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Abstract

The strategic interactions among a large number of interdependent agents are commonly modeled
as network games. The research in network games has seen significant advances over the last decade
and the network game framework allows us to model and solve real-world problems such as the
provisioning of public goods, decision-making in cyber-physical systems, and the understanding
of shock propagation in financial markets. In this thesis, we are interested in games on networks
that enjoy various structural properties that arise naturally in many applications, such as groups,
communities, and multi-relational interdependence, and seek to explore such structural properties in
the analysis of these games. These properties often result in a multi-scale structure, in which agents
can be grouped into larger communities/units, which can then be further grouped, and so on. These
communities can be physical or logical, depending on what the graphical connectivity represents.
We aim to develop analytical and algorithmic tools for studying this type of network game, with a
particular interest in equilibrium analysis and the design of intervention and incentive mechanisms.

On the equilibrium analysis and computation front, the novelty of our work lies in the utilization
of structural properties. In particular, we utilize the similarity among community members and
propose structured conditions that significantly reduce the verification complexity of equilibrium
properties such as existence, uniqueness, and stability. Similarly, for computation, we develop
several algorithmic approaches that greatly reduce the computational complexity by leveraging the
sparsity in a multi-scale structure, and we derive sufficient conditions for the convergence of these
algorithms.

On the mechanism design and intervention front, we develop a novel multi-scale intervention
model where agents form local groups and each group has a local planner. The planners are
non-cooperative and their decisions are interdependent through the connections of the agents. We
characterize the Stackelberg equilibrium of the system and study how the equilibrium efficiency is
influenced by the network structure and the budget allocation of the planners. We also study the
mechanism design and intervention using strategic classification and regression framework, where
agents’ actions include not only (honest) effort but also (dishonest) cheating, both may help the
agent achieve the same decision outcome but only honest effort improves the planner’s objective.
We establish Stackelberg game models where the planner moves first by publishing and committing
to an incentive mechanism that includes a decision rule (algorithm) as well as a subsidy mechanism,

xii



followed by the agents’ simultaneously best response. We model the agents’ interdependence in
such a game and show how the subsidy influences the agents’ decision making and the resulting
Stackelberg equilibria.
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Chapter 1

Introduction

The strategic decision making process of agents who are connected through a network is
often modeled as a network game [52, 45]. In network games, the utility of an agent depends
on its own actions as well as the actions of other agents in its local neighborhood defined by
interaction graphs and adjacency matrices. The network games framework can be used to capture
different forms of interdependencies between agents’ decisions, e.g., allowing agents’ actions to
be a strategic substitute or complement to each of its neighbors’ efforts, the provision of public
goods [3, 17, 53, 97], and security [41, 56, 95].

A typical formalization of a network game is as follows. The game containsN agents a1, . . . , aN ,
connected by a graph G. We typically denote the utility function of agent ai as ui(xi,x−i;G), where
xi is the strategy/action by agent ai, and x−i is the strategies/actions by all agents other than ai, and
the topology of G determines the agents’ interdependence in the game. A typical example of utility
functions studied in network games is the linear-quadratic utility function [30],

ui(xi,x−i;G) := bixi︸︷︷︸
marginal benefit

+
∑
j∈Ni

gijxixj︸ ︷︷ ︸
network influence

− 1

2
x2i︸︷︷︸

action cost

where the graph’s influence is captured by the corresponding adjacency matrix G = (gi,j)1≤i,j≤N

(assume gii = 0,∀i) and Ni = {gij ̸= 0} is the index set of ai’s neighbors in the graph. The
marginal benefit and action cost are the individual components while the network influence is jointly
determined by other agents’ utilities and the network. Agents will try to maximize their own utilities
in network games, and an agent’s action can influence other agents’ decision-making even if they
are not directly connected with each other in the network.

However, in many real world problems, there are often communities/groups in a network, where
the connections within each group and between different groups can be significantly different
in terms of connection strengths and frequencies, e.g., the Karate Club network in Figure 1.1.
Therefore, a limitation of conventional network games is that all edges in the network are treated in
the same way. This motivates us to extend the conventional framework to better fit the networks
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with group structures or hierarchies of group structures. In this thesis, we name such networks
multi-scale networks. We first formalize how to represent the games on a multi-scale network, and
then study how to leverage the structure and the representation to design more efficient methods to
compute and analyze the equilibrium.

Equally important are the control and intervention problems in multi-scale network games. We
will study how to utilize the multi-scale representation to study decentralized intervention, and
how the group-level connectivity and welfare differences influence the system equilibria. We also
generalize the mechanism design problem to allow multiple planners in the network, where the
planners can either be cooperative or non-cooperative.

This thesis also studies mechanism design and interventions on network games with incomplete
information, where a planner only has access to a particular type of partial information about the
agents, in the form of some intermediate features but not the actual actions of the agents, while
the agents can obtain the same feature using different actions, some honest but costly and others
dishonest but cheaper. Honest actions contribute to the planner’s goals, while dishonest actions
can lead to feature improvement but are not beneficial to the planner’s goals. It is thus important
for the planner to induce honest effort in such a setting. We model honest and dishonest actions
under a strategic classification and regression framework, where the planner designs decision rules
in the form of classifiers or regression functions and the agents best respond and receive decision
outcomes, which appear as the benefit terms in their utility function. Therefore, the decision rules
can be viewed as an intervention. This framework also provides a useful formalism for modeling
honest and dishonest actions, treated as improvement and gaming actions, respectively, where, while
both can improve the decision outcome for the agents, only the improvement action contributes to
the planner’s objective. We also explore the use of a subsidy mechanism when the decision rule
itself cannot sufficiently incentivize honest actions.

In the next few sections we elaborate on the key concepts examined in this thesis.

1.1 Network Structure

Network structures arise naturally when agents have different levels of proximity, either in terms
of distance in the physical world, or in terms of logical measurements like values or interests in the
virtual world. Agents in the same location or having similar interests tend to form communities or
groups on the network, and members within the same group may have similar behavior and share
similar properties.

The Karate Club network [32] is a famous network with group structures, where the connections
represent out-of-club interactions of the individuals; we can think of each group in Figure 1.1
as a community of friends. Communities can also contain agents that have similar roles in the
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Figure 1.1: Communities in the Karate Club
network.

Figure 1.2: The Supply Chain Network with
Groups.

network. For example, in the supply chain network in Figure 1.2, all manufacturers can be treated
as a manufacturer group.

Such structures present both opportunities and challenges in analysis. On one hand, the emer-
gence of such a community structure implies some type of sparsity in the network – as shown in
Fig. 1.1 the connectivity between the two groups is far less than that within the same group – that
we may be able to exploit. On the other hand, the same type of community structures also implies
heterogeneity – groups must be distinct in some way to be different groups; this is seen in the
different roles each group plays in Fig. 1.2. This heterogeneity often presents significant challenges
in analysis; for instance, groups may have multiple non-cooperative local planners, making control
and intervention fundamentally different from the conventional, single social planner model.

1.2 Taking Advantage of Network Structure in Analysis and Computation

The community structure on a network captures the similarity among groups of agents. We will
utilize this fact to derive structured conditions used to verify equilibrium properties and algorithms
to compute the equilibria. Such verification and computation are shown to be much more efficient
than conventional methods that treat the network as flat.

One way of utilizing the structural information is by abstracting the different communities: treat
each group as a super node, and create a super network accordingly. Each super node summarizes
the behavior of a group of agents and the connections between the super nodes represent a summary
of the group level interactions. By utilizing the network structure, we come up with a multi-scale
representation of the network by formally introducing nodes on different levels. With large enough
group sizes, the super network has a much smaller size than the original network while still being
able to capture important information from the original network under certain conditions. We design
novel NE computation algorithms based on the multi-scale representation of the game that greatly
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improves the computational speed while guaranteeing convergence to the same Nash equilibrium.

1.3 Utilizing Network Structure in Control and Intervention

The different communities in the network also represent the different interests of agents, and
thus we extend the conventional single planner mechanism design framework to a multiple non-
cooperative planners framework.

Group structures are a common phenomenon across networks of all types, be it social, techno-
logical, political, or economic, the multi-planner modeling consideration allows us to investigate a
number of interesting features that often arise in realistic strategic and decentralized decision making
in network games. These planners may or may not have common interests and their interventions
and mechanisms will typically be interdependent. We establish a 2-level Stackelberg game model
and show that the intervention design can be viewed as a higher level network game between the
planners. We are particularly interested in the efficiency of decentralized decision making and
how the efficiency is influenced by the budget allocation among the planners. We discover that the
efficiency of the Stackelberg equilibrium can be decomposed into level specific terms, and help us
build a multi-scale view of the efficient and inefficient aspects of the multi-planner game.

1.4 Strategic Classification and Regression as Intervention

A growing literature in strategic classification and regression shows that decision rules, i.e.,
classifiers or regression functions, can be viewed as incentive mechanisms in a game where a
planner cannot observe the agents’ actions but only a proxy, i.e., features, which allows the agents to
use different actions (honest/improvement vs. dishonest/cheating actions) to attain the same feature
improvement and thus favorable outcome but only honest/improvement actions benefit the planner.
A common approach in this type of strategic learning problem is to use the Stackelberg game models
where the planner moves first by publishing and committing to a decision rule (algorithm) and then
the agents simultaneously and independently best respond to the deployed algorithm. We identify
situations where the decision rule itself can never incentivize improvement actions, and introduce
novel incentive mechanisms for strategic classification and regression problems to address this issue.
Our approach is to include an additional subsidy mechanism published in the first stage which gives
discounts on certain actions; the agents simultaneously best respond to the decision rule accounting
for the subsidy. We formalize the subsidy as a discount mechanism, and show how such subsidies
induce a uniformly better outcome for both the decision maker and the agents. Furthermore, when
the subsidy is implemented by a third party who is also a first-stage mover, the third party can
not only uniformly improve every party’s utility, but also alleviate fairness issues among different
subgroups in the system.
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1.5 Outline of the Thesis

This thesis aims to develop a theoretical framework for modeling and analyzing strategic
interactions and incentive mechanisms in network games with multi-scale structures. We focus on
two broad areas, equilibrium analysis and mechanism design. We present novel modeling techniques
and algorithms to build non-trivial extensions to the existing literature. A review of the literature is
given in Chapter 1.6.

Chapters 2 and 3 present methods for modeling networks with multi-scale structures and the
corresponding equilibrium analysis and computation.

In Chapter 2, we formally define the games on multi-scale networks and establish a representa-
tion of the multi-scale network games. We contrast the multi-scale perspective of the game with the
conventional flat perspective. We then develop efficient algorithmic approaches that leverage this
multi-scale structure and perspective and derive sufficient conditions for the convergence of our
algorithms to a Nash equilibrium. Chapter 2 is based on our paper [49] “Multi-Scale Games: Rep-
resenting and Solving Games on Networks with Group Structure” that appeared in the Proceedings
of the 35th AAAI Conference on Artificial Intelligence (AAAI) in 2021.

In Chapter 3, we extend the above study to multi-relational networks, where the connectivity
among agents are action-dimension dependent, i.e., the network is now multiple networks super-
imposed together. This results in an extended adjacency matrix where each entry maps to an
agent-action component. Structural information (such as clustering) maps to certain partitions and
blocks over this matrix and is utilized to derive a set of structured conditions that guarantee the
existence and uniqueness of a Nash equilibrium. We show that these structured conditions are
computationally much easier and less costly to verify than those derived from prior methods that
ignore the structural information inherent in the network with very little loss in accuracy (tightness
of the sufficient conditions). Chapter 3 is a much more extended version of our paper [47] “Games
on Networks with Community Structure: Existence, Uniqueness and Stability of Equilibria” that
appeared in the Proceedings of the IEEE American Control Conference (ACC) in 2020.

Chapters 4 and 5 study the mechanism design and intervention in network games, games with
multiple sub-populations, and multi-scale networks.

Chapter 4 presents a multi-planner intervention mechanism in network games with communities.
We establish a Stackelberg game model where the planners move first to design intervention and
agents move next in the intervened game. The game between the planners can be studied as a higher
level network game among themselves and we derive the Stackelberg equilibrium for this system
and study its efficiency properties. We also show that the efficiency loss can be decomposed into
level specific efficiency loss components, i.e., a planner-level loss term and an agent-level loss
term, where the planner-level loss term is jointly determined by the structure of the network and
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the budget allocation. Whether the budget is transferable also significantly influences the system
outcome, and we show that even selfish planners may have incentives to share the budget with
neighboring groups when positive externalities exist in the network, which resembles real world
behaviors like vaccine donations. These analyses also provide useful insights into the global budget
allocation problem of a planner at one level higher than the local group planners. Chapter 4 is based
on our paper [48] “Multi-planner Intervention in Network Games with Community Structures” that
appeared in the Proceedings of the 60th IEEE Conference on Decision and Control (CDC) in 2021.

Chapter 5 studies how we can use strategic classification and regression algorithms along
with subsidies to intervene in a game with multiple sub-populations in the system. We use the
Stackelberg game model to study the system and focus on two specific mechanism design scenarios.
The first is a two-party system where the algorithm designer also designs the supportive subsidy
mechanism in the first stage, and the agents will simultaneously best respond to both the decision
rule and the subsidy in the second stage. The second is a three-party system where the algorithm
designer designs the decision rule, and a third-party designs the subsidy in the first stage, and
the agents still best respond to both in the second stage. The third-party has social well-being
metrics as its objectives, which is different from the algorithm designer’s selfish objective, and
thus designs the subsidy differently. We show how a supportive subsidy mechanism, combined
with the machine learning algorithm can serve as a meta incentive mechanism that can improve the
algorithm robustness, the efficiency, the fairness, and the agents’ utilities simultaneously. We also
study how the two-party and three-party systems result in different Stackelberg equilibria, and how
the chosen social well-being metric influences the Stackelberg equilibria. Chapter 5 is based on
our paper [51] “Incentive Mechanisms in Strategic Classification and Regression Problems” that
appeared in the Proceedings of the ACM Economics and Computation (EC) in 2022.

1.6 Literature Review

We next review the literature most relevant to this thesis, where these prior works are related
to at least one of the following topics: equilibrium analysis and computation in network games,
multi-scale structures in networks, mechanism and intervention design in network games, strategic
classification and regression, and learning in network games. In the remainder of this section,
we use conventional models to refer to the prior work and specifically point out the novelty and
differences of our work.

Equilibrium analysis and computation. Conventional (unstructured) network games and their
equilibrium outcomes have been studied in a variety of application areas, including the private
provision of public goods [3, 17, 53], security decision making in interconnected cyber-physical
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Related Works Network
Games

Multi-
scale
Structure

Mechanism
Design &
Intervention

Strategic Clas-
sification & Re-
gression

Learning
in Games

[80, 70, 71, 72, 74] ✓ ✓

[62, 77, 4] ✓ ✓

[57, 7, 6] ✓ ✓

[16, 35, 67, 34, 54,
65, 42]

✓

[81, 27, 14, 59, 96,
43, 44, 66, 83]

✓ ✓

[60, 75, 82] ✓ ✓ ✓

Chapter 2 & 3 ✓ ✓

Chapter 4 ✓ ✓ ✓

Chapter 5 ✓ ✓

Chapter 6 ✓ ✓ ✓ ✓

Table 1.1: A Summary of Our Works and Related Works.

systems [41, 56], and shock propagation in financial markets [1]. A common line of research
in this literature is to study the effect of the network structure on the existence, uniqueness, and
stability of the game equilibria (see [45] for a survey). In particular, unstructured network games
with linear best-response functions have been studied in [10, 68, 74]. Bramoulle et al. [10]
uncovered the importance of the lowest eigenvalue of the adjacency matrix of the network in
determining the uniqueness and stability of the Nash equilibrium. Miura-Ko et al. [68] show that
if the adjacency matrix of the network is strictly diagonally dominant, then the Nash equilibrium
is unique. Naghizadeh and Liu [74] identify necessary and sufficient conditions for the existence
and uniqueness of Nash equilibria in network games with linear best responses by establishing a
connection to linear complementarity problems.

Unstructured network games with nonlinear best-response functions have been studied in
[3, 2, 100, 63, 79, 73]. Allouch [3] introduces a sufficient condition for the uniqueness of Nash
equilibrium called network normality which imposes lower and upper bounds on the derivative of
Engel curves. Acemoglu et al. [2] consider a network game with idiosyncratic shocks and show
that if the best response mapping is either a contraction (Lipschitz with constant strictly smaller
than one), or a bounded non-expansive mapping, then the game has a unique Nash equilibrium.
Zhou et al. [100] establish a connection between nonlinear complementary problems (NCP) and
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Figure 1.3: A Venn Diagram for the Sections and Related Works.

network games, and use existing results from the NCP literature to find sufficient conditions for
the uniqueness of Nash equilibria. The works of [63, 79, 73] use the framework of variational
inequalities to study network games with nonlinear best responses. Naghizadeh and Liu [73] show
that a sufficient condition for the uniqueness and stability of the Nash equilibrium can be determined
by the lowest eigenvalue of matrices constructed based on the slope of the agents’ interaction
functions and the intensity of their interactions. Parise and Ozdaglar [79] identify an operator in the
variational inequality problem which involves the derivative of the agent’s cost with respect to its
action, and show that various properties of this operator and its Jacobian will determine conditions
for the existence, uniqueness, and stability of a Nash equilibrium.

Multi-scale structures. While network games are a powerful modeling framework, most previous
works fail to capture a common feature of human organization: groups and communities. Indeed,
the investigation of communities, or close-knit groups, in social networks is a major research thread
in network science. Moreover, such groups often have a hierarchical structure [22, 32]. For example,
strategic interactions among organizations in a marketplace often boil down to interactions among
their constituent business units, which are, in turn, comprised of individual decision makers. In the
end, it is those lowest-level agents who ultimately accrue the consequences of these interactions
(for example, corporate profits would ultimately benefit individual shareholders). Moreover, while
there are clear interdependencies among organizations, individual utilities are determined by a
combination of individual actions of some agents, together with aggregate decisions by the groups
(e.g., business units, organizations). For example, an employee’s bonus is determined in part by their
performance in relation to their co-workers, and in part by how well their employer (organization)
performs against its competitors in the marketplace. Previous works on network games that involve
group or community structure focus on finding such structures; e.g., community detection in
networks using game theoretic methods have been studied in [62, 77, 4]. In contrast, our works
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in Chapters 2 and 3 focus on utilizing the multi-scale structures in the equilibrium analysis and
computation.

Mechanisms and interventions. Mechanisms [80, 70, 71, 72, 74] and interventions [30] are
implemented by the planner in a network game to shape the strategic interaction of the agents and to
incentivize them to take certain actions that optimize the planner’s objective like the social welfare.
Interventions in a network game typically refers to changes in certain game parameters made by
a planner with a budget constraint, who wishes to induce a more socially desirable outcome (in
terms of social welfare) under the revised game. A prime example is the study presented in [30],
where the intervention takes the form of changing the agents’ standalone marginal benefit terms
(in a linear quadratic utility model) and changes are costly; this is done by a central/global planner,
who wishes to find the set of interventions that lead to the highest equilibrium social welfare subject
to a cost constraint. These interventions are different from more conventional mechanisms such as
auctions, but they can be very effective in specific problems settings. The overall Stackelberg game
structure is also what we will primarily utilize in this thesis.

Strategic classification and regression. The strategic classification and regression problem is
modeled as a sequential (two-stage) Stackelberg game where the planner is the first-mover, who
designs, publishes, and commits to a decision rule (e.g., a classifier); the agents simultaneously
best-respond to the decision rule by the planner, by manipulating their input features to obtain a
desirable decision outcome so as to maximize their utilities. Previous works in this field [16, 35,
67, 34, 54, 65, 42] study the problem where one or more agents strategically, and independent
from other agents, choose actions to manipulate their features in response to the published machine
learning decision rule while the planner seeks to design the optimal decision rule in anticipation of
the agents’ manipulation.

Performative predictions. Performative predictions [81] study the problem where the data dis-
tributions shifts with the deployed decision models. Typical scenarios of performative prediction
include strategic classification and regression [35, 26, 67, 42, 12, 20, 65, 91, 34, 54, 101]. Per-
formative prediction has been primarily studied in a centralized setting, with pertinent literature
studying the algorithm convergence [64, 27, 14, 59, 96] and algorithm development [43, 44, 66, 83].

More recently, [60] formalized multi-agent/player performative predictions, where agents
can communicate over a network and try to learn a common decision rule. The agents have
heterogeneous distribution shifts (responses) to the model, and the authors study the convergence
of decentralized algorithms to the performative stable (PS) solution. Decentralized performative
predictions capture the heterogeneity in agents’/clients’ responses to the decision model and avoid
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centralized data collection for training. [75] propose a decentralized multi-player performative
prediction framework where the players react to competing institutions’ actions. [82] proposes a
replicator dynamics model with label shift.

Learning in games. Learning in games [6, 7, 57] focus on mechanism design problems where
the planner or the agents have incomplete knowledge of the parameters in the game. These works
study how to learn both the network structure and payoffs of games from data.
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Part I

Utilizing the Multi-Scale Network Structure
for Equilibrium Computation and Analysis
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Chapter 2

Multi-Scale Games: Representing and Solving Games on Networks with
Group Structure

2.1 Introduction

Network games provide a natural machinery to compactly represent strategic interactions among
agents whose payoffs exhibit sparsity in their dependence on the actions of others. Besides encoding
interaction sparsity, however, real networks often exhibit a multi-scale structure, in which agents can
be grouped into communities, those communities further grouped, and so on, and where interactions
among such groups may also exhibit sparsity. We present a general model of multi-scale network
games that encodes such a multi-level structure. We then develop several algorithmic approaches
that leverage this multi-scale structure, and derive sufficient conditions for the convergence of these
to a Nash equilibrium. Our numerical experiments demonstrate that the proposed approaches enable
orders of magnitude improvements in scalability when computing Nash equilibria in such games.
For example, we can solve previously intractable instances involving up to 1 million agents in under
15 minutes.

Strategic interactions among interconnected agents are commonly modeled using the network,
or graphical, game formalism [52, 45]. In such games, the utility of an agent depends on his
own actions as well as those of its network neighbors. Many variations of games on networks
have been considered, with applications including the provision of public goods [3, 17, 53, 97],
security [41, 56, 95], and financial markets [1].

While network games are a powerful modeling framework, they fail to capture a common
feature of human organization: groups and communities. Indeed, the investigation of communities,
or close-knit groups, in social networks is a major research thread in network science. Moreover,
such groups often have a hierarchical structure [22, 32]. For example, strategic interactions among
organizations in a marketplace often boil down to interactions among their constituent business
units, which are, in turn, comprised of individual decision makers. In the end, it is those lowest-level
agents who ultimately accrue the consequences of these interactions (for example, corporate profits
would ultimately benefit individual shareholders). Moreover, while there are clear interdependencies
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Figure 2.1: An Illustration of a Multi-scale (3-Level) Network.

among organizations, individual utilities are determined by a combination of individual actions of
some agents, together with aggregate decisions by the groups (e.g., business units, organizations).
For example, an employee’s bonus is determined in part by their performance in relation to their
co-workers, and in part by how well their employer (organization) performs against its competitors
in the marketplace.

We propose a novel multi-scale game model that generalizes network games to capture such
hierarchical organizations of individuals into groups. Figure 2.1 offers a stylized example in
which three groups (e.g., organizations) are comprised of 2-3 subgroups each (e.g., business
units), which are in turn comprised of 2-5 individual agents. Specifically, our model includes an
explicit hierarchical network structure that organizes agents into groups across a series of levels.
Further, each group is associated with an action that deterministically aggregates the decisions of
its constituent agents. The game is grounded at the lowest level, where the agents are associated
with scalar actions and utility functions that have a modular structure in the strategies taken at each
level of the game. For example, in Figure 2.1, the utility function of an individual member aj of
level-3 group a(3)3 is a function of the strategies of (i) aj’s immediate neighbors (represented by
links between pairs of filled-in circles), (ii) aj’s level-2 group and its network neighbor (the small
hollow circles), and (iii) aj’s level-3 group, a(3)3 (large hollow circle) and its network neighbors, a(3)1

and a(3)2 .
Our next contribution is a series of iterative algorithms for computing pure strategy Nash

equilibria that explicitly leverage the proposed multi-scale game representation. The first of these
simply takes advantage of the compact game representation in computing equilibria. The second
algorithm we propose offers further innovation through an iterative procedure that alternates between
game levels, treating groups themselves as pseudo-agents in the process. We present sufficient
conditions for the convergence of this algorithm to a pure strategy Nash equilibrium through a
connection to Structured Variational Inequalities [39], although the result is limited to games with
two levels. To address the latter limitation, we design a third iterative algorithm that now converges
even in games with an arbitrary number of levels.
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Our final contribution is an experimental evaluation of the proposed algorithms compared to best
response dynamics. In particular, we demonstrate orders of magnitude improvements in scalability,
enabling us to solve games that cannot be solved using a conventional network game representation.

Related Work: Network games have been an active area of research; see e.g., surveys by [45]
and [11]. We now review the most relevant papers. Conditions for the existence, uniqueness,
and stability of Nash equilibria in network games under general best responses are studied in
[79, 73, 88, 10]. Variational inequalities (VI) are used in these works to analyze the fixed point and
contraction properties of the best response mappings. It is identified in [79, 73, 88] that when the
Jacobian matrix of the best response mapping is a P-matrix or is positive definite, a feasible unique
Nash equilibrium exists and can be obtained by best-response dynamics [88, 79]. In this chapter,
we extended the analysis of equilibrium and best responses for a conventional network game to that
in a multi-scale network game, where the utility functions are decomposed into separable utility
components to which best responses are applied separately. This is similar to the generalization
from a conventional VI problem to an SVI problem [39, 38, 40, 8] problem.

Previous works on network games that involve group or community structure focus on find-
ing such structures; e.g., community detection in networks using game theoretic methods have
been studied in [62, 77, 4]. By contrast, our work focuses on analyzing a network game with a
given group/community structure and using the structure as an analytical tool for the analysis of
equilibrium and best responses.

2.2 Preliminaries

A general normal-form game is defined by a set of agents (players) I = {1, . . . , N}, with
each agent ai having an action/strategy space Ki and a utility function ui(xi,x−i) that i aims to
maximize; xi ∈ Ki and x−i denotes the actions by all agents other than i. We term the collection of
strategies of all agents x a strategy profile. We assume Ki ⊂ R is a compact set.

We focus on computing a Nash equilibrium (NE) of a normal-form game, which is a strategy
profile with each agent maximizing their utility given the strategies of others. Formally, x∗ is a
Nash equilibrium if for each agent i,

x∗i ∈ argmax
xi∈Ki

ui(xi,x
∗
−i). (2.1)

A network game encodes structure in the utility functions such that they only depend on
the actions of network neighbors. Formally, a network game is defined over a weighted graph
(I, E), with each node an agent and E is the set of edges; the agent’s utility ui(xi,x−i) reduces to
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ui(xi,xIi), where Ii is the set of network neighbors of i, although we will frequently use the former
for simplicity.

An agent’s best response is its best strategy given the actions taken by all the other agents.
Formally, the best response is a set defined by

BRi(x−i, ui) = argmax
xi

ui(xi,x−i). (2.2)

Whenever we deal with games that have a unique best response, we will use the singleton best
response set to also refer to the player’s best response strategy (the unique member of this set).

Clearly, a NE of a game is a fixed point of this best response correspondence. Consequently,
one way to compute a NE of a game is through best response dynamics (BRD), which is a process
whereby agents iteratively and asynchronously (that is, one agent at a time) take the others’ actions
as fixed values and play a best response to them.

We are going to use this BRD algorithm as a major building block below. One important tool
that is useful for analyzing BRD convergence is Variational Inequalities (VI). To establish the
connection between NE and VI we assume the utility functions ui,∀i = 1, . . . , N , are continuously
twice differentiable. Let K =

∏N
i=1Ki and define F : RN → RN as follows:

F (x) :=

(
− ▽xi

ui(x)

)N

i=1

. (2.3)

Then x∗ is said to be a solution to VI(K,F ) if and only if

(x− x∗)TF (x∗) ≥ 0, ∀x ∈ K . (2.4)

In other words, the solution set to VI(K,F ) is equivalent to the set of NE of the game. Now, we
can define the condition that will guarantee the convergence of BRD.

Definition 1. The PΥ condition: The Υ matrix generated from F : RN → RN is given as follows

Υ(F ) =


α1(F ) −β1,2(F ) · · · −β1,N(F )
−β2,1(F ) α2(F ) · · · −β2,N(F )

...
... . . . ...

−βN,1(F ) −βN,2(F ) · · · αN(F )

 ,

αi(F ) = infx∈K ||▽iFi||2, βi,j(F ) = supx∈K ||▽jFi||2, i ̸= j. If Υ(F ) is a P-matrix, that is, if all

of its principal components have a positive determinant, then we say F satisfies the PΥ condition.

Theorem 1. [88] If the agents’ utility functions are individually concave, and F satisfies the PΥ
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condition, then F is strongly monotone on K, and VI(K,F ) has a unique solution. Moreover, BRD

converges to the unique NE from an arbitrary initial state.

2.3 A Multi-Scale Game Model

Consider a conventional network (graphical) game with the set I of N agents situated on a
network G = (I, E), each with a utility function ui(xi,xIi), with Ii the set of i’s neighbors, I the
full set of agents/nodes and E the set of edges connecting them.1 Suppose that this network G
exhibits the following structure and feature of the strategic dependence among agents: agents can
be partitioned into a collection of groups {Sk}, where k is a group index, and an agent ai in the kth
group (i.e., ai ∈ Sk) has a utility function that depends (i) on the strategies of its network neighbors
in Sk, and (ii) only on the aggregate strategies of groups other than k (see, e.g., Fig. 2.1). Further,
these groups may go on to form larger groups, whose aggregate strategies impact each other’s agents,
giving rise to a multi-scale structure of the network. This kind of structure is very natural in a myriad
of situations. For example, members of criminal organizations take stock of individual behavior
by members of their own organization, but their interactions with other organizations (criminal or
otherwise) are perceived in group terms (e.g., how much another group has harmed theirs). A similar
multi-level interaction structure exists in national or ethnic conflicts, organizational competition in a
market place, and politics. Indeed, a persistent finding in network science is that networks exhibit a
multi-scale interaction structure (i.e., communities, and hierarchies of communities) [32, 22].

We present a general model to capture such multi-scale structures. Formally, an L-level
structure is given by a hierarchical graph structure {G(l)} for each level l, 1 ≤ l ≤ L, where
G(l) = ({S(l)

k }k, E(l)) represents the level-l structure. The first component, {S(l)
k }k prescribes a

partition, where agents in level l − 1 form disjoint groups given by this partition; each group
is viewed as an agent in level l, denoted as a(l)k . Notationally, while both a(l)k and S(l)

k bear the
superscript (l), the former refers to a level-l agent, while the latter is the group (of level-(l − 1)

agents) that the former represents. The set of level-l agents is denoted by I(l) and their total number
N (l). The second component, E(l), is a set of edges that connect level-l agents, encoding the
dependence relationship among the groups they represent. This structure is anchored in level 1 (the
lowest level), where sets S(1)

k are singletons, corresponding to agents ak in the game, who constitute
the set I .

To illustrate, the multi-scale structure shown in Fig. 2.1 is given by G(1) = G = ({S(1)
k }k =

I, E(1) = E), as well as how level-1 agents are grouped into level-2 agents, how level-2 agents are
further grouped into level-3 agents, and the edges connecting these groups at each level.

It should be obvious that the above multi-scale representation of a graphical game is a gener-

1The edges are generally weighted, resulting in a weighted adjacency matrix on which the utility depends.
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alization of a conventional graphical game, as any such game essentially corresponds to a L = 1

multi-scale representation. On the other hand, not all conventional graphical games have a meaning-
ful L > 1 multi-scale representation (with non-singleton groups of level-1 agents); this is because
our assumption that an agent’s utility only depends on the aggregate decisions by groups other than
the one they belong to implies certain properties of the dependence structure. For the remainder of
this chapter, we will proceed with a given multi-scale structure defined above, while in Appendix A.7
we outline a set of conditions on a graphical game G that allows us to represent it in a (non-trivial)
multi-scale fashion.

Since the resulting multi-scale network is strictly hierarchical, we can define a direct supervisor

of agent a(l)i in level-l to be the agent a(l+1)
k corresponding to the level-(l + 1) group k that the

former belongs to. Similarly, two agents who belong in the same level-l group k are (level-l) group

mates. Finally, note that any level-1 agent ai belongs to exactly one group in each level l. We index
a level-l group to which ai belongs by kil.

In order to capture the agent dependence on aggregate actions, we define an aggregation function

σ
(l)
k for each level-l group k that maps individual actions of group members to R (a group strategy).

Specifically, consider a level-l group S(l)
k with level-(l − 1) agents in this group playing a strategy

profile x
S
(l)
k

. The (scalar) group strategy, which is also the strategy for the corresponding level-(l+1)
agent, is determined by the aggregation function,

x
(l)
k = σ

(l)
k (x

S
(l)
k
). (2.5)

A natural example of this is linear (e.g., agents respond to total levels of violence by other criminal
organizations): σ(l)

k (x
S
(l)
k
) =

∑
i∈S(l)

k
x
(l)
i .

The L-level structure above is captured strategically by introducing structure into the utility
functions of agents. Let Ikil denote the set of neighbors of level-l group k to which level-1 agent ai
belongs; i.e., this is the set of level-l groups that interact with agent ai’s group. This level-1 agent’s
utility function can be decomposed as follows:

ui(xi,x−i) =
L∑
l=1

u
(l)
kil

(
x
(l)
kil
,x

(l)
Ikil

)
. (2.6)

In this definition, the level-l strategies x(l)k are implicitly functions of the level-1 strategies of agents
that comprise the group, per a recursive application of Eqn. (2.5). Consequently, the utility is an
additive function of the hierarchy of group-level components for increasingly (with l) abstract
groups of agents. Note that conventional network games are a special case with only a single level
(L = 1).

To illustrate, if we consider just two levels (a collection of individuals and groups to which they
17



directly belong), the utility function of each agent ai is a sum of two components:

ui(xi,x−i) = u
(1)
ki1

(
x
(1)
ki1
,x

(1)
Iki1

)
+ u

(2)
ki2

(
x
(2)
ki2
,x

(2)
Iki2

)
.

In the first component, x(1)ki1
= xi, since level-1 groups correspond to individual agents, whereas

x
(1)
Iki1

is the strategy profile of i’s neighbors belonging to the same group as i, given by E(1). The

second utility component now depends only on the aggregate strategy x(2)ki2
of the group to which i

belongs, as well as the aggregate strategies of the groups with which i’s group interacts, given by
E(2).

2.4 Algorithms and Analysis

Consider the BRD algorithm (formalized in Algorithm 1) in which we iteratively select an agent
who plays a best response to the strategy of the rest from the previous iteration.

Algorithm 1: BRD Algorithm
Initialize the game, t = 0, xi(0) = (x0)i, i = 1, · · · , N ;
while not converged do

for i = 1:N do
xi(t+ 1) = BRi(x−i(t), ui)

t← t+ 1

The conventional BRD algorithm operates on the “flattened” utility function which evaluates
utilities explicitly as functions of the strategies played by all agents ai ∈ I . Our goal henceforth is to
develop algorithms that take advantage of the special multi-scale structure and enable significantly
better scalability than standard BRD, while preserving the convergence properties of BRD.

2.4.1 Taking Advantage of Multi-Scale Utility Representation

The simplest way to take advantage of the multi-scale representation is to directly leverage the
structure of the utility function in computing best responses. Specifically, the multi-scale utility
function is more compact than one that explicitly accounts for the strategies of all neighbors of i
(which includes all of the players in groups other than the one i belongs to). This typically results
in a direct computational benefit to computing a best response. For example, in a game with a linear
best response, this can result in an exponential reduction in the number of linear operations.

The resulting algorithm, Multi-Scale Best-Response Dynamics (MS-BRD), which takes advan-
tage of our utility representation is formalized as Algorithm 2. The main difference from BRD is that
it explicitly uses the multi-scale utility representation: in each iteration, it updates the aggregated
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Algorithm 2: Multi-Scale BRD (MS-BRD)

Initialize the game, t = 0, x
(1)
i (0) = (x0)i, i = 1, . . . , N

for l = 2:L do
for k = 1:N (l) do

x
(l)
k (0) = σ

(l)
k (x

S
(l)
k
(0));

while not converged do
for i = 1:N (Level-1) do

x
(1)
i (t+ 1) = BRi(x

(1)
−i (t), ui)

for l = 2:L do
for k = 1:N (l) do

x
(l)
k (t+ 1) = σ

(l)
k (x

S
(l)
k
(t+ 1));

t← t+ 1;

strategies at all levels for the groups to which the most recent best-responding agent belongs. Since
MS-BRD simply performs operations identical to BRD but efficiently, its convergence is guaranteed
under the same conditions (see Theorem 1). Next, we present iterative algorithms for computing
NE that take further advantage of the multi-scale structure, and study their convergence.

