
Scenario-based Safety Evaluation of Highly Automated Vehicles

by

Xinpeng Wang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in the University of Michigan
2023

Doctoral Committee:

Professor Gabor Orosz, Co-Chair
Professor Huei Peng, Co-Chair
Associate Research Scientist Tulga Ersal
Professor Ilya Kolmanovsky
Professor Henry Liu
Professor Jing Sun

Xinpeng Wang

xinpengw@umich.edu

ORCID iD: 0000-0001-8494-0494

© Xinpeng Wang 2023

DEDICATION

I dedicate this dissertation to my grandmother, Mrs. Huiqin Fang, who nursed me with her love
and wisdom, and will be a lifelong inspiration for me.

ii

ACKNOWLEDGMENTS

First, I want to express my deepest gratitude and remembrance to my late advisor, Professor
Huei Peng. Professor Peng has been a father figure for me. He enlightened me on how to do
good research with his patient guidance, insightful suggestions, and sometimes hard questions. He
taught me how to be a good researcher with his devotion to work, enthusiasm for engineering, and
curiosity about new topics. He is one of the most dependable, loving and noble persons I have ever
met, which has inspired me to be my better self. Having Professor Peng as my advisor is the honor
of my life. He will always be an inspiration and role model for me.

Next, I extend my heartfelt thanks to my committee members: Professor Gabor Orosz, Dr.
Tulga Ersal, Professor Ilya Kolmanovsky, Professor Henry Liu, and Professor Jing Sun. Their
insightful guidance has inspired me to approach my research topic from different aspects, and
pushed me to think more deeply about problems. Specifically, after the passing of my advisor, they
have been extremely supportive to me both academically and emotionally, and helped me through
the darkest days.

I would like to thank Mcity, Ford Motor Company and Toyota Research Institute for funding
my research and providing me with the best support and resources to realize my ideas. Without
their help, I could never reach the point where I stand now.

Next, I want to thank my brothers and sisters in the Vehicle Dynamics Lab: Ding, Shaobing,
Pingping, Yiqun, Steven, Yuxiao, Ziheng, Xianan, Su-Yang, Geunsoab, Songan, Nauman, Boqi,
Yuanxin, Minghan, Lu, Han, Tinghan, Zhong, and Juhui. They are not only wonderful research
partners, but also irreplaceable friends in my personal life. Thank you for being there with me
through all the highs and lows.

I also want to thank all the amazing friends I met at U-M for all the wonderful moments we
shared together, from my amazing roommate Zhen, to my great buddies Yingdong, Fucong, Ting,
Zhuo, Minghao and Jiankan. Because of you, my life in Ann Arbor has been so colorful.

Finally, my greatest appreciation goes to my family for their unconditional support and love.
I would like to thank my mother Jun Hu, my father Junming Wang, and my grandparents Huiqin
Fang and Zhiqiang Hu, who have made me the person I am. I also want to thank my fiancée, Jiang
Mao, who is always by my side whenever and wherever.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . x

LIST OF ABBREVIATIONS . xi

ABSTRACT . xiii

CHAPTER

1 Introduction . 1

1.1 Background and Motivation . 1
1.2 Literature Review . 2

1.2.1 Naturalistic Field Operational Testing 3
1.2.2 Scenario-based Safety Evaluation . 4
1.2.3 Other Types of Evaluation Methods . 8

1.3 HAV Evaluation Problem Formulation . 8
1.3.1 Development Testing v.s. Acceptance Testing 8
1.3.2 ABC Test . 10
1.3.3 The Decomposition of Scenario-based Evaluation Procedure 11
1.3.4 Scenario Categorization . 12

1.4 Contributions . 13
1.5 Outline of the Dissertation . 14

2 Safety Evaluation for Reactive Scenarios . 15

2.1 Problem Formulation . 15
2.2 Model of the Pedestrian Crossing Scenario . 15

2.2.1 Literature Review . 15
2.2.2 Collection of Pedestrian Crossing Events 16
2.2.3 Statistical Model of the Scenario . 19

2.3 Accelerated Evaluation Framework . 21
2.3.1 Mathematical Tools . 22
2.3.2 Kinematic Model of the Scenario . 25

iv

2.3.3 Overview of the Evaluation Framework 26
2.3.4 Generating Naturalistic Distribution . 26
2.3.5 Computing Risk Level Sets . 27
2.3.6 Test Cases Generation with Importance Sampling 30

2.4 Simulation Results and Discussions . 32
2.5 Extension to Other Reactive Scenarios . 33

2.5.1 Scenario Model . 33
2.5.2 Test Case Generation . 35

2.6 Summary . 38

3 Safety Evaluation for Interactive Scenarios . 40

3.1 Motivation and Background . 40
3.2 Problem Formulation . 41
3.3 Review on Interaction-aware Driver Models . 41
3.4 Basic Methodologies for Primary Other Vehicle (POV) Library Construction . . . 42

3.4.1 Markov Game formulation . 43
3.4.2 Level-k Game Formulation . 43
3.4.3 Social Value Orientation . 44
3.4.4 Combining Level-k with Social Value Orientation 45

3.5 POV Library for the Highway Merging Scenario 45
3.5.1 Scenario Model . 45
3.5.2 Level-0 Policy . 46
3.5.3 POV Behavior Generation Using Reinforcement Learning 47

3.6 POV Library for the Roundabout Entering Scenario 49
3.6.1 Two-layer Framework for POVs in the Roundabout Scenario 49
3.6.2 POV Behavior Generation . 52

3.7 Adaptive Test Case Generation . 53
3.7.1 Problem Formulation . 53
3.7.2 Adaptive Testing Method Overview . 54
3.7.3 Adaptive Sampling within Single POV Category 55
3.7.4 Test Case Selection . 57
3.7.5 Sample Allocation between POV Categories 60

3.8 Simulation Results . 63
3.8.1 Comparison of Sample Allocation Methods 63
3.8.2 Baseline Algorithm for the Vehicle Under Test (VUT) 65
3.8.3 Example Interactive Test Cases . 66
3.8.4 Results of the Interaction-aware Testing 70

3.9 Summary . 74

4 Interaction-aware Corner Case Generation . 76

4.1 Motivation and Background . 76
4.1.1 Related Work . 77
4.1.2 Contributions . 78
4.1.3 Organization . 79

4.2 Problem Formulation . 79

v

4.2.1 Nominal Decision Model for the Primary Other Road User (PORU) . . . 79
4.2.2 The Surrogate VUT Model . 80
4.2.3 Definition of Ambiguity . 80

4.3 Solution Method . 81
4.3.1 MPC Formulation for the Nominal-PORU 81
4.3.2 Prediction Model of Surrogate-VUT . 81
4.3.3 Low-level Intention Estimation . 82
4.3.4 High-level Intention Estimation . 83
4.3.5 Estimation of Q-value Function . 83
4.3.6 Adversarial Interactive PORU Model 84

4.4 Implementation for two interactive scenarios . 85
4.4.1 Highway Merging Scenario . 85
4.4.2 Pedestrian Crossing Scenario . 87

4.5 Simulation Results . 89
4.5.1 VUT Algorithms . 90
4.5.2 Adversarial Test Cases . 90
4.5.3 Implementation of a Corner Case Testing Scheme 97
4.5.4 Discussions . 101

4.6 Summary . 101

5 Execution of the Behavior Competence Testing . 102

5.1 Motion Synchronization for the POV . 102
5.1.1 Problem Formulation . 102
5.1.2 Motion Synchronization for the Cut-in Scenario 103
5.1.3 Motion Synchronization for the Unprotected Left Turn Scenario 104

5.2 Vehicle Longitudinal Dynamics and Control . 106
5.2.1 Vehicle Longitudinal Model . 106
5.2.2 Speed Control with Preview Control Method 108

5.3 Results in Simulation and Field Testing . 110
5.3.1 Simulation Results for Motion Synchronization 110
5.3.2 Field Testing . 111
5.3.3 ABC Test Demo . 113

5.4 Digital Twin of Mcity Test in CARLA Simulator 115
5.5 Summary . 117

6 Conclusions and Future Work . 119

6.1 Conclusions . 119
6.2 Future Directions . 121

BIBLIOGRAPHY . 123

vi

LIST OF FIGURES

FIGURE

1.1 A summary of representative HAV evaluation techniques. 10
1.2 The execution pipeline for the ABC test. 12

2.1 The data collection site in Banff, Alberta, Canada: the target crosswalk is shown in
the red circle . 16

2.2 An example result of object tracking . 18
2.3 Example results of motion estimation: red solid lines show observed position; red

dashed lines show filtered position; blue lines show estimated speed. 19
2.4 Histograms of the 4 key variables for the pedestrian crossing scenario. 20
2.5 Empirical distribution and the TGMM model of the pedestrian crossing scenario. . . . 22
2.6 Kinematic model of the pedestrian scenario. 25
2.7 2D distributions conditioned on different vV eh. 27
2.8 RLSs for the pedestrian crossing scenario. 28
2.9 Importance sampling scheme. 30
2.10 300 test cases drawn from the ISD. 31
2.11 Simulation results: CMC v.s. proposed accelerated evaluation method. 32
2.12 Configuration of the ULT scenario. 34
2.13 Configuration of the cut-in scenario. 35
2.14 The dimension of the intersection and the left-turn maneuver; the conflict zone is

shown in red, with width w2 and length d2. l2 is the arc length of the maneuver inside
the zone; d1 and w1 are the longitudinal and lateral distance from the starting point of
the left turn to the edge of the conflict zone, and l1 is the corresponding arc length. R
is the radius of the arc. 36

2.15 The risk level sets for the ULT scenario. Red for the infeasible set, orange for the high
risk set, yellow for the medium risk set, green for the low risk set, and purple for the
trivial set. 37

