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ABSTRACT

There are several challenges impeding widespread adoption of additive manufac-

turing (AM). In extrusion-based AM, which is the focus of this dissertation, slow

production speed and position accuracy in the end-use parts are significant problems.

Comparatively, mass-manufacturing processes can make accurate parts with fast pro-

duction rates. Fortunately, innovative architectures capable of reaching higher speeds,

such as the H-frame and delta robot manipulators, are being introduced for use in

extrusion-based AM. For these manipulators, maintaining position accuracy at high

speeds is challenging because they have complex (i.e., coupled and nonlinear) dynam-

ics: they have nonlinear motion errors that are difficult to model and compensate. The

major contributions of this dissertation are to present novel methods to characterize

their dynamics with linear parameter-varying (i.e., position-dependent) models and

apply feedforward vibration compensation to mitigate their motion-induced errors.

In the vibration compensation literature, researchers have used a model-based

vibration control technique known as the filtered B-splines (FBS) approach to in-

crease production rates on traditional printer architectures by 2x without sacrificing

accuracy. The FBS approach executes tracking control of a given trajectory by first

expressing the control input to the machine as a linear combination of B-spline basis

functions. The basis functions are then forward filtered through the machine’s dy-

namics and the coefficients are obtained such that the tracking error is minimized.

In this manner, a desired manufacturing trajectory can be accurately tracked at high

speeds. However, the FBS approach has only been applied to systems with lin-

ear time-invariant dynamics and has not been applied to systems with coupled and
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position-dependent dynamics. Additionally, coupled dynamics result in larger inver-

sion problems when calculating the FBS controller and position-dependent dynamics

require recomputing the models to account for changing dynamics. Both phenomena

lead to increased computational effort required to implement FBS. To decrease the

computational effort of deploying FBS on advanced manipulators, this dissertation

proposes methods to: (1) decouple the coupled dynamics while maintaining high con-

trol accuracy and (2) efficiently compute and invert position-dependent models during

real-time manufacturing by separating time-invariant and time-varying parts of the

model, parameterizing time-varying models, and using efficient matrix methods for

computation. We present numerical simulations that demonstrate the effectiveness of

these methods to bolster computational efficiency. For example, we implement FBS

on the delta robot with a nearly 40% improvement in computational efficiency when

compared to a standard FBS approach that does not use the new methods.

Successful vibration compensation also depends on having accurate mathematical

models of the controlled system. To obtain the models, we approximate the non-

linear models of the manipulators as linear models using linearization methods and

validate that the approximations do not result in loss of accuracy using data from the

machines. Additionally, to facilitate adoption of the proposed control approach, this

dissertation presents techniques for efficient identification of the model parameters

with a few measurements from the H-frame and delta manipulators. We outline the

experimental procedures necessary to perform the system identification and present

data from commercial 3D printers demonstrating that the prediction model matches

the real system at different operating positions—up to 50% better than predicting

with a model measured at one central location. More importantly, we show that using

these models results in up to 39% reduction of vibration-induced accelerations when

compared to a model that does not change based on the printer’s position.

xix



CHAPTER I

Introduction and Literature Review

Additive Manufacturing (AM), also known as three-dimensional (3D) printing, is

a manufacturing process that creates parts by locally depositing and fusing material

together in 3D space. The material is often deposited layer-wise—in 2D cross-sections

of the intended 3D geometry. Using AM, it is possible to create an (almost) infinite

number of geometries without the need for reconfigured or retooled machines, which is

different from most traditional manufacturing processes where retooling the machine

is often required when the part geometry changes. This versatility has created the

conditions for 3D printing to disrupt traditional manufacturing. Accordingly, many

companies view AM as a critical part of their strategy in the coming decade [1].

As an example, in 2020, GE Aviation announced that their GE9X engines, which

contain over 300 3D printed parts, had been used on the first flight of the Boeing

777X commercial jetliner and passenger plane [2]. Incorporating 3D printed parts

enabled GE engineers to manufacture parts with geometries that cannot be realized

with traditional manufacturing methods. Similar examples of 3D printing’s flexibility

can be found in a wide variety of sectors including fashion, architecture/construction,

aerospace/defense, and healthcare [3].

The adoption of 3D printing has been advanced by the fused filament fabrication

(FFF) technology, which is used to create desktop 3D printers that are cheap enough
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for average U.S. consumers to purchase. FFF is an extrusion-based approach, where

melted plastic is forced through a nozzle and deposited on a print bed. The easy-to-

use technology has begun to democratize access to manufacturing [4]. In 2021, about

a million U.S. consumers owned 3D printers and FFF 3D printers made up more than

70% of the total market [1]. Despite their popularity, FFF 3D printers are known

to operate with slow production times—on the order of hours to days—to create

parts of reasonable quality. Furthermore, attempting to increase production speed

can lead to significant degradation in the part quality due to vibration-induced errors

and other process errors [5–8]. Compared to traditional manufacturing processes,

which are optimized for high production speeds and accurate part dimensions, 3D

printing cannot yet meet the speed and quality requirements of industry. Hence, the

technology is still confined to specialized parts and industries where the benefits of

customization outweigh the costs.

Achieving industrial adoption requires an increase in the throughput of 3D printers

without any loss of (and perhaps with an increase in) accuracy. Consequently, this

thesis is focused on developing novel techniques to use motion control to increase

the productivity and accuracy of extrusion-based FFF systems. Our approach seeks

to increase throughput by leveraging advanced manipulators designed to reach high

speeds, while maintaining accurate motion using control algorithms in the software.

1.1 Background and Motivation

A number of techniques have been studied to address the slow speed and poor part

quality issues in AM. These techniques can be roughly classified into two categories:

(1) approaches to improve the motion systems and (2) approaches to improve man-

ufacturing processes and materials. Regarding motion systems, researchers typically

consider changes to the actuator design, mechanical design, and controller design to

improve the machine’s overall speed and accuracy performance. Regarding the man-
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ufacturing processes and materials, researchers seek to understand how to model and

control the filament material dynamics, how to improve the filament heating tech-

nology, and innovative alterations to the chemical compositions of materials used the

process to enhance the machine’s response to fast extrusion rates. In this thesis, we

focus on the design and control of motion systems for extrusion-based 3D printers.

However, we are cognizant of the intimate coupling between the motion system design

and the manufacturing process and materials used in 3D printing. We believe that

approaches from both categories will eventually need to be combined to maximize the

speed and quality of 3D printers.

Recently, advanced manipulators with improved dynamic performance have been

introduced to increase productivity in 3D printing. In this thesis, we focus on two

such architectures that are becoming popular for extrusion-based 3D printing: (1)

the H-frame gantry and (2) the delta robot. The H-frame gantry (Fig. 1.1(a)) is

a parallel-axis architecture that uses two stationary motors mounted to the printer

frame to control the end-effector through a single timing belt (Section II contains

more details). Since the motors are stationary, we can leverage the lighter moving

mass of the printer’s gantry to improve its dynamic performance when compared

to traditional serial-axis 3D printers (Fig. 1.1(c)). The delta robot (Fig. 1.1(b))

is similar to the H-frame in its use of a parallel-axis architecture and stationary

motors, which are located at the base of its frame. It uses three stationary motors to

control three vertical carriages which are arranged in the geometry of an equilateral

triangle. Three pairs of forearms are used to connect each carriage to the same end-

effector, such that three spherical constraint equations relate the vertical positions

of the three carriages to the Cartesian position of the end-effector (as described in

Section III). Like the H-frame, this architecture enables a lighter end-effector and

improved dynamic performance. Despite the improvements in dynamic performance

afforded by these manipulators, they still suffer from accuracy limitations caused
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Figure 1.1: Three manipulator architectures for extrusion-based 3D printing: (a)
the parallel-axis H-frame gantry with stationary motors (labeled M1 and M2) and
the timing belt and pulley configuration that transmits rotational motion to XY
translational motion of the gantry and end-effector; (b) the delta robot whereby
stationary stepper motors actuate a vertical belt-driven carriage system connected to
the end-effector via parallel links (labeled: forearms); and (c) a traditional serial-axis
manipulator with an x-axis motor that moves with the z-axis of the machine, a bed
that moves to control the y-axis, and a bulky end-effector. Architectures (a) and (b)
have better dynamic performance than (c) due to their relatively low moving mass.

by motion-induced errors. These errors are created by vibration—via the inherent

compliance in their mechanical structures—and the coupled and (often) nonlinear

dynamics between their joints/axes, which create disturbance forces that are difficult

to control. Additionally, as we will discuss in Chapters II and III, both manipulators

have dynamics that vary as a function of their workspace position: the gantry on the

H-frame undergoes torsional rotations whose print errors depend on the end-effector’s

x-position and the proportion of end-effector’s inertia that is moved by each of the

delta robot joints also depends on its global workspace position.

Vibration errors can be mitigated with hardware solutions that increase the stiff-

ness or damping of the machine. However, this choice can increase the cost and weight

of the machine. Active vibration suppression methods (i.e., feedback controllers) can

also be used to mitigate vibration, but optimal performance of feedback controllers re-

quire adding sensors to the end-effector (i.e., printing nozzle) which can also increase
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cost. Given adequate sensing, feedback controllers may also encounter stability is-

sues that are the result of non-collocated actuation and sensing between the motors

and the end-effector. Additionally, most commercial 3D printers are controlled in

open-loop architectures using stepper motors, which is perhaps the most significant

impediment to using feedback control. Fortunately, the challenges of feedback con-

trol can be circumvented via model-based feedforward (FF) control, which has been

shown to mitigate vibration in a host of manufacturing applications, including 3D

printing [5–7, 9]. Model-based FF control is also attractive because it does not re-

quire modifying the mechanical architecture of machines which means they can remain

low-cost and lightweight. As the name implies, model-based FF control techniques re-

quire an accurate model of the system’s dynamics, which can be difficult or inefficient

to obtain for systems with position-dependent dynamics like the H-frame and delta

robot manipulators. Furthermore, even with accurate models of these machines, their

position dependence means that the models must be recomputed for control as their

position evolves. Additionally, the model-based FF controller may require solving

computationally demanding optimization problems. Hence, the combination of up-

dating the models and the controllers can be computationally challenging to achieve

on-line during real-time control.

This thesis aims to address the challenges associated with efficiently modeling and

applying model-based FF controllers to the H-frame and delta robot manipulators in

the context of FFF 3D printing. By doing so, we can mitigate vibration and other

motion-induced errors to maintain high accuracy while benefiting from the increased

productivity provided by these systems.
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1.2 Literature Review

1.2.1 Feedforward Vibration Control of Manufacturing Machines

Feedforward (FF) vibration control has been studied and implemented widely in

research and industry to improve tracking and contouring performance in manufac-

turing machines. One of the most popular approaches to FF control is a class of

methods known as smooth command generation (SCG) [10,11]. SCG reduces motion

errors by generating commands that have little to no high-frequency content using, for

example, low-pass filters [12] and jerk-limited trajectories [13]. However, attenuating

high-frequency content implies loss of motion speed which adversely affects productiv-

ity [9]. Additionally, SCG methods focus solely on kinematic parameters, neglecting

the machine’s dynamics [14]. Hence, conservative acceleration and jerk limits are

often adopted to minimize the risk of machine damage, leading to a sub-optimal so-

lution. However, if we utilize knowledge of a machine’s dynamics, we can optimize

the trajectory to achieve a desired performance metric without risk of damaging the

machine [15].

Input shaping (IS) is another popular FF control method that eliminates vibration

errors [16–18] based on a model of the machine’s dynamics. The basic idea for IS

is to construct the input command as the convolution of the desired trajectory and

a sequence of impulses aimed at mitigating residual vibration in the output motion

of the system. The impulses are designed to be equal in magnitude but opposite in

phase to the resonance vibrations in the system, which cancels the vibration errors

through destructive interference. A major limitation of IS is that it introduces time

delays between the desired and actual motion, leading to large tracking/contouring

errors and reduction of productivity [19, 20]. Additionally, for parallel and robotic

manipulators like the ones considered in this thesis, implementing IS in the joint space

can lead to significant Cartesian contour errors [21,22]. Therefore, while IS works well
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for point-to-point motions, it exhibits poor performance for the tracking/contouring

motions prevalent in most manufacturing applications [20].

Another class of FF control methods is known as model-inversion based FF control.

Methods in this class compensate motion errors by using the inverse of the motion

system’s dynamics to pre-filter motion commands. Model-inversion FF control meth-

ods do not introduce time delays and can theoretically lead to perfect compensation

of motion errors [23]. In practice, perfect compensation is difficult to achieve due

to modeling errors [6] and the prevalence of nonminimum phase (or unstable) zeros,

which become unstable poles after inversion [24]. Hence, approximate model-inversion

FF controllers have been employed in the literature, several of which are discussed

extensively in [23,25,26]. Of the available methods, the filtered basis function (FBF)

approach has been shown to be versatile, compared to others, regarding its appli-

cability to any linear system dynamics [5, 6, 20, 24]. The FBF approach expresses

motion commands as a linear combination of basis functions, forward filters the basis

functions using the system’s dynamics, and calculates the optimal coefficients of the

basis functions such that motion errors are minimized. A version of FBF commonly

used for controlling manufacturing machines is the FBS method [5], where B-splines

are selected as the basis functions because they are amenable to the lengthy motion

trajectories common in manufacturing. In prior work, the FBS method was used

to reduce the printing time of traditional (serial) 3D printers by up to 54% without

sacrificing print quality by compensating vibration-induced errors [9].

The versatility of FBS makes it a good candidate for compensating motion-induced

errors on the H-frame and delta robot manipulators. However, the standard imple-

mentation of FBS used in prior work was not directly applicable to the compensation

of errors in these systems because it assumes that the machine dynamics are LTI and

decoupled. As previously discussed, the manipulators considered in this dissertation

have nonlinear, treated as linear parameter-varying (LPV), and coupled dynamics.
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Hence, the first contribution of this dissertation is the introduction of practical tech-

niques to implement FBS on LPV systems with coupled dynamics.

1.2.2 Modeling and Control of H-frame and Delta Robot Manipulators

The H-frame architecture, as seen in Fig. 1.1(a), has a simple parallel axis design

that consists of two motors which are connected to the end-effector through a single

timing belt and several pulleys [27, 28]. Translational motion in the x- and y-axis of

the end-effector is generated via the rotational motion of the frame-mounted motors.

Since the motors are stationary, high-power (and, typically, heavy) motors can be

used to achieve high-speed and high-precision motion without increasing the moving

mass of the printer. For this reason, the H-frame architecture has been used in several

3D printers, such as the Stratasys Mojo [29], MakerBot Replicator Z18 [30], Creality

Ender 4 [31], and MIT’s Fast FFF [32]. Using the H-frame as one of several improve-

ments to conventional FFF 3D printers, Go et al. [32] demonstrated a 5–10 times

increase in build rate using the Fast FFF printer compared to several commercial

printers of the same class. However, parts printed with H-frame 3D printers suffer

from quality defects caused by parasitic error motions due to “racking” [28]: when the

motors are commanded to rotate in the same direction, a force couple (pure moment)

is imposed on the gantry (see Fig. 1.2) which can lead to errors that distort the part

shape1.

As discussed in Section 1.1, motion errors like racking can be mitigated with

mechanical solutions such as a rigid linear guideway design [33] or adding counter-

weights to offset the racking, both of which increase cost and weight of the gantry.

A lower-cost strategy that does not add weight to the gantry is to design a modified

configuration like the two-belt Core XY architecture [28], which ensures the forces on

1An example of this phenomenon can be seen in the video from the YouTube account by K.
Kamal entitled “Hbot Mechanism Racking Issue- 3D Printing”: https://www.youtube.com/watch?
v=2 wWr66bl6Q
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Figure 1.2: Rotations of the H-frame’s motors in the same direction create unbalanced
forces F that cause racking—parasitic torsional motions–of the gantry.

the gantry do not create a force couple. However, the Core XY and similar designs

can be significantly more complex than the H-frame’s design, which leads to a longer

manufacturing process. Additionally, other sources of error may surface, such as the

errors created on the Core XY when the two belts are not equally tensioned [28]. To

avoid additional cost, weight, and complexity, we can employ model-based control to

the H-frame manipulator to mitigate racking vibration.

In pursuit of a suitable model for control, Sollmann et al. [27] developed an eight-

order lumped parameter dynamic model of a servo-motor controlled H-frame gantry

using the Lagrange formulation. The model captures the nonlinear friction and the

uncertainty of the end-effector position due to the stretching in the belt. However, the

model does not capture the racking motion which results in “differences in the ampli-

tude of starting oscillations between [their] simulated and experimental response” [27].

They conclude that although these observations were not captured by the model, they

were relatively small (sub-millimeter) compared to other effects (e.g., nonlinear fric-

tion) [27]. While this conclusion may hold for some H-frame gantries, it does not

generally apply for all, especially when they are expected to travel at high speeds

and respond to rapidly changing acceleration inputs. In those cases, racking errors
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can have significant effects on the output [28]. Accordingly, in a thesis covering

more details of the work [34], Sollmann found that proportional-derivative (PD) and

proportional-integral-derivative (PID) controllers were inadequate control strategies

for high-speed tracking, which underscores the necessity for model-based controllers

that can compensate racking errors. In subsequent work, other researchers measured,

characterized, and simulated the effects of racking motion on kinematic and dynamic

accuracy [28, 35]. However, to the best of our knowledge, no one has explicitly at-

tempted to compensate racking on an H-frame machine through model-based control.

Hence, two additional contributions of this dissertation are to (1) propose an H-frame

model that captures the racking dynamics and (2) propose a technique to compensate

racking on 3D printers with the H-frame design.

The second manipulator of interest in this dissertation is the delta robot, which

has been used in a wide variety of research and industrial applications including agri-

culture, healthcare, haptic devices, and manufacturing [36]. Delta robot 3D printers

use three actuators to move three prismatic joints, which are all connected to the

end-effector in parallel via forearm links as shown in Fig. 1.3. Vertical motion of the

joints results in lateral and vertical motion of the nozzle as it extrudes and deposits

material on a heated, stationary bed. As a result of the parallel-axis construction,

the delta 3D printer boasts higher speeds and accelerations when compared to con-

ventional 3D printers with serial kinematics [37]. Furthermore, delta 3D printers can

command identical speeds in all three Cartesian axes, whereas the axis speed of serial

3D printers vary–with the vertical (z) axis typically having much lower speeds than

the lateral (x, y) axes [38]. Accordingly, delta printers have expanded the capabil-

ities of FFF and, for example, have been shown to improve the quality of Curved

Layer FFF [39], which varies the z-axis position within layers. Examples of commer-

cial delta 3D printers include the Monoprice (MP) Delta Pro [40], the FLSUN QQ-S

Pro [41], the Delta WASP 2040 [42], and the Tractus T3500 [43].
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Figure 1.3: From left to right: a commercial delta 3D printer (Monoprice Delta Pro)
with labeled components; a schematic of the belt-driven carriage system; and the
delta robot configuration showing the connections between joints and links.

Like conventional serial-axis 3D printers, delta 3D printers experience undesir-

able vibration when they travel at high speeds [38, 44]. However, unlike conven-

tional printers, delta printers have position-dependent and coupled multi-input, multi-

output (MIMO) dynamics [45,46]. Thus, identifying their dynamic model can be dif-

ficult and time-consuming because one must measure the models at several different

positions. Analytical models of delta robots can be derived but they may be: (a)

too complex to be suitable for real-time control [46–48] or (b) contain a large num-

ber of parameters that are difficult to measure and identify accurately [45]. Hence,

simplifications of analytical models have been proposed and used in model-based

controllers [49–53]. However, most of the previous work considers delta robots with

rotary joints (instead of the prismatic joints used in delta 3D printers), which typi-

cally use servo motors with encoders. As a result, these control schemes are usually

aided by feedback regulators, most of which rely on state measurements to estimate

servo errors for accurate compensation [45, 50–58]. A PD or PID controller is usu-

ally a key element of these control methods, but standalone PD/PID controllers do

not consider the dynamic coupling of delta robots. Therefore, their performance is
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adversely affected by the force disturbance inputs from other kinematic chains. To

address this issue, Codourey [45] combined a lumped model of the delta robot with

a PD regulator in a computed torque (CT) control implementation to improve the

tracking error performance in pick-and-place tasks when compared to a standalone

PD regulator. Similarly, Angel and Viola [54] proposed a fractional PID controller

combined with a CT controller. However, CT controllers also need to have complete

knowledge of the robot’s dynamics which, as discussed above, are difficult to model

efficiently and are sensitive to uncertainties and disturbance inputs. For example,

in [45], torque is computed using workspace accelerations, which are in turn obtained

by transforming second derivatives of the joint positions of the robot into workspace

coordinates. These calculations can be problematic when there is noise, joint flexibil-

ity and other unmodeled errors, or inaccuracies in the measurements. Perhaps this

explains why no experiments that implement the controller on hardware are presented

in [54] (only simulations were used).