2.4.2 Taking Advantage of Multi-Scale Strategic Dependence Structure

In order to take full advantage of the multi-scale game structure, we now aim to develop
algorithms that treat groups explicitly as agents, with the idea that iterative interactions among these
can significantly speed up convergence. Of course, in our model groups are not actual agents in
the game: utility functions are only defined for agents in level 1. However, note that we already
have well-defined group strategies – these are just the aggregations of agent strategies at the level
immediately below, per the aggregation function (2.5). Moreover, we have natural utilities for
groups as well: we can use the corresponding group-level component of the utility of any agent in
the group (note that these are identical for all group members in Eqn. (2.6)). However, using these
as group utilities will in fact not work: since ultimately the game is only among the agents in level 1,
equilibria of all of the games at more abstract levels must be consistent with equilibrium strategies

in level 1. On the other hand, we need to enforce consistency only between neighboring levels, since
that fully captures the across-level interdependence induced by the aggregation function. Therefore,
we define the following pseudo-utility functions for agents at levels other than 1, with agent k in
level l corresponding to a subset of agents from level l − 1:

û
(l)
k = u

(l)
k

(
x
(l)
k ,x

(l)
Ik

)
− L(l,l−1)

k

(
x
(l)
k , σ

(l)
k (x

S
(l)
k
)

)
− L(l,l+1)

k

(
σ
(l+1)
k (x

S
(l+1)
k

), x
(l+1)
k

)
. (2.7)
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The first term is the level-l component of the utility of any level-1 agent in group k. The second and
third terms model the inter-level inconsistency loss that penalizes a level-l agent a(l)k , where L(l,l+1)

k

and L(l,l−1)
i penalize its inconsistency with the level-(l + 1) and level-(l − 1) entities respectively.

In general, L(l,l+1)
k is a different function from L

(l+1,l)
k ; we elaborate on this further below.

The central idea behind the second algorithm we propose is simple: in addition to iterating best
response steps at level 1, we now interleave them with best response steps taken by agents at higher
levels, which we can since strategies and utilities of these pseudo-agents are well defined. This
algorithm is similar to the augmented Lagrangian method in optimization theory, where penalty
terms are added to relax an equality constraint and turn the problem into one with separable operators.
We can decompose this type of problem into smaller subproblems and solve the subproblems
sequentially using the alternating direction method (ADM) [98, 8]. The games at adjacent levels are
coupled through the equality constraints on their action profiles given by Eqn (2.5), and the penalty
functions are updated before starting a new iteration. The full algorithm, which we call Separated

Hierarchical BRD (SH-BRD), is provided in Algorithm (3).
The penalty updating rule in iteration t of Algorithm (3) is:

1. For l = 2, . . . , L, i = 1, . . . , N (l)

L
(l,l−1)
i

(
x
(l)
i , σ

(l)
i (x

S
(l)
i
(t+ 1))

)
= h

(l)
i

[
x
(l)
i − σ

(l)
i (x

S
(l)
i
(t+ 1)) + λ

(l)
i (t)

]2
. (2.8)

2. For l = 1, . . . , L− 1; i = 1, . . . , N (l), where a(l)i ∈ S
(l+1)
k

L
(l,l+1)
k

(
σ
(l+1)
k (x

S
(l+1)
k

), x
(l+1)
k (t)

)
= h

(l+1)
k

[
σ
(l+1)
k (x

S
(l+1)
k

)− x(l+1)
k (t)− λ(l+1)

k (t)

]2
.

(2.9)

3. For l = 2, . . . , L, i = 1, . . . , N (l)

λ
(l)
i (t+ 1) = λ

(l)
i (t)− h(l)i

[
σ
(l)
i (x

S
(l)
i
(t+ 1))− x(l)i (t+ 1)

]
. (2.10)

When updating, all other variables are treated as fixed, and λ(l)(0), h(l)i > 0 are chosen arbitrarily.
Unlike MS-BRD, the convergence of the SH-BRD algorithm is non-trivial. To prove it, we

exploit a connection between this algorithm and Structured Variational Inequalities (SVI) with
separable operators [38, 40, 8]. To formally state the convergence result, we need to make several
explicit assumptions.
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Algorithm 3: Separated Hierarchical BRD (SH-BRD)

Initialize the game, t = 0, x
(1)
i (0) = (x0)i, i = 1, . . . , N (0)

for l = 2:L do
for k = 1:N (l) do

x
(l)
k (0) = σ

(l)
k (x

S
(l)
k
(0));

while not converged do
for l = 1:L do

for i = 1:N (l) (l to l − 1 Penalty Update, if l > 1) do
Update L(l,l−1)

i

for i = 1:N (l) (l to l + 1 Penalty Update, if l < L) do
Update L(l,l+1)

k , where a(l)i ∈ S
(l+1)
k

for i = 1:N (l) (Best Response) do

x
(l)
i (t+ 1) = BRi

(
σ
(l)
i (x

S
(l)
i
(t+ 1)),x

(l)
Ii
(t), x

(l+1)
k (t), û

(l)
i

)
t← t+ 1;

Assumption 1. The functions u(l)k ,∀l = 1, . . . , L, ∀k = 1, . . . , N (l−1) are twice continuously

differentiable in x(l)k ,x
(l)
Ik

.

Assumption 2. −▽
x
(l)
i
u
(l)
i are monotone ∀l = 1, . . . , L, ∀i = 1, . . . , N (l−1). The solution set of

▽
x
(l)
i
u
(l)
i = 0,∀l = 1, . . . , L, ∀i = 1, . . . , N (l−1) is nonempty, with solutions in the interior of the

action spaces.

Let F (l) be defined as in Equation (2.3) for each level-l pseudo-utility.

Assumption 3. F (l) satisfy the PΥ condition.

Note that these assumptions directly generalize the conditions required for the convergence
of BRD to our multi-scale pseudo-utilities. The following theorem formally states that SH-BRD
converges to a NE for 2-level games.

Theorem 2. Suppose L = 2. If Assumptions 1 and 3 hold, SH-BRD converges to a NE, which is

unique.

The full proof of this theorem, which makes use of the connection between SH-BRD and SVI,
is provided in the appendix. The central issue, however, is that there are no established convergence
guarantees for ADM-based algorithms for SVI with 3 or more separable operators. Alternative
algorithms for SVI can extend to the case of 3 operators using parallel operator updates with
regularization terms, but no approaches exist that can handle more than 3 operators [38]. We thus
propose an algorithm for iteratively solving multi-scale games that uses the general idea from SH-
BRD, but packs all levels into two meta-levels. The two meta-levels each have to be comprised of

21



consecutive levels. For example, if we have 5 levels, we can have {1, 2, 3} and {4, 5} combinations,
but not {1, 2, 4} and {3, 5}. Upon grouping levels together to obtain a meta-game with only two
meta-levels, we can apply what amounts to a 2-level version of the SH-BRD. This yields an
algorithm, which we call Hybrid Hierarchical BRD (HH-BRD), that now provably converges to a
NE for an arbitrary number of levels L given assumptions 1-3.

As presenting the general version of HH-BRD involves cumbersome notation, we illustrate the
idea by presenting it for a 4-level game (Algorithm 4). The fully general version is deferred to the
Supplement. In this example, the objectives of the meta-levels are defined as

û
(sl1)
i = u

(1)
i + u

(2)
ki2
− L(sl1,sl2)

ki3

(
σ
(3)
ki3
(x

S
(3)
ki3

), x
(3)
ki3

)
,

û
(sl2)
ki3

= u
(3)
ki3

+ u
(4)
ki4
− L(sl2,sl1)

ki3

(
x
(3)
ki3
, σ

(3)
ki3
(x

S
(3)
ki3

)

)
.

Algorithm 4: Hybrid Hierarchical BRD

Initialize the game, t = 0, x
(1)
i (0) = (x0)i, i = 1, . . . , N (0)

for l = 2:4 do
for k = 1:N (l) do

x
(l)
k (0) = σ

(l)
k (x

S
(l)
k
(0));

while not converged do
for k = 1:N (3) (Meta-Level-1 Penalty Update) do

Update L(sl1,sl2)
k

for i = 1 : N (1) (Level-1) do

x
(1)
i (t+ 1) = BRi

(
x
(1)
Ii
(t),x

(2)
Iki2

(t), x
(3)
ki3
(t), û

(sl1)
i

)
for j = 1:N (2) (Level-2) do

x
(2)
j (t+ 1) = σ

(2)
j (x

S
(2)
j
(t+ 1))

for k = 1:N (3) (Meta-Level-2 Penalty Update) do
Update L(sl2,sl1)

k

for k = 1 : N (3) (Level-3) do

x
(3)
k (t+ 1) = BRi

(
σ
(3)
k (x

S
(3)
k
(t+ 1)),x

(3)
Ik
(t),

x
(4)
−p(t), û

(sl2)
k

)
, (a

(3)
k ∈ S

(4)
p )

for p = 1:N (4) (Level-4) do
x
(4)
p (t+ 1) = σ

(4)
p (x

S
(4)
p
(t+ 1))

t← t+ 1;
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Theorem 3. Suppose Assumptions 1-3 hold Then HH-BRD finds the unique NE.

Proof Sketch. We first “flatten” the game within each meta-level to obtain an effective 2-level game.
We then use Theorem 2 to show this 2-level game converges to the unique NE of the game under
SH-BRD. Finally, we prove that SH-BRD and HH-BRD have the same trajectory given the same
initialization, thus establishing the convergence for HH-BRD. Please see Appendix A.4 for full
proof.

HH-BRD combines the advantages of both MS-BRD and SH-BRD: not only does it exploit the
sparsity embedded in the network topology, but it also avoids the convergence problem of SH-BRD
when the number of levels is higher than three. Indeed, there is a known challenge in the related
work on structured variational inequalities that convergence is difficult when we involve three or
more operators [38], which we leverage for our convergence results, with operators mapping to
levels in our multi-scale game representation. One may be concerned that HH-BRD pseudocode
appears to involve greater complexity (and more steps) than SH-BRD. However, this does not
imply greater algorithmic complexity, but is rather due to our elaboration of the steps within each
super level. Indeed, as our experiments below demonstrate, the superior theoretical convergence of
HH-BRD also translates into a concrete computational advantage of this algorithm.

2.5 Numerical Results and Analysis

In this section, we numerically compare the three algorithms introduced in Section 2.4, as well
as the conventional BRD. We only consider settings that satisfy Assumptions 1-3; consequently,
we focus on the comparison of computational costs. We use two measures of computational cost:
floating-point operations (FLOPs) in the case of games with a linear best response (a typical measure
for such settings), and CPU time for the rest. All experiments were performed on a machine with A
6-core 2.60/4.50 GHz CPU with hyperthreaded cores, 12MB Cache, and 16GB RAM.

Games with a Linear Best Response (GLBRs) GLBRs [10, 19, 68] feature utility functions such
that an agent’s best response is a linear function of its neighbors’ actions. This includes quadratic
utilities of the form

ui(xi, xIi) = ai + bixi +

(∑
j∈Ii

gijxj

)
xi − cix2i , (2.11)

since an agent’s best response is:

BRi(xIi , ui) =

∑
j∈Ii gijxj

2ci
− bi.

We consider a 2-level GLBR and compare three algorithms: BRD (baseline), MS-BRD, and
HS-BRD (note that in 2-level games, HH-BRD is identical to HS-BRD, and we thus don’t
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include it here). We construct random 2-level games with utility functions based on Equation (2.11).
Specifically, we generalize this utility so that Equation (2.11) represents only the level-1 portion,
u
(1)
i , and let the level-2 utilities be

u
(2)
k (xk,xxxIk) = x

(2)
k

∑
p ̸=k

vkpx
(2)
p

for each group k. At every level, the existence of a link between two agents follows the Bernoulli
distribution where Pexist = 0.1. If a link exists, we then generate a parameter for it. The parameters
of the utility functions are sampled uniformly in [0, 1] without requiring symmetry. Please refer to
Appendix A.5 and A.5.1 for further details. Results comparing BRD, MS-BRD, and SH-BRD
are shown in Table 2.1. We observe dramatic improvement in the scalability of using MS-BRD
compared to conventional BRD. This improvement stems from the representational advantage
provided by multi-scale games compared to conventional graphical games (since without the multi-
scale representation, we have to use the standard version of BRD for equilibrium computation). We
see further improvement going from MS-BRD to SH-BRD which makes algorithmic use of the
multi-scale representation.

Size BRD MS-BRD SH-BRD

302 (2.51±0.18)×106 (1.03±0.07)×105 (9.81±0.81)×104

502 (2.53±0.18)×107 (5.33±0.04)×105 (4.35±0.07)×105

1002 (4.46±0.32)×108 (4.36±0.31)×106 (3.56±0.29)×106

2002 (6.73±0.58)×109 (3.48±0.29)×107 (2.79±0.21)×107

5002 (2.84±0.21)×1011 (5.69±0.41)×108 (4.04±0.29)×108

Table 2.1: Convergence and Complexity (FLOPs) Comparison with Linear Best Response under
Multiple Initializations.

Games with a Non-Linear Best Response Next, we study the performance of the proposed
algorithms in 2- and 3-level games, with the same number of groups in each level (we systematically
vary the number of groups). Since SH-BRD and HH-BRD are identical in 2-level games, the
latter is only used in 3-level games. All results are averaged over 30 generated sample games. The
non-linear best response fits a much broader class of utility functions than the linear best response.
The best responses generally don’t have closed-form representations. In this case, we can’t use
linear equations to find the best response and instead have to apply gradient-based methods. In our
instances, the utility with non-linear best responses is generated by adding an exponential cost term
to the utility function used in GLBRs. Please refer to Appendix A.5 and A.5.2 for further details.
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Size BRD MS-BRD SH-BRD

302 1.50±0.05 1.02±0.02 0.54±0.01

502 26.70±0.36 3.70±0.14 1.81±0.04

1002 1512±9 23.81±0.69 12.10±0.13

2002 > 18000 287.2±5.4 133.6±2.5

5002 nan 5485±13 2524±10

Table 2.2: CPU Times on a Single Machine on 2-Level Games with General Best Response
Functions; All Times are in Seconds.

Table 2.2 shows the CPU time comparison between all algorithms. The scalability improvements
from our proposed algorithms are substantial, with orders of magnitude speedup in some cases (e.g.,
from ∼ 25 minutes for the BRD baseline, down to ∼ 12 seconds for SH-BRD for games with
10K agents). Furthermore, BRD fails to solve instances with 250K agents, which can be solved
by SH-BRD in ∼ 42 min. Again, we separate here the representational advantage of multi-scale
games, illustrated by MS-BRD, and the algorithmic advantage that comes from SH-BRD. Note
that SH-BRD, which takes full advantage of the multi-scale structure, also exhibits significant
improvement over MS-BRD, yielding a factor of 2-3 reduction in runtime.

Size BRD MS-BRD SH-BRD

302 1.21±0.04 0.63±
0.01

0.037±0.003

502 23.88±0.16 1.99±0.04 0.079±0.004

1002 1461±14 15.49±0.24 0.304±0.006

2002 > 18000 192.0±1.2 1.87±0.05

5002 nan 4258±56 s 28.79±0.37

Table 2.3: CPU Times on a Single Machine for 2-Level, Linear/nonlinear Best-response Games;
All Times are in Seconds.

Our next set of experiments involves games in which level-1 utility has a linear best response,
but level-2 utility has a non-linear best response. The results are shown in Table 2.3. We see an
even bigger advantage of SH-BRD over the others: it is now typically orders of magnitude faster
than even MS-BRD, which is itself an order of magnitude faster than BRD. For example, in games
with 250K agents, in which BRD fails to return a solution, MS-BRD takes more than 1 hour to
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find a solution, whereas SH-BRD finds a solution under 30 seconds.

Size BRD MS-BRD SH-BRD HH-BRD

103 1.23±0.03 0.59±0.01 0.76±0.03 0.43±0.02

203 696.0±8.7 3.78±0.09 6.05±0.08 3.35±0.09

303 > 18000 15.70±0.11 25.13±0.14 13.39±0.11

503 nan 68.59±0.75 138.8±1.1 57.98±0.69

1003 nan 1126±6 2343±21 877.1±11.5

Table 2.4: CPU Times in Seconds on a Single Machine on 3-Level, General Best Response Games;
All Times are in Seconds.

Finally, Table 2.4 presents the results of HH-BRD in games with > 2 levels compared to
SH-BRD, which does not provably converge in such games. In this case, HH-BRD outperforms
the other alternatives, with up to 22% improvement over MS-BRD; indeed, we find that SH-BRD
is considerably worse even than MS-BRD.

2.6 Chapter Conclusions

We proposed a novel representation of network games that have a multi-scale network structure.
These generalize network games, but with special structures that agent utilities are additive across
the levels of hierarchy, with utility at each level depending only on the aggregate strategies of other
groups. We present several iterative algorithms that make use of the multi-scale game structure, and
show that they converge to a pure strategy Nash equilibrium under similar conditions as for best
response dynamics in network games. Our experiments demonstrate that the proposed algorithms
can yield orders of magnitude scalability improvement over conventional best response dynamics.
Our multi-scale algorithms can reveal the extent to which one’s group affiliation impacts one’s
strategic decision making, and how strategic interactions among groups impact strategic interactions
among individuals.
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Chapter 3

Structured Network Games: Leveraging Relational Information in
Equilibrium Analysis

3.1 Introduction

As discussed in Chapter 2, the network game framework can be used to capture different forms of
interdependencies between agents’ decisions, such as allowing the action of an agent to be a strategic
substitute or complement to that of its neighbors. While these problems have been extensively
studied in prior works, see e.g., [3, 17, 53, 10, 68, 74, 2, 100, 63, 79, 73], the focus has been largely
on network games with a single, generic underlying network governing the relationship among
agents. These will be referred to as unstructured network games in this chapter; accordingly, their
corresponding adjacency matrices will be referred to as regular adjacency matrices. The main focus
of this line of work is in identifying sufficient conditions under which the Nash equilibrium (NE) of
such a network game is unique and stable, see e.g., [79, 73]. Such conditions are important from a
number of perspectives. First, many equilibrium computation algorithms require assumptions that
guarantee the uniqueness of the NE. To ensure the convergence or effectiveness of such algorithms,
verification of such assumptions is important. Moreover, knowledge about properties like the
uniqueness and stability of an NE can help a (mechanism) designer in devising more suitable
mechanisms and interventions for the system.

In contrast, this chapter focuses on network games with structures that arise naturally, which
closely follows the idea in Chapter 2 and further extends to multi-relational networks. Specifically,
we consider two (non-mutually exclusive) families of structures in this study: (1) In the first, the
underlying network enjoys certain special graphical properties, a prime example being agents
forming local communities, thereby creating sub-graphs that are more strongly dependent/connected
within themselves; (2) In the second case, agents enjoy multi-relational interactions, whereby they
are connected over multiple (parallel) networks, each of which governs the dependency relationship
of a different action dimension in a high-dimensional action space. Our goal is to understand how
the existence of these types of structures affects the resulting Nash equilibria analysis, and how to
exploit such structures, when they exist, to provide characterizations of conditions for the existence,
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uniqueness, and stability of NEs in such network games. Similar to [3, 2, 100, 79, 73], we consider
utility functions with nonlinear best-response functions and use the equivalent variational inequality
(VI) representation to study the properties of the NE.

It turns out that such network structures can be used to our advantage in analyzing the NEs of
these games, as well as in substantially reducing the computational requirement for equilibrium
computation and for verifying the aforementioned conditions. This is done by adopting an extended

or generalized form of adjacency matrix defined over the space of both agents and actions, and
identifying partitions in this matrix as a result of the types of structures in the network and/or in the
agents’ dependent relationships described earlier.

Specifically, the computational effort in verifying the uniqueness and stability conditions derived
using existing methods, also referred to as unstructured conditions in this chapter, entails the
study of the properties of a game Jacobian (this is the Jacobian matrix of the operator in the VI
problem yielding the NE). This matrix is in general asymmetric, making the condition verification a
co-NP-complete problem; this means the computational complexity grows faster than polynomial
time in the size of the game (total number of agents for an unstructured network game, or total
number of agent-action pairs for a structured network game). In the special case of a symmetric
game Jacobian, the verification complexity of such conditions still grows in polynomial time in the
size of the game.

In contrast, taking advantage of the partition structures in a structured network game, we derive a
new set of conditions, also referred to as structured conditions, that depend only on the partitions in
the game Jacobian and the size of the partitions. Both the structured and the unstructured conditions
rely on matrices derived from utility functions and adjacency matrices. When the unstructured
derived matrix is asymmetric (resp. symmetric), the structured condition reduces the verification
complexity multiple degrees in exponential time (resp. polynomial time), where the degrees depend
on the size of the network and the partition structures. Empirically, as we show in Section 3.7, the
verification of the new condition takes only 2% of the CPU time needed to verify the unstructured
conditions from existing literature and avoids memory overflow in large games.

Reducing the verification complexity is of great conceptual and practical interest: it allows
us to obtain a high-level understanding of a game much faster and avoid computational resource
bottlenecks, especially for large games, and enables early decisions. However, such computational
efficiency gain does come at a cost, in that the structured conditions are stronger, i.e., they are
sufficient conditions that imply the unstructured conditions. In other words, some games may satisfy
the unstructured conditions (which guarantee the uniqueness and stability of the NE) but fail to
satisfy the structured conditions. Our extensive numerical experiments show that this sufficiency
gap is small in general, and the sample games that lead to such sufficiency gaps have concentrated
features. We characterize such features and provide real-world interpretations.
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In addition to the uniqueness and stability of the NE, we also introduce a new notion of centrality
for structured network games, which can be viewed as a generalization of degree centrality. This
new centrality measures the influence or importance of a partition in the network game. We show
that this notion of centrality can help identify additional conditions for the uniqueness and stability
of the NE.

Our main contributions are summarized as follows.

• We provide sufficient conditions for the existence, uniqueness, and stability of the Nash
equilibrium in network games, by taking advantage of the partition structures which may
arise due to, e.g., the existence of communities or multi-relational interactions.

• We show that these conditions are sufficient conditions that imply those obtained in previous
works, but that they are computationally much easier to verify than their counterparts obtained
using conventional methods without utilizing the partition structures.

• The partition structure further allows us to define a new centrality measure, which can be
used to verify the uniqueness and stability of the NE in these games.

• We conduct numerical experiments that compare our new conditions with conditions in
previous works in terms of their verification complexity and strengths, which shed light on
when using these new conditions is advantageous.

The remainder of the chapter is organized as follows. We provide motivating examples for the
study of structured networks in Section 3.2. In Section 3.3, we introduce our model of structured
network games. We present our results on the existence and uniqueness of Nash equilibria in
Section 3.4, followed by results on the stability of Nash equilibria in Section 3.5. We propose a
generalized notion of degree centrality for this class of games in Section 3.6. We present and discuss
our numerical experiment results in Section 3.7, and conclude in Section 3.8.

Related work: A common line of research in network games studied the effect of the network on
the existence, uniqueness, and stability of the game equilibria (see [45] for a survey). In particular,
unstructured network games with linear best-response functions have been studied in [10, 68, 74].
Bramoulle et al. [10] uncovered the importance of the lowest eigenvalue of the adjacency matrix of
the network in determining the uniqueness and stability of the Nash equilibrium. Miura-Ko et al.

[68] showed that if the adjacency matrix of the network is strictly diagonally dominant, then the
Nash equilibrium is unique. Naghizadeh and Liu [74] identified necessary and sufficient conditions
for the existence and uniqueness of Nash equilibria in network games with linear best-replies by
establishing a connection to linear complementarity problems.
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Unstructured network games with nonlinear best-response functions have been studied in
[3, 2, 100, 63, 79, 73]. Allouch [3] introduces a sufficient condition for the uniqueness of Nash
equilibrium called network normality which imposes lower and upper bounds on the derivative of
Engel curves. Acemoglu et al. [2] consider a network game with idiosyncratic shocks and show that
if the best response mapping is either a contraction with a Lipschitz constant smaller than one or a
bounded non-expansive mapping, then the game has a unique Nash equilibrium. Zhou et al. [100]
establish a connection between nonlinear complementary problems (NCP) and network games, and
use existing results from the NCP literature to find sufficient conditions for the uniqueness of Nash
equilibria. The works of [63, 79, 73] use the framework of variational inequalities to study network
games with nonlinear best-replies. Naghizadeh and Liu [73] show that a sufficient condition for the
uniqueness and stability of the Nash equilibrium can be determined by the lowest eigenvalue of
matrices constructed based on the slope of the agents’ interaction functions and the intensity of their
interactions. Parise and Ozdaglar [79] identify an operator in the variational inequality problem
which involves the derivative of the agent’s cost with respect to its action, and show that various
properties of this operator and its Jacobian will determine conditions for the existence, uniqueness,
and stability of a Nash equilibrium.

3.2 Motivating Examples

We elaborate on the idea of structured networks through a running example consisting of a
number of vendors/store owners (strategic agents) selling similar merchandise.

Communities due to stronger connectivity Community formation stems from situations where
the strengths of agents’ strategic interactions are (statistically) different within certain groups
compared to those between these groups. One type of community structure, commonly studied
and discovered using spectral analysis [77, 76], is characterized by groups with much stronger
connectivity (higher density of connections or existence of edges, as well as higher edge weights on
those edges) within themselves, and much weaker connectivity (lower density of edges and smaller
edge weights) between them.

Consider the case of three store owners, with agents a1 and a2 in close proximity of each other
and a3 located far away. Further, consider the store owners’ single action of selecting business hours.
Since a1 and a2 offer similar goods, their individual decisions on business hours (from complete
overlap to mutually exclusive) will have direct consequences on the other’s business volume and
goods sold, resulting in a stronger dependence relationship between the two. Their dependence
on (or influence of) a3 may be far weaker. This is illustrated in the left of Figure 3.1, where the
stronger relationship between a1 and a2 is indicated by a thicker edge; here a1 and a2 form a group
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or community.

Figure 3.1: Network with Communi-
ties/groups: 3 Agents and 1 Action Dimen-
sion; a1 and a2 Form the First Group, a3 is a
Singleton Group.

Figure 3.2: Bipartite Graph, where a1 and a2
are on One Side, and Exhibit the Same Type
of Dependence on a3 on the Other Side.

The recognition of groups gives rise to a “block” view in the structured adjacency matrix
shown on the right-hand side of Figure 3.1. Given there is only a single action, here every row
and column is associated with an agent, resulting in a 3×3 interaction matrix. The colors of the
diagonal entries match the identity of the agents depicted in the network as well as their indices.
The diagonal elements in the regular interaction matrix represent an agent’s self influence, whereas
the off-diagonal elements represent the agents’ mutual influence. Similarly, the diagonal blocks in
the structured matrix represent a partition’s self influence, whereas the off-diagonal blocks represent
the partitions’ mutual influence. These quantities will be precisely defined in the next section.

Communities due to the similarity in function Communities can also result from a logical
relationship. As an example, consider again the three store owners, where a1 and a2 carry completely
orthogonal merchandise (e.g., a bakery vs. a hardware store) but both rely on a3 to provide store
security and vehicle rental as needed, and consider the single action of staffing levels. In this case,
the dependency only exists between a1, a3, and between a2, a3, but not between a1, a2, resulting in
a bipartite network shown in Figure 3.2. Yet in this case it is still appropriate to view a1 and a2 as
belonging to the same group, because they each exhibit very similar dependence on another group.

Partition on action dimensions Our next example is more complex and introduces a high-
dimensional action space. The general idea is that when actions are high-dimensional, the inter-
action/dependency relationships among agents can be different for different action dimensions,
effectively resulting in multiple parallel networks superimposed on each other; this will also be
referred to as a multi-relational network game.

Consider again the three store owners, each of which now has both physical and online sales. It
is reasonable to expect that the decisions a seller makes about what goods to display in the window
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or offer for sampling may have more impact on other similar stores in its physical proximity (one set
of agents), whereas its decisions on webpage design, layout, picture quality, and payment options
may only impact its online competitors (another set of agents). In such multi-relational games, the
action dimensions naturally create action-based structures on the network.

Suppose we capture the above with two action dimensions (in-store and online decisions), and
further suppose in our case a1 and a2 are much more in direct competition in terms of physical-store
sales due to their proximity, but that a2 and a3 are much more in direct competition in terms of their
online sales due to high similarity in the goods they carry. This means that agents form different
groups in different actions, as illustrated in Figure 3.3, where agents are represented by different
colors and action dimensions are represented by different shades. In the first (solid color) action, a1
and a2 form a group whereas in the second (faded color) action, a2 and a3 form a group.

To capture the multiple action dimensions, we will define an extended adjacency/interaction
matrix where each row and each column represent an agent-action dimension pair; the regular
adjacency matrix is then a special case of this extended definition when the action dimension is
1. Under this definition, we have a 6×6 interaction matrix for this example. This is shown in
Figure 3.4. Given such a matrix, partitions can emerge either by agents (similar sets of agents
form the same group regardless of the action dimension) or by actions (interactions along different
dimensions tend to be orthogonal), as is the case in this example and shown in Figure 3.4.

Figure 3.3: Action Dimension Partitioned Graph,
with 3 Agents and 2 Actions. a1 and a2 are Closely
Connected on Action Dimension 1, while a2 and
a3 are Closely Connected on Action Dimension
2.

Figure 3.4: Action Dimension
Partitioned Matrix for the Net-
work in Figure 3.3.

Arbitrary partitions in the extended adjacency matrix We note that the idea of a partitioned
extended adjacency matrix is not restricted to the above example scenarios. In principle, this can be
done across both agents and action dimensions in arbitrary ways.

It is important to note that in our analysis, we will be working with the Jacobian (▽F ) of
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a best-response operator (F ), defined precisely in subsequent sections, rather than the extended
adjacency matrix (G) itself. This is because the former captures both first-order and second-order
information about the utility functions, which is not captured in the latter. In particular, the extended
adjacency matrix does not reveal cross-action dependencies induced by the utility functions. We
will, however, also show that there is a direct correspondence between a partition on the extended
adjacency matrix and that on the Jacobian. For this reason, the use of the adjacency matrix in this
section is for illustration purposes only, as it is much more intuitive and straightforward to visualize
the described partition structures in an adjacency matrix.

Please refer to Appendix B.1 for concrete numbers used in Figure 1-4.

3.3 Model and Preliminaries

3.3.1 The Structured Network Game Model

We consider a structured network game among N agents N = {a1, . . . , aN}, each with K
action dimensions. The multi-relational network is represented by a multi-relational graph with
extended adjacency matrix G. The adjacency matrix on the k-th action dimension is denoted as
G(k), and is a submatrix of G.

The edge weight G(k)
ij ∈ R is a real number representing the strength of influence agent aj has

on agent ai (or ai’s dependence on aj) in the k-th action dimension.
We use x(k)i ∈ R to denote the k-th action of agent ai, xi = (x

(k)
i )Kk=1 ∈ RK to denote the action

vector of ai, and x
(−k)
i = [x

(1)
i , · · · , x(k−1)

i , x
(k+1)
i , · · · , x(K)

i ]T to denote the action profile of ai,
excluding the k-th dimension. In addition, let x(k) = (x

(k)
i )Ni=1 ∈ RN be the action vector of all

agents on the k-th action dimension, and x−i denotes the action profile of all agents other than ai.
Each agent ai has an action constraint xi ∈ Qi =

∏K
k=1Q

(k)
i , where Q(k)

i := [0, B
(k)
i ] such that

B
(k)
i captures the physical or financial constraints (budgets) on the k-th action dimension.

We consider games with utility functions consisting of an individual component and a network
component:

ui(xi,x−i, G) = di(xi) + fi(xi, G
(1)x(1), . . . , G(K)x(K)). (3.1)

Here, di(·) is the individual component, which only depends on ai’s own actions; conventionally, it
contains a standalone benefit and cost of taking action xi. The network component fi(·) depends on
not only the agent’s own but also others’ actions. Here, the network influence on the k-th action
dimension is captured by G(k)x(k). Throughout the paper, we make the following assumption on
the game.
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Assumption 4. The utility functions ui(xi,x−i, G) are concave in xi and twice continuously

differentiable in xi and x−i, for all i.

An example of this type of utility function is given below.

Example 1. The multi-relational extension of linear-quadratic utility functions, studied in e.g., [30],

has the following form,

ui(xi,x−i, G) = xT
i bi +

K∑
k=1

∑
j ̸=i

x
(k)
i g

(k)
ij x

(k)
j −

1

2
xT
i Cixi,

where xT
i bi − 1

2
xT
i Cixi is the individual component containing the standalone benefit term and the

cost term, and
∑K

k=1

∑
j ̸=i x

(k)
i g

(k)
ij x

(k)
j is the (multi-relational) network influence component. (We

can further expand this utility function with cross-relational influence terms
∑K

k=1

∑
j ̸=i x

(k)
i g

(k,l)
ij x

(l)
j ,

where G(k,l) is a submatrix in G modeling the network influence from the l-th action to the k-th

action.)

A Nash equilibrium of the described structured network game can be found as a fixed point of
the agents’ best response mappings. The best response of an agent in the network game is defined
as the action an agent takes to maximize its own utility, given other agents’ actions and the network
topology. For our model, we denote the best response of agent ai as

BRi(x−i, G) := arg max
xi∈Qi

ui(xi,x−i, G). (3.2)

We also define an operator Fi as follows,

Fi(xi,x−i) = −▽xi
ui(xi,x−i, G) ∈ RK . (3.3)

Next, we introduce the Variational Inequality (VI) framework and its relation to Nash equilibria
in network games.

3.3.2 The Variational Inequality (VI) Problem

Variational Inequalities (VIs) are a class of optimization problems with applications in game
theory. In particular, the Nash equilibria of many games can be found as solutions to a corresponding
VI problem [79, 88]. We state the VI problem formally below, using the set of notations introduced
earlier so that the correspondence between the game model and the VI problem is clear.

Definition 2. A variational inequality V I(Q,F ) consists of a set Q ⊆ RN and a mapping F : Q→
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RN , and is the problem of finding a vector x∗ ∈ Q such that,

(x− x∗)TF (x∗) ≥ 0, ∀x ∈ Q. (3.4)

Finding the Nash equilibrium of a structured network game is equivalent to solving a variational
inequality problem V I(Q,F (x)) with the appropriate choice of Q and F . An example choice
of Q and F is: Q = Q1 × Q2 × . . . × QN ⊆ RNK , with Qi being the action space of ai, and
F (x) = (Fi(xi,x−i))

N
i=1 ∈ RNK , with Fi(·) given in (3.3). Then, since finding an NE is the

problem of finding a fixed point of the best response mappings in (3.2), it is equivalent to solving
the VI problem given in (3.4) with the choice of F and Q stated above (see, e.g., [28, Proposition
1.4.2]). Intuitively, if the equilibrium x∗

i is an interior point of Qi, then Fi(x
∗
i ,x

∗
−i) = 0 if and only

if x∗
i is a best response to x∗

−i; if x∗
i is on the boundary, we can still show (xi − xi

∗)TFi(x
∗) ≥ 0

holds. Note also that the above definition holds for Q and F that are permutations of the preceding
example choice, as long as the permutations are consistent.

3.3.3 Partitions

We next formally define partitions in a structured network game. As shown in Section 3.2, a
partition is essentially a set of indices, where each index corresponds to an agent-action pair (which
also corresponds to a column or row in the extended adjacency/interaction matrix G). Figures 3.1,
3.2, and 3.4 show how, by grouping certain indices together (rearranging rows and columns), block
structures may emerge in G.

It turns out a block structure in G translates to a similar block structure in the Jacobian of the
operator F , when F is a suitable permutation of the operator (Fi(xi,x−i))

N
i=1 consistent with the

partitions.
As defined in (3.3), we can think of operator Fi as the best response direction vector of ai, where

each element in Fi corresponds to an agent-action component. Therefore, operator F (x) is the
global best response direction vector containing all agent-action components; these components can
be arranged in an arbitrary order, and (Fi(xi,x−i))

N
i=1 corresponds to a common order.

While F captures important first-order derivative information of the utility functions with respect
to the agent-action components, the Jacobian of F , denoted as ▽F captures important second-order
information of the utility functions and first-order information of the operator F . It is common,
see e.g., [88, 73, 79], to use the properties of ▽F to derive unstructured conditions for equilibrium
analysis.

When K = 1, ▽F ∈ RN×N , where the off-diagonal elements in ▽F measure how an agent’s
action influences another agent’s best response. For K > 1, ▽F ∈ RNK×NK , and now the off-
diagonal elements in ▽F measure how an agent-action component influences the best response
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direction of another agent-action component.
There is a one-to-one mapping between the dimensions in ▽F and G, since each dimen-

sion in ▽F and G corresponds to an agent-action component, and thus any partition on G can
equally apply to ▽F , as partitions are nothing more than separating the agent-action compo-
nents into disjoint sets. Using the same 3-agent, 2-action example in Figures 3.3 and 3.4, while
(Fi(xi,x−i))

N
i=1 orders the agent-action components as x(1)1 , x

(2)
1 , x

(1)
2 , x

(2)
2 , x

(1)
3 , x

(2)
3 , F orders them

as x(1)1 , x
(1)
2 , x

(1)
3 , x

(2)
1 , x

(2)
2 , x

(2)
3 . Then, if we partition the network as shown in Figure 3.3, we can

partition ▽F the same way, as illustrated in Figure 3.4.
We note that the partition based on (agent) group structure and the partition based on action

dimensions are special cases. For the remainder of the paper, we will discuss network games with
general, arbitrary partition structures. Specifically, for an arbitrary structure, we can partition all the
N ×K agent-action components (and their corresponding indices) into an arbitrary number (M ) of
disjoint sets, denoted by P1, . . . ,PM . Accordingly, we will also denote by Ni = |Pi| the size of the
partitions, where

∑M
i=1Ni = NK.