2.16 Risk level sets and generated test cases for the ULT scenario when vV UT = 8 m/s.
300 test cases are generated based on (a) naturalistic distribution and (b) accelerated
evaluation distribution with ratio RIS = [1/3 : 1/3 : 1/3]. The testing space is
partitioned into infeasible (red), high (orange), medium (yellow), low (green) and
trivial (blue) risk sets. 38

2.17 Risk level sets and generated test cases for the cut-in scenario. 300 test cases are gen-
erated based on (a) naturalistic distribution and (b) accelerated evaluation distribution
with ratio RIS = [1/3 : 1/3 : 1/3]. The parameter space is partitioned into infeasible
(red), high (orange), medium (yellow) and low (green) risk sets. 39

vii

3.1 The pipeline of the interaction-aware evaluation framework. 42
3.2 The SVO ring: we will focus on ψ ∈ [0, π/2). 44
3.3 The configuration of the highway merging scenario. 46
3.4 The procedure of computing a sequence of level-k agents for (a) the highway merging

scenario and (b) the roundabout entering scenarios. The level-2 POVs have an extra
parameter ψ characterizing their SVO angle. 47

3.5 (a) The configuration of the roundabout entering scenario and the reference path of
the two POVs and one VUT. (b) Definition of variables for each pair of vehicles. . . . 50

3.6 (a) Phase-1 interaction for POV #1; the opponent is the green vehicle. (b) Phase-2
interaction for POV #1; the opponent is the red vehicle. 51

3.7 Measuring the failure mode coverage (FMC) of test samples on a 1-dimension contin-
uous testing space. The blue curve shows the performance score P (s), the red dashed
line represents the score threshold λ, and the regions where the curve is under λ are
the failure modes. For this example, FMC(s, ρ, λ) = l1 + l2 + l3 + l4. 56

3.8 (a) Compute expected FMC improvement through volume approximation. The yellow
region on the left shows the real Vadd brought by the new sample, while on the right
shows the approximated V̂add. (b) Sample along the performance boundary. Points
with different colors belong to different behavior modes. a.,b.,c.,d. correspond to line
3,4,5,6 in Algorithm 2 respectively. 58

3.9 The FCP dynamics for each category for the 4 simulated experiments. The experiment
indices are shown in parentheses. 64

3.10 Highway merging test cases with initial condition: x0POV = -273 m, v0POV = 33 m/s,
v0V UT = 18 m/s; blue for VUT, red for POV; the numbers show time lapses in seconds. 67

3.11 Roundabout entering test cases with initial condition: Level-2 POV #1, Level-1 POV
#2, x0POV 1 = -30.5 m, x0POV 2 = -4.5 m, v0POV 1 = 8.0 m/s, v0POV 2 = 10.0 m/s, v0V UT =
8.0 m/s; blue for POV #1, green for POV #2, red for VUT. 68

3.12 Testing cases with parameters: Level-1 POV #1, Level-2 POV #2, x0POV 1 = −34.0m,
, v0POV 1 = 8.0m/s, v0POV 2 = 8.0m/s, v0V UT = 9.0m/s; blue for POV #1, green for
POV #2, red for VUT. 69

3.13 Testing cases in a different roundabout site, with parameters: x0POV 1 = -42.0 m,
x0POV 2 = -25.0 m, v0POV 1 = 8.0 m/s, v0POV 2 = 7.0 m/s, v0V UT = 8.0 m/s; blue for
POV #1, green for POV #2, red for VUT. 70

3.14 Testing experiment results with level-1 POV #1 and level-0 POV #2. v0POV 1 =
v0POV 2 = 9m/s, v0V UT = 10m/s. The samples are color coded by the performance
score (truncated at 0 and -600), where red means lower score. 72

3.15 Testing experiment results for the roundabout entering scenario, with the full POV
library; batch size nb = 60, run for 20 batches. The sample allocation and the failure
case ratio across POV categories in all batches are demonstrated for the stochastic
optimization method in (a), (b); for the UCB-dynamic method in (c),(d). 74

4.1 The core concept of corner case generation for interactive scenarios: to create PORU
behaviors that confuse the surrogate-VUT prediction model with the intention of the
PORU. 78

viii

4.2 (a) The configuration of the pedestrian crossing scenario, whereG1,G2 andG3 are the
three goal locations, the blue arrows are sketches of the nominal trajectory for each
goal; the purple lines show the ”point of no return” for each goal. (b) Definition of the
variables and the frame for the pedestrian scenario. 87

4.3 The 1st case of highway merging scenario: x0POV = −220m, v0POV = 30m/s, x0V UT =
−182m, v0POV = 18m/s. 91

4.4 The 2nd case of highway merging scenario: x0POV = −250m, v0POV = 30m/s,
x0V UT = −182m, v0POV = 18m/s. 92

4.5 The 1st group of cases of the pedestrian crossing scenario: x0V UT = −46.0m, v0p =
1.3m/s. The goal is G1. In the top figure, numbers represent timestamps in seconds;
the compass icon shows the orientation. 94

4.6 The 2nd group of cases at the pedestrian crossing: x0V UT = −51.4m v0p = 1.3m/s.
The goal is G1. 95

4.7 The 3rd group of cases at the pedestrian crossing: x0V UT = −51.4m v0p = 1.3m/s. The
goal is G2. 96

4.8 Corner case testing results at highway merging scenario. (a) VUT with GIDM algo-
rithm; (b) VUT with deterministic sampling algorithm. 99

4.9 Corner case testing results for the CA-VUT at the pedestrian crossing scenario: 15/200
failures, in which 13/120 are hard cases, 2/60 are medium cases, 0/20 are easy cases. . 100

5.1 Proposed speed profile for PSP method . 104
5.2 Throttle and brake map. 107
5.3 The diagram for the motion synchronization algorithm. 109
5.4 The simulation results of three motion synchronization methods for the ULT scenario.

(a)-(c) show target-hitting performance comparison. (d) shows the speed curve com-
parison. The dashed lines represent the tLT for each run respectively. 110

5.5 The hardware set-up of the experimental vehicle platform for POV. 111
5.6 Conducting real-world testing for (a) the cut-in scenario and (b) the unprotected left

turn scenario. In each figure, the left vehicle is the POV while the right one is the VUT. 112
5.7 (a) The trajectories of POV and VUT in one cut-in case. Different colors represent

waypoints at different timesteps (b) Motion synchronization results for multiple cut-in
cases. The root-mean-square error (RMSE) on ∆x is 0.19m, RMSE on ∆v is 0.08 m/s. 113

5.8 Motion synchronization results at the ULT scenario in field testing. (a) Trajectories of
real POV and VUT in one test run. (b) The speed profiles; the dashed line represents
tLT . (c) Achieved results after 5 repeated runs of one test case. (d) Results of multiple
ULT test cases. The root-mean-square error on vPOV and ∆x are 0.20m/s, 0.56m
respectively. 114

5.9 The choreography of (a) the Mcity ABC test demo in the real world and (b) the Mcity
CARLA challenge in simulation. 115

5.10 The Mcity in the CARLA simulator . 116
5.11 Software GUI for the ABC test in the CARLA Mcity. 117
5.12 Screenshots of supported scenarios by the ABC test in the CARLA Mcity. From left

to right: cut-in, car-following, pedestrian-crossing, ULT scenario. 117

ix

LIST OF TABLES

TABLE

1.1 SAE levels of automation for on-road motor vehicles [1]. 2
1.2 Ride-hailing service launch status (by Q1 2023). 2
1.3 Comparison between development testing and acceptance testing. 9
1.4 Matrix of ABC test to be covered in the dissertation. 13

2.1 Values of parameters for modeling and simulation at the pedestrian crossing scenario. . 26
2.2 Risk level sets definition. 29
2.3 Number of events in different RLSs from the collected data. 29

3.1 Parameters for reward design: highway merging. 49
3.2 Parameters for reward design: roundabout entering. 53
3.3 Comparison of the number of failure cases for different sample allocation methods. . . 65
3.4 Results comparison for adaptive test case generation in one category. 73

4.1 Simulation parameters for corner case generation. 89
4.2 Test results comparison for different PORUs for the highway merging scenario. 99
4.3 Test results comparison for different VUTs for the pedestrian crossing scenario. 99

5.1 Vehicle parameters. 108
5.2 Results on the accuracy of motion synchronization in simulation for the ULT scenario. 111
5.3 Test cases for real-world testing. 112

x

LIST OF ABBREVIATIONS

ACC Adaptive cruise control.
ADAS Advanced driver assistance system.
AEB Autonomous emergency braking.
BIC Bayesian Information Criterion.
BMB Behavioral mode boundary.
BRT Backward reachable tube.
BSM Basic safety message.
CA Constant-acceleration.
CMC Crude Monte-Carlo.
CP Control Point.
CV Constant-velocity.
DDQN Double deep Q-network.
DQN Deep Q-network.
EI Expected improvement.
EM Expectation–maximization.
FCP Failure case probability.
FMC Failure mode coverage.
GIDM Generalized Intelligent Driver Model.
GP(R) Gaussian process (regression).
GPS Global Positioning System.
HAV Highly automated vehicle.
IDM Intelligent Driver Model.
IRL Inverse reinforcement learning.
ISD Importance sampling distribution.
LQR Linear–quadratic regulator.
LTAP/OD Left turn across path / opposite direction.
MAB Multi-arm bandit.
MDP Markov decision process.
MG Markov game.
MLE Maximum likelihood estimation.
MPC Model Predictive Control.
NCAP New Car Assessment Program.
ND Naturalistic distribution.
N-FOT Naturalistic Field Operational Test.

xi

OCP Optimal control problem.
ODD Operational design domain.
OEDR Object and event detection and response.
OV Opponent vehicle.
PDF Probability density function.
PID Proportional–integral–derivative.
PMP Pontryagin maximum principle.
PORU Primary other road user.
POV Primary other vehicle.
PSP Parameterized speed profile.
PV Primary vehicle.
RL Reinforcement learning.
RLS Risk level set.
ROS Robotic Operating System.
ROW Right-of-way.
RTK Real-time kinematic positioning.
SVO Social value orientation.
(T)GMM (Truncated) Gaussian mixture model.
TS Thompson sampling.
TTC Time-to-collision.
UCB Upper confidence bound.
ULT Unprotected left turn.
VRU Vulnerable road user.
VUT Vehicle Under Test.

xii

ABSTRACT

A highly automated vehicle (HAV) is a safety-critical system. Therefore, a verification and vali-
dation (V&V) process that rigorously evaluates the safety of HAVs is necessary before their mass
deployment on public roads. This dissertation will present the methodology and implementation
procedure of a scenario-based evaluation framework for HAVs.

