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ABSTRACT

In this dissertation, I discuss some novel structures found in the computation of scattering am-
plitudes and other boundary correlators. First, I describe the connection between singularities of
planar amplitudes in N = 4 super-Yang-Mills and the boundary structure of the positive kinematic
region in kinematic space. I use wall-crossing to study different compactifications of the positive
kinematic region and illustrate how algebraic coordinate transformations emerge from infinite se-
quences of rational coordinate transformations. Second, I shift to studying the double copy, an
algorithm for computing scattering amplitudes in uncolored theories, such as gravity, using planar
amplitudes in colored theories, such as Yang-Mills. I extend the double copy algorithm to include
higher derivative corrections in the input and output amplitudes. In particular, I develop an algo-
rithm termed the Kawai-Lewellen-Tye bootstrap to systematically determine the space of effective
field theories (EFT) that can be double-copied and study how the higher derivative operators map
under the double copy. Finally, I conclude by studying how these amplitude structures generalize
to boundary correlators in anti-de Sitter space (AdS). I use the differential representation, where the
AdS boundary correlator is represented as a collection of (non-local) differential operators acting
on a contact diagram, to generalize color-kinematics duality and certain techniques for evaluating
higher loop Feynman diagrams to AdS.
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CHAPTER 1

Introduction

1.1 Scattering Amplitudes

Scattering is a common phenomenon in everyday life. The scattering of light allows us to see the
world around us, and the scattering of sounds waves is used in echolocation. Therefore, it is natural
that scattering is at the core of much fundamental physics research. For example, the scattering
of high energy particles at colliders, such as the Large Hadron Collider, provides an important
probe of sub-atomic physics. Additionally, scattering processes that occurred during inflation are
imprinted on the cosmological microwave background and can be measured using powerful tele-
scopes. Scattering processes relevant to colliders and cosmology are often studied using quantum
field theory (QFT). QFT is a theoretical framework that synthesizes special relativity and quan-
tum mechanics, where particles are expressed as excited states of an underlying quantum field.
The QFTs of interest in this thesis are characterized by a Lagrangian, which describes the matter
content and all possible interactions among the fields.

Scattering amplitudes are given by the formula

A(i→ f) = lim
tf→∞
ti→−∞

⟨f |U(tf , ti)|i⟩ − ⟨f |i⟩ (1.1)

where U(tf , ti) is the time-evolution operator from ti to tf . We have subtracted the initial overlap
between the states before time-evolving. The primary benefit of taking the limits in Eq. (1.1) is
that the initial and final states can be treated as free. Significant effort has been devoted to devel-
oping better computational tools for computing scattering amplitudes. In curved spacetimes, such
as anti-de Sitter space (AdS), scattering amplitudes generalize to boundary correlators. Bound-
ary correlators are position space correlation functions where the operators are inserted on the
boundary of the space. Such a generalization is natural from interpreting scattering amplitudes as
position space correlation functions on the null boundary of Minkowski space. Scattering ampli-
tudes have traditionally been computed by summing over all Feynman diagrams associated with a
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given process:

A ∼
43

2 1

+

43

2 1

+

43

2 1

+ . . . (1.2)

Similarly, one sums Witten diagrams when computing boundary correlators in curved space-times:

A ∼
43

2 1

+

43

2 1

+

43

2 1

+ . . . (1.3)

Witten diagrams are graphically distinguished from Feynman diagrams by the circle at the bound-
ary. Qualitatively, the above diagrams correspond to different virtual processes that can occur at
intermediate times. The external states of the diagrams correspond to the final and initial states and
are called on-shell states. The terms in these diagram expansions can be organized by the power
of the coupling, which is equivalent to organizing the diagrams by the number of internal loops.

Although a generic scattering process corresponds to summing over many Feynman diagrams,
the final result is often remarkably simple. However, this simplicity only becomes manifest in the
correct representation. For example, in spinor-helicity notation, the tree-level scattering amplitude
of Yang-Mills (YM) in four dimensions with 2 positive helicity states and (n− 2) negative helicity
states,1 the maximal helicity violating (MHV) sector, has a closed-form solution [1]:

A[1+ . . . i− . . . j− . . . n+] =
⟨i, j⟩4

⟨1, 2⟩⟨2, 3⟩ . . . ⟨n, 1⟩ , (1.4)

where ⟨i, j⟩ is roughly the square-root of 2pi · pj . However, the number of contributing Feyn-
man diagrams to this process grows exponentially in the multiplicity, n, of the external states.
The remarkable simplicity of the final result compared to the complexity of the Feynman diagram
computation indicates there should be a more efficient approach to computing such amplitudes.
There are highly efficient recursion relations for computing tree amplitudes and loop integrands in
specific theories [2–4]. This pattern of complex calculations yielding simple solutions has led to
the discovery of many novel structures of both mathematical and physical relevance. For example,
amplitudes in N = 4 super-Yang-Mills (SYM) can be written as volume forms of an abstract ge-
ometrical object called the Amplituhedron [5]. Alternatively, symmetries of the underlying theory
can manifest as the amplitude exhibiting universal behavior in the limit that external momentum
is taken to be soft [6–10]. In addition to improving computational efficiency, there is the tentative

1Helicity is the projection of spin along the direction of momentum assuming all states are outgoing.
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hope that these underlying mathematical structures could also point to fundamentally new physics
in the same way special relativity was hidden in Maxwell’s equations.

One approach to research is to study interesting phenomena in the simplest possible setting and
slowly add more complexity. In this vein, I first study the simplest scattering amplitudes known to
me: scattering amplitudes in N = 4 planar super Yang-Mills (pSYM). N = 4 pSYM is the most
supersymmetric theory that does not contain massless particles with spin greater than one, and the
considerable level of symmetry is reflected in the simplicity of its amplitudes. For example, MHV
N = 4 pSYM can be written as sums of generalized polylogarithms, a particularly simple class of
functions [11–17] up to seven loop order at 6-points [18], four loop at 7-point [19] and three loop
order at 8-point [20]. I leverage computational control of these amplitudes to make conjectures
about their singularity structure at all loop orders in chapter 2, which, along with appendix A,
is adapted from my paper Ref. [21]. I then turn to the double copy, an algorithm for converting
planar amplitudes into amplitudes in theories without color structure, such as general relativity
(GR), in chapter 3. I generalize known double-copy algorithms to a large class of effective field
theories (EFT). Chapter 3, along with appendix B, is adapted from Ref. [22], which I wrote with
collaborators Huan-Hang Chi, Henriette Elvang, Callum R. T. Jones, and Shruti Paranjape. Finally,
I go beyond flat space and study the boundary correlators of colored and uncolored theories in AdS
using a novel differential representation in chapter 4. Using the differential representation, I show
how many structures discovered in flat space generalize to boundary correlators in AdS, both at
tree-level and one-loop. Chapter 4 is adapted from Ref. [23], which I wrote with collaborators
Pranav Diwakar, Radu Roiban, and Fei Teng, and my paper Ref. [24]. Other works completed
during my time in graduate school, Refs. [25–31], which were written in collaboration with various
authors, are not included in this thesis.

1.2 The Singularity Structure of Planar Amplitudes

Planar amplitudes are natural objects in theories where the external states transform under a global
or gauge group, such as YM and the non-linear sigma model. For such theories, the amplitude is a
function of color-structures and kinematic data. To isolate the planar amplitudes, one expands all
color-structures into sums of traces. For example, the product of structure constants, fabcf cde, is
expanded as

fabcf cde → Tr[T aT bT dT e]− Tr[T bT aT dT e]− Tr[T aT bT eT d] + Tr[T bT aT eT d] . (1.5)
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The coefficients of the traces correspond to the color-ordered amplitudes:

Aa1,a2,...an =
∑

α∈Sn−1

Tr[T aα1T aα2 . . . T aαn ]A[α1, α2, . . . , αn] (1.6)

where Sn−1 is the set of all permutations of (n − 1) external states and the A[α1, α2, . . . , αn] are
the color-ordered amplitudes. Importantly, only planar Feynman diagrams contribute to planar
amplitudes. For a given graph to be planar under a given ordering, none of its legs must cross
when the external points are ordered. For example, three trivalent tree graphs contribute to a
general 4-point amplitude:

43

2 1

,

43

2 1

,

43

2 1

. (1.7)

However, the last graph has crossed lines when the external points are ordered as {1234}. There-
fore, this graph is not planar under the {1234} ordering of external states. In general, there are
many more Feynman diagrams than planar diagrams. For example, the number of planar and
unordered cubic tree graphs up to 7-point are

Multiplicity (n) 3 4 5 6 7

planar 1 2 5 14 42
unordered 1 3 12 75 450

It is natural to expect that planar amplitudes exhibit a simplified structure compared to amplitudes
without any color-structure. However, even planar amplitudes in generic theories can be very
complicated. To further simplify the problem, we restrict ourselves to planar amplitudes in N = 4

super-Yang Mills (SYM). Due to the large amount of symmetry, amplitudes in N = 4 SYM are
very simple compared to more generic theories. For example, the theory is superconformal at the
origin of moduli space, so the behavior of the theory does not change at different energy scales. The
planar amplitudes of N = 4 SYM form a closed sub-sector termed N = 4 pSYM. Furthermore,
there has been a lot of research into pushing higher loop calculations in N = 4 pSYM, so there is a
large amount of ‘theoretical’ data available on planar loop amplitudes at high order in perturbation
theory.

We are interested in better understanding the analytic structure of planar N = 4 pSYM ampli-
tudes. Scattering amplitudes can be considered complex-analytic functions on kinematic space and
the analytic structure of scattering amplitudes contains essential information about the underlying
theory. Detailed knowledge of the analytic structure of the Feynman amplitude can significantly
streamline higher loop computations. For example, the requirement that the amplitude is analytic
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greatly restricts what functions can, and cannot, appear at a given loop order in perturbation theory.
Higher loop amplitudes can sometimes be bootstrapped solely given knowledge of what functions
can appear, their singularity structure, and some reality conditions. For example, such techniques
have been used to evaluate the 6-point N = 4 pSYM amplitude through seven loops [18].

The full analytic structure of the amplitude is beyond the scope of this dissertation and we
instead focus on studying the singularity structure of the amplitude. The poles and branch-cuts
of the amplitude correspond to single and multi-particle intermediate states. Locality implies that
amplitudes factorize on their poles into products of lower point amplitudes. This factorization
corresponds to the intermediate, single-particle state associated with the pole going on-shell. The
story is similar for branch-cut singularities. As an example, consider the bubble diagram of a scalar
with mass m in two dimensions interacting via a 4-point vertex:

32

1 4

=

∫
d2l

iπ

1

[l2 −m2 + iϵ][(l + p1 + p2)2 −m2 + iϵ]

=


4 arctan

[√
s

4m2−s

]
√

s(4m2−s)
for s < 4m2

4 arctan
[√

s
s−4m2

]
√

s(s−4m2)
+ 2πi√

s(s−4m2)
for s > 4m2

, s = (p1 + p2)
2 .

(1.8)

The branch-cut starting at s = 4m2 corresponds to the production of a 2-particle intermediate state,
which naturally appears if we “cut” the bubble:

32

1 4

. (1.9)

Unlike single-particle states, multi-particle states can have any energy above a certain threshold
because the particles have relative momentum contributing to their total energy. The threshold
mass, in this case 4m2, corresponds to the branch-cut singularity. The more general l-loop sunset
graphs

32

1 4

,

32

1 4

,

32

1 4

. . . , (1.10)

have branch-cuts starting at s = ((l+1)m)2, which corresponds to the mass-threshold of the (l+1)-
particle intermediate state. These examples show how the dynamics of the multi-particle states
are contained in the branch-cut structure of the amplitudes. There has been significant interest
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in developing techniques to compute the singularity structure of n-point scattering amplitudes at
generic loop order without directly computing the amplitude. This was a trivial exercise for the
Feynman diagrams studied above but becomes much more difficult for generic Feynman diagrams,
even for N = 4 pSYM.

We study the singularity structure of planar amplitudes in N = 4 pSYM using a conjectured
connection between the singularity structure of planar amplitudes and the boundary structure of a
particular region in kinematic space called the positive kinematic region. The positive kinematic
region is an unphysical kinematic region where planar amplitudes are conjectured to have no poles
or branch-cuts. Furthermore, all simple poles and branch-cut singularities of planar gauge am-
plitudes are conjectured to lie on the boundaries of the positive kinematic region. The physical
significance of the positive kinematic is mysterious; there is no good physical justification for why
the amplitudes’ singularities should only lie on the boundary of some kinematic region. How-
ever, the positive kinematic region implicitly appears in many computations. For example, the
integrands that appear in open superstring scattering amplitudes are generically divergent unless
evaluated in the positive kinematic region [32, 33]. Therefore, when evaluating superstring inte-
grands without using string field theory techniques or taking sophisticated Pochhammer contours
in the string moduli space [34], one must implicitly work in the positive kinematic region, only
taking an analytic continuation to generic momentum configurations at the end of the calculation.

As a simple example, consider the 4-point amplitude of the planar scalar theory:

L =

∫
ddx[

1

2
(∂µϕ

a)(∂µϕa) +
g

6
dabcϕaϕbϕc] , (1.11)

where the scalars transform in the adjoint represention of SU(N) and dabc = Tr[T a{T b, T c}]. This
scalar theory is not well defined non-perturbatively because its energy is not bounded from below.
However, its scattering amplitudes are perturbatively well-defined and suitable as an illustrative
example. The 4-point scattering amplitude is a function of Mandelstam variables s12, s23, and s13,
where

sI = (
∑
i∈I

pµi )
2 , (1.12)

which are related by momentum conservation,

s12 + s23 + s13 = 0 . (1.13)

The positivity conditions,
s12 > 0, s23 > 0 , (1.14)
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Figure 1.1: Different parameterizations of Gr+(2, 5)/T . In the z-variable parameterization, only
three boundaries are manifest. However, the u-variable parameterization makes all five boundaries
manifest.

z2

z1

Figure 1.2: Schematic picture of blowup of Gr+(2, 5)/T in the z1, z2 coordinates.

define the positive kinematic region. The planar 4-point tree-level amplitude is

A[1234] = g2(
1

s12
+

1

s23
) . (1.15)

The above amplitude has simple poles at s12, s23 = 0, which are precisely the boundaries of the
positive region. The planar structure of the amplitude is crucial for defining the positive kinematic
region. In a generic 4-point amplitude with cubic vertices, there are s12, s23, and s13 poles. How-
ever, these Mandelstam variables are related by momentum conservation (1.13).2 At one-loop, in
dimensional regularization, one continues to find branch-cut singularities at s12, s23 = 0, but no
other types of singularities. For example, there is no s13-channel branch-cut, which would violate
the conjecture.

The positive kinematic region is well studied in N = 4 pSYM. For N = 4 pSYM, there
is even a conjecture for the positive kinematic region for all amplitudes in the maximal helicity

2It is impossible to define a convex region of the 4-point kinematic space that has boundaries at s12 = 0, s23 = 0,
and s13 = 0.
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violating sector (MHV), but its boundary structure is poorly understood. The kinematic space
corresponds to a particular quotient of the Grassmannian, Gr(k, n), the space of all k-dimensional
subspaces of Rn. Gr(k, n) can be parameterized as the space of k × n matrices modulo GL(k,R)
transformations. Taking the quotient is equivalent to all the k-columns being identified under
projective re-scalings. The positive regions of MHV N = 4 pSYM amplitudes correspond to
Gr(4, n)/T , where T corresponds to the quotient described previously, and the positive region
corresponds to enforcing that all ordered minors are positive [15, 35, 36].3 To see why studying
the boundary structure of the positive region is difficult, consider the positive region of Gr(2, 5)/T
as a toy model. From above, Gr(2, 5) corresponds to the space of 2× 5 matrices

C ∼
(
a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

)
(1.16)

modulo GL(2,R) transformations,

∀cij ∈ R : C ∼
(
c11 c12

c21 c12

)
·C . (1.17)

where the ∼ means that the left and right hand side are identified. Modding out by T corresponds
to taking all the columns to be identified under projection:

∀λi ∈ R+ :

(
a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

)
∼
(
λ1a11 λ2a12 λ3a13 λ4a14 λ5a15

λ1a21 λ2a22 λ3a23 λ4a24 λ5a25

)
(1.18)

The positive region corresponds to imposing that all ordered minors are positive:

∀i, j ∈ {1, 2, 3, 4, 5}, i < j : ⟨i, j⟩ > 0 , (1.19)

where ⟨i, j⟩ denotes a minor of columns i and j. The angle brackets in eq. (1.19) should not be
identified with the spinor products in eq. (1.4). Given eqs. (1.17), (1.18), and (1.19), a natural
parameterization of C is

C ∼
(
1 1 1 1 0

0 z1 z2 1 1

)
, (1.20)

where taking all ordered minors to be positive requires that 0 < z1 < z2 < 1. This region is plotted
in Fig. 1.1. Only three boundaries appear at z2 = 1, z1 = 0, and z2 = z1. However, consider the

3The positive kinematic region of MHV N = 4 pSYM amplitudes is reviewed in section 2.1.1.
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alternate parameterization

ui,j =
⟨i, j − 1⟩⟨i− 1, j⟩
⟨i, j⟩⟨i− 1, j − 1⟩ . (1.21)

The positive region corresponds to imposing 0 < ui,j < 1. These ui,j variables obey the non-linear
relations:

u1,3 = 1− u2,4u2,5, (Cyclic permutations), (1.22)

The second plot of the positive region in Fig. 1.1 using u-variables shows that there are five bound-
aries, not three, which are denoted by the arrows. Each boundary corresponds to one of the ui,j
going to zero, corresponding to either ⟨i, j − 1⟩ or ⟨i− 1, j⟩ going to zero. In the parameterization
given by eq. (1.20), the two additional boundaries have been shrunk to points, as visualized in
Fig. 1.2. The underlying problem with eq. (1.20) is that a single set of coordinates, unless chosen
very carefully, will not manifest all possible boundaries of the positive region. When we define the
positive kinematic region, we denote what boundaries are included, which corresponds to choosing
a particular compactification of the positive kinematic region. To denote the compactified space,
we add a bar and remove the positive sign, so Gr+(k, n)/T becomes Gr(k, n)/T .

The positive kinematic regions of 4-, 5-, 6- and 7-point amplitudes in N = 4 pSYM are well
understood. The maximally compactified positive kinematic region has a finite number of bound-
aries, and the amplitude exhibits a finite number of singularities. Furthermore, all the singularities
can be simultaneously rationalized. For example, while Eq. (1.8) seems to contain a square-root
branch-cut, a simple coordinate transformation removes the square-root:

s→ 4αm2

1 + α2
. (1.23)

This coordinate transform makes manifest that only the logarithmic branch cut actually matters.
However, these properties no longer hold at 8-point. At 8-point, there are algebraic branch-cuts
that cannot be simultaneously rationalized with any coordinate transformation. In addition, one
finds an infinite number of boundaries when one considers the maximal compactification of the
8-point positive kinematic region.

To study compactifications of the positive kinematic region, we must systematically consider all
possible coordinate systems of the positive kinematic space. Performing a non-linear coordinate
transformation generically leads to a discontinuous change in what boundaries are manifest. In
my paper Ref. [21], I used wall-crossing to systematically study different coordinate systems and
how distinct boundaries appear and disappear under coordinate transformations. The core idea is
to associate a fan, called a scattering diagram, with the positive kinematic region. Each chamber
in the scattering diagram is identified with a particular coordinate system that manifests some sub-
set of the boundaries. Combining the chambers into a fan corresponds to systematically “sewing”
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Figure 1.3: Pictures of the scattering diagrams corresponding to Gr(2, 5)/T (left) and Gr(2, 6)/T
(right).

these coordinate systems by elementary transformations. Importantly, each chamber corresponds
to a unique coordinate choice, but the path between non-adjacent chambers is not unique. Im-
posing that all paths between two chambers yield the same coordinate transform places stringent
restrictions on the scattering diagram.

In chapter 2, I show how algebraic branch-cuts naturally emerge from taking particular infinite
sequences of chambers, as visualized in Fig. 2.4. I develop the notion of asymptotic chambers and
study these asymptotic chambers in detail, finding that algebraic coordinates naturally appear. One
benefit of the wall-crossing framework is that it yields a coordinate system that simultaneously
rationalizes a large subset of branch-cuts. It is possible that terms in the Feynman amplitude
can be broken into different sectors for which all branch cuts can be simultaneously rationalized.
However, although the notion of asymptotic chambers explains the appearance of algebraic branch-
cuts, it does not explain why only a finite subset of boundaries/chambers should be relevant for
the amplitude. Given that only a finite number of singularities are expected to appear at 8-point
[37], we expect that the physical positive kinematic region does not correspond to a maximal
compactification of the space. Unfortunately, it does not seem like the wall-crossing framework
provides much insight into what partial compactification we should consider. I discuss possible
prescriptions for determining which partial compactification should be chosen but do not provide
any conclusive results. In particular, I propose the notion of a degenerate scattering diagram, where
a subset of chambers is truncated.
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x−1x−3

x0

x−2

. . .

x1

x2

x3

. . .

x−4

x−5

x−6

Figure 1.4: An example of a scattering fan with an infinite number of chambers

∼ ⊗ ⊗
Figure 1.5: Schematic picture of the string double copy, where a closed string amplitude is derived
by sewing two open string amplitudes.

1.3 Beyond Planar Amplitudes: Nonplanar Amplitudes from
Double Copy

In the previous section, we discussed the singularity structure of planar amplitudes. However,
many interesting amplitudes do not have any kind of color structure, such as GR amplitudes. GR
amplitudes are much more difficult to compute than planar YM amplitudes because one needs to
sum over all graphs, not just planar graphs. The double copy alleviates this issue by providing an
algorithm for converting observables in colored theories to observables in uncolored theories, such
as from YM to GR. In chapter 3, I study the double copy in the context of EFTs.

The double copy was originally found in string theory as a relation between open and closed
string amplitudes as visualized in Fig. 1.5. An explicit example is illustrative. In spinor-helicity
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notation, one 4-point gauge open string amplitude in Type-I string theory is

AType-I
4 [1−2−3+4+] = −α′2⟨1, 2⟩2[3, 4]2 Γ[−α

′s12]Γ[−α′s23]
Γ[1− α′s12 − α′s23]

(1.24)

and 4-point graviton closed string amplitude in Type-IIB superstring theory is

MType-IIB
4 [1−2−3+4+] = π⟨1, 2⟩4[3, 4]4 Γ[−α′s12]Γ[−α′s23]Γ[−α′s13]

Γ[1 + α′s12]Γ[1 + α′s23]Γ[1 + α′s13]
, (1.25)

where α′ corresponds to the string tension and the ± superscript denotes the helicity of the external
state. The string Kawai-Lewellen-Tye (KLT) double copy is the relation

MType-IIB
4 [1−2−3+4+] = − sin(πα′s12)AType-I

4 [1−2−3+4+]AType-I
4 [1−2−4+3+] , (1.26)

which can be verified by explicit computation [38]. The KLT double copy can be derived by
considering the closed-string amplitude as an integral over the moduli space of the Riemann sphere
and performing a particular contour deformation.

Even though string theory is very interesting, we are interested in the structure of amplitudes
in field theory. Taking the limit in which α′ is asymptotically small, Eq. (1.26) leads to the field
theory incarnation of the double copy

MGR
4 [1−2−3+4+] = −sAYM

4 [1−2−3+4+]AYM
4 [1−2−4+3+] (1.27)

where MGR
n and AYM

n [. . .] are GR and planar YM amplitudes respectively,

AYM
4 [1−2−3+4+] =

−⟨1, 2⟩2[3, 4]2
s12s23

, MGR
4 [1−2−3+4+] =

⟨1, 2⟩4[3, 4]4
s12s23s13

. (1.28)

The general intuition is that open string amplitudes correspond to planar amplitudes while closed
string amplitudes correspond to uncolored amplitudes. Since sewing open strings yields closed
strings, it is natural that uncolored amplitudes in certain theories can be written in terms of planar
amplitudes.

This story generalizes to higher point amplitudes; eq. (1.26) becomes

AL⊗R
n =

∑
α∈BL,β∈BR

AL
n [α]S

α′

n [α|β]AR
n [α] (1.29)

at n-point, where the sum is over two choices of (n − 3)! orderings, BL and BR. The kernel,
Sα′

[α|β], is defined as the inverse of the (n − 3)! × (n − 3)! double partial amplitudes matrix
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whose elements are denoted as mα′
[α|β] [39]:

Sα′

3 [123|123] = (mα′

3 [123|123])−1

Sα′

4 [1234|1234] = (mα′

4 [1234|1234])−1, (1.30)[
Sα′
4 [12345|12345] Sα′

4 [12345|12435]
Sα′
4 [12435|12345] Sα′

4 [12435|12435]

]
=

[
mα′

4 [12345|12345] mα′
4 [12435|12345]

mα′
4 [12345|12435] mα′

4 [12435|12435]

]−1
.

Double partial amplitudes are defined by taking a double color-trace decomposition of the full
amplitude:

An =
∑

α,β∈Sn−1

Tr[T aα1T aα2 . . .]Tr[T̃ aβ1 T̃ aβ2 . . .]mα′

n [α|β] . (1.31)

In the limit α′ goes to zero, the mα′
[α|β] reduce to amplitudes of the cubic bi-adjoint scalar (BAS)

theory

LBAS = −1

2
(∂ϕaa′)2 +

1

6
fabcf̃a′b′c′ϕaa′ϕbb′ϕcc′ . (1.32)

Like eq. (1.11), the BAS theory in eq. (1.32) is not well-defined non-perturbatively, but its scatter-
ing amplitudes are perturbatively well-defined, at least at tree-level. At 3-, 4- and 5-point,

m3[123|123] = g, m3[123|132] = −g ,

m4[1234|1234] =
g2

s12
+
g2

s23
, m4[1234|1243] =

−g2
s12

,

m5[12345|12345] =
g3

s12s34
+

g3

s23s45
+

g3

s34s15
+

g3

s45s12
+

g3

s15s23
.

(1.33)

In its field theory incarnation, the double copy has dramatically simplified higher-loop amplitude
computations and found application in a wide range of areas. Again, the crucial point is that
AYM[α] is significantly easier to compute than MGR and the double provides an algorithm to
compute MGR from AYM[α].

The double copy applies to a large class of theories, with examples given in table 1.1. In the
paper Ref. [22], which I wrote with collaborators Huan-Hang Chi, Henriette Elvang, Callum R.
T. Jones, and Shruti Paranjape, we aimed to generalize the double copy to generic EFTs. The
underlying principle of EFT is that one can make quantitative predictions for many systems with-
out knowing the precise underlying theory. For example, fluid mechanics is a type of EFT. Fluid
mechanics makes quantitative predictions for the behavior of fluids without referencing the sub-
atomic nature of the fluids under study. However, fluid mechanics is only valid for low energy
scales as the fluid approximation of atoms breaks down at high energies. We can take the same ap-
proach to compute scattering amplitudes in the EFT approximation. In the EFT approximation of
a given scattering amplitude, contributions from physics at a high energy scale Λ, to the scattering
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L / R BAS χPT YM N = 4 pSYM
BAS BAS χPT YM N = 4 pSYM
χPT χPT sGal BI N = 4 sDBI
YM YM BI NS-NS gravity N = 4 SG

N = 4 pSYM N = 4 pSYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1.1: The table shows the tree-level double-copy L ⊗ R for a selection of different choices of
L and R models. The single-color models are χPT = chiral perturbation theory, YM, and N = 4
pSYM. These theories double-copy as shown to: the special Galileon (sGal), Born-Infeld theory
(BI), N = 4 supersymmetric Dirac-Born-Infeld theory (sDBI), and and NS-NS gravity which is
the α′ → 0 limit of the NS-NS sector of superstring theory describing Einstein gravity coupled to
a dilaton and a 2-form gauge field (in 4d the latter is dualized to an axion). Finally, SG stands for
supergravity.

process at a lower energy E, are represented by a low-energy series expansion in E/Λ. When E
is much less than Λ, the EFT scattering amplitude is a good approximation of the “true” scattering
amplitude. For example, the small s12, s23 expansion of the string amplitudes in eqs. (1.24) and
(1.25) can be interpreted as amplitudes in particular EFTs that approximate string theory. From
the perspective of the EFT Lagrangian, the low-energy expansion implies the addition of interac-
tion terms to the Lagrangian that are arranged systematically in 1/Λ powers and incorporate an
increasing number of fields and derivatives. The Wilson coefficients of these higher-order inter-
actions encode high-energy physics. For example, at low energies, the string kernel amplitudes
mα′

[α|β] can be interpreted as amplitudes in the cubic BAS of eq. (1.32) plus some particular
collection of higher derivative operators [39] where Λ corresponds to the string scale, Λ−2 = α′.
Many of the theories given in table 1.1, such as GR, are EFTs with particular choices of Wil-
son coefficients. The question is whether the double copy can be generalized to generic EFTs.
This problem is not simply a formality but has far-reaching implications. Infinite counterterms
are necessary to regulate UV divergences and finite counterterms are important for determining
the (existence of) regularization schemes that preserve certain symmetries. In gravitational-wave
calculations, higher-dimension operators account for finite-size corrections [40, 41].

In chapter 3, I derive a systematic extension of the double copy to include higher derivative
operators. To derive a generalization of the KLT double copy, I re-interpret the double copy as an
algebra on the space of theories:

EFTL⊗R = EFTL ⊗ EFTR . (1.34)
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Crucially, this algebra contains an identity model which obeys

1⊗ 1 = 1 , (1.35)

L ⊗ 1 = L , 1⊗ R = R . (1.36)

I then recognize the identity model of interest to be cubic BAS, eq. (1.32), plus higher derivative
(h.d.) operators:

LBAS+h.d. = LBAS +
∑
i

ci
Λ∆i−d

Oi . (1.37)

Note that I do not fix ci to their string values. The goal of the KLT bootstrap is to find higher
derivative corrections to the cubic BAS theory in eq. (1.37) that are consistent with Eq. (1.35).
Remarkably, eq. (1.35) implies both that the identity model is identified with the kernel and that
the rank of the double partial amplitudes matrix is (n−3)!, which I call the minimal rank condition.
The leading higher-dimension operators compatible with the minimal rank condition are

L ⊃ −aL + aR

2Λ4
fabxf cdxfa′b′x′

f c′d′x′
(∂µϕ

aa′)(∂µϕbb′)ϕcc′ϕdd′

+
aL

Λ4
fabxf cdxda

′b′x′
dc

′d′x′
(∂µϕ

aa′)ϕbb′(∂µϕcc′)ϕdd′

+
aR

Λ4
dabxdcdxfa′b′x′

f c′d′x′
(∂µϕ

aa′)ϕbb′(∂µϕcc′)ϕdd′ + . . . .

(1.38)

One can show higher derivative corrections that are compatible with minimal rank lead to a kernel
that is manifestly free of spurious poles.

Given the most general kernel, I also study how higher derivative operators map under the
kernel. For a theory to be compatible with a given identity model under the KLT algebra, its planar
amplitudes must obey linear relations that depend on the kernel. Such relations impose that the
double copy formula in Eq. (1.29) is independent of BL and BR. Alternatively, these constraints
can also be derived from imposing eq. (1.36). For BAS without any higher derivative corrections,
the corresponding linear relations are the Kleiss-Kuijf (KK) and Bern-Carrasco-Johansson (BCJ)
relations. At 4-point, these take the form

0 = A4[1234] +A4[1342] +A4[1423] , (1.39)

0 = s12A4[1234]− s13A4[1324] , (1.40)
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along with the trace reversal identities

0 = A4[1234]−A4[1432] ,

0 = A4[1342]−A4[1243] ,

0 = A4[1423]−A4[1324] .

(1.41)

Eqs. (1.39), (1.40) and (1.41) are sufficient for the field theory double copy to be basis independent.
For the string theory kernel, eqs. (1.39) and (1.40) becomes the string monodromy relations:

0 = A4[2134] + cos(α′s12)A4[1234] + cos(α′s13)A4[1324] .

0 = sin(α′s12)A4[1234]− sin(α′s13)A4[1324] .
(1.42)

For a generic kernel, the relations required by basis invariance are called the generalized KKBCJ
relations. Therefore, to study how higher derivative operators in YM map to higher derivative op-
erators in GR, I first impose that the amplitudes obey generalized KKBCJ relations. I then use the
KLT double copy to compute the corresponding higher derivative operators in the resulting gravity
theory. We found a number of interesting results. In our examples with the generalized KLT kernel
based on BAS+h.d., we found that the double-copy contains the same operators as the standard
field theory double copy, but with shifts in some of their Wilson coefficients, a phenomenon which
I call “kernel equivalence.”

The KLT bootstrap was further studied in Refs. [30, 31], which were written in collaboration
with Henriette Elvang and Alan Shih-Kuan Chen. The detailed results of Refs. [30, 31] are beyond
the scope of this dissertation, but worth summarizing to give the upshot of the program proposed
in chapter 3. Refs. [30, 31] shows that constraints from the KLT bootstrap at 6-point severely
constrain the kernel at 4-point. Using constraints from the KLT bootstrap at 6-point, Refs. [30, 31]
give a conjecture for the most general KLT kernel compatible with the minimal rank constraint,
which has a number of interesting implications. In particular, at 4-point, the minimal rank con-
straints fix the generalized KKBCJ relations to string monodromy relations or the field theory KK
& BCJ relations. This is unexpected because the monodromy relations are intrinsically stringy and
the KLT bootstrap corresponds to imposing low-energy constraints; this result points to the intrin-
sically stringy nature of the double-copy. The construction also clarifies the “kernel equivalence”
phenomenon described above.

1.4 Beyond Flat Space: Boundary Correlators in Anti-de Sitter

We now go beyond flat space by studying boundary correlators in AdS. Boundary correlation func-
tions in AdS space provide an important laboratory for studying quantum field theory and quantum
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Figure 1.6: A visualization of the embedding of Euclidean AdS2 into R2,1.

gravity. For example, boundary correlators in AdS correspond to correlation functions of gauge-
invariant operators in unitary CFTs [42–45], providing a concrete realization of the holographic
principle [46, 47]. AdS is arguably the simplest curved space background one can consider and is
analogous to putting the theory in a box. However, AdS boundary correlators are still significantly
harder to compute than scattering amplitudes. A particularly fruitful approach to searching for new
methods for computing AdS boundary correlators has been generalizing established techniques for
computing scattering amplitudes. In this chapter, we show that several of the properties of scat-
tering amplitudes discussed in section 1.3 generalize to AdS boundary correlators. Using a novel
representation of the AdS boundary correlator termed the differential representation, we find that
KKBCJ relations generalize to planar AdS boundary correlators and that certain techniques for
computing 1-loop scattering amplitudes also generalize.

The computation of boundary correlators in AdS is similar to flat space. (d + 1)-dimensional
AdS can be realized as a hyperboloid in Rd+1,1 where the boundary of AdS (BAdS) corresponds
to the lightcone in Rd+1,1 modulo projective re-scaling

AdSd+1 : (X0)2 − (X1)2 − (X2)2 − . . .− (Xd+1)2 = R2, XA ∈ Rd+1,1 . (1.43)

BAdSd+1 : (P 0)2 − (P 1)2 − (P 2)2 − . . .− (P d+1)2 = 0, PA ∼ λPA, PA ∈ Rd+1,1 .

which is visualized for d = 2 in Fig. 1.6. To compute a boundary correlator, one sums all possible
graphs associated with the given scattering process. Each graph is associated with a term in the
perturbative expansion of the amplitude where

• Each vertex is associated with an integration over the bulk of AdS.

• Each internal edge corresponds to a bulk-to-bulk propagator.

• Each external edge corresponds to a bulk-to-boundary propagator.

We denote boundary position coordinates as Pi. A standard Green’s function differential equation
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defines the propagators. For example, a cubic 4-point scalar Witten diagram can be written as

∆3∆2

∆1 ∆4

∆
=

∫
AdS

dXdY E∆3(X,P3)E∆4(X,P4)G∆(X, Y )E∆1(Y, P1)E∆2(Y, P2) , (1.44)

where E∆(X,P ) and G∆(X, Y ) correspond to bulk-to-boundary and bulk-to-bulk propagators
respectively for a state with mass m2R2 = ∆(∆ − d). Here, R is the length scale of AdS, which
we set to 1 for the remainder of this thesis.

The problem with the above procedure is that, even at tree-level, one must perform multiple
non-trivial integrals over the bulk of AdS to evaluate a single Witten diagram. Tree-level scattering
amplitudes, on the other hand, can be computed without any integration. The key is that we are
computing the AdS correlators in position space while scattering amplitudes are almost always
computed in momentum space. However, unlike flat space, Fourier transforming to momentum
space does not trivialize the AdS bulk integrals. Instead, the natural analogs of momentum vari-
ables for AdS are differential operators acting on a contact diagram [48]. For example, the integral
representation of the Witten diagram in eq. (4.42) can be re-written as a non-local differential
operator acting on an AdS contact diagram:

∆3∆2

∆1 ∆4

∆
=

1

(D1 +D2)2 +∆(∆− d)
C4, where Cn =

∆4∆3

∆2

∆1 ∆n

(1.45)

and the Di are conformal generators and Cn is the n-point AdS contact diagram. Eq. (1.45) is
the same as the corresponding flat space amplitude, except that the Mandelstam variable has been
replaced with a differential operator acting on the AdS contact diagram:(∑

i∈I

pi

)2
→
(∑

i∈I

Di

)2
. (1.46)

In flat space, the contact diagram is simply the momentum-conserving delta-function which is
universal to all amplitudes:

Cn|flat space =

∫
Rd

ddx
∏
i

eix·
∑

pi = δd(
∑

pµi ) . (1.47)
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In AdS, the contact diagram is instead a non-trivial function of position coordinates

∆4∆3

∆2

∆1 ∆n

=

(
n∏

i=1

Γ(∆i)

2πd/2Γ(∆i − d/2 + 1)

)
D∆1...∆n(Pi) (1.48)

where the D∆1...∆n(Pi) is a D-function [49]. Such contact diagrams are simple at 3-point, but are
non-trivial hypergeometric functions for generic ∆i at 4-point and beyond.

Generalizing Eq. (1.45), the natural analog of momentum space in AdS is the differential
representation

An = ÂnCn , (1.49)

where Â is a function of differential operators. For example, at 5-point,

5

4
3

2

1

= Âexp
5 C5, Âexp

5 =
1

(D1 +D2)2(D3 +D4)2
(1.50)

for internal states with ∆ = d. The primary difference between AdS and flat space is then that
AdS kinematic space is non-commutative because conformal generators do not commute:

j ̸= k : [(Di +Dj)
2, (Di +Dk)

2] ̸= 0. (1.51)

Therefore, the differential representation implies that AdS boundary correlators should be inter-
preted as functions on a non-commutative kinematic space. However, for the computations in this
dissertation, this non-commutativity issue does not appear.

The differential representation of the AdS boundary correlator first appeared in stringy formulas
of AdS boundary correlators in Refs. [48, 50]. In chapter 4, I provide a systematic study of the dif-
ferential representation from a field theory perspective. In particular, I show that many properties
of flat space scattering amplitude immediately generalize to AdS correlators using the differential
representation. For example, I discussed in the previous section that YM scattering amplitudes
obey KKBCJ relations, such as eq. (1.40). Given the differential representation in Eq. (1.49), I
conjecture that the AdS analog of Eq. (1.40) is

(D1 +D2)
2A4[1234] = (D1 +D3)

2A4[1324] . (1.52)

I explicitly checked that Eq. (1.52) holds for YM in AdS by direct calculation. Therefore, YM
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in AdS obeys some version of color-kinematics duality, at least at 4-point. I further point to the
possibility of an AdS double copy using the differential representation.

In addition to showing that the differential representation simplifies computations at tree-level,
I also generalize the differential representation to one-loop. The one-loop generalization of the dif-
ferential representations involves developing the notion of integrating over a differential operator∫

[DDQ](. . .) , (1.53)

which I claim is the AdS generalization of the loop momentum integral∫
ddl(. . .) . (1.54)

For example, in this framework, the bubble integral is denoted as

1

2
3

∆l

∆l

=

∫
[DDQ]

1

(D2
Q −∆l(d−∆l))(D2

Q3 −∆l(d−∆l))
. (1.55)

I demonstrate the computational benefits of the one-loop differential representation by computing
the bubble and triangle scalar Witten diagrams using flat-space techniques. I compared the bubble
computation to a position space computation, finding agreement. To my knowledge, closed-form
expressions for the triangle Witten diagram in general dimension were previously unknown [51].
These results open the door to generalizing standard techniques for evaluating flat-space higher-
loop amplitudes, such as differential equations [52–55] and integration-by-parts identities [56–
58], to AdS boundary correlators. The hope is such techniques can also be generalized to de Sitter
without significant difficulty. For example, in Ref. [59], the differential representation at tree-level
and for scalars externals was generalized from AdS to generic symmetric manifolds.

1.5 Summary

This dissertation discusses novel structures in amplitudes and AdS boundary correlators, starting
from the simple theory of N = 4 pSYM in flat-space and generalizing to more generic EFTs and
boundary correlators in AdS. The positive kinematic region, color-kinematics duality, and double
copy structures are studied. Color-kinematics duality is found to generalize to AdS boundary corre-
lators at 4-point. However, even the simplest double-copy formulas do not immediately generalize
to YM and GR in AdS. Future research could involve studying the AdS analog of the positive
kinematic region for planar AdS boundary correlators using operator-valued integrals.
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CHAPTER 2

The Positive Kinematic Region of Planar Amplitudes
in N = 4 super-Yang Mills

2.1 Overview

Amplitudes in N = 4 pSYM are an ideal testing ground for exploring the analytic structure of
planar scattering amplitudes. For instance, amplitudes in N = 4 pSYM have a finite number of
branch points associated with solutions to the Landau equations and are expected to have a finite
radius of convergence in perturbation theory [37]. Significant progress has been made in under-
standing the structure of N = 4 pSYM amplitudes beyond Feynman diagrams. At weak coupling,
deep geometric structures, such as the amplituhedron, have emerged that provide both powerful
computational techniques for computing integrands at any loop order and a radically different per-
spective on the nature of locality and unitarity [5, 14, 35, 60, 61]. At strong coupling, holographic
calculations provide non-trivial predictions for the behavior of N = 4 pSYM amplitudes in the
form of the BDS-ansatz [62–64] and its generalizations [65, 66]. Other formalisms motivated by
the duality between Wilson loops and scattering amplitudes have also emerged [67–74].

MHV amplitudes in N = 4 pSYM are particularly simple and have been useful litmus tests for
conjectures. MHV n-point amplitudes are transcendental functions of fixed weight at each loop
order that can be expressed in terms of multi-polylogarithms (MPLs) at all orders calculated to date
[11–17].1 These transcendental functions of weight W , FW , are the generalizations of logarithms
that obey extremely nice properties. Primarily, the symbol provides a map from the amplitude to a
sum of W -fold tensor products:

F →
∑

F
ϕα1 ,ϕα2 ,...,ϕαW
0 [log(ϕα1)⊗ log(ϕα2)⊗ . . .⊗ log(ϕαW

)] , (2.1)

1Using the Grassmannian form of N = 4 pSYM loop integrands, one can directly show all integrals in the MHV
(and NMHV) sector can be written as iterated integrals of d log-forms [14]. Unfortunately, this does not necessarily
mean they integrate to a function that can be written in terms of MPLs [75].
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where F0 are rational numbers. Each factor in the tensor product behaves similarly to a logarithm,
leading to properties like

[. . .⊗ log(ϕ1ϕ2)⊗ . . .] = [. . .⊗ log(ϕ2)⊗ . . .] + [. . .⊗ log(ϕ1)⊗ . . .] . (2.2)

The ϕi in eq. (2.1) are functions of external kinematic data and correspond to branch points of FW .
The set of all ϕ that can appear in eq. (2.1) is called the symbol alphabet of FW .

The symbol provides a very transparent understanding of the analytic structure of FW . We will
focus on finding a minimal symbol alphabet, a set of multiplicatively independent letters that all
letters in the original symbol alphabet can be written as monomials of. For example, consider the
initial symbol alphabet {ϕ1, ϕ2, ϕ1ϕ2}. One minimal symbol alphabet is {ϕ1, ϕ2} as ϕ1ϕ2 factors
into ϕ1 and ϕ2. An alternative minimal symbol alphabet is {ϕ2, ϕ1ϕ2}, as ϕ1 = (ϕ1ϕ2)/ϕ2. Given
a minimal symbol alphabet, one can use eq. (2.2) to construct a complete basis of possible tensors.
Finding a minimal symbol alphabet of the 8-point MHV amplitude would be a major achievement
and open up the possibility of bootstrapping 8-point MHV higher loop amplitudes. We take an
important step towards this goal by proposing a minimal symbol alphabet for algebraic letters.

2.1.1 The Positive Kinematic Region

Scattering amplitudes are functions on kinematic space. The positive kinematic region is a re-
gion of kinematic space where planar gauge theory amplitudes are conjectured to have no poles or
branch cuts. More precisely, in all examples studied to date, the Landau equations admit no solu-
tions when the external data is taken to be in the positive kinematic region. The positive kinematic
region for a given ordering of externals, α ∈ Perm[1, 2, . . . , n], is associated with the region where
all planar variables are positive definite,

Xi,j =

(
j−1∑
a=i

pα(a)

)2

> 0 , (2.3)

Since we are studying the positive kinematic region of massless planar gauge theory amplitudes in
4 dimensions, we parameterize our external kinematic data using momentum twistors [15]; ZA

i is
the momentum twistor of state i and the A index transforms in the fundamental representation of
the dual conformal algebra, SU(2, 2). Individual momentum twistors are projective:

ZA
i ∼ tiZ

A
i . (2.4)
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Therefore, the kinematic space of the n-point amplitude can be interpreted as a quotient of the
Grassmannian, Gr(4, n)/T , where T acts on columns by a re-scaling. The positive kinematic
region is then a quotient of the positive Grassmannian, Gr+(4, n)/T , cut out by the inequalities

0 < ⟨i, j, k, l⟩ when i < j < k < l , (2.5)

where ⟨. . .⟩ corresponds to a minor of columns “. . .”.2 As explained in section 1.2, we need to
consider a particular compactification of this space.

2.1.2 Critically Positive Coordinates and Cluster Algebras

Previous research into the connection between the positive kinematic region and N = 4 pSYM
amplitudes has generally focused on the cluster algebra structure of the positive kinematic region
[15, 18, 76–87].3 More concretely, the positive kinematic region of MHV N = 4 pSYM ampli-
tudes corresponds to a X -type cluster algebra4 which associates to the positive kinematic region
a set of critically positive coordinates called ŷ-variables. A coordinate that is critically positive
vanishes on at least one boundary of the positive region. Although each cluster parameterization
makes only a sub-set of boundaries manifest, considering all cluster parameterizations together
allows one to study all the possible boundaries. At 6-point and 7-point, the symbol alphabet, the ϕi

in eq. (2.1), consists solely of the ŷ-variables, implying that ŷ-variables correspond to logarithmic
branch cuts! Calculations are further simplified by considering a minimal multiplicative basis of
ŷ-variables instead of the set of ŷ-variables themselves. Given an initial cluster, one minimal mul-
tiplicative basis consists of the ŷ-variables of an initial cluster, ŷi, along with some non-factorable
Laurent polynomials of ŷi. We denote this set of non-factorable Laurent polynomials as O(X ).

Starting at 8-point, two problematic features appear in the cluster algebra approach:

• There are an infinite number of ŷ-variables in the cluster algebra.

• Algebraic letters start to appear in the symbol alphabet.

Several approaches to tackling these problems have appeared in the literature and significant
progress has been made.

2This is only true in the MHV sector. Beyond MHV, the kinematic region is most naturally interpreted as bundles
over Gr(4, n)/T [35, 36].

3Note that alternate approaches have also been very successful without directly referencing the cluster algebra
structure of the positive kinematic region. The Q̄ approach in particular has been extremely useful in probing n ≥ 8
higher loop amplitudes [88–90]. Computations with irrational Yangian invariants provide a very clever probe of
the algebraic letters [91–93]. Finally, studying branch points using Landau-equations and the amplitudhedron have
allowed direct computations of the singularity structure at high loop order [94–96].

4A quick introduction to cluster algebras is provided in appendix A.1.
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Figure 2.1: Pictures of the scattering diagrams corresponding to Gr(2, 5)/T (left) and Gr(2, 6)/T
(right).

The first problem is troublesome because a key restriction for calculations at 6-point and 7-point
is that the symbol alphabet is finite. Upon finding that the cluster algebra is infinite at 8-point, one
might be tempted to assume that the symbol alphabet at 8-point is also infinite. However, it has
been proven that the n-point amplitude in N = 4 pSYM has a finite number of branch points
associated with solutions to the Landau equations [37], implying that the symbol alphabet could
also be finite. Following this train of thought, several truncation procedures have been proposed,
motivated by connections between stringy canonical forms and compactifications of configuration
spaces [36, 97–100].

The second problem has proven a major obstacle for interpreting letters as cluster variables
because cluster variables are rational by construction. Multiple methods have been developed to
extract algebraic functions from cluster algebras and then match these functions with algebraic
letters that appear in direct calculations [36, 91, 92, 101, 102]. We use the term cluster algebraic
letters as an umbrella term for all such cluster-like variables that are algebraic.5 However, no
unified picture has emerged that provides a systematic understanding of these cluster algebraic
functions.

