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ABSTRACT

Compressible turbulent mixing plays an important role in a variety of astrophysi-

cal and engineering problems ranging from combustion engines to star formation in

space. These flows involve complex physics, such as entrainment, mass/momentum

transfer, and viscous dissipation. While incompressible, homogeneous turbulence is

relatively well understood, compressibility and inhomogeneity pose challenges to clas-

sical theory due to different energy transfer and dissipation mechanisms. Our aim is to

conduct high-fidelity numerical simulations to investigate how compressible turbulent

flows mix and decay, and how heterogeneity affects these dynamics. We first propose

an improved process for generating an initial velocity field that obtains an equilib-

rium turbulence state with desired properties such as Reynolds number, turbulent

Mach number, and the most energetic wavenumber. The rescaled field exhibits the

expected k−5/3 energy spectrum from time zero. This approach provides a systematic

procedure to initialize homogeneous isotropic turbulent fields, which results in the

quasi-equilibrium state with higher Reynolds numbers. This enables us to investigate

the mixing mechanisms in early stages such as entrainment.

Using this initialization procedure, we investigate shearless compressible turbulent/non-

turbulent mixing. We juxtapose an initially shearless homogeneous isotropic turbu-

lent field with a stationary fluid. Near the turbulent/non-turbulent interface, tur-

bulent eddies entrain, and viscous stresses at smaller scales impart vorticity to the

irrotational region; then the mixing region develops. The growth of the mixing re-

gion follows a self-similar power law of 2/3 in time, consistent with Barenblatt et al.

xvi



(1987). Moreover, we find that compressibility effects through acoustic waves cause

energy losses and result in an enhanced decay of turbulent kinetic energy because

kinetic energy is transferred to less energetic flow regions. We propose the new scal-

ing law for the decay of turbulent kinetic energy to account for this compressibility

in turbulent/non-turbulent mixing, which we validate using direct numerical simula-

tions.

We then extend this study to investigate shearless compressible turbulent mix-

ing with gradients in turbulent intensity. The flow is initialized by juxtaposing two

homogeneous isotropic turbulent fields of different turbulent intensities. The higher-

intensity flow has a broader range of scales; it penetrates extensively into the lower-

energy region with intermittency. Therefore, there is net energy transfer from the

higher- to the lower-intensity regions by dilatation along the inhomogeneous direc-

tion. These inhomogeneity and compressibility effects are represented as energy loss

and gain in the scaling for the decay of turbulent kinetic energy, leading to delayed

and enhanced decay rates.

Geometrical effects on compressible turbulent/non-turbulent mixing are investi-

gated for the propagation of a decaying turbulent front in planar and cylindrical

geometries. We show that the cylindrical interface propagates as a power law in time

with an exponent of 1/2, which is confirmed by dimensional analysis. The turbulent

kinetic energy is determined by the dissipation rate and the triple moment of velocity

derivatives; the dissipation rate is independent of the geometry of turbulence because

there are no energy production mechanisms. On the other hand, dilatational energy

transfer, which is represented as a triple moment of velocity derivatives is subject to

the dimension of turbulent fields. Therefore, cylindrical turbulence exhibits more sig-

nificant energy losses due to acoustic waves propagating to the non-turbulent region

compared to planar turbulence. This physics is well described by the new scaling law

with appropriate coefficients. This study can improve the understanding and predic-

xvii



tion of the complex turbulent flows of engineering relevance and the development of

turbulent models.
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CHAPTER I

Introduction

This chapter reviews turbulence fundamentals as a means to investigate shearless

compressible turbulent mixing in regions of steep gradients in turbulent intensity.

Such flows are observed in nature and engineering applications, e.g., atmospheric and

oceanic flows, boundary layers, jets, and wakes. The classical theory of turbulence

is introduced before discussing its limitations in the context of the present work and

describing the state of the art in compressible turbulence and inhomogeneous flows.

The objective and contributions of this thesis are subsequently detailed.

1.1 Turbulence: a Non-Linear and Multiscale Flow

Turbulent flow is commonly observed in our lives, such as clouds in the atmo-

sphere, oceanic circulations, flow over aircrafts, and chemical reactions in engines.

For example, Fig. 1.1(a) shows an experiment of cloud droplet formation in turbu-

lence and atmospheric turbulence (Shawon et al., 2021). This experiment investigated

the effect of turbulence on aerosol-cloud interactions and cloud formation, where tur-

bulence in the cloud increases the fraction of aerosol particles and contributes to the

development of different types of clouds. Furthermore, Fig. 1.1(b) illustrates the

interaction between molecular clouds in space. Turbulence is observed in molecu-

lar clouds, which cause mass and energy exchanges between regions with different
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(a) (b)

Figure 1.1: (a) Experiment of cloud droplets in turbulence (left) as a mechanism for
the cloud formation (right). Reproduced from (Shawon et al., 2021), with
the permission of AGU. (b) Interaction between the W3/W4/W5 com-
plex of molecular clouds triggers the formation of a new star. Courtesy
NASA/JPL-Caltech.

compositions (density or turbulent intensity), and their kinetic energy inhibits the

collapse of the clouds during star formation (Federrath, 2018).

An important characteristic of turbulence is variable fluctuations, which occur

both in space and time. In turbulent flows, the velocity can be decomposed into

two components: the mean velocity and turbulent fluctuation. This decomposition is

achieved through the Reynolds decomposition, which follows as:

u(x, t) = u(x) + u′(x, t). (1.1)

Fig. 1.2 shows the time variation of velocity component U1(t) for a particular point

in a turbulent jet (Pope, 2000). While the mean velocity is invariant in time, the

significant fluctuations reflect the random motions. These fluctuations occur at dif-

ferent amplitudes and time scales (frequencies), which indicate that the fluctuations

u′ consist of multiscale eddies that are vortical structures in turbulent fields (David-

son, 2015). These motions in turbulent flow are engaged in a nonlinearity, resulting

in chaotic dynamics of the motion. The nonlinearity of equations of motion, such

as Navier-Stokes equations, complicates the progress necessary to predict physics be-
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Figure 1.2: Time variation of velocity U1(t), measured at a given point in a turbulent
jet. The mean velocity remains constant over time (solid line). Reprinted
with the permission of the Cambridge University Press.

cause it is difficult to quantify the multiscale physics nonlinearly superposed in the

flow. Therefore, turbulent motions are characterized by statistical properties. For

example, the turbulent intensity can be characterized by the root-mean-square ve-

locity urms, which is defined as urms =
√
⟨u′2⟩. As a result, the role of turbulence

in many applications has been qualitatively discovered, but the theoretical study of

these flows has been limited, and significant costs in experiments and computational

resources are required.

1.2 Kolmogorov Theory

Fig. 1.3(a) illustrates turbulence as multiscale energy cascade of eddies (Richard-

son, 1922), describing as:

Big whorls have little whorls Which feed on their velocity, And little whorls

have lesser whorls, And so on to viscosity.

For turbulent flow, large-scale eddies break up and transfer their energy to ever-

smaller eddies until the energy is ultimately dissipated into heat. This process, known
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Figure 1.3: (a) Schematic of Richardson’s energy cascade. Energy is injected into ed-
dies of size l0 and transferred to smaller-eddy until it is dissipated, where
l0 is the integral length scale. Reproduced from Frisch et al. (1978), with
the permission of the Cambridge University Press. (b) Energy spectrum
for turbulent flows. The energy is distributed across a range of scales from
l0 where the energy is injected to η where it is dissipated. The spectrum
is scaled by the Kolmogorov −5

/
3 power law in the inertial range.

as the energy cascade, is quantified by Kolmogorov theory (Kolmogorov , 1941a,b,

1962). Kolmogorov hypothesized that turbulent flow at a sufficiently high Reynolds

number has a universal equilibrium range, which is composed of the inertial subrange

and the dissipation range. Fig. 1.3(b) shows the distribution of spectral energy in

wavenumbers. The universality in this range leads to scaling analysis for spectral

analysis of the inertial subrange, i.e., the Kolmogorov -5/3 spectrum
(
E(k) ∼ k−5/3

)
(Pope, 2000; Vassilicos , 2015).

This classical theory assumes that the turbulent flow is incompressible, homoge-

neous, isotropic, and at sufficiently high Reynolds numbers. Homogeneous isotropic

turbulence (HIT) is an appealing problem to understand basic turbulence dynamics

and energy transfer because its statistical properties are invariant in position and

direction. Therefore, HIT has been extensively used in analytical studies, direct nu-

merical simulations (DNS), and wind-tunnel experiments. For instance, Fig. 1.4

shows the flows generated in a box of turbulence in computational simulations or

downstream behind grids in wind-tunnel experiments. However, the flow generated
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Figure 1.4: (a) Visualization of turbulence generated by grid experiments. Pho-
tograph by Thomas Corke and Hassan Nagib and reproduced from
Van Dyke and Van Dyke (1982), with the permission of the Cambridge
University Press. (b) Turbulent eddies of homogeneous isotropic turbu-
lence in a periodic box, which is visualized by the Q-criterion and colored
by dilatation. Reproduced from Pan and Johnsen (2017), with the per-
mission of the Cambridge University Press.

by grids in wind-tunnel experiments is not homogeneous due to mean shear and/or

experimental setups (e.g., walls in a test section), which causes inhomogeneity or

distortion in the flow direction (Tucker and Reynolds , 1968; Reynolds and Tucker ,

1975). Furthermore, anisotropy in Reynolds stresses persists even further downstream

of the flow. Therefore, it is nearly impossible to generate HIT in experiments (Ertunç

et al., 2010). This problem is an idealization that helps us understand and analyze

turbulent flows.

The turbulent kinetic energy (TKE) budget describes the energy balance in a

turbulent flow. The TKE budget terms of transport, production, pressure-dilatation,

and dissipation rate clarify the complex mechanism in the decay of TKE. In the case of

shearless HIT, the properties of homogeneity and isotropy simplify the TKE equation

by taking a volume average; as a result, terms involved in the spatial derivative and
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the mean flow are canceled out to the following form (Batchelor , 1953):

dK

dt
= ϵ̇, (1.2)

where K = ⟨uiui⟩ /2 is the total TKE per mass, ui the velocity fluctuations, ⟨·⟩

volume-averaged quantities, t time, and ϵ̇ the volume-averaged dissipation rate. This

equation indicates that TKE decays only by viscous dissipation over time. The dis-

sipation rate of TKE is defined as ϵ̇ = ν ⟨sijsij⟩, where sij is the strain rate tensor

of velocity fluctuations, and ν is the kinematic viscosity. The dissipation rate can be

approximated as ϵ̇ ∼ u3
rms

/
Lf , where Lf is the integral length scale and urms is the

root-mean-squared velocity fluctuation (Vassilicos , 2015). The equilibrium dissipa-

tion quantity Cϵ law is thus defined (Batchelor , 1953; Sreenivasan, 1984):

Cϵ = ϵ̇Lf

/
u3
rms. (1.3)

Fig. 1.5 shows the dissipation quantity Cϵ as a function of Reynolds numbers based

on the Taylor microscale λ for HIT in a periodic box, where the Taylor microscale is

defined as

λ2 =
⟨uiui⟩〈(
∂ui

∂xi

)2
〉 . (1.4)

Up to moderate Reynolds numbers (Reλ ≤ 50), the scaled dissipation rate decreases

before approaching a constant beyond Reλ ≈ 100, Cϵ. This behavior illustrates the

fact that the dissipation rate depends on Re until the Reynolds number is sufficiently

high (Reλ ≈ 100), at which point the dissipation rate no longer depends on the

Reynolds number. These regimes correspond to the mixing transition, which changes

the flow dynamics (Dimotakis , 2000). For Re ≳ 100, which is the transition Reynolds

number, turbulent eddies follow -5/3 Kolmogorov power-law of the energy spectrum

with length scales in an inertial range. Therefore, this equilibrium dissipation scaling
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Figure 1.5: Dissipation quantity Cϵ = ϵ̇Lf/u
3
rms vs. Reynolds number based on the

Taylor microscale. Reproduced from Sreenivasan (1984), with the per-
mission of AIP Publishing.

supports Kolmogorov’s cascade theory. However, Cϵ takes different values for tur-

bulence generated by different types of grids, which shows its dependence on initial

conditions (Vassilicos , 2015). Further scaling the dissipation rate as ϵ̇ ≈ νu2
rms

/
λ2,

the ratio of integral length scale to the Taylor microscale is

Lf

/
λ ∼ CϵReλ. (1.5)

This equation implies that, for sufficiently high Reynolds numbers, the wider ranges

of scales exist as Lf ≫ λ ≫ η as the Reynolds number increases. It corresponds to

Kolmogorov theory, where the Kolmogorov scale η is scaled as Lf/η ∼ Re
9/4
L ; there-

fore, the higher Reynolds numbers lead to broader scale separations, which requires

higher energy to be dissipated. However, this conventional turbulence theory cannot

be directly applied to turbulent flows in nature and engineering applications, which

involve inhomogeneity and compressibility effects.
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1.3 Compressible Turbulence

Compressible flow involves additional physics that are not observed in incom-

pressible flow, such that Kolmogorov’s theory is not directly applicable. The main

effect of compressibility is that thermodynamics are coupled to the flow. As a result,

velocity and thermodynamic variables fluctuate, which are decomposed into three

modes: vorticity, acoustic, and entropy modes (Kovasznay , 1953; Lele, 1994). Hence,

the thermodynamic state should be described along with the velocity field for com-

pressible flow. For thermodynamic equilibrium turbulence, its state is determined

by two independent thermodynamic quantities among the density, entropy, internal

energy, and pressure, and then the others can be obtained by the equation of state

(EOS) (Durbin, 2021). The variable fluctuations can be decomposed into solenoidal

(rotational) and dilatational (irrotational) parts by Helmholtz decomposition. Fig.

1.6 illustrates solenoidal and dilatational modes of turbulence. The solenoidal part

consists of vortical (rotational) structures, while the dilatational flow is irrotational

and composed of sheet-like structures. Federrath (2018) investigated the effect of tur-

bulence modes to form stars. Although turbulence contributes to the entire process of

star formation, dilatational modes enhance star-formation rates by aggregating den-

sity. Therefore, the two modes of turbulence require different ways to analyze their

characteristics. Fig. 1.7 presents the energy spectrum of solenoidal and dilatational

modes for forced compressible HIT. While the solenoidal motions obey Kolmogorov

theory and scales as the expected −5/3 power law, the dilatational motions fail the

Kolmogorov scaling and require modification of the conventional theory (Donzis and

Jagannathan, 2013; Jagannathan and Donzis , 2016).

Furthermore, compressibility effects appear in the evolution of TKE. TKE budget

equation for shearless flow with no mean velocity and no external forces is described
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as

∂k

∂t
= −1

ρ

∂ (pui)

∂xi

− ∂

∂xj

(
1

2
uiuiuj

)
− 2νsijsij, (1.6)

where k = uiui/2 is the TKE and sij the strain-rate (Pope, 2000). The first term

on the left-hand side ∂k
∂t

is the local derivative of TKE, the first term on the right-

hand side 1
ρ
∂(pui)
∂xi

the pressure-dilatation, the second term on the right-hand side

∂
∂xj

(
1
2
uiuiuj

)
denotes the transport, and the last term on the right-hand side 2νsijsij

the dissipation rate, respectively. The dissipation rate is the main contributor to the

TKE budget for both incompressible and compressible turbulence. For compressible

flow, this term can be decomposed into incompressible (µωkωk) and compressible

((µ+ µb)Θ) contributions for homogeneous turbulence, where µ is the shear viscosity,

µb the bulk viscosity, ωk vorticity, and Θ the dilatation. The ratio of compressible

and incompressible dissipations can serve as compressibility effects, which describe

additional dissipation in the flow (Lele, 1994). Additionally, the pressure-dilatation

term plays a crucial role in the exchange of energy between TKE and potential energy

in the compressible flow. However, its contribution to the decay of TKE is negligible

for shearless turbulence because it appears as a form of extra compressible dissipation,

whereas the presence of shear intensifies the effects of the pressure-dilatation (Sarkar ,

1992; Lele, 1994). Despite this, no theory describing the compressibility effects has

been established yet, and thus, there is a need to improve the classical Kolmogorov

theory for compressible flows.

1.4 Heterogeneous Flow: Free Shear Flow and Turbulent/Non-

Turbulent Interface

The key feature of turbulence is mixing, which occurs owing to misaligned charac-

teristics and/or variations in space and time. Turbulent mixing occurs in a three-stage

process of entrainment, dispersion, and diffusion (Pope, 2000). Through this process,

9



Figure 1.6: Density contours of solenoidal (left) and dilatational (right) modes. The
black dots represent potential stars. The stars can combine more effec-
tively in dilatational turbulence compared to solenoidal turbulence, which
increases the rate of star formation by a factor of 15-20. Reproduced from
Federrath (2018), with the permission of AIP Publishing.

Figure 1.7: Energy spectrum of (a) solenoidal and (b) dilatational modes in forced
compressible HIT normalized by the Kolmogorov -5/3 law for Reλ =
38−430 at Mat = 0.1, 0.3, and 0.6. Reproduced from Donzis and Jagan-
nathan (2013), with the permission of the Cambridge University Press.
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turbulent flow enhances the rate of mass, momentum, and energy transfer to the

adjacent matter (solid, liquid, or gas) compared to laminar flow. According to Di-

motakis (2005), turbulent mixing can be classified into three levels based on flow

dynamics. Level-1 mixing involves passive scalars that do not affect flow dynamics,

where the mixedness can be described as a fraction of molecular composition. Level-2

mixing, on the other hand, impacts the flow dynamics. Here, baroclinic vorticity is

generated by misaligned quantities such as pressure-density or temperature-entropy

gradients and develops instabilities and further mixing. For example, Rayleigh-Taylor

instability, which occurs between two fluids with different densities with acceleration

fields, can generate baroclinic vorticity and the growth of the mixing zone that is

coupled with the flow dynamics. Level-3 mixing involves mixing that changes the

flow itself, such as in combustion and supernova explosion. Nonlinear reactions in

this mixing create tens to hundreds of species and their complex kinetics. Among

these differences, Level-1 mixing has been widely investigated and has contributed to

understanding mechanisms in many natural and engineering applications, such as the

diffusion of pollutants in the air, weakly heated jets, and interactions between clouds

and air (Warhaft , 2000).