First, an evaluation framework for reactive scenarios is proposed, where the risk level of test
cases could be objectively categorized in advance. The pedestrian crossing scenario is used as
a case study. We first build a statistical model for the pedestrian scenario based on naturalistic
data. Next, reachability analysis is applied to partition the scenario testing space into different risk
level sets, which are then combined with importance sampling to generate test cases efficiently
and realistically. The proposed method achieves unbiased crash rate estimation in an accelerated
fashion, while all the test cases are feasible and have controlled risk levels.

Then, a novel evaluation framework for interactive scenarios is proposed, including highway
merging and roundabout entering. Instead of assuming that the primary other vehicle (POV) takes
predetermined maneuvers, we model the POVs as game-theoretic agents. To capture a wide variety
of interactions between the POV and the vehicle under test (VUT), we use level-k game theory and
the social value orientation (SVO) concept to model the POV, and generate a diverse library of
POV policies using reinforcement learning. On the other hand, an adaptive test case generation
method is developed based on adaptive sampling, stochastic optimization and upper confidence
bound (UCB) algorithm to generate customized challenging cases for the VUT from the testing
space. In simulations, the proposed POV library captures a wide range of interactive patterns for
both highway merge and roundabout entering scenarios. The proposed test case generation method
covers the failure modes of a black-box VUT more effectively compared to other approaches.

In addition, the problem of generating corner cases for interactive scenarios systematically is
considered. an ambiguity-guided adversarial planning algorithm is developed to generate con-
fusing behaviors for the primary other road user (PORU) in interactive scenarios. The PORU is
modeled as a cost-minimizing agent with hierarchical intentions. The adversarial PORU plans ac-
tions to confuse the HAVs by maximizing the ambiguity with respect to its intentions, while also
taking nominal behavior planning goals into consideration. Two interactive scenarios are studied:
highway merging and pedestrian crossing. A corner case testing scheme is designed and imple-

xiii

mented for both scenarios to evaluate the performance of different HAVs comprehensively and
objectively.

Finally, the procedure of implementing behavior competence testing in the real world is pre-
sented for reactive scenarios. Speed planning algorithms for the POV are developed to synchronize
its motion with the VUT. A speed tracking controller for experimental vehicles is designed based
on the preview control algorithm. It is demonstrated that tests can be executed for multiple reactive
scenarios with real vehicles on the Mcity test track in an accurate, repeatable and automated fash-
ion. In addition, a digital twin of Mcity in the CARLA simulator is created, and the same testing
capability in the simulation is demonstrated.

xiv

CHAPTER 1

Introduction

1.1 Background and Motivation

The recent advancement of highly automated vehicles (HAVs) has reaffirmed the future of safer,
cleaner, more efficient and more equitable ground transportation [2]. They are set to relieve humans
from the tedious task of driving, and to transform the vista of future mobility. The Society of
Automobile Engineers (SAE) defined six levels of driving automation in J3016 [1] in 2014, which
categorizes the degree of automation from level 0 (no automation) to level 5 (full automation), as
shown in Table 1.1. For level 2 and below, the automation needs to be supervised by the driver.
Most of the driving automation systems on the market belong to this category, including Ford’s
BlueCruise, GM’s Super Cruise and Tesla’s Autopilot, etc. For level 3 automation, the vehicle is
required to drive itself and conduct the task of Object and Event Detection and Response (OEDR)
under certain conditions, while the human driver still needs to take over the vehicle when requested.
Despite the difficulty with liability and the potential risk with driver take-over, level 3 self-driving
has been granted regulatory approval in more markets. By the start of 2023, available level 3
systems include Honda Sensing Elite, Drive Pilot from Mercedes Benz [3]. For level 4 and above,
which are referred to as highly automated vehicles (HAVs) in this dissertation, the vehicle should
be able to drive fully autonomously without the intervention of the driver in some conditions (level
4) or all conditions (level 5).

HAVs have been the development focus of many companies. The robo-taxi has been a key
application for HAVs. From the year 2020, Waymo has been providing ride-hailing service in
Arizona, US. Multiple other companies have launched or are planning to launch commercialized
robo-taxi services all over the world, as summarized in Table 1.2. Autonomous trucking and freight
transportation is another key application, where companies including Waymo, TuSimple, Aurora,
etc., are working on its commercialization [4].

Due to the absence of human supervision, the safety assurance of HAVs is an extremely crucial
prerequisite for their wide development. In March 2018, a level 4 prototype HAV from Uber

1

SAE
level

Sustained lateral
and longitudinal
control

OEDR
Fallback for
dynamic driving
task

ODD Example features

0 Driver Driver Driver n/a AEB, BSW
1 Driver and System Driver Driver Limited ACC, LKA
2 System Driver Driver Limited ACC + LKA

3 System System
Fallback-ready
driver

Limited Traffic jam assist

4 System System System Limited
Locally driverless
taxi

5 System System System Unlimited Fully driverless car

Table 1.1: SAE levels of automation for on-road motor vehicles [1].

Company First launch time (est.) Location
Waymo 2020 Arizona, US
Cruise 2022 California, US

Mobileye (2023) Germany & Israel
Motional (2023) Nevada, US

Baidu Apollo [6] 2021 Beijing, China
Momenta 2021 Shanghai, China

Table 1.2: Ride-hailing service launch status (by Q1 2023).

was involved in a fatal crash, which not only caused the shutdown of further testing from Uber
ATG [5], but also led to a crisis on public trust in HAVs. Since HAVs are highly complex and
safety-critical, the rigorous verification and validation (V&V) approach is crucial to prove their
reliability and robustness and to gain public trust. Moreover, it is important for the V&V to be
conducted by a government agency or a trusted third-party as acceptance testing, in addition to the
existing self-certification process adopted by OEMs and technology start-ups.

1.2 Literature Review

First, there are two main different aspects of safety related to HAVs. The first one is functional
safety, which is formalized in ISO 26262 for passenger vehicles [7]. It describes safety as the
absence of risk arising from software or hardware failures. On the other hand, ISO 21448 defines
the notion of Safety of the Intended Function (SOTIF), which focuses on the risk due to functional
insufficiencies or foreseeable misuse by humans [8]. It characterizes the safety performance of an
HAV assuming all the components are working as intended and free from bugs. For the scope of
this dissertation, we focus on the latter aspect of safety.

2

On the other hand, since the notion of ”operating in any conditions” for level 5 autonomy is
more of an ideal vision than a practical target, almost all current HAV are developed to oper-
ate under a certain set of circumstances, which is named the operational design domain (ODD).
Therefore, the domain of safety evaluation for HAVs will be their target ODD [9]. The ODD
is formally defined as the ”operating conditions under which a given driving automation system
or feature thereof is specifically designed to function, including environmental, geographical, and
time-of-day restrictions, and/or the requisite presence or absence of certain traffic or roadway char-
acteristics” [1]. The ODD determines the environment that the HAV will operate in, and the set of
scenarios that the HAV might encounter. The primary goal of the safety evaluation is to assess the
performance of the HAV inside its ODD thoroughly.

1.2.1 Naturalistic Field Operational Testing

A straightforward way to cover the ODD is to deploy the HAV inside its target environment, and
test with millions of naturalistic miles, hoping to traverse all the combinations of circumstances
in the ODD. These are known as Naturalistic Field Operational Tests (N-FOTs). There have been
many N-FOTs projects conducted by the government and research institutes. In 2001, the 100-
Car Naturalistic Driving Study was conducted to collect large-scale, naturalistic driving data to
understand the cause of crashes [10]. Over 2 million miles of data were collected. In 2005, the
Integrated Vehicle-Based Safety Systems (IVBSS) program [11] was conducted to evaluate the
effectiveness of various collision warning systems, with more than 800k miles driven with both
light vehicles and heavy trucks. In 2012, the Safety Pilot Model Deployment (SPMD) [12] was
conducted to study the effects of connected and automated vehicle technologies.

Recently, N-FOTs have been adopted by most technology companies working on self-driving
vehicles. By Jan 2022, 51 entities have acquired autonomous vehicle testing permits in California,
while 7 of them have driverless testing permits [13]. They have logged over 1.9 million miles
annually in both 2019 and 2020. By 2021, the HAVs from Waymo have covered over 20 million
test miles on public roads in total [14]. These N-FOTs present the HAVs with the most realis-
tic driving environments, and have provided millions of miles of driving data for research and
development purposes. Many famous open driving datasets come from such tests by technology
companies, including the Waymo Open dataset (1150 scenes), the nuScenes dataset from Motional
(1000 scenes) [15], the Argoverse dataset from Argo AI (113 scenes) [16], etc.

