct the codebooks for encoders 2 and 3, we employ

a technique based on nested coset codes. Since, the structure and encoding rules are identical for

the these two encoders, we describe it using a generic index j ∈ {2, 3}. Let ej : Fq → X n
j : j = 1, 2

denote the encoding maps. We define an NCC as follows.

Definition VII.7. An (n, k, l, gI , gO/I , b
n) NCC built over a finite field V = Fq comprises of (i)

generator matrices gI ∈ Vk×n, gO/I ∈ V l×n (ii) a dither/bias vector bn, an encoder map e : V l → Vk.

We let vn(a,m) = agI ⊕q mgO/I ⊕q b
n : (a,m) ∈ Vk × V l denote elements in its range space.

Consider two NCCs with parameters (n, k, l, gI , gO/I , Y
n
j ) : j ∈ {2, 3} defined using the above

definition, with their range spaces denoted by vnj (aj ,mj) : j ∈ {2, 3}, respectively. Note that the

choice of gI and gO/I are identical for the two NCCs. Further, let

θj(mj) =
∆
∑

aj∈Fk
q

1{vnj (aj ,mj)∈T
(n)
δ (pVj )}

.

For every message mj the encoder j looks for a codeword in the coset vnj (aj ,mj) : aj ∈ Fk
q that is

typical according to pVj . If it finds at least one such codeword, one of them, say vnj (αj(mj),mj), is

chosen randomly and uniformly. ej(mj) is generated according to pnXj |Vj
(·|vnj (αj(mj),mj)) and is

transmitted on the CQIC. Otherwise, if it finds none in the coset that is typical according to pVj ,,
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and error is declared. This specifies the encoding rule for the three encoders. Now we describe the

decoding rule.

7.4.2 Decoding Description

We begin the describing first decoder. Unlike a generic 3 CCIC decoding technique of re-

covering the three messages, the decoder here is constructs its POVM to recover its own mes-

sage and only a bi-variate function of the two interfering messages. Since, the POVMs here

require joint typicality of two messages, we employ the POVM construction similar to Fawzi

et al. (2012), while incorporating the bi-variate function being decoded. For this, we equip the

decoder 1 with the NCC (n, k, l, gI , gO/I , b
n), where bn = bn1 ⊕ Y n

2 .. We define un(a, l) as the

range space of the above NCC. Toward specifying the decoding POVM, we let πm1 =∆ πxn
1 (m1),

πa,l =
∆ πun(a,l)1{un(a,l)∈T (n)

δ (pU )}, π
a,l
m1 =∆ πxn

1 (m1),un(a,l)1{(xn
1 (m1),un(a,l))∈T (n)

δ (pX1U
)}, denote the con-

ditional typical projectors (as defined in (Wilde, 2013a, Def. 15.2.4)) with respect to the states

ρY1
x1

=∆
∑

u pU (u)ρ
Y1
x1,u, ρ

Y1
u =∆

∑
x1
pX1(x1)ρ

Y1
x1,u and ρY1

x1,u, respectively, where ρ
Y1
x1,u is as defined in

the theorem statement. In addition, let πY1
ρ denote the typical projector with respect to the state

ρ =∆
∑

x1,u
pX1(x1)pU (u)ρ

Y1
x1,u. Using these projectors, we define the POVM λY1

I1 =∆ {λY1
m1,a,l

}, where

λY1
m1,a,l

=∆
( ∑

m̂1∈
[2nR1 ]

∑
â∈Fk

q

l̂∈F l
q

γâ,l̂m̂1

)−1/2
γa,lm1

( ∑
m̂1∈
[2nR1 ]

∑
â∈Fk

q

l̂∈F l
q

γâ,l̂m̂1

)−1/2
,

λ−1 =
∆ I −

∑
m1∈[2nR1 ]

∑
a∈Fk

q

∑
l∈F l

q
λY1
m1,a,l

and γa,lm1 =∆ πρπm1π
a,l
m1πm1πρ. Having described the first

decoder, we move on to describing the other two. Since these two decoders are identical, we use a

generic variable j to refer to each of these. We define πjρ and π
j
aj ,mj as the typical (Wilde, 2013a, Def.

15.1.3) and the conditional typical projectors (Wilde, 2013a, Def. 15.2.4) with respect to the states

ρYj =∆
∑

vj
pVj (vj)ρ

Yj
vj and ρ

Yj
vj , respectively. Using this, we construct the POVM λ

Yj

Ij =∆ {λYj
mj ,aj},

for encoder j as

λ
Yj
aj ,mj =

∆
(∑
âj∈Fk

q

∑
m̂j∈F l

q

ζâj ,m̂j

)−1/2
ζaj ,mj

(∑
âj∈Fk

q

∑
m̂j∈F l

q

ζâj ,m̂j

)−1/2
,
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λ
Yj

−1 =∆ I −
∑

m∈Vl

∑
a∈Vk λ

Yj
a,m and ζaj ,mj =∆ πjρπ

j
aj ,mjπ

j
ρ. Lastly, we provide the distribution of the

random NCC.

Distribution of the Random Coset Code : The objects gI ∈ Vk×n, gO/I ∈ V l×n, bn ∈ Vn and

the collection (am ∈ s(m) : m ∈ V l) specify a NCC CQ-PTP code unambiguously. A distribution

for a random code is therefore specified through a distribution of these objects. We let upper case

letters denote the associated random objects, and obtain

P

 GI = gI , GO/I = gO/I

Bn
j = bnj , αj(mj) = aj : mj ∈ F l

q

= q−(k+l+1)n
∏

m∈F l
q

1

Θj(mj)
.

7.4.3 Error Analysis

As in a general information theoretic setting, we derive upper bounds on probability of error

ξ(e, λ) by averaging over the random code of the first user and the ensemble of nested coset codes

used by the other two users. The error probability of this code is given by

ξ(e, λ) =∆ 1− 1

M1M2M3

∑
m∈M

Tr
(
λYmρ

⊗n
c,m

)
. (7.1)

Using the inequality

(I − λYm) ≤ (I − λY1
m1

)⊗ IY2Y3 + (I − λY2
m1

)⊗ IY1Y3 + (I − λY3
m1

)⊗ IY1Y2 , (7.2)

from Abeyesinghe et al. (2009), we get ξ(e, λ) ≤ S1 + S2 + S3, where

Sj =
∆ 1

M
∑
m∈M

Tr
((

(I − λ
Yj
mj )⊗ IY \Bi

)
ρ⊗n
c,m

)
: j ∈ [3].

Using the definition of 3to1-CQIC, we can further simplify S2 and S3 as

Sj =
1

Mj

∑
mj

Tr
(
(I − λ

Yj
mj )ρe(mj)

)
: j ∈ {2, 3}.

We first consider the terms S2, S3 . Note that, due to the nature of the 3to1−CQIC problem
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definition, the terms S2 and S3 are identical to a point-to-point (PTP) setup. Therefore, to bound

these terms we construct a CQ-PTP problem setup in the sequel (see Sec. 6.4) and employ that as

a module in bounding S2, S3. The following proposition formalizes this.

Proposition VII.8. There exists ϵS(δ), δS(δ), such that for all δ and sufficiently large n, we have

E [S2 + S3] ≤ ϵS(δ), if Rj ≤ I(Yj ;Vj)σ2 + δS : j = 2, 3, where ϵS , δS ↘ 0 as δ ↘ 0.

Proof. The proof is provided in Section 6.4.

Now, we move on to bounding the term S1. Let E =∆ {θ1(m1) = 0 or θ2(m2) = 0}. By noting

that S1 ≤ 1, we obtain S1 ≤ S′
1 + 1E , where S

′
1 =

∆ S1 · 1E c . As a first step, we bound the indicator

1E using the following proposition.

Proposition VII.9. There exist ϵE(δ), δE(δ), such that for all δ and sufficiently large n, we have

EP [E ] ≤ ϵE(δ), if
k
n ≥ log q −min{H(V1), H(V2)}+ δE, where ϵE , δE ↘ 0 as δ ↘ 0.

Proof. The proof follows from (Padakandla and Pradhan, 2017, App. B).

Now considering the term S′
1, and using the linearity of trace while ignoring some negative

terms, we get

S′
1 ≤

1

M
∑
m∈M

Tr
((

(I − λY1
m1,a,l

)⊗ IY2Y3

)
ρ⊗n
c,m

)
1E c

≤ 1

M
∑
m∈M

Tr
(
(I − λY1

m1,a,l
)πa,lm1

ρY1
c,mπ

a,l
m1

)
1E c + S11, (7.3)

where the second inequality defines the following S11 =
∆
∥∥∥πa,lm1ρ

Y1
c,mπ

a,l
m1 − ρY1

c,m

∥∥∥
1
, ρY1

c,m =∆ TrY2Y3(ρ
⊗n
c,m),

a =∆ α1(m1)⊕α2(m2), and l =
∆ m1 ⊕m2 and uses the inequality Tr(λρ) ≤ Tr(λσ) + ∥ρ− σ∥1 which

holds for all 0 ≤ ρ, σ, λ ≤ 1. Before we begin the proof, we provide the following lemma based on

the pinching for non-commutating operators Wilde (2013a); Sutter (2018).

Lemma VII.10. For πa,lm1 , πm1 , π
a
l and πρ as defined above, we have

tr(πa,lm1
ρY1
c,m) ≥ 1−ϵp1(δ), tr(πm1ρ

Y1
c,m) ≥ 1−ϵp2(δ), tr(πal ρ

Y1
c,m) ≥ 1−ϵp3(δ), tr(πρρ

Y1
c,m) ≥ 1−ϵp4(δ),

where ϵpi(δ) : i ∈ [4] ↘ 0 as δ ↘ 0.
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Proof. The proof follows from using the ideas of pinching as provided in Lemma E.1 provided in

the Appendix E.1.

Using the above lemma, we first bound the term corresponding to S11. Applying the gentle

operator lemma (Wilde, 2013a, Lem. 9.4.2) on S11, we obtain

S11 =
∆
∥∥πal ρY1

c,mπ
a
l − ρY1

c,m

∥∥
1
≤ 2

√
1− Tr

(
πal ρ

Y1
c,m

)
≤ 2
√
ϵp(δ). (7.4)

Considering the first term in the right hand side of (7.3), let T denote a generic term within its

summation, defined as

T =∆ Tr
(
(I − λY1

m1,a,l
)πal ρ

Y1
c,mπ

a
l

)
1E c .

This term can be bounded using the Hayashi-Nagaoka inequality Wilde (2013a) as T ≤ 2(1−T1)+

4T2, where

T1 =
∆ Tr

(
γa,lm1

πal ρ
Y1
c,mπ

a
l

)
, T2 =

∆
∑

(m′
1,a

′,l′ )̸=(m1,a,l)

Tr
(
γa

′,l′

m′
1
πal ρ

Y1
c,mπ

a
l

)
.

Note the objective now is to prove T1 is close to one and T2 is close to zero. Consider the following

proposition in regards to T1.

Proposition VII.11. There exist ϵT1(δ), δT1(δ), such that for all sufficiently small δ and sufficiently

large n, we have E [T1] ≥ 1− ϵT1(δ), where ϵT1 , δT1 ↘ 0 as δ ↘ 0.

Proof. Using Tr(λρ) ≥ Tr(λσ)− ∥ρ− σ∥1 for 0 ≤ ρ, σ, λ ≤ I, we have

T1 ≥ Tr
(
πa,lm1

ρY1
c,m

)
−
∥∥πρρY1

c,mπρ − ρY1
c,m

∥∥− ∥∥πal ρY1
c,mπ

a
l − ρY1

c,m

∥∥− ∥∥πm1ρ
Y1
c,mπm1 − ρY1

c,m

∥∥
≥ Tr

(
πa,lm1

ρY1
c,m

)
− 2

√
1− Tr

(
πρρ

Y1
c,m

)
− 2

√
1− Tr

(
πal ρ

Y1
c,m

)
− 2

√
1− Tr

(
πm1ρ

Y1
c,m

)
≥ 1− ϵT1(δ), (7.5)

where the second inequality follows from the gentle opertor lemma and the last inequality uses the

above Lemma VII.10 by defining ϵT1 =∆ ϵp1 +2(
√
ϵp2 +

√
ϵp3 +

√
ϵp4). This completes the proof.
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Now, we move on to bounding the term T2. Firstly, note that the summation in T2 can be split

into seven different summations based on how many indices within the summation over the triple

(m′
1, a

′, l′) are equal to (m1, a, l). However, only three of these seven provide binding constraints on

the rate triple (R1, R2, R3). Building on this we perform the split T2 = T21 + T22 + T23 + T3, where

T21 =
∆

∑
m′

1 ̸=m1

Tr
(
γa,l
m′

1
πal ρ

Y1
c,mπ

a
l

)
, T22 =

∆
∑

a′ ̸=a,l′ ̸=l

Tr
(
γa

′,l′
m1

πal ρ
Y1
c,mπ

a
l

)
,

T23 =
∆

∑
m′

1 ̸=m1,
a′ ̸=a,l′ ̸=l

Tr
(
γa

′,l′

m′
1
πal ρ

Y1
c,mπ

a
l

)
,

represents the rate constraining (binding) terms while T3 =∆ T2 −
∑3

i=1 T2i represents the inactive

terms (with respect to constraining the rate). We provide the following set of propositions bounding

each of these terms T2i : i ∈ [3].

Proposition VII.12. There exists ϵT21(δ), δT21(δ), such that for all sufficiently small δ and suffi-

ciently large n, we have E [T21] ≤ ϵT21(δ) if R1+
2k
n log q ≤ 2 log q−H(V1, V2)+I(Y1;X1|U)σ1+δT21,

where ϵT21 , δT21 ↘ 0 as δ ↘ 0.

Proof. The proof is provided in Appendix F.1

Now, we provide the proposition for T22 as follows.

Proposition VII.13. There exists ϵT22(δ), δT22(δ), such that for all sufficiently small δ and suffi-

ciently large n, we have E [T22] ≤ ϵT22(δ) if
3k+l
n log q ≤ 3 log q−H(V1, V2)−H(U)+I(Y1;U |X1)σ1+

δT22 , where ϵT22 , δT22 ↘ 0 as δ ↘ 0.

Proof. The proof is provided in Appendix F.2

Proposition VII.14. There exists ϵT23(δ), δT23(δ), such that for all sufficiently small δ and suf-

ficiently large n, we have E [T23] ≤ ϵT23(δ) if R1 + 3k+l
n log q ≤ 3 log q − H(V1, V2) − H(U) +

I(Y1;X1, U)σ1 + δT23 , where ϵT23 , δT23 ↘ 0 as δ ↘ 0.

Proof. The proof is provided in Appendix F.3
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For the terms in the expression T3, we split T3 as T3 =
∆ T31 + T32 + T33 + T34, where

T31 =
∆
∑
a′ ̸=a

Tr
(
γa

′,l
m1
πal ρ

Y1
c,mπ

a
l

)
, T32 =

∆
∑
l′ ̸=l

Tr
(
γa,l

′
m1
πal ρ

Y1
c,mπ

a
l

)
,

T33 =
∆

∑
m′

1 ̸=m1,
a′ ̸=a

Tr
(
γa

′,l
m′

1
πal ρ

Y1
c,mπ

a
l

)
, T34 =

∆
∑

m′
1 ̸=m1,
l′ ̸=l

Tr
(
γa,l

′

m′
1
πal ρ

Y1
c,mπ

a
l

)
. (7.6)

As mentioned earlier, the analysis of these term follows from the analysis performed for the terms

T2i, i ∈ [3], and further these terms do not contribute to any new additional rate constraints.

However, for the sake of completeness, we briefly indicate how each of these term scan be bounded

using the ones corresponding to T2. To begin with, consider the terms T31 and T32. One can

perform identical analysis as for the term T22 (see Appendix F.2) and obtain the following bounds.

E[T31] ≤ exp2

(
3k

n
log q − (3 log q −H(V1, V2)−H(U) + I(Y1;U |X1)σ1 + δT22)

)
, (7.7)

E[T32] ≤ exp2

(
2k + l

n
log q − (3 log q −H(V1, V2)−H(U) + I(Y1;U |X1)σ1 + δT22)

)
, (7.8)

where exp2(x) =
∆ 2x. Note that the exponents in the right hand side terms (7.7) and (7.8) are always

negative given the bound in Proposition VII.13 is true. Hence T31 and T32 can be made arbitrarily

small for sufficiently large n without any additional constraints.

Similarly, consider the terms T33 and T34. Using an identical analysis as for the term T23 (see

Appendix F.3) we obtain

E[T33] ≤ exp2

(
R1 +

3k

n
log q − (3 log q −H(V1, V2)−H(U) + I(Y1;X1, U)σ1 + δT23)

)
, (7.9)

E[T32] ≤ exp2

(
R1 +

2k + l

n
log q − (3 log q −H(V1, V2)−H(U) + I(Y1;X1, U)σ1 + δT23)

)
, (7.10)

Again observe that the exponents in the right hand side of (7.9) and (7.10) are always negative

given the bound in Proposition VII.14 is true. Hence T33 and T34 can be made arbitrarily small for

sufficiently large n without any additional constraints. Having completed the proof for the terms

in T , we now provide the result stating: NCC codes achieve capacity of a CQ-PTP channel (as

discussed in the proof of Proposition VII.8).
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7.5 Rate-region using NCC and message splitting for 3to1−CQIC

Theorem VII.15. Given a 3to1-CQIC (ρx ∈ D(HY ) : x ∈ X ) and a PMF pU2U3V2V3X2X3 =

pU2V2X2pU3V3X3 on U1 × V1 ×X1 × U2 × V2 ×X2 where V1 = V2 = Fq, a rate triple is achievable if

it satisfies the following: Rj ≤ I(UjXj ;Yj)σj ,

R1≤ min
j=2,3

{0, H(Uj)−H(W |Y1)σ1}+ I(X1;WY1)σ1

R1+Rj≤I(Xj ;Yj |Uj)σj+I(X1;W,Y1)σ1+H(Uj)−H(W |Y1)σ1

for j = 2, 3, where

σ
Y
1 =∆

∑
x1∈X1,w∈Fq

pX1(x1)pW (w)ρYx1,w ⊗ |x1⟩⟨x1| ⊗ |w⟩⟨w| ,

ρYx1,w =∆
∑

u2,v2,x2
u3,v3,x3

pV2,V3U2U3X2X3|W (v2, v3, u2, u3, x2, x3|w)ρYx ,

σ2 =
∆
∑

v1,v2,v3

pU2U3V2V3X(u2, u3, v2, v3, x)ρ
Y
x ⊗3

j=2 |uj , xj⟩⟨uj , xj | ,

for W =∆ U2 ⊕ U3, and {|uj⟩} and {|xj⟩} as some orthonormal basis on HY for j = 2, 3.

Proof. In view of the detailed proof provided for Thms. VII.5, VI.3, we only provide an outline.

A complete proof of this theorem is beyond the scope of this thesis and can be constructed using

techniques developed in Sen (2021); Sohail et al. (2022).

In the coding scheme of Thm. VII.5, Rx 1 decodes a bivariate function of Tx 2 and Tx 3’s

inputs. In general, decoding just a bivariate function of Tx 2 and Tx 3’s inputs is insufficient. It is

necessary for the coding scheme to permit Rx 1 decode univariate functions of the Tx 2 and Tx 3’s

inputs as well. Therefore an enhanced coding scheme, will split Tx 2 and Tx 3’s transmissions into

two parts respectively. For j = 2, 3, let Uj , Vj denote the splitting of Tx j’s input. Here, U2, U3 ∈ Fq

take values in a common finite field. U2 and U3 are communicated via a common nested coset code.

V2, V3, X1 are built via conventional unstructured codes. Since this is a 3to1−IC, Tx 1 does not

split its input X1.

Observe that, for j ∈ 2, 3, Rx j has to decode a Uj , Vj , one component of which is encoded via a

nested coset code, and the other component which is encoded via a conventional unstructured code.
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The analysis of its decoding is similar to the analysis of Tx 1’s decoding in proof of Theorem VII.5.

Indeed, in proof of Theorem VII.5, Tx 1 decoded from its unstructured code and the bivariate

component of the interference that was encoded via a nested coset code. This provides the outline

for the analysis of Rx 2 and 3. Rx 1 has to decode 4 components - 1 structured (U2 ⊕ U3) and 3

unstructured V2, V3, X1. We adopt successive-simultaneous decoding wherein two code words are

decoded at each stage of a 2 stage process.

By choosing W = ϕ, we can recover the U SB−rate region from the above inner bound.

7.6 Conclusion

In this chapter, we considered the problem of characterizing an inner bound to the capacity re-

gion of a 3−user classical-quantum interference channel (3−CQIC). The best known coding scheme

for communicating over CQICs is based on unstructured random codes and employs the techniques

of message splitting and superposition coding. For classical 3−user interference channels (ICs), it

has been proven that coding techniques based on coset codes - codes possessing algebraic closure

properties - strictly outperform all coding techniques based on unstructured codes. In this work,

we developed analogous techniques based on coset codes for 3to1−CQICs - a subclass of 3−user

CQICs. We analyzed its performance and derived a new inner bound to the capacity region of

3to1−CQICs that subsumes the current known largest and strictly enlarges the same for identified

examples.
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APPENDIX A

Proofs of Chapter II

A.1 Proof of Theorem II.9

Note that θ = 1 −
∑

x∈X λx. Define ρ̃′x =∆ ΠρΠxρ̂xΠxΠρ, and σ′ =∆ 1
1−θ

∑
x∈X λxρ̃

′
x. Further

let Π̂ be the projector onto the subspace spanned by the eigenspace of σ′ corresponding to the

eigenvalues greater than ϵ/D. Let ρ̃x =∆ Π̂ρ̃′xΠ̂, and σ =∆ Π̂σ′Π̂.

Construction of Random POVMS: Define a collection of of random codes C =∆ {C(µ)} for

µ ∈ [1, N ], where C(µ) =∆ {X(l, µ)}l∈[1,K], and X(l, µ) are chosen randomly, independently according

to the distribution {λx/(1− θ)}x∈X . Using this, define

γ(µ)x =∆
(1− θ)

(1 + ϵ)

1

K
|{l : X(l, µ) = x}| = (1− θ)

(1 + ϵ)

1

K

K∑
l=1

1{X(l,µ)=x},

and A
(µ)
x =∆ γ

(µ)
x

√
ρ−1ρ̃x

√
ρ−1, where

√
ρ−1 refers to the generalized inverse as defined in (Holevo,

2012, Section 5.6). Now for each µ ∈ [1, N ], construct a collection of non-negative operators

M̃ (µ) =∆ {A(µ)
x }x∈X .

Proposition A.1. M̃ (µ) forms a sub-POVM for all µ ∈ [1, N ] with probability exceeding 1 −

2ND exp
[
−Kϵ2dϵD−1

4 ln 2

]
.

Proof. We use the operator Chernoff bound Wilde (2013a). Note that

ρ̃x ≤ d−1Π̂ΠρΠxΠρΠ̂ ≤ d−1Π̂,
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where we used the hypothesis (2.7d) assumed in the theorem statement. Moreover,

E[ρ̃X(l,µ)] = Π̂σ′Π̂ ≥ ϵ

D
Π̂.

Applying the operator Chenoff bound on {dρ̃X(l,µ)}l∈[1,K], we obtain

P

{
(1− ϵ)σ ≤ 1

K

K∑
l=1

ρ̃X(l,µ) ≤ (1 + ϵ)σ

}
≥ 1− 2D exp

[
−Kϵ

3dD−1

4 ln 2

]
,

for all µ ∈ [1, N ], where we used the fact that Tr
(
Π̂
)
≤ Tr(Πρ) ≤ D (using the hypothesis (2.7c)

of the theorem statement). Now we have

σ = Π̂σ′Π̂ ≤ σ′ ≤ 1

1− θ
ΠρρΠρ ≤ 1

1− θ
ρ,

using the hypothesis (2.7e) and (2.7f) of the theorem statement. This results in (1−θ)√ρ−1σ
√
ρ−1 ≤

I. This implies that with probability exceeding 1 −2D exp
[
−Kϵ3dD−1

4 ln 2

]
, we have

∑
x∈X

A(µ)
x =

∑
x∈X

γ(µ)x

√
ρ−1ρ̃x

√
ρ−1 =

1

K

(1− θ)

(1 + ϵ)

√
ρ−1

(
K∑
l=1

ρ̃X(l,µ)

)
√
ρ−1 ≤ I.

Hence using the union bound, we see that with probability exceeding 1 − 2ND exp
[
−Kϵ2dϵD−1

4 ln 2

]
,

we have {A(µ)
x }x∈X forming a sub-POVM for all µ ∈ [1, N ].

