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Abstract
This thesis presents physics results from two analyses using data corresponding to an

integrated luminosity of 139 fb−1 recorded with the ATLAS detector at a center-of-mass
energy (

√
s) of 13 TeV at the Large Hadron Collider.

The first analysis result reported in this thesis is the observation of electroweak vector
boson scattering (VBS) in the production of ZZ associating with two forward/backward
hadronic jets, referred to as ZZjj production. The electroweak VBS is a very important
probe to study the dynamics of the spontaneous electroweak symmetry breaking, which
explains the origin of the masses of elementary particles through their interactions with the
Higgs field.

Among all processes related to vector-boson scattering, the electroweak production of
a Z-boson pair associating with two jets is a rare and important one. The analysis used
two different final states originating from the decays of the Z-boson pair: one contains
four charged leptons and another contains two charged leptons and two neutrinos. Using
the multivariate analysis based on boosted decision trees to reduce overwhelm QCD ZZjj

background, the overall signal significance of 5.7σ over the background-only hypothesis model
is obtained in the analysis. The electroweak VBS ZZjj production cross-section, 0.70±0.18
fb, is measured, which is one of the smallest measured by ATLAS and is consistent with the
Standard Model prediction.

The second analysis is a search for a new vector boson Z ′ with the four-muon (4µ)
final state. The new gauge boson Z ′ is predicted by Lµ − Lτ models to address observed
phenomena that the Standard Model can not explain. The search examines the 4µ final state,
using a deep learning neural network classifier to separate the Z ′ signal from the Standard
Model background events. The di-muon invariant masses in the 4µ events are used to extract
the Z ′ resonance signature. No significant excess of events is observed over the predicted
background. Upper limits at a 95% confidence level on the Z ′ production cross-section times
the decay branching fraction of pp→ Z ′µµ→ 4µ are set from 0.31 to 4.3 fb for the Z ′ mass
ranging from 5 to 81 GeV. The corresponding common coupling strengths, gZ′ , of the Z ′

boson to the second and third generation leptons above 0.003 – 0.2 have been excluded.

xxi



Chapter 1

Introduction

This dissertation work is conducted with the ATLAS experiment [1] at the Large Hadron
Collider (LHC) [2] at CERN [3]. An overview of fundamental particles, their interactions,
and other basic particle physics analysis units and concepts are briefly introduced in this
chapter.

1.1 Elementary Particles and Interactions

Elementary particles are building blocks of the physical world we are living in. Interac-
tions between particles from the matter. Particle physics is all about space-time and energy
to study the fundamental building blocks of our universe, the interactions among them, and
the law that governs them. Our current understanding is the Standard Model [4] of parti-
cle physics. The research in experimental high energy physics is to test the SM with high
precision and to search for its breakdown to advance our understanding of new physics.

1.1.1 Particles

Particles and interactions between them form the world. According to composition, par-
ticles can be classified into composite particles and elementary particles. All elementary
particles in the SM are shown in Figure 1.1. They are quarks and leptons, and force carriers
(gluon, photon, W , and Z). The Higgs boson is unique, which generates masses for elemen-
tary particles. There are many composite particles that are bound states of quarks, referred
to as hadrons. The simplest composite particles are protons and neutrons, which are the
components of nuclei formed by gluons (strong interaction force carriers) and quarks.
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Figure 1.1: Elementary particles of the Standard Model.

Based on the spin (an intrinsic property of a particle), particles can also be grouped into
fermions and bosons. Boson refers to a particle with an integer spin and follows Bose-Einstein
statistics, while fermion refers to a particle with a half-odd integer spin (spin 1/2, spin 3/2,
etc) and follow Fermi-Dirac statistics. Fermions obey the Pauli exclusion principle, which
states no more than one identical fermion can occupy the same quantum state simultaneously.

There are four types of elementary spin-1 bosons in the SM. These are all interaction
mediator particles, the force carriers. The photon mediates the electromagnetic force between
charged particles. The photon itself doesn’t carry any charge and has zero rest mass. W±

and Z bosons are mediate particles of weak interactions and carry weak charges. There are
eight gluons which are the force carriers of the strong interaction, The eight different gluons
carry different color charges referred to as red(r), blue(b), and green(g).

The SM predicted many new particles, including top quark, τ -lepton, gluon, W±, and
Z bosons. They were all discovered in colliding beam experiments. The properties of these
particles were measured with high precision and agree well with SM predictions. One scalar
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boson (spin-0), the Higgs boson (H0), was introduced in the SM to break the electroweak
symmetry to generate particle masses. It was the last SM particle discovered in 2012 by the
experiments, of ATLAS and CMS, at the LHC [5,6]. Great efforts have been made to measure
the Higgs boson properties in the past 10 years. So far the measured properties are consistent
with the SM prediction. This thesis topic, "observation of vector boson scattering" was one
of the major physics goals at the LHC to study electroweak symmetry breaking dynamics
and measure the high energy behavior of the Higgs boson interactions with massive bosons.

The major properties of these particles (mass, charge, spin) are summarized in Table 1.1.

Table 1.1: Particles of the SM listed along with their symbol and major
properties [7]. One should note that neutrinos are massless in the SM.
(∗The graviton G is not considered as part of the SM.)

Name Symbol Generation Charge Spin Mass [MeV/c2]

Fe
rm

io
ns

Le
pt
on

s

Electron e 1st -1 1/2 0.511
Muon µ 2nd -1 1/2 105.7
Tau τ 3rd -1 1/2 1776.8
Electron Neutrino νe 1st 0 1/2 < 2× 10−6

Muon Neutrino νµ 2nd 0 1/2 < 2× 10−6

Tau Neutrino ντ 3rd 0 1/2 < 2× 10−6

Q
ua

rk
s

Up u 1st 2/3 1/2 2.2± 0.5
Charm c 2nd 2/3 1/2 1.275± 0.035× 103

Top t 3rd 2/3 1/2 173.0± 0.4× 103

Down d 1st -1/3 1/2 4.7± 0.5
Strange s 2nd -1/3 1/2 95± 9
Bottom b 3rd -1/3 1/2 4.18± 0.04× 103

Bo
so
ns

Photon γ 0 1 < 1× 10−24

Gluon g 0 1 0
Z boson Z 0 1 91.1876× 103

W boson W± ±1 1 80.39× 103

Higgs boson H 0 0 125.18× 103

Graviton∗ G 0 2 < 1× 10−38

Elementary fermions compose matters in the universe. In the SM, there are 24 different
elementary fermions (if their anti-particles are counted separately). They are six different
flavor quarks in three generations: up and down, strange and charm, bottom, and top, six
leptons (electron, muon, tauon, and corresponding neutrinos), along with the corresponding
antiparticles. Leptons carry integer electric charges, while quarks carry a fractional integer
electric charge. Quarks also carry color charges (r, g, b) and they are bounded together by
gluons, which means the isolated quark doesn’t exist (color confinement).

There is a hypothetical elementary boson with spin-2, the graviton (G), which might be
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the force carrier of gravity. But gravity is not included in the SM. Therefore, the graviton
is not an SM particle and it hasn’t been observed yet.

1.1.2 Interactions

Interactions between particles are also very important in our understanding of how the
universe is formed and evolved. There are four fundamental interactions, also called fun-
damental forces. They are strong, weak, and electromagnetic (EM) interactions, as well as
gravity. The EM and gravitational interactions have an infinite range and can be observed at
the macro-scale in our daily lifes. while the strong and weak forces are short-range interac-
tions. Their interaction ranges are at a subatomic distance level, and can only be observed in
particle physics experiments. Fig. 1.2 shows examples of electromagnetic, strong, and weak
interactions described by the Standard Model.

Figure 1.2: Examples of electromagnetic, strong, and weak interactions are
described by the Standard Model.

The electromagnetic, strong, and weak force carriers are discrete quantum fields in par-
ticle physics theory, which means the interactions between particles are through exchanging
the mediate particles (force carriers). The strong interaction is mediated by gluons and can
be found between quarks, as well as hardons, which are composed of quarks. The weak
interaction is carried by W± and Z bosons and is responsible for nuclear beta decay. The
electromagnetic interactions are mediated by photon (γ), which is responsible to form atoms
between electrons and nucleus, as well as molecules of matter. Unlike the three interactions
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described above, the mediate particle of gravity called the graviton, hasn’t been observed.
According to Einstein’s general theory of relativity, gravitation comes from the curvature
of space-time. Table 1.2 summarizes the force carriers and properties of the fundamental
interactions.

Table 1.2: Fundamental force carriers, relative strength, and the force range

interaction theory force carrier relative strength range (m)

Weak Electroweak theory
(EWT) W±, Z 1025 10−18

Strong
Quantum

Chromodynamics
(QCD)

gluons (g) 1038 10−15

Electromagnetic
Quantum

Electrodynamics
(QED)

γ 1036 ∞

Gravity
General
relativity
(GR)

graviton
(hypothetical) 1 ∞

1.2 Units used in Particle Physics

According to Einstein’s mass-energy equivalence, E = mc2, massive particles (such as
the Higgs boson, top quark, etc) can be produced by high-energy particle collisions. Energy
can be converted into mass and create new heavy unseen particles in colliding beams. In
particle physics, a unit called electron-volt eV is used to describe the energy that a particle
acquires. By definition, an electron-volt is the amount of kinetic energy gained by a single
electron accelerating from rest through an electric potential difference of one volt in the
vacuum. One electron-volt equals 1.602176634× 10−19 J under the 2019 redefinition of the
standard international system (SI) base units. The particle mass and momentum can also
use the energy unit of eV/c2 and eV/c, respectively. In special relativity, the energy(E),
momentum(p), and mass(m) of a particle are related by the equation

E2 = (pc)2 + (mc2)2. (1.1)

At the particle rest frame (p=0), the above equation becomes E = mc2. Therefore, par-
ticle mass is considered as the rest energy of the particle. It is an invariant quantity in
4-dimensional space-time Lorentz transformations, therefore we sometimes also call it as
invariant mass.
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One kilo-electronvolt (KeV) is one thousand electron-volts. Our room temperature is
approximately KeV scale. One mega-electronvolt (MeV) is one million electron-volt. The
rest energy of an electron is roughly 0.5 MeV and the rest energy of an up-quark is 1.9 MeV.
Giga-electronvolt (GeV) and tera-electronvolt (TeV) are also widely used in particle physics.
The rest mass of the heaviest observed elementary particle, the top quark, is about 172 GeV.
Collision energy in the most powerful collider, the Large Hadron Collider, is designed to
collide proton-protons at a center of mass energy of 14 TeV.

In particle physics studies we often use "natural unit" by taking c = ~ = κb = 1, where
~ is Planck’s constant ~ = h

2π = 1.05457 × 10−34 J s = 6.58212 × 10−16 eV s, and κb is the
Boltzmann constant, which equals 1.38× 10−23 J/K. It is clear that in nature unit, energy,
momentum, and mass are all in units of eV .

Using nature unit, there is only one fundamental dimension, which we can take to be
energy and express it in eV , or KeV , or MeV , or GeV to various powers. For example,

~c = (6.582x10−16 eV s)(3× 108 m/s) = 19.73× 10−8 eV m = 197.3 MeV fm, (1.2)

where 1 fm = 10−15 m, which is the size of a proton. Using ~c = 1 = 0.1973 GeV fm, we
can easily express the distance and time in units of GeV −1:

1 fm = 5.058 GeV −1, and 1 sec = 1.517× 1024 GeV −1. (1.3)

Temperature can also be expressed in units of eV/κB. Table 1.3 summarizes the relationship
between the energy unit eV and the conversation to the SI unit of basic physics quantities.

Table 1.3: Expression of physics measurements in units related to electron-
volt (eV). In the natural unit, c = ~ = κb = 1.

Measurement Energy unit Conversion in SI unit of the energy unit
Energy eV 1.60218× 10−19 J
Mass eV/c2 1.78266×10−36 kg
Momentum eV/c 5.34429× 10−28 kg·m/s
Temperature eV/kB 1.16045×104 K
Time ~/eV 6.58212× 10−16 s
Distance ~c/eV 1.97327× 10−7

In colliding beam experiments, another commonly used variable is the center-of-mass
energy, represented as

√
s, of the collider. For example, the LHC was operated at

√
s = 13

TeV in Run II. In fact, s is one of the Mandelstam variables [8] used in theoretical calculations.
There are three Mandelstam variables s, u, and t. For one collision that has two incoming
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particles and two outgoing particles after the collision, s = (p1 + p2)2 = (p3 + p4)2, t =
(p1− p3)2 = (p2− p4)2 and u = (p1− p4)2 = (p3− p2)2, where p1 and p2 are four-momentum
of two incoming particles, while p3 and p4 are four-momentum of two outgoing particles.
It is clear that

√
s =

√
(p1 + p2) · (p1 + p2), which is the total energy of the system in the

central mass frame of a collider.
The transverse momentum pT is also widely used in physics analysis. Transverse momen-

tum is defined as the momentum projection in the direction perpendicular to the beam line.
Since the initial system before collision has a total momentum of zero, the negative sum of
all transverse momenta of the produced particles after the collision is defined as the missing
transverse energy, which is denoted as Emiss

T . Missing transverse energy is often caused by
particles, such as neutrinos, escaping from the detection.

1.3 Cross-section and Luminosity

The most important quantity to describe an interaction process is the “cross-section"
(σ), which represents the probability of the reaction between particles. The cross-section is
determined by physics (the interaction that causes the particle scattering) and is independent
of specific experimental detectors. It is a physical quantity with the dimension of area, and
the commonly used unit is the barn (b) defined as

1 b = 10−24 cm2. (1.4)

Roughly speaking, one barn equals the area of a uranium atom. In high-energy physics,
commonly used units are nanobarn (nb), picobarn (pb), and femtobarn (fb).

1 mb = 10−3b, 1 µb = 10−6b, 1 nb = 10−9b, 1 pb = 10−12b, 1 fb = 10−15b. (1.5)

Using the reduced Planck’s constant, barn can also be expressed in units related to electron-
volt using conversion ~2c2/GeV2 = 0.3894 mb.

In colliding beam experiment the event rate from a certain physics interaction process is
proportional to the underlying physics cross-section. The number of events produced also
depends on the luminosity (L) of the collider, which is the beam particle flux rate in unit of
cm−2s−1. Luminosity describes the number of particles passing through one unit area per
unit time. The most commonly used unit for time-integrated luminosity is inverse femtobarn
(fb−1). The conventional unit for time-integrated luminosity is often used to describe the
data size collected by a detector. The ATLAS detector collected data with time-integrated
luminosity 139 fb−1 during Run II, which means we expect to get 139 events from a physics

7



process whose cross-section is 1 fb. Therefore, the number of events for a certain interaction
process produced in a time period equals cross-section times the integrated luminosity,

Nevent = σ ×
∫
Ldt. (1.6)

We often use units of fb and fb−1 for cross-section and integrated luminosity, respectively,
in the calculations. The cross-section unit in barns and the conversion to the energy unit
are given in Table1.4.

Table 1.4: Re1ation between electron-volt and barn

unit barn GeV−2

1 mb 2.56819
1 pb 2.56819×10−9

0.389379 mb 1
0.389379 pb 10−9

1.4 Thesis Topics of physics analyses

In this thesis, two analyses are presented. Both analyses are based on data collected by
the ATLAS detector at the LHC at CERN with an integrated luminosity of 139 fb−1. The
data were recorded with the ATLAS experiment from proton-proton collisions at a center-
of-mass energy of

√
s = 13 TeV during the LHC Run II program (2015 - 2018). This thesis

focuses on four-lepton final states for both analyses.
The first analysis is the observation of a rare ZZ production associated with two jets

via electroweak interaction. The goal of this analysis is to study the electroweak symmetry-
breaking dynamics through the vector boson scattering (VBS) in the ZZjj channel. The
experimental signature is in the four-lepton (4` and 2`2ν) final states associating with two
forward and backward hadronic jets. The second analysis is to search for a new gauge boson
Z’ predicted by theoretic models beyond SM (BSM) at a relatively low mass range in the
four-muon final state.

Two analyses were conducted with similar event selections. However, the physics goals
of the two analyses are different. The first study is a measurement of a physics process
predicted by the SM, but never observed before, while the second study is looking for new
physics signals. Multi-variate methods are used in the two analyses, but the techniques are
different. The first analysis used "Gradient boosted decision trees". The second analysis
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used a relatively new model, "parameterized neural network", which is widely used in high
energy physics recently.

Results from these two analyses have been published as the ATLAS physics papers:

1 "Observation of electroweak production of two jets and a Z-boson pair", published on
Nature Physics 19, 237–253 [9].

2 "Search for a new Z ′ gauge boson in 4µ events with the ATLAS experiment", accepted
for publication on JHEP (arXiv:2301.09342) [10].

The organization of the thesis is the following. Chapter 2 briefly describes the par-
ticle physics theory; Chapter 3 describes the LHC and the ATLAS detector; Chapter 4
presents the physics object reconstruction with the ATLAS detector; Chapter 5 introduces
the Statistical models used in analyses; Chapter 6 reports the analysis and results on vector-
boson-scattering with the ZZjj production; Chapter 7 reports the Z ′ search method and
results. The summary and prospects are given in the last chapter.
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Chapter 2

Theory

In mathematical physics, Yang–Mills theory [11] is a gauge theory based on a special
unitary group SU(N), or more generally any compact, reductive Lie algebra. Yang–Mills
theory seeks to describe the behavior of elementary particles using these non-abelian Lie
groups and is at the core of the unification of the electromagnetic force and weak forces (i.e.
SU(2)× U(1)) as well as Quantum Chromodynamics, the theory of the strong force (based
on SU(3)). Thus it forms the basis of our understanding of the Standard Model of particle
physics.

The name of the Standard Model is given in the 1960s - 1970s to a theory of fundamental
particles and how they interact. It is based on quantum field theory and incorporated all that
was known about subatomic particles at the time and predicted the existence of additional
new particles as well. The SM development has been over the course of more than half
of the twentieth century, sometimes driven forward by new experimental discoveries and
sometimes by theoretical advances. The theory is established with a close interplay between
experimental discoveries and new theoretical ideas. The cornerstones of the theory are
based on two principles, gauge invariance, and spontaneous symmetry breaking, which will
be described in this chapter. The SM has successfully explained and predicted a wide variety
of experimental results. It summarizes our current best understanding of particle physics
with an elegant mathematical presentation.

There are seventeen named elementary particles in the SM, including 12 matter particles:
6 quarks and 6 leptons, 4 gauge bosons, and 1 scalar, organized into the chart shown in
Fig. 1.1. The SM predicted particles, top quark, τ -lepton and its associated neutrino (ντ ),
gluon, W± and Z, and Higgs boson were all observed in particle physics colliding beam
experiments. The last particles discovered were the W and Z bosons in 1983 at CERN,
the top quark in 1995 at Fermilab, the tau neutrino in 2000 at Fermilab, and the Higgs
boson in 2012 at CERN. A brief description of the SM particles’ properties and fundamental
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forces acting on particles have been introduced in Section 1.1. The dynamics of the particle
interactions and the SM theoretical formulation are described in this chapter.

The SM combines quantum mechanics, relativistic kinematics, and conservation laws
observed in nature. The theory is constructed with a Lagrangian density function which
contains the kinematic terms of the gauge fields and particles, and the interaction vertices.
The particle’s equation of motion (physics law) can be derived from the Lagrangian. The
theory (Lagrangian) must be invariant under symmetry transformations. The gauge fields
(the quanta are force carriers) and interactions are naturally introduced to the frame of the
theory, Lagrangian, by the requirement of gauge invariance when the particle wave function
ψ(x) transforms with a local phase angle α(x), such as ψ(x)→ ψ′(x) = eiα(x)ψ(x) (where x
is 4-dimensional space-time coordinates).

The SM contains theories of QED (Quantum Electrodynamics), QCD (Quantum Chro-
modynamics), and Electroweak (EW) theory. They are gauge theories to describe elec-
tromagnetic, strong, and weak interactions, based on gauge symmetry groups, SU(3)C ×
SU(2)L × U(1)Y , where C, L, and Y denote "Color", "Left-handed", and "Hyper-charge",
respectively. QED is the first successful gauge theory based on U(1) symmetry developed in
the 1950s by Shinichiro Tomonaga [12], Julian Schwinger [13,14], Richard Feynman [15–17],
and Freeman Dyson [18]. It combines Maxwell’s theory of electromagnetism (EM), special
relativity, and Quantum Field theory and describes all interactions of light with matter, and
those of charged particles with one another. The force carrier of EM interactions is a mass-
less photon γ. Because the behavior of atoms and molecules is primarily electromagnetic in
nature, all of atomic physics can be considered a test laboratory for the theory. QED has
been tested with extremely high precision in electron g − 2 experiment [19]. The develop-
ment of QCD followed very successful QED, based on SU(3)C symmetry transformation to
describe the strong interactions [20]. Glashow, Weinberg, and Salam unified the EM and
weak interactions and developed EW theory based on SU(2)L × U(1)Y symmetry transfor-
mations [21] [22] [23]. Gauge invariant requires massless gauge bosons and fermions, which
contradicts the observations, weak gauge bosons W and Z and quarks and charged leptons
are massive. To resolve the particle mass origin problem in theory the Higgs mechanism, a
spontaneous electroweak symmetry breaking is introduced in the SM to generate masses of
the elementary particles by Peter W. Higgs, F. Englert, and R. Brout in 1960s [24] [25].

The SM has been tested in particle physics experiments with extremely high precision.
However, gravity is not included in the SM and it cannot explain dark matter and dark energy
observed in the universe with astrophysics experiments. Also, there are some anomalies
observed in experiments deviating at the 3-4σ level from the SM predictions. There are
many theoretical models extending the SM aiming to address physics questions that cannot
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be answered by SM. Searching for new physics predicted by BSM becomes one of the major
physics goals of particle physics research.

The mathematical presentation of the SM QCD and EW theory, and BSM theory related
to this thesis work are described in this chapter.

2.1 Quantum Chromodynamics

The modern theory of strong interactions is Quantum Chromodynamics (QCD), which
is a gauge theory as part of the SM. The basic ingredient of QCD is that each of the six
flavors or types of quark, u, d, s, c, b, and t has an additional quantum number, color,
which takes the values of red(r), green(g), and blue(b), and they are called color charges of
strong interactions. Anti-quarks carry anti-colors, r̄, ḡ, and b̄. Each quark’s wave function
is presented in 3 components of colors,

q =


r

g

b

 . (2.1)

There is an unbroken non-chiral SU(3) gauge symmetry acting on three color charges. Thus,
there are 8 massless gauge bosons (gluons), Gi(i = 1, 8), and each gluon carries two different
color charges. They can be represented by the combination of r, g, b colors in table 2.1.

Table 2.1: Eight gluons in the QCD theory of the SM

(rb̄+ br̄)/
√

2 −i(rb̄− br̄)/
√

2
(rḡ + gr̄)/

√
2 −i(rḡ − gr̄)/

√
2

(bḡ + gb̄)/
√

2 −i(bḡ − gb̄)/
√

2
(rr̄ − bb̄)/

√
2 (rr̄ + bb̄− 2gḡ)/

√
2

Quarks interact through gluons by exchanging the color charges, as shown in Fig. 2.1.
A strong gauge coupling gs constant is introduced in the QCD Lagrangian which gives the
strong fine structure constant αs = g2

s/4π as a measure of the strong interaction strength.
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Figure 2.1: Quark-quark interaction through a gluon exchange. Each quark
carries a different color charge, and the gluon carries two different colors.
In the interaction vertex, the color charge is conserved. gs shown in the
diagram is the strong coupling constant.

The matrices representation of generators of SU(3) group are shown in equation 2.2.

Gi = λi

2 (2.2)

In equation 2.2, λi are the Gell-Mann matrices, which are a set of eight linearly indepen-
dent 3×3 traceless Hermitian matrices. The eight Gell-Mann matrices are shown in equation
2.3.

λ1 =


0 1 0
1 0 0
0 0 0

 λ2 =


0 −i 0
i 0 0
0 0 0

 λ3 =


1 0 0
0 −1 0
0 0 0



λ4 =


0 0 1
0 0 0
1 0 0

 λ5 =


0 0 −i
0 0 0
i 0 0



λ6 =


0 0 0
0 0 1
0 1 0

 λ7 =


0 0 0
0 0 −i
0 i 0

 λ8 = 1√
3


1 0 0
0 1 0
0 0 −2



(2.3)

The QCD Lagrangian is constructed by the gluon field kinematics, the quark field kine-
matics, and interactions with the gluon field, as well as the quark mass terms:

LQCD = −1
4G

i
µνG

iµν +
∑
r

q̄αr i /D
β
αqrβ −

∑
r

mrq̄
α
r qrα (2.4)

where Gµν denotes the field tensor, which can be expanded by using the SU(3) symmetry
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group structure constant fijk as:

Gi
µν = ∂µG

i
ν − ∂νGi

µ − gsfijkGj
µG

k
ν , (2.5)

and q denotes the quark field. The structure constants fijk are completely antisymmetric in
the three indices. The values of structure constants can be calculated using the Gell-Mann
matrices shown in 2.3. Non-zero values of the structure constants are shown in table 2.2.

[λi, λj] = 2ifijkλk (2.6)

Table 2.2: Non-zero values of SU(3) structure constants (completely anti-
symmetric)

f123 = 1 f345 = 1
2 f147 = 1

2

f367 = −1
2 f156 = −1

2 f458 =
√

3
2

f246 = 1
2 f678 =

√
3

2 f257 = 1
2

The gauge covariant derivative of the quark field is given by:

Dµβ
α = (Dµ)αβ = ∂µδβα + igs√

2
Gµβ
α . (2.7)

Inserting the expression of the covariant derivative 2.7 into the Lagrangian function we see
that the first term represents the energy-momentum of the quarks and the second term
represents the quark-gluon interactions with a coupling constant gs which is related to the
bare QCD coupling constant αs:

αs = g2
s

4π (2.8)

The constant discussed above is called the bare coupling constant because the higher-order
corrections are not taken into account. After absorbing the higher-order corrections, the
coupling constant then becomes:

αs(µ2
R) = g2

s(µ2
R)

4π (2.9)

where µR is called the re-normalization scale. Normally µR can be treated as the energy scale,
such as µ2

R = |q|2 where q is the four-momentum carried by intermediate gluons. Using Q2
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referring to the QCD interaction energy, the renormalization group equation is expressed as:

dg2
s

dlnQ2 ≡ 4πβ(g2
s) = bg4

s +O(g6
s) + · · · (2.10)

which contains the one-loop (the first term), two-loop (the 2nd term), and so on. For QCD,
the coupling constant as a function of energy Q2 is calculated as:

αs(Q2) = 1
b
nq
2 ln

Q2

Λ2

, (2.11)

where nq is the number of quarks that are lighter than Q and b2 is the two loop term in the
β function. Λ is the energy scale. The observed running corresponds to Λ ∼ 100− 400 MeV.

The coupling constant αs becomes very small when Q2 is large, which means αs becomes
small at a short distance. Therefore we call αs(Q2) as the running coupling in QCD. When
the distance is very small (or when quarks carry very large energy) gluons and quarks can be
treated as weakly coupled at a short distance, which referred to as "asymptotic freedom". At
lower energy (<< 1 GeV ), the αs becomes very large. In this case, the perturbation theory
no longer works for QCD. This fact means the strong interaction will become very strong at
low energies (or large distances) which leads to the confinement of particles carrying color
charges. Experimentally, we have never observed free quarks and gluons, they are confined
onsite hadrons, the bound-states of quarks.

QCD plays an essential role in cross-section calculations at the LHC. The protons in the
initial state are a ’bag’ of ’free’ quarks and gluons, called partons, their energy and momen-
tum are characterized by the parton density distribution functions measured in experiments,

f
(a)
i (xa, Q2), (2.12)

which represents number of density of species i with momentum fraction xa of hadron (or
proton) a seen by probe with resoling power Q2 given by QCD perturbation theory. Fig. 2.2
shows the measured PDF functions.
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Figure 2.2: The NNPDF3.0 NNLO PDF set for Q2 = 10 GeV2 and Q2 =
104 GeV2 [26].

The quarks and gluons are fragmented into hadronic jets (formed by highly boosted
hadrons) after they are produced through QCD hard scattering process. The basic hadroniza-
tion process is shown in Fig 2.3. Hadronic jets are measured in experiments as important
physics objects in analysis.

Figure 2.3: Basic structure of a QCD hard scattering at the LHC and the
quark hadronization process. The pink-colored objects represent the final
state color-free hadrons.
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2.2 The electroweak theory

The Electroweak theory unified two fundamental interactions: electromagnetic interac-
tion and weak interaction. The theory development started after the parity violation of weak
interaction discovery in 1956 [27], physicists began to search for theories that can relate elec-
tromagnetic and weak interaction together. In 1964, Abdus Salam and John Ward [22]
came up with a theory that predicts a massless photon and three massive gauge bosons with
manually broken symmetry later Weinberg [21] had a similar idea that a set of symmetries
produce the electroweak force. Weinberg also predicted rough masses of the W and Z boson
and suggested the new electroweak theory is renormalizable. Sheldon Glashow [23] worked
out the correct symmetry group to unify the two interactions. Steven Weinberg, Abdus
Salam, and Sheldon Glashow were awarded the 1979 Nobel Prize in Physics because of their
contribution to the unification of electromagnetic and weak interaction.

The EW theory is constructed based on symmetry group of SU(2)L × U(1)Y . The
symmetry group of transformation is generated by quantum numbers, I (isospin) and Y
(hypercharge). The corresponding gauge bosons are W 1

µ ,W
2
µ ,W

3
µ for SU(2)L and Bµ for

U(1)Y . The corresponding gauge coupling constants are g and g′. The hypercharge is
defined as

Y = 2(Q− I3), (2.13)

that relates isospin 3rd component I3 with the electric charge Q of the particle [28, 29]. By
construction, left-handed leptons have Y = −1, and right-handed leptons have Y = −2.
In the EW theory, the description of fermions is separated into the chiral left-handed and
right-handed fields in the following form:

ψL(x) = 1
2(1− γ5)ψ(x)

ψR(x) = 1
2(1 + γ5)ψ(x).