In an effort to improve the performance of feedback controllers, recent work has

focused on techniques to (a) improve measurement accuracy of real-time servo errors

and (b) reject disturbance forces using adaptive control [50,51,55–59]. Some examples

include disturbance rejection in the feedback loop using linear disturbance observers

[50, 51], changing the PD gains online as a function of servo error estimates [55],

injecting inputs learned by an artificial neural network (ANN) to compensate errors

that the PD controller does not reject [56, 59], and using synchronization control

strategies to reject coupling disturbances in each actuator from the other actuators

[57,58]. Other approaches focus on tuning trajectory-dependent PID controller gains

offline to minimize errors along a desired path that is known a priori [52, 53]. These

PID gains provide reasonable tracking performance along the trajectory but require a

priori knowledge of the entire trajectory. Some researchers have also employed sliding

mode controllers to improve tracking performance since they are relatively insensitive
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to the disturbance inputs [60–62]. In summary, the central theme of the prior work

is to treat the position-dependent dynamic variations of delta robots as unmodeled

disturbances which are suppressed using feedback control. However, most commercial

delta 3D printers cannot benefit from such approaches because they utilize stepper

motors for actuation, which have no feedback sensors. Hence, they must rely on

models that accurately capture their dynamics without the need for real-time state

measurements.

Considering the general problem of modeling position-dependent dynamics, re-

searchers have sought to eliminate the need for inefficient and time-consuming mea-

surements by combining sparse offline measurements with techniques like interpo-

lation [63] and machine learning [64]. Voorhoeve et al. [63] measured LTI models

of a flexible wafer stage at several frozen positions and then interpolated the mode

shapes to obtain a model with continuous position dependence. However, their ap-

proach was implemented on a single flexible moving body and it is not clear how

to translate the methodology to systems with multiple parallel moving bodies like

the delta robot. Machine learning-based methods—mostly using ANNs—have also

been employed to model and control delta robots [64–68]. ANNs are promising be-

cause of their ability to learn nonlinear behaviors and to save time in computationally

challenging problems—characteristics that are useful for controlling delta 3D print-

ers. Currently, the most promising direction is using ANNs to generate a model for

parameter varying dynamics. For example, Liu and Altintas [64] trained a transfer

learning model using two ANNs: the first using abundant data from the simulated

dynamics of a computer numeric controlled (CNC) machine, and the second with

significantly less measurements from the machine. The models were combined to

fine-tune the simulation model with the “real-world” model. Despite the success of

this technique, it requires the laborious process of tuning hyperparameters during

training. Additionally, since machine learning models often lack physical interpreta-
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tion, designing stable controllers for them can be challenging. In general, using ANNs

to design low-level control laws can be problematic because it is difficult to guarantee

their stability. Therefore, in practical applications, ANNs are typically used to gener-

ate adaptive controller gains [65–68] instead of using them in model-based controllers

or to directly generate low-level control laws. Therefore, another contribution of this

dissertation is to propose a framework that enables identification of accurate and

physically-interpretive LPV (i.e., position-dependent) models of the prismatic-joint

delta robot using a few measurements from the machine. Additionally, since the delta

3D printer does not have any feedback sensors, this dissertation proposes a method-

ology for open-loop feedforward control by using the identified LPV model and novel

contributions of techniques to improve the computational efficiency of implementing

the LPV model with the FBS approach.

In summary, this dissertation aims to address the following gaps identified through

the literature survey: (a) the need to develop practical techniques to implement

the FBS approach on coupled LPV systems; (b) the need for an accurate model

of the racking dynamics of the H-frame manipulator; (c) the need for a vibration

control technique that can compensate vibration induced by racking motions on the

H-frame; (d) the need for an accurate model of the dynamics of the prismatic-joint

delta robot that is not a function of disturbance forces and, thus, does not rely

on on-line measurements; and (e) the need for a open-loop vibration compensation

technique for delta robot 3D printers.

1.3 Dissertation Contributions and Outline

To address the challenges of modeling and FF vibration compensation of the

H-frame and delta robot manipulators to achieve high-quality and high-throughput

in extrusion-based additive manufacturing, this dissertation (based on publications

[69–72]) makes the following contributions:
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1. In Chapter II, we analytically and empirically model the kinematics and dynam-

ics of the H-frame’s racking motion. Using the model, we propose an extension

of the standard FBS controller to compensate the H-frame’s coupled LPV rack-

ing dynamics.

2. Also in Chapter II, we develop a simplification of the H-frame’s coupled LPV

FBS controller and show that the simplification significantly reduces the com-

putational cost of the controller with little to no sacrifice to its compensation

accuracy.

3. In Chapter III, we introduce the receptance coupling (RC) framework used to

model the delta 3D printer dynamics. With the framework, we propose an

efficient methodology for identifying a model with a few measurements at one

location and show that the model yields accurate predictions of a delta printer’s

dynamics in arbitrary configurations.

4. In Chapter IV, we propose a set of techniques to address the computational

challenges of controlling the position-dependent delta 3D printer using FBS.

Our methodology includes (1) parameterizing the position-dependent portions

of the dynamics offline to enable efficient online model generation, (2) computing

real-time models at sampled points (instead of at every point) along the desired

trajectory, and (3) employing matrix factorization techniques to reduce the

number of floating-point arithmetic operations associated with matrix inversion.

5. Throughout the chapters, we demonstrate the effectiveness and practicality of

the developed controllers in compensating the modeled errors through numerical

simulations and 3D printing experiments on hardware.

We conclude the dissertation in Chapter V with a discussion of the key insights

obtained over the course of this work and a summary of its implications for the future

of additive manufacturing. Finally, we close with recommendations for future work.
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CHAPTER II

Modeling and Control of the H-Frame Gantry

2.1 Overview

This chapter studies the H-frame 3D printer to apply FF vibration control to

improve the shape accuracy of parts manufactured at high speeds. In the course of

our study, we discuss its coupled kinematics and dynamics as well as the existence

of parasitic racking motion, which must be modeled for optimal control. After mod-

eling the racking motion, we propose an extension to the standard FBS controller

(given in [5]) to compensate the coupled LPV H-frame dynamics. Then, we approxi-

mate the optimal controller with a simplification to improve computational efficiency

without significantly degrading the overall accuracy. Numerical simulations and ex-

periments on an H-frame 3D printer are reported to demonstrate the effectiveness of

the proposed techniques.

This chapter is organized as follows: the kinematic and dynamic models of the

H-frame racking motion are introduced and validated in Section 2.2. Section 2.3

gives an overview of the standard FBS method and Section 2.4 proposes a coupled

LPV FBS method for compensating racking errors. Section 2.4 also demonstrates

the increased computational cost of the proposed coupled LPV FBS controller, rel-

ative to the standard FBS controller, and proposes a simplification that reduces its

computational cost with minimal sacrifice to its performance—hence facilitating its
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practicality. Section 2.5 presents simulations and experiments on the H-frame 3D

printer that demonstrate the effectiveness of the proposed approach, followed by a

summary of the chapter in Section 2.6.

2.2 Kinematics and Dynamics

2.2.1 Inverse and Forward Kinematics

The inverse kinematics equations are used to calculate the angular positions of

the stationary motors of the H-frame as a function of the x- and y-axis positions.

Note (from Figs. 1.1(a) and 1.2) that positive (counterclockwise) rotation of motor

1, denoted by the angle ϕ1, while keeping the other motor fixed, results in 45◦ linear

motion in the negative x-axis direction and negative y-axis direction (and vice versa

for a clockwise rotation). Therefore, we have

rϕ1 = −x− y, (2.1)

where r is the radius of the motor pulley, x is the linear position of the end-effector

in the x-axis, and y is the linear position of the end-effector in the y-axis. Here, we

impose a coordinate axis on the H-frame’s workspace so that the reference angular

position of the motor is set as the position that corresponds to the end-effector being

at the origin of the xy-coordinate plane. Similarly, positive rotation of motor 2,

denoted by the angle ϕ2, results in 45◦ linear motion in the negative x direction and

positive y direction such that

rϕ2 = −x+ y. (2.2)
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Combining Eqs. (2.1) and (2.2) gives the inverse kinematic equations

ϕ1

ϕ2

 =

−1
r

−1
r

−1
r

1
r


x
y

 . (2.3)

We can solve the inverse problem to derive the forward kinematics as

x
y

 =

−1
2
r −1

2
r

−1
2
r 1

2
r


ϕ1

ϕ2

 , (2.4)

which is used to determine the x- and y-axis positions given the angular positions of

the motors. Generally, in 3D printing, we are given the Cartesian axis positions from

a G-code file and use inverse kinematics equations to determine the motor angles.

2.2.2 Dynamic Model of Parasitic Racking Motion of H-frame

The racking motion of the gantry on the H-frame is caused by a force couple

(pure moment) which creates an angular displacement in the rotational axis, θ, on

the gantry. Let {x, y} be the end-effector’s output position in the x- and y-axis,

respectively. It can be decomposed into two portions: {x′, y′}, where x′ is the x-

axis output position without racking errors accounted for, and y′ is the y-axis output

position of the end-effector without the racking errors; and {∆x, ∆y}, which are the

errors created by racking angle as shown in Fig. 2.1(a). Therefore, x = x′ − ∆x

and y = y′ + ∆y. Since the racking angles are small, we can use the small angle

approximation (i.e., cos θ ≈ 1, sin θ ≈ θ) to conclude that x′ = x cos θ ≈ x (i.e.,

∆x ≈ 0) and the x- and y-axis positions are given by:

x = x′ cos θ ≈ x′ (2.5)

y = y′ + x sin θ ≈ y′ + xθ (2.6)
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Figure 2.1: (a) Kinematic model of parasitic racking errors of H-frame 3D printer; (b)
dynamic model of H-frame 3D printer including effect of y-axis errors (∆y) caused
by racking.

This kinematic model can be used to create a coupled dynamic model including

racking, as shown in the block diagram in Fig. 2.1(b), where {xd, yd} represent the

desired position of the end-effector. The transfer functions from xd to x, and yd

to y′ are represented by Gxx and Gyy, respectively, and Gxθ represents the racking

contribution (i.e., the transfer function from xd to θ).

In addition to the small angle approximation, two other assumptions are implied in

the model of Fig. 2.1(b). The first is that the H-frame dynamics can be approximated

as linear. Therefore, x, y′, and θ can be determined from transfer functions Gxx,

Gyy, Gxθ, respectively. This assumption has been found to be reasonable in prior

work [5–7,9,27,34,73]. The second assumption is that the transfer function Gxθ does

not vary as a function of end-effector position which implies that the location of the

center of mass of the gantry does not vary with the position of the end-effector. This

assumption will be validated later in this section. Finally, note that the model shown

in Fig. 2.1(b) is nonlinear because ∆y = xθ is the product of two output states. It

can be approximated as LPV by assuming that x ≈ xd when determining ∆y. This

assumption is reasonable because the tracking errors, ex = xd − x, caused by Gxx are

typically much smaller than the magnitude of x. Therefore, they have insignificant
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contributions to ∆y. Accordingly, ∆y = xdθ is assumed in the rest of this section for

the sake of simplicity, resulting in a coupled LPV model for H-frame 3D printers.

The 3D printer shown in Fig. 2.2(a) is used to validate the H-frame model of

Fig. 2.1. It is fabricated by adapting a Creality Ender 5 3D printer into an H-

frame machine. The designed H-frame configuration1 is actuated by two NEMA 17

stepper motors via a 2-mm pitch, 6-mm wide, rubber timing belt used for motion

transmission. The motors are controlled by Pololu DRV8825 high-current stepper

motor drivers configured to give a step resolution of 2 milli-radians per step which

is transmitted through a pulley with radius r = 5.15 mm to give a x- and y-axis

resolution of 20.6 µm per step. The motion range of the x and y axes are 280 and

295 mm, respectively. Real-time control of the x, y, z axes, and extrusion motors

is performed using dSPACE MicroLabBox (RTI 1202) with stepping frequency of 40

kHz and sampling frequency of 1 kHz. Commands to the printer are generated in

MATLAB and sent to the MicroLabBox through a MATLAB Simulink interface.

To validate the model of Fig. 2.1, we commanded sine sweep perturbations across

a range of frequencies in the x direction of the printer by applying acceleration com-

mands ẍd to the stepper motors and measuring y-axis accelerations at the locations

marked P1 and P2 in Fig. 2.2(b) using two ADXL335 three-axis accelerometers. The

racking angular acceleration is estimated (based on small angle rotations) as

θ̈ =
ÿ1 − ÿ2
LG

, (2.7)

where ÿ1 and ÿ2 are the y-axis accelerations measured at P1 and P2 at either end of

the bridge and LG is the perpendicular distance between P1 and P2 (Fig. 2.2(b)).

Accordingly, Gxθ is computed using ẍd as input and θ̈ as output. Figure 2.3 shows

Gxθ measured with the end-effector positioned at x = 0,±30, and ±60 mm. The

1Ender 5 Modified to H-Bot (Ender 4), Thingiverse (2020), https://www.thingiverse.com/thing:
4425748
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Figure 2.2: (a) Designed H-frame 3D printer (retrofitted from the Creality Ender
5 3D printer) used to validate H-frame dynamic model and conduct experiments in
Section 2.5; (b) schematic of dynamic identification of racking motion caused by force
couple F and guideway compliance (denoted by spring). Acceleration measurements
at P1 and P2 are used to generate the racking model.

discrepancy between the FRFs is small, supporting the assumption that the end-

effector position does not significantly influenceGxθ. Similarly, Gxx andGyy (Fig. 2.4)

are determined by commanding acceleration perturbations in the x and y directions,

respectively, as inputs and and measuring the end-effector’s acceleration in the x and

y directions as the output—with the gantry positioned at x = 0 mm.

By curve-fitting the FRFs for Gxθ, Gxx, and Gyy, discrete transfer functions for

each FRF of the form

Ĝ(z) =
bqz

q + bq−1z
q−1 + · · ·+ b1z + b0

zd + ad−1zd−1 + · · ·+ a1z + a0
(2.8)

are obtained, where the ·̂ accent denotes an estimated model of the actual dynamics,

z is the discrete-time forward shift operator, q and d are the degrees of numerator

and denominator polynomials, respectively, and the coefficients of each polynomial

are given in Tables 2.1 and 2.2. Note that the FRF measured with x at 0 mm is used
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Figure 2.3: Frequency response functions from x-axis command input to θ output
(Gxθ) measured with the end-effector positioned at x = 0, ±30, and ±60 mm. The
differences between the FRFs are small. Therefore, they are modeled by a single FRF
shown with the black dashed lines.

Table 2.1: Numerators of fitted transfer functions in Eq. (2.8).

b8 b7 b6 b5 b4 b3 b2 b1 b0

Ĝxx(z) – – – – 0.08 -0.23 0.24 -0.08 -2.19×10−13

Ĝxθ(z) 4.25 -29.3 87.5 -147.0 149.9 -92.8 32.3 -4.87 1.80×10−15

Ĝyy(z) – – 0.16 -0.89 1.98 -2.2 1.23 -0.28 -9.17×10−13

to fit Gxθ.

2.3 Standard Filtered B-Splines (FBS) Approach

Figure 2.5 shows the block diagram of the standard filtered B-splines (FBS) ap-

proach for the x-axis of a decoupled multi-axis system, i.e., without racking com-

pensation, as introduced in [24]. It controls an LTI discrete-time system given by

Gxx, the lifted system (or matrix) representation of transfer function Gxx, through a

feedforward controller Cx (see Appendix A for details on the lifted system represen-

tation).

Let xd = [xd(0) xd(1) · · · xd(E)]T represent E + 1 discrete time steps of the
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Figure 2.4: Measured and curve fit FRFs for (a) Gxx and (b) Gyy.

Table 2.2: Denominators of fitted transfer functions in Eq. (2.8).

a8 a7 a6 a5 a4 a3 a2 a1 a0

Ĝxx(z) – – – – -3.58 4.77 -2.82 0.62 1.93×10−33

Ĝxθ(z) -5.87 14.9 -21.0 17.8 -9.06 2.54 -0.30 -2.13×10−17 2.40×10−34

Ĝyy(z) – – -4.81 9.39 -9.34 4.85 -1.14 0.07 -9.04×10−19

Figure 2.5: Block diagram of standard FBS method applied to x-axis of a decoupled
multi-axis system.
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x-component of the desired trajectory of a multi-axis machine. Assume that the

machine has look-ahead capabilities such that the E + 1 steps of xd are known in

advance. Furthermore, assume that the modified but un-optimized motion command

xdm = [xdm(0) xdm(1) · · · xdm(E)]T is parameterized using B-splines such that



xdm(0)

xdm(1)

...

xdm(E)


=



N0,m(ξ0) N1,m(ξ0) · · · Nn,m(ξ0)

N0,m(ξ1) N1,m(ξ1) · · · Nn,m(ξ1)

...
...

. . .
...

N0,m(ξE) N1,m(ξE) · · · Nn,m(ξE)


︸ ︷︷ ︸

N



px,0

px,1
...

px,n


︸ ︷︷ ︸

px

(2.9)

where N is the matrix representation of B-spline basis functions of degree m, px is a

vector of n + 1 unknown coefficients (or control points), j = 0, 1, ..., n, and ξ ∈ [0, 1]

is the spline parameter, representing normalized time, which is discretized to E + 1

uniformly spaced points ξ0, ξ1, ..., ξE. The real-valued basis functions, Nj,m(ξ), are

given by [74]

Nj,m(ξ) =
ξ − gj

gj+m − gj
Nj,m−1(ξ) +

gj+m+1 − ξ

gj+m+1 − gj+1

Nj+1,m−1(ξ) (2.10)

Nj,0 =


1, gj ≤ ξ ≤ gj+1

0, otherwise

where g = [g0 g1 · · · gm+n+1]
T is a normalized knot vector defined over [0, 1]. For

convenience, g is assumed to be uniformly spaced, i.e.,

gj =


0, 0 ≤ j ≤ m

j−m
n−m+1

, m+ 1 ≤ j ≤ n

1, n+ 1 ≤ j ≤ m+ n+ 1

(2.11)
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Let x represent the E + 1 discrete steps of x, the output motion of the machine.

Accordingly, based on the definition of xdm in Eq. (2.9), x can be written as

x = Ñxxpx (2.12)

where Ñxx is the filtered B-splines matrix, acquired by filtering the columns of N

through Ĝxx(z) (i.e., the matrix product of Ĝxx and N). The tracking error is defined

as

ex = xd − x = xd − Ñxxpx (2.13)

The optimal control points p∗
x are calculated by minimizing the square of the L2-norm

of the tracking error

p∗
x = argmin

px

(eTxex) (2.14)

= argmin
px

(
(xd − Ñxxpx)

T (xd − Ñxxpx)
)

(2.15)

giving the well-known least squares solution

p∗
x =

(
ÑT

xxÑxx

)−1

ÑT
xxxd = Ñ†

xxxd (2.16)

where the † in the superscript represents the Moore-Penrose inverse (or pseudoin-

verse) of the matrix. The result can then be used to calculate the optimized motion

command x∗
dm = Np∗

x. The same procedure is followed to find the optimal control

input for other axes (e.g., the y-axis).

Remark 2.1 : The LPFBS method [5] relaxes the assumption that xd is known in

advance and instead uses small windows (batches) of xd to achieve on-line control. A

brief overview of LPFBS is included in Appendix B.
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The LTI implementation of FBS discussed above has two issues dealing with the

introduction of racking in the H-frame. The first is that the motion of the x-axis affects

the y-axis due to racking. Therefore, the y-axis cannot be controlled independent of

the x-axis. The second issue is that control of the y-axis depends on the position

of the x-axis. Therefore, a coupled LPV FBS approach is needed to include racking

dynamics to compensate the motion errors on the H-frame 3D printer.

2.4 FBS with Racking Compensation

Recall that the racking model from Section 2.2 can be used to predict the error ∆y

from Eqs. (2.5) and (2.6). Hence, we can use the product of Gxθ and the B-splines

matrix N to obtain Ñxθ. Therefore, using Eqs. (2.9) and (2.12), we have

Θ = Ñxθpx (2.17)

and

∆y = Dxd
Ñxθpx (2.18)

where Dxd
= diag(xd). The tracking error for each axis can then be expressed as

ex = xd − x = xd − Ñxxpx (2.19)

ey = yd − y = yd − (Ñyypy +Dxd
Ñxθpx) (2.20)

and the optimal control points can be calculated to minimize the squared L2-norm of

the tracking errors as

p∗ = argmin
p

(eTe) (2.21)
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where e = [ex ey]
T , which gives

p∗ =

p∗
x

p∗
y

 =

 Ñxx 0

Dxd
Ñxθ Ñyy


† xd

yd

 . (2.22)

The formulation of the coupled LPV FBS controller in Eq. (2.22) can be cumber-

some to compute during on-line implementation due to the size of the matrix that

needs to be inverted. Furthermore, since the H-frame is an LPV system, we cannot

pre-invert the matrix when using LPFBS as is done with LTI FBS to reduce the

computational load (see Appendix B). Since the x-axis is independent of the y-axis,

we can approximate the solution by decoupling the matrices to eliminate the need to

compute the pseudoinverse of large matrices during implementation. We can instead

compute the control points sequentially: first p∗
x using (2.16), then p∗

y considering p∗
x

as a known input

p∗
y = Ñ†

yy

(
yd −Dxd

Ñxθp
∗
x

)
. (2.23)

Note that in the decoupled approximation (using Eqs. (2.16) and (2.23)), we are

inverting the same matrices from LTI FBS. Therefore, we can pre-invert the matrices

for on-line implementation. Next (and in Section 2.5), we consider the effects of this

decoupled approximation on the tracking accuracy and computational complexity of

the proposed controller.