Let M̃ =∆ {Λ̃x}x∈X , M̃ (µ) =∆ {A(µ)
x }x∈X , where Λ̃x =∆ 1

N

∑N
µ=1A

(µ)
x . Let 1{sP} denote the

indicator random variable corresponding to the event that M̃ (µ) forms a sub-POVM for all µ ∈

[1, N ]. The completion of the sub-POVM is given by I −
∑

x∈X Λ̃x. We use the trivial POVM {I}

in the case of the complementary event. Using this construction, we have

Ξρ(M,M̃)

≤ 1{sP}

[∑
x∈X

∥√ρ(Λx − Λ̃x)
√
ρ∥1 +Tr

(
(I −

∑
x∈X

Λ̃x)ρ

)]
+ 2(1− 1{sP}) + θ

≤
∑
x∈X

∥∥∥∥∥∥λxρ̂x − 1

N

N∑
µ=1

γ(µ)x ρ̃x

∥∥∥∥∥∥
1

+

∥∥∥∥∥ρ− 1

N

∑
µ,x

γ(µ)x ρ̃x

∥∥∥∥∥
1

+ 2(1− 1{sP}) + θ
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(a)

≤
∑
x∈X

∥∥∥∥∥∥λxρ̂x − 1

N

N∑
µ=1

γ(µ)x ρ̃x

∥∥∥∥∥∥
1

+
∑
x∈X

∥∥∥∥∥∥λxρ̂x − 1

N

N∑
µ=1

γ(µ)x ρ̃x

∥∥∥∥∥∥
1

+ 2(1− 1{sP}) + 2θ

(b)

≤ 2
∑
x∈X

∥∥∥∥∥∥λxρ̂x − 1

N

N∑
µ=1

γ(µ)x ρ̂x

∥∥∥∥∥∥
1

+ 2
∑
x∈X

1

N

N∑
µ=1

γ(µ)x ∥ρ̂x − ρ̃x∥1 + 2(1− 1{sP}) + 2θ

(c)
= 2[S1 + S2] + 2(1− 1{sP}) + 2θ,

where (a) follows by triangle inequality, (b) follows by adding and subtracting 1
N

∑
µ γ

(µ)
x ρ̂x, and

(c) follows by defining

S1 =
∆
∑
x∈X

∥∥∥∥∥∥λxρ̂x − 1

N

N∑
µ=1

γ(µ)x ρ̂x

∥∥∥∥∥∥
1

, S2 =
∆
∑
x∈X

1

N

N∑
µ=1

γ(µ)x ∥ρ̂x − ρ̃x∥1.

We work on the first term S1 as follows. Note that

S1 ≤ S′
1 +

(
ϵ

1 + ϵ

)∑
x∈X

λx ≤ S′
1 +

(
ϵ

1 + ϵ

)
,

where

S′
1 =

∆ 1

1 + ϵ

∑
x∈X

∣∣∣∣∣∣λx − (1− θ)

NK

∑
µ,l

1{X(l,µ)=x}

∣∣∣∣∣∣ .
Note that

E[S′
1] =

1

(1 + ϵ)

∑
x∈X

E
[
|P̂ (x)− E[P̂ (x)]|

]
≤ 1

(1 + ϵ)

∑
x∈X

√
Var(P̂ (x)) ≤ 1

(1 + ϵ)

∑
x∈X

√
λx
NK

,

where we have defined P̂ (x) =∆ (1−θ)
NK

∑
l,µ 1{X(l,µ)=x}. Hence

E[S1] ≤
1

(1 + ϵ)
√
NK

∑
x∈X

√
λx +

(
ϵ

1 + ϵ

)
.

Moving on to S2, consider the following.

2E[S2] ≤
2

(1 + ϵ)

[∑
x∈X

λx∥ρ̂x − ρ̃′x∥1 +
∑
x∈X

λx∥ρ̃′x − ρ̃x∥1

]

≤ 1

(1 + ϵ)

[
4
√
ϵ+ 4

√
ϵ+ 2

√
ϵ+ 4

√
2(1− θ)

√
ϵ+

√
ϵ

]
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= f(ϵ, θ),

where we have used the ensemble gentle measurement lemma Wilde (2013a). Combining all the

arguments, we see that

E(Ξρ(M, M̃)) ≤ 2

(1 + ϵ)
√
NK

∑
x∈X

√
λx +

2ϵ

ϵ+ 1
+ f(ϵ, θ) + 4DN exp

[
−Kϵ

3dD−1

4 ln 2

]
+ 2θ.

There must exists a collection of sub-POVMs whose average performance is at least as good.

A.2 Proof of Lemma II.11

Consider the left hand side of (2.18). We define an operator Λy0 which completes the sub-

POVM {Λy}y∈Y as Λy0 =∆ I −
∑

y∈Y Λy. Further, let the set Y+ =∆ Y
⋃
{y0}. Since trace norm is

invariant to transposition with respect to ρAB, we can write for any y ∈ Y+,

∥∥√ρAB

(
ΓA ⊗ ΛB

y

)√
ρAB

∥∥
1
=
∥∥∥[√ρAB

(
ΓA ⊗ ΛB

y

)√
ρAB

]T∥∥∥
1

=
∥∥∥√ρAB

(
(ΓA)

T ⊗ (ΛB
y )

T
)√

ρAB

∥∥∥
1
. (A.1)

One can easily prove for any ΓA (not necessarily positive) that

(√
ρAB

(
(ΓA)

T ⊗ (ΛB
y )

T
)√

ρAB

)R
= TrAB

{(
id⊗ ΓA ⊗ ΛB

y

)
ΨRAB

}
, (A.2)

where ΨRAB is the canonical purification of ρAB defined as ΨRAB =∆
∑

x,x′
√
λxλx′ |x⟩ ⟨x′|AB ⊗

|x⟩ ⟨x′|R for the spectral decomposition of ρAB given as ρAB =
∑

x λx |x⟩⟨x|AB and (·)R represents

a state in the reference Hilbert space R. Now, using (A.2) we perform the following simplification

∑
y∈Y

∥∥√ρAB

(
ΓA ⊗ ΛB

y

)√
ρAB

∥∥
1

(a)

≤
∑
y∈Y+

∥∥√ρAB

(
ΓA ⊗ ΛB

y

)√
ρAB

∥∥
1

=
∑
y∈Y+

∥∥∥TrAB

{(
idR ⊗ ΓA ⊗ ΛB

y

)
ΨRAB

}∥∥∥
1

(b)
=
∥∥∥ ∑
y∈Y+

TrAB

{(
idRB ⊗ ΓA

)(
idRA ⊗ ΛB

y

)
ΨRAB ⊗ |y⟩⟨y|

}∥∥∥
1
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=

∥∥∥∥TrA {(idRY ⊗ ΓA
)( ∑

y∈Y+

|y⟩⟨y| ⊗ TrB
{(

idRA ⊗ ΛB
y

)
ΨRAB

})}∥∥∥∥
1

(c)
=
∥∥TrA {(idRY ⊗ ΓA

)
σRAY

}∥∥
1

(d)
=
∥∥TrAZ

{(
idRY ⊗ ΓA ⊗ idZ

)
ΦσRAY
RAY Z

}∥∥
1
, (A.3)

where (a) follows from the fact that
∥∥√ρAB

(
ΓA ⊗ ΛB

y0

)√
ρAB

∥∥
1
is always non-negative, (b) uses

the triangle inequality for block diagonal operators, (c) uses σRAY defined as

σRAY =
∑
y∈Y+

|y⟩⟨y| ⊗ TrB
{(

idRA ⊗ ΛB
y

)
ΨRAB

}
,

and finally, (d) uses ΦσRAY
RAY Z defined as the canonical purification of σRAY . Note that the above

inequality becomes an equality when
∑

y∈Y Λy = I. Using similar sequence of arguments as used

in (A.1) and (A.2), we have

∥∥TrAZ

{(
idRY ⊗ ΓA ⊗ idZ

)
ΦσRAY
RAY Z

}∥∥
1

=

∥∥∥∥√TrRY Z

{
ΦσRAY
RAY Z

}
ΓA
√
TrRY Z

{
ΦσRAY
RAY Z

}∥∥∥∥
1

= ∥√ρA ΓA√ρA∥1.

This completes the proof.

A.3 Proof of Lemma II.12

Let the operators of M̂X and M̂Y be denoted by {Λ̂X
i }i∈I and {Λ̂Y

j }j∈J , respectively, and let

the operators of MX and MY be denoted by {ΛX
i } and {ΛY

j }, respectively, for some finite sets I

and J . With this notation, we need to show the following inequality

G =∆
∑
i,j

∥∥∥√ρXY (Λ
X
i ⊗ ΛY

j − Λ̂X
i ⊗ Λ̂Y

j )
√
ρXY

∥∥∥
1
+Tr

{(
I −

∑
i,j

Λ̂X
i ⊗ Λ̂Y

j

)
ρXY

}
≤ (ϵX + ϵY ).

Next, by adding and subtracting appropriate terms, we get

G ≤
∑
i,j

∥∥∥√ρXY (Λ
X
i ⊗ ΛY

j − Λ̂X
i ⊗ ΛY

j )
√
ρXY

∥∥∥
1
+Tr

{(
I −

∑
i

Λ̂X
i

)
ρX

}
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+
∑
i,j

∥∥∥√ρXY (Λ̂
X
i ⊗ ΛY

j − Λ̂X
i ⊗ Λ̂Y

j )
√
ρXY

∥∥∥
1

+Tr

{(
I −
∑
j

Λ̂Y
j

)
ρY

}
+Tr

{(
I −

∑
i,j

Λ̂X
i ⊗ Λ̂Y

j

)
ρXY

}

− Tr

{(
I −

∑
i

Λ̂X
i

)
ρX

}
− Tr

{(
I −

∑
j

Λ̂Y
j

)
ρY

}

≤
∑
i

∥∥∥√ρX(ΛX
i − Λ̂X

i )
√
ρX

∥∥∥
1
+Tr

{(
I −

∑
i

Λ̂X
i

)
ρX

}
+
∑
j

∥∥∥√ρY (ΛY
j − Λ̂Y

j )
√
ρY

∥∥∥
1
+Tr

{(
I −

∑
j

Λ̂Y
j

)
ρY

}

+Tr

{(
I −
∑
i,j

Λ̂X
i ⊗ Λ̂Y

j

)
ρXY

}
− Tr

{(
I −

∑
i

Λ̂X
i

)
ρX

}
− Tr

{(
I −

∑
j

Λ̂Y
j

)
ρY

}

≤ (ϵX + ϵY ) + Tr

{(∑
i

Λ̂X
i ⊗ (I −

∑
j

Λ̂Y
j )
)
ρXY

}
− Tr

{(
I −

∑
j

Λ̂Y
j

)
ρY

}
≤ (ϵX + ϵY ),

where the second inequality follows by applying Lemma II.11 twice, the third inequality follows

from the hypotheses of the lemma, and the final inequality uses the fact that M̂X and M̂Y are

sub-POVMs. This completes the proof of the lemma.

A.4 Proof of Lemma II.24

Proof. Using the chain rule of quantum mutual information we see that

I(A;B|C, J)σ = S(ACJ)σ + S(BCJ)σ − S(ABCJ)σ − S(CJ)σ.

The eigenvectors of the state σABCJ are of the form (0, . . . , 0, |j⟩ ⊗
∣∣∣vji〉 , 0, . . . , 0), with eigenvalue

PJ(j)λ
j
i , where

∣∣∣vji〉 is an eigenvector of state ρjABC with eigenvalue λji . Hence

S(ABCJ) = −
∑
j,i

PJ(j)λ
j
i log

(
PJ(j)λ

j
i

)
(a)
= H(PJ) +

n∑
j=1

PJ(j)
∑
i

[−λji log λ
j
i ]
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= S(J)σ +
n∑

j=1

PJ(j)S(ABC)ρj ,

where in (a) we used the grouping axiom of entropy. Applying similar arguments for S(ACJ),

S(BCJ), and S(CJ) we get the desired result.

A.5 Proof of Lemma II.30

Proof. Consider the trace norm expression given in (2.33). This expression can be bounded from

above using the triangle inequality as

∥∥∥∥∥∥∥
∑
wn

λwnTwn −
1

2n(R+C)

(1− ε)

(1 + η)

∑
l,µ

TWn,(µ)(l)

∥∥∥∥∥∥∥
1

≤

∥∥∥∥∥∑
wn

λwnTwn − (1− ε)

(1 + η)

∑
wn∈

T (n)
δ (W )

P̃Wn(wn)Twn

∥∥∥∥∥
1

+
(1− ε)

(1 + η)

∥∥∥∥∥ ∑
wn∈

T (n)
δ (W )

P̃Wn(wn)Twn −
1

2n(R+C)

∑
l,µ

TWn,(µ)(l)

∥∥∥∥∥
1

. (A.4)

The first term in the right-hand side is bounded from above as

∥∥∥∑
wn

λwnTwn−
(1− ε)

(1 + η)

∑
wn∈T (n)

δ (W )

P̃Wn(wn)Twn

∥∥∥
1

≤
∥∥∥ ∑
wn∈T (n)

δ (W )

λwn

(
1−

1

(1 + η)

)
Twn

∥∥∥
1
+
∥∥∥ ∑
wn /∈T (n)

δ (W )

λwnTwn

∥∥∥
1

≤

(
η

1 + η

) ∑
wn∈T (n)

δ (W )

λwn ∥Twn∥1︸ ︷︷ ︸
=1

+
∑

wn /∈T (n)
δ (W )

λwn ∥Twn∥︸ ︷︷ ︸
=1

≤

(
η

1 + η

)
+ ε ≤ η + ε ≤ ϵ

2
, (A.5)

for all η sufficiently small and n sufficiently large. Now consider the second term in (A.4). Using

the covering lemma from Wilde (2013a), this can be bounded as follows. For wn ∈ T (n)
δ (W ),
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let Π and Πwn denote the projectors onto the typical subspace of T ⊗n and Twn , respectively,

where T =
∑

wn λwnTwn . From the definition of typical projectors, for any ϵ1 ∈ (0, 1) we have for

sufficiently large n, the following inequalities satisfied for all wn ∈ T (n)
δ (W ) :

Tr{ΠTwn} ≥ 1− ϵ1,

Tr{ΠwnTwn} ≥ 1− ϵ1,

Tr{Π} ≤ D,

ΠwnTwnΠwn ≤ 1

d
Πwn , (A.6)

where D = 2n(S(T )+δ1) and d = 2n[(
∑

w λwS(Tw))−δ2], and δ1(δ) ↘ 0, δ2(δ) ↘ 0 as δ ↘ 0. From the

statement of the covering lemma, we know that for an ensemble {P̃Wn(wn), Twn}wn∈Wn , if there

exists projectors Π and Πwn such that they satisfy the set of inequalities in (A.6), then for all

sufficiently large n, if n(R+ C) > log2
D
d , the obfuscation error, defined as

∥∥∥∥∥∑
wn

P̃n
W (wn)Twn −

1

2n(R+C)

∑
l,µ

TWn,(µ)(l)

∥∥∥∥∥
1

,

can be made smaller than ϵ1 +4
√
ϵ1 +24 4

√
ϵ1 with high probability. This gives us the the following

rate constraints R + C > S(
∑

w λwTw) −
∑

w λwS(Tw) + δ1 + δ2 = χ ({λw}, {ρ̂w ⊗ σw}) + δ1 + δ2.

Using this constraint and the bound from (A.5), the result follows.

A.6 Proof of Proposition II.14

The second term in the trace distance in S2 can be expressed as

(id⊗ [M̃AB])(Ψ
ρ
RAB)

= 1{sP-1}1{sP-2}
1

N1N2

∑
µ1,µ2

∑
i,j

ΦF (µ1,µ2)(i,j) ⊗ TrAB

{
(id⊗ Γ

A,(µ1)
i ⊗ Γ

B,(µ2)
j )Ψρ

RAB

}
+ (1− 1{sP-1}1{sP-2})Φ(0U ,0V ) ⊗ TrAB

{
(id⊗ id⊗ id)Ψρ

RAB

}
= 1{sP-1}1{sP-2}
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×

[
1

N1N2

∑
µ1,µ2

∑
i,j≥1

∑
(u,v)∈B(µ1)

1 (i)×B(µ2)
2 (j)

Φe(µ1,µ2)(u,v) ⊗ TrAB

{
(id⊗A(µ1)

u ⊗B(µ2)
v )Ψρ

RAB

}

+
1

N1N2

∑
µ1,µ2

∑
j≥1

∑
v∈B(µ2)

2 (j)

Φ(0U ,0V ) ⊗ TrAB

{
(id⊗A

(µ1)
0U

⊗B(µ2)
v )Ψρ

RAB

}

+
1

N1N2

∑
µ1,µ2

∑
i≥1

∑
u∈B(µ1)

1 (i)

Φ(0U ,0V ) ⊗ TrAB

{
(id⊗A(µ1)

u ⊗B
(µ2)
0V

)Ψρ
RAB

}

+
1

N1N2

∑
µ1,µ2

Φ(0U ,0V ) ⊗ TrAB

{
(id⊗A

(µ1)
0U

⊗B
(µ2)
0V

)Ψρ
RAB

}]

+ (1− 1{sP-1}1{sP-2})Φ(0U ,0V ) ⊗ TrAB

{
(id⊗ id⊗ id)Ψρ

RAB

}
. (A.7)

Similarly, for the first term within the trace distance in S2, we have

1

N1N2

∑
µ1,µ2

(id⊗ [M
(µ1)
1 ]⊗ [M

(µ2)
2 ])(Ψρ

RAB)

= 1{sP-1}1{sP-2}

[
1

N1N2

∑
µ1,µ2

∑
u∈U

∑
v∈V

Φ(u,v) ⊗ TrAB

{
(id⊗A(µ1)

u ⊗B(µ2)
v )Ψρ

RAB

}
+

1

N1N2

∑
µ1,µ2

∑
v∈V

Φ(0U ,v) ⊗ TrAB

{
(id⊗A

(µ1)
0U

⊗B(µ2)
v )Ψρ

RAB

}
+

1

N1N2

∑
µ1,µ2

∑
u∈U

Φ(u,0V ) ⊗ TrAB

{
(id⊗A(µ1)

u ⊗B
(µ2)
0V

)Ψρ
RAB

}
+

1

N1N2

∑
µ1,µ2

Φ(0U ,0V ) ⊗ TrAB

{
(id⊗A

(µ1)
0U

⊗B
(µ2)
0V

)Ψρ
RAB

}]

+ (1− 1{sP−1})1{sP−2}
1

N2

∑
µ2

∑
v∈V∪{0V }

Φ(0U ,v) ⊗ TrAB{id⊗ id⊗B(µ2)
v )ΨRAB}

+ (1− 1{sP−2})1{sP−1}
1

N1

∑
µ1

∑
u∈U∪{0U}

Φ(u,0V ) ⊗ TrAB{id⊗A(µ1)
u ⊗ id)ΨRAB}

+ (1− 1{sP−2})(1− 1{sP−1})Φ(0U ,0V )TrAB{(id⊗ id⊗ id)ΨRAB}. (A.8)

By replacing the terms in S2 using the corresponding expansions from (A.7) and (A.8), we observe

that the fourth terms on the right hand side of (A.7) get canceled with the corresponding terms

on the right hand side of (A.8). Next we take the second term in (A.7) and apply the triangle
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inequality and bound from above its l1 norm by

1

N1

∑
µ1

Tr

((
I −

∑
u∈U

A(µ1)
u

)
ρA

)
.

Similarly, we can bound the rest of the terms in (A.7), (A.8), except the first terms. The l1 norm

of the difference of the first terms in (A.7), (A.8) can be written as

1{sP-1}1{sP-2}
1

N1N2

∑
µ1,µ2

∑
u∈U

∑
v∈V

∥∥∥∥(Φ(u,v) − Φe(µ1,µ2)(u,v))⊗ TrAB

{
(id⊗A(µ1)

u ⊗B(µ2)
v )Ψρ

RAB

}∥∥∥∥
1

= 1{sP-1}1{sP-2}
1

N1N2

∑
µ1,µ2

∑
u∈U

∑
v∈V

∥∥Φ(u,v) − Φe(µ1,µ2)(u,v)

∥∥
1
× TrRAB

{
(id⊗A(µ1)

u ⊗B(µ2)
v )Ψρ

RAB

}
= 1{sP-1}1{sP-2}

1

N1N2
×
∑
µ1,µ2

∑
u∈U

∑
v∈V

∥∥Φu,v − Φe(µ1,µ2)(u,v)

∥∥
1
γ(µ1)
u ζ(µ2)

v Ωu,v,

where the first equality is obtained by using the definition of trace norm and the last equality follows

from the definition of A
(µ1)
u and B

(µ2)
v , with Ωu,v as given in the statement of the proposition. This

completes the proof.

A.7 Proof of Proposition II.15

Using the proof of Theorem II.9, one can show that

2

N1

∑
µ1

Tr

(
(I−

∑
u∈U

A(µ1)
u )ρA

)
+

2

N2

∑
µ2

Tr

(
(I −

∑
v∈V

B(µ2)
v )ρB

)
+ 2(2− 1{sP-1}− 1{sP-2}) ≤ αA + αB.

Recall from Proposition II.14 that S3 can be simplified as

S3 =1{sP-1}1{sP-2}
1

N1N2

∑
µ1,µ2

∑
u∈U

∑
v∈V

∥∥Φu,v − Φe(µ1,µ2)(u,v)

∥∥
1
γ
(µ1)
un ζ(µ2)

v Ωu,v,

For any (u, v), the 1-norm above can be bounded from above by the following quantity:

∥Φu,v − Φe(µ1,µ2)(u,v)∥1 ≤ 2[1{(u,v) ̸∈W} + 1
(µ1,µ2)(u, v)],
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where 1(µ1,µ2)(u, v) =∆

1

{
∃(ũ, ṽ, i, j):(u, v)∈B(µ1)

1 (i)×B(µ2)
2 (j),(ũ, ṽ)∈C(µ1,µ2)

⋂
W,

(ũ, ṽ) ∈ B(µ1)
1 (i)× B(µ2)

2 (j), (ũ, ṽ) ̸= (u, v)

}
.

Using such indicator functions, S3 can be bounded from above as S3 ≤ S4 + S5, where

S4 =
∆
1{sP-1}1{sP-2}

2

N1N2

∑
(u,v)

Ωu,v

∑
µ1,µ2

1{(u,v)̸∈W}γ
(µ1)
u ζ(µ2)

v ,

S5 =
∆ (1− θ1)(1− θ2)

(1 + ϵ1)(1 + ϵ2)K1K2

∑
l,k

∑
(u,v)

Ωu,v
2

N1N2

∑
µ1,µ2

1
(µ1,µ2)(u, v)1{U (µ1)(l) = u, V (µ2)(k) = v},

where we have bounded the indicator random variables in S5. We provide bounds on the expectation

of S4 and S5. For that we take the expectation of the indicator functions with respect to random

variables which are independent of each other and distributed according to {λAu }u∈U , and {λBv }v∈V .

First consider the following argument:

S4 ≤

∣∣∣∣∣∣S4 − 2
∑

(u,v) ̸∈W

λAB
u,v

∣∣∣∣∣∣+ 2
∑

(u,v) ̸∈W

λAB
u,v

(a)

≤
∑
u∈U

∑
v∈V

∣∣∣∣λAB
u,v − 1{sP-1}1{sP-2}

1

N1N2

∑
µ1,µ2

γ(µ1)
u ζ(µ2)

v Ωu,v

∣∣∣∣
+ 1{sP−1}1{sP−2}(1−

1

N1N2

∑
u,v

∑
µ1,µ2

γ(µ1)
v ζ(µ2)

v Ωu,v)

+ (1− 1{sP−1}1{sP−2}) + 2
∑

(u,v)̸∈W

λAB
u,v

(b)

≤ S1 + 2
∑

(u,v)̸∈W

λAB
u,v ,

where (a) follows from the two different definitions of variational distance between probability

distributions, (b) follows from Lemma II.13. Taking expectation we obtain

E[S4] ≤ (αA + αB) + 2
∑

(u,v) ̸∈W

λAB
u,v , (A.9)
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where we used the bound developed earlier on S1 in the mutual covering lemma. For S5 we have

E
[
1
(µ1,µ2)(u, v)1

{
U (µ1)(l) = u, V (µ2)(k) = v

}]
(a)

≤
∑

(ũ,ṽ)∈W
(ũ,ṽ)̸=(u,v)

∑
i,j

∑
(l̃,k̃)

E
[
1

{
(u, v) ∈ B(µ1)

1 (i)× B(µ2)
2 (j)

}

×1
{
(ũ, ṽ) ∈ B(µ1)

1 (i)× B(µ2)
2 (j)

}
1

{
U (µ1)(l) = u, V (µ2)(k) = v

}
1

{
U (µ1)(l̃) = ũ, V (µ2)(k̃) = ṽ

}]
(b)

≤ λAu λ
B
v

(1− θ1)(1− θ2)

[
λAmλ

B
m|W|K1K2

(1− θ1)(1− θ2)T1T2
+
K1WAλ

A
m

(1− θ1)T1

×
(
1 +

λBmK2

(1− θ2)

)
+
K2WBλ

B
m

(1− θ2)T2

(
1 +

λAmK1

(1− θ1)

)]
, (A.10)

where (a) follows from the union bound, and (b) follows by noting that there are 5 cases to consider,

and by evaluating the expectation of the indicator functions while recalling WA = maxv∈V |{u :

(u, v) ∈ W}|, and WB = maxu∈U |{v : (u, v) ∈ W}|, λAm = maxu λ
A
u , λ

B
m = maxv λ

B
v . This implies

that

E[S5] ≤
2

(1 + ϵ1)(1 + ϵ2)

[
λAmλ

B
m|W|K1K2

(1− θ1)(1− θ2)T1T2

+
K1WAλ

A
m

(1− θ1)T1

(
1 +

λBmK2

(1− θ2)

)
+
K2WBλ

B
m

(1− θ2)T2
×
(
1 +

λAmK1

(1− θ1)

)]∑
u∈U

∑
v∈V

Ωu,vλ
A
u λ

B
v .