5Notably, the initial definition of cluster algebraic functions in Ref. [36] only included 2 algebraic letters for each
limiting ray in the Gr(4, 8)/T g-vector fan. However, at least 18 algebraic letters seem to appear in the MHV 3-loop
amplitude at 8-point [20, 89].
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2.1.3 Scattering Diagrams and Asymptotic Chambers

In this chapter, we propose wall crossing, and scattering diagrams more specifically, as a useful
framework to address these issues [103–108]. Wall crossing has found applications in a number
of research areas, such as the moduli spaces of N = 2 gauge theories and black hole entropy
formulas [109–114]. However, we are not studying any kind of entropy formula or moduli space,
but instead compactifications of the positive kinematic region, Gr(4, n)/T . The application of
wall crossing and scattering diagrams to partial compactifications is best understood in the context
of mirror symmetry [103, 108, 115], but such a discussion is unfortunately beyond the scope of
this chapter.6 Instead, we take a more practical approach, giving a computational definition of a
scattering diagram with examples and then making the connection to cluster algebras. We argue
that scattering diagrams, which represent a more general mathematical framework than cluster
algebras, are useful for studying cluster algebraic functions that appear in the symbol alphabet of
N = 4 pSYM.

The scattering diagram of a rank N cluster algebra corresponds to a fan in ZN , where each cone
in the fan corresponds to a different coordinate system for X . Cones of the scattering diagram
correspond to clusters of the cluster algebra. In the case of finite cluster algebras, crossing between
adjacent cones in the scattering diagram always corresponds to a cluster mutation. For example, the
scattering diagrams ofGr(2, 5)/T andGr(2, 6)/T are provided in fig. 2.1. Crucially, the scattering
diagram perspective motivates an alternate set of coordinates for X , denoted as ŷγ-variables. For a
given cone/cluster, the ŷγ-variables can be written as monomials of the ŷ-variables and vice-versa.
Therefore, the ŷγ-variables and ŷ-variables have the same multiplicative basis.

In the finite case, the walls corresponding to cluster mutations define a complete scattering
diagram. In some sense, the finite scattering diagram is simply a rewriting of the cluster algebra
and contains no new information. In the infinite case, where there are an infinite number of cones,
scattering diagrams are a genuine generalization of the cluster algebra framework. In particular,
infinite sequences of cones appear in the scattering diagrams that asymptotically approach limiting
rays, as schematically drawn in fig. 2.2. We use these infinite sequences of cones to define the
notion of asymptotic chambers: cones that are asymptotically close to the limiting ray. Although
there are always an infinite number of walls as you approach the limiting ray, we argue that walls
not intersecting the limiting ray can be ignored when calculating relations between the ŷγ-variables
in this asymptotic limit. For example, there are 6 asymptotic chambers in fig. 2.2 as only three

6The schematic connection between mirror symmetry and cluster algebras is as follows. We can interpret X as
the blow-up of an associated toric geometry. Cluster transformations correspond to changing the blow up description
by an elementary transformation. Scattering diagrams provide a framework to systematically “sew” these different
parameterizations together using a fan defined by tropical points of the dual mirror manifold, A∨. This framework is
famous for giving a geometric interpretation of the connection between tropical points of A∨ and regular functions on
X using mirror symmetry.
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Figure 2.2: A schematic representation of the cone structure near the limiting ray in some 3-
dimensional scattering diagram. We are looking down on the limiting ray, which corresponds to
the green dot.

walls intersect the limiting ray. We can calculate relations between the ŷγ-variables of distinct
asymptotic chambers using the wall crossing framework.

The initial motivation for asymptotic chambers actually came from N = 2 super-symmetric
gauge theories. For specific N = 2 gauge theories on R3 × S1, the moduli space corresponds
to a X -type cluster algebra [110]. This connection between cluster algebras and N = 2 gauge
theories led to a number of interesting results, such as a connection between canonical bases of the
cluster algebra and the set of simple line defects in the theory [113]. The concept of an asymptotic
chamber was proposed in Ref. [110], although initial calculations were first performed in Section
5.9 of Ref. [109] using different terminology. Later generalizations made connections between
asymptotic chambers and Fenchel-Nielsen coordinates of (higher) Teichmuller spaces [116–118].
However, to our knowledge, the notion of asymptotic chambers in the context of higher dimension
scattering diagrams has been largely unstudied for general X spaces.

Crucially, although the ŷ-variables often diverge in the asymptotic limit, the ŷγ-variables them-
selves remain finite. These “asymptotic” ŷγ-variables correspond to the algebraic letters that appear
in the 8-point symbol alphabet! Using scattering diagrams and the notion of asymptotic chambers,
we conjecture a complete multiplicative basis for all algebraic letters that could appear in the
N = 4 pSYM symbol alphabet at 8-point. Remarkably, we found at most 52 multiplicatively in-
dependent algebraic letters associated with the asymptotic chambers. This result systematizes the
techniques in refs. [101, 102], which effectively analyzed a particular subset of asymptotic cham-
bers and did not study the relations between the algebraic letters of different asymptotic chambers.

The scattering diagram approach also offers a new perspective on proposed truncation proce-
dures for ŷ-variables. We take a similar philosophy to refs. [36, 101, 102], arguing that the positive
kinematic region is not maximally compactified, so not all boundaries appear. However, in contrast
to refs. [36, 101, 102], which argue for a truncation of the x-variables, we instead argue for a trun-
cation of clusters in the cluster algebra, or equivalently cones in the scattering diagram. We further
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argue that such a truncation naturally leads to the notion of asymptotic chambers and algebraic
critical coordinates.

2.1.4 Notation

We denote the cluster variables associated with A and X as x and ŷ respectively. This notation
differs from refs. [36, 101], which denote cluster variables associated with A and X as a and x
respectively. Furthermore, we denote mutations of the kth node as µk. For example, xi = µkxi

if i ̸= k. Finally, we often denote cluster algebras using the notation Ap1,p2,...,pn , because these
cluster algebras correspond to the Teichmuller space of bordered Riemann surfaces. The cluster
algebra Ap1,p2,...,pn corresponds to the Teichmuller space of a Riemann surface with n borders
and pi punctures on border i. For those unfamiliar with the connection between cluster algebra
and surfaces, this notation is unimportant for our applications to N = 4 pSYM but is nice for
organizational purposes.

2.2 Wall crossing, Cluster Algebras, and Asymptotic Cham-
bers

In this section, we develop the notion of scattering diagrams and asymptotic chambers. We begin
with a short introduction to g-vectors before giving a relation between the scattering diagram and
the g-vector fan of the cluster algebra. We then develop the notion of asymptotic chambers, using
the A1,1 cluster algebra as our guide.

2.2.1 Principal Quivers and the g-vector Fan

Our goal is to find a minimal multiplicative basis of the ŷ-variables that parameterize the positive
region of X . Unfortunately, the set of ŷ-variables is very difficult to study for a cluster algebra
with generic frozen variables. For example, ŷ-variables will not always be independent. To see the
problem, consider the initial quiver,

x1 x2 x3

so
ŷ1 =

1

x2
, ŷ2 = x1x3, ŷ3 =

1

x2
. (2.6)
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Without any frozen nodes, we trivially see that ŷ1 = ŷ3. However, suppose we include the frozen
node

y1

x1 x2 x3 ,

so ŷ1 = y1/x2 and ŷ1 ̸= ŷ3. From this example, it is clear that the frozen nodes play a crucial role
in distinguishing ŷ-variables. One approach to this problem is to simply add frozen nodes until the
ŷ-variables are maximally disambiguated [119, 120]. Only a finite, albeit large, number of frozen
nodes are necessary to maximally disambiguate the ŷ-variables.

However, we are not interested in the set of all ŷ-variables but instead finding a multiplicatively
independent basis. Given that any ŷ-variable can be written as a monomial of x-variables, we
only need to maximally disambiguate x-variables of the cluster algebra, not the ŷ-variables. We
are therefore motivated to consider a cluster algebra with a principal quiver [119]. To construct a
principal quiver, consider an initial quiver without any frozen nodes. Then add a frozen node, yi,
to each non-frozen node, xi, with an edge pointing from the frozen node to the mutable node. For
example, the quiver

y1 y2

x1 x2

(2.7)

is a principle quiver of the A2 cluster algebra. Remarkably, the frozen nodes of a principal quiver
are enough to maximally disambiguate all x-variables! Details of this statement are provided in
appendix A.2. We subsequently study cluster algebras with principle quivers to study the mul-
tiplicative basis of ŷ-variables of cluster algebras with arbitrary frozen nodes. Furthermore, we
can choose any quiver of our cluster algebra to be the principal quiver. is a principle quiver of
the A2 cluster algebra. Remarkably, the frozen nodes of a principal quiver are enough to maxi-
mally disambiguate all x-variables! Details of this statement are provided in appendix A.2. We
subsequently study cluster algebras with principle quivers to study the multiplicative basis of ŷ-
variables of cluster algebras with arbitrary frozen nodes. Furthermore, we can choose any quiver
of our cluster algebra to be the principal quiver.

We now turn to the problem of understanding the relation between ŷ-variables and x-variables
for a cluster algebra with a principal quiver. Although we cannot write a direct map from ŷ to
x, attempting to do so allows us to associate a canonical vector to each x-variable. Suppose we
start with the principal quiver. Any x-variable in the cluster algebra can be written as a Laurent
polynomial of the x-variables and y-variables of the principle quiver. It is not generally possible to
re-write this Laurent polynomial entirely in terms of ŷ-variables. However, it can be written as a
polynomial of ŷ-variables of the principle quiver up to a monomial of x-variables of the principle
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xi Fi gi
x1 1 (1, 0)
x2 1 (0, 1)
x3 1 + ŷ1 (−1, 1)
x4 1+ŷ1+ŷ1ŷ2 (−1, 0)
x5 1 + ŷ2 (0,−1)

Table 2.1: The F (ŷi) polynomials and g-vectors of the A2 cluster algebra.

quiver:
x = xg⃗F (ŷi), xg⃗ =

∏
i

xgii , (2.8)

where F (ŷi) is a Laurent polynomial in ŷ-variables of the principal quiver, which we denote as ŷi.
No two x-variables share the same g-vector, allowing us to associate a canonical g-vector to each
element of the cluster algebra. As an illustrative example, again consider the A2 cluster algebra.
The ŷ-variables of (2.7) are

ŷ1 = y1x
−1
2 , ŷ2 = y2x1 . (2.9)

Upon mutating x1, we find

x3 =
y1 + x2
x1

=
x2
x1

(1 + ŷ1)

→ g⃗ = (−1, 1), F (ŷi) = 1 + ŷ1 .

(2.10)

Mutating through all clusters yields all F (ŷi) polynomials and g-vectors of the A2 cluster algebra,
which are provided in table 2.1. Each cluster defines a cone bounded by the g-vectors of the x-
variables in the cluster. Remarkably, the cones associated with distinct clusters are nonoverlapping,
which is not at all obvious from the above definition. The collection of these cones defines a
(sometimes incomplete) fan.

In summary, we reduced the problem of finding a multiplicative basis of the ŷ-variables of a
cluster algebra with generic frozen variables to finding a multiplicative basis of the ŷ-variables of
a cluster algebra with a principal quiver. We then used the ŷ-variables of the principle quiver to
find a map from x-variables to g-vectors.

2.2.2 Scattering Diagrams and Wall Crossing

In this section, we introduce the notion of scattering diagrams and wall crossing, following the
review in Ref. [121]. We then show how cluster algebras fit into the wall crossing framework,
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using the A2 cluster algebra as our primary example.
A scattering diagram is defined on a lattice, ZN . We denote vectors as γ and basis vectors as

γi.7 A scattering diagram requires three pieces of input data:

• A collection of cones bounded by co-dimension 1 walls. Each wall in the scattering diagram
is associated with a scalar function, f(y).

• N coordinates on X , denoted as ŷγi . Each coordinate corresponds to a basis vector.8

• A skew-symmetric matrix, B0
i,j , that defines a skew-symmetric9 product for the γ,

⟨γi, γj⟩ = γi ·B0 · γj . (2.11)

Each cone in the fan is associated with a particular parameterization of X similar to how the ŷ-
variables of a cluster correspond to a particular parameterization of X . Crossing a wall between
two cones corresponds to a coordinate transformation.

We now describe the coordinate transformation. Each co-dimension one wall is associated with
a vector, γ⊥, perpendicular to the wall,

γ⊥ = aiγi . (2.12)

The sign of γ⊥ is chosen so γ⊥ points opposite the direction one is mutating across the wall.
Furthermore, the magnitude of γ⊥ is chosen so that all of its components, the ai in eq. (2.12), are
integers whose least common denominator is 1. Finally, we associate a unique monomial, ŷγ⊥ , to
each γ⊥:

ŷγ⊥ = (
∏

ŷaiγi )
Sign(γ⊥·N⃗) , (2.13)

N⃗ = (1, 1, . . . , 1) . (2.14)

For example, for a wall with the perpendicular vector γ⊥ = (0, 1, 1), the associated monomial is

ŷ(0, 1, 1) = ŷγ2 ŷγ3 . (2.15)

Due to the Sign(γ⊥ · N⃗) exponent, the perpendicular vector γ⊥ = (0, −1, −1) is associated with

7For example, if N = 3, then γ1 = (1, 0, 0), γ2 = (0, 1, 0) and γ3 = (0, 0, 1).
8We use the notation ŷγi

, instead of ŷi, to distinguish them from ŷ-variables.
9The scattering diagram framework can also be applied when the product is skew-symmetrizable instead of just

skew-symmetric, but the following formulas requires modifications. See Ref. [110].
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the same monomial,

ŷ(0, −1, −1) = ŷγ2 ŷγ3 . (2.16)

This makes sense as (0, −1, −1) and (0, 1, 1) correspond to the same wall and should therefore
be associated with the same monomial. Although γ⊥ flips sign depending on the direction you are
mutating across the wall, ŷγ⊥ is the same due to the Sign(γ⊥ · N⃗) exponent. The mutation relation
for ŷγi across a wall is

ŷγi → ŷγif(ŷγ⊥)⟨γi,γ
⊥⟩ , (2.17)

which gives the ŷγi of the new cone in terms of ŷγi of the initial cone. To see eq. (2.17) in an
explicit example, suppose we are crossing from cone C1 to cone C2 in fig. 2.3a, where we fix,

B0
i,j =

[
0 1

−1 0

]
, (2.18)

and f(y) = 1 + y for all walls. The perpendicular vector for the relevant wall is γ⊥ = (0, 1), so
ŷγ⊥ = ŷγ2 . Applying eq. (2.17), the ŷγi of chamber C2 are then

ŷγ1 = ŷI
γ1
(1 + ŷI

γ2
)(1,0)·B

0·(0,1) = ŷI
γ1
(1 + ŷI

γ2
) ,

ŷγ2 = ŷI
γ2
(1 + ŷI

γ2
)(0,1)·B

0·(0,1) = ŷI
γ2
,

(2.19)

where ŷI
γi

corresponds to the ŷγi of cone C1.
For a scattering diagram to be self-consistent, the relations between the ŷγi of any two cones

should be path independent. To see why self-consistency is non-trivial, again consider the scatter-
ing diagram in fig. 2.3a with the same B0

i,j and f(y). Applying eq. (2.17) to each path in fig. 2.3a,
we find (

ŷI
γ1

ŷI
γ2

)
→

 ŷI
γ1

ŷI
γ2

ŷI
γ1

+1

→

ŷI
γ1

(
ŷI
γ2

ŷI
γ1

+1
+ 1
)

ŷI
γ2

ŷI
γ1

+1

 ,

(
ŷI
γ1

ŷI
γ2

)
→
(
ŷI
γ1

(
ŷI
γ2
+ 1
)

ŷI
γ2

)
→

ŷI
γ1

(
ŷI
γ2
+ 1
)

ŷI
γ2

ŷI
γ1(ŷ

I
γ2

+1)+1

 , (2.20)

where ŷI
γi

again corresponds to the ŷγi of the initial cone, C1. The scattering diagram in fig. 2.3a is
inconsistent as the ŷγi associated with C3 are not path independent. To make the scattering diagram
self-consistent, we must include the additional wall γ⊥ = (1, 1), leading to the scattering diagram

31



1 + ŷγ21 + ŷγ2

1 + ŷγ1

1 + ŷγ1

C1

C2C3

C4

(a) Inconsistent scattering diagram.

1 + ŷγ1
ŷγ2

1 + ŷγ21 + ŷγ2

1 + ŷγ1

1 + ŷγ1

C1

C2C3

C4

C5

(b) Self-consistent scattering diagram.

Figure 2.3: Two examples of scattering diagrams. The scattering diagram on the left is inconsistent
if B0

i,j equals eq. (2.18). The relations between ŷγ is not path independent, as shown in eq. (2.20).
The scattering diagram on the right is path-independent and can be identified with the A2 cluster
algebra.

in fig. 2.3b. Including this second wall, the first line in eq. (2.20) becomes

(
ŷI
γ1

ŷI
γ2

)
→

 ŷI
γ1

ŷI
γ2

ŷI
γ1

+1

→

ŷI
γ1

(
ŷI
γ1

ŷI
γ2

ŷI
γ1

+1
+ 1
)

ŷI
γ2

ŷI
γ1(ŷ

I
γ2

+1)+1

→

ŷI
γ1

(
ŷI
γ2
+ 1
)

ŷI
γ2

ŷI
γ1(ŷ

I
γ2

+1)+1

 , (2.21)

which now matches the second line of eq. (2.20).
We now describe the connection between cluster algebras and scattering diagrams. The relation

between scattering diagrams and cluster algebras is that the g-vector fan defines a scattering dia-
gram where each cluster is dual to a cone in the scattering diagram. TheB0

i,j matrix that defines the
skew-symmetric product in eq. (2.11) corresponds to the exchange matrix of the principal quiver.
For a cluster algebra with a finite number of cones, each wall corresponds to a cluster mutation and
we fix

f(y) = 1 + y (2.22)

for all walls. We call the walls that correspond to cluster mutations, cluster walls. The ŷ-variables
of a given cone are the ŷγ⊥ associated with each wall that bounds the cone,

ŷj =
∏

ŷ
aji
γi , γ⊥j = ajiγi , (2.23)

where γ⊥i is the γ⊥ associated with ŷi. Note that γ⊥j points inward from the cone in this convention.
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Furthermore, the exchange matrix of the quiver associated with a cone is

Bi,j = ⟨γ⊥i , γ⊥j ⟩ . (2.24)

For example, for the cone associated with the principle quiver, the principle cone, we have

γ⊥i |Principle Cone = γi (2.25)

so
ŷγi |Principle Cone = ŷi, Bi,j|Principle Cone = γi ·B0 · γj = B0

i,j . (2.26)

The cluster mutation in eq. (A.11) corresponds to both a wall crossing transform, eq. (2.17), and a
mutation in the γ⊥i . To see this, again consider the cluster algebra associated with the quiver

y1 y2

x1 x2 .

The explicit computation of the g-vectors in table 2.1 reveals that it is the same as fig. 2.3b.
Consider a mutation from cone C1 to C2. The ŷγi mutation is given by eq. (2.19) and the γ⊥i
mutate as

γ⊥1 = (1, 0) → γ⊥1 = (1, 0) ,

γ⊥2 = (0, 1) → γ⊥2 = (0,−1) .
(2.27)

Combining eqs. (2.19) and (2.27), the mutation relation for ŷi is(
ŷ1

ŷ2

)
→
(
ŷ1(1 + ŷ2)

1
ŷ2

)
, (2.28)

which exactly matches the mutation relation for ŷ-variables. Again, note that it was a combination
of mutating γ⊥i and ŷγi that gave the cluster mutation relation for the ŷ-variables.

We can also consider the scattering diagrams of more complex cluster algebras, such as the A3

cluster algebra
y1 y2 y3

x1 x2 x3 ,

which is associated with Gr(2, 6)/T . Since the cluster algebra is rank 3, the associated scattering
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x−1x−3

x0

x−2

. . .

x1

x2

x3

. . .

x−4

x−5

x−6

Figure 2.4: g-vector fan associated with the A1,1 cluster algebra. There are an infinite number of
cluster variables whose g-vectors approach a limiting ray, g⃗lim = (−1, 1). The explicit form of the
g-vectors is provided in eq. (2.31).

diagram is 3 dimensional. From direct calculation, we found the scattering diagram given in fig. 2.1
in the Introduction. The walls are now 2 dimensional and defined by the span of two g-vectors. To
find the wall associated with the ŷ-variable of a specific quiver, consider all the g-vectors bounding
the dual cone except the g-vector of the x variable associated with the same node as the ŷ-variable.
The span of these two g-vectors defines the wall associated with the ŷ-variable.

In summary, scattering diagrams are a useful framework that provide a nice way to study canon-
ical coordinate transformations on X . Finding self-consistent scattering diagrams is naively quite
hard since you need to check that the relations between the ŷγi of any two cones are path inde-
pendent. The g-vector fans of finite cluster algebras provide a class of self-consistent scattering
diagrams where cluster mutations correspond to a very specific type of wall crossing.

2.2.3 Asymptotic Chambers and Limiting Walls

We now turn to infinite cluster algebras. We will show how the scattering diagram framework
provides a systematic way to study the multiplicative basis of ŷi even when the ŷi themselves go
to infinity. Although |γ⊥i | → ∞ in certain limits, so ŷi → {∞, 0}, the ŷγ-variables remain finite.

We first show that the g-vector fans of infinite cluster algebras need to include additional walls
that do not correspond to cluster mutations. Furthermore, we will find the functions attached to
these walls are not elements of the cluster algebra and can be identified with the mysterious cluster
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algebraic functions of Ref. [36]. We will study the cluster algebra defined by the principal quiver

y−1 y0

x−1 x0 ,

as our motivating example. A review of relevant derivations and formulas for this cluster algebra
are provided in appendix A.3. The key results are a closed form solution for xi with i > 0,

xi =
1

2i+2
[(x−1 +B+

√
△)(P +

√
△)i+1 + (x−1 −B+

√
△)(P −

√
△)i+1] ,

P =
y−1
x−1x0

+
x0
x−1

+
x−1y−1y0

x0
,

B+ =
2x0 − x−1P

△ ,

△ = P2 − 4y−1y0 ,

(2.29)

and an equation for ŷ2n−1 and ŷ2n in terms of x-variables after 2n mutations,

ŷ2n−1 = yn0 y
2n+1
−1 x−22n , ŷ2n = y1−2n0 y−2n−1 x

2
2n−1 . (2.30)

The g-vectors, denoted by black arrows in fig. 2.4, are

g⃗i =

{
(−i, i+ 1) i ≥ −1

(2 + i,−i− 3) i ≤ −2
. (2.31)

We will now show that the self-consistency of the scattering diagram requires the existence of a
new wall associated with the limiting ray that does not correspond to a standard cluster mutation.

Consider cones that are asymptotically close to the limiting ray. Importantly, the ŷi variables
go to 0 or ∞ as we approach the limiting ray, which can be seen from eqs. (2.29) and (2.30).
To calculate ŷγi in this limit, we first express ŷγi in terms of monomials of ŷ-variables. From the
scattering diagram in fig. 2.4, the γ⊥i associated with the ŷi in eq. (2.30) are

[γ⊥−1]
2n = (1 + 2n, 2n), [γ⊥0 ]

2n = (−2n, 1− 2n) , (2.32)

where [γ⊥i ]
2n is the perpendicular vector to the wall associated with node xi after 2n mutations.

We subsequently found that

γ1 = (1− 2n)[γ⊥−1]
2n − 2n[γ⊥0 ]

2n ,

γ2 = 2n[γ⊥−1]
2n + (2n+ 1)[γ⊥0 ]

2n .
(2.33)
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x−1x−3

x0

x−2

. . .

x1

x2

x3

. . .

x−4

x−5

x−6

ŷ+γi

ŷ−γi

Figure 2.5: g-vector fan associated with the A1,1 cluster algebra. There are two paths to cones
asymptotically close to the limiting ray (red), which are green and blue respectively. The green
path leads to the ŷ+γi expressions while taking the blue path leads to the ŷ−γi expressions.

Combining eqs. (2.23) and (2.33) gives a formula for ŷγi in the asymptotic limit, denoted as ŷ+γi ,

ŷ+γ1 = lim
n→∞

(ŷ2n−1)
1−2n(ŷ2n)

−2n = 16y−1(x−1 +B+

√
△)−2(P +

√
△)−2 ,

ŷ+γ2 = lim
n→∞

(ŷ2n−1)
2n(ŷ2n)

2n+1 =
y0
4
(x−1 +B+

√
△)2 .

(2.34)

We used the explicit formulas for ŷi in eqs. (2.29) and (2.30) to write the final expressions for ŷ+γ1
and ŷ+γ2 in terms of our initial cluster variables: y−1, y0, x−1 and x0. The final expressions in eq.
(2.34) are finite and provide a multiplicative basis for the ŷ-variables asymptotically close to the
limiting wall if one approaches from the right. A visualization of the path is given by the green
line in fig. 2.5. We then repeated the same calculation, but following the blue line in fig. 2.5. If
one approaches from the left, the asymptotic limits of ŷγi , denoted as ŷ−γi , are

ŷ−γ1 = ŷ+γ1(1−
P −

√
P2 − 4y−1y0

P +
√

P2 − 4y−1y0
)−4 ,

ŷ−γ2 = ŷ+γ2(1−
P −

√
P2 − 4y−1y0

P +
√

P2 − 4y−1y0
)4 .

(2.35)

The fact that eqs. (2.34) and (2.35) are not equal indicates that the scattering diagram must include
another wall to be self-consistent. However, eq. (2.35) can be re-written into the suggestive form

ŷ−γi = ŷ+γi(1− ŷγ⊥)−2⟨γi,γ
⊥⟩, ŷγ⊥ = ŷ+γ1 ŷ

+
γ2

= ŷ−γ1 ŷ
−
γ2
, γ⊥ = (1, 1) , (2.36)
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which can be matched to eq. (2.17) by requiring f(ŷ) = (1− ŷ)−2. Eq. (2.36) shows that we must
include a limiting wall with γ⊥ = (1, 1) for the scattering diagram to be self-consistent. The ŷγ⊥

associated with the limiting wall,

ŷγ⊥ = ŷ+γ1 ŷ
+
γ2
,

=
P −

√
P2 − 4y−1y0

P +
√

P2 − 4y−1y0
,

(2.37)

takes exactly the right form for eq. (2.36) to be matched with eq. (2.17). The limiting wall
corresponds to the red line in figs. 2.4 and 2.5. Performing a mutation across this limiting wall
cannot be identified with a cluster mutation in the A1,1 scattering diagram. From the perspective of
the cluster algebra, these cones are separated by an infinite number of cluster mutations. Finally,
the ŷγ⊥ of the limiting wall obeys the bound 0 < ŷγ⊥ < 1 in contrast to normal ŷ-variables which
are just positive definite.

We now briefly compare our result to previous computations in the literature. Notably, one
multiplicative basis of ŷ±γi is the three algebraic functions identified in Ref. [102] for a given A1,1

cluster algebra. Furthermore, due to the bound 0 < ŷγ⊥ < 1, the cluster algebraic function attached
to the limiting walls seem more like the u-variables identified in refs. [98, 122], which obey similar
bounds, than standard ŷ-variables. Finally, note that the ŷγ⊥ attached to the limiting wall is a ratio
of the cluster algebraic functions defined in Ref. [36].

Moving beyondA1,1, we now turn to a more general discussion. We define asymptotic chambers
as cones asymptotically close to the limiting ray that are separated by walls intersecting the limiting
ray. For higher dimension scattering diagrams, both limiting walls and cluster walls intersect the
limiting ray. Furthermore, there are always cluster walls asymptotically close to the limiting ray
which do not intersect the limiting ray and become more parallel to the limiting walls as one
approaches the limiting ray. These walls are asymptotic walls. An example is sketched in fig.
2.6 [123]. For our definition of asymptotic chambers to be self-consistent, we must be able to
ignore asymptotic walls if we are infinitesimally close to the limiting ray. If the ŷγi associated
with asymptotic chambers transformed non-trivially when crossing an asymptotic wall, the ŷγi of
asymptotic chambers would not be well defined. For example, consider the asymptotic chambers
C2 and C5 in fig. 2.6. If ŷγi transformed non-trivially across the asymptotic walls, it would be
ambiguous which ŷγi was associated with the asymptotic chamber.

To see whether asymptotic walls are relevant when infinitesimally close to the limiting ray, let
us consider crossing one of these asymptotic walls. From the definition of asymptotic walls, the
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C1

C2

C3

C4

C5

C6

Figure 2.6: A schematic representation of the cone structure near the limiting ray of A2,1, a rank
3 cluster algebra. The full scattering diagram is 3 dimensional and we are looking down on the
limiting ray, which is indicated by the green dot. The red line corresponds to the limiting wall. The
black lines correspond to cluster walls that intersect the limiting ray. The blue lines correspond
to asymptotic walls, cluster walls that do not intersect the limiting wall and become more parallel
with a limiting wall as one approaches the limiting ray. There are 6 asymptotic chambers, each
labeled by Ci.
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γ⊥ of the asymptotic wall asymptotes to

γ⊥ → lim
n→∞

n× γ⊥lim , (2.38)

where γ⊥lim is the γ⊥ of the limiting wall that the asymptotic wall approaches. Therefore, the wall
crossing formula for the asymptotic wall reduces to

ŷγi → lim
n→∞

ŷγi(1 + ŷnγ⊥
lim

)n⟨γi,γ
⊥
lim⟩ , (2.39)

which naively diverges. However, in the previous example, we found that 0 < ŷγ⊥
lim

< 1 for A1,1.
If this bound holds for general ŷγ⊥

lim
, then eq. (2.39) becomes trivial and the asymptotic walls can

be ignored when asymptotically close to the limiting ray. We therefore conjecture the bound

0 < ŷγ⊥
lim

< 1 , (2.40)

in X for all asymptotic chambers, not just those adjacent to the limiting wall. Eq. (2.40) is a very
remarkable bound and a key conjecture of this chapter. We explicitly checked that eq. (2.40) held
for all examples studied in section 2.4.

In summary, the key insight is that the ŷγi associated with asymptotic chambers are finite and
can be algebraic functions of our initial coordinates. Furthermore, these ŷγi obey the wall crossing
formula as we mutate around the limiting ray. To find all the ŷγi associated with a limiting ray, we
simply need to find all the walls in the g-vector fan that intersect the limiting ray and then use the
wall crossing formula in eq. (2.17). The primary difficulty is finding all the walls that intersect the
limiting ray.

2.3 Algorithm for Finding Asymptotic Chambers from A1,1

Subalgebra

We now outline a search algorithm we used to find the asymptotic chambers associated with a
limiting ray. In normal search algorithms for finite cluster algebras, one performs sequences of
mutations until one finds all the cones in the fan, defining a cone by its associated g-vectors. This
method does not work well for infinite cluster algebras where there are an infinite number of cones,
even asymptotically close to the limiting ray. We partially circumvented this issue by defining a
new equivalence class of cones arbitrarily close to the limiting ray called pre-asymptotic chambers.
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We first mutate the initial quiver until we find a quiver containing an A1,1 subalgebra:

xi xj ,

which we define as the principal quiver. To calculate the g-vectors and walls of adjacent cones, we
use the g-vector mutation formula originally derived in Ref. [119]:

µkg⃗i =

{
g⃗i if i ̸= k

−g⃗i +
∑N

m=1[Bm,k]+g⃗m −∑N
m=1[BN+m,k]+b⃗m if i = k

, (2.41)

where [x]+ = max(x, 0) and b⃗m is columnm of the initialBi,j matrix. This formula can be derived
by combining eq. (A.9) in appendix A.1,

µkxi =

{
1
xi
(
∏

j→i xj +
∏

j←i xj) i = k

xi i ̸= k
, (2.42)

with eq. (2.8) in section 2.2.1:

x = xg⃗F (ŷi), xg⃗ =
∏
i

xgii . (2.43)

This allowed us to compute the g-vectors of adjacent cones in the g-vector fan very efficiently.
Using eq. (2.41), we calculated the g-vectors of cones associated with repeated mutations on
nodes xi and xj . The g-vectors of the xi and xj nodes asymptotically approached a limiting ray,
g⃗lim. In principle, we could now perform a brute force search, performing random mutations
asymptotically close to the limiting ray until we found no new walls intersecting the limiting ray.
However, this approach would be highly inefficient as there are always an infinite number of cones
asymptotically close to the limiting ray. Although we did perform a brute-force search, we partially
streamlined the algorithm by defining a new equivalence class of cones: pre-asymptotic chambers.

Consider the schematic scattering diagram in fig. 2.6, which corresponds to the A2,1 cluster
algebra. Suppose we mutate to one of the cones in the sequence that approaches the asymptotic
chamber C1. Mutating across an asymptotic wall toward or away from the limiting ray does not
give us any new information. In some sense, the sequence of cones approaching C1 are equivalent,
and therefore redundant, for the purposes of trying to find walls intersecting the limiting ray. We
wish to find some criterion that allows us to avoid mutating into these redundant cones. To see
what this criterion should be, we first note that the sequence of g-vectors along the black cluster
wall generically obey the relation

g⃗(xn)− g⃗(xn−1) = g⃗lim . (2.44)
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Therefore, it is natural to consider the projection of the g-vectors onto the hyperplane perpendicular
to the limiting ray, such that

P⊥(g⃗(xn)− g⃗(xn−1)) = P⊥g⃗lim = 0⃗ . (2.45)

If we define equivalence classes of cones by considering the projection of their g-vectors, not the
g-vectors themselves, the sequence of cones approaching C1 correspond to the same cone under
this projection. This is true for the sequences of cones approaching C3, C4, and C6 as well. For
C2 and C5, we find two classes of cone upon taking the projection. To see why, let us focus on
C2. Denoting the projection of the g-vectors on the two bordering cluster walls as ga and gb, the
two classes of cones are defined by the sets {ga, ga, gb} and {ga, gb, gb}. Turning to more general
cluster algebras, we define pre-asymptotic chambers as the equivalence classes of cones defined by
the projection of g-vectors onto the hyperplane perpendicular to the limiting ray. Certain infinite
sequences of cones approaching the same asymptotic chamber correspond to the same equivalence
class under this projection.

The final subtlety to consider is that we found only a subset of the asymptotic chambers when
we performed our initial search of pre-asymptotic chambers asymptotically close to the limiting
ray. We could not find all pre-asymptotic chambers from a single search because we cannot use the
mutation rule in eq. (2.41) to mutate across limiting walls. Fortunately, the asymptotic scattering
diagrams considered have only one limiting wall each. We checked how many limiting walls
appear by studying the asymptotic walls that appear in our brute force search. For a limiting
wall to appear, asymptotic walls almost parallel the limiting wall should appear during the brute
force search of cones asymptotically close to the limiting ray. However, all asymptotic walls
associated with the same limiting ray search were asymptotically parallel to the same limiting
wall. We subsequently assumed that only one limiting wall appears in the asymptotic scattering
diagram. Furthermore, we found that the limiting wall fully divides the asymptotic scattering
diagram. In other words, there is no “short-cut” around the limiting wall. Therefore, we performed
two searches of the pre-asymptotic chambers, one on each side of the limiting wall.

2.4 Explicit Calculations of Asymptotic Chambers

Our goal is to compute a minimal multiplicative basis for ŷγi asymptotically close to limiting rays,
the asymptotic symbol alphabet. We now describe an algorithm for finding the asymptotic symbol
alphabet associated with a limiting ray. A brute force search algorithm for finding asymptotic
chambers is given in appendix 2.3. Once we found all the asymptotic chambers associated with a
given limiting ray, the calculation for finding the associated symbol alphabet proceeded as follows:
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1. Starting from the initial quiver, we performed mutations until we found a quiver with an
A1,1 subalgebra. We chose the quiver with the A1,1 subalgebra as the principal quiver for the
purposes of defining the scattering diagram and g-vectors.

2. Repeating the computation in section 2.2.3 for the A1,1 subalgebra, we computed the ŷγi of
an initial asymptotic chamber in terms of the ŷi of the principal quiver. We denote the ŷγi of
the initial asymptotic chamber as ŷ0γi .

3. We computed the ŷγi of all other asymptotic chambers in terms of the ŷ0γi using wall crossing.

4. We found a complete multiplicative basis of the asymptotic chambers’ ŷγi in terms of ŷ0γi .

The multiplicative basis calculated in the final step is the asymptotic symbol alphabet associated
with the limiting ray. Although each element of the multiplicative basis will be a rational function
of ŷ0γi , the ŷ0γi will themselves often be algebraic functions of ŷi.

For the remainder of this section, we study a variety of cluster algebras using the above algo-
rithm. We first dissect some lower rank cluster algebras, discussing a variety of phenomena that
appear. We then move onto Gr(4, 8)/T , conjecturing a complete algebraic symbol alphabet for
the 8-point MHV amplitude. We conclude this section by commenting on how we may need to
modify the above algorithm when faced with more general types of limiting rays.

2.4.1 Lower Rank Cluster Algebras

We now consider the asymptotic chambers of some lower rank cluster algebras, finding several
interesting phenomena:

• A2,1: Both cluster walls and limiting walls can intersect the limiting ray, leading to more
non-trivial cluster algebraic functions.

• A2,2: The scattering diagram associated with the limiting ray is not simple. A simple fan is
an N -dimensional fan for which all cones are bound by N walls.10

• A1,1,1: There can be multiple limiting rays and each limiting ray is associated with its own
discriminant.

10Alternatively, a simple fan is a fan whose dual polytope is simple.
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2.4.1.1 Example: A2,1

We will examine theA2,1 cluster algebra in detail, so the algorithm is clear. TheA2,1 cluster algebra
corresponds to the initial quiver,

b

z−1 z0 ,

where b, z−1 and z0 are x-variables and frozen variables have been suppressed. To find the limiting
ray, we performed a mutation on b, finding the new quiver

x1 : b
′

x2 : z−1 x3 : z0 ,

which we chose to be the principal quiver. The “xi :” denotes which basis vector each x-variable
of the principle quiver corresponds to. The corresponding exchange matrix is

B0
i,j =

 0 1 −1

−1 0 2

1 −2 0

 . (2.46)

Identifying the A1,1 subalgebra, we performed repeated mutations on the x2 and x3 nodes, just as
in section 2.2.3, to approach the limiting ray. After repeatedly mutating the x2 and x3 nodes, the
g-vectors of the x-variables associated with these nodes asymptotically approached

glim = (0,−1, 1) , (2.47)

which we identified as the limiting ray. Using the algorithm in appendix 2.3, we found all the walls
that intersect the limiting ray:

γ⊥a = (1, 0, 0) ,

γ⊥b = (1, 1, 1) ,

γ⊥c = (0, 1, 1) ,

(2.48)

where γc corresponds to a limiting wall. A visualization of these walls is provided in fig. 2.7,
where we have taken a projection of the scattering diagram onto the plane perpendicular to the
limiting ray. This projection of the scattering diagram is the asymptotic scattering diagram.

The ŷγi of the initial asymptotic chamber, ŷ0γi , were then calculated using the same techniques
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γ⊥c

γ⊥a

γ⊥b

C1

C2

C3
C4

C5

C6

Figure 2.7: The scattering diagram of asymptotic chambers near the limiting ray in the A2,1 cluster
algebra. We projected down onto the plane perpendicular to the limiting ray, glim = (0,−1, 0),
and labeled the walls.

as those in section 2.2.3. The γ⊥i of the cone associated with the 2n-th quiver in the sequence,

b′ b′ b′ b′

z−1 z0 , z1 z0 , z1 z2 , z3 z2 , . . . ,

are

[γ⊥1 ]
2n = (1, 0, 0) ,

[γ⊥2 ]
2n = (0, 2n+ 1, 2n) ,

[γ⊥3 ]
2n = (0,−2n, 1− 2n) .

(2.49)

[γ⊥i ]
2n is the perpendicular vector of the wall associated with the node xi after 2n mutations and

the limit n→ ∞ corresponds to our initial asymptotic chamber. Eq. (2.49) implies

γ1 = [γ⊥1 ]
2n ,

γ2 = (1− 2n)[γ⊥2 ]
2n − 2n[γ⊥3 ]

2n ,

γ3 = (2n)[γ⊥2 ]
2n + (2n+ 1)[γ⊥3 ]

2n ,

(2.50)
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so

ŷ0γ1 = lim
n→∞

[ŷ1]
2n = ŷ1

1

2

(
1 + ŷ3ŷ2 + ŷ2 +

√
△′
)
,

ŷ0γ2 = lim
n→∞

([ŷ2]
2n)1−2n([ŷ3]

2n)−2n =
4ŷ2△′(

1− ŷ3ŷ2 + ŷ2 +
√△′

)
2
,

ŷ0γ3 = lim
n→∞

([ŷ2]
2n)2n([ŷ3]

2n)2n+1 =
1

4
ŷ3

(
1 +

1− ŷ2 (ŷ3 + 1)√△′
)

2 ,

△′ = (ŷ3ŷ2 + ŷ2 + 1) 2 − 4ŷ2ŷ3 ,

(2.51)

where [ŷi]
2n is the ŷ-variable associated with the xi node after 2n mutations. Eq. (2.51) relates the

ŷγi of our initial asymptotic chamber to the ŷi of our principal quiver. The formulas for ŷ0γ2 and
ŷ0γ3 are exactly the same as eq. (2.34), except that we wrote the expression in terms of ŷ-variables
of the principle quiver instead of x-variables. The formula for ŷ0γ1 was derived using the closed
form solution for the x-variables of the A1,1 subalgebra in appendix A.3 and noting that b′ never
mutates.

With the asymptotic chambers and eq. (2.51), we can mutate around the asymptotic scattering
diagram to find all cluster algebraic functions associated with the limiting ray. For example, going
along the path given in fig. 2.7, the ŷγi mutate as

ŷ
0
γ1

ŷ0γ2
ŷ0γ3

→


ŷ0γ1
ŷ0γ2

ŷ0γ1+1(
ŷ0γ1 + 1

)
ŷ0γ3

→


ŷ0γ1

ŷ0γ2(ŷ
0
γ1

ŷ0γ2 ŷ
0
γ3

+1)
ŷ0γ1+1

(ŷ0γ1+1)ŷ0γ3
ŷ0γ1 ŷ

0
γ2

ŷ0γ3+1

→


ŷ0γ1

ŷ0γ2(ŷ
0
γ1

ŷ0γ2 ŷ
0
γ3

+1)
(1−ŷ0γ2 ŷ

0
γ3)

4
(ŷ0γ1+1)

(ŷ0γ1+1)(1−ŷ0γ2 ŷ
0
γ3)

4
ŷ0γ3

(ŷ0γ1 ŷ
0
γ2

ŷ0γ3+1)

 . (2.52)

Again, the jump across the limiting wall corresponds to a generalized cluster mutation. Calculating
the ŷγi of all asymptotic chambers, we found the multiplicative basis

ŷ0γ1 , ŷ
0
γ2
, ŷ0γ3 , (1 + ŷ0γ1), (1− ŷ0γ2 ŷ

0
γ3
), (1 + ŷ0γ1 ŷ

0
γ2
ŷ0γ3) . (2.53)

Eq. (2.53) corresponds to all the algebraic functions associated with the limiting ray in the A2,1

cluster algebra. Although the expressions in eq. (2.53) look rational, remember that the ŷ0γi are
algebraic functions of ŷi. They are all algebraic in terms of ŷi due to the presence of the quadratic
root,

√△′.
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Figure 2.8: The scattering diagram associated with the asymptotic chambers of the A2,2 cluster
algebra.

2.4.1.2 Example: A2,2

We now continue to the A2,2 cluster algebra. The A2,2 cluster algebra includes a cluster with the
quiver

x2

x3 x1 x4 ,

which was chosen as our principal quiver. The asymptotic scattering diagram is slightly more
complex than the A2,1 cluster algebra, but the algorithm is the same. The limiting ray is

glim = (−1, 1, 0, 0) . (2.54)

The scattering walls are

γ⊥ ∈ {(0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 1, 0),
(1, 1, 0, 1), (1, 1, 0, 0)} ,

(2.55)
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where the last element corresponds to the limiting wall. To visualize this scattering diagram, we
project down to 3 dimensions using the basis,

ê′1 = (1, 1, 0, 0) ,

ê′2 = (0, 0, 1, 0) ,

ê′3 = (0, 0, 0, 1) ,

(2.56)

giving the asymptotic scattering diagram in fig. 2.8. Note that the asymptotic scattering diagram
associated with A2,2 is not simple as there are cones bounded by 4 walls instead of 3.

We then calculated the ŷ0γi variables of the initial asymptotic chamber in terms of the ŷ-variables
of the principle quiver. The derivation is almost exactly as in section 2.4.1.1, so we will not write
it out here. The final result is,

i ∈ {3, 4} : ŷ0γi =
ŷi
2

(
1 + ŷ2ŷ1 + ŷ1 +

√
△′
)
,

ŷ0γ1 = ŷ1
4△′(

1− ŷ2ŷ1 + ŷ1 +
√△′

)
2
,

ŷ0γ2 =
ŷ2
4

(
1 +

1− ŷ1 (ŷ2 + 1)√△′
)

2 ,

△′ = (ŷ2ŷ1 + ŷ1 + 1) 2 − 4ŷ1ŷ2 .

(2.57)

Due to the number of cones, we will not show the ŷγi of each cone. A complete multiplicative
basis in terms of the ŷ0γi is

ŷ0γ1 , ŷ
0
γ2
, ŷ0γ3 , ŷ

0
γ4
, (ŷ0γ1 ŷ

0
γ2
ŷ0γ3 + 1), (ŷ0γ1 ŷ

0
γ2
ŷ0γ4 + 1), (ŷ0γ3 + 1), (ŷ0γ4 + 1), (1− ŷ0γ1 ŷ

0
γ2
) . (2.58)

Again, ŷ0γi are the ŷγi associated with the initial asymptotic chamber approached by repeated mu-
tations on the x1 and x2 nodes in the initial quiver.

2.4.1.3 Example: A1,1,1

Our final example before moving onto Gr(4, 8)/T is A1,1,1. The A1,1,1 cluster algebra includes a
cluster with the quiver

x2 x6

x1 x3 x4 x5
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which was chosen as our principle quiver. Unlike the previous examples, there are actually two
limiting rays:

g1lim = (−1, 1, 0, 0, 0, 0) ,

g2lim = (0, 0, 0, 0,−1, 1) .
(2.59)

First consider the limiting ray g1lim, which is approached by performing repeated mutations on
the x1 and x2 nodes. The formulas for ŷ0γi are then:

i ∈ {4, 5, 6} : ŷ0γi = ŷi,

ŷ0γ3 =
ŷ3
2

(
1 + ŷ2ŷ1 + ŷ1 +

√
△′
)
,

ŷ0γ1 = ŷ1
4△′(

1− ŷ2ŷ1 + ŷ1 +
√△′

)
2
, (2.60)

ŷ0γ2 =
ŷ2
4

(
1 +

1− ŷ1 (ŷ2 + 1)√△′
)

2 ,

△′ = (ŷ2ŷ1 + ŷ1 + 1) 2 − 4ŷ1ŷ2 .

However, upon applying the algorithm in appendix 2.3, we found that there are actually an infinite
number of asymptotic chambers. Rather, an infinite number of cluster walls intersect the limiting
ray. It is unsurprising that this phenomenon eventually occurs as an infinite number of walls
intersect a single ray even in the A2,1 cluster algebra. We ignored this phenomenon in section
2.4.1.1 because none of the rays in A2,1 with infinitely many intersecting walls are limiting rays.

Now consider the second limiting ray in eq. (2.59), which we approached by performing re-
peated mutations on the x5 and x6 nodes. As we approach the second limiting ray, the limits of ŷγi ,
denoted as ŷ0′γi , are

i ∈ {1, 2, 3} : ŷ0
′

γi
= ŷi,

ŷ0
′

γ4
=
ŷ4
2

(
1 + ŷ6ŷ5 + ŷ5 +

√
△′
)
,

ŷ0
′

γ5
= ŷ5

4△′(
1− ŷ6ŷ5 + ŷ5 +

√△′
)
2
, (2.61)

ŷ0
′

γ6
=
ŷ6
4

(
1 +

1− ŷ5 (ŷ6 + 1)√△′
)

2 ,

△′ = (ŷ6ŷ5 + ŷ5 + 1) 2 − 4ŷ5ŷ6 .

We again found an infinite number of asymptotic chambers. Note that the discriminant, △′, of
the ŷ0′γi variables is different than that of the ŷ0γi variables. Rather, the discriminant of the algebraic
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letters associated with a given set of asymptotic chambers seems to be determined by the associated
limiting ray.

It is not particularly interesting for us to further study the cluster algebraic functions associated
with A1,1,1 as the asymptotic scattering diagrams contain an infinite number of asymptotic cham-
bers. However, one could take a doubly asymptotic limit to find a 4 dimensional scattering diagram
that could be finite. More concretely, one could first find the 5 dimensional asymptotic scattering
diagram associated with the limiting ray g1lim and then find the 4 dimensional asymptotic scattering
diagram associated with the limiting ray of this 5 dimensional asymptotic scattering diagram. The
resulting 4 dimensional asymptotic scattering diagram could be finite. We leave studying such
doubly asymptotic limits to future work.