3.4 Existence and Uniqueness

We now identify conditions for the existence and uniqueness of Nash equilibrium based on the
VI formulation of the game.

3.4.1 Existence of NE

We first state the conditions under which a Nash equilibrium exists. From [88], we have the
following theorem that guarantees the existence of NE:

Theorem 4. ([88, Theorem 3]) If F is continuous on Q, and Q is nonempty, compact and convex,

then V I(Q,F ) has a nonempty and compact solution set.

This is because in our problem, Q = Q1×Q2× . . .×QN , with Qi = [0, B
(1)
i ]× . . .× [0, B

(K)
i ],

so that together with Assumption 4, the conditions of Theorem 4 are satisfied for the network game
defined in Section 3.3.

3.4.2 Uniqueness of NE

We next introduce sufficient conditions under which the network game defined in Section 3.3.1
has a unique Nash equilibrium. We begin by introducing the following definitions.

Definition 3. P-Matrix: A matrix A ∈ RN×N is a P-matrix if every principal minor of A has a

positive determinant.
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Definition 4. A mapping F : Q 7→ RNK , where Q ⊆ RNK is nonempty, compact and convex, and

F is continuously differentiable on Q, is strongly monotone if there exists a constant c > 0 such that

(xxx− yyy)T (F (xxx)− F (yyy)) ≥ c∥xxx− yyy∥22, ∀xxx,yyy ∈ Q . (3.5)

Further, F = (F1, F2, . . . , FN) is a uniform block P-function w.r.t. the ( agent-level) partition

Q = Q1 ×Q2 × · · · ×QN if there exists a constant b > 0 such that

max
i∈N[1,M ]

(xxxi − yyyi)T [Fi(xxx)− Fi(yyy)] ≥ b∥xxx− yyy∥22, ∀xxx,yyy ∈ Q . (3.6)

By setting b = c/N , it is easy to see that strong monotonicity is a sufficient condition for
the uniform block P-condition. Parise and Ozdaglar [79] show that if F (xxx) is a uniform block
P-function, then V I(Q,F ) has a unique solution, and the Nash equilibrium of the network game
corresponding to V I(Q,F ) is unique.

Unfortunately, it is computationally costly to verify these conditions for the function F (xxx),
since checking whether a square matrix is a P-matrix is co-NP-complete [24], and typically, the
complexity grows (faster than polynomial time) in the size of the matrix. Below, we show that it is
possible to take advantage of the block structure when it is present, and identify conditions for the
uniqueness of Nash equilibrium that are of lower computational complexity to verify.

To do so, we define a structured matrix ΥS and its components, the internal and external impact
levels of partitions, as follows:

Definition 5. We say a partition Pi receives internal impact, αS
i , and external impact, βS

ij , defined

as follows:

αS
i = inf

xxx∈Q
∥▽iFi(xxx)∥2, ∀i ∈ N[1,M ]

βS
ij = sup

xxx∈Q
∥▽jFi(xxx)∥2, ∀i, j ∈ N[1,M ], i ̸= j , (3.7)

where ▽jFi(xxx) ∈ RNi×Nj is a matrix with k, l-th entry ∂F
(k)
i (xxx)

∂x
(l)
j

. The structured matrix ΥS for the

network game is defined accordingly as:

ΥS =


αS
1 −βS

12 . . . −βS
1M

−βS
21 αS

2 . . . −βS
2M

...
... . . . ...

−βS
M1 −βS

M2 . . . αS
M

 . (3.8)

We note that these impact measures are only defined between partitions and not agents. Accord-
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ingly, in this definition, the subscripts are indices of partitions instead of agents.
To motivate the above definition, it helps to understand the matrix ΥS in the context of what is

typically used in prior works for checking the uniqueness of the Nash equilibrium. If we ignore
the structure in the network and simply view each agent-action pair as a singleton partition, then
using an existing methodology (such as in [79, 73, 88]) will give us the Jacobian ΥU , which is a
NK ×NK matrix. Specifically, ΥU is given by

ΥU =


αU
1 −βU

12 . . . −βU
1,NK

−βU
21 αU

2 . . . −βU
2,NK

...
... . . . ...

−βU
NK,1 −βU

NK,2 . . . αU
NK,NK

 , (3.9)

and contains the following elements:

αU
k = inf

xxx∈Q
|▽kFk(xxx)|, ∀k ∈ N[1, NK]

βU
kl = sup

xxx∈Q
|▽lFk(xxx)|, ∀k, l ∈ N[1, NK], k ̸= l. (3.10)

To clarify, these will be referred to as the component-level internal and external impact, respectively.
Suppose we rearrange the rows and columns of ΥU in the following way: group together rows
whose action dimensions are in Pi, i = 1, · · · ,M ; group together columns whose agents are in Pj ,
j = 1, · · · ,M .

We can now view this rearranged ΥU in blocks/submatrices denoted by ΥU
Pi,Pj

, and there are
M × M blocks. The matrix ΥS is essentially a condensed version of this rearranged matrix,
summarizing or abstracting each block into a single quantity as defined in Definition 5: αS

i for the
diagonal block ΥU

Pi,Pi
and βS

ij for the off-diagonal block ΥU
Pi,Pj

.
This abstraction aims at capturing the dependence relationship between partitions rather than

between individual agent-action pairs. In particular, βS
ij represents the largest influence level of

partition Pj on partition Pi, and αS
i represents the minimum influence level of Pi on itself. This is

formally established in the following lemma.

Lemma 1. We have ∥ΥU
Pi,Pj
∥2 ≥ βS

ij and ∥ΥU
Pi,Pi
∥2 ≤ αS

i .

For detailed proof, see Appendix B.2, and please refer to Section 3.4.3 for additional interpreta-
tion.

In what follows, we show that the matrix ΥS can be used to provide sufficient conditions on the
uniqueness of NE in network games with partition structures. Such an abstraction takes advantage
of the partition structure and reduces the dimension of the matrix used to check conditions for the
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uniqueness fromNK×NK to a singleM×M matrix andM matrices of size |Pk|×|Pk|, k ∈ [1,M ].
This greatly reduces the complexity of condition verification, since as mentioned earlier, P-matrix
verification is co-NP-complete [24], and the complexity typically grows (faster than polynomial)
in the size of the matrix. For example, in a special case where the matrix is symmetric, P-matrix
verification is equivalent to examining its positive definiteness and the complexity becomes O(N3)

for an N ×N matrix. If there are N = 20 agents on the network with K = 5 action dimensions,
then the verification complexity of unstructured conditions is O(106); if we partition the game by
action dimensions, the complexity of the structured conditions is 5 · 8 ·O(103)+O(53), much lower
than O(106). This complexity gap will only increase if the matrix is asymmetric.

However, we also note that the strengths of the conditions obtained from the structured network
and the unstructured network are not equivalent. Specifically, we will later show that the conditions
obtained from the structured network are stronger (sufficient conditions to) their counterparts in the
unstructured network. Numerical results presented in Section 3.7 also highlight the gap between
these two sets of conditions.

The following result identifies a condition for the uniqueness of the Nash equilibrium in games
with the structured network.

Theorem 5. If the following two conditions are satisfied,

1. ΥS is a P-matrix, and

2. ΥU
Pi,Pi

,∀i are P-matrices (the diagonal blocks of ΥU are P-matrices),

then the network game has a unique Nash equilibrium.

Moreover, when both conditions are satisfied, then ΥU is also a P-matrix; i.e., the uniqueness

conditions (1 & 2) on the structured network are also a sufficient condition for the uniqueness of

the Nash equilibrium in the underlying unstructured network (i.e., one that ignores the partitioned

structures).

Proof. (Sketch)

• First, we show that if ΥS is a P-matrix, then F (xxx) is a uniform block P-function with respect
to the partitions P1, . . . ,PM .

• By [79], if F (xxx) is a uniform block P-function with respect to the partitions, then V I(Q,F )
has a unique solution which implies that the network game has a unique equilibrium.

• Finally, using Lemma 1, we show that if F (xxx) is a uniform block P-function with respect to
the partitions and ΥU

Pi,Pi
,∀i are P-matrices, then in the unstructured network, if we treat each

agent-action component as a singleton partition, the counterpart of F (xxx) is also a uniform
block P-function with respect to the singleton partition.
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For detailed proof, see Appendix B.3.

An interpretation of the above result is as follows. As noted earlier, βS
ij represents the external

impact of partition Pj on partition Pi, while αS
i is the internal impact of Pi. Typically, when βS

ij

has a relatively small value compared to αS
i , then ΥS is a P-matrix. Moreover, when ΥS is (row or

column) diagonally dominant, then ΥS is a P-matrix [93]. In these types of networks, partitions’
action profiles have a bounded influence on each other. On the other hand, if at least one partition’s
action profile has an out-sized effect on other partitions, then its decision can shift the state of the
network substantially and result in possibly multiple equilibria.

Remark 1. It is worth mentioning that the structured (resp. unstructured) network condition

verification is of a much lower complexity if ΥS (resp. ΥU ) is symmetric. By [69], a symmetric

matrix is a P-matrix if and only if it is positive definite, which means that instead of checking the

determinant for every principal minor, we only need to do an eigendecomposition. This reduces the

complexity from solving a co-NP-complete problem down to polynomial time.

We next present two corollaries of Theorem 5 which provide alternative ways for verifying the
uniqueness of NE in structured network games. We define

ΓS =


0 −βS

12/α
S
1 . . . −βS

1M/α
S
1

−βS
21/α

S
2 0 . . . −βS

2M/α
S
2

...
... . . . ...

−βS
M1/α

S
M −βS

M2/α
S
M . . . 0

 , (3.11)

where βS
ij and αS

i are as in Definition 5. Similar to before, by treating each agent as a singleton
partition, we can obtain ΓS’s unstructured counterpart, ΓU ∈ RNK×NK . We also denote the spectral
radius of ΓS as ρ(ΓS). By [90], if ρ(ΓS) < 1, then ΥS is a P-matrix. Therefore, we have the
following Corollary of Theorem 5.

Corollary 1. Assume the following two conditions hold simultaneously

1. ρ(ΓS) < 1 ,

2. ΥU
Pi,Pi

,∀i are P-matrices.

Then, the network game has a unique Nash equilibrium. Moreover, under these conditions, ΥU is a

P-matrix.

Since ΥS is a P-matrix under the conditions of Corollary 1, the sufficiency is a direct result of
Theorem 5.
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Our second corollary is on the special case where ΓS is a symmetric matrix. As mentioned
above, by [69], we know that a symmetric matrix is a P-matrix if and only if it is positive definite.
Therefore, we have the following.

Corollary 2. Assume ΓS is a symmetric matrix. Denote the eigenvalues of ΓS by λ1(ΓS) ≤
λ2(Γ

S) ≤ · · · ≤ λM(ΓS). Then, the network game has a unique Nash equilibrium if the following

two conditions hold simultaneously,

1. Eigenvalues of ΓS are larger than −1, i.e., λ1(ΓS) > −1,

2. ΥU
Pi,Pi

,∀i are P-matrices.

Moreover, under these conditions, ΥU is a P-matrix.

The proof is given in Appendix B.4.
These corollaries provide two alternative ways to check for the uniqueness of the Nash equilib-

rium. In terms of complexity, both finding the spectral radius and the eigendecomposition are of
complexity O(N3) for an N ×N matrix; these corollaries’ conditions are therefore computationally
easier to verify than the co-NP-complete problem. However, the trade-off is that the conditions
in Corollary 1 are stronger than those of Theorem 5, while Corollary 2 can only be used given a
symmetric ΓS (resp. ΓU ) on structured (resp. unstructured) networks. It is also worth mentioning
that even when ΥS (resp. ΥU ) are asymmetric, we can still have symmetric ΓS (resp. ΓU ) matrices,
and thus, Corollary 2 could still provide a computationally lighter alternative verification in these
cases.

Lastly, we again note that ΓU ∈ RNK×NK could be formed by treating each agent as a singleton
partition. When we take this viewpoint, Corollary 2 reduces to Proposition 3 of [73]. On the other
hand, by using the partition structure, ΓS is an M ×M matrix, and the conditions in Corollary 2
are computationally easier to verify as compared to those in Proposition 3 of [73]. Specifically,
checking the eigenvalues of a matrix requires performing eigendecomposition over it. To elaborate
on the comparison, suppose Ni = N for all Pi (all partitions have the same size). Then, using the
unstructured network, the complexity of the eigendecomposition on ΥU or ΓU is O(K3N3) while
using the partition structure, the complexity on ΥS or ΓS is reduced to O(M3). Of course, using
the partition structure, we have to compute the αS

i and βS
ij values as well, which is of complexity

O(M2N
3
). Altogether, the complexity of checking whether ΥS is a P-matrix under the conditions in

the above corollary isO(M3+M2N
3
), which can be much lower thanO(K3N3) in the unstructured

case.
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3.4.3 Sufficiency Gaps on the Uniqueness Conditions

To close this section, we elaborate on the difference between using and not using information
about partition structures in checking for the uniqueness of Nash equilibria.

The first thing to note is that, as mentioned earlier, the set of sufficient conditions derived when
accounting for partition structures are generally stronger than their counterparts derived without
using information about the structure: as Theorem 5, Corollary 1, and Corollary 2 indicate, if a
structured network satisfies these uniqueness conditions, then it also satisfies the corresponding
unstructured uniqueness conditions, but the opposite is in general not true. This means that there is
a sufficiency gap between the conditions obtained from the structured and unstructured networks.
The most important reason behind this sufficiency gap has to do with the way partition structures
are abstracted. There are two forms of abstractions made during the creation of the ΥS matrix; both
are for partitions and each summarizes the component (agent-action) level internal and external
impact, respectively:

1. The internal impact αS
i of partition Pi, is an abstraction of the component-level internal

impact αU
k for components (and corresponding indices) in Pi, and component level external

impact βU
kl between different indices in Pi;

2. The external impact βS
ij of Pj on Pi, is an abstraction of component-level external impact of

indices in Pj to indices in Pi.

These types of abstractions inevitably introduce gaps in the sufficiency conditions. As mentioned
in Lemma 1, the value of αS

i is lower-bounded by ∥ΥU
Pi,Pi
∥ and highly depends on the agents with

component-level internal impact in Pi. Meanwhile, the βS
ij value is upper bounded by ∥ΥU

Pi,Pj
∥, and

highly depends on the strongest component-level external impact from one index in Pj to another
in Pi. The significance of αS

i in verifying conditions for the uniqueness of the Nash equilibria is
akin to the observation “a chain is as strong as its weakest link”; we refer to this as the “weakest
link effect”. Similarly, the significance of the βS

ij values is referred to as the “strongest link effect”.
Recall an earlier observation in Theorem 5 that when each agent has stronger component-level

internal impact than component-level external impact, the NE is unique. Similarly, in terms of
structure, when each partition has stronger internal impact than external impact, the NE is unique
and the conditions in Theorem 5 and Corollaries 1, 2 are sufficient to guarantee such impact
differentials.

In some games, the indices k with weak component-level internal impact αU
k also have weak

component-level external impact βU
kl while the indices l with strong component-level internal impact

αU
l have similarly strong component-level external impact βU

lk. While we may be able to guarantee
the uniqueness of an NE using the unstructured network, we may not be able to do so using structures
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when a partition contains both types of (strong and weak) indices. This is because the abstraction
becomes inaccurate as the partition’s internal impact αS

i is weak and the external impact βS
ij strong;

thus the conditions obtained from the structured network may fail to guarantee the uniqueness of
NE. The following example highlights these observations.

Example 2. Consider a 4-agent, single-action dimension, 2-partition game where agents a1, a2
form P1 and agents a3, a4 form P2, with utility functions: u1(xxx) = x1(x2 + 5x3) − 5x21, u2(xxx) =

x2(x1 + x4)− 2x22, u3(xxx) = x3(x4 + 5x1)− 5x23, u4(xxx) = x4(x3 + x2)− 2x24. Then, we have

ΥU =


10 −1 −5 0

−1 4 0 −1
−5 0 10 −1
0 −1 −1 4

 ≻ 000, ΥS =

[
3.838 −5
−5 3.838

]
≺ 000,

which means that the unstructured condition guarantees the uniqueness of the NE in this game, yet

the game fails to satisfy the sufficient structured condition. This is an example when the internal

impact of a partition is weak but the external impact between partitions is strong.

We end this section by summarizing the types of games and partition structures that result in
small sufficiency gaps between the two sets of sufficient conditions. The sufficiency gap is small
if partition members have similar component-level internal impact; or if members have similar
connections to agents in other partitions and have similar component-level external impact level; or
if the member with the weakest component-level internal impact also has the strongest component-
level external impact. We present numerical experiments in Section 3.7 to further elaborate on these
comparisons.

3.5 Stability

We next examine conditions for the stability of the Nash equilibrium in these games. When
small changes occur to the underlying model parameters, a new Nash equilibrium may result.
Intuitively, if the new Nash equilibrium is close enough to the original one, then we say the original
Nash equilibrium is stable.

Formally, we generalize our utility functions in Eqn (3.1) to the family of parameterized functions
ui(xi,x−i,pi), where pi = [p

(1)
i , · · · , p(K)

i ] ∈ RK is a vector valued perturbation parameter or
shock on ai, and p = [p1, · · ·pN ] ∈ RNK denotes the vector of all perturbations/shocks. Moreover,
let x∗(p) be the action profile at the Nash equilibrium of the game under perturbation vector p and
x∗ be the Nash equilibrium of the unperturbed game (x∗ := x∗(0)).

We denote a ball of radius r > 0 centered at x ∈ RN byB(x, r) :=
{
y ∈ RN : ||x− y||2 < r

}
.
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Definition 6. ([55]) A Nash equilibrium x∗ is stable if ∃r > 0, d > 0 such that ∀p ∈ B(0, r), the

Nash equilibrium x∗(p) exists and satisfies

||x∗(p)− x∗||2 ≤ d||H(x∗(p),p)−H(x∗(p),0)||2 ,

where H(x,p) = (Hi(x,p))
M
i=1 with

Hi(x,p) = xi −BRi(x−i, G,p) .

Definition 6 states that if an NE x∗ is stable, the Nash equilibrium of the perturbed game (x∗(p))
remains close to the Nash equilibrium of the unperturbed game (x∗(0)).

3.5.1 Stability Condition Without Network Structure

In order to determine whether a Nash equilibrium x∗ is stable, [73] proposed dividing the agents’
action indices into three disjoint sets based on x∗:

A(x∗) :={j = ψ(i, k) | x(k)∗i > 0, x
(k)∗
i = B̃R

(k)

i (x∗
−i, ui)},

I(x∗) :={j = ψ(i, k) | x(k)∗i = 0, x
(k)∗
i > B̃R

(k)

i (x∗
−i, ui)},

B(x∗) :={j = ψ(i, k) | x(k)∗i = 0, x
(k)∗
i = B̃R

(k)

i (x∗
−i, ui)},

where B̃Ri(x
∗
−i, ui) is the unbounded best response and can take negative values, B̃R

(k)

i denotes the
k-th action dimension unbounded best response, and ψ : {1, . . . , N}×{1, . . . , K} 7→ {1, . . . , KN}
maps the N ×K agent-action indices pair to the KN indices in the unstructured operator F . A(x∗)

is referred to as the set of active indices, I(x∗) the set of strictly inactive indices, and B(x∗)

the set of borderline inactive indices. Intuitively, with a small parametric perturbation p, agent
action indices in A(x∗) remain active (x(k)∗i (p) > 0) and agent action indices in I(x∗) remain
inactive (x(k)∗i (p) = 0), while agent action indices in B(x∗) can transform from inactive to active
(x(k)∗i (p) > x

(k)∗
i (0) = 0).

Under these definitions, [73] established the following sufficient condition for the solution to
V I(Q,F ) to be stable in the sense of Definition 6.

Theorem 6. ([73]) Consider the matrix

▽A,BFA,B(x
∗) =

[
▽AFA(x

∗) ▽BFA(x
∗)

▽AFB(x
∗) ▽BFB(x

∗)

]
(3.12)

where ▽S1FS2(x
∗) is a sub-matrix of ▽F (x∗) with rows and columns corresponding to the agent
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action indices in sets S1 and S2 (not necessarily groups), respectively, and ▽A,BFA,B(x
∗) is

generated by selecting rows and columns corresponding to A∪B from the game Jacobian ▽F (x∗).

If ▽A,BFA,B(x
∗) is positive definite on Q, then the solution x∗ to V I(Q,F ) is stable.

Below we provide a condition for stability which is easier to verify as compared to that in
Theorem 6 by taking the partition structure into account.

3.5.2 Stability Condition with Partition Structure

Similar to [73], we divide partitions into active, strictly inactive, and borderline inactive sets.
Specifically: (1) a partition is active if at least one agent action index in that partition is active at
NE x∗; (2) if all agent action indices in a partition are strictly inactive, then the partition is strictly
inactive; (3) if all agent action indices of a partition are inactive and at least one of them is borderline
inactive, then the partition is considered as a borderline inactive partition. Formally, we have,

AS(x
∗) := {Pi | x∗

Pi
̸= 0},

IS(x
∗) := {Pi | x∗

Pi
= 0,x∗

Pi
> B̃RPi

(x∗)},

BS(x
∗) := {Pi | x∗

Pi
= 0} − IS(x∗), (3.13)

where AS(x
∗), IS(x∗), BS(x

∗) denote the set of active, strictly inactive and borderline inactive
partitions, respectively. We use x∗

Pi
, B̃RPi

(x∗) denote the vectors by choosing all indices in partition
Pi from the NE x∗, and the unbounded best response B̃R(x∗).

Theorem 7. Consider a Nash equilibrium x∗ of the network game. Re-index all partitions in

AS(x
∗) ∪BS(x

∗) with indices 1, 2, · · · , Z, Z = |AS(x
∗)|+ |BS(x

∗)|. Then, define

GS(x∗) =


θS1 (x

∗) −δS12(x∗) . . . −δS1Z(x∗)

−δS21(x∗) θS2 (x
∗) . . . −δS2Z(x∗)

...
... . . . ...

−δSZ1(x
∗) −δSZ2(x

∗) . . . θSZ(x
∗)


where δSij(x

∗) = ||▽jFi(x
∗)||2, θSi (x∗) = ||▽iFi(x

∗)||2. If the following conditions hold simulta-

neously:

1. GS(x∗) ≻ 0,

2. ▽iFi(x
∗) ≻ 0,∀Pi ∈ AS

⋃
BS ,

then x∗ is stable. Moreover, these conditions are sufficient for ▽A,BFA,B(x
∗) ≻ 0, i.e., the condition

for stability on an unstructured network (Theorem 6) holds under these conditions.
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For detailed proof, see Appendix B.5.
Intuitively, the matrix GS(x∗) captures the mutual influence between active and borderline

inactive partitions at the current Nash equilibrium profile. The borderline inactive partitions can
turn into active partitions under parametric perturbations. When such flips are significant, large
fluctuations can appear in the network, which can be further amplified through rebounds and
reflections. In this case, new equilibria may not exist, and even if they do, they may be far away
from the original equilibrium. However, when GS(x∗) ≻ 0 holds, the maximum impacts of
flipping partitions from (borderline) inactive to active are bounded, and therefore the current Nash
equilibrium remains stable.

In terms of the complexity of verifying these conditions, note that GS is a Z×Z matrix. Similar
to the comparison shown in Section 3.4, if we denote Y = |A(x∗)|+|B(x∗)|, then the computational
complexity of condition verification in Proposition 7 vs. Theorem 6 are O(Z3 + Z2N

3
) vs.

O(K3Y 3), where N is the average group size. Therefore, since Z < KY (ZN ≈ KY ), the
computational complexity of condition verification in Proposition 7 is lower than that of Theorem 6.

We conclude this section with a condition on ΥS leading to stable Nash equilibrium.

Theorem 8. Assume ΥS is symmetric. Then if the following two conditions hold simultaneously:

1. ΥS ≻ 0,

2. ΥU
Pi,Pi

,∀i are P-matrices,

the network game’s Nash equilibrium is unique and stable.

For detailed proof, see Appendix B.6.

3.6 Centrality

In network games, notions of node centrality are used to measure the influence of individual
nodes on network-level outcomes. Degree centrality is one of the centrality metrics which has
gained attention in the literature [13, 78]. In a directed graph, two different measures of degree
centrality are considered for each node: in-degree centrality, which is a count of edges directed to a
given node, and out-degree centrality, which is the number of outward edges from the given node.
In this section, we propose a generalization of the degree centrality measure for disjoint partitions.

Recall that we capture the influence of a partition using the Jacobian matrix ▽F (x). Matrix
▽jFi(x) measures the sensitivity of agents in partition i to the action profile of agents in partition j.
Accordingly, we define our generalized centrality measure as follows.
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Definition 7. Generalized Degree Centrality (GDC): Following Definition 5, denote βS
ij = supx∈Q ||▽jFi(x)||2,

and αS
i = infx∈Q ||▽iFi(x)||2. The generalized degree centralities for partition Pi are given by:

Din
i =

∑
j:j ̸=i

βS
ij

αS
i

, Dout
i =

∑
j:j ̸=i

βS
ji

αS
j

, ∀i, j ∈ N[1,M ] .

Moreover, the maximum GDCs are defined as follows:

Din
max = max

i∈N[1,M ]
Din

i , Dout
max = max

i∈N[1,M ]
Dout

i .

The above definition can be interpreted as follows: out-degree centrality measures the influence
of a given partition Pi on the network based on three factors, (1) connectivity, or the number of
links directed outward from Pi, (2) the internal impact of the target partitions that receive impact
from Pi, and (3) the external impact Pi has for every target group. In Definition 7, Dout

i captures
these factor through the summation of

βS
ji

αS
j

. Din
i can be interpreted similarly.

In addition to capturing importance due to their roles in the network, each partition can be
endowed with certain exogenous (non-network related) importance (not to be confused with external
impact from another partition). This will result in an extended centrality measure. The following is
a generalization of the extended centrality measure defined in [84].

Definition 8. Generalized Extended Degree Centrality (GEDC): Let e ∈ RM
>0 denote the vector of

external importance, where (e)i = ei > 0 is Pi’s external importance. The generalized extended

degree centralities for Pi are given by

Din
i (e) =

∑
j:j ̸=i

βS
ij

αS
i

ej
ei
, Dout

i (e) =
∑
j:j ̸=i

βS
ji

αS
j

ei
ej
,∀i, j ∈ N[1,M ]

and the maximum GEDCs are defined as

Din
max(e) = max

i∈N[1,M ]
Din

i (e), Dout
max(e) = max

i∈N[1,M ]
Dout

i (e) .

When e = α1, α > 0, Definitions 7 and 8 are equivalent. We now show the connection between
our centrality measure and the uniqueness of the Nash equilibrium.

Theorem 9. If the following two conditions hold simultaneously:

1. ΥU
Pi,Pi

,∀i are P-matrices,

2. there exists e ≻ 0 such that Din
max(e) < 1, or Din

max(e) < 1,
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then the Nash equilibrium is unique. If in addition ΥS is symmetric, the Nash equilibrium is unique

and stable.

For a detailed proof, see Appendix B.7.
Theorem 9 implies that if either the in-degree or out-degree GEDCs are bounded, then the Nash

equilibrium is unique. On the other hand, if neither the indegree nor outdegree is bounded, then at
least one partition has an outsized effect on the network. This partition’s decision can change the
state of the network significantly, resulting in possibly multiple equilibria.

Theorem 9 is similar to Proposition 7 in [88], but differs in the following aspect. In our work, the
βS
ij represent the influence of partitions on each other, while βij in [88] represents the component-

level influence of agents on each other. Moreover, when both conditions in Theorem 9 hold, ΥS ≻ 0;
this then becomes a special case of the condition in Corollary 2 (where ΥS is symmetric).

Moreover, Theorem 9 shows that if ΥS is symmetric and the degree centralities of the partitions
are bounded, then the unique Nash equilibrium is also stable. Intuitively, this is because if the
degree centrality of a given partition is not bounded, the partition has a considerable impact on the
network, and the Nash equilibrium may not be stable as a small perturbation affecting this partition
can influence the network dramatically.

3.7 Numerical Results

In this section, we present numerical results that are closely related to the analytical results shown
in previous sections. We first show the computational complexity and sufficiency gaps between the
structured and unstructured conditions, using single-action dimension (single-relational) network
games; the results are applicable to multi-relational network games as our analysis has shown.
We then use a multi-relational network game example to demonstrate an interesting setting where
some agents are important in one type of relationship but not in another. We will visualize this
phenomenon with the corresponding centrality measures defined in Section 3.6.

3.7.1 Procedure for Game Instance Generation

Our results on computational complexity gaps and the sufficiency gaps are obtained from a large
number of game instances randomly generated using the following procedure. A game is generated
for a specified size (number of agents N , number of action dimensions K = 1, number of partitions
M , and size of each partition Ni) and using utility functions ui(x, G) = xi(bi +

∑
j gijxj)−

ci
2
x2i .

The rest of the game is given by the interaction matrixG, and the vectors b = (bi)
N
i=1 and c = (ci)

N
i=1.

In generating a randomG, the diagonal elements are set to 0 without loss of generality. Each partition
is associated with consecutive agent indices and thus the diagonal blocks represent each partition
and the off-diagonal blocks represent cross-partition interdependencies. The off-diagonal elements
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in a diagonal block are generated using a Bernoulli distribution with parameter P in
exist, the probability

for a connection (non-zero element) to exist between any pair of agent-action indices. If such a
connection exists, its value (strength of the connection), gij , is drawn from a uniform distribution on
the interval [Sin

low, S
in
high]. We generate gij and gji independently. These elements also determine the

off-diagonal elements in the diagonal blocks of ΥU and the diagonal elements αS
i in the ΥS matrix.

The off-diagonal blocks of G are generated using the same approach, with parameters P out
exist

and [Sout
low, S

out
high]. These determine the connection frequencies and strengths between groups. These

elements also determine the off-diagonal blocks of the ΥU matrix as well as the off-diagonal
elements βS

ij in the ΥS matrix.
In subsequent numerical results, a dense matrix G refers to both P in

exist = 1 and P in
exist = 1, i.e.,

the entries in ΥU and ΥS are non-zero with probability 1.
The vector of individual cost c is generated by first choosing a fixed mean value c = 1

2
(so that

E[αU
k ] = 1) for all the cost terms. We then generate a partition mean cPi

by sampling uniformly
at random from an interval [clow, chigh], where clow + chigh = 1. Next, within each group, we
choose an interval [clowPi

, chighPi
], where (clowPi

+ chighPi
)/2 = cPi

and then sample uniformly at random
the individual cost terms from this. All individual cost terms are set to strictly positive values,
otherwise neither structured nor unstructured conditions hold, making the game instances trivial.
The individual benefit is set to b = 1 as it does not affect either ΥU or ΥS . In generating these
values we fix the global mean but change the variance.

Using game instances generated through this procedure, we will separately compare the verifi-
cation complexity and sufficiency gaps on the two sets of structured and unstructured conditions.
We first use games where both sets of conditions are satisfied to allow a comparison of verification
complexity. For the sufficiency gap comparison, we generate games using different parameter
settings described above, and measure how frequently the structured conditions fail while the
unstructured conditions are satisfied.

3.7.2 The Computational Complexity Gap

As discussed in Sections 3.4, the verification of uniqueness conditions on structured networks is
of lower complexity. There are several factors that determine how big this complexity gap is, which
we examine in this section.

The first factor is the size of the network (total number of agents). Specifically, the complexity
gap increases with the number of agents, and is at least quadratic in the number of groups. Table 3.1
lists the verification complexity (in floating point operations, flops) of the conditions in Corollary 2
with a dense ΓU matrix. We see that the verification complexity of structured conditions is orders
of magnitude lower than that of the unstructured conditions, and the gap increases with the size
of the network. Table 3.2 shows the difference in CPU times, where the results are averaged over
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50 different instances. Moreover, the complexity reduction in verifying the conditions in Theorem
5 is much more significant than those in Corollary 2. For instance, the verification complexity of
conditions in Theorem 5 on a game of size 10× 10 (10 partitions of 10 agents each) on a dense ΥU

matrix is 1.08× 1035 flops while that on the corresponding ΥS matrix is 1.26× 106 flops. We refer
the interested reader to Appendix B.8 for additional comparisons.

Size
(Ni×M )

Unstructured Structured

10× 10 6.67×105 5.83×104

20× 20 4.27×107 1.99×106

50× 50 1.04×1010 2.02×108

100×100 6.67×1011 6.57×109

200×200 4.27×1013 2.12×1011

Table 3.1: Verification Complexity in Num-
ber of FLOPs of Conditions in Corollary 2
over the Number of Agents.

Size (Ni ×
M )

Unstructured
(sec)

Structured
(sec)

10× 10 0.0031±0.0011 0.003±0.0002

20× 20 0.0575±0.0074 0.0213±0.0019

50× 50 5.851±0.197 0.6768±0.0442

100× 100 332.8±1.6 7.052±0.203

200× 200 Memory Over-
flow

116.8±6.9

Table 3.2: Verification Complexity in CPU Times
of Conditions in Corollary 2 over the Number of
Agents; All Times are in Seconds. All Experi-
ments were Performed on a Machine with a 6-core
2.60/4.50 GHz CPU with Hyperthreaded Cores,
12MB Cache, and 16GB RAM.

The second factor affecting the complexity gap is how (a given number of) agents are partitioned
into groups. Figure 3.5 shows the complexity (in flops) of verifying the structured condition (of
ΥS being a P-matrix) in two games of size 50 and 100 agents, respectively, both with a dense ΥU

matrix, as we vary the number of groups. Here, we set to groups to be of equal size, rounding off to
the nearest integer if needed; e.g., with 10 agents and 3 groups, the partition sizes are 3, 3, 4.1

We see that in each game the complexity has a V shape, reaching a minimum when M ≈
√
N .

To explain this, note that we can approximate the complexity of LU decomposition by 2
3
p3 for a

matrix of size p × p; for singular value decomposition the complexity can be approximated by
2pk2 − 2

3
k2, p > k, ([31, p. 75], based on QR decomposition using Householder transformations).

Then the complexity for checking the conditions in Theorem 5 is given by (S = N/M ):(
M

2

)(
2S3 − 2

3
S2

)
+M

S∑
k=1

(
S

k

)(
2

3
k3
)
+

M∑
k=1

(
M

k

)(
2

3
k3
)
.

As max{M !, S!} will be the dominant term in the (expanded) expressions, the minimum is achieved
1Here we are comparing the structured complexity between games of different sizes. For a given size N with M

equal-sized partitions, the structured and unstructured conditions have the same complexity when M = 1 or M = N .
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when M = S =
√
N .

Figure 3.5: Verification Com-
plexity (FLOPs) of Condi-
tions in Theorem 5 over the
Number of Groups.

Figure 3.6: Verification Com-
plexity (FLOPs) of Condi-
tions in Corollary 2 over the
Number of Groups.

Figure 3.7: Complexity
(FLOPs) over Different
Partitions in Games with
50 Agents, 2 Groups and a
Dense ΥU Matrix.

Note also that in Figure 3.5 the two curves overlap almost completely beyond the minimum.
This is because verifying whether ΥS is a P-matrix has two phases: generating the ΥS matrix
followed by an eigendecomposition on it. When M is small the first phase is dominant, whereas
when M is larger than

√
N the second becomes dominant. Since ΥS is of size M ×M , when M is

large the complexity depends much more on the value M than on the network size N .
In another experiment, we verify the conditions in Corollary 2 on two games of sizes 50 and

100, respectively, both with a dense ΥU matrix. The results are shown in Figure 3.6. This time the
minimum occurs at some M >

√
N . This is because the approximated complexity is given by(

M

2

)(
2S3 − 2

3
S2

)
+

2

3
M3 +

2

3
S3,

which has a minimum at M >
√
N .

A third factor affecting the complexity gap is the size distribution of groups, given fixed N and
M . Figure 3.7 shows the complexity of verifying whether ΥS is a P-matrix in a 50-agent, 2-partition
game with a dense ΥU matrix, as we vary the size of the first group. We see that the complexity
reaches its minimum when the two groups are equal sized.

More generally, when we have more action dimensions and create partitions based on them, we
can expect that some of the off-diagonal elements in the structured matrix ΥS will be computed with
much lower complexity. To see why, consider two games, one with N = 100, K = 1 and 10 groups
of size 10 each, the other with N = 50, K = 2 and 5 groups of size 10 each. If we create a partition
for all agent-action components from the same group in the same action, we get 10 partitions for
both games. While the first game is similar to the samples in this section, the second game has 20
off-diagonal elements in ΥS computed from the coupled cost. Computing these 20 elements are
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easier than computing the 2-norm of a matrix since the corresponding block is a diagonal matrix.
Moreover, if all agents have the same cost function, then these 20 elements are the same and based
on one utility function, which makes the computation even easier.

3.7.3 The Sufficiency Gap

The structured conditions are stronger than their unstructured counterparts, and thus may fail
to discover the uniqueness and stability of an NE in a game that fails the former while satisfying
the latter. We showed this using an example in Section 3.4. In what follows we will use numerical
results to measure this sufficiency gap. We will focus on the uniqueness conditions, and note that
the comparison of stability conditions is very similar.