However, heterogeneous flows involve additional transfer mechanisms, which means

that the Kolmogorov theory cannot fully describe its effect. For instance, free-shear

flows such as jets, wakes, and mixing layers are canonical problems for turbulent mix-

ing caused by inhomogeneity effects. The flow with a mean velocity of U entrains

an ambient fluid with the same properties, resulting in a statistically stationary and

steady flow. Fig. 1.8 shows the turbulent/non-turbulent interface (TNTI) generated

by mixing between ambient and turbulent flows. The TNTI is a finite interfacial

layer, which is composed of two different layers: a viscous superlayer (VSL) and a

turbulent sublayer (TSL) (Corrsin and Kistler , 1954; Townsend and Taylor , 1948).

In the VSL, the vorticity in the turbulent region stretches to the irrotational region
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by viscous diffusion (Batchelor and Batchelor , 1967), whereas the TSL is adjacent

to the turbulent region, which is dominated by inertial effects. da Silva and Taveira

(2010) studied the mean thickness of the mixing layer in planar turbulent jets, which

scale as the Taylor microscale, λ, and is correlated with the radius of the large-scale

eddies. In addition, large-scale motions induce entrainment, known as engulfment,

where vorticity structures roll over the mixing layer towards the non-turbulent region

and contribute to the mixing region growth. Therefore, the thickness of the layer

is determined by the Taylor microscale (Dimotakis , 2000; Bisset et al., 2002; Gaskin

et al., 2004; Westerweel et al., 2005; Hunt et al., 2006). On the other hand, some

studies found that the nibbling process dispatches intense vortical structures (IVS) at

small scales to the irrotational region by viscous diffusion, implying that the thickness

of the TNTI corresponds to the Kolmogorov length scale η (Mathew and Basu, 2002;

Chauhan et al., 2014; Breda and Buxton, 2019; Zecchetto and da Silva, 2021). The

characteristics that explain the growth of the mixing region in free-shear flows are

still under debate due to the complex dynamics.

1.5 Shearless Turbulent Mixing

The presence of mean shear (or other forces) complicates the study of turbulence

because the mean shear generates energy whose characteristics cause coupled inter-

actions through nonlinear interactions. Shearless turbulence can be used to examine

turbulent dynamics independently of mean forcing. Such flows with no mean shear

can be generated in grid turbulence experiments or computational turbulent fields.

When shearless turbulent flow is adjacent to non-turbulent flow (e.g., irrotational

flow), mixing develops through the entrainment of large-scale eddies and viscous dif-

fusion at small-scale eddies near the interface (Townsend , 1980; Bhat and Narasimha,

1996; Hunt et al., 2006; Bisset et al., 2002; Mathew and Basu, 2002; Chauhan et al.,

2014; Zecchetto and da Silva, 2021). Therefore, the thickness of the mixing layer
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Figure 1.8: Schematic of turbulent/non-turbulent interface for a free-shear flow. In-
tense vorticity structures (IVS) and large-scale vortices (LVS) are ob-
served near the interface, which consists of the viscous superlayer (VSL)
and the turbulent sublayer (TSL). Reproduced from Vassilicos (2015),
with the permission of the Annual Reviews.
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is scaled by the Kolmogorov scale, whereas for the shear layer, it is correlated with

the large vortical structures (Holzner et al., 2007; da Silva and Taveira, 2010; Silva

et al., 2018). Additionally, Veeravalli and Warhaft (1989) investigated turbulent

mixing layers between flows with different integral length scales and showed that the

mixing occurs with strong intermittency and anisotropy. Turbulent diffusion plays

a role in spreading the flow, resulting in non-Gaussian behavior in the mixing layer.

Also, Movahed and Johnsen (2015) evaluated the role of density gradients on freely

decaying turbulent mixing; they observed that turbulence is isotropic at the small-

est scale (i.e., Kolmogorov scale), but anisotropic at intermediate scales (i.e., Taylor

scale and larger). In the case of shearless turbulent mixing with gradients in tur-

bulent intensity, Tordella and Iovieno (2011) investigated shearless turbulent mixing

between fluids of different integral scales and kinetic energies at moderate Reynolds

numbers (Reλ = 45− 150). They found that intermittency and skewness are caused

by anisotropy in the gradients of the length scale and kinetic energy. In an experimen-

tal study of a shearless mixing layer initially composed of kinetic energy gradients,

Thormann and Meneveau (2015) observed that large-scale intermittency is generated

by the penetration of high-energy eddies. Consequently, the peak of flatness (i.e.,

the fourth-order statistics of velocity derivatives) appears in the low-energy region.

The evolution of turbulent kinetic energy follows a power law in the streamwise dis-

tance, with the decay exponents depending on the turbulent intensity. However, the

temporal decay of the turbulent kinetic energy and the mixing layer evolution in

shearless turbulent flows with gradients in turbulent intensity are still not well under-

stood. Furthermore, the effects of compressibility and geometry on turbulent mixing

remain largely unexplored, as they are not accounted for in the classical theory of

Kolmogorov.

14



1.6 Turbulence Models

Turbulence modeling is essential for predicting turbulent flows in various applica-

tions such as combustion, wall-bounded flows, weather forecast, and oceanic circula-

tion because it is not feasible to simulate all the scales of turbulence due to the vast

range of scales involved. These scales can extend from millimeters to meters or even

kilometers in space, and from milliseconds to seconds or even days in time. Therefore,

turbulence models are used to provide approximations and closure in turbulent flows,

allowing for predictions to be made for engineering, atmospheric, and oceanic applica-

tions. DNS plays an important role in developing and improving turbulence modeling

as it can provide insights into understanding the physics of fluid dynamics (Moin and

Mahesh, 1998). Researchers have focused on developing turbulence modeling based

on averaged characteristics of complex turbulent flows (Rogallo, 1981; Rogers , 1986;

Hunt et al., 1988; Speziale, 1991; Shih, 1997). DNS can also be used to validate and

improve them and to directly test and provide accurate statistics (Durbin, 1991; Rodi

and Mansour , 1993). Furthermore, it can be used to investigate and verify novel

phenomenology in turbulence, which leads to the development of turbulence models

(Zeman, 1990; Parneix and Durbin, 1996).

For analytical modeling, the turbulent stresses ρu
′
iu

′
j in Reynolds averaged Navier

Stokes equations remain unknown and are determined by turbulence models. The fun-

damental approaches of turbulence modeling are the turbulent-viscosity and gradient-

diffusion hypotheses (Pope, 2000). According to these hypotheses, the turbulent diffu-

sivity and turbulent viscosity require specifications via modeling, such that the mean

flow equations can be solved. For the turbulent-viscosity hypothesis, the Reynolds

stresses are described as

⟨uiuj⟩ −
2

3
kδij = −νT

(
∂ ⟨Ui⟩
∂xj

+
∂ ⟨Uj⟩
∂xi

)
(1.7)
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where U is the mean velocity, u the velocity fluctuation, k the kinetic energy, δij the

Kronecket delta, and νT the turbulent viscosity. The turbulent viscosity is written as

νT ∼ ul where l is the length scale in turbulence based on simple algebraic models

such as the mixing-length model. On the other hand, the gradient-diffusion hypothesis

defines the scalar equation by using the scalar flux vector
〈
uϕ‘

〉
and the turbulent

diffusivity ΓT as 〈
uϕ‘

〉
= −ΓT∇⟨ϕ⟩ (1.8)

where ϕ is scalar. The diffusivity is determined by the velocity and time scales as

ΓT ∼ uT , which can be related to the turbulent viscosity by the turbulent Prandtl

number σT , i.e., ΓT = νT/σT . This approach is the simplest, where the mixing

length and velocity u should be specified. The turbulent kinetic energy model is a

one-equation model that scales the velocity component in Eq. (1.7) as the turbulent

kinetic energy: u = c1k
1/2, where c1 is a constant. The turbulent kinetic energy should

be specified by solving the turbulent kinetic energy budget equations. In contrast,

two-equation models use both turbulent kinetic energy and turbulent dissipation rate

equations to close the problem.

Similarly, large eddy simulations (LES) reduce the computational cost by solving

filtered Navier-Stokes equations. The LES filter is applied to a spatial and temporal

field and removes a range of small scales, defined as sub-grid scales (SGS). Therefore,

this method requires the modeling of unresolved SGS (Pope, 2000). The general

filtering operation is defined as:

U(x, t) =

∞∫
−∞

G(r,x)U(x− r, t)dr, (1.9)

where U(x, t) is the spatial and temporal field, and G is the filter function, including
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a cutoff length scale ∆. A residual field is defined as:

u
′
(x, t) = U(x, t)−U(x, t). (1.10)

Note that this operator is different from the Reynolds decomposition; hence, u′ ̸=

0. To close the filtered equations, the anisotropic residual stress tensor should be

modeled. It is defined as τ rij = τRij − 2
3
krδij, where τRij = UiUj − ŪiŪj is the residual-

stress tensor and kr =
1
2
τRij is the residual kinetic energy.

The SGS fluctuations are correlated with the rate of turbulent energy transfer to

smaller scales. Therefore, SGS models focus on the dissipation rate of energy, and

use the linear eddy-viscosity model as follows:

τ rij = −2νtSij, (1.11)

where S̄ij is the filtered strain-rate tensor and νt is the eddy viscosity (Pope, 2000).

SGS models have been developed to determine eddy viscosity. The Smagorinsky

model was the first attempt to describe eddy viscosity as νt = (CS∆)2S, where

the constant CS is strongly dependent on the flow configuration. Furthermore, the

dynamic model, also known as the dynamic Smagorinsky model (Germano et al.,

1991), improves the Smagroinsky model by dynamically determining local constants

using two filters, which procedure enables simulating complex flows.

However, most turbulence models show discrepancies from DNS results, indicating

that energy transfer from the large scales (resolved) to the small scales (unresolved)

and dissipative mechanisms are not well described. Additionally, inhomogeneous

compressible flows require consideration of additional energy transfer and dissipative

mechanisms in turbulence models. Wall models of LES have been extensively studied

to identify subgrid terms arising from inhomogeneity and anisotropy in wall-bounded

flows. However, these models only examined the contribution of the mean strain rate
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tensor to dissipation in the Smagorinsky eddy viscosity near the wall. Therefore,

energy transfer in inhomogeneous and compressible turbulence should be considered

in terms of kinetic energy and length scales to determine the eddy viscosity in LES.

1.7 Thesis Outline and Contributions

As introduced in this chapter, classical Kolmogorov theory cannot fully describe

inhomogeneous compressible turbulence because this flow violates the assumptions

of incompressibility, homogeneity, and in general isotropy. This thesis focuses on ex-

ploring compressible turbulent mixing with gradients in turbulent intensity, in flows

with decaying turbulent kinetic energy (by contrast to forced turbulence), and the

mixing region developing over time. Turbulent mixing involves various physical phe-

nomena, such as entrainment, mass/momentum transfer, and diffusion, which are

distinct from the behavior observed in homogeneous isotropic turbulence. Further-

more, in compressible turbulence, the presence of dilatation introduces additional

mixing mechanisms that complicate the physics involved, requiring a modification

of the conventional theory of turbulence. The hypotheses underlying this research

are that compressibility and geometry (e.g., cylindrical vs. planar) inhibit mixing

at gradients of turbulent intensity due to dilatational effects and diverging flows,

respectively. Therefore, the objectives of this study are to investigate the role of com-

pressibility and geometry on the evolution of turbulent kinetic energy and turbulent

mixing in:

• Compressible turbulent/non-turbulent mixing in Chapter III. The study con-

siders the case where shearless initially homogeneous and isotropic turbulent

flow is adjacent to a stationary fluid. Direct numerical simulations are per-

formed to investigate the development of mixing regions and the evolution of

turbulent kinetic energy. The analysis focuses on the role of triple moments
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of velocity fluctuations in the turbulent kinetic energy balance equation, which

are not present in homogeneous and incompressible flow but expected to play

an important role in inhomogeneous and compressible turbulence.

• Compressible turbulent mixing with gradients in turbulent intensity in Chap-

ter IV. The study considers the case where shearless initially homogeneous

and isotropic turbulent flows are juxtaposed with different intensities. Direct

numerical simulations are performed to investigate energy transfer across the

interface. The analysis focuses on intermittency and energy loss/gain caused

by compressibility effects, which delay or enhance the decay rate of turbulent

kinetic energy.

• Compressible turbulent/non-turbulent mixing in a cylindrical geometry in Chap-

ter V. The study considers the case where shearless initially homogeneous and

isotropic turbulent flow has planar and cylindrical shapes with different intensi-

ties. Direct numerical simulations are performed to investigate the geometrical

effects on the development of mixing regions and the evolution of turbulent

kinetic energy. The analysis focuses on the role of dilatation, which generates

energy loss larger through the diverging interfaces.

This work contributes to a better understanding of turbulent mixing in terms of:

• Improving the process of generating initial turbulent velocity fields

• Determining the decay rate of turbulent kinetic energy for turbulent/non-turbulent

and turbulent/turbulent mixing based on the parameters governing the problem

(initial root-mean-squared velocity, Taylor microscale, and dilatation)

• Discovery of intermittency with non-Gaussian behavior, demonstrating com-

pressibility effect
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• Scaling of mixing region growth in time in turbulent/non-turbulent mixing and

turbulent/turbulent mixing

• Scaling of dilatation in time in turbulent/non-turbulent mixing and turbu-

lent/turbulent mixing

• Extension of the present theory for planar turbulent fronts to cylindrical.
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CHAPTER II

Physical Model

In this chapter, we present the governing equations along with the numerical

details. An improved method for generating a fully developed initial turbulent field

is demonstrated to achieve an equilibrium state.

2.1 Governing Equations and Numerical Details

We perform direct numerical simulation (DNS) and solve the three-dimensional

compressible Navier-Stokes equations for an ideal gas:

∂ρ

∂t
+

∂

∂xj

(ρuj) = 0 (2.1)

∂(ρui)

∂t
+

∂

∂xj

(ρuiuj + pδij) =
1

Re

∂τij
∂xj

(2.2)

∂E

∂t
+

∂

∂xj

[uj(E + p)] =
1

Re

[
∂(ujτij)

∂xj

+
∂

∂xj

(
κT

∂T

∂xj

)]
(2.3)

p = ρRT . (2.4)

We additionally solve a transport equation to analyze mixing:

∂(ρYi)

∂t
+

∂(ρujYi)

∂xj

=
1

ReSc

∂

∂xj

(
ρ
∂Yi

∂xj

)
. (2.5)
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Here, E = ρ (e+ uiui/2) is the total energy per unit volume, e = p/ (ρ(γ − 1))

the internal energy per unit mass, ρ the density, uj the velocity, p the pressure, T

the temperature, κT the thermal conductivity, γ the specific heats ratio, R the gas

constant, Sc the Schmidt number, D the mass diffusivity, and Yi the mass fraction

of fluid i = 1 or 2. The specific heat ratio and Schmidt number are set to γ = 1.4

and Sc = 1, respectively. The scaled Reynolds number Re and viscous stress tensor

τij are defined as follows:

Reλ0 = Re

[
ρurms0λ0

µ

]
, (2.6)

τij = µ

[(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3

∂uk

∂xk

δij

]
. (2.7)

where λ0 is the initial Taylor microscale, urms0 the initial root-mean-square velocity,

and µ the dynamic viscosity. These equations are non-dimensionalized by the param-

eters of the initial HIT with uref = 1, ρref = 1, and lref = L/(2π). We use an explicit

fourth-order Runge-Kutta scheme and high-order finite differences (sixth-order ex-

plicit central differences) in time and space, respectively, to discretize the governing

equations. The flow under consideration has Mat < 0.4, so that no shocklets are

produced (Passot and Pouquet , 1987; Lee et al., 1991; Benzi et al., 2008). Therefore

shock capturing or artificial dissipation is not required. The split form is applied to

the convective fluxes based on the form of Blaisdell et al. (1996):

∂

∂xj

(ρujϕ) =
1

2

[
∂

∂xj

(ρujϕ) + uj
∂

∂xj

(ρϕ) + ρϕ
∂uj

∂xj

]
. (2.8)

Here, ϕ = (1, ui, (E + p)/ρ, Yi), and the flux of Ducros et al. (2000) is implemented.

The non-conservative form is used for discretizing the diffusive terms:

∂

∂xj

(
µ
∂uj

∂xj

)
= µ

∂2uj

∂xj
2
+

∂µ

∂xj

∂uj

∂xj

. (2.9)
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2.2 Dimensional Analysis

Turbulent mixing arises from the interaction of various physical parameters as a

result of the misaligned properties and their spatial and temporal variations. Dimen-

sional analysis helps understand the physics of mixing by examining the dimensions

of physical parameters and their correlations. This is facilitated by dimensionless

groups and scaling relationships, which simplify complex problems.

The key parameters in this work are the turbulent intensity, the turbulent length

scale, the speed of sound, and viscosity, which are determined as the initial root-

mean-squared velocity urms0 , the most energetic wave number k0 or the initial Taylor

microscale λ0, the speed of sound c =
√

γp/ρ, respectively. The viscosity ν is repre-

sented as the scaled Reynolds number in Eq. (2.6). These parameters introduce the

primary dimensionless quantities that are Reynolds and turbulent Mach numbers. As

the pressure is initially uniform as p0 = 4πLρ, the speed of sound is initially invari-

ant (Dimonte et al., 2004); therefore, the dimensionless quantities can describe flow

parameters as follows:

urms0 = Mat0 ×
√

γp

ρ
, (2.10)

Re =
Reλ0

ρurms0λ0/µ
, (2.11)

where λ0 = 2/k0 and µ = 1. For turbulent mixing, each field has its own urms0 , k0 or

λ0, and c. In this study, we set the scaled Reynolds number, the speed of sound, and k0

to be the same for each fluid, such that the changes in Reynolds and turbulent Mach

numbers induce differences in urms0 . Therefore, this dimensional analysis isolates the

effect of gradients in turbulent intensity.
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2.3 Initialization of Turbulent Velocity Field

We present our rescaling procedure for the initial velocity field to produce an

equilibrium turbulence state from t = 0. Initialization of the solenoidal velocity field

with a Batchelor spectrum has been widely used for generating homogeneous isotropic

turbulence (Batchelor and Proudman, 1956; Lee et al., 1991; Johnsen et al., 2010). A

detailed procedure to generate the initial velocity field in terms of Fourier coefficients

is described in Johnsen et al. (2010), with the Fourier transform represented as follows:

ûk =
1

N

N−1∑
j=0

uj (x)e
−i 2πj

N
k, (2.12)

where uj are the velocity components in a real vector space, N is the number of grid

points, and k is the wavenumber.