2.4.2 Gr(4, 8)/T and Algebraic Letters

We now consider the algebraic letters associated with the 8-point MHV amplitude in N = 4

pSYM. Two classes of known algebraic letters are known to emerge in the N = 4 pSYM symbol
alphabet at 8-point and they are related by a cyclic shift: ⟨i, j, k, l⟩ → ⟨i+1, j+1, k+1, l+1⟩ [89,
90]. Notably, each class of algebraic letters is associated with a unique discriminant. Since each
limiting ray seems to be associated with a unique discriminant, △′, a reasonable conjecture is that
the asymptotic chambers of only two limiting rays are relevant for the 8-point MHV amplitude.
Furthermore, we only need to analyze the asymptotic chambers of one of these limiting rays since
we can derive the algebraic letters associated with the other limiting ray by applying a cyclic shift.11

We first briefly review the positive kinematic region before summarizing the computation of the
algebraic letters. We parameterize kinematic space using momentum twistors, ZA

i . Due to dual
conformal symmetry, we can identify ZA

i ∈ Gr(4, n). Furthermore, since the ZA
i are projective

under a “little group” transform, ZA
i → tiZ

A
i , we can identify ZA

i ∈ Gr(4, n)/T . The positive
kinematic region corresponds to a compactification of the positive Grassmannian, Gr(4, n)/T .
The cluster algebra structure of Gr(k, n)/T is well known. In particular, there is a famous initial
parameterization that corresponds to the quiver in fig. 2.9 at 8-point, where boxed elements in the

11Refs. [36, 101, 102] have pointed out that additional types of limiting rays might be relevant for studying the
symbol alphabet at higher loop. However, Ref. [36] also pointed out at least some of these additional limiting rays
are related by a braid group [124] to the limiting rays we study in this section. Therefore, even if the algebraic letters
associated with these other limiting rays appear in the 8-point MHV symbol alphabet, it seems plausible they could be
derived through braid transformations of the symbol alphabet derived in this section.
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⟨1234⟩

x1 : ⟨1235⟩ x2 : ⟨1236⟩ x3 :, ⟨1237⟩ ⟨1235⟩

x4 : ⟨1245⟩ x5 : ⟨1256⟩ x6 : ⟨1267⟩ ⟨1278⟩

x7 : ⟨1345⟩ x8 : ⟨1456⟩ x9 : ⟨1567⟩ ⟨1678⟩

⟨2345⟩ ⟨3456⟩ ⟨4567⟩ ⟨5678⟩ ,

Figure 2.9: The initial quiver for the Gr(4, 8) cluster algebra.

quiver correspond to frozen variables. The ŷ-variables associated with the quiver are

ŷI
1 =

⟨1234⟩⟨1256⟩
⟨1236⟩⟨1245⟩ ŷI

2 =
⟨1235⟩⟨1267⟩
⟨1237⟩⟨1256⟩ ŷI

3 =
⟨1236⟩⟨1278⟩
⟨1238⟩⟨1267⟩

ŷI
4 =

⟨1235⟩⟨1456⟩
⟨1256⟩⟨1345⟩ ŷI

5 =
⟨1236⟩⟨1245⟩⟨1567⟩
⟨1235⟩⟨1456⟩⟨1267⟩ ŷI

6 =
⟨1237⟩⟨1256⟩⟨1678⟩
⟨1236⟩⟨1567⟩⟨1278⟩

ŷI
7 =

⟨1245⟩⟨3456⟩
⟨1456⟩⟨2345⟩ ŷI

8 =
⟨1256⟩⟨1345⟩⟨4567⟩
⟨1245⟩⟨3456⟩⟨1567⟩ ŷI

9 =
⟨1267⟩⟨1456⟩⟨5678⟩
⟨1256⟩⟨4567⟩⟨1678⟩ , (2.62)

where the “I” super-script denotes how these ŷ-variables are associated with the initial quiver. Note
that the quiver in fig. 2.9 was not chosen as the principal quiver for our scattering diagram. Instead,
we mutated to the quiver

ŷ9

ŷ3 ŷ2 ŷ8 ŷ5 ŷ6 ŷ4 ŷ7 ,

ŷ1

(2.63)

which was chosen to be the principal quiver, by mutating the nodes {1, 2, 4, 1, 6, 8} of the initial
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quiver from left to right. As argued in section 2.2.1, no information is lost or gained by choosing
different principle quivers. An explicit map from the ŷ-variables of our initial quiver to those of
the chosen principal quiver is

ŷ1 =

(
ŷI
6 + ŷI

1

(
ŷI
4 + 1

) ((
ŷI
2 + 1

)
ŷI
6 + 1

)
+ 1
)

ŷI
1ŷ

I
2ŷ

I
4

×
(
ŷI
8 + ŷI

1

(
ŷI
2 + 1

) ((
ŷI
4 + 1

)
ŷI
8 + 1

)
+ 1
)
,

ŷ2 =
ŷI
4ŷ

I
8

ŷI
8 + ŷI

1 (ŷ
I
2 + 1) ((ŷI

4 + 1) ŷI
8 + 1) + 1

,

ŷ3 =
ŷI
1ŷ

I
2ŷ

I
3

ŷI
1 (ŷ

I
2 + 1) + 1

,

ŷ4 =
ŷI
2ŷ

I
6

ŷI
6 + ŷI

1 (ŷ
I
4 + 1) ((ŷI

2 + 1) ŷI
6 + 1) + 1

,

ŷ5 =
ŷI
1ŷ

I
2ŷ

I
4ŷ

I
5

ŷI
1 (ŷ

I
2 + 1) (ŷI

4 + 1) + 1
, (2.64)

ŷ6 =
ŷI
1

(
ŷI
4 + 1

)
+ 1

(ŷI
1 (ŷ

I
2 + 1) (ŷI

4 + 1) + 1) ŷI
6

,

ŷ7 =
ŷI
1ŷ

I
4ŷ

I
7

ŷI
1 (ŷ

I
4 + 1) + 1

,

ŷ8 =
ŷI
1

(
ŷI
2 + 1

)
+ 1

(ŷI
1 (ŷ

I
2 + 1) (ŷI

4 + 1) + 1) ŷI
8

,

ŷ9 =

(
ŷI
1

(
ŷI
2 + 1

) (
ŷI
4 + 1

)
+ 1
)
2ŷI

6ŷ
I
8ŷ

I
9

(ŷI
6 + ŷI

1 (ŷ
I
4 + 1) ((ŷI

2 + 1) ŷI
6 + 1) + 1)

× 1

(ŷI
8 + ŷI

1 (ŷ
I
2 + 1) ((ŷI

4 + 1) ŷI
8 + 1) + 1)

.

Combining eqs. (2.62) and (2.64) gives explicit expressions of the principal quivers’ ŷ-variables
in terms of external kinematic data.

We now analyze the initial asymptotic chamber using theA1,1 subalgebra of the principal quiver.
After performing an infinite number of mutations on the x1 and x9 nodes, the g-vectors of the x1
and x9 nodes approached

glim = (−1, 0, 0, 0, 0, 0, 0, 0, 1) , (2.65)
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which we identified as the limiting ray. We then found expressions for the ŷ0γi in terms of the ŷi:

i ∈ {2, 3, 4, 7} : ŷ0γi = ŷi ,

i ∈ {5, 6, 8} : ŷ0γi = ŷif(ŷ1, ŷ9) ,

ŷ0γ1 =
4ŷ1△′(

1− ŷ9ŷ1 + ŷ1 +
√△′

)
2
,

ŷ0γ9 =
ŷ9
4

(
1 +

1− ŷ1 (ŷ9 + 1)√△′
)

2 ,

(2.66)

where

f(ŷ1, ŷ9) =
1

2

(
1 + ŷ9ŷ1 + ŷ1 +

√
△′
)
,

△′ = (ŷ9ŷ1 + ŷ1 + 1) 2 − 4ŷ1ŷ9 .
(2.67)

Unlike the A2,1 and A2,2 cluster algebras, not all the ŷ0γi are algebraic function of the ŷi. Although
difficult to see immediately, one can show that the discriminant, △′, is proportional to√

△′ ∝
√
A2 − 4B ,

A = ⟨1256⟩⟨3478⟩ − ⟨1278⟩⟨3456⟩ − ⟨1234⟩⟨5678⟩ , (2.68)

B = ⟨1234⟩⟨3456⟩⟨5678⟩⟨1278⟩ ,

which corresponds to the limiting ray g1 in Ref. [36]. The limiting ray in eq. (2.65) looks different
than the limiting ray in Ref. [36] because we chose a different principal quiver to define the g-
vector fan. While we chose the quiver in (2.63) as our principal quiver, the authors of Ref. [36]
chose the initial quiver in fig. 2.9 as their principal quiver.

We employed the algorithm in section 2.3 to find all the walls that intersect the limiting ray.
However, using pre-asymptotic chambers did not completely remove undesirable redundancies,
because a single asymptotic chamber can correspond to multiple pre-asymptotic chambers. This
redundancy is not a problem for lower rank cluster algebras where the number of pre-asymptotic
chambers is small and finite. For the asymptotic scattering diagrams of A2,1 and A2,2, one can
prove that the number of asymptotic chambers is finite simply by showing that the number of
pre-asymptotic chambers is finite. However, for Gr(4, 8)/T , we found that the number of pre-
asymptotic chambers is infinite, or so large it is effectively infinite, while the number of asymp-
totic chambers is finite. If the number of pre-asymptotic chambers is infinite, brute force mutation
procedures cannot prove that you have found all asymptotic chambers. Instead, one must perform
mutations on pre-asymptotic chambers until no new asymptotic chambers appear after a large
number of mutations. Specifically, we found that all the discovered asymptotic chambers were
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Figure 2.10: Number of accessible asymptotic and pre-asymptotic chambers after a maximum of
X mutations from the initial pre-asymptotic chamber. Note that we are only considering (pre-
)asymptotic chambers on one side on the limiting wall.

within 18 mutations of our initial pre-asymptotic chamber and checked all pre-asymptotic cham-
bers within 23 mutations of our initial pre-asymptotic chamber. Fig. 2.10 is a plot of the number
of asymptotic and pre-asymptotic chambers, Y , accessible after a maximum ofX mutations on the
initial pre-asymptotic chamber given in section 2.4.2.

We eventually found 26 cluster walls:

γ⊥ ∈ {(0, 1, 0, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0, 0),
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(0, 1, 0, 0, 0, 0, 0, 1, 0), (0, 1, 1, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 1, 0, 1, 0, 0, 0),

(0, 0, 0, 1, 0, 0, 1, 0, 0), (0, 1, 1, 0, 0, 0, 0, 1, 0), (2.69)

(0, 0, 0, 1, 0, 1, 1, 0, 0), (1, 0, 0, 0, 1, 0, 0, 0, 1),

(1, 0, 0, 0, 0, 1, 0, 0, 1), (1, 0, 0, 0, 0, 0, 0, 1, 1),

(1, 1, 0, 0, 0, 0, 0, 1, 1), (1, 0, 0, 1, 0, 1, 0, 0, 1),

(1, 1, 1, 0, 0, 0, 0, 1, 1), (1, 1, 0, 0, 0, 0, 0, 2, 1),

(1, 0, 0, 1, 0, 1, 1, 0, 1), (1, 0, 0, 1, 0, 2, 0, 0, 1),

(1, 2, 1, 0, 0, 0, 0, 2, 1), (1, 1, 1, 0, 0, 0, 0, 2, 1),

(1, 0, 0, 1, 0, 2, 1, 0, 1), (1, 0, 0, 2, 0, 2, 1, 0, 1),

(1, 0, 0, 0, 0, 0, 0, 0, 1)} ,

where the last element corresponds to the limiting wall. An extensive computer search found a
complete multiplicative basis of the ŷγi consists of 27 non-trivial polynomials of ŷ0γi ,

f1 = ŷ0γ2 + 1 ,

f2 = ŷ0γ3 + 1 ,

f3 = ŷ0γ4 + 1 ,

f4 = ŷ0γ5 + 1 ,

f5 = ŷ0γ6 + 1 ,

f6 = ŷ0γ7 + 1 ,

f7 = ŷ0γ8 + 1 ,

f8 = ŷ0γ2 ŷ
0
γ3
+ ŷ0γ3 + 1 ,

f9 = ŷ0γ8 ŷ
0
γ2
+ ŷ0γ2 + 1 ,

f10 = ŷ0γ6 ŷ
0
γ4
+ ŷ0γ4 + 1 ,

f11 = ŷ0γ4 ŷ
0
γ7
+ ŷ0γ7 + 1 ,

f12 = ŷ0γ2 ŷ
0
γ3
+ ŷ0γ2 ŷ

0
γ8
ŷ0γ3 + ŷ0γ3 + 1 ,

f13 = ŷ0γ4 ŷ
0
γ7
+ ŷ0γ4 ŷ

0
γ6
ŷ0γ7 + ŷ0γ7 + 1 ,

f14 = ŷ0γ1 ŷ
0
γ5
ŷ0γ9 + 1 ,

f15 = ŷ0γ1 ŷ
0
γ6
ŷ0γ9 + 1 , (2.70)

f16 = ŷ0γ1 ŷ
0
γ8
ŷ0γ9 + 1 ,

f17 = ŷ0γ1 ŷ
0
γ8
ŷ0γ9 ŷ

0
γ2
+ ŷ0γ2 + 1 ,
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f18 = ŷ0γ1 ŷ
0
γ6
ŷ0γ9 ŷ

0
γ4
+ ŷ0γ4 + 1 ,

f19 = ŷ0γ1 ŷ
0
γ4
ŷ0γ9
(
ŷ0γ6
)2

+ ŷ0γ4 ŷ
0
γ6
+ ŷ0γ1 ŷ

0
γ4
ŷ0γ9 ŷ

0
γ6
+ ŷ0γ4 + 1,

f20 = ŷ0γ1 ŷ
0
γ2
ŷ0γ9
(
ŷ0γ8
)2

+ ŷ0γ2 ŷ
0
γ8
+ ŷ0γ1 ŷ

0
γ2
ŷ0γ9 ŷ

0
γ8
+ ŷ0γ2 + 1,

f21 = ŷ0γ2 ŷ
0
γ3
+ ŷ0γ1 ŷ

0
γ2
ŷ0γ8 ŷ

0
γ9
ŷ0γ3 + ŷ0γ3 + 1,

f22 = ŷ0γ3
(
ŷ0γ2
)2

+ ŷ0γ3 ŷ
0
γ8

(
ŷ0γ2
)2

+ ŷ0γ1 ŷ
0
γ3

(
ŷ0γ8
)2
ŷ0γ9
(
ŷ0γ2
)2

+ ŷ0γ1 ŷ
0
γ3
ŷ0γ8 ŷ

0
γ9

(
ŷ0γ2
)2

+ 2ŷ0γ3 ŷ
0
γ2
+ ŷ0γ3 ŷ

0
γ8
ŷ0γ2 + ŷ0γ1 ŷ

0
γ3
ŷ0γ8 ŷ

0
γ9
ŷ0γ2 + ŷ0γ2 + ŷ0γ3 + 1,

f23 = ŷ0γ1 ŷ
0
γ2
ŷ0γ3 ŷ

0
γ9

(
ŷ0γ8
)2

+ ŷ0γ2 ŷ
0
γ3
ŷ0γ8 + ŷ0γ1 ŷ

0
γ2
ŷ0γ3 ŷ

0
γ9
ŷ0γ8 + ŷ0γ2 ŷ

0
γ3
+ ŷ0γ3 + 1,

f24 = ŷ0γ6 ŷ
0
γ7

(
ŷ0γ4
)2

+ ŷ0γ7
(
ŷ0γ4
)2

+ ŷ0γ1
(
ŷ0
)2
γ6
ŷ0γ7 ŷ

0
γ9

(
ŷ0γ4
)2

+ ŷ0γ1 ŷ
0
γ6
ŷ0γ7 ŷ

0
γ9

(
ŷ0γ4
)2

+ ŷ0γ6 ŷ
0
γ7
ŷ0γ4 + 2ŷ0γ7 ŷ

0
γ4
+ ŷ0γ1 ŷ

0
γ6
ŷ0γ7 ŷ

0
γ9
ŷ0γ4 + ŷ0γ4 + ŷ0γ7 + 1,

f25 = ŷ0γ4 ŷ
0
γ7
+ ŷ0γ1 ŷ

0
γ4
ŷ0γ6 ŷ

0
γ9
ŷ0γ7 + ŷ0γ7 + 1,

f26 = ŷ0γ1 ŷ
0
γ4
ŷ0γ7 ŷ

0
γ9

(
ŷ0γ6
)2

+ ŷ0γ4 ŷ
0
γ7
ŷ0γ6 + ŷ0γ1 ŷ

0
γ4
ŷ0γ7 ŷ

0
γ9
ŷ0γ6 + ŷ0γ4 ŷ

0
γ7
+ ŷ0γ7 + 1 ,

f27 = 1− ŷ0γ1 ŷ
0
γ9
,

and the 9 ŷ0γi , giving a symbol alphabet of 36 independent letters. When computing eqs. (2.69)
and (2.70), we found 7348 asymptotic chambers, in comparison to the 64 asymptotic chambers
studied in Ref. [102] using slightly different methods.12 Although we are confident we found
all asymptotic chambers, we were not able to rigorously prove it as we did for A2,1 and A2,2. A
complete search of all asymptotic chambers is very computationally challenging for Gr(4, 8)/T
for reasons beyond its high rank. However, any missing asymptotic chambers should not change
eqs. (2.69) or (2.70). Interestingly, only a subset of less than 1000 asymptotic chambers was
required to find both a complete multiplicative basis for the ŷγi and all the relevant walls in the
asymptotic scattering diagrams.

Combining eqs. (2.62), (2.64), (2.66) and (2.70) gives explicit expressions for the algebraic
letters in terms of momentum twistors. We have explicitly checked that the algebraic letters of
Ref. [90] are monomials of ŷ0γi and fi. Interestingly, note that many of the letters are obviously
not algebraic. From eq. (2.66), ŷ0γ2 , ŷ0γ3 , ŷ0γ4 , and ŷ0γ7 are rational, so any fi that is solely a function
of these variables will also be rational. From this criterion alone, the algebraic alphabet is reduced
from 36 to 26 letters. Additional numerical checks show that some of these algebraic letters can
further simplify to rational functions for certain momentum configurations.

These results are remarkable. There is no reason to expect that there are a finite number of
asymptotic chambers associated with any limiting ray of the Gr(4, 8)/T cluster algebra. In sec-
tion 2.4.1.3, we saw an explicit example of a limiting ray with an infinite number of asymptotic

12Each origin cluster corresponds to two asymptotic chambers. Further discussion on the techniques in Ref. [102]
is given in appendix A.5.
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chambers. Furthermore, although the number of asymptotic chambers is extremely large, the mul-
tiplicative basis has rank 36 for the relevant limiting rays! We can further discard letters that are
clearly not algebraic, reducing the rank of the algebraic alphabet from 72 to 52. We can now con-
jecture that we have found ALL algebraic letters that could appear in the N = 4 pSYM 8-point
amplitude. Our ŷ0γi coordinates show how the relations between the algebraic letters associated
with the same limiting ray are inherently rational, even though the ŷ0γi are generically algebraic
functions of our initial coordinates, ŷI

i. Finally, in all examples studied in this chapter, the rank
of the asymptotic symbol alphabet has been equal to the number of cluster walls plus the rank
of the cluster algebra. More precisely, there seems to be a correspondence between walls in the
asymptotic scattering diagram, γ⊥ in eq. (2.69), and polynomial letters in the asymptotic symbol
alphabet, fi in eq. (2.70). At present, it is unclear to us whether this relation holds for more general
cluster algebras or is a red herring.

2.4.3 Beyond A1,1 Subalgebras

Although this chapter focuses on limiting rays associated with quadratic cluster algebraic func-
tions, we expect that cubic cluster algebraic functions will also be relevant for studying the symbol
alphabet of N = 4 pSYM beyond 8-point. Quadratic (cubic) algebraic functions are algebraic
functions that are products of roots of quadratic (cubic) polynomials. To see why cubic letters
should appear, note that algebraic letters can at least partially be derived from irrational Yangian
invariants, as shown in refs. [91, 92]. Using the duality between on-shell super-space variables
and differentials on kinematic space,

ηAi ↔ dZA
i , (2.71)

where ηAi are the on-shell superspace variable associated with state i [35, 125], Yangian invariants
in N = 4 pSYM can be written in a manifestly dlog form:

Yangian Invariant →
∏
i

d log(αi) , (2.72)

where αi correspond to functions of external data, ZA
i , that are not necessarily rational. The αi

can be interpreted as “letters” of the Yangian invariant and correspond to singularities. Since we
expect the branch points of NkMHV amplitudes to match onto branch points of MHV amplitudes,
we can therefore probe the symbol alphabet of MHV amplitudes by studying the αi that appear
in Yangian invariants associated with NkMHV amplitudes. Starting at 11-point, we start to see
irrational Yangian invariants that include cubic algebraic letters. Therefore, we expect to find
cluster algebraic functions that are cubic at 11-point.

The problem with cubic cluster algebraic functions is that it may not be possible to probe their
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associated asymptotic chambers using an A1,1 subalgebra as in section 2.4.1. If at least one asymp-
totic chamber of a limiting ray can be approached by repeated mutations on an A1,1 subalgebra,
then the asymptotic symbol alphabet must consist of quadratic cluster algebraic letters. To see this,
note that the generating function for cluster variables in an A1,1 subalgebra always takes the form

Gn>0(t) =
x0 − x−1Ft
1− Pt+ Ft2 =

∞∑
n=0

xnt
n , (2.73)

where F is some product of cluster variables outside the A1,1 subalgebra. Taking limits of xi
generated by the above relation, such as

lim
i→∞

xi/xi−1, (2.74)

will always generate a function that is either rational or quadratic, but not cubic. Since wall cross-
ing mutations around limiting rays are always rational transformations, this means all ŷγi must be
either rational or quadratic.13 Therefore, we must identify more general mutation sequences in
order to approach asymptotic chambers associated with cubic algebraic functions. Such mutation
sequences could correspond to generating functions with higher-order polynomials in the denom-
inator, such that specific limits of xi generate cubic cluster algebraic functions. We expect the
methods and results in Ref. [126] may be useful for pursuing this direction.

2.5 Degenerate Scattering Diagrams and Tropicalization

We now study speculative truncations of ŷ-variables from the perspective of scattering diagrams.
We will first motivate and define the notion of a degenerate scattering diagram, commenting on the
specific connection to N = 4 pSYM. Although we did not find a definite algorithm for truncating
ŷ-variables, we did find that the notion of asymptotic chambers naturally emerges from degenerate
scattering diagrams.

2.5.1 Scattering Diagrams from Tropicalization of the Dual Cluster Algebra

In this section, we relate the g-vector fan to tropicalization of the dual cluster algebra. We then
motivate degenerate fans using tropicalization arguments.

We now give a brief review of tropicalization. Since all elements of O(X ) are positive Laurent
polynomials where the minus operation never appears, we can consider the tropicalization of such

13There is a small loophole in this argument. If the asymptotic scattering diagram itself contains a limiting ray, one
could take a doubly asymptotic limit as suggested at the end of section 2.4.1.3. However, it seems unlikely to us that
such doubly asymptotic limits could generate cubic algebraic letters.
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functions. Tropicalization naturally emerges from studying the behavior of geometric spaces at
small (or large) values of their coordinates. For example, given a function f(a1, a2,, . . . , an), the
tropical function is defined as

Trop[f(a1, a2,, . . . , an)] = lim
ϵ→∞

−1

ϵ
log[f(e−ϵa1 , e−ϵa2 , . . . , e−ϵan)] . (2.75)

The tropicalization of a function effectively amounts to the replacements

a× b→ a+ b ,

a+ b→ min(a, b) ,

1 → 0 ,

(2.76)

where a and b now take values on a semifield. For example,

Trop[1 + x] = min(0, x) ,

Trop[1 + x+ xy] = min(0, x, x+ y) .
(2.77)

Tropicalization has many applications, ranging from mirror symmetry to intersection theory. We
will now review one aspect of the connection with cluster algebras.

In our tropicalization arguments, we do not consider the O(X ) associated with our initial prin-
cipal quiver. Instead, we consider the dual principal quiver and the associated dual cluster algebra,
X ∨. The dual principal quiver is given by the initial quiver except that we flip all arrows between
mutable nodes. As an example, given the initial quiver

y1 y2

x1 x2 ,

the dual quiver is
y∨1 y∨2

x∨1 x∨2 .

We now study O(X ∨). For example, in the case of the A2 cluster algebra, O(X ∨) consists of

f1 = 1 + ŷ∨1 ,

f2 = 1 + ŷ∨2 ,

f3 = 1 + ŷ∨2 + ŷ∨2 ŷ
∨
1 .

(2.78)
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0ŷ∨1

(a) Trop[1 + ŷ∨1 ]

0

ŷ∨2

(b) Trop[1 + ŷ∨2 ]

0

ŷ∨2ŷ∨γ1 + ŷ∨2

(c) Trop[1 + ŷ∨2 + ŷ∨1 ŷ
∨
2 ]

Figure 2.11: The fan associated with the tropicalization of functions in eq. (2.79).

Any ŷ-variable in X ∨ can be written as a product of functions in eq. (2.78) and ŷ∨i .
The tropicalization of each f ∈ O(X ∨) defines a fan that splits ZN into regions where

Trop[f(ŷ)] is constant. We simply state without proof that all such fans together give the scat-
tering diagram in the finite case [98, 106, 107]. For example, again consider the A2 cluster algebra
and the tropicalization of functions in eq. (2.78):

f1 = 1 + ŷ∨1 → Trop[f1] = min(0, ŷ∨1 ) ,

f2 = 1 + ŷ∨2 → Trop[f2] = min(0, ŷ∨2 ) ,

f3 = 1 + ŷ∨2 + ŷ∨1 ŷ
∨
2 → Trop[f3] = min(0, ŷ∨2 , ŷ

∨
1 + ŷ∨2 ) .

(2.79)

The tropicalization of each fi defines a fan in Z2, which are given in fig. 2.11. In this example, one
can immediately see that the combination of all fans defined by tropicalization of fi ∈ O(X ∨) is
equivalent to the scattering diagram for X .14

We now motivate degenerate scattering diagrams. Suppose we do not tropicalize all regular
functions in O(X ∨), but only a subset. For example, suppose we only considered the tropicaliza-
tion of f2 and f3 in eq. (2.79). We would find only 4 walls in the scattering diagram. Naively, this
does not correspond to a well-defined scattering diagram if we assume the walls are single clus-
ter walls. However, one might conjecture that it corresponds to a degenerate scattering diagram,
where certain walls are combined so certain chambers are inaccessible.

2.5.2 Degenerate Scattering Diagrams

We now introduce the notion of degenerate scattering diagrams to motivate this truncation. Sup-
pose that we want to truncate some cones from the scattering diagram while keeping others. Rather

14The relation between the scattering diagram of X and O(X∨) is easier to understand from a mirror symmetry
perspective. A∨ is dual to X under mirror symmetry [108].
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w1w4

w2

w5

w3

(a) Non-degenerate scattering
diagram corresponding to A2.

w1w4

w5

w3 + w2

(b) A degenerate scattering dia-
gram

Figure 2.12: A demonstration of how to derive a degenerate scattering diagram from the non-
degenerate scattering diagram for the A2 cluster algebra.

we want to enforce certain conditions of the form: “If you cross wall A, you must also cross wall
B and vice-versa.” This is a well-defined procedure if we combine walls in the scattering diagram.
For example, again consider the scattering diagram associated with A2. Suppose we consider the
fan derived by only tropicalizing f3 and f2 in eq. (2.79), leading to the degenerate fan in fig.
2.12b. We can derive this fan from a wall combination procedure by combining walls w2 and w3

in the full scattering diagram in fig. 2.12a. We can view this procedure as a “wall combination
procedure” or “cone truncation” procedure. However, by combining walls, we lose several nice
properties associated with the original scattering diagram. First, multiple functions are associated
with a single degenerate wall, so wall crossing across a degenerate wall takes the form:

µγ⊥ ŷγi = ŷγi
∏
a

fa(ŷγ⊥
a
)⟨γi,γ

⊥
a ⟩ . (2.80)

Second, the functions fa in eq. (2.80) change depending on whether you are mutating forward or
backward across a degenerate wall. For instance, the functions associated with the degenerate wall
in fig. 2.12b take the form:

µ+
γ⊥=(1,1)

ŷγi = ŷγi(1 +
ŷγ1 ŷγ2
1 + ŷγ1

)⟨γi,γ2⟩(1 + ŷγ1 + ŷγ1 ŷγ2)
⟨γi,γ1⟩ ,

µ−
γ⊥=(1,1)

ŷγi = ŷγi(1 + ŷγ1 ŷγ2)
−⟨γi,γ2⟩(1 + ŷγ1 + ŷγ1 ŷγ2)

−⟨γi,γ1⟩ ,

(2.81)

where the +(−) indicates if you going counter-clockwise (clockwise) around the scattering dia-
gram.

Although the degenerate walls are useful for motivating asymptotic chambers, there is signifi-
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cant ambiguity in their construction. Primarily, given an arbitrary fan, we do not have a procedure
for associating a unique degenerate scattering diagram to this fan. For example, again consider the
fan in fig. 2.12. We could construct this fan by combining wall w2 with walls w3 or w1. Given
only the fan, there is no canonical choice without additional input.

2.5.3 Asymptotic Chambers from Degenerate Scattering Diagrams

We now consider the above procedure when the number of cones is infinite. We work with the
degenerate cluster polytope instead of the degenerate scattering diagram.15 Note that if one only
tropicalizes a finite subset of O(X ∨), one often finds that the associated degenerate cluster polytope
includes a facet corresponding to a limiting ray.16 For example, consider the following principle
quiver:

y1 x1

y2 x2 x3 y3 ,

which corresponds to the A2,1 cluster algebra, and its dual quiver,

y∨1 x∨1

y∨2 x∨2 x∨3 y∨3 .

Now consider the tropicalization of the following subset of regular functions of A∨2,1:

f1 = ŷ∨1 + 1 ,

f2 = ŷ∨2 + 1 ,

f3 = ŷ∨3 + 1 ,

f4 = ŷ∨3 ŷ
∨
1 + ŷ∨3 + 1 ,

f5 = ŷ∨2 ŷ
∨
1 + ŷ∨1 + 1 ,

f6 = ŷ∨3 ŷ
∨
2 + ŷ∨3 + 1 .

(2.82)

The corresponding polytope is given in fig. 2.13, where the facet corresponding to the limiting
ray is highlighted in red. We argue that the vertices containing this facet correspond to asymptotic
chambers in the degenerate scattering diagram. Such a conjecture naturally explains the appearance

15Working with the degenerate cluster polytope is purely for visualization purposes and contains equivalent combi-
natorial information to the degenerate scattering diagram. A review of the map is provided in appendix A.4.

16In some sense, this facet would not appear if we tropicalized all functions in O(X∨) as the facet would be pushed
to infinity.
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Figure 2.13: A degenerate cluster polytope of A2,1 corresponding to the tropicalization of polyno-
mials in eq. (2.82). The red facet corresponds to the limiting ray.

Figure 2.14: The dual polytope of the asymptotic scattering diagram in fig. 2.7. Each asymptotic
chamber corresponds to a vertex and walls between asymptotic chambers correspond to 1-dim
edges.

of algebraic letters found at 8-point. Note that the facet associated with the limiting ray is not dual
to the asymptotic scattering diagram given in section 2.4.1.1, whose associated cluster polytope is
given in fig. 2.14. This is because even the asymptotic scattering diagram is degenerate.17

There have been several proposals for deriving degenerate scattering diagrams. Such proposals
amount to choosing finite subsets of O(X ∨) to tropicalize. For example, the authors of Ref. [36]
proposed that the desirable subset of O(X ∨) corresponds to the smallest subset of minors closed
under parity: ⟨i, i+1, j, j+1⟩ and ⟨i, j− 1, j, j+1⟩. These functions can be identified with some
subset of O(X ∨) using the “web-variables” originally given in Ref. [127]. Several alternate subsets
have been proposed [36, 100–102, 128]. However, in contrast to our conjecture, which motivates
a truncation of the clusters, these proposals argue for a truncation of the x-variables. In the finite
case, the authors identify a subset of x-variables whose g-vectors are in bijection with facets of
the degenerate cluster polytope and conjecture that this subset acts as a complete multiplicative
basis for the desired ŷ-variables. In the infinite case, where facets corresponding to limiting rays
appear, they conjecture the limiting rays correspond to cluster algebraic functions. It may turn

17It seems that the facet associated with the limiting ray will always be degenerate unless you include F -polynomials
associated with points on the limiting ray. These polynomials are not elements of O(X∨) as they are not critically
positive [36]. In our example, you need to include the F -polynomial associated with the generalization of P in
appendix A.3, even though P is not an x-variable of the dual cluster algebra.
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out these conjectures are equivalent to our proposal. To make any definite conclusion, one would
have to find a more precise procedure for isolating the correct degenerate scattering diagram, as
the procedure provided here is still ambiguous.

2.6 Discussion

The structure of scattering amplitudes beyond Feynman diagrams has undergone intense study
in several contexts over the past 60 years. This program has been very successful at tree level,
where numerous bottom-up approaches have almost completely circumvented the Lagrangian ap-
proach [129–137]. However, a systematic understanding of how locality, causality and unitarity
are precisely encoded at all orders in scattering amplitudes remains surprisingly elusive. Many
approaches, ranging from topological strings on twistor space [138] to flat space holography [139–
141], have given partial answers to this problem. For example, the infrared structure of scattering
amplitudes is famously connected to the vacuum structure of the theory and asymptotic symme-
tries [142–145]. Recent research suggests that the underlying structure of scattering amplitudes is
deeply connected to geometric and combinatorial notions such as total positivity and motives [14,
15, 32, 35, 80, 146]. The amplituhedron provides a precise geometric description of integrands in
N = 4 pSYM at all-loop orders. However, although the amplituhedron has led to many interesting
results in the study of scattering amplitudes, it is a fundamentally perturbative description of the
underlying physics. The ultimate goal of this program is a geometric description of the integrated
all-loop amplitude independent of the chosen perturbation method, a “non-perturbative geometry”
[36].

One possible manifestation of this non-perturbative geometry is the connection between bound-
aries of the positive kinematic region and logarithmic branch points of integrated MHV amplitudes
in N = 4 pSYM. This conjecture is more subtle than it initially appears due to ambiguities in the
precise definition of the positive kinematic region, such as the chosen compactification. In this
chapter, we focused on studying the positive kinematic region of the MHV sector and proposed
that scattering diagrams are a useful mathematical framework to study the boundary structure of
the positive kinematic region. Furthermore, we developed the notion of asymptotic chambers to
explain the appearance of algebraic letters in the symbol alphabet of MHV amplitudes. Interest-
ingly, the asymptotic diagram approach provides manifestly rational relations for the asymptotic
ŷγ-variables associated with the same limiting ray.

As a proof of concept, we used scattering diagrams to study the branch point structure of the
8-point MHV amplitude. Using the scattering diagram framework, we made a conjecture for all
possible algebraic letters that could appear in the 8-point symbol alphabet. We confirmed that the
algebraic letters found in explicit computations could be written as monomials of letters in our
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alphabet. We also developed the notion of degenerate scattering diagrams and commented on a
possible truncation procedure for ŷ-variables, following the philosophy of refs. [36, 101, 102].

Our results are especially interesting in the context of the Landau equations [147, 148]. The
Landau equations provide a direct link between the structure of the integrand and the branch points
of the integrated amplitude. In particular, the branch points of amplitudes at high multiplicity and
loop order have been calculated by applying the Landau equations to the amplituhedron [94–96].
However, although the Landau equations provide a non-trivial probe of the integrated amplitudes’
branch points, knowledge of the branch points is not enough to uniquely determine the symbol
alphabet (see section 7 of Ref. [95]). For example, although some letters in the alphabet may take
the schematic form

ϕ ∼ f −√△′
f +

√△′ (2.83)

where f and △′ are rational functions of external kinematic data, the Landau equations only predict
branch points of the form △′ = 0. This mismatch results from how the solution to the Landau
equations corresponds to the algebraic branch cut from the square-root in ϕi instead of the full
logarithmic branch point. A related mismatch also occurs for rational branch points. Similar to how
cluster algebras provide the missing link between Landau singularities and the symbol alphabet at
6-point and 7-point, asymptotic chambers provide the missing link between the algebraic symbol
alphabet and specific solutions to the Landau equations at 8-point. It has been argued that the
branch points of N = 4 pSYM associated with solutions to Landau equations are universal to
all gauge theories. It would be interesting to understand whether the logarithmic branch points,
which contain more information than the solutions to the Landau equations, retain any degree of
universality.

The notion of degenerate scattering diagrams has applications beyond planar gauge theories,
specifically higher loop integrands of ϕ3. However, it is instead the cluster polytope picture that
is more interesting for studying higher loop integrands of ϕ3 [149, 150] and generalized scattering
amplitudes [151–157]. Both the higher loop integrands of ϕ3 and generalized scattering ampli-
tudes can be identified with the canonical rational function of the (degenerate) cluster polytopes
discussed in section 2.5 [128]. Each vertex in the cluster polytope can be mapped to a specific
Feynman diagram. However, multiple vertices correspond to the same Feynman diagram, and con-
sidering all vertices in the full cluster polytope generically overcounts certain Feynman diagrams.
Therefore, it is instead more natural to consider degenerate cluster polytopes, where redundant
vertices have been truncated. For example, the degenerate cluster polytope associated with A2,1,
fig. 2.15, is associated with the multi-trace, 1-loop 3-point integrand of ϕ3 theory [150]. This
degenerate polytope can be derived from the tropicalization of f5 and f6 in eq. (2.82) along with
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Figure 2.15: A degenerate cluster polytope of A2,1 corresponding to the tropicalization of f4 and
f5 in eq. (2.82) along with eq. (2.84).

the polynomial
fP = 1 + ŷ∨3 + ŷ∨1 ŷ

∨
2 ŷ
∨
3 , (2.84)

which is the F -polynomial of the generalization of P in appendix A.3 to A2,1. Although the mo-
tivation for truncating the unwanted vertices is very different, the notion of truncating undesirable
vertices (cones) from the degenerate cluster polytope (scattering diagram) is the same as section
2.5.

Finally, the notion of asymptotic chambers has applications outside of scattering amplitudes,
such as studying coordinate systems of (higher) Teichmuller spaces. Specifically, when the cluster
algebra corresponds to the (higher) Teichmuller space of a Riemann surface, one can identify clus-
ter algebraic functions with Fenchel-Nielsen coordinates [116]. Non-trivial relations obeyed by
Fenchel-Nielsen coordinates, and their generalizations, have been studied in the context of spec-
tral networks [117, 118]. However, to our knowledge, no one has systematically studied relations
between Fenchel-Nielsen coordinates in the context of scattering diagrams and cluster mutations.
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CHAPTER 3

Double Copy and Effective Field Theory

3.1 Overview

We have previously restricted ourselves to studying planar scattering amplitudes. However, many
interesting amplitudes do not have any color structure and therefore don’t have the same simpli-
fications. It is important to develop better techniques to compute such amplitudes. Beginning
with the pioneering discovery of Kawai-Lewellen-Tye (KLT) [38], the existence of a multiplica-
tive structure, called the double-copy, on the space of relativistic field theories and string theories
has become an indispensable tool for the computation of uncolored scattering amplitudes. The
double copy is playing an increasingly important role in modern gravity computations; for exam-
ple, one of the recent exciting applications is to gravitional-wave physics [41, 158–165]. However,
a fully systematic understanding of the double-copy is still an open question. We will study the
double-copy in the context of higher dimension operators.

The significance of EFTs was discussed in section 1.3. Although several procedures for double-
copying higher dimension operators have been developed [166–169], no pattern had previously
emerged for which local counterterms can and cannot be derived from the double-copy. This
chapter consists of a technical derivation of the KLT bootstrap, the algorithm for computing higher
derivative corrections to the double copy map, and the application of the generalized KLT double
copy to YM with higher derivative operators to compute amplitudes in GR with higher derivative
corrections.

To illustrate our methodology, we examine the KLT bootstrap at 4-point. At 4-point, the sum in
eq. (3.1) is over just a single choice of color-orderings α and β. For a specific choice for orderings,
the 4-point KLT formula for the identity model, 1⊗ 1 = 1, becomes

m4[γ|δ] = m4[γ|α]S4[α|β]m4[β|δ] |γ=β,δ=α. (3.1)

which simplifies to
S4[α|β] = 1/m4[β|α] . (3.2)
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Therefore, the KLT formula for the identity implies the kernel of the double-copy is determined
by the double-partial amplitudes of the identity mode. For generic orderings, the double-copy
bootstrap equation 1⊗ 1 = 1 becomes

m4[γ|δ] = m4[γ|α]
1

m4[β|α]
m4[β|δ] . (3.3)

Rearranging eq. (3.3), it says

det

(
m4[β|α] m4[β|δ]
m4[γ|α] m4[γ|δ]

)
= 0 . (3.4)

Since this holds for all choices of the (n− 1)! = 6 color-orderings α, β, γ, δ, this says that all such
2 × 2 minors vanish. In other words, the 6 × 6 matrix of doubly color-ordered zeroth-copy tree
amplitudes m4 must have rank 1. The determinant in eq. (3.4) trivially vanishes for amplitudes
of the cubic BAS model, but once higher-derivative operators are included, eq. (3.4) becomes a
non-trivial constraint. This is an example of how 1 ⊗ 1 = 1 becomes a bootstrap equation for
the zeroth copy and hence for the double-copy kernel. We solve eq. (3.3) perturbatively in the
momentum expansion, and subject to additional constraints from locality, we find the most general
allowed higher-derivative corrections to the BAS model consistent with bootstrap constraints at 4-
and 5-point.

Using the generalized KLT kernel, we study how higher dimension operators in YM map to
operators in GR. To do so, we perturbatively impose the generalized KKBCJ equations discussed
in section 1.3 and then double-copy the resulting theory using the generalized kernel. At 4-point,
we study how generic operators in YM are constrained by the generalized KKBCJ relations and
map to operators in GR. At 5-point, due to the complexity of calculations, we restrict the external
polarization vectors to a particular configuration called the self-dual sector to simplify expressions.
Remarkably, at both 4-point and 5-point, we find that the double-copy contains the same operators
as the standard field theory double copy, but with shifts in some of their Wilson coefficients.

We largely focus on generalizations of the double-copy that arise from adding higher-derivative
operators to the BAS model, but one can also look for other types of solutions to the KLT bootstrap
equations. In section 3.7, we initiate a search for zeroth copies at various ranks. The central
property we examine is whether the rank Rn determinant has zeroes in unphysical locations that
could lead to spurious singularities in the double-copy amplitudes unless additional cancellations
take place. The locality constraints are again essential and indicate that minimal rank (n− 3)! may
play a special role for generalizations of the double-copy.
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3.2 Double-Copy Bootstrap

We have previously outlined the ideas of the double-copy bootstrap. The purpose of this section is
to make each step of the procedure precise.

3.2.1 Double-Copy Kernel and Zeroth-Copy Models: Bootstrap 1⊗ 1 = 1

In the KLT double-copy formula,

AL⊗R
n =

∑
α,β

AL
n[α]Sn[α|β]AR

n[β], (3.5)

the L (R) sector refers to field theories with all states in the adjoint representation of color groups
GL (GR), which could for example be SU(N) (SU(Ñ)). The single-copy amplitudes AL

n[α]

(AR
n[β]) are color-ordered with respect to a single-trace of n generators of GL (GR). The struc-

ture of eq. (3.5) shows that the double-copy kernel Sn has a color-structure associated with the
product GL ×GR. As we indicated in the Introduction, the kernel is the inverse of a submatrix of
doubly color-orderedmn amplitudes, so they must have a color-structureGR×GL. The candidates
for the zeroth-copy models are local field theories with a single scalar field ϕaa′ that transforms in
the adjoint of each group factors.

At n-point there are n! possible color-orderings for each color-group factor, but only (n − 1)!

are independent under the cyclicity of each color-trace. We use mn to denote the (n−1)!×(n−1)!

matrix of color-ordered tree amplitudes of the zeroth copy. For example, at 4-point we choose the
ordering {1234, 1243, 1324, 1342, 1423, 1432} and the 6×6 matrix of zeroth-copy tree amplitudes
is then

m4 =


m4[1234|1234] m4[1234|1243] m4[1234|1324] · · · m4[1234|1432]
m4[1243|1234] m4[1243|1243] m4[1243|1324] · · · m4[1243|1432]

...
...

...
...

m4[1432|1234] m4[1432|1243] m4[1432|1324] · · · m4[1432|1432]

 . (3.6)

We do not make any assumptions a priori about the properties of the color-ordered amplitudes mn.
For example, we do not assume trace-reversal, so in general

m[β|αT ] ̸= m[β|α] or m[βT |α] ̸= m[βT |α], (3.7)

where for example {1234}T = {4321} = {1432}. Also, we do not assume that the mn is sym-
metric, i.e. in general we have

m4[β|α] ̸= m4[α|β] . (3.8)
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For the BAS or string zeroth-copy models, the rank of the matrix mn is (n − 3)!; this is what we
call minimal rank. Moreover, in those two cases, trace-reversal does hold and mn is symmetric.
Allowing for generalizations makes it possible to incorporate more ‘heterotic’ double-copies in
which the L and R constraints are genuinely distinct.

Suppose more generally that, for some integer Rn, there are invertible Rn ×Rn submatrices of
mn. We label such submatrices by a specification of a choice of a subset of Rn orderings for the
rows and columns in mn. We denote the row or R basis as BR = {β1, ..., βRn} and the column or
L basis as BL = {α1, ..., αRn}. In matrix notation, we then have

mn(BR, BL) ≡


mn[β1|α1] · · · mn[β1|αRn ]

... . . . ...
mn[βRn|α1] · · · mn[βRn|αRn ]

 . (3.9)

The condition that the zeroth copy is the identity element under the double-copy multiplication
rule, 1 ⊗ 1 = 1, is that the tree amplitudes copy to themselves using the double-copy kernel; in
matrix notation, this is the requirement

1⊗ 1 = 1 : mn (B
′
R, BL)Sn (BL, BR)mn (BR, B

′
L) = mn (B

′
R, B

′
L) . (3.10)

Now set B′L = BL and B′R = BR in eq. (3.10) and multiply on both the L and R by(
mn (BR, BL)

)−1. It then follows that

Sn(BL, BR) ≡
(
mn(BR, BL)

)−1
. (3.11)

Thus, requiring the zeroth copy to be an identity element under the double-copy inevitably links
its tree amplitudes to the double-copy kernel.

This, however, does not exhaust the contents of eq. (3.10). Using eq. (3.11), we have

bootstrap eq: mn (B
′
R, BL)

(
mn (BR, BL)

)−1
mn (BR, B

′
L) = mn (B

′
R, B

′
L) , (3.12)

This equation is non-trivial for elements of B′L that are not in BL and elements of B′R not in BR.
As such, it constrains the zeroth-copy amplitudes mn: thus eq. (3.12) is our double-copy bootstrap
equation.

To interpret the constraint eq. (3.12), consider for a given basis choice,BL andBR, the extension
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of mn(BR, BL) to the (Rn + 1)× (Rn + 1) submatrix

M =


mn[β1|α1] · · · mn[β1|αRn ] mn[β1|δ]

... . . . ...
...

mn[βRn|α1] · · · mn[βRn|αRn ] mn[βRn|δ]
mn[γ|α1] · · · mn[γ|αRn ] mn[γ|δ]

 , (3.13)

where αi ∈ BL and βi ∈ BR while δ /∈ BL and γ /∈ BR. Using that the determinant of a block
matrix with detA ̸= 0 can be expressed as

det

[
A B

C D

]
= det(A) det

(
D − CA−1B

)
, (3.14)

we can write the determinant of eq. (3.13) as

det(M) = det
(
mn (BR, BL)

)
×
(
mn[γ|δ]−mn[γ|BL]

(
mn (BR, BL)

)−1
mn[BR|δ]

)
, (3.15)

By eq. (3.11), the (negative of the) second factor can be written∑
α∈BL, β∈BR

mn[γ|α]Sn (BL, BR) [α|β]mn[β|δ]−mn[γ|δ] . (3.16)

The vanishing of this condition is exactly the same as the written-out matrix multiplication of
eq. (3.12). Thus we learn that the “self-copy” 1 ⊗ 1 = 1 condition (3.12) is equivalent to the
requirement that the full (n− 1)!× (n− 1)! matrix mn of zeroth-copy amplitudes has rank Rn.
This means that the rank Rn of the double-copy kernel must be equal to the rank of the full matrix

mn.

3.2.2 Single-Copy Models: Generalized KKBCJ from 1⊗R = R and L⊗1 =

L

It is convenient also to use a matrix notation to represent the single-copy amplitudes with orderings
restricted to a given choice of basis

AL
n (BL) ≡

(
AL

n[α1] · · · AL
n[αRn ]

)⊤
, AR

n (BR) ≡
(
AR

n[β1] · · · AR
n[βRn ]

)⊤
, (3.17)
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where ⊤ denotes transpose. In this notation, the double-copy formula (3.5) can be written as a
simple matrix product

AL⊗R
n =

(
AL

n (BL)
)⊤

Sn(BL, BR)A
R
n (BR) . (3.18)

and the generalized KKBCJ relations arise from the KLT algebra:

1⊗ R = R : mn (B
′
R, BL)Sn (BL, BR)A

R
n (BR) = AR

n (B
′
R) , (3.19)

L ⊗ 1 = L :
(
AL

n (BL)
)⊤

Sn (BL, BR)mn (BR, B
′
L) =

(
AL

n (B
′
L)
)⊤
. (3.20)

These conditions are non-trivial only for elements in B′R (B′L) that are not in BR (BL).
The relations eqs. (3.19) and (3.20) are the generalized KKBCJ conditions. They ensure that

the result of the double-copy is independent of the choice of bases BL and BR. To see this, rewrite
eq. (3.19) as

Sn (BL, BR)A
R
n (BR)− Sn (BL, B

′
R)A

R
n (B

′
R) = 0 . (3.21)

When multiplied from the left by
(
AL

n (BL)
)⊤, eq. (3.21) states that the double copy resulting from

the two basis choices of BR and B′R are the same. Similarly, eq. (3.20) ensures that the double-
copy is independent of the choice of L-basis. Without basis independence, we cannot think of the
double-copy as a map between field theories.

When the mn are the amplitudes of the BAS model, the generalized KKBCJ conditions become
the standard KKBCJ relations discussed in the Introduction. Likewise, they are equivalent to the
string monodromy relations when the mn are the amplitudes of the string zeroth copy.