Each of the next set of figures is a heat map showing how often these two conditions in Corollary
2 (over ΓS and ΓU , respectively, with sample games that guarantee both ΓS and ΓU are symmetric)
yield the same or different result. The former means either both are satisfied or not satisfied, while
the latter necessarily means the structured condition fails and the unstructured condition holds. Each
game is of size 400, with 20 groups of 20 members each. For each cell in the heat map, 50 sample
games are generated using a set of parameters corresponding to the cell indicated on the figure; the
cell color indicates the fraction of these games that resulted in a difference (sufficiency gap), the
higher the fraction, the darker the color. In each of the heat maps, we can see regions of darker
cells (clearly) separating the map into two lighter regions. In general, the bottom left represents
parameter settings where both structured and unstructured conditions are satisfied and the top right
represents settings where both conditions do not hold.

Specifically, in Figures 3.8, 3.9, and 3.10 we hold component-level external impact fixed
(at weak, medium, and strong levels, respectively, corresponding to P in

exist, P
out
exist at 0.2, 0.5, 0.8

respectively; (Sin
low + Sin

high)/2 at 0.2/Ni, 0.5/Ni, 0.8/Ni respectively, for partition Pi (normaliz-
ing the strengths to make external and internal impact comparable); (Sout

low + Sout
high)/2 fixed at

0.2/N, 0.5/N, 0.8/N (normalize the strengths, similar as above), while changing the variances
of component-level internal impact (within-partition along the x-axis by changing the value of
chighPi

− clowPi
, and between-partition along the y-axis by changing the value of chigh − clow). We

note that the normalized upper bound for the model parameters are chosen at 1 when we study the
sufficiency gaps, because higher values cause both sets of conditions to fail thereby reducing the
significance of such sample games. Please refer to Appendix B.9 for more details.

Overall the sufficiency gap is quite low, i.e., the two types of conditions yield the same outcome
in the vast majority of parameter settings (as evidenced by mostly 0 values/light-colored cells on
these heat maps). The measured difference (obtained by adding the number of different results
in every cell and dividing by the total number of sample games) in Figures 3.8, 3.9, and 3.10 are
0.26%, 5.58%, 0.05%, respectively.
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Figures 3.8 and 3.9 show a similar pattern. In the top right corners where component-level
internal impact has large variance both between and within groups, neither condition is true, while in
the lower left corners both conditions are satisfied, giving rise to the broad agreement (light regions).
In comparing the two, we see that the dark region expands and shifts leftward and downward
in Figure 3.9, suggesting that the gap between the two conditions are bigger and triggered by
lower variances in component-level internal impact when the component-level external impact
increases from weak to medium. Furthermore, high within-partition variance combined with low
between-partition variances in component-level internal impact results in the largest gap. The reason
is the “weakest member effect” discussed in Section 3.4, where the αS

i values depend highly on
the minimum component-level internal impact αU

k of members in Pi, which makes the abstraction
ΥS inaccurate, causing a larger gap. Interestingly, an increase in between-partition variances in
component-level internal impact can mitigate the above effect and reduce the gap. On the other
hand, when the component-level external impact is sufficiently high, Figure 3.10 shows that the
sufficiency gap all but disappears as now most game instances do not satisfy either condition.

Figure 3.8: Sufficiency Gap
Frequency over the Variance
of Internal Impact, Weak Ex-
ternal Impact.

Figure 3.9: Sufficiency Gap
Frequency over the Variance
of Internal Impact, Medium
External Impact.

Figure 3.10: Sufficiency Gap
Frequency over the Variance
of Internal Impact, Strong Ex-
ternal Impact.

We next fix the agent’s component-level internal impact at 1, the between-partition (resp. within-
group) component-level external impact at strong, and vary the within-partition (resp. between-
group) component-level external impact strength (x-axis) and connection frequency (y-axis), shown
in Figure 3.11 (resp. Figure 3.12). We see that the gap is generally small (2% gap for both). In both
figures the disagreement is concentrated around a reciprocal curve, suggesting that when the product
of the two parameters is around a critical level, the sufficiency gaps occur. They also suggest that the
role of between-partition and within-partition external impact is very similar under these two sets of
conditions. The dark regions in these two figures suggest that when individuals have a homogeneous
internal impact, then the games where the expected sum of component-level external impact is
about 10% higher than the expected sum of component-level internal impact are most likely to
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have sufficiency gaps. Please refer to Appendix B.9 for a detailed discussion on this phenomenon.
Moreover, the dark cell curve in Figure 3.12 shows that when the between-partition connection
frequency gets lower, the chance of having a sufficiency gap is higher. This is because a mismatch
similar to Example 2 (an agent with weak component-level internal impact does not receive strong
component-level external impact but a member in the same partition with strong component-level
internal impact does) is more likely to happen when the between-partition connection frequency is
lower.

Figure 3.11: Sufficiency Com-
parison over the Within Partition
Connections, when Every Agent
Has the Same Internal Impact and
Strong Between Partition Influ-
ence.

Figure 3.12: Sufficiency Compar-
ison over the Between Partition
Connections when Every Agent
Has the same Internal Impact,
Medium Within Partition Influ-
ence.

These numerical results suggest that in general, when network communities are formed around
homogeneous agents, i.e., those with similar component-level internal impact, component-level
external impact and connectivity, then the two types of conditions yield identical verification
outcomes.

More generally, when we have more action dimensions and create partitions based on them,
we can expect some of the off-diagonal elements in the structured matrix ΥS to be computed from
the coupled cost function. Similar to Section 3.7.2, we compare the sufficiency gap in two games,
one with N = 100, K = 1 and 10 groups of size 10 each, the other with N = 50, K = 2 and 5
groups of size 10 each, and create 10 partitions for both games. Again, the first game is similar to
the samples in this section, while the second game has 20 off-diagonal elements in ΥS computed
from the coupled cost. When all agents have the same cost functions, these 20 elements do not
suffer from the strongest link effect and thus further reduce the sufficiency gap.
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3.7.4 Sufficiency Gap on email-Eu-core Network Data

We next perform a similar set of experiments using a real-world directed graph. This dataset is
from the email-Eu-core network [58] and provides a binary directed graph with edges indicating
whether an email was ever sent from one node to another, where nodes represent people from a
large European research institution and each node has a department affiliation. We will use this
graph to run game simulations and test the identified conditions on this network’s structured and
unstructured Υ matrices. In doing so, we add an edge weight ϕ to all the edges; this is shown as the
x-axis “external connection strength” in the figures below. We also need to equip the game with a
utility function (detailed shortly).

This graph is highly asymmetric. As discussed in Section 3.4, the conditions on asymmetric
Υ matrices are much more computationally costly to verify than the conditions on symmetric Γ

matrices of the same size. As a result, verifying the conditions on the entire network with 1005
nodes leads to memory overflow. Consequently, our experiments are on down-sampled versions
of this graph. We employ the following three types of network sampling methods to generate
sub-graphs for our experiments:

• Sample M departments (groups) uniformly at random with all nodes in each;

• Sample Nsample nodes uniformly at random;

• Sample M departments (groups) with at least M members uniformly at random first, and
then sample M nodes from each department.

We will use the following utility function of a node ai (an agent) given the sampled network:

ui(xi,x−i) =
ϕ

D

∑
j ̸=i

(Gsample)ijxixj −
1

2
x2i ,

where D =
∑Nsample

i=1 Din
i +Dout

i

2Nsample
, Nsample is the number of sampled nodes, and Gsample is the corre-

sponding sampled sub-matrix.
We want to compare different ways of partitioning the agent-action space. Since each node is

associated with a department, we can naturally partition the network in terms of departments; we
will call this the original partition. We can also create partitions on the nodes using the following
criteria:

• Degree-based: rank the nodes by the average of the in-degree and out-degree of a node, and
then create partitions that include nodes with similar degrees in the same partition;
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• Connection-type-based: rank the nodes by the fraction of their within-department connections
(number of connections in the department over the node’s total number of connections), and
create partitions that include nodes with similar fractions in the same partition.

As results in Figures 3.13-3.21 show, degree-based partition results in a significantly lower
sufficiency gap and clearer patterns on when the structured conditions fail compared to the original
partition. In contrast, the connection-type-based partition results in higher sufficiency gaps and thus
is not ideal. The average sufficiency gap is given for each figure in the caption. We can see from the
numerical results that when we re-group the nodes based on their degree information, not only the
overall sufficiency gap is lower, but the sufficiency gaps are also less sensitive to the network size
and only sensitive to the relevant internal/external impact strengths.

Figure 3.13: Sufficiency
Gap when Sampling M De-
partments, Original Partition,
6.22%.

Figure 3.14: Sufficiency Gap
when Sampling M Depart-
ments, Degree-based Parti-
tion, 1.84%.

Figure 3.15: Sufficiency
Gap when Sampling M De-
partments, Connection-type-
based Partition, 20.40%.

Figure 3.16: Sufficiency Gap
when Sampling N Nodes,
Original Partition, 21.39%.

Figure 3.17: Sufficiency Gap
when Sampling N Nodes,
Degree-based Partition,
3.73%.

Figure 3.18: Sufficiency Gap
when Sampling N Nodes,
Connection-type-based parti-
tion, 28.63%.

Intuitively, these observations can be explained as follows. The high degree nodes in our sample
network are frequently connected with each other. Therefore, the degree-based partition perform
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Figure 3.19: Sufficiency Gap
when Sampling M Depart-
ments, Each with M Nodes,
Original Partition, 9.94%.

Figure 3.20: Sufficiency
Gap when Sampling M De-
partments, Each with M
Nodes, Degree-based Parti-
tion, 3.49%.

Figure 3.21: Sufficiency Gap
when Sampling M Depart-
ments, Each with M Nodes,
Connection-type-based Parti-
tion, 23.06%.

best, as they successfully identify and retain the importance of such strongly connected sub-graphs
in our reduced conditions. Moreover, we note that the singleton nodes that have no connections to
others are put in the same partition. From the previous analysis, this means that the structured and
unstructured conditions hold if and only if the corresponding conditions hold on the non-singleton
nodes’ sub-graph.

3.7.5 Visualizing the Partition Centrality

We next create a relatively small multi-relational network game of N = 30, K = 2, and use this
to visualize the centrality measures defined in Section 3.6. We generate the game to have symmetric
inter-dependencies so that Din = Dout and compute the centrality with exogenous importance set
to e = 1.

The agents form 3 (pre-defined and color-coded) groups, each with a size of 10: we generate
interaction graphs where group 1 has a high network influence levels on action dimension 1 but
a low influence on dimension 2; group 2 has a low influence on action dimension 1 but a high
influence on dimension 2; group 3 has low influence levels on both action dimensions. Figures 3.22
and 3.23 depict the interaction graphs on each action dimension. As can be seen, the red group is
highly connected to both the yellow and blue groups in action 1, while the blue group is highly
connected to the red and yellow in action 2.

With 3 groups and 2 action dimensions, we create 6 partitions, each consisting of agent-action
components of one group on one action dimension. A partition is illustrated as a colored circle in
Figures 3.24 and 3.25: the color corresponds to the group identity of the agents in that partition,
with a label (“1” or “2”) indicating the action dimension. The size of the circle indicates the value
of that partition’s generalized degree centrality (GDC) given in Definition 7, the larger the circle the
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higher the centrality. The links (their existence and thickness) between two partitions mirror the
off-diagonal entries in the ΥS matrix.

Figures 3.24 and 3.25 each represent a different type of cost function, coupled and decoupled. In
the coupled cost, the action dimensions influence each other through the cost function c(x(1), x(2)) =
1
2
(x(1))2+ 1

2
(x(2))2+ 1

10
x(1)x(2). In the decoupled cost, the cost function is c(x(1), x(2)) = 1

2
(x(1))2+

1
2
(x(2))2. We see that since the red group has frequent and strong connections in action 1, the GDC

of the partition R1 is high, so is B2. When the cost is coupled, the partitions of the same group
of agents on different action dimensions are connected; otherwise the structured graph consists of
disconnected components and we can solve the subgames on each dimension independently.

Figure 3.22: Action 1 Interaction Graph
for the Experiments in Section 3.7.5.
The Red Group Has a High Influence
on Action Dimension 1.

Figure 3.23: Action 2 Interaction Graph
for the Experiments in Section 3.7.5.
The Blue Group Has a High Influence
on Action Dimension 2.

Figure 3.24: Visualization of Partitions’
GDC with Coupled Cost. The Largest Nodes,
“R1” and “B2”, Denoting the Partition of the
Agent-action Components from Group Red
on Action 1 and Group Blue on Action 2,
Respectively, Have the Highest GDC.

Figure 3.25: Visualization of Partitions’
GDC with Decoupled Cost. The Sizes of
the Nodes are Again Proportional to Each
Partition’s GDC. As the Action Dimension
Costs are Decoupled, the Graph Consists of
Two Subgraphs, One for Each Action Dimen-
sion.

3.8 Chapter Conclusions

In this chapter, we introduced and studied a family of structured network games with non-linear
best response functions. Prior works on network games have found sufficient conditions for the
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uniqueness and stability of Nash equilibria which are mostly difficult to verify. We also showed
that the existence of structure in the network (e.g., in the form of communities, or when there
are multi-relational dependencies between agents), helps us find alternatives for such conditions,
which we refer to as “structured conditions” as opposed to the “unstructured conditions” in previous
works. In particular, we show that the structured conditions for the uniqueness and stability of
Nash equilibria are related to matrices which are possibly lower dimensional, with their dimensions
depending on the number of partitions naturally arising in a network due to its structured nature.
We also demonstrated both analytically and numerically that the structured conditions are sufficient
conditions to the unstructured conditions, and that their verification is of much lower computational
complexity. We used numerical experiment results to show that the sufficiency gap between the
structured conditions and unstructured conditions is small in general and typically occurs in games
with some specific characteristics. Moreover, we proposed a new notion of degree centrality to
evaluate the influence of a partition in the network, and used it to identify additional conditions for
the uniqueness and stability.
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Part II

Intervention and Mechanisms in Network
Games, Multi-group Systems and

Multi-Scale Networks
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Chapter 4

Multi-planner Intervention in Network Games with Community Structures

4.1 Introduction

Part I of the thesis focused on modeling and analysis of multi-scale network games. Part II will
now focus on control and intervention. In this chapter, we study the problem of intervention in
network games where the network has a group structure with local planners, each associated with a
group. The agents play a non-cooperative game while the planners may or may not have the same
optimization objective. We model this problem using a sequential move game where planners make
interventions followed by agents playing the intervened game. We provide equilibrium analysis and
algorithms that find the Stackelberg equilibrium. We also propose a two-level efficiency definition
to study the efficiency loss of equilibrium actions in this type of games.

As discussed in previous chapters, the strategic decision making of (physically or logically)
connected agents is often studied as a network game, where the utility of an agent depends on
its own actions as well as that of those in its neighborhood as defined by an interaction graph or
adjacency matrix.

Within this context, intervention in a network game typically refers to changes in certain game
parameters made by a utilitarian welfare maximizer with a budget constraint, who wishes to induce
a more socially desirable outcome (in terms of social welfare) under the revised game. A prime
example is the study presented in [30], where interventions take the form of changing the agents’
standalone marginal benefit terms (in a linear quadratic utility model) and changes are costly; this is
done by a central/global planner, who wishes to find the set of interventions that lead to the highest
equilibrium social welfare subject to a cost constraint.

As discussed in Chapter 1, finding optimal interventions could be viewed as a form of mechanism
design, because in both cases the design or intervention essentially induces a new game form with
desirable properties. But there are a few novelties in interventions compared to the conventional
mechanism design framework. Specifically, conventional mechanism design is often not limited to
a specific game form, the latter being the outcome of the design, while interventions typically start
from specified game forms and seek improvement through local changes. Moreover, interventions
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[30] aim to optimize the planner’s objectives under the constraints of a budget and specified forms
of intervention.

In this chapter, we are interested in intervention in a network game where the network exhibits a
group or community structure and each group or community has its own local group planner. Since
group structures are a common phenomenon across networks of all types, be it social, technological,
political, or economic, this modeling consideration allows us to investigate a number of interesting
features that often arise in realistic strategic and decentralized decision making. For instance, a
single global budget may be first divided into separate chunks of local budgets at the local planners’
disposal; these local budgets may or may not be transferred from one community to another, and
the local planners’ decisions may or may not take into account the connectivity between themselves
and other neighboring communities; local planners may or may not wish to cooperate with each
other; and so on.

Of particular interest to our study is the issue of efficiency in this type of decision making
systems. A standard notion used to measure efficiency loss in a strategic game is the Price of
Anarchy (POA); this is defined as the ratio of the maximum social welfare (sum utility) divided
by the social welfare attained at the worst case NE (in terms of social welfare). The numerator is
what a social planner aims for, while the denominator is the result of agents optimizing their own
utilities and best-responding to each other. POA has been extensively studied in a variety of games,
including in interdependent security games such as [87, 70], where agents’ incentive to free-ride or
over-consume contributes to the efficiency loss; in routing and congestion games [86, 21]; and in
network creation games [25].

It is not hard to see additional sources of efficiency loss exist in the community intervention
problem we are interested in: in addition to agents’ self-interested decision making, local planners’
non-cooperation, as well as sub-optimal budget allocation among groups, can both results in
efficiency loss. The main findings of the chapter are summarized as follows:

1. We show that through backward induction the planners can obtain a reduced version of
the planners’ game that only depends on each other’s intervention profiles. Regardless of
being cooperative or not, the sequential game always has a unique Stackelberg equilibrium.
Moreover, this equilibrium can be achieved through a decentralized algorithm based on the
best responses of the planners.

2. We introduce a two-level definition of efficiency loss that allows us to discuss how the
planners’ actions influence the outcome of the game separately from the agents’ actions, and
we show that the efficiency loss due to the planners’ non-cooperation can be characterized
with the budget constraints and shadow prices.

3. We present numerical results on welfare and efficiency in several commonly seen types of
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interaction graphs and commonly used budget allocation rules.

The remainder of the chapter is organized as follows. Section 4.2 introduces our intervention
game model and presents the objectives for agents and group planners in different scenarios. Then
in section 4.3, we show our analysis and characterization of the Stackelberg equilibrium of the
intervention game. In section 4.4, we study the Level-1 and Level-2 efficiencies of the Stackelberg
equilibrium. We present our numerical experiment results in section 4.5. Finally, section 4.6
concludes this chapter.

4.2 Game Model

We consider a network game among N agents, denoted by a1, . . . , aN , represented by a directed
graph G = (N , E), where N is the set of nodes/agents and E ⊆ N × N the set of edges. Let
G = (gij)i,j denote the adjacency matrix, assumed to be symmetric and as a convention gii = 0;
gij ̸= 0 implies dependence between ai and aj , i ̸= j.

Agents are divided into M disjoint communities, the kth community denoted as Sk with size
Nk. Agent ai takes an action xi ∈ R. Let x−i = [x1, . . . , xi−1, xi+1, . . . , xN ]

T denote the action
profile of all except ai, xSk

= (xi)ai∈Sk
the action profile of members in community Sk, and x−Sk

the action profile of all agents other than members of Sk.
We consider a family of games with utility:

ui(xi,x−i, yi) = (bi + yi)xi −
1

2
x2i + xi

(∑
j ̸=i

gijxj

)
, (4.1)

which depends on the action profile and a real valued parameter yi controlled by a planner. This
utility function with intervention is studied in [30, 18]. The −1

2
x2i is the individual cost for ai,

the bixi term is the initial individual marginal benefit, and xi

(∑
j ̸=i gijxj

)
models the network

influence. The intervention component can be seen as a linear subsidy (discount) term if yi > 0 and
a linear penalty (price) term if yi < 0. In this non-cooperative game, the optimization problem of
agent ai for given intervention is

maximize
xi

ui(xi,x−i, yi). (4.2)

The NE of the game x∗, is the action profile where no agent has an incentive to unilaterally deviate,
i.e.,

x∗i = argmax
xi

ui(xi,x
∗
−i). (4.3)

We denote the planner for Sk as pk, which has a budget constraint Ck > 0:
∑

ai∈Sk
y2i ≤ Ck.
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Figure 4.1: An Intervention Game with 3 Com-
munities.

Figure 4.2: A Flow Chart of the Intervention
Game.

We denote ySk
= (yi)ai∈Sk

as the intervention profile of pk and y−Sk
the intervention profile of

planners other than pi. Denote Qk = {ySk
|
∑

ai∈Sk
y2i ≤ Ck}; thus Qk is nonempty, convex and

compact. Finally, Q =
∏M

i=1Qi.
We consider two cases. In the first, planner pk is a group-welfare maximizer, whose objective is

to maximize the sum of its members’ utilities at the NE, formally

maximize
ySk

∈Qk

Uk(x
∗,ySk

) =
∑
ai∈Sk

ui(x
∗, yi), (4.4)

and we denote y∗
Sk

= argmax
ySk

∈Qk

Uk(x
∗,ySk

). When all planners are group-welfare maximizers, we

say they are non-cooperative.
In the second case, planner pk is a social-welfare maximizer, whose objective is to maximize the

sum of all agents’ utilities at the NE, formally

maximize
ySk

∈Qk

U(x∗,ySk
,y−Sk

) =
N∑
i=1

ui(x
∗, yi), (4.5)

and we denote ySk
= argmax

ySk
∈Qk

U(x∗,ySk
,y−Sk

). When all planners are social-welfare maximizers,

we say they are cooperative, i.e., they have a common interest.
Figure 4.1 shows the structure of the intervention game described in this section. It’s easy to see

that with a single planner (M = 1), the above may be viewed as a two-stage game: the first mover
the planner chooses the intervention actions y in anticipation of the (simultaneous) second movers
the agents playing the induced game with actions x. There is a similar two-stage sequentiality
in the case of M local planners as shown in Figure 4.2: the local planners are simultaneous first
movers in choosing interventions for their respective communities, in anticipation of interventions
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by other local planners and actions by the simultaneous second movers the agents. For this reason,
the solution concept we employ in this study is the Stackelberg equilibrium.

4.3 The Stackelberg Equilibrium

In this section, we characterize the Stackelberg equilibrium of the system and introduce an
algorithm to compute it. We assume the following holds throughout this chapter:

Assumption 5. Matrix 2diag(c)−W is positive definite.

We start by computing the NE under an arbitrary intervention, we can compute the first order
derivatives as follows

∂ui
∂xi

= −xi +
∑
j ̸=i

gijxj + (bi + yi), (4.6)

then by computing the fixed point, we know the unique NE of the game is

x∗ = (I −G)−1(b+ y), (4.7)

Denote A = (I − G)−2 for simplicity of notation. This NE is known to all planners through
backward induction.

4.3.1 Finding the Stackelberg Equilibrium

We denote GSk,Sl
as the block of G corresponding to the rows in Sk and columns in Sl, and

GSk,⋆ as the block of G corresponding to the rows in Sk and all columns. It’s worth noting that
given the representation of x∗ in Eqn (4.7), the objective of a group welfare maximizer pk is (See
Appendix)

Uk(x
∗,ySk

) =
1

2
(x∗

Sk
)Tx∗

Sk
. (4.8)

We can then rewrite the objective of pk, ∀k, and the non-cooperative optimization problem
(P-NCk) as

maximize Wk(y) =
1

2
∥(A1/2(y + b))Sk

∥22

subject to
∑

i:ai∈Sk

(yi)
2 ≤ Ck . (4.9)

It’s worth noting that this doesn’t imply the planners’ optimization problems are independent,
since we can write x∗

Sk
as x∗

Sk
= (A

1/2
Sk,⋆

)(y + b), which depends on y−Sk
unless Sk is isolated.
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Similarly, we can rewrite the cooperative optimization problem (P-C) where all planners are
social welfare maximizers

maximize W (y) =
1

2
(y + b)TA(y + b)

subject to
∑

i:ai∈Sk

y2i ≤ Ck, ∀k (4.10)

We can also write out the decentralized version of (P-C) where each planner pk has its own
optimization problem (P-Ck) given other planners’ intervention profile y−Sk

maximize W (y) =
1

2
(y + b)TA(y + b)

subject to
∑

i:ai∈Sk

(yi)
2 ≤ Ck. (4.11)

We have the following result.

Theorem 10. If all planners are group-welfare maximizers or if they are all social-welfare maximiz-

ers, then in each case there is a unique optimal intervention, i.e., unique Stackelberg equilibrium,

and under the optimal intervention, the budget constraints are tight.

This is obvious when all planners are social-welfare maximizers from Eqn (4.10); for the other
case see Appendix. We also propose the following decentralized algorithm based on best response
dynamics (BRD) that computes the Stackelberg equilibrium in both cases. Note that the planners’
best-response computation utilizes Eqn (4.9) and (4.10).

Algorithm 5: Planners’ BRD
Initialize: y(0) = y0, t = 0
while y not converged do

for k = 1 :M do
ySk

(t+ 1) = argmaxySk
∈Qk

Uk(ySk
,y−Sk

(t))
(Best response w.r.t objective Uk, which can be either group or social welfare)

t← t+ 1
Set optimal intervention profile as y∗ = y(t)
x∗ = (I −G)−1(b+ y∗)

Theorem 11. If all planners are group-welfare maximizers or if they are all social-welfare max-

imizers, then in each case Algorithm 5 converges to the unique Stackelberg equilibrium under

Assumption 5.

Proof. (Sketch) The proof is based on the Jacobian of the best response mappings of the planners.
The Jacobian matrix is positive definite when Assumption 5 is true, and thus there is a unique
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fixed point, and the best response mappings have contraction properties. Therefore, the algorithm
converges to the unique fixed point, i.e., the unique optimal intervention profile, which then leads to
the unique Stackelberg equilibrium in the game.

Please see Appendix for the full proof.

Proposition 1. The following cooperative optimization problem (P-NC-alt) has the same optimal

intervention outcome as the original non-cooperative problem (P-NCk) where all planners are

group-welfare maximizers:

maximize W̃ (y) =
1

2
(y + b)T Ã(y + b)

subject to
∑

i:ai∈Sk

y2i ≤ Ck,∀k (4.12)

where

Ã =


AS1,S1

1
2
AS1,S2 · · · 1

2
AS1,SM

1
2
AS2,S1 AS2,S2 · · · 1

2
AS2,SM

...
... . . . ...

1
2
ASM ,S1

1
2
ASM ,S2 · · · ASM ,SM



Proof. (Sketch) This is obtained by studying the gradient of each planner’s objective function. The
above cooperative optimization problem in Eqn (4.12) has the exact same gradient for every planner
in the original non-cooperative optimization problem in Eqn (4.9).

Please see the appendix for the full proof. We also characterize the direction of the optimal
intervention profile in the appendix.

4.3.2 Lagrangian Dual and Shadow Prices

Next, we introduce some concepts related to the Lagrangian dual variables and shadow prices,
which will be used to characterize efficiency budget sharing in the next section.

Since Q clearly satisfies Slater’s Constraint Qualification [9], the planners’ optimization prob-
lems are convex regardless of whether they are group or social welfare maximizers. Then based
on the Karush–Kuhn–Tucker(KKT) [9] conditions, we know that strong duality holds for both
cooperative and non-cooperative planners’ optimization problems. If we define the Lagrangian as

L(y,λ) = W (y) +
M∑
k=1

λk(Ck − ∥ySk
∥2),
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and W (y) is either social or group welfare, then we can obtain an optimal dual λ∗k, the shadow price
for pk. We can then equivalently think of pk’s problem as maximizing the above Lagrangian with a
cost of intervention λk

∑
ai∈Sk

y2i . For the convenience of notation, we use λ∗k (resp. λk) to denote
the dual optimal variable corresponding to group (resp. social) welfare maximization problem in
the (P-NCk) (resp. (P-C)) problems for the planners. We will later use the Lagrangian values λ∗k
and λk to characterize the efficiency of the Stackelberg equilibrium in Section 4.4.

4.4 Efficiency and the Budget Allocation

In this section, we discuss the efficiency of the subgame perfect equilibria under a fixed budget
allocation and then study the impact of different budget allocations on the equilibrium and its
efficiency.

4.4.1 Efficiency of the Stackelberg Equilibrium

For conventional single-planner multi-agent systems, the efficiency of an NE is characterized as
the ratio of the social objective value in the NE divided by the socially optimal outcome, formally

e(x∗) =
U(x∗)

maxx⪰0 U(x)
,

and an upper bound on its reciprocal is referred to as the price of anarchy (PoA) if the objec-
tive U(x) =

∑N
i=1 ui(x). This maxima is achievable if the agents’ utility functions are strictly

individually concave and always have a zero point in the first order derivative.
The introduction of group planners in our intervention problem means there are now multiple

sources of efficiency loss. Accordingly, we will decompose this into a level-1 (L1) component and a
level-2 (L2) component, caused by the non-cooperative nature of agents and planners, respectively.
Following the notation of y∗ and y in Eqn (4.4) and (4.5), we formally define the two efficiency
loss measures as

eL1(y) =
U(x∗,y)

maxx U(x,y)
, eL2 =

W (x∗,y∗)

W (x∗,y)
. (4.13)

Thus the overall efficiency, which resembles the conventional definition, can be written as

e(x∗,y∗) =
U(x∗,y∗)

maxx⪰0,y∈Q U(x,y)
= eL2 · eL1(y) .

The L1 efficiency has been well studied in the literature, e.g., [46]. For an arbitrary intervention

68



profile y, if I − 2G ≻ 0, then L1 efficiency can be written as

eL1(y) =
(b+ y)T (I −G)−2(b+ y)

(b+ y)T (I − 2G)−2(b+ y)
,

since
∂(
∑N

i=1 ui)

∂xi
= −xi + 2

∑
j ̸=i

gijxj + (bi + yi),

and by computing the fixed point we know the action profile maximizing the social welfare is
x = [I − 2G]−1(b+ y).

We have the following result on the L2 efficiency.

Theorem 12. When b = 0 or Ck ≫ ∥bSk
∥22,∀k, the welfare in (P-C) can be computed by

W =
∑M

k=1 λkCk, and a lower bound on the L2 efficiency for a given set of budgets is

eL2 ≥
∑M

k=1(2λ
∗
k − 1

2
ρk)Ck∑M

k=1 λkCk

, (4.14)

where ρk denotes the spectral radius of ASk,Sk
.

Proof. (Sketch) When b = 0 or Ck ≫ ∥bSk
∥22,∀k, the optimal intervention y∗ becomes the

significant part in deciding the L2 efficiency. The shadow prices and current interventions jointly
determine x∗

Sk
. Since the budget is binding, we can replace the lengths of optimal interventions

with budget values and thus shadow prices and budgets jointly determine the efficiency.

Please see the appendix for the full proof.

4.4.2 Budget Allocation and Budget Transferability

We say the budget is transferable if the individual budgets Ck are fungible and only the aggregate
budget constraint (C) has to be satisfied. We say the budget is non-transferable if Ck is fixed and
cannot be violated for all pk. When all planners are social welfare maximizers and the budget is
transferable, the optimization problem reduces to

maximize W (y) =
1

2
(y + b)TA(y + b)

subject to
N∑
i=1

y2i ≤ C . (4.15)

This problem is well studied in [30].

69



It is obvious that when group planners are social-welfare maximizing, they have incentives
to share the budget since they have a common objective. However, it turns out that even when
planners are selfish, group-welfare maximizers, they may still have incentives to share the budget.
Intuitively, this is because each group Sk has a decreasing marginal benefit in investing in itself, and
if a neighboring group Sl has a strong enough positive externality on Sk and has a relatively low
budget Cl compared to Ck, then pk will have the incentive to transfer some of its budget to pl.

Proposition 2. Between two neighboring groups Sk and Sl, where WSk,Sl
̸= 0, if the following

inequality holds, then pk has an incentive to share its budget with pl:

(Ck − Cl)(▽ySl
Wl)

TySk
≥ Cl(▽ySk

Wk)
TySk

.

Please see the appendix for the proof.
We note that compared to non-transferable budget, transferable budget can enable Pareto superior

solutions to the system, where every agent and every planner gets a higher payoff.

Example 3. Consider the following game with only two agents, each as a singleton group, and the

following utility functions

u1(x1, x2, y1) = x1 −
1

2
x21 +

1

2
x1x2 + y1x1,

u1(x1, x2, y2) = x2 −
1

2
x22 +

1

2
x1x2 + y2x2.

In this case, we have

(I −G)−1 =
2

3

[
2 1

1 2

]
,

x∗1 = 2 +
2

3
(2y1 + y2), x

∗
2 = 2 +

2

3
(y1 + 2y2).

Suppose the initial budget is C1 = 25, C2 = 0. When not sharing the budget, the planners will

fully invest in y1 and y2 respectively and the resulting Stackelberg equilibrium is x∗1 = 2+ 2
3
(10+0) =

26
3
, x∗2 = 2 + 2

3
(5 + 0) = 16

3
. But if p1 shares the budget and make it C1 = 16, C2 = 9, we will have

the equilibrium at x∗1 = 2 + 2
3
(8 + 3) = 28

3
, x∗2 = 2 + 2

3
(4 + 6) = 20

3
. So with budget sharing, we

obtain a uniformly better outcome for all involved.

4.5 Numerical Results

We present numerical results in this section.
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4.5.1 Budget Allocation and Network Types

Our focus is on examining the L2 efficiency with a number of commonly used budget allocation
rules under the following types of networks/interaction graphs.

1. Type 1: strong within-group connection, weak between-group connection. In this type of
networks, groups are used to model local and regional organizations formed by individuals;
within each organization, agents interact much more frequently and have higher dependencies
on local neighbors’ decisions. Mathematically, this means that the diagonal blocks GSk,Sk

have more non-zero elements and the non-zero elements have larger absolute values compared
to the off-diagonal blocks GSk,Sl

.

2. Type 2: weak within-group connection, strong between-group connection. This is the opposite
of Type 1; in this case the off-diagonal blocks are now more frequently filled with larger
elements. This type of networks can be used to model logical connectivity, where a group
represents a set of agents playing the same role in a game. For example, in a network of
sellers and buyers of a set of goods, a seller may interact more frequently with buyers than
another seller. In the extreme case where sellers (resp. buyers) only interact with buyers
but not with other sellers (resp. buyers), a multipartite graph can be used to capture their
interactions.

3. Type 3: evenly distributed connections. Here groups become a rather arbitrarily constructed
concept that may not correspond to agent interactions in a game.

We will consider the following three types of budget allocation.

1. Proportional: each group is assigned a budget proportional to its size, i.e., Ck =
Nk

N
C

2. Identical: each group is assigned an equal share of the total budget, i.e., Ck = C/M .

3. Cooperative socially optimal: the allocation in the optimal solution of the cooperative opti-
mization problem ( Eqn (4.5)), where the shadow prices λ∗k are the same for all k.

Sample games used in the numerical experiments are generated as follows. In generating a
random symmetric G, the diagonal elements are set to 0 as previously described in Section 2.3.
The off-diagonal elements in the diagonal blocks are generated using a Bernoulli distribution with
parameter P in

exist, the probability for an edge (non-zero element) to exist between a pair of agents.
The absolute value of a non-zero element (strength of a connection) |gij| is drawn from a uniform
distribution on the interval [Sin

low, S
in
high]. The off-diagonal blocks of G are similarly generated

using the same approach, with parameters P out
exist and [Sout

low, S
out
high], respectively. The signs of the

connections are assigned to yield the following two types of games. In the first, within-group
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Figure 4.3: Type 1 All
Positive Network.

Figure 4.4: Type 1
Conflicting Groups.

Figure 4.5: Type 1 All
Positive Network.

Figure 4.6: Type 1
Conflicting Groups.

connections and between-group connections have the same sign (all positive); in the second, they
have opposite signs (positive within-group, negative between-group; this is also referred to as
conflicting groups below). The b vector is generated by sampling every element uniformly from an
interval [blow, bhigh].

For strong connections, Pexist = 0.8 and Slow = 0.7, Shigh = 0.9. For weak connections,
Pexist = 0.2 and Slow = 0.1, Shigh = 0.3. For evenly distributed networks, P in

exist = P out
exist = 0.5 and

Sin
low = Sout

low = 0.4, Sin
high = Sout

high = 0.6. We then normalize the generated G by the total number of
agents in the game to make sure that Assumption 5 holds 1. We also choose blow = 0.1, bhigh = 0.5

to make sure that agents will have an initial incentive to take action above 0 and the budget can
easily achieve Ck ≫ ∥bSk

∥22. These sample games contain two groups, S1 with 40 agents and S2

with 10 agents; we obtained very similar results with more groups and thus will focus on this setting
for brevity.

4.5.2 Social Welfare and L2 Efficiency

For each network type, we show the social welfare with non-cooperative planners and the L2
efficiency on example games with different types of budget allocation rules.

In general, the L2 efficiency is fairly high in all cases except for Type 2 networks with conflicting
groups. Therefore, we only show the welfare results in the (P-C) problem. The main reason for this
phenomenon is Assumption 5, where we require the elements of G to have relatively small values
compared to 1 and thus in all except for Type 2 with conflicting groups, the difference between
matrices A and Ã is small. The major cause of welfare differences comes from budget allocation
rules.

Figure 4.3 and 4.5 show the welfare of non-cooperative planners and the L2 efficiency in Type 1
network with all positive connections. In this case, the socially optimal budget allocation yields the

1If the product of the expected connection strengths and the connection frequency is fixed, the results are very
similar. For this and brevity reasons we don’t show results with combinations of low/high connection frequency with
strong/weak connections.
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Figure 4.7: Type 2 All
Positive Network.

Figure 4.8: Type 2
Conflicting Groups.

Figure 4.9: Type 2 All
Positive Network.

Figure 4.10: Type 2
Conflicting Groups.

Figure 4.11: An Example of a 15 Agent,
Type 1 Network.