However, N-FOTs are extremely expensive and inefficient. Collisions are rare in real-world
driving. According to NHTSA, the (police-reported) collision rate in the US is 2.1 collisions per 1
million miles, and 1.1 fatalities per 100 million miles [17]. It is estimated by Kalra et al. [18] that to
demonstrate that HAVs are safer than human drivers in terms of fatality rate with 95 % confidence

3

level, 275 million miles need to be driven by HAVs without any fatal collision. Moreover, since
the software and hardware on HAVs are updated regularly (monthly or even weekly), testing each
new version with hundreds of millions of miles is even more costly if not unrealistic.

1.2.2 Scenario-based Safety Evaluation

A more efficient testing approach is to decompose the ODD into single scenarios that are tractable
for repeated testing and comprehensive assessment. The scenario-based evaluation is an accepted
best practice for the V&V of HAVs [19]. There have been many international collaborative efforts
on creating a scenario-based evaluation framework. In Germany, the PEGASUS Family includes
multiple projects that aim to create methodologies, toolchains and simulation platforms for the
testing of HAVs in both highway and urban environments [20]. In Japan, the Sakura project [21]
aims at creating scenario-based safety assurance methods as well as a scenario database.

According to [22], a scenario is formally defined as ”a temporal development between several
scenes in a sequence of scenes”, where a scene is defined as a snapshot of the environment, which
includes both the static scenery and dynamic objects. Subsequently, the PEGASUS project [20]
characterize scenarios into three levels of abstraction [23], with increasing level of details: func-
tional scenarios, logical scenarios and concrete scenario. In this work, we will refer to functional
scenarios as ”scenarios”, and combine the concepts of logical scenarios and concrete scenarios
into ”test cases”. To most researchers, the interesting and valuable scenarios are those with other
traffic agents, especially when they have traffic conflicts with the HAV under test. Here, the con-
flict is defined as “a situation in which road users approach each other in space and time such that
collision is imminent if their movements remain unchanged” [24].

How are test scenarios selected? In 2019, NHTSA summarized 36 pre-crash scenarios by ana-
lyzing data from two crash databases in the US from 2011-2015: the Fatality Analysis Reporting
System (FARS) and National Automotive Sampling System (NASS) General Estimates System
(GES) crash databases [25]. The most frequent pre-crash scenario is the rear-end scenario. Since
these scenarios are from historical crash data, they represent the most typical failure modes of
human drivers, which do not necessarily apply to the HAVs directly. In 2020, researchers from
TNO and NTU described 67 scenarios to be considered in the safety assessment of automated
vehicles [26] based on accident databases as well as structured analysis. Moreover, NHTSA [27]
proposed multiple test scenarios based on three dimensions of behavior competency, including
tactical maneuvers, OEDR capabilities and failure mode behaviors. Waymo [28] extended from
NHTSA’s recommendation and curated a set of 47 scenarios for its self-assessment tests. Based
on [28] and multiple other sources, Mcity [29] compiled a list of 50 behavior competence scenarios
for HAV acceptance testing in 2019. From this list, 35 scenarios were selected to be implementable

4

in the Mcity test track, an HAV test facility at the University of Michigan. which include 16 sce-
narios involving inter-vehicle interactions and 4 scenarios involving interactions with vulnerable
road users (VRUs). In most of the scenarios with other vehicles, there is the vehicle under test
(VUT) and one or more surrounding vehicles that interact with the VUT, denoted as the primary
other vehicles (POVs). The concept of POV can be extended to primary other road user (PORU),
which also include motorcyclists, cyclists, pedestrians, etc.

After the test scenario is selected, there are two key subsequent research questions to answer for
conducting the scenario-based HAV evaluation [19]: scenario modeling (what to test?), and test
case generation (how to test?), which will be reviewed next.

Scenario Modeling Techniques

To build a model for the test scenario, the focus lies on the parameterization of the scenario and
the organizing structure of all possible test cases. [30] summarized a 5-layer model for the varying
parameters: road layout, traffic infrastructure, temporary manipulation of road and infrastructure,
object, and environment (weather, lighting, etc). They can be categorized as initial conditions
(static parameters) and dynamic behaviors of traffic agents.

Many of the previous studies focused on initial conditions. [31] used initial conditions with
defined ranges to characterize the car-following scenarios. [32, 33] selected initial conditions to
describe the cut-in scenario and used probabilistic models learned from naturalistic driving data
to describe the structure of the test cases based on their exposure frequency. [34] used a com-
bination of exposure frequency and maneuver challenge to assign a criticality score to each test
case. Though the patterns of naturalistic driving were considered, the temporal behaviors of the
surrounding vehicles/VRUs were not captured. In [35], the trajectory of the POV was modeled
with discretized control points, which then form the scenario space. [36, 37] both discretized the
trajectory of the leading vehicle in a car-following scenario and formed the scenario space with the
action sampling distribution of the leading vehicle. [38] additionally considered the sensor noise
at each time-step. These models were able to generate different dynamic behaviors, but the di-
mension of the sampling space becomes very high. On the other hand, [39] applied level-k game
theory to create a library of surrounding vehicle models that cover different styles of interactions
between the HAV and the surrounding vehicles. However, they only generated a few discrete types
of interaction models, whose behaviors are not sufficiently diverse.

On the other hand, data-driven road agent simulation has drawn a lot of attention recently. They
aim to extract diverse and realistic driving/moving behaviors of traffic participants from large-scale
driving datasets with machine learning generative models. SimNet was proposed in [40], which
used behavior cloning to generate reactive driving behaviors for surrounding vehicles, which help
avoid unrealistic collisions that often happened in simulation testing based on log replay. Traf-

5

ficSim [41] generated joint behavior for multiple agents with a graph-based trajectory prediction
model. BITS [42] and Symphony [43] both adopted hierarchical approaches for agent-centric
behavior generation, where the high-level module infers the intent/goal of each agent, while the
low-level module generates concrete action conditioned on the goal. A different hierarchical model
was adopted in TrajGen [44], which consists of a trajectory prediction stage, and a trajectory mod-
ification stage based on reinforcement learning. These simulation approaches are useful not only
for evaluating HAVs in realistic traffic environments, but also for setting up training environments
for reinforcement learning-based decision-making and planning algorithms [45].

Test Case Generation Techniques

For test case generation, the test matrix approach has been widely used to evaluate advanced driver
assistance systems (ADAS) by organizations including Euro NCAP [46, 47] and IIHS [48]. Test
cases are determined a priori by listing the combinations of several key parameters of the scenario,
and each VUT will be tested with the same set of cases. The goal is to achieve good coverage of
the given ODD in a uniform and deterministic way. The fairness of the test is easily guaranteed.
However, the VUT can be tuned to pass the predefined test cases, while it may fail under broader
conditions in the real world. Moreover, the samples required to cover the testing space grow
exponentially with the number of modeling parameters. Some space-filling methods can improve
the efficiency of coverage-oriented test case generation, including Latin hypercube sampling [49],
covering array [50], etc. However, since these methods do not make use of any information about
the VUT’s responses, their performance is relatively poor compared with the adaptive sampling
methods introduced below.

Monte Carlo sampling-based evaluation methods have been proposed to estimate the real-world
performance of the VUT. Test cases are acquired by sampling from the parameter distributions.
In [51], collision avoidance algorithms were evaluated in a stochastic environment created by an
errorable driver model built from naturalistic driving data. However, since challenging scenarios
with conflicts are rare events in the naturalistic driving data, crude Monte Carlo sampling is found
to be inefficient. Therefore, many recent studies applied accelerated approaches to achieve an
unbiased estimate of the performance criteria (e.g., crash rate) with a faster convergence rate.
Importance sampling was applied in [32, 52–54], where the naturalistic distribution was ”skewed”
to emphasize more challenging test scenarios and to achieve more efficient test case sampling.
In [33, 55], subset simulation was used to efficiently estimate the collision/injury rate and solved
the difficulties of importance sampling method in high-dimensional spaces [56]. However, the
amount of samples required to reach convergence for the performance criteria estimation is still
prohibitively large for real-world field testing. Moreover, the test parameter space will include
cases that are impossible for the HAV to avoid a collision, e.g. a human vehicle that cuts in front

6

of the HAV 3 meters ahead with a relative speed of 20 m/s. The presence of such test cases could
make the results misleading and make the test dangerous.

On the other hand, falsification-based evaluation methods attempt to generate initial conditions
or POV behaviors that force the VUT to violate the safety requirements with limited test runs.
Corner cases have been generated using different techniques. [57, 58] used forward reachability
analysis to categorize the challenge level of a test scenario, and generated failure cases by minimiz-
ing the size of the solution space for the VUT using quadratic programming [57] or evolutionary
algorithm [58]. [59] generated challenging cases by sampling near the boundary of the control in-
variant set of the VUT, and synthesizing adversarial controller for the POV by solving a dual game.
In [60], to find the optimally challenging test cases for a black-box system, the authors formulated
and solved a mini-max problem based on control barrier functions estimated from collected sys-
tem demonstrations and given specifications. These methods create worst-case conditions for the
dynamic model of the VUT, which can only be applied to scenarios where the VUT is trying to
avoid collisions passively.