When the full matrix (n− 1)!× (n− 1)! of zeroth-copy amplitudes mn has non-maximal rank
Rn, it must have (n − 1)! − Rn null vectors nL

i and nR
i for multiplication from the left and right,

respectively. We show in Appendix 3.2.5 that these null vectors precisely encode the generalized
KKBCJ relations as ∑

allβ

nR
i [β]AR

n[β] = 0 and
∑
allα

AL
n[α]n

L
i [α] = 0 (3.22)

for each i = 1, 2, . . . , (n − 1)! − Rn. The relation between null vectors and BCJ conditions was
introduced previously in the context of a massive double-copy formalism in [170]. They are useful
for understanding how the generalized KKBCJ relations modify the regular field theory KKBCJ
relations.
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3.2.3 Roadmap for the Generalized Double-Copy

Let us summarize how the double-copy bootstrap proceeds:

1. Choose a candidate for a zeroth-copy model, i.e. a local field theory with a bi-adjoint
scalar field ϕaa′ and some choice of interactions. Compute its color-ordered tree amplitudes
mn[α|β].

2. Subject the matrix of these amplitudes to the double-copy bootstrap equation 1 ⊗ 1 = 1 in
the form eq. (3.12) with some choice of rank Rn, possibly restricting the couplings in the
model. Inverting the resulting rank Rn matrices gives the generalized double-copy kernel Sn

via eq. (3.11).

3. Tree amplitudes of L and R single-copy local models are then subjected to the generalized
KKBCJ relations L ⊗ 1 = L and 1⊗ R = R in the form of eqs. (3.19) and (3.20).

4. Double-copy using eq. (3.18).

Along the way, locality constraints must be imposed. In particular, we have pointed out that zeroes
of det(mn(BR, BL)) may signal issues with spurious poles in the double-copy.

A particularly prominent example is the bootstrap of a zeroth-copy model based on BAS with
higher-derivative corrections, so let us comment more on this.

3.2.4 Perturbative KLT Bootstrap

To study a double-copy kernel based on BAS + higher-derivative (HD) operators, let m(0)
n denote

the BAS amplitudes and An the single-copy amplitudes that obey the regular field theory KKBCJ
relations associated with the BAS zeroth copy. We can then write the BAS + HD amplitudes and
single-copy amplitudes (suppressing L and R superscripts) as

mn[β|α] = m(0)
n [β|α] +m(1)

n [β|α] + . . . ,

An[α] = A(0)
n [α] +A(1)

n [α] + . . . ,
(3.23)

where m(i)[β|α] and A(i)
n [α] with i > 0 are the contributions from higher-dimension operators.

They are systematically organized by increasing powers in 1/Λ of the UV scale of BAS+HD EFT
such that the limits

lim
Λ→∞

mn[β|α] = m(0)
n [β|α], lim

Λ→∞
An[α] = A(0)

n [α] (3.24)
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YM+HD

YM

Gravity+HD

Gravity

Double-Copy

w/ BAS+HD

Double-Copy

w/ BAS

UV Decoupling
Λ → ∞

UV Decoupling
Λ → ∞

Figure 3.1: Illustration of the physical meaning of the perturbative double-copy. Physics at the UV
scale Λ decouples in both the single- and double-copies as Λ → ∞ (i.e. this diagram commutes)
only if the rank of the higher-derivative corrected BAS is the same as the rank of the uncorrected
BAS.

are smooth. This is the expected behavior in a physical EFT where the Λ corresponds to the scale
of some, perhaps unknown, UV physics which decouples from the IR dynamics in an appropriate
limit.1

Taking the double-copy to be perturbative in 1/Λ means that the double-copy amplitude also
has an expansion in 1/Λ. For example, the double copy of YM+HD with itself should give NS-
NS gravity plus higher dimension operators and the contributions from these operators should go
smoothly to zero as Λ → ∞. This physically sensible requirement has implications for the rank of
the double-copy kernel. Generic deformations of cubic BAS will increase the rank from (n − 3)!

of BAS. Since the double-copy kernel is the inverse of a rank Rn matrix of BAS+HD amplitudes,
the kernel would be divergent in the limit Λ → ∞ where the cubic BAS amplitudes are recovered.
This would imply that the double-copy amplitudes do not have sensible Λ → ∞ limits and then
we can no longer identify Λ → ∞ as the limit of decoupling UV physics.

To avoid a situation of unnatural UV-IR mixing in the double-copy, we must therefore require
that the rank of the zeroth copy does not change as a function of Λ.2 This means that to study the
most general double-copy kernel based on BAS+HD we must work with the rank Rn = (n− 3)!.

The double-copy bootstrap with rank (n − 3)! is studied at 3-, 4-, and 5-point in Sections 3.3-
3.6. In Section 3.7 we consider examples of models with rank Rn > (n − 3)! that are not UV
deformations of the BAS model.

1We are not considering mass-deformations of the BAS model. See [170] for a discussion of double-copy con-
struction with masses.

2Of course, it is logically possible that the UV dynamics may not fully decouple, and we are free to entertain the
possibility of a discontinuity in the rank of the zeroth copy. Curiously, for all examples studied in this chapter, relaxing
this naturalness assumption also leads to spurious poles in the double-copy.

73



3.2.5 Generalized KKBCJ Relations as Null Vectors

We now show that the BAS×BAS bootstrap equation and deformed BCJ relation yield that vectors
orthogonal to AR[α] span the kernel of the column space of m[α|β], thereby proving that there are
only (n− 1)!− Rn linearly independent generalized KKBCJ relations. A similar argument holds
for AL[α], whose orthogonal vectors span the nullspace, or the kernel of the row space, of m[α|β].

We can choose the (n− 1)! color orderings as

{all (n− 1)! color-orderings} = BR

⋃
B̄R , (3.25)

where BR is some BCJ basis and B̄R is the complement of BR in the (n−1)! color orderings. And
BR

⋃
B̄R means BR occupies the first Rn slots, while B̄R takes the remaining (n− 1)!−Rn slots,

of the (n− 1)! color-orderings.
Then, an explicit basis for these (n− 1)!−Rn different null vectors take the form

n⃗R
i =

(
mn[αi, BL]Sn[BL, BR], 0, · · · , −1, · · ·

)
≡

(
mn[αi, BL]Sn[BL, BR], −1αi

)
, (3.26)

where αi corresponds to some color-ordering in B̄R and the −1 entry is at the corresponding
position of αi in eq. (3.25). So the defined vector −1αi

takes value −1 at the corresponding
position of αi and 0 elsewhere. And different choices of the dummy BCJ basis BL will give the
same null vectors.

Taking the product of n⃗R
i with mn and AR, one finds

n⃗R
i ·mn

[
BR

⋃
B̄R, B

′
L

⋃
B̄′L

]
=

(
mn[αi, BL]Sn[BL, BR], −1αi

)
·
(

mn[BR, B
′
L] mn[BR, B̄

′
L]

mn[B̄R, B
′
L] mn[B̄R, B̄

′
L]

)

=

(
mn[αi, BL]Sn[BL, BR]mn[BR, B

′
L]−mn[αi, B

′
L],

mn[αi, BL]Sn[BL, BR]mn[BR, B̄
′
L]−mn[αi, B̄

′
L]

)T

= 0⃗, (3.27)
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and

n⃗R
i ·AR

[
BR

⋃
B̄R

]
=

(
mn[αi, BL]Sn[BL, BR], −1αi

)
·
(
AR[BR], AR[B̄R]

)
= mn[αi, BL]Sn[BL, BR]A

R[BR]−AR[αi]

= 0, (3.28)

where we used the bootstrap equation and the deformed KKBCJ relations, and B′L is some BCJ
basis and B̄′L is its complement in the (n−1)! color orderings. A different choice ofB′L corresponds
to a trivial rearrangement of column vectors of mn

[
BR

⋃
B̄R, B

′
L

⋃
B̄′L
]
. Eq. (3.27) explicitly

shows that n⃗R
i is orthogonal to column vectors of the (n− 1)!× (n− 1)!mn matrix, and to AR as

well.
The n⃗R

i ’s are manifestly linearly independent due to the different locations of -1 entry in each
vector, so the n⃗R

i ’s correspond to a complete basis for the kernel of the column space of mn, and
also the space of the generalized KKBCJ relations of AR. Since there are only (n−1)!−Rn linearly
independent null vectors of mn, there are olny (n − 1)! − Rn linearly independent generalized
KKBCJ relations of AR.3

3.3 KLT Bootstrap at 3-Point

Let us begin at 3-point as an informative warm-up for the higher-point analysis. In 3-particle
kinematics, all Mandelstam variables vanish on-shell, so it is impossible for an on-shell 3-point
scalar amplitude to have momentum dependence. At the level of the Lagrangian, this means that
any higher-derivative corrections at 3-point can be moved into higher-point by a field redefinition.
Thus we only need to consider constant 3-point scalar amplitudes.

By cyclic symmetry, there are two independent options for the double color ordered bi-adjoint
scalar amplitudes and we parameterize them using couplings g and λ3 as

m3[123|123] = g + λ3, m3[123|132] = −g + λ3 . (3.29)

3If we have reversal identity for the BAS theory, mn[α|βT ] = (−1)x1mn[α|β] and mn[α
T |β] = (−1)x2mn[α|β],

for signs determined by possibly n-dependent integers x1 and x2, we also have corresponding reversal identity for the
L and R sector of the single copy theory.
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These amplitudes arise from Lagrangian interactions of the form4

L3 = −g
6
fabcf̃a′b′c′ϕaa′ϕbb′ϕcc′ +

λ3
6
dabcd̃a

′b′c′ϕaa′ϕbb′ϕcc′ . (3.30)

The first term is the cubic interaction from the cubic BAS model (1.32) and the second one is its
fully symmetric counterpart. In terms of generators, we have

i fabc = Tr
[
T a[T b, T c]

]
, dabc = Tr

[
T a{T b, T c}

]
. (3.31)

The invariant dabc is sometimes called the anomaly coefficient and it is non-zero for generic repre-
sentations of SU(N) groups with N > 2.

The general 2 × 2 bi-adjoint scalar matrix labeled by the (n − 1)! = 2 independent color-
orderings {123, 132} is then

m3 =

(
m3[123|123] m3[123|132]
m3[132|123] m3[132|132]

)
=

(
g + λ3 −g + λ3

−g + λ3 g + λ3

)
, (3.32)

and its determinant is
det(m3) = 4gλ3 . (3.33)

Thus, for non-zero values of g and λ3 the matrix m3 has rank 2, however, whenever one of the two
couplings vanishes, the rank is reduced to 1. In Section 3.7, we show that the model with λ3 ̸= 0

does not satisfy the minimal-rank condition at 4-point and it leads to a generalized KLT kernel
with spurious poles at 5-point. For this reason, we set

λ3 = 0 (3.34)

in our studies of generalizations of the KLT double-copy. This in particular means that the null
vectors of m3 are {1, 1}, which via eq. (3.22) imply the usual 3-point KK relation

A3[132] +A3[123] = 0 (3.35)

on the L and R sector 3-point amplitudes.

4A mixed term , fabcd̃a
′b′c′ϕaa′

ϕbb′ϕcc′ = 0, vanishes due to the symmetric-antisymmetric index contractions.
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3.4 KLT Bootstrap at 4-Point

In this section, we solve the KLT bootstrap equation at 4-point for minimal rank (n− 3)! = 1. The
general solution can be written in terms of a single function and we derive from it the generalized
KKBCJ relations. Next, we use these results to find the most general higher-derivative corrections
to the BAS model at 4-points subject to constraints of locality and minimal rank. This gives a
generalized KLT formula for double-copying single-color EFTs at 4-point. We compare the result
to the string KLT kernel and comment in general properties of the result.

3.4.1 4-Point Bootstrap Equations

The KLT bootstrap for minimal rank (n− 3)! = 1 imposes that all 2-by-2 minors of the matrix m4

in eq. (3.6) must vanish,
m4[α|β]m4[δ|γ] = m4[α|γ]m4[δ|β], (3.36)

for any choice of α, β, γ, δ ∈ {1234, 1243, 1324, 1342, 1423, 1432}.
Using cyclic symmetry and momentum relabeling, the six different doubly color-ordered 4-

point amplitudes m4 can be expressed in terms of three functions, f1, f2, and f6, as follows:

m4[1234|1234] = f1(s, t) with f1(s, t) = f1(u, t) ,

m4[1234|1243] = f2(s, t) ,

m4[1234|1324] = f3(s, t) = f2(u, t) ,

m4[1234|1342] = f4(s, t) = f2(s, t) ,

m4[1234|1423] = f5(s, t) = f2(u, t) ,

m4[1234|1432] = f6(s, t) with f6(s, t) = f6(u, t) .

(3.37)

where here and in the following it is always understood that s+ t+ u = 0. For example, to obtain
the 3rd line, we use that

f3(s, t) = m4[1234|1324] = m4[4123|4132] = m4[1234|1243]
∣∣∣
1→4→3→2→1

= f2(s, t)
∣∣∣
1→4→3→2→1

= f2(u, t) .
(3.38)

We allow for the possibility that mn[β|α] ̸= mn[α|β] and we do not assume trace reversal symme-
try, e.g. mn[α|βT ] is not necessarily related to mn[α|β]. In terms of f1, f2, and f6, the matrix m4
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of eq. (3.6) then takes the form

m4 =



f1(s, t) f2(s, t) f2(u, t) f2(s, t) f2(u, t) f6(s, t)

f2(s, u) f1(s, u) f2(t, u) f6(s, u) f2(t, u) f2(s, u)

f2(u, s) f2(t, s) f1(t, s) f2(t, s) f6(t, s) f2(u, s)

f2(s, u) f6(t, u) f2(t, u) f1(t, u) f2(t, u) f2(s, u)

f2(u, s) f2(t, s) f6(u, s) f2(t, s) f1(u, s) f2(u, s)

f6(u, t) f2(s, t) f2(u, t) f2(s, t) f6(u, t) f2(u, t)


. (3.39)

Generically this matrix has rank 6, so we must impose the rank 1 bootstrap condition by setting
all 2-by-2 minor to zero. This can be done very simply. Consider the vanishing of the 2-by-2 minor
of eq. (3.39) with rows 1 and 2 and columns 1 and 6:

(
f1(s, t)− f6(s, t)

)
f2(s, u) = 0 . (3.40)

This implies5

f6(s, t) = f1(s, t). (3.41)

Next, the 2-by-2 minor of eq. (3.39) with rows 1 and 3 and columns 1 and 2 vanishes when

0 = f1(s, t)f2(t, s)− f2(s, t)f2(u, s) , (3.42)

while the vanishing of the minor with rows 1 and 2 and columns 1 and 3 requires

0 = f1(s, t)f2(t, u)− f2(s, u)f2(u, t) . (3.43)

It follows from eq. (3.42) that f1 is fixed in terms of f2 as

f1(s, t) =
f2(s, t)f2(u, s)

f2(t, s)
, (3.44)

and combining eqs. (3.42) and (3.43) gives a final self-consistency condition for f2,

f2(s, t)f2(u, s)f2(t, u) = f2(t, s)f2(u, t)f2(s, u) . (3.45)

When the three equations eqs. (3.41), (3.44), and (3.45) are imposed, the matrix (3.39) has rank 1,
as desired; thus, these three conditions are the 4-point KLT bootstrap equations.

5When f2 = 0, the other rank 1 conditions set f1 = f6 = 0. So we assume f2 to be non-zero.
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The cubic bi-adjoint scalar amplitudes in eq. (1.32) have

fBAS
1 (s, t) = fBAS

6 (s, t) =
g2

s
+
g2

u
, fBAS

2 (s, t) = −g
2

s
, (3.46)

and it is easy to see that they solve the three 4-point bootstrap equations eqs. (3.41), (3.44), and
(3.45). They are likewise solved by the string theory 4-point amplitudes of Mizera which have [39]

f string
1 (s, t) = f string

6 (s, t) =
1

tan(α′πs)
+

1

tan(α′πu)
, f string

2 (s, t) = − 1

sin(α′πs)
. (3.47)

As we shall see, the bootstrap equations are not quite sufficient to guarantee that the amplitudes
in eq. (3.37) correspond to doubly color-ordered amplitudes of a local theory, i.e. that the only
singularities in the amplitudes correspond to physical poles. This is a nontrivial constraint. For
example, f2(s, t) = s solves eq. (3.45), but gives f1(s, t) = su/t which has a t-pole not permitted
by the color structure of m4[1234|1234] = f1(s, t). Therefore, locality constraints on f1 and f2
generally further restrict the solution.

3.4.2 Generalized KKBCJ Conditions

Eqs. (3.41), (3.44), and (3.45) ensure that the 6× 6 matrix has rank 1. Hence it must have five null
vectors under left and right multiplication. One can directly verify that

(1, 0, 0, 0, 0,−1) , (0, 1, 0,−1, 0, 0) , (0, 0, 1, 0,−1, 0), (3.48)

are null vectors under both left and right multiplication for any solution f2. Via eq. (3.22), the null
vectors imply the following relations among both L and R sector single-copy amplitudes:

Trace reversal: A4[1234] = A4[1432] , A4[1243] = A4[1342] , A4[1324] = A4[1423] . (3.49)

These are exactly the three 4-point KK relations (1.41) that are not the U(1)-decoupling relation.
This means that any L or R sector amplitudes must satisfy the trace-reversal identity

A4[α] = A4[α
T ] , (3.50)

where the αT denotes the color-ordering that has the reverse ordering of α, for example (1234)T =

(4321).
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Under right multiplication, the two remaining null vectors can be written as(
1, 1, 0, 0,− f2(s, t)

f2(u, t)
− f2(s, u)

f2(t, u)
, 0
)
,

(
1,−f2(u, s)

f2(t, s)
, 0, 0, 0, 0

)
. (3.51)

By eq. (3.22), they imply

L generalized U(1): AL
4 [1234] +AL

4 [1243]−
(
f2(s, t)

f2(u, t)
+
f2(s, u)

f2(t, u)

)
AL

4 [1423] = 0 , (3.52)

L generalized BCJ: AL
4 [1234]−

f2(u, s)

f2(t, s)
AL

4 [1243] = 0 . (3.53)

When f2(s, t) = −g2/s, these relations reduce to the familiar U(1)-decoupling relation (1.39) and
BCJ conditions (1.40). Note that if one insists that the usual BCJ relation (1.40) hold, i.e. if we
impose

f2(u, s)

f2(t, s)
=
t

u
, (3.54)

then eq. (3.52) reduces to the usual U(1) decoupling identity (1.39) after using s + t + u = 0.
This is natural; the BCJ relation can be derived from color-kinematics duality [171] in which the
color-structures are all generated by the structure constants fabc and therefore U(1)-decoupling
must hold. Our generalized KKBCJ relations (3.49) allow for more general color-structures, such
as dabc and dabcd in the higher-derivative operators and therefore they modify the U(1) decoupling
identity and the BCJ relations.

For the R sector, if follows from the left-multiplication null vectors that

R generalized U(1): AR
4 [1234] +AR

4 [1243]−
(
f2(s, t)

f2(t, s)
+
f2(s, u)

f2(u, s)

)
AR

4 [1423] = 0 , (3.55)

R generalized BCJ: AR
4 [1234]−

f2(u, t)

f2(t, u)
AR

4 [1243] = 0 . (3.56)

The generalized R and L sector KKBCJ relations are generally distinct. This differs from the
usual field theory KKBCJ relations or the string monodromies.6 In particular, this means that the
criteria for being a valid input for the KLT relations are different for the R and L sector models.
For example, the higher-derivative corrections allowed for YM may be different for the R and L
sectors. We discuss the generalized KKBCJ further in Section 3.4.5.

6Note that the modified U(1) decoupling relations above are not exactly the same as the string theory monodromy
relations for the choice (3.47); rather the string monodromy relations arise from combinations of our general KKBCJ
relations with f2 chosen as in eq. (3.47).
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3.4.3 Perturbative Solution

We now determine the most general local higher-derivative corrections to the BAS model that are
compatible with the minimal rank condition at 4-point. We begin with an ansatz for f2 whose lead-
ing term is the usual bi-adjoint s-pole. Since there can be no higher-derivative corrections to the
3-point amplitudes, there can be no other pole terms and hence any higher-derivative corrections
at 4-point must be a power-expansion in s and t. The most general ansatz for f2 is, therefore,7

f2(s, t) = −g
2

s
+

N∑
k=0

k∑
r=0

ak,r
Λ2(k+1)

sr tk−r , (3.57)

where N is the highest power in Mandelstams used in the expansion and ak,r are coefficients that
encode the higher-derivative corrections. We use Λ as a mass-dimension parameter that keeps track
of the power-expansion such that we reduce to the BAS model in the limit Λ → ∞.

Using the ansatz for f2 in eq. (3.44), we find

f1(s, t) =
g2

s
− g2

s+ t
+

2a0,0
Λ2

t2

s(s+ t)
+ . . . , (3.58)

The t-dependent residue of the s and u poles is not possible in a pure scalar theory, so we must
set a0,0 = 0. Going to higher orders in the power-expansion, one finds unphysical poles with
coefficients a2r,2r, so we must take

a2r,2r = 0 for any r = 0, 1, 2, 3, . . . (3.59)

With this choice, f1 only has physical poles.
Imposing the bootstrap condition in eq. (3.45) on the ansatz in eq. (3.57) with eq. (3.59), we

find that
a2,1 = a2,0 , a4,3 = a4,2 − a4,1 + a4,0 + . . . , (3.60)

7The analysis is valid in d-dimensions and as such we leave g to have mass-dimension 3 − d/2. To keep Λ
mass-dimension 1 dimension-counting parameter then implies that the coefficients ak,r have mass-dimension 6− d.
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so that the result for f2 is

f2(s, t) =− g2

s
+

1

Λ4
(a1,0t+ a1,1s) +

a2,0
Λ6

t(s+ t)+

+
1

Λ8

[
a3,0t

3 + a3,1st
2 + a3,2s

2t+ a3,3s
3
]
+

+
1

Λ10

[
a4,0t

4 + a4,1st
3 + a4,2s

2t2 + (a4,0 − a4,1 + a4,2)s
3t
]

+
1

Λ12

[
a5,0t

5 + a5,1st
4 + a5,2s

2t3 + a5,3s
3t2

+

(
a1,0a1,1(a1,0 − a1,1)

g4
+
a1,1(a3,1 − a3,2)− a1,0(a3,0 − a3,2 + a3,3)

g2

+ a5,0 − a5,1 + a5,3

)
s4t+ a5,5s

5

]
+O

(
1

Λ14

)
,

(3.61)

and for f1 we then have,

f1(s, t) = g2
(
1

s
− 1

s+ t

)
+
a1,0 − 2a1,1

Λ4
t− a2,0

Λ6
t2

− 1

Λ8

[(
2a3,3 − a3,2 + a3,1 − a3,0 − g−2a1,1(a1,1 − a1,0)

)
st(s+ t)

+
(
(4a3,3 − 2a3,2 + a3,0) + 2g−2a1,1(a1,1 − a1,0)

)
t3
]
+O

(
1

Λ10

)
.

(3.62)

Eqs. (3.61) and (3.62) correspond to the most general solution to the bootstrap equations assuming
that the leading contribution to the partial amplitudes is cubic BAS.

3.4.4 Comparison with String Theory

The results for the bi-adjoint 4-point amplitude with higher-derivative corrections are more general
than the string kernel result [39]. Let us now expand the string functions (3.47) in small α′,

f string
1 (s, t) =

1

α′πs
+

1

α′πu
+

1

3
α′t− 1

45
α′3π3(s3 + u3) +O

(
α′5
)

f string
2 (s, t) = − 1

α′πs
− 1

6
α′πs− 7

360
(α′πs)3 +O

(
α′5
)
.

(3.63)

Setting g2 = 1/(πα′) and identifying Λ2 = 1/(πα′), we compare f string
2 with our f2 in eq. (3.61)
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and find the choice of ai,j’s that reproduce the string result, namely:

a2k,i = 0 for all k, i ,

ak,i = 0 for k > i , (3.64)

a1,1 = − 1

6πα′
, a3,3 = − 7

360πα′
, a5,5 = − 31

15120πα′
, a7,7 = − 127

604800πα′
, . . . .

We use this to compare our results for generalized KLT to that of string theory.

3.4.5 Comments on Perturbative Solution

Consider the lowest orders of the higher-derivative bi-adjoint 4-point amplitudes

m4[1234|1234] = f1(s, t) =
g2

s
+
g2

u
+
a1,0 − 2a1,1

Λ4
t− a2,0

Λ6
t2 + . . . ,

m4[1234|1243] = f2(s, t) = −g
2

s
+
a1,0
Λ4

t+
a1,1
Λ4

s− a2,0
Λ6

tu+ . . . .

(3.65)

These matrix elements derive from a Lagrangian of the form8

L = LBAS

−aL + aR

2Λ4
fabxf cdxfa′b′x′

f c′d′x′
(∂µϕ

aa′)(∂µϕbb′)ϕcc′ϕdd′

+
aL

Λ4
fabxf cdxda

′b′x′
dc

′d′x′
(∂µϕ

aa′)ϕbb′(∂µϕcc′)ϕdd′ (3.66)

+
aR

Λ4
dabxdcdxfa′b′x′

f c′d′x′
(∂µϕ

aa′)ϕbb′(∂µϕcc′)ϕdd′

−a2,0
2Λ6

fabxf cdxfa′b′x′
f c′d′x′

(∂ν∂µϕ
a,a′∂ν∂µϕb,b′ϕc,c′ϕd,d′ + ∂ν∂µϕ

a,a′∂µϕb,b′∂νϕc,c′ϕd,d′)

+ . . . ,

where
aL =

1

4
(a1,1 − a1,0) , aR =

1

4
a1,1 . (3.67)

There are no ϕ4 operators; they are simply not permitted by the rank 1 bootstrap equations at 4-
point. That is consistent with the example in the Introduction, where including a ϕ4 operator led to
non-minimal rank. The lowest dimension operators allowed by the KLT bootstrap are of the form
∂2ϕ4.

At 2-derivative order, the effective action has two independent couplings, aR and aL, that encode
different color-structures in the L and R sectors. This reflects that generalized KLT kernel built

8The normalization is chosen such that
∑

a Tr[XT a]Tr[Y T a] = Tr[XY ].
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from the m4-amplitudes is not symmetric: it treats the L and R sectors separately and it is in
this sense “heterotic”. If we insist on a symmetric kernel, this requires m4 in eq. (3.39) to be
symmetric which is achieved by taking f2(s, u) = f2(s, t); this is one particular solution to the
bootstrap equation (3.45). It is solved perturbatively by a1,0 = 0, i.e. aR = aL, while a2,0 can
remain non-zero. Thus we see that the string solution (3.64) is an example of a symmetric kernel,
but it is not the most general one.

It is clear from the effective action in eq. (3.66) that the contribution at order ∂2ϕ4 is necesssarily
linked to violation of the U(1)-decoupling relation due to the presence of the symmetric dabc color-
structures. It is explicitly aL that is responsible for the leading-order modifications of the BCJ and
U(1)-decoupling identities in the L sector; and likewise aR that is responsible for the modifications
in the R sector, e.g.

0 =AR
4 [1234] +AR

4 [1243] +

(
1− 12aR

g2Λ4
tu+O(Λ−8)

)
AR

4 [1423] ,

0 =AR
4 [1234]−

(
t

u
− 4aR

g2Λ4

st(t− u)

u
+O(Λ−8)

)
AR

4 [1243] .

(3.68)

The 1/Λ6 term in eq. (3.66) controlled by a2,0 does not modify the BCJ and U(1)-decoupling
identities. If we wanted a generalized KLT kernel that preserved the U(1)-decoupling identity, we
would set aR = aL = 0 while keeping a2,0. The KKBCJ constraints generalize the string theory
monodromy relations and allow the L and R sector amplitudes to be distinct.

3.5 Example: Higher-Derivative YM to Gravity

In this section we present the double-copy of YM plus higher dimension operators at 3- and 4-point
as an illustrative example of our generalized double-copy. Another interesting example is chiral
perturbation theory (χPT) with higher-derivative operators: we give results for that its double copy
with itself and YM+HD in Appendix B.1.

3.5.1 3-Point

Up to the choice of coupling constants, 3-point amplitudes are uniquely fixed by little group scaling
and locality. For gluons, there are only two options: the MHV and anti-MHV helicity amplitudes
arising from the usual YM 3-point vertex of TrF 2 and the all-minus and all-plus amplitudes of
TrF 3. We have

A3[1
−
g 2
−
g 3

+
g ] = gYM

⟨12⟩3
⟨23⟩⟨31⟩ , A3[1

−
g 2
−
g 3
−
g ] =

gF 3

Λ2
⟨12⟩⟨23⟩⟨13⟩ . (3.69)

84



We write out only the mostly-minus amplitudes explicitly; the conjugate amplitudes are obtained
by exchanging angle brackets with square brackets. These amplitudes satisfy the rank-1 KKBCJ
relations in eq. (3.35).

The double-copy of YM with itself gives gravity coupled to the dilaton φ and the antisym-
metric 2-form. In 4d, the latter can be dualized to an axion-scalar B with a shift-symmetry,
B → B+ constant. The precise map of the 4d on-shell states is

L R
h+ + +

h− − −
Z + −
Z̄ − +

(3.70)

where ± denote the L and R sector gluon helicity states, h± are the graviton helicity states, and the
complex scalar is Z = 1√

2
(φ+ iB).

Using eq. (3.69) and the map in eq. (3.70), we construct all possible 4d gravity-dilaton-axion
3-point amplitudes arising from the double-copy relation

M3(123) =
1

g
AL

3 [123]AR
3 [123] , (3.71)

The pure graviton amplitudes

M3

(
h−h−h+

)
= κ

⟨12⟩6
⟨23⟩2⟨31⟩2 , (3.72)

M3

(
h−h−h−

)
=
κR3

Λ4
⟨12⟩2⟨23⟩2⟨13⟩2 . (3.73)

and their conjugates correspond to the 3-point interactions of
√
gR and

√
gR3, respectively. We

have identified the couplings as

κ ≡ gR
YMg

L
YM

g
, κR3 ≡ gR

F 3gL
F 3

g
. (3.74)

Note that we are allowing for the possibility that the YM and F 3 couplings are different in the L
and R sectors.

The double-copy of the leading-order YM amplitudes also includes the coupling of the dilaton
to the graviton. Specifically, in the MHV sector we get

M3(−ZZ̄) = κ
⟨12⟩2⟨13⟩2

⟨23⟩2 , (3.75)
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and its anti-MHV conjugate. These amplitudes simply represent the canonical coupling of the
complex scalars coupled to gravity via the kinetic term gµν∂µZ∂νZ̄. The corresponding non-zero
axion-dilaton amplitudes are

M3(−φφ) = M3(−BB) =κ
⟨12⟩2⟨13⟩2

⟨23⟩2 , (3.76)

and similarly with square brackets for the corresponding amplitudes of a positive helicity graviton.
Since 3-point special kinematics means that either only angle-brackets or only square brackets

are nonvanishing, the amplitudes M3(±ZZ) = g−1AL
3 [± + +]AL

3 [± − −] vanish identically.
Likewise, 3-scalar amplitudes vanish.

In the double-copy of YM with itself, dilaton- and axion-parity (φ → −φ and independently
B → −B) emerge from the double-copy. However, when higher-derivative corrections are in-
cluded, this is no longer the case. In the generic double-copy, where the L and R sector couplings
can be distinct, dilaton- and axion-parity is broken already at 3-point by the F 3 operator. To see
this, note that the double-copy (3.71) gives

M3(−− Z) =
gL

YMg
R
F 3

gΛ2
⟨12⟩4 , M3(−− Z̄) =

gL
F 3gR

YM

gΛ2
⟨12⟩4 , (3.77)

and their conjugates. The single axion and dilaton amplitudes are then

M3(−− φ) =
κφ
Λ2

⟨12⟩4 , M3(−−B) = −iκB
Λ2

⟨12⟩4 , (3.78)

where we have defined

κφ =
gL

YMg
R
F 3 + gL

F 3gR
YM√

2g
, κB =

gL
YMg

R
F 3 − gL

F 3gR
YM√

2g
. (3.79)

The couplings κ, κR3 , κφ, and κB are not independent, but satisfy

κ2φ − κ2B = 2κκR3 . (3.80)

In previous studies [166] of the double-copy of YM with higher-derivative operators, the L
and R sector couplings were chosen to be the same and that choice results in gB = 0. In that
case, axion-parity holds, while dilaton-parity is violated even at 3-point by the inclusion of the F 3

operator. Note that F 3 is not compatible with supersymmetry, so in a supersymmetric context, the
amplitudes in eqs. (3.77) and (3.78) all vanish.

In superstring theory, dilaton-parity is violated by α′-corrections. This does not happen at 3-
point due to supersymmetry, as discussed above, but it can be seen directly from the α′3e−6φR4
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effective operator. In type-IIA superstring theory dimensionally reduced to 4d, axion-parity, B →
−B, continues to hold to all orders in α′. From a double-copy point of view, this is related to the
fact that the couplings of the open string in the L and R sectors are identical and the KLT kernel
is symmetric. Conversely, as can be seen from eq. (3.79), for a non-L-R symmetric or heterotic

double-copy, axion- or B-parity is generically broken. Such hhB interactions arise in the effective
action of the heterotic superstring [172] from the modification of the B field strength tensor by a
Lorentz Chern-Simons term and play an important role in the Green-Schwarz anomaly cancellation
mechanism [173].

We now turn to 4-point, where the 3-point amplitudes above are needed for identifying the pole
terms correctly, both in the L and R sector amplitudes and in the resulting gravitational amplitude.

3.5.2 4-Gluon MHV Amplitude and Generalized KKBCJ

The starting point is to construct the most general ansatz for the tree-level MHV amplitude in YM
+ higher derivative operators. We write it as

A4[1
+2+3−4−] = [12]2⟨34⟩2

(
g2YM

su
− g2F 3

Λ4

t

s
+

N∑
k=2

k−1∑
r=1

ek,r
Λ2k

sr−1tk−r−1
)
,

A4[1
+3−2+4−] = [12]2⟨34⟩2

(
g2YM

tu
+

N∑
k=2

k−1∑
r=1

hk,r
Λ2k

sr−1tk−r−1
)
.

(3.81)

The terms with g2YM arise from the pole terms with two regular YM vertices whereas the s-pole
term with g2F 3 is from two insertions of F 3. There can be no other pole terms in the MHV sector.
Contributions from local operators at 4-point are parameterized as polynomial terms in the ansatz
with general coefficients ek,r and hk,r. We have explicitly checked (to all orders we are using)
that any local contribution to the MHV amplitudes can be written in the form given in eq. (3.81).
The choice of Mandelstam basis in eq. 3.81 is equivalent to choosing a particular basis of higher-
dimension operators in the Lagrangian. The local contributions at O(Λ−4) with coefficients e2,1
and h2,1 correspond to the combination of Tr[F 4] operators that contribute to the MHV amplitude.
The terms at O(Λ−6) correspond to operators of the schematic form Tr[D2F 4].

The 4 other arrangements of the external lines are obtained from the above two by cyclic sym-
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metry and momentum relabeling:

A4[1
+2+4−3−] = A4[1

+2+3−4−]

∣∣∣∣
3↔4

A4[1
+3−4−2+] = A4[2

+1+3−4−] = A4[1
+2+3−4−]

∣∣∣∣
1↔2

A4[1
+4−2+3−] = A4[1

+3−2+4−]

∣∣∣∣
3↔4

A4[1
+4−3−2+] = A4[2

+1+4−3−] = A4[1
+2+3−4−]

∣∣∣∣
1↔2,3↔4

= A4[1
+2+3−4−] .

(3.82)

Naturally, one expects the coefficients ek,r and hk,r in eq. (3.81) to be related since these ampli-
tudes should arise from a Lagrangian with a color-group structure and — as we shall see — indeed
this is the case: the generalized KKBCJ relations will fix the hk,r completely in terms of the ek,r
and the kernel coefficients ak,r and they impose additional constraints on the ek,r.

The generalized KKBCJ constraints are imposed using the trace-reversal identities in eq. (3.49)
as well as the L and R sector identities in eqs. (3.52)-(3.53) or eqs. (3.55)-(3.56). The result in the
L sector is

AL
4 [1

+2+3−4−] =[12]2⟨34⟩2
[
(gL

YM)
2

su
− (gL

F 3)2

Λ4

t

s
+

(gL
YM)

2

g2Λ4
(a1,1 − a1,0) +

eL
3,1

Λ6
t

+
1

Λ8

{
(gL

YM)
2

g2
ã3,3 s

2 + αL t2 + eL
4,2 st

}
+ . . .

]
,

AL
4 [1

+3−2+4−] =[12]2⟨34⟩2
[
(gL

YM)
2

tu
+

1

Λ4

(
(gL

YM)
2

g2
(
a1,1 − a1,0

)
− (gL

F 3)2
)
+
eL
3,1

Λ6
s

+
1

Λ8

{
−
(
(gL

YM)
2

g2
ã3,3 +

(gL
F 3)2

g2
(a1,1 − a1,0)

)
tu+

+

(
αL − (gL

YM)
2

g2
ã3,3 − 2

(gL
F 3)2

g2
(a1,1 − a1,0) + eL

4,2

)
s2
}
+ . . .

]
,

(3.83)

where

ã3,3 = a3,3 − a3,2 + a3,1 − a3,0 ,

αL =
(gL

YM)
2

g4
a1,1
(
a1,1 − a1,0

)
+

(gL
YM)

2

g2
(
2a3,3 − a3,2

)
+

(gL
F 3)2

g2
(
a1,1 − a1,0

)
.

(3.84)
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Schematic Operator Total Generalized String Cubic BAS
Tr[F 4] 1 1 0 ×

Tr[D2F 4] 2 1 1 1
Tr[D4F 4] 3 3 1 1
Tr[D6F 4] 4 3 2 2

Table 3.1: Number of tunable parameters in the operator coefficients contributing to the MHV
amplitude A4[1

+2+3−4−] subject to the L or R sector KKBCJ relations (generalized, string, or
pure field theory BAS, respectively). The total number of independent MHV operators at that
dimension is also listed. The × indicates that Tr[F 4] is disallowed by the field theory KKBCJ
relations.

The R sector takes the form

AR
4 [1

+2+3−4−] =[12]2⟨34⟩2
[
(gR

YM)
2

su
− (gRF 3)2

Λ4

t

s
+

(gR
YM)

2

g2Λ4
a1,1 +

eR
3,1

Λ6
t

+
1

Λ8

{
(gR

YM)
2

g2
a3,3s

2 + αR t2 + eR
4,2 st

}
+ . . .

]
,

AR
4 [1

+3−2+4−] =[12]2⟨34⟩2
[
(gR

YM)
2

tu
+

1

Λ4

(
(gR

YM)
2

g2
a1,1 − (gR

F 3)2
)
+
eR
3,1

Λ6
s

+
1

Λ8

{
−
(
(gR

YM)
2

g2
a3,3 +

(gR
F 3)2

g2
a1,1

)
tu

+

(
αR − (gR

YM)
2

g2
a3,3 − 2

(gR
F 3)2

g2
a1,1 + eR

4,2

)
s2
}
+ . . .

]
,

(3.85)

where

αR =
(gR

YM)
2

g4
a1,1
(
a1,1 − a1,0

)
+

(gR
YM)

2

g2
(
2a3,3 − a3,2 + a3,0

)
+

(gR
F 3)2

g2
a1,1 . (3.86)

Each of the local (i.e. non-pole) terms in eq. (3.83) or eq. (3.85) correspond to a local operator
in the YM + HD effective action. For example,

AL
4 [1

+2+3−4−] ⊃ [12]2⟨34⟩2 1

Λ4

(gL
YM)

2

g2
(
a1,1 − a1,0

)
,

AR
4 [1

+2+3−4−] ⊃ [12]2⟨34⟩2 1

Λ4

(gR
YM)

2

g2
a1,1,

(3.87)

comes from the matrix element of (a particular contraction of) Tr[F 4]. As this shows, the gener-
alized KKBCJ allows Tr[F 4] with independent tunable coefficients, aL and aR given in eq. (3.67),
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for the L and R sectors respectively, from the ∂2ϕ4 operators (3.66) in the zeroth-copy model.
In contrast, this operator is not allowed by the uncorrected field theory KKBCJ relations (which
have ak,r = 0). And while Tr[F 4] does arise the α′-expansion of the open (super)string gluon
amplitudes, it does so with a fixed untunable coefficient because a1,1 = −1/(6πα′) and a1,0 = 0.

In Table 3.1, the row labeled Tr[F 4] summarizes the above discussion. Similarly, the subsequent
rows in the table compare the number of allowed operators at higher order contributing to the YM
+ HD MHV tree amplitude when subject to the respective KKBCJ constraints. In the count of
tunable couplings, we consider gL/R

YM , g and g
L/R
F 3 fixed by the 3-point amplitudes and we avoid

double-counting by taking into account that lower-point parameters often feed into higher-point
contributions. The lesson from the Table 3.1 is that our generalized KKBCJ relations allow a
broader range of EFT operators in single-copy EFTs but still not all operators are allowed.

For a closer comparison with string theory, the α′-expansion of the 4-gluon MHV tree amplitude
of type-I open string theory is

Aopen
4 [1+2+3−4−] = g2YM[12]

2⟨34⟩2
[
1

su
− π2α′2

6
+ α′3ζ(3)t+O(α′4)

]
. (3.88)

Comparing the leading orders, this corresponds to the limit

ak,l, g,Λ → String Kernel, g2F 3 → 0, eL
3,1 →

ζ3
π3
, . . . (3.89)

of the L or R sector MHV amplitudes given in eq. (3.83) and eq. (3.85), where String Kernel refers
to eq. (3.64).

3.5.3 4-Graviton MHV from of YM + HD

The generalized KLT double-copy formula can be carried out in any choice of KLT basis (and we
have explicitly checked the basis-independence) thanks to the generalized KKBCJ relations. For
example, we can compute M4 as

M4(1234) = AL
4(1

+2+3−4−)
1

f1(s, t)
AR

4 (1
+2+3−4−) , (3.90)
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with f1 given by eq. (3.62). Using (3.83) and (3.85), we then find

M4(1
+2+3−4−) = [12]4⟨34⟩4

[
− κ2

stu
+
κ2φ + κ2B

Λ4

1

s

− 1

Λ6

(
(gR

YM)
2

g2
eL
3,1 +

(gL
YM)

2

g2
eR
3,1 −

κ2

g2
a2,0

)
+

1

Λ8

(
κ2R3

tu

s
+

(
(gR

YM)
2

g2
eL
4,2 +

(gL
YM)

2

g2
eR
4,2 + ãΛ8

)
s

)
+O

(
1

Λ10

)]
, (3.91)

where we have used the identification of the gravitational coupling κ and the R3-coupling κR3 in
(3.74) and the non-canonical 4-derivative couplings between the dilaton/axion and the graviton in
eq. (3.79). The constant ãΛ8 is a linear combination of kernel coefficient ak,r.

Performing a term-by-term analysis of eq. (3.91), we find

• O(Λ0): the leading term is the tree-level graviton amplitude.

• O(Λ−4): the axion and dilaton can be exchanged only in the s-channel since they couple to
same-helicity gravitons (3.78).

• O(Λ−6): this local contribution is the matrix element of R4. It is generated irrespective of
the higher-dimension corrections in KKBCJ and the KLT kernel so long as the coefficient
e3,1 ̸= 0 of D2F 4 is non-zero in the L or R sector. Thus, even in the usual field theory
double-copy or in the α′-expansion of stringy KLT, R4 arises from the double-copy of D2F 4

with the usual leading YM 4-point amplitude.9 The new feature in the generalized double-
copy is that R4 can be generated from the a2,0-controlled 4-derivative correction to the BAS
model even in the absence of D2F 4 in both the L and R sectors of (YM + HD).

• O(Λ−8): the pole term arises from the factorization into twoR3-vertices. Since they are only
+ + + and − − −, the exchange happens only in the s-channel. In addition there is a local
term from ∇2R4 at this order and its coefficient is determined by the double-copy of the
matrix element TrD4F 4 and the usual YM amplitude along with various kernel coefficients
ak,r suppressed into the constant ãΛ8 in eq. (3.91).

There are no other poles in M4(1
+2+3−4−) than those shown in eq. (3.91), hence higher-order

contributions all arise from local operators. It is perhaps curious to mention that the full residue of

9While it is true that the MHV matrix element of R4 mathematically is directly the square of the MHV matrix
element of TrF 4, it is not the case that R4 arises from TrF 4 in the actual double-copy.
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Schematic Operator MHV NSD SD
R4 1 of 1 0 of 0 0 of 1

∇2R4 1 of 1 0 of 0 1 of 1
∇4R4 2 of 2 1 of 1 1 of 2
∇6R4 2 of 2 0 of 0 1 of 1
∇8R4 3 of 3 1 of 1 1 of 2
∇10R4 3 of 3 1 of 1 2 of 2

Table 3.2: Number of independent local operators out of the total possible contributing to the 4-
graviton amplitude: we list how many operators are generated by any version of the KLT double
copy (generalized / field theory BAS / string kernel).

the s-channel of the MHV amplitude (3.91) factorizes into the palatable form

lim
s→0

sM4[1
+2+3−4−] =

[12]4⟨34⟩4
g2

(
(gL

YM)
2

t
+

(gL
F 3)2t

Λ4

)(
(gR

YM)
2

t
+

(gR
F 3)2t

Λ4

)
. (3.92)

Upon expanding the above expression, the t−2 term corresponds to the exchange of the graviton
with the regular Einstein-Hilbert 3-point interactions, the t2 term corresponds to the exchange with
a graviton with two R3 interactions, and t0 term corresponds to dilaton-axion exchange.

It is quite interesting to note that while the generalized KKBCJ relations allow for a wider range
of higher-derivative operators in the L and R MHV amplitudes, there are (for generic input) no
new operators appearing in the 4-point MHV gravity amplitude (see Table 3.1); rather, its Wilson
coefficients are merely shifted by the ak,r parameters. For example, in eq.(3.91), we can absorb
the nonzero a2,0 into eR

3,1 as

eR
3,1 → eR

3,1 +
(gR

YM)
2

g2
a2,0 . (3.93)

The pattern continues to higher orders; we have explicitly checked up to and including O(p18),
i.e. ∇10R4. Table 3.2 summarizes the number of independent local operators that contribute to the
MHV amplitude and we find that each one of them is produced in any of the KLT double-copies. In
particular, we find at 4-point that the entire effect of the higher-derivative corrections to the double-
copy kernel can be absorbed into the R (or L) sector Wilson coefficients of the YM+HD ampli-
tudes. Of course, there are also other combinations of the double-copy spectrum. For example,
we can double-copy AL

4(1
+2+3−4−) with AR

4 (1
−2−3+4+) to get the M4(ZZZ̄Z̄) amplitude. It is

noteworthy (but somewhat trivial at 4-point) that the same shift of Wilson coefficients that absorbs
the effect of the ak,r-coefficients of the double-copy kernel for the 4-graviton MHV amplitude
also does the job for these other helicity combinations obtained from double-copies of the 4-gluon
MHV amplitudes.
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This phenomenon is reminiscent of the single-valued projection that occurs in the string double-
copy [174], but is much more general. While the single-valued projection that occurs in string
theory is tied to a particular expansion of higher dimensional operators, our result seems to hold
for a large class of EFTs without a clear high energy completion.

3.5.4 SD and NSD Sectors

One can similar perform an analysis of YM with higher-derivative corrections in the Self-Dual
(SD, or all-plus) and Next-To-Self-Dual Sector (NSD, or one-minus) at 4-point. Up to the order
D10F 4 we have checked that the matrix elements of local operators can be written with a common
spinor-helicity prefactor times a Mandelstam polynomial:

SD (++++):
1

⟨12⟩⟨23⟩⟨34⟩⟨41⟩ × PSD(s, t) ,

NSD (+++−):
⟨4|1.3|4⟩2

⟨12⟩⟨23⟩⟨34⟩⟨41⟩ × PNSD(s, t) ,

(3.94)

where ⟨4|1.3|4⟩ = ⟨41⟩[13]⟨34⟩ and PSD and PNSD are local Mandelstam polynomials. We impose
cyclic symmetry for the ansatz of the SD local terms. Including the appropriate pole terms and
subjecting the ansatz to the generalized KKBCJ relations (eq. (3.49) and the L or R sector identities
eqs. (3.52)-(3.53) and eqs. (3.55)-(3.56)), we find the result for the R-sector SD amplitude is

AR
4 [1

+2+3+4+] =
stu

⟨12⟩⟨23⟩⟨34⟩⟨41⟩

(
2gR

YMg
R
F 3

Λ2
+

2gR
YMg

R
F 3

g2Λ6
a1,1 t

2

− dR
1

2Λ6
(s2 + t2 + u2) +

dR
2

Λ8
stu+ . . .

)
,

(3.95)

and the R-sector NSD amplitude is

AR
4 [1

+2+3+4−] =
⟨4|1.3|4⟩2

⟨12⟩⟨23⟩⟨34⟩⟨41⟩

(
gR

YMg
R
F 3

Λ2
+
gR

YMg
R
F 3

g2Λ6
a1,1 su−

cR
1

Λ8
stu+ . . .

)
. (3.96)

The leading term in each case arises from the pole diagram with a 3-point vertex of YM and one
from F 3 and they have been given previously (see [166] and references therein). The rest of the
terms are local and can be rewritten in a manifestly polynomial form in terms of spinor-helicity
variables that is less compact. The L-sector SD and NSD amplitudes are similar and, to the orders
shown, they are found by simply taking a1,1 → a1,1 − a1,0 and changing the superscripts R to L.

One can compute the double-copy of various combinations of the MHV, SD, and NSD ampli-
tudes to get all the possible gravity-dilaton-axion amplitudes. In particular, amplitudes with an odd
number of external axions are nonvanishing whenever the L and R sector couplings are distinct, as
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noticed already at 3-point.
Let us simply do one illustrative example here, the SD graviton amplitude. Using eq. (3.90), we

find from eq. (3.95) that

M4(1
+2+3+4+) =4κκR3 stu

[12][23][34][41]

⟨12⟩⟨23⟩⟨34⟩⟨41⟩
+

1

5g2Λ8

(
gL
F 3gL

YMd
R
1 + gR

F 3gR
YMd

L
1 − 2κκR3(2a1,1 − a1,0)

)
×
(
[12]4[34]4s+ [13]4[24]4t+ [14]4[23]4u

)
+ . . .