(2.14)

The left-handed fields form the weak-isospin doublet Lf which include
νe
e


L

,

νµ
µ


L

,

ντ
τ


L

,

u
d


L

,

c
s


L

,

t
b


L

, (2.15)

where the projection of the third component of isospin , I3, is 1
2 and −1

2 , respectively for two
fields of the doublets. While the right-handed fields Rf (singlet) include

eR, µR, τR, uR, dR, cR, sR, tR, bR. (2.16)
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Massless particles always have the same helicity and chirality and experiments observed only
left-handed neutrino and right-handed antineutrino [27] [30]. Therefore massless neutrinos
do not have a right-handed field in the SM.

The Lagrangian can then be written down in gauge fields and fermions terms:

L = Lgauge + Lfermions. (2.17)

The gauge term is given by

Lgauge = −1
4

3∑
l=1

F l
µνF

lµν − 1
4fµνf

µν , (2.18)

where the field tensors are defined as

F l
µν = ∂µW

l
ν − ∂νW l

µ − g
3∑

j,k=1
εjklW

j
µW

k
ν

fµν = ∂µBν − ∂νBµ,
(2.19)

here the εjkl is structure constants of SU(2) symmetry group. And the gauge covariance
derivatives acting on left-handed and right-handed fermions are

Dµ,L = ∂µ + ig′
Y

2 Bµ + ig
τ

2 ·Wµ (2.20)

Dµ,R = ∂µ + ig′
Y

2 Bµ, (2.21)

where g and g’ are gauge coupling constants related to SU(2) isospin and U(1) hypercharge,
respectively, and τ/2 are 2 × 2 matrices as the SU(2) generators, which are often denoted
as Li where i = 1, 2, 3. τ 2 are the Pauli matrices, which are shown in equation 2.22.

τ 1 =
0 1

1 0

 , τ 2 =
 0 i

−i 0

 , τ 3 =
1 0

0 −1

 (2.22)

This construction is consistent with the fact that charged-current weak interaction only
affects left-handed fermions. Also, it would be difficult mathematically to incorporate 2-
dimensional matrices with right-handed states where the neutrinos are missing. With those
definitions above, and denoting the left-handed fermions as Lf and right-handed-fermions
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as Rf , the fermion Lagrangian in the gauge covariance derivative form is

Lfermions = L̄f iγ
µDµ,LLf + R̄f iγ

µDµ,RRf

= L̄f iγ
µ(∂µ + ig′

Y

2 Bµ + ig
τ

2 ·Wµ)Lf + R̄f iγ
µ(∂µ + ig′

Y

2 Bµ)Rf ,
(2.23)

where the Lf and Rf are summed over all fermion fields concerned. One should notice that
there is no fermion mass term, Lm = −m(L̄fRf + R̄fLf ), included in the Lagrangian since
the fermion mass term violates gauge invariance.

As described previously the four gauge bosons in EW theory are massless. However, weak
force mediators W± and Z bosons are massive. To solve the mass generation problems, the
Higgs mechanism was introduced in the EW theory, and will be described in the Section
followed.

2.3 Higgs mechanism

To generate the masses of fermions and gauge bosons in the EW theory, the Englert–Brout–Higgs
mechanism (also referred to as Higgs mechanism) [24] [25]was proposed in the middle of 1960
by introducing a complex doublet of spin-0 scalar Higgs field in theory:

φ =
φ+

φ0

 = 1√
2

φ1 − iφ2

φ3 − iφ4

 . (2.24)

The Lagrangian of the Higgs scalar field can be written down generally in the EW theory:

Lφ = (Dµ
Lφ)†(Dµ,Lφ)− V (φ), (2.25)

where Dµ,L is the same left-handed gauge covariant derivative,

Dµ,L = ∂µ + ig′
Y

2 Bµ + ig
τ

2 ·Wµ, (2.26)

and the potential energy term is

V (φ) = µ2(φ†φ) + |λ|(φ†φ)2

= 1
2µ

2(
4∑
i=1

φ2
i ) + 1

4λ(
4∑
i=1

φ2
i )2,

(2.27)

the two parameters introduced in the scalar Higgs field potential are λ and µ, which represent
the strength of the self-coupling term and mass of the scalar field, respectively.
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Under certain choice of the vacuum state φ0 the complex scalar and Higgs potential under
the vacuum state can be converted to:

φ→φ0 = 〈0|φ|0〉 = 1√
2

(
0
ν

)

V (φ)→V (ν) = 1
2µ

2ν2 + 1
4λν

4
(2.28)

From equation 2.28, when µ2 > 0, the minimum point of V (φ) is ν = 0 and the gauge
group SU(2) × U(1) is unbroken, while in case of µ2 < 0 the minimum point of V (φ) is
no longer at ν = 0. The new minimum point becomes ν =

√
−µ2

λ
and the SU(2) × U(1)

symmetry is broken spontaneously. Fig. 2.4 shows the potential energy shapes for µ2 > 0,
and µ2 < 0 (every ground state breaks the symmetry).

Figure 2.4: The potential energy shape for µ2 > 0 and µ2 < 0 (symmetry
breaking in ground state).

At the minimum energy point (vacuum state), the generator related to L1, L2, and L3−Y
are also spontaneously broken, according to equation 2.29 and equation 2.22, which means
the symmetry of weak interaction is broken and the W and Z boson will be massive.

Liφ0 = τ i

2
1√
2

(
0
ν

)
6= 0, i = 1, 2, 3, Y φ0 = I

2
1√
2

(
0
ν

)
6= 0 (2.29)

As for the electromagnetic interaction, from equation 2.30, the electric charge Q remains
0 under the vacuum state. The electromagnetic interaction remains unbroken and the photon
remains massless.

Qφ0 = (L3 + Y )φ0 = 0 (2.30)
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The scalar field expansion around the ground state can be expressed as

φ(x) = 1√
2

(
0

ν +H(x)

)
(2.31)

where the Higgs filed H(x) is the exited state of the scalar file φ(x).
Now we go back to examine the first term of the scalar Lagrangian 2.25 by inserting the

expression of the scalar field in equation 2.31,

T (φ) = (Dµφ)†Dµφ = Vacuum (ν) terms + Higgs terms. (2.32)

The vacuum terms will generate masses for W± and Z bosons, and the Higgs terms include
the Higgs field kinematics and interactions of the Higgs field with gauge fields.

The vacuum term in equation 2.32 can be expressed as,

(Dµφ)†Dµφ = 1
2(0 ν)[g2τ

iW i
µ + g′

2 Bµ]2
(

0
ν

)
. (2.33)

This equation can be rewritten by replacing W i using W± and τ±, as defined in equation
2.34 below,

W± = W 1 ∓ iW 2
√

2
, τ± = τ 1 ± iτ 2

2
τ iW i = τ 3W 3 +

√
2τ+W+ +

√
2τ−W−,

(2.34)

therefore, the vacuum terms become:

g2ν2

4 W+µW−
µ + 1

2(g2 + g′2)ν
2

4 [
−g′Bµ + gW 3

µ√
g2 + g′2

]2

= M2
WW

+µW−
µ + M2

Z

2 ZµZµ,

where Z boson is defined as: Zµ =
−g′Bµ + gW 3

µ√
g2 + g′2

.

(2.35)

In equation 2.35, W+ andW− are physicalW bosons that mediate the weak charged current
in the SM and Zµ represents the physical Z boson. W± and Z bosons acquired masses via
the interactions with the scalar Higgs field in vacuum where the symmetry is broken,

MW = gν

2 , MZ = gZν

2 = MW

cosθW
, (2.36)
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where θW is the weak angle, which is defined as:

tanθW = g′

g
, cosθW = g

gZ
, sin2θW = 1− M2

W

M2
Z

. (2.37)

The electromagnetic interaction gauge field, photon (Aµ), can also be rewritten using
gauge fields Bµ and W 3

µ , as shown in equation below:

Aµ =
gBµ + g′W 3

µ√
g2 + g′2

. (2.38)

The Aµ field (γ) is orthogonal to the Zµ field and there is no mass term of Aµ in the Higgs
Lagrangian, which indicates that the photon remains massless. In the equations discussed
above, the constant vacuum expectation value, ν, is called the weak scale, which can be
measured using the mass ofW boson. ν can also be calculated using the Fermi constant GF .
The measured vacuum expectation value is around 246 GeV. As for the weak angle, θW can
be calculated using the mass of the W and Z boson, according to equation 2.39 below,

MW = MZ × cosθW ∼
(πα
√

2GF ) 1
2

sinθW
. (2.39)

We now re-write the complete scalar Lagrangian 2.25 using expressions 2.31, 2.34, and
2.36 as the following,

Lφ = M2
WW

µ+W−
µ (1 + H

ν
)2 + 1

2M
2
ZZ

µZµ(1 + H

ν
)2 + 1

2(∂µH)2 − V (φ)

V (φ) = −µ
4

4λ − µ
2H2 + λνH3 + λ

4H
4.

(2.40)

It is clear that the interaction coupling between the Higgs field and the gauge fields are
proportional to the mass-squared of the gauge bosons. The potential V (φ) terms include the
Higgs boson mass and self-interactions. The second term of the Higgs potential V (φ) gives
the Higgs mass (which predicts existence of a physical scalar particle):

MH =
√
−2µ2 =

√
2λν (2.41)

The third and fourth terms in the Higgs potential indicate the tri-Higgs and four-Higgs
self-coupling vertices.

Fermions also acquire masses via the Higgs mechanism and spontaneous symmetry break-
ing. The SM introduced a Yukawa sector in the Lagrangian, which describes the interactions
between fermions and Higgs boson, without breaking the SU(2)L × U(1)Y symmetry. The
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interaction terms take the following form:

LY ukawa = −gf ψ̄LφψR + h.c., (2.42)

where gf is the Yukawa coupling constant between the Higgs field and a specific fermion,
and the h.c. means Hermitian conjugate of the form terms. Substituting φ with the Higgs
ground state term (2.31) after the symmetry breaking, the Lagrangian becomes

LY ukawa = −gfν√
2

(ψ̄LψR + ψ̄RψL)− gf√
2

(ψ̄LψR + ψ̄RψL)H

= −mf ψ̄ψ −
mf

ν
ψ̄ψH,

(2.43)

where mf ≡ gfν/
√

2 is the mass of the fermion. There are 9 massive fermions in the SM
theory, so there are 9 Yukawa Lagrangian terms in the form of (2.42), each with different
Yukawa constants that have to be determined by experiments. The second term of equa-
tion (2.43) describes the interaction between fermion and the Higgs boson. The interaction
strength is proportional to the fermion mass-squared.

2.4 The CKM matrix

Physicists found that the quark mass eigenstates (described by QCD) are not exactly
the same as the quark weak interaction eigenstate (described by EW theory). The EW
Lagrangian (2.23) determines that the EW interaction only happens for particles within the
same generation. However, the strangeness-up changing weak charged current is observed
in experiments, indicating that the weak eigenstates are not exactly the same as the QCD
eigenstates (or mass eigenstates) and there are mixing between the two. Without loss of
generality in theory, by assuming there is no mixing of I3 = 1

2 quark states, the mixing of
I3 = −1

2 can be written down as the CKM matrix [31,32], which shows the relation between
quarks weak eigenstates and mass eigenstates and it is a unitary matrix. The weak eigenstate
can be transformed from the mass eigenstate following the matrix equation:

d′

s′

b′

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =


d

s

b

 (2.44)

The elements of the CKM matrix are measured in experiments and their values are given
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below [33]:

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =


0.97370± 0.00014 0.2245± 0.0008 0.00382± 0.00024

0.221± 0.004 0.987± 0.011 0.0410± 0.0014
0.0080± 0.0003 0.0388± 0.0011 1.013± 0.030

 (2.45)

The mixing angles between quark mass and weak eigenstates make the flavor changing
between different generations possible. As for leptons, the weak and mass eigenstates are the
same, which means there is no mixing between different lepton mass eigenstates and weak
eigenstates. Flavor changing between different types of leptons by exchanging weak gauge
bosons are not in the SM. Violation of lepton flavors hasn’t been observed yet.

The relative branching ratio of quark decays can be estimated from the corresponding
row or column of the CKM matrix. For example, |Vtb| is much larger than the other two
elements |Vtd| and |Vts| in the third row of the CKM matrix, which means top quarks are
mostly decay into bottom quarks through weak decays. For example, t→ bW .

2.5 The vector boson scattering

In addition to generating masses, the Higgs mechanism also addressed the unitarity
problem in cross-section calculation of longitudinally polarized W and Z bosons scattering
[34]. This thesis is to observe the vector boson scattering (VBS) process in the ZZjj channel.
The related physics background is described in this section.

Since the Higgs boson was observed by the CMS and ATLAS experiment in 2012, lots of
studies have been performed on the Higgs boson and its interaction with other particles. The
Non-zero mass of weak gauge bosons and fermions is only one of the reasons why we need
the Higgs boson. The second reason is a problem concerning vector boson polarization and
the issue of the unitarity of VBS. The unitarity condition is equivalent to the requirement
of the sum of probabilities of all possible final states evolving from a particular initial state
should equal one. The sum of probabilities must be in principle calculated to infinite order
in perturbative expansion, which is of course impossible to achieve practically.

From the gauge boson sector of the EW theory Lagrangian described in section 2.2, the
weak gauge bosons have triple gauge coupling (TGC) and quartic gauge couplings (QGC)
vertices. As an example of VBS process, the Feynman diagrams of the WW scattering are
shown in Fig. 2.5. Other V V (V = W,Z) scattering diagrams are similar.

The transition probability from the initial V V state to the final V V state can be calcu-
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Figure 2.5: Feynman diagrams of WW scattering, including QGC (a) and
TGC (b) - (c) vertices (in the s, t and u channels.

lated based on quantum field theory:

|Ufi|2 = |(2π)4(
∑
k

pfk − p1 − p2)Mfi|2, (2.46)

where i and f denote "initial" and "final" states and k counts for the final state produced
particles. The matrix Mfi is the transition amplitude from the initial state to the final
state. In order to calculate the transition amplitude, we calculated the covariant form for
the longitudinal polarization of four vectors εL(P ) of the vector boson. We simplify the
interaction as a V V → V V process and present each vector boson in its 4-dimensional
energy-momentum vector: (p1, p2) → (k1, k2). In the center of mass (CM) frame, and
considering the initial V V = WW , the polarization four-vector can be expressed as [35]:

ε(p1) = pµ1
mW

− 2mW

s
pµ2

ε(p2) = pµ2
mW

− 2mW

s
pµ1

(2.47)

If the final state of V V is also WW , produced from Feynman diagrams with QGC and TGC
vertices (including s, t, and u channels), the transition amplitude should be proportional to
M∼ εLεLεLεL [36], which can be calculated as in reference [35]:

iMγ+Z
t = −i g2

4m4
W

[(s− u)t− 3m2
W (s− u) + 8m2

W

s
u2] (2.48)

iMγ+Z
s = −i g2

4m4
W

[s(t− u)− 3m2
W (t− u)] (2.49)

The transition amplitude (proportional to (Ms +Mt)2) in s + t channels will diverge very
fast at a high energy scale as s2:

iMγ+Z
s+t = −i g2

4m4
W

[u2 +O(s, t, u)]. (2.50)
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And the transition amplitude of QGC vertices are [35]:

iM4 = i
g2

4m4
W

[s2 + 4st+ t2 − 4m2
W (s+ t)− 8m2

W

s
ut]. (2.51)

The sum of the transition amplitude of gauge vertices (s+t channel and QGC) is:

iMgauge = iMγ+Z
t + iMγ+Z

s + iM4 = −i g
2u

4m2
W

+O(( E

mW

)0) (2.52)

From equation 2.50 to equation 2.52, the QGC vertices cancel part of the divergence at
high energy, but the total transition amplitude is still proportional to the square of energy
s. It will violate unitary at high energy

√
s ∼ 1 TeV.

In the SM scalar Lagrangian (2.40), the Higgs boson can also interact with the W and Z
boson. Additional Feynman diagrams of the WW scattering involving the Higgs boson are
shown in Fig. 2.6. After including the Higgs boson, the transition amplitude of the Higgs

Figure 2.6: Feynman diagrams of WW scattering involving with Higgs bo-
son interactions through the s, t and u channels.

diagram is (in the limit of s, t� mh) given by [35]:

iMH = i
g2
h

4m2
W

u (2.53)

Therefore, the total VBS amplitude (gauge boson and Higgs) is no longer diverting:

iMgauge + iMH = g2m2
h

4m2
W

. (2.54)

The total transition amplitude becomes a constant after taking the contribution of Feynman
diagrams involving the Higgs boson exchanging into account. The Higgs boson can cancel
the divergence at high energy. The same arguments also can be applied to the opposite
sign W boson scattering process [35], [36]. The corresponding transition amplitude can be
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calculated as:

iMgauge = −i g2

4m2
W

u+O(s0)

iMH = i
g2
h

4m2
W

u+O(s0)
(2.55)

Similarly, the lowest order Feynman diagrams of WZ scattering process are the WWZZ
contact interaction [36]. Likewise, the divergence resulting from the sum of gauge-boson-only
diagrams is exactly canceled by the Higgs diagrams.

For the ZZ scattering process, the statement is different [36], since it can only occur via
the Higgs exchange (both s and t channel). However, in any real hardon-hardon experiment,
this process cannot be separated from the dominant WWZZ process, where three additional
graphs contribute in the lowest order, including the WWZZ contact interaction, t channel W
exchange, and s channel Higgs exchange. Once again, the Higgs exchange provides cancel-
lation of unwanted divergence in the ZZ scattering process. Fig.2.7 shows the theoretically
calculated VBS cross-sections as a function of a center-of-mass energy ECM for VV scattering
processes with/without involving the Higgs boson.

Figure 2.7: Cross sections of different vector boson scattering processes in
the CM frame. The Higgs boson cancels divergence at high energy [37].

27



2.6 New gauge boson Z ′ predicted by Lµ − Lτ models

The new gauge boson Z ′ is predicted by the highly motivated gauged theory, Lµ − Lτ
models [38], which is the simplest extension of the SM to address the observed g-2 of the
muon anomalous magnetic dipole moment [39–42] and the B physics anomalies [43–46].
These models also aim to probe the particle physics and cosmology outstanding questions
related to the dark matter and neutrino mass [47–49]. For a relatively low mass of Z ′, the
most promising experimental signature would be a moderate excess of 4µ events with one
µ+µ− pair peaking around the Z ′ mass.

�Z

Z′

q̄

q

µ+

µ−

µ+

µ−

Figure 2.8: Tree-level Feynman diagram of the Z ′ production in radiation
Drell-Yan process: qq̄ → Z → µ+µ−Z ′ → µ+µ−µ+µ−. The Z ′ shown in the
diagram is a new leptophilic vector boson predicted by the Lµ − Lτ model.

The difference between the muon number and tau number, Lµ − Lτ , is one of the global
symmetries present in the SM. The U(1)Lµ−Lτ symmetry is anomaly free and therefore can
be gauged. The U(1)Lµ−Lτ symmetry is broken, resulting in a neutral, color singlet, massive
Z ′ that couples only to µ and τ leptons and left-handed neutrinos at tree level. The Z ′ field
kinematics, mass, and the muon and tau leptons are described by the Lagrangian below:

LZ′ = −1
4F
′
αβF

′αβ + 1
2M

2
Z′Z

′αZ ′α − gZ′Z ′α(¯̀2γ
α`2 + µ̄γαµ− ¯̀3γ

α`3 − τ̄ γατ) (2.56)

where F ′αβ = ∂αZ
′
β − ∂βZ

′
α is the field strength tensor, and `i = (νi, ei)T (i=2,3, denotes

for the 2nd and the 3rd generation left-handed lepton doublet). µ and τ in the Lagrangian
represent the right-handed charged muon and tau singlets. The parameters of the model
is the mass MZ′ and the coupling gZ′ = εg′. Here g′ is the SM U(1) coupling constant
(g′ = e/cosθw = 0.357), and ε is the scaled fraction of g′. The parameter space of (MZ′ , gZ′)
has not been strongly constrained in experiments since such Z ′ can not be directly produced
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from the e+e− or the hadron colliders. Searching for the Z ′ has become a hot topic in both
theoretical and experimental communities [50–52]. Fig. 2.8 shows the most promising Z ′

production through the radioactive Z boson decay process at the LHC.
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Chapter 3

ATLAS at LHC

3.1 The Large Hardon Collider

3.1.1 Overview of the LHC

The Large Hadron Collider (LHC) is the biggest machine and the most powerful collider
that humans ever built in history, which was built by the European Organization for Nuclear
Research (CERN) from 1998 to 2008. It consists of a 27-kilometer ring of superconducting
magnets with a number of accelerating structures to boost the energy of particles. The
collider lies in a tunnel with a depth of 175m under France–Switzerland border near Geneva.

In total there are four crossing points that allow particles to collide on LHC and seven
detectors are built around those crossing points. Each detector has a different design to
serve different experimental purposes. The two largest detectors on the LHC are the ATLAS
(A Toroidal LHC Apparatus) and the CMS (Compact Muon Solenoid) detector. Another
two large detectors on the LHC are ALICE (A Large Ion Collider Experiment) and LHCb
(LHC-beauty). There are also four smaller detectors: TOTEM (Total Cross Section, Elastic
Scattering, and Diffraction Dissociation), LHCf (LHC-forward), MoEDAL (Monopole and
Exotics Detector At the LHC), and FASER (Forward Search Experiment). The overall
structure of LHC and the CERN collider complex is shown in figure 3.1.

The most important goal of the LHC is to discover the Higgs boson, which has been
accomplished in 2012, and high precision measurement of the Higgs boson’s properties,
its interactions with other particles, and other Standard Model predictions. Besides the
Standard Model measurement and discovery, the LHC is also a very important place to
conduct beyond Standard Model searches, such as searching for the large family of new
particles predicted by super-symmetric theories and other unresolved questions in physics.

During most run time, the LHC is operated under proton-proton beam collision, which
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serves most of the experiments on the LHC. The LHC can also serve for heavy ion exper-
iments, such as lead-lead ion beam collision and proton-lead collision. Normally the LHC
will perform heavy ion collisions one month per year. The first proton-proton collision on
the LHC was achieved in 2010. Each proton in the beam carried an energy of 3.5 TeV. The
√
s (total collision energy in the center-of-mass frame) of the first collision is 7 TeV. The

operation period from 2010 to 2014 is called Run I. During Run I
√
s of the proton-proton

collision on the LHC is 7-8 TeV. After finishing the first upgrade in 2015, the collision energy
on LHC is increased to 13 TeV and this operation period is called Run II. After 2018, the
LHC was shut down for three years for the phase II upgrade. In 2022, the LHC upgrade
work is finished the LHC will enter the Run III operation period. The LHC draws about
120 MW of electrical power from the French electrical grid and generates about 140 TB of
data during operation.

(a)

Figure 3.1: Structure of the Large Hardon Collider (LHC) and CERN ac-
celerator complex in 2019 [53].

3.1.2 Accelerator design

Accelerators are the heart of the LHC. Accelerators boost particle beams to the target
energy and maintain their energy when the particle is traveling in the circle since the particle
will lose energy due to radiation. As shown in figure 3.1, the LHC accelerator complex is
formed by a series of accelerators. Before being injected into the 27 km long main circle,
the photon beams will be accelerated by a series of smaller accelerators and the energy
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will increase gradually. The first accelerator is the Linear particle accelerator (LINAC4).
Hydrogen ions (H−) will be injected into LINAC4 and be accelerated to 160 MeV. LINAC4 is
connected with Proton Synchrotron Booster (PSB), where the two electrons in the Hydrogen
ions are separated with a hydrogen nucleus leaving only one proton. The proton will be
accelerated to 2 GeV in PSB. Then, the proton beam enters the Proton Synchrotron (PS)
and its energy will be increased to 26 GeV. The last accelerator before proton beams enter
the LHC main accelerator is the Super Proton Synchrotron (SPS), where energy reaches 450
GeV then proton beams will be injected into the main ring of LHC. In the main ring of LHC,
proton beams will be accelerated to their peak energy (13 TeV in Run II period) and will be
circulated for 5 to 24 hours while collisions happen at the four crossing points.

Figure 3.2: Schematic side-view of an LHC accelerating module showing
two of the four cavities (blue). The cylindrical vacuum tank is shown in
black. Inside, the beamline is shown in blue. The cavities are housed inside
helium-filled cryomodules (dark green) fed by liquid helium baths (purple).
Quench valves attached to the helium baths are shown in light green. Each
superconducting cavity is driven by the variable power couplers shown in
orange. Two other couplers control the higher-order resonance modes in the
cavity: a broadband HOM coupler (red) and a narrow-band HOM coupler
(brown). The resonance of each cavity is tuned by the elastic deformation
of the chamber by a motor system (pink).

The accelerator of LHC is based on radio-frequency (RF) cavities, as shown in figure 3.2.
LHC uses superconducting radio-frequency and the RFs are operated under the temperature
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of 4.5K. RFs are made of copper and sputtered with niobium to achieve good thermal
conductivity. To maintain the low temperature, a liquid helium cooling system is used by
each RF.

A high voltage of 2 MV is applied to each radio frequency to generate a strong electric
field of 5.3 MV/m. Each RF is powered by a 500 KW klystron, which is coupled with the RF
by a waveguide with adjustable length. Changing the length of the waveguide can control
the quality factor1 of RF.

In LHC, there are eight RFs per beam, which means the voltage gradient per beam is 16
MV. Eight RFs are divided into two groups and RFs in the same group share one cryostat,
which maintains their superconducting temperature.

3.1.3 Magnet design

The magnet is another crucial part of the LHC, which generate a magnetic field to
hold the beam and keep particle circling in the LHC. There are different types of magnets
installed on LHC for different purposes: dipole, quadrupole, and sextupole magnets, etc.
Dipole magnets can bend the beam so that particles can travel in the circle of LHC. In total
1232 dipole magnets are installed on the LHC. Quadrupole magnets are used to change the
shape of the beam, in other words, focus and defocus the beam when it is traveling. LHC
uses 392 Quadrupole magnets. Sextupole magnets correct beam characteristics including
chromaticity introduced by the quadrupoles and LHC uses 2464 sextupole magnets.

There are some other magnets such as octupole, decapole correctors, and kicker magnets.
All those magnets installed on LHC keep the beam traveling in LHC and keep the beam
shape correct.

Figure 3.3 shows the structure of dipole magnets installed on the LHC and coil winding.

3.1.4 Operation and performance of the LHC

Operation period of the LHC

The operation of LHC and the ATLAS detector can be divided into the Run I, Run II,
and Run III periods. Run I, also called the first operational run, started in 2009 and ended
in 2013. At the early stage in Run I, the beam energy is 3.5 TeV (

√
s = 7 TeV) and then it

was increased to 4 TeV (
√
s = 8 TeV). During Run I the ATLAS detector recorded data with

an integrated luminosity of 4.9 fb−1 at 7 TeV
√
s and data with an integrated luminosity of

20 fb−1 at 8 TeV
√
s. The luminosity of a collider is defined in equation 3.1, where N is the

1Peak energy lost per cycle, which is used to adjust the peak voltage in the cavity.
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(a) Coil winding (b) Dipole magnet

Figure 3.3: (a) Cross section of the coils made from superconductive cables
wound around the beamline to produce a homogeneous dipole magnetic
field. Each rectangle represents a flat Nb-Ti cable. These are grouped in
a configuration that produces a smooth internal magnetic field, indicated
by the arrows. The cables are separated by layers of copper. The cables
are color-coded: red(blue) cables carry current into(out of) the page. (b)
Cross section of the main bending dipole magnets. Two beamlines (black)
and coils (blue/red) are encased by austenitic steel collars (light grey). The
collar is embedded in a large iron yoke (dark grey) and submerged in a
liquid helium vessel (dark blue). The arrangement is held in a cryostat.
For scale, the centers of the beamlines are separated by 19 cm. (figures by
Aaron White).

number of particles per bunch, kb is the number of bunches, σ∗x and σ∗y is the horizontal and
vertical beam sizes at the interaction point and F is the geometrical reduction factor arising
from the crossing angle [54].

L = N2kbf

4πσ∗xσ∗y
F (3.1)

Equation 3.1 can be rewritten as equation 3.2 if the beams are round and the beta
functions of both beams have the same values in both planes, where γ is the usual relativistic
factor, εn is the normalized emittance, and β∗ is the value of the beta function at the
interaction point [54].

L = N2kbfγ

4πεnβ∗
F (3.2)

After a long shutdown and upgrade of LHC and the ATLAS detector from 2013 to 2015,
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the energy of the beam was increased to 6.5 TeV (
√
s = 13 TeV) and ATLAS started the

second operational run (Run II). The Run II period starts in 2015 and ended in 2018. The
recorded luminosity by ATLAS and recorded during good operation of the detector during
Run II are shown in figure 3.4.
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Figure 3.4: Total luminosity of pp collisions delivered by the LHC in Run 2
(green), recorded data by the ATLAS detector (yellow) and the portion of
this recorded during good operation of ATLAS (blue) [55].

Two analyses in this thesis are both based on the ATLAS full Run II data set with an
integrated luminosity of 139 fb−1 at

√
s = 13 TeV.

From 2018 to 2022, the LHC shut down again (the Long Shutdown 2) and upgraded
to the High Luminosity Large Hadron Collider (HL-LHC) project which will increase the
luminosity by a factor of 10. The LHC became operational again in April 2022 and enters
its third operational run (Run III).

Performance of the LHC

Table 3.1 summarized key performance parameters of the LHC pp collision during the
Run 2 operation period from 2015 to 2018 [56] and performance parameters of Run 1 (2012)
are summarized in table 3.2.

In table 3.1, the number of physics operation days in the table means the number of
days the LHC performs pp collision. Pile-up (µ) refers to the average number of particle
interactions per bunch crossing. Pile-up will affect object and event reconstruction since pp
collisions in addition to the collisions of interest are introduced. The pile-up distributions of
different years in the LHC Run 2 are shown in figure 3.5 2.