Remark 2.2 : The LPFBS formulation of the proposed decoupled LPV FBS controller

with racking compensation is discussed in Appendix C.
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The system with racking can be expressed in lifted system representation as

G =

Gxx 0

Gxy Gyy

 (2.24)

where Gxy = Dxd
Gxθ. The inverse of G is given by

G−1 =

 G−1
xx 0

−G−1
yy GxyG

−1
xx G−1

yy

 (2.25)

and therefore the optimal control inputs x∗
dm and y∗

dm are given by

x∗
dm =G−1

xxxd (2.26)

y∗
dm =−G−1

yy GxyG
−1
xxxd +G−1

yy yd (2.27)

It can be shown (see [24]) that for n = E, Ñxx = Gxx, Ñyy = Gyy, and the

pseudoinversion of Ñxx and Ñyy become the matrix inversion of Gxx and Gyy respec-

tively. Therefore, for n = E, the motion command for the decoupled approximation

is identical to Eqs. (2.26) and (2.27), which shows that that the decoupled LPV

FBS approach is exactly the same as the inversion of the coupled LPV system when

n = E. When n < E, the decoupled approach approximates the coupled LPV sys-

tem. Therefore, the decoupled approach (Eqs. (2.16) and (2.23)) can be considered

as another way of approximating the optimal LPV controller when compared to the

coupled implementation (Eq. (2.22)).

The computational complexity of the Moore-Penrose inverse, computed using sin-

gular value decomposition, is given by O(lv2) where l and v are the number of rows

and columns, respectively, of the matrix to be inverted [75]. We note that the size of

the coupled LPV FBS matrix is 2(E+1)×(nx+ny+2), where we consider the number

of basis functions in the x and y axes independently, and the size of the decoupled
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matrices are (E + 1)× (nx + 1) and (E + 1)× (ny + 1). Assuming n = nx = ny = E,

the computational complexity of the coupled and decoupled LPV FBS approaches

are

Oc((2E)(2n)2) = Oc((2n)
3) = Oc(8n

3) (2.28)

Od(En2 + En2) = Od(E(n2 + n2) = Od(En2) = Od(n
3) (2.29)

where Oc and Od are the computational orders of the coupled and decoupled ap-

proximations, respectively. The expressions in Eqs. (2.28) and (2.29) indicate that

the decoupled matrix approximation has lower computational complexity than the

coupled one. The implications of using the decoupled or coupled implementations

of the LPV dynamics on racking compensation accuracy and computation time are

explored further via simulations in the following section.

2.5 Simulations and Experimental Validation

2.5.1 Simulations

Figure 2.6 shows a 120-by-20 mm rectangular path used for our simulations. It

was selected to highlight the racking motion which are prevalent during changes in

the x-axis acceleration when turning around corners. The trajectory was generated

using a jerk-limited motion profile for the two cases presented in Table 2.3. The first

is the baseline case which uses the standard (low) speed and acceleration employed on

most desktop 3D printers to avoid excessive vibration: 60 mm/s and 1 × 103 mm/s2,

respectively, with a jerk limit of 5 × 107 mm/s3. The second is a high-speed case,

which uses 2.5 times and 10 times the standard speed and acceleration, respectively:

150 mm/s and 1 × 104 mm/s2, with a jerk limit of 5 × 107 mm/s3. The trajectory

was sampled at Ts = 1 ms, leading to E+1 = 4970 and 1944 trajectory points for the

baseline and high-speed cases, respectively. The dynamic model presented in Section
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2.2 was used to simulate the time response of the H-frame in Matlab.

Figure 2.6: Rectangular path (with 120 mm length and 20 mm width) used to simulate
the time response of the H-frame 3D Printer. The motion command starts at {0,0}
and traverses the rectangle in the counterclockwise direction as indicated by the
arrows.

Baseline High-speed

Speed 60 mm/s 150 mm/s
Acceleration 1 × 103 mm/s2 1 × 104 mm/s2

Jerk 5 × 107 mm/s3 5 × 107 mm/s3

Table 2.3: Summary of speed, acceleration, and jerk limits of the baseline and high-
speed trajectories.

2.5.1.1 Comparison of decoupled and coupled FBS strategies for racking

compensation

We begin our numerical analysis of the proposed racking compensation algorithm

by comparing the tracking accuracy and computational complexity of its decoupled

and coupled implementation strategies discussed in Section 2.4. The high-speed case

is used for the comparison in this subsection since it is more aggressive and likely

to induce racking errors. We compare the tracking accuracy for each strategy by
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Figure 2.7: (a) RMS contour errors and (b) computation times for the simulated time
response of the decoupled (solid line) and coupled (dashed line) LPV FBS H-frame
controllers as a function of the number of basis functions used to parameterize the
trajectory.

examining the RMS contour errors (i.e., path deviation) of the output trajectory.

The number of basis functions was selected to span fractional values of E, namely

n = [0.01, 0.05, 0.1, 0.15, 0.2, 0.25]E (rounded to the nearest integer), the B-

spline degree was identical for both implementation strategies (m = 5), and the

knot vector was defined as in Section 2.3. Consistent with the analysis in Section

2.4, note that the RMS contour error between the two methods is similar for all n

values (see Fig. 2.7(a)), indicating that using the decoupled approach yields similar

accuracy performance to the coupled approach for a reasonable selection of n. We

also validated the computational complexity analysis from Section 2.4 by comparing

the computation time of the controller between the two approaches in Fig. 2.7(b).

Note that the coupled approach requires significantly more computation time as n

increases—approximately 3x more time in the worst case. Based on the analysis in

Section 2.4 and the results shown in Fig. 2.7, the decoupled implementation of the

coupled LPV FBS controller (i.e., FBS with racking compensation) will be used in

all simulations and experiments for the remainder of this chapter.

31



2.5.1.2 Comparison of FBS controller with and without racking compen-

sation

The simulated response of the H-frame machine using the baseline and high-speed

cases, controlled with n = 0.1E B-spline basis functions, are shown in Figs. 2.8 and

2.9, respectively. Racking errors can be seen at the corners and edges of the rect-

angle as the trajectory is traversed using the uncompensated case or FBS without

racking compensation. Notice that the severity of the vibration and racking errors

are less with the baseline case compared to the high-speed case. Hence, vibration

and racking, when not compensated, limit the achievable speed of H-frame 3D print-

ers if loss of print quality is unacceptable. Racking errors are reduced using the

proposed FBS controller with racking compensation, which leads to an output that

follows the desired path more accurately for both trajectories. Table 2.4 shows the

RMS and maximum contour errors for both cases compared across the compensa-

tion approaches. Here, the maximum contour error is indicative of whether a part

will reach its tolerance specification. Note that, as expected, the baseline has lower

maximum contour errors when compared to the high-speed case. For both cases, the

uncompensated approach has the highest maximum contour. Comparisons between

FBS without racking compensation and FBS with racking compensation show a 99%

and 94% reduction in maximum contour error for the baseline and high-speed cases,

respectively.

2.5.2 Experiments

The same rectangular profile used in Section 2.5.1 was extruded to a height of

10 mm and printed on the H-frame 3D printer. The CAD model of the rectangular

prism can be seen in Fig. 2.10. The G-code for the trajectory was generated using

the open-source Ultimaker Cura® software. As with the simulations, two cases were

considered in experiments: the baseline and high-speed cases for which the wall speed,
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Figure 2.8: Simulated output response of the baseline case on the H-frame 3D printer
for the uncompensated trajectory (dotted line) as well as the trajectories generated
using FBS controllers without racking compensation (dot-dash line) and with racking
compensation (dashed line).

Contour error [µm]
(RMS / maximum)

Baseline High-speed

Uncompensated 127.39 / 341.85 180.01 / 1374.3
FBS without racking
compensation

94.02 / 257.84 117.53 / 516.04

FBS with racking
compensation

0.16 / 1.92 3.24 / 28.21

Table 2.4: RMS and maximum contour errors along the baseline (low-speed) and the
high-speed cases for all compensation strategies. The FBS with racking compensation
controller leads to significant improvements in both the RMS and maximum contour
errors for all cases.
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Figure 2.9: Simulated output response of the high-speed case on the H-frame 3D
printer for the uncompensated trajectory (dotted line) as well as the trajectories
generated using FBS controllers without racking compensation (dot-dash line) and
with racking compensation (dashed line).
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Figure 2.10: CAD model of the part in Ultimaker Cura®.

Print parameters Baseline High-speed

Wall speed 60 mm/s 150 mm/s
Maximum acceleration 1 × 103 mm/s2 1 × 104 mm/s2

Maximum jerk 5 × 107 mm/s3 5 × 107 mm/s3

Print material Polylactic acid Polylactic acid
Nozzle diameter 0.4 mm 0.4 mm
Extrusion rate 72 steps/mm 72 steps/mm
Filament volumetric flow rate 1.74 × 10−3 mm/step 1.74 × 10−3 mm/step
Nozzle temperature 205◦C 205◦C
Bed temperature 60◦C 60◦C
Layer height 0.1 mm 0.1 mm
Wall thickness 0.8 mm 0.8 mm

Table 2.5: Print parameters for the baseline and high-speed cases of the rectangular
prism shown in Fig. 2.10.

maximum acceleration and maximum jerk values are reported in Table 2.5, along with

other print parameters. To ensure adhesion to the bed, the first four layers in both

cases were printed at a speed of 20 mm/s.

Figures 2.11 and 2.12 compare the rectangular block printed for the baseline and

high-speed cases, respectively, using no compensation, FBS without racking compen-

sation and the proposed FBS with racking compensation. LPFBS was used in both

FBS cases, with parameters nup = 11, nC = 22, LC = 220, m = 5, and L = 20

(see Appendices B and C for more details). As can be seen from Fig. 2.11(a), the

baseline case without compensation yields high-quality prints (in terms of vibration

and racking) which are hardly distinguishable from those with compensation (Fig.

2.11(b) and (c)). This observation highlights why printers with vibration and rack-
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Figure 2.11: Examples of the baseline parts printed (a) without any compensation,
(b) using FBS without racking compensation, and (c) using FBS with racking com-
pensation. At low speed, print quality differences are hardly distinguishable between
the uncompensated and compensated control approaches.

ing problems often yield excellent print quality at low speeds (albeit at the cost of

productivity). However, as seen from Fig. 2.12(a), the situation is different with the

high-speed case. The part printed without compensation suffered from layer shifts

during the printing process (as also observed in [5]). The FBS approach without

racking compensation (Fig. 2.12(b)) provides sufficient compensation to remove the

layer shifts from the printed part. However, the quality of the part is still degraded

relative to the baseline case which is evident from the waviness along the edges of

the part in Fig. 2.13 (also see in the simulation results of Fig. 2.9). The proposed

FBS with racking compensation rectifies both the layer shifting and waviness due to

racking leading improved print quality.

To quantify the improvements to the high-speed case due to the proposed ap-

proach, the acceleration of the gantry was measured using the ADXL335 accelerome-

ters positioned at P1 and P2 in Fig. 2.2(b) during the print motion of the high-speed

case. This measurement is used as a proxy for the position errors since the 3D printer

is not equipped with position sensors on the gantry or nozzle. Figure 2.14 shows the

acceleration measurements for one side of the gantry as a function of the position
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Figure 2.12: Examples of the high-speed parts printed (a) without any compensation,
(b) using FBS without racking compensation, and (c) using FBS with racking com-
pensation. Layer shifts can be seen in the uncompensated part when compared to the
FBS compensated parts. Differences between the FBS without racking compensation
and FBS with racking compensation parts can be seen in the enlarged corner view
comparison in Fig. 2.13

Figure 2.13: Enlarged corner view comparison of the baseline and high-speed cases
using the uncompensated, FBS without racking compensation, and FBS with rack-
ing compensation control approaches. The vibration and racking errors cause layer
shifting and waviness along the edge, respectively, for the uncompensated and the
FBS without racking compensation approaches applied to the high-speed case. The
proposed FBS with racking compensation approach eliminates the errors.
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Figure 2.14: Acceleration measurements of the racking motion of the gantry during
high-speed printing on the H-frame 3D printer without any compensation (dotted
line), using FBS without racking compensation (dot-dash line), and using FBS with
racking compensation (dashed line). The positions of high acceleration are enlarged
to show the differences.

along the rectangular path of one layer during the print motion for (1) an uncom-

pensated part, (2) a part printed using FBS without racking compensation and (3) a

part printed using FBS with racking compensation. (Note that the path of the mea-

surements starts at the {x, y} position of (60, 0) mm instead of (0, 0) as in Fig. 2.6.)

The RMS acceleration of the gantry during the three high-acceleration portions high-

lighted in Fig. 2.14 are 3.63, 4.25, and 5.61 m/s2, respectively, for the uncompensated

approach, 2.41, 2.62, and 2.63 m/s2 for FBS without racking compensation, and 1.10,

1.04, and 2.21 m/s2 for FBS with racking compensation. These data indicate that

the additional acceleration created by racking in the uncompensated trajectory and

the trajectory using FBS without racking compensation are significantly reduced by

the proposed racking compensation approach, leading to greater positional accuracy.

To further quantify how the racking errors affect the final component for the high-

speed case, we printed 15 copies of the rectangular prism using the three different

compensation approaches (5 copies for each). The width, w, of each of the 15 printed

parts was measured at the left, middle, and right side using Husky digital calipers
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Figure 2.15: Box-and-whisker plot of measured absolute width error, ∆w, of printed
parts compared to the desired width of 20 mm for each of the compensation strate-
gies applied to the high-speed case: (1) no compensation, (2) FBS without racking
compensation, and (3) FBS with racking compensation. The red horizontal lines
represent the median of ∆w, which is overlaid with root-mean-square width error,
∆wrms (diamonds).

(model #1467H, 10 µm resolution) and compared to the desired width of wd = 20

mm. Figure 2.15 shows a box-and-whisker plot of the absolute value of the width error

(∆w = |wd − w|), in µm, overlaid with the RMS width error, ∆wrms. The proposed

FBS controller with racking compensation improved the median ∆w by 61% when

compared to FBS without racking compensation, from 210 µm to 80 µm, and by

78% when compared to no compensation from 370 µm to 80 µm. The proposed

controller also improved ∆wrms by 43% (216 µm to 122 µm) and 68% (388 µm to 122

µm) when compared to FBS without racking compensation and no compensation,

respectively. Note that even though print quality depends on several factors (e.g.,

material, extrusion rate, extrusion temperature, etc.), in the comparisons discussed

above for the baseline and high-speed cases, all other factors are maintained constant

except for the compensation approach. Therefore, the differences in print quality are

primarily due to the effects of compensation approach.
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2.6 Summary

H-frame 3D printer architectures have the potential to achieve higher speeds and

improved dynamic performance compared to traditional serial stack 3D printers due

to their use of stationary motors. However, these benefits come at the cost of racking

errors, caused by parasitic torsional motions, which limit their static and dynamic

accuracy. This chapter discusses the proposal of a purely software-based approach for

compensating racking errors on H-frame 3D printers using the filtered B-splines (FBS)

feedforward approach, which has been used to improve the performance of 3D print-

ers in the literature [5,6,9]. Building on the prior work, the proposed FBS controller

is designed to address coupled linear parameter varying dynamics rather than the

decoupled linear time invariant dynamics addressed in prior work. Additionally, a

decoupled approximation of the coupled FBS controller was developed and validated

analytically and numerically. It was shown to significantly increase computational ef-

ficiency with little or no sacrifice to error compensation accuracy. The decoupled FBS

controller with racking compensation is benchmarked in simulation and experiments

on an H-frame 3D printer against the standard FBS controller without racking com-

pensation. We show that racking errors are significantly reduced using the proposed

method and a 43% improvement in the shape accuracy of a high-speed 3D printed

part is observed in experiments compared to parts printed with the standard FBS

controller.

A major practical benefit of the software-based approach for racking error com-

pensation is that it reduces racking errors without requiring mechanical modification

of a 3D printer. Hence, it can be applied to existing H-frame 3D printers. It can

also be used to augment other mechanical or software-based approaches for address-

ing racking errors, like the use of stiffer guideways, counterweights, dampers, and

feedback controllers. This chapter demonstrates the potential of software-based com-

pensation strategies to improve the dynamic performance of 3D printers with complex
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architectures. The subsequent chapters aim to further explore how similar ideas can

be applied to other complex motion systems like the delta 3D printer.
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CHAPTER III

Modeling of the Delta Robot

3.1 Overview

This chapter describes a framework to obtain accurate models of the delta parallel-

axis robots used for 3D printing. In the last chapter, the modeling and control of

the H-frame 3D printer was presented. Although the H-frame’s dynamics are LPV,

the relationships between the model’s parameters are rather straightforward and ge-

ometrically intuitive. Therefore, obtaining the model does not demand significant

modeling effort. On the other hand, the dynamics of the delta 3D printer are signif-

icantly more complex to model due to its kinematic structure: it uses three vertical

joints to move an end-effector vertically and laterally, and the three vertical joints

are coupled by a common connection to the end-effector. This structure leads to

position-dependent, coupled, and nonlinear dynamics, such that modeling the delta

printer accurately—without a thoughtful approach—would require measurements at

many positions in the printer’s workspace.

In this chapter, we propose a more efficient approach for obtaining an accurate

model of the printer. We leverage knowledge about its structure and the idea of re-

ceptance coupling (RC) [76–78] to decompose the delta’s dynamic model into two

sub-models: the first is an experimentally-identified model of the joints without

the end-effector connections, which is a decoupled and LTI model; the second is an
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analytically-derived model that describes the end-effector connections to the joints

and, therefore, couples the system. We show that an accurate parameter-varying

model can be efficiently obtained with a few measurements at one position by iden-

tifying the parameters of each subsystem independently before combining them to-

gether. Once the model is identified, we use frequency response functions (FRFs),

measured at arbitrary locations in the workspace, to validate that our prediction

model results in reasonably accurate predictions of the position-dependent dynamics

of a commercial delta 3D printer.

The chapter is organized as follows: the kinematic model of the prismatic-joint

delta robot is described in Section 3.2, which exemplifies the complexity of the ma-

chine. Section 3.3 outlines the framework we propose to determine the delta printer’s

model with sparse measurements. The exact measurements needed and the process of

identifying each parameter in the model is described in Section 3.4. We validate the

identified model using empirical measurements from a commercial delta 3D printer

in Section 3.5 and discuss the insights gained as a result. Finally, the chapter closes

with a summary in Section 3.6.

3.2 Inverse and Forward Kinematics

3.2.1 Description of Delta 3D Printer

Unlike most commercial delta robots that are designed with rotary joints [36],

delta 3D printers typically have three prismatic joints (i.e., three vertical columns)

actuated by three stationary stepper motors. We will refer to the joints as columns

A, B, and C (see Fig. 3.1(a)). The motors each drive a timing belt to control the

position of a carriage, which is mounted on a linear guideway located on each column

(as shown in Fig. 1.3). The carriages are connected to the end-effector by six rods

which we’ll refer to as “forearms”—two forearms are connected to each of the three
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carriages on one end, and the end-effector on the other end. Each forearm is the same

length and the connections to the carriage and the end-effector are made through

universal (i.e., spherical) joints. This configuration of parallel forearms ensures that

the plane of the end-effector platform is always parallel to the bed, meaning that the

printer’s nozzle is always parallel to the bed. The parallel forearms also force the

vertical plane where the end-effector platform and forearms meet to be parallel to the

corresponding vertical plane connecting the carriage and the forearms.

3.2.2 Inverse Kinematics

The goal of inverse kinematics is to recover the column positions Az, Bz, and Cz

from the commanded x-, y-, and z-axis workspace position given by the G-code. The

column positions are related to the Cartesian coordinates by the following spherical

constraint equations (as derived in Appendix D):

(x− Avx)
2 + (y − Avy)

2 + A2
cz = L2 (3.1)

(x−Bvx)
2 + (y −Bvy)

2 +B2
cz = L2 (3.2)

(x− Cvx)
2 + (y − Cvy)

2 + C2
cz = L2 (3.3)

where Avx and Avy are the x- and y-axis coordinate position of the virtual column

of A, which is defined as the position of column A shifted by an offset to account for

the carriage and end-effector width (see Fig. 3.1(b) and Appendix D), Bvx, Bvy, Cvx,

and Cvy are similarly defined for columns B and C, and

Acz = Az −Hez − z (3.4)

Bcz = Bz −Hez − z (3.5)

Ccz = Cz −Hez − z, (3.6)
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Figure 3.1: (a) Overhead view of the delta printer with labels of reference points;
(b) same overhead view as (a), but overlays the xy-coordinate axis and labels of key
coordinate positions of the carriage (exemplified for carriage B) and end-effector.
(The labels are also helpful for following the derivation in Appendix D).

where Az is the distance from the print bed to carriage A’s position as shown in Fig.

3.2 (same for Bz and Cz), and Hez is distance from the end-effector platform to the

tip of the nozzle (also see Fig. 3.2). Therefore, we can find the column positions

using the end-effector position and the measured constants as

Az = z +Hez +
√

L2 − (x− Avx)2 + (y − Avy)2 (3.7)

Bz = z +Hez +
√

L2 − (x−Bvx)2 + (y −Bvy)2 (3.8)

Cz = z +Hez +
√

L2 − (x− Cvx)2 + (y − Cvy)2 (3.9)

3.2.3 Forward Kinematics

Forward kinematics is the problem of determining the x-, y-, and z-axis position

of the end-effector given the column positions. One approach is to derive the forward

kinematics using same spherical constraint equations defined in the previous sub-

section. With three equations, it is possible to solve for the three unknowns but the
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Figure 3.2: Three-dimensional schematic of the delta printer showing the right tri-
angle created by the forearms, the column, and the distance from the end-effector to
the column in the xy-plane. The virtual columns used in the derivation are computed
using the labeled distances.

squares make it difficult. A simpler approach is to use trilateration to compute the

forward kinematics numerically. Trilateration is the process of finding a point in 3D

space based on its distance from three known points. (A common application for

trilateration is GPS). There are various algorithms for trilateration1 available online;

in Appendix E, we reproduce the algorithm used in this work as a reference (in the

Matlab programming language).