Figure 4.12: Type 3
Network Welfare.

Figure 4.13: Type 3
Network Efficiency.

highest cooperative and non-cooperative welfare assigns almost all budget to S1.
Figure 4.4 and 4.6 show another case of Type 1 network where between-group connections

are all negative, but within-group connections remain positive. This can model that the type of
interactions between members in the same group are different from agents in different groups. In a
special case of this type of network where every agent is taking a positive action level, an increase
in an agent’s action level can increase (resp. decrease) the agents’ utilities in the same group (resp.
other groups). In this case, the proportional allocation rule is almost socially optimal.

In the Type 2 network, where all connections are positive, Figure 4.7 and 4.9 show the welfare
with non-cooperative planners. Interestingly, the identical budget allocation rule is actually closer
to the socially optimal allocation. For the same Type 2 network but with negative between-group
connections, results shown in Figure 4.8 and 4.10 are very different from other network types since
the efficiency is now significantly below 1 when we have small budgets.

Figure 4.12 and 4.13 show the results in the Type 3 network with all positive connections. In
fact, for all combinations of connection signs, the trends are very similar, but the social welfare is
significantly lower when we have negative connections. We also see that the proportional allocation
rule is almost socially optimal.

Empirically, we observe that for all types of networks, when the budget grows larger, under
any type of budget allocation rule the welfare grows approximately linearly and the efficiency
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approximately converges to a fixed value.
We also measured the tightness of the theoretical lower bound on the L2 efficiency. For all

above introduced network types except for Type 1 with conflicting groups, the gaps between the
lower bounds and the actual L2 efficiencies are less than 0.006, for all three budget allocation rules.
For Type 1 network with conflicting groups, the gap is around 0.07 for all three budget allocation
rules. All gaps are almost invariant in the total budget.

4.6 Chapter Conclusions

In this chapter, we studied an intervention problem in network games with community structures
and multiple planners. We showed that given any intervention action, the agents will always have a
unique NE. The planners can thus use backward induction and design (locally) optimal interventions.
We find that for both cooperative and non-cooperative planners, the system always has a unique
Stackelberg equilibrium that fully spends the budget and is Pareto efficient. We also studied the
efficiency of the outcomes under different settings in this system, including whether the planners are
cooperative and whether the budget is transferable both analytically and numerically. Our analysis
shows that we can use the Lagrangian dual optimal variable values to characterize the efficiency,
and planners have incentives to share budgets even when they are non-cooperative. The budget
transferability also enables uniformly better outcomes than the non-transferable case. Empirically,
we observe that the type of network determines which type of (commonly used) budget allocation
rule is the most efficient.
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Chapter 5

Subsidy Mechanisms for Strategic Classification and Regression Problems

5.1 Introduction

The previous chapter studies how to design interventions on multi-scale networks that induce
ideal actions from the agents. The agents’ actions were treated as scalars, and changes in those
scalars directly impact the planners’ objectives. In reality, actions by the agents may not be directly
observable; what is observable may be an intermediate layer of features that a planner has to rely on
for assessment. As a consequence, agents are motivated to take actions to improve their features in
order to improve their assessment results. For example, agents can take different types of actions,
and only some, e.g., honest efforts will influence the planner’s objective, while others, e.g., dishonest

efforts will not benefit the planner’s objective but only the agents’. In other words, when an agent
exerts honest effort to perform better on a measure designed by a planner, that effort improves a
certain true underlying attribute that the planner cares about, while dishonest efforts only improve
the proxy feature without actually improving the underlying attribute. The agents can achieve the
same observable feature with multiple strategies; it is thus crucial for the planner to induce honest
efforts. We leverage the strategic classification and regression framework to address this special
type of incomplete information. This strategic learning framework is a Stackelberg game where the
decision maker moves first by publishing a decision rule in the form of a classifier or regression
function; the agents move next and simultaneously respond to the decision rules by taking actions
to manipulate their features. This framework models honest and dishonest efforts in a realistic way
as improvement and gaming actions, where improvement actions improve the utilities of both the
agents and the decision maker, while gaming only benefits the agents.

This chapter studies the impact of adding a subsidy mechanism in strategic classification and
regression problems. Conventional strategic classification and regression model the interaction
between a decision maker (algorithm designer) and individuals who are subject to the decision
outcomes. While the former benefits from the accuracy of its decisions, the latter may have an
incentive to game the algorithm into making favorable but erroneous decisions. Specifically, the
agents may make superficial changes to their features that lead to them receiving more desirable
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decisions, but these feature changes do not improve their true attributes nor their true outcomes.
Recognizing the potential for such misuse, prior works tend to focus on designing an algorithm that
is more robust to such strategic maneuvering, see e.g., [35, 67, 42, 15, 16, 26, 12, 20, 65]. Equally
important, however, is the possibility for a mechanism designer to incentivize effort by the users
who genuinely improve their true label; this would benefit the users and the decision maker by
preserving the algorithm performance at the same time.

Toward this end, we present a strategic learning problem augmented by a subsidy mechanism
(augmented strategic learning problem) modeled as a Stackelberg game between the decision maker,
the mechanism designer (which could be the decision maker itself or a third party) and individuals
from different demographic groups who are subject to the classifiers’ decisions (the agents). The
decision maker and the mechanism designer move in the first stage by publishing and committing
to a decision rule (a binary classifier or a regression function) and an incentive mechanism. The
published decision rule takes as input the agents’ observable features and outputs decision outcomes
that impact the agents’ utilities. The agents are (simultaneous) second movers and best respond to
the published decision rule and incentive mechanism. To capture the agent’s ability to both game the
decision rule and make real changes, we assume each agent has an endowed pre-response attribute
(endowed private information), that is causal [65] to a set of observable features as well as its true
label, also referred to as its qualification status in the context of the strategic learning problem. Here
causal means these attributes directly impact the true label, precisely defined in Section 5.2.1.

An agent can exert effort to improve this causal state, thereby improving its features and its
underlying attributes, or choose to game the classifier by employing non-causal schemes to improve
only its features without changing its underlying attributes [65], or use a combination of them.
Both choices of action, referred to as improvement (or honest effort) and gaming (or cheating,
or dishonest effort), respectively, come at a cost to the agent. As pointed out in [67], gaming is
much more frequently seen and studied due to its much lower cost compared to improvement. This
difference in cost results in Goodhart’s Law (“Once a measure becomes a target, it ceases to be a
good measure” [92]), since gaming invariably degrades the performance of a classifier. The goal of
this study is to see whether, beyond preventing gaming, the incentive mechanism can elicit sufficient
improvement from the agents.

The decision maker derives its utility from the prediction accuracy, thus even a selfish decision
maker may have an incentive to motivate the agents to choose improvements over gaming. When
the decision maker is also the mechanism designer, one such incentive mechanism is for the decision
maker to subsidize the agents’ improvement costs, thereby making improvement more appealing
compared to gaming. We characterize the Stackelberg equilibrium in this setting, where the decision
maker determines the optimal decision rule as well as the incentive mechanism (a subsidy policy) in
anticipation of the agents’ best response. In addition, we also study the impact of the equilibrium
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classifier and incentive mechanism on the fairness and qualification status, when agents come
from different demographic groups which differ in their pre-response attribute distribution (e.g., an
advantaged group may have higher pre-response attributes that map to higher qualification rates and
features) or action cost (e.g., an advantaged group may have lower action cost than a disadvantaged
group). Alternatively, we also study the case where the mechanism designer is a third party (e.g., a
government) with social well-being metrics as its objective. The third party designs a mechanism
that incentivizes agents’ improvement action and charges a price to the decision maker for this
improvement service to ensure budget balance, while also making sure that incentive compatibility
and individual rationality constraints are satisfied for both the agents and the decision maker. We
compare the outcomes of the augmented strategic learning in these two settings, as well as the
conventional strategic learning problem without an incentive mechanism, and investigate how the
mechanism designer’s objectives influence the fairness and qualification status.

Our work differs from previous works on incentive mechanisms in the presence of strategic
agents [34, 54, 91, 42] in the following ways. Firstly, subsidies are also used in [42] for strategic
classification; however, all actions considered in [42] are gaming and thus all subsidies go toward
gaming. Both our work and [42] show that subsidizing gaming is a strictly dominated strategy for the
decision maker, but our work further shows the potential benefit of subsidizing improvement actions.
Secondly, [34, 54] use the classifier decision rule as a proxy for designing incentives, while we take
a combination of the decision rule and an incentive mechanism choice to provide incentives; this is
noteworthy because there are cases where the decision rule alone fails to incentivize improvement,
such that one can only resort to the incentive mechanism to serve this purpose (see further discussion
in Section 5.2). Thirdly, the decision maker in our model is selfish (i.e. profit maximizing) and the
third party optimizes social well-being metrics (e.g., social welfare, or fairness metrics); in contrast,
the decision maker is welfare maximizing in [34], is either selfish or welfare maximizing in [91],
and works toward effort profiles with desired characteristics in [54]. Fourthly, while [91] focuses
on the linear regression problem and [34, 54] on binary classification problems, we study both
types of problems and elaborate on the similarities and differences between these setups. Finally,
while strategic recourse [20] focuses on the ability of agents to systematically reverse unfavorable
decisions made by algorithms (e.g., provide practical suggestions to the agents on how to alter
their profile to increase their chance of receiving good decision outcomes), our work focuses on a
one-shot Stackelberg game where such suggestions are implicitly given in the mechanism (e.g., the
fact that an action is subsidized means such an action can improve the decision outcome). Our main
contributions are as follows.

1. We formulate the problem of adding a subsidy mechanism in strategic classification and
regression problems as a Stackelberg game, where the decision maker and mechanism
designer commit to a classifier and an incentive mechanism, and agents follow by choosing

77



Figure 5.1: The Augmented Strategic Classification/Regression Problem.

an action to best respond (Section 5.2). This model substantially extends existing literature.

2. We begin with the setting in which the decision maker is the mechanism designer, and study
the incentive mechanism design and the Stackelberg equilibrium of the classification and
regression models (Sections 5.3 and 5.4). We identify conditions under which the incentive
mechanisms satisfy individual rationality, incentive compatibility, and budget balance.

3. We study the social well-being of the augmented strategic learning system, focusing on both
efficiency and fairness properties (Section 5.5). We also consider the case of a third party
mechanism designer, and discuss its influence on these social well-being metrics (Section
5.6).

4. We illustrate our analytical findings through numerical experiments based on the FICO dataset
[36] (Section 5.7).

5.2 Model

We first introduce our augmented strategic learning model. In particular, we focus on a single-
round, two-stage Stackelberg game, where the decision maker and the mechanism designer move
first to design, publish, and commit to a decision rule f combined with an incentive mechanism G;
the agents then best respond to both the incentive mechanism and the decision rule in the second
stage.

5.2.1 Attributes, Features, and Labels

An agent has an N -dimensional pre-response attribute x ∈ X ,X ⊆ RN
≥0, which is its private

information. Its probability density function (pdf) is p(x), which is public information. In the

78



response phase, an agent takes an M -dimensional action a := (a+,a−), where a+ ∈ RM+

≥0 denotes
an improvement action profile while a− ∈ RM−

≥0 is a gaming action profile, with M+ +M− =M

(with action indices ordered such that ∀i ≤M+ is an improvement action).
The agent’s action impacts its attributes as well as features through a projection matrix P =

[P+, P−], P ≥ 0, where P+ ∈ RN×M+ (resp. P− ∈ RN×M−) is the improvement (resp. gaming)
projection in the following sense. The action results in the agent having a post-response attribute

x′ = x+ P+a+ = x+ P̂a, where P̂ = [P+,0] ∈ RN×M , and a post-response observable feature

(simply feature for brevity) z = x + Pa = x + P+a+ + P−a−. Crucially, the post-response
attribute is the agent’s private information, whereas the post-response feature is observable by the
decision maker. An agent’s action may or may not be directly observable to the decision maker, but
is anticipated given the game setting and an equilibrium concept.

This model captures the fact that improvement actions can improve an agent’s underlying
attribute as well as observable feature, while gaming actions only affect the outward feature without
changing its underlying attribute. We can think of attributes as actual skills and features as test
scores; working hard can be a type of improvement action and cheating can be a type of gaming
action.

In general, the projection matrix P is not full rank, which means there are multiple choices of a
for the agent to obtain the same feature z and thus the same decision outcome (next subsection).

An agent with pre- (resp. post-)response attribute x (resp. x′) has a pre- (resp. post-)response
true label y (resp. y′) that indicates the quality of an agent. For strategic regression, we use the
same setting as in [91]:

y = q(x) := θTx+ η, y′ = q(x′) = θTx′ + η, (5.1)

where θ ≥ 0 is the quality coefficient vector, and η is a subgaussian noise with 0 mean and variance
σ. For strategic classification, y, y′ ∈ {0, 1}, and we use a similar setting as in [42]:

Pr(y = 1) = l(θTx), P r(y′ = 1) = l(θTx′), y′ ≥ y, (5.2)

where we can interpret l : R 7→ [0, 1] as a likelihood function that is weakly increasing (l is a
step-function in [42]). We assume that y′ ≥ y holds for every agent, with improvement actions
weakly improving the agent’s true label, and gaming actions leaving it unchanged.

Remark 2. The projection matrix P , the available action dimensions, and the quality coefficients θ

are assumed to be public information for the remainder of the chapter. We discuss in the appendix

when these parameters are initially unknown to the decision maker. Parameter acquisition requires

multi-round online learning [91, 37], which is different from the model setting in this chapter.
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However, we show that our incentive mechanisms can aid parameter learning in the multi-round

online strategic learning models.

5.2.2 The Decision Rule

The decision rule f : RN 7→ R takes as input an agent’s feature z and returns a decision outcome
f(z). For regression, f(z) = wTz; for classification, f(z) = 1{wTz ≥ τ}, for some w ∈ RN

≥0

(since the true labels are weakly increasing in every attribute).

5.2.3 Three Learning/Game Problems

We will consider three different strategic learning systems/game settings:

1. The conventional strategic (CS) problem where the agents and the decision maker play the
standard Stackelberg game without any added incentive mechanism, both being fully strategic.

2. The limited strategic (LS) problem where the agents are fully strategic and expect the decision
maker to be strategic, but the latter does not anticipate the agents’ strategic behavior and
applies the optimal non-strategic decision rule, e.g., f(z) = θTz in regression, as a sub-
optimal option.1

3. The augmented strategic (AS) problem, where the agents and the decision maker play the
Stackelberg game with a subsidy mechanism.

We use the CS and LS problems as benchmarks to show how subsidy mechanisms influence the
equilibrium system outcome. We next detail the utility functions and the incentive mechanism.

5.2.4 Utilities and Optimal Strategies in Conventional & Limited Strategic Learning

In a conventional strategic learning problem, it is assumed that an agent has the following utility
function uC(x,a) = f(x+ Pa)− h(a), where the agent benefits from the decision outcome f(z)
and incurs a cost of h(a) := cTa.

Denote by a∗
C(x) := argmaxa uC(x,a) the agent’s conventional best response or CS best

response, with ties broken in favor of its qualification status θTx′. In the same problem, denote y′C
as the CS post-response label. The decision maker’s utility is

U
(cls)
C (f) =

∫
X
Pr
(
f(x+ Pa∗

C(x)) = y′C
)
p(x)dx;

U
(reg)
C (f) =

∫
X
Eη

[
−
(
f(x+ Pa∗

C(x))− y′C
)2]
p(x)dx (5.3)

1The agents in LS behave the same as in CS problems. One reason to consider LS is that the CS problem is in
general NP-hard for the decision maker [54].

80



for strategic classification and regression, respectively. Here the decision maker aims to maximize
the classification accuracy and minimize the mean squared error in regression, respectively. We will
use f ∗

C := argmaxf UC(f) to denote the decision maker’s optimal conventional strategic decision
rule, where the type of problem (cls vs. reg) will be clear from the context. In the limited strategic
(LS) problem, the agents’ utilities and best responses are the same as the CS problem, but the
decision maker instead maximizes, respectively:

U
(cls)
L (f) =

∫
X
Pr
(
f(x) = y

)
p(x)dx;

U
(reg)
L (f) =

∫
X
Eη

[
−
(
f(x)− y

)2]
p(x)dx. (5.4)

Remark 3. Our findings generalize to other cost functions such as L2 cost h(a) =
√
aTCa or

quadratic cost h(a) = 1
2
||a||22. More details are provided in the appendix.

5.2.5 Incentive Mechanisms and Utilities in Augmented Strategic Learning

Different from previous works, we focus on how an incentive mechanism can influence the
strategic interaction between the decision maker and the agents. We consider two types of mecha-
nism providers. We will start with the setting where the mechanism provider is the decision maker
itself. Our analysis and results are then extended in Section 5.6 to a second setting where the
mechanism is provided or implemented by a third-party organization, e.g., the government.

We focus on discount mechanisms that are based on providing a discount on actions, where the
mechanism provider has the ability to lower the cost of agents’ actions, e.g., making the cost of
getting tutoring or exam preparation cheaper during the school admission process.2 We use G to
denote the discount mechanism where the designer chooses a rate discount value on each action
dimension △c = (△ci)Mi=1,△ci < ci, and set a discount amount range [c, c]. Then with G, the
agent’s utility function in the augmented strategic learning problem becomes

uA(x,a) = f(x+ Pa)− hA(a), where hA(a) = h(a)−△cTa · 1{△cTa ∈ [c, c]}. (5.5)

With G, a∗
A(x) := argmaxa uA(x,a) denotes the agent’s augmented best response or AS

best response, with ties broken in favor of maximizing θTx′ unless otherwise suggested by the
mechanism designer. The designer incurs a subsidy cost

H(G) =

∫
X
△cTa∗

A(x) · 1{△cTa∗
A(x) ∈ [c, c]}p(x)dx. (5.6)

2In the appendix, we discuss an alternative mechanism where the designer cannot change the action cost, and show
that the resulting mechanism design problem is computationally intractable.
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Denote by y′A the AS post-response label. The augmented utility of the decision maker is then:

U
(cls)
A (f) =

∫
X
Pr
(
f(x+ Pa∗

A(x)) = y′A
)
p(x)dx−H(G);

U
(reg)
A (f) =

∫
X
Eη

[
−
(
f(x+ Pa∗

A(x))− y′A
)2]
p(x)dx−H(G), (5.7)

for the classification and regression problems, respectively. In designing G, we will consider three
commonly studied properties in the mechanism design literature:

1. Individual rationality (IR): The agents are better off participating in the mechanism than not.

2. Incentive compatibility (IC): The agents act in self-interest.

3. Budget balance (BB): This only applies to the third party mechanism; see Section 5.6.

Here we elaborate on our definition of IC. Conventionally, a mechanism is IC if every participant
achieves the best outcome by acting according to their true preferences. In our case, the mechanism
and the decision rule are fixed, and every agent’s response to the mechanism and the decision rule
is independent of other agents. Therefore, every agent only needs to choose the optimal action
based on its (subsidized) utility function, and the IC condition is straightforward. The authors in
[99] provided another definition of IC classifiers, where the classifier is IC if no manipulation can
strictly improve an agent’s utility. We consider a different problem setting from [99] but similar
to [42, 54, 91, 67], where manipulation can always strictly improve some agents’ utilities. In our
problem, we encourage agents to take improvement actions over manipulations (instead of trying to
stop all manipulations), which benefits all entities in the game and improves the social qualification
status. The difference in the definitions of IC found in our work and in [99] is due to very different
problem settings.

5.3 Augmented Strategic Classification

In this and the next section, we consider agents from a single demographic group. Throughout
our analysis, we will provide pictorial interpretations of our results, using an example with 2 action
dimensions: a1 is an improvement action and a2 is a gaming action.

We begin with some preliminaries. The next two lemmas characterize the magnitude and
direction of the agents’ best responses a∗

t (x) (t ∈ {C,A}) in the conventional and augmented
strategic games.

Lemma 2. For CS and AS classifications, wT (x+ Pa∗
t (x)) = τ ⇔ a∗

t (x) ̸= 0,∀t.
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(a) CS Best Response (b) Tie Breaking
Figure 5.2: An Illustration of a CS Best Response in Classi-
fication, where P = [1, 1], w = 1, P Tw = (1, 1). The Solid
Blue Line is the Decision Boundary. In (a), the Blue Dashed
Line is an Equal Cost Contour; c2 < c1, and thus Gaming
is Cheaper than Improving, Leading to the Best Response
Shown in Red. (b) Illustrates Tie Breaking in Best Responses,
where c1 = c2, with the Equal Cost Contour Shown with the
Yellow Dashed Line.

Figure 5.3: An Illustration of
the Manipulation Margin in
Classification, Given by the
Shaded Region; Every Agent
Inside can Reach the Bound-
ary with an Action Cost of No
More than 1.

Proof. For ∀a such that wT (x + Pa) < τ , f(z) = 0; thus it is dominated by 0 due to h(a) ≥
h(0) = 0 and hA(a) ≥ hA(0) = 0. On the other hand, for ∀a such that wT (x + a∗) > τ , there
exists an α ∈ (0, 1) such that wT (x+ αPa) = τ . Both a and αa guarantee f(z) = 1, and thus a
is dominated by αa due to h(a) > h(αa) and hA(a) > hA(αa) if a ̸= 0.

Lemma 2 describes the magnitude of the best response in CS and AS classification: it is such
that the feature z reaches the decision boundary but not beyond, as going beyond the boundary only
increases the cost without affecting the decision. This is illustrated by the red arrow in Figure 5.2a.

Lemma 3. For CS and AS classification,

(a∗
C(x))i ≥ 0, if i ∈ {argmax

j
(P Tw)j/cj}; (a∗

t (x))i = 0, o.w., ∀x.

(a∗
A(x))i ≥ 0, if i ∈ {argmax

j
(P Tw)j/(cj −△cj)}; (a∗

A(x))i = 0, o.w., ∀x. (5.8)

Proof. Assume by contradiction a∗j > 0, j ̸= iC = argmaxk
(PTw)k

ck
. By Lemma 2, as a∗ ̸= 0 we

have wT (x+ Pa∗) = τ . Denote ã = a∗ − a∗jej +
a∗j (P

Tw)j

(PTw)iC
eiC , where ei is the i-th orthonormal

base vector of RM . It is easy to see that wT (x+ P ã) = τ and thus f(z) = 1, while h(ã) < h(a∗),
indicating that ã achieves a higher utility than a∗, contradicting the optimality of a∗. The proof for
AS classification is similar.

Lemma 3 describes the directional properties of the best response: the agent will invest in the
action dimension(s) with the highest return on investment (P Tw)j/cj (in CS) or (P Tw)j/(cj−△cj)
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(a) Discount Mechanism (b) Designer’s Suggestion

Figure 5.4: An Illustration of the Discount Mechanism in
Classification, P = [1, 1], w = 1, P Tw = (1, 1), c2 < c1, the
Red Dashed Line is the Discounted Equal Cost Contour with
a Minimum Effective Discount. In Figure 5.4b, the c is of a
Smaller Value, and the Equal Cost Contour has a Different
Shape. The Decision Maker Suggests the Agents Choose
a∗
C(x) Instead of a(3) in Tie Breaking in Algorithm 6 and 7

When l is Convex.

Figure 5.5: A Simplified Illustra-
tion of the Individual Subsidy Ben-
efit and Cost in the Mechanism.
Region 1 (Resp. 2) Corresponds
to Agents with Subsidy Surplus
(Resp. Deficit). The Third Party
(Section 5.6) Incentivizes Region
2 Agents for Social Well-being Ob-
jectives. rf Represents the Lower
Boundary ofM(f).

(in AS). Without loss of generality, we assume that the optimal CS action dimension iC :=

argmaxj(P
Tw)j/cj is unique. This property is also shown in Figure 5.2a, where iC = 2 is the

action with the highest return on investment.
We note that there may be multiple actions that are equal in their return on investment. In such

cases, we assume the agent follows the algorithm designer’s recommendation if any, and otherwise
chooses the one that leads to the maximum improvement (i.e., the one maximizing θT P̂a). Figure
5.2b explains this tie breaking: here c1 = c2 and every point on the yellow contour has equal cost
and benefit to the agent, making the agent indifferent between a(1),a(2),a(3). We take a(3), the
largest improvement, to be the agent’s choice.

Using Lemmas 2 and 3, we have

a∗
C(x) =

τ −wTx

(P Tw)iC
eiC , if x ∈M(f); a∗

C(x) = 0, o.w., (5.9)

whereM(f) :=

{
x

∣∣∣∣ (τ−wTx)ciC
(PTw)iC

∈ (0, 1]

}
denotes the manipulation margin of f : every agent in

the manipulation margin has a non-zero best response to improve their decision outcome to 1. This
is illustrated in Figure 5.3.

In classification, if iC ≤M+, we say the decision rule incentivizes improvement, otherwise we
say the decision rule incentivizes gaming. The theorem below shows conditions under which it is
impossible for the decision maker to have a decision rule that incentivizes improvement; the proof
is given in Appendix D.2.2.

84



Theorem 13. Let κi denote the substitutability of action dimension i [54, 50]. Formally,

κi := min
a∈RM ,a≥0

cTa

ci
, s.t. Pa− pi ≥ 0, (5.10)

where pi is the i-th column of P . If κi = 1, then there exists a w that can incentivize action

dimension i, and the w can be found in polynomial time. On the other hand, if κi < 1, ∀i ≤
M+, then there always exist linear combinations of gaming actions that weakly dominate every

improvement action, in which case there is no f that can incentivize improvement, and the decision

maker’s CS optimal strategy f ∗
C satisfies w = θ.

We next consider designing an incentive mechanism, with the decision rule f treated as given.

Lemma 4. To induce an agent to take an AS best response with non-zero investment in action

dimension j ≤M+, i.e., [a∗
A(x)]j > 0, the discount value△cj should satisfy (P Tw)j/(cj−△cj) ≥

(P Tw)iC/(ciC ), i.e.,△cj ≥ cj − (PTw)j
(PTw)iC

ciC .

Based on Lemma 4, we denote the minimum effective discount value as

△c∗j := cj −
(P Tw)j
(P Tw)iC

ciC . (5.11)

Intuitively, Lemma 4 states that to induce a best response in action j, the discount has to make j the
action with the highest (potentially tied) return on investment. Figure 5.4a illustrates an example
of how the discount mechanism with minimum effective discount value works. By choosing
△c1 = △c∗1, the two actions have the same return on investment; the agents choose a∗

A(x), the
maximum improvement action, in this case. In contrast, the CS action a∗

C(x) is a gaming action.
Before we move on to the optimal mechanism design, we define the subsidy surplus.

Definition 9. In classification the subsidy surplus is

S(f,G) =

∫
X

[
Pr(f(x+Pa∗

A(x)) = y′A)−Pr(f(x+Pa∗
C(x)) = y′C)

]
p(x)dx−H(G), (5.12)

where y′t denotes the post-response label such that Pr(y′t = 1) = l(x+ P̂a∗
t (x)),∀t ∈ {C,A}.

The integral part in S(f,G) is the benefit gain of the decision maker and the value in the square
bracket is the individual subsidy benefit. The decision maker’s problem is equivalent to maximizing
S(f,G) under IC and IR.

Theorem 14. For general f(z) = 1{wTz ≥ τ}, p, and l functions, finding the optimal IC and IR

discount mechanism requires solving non-convex optimization problems and thus is NP-hard.
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While finding the optimal mechanism under IC and IR constraints is NP-hard, we can develop
an efficient algorithm (Algorithm 1) for a special case when the likelihood function l is convex.

Theorem 15. Algorithm 6 runs in polynomial time, and if l is convex on [0,maxx:wTx=τ l(x)], then

any G ̸= 0 returned by Algorithm 6 is IC, IR, and satisfies S(f,G) ≥ 0.

Algorithm 6: Find a G ̸= 0 that is IC, IR and S(f,G) > 0 for Classification

x1 ← argminx:wTx=τ θ
Tx;

iC ← argmaxj(P
Tw)j/cj;

for j = 1 :M+ do
△c← 0; c← 0; l+ ← 0;

△cj ← cj − (PTw)j
(PTw)iC

ciC ;
Define function
a(δ) := δej − δ (PTw)j

(PTw)iC
eiC ;

l+(δ) := l(θTx1)− l(θTx1 − a(δ));
δ∗ ← argmaxδ s.t. l+(δ) ≥ δ△cj;
if δ∗ = 0 then

Go back to for loop
c← min{δ∗, 1/(cj −△cj)} · △cj;
Return (△c, 0, c)

Return (0, 0, 0)

Algorithm 7: A G that is IC, IR and S(f,G) ≥ 0 for Classification when w = θ

iA ← argmaxj≤M+(P
Tθ)j/cj;

△c← 0; △ciA ← ciA −
(PT θ)iA
(PT θ)iC

ciC ;
Define functions
s1(r) := l(τ)− l(r)− (τ−r)△ciA

(PT θ)iA
;

s2(r) := l(τ) + l(r)− 1− (τ−r)△ciA
(PT θ)iA

;

r ← argminr s.t. s1(r) ≥ 0;
if l(r) < 0.5 then

r ← argminr s.t. s2(r) ≥ 0;
c = (τ − r)△ciA/(P Tθ)iA;
Return (△c, 0, c).
From Algorithm 6 we see that the decision maker prefers subsidizing agents that are “closer”

to the boundary when l is convex on [0,maxx:wTx=τ l(x)]. This is because when l is convex, the
subsidy benefit becomes concave while the subsidy cost is linear in the “distance to the boundary”;
thus the agents close enough to the boundary can have positive individual subsidy surplus; Figure
5.5 provides an illustration of this.
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The convexity requirement of l on a low range is satisfied in real-world datasets such as the
FICO credit score dataset, in which the likelihood function l frequently has an S-shape (see Section
5.7). We discuss the case of other likelihood function types (including concave) in the appendix.
Also note that in Algorithm 6 the mechanism designer places a discount on only one dimension.
This is because even though it technically can set the discount△ci > 0 for multiple improvement
actions, ultimately the agent either finds the dimension with the highest return on investment or
breaks ties in favor of the largest improvement.3

The optimal mechanism can be found more efficiently for the special case when w = θ in
f (this happens, e.g., in the optimal LS strategy as shown in Lemma 6 in the appendix, or in the
optimal CS strategy when κi < 1,∀i ≤M+ in Theorem 13). This can be done in a fixed number of
steps (faster than polynomial) using Algorithm 7.

Theorem 16. If w = θ in f , f incentivizes gaming, and l is convex on [0, τ ], then Algorithm 7

finds a G that is IC, IR, and satisfies S(f,G) ≥ 0. In addition, algorithm 7 finds the optimal G if

l(τ)− l(rf ) ≤
(τ−rf )△c∗iA
(PT θ)iA

, where rf = minx∈M(f) θ
Tx.

Intuitively, the condition l(τ) − l(rf ) ≤
(τ−rf )△c∗iA
(PT θ)iA

indicates the subsidy cost is larger than
the subsidy gain for an agent on the “far side” boundary of M(f) in (5.9). This holds when
improvement costs are much larger than gaming costs, so that the discount payment is higher
than the resulting benefit from the agent’s improvement. Such a condition is needed to enable the
efficient calculation of the optimal mechanism for the following reason. If the condition does not
hold, the mechanism can further increase the cost discount rate on the actions and let agents with a
pre-response attribute such that θTx < rf to also take improvement actions. However, this would
again make the problem hard for the decision maker, since it has to jointly optimize△cj and c, and
such optimization is non-convex.

We note that the s1 and s2 functions in Algorithm 7 capture the following properties of individual
subsidy surplus: for agents inM(f), these agents’ qualification status improvement equals the
individual subsidy benefit l(θTx′

A)− l(θ
Tx′

C), but for agents not inM(f), the individual subsidy
benefit is not the qualification status improvement, but instead l(θTx′

A)− [1− l(θTx′
C)] since these

agents are supposed to receive 0 decision outcomes (rejections) in the CS problem. The green curve
in Figure 5.5 also illustrates the above.

5.4 Augmented Strategic Regression

We now turn to the strategic regression problem. For CS and AS regression, the best response
directions are the same as CS and AS classification, as given in Lemma 3.

3When placing discounts on multiple actions, finding the optimal tie-breaking rule is a non-convex problem.
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However, different from the strategic classification problem, the agents can have best responses
with infinite magnitude. For example, if (P Tw)iC ≥ ciC , the agent will invest an infinite amount in
action iC . To handle this issue, we assume that the agents’ actions are bounded by an action budget
h(a) ≤ B in CS (and LS) regression, and hA(a) ≤ B in AS regression.4

Given these bounds on the agents’ budgets, the agents’ best responses can be characterized
as follows: if (P Tw)iC ≥ ciC , then a∗

C(x) = B
ciC

eiC ; otherwise a∗
C(x) = 0. Similarly, let

iA = argmaxj(P
Tw)j/(cj − △cj), if (P Tw)iA ≥ ciA − △ciA . Then, the AS-discount best

response is a∗
A(x) =

B
ciA−△ciA

eiA; otherwise a∗
A(x) = 0.

An interesting difference to highlight is that the agents’ best responses in strategic classification
depend on both the pre-response attributes of the agents and the decision rule, whereas in strategic
regression, the best responses are the same for all agents and only depend on the decision rule.

In this strategic regression setting, we will say f incentivizes 0 responses if a∗
C(x) = 0.

Otherwise, if iC ≤M+ (resp. iC > M+), we say f incentivizes improvement (resp. gaming).
If f incentivizes non-zero responses (improvement or gaming), the cost discount rates will again

follow Lemma 4, with the minimum effective discount rate still the same as in (5.11); otherwise,
the minimum effective cost discount rate on action j will be such that (P Tw)j = (cj − △cj),
△c∗j = max{cj − ciC (P Tw)j/(P

Tw)iC , cj − (P Tw)j}.
Using this, the error incurred by the designer on an agent with pre-response attributes x will

consist of two parts, an equilibrium coefficient error and an inevitable error due to noises,

E(f,a,x) = [wT (x+ Pa)− θT (x+ P̂a)]2 + err(η). (5.13)

Note that although the agents’ best responses are independent of x, the equilibrium individual

errors depend on x for any w ̸= θ.
We next consider the problem of designing an incentive (discount) mechanism.

Theorem 17. For general f(z) = wTz and p(x), finding the optimal IC, IR, and discount

mechanism requires solving non-convex optimization problems and thus is NP-hard.

The difficulty of designing incentive mechanisms for strategic regression problems stems from
the fact that the equilibrium individual errors depend on x and thus the overall prediction error
depends largely on p(x). Moreover, the individual equilibrium error is not monotone in any action
dimension for a general w ̸= θ. As a result, we can not follow the same methods used in the
strategic classification setting to find sufficient conditions that simplify the search for the optimal
mechanism.

However, the mechanism designer can now leverage the fact that the agents have identical best

4Such bound was not needed in the classification setting, as the fact that f(z) ≤ 1 naturally provided this.
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(a) CS Best Response (b) Discount Mechanism
Figure 5.6: An Illustration of the CS Best Response and the Discount Mechanism in Regression,
where the Green Dashed Lines are Equal Decision Outcome Contours, P = [1, 1], w = 1, P Tw =
(1, 1), c2 < c1, the Red Dashed Line is the Discounted Equal Cost Contour with a Minimum
Effective Discount.

responses to facilitate the search for IC and IR discount mechanisms that satisfy S(f,G) ≥ 0, as
shown in the following theorem.

Theorem 18. Suppose the computation of integration
∫
X E(f,a,x)p(x)dx,∀a can be done in

finite time. Then, Algorithm 8 runs in polynomial time and any G ̸= 0 it returns is IC, IR and

satisfies S(f,G) > 0.

The finite computation time assumption is met, for example, when the distribution X is discrete
or when p(x) is uniform.

If f incentivizes non-zero responses, then Algorithm 8 sets △cj at the minimum effective
discount value, and sets no discount on other actions. Then, it chooses c = 0, c =

αB△cj
cj−△cj

so that
it incentivizes all agents to take an AS best response a∗

A(x) = α B
cj−△cj

ej + (1− α) B
ciC

eiC .5 If f
incentivizes 0 responses, then the decision maker can choose△cj = cj − (P Tw)j and set c = αB

in Algorithm 8 so that a∗
A(x) = αej .

5Similar to the classification setting, we let the algorithm put a discount on one action dimension. Any c ≤ c is
equivalent to both the agents and the designer here since the agent will by default use the discount amount c for the
maximum improvement. The algorithm can return on condition S > 0 as well.
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Algorithm 8: Grid Search an IC, IR and S(f,G) > 0 Mechanism for Regression

Choose ϵ > 0;
aC ← B

ciC
eiC ; Smax ← 0; ans← (0, [0, 0]);

EC ←
∫
X E(f,aC ,x)p(x)dx;

for j = 1 :M+ do
△c← 0; S ← 0; α← ϵ;

△cj ← cj − (PTw)j
(PTw)iC

ciC ;

while S ≥ 0 do
α← α + ϵ; c =

αB△cj
cj−△cj

;

aA = α B
cj−△cj

ej + (1− α) B
ciC

eiC ;

EA ←
∫
X E(f,aA,x)p(x)dx;

S ← EC − EA − c;
if S > Smax then

Smax ← S; ans← (△c, [0, c]);
Return ans.
Below, we also discuss the cases when w = θ, e.g., the decision maker’s optimal LS strategy

f ∗
L(z) = θTz.6

Lemma 5. If w = θ in f and f incentivizes 0 responses or improvement, then the optimal IC and

IR discount mechanism is G = 0.