However, the key issue with the resulting flow is that it takes finite time to evolve to

an equilibrium state of turbulence; additionally, there is no clear relationship between

the properties (Taylor scale, rms velocity) at that time in terms of those of the initial

field. Fig. 2.1(a-b) shows energy spectra at t = 0τ and t = 2τ where τ = λ0/urms0 is

the eddy turnover time and the time evolution of the volume-averaged enstrophy for

decaying homogeneous isotropic turbulence in a periodic box with a random solenoidal

velocity field. As expected, the initial field does not have a -5/3 slope and does not

contain a broad range wavenumbers. It takes a few eddy turnover times for the

energy to get distributed over a broad range of wavenumbers; this initial transient is

observable in the enstrophy in Fig. 2.1(c), which initially increases before reaching a

maximum and, as the turbulence is developed, decreasing. We propose to take the

velocity field at 2τ and rescale it to use it as our initial conditions with the desired

Reynolds number because it is the field with the highest energy in the equilibrium

state. Our process is based on the following steps:

Step 1. We define the most energetic wavenumber at t = 0τ and 2τ as k0 and k∗,
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respectively, and the difference between these two wavenumbers at t = 0τ and

2τ as the shift wavenumber, ks = k0 − k∗.

Step 2. To set the initial wavenumber with the highest energy contents to be the same

as that of the random solenoidal velocity field, we shift the velocity components,

vj:

vj (x) = uj (x) e
i 2πj

N
ks . (2.13)

Step 3. The Fourier transform of vj can be performed as follows.

v̂k =
1

N

N−1∑
j=0

vj (x) e
−i 2πj

N
k =

1

N

N−1∑
j=0

uj (x) e
−i 2πj

N
(k−ks). (2.14)

Step 4. We perform an inverse Fourier transform and set the magnitude of the root-

mean-squared velocity to urms, thus producing the new rescaled velocity field.

This rescaling process produces an equilibrium turbulence field with the desired

initial properties (Reynolds number, most energetic wavenumber). In Fig. 2.1(a-b),

we observe that our rescaled initial field exhibits the expected k−5/3 spectrum from

the beginning over a wide range of wavenumbers. The spectral energy of the original

initial field decays faster than that of the rescaled field in all ranges of wavenumbers

because the original initial field starts decaying before reaching an equilibrium state of

turbulence. We do observe an initial transient in enstrophy in the rescaled field with

our procedure (10% compared to the initial state), though the enstrophy magnitude

of the original approach at t = 2τ evolves to be 200% more of the initial enstrophy. In

Fig. 2.1(d), the Reynolds number at t = 2τ for the original initial field is less than 50,

which is significantly lower than the desired initial value of Reλ0 = 100. Therefore,

the rescaled field allows us to obtain correct turbulent statistics and achieve higher

Reλ0 at t = 0τ and describes the quasi-equilibrium state from the beginning with

desired properties.
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(a) (b)

(c) (d)

Figure 2.1: Energy spectra at (a) t = 0τ , (b) t = 2τ , (c) temporal evolution of en-
strophy, and (d) Reynolds number for the single homogeneous isotropic
turbulence in a periodic box. The turbulent kinetic energy is ran-
domly distributed in the previous solenoidal velocity field with a Batch-
elor spectrum (dashed line). The solid line is obtained by applying the
rescaling process. The dotted line represents the Kolmogorov scaling of
E(k) ∼ k−5/3. All simulations are conducted in a cube box of L = 2π
with 256/L grid points for Reλ0 = 100 and Mat0 = 0.1.
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CHAPTER III

Decaying Compressible Turbulence Adjacent to an

Irrotational Flow Region

3.1 Abstract

Shearless turbulent/non-turbulent mixing has primarily been studied in the incom-

pressible limit. In this work, we investigate the role of compressibility on turbulent/non-

turbulent mixing with no mean shear. We consider an initially isotropic region of

turbulence next to a stationary fluid and seek to predict the evolution of the mix-

ing region width and the turbulent kinetic energy using theory and direct numerical

simulation. We find that the mixing region grows as a power law in time consistent

with past theory for incompressible flow (∼ t2/3). However, we demonstrate that the

turbulent kinetic energy is affected by energy transport away from the mixing region

due to dilatation, in addition to viscous dissipation. We establish the dependence of

the turbulent kinetic energy on time and on the parameters governing the problem

(Taylor scale, rms velocity, and initial dilatation). Compared to the incompressible

case, dilatation gives rise to an increased decay rate of turbulent kinetic energy.
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3.2 Introduction

At a sufficiently high Reynolds number in the incompressible limit, the classical

Richardson-Kolmogorov theory describes the dynamics, energy transfer, and mix-

ing of homogeneous, isotropic turbulence (Kolmogorov , 1941a,b, 1962). Under these

conditions, turbulent eddies produced in the energy-containing range break up into

ever smaller eddies until the corresponding Reynolds number is sufficiently small

that differentials in viscous stresses dissipate the kinetic energy. Decaying homo-

geneous isotropic turbulence (HIT) has been extensively investigated (Veeravalli and

Warhaft , 1989;George, 1992; Stalp et al., 1999; Hughes et al., 2001;Donzis et al., 2005;

Krogstad and Davidson, 2011) and well-known laws describing the time-evolution of

key quantities such as the turbulent kinetic energy or length scales have been devel-

oped (Batchelor and Townsend , 1948a,b; Corrsin, 1951; Mansour and Wray , 1994;

Wang and George, 2002; Ishida et al., 2006; George and Wang , 2009; Esteban et al.,

2019; Panickacheril John et al., 2022). Under such conditions, the energy equation

can be written as

dK

dt
= ϵ̇, (3.1)

where K = ⟨uiui⟩ /2 is the total TKE per mass, ui the velocity fluctuations, ⟨·⟩

volume-averaged quantities, t time, and ϵ̇ the volume-averaged dissipation rate (Batch-

elor and Proudman, 1956; Comte-Bellot and Corrsin, 1966). By scaling the dissipa-

tion rate by the energy-containing length scale (ε̇ ∼ K3/2
/
L where L is integral scale),

the turbulent kinetic energy can be expressed as a power law in time (Batchelor , 1953;

Saffman, 1967; Gad-el Hak and Corrsin, 1974; Lee, 1985; Mohamed and LaRue, 1990;

Burattini et al., 2006). For the decay of fully developed turbulence, conservation of

angular momentum depends on the initial field; u2l5 or u2l3 is an invariant depending

on whether a Batchelor or a Saffman spectrum is used, respectively, thus yielding

different exponents for decaying turbulent kinetic energy, especially a = −10/7 for
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Kolmogorov’s law and −6/5 for Saffmans’s law. However, the exponent of the decay

law is still under debate because it depends on experiment setups, e.g., types of grid

(Batchelor and Townsend , 1948a,b; Chasnov , 1994; Briggs et al., 1996; Lavoie et al.,

2007; Valente and Vassilicos , 2012; Djenidi et al., 2015). Moreover, these decay expo-

nents are obtained for long time periods for forced turbulence; hence other quantities

may play a role in decay, for instance, properties of the initial field. On the other

hand, George and Wang (2009) described the decay as exponential in flows in which

length scales are independent of time and the ratio of the integral length scale to the

Taylor microscale is constant. This behaviour has also been observed in space-filling

fractal grid experiments (Seoud and Vassilicos , 2007; Hurst and Vassilicos , 2007).

In nature and engineering, many turbulent flows are heterogeneous, such that

a region of turbulent flow is adjacent to a non-turbulent region, possibly separated

by a temporally growing mixing region. For instance, for problems such as air-sea

interfaces, dry air near clouds, and instabilities along jets, a mixing zone develops be-

tween turbulent and non-turbulent regions and grows with time (Garwood Jr , 1979;

Andrejczuk et al., 2004; Dimotakis , 1991). In free-shear flows such as jets and wakes,

the mean shear continuously feeds energy into the system, thereby sustaining turbu-

lence. To better understand mixing independently of shear, researchers have exam-

ined shearless turbulence. In wind-tunnel experiments, nearly shearless turbulence

can be generated by passing the flow through a grid, while in numerical simulations

a random velocity field can be set up to develop into shearless homogeneous isotropic

turbulence (Veeravalli and Warhaft , 1989; Kang and Meneveau, 2008; Tordella and

Iovieno, 2011; Ireland and Collins , 2012; Isaza et al., 2014; Thormann and Meneveau,

2015). Shearless turbulent mixing can be studied by co-flowing fluids with different

turbulent properties (e.g., Reynolds number, length scale, intensity) in a planar con-

figuration. Owing to the inhomogeneity of the flow, classical Kolmogorov theory

does not immediately apply and must be modified (Launder et al., 1973; Haworth
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and Pope, 1987; Yoder et al., 2015; Buxton et al., 2019). A special case of shearless

turbulent mixing is turbulent/non-turbulent mixing. Corrsin and Kistler (1954) first

examined turbulent/non-turbulent interfaces (TNTIs). Mixing layers involve differ-

ent dynamics at large- and small-scale. Large eddies near the TNTI entrain patches

of irrotational flow through engulfment ; the size of the mixing region as measured by

vortical contents therefore strongly depends on this process (Townsend , 1980; Bhat

and Narasimha, 1996; Dimotakis , 2000; Gaskin et al., 2004; Hunt et al., 2006; West-

erweel et al., 2009; Bisset et al., 2002; Lee et al., 2017). At smaller scales, viscous

stresses impart vorticity to irrotational patches of fluid via nibbling (Mathew and

Basu, 2002; da Silva and dos Reis , 2011; Chauhan et al., 2014; Breda and Buxton,

2019; Zecchetto and da Silva, 2021). Viscous dissipation has been shown to affect

the entrainment process (Corrsin and Kistler , 1954; Westerweel et al., 2005; Holzner

et al., 2007); therefore, the dissipation rate and vorticity exhibit peaks within the

mixing layer (Teixeira and da Silva, 2012). However, whether large- or small-scale

flow features contribute the most to turbulent/non-turbulent mixing is still under

debate (da Silva et al., 2014a).

The thickness of the TNTI can be identified by a sharp decrease in vorticity and

correlates to the length scale of the vorticity structures near the interface (da Silva and

Taveira, 2010). The thickness has been postulated to be proportional to the Taylor

microscale and Kolmogorov scale for shear and shear-free flows, respectively (Bisset

et al., 2002; Holzner et al., 2007; da Silva and Taveira, 2010; Silva et al., 2018).

However, the temporal evolution of the mixing layer and turbulent kinetic energy

(TKE) in turbulent/non-turbulent mixing has yet to be considered. Barenblatt et al.

(1987) theoretically investigated the scaling of turbulent bursts starting with a finite

thickness. Based on the dimensional analysis in the incompressible limit, he found

that the mixing region thickness h ∼ t2/3 for h(t) ≪ h0, where h is the thickness of the

mixing layer and h0 is the initial thickness. The asymptotic solution has a different
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exponent in time, which can be found by solving a nonlinear eigenvalue problem.

Investigations of turbulent/non-turbulent mixing have yet to take into account the

role of compressibility. In compressible flow, acoustic, vortical, and entropy modes can

interact with each other, giving rise to different dynamics and energy transport com-

pared to the incompressible case (Lele, 1994). The ratio of dilatational to solenoidal

root-mean-square (rms) velocities (δ) enables one to obtain universal scaling and bet-

ter understand physics in compressible turbulence by acquiring statistical equilibria

in the new parameter space of δ−Mat (Donzis and John, 2020). Aluie (2011) demon-

strated the existence of a universal inertial range in compressible turbulence, which

offers the possibility of scaling compressible flow according to the Kolmogorov theory.

Also, a universal scaling method for energy spectra in compressible turbulent mixing

was found using only solenoidal components resulting from Helmholtz decomposition

(John et al., 2019). Dilatation can affect the solenoidal velocity field by generating

fluctuations in variables through acoustic waves (Pan and Johnsen, 2017). Jagan-

nathan and Donzis (2016) suggested a scaling method for stationary compressible

turbulence using the Reynolds and turbulent Mach numbers and showed that kinetic

energy, pressure, and dilatation depend on the turbulent Mach number and follow

a power law behavior in time. However, the implications of these compressibility

effects on turbulent mixing, including turbulent/non-turbulent mixing, are currently

unknown.

To address this gap, we investigate shearless turbulent/non-turbulent mixing where

the turbulence is decaying and compressible. We develop scalings for turbulent kinetic

energy decay and the time evolution of the mixing region thickness. These scalings

are verified by DNS of decaying turbulence of different initial intensities juxtaposed

with an initially staionary fluid with the same properties. We find that dilatational

effects modify the TKE transport and that the resulting behavior can be quantified

by accounting for these dilatational motions in the TKE transport equation. Addi-
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tionally, an improved method for generating a fully developed initial turbulent field

is presented. The remainder of the paper is organized as follows. The problem setup

and governing equations are described in detail in Section 3.3. The flow dynamics at

the turbulent/non-turbulent interface are examined in Section 3.4, and the turbulent

kinetic energy evolution is analyzed in Section 3.5. Finally, our article ends with

conclusions and recommendations for future studies.

3.3 Formulation of the Problem and Governing Equations

3.3.1 Formulation of the Problem and Initialization

To examine shearless turbulent/non-turbulent mixing, we consider the juxtapo-

sition of an initially isotropic turbulent field with an initially quiescent field of the

same fluid (i.e., the same thermodynamic and transport properties) and examine the

subsequent evolution of this flow, which is effectively one dimensional in the mean

(i.e., planar). The initial turbulent field can be described by its Taylor microscale λ0,

Taylor-based Reynolds number Reλ0 , and turbulent Mach number Mat0 . The initial

rms velocity is urms. In this work, we use theoretical analysis and DNS.

The method of Rogallo (1981) and Lee et al. (1991) is a common approach to

initialize simulations of decaying homogeneous isotropic turbulence (HIT). In this

method, a random solenoidal velocity field is prescribed with a given spectrum, e.g.,

for the Batchelor spectrum E(k)∼k4/k0
4exp(−2k2/k0

2), where k0 is the most ener-

getic wavenumber, in a periodic cubic box of size L = 2π, and evolves to equilibrium

turbulence. A drawback of this approach is the difficulty in establishing a relationship

between the initial condition and the time when the turbulence achieves an equilib-

rium state or even the properties of the turbulence (Taylor scale, rms velocity) at

that time. To address this difficulty, we develop a rescaling approach to initialize

the problem such that the initial field is in equilibrium turbulence with well-defined
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properties (Taylor scale, Reynolds number, and turbulent Mach number). As ex-

plained in greater detail in Appendix A, the initial random field is evolved for two

eddy turn-over times τ until equilibrium turbulence is achieved. In Fourier space, the

wavenumber is shifted by the difference between the initial field and the equilibrium

field at 2τ before performing the inverse transformation. Finally, the rms value can

be scaled to the desired value. This rescaled field with desired properties allows one

to examine the equilibrium turbulent field with desired properties from t = 0, rather

than having to wait a few eddy turnover times for a flow whose state is not clearly

connected to the initial random field.

The computational domain is shown in Fig. 5.1. We juxtapose four cubic boxes of

initially isotropic turbulence and another four cubic periodic boxes of the same fluid

with zero velocity in the inhomogeneous direction z. The turbulent/non-turbulent

interface is initially located at the center of the domain at z = 0. Periodic boundary

conditions are used in the x- and y-direction, while zero gradient conditions are

applied in the inhomogeneous direction at the domain end. The domain size of 8L

is large enough to ensure that boundary effects do not influence the dynamics. A

uniform grid is used with Ngrid/L = 256, which is small enough to resolve all physics

in turbulence.

The turbulence dynamics in the present problem are primarily governed by three

dimensionless quantities: the initial Taylor-based Reynolds number Reλ0 = urmsλ0

/
ν,

initial turbulent Mach number Mat0 = urms

/
c, and initial scaled Taylor microscale

λ0

/
L, where ν and c are the kinematic viscosity and the speed of sound, respectively.

To understand the dependence of the turbulence dynamics on the governing parame-

ters and to verify the analysis, we conduct a series of simulations described in Table

5.1. We consider initial Reynolds numbers varying between 100 and 215 such that the

turbulence is initially fully developed according to Dimotakis (2000) and turbulent

Mach numbers varying between 0.1 and 0.3. For this range of Mat,0, no shocklets are
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L

4L 4L

L

Figure 3.1: Schematic of the initial problem setup. The initial turbulent velocity
field of intensity urms,1 is juxtaposed to irrotational flow (green) with
urms,2 = 0.

urms,1 urms,2 λ0,1/L Reλ0,1
Mat0,1

case1 1 0 0.25 100 0.1

case2 2 0 0.20 160 0.2

case3 3 0 0.18 215 0.3

case4 1 0 0.25 160 0.1

Table 3.1: Summary of the simulations and relevant parameters.

produced. The dependence on the temperature and gas constant, which is expected

to be negligible, is beyond the scope of the present study.

3.3.2 Governing Equations

In our simulations, We numerically solve the three-dimensional compressible Navier-

Stokes equations for a perfect gas:

∂ρ

∂t
+

∂

∂xj

(ρuj) = 0 (3.2)

∂(ρui)

∂t
+

∂

∂xj

(ρuiuj + pδij) =
1

Re

∂τij
∂xj

(3.3)

∂E

∂t
+

∂

∂xj

[uj(E + p)] =
1

Re

[
∂(ujτij)

∂xj

+
∂

∂xj

(
κT

∂T

∂xj

)]
(3.4)
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with the ideal gas law:

p = ρRT (3.5)

where E = ρ (e+ uiui/2) is the total energy per unit volume, e = p/ (ρ(γ − 1))

the internal energy per unit mass, ρ the density, uj the velocity, p the pressure, T

the temperature, κT the thermal conductivity, γ the specific heats ratio, R the gas

constant, and Re the scaled Reynolds number,

Reλ0 = Re

[
ρurmsλ0

µ

]
. (3.6)

We set the specific heat ratio is γ = 1.4. The gas is Newtonian with viscous stress

tensor τij:

τij = µ

[(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3

∂uk

∂xk

δij

]
. (3.7)

Additionally, we solve a transport equation for a passive scalar for analysis purposes:

∂(ρYi)

∂t
+

∂(ρujYi)

∂xj

=
1

ReSc

∂

∂xj

(
ρ
∂Yi

∂xj

)
(3.8)

where Sc = µ1/ρ1D is the Schmidt number, D the scalar diffusivity, and Yi the mass

fraction of fluid i = 1 or 2. In this study, the kinematic viscosity and the scalar

diffusivity are equivalent, i.e., Sc = 1. These equations are nondimensionalized with

the reference properties, uref = 1, ρref = ρ1, and lref = L/(2π).

