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ABSTRACT

This dissertation consists of three essays. The first essay provides background on blockchain, 

cryptocurrency, and venture capital. It will explain the evolution of token distribution models, 

regulatory concerns, and the industry adoption of the technology. The second essay presents a 

model of startup financing that reflects regulatory concerns of the first ess ay. It develops a three-

period model that compares token financing with traditional VC equity financing, where the key 

difference between the two is that tokens can be sold earlier than equity, which allows them to 

meet the liquidity needs of investors. The third essay combines token financial data and onchain 

transaction data from the Ethereum blockchain, to study the relationship between token liquidity, 

returns, and onchain market maker inventory.
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CHAPTER 1

Overview of Cryptocurrency and Startup Financing

1.1 Introduction

The purpose of this chapter is to provide the reader with the background needed to motivate and

understand the following chapters. I first explain how the Bitcoin and Ethereum blockchains main-

tain tamper-proof records of transactions without any central authority. The transaction records of

the Ethereum blockchain will be analyzed in Chapter 3. I then describe two ways a blockchain

startup can raise funds from venture capital investors. The first is the traditional method of issuing

equity. The second way, made possible by blockchain technology, is to issue cryptocurrency that

can be redeemed for the digital good produced by the startup at some future date. The difference

between these two ways will be the focus of the model in Chapter 2.

1.2 Blockchain and Cryptocurrency

All currencies need ways to control supply and to enforce security properties that prevent dis-

honest behaviors such as counterfeiting and double-spending. Fiat currencies have physical anti-

counterfeit features and rely on the central bank to control supply. A cryptocurrency is a digital

currency that is not controlled by any central authority, instead, it uses cryptography and mecha-

nism design to enforce security measures to prevent people from altering its transaction records.

The transactions records are stored on a public blockchain, which is a permissionless database
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with a protocol that allows users to reach consensus about its state in a decentralized manner. Per-

missionless means there is no restriction on who can participate.1 Protocol means a set of rules

that can be implemented by code. Decentralized means there is no central authority. The data is

organized in blocks and each block is linked to the previous one, forming a chain of blocks, hence

the name blockchain (Narayanan et al. (2016)).2

The first blockchain, Bitcoin, was invented by a pseudonymous entity named Satoshi

Nakamoto, whose identity remains unknown. The cryptographic building blocks of blockchains

are hash functions and digital signatures. A hash function is a mathematical function with three

properties: i) its inputs can be of any size, ii) its output has a fixed size (eg: 256 bits), iii) the

output can be computed in a reasonable amount of time. An example of a simple hash function is

modulo hash H(k) = k mod m, where k is the input, and m is a parameter. H(k) is the remain-

der of k divided by m. Blockchains use cryptographic hash functions, which satisfy additional

properties as described in the appendix. Bitcoin uses the SHA-256 cryptography hash function,

which converts all inputs into 256-bit outputs. For example, the SHA-256 hash of ”apple pie” is

10ef487e48df3a7dabf54101660b74f1f1f3d5b9dc5400decda2d01099c4ccaa.

?

Each block consists of data and a hash pointer that links to the previous block. Data can be

any information that is stored and encrypted on the blockchain, for example, a list of Bitcoin

transactions or even code. A pointer contains the location where an object is stored. A hash pointer

contains both the location and the hash of the entire previous block. The pointer shows where to

find the previous block, and the hash is used to verify whether that block has been altered. As

shown in figure 1.1, block 3, the latest block, contains the hash of everything in block 2, including

block 2’s data, the hash of block 1, and the pointer to block 1. If a hacker alters the content of block

2, then the new hash of block 2 would no longer match its old hash stored on block 3. Therefore,

anyone with a copy of block 3 can verify whether the data has been tampered with. Even if the

1This dissertation discusses public blockchains only. There are also private blockchains that are not permissionless,
i.e., access is limited to specific users. For more information on private blockchains, see Jayachandran (2017).

2Section 1.1 is based on the book by Narayanan et al. (2016)
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hacker can modify the hash of block 2 saved in block 3, the hash of the latest block (block 3), if it

had been stored separately, can be used to verify the authenticity of the entire chain.

Figure 1.1: Chain of Blocks, Zhao (2018)

The second cryptographic primitive, digital signature, is an algorithm that generates a pair

of keys, a public key and a secret key.3 A public key can be considered as an identity on the

blockchain. The hash of the a public key is called an address and allows one to receive Bitcoins,

as anyone can send Bitcoins to an address. To send Bitcoins from an address, one would need to

know the secret key, which functions like a password. Because anyone can pseudonymously create

an unlimited number of public and secret key pairs, it is difficult to connect addresses to their own-

ers’ actual identifies. The keys cannot be modified, so cryptocurrency owners should store their

secret keys securely.

The blocks of information are stored on nodes, which are computers that each has its own

copy of the entire blockchain. The nodes can send and receive information, such as new bitcoin

transactions, to and from each other. Some nodes may be faulty or adversarial, for example, a node

might try to alter the data stored in a previous block. Without a central authority, a distributed

consensus protocol is needed for the nodes to reach an agreement about the state of the blockchain,

i.e., which transactions have occurred and in what order. The consensus protocol needs to satisfy

two properties: i) all honest nodes must reach an agreement about the state, ii) the state must have

been generated by an honest node. Computer scientists have proven that when one third of the

nodes are adversarial, it is impossible to reach an agreement that satisfies both properties (Lamport

3The properties of digital signatures can be found in the appendix.
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et al. (1982) ).4 Since this problem cannot be solved with computer science, Satoshi Nakamoto

turned to economics to engineer incentives for nodes to behave as desired.

The Bitcoin blockchain has processes for deciding i) how new information is added to the

chain, and ii) which node gets to add the information. The economic incentives are block reward

and transaction fees. If node A is selected to create and add the next block, as reward for its

service, it would receive a block reward. The block reward consists of newly minted coins, so with

the addition of each block, the total coin supply increases by the block reward. For Bitcoin, the

block reward starts at 50 Bitcoins per block and reduces by half for every 210,000 blocks created,

so the limit of Bitcoin supply is 21 million. If node A is adversarial, instead of adding the block

to the end of the chain, it can try to alter the chain by creating a branch starting at an earlier block,

that is, add block n to block n− j where n is the block being created, and j > 1. Figure 1.2 gives

an example of a block (V4) being added to the middle of the chain (A3) instead of to the end (A5),

creating a shorter branch.

Figure 1.2: Blockchain Branches, Kaur et al. (2020)

However, by default, honest nodes append blocks to the longest chain. If an honest node B is

chosen to add the following block n+1, it would abandon the branch made by node A and extend

the longest chain by adding A6 to A5. All the transactions recorded on A’s branch would become

invalid, including the transaction that sent node A the block reward; hence adversarial nodes cannot
4This is called the Byzantine Generals Problem.
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benefit from cheating. The sender of any transaction can choose to include a voluntary transaction

fee for the node that adds the block containing that transaction. Unsurprisingly, the chance that a

transaction will be included in the next block increases with the generosity of the fee. Note that

transaction fee consists of coins that the sender already owns, so the token supply is not expanded.

Another important innovation of Nakamoto is the process through which nodes are selected to

create blocks. If every node has equal chance of being selected, an adversary would create a large

number of nodes to increase its chance. The Bitcoin blockchain uses the proof-of-work process,

which selects nodes in proportion to how much computing power the nodes are willing to spend.

Nodes compete to solve a puzzle that requires brute force computations, so a node’s probability of

being picked is equal to its share of total computing power used to solve the puzzle. The puzzle

is to find a value X such that when you concatenate X , the previous block’s hash, and the list of

transactions in the current block, the hash of this concatenation is smaller than a target number:

H(X||previous block′s hash||tx||tx||...||tx) < target

where tx stands for a transaction. A node would keep trying different values for X until he gets a

hash smaller than the target. Nakamoto had set a block interval parameter of ten minutes, that is, it

should take ten-minutes to find X . As more computational power is dedicated to solve this puzzle,

the target number is lowered to increase difficulty and maintain the ten-minute interval.

The process of finding X is called mining, and the nodes that are mining are called miners.

Once a miner finds X , he includes the value in the new block, and other nodes will compute the

hash of the concatenation to verify that the output is indeed below the target. This system is secure

as long as none of the miners has > 50% of total computing power, that is, no miner is selected

more than half of the time. Otherwise, that miner will be able to create a branch that will catch up

in length to the longest chain.

Storing Bitcoins (and cryptocurrency in general) is about storing and managing one’s secret

keys. Typically, one would use a wallet software, which keeps track of one’s balance and manages
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one’s keys. The software provides a simple user interface that tells the user how many coins are

in the wallet. When the user wants to spend some coins, the software handles the details of which

keys to use and sends the transaction messages. The software will send the information to a node

controlled by the software provider, and the node will broadcast the transaction to be included in

the blockchain.

While Bitcoin is an impressive breakthrough, its scripting language does not allow for loops,

which restricts the usefulness of the Bitcoin blockchain to mostly payment transactions.5 The

next breakthrough is Ethereum, a blockchain that is meant to support any application imaginable,

with its own native token, ether or ETH for short. Ethereum is a global, virtual computer with a

Turing-complete programming language, whose state is agreed upon by the nodes in the Ethereum

network.6 Just like Bitcoin nodes, Ethereum nodes each keep a copy of the state of this computer.

Unlike the Bitcoin network, which only sends coins, the Ethereum network allows nodes to send

code that are executed by other nodes. These codes are called “smart contract”, a term first used

to describe the use of computer systems (or other automated means) to enforce contracts. For

example, one can think of a vending machine as a mechanical smart contract that enforces an

agreement between the user and the machine’s owner regarding the purchase of a candy bar (Szabo

(1997)). Anyone can create a smart contract and, for a small fee, broadcast it to the blockchain in

a special transaction. The node that adds the transaction to a block will execute the contract for a

fee. Each contract has its own address and can send and receive tokens.