3.3 Control-Oriented Dynamic Modeling Framework

To derive the model of the delta printer using RC, we begin by decomposing the

model of the full assembly into two sub-models. Sub-model 1 describes the carriage

output position qi as a function of two inputs: (a) the desired position of the carriage

qdi and (b) the forces Fqi imposed on the carriage due to the dynamics of the fore-

1see ”True-range multilateration” article on Wikipedia: https://en.wikipedia.org/wiki/True-ran
ge multilateration
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arms and end-effector, where i ∈ {A,B,C}. Sub-model 2 describes the relationship

between the end-effector’s position X = [x y z]T and Fqi .

Sub-model 1 decouples each carriage as though they are disconnected from the

end-effector. Accordingly, the model is assumed to be linear since each carriage

consists of the carriage mass and timing belt, which can be modeled as a mass-spring-

damper system [5–7, 9]. The relationship between the inputs and qi are given by

continuous-time LTI single-input, single-output (SISO) systems Gqdi
(s), the carriage

position to position FRF, and GFqi(s), the external force to carriage position FRF.

Both SISO systems are measured from experiments as a summation of vibration

modes, such that

qi(s) = Gqdi
(s)qdi(s) +GFqi(s)Fqi(X, s) (3.10)

where s is the Laplace variable and Fqi is a function of X. Since each carriage is

identical, we assume the SISO FRFs are identical for each carriage, i.e., Gqdi
(s) =

Gqd(s) and GFqi(s) = GFq(s) for all i.

Sub-model 2 connects the end-effector to the carriages through Fqi in Eq. (3.10).

Therefore, it incorporates the flexible dynamics of the forearms and the end-effector

(henceforth simply referred to as the end-effector dynamics). The expression of

Fqi(X, s) is characterized by the Jacobian matrix, which relates the joint space and

task space velocities [45] as

Ẋ = Jq̇ (3.11)

where q = [qA qB qC ]
T is the joint space coordinate vector (i.e., carriage coordi-

nates) and J ∈ R3×3 is the Jacobian matrix. Accordingly, we begin by deriving the

Jacobian matrix in sub-section 3.3.1. Then, in sub-section 3.3.2, we use the Jacobian

to derive the analytical relationship between X and Fqi . A visual representation of

the overall architecture of the delta model, composed of sub-models 1 and 2, is shown
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Figure 3.3: Overall architecture of the delta 3D printer model broken up into its two
components. Sub-model 1 consists of the base and carriage link dynamics which are
modeled as decoupled and LTI. These dynamics can be identified directly from fre-
quency response function (FRF) measurements. Sub-model 2 consists of the forearm
links and end-effector dynamics which are modeled as coupled and LPV. These dy-
namics are derived from first principles and the parameters are identified empirically.

in Fig. 3.3.

3.3.1 Sub-model 2: The Jacobian matrix

The Jacobian matrix is derived based on work from [45]. Without loss of general-

ity, we locate the origin of the task space coordinate system at the center of the bed

and align the x-axis with the center of carriage A as discussed in Section 3.2.2. The

spherical constraint equations that govern the kinematics can be expanded to include

task and joint space coordinates as

(x− Avx)
2 + (y − Avy)

2 + (z +Hez − qA)
2 = L2 (3.12)

(x−Bvx)
2 + (y −Bvy)

2 + (z +Hez − qB)
2 = L2 (3.13)

(x− Cvx)
2 + (y − Cvy)

2 + (z +Hez − qC)
2 = L2 (3.14)
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In [45], the spherical constraint equations are derived for the rotary-joint delta robot

instead of the prismatic-joint delta robot. From there, the procedure is identical and

it is reproduced below for the reader’s convenience. Equations (3.12)-(3.14) can be

written in vector form as

sTi si − L2 = 0 (3.15)

where

si =


x− ix

y − iy

z +Hez − qi

 =


x

y

z

−




ix

iy

−Hez

+


0

0

1

 qi

 (3.16)

Taking the time derivative of Eq. (3.15) yields

sTi ṡi + ṡTi si = 0 (3.17)

which, from the commutative property of the vector product, can be rewritten as

sTi ṡi = 0 (3.18)

where

ṡi =


ẋ

ẏ

ż

+


0

0

−1

 q̇i = Ẋ+ bq̇i. (3.19)

Rearranging Eq. (3.18) with the definition of b, we have


sTA

sTB

sTC

 Ẋ+


sTAb 0 0

0 sTBb 0

0 0 sTCb

 q̇ =


0

0

0

 . (3.20)
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From Eq. (3.20), we can obtain the relation in Eq. (3.11) where

J = −


sTA

sTB

sTC


−1 

sTAb 0 0

0 sTBb 0

0 0 sTCb

 . (3.21)

After another time derivative of Eq. (3.20) and some transformations, we find the

task space acceleration Ẍ as

Ẍ =


sTA

sTB

sTC


−1


ṡTA

ṡTB

ṡTC

J+T

 q̇+ Jq̈ = Jq̈+ J̇q̇ (3.22)

where

T =


ṡTAb 0 0

0 ṡTBb 0

0 0 ṡTCb

 .

3.3.2 Sub-model 2: End-effector position to carriage forces

To find the exogenous force Fqi imposed on each carriage, we first write the force

and moment (torque) balance equations about the end-effector’s center of mass in

task space coordinates. Then, we transform the resulting reaction forces to joint

space coordinates using the Jacobian matrix. From the free body diagram in Fig.

3.4, the forces on the end-effector (in the Laplace domain) are given by

FAx(s) + FBx(s) + FCx(s) = wx(s)x(s) (3.23)

FAy(s) + FBy(s) + FCy(s) = wy(s)y(s) (3.24)

FAz(s) + FBz(s) + FCz(s) = wz(s)z(s) (3.25)
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Figure 3.4: (a) Top view and (b) side view free body diagrams of the end-effector
with reaction force vectors from each forearm. Note that the center of mass is not
located at the centroid of the end-effector, which leads to an uneven distribution of
reaction forces. The vector difference between the centroid and the center of mass is
given by ∆ = [δx δy δz]

T .

where FA = [FAx FAy FAz]
T are the respective x-, y-, and z-axis components

of the force on the end-effector associated with carriage A, similarly for FB =

[FBx FBy FCz]
T and FC = [FCx FCy FCz]

T , and wx, wy, and wz are the flexible

inertial dynamics of the end-effector in the x-, y-, and z-axis directions. (Note that

we will, henceforth, omit the Laplace variable, s, in the paragraph text for simplicity

when it is understood in context.)

Remark 3.3(a): Here, we assume that the inertial dynamics are decoupled in the task

space coordinates since the machine is designed to produce independent motion in

each direction. However, the approach can be easily generalized for coupled dynamics

in the task space coordinates.

We can compactly express the force equations as

FA(s) + FB(s) + FC(s) = W(s)X(s) (3.26)
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where

W(s) =


wx(s) 0 0

0 wy(s) 0

0 0 wz(s)

 . (3.27)

Since the end-effector does not rotate during motion, the moment equations about

the center of mass are given by

rA × FA(s) + rB × FB(s) + rC × FC(s) = 03×1 (3.28)

where

ri =


De cos (ϕi)− δx

De sin (ϕi)− δy

−δz

 , (3.29)

δx, δy, and δz are the x- y- and z-coordinate distance from the centroid to the center of

mass, De is the distance from the centroid to the forearm reaction force, and ϕi is the

angle where carriage i is located with respect to the global x-axis on the horizontal

plane (see Fig. 3.4). For simplicity, we neglect rotational effects of forearms, which

have been found to be negligible in prior work [45,79].

We can compute the reaction forces FA, FB, FC as a function of the end-effector’s

motion by writing the six equations of motion in matrix form as

 I I I

S(rA) S(rB) S(rC)


︸ ︷︷ ︸

L


FA(s)

FB(s)

FC(s)


︸ ︷︷ ︸

f(s)

=

W(s)X(s)

03×1


︸ ︷︷ ︸

u(s)

, (3.30)

where I ∈ R3×3 is the identity matrix and S(·) ∈ R3×3 is the skew symmetric matrix
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defined on the input vector. The minimum norm solution for f is given by

f(s) = LT (LLT )−1u(s) = L†u(s) (3.31)

where L† is the Moore-Penrose pseudoinverse of L. Note that since the bottom-half

rows of u contain zeros, the last 3 columns of L† ∈ R9×6 do not contribute to the

reaction forces. Thus, we can use a reduced matrix L̃† ∈ R9×3 and the reaction forces

(i.e., each row of f) can be written independently as

Fi(s) = PiW(s)X(s) (3.32)

where Pi ∈ R3×3 is the matrix of constants representing the distribution of task space

forces associated with carriage i, which is extracted from respective portions of L̃†.

Each force can be transformed to the joint space using J̄i ∈ R3×1, the column vector

extracted from the linearized Jacobian, denoted by J̄. The transpose of J̄i transforms

the task space coordinates of the reaction joint associated with carriage i, denoted

by (xi, yi, zi), to the joint space coordinate qi (see Fig. 3.4(a)).

Remark 3.3(b) [70]: The linearized Jacobian is obtained by linearizing Eqs. (3.11)

and (3.22) about an equilibrium position denoted by

X̄ =


x̄

ȳ

z̄

 and q̄ =


q̄A

q̄B

q̄C

 . (3.33)
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The transformed (and linearized) force is given by

Fqi = J̄T
i Fi(s) = J̄T

i PiW(s)X(s). (3.34)

Furthermore, we can substitute the Jacobian relationship from Eq. (3.11) such

that Eq. (3.34) becomes

Fqi = J̄T
i PiW(s)J̄q(s) (3.35)

Finally, we can write the full model in the MIMO form of Eq. (3.10):

q(s) = Gqd(s)qd(s) +GFq(s)


J̄T
APA

J̄T
BPB

J̄T
CPC

W(s)J̄q(s) (3.36)

where Gqd(s) and GFq(s) are 3×3 diagonal matrices that contain Gqd(s) and GFq(s),

respectively, as the diagonal entries. The model can be expressed simply as

q(s) = G(s)qd(s) (3.37)

where

G(s) =
[
I−GFq(s)


J̄T
APA

J̄T
BPB

J̄T
CPC

W(s)J̄
]−1

Gqd(s), (3.38)

yielding an LPV model of the delta 3D printer that can be used for model-based

control. In Section 3.5, we present an example where Gqd(s), GFq(s), W(s), and

other parameters are identified for a delta printer with a flexible, two-mass end-

effector. The parameters of the model are efficiently identified using data measured

at one position, and used to predict FRFs at other positions.
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Figure 3.5: (a) Modeling schematic for delta 3D printer showing the belt-carriage
system modeled as a mass-spring-damper system and, as done in Section 3.4, the
forearm modeled as a massless entity with its mass split between the carriage and
end-effector; (b) the forearm transmits reaction forces between the end-effector and
the carriage.

3.4 Efficient System Identification

To study the framework described above, we identify the model of the MP Delta

Pro 3D printer in this section. The printer is sold with a Bowden-style extruder [69]

but we augmented it with a direct-drive extruder (shown in Fig. 3.6) to enhance

extrusion performance [80]. Source files of the extruder design can be found on

Thingiverse2.

3.4.1 Decoupled carriage model identification (sub-model 1)

The modular nature of commercial delta 3D printers is an advantage in determin-

ing the FRFs because we can detach the forearms and the end-effector to measure

the carriage position to position FRF, Gqd . As in [45], the mass of the forearms is as-

sumed to be split equally between the carriage and the end-effector (see Fig. 3.5(a)).

Then, Gqd can be represented (mechanically) as a mass-spring-damper system with

2Extruder design source files can be found at the following Thingiverse directory: https://www.
thingiverse.com/ahasib/collections/direct-drive-extruder-mount-for-delta-printer

55

https://www.thingiverse.com/ahasib/collections/direct-drive-extruder-mount-for-delta-printer
https://www.thingiverse.com/ahasib/collections/direct-drive-extruder-mount-for-delta-printer


Figure 3.6: Image of a prototype of the direct drive extruder mounted on the MP
Delta Pro 3D printer with the nozzle holder, extruder motor and housing labeled. The
assembly is designed to fit within the existing end-effector platform without obstruct-
ing the forearm motion during printing. The ADXL335 accelerometers (pictured)
were used to measure frequency response functions.

stiffness k, belt damping coefficient c, guideway friction b, and mass

m = mc +
1

2
mf (3.39)

where mc is the lumped mass of the carriage assembly and mf is the mass of a pair

of forearms (Fig. 3.5).

The carriage FRF is identified from acceleration data measured using ADXL335

accelerometers on the carriage, with the end-effector detached but one of two forearms

still attached (as in Eq. (3.39)). We used a dSPACE MicroLabBox and Pololu stepper

motor drivers (DRV8825) to command sine sweep perturbations around carriage posi-

tions corresponding to the task space positions (x, y, z) = (0, 0, 30), (0, 0, 50), (0, 0, 70)

mm. As expected, our measurements indicated that Gqd was similar at the three lo-

cations, independent of the z-axis position, so we used the data from (0, 0, 30) mm,
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shown in Fig. 3.7(a), to fit a 4th-order FRF of the form

Gqd(s) = Gqd,m(s)Gqd,e(s), (3.40)

where Gqd,m(s) and Gqd,e(s) represent the mechanical and electrical dynamics, respec-

tively. (The electrical dynamics are created by the electrical circuitry that generates

the stepper motor commands.) Hence, we have

Gqd,m(s) =
cs+ k

ms2 + (c+ b)s+ k
(3.41)

=
c
m
s+ ω2

n

s2 + 2ζωns+ ω2
n

(3.42)

and

Gqd,e(s) =
d1s+ d0

s2 + d2s+ d0
(3.43)

where ωn is the natural frequency, ζ is the damping ratio,

2ζωn = (c+ b)/m, (3.44)

ω2
n = k/m, (3.45)

and d0, d1, and d2 are the coefficients of the electrical FRF. To determine the m,

and therefore mc (since mf can be measured directly), we conducted the same sine

sweep experiment with an additional mass madd = 200 g mounted to the carriage.

This experiment also generates mechanical FRFs that are identical for each carriage,

one of which is shown in Fig. 3.7(b) and given by

G′
qd,m

(s) =
cs+ k

m′s2 + (c+ b)s+ k
(3.46)

=
c
m′ s+ ω′2

n

s2 + 2ζ ′ω′
ns+ ω′2

n

(3.47)
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where m′ = m+madd,

2ζ ′ω′
n = (c+ b)/m′, (3.48)

and

ω′2
n = k/m′. (3.49)

From Eqs. (3.45) and (3.49), m can be computed as

m =
ω′2
n

(ω2
n − ω′2

n )
madd (3.50)

and Eqs. (3.44) and (3.48) can be used to determine c and b. Similarly, Eq. (3.45)

can be used to determine k. Additionally, the fitted 4th-order FRF of Eq. (3.40) can

also be represented as

Gqd(s) =
g2s

2 + g1s+ g0
s4 + h3s3 + h2s2 + h1s+ h0

(3.51)

where g(·) and h(·) are the coefficients of the fit. From the coefficients of Eqs. (3.40)

and (3.51), we can write the set of equations

g2 =
c

m
d1, g1 =

c

m
d0 + ω2

nd1, g0 = ω2
nd0,

h3 = d2 + 2ζωn, h2 = d0 + ω2
n + 2ζωnd2,

h1 = ω2
nd2 + 2ζωnd0, and h0 = ω2

nd0.

(3.52)

Using the fitted coefficients and computed parameters above, we can solve a least-

squares problem to find d0, d1, and d2.

Finally, the force to position FRF is given by the (mechanical) characteristic

polynomial

GFq(s) = − 1

ms2 + (c+ b)s+ k
(3.53)

where the negative sign indicates that the forces involved are disturbance forces. The
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parameters for Gqd and, therefore, GFq are reported in Table 3.1.

Figure 3.7: Position-to-position frequency response functions of the carriage without
the end-effector dynamics (a) Gqd and (b) with an additional 200 g mass attached to
the carriage, G′

qd
. The data was measured for each carriage at the carriage locations

(qA, qB, qC) corresponding to (x, y, z) = (0, 0, 30) mm, and a linear fit of one of the of
the frequency response functions shown as the black dashed line. Note that only one
carriage FRF is shown in (b) since the carriage FRFs are nearly identical as shown
in (a).

3.4.2 End-effector model identification (sub-model 2)

To identify the inertial forces from the end-effector motion (Eq. (3.34)), we assume

the end-effector can be modeled as a two-mass system—the nozzle holder mass and

the extruder motor mass—with a spring and damper between the masses. We validate

this assumption by isolating the end-effector and measuring the open loop force to

acceleration FRF of the nozzle holder mass, m1, using a PCB Piezotronics® impact

hammer (model #086C03) and tri-axial accelerometer (model #356A44); the impact

hammer was used to apply a force to m1—similar to what is shown in Fig. 3.8.

Figure 3.9 shows the measured force to acceleration FRF as well as the computed

force to position FRF, which has the characteristic rigid body and flexible modes of

a two-mass model. We can derive the force to acceleration FRF of m1 model and fit
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the measurement in Fig. 3.9 with a second-order model to identify the masses. The

two FRFs are represented by

s2Xact(s)

Fh(s)
=

m2s
2 + bacts+ kact

m1m2s2 + (m1 +m2)bacts+ (m1 +m2)kact
(3.54)

=
u2s

2 + u1s+ u0

s2 + v1s+ v0
(3.55)

where m2 is the extruder motor mass, bact and kact are the damping and stiffness

constants in the direction activated by the impact hammer, u(·) and v(·) are the

coefficients of the fitted FRF, and Xact and Fh are the position of m1 and impact

hammer force on m1, respectively. Let ωz and ωp be the magnitude of the zero and

pole location of the fitted FRF in Eq. (3.55), respectively. Then, assuming damping

is negligible, it can be shown that

ω2
z =

kact
m2

(3.56)

ω2
p =

(m1 +m2)kact
m1m2

(3.57)

Solving Eqs. (3.56) and (3.57) simultaneously, we have

ω2
z

ω2
p

=
m1

m1 +m2

⇒ m1 =
ω2
z

ω2
p

(m1 +m2) (3.58)

The mass of the nozzle holder, extruder motor, and housing elements can be measured

with a scale to obtain the total mass, mtot = m1 + m2. Therefore, m1 and m2 =

mtot − m1 can be identified. Importantly, note that the values of bact or kact do

not need to be known to identify m1 and m2. The measurement direction of the

accelerometer simply needs to be parallel to the impact hammer force vector.

Using the two-mass model, we can write the set of force equations from Eqs.

(3.23)-(3.25) for the nozzle holder and the extruder motor mass, which will be used
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to determine W(s) in Eq. (3.34). The equations for the nozzle holder are given by

FAx + FBx + FCx = m1ẍ+ bxẋ+ kxx− bxẋ2 − kxx2 (3.59)

FAy + FBy + FCy = m1ÿ + byẏ + kyy − byẏ2 − kyy2 (3.60)

FAz + FBz + FCz = m1z̈ + bz ż + kzz − bz ż2 − kzz2 (3.61)

where the reaction forces are as described in Section 3.3, bx, by, and bz are the damping

coefficients in the x-, y- and z-axis directions, respectively, kx, ky, and kz are the

stiffness coefficients in the respective directions, and the subscript “2” denotes the

coordinate system for the extruder motor and the parameters pertaining to it. Note

that in Eqs. (3.59)-(3.61), we assume that the effect of cross stiffness and damping

terms (e.g., x-to-y terms bxy, kxy) are negligible since the motion that each axis induces

on the other two axes is negligible. For the extruder motor, the force equations are

given by

bxẋ+ kxx = m2ẍ2 + bxẋ2 + kxx2 (3.62)

byẏ + kyy = m2ÿ2 + byẏ2 + kyy2 (3.63)

bz ż + kzz = m2z̈2 + bz ż2 + kzz2. (3.64)

Let X2 = [x2 y2 z2]
T be m2’s position. Then we can write Eqs. (3.62)-(3.64) in

Laplace form as

[
(M2s

2 +Bs+K)−1(Bs+K)
]
X(s) = X2(s) (3.65)

where

M2 =


m2 0 0

0 m2 0

0 0 m2

 , (3.66)
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B =


bx 0 0

0 by 0

0 0 bz

 , (3.67)

and

K =


kx 0 0

0 ky 0

0 0 kz

 . (3.68)

After computing the Laplace transform of Eqs. (3.59)-(3.61) and substituting X2 into

Eqs. (3.59)-(3.61), we obtain a vector equation of the end-effector assembly in the

form of Eq. (3.26):

FA(s) + FB(s) + FC(s) = W(s)X(s) (3.69)

where

W(s) = M1s
2 +Bs+K− (Bs+K)(M2s

2 +Bs+K)−1(Bs+K) (3.70)

and

M1 =


m1 0 0

0 m1 0

0 0 m1

 . (3.71)

Note that once all parameters are identified, we can add the moment equations to

write the complete set of equations, as done in Eq. (3.30), and follow the procedure

outlined in Section 3.3 to determine the full assembly FRF (Eq. (3.37)).