Moreover, some studies generate customized adversarial test cases for given black-box VUTs.
[35] utilized the falsification tool S-Taliro to find falsifying test cases using the simulated annealing
method. [61, 62] utilized rapid-exploring random tree (RRT) to achieve a similar goal. However,
they all generate POVs that can behave unreasonably adversarial, which is not informative for
measuring the real-world performance of the VUT. Reinforcement learning (RL) has been another
popular method recently for creating adversarial test cases [38, 63–65]. In [64], a special reward
design encouraged the POV to involve in collisions where the VUT is at fault, which helped cre-
ate adversarial yet socially acceptable POV behaviors. In [38, 65], the diversity of the generated
challenging cases was addressed. The limitation of RL-based methods is that a simulation model
of the VUT is required for training adversarial environment or the POV agent, which can be too
inefficient or unrealistic for some use cases like government-conducted acceptance testing. On the
other hand, adaptive sampling has been used to search for failure cases on the fly in [31, 66–69],
where a surrogate model of the performance surface of the VUT in a scenario is updated with
test results, which then guides the adaptive search for new test cases. The diversity of identified
failure modes was addressed using region elimination [66], performance boundary heuristics [68],
or better-designed acquisition functions [31, 69]. However, they did not consider the presence of
categorical parameters in the testing space. Moreover, the coverage of the failure modes has not
been formally defined or quantified.

In addition, some recent studies generate challenging test cases by transferring real-world driv-
ing data. In [70], safety-critical scenarios for LiDAR-based HAVs were created by perturbing the
trajectories of the initial real-world scenario using Bayesian optimization. In [71], the critical-
ity of the original scenario was elevated with an adversarial RL algorithm. In [72], corner cases

7

were synthesized by combining the safe driving data with collision data using a generative model.
In [73], solvable yet challenging test cases were created by optimizing within the latent space of a
generative trajectory prediction model, which was learned from real driving data.

1.2.3 Other Types of Evaluation Methods

Kapinski et al. [74] categorized the analysis techniques for embedded control systems into three
types: testing, falsification and verification. Testing assesses the satisfaction of the system to given
properties (e.g. never involved in a collision) within a set of test cases; falsification attempts to
find cases where the satisfaction to a given property is violated by the system. The methods we
reviewed above all belong to these two types, which aim to assess the performance of the HAV in
a best-effort fashion. On the other hand, (formal) verification attempts to prove the satisfaction of
the system to the properties for all considered conditions (ODD). Various verification techniques
have been applied to rigorously certify the correctness of automotive software and functionali-
ties [75], including reachability analysis [76], model checking [77] and automatic theory proof-
ing [78]. However, verification techniques require a fully specified system model of the VUT
(white box), which is a very strong assumption, and could be inaccessible for the HAV evaluation
conducted by third-party organizations. Moreover, the correctness guarantee based on simplified
models and assumptions could potentially fail under the more complex, highly-interactive and dy-
namic real driving environment. To fix this problem, Shalev-Shwartz et al. [79] proposed the idea
of “responsibility sensitive safety” (RSS), which formalized a set of driving rules that can achieve
safety assurance for a multi-agent driving environment and assign blame to the agent that vio-
lates. However, the public expectation of HAVs has always been to maintain safety under as many
conditions as possible, rather than to avoid blame in all circumstances.

Apart from scenario-based approaches, some research evaluates the safety performance of
HAVs in simulated traffic environments. [80] assessed the impact of different levels of HAVs by
conducting multi-agent simulations with realistic road network of a Japanese city. [53, 81] applied
an accelerated evaluation procedure to a VUT driving in a microscopic highway traffic simulator.

1.3 HAV Evaluation Problem Formulation

1.3.1 Development Testing v.s. Acceptance Testing

The evaluation efforts for HAVs can be classified into two categories based on their purposes: de-
velopment testing and acceptance testing. The major differences between them are shown in Table
1.3. The key evaluation techniques reviewed above are summarized according to the categories in

8

Development testing Acceptance testing
Tester Company self-assessment Government, 3rd-party organization
Resource & time budget High Low
Test thoroughness High Low
Transparency of the
HAV stack

High Low

Fairness requirement Low High

Testing environment
Simulation, test track, pub-
lic road

Test track only

Subject of testing
Software & hardware com-
ponents, functionality mod-
ules, full HAV

Full HAV

Table 1.3: Comparison between development testing and acceptance testing.

Figure 1.1.
Development tests are usually conducted in-house by OEMs or HAV companies. The goal is to

thoroughly test the system within its ODD, and try to find all the bugs and deficiencies for future
improvements, while higher testing costs can be tolerated. Since the details of the hardware and
software on the VUT are known, the test can be conducted at different levels, from software & hard-
ware components, to the functional modules, to the entire HAV. Popular methods suitable for this
type of evaluation include N-FOTs, formal verification, Monte Carlo sampling and falsification-
based testing, etc, as shown in the right half of Figure 1.1. According to GRVA of the United
Nations [82], HAV safety evaluation includes three main modalities: public-road testing, physical
certification testing (on test tracks), and audit or assessment in simulations or with analytic tools.
All of them are applicable to development tests.

On the other hand, acceptance tests are commonly conducted by a government agency or a
trusted third party. The goal is to certify the basic competency of the VUT in a standardized
environment in a fair and efficient way, considering the limitation on time and resources. Therefore,
public road testing will not be feasible for its high cost. Moreover, since the details of the VUT
will not be exposed, and the simulation interface of systems from different OEMs can hardly be
unified, simulation testing is also not applicable. Therefore, the system under test will be the entire
HAV, and tests will only be conducted in closed test tracks. Methods including test matrix, small-
scale Monte Carlo sampling and falsification-based testing methods can all be applied, as shown
in the lower part of Figure 1.1 (excluding the ones requiring a white-box VUT). This dissertation
mainly focuses on acceptance testing, but the proposed methods are also applicable to development
testing.

9

Figure 1.1: A summary of representative HAV evaluation techniques.

1.3.2 ABC Test

The original Mcity ABC test concept was proposed in 2019 as a practical framework for HAV
acceptance testing [29]. It is a scenario-based testing framework designed primarily for tests in a
closed track. The ABC test incorporates three major elements: Accelerated evaluation, Behavioral
competence and Corner cases.

For the ABC test, the behavior competence test is the core and the foundation. The HAV is
asked to operate in selected driving scenarios, each of which will have multiple stochastically-
generated test cases sampled from its testing space. The test cases need to be fair, reasonable and
associated with clear risk levels. The HAV is evaluated by how well it resolves conflicts and avoids
crashes or near-misses across different cases and scenarios. Rooted from the same pipeline, the
considerations of accelerated evaluation and corner cases can be achieved by modifying the testing
space as well as the test case generation scheme. The accelerated evaluation aims at reducing the
uninteresting test cases, and achieving an unbiased estimate of certain aggregated performance in-
dices (e.g. crash rate, injury rate) efficiently, which can be achieved by designing smart sampling
techniques. Corner case tests attempt to find the extreme failure modes of a VUT, which can be
achieved by designing the testing space around the extremes of the ODD, and creating efficient fal-
sification schemes to generate test cases. The three paradigms provide different views on the safety
competence of an HAV, and they together create a comprehensive safety assessment. An analogous

10

effort was presented in [83], which classified test automation methods into naturalistic-assessment-
oriented, coverage-oriented and unsafe-scenario-oriented categories. Though the “ABC” trio orig-
inated from acceptance testing, the concept directly applies to development testing as well.

Built upon the ABC test concept, this dissertation will work on evaluation methodologies for
all three components of the ABC test. We make the following assumptions:

1. No prior knowledge is assumed about the VUT, i.e. the VUT is a black box to the tester.

2. The total number of test cases is limited for each test due to time and financial limitations.

3. The POV(s) have perfect kinematic information of the VUT (position, acceleration, speed,
heading, etc.)

4. We ignore the variations in environmental factors including weather, lighting conditions, etc.
Each scenario will be tested at the same spot on the test track.

Assumption (1) holds true for all acceptance tests, and for most development tests where the
model of the vehicle (system) under test is too complex to be leveraged. Assumption (2) is based
on the nature of the acceptance testing. For development testing, requiring fewer test cases is also
desirable for cost saving. Assumption (3) can be realized because we can install a portable RTK
GPS and a V2X communication module onto the VUT, which broadcasts high-accuracy vehicle
states with low latency (details in Chapter 5). Assumption (4) is made because our evaluation
methodologies primarily focus on testing the VUT’s capability of handling the POVs. The accuracy
and robustness of its sensing and perception capability are not addressed due to the budge-sensitive
nature of acceptance testing. The test procedure can be repeated with selected environmental factor
variations (e.g., at night, in snow) if time/weather permits.

1.3.3 The Decomposition of Scenario-based Evaluation Procedure

The implementation of scenario-based testing involves the following three tasks:

1. Scenario modeling: extract key attributes that characterize a given scenario, e.g., initial
speed, distance margin, behavioral property of the POV, etc.; then form the testing space.

2. Test case generation: generate test samples from the testing space in a comprehensive and
efficient way.

3. Test execution: realize the target test cases in a simulated or real-world testing environment
by controlling the behaviors of the POVs; assess the performance of the VUT.

11

Figure 1.2: The execution pipeline for the ABC test.

The “ABC” trio will have different approaches for solving the first two tasks, as discussed in the
above section, but they share the same execution procedure (3rd task) with the basic behavioral
competence tests. All three tasks will be covered in this dissertation.

The overall execution procedure for each test case is illustrated in Figure 1.2. Each test run
includes two phases, the preparation phase and the challenge phase. In the preparation phase, the
VUT drives in a free-flow environment where its behavior is not impacted by the POV. The POV
will conduct motion synchronization with the VUT to ensure that the predetermined initial condi-
tion of the test can be accurately triggered. The challenge phase starts when the initial conditions
are achieved by the POV. Then, the POV executes the challenge maneuver while the VUT will
need to react. The tester only has control over the motion of the POV, while VUT’s motion can
only be observed by the POV and the tester.

1.3.4 Scenario Categorization

From the list of 50 scenarios for the ABC test [29], we focus on the ones involving at least one
other road user. The road user is called POV even though it could be a VRU. We classify these
scenarios into the following categories based on the interaction between the POV and the VUT:

• Reactive scenarios: the VUT reacts to a non-compliant POV. Examples: cut-in, unprotected
left turn, pedestrian crossing, etc.