2Public ATLAS Luminosity Results for Run-2 of the LHC

35

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2##2018_pp_Collisions


Parameter 2015 2016 20117 2018
IR1/IR5 Peak L (1034 cm−2s−1) 0.5 1.4 2.11 2.1
Average pile-up (µ) 13 25 38 37
Max. number of bunches 2244 2220 2556 / 1868 2556
Max. train length (bunches) 144 96 144 / 128 144
Emittance injection (µm) ≈ 3.0 ≈ 1.6 ≈ 1.6 ≈ 1.4
Bunch pop. start of stable beams (1011) 1.0-1.25 1.0-1.25 1.0-1.25 1.0-1.25
Emittance start of stable beams (µm) ≈ 3.5 ≈ 2.2 ≈ 2.2 ≈ 1.9
RF Voltage injection (MV) 6 6 6 6 / 4
RF Voltage collisions (MV) 12 12 12 10
β∗ IR1/5 (cm) 80 40 40-30 30-25
Half crossing angle IR1/5 (cm) 145 185 / 140 150-120 160-130
IR1 crossing sign -1 -1 +1 +1
Max. stored energy (MJ) 280 270 330 320
IR1/IR5 integrated L (fb−1) 4.2 39.7 50.6 66
IR8 integrated L (fb−1) 0.36 1.87 1.98 2.46
IR2 integrated L (fb−1) 9 13 19 27
Commissioning duration (days) 58 28 24 17
Average length of stable beams (hours) 6.8 11.2 8.2 8.3
No. days of physics operation 88 146 140 145
Machine availability (%) 69 76 83 79
Stable beams efficiency (%) 35 49 49 49

Table 3.1: Evolution of the LHC performance in regular pp collision during
Run 2 (2015-2018) [56].

Parameter 2010 2011 2012
Beam Energy 3.5 3.5 4.0
β∗ in IP 1 and 5 (m) 2.0 / 3.5 1.5 / 1.0 0.6
Bunch spacing (ns) 150 75 / 50 50
Max. number of bunches 368 1380 1380
Max. bunch intensity (protons per bunch) 1.2× 1011 1.45× 1011 1.7× 1011

Normalized emittance at injection ≈ 2.0 ≈ 2.4 ≈ 2.5
Peak L (1034cm−2s−1) 0.021 0.37 0.77
Max. number of events per bunch crossing 4 17 37
Stored beam energy (MJ) ≈ 28 ≈ 110 ≈ 140

Table 3.2: Evolution of the LHC performance in regular pp collision during
Run 1 (2010-2013) [57].
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3.2 The ATLAS detector

3.2.1 Overview of the ATLAS detector

The ATLAS detector (A Toroidal LHC Apparatus) is the largest general-purpose particle
detector built around the LHC, which is 25 meters in diameter, 46 meters long, and weighs
about 7 thousand tons. The ATLAS detector is designed to serve different experimental
purposes so that it can receive a wide range of signals. It can measure properties, such
as energy, and momentum, of different kinds of particles. Different from other general-
purpose particle detectors installed on Tevatron or LEP, the ATLAS detector can handle
the extremely high beam energy and high collision rate produced by the LHC. To achieve
this goal, the ATLAS detector is a very complex system, with more than 3000 km of cables,
and contains many sub-systems.

As shown in figure 3.6, there are four major sub-systems on LHC: the inner detector,
calorimeters, magnet system, and the muon spectrometer. The magnet system of the ATLAS
detector produces a strong magnetic field that can bend charged particle while it travels
through the detector. Particles produced at the collision point will pass through the inner
detector first, where the inner detector can measure the particle’s track precisely. After
passing through the inner detector, particles will enter the calorimeter, which can measure
the particle’s energy. Finally, the muon spectrometer can identify muons and measure their
tracks.

In the ATLAS experiment, there are three commonly used coordinates that describe the
ATLAS detector. A Cartesian coordinate system, a cylindrical coordinate system and a
Spherical coordinate.

The origin of the Cartesian coordinate system is set at the center of the inner tracker.
The Z-axis is parallel to the beamline. The X-axis points toward the center of the LHC
ring and Y axis point to the top of the ATLAS detector. The detector side with positive z
coordinates is defined as the A-side, while the detector side with negative z coordinates is
defined as the C-side.

As for the cylindrical coordinate system, the origin point and z-axis are the same as
in the Cartesian coordinate system. The azimuthal angle φ is defined with respect to the
Cartesian x axis, and the radius ρ is defined from the z axis. During the operation of the
ATLAS detector.

3Chen Computer generated cut-away view of the ATLAS detector showing its various com-
ponents., http://commons.wikimedia.org/wiki/File:ATLAS_Drawing.jpg,CCBY-SA2.0,https:
//commons.wikimedia.org/w/index.php?curid=18438360

3Aaron White
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Figure 3.6: Computer generated cut-away view of the ATLAS detector
showing its various components.
Moun Spectrometer: (1) Forward regions (End-caps). (1) Barrel region
(Barrel).
Magnet System: (2) Toroid Magnets. (3) Solenoid Magnet.
Inner Detector: (4) Transition Radiation Tracker. (5) Semi-Conductor
Tracker. (6) Pixel Detector.
Calorimeters: (7) Liquid Argon Calorimeter. (8) Tile Calorimeter.
Illustration by Chen3.
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Figure 3.7: A cross-section of ATLAS looking along the beamline. The de-
tectors are color-coded: green for the inner detector, blue for the calorime-
ter, and red for the muon spectrometer. Several particle paths are shown in
blue. Dashed lines represent a particle passing through the detectors with-
out interacting. Yellow areas indicate electromagnetic or hadronic showers
in the calorimeters and other interactions with the detector. Outside the
inner solenoid, the muon is bent parallel to the beamline by a toroidal mag-
netic field.
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Figure 3.8: Layout of the ATLAS detector with subsystems coded by color.
Top: a view of the barrel looking along the beamline in the z direction.
Bottom: a view of the detector from the side looking in the x direction.
Red: muon system with CSC (light), MDT (medium), and trigger (dark)
chambers. Blue: calorimeter system with tile (light), LAr (medium), and
FCal (dark) calorimeters. Green: inner detector with pixel (light), strip
(medium), and TRT (dark) detectors. Grey: magnet system with ECT
(light), BT (medium), and CS (black) magnets.
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The Spherical coordinate is commonly used to describe physics interactions and tracks
of particles. The origin point is the same as the Cartesian coordinate system and cylindrical
coordinate system, which locates at the center of the inner tracker. The radius r is defined
from the center of the detector and polar angle θ is defined with respect to the z axis. In
particle physics, the polar angle can be used as a particle’s pseudorapidity (η), which is one
of the important proprieties to describe a particle’s track in the ATLAS experiment. The
definition of pseudorapidity is:

η ≡ − ln
(

tan θ2

)
(3.3)

The ATLAS detector can identify different particles by their different interaction pattern
in different sub-systems. As shown in figure 3.6, from the collision point, particles will travel
through different layers of the detector. Different particles, such as electrons, muons, and
photons, have different patterns in different layers. Figure 3.7 shows interactions between
different particles and different layers of the ATLAS detector. For example, charged particles
such as muons and electrons can be detected by the inner detector and leave tracks and others
will pass through the inner detector directly. Electrons will deposit all of their energy in the
calorimeter leaving an electromagnetic radiation shower while muons can pass through the
calorimeter and leave tracks in the muon spectrometer. Particles with different energy and
momentum will have tracks with different radius. For particles will different signs of charge,
their track will have different directions in the magnetic field.

3.2.2 Inner detector

The innermost system of the ATLAS detector is the inner detector, which is designed to
precise measures the position of the collision point and tracks of charged particles. As shown
in figure 3.9, the inner detector contains three major components: the pixel detector, the
silicon-strip tracker, and the transition radiation tracker. The inner detector is built around
the beampipe and covers the region where collisions happen. The inner detector is about
seven meters in length and 2.3 meters in diameter. The inner detector has an end-cap at
both sides and can cover the region with |η| < 2.5.

The pixel detector and silicon-strip detector are solid-state silicon detectors. Both of
them use semiconductors to detect charged particles. The semiconductor detector is made
of two different types of semi-conductor materials: p-type (a trivalent impurity, which can
be viewed as positive charges, (like Boron, Aluminum, etc.) is added to an intrinsic or pure
semiconductor) and n-type (a donor impurity, which can provide extra electrons, (Arsenic,
Phosphorus, etc.) is added to an intrinsic or pure semiconductor) semiconductor materials.
The semiconductor detector contains many p-type and n-type layers.
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Figure 3.9: Computer-generated image of the inner detector with a section
removed for visibility. Illustration by Joao Pequenao4.

In the semiconductor detector, p-type and n-type materials are connected with each
other, which is called the At the interface between p-type and n-type layer, extra electrons
in the n-type side will move to the p-type side, which can produce a depletion region and
an electric field at the interface region. Figure 3.10 shows the structure of a typical p-n
junction.

When charged particles produced by the proton-proton collision pass the p-n junction,
atoms will be ionized by the charged particles. Ionized electrons will drift under the electric
field in the p-n junction so that the detector can detect the current and receive signals.

The pixel detector

As shown in figure 3.9, the pixel detector is the innermost detector of the inner detector.
The pixel detector contains many small pixel-like silicon detectors, shown in figure 3.11,
groups in the grid, and each pixel has its individual readout channel, which looks like the
CMOS (complementary metal-oxide semiconductor) used in the digital camera. Using this
unique structure, the pixel detector can measure particle position precisely since the system
knows which pixels pick up signals. The size of each pixel is about 50 × 400µm2. In the

4Joao Pequenao. Computer generated image of the ATLAS inner detector, 2008. https://cds.cern.
ch/record/1095926

5Wikipedia Semiconductor. https://en.wikipedia.org/wiki/Semiconductor
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Figure 3.10: P-N junction Diode. Illustration by Wikipedia.5

Figure 3.11: A photograph of a 4-inch diameter ATLAS pixel sensor wafer
(p-side view) [58]

barrel, these are grouped into arrays of 24×160 pixels for readout. Sixteen arrays are located
on a “module”, which serves as the repeating basis of the various pixel layers. Four layers of
detectors are arranged in the barrel, with the innermost layer located inside the beampipe,
with radii of 2.9 cm, 5.1 cm, 8.9 cm, and 12.3 cm. In each end-caps, four disks are arranged
between z=11 cm and z=20 cm [59,60].
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The silicon strip detector

After passing through the pixel detector, particles will enter the silicon-strip detector.
Similar to the pixel detector, charged particles will ionize atoms around the p-n junction of
the silicon-strip detector and produce a measurable electric current. Semi-conductors are in
strip shape instead of pixel. The barrel silicon strip detector contains four layers and the
end-cap detector contains nine disks on each side. Each barrel strip contains modules with
two silicon strip layers. In each layer, the silicon wafers are divided into strips 126 mm in
length. The strips are oriented differently in the barrel depending on their layer, with some
running parallel to the beam axes and others offset at an angle of 40 mrad [61].

The transition radiation tracker

The outermost part of the inner detector is the transition radiation tracker. The tran-
sition radiation tracker (TRT) belongs to the gas detector category. This detector contains
many gaseous proportional-mode drift tubes which are filled with a mixture of gas. The
mixture of gas is made of xenon (70%), carbon dioxide (27%), and oxygen (3%). The tube
wall is made of wound Kapton and in the center, there is a gold-plated wire, which is 31µm
in diameter. During operation, a negative voltage of -1.5 kV is applied to the tube wall to
create a strong electric field inside the drift tube. When a charged particle enters the drift
tube, gas atoms will be ionized under the strong electric field. Ions with positive charges
will drift to the tube wall and electrons will drift to the wire. During this process, those
electrons and ions will further ionize gas atoms to create more charged particles so that they
can produce high enough electric current that can be picked up by the detector. The current
will be amplified and read out by the front-end electronics. The transition radiation tracker
is a complement to the pixel and silicon-strip detector, which can provide a large tracking
area at a much lower cost. Compared with the gas detector, the semi-conductor detector can
provide more precise tracks and location information but the cost is too high. The choice of
TRT is a balance between precision and budget.

3.2.3 Calorimeters

After passing through the inner detector, particles produced by collision will enter calorime-
ters. The calorimeter system of the ATLAS detector contains two sub-systems, the Liquid Ar-
gon Calorimeter (LAr) and the Tile Calorimeter. The Liquid Argon Calorimeter is designed
to measure energy deposits through electromagnetic interactions, while the Tile Calorimeter
is designed to measure energy deposits of hadronic jets.
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Figure 3.12: Computer-generated image of the calorimeters with a section
of the removed for visibility. Illustration by Joao Pequenao6.

The calorimeter system can be divided into two major types: the electromagnetic calorime-
ter and the hadronic calorimeter. The electromagnetic calorimeter is designed to measure
electrons’ energy deposit through the bremsstrahlung radiation. It can also measure the
energy loss of photons through electron-positron pair production. Most parts of the LAr
calorimeter are used as electromagnetic calorimeters in the ATLAS detector. As shown in
figure 3.13, the LAr calorimeter is located inside of the Tile calorimeter. Particles like elec-
trons and photons will be totally absorbed by the LAr calorimeter and deposit all of their
energy in the LAr calorimeter. Hadronic jets and pass through the LAr calorimeter and enter
the Tile calorimeter, which belongs to the hadronic calorimeter. The hadronic calorimeter
measures a particle’s energy loss through hadronic interaction. The hadronic calorimeter is
mainly used to measure the energy of hadronic jets produced by the proton-proton collision,
which is very important to the ATLAS experiment.

The LAr calorimeter

The LAr calorimeters are used as both the electromagnetic calorimeter and the hadronic
calorimeter in the ATLAS detector, which is between the inner detector and the Tile
calorimeter. According to the structure of the calorimeter shown in figure 3.13, the LAr
calorimeter has four major components: the LAr electromagnetic barrel, the LAr electro-
magnetic end-cap (EMEC), the LAr LAr forward calorimeter (FCal). The LAr electromag-

6Joao Pequenao. Computer Generated image of the ATLAS calorimeter, 2008. https://cds.cern.ch/
record/1095927
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netic barrel contains two half-cylinder electromagnetic calorimeters and covers |η| < 3.2.
The end-cap parts and LAr forward cover |η| < 4.8.

Wavelength
shifting fiber

bonded to scintillators

Scintillators

Calibtation
source tubesSteel absorbers

Photomultipliers

(only several shown)

(a)

Accordian-shaped
electrodes

Sampling 1
(strips)

Sampling 2
(squares)

Sampling 3

(b)

Figure 3.13: (a) A module in the TileCal consisting of the staggered scin-
tillator (blue) and steel (grey) layers read out on both sides by fiber optics
connected to photomultipliers. Source tubes in the TileCal allow radioactive
sources to be inserted for calibration. (b) A section from the LAr, consists of
towers (red) composed of accordion-shaped electrodes submerged in liquid
argon.

The LAr barrel and end-cap electromagnetic c are designed to measure the energy of
electrons and photons through electromagnetic interactions. As discussed in the previous
section, electrons interact with the LAr calorimeters through bremsstrahlung radiation and
photons interact with the LAr calorimeters through electron-positron pair production. In-
teraction rates of both interactions are related to the thickness of the material that particles
travel through, which is called the radiation length, X0. Energy loss in terms of travel
distance is:

−dE
dx

= E

X0
(3.4)

Since the energy of photons is related to their frequency, frequency change in terms of
the travel distance is:

−dw
dx

= 1
λpair

e−x/λpair ; λpair = 9
7X0. (3.5)
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Secondary particles produced by both interactions will continue to interact with the
material and produce showers of electrons and photons. If the interaction material is thick
enough all energy of the initial electron or photon will be absorbed. As shown in figure
3.13, the LAr electromagnetic calorimeters contain many accordion-shaped electrodes made
of copper. Those electrodes are submerged in liquid argon. During operation, a high voltage
of 2 kV will be applied to the copper electrodes. Between copper electrodes are steel-clad
lead absorbers. Those absorbers will interact will particles and produce showers of electrons
and photons. The absorbers are also submerged in liquid argon, which works as the active
material. Incident particles will ionize argon atoms and the produced electrons and ions will
drift to electrodes. Electrodes are grouped into towers of different shapes, including narrow
strip towers, square sampling towers, and wide trigger towers. When a particle enters the LAr
electromagnetic calorimeter it will pass the strip towers first, which can provide information
on the particle’s energy loss before reaching the calorimeter. After that, the particle will
enter the sampling tower. The radiation length X0 of sampling towers is about 20. Most of
the energy of electrons and photons shower will be absorbed by the sampling towers. The
last part the particle may pass through is the trigger tower and the total radiation length
at the barrel region is about 22. The design of the barrel and EMEC calorimeters provide a
relative energy resolution σa = 10% and σc = 0.7% [62].

As for the LAr hadronic calorimeter, similar to the LAr electromagnetic calorimeter, it
also contains electrodes made of copper. The difference is that hadronic calorimeters use
flat-shaped electrodes. What’s more, instead of using steel-clad lead, its absorbers also use
copper.

The Tile calorimeter

The previous section discusses the design of LAr calorimeter of the ATLAS detector. The
LAr calorimeter is surrounded by the Tile calorimeter, which is mainly designed to measure
the energy of hadronic jets through hadronic interactions. Different from the LAr hadronic
calorimeter, the Tile calorimeter consists of absorbers and scintillators. The absorber will
interact with the incoming hadronic particles to produce showers and scintillators will detect
the produced charged particles.

Hadronic particles that enter the calorimeter will lose energy through hadronic interac-
tions with atoms of the calorimeter. Different from the electromagnetic interactions men-
tioned in the previous sections, the physics quantity to describe the ability that the material
absorbs the particle’s energy through hadronic interaction is the average nuclear interaction
length. Effective hadronic depth of the TileCal is ∼ 7λI [63], in which. The Tile calorimeter
uses sheets of steel as absorb to interact with the incoming particles and absorb their energy.
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Similarly to the electromagnetic shower of electrons and photons, the interaction between
the incoming hardons and absorber atoms will produce secondary light hardons and neutri-
nos. This process will continue to produce more hadrons that form the hadronic shower in
the hadronic calorimeter. When charged particles in the hadronic shower enter scintillators,
scintillate light will be produced which can be detected by the scintillators.

The Tile calorimeter only contains three barrel parts. The central barrel Tile calorimeter
is 5.6 meters long and covers the region with |η| < 1.0. Along with the barrel part is
two extended Tile calorimeter which are 2.9 meters in length and extends the coverage of
pseudorapidity from |η| < 1.0 to |η| < 1.7. The barrels have an inner radius of 2.3 m and
an outer radius of 4.2 m. The central barrel covers a pseudorapidity of |η| < 1 and the
extended barrels provide coverage up to |η| < 1.7. The energy resolution of the Tile design
is σa = 50% and σc = 7% [64].

3.2.4 Muon system

Outside of the Calorimeter system is the muon system, which is the largest system of
the ATLAS detector. The main purpose of the muon system is to measure the energy and
transverse momentum of muons, as well as reconstruct muon tracks. The basic structure of
the muon system is shown in figure 3.14. The Muon system of the ATLAS detector can be
divided into the barrel and end-cap parts.

Monitored drift tubes

Thin gap chambers Resistive plate chambers

Cathode strip
chambers

Monitored drift tubes

Figure 3.14: ATLAS muon system, with chambers of various types, labeled.
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Monitored drift tubes (MDT)

Chambers formed by the Monitored drift tubes (MDT) are important parts of the ATLAS
muon system. Those chambers are precision tracking chambers in the ATLAS muon system.
These MDT chambers contain about 35000 drift tubes Monitored drift tubes in ATLAS are
3cm in diameter and their length is in the range of 0.6m to 6.1m. These tubes are in about
12000 chambers. Each MDT chamber has two multi-layers and each multi-layer has 3 or
four layers of drift tubes. Typically, an MDT chamber is 2x4 m2 in area and 0.5 meters high.

Figure 3.15: Exploded view of monitored drift tube (MDT) [65].

The tubes are made of aluminum. In the center of each tube, gold-plated tungsten wire,
which is 50 µm in diameter, is used as the electrode. End-plugs fix the tungsten wire at
each end of this tube. Those end-plugs enable tungsten wire to remain in the center of the
tube within 10 µm of uncertainty. A high voltage of 3080 V is applied to the wire during
operation.

The MDT tubes are filled with a mixture of argon (91%), nitrogen (4%), and methane
(5%) at an absolute pressure of 3 bar. When muons enter the drift tubes, they will ionize
the gas atoms. Under the strong electric field the electrons will drift to the wire and ions will
drift to the tube wall. Electrons arriving at the central wire can produce current and current
will be amplified by front-end electronics and then processed by the back-end electronics.

The MDT chambers contain a trigger system that can provide information about the
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time muon arrives. Ionized electrons nearest to the anode wire reach the wire first and
the back-end electronics are sensitive to the leading edge of current signals from the MDT
chamber. The time difference between muon passing the trigger chamber and back-end
electronics receiving signals from the tube is the drift time. Using the closest approach as
radius and drawing a cycle we can get the drift circle. The Muon track is a tangent line of
this drift circle. Distance between the central wire and muon track can be retrieved using
the drift time and the function between drift time and drift distance in the drift tube, which
is called the R-T function.

Figure 3.16: Muon tracks reconstructed by MDT chambers from cosmic ray
test. Redline is the reconstructed muon tracks and green cycles are drift
cycles calculated using the R-T function and drift time. The radius of the
drift cycle is the drift distance.

Since only drift distance is known for the MDT chambers, the actual location where
muon passes through a drift tube will locate on a cycle inside that tube, of which the radius
equals the drift distance. In one event, all tubes that the moun pass through will have one
drift cycle and the muon track is the common tangent line of those cycles. Figure 3.16 shows
some reconstructed muon tracks by the MDT chamber during a cosmic ray test.

3.2.5 Magnet system

The momentum of charged particles can be calculated using their track radius in the
magnetic field. To measure high-energy particles’ transverse momentum, a strong magnetic
field is needed for the ATLAS detector. The magnetic field in the ATLAS detector is about
4 T and the strong magnetic field is provided by a well-designed magnet system and super-
conducting magnets. The magnet system can be divided into three parts: the Barrel Toroid,
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(a) (b) (c)

Figure 3.17: Illustration of the geometry of the magnet system field coils
showing (a) the endcap, (b) the perspective, and (c) the side view. The
Central Solenoid (green) is inside the eight windings of the Barrel Toroid
(red). End-Cap Toroids (blue) appear on either side.

the end-cap Toroid, and the central Toroid. The layout of the three parts is shown with a
different color in figure 3.17.

The innermost part is the Central Toroid magnetic system, which is located in the region
of the inner detector. The size of the Central Toroid is 5.3 meters in length and 2.6 meters
in diameter. It can produce a magnetic field of 2.6 T for the inner detector.

The largest part of the magnetic system is the Barrel Toroid, which produces a magnetic
field in the barrel region, mainly for the muon systems. As shown in figure 3.17, it contains
eight large coils surrounding the muon system. Those coils are air-cooled and can produce
a strong magnetic field about 4 T.

At the end-cap region, there is one End-Cap Toroid on both sides. They are designed
to produce a magnetic field for end-cap region detectors. Similar to the Barrel Toroid, each
End-Cap Toroid also contains eight coils. Each End-Cap Toroid is 5 meters long. Its inner
diameter is 1.65 meters and its outer diameter is 10.7 meters. The LHC beam pipe penetrates
through the End-Cap Toroid. The End-Cap Toroids can provide a magnetic of 4.1 T for
the end-cap region detectors. To maintain superconducting status, the End-Cap Toroids are
cooled by the liquid helium.

3.2.6 Trigger system

The ATLAS detector has a trigger system to filter events taken from collisions. The trig-
ger system is designed to have the capability to select interesting events from huge amounts
of data. It selects events based on events’ hit information taken from different systems of
the ATLAS detector (such as inner tracker and calorimeters).
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Figure 3.18: Overview of the architecture of the ATLAS’ trigger system.

Figure 3.18 shows the architecture of the ATLAS trigger system. The trigger system
can be divided into two parts: the Level-1 (L1) trigger and the Level-2 (L2) trigger. The
interaction rate of the ATLAS detector is about 1.2 GHz. The L1 trigger reduces the event
rate from 1.2 GHz to about 100 kHz and the L2 trigger further reduces the event rate to
about 1.2 kHz.

The L1 trigger controls each individual detector (such as ID, the calorimeters, muon
system) to accept or reject signals from one event based on the signatures of particles recorded
by the detector. Events accepted by the L1 trigger will be stored in the readout buffers (ROB)
for further processing.

Events passed through the L1 trigger will be further filtered by the L2 trigger. The L2
trigger selects events from the regions of interest (ROI) based on η−φ information. Selected
events will be stored in the event buffer and then will be recorded as reconstructed events.
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Chapter 4

Physics Objects Reconstruction

This chapter provides a summary of the reconstruction methods used to identify physics
objects in this thesis, which include electrons, muons, jets (including b-tagged jets), and
missing transverse energy. They can be reconstructed from the hits, tracks, and energy
deposits inside the ATLAS detector.

Electrons and muons can be directly identified and reconstructed when they pass through
different parts of the ATLAS detector. However, due to the color confinement of quarks, the
detector can only observe cluster-like energy deposits formed by the hadronization of quarks
and gluons, which are called jets. Since the detectors cannot observe neutrinos directly, the
missing transverse energy is reconstructed as a physics object to represent the transverse
energy carried by undetectable particles.

The object reconstruction process involves three major steps. The first step is the classi-
fication of signals detected by the detectors into different objects, such as electrons and jets.
The second step is the object identification process, which involves algorithms that accept
and reject candidate objects at different levels. The final step is the isolation cut, which
involves algorithms that determine whether the candidate objects are isolated from other
objects and whether they originated directly from the primary or promote interactions.

4.1 Electrons

Electrons produced from proton-proton collisions inside the ATLAS detector will pass
through the Pixel Detector, the Silicon Tracker (SCT), the Transition Radiation Tracker
(TRT), and finally be absorbed in the Electromagnetic Calorimeter (EM). A schematic
illustration of the path of an electron through the detector is shown in figure 4.1.
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4.1.1 Seed-cluster and track reconstruction

The first step of electron reconstruction is the reconstruction of electron candidates by
matching the reconstructed tracks and seed-clusters of electrons in the η × φ space.

second layer

first layer (strips)

presampler

third layer hadronic calorimeter

TRT (73 layers)

SCT
pixels

insertable B-layer

beam spot

beam axis

d0

η

φ

∆η×∆φ = 0.0031×0.098

∆η×∆φ = 0.025×0.0245

∆η×∆φ = 0.05×0.0245

electromagnetic 
calorimeter

Figure 4.1: A schematic illustration of the path of an electron through the
detector. The red trajectory shows the hypothetical path of an electron,
which first traverses the tracking system (pixel detectors, then silicon-strip
detectors, and lastly the TRT) and then enters the electromagnetic calorime-
ter. The dashed red trajectory indicates the path of a photon produced by
the interaction of the electron with the material in the tracking system [66].

The seed-clusters are reconstructed inside the electromagnetic calorimeter. As shown
in figure 4.1, the electromagnetic calorimeter contains the presampler, the first layer, the
second layer, and the third layer. The electromagnetic calorimeter is divided into 200× 256
elements (towers) in the η× φ space and the size of each element is ∆η×∆φ = 0.25× 0.25,
corresponding to the granularity of the second layer of the EM calorimeter. Energy deposited
in each tower by the electron is summed using energy collected in the presampler, the first
layer, the second layer as well as the third layer at the same position in the η × φ space.
Then, a sliding-window algorithm with a window size equal to 3×5 towers in the η×φ space
is used to seed electromagnetic-energy cluster candidates. This process is repeated until this
has been performed for every element in the calorimeter and the center of the sliding window
is moved with a step size 0.025 in either the η or φ direction. The summed transverse energy
in each cluster is required to be higher than 2.5 GeV. If two reconstructed candidates are
close to each other in the η × φ space, the cluster with higher ET will be kept [66].

Tracks are reconstructed by the pixel detector and SCT using ’hit’ in the inner tracker
layers. The pixel detector and SCT assemble clusters from these hits. After that, the tracks

55



will be reconstructed in three steps: pattern recognition, ambiguity resolution, and TRT
extension. The pattern recognition algorithm uses the pion hypothesis for the model of
energy loss from interactions of the particle with the detector material. According to the
hypothesis used in the pattern recognition, track candidates with pT larger than 0.4 GeV are
fitted using the ATLAS Global χ2 Track Fitter. To increase the reconstruction efficiency, a
second fit based on the electron hypothesis will be used to track candidates who failed in
the fit and has small η × φ separation to the EM clusters [66].

After track and seed-cluster are reconstructed, they are matched together to form the
electron candidates if their separation in the η×φ space satisfy −0.10 < q×(φtrack−φcluster) <
0.05 and |ηcluster− ηtrack| < 0.05, where q is the sign of the electric charge of the particle [66].

4.1.2 Identification

After electron candidates are reconstructed, a method called likelihood (LH) identification
is used to assess the probability of a candidate electron being produced by a physical electron
passing through the detector. The main objective is to distinguish prompt electrons (signal)
from other types, such as jets, photon conversion electrons, and hadronic decay electrons
(background). For each candidate electron, fourteen quantities denoted as ~x are measured.
These quantities characterize various properties, including the energy distribution across
calorimeter layers, the impact parameter from the ID, the momentum lost by the track over
time, the TRT response, and the η−φ match between the track and calorimeter cluster. The
probability density functions (PDFs) for these quantities, denoted as ~PS(B), are measured
from simulation data for signal and background, respectively. The likelihood of a candidate
being signal (background) is given in Equation 4.1.

LS(B)(~x) =
14∏
i=1

PS(B),i(xi) (4.1)

The discriminant dL is defined in Equation 4.2 and peaks near one for signal, and zero
for background.

dL = LS
LS + LB

(4.2)

The likelihood (LH) identification of electrons is based on increasingly restrictive thresh-
olds of dL, which define the VeryLoose, Loose(AndBLayer), Medium, and Tight working
points. For this thesis, the LooseAndBLayer and Medium LH identification working points
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are used. Both require at least two-pixel hits and seven total hits in the silicon ID, as well as
at least one-pixel hit in the innermost working pixel layer. For electrons with ET =40 GeV,
these working points have efficiencies of 88% and 80%, respectively.

Electrons reconstructed with a path that travels directly through a broken calorimeter
cell are labeled as BADCLUSELECTRON. These electrons have a poor ET measurement,
and it is beneficial to exclude them from consideration.