Finally, we can estimate bj and kj for j ∈ {x, y, z} by: (a) measuring the full

assembly FRFs during pure x-, y-, and z-axis translational sine sweep perturbations

with the end-effector attached (and positioned at (x, y, z) = (0, 0, 30) mm) and (b)

62



Figure 3.8: Schematic of the two-mass model of the direct drive extruder (end-
effector) with the flexible components between the extruder motor and the nozzle
holder modeled as a spring-damper system. The damping and spring coefficient, bj
and kj, respectively, are defined on each axis of the task space (i.e., j ∈ {x, y, z}).
The relative positions of the nozzle holder and the extruder motor are indicated by
X = [x y z]T and X2 = [x2 y2 z2]

T , respectively.

Figure 3.9: Open loop force to acceleration (left) and force to position (right) FRFs
of the end-effector from impact hammer experiments. The force to position FRF is
estimated at the discrete integral of the measured force to acceleration FRF to show
the rigid body and flexible modes indicating a two-mass model of the end-effector.
The labels ωz and ωp indicate the zero and pole location of the two-mass model,
respectively.

63



using the measurements in the following least squares procedure. First, let

Pi =


pi,xx pi,yx pi,zx

pi,xy pi,yy pi,zy

pi,xz pi,yz pi,zz

 (3.72)

from Eq. (3.32). Then, from Eq. (3.27),

PiW =


pi,xxwx pi,yxwy pi,zxwz

pi,xywx pi,yywy pi,zywz

pi,xzwx pi,yzwy pi,zzwz

 . (3.73)

Therefore, if we command only one axis (take the z-axis, for example) without moving

the other two, we will get three FRF expressions representing the z-to-qA, z-to-qB,

and z-to-qC transfer functions. To demonstrate this effect, examine Eq. (3.36) when

X(s) is substituted for J̄q(s):

q(s) = Gqd(s)qd(s) +GFq(s)


J̄T
APA

J̄T
BPB

J̄T
CPC

W(s)X(s) (3.74)

where the input is X(s) = [0 0 z(s)]T . Following this procedure, we obtain eight

FRFs for the task space coordinates—three FRFs for the x-axis, two FRFs for the

y-axis (carriage A does not move on pure y-axis translations), and three FRFs for the

z-axis. The measured and fitted FRFs for the x-, y-, and z-axis are shown in Figs.

3.10(a), 3.10(b), and 3.10(c), respectively. We use them to identify the end-effector’s

stiffness and damping parameters as follows:

First, the full assembly FRFs are fit to a 4th-order mechanical system (6th-order with
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electrical dynamics)

G′′
qji,m

(s) =
b3s

3 + b2s
2 + b1s+ b0

s4 + a3s3 + a2s2 + a1s+ a0
. (3.75)

It can also be shown that

wj(s) =
s2(m1m2s

2 + (m1 +m2)bjs+ (m1 +m2)kj)

m2s2 + bjs+ kj
, (3.76)

which can be substituted into Eq. (3.37) to obtain an expression for the characteristic

polynomial of the full assembly carriage mechanical FRFs as

Dji(s) = (m+ αjim1)m2s
4

+ [(m+ αji(m1 +m2))bj +m2(c+ b)]s3

+ [(m+ αji(m1 +m2))kj +m2k + αji(c+ b)bj]s
2

+ ((c+ b)kj + bjk)s+ kjk, (3.77)

where αji is the multiplicative factor that transforms force from the j-axis motion to

the force on carriage i, and is computed as


J̄T
APA

J̄T
BPB

J̄T
CPC

 =


αxA αyA αzA

αxB αyB αzB

αxC αyC αzC

 (3.78)

with J̄i computed for the configuration at (x, y, z) = (0, 0, 30) mm. To find Pi, we

designed a CAD model of the end-effector in SolidWorks® using the measured mass

and dimensions of each component of the end-effector. From the CAD model, the

center of mass of the end-effector can be automatically computed by SolidWorks® to

obtain δx, δy, and δz and, therefore, ri in Eq. (3.29). From Eq. (3.30), ri is used to
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Figure 3.10: Position-to-position frequency response functions of the carriage with
the end-effector attached, for the x-axis (G′′

q,xi), y-axis (G
′′
q,yi) and z-axis (G′′

q,zi). The
data was measured for the same carriage location as Fig. 3.7.

compute L and, therefore, L̃† from which PA, PB, and PC are extracted. Finally,

using the fitted coefficients of the characteristic polynomial in Eq. (3.75) (one fit for

each of the nine measured FRFs), we approximate bj and kj in Eq. (3.77) via least

squares using a similar process to the one outlined for Eq. (3.52).

Table 3.1 reports the identified parameters of the delta printer model. In the

following section, we validate the model by comparing its predictions to measurements

from the machine.

3.5 Experimental Validation

Since we actuate the delta printer using its carriages, predicting how the carriage

dynamics vary as a function of position is paramount. By studying the dynamic

variation at a few positions, we observed that the dynamics of each carriage varied

significantly along the carriage line of action: the line in the xy-plane that extends

from the position of the carriage through the origin (see Fig. 3.11 and Section 3.2

for more details). Accordingly, we measured the full assembly carriage FRFs at

(x, y) = (−80, 0), (40,−69) and (40, 69) mm, corresponding to a distance of 80 mm

from the origin along the line of action for carriages A, B, and C, respectively.
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Table 3.1: Identified system parameters of the MP Delta Pro 3D printer

Symbol Value (units)
mc 0.179 kg
mf 0.032 kg
m1 0.542 kg
m2 0.109 kg
c 5.31 N-s/m
b 13.4 N-s/m
bx 20.4 N-s/m
by 40.5 N-s/m
bz 19.6 N-s/m
k 1.21 ×105 N/m
kx 3.31 ×103 N/m
ky 7.04 ×103 N/m
kz 1.29 ×105 N/m
ωn 730 rad/s
ω′
n 490 rad/s

ωz 1519 rad/s
ωp 1674 rad/s
ζ 0.092
ζ ′ 0.077
d0 1.43 ×105 s−2

d1 -212.1 s−1

d2 36.2 s−1

δx 10.21 mm
δy -16.52 mm
δz 19.31 mm
De 39.91 mm
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Figure 3.11: Overhead view of the delta 3D printer showing the (x, y)-coordinate
locations of carriages A, B, and C, the end-effector’s position in task space X, and
the length of the forearms L. End-effector motion along a carriage’s line-of-action
results in significant change to the carriage dynamics.

Then, we used the identified model in Sections 3.4.1 and 3.4.2 to predict the same

FRFs. Figures 3.12-3.14 show the predicted and measured FRF comparisons for

carriages A, B, and C, respectively. In the plots, we compare the measurements to

each other as well as the dynamics at (x, y) = (0, 0). The major trends across the

observed frequency range of the predicted and measured FRFs are similar across the

sampled positions. Note that the dynamics of each carriage are different because of

the asymmetric mass distribution of the end-effector. From Table 3.1 and Figure

3.11, note that δy is negative, meaning that the center of mass is positioned closer

to carriages A and C (and further from carriage B) causing them to hold a larger

proportion of the end-effector’s mass than carriage B. This phenomenon is borne

out in Figs. 3.12-3.14 as carriages A and C show higher magnitude in the lower

frequency mode at (0, 0), while carriage B shows higher magnitude in the higher

frequency mode.

Notably, the variation of the FRF at the position furthest along each carriage’s line

of action is captured by the predictions, highlighting the model’s ability to capture
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position dependence. To quantify the similarity between the predicted and measured

data, we use an error based metric. Since our FRFs are not linear with respect

to frequency, common methods to quantify the goodness of fit, such as correlation

coefficients, may be misleading. Table 3.2 reports the mean absolute percentage

accuracy (µacc) of the predicted model, which can be thought of as how close the

predicted model is to the actual measurement at each frequency. It is defined as the

complement of the mean absolute percentage error (µerr):

µacc = 100− µerr (3.79)

µacc = 100−
{ 1

n

f=fn∑
f=f1

|Mf − Pf |
|Mf |

· 100
}

(3.80)

where f is the frequency, Mf are the measured data, Pf are the data from the pre-

dicted model, and n = 247 is the number of measured frequency points from f1 = 2

Hz to f247 = 125 Hz, spaced in 0.5 Hz intervals. Note that when the prediction is

perfect (i.e., Pf = Mf ), µerr = 0 and µacc = 100%. As seen in Figs. 3.12-3.14 and Ta-

ble 3.2, our prediction model often has different magnitudes than the measured data

at the same frequency. This indicates that there are disturbances not captured by

the model. However, the average mean absolute percentage accuracy (magnitude and

phase, respectively) for carriages A (67.7% and 80.0%), B (78.1% and 82.3%), and

C (68.7% and 84.4%), indicate reasonable prediction accuracy of the model. Further

discussion of unmodeled disturbances and potential sources of error is provided in the

following section.

Although our magnitude predictions are inaccurate for some positions, especially

positions that are not along the respective carriage’s line of action, the frequencies

at which the modes occur for each position are predicted with reasonable accuracy,

which suggests that our estimates of mass and stiffness parameters are close to the

true values. Sources of error in the model include: (1) the CAD model used to
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Table 3.2: Goodness of fit between predicted and measured FRFs via mean absolute
percentage accuracy (µacc)

µacc[%]
(x, y) = (0, 0) mm (−80, 0) mm (40,−69) mm (40, 69) mm Avg.

mag. phase mag. phase mag. phase mag. phase mag. phase

A-to-A 70.1 84.7 72.6 86.0 54.6 81.6 73.6 67.7 67.7 80.0
B-to-B 73.1 88.8 79.4 86.6 81.1 62.2 78.7 91.5 78.1 82.3
C-to-C 82.5 86.5 82.1 89.8 43.7 84.7 66.5 76.7 68.7 84.4

Figure 3.12: Frequency response functions of the A-to-A position at (x, y) = (0, 0),
(−80, 0), (40,−69), and (40, 69) (z = 30 mm for all) predicted with the linearized
joint space FRFs from Eq. (3.37) (left) and measured at carriage A of the Monoprice
Delta Pro 3D printer (right).
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Figure 3.13: Frequency response functions of the B-to-B position at (x, y) = (0, 0),
(−80, 0), (40,−69), and (40, 69) (z = 30 mm for all) predicted with the linearized
joint space FRFs from Eq. (3.37) (left) and measured at carriage B of the Monoprice
Delta Pro 3D printer (right).

Figure 3.14: Frequency response functions of the C-to-C position at (x, y) = (0, 0),
(−80, 0), (40,−69), and (40, 69) (z = 30 mm for all) predicted with the linearized
joint space FRFs from Eq. (3.37) (left) and measured at carriage C of the Monoprice
Delta Pro 3D printer (right).
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Table 3.3: Percent error reduction compared to baseline model measured at (0,0)

% error reduction
(x, y) = (−80, 0) mm (40,−69) mm (40, 69) mm

mag. phase mag. phase mag. phase

A-to-A 35.2 60.4 13.1 -19.8 50.6 28.6
B-to-B 26.9 5.8 31.9 14.2 1.1 21.3
C-to-C 19.4 17.6 -12.5 11.8 34.3 23.4

determine the center of mass location, which is difficult to design perfectly accurate,

and (2) friction and damping, which is notoriously difficult to model. In the CAD

model, we assume that each component of the end-effector has uniform distribution of

mass across its volume. However, we know that some components, like the extruder

motor, are composed of various metal parts (e.g., aluminum, iron, etc.) with different

densities that affect the distribution of mass across their volume. Accounting for such

detail is cumbersome because individual components would need to be disassembled

and reassembled. We endeavored to be as accurate as possible, while ensuring that our

methodology can be replicated without significant difficulty. However, we found that

changes of a few millimeters in the end-effector center of mass location (especially in

the z-direction) could significantly influence the magnitude and phase of the predicted

FRFs. Secondly, the various joint connections between the end-effector, forearms, and

carriages create friction that is difficult to capture via our least squares identification

methodology.

The proposed model is intended for use in feedforward control of the delta 3D

printer. Without this predictive model, an alternative approach for the control de-

signer is to choose one baseline model with which to implement a model-based con-

troller for the printer across the entire workspace. A reasonable choice for the baseline

model is the measured FRF when the end-effector is positioned at (x, y) = (0, 0) mm.

To compare this alternative to using the predictive model, we study the percentage of

reduction in model error attained by using the predictive model. Using µerr defined

72



in Eq. (3.80), the percentage error reduction can be defined as

% error reduction =
µerr,B − µerr,P

µerr,B

· 100 (3.81)

where µerr,B and µerr,P are the mean absolute percentage errors of the baseline and

predicted model, respectively. The expression for µerr,P is identical to µerr in Eq.

(3.80), but for µerr,B, the baseline model is substituted for the prediction model, Pf .

Table 3.3 reports the percentage error reduction when the predictive model is used

to represent the measured FRFs at (x, y) = (−80, 0), (40,−69) and (40, 69) mm

instead of using the baseline model. From Figs. 3.12-3.14 and Table 3.3, note that in

all but two instances the predictive model predicts the magnitude and phase of the

measured model more accurately than the baseline model. The baseline model has

less magnitude or phase error compared to the predicted model at positions where

the measured model and the baseline model have small differences (for the respective

carriage). One expects there will be a few positions like this across the workspace.

Importantly, at the position furthest along each carriage’s line of action (diagonal

entries in Table 3.3), the predicted FRFs reduce the magnitude error by over 30%

compared to the baseline and reduce the phase error by at least 14% and up to

about 60%. These results suggest that naively choosing a baseline model to use in

model-based feedforward control would result in worse accuracy performance when

compared to using the LPV model proposed in this thesis. In Chapter IV, we will

see this phenomenon bear out when we compare control of the delta printer using the

LPV model and the baseline model.

3.6 Summary

The delta 3D printer offers the potential for higher throughput compared to tra-

ditional serial-axis 3D printers. However, it has not benefited from the model-based

73



feedforward vibration compensation methods that have improved the accuracy and

speed of serial 3D printers because of the difficulty modeling delta’s position-varying

nonlinear dynamics. In this chapter, we present an efficient framework that uses RC

to identify LPV models for delta 3D printers using a few measurements from only

one position. The model is general which enables it to account for different mass

distributions and dynamic models of the end-effector, which can have a significant

impact on the model, as demonstrated from the measured data. Using RC was par-

ticularly convenient for the prismatic-joint delta robot because we can disassemble it

easily to measure the dynamics different of sub-assemblies. It’s likely that RC has

not been studied as an approach for modeling the delta robot because most of the

literature has focused on the rotary-joint delta robot, which has a complex assembly

such that dividing it into sub-assemblies is not as obvious as it was for the prismatic-

joint robot. However, with this new perspective, a similar approach can be used to

study the model of the rotary-joint delta robot.

In this chapter, we presented the generalized model, described a procedure to

identify its parameters, and demonstrated its efficacy using a commercial delta 3D

printer, showing that the resulting model captures the position-dependent dynamic

variations with reasonable accuracy. Additionally, at positions where the dynamics

of the printer differ from the center (or baseline) model, we showed that the proposed

model predicts the true dynamics with greater accuracy than the baseline model. In

Chapter IV, we will implement a model-based controller on the delta 3D printer using

the LPV model derived above.
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CHAPTER IV

Model-based Feedforward Control of the Delta

Robot

4.1 Overview

The model of the delta 3D printer identified in Chapter III can be used to design

a model-based feedforward controller to suppress vibration and other motion-induced

errors. In this chapter, we wish to implement an FBS feedforward controller using

the linear parameter-varying (LPV) model to improve the accuracy of the delta robot

during high-speed printing. FBS can theoretically improve the accuracy of delta 3D

printers, but using its standard form as described in Section 2.3 is impractical due

to the computational challenges of optimizing the controller in real-time. Recall that

in Chapter II, we were forced to approximate the full LPV model of the H-frame by

modeling motion errors as linear relationships between the x and y axes (and their

LTI models). Furthermore, we approximated the H-frame’s dynamics as decoupled,

resulting in independent computation of the B-spline coefficients for each axis. Using

these approximations, the B-splines could be filtered and inverted offline to enable

fast computation of their coefficients online [5]. However, the delta 3D printer has a

coupled kinematic chain and its LPV model cannot be decoupled. Hence, the delta

model needs to be updated at each new position and the LPV FBS controller must
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be re-computed at each position, which can be computationally challenging for a

real-time controller.

In this chapter, we propose techniques to mitigate the computational challenges of

implementing FBS in real-time on the delta 3D printer. To do so, we address several

bottlenecks of its application: first, we parameterize the position-dependent portions

of the model offline to enable faster updates of the model online as the position of

the delta printer changes; second, we compute the model at sampled points (instead

of every point) along the given trajectory; and, third, we employ the QR matrix

factorization method to compute the B-spline control points (i.e., coefficients) in

FBS, which reduces the number of arithmetic operations necessary when compared

to the standard pseudo-inversion.

This chapter is organized as follows: Section 4.2 describes the exact (computa-

tionally intensive) LPV implementation of the FBS approach on the delta printer and

the simplifying techniques we propose to enable real-time control of delta 3D printers;

Section 4.3 demonstrates the expected computational and accuracy benefits of our

proposed approach through simulations and experiments; and Section 4.4 concludes

the chapter, summarizing key insights.

4.2 Feedforward Control of Delta 3D Printer with Filtered

B-Splines

4.2.1 Linear parameter varying FBS controller

The filtered B-splines (FBS) approach can be applied directly to the LPV delta

model with a similar implementation to the one described in Section 2.4. The major

differences are: (1) the delta robot has three joint axes we must control compared to

two on the H-frame; and (2) we cannot decouple the delta robot’s dynamics in the

same way we did for the H-frame. To elaborate, the H-frame’s y-axis position depends
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on the x-axis position, but not vice versa. Hence, we can compute the controlled x-

axis trajectories independently and use the model-predicted x position to compute the

controlled y-axis trajectories. On the delta robot, the dynamics are bidirectionally

coupled in all three axes (e.g., carriage A’s position depends on carriage B’s position

and vice versa). Hence, we expect the computational burden of the delta’s FBS

controller to be significantly higher than the H-frame’s FBS controller.

To formulate the delta FBS controller, we first define qid = [qid(t0) qid(t1) · · · qid(tE)]
T

as the entire E + 1 discrete time steps of the desired trajectory of carriage i (i ∈

{A,B,C} as in Section 3.3), which are processed in sliding windows with LPFBS.

Assume that time tk marks the beginning of the current window and that the un-

known modified motion command, qidm,C = [qidm(tk) qidm(tk+1) · · · qidm(tk+LC
)]T , is

parameterized using B-splines such that



qidm(tk)

qidm(tk+1)

...

qidm(tk+LC
)


=



ϕm,m(tk) · · · ϕm+n,m(tk)

ϕm,m(tk+1) · · · ϕm+n,m(tk+1)

...
. . .

...

ϕm,m(tk+LC
) · · · ϕm+n,m(tk+LC

)


︸ ︷︷ ︸

Φ


pi,m
...

pi,m+n


︸ ︷︷ ︸

pi,C

(4.1)

where the subscript C denotes the current window, LC is the number of trajectory

points considered for each window, Φ is the open-ended B-spline basis functions ma-

trix of degreem, ϕj,m(t) are the real-valued basis functions [74], j = m,m+1, ...,m+n,

pi,C is a vector of n+ 1 unknown coefficients, tk = kTs is the current time, and Ts is

the sampling time.

To capture the coupling between carriages, we define qd,C = [qT
Ad,C

qT
Bd,C

qT
Cd,C

]T ,
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such that

qdm,C =


qAdm,C

qBdm,C

qCdm,C

 =


Φ 0 0

0 Φ 0

0 0 Φ


︸ ︷︷ ︸

NC


pA,C

pB,C

pC,C


︸ ︷︷ ︸

pC

(4.2)

As in Chapter II, our objective is to minimize the tracking error which is defined as

ē = qd − q = qd − N̄p̄ ⇔


ēP

ēC

ēF

 =


qd,P

qd,C

qd,F

−


N̄P 0 0

N̄PC N̄C 0

0 N̄CF N̄F



p̄P

p̄C

p̄F

 (4.3)

where subscripts P and F denote the past and future windows, respectively, and the

bar on the matrices and vectors indicates that the impulse response of the transfer

function used for filtering the B-splines is truncated (see [5]). Note, from Eq. (4.3),

that the output carriage motion of the current window is given by

qC = N̄Cp̄C + N̄PCp̄P (4.4)

Using local least squares, the optimal coefficients of the current window can be com-

puted as

p̄C = (N̄T
CN̄C)

−1N̄C

(
qd,C − N̄PCp̄P

)
(4.5)

= N̄†
C

(
qd,C − N̄PCp̄P

)
(4.6)

where p̄P denotes the coefficients calculated in the previous window. From Eqs. (4.3)

and (4.6), the reader should note that the windows are designed to overlap to ensure

continuity. Additionally, n B-spline coefficients are computed in each window but

only nup ≤ n are updated [5].

For an LTI system, NC is pre-filtered and N̄PC and N̄†
C are computed offline
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and stored for calculating the optimal coefficients in every window using Eq. (4.6)

(see Appendix B). However, for position-dependent systems like the delta 3D printer,

filtering and inverting the (large) B-splines matrix must be done online, which is

computationally challenging to do at a fast enough rate for real-time requirements on

many hardware processors. The rest of this Section proposes techniques to optimize

the computation and memory resources required to apply FBS to the delta 3D printer

without significantly sacrificing the improved accuracy performance provided by FBS

when constrained by the machine’s computation and memory capabilities.