We have the following lemma.

Lemma A.2. We have ∑
u∈U

∑
v∈V

Ωu,vλ
A
u λ

B
v ≤ f1f2

F1F2
.

Proof. Firstly, note that

∑
u∈U
v∈V

Ωu,vλ
A
u λ

B
v = Tr

{[
√
ρA

−1
(∑

u∈U
λAu ρ̃

A
u

)√
ρA

−1 ⊗√
ρB

−1
(∑

v∈V
λBv ρ̃

B
v

)√
ρB

−1

]
ρAB

}
. (A.11)

Consider,

∑
u∈U

λAu ρ̃
A
u = Π̂AΠρA

(∑
u∈U

λAuΠ
A
u ρ̂

A
uΠ

A
u

)
ΠρAΠ̂

A
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(a)

≤ Π̂AΠρA

(∑
u

λAu ρ̂
A
u

)
ΠρAΠ̂

A

(b)

≤ Π̂AΠρAρAΠρAΠ̂
A

(c)

≤ 1

F1
Π̂AΠρAΠ̂

A
(d)

≤ 1

F1
ΠρA .

where (a) follows from the hypothesis ΠA
u ρ̂

A
uΠ

A
u ≤ ρ̂Au , (b) from the fact that MA is a sub-POVM,

and (c) from the hypothesis ΠρAρAΠρA ≤ 1
F1
ΠρA , and (d) from the commutativity of Π̂A and

ΠρA , where the commutativity follows from the fact that Π̂A is a cut-off projector on the subspace

determined by ΠρA . This implies that

√
ρA

−1

(∑
u∈U

λAun ρ̃Au

)
√
ρA

−1 ≤ 1

F1

√
ρA

−1ΠρA

√
ρA

−1 ≤ f1
F1

ΠρA , (A.12)

where the last inequality follows by using the hypothesis
√
ρA

−1ΠρA
√
ρA

−1 ≤ f1ΠρA . Using the

same arguments for the operators acting on HB, we have

√
ρB

−1

(∑
v∈V

λBvn ρ̃
B
v

)
√
ρB

−1 ≤ 1

F2

√
ρB

−1ΠρB

√
ρB

−1 ≤ f2
F2

ΠρB . (A.13)

Using (A.12) and (A.13) in (A.11), gives

∑
u,v

Ωu,vλ
A
u λ

B
v ≤ f1f2

F1F2
Tr{(ΠρA ⊗ΠρB ) ρAB} ≤ f1f2

F1F2
Tr{ρAB} =

f1f2
F1F2

,

which is the desired result.

A.8 Proof of Proposition II.37

Fix an arbitrary ϵ > 0, and η, δ ∈ (0, 1) sufficiently small. Recalling S2(µ̃1, µ̃2), we have

S2(µ̃1, µ̃2) ≤
1

N1N2

∑
µ1,µ2

∑
zn

∑
un,vn

∣∣∣∣Pn
Z|U,V (z

n|un, vn)−Pn
Z|U,V

(
zn|e(µ̄1,µ̄2)(un, vn)

)∣∣∣∣
×
∥∥∥∥√ρ⊗n

AB

(
A

(µ̄1)
un ⊗B

(µ̄2)
vn

)√
ρ⊗n
AB

∥∥∥∥
1

≤ 1

N1N2

∑
µ1,µ2

∑
un,vn

γ
(µ̄1)
un ζ

(µ̄2)
vn Ωun,vn

∑
zn

∣∣∣Pn
Z|U,V (z

n|un, vn)− Pn
Z|U,V

(
zn|e(µ̄1,µ̄2)(un, vn)

)∣∣∣
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≤ 2

N1N2

∑
µ1,µ2

∑
un,vn

(
1{(un,vn)/∈T (n)

δ (U,V )} + 1
(µ̄1,µ̄2)(un, vn)

)
γ
(µ̄1)
un ζ

(µ̄2)
vn Ωun,vn , (A.14)

where Ωun,vn and 1(µ̄1,µ̄2)(un, vn) are defined as

Ωun,vn =∆ Tr
{√

ρ⊗n
A ⊗ρ⊗n

B

−1

(ΛA
un ⊗ ΛB

vn)
√
ρ⊗n
A ⊗ρ⊗n

B

−1

ρ⊗n
AB

}
,

1
(µ̄1,µ̄2)(un, vn) =∆ 1

{
∃(ũn, ṽn, i, j) : (un, vn) ∈ B(µ̄1)

1 (i)×B(µ̄2)
2 (j), (ũn, ṽn) ∈ C(µ̄1,µ̄2)

⋂
T (n)
δ (UV ),

(ũn, ṽn) ∈ B(µ̄1)
1 (i)× B(µ̄2)

2 (j), (ũn, ṽn) ̸= (un, vn)

}
.

Now we can use the bound S2 ≤ S21 + S22, where

S21(µ̃1, µ̃2) =
∆ 2

N1N2

∑
µ1,µ2

∑
un,vn

1{(un,vn)/∈T (n)
δ (U,V )}γ

(µ̄1)
un ζ

(µ̄2)
vn Ωun,vn ,

S22(µ̃1, µ̃2) =
∆ 2

N1N2

∑
µ1,µ2

∑
un,vn

1
(µ̄1,µ̄2)(un, vn)γ

(µ̄1)
un ζ

(µ̄2)
vn Ωun,vn .

We begin by bounding the term corresponding to S21. Consider the following argument.

1

Ñ1Ñ2

∑
µ̃1,µ̃2

S211{sP-1}1{sP-2}

≤

∣∣∣∣∣ 1

Ñ1Ñ2

∑
µ̃1,µ̃2

S211{sP-1}1{sP-2} −
∑

(un,vn )̸∈T (n)
δ (UV )

un∈T (n)
δ (U),vn∈T (n)

δ (V )

2λAB
un,vn

∣∣∣∣∣+ ∑
(un,vn) ̸∈T (n)

δ (U,V )

2λAB
un,vn

(a)

≤ 2
∑

un∈T (n)
δ (U)

∑
vn∈T (n)

δ (V )

∣∣∣λAB
un,vn − 1{sP-1}1{sP-2}

1

N̄1N̄2

∑
µ̄1,µ̄2

γ
(µ̄1)
un ζ

(µ̄2)
vn Ωun,vn

∣∣∣+ ∑
(un,vn )̸∈T (n)

δ (UV )

2λAB
u,v

(b)

≤ 2 S̃1 + 2
∑

(un,vn )̸∈T (n)
δ (UV )

λAB
un,vn ,

where

S̃1 =
∆

∥∥∥∥(id⊗M⊗n
A ⊗M⊗n

B )(Ψρ
RAB)

⊗n − 1

N̄1N̄2

∑
µ̄1,µ̄2

(id⊗ [M
(µ̄1)
1 ]⊗ [M

(µ̄2)
2 ])(Ψρ

RAB)
⊗n

∥∥∥∥
1

,

(a) follows by applying the triangle inequality, and (b) follows from Lemma II.13. Note that in S̃1,

the average over the entire common information sequence (µ̄1, µ̄2) is inside the norm. Using the
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Lemmas II.10 and II.12, and the proof of Theorem II.9, for any ϵ ∈ (0, 1), and any η, δ ∈ (0, 1)

sufficiently small, and any n sufficiently large, if

R̃1 > I(U ;RB)σ1 , R̃2 > I(V ;RA)σ2 ,

R̃1 +
1

n
log
(
N̄1

)
> S(U)σ3 , R̃2 +

1

n
log
(
N̄2

)
> S(V )σ3 , (A.15)

then E[S̃1] ≤ ϵ. Consequently, we have

1

Ñ1Ñ2

∑
µ̃1,µ̃2

E
[
S21(µ̃1, µ̃2)1{sP-1}(µ̃1, µ̃2)1{sP-2}(µ̃1, µ̃2)

]
≤ 4ϵ.

Now considering the term S22, using a simplification similar to (A.10) we obtain

E
[
1
(µ̄1,µ̄2)(un, vn)1{Un,(µ1)(l)=un}1{V n,(µ2)(k)=vn}

]
≤ 5 λAunλBvn

(1− ε)2(1− ε′)2
2−n(I(U ;V )−3δ1)2n(R̃1−R1)2n(R̃2−R2).

Substituting this in the expression for S22 gives

E[S22] ≤ 10
2−n(I(U ;V )−3δ1)2n(R̃1−R1)2n(R̃2−R2)

(1 + η)2(1− ε)2(1− ε′)2

∑
un,vn

Ωun,vnλ
A
unλBvn

≤ 10
2−n(I(U ;V )−3δ1−δAB)2n(R̃1−R1)2n(R̃2−R2)

(1 + η)2(1− ε)2(1− ε′)2
,

where the second inequality above uses arguments similar to Lemma A.2. Therefore, if

R̃1 + R̃2 −R1 −R2 ≤ I(U ;V )σ3 − 3δ1 − δAB − δ, (A.16)

then we have E[S22] ≤ 10 2−nδ

(1+η)2(1−ε)(1−ε′) < ϵ, for all sufficiently large n. Hence

1

Ñ1Ñ2

∑
µ̃1,µ̃2

E(S2(µ̃1, µ̃2)1{sP-1}(µ̃1, µ̃2)1{sP-2}(µ̃1, µ̃2)) < 5ϵ,

for all sufficiently large n, if (A.15) and (A.16) are satisfied.
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A.9 Proof of Proposition II.39

We bound S̃ as S̃ ≤ S̃2 + S̃3 + S̃4, where

S̃2 =
∆

∥∥∥∥∥ 1

N1N2

∑
µ1,µ2

∑
i>0

√
ρ⊗n
AB

(
Γ
A,(µ1)
i ⊗ Γ

B,(µ2)
0

)√
ρ⊗n
ABP

n
Z|U,V (z

n|un0 , vn0 )
∥∥∥∥
1

,

S̃3 =
∆

∥∥∥∥ 1

N1N2

∑
µ1,µ2

∑
j>0

√
ρ⊗n
AB

(
Γ
A,(µ1)
0 ⊗ Γ

B,(µ2)
j

)√
ρ⊗n
ABP

n
Z|U,V (z

n|un0 , vn0 )
∥∥∥∥
1

,

S̃4 =
∆

∥∥∥∥ 1

N1N2

∑
µ1,µ2

√
ρ⊗n
AB

(
Γ
A,(µ1)
0 ⊗ Γ

B,(µ2)
0

)√
ρ⊗n
ABP

n
Z|U,V (z

n|un0 , vn0 )
∥∥∥∥
1

.

Analysis of S̃2: We have

S̃21{sP-1}1{sP-2}

≤ 1{sP-1}1{sP-2}
1

N1N2

∑
µ1,µ2

∑
zn

Pn
Z|U,V (z

n|un0 , vn0 )

∥∥∥∥∥
√
ρ⊗n
AB

(∑
i>0

Γ
A,(µ1)
i ⊗ Γ

B,(µ2)
0

)√
ρ⊗n
AB

∥∥∥∥∥
1

(a)
= 1{sP-1}1{sP-2}

1

N1N2

∑
µ1,µ2

∥∥∥∥∥
√
ρ⊗n
AB

(∑
un

A
(µ1)
un ⊗ Γ

B,(µ2)
0

)√
ρ⊗n
AB

∥∥∥∥∥
1

≤ 1{sP-1}1{sP-2}
1

N1N2

∑
µ1,µ2

∑
un

∥∥∥∥√ρ⊗n
AB

(
A

(µ1)
un ⊗ Γ

B,(µ2)
0

)√
ρ⊗n
AB

∥∥∥∥
1

(b)

≤ 1

N1N2

∑
µ1,µ2

∥∥∥∥√ρ⊗n
B Γ

B,(µ2)
0

√
ρ⊗n
B

∥∥∥∥
1

=
1

N2

∑
µ2

∥∥∥∥∥∑
vn

λBvn ρ̂
B
vn −

∑
vn

√
ρ⊗n
B B

(µ2)
vn

√
ρ⊗n
B

∥∥∥∥∥
1

(c)

≤ 1

N2

∑
µ2

∥∥∥∥∥∥∥
∑
vn

λBvn ρ̂
B
vn −

(1− ε′)

(1 + η)

1

2nR̃2

2nR̃2∑
k=1

ρ̂B
V n,(µ2)(k)

∥∥∥∥∥∥∥
1

+
1

N2

∑
µ2

∑
vn

ζ
(µ2)
vn

∥∥ρ̂Bvn − ΛB
vn
∥∥
1︸ ︷︷ ︸

S̃22

, (A.17)

where (a) uses the fact that
∑

i>0 Γ
A,(µ1)
i =

∑
un A

(µ1)
un , (b) uses the fact that under the event

{1{sP-1} = 1}, we have
∑

un A
(µ1)
un ≤ I, and Lemma II.11. Finally (c) follows from adding and

subtracting an appropriate term. Regarding the first term in (A.17) using Lemma II.30 we claim

that for for any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) sufficiently small, and any n sufficiently large, the

term can be made smaller than ϵ, if R̃2 > I(V ;RA)σ2 , where σ2 is as defined in the statement

of the theorem. Note that the requirement we obtain on R̃2 here was already imposed earlier in
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Proposition II.35. And as for the second term, we use the gentle measurement lemma and bound

its expected value as

E

[
1

N2

∑
µ2

∑
vn

ζ
(µ2)
vn

∥∥ρ̂Bvn − ΛB
vn
∥∥
1

]
=

∑
vn∈T (n)

δ (V )

λBvn

(1 + η)

∥∥ρ̂Bvn − ΛB
vn
∥∥
1
≤ ϵS̃2

,

where the inequality is based on the repeated usage of the average gentle measurement lemma by

setting ϵS̃2
= (1−ε′)

(1+η) (2
√
ε′B+2

√
ε′′B) with ϵS̃2

↘ 0 as n→ ∞ and ε′B = ε′p+2
√
ε′p and ε

′′
B = 2ε′p+2

√
ε′p

for ε′p =
∆ 1−min

{
Tr
{
ΠρB ρ̂

B
vn
}
,Tr
{
Πvn ρ̂

B
vn
}
, 1− ε′

}
. Hence E

[
S̃21{sP-1}1{sP-2}

]
≤ 2ϵ.

Analysis of S̃3: Due to the symmetry in S̃2 and S̃3, the analysis of S̃3 follows very similar

arguments as that of S̃2 and hence we skip it.

Analysis of S̃4: We have

S̃41{sP-1}1{sP-2}

≤ 1{sP-1}1{sP-2}
1

N1N2

∑
µ1,µ2

∑
zn

Pn
Z|U,V (z

n|un0 , vn0 )
∥∥∥∥√ρ⊗n

AB

(
Γ
A,(µ1)
0 ⊗ Γ

B,(µ2)
0

)√
ρ⊗n
AB

∥∥∥∥
1

≤
1{sP-1}

N1N2

∑
µ1,µ2

∥∥∥∥√ρ⊗n
AB

(
Γ
A,(µ1)
0 ⊗ I

)√
ρ⊗n
AB

∥∥∥∥
1

+
1{sP-1}1{sP-2}

N1N2

∑
µ1,µ2

∑
vn

∥∥∥∥√ρ⊗n
AB

(
Γ
A,(µ1)
0 ⊗B(µ2)

vn

)√
ρ⊗n
AB

∥∥∥∥
1

, (A.18)

where the inequalities above are obtained by a straight forward substitution and use of triangle

inequality. With the above constraints on R̃1 and R̃2, we have 0 ≤ Γ
A,(µ1)
0 ≤ I and 0 ≤ Γ

B,(µ2)
0 ≤ I.

This simplifies the first term in (A.18) as

1

N1N2

∑
µ1,µ2

∥∥∥∥√ρ⊗n
AB

(
Γ
A,(µ1)
0 ⊗ I

)√
ρ⊗n
AB

∥∥∥∥
1

=
1

N1

∑
µ1

∥∥∥∥√ρ⊗n
A

(
Γ
A,(µ1)
0

)√
ρ⊗n
A

∥∥∥∥
1

.

Similarly, the second term in (A.18) simplifies using Lemma II.11 as

1{sP-1}1{sP-2}

N1N2

∑
µ1,µ2

∑
vn

∥∥∥∥√ρ⊗n
AB

(
Γ
A,(µ1)
0 ⊗B

(µ2)
vn

)√
ρ⊗n
AB

∥∥∥∥
1

≤ 1

N1

∑
µ1

∥∥∥∥√ρ⊗n
A

(
Γ
A,(µ1)
0

)√
ρ⊗n
A

∥∥∥∥
1

.
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Using these simplifications, we have

S̃41{sP-1}1{sP-2} ≤
2

N1

∑
µ1

∥∥∥∥√ρ⊗n
A

(
Γ
A,(µ1)
0

)√
ρ⊗n
A

∥∥∥∥
1

.

The above expression is similar to the one obtained in the simplification of S̃2 and hence we can

bound S̃4 using the same constraints as S̃2.

A.10 Proof of Proposition II.40

Note that from triangle inequality, we have Q1 ≤ J. Further, we add and subtract an appropriate

term within J and use triangle inequality obtain J ≤ J1 + J2, where J1 and J2 are defined as

J1 =
∆
∑
zn,vn

∥∥∥∥∑
un

√
ρ⊗n
AB

(
ΛA
un ⊗ ΛB

vn − 1

N1

N1∑
µ1=1

γ
(µ1)
un

λAun

ΛA
un ⊗ ΛB

vn

)√
ρ⊗n
ABP

n
Z|U,V (z

n|un, vn)
∥∥∥∥
1

,

J2 =
∆
∑
zn,vn

∥∥∥∥∑
un

√
ρ⊗n
AB

(
1

N1

N1∑
µ1=1

γ
(µ1)
un

λAun

ΛA
un ⊗ ΛB

vn − 1

N1

N1∑
µ1=1

A
(µ1)
un ⊗ ΛB

vn

)√
ρ⊗n
ABP

n
Z|U,V (z

n|un, vn)
∥∥∥∥
1

.

Now with the intention of employing Lemma II.30, we express J1 as

J1 =

∥∥∥∥ ∑
zn,un,vn

λAB
un,vn ρ̂

AB
un,vn⊗Pn

Z|U,V (z
n|un, vn) |vn⟩⟨vn|⊗|zn⟩⟨zn| − (1− ε)

(1 + η)

1

2n(R̃1+C1)

×
∑
µ1,l

∑
zn,un,vn

1{Un,(µ1)(l)=un}
λAB
un,vn

λAun

ρ̂AB
un,vn ⊗ Pn

Z|U,V (z
n|un, vn) |vn⟩⟨vn| ⊗ |zn⟩⟨zn|

∥∥∥∥
1

,

where the equality above is obtained by using the definitions of γ
(µ1)
un and ρ̂AB

un,vn , followed by using

the triangle inequality for the block diagonal operators, which in fact becomes an equality. Let us

define Tun as

Tun =∆
∑
zn,vn

λAB
un,vn

λAun

ρ̂AB
un,vn⊗Pn

Z|U,V (z
n|un, vn) |vn⟩⟨vn|⊗|zn⟩⟨zn| .
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Note that the above definition of Tun contains all the elements in product form, and thus it can be

written as Tun =
⊗n

i=1 Tui . This simplifies J1 as

J1 =

∥∥∥∥∥∥
∑
un

λAunTun − (1− ε)

(1 + η)

1

2n(R̃1+C1)

∑
µ1,l

TUn,(µ1)(l)

∥∥∥∥∥∥
1

.

Now, using Lemma II.30 we get the following bound. For any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) sufficiently

small, and any n sufficiently large, we have E(J1) < ϵ if

R̃1 + C1 > S

(∑
u∈U

λAu Tu

)
+
∑
u∈U

λAuS(Tu) = I(U ;RZV )σ3 , (A.19)

where σ3 =
∑

u∈U λ
A
u Tu ⊗ |u⟩⟨u|.

Now, we consider the term corresponding to J2 and prove that its expectation with respect to

the Alice’s codebook is small. Recalling J2, we get

J2 ≤
1

N1

N1∑
µ1=1

∑
un,vn

∑
zn

Pn
Z|U,V (z

n|un, vn)

∥∥∥∥∥∥∥
√
ρ⊗n
AB

γ(µ1)
un

λAun

ΛA
un ⊗ ΛB

vn −A
(µ1)
un ⊗ ΛB

vn

√ρ⊗n
AB

∥∥∥∥∥∥∥
1

=
1

N1

N1∑
µ1=1

∑
un,vn

γ
(µ1)
un

∥∥∥∥√ρ⊗n
AB

(( 1

λAun

ΛA
un −

√
ρ⊗n
A

−1

ΛA
un

√
ρ⊗n
A

−1
)
⊗ ΛB

vn

)√
ρ⊗n
AB

∥∥∥∥
1

,

where the inequality is obtained by using triangle and the next equality follows from the fact that∑
zn P

n
Z|U,V (z

n|un, vn) = 1 for all un ∈ Un and vn ∈ Vn and using the definition of A
(µ1)
un . By

applying expectation of J2 over the Alice’s codebook, we get

E[J2] ≤
1

(1 + η)

∑
un∈T (n)

δ (U)

λAun

∑
vn

∥∥∥∥√ρ⊗n
AB

(( 1

λAun

ΛA
un −

√
ρ⊗n
A

−1

ΛA
un

√
ρ⊗n
A

−1
)
⊗ ΛB

vn

)√
ρ⊗n
AB

∥∥∥∥
1

,

where we have used the fact that E[γ(µ1)
un ] =

λA
un

(1+η) . To simplify the above equation, we employ

Lemma II.11 from Section 2.2.4.2 that completely discards the effect of Bob’s measurement. Since
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∑
vn Λ

B
vn = I, from Lemma II.11 we have for every un ∈ T (n)

δ (A),

∑
vn

∥∥∥∥√ρ⊗n
AB

(( 1

λAun

ΛA
un −

√
ρ⊗n
A

−1

ΛA
un

√
ρ⊗n
A

−1
)
⊗ ΛB

vn

)√
ρ⊗n
AB

∥∥∥∥
1

=

∥∥∥∥∥∥∥
√
ρ⊗n
A

 1

λAun

ΛA
un −

√
ρ⊗n
A

−1

ΛA
un

√
ρ⊗n
A

−1

√ρ⊗n
A

∥∥∥∥∥∥∥
1

.

This simplifies E[J2] as

E[J2] ≤
1

(1 + η)

∑
un∈T (n)

δ (U)

λAun

∥∥∥∥√ρ⊗n
A

( 1

λAun

ΛA
un −

√
ρ⊗n
A

−1

ΛA
un

√
ρ⊗n
A

−1
)√

ρ⊗n
A

∥∥∥∥
1

=
1

(1 + η)

∑
un∈T (n)

δ (U)

λAun

∥∥(ρ̂Aun − ΛA
un

)∥∥
1
≤

(1− ε)

(1 + η)
(2
√
ε′A + 2

√
ε′′A) = ϵJ2 ,

where the last inequality is obtained by the repeated usage of the average gentle measurement

lemma by setting ϵJ2 =
(1−εp)
(1+η) (2

√
ε′A + 2

√
ε′′A) with ϵJ2 ↘ 0 as n → ∞ and ε′A = εp + 2

√
εp and

ε′′A = 2εp + 2
√
εp for εp =∆ 1 − min

{
Tr
{
ΠρA ρ̂

A
un

}
,Tr
{
Πun ρ̂Aun

}
, 1− ε

}
. Since Q1 ≤ J ≤ J1 + J2,

hence J , and consequently Q1, can be made arbitrarily small for sufficiently large n, if R̃1 + C1 >

I(U ;RZV )σ3 .