4.1.3 Isolation

In this thesis, electrons produced by the signal model are produced promptly from the pri-
mary interaction point (IP), which means the electrons should be isolated from other objects.
After the identification of electrons, an isolation algorithm will be used to determine whether
the electrons are isolated. The activity within a η − φ cone of size ∆R =

√
(∆η)2 + (∆φ)2

is measured using charged tracks and calorimeter energy deposits. A variable cone size of
∆R = min(0.2, 10GeV/pT) is used to count tracks with pT > 1 GeV around the electron. The
pT of the tracks within this cone, excluding the electron’s own tracks, is summed to define
pvarcone20

T . The electron’s tracks are plural to account for bremsstrahlung radiation converting
to secondary electrons, which are counted as part of the electron candidate if their extrapo-
lated track falls within ∆η+ ∆φ = 0.05×0.1 of the primary calorimeter cluster. Meanwhile,
a fixed cone size of ∆R = 0.2 is used to sum up the activity in the calorimeters. First, the
energy from the electron is subtracted within an area of ∆η + ∆φ = 0.125× 0.175. Energy
from pileup effects is also subtracted, and the remaining ET is summed to define Etopocone20

T .
This thesis uses the isolation working point FixedCutLoose. The efficiency of this re-

quirement for prompt electrons is approximately 99%.

4.2 Muons

Muons used in this thesis are reconstructed mainly based on information from the inner
detectors (ID) and the muon spectrometer (MS). The calorimeters also play important roles
in the determination of track parameters, muon energy correction due to energy loss in the
calorimeters, and reconstruction of MS-independent tagging of ID tracks as muon candidates
[67].

4.2.1 Muon track reconstruction

Muon track reconstruction inside the ID is similar to the case of the electron, where
a global χ2 fit on hit clusters in the ID is used. Muon track reconstruction in the MS
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starts from the identification of short straight-line local track segments in the individual
MS station. Then, track segments from different MS stations are combined together to
form the preliminary track candidates and a parabolic trajectory based on a first-order
approximation of the muon bending in the magnetic field. After that, the 3-D muon track
candidates are reconstructed by combining the precision measurement in the bending plane
and measurements of the second coordinate from the trigger detectors. A global χ2 fit of the
muon trajectory is used to remove outlier hits and add hits that are around the trajectory
but are not included in the preliminary track candidates. Finally, the MS track of muon is
reconstructed by a track fit using the updated hit information inside the MS.

Muons can be categorized into five types according to different reconstruction strate-
gies: combined (CB), inside-out combined (IO), muon-spectrometer extrapolated (ME),
segment-tagged (ST), and calorimeter-tagged (CT) muon.

The combined muons are reconstructed by the combined fit using tracks reconstructed
in the MS and ID. Energy loss of muon in the calorimeters is also taken into account.

IO muons are reconstructed using a complementary inside-out algorithm, which extrap-
olates ID tracks to the MS and searches for at least three loosely-aligned MS hits. The ID
track, the energy loss in the calorimeters, and the MS hits are then used in a combined track
fit [67].

The ST muons are identified by requiring that an ID track extrapolated to the MS satisfies
tight angular matching requirements to at least one reconstructed MS segment.

The ME muons are reconstructed using the MS track and the location of the interaction
points when the MS track cannot be matched to the ID track. The ME muon is used to
extend muon acceptance outside the ID coverage.

The CT muons are identified by extrapolating ID tracks through the calorimeters to
search for energy deposits consistent with a minimum-ionizing particle [67].

4.2.2 Identification

After muons are reconstructed, additional requirements are also applied to muons in
different analyses. To satisfy the requirements of various physics analyses, different sets
of requirements on muons of different types are developed. The sets of requirements are
called the Working Points (WP) of muons. Currently, there are three commonly used WPs:
Loose, Medium, Tight, in order of increasing muon purity and decreasing selection efficiency.
There are also two additional WPs designed for analyses focusing on the high pT and low
pT muons: Low-pT and High-pT WP. These working points admit or reject muons based on
several variables: the number of precision stations of a muon, the number of precision hole
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stations, the q/p compatibility, and the φ′.
The precision station is defined as an MS station that the muon left at least three hits in

the MDT or CSC detector, while the precision hole station refers to the MS station that does
not satisfy the requirements of the precision station and misses at least three hits expected
given the muon’s track.

For CB and IO muons, the q/p compatibility is defined as equation 4.3, where q/pID and
q/pMS denotes the ratio of charge and momentum measured in the ID and MS. σ in the
denominator is the corresponding uncertainty [67].

q/p compatibility = |q/pID − q/pMS|√
σ2(q/pID) + σ2(q/pMS)

(4.3)

φ′ is defined as the ratio of the absolute difference between muon pT measured by the ID
and MS over the muon pT measured by the combined fit using tracks from ID and MS, as
shown in equation 4.4 [67].

φ′ = |pT,ID − pT,MS|
pT,CB

(4.4)

Muons used in this thesis are based on the Medium and Loose WPs. The Medium WP is
the baseline muon identification WP for ATLAS physics analyses. In the region covered by
ID (|η| < 2.5) except the region |η| < 0.1, the Medium WP only accepts CB and IO muons
with at least two precision stations. In the region |η| < 0.1, the requirements are loose to
at least one precision station and the number of precision hole stations should be less than
two. To extend muon acceptance outside of the ID coverage, the Medium WP also accepts
ME and SiF muon with at least three precision stations in the region 2.5 < |η| < 2.7. All
muons accepted by the Medium WP are required to satisfy q/p compatibility < 7.

In addition to all muons accepted by the Medium WP, the Loose WP also accepts CT
and ST muons in the region |η| < 0.1. To increase the selection efficiency of low pT muons,
in the region |η| < 1.3 IO muons that pT < 7 GeVand have at least one precision station can
also pass the Loose WP.

4.2.3 Isolation

The muons of interest in this thesis, like electrons, originate promptly from the interaction
point, either through the decay of a vector boson, and are expected to be isolated from other
particles in the event. On the other hand, muons from semi-leptonic decays and hadronic
decays are produced in close proximity to other particles.

To identify the muons of interest, the concept of isolation is quantified by the sum of
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tracks in a variable-sized cone around the muon, and four related variables are defined. The
first variable, pvarcone30

T , is defined as the scalar sum of pT for tracks within a cone size of
∆R = min(0.3, 10GeV/pT). Only tracks with pT > 1 GeV are counted, and the muon’s pT is
excluded. The second and third variables are Etopocone20

T and pcone20
T , which are defined as the

scalar sum of ET or pT, respectively, within a cone size of ∆R = 0.2. The fourth variable,
pneu20

T , is similar to Etopocone20
T , but it sums up neutral ET within a cone size of ∆R = 0.2.

These variables are used to define the three isolation working points in this thesis. The
first, FixedCutTightTrackOnly, simply requires pvarcone30

T /pT < 0.06. The second, Fixed-
CutPflowLoose, requires both (pvarcone30

T +0.4pneu20
T )/pT < 0.16 and (pcone20

T +0.4pneu20
T )/pT <

0.16. The third, FixedCutLoose, requires both pvarcone30
T /pT < 0.15 and Etopocone20

T /pT < 0.30.
While the efficiency of these isolation requirements varies with pT, in general, fewer than 1%
of prompt muons are lost [67].

4.2.4 Bad Muon Veto

In the high-pT regime, it becomes difficult to accurately reconstruct muons due to the
small bending radius in the magnetic field. A criteria named Bad Muon Veto (BMV) is
used to address this by ignoring poorly reconstructed muons in the tails of the relative pT

resolution distributions, σpT/pT, given in Equation 4.5.

σ(p)
p

= ( p0

pT
⊕ p1 ⊕ p2 × pT) (4.5)

The parameters p0, p1, and p2 are measured for the MS and ID in different η regions. The
first term describes uncertainty in energy loss as a muon travels through detector material
and becomes less impactful at higher pT. The second term covers multiple scattering and
irregularities in the magnetic field. The third term dominates at high-pT and describes the
intrinsic spatial resolution of the muon detectors, including the accuracy of their alignment
[67]. A cut is made on the relative uncertainty:

σ(q/p)
(q/p) < C(pT) · σexprel . (4.6)

Here C(pT) is a pT-dependent coefficient which is equal to 2.5 when pT < 1 TeV and decreases
linearly above this. The application of the BMV reduces efficiency by 7% for high-pT muons,
while removing poorly reconstructed muons that should not be considered for analysis.
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4.3 Jets

In the observation of electroweak ZZ production in the four-lepton final states, The initial
state vector bosons are radiated from quarks and then scatter into another pair of vector
bosons in the final state. The VBS final states will have two back-to-back quarks with large
angular separation. Quarks traveling through the ATLAS detector will produce narrow cones
of hadrons, gluons, and other particles by hadronic interactions, which are called jets. The
two back-to-back jets are key features of VBS events and are important to distinguish the
VBS process and other processes.

4.3.1 Anti-kt jet clustering algorithm

Jets used in this thesis is based on the anti-kt jet clustering algorithm [68]. kt in its names
donates the pT of jets. The algorithm starts with a list of topo-clusters. Topo-clusters are the
short name for topologically-grouped noise-suppressed clusters of calorimeter cells, which can
be called protojets. The topo-clusters are constructed from seed cells with energy more than
four times the sum of electronic and pile-up noise. In this thesis, topo-clusters are calibrated
by the electromagnetic (EM) scale so the reconstructed jets are called the EMTopo jets.

The anti-kt jet clustering algorithm reconstructs jets by recursively merging closet pro-
tojets together until there is no protojet left. After all protojets are merged, the list of jets
will be created. The detailed reconstruction steps are shown in algorithm 1 [69].

Algorithm 1 Jet clustering algorithm
Start with the initial list of protojets.
For protojet i in the list
repeat
Define the self distance as diB = k2p

ti of the protojet i.
For another protojet j in the list, define the distance to protojet i as dij =
min(k2p

ti , k
2p
tj )∆2

ij

R2 .
Find the smallest of all dij including diB as dmin.
if dij is the dmin then
Merge protojet i and j together as a new protojet k. pT of the new protojet equals
ktk = kti + ktj.

else if diB is the dmin then
Protojet i is not mergable. Remove it from the list of protojets and add it to the list
of jets.

end if
until No more protojet exist and finish constructing the list of jets.

In the algorithm 1, ∆ij denotes the angular separation between protojet i and j, which is
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shown in equation 4.7. yi and φi are respectively the rapidity and azimuth of protojet i [69].

∆ij = (yi − yj)2 + (φi − φj)2 (4.7)

When two protojets i and j are merged as a new protojet k, the rapidity yk and azimuth
φk of the merged protojet k equals the weighted average of values of protojets i and j, which
is shown in equation 4.8.

yk = kti × yi + ktj × yj
ktk

φk = kti × φi + ktj × φj
ktk

(4.8)

Figure 4.2: A sample parton-level event, together with many random soft
“ghosts”, clustered with four different jets algorithms, illustrating the “ac-
tive” catchment areas of the resulting hard jets. For kt and Cam/Aachen
the detailed shapes are in part determined by the specific set of ghosts used
and change when the ghosts are modified [68].

The parameter R used in the jet clustering algorithm is analogous to the cone size param-
eter. In practice, the value of R should be of order 1. In this thesis, jets are reconstructed
using the jet clustering algorithm with R = 0.4. The jet clustering algorithm also depends
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on the parameter p. For p = 1, the jet clustering algorithm is the inclusive kt algorithm.
The case of p = 0 corresponds to the inclusive Cambridge/Aachen algorithm. The jet clus-
tering algorithm used in this thesis is based on p = −1, which denotes the name of anti-kt.
The shape of the jet reconstructed by the anti-kt algorithm is not influenced by soft ra-
diation [68]. Examples of reconstructed jet shapes using the jet clustering algorithm with
different p values are shown in figure 4.2.

4.3.2 B-tagging jet

Jets originating from bottom quarks and the decay of B-hadrons, known as b-jets. The
b-jets are important to physics analysis related to the top quark since t → b + W has the
highest branching ratio in the top quark’s decay. In this thesis, b-jets are used to define
control regions to estimate backgrounds from tt̄ productions. To distinguish b-jets from
other light flavor jets, a multivariate discriminant, MV2c10, is used. The MV2 algorithm
combines a gradient-boosted decision tree (GBDT) [70] and other low-level algorithms based
on track information of jets. The GBDT uses the kinematic of jets as input variables and is
trained on the hybrid tt̄ + Z ′ sample [71]. An identification that tags 85% of b-jets defines
the “b-tag working point” that is useful for rejecting events containing b-jets and is used in
this thesis.

4.3.3 Jet vertex tagger

Proton-proton collisions at the LHC result in not only the hard-scatter interaction of
interest but also additional interactions, which are referred to as pile-up interactions. The
pile-up events will introduce additional transverse energy flow, which will be subtracted from
the signal interaction of interest. In the jet reconstruction process, the Local fluctuations
in the pileup activity, however, may result in spurious pileup jets. To reduce the effect of
pile-up jets, a multivariate discriminant called the jet-vertex-tagger (JVT) is used. The JVT
is constructed using the k-nearest neighbor (KNN) algorithm in the 2-D RpT and corrected-
jet-vertex-fraction (corrJVF) space [72]. RpT is defined as the ratio of scalar pT sum of tracks
associated with the jet and the primary interaction vertex over the calibrated jet pT, which
is shown in equation 4.9.

RpT =
∑
k p

trkk
T (PV0)
pjet
T

(4.9)

The definition of corrected jet-vertex-fraction is similar to RpT shown in equation 4.9,
while the denominator of corrJVT replaced by the scalar sum pT of all associated jets with
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correction for average scalar sum pT to pileup tracks associated with a jet, which is shown
in equation 4.10. The term pPU

T = ∑
n≥1

∑
l p

trkl
T (PVn) represents the scalar sum pT of tracks

associated with the jet but originate from any of the pileup interaction vertices [72].

corrJVF =
∑
k p

trkk
T (PV0)∑

l p
trkl
T (PV0) +

∑
n≥1

∑
l
p

trkl
T (PVn)

k·nPU
trk

(4.10)

For each point in the 2-D RpT -corrJVF space, the ratio of the number of hard-scatter
(signal) jets over the number of hard-scatter and pileup jets found in the local neighborhood
around the point using the training sample equals the relative probability for a jet at that
point to be the hard-scatter jet. For each point, the local neighborhood is defined as the 100
closet neighbors around the point based on the 2-D Euclidean distance [72].

In this thesis, a cut on the JVT is used to select jets from the hard-scatter vertex.

4.4 Missing transverse momentum

Due to the properties of neutrinos, they rarely interact with the materials of the ATLAS
detector and cannot be directly measured and reconstructed. However, in the center-of-mass
(COM) frame, the total pT of the initial state is almost zero, since two proton beams collide
with each other head-on. Therefore, the sum of pT of all particles produced by the collision
should also be close to zero. As a result, the negative sum of pT of all produced objects
equals the sum of pT carried by neutrinos and other undetectable particles, if any. This
quantity is known as the missing transverse momentum Emiss

T . To obtain the total measured
pT of the event, the transverse momenta of muons, electrons, and the remaining tracks in
the ID are summed.

Since this thesis focuses on the four-lepton final state produced by the Z (Z∗ and Z’)
decay, there should be no neutrinos produced. The amount of Emiss

T should be close to zero
for the ZZ → 4l events. Although the Emiss

T is not used in the signal region selections, the
Emiss
T is useful to define control regions to estimate the non-prompt lepton backgrounds.
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Chapter 5

Commonly used Statistical Methods
in Particle Physics

This chapter introduces statistics methods used in this thesis, including statistical fitting
methods used to calculate limit and significance and multivariate analysis methods used to
do event classifications.

5.1 Statistical hypothesis testing

In particle physics, theories need to be examined by real data using a statistical method
called statistical hypothesis testing, which is a method of statistical inference to decide
whether the real data support a certain hypothesis. In particle physics, we often have a
null hypothesis, normally the background-only model, in which the interaction or theory
doesn’t exist. The null hypothesis is often denoted as H0. In contrast, the hypothesis in
which the interaction or model exists is called the alternative hypothesis, the signal-plus-
background model. The alternative hypothesis can be denoted as H1 or Ha. Hypothesis
testing is designed to calculate the string of evidence against the null hypothesis.

5.1.1 The p-value

The p-value is an important concept in statistical hypothesis testing. The P-value de-
scribes the probability of getting a test result at least as extreme as the observed result under
the null hypothesis. If the p-value is very small using observed data, the null hypothesis is
very unlikely to be correct. Normally the p-value can be gotten by calculating the portion
of the area of results as extreme as observed data under the probability density distribu-
tion following the null hypothesis. Assume the number of events in one experiment should
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observe an unknown distribution T under the null hypothesis and the observed number of
events is t, the p-value is:

p = Pr(T ≥ t|H0) for the one-sided right-tail test

p = Pr(T ≤ t|H0) for the one-sided left-tail test

p = 2minPr(T ≤ t|H0), P r(T ≥ t|H0) for the two-sided test

(5.1)

5.1.2 Statistical significance

Followed by the definition of p-value, the statistical significance level, often denoted as
alpha, describes the level of probability that the null hypothesis is true. In particle physics,
the statistical significance level is described using multiples of the standard deviation sigma
σ of the normal distribution. Two sigmas, 2σ means the p-value of the null hypothesis equals
5%. Normally we use a much stricter level in particle physics. Under a normal distribution,
3σ, p-value equals 2.7 × 10−3, means the evidence that the null hypothesis is not true is
found and 5σ, p-value equals 5.7× 10−7 means that the null hypothesis is proved incorrect,
which physicists will call a discovery.

5.1.3 Likelihood function

In statistics, the likelihood function represents the probability a hypothesis is correct
conditional on observed data. In particle physics experiments, the number of events in
one experiment normally follows the Poisson distribution. To measure the strength of one
interaction, normally a factor denoted as µ, which is called the signal strength, will be
applied to the number of signal events. The parameter µ is also called the parameter of
interest since the goal is to find the best µ value fitting observed data. µ = 0 corresponds to
the background-only model and a positive µ value corresponds to signal in addition to the
background. There are also other parameters that will affect the likelihood function such as
systematic uncertainties. Those parameters are called the nuisance parameters and are often
denoted as θ. The likelihood function as a function of µ and θ can be written as equation
5.2.

L(µ, θ|data) =
N∑
j=1

(µsj + bj)nj
nj!

e−(µsj+bj) (5.2)

In equation 5.2, sj represents a number of signal events and bj represents the number of
background events at each bin. nj is the number of events observed in the experiment at bin
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j. The µ value can be calculated by maximizing the value of the likelihood function based
on the observed data. Normally, in addition to the region where the µ value will be directly
calculated, several regions will also be set to constrain the scale factor on backgrounds. Those
regions are called control regions. Including the control region, the likelihood function will
become equation 5.3.

L(µ, θ|data) =
N∑
j=1

(µsj + bj)nj
nj!

e−(µsj+bj)
M∑
k=1

umkk
mk!

e−mk (5.3)

mk is the number of background events predicted by theory and uk is the observed number
of events at each bin.

5.1.4 The profile likelihood ratio and CLs method

In experimental particle physics, the profile likelihood ratio [73] and CLs method [74] are
commonly used to set upper limits or significance of discovery of new signals. The upper
limit means the largest intrinsic intensity that the source can have and yet have a given
probability of remaining undetected. The statistical upper limit can be calculated using
the CLs method based on the likelihood ratio of the alternative and null hypotheses. For
example, if the observed number of events is x, the likelihood under the null hypothesis is
L(H0|x) and the likelihood under the alternative hypothesis is L(H1|x). The likelihood ratio
of the alternative hypothesis over the null hypothesis L(H1|x)

L(H0|x) , which can be represented as
Λ, represents the level that observed data x prefers the alternative hypothesis compared to
the null hypothesis. The negative log transformation of the likelihood ratio is the q-value in
statistics, which is shown in equation 5.4.

Λ = L(H1|x)
L(H0|x)

q = −2lnΛ
(5.4)

As described in the previous section, the likelihood function is a function of the signal
strength µ and nuisance parameters θ, and the likelihood ratio Λ can be written as a function
of µ since only µ is the parameter of interest, as shown in equation 5.5.

Λ(µ) = L(µ, ˆ̂
θµ|n)

L(µ̂, θ̂|n)
(5.5)

In the denominator of equation 5.5, µ̂ and θ̂ are values of µ and θ that maximize the value
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of likelihood function with all parameters floating, which can be called the unconditional
maximum-likelihood estimator. In the numerator, ˆ̂

θ means the value of θ that maximizes
the value of L for a fixed value of µ. ˆ̂

θµ is also called the conditional maximum-likelihood
estimator of θ. All of those values can be set by statistical fitting given the number of
predicted or observed the number of events n. The q value as a function of the signal
strength µ then can be written as equation 5.6.

qµ =


−2lnΛ(µ) = −2lnL(µ, ˆ̂θµ|n)

L(µ̂,θ̂|n) µ̂ ≤ µ

0 µ̂ > µ
(5.6)

In statistics Wilks’ theorem [75], the distribution of 2lnL(H1|x)
L(H0|x) , or −2lnL(H0|x)

L(H1|x) , asymp-
totically approaches the chi-squared (χ2) distribution when the sample size approaches∞ if
x follows hypothesis H0. Degree freedom of the χ2 distribution equals the difference between
parameter spaces of the likelihood function on the numerator and denominator (df1 − df0).
Since in equation 5.5, the difference of parameter space is only the signal strength µ, the
distribution of Λ follows a chi-square distribution with degree of freedom (k) equals 1. The
relationship between the value of qu and the significance level can be found in table 5.1.

Table 5.1: Pr(q ≥ qµ) and qµ value under chi-square distribution with k=1

Pr(q ≥ qµ) 0.1 0.05 0.025 0.01
value of qµ 2.71 3.84 5.02 6.63

The probability that the Q value is larger than the observed Q value under the s+b
model is called the confidence level of the s+b model (CLs+b). In contrast, the probability
that the Q value is larger than the observed Q value under the b-only model is called the
confidence level of the b-only model (CLb). Then the CLs is defined in equation 5.7

CLs+b = Pr(qµ ≥ qobsµ |s+ b)

CLb = Pr(q0 ≥ qobs0 |b)

CLs = CLs+b
CLb

(5.7)

If the CLs < 5%, the s+b hypothesis can be rejected at the 95% confident level. For new
physics, the signal strength is normally unknown. In this case, the 95% upper limit on the
interaction means that the value of signal strength will let the s+b hypothesis be rejected
at the 95% confident level. The 95% upper limit can be calculated using a likelihood scan.
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The likelihood scan means value of µ will be continuously scanned until the CLs < 5% and
at that time the corresponding value of µ is the 95% upper limit on the signal strength.
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Figure 5.1: Likelihood scan plot under the background-only model. The
value of Y-axis equals Λ

2 . The corresponding value of µ when −∆ln(L)
equals 1.92 (the 2σ dash line) is the 95% upper limit on signal strength µ.

The significance of the discovery of new signals means the confidence level that the
background-only model can be rejected. Since µ = 0 corresponds to the background-only
model, we can calculate the Q value q0 when µ = 0. When CLb < 5.7× 10−7, the derivation
between data and background-only model equals 5σ and we can claim a 5σ discovery of the
signal.

5.2 Multivariate analysis methods

Nowadays, more and more multivariate analysis methods are used in experimental high-
energy physics. In this thesis, two different MVA methods are used in the two studies:
boosted decision tree and neural network. This sector provides a brief introduction to the
MVA methods used in this thesis.

5.2.1 Boosted decision tree

Decision tree

The decision tree [76] is a tree-based method that is used to classify different objects
or regress different numerical values and it is a non-parametric supervised learning method.
Non-parametric means the decision tree model doesn’t contain any learnable parameters and

69



the model does not make explicit assumptions about the functional form of p(x|Y = ck) or
P (Y = ck|X = x). Supervised learning means the model is trained on labeled data.

The decision tree methods recursively split the input space into rectangular boxes. At
each step, the decision tree asks a question about one specific variable and split all events
from the previous selection into its left or right leaf node. When the splitting stops, the
node is called the leaf node of the decision tree, and each left node will be labeled with its
majority class (classification tree) or numerical value (regression tree). The optimal goal is
that each box should contain nodes mostly from the same class. When the construction of
the decision tree is finished, each event will be labeled with the label of the box it falls into.
Since each split will split the input into two rectangular, each split of the decision is linear.
The decision tree model is a combination of many different splits and can have very complex
decision boundaries so it is a non-linear model.

At each node, the decision tree will greedily choose the best split. Quality is defined as
the decrease of impurity or loss. The most commonly used impurity measurements are the
Gini index and entropy. The definition of the Gini index and entropy is:

Gini(m) =
n∑
k=1

pk(m)(1− pk(m)

Entropy(m) = −
n∑
k=1

pk(m)log(pk(m))
(5.8)

where pk(m) refers to the purity of class k in node m:

pk(m) = 1
nm

∑
xi∈Rm

I(yi = ck) (5.9)

Then the quality of the split is defined as (the impurity is represented by l):

Qsplit = lparent − ( Nleft

Nparent
lleft + Nright

Nparent
lright) (5.10)

The decision tree will maximize the decrease of impurity at each split, which means it is
a greedy method without global optimization.

The biggest advantage of the decision tree method is that it is easy to construct and
easy to interpret. The tree model can be visualized to show the variables used in each split.
But, as mentioned before, the decision tree is a greedy method and lacks global optimization
ability. What’s more, the ancestor node’s selection has a big impact on its descendant
nodes, which means if the splits of the first few nodes are biased due to noisy events the
tree structure will be completely different. In another word, the simple decision tree model
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is not stable.

Boosting methods

To solve the disadvantages of the simple decision tree model discussed in the previous
section, three different methods are proposed: bagging, random forest, and boosting.

Bagging means fitting many different trees and each tree is trained on bootstrapped
training data. The classification result is chosen by using a majority vote from all trees. By
using different bootstrap training data for each tree, the variance of the model is reduced.

The random forest method is based on bagging. The random forest method not only uses
bootstrapped training data for each tree but also uses a sampled subset of training variables
for each tree. By using a subset of training variables for each tree, the random forest method
further reduces model variance compared with the bagging method.

The main idea of boosting methods is fitting many different trees and each tree is based
on the fitting result from its previous rounds. The most commonly used boosting methods
are Ada-boost and gradient-based boosting methods. In this thesis, gradient boost decision
tree [70] and XGBoost [77] are used so that this sub-section will focus on gradient-based
boosting methods.

In a nutshell, the main idea behind gradient-based boosting methods is to find the global
minimum points of the loss function. The most commonly used optimization method for
finding minimum points of a function is gradient descent. The idea is to take repeated steps
in the opposite direction of the gradient (or approximate gradient) of the function at the
current point because this is the direction of the steepest descent. If θ is a parameter of
one function that needs to be updated and θt means the parameter at step t. At step t, the
parameter θ will be updated based on:

θt = θt−1 − α · g

g = ∂f(x, θt−1)
∂θt−1

(5.11)

where α is learning rate that controls the speed of parameter θ moving towards minimum
point and g is the gradient of objective function f(x, θ). Continuously updating parameters
following the direction of the negative gradient the objective function will reach the local or
global minimum point.

The tree construction policy of the gradient boost decision tree method is based on
gradient descent. If xi refers to input variable of sample i and yi refers to the label of sample
i, the tree construction method is:
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Algorithm 2 Gradient Boost Decision Tree
Initialize the first tree f0, the growth policy is the same as decision tree
From t = 1 to T ,
repeat
At step t, calculate the gradient of each sample from previous step:ỹi = −∂L(yi,Ft−1(x))

∂Ft−1(x)
Fit the t th tree: ω∗ = argminω

∑N
i=1(ỹi − ft(xi, ω))2

Find the best learning rate: ρ∗ = argminρ
∑N
i=1 L(yi, Ft−1(xi) + ρ · ft(xi)

Add the t th tree: Ft = Ft−1 + ρ · ft
until Loss doesn’t decrease or reach the maximum step T

The gradient boost model is based on the regression tree, which means each node’s score
is not set by a majority vote. Since for each tree, the objective function is the negative loss
of model from the last step, each node’s score equals the weighted average of gradients of all
samples in the current node, which is shown in equation 5.12:

ωk =
∑
i∈nk gi
nk

(5.12)

where k refers to node k and nk is all samples that fall into node k.
Similar to the single classification tree, the node split of each tree in the boost decision

tree is also a greedy method and its goal is to minimize the loss function. Assume gi is the
negative loss of sample xi from model Ft−1(xi, ω) at step t − 1, the objective function will
be (i refers to all events in the parent node that need to be split):

mins,d
∑
i∈L

(gi − ḡL)2 +
∑
i∈R

(gi − ḡR)2 −
∑
∀gi

(gi − ḡ)2

=
∑
i∈L
g2
i − nL · ḡ2

L +
∑
i∈R

g2
i − nR · ḡ2

R − (
∑
∀gi
g2
i − n · ḡ2)

(5.13)

Remove constant values from equation 5.13, the equation can be written as:

maxs,d nL · ḡ2
L + nR · ḡ2

R

= nL · (
1
nL

∑
i∈L

gi)2 + nR · (
1
nR

∑
i∈R

gi)2

= (∑i∈L gi)2

nL
+ (∑i∈R gi)2

nR

(5.14)

In short, when splitting a node, GBDT will choose a variable split that can maximize
the average sum square of sample loss in the new left and right child node.

72



The final predicted value of the gradient boost decision tree model is a weighted sum of
values from all trees.

The gradient boost decision has good performance on many problems in different areas.
This method is widely used in both high-energy physics analysis and the industry world to
solve real-world problems. The Facebook company built a very successful ads recommen-
dation system based on the gradient-boosted decision tree and logistic regression and the
model provided a huge amount of revenue to the company.

The gradient boost decision tree uses the gradient descent method and only the first-
order gradient is used in GBDT. XGBoost is a popular gradient-based decision tree model
that uses both the first and second-order gradient. The parameter updating method that
XGBoost used is the Newton method. In the Newton method, each parameter is not updated
simply towards the direction of the negative gradient but uses the first-order and second-
order gradient to find the updating direction. Another difference between the GBDT and
XGBoost methods is that the XGBoost method includes the L2 regulation term into its loss
function that can control tree size and node value in order to reduce the model’s variance.