4.2.2 Selecting a parameterized model for B-splines filtering

Consider the problem of filtering each column of N through the delta printer’s

dynamic model G(s) from Section 3.3 (reproduced below):

G(s) =
[
I−GFq(s)


J̄T
APA

J̄T
BPB

J̄T
CPC

W(s)J̄
]−1

︸ ︷︷ ︸
G−1

J (s)

Gqd(s). (4.7)

Note that G−1
J (s) ∈ R3×3 depends on the configuration through the Jacobian matrix

J̄, while Gqd(s) is not position dependent. Hence, we can derive symbolic expressions

of each transfer function in G−1
J (s) as functions of position. This derivation leads to

symbolic transfer functions of the form

G−1
J,AA(s) =

bAA(x, y, z, qA, qB, qC , s)

a(x, y, z, qA, qB, qC , s)
(4.8)

where bAA(·) and a(·) are the numerator and denominator of the transfer function,

respectively, and the subscript “AA” denotes values pertaining to the A-to-A carriage

position dynamics. The other 8 transfer functions (G−1
J,BA(s), G

−1
J,CA(s), G

−1
J,AB(s), and

so on) can be expressed similarly with bBA(·), bCA(·), bAB(·), and so on, since all
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transfer functions share the same denominator a(·). These parameterized transfer

functions enable fast computations of the coefficients of G−1
J (s) during real-time con-

trol by simply substituting the corresponding values of x, y, z, qA, qB, and qC into the

symbolic expressions. Furthermore, we can pre-filter N with Gqd(s) offline to obtain

N̄qd . Then, for each window of trajectory points processed, we filter N̄qd with the

transfer functions in Eq. (4.8) to obtain

 N̄C

N̄CF

 =



 N̄CAA

N̄CFAA


 N̄CBA

N̄CFBA


 N̄CCA

N̄CFCA


 N̄CAB

N̄CFAB


 N̄CBB

N̄CFBB


 N̄CCB

N̄CFCB


 N̄CAC

N̄CFAC


 N̄CBC

N̄CFBC


 N̄CCC

N̄CFCC




(4.9)

where [N̄T
CAA

N̄T
CFAA

]T is the result of filtering the columns of N̄qd through G−1
J,AA(s),

and so on for the other blocks of the matrix.

As described above, the current and future windows are overlapped for continu-

ity during computation, but only LC points are updated during each sequence [5].

Each overlapped window has 2LC trajectory points, meaning that the time com-

plexity for computing the transfer function coefficients is O(2LC) (assuming parallel

computation) and the space complexity is O(2Lcua), where ua is the order of the

transfer functions. Some computers may not have enough processing power to com-

plete these calculations while maintaining real-time printing—especially the smaller

micro-processors commonly used by 3D printer manufacturers. Additionally, allocat-

ing the memory resources required to store the coefficients may limit the computer’s

ability to use quick-access memory for other important functions like storing the print

trajectory.
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To prevent such deleterious effects, we select one of the first LC points from

each window at which a time-invariant transfer function G−1
J,(··)(s) is computed, which

reduces the time and space complexity to O(1) and O(ua), respectively. This trade-off

is reasonable because: (a) only the first LC points will be commanded, and (b) LC

generally represents a small distance where the dynamics do not change significantly.

For example, LC typically ranges from 100-200 points, which represents 100 to 200

ms for a standard sampling interval of 1 ms. For most practical applications, the 3D

printer will not cover large enough distances in ≤200 ms to create significant dynamic

variation.

For our implementation of the single point selection described above, we select

the median point (i.e., the point in the middle of the window) as the representative

point. One can select other points such as the mean point (i.e., the average point in

the window for each configuration variable, considered independently) or the point

with the minimum total Euclidean distance from all the other points in the same

window. In simulations, we found that the tracking accuracy is not significantly

different when any reasonable central point is selected. In Section 4.3, we demonstrate

through simulations and experiments that selecting one point in each window does

not significantly degrade the performance of the FBS controller: especially when

a technique for smoothly switching between windows is added, as discussed in the

following subsection.

4.2.3 Smoothly switching models between windows

One drawback to selecting a different model for each window is that switching

models can lead to discontinuities in the feedforward controller’s predicted output

trajectories. In the standard FBS approach, continuity of the predicted trajectories

is preserved by using the same LTI model for every window.

To demonstrate what happens in the LPV case, suppose we used model 1 for the
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Figure 4.1: Illustration of the switching compensation technique to maintain conti-
nuity described in Sec. 4.2.3. The B-spline coefficients (or control points) from the
previous window p̄P are approximated as p̂P to maintain continuity when the model
is switched from model 1 to model 2. Note that N̄1,PCp̄P does not have the correct
dynamics for the current window and N̄2,PCp̄P creates a discontinuity at the window
boundary. The difference between the desired trajectory and the approximate resid-
ual motion is also shown as qd,C − N̄PCp̂P.

past window and update it to model 2 for the current window as shown in Fig. 4.1.

When we switch from model 1 to model 2, the prediction of the output trajectory in

the current window will be different depending on if we use model 1 (i.e., N̄1,PCp̄P as

the prediction) or model 2 (i.e., N̄2,PCp̄P as the prediction). Since model 2 captures

the dynamics in the current window more accurately than model 1, N̄2,PC should be

used for the prediction. However, using N̄2,PC may result in a discontinuity in the

prediction of the machine’s motion at the point where the window changes because

the previous window’s control points, p̄P, were computed using model 1 (i.e., N̄1,P).

To resolve this discrepancy, we compute an approximate prediction by generating

a set of approximate control points that ensure continuity with the output from

the past window. The approximate control points, p̂P, are selected to minimize the

difference between the new prediction and the original prediction while preserving
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continuity. We write the optimization problem as

p̂P = argmin
p̂P

∥N̄2,PCp̂P − N̄2,PCp̄P∥22

s.t. N̄T
2,PC(tk)p̂P = N̄T

1,PC(tk)p̄P

N̄ ′T
2,PC(tk)p̂P = N̄ ′T

1,PC(tk)p̄P

(4.10)

where N̄T
1,PC(tk) and N̄T

2,PC(tk) are the first rows of N̄1,PC and N̄2,PC in the window,

respectively, and N̄ ′T
1,PC(tk) and N̄ ′T

2,PC(tk) are the first rows of N̄′
1,PC and N̄′

2,PC,

respectively (which are the time derivatives of N̄1,PC and N̄2,PC). Note that the

products

N̄T
1,PC(tk)p̄P and N̄T

2,PC(tk)p̂P (4.11)

represent positions at the window boundary, and

N̄ ′T
1,PC(tk)p̄P and N̄ ′T

2,PC(tk)p̂P (4.12)

and represent velocities at the boundary. Additional kinematic constraints, such as

acceleration and jerk, can be included in the optimization problem from Eq. (4.10)

by taking additional derivatives of the B-splines as described in [74] and [81]. More

kinematic constraints leads to smoother transitions when the dynamics change sig-

nificantly or when the window length is long. In our simulations of the machine used

in Section 4.3, we found that position and velocity constraints led to similar tracking

accuracy when compared to optimizing Eq. (4.10) with acceleration and jerk con-

straints. Hence, our implementation only uses the position and velocity constraints

for Eq. (4.10).

Using the approximate control points, the coefficients that minimize the tracking
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error in the current window are obtained by solving

p̄C = argmin
p̄C

[(
(qd,C − N̄PCp̂P)− N̄Cp̄C

)T(
(qd,C − N̄PCp̂P)− N̄Cp̄C

)]
. (4.13)

Solving the constrained optimization problem in Eq. (4.10) in real-time could be

challenging. Similarly, we can speed up the computation of Eq. (4.13) by using a

least squares optimization method that is faster than the pseudo-inverse. To ensure

fast computations, we employ the LU and QR factorization methods for solving Eqs.

(4.10) and (4.13), respectively, as discussed in the following subsection.

4.2.4 Command generation with LU and QR Factorization

The optimization problem in Eq. (4.10) can be solved with a number of gradient-

based algorithms. For example, Matlab provides functions fmincon and lsqlin to solve

constrained optimization problems. However, such algorithms may require a large

number of iterations to converge to a solution, which can stall our controller. To

circumvent this problem, we can solve the constrained least squares problem with LU

factorization by leveraging properties of the filtered B-splines. To simplify notation,

we define the following from Eq. (4.10):

A = N̄2,PC, b = N̄2,PCp̄P (4.14)

C =

 N̄T
2,PC(tk)

N̄ ′T
2,PC(tk)

 , d =

 N̄T
1,PC(tk)p̄P

N̄ ′T
1,PC(tk)p̄P

 (4.15)

Then, the problem can be written as

p̂P = argmin
p̂P

∥Ap̂P − b∥22

s.t. Cp̂P = d

(4.16)
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To solve the optimization problem, we make two assumptions:

1. The stacked matrix A
C

 (4.17)

has linearly independent columns; and

2. C has linearly independent rows.

As discussed in [24], the filtered B-splines satisfy the above assumptions with high

probability and, in the case they do not, the B-splines can be freely selected by the

user to satisfy the assumptions. Then, we can construct the Lagrangian,

L(p̂P, λ) ≜
1

2
∥Ap̂P − b∥22 + λT (Cp̂P − d), (4.18)

where λ is a set of Lagrange multipliers, and find the roots of its partial derivatives

to obtain the following linear system

ATA CT

C 0


p̂P

λ

 =

ATb

d

 . (4.19)

Note that the matrix ATA CT

C 0

 (4.20)

is nonsingular when the above assumptions hold. Therefore, the linear equation given

by Eq. (4.19) can be efficiently solved with LU factorization [75].

We can also use QR factorization to efficiently compute the control points. Us-

ing the pseudo-inverse to solve the optimization problem in Eq. (4.13) requires the

following number of floating-point operations (flops) for each step [75] (listed in a
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cumulative fashion):

N̄T
CN̄C : LCn

2 flops (4.21)

(N̄T
CN̄C)

−1 : n3 + LCn
2 flops (4.22)

N̄Cq̃d,C : n3 + LCn
2 + 2LCn flops (4.23)

(N̄T
CN̄C)

−1
(
N̄Cq̃d,C

)
: n3 + LCn

2 + 4LCn flops. (4.24)

where q̃d,C = qd,C − N̄PCp̂P. By factoring

N̄C = QR (4.25)

with the modified Gram Schmidt algorithm [82], where Q ∈ RLC×LC is an orthogonal

matrix (i.e., QTQ = I) and R ∈ RLC×n is an upper triangular matrix, the problem

in Eq. (4.13) can be written as

Rp̄c,C = QT q̃d,C (4.26)

which can be solved using backward substitution. The number of operations required

using this method are

N̄C = QR : LCn
2 flops (4.27)

w = QT q̃d,C : LCn
2 + 2LCn flops (4.28)

Rp̄c,C = w : n2 + LCn
2 + 2LCn flops. (4.29)

Note, from the last step in each method, that the QR factorization solution is more

efficient to compute than the pseudo-inverse, which will be validated in the following

section.
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Figure 4.2: Flowchart of FBS implementation on delta 3D printer. First, the B-splines
are generated offline and filtered with the carriage-only position-to-position dynamics.
Gqd as described Section 4.2.1 (left side). Online, LC points from the desired Cartesian
and joint coordinates are buffered for a new window and a representative configuration
is selected from the buffer—the median configuration is used in this work. Then, the
representative configuration {xd,r, ...qCd,r} is used to compute the transfer function
model coefficients of G−1

J (see Section 4.2.2). This transfer function is then used to
filter the offline B-splines. Finally, we compute the approximate B-spline coefficients
from the previous window to maintain continuity during switching (Section 4.2.3) and
calculate the modified trajectory (Section 4.2.4).

Remark 4.2(a): The techniques described in Sections 4.2.2, 4.2.3, and 4.2.4 were

implemented in Matlab Simulink to control the MP Delta Pro 3D printer, similar to

the implementation of the standard FBS approach in [5]. Standard FBS controllers

have also been implemented on standalone micro-controllers for 3D printers by a

startup company called Ulendo, which indicates that our techniques can be applied

to similar micro-controllers. As a visual representation, Fig. 4.2 shows a flowchart of

the code implementation. In the following section, simulations and experiments are

used to characterize and validate the proposed advantages of efficient computation

and improved tracking accuracy.
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4.3 Simulations and Experimental Validation

4.3.1 Simulation validation

In this subsection, we simulate the identified dynamics of the MP Delta Pro 3D

printer (from Chapter III) with a variety of controllers to compare the computa-

tion time and accuracy of the controller proposed in Section 4.2 to that of potential

alternatives. We evaluate the performance of following controllers:

(a) an LPV FBS controller where the transfer functions are computed in matrix

form using Eq. (3.37) at every point in each window (i.e., the exact LPV

controller) and the coefficients are calculated with the pseudo-inverse;

(b) a controller that is the same as controller (a), except the transfer functions are

computed using the parameterized model from Section 4.2.2;

(c) a controller that is the same as controller (b), except the transfer functions are

computed for only one point in the window—without the switching compensa-

tion discussed in Section 4.2.3;

(d) a controller that is the same as controller (c), except with the switching com-

pensation; and

(e) a controller that is the same as controller (d), except the coefficients are calcu-

lated with QR factorization as described in Section 4.2.4.

By adding the modifications one at a time, we can distinguish the effects on com-

putational efficiency and motion accuracy of each modification. Each controller’s

performance is also compared to a baseline controller—the standard FBS controller

that uses an LTI model measured at (x, y) = (0, 0) mm for the carriages. We use

(0, 0) because the model at the origin is a reasonable choice for the LTI model for

FBS when the control designer does not have a model for the position-dependent

dynamics.
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Figure 4.3: Trajectories of (a) a square and (b) a butterfly used for simulations
overlaid on the task space of the delta 3D printer. The square has a side length of
140 mm and is centered at the origin. The butterfly spans x ∈ [−82, 82] mm and
y ∈ [−77, 23] mm. Both trajectories have with a maximum motion speed of 150 mm/s
and a maximum acceleration of 20 m/s2.

The simulations are conducted using two trajectories:

1. the trajectory of a square shown in Fig. 4.3(a) with a side length of 140 mm

and its center at the origin; and

2. the trajectory of a butterfly shown in Fig. 4.3(b), which spans x ∈ [−83, 83]

mm and y ∈ [−77, 23] mm.

Both trajectories have a maximum speed of 150 mm/s and a maximum acceleration

of 20 m/s2. The square is selected to emphasize straight-line motions and sharp 90◦

turns which are prone to vibration. The butterfly trajectory is selected to emphasize

curved motions with tight corners that are prone to contour errors. Each trajectory

lasts about 5 seconds with a sample time of 1 ms. To simulate the system’s response,

the lifted system representation (LSR) of G(s) is computed using the known trajec-

tory points. Parameter-varying compensation for all points (controllers (a) and (b))

is implemented by computing a point-by-point LSR matrix for each window. In other
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Table 4.1: Simulation results comparing the total computation time and accuracy of
different controllers for generating modified trajectories of the square and butterfly.
Results are listed as [Square / Butterfly].

Computation Time RMS Contour Error Accuracy improvement from baseline

(*) Baseline LTI, standard FBS controller 0.014 / 0.044 s 5.94 / 11.13 µm –
(a) Matrix TFs, all points, pseudo-inverse 671.55 / 820.06 s 0.32 / 0.38 µm 94.6 / 96.6%
(b) Parameterized TFs, all points, pseudo-inverse 181.16 / 226.30 s 0.32 / 0.38 µm 94.6 / 96.6%
(c) Parameterized TFs, single point, pseudo-inverse 8.17 / 9.86 s 0.64 / 3.21 µm 89.3 / 71.1%
(d) Same as above with switching compensation 12.28 / 13.46 s 0.34 / 0.53 µm 94.3 / 95.3%
(e) Same as above with QR factorization 9.19 / 9.65 s 0.34 / 0.53 µm 94.3 / 95.3%

words, we compute the transfer function at each point in the window and compute

its impulse response, which becomes the time-shifted columns of the LSR matrix (see

Appendix A). For the single point compensation (controllers (c)-(e)), we compute the

transfer function and impulse response for the median point in the window, whose

time-shifted impulse response is repeated to construct the LSR matrix for each win-

dow. All controllers use B-spline basis functions of degree m = 5, a window length

LC = 196 points, number of B-spline coefficients n = 44, and number of updated

coefficients nup = 22. The window length is determined by the amount of time re-

quired for the impulse response of the transfer function used for filtering (i.e., infinite

impulse response (IIR) filter) to settle close to zero. Since the transfer functions vary

with position, we select the window length for the delta 3D printer using a one-time

offline procedure: we construct a grid of positions in the reachable workspace that

are 5 mm apart, compute the impulse response for the transfer function at each posi-

tion, and use the worst-case settling time to determine the window length. Since the

time domain of influence of an IIR filter is infinite, the user must select a truncation

threshold (e.g., 10−3) such that each window is long enough for the impulse response

to almost settle to zero. The number of B-spline coefficients are then computed from

the window length, after the user selects the knot vector spacing, as described in [5].

The knot vector spacing of the B-splines can be thought of as the frequency band-

width the machine is expected to track and should be set at a higher frequency than

any resonance mode of the measured or predicted FRFs of the machine.
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Table 4.2: Mean computation time per window for generating modified trajectories
using each controller. Results are listed as [Square / Butterfly].

Mean computation time per window

Baseline controller 4.57 × 10−4 / 7.04 × 10−4 s
Controller (a) 24.87 / 35.52 s
Controller (b) 6.71 / 12.27 s
Controller (c) 0.30 / 0.41 s
Controller (d) 0.46 / 0.52 s
Controller (e) 0.38 / 0.41 s

The simulations are conducted in Matlab (version R2022a) on a 64-bit Microsoft

Surface Book with an Intel Core i5-6300U CPU processor and 8 GB of RAM. The

computation time of the entire modified trajectory and the root-mean-square (RMS)

contour error for each trajectory and each controller is reported in Table 4.1. The

percent difference of the RMS contour error of other controllers compared to the

RMS contour error of the baseline controller simulation is also reported as “Accuracy

improvement from baseline” in Table 4.1. Time-series plots of the contour error

comparisons are shown in detail in Figs. 4.4 and 4.5 for the square and butterfly

trajectories, respectively. For the butterfly trajectory, the RMS contour error of the

baseline controller is 11.13 µm and the trajectory is computed in 44 ms since the

filtering and inversion is completed offline. However, note that the RMS error of

the exact LPV model is almost 30 times less than the baseline at 0.38 µm, although

the computation of the matrix model online is much longer (820 s), which is also

about 4 times greater than the computation time of the parameterized model (226

s) without any change in the RMS error. When we compute the model for a single

point in each window, we can reduce the computation time by about 20x (to ∼10

s) but at a cost of about 10x increase in RMS contour error (to 3.21 µm). The

accuracy is improved to only be about 1.3x worse than the exact LPV model (about

0.5 µm) when the switching compensation is implemented, which indicates that we can

significantly reduce the computation time while maintaining relatively high accuracy
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Figure 4.4: Contour error of the modified “square” trajectory generated by the base-
line controller (solid blue line) and controllers (a/b) using all trajectory points (solid
purple line), (c) a single point without switching compensation (dotted red line), and
(d/e) a single point with switching compensation (dash-dotted yellow line).

with controller (e). The results for the square trajectory follow a similar trend to

the butterfly trajectory. The baseline controller starts with less absolute contour

error compared to the butterfly because the trajectory is mostly composed of straight

lines which are less prone to contour errors when compared to the butterfly’s curved

paths. Hence, we have less relative loss of accuracy using controller (c) for the square

(∼5% from 94.6% to 89.3%) when compared to the butterfly (∼25% from 96.6%

to 71.1%). However, we see a similar order of magnitude reduction in computation

time from controller (a) to controllers (c) and (e) between the two trajectories, which

indicates that the computational benefit of the proposed methodology is trajectory-

agnostic. Furthermore, Table 4.2 reports the average (mean) computation time per

window using each controller for both trajectories. Note that there is a similar order

of magnitude reduction in computation time when comparing the parameterized,

single-point controller (controller (c)) to the exact LPV controller (controller (a)).

Shifting focus to the accuracy, we note a spike in the contour error of controller

(c) around 2 seconds into the butterfly motion in Fig. 4.5. The spike represents a

difficult portion of the butterfly trajectory—the bottom right of the butterfly wing—

where a switch in models occurs for controllers (c)-(e). Here, the points are close to
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Figure 4.5: Contour error of the modified “butterfly” trajectory generated by the
baseline controller (solid blue line) and controllers (a/b) using all trajectory points
(solid purple line), (c) a single point without switching compensation (dotted red
line), and (d/e) a single point with switching compensation (dash-dotted yellow line).

the far side of carriage B’s line of action (see Figs. 3.11 and 4.3) which, as discussed

in Section 3.5, is prone to larger dynamic variation. (The symmetric points on the

bottom left side of the butterfly are not on the far side of carriage C’s line of action

and, thus, have less dynamic variation). Similarly, controller (c) leads to small spikes

in error throughout the square trajectory that are not present for controller (d) as

shown in Fig. 4.4. The spikes are exacerbated when a switch in windows coincides

with a 90◦ corner on the square, which can be seen about 1.7 seconds into the motion.