A.11 Proof of Proposition II.41

We start by adding and subtracting the following terms in Q2

(i)
∑
un,vn

√
ρ⊗n
AB

(
ΛA
un ⊗ ΛB

vn
)√

ρ⊗n
ABP

n
Z|U,V (z

n|un, vn)

(ii)
∑
un,vn

1

N2

N2∑
µ2=1

√
ρ⊗n
AB

ΛA
un ⊗

ζ
(µ2)
vn

λBvn
ΛB
vn

√ρ⊗n
ABP

n
Z|U,V (z

n|un, vn)

(iii)
∑
un,vn

1

N1N2

∑
µ1,µ2

√
ρ⊗n
AB

A(µ1)
un ⊗

ζ
(µ2)
vn

λBvn
ΛB
vn

√ρ⊗n
ABP

n
Z|U,V (z

n|un, vn).
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This gives us Q2 ≤ Q21 +Q22 +Q23 +Q24, where

Q21 =
∆
∑
zn

∥∥∥∥∥∥
∑
un,vn

√
ρ⊗n
AB

 1

N1

N1∑
µ1=1

A
(µ1)
un

⊗ ΛB
vn − ΛA

un ⊗ ΛB
vn

√ρ⊗n
ABP

n
Z|U,V (z

n|un, vn)

∥∥∥∥∥∥
1

,

Q22 =
∆
∑
zn

∥∥∥∥∥∥∥
∑
un,vn

√
ρ⊗n
AB

ΛA
un ⊗ ΛB

vn − ΛA
un ⊗

 1

N2

N2∑
µ2=1

ζ
(µ2)
vn

λBvn
ΛB
vn


√ρ⊗n

ABP
n
Z|U,V (z

n|un, vn)

∥∥∥∥∥∥∥
1

,

Q23 =
∆
∑
zn

∥∥∥∥∥∥∥
∑
un,vn

√
ρ⊗n
AB

ΛA
un ⊗

 1

N2

N2∑
µ2=1

ζ
(µ2)
vn

λBvn
ΛB
vn


− 1

N1N2

∑
µ1,µ2

A
(µ1)
un ⊗

ζ
(µ2)
vn

λBvn
ΛB
vn

√ρ⊗n
ABP

n
Z|U,V (z

n|un, vn)

∥∥∥∥∥∥∥
1

,

Q24 =
∆
∑
zn

∥∥∥∥∥∥∥
∑
un,vn

1

N1N2

∑
µ1,µ2

√
ρ⊗n
AB

A(µ1)
un ⊗

ζ
(µ2)
vn

λBvn
ΛB
vn −A

(µ1)
un ⊗B

(µ2)
vn

√ρ⊗n
ABP

n
Z|U,V (z

n|un, vn)

∥∥∥∥∥∥∥
1

.

We start by analyzing Q21. Note that Q21 is exactly same as Q1 and hence using the same rate

constraints as Q1, this term can be bounded. Next, consider Q22. Substitution of ζ
(µ2)
vn gives

Q22 =

∥∥∥∥ ∑
un,vn,zn

λAB
un,vn ρ̂

AB
un,vn ⊗ Pn

Z|U,V (z
n|un, vn) |zn⟩⟨zn|

−
(1− ε′)

(1 + η)

1

2n(R̃2+C2)

∑
µ2,k

∑
un,vn,zn

1{V n,(µ2)(k)=vn}
λAB
un,vn

λBvn
ρ̂AB
un,vn ⊗ Pn

Z|U,V (z
n|un, vn) |zn⟩⟨zn|

∥∥∥∥
1

,

where the equality uses the triangle inequality for block operators. From here on, we use Lemma

II.30 to bound Q22. For this, let us define Tvn as

Tvn =∆
∑
un,zn

λAB
un,vn

λBvn
ρ̂AB
un,vn ⊗ Pn

Z|U,V (z
n|un, vn) |zn⟩⟨zn| .

Note that Tvn can be written in tensor product form as Tvn =
⊗n

i=1 Tvi . This simplifies Q22 as

Q22 =

∥∥∥∥∥∥∥
∑
vn

λBvnTvn −
(1− ε′)

(1 + η)

1

2n(R̃2+C2)

∑
µ2,k

TV n,(µ2)(k)

∥∥∥∥∥∥∥
1

.
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Using Lemma II.30, for any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) sufficiently small, and any n sufficiently

large, we have E(Q22) ≤ ϵ, if

R̃2 + C2 > S

(∑
v∈V

λBv Tv

)
−
∑
v∈V

λBv S(Tv) = I(RZ;V )σ3 , (A.20)

where σ3 is defined in the statement of the theorem.

Now, we move on to consider Q23. Taking expectation with respect to the codebook C(µ1,µ2) =

(C(µ1)
1 , C(µ2)

2 ) gives the following bounds.

E [Q23] ≤ EC

∑
zn,vn

1

N2

N2∑
µ2=1

ζ
(µ2)
vn

λBvn

∥∥∥∥∥∑
un

√
ρ⊗n
AB

(
ΛA
un ⊗ ΛB

vn
)√

ρ⊗n
ABP

n
Z|U,V (z

n|un, vn)

−
∑
un

√
ρ⊗n
AB

(
1

N1

∑
µ1

A
(µ1)
un ⊗ ΛB

vn

)√
ρ⊗n
ABP

n
Z|U,V (z

n|un, vn)

∥∥∥∥∥
1


= EC1

∑
zn,vn

1

N2

N2∑
µ2=1

EC2

[
ζ
(µ2)
vn

]
λBvn

∥∥∥∥∥∑
un

√
ρ⊗n
AB

(
ΛA
un ⊗ ΛB

vn
)√

ρ⊗n
ABP

n
Z|U,V (z

n|un, vn)

−
∑
un

√
ρ⊗n
AB

(
1

N1

∑
µ1

A
(µ1)
un ⊗ ΛB

vn

)√
ρ⊗n
ABP

n
Z|U,V (z

n|un, vn)

∥∥∥∥∥
1


= EC1

∑
zn,vn

1

(1 + η)

∥∥∥∥∥∑
un

√
ρ⊗n
AB

(
ΛA
un ⊗ ΛB

vn
)√

ρ⊗n
ABP

n
Z|U,V (z

n|un, vn)

−
∑
un

√
ρ⊗n
AB

(
1

N1

∑
µ1

A
(µ1)
un ⊗ ΛB

vn

)√
ρ⊗n
ABP

n
Z|U,V (z

n|un, vn)

∥∥∥∥∥
1


= E

 J

(1 + η)

 ,
where the inequality is obtained by using the triangle inequality, and the first equality follows as

C(µ1)
1 and C(µ2)

2 are generated independently. The last equality follows from the definition of J as

in (2.50). Hence, we use the result obtained in bounding E[J ] in the proof of Proposition II.40.
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Finally, we consider Q24.

Q24 ≤
∑
un,vn

∑
zn

Pn
Z|U,V (z

n|un, vn)
∥∥∥∥ 1

N1N2

∑
µ1,µ2

√
ρ⊗n
AB

A(µ1)
un ⊗

ζ
(µ2)
vn

λBvn
ΛB
vn

√ρ⊗n
AB

− 1

N1N2

∑
µ1,µ2

√
ρ⊗n
AB

(
A

(µ1)
un ⊗ ζ

(µ2)
vn

(√
ρ⊗n
B

−1

ΛB
vn

√
ρ⊗n
B

−1
))√

ρ⊗n
AB

∥∥∥∥
1

≤ 1

N2

∑
µ2

∑
un,vn

ζ
(µ2)
vn

∥∥∥∥∥∥∥
√
ρ⊗n
AB

 1

N1

∑
µ1

A
(µ1)
un ⊗

1

λBvn
ΛB
vn

√ρ⊗n
AB

−
√
ρ⊗n
AB

(
1

N1

∑
µ1

A
(µ1)
un ⊗

(√
ρ⊗n
B

−1

ΛB
vn

√
ρ⊗n
B

−1
))√

ρ⊗n
AB

∥∥∥∥∥
1

,

where the inequalities above are obtained by substituting in the definition of B
(µ2)
vn and using

multiple triangle inequalities. Taking expectation of Q24 with respect to the second codebook

generation, we get

EC2

[
Q241{sP-1}1{sP-2}

]
≤ 1{sP-1}

∑
un

vn∈T (n)
δ (V )

λBvn

(1 + η)

∥∥∥∥∥
√
ρ⊗n
AB

( 1

N1

∑
µ1

A
(µ1)
un ⊗

1

λBvn
ΛB
vn

)√
ρ⊗n
AB

−
√
ρ⊗n
AB

( 1

N1

∑
µ1

A
(µ1)
un ⊗

(√
ρ⊗n
B

−1

ΛB
vn

√
ρ⊗n
B

−1))√
ρ⊗n
AB

∥∥∥∥∥
1

(a)

≤
∑

vn∈T (n)
δ (V )

λBvn

(1 + η)

∥∥∥∥√ρ⊗n
B

(
1

λBvn
ΛB
vn −

√
ρ⊗n
B

−1

ΛB
vn

√
ρ⊗n
B

−1
)√

ρ⊗n
B

∥∥∥∥
1

=
∑

vn∈T (n)
δ (V )

λBvn

(1 + η)

∥∥ρ̂Bvn − ΛB
vn
∥∥
1

(b)

≤ (1− ε′)

(1 + η)
(2
√
ε′B + 2

√
ε′′B) = ϵQ24

, (A.21)

where (a) follows by using Lemma II.11 and the fact that under the event {1{sP-1} = 1} we have∑
un

1
N1

∑
µ1
A

(µ1)
un ≤ I, and (b) uses the result based on the average gentle measurement lemma

by setting ϵQ24
= (1−ε′)

(1+η) (2
√
ε′B + 2

√
ε′′B) with ϵQ24

↘ 0 as n → ∞ and ε′B = εp + 2
√
εp and

ε′′B = 2εp + 2
√
εp, for εp =∆ 1 −min

{
Tr
{
ΠρB ρ̂

B
vn
}
,Tr
{
Πvn ρ̂

B
vn
}
, 1− ε′

}
. This completes the proof

for Q24 and hence for all the terms corresponding to Q2.
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APPENDIX B

Proofs of Chapter III

B.1 Proof of Lemma III.12

Proof. We begin by defining the ensemble {λx, σ̃x}x∈X where σ̃x = ΠΠxσxΠxΠ for all x ∈ X .

Further, let S be defined as

S =∆
∥∥∥∑
x∈X

λxσx −
1

M

∑
x∈X

M∑
m=1

λx
µx
σx1{Cm=x}

∥∥∥
1
.

By adding an subtracting appropriate terms within the trace norm of S and using the triangle

inequality we obtain, S ≤ S1 + S2 + S3, where

S1 =
∆
∥∥∑
x∈X

λxσx −
∑
x∈X

λxσ̃x
∥∥
1
, S2 =

∆
∥∥ 1

M

M∑
m=1

λCm

µCm

σ̃Cm − 1

M

M∑
m=1

λCm

µCm

σCm

∥∥
1
, and

S3 =
∆
∥∥∑
x∈X

λxσ̃x −
1

M

∑
x∈X

M∑
m=1

λx
µx
σ̃x1{Cm=x}

∥∥
1
.

We begin by bounding the term corresponding to S1 and S2 as follows:

S1 ≤
∑
x∈X

λx∥σx −ΠΠxσxΠxΠ∥1 ≤
∑
x∈X

λx∥σx −ΠσxΠ
∥∥
1
+
∑
x∈X

λx∥ΠσxΠ−ΠΠxσxΠxΠ∥1

≤ 2
√
ϵ+

∑
x∈X

λx∥Π∥∞∥σx −ΠxσxΠx∥1∥Π∥∞ ≤ 4
√
ϵ = δ(ϵ), (B.1)
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where the first two inequalities use the triangle inequality, the third uses the gentle measurement

lemma (given the assumption (3.6a) from the statement of the Lemma) for the first term, and

operator Holder’s inequality (Exercise 12.2.1 in Wilde (2013a)) for the second term. The last

inequality follows again from the gentle measurement given the assumption (3.6b). Similarly, for

S2 we have

EC[S2] ≤ EC

[
1

M

M∑
m=1

∑
x∈X

λx
µx
1{Cm=x}∥σx − σ̃x∥1

]
=

1

M

M∑
m=1

∑
x∈X

λx∥σx − σ̃x∥1 ≤ 4
√
ϵ = δ(ϵ),

(B.2)

where we use the fact that EC[1{cm=x}] = µx, and the last inequality uses similar arguments

as in (B.1). Finally, we proceed to bound the term corresponding to S3. Firstly, note that,

EC[ 1
M

∑
m

λCm
µCm

σ̃Cm ] =
∑

x∈X λxσ̃x. This gives

EC[S3] ≤ Tr


√√√√√EC

( 1

M

∑
m

λCm

µCm

σ̃Cm − EC
[
1

M

∑
m

λCm

µCm

σ̃Cm

])2



= Tr


√√√√√√ 1

M2

∑
m

EC

[(
λCm

µCm

σ̃Cm

)2
]
+

1

M2

∑
m,m′

m ̸=m′

EC
[
λCm σ̃Cm

µCm

λCm′ σ̃Cm′

µCm′

]
−

(
1

M

∑
m

EC
[
λCm σ̃Cm

µCm

])2


= Tr


√√√√ 1

M
EC

[(
λC1 σ̃C1

µC1

)2
]
− 1

M

(
EC
[
λC1 σ̃C1

µC1

])2
 ≤ Tr


√√√√ 1

M
EC

[(
λC1 σ̃C1

µC1

)2
], (B.3)

where the first inequality follows from concavity of operator square-root function (Löwner-Heinz

theorem, see Theorem 2.6 in Carlen (2010)). The last equality uses the fact that codewords of the

random code C are pairwise independent, and the last inequality follows from monotonicity of the

operator square-root function (Theorem 2.6 in Carlen (2010)).

Moving on, we now bound the operator within the square root of (B.3) as

EC

[(
λC1 σ̃C1

µC1

)2
]
=
∑
x∈X

λ2x
µx
σ̃2x ≤

∑
x∈X

κλxσ̃
2
x = κ

∑
x∈X

λxΠ(ΠxσxΠx)Π (ΠxσxΠx)Π,

where we use the assumption λx
µx

≤ κ for all x ∈ X .
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Further since, Π ≤ I, we have (ΠxσxΠx)Π (ΠxσxΠx) ≤ (ΠxσxΠx)
2, which gives

EC

[(
λC1 σ̃C1

µC1

)2
]
≤ κ

∑
x∈X

λxΠ(ΠxσxΠx)
2Π.

Moreover, using the assumption 3.6d, i.e., ΠxσxΠx ≤ 1
dΠx ≤ 1

dI, we get

(ΠxσxΠx)
2 =

√
ΠxσxΠx (ΠxσxΠx)

√
ΠxσxΠx ≤ 1

d
ΠxσxΠx, for all x ∈ X .

Thus, EC
[(

λC1 σ̃C1

µC1

)2 ]
≤ κ

d
Π

(∑
x∈X

λxΠxσxΠx

)
Π ≤ κ

d
ΠσΠ, (B.4)

where the second inequality uses the assumption (3.6e) from the statement of the Lemma. Sub-

stituting the simplification obtained in (B.4) into (B.3) and using the monotonicity of square-root

operator, we obtain

EC[S3] ≤ Tr

{√
κ

Md
ΠσΠ

}
≤
√
κD

Md
, (B.5)

where the second inequality uses the assumption (3.6c). Combining the bounds (B.1), (B.2), and

(B.5) we get the desired result.

B.2 Proof of Lemma III.13

We begin by defining L as

L =∆
∥∥∥∥∑

wn

λwnθwn − 1

(1 + η)

pn

pk+lN ′

N ′∑
µ=1

∑
a,m

∑
wn

λwnθwn1{Wn,(µ)(a,m)=wn}

∥∥∥∥
1

.

Further, let θ =∆
∑

w∈W λwθw and let Πθ and Πθ
wn denote the δ-typical projector of θ and conditional

typical projector of θwn , respectively. Define λ̃wn = λwn

1−ε for wn ∈ T (n)
δ (W ), and 0 otherwise, where
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ε =
∑

wn /∈T (n)
δ (W )

λwn . Using the triangle inequality we can bound L as L ≤ L1 + L2 + L3, where

L1 =
∆

∥∥∥∥∑
wn

λwnθwn −
∑
wn

λ̃wnθwn

∥∥∥∥
1

,

L2 =
∆

∥∥∥∥∑
wn

λ̃wnθwn− pn

pk+lN ′

N ′∑
µ=1

∑
a,m

∑
wn

λ̃wnθwn1{Wn,(µ)(a,m)=wn}

∥∥∥∥
1

,

L3 =
∆

∥∥∥∥ pn

pk+lN ′

∑
µ

∑
a,m

∑
wn

(
λ̃wn − λwn

(1 + η)

)
θwn1{Wn,(µ)(a,m)=wn}

∥∥∥∥
1

.

We begin by bounding the term corresponding to L1 as

L1 ≤
∑

wn∈T (n)
δ (W )

λwn
ε

1− ε
∥θwn∥1︸ ︷︷ ︸

=1

+
∑

wn /∈T (n)
δ (W )

λwn ∥θwn∥1︸ ︷︷ ︸
=1

= 2ε. (B.6)

Now consider the term corresponding to L2, for which we employ Lemma III.12. Toward this,

we consider the following identification: λx with λ̃wn , σx with θwn , X with T (n)
δ (W ), X̄ with Fn

p , σ

with θ̃ =∆
∑

wn λ̃wnθwn , Π with Πθ, Πx with Πθ
wn , and µx = 1

pn for all x ∈ X̄ . Since the collection

of random variables {Wn,(µ)(a,m)} are generated using Unionized Coset Codes, we have

P
(
1{Wn,(µ)(a,m)=wn} = 1

)
=

1

pn
, for all wn ∈ Fn

p .

Note that λ̃wn

1/pn ≤ 2−n(S(W )σθ−log p−δw) for all wn ∈ Fn
p , where δw(δ) ↘ 0 as δ ↘ 0, and σθ is defined

in the statement of the lemma. With these, we check the hypotheses of Lemma III.12. Firstly, using

the pinching arguments described in (Wilde, 2013a, Property 15.2.7), we have Tr{Πθθwn} ≥ 1− ϵ

for all ϵ ∈ (0, 1), δ > 0 and sufficiently large n, satisfying hypothesis (3.6a). Secondly, (3.6b) and

(3.6e) are satisfied from the construction of Πθ
wn . Next, we consider the hypothesis (3.6c). We have

∥∥∥Πθ
√
θ̃
∥∥∥
1
= Tr

{√
Πθθ̃Πθ

}
≤ 1√

(1− ε)
Tr
{√

Πθθ⊗nΠθ
}
≤ 2

n
2
(S(R)σθ+δ′w),

where the first inequality above follows from the fact that
∑

wn λ̃wnθwn ≤ 1
(1−ε)

∑
wn λwnθwn = θ⊗n

(1−ε)

and using the operator monotonicty of the square-root function (Theorem 2.6 in Carlen (2010)).

The second inequality follows from the property of the typical projector for some δ′w such that

δ′w ↘ 0 as δ ↘ 0. This gives D = 2n(S(R)σθ+δ′w). Finally, the hypotheses (3.6d) is satisfied from
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the property of conditional typical projectors for d = 2n(S(R|W )σθ−δ′′w), where δ′′w ↘ 0 as δ ↘ 0 (see

(Wilde, 2013a, Property 15.2.6)). Next we check the pairwise independence of Wn,(µ)(a,m) and

Wn,(µ)(ã, m̃). Since these are constructed using randomly and uniformly generated G and h(µ),

we have {Wn,(µ)(a,m)}a∈Fk
p ,m∈Fl

p,µ∈[1:N ′] to be pairwise independent for each (see Pradhan et al.

(2021) for details). Therefore, employing Lemma III.12 we get

E[L2] ≤

√
2n(S(R)σθ+δ′w)2−n(S(W )σθ−log p−δw)

N ′pk+l2n(S(R|W )σθ−δ′′w)
+ 8

√
ϵ

≤ exp2

[
−n

2

(
k + l

n
log p+

1

n
logN ′ − I(R;W )σθ

− log p+ S(W )σθ
− δw − δ′w − δ′′w

)]
+ 8

√
ϵ,

(B.7)

where exp2(x) =
∆ 2x. As for L3, taking expectation and using E[1{Wn,(µ)(a,m)=wn}] =

1
pn gives

E[L3] ≤
η + ε

(1 + η)
+

ε

(1 + η)
=
η + 2ε

1 + η
. (B.8)

Combining the bounds from (B.6), (B.7) and (B.8) gives the desired result.

B.3 Proof of Proposition III.14

Applying the triangle inequality on S̃1 gives S̃1 ≤ S̃11 + S̃12, where

S̃11 =
∆ 1

N

∑
µ

∥∥∥∥∥∑
wn

λwn ρ̂wn −
∑
wn

αwnγ
(µ)
wn ρ̂wn

∥∥∥∥∥
1

, S̃12 =
∆ 1

N

∑
µ

∑
wn

αwnγ
(µ)
wn ∥ρ̂wn − ρ̃wn∥1.

For the first term S̃11, we use Lemma II.30, and identify θwn with ρ̂wn and N ′ = 1. Using this

lemma, we obtain the following: For any ϵ > 0, and any η, δ ∈ (0, 1) sufficiently small and any n

sufficiently large, E[S̃11] ≤ ϵ, if the k+l
n log p > I(W ;R)σ −S(W )σ + log p, where σ is defined in the

statement of the theorem. As for the second term S̃12, we use the gentle measurement lemma and

bound its expected value as

E

[
1

N

∑
µ

∑
wn

αwnγ
(µ)
wn ∥ρ̂wn − ρ̃wn∥1

]
≤

∑
wn∈T (n)

δ (W )

λwn

(1 + η)
∥ρ̂wn − ρ̃wn∥1 +

∑
wn /∈T (n)

δ (W )

λwn

(1 + η)
≤ ϵS̃12

,
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where the inequality is based on the repeated usage of the average gentle measurement lemma by

setting ϵS̃12
= (1−ε)

(1+η)(2
√
ε′+2

√
ε′′) with ϵS̃12

↘ 0 as n→ ∞ and ε′ = ε′p+2
√
ε′p and ε

′′ = 2ε′p+2
√
ε′p

for ε′p =
∆ 1−min {Tr{Πρρ̂wn},Tr{Πwn ρ̂wn}, 1− ε} (see (35) in Wilde et al. (2012) for more details).