(3.97)

Let us first comment on the leading term. This is a pole term with two sets of contributions:
one from the graviton exchange with a regular vertex from R and another from R3, contributing
2κκR3 to the overall factor. Next, there are scalar exchanges which kinematically take the same
form as the graviton exchange: the dilaton exchange comes with coupling κ2φ while the axion
exchange contributes (iκB)2. Thanks to the relation eq. (3.80), the total scalar exchange therefore
contributes a coupling κ2φ − κ2B = 2κκR3 . Thus, the combined graviton+dilaton+axion exchange
accounts precisely for the overall factor 4κκR3 in the first line of eq. (3.97).

Next, we notice that there is no contribution corresponding to R4. There does exist a unique
operator R4 with a nonvanishing matrix element in the SD sector, but it is not produced in the
double copy. For ∇2R4, there is likewise a unique SD matrix element and as shown above it is

produced by the double-copy.
Table 3.2 summarizes the results for higher-derivative operators produced by the double-copy

of the 4-point SD and NSD graviton amplitudes. We have computed 4-point amplitudes too with
external scalars too, but will not clutter the presentation by presenting them here.

3.6 Generalized KLT at 5-Point

We now analyse the KLT bootstrap equations at 5-point: we set up the problem and present the
conditions on the zeroth copy that ensures that the matrix of amplitudes has rank 2. We then solve
the equations perturbatively and show that — very importantly — this does not place restrictions
on the coefficients ak,r for the 4-point KLT kernel. As an example, we apply the generalized KLT
double-copy to YM theory with higher derivative corrections in the SD (all-plus) sector.
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3.6.1 5-Point Bootstrap Equations

We use cyclic symmetry and momentum relabeling to write the (n− 1)! = 4! = 24 doubly color-
ordered amplitudes in terms of 8 functions:

m5[12345|12345] = g1[12345] , m5[12345|13254] = g5[12345] ,

m5[12345|12354] = g2[12345] , m5[12345|13524] = g6[12345] ,

m5[12345|12453] = g3[12345] , m5[12345|14253] = g7[12345] ,

m5[12345|12543] = g4[12345] , m5[12345|15432] = g8[12345] .

(3.98)

Cyclic symmetry requires g1[12345] = g1[51234] and likewise for g6, g7, and g8. We do not assume
reversal symmetry.

Imposing the minimal rank condition is equivalent to requiring all 3×3 minors to vanish, thus
reducing the 24×24 matrix to rank (n − 3)! = 2. These conditions allow us to analytically solve
for g4, g5, g6, g7, and g8 in terms of g1, g2, and g3. For example,

g4[12345] =
(
g1[12345]g1[12354]g2[12435]− g2[12345]g2[12354]g2[12435]

− g1[12354]g2[51243]g3[12345] + g2[12354]g3[12345]g3[12435]
)

(
g1[12345]g3[12435]− g2[12345]g2[51243]

)−1 (3.99)

The remaining analytic solutions are given in Appendix B.2. In addition, there are bootstrap equa-
tions that relate g1, g2, and g3. One can explicitly check that the BAS amplitudes and the string
kernel amplitudes of Ref. [39] solve these equations.

Let us now outline how we set up the ansatz for solving the functions gi perturbatively in the
momentum expansion. The leading order terms are the usual BAS amplitudes and the subleading
terms have both local contributions as well as pole terms from factorization into BAS 3-point
amplitudes and 4-point local contributions parameterized by the coefficients ak,r in Section 3.4.3.
For example, the s12-factorization channel of g1 is

s12 g1[12345]

∣∣∣∣
s12=0

=s12m[12345|12345]
∣∣∣∣
s12=0

=g3
(

1

s34
+

1

s45

)
+m3[12P |12P ] m̃4[345P |345P ]

=g3
(

1

s34
+

1

s45

)
+
g(a1,0 − 2a1,1)

Λ4
s35 −

g a2,0
Λ6

s235 + . . . ,

(3.100)

where P = P12 is on-shell (P 2 = 0), m3[12P |12P ] = g and m̃4[345P |345P ] = f1(s34, s35)
∣∣
local

are the higher-derivative corrections to the 4-point bi-adjoint that are encoded in the function f1
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given in eq. (3.62).
Including all five factorization channels and all possible local counterterms compatible with

cyclic symmetry gives the following ansatz for g1

g1[12345] =g
3

(
1

s12s34
+

1

s23s45
+

1

s34s51
+

1

s45s12
+

1

s51s23

)
+

g

Λ4
(a1,0 − 2a1,1)

(
s35
s12

+
s41
s23

+
s13
s45

+
s24
s51

+
s52
s34

)
+ w1

− ga2,0
Λ6

(
s235
s12

+
s241
s23

+
s213
s45

+
s224
s51

+
s252
s34

)
+ w′1

(
s12 + s23 + s34 + s45 + s51

)
+ . . .

(3.101)

In the ansatz, the local terms have coefficients wi.
Remarkably, the 5-point rank 2 bootstrap equations fix the couplings w1 and w′1 of the 5-point

local contact terms completely in terms of the 4-point bi-adjoint, namely

w1 = 2
g

Λ4

(
2a1,1 − a1,0

)
and w′1 = − g

Λ6
a2,0 . (3.102)

One has to go to cubic order in the Mandelstams in order to find local 5-point operators whose
coefficients are not fixed by 4-point coefficients. Starting at O(p4) (not shown above) we include
also parity odd terms, but we have found that none of them are allowed by the bootstrap. We have
solved the bootstrap equations up to and including O(p6).

It is very important that the 5-point bootstrap equations do not place any restrictions on the
ak,r-parameters that were free in the 4-point solution. This is a very relevant consistency check: if
5-point has constrained 4-point, then we would have needed to go to 6-point to understand if that
gave even further constraints. As it is, the lack of such constraints is an important clue that our
generalization of the KLT kernel is based on sound principles.
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3.6.2 Comparison with String Theory at 5-point

The string KLT amplitudes in Ref. [39] are dimensionless, for example

gstring
1 [12345] = cot (πα′s12) cot (πα

′s34) + cot (πα′s51) cot (πα
′s34)

+ cot (πα′s12) cot (πα
′s45) + cot (πα′s23) cot (πα

′s45)

+ cot (πα′s23) cot (πα
′s51) + 1

=
1

α′2π2

(
1

s12s45
+

1

s23s45
+

1

s23s51
+

1

s12s34
+

1

s51s34

)
+

1

3

(
s35
s12

+
s41
s23

+
s13
s45

+
s24
s51

+
s52
s34

− 2

)
+O(α′2) .

(3.103)

To compare eqs. (3.101)-(3.102) with eq. (3.103), we therefore multiply g1 by Λ and then find a
match when the ak,r take the values in eq. (3.64) up to and including order O(p6). At O(p6) there
are four coefficients of local operators that are unrelated to the 4-point ak,r’s and the comparison
to eq. (3.103) shows that all four coefficients are zero in the string kernel. In the generalized kernel
they can take any value.

3.6.3 Example: Higher-Derivative YM to Gravity at 5-Point

Due to the tower of local corrections to the 4-point YM amplitudes in Sections 3.5.2 and 3.5.4, the
analysis of the 5-point factorization channels takes a bit more effort. We assume a general ansatz
for the pole contribution takes the form

AYM
5 [1+2+3+4+5+] =

1

⟨12⟩⟨23⟩⟨34⟩⟨45⟩⟨51⟩
[
P+(sij) + P−(sij)ϵ(1, 2, 3, 4)

]
, (3.104)

where P+ and P− are cyclically invariant polynomials in a basis of independent Mandelstam in-
variants {s12, s23, s34, s45, s51} and

ϵ(1, 2, 3, 4) = ϵµνρσp
µ
1p

ν
2p

ρ
3p

σ
4 =

i

4

(
⟨12⟩⟨34⟩[23][14]− ⟨14⟩⟨23⟩[12][34]

)
. (3.105)
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Since this ansatz is cyclically invariant, we only need to match a single factorization channel to the
known 3- and 4-point amplitudes. For the 45 channel we match to

AYM
4 [1+2+3+(P45)

+]AYM
3 [(−P45)

−4+5+] =
[45]

⟨12⟩⟨23⟩⟨34⟩⟨51⟩PSD(s12, s13) ,

AYM
4 [1+2+3+(P45)

−]AYM
4 [(−P45)

+4+5+] (3.106)

=
[45]

⟨12⟩⟨23⟩⟨34⟩⟨51⟩(s12(s51 − s23)+s23s34)
2PNSD(s12, s13) , (3.107)

where PSD and PNSD were defined in eq. (3.94) and their explicit form can be inferred from the
L and R sector results for the 4-point SD and NSD amplitudes presented in Section 3.5.4 where
⟨45⟩ = 0 for the equality to hold. Combining this with the 5-particle ansatz gives the following
residue matching condition:

P+(s45 = 0)− i

4
(s12(s51 − s23) + s23s34)P−(s45 = 0)

= PSD(s12, s13) + (s12(s51 − s23) + s23s34)
2PNSD(s12, s13).

(3.108)

Both sides of this equation are polynomials that can be written in terms of the independent Man-
delstam invariants {s12, s23, s34, s51}, so we can match terms on both sides and fix all coefficients
in the ansatz.

Next, we have to add contributions of local terms to the ansatz. For example, the two indepen-
dent SD contributions from Tr[F 5] are

AYM
5 [1+2+3+4+5+] ⊃ c5,1

Λ6
[12][23][34][45][51]

+
c5,2
Λ6

(
[12]2[34][35][45] + cyclic perms

)
.

(3.109)

The ansatz of pole terms (fixed by 3- and 4-point input) and all possible local terms is then
subject to the L and R generalized KKBCJ relations at 5-point. This is efficiently done in the form
of setting all 3× 3 matrices

det

m5[12345|12345] m5[12345|12354] AR
5 [12345]

m5[12354|12345] m5[12354|12354] AR
5 [12354]

m5[αi|12345] m5[αi|12354] AR
5 [αi]

 , (3.110)

to zero. No constraints are placed by these constraints on the lower-point coefficients, but some
coefficients of the 5-point local operators are fixed; for example we find c5,1 = 0 and c5,2 = 0 for
both the L and R sectors. This is summarized in the row labeled Tr[F 5] in Table 3.3.

The double-copy of A[1+2+3+4+5+] with itself gives the graviton amplitude expression for
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Schematic Operator Total Bootstrapped String FT
Tr[F 5] 2 × × ×

Tr[D2F 5] 5 × × ×
Tr[D4F 5] 14 1 1 1
Tr[D6F 5] 28 4 2 2

Table 3.3: Number of operators contributing to AR
5 [1

+2+3+4+5+] after imposing the KKBCJ re-
lations in the generalized, string, and BAS form. We also list the total number of independent
operators. The × indicates that no operator at that order is allowed.

Schematic Operator SD
R5 0 of 1

∇2R5 0 of 1
∇4R5 1 of 3
∇6R5 1 of 3

Table 3.4: Number of tunable parameters in M5[1
+2+3+4+5+] of the given form and number of

tuneable parameters compatible with the double copy. Note that the generalized, string and cubic
BAS double copy all generate the same set of higher dimension operators.

M(1+2+3+4+5+), which we have computed up to O(Λ−14). As at 4-point, we find that the same
operators are produced by the generalized double-copy kernel as with BAS or strings, however,
their coefficients are now in certain cases shifted but the parameters of the kernel.

3.7 Alternative Double-Copy Constructions

We showed in the Introduction how the zeros of the determinant of the rank Rn submatrix of
zeroth-copy amplitudes may provide “missing poles” needed for the double copy to work, but that
they can also give rise to potentially dangerous spurious poles. No such spurious poles arose in the
higher-derivative generalizations of the double-copy kernel at 4- and 5-point studied in Sections
3.4-3.6.

In this section we initiate the study of whether there can be other versions of the double-copy
which are not anchored on the leading BAS model. The central property we examine is whether
the rank Rn determinant has zeroes in unphysical locations that could lead to spurious singularities
in the double-copy amplitudes unless additional cancellations take place.
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3.7.1 Modification of KLT at 3-Point

In Section 3.3 we classified the most general 3-point bi-adjoint scalar amplitudes

m3[123|123] = g + λ3 , m3[123|132] = −g + λ3 , (3.111)

where g is the cubic BAS coupling and λ3 is the coupling associated with the cubic interaction
with dabc-contractions; see eq. (3.30). We found that rank 1 at 3-point required one of these two
couplings to be zero. Let us now examine what happens at 4-point.

It follows from the 3-particle input that the three independent doubly-ordered amplitudes at
4-point are

m4[1234|1234] =(g + λ3)
2

(
1

s
+

1

u

)
, (3.112)

m4[1234|1243] =(−g2 + λ23)
1

s
, (3.113)

m4[1234|1432] =(−g + λ3)
2

(
1

s
+

1

u

)
. (3.114)

For generic non-zero values of g and λ3, the 6×6 matrix of amplitudes in eq. (3.112) in this model
has rank 6; i.e. it is full rank. The determinant is

2048g3λ73 (3g
2 − λ23)

s2t2(s+ t)2
, (3.115)

and it has no kinematic zeros, so no spurious poles arise at 4-point. However, it does vanish for
g = 0, λ3 = 0, and λ3 = ±

√
3g which means that those cases have lower ranks. We find

4-point

Couplings Matrix Rank Spurious Singularities?

g ̸= 0, λ3 ̸= 0 6 No

g ̸= 0, λ3 =
√
3g 5 No

g = 0, λ3 ̸= 0 3 No

g ̸= 0, λ3 = 0 1 No

The 3rd column asks if there are spurious zeroes in the determinant at the given rank, and in each
case at 4-point the answer is no. We proceed to 5-point.

As explained in Section 3.6, the 5-point amplitudes are determined by 8 functions g1-g8 and
they determine the full 24 × 24 matrix of zeroth copy amplitudes m5. We calculate them from
the known 3-particle vertices with general g and λ3, compute the rank, and examine the associated
determinants for zeros. The results are summarized as
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5-point

Couplings Matrix Rank Spurious Singularities?

g ̸= 0, λ3 ̸= 0 24 Yes

g ̸= 0, λ3 =
√
3g 21 Yes

g = 0, λ3 ̸= 0 11 Yes

g ̸= 0, λ3 = 0 2 No

Thus, despite first appearances, only the model with λ3 = 0, i.e. the BAS model, leads to a double-
copy without spurious singularities appearing in the kernel. This is a serious potential obstacle
for the double-copy since it means that additional cancellation has to take place among the terms
in the KLT sum to avoid spurious poles in the double-copy 5-point amplitude. We discuss such
cancellations briefly for the case with g = 0 and λ3 ̸= 0 in Section 3.7.3.

3.7.2 Modification of KLT at 4-Point

Having classified the possible generalizations of the double copy at 3-point, let us now set g =

λ3 = 0 and examine the possibility for zeroth-copy models with constant 4-point interactions ϕ4.
There are different ways four bi-adjoint scalars ϕaa′ can be contracted with group-invariant

tensors. This is simplest to classify using the amplitudes. We know from Section 3.4.1 that three
amplitudes determine the full 6× 6 matrix and we simply parameterize them with three constants,

m4[1234|1234] = α1 , m4[1234|1243] = α2 , m4[1234|1432] = α3 . (3.116)

The resulting matrix ranks at 4-point are summarized below

Couplings Matrix Rank

α1 ̸= 0, α2 ̸= 0, α3 ̸= 0 6

α1 ̸= 0, α2 ̸= 0, α3 = −4α2 − α1 5

α1 ̸= 0, α2 ̸= 0, α3 = 2α2 − α1 4

α1 ̸= 0, α2 = 0, α3 = −α1 3

α1 = −2α2, α2 ̸= 0, α3 = −2α2 2

α1 = α2 = α3 1

No kinematically spurious zeros arise in the determinants at 4-point since the amplitudes are con-
stants, so we need to go to 6-point to assess the model further.

At 6-point we find that all cases have spurious singularities in the kernel from zeros in the
determinant, except the model with α1 = α2 = α3 ≡ λ. This model is

L = −1

2

(
∂µϕ

aa′
)2

+ λ dabcdd̃a
′b′c′d′ϕaa′ϕbb′ϕcc′ϕdd′ , (3.117)
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and the 120× 120 matrix of its tree amplitudes has rank 10.
An appealing feature of a kernel based on the zeroth copy (3.117) is that it double-copies F 4

with itself to R4; this is not true of the BAS or stringy double-copy. However, by now, we have
learned the lesson that higher-point calculations may change our outlook. And this is the case here
too: the 5040× 5040 matrix of 8-point amplitudes has rank 273 and there are spurious zeros in the
273× 273 determinants. Therefore, unless there are additional cancellations at 8-point, this model
does not lead to a healthy double-copy.

3.7.3 Cancellation Spurious Singularities

In the previous two subsections, we have encountered examples with spurious poles in the kernel.
While they represent a potential problem, it is worth noting that the L and R sector amplitudes must
obey the KKBCJ relations defined by the kernel. Does this allow one to cancel the spurious poles in
the generalized KLT sum to recover a sensible local tree amplitude as a result of the double-copy?
We briefly examine this question here.

As an example where such cancellations do happen, consider the kernel based on the zeroth
copy with cubic interactions only with g = 0 and λ3 ̸= 0. A model whose tree amplitudes solve
the corresponding rank 3 generalized KKBCJ relations is

Lint = dabcϕaϕbϕc , (3.118)

and it is easy to see at 5-point that the spurious poles in the kernel do get canceled. The double-copy
of this theory with itself is the abelian ϕ3 model.

Thus encouraged, we tried the same with a less trivial model

Lint = dabcZaF b
µνF

cµν + h.c. , (3.119)

for a complex adjoint scalar field Z, but in this case the spurious poles of the kernel were not
cancelled at 5-point.

Based on these examples, we note that issues with spurious poles appear to arise for kernels with
non-minimal rank, i.e. with rank greater than (n− 3)!. For the non-minimal rank kernels studied,
imposing generalized KKBCJ conditions is in general not enough to ensure a well-defined double
copy. From a practical point of view, one could simply disregard the models that do not produce
sensible answers under the double copy. However, this approach is somewhat unsatisfactory as
it does not provide a nice explanation for why some models work while others do not. A more
formal view centered on the double-copy kernel suggests that a valid double-copy product kernel
should yield sensible local results for any local input amplitude that obeys the generalized KKBCJ
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relations associated with that kernel. By this metric, our results suggest that the minimal rank
condition might be necessary for a valid double-copy kernel.

We have referred to rank (n − 3)! at n-point as minimal rank. This makes sense in the context
of BAS+HD where the higher-derivative corrections generically increase the rank to be greater
than (n − 3)!. However, one could of course remove the cubic BAS interactions and ask if there
are solutions to the bootstrap equations of rank less than (n − 3)!. At 4-point, minimal rank is
already 1, so we can only go smaller than that by eliminating all 4-point interactions. At 5-point,
there will be no factorization channels in the absence of 3-point interactions, hence the leading
order is Mandelstam0, i.e. constant ϕ5-type interactions. Minimal rank (n − 3)! at 5-point is 2,
so a non-trivial sub-minimal rank would be 1. One finds that at order Mandelstam0, there is one
unique solution to the rank 1 bootstrap equations at 5-point. Whether the resulting double-copy
has physical significance and if the sub-minimal rank is perserved at higher point are questions we
leave for future investigations.

3.8 Discussion

In this chapter, we introduced a novel bottom-up approach to the double-copy in the KLT
formulation. It was based on the KLT algebra and how it links the identity element (“zeroth copy”)
to the kernel that determines the multiplication rule. We showed how this gives a KLT bootstrap
formalism for the zeroth copy model whose tree amplitudes determine the kernel. At 4- and
5-point we solved the KLT bootstrap equations and found a generalized double-copy kernel based
on a low-energy expansion that generalizes the α′-expansion of the string theory KLT kernel. We
applied the generalized double-copy to YM theory and χPT. Many interesting questions remain to
be studied and we now discuss some of them.

3.8.1 Similarity Transformations

In our examples with the generalized KLT kernel based on BAS+HD, we found that the double-
copy contains the same operators as the standard field theory double copy, but with shifts in some
of their Wilson coefficients. It is tempting to ask if this shift can be encoded more systematically.
To examine this, consider at 4-point performing a similarity transformation on the BAS solutions
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with superscripts (0):

m4[β|α] = ZL[α]ZR[β]m
(0)
4 [β|α] ,

AL
4 [α] = ZL[α]AL(0)

4 [α] ,

AR
4 [β] = ZR[β]AR(0)

4 [β] .

(3.120)

Note that the amplitudes AL/R(0)
4 [α] may include whatever higher-derivative corrections are com-

patible with the BAS KKBCJ relations. In general, there are fewer operators in AL/R(0)
4 [α] than in

AL/R
4 [α].
It follows from the definition in eq. (3.120) that if m(0)

4 [β|α] solves the rank (n− 3)! bootstrap
equations, then so does m4[β|α] (the rank of a matrix does not change when the rows and columns
of a matrix are rescaled). Similarly, the single-copy amplitudes A4 solve the generalized KKBCJ
relations whenever A(0)

4 is compatible with the field theory ones, as can be seen from

1⊗ R = R : m4[δ|α]
1

m4[β|α]
AR

n[β] = AR
n[δ] , (3.121)

and similarly for the L sector.
When applied to the double-copy, we see that

M4 = AL
n[α]

1

m4[β|α]
AR

n[β] = AL(0)
n [α]

1

m
(0)
4 [β|α]

AR(0)
n [β] . (3.122)

It may now seem plausible that all double-copies can be equivalently obtained from the field
theory BAS kernel. However, one has to be more careful:

1. First of all, one must ensure that the LHS of eq. (3.120) is local; no spurious poles are
allowed to arise from the product with the similarity factors.

2. The cyclicity properties of the amplitudes m4[β|α] are ensured if ZL/R are both cyclic.

3. It is not a priori clear that all solutions to the 4-point KLT bootstrap equation are related
to the BAS amplitude via a similarity transformation such as the one in the first line of
eq. (3.120).

4. With a cyclic choice for ZL/R, one may not be able to produce all possible solutions AL/R
n to

the generalized KKBCJ relations.

To simultaneously enforce all these properties is non-trivial. In the perturbative context of
BAS+HD, one can solve items 1 and 2 by choosing ZL/R = 1 + suP L/R, where P L/R is a Mandel-
stam polynomial symmetric in s and u. We can then test whether our generalized solution for m4
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given in Section 3.4.3 for BAS+HD can be reproduced and fix most of the constants in the ansatz
P L/R.10 So this resolves item 3 above. The resulting similarity functions ZL/R do indeed produce
the most general solution to the generalized KKBCJ equations given in Section 3.5.2 for the MHV
YM+HD amplitudes (to the orders we have checked), so that addresses item 4. This requires shifts
in the YM Wilson coefficients of AL/R(0)

n such as the one given in eq. (3.93). This then explains (to
the orders checked) why we found no new operators in the double-copy at 4-point and why their
coefficients could be understood as shifts of the Wilson coefficients of the L and R copies. Note
though that this assumes that the L and R Wilson coefficients are sufficiently generic.

At 5-point and higher, it becomes much more challenging to overcome the potential obstruc-
tions from the constraints listed above. Another issue arises if one studies double-copies outside
the regime of the low-energy expansion. Then it becomes much harder to ensure the absense of
spurious poles. Future explorations may shed light on these questions.

3.8.2 Connection to BCJ Double-Copy

While we have focused on the KLT formula, there is in the field theory (α′ → 0) limit an alter-
native formulation of the double-copy, first introduced by Bern, Carrasco and Johansson (BCJ)
[171], based on a trivalent graphical expansion and the principle of color-kinematics duality (see
the review [175]). One of the primary advantages of this approach is that it has been proposed
— and tested in numerous cases — to generalize to loop integrands, making possible otherwise
prohibitively difficult high-loop-order calculations in maximal supergravity [176]. Focusing on
tree-level, it is natural to ask if the generalized double-copy presented in this chapter has a BCJ-
like formulation.

The recent papers [169, 177] incorporate higher-derivative corrections and generalized color-
tensors in the BCJ double-copy. This approach makes use of generalized color weights ĉs/t/u (see
(18) of Ref. [169] for a precise definition) that depend on both color tensors and Mandelstam
invariants in such a way that the usual adjoint-type color identities remain true. Taking such ob-
jects, we can construct a natural zeroth-copy by making the usual BCJ replacement of kinematic
numerators with color-factors; at 4-point

m4 =
ĉ
(L)
s ĉ

(R)
s

s
+
ĉ
(L)
t ĉ

(R)
t

t
+
ĉ
(L)
u ĉ

(R)
u

u
. (3.123)

Similar to the output of the KLT bootstrap described in this chapter, this can be identified as
a scattering amplitude of a higher-derivative corrected BAS model, though a priori these two

10We have done this to order O(p6) as a preliminary test.
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approaches are not obviously related. To the orders checked at 4p-point, we find that when
eq. (3.123) is expressed as a matrix in L and R color-orderings, the result has rank 1 for all
choices of parameters in the generalized color-weights defined in Ref. [169]. In this sense,
eq. (3.123) provides a closed form solution to the 4-point bootstrap equations, which impose the
4-point kernel is rank 1. Moreover, we have found that up to O

(
p8
)
, the parameters in eq. (3.123)

can always be chosen to reproduce the most general solution to the KLT bootstrap equations of
eq. (3.61). This conjecture was proven at 4-point in Ref. [178]. It remains unknown whether the
higher-multiplicity generalized color-factors described in Ref. [177] likewise provide a solution
to the bootstrap conditions and whether a BCJ-like double-copy procedure can be devised to
reproduce the results of the generalized double-copy (3.90) presented in this chapter. We leave
these and related important questions to future work.

3.8.3 Exact Solutions to the Bootstrap Equations: Truncations

The field theory and string zeroth copies are exact solutions to the rank (n−3)! bootstrap equations.
We have found generalizations of these that solve the bootstrap equations as an order-by-order low-
energy expansion corresponding to adding higher-derivative terms to the BAS model. A natural
question is if there are new solutions that solve the bootstrap equations exactly?

To address this, we take the 4-point solution in eqs. (3.61)-(3.62) as the starting point and
examine if the low-energy expansion truncates for certain choices of coefficients ai,j , i.e. if there
are choices of a finite set of non-zero coefficients such that the rank of the 6×6 matrix is exactly 1,
rather than solving this constraint order by order in the low-energy expansion. Interestingly, such
solutions do exist!

For example, setting a1,1 = 0 or a1,1 = a1,0 (equivalently, aL = 0 or aR = 0) while taking all
other ai,j = 0 is an exact solution to the f2 condition (3.45), moreover, they give local solutions for
f1: specifically for aL = 0, we have

f1(s, t) = −g
2t

su
− 4

aR

Λ4
t , f2(s, t) = −g

2

s
− 4

aR

Λ4
u . (3.124)

When this is used as input at 5-point, one finds that the 24 × 24 matrix indeed has rank 2, so the
solution truncates consistently; this is true for both solutions aL = 0 and aR = 0.11

When the contribution from aR in eq. (3.124) is regarded as a perturbation of the BAS model and
the kernel is expanded in small sij/Λ2, no spurious poles arise, because this is just like the general
perturbative solution in Section 3.4.3. However, if we attempt to regard the solution eq. (3.124) as

11Similarly, one can include the contribution with coefficient a2,0 with no further restrictions in the 4- and 5-point
bootstrap. At higher-orders, one finds that certain choices of the ai,j’s admit finite truncations.
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an exact solution with no expansion in sij/Λ2, we have to beware of potential spurious poles in the
kernel (e.g. in 1/f1(s, t)). It is clear that f1 in eq. (3.124) in addition to the zero at t = 0 (which
provides the missing t-channel pole in the double-copy) also has a zero that cannot be a physical
pole (it is not even a massive pole). This means that amplitudes AL/R

4 that are double-copied with
this kernel must have zeros that cancel the spurious poles; this is similar to the discussion of
potential cancellation of spurious poles in Section 3.7.3. Something nice can indeed happen to
cancel these poles. To see this, consider the L and R amplitudes for YM+HD in eq. (3.83) and
eq. (3.85). Setting aL = 0 (i.e. a1,1 = a1,0), gF 3 = 0 and all other higher-derivative contributions
to zero, one finds

AL
4 [1

+2+3−4−] = [12]2⟨34⟩2 (g
L
YM)

2

su
, AR

4 [1
+2+3−4−] = (gR

YM)
2[12]2⟨34⟩2

[
1

su
+

4aR

g2Λ4

]
(3.125)

When these amplitudes are double-copied using eq. (3.90) with f1 given by eq. (3.124), the entire
aR dependence cancels and the result is simply the pure Einstein gravity amplitude

M4(1
+2+3−4−) = κ2

[12]4⟨34⟩4
stu

. (3.126)

Here eq. (3.74) was used to identify κ. In a sense this is a version of the similarity transforma-
tions eq. (3.120) at work for a finite (i.e. non-perturbative) modification of the zeroth and single-
copy models. In particular, this example shows that for the choice of kernel given by eq. (3.124),
it possible at 4-point to double-copy YM with YM+F 4 to give Einstein gravity

√−gR without
higher-derivative terms!

Finally, let us note that the solution eq. (3.124) can be written in the form eq. (3.123) with
manifestly local generalized color-factors ĉs/t/u. The exact solutions to the KLT bootstrap
equations, their relation to the BCJ-like formulation [169, 177], and the issues of spurious poles
deserve further investigation.

3.8.4 Exact Solutions to the Bootstrap Equations: Z-theory

Any function of the form

f ansatz
2 (s, t) =

1

s

G1(s)G2(t)

G3(s+ t)
, (3.127)

for general G1, G2, and G3 solves the 4-point KLT bootstrap equation eq. (3.45). Eq. (3.127) is
not the most general ansatz to the bootstrap equations, but is curious nonetheless. For example, the
string solution is in the form of eq. (3.127)) with G2(t) = G3(s+ t) = 1 and G1(s) = s/ sin(α′s).
Furthermore, there is another solution to eq. (3.127) motivated by string theory; the double partial
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amplitudes of non-abelian Z-theory take the form of eq. (3.127) [179–181]:

Z1234[1243] =
1

s

Γ(1 + α′s)Γ(1 + α′u)

Γ(1 + α′s+ α′u)
. (3.128)

The double partial amplitudes of non-abelian Z-theory can be identified with the disk integrals
that appear at tree-level in open string integrands and encode all non-trivial α′-dependence for
type-I open-string amplitudes at tree-level. This α′-dependence can be extracted using generalized
double copy procedures, where the double copy of Z-theory amplitudes with SYM yields type-I
open string amplitudes: “type-I=Z ⊗ SYM”. In addition to providing another “stringy” solution
to the bootstrap equations, one might wonder what physical meaning the minimal rank condition
could have for Z-theory amplitudes.
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CHAPTER 4

Boundary Correlators in Anti-de Sitter

4.1 Overview

In this chapter, we discuss a novel representation of AdS boundary correlators termed the differ-
ential represention. In the differential representation, AdS boundary correlators are expressed as
(nonlocal) differential operators acting on a single contact diagram. We are partially motivated by
the recent generalization of the ambitwistor string to AdS3 × S3 [50], which provides an explicit
example of color/kinematics duality in an AdS space.1 Our conjectures are the natural general-
ization of the results in Ref. [50] to higher dimensions and the natural extension of the results of
Ref. [48] to non-scalar theories.

Using the differential represention, we derive the AdS analogs of color/kinematics duality, fo-
cusing on YM. Despite steady effort and significant progress in several directions, a systematic
formulation of color/kinematics duality and of the double copy in curved space remains elusive.
For example, AdS momentum space might be expected to be the most natural representation when
searching for generalizations of amplitude relations as AdS boundary correlation functions in mo-
mentum space contain flat-space scattering amplitudes [186]. However, imposing color/kinematics
duality on integrated, color-ordered momentum space correlators does not seem to yield BCJ re-
lations [187, 188]. In contrast to AdS momentum space, scalar Witten diagrams in Mellin space
are simple and yield correlation functions that exhibit colour-kinematics duality [189, 190]. How-
ever, with some notable exceptions, see refs. [191, 192], current state-of-the-art techniques in
Mellin space often rely on using supersymmetry to relate scalar correlators to those of spin-1 and
spin-2 states [193–197]. However, using the differential representing, we derive novel relations
for generic AdS boundary correlators, which are schematically similar to flat space BCJ relations
with the suitable replacement of Mandelstam invariants with combinations of conformal generators

1In flat space, particular BCJ representations of a variety of theories can be derived from ambitwistor string mod-
els [182–185].
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DAB
i , given in section 4.2:

sI →
(∑

i∈I

DAB
i

)2
. (4.1)

To check our conjecture, we construct the four-point gluon correlator of YM theory in AdS of
general dimension and verify that, for a four-dimensional boundary, it obeys these relations

(DAB
1 +DAB

2 )2A(1, 2, 3, 4) = (DAB
1 +DAB

3 )2A(1, 3, 2, 4) . (4.2)

We expect (but do not prove) that these relations are obeyed for general dimensions.
We then discuss the extension of our proposal for color/kinematics duality to a double copy

relation for gauge theories. We consider a variety of proposals that appear to be valid in different
limits for three-point correlators. We first study a differential double copy procedure that naturally
generalizes our proposal for color/kinematics duality in AdS, which seems to yield self-consistent
results in AdS3. For higher dimensional AdS spacetimes, we find that the differential double copy
leads to a current conserving three-point graviton correlator only if we supplement the YM with
specific higher dimensional operators. We also consider other double copy procedures in position
space and Mellin space. We reproduce the result of Ref. [198], giving a double copy-like relation
for the three-point Mellin amplitude without supersymmetry in the limit d → ∞. Furthermore,
we compare our results with the Mellin space double copy construction of Ref. [190], which gives
super-graviton AdS boundary correlators on AdS5 × S5 in terms of super-gluon AdS boundary
correlators on AdS5 × S3. We conclude with a heuristic discussion of double copy procedures for
various formulations of AdS boundary correlators in the high energy limit.

We conclude the chapter by deriving the one-loop generalization of the differential represen-
tation. We find that operator-valued integrals of scalar Witten diagrams can be interpreted as
integrals over a non-commutative space. For example, operator-valued integrals obey a general-
ization of integration-by-parts (IBP) [56, 58, 199–208], which is discussed in Section 4.6.3. After
evaluating these operator-valued integrals, the higher loop correlators in AdS become functions of
conformal generators acting on contact diagrams. To illustrate the new methodoloy, we compute
three-point bubble and triangle Witten diagrams in AdSd+1 for d = 2 and d = 2, 3, 4 dimensions
respectively using the differential representation. We compare the former to a more traditional
computation performed in position space. To the author’s knowledge, closed form expressions for
the triangle Witten diagram in general dimension were previously unknown [51].
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4.2 AdS Boundary Correlators

In this section, we review certain properties of boundary correlators on AdSd+1 background. We
are particularly interested in their embedding space form, since they exhibit interesting properties
that are analogous to those of flat space scattering amplitudes in momentum space.

4.2.1 Embedding Space

We write AdS boundary correlators as A(Pi, Zi), where Pi is a point on the conformal boundary
∂AdSd+1 and Zi is a polarization vector. In the following, all the quantities we discuss are given
in the embedding space. If the external particles have spin, then the AdS boundary correlator A
is also a multilinear function in the polarization vector Zi. The complete definitions of Pi and Zi,
which are not necessary for the discussion here, are given in appendix C.1. A boundary correlator
A is a homogeneous function in both Pi and Zi,

A(λPi, Zi) = λ−∆iA(Pi, Zi) , A(Pi, λZi) = λliA(Pi, Zi) , (4.3)

where ∆i is the conformal weight of particle i and li is its spin. Note that the conformal weight
is defined as the negative of the scaling dimension. AdS boundary correlators are expected to be
scalar quantities invariant under the action of the conformal group SO(d+1, 1), which is isomor-
phic to the Lorentz group of the embedding space. The conformal generator acting on the i-th
particle is

DAB
i = PA

i

∂

∂Pi,B

− PB
i

∂

∂Pi,A

+ ZA
i

∂

∂Zi,B

− ZB
i

∂

∂Zi,A

. (4.4)

Because the embedding space realizes the conformal transformations linearly, the conformal Ward

identity (CWI) capturing the conformal invariance of A is

n∑
i=1

DAB
i A = 0 . (4.5)

It resembles the momentum conservation of flat space amplitudes. For an external spinning parti-
cle, we can peel off a polarization vector, such that

A = Zi,MAM . (4.6)
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Written as an embedding space vector, AM is transverse to the conformal boundary ∂AdSd+1 if
and only if

Pi,MAM = 0 . (4.7)

See appendix C.1 for more details. Therefore, for A(Pi, Zi) to be an AdS boundary correlator, it
has to satisfy the transversality condition,

A(Pi, Zi)
∣∣∣
Zi→Pi

= 0 , (4.8)

which is analogous to the linearized gauge invariance of flat space amplitudes.
In flat space, momentum conservation leads to relations between Mandelstam variables, for

example, s + t + u = 0 for four-point massless kinematics. We now show how similar relations
among conformal generators arise for AdS boundary correlators. We first define for convenience
the inner product of conformal generators as

D2
ij ≡ Di ·Dj = ηACηBDD

AB
i DCD

j , D2
i ≡ Di ·Di . (4.9)

Clearly, D2
ij = D2

ji since Di commutes with Dj as they act on different variables. D2
i is propor-

tional to the quadratic Casimir operator of particle i,

−1

2
D2

i =

(
Pi ·

∂

∂Pi

)(
d+ Pi ·

∂

∂Pi

)
+

(
Zi ·

∂

∂Zi

)(
d− 2 + Zi ·

∂

∂Zi

)
+ 2

(
Zi ·

∂

∂Pi

)(
Pi ·

∂

∂Zi

)
(4.10)

∼= ∆i(∆i − d) + li(li + d− 2) .

When acting on an AdS boundary correlator, or more generally, a conformal partial wave, the
second line of the above equation does not contribute due to transversality (4.8). We use ∼= to
denote “equivalent when acting on a conformal partial wave”. Therefore, we can use the eigenvalue
ofD2

i to define the on-shell mass of particle i. A scalar particle is massless if ∆i = dwhile a vector
particle is massless if ∆i = d− 1 (see section 4.2.4 for further comments on this definition). Thus,
massless scalar and vector correlators satisfy

D2
iA = 0 for all i . (4.11)
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Massless vector correlators further satisfy the current conservation [209],

∂

∂Pi,M

[(
d

2
− 1 + Zi ·

∂

∂Zi

)
∂

∂ZM
i

− 1

2
Zi,M

∂2

∂Zi · ∂Zi

]
A = 0 . (4.12)

Eq. (4.12) assumes that the i-th particle has conformal weight ∆i = d − 2 + li. Notably, current
conservation for graviton boundary correlators requires ∆i = d, which leads to −1

2
D2

i
∼= 2d. This

is an exception to the naive definition of masslessness described above.
The massless condition and the CWI (4.5) together give rise to very simple relations among

conformal generators. As a simple example, we consider the four-point CWI,

(DAB
1 +DAB

2 +DAB
3 +DAB

4 )A = 0 , (4.13)

from which we can derive

(D1 +D2)
2A = −(D1 +D2) · (D3 +D4)A = (D3 +D4)

2A . (4.14)

For massless AdS boundary correlators, we thus get

D2
12A = D2

34A , or D2
12

∼= D2
34 . (4.15)

Similarly, we can derive that

D2
12 +D2

13 +D2
23

∼= 0 , (4.16)

which is the AdS incarnation of the flat space relation s + t + u = 0. For correlators of higher
multiplicity, we define

D2
I ≡

1

2

(∑
a∈I

Da

)2
. (4.17)

Using a slight generalization of eq. (4.14), we can show that

D2
I
∼= D2

Ī , (4.18)

where Ī is the complement of set I in the set of labels of all external particles. Furthermore, we
can show that the relations between massless on-shell Mandelstam variables can all be realized
as relations between various D2

I when acting on a conformal partial wave. One can also prove
that [48]

[D2
I , D

2
I′ ] = 0 if (I ∩ I ′ = ∅) or (I ⊂ I ′) or (I ′ ⊂ I) . (4.19)
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We will often be interested in understanding how the inverse of D2
I acts on conformal correlators.

We will show in the next section that the inverse of D2
I acting on a contact diagram can be related

to a bulk-bulk propagator in Witten diagram computations. However, one can understand how
(D2

I )
−1 acts on more generic conformal correlators by decomposing the conformal correlator into

conformal partial waves [210]. Conformal partial waves are, by construction, eigenfunctions of
D2

I . Therefore, since any conformal correlator can be expanded as a linear combination of con-
formal partial waves, one can use such a conformal partial wave decomposition to systematically
understand how D2

I acts on any conformal correlator. Conformal partial waves beyond four-point
were recently considered in refs. [211, 212].

Gauge invariance and on-shell kinematics are crucial for flat space amplitudes to have additional
structures, like color/kinematics duality, BCJ amplitude relations, and double copy. Due to the
properties listed above, we therefore intuitively expect that embedding space is a promising stage
to explore such hidden structures in AdS boundary correlators.

4.2.2 AdS Propagators

In terms of the embedding space coordinates, the scalar equation of motion on the AdS background
X2 = −1 is given by

∂A(G
AB∂Bϕ)−∆(∆− d)ϕ = J , (4.20)

where J corresponds to scalar source terms. From eq. (4.20), the scalar bulk-boundary propagator
is2

E∆(Pk, X) =
N∆

(−2Pk ·X)∆
, N∆ =

Γ(∆)

2πd/2Γ(∆− d/2 + 1)
, (4.21)

The assumption that z ≥ 0 implies X ·P ≤ 0. Another solution is the bulk-bulk propagator, which
we write using the split representation

G∆(X, Y ) =

∫ i∞

−i∞

dc

2πi
f∆(c)Ωc(X, Y ) (4.22)

2We follow here the normalization in [213, 214], which is slightly different from that of [215], for the scalar bulk-
boundary propagator. Together with the normalization for the vector-field bulk-boundary propagator in eq. (4.26), they
are convenient to simplify certain overall factors for d ̸= 2 in later sections.
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where

Ωc(X, Y ) = −2c2
∫
∂AdS

dQEd/2+c(Q,X)Ed/2−c(Q, Y )

f∆ =
1

(∆− d/2)2 − c2
.

(4.23)

The bulk-bulk propagator is normalized such that

[
∂A(G

AB∂B)−∆(∆− d)
]
G∆(X, Y ) = −δd+1(X, Y ) . (4.24)

Physically, the split representation corresponds to a decomposition of the AdS bulk-bulk propaga-
tor in terms of AdS harmonic functions, Ωc(X, Y ), which are eigenfunctions of the AdS Laplacian
that are divergence free. It is easy to check that eq. (4.22) is the bulk propagator by using that
eq. (4.21) is the bulk-boundary propagator and an identity that decomposes the AdS delta function
into AdS harmonic functions. The crucial insight of the split representation is that the AdS har-
monic functions can be represented as products of bulk-boundary propagators integrated over the
boundary. Therefore, the split representation allows us to sew three-point correlators together in a
manner reminiscent of BCFW recursions in flat space.

We now turn to the propagator of a gauge boson in AdS. The equations of motion for the spin-1
state are

(∇2 −∆(∆− d) + 1)Aa,A = Ja,A (4.25)

where Ja,A corresponds to vector source terms. From eq. (4.25), the bulk-boundary propagator is

EMA
∆ (P,X) =

(
ηMA − XMPA

P ·X

) N∆,1

(−2P ·X)∆
, N∆,1 =

∆

∆− 1
N∆ , (4.26)

which is well defined on the AdS hypersurface because EMA
∆ XA = 0 and PME

MA
∆ = 0. Cru-

cially, we can write eq. (4.26) in terms of the scalar bulk-boundary propagator using a differential
operator, DMA:

EMA
∆ =

∆

∆− 1
DMAE∆, where DMA

∆ = ηMA +
1

∆
PA ∂

∂PM

. (4.27)

Another solution to the equations of motion is the bulk-bulk propagator, which we again write
using the split-representation,

GAB
∆ (X, Y ) =

∫ i∞

−i∞

dc

2πi
f∆(c)Ω

AB
c (X, Y ) (4.28)
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where f∆ is the same as for a scalar field and

ΩAB
c (X, Y ) = −2c2

∫
∂AdS

dQηMNE
MA
d/2+c(Q,X)ENB

d/2−c(Q, Y ) (4.29)

Similar to the scalar split representation, the vector split representation also corresponds to a de-
composition of the bulk-bulk propagator in terms of spin-1 AdS harmonic functions, ΩAB

c (X, Y ),
which is well defined in the bulk embedding because XAΩ

AB
c (X, Y ) = 0 and ΩAB

c (X, Y )YB = 0.
The same property is also satisfied by GAB

∆ . Using eqs. (4.27) and (4.28) in the evaluation of
position space correlators prevents the appearance of uncontracted bulk integration variables in the
AdS boundary correlators and will allow us to write the correlator manifestly in terms of Zi, Pi

and D-functions.

4.2.3 Vertex Rules for Yang-Mills from the Embedding Space Action

Yang-Mills is a theory of massless spin-1 states in AdS and its Lagrangian is given by

LYM = −1

4
F a
µνF

a,µν (4.30)

where the indices are contracted with the AdS metric, F a
µν = ∇µA

a
ν −∇νA

a
µ − gfabcAb

µA
c
ν and, as

before, ∇ is the gravitational covariant derivative. While the translation of contact term Feynman
graphs between AdS and the embedding space is straightforward, it becomes less so for exchange
diagrams of vector and tensor fields for generic theories. Fortunately, the AdS embedding of
eq. (4.30) is essentially unchanged. Under the Lorentz gauge, it is given by

L = −1

2
GABGCD∂AA

a
C∂BA

a
D + gfabcGABGCD(∂AA

a
C)A

b
BA

c
D (4.31)

− g2

4
GABGCDfabxfxcdAa

AA
b
CA

c
BA

d
D , (4.32)

from which we can read off the three-point and four-point vertices in the embedding space. Ein-
stein’s gravity has a similar (though significantly more involved) presentation.

4.2.4 On-Shell and Off-Shell Correlators

As it is well-known, field equations in AdS space generically exhibit two solutions with distinct
asymptotics near the boundary,

ϕ(z, x) = ϕ0(z
∆0 + . . . ) + ϕ1(z

∆1 + . . . ) , (4.33)
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where ∆0 and ∆1 are the smaller and larger solutions to a second-order equation which relates
the SO(d + 1, 1) quantum numbers of the field and its AdS mass term, respectively. They are
distinguished by the fact that a solution with ϕ0 asymptotics is not normalizable near the boundary
while a solution with ϕ1 asymptotics is normalizable,

∫
AdS d

dx
∫
0
dz

√
g|ϕ|2 <∞.3

For scalar fields, the traditional definition of AdS mass is related to the conformal weight by
the formula

∆(∆− d) = m2 . (4.34)

Therefore, for a massless scalar, we find

∆1 = ∆ = d , ∆0 = d−∆ = 0 . (4.35)

A similar consideration for vectors and gravitons in the bulk yields ∆ = d− 1 and ∆ = d respec-
tively [43, 44]. It is worth mentioning that there is no invariant meaning to the AdS mass because
fields with the same properties and belonging to the same multiplet have different AdS energies
[217]. A possible definition of massless fields in AdS is that they occur in the tensor product of
two doubleton multiplets, which correspond to massless conformal fields on the boundary [218];
the mass can then be interpreted as a suitable shift of the corresponding quadratic Casimir of
SO(d + 1, 1).4 For N = 8 supergravity in AdS5 × S5, the corresponding operators are conserved
currents in N = 4 sYM theory, belonging to the stress tensor multiplet.

The leading field asymptotics on a surface parallel to the boundary at z = ϵ serves as a source
for gauge-invariant operators of dimension ∆, as

Sboundary ∼
∫

AdS
ddx

√−γϵϕ(ϵ, x)O(ϵ, x) =

∫
AdS

ddxϕ0(x)ϵ
−∆O(ϵ, x) , (4.36)

and O(ϵ, x) = ϵ∆O(x) render this term independent of ϵ. Thus, by differentiating the effective
action with respect to ϕ0, one evaluates [44] correlation functions of gauge-invariant operators in
the boundary theory. From the perspective of the bulk theory, they can be interpreted as correla-
tion functions of the fields with these prescribed asymptotics; we shall refer to them as on-shell

correlation functions. By analogy with the case of flat space correlation functions with external
states not obeying the free equations of motion, we will refer to bulk correlation functions whose
asymptotics are not ϕ0 as off-shell.

In general, off-shell correlation functions do not have an immediate boundary interpretation for
specific values of the conformal weight. However, they feature prominently in the split represen-

3Technically, if ∆ lies in the range (d− 2)/2 < ∆ < d/2, either ϕ0 or ϕ1 can correspond to the source term. The
choice between ϕ0 and ϕ1 as the source term simply corresponds to how there are two different quantizations of the
bulk scalar field [216].

4We thank Murat Günaydin for discussion on this point.
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tation of the bulk-bulk propagator. In that form, the propagator is written as a sum of products
of bulk-boundary propagators, see e.g. eq. (4.22), and thus higher-point correlators are written as
sums of products of lower-point correlators which have at least one leg off-shell in the sense defined
above. For scalar fields, one bulk-boundary propagator factor corresponds to the conformal weight
∆ of the scalar field while the other corresponds to a weight d−∆ associated to the normalizable
mode of the same scalar field. While the former is a non-normalizable mode and thus leads to an
on-shell field, the latter is a normalizable mode of the same field; its usual interpretation is that it
defines a particular state in the boundary theory so the correlator with one such insertion may be
interpreted as a term in the perturbative expansion of an on-shell correlator in that state. A similar
interpretation should hold for correlators with more than one off-shell leg, except that the relevant
state corresponds to turning on normalizable modes of several fields. The bulk-bulk propagators
of higher-spin fields have support on bulk-boundary propagators with AdS energies beyond those
corresponding to the normalizable and non-normalizable modes. They have a less straightforward
boundary interpretation, but may perhaps be understood as needed to obtain a representation of the
(d+ 1)-dimensional rotation group.