This is straightforward since the decision maker cannot further lower the error from err(η) and
thus does not want to pay the agents.

If f incentivizes gaming, then the equilibrium individual error becomes, E(f,aC ,x) = [θT (x+

Pa∗
C)− θTx]2 + err(η) = (θTPa∗

C)
2 + err(η), which is independent of the pre-response attribute

x.

Theorem 19. If w = θ in f , and f incentivizes gaming, then the optimal IC, IR, and BB G ̸= 0

can be found as follows:

Choose iA = argmaxj≤M+(P
Tθ)j/cj as the target dimension, and set△ciA = △c∗iA .

Then, derive the alternative form of individual subsidy surplus as s(α) = (2α−α2)(θTPa∗
C)

2−
αB△ciA(ciA −△ciA)−1 and get α∗ = argmaxα≤1 s(α) = 1 − B△ciA (ciA−△ciA )−1

2(θTPa∗
C)2

. Then find the

optimal c by c = α∗B△ciA(ciA −△ciA)−1.

An interesting observation is that the decision maker does not try to completely remove gaming
with the discount mechanism. This is because when the error drops to a sufficiently low level, the
marginal subsidy benefit becomes lower than the marginal subsidy cost, which is a constant.

6The optimal CS strategy in regression does not guarantee w = θ when incentivizing improvement is impossible.
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5.5 Demographic Groups and Social Well-Being

Consider now the case where agents come from two demographic groups distinguished by a
sensitive attribute d ∈ {1, 2} (e.g., gender, race), which is not a part of the N skill-related attributes
(not in x) and is never influenced by an agent’s action a. Suppose the decision rule is not allowed

to use the sensitive attribute as input but that it can be used to design group specific subsidies, so
that different groups are subject to different incentive mechanisms provided the group identities are
truthfully revealed.

We are particularly interested in how the subsidy mechanisms and their corresponding AS
outcomes influence the fairness of the system. Below we introduce a number of commonly used
definitions of group differences and social well-being measures related to fairness. Here, the term
well-being is used to refer to a broader set of metrics defined below whereas welfare is used in the
narrower sense of sum utility.

5.5.1 Group Differences

Without loss of generality, we will refer to group 1 as the advantaged group and 2 as the
disadvantaged group.7 We consider the following set of definitions; the first is new to the best of
our knowledge and the other two were introduced in [67].

Definition 10 (Group Disadvantages). We say group 2 is

1. disadvantaged in attributes in classification if F (2)(l) > F (1)(l) for l ∈ (0, 1), where F (d) is

the cumulative density function (cdf) of the conditional pre-response qualification status con-

ditioned on d ∈ {1, 2}; the same in regression if F (2)(y) > F (1)(y) for y ∈ (0,maxx q(x)).

2. disadvantaged in positive individuals (in classification) if F (2)
+ (l) > F

(1)
+ (l), where F (d)

+ is

the cdf of conditional pre-response qualification status (l(x)|Y = 1, D = d), d ∈ {1, 2}.

3. disadvantaged in action cost if h(2)(a) > h(1)(a),∀a ̸= 0, where h(d) denotes the action cost

functions with sensitive attribute d ∈ {1, 2}. Moreover, the minimum effective discount values

satisfy (△c(1))∗i ≤ (△c(2))∗i ,∀i.

5.5.2 Social Well-being Metrics

We will use the equilibrium qualification status E[y′t], t ∈ {C,A} as an efficiency oriented social
well-being metric. We also introduce fairness oriented well-being metrics.

7The group index shows up in superscripts.
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Definition 11 (Quality gain). Quality gain measures the increase in agents’ expected qualification

status (positive rate in classification) in the response phase:

△Qt := E[Y ′
t ]−E[Yt]; △Qd

t := E[Y ′
t |D = d]−E[Y |D = d]; ∀d ∈ {1, 2},∀t ∈ {A,C}. (5.14)

γQt (f,G) := △Q
(1)
t −△Q

(2)
t further measures the group difference in this gain under game type t.

Clearly, if f incentivizes improvement, then △QC > 0; if G ̸= 0 incentivizes improvement,
then△QA > 0. What’s more interesting is to compare the quality gains across different groups and
under different game types.

Definition 12 (Classification Fairness). Considering two commonly used fairness criteria in classi-

fication, Equal Opportunity (EO) (equalized true positive rates) [36] and Demographic Parity (DP)

(equalized positive decision rates), and define their respective group differences:

γEO
t (f,G) := Pr(f(zt) = 1|Y ′

t = 1, D = 1)− Pr(f(zt) = 1|Y ′
t = 1, D = 2), t ∈ {A,C};(5.15)

γDP
t (f,G) := Pr(f(zt) = 1|D = 1)− Pr(f(zt) = 1|D = 2). (5.16)

5.5.3 Fairness Issues in the CS/LS Equilibrium

We start with a number of fairness limitations of the CS equilibria in classification and regression;
the same results apply to LS.

Theorem 20. In the equilibrium CS outcome of classification where two groups have the same

action cost, then (i) if group 2 is disadvantaged in attributes, then there is a DP gap no matter if f

incentivizes improvement or gaming; and (ii) if group 2 is disadvantaged in positive individuals,

then there is an EO gap if f incentivizes gaming but not necessarily if f incentivizes improvement.

Part (1) is a direct result of 1−F (1)(l) > 1−F (2)(l), and the two groups have the same implicit
threshold, which is the lower side boundary of their manipulation margins (since every agent above
it will manipulate to get a positive decision outcome), andM(1)(f) =M(2)(f) since the two groups
have the same action cost. For part (2), whether there is a quality gain gap entirely depends on
whether f incentivizes improvement and the distribution of each group in its manipulation margin
M(d)(f). For example, we can have Pr(x ∈ M(2)(f)|D = 2) > Pr(x ∈ M(1)(f)|D = 1) and
thus group 2 have more agents to improve and may have an inverse quality gain gap.

Theorem 21. In the equilibrium CS outcome of classification and regression, if group 2 is disad-

vantaged in action cost but has the same pre-response attribute distribution as group 1 (for positive

individuals as well), then there is (i) a quality gain gap only if f incentivizes improvement; (ii)

an EO gap no matter if f incentivizes improvement or gaming; and (ii) a DP gap no matter if f

incentivizes improvement or gaming.
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To understand the above result, we note that if group 2 is disadvantaged in cost, we have
M(1)(f) ⊇ M(2)(f), so even when group 2 has the same pre-response attribute distribution, a
larger portion of group 1 are accepted in the equilibrium, causing the DP gap. This is similar to
the reason of an EO gap when f incentivizes gaming. If f incentivizes improvement, then a larger
portion of group 1 will improve and be accepted in the equilibrium, causing a quality gain gap and
an EO gap simultaneously.

5.5.4 Influence of the Discount Mechanism on Fairness

Here we analyze how the discount mechanism G alone may influence the fairness.

Theorem 22. If group 2 is disadvantaged in cost but has the same pre-response attribute distribution,

then a rational decision maker will choose aG that widens the quality gain gap in both classification

and regression.

Theorem 22 means that a rational mechanism for the decision maker is always making the
system more unfair when the quality gain gap is the metric. The rational mechanism influences the
DP and EO gap but does not always make them worse.

5.6 Third Party Mechanisms

We next discuss an alternative system where the discount mechanism is implemented by a third
party, who subsidizes the agents’ improvement actions in the same way as described in Section
5.2 and charges the decision maker a tax T (G) for improved decision performance. The decision
maker’s AS utility in this alternative system is

U
(cls)
A (f) =

∫
X
Pr
(
f(x+ Pa∗

A(x)) = y′A
)
p(x)dx− T (G),

U
(reg)
A (f) =

∫
X
Eσ

[
−
(
f(x+ Pa∗

A(x))− y′A
)2]
p(x)dx− T (G) .

The IR condition for the decision maker is U (cls)
A (f) ≥ U

(cls)
C (f) or U (reg)

A (f) ≥ U
(reg)
C (f). In

addition, we also consider the common mechanism criterion of budget balance: if the charged price
is no less than the subsidy cost of the third party, then the mechanism is (weakly) budget balanced:

Definition 13 (Budget Balance). The third party is considered (weakly) budget balanced if T (G) ≥
H(G).

The mechanism designer can induce truthful revelation of the sensitive attribute by the agents
as follows: (1) Let G consist of two group-specific mechanisms G(1) and G(2); agents who do not
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Figure 5.7: An Illustration of the Alternative Three-party Augmented Strategic Learning System.
reveal their d participate in G(1); (2) Ensure that△c(1)i ≤ △c

(2)
i , ∀i and (△c(1))Ta ∈ [c(1), c(1)]⇒

(△c(2))Ta ∈ [c(2), c(2)]. Then, group 1 agents are indifferent about revealing d while revealing d is
the dominant strategy for group 2 agents. Figure 5.7 illustrates the three-party AS learning system.

5.6.1 Objectives of the Third Party

We introduce two types of third party mechanism designers, efficiency oriented and fairness

oriented. An efficiency oriented third party tries to maximize the equilibrium social qualification
status W (cls)

eff (f,G) := Pr(y′A = 1), W (reg)
eff (f,G) := E[y′A]; we call the corresponding equilibrium

AS outcome the efficient AS outcome or AS-eff in short. On the other hand, a fairness oriented third
party aims to minimize a non-negative and non-zero linear combination of the fairness gaps, or
equivalently, maximizing

W
(cls)
fair (f,G) := −β

QγQA (f,G)− β
DPγDP

A (f,G)− βEOγEO
A (f,G); W

(reg)
fair (f,G) := −γQA (f,G),

for some βQ, βEO, βDP ≥ 0, βQ + βEO + βDP > 0. We call the corresponding equilibrium AS
outcome the fair AS outcome or AS-fair in short.

For conciseness, we use AS-dm to denote the decision maker’s equilibrium AS outcome.

Theorem 23. If there is a mechanism that is IC and IR and satisfies S(f,G) > 0, then a mechanism

that satisfies IC, IR, and BB criteria exists and weakly improves the third party’s social well-being

objective (either efficiency or fairness oriented) compared to the original AS equilibrium.

5.6.2 Influence of Mechanism Designers’ Objectives

Finally, we discuss how the objective of the mechanism designer and the corresponding incentive
mechanisms influence the equilibrium efficiency and fairness oriented social well-being metrics.
We compare the different AS, CS, and LS equilibrium outcomes where they have the same decision
rule f and focus on how the incentive mechanisms for different objectives affect the outcome.
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Definition 14. We say a mechanism G(d) ̸= 0 is an ideal mechanism if it is IC and IR for group d

agents and achieves S(f,G(d)) > 0 on group d, ∀d ∈ {1, 2}.

Theorem 24. If group 2 is disadvantaged in action cost but has the same pre-response attribute

distribution as group 1 (for positive individuals as well), then in the equilibrium,

1. the DP gap in weak ascending order is: AS-fair, CS(LS), AS-dm, AS-eff;

2. the EO gap (or quality gain gap) in weak ascending order is: AS-fair, CS(LS), AS-dm, AS-eff;

3. The social quality improvement in weak descending order is: AS-eff, AS-dm, CS(LS).

If there is an ideal mechanism for group 1, then AS-fair is strictly the lowest in DP gap; the orders

in EO gap (or quality gain gap) and quality improvement becomes strict for CS(LS), AS-dm and

AS-eff. Moreover, if there is an ideal mechanism for group 2, AS-fair is strictly the lowest in EO gap

(or quality gain gap).

Below we provide some explanations of the statements in Theorem 24. For an efficiency oriented
third party, the set of agents it incentivizes is a superset of the agents incentivized by the decision
maker, making AS-eff the best in part (3). This is because subsidizing the agents with a positive
individual subsidy surplus not only helps the third party improve the objective but also raises the
budget to subsidize agents with a negative individual subsidy surplus (individual subsidy deficit).
Moreover, the efficiency oriented third party tries to incentivize more agents from group 1 since
they are “cheaper” to incentivize and thus exacerbates the fairness issues in parts (1) and (2).

For a fairness oriented third party, it can also incentivize a superset of agents incentivized by the
decision maker, but that means incentivizing some group 1 agents, which results in two conflicting
effects: it helps the third party gather more “funding” to subsidize group 2 agents, but at the same
time makes the fairness issue worse. As a result, the social quality improvement in AS-fair is better
than CS (LS) and worse than AS-eff, but how it compares to AS-dm depends on the specific game
parameters and thus is not discussed in part (3). When there is an ideal mechanism for group 2, the
third party can ignore the dilemma of subsidizing group 1 agents and focus on subsidizing only
group 2 agents to improve fairness in parts (1) and (2).

The ideal mechanisms in Theorem 24 make the comparison strict. The existence of an ideal
G(2) is a sufficient condition for the existence of an ideal G(1) when group 2 is disadvantaged in
cost but has the same distribution. This is because G(2) itself is ideal for group 1.

Theorem 25. In both classification and regression problems, if group 2 is disadvantaged in attributes

(resp. positive individuals) but has the same action cost as group 1 then

1. the DP (resp. EO) gap in AS-fair outcome is weakly the lowest, and is strictly the lowest if

there is an ideal mechanism for group 2;
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2. the social quality improvement in AS-eff outcome is weakly the highest, and is strictly the

highest if there is an ideal mechanism for either group.

When group 2 has the same cost, then an ideal G(2) is no longer sufficient or necessary for an
ideal G(1) to exist for general classification problems, and that’s why the condition in part (2) looks
different from Theorem 25. But the existence of an ideal G(2) is sufficient and necessary for the
existence of an ideal G(1) in regression, as well as in a special class of classification problems where
w = θ in f and l is convex on [0, τ ].8 From Theorem 20, we know that DP and EO gap always exist
in the CS (LS) problem, but if there is an ideal G(2), the fairness oriented third party can further
incentivize group 2 agents to reduce the gap in part (1) (those not inM(2)(f) to reduce the DP gap).

Theorem 26. Suppose group 2 is disadvantaged in cost but has the same pre-response distribution

(for positive individuals as well). Denote p(d) := Pr(D = d), then an IC, IR, and BB mecha-

nism G ̸= 0 that satisfies γQA = γEO
A = γDP

A = 0 exists if S(f,G(1)) + (1 − p(1))H(G(1)) ≥
p(2)H(G(2)), s.t. h(1)A (a) = h

(2)
A (a), ∀a.

In general, this condition can hold if p(1) is much larger than p(2), i.e., the disadvantaged group
is also the minority group in the population or S(f,G(1)) is very high.

Remark 4. Our results generalize to multiple groups when the definitions of group disadvantages

and fairness metrics are consistent.

5.7 Numerical Results

Figure 5.8: Repay Rate l(x)

This section presents numerical results obtained using the FICO
score [85] dataset preprocessed in [36]. The credit card holders are
considered agents and they have repayment rates that can map to
the likelihood function l in our model. The decision maker uses
binary classification to predict whether the agents will default. We
assume that θ = 1, P = [1, 1], and the agent can either choose a1
to improve or a2 to game the classifier f(z) = 111(z ≥ τ), i.e., x
is the pre-response normalized FICO score as well as the attribute,
x′ = x+a1 is the post-response attribute, and z = x+a1+a2 is the
post-response normalized FICO score. Figure 5.8 shows how the
repayment rate l(x) changes with x; it has an S-shape, with l(x) = 0.5 approximately corresponding
to x = 0.3 and l(x) (nearly) convex on [0, 0.3]. We assume that the decision maker chooses w = 1,
which aligns with the LS and CS optimal solution from Section 5.3 when c2 < c1.

8We are excluding extreme distributions in the “iff” claim, e.g., Pr(x ∈M(f)) = 0.
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(a) Entire Group (b) Positive Individuals

Figure 5.9: The Likelihood CDF
(a) CS/AS Utilities (b)△Q and S(f,G)

Figure 5.10: Single Group (Caucasian) Results

We start with the properties of the discount mechanism and show how the decision maker’s CS
and AS utility changes with different choices of threshold τ . We then show the impact the incentive
mechanisms have on social well-being metrics.

Throughout this section, we use a quadratic outcome likelihood cost function and assume that
c
(1)
1 = c1 = 8 and c(1)2 = c2 = 4 (for the advantaged group if there are action cost differences). For

the multiple group case, we make the following two sets of comparisons. (1) Groups with different
distributions: the Hispanic group is disadvantaged in features and in positive individuals compared
to the Caucasian group (see Figure 5.9). (2) Groups with different costs: we will assume there are
two subgroups (A and B) in the Caucasian group, and group 2 has higher action costs c(2)1 = 10 and
c
(2)
2 = 5. We set p(1) = 0.8, p(2) = 0.2 as the population proportions.

As a result, we show the AS-fair equilibrium outcome is the best well-rounded system design
for the augmented strategic learning problems.

The decision maker’s AS and CS utility. Using only the Caucasian data, the set of results in
Figure 5.10 shows how the AS/CS decision maker utilities, subsidy surplus, and qualification status
improvement change with the threshold τ .

We can see that the AS utility is always higher than the CS utility (Fig. 5.10). This is because
their difference is the subsidy surplus, which is non-negative for a rational decision maker. We
note that the CS utility should always be single-peaked but the AS utility may have multiple local
maxima since the value of subsidy surplus is not monotone in τ and depends on p(x). For other
choices of c1, c2 values, we find that the larger the difference c1−c2, the smaller the utility difference
and the closer the optimal thresholds are (|τ ∗AS − τ ∗CS| lower). Both the subsidy surplus in (5.12) and
the qualification status improvement in (5.14) are positive, indicating the decision maker’s selfish
strategy is also benefiting the efficiency oriented social well-being. The improvement and subsidy
surplus are also highly positively correlated with a correlation coefficient of 0.92.

Social well-being of the strategic incentive mechanism. Figure 5.11 (resp. Figure 5.12) shows
the quality improvement, PR and TPR, (and thus we can see the DP, and EO gap from the curve
differences) when the Hispanic group (resp. Caucasian subgroup 2) is disadvantaged in features and
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(a) Improvement (b) PR (c) AS/CS TPR

Figure 5.11: Disadvantaged in Features

(a) Improvement (b) PR (c) TPR

Figure 5.12: Disadvantaged in Costs

positive individuals (resp. costs) compared to the Caucasian group (resp. Caucasian subgroup 1) in
the CS(LS) and AS-dm equilibrium. The decision maker does not incentivize agents outside of the
manipulation margin and thus the CS and AS PR curves are the same.

We can see from Figure 5.11a that when τ is in the lower score ranges, the Hispanic group has
a slightly higher qualification status improvement compared to the Caucasian group, whereas if
τ is in the higher score ranges, the Caucasian group has a much higher improvement. Intuitively,
this is because the Hispanic (resp. Caucasian) group has a higher probability mass in the lower
(resp. higher) score ranges and a low (resp. high) τ incentivizes a higher proportion of agents
to improve in the Hispanic (resp. Caucasian) group. Figure 5.11b shows that the PR is 1 when
τ < 0.25; this is because all agents can manipulate to get f(z) = 1. When τ > 0.25, the PR is
strictly decreasing in τ for both groups and the Caucasian group always has a higher PR, i.e., the
Hispanic group will suffer from a DP gap in both CS and AS-dm equilibrium. This is because the
lower side boundary of the manipulation margin becomes an implicit threshold, where all agents
above the implicit threshold can manipulate (no matter improvement or gaming) to get accepted.
The implicit threshold is the same for both groups since they have the same action cost, and the DP
gap is caused by the disadvantage in pre-response attribute distribution (Theorem 20 part (1)). For
similar reasons, Figure 5.11c shows that the CS and AS TPR is 1 when τ < 0.3. Therefore, we can
see that the AS TPR is always higher than the CS TPR for either group, because now some agents
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improved their qualification status and get accepted at the same time, making the numerator and
denominator of the TPR formula increase by the same amount and thus increase the TPR. On the
other hand, the Hispanic group suffers from an EO gap in both the CS and the AS-dm equilibrium,
as previously discussed in Theorem 20 part (2).

Figure 5.12a and 5.12c support our claims in Theorem 22 part (3), where the incentive mecha-
nism widens the quality gain gap and the EO gap. Figure 5.12b shows PR curves and the DP gap
between the two subgroups, which is determined by the pre-response attribute probability mass
within [τ − 1/c

(1)
2 , τ − 1/c

(2)
2 ] (the difference between the manipulation margins in the two groups).

Figure 5.12c shows the CS and AS TPR curves and the EO gaps; the implicit threshold creates the
CS EO gap, and the fact that group 1 agents are cheaper to incentivize jointly creates the AS EO gap.

Social Well-being metrics with the third party incentive. Social well-being results under the
third party model are shown in Figure 5.13 where groups have attribute distribution differences
(Caucasian and Hispanic group), and in Figure 5.14 where groups have cost differences (Caucasian
subgroups).

We can see in both sets of results that the AS-fair equilibrium outcome significantly reduces
and even removes the fairness issues in the system, whereas the AS-eff equilibrium outcome has
the worst fairness metrics. On the other hand, the AS-eff equilibrium achieves the highest social
qualification status improvement. We note that the chosen AS-fair outcomes used mechanisms that
incentivized a superset of agents compared to those that are incentivized by the decision maker, and
thus it achieves a higher social qualification status improvement than AS-dm as well.

5.8 Chapter Conclusions

In this chapter, we formulated Stackelberg game models to study the strategic classification and
regression problem, where the decision maker’s strategy combines a decision rule and an incentive
mechanism. Our model provides an extension of the previously studied strategic learning problems.
We showed how the decision maker can design discount-based incentives mechanisms to use in
conjunction with its decision rule, by providing conditions on when this problem is computationally
intractable, discussing when and how approximation algorithms can find reasonable mechanisms
in polynomial time, and when the optimal mechanism can be found in closed-form. We then
discussed the efficiency and fairness oriented social well-being properties of the augmented strategic
learning system when multiple demographic groups co-exist. We also examined an alternative
model where the incentive mechanism is provided by a third party, whose objective is optimizing
some of the social well-being metrics with an IC, IR, and BB mechanism, and showed how an
efficiency-oriented and fairness-oriented third party can influence the equilibrium social well-being
metrics. We conducted numerical experiments on the FICO dataset to demonstrate the impact of the
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(a) DP gap (b) EO gap (c) Quality gain gap (d) Improvement

Figure 5.13: Third Party Outcomes with Attribute Distribution Differences

(a) DP gap (b) EO gap (c) Quality gain gap (d) Improvement

Figure 5.14: Third Party Outcomes with Cost Differences

incentive mechanism on the system. Our findings established that a fairness-oriented third party
can provide the best well-rounded equilibrium outcomes compared to a selfish decision maker, an
efficiency-oriented third party, or a system without an incentive mechanism.
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Part III

Conclusions and Future Directions
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Chapter 6

Conclusions and Future Directions

This thesis covers two main directions in network games, with a strong focus on multi-scale
network games.

6.1 Conclusions on Equilibrium Computation and Analysis on Multi-Scale Network Games

The first direction is the equilibrium computation and analysis in multi-scale network games. In
Chapter 2, we proposed a novel representation of games that have a multi-scale network structure,
where the network has a multi-level hierarchical structure. Across the levels of hierarchy, the
nodes’ utilities at each level only depend on the aggregate strategies of other groups at the same
level. We presented several iterative algorithms that leverage the multi-scale game structure, and
show that they converge to a pure strategy Nash equilibrium under similar conditions as for best
response dynamics in network games. Our experiments demonstrate that the proposed algorithms
can yield orders of magnitude scalability improvement over conventional best response dynamics.
Our multi-scale algorithms can reveal the extent to which one’s group affiliation impacts one’s
strategic decision making, and how strategic interactions among groups impact strategic interactions
among individuals.

In Chapter 3, we introduced and studied a family of structured network games with non-linear
best response functions. Prior works on network games have found sufficient conditions for the
uniqueness and stability of Nash equilibria, where most of them are difficult to verify. In this
work, we showed that the existence of structure in the network (e.g., in the form of communities,
or when there are multi-relational dependencies between agents), helps us find alternatives for
such conditions, which we refer to as “structured conditions” as opposed to the “unstructured
conditions” in previous works. In particular, we show that the structured conditions for the
uniqueness and stability of Nash equilibria are related to conditions on matrices which are possibly
lower dimensional, with their dimensions depending on the number of partitions naturally arising
in a network due to its structured nature. We also demonstrated both analytically and numerically
that the structured conditions are sufficient conditions for the unstructured conditions, and that their
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verification is of much lower computational complexity. We used numerical experiment results to
show that the sufficiency gap between the structured conditions and unstructured conditions is small
in general and typically occurs in games with some specific characteristics. Moreover, we proposed
a new notion of degree centrality to evaluate the influence of a partition in the network, and used it
to identify additional conditions for uniqueness and stability.

6.2 Conclusions on Interventions and Mechanism Design on Multi-scale Networks and
Multi-population Systems

The second direction is mechanism design and interventions in network games, games with
multiple sub-populations and multi-scale networks. In Chapter 4, we studied an intervention
problem in network games with community structures and multiple planners. We showed that
given any intervention action, the agents will always have a unique NE. The planners can thus
use backward induction and design (locally) optimal interventions. We found that no matter if
the planners are cooperative or non-cooperative, the system always has a unique subgame perfect
equilibrium that fully spends the budget and is Pareto efficient. We also studied the efficiency of the
outcomes under different settings in this system, including whether the planners are cooperative
and whether the budget is transferable both analytically and numerically. Our analysis shows that
we can use the Lagrangian dual optimal variable values to characterize the efficiency, and planners
have incentives to share budgets even when they are non-cooperative. The budget transferability
also enables uniformly better outcomes than the non-transferable case. Empirically, we observe that
the type of network determines which type of (commonly used) budget allocation rule is the most
efficient.

In Chapter 5, we formulated Stackelberg game models to study the strategic classification and
regression problem, where the decision maker’s strategy combines a decision rule and an incentive
mechanism. Our model provides an extension of previously studied strategic learning problems.
We showed how the decision maker can design discount-based incentives mechanisms to use in
conjunction with its decision rule, by providing conditions on when this problem is computationally
intractable, discussing when and how approximation algorithms can find reasonable mechanisms in
polynomial time, and when the optimal mechanism can be found in closed-form. We then discussed
the efficiency and fairness oriented social well-being properties of the augmented strategic learning
system when multiple demographic groups co-exist. We also examined an alternative model where
the incentive mechanism is provided by a third party, whose objective is optimizing some of the
social well-being metrics with an IC, IR, and BB mechanism, and showed how an efficiency-oriented
or fairness-oriented third party can influence equilibrium social well-being metrics. We conducted
numerical experiments on the FICO dataset to demonstrate the impact of the incentive mechanism
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on the system. Our findings established that a fairness-oriented third party can provide the best
well-rounded equilibrium outcomes compared to any of the following: a selfish decision maker, an
efficiency-oriented third party, or a system without an incentive mechanism.

6.3 Future Directions

While some of the issues of multi-scale networks discussed in Chapter 2 have also been
considered in the network science literature (e.g., hierarchical clustering, etc.), The latter is primarily
concerned with community structure in networks and its detection and identification, rather than
modeling how communities interact, which is critical in describing a formal multi-scale structure
for games. A very important future direction is to identify and obtain relevant field data in order
to create realistic benchmarks for multi-scale games and to enable the implementation of our
multi-scale algorithms. This would involve identifying ways to obtain data on how communities
(and not just individuals) interact. With access to data on interactions at multiple scales (e.g., among
members and among groups), we can apply our algorithms to specific multi-scale networks. To use
criminal networks (criminal organizations and their members) as an example, given game models
constructed with the help of domain expertise, we can:

1. infer utility models from observational data at multiple scales;

2. compute equilibria predicting, say, criminal activity as a function of structural changes to
organizations;

3. study policies (including strengthening or weakening connections between agents or groups,
endowing agents/groups with more resources (e.g., lower costs of effort, etc.) that would
induce more desirable equilibrium outcomes.

We showed in chapter 3 that the structured conditions are computationally much cheaper than
their unstructured counterparts with low sufficiency gaps, and some natural ways of partitioning the
network empirically work well. However, it remains an open question of how to find the optimal or
near-optimal partitions in a more rigorous way.

We are also interested in extending our multi-planner intervention framework in Chapter 4 to
include a wider variety of intervention types, e.g., by changing game parameters like the connection
strengths or studying a more general intervention cost. It is also an interesting problem when the
connection strengths are initially unknown to the planner, who has to learn the game parameters in
an iterative manner via repeated interactions.

For Chapter 5, an interesting extension is to study other incentive mechanisms in addition to the
decision rules and explore the possibility of utilizing network effects.
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APPENDIX A

Chapter 2 Appendix

A.1 Structured Variational Inequalities

A structured variational inequality SVIn arises when a VI problem has n separable operators.
This is used to analyze our game under the multi-scale perspective described in Section 2.3.

We now introduce a particular type of SVI2 relevant to our model. Suppose the N level-1 agents
form M disjoint groups in the game and Sj denotes the jth level-1 group, whereby i ∈ Sj denotes
that ai is a member of Sj . Consider the following utility function of ai:

ui(xi,x−i, yj,y−j) = u
(1)
i (xi,x−i) + u

(2)
j (yj,y−j), (A.1)

where x ∈ RN denotes the level-1 action profile and y ∈ RM denotes the level-2 action profile,
and Ax+ y = 0, for

Aji =

{− 1, if i ∈ Sj

0, else
, j = 1, . . . ,M, i = 1, . . . , N .

Thus Ax+ y = 0 is equivalent to yj =
∑

i∈Sj
xi. We say x and y are two separated operators, and

define

F (1)(x) :=

(
− ▽xi

u
(1)
i (x)

)N

i=1

, xi ∈ K(1)
i ,

F (2)(y) :=

(
− ▽yju

(2)
j (y)

)M

j=1

, yj ∈ K(2)
j ,

K(1) =
N∏
i=1

K
(1)
i , K(2) =

M∏
j=1

K
(2)
j , K = K(1) ×K(2),

v =

[
x

y

]
∈ K, F (v) =

[
F (1)(x)

F (2)(y)

]
. (A.2)
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Define Ω = {v ∈ K|Ax + y = 0}. Then the VI(Ω, F ) problem is to find v∗ ∈ Ω, such that:
(v− v∗)TF (v) ≥ 0, ∀v ∈ Ω. This problem is equivalent to the SVI2 problem VI(W , Q) defined in
Eqn (A.3)

(ω − ω∗)TQ(ω) ≥ 0, ∀ω ∈ W , (A.3)

where,W = K ×RM and

ω =

x

y

λ

 , Q(ω) =

F
(1)(x)− ATλ

F (2)(y)− λ

Ax+ y

 . (A.4)

It is easy to see that if we use
∑

i∈Sj
xi to replace yj , then we again have a single operator x and

can construct a VI(K,F ) as outlined in Section 2.2. There is a one-to-one mapping between a
solution x∗ to VI(K,F ) and a solution ω∗ = (x∗,−Ax∗,λ∗) to VI(W , Q). Therefore, solving
either VI(K,F ) or VI(W , Q) finds the set of NEs.

A.2 Uniqueness of NE

We will introduce some special matrices before we move on to the sufficient conditions for the
uniqueness of NE.

Definition 15. Some special matrices:

1. P-matrix: A square matrix is a P-matrix if all its principal components have positive determi-

nant

2. Z-matrix: A square matrix is a Z-matrix if all its off-diagonal components are nonpositive

3. M-matrix: An M-matrix is a Z-matrix whose eigenvalues’ real parts are nonnegative

4. L-matrix: An L-matrix is a Z-matrix whose diagonal elements are nonnegative

For an arbitrary mapping F : RN → RN , we denote the Jacobian of F (x) as JF (x). And then
▽jFi = [JF (x)]ij

Checking if a matrix is P-matrix or not is still not trivial, and we can look at the spectral radius
of a matrix instead.

Theorem 27. The PΓ condition:
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We define the Γ matrix generated from F as follows

Γ(F ) =


0 −β1,2(F )

α1(F )
· · · −β1,N (F )

α1(F )

−β2,1(F )

α2(F )
0 · · · −β2,N (F )

α2(F )
...

... . . . ...

−βN,1(F )

αN (F )
−βN,2(F )

αN (F )
· · · 0

 , (A.5)

if the spectral radius ρ(Γ(F )) = ∥Γ(F )∥2 < 1, then we say F satisfies the PΓ condition. Then PΓ

condition⇔ PΥ condition and VI(K,F ) has a unique solution.

In [88], the authors mentioned that the PΥ captures “some kind of diagonal dominance”. In fact,
the strong diagonal dominance(s.d.d) or weakly chained diagonal dominance(w.c.d.d) of Υ can be
an easier yet sufficient condition to check.

Theorem 28. If Υ is s.d.d or w.c.d.d, the NE is unique, since

Υ is an s.d.d L-matrix

⇒ Υ is a w.c.d.d L-matrix

⇔ Υ is a nonsigular weakly diagonally dominant(w.d.d)L-matrix

⇔ Υ is a nonsigular w.d.d M-matrix

⇒ Υ is a P-matrix

Also, when Υ is s.d.d, Γ is a (right, row) substochastic matrix and thus ρ(Γ) < 1 trivially holds
and the NE is unique.

The PΥ condition guarantees both the uniqueness of NE and the convergence of BRD. Please
refer to [79] for more conditions on the uniqueness.

A.3 Proof of Theorem 2

Proof. This algorithm is designed to solve the SVI problem presented in Eqn (A.3) and (A.4). We
denote H = 1

2
diag(h), and the norm ∥x∥G, where G ≻ 0 as

∥x∥G = xTGx.

For simplicity reason, we will use x and y to replace x(1) and x(2) in the remainder of the proof.
We can rewrite the steps in Algorithm 3 as follows:

• Step 0: Initialization, given ϵ, µ and x0, let t = 0, x(0) = x0, yk(0) = σk(xSk
(0)); arbitrarily

choose λ(0).
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• Step 1: Find x∗ ∈ K(1) that solves

(x′ − x∗)T
[
f(x∗)− AT [λ(t)−H(Ax∗ + y(t))]

]
≥ 0, (A.6)

for ∀x′ ∈ K, and set x(t+ 1) = x∗.

• Step 2: Find y∗ ∈ K(2) that solves

(y′ − y∗)T
[
f(x∗)− [λ(t)−H(Ax(t+ 1) + y∗)]

]
≥ 0, (A.7)

for ∀y′ ∈ K, and set y(t+ 1) = y∗.

• Step 3: Set
λ(t+ 1) = λ(t)−H(Ax(t+ 1)− y(t+ 1)) (A.8)

• Step 4: Convergence verification: If ∥ω(t + 1) − ω(t)∥∞ < ϵ, then stop. Otherwise let
t← t+ 1 and go back to Step 1.

When we have y(t+1) = y(t) and λ(t+1) = λ(t), ω(t+1) = (x(t+1),y(t+1),λ(t+1))

is the solution to our SVI2. We denote the unique solution as ω∗ = (x∗,y∗,λ∗). From Eqn (A.7)
and (A.8), we have the following from Section 2 of [38],

∥y(t+ 1)− y∗∥2H + ∥λ(t+ 1)− λ∗∥2H−1

≤
(
∥y(t)− y∗∥2H + ∥λ(t)− λ∗∥2H−1

)
−
(
∥y(t+ 1)− y(t)∥2H + ∥λ(t+ 1)− λ(t)∥2H−1

)
< ∥y(t)− y∗∥2H + ∥λ(t)− λ∗∥2H−1 , (A.9)

which shows the contraction property of the sequence {(y(t),λ(t))} and thus proves the conver-
gence of the algorithm.

A more detailed proof of convergence of the above steps in Eqn (A.6)-(A.8) is covered in
[29, 33], and a more generalized version of the above steps and convergence proofs are covered in
[94, 61].
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A.4 Proof of Theorem 3

A.4.1 Full version of HH-BRD

We will first show the ull version of HH-BRD, suppose the superlevel partitions is taken between
level q − 1 and level q, then for i = 1, . . . , N (1),

û
(sl1)
i =

q−1∑
l=1

u
(l)
kil
(xkil ,xIkil

)− L(sl1,sl2)
kiq

(
σ
(1,q)
kiq

(x
S
(1,q)
kiq

), x
(q)
kiq

)
, (A.10)

where
S(1,q)
p = {a(1)i | kiq = p}, σ(1,q)

p (x
S
(1,q)
p

) =
∑

a
(1)
i ∈S(1,q)

p

x
(1)
i .

And for j = 1, . . . , N (q)

û
(sl2)
j =

L∑
l=q

u
(l)
kjl
(xkjl ,xIkjl

)− L(sl2,sl1)
j

(
x
(q)
j , σ

(1,q)
j (x

S
(1,q)
j

)

)
. (A.11)

Please refer to Algorithm 9 for the pseudo code of the full version of this algorithm. The loss
function updates are similar to that of Algorithm 3.

A.4.2 Proof of Theorem

We will first construct an equivalent 2-level game to the L-level game where L > 2, and then
show that the action profile update trajectories are the same for the original game and he equivalent
game. Finally, the convergence of the equivalent game follows Theorem 2 and thus Algorithm 4
guarantees convergence.

Proof. We define the following counter-part for utility component u(l)i (x
(l)
i ,x

(l)
Ii
) (1 < l < q)

u
(l)
i (x

S
(1,l)
i

,x
S
(1,l)
Ii

) = u
(l)
i (x

(l)
i ,x

(l)
Ii
), (A.12)

when x(l)i = σ
(1,l)
i (x

S
(1,l)
i

),∀i, ∀l ∈ {2, . . . , q−1}. Both x
S
(1,l)
i

and x
S
(1,l)
Ii

are level-1 action profiles.
This is exactly how we create the utility functions under the flat perspective, where we expand the
higher level aggregate actions down to level-1.