Algorithm 3 Newton method
At iteration t-1, the model parameter is θt−1
repeat
The second Taylor expansion of loss function L: L(θt) ≈ L(θt−1) + L′(θt−1)∆θ +
L′′(θt−1)∆θ2

2 .
Use g and h to represent first-order and second-order gradient: L(θt) ≈ L(θt−1)+g∆θ+
h∆θ2

2 .
Minimize g∆θ + h∆θ2

2 .

Let: ∂(g∆θ+h∆θ2
2 )

∂∆θ = 0, ∆θ = − g
h
.

Update model parameter: θt = θt−1 − g
h
.

until Reach the maximum iteration T

In contrast to the gradient-boosted decision tree method, node values of the XGBoost tree
are calculated directly using the Newton method. The objective function of the XGBoost is
the sum of the loss function and regulation terms:

obj(θ) =
n∑
i=1

l(yi, ŷi) +
K∑
k=1

Ω(fk) (5.15)

where Ω is the regulation term. According to the Newton method, the second-order Tyler
expansion of loss function will be used:

obj(θ) =
n∑
i=1

[l(yi, ŷt−1
i ) + gift(xi) + 1

2hif
2
t (xi)] +

K∑
k=1

Ω(fk) (5.16)
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In equation 5.16, the sum of the loss function is across all samples. This equation can be
changed by summing up all samples in the same node first. The regularization term includes
the sum of the square of all leaves’ score, which is similar to the L2 regularization, and the
number of nodes in each tree (T in equation 5.17), which controls the complexity of each
tree. The equation will become:

objt ≈
n∑
i=1

[giwq(xi) + 1
2hiw

2
q(xi)] + γT + 1

2λ
T∑
j=1

w2
j

=
T∑
j=1

[(
∑
i∈Ij

gi)wj + 1
2(
∑
i∈Ij

hi + λ)w2
j ] + γT

where Ij means the set of samples in jth node of the tree. The equation can be further
simplified by using Ij = {i|q(xi) = j}, Gj = ∑

i∈Ij gi and Hj = ∑
i∈Ij hi:

objt =
T∑
j=1

[Gjwj + 1
2(Hj + λ)w2

j ] + γT (5.17)

Based on the Newton method, the best score of node j will be w∗j = − Gj
Hj+λ , while in the

GBDT method, the score is: w∗j = −Gj
nj
. The optimized objective function is:

obj∗ = −1
2

T∑
j=1

G2
j

Hj + λ
+ γT (5.18)

When choosing a new split, gain from the split is the change of objective function and it
is defined as:

Gain = 1
2[ G2

L

HL + λ
+ G2

R

HR + λ
− (GL +GR)2

HL +HR + λ
]− γ (5.19)

At each node, the split that can achieve the maximum gain will be chosen. Similar to
the GBDT method, the final predicted value of the gradient boost decision tree model is a
weighted sum of values from all trees.

5.2.2 Artificial neural network

The Artificial Neural Network (ANN), also called a Neural Network (NN), is a multi-
variate analysis model inspired by the human brain [78]. The Neural Network is based on a
collection of connected artificial neurons. A typical neural network contains an input layer,
hidden layers, and an output layer, as shown in figure 5.2

Figure 5.2 shows a fully connected neural network, which means all nodes between two
neighbor layers are connected together. The first layer is called the input layer, which
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(a)

Figure 5.2: Structure of fully connected Artificial Neural Network (ANN)
with one hidden layer1.

normally transforms low-dimensional input features into high-dimensional features. The last
layer is called the output layer, which is used to output scores for different classes (normally
on output node represents the score of one class). Since a fully connected neural network
is formed by stacked layers, fully connected neural work can also be called a Multi-Layered
Perceptron (MLP).

The transformation inside each layer is shown in equation 5.20, which is also known as
the forward propagation.

zl = wTl · al−1 + b

al = σ(zl)
(5.20)

in which wl refers to the weight matrix of the lth layer and b is the bias term of the l the
layer. In the fully connected neural network, each layer contains the weight matrix, bias
term, and an activation function. The activation function is very important because it will
do a non-linear transformation on the outputs. Without activation functions, the neural
network is only a linear function no matter how many hidden layers it has. In equation
5.20, σ(zl) refers to the activation function and al refers to the output of lth layer after the
activation function.

Since the purpose of the activation function is to do non-linear transformation, there are
many different activation functions that can be used in the neural network. The equation
shows the four most commonly used activation functions and their plots are shown in figure
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5.3.

Sigmoid: σ(x) = 1
1 + e−x

tanh: σ(x) = ex − e−x

ex + e−x

ReLU: σ(x) =

 0 if x ≤ 0
x if x > 0

Leaky ReLU: σ(x) =

 0.01x if x ≤ 0
x if x > 0

(5.21)

The ReLU activation function is the most commonly used activation function in hidden
layers of neural works and the biggest advantage is the high speed. Leaky ReLU is a revised
version of ReLU, which is used to solve the gradient vanishing problem of ReLU. The sigmoid
function is often used in the output layer of a neural network and it can transform the input’s
range into [0, 1], which can be directly used as the probability of binary class classification.
The output. The tanh function is often used in the recurrent neural network (RNN), which
is used on time-series data.

(a) (b)

(c) (d)

Figure 5.3: Commonly used activation functions in the neural network. (a):
Sigmoid function. (b): Hyperbolic tangent (tanh) function. (c): Rectified
linear unit (ReLU) function [79]. (d): Leaky rectified linear unit (Leaky
ReLU) function [80].

As shown in equation 5.20, each layer contains a weight matrix w and bias term b, which
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are learnable parameters of a neural network. The training process of the neural network
is updating those parameters. The basic idea behind updating parameters of the neural
network is gradient descent, which is shown in equation 5.11. The first step is to calculate
the gradient of each parameter, which is done by back-propagation (BP) [81]. The back-
propagation calculates the gradient of each layer by using the chain rule, which computes the
gradient of one layer each time and iterates backward to the last layer. Gradient propagation
process between two neighbor layers (layer l and layer l + 1) is shown in equation:

∂L(ŷ, y)
∂wl

= 1
n
δl · a(l−1)T

δl = w(l+1)T · δl+1 ∗ σ′l(zl)
(5.22)

in which L(ŷ, y) is the loss of the neural network corresponding to prediction and ground
truth. n refers to the number of samples in each batch. During the training process of the
neural network, each layer’s gradient is calculated by back-propagation and those parameters
are updated by the optimizer based on gradients.

As shown in equation 5.11, gradient descent is one of the commonly used optimizers in
the neural network. Gradient descent will update each parameter towards the direction of
its negative gradient and the speed is controlled by a constant called learning rate. In this
way, the loss of the neural network will move toward the local or global minimum point.
This process is shown in figure 5.4.

(a)

Figure 5.4: Illustration of gradient descent (GD) process used in the neural
network. 2

In the normal gradient descent, the gradient refers to the average of all samples’ gradients.
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In practice, calculating gradients of all samples requires loss of computing source, especially
for large-size neural networks, and loss of input samples. There are two variants of gradient
descent: stochastic gradient descent (SGD) and mini-batch gradient descent. The stochastic
gradient descent (SGD) method randomly chooses one sample from the input and calculates
gradients based on it. SGD method can reduce the time cost of gradient descent significantly
since each time only one sample is used. The disadvantage of SGD is that updates taken
towards the minimum point are noisy, which can often lead the gradient descent into other
directions and it may take more steps to reach the minimum point. As for the mini-batch
gradient descent, the gradient is calculated using a subset of all input samples, which is
also called a batch. The batch size is often chosen as 32, 64, 128, etc, which is due to the
architecture of modern GPUs. Compare with SGD, mini-batch gradient descent avoids noisy
updates in SGD and it is faster than gradient descent.

Simple gradient descent optimizers have some disadvantages. One disadvantage is it is
hard for gradient descent to navigate ravines. Ravines mean areas or point the absolute value
of gradient in one direction is much larger or smaller than gradients in other directions. If
the gradients are visualized as a counterplot, ravines mean an area the surface curves much
deeper in one direction than in other directions. In these areas, the gradient descent method
oscillates around the ravine and may not be able to reach the optimal point.

(a)

Figure 5.5: Gradient descent without momentum (left) and with momentum
(right). Momentum reduces oscillations in the vertical direction. 3

Momentum is a method that can help the gradient descent method to quickly pass
through ravines and reduce oscillations [81]. This method borrows the concept of "mo-
mentum" from physics. As we know, in physics momentum is defined as:

~p = m~v (5.23)

in which m refers to object’s mass and ~v refers to the velocity. If a ball is pushed down a
hill, the ball will accelerate while rolling down and the ball will also accumulate momentum.
If the momentum is large enough the ball can easily pass through ravines or bumps. The
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math format of gradient descent of momentum is:

mt = γmt−1 + η∇θL(θt−1)

θt = θt−1 −mt

(5.24)

in which m is called velocity, which is the accumulation of gradients. Parameter θ is updated
with negative velocity.

As mentioned before, the gradient descent method has one hyper-parameter: the learning
rate, which controls the scale of each update to the parameter θ. The choice of learning rate
will affect the performance of the neural network. Generally speaking, a larger learning rate
will let loss decreases faster but loss may not be able to reach the minimum point. A smaller
learning rate can guarantee loss reaches the minimum point but it will take a longer time.
With a constant learning rate, the loss will be noisy when close to the minimum point. In
this case, learning rate decay is a commonly used technique to choose different learning rates
at different training stages. Equation 5.25 shows one commonly used learning rate decay
method. n refers to epoch number and α0 is the initial learning rate.

αn = 1
1 + η · n

· α0 (5.25)

The learning rate decay method provides different learning rates for different epochs,
which makes loss decrease fast in the first few epochs and makes loss decrease slowly when
close to the minimum point. Learning rate decay uses the same learning rate in different
directions. From the counterplots shown in figure 5.5, it is clear that larger learning rates
should be used in directions with smaller gradients and smaller learning rates should be
applied to directions with larger gradients. In this case, oscillation can be reduced and loss
can decrease fast along directions with smaller gradients. One optimizer that solves this
problem is the Root Mean Square Propagation (RMSProp).

The goal of RMSProp is to accelerate the optimization process. In other words, the
RMSProp algorithm is designed to speed up the loss decrease and reduce oscillation in
different directions. The math format of RMSProp is:

Gt = (1− β)Gt−1 + βgt · gt

θt = θt−1 −
α√
Gt + ε

gt
(5.26)

In equation 5.26, Gt is the running average of the square of gradients at step t, which is
also called the second order gradient of the neural network, and gt is the gradient at step
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t. By introducing Gt, RMSProp will update parameters slower in directions with larger
gradients and update parameters faster in directions with smaller gradients.

The RMSProp algorithm introduces the concept of the second-order gradient of the neural
network. The algorithm that combines momentum and the second-order gradient together is
called Adam [82]. Nowadays Adam along with the gradient descent algorithm are the most
commonly used optimization algorithms. The math format of Adam is shown in:

mt = (1− β1)mt−1 + β1gt

Gt = (1− β2)Gt−1 + β2gt · gt

m̂t = mt

1− βt1
, Ĝt = Gt

1− βt2
θt = θt−1 −

α√
Ĝt + ε

m̂t

(5.27)

In equation 5.27, m̂t and Ĝt are corrected first-order momentum and second-order mo-
mentum. Their denominator is used to cancel bias in the first few updates.

The choice between using gradient descent with momentum or Adam as optimizer for
the neural network is tricky in practice. Gradient descent with momentum with fine-tuned
learning rate can achieve a better result than Adam, while Adam can let loss decrease faster.
Based on this fact, an algorithm, Switching from Adam to SGD (SWTAS), combines these
two algorithms together. The SWATS algorithm uses Adam in the first few epochs and then
switches to the gradient descent with momentum. The switching point and learning rate of
GD are determined by the SWTAS algorithm to get the best performance.

There are other optimization algorithms that can be used in neural network training,
such as Adagrad, Nesterov Accelerated Gradient, AdaDelta, etc. Since in this thesis only
gradient descent and Adam are used, other optimizers won’t be introduced in this thesis.

Algorithm 4 Neural Network
Initialize weights of each layer in the neural network, normalize input features
repeat
Forward propagation and calculate the loss on the training dataset.
Calculate gradients of each layer’s weights based on backward propagation.
Update each layer’s weights using optimization algorithms.
Calculate loss on the validation dataset.

until Reach the maximum iteration T or loss stops decreasing.

As the number of layers of the neural network increases, gradient vanishing or gradient
explosion may happen. From the forward propagation equation 5.20 and backward propaga-
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tion 5.22, the output score or gradient will time other matrices and numbers when passing
through one layer. Suppose the weight is a very large or very smaller number. In that
case, the score and gradient will become infinite or zero after passing through several lay-
ers, which is called the gradient explosion or gradient vanishing. The float number used in
modern computers ranges from 1.2 × 10−38 to 3.4 × 1038. If a number is very large it will
become ’Nan’ and the neural network can not continue the training process. If the gradient
becomes zero it will get stuck at a local point or the loss decrease will become very slow. To
avoid this problem, the output of each layer needs to be controlled in a certain range, which
introduces an algorithm called batch normalization [83]. Batch normalization will control
inputs to each layer’s activation function in a certain range, such as [0, 1], to make sure
the gradient of activation function and output is in a reasonable range. Using the Sigmoid
activation function as an example. From figure 5.3, the Sigmoid function is close to a linear
function when x is in a range of [0, 1]. When |x| becomes larger, the gradient of σ(x) is close
to zero. To make sure the gradient of σ(x) does not vanish during the backward propagation,
x needed to be controlled in the linear region of σ(x), which means |x| ∈ [0, 1]. The batch
normalization algorithm will normalize each layer’s inputs to the activation function based
on means and variances of inputs in the current batch, as shown in equation 5.28.

x̂ = α
x− x̄
σ + ε

+ β (5.28)

In equation 5.28, x̂ is input to the activation function after batch normalization. x̄ and
σ are mean and standard deviation of input feature x in current batch. α and β are two
learnable parameters that will be updated together with the weight matrix w during the
neural network training. They control the scale and central value of normalized x̂.

Besides batch normalization, weight initialization of the neural network is also needed
to be carefully chosen. The weights of a neural network can not be initialized as zero. The
reason is that if all weights are set to zero all weights in the same layer will keep equaling each
other due to the symmetric structure of the neural network. Usually, each node’s weight is
initialized randomly according to a normal or uniform distribution. However, the mean and
variance of the normal and uniform distribution may affect the performance of the neural
network. Based on the forward propagation function 5.20, each node’s score is the sum of
nl number (nl refers to the number of connections coming in at layer l, which can also be
called as ’fan-in’), as shown in equation:

zil =
nl∑
k=1

wil,kal−1,k (5.29)

Assuming the standard derivation (std) of incoming features is one, each wil,k should have
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the std of 1
nl

in order to keep zil in the range [0, 1]. Similarly, from the backward propagation
equation 5.22, each gradient is each node’s score is the sum of nl+1 numbers. Each number
in the weight matrix should have the std of 1

nl+1
in order to keep the gradient of layer l in

the range [0, 1].
Based on the discussion above, the standard derivation of distribution that weight ini-

tialization used should be as what is shown in equation 5.30, and the mean value should be
zero.

σ = 2
√
nl + nl+1

(5.30)

In other worlds, range of the uniform distribution is [−
√

6√
nl+nl+1

,
√

6√
nl+nl+1

]. This weight
initialization is called the Xavier initialization [84].

5.2.3 Parameterized neural network

The neural network is an important multi-variate method to classify signals and back-
grounds in particle physics. Normally in the application of neural networks in particle
physics, the number of different kinds of signals and backgrounds are fixed so that the neu-
ral networks will have a fixed number of output classes and will be trained on data set with
a fixed number of labels. In searches for new physics, searches for new particles, for exam-
ple, the mass of the new particle is usually unknown. The search for the new particle will
normally be performed in a continuous range of the particle’s mass. Variables of signals at
different mass points will have different distributions. In addition, limits at different mass
points need to be set separately so that signals at different mass points can not be set using
the same label during the neural network training.

Figure 5.6: Parameterized neural network with a tagging variable θ.

One method to resolve this problem is training an individual neural network at each mass
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point with all backgrounds and the signal at that mass point. However, the cost of training
lots of neural networks will be too large if the training data sets are very large and the
number of mass points is large. What’s more, when the neural networks are applied to real
data, we can only get limits at mass points in the neural network training. In another word,
the neural networks can’t learn how to classify signals from backgrounds at mass points not
included in the training data sets. To resolve the problems discussed above, we could add a
tagging variable θ as one of the training variables of the neural network, which is shown in
figure 5.6.

The tagging variable is used to tag signals at different mass points so that the neural
network could learn to classify signals from backgrounds at different mass points. For exam-
ple, we could use the mass of the new particle directly as the tagging variable θ. Signals at
different mass points will have different values of θ. However, the new particle doesn’t exist
in all backgrounds so we need to assign the tagging variable θ to backgrounds. Since θ is
only used to identify different signals, we need to make sure that the neural network should
separate signals and backgrounds based on the tagging variable only. In this case, the values
of θ of backgrounds are set by random sampling based on the distribution of the signals.
After that, distributions of θ of signals and backgrounds are identical. Since in backgrounds
values of θ are randomly set, the correlations between θ and other variables are zero. The
parameterized neural network is able to learn correlations between θ and other variables to
separate signals at different mass points. For signals and backgrounds with the same value
of θ, the parameterized neural network is able to separate them based on the distributions
and correlations between other input variables. When applying the parameterized neural
network to observed data, the value of θ can be set as the mass points that we would like to
calculate limits at.

The idea behind the parameterized neural network is similar to the multi-task neural
network, which has a shared bottom larger and multiple task towers following the shared
bottom layer. Since the tagging variables θ of backgrounds are randomly sampled according
to the distributions of signals, it is similar to splitting the background into different mass
points and training individual neural networks at different mass points. The biggest advan-
tage of using one network instead of individual networks is the parameterized neural network
can achieve good performance at mass points not included in the training. In addition, the
risk of over-fitting at each mass point is reduced since the parameterized neural network is
optimized for all mass points. What’s more, the performance of the parameterized neural
network at one mass point can also benefit from other mass points.
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Chapter 6

Observation of VBS ZZ Production

After the discovery of the Higgs boson, both the ATLAS and CMS have performed several
searches and measurements for the vector boson scattering in different massive V V (W and
Z boson) channels. The first observed vector boson scattering channel is the electroweak
production of the same-signWW with two jets. The CMS experiment also observed the same
process with a significance of 5.5σ using partial run 2 data with the integrated luminosity
of 35.9 fb−1 in 2017 [85], while the ATLAS experiment also observed the same-sign WW

scattering at 6.5σ significance using partial run 2 data with the luminosity of 36.1 fb−1

in 2019 [86]. Later, the vector boson scattering of the WZ boson pair production was
also observed. In 2018, the ATLAS experiment published the observation of the electroweak
production ofWZ boson pair in association with two jets with a significance of 5.3σ based on
the partial Run 2 dataset with the integrated luminosity of 36.1 fb−1 [87]. CMS experiment
observed the same process at 6.8σ based on the full Run 2 dataset with the integrated
luminosity of 137 fb−1 [88].

Before this analysis, the electroweak production of ZZjj hasn’t been observed due to the
small production cross-section and leptonic decay branching fraction. The CMS collaboration
conducted a search for the electroweak ZZjj production using partial Run 2 data with an
integrated luminosity of 35.9 fb−1 and observed (expected) signal with a significance of
2.7 (1.6)σ in 2017, which was not enough to claim "evidence" [89]. This analysis takes
advantage of full Run 2 data with an integrated luminosity of 139 fb−1 and multi-variate
analysis method (gradient boosted decision tree) and observed this rare process with the
signal significance of 5.7σ. The signal strength of the electroweak ZZjj process is also
measured in this analysis and the result is consistent with the Standard Model prediction.
In this analysis, the inclusive ZZjj production (EW and QCD) is measured in dedicated
phase space. Another improvement in this analysis compared with the CMS previous study
is that both final states with either four charged leptons and two jets (lllljj) or two charged
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leptons, two neutrinos and two jets (llννjj) are included in the analysis, while only the four
charged leptons plus two jets (lllljj) final state was included in the CMS study. In 2021, the
CMS collaboration published another search for electroweak ZZjj production in the lllljj
final state using full Run 2 data with an integrated luminosity of 137 fb−1 and observed
(expected) the signal significance of 4.0 (3.5) σ, therefore, claimed "evidence" of electroweak
ZZjj production [90].

The typical VBS process at the LHC is initialed by quarks or gluons in the incoming
proton beams. The initial state vector bosons are radiated from quarks and then scatter
into another pair of vector bosons in the final state. The signature of VBS events will have
two back-to-back jets with large angular separation. The two jets come from the two quarks
that radiate vector bosons in the initial state. This feature has good discriminate power to
separate VBS signals from other backgrounds. Thus the pure electroweak V V production
associated with two jets is one of the most promising channels to study the VBS process.
Some typical Feynman diagrams of the VBS (ZZ) process at LHC are shown in figure 6.1.

(a)

Figure 6.1: Typical diagrams for the production of ZZjj, including the
relevant EW VBS diagrams (first row) and QCD diagrams (second row) [91].

In this chapter, details of studies of the observation of electroweak VBS ZZ production
are presented. Since this thesis mainly focuses on the four lepton final states, only the studies
of VBSZZ in the llll channel will be introduced in detail. This chapter covers the object and
event selection, background estimation, multivariate analysis, and final results of the four
lepton channels.
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6.1 Signal and background simulation

Signal processes of EWK production are modeled using the Powheg-Boxv2 event genera-
tor [92] with matrix elements (ME) calculated at next to leading order (NLO) in perturbative
QCD (pQCD) and with the NNPDF3.0LO parton distribution functions (PDF). The contri-
butions from triboson and VH processes in lllljj and llννjj channels were estimated using
the MadGraph5 _aMC@NLO 2.6.1 event generator [93] with ME calculated at leading
order (LO) in pQCD with the NNPDF3.0LO PDF. Reweighting factors were calculated as a
function of mjj from the MadGraph5 _aMC@NLO events and applied to the POWHEG-
V2 events. The effect is found to be below a few percent levels.

The QCD (non-gg) production of 4l and 2l2ν + 2jets are modeled using Sherpa 2.2.2 [94]
with the NNPDF3.0NNLO [95] PDF set, wherein the llννjj final state both the decay from
Z and W bosons are included in the simulation.

The gg induced ZZ + 2jets in the 4l channel is modeled using Sherpa 2.2.2 with the
NNPDF3.0NNLO PDF (an additional 1.7 k-factor [96] is applied), and by gg2VV in 2l2ν
channel. Contribution from ggH Higgs is included as well.

The diboson productions fromWW → lvqq andWZ → llqq are modeled using Powheg-
Box with the CT10 PDF set [97] used in the ME calculations. The diboson productions
from WZ → lllv are modeled with Sherpa 2.2.2 with the NNPDF3.0NNLO PDF. The
other diboson channels are not included due to negligible contributions.

The triboson productions (VVV, V=W,Z) are modeled using Sherpa 2.2.2 with the
NNPDF3.0NNLO PDF.

For the generation of tt events, Powheg-Box v2 [98–100] was used with the NNPDF3.0
PDF set in the ME calculation. Single-top-quark events produced in Wt final states were
generated with Powheg-Box v2 with the CT10 PDF set [97] used in the ME calculations.
Single top-quark production via s- or t-channels was generated by Powheg-Box v1 [98–
100]. This generator uses the four-flavor scheme for the NLO QCD matrix element (ME)
calculations together with the fixed four-flavour PDF set CT10f4 [97]. The tt̄V (V = W,Z)
processes were generated at LO with MG5_aMC@NLO v2.2.2 [101] with the NNPDF2.3
PDF set.

The Z + jets process (with Z/γ∗ → ee/µµ/ττ) was modelled using Sherpa 2.2.1 [94]
with the NNPDF3.0NNLO PDF. The ME was calculated for up to two partons with next-
to-leading-order (NLO) accuracy in QCD and up to four partons with leading-order (LO)
accuracy using Comix [102] and OpenLoops [103].

The parton shower was modeled with Pythia8.186 [104] with the NNPDF2.3 [105] PDF
set and the A14 set of tuned parameters [106] for all the samples except those from Sherpa,
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where parton shower was done within Sherpa.
The detector response for simulated events was simulated within a framework [107] based

on GEANT4 [108]. Furthermore, simulated events were processed with the same reconstruc-
tion software used for data. In order to account for the different particle reconstruction
efficiencies measured in data and simulation, correction factors are derived in dedicated
measurements and applied to simulated events.

In addition, several privately produced samples have been used to check the interference
effect between EWK and QCD processes as summarized in section 6.4.5.

6.2 Object and event selections

This section describes the object and event selections in this analysis. The object defini-
tions and reconstruction algorithms are introduced in chapter 4. Since the background rate
is much higher in the llννjj channel, we used tighter cuts on object selections compared to
the lllljj channel.

6.2.1 Object selection

In this analysis, physics objects such as muons, electrons, jets, and missing transverse
energy are used to reconstruct events and select control samples for background estimation in
this analysis. Reconstruction algorithms of different objects have been introduced in chapter
4. Table 6.1 and table 7.5 summarize the selection cuts of muons and electrons in both the
lllljj and llννjj channels.

ZZ → 4` ZZ → 2`2ν

Identification Loose Combined with Medium ID

Kinematic cuts pT > 7 GeV, |η| < 2.7 pT > 20 GeV, |η| < 2.5

Impact cuts
|dBL

0 /dBL
error| < 3.0 |dBL

0 /dBL
error| < 3.0

|zBL
0 · sin(θ)| < 0.5 mm |zBL

0 · sin(θ)| < 0.5 mm

Isolation FixedCutLoose Loose

Table 6.1: Muon object definition.

Jets are reconstructed with the anti-kT algorithm introduced in section 4.3.1 with a radius
parameter of R = 0.4. To further reduce the effect of pile-up jets a cut on Jet Vertex Tagger
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ZZ → 4` ZZ → 2`2ν

Identification Likelihood Loose Likelihood Medium ID

Kinematic cuts pT > 7 GeV, |η| < 2.47 pT > 20 GeV, |η| < 2.47

Impact cuts
|dBL

0 /dBL
error| < 5.0 |dBL

0 /dBL
error| < 5.0

|zBL
0 · sin(θ)| < 0.5 mm |zBL

0 · sin(θ)| < 0.5 mm

Isolation FixedCutLoose Loose

Table 6.2: Electron object definition.

(JVT) is applied on jets, which is introduced in section 4.3.3. The recommended 0.59 upper
threshold on the JVT is used in the analyses to reject jets with pT < 60 GeV, |η| < 2.4,
which corresponds to an efficiency of 92% and to an observed fake rate of 2%. The events are
retained in the analyses only if all jets pass the Loose selection criteria for the Jet Cleaning,
designed to provide an efficiency of selecting jets from proton-proton collisions above 99.5%
for pT > 20 GeV.

In the ATLAS experiment, overlap removal is a procedure that deals with situations where
multiple analysis objects are reconstructed from the same detector signals. After applying
overlap removal, all but one such object are ignored1. In the standard overlap removal
strategy, jets are preferred compared to leptons, which means if an object is identified as
both jet and lepton the overlap removal will ignore the reconstructed lepton and the object
will be counted as a jet. The overlap removal strategies used in this analysis are summarized
in Table 6.3 and Table 6.4, for lllljj and llννjj channels, respectively. The llννjj channel
follows the standard overlap removal procedure. In lllljj channel the leptons are given
higher priority than jets, to keep leptons in case of overlapped with jets, to keep a high
signal efficiency. With this lepton-favored overlap removal, the EWK signal increases 19 %
with background only increasing 14 %.

6.2.2 Event selections in the llll channel

Event selections in the llll channel are shown in Table 6.5. The lepton and ZZ selections
basically follow the on-shell ZZ cross-section measurements, and jet selections have been
optimized to enhance the EWK VBS contributions in the forward region. Relatively loose
mjj and ∆yjj cuts have been applied to keep more events for further MVA studies.

1https://particle.wiki/wiki/Overlap_removal_(ATLAS)
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Reference objects Criteria

Remove electrons electrons Share a track or have an overlapping calorimeter cluster. Keep higher pT electron

Remove muons electrons Share track and muon is calo-tagged

Remove electrons muons Share track

Remove jets

electrons ∆Re−jet < 0.2

muons
∆Rµ−jet < 0.2 OR muon track is ghost-associated to jet

AND (NTrk(jet) < 3 OR (pjetT /pµT < 2 and pµT /ΣTrkPt > 0.7))

Table 6.3: Overlap removal criteria between pre-selection objects for the
lllljj channel. The overlap removal follows the order shown in this table.
Once an object has been marked as removed, it does not participate in the
subsequent stages of the overlap removal procedure.