Generally, the contour error increases for all single point controllers (c), (d), and (e)

when compared to the all-point controllers ((a) and (b)), but they are worse for

controller (c) which does not include switching compensation. Finally, note that the

total computation time is reduced by 28% for the butterfly trajectory and 25% for the

square trajectory using QR factorization instead of the pseudo-inversion (controller

(e)). Overall, the accuracy of the single point approach is worse than using all the

points in a window, but the overall accuracy improvement is acceptable given the

(up to) 23x decrease in computation time compared to using the parameterized exact

LPV controller (b), which is challenging to implement on hardware in real-time, as

discussed in the following subsection on experiments.
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4.3.2 Experimental validation

To study the impact of the proposed methodology on fabricated parts, we printed

a “calibration cube”1 and an extruded butterfly on the delta 3D printer using two

control strategies: the baseline controller and controller (e) above. We focus most

of our attention on the calibration cube since it is a well-known benchmark to char-

acterize vibration in the 3D printing industry. Note that some layers of the cube’s

trajectory have square paths like those studied in the simulations (Section 4.3.1). The

cube also contains letter indentations which create additional sources of accuracy er-

ror. The butterfly is printed to evaluate the impact of each controller on curved layer

parts. Our aim is to demonstrate the utility of our contributions by comparing: (a)

the quality of parts printed with our controller and the baseline controller at different

positions; and (b) acceleration amplitudes of the carriages during the execution of

each print to understand the effects of the proposed techniques.

We position the center of each part at the following locations: (x, y) = (0, 0),

(−80, 0), (40,−69), and (40, 69) mm. Each position, except the origin, is chosen to

target each carriage independently; they are located 80 mm from the origin along the

far side of the respective carriage’s line-of-action. As shown in Fig. 4.6, the position

(−80, 0) mm primarily tests variation in carriage A’s dynamics, (40,−69) mm primar-

ily tests variation in carriage B’s dynamics, and (40, 69) mm primarily tests variation

in carriage C’s dynamics. The maximum speed and acceleration for both parts are

150 mm/s and 20 m/s2, respectively. Both the baseline controller and controller (e)

are implemented in Matlab Simulink, which sends the motion commands through a

dSPACE MicroLabBox to Pololu DRV8825 stepper motor drivers to move the stepper

motors on the delta 3D printer. Using the dSPACE hardware and Simulink inter-

face, only controller (e) (of all the controllers in Section 4.3.1) compiles successfully

1The standard XYZ calibration cube used in this work can be found at: https://www.thingivers
e.com/thing:1278865
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Figure 4.6: Measured frequency response functions of the carriage position dynamics
at (x, y) = (0, 0) mm (blue solid lines), (−80, 0) mm (red dashed lines), (40,−69) mm
(yellow dash-dotted lines), and (40, 69) mm (indigo dotted lines) of the Monoprice
Delta Pro 3D printer. The black dashed lines indicate the fitted transfer functions
of the baseline model (at (x, y) = (0, 0) mm) that is used for the baseline controller.
Note that the carriage dynamics vary most on the far side of the carriages line of
action (see Fig. 3.11): carriage A’s dynamics vary significantly at position (−80, 0)
mm, carriage B’s dynamics vary significantly at position (40,−69) mm, and carriage
C’s dynamics vary significantly at position (40, 69) mm.
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for real-time implementation. Successful compilation of the program means that the

commands will be sent to the machine at the MicroLabBox’s command frequency of 1

kHz. In other words, despite the increase in each window’s computation time for the

proposed method compared to the baseline, there is no difference in the production

time for the same part using the either method.

To quantify the quality differences between cubes printed at different positions,

we use a laser scanner—the Romer Absolute Arm from Hexagon Metrology (model

#7525SI)—to scan a face from each part. We chose to scan a flat face (without

letter indentations) to isolate the vibration errors. (Unfortunately, some of the fine

features of the butterfly cannot be captured accurately by the laser scanner so we

only use it for the cube). Figures 4.7 and 4.8 show the color map of the 12 scanned

parts printed at the different positions using different compensation techniques. At

all locations, the uncompensated part has some clear vibration artifacts on the left

side that are largely eliminated when using FBS compensation (baseline or proposed

LPV implementation). However, the baseline FBS compensation leads to larger vari-

ations of surface position when compared to the proposed controller, as evident by

the standard deviation of the point cloud surface for each scanned part, which is re-

ported in Table 4.3. (Note that the proposed controller has lower point cloud surface

variance across all the measured parts, which corresponds to smoother surfaces with

less vibration errors). Also in Table 4.3, note that there are some locations where the

baseline FBS compensation has higher variance in the surface point cloud data when

compared to the uncompensated part. This phenomenon occurs because there are

some positions where the actual dynamics are sufficiently different from the baseline

model, such that imposing the baseline model in the controller is worse than not

compensating at all. The baseline-compensated part targeting carriage C at (40, 69)

mm is a great example of the poor compensation due to the model’s mismatch as we

see in Fig. 4.8.
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Figure 4.7: Color map of laser scanned point cloud of calibration cubes printed at
(0, 0) and (−80, 0) mm. The scans show that the surface quality of the uncompen-
sated and baseline FBS strategies are worse than the surface quality of the proposed
strategy, especially for the part at (−80, 0) mm, indicating improved surface accuracy.

Figure 4.8: Color map of laser scanned point cloud of calibration cubes printed at
(40,−69) and (40, 69) mm. Like Fig. 4.7, the scans show that the proposed strategy
consistently improves the surface quality of the cube when compared to other com-
pensation methods across different print locations.
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Table 4.3: Standard deviation of point cloud data on the surface of scanned calibration
cubes printed at various positions using different compensation strategies.

(0,0) (-80,0) (40,-69) (40,69)

Uncompensated 80 µm 72 µm 160 µm 122 µm
Baseline 74 µm 83 µm 143 µm 772 µm
Proposed 53 µm 36 µm 130 µm 72 µm

The surface variance of the baseline FBS parts can also be observed visually in

Figs. 4.9 and 4.10, which show the respective images of the X and Y lettered faces of

the calibration cube at all locations. For comparison, we also show the cube printed

without vibration compensation. A visual inspection of the all the fabricated parts

reveals the following observations:

1. In the uncompensated parts, there are vibration marks at the edges where there

is a change of direction, which are largely eliminated with FBS compensation.

2. The quality of the parts printed at (0, 0) mm are similar for both the baseline

and proposed controllers.

3. The surface quality of the part printed at (−80, 0) mm with the baseline con-

troller is worse than the quality of the part printed with the proposed controller.

4. The quality of the parts printed at (40,−69) mm are similar for both controllers.

5. The part printed at (40, 69) mm with the baseline controller drifts from its

starting position in the middle of the print, while the part printed with the

proposed controller stays aligned.

6. The quality of the parts printed with the proposed controller are always either

similar to or better than the parts printed with the baseline controller.

Observation 2 is expected since the baseline controller performs optimally at (0, 0)

mm and observation 3 is expected due to the model mismatch. However, observa-

tion 4 appears to be an anomaly. A closer look at carriage B’s FRFs in Fig. 4.6
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Figure 4.9: X-axis face of calibration cubes fabricated with the baseline and proposed
controllers (compared to uncompensated parts) centered at different positions that
target different carriages.

Figure 4.10: Y-axis face of calibration cubes fabricated with the baseline and proposed
controllers (compared to uncompensated parts) centered at different positions that
target different carriages.
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Table 4.4: Root mean square (RMS) acceleration of carriages during print of the
calibration cube

Baseline [m/s2] Proposed [m/s2] Desired [m/s2]

(−80, 0) – Car. A 3.73 (+0.38) 3.24 (-0.11) 3.35
(40,−69) – Car. B 4.04 (+0.08) 3.95 (-0.01) 3.96
(40, 69) – Car. C 4.16 (+0.35) 3.82 (+0.01) 3.81

Table 4.5: Maximum acceleration of carriages during print of the calibration cube

Baseline [m/s2] Proposed [m/s2] Desired [m/s2]

(−80, 0) – Car. A 22.46 (+4.57) 17.04 (-0.85) 17.89
(40,−69) – Car. B 24.67 (+0.81) 24.05 (+0.19) 23.86
(40, 69) – Car. C 25.53 (+1.67) 23.68 (-0.18) 23.86

reveals that the measured FRFs from (0, 0) and (40,−69) mm have similar resonance

frequencies. Also note that carriages A and C have measured FRFs from (0, 0) and

(40,−69) mm that also have similar resonance frequencies. Hence, the baseline con-

troller is able to adequately compensate vibrations while printing at (40,−69) mm.

The drifting signal in observation 5 is due to the baseline controller overcompensating

for the fast changes in acceleration on the top half of the Y-face of the cube. Note

that the bottom half of the Y-face only has one indentation, while the top half has

two indentations in succession, which increases the high frequency content of the ac-

celeration profile. Figure 4.11 shows the modified motion commands of the baseline

and proposed controllers in this region of the print, which shows that the commanded

motion of the baseline controller drifts from the desired command while the proposed

controller does not. Overcompensation occurs because the baseline model for carriage

C (at (0, 0) mm in Fig. 4.6) shows that the amplitude of high frequency content is

reduced. Hence, the baseline controller attempts to increase the input of the high

frequency commands to achieve the desired motion. However, we know from the

measured FRF at (40, 69) that the command does not need to be amplified. Thus,

the proposed controller with more accurate dynamics can compensate correctly.

100



Figure 4.11: Commanded motion from the baseline (blue solid line) and proposed
(red dash-dot line) controller during the drifting motion for the baseline controller
while fabricating the part at (x, y) = (40, 69) mm (triggering carriage C). Note
that the baseline model commands increasing deviations from the nominal position
(yellow dashed line), which leads to the drifting part in Figs. 4.9 and 4.10. The
baseline controller creates the drifting commands because of the differences between
the baseline frequency response function and the actual frequency response function
at (40, 69) mm.

Similar behavior is observed on the printed butterfly part. Figure 4.12 shows a

comparison of the butterfly printed at (0, 0) and (40, 69) mm using both compensa-

tion strategies. The part that uses the baseline FBS compensation at (40, 69) drifts in

a similar fashion to the cube. The other butterfly parts printed at different locations

do not have such stark visual differences between the baseline FBS compensation and

compensation with the proposed controller as seen in Fig. 4.13. Hence, to quan-

tify the reduction of vibration-induced acceleration, we also measure the acceleration

of the carriages during each print using the vertical axis of an ADXL335 tri-axial

accelerometer from Sparkfun Electronics and compare the acceleration for both con-

trollers to the acceleration of the desired trajectories for both the cube and butterfly.

Tables 4.4 and 4.5 give the RMS and maximum values of the carriage acceleration,

respectively, measured over the course of a few layers of the calibration cube print. In

absolute terms, the proposed controller accelerations are closer to desired acceleration

in all cases, illustrating reduction in vibration errors. The maximum difference of de-

viation reduction between the proposed controller and the baseline controller is 8.9%
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Figure 4.12: Examples of the butterfly part printed at (0, 0) and (40, 69) mm using
the baseline FBS and proposed compensation strategies. A drift in trajectory can be
seen in the part printed at (40, 69) using the baseline FBS strategy, similar to the
drifts seen in the calibration cube in Figs. 4.9 and 4.10.

Table 4.6: Root mean square (RMS) acceleration of carriages during print of the
butterfly

Baseline [m/s2] Proposed [m/s2] Desired [m/s2]

(−80, 0) – Car. A 4.31 (+1.38) 3.63 (+0.70) 2.93
(40,−69) – Car. B 2.96 (-0.13) 2.82 (-0.27) 3.09
(40, 69) – Car. C 4.29 (+1.35) 2.74 (-0.20) 2.94

for carriage C at (40, 69) in RMS acceleration and 20.8% for carriage A at (−80, 0)

in maximum acceleration. Following the result from observation 4, we note that the

least deviation from the desired acceleration occurs for carriage B at (40,−69) for

both RMS and maximum accelerations. Tables 4.6 and 4.7 give the RMS and max-

imum values of the carriage acceleration for a few layers of the butterfly print. The

proposed method’s acceleration measurements are also closer to desired acceleration

in all cases for the butterfly part. The butterfly part also has the maximum difference

of deviation reduction between the proposed controller and the baseline controller oc-

curring at (40, 69) for RMS acceleration and at (−80, 0) for maximum acceleration.

Here, the deviation is reduced by 39.1% and 39.6%, respectively.
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Figure 4.13: Top view of printed butterfly parts at different locations that target
different carriages and with the different compensation strategies/controllers.

Table 4.7: Maximum acceleration of carriages during print of the butterfly

Baseline [m/s2] Proposed [m/s2] Desired [m/s2]

(−80, 0) – Car. A 30.20 (+8.64) 21.47 (-0.09) 21.56
(40,−69) – Car. B 19.19 (-2.39) 21.41 (-0.17) 21.58
(40, 69) – Car. C 21.14 (+2.65) 19.38 (+0.89) 18.49
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4.4 Summary

This chapter outlines practical techniques to enable real-time, accurate vibration

compensation on the prismatic-joint delta 3D printer. Previous work on improving

accuracy of delta manipulators has focused on servo motor actuated machines and

has relied on sensor measurements and feedback control as described in the literature

review in Chapter I. For most delta 3D printers, feedback sensors are not available

so we must use feedforward control with an accurate dynamic model. In Chapter

III, we proposed a framework to efficiently identify an accurate LPV model of the

delta 3D printer. In this chapter, we use that model in the FBS feedforward vi-

bration compensation method. FBS can theoretically reduce vibration on delta 3D

printers but the need to recompute the model and controller at each new position

during real-time control is computationally challenging. Therefore, we propose the

following techniques to decrease the computational burden: (1) parameterization and

pre-filtering of portions of the model for fast online operations (Section 4.2.2), (2)

computation of the model at sampled points along the trajectory while preserving

continuity of the controller’s predictions when the model changes (Section 4.2.3), and

(3) utilization of matrix methods that yield faster matrix inversion (Section 4.2.4).

Simulations are used to assess the trade-off between computation time and accu-

racy. We report that the techniques presented in this thesis result in a 23x reduction

in computation time from the exact parameter varying controller which re-computes

the model/controller at every point. Thus, our approximations save significant com-

putational effort while only increasing contour errors by up to about 1.3x compared

to the exact controller. Printed parts from our experiments, which are photographed

and scanned, also show an overall improvement in the quality of parts printed at

different locations using the proposed controller compared to using a baseline con-

troller that uses an LTI model measured at the center of the workspace. Furthermore,

acceleration measurements during printing show up to 39% reduction of vibration-
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induced accelerations for the proposed controller when compared to the baseline.

This work shows that we can take advantage of the high speed motion of the delta

3D printer and apply feedforward controllers like FBS to maintain accuracy during

vibration-prone motion. The contributions in this chapter (and, more generally, in

this thesis) bring us one step closer to the promise of high speed and high quality

additive manufacturing.
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CHAPTER V

Summary, Conclusions, and Future Work

5.1 Summary and Conclusions

This dissertation proposes techniques for modeling and controlling two parallel-

axis manipulators for extrusion-based additive manufacturing: the H-frame gantry

and delta robot. The modeling frameworks proposed are used to construct sim-

ple and efficient procedures to identify accurate parameter varying machine models.

Similarly, for controlling the manipulators, we propose practical techniques to reduce

the computational effort necessary for real-time control with model-based feedforward

controllers, while retaining the accuracy benefits gained from using them.

Chapter II studies the H-frame gantry and introduces the model-based feedfor-

ward control approach used in this dissertation: the filtered B-splines (FBS) method.

FBS is selected because of its versatility and consistency: it can be applied to any lin-

ear system and its tracking accuracy does not vary significantly based on the plant’s

dynamics [24]. We model the “racking” motion—parasitic torsional motion—of the

H-frame using a geometric approach that relates the angular displacements of the

bridge to the end-effector’s position in the x and y axes. Using an H-frame 3D

printer, we empirically validate the assumptions of the dynamic model, one of which

is that the bridge’s center of rotation is approximately the same regardless of the end-

effector’s position along the bridge. To accurately control the H-frame 3D printer,
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we formulate a coupled LPV FBS controller that captures another assumption of the

model: the y-axis position of the end-effector depends on the x-axis position through

the racking displacement angle, θ, but not vice versa. This insight leads to a sim-

plification of the controller to reduce the computational effort required to invert the

coupled FBS matrices: we can decouple the inversion for each axis by computing

the optimal controller for the x-axis first, and use the predicted output of the con-

trolled x-axis to find the optimal controller for the y-axis. Through analysis and

simulations, we show that the so-called decoupled LPV FBS controller significantly

reduces the computation time of the controller with minimal impact to the tracking

and contouring accuracy of the controlled H-frame when compared to the coupled

LPV FBS controller. Furthermore, we demonstrate the effectiveness of our modeling

and control approach through experiments fabricating a 3D printed rectangular prism

on the H-frame at high speeds. Measurements of the rectangle’s width reveal a 68%

improvement in RMS shape accuracy when we compare the uncompensated part to

the part compensated with the decoupled LPV FBS controller. Measurements of the

bridge’s acceleration during printing also indicate that accelerations from racking are

up to 70% larger for the uncompensated motion when compared to the racking con-

trolled motion. The success of FBS to compensate racking on the H-frame indicates

its potential to be applied to other LPV systems, including nonlinear systems that

can be modeled as LPV like the delta robot.

In Chapters III and IV, we explore the modeling and control of the delta robot 3D

printer, respectively. The delta 3D printer is a robotic manipulator with nonlinear,

coupled, and position-dependent dynamics. In Chapter III, we focus on techniques to

efficiently obtain a dynamic model of the delta printer. Since its dynamics vary with

position, one would need to measure the dynamics of the printer at several locations

to obtain an accurate model. To circumvent such an arduous process, we propose a

modeling framework that uses the idea of receptance coupling (RC) to divide the full
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assembly model of the printer into models of sub-assemblies. We then identify those

sub-models independently, and combine them to form the full assembly’s model. Us-

ing this approach, we divide the delta model into two sub-models. We identify one

of the sub-models empirically and derive an analytical expression for the second sub-

model, whose parameters can be obtained with a few measurements at one location.

Finally, we linearize the delta’s nonlinear model to generate a linear parameter vary-

ing model that can be used in numerous linear model-based controllers like FBS.

We show that the entire position-dependent dynamic model can be identified with

five measurements at one location—the center of the printer—using our proposed

framework. Measurements of FRFs demonstrate that our prediction model results in

reasonably accurate predictions of the position-dependent dynamics of a commercial

delta 3D printer, augmented with a direct drive extruder, at various positions in its

workspace. To quantify the utility of the parameter-varying model, we compare it

to an alternative model for model-based control where one model is measured at the

center of the printer (also known as the baseline model) and used to control the entire

workspace, treating the dynamics as LTI. Importantly, comparisons of the measured

FRFs from a commercial delta printer show that using our identified model results

less deviation from the true FRF when compared to the baseline model. Hence, we

hypothesize that using a model-based controller guided by our model would result in

improved accuracy performance compared to using the baseline model.

In Chapter IV, we formulate the LPV FBS controller for the delta printer to test

the hypothesis stated above. However, like the computational challenges in Chapter

II, the coupled model of the delta 3D printer results in large coupled LPV FBS matri-

ces that are difficult to invert in a real-time controller. Therefore, we propose several

novel techniques to reduce the computational burden of the FBS controller, including:

(1) parameterizing the position-dependent portions of the dynamics offline to enable

efficient computation of the model online; (2) computing models at sampled points
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(instead of every point) along the given trajectory; and (3) employing QR factor-

ization to reduce the number of floating-point arithmetic operations associated with

matrix inversion. Using these techniques, we report a computation time reduction

of up to 23x using the proposed method in simulations when compared to using the

computationally expensive exact LPV model—all while maintaining high tracking ac-

curacy. Regarding the hypothesis of improved tracking performance, we demonstrate

significant quality improvements on parts printed at various positions on a commer-

cial delta 3D printer using our controller with the LPV prediction model compared

to the baseline alternative. Acceleration measurements during printing show that the

improvement in print quality of the proposed controller is due to vibration reductions

of up to 39% when compared to the baseline controller.

The work presented in this dissertation is based on publications [69–72]. The

University of Michigan was granted a patent for the filtered B-splines (FBS) method

and a company named Ulendo is licensing that patent to work with AM companies

to implement controllers on their 3D printers. The company was previously working

with 3D printers that can be modeled as LTI systems. Hopefully, the contributions

of this dissertation will enable Ulendo to extend its scope to LPV machines.

5.2 Practical Considerations for Implementation on Com-

mercial FFF Systems

Given the practical nature of the research presented in this dissertation, readers

may wish implement its methodologies on commercial AM systems. In this section,

we discuss considerations for implementing the methods on FFF systems. In the next

section, we consider extensions to other AM processes.

The first step required to implement the controller is to understand the dynamic

model of the machine the user wishes to control. This understanding can be obtained
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by an analysis of the physics of the machine or by measuring frequency response

functions at several locations in the machine’s workspace. Since all machines have

some nonlinearity, care must be taken when using the measurement approach be-

cause differences in the measured models may be caused by nonlinearities rather than

fundamental differences in the model across different positions. Therefore, several

measurements should be conducted before arriving at any conclusions. If the user

concludes that the machine model is LTI, then regression methods can be used to fit

a transfer function model to the measured FRF (see [5]). If the model is LPV, we

recommend the user study the machine to derive an analytical form of the transfer

function whose parameters can be obtained from measurements, as done in Chapter

III. Needless to say, the derivation of analytical models for LPV systems will be a key

challenge to commercial implementation.

Implementing the FBS controller requires a reasonable understanding of Non-

Uniform Rational B-Splines (or NURBS) [74], digital filtering, and linear algebra [5].

With an LTI transfer function, the user creates the B-splines matrix as described in [5],

filters each column of the matrix with the transfer function, and inverts the filtered B-

splines matrix offline, which is used to solve the tracking control optimization problem

online, as discussed in Chapter III. On a micro-controller, the desired trajectory can

be stored and broken up into smaller windows. Each window of trajectory points is

(matrix) multiplied by the pseudo-inverted FBS matrix to obtain the optimal control

points of the window. The parameters of the FBS matrix (like window length and

knot vector spacing) can be selected using the procedure described in Chapter IV.