B.4 Proof of Lemma III.15

We begin by using the Hólder’s inequality Wilde (2013a); Carlen (2010) for operator norm, i.e.,

(∥AB∥1 ≤ ∥A∥∞∥B∥1), and defining Λ̂wn =
√
ρ⊗n

−1
ρ̃wn

√
ρ⊗n

−1
. This gives

∑
wn

γ
(µ)
wn

∥∥∥√ρ⊗n
(
Ā

(µ)
wn−A(µ)

wn

)√
ρ⊗n

∥∥∥
1
=
∑
wn

αwnγ
(µ)
wn

∥∥∥Πρ

√
ρ⊗nΛ̂wn

√
ρ⊗nΠρ−Πρ

√
ρ⊗nΠµΛ̂wnΠµ

√
ρ⊗nΠρ

∥∥∥
1

≤
∑
wn

αwnγ
(µ)
wn

∥∥∥Πρ

√
ρ⊗n

∥∥∥2
∞

∥∥∥Λ̂wn −ΠµΛ̂wnΠµ
∥∥∥
1

≤ 2−n(S(ρ)−δρ)
∑
wn

αwnγ
(µ)
wn 2

√
Tr
{
(ΠρA −Πµ)Λ̂wn

}
Tr
{
Λ̂wn

}
,

where the equality follows from the fact that Πρ and Πµ commute, the first inequality follows from

the Hólder’s inequality, and the second inequality uses the following bounds

∥∥∥∥Λ̂wn −ΠµΛ̂wnΠµ

∥∥∥∥
1

≤
∥∥∥Λ̂wn −ΠµΛ̂wn

∥∥∥
1
+
∥∥∥ΠµΛ̂wn −ΠµΛ̂wnΠµ

∥∥∥
1

≤
√
Tr
{
(Πρ −Πµ)2Λ̂wn

}
Tr
{
Λ̂wn

}
+

√
Tr
{
ΠµΛ̂wn

}
Tr
{
Λ̂wn(Πρ −Πµ)2

}
≤ 2

√
Tr
{
(Πρ −Πµ)Λ̂wn

}
Tr
{
Λ̂wn

}
,

where the second inequality uses Cauchy-Schwarz inequality along with the polar decomposition

(see the usage in (Wilde, 2013a, Lemma 9.4.2)) and the last inequality uses the arguments: (i) Πµ

is a projector onto a subspace of Πρ and (ii) Tr
{
ΠµΛ̂wn

}
≤ Tr

{
Λ̂wn

}
. Further, using the fact that

for wn ∈ T (n)
δ (W ),

Tr{Λ̂wn} = ∥ΠρΛ̂wnΠρ∥1 ≤ ∥Πρ

√
ρ⊗n

−1
∥∞ ∥ρ̃wn∥1︸ ︷︷ ︸

≤1

∥Πρ

√
ρ⊗n

−1
∥∞ ≤ ∥Πρ

√
ρ⊗n

−1
∥2∞ ≤ 2n(S(ρ)+δρ),
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it follows that

∑
wn

γ
(µ)
wn

∥∥∥√ρ⊗n
(
Ā

(µ)
wn −A

(µ)
wn

)√
ρ⊗n

∥∥∥
1
≤ 2 · 2−

n
2
(S(ρ)−4δρ)

∑
wn

αwnγ
(µ)
wn

√
Tr
{
(Πρ −Πµ)Λ̂wn

}

≤ 2 · 23nδρ∆(µ)

√√√√∑
wn

αwnγ
(µ)
wn

∆(µ)
Tr{(Πρ −Πµ)ρ̃wn}

= 2 · 23nδρ
(
∆(µ) − E[∆(µ)] + E[∆(µ)]

)√√√√Tr

{
(Πρ −Πµ)

∑
wn

αwnγ
(µ)
wn

∆(µ)
ρ̃wn

}

≤ 2 · 23nδρE[∆(µ)]

√√√√Tr

{
(Πρ −Πµ)

∑
wn

αwnγ
(µ)
wn

∆(µ)
ρ̃wn

}
+ 2 · 23nδρ

∣∣∣∆(µ) − E[∆(µ)]
∣∣∣︸ ︷︷ ︸

H0

≤ 2 · 23nδρ
(
H0 +

√
(1− ε)

(1 + η)

√
H1 +H2 +H3

)
,

where the second inequality above follows by defining ∆(µ) =
∑

wn∈T (n)
δ (W )

αwnγ
(µ)
wn and using the

concavity of the square-root function, the third inequality follows by using the fact that

∑
wn

αwnγ
(µ)
wn

∆(µ)
Tr{(Πρ −Πµ)ρ̃wn} ≤

∑
wn

αwnγ
(µ)
wn

∆(µ)
Tr{ρ̃wn} ≤ 1, (B.9)

and defining H0 as above. and the last one follows by first using E[∆(µ)] = (1−ε)
(1+η) and then defining

H1, H2 and H3 as in the statement of the lemma and using the inequality Tr{Λ(ω − σ)} ≤ ∥Λ(ω−

σ)∥1 ≤ ∥Λ∥∞∥ω − σ∥1. This completes the proof.

B.5 Proof of Proposition III.16

To provide a bound for S̃2, we individually bound the terms corresponding to H0 and H̃ in an

expected sense. Let us first consider H̃. To provide a bound for H̃ we use Lemma III.12 with the

following identification: λx with λwn

(1−ε) , σx with ρ̂wn , X with T (n)
δ (W ), X̄ with Fn

p , Π with Πρ, Πx

with Πwn , and µx with 1
pn .

Firstly, we have λwn

1/pn ≤ 2−n(S(W )σ−log p−δw) for all wn ∈ Fn
p , where δw(δ) ↘ 0 as δ ↘ 0, which gives

κ = 2−n(S(W )σ−log p−δw). With these, we check the hypotheses of Lemma III.12. As for the first

hypothesis (3.6a), using the pinching arguments described in (Wilde, 2013a, Property 15.2.7), we

have Tr{Πρρ̂wn} ≥ 1− ϵ for all ϵ ∈ (0, 1), δ > 0 and sufficiently large n. Then the hypotheses (3.6b)
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and (3.6e) are satisfied from the construction of Πwn . Next, consider the hypothesis (3.6c). We

have

∥∥∥∥∥Πρ

√√√√( ∑
wn∈T (n)

δ (W )

λwn

(1− ε)
ρ̂wn

)∥∥∥∥∥
1

≤ 1√
1− ε

Tr

{√
Πρρ⊗nΠρ

}
≤ 2

n
2
(S(R)σ+δ′ρ),

where the first inequality above follows from using
∑

wn∈T (n)
δ (W )

λwn

(1−ε) ρ̂wn ≤ 1
(1−ε)ρ

⊗n and the

operator monotonicty of the square-root function. The second inequality follows from the property

of the typical projector for some δ′ρ such that δ′w ↘ 0 as δ ↘ 0. This gives D = 2n(S(R)σ+δ′ρ), where

σ is as defined in the statement of the theorem. Finally, the hypotheses (3.6d) is satisfied from the

property of conditional typical projectors for d = 2n(S(R|W )σ−δ′′w), where δ′′w ↘ 0 as δ ↘ 0. Next

we check the pairwise independence of Wn,(µ)(a,m) and Wn,(µ)(ã, m̃). Since these are constructed

using randomly and uniformly generated G and h(µ), we have {Wn,(µ)(a,m)}a∈Fk
p ,m∈Fl

p,µ∈[1,N ] to be

pairwise independent (see Pradhan et al. (2021) for details). Therefore, employing inequality (3.8)

of Lemma III.12, we get

E[H̃] ≤

√
2n(S(R)σ+δ′ρ)2−n(S(W )σ−log p−δw)

N2nS2n(S(R|W )σ−δ′′w)
≤ 2−

n
2 (

k+l
n

log p+ 1
n
logN−I(R;W )σ−log p+S(W )σ−δw−δ′ρ−δ′′w).

Next, consider H0 and perform the following simplification

E[H0] =
(1− ε)

(1 + η)
E
∣∣∣∣ ∑
wn∈T (n)

δ (W )

λwn

(1− ε)
− pn

pk+l

∑
wn∈T (n)

δ (W )

∑
a,i

λwn

(1− ε)
1{Wn,(µ)(a,i)=wn}

∣∣∣∣
=

(1− ε)

(1 + η)
E
∥∥∥∥ ∑
wn∈T (n)

δ (W )

λwn

(1− ε)
ω⊗n
0 − pn

pk+l

∑
wn∈T (n)

δ (W )

∑
a,i

λwn

(1− ε)
1{Wn,(µ)(a,i)=wn}ω

⊗n
0

∥∥∥∥
1

,

(B.10)

where ω0 ∈ D(H) is any state independent of W . We again apply Lemma III.12 to the above

term with the following identification: λx with λwn

(1−ε) , σx with ω⊗n
0 , X with T (n)

δ (W ), X̄ with Fn
p ,

Π and Πx with Identity operator I, and µx with 1
pn . With this identification, κ remains as above,

κ = 2−n(S(W )σ−log p−δw) and D = d = 1. Hence, using in inequality (3.8) of Lemma III.12, we
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obtain

E[H0] ≤ 2−
n
2 (

k+l
n

log p−log p+S(W )σ−δw).

This completes the proof.

B.6 Proof of Proposition III.18

We begin using the definition of A
(µ)
wn and applying triangle inequality to S2 to obtain

S2 ≤
1

(1 + η)

1

N

∑
µ

∑
a,i>0

∑
wn,zn

λwnpn

pk+l
1{aG+h(µ)(i)=wn}

∥∥∥√ρ⊗nΠµ
√
ρ⊗n

−1
ρ̃wn

√
ρ⊗n

−1
Πµ
√
ρ⊗n

∥∥∥
1

×
∣∣∣Pn

Z|W (zn|wn)− Pn
Z|W

(
zn|F (µ)(i)

)∣∣∣
≤ 22nδρ

(1 + η)

1

N

∑
µ

∑
a,i>0

∑
wn,zn

λwnpn

pk+l
1{aG+h(µ)(i)=wn}

∣∣∣Pn
Z|W (zn|wn)− Pn

Z|W

(
zn|F (µ)(i)

)∣∣∣
≤ 22nδρ

(1 + η)

1

N

∑
µ

∑
a,i>0

∑
wn

2
λwnpn

pk+l
1{aG+h(µ)(i)=wn}1

(µ)(wn, i), (B.11)

where the second inequality above uses the following arguments

∥∥∥√ρ⊗nΠµ
√
ρ⊗n

−1
ρ̃wn

√
ρ⊗n

−1
Πµ
√
ρ⊗n

∥∥∥
1
=
∥∥∥√ρ⊗nΠρΠ

µ
√
ρ⊗n

−1
Πρρ̃wnΠρ

√
ρ⊗n

−1
ΠµΠρ

√
ρ⊗n

∥∥∥
1

≤
∥∥∥√ρ⊗nΠρ

∥∥∥
∞

∥∥∥Πµ
√
ρ⊗n

−1
Πρρ̃wnΠρ

√
ρ⊗n

−1
Πµ
∥∥∥
1

∥∥∥√ρ⊗nΠρ

∥∥∥
∞

≤ 2−n(S(ρ)−δρ) ∥Πµ∥2∞
∥∥∥√ρ⊗n

−1
Πρρ̃wnΠρ

√
ρ⊗n

−1
∥∥∥
1
≤ 22nδρ ∥ρ̃wn∥1 ≤ 22nδρ , (B.12)

where the above inequalities follow from the Hólder’s inequality. Finally, the last inequality in

(B.11) follows by defining 1(µ)(wn, i) as

1
(µ)(wn, i) =∆ 1

{
∃(w̃n, ãn) : w̃n = ãnG + h(µ)(i), w̃n ∈ T (n)

δ (W ), w̃n ̸= wn

}
.
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Observe that

E[1(µ)(wn, i)1{aG+h(µ)(i)=wn}] ≤
∑
ã∈Fk

p

∑
w̃∈T (n)

δ (W )
w̃ ̸=wn

1

pnpn
,

which follows from the pairwise independence of the codewords. Using this, we obtain

E[S2] ≤
2 22nδρ

(1 + η)

2−nRpk+l

pn

∑
w̃n∈T (n)

δ (W )

∑
wn∈T (n)

δ (W )

λwn ≤ 2 · 2n(
k+l
n

log p−R−log p+S(W )σ+δS2
),

where δS2 ↘ 0 as δ ↘ 0, and σ is as defined in the statement of the theorem. This completes the

proof.

B.7 Proof of Proposition III.30

Recalling S2, we have S2 ≤ S21 + S22, where

S21 =
∆ 2

N1N2

∑
µ̄1,µ̄2

∑
un,vn

αunβvnγ
(µ̄1)
un ζ

(µ̄2)
vn Ωun,vn1{(un,vn )̸∈T (n)

δ (U,V )},

S22 =
∆ 2

N̄1N̄2

∑
µ̄1,µ̄2

∑
un,vn

αunβvnγ
(µ̄1)
un ζ

(µ̄2)
vn Ωun,vn1

(µ̄1,µ̄2)(un + vn, i, j),

where Ωun,vn and 1(µ̄1,µ̄2)(wn, i, j) are defined as

Ωun,vn =∆ Tr
{[(

Πµ̄1

A ⊗Πµ̄2

B

)√
ρ⊗n
A ⊗ ρ⊗n

B

−1

(ρ̃Aun ⊗ ρ̃Bvn)
√
ρ⊗n
A ⊗ ρ⊗n

B

−1 (
Πµ̄1

A ⊗Πµ̄2

B

)]
ρ⊗n
AB

}
,

1
(µ̄1,µ̄2)(wn, i, j) =∆ 1

{
∃(w̃n, ãn) : w̃n = ãnG + h

(µ̄1)
1 (i) + h

(µ̄2)
2 (j), w̃n ∈ T (n)

δ̂
(U + V ), w̃n ̸= wn

}
.

We begin by bounding the term corresponding to S21. Consider the following argument.

S21 ≤

∣∣∣∣∣ 2

N̄1N̄2

∑
µ̄1,µ̄2

∑
un,vn

αunβvnγ
(µ̄1)
un ζ

(µ̄2)
vn Ωun,vn1{(un,vn )̸∈T (n)

δ (U,V )} −
∑

(un,vn )̸∈T (n)
δ (UV )

un∈T (n)
δ (U),vn∈T (n)

δ (V )

2λAB
un,vn

∣∣∣∣∣
+

∑
(un,vn )̸∈T (n)

δ (U,V )

2λAB
un,vn
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(a)

≤ 2
∑

un∈Un

∑
vn∈Vn

∣∣∣∣∣λAB
un,vn − 1

N̄1N̄2

∑
µ̄1,µ̄2

αunβvnγ
(µ̄1)
un ζ

(µ̄2)
vn Ωun,vn

∣∣∣∣∣+ ∑
(un,vn )̸∈T (n)

δ (UV )

2λAB
u,v

(b)

≤ 2S̃1 + 2
∑

(un,vn )̸∈T (n)
δ (UV )

λAB
un,vn ,

where

S̃1 =
∆

∥∥∥∥(id⊗ M̄⊗n
A ⊗ M̄⊗n

B )(Ψρ
RAB)

⊗n − 1

N̄1N̄2

∑
µ̄1,µ̄2

(id⊗ [M
(µ̄1)
1 ]⊗ [M

(µ̄2)
2 ])(Ψρ

RAB)
⊗n

∥∥∥∥
1

,

(a) follows by applying the triangle inequality, and (b) follows from the Lemma B.1 given below.

Note that in S̃1, the average over the entire common information sequence (µ̄1, µ̄2) is inside the

norm.

Lemma B.1. We have

∑
un∈Un

∑
vn∈Vn

∣∣∣∣λAB
un,vn − 1

N̄1N̄2

∑
µ̄1,µ̄2

αunβvnγ
(µ̄1)
un ζ

(µ̄2)
vn Ωun,vn

∣∣∣∣ ≤ S1. (B.13)

Proof. The proof follows from Lemma 2 in Wilde et al. (2012).

Next we use Theorem III.10 twice with (a) ρ = ρA, M = M̄A, W = U , Z = U and PZ|W (z|w) =

1{z = w}, and (b) ρ = ρB, M = M̄B, W = V, Z = V and PZ|W (z|w) = 1{z = w}, and the mutual

covering lemma (Lemma II.12) developed in Chapter II to yield the following: for any ϵ ∈ (0, 1),

and any η, δ ∈ (0, 1) sufficiently small, and any n sufficiently large E[S1] ≤ 2ϵ if k+l1
n log p >

I(U ;RB)σ1 −S(U)σ3 +log p, k+l2
n log p > I(V ;RA)σ2 −S(V )σ3 +log p, k+l1

n log p+ 1
n log N̄1 > log p,

k+l2
n log p + 1

n log N̄2 > log p, where σ1, σ2 and σ3 are defined as in the statement of the theorem.

Consequently, we have E[S21] ≤ 4ϵ for all sufficiently large n.

In regards to S22, note that

E
[
1
(µ̄1,µ̄2)(un + vn, i, j)1{a1G+h

(µ̄1)
1 (i)=un}1{a2G+h

(µ̄2)
2 (j)=vn}

]
≤
∑
ã∈Fk

p

ã̸=a

∑
w̃∈T (n)

δ̂
(U+V )

w̃ ̸=un+vn

1

pnpnpn
.
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Using this, we obtain

E[S22] ≤
2

(1 + η)2
pk+l12nR1

pn

∑
w̃n∈T (n)

δ̂
(U+V )

∑
un∈T (n)

δ (U)

∑
vn∈T (n)

δ (V )

λAunλBvnΩun,vn

≤ 2 2n(
k+l1
n

log p−R1−log p+S(U+V )σ3+δρAB
+δ̂W )

(1 + η)2
,

where δ̂W ↘ 0 as δ ↘ 0 and the above inequality follows from the following lemma (Lemma B.2).

Hence, E[S21] ≤ ϵ if the conditions in the proposition are satisfied.

Lemma B.2. For λAun , λBvn and Ωun,vn as defined above, we have

∑
un∈T (n)

δ (U)

∑
vn∈T (n)

δ (V )

Ωun,vnλ
A
unλBvn ≤ 2nδρAB ,

for some δρAB ↘ 0 as δ ↘ 0.

Proof. Firstly, note that

∑
un,vn

Ωun,vnλ
A
unλBvn = Tr

{[(
Πµ̄1

A ⊗Πµ̄2

B

)(√
ρ⊗n
A

−1(∑
un

λAun ρ̃Aun

)√
ρ⊗n
A

−1

⊗
√
ρ⊗n
B

−1(∑
vn

λBvn ρ̃
B
vn

)√
ρ⊗n
B

−1
)(

Πµ̄1

A ⊗Πµ̄2

B

)]
ρ⊗n
AB

}
. (B.14)

We know,
∑

un λAun ρ̃Aun ≤ 2−n(S(ρA)−δρA )ΠρA , where δρA ↘ 0 as δ ↘ 0. This implies,

Πµ̄1

A

√
ρ⊗n
A

−1
(∑

un

λAun ρ̃Aun

)√
ρ⊗n
A

−1

Πµ̄1

A ≤ 2−n(S(ρA)−δρA )Πµ̄1

A

√
ρ⊗n
A

−1

ΠρA

√
ρ⊗n
A

−1

Πµ̄1

A

≤ 22nδρAΠµ̄1

A ΠρAΠ
µ̄1

A ≤ 22nδρAΠµ̄1

A , (B.15)

where the second inequality appeals to the fact that
√
ρ⊗n
A

−1

ΠρA

√
ρ⊗n
A

−1

≤ 2n(S(ρA)+δρA )ΠρA .

Similarly, using the same arguments above for the operators acting on HB, we have

Πµ̄2

B

√
ρ⊗n
B

−1
(∑

vn

λBvn ρ̃
B
vn

)√
ρ⊗n
B

−1

Πµ̄2

B ≤ 22nδρBΠµ̄2

B , (B.16)

where δρB ↘ 0 as δ ↘ 0. Using (i) the simplifications in (B.15) and (B.16), and (ii) the fact that
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for A1 ≥ B1 ≥ 0 and A2 ≥ B2 ≥ 0, (A1 ⊗A2) ≥ (B1 ⊗B2) in (B.14), gives

∑
un,vn

Ωun,vnλ
A
unλBvn ≤ 22n(δρA+δρB )Tr

{(
Πµ̄1

A ⊗Πµ̄2

B

)
ρ⊗n
AB

}
≤ 22n(δρA+δρB )Tr

{
ρ⊗n
AB

}
= 22n(δρA+δρB ).

Substituting δρAB = 2(δρA + δρB ) gives the result.

B.8 Proof of Proposition III.31

We bound S̃ as S̃ ≤ S̃2 + S̃3 + S̃4, where

S̃2 =
∆

∥∥∥∥ 1

N1N2

∑
µ1,µ2

∑
i>0

√
ρ⊗n
AB

(
Γ
A,(µ1)
i ⊗ Γ

B,(µ2)
0

)√
ρ⊗n
ABP

n
Z|U+V (z

n|wn
0 )

∥∥∥∥
1

,

S̃3 =
∆

∥∥∥∥ 1

N1N2

∑
µ1,µ2

∑
j>0

√
ρ⊗n
AB

(
Γ
A,(µ1)
0 ⊗ Γ

B,(µ2)
j

)√
ρ⊗n
ABP

n
Z|U+V (z

n|wn
0 )

∥∥∥∥
1

,

S̃4 =
∆

∥∥∥∥ 1

N1N2

∑
µ1,µ2

√
ρ⊗n
AB

(
Γ
A,(µ1)
0 ⊗ Γ

B,(µ2)
0

)√
ρ⊗n
ABP

n
Z|U+V (z

n|wn
0 )

∥∥∥∥
1

.

Analysis of S̃2: We have

S̃2 ≤
1

N1N2

∑
µ1,µ2

∑
i>0

∑
zn

Pn
Z|U+V (z

n|wn
0 )

∥∥∥∥√ρ⊗n
AB

(
Γ
A,(µ1)
i ⊗ Γ

B,(µ2)
0

)√
ρ⊗n
AB

∥∥∥∥
1

≤ 1

N1N2

∑
µ1,µ2

∥∥∥∥√ρ⊗n
B Γ

B,(µ2)
0

√
ρ⊗n
B

∥∥∥∥
1

≤ 1

N2

∑
µ2

∥∥∥∥∥∑
vn

λBvn ρ̂
B
vn −

∑
vn

√
ρ⊗n
B ζ

(µ2)
vn B̄

(µ2)
vn

√
ρ⊗n
B

∥∥∥∥∥
1

+
1

N2

∑
µ2

∥∥∥∥∥∑
vn

√
ρ⊗n
B ζ

(µ2)
vn

(
B̄

(µ2)
vn −B

(µ2)
vn

)√
ρ⊗n
B

∥∥∥∥∥
1

≤ 1

N2

∑
µ2

∥∥∥∥∥∥∥
∑
vn

λBvn ρ̂
B
vn −

1

(1 + η)

pn

pk+l2

∑
vn

∑
a2,j

λBvn ρ̂
B
vn1{w2(a2,m2,µ2)=vn}

∥∥∥∥∥∥∥
1︸ ︷︷ ︸

S̃21

238



+
1

N2

∑
µ2

∑
vn

βvnζ
(µ2)
vn

∥∥ρ̂Bvn − ρ̃Bvn
∥∥
1︸ ︷︷ ︸

S̃22

+
1

N2

∑
µ2

∑
vn

∥∥∥∥√ρ⊗n
B ζ

(µ2)
vn

(
B̄

(µ2)
vn −B

(µ2)
vn

)√
ρ⊗n
B

∥∥∥∥
1︸ ︷︷ ︸

S̃23

,

(B.17)

where the first inequality uses triangle inequality. The next inequality follows by using Lemma

III.1 where we use the fact that
∑

i>0 Γ
A,(µ1)
i ≤ I. Finally, the last two inequalities follows again

from triangle inequality.

Regarding the first term in (B.17), using Lemma III.13 we claim that for all ϵ > 0, and η, δ ∈ (0, 1)

sufficiently small, and any n sufficiently large, E[S̃21] < ϵ, if k+l2
n log p ≥ I(V ;RA)σ2−S(V )σ3+log p,

where σ2, σ3 are as defined in the statement of the theorem. As for the second term, we use the

gentle measurement lemma (as in (B.23)) and bound its expected value as

E[S̃22]= E

[
1

N2

∑
µ2

∑
vn

βvnζ
(µ2)
vn

∥∥ρ̂Bvn − ρ̃Bvn
∥∥
1

]

=
∑

vn∈T (n)
δ (V )

λBvn

(1 + η)

∥∥ρ̂Bvn − ρ̃Bvn
∥∥
1
+
∑

vn /∈T (n)
δ (V )

λBvn

(1 + η)

∥∥ρ̂Bvn∥∥1 ≤ ϵS̃21
,

where the inequality is based on the repeated usage of the Average Gentle Measurement Lemma

and ϵS̃21
↘ 0 as δ ↘ 0 (see (35) in Wilde et al. (2012) for more details). Finally, consider the last

term. To simplify this term, we appeal to Lemma III.15 in Section 3.3.3. This gives us

S̃23 ≤
2 23nδ

N2

N2∑
µ2=1

(
HB

0 +

√
(1− εB)

(1 + η)

√
HB

1 +HB
2 +HB

3

)
, (B.18)

where

HB
0 =∆

∣∣∣∆(µ2)
B − E[∆(µ2)

B ]
∣∣∣ , HB

1 =∆ Tr

{
(ΠρB −Πµ2

B )
∑
vn

λBvn ρ̃
B
vn

}
,

HB
2 =∆

∥∥∥∥∥∑
vn

λBvn ρ̃
B
vn − (1− εB)

∑
vn

βvnζ
(µ2)
vn

E[∆(µ)
B ]

ρ̃Bvn

∥∥∥∥∥
1

,

HB
3 =∆ (1− εB)

∥∥∥∥∥∑
vn

βvnζ
(µ2)
vn

∆
(µ2)
B

ρ̃Bvn −
∑
vn

βvnζ
(µ2)
vn

E[∆(µ2)
B ]

ρ̃Bvn

∥∥∥∥∥
1

, (B.19)

and ∆
(µ)
B =∆

∑
vn∈T (n)

δ (V )
βvnζ

(µ2)
vn and εB =

∑
vn /∈T (n)

δ (V )
λBvn . Further, using the simplification
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performed in (3.19), (3.21), and (3.22), and the concavity of the square-root function, we obtain,

E[S̃23] ≤
2

N2
23nδρB

N2∑
µ2=1

E[HB
0 ] +

(1− εB)

(1 + η)

√(
22nδρB

η
+ 1

)
E[H̃B] +

√
(1− εB)

(1 + η)

√
E[HB

0 ]

 ,

where H̃B =∆

∥∥∥∥∥∥ 1

(1− εB)

∑
vn

λBvn ρ̃
B
vn − pn

pk+l2

∑
vn

∑
a2,j>0

λBvn ρ̃
B
vn

(1− εB)
1{w2(a2,m2,µ2)=vn}

∥∥∥∥∥∥
1

. (B.20)

Using Proposition III.16, for any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) sufficiently small, and any n

sufficiently large, we have E
[
S̃23

]
≤ ϵ if k+l2

n log p > I(V ;RA)σ2 + log p−S(V )σ3 , where σ2, σ3 are

the auxiliary state defined in the statement of the theorem.