We use high-order finite differences on a uniform grid to solve the equations in

space. Since the turbulent Mach numbers are low enough that no shocklets are

produced, shock capturing is not necessary. The diffusive terms are expressed in

non-conservative form and the split forms suggested by Blaisdell et al. (1996) along

with the flux of Ducros et al. (2000) are applied to prevent energy pileup at high
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wavenumbers,

∂

∂xj

(ρujϕ) =
1

2

[
∂

∂xj

(ρujϕ) + uj
∂

∂xj

(ρϕ) + ρϕ
∂uj

∂xj

]
, (3.9)

where ϕ = (1, ui, (E + p)/ρ, Yi). Sixth-order explicit central differences are used for

all spatial derivatives and an explicit fourth-order Runge-Kutta scheme is applied for

time marching.

3.3.3 Decaying Homogeneous Isotropic Turbulence

As a starting point, we consider freely decaying, homogeneous isotropic turbu-

lence. The TKE decays according to the dissipation rate,

d ⟨k⟩
dt

= −⟨ε⟩, (3.10)

where k is the TKE per unit mass, and ⟨·⟩ is the spatial volume-averaged quantity.

The dissipation rate

⟨ε⟩ ∼ ν
⟨uiui⟩
λ2

, (3.11)

where λ is the time-dependent Taylor microscale:

λ2 =
⟨uiui⟩〈(
∂ui

∂xi

)2
〉 . (3.12)

Under equilibrium turbulence, large-scale eddies break up into ever smaller eddies

whose kinetic energy is dissipated by differentials in viscous stresses once they are

small enough. For freely decaying turbulence, eddies whose sizes are significantly

larger than the Kolmogorov scale (e.g., Taylor scale) can be assumed to be invariant

in time Davidson (2015), i.e. λ ≃ λ0. Therefore, the TKE decays exponentially at

36



early times at a sufficiently high Reynolds number,

⟨k⟩
⟨k0⟩

= exp

[
− ck
Reλ0

(
t
/
τ0
)]

(3.13)

where ck is a constant and τ0 = λ0

/
urms0 is the initial eddy turnover time. Fig. 3.2

shows the temporal decay of TKE for homogeneous isotropic turbulence for initial

Reynolds numbers 100, 160, and 215. A transient appears at early times (t < 2τ)

because it takes a finite time for the constant initial pressure and density to reach

an equilibrium state. Thereafter, the TKE decays exponentially for all Reynolds

numbers. This result is consistent with that of George and Wang (2009). At suffi-

ciently high Reynolds numbers, the dissipation rate becomes independent of Reynolds

number. Fig. 4.3 shows the dissipation quantity, cε = ⟨ϵ⟩Lf

/
u3
rms0

where Lf is

the volume-averaged integral scale for different Reynolds numbers considered in this

study, with comparison to other experiments and simulations. As expected, the dis-

sipation quantity approaches a constant value (Sreenivasan, 1998; Vassilicos , 2015),

thereby showing that our simulations at Reλ0 = 160and240 are expected to exhibit

the behaviour described by Eq. 3.13. However, because we are considering decaying

turbulence, the case Reλ0 = 100 may show Reynolds-number dependence, particularly

at late times. Our results are consistent with those from past computational studies

(Jiménez et al., 1993; Wang et al., 1996; Yeung and Zhou, 1997; Cao et al., 1999). At

relatively low Reynolds numbers, the dissipation quantity cε decreases with increasing

Reynolds numbers and tends to a constant beyond Reλ0 ≈ 100, which corresponds

to the mixing transition (Dimotakis , 2000). Discrepancies are attributed to initial-

ization and forcing. We find empirically that the dissipation quantity determines the

constant ck in the Eq. (3.13) as ck ≈ cεReλ0

/
3.
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Figure 3.2: Time evolution of the turbulent kinetic energy in homogeneous isotropic
turbulence for different Reynolds numbers.

Figure 3.3: Dissipation quantity ⟨ϵ⟩Lf/u
3
rms vs. Reynolds number based on the initial

Taylor microscale. Data from other various simulations are included.
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3.4 Dynamics of Shearless Turbulent/Non-Turbulent Mixing

3.4.1 Qualitative Analysis in Turbulent/Non-Turbulent Mixing

We first examine the qualitative behavior of shearless turbulent/non-turbulent

mixing. To visualize eddies, Fig. 4.4 (a, c, e, g) shows the Q-criterion (Hunt et al.,

1988) coloured by dilatation

Q =
1

2

[
|Ω|2 − |S|2

]
, (3.14)

where S is the strain-rate tensor and Ω is the vorticity tensor. Iso-surfaces of scalar

mass fraction are shown in Fig. 4.4 (b, d, f, h) coloured by vorticity magnitude. Tur-

bulent eddies evolve into a wider range of scales, but eventually decay over time;

Almost no eddies are visible based on the present Q-criterion by t = 9τ . Over time,

it is clear that some eddies have crossed beyond the z = 0 plane, indicating mix-

ing. Roughly, it appears that eddies visible in the positive z region are smaller on

average than those in the bulk region. The magnitude of dilatation remains approxi-

mately constant throughout the process, thus indicating that dilatational dissipation

is slower than solenoidal dissipation (Pan and Johnsen, 2017). The size of the interfa-

cial surface increases over time as the fluids mix; As expected, vorticity (magnitude)

decreases significantly over the process. The spread of the 0.5 mass fraction contours

indicates the turbulent and non-turbulent fluids mix over time as intermittent vorti-

cal structures in the turbulence stretch, the non-turbulent flow penetrates deep into

the turbulent region (i.e., engulfment), and small-scale eddies diffuse at the interface

(i.e., nibbling).

Fig. 4.5 shows two-dimensional contours of the mass fractions along the centre-

plane at the same times for the urms,1 : urms,2 = 1 : 0 and 3 : 0 cases, which have

Reλ0 = 100 and 215, respectively. For mixing with the larger turbulent intensity, a

wider range of scales, including smaller scale motions, and extensive entrainment of
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Figure 3.4: Q-criterion coloured by dilatation (left) and iso-surfaces of mass frac-
tion ⟨Y1⟩ = 0.5 coloured by vorticity magnitude (right) at t = 1τ (a, b),
3τ (c, d), 6τ (e, f) and 9τ (g, h) for case 1 (urms,1 : urms,2 = 1 : 0, Reλ0 =
100, and Mat0 = 0.1). 40



(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Two-dimensional contours of the mass fraction in the x − z centreplane
at t = 0.412 (a, b), 1.24 (c, d), and 2.06 (e, f) for urms,1 : urms,2 = 1 : 0
(left) and urms,1 : urms,2 = 3 : 0 (right). White dashed line: centreplane
(z = 0).

non-turbulent flow into the turbulent region, and vice-versa, are observed, which lead

to more effective mixing and further spreading of the mixing region over time. The

ejection of large-scale structures from the turbulent region can be discerned. These

structures rapidly decay in the initially quiescent fluid.

3.4.2 Evolution of the Mixing Region

At sufficiently high Reynolds numbers, the mixing region width h is expected

to follow a power law dependence in time, namely, h ∼ tα (Youngs , 1984; Cook

and Dimotakis , 2001). Assuming incompressible flow and using dimensional anal-

ysis, Barenblatt et al. (1987) demonstrated that the interface position in the one-
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dimensional propagation of a turbulent front into quiescent flow follows a power law

h ∼ t2/3. However, in compressible flow, additional energy transport mechanisms are

present, for instance, acoustic waves transporting TKE across the interface and di-

latational TKE are observed in the non-turbulent region. Thus, identifying the edge

of the interface requires additional considerations in the compressible case because

the dilatational TKE is detected on the non-turbulent region. To be consistent with

incompressible theory, we define the edge of the mixing region as the location where

the TKE based on the solenoidal velocity (i.e., after Helmholtz decomposition) is less

than a given threshold ϕI . We determine this ratio by examining the time depen-

dence of the width of the mixing region, which is defined as h = hϕI
− z0 where hϕI

is the position of the mixing region edge (ksol = ϕI), and z0 denotes z = 0. Letting

h ∼ tα, we find that the exponent α is sensitive to this threshold. When ϕI ≈ 10−3,

we recover the power law corresponding to the incompressible limit, with α = 2/3; we

thus use ϕI = 10−3 as the threshold for all cases. The time evolution of the mixing

region width is shown in Fig. 4.6(a) for the different turbulent intensities and Mach

numbers under consideration. The mixing region widths for the different turbulent

intensities all increase at the same rate, with a temporal exponent of 2/3, consistent

with Barenblatt et al. (1987).

3.4.3 Cumulative Energy Spectra

To better understand the evolution of the distribution of energy across scales

within the mixing region, we examine the compensated spectra of the z-velocity

fluctuation in the x− y plane at different z-locations, defined

Cw′(k) =

∫ k

0
Ew′(k

′
)dk

′∫∞
0

Ew′(k′)dk′ (3.15)
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Figure 3.6: Temporal evolution of the mixing width relative to the centreplane (z = 0)
for urms,1 : urms,2 = 1 : 0 (red), urms,1 : urms,2 = 2 : 0 (green), urms,1 :
urms,2 = 3 : 0 (blue). The interface location is defined as the location in z
where the solenoidal TKE ksol < ϕI . The black dashed line corresponds
to a power law with the exponent of 0.67.

where k is the magnitude of the kx and ky. Fig. 4.9 compares the compensated spectra

at the edge of the mixing region in the turbulent region (⟨Y1⟩ = 0.95) and at the

center of the mixing region (⟨Y1⟩ = 0.5) for the baseline case to those corresponding

to decaying homogeneous turbulence. The spectra indicate that the behavior at small

wavenumbers is fully resolved for all cases as

lim
k→0

dCw′(k)

dk
≈ 0 (3.16)

and energy transfer from smaller scales to larger scales is negligible (Mueschke and

Schilling , 2009). At ⟨Y1⟩ = 0.95, in Fig. 4.9(b), the evolution of the compensated

spectra resembles that in the homogeneous case, although there is less energy at

high wavenumbers, where energy is dissipated. By contrast, at ⟨Y1⟩ = 0.05, the

flow is non-turbulent as the distribution of scales is invariant over time. At the

center of the mixing region where ⟨Y1⟩ = 0.5 in Fig. 4.9(c), the discrepancy with
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the homogeneous case is larger, and its slope is steeper compared to ⟨Y1⟩ = 0.95,

which indicates that small-scale eddies dissipate predominantly in the mixing region

in shearless turbulent/non-turbulent mixing.

3.5 Turbulent Kinetic Energy Evolution

In the incompressible limit, upon volume averaging, the time-rate of the change

of the TKE is equal to the negative of the dissipation rate in the Eq. 3.10. In the

compressible case, the time-evolution of the TKE for shearless inhomogeneous flow

consists of advection and dissipation:

∂k(x, t)

∂t
= −εk(x, t)−

∣∣∣∣∂qj(x, t)∂xj

∣∣∣∣ (3.17)

where k and εk are the local TKE and dissipation at x, respectively, and q is the TKE

flux (Barenblatt et al., 1987). The pressure-dilatation term is negligible because it

appears as dilatational dissipation and is rapidly self-canceled for shearless turbulence

(Lele, 1994; Sarkar , 1992; Freund et al., 2000). In the incompressible limit, upon

volume averaging, the time-rate of the change of the TKE is equal to the negative of

the dissipation rate in the Eq. (3.10). The TKE equation can be rewritten as follows:

∂k(x, t)

∂t
= −εk(x, t)−

∣∣∣∣k(x, t)∂uj(x, t)

∂xj

∣∣∣∣ . (3.18)

Thus, the TKE changes due to dissipation and transport of kinetic energy into the

non-turbulent region.

Dilatation plays an important role in turbulent/non-turbulent mixing. Fig. 4.7

shows the temporal evolution of the TKE for different intensities in our turbulent/non-

turbulent mixing problems, as well as for the corresponding homogeneous cases. Fig.

4.7(a) indicates that after a short transient, the TKE decays exponentially in time.
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Figure 3.7: Cumulative energy spectra of turbulent kinetic energy corresponding to
the z-velocity fluctuation at different times for (a) homogeneous isotropic
turbulence in a periodic box and in the mixing region in turbulent/non-
turbulent mixing at (b) ⟨Y1⟩ = 0.95, (c) ⟨Y1⟩ = 0.5, and (d) ⟨Y1⟩ = 0.05.
The dashed line represents homogeneous isotropic turbulence at t = 5τ .
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This result indicates that there is little change in the size distribution of eddies for

freely decaying turbulence (George and Wang , 2009). The decay rate is higher for

lower Reynolds numbers since the viscosity is higher. For all Reynolds numbers, the

TKE decays more rapidly in turbulent/non-turbulent mixing. To elucidate the role

of compressibility on turbulent/non-turbulent mixing, Eq. (4.18) can be integrated

over volume based on the region ksol < ϕI and time to obtain an expression for the

TKE,

⟨k⟩
⟨k0⟩

= exp

−
c1 (t/τ) + c2

t∫
0

〈∣∣∣∣∂uz(t)

∂z

∣∣∣∣〉 dt

 . (3.19)

We consider dilatation in the inhomogeneous direction z and assume that
〈∣∣∣k(x, t)∂uz(x,t)

∂z

∣∣∣〉 ≈

⟨k(x, t)⟩ ×
〈∣∣∣∂uz(t)

∂z

∣∣∣〉. The TKE depends on the rate of dilatation in Eq. 3.19 be-

cause of the inhomogeneity. Fig. 4.7(b) shows the evolution of TKE in scaled time

with c1 ≈ cε/3 and c2/c1 ≈ 1
9
where cε is the dissipation quantity. We discuss

below the more general dependence of c1 and c2 on the parameters governing the

problem. The collapse of the TKE curves for turbulent/non-turbulent mixing onto

those corresponding to the homogeneous case with the appropriate scaling in time

indicates that dilatational transport (i.e., Eqs. (4.18) and (3.19)) accounts for the

observed differences between turbulent/non-turbulent mixing and the homogeneous

case as waves propagate from the turbulent into the non-turbulent region. For the

cases with the lowest initial Reynolds number, some discrepancy is visible at late

times, at which point the Reynolds number is relatively low, such that the behavior

is Reynolds-number-dependent.

The effect of compressibility in this inhomogeneous flow is to transfer energy by

dilatational TKE, which appears in the non-turbulent region. We focus on com-

pressibility to complete the scaling for the turbulent kinetic energy in turbulent/non-
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Figure 3.8: Time-evolution of the turbulent kinetic energy for case 1 (urms,1 : urms,2 =
1 : 0, Reλ0 = 100, red), case 2 (urms,1 : urms,2 = 2 : 0, Reλ0 = 160,
green), case 3 (urms,1 : urms,2 = 3 : 0, Reλ0 = 215, blue), and case 4
(urms,1 : urms,2 = 1 : 0, Reλ0 = 160, black). Solid line: turbulent/non-
turbulent mixing; dashed line: homogeneous case. Scaled time represents

t/τ for homogeneous isotropic turbulence and t
τ
+ c2

c1

∫ t

0

〈∣∣∣∂uz(t)
∂z

∣∣∣〉 dt for

turbulent/non-turbulent mixing where c2
c1

= 1
9
and c1 =

cε
3
.

turbulent mixing. The volume- and time-averaged dilatation is

θ =
1

t

t∫
0

〈∣∣∣∣∂uz

∂z

∣∣∣∣〉/〈∣∣∣∣∂uz

∂z

∣∣∣∣〉
0

dt. (3.20)

Fig. 5.7 shows the temporal evolution of θ for turbulent/non-turbulent mixing with

different magnitudes of urms. Since the volume-average dilatation does not change

significantly with time, the scaling of Eq. (3.19) can be modified as

⟨k⟩
⟨k0⟩

= exp

[
−c1

t

τ

(
1 +

c2
c1
Φ0τ

)]
= exp

[
−cε

3

t

τ

(
1 +

1

9
Φ0τ

)]
(3.21)

where Φ0 =
〈∣∣∂uz

∂z

∣∣〉
t=0

is the initial volume-averaged dilatation.This equation indi-

cates that dilatation enhances the decay of turbulent kinetic energy in inhomogeneous

compressible turbulence, albeit via TKE leaving the mixing region. There are two

factors scaling time in Eq. (5.16). The first corresponds to viscous dissipation and
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Figure 3.9: Time-evolution of dilatation for case 1 (urms,1 : urms,2 = 1 : 0, Reλ0 = 100,
red and square), case 2 (urms,1 : urms,2 = 2 : 0, Reλ0 = 160, green and
triangle), and case 3 (urms,1 : urms,2 = 3 : 0, Reλ0 = 215, blue, circle).

the second accounts for energy losses by dilatation as energy is transported out of the

mixing region.

We can therefore scale turbulent/non-turbulent mixing with different turbulent

intensities, Reynolds numbers, and turbulent Mach numbers. Case 1 in Table 5.1 is

set as the reference with uref = 1, λref = 0.05, Mat,ref = 0.1, and Reλref
= 100

representing fully developed compressible turbulence. The decay rates cε/3 and the

length scales for fully developed turbulence are dependent on Reynolds number; thus

a modification factor for the length scale, λ0/λref , is introduced,

⟨k⟩
⟨k0⟩

= exp

[
−
cεref
3

λ0

λref

t

τ

(
1 +

1

9
Φ0τ

)]
. (3.22)

Fig. 4.2 shows the time-evolution of the TKE for both turbulent/non-turbulent

mixing and the homogeneous case to verify this scaling. All the different cases collapse

into a single curve and display the exponential decay predicted by Eq. (3.22), thus
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Figure 3.10: The decay of the volume-averaged turbulent kinetic energy as a function
of time scaled by the Eq. (3.22) for case 1 (urms,1 : urms,2 = 1 : 0,
Reλ0 = 100, red), case 2 (urms,1 : urms,2 = 2 : 0, Reλ0 = 160, green), case
3 (urms,1 : urms,2 = 3 : 0, Reλ0 = 215, blue), and case 4 (urms,1 : urms,2 =
1 : 0, Reλ0 = 160, black). Solid line: turbulent/non-turbulent mixing;
dashed line: homogeneous case. Scaled time represents λ0

λref

t
τ

(
1 + 1

9
Φ0τ

)
for turbulent/non-turbulent mixing.

verifying the proposed scaling.