• Semi-interactive scenarios: the VUT reacts to the POV, while the POV’s behavior is not
affected by the VUT. Example: car-following.

• (Bilateral) interactive scenarios: the POV(s) and the VUT will have mutual influence on the
future decision-making and motion-planning of each other. Examples: highway merging,
roundabout entering, etc.

In a reactive scenario, the traffic conflict is solely created by the POV. The VUT is challenged by
the POV “in a surprise”, while the VUT has the right of way. The VUT is nevertheless expected to

12

react safely and promptly to the encroachment of the POV. Because reactive scenarios have a short
challenge phase, the behavior of the POV can be modeled as a predetermined maneuver. Evaluation
for reactive scenarios has been widely studied for ADAS with level 1 and level 2 autonomy.

For an interactive scenario, the VUT needs to negotiate the passing order with the POV in the
challenge phase. This interaction takes place over a time horizon, which cannot be ignored. In
the settings presented in this dissertation, the right-of-way (ROW) always belongs to the POV (e.g.
the VUT tries to merge from the ramp when the POV is on the main road). In other words, traffic
conflicts are partly or fully caused by the VUT. Therefore, the VUT has to predict the intention
of the POV and plan for a safe trajectory accordingly. For SAE level 3 and above automated
vehicles [1], their ODD includes these interactive scenarios. Therefore, the evaluation procedure
for such scenarios will have a high demand in the near future as the level of autonomy of the
state-of-the-art systems progress. Similar taxonomy of traffic scenarios was also adopted by [84].

In this dissertation, we will focus on the scenario modeling and test case sampling method for
both reactive scenarios and (bilateral) interactive scenarios, which represent two extremes with
respect to the POV/VUT relationship. The semi-interactive scenarios are in the middle-ground
between the above two kinds, thus methodologies we develop can be naturally extended to semi-
interactive scenarios.

By combining two types of scenarios with three components of the ABC test, we have 6 types
of evaluation problems, as shown in Table 1.4. The scope of this work covers 4 of the 6 types. The
corner case testing for reactive scenarios has been extensively studied in the literature [37, 57, 59],
thus it will not be covered here. The accelerated evaluation for interactive scenarios will be studied
in future work.

Reactive Scenarios Interactive Scenarios
Accelerated evaluation Chapter 2 Not covered

Behavior competence testing Chapter 5 Chapter 3
Corner case testing Not covered Chapter 4

Table 1.4: Matrix of ABC test to be covered in the dissertation.

1.4 Contributions

In this dissertation, we propose a suite of safety evaluation methods for HAVs. Our main contribu-
tions are the following:

1. We propose an evaluation method for reactive scenarios that ensure the feasibility and inter-
pretability of test cases, while achieving accelerated crash rate estimation.

13

2. We propose an evaluation framework for interactive scenarios. On one hand, the diversity
and richness of driver interactions are captured by the proposed POV behavior library. On
the other hand, we achieve comprehensive failure modes identification with an adaptive test
case generation method.

3. We present a novel formulation of corner cases for interactive scenarios based on the notion
of ambiguity. We successfully generate interaction-aware corner cases at pedestrian cross-
ing and highway merging scenarios using the proposed adversarial planning method for the
primary other road users (PORUs).

4. We implement the behavior competence testing procedure for multiple test scenarios both in
the CARLA simulator and on the Mcity test track. Test cases can be executed accurately and
repeatedly in an automated fashion.

1.5 Outline of the Dissertation

In the remainder of the dissertation, Chapter 2 presents the evaluation framework for reactive
scenarios. We use the pedestrian crossing scenario to introduce the methodology of scenario mod-
eling and test case generation, and later extend to two other scenarios: unprotected left turn and
cut-in. Chapter 3 introduces the evaluation framework for interactive scenarios. We present the
POV library generation scheme based on game theory and reinforcement learning, and present the
adaptive test case generation scheme. Chapter 4 presents the interactive-aware corner case genera-
tion method. We describe the ambiguity-guided planning algorithm and its implementation in two
interactive scenarios. Chapter 5 presents the method and results for implementing the evaluation
framework in simulation and in real-world testing. Finally, Chapter 6 makes concluding remarks
and lists future work.

14

CHAPTER 2

Safety Evaluation for Reactive Scenarios

2.1 Problem Formulation

This chapter will focus on the evaluation of reactive scenarios. For a reactive scenario, since the
challenge maneuver from the POV lasts for a short period, it is assumed to be predetermined.
Therefore, test cases are defined only by the initial conditions. We will generate test initial condi-
tions following the accelerated evaluation paradigm. We first use the pedestrian crossing scenario
as the main example to demonstrate the workflow. Then, the methodology will be extended to two
other scenarios, unprotected left-turn (ULT) and cut-in.

2.2 Model of the Pedestrian Crossing Scenario

2.2.1 Literature Review

According to [85], 5,977 pedestrians were killed in motor vehicle crashes in 2017 in the US,
corresponding to 16% of all traffic fatalities. The fatal crash involving an Uber HAV [5] also
raised concerns about pedestrian safety protection of HAV systems.

Pedestrian crossing behaviors have been recorded and studied in the past. Some studies used an
onboard camera for pedestrian data collection, including the Daimler pedestrian dataset [86], and
the Caltech pedestrian detection benchmark [87]. In addition, more than 2,900 pedestrian-crossing
events were extracted from the Safety Pilot Model Deployment naturalistic driving database in
[88]. By using an onboard camera, vehicular kinematic information can be accurately recorded.
However, as vehicles pitch under braking or with road undulation, the measurements of pedestrian
motion can be inaccurate. Other data collection efforts used cameras/sensors fixed on the road-
side. Human observation, fixed traffic cameras or speed guns were all used to record the motion of
crossing pedestrians and approaching vehicles [89,90]. These data capture the motion of pedestri-
ans more accurately due to fixed sensor placement and fixed scenarios. However, the cost of data

15

collection can be higher.

2.2.2 Collection of Pedestrian Crossing Events

In this paper, we collect pedestrian-vehicle interaction event data from open-access Network IP
cameras. There are thousands of open traffic cameras online and live-streaming, some of which
are pointing at intersections or crosswalks. By utilizing the data online, the diversity and quantity
of the collected data are higher. However, video processing can be more involved.

The workflow of event extraction is adopted from [91]. Video data are first recorded, then
vehicles and pedestrians are detected and tracked; camera calibration is then conducted remotely;
finally, the velocities of objects are estimated.

Data Collection

We utilize data from one camera placed on the main road of Banff, Alberta, Canada, which is
live-streaming at [92]. As shown in Figure 2.1, a mid-block crosswalk is captured, along with all
approaching vehicles from one direction. Moreover, as there is a barrier between the two sides
of the road, pedestrian-crossing and vehicle-yielding behaviors on the left side of the road can be
assumed to be decoupled from the right side. We will focus on pedestrian-vehicle interaction on
the left side only. 40 hours of videos were collected at this site, with a frame rate of 15 FPS and
resolution of 1120× 840.

Figure 2.1: The data collection site in Banff, Alberta, Canada: the target crosswalk is shown in the
red circle

Object Detection

For object detection, a popular version of You Only Look Once (YOLO v3) is used to detect and
extract all traffic agents from the video data [93]. YOLO is a state-of-the-art object detection

16

system, featuring real-time performance and high accuracy. The output of YOLO v3 is bounding
boxes around pedestrians and vehicles, which becomes the input of object tracking.

Camera Calibration

To relate the positions of objects on 2-D video frames to 3-D real-world locations, camera cali-
bration is conducted. Camera calibration is the process of finding the transformation between the
camera coordinate frame and the world coordinate frame by estimating the intrinsic and extrinsic
parameters of the camera. A pinhole model is used to model the camera, and the intrinsic and
extrinsic parameters can be lumped together into a 3× 4 matrix P . For a point in the world frame
with coordinate [xw, yw, zw]

T , its coordinate in the camera frame [uc, vc]
T , can be computed as

follows: uvvc
1

 = P3×4


xw

yw

zw

1

 (2.1)

To estimate the matrix P , the direct linear transformation (DLT) method is used [94]. To run DLT,
several control points (CPs) are required, for which both the camera coordinates and the world
coordinates must be known. As the data are recorded by a third party and the spot is thousands of
miles away, we do not have access to camera parameters and the geometry of the camera location.
Therefore, we estimate the world coordinates of CPs for calibration based on multiple information
sources, including geographic information from Google Maps, pavement marking standards, the
configuration of certain vehicle models, and other heuristics. 14 CPs are located, which is more
than the theoretical requirement of 6 CPs. As a result, the average re-projection error is 9.6 pixels
in a 1120× 840 frame.

Object Tracking

The object tracking algorithm is based on the ”Motion-Based Multiple Object Tracking” example
from MATLAB. The bounding boxes serve as the input to the object tracker. For each tracked
target, a Kalman filter is maintained to predict the next location of the target. With every new
frame, the new detection results will be associated with the current targets based on a cost matrix
using the Hungarian algorithm [95]. Next, tracks are either updated, destroyed or enriched. To
filter out unnecessary information for modeling, we constrain the region for detection and tracking
only at the left side of the road, 100 meters within the crosswalk. In Figure 2.2, an example tracking
result is shown. All the vehicles and pedestrians in the target area are detected and indexed with
tracking ids.