In flat space, field redefinitions change the correlation functions of fundamental fields, but these
changes are projected out of S-matrix elements by the LSZ reduction. It is interesting to ask
whether our definition of on-shellness has similar properties. One might expect this to be the
case in light of the holographic duality between on-shell correlators and gauge theory correlation
functions of gauge-invariant operators. Indeed, the Schwinger-Dyson equation5

〈 δS

δϕ(x)
ϕ(x1) . . . ϕ(xn)

〉
=

n∑
i=1

δ(x− xi)⟨ϕ(x1) . . . ϕ̂(xi) . . . ϕ(xn)⟩ , (4.37)

holds in AdS space (and more generally in curved space); since the field sources at xi, i = 1, ..., n

are placed on the boundary while the argument of δS
δϕ(x)

is a bulk point, they cannot coincide so the
right-hand side vanishes identically implying that AdS on-shell correlation functions in the sense
defined above are invariant under suitable field redefinitions.6

The Schwinger-Dyson equation, however, does not hold for off-shell correlation functions. This
is easiest to see by looking at a free field theory for n = 1; the off-shell two-point function of

5Here the hat signifies that the field at that position is absent from the correlation function and ϕ denotes a generic
field, not necessarily a scalar.

6Similar to field redefinitions that leave invariant the S matrix of a flat-space field theory, field redefinitions that
leave correlators invariant should not change quadratic term of bulk fields and vanish at the boundary. For example,
ϕi 7→ ϕ′

i =
∑

j aijϕj + nonlinear yields a sum of the original correlation functions weighted by coefficients aij . This
may be easily understood by noticing that the boundary operators sourced by the fields ϕ′ are linear combinations
of those sourced by the fields ϕ. More generally, it is not difficult to see that, if a nonlinear field redefinition do not
change the boundary conditions of a field, then the nonlinear terms are subleading at the boundary and therefore do
not change the on-shell correlators.
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as defined above does not correlate the conformal weight with the AdS Lagrangian mass term
while δS

δϕ(x)
depends on the AdS Lagrangian mass term, so ⟨ δS

δϕ(x)
ϕ(x1)⟩ cannot be proportional to

δ(x − x1). This is consistent with the earlier observation that off-shell correlation functions do
not have a straightforward gauge theory interpretation. It is interesting that this dependence on the
choice of fields cancels out when off-shell correlators are assembled into on-shell ones.

It has been recently shown that it is interesting to consider varying the mass of bulk fields.
For example, one can extract the proper time from the event horizon to a black hole singularity by
studying how thermal one point functions vary with the mass of the bulk field [219], allowing one to
probe the bulk geometry of thermal states beyond the quantum entanglement wedge. Furthermore,
analytic continuations in spin and in ∆ are famously connected [220, 221] to light ray operators
and the OPE inversion formula. Further discussion is beyond the scope of this paper.

4.3 Differential Representation of Boundary Correlators

The differential representation of an n-point boundary correlator takes the form7

An = ÂnD∆1,∆2,...,∆n (4.38)

where Ân is a collection of local and nonlocal differential operators that contains information on
boundary states. For example, for external spinning states, it contains information on their spin
and polarization. Regardless of the spin of external states, Ân acts on a scalar contact diagram
(D-function),

D∆1,∆2,...,∆n =

∆4∆3

∆2

∆1 ∆n

=

∫
AdS

dX
n∏

i=1

E∆i
(X,Pi) . (4.39)

Here E∆i
(X,Pi) =

1
(−2Pi·X)∆i

is the scalar bulk-boundary propagator.8 The D-function thus de-
fined provides the support of CWI to the boundary correlator, and plays a role similar to the mo-
mentum conservation constraint in the flat space S matrix. Generally, up to subtleties related to
the noncommutativity of conformal generators, Ân takes a form similar to the corresponding flat
space amplitude. With examples and justification to be detailed in later sections, we claim that a

7As discussed in the introduction, we assume that our boundary correlators have a perturbative Witten diagram
expansion in the bulk. From a holographic point of view, they correspond to correlators in a putative boundary CFT in
the strong coupling limit.

8In this work, we omit the overall normalization C∆ of a bulk-boundary propagator. Since for a given boundary
correlator all bulk-boundary propagators are the same, the omitted factors can only alter the overall normalization.
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generic differential correlator Ân can be written as

Ân =
∑

g∈cubic

Cg

∏
I∈g

1

D2
I +M2

I,s

N̂g , (4.40)

where N̂g is a local operator. The summation runs over all the trivalent Witten diagrams. Impor-
tantly, the bulk-bulk propagator associated with an internal leg I is given by an inverse differential
operator,

I

{
∆, s

−→ 1

D2
I +M2

I,s

, (4.41)

where D2
I is the quadratic Casimir operator of the AdS symmetry group acting on all external

points connected to one end of that internal line andM2
I,s is the eigenvalue of the quadratic Casimir

for the representation of the internal state. The inverse differential operator (D2
I +M2

I,s)
−1 will

be called a propagator in the context of differential representation. We stress that this form is
also expected for theories with quartic and higher-point interaction vertices and, if necessary, such
vertices are trivially resolved into trivalent ones by multiplying and dividing by suitable operators.
For theories with fields charged under a non-abelian gauge or flavor symmetry, Cg in eq. (4.41)
is the color factor associated with the diagram. The (local) operator N̂g, acting directly on the
D-function, can be understood as the analog of the flat-space kinematic numerator factor.

To justify eq. (4.40) and in particular the appearance of the nonlocal operators (4.41), we start
with the differential representation of the bulk-bulk propagator, which was first proposed for bi-
adjoint ϕ3 theory in Ref. [48]. As the simplest example, we consider the following s-channel scalar
Witten diagram

∆3∆2

∆1 ∆4

∆
=

∫
AdS

dXdY E∆3(X,P3)E∆4(X,P4)G∆(X, Y )E∆1(Y, P1)E∆2(Y, P2) , (4.42)

and rewrite the bulk-bulk propagator as the inverse of the free-field operator acting on the delta
function

G∆(X, Y ) = − 1

∇2
X −∆(∆− d)

δ(X, Y ) . (4.43)
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We can now integrate out the bulk point Y and get

∆3∆2

∆1 ∆4

∆
=

∫
AdS

dXE∆3(X,P3)E∆4(X,P4)

× (−1)

∇2 −∆(∆− d)
E∆1(X,P1)E∆2(X,P2) . (4.44)

When acting on a product of scalar bulk-boundary propagators, the AdS Laplacian ∇2 can also be
written as ∇2 = −DX ·DX . Then, the identity

DX ·DX

[
E∆1(X,P1)E∆2(X,P2)

]
= D2

12

[
E∆1(X,P1)E∆2(X,P2)

]
, (4.45)

which is a consequence of the conformal Ward identity, converts the quadratic Casimir operator
for the bulk point X to the quadratic Casimir operator for the pair (1, 2) of boundary points. This
gives the differential representation of the s-channel Witten diagram:

∆3∆2

∆1 ∆4

∆
=

1

D2
12 +∆(∆− d)

D∆1,∆2,∆3,∆4 . (4.46)

It is exactly analogous to the corresponding scattering amplitude in flat space. The derivation for
higher point scalar Witten diagrams is similar. We note that the operators D2

I associated with the
internal lines all commute with each other, so there is no ordering ambiguity in the propagators of
the differential representation.

4.4 BCJ Relations for AdS Boundary Correlators

In this section, we begin by discussing the cubic bi-adjoint scalar (BAS) theory in AdS space. We
then use the results we obtain to motivate a generalization of color/kinematics duality and of the
BCJ amplitudes relations for certain AdS boundary correlators.

4.4.1 Cubic Bi-Adjoint Scalar in AdS

To motivate the BCJ amplitude relations in an AdS setup, we first consider the simplest theory in
AdS that could exhibit color/kinematics duality – cubic BAS in AdS, defined by the Lagrangian

L =
1

2
(∇ϕ)2 − g

6
fabcf̃a′b′c′ϕaa′ϕbb′ϕcc′ . (4.47)
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As in flat space, the scalars transform in the bi-adjoint representation of SU(N) × SU(N ′). Per-
turbative computations of AdS boundary correlators involve summing cubic Witten diagrams re-
spectively, dressed with appropriate color factors. We will review a particular representation of the
cubic BAS boundary correlators given in Ref. [50] for d = 2 and in Ref. [48] for general d. We
will first consider the four-point formula before generalizing to the n-point case.

First, from the differential representation, the four-point BAS AdS boundary correlator can be
represented as

ABAS =

(
CsC̃s

D2
12

+
CtC̃t

D2
23

+
CuC̃u

D2
13

)(
Γ(d)

2πd/2Γ(d/2 + 1)

)4

Dd,d,d,d , (4.48)

where the color factors are Cs = fa1a2xfxa3a4 , Ct = fa2a3xfxa1a4 , Cu = fa3a1xfxa2a4 and similarly
for C̃s,t,u. Since we are working with external scalars, we can ignore the Z component of DAB

i .
The n-point color-dressed BAS correlator can similarly be written as

ABAS =

(
Γ(d)

2πd/2Γ(d/2 + 1)

)n ∑
cubic g

C(g|αg)C̃(g|αg)
∏
I∈g

1

D2
I

Dd,d,...,d︸ ︷︷ ︸
n

, (4.49)

where the sum runs over all cubic graphs, and C(g|αg) and C̃(g|αg) are the color factors, which
are the same as flat space, associated with the cubic graph g.

4.4.2 Color/Kinematics Duality for Flat Space Amplitudes

We now take a slight detour and review a streamlined derivation of the flat-space BCJ amplitudes
relations before generalizing them to AdS boundary correlators. Although this derivation differs
from the one considered in Chapter 3, it is equivalent when there are no higher derivative operators.
We will use this perspective on color-kinematics duality in this chapter because it is more suitable
for generalization to AdS. In flat space, amplitudes that satisfy color/kinematics duality can be
written as a sum over cubic graphs [171],

Aflat =
∑

cubic g

C(g|αg)N(g|αg)
∏
I∈g

1

sI
. (4.50)

where both the kinematic numerators (sometimes referred to as BCJ numerators) and color factors
obey Jacobi-like relations corresponding to triplets of cubic graphs as shown in figure 4.1,

N(gs|I1I2I3I4) +N(gt|I1I4I2I3) +N(gu|I1I3I4I2) = 0 ,

C(gs|I1I2I3I4) + C(gt|I1I4I2I3) + C(gu|I1I3I4I2) = 0 .
(4.51)
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For cubic BAS, the numerator N(g|αg) is simply another the color factor C̃(g|αg) so that the
Jacobi identity trivially holds. We can expand the color factors in eq. (4.50) into the (n − 2)!

dimensional Del Duca-Dixon-Maltoni (DDM) basis, consisting of the color factors of the half
ladder graphs [222],

C1,α(2,3,...,n−1),n ≡ C

(
1 n

α(2) α(3) α(n−1)

· · ·

∣∣∣∣1, α, n)
= fa1aα(2)x2fx2aα(3)x3 · · · fxn−2aα(n−1)an . (4.52)

As an example, we give the decomposition of the following five-point color factor explicitly,

C

(
1 5

2 4
3

∣∣∣∣∣1, 2, 3, 4, 5
)

= fa1xa5fxa2yf ya3a4

= C1,2,3,4,5 − C1,2,4,3,5 − C1,3,4,2,5 + C1,4,3,2,5 . (4.53)

The decomposition of both color factors in the BAS amplitude leads to the double (color-ordered)
partial amplitude denoted as m,

ABAS
flat =

∑
α,β∈Sn−2

C1,α(2,3,...,n−1),nm[1, α, n|1, β, n]C̃1,β(2,3,...,n−1),n . (4.54)

In general, m[α|β] receives contributions from all cubic Feynman diagrams that are planar for both
permutations α and β. For a generic amplitude that exhibits color/kinematics duality, the DDM
basis decomposition gives

Aflat =
∑

α∈Sn−2

C1,α(2,3,...,n−1),nAflat(1, α, n) , (4.55)

where Aflat(1, α, n) is the (color-ordered) partial amplitude given by

Aflat(1, α, n) =
∑

β∈Sn−2

m[1, α, n|1, β, n]N1,β(2,3,...,n−1),n . (4.56)

Here N1,β,n are DDM-basis numerators associated with half ladder graphs as in eq. (4.52). They
also form a basis for all the BCJ numerators. As a consequence of the color structure, we can use
the Kleiss-Kuijf relation [223]

Aflat[1, α, n, β] = (−1)|β|
∑

σ∈α⊔⊔βT

Aflat[1, σ, n] (4.57)
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Figure 4.1: A triplet of three cubic tree graphs that differ by one propagator.

and cyclicity to expand any partial amplitudes in terms of the DDM basis ones.
We note that the DDM basis is minimal for color factors, but over-complete for partial ampli-

tudes on the support of on-shell massless kinematics. This is reflected by the fact that the rank
of m[α|β], as a matrix in the DDM basis, is only (n − 3)!. Crucially, the null vectors of m[α|β]
translate to BCJ amplitude relations for partial amplitudes,∑

β∈Sn−2

v(β)m[1, β, n|α] = 0 −→
∑

β∈Sn−2

v(β)Aflat[1, β, n] = 0 . (4.58)

For example, at four points the m[α|β] matrix,[
m[1, 2, 3, 4|1, 2, 3, 4] m[1, 2, 3, 4|1, 3, 2, 4]
m[1, 3, 2, 4|1, 2, 3, 4] m[1, 3, 2, 4|1, 3, 2, 4]

]
=

[
1
s12

+ 1
s23

− 1
s23

− 1
s23

1
s13

+ 1
s23

]
, (4.59)

has a null vector v = [s12, −s13], which leads to the BCJ amplitude relation

s12Aflat[1, 2, 3, 4] = s13Aflat[1, 3, 2, 4] . (4.60)

More generally, the fundamental BCJ relations can be written as [171]

0 = s12Aflat[1, 2, . . . , n] +
n−1∑
j=3

(
s12 +

j∑
k=3

s2k

)
Aflat[1, 3, . . . , j, 2, j + 1, . . . , n] . (4.61)

4.4.3 Color/Kinematics Duality for AdS Boundary Correlators

To define an extension of color/kinematics duality to field theories in AdS space, we need to first
assume a suitably general form for their boundary correlators. Motivated by eq. (4.49), a natural
generalization of eq. (4.50) is that an AdS boundary correlator A can be cast into the form

A =
∑

cubic g

C(g|αg)

(∏
I∈g

1

D2
I

)
N̂(g|αg)Dd,d,...,d︸ ︷︷ ︸

n

, (4.62)
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where the numerators N̂(g|αg) are now differential operator-valued, act directly on theD-functions
and absorb the normalization factors of the bulk-boundary propagators. Note that we have placed
the product of (D2

I )
−1 to the left of the kinematic numerators in eq. (4.62) for reasons that

will be clarified shortly. A more general form of the boundary correlator replaces the factor
N̂(g|αg)Dd,d,...,d by some more general structure N(g|αg) which may perhaps be written as a
linear combination of differential operators acting on D functions.

With the definition (4.62), the kinematic Jacobi relations are taken to be the operator relations,

N̂(gs|I1I2I3I4) + N̂(gt|I1I4I2I3) + N̂(gu|I1I3I4I2) = 0 . (4.63)

With the more general form of correlators, the kinematic Jacobi relations are functional relations, in
close similarity with flat space scattering amplitudes. We will comment briefly on its consequences
at the end of section 4.4.4.

Kinematic numerators as differential operators have already appeared in the study of celestial
amplitudes in flat space [224–226], so it should not be surprising that it may also happen in AdS
space. In this paper, the representation (4.62) is realized manifestly for the NLSM at four and six
points.

The kinematic Jacobi relation (4.63) can be relaxed so that the combination of numerator factors
on the right-hand side is required to vanish only when acting on functions of the typeD∆1,∆2,..., as it
is the case when the numerator factors are assembled into a correlator. While we have not explicitly
verified, it is natural to expect that only this weaker relation is required by the gauge invariance
of eq. (4.62). There is no analog of this weaker relation for tree-level flat space amplitudes in
momentum space; at loop level, however, this is analogous to the requirement that the kinematic
Jacobi relations hold only up to total derivatives.

The leap from eq. (4.49) to eq. (4.62) is partially motivated by a recent generalization of am-
bitwistor string models to AdS3 × S3 [50]. These models can be interpreted as taking the infinite
tension limit of a WZW model with AdS3 × S3 target space. For a non-abelian spin-1 theory on
AdS3 × S3, the ambitwistor model in Ref. [50] provides a CHY-like formula for the differential
representation of A(α) in a YM-Chern-Simons theory. We expect that these formulas for the dif-
ferential correlator simplify to eq. (4.62), just as in flat space. Furthermore, we tentatively expect
that the AdS3×S3 ambitwistor model generalizes to higher dimensions, at least for the YM sector.
Proving these expectations, however, is beyond the scope of this paper. Therefore, we simply take
the AdS3×S3 computation as inspiration and conjecture that eqs. (4.51) and (4.62) hold for certain
single-colored theories in higher dimensional AdS.

Before we proceed, let us note that our discussion has been restricted to colored theories in AdS.
There is a natural generalization of eq. (4.62) to gravitational theories which will be discussed in
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section 4.5.

4.4.4 BCJ Relations for AdS Boundary Correlators

We now demonstrate that the color/kinematics dual form (4.62) of the AdS boundary correlators
naturally lead to additional relations among the AdS partial correlators. First, we use the color
Jacobi identity (4.51) to expand the AdS correlator in the DDM basis,

A =
∑

α∈Sn−2

C1,α(2,3,...,n−1),nA[1, α, n] , (4.64)

where A(1, β, n) are the AdS partial correlators. We then perform the same expansion for the
kinematic numerators, N̂(g|α), now finding

A[1, α, n] =
∑

β∈Sn−2

m̂[1, α, n|1, β, n]N̂1,β(2,3,...,n−1),nDd,d,...,d︸ ︷︷ ︸
n

, (4.65)

where m̂[α|β] is the double partial correlator of BAS obtained by simply replace sI by D2
I in the

flat space amplitude m[α|β]. We note that D2
I and D2

I′ always commute if they belong to the
same Feynman diagram since I and I ′ always satisfy the condition in eq. (4.19). The DDM basis
partial correlators form a basis for all partial correlators due to the Kleiss-Kuijf relation (4.57) and
cyclicity, which depends on color Lie algebra only.

Similar to flat space amplitudes, eq. (4.65) yields relations among the partial correlators, since
the null vectors of m̂[α|β] are orthogonal to the vector of partial correlators,∑

β∈Sn−2

v̂(β)m̂(1, β, n|α) = 0 −→
∑

β∈Sn−2

v̂(β)A(1, β, n) = 0 , (4.66)

cf. eq. (4.58). The null vectors v̂(β) in general are themselves differential operators. If v(β) is
a null vector of m[α|β] that is first order in Mandelstam variables, then it is not difficult to see
that v̂(β) is still a null vector of m̂[α|β] after the replacement sI → D2

I .9 We can then conjecture
that the rank of m̂[α|β] is still (n − 3)! on the support of CWI (4.5). In particular, it leads to the

9The reasoning goes as follows. In flat space, proving BCJ relations requires using on-shell identities to cancel
certain numerators with propagators. Now for AdS correlators, CWI works the same as on-shell identites, and cancel-
lation between numerators and denominators will not be affected by non-commutativity since for each term every D2

I

in the denominator commutes and there is only a single term in the numerator. Of course, finding more generic null
vectors is difficult.
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conclusion that the partial correlators of the form (4.65) satisfy the fundamental BCJ relations

0 = D2
12A[1, 2, . . . , n] +

n−1∑
j=3

(
D2

12 +

j∑
k=3

D2
2j

)
A[1, 3, . . . , j, 2, j + 1, . . . , n] , (4.67)

which may formally be obtained from eq. (4.61) through the replacement sI → D2
I .

To better understand the above statement, we now consider some explicit examples. From
eq. (4.65), the four-point DDM basis partial correlators are given by[

A[1, 2, 3, 4]

A[1, 3, 2, 4]

]
=

[
1

D2
12
+ 1

D2
23

− 1
D2

23

− 1
D2

23

1
D2

13
+ 1

D2
23

]
︸ ︷︷ ︸

m̂

[
N̂1,2,3,4

N̂1,3,2,4

]
Dd,d,d,d . (4.68)

We would like to show that

v̂ =

[
D2

12

−D2
13

]
(4.69)

annihilates the vector of partial correlators when acted from the left. To this end, it is sufficient to
show that v̂ annihilates the m̂,

D2
12m̂[1234|α]−D2

13m̂[1324|α] ∼= 0 for α = {1, 2, 3, } and {1, 3, 2, 4} , (4.70)

which can be checked explicitly. For example, fixing α = {1, 2, 3, 4}, we get

D2
12m̂[1234|1234]−D2

13m̂[1324|1234]

∼= D2
12

(
1

D2
12

+
1

D2
23

)
− (D2

23 +D2
12)

1

D2
23

= 1 +D2
12

1

D2
23

− 1−D2
12

1

D2
13

= 0 . (4.71)

The expressions for m̂ are obtained from eq. (1.33) through the replacement sij → D2
ij , and using

the “momentum conservation” identity (4.16). One can repeat the above exercise to show that
eq. (4.70) holds for α = (1, 3, 2, 4). Therefore, taking the dot product of eq. (4.69) and eq. (4.68)
yields

D2
12A[1, 2, 3, 4] = D2

13A[1, 3, 2, 4] . (4.72)

As one of the main results of this paper, we will show that the four-point partial correlators of YM
satisfy this relation.
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For our second example we consider the five-point BCJ relation

0 = D2
12A[1, 2, 3, 4, 5] + (D2

12 +D2
23)A[1, 3, 2, 4, 5] .

+ (D2
12 +D2

23 +D2
24)A[1, 3, 4, 2, 5] . (4.73)

According to eq. (4.65), it suffices to prove that

0 ∼= D2
12m̂[1, 2, 3, 4, 5|1, α, 5] + (D2

12 +D2
23)m̂[1, 3, 2, 4, 5|1, α, 5]

+ (D2
12 +D2

23 +D2
24)m̂[1, 3, 4, 2, 5|1, α, 5]

(4.74)

for all α ∈ S3. Here we choose α = {2, 3, 4}. It is now straightforward to show that

D2
12m̂[1, 2, 3, 4, 5|1, 2, 3, 4, 5] + (D2

12 +D2
23)m̂[1, 3, 2, 4, 5|1, 2, 3, 4, 5]

+ (D2
12 +D2

23 +D2
24)m̂[1, 3, 4, 2, 5|1, 2, 3, 4, 5] (4.75)

∼= D2
12

(
1

D2
12D

2
34

+
1

D2
12D

2
45

+
1

D2
45D

2
23

+
1

D2
23D

2
51

+
1

D2
15D

2
34

)
− (D2

12 +D2
23)

1

D2
23

(
1

D2
45

+
1

D2
15

)
− (D2

12 +D2
15 −D2

34)
1

D2
15D

2
34

= 0 ,

where we have also used D2
23 + D2

24 + D2
34

∼= D2
234

∼= D2
15 for the conformal generators on the

second line.
Before proceeding, we note that while the AdS boundary correlators of the form (4.62) naturally

give rise to the BCJ relations (4.67), the inverse does not hold. In other words, color/kinematics
duality in the AdS boundary correlators might have a different manifestation than eq. (4.62). For
example, at four-points, the following correlator,

A =
fa1a2xfa3a4x

D2
12

Ns(Zi, Pi) +
fa1a4xfa2a3x

D2
23

Nt(Zi, Pi) +
fa1a3xfa4a2x

D2
13

Nu(Zi, Pi) , (4.76)

where
Ns(Zi, Pi) +Nt(Zi, Pi) +Nu(Zi, Pi) = 0 , (4.77)

still leads to eq. (4.72). However, eq. (4.76) is not equivalent to eq. (4.62) as Ns,t,u need not neces-
sarily be written in the form N̂s,t,uDd,d,d,d. In practice, it is easier to verify relations like eq. (4.72)
than to directly construct kinematic numerators. While we have argued for the form (4.62), it is
nevertheless important to keep an open mind.
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4.4.5 Color/Kinematics Duality for YM

In this section, we investigate YM theory in AdS space. Its three- and four-point functions have
been discussed in various contexts, both as tests of the AdS/CFT correspondence [215, 227] and
as illustrations of the embedding and Mellin space techniques [45, 209, 214, 228, 229]. Here we
obtain the explicit position-space representation of the YM 4-point boundary correlator and verify
that it satisfies the AdS BCJ relations conjectured in section 4.4. We also construct differential
representations of the off-shell three-point YM correlator, recovering the results of Ref. [198]
when ∆i = d− 1.

4.4.5.1 The three-point correlator

To set the stage for the calculation of the four-point correlator, we begin by reviewing and extending
existing constructions of the position-space three-point correlator for YM theory in AdS space. We
will give give an explicit position-space representation as well as a differential representation for
this correlator. The former will be useful for the double copy discussion in section 4.5.

We computed the three-point YM AdS boundary correlator using the Feynman rules discussed
in section 4.2.3. The structure of the vertex together with the property EMA

∆ XA = 0 of the vector
bulk-boundary propagator imply that the embedding space projector GAB defined in eq. (??) can
simply be replaced with ηAB. We will compute the correlator for arbitrary weight ∆i, as this form
will be useful for the four-point calculation in the next section. The three-point correlator is

Aa1a2a3
∆1∆2∆3

= −fa1a2a3Z1,M1Z2,M2Z3,M3

∫
AdS

dX (4.78)

×
[
EM1A1

∆1
(P1, X)ηA2A3

(
∂A1E

M2A2
∆2

(P2, X)EM3A3
∆3

(P3, X)− (2 ↔ 3)
)
+ cyclic(1, 2, 3)

]
.

Using the expression for EM,A
∆ in eq. (4.26), [DMiAi

∆i
, ∂B] = 0, and

∂AE∆i
(Pi, X) = − ∆iPi,A

(Pi ·X)
E∆i

(Pi, X) ≡ Ki,AE∆(Pi, X) . (4.79)

The correlator can be organized as

Aa1a2a3
∆1∆2∆3

= −fa1a2a3

(
3∏

i=1

Zi,Mi
DMiAi

∆i

)
P∆1∆1∆3

A1A2A3
(P1, P2, P3) , (4.80)

P∆1∆1∆3
A1A2A3

(P1, P2, P3) =

∫
AdS

dX
[
ηA2,A3(K2 −K3)A1 + cyclic(1, 2, 3)

] 3∏
i=1

N∆i,1

(−2Pi ·X)∆i
.

It is straightforward to recognize the remaining bulk integrals as three-point D-functions. See
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appendix C.2 and Ref. [49] for general definitions and properties of D-functions. Unlike their
four-point counterparts that will appear in the next section, embedding space isometries (or, equiv-
alently, AdS isometries) completely fixes their dependence on the boundary points, leaving only
the overall numerical factor to be determined.

Accounting for the bulk point dependence in the vectors Ki,Aj
, the tensor PA1A2A3 in eq. (4.80)

evaluates to

P∆1∆1∆3
A1A2A3

(P1, P2, P3) = 2

[
3∏

i=1

N∆i,1

]
ηA2,A3

(
∆2P2,A1D∆1,∆2+1,∆3 −∆3P3,A1D∆1,∆2,∆3+1

)
+ cyclic(1, 2, 3)

= πd/2

[
3∏

i=1

N∆i,1

Γ(∆i)

][
ηA2A3

(
P2,A1P13

δ13 − 1
2

− P3,A1P12

δ12 − 1
2

)
+ cyclic(1, 2, 3)

]

× Γ

(
∆1 +∆2 +∆3 − d+ 1

2

)
PT(1∆1 , 2∆2 , 3∆3) , (4.81)

where δij is defined as

δij =
∆i +∆j −∆k

2
(4.82)

for {i, j, k} being a permutation of {1, 2, 3}. We also define for convenience the “Parke-Taylor
factor” as

PT(1∆1 , 2∆2 , 3∆3) =
Γ(δ12 +

1
2
)Γ(δ23 +

1
2
)Γ(δ13 +

1
2
)

P
δ12+

1
2

12 P
δ23+

1
2

23 P
δ13+

1
2

13

. (4.83)

One may verify that the resulting three-point correlator is both transverse and obeys the conformal
Ward identity,

Aa1a2a3
∆1∆2∆3

∣∣∣
Zi→Pi

= 0 ,
3∑

i=1

DAB
i Aa1a2a3

∆1∆2∆3
= 0 . (4.84)

The former relation may be understood as a consequence of the manifest transversality of the bulk-
boundary vector field propagator while the latter implies that the formalism manifestly preserves
conformal invariance and together they imply that the three-point function can be pulled back from
the embedding space to AdS [209, 214].

The correlator does not obey the current conservation for generic ∆i. This is, of course, to be
expected as boundary current conservation is a reflection of a bulk gauge symmetry for the vector
fields, which fixes ∆ = d − 1 for spin-1 fields. Other “massive” vector fields may be interpreted
as higher Kaluza-Klein modes and, while corresponding to BPS currents in a supersymmetric
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holographic framework, do not exhibit gauge invariance.
The on-shell correlator follows from eqs. (4.81) and (4.80) with ∆i = d− 1. It can be put in a

compact form in terms of the Vi,jk and Hij functions introduced in Ref. [209]:

Vi,jk =
(Pj · Zi)(Pi · Pk)− (Pk · Zi)(Pi · Pj)

Pj · Pk

,

Hij = −2
[
(Zi · Zj)(Pi · Pj)− (Zi · Pj)(Zj · Pi)

]
. (4.85)

With the notation V1 ≡ V1,23, V2 ≡ V2,31 and V3 ≡ V3,12, the full YM AdS boundary correlator
becomes

Aa1a2a3
3 = −fa1a2a3

dΓ(d− 2)

8πd(d− 2)

N3

(P12P23P13)d/2
, (4.86)

where

N3 = (4Λ1 − V1V2V3)−
6

d
Λ1 (4.87)

Λ1 = V1V2V3 +
1

2
(V1H23 + cyclic) (4.88)

This form reproduces the result of Ref. [230]. In section 4.5 we will use this form of the correlator
and the analogous one corresponding to massive vectors.

In addition to the position space representation, we also construct a differential representation
of the off-shell three-point correlator. Its existence is a nontrivial indication for our conjecture that
on-shell YM correlators can be written in the form of eq. (4.64). With the definitions

EAB
i = PA

i Z
B
i − PB

i Z
A
i , (4.89)

the differential form of Aa1a2a3
∆1∆2∆3

is

Aa1a2a3
∆1∆2∆3

=
fa1a2a3Γ

(
∆1+∆2+∆3−d+1

2

)
16πd

∏3
i=1

[
Γ(∆i−d

2
+1)(∆i−1)

]Â∆1∆2∆3PT(1∆1 , 2∆2 , 3∆3) , (4.90a)

Â∆1∆2∆3 =
[
(2δ12 − 1)(E1 · E2)(E3 ·D1) + 2(∆2

1 − 2∆1∆2 + 2∆1 − 1)Tr(E1E2E3)

+ cyclic(1, 2, 3)
]
, (4.90b)

where the dot products are defined in the sense of eq. (4.9). In the massless limit ∆i = d − 1, the
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differential representation becomes

Aa1a2a3
3 = fa1a2a3

Γ(d− 2)

16πd(d− 2)2
Â3

1

P
d/2
12 P

d/2
23 P

d/2
13

, (4.91a)

Â3 = (d− 2)
[
(E1 · E2)(E3 ·D1) + cyclic(1, 2, 3)

]
− 6(d− 2)2Tr(E1E2E3) . (4.91b)

This reproduces the result of Ref. [198]. As assumed in section 4.4, this expression has uniform
scaling dimension −1 for each external state.

We note that the factor E defined in eq. (4.89) may be identified with the numerator of the
bulk-boundary propagator for the linearized vector field strength; it is curious that, unlike in flat
space, it is natural to organize the three-point YM correlator in terms of this tensor. We moreover
note that the contribution of a Tr[F 3] interaction to the AdS boundary correlator involves the same
kinematic terms as the YM expression, just with different numeric coefficients. We will return to
this observation in section 4.5.1.

Notably, the off-shell differential correlator in eq. (4.90) depends explicitly on the conformal
weight ∆i of external states, in sharp contrast to the differential form of the NLSM four-point
correlator. In particular, it signals that certain manipulations used in the construction of the six- and
possibly higher-point NLSM correlators may not have a direct counterpart in AdS YM calculations.
For example, one could have derived the results in section ?? using the split representation and
how the differential represention of the NLSM four-point correlator is unchanged off-shell. This
computation does not generalize to YM since the YM differential representation is not independent
of ∆i. Instead, we must directly compute the correlator as a polynomial in Pi, Zi, andD-functions.

4.4.5.2 The four-point correlator

We now describe a direct evaluation of the four-point on-shell YM correlator and verify that it
satisfies the BCJ relations discussed in section 4.4.4. We follow the computation in Ref. [228] and
extend it to obtain an explicit polynomial of boundary coordinates Pi, polarization vectors Zi and
D-functions [49]. There are two topologies of diagrams that contribute – the exchange graphs and
the contact diagram – and the color-dressed correlator has the general form

Aa1a2a3a4
4 = Aa1a2a3a4

contact +Aa1a2a3a4
s +Aa1a2a3a4

t +Aa1a2a3a4
u (4.92)

= Aa1a2a3a4
contact +Aa1a2a3a4

s +
(
Aa1a2a3a4

s

∣∣
1→2→3→1

)
+
(
Aa1a2a3a4

s

∣∣
1→3→2→1

)
,

where on the second line we used the symmetry properties of Witten diagrams.
We start with the contribution from the four-point contact diagram, which can be read-off from
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the four-field term in YM Lagrangian (4.31),

Aa1a2a3a4
contact =

32

1 4

=

∫
AdS

dX Ia1a2a3a4
A1A2A3A4

[
4∏

j=1

Zi,Mi
EMiAi

d−1

]
, (4.93)

Ia1a2a3a4
A1A2A3A4

= g2fa1a2xfa3a4x(ηA1A3ηA2A4 − ηA1A4ηA2A3) + cyclic(2, 3, 4) . (4.94)

Using the expression for the vector bulk-boundary propagator EM1,A1

∆ in eq. (4.26) and the defini-
tion of the D-function in eq. (C.21), it is straightforward to obtain:

Aa1a2a3a4
contact = g2

[
(d− 1)Γ(d− 1)

2πd/2(d− 2)Γ(d/2)

]4
Ia1a2a3a4
A1A2A3A4

[
4∏

i=1

Zi,Mi
DMiAi

d−1

]
Dd−1,d−1,d−1,d−1 . (4.95)

Acting with the derivatives in DMi,Ai

d−1 generates a significant number of terms, which can be ex-
pressed in terms of D-functions with shifted indices using the identities in appendix C.2.

We now turn to the evaluation of the s-channel exchange diagram. We use the split representa-
tion of the the bulk-bulk propagator (4.28) to write the exchange graph as a product of two partly
off-shell three-point correlators integrated over a boundary point Q and over the dimension/mass
of the field corresponding to that point. The three-point correlators are written in Mellin space;
this makes the integral over the boundary point straightforward and converts the product of three-
point correlators to a Mellin-space four-point correlator. After the integral over the dimension of
the intermediate field is evaluated, an inverse Mellin transform yields the desired position-space
correlator. Although the computation strategy may appear somewhat convoluted compared to di-
rect integration in the bulk points, it ultimately allows us to write the four-point correlator as an
explicit polynomial of Pi, Zi, and D-functions. Furthermore, the above computation strategy can
be systematically generalized to n-point correlators at tree level [214, 228].10

Proceeding to the actual computation and using eq. (4.27), the s-channel contribution to the
correlator written in terms of the pre-correlator is

Aa1a2a3a4
s =

32

1 4

= g2fa1a2xfa3a4x

[
4∏

i=1

Zi,Mi
DMiAi

d−1

]
Ps

A1A2A3A4
, (4.96)

10As we will see, the main difficulty in going to higher order is explicitly evaluating the contour integrals that
appear due to using the split representation. For example, at four-points, the only non-trivial integral that appears is
eq. (4.109). However, one can show that the c-contours that appear are always equivalent to the c-contour integrals that
appear in evaluating scalar correlators. Such scalar correlators in AdS are trivial to calculate using Mellin space Feyn-
man rules [213]. Therefore, although technically more challenging than flat space, one can algorithmically calculate
tree-level YM correlators in AdS in terms of Zi, Pi and D-functions at n-point without evaluating any integrals.
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where PA1A2A3A4 is an integral over the locations of the two three-point vertices. The split repre-
sentation of the massless spin-1 propagator in eq. (4.27) expresses it as an integral of the product
of two off-shell three-point pre-correlators in eq. (4.81):

Ps
A1A2A3A4

=

∫ i∞

−i∞

dc

2πi

−2c2

c2 − (d/2− 1)2
(4.97)

×
∫
∂AdS

dQ ηNM

[
DNAQ

d/2+cP
d−1 d−1 d/2+c
A1A2AQ

(P1, P2, Q)
][
DMBQ

d/2−cP
d−1 d−1 d/2−c
A3A4BQ

(P3, P4, Q)
]
.

The derivatives of the three-point pre-correlators are obtained by simply evaluating the derivatives
with respect to an off-shell leg in eq. (4.81),

DNAQ

d/2+cP
d−1 d−1 d/2+c
A1A2AQ

=

(
d−1
d−2

)2
Γ
(

3d/2+c−1
2

)
4πd(d/2 + c− 1)Γ(d/2)2Γ(1 + c)

PT(1d−1, 2d−1, Qd/2+c)

×
[
(ηA1A2PN

1 − 2ηA1NPA2
1 )P2Q − (ηA1A2PN

2 − 2ηA2NPA1
2 )P1Q

]
+ (. . .) , (4.98)

where PiQ = −2Pi · Q and similarly for DNAQ

d/2−cP
d−1 d−1 d/2−c
A3,A4,AQ

. The terms in (. . .) will vanish
when the leg P1 and P2 are taken on-shell. More specifically, they are removed as the result of the
identity [228]

DMA
∆

∂

∂PA

F∆−1(P ) = 0 , (4.99)

where F∆−1(P ) is any function of weight ∆ − 1 in P . Thus in the following we will neglect the
(. . .) terms in eq. (4.98).

The two terms on the second line of eq. (4.98) are related by the interchange of labels 1 and 2;
the terms in the analogous factor in DNAQ

d/2−cP
d−1 d−1 d/2−c
A3,A4,AQ

are related by the interchange of labels
3 and 4. Thus, replacing these expressions in eq. (4.97) yields four terms, three of which can be
obtained from the fourth through the transformations 1 ↔ 2, 3 ↔ 4 and (1, 3) ↔ (2, 4). It is not
difficult to find that

∫
∂AdS

dQηNMDNAQ

d/2+cP
d−1 d−1 d/2+c
A1A2AQ

DMBQ

d/2−cP
d−1 d−1 d/2−c
A3A4BQ

=
Γ
(

3d/2+c−1
2

)2
Γ
(

3d/2−c−1
2

)2
64π2dΓ(d/2)4Γ(1 + c)Γ(1− c)

×
(d− 1

d− 2

)4[ P13K(P1P2P3P4)
A1A2A3A4

P
3d/2−c−1

2
12 P

3d/2+c−1
2

34

I
(

P1 P2 P3 P4

∆̃1 ∆̃2 ∆̃3∆̃4

)
− P23K(P2P1P3P4)

A2A1A3A4

P
3d/2−c−1

2
12 P

3d/2+c−1
2

34

I
(

P1 P2 P3 P4

∆̃2 ∆̃1 ∆̃3∆̃4

)
− P14K(P1P2P4P3)

A1A2A4A3

P
3d/2−c−1

2
12 P

3d/2+c−1
2

34

I
(

P1 P2 P3 P4

∆̃1 ∆̃2 ∆̃4∆̃3

)
+

P24K(P2P1P4P3)
A2A1A4A3

P
3d/2−c−1

2
12 P

3d/2+c−1
2

34

I
(

P1 P2 P3 P4

∆̃2 ∆̃1 ∆̃4∆̃3

)]
, (4.100)
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where K and ∆̃i are defined as

K(P1P2P3P4)
A1A2A3A4

=
(ηA1A2P

N
1 − 2δNA1

P1,A2)(ηA3A4P3,N − 2ηA3NP3,A4)

P13

, (4.101)

∆̃1 =
d/2+c+1

2
, ∆̃2 =

d/2+c−1

2
, ∆̃3 =

d/2−c+1

2
, ∆̃4 =

d/2−c−1

2
. (4.102)

Importantly, ∆̃i satisfy the relation
∑4

i=1 ∆̃i = d. The function I
(

P1 P2 P3 P4

∆̃1 ∆̃2 ∆̃3∆̃4

)
is the result of

converting a certain four-point contact integral over the boundary to its Mellin representation [228],

I
(

P1 P2 P3 P4

∆̃1 ∆̃2 ∆̃3∆̃4

)
=

∫
∂AdS

dQ

4∏
i=1

Γ(∆̃i)

(−2Pi ·Q)∆̃i

(
under the constraint

∑4
i=1 ∆̃i = d

)
= πd/2

∫ i∞

−i∞

[
4∏

1⩽i<j

dδ̃ij
2πi

Γ(δ̃ij)P
−δ̃ij
ij

][
4∏

k=1

δ
(
∆̃k −

4∑
l=1, l ̸=k

δ̃lk

)]
, (4.103)

where we also assume that the integration variable δ̃ij is symmetric in its indices. We note that the
four integrals entering eq. (4.100) differ by interchange of ∆̃i with fixed ordering of Pi. Thus, they
are different even though I

(
P1 P2 P3 P4

∆̃1 ∆̃2 ∆̃3∆̃4

)
is invariant under the interchange of pairs (Pi, ∆̃i).

Now that we have converted the integral over the boundary point insertion into Mellin form, we
can proceed and perform the contour integral over c. We start with the change of variables,

δ12 = δ̃12 +
3d/2− c− 1

2
, δ34 = δ̃34 +

3d/2 + c− 1

2
, (4.104)

δ13 = δ̃13 − 1 , δij = δ̃ij for all others ,

for the integral I∆̃1∆̃2∆̃3∆̃4
given in eq. (4.103), together with its images under the specified per-

mutation maps for the other three terms in the sum of eq. (4.100), to align the constraints on the
Mellin integration variables, which now become

4∏
k=1

δ
(
∆̃k −

4∑
l=1, ,l ̸=k

δ̃lk

)
→

4∏
k=1

δ
(
d− 1−

4∑
l=1, ,l ̸=k

δlk

)
(4.105)

in all four terms in eq. (4.100). The pre-correlator then has the rather compact expression:

Ps
A1A2A3A4

= −
(
d−1
d−2

)4
32π3d/2Γ(d/2)4

∫ i∞

−i∞

[
4∏

1⩽i<j

dδij
2πi

Γ(δij)

P
δij
ij

][
4∏

k=1

δ
(
d−1−

4∑
l=1,l ̸=k

δlk

)]
(4.106)

×
∫ i∞

−i∞

dc

2πi
S(δ12, c)

[
KA1A2A3A4 δ13 −

(
1 ↔ 2

)
−
(
3 ↔ 4

)
+

(
1 ↔ 2

3 ↔ 4

)]
,
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where the permutation map acts on Pi, Ai and the indices of δij . For example, under the permuta-
tion 1 ↔ 2 we exchange P1 ↔ P2, A1 ↔ A2, δ13 ↔ δ23 and δ14 ↔ δ24. The entire c dependence
is contained in the function S(δ12, c),

S(δ12, c) =
l(δ12, c)l(δ12,−c)
(d/2− 1)2 − c2

∣∣∣∣∣
∆12=∆34=2d−1

, (4.107)

where l(δ12, c) with generic ∆12 = ∆1 +∆2 and ∆34 = ∆3 +∆4 is given by

l(δ12, c) =
Γ
(
δ12 − ∆12−c−d/2

2

)
Γ
(∆12+c−d/2

2

)
Γ(∆34+c−d/2

2
)

Γ(δ12)Γ(c)
. (4.108)

Choosing the contour such that nonphysical poles do not contribute, the c integral in eq. (4.106)
yields

∫ i∞

−i∞

dc

2πi

l(δ12, c)l(δ12,−c)
(d/2− 1)2 − c2

= Γ

(
∆12 +∆34 − d

2

) m∑
l=1

(∑
i ∆i−d
2

)
−l
(δ12)−l(

∆12−d+1
2

)
1−l

(
∆12−1

2

)
1−l

=
2Γ
(
∆12+∆34−d

2

)
3F2

(
1, 3−∆12

2
, d+1−∆12

2
; 2−δ12, d−∆12−∆34+4

2
; 1
)

(δ12 − 1)(∆12 +∆34 − d− 2)
, (4.109)

wherem = 1
2
(∆12−d+1) and (a)n is the Pochhammer symbol [45, 231]. Although the expression

in the second line is derived assuming m is a positive integer, it holds for more generic parameters
as a result of analytic continuation.11 For d = 4, we find that

∫ i∞

−i∞

dc

2πi
S(δ12, c)

∣∣∣∣∣
d=4

= 12

[
Γ(δ12 − 2)

3Γ(δ12)
+

Γ(δ12 − 1)

2Γ(δ12)

]
=

4

δ12 − 2
+

2

δ12 − 1
. (4.110)

As we have evaluated the c integral, we are left with the evaluation of the Mellin integrals in
eq. (4.106). They can be converted into D-functions using the identity

M−1
[

4∏
1⩽i<j

Γ(δij + lij)

Γ(δij)

]
=

2

πd/2

∏4
i=1 Γ(∆̃i)

Γ
(

Σ̃−d
2

) [
4∏

1⩽i<j

P
lij
ij

]
D∆̃1∆̃2∆̃3∆̃4

, (4.111)

∆̃i = ∆i +
4∑

j=1, j ̸=i

lij , Σ̃ =
4∑

i=1

∆̃i , .

11To arrive at the right-hand side of eq. (4.109), a specific choice of contour for the c integral is required, which is
the same one made in eq. (133) of [45].
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Here M−1 denotes the inverse Mellin transform,

M−1
[
f(δij)

]
=

∫ i∞

−i∞

[
4∏

1⩽i<j

dδij
2πi

Γ(δij)

P
δij
ij

][
4∏

k=1

δ
(
∆k −

4∑
l=1

δlk

)]
f(δij) . (4.112)

To derive eq. (4.111), it suffices to consider the inverse Mellin transform of

Γ(δ12 + l)

Γ(δ12)
. (4.113)

We first parameterize the delta functions in the inverse Mellin transform (4.112)

δ(∆i −
∑
j

δij) =

∫ ∞
0

dti
ti
t
∆i−

∑
j δij

i (4.114)

and then evaluate the δij contour integral using∫ i∞

−i∞

dδij
2πi

Γ(δij + l)(titjPij)
−δij = (titjPij)

le−titjPij . (4.115)

This leads to

M−1
[
Γ(δ12 + l)

Γ(δ12)

]
= (P12)

l

∫ ∞
0

[
4∏

i=1

dti
ti

]
t∆1+l
1 t∆2+l

2 t∆3
3 t∆4

4

∏
i<j

e−titjPij . (4.116)

To convert this expression to a D-function, we first insert the identity element

1 =
1

Γ[(∆1 + l)/2 + (∆2 + l)/2 + ∆3/2 + ∆4/2− d/2]

×
∫ ∞
0

dz

z
z−d/2+(∆1+l)/2+(∆2+l)/2+∆3/2+∆4/2e−z

(4.117)

and then rescale ti → t′i/
√
z. Now we can carry out the z integral as

πd/2

2

∫ ∞
0

dz

z
z−d/2 exp

[
− z +

1

z

(∑
i

t′iPi

)2]
=

∫
AdS

dX
∏
i

e2t
′
iX·Pi . (4.118)

Finally, we perform the t′i integral as∫ ∞
0

dt′i
t′i
(t′i)

∆′
iet

′(2X·Pi) =
Γ(∆′i)

(−2X · Pi)∆
′
i

(4.119)
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to reach our desired result

M−1
[
Γ(δ12 + l)

Γ(δ12)

]
=

2

πd/2
P l
1,2

Γ(∆1 + l)Γ(∆2 + l)Γ(∆3)Γ(∆4)D∆1+l1,∆2+l2,∆3,∆4

Γ[(∆1 + l)/2 + (∆2 + l)/2 + ∆3/2 + ∆4/2− d/2]
. (4.120)

It is trivial to see that eq. (4.120) generalizes to eq. (4.111).
Specialized to d = 4, eqs. (4.110) and (4.111) together can bring the pre-correlator in eq. (4.106)

to a linear combination of D-functions weighted by polynomial of Pi, Zi. An expression valid
for generic boundary dimension d can be obtained by using eq. (4.111) together with the sum
representation [45] of eq. (4.109). In the following, we focus on d = 4. The pre-correlator is given
by

Ps
A1A2A3A4

∣∣∣
d=4

= − 243

32π8

[
P13RA1A2A3A4

P12

D3,2,4,3 −
P14R(3↔4)

A1A2A3A4

P12

D3,2,3,4

+
P13RA1A2A3A4

P 2
12

D2,1,4,3 −
P14R(3↔4)

A1A2A3A4

P 2
12

D2,1,3,4

]
, (4.121)

where

RA1A2A3A4 = KA1A2A3A4 +

(
1 ↔ 2

3 ↔ 4

)
, R(3↔4)

A1A2A3A4
= RA1A2A3A4

∣∣∣
P3↔P4
A3↔A4

. (4.122)

Finally, we apply the D-derivatives in eq. (4.96) and express the result in terms of D-functions by
repeated use of the identity

∂D∆1,∆2,∆3,∆4

∂P1,A

=
4∆1∑4

i=1∆i − d

(
∆2P

A
2 D∆1+1,∆2+1,∆3,∆4 +∆3P

A
3 D∆1+1,∆2,∆3+1,∆4

+∆4P
A
4 D∆1+1,∆2,∆3,∆4+1

)
. (4.123)

It is then straightforward, albeit tedious, to find an explicit expression for the s-channel correlator
Aa1a2a3a4

s as a linear combination of D-functions, from which the t- and u-channel correlators can
subsequently be obtained by the relabelings given in eq. (4.92).