3.6 Conclusions

In this work, we use theory and DNS to investigate compressible turbulent/non-

turbulent mixing. We consider the juxtaposition of an initially isotropic turbulent

field to a stationary fluid and examine mixing in decaying, shearless, heterogeneous

turbulence. The decay rate of turbulence differs from that of homogeneous isotropic

turbulence because of turbulent kinetic energy transport away from the mixing region

due to dilatational effects. The mixing region grows as a power law in time consis-

tent with past theory (∼ t2/3). We demonstrate that the turbulent kinetic energy
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depends on viscous dissipation and energy transport away from the mixing region

due to dilatation. Thus, compared to the incompressible case, dilatation gives rise

to an increased decay rate, We establish the dependence of the turbulent kinetic en-

ergy on time and the parameters governing the problem (Taylor scale, rms velocity,

and initial dilatation); the DNS results agree well with the theory. This study on

turbulent/non-turbulent mixing serves as a starting point for more general studies

of shearless turbulent mixing, including possibly the role of density gradients and

acceleration.
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CHAPTER IV

Shearless Compressible Turbulent Mixing

4.1 Abstract

The classical turbulence theory of Kolmogorov for homogeneous isotropic turbu-

lence does not directly apply to mixing between regions of different turbulent inten-

sities, including if the turbulence is compressible. This study investigates the role of

compressibility and inhomogeneity on turbulent mixing with gradients in turbulent

intensity using direct numerical simulation (DNS). Two shearless turbulent fields with

different root-mean-square velocities (urms)are initially juxtaposed, such that mixing

occurs between the higher- and lower-intensity regions over time. We are specifically

interested in the role of inhomogeneity (via the ratio of turbulent intensities) and

compressibility on the growth of the mixing region and on the turbulent kinetic en-

ergy in the mixing region. We find that the mixing region growth in a power-law in

time. Dilatation in the inhomogeneous direction causes turbulent kinetic energy to

decay at a rate lower than that in the higher-intensity region but higher than that

in the lower-intensity region. These decay rates can be predicted from energy bud-

get analysis by observing that the volume-averaged dilatation does not significantly

change over time.

51



4.2 Introduction

Stratified turbulence plays an important role in geophysical fluid dynamics in-

cluding oceanic and atmospheric flows, which exhibit variations of the mean density

and turbulent intensity. For example, turbulence in a cloud increases the fraction of

aerosol droplets and generates mixing at the cloud-air interface. During this process,

the air entering the cloud accompanies heat and moisture fluxes through the inter-

face (Penc and Albrecht , 1987) and develops different types of clouds. Entrainment,

which is caused by turbulent intensity gradients, is critical in the development of

atmospheric clouds (Driedonks and Tennekes , 1984; Baker et al., 1984; Blyth, 1993;

Pruppacher et al., 1998; Mellado, 2017). This phenomenon has a significant impact

on precipitation and can lead to different types of changes in weather, which physics

can be used to develop global climate models (Emanuel and Živković-Rothman, 1999;

Cenedese and Adduce, 2010; Sahany et al., 2012; Takahashi et al., 2021). Similarly,

in the ocean, turbulence is induced by surface winds (Skyllingstad et al., 2000). Gra-

dients in velocity fluctuations and mean density as well as internal wave breaking or

topography can give rise to vertically developing mixing regions. Mixing in the ocean

creates vertical circulation that is critical for maintaining marine ecosystems and in-

fluencing weather patterns by transferring momentum and energy from the bottom

of the ocean to the surface (Garrett , 1979; Young et al., 1982; Caldwell and Mourn,

1995; St. Laurent and Garrett , 2002; Rascle et al., 2006). Therefore, to improve our

understanding of the global climate system, it is essential to isolate the effects of each

factor in stratified flows, including turbulent intensity differences. However, predict-

ing such flows is challenging due to the wide range of temporal and spatial scales,

as well as their inherent nonlinearity. For instance, because atmospheric circulation

is multiscale features, from the large motions of the cloud to interactions between

small particles of the air, theory and experiments are limited (Bryan et al., 1975;

Kousky et al., 1984; Garreaud and Aceituno, 2007; Reichler , 2009; Knietzsch et al.,
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2015; Hassan and Nayak , 2020). High-fidelity simulations are challenging due to the

exceedingly high Reynolds numbers and the lack of well-characterized initial con-

ditions. Therefore, parameterization and averaged properties of large-scale motions

are used to develop global circulation models representing oceanic and atmospheric

circulation and predicting the global climate system (Grotch and MacCracken, 1991;

Randall , 2000; Satoh, 2004; Weart , 2010). However, the predictive performance of

such calculations relies on the quality of the models.

A strategy to understand specific elements of geophysical turbulence and possibly

develop models is to use direct numerical simulations, in which all the dynamical

scales are resolved (Randall , 2000; Matsushima et al., 2021). A starting point for such

studies is the canonical problem of homogeneous isotropic turbulence (HIT), whether

forced or decaying (Rogallo, 1981; Jiménez et al., 1993; She et al., 1993; Overholt

and Pope, 1996; Moin and Mahesh, 1998; Gotoh and Fukayama, 2001; Yeung et al.,

2006; Kaneda and Ishihara, 2006; Donzis et al., 2008; Ishihara et al., 2009). HIT

can be generated both computationally and experimentally. Conventional turbulence

theory describes this cascade process and proposes scalings of the statistics in the

inertial subrange and dissipative scales based on the assumptions of an equilibrium

state of HIT at sufficiently high Reynolds numbers (Kolmogorov , 1941a,b). For HIT,

the decay of the turbulent kinetic energy (TKE) is described by the TKE equation:

d ⟨k⟩
dt

= −⟨ε⟩, (4.1)

where ⟨·⟩ represents the spatial volume-averaged quantity, k = uiui/2 is the TKE per

unit mass, and ε is the dissipation rate (Batchelor , 1953). Several studies demon-

strated that the decay of TKE obeys the power law in time as follows (Batchelor ,

1953; Saffman, 1967; Gad-el Hak and Corrsin, 1974; Lee, 1985; Mohamed and LaRue,
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1990; Burattini et al., 2006):

k ∼ (t− t0)
n, (4.2)

where t is the time, and n is the decay rate. Kolmogorov derived the -10/7 decay

law (Kolmogorov , 1941b) and an analytical approach to derive the power-law ex-

ponents using energy spectra, which is consistent with the Kolmogorov decay law

(Comte-Bellot and Corrsin, 1966). Many studies on HIT have considered the self-

similarity hypothesis of Kolmogorov, which describes universal statistics on a small

scale (Kolmogorov , 1941a,b). However, the decay rate in the grid turbulence is highly

dependent on the experimental setup, such as the type of grids or the initial con-

ditions. Moreover, perforated plates generating shearless turbulence do not exhibit

a power-law behavior away (Veeravalli and Warhaft , 1989), whereas grid turbulence

follows self-similarity in space and time. Dubrulle (2000) showed that structures

deviate from a power law with nonlinear exponents because of finite-size effects. Fur-

thermore, under certain conditions, the TKE decays as an exponential function (Kida

and Orszag , 1992; Hurst and Vassilicos , 2007; George and Wang , 2009; Krogstad and

Davidson, 2012; Pouransari et al., 2016). Further investigations are required to better

understand the decay of TKE in HIT.

Most flows in nature and engineering depart from HIT conditions, such that Kol-

mogorov’s assumptions (incompressible homogeneous isotropic flow at a sufficiently

high Reynolds number) are not valid. Many turbulent flows are heterogeneous; for

instance, the root-mean-square velocity, length scale, and/or density could vary more

or less rapidly from one region of the flow to another. This inhomogeneity gives rise

to a turbulent mixing region as turbulent eddies from one region interact with eddies

from another region. For example, in free-shear flows such as wakes, jets, and mixing

layers, the mean velocity gradient drives the turbulent mixing. The mixing region

evolves through the entrainment of large-scale motions, i.e., vortices, and diffusion at

the interface between the turbulent and the quiescent parts of the flow, across which
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mass, momentum, and energy are transferred. Such inhomogeneous turbulent flows

induce intermittent zone, which is characterized by a non-uniform spatial distribution

in the statistics of variations and energy dissipation (Bisset et al., 2002). The inter-

mittent zone shows a non-Gaussian statistical distribution, deviating from the classic

theory of turbulence and requiring anomalous scaling (Toschi et al., 1999; Laval et al.,

2001; Gualtieri et al., 2002; Matsushima et al., 2021). Researchers such as Jiménez

et al. (1993) and She et al. (1990) found that these intermittent statistics are relevant

to coherent vortical structures in incompressible, isotropic turbulence. Furthermore,

intermittent regions are found in free-shear flows, accompanied by entrainment near

the interface of the mixing region and non-uniform distributions of velocity fluctua-

tion. Matsushima et al. (2021) investigated the shearless turbulent mixing layer with

differences in TKE and found that intermittent fluctuations caused by TKE diffu-

sion are stronger in the mixing region at small scales, affecting the scaling exponents.

Therefore, the classical theory should be further modified for predicting turbulent

mixing with considering inhomogeneity.

Compressibility introduces additional challenges in the study of turbulence, as

energy couples to the dynamics. Compressible flows are involved in turbulent fluctu-

ations of thermodynamic properties, which can be decomposed into acoustic, vorticity,

and entropy modes (Kovasznay , 1953). The effects of these fluctuations are dynam-

ically combined between any two modes, which causes other modes (Lele, 1994). In

addition to modes of fluctuations, non-zero dilatation gives rise to additional energy

transfer mechanisms. Lee et al. (1991) discovered that, for decaying compressible

turbulence, the dilatational component is more intermittent and has a skewed dis-

tribution of TKE. Moreover, the dilatational component is coupled to the solenoidal

velocity field such that there is energy transfer between the two modes. However,

compressibility effects combine nonlinearly (Moyal , 1952; Chu and Kovásznay , 1958),

such that each effect must be considered separately to determine its role in turbulence.
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On the other hand, classical theory can be extended for compressible HIT because

an inertial range with universal statistics exists for compressible turbulence at high

Reynolds numbers (Aluie, 2011). However, analysis of the dilatational component

requires additional approaches because it does not adhere to Kolmogorov similarity

(Jagannathan and Donzis , 2016; John et al., 2019; Donzis and John, 2020). Kida

and Orszag (1990) found that the solenoidal velocity field is not influenced by com-

pressibility effects such that the energy spectrum is that expected for incompressible

flow, whereas the energy spectrum corresponding to the dilatational component de-

pends on the turbulent Mach number. Furthermore, Kida and Orszag (1992) and

Jagannathan and Donzis (2016) investigated the statistics of decaying compressible

turbulence for different Reynolds and turbulent Mach numbers and discovered that

the dilatation scaling depends on the turbulent Mach number. Donzis and John

(2020) suggested that the ratio of dilatational and solenoidal root-mean-square ve-

locities enables universal scaling for compressible flow. However, phenomenology in

compressible and heterogeneous flows is poorly understood, and universal scaling to

describe intermittent features in turbulence is still being investigated. Therefore,

compressible turbulent mixing, which has been overlooked in conventional turbulence

studies, must be considered.

The objective of this study is to understand the role of compressibility on shearless

turbulent mixing and of gradients in turbulent intensity on the TKE. We conduct

DNS of two juxtaposed regions of shearless turbulence with different intensities and

examine the dependence of the mixing region growth and TKE on the intensity ratio.

The remainder of this paper is organized as follows. The problem under consideration

is described in Section 4.3. The dynamics of compressible turbulent mixing, including

the mixing region growth and inhomogeneity in turbulent mixing, are examined in

Section 4.4. Section 4.5 revises the scaling for the decay of TKE and dilatation.

Section 4.6 summarizes the findings.

56



4.3 Problem Setup and Governing Equations

4.3.1 Problem Setup

We investigate compressible turbulent mixing in the presence of gradients in tur-

bulent intensity. Fig. 5.1 shows a schematic of the problem under consideration.

Two shearless HIT fields of the same fluid but with different intensities are juxta-

posed, with the inhomogeneous direction being z. The domain size is L × L × 8L

with the inhomogeneous direction being z. The domain size is L× L× 8L, which is

sufficiently large to prevent the boundaries from influencing the mixing region. The

interface between the lower- and higher-energy regions is initially located at z = 0,

and each half of the domain is made up of 4 L3 boxes. Table 5.1 lists the initial

conditions, where three cases are considered based on the initial root-mean-squared

velocity, Taylor-scale Reynolds number, and turbulent Mach number. The initial

Reynolds and turbulent Mach numbers are defined as follows:

Reλ =
urmsλ

ν
, Mat =

urms

⟨c⟩
, (4.3)

urms =

√
⟨uiui⟩
3

, λ =
⟨u2

i ⟩〈(
∂ui

∂xi

)2
〉 , (4.4)

where ⟨·⟩ represents volume-averaged quantities, urms is the root-mean-square veloc-

ity, c the sound speed, ν the kinematic viscosity and λ the Taylor microscale. The

equations are non-dimensionalized using the reference properties, which are urms,1 = 1

in the lower-energy region, ρref = ρ1, and lref = L/(2π). We apply a zero-gradient

boundary condition in the inhomogeneous direction and a periodic boundary con-

dition in others. A uniform grid is used with 256 points per L, which is sufficient

to resolve all the dynamical scales of motion (Movahed and Johnsen, 2015; Pan and

Johnsen, 2017).
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Figure 4.1: Schematic of the computational setup for compressible turbulent mixing
with gradients in turbulent intensity. The two fluids have the same prop-
erties but different root-mean-square velocity magnitudes. The initial
turbulent field in a cube of L3, which is initially homogeneous isotropic,
is juxtaposed in an inhomogeneous direction z.

urms,1 urms,2 Reλ0,1
Reλ0,2

Mat0,1 Mat0,12
case1 1 1 100 100 0.1 0.1

case2 1 2 100 156 0.1 0.2

case3 1 3 100 211 0.1 0.3

Table 4.1: Initial conditions of root-mean-square velocity magnitudes urms, the cor-
responding Reynolds numbers Reλ0 , and turbulent Mach numbers Mat0 of
fluid 1 and 2, respectively.

A passive scalar is used to quantify the mixing region growth by initializing the

interfaces as follows:

Y1(z) =
1

2

[
1− erf

(
z − z0
H

)]
, (4.5)

where z0 = 0 and H = 8L/128 (Movahed and Johnsen, 2015). The value of H

enables resolving the steep interface on the N = 128 grid in the z direction and

avoiding using additional numerical methods to describe discontinuity and minimize

artificial dissipation (Johnsen et al., 2010). Therefore, the mixing region departs from

a finite initial thickness.

To examine energy fluxes through interfaces, the control volume is defined with

the half domain 4L×L×L. Fig. 4.2 shows a schematic of the mixing region and the

left/right regions of the mixing region in the entire domain. The regions are divided

based on the mass fraction of the passive scalar, where the left and right interfaces
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Figure 4.2: Schematic of the control volume. Quantities are volume-averaged on the
mixing region (red), the left (yellow) and right (orange) sides of the mixing
regions. The total volume considered is L× L× 4L.

are located at ⟨Yi⟩ = 0.05 and ⟨Yi⟩ = 0.95. The regions are denoted as region 1,

mixing region, and region 2.

4.3.2 Governing Equations

The three-dimensional compressible Navier-Stokes equations are solved along with

the ideal gas law.

∂ρ

∂t
+

∂

∂xj

(ρuj) = 0 (4.6)

∂(ρui)

∂t
+

∂

∂xj

(ρuiuj + pδij) =
1

Re

∂τij
∂xj

(4.7)

∂E

∂t
+

∂

∂xj

[uj(E + p)] =
1

Re

[
∂(ujτij)

∂xj

+
∂

∂xj

(
κT

∂T

∂xj

)]
(4.8)

p = ρRT (4.9)

Here, E = ρ (e+ uiui/2) is the total energy per volume, e = p/ (ρ(γ − 1)) the internal

energy per mass, ρ the density, uj the velocity, p the pressure, T the temperature,

γ the specific heats ratio, R the gas constant, κT the thermal conductivity, and Re

the scaled Reynolds number; Reλ0 = Re
[
ρ1urms,1λ01

µ1

]
. The specific heat ratio is set to

γ = 1.4, and a Newtonian gas with viscous stress tensor τij is considered:

τij = µ

[(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3

∂uk

∂xk

δij

]
. (4.10)
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The transport equation for the passive scalar is also solved for analysis purposes:

∂(ρYi)

∂t
+

∂(ρujYi)

∂xj

=
1

ReSc

∂

∂xj

(
ρ
∂Yi

∂xj

)
, (4.11)

where Sc = µ1/ρ1D is the Schmidt number, D the mass diffusivity, and Yi the mass

fraction of fluid i = 1 or 2. In this study, the kinematic viscosity and diffusivity are

equal; that is Sc = 1. These equations are non-dimensionalized based on the param-

eters of a fluid with less turbulent energy: uref = 1, ρref = ρ1, and lref = L/(2π).

An explicit fourth-order Runge-Kutta scheme and high-order finite differences (i.e.,

sixth-order explicit central differences) are used in time and space to solve the above

equations. The problem under consideration does not involve shocklets, because the

turbulent Mach numbers are relatively low (Mat < 0.4). Thus, shock capturing or

artificial dissipation is not required. The split form is applied in the convective fluxes

based on the form used by Blaisdell et al. (1996):

∂

∂xj

(ρujϕ) =
1

2

[
∂

∂xj

(ρujϕ) + uj
∂

∂xj

(ρϕ) + ρϕ
∂uj

∂xj

]
. (4.12)

Here, ϕ = (1, ui, (E + p)/ρ, Yi), and the flux of Ducros et al. (2000) is implemented.