Reference objects Criteria

Remove electrons electrons Share a track or have an overlapping calorimeter cluster. Keep higher pT electron

Remove muons electrons Share track and muon is calo-tagged

Remove electrons muons Share track

Remove jets

electrons ∆Re−jet < 0.2

muons
∆Rµ−jet < 0.2 OR muon track is ghost-associated to jet

AND (NTrk(jet) < 3 OR (pjetT /pµT < 2 and pµT /ΣTrkPt > 0.7))

Remove electrons jets ∆Re−jet < 0.4

Remove muons jets ∆Rµ−jet < 0.4

Table 6.4: Overlap removal criteria between pre-selection objects for the
llννjj channel. The overlap removal follows the order shown in this table.
Once an object has been marked as removed, it does not participate in the
subsequent stages of the overlap removal procedure.
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Category Cut Name Requirement
Event Trigger details in the trigger section
Pres-election Vertex At least one vertex reconstructed with 2 or more tracks
Electrons pT > 7GeV

η |η| < 2.47
ID VeryLooseLH working point

Object Quality Not from a bad cluster
z0 sin θ < 0.5mm

Muons pT > 7GeV (15GeV if CaloTagged)
η |η| < 2.7

ID Loose
z0 sin θ < 0.5mm if muon is not StandAlone
|d0| < 1mm if muon is not StandAlone

Jets Clustering AntiKt4EMTopo
pT > 30GeV (40GeV if 2.4 < |η| < 4.5)

Jet vtx. tag cut JVT < 0.59
Overlap Lepton Favouring Working Point HSG2
Removal without ClusterMatch
Quadruplet pT p1

T > 20GeV, p2
T > 20GeV, p3

T > 10GeV
Selection Electron Quality No more than two electrons fail LooseLH identification

Muon Quality Number of StandAlone or CaloTagged muons < 2
Quadruplet
Ranking

Minimal ∆mZ Select quadruplet with smallest |m12 −mZ |+ |m34 −mZ |

Event Quarkonia Veto m12,34,14,23 > 10GeV
Selection ∆R > 0.2 between leptons in quadruplet

Isolation All leptons in quadruplet pass FixedCutLoose working point
Electron ID All e in quadruplet pass LooseLH working point

Impact Parameter |d0/σ(d0)| < 5 (3) for e (µ) in quadruplet
Z Window 66 < m12,34 < 116GeV

Dijet Different detector sides yj1 × yj2 < 0
Selection Dijet Ranking Select dijet with the highest scalar pT sum

Pseudo-rapidity separation ∆yjj > 2
Dijet mass mjj > 300

Table 6.5: Four lepton signal region definition. The object and event selec-
tion criteria were applied in the four-lepton channel of the analysis.
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6.2.3 Event selections in the llνν channel

The data used in the analyses is triggered with single lepton triggers (electron or muon).
To satisfy the trigger threshold of these single lepton triggers, the pT of two leading leptons
should be 30 GeV and 20 GeV, respectively.
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Figure 6.2: S/
√

(S +B) as a function of Emiss
T significance.

Events are required to contain exactly two same flavor and opposite charged muons or
electrons that pass the object selections described in Table 6.1 and 7.5, and furthermore,
to reduce the ZZ → 4` and WZ → `ν`` events, events with additional leptons are vetoed.
The pT thresholds and selection criteria for the additional leptons are set to be 7 GeV and
“LooseLLH” selection criteria, for both muons and electrons. The invariant mass of the
selected two leptons is required to be within the range of 80 < m(`+`−) < 100 GeV. This
requirement can significantly reduce the events that don’t include the Z-boson, for example,
tt̄, WW → `ν`ν, Z → ττ , etc.

Z jets is highly suppressed with a large Emiss
T significance cut: Emiss

T significance > 12.
S/
√
S +B as a function of Emiss

T significance is shown in Figure 6.2.
At least two jets within |η| < 4.5 is pre-selected, with b-jets vetoed with an 85% working

point (for llννjj channel only) to reduce the top background. We also impose the selection
pT > 60 GeV for the leading jet and pT > 40 GeV for the second-leading jet. The large pT

threshold of jets is helpful to remove a large amount of contamination from Zjets and QCD
ZZ+2jets which have relatively lower jets pT.

To further improve the EWK ZZ+2jets sensitivity, typical back-to-back topology is used
for the two pT leading jets: Yj1 · Yj2 < 0 and ∆yjj > 2, where Yj stands for jet rapidity. Due
to the large angle between these two jets, the invariant mass of them should be quite large:
mjj > 400 GeV.

The selections are summarized in Table 6.6.
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Selections Cut Value
veto events with additional leptons (“LooseLLH” quality, pT >7 GeV) for the additional leptons
lepton pT for (leading, sub-leading) >(30 GeV, 20 GeV)
m(`+`−) 80 < m(`+`−) < 100 GeV
Emiss

T significance >12
Baseline Jet selection Njets >= 2, No b-jets with 85% WP
Jet pT for (leading, sub-leading) >(60 GeV, 40 GeV)
Two leading pT Jets Yj1 · Yj2 < 0, ∆Y (j1, j2) > 2, mjj > 400 GeV

Table 6.6: Summary of the event selection criteria for ZZ → 2`2ν measure-
ment. The other object-level selections (lepton impact parameter) are the
same as lllljj channel, shown in Table 6.5.

6.2.4 Event yields in signal regions

After applying all selections in signal regions, the event yields in both channels are
summarized in table 6.7. All the minor backgrounds are summed together as ’Others’, and
theWWjj and tt̄ processes are referred to as the non-resonant-ll backgrounds. Uncertainties
in the predictions include both the statistical and systematic components of the predicted
yields before fit.

Process lllljj llννjj
EW qq → ZZjj 31.4 ± 3.5 15.0 ± 0.8
QCD qq → ZZjj 77 ± 25 17.2 ± 3.5
QCD gg → ZZjj 13.1 ± 4.4 3.5 ± 1.1
Non-resonant-ll - 21.4±4.8
WZ - 24.6± 1.1
Others 3.2± 2.1 1.2± 0.9
Total 124± 26 82.9± 6.4
Data 127 82

Table 6.7: Observed data and expected event yields in 139 fb−1 of data in
the lllljj and llννjj signal regions.

6.3 Background estimation

6.3.1 Background estimation in the 4l channel

This section summarizes the background estimation for 4l channel.
For the 4l channel, there are very small contributions from non-prompt backgrounds,

fake leptons from Z + jets, and top processes. Those contributions are estimated with fake

92



factor method. When looking at the EWK processes alone, the QCD component (from both
qq and gg induced) becomes the major background, and a QCD-enriched control region is
defined to constrain the contribution, by reverting either the mjj or ∆yjj cuts, as mjj <

300 GeV or ∆yjj < 2.
The triboson background has a minor contribution and is estimated directly from simu-

lation.

6.3.2 QCD background for 4l channel

The four lepton plus two jets contributions from qq initiated QCD processes are the
dominant backgrounds when looking for the EW production mode. These contributions are
constrained by a QCD-enriched control region, by reverting either the mjj or ∆yjj cuts, as
mjj < 300 GeV or ∆yjj < 2. This control region is included in the final fit to constrain the
QCD yield in the signal region, as well as the theoretical uncertainties from QCD processes,
which are the dominant one in 4l channel 6.4.3, apart from statistic uncertainty. The shapes
are taken from MC and the normalization factor is used as a floating parameter in the final
fit. The plots are shown in section 6.5 for a side-by-side comparison of distributions in SR
and QCD CR.

6.3.3 Fake background for 4l channel

The backgrounds from misidentified leptons are usually difficult to model in MC thus a
data-driven (fake factor) method is used, to estimate the contribution in the signal region.
The fake factor methods are developed as

• Define the dedicated background dominant region to derive the fake factor for the
dedicated background. The fake factor is defined as F = NG/NP , by counting the
number of additional leptons in those dedicated control regions. NG refers to the
number of good leptons (passing SR selections listed in Table 6.5) and NP refers to
the number of poor leptons (passing SR selections with certain cuts reverted)

• Define a four-lepton plus two jets fake control region, where one or two leptons pass
the poor lepton definition, and the other leptons still pass SR selections.

• The poor electrons are defined as fail isolation or fail the Likelihood Loose electron ID
(but still should pass the VeryLooseLH). The other requirements are the same as the
good electrons.
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• The poor muons are defined as fail isolation or fail the d0 significance cut (but still
should pass |d0significance| < 10. The other requirements are the same as the good
muons.

• Calculate the final estimation in SR, following the equation

N fake =
(
Ngggp −NZZ

gggp

)
× F −

(
Nggpp −NZZ

ggpp

)
× F 2 , (6.1)

where the contribution from ZZ is subtracted from the calculation. The second term
is due to the double counting of Ngggp and Nggpp.

The source of misidentified leptons (from now on called fake leptons) are mostly leptons
in jets of leptonic decaying hadrons or other objects misidentified as leptons. In the 4l
channel, the major contributions come from Z+jets and tt̄. Thus dedicated Z+jets and tt̄
dominant regions have been defined to derive the fake factor from each process. There are
still smaller contributions from W+jets, W+W−+jets, and WZ, those are included in the
fake estimation, but no dedicated fake factors have been derived.

Fake factor calculation for Z+jets

The fake factor for Z+jets is calculated from Z+jets dominant region from data, selected
with one same-flavor opposite-charge dilepton around Z mass, and additional two jets. The
detailed selections are summarized in Table 6.8.

The fake factor from Z+jets are calculated vs. different pT and η, and the contribution
from non-Z+jets (ZZ, WZ and tt̄) has been subtracted. The calculated fake factors are
shown in Figure 6.3 and Figure 6.4, for electrons and muons, respectively. The fake factors
calculated from Z+jets MC are also shown for comparison.
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Figure 6.3: The Zjets fake factor constructed using the additional electrons.
Shown as a function of η and pT together in (a), and separately in (b) and
(c), and as a function of the number of jets in (d).
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Category Cut Name Requirement
. . . (Object Selection)

Dilepton Pairing Form same flavor opposite charge dileptons
Selection Isolation Leptons in dilepton pass FixedCutLoose working point

Impact Parameter |d0/σ(d0)| < 5 (3) for e (µ) in dilepton
Electron ID Electrons in dilepton pass LooseLH working point

pT > 25 GeV
Dilepton Minimal ∆mZ Select dilepton with smallest |m`` −mZ |
Ranking
Event Emiss

T < 25GeV
Selection
Additional Good Lepton Definition is the same as in Table 6.5
Lepton Poor Lepton Definition is the same as in list 6.3.3
Selection
Overlap
Removal

Remove jets with ∆R`-j < 0.4 to Poor leptons in the
selected quadruplet

Table 6.8: Fake factor region definition for Z + jets. Since the region is
supposed to have the same Good and Poor lepton definition as the signal
region the object selection criteria is inherited from Tab 6.5 and then follows
the Z tagging boson selection and evaluation of the additional lepton.
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Figure 6.4: The Zjets fake factor constructed using the additional muons.
Shown as a function of η and pT together in (a), and separately in (b) and
(c), and as a function of the number of jets in (d).
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Fake factor calculation for tt̄

The fake factors for tt̄ are calculated from a tt̄ dominant region, selected with one eµ
lepton pair plus two additional jets. In the events with 3 leptons, the requirement on mW

T is
applied to reduce the contribution from tt̄+W . The mW

T is defined as

mW
T =

√
2P `3

T E
miss
T

[
1− cos

(
∆φ

(
P `3
T , E

miss
T

))]
(6.2)

Also, at least one b-tagged jet is required to enhance the top contribution. The detailed
selections are summarized in Table 6.9.

The fake factor from tt̄ are calculated vs. different pT and η, and the contribution from
non-tt̄ (ZZ, WZ and Z+jets) has been subtracted. The calculated fake factors are shown in
Figure 6.5 and Figure 6.6, for electrons and muons, respectively. The fake factors calculated
from tt̄ MC are also shown for comparison. The 2D plots are shown in Figure 6.7.
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Figure 6.5: The tt̄ fake factor for electrons vs pT (a) and η (b)distribution.
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Figure 6.6: The tt̄ fake factor muons vs pT (a) and η (b)distribution.
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Figure 6.7: The tt̄ fake factor for electrons (a) and muons (b) 2-D distribu-
tion vs. η and pT .

Combination of fake factors

Fake factors calculated from Z+jets and tt̄ dedicated control regions (Table 6.8, Table 6.9)
are combined accordingly to their contributions in the four-lepton plus two jets fake control
region in the different channels, as defined in list 6.3.3. The individual ratios (Z+jets over
tt̄) are listed for electron 2.59, mixed 0.95, and muon 0.74 channel. The relation can be seen
in the dijet mass distribution in Fig 6.8 from which the ratios were extracted. The raw event
yields in the four-lepton fake control region are summarized in Table 6.10.
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Figure 6.8: Dijet mass distribution in the fake control region split into
electron (a), mixed (b), and muon (c) channel.

Systematics of the fake estimation

The usual way of estimating systematics for fake factor methods includes the variations
of poor lepton definition, MC subtraction, the binning effect of fake factors, etc. In addition
to those, in this specific lllljj plus 2jets region, due to the very limited statistics even in the
fake control region, a very conservative approach is used here, by including additionally the
difference from fake factors calculated from data and MC. In detail, the following sources of
systematics have been included for the fake estimation

• Variation of isolation cut for the poor lepton definition by a factor of two up and down

• Variation of the yield of other MC while subtraction by 30 % up and down, in the fake
control regions

• Use fake factors derived directly from Z+jets and tt̄ MCs

• Use one bin fake factor instead of pT and η dependent ones

• The statistical uncertainties on fake factor and four-lepton fake control region

Estimation of the fake contribution in signal region

The final estimations from fake contribution in the signal region are summarized in
Table 6.11, along with the systematic variations.
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Closure test of the fake-factor method

A closure test of the fake-factor method is performed, by applying MC-derived fake
factors, to the MC 4 lepton control region. This is done separately for Z+jets and tt̄ samples
and numbers are compared to the direct MC predictions to test biases due to the fake-factor
method. The results are summarized in Table 6.12. The closure test is limited by MC
statistics in the lllljj channel, where 0 events are left after full event selections. Thus loose
selections have been applied, only requiring ZZ plus 2jets (no dijet mass or η selections) but
MC statistical uncertainty still dominates. Due to the above issues, the closure test should
only serve as an additional check for the fake factor method, in this lllljj plus 2 jets region.
The numbers can not be compared to the data estimations due to different selections (No
MC events to test with SR selections). The closure test is performed using data taken by
ATLAS from 2015 to 2017 with an integrated luminosity of 80 fb−1.
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Category Cut Name Requirement
. . . (Object Selection)

Dilepton Pairing e-µ dileptons
Selection Isolation Leptons in dilepton pass FixedCutLoose working point

Impact Parameter |d0/σ(d0)| < 5 (3) for e (µ) in dilepton
Electron ID Electrons in dilepton pass LooseLH working point

pT > 25 GeV
Dilepton Impact parameter Select dilepton with smallest |d0/σ(d0)
Ranking
Event Emiss

T > 50GeV
Selection W mass mW

T < 60GeV for 3 lepton events
pT > 28GeV (at least one tagging lepton)

Remove event with 4 Good leptons
At least two jets, at least one b-tagged jet

Additional Good/Poor Lepton Definition is the same as in Table 6.5
Lepton
Selection
Overlap
Removal

Remove jets with ∆R`-j < 0.4 to Poor leptons in the
selected quadruplet

Table 6.9: Fake factor region definition for tt̄. Since the region is supposed
to have the same Good and Poor lepton definition as the signal region the
object selection criteria is inherited from Tab 6.5 then follows the tt̄ tagging
leptons selection and evaluation of the additional lepton.

channel electron mix(fake e) mix(fake µ) mix(fake e+ µ) muon
Ngggp 8.0 7.0 10.0 / 14.0
NZZ
gggp 3.3 3.7 3.7 / 4.7

Nggpp 8.0 7.0 17.0 9.0 33.0
NZZ
ggpp 0.3 0.1 0.1 0.3 0.3

Table 6.10: Fake control region yields in four lepton channels.
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channel electron mix muon inclusive
Nominal estimate 0.678± 0.652 1.023± 0.740 0.566± 0.240 2.268± 1.015
F stat. uncertainty varied down 0.698± 0.622 0.872± 0.652 0.509± 0.214 2.079± 0.926
F stat. uncertainty varied up 0.657± 0.685 1.173± 0.840 0.622± 0.267 2.452± 1.116
One bin F 0.653± 0.590 0.594± 0.558 0.646± 0.313 1.892± 0.870
MC F 0.534± 0.471 1.415± 0.993 0.439± 0.184 2.389± 1.114
Isolation varied down 0.938± 0.686 0.552± 0.466 0.215± 0.107 1.704± 0.837
Isolation varied up 0.723± 0.646 1.104± 0.739 0.559± 0.237 2.386± 1.010
MC corr. varied down 0.697± 0.695 1.048± 0.811 0.832± 0.385 2.577± 1.136
MC corr. varied up 0.660± 0.614 0.984± 0.687 0.316± 0.159 1.961± 0.935
Variations added in quadrature 0.304± 0.702 0.783± 0.803 0.535± 0.289 1.622± 1.106

Table 6.11: Fake background estimations in the SR. For the nominal value
the 2D fake factor together with the Z+jets and tt̄ combination is ap-
plied. The other lines show the estimations with different uncertainty varia-
tions. The differences between each variation and nominal value are summed
quadratically for the final systematic estimation. The ± uncertainty num-
bers shown in the table are statistical uncertainties on each number.

Process MC prediction Closure test
Zjet -0.88 ± 1.11 3.73 ± 0.46
Top 0.28 ± 0.28 0.172 ± 0.04

Table 6.12: MC closure test comparison for fake-factor method. Numbers
are normalized to 80 fb−1. Note a loose ZZ plus 2jets selections have been
applied to gain more MC events.
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6.4 Systematic uncertainties

This section summarizes the theoretical and experimental systematic uncertainties in
this analysis, apart from the ones from data-driven-based background estimation, which is
summarized in the background section. This analysis is still statistically dominant. Apart
from that, the dominant systematics in the 4l channel comes from the theoretical modeling of
QCD processes. The dominant systematics in the 2l2ν channel comes from the data-driven
background estimation, which is limited by either the theoretical modeling of WZ processes
(for WZ background) or the data statistics in eµCR (for non-resonant background).

6.4.1 Experimental uncertainties

The experimental uncertainties in this section include the systematics from lepton/jets/MET
energy scale and smearing and efficiency, trigger efficiency, and pileup. This is included for all
the MC-based backgrounds and also data-driven ones depending on corresponding methods.

Experimental uncertainties in the lllljj channel are studied following CP recommendation
uncertainties. The experimental uncertainties are estimated for the EWK ZZjj, QCD qq→ 4l,
and gg→ZZ→ 4l processes.

For EWK and QCD processes, large differences have been observed from jet uncertainties.
QCD process has a larger (10%) jet uncertainty than the EWK process (2%). This has been
checked and found to be due to that in the QCD process there are more jets in the low pT

region. Comparison of jet pT and η distributions are shown in Figure 6.9.
JVT selection is only applied for jets with 20 < pT < 60 GeV and |η| < 2.4. For both

QCD and EWK ZZ processes most jets’ pT are higher than 60 GeV so the uncertainty of the
JVT scale factor is found to be very small (less than 1%). Since the QCD process has more
soft jets, the QCD process has a larger JVT systematic uncertainty.
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Figure 6.9: Jet pT η distribution in EWK (left) and QCD (right) process

6.4.2 Jet pileup uncertainty in 4l channel

In the final fit, we also include systematic uncertainty due to different pileup jets. First,
we trained BDT using the whole signal sample (EWK ZZ→ 4l) and QCD qqZZ sample.
After that, we divided our signal sample (EWK ZZ→ 4l) and QCD qqZZ sample into low µ

and high µ subsets and compare their difference in gradient BDT response (both low µ and
high µ subsets are normalized to 139 fb−1). The average µ value in the signal sample is 34.5
and the average µ value in the QCD sample is 33 so we chose 33 as the low/high µ boundary.
Difference performance of low µ and high µ QCD qqZZ events is shown in figure 6.10
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in the signal region (left) and QCD control region (right)
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6.4.3 Theoretical uncertainties

The theoretical uncertainties are estimated for the EW and QCD processes, including
contributions from the different QCD scales and αS, different parton density functions (PDF)
choices, and different parton showers. The dominant one comes from different QCD scale
choices.

The PDF uncertainty is estimated by comparing events in different PDF sets, as well as
the uncertainty from the nominal PDF set itself. Envelop is chosen following the PDF4LHC [109]
recommendations. The αS uncertainty is estimated by comparing events generated with dif-
ferent αS values with the nominal PDF set.

The QCD uncertainty is estimated by comparing events with different renormalization
scales (µR) and factorization scale (µF ) settings, where the largest deviation is chosen as the
systematics.

The parton shower uncertainty is estimated by comparing events with different parton
shower settings for the EW process in the 4l channel, with private samples. Due to the
difficulty in producing an equivalently large number of QCD events, the same number has
been used for the QCD process, and 2l2ν EW and QCD processes.

Technically, the PDF, αS, and QCD systematics are estimated via the reweighting pro-
cedure, following the PMG recommendations. The parton shower uncertainty is estimated
with different samples. Details about estimation methods are summarized in Table 6.13. The
results of EW and QCD qqZZ processes are shown in Table 6.15 for the FV cross-section.
The results of the QCD gg → ZZ process as a function of the gradient BDT discriminant
which was used in the final fitting are shown in figure 6.11.

Process Nominal PDF Alternative PDFs used αS setting QCD scale ([µR, µF ]) Parton shower used
EW lllljj NNPDF30lo CT14lo [0.5,0.5], [0.5,1], [1,0.5] Pythia8

0.118 [1,1], [1,2], [2,1] Herwig7
[2,2]

QCD lllljj NNPDF30nnlo MMHT2014nnlo68cl 0.117 [0.5,0.5], [0.5,1], [1,0.5]
CT14nnlo 0.118 [1,1], [1,2], [2,1]

0.119 [2,2]
EW llννjj NNPDF30lo CT14lo [0.5,0.5], [0.5,1], [1,0.5] Pythia8

0.118 [1,1], [1,2], [2,1]
[2,2]

QCD llννjj NNPDF30nnlo MMHT2014nnlo68cl 0.117 [0.5,0.5], [0.5,1], [1,0.5]
CT14nnlo 0.118 [1,1], [1,2], [2,1]

0.119 [2,2]

Table 6.13: Summary table of how the different theoretical uncertainties
are estimated.
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Process PDF (%) αS (%) QCD scale (%) Parton shower (%)
EW lllljj +5.9 -5.9 +6.1 -5.6 +3.3 -3.3
qqQCD lllljj +2.0 -1.0 +2.6 -2.6 +34.2 -22.8
EW llννjj ±2.0 ±2.0
qqQCD llννjj ±1.3 ±2.6 ±19.6

Table 6.14: Summary table of theoretical uncertainties for the fiducial vol-
ume cross-section for both channels for the EW and qqZZ processes. The
parton shower uncertainty is estimated with the EW sample in lllljj chan-
nel, and being used for the other processes listed in this table.

Process PDF (%) αS (%) QCD scale (%) Parton shower (%)
EW lllljj +6.1 -6.1 +0.8 -1.1 +10.1 -10.1
qqQCD lllljj +2.0 -1.0 +2.6 -2.6 +31.5 -22.0

Table 6.15: Summary table of theoretical uncertainties for the QCD control
region cross-section for the 4l channel for the EW and qqZZ processes.
The parton shower uncertainty is estimated with the EW sample in the 4l
channel and is used for the other processes listed in this table.

6.4.4 Modeling uncertainties

For the QCD qqZZ background, which is the largest background in the lllljj channel,
the nominal Monte Carlo sample that is used in this analysis is modeled by the Sherpa
generator. And the normalization uncertainties as mentioned above are also estimated by
Sherpa samples. In addition, a shape systematic has been evaluated to take into account the
uncertainties in the modeling of the qqZZ background by using the alternative generator.
The samples in the lllljj channel are generated and showered by MG and PythiaEight.
Then this modeling uncertainty is calculated from the envelope of shape difference between
Sherpa theoretical components and the difference between Sherpa and MG on the BDTG
discriminant used in the analysis. Figure 6.12 and 6.13 show the modeling systematics in 4`
channel.

For the 2l2ν channel, the analysis uses the 2e2µ samples to mimic the 2l2ν fiducial volume
definition, by treating the two muons in the events as neutrinos. The shape difference for
qqZZ as the function of di-jet invariant mass in 2l2ν signal region is shown in figure 6.14 (left).
Due to the absence of MET significance in truth level, one cannot get BDTG distribution
in fiducial volume. The final treatment of this uncertainty item in the 2l2ν channel is then
decided to apply in MJJ based on the reco-level MJJ value event by event, and transfer it
to BDTG disctiminant as shown in figure 6.14 (right).
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Figure 6.11: The theoretical uncertainties for ggZZ background in (a) signal
region; (b) control region.

BDT

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
.U

.

ATLAS Internal

 = 13 TeVs MG
New shape up
New shape down
Sherpa nominal
Sherpa Up
Sherpa Down

ZZ+jets

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

BDT

0.6
0.8

1
1.2
1.4

ra
tio BDT

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
.U

.

ATLAS Internal

 = 13 TeVs MG
New shape up
New shape down
Sherpa nominal
Sherpa Up
Sherpa Down

ZZ+jets

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

BDT

0.6
0.8

1
1.2
1.4

ra
tio

Figure 6.12: Comparison of BDT shape difference for qq̄ → ZZ background
between different Sherpa theoretical uncertainties and MadGraph5 in 4`
channel of (a) signal region; (b) control region.

108



1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
BDT

0

5

10

15

20

25

N
um

be
r 

of
 e

ve
nt

s

4l qcd Shape, QCD
4l Signal Region

 (+0.1 %)σ+ 1 
 (+0.0 %)σ - 1 

Original Modified

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
BDT

40−
30−
20−
10−
0

10
20
30
40

 [%
]

N
om

.
S

ys
t.-

N
om

.

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
BDT

0

10

20

30

40

50

60

70

80

90

N
um

be
r 

of
 e

ve
nt

s

4l qcd Shape, QCD
4l Control Region

 (+0.0 %)σ+ 1 
 (+0.0 %)σ - 1 

Original Modified

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
BDT

15−
10−
5−
0
5

10
15 [%

]
N

om
.

S
ys

t.-
N

om
.

Figure 6.13: The shape uncertainties for qqZZ background in 4` channel of
(a) signal region; (b) control region. In the final fitting, to be more conser-
vative, two nuisance parameters have been used in SR and CR separately
for this shape uncertainty.

MJJ

0.1

0.2

0.3

0.4

0.5A
.U

.

ATLAS Internal

 = 13 TeVs MG
Sherpa
Sherpa PDF Up
Sherpa PDF Down
Sherpa QCD Up
Sherpa QCD Down

 UpSαSherpa 
 DownSαSherpa 

ZZ+jets

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
310×

MJJ

0.6
0.8

1
1.2
1.4

ra
tio

0.0

0.2

0.4

0.6

0.8

1.0

A.
U. MG

Sherpa
Sherpa PDF Up
Sherpa PDF Down
Sherpa QCD Up
Sherpa QCD Down

1.0 0.5 0.0 0.5 1.0
BDT Output

0

1

2

ra
tio

ATLAS Internal
=  TeV, 139 fb

Figure 6.14: Comparison of shape difference for qqZZ background between
different Sherpa theoretical uncertainties and MG in llννjj channel of (a)
MJJ distribution; (b) BDTG distribution.

109



6.4.5 Interference between the EWK and QCD processes

The interference between the EWK and QCD processes is treated as an additional sys-
tematic on the EWK signal. It is estimated directly by producing the ZZjj sample with only
the electroweak and QCD interfering term at the leading order with MadGraph5 v2.6.0
generator.

The theoretical interpretation of the modeling recipe in method 2 is according to the
orders of QCD and QED coupling at the Matrix-Element-Square (ME-Sq) level. At LO,
the QCD-mediated ZZjj and electroweak-mediated ZZjj have different QCD and QED
coupling orders at the ME level.

At the ME-Sq level, the squared amplitudes of the combined ZZjj sample with both
electroweak and QCD-mediated productions and their interference effects at LO are param-
eterized as equation 6.3.

|M |2 = |MEWK +MQCD|2 = |MEWK |2 + |MQCD|2 + 2×Re(M∗
EWK ·MQCD) (6.3)

Each of the EWK, QCD, and interference terms could be calculated separately, by requiring
different orders of QED and QCD vertex.

In lllljj channel, the interference is included as a BDT-dependent systematics, by us-
ing truth level information (vs. mjj) and transferred to the BDT score. The final BDT
distributions of the nominal signal and signal with inference term in the SR are shown in
Figure 6.15.
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110



6.5 Data and Monte Carlo simulation comparison

This section shows plots of comparison of kinematics distributions between data and
Monte Carlo simulation in the lllljj channel from figure 6.16 to figure 6.28. Distributions
in the signal region and QCD control regions are provided together for comparison. Those
kinematic variables are used in the multivariate analysis described in section 6.7. All the
plots in this section are pre-fit ones but already include the data-driven backgrounds. The
experimental systematics have been included in the uncertainty band for all plots. The
theoretical systematics have been included in the mjj plot. To check the multiplicity of jets
in the lllljj channel, distributions of the number of jets in each event are shown in figure
6.29 for both the signal and QCD control regions.
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Figure 6.16: D-jet invariant mass (mjj) distributions in SR (left) and QCD
CR (right) with experimental and theoretical systematics included.
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Figure 6.17: Four lepton mass distributions in SR (left) and QCD CR (right)
with experimental systematics included.
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Figure 6.18: Rapidity difference between the leading and sub-leading jets
distributions in SR (left) and QCD CR (right) with experimental system-
atics included.
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(b)

Figure 6.19: Four lepton pT distributions in SR (left) and QCD CR (right)
with experimental systematics included.
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(b)

Figure 6.20: Leading lepton pair distributions in SR (left) and QCD CR
(right) with experimental systematic uncertainties included.
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Figure 6.21: Leading jet pT distributions in SR (left) and QCD CR (right)
with experimental systematic uncertainties included.
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Figure 6.22: Sub-leading jet pT distributions in SR (left) and QCD CR
(right) with experimental systematic uncertainties included.
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Figure 6.23: Product of rapidity of leading and sub-leading jets distributions
in SR (left) and QCD CR (right) with experimental systematic uncertainties
included.
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Figure 6.24: pT of leading lepton in the sub-leading lepton pair (pL3
T ) dis-

tributions in SR (left) and QCD CR (right) with experimental systematic
uncertainties included.
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Figure 6.25: y∗Z1 distributions in SR (left) and QCD CR (right) with exper-
imental systematic uncertainties included. y∗Z1 = yZ1 − (yj1 + yj2)/2 and y
refers to the rapidity of an object.