To prevent infinite loops and limit contracts that take a long time to run, Ethereum charges “gas”

to execute every operation in a smart contract. Basic operations like addition cost 1 gas, whereas

writing a 254-bit word to persistent storage costs 100 gas. Every transaction also costs 21,000 gas

right off the bat. Gas is paid in ETH, it is only called “gas” when being used to pay for contract

execution. Each transaction can specify a “gas price”, which is the number of ETH it will pay per

5A loop is an instruction that repeats until a specified exit condition is met. If the loop is written such that the exit
condition is never met, then it is an infinite loop and will continue to execute until the program is shut off. Bitcoin
does not have a way to deal of dealing with infinite loops, so it does not allow for loops at all.

6A Turing-complete programming language lets the user specify any functionality that is possible to program into
a Turing machine, an abstract model of a computer that is believed to be capable of computing any function that can
be computed at all, (Narayanan et al. (2016), p.264)
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unit of gas. Miners independently decide which gas price to accept by deciding which transaction

to include on the blockchain. One can think of gas as the gallons of gasoline burned by a car to

drive a certain distance, and the gas price is the dollar amount that the passenger is willing to pay

the driver for each gallon used. The driver will (most likely) choose the passenger willing to pay

the highest gas price. Because Ethereum can only process around 15-45 transactions per second,

the gas fee increases if too many transactions are submitted to be included. Figure 1.3 shows the

average gas fees per transaction over time (Etherscan (2021)). To learn more about the Ethereum

blockchain, see Foundation (2023).

Figure 1.3: Ethereum Average Transaction Fee: USD per Tx

1.3 Startup Financing

An entrepreneur who is creating blockchain projects often need external funding from venture

capital funds (VC). He can issue either equity or token in exchange for the funding. This section

gives an overview of equity VC financing and token financing. For more practical information on

venture capital, see Feld and Mendelson (2019).
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1.3.1 Venture Capital Equity

VC investments are concentrated in a few risky high technology sectors with rapid growth opportu-

nities (Rin et al. (2013)). Although only 0.22% of new companies created were funded by venture

capital (Puri and Zarutskie (2012)), 35% of US IPOs were VC backed (Ritter (2011)). Gornall and

Strebulaev (2021) studied US companies that went public after 1978, and reported that VC-backed

companies accounted for a striking 92% of R&D spending. Given their role in funding innovation

in general, and funding blockchain-related startups in particular, this section will describe the VC

investing process.

A VC firm is structured as a limited partnership between general and limited partners. The

limited partners (LP) are institutional investors who give money to the general partners (GP) to

start the fund. The GPs invest in a portfolio of startups in exchange for convertible preferred equity

and board seats. In return, the GPs charge LPs a management fee (2%) and keep a fraction (15 -

20%) of profit from their investments. A VC firm can have multiple funds, each with a specific

focus. A fund usually has a fixed lifespan, around 7-10 years with the possibility to extend 1-3

years. Because there does not exist a liquid secondary exchange for early stage startup equity, the

fund is stuck holding the equity until an exit event, that is when a startup has a IPO or is acquired.

In the late 1990s, the median time from initial equity funding to IPO was approximately 3 years.

After the dot com bubble, the median duration has increased to 6 - 7.5 years (figure 1.4). The

median time from initial equity funding to M&A is shorter at 5 - 5.5 years (figure 1.5). Because

funds cannot receive any returns for years, LPs contractually commit their investment in the fund

for its entire lifespan. Therefore, VC investing is very illiquid.

Instead of giving the entrepreneur all the funding he will ever need until exit, VC financing

occurs in stages (called Series). Since entrepreneur’s efforts cannot be perfectly observed, staging

forces them to achieve certain milestones before obtaining additional funding. Early stage com-

panies (pre-seed to Series A) work on creating their products and proving there will be sufficient

demand for them. Companies at the Series B and beyond stages need funding to scale their busi-

ness. For each stage of fundraising, the entrepreneur sets a target amount that he wants to raise,

8



Figure 1.4: Venture Capital-Backed IPOs and Median Time to IPO - 1998 to 2019, Brasher et al.
(2020)

Figure 1.5: Acquisitions of US Venture-Backed Companies and Median Time to M&A, Brasher
et al. (2020)
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and spends weeks meeting with VCs individually to present tailored pitches. To arrange a meeting,

the entrepreneur needs to demonstrate his networking ability by finding a person who is trusted by

the VC to make a warm introduction, as cold emails rarely receive responses. Successful pitches

will lead to a due diligence process that can take two to four weeks each. VCs often invest as a syn-

dicate to share risk and increase deal flow, and the lead investor will negotiate the contract (called

term sheet) on behalf of the syndicate. When the target amount has been secured, the entrepreneur

ends the fundraise campaign to refocus on growing his business.

A critical distinction between VCs and alternatives is that only VCs provide value-adding ser-

vices to their portfolio companies. Because the funds often specialize in specific industries and the

best venture capitalist are former entrepreneurs themselves, top VCs have domain expertise, expe-

rience, and connections that can benefit entrepreneurs. Sahlman (1990) and Gorman and Sahlman

(1989) showed that VCs spend a lot of time with their portfolio companies, sitting on the board

of directors, mentoring founders, helping founders raise additional funds, and providing strategic

analysis. Hsu (2004) found that high-reputation VCs offer lower valuations, and that entrepreneurs

prefer low-valuation-high-reputation offers over high-valuation-low-reputation alternatives. This

indicates that entrepreneurs believe it is worth accepting lower returns in exchange for working

with higher quality VCs.

1.3.2 Token Financing

Blockchain entrepreneurs have an alternative to equity financing, they can instead issue tokens to

investors via an initial coin offering (ICO). After the entrepreneur’s product launches, the venture

capitalists can resell the tokens to users or to other investors on an exchange such as Coinbase

or Binance. In the early ICOs, projects7 usually sold tokens to the public. Before starting the

ICO, the founders will design a website and publish a whitepaper that explains their product and

token distribution schedule. If a minimum viable product exists, the code would usually be open-

sourced on Github. The founders decide the total number of tokens to be created and its allocation
7I use project, startup, entrepreneur, founders interchangeably
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Figure 1.6: Bancor Initial Token Allocation and Use of Proceeds, Bancor (2017)

between the public (sold through the ICO), the founding team, and other stakeholders. They also

announce the terms of the ICO, including the duration, participation criteria, price per token, and

whether there is a cap. Figure 1.6 shows the initial allocation of Bancor, who raised around $153M

by selling almost 40M BNT tokens to 10,885 buyers, at the price of 100 ETH per BNT (Bancor

(2017), Higgins et al. (2017)).

The ICO attracted the attention of regulators, who questioned whether these issuances consti-

tute unregistered securities in violation of the Securities Act of 1933. An offer of securities must

be registered with the Security and Exchange Commission unless it qualifies for an exemption. A

typical registration for public offering requires the filing of the S-1 registration statement, which

includes audited financial statements and information about business operations, financial condi-

tion, results of operations, risk factors, and management. Pre-product blockchain startups often

cannot provide some of these materials, such as the audited financial statement.

The SEC recognizes the complexity in the types of tokens and in the ways that token issuance

can be structured and advertised. It stated “the analysis of whether something is a security is not

static and does not strictly inhere to the instrument” (Hinman (2018)). It uses the Howey test to

determine whether an asset is a security. The term security includes ”investment contracts”, and

according to the Howey test, an “investment contract” exists when i) there is an investment of
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money, ii) in a common enterprise, iii) with a reasonable expectation of profits, iv) to be derived

from the efforts of others. The test analyzes not only the form and terms of the instrument, but

also the “manner in which it is offered, sold, or resold (which includes secondary market sales)”

(Security and Commission (2019)).8 A direct offering of tokens to the general public would be a

security because it satisfies all four prongs of the test: i) money is invested by the token buyers,

ii) the startup is the common enterprise, iii) most buyers are speculators looking for profit, and iv)

profit depends on the effort of the entrepreneurs.

As the Howey test is intended to protect the public, one creative approach to avoid having to face

security laws is to restrict the sale of tokens to accredited investors via the use of “simple agreement

to future tokens” (SAFT). A SAFT consists of two stages: i) the private sale of a promise to deliver

future tokens to accredited investors, and ii) the eventual delivery of the tokens after the platform

starts to operate. The initial sales constitutes an “investment contract”, but because it is targeted

at accredited investors instead of the public, it qualifies for an exemption under Rule 506(c) of

Regulation D (Security and Commission (2022)). Proponents of SAFT are hopeful that the second

stage, the actual delivery of the tokens and subsequent resale on secondary exchanges, would not

be considered security. Their reasoning is that because the platform is operating, buyers on the

exchange are users who purchase tokens for consumptive purposes instead of for speculation, so

they do not have a “reasonable expectation of profit”. Furthermore, because efforts would have

already been exerted to develop the platform, future changes in token prices would no longer be

“derived from the efforts of others”, so the fourth prong also would not hold.

1.4 Conclusion

This chapter gives an introduction to blockchain technology and startup financing. It compares

two means of financing for a blockchain startup, equity and initial coin offering, and discusses the

legal pros and cons of each. It provides the background information for the second chapter, which

8SEC v. W.J. Howey Co., 328 U.S. 293 (1946)
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develops a model of startup financing where the entrepreneur and venture capital investors decide

whether to finance with equity or with token.
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CHAPTER 2

Startup Financing: Token vs Equity

2.1 Introduction

Initial coin offerings (ICO) emerged as a new method of early-stage startup financing in 2013 and

skyrocketed in 2017-2018. $11.4 billion worth of tokens were sold in 2018, compared to seed-

round venture capital issuance of $14.9 billion (Pozzi (2019), Rowley (2019)). The craze subsided

in 2019, when only $2.6 billion was raised in the first half of the year. In an ICO, the entrepreneurs

of blockchain-based startups sell cryptocurrency in exchange for bitcoin or ether1, which they can

then sell for fiat money to finance the development of their product. The cryptocurrency can have

a variety of uses. It can be spent to purchase the product of the startup or the product sold on

its platform, in which case it is called a utility token. In decentralized finance startups, the utility

token can be deposited as collateral to mint new assets like stablecoins. Cryptocurrency can also

represent a share of the profit of the startup, in which case it is called a security token.