The non-conservative form is used for discretizing the diffusive terms:

∂

∂xj

(
µ
∂uj

∂xj

)
= µ

∂2uj

∂xj
2
+

∂µ

∂xj

∂uj

∂xj

. (4.13)

These forms prevent aliasing errors by minimizing the unphysical pile-up of energy

at high wavenumbers, resulting in nonlinear stability and a better simulation of com-

pressible turbulence (Pirozzoli , 2011).
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4.3.3 Initialization and the Decay of Shearless Homogeneous Isotropic

Turbulence

We use shearless HIT with no mean velocity to avoid coupled reactions accompa-

nied by shear or energy production and to isolate the effect of intensity gradients in

turbulent mixing. The initialization process suggested in Chater II is used for gener-

ating shearless HIT with an equilibrium state of turbulence with desired properties

from the start. This rescaled shearless HIT is not interrupted by shear force or TKE

production and decays only by dissipation. For shearless turbulence, the dissipative

scale diffuses fastest, while eddies of the energy-containing length scale break and

transfer energy to the smaller eddies; therefore, the Taylor microscale is invariant in

time during the decay process (Davidson, 2015). Hence, the temporal evolution of

TKE is derived as an exponential function of time (τ = λ0/urms0 is an initial eddy

turnover time) for shearless turbulence at sufficiently high Reynolds numbers:

⟨k⟩
⟨k0⟩

= exp
[
−cε

3

(
t
/
τ
)]

. (4.14)

where cε = ⟨ε⟩ lf/u3
rms0

and lf denotes the volume-averaged integral scale as deter-

mined in Chapter III.

4.4 Dynamics of Compressible Turbulent Mixing

4.4.1 Qualitative Results

We first examine the qualitative behavior of compressible turbulent mixing with

turbulent intensity gradients. Fig. 4.3 shows two-dimensional contours of mass frac-

tions of the passive scalar for mixing with differences in urms magnitudes at different

times to observe the growth of the mixing region. In Fig. 4.3(a,d,g), for turbu-

lent mixing with no intensity gradients, i.e., homogeneous isotropic turbulence, the
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growth is symmetric about the mid-plane (z = 0). However, as the intensity differ-

ences increase to urms,1 : urms,2 = 1 : 2 and 1 : 3, the mixing regions evolve more

extensively, and more small-scale eddies develop. At later times in Fig. 4.3(g,h,i),

larger-scale structures are observed as small-scale eddies are dissipated. Additionally,

with increasing urms, there is more asymmetry in the mixing as the higher-energy

flow penetrates deeper into the lower-energy region, which enhances the growth rate

of the mixing region. Furthermore, the penetration of the higher-energy flow pushes

the interface of ⟨Yi⟩ = 0.5 towards the lower-energy region and causes more fluctu-

ations in the lower-energy region, which also lead to enhanced mixing. Therefore,

such qualitative results provide insight into the growth of the mixing region with the

behavior of eddies depending on turbulent intensity.

To identify compressibility in turbulence, contours of vorticity magnitude and di-

latation for Case 3 (urms,1 : urms,2 = 1 : 3) are presented in Fig. 4.4. The dilatation

component in compressible turbulence is comprised of different structures from vorti-

cal (rotational) structures. The contour of vorticity shows the rotational structures,

where the more intense eddies are visible in the higher-energy region. In contrast,

sheet-like structures of the dilatation in the compressible flow are observed, which can

induce additional mixing mechanisms. Therefore, as compressibility in turbulence is

qualitatively confirmed, further quantitative analysis for dilatation is explored in the

following sections.

4.4.2 Mixing Region Growth

The mixing region develops as turbulent eddies from one region exchange momen-

tum and energy with eddies from the other side. The mass fraction of the passive

scalar determines the mixing region width, which is defined as the distance between

0.05 ≤ ⟨Yi⟩ ≤ 0.95 (Movahed and Johnsen, 2015). This method is effective for an-

alyzing turbulence behavior because the fluctuations of the turbulent flow make it
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Figure 4.3: Two-dimensional contours of the mass fraction of passive scalar at
t = 0.142 (a,b,c), t = 1.236 (d,e,f ), and t = 2.06 (g,h,i) for Case 1
(urms,1 : urms,2 = 1 : 1) (a,d,g), Case 2 (urms,1 : urms,2 = 1 : 2) (b,e,h), and
Case 3 (urms,1 : urms,2 = 1 : 3) (c,f,i). The mixing develops in an inhomo-
geneous direction z, which is the vertical direction, and the white line at
the center corresponds to the mid-plane (z = 0). The blue and red col-
ors represent the higher-intensity region ⟨Yi⟩ = 0 and the lower-intensity
region ⟨Yi⟩ = 1, respectively.
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(a) (b)

Figure 4.4: Contours of (a) vorticity magnitude and (b) dilatation at t = 2τ for Case
3 (urms,1 : urms,2 = 1 : 3). The area of L × 2L shows the mixing region
with the black dotted line at z = 0. The smaller scales are observed in the
higher-intensity region for vortical and sheet-like compressible structures.

difficult to have a consistent criterion for distinguishing features from the different re-

gions. Fig. 4.2 illustrates a schematic diagram of the mixing region and the left/right

regions of the mixing region in the entire domain, which are divided based on the

mass fraction of the passive scalar. It is advantageous to analyze the mixing physics

such as energy transfer through the interfaces. For shearless turbulence, the mixing

region obeys self-similarity and develops as a power law. Fig. 4.5 shows the tem-

poral evolution of the mixing region on the left and right sides of the mixing region

and the total mixing region for mixing with different gradients, which are denoted as

hL = z0 − zY1=0.05, hR = zY1=0.95 − z0, and ht = hL + hR, respectively. The mixing

region widths propagate as a power law with the same exponent 0.43 in time scaled

by Taylor microscale and eddy turnover time. The total mixing region width, which

is ht = hL + hR, is scaled as

ht

/
λ0 = ch ×

(
t
/
τ
)0.43

(4.15)

where ch ≈ 5.0. The mixing region width is scaled by the initial Taylor microscale,

which collapses all cases with different intensity gradients; therefore, large-eddy mo-

tions dominate the growth of the mixing region.
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(a) (b)

(c)

Figure 4.5: Evolution of the mixing region with respect to time normalized by eddy
turnover time. The widths between the mid-plane z = 0 and the (a) left
or (b) right interfaces grow as a power law of exponent 0.43. (c) The total
mixing region width has the same growth rate, which is all normalized
by the initial Taylor microscales for Case 1 (red, square), Case 2 (green,
delta), and Case 3 (blue, circle).

65



4.4.3 Inhomogeneity in Turbulent Mixing

Inhomogeneous flow such as the turbulent/turbulent interface exhibits intermit-

tent large-scale eddies penetrating into the other region while small-scale nibbling

occurs. The entrainment of large-scale motions is a manifestation of anisotropy in

the flow, as the energy dissipation rate is spatially non-uniform. In Fig. 4.6, the

kurtosis K in the inhomogeneous direction z within the mixing width is shown for

Case 1 (urms,1 : urms,2 = 1 : 1) and 3 (urms,1 : urms,2 = 1 : 3) at different times.

For Case 1, kurtosis is relatively constant, showing minor fluctuations close to what

is expected for Gaussian statistics (K = 3.26). In contrast, Case 3 exhibits the in-

crease of kurtosis on the lower intensity side early on (until t ≈ 3τ) in the turbulent

mixing. To determine the cause of this intermittent behavior, Fig. 4.7(a-b) shows

probability density functions (PDFs) of dilatation for Case 1 and 3, which are ob-

tained at different locations. For the homogeneous case, the PDFs follow a Gaussian

distribution at all locations. However, for the inhomogeneous cases, we observe long

tails of the PDF deviating from a Gaussian distribution. Additionally, at the center

of the mixing region where ⟨Y1⟩ = 0.5, the PDF is tilted in the negative direction,

which indicates that compressibility, i.e., dilatation, transfers energy along the gradi-

ent. Fig. 4.7(c-d) shows PDFs of vorticity and dilatation at t = 2τ and ⟨Y1⟩ = 0.5,

at which point two flows are evenly mixed. The PDFs of directional vorticities rep-

resent the solenoidal part of the velocity fields. The vorticity PDFs in Fig. 4.7(c) do

not follow Gaussian distributions but present bell-shaped, symmetric, and isotropic

distributions. Nonetheless, the PDFs of dilatation are asymmetric and tilted in the

negative direction, as presented in Fig. 4.7(d). Therefore, these results demonstrate

that inhomogeneity in intensity gradients causes intermittent behavior within the

lower-energy region of turbulent mixing.
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Figure 4.6: Kurtosis in the inhomogeneous direction z at different times for (a) Case
1 (urms,1 : urms,2 = 1 : 1) and (b) Case 3 (urms,1 : urms,2 = 1 : 3).

4.5 Decay of Turbulent Kinetic Energy in Compressible Tur-

bulent Mixing

4.5.1 Scaling for the Decay of Turbulent Kinetic Energy in Shearless

Turbulence

We consider the control volume with region 1, mixing region, and region 2 to

examine the energy transfer through the interface, as illustrated in Fig. 4.2. Subse-

quently, the total TKE in turbulent mixing can be estimated by the sum of the TKE

with coefficients in each region as follows:

⟨kt⟩
⟨kt,0⟩

=
∑

n=1,m,2

an
⟨kn⟩
⟨kn,0⟩

= a1
⟨k1⟩
⟨k1,0⟩

+ am
⟨km⟩
⟨km,0⟩

+ a2
⟨k2⟩
⟨k2,0⟩

(4.16)

where the indices 1, m, and 2 represent the region left of the mixing region, the mixing

region, and the region right of the mixing region. The coefficients an are determined

based on the volume of each region.
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(a) (b)

(c) (d)

Figure 4.7: Probability density functions (PDFs) of dilatation at different locations in
z for (a) Case 1 (urms,1 : urms,2 = 1 : 1) and (b) Case 3 (urms,1 : urms,2 =
1 : 3) at t = 2τ . At the center of the mixing region, where the mass
fraction ⟨Yi⟩ = 0.5, (c) the PDFs of vorticity in x, y, and z directions and
(d) the PDF of dilatation are compared for Case 3 at t = 2τ .
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a1 =
(2L− hL)

4L
, a2 =

(2L− hR)

4L
, am =

(hL + hR)

4L
(4.17)

where the summation of coefficients is unity; a1 + a2 + am = 1, and Eq. (4.15) can

be used for hL and hR.

In Chapter III, we investigate the decay of TKE in shearless turbulent and non-

turbulent mixing. The TKE decays by viscous dissipation in the same manner as HIT,

but additional energy loss occurs because of compressibility effects and inhomogeneity.

Thus, both the triple moment transport and TKE dissipation budgets play a role in

the temporal decay of TKE. The triple moment transport, that is the energy flux, can

be decomposed into advection and dilatation of the TKE. As the volume is averaged

while considering the mixing region growth, the advection term is equal to zero and

only the dilatation of TKE remains in the flux. Therefore, the TKE budget equation

is reduced as follows:

∂k(x, t)

∂t
= −εk(x, t)−

∣∣∣∣k(x, t)∂uj(x, t)

∂xj

∣∣∣∣ . (4.18)

We apply this equation to shearless compressible turbulent mixing with gradients in

turbulent intensity. For turbulent mixing, the energy flux term, which is reduced

as the dilatational TKE, has different signs towards each interface because energy

fluxes through the energy gradients, i.e., from the higher- to lower-energy regions;

therefore, the higher-energy region is deprived of energy, which is accumulated in the

lower-energy region. Hence, the dilatational TKE accelerates the decay process in the

higher energy region because of the energy loss, whereas the decay rate decreases in the

lower energy region because the transferred energy is accumulated. Consequently, the

energy flux term in Eq. (4.18) can be described as a difference in dilatation between

region 1 and 2, which is negative in the region 2 (energy loss) and positive in the

region 1 (energy gain), respectively. The temporal decay of the TKE is described as
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an exponential function of time and dilatation differences between the higher- and

lower-energy regions:

⟨k⟩
⟨k0⟩

= exp

−
c1 (t/τ)± c2

t∫
0

〈∣∣∣∣∂uz(z, t)

∂z

∣∣∣∣〉
2

−
〈∣∣∣∣∂uz(z, t)

∂z

∣∣∣∣〉
1

dt

 , (4.19)

where c1 is acquired as dissipation quantity, and c2 depends on the flow conditions.

Here, we assume that
∫ h

z0

∣∣∣k(x, t)∂uj(x,t)

∂xj

∣∣∣ dz ≈
∫ h

z0
k(x, t)dz ×

∫ h

z0

∣∣∣∂uj(x,t)

∂xj

∣∣∣ dz. The

temporal decay of TKE is shown in Fig. 4.8 for turbulent mixing with different

intensity gradients in the region 1, the mixing region, and region 2, respectively. The

TKE in each region decays as an exponential function in time but shows different

decay rates depending on the turbulent intensity. Case 1 corresponds to homogeneous

isotropic turbulence and has no change in the decay rate compared to HIT. However,

for Cases 2 and 3, the decay rates depend on the intensity of region 2. As energy is

transferred from the higher energy region 2 into region 1, the turbulence decays more

slowly in the region 1 because of transferred energy; thus, the decay rates decrease

compared to the HIT case. Conversely, in the mixing region and region 2, the TKE

decays faster than HIT due to energy loss; thus the decay rates increase. Therefore,

these differences between HIT and flows in each region indicate energy loss/gain

transferred by dilatation, which is described as dilatation differences with different

signs in Eq. (4.19). Fig. 4.8(d-f) shows the decay of TKE as a function of scaled time,

as calculated using the scaling law in Eq. (4.19) with c1 = cε/3 and c2/c1 ≈ 2/9. As

a result, the discrepancy between HIT and turbulent mixing in regions 1 and 2 can

be compensated by considering dilatation, and the flows in turbulent mixing decay

at the same rate as that in HIT. Therefore, the proposed scaling law expresses the

decay of TKE in compressible turbulent mixing by considering energy gain or loss by

dilatation in the lower- and higher-energy regions, respectively.
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(a) (d)

(b)

(c)

(e)

(f)

Figure 4.8: Temporal evolution of TKE in region 1 (a,d), the mixing region (b,e),
and region 2 (c,f ) for case 1 (red, square), case 2 (green, delta), and case
3 (blue, circle) as a function of time normalized by eddy turnover time
(a,b,c) and the scaled time applying Eq. 4.19 (d,e,f ). The results are
compared with HIT (dotted lines).
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4.5.2 Scaling of Dilatation in Shearless Turbulent Mixing

Dilatation affects the decay of TKE in turbulent mixing via energy transfer from

the higher- to the lower-energy regions, as described in Eq. (4.19). Therefore, we

evaluate the volume-averaged dilatation in regions 1 and 2. The volume-averaged

dilatation integrated in time defined as

θ =
1

t

t∫
0

〈∣∣∣∣∂uz

∂z

∣∣∣∣〉/〈∣∣∣∣∂uz

∂z

∣∣∣∣〉
0

dt. (4.20)

Fig. 4.9 shows θ and turbulent Mach numbers as a function of time. The time-

averaged dilatation does not significantly change with respect to time and remains

close to 1.0. Therefore, by applying θ = 1, the scaling for the decay of TKE in Eq.

(4.19) can be revised as follows:

⟨k⟩
⟨k0⟩

= exp

[
−cε

3

t

τ

(
1± 2

9
Φ0τ

)]
, (4.21)

where Φ0 =

〈∣∣∣∣∂uz

∂z

∣∣∣∣〉
0

is the initial volume- and time-averaged dilatation. The di-

latation in compressible turbulent mixing contributes to enhancing or decreasing the

decay rate. However, at late times (t ≳ 6τ), θ decreases slightly with time, devi-

ating from the value of unity. The results indicate that θ goes below unity when

Mat ≲ 0.05. In the regime of Mat ≲ 0.05, The proportion of dilatational energy

in the total energy decreases significantly (Sethuraman and Sinha, 2020); thus the

compressibility is not strong enough to transfer energy. Therefore, the scaling law

for decaying TKE in shearless turbulent mixing can effectively predict the physics as

long as the turbulent Mach number is greater than 0.05.
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Figure 4.9: Time evolution of the volume- and time-averaged dilatation (a,b) and
turbulent Mach numbers (c,d) for case 1 (red, square), case 2 (green,
delta), and case 3 (blue, circle), averaged in region 1 (a,c) and region 2
(b,d), respectively.
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4.6 Conclusions

We conduct DNS to investigate the effects of compressibility on turbulent/turbulent

mixing with different turbulent intensities and develop a scaling for the growth of the

mixing region and the decay of TKE for shearless compressible turbulent mixing.

Kolmogorov’s classical turbulence theory, which assumes incompressible, homoge-

neous, isotropic turbulence, cannot be applied to compressible turbulent mixing. To

evaluate the effect of inhomogeneity in turbulent intensities, we initially juxtapose

HIT fields with different urms magnitudes. We use shearless turbulence to isolate

the role of turbulent intensity gradients in turbulent mixing while eliminating the

effect of mean shear. Along the turbulent/turbulent interface, higher-intensity fluid

penetrates deeper into the lower-intensity region. Deviations in the kurtosis suggest

intermittent behavior. The PDFs of dilatation are skewed toward the negative, thus

indicating a greater propensity toward compression. We observe the mixing region

develops as a power law in time with the exponent 0.43, which scales consistently

with the initial Taylor microscale and eddy turnover time.

In turbulent/turbulent mixing, the TKE evolution in the mixing region depends

on net energy fluxes due to the differential in turbulent kinetic energy, which is trans-

ferred via dilatational TKE across the confines of the mixing region. As a result, the

TKE decays as an exponential function of both the time and dilatation, which are

derived from the viscous dissipation and dilatation of TKE. The energy transfer from

the higher- to the lower-energy regions causes a change in the decay rate of TKE. In

the higher-intensity region, energy loss enhances the decay rate, whereas the decay

rate decreases in the lower-intensity region because of the accumulated energy. The

new scaling for the temporal evolution of TKE describes these energy fluxes as differ-

ences in dilatation between the higher- and lower-energy regions. Furthermore, the

averaged dilatation θ is invariant in time for Mat ≲ 0.05, which leads to completing

the scaling in terms of the initial dilatation. Therefore, the decay of TKE can be
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determined as an exponential function of time, dissipation quantity (Reynolds num-

ber), initial urms, initial Taylor microscale, and initial dilatation. In future work, we

will focus on the geometrical effects of compressible turbulent mixing.
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CHAPTER V

Geometrical Effects of Compressible Turbulent

Mixing

5.1 Abstract

While turbulent/non-turbulet mixing has been investigated in planar geometries

including in the compressible regime, convergence and divergence effects (e.g., cylin-

drical or spherical geometries) on the mixing are unknown. Direct numerical simula-

tions (DNS) are performed to determine the role of geometrical effects on the mixing

of turbulence adjacent to the non-turbulent flow. A cylindrical region of shear-free

homogeneous isotropic turbulence (HIT) with different root-mean-square velocities

(urms) are initialized in an otherwise stationary flow. Over time, the turbulent ki-

netic energy (TKE) decays and a mixing region develops. Dimensional analysis is

performed to determine the temporal growth of the mixing region. A self-similarity

behavior with t1/2 is observed for the cylindrical case, compared to the well-known

result of t2/3 for the planar case. This result agrees well with the DNS. The exponen-

tially decaying scaling of TKE in time accounting for energy transfer by dilatation and

viscous dissipation is extended to account for the diverging geometry. This scaling is

valid for the cylindrical geometry because the dissipation rate depends on the initial

HIT field and therefore is the same for the cylindrical and planar cases. However, the
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role of the geometrical effect becomes apparent in energy transfer by dilatation.