Analysis of S̃3: Due to the symmetry in S̃2 and S̃3, the analysis of S̃3 follows very similar

arguments as that of S̃2 and hence we obtain the following, for any ϵ ∈ (0, 1), any η, δ ∈ (0, 1)

sufficiently small, and any n sufficiently large, we have E
[
S̃3

]
≤ ϵ if S1 > I(U ;RB)σ1 + log p −

S(U)σ3 , where σ1, σ3 are the auxiliary state defined in the statement of the theorem.

Analysis of S̃4: We have

S̃4≤
1

N1N2

∑
µ1,µ2

∑
zn

Pn
Z|U+V (z

n|wn
0 )

∥∥∥∥√ρ⊗n
AB

(
Γ
A,(µ1)
0 ⊗ Γ

B,(µ2)
0

)√
ρ⊗n
AB

∥∥∥∥
1

≤ 1

N1N2

∑
µ1,µ2

∥∥∥∥√ρ⊗n
AB

(
Γ
A,(µ1)
0 ⊗ I

)√
ρ⊗n
AB

∥∥∥∥
1

+
1

N1N2

∑
µ1,µ2

∑
vn

∥∥∥∥√ρ⊗n
AB

(
Γ
A,(µ1)
0 ⊗B

(µ2)
vn

)√
ρ⊗n
AB

∥∥∥∥
1

,

(B.21)

where the inequalities above are obtained by a straight forward substitution and use of triangle

inequality. Further, since 0 ≤ Γ
A,(µ1)
0 ≤ I and 0 ≤ Γ

B,(µ2)
0 ≤ I, this simplifies the first term in

(B.21) as

1

N1N2

∑
µ1,µ2

∥∥∥∥√ρ⊗n
AB

(
Γ
A,(µ1)
0 ⊗ I

)√
ρ⊗n
AB

∥∥∥∥
1

=
1

N1

∑
µ1

∥∥∥∥√ρ⊗n
A

(
Γ
A,(µ1)
0

)√
ρ⊗n
A

∥∥∥∥
1

.

Similarly, the second term in (B.21) simplifies using Lemma III.1 as

1

N1N2

∑
µ1,µ2

∑
vn

∥∥∥∥√ρ⊗n
AB

(
Γ
A,(µ1)
0 ⊗B

(µ2)
vn

)√
ρ⊗n
AB

∥∥∥∥
1

≤ 1

N1

∑
µ1

∥∥∥∥√ρ⊗n
A

(
Γ
A,(µ1)
0

)√
ρ⊗n
A

∥∥∥∥
1

.
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Using these simplifications, we have

S̃4 ≤
2

N1

∑
µ1

∥∥∥∥√ρ⊗n
A

(
Γ
A,(µ1)
0

)√
ρ⊗n
A

∥∥∥∥
1

.

The above expression is similar to the one obtained in the simplification of S̃2 and hence we can

bound S̃4 using similar constraints as S̃2, for sufficiently large n.

B.9 Proof of Proposition III.32

We start by applying triangle inequality to obtain J1 ≤ J11 + J12, where

J11 =
∆
∑
zn,vn

∥∥∥∥∥∥
∑
un

√
ρ⊗n
AB

Λ̄A
un ⊗ Λ̄B

vn − 1

N1

N1∑
µ1=1

αunγ
(µ1)
un

λAun

Λ̄A
un ⊗ Λ̄B

vn

√ρ⊗n
ABP

n
Z|W (zn|un + vn)

∥∥∥∥∥∥
1

,

J12 =
∆
∑
zn,vn

∥∥∥∥∥∥ 1

N1

N1∑
µ1=1

∑
un

√
ρ⊗n
AB

(
αunγ

(µ1)
un

λAun

Λ̄A
un ⊗ Λ̄B

vn − γ
(µ1)
un Ā

(µ1)
un ⊗ Λ̄B

vn

)√
ρ⊗n
ABP

n
Z|W (zn|un + vn)

∥∥∥∥∥∥
1

,

Now with the intention of employing Lemma III.13, we express J11 as

J11 =

∥∥∥∥∥ ∑
un,vn,zn

λAB
un,vn ρ̂

AB
un,vn ⊗ ϕun,vn,zn

− 1

(1 + η)

pn

pk+l1N1

∑
µ1

∑
un,vn,zn

∑
a1,i>0

λAun1{w1(a1,m1,µ1)=un}
λAB
un,vn

λAun

ρ̂AB
un,vn ⊗ ϕun,vn,zn

∥∥∥∥∥∥
1

,

where the equality above is obtained by defining ϕun,vn,zn = Pn
Z|W (zn|un + vn) |vn⟩⟨vn| ⊗ |zn⟩⟨zn|

and using the definitions of αun , γ
(µ1)
un and ρ̂AB

un,vn , followed by using the triangle inequality for the

block diagonal operators. Note that the triangle inequality in this case becomes an equality.

Let us define Tun as

Tun =∆
∑
vn,zn

λAB
un,vn

λAun

ρ̂AB
un,vn ⊗ ϕun,vn,zn .

Note that in the above definition of Tun we have Tun ≥ 0 and Tr{Tun} = 1 for all un ∈ Fn
p . Further,

it contains all the elements in product form, and thus can be written as Tun =
⊗n

i=1 Tui . This
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simplifies J11 as

J11 =

∥∥∥∥∑
un

λAunTun − 1

(1 + η)

pn

pk+l1

1

N1

∑
µ1

∑
un

∑
a1,i>0

λAunTun1{w1(a1,m1,µ1)=un}

∥∥∥∥
1

.

Using Lemma III.13, we claim the following: for any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) sufficiently small,

and any n sufficiently large, we have E[J11] ≤ ϵ, if k+l1
n log p+ 1

n logN1 > I(U ;RZV )σ3 −S(U)σ3 +

log p, where σ3 is the auxiliary state defined in the statement of the theorem.

Now we consider the term corresponding to J12 and prove that its expectation with respect to

the Alice’s codebook is small. Recalling J12, we get

J12 ≤
1

N1

N1∑
µ1=1

∑
un,vn

∑
zn

Pn
Z|W (zn|un + vn)

∥∥∥∥∥
√
ρ⊗n
AB

(
αunγ

(µ1)
un

λAun

Λ̄A
un ⊗ Λ̄B

vn − γ
(µ1)
un Ā

(µ1)
un ⊗ Λ̄B

vn

)√
ρ⊗n
AB

∥∥∥∥∥
1

,

=
1

N1

N1∑
µ1=1

∑
un,vn

αunγ
(µ1)
un

∥∥∥∥√ρ⊗n
AB

((
1

λAun

Λ̄A
un −

√
ρ⊗n
A

−1

ρ̃Aun

√
ρ⊗n
A

−1
)
⊗ Λ̄B

vn

)√
ρ⊗n
AB

∥∥∥∥
1

,

where the inequality is obtained by using triangle and the next equality follows from the fact that∑
zn P

n
Z|W (zn|un + vn) = 1 for all un ∈ Un and vn ∈ Vn and using the definition of A

(µ1)
un . By

applying expectation of J12 over the Alice’s codebook, we get

E[J12] ≤
1

(1 + η)

∑
un

λAun

∑
vn

∥∥∥∥√ρ⊗n
AB

((
1

λAun

Λ̄A
un −

√
ρ⊗n
A

−1

ρ̃Aun

√
ρ⊗n
A

−1
)
⊗ Λ̄B

vn

)√
ρ⊗n
AB

∥∥∥∥
1

,

where we have used the fact that E[αunγ
(µ1)
un ] =

λA
un

(1+η) . To simplify the above equation, we employ

Lemma III.1 which completely discards the effect of Bob’s measurement. Since
∑

vn Λ̄
B
vn = I, from

Lemma III.1 we have for every un,

∑
vn

∥∥∥∥√ρ⊗n
AB

((
1

λAun

Λ̄A
un −

√
ρ⊗n
A

−1

ρ̃Aun

√
ρ⊗n
A

−1
)
⊗ Λ̄B

vn

)√
ρ⊗n
AB

∥∥∥∥
1

=

∥∥∥∥√ρ⊗n
A

(
1

λAun

Λ̄A
un −

√
ρ⊗n
A

−1

ρ̃Aun

√
ρ⊗n
A

−1
)√

ρ⊗n
A

∥∥∥∥
1

.

This simplifies E[J12] as

E[J12] ≤
1

(1 + η)

∑
un

λAun

∥∥∥∥√ρ⊗n
A

(
1

λAun

Λ̄A
un −

√
ρ⊗n
A

−1

ρ̃Aun

√
ρ⊗n
A

−1
)√

ρ⊗n
A

∥∥∥∥
1
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≤ 1

(1 + η)

∑
un /∈T (n)

δ (U)

λAun

∥∥ρ̂Aun

∥∥
1
+

1

(1 + η)

∑
un∈T (n)

δ (U)

λAun

∥∥(ρ̂Aun − ρ̃Aun

)∥∥
1
≤ εA + ϵ′J12 (B.22)

where the last inequality is obtained by repeated usage of the Average Gentle Measurement Lemma

and ϵ′J12 ↘ 0 as δ ↘ 0 (see (35) in Wilde et al. (2012) for details). This completes the proof.

B.10 Proof of Proposition III.33

Noting the similarity between J2 and the term S̃2 defined in the proof of Theorem III.10 (see

Section 3.3.3), we begin by further simplifying J2 using Lemma III.15. This gives us

J2 ≤
223nδρA

N1

N1∑
µ1=1

(
HA

0 +

√
(1− εA)

(1 + η)

√
HA

1 +HA
2 +HA

3

)
, where

HA
0 =∆

∣∣∣∆(µ1)
A − E[∆(µ1)

A ]
∣∣∣ , HA

1 =∆ Tr

{
(ΠρA −Πµ1

A )
∑
wn

λAun ρ̃Aun

}
,

HA
2 =∆

∥∥∥∥∑
un

λAun ρ̃Aun − (1− εA)
∑
un

αunγ
(µ1)
un

E[∆(µ1)
A ]

ρ̃Aun

∥∥∥∥
1

,

HA
3 =∆ (1− εA)

∥∥∥∥∑
un

αunγ
(µ1)
un

∆
(µ1)
A

ρ̃Aun −
∑
un

αunγ
(µ1)
un

E[∆(µ1)
A ]

ρ̃Aun

∥∥∥∥
1

,

and ∆
(µ1)
A =∆

∑
un∈T (n)

δ (U)
αunγ

(µ1)
un , εA =∆

∑
un /∈T (n)

δ (U)
λAun , and δρA(δ) ↘ 0 as δ ↘ 0. Further,

using the simplification performed in (3.19), (3.21), and (3.22), and the concavity of the square-

root function, we obtain,

E[J2] ≤
2

N1
23nδρA

N1∑
µ1=1

(
E[HA

0 ] +
(1− εA)

(1 + η)

√(
22nδρA

η
+ 1

)
E[H̃A] +

√
(1− εA)

(1 + η)

√
E[HA

0 ]

)
,

where

H̃A =∆
∥∥∥∥∑

un

λAun

(1− εA)
ρ̃Aun − pn

2nS1

∑
un

∑
a1,i>0

λAun

(1− εA)
ρ̃Aun1{w1(a1,m1,µ1)=un}

∥∥∥∥
1

.

The proof from here follows from Proposition III.16.
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B.11 Proof of Proposition III.34

We start by adding and subtracting the following terms within Q2

(i)
∑
un,vn

√
ρ⊗n
AB

(
Λ̄A
un ⊗ Λ̄B

vn
)√

ρ⊗n
ABP

n
Z|W (zn|un + vn),

(ii)
∑
un,vn

1

N2

N2∑
µ2=1

√
ρ⊗n
AB

(
Λ̄A
un ⊗ βvnζ

(µ2)
vn

λBvn
Λ̄B
vn

)√
ρ⊗n
ABP

n
Z|W (zn|un + vn),

(iii)
∑
un,vn

1

N1N2

∑
µ1,µ2

√
ρ⊗n
AB

(
γ
(µ1)
un A

(µ1)
un ⊗ βvnζ

(µ2)
vn

λBvn
Λ̄B
vn

)√
ρ⊗n
ABP

n
Z|W (zn|un + vn),

(iv)
∑
un,vn

1

N1N2

∑
µ1,µ2

√
ρ⊗n
AB

(
γ
(µ1)
un A

(µ1)
un ⊗ ζ

(µ2)
vn B̄

(µ2)
vn

)√
ρ⊗n
ABP

n
Z|W (zn|un + vn).

This gives us Q2 ≤ Q21 +Q22 +Q23 +Q24 +Q25, where

Q21 =
∆
∑
zn

∥∥∥∥∥∥
∑
un,vn

√
ρ⊗n
AB

((
1

N1

N1∑
µ1=1

γ
(µ1)
un A

(µ1)
un

)
⊗ Λ̄B

vn − Λ̄A
un ⊗ Λ̄B

vn

)√
ρ⊗n
ABP

n
Z|W (zn|un + vn)

∥∥∥∥∥∥
1

,

Q22 =
∆
∑
zn

∥∥∥∥∥∥
∑
un,vn

√
ρ⊗n
AB

(
Λ̄A
un ⊗ Λ̄B

vn − Λ̄A
un ⊗

(
1

N2

N2∑
µ2=1

βvnζ
(µ2)
vn

λBvn
Λ̄B
vn

))√
ρ⊗n
ABP

n
Z|W (zn|un + vn)

∥∥∥∥∥∥
1

,

Q23 =
∆
∑
zn

∥∥∥∥∥∑
un,vn

√
ρ⊗n
AB

((
Λ̄A
un−

1

N1

∑
µ1

γ
(µ1)
un A

(µ1)
un

)
⊗
(

1

N2

∑
µ2

βvnζ
(µ2)
vn

λBvn
Λ̄B
vn

))√
ρ⊗n
ABP

n
Z|W (zn|un+vn)

∥∥∥∥∥
1

,

Q24 =
∆
∑
zn

∥∥∥∥∥∑
un,vn

1

N1N2

∑
µ1,µ2

√
ρ⊗n
AB

(
γ
(µ1)
un A

(µ1)
un ⊗

(
βvnζ

(µ2)
vn

λBvn
Λ̄B
vn− ζ

(µ2)
vn B̄

(µ2)
vn

))√
ρ⊗n
ABP

n
Z|W (zn|un+ vn)

∥∥∥∥∥
1

,

Q25 =
∆
∑
zn

∥∥∥∥∥∑
un,vn

1

N1N2

∑
µ1,µ2

√
ρ⊗n
AB

(
γ
(µ1)
un A

(µ1)
un ⊗

(
ζ
(µ2)
vn B̄

(µ2)
vn − ζ

(µ2)
vn B

(µ2)
vn

))√
ρ⊗n
ABP

n
Z|W (zn|un+vn)

∥∥∥∥∥
1

.

We start by analyzing Q21. Note that Q21 is exactly same as Q1 and hence using the same rate

constraints as Q1, this term can be bounded. Next, consider Q22. Substitution of ζ
(µ2)
vn gives Q22 =

∥∥∥∥ ∑
un,vn,zn

λAB
un,vn ρ̂

AB
un,vn⊗ ψun,vn,zn−

1

N2

∑
µ2

∑
un,vn,zn

βvn
∑

a2,j>0

1{w2(a2,m2,µ2)=vn}
λAB
un,vn

λBvn
ρ̂AB
un,vn⊗ ψun,vn,zn

∥∥∥∥
1

,
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where ψun,vn,zn is defined as ψun,vn,zn = Pn
Z|W (zn|un+vn) |zn⟩⟨zn| , and the equality uses the triangle

inequality for block operators. Now we use Lemma III.13 to bound Q22. Let

Tvn =∆
∑
un,zn

λAB
un,vn

λBvn
ρ̂AB
un,vn ⊗ ψun,vn,zn .

Note that Tvn can be written in tensor product form as Tvn =
⊗n

i=1 Tvi . This simplifies Q22 as

Q22 =

∥∥∥∥∑
vn

λBvnTvn − 1

(1 + η)

pn

2nS2N2

∑
µ2

∑
vn

∑
a2,j>0

λBvnTvn1{w2(a2,m2,µ2)=vn}

∥∥∥∥
1

.

Application of Lemma III.13 gives the following: for any ϵ ∈ (0, 1), any η, δ ∈ (0, 1) sufficiently

small, and any n sufficiently large, we have E[Q22] ≤ ϵ if

k + l2
n

log p+
1

n
logN2 > I(V ;RZ)σ3 − S(V )σ3 + log p.

Now, we move on to consider Q23. Taking expectation with respect G, h
(µ1)
1 , h

(µ2)
2 gives

E [Q23] ≤ E

∑
zn,vn

1

N2

N2∑
µ2=1

βvnζ
(µ2)
vn

λBvn

∥∥∥∥∥∑
un

√
ρ⊗n
AB

(
Λ̄A
un ⊗ Λ̄B

vn
)√

ρ⊗n
ABP

n
Z|W (zn|un + vn)

−
∑
un

√
ρ⊗n
AB

(
1

N1

∑
µ1

γ
(µ1)
un A

(µ1)
un ⊗ Λ̄B

vn

)√
ρ⊗n
ABP

n
Z|W (zn|un + vn)

∥∥∥∥∥
1


= EG,h1

∑
zn,vn

1

N2

N2∑
µ2=1

Eh2|G

[
βvnζ

(µ2)
vn |G

]
λBvn

∥∥∥∥∥∑
un

√
ρ⊗n
AB

(
Λ̄A
un ⊗ Λ̄B

vn
)√

ρ⊗n
ABP

n
Z|W (zn|un + vn)

−
∑
un

√
ρ⊗n
AB

(
1

N1

∑
µ1

γ
(µ1)
un A

(µ1)
un ⊗ Λ̄B

vn

)√
ρ⊗n
ABP

n
Z|W (zn|un + vn)

∥∥∥∥∥
1


= EG,h1

[∑
zn,vn

1

(1 + η)

∥∥∥∥∥∑
un

√
ρ⊗n
AB

(
Λ̄A
un ⊗ Λ̄B

vn
)√

ρ⊗n
ABP

n
Z|W (zn|un + vn)

−
∑
un

√
ρ⊗n
AB

(
1

N1

∑
µ1

γ
(µ1)
un A

(µ1)
un ⊗ Λ̄B

vn

)√
ρ⊗n
ABP

n
Z|W (zn|un + vn)

∥∥∥∥∥
1

 = E
[

J

(1 + η)

]
,

where the inequality above is obtained by using the triangle inequality, and the first equality follows

from h
(µ1)
1 and h

(µ2)
2 being generated independently. The last equality follows from the definition
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of J as in (3.38). Hence, we use the result obtained in bounding E[J ]. Next, we consider Q24.

Q24 ≤
∑
un,vn

∑
zn

Pn
Z|W (zn|un + vn)

∥∥∥∥∥ 1

N1N2

∑
µ1,µ2

√
ρ⊗n
AB

(
γ
(µ1)
un A

(µ1)
un ⊗ βvnζ

(µ2)
vn

λBvn
Λ̄B
vn

)√
ρ⊗n
AB

− 1

N1N2

∑
µ1,µ2

√
ρ⊗n
AB

(
γ
(µ1)
un A

(µ1)
un ⊗ βvnζ

(µ2)
vn

(√
ρB

−1ρ̃Bvn
√
ρB

−1
))√

ρ⊗n
AB

∥∥∥∥∥
1

≤ 1

N2

∑
µ2

∑
un,vn

βvnζ
(µ2)
vn

∥∥∥∥∥
√
ρ⊗n
AB

(
1

N1

∑
µ1

γ
(µ1)
un A

(µ1)
un ⊗ 1

λBvn
Λ̄B
vn

)√
ρ⊗n
AB

−
√
ρ⊗n
AB

(
1

N1

∑
µ1

γ
(µ1)
un A

(µ1)
un ⊗

(√
ρB

−1ρ̃Bvn
√
ρB

−1
))√

ρ⊗n
AB

∥∥∥∥∥
1

,

where the inequalities follow from the definition of B̄
(µ2)
vn and using multiple triangle inequalities.

Taking expectation of Q24 with respect to h
(µ2)
2 , we get

E [Q24] ≤ EG,h1

[ ∑
un,vn

λBvn

(1 + η)

∥∥∥∥∥
√
ρ⊗n
AB

(
1

N1

∑
µ1

γ
(µ1)
un A

(µ1)
un ⊗

( 1

λBvn
Λ̄B
vn −√

ρB
−1ρ̃Bvn

√
ρB

−1
))√

ρ⊗n
AB

]∥∥∥∥∥
≤ EG,h1

[∑
vn

λBvn

(1 + η)

∥∥∥∥∥
√
ρ⊗n
B

(
1

λBvn
Λ̄B
vn −√

ρB
−1ρ̃Bvn

√
ρB

−1

)√
ρ⊗n
B

∥∥∥∥∥
1

]
=

∑
vn /∈T (n)

δ (V )

λBvn

(1 + η)

∥∥ρ̂Bvn∥∥1 + ∑
vn∈T (n)

δ (V )

λBvn

(1 + η)

∥∥ρ̂Bvn − ρ̃Bvn
∥∥
1
≤ εB + ϵ′Q24

, (B.23)

where the second inequality follows by using Lemma III.1 and the fact that 1
N1

∑
µ1

∑
un γ

(µ1)
un A

(µ1)
un ≤

I, and the last inequality follows by applying the Average Gentle Measurement Lemma repeated

and ϵ′Q24
↘ 0 as δ ↘ 0 (see (35) in Wilde et al. (2012) for more details). This completes the proof

for the term Q24. Finally, we move onto considering Q25. Simplifying Q25 gives

Q25 ≤
1

N1N2

∑
µ1,µ2

∑
zn

∑
un,vn

Pn
Z|W (zn|un + vn)

∥∥∥∥√ρ⊗n
AB

(
γ
(µ1)
un A

(µ1)
un ⊗

(
ζ
(µ2)
vn B̄

(µ2)
vn − ζ

(µ2)
vn B

(µ2)
vn

))√
ρ⊗n
AB

∥∥∥∥
1

≤ 1

N2

∑
µ2

∑
vn

∥∥∥∥√ρ⊗n
B

(
ζ
(µ2)
vn B̄

(µ2)
vn −ζ(µ2)

vn B
(µ2)
vn

)√
ρ⊗n
B

∥∥∥∥
1

= S̃23,

where the first inequality uses traingle inequality and the second inequality uses Lemma III.1 to

remove the affect of approximating Alice’s POVM on Bob’s approximation, and S̃23 is defined in

(B.17) in the proof of Proposition III.31. Therefore, we have the following: for any ϵ ∈ (0, 1), any

η, δ ∈ (0, 1) sufficiently small, and any n sufficiently large, we have E[Q25] ≤ ϵ, if S2 ≥ I(V ;RA)σ2−
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S(V )σ3 + log p. This completes the proof for Q25 and hence for all the terms corresponding to Q2.
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APPENDIX C

Proofs of Chapter IV

C.1 Proof of Lemma IV.8

We begin by observing the fact that |σ̂un⟩AE and |σ̃un⟩AE are purification of the isometric

versions of states ρ̂Aun and
ρ̃Aun

Tr{ρ̂Aun}
, respectively. More precisely,

TrA |σ̂un⟩⟨σ̂un |AE = V E ρ̂Aun(V E)† and TrA |σ̃un⟩⟨σ̂un |AE =
V E ρ̃Aun(V E)†

Tr
{
ρ̃Aun

} ,

where we use the fact that

∣∣Ψρ⊗n

〉ABCR
=∆ V E

∣∣Ψρ⊗n

〉AA′
,

for some isometry V E , and
∣∣Ψρ⊗n

〉AA′
is the canonical purification of ρ⊗n

A . Recall that ρ̂Aun is the

post-measurement state of the canonical reference obtained after observing the classical outcome

un, and thus ρ̂Aun ∈ D(H⊗n
E ). Also, note that the Hilbert space H⊗

A, corresponding to the subsystem

An purifies the states ρ̂Aun and ρ̃Aun . This implies, from Uhlmann’s theorem, there exists a unitary

Ur(l) acting on the subsystem An, such that, for un = Un(l), we have

F (ρ̂Aun ,
ρ̃Aun

Tr
{
ρ̃Aun

}) = F

(
V E ρ̂Aun(V E)†,

V E ρ̃Aun(V E)†

Tr
{
ρ̃Aun

} )
= F (|σ̂un⟩AE , Ur(l) |σ̃un⟩AE).
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Finally, using the relation (Wilde, 2013a, Theorem 9.3.1), and the inequality

∥ρ̂Aun − ρ̃Aun

Tr
{
ρ̃Aun

}∥1 ≤ ∥ρ̂Aun − ρ̃Aun∥1 + (1− Tr
{
ρ̃Aun

}
),

we obtain the desired result. An identical analysis for |σ̂vn⟩BF and |σ̃vn⟩BF produces the second

statement of the lemma.