This paper focuses on the liquidity differences between tokens and equity to answer two ques-

tions: i) when would a blockchain-based startup and venture capital investors choose to finance

with tokens instead of equity; ii) what would be their rates of return for each asset?

1ETH or ether is the native token of the Ethereum blockchain
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2.1.1 Background

A cryptocurrency is a digital asset that gives its owner access to something of value. The transac-

tion records of these assets are maintained by a permissionless and immutable blockchain. There

are multiple types of cryptocurrencies. For example, stablecoins such as DAI, Terra, and AMPL

are pegged to the US dollar. If they can maintain their peg successfully, they give holders access

to the stability of the USD and the ability to facilitate everyday transactions using crypto instead

of fiat money. Synthetic assets, such as synthetic Tesla, is a derivative that mimics the Tesla stock,

so users without access to the US stock market can have exposure to the company’s stock price.

Non-fungible tokens (NFTs) such as NBA Top Shot are digital collectibles whose authenticity can

be verified on a blockchain.

This paper focuses on utility tokens, which give the owner access to some digital product or

service on a blockchain, and are often used as currency in peer-to-peer transactions. For example,

the Golem Network is a decentralized marketplace for computing power, and its GLM token is

the currency used for renting spare computing power. Not all tokens are currencies for transac-

tions, however. UNI tokens give their owners voting rights to govern the Uniswap protocol, so

all stakeholders, including users, investors, and vendors, can (supposedly) influence the future of

Uniswap.

The two startup financing methods, equity and initial coin offering, have been described in

detail in the previous chapter. In short, equity is held until the startup goes public or is acquired,

while tokens can be traded when or even before the startup’s product is launched.

2.2 Literature Review

Much of the ICO literature centers around network-externality advantages of tokens for digital

platform adoption, where the initial investors are also future users of the platform. Sockin and

Wei (2021) investigate how tokenization resolves the conflict between platforms and users. By

giving governance rights to users, tokenization prevents platforms from exploiting users, which
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comes at the cost of not having an owner with equity stake who would subsidize participation to

maximize network effects. Cong et al. (2021b) show that token price reflects agents’ expectation of

future popularity of the platform, as a permanent positive shock to platform productivity not only

increases user base today, but also increases expectation of future user base and future demand for

tokens, which leads agents to invest in tokens today. Other works related to network effects include

Bakos and Halaburda (2019), Gryglewicz et al. (2021), and Li and Mann (2020). Another branch

of ICO papers focuses on moral hazard and agency problems. For example, Chod and Lyandres

(2021), and Gan et al. (2020) compare token and equity financing and argue that, token financing

introduces a new agency problem - the entrepreneur underproduces the product or service, because

he incurs all of the costs of production but is only entitled to a portion of the revenue. Malinova

and Park (2018) argue that a variation of traditional ICO mechanism offers stronger incentives for

the entrepreneur to exert effort.

To the best of my knowledge, mine is the first paper to abstract from the potentially transient

differences caused by a lack of regulation, to shed light on a key difference between the two,

liquidity. As ICOs have moved away from crowdfunding back towards venture capital, much

of the moral hazards can be mitigated by the staged VC financing process. I therefore model

startup financing where the investors are accredited investors instead of future customers. Lastly,

for investors, tokens are reminiscent of the demand deposits of Diamond and Dybvig (1983) and

Jacklin (1987). One difference is that the second period withdrawal (equivalent to the addiitional

issuance of tokens) does not depend on the proportion of depositors who have withdrawn in the

first period.

On the empirical side, Fahlenbrach and Frattaroli (2021) show that many ICO investors resell

their tokens on the secondary market. Howell et al. (2020) studies the determinants of ICO success

and found positive correlation with the amount of information disclosed to investors. Other notable

papers include, and are not limited to: Lyandres et al. (2020), Catalini and Gans (2019), and

Goldstein et al. (2022).

I build a three-period model that compares equity and tokens as means of financing for an early
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stage startup building a blockchain-based product. Equity of startups is illiquid due to the lack

of a secondary market, whereas tokens can be traded on cryptocurrency exchanges shortly after

issuance. The model has an entrepreneur, investors (venture capital), and users. Investors have

consumption needs in the middle period that can only be met with tokens. The entrepreneur’s pref-

erence for tokens increases with token liquidity and investors’ probability of needing to consume

in the middle period. Investors willingly accept a lower return for higher liquidity.

2.3 Model

Consider a simple model in which tokens have two functions: i) as the medium of exchange to pur-

chase the goods / services produced by the issuer (the entrepreneur), ii) as a means to raise funding

for the issuer. The entrepreneur needs funding from venture capitalists to build a blockchain or a

decentralized application (dApp) that will produce a digital good / service. The entrepreneur can

issue either tokens or equity, where the key difference between the two assets is their liquidity. As

there does not exist an exchange for trading private equity of early-stage startups, VCs normally

cannot sell the equity for five to ten years, until the startup is acquired or goes public. On the other

hand, tokens could be listed on public cryptocurrency exchanges within months after the private

issuance. Tokens are not perfectly liquid, however, as newly listed tokens start with low trading

volume due to their obscurity. Additionally, VCs are often constrained by a vesting period, so they

cannot sell all the tokens at once. The model captures the liquidity advantage of tokens (relative

to equity) to show that the initial price of tokens increases with liquidity. Furthermore, there is a

threshold level of liquidity above which the entrepreneur can earn higher profit by selling tokens

instead of selling equity.

2.3.1 Setup

There are three players: an entrepreneur, VC investors, and users; two goods: a digital good and

a generic good (numeraire); three time periods: t = {0, 1, 2}, and three assets: a risk-free bond,
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tokens, and equity. I use the notation ′ for the entrepreneur, ′′ for the users, and no subscript for

the investors. Assume that the initial investment I produces an exogenous stream of digital good

{y′1, y′2}, which can be interpreted as the maximum capacity or throughput of the dApp. To finance

I , the cost of developing the dApp, the entrepreneur can issue equity or tokens to investors. Equity

pays a dividend only in t = 2 and cannot be traded at all in t = 1. This can be interpreted as the

startup needs to maintain a cash reserve by keeping the retained earnings instead of distributing

them to the shareholders. Tokens can be traded in both t = 1 and t = 2; however, only a portion

{ϕ1, ϕ2} of investors’ tokens can be sold in each period. One can interpret this exogenous liquidity

parameter ϕt as the portion of tokens that can be sold with zero transaction fee, while the remaining

1−ϕt has infinite transaction fee. Alternatively,if ϕ1 > 0 and ϕ2 = 1, the parameter represents the

share of investor’s tokens that has become vested each period.

There are two types of investors: type a consumes only in t = 1, and type b consumes only in

t = 2. In t = 1, investors learn of their own types. In t = 0, they only know that the probabilities

of being types a and b are λ and 1 − λ, respectively. One can think of this ”consumption need”

as an unexpected investment opportunity. In contrast, the entrepreneur consumes only in t = 2

and users consume in both t = 1 and t = 2. I further assume that users can buy both digital and

generic goods, while the other players can buy only the generic good. Lastly, investors and the

entrepreneur have access to all three assets, but users can only save in bonds.

The purpose of these assumptions is to isolate the effect of liquidity on token and equity pric-

ing while capturing token’s function as a medium of exchange. The assumptions that only users

can buy the digital good, but they cannot save in tokens, cleanly separate the roles of users and

investors. Users would not face a trade-off between keeping or selling tokens for capital gain and

spending them for consumption. The assumption that the entrepreneur consumes only in t = 2

makes equity a feasible financing instrument for him despite its illiquidity.

I further assume that the user has perfect-substitute utility function. This means that the price

of the digital good would be equal to one unit of the generic good regardless of the entrepreneur’s

financing choice. Lastly, when the digital and generic goods cost the same, he will consume the
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digital good first. In other words, the user will buy all the digital good that is produced, within his

budget constraint.

The timing is as follows. At t = 0, the entrepreneur either i) sells T0 tokens at price p0 (p0T0 =

I), or ii) create 1 share of equity priced at q and sells a fraction e of the share to investors (eq = I).

Investors have initial wealth W , which they allocate between equity and bonds, or tokens and

bond, depending on what the entrepreneur issued. The risk-free bond is completely liquid and can

be traded each period costlessly. Users invest all their wealth (W ′′) into bonds.

At the beginning of t = 1, the entrepreneur launches the completed dApp to the public, and he

incurs fixed cost ω to produce y′1 units of digital good. Tokens become tradeable on a cryptocur-

rency exchange, and investors learn of their own types. Next, asset markets clear. The entrepreneur

can issue additional tokens T ′
1 to users and investors on the exchange at price p1, and investors can

sell up to ϕ1T0 of their previous token holding. They can also purchase bonds. Finally, users can

redeem their tokens immediately for the digital good, at one token per good. If equity was issued

instead, users would buy digital good with fiat money instead of tokens. Assuming the asset mar-

ket clears before the goods market prevents the entrepreneur from buying back equity, as startups

would generally re-invest any retained earnings back into the business.

At t = 2, the same process repeats. If equity was issued, the accumulated dividend would be

distributed. Type b investors and entrepreneur consume the generic good.