5.2 Introduction

In a variety of flows including jets, wakes, and mixing layers, a region of tur-

bulence is adjacent to the non-turbulent region (e.g., irrotational or laminar), such

that mixing occurs between the two regions. At the turbulent/non-turbulent inter-

face (TNTI), a turbulent mixing region develops as enstrophy in the turbulence is

transported into the non-turbulent region, and the turbulence entrains non-turbulent

patches of fluid into the turbulent region. The entrainment of large scales and tur-

bulent diffusion on small scales determine the interface dynamics by transferring

mass, momentum, and energy. The large-scale motions hold the dynamics in the

turbulent/non-turbulent mixing layer, whereas the intensive vortical structures dif-

fuse towards the non-turbulent region. According to these large- and small-scale

dynamics, the growth was shown to be self-similar, which makes it possible to scale

the mixing quantities (Ishihara et al., 2013; Kwon et al., 2014; da Silva et al., 2014a,b;

Eisma et al., 2015): the temporal evolution of the mixing layer is proportional to the

Taylor microscale (Dimotakis , 2000; Bisset et al., 2002; Gaskin et al., 2004; Wester-

weel et al., 2005; Hunt et al., 2006), while it was shown to scale with the Kolmogorov

scale in shearless turbulence (Mathew and Basu, 2002; Chauhan et al., 2014; Breda

and Buxton, 2019; Zecchetto and da Silva, 2021). However, it remains under debate

which length scale determines the mixing mechanisms in the TNTI.

Turbulent/non-turbulent mixing in a planar geometry was explored in Chapter

III. They observed that additional energy transfer away from the mixing region oc-

curs since there is no reciprocal transfer from the non-turbulent region and derived an

expression for the time evolution of the turbulent kinetic energy (TKE). The effect of

geometry (e.g., cylindrical or spherical) on TNTI has been investigated (Bell , 1951;

Plesset , 1954; Mikaelian, 1990; Kumar et al., 2003; Mikaelian, 2005; Yu and Livescu,
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2008; Lombardini and Pullin, 2009; Mankbadi and Balachandar , 2012; Lombardini

et al., 2014a,b). The interfacial instability that develops in a non-planar geometry

involves different physics. For instance, the distances between vortical structures

are changed for diverging or converging interfaces, which affects their interactions.

Lombardini et al. (2014a) studied turbulent mixing evolving from the interaction of

a shock with a perturbed interface between fluids of different densities in a spherical

geometry. Owing to the interface geometry, the growth of the interface is radially

accelerated or decelerated, and its rate is different from that in a planar geometry

because the interface converges or diverges as a result of the shock. Yu et al. (2021)

used direct numerical simulation (DNS) and large-eddy simulation to investigate the

evolution of an initially spherical region of incompressible homogeneous isotropic tur-

bulence. They found that the turbulence remains homogeneous in the deep region

near the center and obeys Saffman’s decay law. They observed the intermittent ejec-

tion of integral-scale structures, e.g., vortex rings, from the interface. Furthermore,

Lombardini et al. (2014b) observed anisotropy at large scales in spherical turbulent

mixing. Although directional Taylor microscales exhibit radial anisotropy, the flow is

isotropic at the Kolmogorov scale. Mathew and Basu (2002) found that small-scale

structures are dominant in entrainment at the TNTI of a cylindrical jet flow. The

cylindrical flow showed behavior different from that of a planar mixing layer because

vortex rings are generated and break down near the interface.

Compressibility complicates the analysis as thermodynamics are coupled to the

flow dynamics (Lele, 1994). Pressure-dilatation acts as compressible dissipation and

acts to reduce the growth of TKE (Sarkar et al., 1991; Sarkar , 1992). Energy trans-

fer to the far field by acoustic radiation is generated for inhomogeneous compressible

flows. These compressibility effects produce changes in pressure and velocity fields,

which can be decomposed into solenoidal and dilatational parts. The behaviour of

the solenoidal velocity field is similar to that of an incompressible flow; thus, its quan-
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tities can be scaled well with classical turbulence theory (Jagannathan and Donzis ,

2016). However, the dilatational part of the flow fails universality in scaling with the

Kolmogorov theory (Donzis and John, 2020). Therefore, the scaling of compressible

flow should be further studied.

The role of compressibility on turbulent mixing is discussed in Chapter III for

planar geometries, i.e., a planar turbulent front. The growth rate of the mixing layer

is expected to follow a power law with the exponent of 2/3, which corresponds to the

analysis of Barenblatt et al. (1987). In compressible turbulent mixing with gradients

in intensity, dilatation transfers energy from higher- to lower-energy regions, which

enhances the decay of TKE. This investigation is extended to determine the geomet-

rical effects of turbulent mixing. The goal of this work is to understand the role of

geometry in compressible turbulent/non-turbulent mixing, in particular on the mix-

ing region growth and the turbulence in the mixing region. The focus is on cylindrical

geometries: an initially cylindrical region of shearless homogeneous isotropic turbu-

lence is placed in a stationary fluid and left to freely evolve. Dimensional analysis and

direction numerical simulation are used to predict the time evolution of the mixing

region growth and of the turbulent kinetic energy of the flow, while energy budget

analysis is used to examine the mechanisms responsible for this behavior. This paper

is organized as follows. The problem under consideration and governing equations

are described in Section 5.3. Section 5.4 introduces the geometrical effects on the

development of the mixing region and the decay of TKE for planar and cylindrical

geometries. Section 5.5 summarizes the findings.

5.3 Problem Setup

We examine differences in the propagation of a turbulent front in two dimensions

(2D cylindrical geometry) compared to one dimension (1D planar geometry). Fig.

5.1 shows schematics of the initial turbulent fields for 1D planar and 2D cylindrical
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geometries. Each turbulence field is initialized in a periodic cube of size L = 2π,

generated by the initialization of Rogallo (1981) and the rescaled process of An and

Johnsen (2018). This field achieves an equilibrium state with the desired properties

from the beginning. The characteristic length d0 for the 2D case is the diameter,

while for the 1D case, it is the width. Uniform grids of 512 points per L are used,

which are sufficient to resolve all dynamic scales of motion (Movahed and Johnsen,

2015; Pan and Johnsen, 2017). Periodic boundary conditions are applied in all di-

rections. The turbulence has initial root-mean-square velocity urms, while the outer

region is stationary with zero velocity. Table 5.1 lists the initial conditions. Turbu-

lent physics with different initial root-mean-square velocities and the corresponding

Reynolds numbers and turbulent Mach numbers are explored, but the density, pres-

sure, and temperature are set to be constant: P0 = T0 = 8π2. The initial Reynolds

numbers based on the Taylor microscale and turbulent Mach number are defined as

follows:

Reλ =
urmsλ

ν
, Mat =

urms

⟨c⟩
, (5.1)

urms =

√
⟨uiui⟩
3

, λ =
⟨u2

i ⟩〈(
∂ui

∂xi

)2
〉 (5.2)

where ⟨·⟩ denotes a volume-averaged quantity, urms the root-mean-square velocity, c

the sound speed, ν the kinematic and λ the Taylor microscale.

In shearless turbulence, the flow decays only as a result of viscous diffusion, with

no superposed effects caused by the shear force or energy production. Therefore, only

the dissipation rate in the TKE budget plays a role in decaying the TKE as follows:

⟨k⟩
⟨k0⟩

= exp
[
−cε

3

(
t
/
τ
)]

, (5.3)

where k = uiui/2 is the TKE per mass, cε = ⟨ϵ⟩Lf/u
3
rms the dissipation quantity,

Lf the volume-averaged integral scale, and τ the initial eddy turnover time. For
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Figure 5.1: Configurations of initial setups for shearless, compressible turbulence with
different geometries, planar and cylindrical, in a cube of volume L3. The
initial root-mean-square velocity magnitude urms,1 varies, but the viscos-
ity is constant.

geometry d0/L λ0/L urms,1 Reλ0,1 Mat0,1
case1 plane (1D) 0.5 0.25 1 100 0.1

case2 plane (1D) 0.5 0.20 2 156 0.2

case3 cylinder (2D) 0.5 0.25 1 100 0.1

case4 cylinder (2D) 0.5 0.20 2 156 0.2

Table 5.1: Summary of initial parameters for the different cases under consideration.

shearless flow, the Taylor microscale can be assumed to be constant in decaying

shearless turbulence in an early process.

5.4 Results

5.4.1 Evolution of the Mixing Region

We examine the time evolution of the mixing region width and seek to determine

its scaling in time. Fig. 5.2 shows a schematic diagram of the mixing region for

the 2D geometry. The outer, inner, and initial radii are rout, rin, and r0, respec-

tively, and outer and inner mixing region widths are defined as hout = rout − r0 and

hin = r0 − rin, respectively. We consider both diverging and converging of the outer

and inner interfaces, which are not observed in the 1D geometry. As described in
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Chapter III, for turbulent/non-turbulent mixing, the turbulence has vortical struc-

tures, which entrain the non-turbulent region, and diffuses at small scales across the

TNTI, which generates fluctuations in the non-turbulent flow and advances the in-

terface toward the non-turbulent region; consequently, the mixing region grows. For

the outer mixing region hout, the propagation of the interface separating the turbu-

lent and non-turbulent regions can be described as a power law because the mixing

region in shearless turbulent mixing is self-similarity in time. We can use dimensional

analysis to develop a scaling for the outer width of the mixing region.

Q1d = k0d0[L
3T−2] or Q2d = k0A0[L

4T−2],

t[T ],

hout[L]

hout,1d ∼ Q
1/3
1d t2/3 (5.4)

hout,2d ∼ Q
1/4
2d t1/2 (5.5)

Here, Q is the initial TKE per mass, and d0 and A0 = πr20 are the initial diameter

of the plane and initial area of the cylinder, respectively. For turbulence with a

1D geometry, the mixing region grows as a power law of 2/3 in time for h(t) ≪ r0

(Barenblatt et al., 1987). For the 2D geometry, dimensional analysis suggests that

the growth rate is 1/2.

Fig. 5.3 shows the temporal evolution of the outer and inner mixing regions for

1D planar and 2D cylindrical turbulence geometries. The DNS results with different

urms magnitudes show consistency with the dimensional analysis of Eqs. (5.4) and

(5.5), which follow the power law with the expected exponents. For the 1D geometry

in Fig. 5.3(a-b), the outer and inner interfaces symmetrically propagate at a rate of

2/3, which is consistent with the dimensional analysis of Eq. (5.4). Likewise, in Fig.
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Figure 5.2: Schematic of the mixing region for the 2D geometry. Based on the initial
radius r0, the outer and inner mixing region widths are defined as hout =
rout − r0 and hin = r0 − rin, respectively.

5.3 (c), the outer mixing region width in the 2D case develops as a power law of 1/2,

as obtained in Eq. (5.5). However, in contrast to the 1D geometry, the radii of the

inner interface gradually decrease. For the inner mixing region width hin, the radius

rin decreases as the interface propagates toward the center of the cylinder.; therefore,

the converging geometry enhances the mixing, and hin grows faster than the width

of the outer mixing region hout. The growth exponent of the inner interface obtained

from the DNS is 4
/
5. Therefore, the scalings of the mixing region widths for 1D

planar and 2D cylindrical turbulence can be summarized as follows:

hout,1d = hin,1d ∼
(
t
/
τ
)2/3

, (5.6)

hout,2d ∼
(
t
/
τ
)1/2

, (5.7)

hin,2d ∼
(
t
/
τ
)4/5

. (5.8)

Here, the turbulence characteristics are determined by the parameters of the initial

TKE Q, initial Taylor microscale λ0, and the eddy turnover time τ . The scaling
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(a) (b)

(c) (d)

Figure 5.3: Growth of the mixing region width relative to d0 for the (a, c) 1D and
(b, d) 2D geometries. The thickness of the outer (a, b) and inner (c, d)
layers are separately evaluated. The mixing region width h propagates
as a power law with exponents of 2/3 and 1/2 for the 1d and 2d cases,
respectively.

indicates that the evolution of the mixing region is influenced by the large-scale

structures with a length scale of the Taylor microscale.

To estimate the radius of the inner interface rin in cylindrical turbulent mixing, we

leverage the characteristics of the passive scalar. Fig. 5.3(a-b) show that the passive

scalar exhibits symmetric development of the mixing region for the outer and inner

interfaces in the 1D geometry. Thus, we hypothesize that fluxes of mass and energy

generate mass and energy exchanges through the surface of the interface, which are
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conserved in the volume of the mixing region. This hypothesis implies that the areas

of the outer and inner mixing regions are the same in the cylindrical turbulent mixing

of the passive scalar; (r2out − r20) π = (r20 − r2in) π. This approach makes it possible to

derive the inner radius rin as follows:

r2in = 2r20 − r2out. (5.9)

The time evolution of the inner radius r0 is compared with the results from Eq.

(5.9) in Fig. 5.4. This approach using Eq. (5.9) accurately predicts the propagation

of the inner interface at early times (t ≤ 5τ), but the inner radius deviates from

the estimation at later times. It is presumed that the interactions between vortical

structures are enhanced as the inner radius decreases. These interactions produce

larger structures near the TNTI and accelerate the growth of the mixing compared

to the outer region of the mixing layer, in which the distance between turbulent

structures gradually increases over time.

5.4.2 Decay of Turbulent Kinetic Energy

Because the TKE decays only by viscous dissipation for shearless HIT, the TKE

balance equation can be reduced as follows:

d ⟨k⟩
dt

= −⟨ε⟩, (5.10)

where ⟨·⟩ represents the spatial volume-averaged quantity, and k and ε denote the

TKE per mass and the dissipation rate, respectively. For shearless turbulence, the

smallest scale, that is the dissipative (Kolmogorov) scale, diffuses predominantly;

therefore, scales larger than the dissipative scale are invariant during the decay pro-

cess. Hence, the Taylor microscale sets to be constant (λ ≈ λ0). As a result, the

decay of TKE is obtained as an exponential function of time, and the decay rate is

85



Figure 5.4: Time evolution of the inner radius rin for turbulent mixing with differ-
ent urms magnitudes in a 2D geometry. The DNS results (circles) are
compared with the results from Eq. (5.9) (solid lines).

determined by the dissipation quantity cε as Eq. (5.3), as determined in Chapter III.

In Chapter III, we demonstrate that TKE convection due to dilatational motions

must be accounted for in the propagation of planar turbulence. It is further expected

that a diverging geometry would need to be taken into account in the energy balance.

The temporal decay of TKE for the 1D and 2D cases with different initial urms

magnitudes are shown in Fig. 5.5 with comparison to HIT. As expected from Eq.

5.3, the HIT decays exponentially over time, whereas turbulence decaying near a

non-turbulent region decays more rapidly. In particular, the 2D geometry exhibits

the fastest decay rate. To determine the reason for the discrepancy in the decay rates,

we examine the TKE equation for inhomogeneous compressible turbulence:

∂k(x, t)

∂t
= −εk(x, t)−

∣∣∣∣k(x, t)∂uj(x, t)

∂xj

∣∣∣∣ , (5.11)
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(a) (b)

Figure 5.5: Temporal decay of TKE for 1D planar (square) and 2D cylindrical (cir-
cle) turbulence geometries. Two different urms magnitudes are consid-
ered, that are (a) urms = 1 and (b) urms = 2, which are compared with
homogeneous isotropic turbulence (black, solid line).

where the temporal decay of the TKE is equivalent to the dissipation rate and di-

latational TKE. Fig. 5.6 shows the dissipation rate as a function of time for the

1D and 2D geometries with different initial turbulent intensities. The dissipation

rate is determined by the initial turbulent intensity and length scale and thus the

Reynolds number and turbulent Mach number. However, the dissipation rate is rel-

atively insensitive to the initial geometry (1D planar vs. 2D cylindrical). Therefore,

the discrepancy in TKE between the 1D and 2D cases can thus be attributed to com-

pressibility effects for inhomogeneous flows, i.e., the last term in Eq. (5.11). This

equation can be rewritten for 1D planar and 2D cylindrical turbulence as follows:

⟨k⟩
⟨k0⟩

= exp

−
c1 (t/τ) + c2

t∫
0

〈∣∣∣∣∂uz(t)

∂z

∣∣∣∣〉 dt

 , (5.12)

⟨k⟩
⟨k0⟩

= exp

−
c1 (t/τ) + c2

t∫
0

〈∣∣∣∣1r ∂(rur(t))

∂r

∣∣∣∣〉 dt

 . (5.13)

For homogeneous turbulence, fluxes going one way are on average canceled by fluxes
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Figure 5.6: Dissipation rate as a function of time for 1D (square) and 2D (circle)
geometries with urms = 1 and 2.

going the opposite way; thus, the volume-average is zero. However, at TNTIs, no

such cancellation exists in the inhomogeneous direction. Therefore, the derivatives in

those directions in the divergence of the velocity field, namely z and r derivatives for

the 1D and 2D cases, respectively, are considered, that are dilatation in Eqs. (5.12)

and (5.13).