4− 3− 2− 1− 0 1 2 3 4

YZ2Star

0.5

0.75

1

1.25

 

D
at

a 
/ P

re
d. 0

5

10

15

20

25

30

35

40

E
ve

nt
s 

/ 0
.3

ATLAS Internal
-1 = 13 TeV, 139 fbs

Four lepton
Signal Region
Pre-Fit

Data
EWK
QCD
ggZZ
Others
Uncertainty

(a)

4− 3− 2− 1− 0 1 2 3 4

YZ2Star

0.5

0.75

1

1.25

 

D
at

a 
/ P

re
d. 0

5

10

15

20

25

30

35

40

E
ve

nt
s 

/ 0
.3

ATLAS Internal
-1 = 13 TeV, 139 fbs

Four lepton
Control Region
Pre-Fit

Data
EWK
QCD
ggZZ
Others
Uncertainty

(b)

Figure 6.26: y∗Z2 distributions in SR (left) and QCD CR (right) with exper-
imental systematic uncertainties included. y∗Z2 = yZ1 − (yj1 + yj2)/2 and y
refers to the rapidity of an object.
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Figure 6.27: pZZjjT /hZZjjT distributions in SR (left) and QCD CR (right)
with experimental systematic uncertainties included. hZZjjT refers to the
scalar sum of pT of two z boson and two jets while pZZjjT refers to the vector
sum.
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Figure 6.28: pT of the ZZjj system distributions in SR (left) and QCD CR
(right) with experimental systematic uncertainties included.
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Figure 6.29: Number of jets distributions in SR (left) and QCD CR (right)
with experimental systematic uncertainties included.

6.6 Inclusive ZZjj production cross-section measure-
ment

The cross-section of inclusive 4l plus two jets, and 2l2ν plus two jets are measured and
summarized in this section. The cross sections are measured in fiducial volumes as below.
The detector correction factor (C factor) is estimated, as events passing full reconstruction
level selections, divided by events passing truth level FV selections.

6.6.1 Definition of the fiducial volume

The fiducial volumes (FV) are defined for the cross-section measurements in the llll and
llνν channels accordingly. The event and object selections in the fiducial volumes are close to
selections used in the reconstruction level signal regions. Some selections are only available
in

For the 4l channel, the FV is defined as:

• Leptons are dressed with photons within ∆R(`, γ) < 0.1;

• |ηe| < 2.47, |ηµ| < 2.7;

• p`T > 20, 20, 10, 7 GeV for the leading, sub-leading, third and last lepton;
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• ∆R(`, `′) > 0.2;

• Select two Z candidates, minimizing |mz1 − mz| + |mz2 − mz|. The one SFOS with
dilepton mass closest to Z mass is labeled as Z1. The other one as Z2;

• 60 < mZ1 < 120 GeV, 60 < mZ2 < 120 GeV;

• m`+`− > 10 GeV for all the SFOS dilepton;

• At least two AntiKt4TruthWZ jets and select one leading jet per η side;

• pjT > 30 (40) GeV for jets with |ηj| < 2.4 (4.5);

• ∆yjj > 2 and mjj > 300 GeV;

For the 2l2ν channel, the FV is defined as:

• Leptons are dressed with photons within ∆R(`, γ) < 0.1;

• |η`| < 2.5;

• p`T > 30, 20 GeV for the leading and sub-leading lepton;

• Veto events with a third lepton satisfying p`T > 20 GeV and |η`| < 2.5;

• 80 < m`` < 100 GeV;

• Truth Emiss
T > 130 GeV, where truth Emiss

T is defined as the vector sum of all the
neutrinos not from hadron decay;

• At least two AntiKt4TruthWZ jets;

• pjT > 60, 40 GeV for the leading and sub-leading jet, Yj1 × Yj2 < 0;

• ∆yjj > 2 and mjj > 400 GeV;

The FVs are used as the pre-VBS regions, where inclusive cross sections are measured
in the 4l or 2l2ν plus 2jets channels. Differences between 4l and 2l2ν FV definitions are
due to different event selections applied at reconstruction-level analyses. In general, tighter
selections are applied in the 2l2ν channel due to more background contributions.
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6.6.2 C factor

The definition of the C factor is the ratio of the number of events passing reconstruction
level selections and the number of events number in fiducial volume at the truth level, for
the defined signal processes:

C = NReco

NF.V−truth

C factors in the 4l channel are calculated as:

Sample C ∆C(stats) ∆C(sys) ∆C(theo)
EWK ZZjj 0.663 ±0.002 ±0.032

0.031 NA
qq→ZZjj (QCD) 0.702 ±0.003 ±0.061

0.051 ±0.015
0.018

gg→ZZjj 0.741 ±0.021 ±0.143
0.072 ±0.002

Table 6.16: C Factor of ZZjj→ 4l process

C factors in the 2l2ν channel are calculated as:

C ∆C(stats) ∆C(syst) ∆C(theo)
EWK ZZ → ``νν + 2j 0.2303 ± 0.0015 ± 0.0044 ± 0.0009
qqZZ → ``νν + 2j 0.2060 ± 0.0055 ± 0.0127 ± 0.0141
ggZZ → ``νν + 2j 0.1899 ± 0.0056 ± 0.0094

Table 6.17: C Factor of ZZjj→ ``νν process

When calculating the C factor, overlap removal between truth leptons and ANTIKT4WZ
truth jets is applied, where jets within ∆R(l, j) <0.2 are removed.

The combined C factor in the 4l channel is calculated as follows:

CZZjj→4l =
∑
i

N i
F.V−truth∑

j N
j
F.V−truth

× Ci = 0.699± 0.003(stats)±0.011
0.013 (theo)± 0.028(exp)

The combined C factor in the 2l2ν channel is calculated with the same formula, as:

CZZjj→``νν = 0.2158± 0.0032(stats)± 0.0080(theo)± 0.0076(exp) (6.4)
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Statistical uncertainty refers to the uncertainty from signal MC statistics. Systematic un-
certainty refers to the experimental systematic uncertainty on signal processes, as discussed
in Section 6.4.1.

6.6.3 Cross section of 4l and 2l2ν channels

The cross-section of inclusive ZZjj production in fiducial volume is calculated as:

σF.V = Ndata −Nbkg

C × Lumi
,

where Ndata refers to the number of events selected from data passing SR reconstruction level
selections, while Nbkg refers to the number of background events passing SR reconstruction
level selections. The observed and expected yields are listed in table 6.7. The predicted and
measured cross-section in the llll and llνν channels are summarized in table 6.18.
Channel Measured fiducial σ [fb] Predicted fiducial σ [fb]
lllljj 1.27±0.12(stat)±0.02(theo)±0.07(exp)±0.01(bkg)±0.02(lumi) 1.26±0.04(stat)±0.22(theo)
llννjj 1.13±0.28(stat)±0.04(theo)±0.06(exp)±0.15(bkg)±0.02(lumi) 1.11±0.01(stat)±0.12(theo)

Table 6.18: Measured and predicted fiducial cross-sections of inclusive ZZjj
production.

In table 6.18, uncertainties due to different sources are presented explicitly, including
the one from the statistical uncertainty of the data and simulated samples (stat), the one
from the theoretical predictions (theo), the experimental ones due to the lepton and jet
calibrations (exp), the ones from background estimates (bkg), and the one from luminosity
(lumi).

6.7 Statistical analysis and result

6.7.1 Multivariate analysis

The inclusive cross section calculated in the previous section includes ZZjj productions
via pure electroweak and QCD processes. Another important goal of this analysis is to cal-
culate the significance of the ZZjj production via pure electroweak processes. As shown
in table 6.7, the signal and background ratio in signal regions of both the lllljj and llννjj
channels although very tight cuts already applied. To improve the sensitivity of the signal,
the Gradient Boost Decision Tree (BDTG) method, introduced in section 5, is used to dis-
tinguish the EWK and other components. The BDTG method used in this analysis is based
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on the TMVA package 2. For the 4l channel, the dominant background comes from QCD
ZZ plus two jets, and training is performed based on the EWK and QCD samples. During
BDT training, EWK samples are assigned with label=1, while QCD samples are assigned
with label=-1. Hyper-parameter settings for BDT in the lllljj channel are summarized in
table 6.19.

llll NTrees=1000,MinNodeSize=2.5%,BoostType=Grad
Shrinkage=0.10,UseBaggedBoost,BaggedSampleFraction=0.5

nCuts=30,MaxDepth=5

Table 6.19: Hyper-parameters of gradient BDT in the lllljj channel

For the llνν channel, the dominant backgrounds come from WZ and non-resonant com-
ponents. In BDT training EWK signal is assigned with label=1, while backgrounds including
QCD (both qqZZ and ggZZ), non-resonant, WZ, and other samples are assigned with label=-
1. After signal region selection, Z+jets has been highly suppressed. Thus, Z+jets is not
used in the training background. Hyper-parameter settings for BDT in the llννjj channel
are summarized in table 6.20.

llνν NTrees=500, MinNodeSize=25%, BoostType=Grad
Shrinkage=0.10, UseBaggedBoost, BaggedSampleFraction=0.5

nCuts=20, MaxDepth=3"

Table 6.20: Hyper-parameters of gradient BDT in the llννjj channel

In the hyper-parameter table, the shrinkage rate represents the learning speed and bagged
boost means the BDT is trained on a random sample of data selected with replacement from
the original dataset to reduce the overtraining issue.

Input variables used for the training in both channels are summarized in Table 6.21, or-
dered by the variable importance in descending order. The variable importance is calculated
by using the average gain across all splits where the variable was used when building each
tree. Distributions of input variables are shown in Section 6.5, side-by-side comparing SR and
QCD CR ones. Input variable linear correlation coefficients plots are shown in Figure 6.30.
Considering the statistics of signal and background samples, SpliitMode = Random and
NormMode = NumEvents are used in preparing the training and test trees step. The
parameters used in BDTG are listed in Table 6.20.

2TMVA is the ROOT library that provides the interfaces and implementations of machine learning tech-
niques such as neural network and boost decision tree. https://root.cern/manual/tmva.
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(a) (b)

Figure 6.30: Input variable linear correlation coefficients in signal (left) and
background (right) for the 2l2ν channel.
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Figure 6.31: Input variable linear correlation coefficients in signal (left) and
background (right) for the 4l channel.
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Rank llννjj variables lllljj variables

1 ∆η(ll) mjj

2 mll leading pjT

3 ∆φ(ll) sub-leading pjT

4 mjj pT (ZZjj)/HT (ZZjj)

5 Emiss
T significance Y (j1)× Y (j2)

6 ∆Y (jj) ∆yjj

7 Y (j1)× Y (j2) Y ∗
Z2

8 HT Y ∗
Z1

9 ∆R(ll) pZZT

10 sub-leading pjT mZZ

11 Emiss
T pZ1

T

12 sub-leading plT p`3T

13 leading plT -

Table 6.21: Input variables for the 2l2ν channel (left) and 4l channel (right)
ordered by variable importance in descending order. The variable impor-
tance is calculated by using the average gain across all splits where the
variable was used when building each tree

The final BDT score distribution in SR and QCD CR is shown in figure 6.32 for the lllljj
channel, and in figure 6.33 for llννjj SR and VR before statistical fitting. The BDT score
shows a good separation between signal and backgrounds in the lllljj channel.

6.7.2 Statistical fitting and result

To calculate signal strength µEW and significance of the pure electroweak ZZjj produc-
tion, the statistical fitting based on the maximum likelihood method and profile likelihood
ratio, which are introduced in chapter 5, are used. Since the BDT score distribution shows
a good separation between signal and background, the likelihood is calculated based on the
BDT score distribution for both lllljj and llννjj channels. In this case, the BDT score dis-
tribution can be called the main discriminator (MD). In both channels, the binned likelihood
functions are used, which is shown in 5.3. The signal strength of the EWK is treated as the
parameter of interests and scale factors on backgrounds as well as uncertainties are treated
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Figure 6.32: Pre-fit BDT score distributions in SR (a) and QCD CR (b) for
the lllljj channel, with experimental systematics included in the plot.
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Figure 6.33: Pre-fit BDT score distributions in SR (a) and VR (b) for the
llννjj channel, with experimental systematics included in the plot.
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as the nuisance parameters. In the lllljj channel, the fitting is spontaneously performed in
both the signal region and QCD control region, while in the llννjj channel only the signal
region is included. The statistical tests are performed in both the individual lllljj and llννjj
channels and in the combined channels.

For the treatment of nuisance parameters, the experimental systematic uncertainties are
considered as correlated in all the bins and regions whenever applicable. The theoretical
uncertainties for ZZjj productions are treated as uncorrelated between the lllljj and llννjj
channels, due to the different fiducial volume definitions. The QCD scale uncertainty for
QCD ZZjj production can be assessed in various ways in terms of correlations between fitted
regions and is conservatively treated as uncorrelated between the SR and QCD CR in the
lllljj channel. Furthermore, the generator modeling uncertainty for QCD ZZjj production
is treated as uncorrelated between the low and high BDT score regions.

After statistical fitting, the BDT score distribution in the lllljj QCD CR, lllljj SR, and
llννjj SR are shown in figure 6.34. The post-fit kinematic distributions are shown in figure
6.35

The fitting signal strength µEW and significance of pure electroweak ZZjj production
are shown in table 6.22.

Channel µEW µlllljjQCD Significance Obs. (Exp.)
lllljj 0.97±0.27 0.98±0.22 5.5 (5.6) σ
llννjj 0.7±0.5 - 1.3 (2.1) σ

Combined 0.92±0.24 0.99±0.22 5.7 (5.9) σ

Table 6.22: Signal strength and significance of EW ZZjj production.

From the combined channels, the observed µEW is 0.92±0.24 while the µlllljjQCD is determined
to be 0.99 ± 0.22. The statistical component accounts for 88% of the total uncertainty in
µEW. The probability that the background can randomly fluctuate to produce a measured
likelihood ratio at least as signal-like as the excess observed in data is 1.6× 10−8, leading to
the observation of electroweak ZZjj production. With a normalized Gaussian distribution,
the background-only hypothesis is rejected at 5.7(5.9) σ from the data (expectation). The
electroweak ZZjj cross-section in the combined fiducial volume is found to be 0.70 ± 0.18
fb. The cross-section is calculated by multiplying µEW to the cross-section predicted by the
SM, which equals 0.76± 0.04 fb.
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Figure 6.34: Observed and expected BDT score distributions. Distributions
are shown after the statistical fit in the (a) lllljj QCD control region and
in the (b) lllljj and (c) llννjj signal regions.
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Figure 6.35: Observed and expected kinematic distributions after statistical
fitting. The mjj distributions in the (a) lllljj QCD CR and the (b) lllljj
and (c) llννjj signal regions. Four lepton mass distribution in the lllljj SR
(d) is also included.
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6.8 Event display

The VBS-like events are selected, as described in section 6.2. In addition, strict cuts with
BDTG greater than 0.25, di-jet invariant mass greater than 500 GeV, and 4-lepton invariant
mass greater than 500 GeV are applied. Figure 6.36 and 6.37 show event displays of two
VBS candidate events in the eeµµ jj final state.

μ-

μ+

e-

e+

Event with mjj = 906 GeV; m4l = 571 GeV
jet

jet

Figure 6.36: The event in data taken in 2015 with run and event number of
283429 2976267141.

μ+

μ-

e+

e-

Event with mjj = 2228 GeV; m4l = 605 GeV
jetjet

Figure 6.37: The event in data taken in 2017 with run and event number of
340368 454611985.
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Chapter 7

Search for a New Gauge boson Z’

The second analysis presented in this thesis is a search for a new leptophilic vector boson
Z ′ which is performed with the four-muon (4µ) final state. The search is focused on the 4µ
invariant mass range of [80, 180] GeV, excluding the Higgs boson mass window [110, 130]
GeV. The mass range of the Z ′ in this search is [5, 81] GeV.

In pp collisions at the LHC, the Z ′ could be produced from final state radiation of µ or
τ pairs of the Drell-Yan (DY) process as shown in Figure 7.1a with a 4µ final state, which
provides the cleanest signature to search for the Z ′. For relatively low Z ′ mass, the most
promising experimental signature would be an excess of 4µ events with the invariant mass of
one µ+µ− pair peaking around the Z ′ mass. The major background comes from the SM 4µ
production processes shown in figure 7.1. The Z ′ could also be produced in W production
through the DY process, pp → W → Z ′µν → 3µ + ν. The experimental signature would
have a final state of 3µ plus large missing transverse energy. This final state is not included
in this analysis.

(a) (b) (c) (d)

Figure 7.1: Feynman diagrams of Z ′ production through radiation in a
Drell-Yan process (a), and of the corresponding SM background processes
(b - d) with a 4µ final state.

Both the ATLAS and CMS Collaborations have measured the cross-sections of the SM
Z → 4µ process [111,112]. The measurement by ATLAS was used by theorists to set limits
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Figure 7.2: Constraints on the model parameter space from the different
leptonic processes discussed in Section IV. The region in white is the allowed
region. The anomaly in B → K∗µ+µ− can be accommodated everywhere
to the left of the bottom-right triangle. Note that the constraint from the
neutrino trident production of muon pairs (red region) completely excludes
the region favored by (g−2)µ. The dotted lines in the allowed region denote
(5-10)% NP effects in Bs mixing [110].

in the parameter space of the Lµ−Lτ model together with other experiments [110], as shown
in Fig. 7.2. The CMS Collaboration has directly searched for the Z ′ boson in the mass region
between 5 to 70 GeV with the 4µ final state using 77.3 fb−1 of data [113], and set upper limits
on the Z ′ to muon coupling strength, g, of 0.004 – 0.3 at 95% confidence level, depending
on the Z ′ mass. This search uses the full Run 2 dataset (139 fb−1) and the MVA technique
to improve the search sensitivity.

7.1 Dataset and Monte Carlo simulations

The data used for this analysis were recorded using single-muon and multi-muon triggers,
corresponding to an integrated luminosity of 139 fb−1 after the application of data quality
requirements [114]. The transverse momentum (pT) thresholds for the single-muon trigger
vary from 20 to 26 GeV, for the di-muon trigger from 10 to 14 GeV, and for the tri-muon
trigger from 4 to 6 GeV, depending on the data-taking periods [115]. The overall trigger
efficiency for the 4µ events selected in this analysis is higher than 98%.
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7.1.1 Simulation of Z ′ production

The Lµ−Lτ model is used for Monte Carlo (MC) Z ′ signal sample production, where the
Z ′ couples to the left-handed (LH) muon or tau leptons and their corresponding neutrinos,
and to the right-handed (RH) muon or tau leptons. In the model, the Z ′ couplings to the
first lepton families (electron and its neutrino) and all quarks are set to zero. The couplings
to second and third-generation leptons are assumed to be identical, therefore the branching
fractions of the Z ′ decay to a pair of muons and a pair of muon neutrinos are set to 1

3 and
1
6 , respectively. The signal from tau decays in the 4µ final state is found to be negligible in
this analysis and is not included as the signal.

The signal events are generated with MadGraph5_aMC@NLO 2.7.3 [116] at leading-
order (LO) accuracy in QCD by using the Universal FeynRules Output (UFO) format [117,
118]. The interactions [119] mediated by a resonance Z ′ which couples to the second and
third-generation leptons are used for four-muon signal event generation. Based on theoretical
calculations [120,121] for related processes, the appropriate NNLO/LO correction factor K of
1.3 is used to correct the MC LO signal cross-sections. In the signal production simulations,
the NNPDF2.3nlo set [105] is used as the parton distribution function (PDF) for the pp
collisions. Photos++ 3.61 [122] is used as the photon emissions from electroweak vertices
and charged leptons via a QED process.

The MC simulated events are generated for a range of masses and coupling parameters
of the Lµ − Lτ model. The Z ′ mass ranges from 5 to 81 GeV, and the value of coupling
constant g ranges from 0.008 to 0.316, as summarized in Table 7.1. The value of the g at
each Z ′ mass was chosen to allow a sensitive search for a very small Z ′ signal in the full Run
2 dataset.

With the chosen g, the natural width Γ of the Z ′ (smaller than the experimental reso-
lution) and the cross-section, σ (pp → Z ′µ+µ− → µ+µ−µ+µ−), are calculated as listed in
Table 7.1.

The Z ′ signal samples were simulated with the ATLAS fast simulation framework (Atlfast-
II) [107] to produce predictions that can be directly compared with the data.

7.1.2 Simulation of background events

Dominant SM backgrounds in this analysis come from the SM Z → 4µ processes where
the four leptons have an invariant mass close to that of the Z boson. In the higher mass
region the ZZ∗ production contribute a sizable number of prompt 4µ events. In addition,
there are very small contributions from the Higgs boson, tt̄V (V = W,Z), and tri-boson
(V V V ) production processes. These events are estimated with MC simulations. The non-
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Table 7.1: Summary of the chosen Z ′ hypotheses and corresponding cou-
pling, width, and cross-section (calculated at LO accuracy in QCD) at each
mass point.

mZ′ [GeV] g Γ [GeV] σ [fb] mZ′ [GeV] g Γ [GeV] σ [fb]
5 0.0080 2.45E-5 9.96 42 0.0900 2.71E-2 13.38
7 0.0085 3.99E-5 7.06 45 0.1000 3.58E-2 11.72
9 0.0090 5.78E-5 5.60 48 0.1100 4.62E-2 9.96
11 0.0095 7.89E-5 4.65 51 0.1200 5.84E-2 8.24
13 0.0100 1.03E-4 3.95 54 0.1600 1.10E-1 10.07
15 0.0120 1.72E-4 4.45 57 0.2000 1.81E-1 10.73
17 0.0140 2.65E-4 4.80 60 0.2665 3.39E-1 12.92
19 0.0160 3.87E-4 5.00 63 0.2680 3.60E-1 8.84
23 0.0240 1.05E-4 7.30 66 0.2780 4.06E-1 6.50
27 0.0320 2.20E-3 8.50 69 0.2890 4.59E-1 4.89
31 0.0400 3.95E-3 8.72 72 0.3000 5.15E-1 3.80
35 0.0600 1.00E-2 12.82 75 0.3000 5.37E-1 2.88
39 0.0800 1.99E-2 14.77 78 0.3080 5.89E-1 2.40

81 0.3160 6.44E-1 2.08

prompt muon background events, mostly coming from Z + jets, tt, and single-top-quark
production processes, are estimated from data in this analysis, as described in section 7.3.1.
The Z + jets and tt MC samples are also produced for background studies.

Samples of diboson final states (qq̄ → V V (∗)), including the processes shown in Figures
7.1b and 7.1c, were simulated with the Sherpa [2.2.2] [123] generator, including off-shell
effects and Higgs boson contributions, where appropriate. Fully leptonic final states and
semileptonic final states, where one boson decays leptonically and the other hadronically,
were generated using matrix elements at next-to-leading-order (NLO) accuracy in QCD for
up to one additional parton and at LO accuracy for up to three additional parton emissions.
Samples for the loop-induced processes gg → V V (∗), shown in Figure 7.1d, were generated
using LO-accurate matrix elements for up to one additional parton emission for both the
cases of fully leptonic and semileptonic final states. The matrix element calculations were
matched and merged with the Sherpa parton shower based on Catani–Seymour dipole
factorisation [102, 124] using the MEPS@NLO prescription [125–128]. The virtual QCD
corrections were provided by the OpenLoops library [103,129,130]. The NNPDF3.0nnlo
set of PDFs was used [95], along with the dedicated set of parton-shower parameters (tune)
developed by the Sherpa authors.

The production of tt events was modelled using the Powheg-Box [v2] [131–134] gener-
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ator at NLO in QCD with the NNPDF3.0nlo PDF set and the hdamp parameter1 set to
1.5 [135]. The events were interfaced to Pythia [8.230] [136] to model the parton shower,
hadronization, and underlying event, with parameters set according to the A14 tune [106]
and using the NNPDF2.3lo set of PDFs. The associated production of top quarks with
W bosons (tW ) was modeled by the Powheg-Box [v2] [132–134, 137] generator at NLO
in QCD using the five-flavor scheme and the NNPDF3.0nlo set of PDFs. The diagram
removal scheme [138] was used to remove interference and overlap with tt production. The
events were interfaced to Pythia [8.230] using the A14 tune and the NNPDF2.3lo set of
PDFs.

The production of V+jets was simulated with the Sherpa [2.2.1] generator using NLO
matrix elements for up to two partons, and LO matrix elements for up to four partons,
calculated with the Comix and OpenLoops libraries. They were matched with the Sherpa
parton shower using the MEPS@NLO prescription with the set of tuned parameters devel-
oped by the Sherpa authors. The NNPDF3.0nnlo set of PDFs was used and the samples
were normalized to a next-to-next-to-leading-order (NNLO) prediction [139].

The production of events was modeled using the MadGraph5_aMC@NLO 2.3.3 gen-
erator at NLO with the NNPDF3.0nlo PDF. The events were interfaced to Pythia
[8.210] using the A14 tune and the NNPDF2.3lo PDF set. The production of tri-boson
(V V V ) events was simulated with the Sherpa [2.2.2] generator. Matrix elements accu-
rate to LO in QCD for up to one additional parton emission were matched and merged
with the Sherpa parton shower based on Catani–Seymour dipole factorization using the
MEPS@NLO prescription. Samples were generated using the NNPDF3.0nnlo PDF set,
along with the dedicated set of tuned parton-shower parameters developed by the Sherpa
authors.

The generated background MC samples were produced through the full ATLAS detector
simulation based on Geant4 [108]. The effect of multiple interactions in the same and neigh-
boring bunch crossings (pileup) was modeled by overlaying the simulated hard-scattering
event with inelastic pp events generated with Pythia [8.186] [104] using the NNPDF2.3lo
set of PDF and the A3 set of tuned parameters [140]. Simulated events were reweighted
to match the pile-up conditions in the data. All simulated events were processed using the
same reconstruction algorithms and triggering requirements as used in data.

1The hdamp parameter is a resummation damping factor and one of the parameters that controls the
matching of Powheg matrix elements to the parton shower and thus effectively regulates the high-pT
radiation against which the tt system recoils.
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7.2 Event selection

Proton-proton interaction vertices are reconstructed in events with at least two tracks,
each with pT > 0.5 GeV. The primary hard-scatter vertex is defined as the one with the
largest value of the sum of squared track transverse momenta.

Table 7.2 summarizes the selection cuts of muons in this analysis. Since this analysis
includes the signal sample with mZ′ = 5 GeV, we lower the pT cut on muon from 7 GeV to
3 GeV, which improves signal selection efficiency by 10%.

Identification Loose

Kinematic cuts pT > 3 GeV, |η| < 2.7

Impact cuts
|dBL

0 /dBL
error| < 3.0

|zBL
0 · sin(θ)| < 0.5 mm

Isolation FixedCutLoose

Table 7.2: Muon object definition.

Muons are identified by matching tracks reconstructed in the MS to tracks reconstructed
in the ID (referred to as combined muons). To increase the muon reconstruction efficiency
non-combined muon identification algorithms are also used in the analysis, including using
the MS stand-alone tracks in the region 2.5 < |η| < 2.7, and matching the ID tracks with
calorimeter hit information within |η| <0.1, as well as using the ID tracks associated with
at least one local track segment in the MS. In the 4µ event selection at most one of the
selected muons can be a non-combined muon. Each muon is then required to satisfy the
‘loose’ identification criteria [141]. Muons are required to be isolated using a particle-flow
algorithm [142] and associated with the primary hard-scatter vertex by satisfying | d0

σd0
| <

3 and |z0 × sin θ| < 0.5 mm, where d0 is the transverse impact parameter calculated with
respect to the measured beam-line position, σd0 its uncertainty, and z0 is the longitudinal
distance between the point at which d0 is measured and the primary vertex. The minimum
muon pT threshold is 3 GeV.

In addition to muons, electrons, jets, and missing transverse momentum (Emiss
T ) are also

used to select control samples for background estimation in this analysis. The reconstructions
of these objects are discussed in chapter 4.

Each electron is required to satisfy the ‘medium’ likelihood identification criteria [143],
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as well as similar vertex and isolation requirements as muons. The reconstructed electrons
are required to have pT > 7 GeV and |η| < 2.5, excluding the transition region between the
barrel and endcap calorimeters, 1.37 < |η| < 1.52.

Jets are reconstructed with the anti-kt algorithm introduced in section 4.3.1 with a radius
parameter of R = 0.4. The jet clustering input objects are based on particle-flow [144] in
the ID and the calorimeter. Jets are required to have pT > 20 GeV and |η| < 2.5. To reduce
the effect of pile-up an additional quality requirement based on the JVT [72] is applied in
jet identification, which is introduced in section 4.3.3.

Events containing at least four muons with kinematics consistent with Z(Z∗/γ∗) → 4µ
production are then selected as follows. The four leading pT-ordered muons are required
to pass the pT thresholds of 20, 15, 8, and 3 GeV, respectively. If a muon is selected as a
non-combined muon, its pT must be greater than 15 GeV. Any di-muon pair in the event
must have an invariant mass mµµ greater than 4 GeV and an angular separation ∆R larger
than 0.2. To search for the Z ′ → µ+µ− signature, two muon pairs are selected based on their
invariant mass values. The first pair (referred to as Z1) is selected from all the possible µ+µ−

pairs to have the smallest mass difference between the Z1 mass and the Z mass, |mZ−mZ1|.
The second µ+µ− pair is selected from the remaining muons that have the highest invariant
mass (referred to as Z2). The correct signal di-muon pairing fraction varies with the Z ′

mass, where the selected di-muon pair that forms mZ1 or mZ2 originates from the Z ′. For
example, for mZ′ = 5, 42, 63, 72, and 81 GeV, the correct di-muon pairing fractions are
about 78%, 50%, 88%, 82%, and 90%, respectively. Finally, the selected four muons must
have an invariant mass in a range of 80 to 180 GeV, excluding the Higgs boson resonance
mass region of 110 to 130 GeV.