The only variables that need to be solved for are the price and quantity of tokens and equity

issued in t = 0 and entrepreneur’s payoff from each financing method, {p0, T0, e, q, c
′E
2 , c

′T
2 }. All

other variables are exogenous parameters. In the next two subsections, I solve the model with

risk-neutral and risk-averse investors, separately. I will characterize the price and the required rate

of return of each asset, and the entrepreneur’s payoff.
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2.3.2 Risk-neutral investors

2.3.2.1 Equity

User The user starts in period t = 0 with endowment W ′′. Let B′′
t , c′′t , and y′′t be his risk-free

bond holding, generic good, and digital good consumption, respectively. Since he can only save in

bonds, W ′′ = B′′
0 . His optimization problems for t ∈ {1, 2} are:

max
c′′1 ,y

′′
1 ,B

′′
1

(c′′1 + y′′1) + βE1(c
′′
2 + y′′2) subject to: B′′

0R = c′′1 + y′′1p1 +B′′
1 (2.1)

max
c′′2 ,y

′′
2

c′′2 + y′′2 subject to: B′′
1R = c′′2 + y′′2p2

Investors At t = 0, before knowing their own types, the investors allocate their wealth between

bonds and equity to maximize expected future utility. Let Π denote the future value of profit,

Π = (y′1 − ω)R + y′2 − ω.

max
B0,e

λβE0(B0R︸︷︷︸
c1

) + (1− λ)β2E0(B0R
2 + eΠ︸ ︷︷ ︸
c2

) subject to W = B0 + eq (2.2)

At t = 1, type a investors sell all of their bonds to consume. At t = 2, type b investors consume

their share of the startup’s profit and the future value of bonds. Taking the derivative w.r.t. B0, e,

and applying β = 1
R

, the price of equity (q) is equal to the present value of expected future payoff.

β = 1
R

ensures that the players are indifferent between consuming today or saving for tomorrow.

q =
(1− λ)Π

R2
(2.3)

With λ > 0, the investors expects liquidity need in t = 1. While bonds can be sold to meet that

need, equity cannot. To compensate, eq(2.4) shows that equity’s required gross rate of return, RE ,

would be greater than the risk-free rate. Investors’ return is IRE .
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RE =
Π

q
=

R2

1− λ
(2.4)

In t = 1, type a investors try to sell their equity to outside interests, but can only do so at a

steep discount because there does not exist a liquid market for startup equity. The assumption here

is that the discount price is 0, which means that type a investors’ share of profits, λeΠ, goes to the

outside interests.

Entrepreneur The entrepreneur will receive his share of accumulated profit at t = 2 and spend it

all on the generic good (c′2). The retained earnings from t = 1 accrues gross risk-free interest R.

Equation 2.5 shows that the entrepreneur’s payoff is equal to the future value of profit subtracted

by investors’ return.

c
′E
2,n = (1− e)Π = Π− IR2

1− λ
= Π− IRE (2.5)

2.3.2.2 Tokens

Investors

max
B0,T0,n

λβE0 (B0R + ϕ1T0,n︸ ︷︷ ︸
c1

) + (1− λ)β2E0[(B0R + ϕ1T0,n)R + ϕ2(1− ϕ1)T0,n︸ ︷︷ ︸
c2

]

subject to: W = B0 + T0,np0,n and

T1,n ≥ (1− ϕ0)T0,n (liquidity constraint)

Because p1 = p2 = 1, investors will not earn returns from holding tokens from t = 1 to t = 2.

They will sell as much of their token holding as they can, so the liquidity constraint is binding

T1,n = (1 − ϕ1)T0,n. Taking the derivative w.r.t. B0 and T0,n, and applying β = 1
R

, eq. 2.6 shows

that the price of token (p0,n) is equal to the present value of the fraction of tokens sold in t = 1, plus

the present value of the additional portion sold in t = 2 multiplied by the probability of needing

liquidity in t = 2. Since some tokens cannot be sold in t = 1 to meet the needs of type a investors,
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tokens become less valuable as the need for early consumption (λ) increases. Token price increases

in ϕ1 and ϕ2 as being able to offload tokens in each period makes the asset more valuable.

p0,n =
ϕ1

R
+

(1− λ)ϕ2(1− ϕ1)

R2
(2.6)

In eq. 2.6, ϕ1

R
is the present value of utility from selling tokens in t = 1, and (1−λ)ϕ2(1−ϕ1)

R2 is the

utility from selling additional tokens in t = 2 if the investor is type b. The expected required gross

rate of return by selling at t = 1 for p1 = 1 is:

RT
n =

1

p0,n
=

R2

ϕ1R + (1− λ)ϕ2(1− ϕ1)
(2.7)

Entrepreneur: The entrepreneur’s payoff is the value of t ∈ {1, 2} token issuance net of ω,

which depends on the parameters ϕ1 and ϕ2. The tokens he issues in a period is equal to digital

good output minus the quantity of tokens resold by investors; T ′
1,n = y′1 − ϕ1T0,n and T ′

2,n =

y′2 − ϕ2(1 − ϕ1)T0,n. Equation 2.3.2.2 shows that entrepreneur’s payoff decreases in λ. Note that

T0,n = IR2

ϕ1R+(1−λ)ϕ2(1−ϕ1)
is increasing in λ, meaning as the probability of needing early liquidity

increases, token price must decrease to compensate for the asset’s imperfect liquidity in t = 1.

As more tokens must be issued in t = 0 to finance I , fewer will be issued by the entrepreneur

afterwards.

c
′T
2,n = T ′

2,np2 + (T ′
1,np1 − ω)R− ω

= (y1 − ω)R + y2 − ω − IR2(
1

λRϕ1

ϕ2(1−ϕ1)+ϕ1R
+ 1− λ

)

= Π− IR2

λRϕ1

ϕ2(1−ϕ1)+ϕ1R
+ 1− λ

(2.8)

≥ c
′E
2,n = Π− IR2

1− λ

Result 1:
∂c

′,T
2,n

∂ϕ1
> 0 and

∂c
′,T
2,n

∂ϕ2
< 0. Proof : see technical appendix.
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The entrepreneur’s payoff increases in ϕ1 and decreases in ϕ2. Higher ϕt makes tokens more

valuable so fewer are sold in t = 0, which benefits the entrepreneur as he will be able to sell more

new tokens in t ∈ {1, 2} to meet demand for digital good. On the other hand, higher ϕt also

allows investors to resell more tokens in t ∈ {1, 2}, so the entrepreneur would issue fewer new

tokens. For ϕ2, the latter effect is stronger than the former. In the special cases where ϕ1 = 0

and ϕ2 > 0 or ϕ1 > 0 and ϕ2 = 0, the number of tokens resold by investors, ϕ1T0 = ϕ1
IR
ϕ1

and

ϕ2T0 = ϕ2
IR2

(1−λ)ϕ2
, do not depend on ϕt, meaning that T0 adjusts perfectly to keep entrepreneur

payoff independent of ϕt.

Result 2: c′T2,n > c
′E
2,n if ϕ1 > 0 and λ > 0.

Equation 2.3.2.2 shows that if ϕ1 > 0 and λ > 0, then λRϕ1

ϕ2(1−ϕ1)+ϕ1R
+ 1 − λ > 1 − λ ⇒

IR2

λRϕ1
ϕ2(1−ϕ1)+ϕ1R

+1−λ
< IR2

1−λ
⇒ Π − IR2

λRϕ1
ϕ2(1−ϕ1)+ϕ1R

+1−λ
≥ Π − IR2

1−λ
. This means as long as there is

positive need for early liquidity and tokens can partially satisfy that need, the entrepreneur is

better off issuing tokens instead of equity. Even if ϕ2 = 0, c′T2,n = Π − IR2 > c
′E
2,n = Π − IR2

1−λ
.

Intuitively, even if type b investors cannot sell any tokens in t = 2, they can sell some tokens in

t = 1 and still be able to consume in t = 2. The value of ϕ2 does not matter because ϕ1 > 0

guarantees consumption in both period.

Result 3: Equity is the same as tokens that can be sold only in t = 2, ie: ϕ1 = 0, ϕ2 = 1. In this

case, p0 = (1 − λ)β2 = 1−λ
R2 . Investors’ required rate of return and entrepreneur’s payoff are the

same as those with equity: RT = 1
p0

= R2

1−λ
= RE and c

′T
2,n = Π− IR2

f

1−λ
= c

′E
2,n.

Result 4: The risk-free bond is the same as tokens can be all sold in t = 1. In this case, p0 = 1
R

,

RT = R, and c
′T
2,n = Π− IR2.

To summarize, with risk-neutral investors, the price of tokens at t = 0 is the present value of

utility from selling tokens in t = 1 plus the expected utility from selling additional token in t = 2

if the investor is revealed to be type b. As long as some tokens can be sold in t = 1, ie. ϕ1 > 0,
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tokens guarantee that both types of consumers will be able to consume, while equity allow only

type b consumers to consume.

2.3.3 Risk-averse investors

2.3.3.1 Equity Financing

Investors: With constant relative risk aversion, investors’ desire to smooth consumption increases

with curvature (σ) of the utility function. Equity cannot satisfy this desire at all as it gives investors

no return at t = 1. Hence, CRRA investors value equity less than risk-neutral investors would

(equation 2.10).

max
B0,ea

λβE0
(

c1︷︸︸︷
B0R)1−σ − 1

1− σ
+ (1− λ)β2E0

(

c2︷ ︸︸ ︷
B0R

2 + eaΠ)
1−σ − 1

1− σ
subject to W = B0 + eaq

(2.9)

qa =
(1− λ)Π

R2
[
λ(B0R2+eaΠ

B0R
)σ + 1− λ

] ≤ (1− λ)Π

R2
= qn (2.10)

RE
a =

Π

qa
=

R2

1− λ

[
λ(

B0R
2 + eaΠ

B0R
)σ + 1− λ

]
≥ R2

1− λ
= RE

n (2.11)

A larger B0R2+eaΠ
B0R

= c2
c1

indicates less consumption smoothing. In equation 2.11 shows that in-

vestors require a risk premium λ(B0R2+eaΠ
B0R

)σ + 1 − λ that increases in c2
c1

, leaving less profit for

the entrepreneur.