17

Figure 2.2: An example result of object tracking

Motion Estimation

Object tracking provides trajectories of each pedestrian and vehicle. Then, to characterize their
interaction near a crosswalk, the speed profiles of pedestrians and vehicles need to be estimated.
We use the following filtering framework for speed estimation:

1. The position data are filtered using a zero-phase digital filter with a Kaiser window.

2. To estimate the speed trajectories, a rolling-window linear regression is conducted to each
position trace with a window length of 3.3s.

3. The speed trajectory is filtered again with a zero-phase digital filter with a Kaiser window
and a cutoff frequency of 0.3Hz.

Example results are shown in Figure 2.3. In (a) and (b), both pedestrians walk down the cross-
walk from right to left at a steady speed; in (c) and (d), both vehicles decelerate as they approach
the crosswalk.

In the end, we collected 2689 events with one pedestrian crossing the road while a vehicle
is approaching the intersection. This data collection and processing procedure can be extended to
other traffic scenarios. Moreover, it is relatively easy to augment the data, as no field data collection
or complex sensor placement is needed. On the other hand, this method also has drawbacks.
First, calibration of an unknown camera involves applying some heuristics, which can be time-
consuming and inaccurate. Second, object tracking based on bounding boxes does not account
for a lot of visual features of the targets, including color, texture, etc. Thus, the performance of
tracking can deteriorate when the scene becomes cluttered.

18

(a) (b)

(c) (d)

Figure 2.3: Example results of motion estimation: red solid lines show observed position; red
dashed lines show filtered position; blue lines show estimated speed.

2.2.3 Statistical Model of the Scenario

Extraction of the Key Variables

In the pedestrian crossing scenario, the desired behavior of the HAV is to stop for the pedestrian
once she/he starts to cross. We focus on the interaction between a single pedestrian and a single
primary vehicle (PV). Denoting the moment when a pedestrian enters the crosswalk as tx, we make
the following assumptions about the pedestrian and the vehicle:

1. The pedestrian walks at a constant speed after tx.

2. The pedestrian decides to cross or not according to the speed and position of the PV at tx,
and the walking speed of the pedestrian.

3. Each crossing pedestrian is viewed as a separate event.

Then, we model the pedestrian crossing scenario with the following 4 variables.

19

Figure 2.4: Histograms of the 4 key variables for the pedestrian crossing scenario.

1. ∆x0: longitudinal distance between the pedestrian and the PV at tx.

2. vPed: walking speed of the pedestrian.

3. vV eh: speed of the PV at tx.

4. TTC = ∆x0
vV eh

: time-to-crosswalk estimated at tx for the PV.

All 2689 pedestrian-vehicle events are used to build the pedestrian model. The marginal distri-
butions of the aforementioned 4 variables are shown in Figure 2.4. As shown in the top-left plot,
Most pedestrians walk between 1 and 1.5 m/s, and the average walking speed is 1.33 m/s, which
agrees with previous research [90,96]. Most vehicles travel under 11 m/s (top-right plot), which is
slightly above 8.33 m/s (25 km/h), the posted speed limit of this road.

Among TTC, ∆x0 and vV eh, knowing any of the two can determine the third. Therefore, we
express the pedestrian crossing model as a joint distribution of the 3 variables, which form the
testing space of this scenario XTS: xTS = [∆x−1

0 , vPed, vV eh]
T , where xTS ∈ XTS:

XTS = [(∆x−1
0)lb, (∆x

−1
0)ub]× [(vPed)lb, (vPed)ub]× [(vV eh)lb, (vV eh)ub] (2.2)

20

Here we use ∆x−1
0 instead of ∆x0 to put the higher risk cases (smaller ∆x0) to the ‘tail’ of the

distribution, and give them higher resolution compared to the lower risk cases.

The Truncated Gaussian Mixture Model

As the data have upper and lower bounds due to the physics of the scenario, the joint distribution of
the above three variables can be fitted using a truncated Gaussian mixture model (TGMM) bounded
with XTS . We chose this model due to its flexibility and advantages of expressing bounded data.
The probability density function (PDF) of a TGMM can be written as:

fp(p) =
K∑
i=1

πifi(p) (2.3)

where
K∑
i=1

πi = 1;πi ≥ 0, ∀i. K is the number of mixing components, and each component is

a truncated multivariate Gaussian distribution, parameterized by mean µi and covariance matrix
Σi [97].

The parameters to be fitted are:

Θ = {π1, ...πK , µ1, ...µK ,Σ1, ...ΣK}

The lower bound and upper bound of each variable are shown in Eq. (2.2). The optimal TGMM pa-
rameters are estimated using maximum likelihood estimation (MLE) by applying the expectation-
maximization (EM) algorithm adopted from [97]. The hyper-parameter K is chosen based on
the Bayesian information criterion (BIC), which balances model complexity and the likelihood of
fitting results. K = 4 is selected for our model.

In Figure 2.5, the empirical data (1st row) and the fitted TGMM (2nd row) are shown. As
the joint distribution is 3-dimension, we show the three 2-dimension marginal distributions when
projected onto each other dimension.

2.3 Accelerated Evaluation Framework

To generate test cases for reactive scenarios in an accelerated and reasonable way, we propose the
idea of combining reachability analysis with importance sampling to improve the original accel-
erated evaluation method [32]. For a target scenario, reachability analysis generates the feasible
initial conditions that will be sampled from, as well as different risk level sets (RLSs), in which
the risk is characterized by the intensity of actions required to avoid collisions. Then, importance
sampling is conducted on each RLS to generate test cases in an efficient and flexible way.

21

Figure 2.5: Empirical distribution and the TGMM model of the pedestrian crossing scenario.

2.3.1 Mathematical Tools

Importance Sampling

The crude Monte-Carlo (CMC) sampling method is a basic method for expectation estimation, and
in our case, can be used to simulate real driving conditions and estimate the crash rate. Let p ∈ D
be an n-dimensional random variable following the distribution f(p), where D ⊆ Rn. Let ε be the
event of interest, i.e. a collision, which is a subset of the sample space D. Whether the event ε
happens can be expressed by:

Iε(p) =

1 p ∈ ε

0 otherwise
(2.4)

By running CMC simulations for N times, we can achieve an estimate of the crash/conflict rate
by:

γ = Ep∼f (Iε(p)) =
∫
D

Iε(p)f(p)dp ≈
1

N

N∑
i=1

Iε(pi) = γ̂CMC
N , pi ∼ f(p) (2.5)

Here, the estimate γ̂CMC
N is a random variable with mean E(γ̂CMC

N) = γ and variance σ2(γ̂CMC
N) =

γ(1−γ)
N

. Therefore, γ̂CMC
N is an unbiased estimator. Its accuracy can be measured with the coeffi-

22

cient of variation (CV) [56], which is written as

CV CMC =
σ(γ̂CMC

N)

E(γ̂CMC
N)

=

√
1− γ
γN

(2.6)

With an increasing number of samples, the CV will decrease to zero, which translates to an
estimate that converges to the actual expectation. However, as the conflict/crash cases are rare
in naturalistic driving (γ close to zero), it could take a huge number of simulations (N) for the
variance to be small enough, and for the estimate to converge.

Therefore, the importance sampling technique has been widely used in the literature to reduce
the variance and accelerate the convergence of the estimate [32, 98, 99]. Assume there is another
distribution f ∗(p). Eq. (2.4) can be rewritten as:

γ =

∫
D

Iε(p)f(p)dp =

∫
D

Iε(p)
f(p)

f ∗(p)
f ∗(p)dp

= Ep∼f∗(Iε(p)L(p)) ≈
1

N

N∑
i=1

Iε(pi)L(pi) = γ̂ISN , pi ∼ f ∗(p)

(2.7)

where the likelihood ratio is defined as

L(p) =
f(p)

f ∗(p)
(2.8)

We can draw samples according to distribution f ∗(p), and also acquire an empirical estimation
of γ. We have the following:

E(γ̂ISN) = γ,

σ2(γ̂ISN) =
1

N

∫
D

(Iε(p)f(p)− γf ∗(p))2

f ∗(p)
dp.

(2.9)

Therefore, γ̂ISN is also an unbiased estimation. Moreover, by carefully choosing the importance
sampling distribution (ISD) f ∗(p), such that it has a higher density at where Iε(p)f(p) is large,
the odds to generate collisions can be vastly augmented, and the estimation will have a smaller
variance and thus smaller CV. Then, it takes fewer samples than CMC to reach convergence with
the same confidence level.

Backward Reachability Analysis

Reachability analysis has been applied to safety verification and synthesis for HAV systems [100,
101]. In this research, it is used to solve two problems:

23

1. To improve the safety and efficiency of the evaluation procedure, we want to exclude impos-
sible cases from the tests, i.e., when a crash is unavoidable regardless of HAV’s action.

2. To improve the interpretability of test cases, we want to characterize the sets of different risk
levels to create a structured testing space.

Here we follow the formulation in [102]. Consider a discrete-time system with both control
input and external disturbance input:

x(k + 1) = f(x(k), u(k), w(k)). (2.10)

Then state x, control input u, disturbance w satisfy:

x(k) ∈ X ⊆ Rnx , u(k) ∈ U ⊆ Rnu , w(k) ∈ W ⊆ Rnw ,∀k ∈ Z≥0.

For a set S ⊆ X , which usually represents some bad region that the control input tries to avoid and
the adversarial disturbance tries to enter, the one-step robust backward reachable set (also known
as predecessor set) of S is defined as:

Pre(S) = {x ∈ X : ∃w ∈ W s.t. f(x, u, w) ∈ S, ∀u ∈ U} (2.11)

Thus, Pre(S) is the set such that if the system starts inside of it, no matter what control input is
taken, there always exists some disturbance that drives the system into S in one time-step. Note that
this is very similar to the unrecoverable set defined in [103]. Compared to the robust predecessor
set defined in [102], we swap the disturbance and control input for our application.