We define the time- and volume-averaged dilatation in the turbulence region for

1D and 2D geometries as follows:

θ1d =
1

t

t∫
0

〈∣∣∣∣∂uz

∂z

∣∣∣∣〉/〈∣∣∣∣∂uz

∂z

∣∣∣∣〉
0

dt, (5.14)

θ2d =
1

t

t∫
0

〈∣∣∣∣1r ∂(rur(t))

∂r

∣∣∣∣〉/〈∣∣∣∣1r ∂(rur(t))

∂r

∣∣∣∣〉
0

dt. (5.15)

Fig. 5.7 shows the time evolution of the θ for the 1D and 2D cases with different
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turbulent intensities. We observe that the volume- and time-average dilatation does

not significantly change over time regardless of the geometry, which value is unity

(θ = 1). Therefore, Eqs. (5.12) and (5.13) can be rewritten as follows:

⟨k⟩
⟨k0⟩

= exp

[
−cε

3

t

τ

(
1 +

c2
c1
Φ0τ

)]
. (5.16)

Here, Φ0 is the initial volume-averaged dilatation, where Φ0 =
〈∣∣∂uz

∂z

∣∣〉
t=0

and
〈∣∣∣1r ∂(rur(t))

∂r

∣∣∣〉
t=0

,

for the 1d and 2d cases, respectively. The dilatation contributes to increasing the de-

cay rate of the TKE by a factor of c2
c1
Φ0τ . This increase in decay TKE rate is caused

by dilatation, which transfers TKE from the turbulent to non-turbulent region, and

leads to the enhanced decay rate. However, θ decreases to less than unity at a later

time (t > 7τ) because dilatation variance is almost dissolved when the turbulent Mach

number is less than 0.05 (Sethuraman and Sinha, 2020); thus compressibility effects

are not strong enough to transfer the TKE. Furthermore, the 2D case with a lower

urms deviates from the reference value (θ = 1) faster than in the 1D case owing to the

larger energy losses through dilatation. Therefore, the scaling in Eq. (5.16) is valid

for sufficiently high Mat and is consistent with the scaling law for turbulent/non-

turbulent mixing and turbulent mixing.

To demonstrate the validity of the proposed scaling, Fig. 5.8 shows the time

evolution of the TKE based on Eq. (5.16). All the cases with different geometries

and initial urms magnitudes have the same decay rate as HIT because energy losses

in compressible turbulence are well-compensated by the scaling shown in Eq. 5.16.

For the 1D planar interface, the coefficient c2
/
c1 = 1/9 since this geometry is that of

turbulent/non-turbulent mixing considered in Chater III. However, for the 2D case,

this coefficient is empirically obtained as 1
3
. This larger coefficient is because the

energy transfer in the radial direction has a larger effect on the decay of the TKE

compared with the planar transfer.
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Figure 5.7: Time evolution of the time- and volume-averaged dilatation (θ) for 1D
(square) and 2D (circle) geometries for two urms,1 = 1 and 2. The refer-
ence value is unity (black, dashed line).

(a) (b)

Figure 5.8: Time evolution of the TKE with (a) urms = 1 and (b) urms = 2. The
turbulent flows of 1D (square) and 2D (circle) geometries are compared
with HIT (black, solid line).
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5.5 Conclusions

This study investigates the role of geometry in shearless, compressible, turbulent/non-

turbulent mixing, where a turbulent front propagates into a non-turbulent region.

Direct numerical simulations are conducted for two different geometries: initially pla-

nar (1D) and cylindrical (2D). The time evolution of the mixing region width and the

turbulent kinetic energy is of particular interest as the Reynolds and turbulent Mach

numbers are varied.

Simulations show that the non-turbulent flow is entrained by the turbulent flow,

and the mixing region grows as the non-turbulent fluid patches are drawn into the

turbulent region, and enstrophy is transported by viscous diffusion across the TNTI.

During this turbulent diffusion process, the turbulent/non-turbulent interface prop-

agates into the non-turbulent region as a mixing region develops. The mixing region

width h evolves as a power law in time with time exponents depending on the geom-

etry. Dimensional analysis arguments suggest a t1/2 growth for the 2D geometry, by

contrast to the t2/3 growth observed in the 1D case. These results are confirmed by

the DNS results and hold for different initial turbulent intensities.

For compressible flows, the geometry of turbulence affects the TKE decay. Because

there is no reciprocal TKE flux coming from the non-turbulent region, energy transfer

from the turbulent to the non-turbulent regions occurs in turbulent/non-turbulent

interfaces. We show that this transfer is affected by the initial geometry as dilatation

for the 2D case propagates in the radial direction, which generates a larger effect

compared to the 1D case. As a result, the TKE decays exponentially in time with

the enhanced decay rate, described by initial dilatation with coefficients of 1/9 for 1D

and 1/3 for 2D geometries. The results of this study can help clarify the physics of

turbulent mixing in 2D geometries and develop models for various applications with

non-planar geometries.
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CHAPTER VI

Conclusion and Future Directions

This chapter summarizes the Ph.D. study presented in this thesis and suggests

future directions for further understanding turbulence physics.

6.1 Summary and Concluding Remarks

Turbulent mixing plays an important role in many applications such as geophysical

flows in the ocean or atmosphere, astrophysical flows like supernova remnants and

mixing with molecular clouds, and engineering applications such as jets and boundary

layer flow. However, the classical theory of homogeneous isotropic turbulence does not

directly apply to problems with inhomogeneous directions of compressibility effects

due to additional energy transfer mechanisms. The goal of this work is to understand

the role of inhomogeneity and compressibility effects in turbulent mixing. To achieve

this goal, we improve the process of generating the initial velocity field and conduct

direct numerical simulations of shearless compressible turbulent mixing, which allowed

us to

• Investigate inhomogeneity and compressibility effects in turbulent/non-turbulent

mixing, thereby describing mixing region growth and the decay of turbulent

kinetic energy. The mixing region develops as large-scale vortical structures en-

train the irrotational flow, and the turbulent flow diffuses into the non-turbulent
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region. We find that the interface separating turbulence from the non-turbulent

region propagates as a power-law of t2/3. During this process, fluctuations are

generated in the non-turbulent flow. Dilatation transfer their turbulent kinetic

energy (TKE) from the turbulent to the non-turbulent region, leading to an

increased rate of decaying TKE compared to homogeneous isotropic turbulence

(HIT). This energy loss is described as a triple moment transport of velocity

in the turbulent energy balance equation. We suggest a new scaling law for

the temporal decay of turbulent kinetic energy by considering the dilatational

TKE, which predicts the physics in turbulent/non-turbulent mixing well.

• Extend the study of turbulent/non-turbulent mixing to investigate compress-

ible turbulent mixing at gradients in turbulent intensities. Shearless turbulent

fields are juxtaposed with different turbulent intensities, where turbulence de-

cays by viscous diffusion. The use of shearless turbulence enables us to isolate

the effect of intensity gradients in turbulent mixing. We find that the gradi-

ents in turbulent intensity cause flow penetration from higher to lower energy

regions with intermittency, which is represented as spatially non-uniform kur-

tosis, the fourth-order moments of velocity derivatives. The probability density

functions (PDFs) showed that the intermittency originates from the compress-

ibility effect, i.e., dilatation. The PDFs of dilatation exhibit a negatively skewed

distribution in contrast to the symmetric PDFs of vorticity. Moreover, turbu-

lent mixing shows non-Gaussian behavior, whereas the PDFs of homogeneous

isotropic turbulence follow a Gaussian distribution as described in Kolmogorov’s

theory. This result supports the new proposed scaling of decaying TKE, which

describes energy transfer by dilatation in inhomogeneous flows. Furthermore,

we improve this scaling for compressible turbulent mixing with different tur-

bulent intensities. We use a passive scalar to quantify turbulence behavior,

such as the mixing region width and the location of the interface separating
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the mixing region and turbulent flows with higher and lower intensities. Since

energy transfer by dilatation occurs through these interfaces, the higher- and

lower-energy regions are involved in energy loss and gain, respectively, which

are taken into account in the scaling. In addition, we find that time-averaged

dilatation is invariant in time, and therefore describes the time-delay and time-

advance of decaying turbulent kinetic energy in the higher- and lower-energy

regions, respectively.

• Study the geometrical effects of turbulent/non-turbulent mixing. We consider

turbulent flow in initially cylindrical geometry and compare it to the planar case

from Chapter III. We investigate the temporal evolution of the mixing region

and find that the propagation of interfaces separating turbulent flow from non-

turbulent flow follows a power law in time of t1/2, by contrast to t2/3 in the planar

case. These exponents are consistent with dimensional analysis. Geometrical

effects modify energy transfer by dilatation, i.e., dilatation. We compare the

decay of homogeneous isotropic turbulence and inhomogeneous compressible

turbulence with planar and cylindrical geometries and find that larger energy

loss occurs in cylindrical turbulence. The dissipation rates that determine the

decay rate are invariant in time but depend on the root-mean-square velocity

magnitude. Therefore, the discrepancy in energy loss is caused by energy flux,

which is the dilatation-TKE. The magnitude of energy flux from turbulence to

non-turbulent flow is larger for the cylindrical geometry than the plane, due to

diverging geometry. Hence, geometrical effects appear in the scaling as different

coefficients of dilatation, which explain the enhanced decay rate of TKE.

DNS of shearless flow is a powerful tool for improving turbulence modeling, as

it allows the isolation of each effect in turbulent flow and eliminates coupled inter-

actions with kinetic energy production. Our findings can contribute to providing a

phenomenological understanding of shearless compressible turbulent mixing, partic-
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ularly in predicting turbulent kinetic energy and mixing region width. We observe

that dilatation generates additional energy transfer from higher- to lower-energy re-

gions, affecting decay rates along with viscous dissipation. Furthermore, the time-

and volume-averaged dilatation remains constant over time, introducing a novel pa-

rameter for the decay of turbulent kinetic energy in terms of the initial dilatation.

The initial dilatation offsets the decay rates changed by the energy loss/gain in the

higher- and lower-intensity regions. In contrast to inhomogeneity and compressibility

effects, the mixing region width follows the analysis of incompressible flow. These

findings provide phenomenological information to modify turbulence models for inho-

mogeneous and compressible flow. DNS results and the new scaling for the temporal

evolution of turbulent kinetic energy and mixing region can be used to evaluate veloc-

ity and length scales in turbulence models. In particular, velocity components such

as kinetic energy in the eddy viscosity model and turbulent viscosity hypothesis must

account for energy transfer mechanisms caused by dilatation to obtain more accurate

predictions for compressible turbulent mixing.

6.2 Future Research Directions

6.2.1 Improvements in the Generation of the Initial Turbulence Field and

Numerical Schemes

The main characteristic of compressible flow is the coupling to the thermodynam-

ics, which change the volume of fluid and involve energy exchange (Lele, 1994). In this

thesis, we propose an improvement to the generation of the initial turbulent velocity

field by rescaling the field in a spectral space in a way that the quasi-equilibrium

state is obtained with desired properties. Further study should be needed for fluc-

tuations of thermodynamic properties such as pressure, density, and temperature,

which can be initially correlated with the velocity fields. Additionally, eddy shocklets
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are not considered in the present work but are expected to become important for

higher turbulent Mach numbers (Mat ≳ 0.4). Such a flow regime would introduce

additional compressible dissipation. Such a regime would increase the decay rate of

turbulent kinetic energy and generate additional mechanisms of turbulent mixing.

To describe these physics, different numerical schemes are required to represent sharp

discontinuities caused by shocklets; for instance, high-order accurate weighted essen-

tially non-oscillatory (WENO) schemes can then be applied. This method enables

the investigation of compressibility effects on turbulent mixing, which enhances in-

homogeneity and involves different physics from the work presented in this paper,

such as shock-turbulence interaction. Furthermore, there may be a need to develop

improved shock-capturing schemes that do not introduce excessive dissipation.

6.2.2 Extension of the Scaling for the Decay of Turbulent Kinetic Energy

Mixing is commonly observed in various natural and engineering applications at

regions of gradients in velocity and/or composition. Moreover, in Rayleigh-Taylor

(RT) and Richtmyer-Meshkov (RM) instabilities, interfacial perturbations grow, and

the mixing zone evolves. Density gradients, in addition to turbulent intensity gra-

dients, can modify mechanisms in terms of vortical structures, energy transfer, and

dissipation, but the contributions of each effect are poorly understood. For exam-

ple, a supernova remnant consisting of multiple materials with different densities and

turbulent fluctuations (Castro et al., 2012; Slane et al., 2015) experiences turbulent

mixing as the shell expands and merges with the surrounding molecular clouds. How-

ever, it remains unclear how each parameter in this astrophysical flow contributes to

developing hydrodynamic instabilities and mixing regions. Therefore, further study

for turbulent mixing with different parameters should be conducted to predict the

growth of the turbulent mixing zone and late behavior in RT and RM instabilities,

which consists of several elements: gradients in density and/or turbulence intensity,
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as well as gravity or shock. The current scaling for the temporal evolution of TKE

describes compressible turbulent mixing with turbulent intensity gradients under the

same initial density and length scales with no external forces. However, these pa-

rameters can generate non-linear interactions with the effect of turbulent intensity

gradients and contribute to developing the mixing region. The role of gradients in

density and length scale in turbulent mixing was investigated for shearless turbulent

mixing. Movahed and Johnsen (2015) found that density gradients cause anisotropy

in the Taylor scale, but the Kolmogorov scale remains isotropic. Furthermore, in-

termittency and skewness caused by anisotropy in length scale and kinetic energy

gradients are observed in Tordella and Iovieno (2006, 2011). It may be possible to

incorporate these effects into scaling for the growth of the mixing region and the

decay of TKE. The density difference is expected to generate enhanced penetration,

following a wider growth of the mixing region, and length scales near the interface

may change the thickness of the mixing layer. There are terms in the TKE balance

equation to describe these effects, which would no longer be negligible.

6.2.3 Spherical Geometry of Turbulence

The Kolmogorov theory is insufficient for describing turbulent flows involving com-

pressibility, inhomogeneity, and geometrical effects. The TNTI, where the turbulent

flow is adjacent to laminar regions, has been widely investigated for planar geome-

try, which accounts for one-dimensional non-uniformity. However, most applications

in our lives involve turbulent mixing with non-planar geometries such as pipe flows,

jet flows, and atmospheric and astrophysical flows. The compressible turbulent mix-

ing with cylindrical geometry introduces additional energy transfer, as explored in

Chapter III. Additionally, more complicated evolution and dissipation mechanisms

are expected for spherical turbulent mixing, which do not follow the results of planar

turbulent mixing because the radius of the mixing region changes over time. Diverg-
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ing and converging interfaces may decelerate the mixing process and lead to more

nonlinear interactions between eddies. Moreover, acoustic waves transfer energy in

a three-dimensional radius direction, and therefore the geometrical effects cause ex-

cessive energy loss and enhance the decay process of TKE. As a result, the current

scaling for the mixing region growth and the decay of TKE may need to be extended

to predict these disparate characteristics for the propagation of spherical turbulence.

The computational setup would be the same as in previous works, involving initial

shear-free HIT with appropriate Reynolds and turbulent Mach numbers. However, in

this case, the turbulent region would have a spherical shape and would be surrounded

by the stationary non-turbulent flow. Preliminary results suggest that intermittent

large-scale structures eject from the turbulent region, which increases the growth rate

of the mixing region. Additionally, energy loss caused by inhomogeneity and com-

pressibility effects is magnified, while the dissipation rate remains consistent with

that of planar and cylindrical turbulence. This study introduces an additional mix-

ing characteristic, vortex ejection, which is a large-scale phenomenon distinct from

entrainment.
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APPENDIX A

Helmholtz’s Decomposition

The Helmholtz decomposition is a method to decompose a vector field F into the

sum of dilatational (curl-free) and solenoidal (divergence-free) components, which is

useful for analyzing characteristics of compressible flow. The vector field F can be

written as

F(r) = −∇ϕ+∇×A (A.1)

where ϕ is a scalar potential and A is a vector potential function. The vector field

consists of the gradient of ϕ and the curl of A, which are curl-free and divergence-free

terms; therefore, the vector fields satisfy∇×∇ϕ = 0 and∇·(∇×A) = 0, respectively

(Davidson, 2015). The two potential functions are solved as ∇2ϕ = −∇ · F and

∇2A = −∇× F, where

ϕ(r) =
1

4π

∫
∇′ · F(r′

)

|r− r′|
dV

′
, (A.2)

A(r) =
1

4π

∫
∇′ × F(r

′
)

|r− r′|
dV

′
(A.3)

if F is unbounded. These solutions can be obtained by the Fourier transform in

wavenumber space. The Fourier transform of F is denoted as G, which is described
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as

F(r) =

∫
G(k) expik·r dVk, (A.4)

where k is the wave vector and i is the imaginary unit (Pope, 2000). The G(k)

consists of the scalar field and vector field as:

G(k) = −ikGϕ(k) + ik×GA(k), (A.5)

where each term is represented as

Gϕ(k) = i
k ·G(k)

||k||2
, (A.6)

GA(k) = i
k×G(k)

||k||2
. (A.7)

This approach helps efficiently manipulate the vector field and analyze two different

physics in compressible turbulence.
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APPENDIX B

Investigation of the Effect of Characteristic Length

on 2D Cylindrical Turbulence

Passive scalar fields are examined to analyze turbulence behavior. The scalar is

initially distributed with a smeared interface. The mixing region width is determined

by the passive scalar, where the mass fraction of the scalar is between 0.25 and

0.75. In Fig. B.1 the mixing region growth in time is illustrated for turbulence with

2D cylindrical geometry. To determine the d0 of the geometry, the initial radius r0

is changed to 1/6L, 1/5L, and 1/4L, where r0 is defined as d0/2. It is assumed

that the outer and inner interfaces propagate as a power law but at different rates

because the planar turbulence develops as a power law in self-similarity, as shown

in Chapter V. For the 2D cylindrical turbulence, as seen in Fig. B.1(a), the outer

interface propagates at the same rate until t ≲ 5τ , but the growth rate decreases for

turbulence with r0 = 1/6L and 1/5L. Furthermore, for the inner interface shown

in Fig. B.1(b), all the cases have a much larger growth exponent than the outer

interface. However, the power-law growth is destroyed for the turbulence of r0 = L/6

and L/5 because the turbulent eddies are interrupted as the interface approaches the

center. Therefore, the initial radius r0 should be greater than the size of the turbulent

eddies, which is the Taylor microscale. The turbulence with r0 = L/4 = 0.25L, which
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(a) (b)

Figure B.1: Time evolution of the mixing region width of (a) the outer layer and (b)
the inner layer for turbulence with the different initial radii: r = L/4
(red, square), r = L/5 (green, triangle), and r = L/6 (blue, circle). The
solid lines are derived from dimensional analysis.

is equal to the Taylor microscale in cases 1 and 3, follows a power law and shows no

unphysical behavior for developing the mixing region. Accordingly, the initial radius

is set to r0 = L/4 for all cases.
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