C.2 Proof of Lemma IV.9

Observe that

NA(ρA) =
2nR̃1∑
l=1

γ TrEAg

{
(IE ⊗ UA

p (l)UA
r (l)

√
Al)Ψ

ABCR
ρ⊗n (IE ⊗ UA

p (l)UA
r (l)

√
Al)

†
}
,

where E denotes the subsystems corresponding to B,C, and R. Using the triangle inequality and

monotonicity of trace distance, we obtain

∥∥∥NA(ρA)− |0⟩⟨0|Ap

∥∥∥
1
1{sP} ≤ T1 + T2 + T3,

where

T1 =
∆
∑
l

γ
∥∥∥(I ⊗ UA

p (l))
[
Tr
(
ρ̃Al
)
(I ⊗ UA

r (l))σ̃AE
l (I ⊗ UA

r (l))† − σ̂AE
l

]
(I ⊗ UA

p (l))†
∥∥∥
1
,

T2 =
∆ 1−

∑
l

γ Tr
{
ρ̃Al
}
, T3 =

∆
∑
l

γ
∥∥∥TrAg

{
UA
p (l)σ̂Al (U

A
p (l))†

}
− |0⟩⟨0|Ap

∥∥∥
1

(C.1)

Further, using the trace distance and fidelity relation (Wilde, 2013a, Theorem 9.3.1)

T1 ≤ T2 +
∑
l

γ
∥∥∥(I ⊗ UA

r (l))σ̃AE
l (I ⊗ UA

r (l))† − σ̂AE
l

∥∥∥
1

≤ T2 + 2
√
1− F ((I ⊗ UA

r (l))|σ̃AE
l ⟩, |σ̂AE

l ⟩). (C.2)

Using the result from Lemma IV.8 and (4.5), and taking expectation, we obtain

E [T1 + T2] ≤ 2E[T2] + 2

√
E
[∑

l

γ∥ρ̂Al − ρ̃Al ∥1
]
+ E[T2] ≤ 2ϵ+ 2

√
2ϵ (C.3)
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for all sufficiently large n and all sufficiently small η, δ > 0. Similarly, E[T3] can be upper bounded

from (Devetak , 2005a, Lemma 1).

C.3 Proof of Lemma IV.10

Let ΦAgApARL =∆ (I ⊗ V )ΨARA

ρ⊗n
A

(I ⊗ V )†. Note that,

EA

[
[F (ΦAp , |0⟩⟨0|Ap

)]
]
≥
(
1− 1

2
EA

[
∥NA(ρA)− |0⟩⟨0|Ap

∥1
])2

≥ 1− EA

[
∥NA(ρA)− |0⟩⟨0|Ap

∥1
]
.

This means that there exists an ωAgARL ∈ D(HAg ⊗H⊗n
A ⊗HL) such that

F (ΦAp , |0⟩⟨0|Ap
) = F (ΦAgApARL, ωAgARL ⊗ |0⟩⟨0|Ap

),

which gives

EA

[
∥ΦAgApARL − ωAgARL ⊗ |0⟩⟨0|Ap

∥1
]
≤ 2

√
EA

[
∥NA(ρA)− |0⟩⟨0|Ap

∥1
]
.

Using monotonicity of trace distance, we have

EA

[
∥ΦAgARL − ωAgARL∥1

]
≤ 2

√
EA

[
∥NA(ρA)− |0⟩⟨0|Ap

∥1
]

(C.4)

Therefore, we have the result

EA

[
∥ΦApAgARL − ΦARAgL ⊗ |0⟩⟨0|Ap

∥1
]

≤ EA

[
∥ΦApAgARL − ωAgARL ⊗ |0⟩⟨0|Ap

∥1
]
+ EA

[
∥ωAgARL − ΦAgARL∥1

]
≤ 4

√
EA

[
∥NA(ρA)− |0⟩⟨0|Ap

∥1
]
. (C.5)

C.4 Proof of Proposition IV.14

We begin by defining J as

J =∆
{
∃(l̃, k̃, i, j) : (Un(l), V n(k)) ∈ B1(i)× B2(j), (U

n(l̃), V n(k̃)) ∈ B1(i)× B2(j),
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(Un(l̃), V n(k̃)) ∈ T (n)
δ (U, V )

}
.

Using this, consider the following simplification:

∥ξTp − ξ
Tp

b ∥1 ≤
∑
l,k

γlζk1{(l,k)̸=d(l,k)}2 ∥Ψ̃ρ⊗n∥1︸ ︷︷ ︸
≤1

≤ 2
∑
l,k

γlζk1{J } =
2

2n(R̃1+R̃2)

∑
un,vn

∑
l,k

1{Un(l)=un,V n(k)=vn}1{J }.

Note that, for every (un, vn, l, k), we have

E
[
1{Un(l)=un,V n(k)=vn}1{J }

]
≤

∑
(ũn,ṽn)∈T (n)

δ (U,V )

∑
l̃,k̃

∑
i,j

E
[
1{Un(l) = un, V n(k) = vn}1{Un(l̃) = ũn, V n(k̃) = ṽn}

×1{(un, vn) ∈ B1(i)× B2(j)}1{(ũn, ṽn) ∈ B1(i)× B2(j)}]

≤ λAunλBvn

(1− ε)2(1− ε′)2
2−n(I(U ;V )−δ1)

[
2n(R̃1−R1)2n(R̃2−R2) + 2n(R̃1−R1) + 2n(R̃2−R2)

+ 2−n(S(U)−δ1)2nR̃12n(R̃2−R2) + 2−n(S(V )−δ1)2nR̃22n(R̃1−R1)
]

≤ 5
λAunλBvn

(1− ε)2(1− ε′)2
2−n(I(U ;V )−2δ1)2n(R̃1−R1)2n(R̃2−R2),

where δ1 ↘ 0 as δ ↘ 0. The first inequality follows from the union bound. The second inequality

follows by evaluating the expectation of the indicator functions and the last inequality follows from

the inequalities R̃1 < S(U) and R̃2 < S(V ). This implies,

E
[
∥ξTp − ξ

Tp

b ∥1
]
≤ 10

(1− ε)2(1− ε′)2
2−n(I(U ;V )−2δ1)2n(R̃1−R1)2n(R̃2−R2),

which completes the proof.
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APPENDIX D

Proofs of Chapter V

D.1 Proof of Lemma V.4

Note that

|ψρ⟩ =∆ (IR ⊗
√
ρB) |Γ⟩RB , |ψσ⟩ =∆ (IR ⊗

√
σB) |Γ⟩RB ,

where |Γ⟩RB is the unnormalized maximally entangled pure state: |Γ⟩RB =
∑

i |i⟩R |i⟩B. Consider

the fidelity between the canonical purification states |ψρ⟩ and |ψσ⟩:

F (|ψρ⟩ , |ψσ⟩)
a
= | ⟨ψρ|ψσ⟩ |2 = | ⟨Γ|RB (IR ⊗

√
ρB

√
σB) |Γ⟩RB |2,

b
= |Tr

(√
ρB

√
σB
)
|2

c
≥
(
1− 1

2

∥∥ρB − σB
∥∥
1

)2

≥ 1−
∥∥ρB − σB

∥∥
1
,

where (a) follows from the definition of fidelity for a pure state, (b) follows from the definition of

trace, (c) follows from the Power-Størmer inequality (Powers and Størmer , 1970, Lemma 4.1), i.e.,

for any positive semi-definite matrices A and B, we have

Tr(A) + Tr(B)− ∥A−B∥1 ≤ 2Tr
(√

A
√
B
)
.
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D.2 Proof of Lemma V.19

We first provide the following lemma.

Lemma D.1 (Covering superposition states). Consider a finite set U , and a pair of collections

{ρu}u∈U and {σu}u∈U where ρu, σu ∈ D(HA) for all u ∈ U . Let {Ψρ
u}u∈U and {Ψσ

u}u∈U acting on

D(HR1 ⊗HA) and D(HR2 ⊗HA) be some purifications of {ρu}u∈U and {σu}u∈U , respectively, with

dim(HR1) ≤ dim(HR2). Then there exists a collection of isometric operators {Ur(u)}u∈U acting on

HR1 → HR2 and phases {δu} such that

F ((UR ⊗ IA) |τρ⟩ , |τσ⟩) = F (|τρ⟩ , (UR ⊗ IA)
† |τσ⟩) ≥ 1−

∑
u∈U

1

|U|
∥ρu − σu∥1, (D.1)

where

UR =∆
∑
u∈U

e−iδuUr(u)⊗ |u⟩⟨u| , |τρ⟩ =∆
∑
u∈U

1√
|U|

|ψρ
u⟩ ⊗ |u⟩ , |τσ⟩ =∆

∑
u∈U

1√
|U|

|ψσ
u⟩ ⊗ |u⟩ .

Proof. We provide a proof in Appendix D.3.

Now, with the intention of employing the above lemma we perform the following identification.

Identify U with M×K, ρu with ρ̂BR
m,k, σu with ρ̃BR

m,k, |ψ
ρ
u⟩ with (I⊗Mm,k)√

λm,k
|ψ⊗n

ρ ⟩Bn
RBn

, and |ψσ
u⟩ with

(I⊗
√

Am,k)√
δm,k

|ψ⊗n
ρ ⟩Bn

RBn
. Note that the last two identifications are, in fact, the purifications of ρ̂BR

m,k

and ρ̃BR
m,k/Tr

(
ρ̃BR
m,k

)
, respectively as

TrE

(
(I ⊗Mm,k)√

λm,k

Ψ⊗n
ρB

(I ⊗M †
m,k)√

λm,k

)
= ρ̂BR

m,k, TrB

(
(I ⊗

√
Am,k)√

δm,k

Ψ⊗n
ρB

(I ⊗
√
Am,k)√

δm,k

)
=

ρ̃BR
m,k

Tr
(
ρ̃BR
m,k

) .
Using Lemma D.1, we obtain

F (|σ̂⟩BREMK , (IBR
⊗ UR)|σ̃⟩BRBMK)

≥ 1− 1

(1−
√
ϵ)|M||K|

∑
m,k

∥∥∥∥ρ̂BR
m,k −

ρ̃BR
m,k

Tr
(
ρ̃BR
m,k

)∥∥∥∥
1

≥ 1

(1−
√
ϵ)|M||K|

∑
m,k

Tr
{
ρ̃BR
m,k

}
− 1

(1−
√
ϵ)|M||K|

∑
m,k

∥∥∥∥ρ̂BR
m,k − ρ̃BR

m,k

∥∥∥∥
1

≥ 1− 4
√
ϵ, (D.2)
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where the last inequality follows from using the bounds in (5.29) and (5.30).

D.3 Proof of Lemma D.1

Consider the following:

F (|τρ⟩ , (UR ⊗ I)† |τσ⟩)=

∣∣∣∣∣∑
u∈U

1

|U|
e−iδu ⟨ψρ

u|U †
r (u) |ψσ

u⟩

∣∣∣∣∣
2

a
=

(∑
u∈U

1

|U|

∣∣∣⟨ψρ
u|U †

r (u) |ψσ
u⟩
∣∣∣)2

b
=

(∑
u∈U

1

|U|
√
F (ρu, σu)

)2

c
≥

(
1− 1

2

∑
u∈U

1

|U|
∥ρu − σu∥1

)2

≥ 1−
∑
u∈U

1

|U|
∥ρu − σu∥1,

where (a) follows by choosing δu such that e−iδu ⟨ψρ
u|U †

r (u) |ψσ
u⟩ = | ⟨ψρ

u|U †
r (u) |ψσ

u⟩ |, (b) follows

from Uhlmann’s theorem (Wilde, 2011, Theorem 9.2.1), i.e., there exists some isometry Ur(u) such

that F (ρu, σu) = F (Ur(u) |ψρ⟩ , |ψσ⟩), and (c) follows from Lemma V.3.

D.4 Proof of Proposition V.20

We begin by defining indexing functions f (m) : [0,K ′
m − 1] → I(m)

E , for each m ∈ M′, that

uniquely map each element of the [0,K ′
m − 1] to the set I(m)

E in a monotonic fashion. Let g(m) :

I(m)
E → [0,K ′

m − 1] be the inverse of f (m), for each m ∈ M′. Define the transformed vectors

corresponding to the collections {χ(m)
k } and {ϕ(m)

k } as

|χ̂(m)
s ⟩ =∆ c

K′
m−1∑
j=0

e
2πijs

K′
m |χ(m)

f (m)(j)
⟩ and |ϕ̂(m)

s ⟩ =∆ c

K′
m−1∑
j=0

e
2πijs

K′
m |ϕ(m)

f (m)(j)
⟩,

for s ∈ [0,K ′
m − 1]. It follows from basic algebra that, for all m ∈ M′,

1

K ′
m

K′
m−1∑
s=0

⟨ϕ̂(m)
s |χ̂(m)

s ⟩ = c2
K′

m−1∑
j=0

⟨ϕ(m)

f (m)(j)
|χ(m)

f (m)(j)
⟩ = c2

∑
k∈I(m)

E

⟨ϕ(m)
k |χ(m)

k ⟩ = c2
∑

k∈I(m)
E

Tr
{
Ξ
(m)
k τ

(m)
k

}
,
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where the last inequality follows from (5.47). Noting that the right hand side is a real number, we

infer, for all m ∈ M′, there exists at least one value of sm ∈ [0,K ′
m− 1] that follows the inequality:

eiθ̂m⟨ϕ̂(m)
sm |χ̂(m)

sm ⟩ ≥ c2
∑

k∈I(m)
E

⟨ϕ(m)
k |χ(m)

k ⟩, for some phase θ̂m.

Observe that,

⟨ϕ̂(m)
sm |χ̂(m)

sm ⟩ = c2
∑

k∈I(m)
E

∑
k′∈I(m)

E

e
2πi(g(m)(k)−g(m)(k′))sm

K′
m ⟨ϕ(m)

k′ |χ(m)
k ⟩,

for all m ∈ M′. Choosing α
(m)
k = 2πg(m)(k)sm

K′
m

and β
(m)
k = 2πg(m)(k)sm

K′
m

+ θ̂m, we obtain

1

M ′

∑
m∈M′

⟨ϕm|χm⟩ ≥ c2

M ′

∑
m∈M′

∑
k∈I(m)

E

⟨ϕ(m)
k |χ(m)

k ⟩ = c2

M ′

∑
m∈M′

∑
k∈I(m)

E

Tr
{
Ξ
(m)
k τ

(m)
k

}
≥ 1− 2

√
ϵ,

where the last inequality uses (5.31) and substitutes the value of c, which completes the proof.

D.5 Proof of Lemma V.22

Here we follow arguments similar to the proof of (Cuff , 2013, Lemma VI.5). We begin by

defining I ′
ϵ (removing the relaxation in the rate) as, for all ϵ ≥ 0,

I ′
ϵ =
∆ {R : ∃ ρAR ∈ Sϵ(ρ

B,NW ) such that R ≥ Ic(NW , ρ
AR)
}
, (D.3)

and note from Cuff (2013) that

⋂
ϵ>0

Iϵ ⊆ Closure

(⋂
ϵ>0

I ′
ϵ

)
.

Now we prove the following:

S0(ρ
B,NW ) =

⋂
ϵ>0

Sϵ(ρ
B,NW ). (D.4)
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S0(ρ
B,NW ) ⊆

⋂
ϵ>0 Sϵ(ρ

B,NW ) is straightforward. To show the other direction, consider any

ρAR
1 ∈

⋂
ϵ>0 Sϵ(ρ

B,NW ). This means, for all ϵ > 0,

∥NW (ρAR
1 )− ρBR∥1 ≤ ϵ =⇒ ∥NW (ρAR

1 )− ρBR∥1 = 0 =⇒ NW (ρAR
1 ) = ρBR , (D.5)

where the second implication follows from the definition of a metric, and hence ρAR
1 ∈ S0(ρ

B,NW )

and (D.4) is true. Observe that, since the intersection of decreasing sequence of non-empty closed

and bounded sets of a compact (finite-dimensional) metric space is non-empty, S0(ρ
B,NW ) is non-

empty. Therefore, using the continuity of f(ρAR) = Ic(NW , ρ
AR), and the fact that Sϵ are decreasing

non-empty closed and bounded subsets of a compact (finite-dimensional) metric space gives

f(S0(ρ
B,NW )) =

⋂
ϵ>0

f(Sϵ(ρ
B,NW )).

Noting that the images f(Sϵ(ρ
B,NW )) and f(S0(ρ

B,NW )) characterize the rate regions I ′
ϵ and I0,

respectively, and the fact that I0 is closed completes the proof.
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APPENDIX E

Proofs of Chapter VI

E.1 Characterization of Certain High Probable Subspaces

In this appendix, we characterize certain high probability subspaces of tensor product quantum

states. The statements we prove here are colloquially referred to as ‘pinching’ Wilde (2013a) in the

literature. We prove statements in a form that can be used for use in the proof of both Theorems

VI.3, Lemma E.1. We begin with definitions of typical and conditional typical projectors. We adopt

strong (frequency) typicality. All statements hold for most of the variants of notion of typicality.

For concreteness, the reader may refer to (Pradhan et al., 2021, App. A).

Lemma E.1. Suppose (i) A,B are finite sets, (ii) pAB is a PMF on A×B, (iii) (ρb ∈ D(H) : b ∈ B)

is a collection of density operators, ρa =∆
∑

b∈B pB|A(b|a)ρb for a ∈ A and ρ =
∑
a∈A

pA(a)ρa =∑
b∈B

pB(b)ρb. There exists a strictly positive µ > 0, whose value depends only on pAB, such that for

every δ > 0, there exists a N(δ) ∈ N such that for all n ≥ N(δ), we have

Tr
(
Πδ

ρΠ
δ
anΠ

δ
ρρbn

)
≥ 1− exp{−nλδ2}

whenever (an, bn) ∈ Tn
δ
4

(pAB) where Π
δ
an is the conditional typical projector of ρan = ⊗n

t=1ρat (Wilde,

2013a, Defn. 15.2.4) and Πδ
ρ is the unconditional typical projector (Wilde, 2013a, Defn. 15.1.3) of

ρ⊗n .
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Proof. We rename A = V, B = X , pAB = pV X , a as v and b as x. We have

Tr
(
Πδ

ρΠ
δ
vnΠ

δ
ρρxn

)
= Tr

(
Πδ

ρΠ
δ
vnρxnΠδ

ρ

)
(E.1)

≥ Tr
(
Πδ

vnρxn

)
− 1

2

∥∥∥ρxn −Πδ
ρρxnΠδ

ρ

∥∥∥ . (E.2)

In the following we derive a lower bound on Tr
(
Πδ

vnρxn

)
and derive an upper bound on∥∥ρxn −Πδ

ρρxnΠδ
ρ

∥∥. Toward the deriving the former, we recall that we have (vn, xn) ∈ Tδ/2
n(pV X).

Let us define:

pY |XV (y|x, v) :=
〈
ey|v|ρx|ey|v

∣∣ey|v|ρx|ey|v〉 , (E.3)

for all (x, v, y) ∈ X × V × Y.

Clearly, we have pY |XV (y|x, v) ≥ 0, and

∑
y∈Y

pY |XV (y|x, v) =
∑
y∈Y

〈
ey|v|ρx|ey|v

∣∣ey|v|ρx|ey|v〉 = Tr(ρx) = 1.

Hence we see that pY |XV is a stochastic matrix.

Next we note that

∑
x∈X

pY |XV (y|x, v)pXV (x, v) =
∑
x∈X

pXV (x, v)
〈
ey|v|ρx|ey|v

∣∣ey|v|ρx|ey|v〉
= pV (v)

〈
ey|v|

∑
x∈X

pX|V (x|v)ρx|ey|v

∣∣∣∣∣ey|v|∑
x∈X

pX|V (x|v)ρx|ey|v

〉

= pV (v)
〈
ey|v|ρv|ey|v

∣∣ey|v|ρv|ey|v〉 = pV (v)qY |V (y|v), (E.4)

where we have used the spectral decomposition of ρv.

Observe that if (xn, vn) ∈ Tn
δ/4(pXV pY |XV ), and yn ∈ Tn

δ (pXV pY |XV |xn, vn), then we have

(xn, vn, yn) ∈ Tn
δ (pXV pY |XV ). This implies that we have (vn, yn) ∈ Tn

δ (pV Y ), where pV Y is the

marginal of pXV pY |XV . Using this and (E.4), we see that (vn, yn) ∈ Tn
δ (pV qY |V ). In summary, we

see that if (xn, vn) ∈ Tδ/4(pXV ), then we have

Tn
δ (pXV pY |XV |xn, vn) ⊆

{
yn : (vn, yn) ∈ Tn

δ (pV qY |V )
}
.
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We are now set to provide the promised lower bound. Consider

Tr(Πvnρxn) = Tr

 ∑
yn:(vn,yn)∈Tn

δ (pV qY |V )

n⊗
t=1

∣∣eyt|vt〉 〈eyt|vt∣∣
 n⊗

j=1

ρxj

 (E.5)

= Tr

 ∑
yn:(vn,yn)∈Tn

δ (pV qY |V )

n⊗
t=1

∣∣eyt|vt〉 〈eyt|vt∣∣ ρxt

 (E.6)

=
∑

yn:(vn,yn)∈Tn
δ (pV qY |V )

n∏
t=1

〈
eyt|vt |ρxt |eyt|vt

∣∣eyt|vt |ρxt |eyt|vt
〉

(E.7)

≥
∑

yn∈Tn
δ (pXV pY |XV |xn,vn))

n∏
t=1

pY |XV (yt|xt, vt) (E.8)

≥ 1− 2|X ||Y||V| exp
{
−2nδ2pXV Y (x

∗, v∗, y∗)

4(log(|X ||Y||V|))2

}
, (E.9)

where we used the definition (E.3) in the last equality.

We next provide the upper bound. Note from the Gentle measurements lemma (Wilde, 2013a,

Lemma 9.4.2), we have ∥ρxn −Πδ
ρρxnΠδ

ρ|| ≤ 3
√
ϵ if Tr

(
Πδ

ρρxn

)
≥ 1− ϵ. In the following we provide

a lower bound on Tr
(
Πδ

ρρxn

)
. Recall that Πδ

ρ =
∑

yn∈Tn
δ (sY )

⊗n
t=1 |gyt⟩ ⟨gyt |, where

ρ =
∑
y∈Y

sY (y) |gy⟩ ⟨gy| ,

is the spectral decomposition of ρ, and ρ =
∑

x∈X pX(x)ρx. Let p̂Y |X(y|x) := ⟨gy|ρx|gy|gy|ρx|gy⟩,

for all (x, y) ∈ X × Y. Note that p̂Y |X is not related to pY |X defined previously. We note that

p̂Y |X(y|x) ≥ 0, and
∑

y∈Y p̂Y |X(y|x) =
∑

y∈Y ⟨gy|ρx|gy|gy|ρx|gy⟩ = Tr(ρx) = 1 for all x ∈ X . Thus

we see that p̂Y |X is a stochastic matrix. It can also be noted that

∑
x∈X

p̂Y |X(y|x)pX(x) =

〈
gy|
∑
x∈X

pX(x)ρx|gy

∣∣∣∣∣gy|∑
x∈X

pX(x)ρx|gy

〉
= ⟨gy|ρ|gy|gy|ρ|gy⟩ = sY (y),

for all y ∈ Y. This implies that the condition yn ∈ Tn
δ (sY ) is equivalent to the condition

yn ∈ Tn
δ (p̂Y ), where p̂Y (y) =

∑
x∈X p̂Y |X(y|x)pX(x). Moreover, if xn ∈ Tn

δ/2(pX), and yn ∈

Tn
δ (pX p̂Y |X |xn), then we have (xn, yn) ∈ Tn

δ (pX p̂Y |X). Consequently, we have yn ∈ Tn
δ (p̂Y ), which

in turn implies that yn ∈ Tn
δ (sY ). In essence, we have that if xn ∈ Tn

δ/2(pX) then Tn
δ (pX p̂Y |X |xn) ⊆
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Tn
δ (sY ). Now we are set to provide the lower bound on Tr

(
Πδ

ρρxn

)
as follows:

Tr
(
Πδ

ρρxn

)
= Tr

 ∑
yn∈Tδ(sY )

n⊗
t=1

|gyt⟩ ⟨gyt | ρxt

 =
∑

yn∈Tδ(sY )

n∏
t=1

⟨gyt |ρxt |gyt |gyt |ρxt |gyt⟩ (E.10)

=
∑

yn∈Tδ(sY )

n∏
t=1

p̂Y |X(yt|xt) ≥
∑

yn∈Tδ(p̂Y |XpX |xn)

n∏
t=1

p̂Y |X(yt|xt) (E.11)

≥ 1− 2|X ||Y| exp

{
−
2nδ2p2X(x∗)p̂2Y |X(y|x)

4(log(|X ||Y|))2

}
. (E.12)

We therefore have

∥ρxn −Πδ
ρρxnΠδ

ρ∥ ≤ 6|X ||Y| exp

{
−
2nδ2p2X(x∗)p̂2Y |X(y|x)

4(log(|X ||Y|))2

}
,

and

Tr(Πvnρxn) ≥ 1− 2|X ||Y|||V|
2nδ2p2X(x∗)p̂2Y |X(y|x)

4(log(|X ||Y|))2
,

thereby permitting us to conclude that

Tr
(
Πδ

ρΠ
δ
vnΠ

δ
ρρxn

)
≥ Tr

(
Πδ

vnρxn

)
− 1

2
∥ρxn −Πδ

ρρxnΠδ
ρ∥ ≥ 1−

2nδ2p2X(x∗)p̂2Y |X(y|x)
4(log(|X ||Y|))2

,

if (xn, vn) ∈ Tn
δ/2(pXV ).