Entrepreneur

c
′E
2,a = Π− IR2

1− λ

[
λ(

B0R
2 + eaΠ

B0R
)σ + 1− λ

]
≤ c

′E
2,n (2.12)

2.3.3.2 Token Financing

Investor

Equation 2.13 shows that token price with CRRA investors is equal token price with risk-neutral

investors adjusted for the ratio c−σ
2

λc−σ
1 +(1−λ)c−σ

2

, which represents period 2 marginal utility as a share
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of expected marginal utility. A smaller ratio indicates less consumption smoothing with tokens.

p0,a =
ϕ1

R
+

(1− λ)ϕ2(1− ϕ1)

R2

MU2︷︸︸︷
c−σ
2

λc−σ
1 + (1− λ)c−σ

2︸ ︷︷ ︸
expected marginal utility

(2.13)

≤ ϕ1

R
+

(1− λ)ϕ2(1− ϕ1)

R2
= p0,n

Entrepreneur

Result 5: The entrepreneur’s payoff (consumption in t = 2) declines as investors become more

risk-averse (as σ increases). The decline is more steep if the entrepreneur finances with equity

instead of tokens. See figure 2.1 as illustration.

c
′T
2,a = Π− IR2(λcσ2 + (1− λ)cσ1 )(ϕ2(1− ϕ1) + ϕ1R)

ϕ1R(λcσ2 + (1− λ)cσ1 ) + (1− λ)ϕ2(1− ϕ1)cσ1
(2.14)

≤ Π− IR2 ϕ2(1− ϕ1) + ϕ1R

ϕ1R + (1− λ)ϕ2(1− ϕ1)
= c

′T
2,n

2.4 Conclusion

This simple model compares an entrepreneur’s payoffs when financing by issuing equity vs tokens

to venture capital. Tokens allows both types of investors to consume, whereas equity satisfies only

the investors with late consumption needs. Before knowing their own types, investors are willing to

accept a lower rate of return in exchange for the liquidity benefits of tokens. For the entrepreneur,

tokens give higher payoff than equity, and the difference in payoff increases with investors’ risk

aversion.

25



Figure 2.1: Entrepreneur Payoff, Equity vs. Token, for λ = 0.1
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CHAPTER 3

Token Liquidity

3.1 Introduction

Chapter 2 showed that liquidity might play a role in token financing. This chapter investigates

whether liquidity is priced in crypto markets. I study the cross-section relationship between cryp-

tocurrency liquidity and returns. Furthermore, I build a novel dataset from onchain token transfers,

define onchain market makers (OMM), and study how OMM activity and inventory correlate with

returns.

I use the Amihud (2002) (il)liquidity measure, which is the daily ratio of the absolute value of

token return to dollar trading volume, averaged over a week. It can be interpreted as the daily price

response associated with one dollar of trading volume. Higher Amihud ratio indicates higher price

impact, hence higher illiquidity. While there are better measures of liquidity, such as the bid-ask

spread, these measures require transaction-level price data that are not available for the majority

of cryptocurrencies. Even when available, the data is only obtainable from a limited number of

exchanges, while most tokens are not traded on the included exchanges. I use the terms ”Amihud

ratio” and illiquidity interchangeably.

Onchain data is data recorded on a blockchain. I use data from Ethereum, the dominant

blockchain for building decentralized applications (dApps). Ethereum is analogous to an oper-

ating system such as the iOS, on which applications like Uber can be deployed. A dApp can issue

its own native token, which is often used as the medium of exchange to purchase digital services
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through the dApp.1 These tokens usually follow the ERC-20 standard, which defines a common

set of functions and syntax for fungible tokens.2 I study ERC-20 tokens for three reasons: i) many

of the most widely-adopted and influential dApps have issued ERC-20 tokens, ii) Ethereum is the

dominant blockchain for building decentralized applications, as there are more projects being built

on top of Ethereum than on its competitors, iii) ERC-20 token transaction data are obtainable with

relative ease from a single source, Google Bigquery.

Because Ethereum records every token transfer, the blockchain itself is a treasure trove of real-

time transaction data. Onchain data is composed of sender and receiver addresses, timestamp,

token identification, and quantity of token transferred. Unlike traditional startups whose business

transactions are not public information, the records of a blockchain startup’s activities are publicly

available on the blockchain. This transaction-level data could give insights into the growth and

adoption of the startup’s product or service and speculation of its token. I combine onchain data

with financial data from exchanges to study the behavior of onchain market makers and liquidity.

I define an onchain market maker (OMM) for token i on day t as an address that has received

and sent more than 1% of token i’s daily onchain transfer volume. In other words, an OMM is an

address on both the buying and selling sides of the market, who is also large enough to account for

a significant portion of the tokens transferred in a day.

The results show that across tokens, liquidity premium exists in the cryptocurrency market,

as token return increases with illiquidity. If a token’s mean-adjusted illiquidity, that is, the ratio

of token illiquidity to market illiquidity, increases by 1 (i.e., 100 percentage points (p.p.)) then its

weekly, non-annualized return is expected to increase by 0.088 p.p. the following week, controlling

for mean-reversion, size, beta, and volatility. This is greater than the liquidity premium of stocks,

which Amihud (2002) found to be 0.112 p.p. using non-annualized monthly instead of weekly

returns.
1Tokens can have other functions, for example, giving the owner voting rights.
2ERC-20 stands for Ethereum Request for Comment 20. Functions can include methods such as

totalSupply() or events such as Transfer(). For more detail on ERC-20 standard, please refer to:
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/. ERC-20 is specific to Ethereum, other blockchains
have their own fungible token standards. For example, the Binance Smart Chain has BEP-20 tokens.
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Furthermore, there is a negative correlation between returns and onchain market makers’ con-

temporaneous change in inventory, meaning the OMMs provide liquidity by taking the opposite

side of the market to accommodate buying and selling pressure. A 10 p.p. increase in OMMs’ net

token purchase relative to total token transfers is correlated with a 0.62 p.p. decrease in contempo-

raneous weekly returns.

This chapter unfolds as follows. Section 2 provides a brief literature review. Section 3 provides

a crypto market overview. Section 4 presents a few facts about onchain market makers. Section

5 presents cross-section estimates of token returns as a function of the Amihud ratio and other

variables. Section 6 concludes.

3.2 Literature Review

This paper is related to the literature on liquidity and asset pricing. Acharya and Pedersen (2005)

presents a model of liquidity-adjusted CAPM where a persistent negative shock to a security’s

liquidity results in low contemporaneous returns and high predicted future returns. Empirically,

the relationship between liquidity and expected return has been studied for a variety of assets.

Amihud (2002) found negative relationship between future stock returns and liquidity, Lin et al.

(2011) and Mancini et al. (2013) found similar dynamics for bonds and foreign exchange. Also

using the Amihud ratio to study illiquidity in cryptocurrency, Zhang and Yi (2023) found evidence

of liquidity premium that is significant at 5%, while controlling for standard risk variables such as

size and momentum. On the other hand, again using the Amihud ratio, Liu et al. (2022) found that

the return difference between the most and least liquid portfolios are only significant at 10%.3 One

contribution of the current paper is the addition of novel onchain variables, such as onchain market

maker activity and the share of addresses.

This paper also contributes to the literature on market maker inventory, because net token pur-

chase by OMMs is equivalent to changes in market maker’s inventory. Comerton-Forde et al.

3Liu et al. (2022) kept stablecoins in their data. Stablecoins are tokens whose values are pegged 1:1 to USD, so
their returns are intended to be 0.
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(2010) shows that market maker inventory and revenue explains time-variation in liquidity. Hen-

dershott and Seasholes (2007) shows that market maker inventory is negatively correlated with

contemporaneous returns, which is consistent with market makers temporarily accommodate buy-

ing and selling pressure. This paper observes similar relationship in the crypto market, where

OMMs are net token buyers when contemporaneous returns decreases.

3.3 Crypto Market Overview

I scraped from coinmarketcap.com the financial data of the 2000 tokens with the highest market

capitalization as of March 1st, 2021. The cryptocurrency market is highly segregated, with each

token often trading on multiple exchanges. Coinmarketcap is an aggregator that collects data

from exchanges’ APIs to compute the weighted average price for each token. Issues inherent to

aggregated data include: i) exchanges that do not have APIs are excluded, and ii) crypto exchanges

are notorious for wash trading, so the reported trading volume may not be accurate (Cong et al.

(2021a)). 4

Figure 3.1 shows the mean, median, standard deviation of the monthly returns of all tokens each

month. Both mean and median return vary greatly between months, and the standard deviation

shows that there is large variation in returns between tokens within the same month. The blue

line (right axis) represents the number of tokens available each month. Token-days with less than

$1000 in trading volume are dropped before aggregating to monthly frequency, leaving around

1600 tokens in the data.
4Wash trading occurs when an exchange reports trading volume that did not exist, or inflates trading volume by

buying and selling tokens itself.
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Figure 3.1: Monthy Token Return Distribution, and Number of Tokens

Figure 3.2 shows the quartiles of returns across all available tokens each month. Returns are

highly skewed in some months.
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Figure 3.2: Monthly Token Return Distribution, Percentiles

Next, I delete stablecoins, which are tokens pegged to fiat currencies, and construct a crypto

market price index by computing the average token price weighted by market capitalization. Figure

3.3 displays price index (green) with the number of tokens (blue). The market price index will be

used to estimate each token’s beta in the regression analysis.

Figure 3.4 shows the number of ERC-20 tokens in my data. There are tens of thousands of

ERC-20 tokens in existence, but most of them are not traded, and only around 1200 belong to the

top 2000 by market capitalization.

Figur 3.5 shows the weekly return of the crypto market price in from figure 1. Return is cal-

culated as log difference. The returns are highly volatile, varying between -40% and 40%. The

fluctuation is also evident in figure 3.6, the crypto market 30-day return standard deviation.