For LPV models, the implementation is similar. One key difference is that the user

may need to use a micro-controller with more memory and computation capacity

to re-evaluate the model at new positions for each window of trajectory points (see

Chapter IV for further discussion).

The most arduous obstacle to implementing these methods commercially is the
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manual process of measuring the machine models. Since there are many different

3D printer brands and many models of printers within each brand, identifying and

updating these models requires a significant amount of labor, which can be expensive.

Hence, the industry would greatly benefit from an automated process for identifying

machine models of 3D printers. Such a process could be integrated by the 3D printer

manufacturer or could be a sold as a standalone device. The components of such a

system are: (1) an accelerometer to measure the machine’s accelerations, (2) a trajec-

tory command that consists of sine sweep acceleration signals at several frequencies,

and (3) an executable script that analyzes the accelerometer data to generate transfer

functions from commanded acceleration to measured acceleration. Since the identifi-

cation process may require measuring accelerations at several locations on the printer,

a standalone device with an accelerometer that can transmit data using wireless tech-

nology (e.g., bluetooth) would be most suitable. Streamlining this manual process of

system identification would increase the viability of implementing the methods from

this dissertation on commercial FFF machines.

5.3 Extensions to Other Additive Manufacturing Processes

FBS is a general feedforward control approach for improving the tracking accuracy

of CNC machines with vibration errors. As such, FFF 3D printers are one of numerous

types of machines that can, in theory, benefit from vibration compensation with

FBS [20,24,81]. Other AM processes, like streolithography (SLA) and selective laser

sintering (SLS), that use a CNC system to position an end-effector can also use FBS.

In these cases, the end-effector is a device that emits a light beam—typically an

ultraviolet beam for SLA and a laser beam for SLS—instead of the extruder motor

and nozzle for FFF. Hence, from a practical perspective, we expect FBS to have less

significant impact on SLA and SLS systems when compared to FFF systems because

their end-effector inertia is much lower which leads to less vibration errors.
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Implementing FBS on commercial SLA and SLS machines is also challenging due

to their closed motion systems. These systems are closed to: (1) create a dark

environment for the light to react with the resin or powder and (2) ensure user

safety by preventing dangerous interactions with the light. In contrast with open

architectures which are more common among FFF 3D printers, closed architecture

implementation of FBS requires disassembling mechanical elements of the machine

to identify the system’s dynamics. When the system is reassembled, it is difficult to

achieve the same rigidity and control performance as the original system. Hence, we

recommend concurrently implementing FBS while fabricating these machines if the

reader wishes to study the impact of FBS on non-FFF AM processes.

An additional consideration that will impact the performance of FBS in different

AM processes is the temporal constraints of the process. For example, in FFF systems

the highest reachable speed is limited by the duration of the filament extrusion and

cooling process. The results presented in this dissertation indicate that speeds in

the FFF process can be increased further. However, more investigation into other

AM processes like SLA and SLS is necessary to reach similar conclusions and to

characterize the potential for extending this research to improve their performance.

5.4 Recommendations for Future Research

This dissertation makes the research contribution of extending FBS to tracking

control of linear parameter-varying (LPV) systems (and nonlinear systems modeled

as LPV), building on several prior research on FBS applied to linear time-invariant

(LTI) systems [5, 6, 9, 20, 24]. Our contribution presents an opportunity to use the

techniques developed in this dissertation to apply FBS (or, more generally, FBF) to

the numerous applications in robotics [83] and aerospace [84] where the dynamics are

nonlinear. In the context of additive manufacturing, six degree-of-freedom (DOF)

robotic arm manipulators, like the UR5e collaborative robot [85] have the potential
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to increase productivity in 3D printing. In addition to the increased speed capacity

of robotic arms compared to traditional 3D printers [3], the flexibility provided by

their additional DOF enable printing conformal (or curved) trajectories, which can be

more efficient than layer-by-layer printing. Additionally, robot arms can eliminate or

minimize the time-intensive printing of support structures needed to print overhang

or sloped features [3, 86]. Despite the potential for increased productivity of robotic

arms, they still suffer from accuracy limitations caused by motion-induced errors.

These errors are created by vibration—via the inherent compliance in their mechanical

structures—and the coupled and nonlinear dynamics between their joints/axes, which

create disturbance forces that are difficult to control. Similar to delta robots, FBS

can be employed to mitigate motion-induced errors to enable high-speed and high-

quality parts manufactured with flexible robotic arms. The process of modeling the

robotic arms first entails modeling each joint independently (either analytically or

empirically) without an end-effector (e.g., a printer extruder/nozzle) attached. Note

that since the robotic arm links are connected in series, one must be careful that

each joint model is the sum of its independent dynamics and the dynamic effects of

all the joints after it—starting from the base joint and ending at the end-effector

joint. Studying the reaction torques between the joints will be an important step to

transmitting the joint torques correctly. Once a reasonably accurate configuration-

dependent model has been obtained for the joints, an analytical model of the inertial

forces and torques of the end-effector can be derived and (its parameters) identified.

Then, the Jacobian transpose matrix of the robot can be used to transform the end-

effector’s inertial forces/torques to torques at each joint. Note that these torques also

change with changing robot configurations. Finally, using the obtained joint models,

an efficient control approach can be implemented using some of the strategies from

Chapter IV—e.g., parameterizing the transmitted torques from the end-effector as

functions of the robot configuration, and using a single point instead of all the points
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each window in LPFBS.

There are a few additional areas where this dissertation can be studied further. In

Chapter II, we assume that the center of rotation of the bridge on the H-frame gantry

is fixed. This assumption of may not hold for end-effectors with larger mass, such as

direct-drive extruders. Therefore, a useful extension of the H-frame model is one that

generalizes it to include changes to the center of rotation of the bridge. Additionally,

we studied several techniques to increase computational efficiency (mainly in Section

4.2) but there are myriad techniques for improving the computational and memory

efficiency of computers. An exploration into methods other than the ones provided

in this dissertation may lead to more efficient real-time controllers that can be imple-

mented on (even) lower capacity micro-controllers. Along those lines, the perceptive

reader will notice that the models and frameworks introduced in this dissertation are

agnostic to the control approach. Hence, a systematic study of other model-based

control approaches besides FBS should be undertaken to identify the best approach

to leverage the methods described in this dissertation. Finally, discrepancies between

the prediction dynamic model in Section 3.5 and the actual dynamics will always

exist, which is the case for most systems. A robust version of FBF [6] has been

studied to improve tracking control when there is a mismatch between the actual

dynamics and the predictive model. Robust FBF has been applied to LTI systems

but it could potentially be extended to further improve the tracking accuracy of LPV

FBS controllers like the controllers designed in this dissertation.
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APPENDIX A

Lifted System Representation of a Digital Filter

As discussed in [24], consider digital filter p, input signal u, and output signal y

defined as:

p ={p−2 p−1 p0 p1 p2} (A.1)

u ={u0 u1 u2} (A.2)

y ={y0 y1 y1} (A.3)

Signals y and u and filter p are related by the convolution operator as follows:

y = u ∗ p (A.4)

From Eqs. A.1-A.4,

y0 =p0u0 + p−1u1 + p−2u2 (A.5)

y1 =p1u0 + p0u1 + p−1u2 (A.6)

y2 =p2u0 + p1u1 + p0u2 (A.7)
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This can be expressed in matrix form as


y0

y1

y2

 =


p0 p−1 p−2

p1 p0 p−1

p2 p1 p0



u0

u1

u2

 (A.8)

Note that the main diagonal element (p0) represents the influence of the current input

on the current output; the first upper diagonal element (p−1) represents the influence

of the succeeding input on the current output and the second upper diagonal element

(p−2) represents the influence of the second succeeding input on the current output.

Similarly, the first (p1) and second lower (p2) elements represent the influence of the

first and second preceding inputs on the current output, respectively. Hence, the

discrete time transform of p obtained from Eq. A.8 is given by

p2z
−2 + p1z

−1 + p0z
0 + p−1z

1 + p−2z
2 (A.9)

which is in accordance with the time-domain definition given in Eqs. A.1-A.3.
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APPENDIX B

Standard Implementation of Limited-preview

Filtered B-Splines Approach

This appendix presents a brief discussion of the limited preview filtered B-splines

(LPFBS) approach. For more details, interested readers can refer to [5]. The LPFBS

approach aims to generate optimal feedforward control inputs in sequential windows

(batches) of the desired trajectory xd. Since xd is not assumed to be fully known a

priori, an un-normalized and open-ended knot vector is used and defined as

ḡj =


0, 0 ≤ j ≤ m

(j −m)LTs, j ≤ m+ 1

(B.1)

where j and m are as defined in Sec. 2.3, and L ≥ 1 represents the uniform spacing

of the knot vector elements as an integer multiple of the sampling time Ts. With the

un-normalized knot vector, Nj,m is expressed as a function of time t by replacing ξ

with t and gj with ḡj in Eq. 2.10, and the function is sampled at tk = kTs to formulate
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N as in Eq. 2.9. The tracking problem is solved in batches as

ē = xd − N̄p̄ ⇔


ēP

ēC

ēF

 =


xd,P

xd,C

xd,F

−


N̄P 0 0

N̄PC N̄C 0

0 N̄CF N̄F



p̄P

p̄C

p̄F

 (B.2)

where subscripts P, C, and F denote the past, current, and future batches, respec-

tively, and the bar on the matrices and vectors indicates that the impulse response

of the transfer function used for filtering the B-splines is truncated. Using local least

squares, the optimal coefficients of the current batch can be computed as

p̄∗
C = (N̄T

CN̄C)
−1N̄C

(
xd,C − N̄,PCp̄P

)
(B.3)

where p̄P denotes the coefficients calculated in the last batch. Note that the infor-

mation from the future batch is not considered while calculating coefficients for the

current batch. Also note that the matrix N̄C can be pre-inverted once and applied

to all batches since the filtering model is assumed to be LTI.

The dimensions of the current window are defined by LC and nC , where LC is the

number of trajectory points considered in the current batch and nC is the number of

B-spline coefficients. Note that although nC coefficents are computed, only nup are

updated in each window (see Fig. B.1).
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Figure B.1: Illustration of LPFBS.
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APPENDIX C

Limited-preview Filtered B-Splines for a Coupled

LPV Controller

From Eqs. (2.23) and (B.2), a natural extension of LPFBS can be made for the

coupled LPV system. The tracking error is given by

ē = rd − N̄rp̄r ⇔


ēr,P

ēr,C

ēr,F

 =


rd,P

rd,C

rd,F

−


N̄r,P 0 0

N̄r,PC N̄r,C 0

0 N̄r,CF N̄r,F



p̄P

p̄C

p̄F

 (C.1)

where rd = [xd yd]
T , and the subscript r denotes matrices and vectors related to rd.

Expanding the tracking error of the current batch as

ēr,C =

xd,C

yd,C

−

 N̄x,PC 0 N̄x,C 0

Dxd,PC
N̄xθ,PC N̄y,PC Dxd,C

N̄xθ,C N̄y,C




p̄x,P

p̄y,P

p̄x,C

p̄y,C


, (C.2)
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the coefficients for the current batch are calculated as

p̄x,C

p̄y,C

 =

 N̄x,C 0

Dxd,C
N̄xθ,C N̄y,C


†

xd,C

yd,C

−

 N̄x,PC 0

Dxd,PC
N̄xθ,PC N̄y,PC


p̄x,P

p̄y,P


 ,

(C.3)

The coefficients in the decoupled approximation can be calculated sequentially.

First, we calculate p̄x,C using p̄C in Eq. (B.3) applied to the x-axis, and use the

obtained coefficients to obtain p̄y,C as

p̄y,C = N̄†
y,C

(
yd,C − (Dxd,PC

N̄xθ,PCp̄x,P +Dxd,C
N̄xθ,Cp̄x,C) + N̄y,PCp̄y,P

)
. (C.4)
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APPENDIX D

Derivation of Inverse Kinematics of Delta 3D

Printer

Preliminaries

We assume that the columns form an equilateral triangle. Therefore, we can

choose a coordinate system where the columns are all the same distance from the

origin in the xy-plane as shown in Fig. 3.1(b) (reproduced in Fig. D.1), i.e., 120◦

apart on the unit circle. We denote the coordinate locations of the columns on the

xy-plane by {Ax, Ay}, {Bx, By}, and {Cx, Cy}, corresponding to each column. The

origin of the xy-plane is located at the center of the bed and the origin of the z-axis

is at the top of the bed. Let the tip of the nozzle be denoted as the point {x, y, z}.

We assume that the x- and y-axis location of the tip of the nozzle is at the center of

the end-effector platform in the xy-plane. The z-axis location of the nozzle is at a

height Hez below the end-effector platform (see Fig. 3.2—reproduced in Fig. D.2).

Since all three pairs of forearms are the same length, L, we can draw a line of action

for each carriage that connects the midpoint of the end-effector edge and the midpoint

of the connection point on the corresponding carriage (Figs. 3.1(a) and 3.1(b)). Note

that there is an offset from the center of the end-effector to where the spherical joints

intersect with the line of action. We denote the end-effector offset vectors by A⃗e, B⃗e,
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Figure D.1: (a) Overhead view of the delta printer used to define reference points
and distances; (b) same overhead view as (a), but overlays the coordinate axis and
key coordinates of the carriage (as exemplified for carriage B) and end-effector.

and C⃗e corresponding to their respective column. There is also an offset between the

carriage connections and the column points. We distinguish the joint pivot locations

with coordinates denoted by {Apx, Apy}, {Bpx, Bpy}, and {Cpx, Cpy}. Since the end-

effector offset vectors are fixed, we can move them to the location of the carriage

connection points, shifting our lines of action towards the center by A⃗e, B⃗e, and C⃗e.

By doing this, we create “virtual” columns whose end-effector side of the line of action

is located at {x, y}. Hence, we define virtual column locations {Avx, Avy}, {Bvx, Bvy},

and {Cvx, Cvy} as the original pivot location {Apx, Apy}, {Bpx, Bpy}, and {Cpx, Cpy}

shifted by the vectors A⃗e, B⃗e, and C⃗e. For example, the virtual x- and y-axis position

of column B is given by

Bvx = Bpx −Bex (D.1)

Bvy = Bpy −Bey (D.2)

Furthermore, we can separate the calculation of z-axis location from the x- and

y-axis by defining a few other distances: let the height of each carriage above the
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end-effector platform be denoted by Acz, Bcz, and Ccz and let the overall height of

the carriages above the bed be denoted by Az, Bz, and Cz as shown in Fig. 3.2. Since

the height of the nozzle tip above the bed is z, we can find the z-axis location of the

carriages above the bed as

Az = z + Acz +Hez

Bz = z +Bcz +Hez

Cz = z + Ccz +Hez

Solving for z gives

z = Az − Acz −Hez (D.3)

z = Bz −Bcz −Hez (D.4)

z = Cz − Ccz −Hez (D.5)

Note that if we move all the carriages up or down by an equal amount, then

we will change only the z-axis component of the end-effector tip. Thus, the z-axis

component is directly related to the carriage heights (Az, Bz, and Cz). Therefore,

Eqs. (D.3)-(D.5) imply that Acz, Bcz, and Ccz are only dependent on x and y.
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Figure D.2: Three-dimensional schematic of the delta printer showing the right tri-
angle created by the forearms, the column, and the distance from the end-effector to
the column in the xy-plane. The virtual columns used in the derivation are computed
using the labeled distances.

Geometric Derivation of Inverse Kinematics

The goal of inverse kinematics is to recover the column positions Az, Bz, and Cz

from the commanded {x, y, z} position given by G-code. Figure 3.2 shows that there

is a right triangle formed by each arm, the virtual column, and the distance from the

end-effector to the virtual column in the xy-plane. Let Ad, Bd, and Cd be the distance

from the end-effector to the virtual columns. Using the Pythagorean theorem, we can

write:

A2
d + A2

cz = L2 (D.6)

B2
d +B2

cz = L2 (D.7)

C2
d + C2

cz = L2 (D.8)

Now, we need to relate the coordinates of our virtual columns to x and y. We will

start by determining how the end-effector’s position relates to the carriage end of the
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line of action. Let the coordinates where the lines of action meet the end-effector

platform be given by {Acx, Acy}, {Bcx, Bcy}, and {Ccx, Ccy}. The vectors A⃗e, B⃗e, and

C⃗e can be broken into their components as {Aex, Aey}, {Bex, Bey}, and {Cex, Cey}.

Then, we can write the {x, y} position of the end-effector as:

x = Acx − Aex = Bcx −Bex = Ccx − Cex (D.9)

y = Acy − Aey = Bcy −Bey = Ccy − Cey (D.10)

By observing that the line of action travels in a spherical arc around its spherical

joints, we can consider one slice which creates a circular arc. Using the formula for a

circle: (x− cx)
2 + (y − cy) = r2, where {cx, cy} is the center of the circle and r is its

radius, we can write, for column A, that:

(Acx − Apx)
2 + (Acy − Apy)

2 = A2
d (D.11)

Note that Ad is the radius of the circle in the xy-plane while L is the radius of the

sphere. Solving for Acx and Acy above, and substituting we get

Acx = x+ Aex (D.12)

Acy = y + Aey (D.13)

(D.14)

(x+ Aex − Apx)
2 + (y + Aey − Apy)

2 = A2
d (D.15)

The expression in Eq. D.15 can be replicated for each of the other columns. Finally,

recall that we defined the locations of our virtual columns in terms of the the carriage
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coordinates and fixed end-effector vectors:

Avx = Apx − Aex (D.16)

Avy = Apy − Aey (D.17)

Bvx = Bpx −Bex (D.18)

Bvy = Bpy −Bey (D.19)

Cvx = Cpx − Cex (D.20)

Cvy = Cpy − Cey (D.21)

Thus, we can simplify Eq. D.15 using these expressions and write Eq. D.6 as

(x− Avx)
2 + (y − Avy)

2 = A2
d = L2 − A2

cz (D.22)

Solving for Acz gives:

A2
cz = L2 − (x− Avx)

2 + (y − Avy)
2 (D.23)

Acz =
√

L2 − (x− Avx)2 + (y − Avy)2 (D.24)

Similarly, for columns B and C we have

Bcz =
√

L2 − (x−Bvx)2 + (y −Bvy)2 (D.25)

Ccz =
√

L2 − (x− Cvx)2 + (y − Cvy)2 (D.26)

The variables Acz, Bcz, and Ccz are the height of each carriage above the end-

effector platform. From our relation to z, we can recover the absolute z-axis location
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of the columns (reproduced below):

Az = z + Acz +Hez

Bz = z +Bcz +Hez

Cz = z + Ccz +Hez
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APPENDIX E

Matlab Algorithm for Forward Kinematics of

Delta 3D Printer

function [X,Y,Z] = forward_kinematics(L,dCol,dZ)

%FORWARD_KINEMATICS Returns the current X,Y,Z position of the delta

% robot given the forearm length, x- and y-axis location of the

% columns, and the current z-axis position of the robot carriages.

% Input(s): L - forearm length

% dCol - 2x3 matrix of x- & y-axis location of the

% columns

% dZ - 3x1 vector of z-axis locations of the carriages

dColP = zeros(3,3);

for i=1:3

dColP(1,i) = dCol(1,i);

dColP(2,i) = dCol(2,i);

dColP(3,i) = dZ(i);
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end

% dColP has the three points on the columns.

% We establish a new coordinate system in the plane of the three

% carriage points. This system will have the origin at dColP(1,:)

% and dColP(2,:) is on the x-axis. dColP(3,:) is in the xy-plane

% with a z component of zero. We will define unit vectors in this

% coordinate system in our original coordinate system. Then, when

% we calculate the Xnew, Ynew, and Znew values, we can translate

% back to the original system by moving along those unit vectors.

% Create a vector in old coords along x-axis of new coords

p12 = dColP(:,2)-dColP(:,1);

d = norm(p12);

ex = p12/d; % make it a unit vector

% find vector from origin of the new system to the third point

p13 = dColP(:,3)-dColP(:,1);

i = dot(ex,p13); % use dot product to find x-component of p13

iex = ex*i; % create vector along the x-axis

ey = p13-iex; % only y-component of p13

j = norm(ey);

ey = ey/j; % unit vector for y

ez = cross(ex,ey); % use cross product to find z unit vector

% plug into trilateration equations
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Xnew = d/2;

Ynew = ((i^2 + j^2)/2 - i*Xnew)/j;

Znew = sqrt(L^2 - Xnew^2 - Ynew^2);

% Starting from the origin of the old coords, add vectors that

% represent the Xnew, Ynew and Znew to find the point in the old

% system

cartesian = dColP(:,1) + ex*Xnew;

cartesian = cartesian + ey*Ynew;

cartesian = cartesian + ez*(-Znew);

X = cartesian(1);

Y = cartesian(2);

Z = cartesian(3);

end

% --- Calling the function ---

time = 0:0.001:1; % 1 second with sampling time of 1 ms

Az, Bz, Cz = [vector of carriage positions]; % Do NOT run this line

x, y, z = zeros(length(time),1); % Do NOT run this line

dCol = [Avx, Bvx, Cvx;

Avy, Bvy, Cvy];

for i = 1:length(time)

dZ = [Az(i);Bz(i);Cz(i)];

[x(i),y(i),z(i)] = forward_kinematics(L,dCol,dZ);

end
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