The partial correlators can be extracted from eq. (4.92) in the usual way, either by directly going
to a trace basis or by using the Jacobi identity

fa1a4xfa2a3x + fa1a2xfa3a4x + fa1a3xfa4a2x = 0 , (4.124)
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to pass to the DDM basis,

Aa1a2a3a4
4 = fa1a2xfa3a4xA4(1, 2, 3, 4) + fa1a3xfa2a4xA4(1, 3, 2, 4) . (4.125)

We are now in a position to verify that the AdS BCJ relation (4.72),

D2
12A4(1, 2, 3, 4) = D2

13A4(1, 3, 2, 4) , (4.126)

is satisfied. The conformal generators DAB
i are defined in eq. (4.9). While it is in principle pos-

sible, albeit tedious, to do so analytically through judicious use of the D-function identities in
appendix C.2.3, we have verified eq. (4.126) numerically at d = 4 at random kinematic points with
very high precision. The part of the conformal generator that acts on the polarization vectors Zi is
crucial for the AdS BCJ relations to hold.

The fact that the four-point AdS BCJ relation is satisfied suggests that it may be possible to
put the four-point YM AdS boundary correlator in the form put forth in eq. (4.64). Similar to the
three-point YM AdS boundary correlator, we expect that the four-point BCJ representation will
match the flat space result up to possible additional terms that result from the non-commutativity
of factors in the AdS kinematic numerators. Algorithms for efficiently computing such differential
representations are left to future investigation.

4.5 Towards a Bosonic Double Copy in AdS Space

In this section, we discuss possible double copy procedures in AdS space. We first analyze a “dif-
ferential” double copy that is analogous to the celestial double copy in flat space. The differential
turns out to yield consistent AdS boundary correlators for d = 2, in agreement with expectations
based on the AdS3×S3 ambitwistor string [50], but issues develop in higher dimensions even at
three-points. We then study the double copy in position space and find that the most naive con-
struction holds for three-point correlators only in the limit of large AdS dimension, thus recovering
results of Ref. [198]. Finally, we discuss limiting cases in which connections between AdS bound-
ary correlators and flat space amplitudes should expose double-copy structures in momentum and
Mellin space.
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4.5.1 A Differential Double Copy

In section 4.4 we suggested that the NLSM and YM AdS boundary correlators can be written as
sums of differential operators acting on a single contact diagram,

A =
∑

cubic g

C(g|αg)

(∏
I∈g

1

D2
I

)
N̂(g|αg)Dd,d,d,... , (4.127)

and that, as in flat space, color/kinematics duality identifies the algebraic properties of the color
factor with those of the kinematic numerators N̂ when acting on the contact diagram. Given such a
differential representation, the most natural attempt at an AdS double copy procedure is to simply
replace the color factors, C(g|αg), with their associated kinematic numerators, N̂(g|αg). However,
direct counting of the conformal weight for each external state suggests that certain modifications
are necessary. Indeed, for YM theory, we assumed in section 4.127 and explicitly demonstrated
in section 4.4.5.1 that the conformal weight of the kinematic numerators N̂ with respect to every
external state is −1. Combining this with the d conformal weight ofDd,d,d,... for each of its external
points implies that the action of two kinematic numerators leads to a d−2 overall conformal weight
for each external state of the putative differential double copy. Thus, in addition to replacing the
color factors with kinematic numerators, to obtain the requisite conformal weight ∆ = d it is
necessary to also increase the conformal weight of each of the external legs of the contact diagram
by two units. The full double copy procedure should then amount to the replacements

C(g|αg) → N̂(g|αg) ,

Dd,d,d,... → Dd+2,d+2,d+2,... ,
(4.128)

where N̂ here might differ from the one in eq. (4.127) by some operators that annihilate
Dd,d,d,.... Remarkably, the ambitwistor string construction of Ref. [50] strongly suggests that spin-2
AdS3 × S3 boundary correlators can be derived by applying the substitution rules in eq. (4.128).
Specifically, one would apply eq. (4.128) to the differential representation (4.127) of correlators in
a YM-Chern-Simons theory deformed by a specific linear combination of certain higher-dimension
operators. The generalization of this double copy procedure from d = 2 to arbitrary d turns out to
be more subtle than one might naively expect.12

To see this, it suffices to consider the differential double copy at three points. We derived
the differential form of the three-point AdS YM correlator in section 4.4.5.1. The normalization

12There are subtleties even in d = 2 related to how gravitons do not obey eq. (4.11); the equation of motion for
a free graviton in AdS is (− 1

2D
2
X + 2)hAB = 0, rather than D2

XhAB = 0. This implies that the 1/D2
I factors in

eq. (4.127) should also be shifted in order to interpret these factors as propagators in the associated Witten diagrams.
However, the formulas of Ref. [50] seem to suggest that this shift is not necessary.
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of the bulk-boundary vector-field propagator in eq. (4.26) is singular for d = 2; so to have a
smooth analytic continuation in dimension for the purpose of this discussion, we will change it by
removing the offending factor of (∆− 1)−1 = (d− 2)−1. We will also deform the YM theory with
the operator Tr[F 3] with an arbitrary (Wilson) coefficient gF 3 .

With these preparations and up to an overall constant which is finite for all positive values of d,
the differential form of the YM+gF 3Tr[F 3] three-point correlator is

N̂
gF3

3 ∝
[
1 + 6gF 3(d− 2)2

][
(E2 · E2)(E3 ·D1) + cyclic

]
+ 6(d− 2)

[
− 1 + 2gF 3(d− 2)(d+ 2)

]
Tr(E1E2E3) (4.129)

where E is defined in eq. (4.89). We note that our Tr[F 3] contribution is consistent with that
in [232] at d = 3. The differential double-copy proposal then suggests that the corresponding AdS
double-copy boundary correlator is

MDC
3 ∝ N̂

gF3

3 N̂
g′
F3

3 Dd+2,d+2,d+2 , (4.130)

with independent gF 3 and g′F 3 coefficients to allow for a general heterotic double copy [22].
In d = 2, the double copy works straightforwardly. This is due to additional linear relations

between V1V2V3 and Λ1 in eq. (4.87). Consequently, in d = 2 we have

N̂
gF3

3 D2,2,2 ∝
V1V2V3
P12P23P13

, N̂
gF3

3 N̂
g′
F3

3 D4,4,4 ∝
(V1V2V3)

2

(P12P23P13)2
. (4.131)

It is also easy to check that both expressions in eq. (4.131) satisfy current conservation for d = 2

and therefore can be interpreted as an AdS three-graviton correlator. This result is a non-trivial
generalization of Ref. [50], which only studied YM-Chern-Simons theory in AdS deformed by
a fixed linear combination of higher-dimension operators while here the Wilson coefficient gF 3 is
arbitrary. In fact, to give nonzero contribution at d = 2, it needs to be proportional to (d− 2)−2. We
see that, just as in flat space, the AdS3 double copy appears to be compatible with pure YM theory
deformed by certain higher derivative operators, such as Tr[F 3], with arbitrary Wilson coefficients
[166].

For d > 2, the current conservation of MDC
3 requires gF 3 to take specific values. If we follow

eq. (4.130), there are only two solutions,

gF 3 = − 1

6(d− 2)2
, g′F 3 =

d

6(d− 2)2(3d− 4)
;

gF 3 =
2d− 3

6(d− 2)2
, g′F 3 = − 1

6(d− 2)2
. (4.132)
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which impose that one of the N̂ gF3

3 is proportional to Tr(E1E2E3). The resultant gravity corre-
lator is a linear combination of the Einstein-Hilbert term and certain higher derivatives opera-
tors. Moreover, we can modify eq. (4.130) to make it symmetric with respect to gF 3 and g′F 3 ,

MDC
3 ∝ (N̂

gF3

3 N̂
g′
F3

3 + N̂
g′
F3

3 N̂
gF3

3 )Dd+2,d+2,d+2. Then the current conservation leads to a unique
solution with gF 3 = − 1

6(d−2)2 and g′F 3 =
5d−6

6(d−2)2(3d−2) .
We have seen that to realize the AdS double-copy construction requires certain generalizations

of the flat space case. A possible approach to understanding it may be higher-dimensional gen-
eralizations of the ambitwistor string theory of Ref. [50]. Possible obstacles relate to the stringy
realization of the massless spectrum in AdS5 × S5, see refs. [233, 234]. In flat space, the interplay
between gauge invariance and color/kinematics duality guarantees that the result of the double
copy exhibits diffeomorphism invariance. Thus, an alternative approach could rely on a thorough
exploration of the analogous interplay for AdS boundary correlators.

4.5.2 Position-Space Three-Point Double Copy and Comments on Mellin-
Space Double Copy

Recent results suggest that the differential double copy (4.128) may not be the only double copy
procedure applicable to AdS boundary correlators. To gain some insight into the possible structure
of alternative double copy relations between gauge and gravity theories in AdS space, it is useful
to examine the simple example of the three-point AdS boundary correlator in position space. A
supersymmetric version of the Mellin-space double copy was given at 4-points in Ref. [190].

Using the three-point Feynman rule following from the Einstein-Hilbert action in AdS space
(with cosmological constant Λ = −d(d− 1)/2) and following the same computational strategy as
for the YM AdS boundary correlator, we found that the three-graviton AdS boundary correlator is

M3 =
d2 Γ(d)

16πd(d+ 1)3
M3

(P12P13P23)1+d/2
, (4.133)

M3 = f1Λ
2
1 + f2Λ1V1V2V3 + f3(V1V2V3)

2 + f4Λ2 + f5Λ3

where Vi, Hi,j , and Λ1 are defined in eqs. (4.85), Λ2 and Λ3 are

Λ2 = H1,2H2,3H3,1 , (4.134)

Λ3 = V1V2H1,3H2,3 + cyclic .
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and the functions f1,...5 are

f1 = 16− 16

d
− 8

d2
, f2 = −8− 8

d
+

24

d2
+

16

d3
,

f3 = 1 +
4

d
− 4

d2
− 16

d3
, f4 =

8

d
, f5 =

4

d2
+

8

d3
. (4.135)

This expression for M3 agrees with Ref. [230] up to some notational translation:

Λ
(here)
1 = −(−2P1 · P2)(−2P2 · P3)(−2P3 · P1)Λ

(there)
1 ,

(V1V2V3)
(here) = −(−2P1 · P2)(−2P2 · P3)(−2P3 · P1)(V1V2V3)

(there) ,

Λ
(here)
2 = (−2P1 · P2)

2(−2P2 · P3)
2(−2P3 · P1)

2Λ
(there)
2 ,

Λ
(here)
3 = (−2P1 · P2)

2(−2P2 · P3)
2(−2P3 · P1)

2Λ
(there)
3 . (4.136)

It is not difficult to see the numeratorM3 above and the analogous quantityN3 in the three-point
YM correlator in eq. (4.87) are related by

lim
d→∞

M3 = lim
d→∞

(N3)
2 , (4.137)

That is, to leading order in the expansion in the large dimension of the AdS space, the three-
graviton correlator equals the square of the three-gluon correlator in eq (4.87), in agreement with
Ref. [198].

We note that, for three-point correlators, the position-space factors M3 and N3 coincide (up
to possible overall normalization factors) with the corresponding Mellin-space amplitudes. With
this observation, eq. (4.137) above also implies that simple squaring relations between gauge and
gravity three-point amplitudes may hold in Mellin space only in the large-d limit. In contrast,
Ref. [190] reports such a squaring relation for the scalar components of the super-gluon and super-
graviton multiplet at d = 4. The difference is presumably due to the action of supercharges which
introduces a nontrivial dependence on the conformal weight.

We will refrain from conjecturing the generalization of this relation to higher-point correlators
or how it might be formulated for the differential form of correlators. It is however difficult not to
note, as was also noted in [189], certain similarities between the large-dimension limit above and
the relation between flat space S-matrix and AdS boundary correlators. Indeed, it was argued in
Ref. [45, 213, 235] that these two quantities are closely related; a formulation of this connection
which holds for amplitudes of massive fields is [235]

ma
1T (ki) = lim

∆i→∞

∆a
1

N M

(
γij =

∆i∆j∑n
k=1∆k

(
1 +

ki · kj
mimj

))
(4.138)
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where M is a Mellin-space amplitude, γij are Mellin variables obeying the standard constraints, T
is a flat space amplitude, ki are flat-space momenta, a = n(d−1)

2
− d− 1 and

N =
πd

2
Γ

(∑n
i=1 ∆i − d

2

) n∏
i=1

√
N∆i

Γ(∆i)
, N∆ =

Γ(∆)

2πd/2Γ(∆− d/2 + 1)
. (4.139)

It clearly implies that, at least in the limit of large AdS energies, the Mellin-space amplitude
exhibits a double-copy structure which is inherited from the corresponding flat space S-matrix
element. The large-∆ limit may be realized either by considering very massive particles or, as
in the three-point example discussed above, by taking the space-time dimension to be large. It
would be interesting to understand better in what sense AdSd→∞ may be interpreted as flat space.
More involved relations [45, 213, 236] connecting Mellin-space and flat space amplitudes are also
suggestive of a double-copy structure in this limit.

Taking at face value the observation that we may assume the dimension to be large, let us
discuss another limit on AdS boundary correlators that points to a double-copy structure in AdS
momentum space.

4.5.3 An Argument for Double Copy at High Energies

The AdS Poincaré patch that we have been using exhibits translational invariance – and thus con-
served momentum – in the directions parallel to the boundary. It is therefore natural to consider
momentum-space AdS boundary correlators – i.e. Fourier-transforms of AdS boundary correlators
along the boundary coordinates. Properties of momentum-space correlation functions of gauge-
invariant operators have been discussed from dual gauge theory perspective in refs. [237–240].

A hard high energy scattering process (i.e. a scattering process for which the momentum trans-
fer is large) may be expected to be localized in a small region of the space. Thus, for weakly-curved
spaces, the scattering effectively occurs in flat space. An important point, emphasized in refs. [241,
242] and used there to provide a connection between the soft high-energy string theory S-matrix
elements and the hard S-matrix elements of gauge theories, is that the momenta of particles in the
scattering region are not the same as the momenta at infinity/boundary. Rather than the boundary
momentum p, it is the momentum p̃ in the local inertial frame,

p̃a = eµapµ (4.140)

with the vielbein eaµ and pµ ∼ ∂/∂xµ, that governs the local scattering process. Moreover, since
the propagation from the boundary to the interaction region probes a large region of the curved
space, the asymptotic states are captured by the curved-space bulk-boundary propagators.
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Thus, if the extent of the scattering region is not too large, the correlation function labeled by
boundary momenta is schematically

M∆1...∆n(p) = ⟨O∆1(p1) . . .O∆n(pn)⟩ =
∫
M

Mflat(p̃)
n∏

i=1

E∆i
, (4.141)

where E∆i
are the bulk-boundary propagators labeled by boundary momenta for the fields dual

to the operators O∆i
, Mflat is the flat space amplitude for these fields and M is the entire space

(e.g. AdS5×X). For tree-level boundary correlators the integration runs over the coordinates that
are not Fourier-transformed (e.g. in AdS it is only the transverse direction). The asymptotic states
for fields with spin naturally carry tangent space indices, so their bulk-boundary propagators are
similarly labeled.

The Poincaré patch the metric is

ds2 =
R2

z2
(
ηµνdx

µdxν + dr2
)
. (4.142)

In these coordinates, the boundary is at z = 0 and the momentum in the local inertial frame is

p̃ =
z

R
p . (4.143)

Thus, for any finite boundary momentum p, the local momentum is large if the scattering occurs
away from the boundary. One may extend the range of validity of this approximation by taking the
boundary momenta to be parametrically large, but the scattering region is required to have a rela-
tively small extent in the AdS transverse direction. Therefore, the double-copy structure of the flat
space gravitational amplitudes, formally written as Mflat(p̃) = DC[AL, flat(p̃),AL, flat(p̃)], implies
that in the regime eq. (4.141) holds the transverse-space integrand of AdS boundary correlators
also have certain double-copy properties. For graviton asymptotic states:

M∆1...∆n(p) =

∫
M

DC[AM1...Mn
L, flat (p̃),AN1...Nn

L, flat (p̃)]
n∏

i=1

EMiNi,AiBi

∆i
Zi,AiBi

, (4.144)

where graviton Zi are polarization tensors, EMiNi,AiBi

∆i
are graviton bulk-boundary propagators and

AL,R are the left and right gauge theory amplitudes entering the flat space double copy.
Inspection of the bulk-boundary propagators reveals that these properties may be further en-

hanced in the limit of large AdS dimension or large ∆. As discussed in section 4.2.3, the vector-
field propagator may be written as a differential operator acting on the scalar propagator, cf.
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eq. (4.27). The graviton propagator has a similar form

EMN,AB
∆ = DMN,ABE∆ , (4.145)

DMN,AB = ηMAηNB +
1

∆

(
ηMAPB ∂

∂PN

+ ηNBPA ∂

∂PM

)
+

1

∆(∆+1)
PAPB ∂2

∂PM∂PN

.

In the limit of large ∆ or for massless fields in the limit of large AdS dimension, this operator may
also be written as

EMN,AB
∆→∞ = DMN,ABE∆→∞ = DMADNBE∆→∞ = DNBDMAE∆→∞ (4.146)

DMA = ηMA +
1

∆
PA ∂

∂PM

. (4.147)

Even though D contains terms with a manifest ∆−1 which might seem possible to ignore in the
large-∆ limit, the derivatives with respect to the bulk point provide an additional factor O(∆)

which render this term finite in this limit. The factorization of DMN,AB relies on dropping various
terms O(∆−1) after the derivatives are evaluated. Thus, in the high energy (from the boundary
perspective) and large large AdS dimension, the integrand of the momentum-space gravitational
AdS boundary correlator can be written as the square of a differential operator acting on scalar
bulk-boundary propagators:

M∆1...∆n(p) =

∫
M

DC[AM1...Mn
L, flat (p̃),AN1...Nn

L, flat (p̃)]
n∏

i=1

Zi,Ai
DMi,AiZi,Bi

DNi,Bi E∆i→∞ . (4.148)

A single power of this differential operator,

A∆1...∆n(p) =

∫
M

AM1...Mn
flat (p̃)

n∏
i=1

Zi,Ai
DMi,AiE∆i→∞ (4.149)

where we suppressed color indices, is a color-dressed gauge theory AdS boundary correlator.
While in general the weight of vector fields and gravitons is different, their differences are sub-
leading in the large dimension or large energy limit so E∆i→∞ are the same in both eq. (4.148) and
eq. (4.149).

Similar reasoning suggests AdS boundary correlators with other asymptotic states can be
double-copied in the same sense as outlined here. Fourier-transforming the boundary momenta
provides a possible connection to the position-space representation of AdS boundary correlators.
It would be very interesting to understand whether a more direct relation can be formulated.
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4.6 The Differential Representation at One Loop

We now generalize the differential representation of scalar AdS correlators beyond tree-level by
introducing the notion of operator-valued integration. Note that a similar higher loop generalization
of the differential representation is also given in Ref. [243].

4.6.1 Operator-Valued Integration

We motivate our construction using the triangle Witten diagram

A△3 = 1

2

3

. (4.150)

Given the position space representation of A△3 ,

A△3 =

∫
AdS

dX1dX2dX3Gd(X1, X2)Gd(X2, X3)

×Gd(X1, X3)
3∏

i=1

Ed(Xi, Pi)

(4.151)

we replace Gd(X2, X3) with its split-representation

G∆(X2, X3) =

∫ i∞

−i∞

dc

2πi
(−2c2)

∫
∂AdS

dQdQ′

× δd(Q,Q′)

D2
Q −∆(d−∆)

E d
2
+c(X2, Q)E d

2
−c(X3, Q

′) .

(4.152)

with ∆ = d. Upon making this replacement, the triangle Witten diagram simplifies to the form

A△3 =

∫ i∞

−i∞

dc

2πi
(−2c2)

∫
∂AdS

dQdQ′δ(Q,Q′)

× 1

D2
Q

A5(P1, P2, P3, Q,Q
′)

(4.153)

where A5 is a 5-point tree-level Witten diagram. So far, we have simply rewritten the loop diagram
as a spectral integral over a tree diagram, as is standard [244]. We now write the tree diagram in
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the differential representation

A5 = 1

2

Q′

Q

3

=
1

D2
Q3

1

D2
Q31

Cc
5(P1, P2, P3, Q,Q

′) .

(4.154)

where the c superscript indicates that the conformal dimensions associated with Q and Q′ external
states in Eq. (4.154) are ∆Q = d/2 + c and ∆Q′ = d/2− c respectively. Combining Eqs. (4.153)
and (4.154), we find

A△3 =

∫ i∞

−i∞

dc

2πi
(−2c2)

∫
∂AdS

dQdQ′δ(Q,Q′)

× 1

D2
Q

1

D2
Q3

1

D2
Q31

Cc
5(P1, P2, P3, Q,Q

′) .

(4.155)

This is the differential representation of the triangle one-loop Witten diagram.
The above manipulations can be performed on any one-loop Witten diagram. One simply uses

the split representation, Eq. (4.152), to convert the one-loop, n-point Witten diagram to a tree-level
(n + 2)-point Witten diagram in the differential representation [245]. For example, repeating the
above manipulations for bubble and box Witten diagrams, one finds

ABubble
3 =

∫ i∞

−i∞

dc

2πi
(−2c2)

∫
∂AdS

dQdQ′δ(Q,Q′)
1

D2
Q

1

D2
Q3

Cc
5(Pi, Q,Q

′) (4.156)

and

ABox
4 =

∫ i∞

−i∞

dc

2πi
(−2c2)

∫
∂AdS

dQdQ′δ(Q,Q′)
1

D2
QD

2
Q1D

2
Q12D

2
Q123

Cc
6(Pi, Q,Q

′) . (4.157)

Notably, the first lines of Eqs. (4.155)-(4.157) are universal. In contrast, the second lines are
unique to the Witten diagram and analogous to the corresponding Feynman diagram under the
replacement of the internal loop momentum with DAB

Q .
We interpret the universal integrals over c, Q and Q′ in the first lines of Eqs. (4.155)-(4.157) as

the AdS analog of
∫
dlµ. We refer to such scalar integrals collectively as an operator-valued integral
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and formally define the operator-valued integral of an operator-valued integrand, Î(DQ, Di), as∫
[DDQ]Î(DQ, Di) ≡

∫
∂AdS

dQdQ′δd(Q,Q′)

×
∫ i∞

−i∞

dc

2πi
(−2c2)Î(DQ, Di)Cc

n+2(Pi, Q,Q
′)

(4.158)

where Cc
n+2(Q,Q

′, Pi) is an (n+ 2)-point contact diagram,

Cc
n+2(Q,Q

′, Pi) =

∫
AdS

dXE d
2
+c(Q,X)E d

2
−c(Q

′, X)
n∏

i=1

E∆i
(Pi, X) . (4.159)

Again, the c superscript refers to how the conformal dimensions of the Q and Q′ states depend on
c. Our notation is meant to suggest that we should interpret Eq. (4.158) as an integral over DQ.
Using this notation, the triangle Witten diagram is

A△3 =

∫
[DDQ]

1

D2
Q

1

D2
Q3

1

D2
Q31

, (4.160)

and similiarly for the bubble and box differential representations. The operator-valued integrals
evaluate to functions of conformal generators of external states acting on contact diagrams, Cn.

The operator-valued integral notation is interesting because it simplifies expressions and pro-
vides a representation of Witten diagrams analogous to Feynman diagrams. However, the utility
of the operator-valued integral goes beyond aesthetics. We show in Sections 4.6.2 and 4.6.3 that
certain identities of scalar integrals generalize to operator-valued integrals and can be leveraged to
simplify the evaluation of specific Witten diagrams.

4.6.2 Explicit Calculations at Three-Point

The differential representation is particularly useful for performing direct integration of one-loop
Witten diagrams. This is most apparent at three-point where a number of simplifications occur,
specifically a form of tensor-reduction. For Feynman integrals, tensor reduction implies that three-
point, one-loop integrals obey the identity

0 =

∫
dd+1lf(l2)(l · pi)N(l · pj)M |p2i=0 (4.161)
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for any integers N, M such that M ≥ 0, N ≥ 0 and N +M > 0 [246]. For three-point Witten
diagrams, we conjecture an analogous identity holds if ∆ = d for all external states:

0 =

∫
[DDQ]f̂(D

2
Q)(DQ ·Di)

N(DQ ·Dj)
M |n=3 (4.162)

with the same conditions on N and M , for all possible orderings of the differential operators in the
integrand. Eq. (4.162) is much more non-trivial than its flat-space analog. Even if one assumes
tensor reduction is applicable to operator-valued integrals, conformal generators can in principle
be contracted using the structure constants of the AdS isometry group as well as dot products.
Using formulas in Appendix C.3, we explicitly checked Eq. (4.162) holds for N +M ≤ 10.

We can prove Eq. (4.162) for the special case that N = 0. We first note that when (DQ ·D1)
N

acts on D∆Q,∆1,..., the result takes the form

(DQ ·D1)
ND∆Q,d...

=
∑

an,k(Q · P1)
kD∆Q+k,d+k,...

(4.163)

where D∆Q+k,d+k,... is the D-function, defined as

D∆Q,∆1,... =∫
AdS

dX(−2X · P1)
−∆Q(−2X · Pn)

−∆1 . . . .
(4.164)

To solve for an,k, we use the relation

(DQ ·D1)[(Q · P1)
kD∆Q+k,d+k,...] =

− 8(∆Q + k)(d+ k)(Q · P1)
k+1D∆Q+k+1,d+k+1,...

− 4(∆Q + k)(d/2 + k)(Q · P1)
kD∆Q+k,d+k,...

(4.165)

which provides a recursion relation for the an,k coefficients,

an,k = an−1,k−1fk−1 + an−1,kgk (4.166)

where

fk = −8(∆Q + k)(d+ k) ,

gk = −4(∆Q + k)(d/2 + k) ,

a0,0 = 1 ,

an,k = 0 if k > n or k < 0 .

(4.167)
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We now take the expression in Eq. (4.168) and integrate over Q using Eq. (C.50). We find the
result ∫

AdS
dQ

n∑
k=0

an,k(Q · Pi)
kD∆Q+k,d+k,...

= πd/2D∆Q,d,...

n∑
k=0

(
1

2

)−k
an,k

Γ(d/2 + k)

Γ(d+ k)
.

(4.168)

To show this expression is zero, substitute the identity in Eq. (4.166) for all an,k. There are now
two sums over gk × (. . .) and fk−1 × (. . .) respectively. Substituting in the definitions of gk and
fk in Eq. (4.167), these two sums cancel. Therefore, the expression in Eq. (4.168) vanishes.
Unfortunately, proving Eq. (4.162) for non-zero N and M is much more difficult than the N = 0

case. We will sketch a proof strategy here. Similar to the N = 0 case, one would first establish an
ansatz for (DQ ·D1)

N(DQ ·D2)
MD∆Q,d,d,... as a sum of terms of the form

(Q · P1)
k1(Q · P2)

k2(P1 · P2)
k3D∆Q+k1+k2,d+k1+k3,d+k2+k3,... . (4.169)

One would then establish a recursion relation among coefficients similar to Eq. (4.165) and per-
form an integral over Q using Eq. (C.51). Unlike the N = 0 case, one would also need to
subsequently integrate over the bulk coordinate X using the closed form expression of the 3-point
D-function. After integrating over Q and X , the hope is that the recursion relations between co-
efficients would be enough to show that the terms in the sum cancel among themselves, similar to
what happens in the N = 0 case.

Eq. (4.162) can be leveraged to dramatically simplify the calculation of certain three-point
Witten diagrams. As an illustrative example, consider the three-point bubble diagram:

ABubble
3 =

1

2
3

∆l

∆l

(4.170)

where the conformal dimension of the state running in the loop, ∆l, is left unfixed. We restrict this
computation to d = 2 as this Witten diagram diverges for d ≥ 3. The differential representation of
ABubble

3 is ∫
[DDQ]

1

(D2
Q −∆l(d−∆l))(D2

Q3 −∆l(d−∆l))
. (4.171)

Since ∆3 = d = 2, we find that D2
3 = 0. Performing a Taylor Series in DQ · D3, one finds that

all terms vanish due to Eq. (4.162) except the leading term. Therefore, the bubble Witten diagram
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simplifies to ∫
[DDQ]

1

(D2
Q −∆l(2−∆l))2

. (4.172)

Substituting the definition of the operator-valued integral and using [45, 247]

Γ(d/2)Γ(d/2 + c)Γ(d/2− c)

4πd/2Γ(d)Γ(1− c)Γ(1 + c)
=

∫
∂AdS

dQEd/2+c(Q,X)Ed/2−c(Q,X) , (4.173)

we reduce the integral to a single contour integral which can be evaluated using the residue theo-
rem. The final result for ABubble

3 is∫ i∞

−i∞

dc

(2π)2i

Γ(1 + c)Γ(1− c)C3
Γ(c)Γ(−c)(1− c2 −∆l(2−∆l))2

=
1

8π(∆l − 1)
C3 . (4.174)

We can cross-check this result by an explicit computation in position space. To simplify the com-
putation, we consider the more general case that PA

3 is in the bulk and then take the limit that PA
3

approaches the boundary, writing

ABubble
3 = lim

P3→∂AdS
(z3)

−2
∫

AdS
dX1dX2E(P1, X1)E(P2, X1)(G∆l

(X1, X2))
2G(X2, P3) . (4.175)

We consider the split-representation of the d = 2 bulk-to-bulk propagator in Eq. (4.22) and the
bubble,

G∆l
(X1, X2)

2 =

∫ i∞

−i∞

dc

2πi
B∆l

c Ωc(X1, X2) , (4.176)

where B(c) was derived in Ref. [248],

B∆l
c =

ψ(∆l − 1+c
2
)− ψ(∆l − 1−c

2
)

8πc
. (4.177)

Ωc(X1, X2) is the AdS harmonic functions, which can be defined in terms of the bulk-to-bulk
propagator:

Ωc(X1, X2) = c(Gd/2+c(X1, X2)−Gd/2−c(X1, X2)) . (4.178)

Using orthogonality of AdS conformal partial waves, we find that∫
AdS

dX2(G∆l
(X1, X2))

2G(X2, P3) =

∫ i∞

−i∞

dc

2πi

B∆l
c

1− c2
Ωc(X1, P3) . (4.179)

Substituting Eq. (4.179) into Eq. (4.175) and rewriting the conformal partial wave as a sum of
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Gd/2±c(X1, X2), the one-loop correlator simplifies to

lim
z−3→0

z−23

∫ i∞

−i∞

dc

2πi

cB∆l
c

1− c2

∫
dX1E(P1, X1)

E(P2, X1)(G1+c(X1, P3)−G1−c(X1, P3))

(4.180)

This integral can be evaluated using the residue theorem, but the contour is different for each term
due to distinct behavior at |z| → ∞. The G1±c(X1, P3) term corresponds to a contour which
includes the residue at c = ±1. The final result is

ABubble
3 =

1

8π(∆l − 1)
C3 . (4.181)

As expected, we find that the operator-valued integration result in Eq. (4.174) matches the result
derived from direct integration in position space in Eq. (4.181). Given that ABubble

3 is a one-loop
diagram in AdS3, it was surprisingly straightforward to evaluate. The key to the above computation
was using the split representation of the bubble diagram in Eqs. (4.176) and (4.177). Unfortunately,
this computation strategy does not generalize to more complicated one-loop Witten diagrams, such
as the triangle Witten diagram.

We can use the differential representation to evaluate more complex Witten diagrams, such
as the triangle Witten diagram. We fix the conformal dimension of states running in the loop to
∆l = d for simplicity. The relevant operator-valued integral is then Eq. (4.160). We again take
a Taylor series of the operator-valued integrand, except now in DQ · D1 and DQ · D2. All terms
vanish except the leading term due to Eq. (4.162). The final result can be converted into a single
scalar integral, which can again be evaluated using residue theorem. Evaluating the integral, we
found

A△3 |d=2 =
1

32π
C3, A△3 |d=4 =

13

1536π2
C3 ,

A△3 |d=3 =
7π2 − 36ζ(3)− 6

1296π2
C3 ,

(4.182)

and that the integral is divergent for d ≥ 5, similar to flat space. Evaluating the c-integral for odd
d is slightly harder than even d because an infinite number of residues contribute that need to be
re-summed.

4.6.3 Generalized IBP Relations

In flat space, IBP is an important tool for computing Feynman integrals [56, 58, 199–208]. We now
give a partial generalization of IBP for operator-valued integrals. We first note that the operator
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valued integral should be invariant under arbitrary conformal transformations of Q and Q′, which
implies

I =

∫
[DDQ]e

v·(DQ+DQ′ )Î , (4.183)

where v is a tensor, is independent of v. We now rewrite the above operator-valued integral as

I =

∫
[DDQ]Î ′e−v·(

∑n
i=1 Di) (4.184)

where Î ′ is Î with the replacement

DAB
a → ev·(DQ+DQ′ )DAB

a e−v·(DQ+DQ′ ) . (4.185)

for all a ∈ {Q, 1, . . . , n}. If v is a constant tensor, then the above shift only acts non-trivially on
DQ and dependence on DQ′ disappears. Let us now take v to be an infinitesimal in Eq. (4.184).
Since the result is independent of v, the component linear in v must vanish, which imposes non-
trivial linear relations among operator-valued integrals. The collection of identities derivable from
this procedure does not necessarily span the space of all linear identities obeyed by operator-valued
integrals, but is enough to illustrate that there are non-trivial relations which mimic their flat-space
counter-parts.

For example, we can apply the above procedure to the triangle Witten diagram. We assume v is
an infinitesimal constant, so the replacement rule simplifies to

DAB
Q → DAB

Q + fAB
CD,EFD

CD
Q vEF . (4.186)

where fAB
CD,EF is a structure constant of the AdS isometry group. The above procedure ultimately

implies the operator-valued integrand

Î =
vABf

AB
CD,EF

D2
QD

2
Q1D

2
Q12

(
(DCD

Q DEF
1 )

1

D2
Q1

+(DCD
Q DEF

12 )
1

D2
Q12

)
− 1

D2
QD

2
Q1D

2
Q12

(v ·
3∑

i=1

Di),

(4.187)

integrates to zero for external states with arbitrary conformal dimension. Unlike the operator-
valued integrands previously considered, the differential operators in each term do not always
commute and there are contractions of conformal generators with structure constants. Furthermore,
the constant tensor v explicitly breaks conformal symmetry, so the CWI must be applied with care
[249].
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CHAPTER 5

Conclusion

In this dissertation, I have discussed novel structures in amplitudes and AdS boundary correlators.
I leveraged wall-crossing to systematically study the boundary structure of the positive kinematic
region of amplitudes in N = 4 pSYM. I then generalized the double copy to a wide range of
EFTs. I concluded by applying the differential representation, a novel framework for computing
boundary correlators in AdS, to generalizing color-kinematics duality and certain techniques for
computing flat space one-loop amplitudes to AdS boundary correlators.

The methodology of this dissertation was to consider scattering in “simple” theories, such as
N = 4 pSYM, and then generalize to theories where computations are more difficult, such as
in AdS. Since computations in the simple theories are tractable, it is easier to identify hidden
structures. One can then directly test whether such structures generalize beyond the simple models,
such as to AdS. The structures studied in this dissertation were the positive kinematic region,
color-kinematics duality, and the double-copy. Remarkably, I found that color-kinematics duality
generalizes to AdS boundary correlators, at least at 4-point. However, I also found that a naive
double-copy formula does not generalize to YM and GR in AdS.

An obvious next step for the research program proposed in this dissertation is studying whether
there is an analog of the positive kinematic region for planar AdS boundary correlators. The AdS
analog of the positive kinematic region would presumably encode the dynamics of multi-particle
exchange states, similar to flat-space. However, studying the AdS analog of the positive kinematic
region would require studying 4-point correlators; the kinematic structure of 3-point correlators
seems too simple to encode any interesting multi-particle dynamics, at least at one-loop. While
this dissertation only studied the higher loop computation of 3-point AdS boundary correlators,
the operator-valued integral technology provides a path to computing such correlators in the near
future.
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APPENDIX A

Background on Cluster Algebras

A.1 Introduction to cluster algebras

In this appendix, we give a brief introduction to cluster algebras [119, 250–252]. Thorough in-
troductions are refs. [253–256], while those looking for a review that focuses on the connection
with scattering amplitudes are referred to ref. [15]. Cluster algebras were initially motivated by
the notion of total positivity. For example, one major motivating question was how much informa-
tion is generically needed to prove that minors of a given matrix are positive. Due to non-linear
relations between minors, this question quickly becomes very hard from a brute force approach
of writing out all relations between minors and solving these polynomials directly. The advent of
cluster algebras gave a different approach.

Suppose you are given a 2 × n matrix and asked to find the minimal information needed to
determine whether all 2 × 2 minors are positive. The problem is non-trivial due to quadratic
relations between minors called plucker relations:

1

⟨i, k⟩ (⟨i, j⟩⟨k, l⟩+ ⟨i, l⟩⟨j, k⟩) = ⟨j, l⟩ i < j < k < l . (A.1)

A brute force approach would be to calculate all quadratic relations of the form eq. (A.1) at once
and find some minimal subset directly. This computation would be problematic for even the best

i

j

k

l

→ i

j

k

l

Figure A.1: A visual representation of the plucker relations for Gr(2, n).

156



1

2

3

4

5 1

2

3

4

5 1

2

3

4

5

Figure A.2: The first triangulation of the 5-gon corresponds to the parameterization in eq. (A.3).
Each minor in eq. (A.3) corresponds to an edge. The remaining triangulated 5-gons correspond to
the mutation pattern that leads to ⟨2, 5⟩.

computers. We instead take a cluster algebra approach and find a preferred set of coordinates on
the space of minors. To do so, we note that eq. (A.1) can be visually interpreted as a mutation on
the triangulation of a 4-gon with edges, i, j, k, l, as visualized in fig. A.1. Therefore, at n = 4, a
natural set of preferred minors is

⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 4⟩, ⟨1, 4⟩, ⟨1, 3⟩ . (A.2)

We can calculate the remaining coordinate, ⟨2, 4⟩, using eq. (A.1), interpreting eq. (A.1) as a
mutation on the 4-gon. Going beyond n = 4, it is natural to start with coordinates that can
be associated with the triangulation of an n-gon and interpret eq. (A.1) as a mutation on this
triangulated n-gon, just as we did for the triangulated 4-gon. For example, consider n = 5 and the
initial coordinates:

⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 4⟩, ⟨4, 5⟩, ⟨1, 5⟩, ⟨1, 3⟩, ⟨1, 4⟩ (A.3)

which are associated with the first triangulation in fig. A.2. Suppose we want to write ⟨2, 5⟩ in
terms of our initial coordinates. We first perform a “mutation” on ⟨1, 4⟩, finding

⟨3, 5⟩ = 1

⟨1, 4⟩(⟨1, 3⟩⟨4, 5⟩+ ⟨3, 4⟩⟨1, 5⟩) (A.4)

and a new triangulation where ⟨1, 4⟩ is replaced with ⟨3, 5⟩. We then perform a mutation on ⟨1, 3⟩,
finding

⟨2, 5⟩ = 1

⟨1, 3⟩(⟨3, 5⟩⟨1, 2⟩+ ⟨2, 3⟩⟨1, 5⟩) (A.5)

Therefore, assuming that all our initial minors in eq. (A.3) are positive, then ⟨2, 5⟩ must be
positive as well. One can repeat the above calculation for any minor not in eq. (A.3), showing that
all minors are positive if our initial minors in eq. (A.3) are positive. Note that we never mutate the
edges that define the boundary of the n-gon. These are called frozen variables as they appear in
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1

2

3
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5

⟨2, 3⟩ ⟨3, 4⟩ ⟨4, 5⟩

⟨1, 2⟩ ⟨1, 3⟩ ⟨1, 4⟩ ⟨1, 5⟩

Figure A.3: A triangulation of a 5-gon and its dual quiver representation. The boxed elements in
the quiver correspond to frozen nodes.

the Plucker relations but do not themselves mutate.
The above discussion focuses on the positivity of a Gr(2, n) matrix. However, we will ulti-

mately be interested in Gr(4, n)/T , where T acts on individual columns by a re-scaling:

ZA
i → tiZ

A
i . (A.6)

where i and A index the columns and rows respectively. Therefore, it is natural to consider the
same question as above, except now for Gr(2, n)/T . Our minors, ⟨i, j⟩, are no longer suitable
coordinates as they are not invariant under T . Instead, we must develop a new set of coordinates,
ŷ-variables, for a given triangulation that are invariant under T transformations. Again consider
the coordinates in eq. (A.3). Two natural combinations of minors invariant under T are

ŷ1 =
⟨2, 3⟩⟨1, 4⟩
⟨1, 2⟩⟨3, 4⟩ , ŷ2 =

⟨3, 4⟩⟨1, 5⟩
⟨1, 3⟩⟨4, 5⟩ . (A.7)

These variables form a natural set of coordinates on the compactified space Gr(2, n)/T . To see
their importance, lets interpret Gr(2, n)/T as the positive region of some manifold. Each triangu-
lation, with its own ŷi variables, corresponds to a different “corner” of Gr(2, n)/T , as visualized
for n = 5 in fig. 1.1.
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The above strategy of finding an initial “cluster” of coordinates and developing a sequence
of coordinate transforms turns out to be very versatile. Generalizing beyond Gr(2, n), one can
systematically develop the notion of a cluster algebra. Instead of a triangulation, we associate to
each cluster a quiver with exchange matrix Bi,j:

Bi,j =


n if there are n arrows from i to j
−n if there are n arrows from j to i
0 if there are no arrows between j and i

. (A.8)

Each triangulation of an n-gon for Gr(2, n) maps onto a triangulation in the following way

• Each edge in the n-gon triangulation corresponds to a node in the quiver. The edges corre-
sponding to the boundary of the n-gon are frozen nodes that never mutate

• For each triangle in the n-gon triangulation, we draw a clock-wise orientated cycle in Q

connecting the vertices associated with the bounding edges.

For example, a visualization of the quiver associated with the first triangulation in fig. A.2 is given
in fig. A.3. Given a mutation, the minors generalizes to cluster variables that mutate as

µkxi =

{
1
xi
(
∏

j→i xj +
∏

j←i xj) i = k

xi i ̸= k
(A.9)

If we perform a mutation on node k, the quiver, and corresponding exchange matrix, mutate ac-
cording to the rules

• Reverse all arrows going in or out of k,

• For each sub-path of the form i→ k → j, add the arrow i→ j,

• Remove any two cycles that have formed.

One can explicitly check that eq. (A.9) and the preceding quiver mutation rules are a self con-
sistent generalization of those given for Gr(2, n). Finally, the ŷ coordinates also have a natural
generalization as

ŷi =
∏
j

x
−Bi,j

j , (A.10)

and mutate as

µj ŷi =

{
1
ŷi

i = j

ŷi(1 + ŷ
Sign(Bi,j)
j )Bi,j i ̸= j

. (A.11)
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We will denote the positive space parameterized by xi coordinates as A and the space parameter-
ized by ŷi coordinates as X . The relation between A and X is still under active research and not
completely understood.

Cluster algebras have many remarkable properties, such as the Laurent phenomenon. The clus-
ter variable of any quiver can be written as a Laurent polynomial of xi of some initial cluster. For
example, consider the cluster algebra associated with Gr(2, 5). One can show that any ⟨i′, j′⟩ can
be written as a Laurent polynomial of ⟨i, j⟩ in eq. (A.3). To learn about other amazing properties
of cluster algebras, the reader is referred to refs. [253, 254].

A.2 Differentiating x-variables with frozen nodes

Like ŷ-variables, x-variables will also obey additional relations when there are fewer frozen nodes.
To see this, again consider the A3 cluster algebra with initial quiver:

x1 x2 x3 .

Without any frozen nodes, all x-variables in the cluster algebra are

{x1, x2, x3

x2 + 1

x1
,

x1x3 + x22 + 2x2 + 1

x1x2x3
x2 + 1

x3
,

x1x3 + x2 + 1

x1x2
x1x3 + x2 + 1

x2x3
,

x1x3 + 1

x2
} .

(A.12)

The minimal multiplicative basis of the x-variables is rank 7:

{x1, x2, x3

x2 + 1, x1x3 + x22 + 2x2 + 1,

x1x3 + 1, x1x3 + x2 + 1} .
(A.13)

However, suppose we include the additional frozen node, z, so the initial quiver is now:

z

x1 x2 x3 .

(A.14)
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All x-variables in the cluster algebra are now

{z, x1, x2, x3

x2 + z

x1
,

x1x3z + zx22 + (1 + z2)x2 + z

x1x2x3
x2z + 1

x3
,

x1x3z + x2 + z

x1x2
x1x3 + x2z + 1

x2x3
,

x1x3 + 1

x2
} ,

(A.15)

so the multiplicative basis for x-variables is now rank 10:

{z, x1, x2, x3,

x2 + z, x1x3z + zx22 + (1 + z2)x2 + z, (A.16)

x1x3 + 1, x1x3z + x2 + z,

x2z + 1, x1x3 + x2z + 1} .

Comparing eqs. (A.12) and (A.15), one can clearly see that adding the frozen node, z, removes re-
lations between the x-variables. Therefore, adding more frozen nodes disentangles the x-variables.

Remarkably, the frozen nodes of a principle quiver are enough to ensure that all the x-variables
are maximally disentangled. To see this, note that the x-variables of a cluster algebra with com-

pletely arbitrary frozen nodes can be always be written in the form,

x = xg⃗F (ŷi)× (monomial of frozen variables) , (A.17)

where g⃗ and F (ŷi) are defined in eq. (2.8). The exact formula for computing the monomial
of frozen x-variables is unimportant for our purposes and the reader is referred to appendix B
of ref. [101] for details. From eq. (A.17), we see that the x-variable of a cluster algebra with
arbitrary frozen nodes is the same as the x-variable of cluster algebra with a principal quiver up
to a monomial of frozen x-variables. Therefore, one multiplicative basis of the ŷ-variables of a
cluster algebra with arbitrary frozen nodes is the multiplicative basis of ŷ-variables of a cluster
algebra with a principal quiver in addition to all the frozen x-variables.

To see this result explicitly, again consider the A3 cluster algebra. We now consider a cluster
algebra with the principal quiver:

y1 y2 y3

x1 x2 x3 .
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A complete basis of all F -polynomials is

f1 = 1 + ŷ1 ,

f2 = 1 + ŷ2 ,

f3 = 1 + ŷ3 ,

f4 = 1 + ŷ1 + ŷ1ŷ2 , (A.18)

f5 = 1 + ŷ3 + ŷ3ŷ2 ,

f6 = 1 + ŷ1 + ŷ3 + ŷ3ŷ1 + ŷ3ŷ2ŷ1 .

We can now apply the basis in eq. (A.18) to the quiver in (A.14), where

ŷ1 =
z

x2
, ŷ2 = x1x3, ŷ3 =

1

zx2
. (A.19)

Substituting eq. (A.19) into eq. (A.18) and including the x-variables of the initial quiver in (A.14)
yields the multiplicative basis

{z, x1, x2, x3 ,

f1 =
x2 + z

x2
,

f2 = x1x3 + 1 ,

f3 =
zx2 + 1

zx2
,

f4 =
x1x3z + x2 + z

x2
,

f5 =
x1x3 + x2z + 1

zx2
,

f6 =
zx1x3 + zx22 + (1 + z2)x2 + z

zx22
} .

(A.20)

Eq. (A.20) corresponds to a complete multiplicative basis for the x-variables in eq. (A.15). A
complete multiplicative basis for the ŷ-variables consists of the fi in eq. (A.20), the ŷi in eq.
(A.19) and z.
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A.3 Review: A1,1 cluster algebra

In this appendix, we consider the cluster algebra and scattering diagram associated with the prin-
cipal quiver,

y−1 y0

x−1 x0 ,

reviewing the results in refs. [36, 101, 102]. We perform repeated mutations on the nodes associ-
ated with x−1 and x0, starting with the x−1 node,

y0 y0 y0 y0

x−1 x0 x1 x0 x1 x2 x3 x2

y−1 y−1 y−1 y−1 . . . .

2 3

2 2 2

2

2

3

2

2 3 4

After a sequence of 2n mutations where n > 0, the quiver takes the form

y0

x2n−1 x2n

y−1 .

2n

2

2n−1

2n2n+1

Using cluster mutations and the above representation of the quiver after 2n mutations, we defined
a recursive solution for xi in this model, finding:

x2n−1x2n−3 = (y2n−1−1 y2n−20 + x22n−2) ,

x2nx2n−2 = (y2n−1y
2n−1
0 + x22n−1) .

(A.21)

This form of the mutation relations is still too complicated to solve analytically due to being inher-
ently nonlinear. Instead, we identify a new variable,

P =
y−1
x−1x0

+
x0
x−1

+
x−1y−1y0

x0
, (A.22)

such that
x2n−1 = x2n−2P − x2n−3F , F = y−1y0 . (A.23)
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Figure A.4: Cluster polytopes corresponding to A2 (left) and A3 (right).