The Z ′ signal efficiency at various stages of the event selection is shown in Table 7.3 for
five representative mass points. The event selection efficiencies vary significantly depending
on the Z ′ mass. At the generator level, an MC filter is applied, which requires at least four
muons with pT > 2 GeV and |η| < 3.0. The MC filter efficiencies of these representative Z ′

signal samples are listed in the table as well.
The Z ′ production signature is searched for in the Z1 or Z2 mass spectrum depending

on the Z ′ mass. The relatively high-mass Z ′ signals mostly appear as a peak in the Z1

spectrum while the relatively low-mass signals mostly appear as a peak in the Z2 spectrum.
Representative examples of the predicted signal over background, after further selection with
a deep learning approach which will be described in Section 7.6, are shown in Figure 7.26. In
this analysis, the Z1 and Z2 mass spectra are scanned to search for a Z’ with a mass greater
or smaller than 42 GeV, respectively. The boundary value of 42 GeV is chosen based on the
studies to optimize the search sensitivity.
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Table 7.3: The Z ′ signal event selection efficiencies compared to the events
passing the previous cut level for several representative mass points. The
overall signal efficiencies are the products of the 4µ MC filter and the com-
bined event selection efficiencies.

mZ′ [GeV] 5 42 63 72 81

MC filter efficiency 32.8% 57.7% 61.0% 65.3% 70.0%
Number of identified muons ≥ 4 47.3% 74.1% 70.8% 72.4% 75.4%
piT(i = 1, 4) > 20, 15, 8, 3 GeV 60.0% 82.6%, 90.3% 93.6% 98.2%
∆R(µi, µj) > 0.2 & vertex requirement 87.2% 95.4% 96.2% 96.6% 97.2%
Isolation 54.2% 76.9% 79.2% 84.1% 87.5%
m4µ within [80, 110] or [130, 180] GeV 91.9% 88.8% 58.9% 33.5% 16.8%
Combined event selection efficiency 12.3% 39.9% 28.7% 18.4% 10.6%
Overall 4µ signal efficiency 4.1% 23.0% 17.5% 11.9% 7.4%

30 40 50 60 70 80 90 100 110 120

 [GeV]Z1m

0

0.5

1

1.5

 

D
a

ta
 /

 B
k
g 0

20

40

60

80

100

120

140

E
v
e

n
ts

 /
 1

.5
 G

e
V

ATLAS Internal
1 = 13 TeV, 139 fbs

Data

Z’ (15 GeV,g=0.013) µµ →Z

Z’ (51 GeV,g=0.12) µµ →Z

SM Z(Z*) background 

Other backgrounds 

Uncertainty

(a)

5 10 15 20 25 30 35 40 45

 [GeV]Z2m

0

0.5

1

1.5

 

D
a

ta
 /

 B
k
g 0

10

20

30

40

50

60

70

80

E
v
e

n
ts

 /
 0

.5
 G

e
V

ATLAS Internal
1 = 13 TeV, 139 fbs

Data

Z’ (15 GeV,g=0.013) µµ →Z

Z’ (51 GeV,g=0.12) µµ →Z

SM Z(Z*) background 

Other backgrounds 

Uncertainty

(b)

Figure 7.3: Distributions of mZ1 (a) and mZ2 (b) with the pre-selected
4µ events. MC simulated signals and background are normalized by their
production cross-sections and 139 fb−1 integrated luminosity together with
the overall selection efficiencies.

The numbers of 4µ events in data and the estimated background yields are given in
Table 7.4. More details about the estimation of the reducible backgrounds containing non-
prompt muons can be found in Section 7.3. The total uncertainties of simulated backgrounds
are also listed in the table. The evaluations of systematic uncertainties will be described in
Section 7.5.
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Table 7.4: The selected 4µ events in data and the estimated backgrounds
and their combined statistical and systematic uncertainties.

Data Total qq → ZZ∗ gg → ZZ∗ ttV + V V V +H Reducible background
background from MC from MC from MC from data

1131 1148± 70 1065+70
−69 15.6± 2.5 6.2± 2.9 61.1+8.3

−9.1

7.3 Background estimation

7.3.1 Fake background estimation

The reducible backgrounds from Z+jets and tt are estimated using a data-driven tech-
nique, the fake factors method described in section 6.3.3. Since both analyses require four-
lepton final states and sources of reducible backgrounds are the same, in this analysis, we
used similar definitions of the Z+jets and tt control regions to estimate the fake factors,
which can be found in table 6.8 (Z+jets) and table 6.9 (tt). Only fake factors of muons are
calculated since this analysis only includes the 4µ channel. The same as 6.3, bad muons are
defined as objects that pass basic muon selections but fail the isolation and d0 significance
cuts, and good muons are defined as objects that pass all SR muon cuts. The lowest pT of
the fake factor function and pT cuts on bad and good muons are lower from 7 GeV to 3 GeV
following the signal region cuts. The 1-D fake factor as a function of muon pT and η are
shown in figure 7.4 (tt) and figure 7.5 (Z+jets).
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Figure 7.4: Fake factors as a function of muon pT (a) and |η| (b) derived
using the tt̄ control sample, which is selected by isolated high-pT e±µ∓ pair
associated with at least one b-jet and Emiss

T > 50 GeV in each event.
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Figure 7.5: Fake factors as a function of muon pT (a) and |η| (b) derived
using the Z+jets control sample, which is selected by requiring an isolated
high-pT di-lepton pair (e+e−, or µ+µ−) decay from the Z boson (with their
inv. mass within 10 GeV of the Z mass) and Emiss

T < 25 GeV in each event.

In the estimation of fake backgrounds, the 2-D fake factors as functions of both pT and
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η are used for better estimation. In plots of the 2-D fake factors, fake factors derived from
data and Mento Carlo are put together for comparison.
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Figure 7.6: The 2-Dim fake factors as functions of muon pT and η in the
tt̄ CR from data (left) and Monte-Carlo (right). We used 2D fake factor to
calculate the final fake background yield.
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Figure 7.7: 2-Dim fake factor as functions of muon pT and η in the Z+jets
CR from data (left) and Monte-Carlo (right). We used the 2D fake factor
to calculate the final fake background yield.

Then, the fake factors derived from two data control samples are combined using the
mZ1 spectra obtained from simulated 4µ background events from Z+jets and tt processes.

A simultaneous fit of the mZ1 spectra of the MC events to data selected in the µ+µ−µjµj

control sample is performed to determine the fractions of the Z + jets and tt events in each
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bin of the mass spectrum. The post-fit distribution of mZ1 in the control region is shown in
figure 7.8.
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Figure 7.8: Post-fit data and MC comparison of the mZ1 mass spectrum in
the background control region.

The overall systematic uncertainty of the fake factor is about 14%. It is determined
with alternative non-prompt muon selections, such as changing the muon isolation criteria
in data control samples (7.6%), and the uncertainties of the Z + jets and tt event fractions
when combining the fake-factors derived from two control samples (8.6%). The statistical
uncertainties of the control samples are also accounted as part of the systematic uncertainties
(6.1%).

7.3.2 Estimation of reducible backgrounds

Additional reducible background contributions come from theWZ process. These events
contain three prompt muons from W and Z decays and one non-prompt muon. This back-
ground is estimated by scaling a 3µ+ µj control sample by the f derived from the Z + jets
sample. The total estimated number of reducible background events, 61.1+8.3

−9.1, is listed in
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Table 7.4.

7.4 Data and MC comparison in the four-electron con-
trol region

To better validate the physics modeling of the SM ZZ process in this low mass region, we
use four-electron events from ZZ∗ → 4e to compare data with MC simulations. The four-
electron event selection and pairing method are the same as for the four-muon event selection.
The electron selection criteria are shown in Table 7.5. The same fake-factor method is used
to estimate the fake electron contributions to the four-electron control region. The fake
background is included in the data and MC simulation comparison plots.

Electron selection

Identification Likelihood Loose

Kinematic cuts pT > 7 GeV, |η| < 2.47

Impact cuts |dBL
0 /dBL

error| < 5.0 and |zBL
0 · sin(θ)| < 0.5 mm

Isolation FixedCutLoose

Table 7.5: Electron selection criteria for ZZ∗ → 4e control region event
selection.

Since the fake factor of the electron is higher than the muon fake factor, the fake elec-
tron background is more visible in the four-electron plots shown in Figure 7.9, Figure 7.10,
Figure 7.11, and Figure 7.12.

Individual electron pT and η distributions in the selected 4e events are shown in Fig. 7.13,
Fig. 7.14, Fig. 7.15, and Fig. 7.16.

In general, data and MC agree well in the selected 4e sample, indicating MC ZZ back-
ground modeling is good.
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(a) (b)

Figure 7.9: Four lepton mass and pT distribution in 4 electron channel.

(a) (b)

Figure 7.10: Leading and sub-leading lepton pair mass distribution in 4
electron channels.
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(a) (b)

Figure 7.11: Leading and sub-leading lepton pair pT distribution in 4 elec-
tron channel.

(a)

Figure 7.12: The mass difference between leading and sub-leading lepton
pair in 4 electron channel.
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(a) (b)

Figure 7.13: pT distribution of leading and sub-leading lepton in the leading
lepton pair in 4 electron channel.

(a) (b)

Figure 7.14: pT distribution of leading and sub-leading lepton in the sub-
leading lepton pair in 4 electron channel.
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(a) (b)

Figure 7.15: η distribution of leading and sub-leading lepton in the leading
lepton pair in 4 electron channel.

(a) (b)

Figure 7.16: η distribution of leading and sub-leading lepton in the sub-
leading lepton pair in 4 electron channel.
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7.5 Systematic uncertainties

Systematic uncertainties in the simulated event yields and shapes, for both signal and
background processes, may arise from the calibration of the physics objects and from the
theoretical modeling used in the predictions.

The major experimental uncertainties come from the muon reconstruction, identifica-
tion, and isolation requirement efficiencies. These efficiencies are corrected based on studies
performed in data control regions. The energy and momentum scales and resolutions of
the simulated objects are calibrated to reproduce data from Z → µ+µ− and J/ψ → µ+µ−

decays [141]. The uncertainties on the 4µ detection efficiency are determined by varying
the nominal calibrations in the MC samples by one standard deviation, including muon mo-
mentum resolutions and scales, and the trigger, reconstruction, identification, and isolation
requirement efficiencies. The overall relative experimental uncertainties in the 4µ event se-
lection efficiency are about 3.9%, dominated by the uncertainty of the isolation efficiency
(2.9%) and the low pT calibration uncertainty (2.0%). The signal event selection efficiency
uncertainties vary from 8.3% to 3.9%, depending on the Z ′ mass. In addition, the uncertainty
in the combined 2015-2018 integrated luminosity is 1.7% [55], obtained using the LUCID-2
detector [145] for the primary luminosity measurements.

Sources of theoretical uncertainties come from the choice of QCD scales (renormalization
µR and factorization µF ), strong coupling constant αS, and PDFs, as well as the parton
shower models. These uncertainties affect the signal and background event selection efficien-
cies, normalization, and the shape of their kinematic distributions. The scales are varied
independently from 0.5 to 2.0 times the nominal values and the largest deviation is chosen
as the systematic uncertainty. The PDF uncertainty is estimated by comparing events gen-
erated with different PDF sets, as well as the uncertainties from the nominal PDF set itself.
The maximal variation (envelope) is accounted for as the systematic uncertainty, follow-
ing the PDF4LHC [109] recommendations. The αS uncertainty is estimated by comparing
events generated with different αS values using the nominal PDF set. The parton shower
uncertainty is estimated by comparing events with different parton shower parameters in the
Sherpa MC samples. For the Z(Z∗)→ 4µ process, the relative uncertainties of event yields
for scale, PDF, αs, and parton shower, are 4.6%, 1.8%, 1.0%, and 1.9%, respectively. The
tt̄V , V V V , and Higgs boson, processes contribute 5.2, 0.50, and 0.53 background events,
respectively. The total relative theoretical uncertainty for these backgrounds is estimated at
about 16%. The interference effect between the signal and background is estimated (using
MC samples generated by MadGraph5_aMC@NLO) by evaluating the cross-section ra-
tio, ∆σ/σZ′ , where ∆σ is the difference of the cross-section from the inclusive MC sample
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and the sum of the cross-sections of the signal and background samples in the Z ′ detection
phase space. The effect varies from 1.8 to 7.5% for the Z ′ mass from 5 - 81 GeV, which
is accounted for as additional signal yield systematic uncertainties. In addition, the MC
Z ′ signal filter acceptance uncertainty is estimated to be about 2%, which is calculated by
varying the QCD scales, the PDF-sets, and the strong coupling constant using MC events
at the generator level for different Z ′ mass points.

All the uncertainties (from both experiment and theory) on the final discriminant di-muon
mass spectra are included as nuisance parameters in the signal extraction fitting process
described in Section 7.7.1.

7.6 Event classification with deep learning approach

7.6.1 Deep learning model setup

The selected 4µ events are classified with a "Deep Learning" approach to further sepa-
rate the Z ′ signal from the SM background. A parametrized deep neural network (pDNN)
architecture [146], which is introduced in section 5.2, is used in the analysis. This algorithm
allows the training of a single classifier for multiple signal mass hypotheses in the search
range. In practice, the kinematic inputs together with the Z ′ mass parameters of signal
and background are used for training. The MC generated Z ′ masses (listed in Table 7.1) are
used as the multiple signal mass parameters, while the distribution of the mass parameter for
background events is randomly drawn from the same distribution as for the signal class. The
algorithm was implemented in the Keras [147] framework with the TensorFlow [148] back-
end. Two classifiers are trained for low (high) Z ′ mass searches using MC mass parameters
lower (higher) than 40 GeV. During the training of the classifier, the training samples were
composed of simulated signal and background 4µ events using the pre-selection described in
Section 7.2. A set of kinematic distributions were used for pDNN training input features.
They are the pT and η of each muon, the pT of the Z1 and Z2, the mass difference of the Z1

and Z2, ∆R and ∆η of each muon pair that forms the Z1 and Z2, and the pT and mass of the
4µ system. Distributions of input variables, both for representative signals (mZ′ = 15, and
51 GeV) and background, are shown in figure 7.17, 7.18 and 7.21 to compare the predicted
and observed transverse momenta (pZ1

T and pZ2
T ) distributions and the mass difference of the

Z1 and Z2. In addition to the major background from the SM Z(Z∗) → 4µ production,
other backgrounds, including 4µ events containing non-prompt muons estimated from data,
and from ttV , V V V , and Higgs boson production processes, are included in the plots, which
are denoted as "others" in the plots.
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Figure 7.17: Distributions of the pT for each muon (ordered with pT from
(a) to (d)).

The training results are a set of weights of the pDNN model which are applied to real
data or MC samples to obtain the pDNN output discriminating variable. The mZ1 or mZ2

are used as the mass parameter when applying the model to data.
The input parameters used in the pDNN training are the kinematic variables with 4µ final

state, which are summarized in table 7.6. The "Mass" parameter is used as a parameter input
of the pDNN model and the standard kinematic inputs. Relevant kinematic distributions of
the selected 4µ events of the Z ′ signal and the SM background are shown in Figure ??
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Figure 7.18: Distributions of the Eta for each muon (ordered with pT from
(a) to (d)).

To cross-check the background model, fully simulated MC events from the Z(Z∗) → 4e
process are produced, and a dedicated 4e control sample is selected using the same 4µ event
selection criteria and the background estimation technique. The 4e data agrees well with the
predicted background distributions, indicating good background modeling in this analysis.
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Figure 7.19: Kinematic distributions of the pre-selected 4µ events. Plots
(a) to (d) are the angular separations, ∆R of the two muons that formed
Z1 and Z2, and the mass distributions of Z1 and Z2.
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Figure 7.20: Data and MC comparison of the Z → 4µ invariant mass us-
ing pre-selected 4µ events. Figure (b) shows the distribution between 80
GeV and 110 GeV in Figure (a). Figure (c) shows the distribution of trans-
verse momentum of 4µ system.
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Figure 7.21: Distributions of pZ1
T (a), and pZ2

T (b), and the mass difference
of the Z1 and Z2 candidates (c).
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Table 7.6: Description of the variables used as inputs to the pDNN classifier

variable description
Mass parametrized signal mass feature
piT, η

i, (i =1,4) transverse momentum pT and η of µi (i=1,4)
pT,Zi , (i=1,2) transverse momenta pT of the Z1 and the Z2
mZ1 −mZ2 subtraction between the mass of two di-muon pairs
∆R(µ+

i , µ
−
i ), i = 1, 2 ∆R of the di-muon formed Zi (i=1,2)

∆η(µ+
i , µ

−
i ), i = 1, 2 ∆η of the di-muon formed Zi (i=1,2)

m4µ, pT, 4µ invariant mass and transverse momenta of 4 muons system

7.6.2 Hyper-parameter selection

To improve the power of the pDNN classifier the model is optimized through an automatic
process developed with the package Tune [149] and HEBO Search algorithm [150]. The
neural-network structure was chosen to have two fully connected hidden layers, each with 256
(32) nodes for the high (low) mass search in the analysis. Other training hyper-parameters,
such as the learning rate with decay and class weight, for both high and low mass searches
were also selected. These selected parameters and optimized values are given in Table 7.7.

Table 7.7: The DNN classifier hyper-parameters determined from an auto-
optimization process.

learning
rate

learning
rate decay

batch size signal
weight

background
weight

high-mass 0.03914 0.008538 512 1.04 19.06
low-mass 0.004129 0.0003592 128 9.92 8.01

The learning rate determines how fast the pDNN moves along the gradient descent di-
rection of the loss function, where the learning rate decay decreases the learning rate over
epochs to help the pDNN converge more easily to the minimum and avoid oscillation. The
batch size determines how many samples are to be propagated to the DNN every time when
we estimate the gradient and update the weight. In the end, the class weight for the signal
and background is also applied to decide how much attention the DNN pays to each class.
After optimization, the pDNN score distributions for Z’ mass at 35 GeV and 51 GeV are
shown in figure 7.22.
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Figure 7.22: The pDNN output discriminant variable distributions for low
mass (a) and high mass (b) with a signal sample at 35 GeV and 51 GeV,
respectively.

7.6.3 Input feature importance of pDNN model

To better understand which variables have more contribution to the discriminate power
of the pDNN model, we studied the input feature importance. Unlike the tree-based models
describe in section 5.2.1, where the feature importance can be calculated directly using aver-
age gain across all splits where each feature was used, there is no direct method to calculate
feature importance in neural network models. The method we used in this analysis is based
on permutation2. In a nutshell, to calculate the feature importance xi, we randomly permute
feature xi across all samples and train a new neural network model fi. The performance
decrease between model fi and the original model f0 represents the gain including feature
xi, which shows the importance of that input feature. The reason we didn’t directly remove
feature xi instead of permutation is that removing one input feature will change the weight
matrix size of the input layer from n0×n1 to (n0−1)×n1, where n0 and n1 are the numbers
of input features and number of neurons in the following layer. The change in the neural
network structure will also affect the performance of the model. The algorithm to calculate
feature importance is shown in 5.

In practice, the quantity we used to represent the model’s error is 1-AUC(f), in which
AUC represents the area under ROC (receiver operating characteristic) curve. A higher

2https://christophm.github.io/interpretable-ml-book/feature-importance.html
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Algorithm 5 Permutation method of feature importance
The original model is f0(x) and has n input features. For i=0:
repeat
Randomly permute feature xi.
Train the alternative model fi(x̂) using the permuted dataset.
Calculated the decrease of model performance or increase in error compared with the
original model using the original input dataset (f0(x)-fi(x)).

until i = n
Sort the input features in descending of their importance.

value of 1-AUC means the model performance is worse. To compare the performance of the
model trained on permuted dataset x̄ and the original dataset x, we used the ratio of 1-AUC
value between model fi and f0

1−AUC(fi(x))
1−AUC(f0(x)) . A higher value means the model performance

is worse compared with the original model after training on the permuted dataset. Since
input feature distributions for signals at different mass points are different, we performed
the feature importance study at different mass points separately. Figures 7.23 and 7.24 show
the input feature importance at different Z’ mass points.

(a) (b)

Figure 7.23: Input feature importance at 19 GeV (a) and 39 GeV (b).

From the rank plots, in the low mass region, we can see that the major contributions are
from mZ1−mZ2, m4µ and pTl1, while the major contributions are from ∆R34, mZ1−mZ2, pTl ,
pTZ2 and pT4µ in the high mass region.
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(a) (b)

Figure 7.24: Input feature importance at 57 GeV (a) and 69 GeV (b).

7.6.4 Z’ mass interpolation of the pDNN model

As described in section 5.2.3, one major advantage of the parameterized neural network
compared with the ordinary neural network model is that the pDNN model could achieve
good performance at mass points not included in the training dataset by learning the relation
between signals at different mass points, which provides us more flexibility to study the data
at more mass points with one model. To validate this property of the pDNN model, we
trained alternative test models with certain mass points excluded from the training dataset
and compared the performance with the original model. Since the kinematic distributions
and model performance are quite different in the high (mZ′ >42 GeV) and low mass region
(mZ′ <42 GeV), this study is performed separately in both the high and low mass regions.
In the low mass region, mZ′ = 19 GeVsignal is excluded from the training dataset, while mZ′

= 63 GeVis excluded in the high mass region. The comparisons are shown in figure 7.25,
where test models have similar AUC compared with the original model at all mass points,
which means pDNN indeed can achieve good performance in mass points not included in the
training.
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(a) low mass: MZ′ < 40 GeV (b) high mass: MZ′ > 40 GeV

Figure 7.25: Comparison between AUC of pDNN model trained with all
mass points (yellow dots) with pDNN model trained without signal of mZ′

= 19 (a) or 63 (b) GeV.

7.6.5 Selection of DNN cuts

To maximize the search sensitivity, a scan of the pDNN output scores was performed to
find the optimal cut values for each Z ′ mass hypothesis. These cut values vary from 0.42 to
0.74 (0.12 to 0.16) for the low (high) mass region. The cut values for different mZ′ signals
are given in Table 7.8.

Table 7.8: DNN cut values for different mZ′ for optimal search sensitivity.

Mass [GeV] 5 7 9 11 13 15 17 19 23 27 31 35 39
DNN cut 0.42 0.48 0.48 0.44 0.48 0.48 0.48 0.54 0.54 0.60 0.68 0.70 0.74
Mass [GeV] 42 45 48 51 54 57 60 63 66 69 72 75
DNN cut 0.16 0.14 0.14 0.14 0.14 0.14 0.12 0.12 0.12 0.14 0.14 0.14

These cuts keep high signal efficiencies between 98% and 95% (90% and 50%), while
the corresponding background reductions range from 10% to 50% (50% to 96%) for the low
(high) mass region.

After the 4µ event selection with the pDNN classifier, the final discriminant to search
for the Z ′ resonance signature is the Z1 (for mZ′ ≥ 42 GeV) or Z2 (for mZ′ ≤ 42 GeV)
mass spectrum as shown in Figure 7.26. Data are compared to the estimated background
together with two representative signals with masses of 15 and 51 GeV, shown in figure 7.26,
respectively. The values of the gauge coupling strengths (g) for the two mass points are
chosen for the purpose of illustration.
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Figure 7.26: Mass spectra of mZ2 (left) and mZ1 (right) for the pDNN-
selected events with a signal sample at 15 GeV and 51 GeV, respectively.

7.7 Data interpretation and results

The statistical analysis is performed by comparing the data to the sum of the background
prediction and the signal to search for the Z ′ signature and information about the pp →
µ+µ−Z ′ → 4µ signal production cross-section and the associated coupling strength.

In case of no significant data excess over the background prediction, upper limits on the
signal production cross-section times the decay branching fraction for different Z ′ masses are
set at 95% confidence level (CL).

7.7.1 Statistical fitting

To set the 95% upper limits, the profile likelihood ratio and CLs methods introduced in
section 5.1 are used in this analysis. A binned likelihood function as equation 5.3 is used
in the statistical fitting. The final discriminator in this analysis is the leading lepton pair
mass (mZ1) and sub-leading lepton pair mass mZ2 after applying cuts on the DNN score.
Each mass spectrum is divided into the signal region (SR) and the background control region
(CR). For each Z ′ mass point the SR is defined in a mass window of mZ′ ± 3σmµµ of the
di-muon mass spectrum. The mass windows at different Z’ mass points are calculated by
a fourth-order polynomial fitting using simulated Z’ mass resolution. The fitted Z’ mass
window function and simulated resolution can be found in figure 7.27.

The Z’ mass resolution σmµµ is determined by the fully simulated muon pair mass distri-
bution at the truth level using the double-Gaussian fitting, which combines the Z ′ natural
width and the detector resolution, ranging from 0.10 to 1.75 GeV. The Z ′ mass resolution is
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Figure 7.27: The parameterized mass resolution σmµµ as a function of mZ′

using fully simulated Z ′ → µ+µ− events.

the weighted average of standard deviations of the two Gaussian distributions. Representa-
tive Z ′ mass distributions and the fitting results are shown in figure 7.28 to figure 7.30. The
mass resolution is mostly dominated by the detector resolution.

(a) (b)

Figure 7.28: Double Gaussian fitting result at 13 (a) and 23 (b) GeV.
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(a) (b)

Figure 7.29: Double Gaussian fitting result at 35 (a) and 45 (b) GeV.

(a) (b)

Figure 7.30: Double Gaussian fitting result at 57 (a) and 69 (b) GeV.

The sidebands outside of the SR are defined as the CR. Finer binning is used in the SR
to enhance sensitivity. The background CR is used to constrain the overall normalization for
the background in the signal region. The shape of the major background from Z(Z∗)→ 4µ
is fixed with prior uncertainties included in the fitting process, but the normalization (or
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strength) floats in the fit. Other background normalizations and shapes are fixed with prior
uncertainties included in the fitting.

7.7.2 The p0 Scan Results

The p0-values corresponding to the background-only hypothesis is scanned in the mass
range of this analysis. A binned profile-likelihood fit [73] is performed simultaneously across
the Z ′ signal region and the background control region using the predicted and observed
mass spectrum as inputs. Data are fit to the mZ1 and mZ2 distributions for mZ′ ≥ 42 GeV
and mZ′ ≤ 42 GeV, respectively, with a "sliding" mass window as the defined SR changes
for different Z ′ mass points. The chosen bin size inside the SR is around 0.3 σmµµ , for each
mass point. The total number of bins in the CR is 20. The fit mass range of mZ1 (mZ2) is
[30, 85] GeV ([0, 45] GeV).

The p0-values at different Z ′ mass hypothesis points are computed and transformed into
Gaussian standard deviations to indicate the significance as shown in Figure 7.31. The small-
est p0-value is at 39.6 GeV, corresponding to a local 2.65σ deviation from the background-
only hypothesis, while the global deviation [151] is found to be 0.52σ, indicating that no
significant data excess over the expected background is observed.
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Figure 7.31: The p0-value scan across the Z ′ mass signal regions.

7.7.3 Upper Limits

The upper limits on the production cross-section times branching fraction of the pp →
µ+µ−Z ′ → 4µ process are calculated using a similar fitting procedure described in Sec-
tion 7.7.2. Confidence intervals are computed based on the profile-likelihood-ratio test
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statistics [73]. The observed and expected upper limits at 95% CL on the cross-section
times branching fraction, σ(pp→ Z ′µµ→ 4µ), are shown in Figure 7.32a.

Assuming the same coupling strength g of the Z ′ boson to the second and third lepton
families and to the left- and right-handed fermions, the upper limits on the coupling pa-
rameter g are extracted from the limits of the Z ′ production cross-section times branching
fraction using the Lµ−Lτ model, where the branching fraction of B(Z ′ → µ+µ−) = 1

3 , which
is determined by counting all the possible Z ′ decay modes in this model.

At each generated Z ′ mass point, a limit on the coupling strength g has been obtained
from the cross-section limit.

The observed and expected upper limits on the coupling parameter g are shown in figure
7.32b. The limits on the coupling g are in the range of 0.003 (for mZ′ = 5 GeV) to 0.2 (for
mZ′ = 81 GeV) depending on the Z ′ mass ranging from 5 to 81 GeV. This ensures that the
ratio of the Z ′ natural width and mass, Γ(Z ′)/mZ′ , is well below 1% in this mass range.
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Figure 7.32: 95% CL upper limits (expected and observed) on the cross-
sections times branching fraction (a) and coupling parameter (b). The dis-
continuity at 42 GeV represents the border of the low/high mass classifiers.

Motivated by theoretical interpretations in Ref. [152], a 2-dimensional exclusion contour
at 95% CL in the parameter-space of (mZ′ , g) of the Lµ − Lτ model from this analysis is
produced and shown in Figure 7.33. The parameter space exclusion regions were calculated
by theorists using data from the Neutrino Trident experiment [153] and the Bs mixing
measurements by a global analysis performed in Ref. [152] are also shown in Figure 7.33.
This had left a large gap in the parameter space not yet excluded, that was allowed to explain
the LHCb b→ sµ+µ− anomalies [44,154]. This gap is now largely excluded by this analysis.
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Chapter 8

Summary

Physics results from two analyses based on proton-proton data collected by the ATLAS
detector on the LHC are presented in this dissertation. The data used in this thesis work are
collected from 2015 to 2018 during the LHC Run 2 period with the integrated luminosity of
139 fb−1. The four-lepton final states are used in both analyses. The four-lepton final states
are clean and sensitive to searches of the VBS ZZ production and the new gauge boson Z ′

detection. Dominate background in the four-lepton final states comes from the qq → ZZ∗

process including the QCD vertex. The reducible backgrounds from fake leptons have small
contributions in the underlying signal regions. In both analyses, we used data-driven methods
to estimate the contributions from fake backgrounds. Machine learning algorithms (MVA),
such as BDT, DNN, and pDNN are used in the analyses to improve the detection sensitivity.

The electroweak vector boson scattering (VBS) in the ZZjj production is observed for the
first time at the LHC, which is an important probe for studying the dynamics of electroweak
symmetry breaking. Two final states, containing either four charged leptons or two charged
leptons and two neutrinos, were used in the analysis. The technique of the Boosted Decision
Trees was employed in the analysis to reduce the QCD ZZjj background, resulting in an
overall signal significance of 5.7σ over the background-only hypothesis model. Both inclusive
and the electroweak VBS ZZjj production cross sections are measured, consisting of the
Standard Model predictions. This analysis completes the last piece in the observation of
vector boson scattering, following the observation in the WW , WZ, and Zγ [155] by the
ATLAS experiment. It is an important milestone in the study of the Standard Model and
Higgs mechanism.

A search for a new vector boson Z ′ with the four-muon (4µ) final state is conducted. The
Z ′ is predicted by Lµ−Lτ models to address observed phenomena that the Standard Model
cannot explain. A deep learning neural network classifier is used to separate the Z ′ signal
from Standard Model background events. No significant excess of events was observed over
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the predicted background, and upper limits at a 95% confidence level on the Z ′ production
cross-section times the decay branching fraction were set for the Z ′ mass ranging from 5 to
81 GeV. The corresponding common coupling strengths, gZ′ , of the Z ′ boson to the second
and third-generation leptons above 0.003 – 0.2 have been excluded.

The measurements on the vector-boson scattering processes and searching for new gauge
boson Z ′ will be continued at the LHC in Run 3 (and beyond) programs. With much-
increased luminosity as well as increased energy provided by the LHC the potential of dis-
covering the breakdown of the SM and new physics is great in the next decade.
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