Similarly, we define the following counter-part for utility component u(l)j (x
(l)
j ,x

(l)
Ij
) (q < l ≤ L)

u
(l)
j (x

S
(q,l)
j

,x
S
(q,l)
Ij

) = u
(l)
j (x

(l)
j ,x

(l)
Ij
), (A.13)
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Algorithm 9: Hybrid Hierarchical BRD(Full Version)

Initialize the game, t = 0, x
(1)
i (0) = (x0)i, i = 1, . . . , N (0)

for l = 2:L do
for k = 1:N (l) do

x
(l)
k (0) = σ

(l)
k (x

S
(l)
k
(0));

while not converged do
for k = 1:N (q) (Meta-Level-1 Penalty Update) do

Update L(sl1,sl2)
k

for i = 1 : N (1) (Level-1/Meta-Level-1 Gaming) do

x
(1)
i (t+ 1) = BRi

(
x
(1)
Ii
(t),x

(2)
Iki2

(t), . . . , x
(3)
kiq
(t), û

(sl1)
i

)
for l = 2:q-1 (Level-2 to Level-q Aggregation) do

for j = 1:N (l) do
x
(l)
j (t+ 1) = σ

(l)
j (x

S
(l)
j
(t+ 1))

for k = 1:N (q) (Meta-Level-2 Penalty Update) do
Update L(sl2,sl1)

k

for j = 1 : N (q) (Level-q/Meta-Level-2 Gaming) do

x
(q)
j (t+ 1)

= BRj

(
σ
(1,q)
j (x

S
(1,q)
j

),x
(q)
Ij
(t),x

(q+1)
Ikj(q+1)

(t), . . . ,

x
(L)
IkjL

(t), û
(sl2)
j

)
for l = q+1:L (Level-2 to Level-q+1 Aggregation) do

for p = 1:N (l) do
x
(l)
p (t+ 1) = σ

(l)
p (x

S
(l)
p
(t+ 1))

t← t+ 1;

when x(l)j = σ
(q,l)
j (x

S
(q,l)
j

),∀j,∀l ∈ {q, . . . , L}. Both x
S
(1,l)
i

and x
S
(1,l)
Ii

are level-q action profiles.
This time we expand the higher level aggregate actions down to level-q instead of level-1.

So then we can define a “flattened” super-level-1 utility function counterpart for u(sl1)i as follows

u
(sl1)
i (x

(1)
i , x

(1)
Ii
) =

q−1∑
l=1

u
(l)
kil
(x

S
(1,l)
kil

,x
S
(1,l)
Ikil

)− L(sl1,sl2)
kiq

(
σ
(1,q)
kiq

(x
S
(1,q)
kiq

), x
(q)
kiq

)
, (A.14)

where
I
(sl1)
i = {a(1)j |kjq = kiq, j ̸= i}.

Similarly, for meta-level 2, we can define a “flattened”(to level-q) function counterpart for u(sl2)j
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as follows

u
(sl2)
j (x

(q)
j , x

(q)

I
(sl2)
j

) =
L∑
l=q

u
(l)
kjl
(x

S
(q,l)
kjl

,x
S
(q,l)
IkjL

)− L(sl2,sl1)
j

(
x
(q)
j , σ

(1,q)
j (x

S
(1,q)
j

)

)
, (A.15)

where
I
(sl2)
j = {a(q)p |kpL = kjL, p ̸= j}.

So now we can create a 2-level game where the level-1(resp. level-q) agents in the original
game become the level-1(resp. level-2) agents in the new game with utility functions defined in
Eqn (A.14) (resp. Eqn (A.15)). Based on Theorem 2, we know that if we apply SH-BRD, we can
converge to the unique NE of the game under Assumptions 1-3.

Then it remains to show that given the same initialization, applying HH-BRD in the original
game and the MS-BRD in the new 2-level game generate the same level-1 action profile update
trajectory. This can be shown using induction.

We know from initialization that

x
(l)
i (0) = σ

(1,l)
i (x

S
(1,l)
i

(0)),∀i, ∀l ∈ {2, . . . , q − 1},

x
(l)
j (0) = σ

(q,l)
j (x

S
(q,l)
j

(0)),∀j,∀l ∈ {q, . . . , L}.

Then based on Eqn (A.12), we know that

u
(sl1)
i (x

(1)
i ,x

(1)
Ii
(0), . . . , x

(q)
kiq
(0)) = u

(sl1)
i (x

(1)
i , x

(1)
Ii
(0))

⇔ BRi(x
(1)
Ii
(0), . . . , x

(q)
kiq
(0), u

(sl1)
i ) = BRi(x

(1)
Ii
(0), u

(sl1)
i ),

and thus when t = 1, x(1)(t) are the same when applying HH-BRD in the original game and the
MS-BRD in the new 2-level game. Similarly, x(q)(1) are the same based on Eqn (A.13).

Suppose x(1)(t) and x(q)(t) are the same for the two dynamics for t = 0, 1, . . . , T , we need to
show that x(1)(t) and x(q)(t) are the same for t = T + 1 to complete the proof.

Again, based on Eqn (A.12), we know that

u
(sl1)
i (x

(1)
i ,x

(1)
Ii
(T ), . . . , x

(q)
kiq
(T )) = u

(sl1)
i (x

(1)
i , x

(1)
Ii
(T ))

⇔ BRi(x
(1)
Ii
(T ), . . . , x

(q)
kiq
(T ), u

(sl1)
i ) = BRi(x

(1)
Ii
(T ), u

(sl1)
i ),

which implies x(1)(T + 1) are the same for the two dynamics and similarly x(q)(T + 1) are the
same based on Eqn (A.13).
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A.5 Data Generation for Numerical Experiments

We introduce the data generation procedures for both games with linear best response and
non-linear best response in this part.

First of all, for both type of games, we create an adjacency matrix for each of the groups on
every level. This matrix has 0 diagonal elements and for the off-diagonal elements, the existence of
a directed edge subjects to the Bernoulli distribution where there is a fixed Pexist. Then if a directed
edge exist, the edge weight is generated by choosing a value from [0, 1] uniformly at random. Later,
we will multiply these matrices with different scalars to adjust the values so that Assumption 3
holds. These matrices have 0 diagonal elements because they capture the dependencies of agents on
each other, or equivalently, they are used to model the external impact the agents receive from the
network. The internal impact are modeled by cost functions and marginal benefit terms that only
depend on an agent’s own action.

A.5.1 Linear Best Response Games

For games with linear best response, we generated a 2-level game with 100 groups and 10,000
level-1 agents. The adjacency matrix generation follows Pexist = 0.1, which creates a rather sparse
network. Each level-2 group S(2)

k contains 100 members, and we useWk to denote the corresponding
adjacency matrix. We use V to denote the level-2 adjacency matrix. From Eqn (2.6), we know that
for each level-1 agent, the utility function is

ui(x
(1)
i ,x

(1)
Ii
,x

(2)
Iki2

) = u
(1)
i (x

(1)
i ,x

(1)
Ii
) + u

(2)
ki2
(x

(2)
ki2
,x

(2)
Iki2

),

where

u
(1)
i (x

(1)
i ,x

(1)
Ii
) = bix

(1)
i + x

(1)
i

(∑
j∈Ii

(Wki2)rirjx
(1)
j

)
− ci(x(1)i )2,

u
(2)
k (x

(2)
ki2
,x

(2)
Iki2

) = x(2)p

(∑
p̸=k

Vkpx
(2)
p

)
.

We choose the cost coefficients ci to be large enough so that the Υ(F ) satisfies the PΥ condition(from
Appendix A, strong diagonal dominance implies PΥ condition). In the experiments, the ρ(Γ)(Se
Appendix A for Γ) has a value between [0.7, 0.8].

Then under the flat perspective, a level-1 agent a(1)i has the following utility function

uflati (x
(1)
i , x

(1)
−i ) = bix

(1)
i + x

(1)
i

(∑
j ̸=i

W flat
ij x

(1)
j

)
− ci(x(1)i )2 + di,
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where
di =

∑
j∈Ii

x
(1)
j

( ∑
p/∈S(2)

ki2

W flat
jp x(1)p

)
,

W flat =


W1 V1,2 · 1 · · · V1,100 · 1

V2,1 · 1 W2 · · · V2,100 · 1
...

... . . . ...
V100,1 · 1 · · · V100,2 · 1 W100

 ,
here 1 represents the all 1 matrix of suitable size(100×100).

A.5.2 General Best Response Games

For games with general(non-linear) best response, we generated data using the graphical game
model similarly like the above. However, this time we use a mixed cost term that is a weighted sum
of a quadratic component and an exponential component. Therefore, we can no longer represent the
best response functions as linear functions and the best response computing now relies on gradient
based optimization steps. In the experiments shown in the main article, the adjacency matrix is
generated following Pexist = 0.1, which creates a sparse network. We also tried Pexist = 1 and the
results on the dense networks are included in this part of the appendix.

We use W (l)
i to denote the adjacency matrix within S(l)

i and W (L+1) to denote the adjacency
matrix between highest level agents. For the 2-level games with general best response, the utility
components are set as follows

u
(1)
i (x

(1)
i ,x

(1)
Ii
) = bix

(1)
i + x

(1)
i

(∑
j∈Ii

(W
(2)
ki2

)rirjx
(1)
j

)
− ci(x(1)i )2 − e0.1x

(1)
i ,

u
(2)
i (x

(2)
i ,x

(2)
Ii
) = x

(2)
i

(∑
j ̸=i

(W
(3)
ki3

)ijx
(2)
j

)
− |S(2)

i | · e0.1x
(2)
i /|S(2)

i |.

For 3-level games with general best response, the components in level-1 and 2 remain the same,
and the level-3 components are

u
(2)
i (x

(3)
i ,x

(3)
Ii
) = x

(3)
i

(∑
j ̸=i

W
(4)
ij x

(3)
j

)
− |S(1,3)

i | · e0.1x
(3)
i /|S(1,3)

i |.

For the 2-level games with linear/nonlinear best response, the utility components are set as
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follows

u
(1)
i (x

(1)
i ,x

(1)
Ii
) = bix

(1)
i + x

(1)
i

(∑
j∈Ii

(W
(2)
ki2

)rirjx
(1)
j

)
− ci(x(1)i )2,

u
(2)
i (x

(2)
i ,x

(2)
Ii
) = x

(2)
i

(∑
j ̸=i

(W
(3)
ki3

)ijx
(2)
j

)
− |S(2)

i | · e0.1x
(2)
i /|S(2)

i |.

Again, the adjacency matrix and the cost terms will be scaled to ensure that Assumption 3 holds,
and in the experiments, the ρ(Γ)(Se Appendix A for Γ) has a value between [0.7, 0.8].

Hyperparameter settings: besides the parameters in the graphical games, the parameter h(l)i in
the loss function updates in Eqn (2.10) is chosen arbitrarily. These parameters can also be referred
to as “penalty parameters”. In our experiments, the performance over these parameters are rather
smooth under assumption 3. The hyperparameters h(l)i are set to the same value on each level l. In
the 2-level case, we perform a binary search on these hyperparameter, where each value is tested for
5 runs to see the average performance. For the 3-level case, we need to determine 2 hyperparameter
values, and this is done by a fixed step size search performed iteratively on the two values. We tune
the first one, each value is tested for 5 runs like the above, while fixing the second value, after that,
we switch to the tuning of the second value and this process keeps iteratively. The parameters we
used in the numerical experiments are

• 2-Level game: h(2)i = 0.2, 0.1, 0.06, 0.03, 0.01; for network sizes 302, 502, 1002, 2002, 5002

respectively. With tuning range [0, 0.5].

• 3-Level game:

For SH-BRD: (h(2)i , h
(3)
j ) = (0.65, 0.1), (0.32, 0.03), (0.2, 0.01), (0.12, 0.006), (0.04, 0.003);

for network sizes 103, 203, 303, 503, 1003 respectively. With tuning range [0, 0.5]2 and tuning
step 0.002.

For HH-BRD: h(sl1)i = 0.7, 0.3, 0.21, 0.125, 0.063 for network sizes 103, 203, 303, 503, 1003

respectively. With tuning range [0, 0.5]

Under the current parameter settings, we still haven’t bring out the best performances of SH-
BRD, and HH-BRD. In act, the performance gap between the current setting and the optimal setting
won’t be too large since the best response steps are well-posed. And even with their sub-optimal
performances, we have seen their advantages over other algorithms.

In [39], the authors mentioned an adaptive method to generate the penalty parameter matrix
H which is generally not diagonal, that can speed up the problem solving steps. This will be an

114



interesting direction to generalize our current algorithm when the best response functions become
more ill-posed in the future.

A.5.3 CPU Specs:

• CPU: 6 cores, 12 threads, 2.60/4.50 GHz, 12MB Cache

• OS: Windows 10

• Software: Python 3.7

• RAM: 16 GB

A.5.4 Results on Dense Networks

Size BRD MS-BRD SH-BRD

302 (2.97±0.24)×107 (9.91±0.81)×105 (8.31±0.66)×105

502 (2.41±0.22)×108 (4.83±0.45)×106 (3.27±0.30)×106

1002 (4.07±0.34)×109 (4.07±0.34)×107 (3.04±0.22)×107

2002 (6.66±0.62)×1010 (3.33±0.31)×108 (2.44±0.17)×108

5002 (2.72±0.29)×1012 (5.53±0.49)×109 (3.26±0.26)×109

Table A.1: Convergence and complexity (flops) comparison with linear best response under multiple
initialization, dense network.

Size BRD MS-BRD SH-BRD

302 0.99±0.03 0.49±0.02 0.24±0.01

502 22.80±0.05 1.83±0.06 0.69±0.01

1002 1351±7 13.28±0.26 4.70±0.06

2002 > 18000 159.9±0.8 58.07±0.42

5002 nan 3505±54 1286±20

Table A.2: CPU times on a single machine on 2-Level games with general best response functions,
dense network; All times are in seconds.
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Size BRD MS-BRD SH-BRD

302 1.63±0.12 0.57±
0.02

0.028±0.002

502 30.65±0.35 1.94±0.03 0.051±0.003

1002 1660±3 13.93±0.25 0.33±0.02

2002 > 18000 163.1±1.4 1.32±0.04

5002 nan 3416±52 29.37±0.91

Table A.3: CPU times on a single machine for 2-Level, linear/nonlinear best-response games, dense
network; All times are in seconds.

Size BRD MS-BRD SH-BRD HH-BRD

103 1.25±0.02 0.39±0.01 0.57±0.02 0.34±0.01

203 617.3±4.7 2.85±0.07 4.50±0.06 2.56±0.06

303 > 18000 10.25±0.25 17.87±0.14 9.53±0.09

503 nan 58.04±0.32 100.8±0.41 51.86±0.24

1003 nan 926.8±6.4 2131±11 780.9±3.0

Table A.4: CPU times in seconds on a single machine on 3-Level, general best response games,
dense network; All times are in seconds.
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We can see that though the results in linear best response games are very different in sparse
and dense networks, the results in games with non-linear best responses are quite similar in both
types of networks. In games with linear best responses, the standard deviation results from different
initialization. For the same game, one initial action profile’s distance(measured in Euclidean norm)
to the equilibrium point can be 20 times to the distance of another initial action profile. This results
in different number of iterations of the algorithm before convergence. However, it only takes about
20% more iterations for a “distant” initial action profile to reach convergence, which shows that
these algorithms have good convergence property under Assumptions 1-3. In games with non-linear
best responses, the standard deviations of CPU times are relatively small(around 1%) compared to
the mean values, and it shows that the performance of all algorithms are stable with a fixed initial
action profile.

A.6 Algorithm Performances and Network Sizes

In this part, we present some results that show the algorithms’ performances with different
network sizes in 2-level games.

Figure A.1 shows the number of flops per iteration for the three algorithms in I ×M games
where I is the number of agents in each group and M the number of groups in the network. Both
Algorithms 2 and 4 outperform Algorithm 1. Algorithm 4 generally has lower complexity per
iteration compared to Algorithm 2 since it has less input in every sub-problem and the number of
sub-problems are similar in Algorithm 2 and 4 when the group sizes are large. However, when
group sizes are small compared to the number of groups, Algorithm 2 and 4 are similar per iteration.

Figure A.1: Complexity per iteration for linear best response.

A.7 Reverse Engineer Multi-scale Structure

A question that naturally arises is whether sparsity in the network can be exploited when the
multi-scale structure is not readily available. The utility function in Eqn (2.6) suggests that such
reverse engineering is possible if the game satisfies:
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1. An agent is either connected to all agents in another group or not connected to any agent in
that group; If so, we can create a set of possible group partitions.

2. Based on the partition in the previous step, agents in one group have the same dependency on
an agent in another group.

3. Based on the partition, we can represent the groups’ aggregate actions from their members’
actions using some aggregate functions.

4. Based on the partition, the original utility function of each agent can be separated to compo-
nents on different levels, each component only based on the actions and dependencies on the
corresponding level.

An example of the first condition is shown in Figs. A.2 and A.3. For the other conditions, the
“flattened” utility functions used in Appendix A.5 are good examples.

Figure A.2: Ungrouped. Figure A.3: Grouped.

A.8 Flow Charts of the Algorithms
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Figure A.4: MS-BRD

Figure A.5: SH-BRD
Figure A.6: HH-BRD
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APPENDIX B

Chapter 3 Appendix

B.1 Concrete numbers in Figure 1-4

We use Figures 1-4 to illustrate the high level idea of the partitioning on structured multi-
relational networks. In Figure 1 and 2, using the linear quadratic utility functions ui = bixi +∑

j ̸=i gijxixj −
1
2
x2i , the adjacency matrices are

G =

 0 0.6 0.2

0.6 0 0.2

0.2 0.2 0

 , G =

 0 0 0.2

0 0 0.2

0.2 0.2 0


respectively. In Figure 3 and 4, when using the utility function

ui = bixi +
∑
j ̸=i

g
(1)
ij x

(1)
i x

(1)
j +

∑
j ̸=i

g
(2)
ij x

(2)
i x

(2)
j −

1

2
((x

(1)
i )2 + (x

(2)
i )2 + 0.2x

(1)
i x

(1)
j ),

the adjacency matrices are

G(1) =

 0 0.6 0

0.6 0 0

0 0 0

 , G(2) =

0 0 0

0 0 0.6

0 0.6 0

 , G =

[
G(1) 0

0 G(2)

]
.

B.2 Proof of Lemma 1

Proof. We will prove that ∥ΥU
Pi,Pj
∥2 ≥ βS

ij . The proof establishing ∥ΥU
Pi,Pi
∥2 ≤ αS

i is similar.
From the definition of βS

ij in Eqn (3.7) , we denote the action profile in Q that obtains the value
of βS

ij as x̂(i, j), i.e.,
βS
ij = sup

x∈Q
∥▽jFi(x)∥2 = ∥▽jFi(x̂(i, j))∥2,

where ▽jFi(x̂(i, j)) ∈ RNi×Nj . We note here that since our action space Q is compact and ▽F

is assumed to be continuous and differentiable on q, there exist maxima for ∥▽jFi(x)∥ such that
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x̂ ∈ Q. Therefore, the supremum equals the maximum and can be achieved. Since we will only
focus on a specific pair of (i, j) values where i ̸= j in this part, we will simply use x̂ to denote this
action profile for convenience.

Also, based on the definition of βU
kl, we have

βU
kl = sup

x∈Q
|▽lFk(x)| ≥ |▽lFk(x̂)|,

where ▽lFk(x̂) ∈ R.
Next, we perform Singular Value Decomposition on ▽jFi(x̂) such that ▽jFi(x̂) = USV T .

From this, we can get the left singular vector u ∈ RNi and the right singular vector v ∈ RNj that
correspond to the largest singular value βS

ij , where ∥u∥ = ∥v∥ = 1. Then

uT▽jFi(x̂)v = βS
ij · ∥u∥ · ∥v∥ = βS

ij.

To proceed with the proof, we introduce the following matrixA obtained from matrix ▽jFi(x̂(i, j))

by replacing every element with its absolute value, formally,

A = (|▽lFk(x̂)|)k,l:ak∈Pi,al∈Pj
.

We also introduce vectors u+ and v+, where

u+ = (|uk|)Ni
k=1, v

+ = (|vl|)
Nj

l=1.

Then, ∥u+∥ = ∥v+∥ = 1, and it is easy to see that

(u+)TAv+ ≥ uT▽jFi(x̂)v,

Next, consider the product uTΥU
Pi,Pj

v. We denote the index in ΥU
Pi,Pj

that corresponds to the
element up and vq as kp and lq respectively, so that,

uTΥU
Pi,Pj

v =

Ni∑
p=1

Nj∑
q=1

ΥU
kplq · up · vq .
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then we have

∥ΥU
Pi,Pj
∥ = ∥ −ΥU

Pi,Pj
∥ · ∥u+∥ · ∥v+∥

≥ (u+)T (−ΥU
Pi,Pj

)v+

= −
Ni∑
p=1

Nj∑
q=1

ΥU
kplq · |up| · |vq|

=

Ni∑
p=1

Nj∑
q=1

βU
kplq · |up| · |vq|

≥
Ni∑
p=1

Nj∑
q=1

|▽lqFkp(x̂)| · |up| · |vq|

= (u+)TAv+

≥ uT▽jFi(x̂)v

= βS
ij.

This completes the proof.

B.3 Proof of Theorem 5

Proof. Given the community level partitionQ =
∏M

i=1Qi, we denote ▽Fi(z) = ((▽iFj(z))
M
j=1)

T ∈
RNi×N .

We use the notation L(x,y) to denote the line segment between two points x and y in RN .
Formally,

L(x,y) = {αx+ (1− α)y : 0 ≤ α ≤ 1} .

Under Assumption 4 in Section II, Fi : Q→ RNi , Q ⊆ RN is continuously differentiable on Q, and
for ∀x,y in Qi, L(x,y) ⊆ Qi. According to [5, Theorem 12.9] we know that for every vector a in
RNi , there is a point z ∈ L(x,y) such that:

a · (Fi(x)− Fi(y)) = a · (▽Fi(z)(x− y)). (B.1)
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Let a in equation (B.1) be (xi−yi)
T , and denote l = (lj)

M
j=1, where lj = ∥xj−yj∥2,∀j ∈ N[1,M ],

then,

(xi − yi)
T (Fi(x)− Fi(y))

= (xi − yi)
T (▽Fi(z)(x− y))

= (xi − yi)
T [

M∑
j=1

▽iFj(z)(xj − yj)]

≥ (xi − yi)
T▽iFi(z)(xi − yi)

−|
∑
j ̸=i

(xi − yi)
T▽iFj(z)(xj − yj)|

≥ αS
i (li)

2 −
∑
j ̸=i

βS
ij · li · lj

= li · (ΥSl)i (B.2)

By [23, Theorem 3.3.4(b)], a real square matrix M ∈ Rn×n is a P-matrix if it satisfies ∀l ∈ Rn

max
i∈N[1,M ]

li(M l)i > 0

Denote b = maxi∈N[1,M ]
li·[ΥC l]i

∥l∥22
> 0. Then, we have

max
i∈N[1,M ]

(xi − yi)
T (Fi(x)− Fi(y)) ≥ max

i∈N[1,M ]
li · [ΥCl]i ≥ b · ∥x− y∥22

which, according to Definition 2.(b), shows that F satisfies uniform block P-condition. Therefore,
by [79, Proposition 2 part (b)] and [28, Proposition 3.5.10 part (b)], the Nash equilibrium is unique.

Finally, we show that the two conditions

1. ΥS is a P-matrix,

2. ΥU
Pi,Pi

are P-matrices,
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are sufficient for ΥU to be a P-matrix. Using Lemma 1,

ΥS ∈ RM×M is a P-matrix

⇔ max
j

lj(Υ
Sl)j > 0, ∀l ̸= 0, l ∈ RM , let i = argmax

j
lj(Υ

Cl)j,

⇔ xi(Υ
U
Pi,:
· x)Pi

≥ ∥ΥU
Pi,Pi
∥ · ∥xi∥2 −

∑
j ̸=i

∥ΥU
Pi,Pj
∥ · ∥xi∥ · ∥xj∥

≥ liα
S
iili −

∑
j ̸=i

liβ
C
ij li = li(Υ

Cl)i > 0,

⇒ max
k∈Si

xk(Υ
Ux)k > 0,

⇒ max
k

xk(Υ
Ux)k > 0, ∀x ̸= 0,x ∈ RN ,

⇔ ΥU ∈ RN×N is a P-matrix

B.4 Proof of Corollary 2

Proof. We can see that I + ΓS ≻ 0, iff λ1(ΓS) > −1, and from symmetry, I + ΓS is a P-matrix.
The ΥS matrix can be obtained by scaling the ith row of I + ΓS by αS

i , which is a positive number.
Therefore, the determinant of every principal minor of ΥS has the same sign as the determinant of
the corresponding principal minor of I + ΓS , and thus ΥS is also a P-matrix. By Theorem 5, the
Nash equilibrium is unique and the sufficiency holds.

B.5 Proof of Theorem 7

We prove for the K = 1 case and the proof generates to an arbitrary K.

Proof. When we consider borderline inactive and active groups, the set of all their members are a
superset of the union of the borderline inactive and active set of agents.

We denote
Y = {ak|ak ∈ Pi, s.t.Pi ∈ AS(x

∗) ∪BS(x
∗)}

as the set of all agents that belong to communities inAS(x
∗)∪BS(x

∗), then we haveA(x∗)
⋃
B(x∗) ⊆

S. Similar to Theorem 6, we denote ▽SFS(x
∗) as a sub-matrix of ▽F (x∗) whose columns and

rows correspond to the agents in set S.
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Our proof proceeds by the following logic:

GS(x∗) ≻ 0⇒ ▽SFS(x
∗) ≻ 0⇒ ▽A,BFA,B(x

∗) ≻ 0.

For the first part, we adopt techniques similar to those we used in Appendix B.3. For ∀v ∈ R|S|
≥0,

we denote l = (li)
Z
i=1 ∈ RZ

≥0, where li = ∥vi∥2,∀i ∈ N[1, Z]. Then we have

vT▽Y FS(x
∗)v

=
Z∑
i=1

Z∑
j=1

zT
j (▽jFi(x

∗))vi

=
Z∑
i=1

vT
i (▽iFi(x

∗))vi +
Z∑
i=1

Z∑
j=1,j ̸=i

vT
j (▽jFi(x

∗))vi

≥
Z∑
i=1

θSi · ∥vi∥22 −
Z∑
i=1

Z∑
j=1,j ̸=i

δSij · ∥vi∥2 · ∥vj∥2

=
Z∑
i=1

θSi · li2 −
Z∑
i=1

Z∑
j=1,j ̸=i

δSij · li · lj

= lTGS(x∗)l > 0

which shows ▽SFS(x
∗) ≻ 0 and completes the proof of the first part.

For the second part, we know from the Sylvester’s criterion that an N ×N Hermitian matrix
(for real valued matrices, it is symmetric) is positive definite if and only if every leading principal
component of it (the top left k × k sub-matrices, for k = 1, . . . , N ) has a positive determinant.
Since A(x∗)

⋃
B(x∗) ⊆ Y , we know that ▽A,BFA,B(x

∗) is a leading principal minor of ▽Y FY (x
∗)

and thus ▽A,BFA,B(x
∗) ≻ 0, which completes the proof.

B.6 Proof of Theorem 8

Proof. Since ΥS ≻ 0, we know from Theorem 5 that the Nash equilibrium is unique. It remains to
prove that this NE x∗ is stable.

We denote ΥS
A,B ∈ Z× Z as the principal minor of ΥS by picking out all the rows and columns

corresponding to groups in AS(x
∗)
⋃
BS(x

∗), and thus ΥS
A,B ≻ 0.

Without loss of generality, suppose P1,P2 ∈ AS(x
∗)
⋃
BS(x

∗), then we know their new indices
in GS(x∗) remain unchanged. We know from the definition that αS

1 ≤ θS1 and βS
12 ≥ δS12 (similar
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comparison can generalize to all other elements), and thus for ∀v ∈ RZ , we have

vTGS(x∗)v

=
Z∑
i=1

Z∑
j=1

GS
ij(x

∗) · vi · vj

=
Z∑
i=1

θSi · v2i −
Z∑
i=1

Z∑
j=1,j ̸=i

δij · vi · vj

≥
Z∑
i=1

αS
i · v2i −

Z∑
i=1

Z∑
j=1,j ̸=i

βij · vi · vj

= vTΥS
A,Bv > 0,

which shows GS(x∗) ≻ 0, and thus x∗ is stable.

B.7 Proof of Theorem 9

Proof. First of all, when e = 1,∀t > 0, Dout
max(1) < 1 implies

αS
i >

∑
j ̸=i

βS
ij,∀i = 1, . . . ,M,

and this shows that the ΥS matrix is diagonally row dominant, and thus is a P-matrix [93] (Generating
method 4.1, this matrix is a positively stable P-matrix).

For an arbitrary e ≻ 0, we define the following matrix ES , where the ith column of ES is equal
to ei times the ith column of ΥS . Then since ei > 0, every principal minor’s determinant of ES is
equivalent to the corresponding principal minor’s determinant of ΥS and thus ES is a P-matrix iff
ΥS is a P-matrix. Then, it’s easy to see that Dout

max(e) < 1 implies the diagonal row dominance of
ES , which is sufficient to show ES is a P-matrix. This completes the proof of the out-degree part
and the in degree part is similar. Moreover, the stability result follows from Theorem 8 and the in
and out degree parts of this theorem.

B.8 Complexity of condition verification in Theorem 5

B.9 Supplementary reasoning in Section 3.7

We begin with the claim that the upper bounds are large enough for the study of sufficiency
gaps.

126



Size Unstructured
(sec)

Structured
(sec)

10× 10 1.08×1035 1.26×106

20× 20 1.39×10127 1.69×1010

50× 50 4.90×10761 6.34×1020

Table B.1: Verification complexity in CPU times of conditions in Theorem 5 over number of agents.

When the parameters that control the external impact are all chosen at their normalized upper
bound, the expected sum of the off-diagonal elements will be twice as high as the mean value of
the internal impact. For our choices of Sin

low, S
in
high, S

out
low, S

out
high, the ΥU will not be a P-matrix with

probability 1 and thus ΥS will not be a P-matrix. For example, we assume that ΥU is symmetric,
and for a matrix with positive diagonal elements and non-positive off-diagonal elements, as long as
the sum of the absolute values of the off-diagonal elements is greater than the sum of the diagonal
elements (the sum of all its elements is negative), then we know 1TΥU1 < 0 and it is not positive
definite and thus not a P-matrix. Increasing such upper bounds will only increase the upper right
area above the curve formed by dark cells.

For the parameters that control the internal impact variances, the argument is similar, when the
values of chighPi

− clowPi
are chigh − clow close to 1, then the agent with the lowest internal impact will

have an internal impact close to 0 and ΥU will not be a P-matrix. Figures B.3 and B.4 shows the
comparison after we double such normalized upper bounds, and support our argument above.

Next, we elaborate more on the “critical values” in Figures 3.11 and 3.12.
If agents have homogeneous internal impact, i.e., αU

k are constant, then when E[
∑

k ̸=l β
U
kl] is

about 10% higher than
∑N

k=1 α
U
k , the games are most likely to have sufficiency gaps. We discussed

above that when ΥU is symmetric, and
∑

k ̸=l β
U
kl >

∑N
k=1 α

U
k , then the unstructured condition

is not satisfied, which is sufficient to conclude that the structured condition does not hold either.
But when it’s E[

∑
k ̸=l β

U
kl] >

∑N
k=1 α

U
k , there are realizations (sample games under our choices of

Sin
low, S

in
high, S

out
low, S

out
high) that have

∑
k ̸=l β

U
kl <

∑N
k=1 α

U
k and thus are possible candidates for causing

sufficiency gaps between the two sets of conditions. However, if E[
∑

k ̸=l β
U
kl] is sufficiently larger

(30% or more)
∑N

k=1 α
U
k , all sample games will have neither set of conditions satisfied, which

corresponds to the top right corner of the figures.

B.10 Sufficiency gap heatmaps for multipartite graphs
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Figure B.1: Sufficiency gap
frequency over the between
group external impact, fre-
quency 0.83%.

Figure B.2: Sufficiency gap
frequency over the internal
impact variances, with weak
external impact, frequency
0.18%.

Figure B.3: Sufficiency gap
frequency over the inter-
nal impact variances, with
medium external impact, fre-
quency 6.31%.

Figure B.4: Sufficiency gap
frequency over the inter-
nal impact variances, with
medium external impact, fre-
quency 2.09%, doubled upper
bounds.

Figure B.5: Sufficiency gap
frequency over the internal
impact variances, with strong
external impact, frequency
26.93%.
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APPENDIX C

Chapter 4 Appendix

C.1 Derivation of Eqn (4.8)

Uk(x
∗,ySk

) = (x∗
Sk
)T (−1

2
I +GSk,Sk

)x∗
Sk

+
∑
l ̸=k

(x∗
Sk
)TGSk,Sl

x∗
Sl
+ (bSk

+ ySk
)Tx∗

Sk

= (x∗
Sk
)T (−I +GSk,Sk

)x∗
Sk

+
1

2
(x∗

Sk
)Tx∗

Sk
+
∑
l ̸=k

(x∗
Sk
)TGSk,Sl

x∗
Sl
+ (bSk

+ ySk
)Tx∗

Sk

=
1

2
(x∗

Sk
)Tx∗

Sk
.

C.2 Proof of Theorem 10 and Theorem 11

Here we introduce some concepts and definitions related to the best responses and the variational
inequality(VI) problem.

An agent’s best response is the set of strategies that maximizes its utility given the actions taken
by all the other agents. Formally, the best response is a set defined by

BRi(x−i, ui) = argmax
xi

ui(xi,x−i). (C.1)

Clearly, an NE of a game is a fixed point of this best response correspondence. One important
tool that is useful for analyzing the uniqueness of NE is Variational Inequalities (VI). To establish
the connection between NE and VI we assume the utility functions ui,∀i = 1, . . . , N , for agents
a1, . . . , an are continuously twice differentiable. Let K =

∏N
i=1Ki and define F : RN → RN as

follows:

F (x) :=

(
− ▽xi

ui(x)

)N

i=1

. (C.2)

Then x∗ is said to be a solution to VI(K,F ) if and only if

(x− x∗)TF (x∗) ≥ 0, ∀x ∈ K . (C.3)
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In other words, the solution set to VI(K,F ) is equivalent to the set of NE of the game. The following
condition can guarantee the uniqueness of NE and the convergence of BRD.

Definition 16. The PΥ condition: We denote

αi(F ) = inf
x∈K
∥▽iFi∥2, βi,j(F ) = sup

x∈K
∥▽jFi∥2, i ̸= j.

The Υ matrix generated from F : RN → RN is given as follows

Υ(F ) =


α1(F ) −β1,2(F ) · · · −β1,N(F )
−β2,1(F ) α2(F ) · · · −β2,N(F )

...
... . . . ...

−βN,1(F ) −βN,2(F ) · · · αN(F )

 .

If Υ(F ) is a P-matrix, that is, if all of its principal components have a positive determinant,

then we say F satisfies the PΥ condition.

In [89], the authors showed that if F satisfies the PΥ condition, F is strongly monotone on K,

and VI(K,F ) has a unique solution. Moreover, the BRD (both synchronous and asynchronous)

converges to the unique NE.

We will show the corresponding Υ matrices in (P-C) and (P-NC-alt) are P-matrices.

Proof. We first prove that this is true for the cooperative intervention game. We first fit the planners’
game into the VI framework, where Q clearly is the action space, and we can similarly define the
operator as

F (y) :=

(
− ▽ySk

W (y)

)M

k=1

,

Then we can define
αk(F ) = inf

y∈Q
∥▽kFk∥2 = ∥ASk,Sk

∥2,

βk,l(F ) = sup
y∈Q
∥▽lFk∥2 = ∥ASk,Sl

∥2

and have the corresponding Υ matrix such that

A ≻ 0⇔ lTΥ(F )l ≥ yTAy > 0,∀y ⇒ Υ(F ) ≻ 0,

where l ∈ RK , lk = ∥yk∥2.
Υ ≻ 0 if and only if it’s a P-matrix, and thus there is a unique equilibrium in the cooperative

planners’ intervention game and Algorithm 5 converges to it. A ≻ 0 and Q is convex and compact
also implies the budget tightness.
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Similarly, we can fit the non-cooperative planners’ intervention game into the variational
inequality framework, where Q is the action space and the operator is

F (y) :=

(
− ▽ySk

Wk(y)

)M

k=1

,

then the Υ matrix is(also shown in proposition 1)

Υ(F ) = Ã ≻ 0,

so there is a unique equilibrium in the cooperative planners’ intervention game and Algorithm 5
converges to it. Ã ≻ 0 and Q is convex and compact also implies the budget tightness.

It remains to prove the Ã ≻ 0 part above. We note that ASk,Sk
≻ 0,∀k since they are principal

minors of A and A ≻ 0. Therefore, for ∀z ∈ RN , z ̸= 0, we have

2zT Ãz = zTAz +
M∑
k=1

zT
Sk
ASk,Sk

zSk
> 0⇔ Ã ≻ 0.