P is not an element of the cluster algebra, but a cluster-like variable associated with the limiting
ray. For further discussion of P , the reader is referred to ref. [36]. Only eq. (A.23) is important
for our purposes, which one can explicitly check.

We can solve eq. (A.23) by first writing down the associated generating function:

Gi>0(t) =
x0 − x−1Ft
1− Pt+ Ft2 =

∞∑
n=0

xit
i , (A.24)

and then finding a closed-form expression for the derivatives of Gn>0(t):

xi =
1

2i+2
[(x−1 +B+

√
△)(P +

√
△)i+1 + (x−1 −B+

√
△)(P −

√
△)i+1] ,

B+ =
2x0 − x−1P

△ , (A.25)

△ = P2 − 4F .

Using our closed form expressions for xi in eq. (A.25), it is trivial to calculate closed form expres-
sions for ŷi after 2n mutations:

ŷ2n−1 = y2n0 y
2n+1
−1 x−22n , ŷ2n = y1−2n0 y−2n−1 x

2
2n−1 . (A.26)

A.4 Review: cluster polytopes

Instead of investigating the scattering diagram, much research has focused on a closely related ob-
ject, the cluster polytope. Every scattering diagram is dual to a polytope where vertices correspond
to cones, facets to g-vectors, and edges to walls. More concretely, one can define a polytope using
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facet vectors:
{Y ∈ PN |Y ·Wi ≥ 0 for all i} . (A.27)

For a cluster polytope, the facet vectors, Wi, match onto the g-vectors

Wi = (ci, g⃗i) (A.28)

where the constants, ci, are chosen such that the polytope has the correct vertex and facet structure.
As an example, fig. A.4 shows the cluster polytopes associated with A2 and A3 [128]. The fan
and polytope interpretation are equivalent and simply correspond to different visualizations of the
same combinatorial data.

Given a set of tropical functions, fi, an obvious question is how to derive the cluster polytope
associated with the corresponding fan without calculating all the ci in eq. (A.28). The answer is re-
markably simple. For each fi, we associate a corresponding polytope, Pi, by taking the convex hull
of exponent vectors for each term. As an example, consider the following Laurent polynomials,

f1 = 1 + x→ {(0, 0), (0, 1)}
f2 = 1 + x+ xy → {(0, 0), (0, 1), (1, 1)} ,

(A.29)

where we have listed the vertices of the corresponding polytopes. We then consider the Minkowski
sum of all such polytopes. Alternatively, we simply take the product of all such fi and find the
associated P using the same procedure

f1f2 = (1 + x)(1 + x+ xy) → {(0, 0), (1, 0), (1, 1), (2, 0), (2, 1)} . (A.30)

A proof of this procedure is provided in ref. [32].
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A.5 Comparison to the origin clusters of ref. [102]

In this appendix, we compare our techniques and results to those of ref. [102]. The general
computation strategy of ref. [102] revolved around studying clusters with quivers of the form

fz z0

a2 a1 b1 b2 b3 a3 a4 ,

fw w0

where we have suppressed all frozen variables disconnected from the A1,1 subalgebra. Such clus-
ters were called origin clusters. The authors then used the generating function of the A1,1 subalge-
bra in eq. (A.25) to motivate three algebraic functions:

w0 −Bw

√△
w0 +Bw

√△ ,
z0 −Bz

√△
z0 +Bz

√△ ,
P −√△
P +

√△ , (A.31)

where

z1 =
b1b2b3 − fwz

2
0

w0

, w1 =
b1b2b3 − fzw

2
0

z0
,

Bw =
2w1 − w0P

△ , Bz =
2z1 − z0P

△ , (A.32)

P =
fzw0 + z1

z0
, △ = P2 − 4fwfz .

The multiplicative functions in eq. (A.31) are simply an alternative multiplicative basis for the ŷ±γi
of the A1,1 subalgebra found in section 2.2.3. The authors ultimately studied 32 origin clusters for
each limiting ray apparently relevant for N = 4 pSYM.

Including the rational x-variables associated with the origin cluster, this method ultimately
yields a multiplicative basis for the ŷ0γi of the two asymptotic chambers associated with each origin
cluster. Mutating w0 (z0) first leads to the first (second) asymptotic chamber after an infinite num-
ber of mutations on the A1,1 subalgebra. Notably, this technique only allows one to probe the ŷ0γi
of asymptotic chambers adjacent to a limiting wall. To see this, note that the generalized mutation
identified in section 2.2.3 applies to the A1,1 subalgebra when asymptotically close to the limiting
ray. Since a generalized mutation corresponds to a limiting wall, the asymptotic chamber must be
adjacent to a limiting wall. However, many asymptotic chambers are not adjacent to a limiting
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wall. For example, consider the asymptotic scattering diagram in fig. 2.7, which is associated with
the limiting ray of theA2,1 cluster algebra. There are two asymptotic chambers, C2 and C5, that are
not adjacent to the limiting wall. To probe the ŷ0γi of such asymptotic chambers, one must either
find a generating function for the sequences of cones that do not explicitly contain an A1,1 sub-
algebra or use the wall-crossing techniques developed in this paper. Excluding these asymptotic
chambers when calculating the multiplicative basis for ŷγi leads to a truncated asymptotic symbol
alphabet. For example, excluding asymptotic chambers C2 and C5 of A2,1 leads to the truncated
alphabet,

ŷ0γ1 , ŷ
0
γ2
, ŷ0γ3 ,

1 + ŷ0γ1 ŷ
0
γ2
ŷ0γ3

1 + ŷ0γ1
, 1− ŷ0γ2 ŷ

0
γ3
, (A.33)

in comparison to the full alphabet in eq. (2.53).
Interestingly, the ŷγi of asymptotic chambers adjacent to the limiting wall are enough to derive

the algebraic letters that have appeared in explicit computations. Rather, the known 18 algebraic
letters that appear in the 8-point 2-loop NHMV amplitude are monomials of algebraic variables in
the form of eq. (A.31). However, there is no obvious reason why additional algebraic letters could
not appear at higher loop orders.
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APPENDIX B

Explicit Expressions for Generalized KLT Double
Copy

B.1 Pions, Special Galileons and Born-Infeld Photons

In Section 3.5 we discuss in detail which higher-derivative Yang-Mills operators that can be double-
copied and what corrections they map to in the resulting theory of gravity. This is of course not
the only effective field theory that can be double-copied via the formalism introduced in Section
3.2. A far simpler theory is a non-linear sigma model of pions, also known as chiral perturbation
theory, whose 4-point amplitude at leading order is

A0
4[1234] =

t

f 2
π

, (B.1)

where fπ is the pion decay constant.
To find double-copy-compatible corrections, we start with an ansatz1,

A4[1234] =
t

f 2
π

+
b1,1s

2 + b1,2st+ b1,3t
2

Λ4
+
b2,1s

3 + b2,2s
2t+ b2,3st

2 + b2,4t
3

Λ6

+
b3,1s

4 + b3,2s
3t+ b3,3s

2t2 + b3,4st
3 + b3,5t

4

Λ8
+O

(
1

Λ10

)
, (B.2)

with appropriate superscripts on the parameters bi,j for the left and right KKBCJ-compatible am-
plitudes.

Since we are dealing with a scalar theory, every other color-ordering is a simple relabeling
of (B.2). As a result the (right) KKBCJ relations of Section 3.4 can be rewritten as consistency

1While it is a priori possible that the amplitude begins with a constant contribution at order Λ0, such a term is
forbidden by the leading order BCJ relations.
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conditions on the (right) amplitude such as,

A4[1234] = m[1234|1432]m[1243|1432]−1A4[1243] , (B.3)

where A4[1243] is given by a 3 ↔ 4 relabelling of A4[1234].
Solving such consistency conditions usingm[α|β] given in Section 3.4, gives us the final NLSM

amplitudes,

AR
4 [1234] =

t

(fR
π )

2 +
a1,1stu

(fR
π )

2 g2Λ4
+
bR
2,4 t(s

2 + t2 + u2)

2Λ6
− bR

3,3 st
2u

Λ8
+O

(
1

Λ10

)
, (B.4)

AL
4 [1234] =

t

(fL
π )

2 +
(a1,1 − a1,0)stu

(fL
π )

2 g2Λ4
+
bL
2,4 t(s

2 + t2 + u2)

2Λ6
− bL

3,3 st
2u

Λ8
+O

(
1

Λ10

)
. (B.5)

Note that all corrections that are quadratic in Mandelstam variables are disallowed. This is impor-
tant in Born-Infeld theory as we discuss below.

To construct Born-Infeld amplitudes in all helicity sectors, we will also need the self-dual, next-
to-self-dual and MHV Yang-Mills amplitudes that are compatible with the KLT kernel developed
in Section 3.4. These are given in (3.95), (3.96) and (3.85).

We now construct higher derivative corrections to the special Galileon and Born-Infeld ampli-
tudes,

MsGal
4 (1234) =− stu

(fL
π )

2 (fR
π )

2 g
− (bL

2,4

(
fL
π

)2
+ bR

2,4

(
fR
π

)2
)stu(s2 + t2 + u2)

2 (fL
π )

2 (fR
π )

2 g2 Λ6

+
((bL

3,3

(
fL
π

)2
+ bR

3,3

(
fR
π

)2
)g2 + a2,0Λ

4) s2t2u2

(fL
π )

2 (fR
π )

2 g4 Λ8
+O

(
1

Λ10

)
, (B.6)

MBI
4 (1

+2+3−4−) =[12]2⟨34⟩2
[
−
(
gR

YM

)2
(fL

π )
2 g2

+

(
gR
F 3

)2
tu

(fL
π )

2 g2Λ4
−
(
gR

YM

)2
bL
2,4 (s

2 + t2 + u2)

2g2Λ6

−

(
eR3,1 g

2 − a2,0
(
gR

YM

)2)
stu

(fL
π )

2 g4Λ6
+O

(
1

Λ8

) , (B.7)

MBI
4 (1

+2+3+4−) =[12]2[3|1|4⟩2
[
− gR

F 3gR
YM

(fL
π )

2 g2Λ2
− gR

F 3 gR
YM b

L
2,4 (s

2 + t2 + u2)

2g2Λ8

−(cR1 g
2 − a2,0g

R
F 3gR

YM)stu

(fL
π )

2 g4 Λ8
+O

(
1

Λ10

)]
, (B.8)

MBI
4 (1

+2+3+4+) =
s2tu2

⟨12⟩⟨23⟩⟨34⟩⟨41⟩

[
− 2gR

F 3gR
YM

(fL
π )

2 g2Λ2
+

(
dR
1g

2 − 4a1,1g
R
F 3gR

YM

)
(s2 + t2 + u2)

4 (fL
π )

2 g4Λ6

]

+O

(
1

Λ8

)
. (B.9)
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One of the applications of this analysis is determining whether or not duality symmetry is
anomalous. Born-Infeld theory is known to have an electromagnetic duality at tree-level which
manifests on the scattering amplitudes as an optical helicity conservation rule. In order for the
symmetry to be non-anomalous at 1-loop, duality-violating amplitudes should be removable by
the addition of local counterterms for e.g. a Λ−6 counterterm at 4-point. This was found to be
true [257], though the 1-loop regularization scheme was incompatible with the double-copy, i.e.
the local counterterms necessary to restore the symmetry were not produced by the double-copy
[167]. It is interesting that the more nuanced approach to higher-derivative corrections in the
double-copy explored in this paper results in (B.8) and (B.9) which also lack Λ−6 corrections, in
keeping with the previous analysis.

At 5-point, higher-derivative corrections added to the kernel do not change a previously noted
[135] result that the first BCJ-compatible correction to χPT occurs at 14-derivative order. In par-
ticular, this means that the WZW term is incompatible with the generalized KKBCJ constraints.

B.2 Analytic Expressions for the 5-Point Bootstrap

We arrange the 24 × 24 matrix m[a|b] according to the following ordering of the permutations of
momenta 2, 3, 4, 5:

{12345, 12354, 12435, 12453, 12534, 12543, 13245, 13254,
13425, 13452, 13524, 13542, 14235, 14253, 14325, 14352,

14523, 14532, 15234, 15243, 15324, 15342, 15423, 15432} .
(B.10)

As described in Section 3.6.1, the 5-point bootstrap equations can be solved for g4-g8 in terms of
g1, g3, and g3. The following are the results, we indicate which minors are set to set to zero to
obtain each relation using the notation that

Minor3[r1, r2, r3; c1, c2, c3], (B.11)

denotes the 3× 3 minor with rows r1, r2, r3 and columns c1, c2, c3 with labels refering to the basis
(B.10). We use cyclic symmetry of g1 to simplify the results as well as momentum relabeling.

From Minor3[1, 2, 3; 1, 2, 4] we get

g4[12345] =
(
g1[12345]g1[12354]g2[12534]− g2[12345]g2[12354]g2[12534]

− g1[12345]g2[41253]g3[12354] + g2[12345]g3[12345]g3[12534]
)

(
g1[12354]g3[12534]− g2[12354]g2[41253]

)−1
.

(B.12)
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From Minor3[1, 2, 7; 1, 2, 3] we get

g5[12345] =
(
g1[13245]g1[13254]g3[51234]− g1[13254]g2[45123]g2[51324]

− g2[13245]g2[13254]g3[51234] + g2[13245]g2[45123]g3[25413]
)

(
g1[13245]g3[25413]− g2[13254]g2[51324]

)−1
.

(B.13)

From Minor3[1, 2, 3; 1, 2, 11] we get

g6[12345] =
(
g1[12345]g1[12354]g3[35124]− g1[12345]g3[12435]g3[41235]

− g2[12345]g2[12354]g3[35124] + g2[12345]g2[51243]g3[41235]
)

(
g1[12354]g2[51243]− g2[12354]g3[12435]

)−1
.

(B.14)

From Minor3[1, 2, 3; 1, 2, 14] we get

g7[12345] =
(
g1[12345]g1[12354]g5[12435]− g1[12345]g3[12435]g5[23541]

− g2[12345]g2[12354]g5[12435] + g2[12345]g2[51243]g5[23541]
)

(B.15)(
g1[12354]g2[51243]− g2[12354]g3[12435]

)−1
.

where g5 is as given in (B.13). From Minor3[1, 2, 3; 1, 2, 24] we get

g8[12345] =
(
g1[12345]g1[12354]g4[43512]− g1[12345]g3[12435]g4[54123]

− g2[12345]g2[12354]g4[43512] + g2[12345]g2[51243]g4[54123]
)

(
g1[12354]g2[51243]− g2[12354]g3[12435]

)−1
.

(B.16)

where g4 is as given in (B.12).
The perturbative solutions for the g functions are

g1[12345] =g
3

(
1

s12s34
+

1

s23s45
+

1

s34s51
+

1

s45s12
+

1

s51s23

)
+

g

Λ4
(a1,0 − 2a1,1)

(
s35
s12

+
s41
s23

+
s13
s45

+
s24
s51

+
s52
s34

+ 1

)
− ga2,0

Λ6

(
s235
s12

+
s241
s23

+
s213
s45

+
s224
s51

+
s252
s34

)
+O

(
1

Λ5

)
, (B.17)

g2[12345] =g
3

(
− 1

s12s45
− 1

s23s45

)
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+
g

Λ4

(
(2a1,1 − a1,0)

s13
s45

+ a1,0

(
s35
s12

+
s14
s23

)
+ a1,1

(
s45
s12

+
s45
s23

− 2

))
+
ga2,0
Λ6

(
s213
s45

− s14s15
s23

− s34s35
s12

− 2s13

)
+O

(
1

Λ5

)
, (B.18)

g3[12345] = g3
(
− 1

s12s45

)
+

g

Λ4

(
a1,0

(
s13
s45

+
s35
s12

− 1

)
+ a1,1

(
s45
s12

+
s12
s45

))
+
ga2,0
Λ6

(
− s13s23

s45
− s34s35

s12
+ s14 + s25

)
+O

(
1

Λ5

)
, (B.19)

g4[12345] = g3
(

1

s12s45
+

1

s12s34

)
+

g

Λ4

(
(a1,0 − 2a1,1)

s35
s12

+ a1,0

(
−s13
s45

− s25
s34

)
+ a1,1

(
−s12
s45

− s12
s34

+ 2

))
+
ga2,0
Λ6

(
s15s25
s34

+
s13s23
s45

− s235
s12

+ 2s35

)
+O

(
1

Λ5

)
, (B.20)

g5[12345] = g3
(

1

s23s45

)
+

g

Λ4

(
a1,0

(
1− s14

s23
− s13
s45

)
+ a1,1

(
−s23
s45

− s45
s23

))
+
ga2,0
Λ6

(
s14s45
s23

− s13s12
s45

+
s214
s23

+ s12 + 2s24

)
+O

(
1

Λ5

)
, (B.21)

g6[12345] =
g

Λ4
a1,0 +

ga2,0
Λ6

(s13 + 2s14 − s23 + s24) +O

(
1

Λ5

)
, (B.22)

g7[12345] = − g

Λ4
a1,0 −

ga2,0
Λ6

(s13 + 2s14 − s23 + s24) +O

(
1

Λ5

)
, (B.23)

g8[12345] = g3
(

1

s12s34
+

1

s23s45
+

1

s34s51
+

1

s45s12
+

1

s51s23

)
+

g

Λ4
(a1,0 − 2a1,1)

(
s35
s12

+
s41
s23

+
s13
s45

+
s24
s51

+
s52
s34

+ 1

)
− ga2,0

Λ6

(
s235
s12

+
s241
s23

+
s213
s45

+
s224
s51

+
s252
s34

)
+O

(
1

Λ5

)
. (B.24)
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APPENDIX C

Background on Anti-de Sitter

C.1 Embedding space formalism

The AdSd+1 background can be realized as a space-like hypersurface in the (d+2) dimensional flat
spacetime Rd+1,1. Under Cartesian coordinates XA = (Xa, Xd, Xd+1), the hypersurface is given
by the equation

(X0)2 + (X1)2 + · · ·+ (Xd−1)2 + (Xd)2 − (Xd+1)2 = −R2 . (C.1)

The Poincaré coordinates of AdSd+1 are given by the following parametrization,

Xa =
R

z
xa , Xd =

R

z

1− x2 − z2

2
, Xd+1 =

R

z

1 + x2 + z2

2
, (C.2)

such that for R = constant we have

ds2AdSd+1
= gµνdx

µdxν =
R2

z2
(
dz2 + dxadx

a
)
. (C.3)

We can also view eq. (C.2) as a coordinate transformation from the Cartesian coorinates XA to the
coordinates (R, z, xa), under which metric of Rd+1,1 becomes

ds2R2,d = −dR2 + ds2AdSd+1
. (C.4)

In fact, (R, z, xa) are Gaussian normal coordinates adapted to the AdS hypersurface and the gµν in
eq. (C.3) is the induced metric.

When we study a scalar field ϕ on AdSd+1, it is convenient to extend its definition to the entire
embedding space. However, we need to make sure that the dynamics does not depend on the

173



variation normal to the AdS hypersurface. It is not difficult to show that

ηAB∂Aϕ∂Bϕ = −(∂Rϕ)
2 + gµν∂µϕ∂νϕ ,

1

R
XA∂Aϕ = ∂Rϕ . (C.5)

We can thus define

GAB = ηAB − XAXB

X2
= gµν

∂XA

∂xµ
∂XB

∂xν
, (C.6)

such that

GAB∂Aϕ∂Bϕ = gµν∂µϕ∂νϕ . (C.7)

One can also prove that the AdS Laplacian is given by

∂A(G
AB∂B) = −1

2
D2

X = ∇2
AdS . (C.8)

The matrix form of GAB under the (R, z, xa) coordinates is

GAB
transformation (C.2)−−−−−−−−−−→

(
0 0

0 gµν

)
, (C.9)

namely, GAB is indeed a projector to AdSd+1. One can easily show that GAB is idempotent and
transverse to the normal vector XA,

GA
BGB

C = GA
C , GABX

B = 0 . (C.10)

Geometrically, GAB is the first fundamental form associated to the hypersurface (C.1). From now
on, we fix R = 1 for the AdS hypersurface, such that the AdS integration measure becomes∫

AdS
dX ≡

∫
AdS

δ(R− 1)Rd+1dRdzddx

zd+1
=

∫
AdS

dzdxd

zd+1
. (C.11)

Thus we can perform integration-by-parts for ∂/∂XA if it appears in the integrand as
∂

∂XA (G
AB · · · ) or GBA ∂

∂XA (· · · ), since the projector GAB removes ∂
∂R

so the measure remains
invariant.

A tensor HA1A2...An in the embedding space defines a tensor on AdS if it is transverse to the
AdS hypersurface,

XAiHA1A2...An = 0 , 1 ⩽ i ⩽ n . (C.12)
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The AdS tensor can be recovered through the projection

hµ1µ2...µn =
∂XA1

∂xµ1

∂XA2

∂xµ2
. . .

∂XAn

∂xµn
HA1A2...An . (C.13)

From this equation and the relation (C.6) between gµν and GAB, we can show that the contraction
between two AdS tensors can be uplifted into the embedding space,

hµ1µ2...µng
µiνjfν1ν2...νm = HA1A2...AnG

AiBjFB1B2...Bm = HA1A2...Anη
AiBjFB1B2...Bm , (C.14)

where the second equality is due to the transversality. Conditions like being symmetric and trace-
less of an AdS tensor can be directly imposed on its embedding space uplift. A more formal
discussion on this topic can be found in ref. [229].

The conformal boundary of AdS is located at z → 0. We can represent a boundary point xai by
a projective null vector in the embedding space,

Pi =
(
xai ,

1− x2i
2

,
1 + x2i

2

)
. (C.15)

Obviously we have P 2
i = 0 and we identify Pi ∼ λPk. A polarization vector ϵai on the boundary

can also be represented in the embedding space,

Zi = (ϵai ,−ϵi · xi, ϵi · xi) , (C.16)

such that Pi ·Zi = 0 and Zi ·Zi = ϵ2i = 0. A tensor current FA1A2...An(P ) defined on the null cone
P 2 = 0 is physical only if it is homogeneous and transverse,

FA1A2...An(λP ) = λ−∆FA1A2...An(P ) , PAiFA1A2...An(P ) = 0 , 1 ⩽ i ⩽ n . (C.17)

Finally, we list a few useful relations that connect the embedding space and physical space expres-
sions,

−2X · Pi = z + z−1(x− xi)
2 , −2Pi · Pj = (xi − xj)

2 ,

Pi · Zj = ϵj · (xi − xj) , Zi · Zj = ϵi · ϵj , (C.18)

where X is a bulk point defined as in eq. (C.2).
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C.2 Contact diagrams in AdS

Contact diagrams of scalar operators play a crucial role in flat space scattering amplitudes. Cru-
cially, the delta function that imposes momentum conservation on an n-point scattering amplitudes
arises from the contact diagram of an n-point scalar vertex

Aflat
contact =

∫
ddx

∏
i

eipix

= δd
(∑

i

pµi

) (C.19)

The contact diagrams of n-point scalar vertex operators play an analogous role in AdS, giving the
AdS analog of the flat space delta function. The contact diagram associated with the vertex

∏
i ϕi

in AdS is

An
contact =

(
n∏

i=1

Γ(∆i)

2πd/2Γ(∆i − d/2 + 1)

)
D∆1...∆n (C.20)

where

D∆1...∆n =

∫
AdS

dX
n∏

i=1

1

(−2Pi ·X)∆i
(C.21)

is the D-function. Any tree-level position space correlator in AdS will be a polynomial in D-
functions, Z-variables and P -variables. Similar to how all flat space scattering amplitudes contain
a universal momentum conserving delta function, each term in the polynomial expansion of the
position space correlator contains its own D-function. A major challenge for evaluating position
space correlators in AdS is finding representations of D-functions amiable to numeric approxima-
tion.

C.2.1 Three-point D-functions

The D-functions that appear in three-point correlators can be integrated directly:

D∆1∆2∆3 =

∫
AdS

dX

3∏
i=1

1

(−2Pi ·X)∆i

=
πd/2

2
∏

i Γ(∆i)
Γ

(
∆1 +∆2 +∆3 − d

2

)∏
i<j

Γ(δij)

(−2Pi · Pj)δij
(C.22)

δij =
1

2
(∆i +∆j −∆k) .
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The three-pointD-function is the one which has a rational dependence on coordinates; higher point
D-functions are rather non-trivial functions.

C.2.2 Exact solution of four-point D-functions

In this section, we review a derivation of an exact solution to the four-point D-function in terms
of derivatives of polylogarithms. Advantages (and disadvantages) of alternative methods are dis-
cussed at the end.

To find a numerically tractable representation of eq. (C.21), we first rewrote theD-function into
a Feynman parameterization:

D∆1,∆2,∆3,∆4 =
πd/2Γ(Σ−d

2
)Γ(Σ

2
)

2
∏

i Γ(∆i)

∫ ∏
j α

∆j−1
j δ(

∑
i αi − 1)

(
∑

k,l αkαlPk,l)Σ/2
, (C.23)

where Σ = ∆1 +∆2 +∆3 +∆4. Our goal is to find an exact solution for the integral in eq. (C.23)
that can be used for numerical analysis in Mathematica. We first solve for the integral in eq. (C.23)
for the simplest case when ∆i = 1 for all i’s, which we denote as B(Pij). It is nothing but the
four-mass box integral [53, 258],

B(Pij) =

∫ ∏
j dαjδ(

∑
i αi − 1)(∑

k,l αkαlPk,l

)
=

1√
∆′

[
1

2
log

(
u+u−

(1− u+)2(1− u−)2

)
log

u+
u−

− Li2(1− u+) + Li2(1− u−)− Li2
(
1− 1

u−

)
+ Li2

(
1− 1

u+

)]
,

(C.24)

where

∆′ = X2 + Y 2 + Z2 − 2XY − 2Y Z − 2ZX , X = P12P34 , Y = P13P24 ,

u± =
Y +X − Z ±

√
∆′

2Y
, Z = P14P23 . (C.25)

Note that eq. (C.24) is simply the standard four-mass box integral whose solution has been
known for 20 odd years.1 We then identify a simply relation between derivatives of B(Pij) and

1The same integral was evaluated in eq. (39) in ref. [259], but their solution appears to have a typo. One can test
the relative sign of individual terms in a given convention by checking whether the resulting D-function obeys the
properties given in appendix C.2.3.
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D∆1,∆2,∆3,∆4 to find a generic solution for four-point D-functions:

πd/2(−1)
∑

i<j cijΓ(Σ
′−d
2

)Γ(Σ
′

2
)

2Γ(2 +
∑

i<j cij)(
∏

i Γ(∆
′
i))

[∏
i<j

(
∂

∂Pij

)cij
]
B(Pij)

=
πd/2Γ(Σ

′−d
2

)Γ(Σ
′

2
)

2(
∏

i Γ(∆
′
i))

∫ ∏
a dαaα

∆′
a−1

a δ(
∑

b αb − 1)(∑
i,j αiαjPij

)Σ′/2

= D∆′
1,∆

′
2,∆

′
3,∆

′
4
,

(C.26)

where ∆′i =
∑

j ̸=i cij + 1 and Σ′ =
∑

i ∆
′
i. Equations (C.24) and (C.26) together provide a

closed form expressions for arbitrary four-point D-functions in terms of derivatives of polylog-
arithms. Unfortunately, although this representation is advantageous in that it provides an exact

representation of the D-function in terms of polylogarithms, the D-function expressions become
cumbersome very quickly, even for symbolic computation programs such as Mathematica. We
ultimately used numeric differentiation algorithms in combination with eqs. (C.24) and (C.26) to
solve for the D-functions at arbitrary kinematic points. These results were cross-checked with
more direct numeric integrations of eq. (C.23).

Finding numerically tractable representations of D-functions is generically quite hard. For
example, although standard Mellin integral representations of the D-function can be integrated
numerically with high precision, defining the actual contour for integration is somewhat subtle.
While the Mellin representation of Feynman integrals is largely understood, the problem seems
to be slightly more technically challenging for the D-functions corresponding to AdS contact di-
agrams. One might hope that numeric integration in the Feynman representation would offer a
more realistic approach, as it suffers from no contour ambiguities. Unfortunately, direct numeric
integration of Feynman parameterized integrals is often unstable for arbitrary kinematics and ∆i

unless sophisticated weighted Monte-Carlo sampling techniques are applied. For example, see
ref. [260].

C.2.3 D-function identities

When computing NLSM and YM AdS boundary correlators, we have used some D-function iden-
tities to simplify the results. In this appendix, we derive these identities starting from the conformal
Ward identity. We start with the four-point case,

(DAB
1 +DAB

2 +DAB
3 +DAB

4 )D∆1,∆2,∆3,∆4 = 0 . (C.27)
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We can act respectively (D1 +D3)
AB and (D2 +D4)

AB onto this equation, giving

(2D2
13 +D2

1 +D2
3)D∆1,∆2,∆3,∆4 = −(D1 +D3)AB(D2 +D4)

ABD∆1,∆2,∆3,∆4 ,

(2D2
24 +D2

2 +D2
4)D∆1,∆2,∆3,∆4 = −(D2 +D4)AB(D1 +D3)

ABD∆1,∆2,∆3,∆4 . (C.28)

Since (D1 +D3) commutes with (D2 +D4) and D2
i = −2m2

i = −2∆i(∆i − d) when acting on a
conformal partial wave, we get

(D2
23 −m2

2 −m2
3)D∆1,∆2,∆3,∆4 = (D2

14 −m2
1 −m2

4)D∆1,∆2,∆3,∆4 . (C.29)

In particular, when ∆i = ∆, we have

D2
13D∆,∆,∆,∆ = D2

24D∆,∆,∆,∆ . (C.30)

The above relation can be easily generalized to n-points,(
D2

I −
∑
i∈I

m2
i

)
D∆1,∆2,...,∆n =

(
D2

Ī −
∑
i∈Ī

m2
i

)
D∆1,∆2,...,∆n , (C.31)

where I ∪ Ī = {1, 2, . . . , n} and I ∩ Ī = ∅.
We can also carry out the derivatives in eq. (C.29) explicitly to obtain relations involving bound-

ary positions. For example, we can use

−1

2
D2

13D∆1,∆2,∆3,∆4 = 4∆1∆3(P1 · P3)D∆1+1,∆2,∆3+1,∆4 +∆1∆3D∆1,∆2,∆3,∆4 , (C.32)

and a similar equation for D2
24 to show that

(P1 · P3)D∆+1,∆,∆+1,∆ = (P2 · P4)D∆,∆+1,∆,∆+1 for ∆i = ∆ . (C.33)

One can also show that acting D2
12 and D2

13 consecutively gives

1

4
D2

12D
2
13D∆1,∆2,∆3,∆4 = 16∆1(∆1 + 1)∆2∆3(P1 ·P2)(P1 ·P3)D∆1+2,∆2+1,∆3+1,∆4 (C.34)

+ 4∆1(∆1 + 1)∆2∆3

[
(P1 ·P2)D∆1+1,∆2+1,∆3,∆4 + (2 ↔ 3)

]
− 4∆1∆2∆3(P2 ·P3)D∆1,∆2+1,∆3+1,∆4 +∆2

1∆2∆3D∆1,∆2,∆3,∆4 ,

which is symmetric under the 2 ↔ 3 exchange. This also means that D∆1,∆2,∆3,∆4 lives in the
kernel of [D2

12, D
2
13], namely, [D2

12, D
2
13]D∆1,∆2,∆3,∆4 = 0.
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Next, we act DAB
1 onto eq. (C.27) and then use eq. (C.29) to eliminate D2

14. This gives

(D2
12 +D2

13 +D2
23)D∆1,∆2,∆3,∆4 + (m2

4 −m2
1 −m2

2 −m2
3)D∆1,∆2,∆3,∆4 = 0 . (C.35)

When ∆i = ∆, we get

(D2
12 +D2

13 +D2
23)D∆,∆,∆,∆ = 2∆(∆− d)D∆,∆,∆,∆ . (C.36)

This equation also implies the identity

(P1 · P2)D∆+1,∆+1,∆,∆ + (P1 · P3)D∆+1,∆,∆+1,∆

+ (P2 · P3)D∆,∆+1,∆+1,∆ = −4∆− d

4∆
D∆,∆,∆,∆ . (C.37)

In the on-shell limit ∆ = d, we thus derive the relation

(D2
12 +D2

13 +D2
23)Dd,d,d,d, = 0 , (C.38)

which resembles the relation s+ t+ u = 0 for flat space Mandelstam variables.
The above identities can also be derived using integration-by-parts relations. Below we show

the derivation of eq. (C.29). Our calculation will be given in the embedding space, which is in
parallel with the one in the physical space [49]. To start with, we define

D∂∆1,∆2,∂∆3,∆4 ≡
∫

AdS
dXGAB

[
∂

∂XA

1

(−2P1 ·X)∆1

]
1

(−2P2 ·X)∆2

×
[

∂

∂XB

1

(−2P3 ·X)∆3

]
1

(−2P4 ·X)∆4

= 4∆1∆3(P1 · P3)D∆1+1,∆2,∆3+1,∆4 +∆1∆3D∆1,∆2,∆3,∆4 . (C.39)

We then use the identity

∂AG
AB∂B

[
1

(−2P1 ·X)∆1

1

(−2P3 ·X)∆3

]
= 2GAB ∂

∂XA

1

(−2P1 ·X)∆1

∂

∂XB

1

(−2P3 ·X)∆3

+
m2

1 +m2
3

(−2P1 ·X)∆1(−2P3 ·X)∆3
(C.40)

to write eq. (C.39) as

D∂∆1,∆2,∂∆3,∆4 +
1

2
(m2

1 +m2
3)D∆1,∆2,∆3,∆4
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=
1

2

∫
AdS

dX(∂AG
AB∂B)

[
1

(−2P1 ·X)∆1

1

(−2P3 ·X)∆3

]
1

(−2P2 ·X)∆2

1

(−2P4 ·X)∆4

=
1

2

∫
AdS

dX(∂AG
AB∂B)

[
1

(−2P2 ·X)∆2

1

(−2P4 ·X)∆4

]
1

(−2P1 ·X)∆1

1

(−2P3 ·X)∆3

= D∆1,∂∆2,∆3,∂∆4 +
1

2
(m2

2 +m2
4)D∆1,∆2,∆3,∆4 , (C.41)

where integration-by-parts has been used to obtain the second equation. This leads to the identity

4∆1∆3(P1 · P3)D∆1+1,∆2,∆3+1,∆4 +
1

2
(2∆1∆3 +m2

1 +m2
3)D∆1,∆2,∆3,∆4

= 4∆2∆4(P2 · P4)D∆1,∆2+1,∆3,∆4+1 +
1

2
(2∆2∆4 +m2

2 +m2
4)D∆1,∆2,∆3,∆4 . (C.42)

When ∆i = ∆, we can recover (P1 · P3)D∆+1,∆,∆+1,∆ = (P2 · P4)D∆,∆+1,∆,∆+1. Now using
eq. (C.32) to replace Pi · Pj by D2

13 immediately leads to

(D2
23 −m2

2 −m2
3)D∆1,∆2,∆3,∆4 = (D2

14 −m2
1 −m2

4)D∆1,∆2,∆3,∆4 . (C.43)

C.3 Useful Integral Identities

In this appendix, we discuss how we checked that Eq. (4.162) holds. Crucially, first note that
f̂(D2

Q) becomes f̂(d2/4 − c2) upon acting on C5(Pi, Q,Q
′) in Eq. (4.158) and is therefore inde-

pendent of Q. However, non-trivial dependence on Q emerges upon acting (DQ ·Di)
N(DQ ·Dj)

M

on C5(Pi, Q,Q
′). We explicitly checked that the resulting expression vanishes upon integrating

over Q for N +M ≤ 10.
We review the computation strategy to integrate over Q. We find that the integrand contains

terms whose Q-dependence takes the generic form

Ia1,a2,... =

∫
∂AdS

dQ

∏
i(−2Q · Pi)

ai

(−2Q ·X)d+
∑

i ai
. (C.44)

We first consider the simplest specialization of Eq. (C.44):

Ia =

∫
∂AdS

dQ
(−2Q · P1)

a

(−2Q ·X)d+a
. (C.45)

Using the identity
Γ[a]

fa
=

∫ ∞
0

dv

v
vae−vf , (C.46)
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we can rewrite Eq. (C.45) as(
∂

∂α

)a ∫
∂AdS

dQ

∫ ∞
0

dv

v

vd+ae2Q·(vX−αP1)

Γ[d+ a]
|α=0 . (C.47)

Finally, using the identity ∫
∂AdS

dQe2Q·T =
πd/2

|T |d/2 e
−|T | (C.48)

the integral over Q in Eq. (C.47) yields

(
∂

∂α

)a ∫
vd+a−1πd/2e−

√
vα(−2X·P1)−v2dv

Γ[d+ a](vα(−2X · P1)− v2)d/4
|α=0 (C.49)

which simplifies to

Ia = (−2P1 ·X)aπd/2Γ[
d
2
+ a]

Γ[d+ a]
. (C.50)

This computation strategy generalizes to all integrals of the form Eq. (C.44). Writing the result in
a tensor version of Eq. (C.44), the integral yields

IA1,...,An =

∫
dQ

QA1 . . . QAn

(−2Q ·X)d+n
,

=
πd/2Γ(d/2 + n)

Γ(d+ n)
XA1 . . . XAn − Traces

(C.51)

where traces are subtracted using ηAB.
Eq. (C.51) was originally given in Ref. [247] by taking derivatives of the integral

I(X) =

∫
dQ

1

(−2Q ·X)d

=
πd/2Γ(d/2)

Γ(d)

1

(−X2)d/2
.

(C.52)

in the bulk coordinate XA. We have reproduced this formula here by direct integration to avoid
subtleties that are relevant when taking derivatives in bulk or boundary coordinates in embedding
space [261].
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[113] Clay Córdova and Andrew Neitzke. “Line Defects, Tropicalization, and Multi-Centered
Quiver Quantum Mechanics”. In: JHEP 09 (2014), p. 099. DOI: 10 . 1007 /

JHEP09(2014)099. arXiv: 1308.6829 [hep-th].

192

https://doi.org/10.1007/978-3-319-06514-4_6
https://doi.org/10.1007/978-3-319-06514-4_6
https://arxiv.org/abs/1303.3253
https://arxiv.org/abs/math/0703822
https://arxiv.org/abs/math/0703822
https://arxiv.org/abs/math/0406564
https://arxiv.org/abs/1806.05094
https://arxiv.org/abs/1712.06968
https://arxiv.org/abs/1411.1394
https://doi.org/https://doi.org/10.1016/j.aim.2012.09.027
https://doi.org/https://doi.org/10.1016/j.aim.2012.09.027
https://www.sciencedirect.com/science/article/pii/S0001870812003593
https://www.sciencedirect.com/science/article/pii/S0001870812003593
https://doi.org/10.4310/ATMP.2013.v17.n2.a1
https://doi.org/10.4310/ATMP.2013.v17.n2.a1
https://arxiv.org/abs/1006.0146
https://doi.org/10.1007/JHEP01(2012)115
https://arxiv.org/abs/1008.0030
https://doi.org/10.1007/JHEP07(2011)059
https://arxiv.org/abs/1011.1258
https://doi.org/10.1007/JHEP09(2014)099
https://doi.org/10.1007/JHEP09(2014)099
https://arxiv.org/abs/1308.6829


[114] Davide Gaiotto, Gregory W. Moore, and Edward Witten. “Algebra of the Infrared: String
Field Theoretic Structures in Massive N = (2, 2) Field Theory In Two Dimensions”. In:
(June 2015). arXiv: 1506.04087 [hep-th].

[115] Mark Gross, Paul Hacking, and Sean Keel. “Mirror symmetry for log Calabi-Yau surfaces
I”. In: arXiv e-prints, arXiv:1106.4977 (June 2011), arXiv:1106.4977. arXiv: 1106.4977
[math.AG].

[116] Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke. “Spectral networks”. In: Annales

Henri Poincare 14 (2013), pp. 1643–1731. DOI: 10.1007/s00023-013-0239-7.
arXiv: 1204.4824 [hep-th].

[117] Lotte Hollands and Andrew Neitzke. “Spectral Networks and Fenchel–Nielsen Coordi-
nates”. In: Lett. Math. Phys. 106.6 (2016), pp. 811–877. DOI: 10.1007/s11005-016-
0842-x. arXiv: 1312.2979 [math.GT].

[118] Lotte Hollands and Omar Kidwai. “Higher length-twist coordinates, generalized Heun’s
opers, and twisted superpotentials”. In: Adv. Theor. Math. Phys. 22 (2018), pp. 1713–1822.
DOI: 10.4310/ATMP.2018.v22.n7.a2. arXiv: 1710.04438 [hep-th].

[119] Sergey Fomin and Andrei Zelevinsky. “Cluster algebras IV: Coefficients”. In: arXiv Math-

ematics e-prints, math/0602259 (Feb. 2006), math/0602259. arXiv: math / 0602259
[math.RA].

[120] Melissa Sherman-Bennett. “Combinatorics of X -variables in finite type cluster algebras”.
In: arXiv e-prints, arXiv:1803.02492 (Mar. 2018), arXiv:1803.02492. arXiv: 1803 .
02492 [math.CO].

[121] Nathan Reading. A fan for every cluster. https : / / math . berkeley . edu /

˜williams/FominTalks/Reading.pdf. Accessed: 2020–12-05. 2018.

[122] Nima Arkani-Hamed et al. “Binary Geometries, Generalized Particles and Strings, and
Cluster Algebras”. In: (Dec. 2019). arXiv: 1912.11764 [hep-th].

[123] Nima Arkani-Hamed. Master Class: Spacetime and Quantum Mechanics, Positive Geome-

tries and Cluster Algebras. https://youtu.be/xOusuMq83Rg. Youtube, 2020.

[124] Chris Fraser. “Braid group symmetries of Grassmannian cluster algebras”. In: arXiv

e-prints, arXiv:1702.00385 (Feb. 2017), arXiv:1702.00385. arXiv: 1702 . 00385

[math.CO].

[125] Henriette Elvang and Yu-tin Huang. “Scattering Amplitudes”. In: (Aug. 2013). arXiv:
1308.1697 [hep-th].

193

https://arxiv.org/abs/1506.04087
https://arxiv.org/abs/1106.4977
https://arxiv.org/abs/1106.4977
https://doi.org/10.1007/s00023-013-0239-7
https://arxiv.org/abs/1204.4824
https://doi.org/10.1007/s11005-016-0842-x
https://doi.org/10.1007/s11005-016-0842-x
https://arxiv.org/abs/1312.2979
https://doi.org/10.4310/ATMP.2018.v22.n7.a2
https://arxiv.org/abs/1710.04438
https://arxiv.org/abs/math/0602259
https://arxiv.org/abs/math/0602259
https://arxiv.org/abs/1803.02492
https://arxiv.org/abs/1803.02492
https://math.berkeley.edu/~williams/FominTalks/Reading.pdf
https://math.berkeley.edu/~williams/FominTalks/Reading.pdf
https://arxiv.org/abs/1912.11764
https://youtu.be/xOusuMq83Rg
https://arxiv.org/abs/1702.00385
https://arxiv.org/abs/1702.00385
https://arxiv.org/abs/1308.1697


[126] Dmitry Galakhov et al. “Wild Wall Crossing and BPS Giants”. In: JHEP 11 (2013), p. 046.
DOI: 10.1007/JHEP11(2013)046. arXiv: 1305.5454 [hep-th].

[127] David Speyer and Lauren K. Williams. “The tropical totally positive Grassmannian”. In:
arXiv Mathematics e-prints, math/0312297 (Dec. 2003), math/0312297. arXiv: math/
0312297 [math.CO].

[128] James Drummond et al. “Tropical fans, scattering equations and amplitudes”. In: (Feb.
2020). arXiv: 2002.04624 [hep-th].

[129] David A. McGady and Laurentiu Rodina. “Higher-spin massless S-matrices in four-
dimensions”. In: Phys. Rev. D 90.8 (2014), p. 084048. DOI: 10.1103/PhysRevD.
90.084048. arXiv: 1311.2938 [hep-th].

[130] Clifford Cheung et al. “A Periodic Table of Effective Field Theories”. In: JHEP 02 (2017),
p. 020. DOI: 10.1007/JHEP02(2017)020. arXiv: 1611.03137 [hep-th].

[131] Laurentiu Rodina. “Uniqueness from gauge invariance and the Adler zero”. In: JHEP

09 (2019), p. 084. DOI: 10 . 1007 / JHEP09(2019 ) 084. arXiv: 1612 . 06342
[hep-th].

[132] Nima Arkani-Hamed, Laurentiu Rodina, and Jaroslav Trnka. “Locality and Unitarity of
Scattering Amplitudes from Singularities and Gauge Invariance”. In: Phys. Rev. Lett.

120.23 (2018), p. 231602. DOI: 10.1103/PhysRevLett.120.231602. arXiv:
1612.02797 [hep-th].

[133] Nima Arkani-Hamed, Tzu-Chen Huang, and Yu-tin Huang. “Scattering Amplitudes For
All Masses and Spins”. In: (Sept. 2017). arXiv: 1709.04891 [hep-th].

[134] Laurentiu Rodina. “Scattering Amplitudes from Soft Theorems and Infrared Behavior”.
In: Phys. Rev. Lett. 122.7 (2019), p. 071601. DOI: 10.1103/PhysRevLett.122.
071601. arXiv: 1807.09738 [hep-th].

[135] Henriette Elvang et al. “Soft Bootstrap and Supersymmetry”. In: JHEP 01 (2019), p. 195.
DOI: 10.1007/JHEP01(2019)195. arXiv: 1806.06079 [hep-th].

[136] Clifford Cheung et al. “Vector Effective Field Theories from Soft Limits”. In: Phys. Rev.

Lett. 120.26 (2018), p. 261602. DOI: 10.1103/PhysRevLett.120.261602. arXiv:
1801.01496 [hep-th].

[137] Henriette Elvang. “Bootstrap and Amplitudes: A Hike in the Landscape of Quantum Field
Theory”. In: (July 2020). arXiv: 2007.08436 [hep-th].

194

https://doi.org/10.1007/JHEP11(2013)046
https://arxiv.org/abs/1305.5454
https://arxiv.org/abs/math/0312297
https://arxiv.org/abs/math/0312297
https://arxiv.org/abs/2002.04624
https://doi.org/10.1103/PhysRevD.90.084048
https://doi.org/10.1103/PhysRevD.90.084048
https://arxiv.org/abs/1311.2938
https://doi.org/10.1007/JHEP02(2017)020
https://arxiv.org/abs/1611.03137
https://doi.org/10.1007/JHEP09(2019)084
https://arxiv.org/abs/1612.06342
https://arxiv.org/abs/1612.06342
https://doi.org/10.1103/PhysRevLett.120.231602
https://arxiv.org/abs/1612.02797
https://arxiv.org/abs/1709.04891
https://doi.org/10.1103/PhysRevLett.122.071601
https://doi.org/10.1103/PhysRevLett.122.071601
https://arxiv.org/abs/1807.09738
https://doi.org/10.1007/JHEP01(2019)195
https://arxiv.org/abs/1806.06079
https://doi.org/10.1103/PhysRevLett.120.261602
https://arxiv.org/abs/1801.01496
https://arxiv.org/abs/2007.08436


[138] Edward Witten. “Perturbative gauge theory as a string theory in twistor space”. In: Com-

mun. Math. Phys. 252 (2004), pp. 189–258. DOI: 10.1007/s00220-004-1187-3.
arXiv: hep-th/0312171.

[139] Sabrina Pasterski, Shu-Heng Shao, and Andrew Strominger. “Flat Space Amplitudes and
Conformal Symmetry of the Celestial Sphere”. In: Phys. Rev. D 96.6 (2017), p. 065026.
DOI: 10.1103/PhysRevD.96.065026. arXiv: 1701.00049 [hep-th].

[140] Clifford Cheung, Anton de la Fuente, and Raman Sundrum. “4D scattering amplitudes and
asymptotic symmetries from 2D CFT”. In: JHEP 01 (2017), p. 112. DOI: 10.1007/
JHEP01(2017)112. arXiv: 1609.00732 [hep-th].

[141] Sabrina Pasterski, Shu-Heng Shao, and Andrew Strominger. “Gluon Amplitudes as 2d
Conformal Correlators”. In: Phys. Rev. D 96.8 (2017), p. 085006. DOI: 10 . 1103 /
PhysRevD.96.085006. arXiv: 1706.03917 [hep-th].

[142] Daniel Kapec et al. “Semiclassical Virasoro symmetry of the quantum gravity S-matrix”.
In: JHEP 08 (2014), p. 058. DOI: 10.1007/JHEP08(2014)058. arXiv: 1406.3312
[hep-th].

[143] Sabrina Pasterski, Andrew Strominger, and Alexander Zhiboedov. “New Gravitational
Memories”. In: JHEP 12 (2016), p. 053. DOI: 10.1007/JHEP12(2016)053. arXiv:
1502.06120 [hep-th].

[144] Andrew Strominger. “Lectures on the Infrared Structure of Gravity and Gauge Theory”.
In: (Mar. 2017). arXiv: 1703.05448 [hep-th].

[145] Nima Arkani-Hamed et al. “Celestial Amplitudes from UV to IR”. In: (Dec. 2020). arXiv:
2012.04208 [hep-th].

[146] Nima Arkani-Hamed et al. “Scattering Forms and the Positive Geometry of Kine-
matics, Color and the Worldsheet”. In: JHEP 05 (2018), p. 096. DOI: 10 . 1007 /
JHEP05(2018)096. arXiv: 1711.09102 [hep-th].

[147] L.D. Landau. “On analytic properties of vertex parts in quantum field theory”. In: Nuclear

Physics 13.1 (1959), pp. 181–192. ISSN: 0029-5582. DOI: https://doi.org/10.
1016/0029-5582(59)90154-3. URL: https://www.sciencedirect.com/
science/article/pii/0029558259901543.
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