Figures 3.7 displays the market capitalization of Bitcoin, Ether (the native token of Ethereum
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Figure 3.3: Crypto Market Price Index

Figure 3.4: Number of ERC20 Tokens, Monthly

blockchain), sum of all ERC-20 tokens, and others. ERC-20 tokens still accounts for less than 20%

of total market capitalization, while Bitcoin continues to dominate with 60%.5

5Bitcoin dominance has further dropped to below 50% since March 2021
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Figure 3.5: Crypto Market Weekly Return

Figure 3.6: Crypto Market Return 30-day Volatility

3.4 Facts about Onchain Market Makers:

As mentioned in the introduction, an onchain market maker (OMM) for token i on day t is an

address that has received and sent more than 1% of token i’s daily onchain transfer volume. In
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Figure 3.7: Market Capitalization, USD

other words, an OMM is an address on both the buying and selling sides of the market, who is

also large enough to account for a significant portion of the tokens transferred in a day. OMMs

are determined on token-day basis, so a OMM for token i on day t might no longer be OMM on

day t + 1, either because it is no longer on both sides of the market or because it transferred less

than 1% of i’s volume. Please note that onchain transfer volume, which is the amount of token i

transferred in a day, is different from the dollar trading volume that occur on exchanges. Trades

on centralized exchanges such as FTX often only appear in the exchanges’ own records, but not

on the blockchain. Token transfers on the blockchain are not counted in trading volume unless the

transfers are to or from an exchange.

Below are a few facts about onchain market maker activity.

1. OMMs market make a token for 11.3 days per month on average. It is not clear what OMM

do the rest of the month, perhaps trading other tokens.

2. OMMs account for a large share of transfer volume relative to their numbers. On average,

OMMs make up 30.2% and 28.2% of all receiving and selling addresses, respectively. They
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receive (or buy) and send (or sell) 56% and 50.9% of total trading volume.

3. OMMs are net buyers when returns are low. Let net purchase sharei,t be OMM’s net purchase

of token i on day t as % of total transfer volume. ri,t is token i’s return on day t in percent, and

γi is token fixed effects. The fixed effects estimation shows that when OMMs’ net purchase

share increases by 1 percentage point, same-day return of the token decreases by 0.025 p.p.,

after controlling for the aggregate crypto market, lag return, and token fixed effect.

ri,t = −0.34∗∗ − 0.24∗∗ri,t−1 + 0.64∗∗crypto market index returnt

− 0.025∗∗net purchase sharei,t + γi + ϵi,t

(3.1)

3.5 Empirical Methodology

Following the Fama and MacBeth (1973) regression in Amihud (2002), I run a cross-section model

for each week. I regress each week’s token return on the first lags of financial variables and

contemporaneous onchain variables. For each coefficient, I then average it over all weeks, and

compute t-statistics to test whether the average of each coefficient is significantly different from 0.

Riw = αw + β0wRi,w−1 +
n∑

j=1

βjwXji,w−1 +
J∑

j=n+1

βjwXji,w + ϵiw (3.2)

Riw is token i’s return in week w in percentage. X0i,w−1...Xni,w−1 are the lags of weekly

averages of the daily values of financial variables, and Xn+1i,w...XJi,w are the contemporaneous

onchain variables, including:

1. Mean-adjusted Amihud ratio: since average liquidity varies considerably over the weeks, I

calculate the mean-adjusted Amihud ratio by dividing each token’s weekly average Amihud

ratio by the market’s weekly Amihud ratio. Let token i’s weekly illiquidity be Amihudi,w =

1
T

∑T
t=1 Amihudi,t, where T is the number of days in week w for which token i’s Amihud

ratio is available. Let the weekly market illiquidity be the simple average of token illiquidity:
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Amihudmarket,w = 1
Nw

∑Nw

i=1 Amihudi,w, where Nw is the number of tokens available in week

w. The mean-adjusted Amihud is:

AmihudMAi,w =
Amihudi,w

Amihudmarket,w

2. Log size: natural logarithm of a token’s market capitalization.

3. Beta: token i’s quarterly comovement with market returns. Token i’s quarterly beta is esti-

mated from:

Riq = αiq + betaiqRMq + ϵiq (3.3)

where Riq is token i’s return in quarter q, and RMq is the same period’s market return.

4. SDRET: quarterly standard deviation of daily return of token i in quarter q. By the asset

pricing models of Levy (1978) and Merton (1987), SDRET is risk that is priced because

investors’ portfolio are constrained and therefore not well diversified. Stoll (1978) suggested

that stock illiquidity is positively related to the stock’s risk since the bid-ask spread set by a

risk-averse market maker is increasing in the stock’s risk. Constantinides (1986) proposed

that stock variance positively affects the return that investors require on the stock, since it

imposes higher trading costs on them due to the need to re-balance their portfolios more

frequently.

5. Buy (sell)-share: the amount of token i bought (sold) by i’s OMMs as fraction of daily

transfer volume. This is an indication of the level of activity by OMMs. A larger fraction

means more market makers are trading token i, making it more liquid.

6. Whales: the % of token i’s OMM who are also whales. Whales are addresses that hold more

than 1% of a token’s supply.

7. Net purchase share: token i’s OMM net token purchase divided by total transfer volume.
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8. Positive address share: an address for token i on day t refers to an onchain address that has

received or sent token i at any time in the past and present, i.e., until and including t. Positive

address share is the fraction of addresses that has positive balance of token i on day t.

9. Zero address share: the fraction of addresses for token i that no longer own the token on day

t, ie., their balance of token i is zero on day t. Zero balance addresses could indicate that

the address owner has abandoned the token. An increase in zero address share could mean a

loss of interest in token i by the market.

10. New address share: the fraction of addresses for token i that sent or received token i for the

first time on day t.

To be included in the data, observations must meet the following criteria:

• Tokens must follow the ERC-20 format. Non-ERC-20 tokens, such as non-fungible tokens

(NFTs) are eliminated because each unit can represent a different asset.

• Tokens whose value is derived from other assets are eliminated. An example would be

stablecoins that are pegged to fiat currencies.

• Tokens with fewer than 180-days of financial and onchain data are eliminated.

• For each day, observations within the top and bottom 0.5% of Amihud ratios are deleted.

• Weeks that have fewer than 100 tokens with available onchain and financial data are deleted.

892 tokens meet all of the above criteria. The data spans from the first week of 2018 to the

eighth week of 2021, for a total of 164 weeks. Table 3.1 summarizes the variables of interest.

Weekly token returns exhibits large variation, ranging from −695% to 884%, with mean −0.58%

and median −0.78%. Token illiquidity is highly skewed, with median 0.000062, i.e., $1 of trading

volume increases absolute returns by 0.000062 p.p., while the mean illiquidity is 0.12. In compari-

son, the annual average of Amihud ratio of NYSE stock from 1963 - 1996 is 0.000000337 (Amihud

(2002), table 1). Market illiquidity exhibit less variation, but is overall illiquid, with mean of 0.12,
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median of 0.13, and ranges from 0.0002 to 0.53. The token mean-adjusted illiquidity shows that

while most tokens are more liquid than the market, as the 75th percentile is 0.02, a token can be

300 times more illiquid than the market.

The log market cap ranges from 3.77 to 23.30, or $43 to $13.15 billion, with mean of $2.6

million. Beta, a token’s quarterly co-movement with the market, ranges from -1797 to 6.44, with

mean 0.68. Quarterly standard deviation of token returns ranges from 0 to 250.9, with mean and

median 13.6 and 9.7, respectively. In contrast, the mean and median annual standard deviation of

returns for the NYSE are 2.08 and 2.07, respectively.

For the onchain market maker variables, on average, 54% and 52% of all tokens received and

sent, respectively, are by onchain market makers. Average net purchase of a token by market

makers is 2.3% of all tokens transferred. Lastly, on average 19.3% of onchain market makers are

whales.

For token holding behavior, on average, 57.5% of a token’s addresses have positive balance,

while 39.8% no longer hold that token. 6 Lastly, new addresses account for only 0.1% of a token’s

addresses on average.

6Negative-balance addresses are possible. The addresses from which tokens are minted have negative balance
because they only send, but not receive.
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Table 3.1: Summary Statistics of Token Characteristics

The illiquidity measure, Token Amihudi,w, is week w’s average of the daily ratio of absolute return to the dollar volume of token i. Excluded are
tokens with extreme top and bottom 0.5% of illiquidity each day. The Market Amihudi,w is the simple average of Token Amihudi,w across all
tokens each week. The mean-adjusted illiquidity AmihudMAi,w is Token Amihudi,w over Market Amihudi,w. Returnsi,w is percent change in i’s
price between the last days of w and w − 1. Sizei,w is the weekly average of i’s daily market capitalization. Betai,q is estimated each quarter from
Ri,q = αi,q+betai,qRMq+ ϵi,q. SDRETi,q is the quarterly standard deviation of daily returns. Buy and sell sharesi,w are weekly averages of the daily
ratio of the amount of i received or sent by onchain market makers over total transferred. Net buy sharei,w is buy share subtract sell share. Whalesi,w
is the average of the daily percent of OMMs who are whales. Positive and Zero Address sharesi,w are the average daily addresses with positive
balance and zero balance, respectively, divided by the total number of addresses for i. New address sharei,w is the weekly average of addresses that
are new divided by total addresses. Weeks with fewer than 100 tokens are excluded. Data include 892 ERC-20 tokens over 164 weeks.