E.2 Proof of Proposition VI.8

We begin by defining the following events:

J =∆
{(

V n
1 (A1.m1 ,m1), X

n
1 (m1), V

n
2 (A2.m2 ,m2), X

n
2 (m2)

)
= (vn1 , x

n
1 , v2, x2) ∈ T8δ(pV1X1V2X2)

}
,

V =∆ {V n
j (aj ,mj) = vnj : j ∈ [2]}, V̂ =∆ {V n(â,m1 ⊕m2) = v̂n}, A =∆ {Aj,mj = aj : j ∈ [2]},

This gives,

EP [T22] = EP

[
4
∑
m

∑
a1,a2

∑
â̸=a⊕

∑
(vn,x)∈
T8δ(pV X)

pM (m) Tr
(
Γâ,m⊕ρ⊗n

m1m2

)
1J1A

]
,
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(a)
= 4

∑
m

∑
a1,a2

∑
â̸=a⊕

∑
(vn,x)∈
T8δ(pV X)

∑
v̂n∈Vn

pM (m) Tr
(
πv̂nπρρ

⊗n
xn
1 x

n
2
πρ

)
EP
{
1J 1A1V̂

}

(b)

≤ 4
∑
m

∑
a1,a2

∑
â̸=a⊕

∑
(vn)∈

T8δ(pV )

∑
xn∈Xn

∑
v̂n∈Vn

pM (m)

 2∏
j=1

pXj |Vj
(xnj |vnj )

Tr
(
πv̂nπρρ

⊗n
xn
1 x

n
2
πρ

)
P(V,A, V̂)

(c)
= 4

∑
m

∑
a1,a2

∑
â̸=a⊕

∑
(vn)∈

T8δ(pV )

∑
v̂n∈Vn

pM (m) Tr
(
πv̂nπρρ

⊗n
vn1 v

n
2
πρ

)
P(V,A, V̂)

(d)

≤ 4
∑
m

∑
a1,a2

∑
â̸=a⊕

∑
(vn)∈

T8δ(pV )

∑
v̂n∈Vn

pM (m) Tr
(
πv̂nπρρ

⊗n
vn1 v

n
2
πρ

)
P(V, V̂)

≤ 4
∑
m

∑
a1,a2

∑
â̸=a⊕

∑
(vn)∈

T8δ(pV )

∑
v̂n∈Vn

pM (m) Tr
(
πv̂nπρρ

⊗n
vn1 v

n
2
πρ

) 1

q3n

(e)

≤ 4
∑
m,

a1,a2

∑
â

∑
v̂n∈T8δ(V )

pM (m) Tr(πv̂nπρ)
2−n(S(ρ)−H(V1,V2)−δ1)

q3n

(f)

≤ 4
∑
m,

a1,a2

∑
â

pM (m)

exp

{
−n

[
S(ρ)−H(V1, V2)− δ1 −

∑
v

pV (v)S(ρv)−H(V )

]}
q3n

(g)

≤ 4 exp

{
−n

{[
log q −

(∑
v

pV (v)S(ρv) +H(V )− S(ρ)

)]
+2 log q−H(V1, V2)−

3k

n
log q − δ1

}}
,

(E.13)

and (a) follows from a summing over possible choices for V n(â,m1⊕m2), (b) follows from evaluating

the expectation, enlarging the summation range of xn1 , x
n
2 and substituting the distribution of the

random code, (c) follows from the definitions of ρv1v2 : v ∈ V, (d) follows as an upper bound since

one of the events has been enlarged, (e) follows from (Padakandla, 2014, Lemma N.0.21c) and the

operator inequality
∑

xn∈Tδ(pV ) πρρxnπρ ≤ 2n(H(pV )+δ1(δ))πρρ
⊗nπρ ≤ 2n(H(pV )+δ1(δ)−S(ρ))πρ found in

(Wilde, 2013a, Eqn. 20.34, 15.20), and from the definition of πv̂n which is the 0 projector if v̂n is

not typical with respect to pV , (f) follows from πρ ≤ I and (Wilde, 2013a, Eqn. 15.77), and finally

(g) follows by collating all the bounds.
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We now analyze T23.

EP [T23] = EP

4
∑

m∈V2l

m̂ ̸=m1⊕m2

∑
a∈V2k

â∈Vk

∑
(vn,x)∈
T8δ(pV X)

pM (m) Tr
(
Γâ,m⊕ρ⊗n

m1m2

)
1J1A


= 4

∑
m∈V2l

m̂ ̸=m1⊕m2

∑
a∈V2k

â∈Vk

∑
(vn,x)∈
T8δ(pV X)

∑
v̂n∈Vn

pM (m) Tr
(
πv̂nπρρ

⊗n
xn
1 x

n
2
πρ

)
EP
{
1J1A1V̂

}

≤ 4
∑

m∈V2l

m̂ ̸=m1⊕m2

∑
a∈V2k

â∈Vk

∑
(vn)∈

T8δ(pV )

∑
xn∈Xn

∑
v̂n∈Vn

pM (m)

 2∏
j=1

pXj |Vj
(xnj |vnj )

Tr
(
πv̂nπρρ

⊗n
xn
1 x

n
2
πρ

)
P(V,A, V̂)

= 4
∑

m∈V2l

m̂ ̸=m1⊕m2

∑
a∈V2k

â∈Vk

∑
(vn)∈

T8δ(pV )

∑
v̂n∈Vn

pM (m) Tr
(
πv̂nπρρ

⊗n
vn1 v

n
2
πρ

)
P(V,A, V̂)

≤ 4
∑

m∈V2l

m̂ ̸=m1⊕m2

∑
a∈V2k

â∈Vk

∑
(vn)∈

T8δ(pV )

∑
v̂n∈Vn

pM (m) Tr
(
πv̂nπρρ

⊗n
vn1 v

n
2
πρ

)
P(V, V̂)

≤ 4
∑

m∈V2l

m̂ ̸=m1⊕m2

∑
a∈V2k

â∈Vk

∑
(vn)∈

T8δ(pV )

∑
v̂n∈Vn

pM (m) Tr
(
πv̂nπρρ

⊗n
vn1 v

n
2
πρ

) 1

q3n

≤ 4
∑

m∈V2l

m̂ ̸=m1⊕m2

∑
a∈V2k

â∈Vk

∑
v̂n∈Vn

pM (m) Tr(πv̂nπρ)
2−n(S(ρ)−H(V1,V2)−δ1)

q3n

= 4
∑
m,

a1,a2

∑
â

∑
v̂n∈Tδ(V1⊕V2)

pM (m) Tr(πv̂nπρ)
2−n(S(ρ)−H(V1,V2)−δ1)

q3n

≤ 4
∑
m,

a1,a2

∑
â

pM (m)

exp

{
−n

[
S(ρ)−H(V1, V2)− δ1 −

∑
v

pV (v)S(ρv)−H(V )

]}
q3n

≤ 4 exp

{
−n
{
log q −

∑
v

pV (v)S(ρv)−H(V ) + S(ρ)+ 2 log q −H(V1, V2)−
(3k + l) log q

n
− δ1

}}
.

The above sequence of steps are analogous to those used in deriving an upper bound on T22 and

follow from the same set of arguments as provided for the bounds in (E.13). This completes the

proof of the claimed statement.
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APPENDIX F

Proofs of Chapter VII

F.1 Proof of Proposition VII.12

We begin by defining the sets J and K as

J =∆

 V n
2 (a2,m2) = vn2 , α2(m2) = a2,Θ1(m1) > 0

V n
3 (a3,m3) = vn3 , α3(m3) = a3,Θ2(m2) > 0

 ⊆ K =∆ {V n
2 (a2,m2) = vn2 , V

n
3 (a3,m3) = vn3 }

(F.1)

Now we simplify ρY1
c,m as

ρY1
c,m =

∑
vn2 ,v

n
3 ∈Fn

q

∑
xn
1∈Xn

1

∑
xn
2 ,x

n
3∈Xn

2 ⊗Xn
2

pX2|V2
(xn2 |vn2 )pnX3|V3

(xn3 |vn3 )ρ
Y1
xn
1 x

n
2 x

n
3

× 1{xn
1 (m1)=xn

1 ,v
n
2 (α2(m2),m2)=vn2 ,v

n
3 (α3(m3),m3)=vn3 }

=
∑

vn2 ,v
n
3 ∈Fn

q

∑
xn
1∈Xn

1

ρY1
xn
1 v

n
2 v

n
3
1{xn

1 (m1)=xn
1 ,v

n
2 (α2(m2),m2)=vn2 ,v

n
3 (α3(m3),m3)=vn3 }

=
∑

xn
1∈Xn

1

∑
vn2 ,v

n
3 ∈Fn

q

∑
a2,a3∈Fk

q

ρY1
xn
1 v

n
2 v

n
3
1{xn

1 (m1)=xn
1 }1J , (F.2)
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where the above two equalities are based on the encoding rules employed by the encoders and the

last one follows from the definition of J . Using the above simplification in the term T21, we get

T21(m) =
∑

m′
1 ̸=m1

∑
xn
1∈Xn

1

∑
vn2 ,v

n
3 ∈Fn

q

∑
a2,a3∈Fk

q

Tr
(
γa,l
m′

1
πal ρ

Y1
xn
1 v

n
2 v

n
3
πal

)
1{xn

1 (m1)=xn
1 }1J ,

=
∑

m′
1 ̸=m1

∑
xn
1 ,x̂

n
1∈Xn

1

∑
vn2 ,v

n
3 ∈Fn

q

∑
a2,a3∈Fk

q

∑
un∈Fn

q

Tr
(
γu

n

x̂n
1
πunρY1

xn
1 v

n
2 v

n
3
πun

)
× 1{xn

1 (m1)=xn
1 ,x

n
1 (m

′
1)=x̂n

1 }1{un=vn2⊕vn3 }1J ,

where γu
n

x̂n
1
is defined as γu

n

x̂n
1
=∆ πρπx̂n

1
πx̂n

1 ,u
nπx̂n

1
πρ Taking expectation of the above term, we obtain

E[T21] =
∑

m′
1 ̸=m1

∑
xn
1 ,x̂

n
1∈Xn

1

∑
vn2 ,v

n
3 ∈Fn

q

a2,a3∈Fk
q

∑
un∈Fn

q

Tr
(
γu

n

x̂n
1
πunρY1

xn
1 v

n
2 v

n
3
πun

)

× P(xn1 (m1) = xn1 , x
n
1 (m

′
1) = x̂n1 )1{un=vn2⊕vn3 }P(J )

(a)

≤
∑

m′
1 ̸=m1

∑
xn
1 ,x̂

n
1∈Xn

1

∑
a2,a3∈Fk

q

∑
vn2 ∈T

(n)
δ (V2),

vn3 ∈T
(n)
δ (V3)

∑
un∈T (n)

δ (U)

Tr
(
γu

n

x̂n
1
πunρY1

xn
1 v

n
2 v

n
3
πun

)

× pnX1
(xn1 )p

n
X1

(x̂n1 )1{un=vn2⊕vn3 }P(K)

(b)

≤ 2nR1q2k

q2n

∑
xn
1 ,x̂

n
1∈Xn

1

∑
un∈T (n)

δ (U)

Tr

γun

x̂n
1
πun

 ∑
vn2 ∈T

(n)
δ (V2),vn3 ∈T

(n)
δ (V3)

ρY1
xn
1 v

n
2 v

n
3

πun


× pnX1

(xn1 )p
n
X1

(x̂n1 )1{un=vn2⊕vn3 }

(c)

≤ 2nR1q2k

q2n
2n(H(V2,V3|U)+δu2 )

∑
x̂n
1∈Xn

1

pnX1
(x̂n1 )

×
∑

un∈T (n)
δ (U)

Tr

γun

x̂n
1
πun

 ∑
xn
1∈Xn

1

pnX1
(xn1 )ρ

Y1
x1un

πun


(d)

=
2nR1q2k

q2n
2n(H(V2,V3|U)+δu2 )

∑
x̂n
1∈Xn

1

pnX1
(x̂n1 )

∑
un∈T (n)

δ (U)

Tr
(
γu

n

x̂n
1
πunρY1

unπun

)
(e)

≤ 2nR1q2k

q2n
2n(H(V2,V3|U)+δu2 )2−n(S(Y1|U)σ1−δu3 )

∑
x̂n
1∈Xn

1

pnX1
(x̂n1 )

∑
un∈T (n)

δ (U)

× Tr
(
πρπx̂n

1
πx̂n

1 ,u
nπx̂n

1
πρπun

)
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(f)

≤ 2nR1q2k

q2n
2n(H(V2,V3|U)+δu2 )2−n(S(Y1|U)σ1−δu3 )

∑
x̂n
1∈Xn

1

pnX1
(x̂n1 )

∑
un∈T (n)

δ (U)

Tr
(
πx̂n

1 ,u
n

)
, (F.3)

where (a) follows from the presence of indicators θ1(m1) > 0, θ2(m2) > 0, and definition of K, (b)

follows by observing that P(K) = 1
qnqn , and (c) follows by using the following arguments for any

un ∈ T (n)
δ (U),

∑
vn2 ∈T

(n)
δ (V2),

vn3 ∈T
(n)
δ (V3)

ρY1
xn
1 v

n
2 v

n
3
1{un=vn2⊕vn3 }

≤ 2n(H(V2,V3|U)+δu2 )
∑

vn2 ∈T
(n)
δ (V2),

vn3 ∈T
(n)
δ (V3)

pnV2V3|U (v
n
2 , v

n
3 |un)ρ

Y1
xn
1 v

n
2 v

n
3
1{un=vn2⊕vn3 }

≤ 2n(H(V2,V3|U)+δu2 )
∑
vn2 ,v

n
3

pnV2V3|U (v
n
2 , v

n
3 |un)ρ

Y1
xn
1 v

n
2 v

n
3
1{un=vn2⊕vn3 }

= 2n(H(V2,V3|U)+δu2 )ρY1
xn
1u

n . (F.4)

The equality in (d) follows from the definition of ρY1
un =∆

∑
xn∈Xn pnX1

(xn1 )ρ
Y1
xn
1u

n , and the inequality

in (e) uses the property of conditional projector i.e., πunρY1
unπun ≤ 2−n(S(Y1|U)σ1−δu3 )πun , for σ1 as

defined in the statement of the theorem. Finally (f) follows using the cyclicity of trace and the fact

that πx̂n
1
πρπunπρπx̂n

1
≤ πx̂n

1
πρπx̂n

1
≤ πx̂n

1
≤ I.

Using the dimensional bound of a conditional typical projector i.e., Tr
(
πx̂n

1 ,u
n

)
≤ 2n(S(Y1|X1,U)+δu4 )

in (F.3) we obtain

E[T21] ≤
2nR1q2k

q2n
2n(H(V2,V3|U)+δu2 )2−n(S(Y1|U)σ1−δu3 )2n(S(Y1|X1,U)+δu4 )2n(H(U)+δu1 )

=
2nR1q2k

q2n
2n(H(V2,V3)+δu2 )2−n(I(Y1;X1|U)σ1−δu3 )2nδu42nδu1 .

This completes the proof.
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F.2 Proof of Proposition VII.13

We begin by substituting the simplification performed in (F.2) into the expression corresponding

to T22. This gives

T22 =
∑

a′ ̸=a,l′ ̸=l

Tr
(
γa

′,l′
m1

πal ρ
Y1
c,mπ

a
l

)
=

∑
a′ ̸=a,l′ ̸=l

∑
xn
1∈Xn

1

∑
vn2 ,v

n
3 ∈Fn

q

∑
a2,a3∈Fk

q

Tr
(
γa

′,l′
m1

πal ρ
Y1
xn
1 v

n
2 v

n
3
πal

)
1{xn

1 (m1)=xn
1 }1J

≤
∑
a′ ̸=a,
l′ ̸=l

∑
xn
1∈Xn

1

∑
vn2 ∈T

(n)
δ (V2),

vn3 ∈T
(n)
δ (V3)

∑
a2,a3∈Fk

q

∑
un,ûn∈Fn

q

Tr
(
γû

n

xn
1
πunρY1

xn
1 v

n
2 v

n
3
πun

)
1{xn

1 (m1)=xn
1 }

1{un=vn2⊕vn3 }1{ûn=a′gI+l′gO/I+bn2+bn3 }1K

Taking expectation over the codebook generation distribution gives

E[T22]

≤
∑

a′ ̸=a,l′ ̸=l

∑
xn
1∈Xn

1

∑
vn2 ∈T

(n)
δ (V2),

vn3 ∈T
(n)
δ (V3)

∑
a2,a3∈Fk

q

∑
un,ûn∈Fn

q

Tr
(
γû

n

xn
1
πunρY1

xn
1 v

n
2 v

n
3
πun

)
pnX1

(xn1 )1{un=vn2⊕vn3 }

× P(ûn = a′GI + l′GO/I +Bn
2 +Bn

3 , v
n
2 = a2GI +m2GO/I +Bn

2 , v
n
3 = a3GI +m3GO/I +Bn

3 )

(a)

≤ q3kql

q3n

∑
xn
1∈Xn

1

pnX1
(xn1 )

∑
vn2 ∈T

(n)
δ (V2),

vn3 ∈T
(n)
δ (V3)

∑
un∈Fn

q

Tr

( ∑
ûn∈Fn

q

γû
n

xn
1

)
πunρY1

xn
1 v

n
2 v

n
3
πun

1{un=vn2⊕vn3 }, (F.5)

where the inequality (a) is obtained by noting that for a′ ̸= a2 ⊕ a3 and l′ ̸= m1 ⊕m2, we have

P(ûn = a′GI + l′GO/I +Bn
2 +Bn

3 , v
n
2 = a2GI +m2GO/I +Bn

2 , v
n
3 = a3GI +m3GO/I +Bn

3 ) =
1

q3n
.

(F.6)

Now consider the following simplification of
∑

ûn∈Fn
q
γû

n

xn
1
. We have

∑
ûn∈Fn

q

γû
n

xn
1
=

∑
ûn∈T (n)

δ (U)

πρπxn
1
πxn

1 ,u
nπxn

1
πρ
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(a)

≤ 2n(S(Y1|X1,U)σ1+δu4 )
∑

ûn∈T (n)
δ (U)

πρπxn
1
ρxn

1u
nπxn

1
πρ

(b)

≤ 2n(S(Y1|X1,U)σ1+δu4 )2n(H(U)+δu1 )
∑

ûn∈T (n)
δ (U)

pnU (u
n)πρπxn

1
ρxn

1u
nπxn

1
πρ

≤ 2n(S(Y1|X1,U)σ1+δu4 )2n(H(U)+δu1 )πρπxn
1

 ∑
ûn∈Fn

q

pnU (u
n)ρxn

1u
n

πxn
1
πρ

= 2n(S(Y1|X1,U)σ1+δu4 )2n(H(U)+δu1 )πρπxn
1
ρxn

1
πxn

1
πρ

(c)

≤ 2n(S(Y1|X1,U)σ1+δu4 )2n(H(U)+δu1 )2−n(S(Y1|X1)−δx1 )πρπxn
1
πρ

(d)

= c1 · I,

where (a) follows using the following arguments

πxn
1 ,u

n ≤ 2n(S(Y1|X1,U)σ1+δu4 )πxn
1 ,u

nρxn
1u

nπxn
1 ,u

n = 2n(S(Y1|X1,U)σ1+δu4 )
√
πxn

1 ,u
nρxn

1u
n
√
πxn

1 ,u
n

= 2n(S(Y1|X1,U)σ1+δu4 )ρxn
1u

n .

The inequalities (b), (c) uses the typicality arguments. Lastly, the inequality (d) follows by using

the fact that πρπxn
1
πρ ≤ I and by defining c1 =

∆ 2n(S(Y1|X1,U)σ1+H(U)−S(Y1|X1)+δu1+δu4+δx1 ).

Substituting the above simplification in (F.5), we obtain

E[T22] ≤
c1q

3kql

q3n

∑
xn
1∈Xn

1

pnX1
(xn1 )

∑
vn2 ∈T

(n)
δ (V2),

vn3 ∈T
(n)
δ (V3)

∑
un∈Fn

q

Tr
(
πunρY1

xn
1 v

n
2 v

n
3
πun

)
1{un=vn2⊕vn3 }

(a)

≤ c1q
3kql

q3n

∑
vn2 ∈T

(n)
δ (V2),

vn3 ∈T
(n)
δ (V3)

∑
un∈Fn

q

1{un=vn2⊕vn3 }

(b)

≤ q3kql

q3n
2n(+H(U)−I(Y1;U |X1)σ1+δu1+δu4+δx1 )2n(H(V1)+H(V2)+δv1+δv2 ),

where (a) uses Tr
(
πunρY1

xn
1 v

n
2 v

n
3
πun

)
≤ 1, and (a) follows from the definition of c1 for σ1 as defined

in the statement of the theorem. This gives the desired rate to bound E[T22].

267



F.3 Proof of Proposition VII.14

Using the simplification performed in (F.2), we obtain
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where the above inequality follows by noting that J ⊆ K. By taking expectation of the above term

with respect to the codebook generating distributions, we get
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where the second inequality above uses the claim from (F.6).

Consider the following simplifications.
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n

)
, (F.8)

where (a) holds from the above bounds obtained in (F.4), (b) follows by the definition of ρY1
un and

by using the inequality πunρY1
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un , (c) follows using (i) πρ

(∑
un∈T (n)

δ (U)
pnU (u

n)ρY1
un

)
πρ ≤

πρρπρ ≤ 2−n(S(Y1)σ−δρ)πρ and (ii) Tr
(
πx̂n

1
πx̂n

1 ,û
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. Using the above simplification

in (F.8) we obtain
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ûn∈T (n)

δ (U)

Tr
(
πx̂n

1 ,û
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This completes the proof.
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Shamai, S., and S. Verdú (1997), The empirical distribution of good codes, IEEE Transactions on
Information Theory, 43 (3), 836–846.

Shannon, C. E., et al. (1959), Coding theorems for a discrete source with a fidelity criterion, IRE
Nat. Conv. Rec, 4 (142-163), 1.

Shiraishi, N., and T. Sagawa (2021), Quantum thermodynamics of correlated-catalytic state con-
version at small scale, Physical Review Letters, 126 (15), 150,502.

Shirani, F., and S. S. Pradhan (2014), Finite block-length gains in distributed source coding, in
2014 IEEE International Symposium on Information Theory, pp. 1702–1706, doi:10.1109/ISIT.
2014.6875124.

Shirokov, M. E. (2011), Entropy reduction of quantum measurements, Journal of mathematical
physics, 52 (5), 052,202.

Shor, P. W. (2002), The quantum channel capacity and coherent information, in lecture notes,
MSRI Workshop on Quantum Computation.

Slepian, D. S., and J. K. Wolf (July 1973), Noiseless coding of correlated information sources, IEEE
Transactions on Information Theory, 19 (4), 471–480.

Sohail, M. A., T. A. Atif, A. Padakandla, and S. S. Pradhan (2022), Computing sum of sources
over a classical-quantum mac, IEEE Transactions on Information Theory, 68 (12), 7913–7934,
doi:10.1109/TIT.2022.3192876.
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