C.3 Proof of Proposition 1

Proof. We can write out the first order derivative in Eqn (4.9) for planner pk in non-cooperative
intervention game,

▽ySk
Wk(y) = ASk,Sk

(ySk
+ bSk

) +
1

2

∑
l ̸=k

ASk,Sl
(ySl

+ bSl
).

Similarly, we can write out the first order derivative in Eqn (4.10) for planner pk in non-
cooperative intervention game,

▽ySk
W (y) = ASk,Sk

(ySk
+ bSk

) +
∑
l ̸=k

ASk,Sl
(ySl

+ bSl
).

So we can see that if the planners cooperatively play an intervention game such that the A matrix
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is replaced by the Ã matrix, we have

▽ySk
W̃ (y) = ÃSk,Sk

(ySk
+ bSk

) +
∑
l ̸=k

ÃSk,Sl
(ySl

+ bSl
)

= ASk,Sk
(ySk

+ bSk
) +

1

2

∑
l ̸=k

ASk,Sl
(ySl

+ bSl
)

= ▽ySk
Wk(y).

Since in both Eqn (4.9) and (4.12), every planner has the same gradient ∀y ∈ Q, and the
intervention action space are the same, we can conclude that solving the original non-cooperative
intervention game and the alternative cooperative intervention game with Ã are equivalent. In other
words, for any arbitrary starting point, the trajectories of BRD will always be the same for the
planners, and will converge to the same unique equilibrium in these two problems and thus they are
equivalent.

C.4 Direction of the optimal intervention

We first introduce the cosine similarity that defines the similarity of of two vectors in their
directions, formally,

ρ(r, s) =
rTs

∥r∥2∥s∥2
, (C.4)

when ρ(r, s) = 1, the two vectors have the same direction and r = αs for some α > 0.
For non-cooperative planners, we have the following results on the optimal intervention.

Proposition 3. For an arbitrary fixed budget constraint allocation, when b = 0, ρ(y∗,vmax) =

1, otherwise if Ck ≫ ∥bSk
∥22,∀k, ρ(y∗,vmax) ≈ 1, where y∗ is the non-cooperative optimal

intervention to the problem in Eqn (4.4), and vmax is the eigenvector that corresponds to the largest

eigenvalue of B̃ matrix, which is defined as

B̃ =


BS1,S1

1
2
BS1,S2 · · · 1

2
BS1,SM

1
2
BS2,S1 BS2,S2 · · · 1

2
BS2,SM

...
... . . . ...

1
2
BSM ,S1

1
2
BSM ,S2 · · · BSM ,SM

 ,

where B = A1/2DA1/2, D = diag(( 1
λ∗
k
1Nk

)Mk=1).

Proof. We begin with the case where b = 0, and consider the following non-cooperative objective
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for pk,

maximize Ŵk(y) =
1

2
∥(B1/2y)Sk

∥22 =
1

2λ∗k
∥x∗

Sk
∥22

subject to
∑

i:ai∈Sk

(yi)
2 ≤ Ck, (C.5)

clearly, we have

▽ySk
Ŵk

∣∣
y=y∗ =

1

λ∗k
▽ySk

Wk

∣∣
y=y∗ .

From the definition of λ∗ and y∗, we have

▽ySk
Wk

∣∣
y=y∗ − 2λ∗ky

∗
Sk

= 0,

and thus
▽ySk

Ŵk

∣∣
y=y∗ − 2y∗

Sk
= 0.

We can then define the following problem

maximize W̃B(y) =
1

2
yT B̃y

subject to
N∑
i=1

(yi)
2 ≤ C,

similar to proposition 1, we know that

▽ySk
Ŵk = ▽ySk

W̃B(y),

and we know from the KKT conditions that since ∥y∗∥22 = C, we have y = y∗, µ∗ = 1 as the
primal and dual optimal values to the Lagrangian

LB(y, µ) = W̃B(y)− µ(C − ∥y∗∥22),

and thus since B = A1/2DA1/2, A ≻ 0, D ≻ 0, we know B ≻ 0 and then similar to the proof of
proposition 1, B̃ ≻ 0. Since y∗ is the primal optimal, we know that ρ(y∗,vmax) = 1, where vmax

is the eigenvector of B̃’s largest eigenvalue.
When b ̸= 0 but Ck >> ∥bSk

∥22, it’s not hard to show that

(y + b)TA(y + b)→ yTAy, as ∥ySk
∥/∥bSk

∥ → ∞,∀k,
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an thus the above results still hold.

In [30], the single planner’s problem can be thought of multiple cooperative planners with
transferable budget, then the shadow prices for every planner is the same in the optimal intervention,
and thus ρ(y∗,vmax) = 1, where vmax is the eigenvector of A’s largest eigenvalue. Moreover,
in that case, when G is an all positive(negative) matrix, vmax is the eigenvector of G’s largest
eigenvalue(−G’s smallest eigenvalue).

C.5 Proof of Theorem 12

Proof. We will provide the derivations for the numerator and denominator separately. And we begin
with the case where b = 0.

The denominator corresponds to the cooperative planners’ intervention game, we can write out
the Lagrangian function as follows

L(y,λ) = W (y) +
M∑
k=1

λk(Ck − ∥ySk
∥2).

As mentioned earlier in Section 4.4, the strong duality holds, and from the KKT conditions, we
have at the optimum that

▽ySk
W
∣∣
y=y
− 2λkySk

= 0 ⇔ ASk,Sk
ySk

+
∑
l ̸=k

ASk,Sl
ySl

= 2λkySk
.

So we can rewrite the social welfare as

W (y) =
1

2
yTAy

=
1

2

M∑
k=1

yT
Sk

( M∑
l=1

ASk,Sl
ySl

)

=
1

2

M∑
k=1

yT
Sk
(2λkySk

)

=
M∑
k=1

λk∥y∥22

=
M∑
k=1

λkCk.

For the numerator that corresponds to the non-cooperative planners’ intervention game, we can
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write out the Lagrangian function for pk as follows

Lk(ySk
,y−Sk

, λk) = Wk(ySk
,y−Sk

) + λk(Ck − ∥ySk
∥2).

From the KKT conditions, we have at the equilibrium that

▽ySk
Wk

∣∣
y=y∗ − 2λ∗ky

∗
Sk

= 0

⇔ ASk,Sk
y∗
Sk

+
1

2

∑
l ̸=k

ASk,Sl
y∗
Sl
= 2λ∗ky

∗
Sk
.

So we can rewrite the social welfare as

W (y∗) =
1

2
(y∗)TAy∗

=
1

2

M∑
k=1

(y∗
Sk
)T
( M∑

l=1

ASk,Sl
y∗
Sl

)

=
1

2

M∑
k=1

(y∗
Sk
)T (4λ∗ky

∗
Sk
− ASk,Sk

y∗
Sk
)

≥
M∑
k=1

(2λ∗k −
1

2
ρk)∥y∗

Sk
∥22

=
M∑
k=1

(2λ∗k −
1

2
ρk)Ck,

and since eL2 =
W (y∗)
W (y)

, we know the lower bound holds.
When b ̸= 0 but Ck >> ∥bSk

∥22, it’s not hard to show that

(y + b)TA(y + b)→ yTAy, as ∥ySk
∥/∥bSk

∥ → ∞, ∀k,

an thus the above results still hold.

C.6 Proof of Proposition 2

Proof. Suppose now group k transfers an infinitesimal amount of budget to group l, then after the
transfer, the new intervention profile of group k and l becomes

y′
Sk

= (1− δk)yk, y′
Sl
= (1 + δl)yl,

δl
δk

=
∥yk∥2

∥yl∥2
=
Ck

Cl

.
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Then we look at group k’s welfare after the transfer, if it increases, group k has an incentive to do
the transfer

Wk(y
′
Sk
,y′

Sl
,y−(Sk,Sl)

)−Wk(y) =
1

2

(
[(1 + δl)(1− δk)− 1]yT

Sk
ASk,Sl

ySl

+ [(1− δk)2 − 1]yT
Sk
ASk,Sk

ySk

+ 2[(1− δk)− 1]yT
Sk
(ASk,:)b

)
≥ 0

⇔ (δl − δk)(▽ySl
Wk)

TySl
≥ δk(▽ySk

Wk)
TySk

⇔ (Ck − Cl)(▽ySl
Wk)

TySl
≥ Cl(▽ySk

Wk)
TySk

.

since δl and δk are all infinitesimal, we can ignore their second order products in the above
derivations.
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APPENDIX D

Chapter 5 Appendix

D.1 Supplementary Material for Section 5.2

D.1.1 Discussion on Remark 2

In this part, we discuss the case where game parameters like θ and P are unknown and the
decision maker need to be learn them. Unlike the single round, two stage game in the main article,
the learning process requires online learning with multiple rounds, each containing two stages.

We note that the quality coefficients θ can be learned in one round by setting f = 0 and then we
have (z, y′) = (x, y), and running any suitable learning algorithm can get an estimate of θ.

However, P can not always be learned in the conventional learning problem. We can use an
example can from the impossibility conditions in Theorem 13, given those conditions, only the
columns whose index has substitutability 1 can be learned, the other columns are always unknown.
Below we show how the discount mechanism help with learning the the projection matrix P .

In the regression problem with L1 cost, we can use the following procedures to learn the
projection matrices,

• Choose f such that w > 0 (without loss of generality, assume that w > 0 ⇒ P Tw > 0,
otherwise some action dimensions are meaningless)

• For each time step t = 1, . . . ,M , get a sufficiently large sample of agents with their observable
features z

• At t = 0, Gd = 0, let z0 = E[z]

• At t = 1, . . . ,M , let Gd induce the best response along action dimension t by lowering the
cost to c̃t, and let zt = E[z]

• Compute νt = (zt − z0)c̃t/B, which is an estimate of Pet = pt, i.e., the t-th column of P .

Discount mechanisms can enable best responses to in action dimensions that are impossible to
be incentivized with the decision rule itself, and this is true for both classification and regression,
both L1 cost and other types of costs like L2 or squared.
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D.1.2 Discussion on Remark 3

We will use the L2 cost h(a) = ∥a∥2 for demonstration purpose, and we note that higher orders
of cost functions h(a) = 1

2
∥a∥22 are very similar in classification but different in regression. In

regression, higher order costs are convex and the marginal cost grows, and thus there is no need to
be a budget constraint B ≥ h(a), other than that, h(a) = ∥a∥2 is very representative.

For all other cost functions, we can equivalently have a set of “equal cost contour” i.e.,
{a|h(a) = C} for some constant C is a contour. Most cost functions used in economic and
computer science literature have contours with different sizes but a constant “shape” (the surface
of norm balls, since the cost functions are norm based), like the L1 cost, L2 cost, tilted L2 cost
h(a) =

√
aTCa and squared cost h(a) = 1

2
∥a∥22. The constant shape of contours made it possible

to have a concise (closed-form in most cases) representation of the best responses’ directional and
magnitude properties.

For example, when h(a) = ∥a∥2, the best responses satisfy ρ(a∗
t , P

Tw) = 1 where ρ(v1,v2) =
vT
1 v2

∥v1∥2∥v2∥2 is the cosine similarity. We still have properties in Lemma 2 and in classification and
regression, the best responses are

a∗
C(x) =

τ −wTx

∥P Tw∥22
P Tw, a∗

C(x) =
B

∥P Tw∥2
P Tw,

and we can similarly write out the expressions of the AS best responses for other cost functions.
For L2 cost h(a) = ∥a∥2, we can think of discounts with minimum effective discount value

as giving certain action directions a fixed discount rate or incentivizing agents to play a different
action and pay the cost differences.

Therefore, the implementer will try to incentivize some of the agents to take an AS best response
that also reach the boundary, this can be done by making the discount amount equal the cost
difference between the AS and the CS/LS best response. The implementer wants to maximize the
subsidy surplus on a given agent, which is the quality gain l(a)− l(a∗

C(x)) minus the subsidy cost
∥a∥2 − ∥a∗

C(x)∥2 and thus a∗
A(x) is the solution to the optimization problem

minimizea ∥a∥2 − l(θT (x+ P̂a)) (D.1)

subject to wTPa = τ −wTx

However, the above problem is in general not convex and can be NP hard to find the optimal solution.
But the below assumption guarantees a solution.

Assumption 6. w = θ, and the implementer limit the AS best response to be gaming free, i.e.,

[a∗
A(x)]j = 1{j ≤Mi} ⇔ Pa∗

A(x) = P̂a∗
A(x),
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Figure D.1: An illustration of a CS best response in classification with L2 cost, where the blue
dashed curve (quarter circle) is an equal cost contour, P = [1, 1], w = (1, 1), a1 is improvement
and a2 is gaming.
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Under Assumption 6, the problem becomes convex since l(θT (x+ P̂a)) = l(τ) is constant

minimizea ∥a∥2 (D.2)

subject to θT P̂a = τ − θTx

and the solution (AS best response to incentivize) is

a∗
A(x) = (τ − θTx)

P̂ Tθ

∥P̂ Tθ∥22
(D.3)

We can then similarly define the individual subsidy surplus in the L2 case and find sufficient
conditions that guarantees an IC, IR and BB mechanism G ̸= 0 or even find the optimal solutions
with the same assumptions made in the Theorems 15 and 16.

One interesting difference in the L2 cost case is that the decision rule can incentivize partial

improvement, which can also be called partial gaming, which means θTPa > θT P̂a > 0, and
the corresponding theorems in L1 case still applies when f incentivizes pure gaming θTPa >

θT P̂a = 0. An example of pure gaming happens when for every improvement action j, there is a
corresponding gaming action k with the an exaggerated effect pk = αjpj, αj > 1, which can model
problems like multi-subject exams where an agent has an improvement and gaming action for each
of the subject and cheating is always more cost efficient than working hard without an incentivize
mechanism.

D.1.3 An Alternative Incentive Mechanism

An alternative mechanism to consider, the transfer mechanisms is based on monetary transfer,
where the mechanism designer provides reimbursement or bonus payment when the agent meets
certain feature criteria, e.g., rewards for high scores. We use Gt to denote the transfer mechanism,
where the designer chooses a bonus amount b(z), b : RN 7→ R, effectively revising the agent’s
utility to

uA(x,a) = f(x+ Pa)− h(a) + b(x+ Pa). (D.4)

In transfer mechanisms, knowing the actual x seems to help the designer reduce the subsidy cost
on agents with high endowment and low improvement, but we will show below that this extended
version with bonus amount b̃(x̃, z) is equivalent as the bonus b(z) that only uses features as input,
where x̃ is the reported pre-response attribute. This is because b̃(x̃, z) either can not incentivize
agents to truthfully report x̃ = x, or it can not generate more benefit for the mechanism designer.
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With the alternative version of the monetary transfer mechanism, the agent’s utility now becomes

ũA(x,a, Gt) = f(x+ Pa)− h(a) + max
x̃

b̃(x̃,x+ Pa),

and we can find the corresponding a∗
A(x), and only if

x ∈ argmax
x̃

b̃(x̃,x+ Pa∗
A(x)),

truth-reporting is incentivized. If truth reporting is not incentivized, b̃(x̃, z) and b(z) = maxx̃ b̃(x̃, z)

are equivalent for both the agents and the mechanism designer. Meanwhile, for ∀x1 ̸= x2, truth
telling requires either

x1 + Pa∗
A(x1) ̸= x2 + Pa∗

A(x2),

indicating that backward induction from x+ Pa∗
A(x) to x is achievable, or

x1 + Pa∗
A(x1) = x2 + Pa∗

A(x2), and x1,x2 ∈ argmax
x̃

b̃(x̃,x+ Pa∗
A(x)).

In either case, b(z) is sufficient.
However, the computational complexity is very high in the backward induction step for a general

b(z) bonus function. Recall that the AS utility of an agent is

uA(x,a) = f(x+ Pa)− h(a) + b(x+ Pa),

and thus computing a∗
A(x) = argmaxa uA(x,a) is non-convex for a non-concave b(r) bonus

function.
On one hand, we can’t guarantee concave b(r) is the optimal solution. On the other hand, for

a concave b(z), the computation of a∗
A(x) = argmaxa uA(x,a) is convex and but the individual

subsidy surplus

s(x, f, Gt) = l(θT (x+ P̂a∗
A(x)))− l(θT (x+ P̂a∗

C(x)))− b(x+ Pa∗
A(x))

on the agents are not concave unless l is convex (we are supposing x ∈M(f) here, otherwise more
non-convexity is introduced). Moreover, the overall objective depends on the integration on a subset
of X̂ ⊆ X

S(f,Gt) =

∫
X̂
s(x, f, Gt)p(x)dx,

and a general probability density function p, and the convexity of set X̂ can make the mechanism
designer’s objective non-convex even if l is convex.
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We also note that when changing the value b(z) for a certain z, the AS best response for all
agents with pre-response attribute x in the cone x − z ≤ 0 (element wise non-positive) might
change, and this also makes the analysis hard.

D.2 Supplementary Material for Section 5.3

D.2.1 Characterization of the optimal LS decision rule

Lemma 6. The LS optimal decision rule is f ∗
L(z) = 1{θTz ≥ τL}, τL = argminτ l(τ) ≥ 0.5.

Proof. This is because it is optimal for the decision maker to accept every agent with l(θTx) ≥ 0.5,
since rejecting this agent results in a decrease in the expected individual prediction outcome
1 − l(θTx) ≤ l(θTx). Similarly, the decision maker wants to reject every agent with l(θTx) <

0.5.

D.2.2 Proof of Theorem 13

Proof. The proofs of the claims

1. If κj = 1, then there exists a w in f that can incentivize action dimension j, and the w can
be found in polynomial time;

2. if κj < 1, meaning there always are linear combinations of gaming actions weakly dominate
every action j, then there is no f that can incentivize best response on action j.

are covered in [54, 50]. Intuitively, if κj < 1,∀j ≤ M+, the corresponding a is the combination
that strictly dominates ej for any f and thus there is no f that can incentivize improvement.

We will proceed to show the decision maker’s CS optimal strategy satisfy w = θ. The main
idea is that when f always incentivizes gaming, then the CS decision outcomes with fC(z) =

1{wT
Cz ≥ τC} always have an equivalent LS decision outcomes with fL(z) = 1{wT

Lz ≥ τL},
where the wC = wL, and τC , τL satisfy

τL = min

{
0, τC −

(P Tw)k
ck

}
.

In other words, we can show that ∀x, fL(x) = fC(x+Pa∗), and thus is equivalent for the decision
maker to find an optimal fL which guarantees wL = θ as the Lemma 6 suggests.

D.2.3 Proof of Theorem 14

Proof. We will first show the problem is non-convex when discount is placed on multiple actions,
then show even the discount is only on one action, the problem is still non-convex.
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When the discount is on multiple actions, providing the optimal tie breaking strategy for an
agent with x requires solving

maximizea l(θT (x+ P̂a))−△cTa,

which is non-convex for a general l function. This is for individual subsidy surplus for a fixed△c,
and it has to be integrated over X to compute the overall subsidy surplus S(f,G). So finding the
optimal mechanism will only have higher computational complexity when the decision maker has
to optimize over△c, c, c, and take into account the influence of p(x).

When the discount is only on one action, from Lemma 4, the mechanism designer need to
choose△c such that

△cj ≥ △c∗j = cj −
(P Tw)j
(P Tw)iC

ciC ,

for some improvement action dimension j ≤M+ that it wants to incentivize the agents.
Then for the decision maker, maximizing its AS utility is equivalent as maximizing the subsidy

surplus, so the decision maker solves

maximizej,△cj ,c,c

∫
X
[Pr(f(x+ Pa∗

A(x)) = y′A)− 1{△cTa∗
A(x) ∈ [c, c]}]p(x)dx

subject to △c ∈ [△c∗, cj), j ≤M+

where the problem can be non-convex and not monotone for general p and l. Specifically, when j
has the highest return of investment after the discount, the backward induction that anticipates the
agent’s AS best response is,

a∗
A(x) =


τ−wTx
(PTw)j

ej, if △cj(τ−wTx)

(PTw)j
∈ [c, c],

τ−wTx
(PTw)iC

eiC , o.w.

This indicates that agents with x in a belt shape subset of X will be incentivized to improve, but
the overall subsidy surplus is in general not convex, not concave and not monotone in either the
upper bound (determined by f and c) or the lower bound (determined by f and c) of the belt even
when the other is fixed. Moreover, the minimum effective discount value △c∗j is not always the
optimal solution, adding more complexity to the problem. This is because sometimes the decision
maker wants to put more discount on the action dimension and incentivize some agents outside of
the manipulation margin to improve and accept them rather than reject them. For example, if 80
percent agent has attribute that makes their likelihood 0.49, the minimum effective discount value
still makes them rejected and take 0 AS best response, but a slightly higher discount can incentivize
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them all to improve to the threshold value, say 0.7, the 0.7− (1− 0.49) · 0.8 = 0.152 amount of
improvement may largely outweigh the extra subsidy cost.

Overall speaking, the difference between w and θ in f , the global properties of p, l and their
local properties influenced by τ all makes the problem hard to solve.

D.2.4 Proof of Theorem 15

Proof. We will show that any G ̸= 0 returned by Algorithm 6 is IC, IR and satisfies S(f,G) ≥ 0.
The IC part follows that the participants act in self-interest. Also, as previously discussed, the

minimum effective discounted value △cj = △c∗j = cj − (PTw)j
(PTw)iC

ciC makes sure the agents are
weakly better off in the AS game than the CS game (given the same f ).

We note that for all f that incentivizes gaming, the decision maker would prefer w = θ and we
can use Theorem 16 to find G, so below we have iC ≤M+.

The basic logic of ensuring S(f,G) ≥ 0 is that the algorithm finds a specific agent that is
incentivized, and if this specific agent has a non-negative individual subsidy surplus, it is sufficient
that all the other incentivized agents also have non-negative individual subsidy surplus and thus
S(f,G) ≥ 0.

In Algorithm 6, the designer finds (a convex problem and easy to solve)

x = arg min
x:wTx=τ−δj(PTw)j

θTx,

which is the attribute of the specific agent. From the upper bound set on δj in the algorithm, we
assume the specific agent is inM(f), and then uses

s = l+ − δj△cj = l(θT (x+ δjP̂ej))− l(θT (x+ δiC P̂eiC ))− δj△cj,

as a benchmark, where δj is the δ in the algorithm and δiC =
(PTw)j
(PTw)iC

δj . δjej and δiCeic help the
agent achieve the same wTz, c = 0, c = δj△cj here.

Then s is the specific agent’s individual subsidy surplus, i.e.,

s(x, f, G) = l(θT (x+ P̂a∗
A(x)))− l(θT (x+ P̂a∗

C(x)))− 1{△cTa∗
A(x) ∈ [c, c]} = s.

We start with agents with CS best response a∗
C(x) = δiCeiC , i.e., wTx = wTx. For them, the

AS best response is a∗
A(x) = δjej , the individual subsidy surplus is then

s(x, f, G) = l(θT (x+ δjP̂ej))− l(θT (x+ δiC P̂eiC ))− δj△cj,

since (1) θT P̂ (δjej − δiCeiC ) is constant, (2) θTx ≥ θTx and (3) l is convex on this range, we
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have s(x, f, G) ≥ s ≥ 0.
For agents with “higher endowment” wTx > wTx, i.e., with CS best response a∗

C(x) = αiCeiC ,
αiC < δiC , we denote αj = αiC (P

Tw)iC/(P
Tw)j , then the (sub-optimal) AS best response is

a∗
A(x) = αjej , and the individual subsidy surplus is

s(x, f, G) = l(θT (x+ αjP̂ej))− l(θT (x+ αiC P̂eiC ))− αiCc/δiC

≥ αiC

δiC
[l(θT (x+ δjP̂ej))− l(θT (x+ δiC P̂eiC ))− c]

≥ αiC

δiC
s ≥ 0,

where the second inequality comes from the convexity of l.
For agents with “lower endowment” i.e., with CS best response a∗

C(x) = βiCeiC , βiC < δiC ,
the mechanism designer suggest that they break tie choosing a∗

A(x) = βiCeiC as the AS best
response and thus the individual subsidy surplus is 0. For βj = βiC (P

Tw)iC/(P
Tw)j , we note that

a∗
A(x) = βjej is a dominated strategy since△cTa∗

A(x) > c.

Algorithm 10: Extended Grid Search an IC, IR and BB Discount Mechanism for Classifi-
cation

Choose ϵ > 0, set cmax ← 0, ans← (0, 0);
Define a(r, j) = (τ − r)ej/(P̂

Tw)j;
Define r(x) = wTx;
Define s(x, j,△c) = l(θT (x+ P̂ a(r, j)))− l(θT (x+ P̂ a(r, iC)))− (τ − r)△cj/(P̂ Tw)j;
for j = 1 :M+ do
△c← 0; c← 0;
S ← 0;

△cj ← cj − (PTw)j
(PTw)iC

ciC ;

while S ≥ 0 and δj ≤ xj do
c← c+ ϵ;
r ← τ − δj(P̂ Tw)j;
S ←

∫
{x:r(x)∈[r,τ ]} s(x, j,△c)p(x)dx;

if S > Smax then
Smax ← S; ans← (△c, c);

Return ans.
We see from the proof that when l is convex, agents with “high endowment” will have “high

return on investment” for the mechanism designer when utilizing the discount. On the other hand,
if l is concave on [0,maxx:wTx=τ l(x)], we can infer that the agents with “low endowment” will
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have “high return on investment” when utilizing the discount. So then finding a suitable c becomes
important, finding the approximate optimal mechanism can follow similar steps in Algorithm 10.

In general, real world data like FICO shows that the likelihood function has an S-shape and is
concave on higher score range, and choosing a threshold too high hurts the decision maker.

We also note that the minimum effective discount value is used because it is also “sufficient”.
For convex l, if an agent cannot guarantee a non-negative individual subsidy surplus under the
minimum effective discount value, it can not have a non-negative individual subsidy surplus for
any other effective discount value. Not only because the individual subsidy cost goes up, but also
because the marginal quality improvement is lower for agents farther away from the boundary while
the marginal cost is constant.

D.2.5 Proof of Theorem 16

Proof. When w = θ, the mechanism designer is indifferent about AS best responses along any
improvement action dimension.

The mechanism designer find the “cheapest to incentivize” target action dimension

iA = arg max
j≤M+

(P Tθ)j/cj ⇔ iA = argmin
△c∗j(τ − θTx)

(P Tθ)j

and set△c so that△ciA ≥ △c∗iA = ciA −
(PT θ)iA
(PT θ)iC

ciC .
The choice of c depends on the individual subsidy surplus, which is the quality improvement of

an incentivized agent minus the subsidy cost, denote rx = θTx, then 1

s(rx, f, Gd) := l(τ)− l(rx)1{x ∈M(f)} − [1− l(rx)]1{x /∈M(f)} −
(τ − rx)△c∗iA

(P Tθ)iA
, (D.5)

which is because when agents break tie choosing the action with the largest improvement, we have

θ(x+ P̂a∗
A(x)) = τ.

When the minimum effective discount value is chosen, and the condition

l(τ)− l(rf ) ≤
(τ − rf )△c∗iA

(P Tθ)iA
= (τ − rf )

[
ciA

(P Tw)iA
− ciC

(P Tw)iC

]
(D.6)

1If x ∈M(f), incentivizing this agent will result in the same decision outcome and an improvement equilibrium
qualification status and thus the subsidy benefit is l(τ)− l(rx); if x /∈M(f), subsidizing this agent will change the
decision outcome from 0 to 1, and the subsidy benefit is l(τ) − [1 − l(rx)]. When applying the minimum effective
discount value, the agent’s equilibrium action cost is the same in AS and CS outcomes, and thus x ∈ M(f) are
incentivized to improve.
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holds, all incentivized agents satisfy x ∈ M(f) and s(rx, f, Gd) = l(τ) − l(rx) −
(τ−rx)△c∗iA
(PT θ)iA

,
which is concave in r,∀r ≤ τ since l is convex on [0, τ ]. A rational decision maker will make sure
that an agent with rx ≥ 0.5 is inM(f), and rx < 0.5 is not. And similar to the case in Theorem
15, agents that fully spends c but still need (aA)iC > 0 are suggested to stick with their CS best
responses.

The decision maker chooses c by

c = (τ − r)△c∗iA/(P
Tθ)iA , where r = argmin

r
s.t. s(r, f,G) ≥ 0,

intuitively, it incentivizes every agent with non-negative individual subsidy surplus.
Here we highlight some of the key reasons why the mechanism is still IC, IR and satisfies

S(f,G) if the condition in (D.6) does not hold.
In fact, when w = θ in f , we can assume that a rational decision maker makes sure if x /∈M(f),

then l(rx) < 0.5⇔ 1− l(rx) > l(rx). As a result, we know that

s(r, f,G) = l(τ)− l(r)− (τ − r)△ciA
(P Tθ)iA

≥ s(r, f,G),

is concave in r and

s(r, f,G) = l(τ) + l(r)− 1− (τ − r)△ciA
(P Tθ)iA

≤ s(r, f,G),

is increasing in r,∀r s.t. l(r) < 0.5. Therefore, if the condition in (D.6) does not hold, we have
l(r) < 0.5, where r = argminr s.t. s(r, f,G) ≥ 0 we can also conclude that rxin[r, τ ] satisfies
s(rx, f, G) ≥ 0, i.e., every agent incentivized has non-negative individual subsidy surplus.

When (D.6) does not hold or f incentivizes improvement, the mechanism designer can approx-
imate the optimal △ciA by doing a grid search on the value of 1/(ciA − △ciA) with step size ϵ
to find the corresponding △ciA and the related optimal c like in Theorem 16, which guarantees
maxG S(f,G)−maxSgrid(f,Ggrid) is O(ϵ) if maxv

∫ v+ϵ

v
pR(r)dr is O(ϵ).

This is because if the optimal discounted value is ˜△ciA , there is one scanned value 1/(ciA−△ciA)
that is at most ϵ/2 away from 1/(ciA − ˜△ciA), meaning that

1. the optimal scanned value at worst failed to incentivize O(ϵ) of agents to improve with a
highest subsidy benefit of O(ϵ) and possibly an infinitesimal extra amount of subsidy cost;

2. the optimal scanned value at worst paid an extra subsidy cost of O(ϵ) (O(ϵ) probability mass
of agents with individual payment no more than 1) and has no improved a highest subsidy
benefit.
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D.3 Supplementary Material for Section 5.4

D.3.1 Proof of Theorem 17

Proof. Recall that the AS utility of the decision maker is

U
(reg)
A (f) =

∫
X
Eσ

[
−
(
f(x+ Pa∗

A(x))− y′A
)2]
p(x)dx−H(G),

which if we rewrite the equilibrium individual error as

E(f,a,x) = [wT (x+ Pa)− θT (x+ P̂a)]2 + err(σ),

the objective becomes

U
(reg)
A (f) =

∫
X
−E(f,a,x)p(x)dx−H(G).

The integral part is non-concave for general p(x).
On the other hand, for a target AS best response where α < 1, aA = α B

cj−△c∗j
ej+(1−α) B

ciC
eiC ,

we have H(G) = c =
αB△c∗j
cj−△c∗j

, and the where H(G) is linear in a. for a target AS best response

where α > 1, aA = α B
cj−△c∗j

ej , we have

α

cj −△c∗j
=

1

cj −△cj
⇔ △cj =

(α− 1)cj +△c∗j
α

,

and

H(G) =
B△cj
cj −△cj

=
B((α− 1)cj +△c∗j)

cj −△c∗j
.

We can similarly show that H(G) is piece-wise affine in a and thus the entire objective is non-
concave and the problem is non-convex.

D.3.2 Proof of Theorem 18

Proof. This algorithm has two loops, making it finish in polynomial time.
The outer loop enumerates through all improvement action dimensions and chooses the minimum

effective discount amount to incentivize the agents to take an AS best response aA = α B
cj−△c∗j

ej +

(1− α) B
ciC

eiC , where α < 1. The inner loop grid searches the α values for each j to see if an IC
and IR and S(f,G) > 0, computes the corresponding c and keeps track of the G that generates the
largest S(f,G).
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D.3.3 Proof of Theorem 19

Proof. In the special case, if improvement is incentivized by the mechanism, it is the dominant
strategy to use the minimum effective discount amount, since a higher discount achieves the same
error reduction but a higher subsidy cost.

For an AS best response aA = α B
cj−△c∗j

ej + (1− α) B
ciC

eiC , where α < 1, the alternative form
of individual subsidy benefit is the reduction in the expected prediction error

(θTPa∗
C)

2 − (1− α)2(θTPa∗
C)

2,

the subsidy cost is H(G) = c =
αB△c∗j
cj−△c∗j

, and thus we have the alternative individual subsidy urplus

s(α) = (2α− α2)(θTPa∗
C)

2 − αB△ciA(ciA −△ciA)−1.

D.4 Supplementary Material for Section 5.5

D.4.1 Proof of Theorem 20

Proof. The DP gap is only related to f(z) but not y or y′, when the two groups have the same
action cost but group 2 is disadvantaged in attribute, the implicit threshold (the lower side boundary
of Md(f), τ̂L) is the same for both groups and from the definition of attribute disadvantage,
PR(1) = 1− F (1)(τ̂L) > 1− F (2)(τ̂L) = PR(2), and we know that the DP gap exists.

When f incentivizes gaming, the reason of an EO gap is similar as above TPR(1) = 1 −
F

(1)
+ (τ̂L) > 1− F (2)

+ (τ̂L) = TPR(2). If f incentivizes improvement, then the EO gap depends on
both the CS TPR in both groups, the CS PR in both groups, and the AS quality improvement in
both groups. For example, if G only not incentivize agents in the manipulation margins, then

TPRA = 1− FNRA = 1− FNRC ·
PRC

PRA

= 1− (1− TPRC) · PRC

△QA + PRC

,

and we know that the AS EO gap depends on△Q(1)
A ,△Q(2)

A which is based on p(1)(x) and p(2)(x)
and we can not easily conclude the EO gap changes.

D.4.2 Proof of Theorem 21

Proof. Part (1) is obvious since gaming results in no quality gain, andM(1)(f) ⊇M(2)(f) results
in the quality gain gap if f incentivizes improvement and the DP gap no matter f incentivizes
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Figure D.2: An illustration of the CS DP gap when group 2 is disadvantaged in attributes.

Figure D.3: An illustration of the CS DP gap when group 2 is disadvantaged in cost.

gaming or improvement.
If f incentivizes gaming, the reason of the EO gap is similar to that of the DP gap.
If f incentivizes improvement, again we can look at the formula for AS TPR

TPRA = 1− FNRA = 1− FNRC ·
PRC

PRA

= 1− (1− TPRC) · PRC

△QA + PRC

,

group 1 has a higher TPRC , and a higher△QA/PRC , and thus a higher TPRA and the EO gap
always exists.

D.4.3 Proof and Discussion on Theorem 22

Proof. If group 2 is disadvantaged in cost, then it is cheaper to incentivize a group 1 agent than
a group 2 agent to get the same qualification status improvement, and thus the decision maker
subsidizes more group 1 agents and creates a quality gain gap.

For DP gap, if G only incentivizes agents in the manipulation margins, the agents’ CS or AS
equilibrium decision remains the same.

For EO gap, we note that with G, the AS true positive increases in both groups and how the EO
gap in classification changes depends on both the CS positive decision rate and the qualification
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status improvement and we do not have certain conclusions. For example, if G only not incentivize
agents in the manipulation margins, then

TPRA = 1− FNRA = 1− FNRC ·
PRC

PRA

= 1− (1− TPRC) · PRC

△QA + PRC

,

we have PR(1)
C > PR

(2)
C , △Q(1)

A > △Q(2)
A and we can not easily conclude the EO gap changes.

FNRA = 1− FNRC · PRC

PRA
because all false negative agents in CS remain to be false negatives

in AS (the positive individuals with lower attribute than the lower side boundary of manipulation
margins).

D.5 Supplementary Material for Section 5.6

D.5.1 Proof of Theorem 23

Proof. We still need G to be IR for the decision maker, where the maximum tax a rational decision
maker accepts is the subsidy benefit T (G) ≤ S(f,G) + H(G), and the BB condition requires
S(f,G) +H(G) ≥ T (G) ≥ H(G). So, as long as S(f,G) ≥ 0, there is an IC, IR, and BB third
party mechanism. Therefore, finding the optimal IC, IR, and BB third party mechanism is the same
as

maximizeG W (f,G), subject to S(f,G) ≥ 0,

and if S(f,G) > 0 the mechanism can further improve its objective by setting the surplus at 0.

D.5.2 Proof of Theorem 25

Proof. For Part (1), the fairness oriented third party can implement the ideal mechanism on group 2
and even further subsidize other group 2 agents to reduce the gap while avoiding subsidizing more
group 1 agents to enlarge the fairness gaps.

For Part (2), any ideal mechanism makes sure the efficiency oriented third party has “remaining
budget” to incentivize more agents to improve compared to AS-dm outcome and thus has the strictly
highest equilibrium social quality improvement.

D.5.3 Proof of Theorem 26

Proof. If h(1)A (a) = h
(2)
A (a), ∀a, then the equilibrium feature and attribute distribution are the

same for both groups, and thus there is no fairness gap. Meanwhile, the subsidy benefit are the
same in both groups, so the overall benefit is S(f,G(1)) +H(G(1)), and the overall subsidy cost is
p(1)H(G(1)) + p(2)H(G(2)).
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