N mean std min 25% 50% 75% max

Returns 75726 -0.579969 32.852758 -694.774410 -12.591901 -0.779794 10.290876 884.454220
Lag Returns 74827 -0.663473 32.682548 -694.774410 -12.689872 -0.846566 10.227972 884.454220
Token Amihud 74012 0.121542 0.894170 0.000000 0.000006 0.000062 0.001448 45.809818
Market Amihud 75726 0.122241 0.083824 0.000224 0.051349 0.127071 0.170733 0.528845
AmihudMA 74012 1.000000 6.179278 0.000000 0.000085 0.000962 0.020385 300.711880
Lag AmihudMA 73153 0.998269 6.172498 0.000000 0.000085 0.000969 0.020430 300.711880
Log Size 75726 14.767079 2.188704 3.774402 13.277742 14.767999 16.208253 23.304623
Lag Log Size 74812 14.759834 2.185219 3.774402 13.274539 14.764498 16.198299 23.304623
Beta 75726 0.684780 6.570113 -1797.216700 0.370855 0.672932 1.076485 6.438610
Lag Beta 75726 0.616270 13.314220 -1797.216700 0.381807 0.720340 1.161042 26.997532
SDRET 75726 13.601522 13.821433 0.000000 6.956965 9.725159 15.047136 250.900680
Lag SDRET 75709 13.113120 12.632989 0.000000 6.891344 9.627502 14.713506 250.900680
Buy Share 65004 0.541938 0.173705 0.000000 0.439443 0.539748 0.660821 1.000000
Sell Share 65004 0.519102 0.170944 0.000000 0.420059 0.514120 0.632611 1.000000
Net Buy Share 65002 0.022898 0.140404 -1.000000 -0.022807 0.005029 0.079029 1.000000
Whales 65004 19.345641 19.873626 0.000000 0.000000 16.269842 29.369113 100.000000
Positive Address Share 75726 0.575012 0.217723 0.000222 0.399245 0.559631 0.751246 0.999637
Zero Address Share 75726 0.397741 0.208619 0.000000 0.227967 0.409377 0.559823 0.999554
New Address Share 75726 0.001206 0.006006 0.000000 0.000047 0.000186 0.000672 0.306161
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Table 3.2: Correlations

Pairwise correlations between regression variables. ** indicates statistical significance at 5%.

Lag Beta
Lag 
SDRET Buy Share Sell Share Net Buy Share

Positive 
Address 
Share

Zero 
Address 
Share

New 
Address 
Share

Returns
Lag 
Amihud 
MA

Lag Log 
Size Whales

Lag Beta 1
Lag SDRET -0.153** 1
Buy Share -0.005 -0.038** 1
Sell Share 0.004 -0.050** 0.668** 1
Net Buy Share -0.010** 0.013** 0.423** -0.391** 1
Positive Address Share -0.014** 0.080** -0.148** -0.146** -0.004 1
Zero Address Share 0.014** -0.087** 0.144** 0.141** 0.006 -0.979** 1
New Address Share -0.055** 0.026** 0.004 0.007 -0.004 0.003 -0.009** 1
Returns 0.013** -0.001 0.008** 0.031** -0.028** -0.008** 0.008** 0.050** 1
Lag Amihud MA 0.001 0.227** -0.017** -0.005 -0.015** -0.010** 0.002 -0.009** 0.008** 1
Lag Log Size 0.007 -0.321** 0.124** 0.072** 0.065** -0.137** 0.144** 0.114** -0.048** -0.202** 1
Whales 0.004 -0.045** 0.216** 0.200** 0.024** -0.107** 0.097** 0.034** 0.007 -0.025** 0.062** 1
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Table 2 displays the pairwise correlations, where ** indicates statistical significance at 5%

p-value. Return is positively correlated with buy and sell shares, meaning more OMM activity

is associated with higher returns. However, the correlation coefficient for sell share is nearly four

times that of buy share, which seems to indicate that OMM sell more when prices are high. OMMs’

net purchase share is negatively correlated with returns, meaning that MM are net buyers when

prices drop, that is, they are buying from everyone else during a sell-off.

Additionally, a higher fraction of new addresses is associated with higher returns, this could

reflect either i) entities that have never transacted token i before started to do so (extensive margin)

ii) entities who have transacted this token before created additional addresses to do so (intensive

margin). The extensive margin could be a sign of herding behavior.

The lag of mean-adjusted Amihud ratio is positively correlated with returns, suggesting that

liquidity premium might exist in crypto markets. Onchain market maker activity, as represented by

buy share and sell share, is negatively correlated with illiquidity, meaning the OMMs trade more

when when the market is more liquid. The fraction of OMM who are whales is also negatively

correlated with illiquidity, perhaps because OMMs who own more tokens also trade more tokens,

therefore providing more liquidity.

3.5.1 Regression Results

The model is estimated for 164 weeks, generating 164 sets of coefficients βjw. The averages of the

coefficients and t-statistics (in parentheses) across all 164 weeks are displayed in Table 3. Column

(1) is the baseline model in the tradition of Fama and MacBeth (1973). Columns (2) - (5) add the

onchain market maker variables, and columns (6) - (8) show results of token activity variables.

The negative and significant average coefficient for lag returns is evidence of mean reversion

in all specifications. In the baseline model, a 1 p.p. increase in returns is followed by a 0.18 p.p.

decrease the following week. Similar to equity, large tokens have lower returns, as a 1% increase

in market cap decreases returns by 0.0032 p.p. The risk variables beta and return volatility are not

significant across all specifications.
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The coefficient on the mean-adjusted Amihud ratio shows significant liquidity premium for

a few specifications. In the baseline regression, the average cross-section illiquidity coefficient is

0.088 with t-stat of 2.13, meaning if a token’s illiquidity relative to the market increases by 1, which

is 100 p.p., the following week’s non-annualized return increases by 0.088 p.p. In comparison,

the average coefficient for stocks is 0.112 per month (non-annualized) in Amihud 2002. As the

standard deviation of lag mean-adjusted Amihud is 6.17, a one standard deviation change in token

illiquidity is associated with 0.54 p.p.increase in following week’s return. When market makers

are added, illiquidity’s significance drops, with p-values between 5%− 10%.

The share of tokens sent (sold) by market makers has significant coefficient of 3.59. As sell

share ranges from 0 to 1, a 10 p.p. increase in tokens sent by market makers is correlated with

0.359 p.p.increase in weekly contemporaneous returns. This means that market makers tend to

sell as price rises. On the other hand, the share of tokens bought by market makers (buy share)

is insignificant. Market makers’ net purchase of tokens as fraction of total transferred is nega-

tively associated with returns, meaning market makers are net buyers when prices are low. This is

consistent with the findings in the equity market (Comerton-Forde et al. (2010)). This shows that

the OMMs are providing liquidity by temporarily absorbing the buy and sell pressure. A 10 p.p.

increase in net purchase share is associated with a 0.622 p.p. decrease in returns.

Among the onchain activity variables, only new address share is significant. A 1 p.p. rise in new

address share is associated with a 4.69 p.p. increase in return, which is economically significant.

Note that the average new address share is only 0.1%, so a 1 p.p. change represents a large jump

in new interest in a token and additional interest by existing holders.
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Table 3.3: Cross Section Regression Results

Riw = αw + β0wRi,w−1 +
∑n

j=1 βjwXji,w−1 +
∑J

j=n+1 βjwXji,w + ϵiw

This table represents the means of coefficients from the weekly cross-sectional regression of stock return in percent on lagged financial variables
(X0i,w−1...Xni,w−1) and contemporaneous onchain variables (Xn+1i,w...XJi,w). The data includes 164 weeks from 2018 to 2021, resulting in 164
sets of coefficients. T-statistics of the means are in parenthesis, * and ** denote statistical significance at 10% and 5% levels.

Variables (1) (2) (3) (4) (5) (6) (7) (8)

Lag Returns -0.181** -0.169** -0.17** -0.169** -0.169** -0.181** -0.181** -0.185**
(-19.8) (-18.794) (-18.839) (-18.488) (-18.468) (-19.697) (-19.646) (-20.246)

Lag AmihudMA 0.088** 0.105* 0.104* 0.097 0.102* 0.084** 0.084** 0.093**
(2.129) (1.741) (1.729) (1.629) (1.709) (2.027) (2.02) (2.255)

Lag Log Size -0.317** -0.305** -0.344** -0.253** -0.308** -0.328** -0.325** -0.453**
(-2.776) (-2.488) (-2.809) (-2.087) (-2.548) (-2.876) (-2.833) (-3.758)

Lag Beta 0.042 0.259 0.253 0.327 0.287 0.088 0.074 0.008
(0.126) (0.685) (0.681) (0.869) (0.756) (0.264) (0.219) (0.025)

Lag SDRET -0.077 -0.071 -0.074 -0.071 -0.07 -0.074 -0.074 -0.09
(-1.325) (-1.099) (-1.137) (-1.102) (-1.083) (-1.271) (-1.27) (-1.538)

Buy Share -0.257
(-0.302)

Sell Share 3.585**
(4.139)

Net Purchase Share -6.222**
(-5.896)

Whale Share 0.015**
(2.042)

Zero Address Share 1.018*
(1.782)

Positive Address Share -1.033*
(-1.923)

New Address Share 469.159**
(4.831)

Constant 3.028 2.951 1.648 2.175 2.56 2.727 3.668 4.696*
(1.285) (1.158) (0.656) (0.867) (1.046) (1.153) (1.549) (1.939)
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3.6 Conclusion

This chapter combines onchain and financial data to study the relationship between cryptocurrency

returns, liquidity and onchain market maker activity. Cross section analysis shows the liquidity

premium in cryptocurrency market is greater than that in equity market. Also consistent with

studies of equity, onchain market makers’ inventory is negatively correlated with returns. This

indicates that OMMs provide liquidity by accommodating buying and selling pressure.
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APPENDIX A

Blockchain Fundamentals

A.1 Cryptographic Primitives

A.1.1 Cryptographic Hash Functions

A cryptographic hash function has the additional properties of collision resistance, hiding, and

puzzle friendliness (optional). A hash function H is collision resistant if it is infeasible to find two

values, x and y, such that x ̸= y but H(x) = H(y). Theoretically, collisions exist because the set

of inputs is greater than the set of outputs; however, a secure cryptographic hash function makes the

process of finding collisions so computationally intense that, in practice, collisions are infeasible

to find. A hash function is said to be hiding if when a secret value r is chosen from a probability

distribution with a large variance, given H(r||x) (the hash of the concatenation of r and x), it is

infeasible to find x. r is a randomly generated value that is used only once. A hash function is

puzzle friendly if for every possible n-bit output value y, if a non-secret r is chosen from a spread

out distribution, then it is infeasible to find x such that H(r||x) = y in time significantly less than

2n.

A.1.2 Digital Signatures

The second cryptographic primitive, digital signature, is an algorithm that satisfies two properties

i) only the user can make the signature, but anyone can verify that it is valid, ii) the signature for a
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particular message cannot be forged to other messages. A digital signature scheme consists of all

three of the following algorithms:

• (sk, pk) :=generateKeys(keysize) The generateKeys method takes a key size and generates

a key pair. The secret key sk is private and used to sign messages. The public verification

key pk is given to everybody, so anyone can verify your signature.

• sig :=sign(sk,message) The sign method takes a message and a secret key, sk, as input and

outputs a signature for message under sk.

• isValid: = verify(pk,message,sig). The verify method returns true if sig is a valid signature

for message under public pk

A.1.3 Transaction Propagation

If Alex wants to send Bob a Bitcoin, this transaction will be broadcasted to a few nodes in the

Bitcoin network. Any node receiving the transaction first verifies the transaction’s validity, then

passes it along to the nodes that it is connected with. This way the transaction gets propagated to

all of the nodes. How soon a node can receive a transaction depends on how many other nodes the

transaction goes through to reach it. Because there is no global clock, a node only knows when it

received each transaction, but not when each transaction was initially broadcasted. Therefore, it is

impossible to determine the order in which the transactions actually occurred. If node A is selected

to append the newest block (block n), it gets to decide both which transactions to include in that

block and the order of these transactions.1

A.1.4 Bitcoin Transactions

Bitcoins are fungible, which means individual coins are not identifiable. A Bitcoin transaction

is a message that consists of inputs that identify the previous transactions from which the coins
1A Bitcoin block is aaround 1MB in size, and can contain >2500 transactions of 300 - 400 bytes each. Bitcoin’s

highest daily average transaction per block occurred on March 26, 2019, for an average of 2734.4 transactions per
block.
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were received, and outputs that list the addresses to which coins are sent and the amount to be

sent to each address. In this sense, a Bitcoin transaction is a redemption of previous transactions.

For example, if address A sent six bitcoins to address B (transaction 1), but address B wants to

send five of these coins to address C (transaction 2), then the input of transaction 2 would specify

transaction 1, and the output of transaction 2 would specify five coins to address C and one coin

back to address B itself. 2 A.1 shows the contents of an actual Bitcoin transaction.

Figure A.1: Contents of a Bitcoin Transaction

Metadata contains housekeeping information. The ”hash” field provides the hash of the entire

transaction, which serves as the transaction ID. ”vin sz” and ”vout sz” are the number of inputs

and outs. ”lock time” specifies the earliest time the transaction can be added to the blockchain.

inputs contains the hashes of previous transactions whose coins are being redeemed. ”scriptSig”

are the signatures required to redeem the coins. output contains the address (public key) to which

coins are being sent, and the quantity of coins to be sent.
2The Bitcoin blockchain does not contain the account balance of addresses. Verifying an address’ account balance

requires tracking all of the transactions that the address has been involved in, that is, calculating the sum of all coins
that the address has ever received, and subtracting the sum of all coins that the address has ever sent. Instead, Bitcoin
uses the unspent transaction output (UTXO) model. An unspent transaction output is a transaction output that can
be used as input of another transaction. It is much simpler to track only the transactions through which the address
received the coins to be spent.
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APPENDIX B

Technical Appendix

B.1 Risk Neutral

B.1.1 Equity

L = λβ(B0R) + (1− λ)β2(B0R
2 + e[(y1 − ω)R + y2 − ω]) + µ(W −B0 − eq) (B.1)

∂B0 : λβR + (1− λ)β2R2 = γ

∂e : (1− λ)β2[(y1 − ω)R + y2 − ω] = γq

∂µ : W = B0 − eq

q =
(1− λ)[(y1 − ω)R + y2 − ω]

R2
(B.2)

Required rate of return: RE = (y1−ω)R+y2−ω
q

= R2

1−λ

c′2equity = (1− e)[(y1 − ω)R + y2 − ω]

= (y1 − ω)R + y2 − ω − IR2

1− λ
(B.3)

B.1.2 Tokens

L = λβ(B0Rf +ϕ1T0)+(1−λ)β2[(B0Rf +ϕ1T0)Rf +ϕ2(1−ϕ1)T0]+µ(W−B0−T0p0) (B.4)
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∂B0 : λβRf + (1− λ)β2R2
f = µ

∂T0 : λβϕ1 + (1− λ)β2[ϕ1Rf + ϕ2(1− ϕ1)] = µp0

∂µ : W = B0 − T0p0

p0 =
ϕ1

Rf

+
(1− λ)ϕ2(1− ϕ1)

R2
f

(B.5)

Gross required rate of return (sell at t = 1 for 1):

E0(R
T ) =

1

p0
(B.6)

c′2token = T ′
2p2 +B′

1Rf − ω

= y2 − ϕ2(1− ϕ1)T0 +Rf (y1 − ϕ1T0 − ω)− ω

= (y1 − ω)Rf + y2 − ω − (ϕ2(1− ϕ1) + ϕ1Rf )
I

p0

= (y1 − ω)Rf + y2 − ω − (ϕ2(1− ϕ1) + ϕ1Rf )IR
T

= (y1 − ω)Rf + y2 − ω − IR2
f (

ϕ2(1− ϕ1) + ϕ1Rf

λRfϕ1 + (1− λ)(ϕ2(1− ϕ1) + ϕ1Rf )
) (B.7)

Result 1

∂c
′,T
2,n

∂ϕ1

= IR2 Rλϕ2

[ϕ1(R− (1− λ)ϕ2) + (1− λ)ϕ2]2
≥ 0 (B.8)

∂c
′,T
2,n

∂ϕ2

= −IR2 (1− ϕ1)λϕ1R

[ϕ1(R− (1− λ)ϕ2) + (1− λ)ϕ2]2
≤ 0 (B.9)

B.2 Constant Relative Risk-Averse Investors

B.2.1 Equity

L = λβ
(B0Rf )

1−σ − 1

1− σ
+ (1− λ)β2

(B0R
2
f + eΠ)1−σ − 1

1− σ
+ γ(W −B0 − eq)
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∂B0 : λβ(B0R)−σR + (1− λ)β2(B0R
2 + eΠ)−σ = γ

∂e : (1− λ)β2(B0R
2 + eΠ)−σΠ = γq

∂γ : W = B0 + eq

qa =
(1− λ)β2(B0R + eΠ)−σΠ

λβ(B0R)−σR + (1− λ)β2(B0R + eΠ)−σR2

=
(1− λ)Π

R2
[
λ(B0R2+eΠ

B0R
)σ + 1− λ

]
RE

a =
Π

q
=

R2

1− λ

[
λ(

B0R
2 + eΠ

B0R
)σ + 1− λ

]

c
′E
2,a = (1− e)Π = (1− I

q
)Π

=

[
1−

IR2
[
λ(B0R2+eΠ

B0R
)σ + 1− λ

(1− λ)Π

]
Π

= Π− IR2

1− λ

[
λ(

B0R
2 + eΠ

B0R
)σ + 1− λ

]

B.2.2 Token

L = λβ
(B0Rf + ϕ1T0)

1−σ − 1

1− σ

+ (1− λ)β2 [(B0Rf + ϕ1T0)Rf + ϕ2(1− ϕ1)T0]
1−σ − 1

1− σ
+ µ(W −B0 − T0p0)

∂B0 : λβ(B0R + ϕ1T0)
−σR + (1− λ)β2[(B0R + ϕ1T0)R + ϕ2(ϕ1)T0]

−σR2 = µ

∂T0 : λβ(B0R + ϕ1T0)
−σϕ1 + (1− λ)β2[(B0R + ϕ1T0)R + ϕ2(ϕ1)T0]

−σ[ϕ1R + ϕ2(1− ϕ1)]

= µp0

∂µ : W = B0 + T0p0
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Let Φ = ϕ1R + ϕ2(1− ϕ1).

p0,a =
λβ(B0R + ϕ1T0)

−σϕ1 + (1− λ)β2[(B0R + ϕ1T0)R + ϕ2(1− ϕ1)T0]
−σΦ

λβ(B0R + ϕ1T0)−σR + (1− λ)β2[(B0R + ϕ1T0)R + ϕ2(1− ϕ1)T0]−σR2

=

λβϕ1

cσ1
+ (1−λ)β2[ϕ1R+ϕ2(1−ϕ1)]

cσ2
λβR
cσ1

+ (1−λ)β2R2

cσ2

=
βϕ1(λc

σ
2 + (1− λ)cσ1 ) + (1− λ)β2ϕ2(1− ϕ1)c

σ
1

λcσ2 + (1− λ)cσ1

=
ϕ1

R
+

(1− λ)ϕ2(1− ϕ1)

R2

cσ1
λcσ2 + (1− λ)cσ1

RT
a =

1

p0,a
=

R2(λcσ2 + (1− λ)cσ1 )

ϕ1R[λcσ2 + (1− λ)cσ1 ] + (1− λ)ϕ2(1− ϕ1)cσ1

c
′T
2,a = Π− (ϕ2(1− ϕ1) + ϕ1R)

I

p0

= Π− (ϕ2(1− ϕ1) + ϕ1R)
IR2(λcσ2 + (1− λ)cσ1 )

ϕ1R(λcσ2 + (1− λ)cσ1 ) + (1− λ)ϕ2(1− ϕ1)cσ1
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