Moreover, we can define the backward reachable tube (BRT) of S as the union of all the back-
ward reachable sets.

BRT(S) = S ∪ Pre(S) ∪ Pre(Pre(S))... (2.12)

which represent all initial conditions that will always end up inside the set S sometime in the
future.

To make the computation tractable, we simplify the formulation in the following ways. First, if
the system is linear time-invariant, the dynamics can be written as follows:

x(k + 1) = Ax(k) +Bu(k) + Fw(k) (2.13)

Then, if we assume U , W , S are all polytopes, we can compute the Pre sets with basic polytopic

24

operations [102]:

Pre(S) = {x ∈ X : ∃w ∈ W s.t. Ax+Bu+ Fw ∈ S, ∀u ∈ U}

= {x ∈ X : ∃y ∈ S,∃w ∈ W s.t. Ax = y + (−Fw)− (Bu),∀u ∈ U}

= {x ∈ X : Ax ∈ (S ⊖BU)⊕ (−FW)}

(2.14)

Where ⊕ is the Minkowski sum operation, ⊖ is the Pontryagin difference operation. For two
polytopes P and Q in Rn, they are defined as follows:

P ⊕Q = {p+ q ∈ Rn : p ∈ P, q ∈ Q}. (2.15)

P ⊖Q = {x ∈ Rn : x+ q ∈ P, ∀q ∈ Q} (2.16)

2.3.2 Kinematic Model of the Scenario

Figure 2.6: Kinematic model of the pedestrian scenario.

We model the configuration and dimension of the pedestrian crossing scenario according to the
data collection site above. As shown in Figure 2.6, The kinematic model of the scenario consists
of 4 states:

x = [∆y,∆x, vPed, vV eh]
T

The vehicle moves to the left, while the pedestrian walks to the top. The initial moment is tx, i.e.
when the pedestrian starts to cross. The system can be modeled with a discrete linear system with
time-step dt. The matrices in Eq. (2.13) are expressed below.

A =


1 0 dt 0

0 1 0 −dt
0 0 1 0

0 0 0 1

 , B =


0

−0.5dt2

0

dt

 , F =


0.5dt2

0

dt

0


25

Parameter Value Parameter Value
(∆x0)lb 2.0 [m] (∆x0)ub 100.0 [m]
(vPed)lb 0.5 [m/s] (vPed)ub 3.0 [m/s]
(vV eh)lb 1.0 [m/s] (vV eh)ub 18.5 [m/s]
T 5.0 [s] dt 0.1 [s]
amin −6.4 [m/s2] amax 3.0 [m/s2]
L0 5.0 [m] W0 2.0 [m]
RPed 0.3 [m] ∆y0 −4.5 [m]
treact 0.5 [s]

Table 2.1: Values of parameters for modeling and simulation at the pedestrian crossing scenario.

The control input u is the acceleration of the vehicle, and disturbance w is pedestrian acceleration
(assumed to be 0 for now).

u ∈ U = [amin, amax], w = 0.

The parameter values of the model and the evaluation framework are shown in Table 2.1.

2.3.3 Overview of the Evaluation Framework

The proposed evaluation framework consists of the following steps:

1. Generate the naturalistic distribution (ND) f .

2. Find the set of feasible initial conditions for testing Xf .

3. Generate different risk level sets (RLSs) X1
f , X2

f , X3
f ...

4. Conduct importance sampling in each RLS to formulate the ISD f ∗.

5. Simulation/real-world testing.

6. Test results interpretation.

Each step will be explained in the following sections.

2.3.4 Generating Naturalistic Distribution

We focus on step 1 in this section. As stated earlier, the pedestrian crossing scenario is modeled
as a 3-dimension TGMM over xTS = [vV eh, vPed,∆x

−1
0]T = [sT1 , s

T
2]
T , where s1 = vV eh and

s2 = [vPed,∆x
−1
0]T . During a test, the VUT will regulate speed based on its driving policy when

approaching the crosswalk. Thus, vV eh is not sampled from the distribution, but observed from the

26

(a) (b) (c)

Figure 2.7: 2D distributions conditioned on different vV eh.

VUT’s behavior. The naturalistic distribution of the scenario is the conditional distribution of vPed
and ∆x−1

0 given vV eh.
f∆x−1

0 ,vPed
(∆x−1

0 , vPed|vV eh) = fs2(s2|s1) (2.17)

fs2(s2|s1) can also be modeled as a TGMM. For each Gaussian component, the mixing coefficient
is the same.

Moreover, as TTC = ∆x0
vV eh

, and TTC is a more popular metric for measuring the risk of the
scenario [104] than ∆x0, we make a change of variable to the PDF of the ND:

f(TTC−1, vPed|vV eh) =
f∆x−1

0 ,vPed
(∆x−1

0 , vPed|vV eh)
vV eh

. (2.18)

In the following step, we sample TTC−1 and vPed from the distribution f . The distributions
conditioned on different vV eh are shown in Figure 2.7.

2.3.5 Computing Risk Level Sets

We elaborate on step 2 and step 3 in this section. The reachability analysis is done using the Model
Parametric Toolbox 3 (MPT3) [105]. First, we define the final collision set as a 4-dimension
polytope B0:

B0 =

{
x : |∆y| < W0

2
+RPed ∧ −(RPed + L0) < ∆x < RPed

}
. (2.19)

Here, the pedestrian is approximated as an axis-aligned square of width 2RPed, and the vehicle is
modeled as a rectangle with length L0 and width W0. A crash happens when these two regions
overlap. Starting from B0, we can back-propagate the dynamics and calculate the BRT for T
seconds using Eq. (2.14) and Eq. (2.12), denoted by B′

0. In the BRT calculation, W = {0} as

27

(a) Feasible initial condition set Xf (b) All risk level sets

Figure 2.8: RLSs for the pedestrian crossing scenario.

we assume the pedestrian always walks at a constant speed. For U , there are two phases with
different treatments. First, we set U = {0} during an initial reaction time treact, i.e. the VUT
keeps a constant speed, which accounts for the perception, communication and actuation delays.
The onset of treact is assumed to be tx. Second, after treact, U = [amin, amax] as the VUT could
utilize its full longitudinal acceleration capability to avoid a collision. B′

0 is represented as a union
of multiple polytopes. Then, slice B′

0 at the position where the pedestrian starts, and we get:

B0 = B′
0.slice(∆y = ∆y0).

B0 is the set of initial conditions, from which VUT will always end up in a collision with the pedes-
trian regardless of VUT’s action. B0 is represented as a union of multiple 3-dimension polytopes.
For the HAV evaluation, it is not valuable to sample initial conditions from B0. Thus, instead of
directly drawing samples from the testing space XTS , we will only sample from the feasible set
Xf , defined as:

Xf = X̂TS \B0 (2.20)

Here, X̂TS refers to the region defined by XTS in Eq. (2.2), except with a change of variable from
∆x−1

0 to ∆x0. Xf is demonstrated as the purple part in Figure 2.8a.
Moreover, if we shrink the set U = [amin, amax], i.e. the acceleration/deceleration capability of

the vehicle is reduced, the BRT from B0 will become larger. With this observation, we generate
a series of BRTs in the same way as B0 but with decreased input set U , and result in the sets
B1, B2...Bn. They satisfy:

B0 ⊆ B1 ⊆ B2... ⊆ Bn. (2.21)

28

Then, we can define the ith risk level set (RLS) as:

X i
f = Bi \Bi−1, i = 1, 2, 3... (2.22)

For any xinit ∈ X i
f , it is possible for the VUT to avoid a collision with the pedestrian starting from

xinit by definition, but it has to “take a certain level of effort” to do so. For our application, we
divide Xf into four RLSs: the high risk set X1

f , medium risk set X2
f , low risk set X3

f and trivial set
Xtrivial = X̂TS \B3. The RLSs are shown in Figure 2.8b. The boundary between neighboring sets
is determined by the minimum average deceleration required to avoid a collision after coasting for
treact. The thresholds are shown in Table 2.2, which are determined according to [106], where the
deceleration profile of human drivers from the naturalistic driving database ICCFOT is analyzed.
The hardest observed deceleration is -0.65g; 0.1% of all the decelerating cases exceed -0.41g and
1.0% of all the decelerating cases exceed -0.23g. Finally, the line between trivial and non-trivial
cases is 0 m/s2, which means if the VUT does nothing but coast, there still will not be a collision.
Trivial cases are also not informative for safety evaluation. Therefore, in the next step, we will
only sample from set X1

f , X2
f and X3

f .

Risk level set Required acceleration
Infeasible Set: B0 [−∞,−0.65g)
High Risk Set: X1

f [−0.65g,−0.41g)
Medium Risk Set: X2

f [−0.41g,−0.23g)
Low Risk Set: X3

f [−0.23g, 0)
Trivial Set: X4

f [0,+∞]

Table 2.2: Risk level sets definition.

To understand the relationship between risk levels and real-world data, we checked all the
collected pedestrian events to see which RLSs they lie in. The results are shown in Table 2.3.
All events belong to the feasible set, and over 2/3 of the events are in the trivial set.

Risk level set Number of events
Infeasible Set: B0 0
High Risk Set: X1

f 18
Medium Risk Set: X2

f 25
Low Risk Set: X3

f 785
Trivial Set: X4

f 1861

Table 2.3: Number of events in different RLSs from the collected data.

29

Figure 2.9: Importance sampling scheme.

2.3.6 Test Cases Generation with Importance Sampling

We focus on step 4 in this section. Given vV eh, the RLSs are sliced into 2-dimensional regions,
as shown in Figure 2.9 on the left. As there is no obvious relationship between the risk of a
case and the pedestrian walking speed, we sample vPed from the naturalistic marginal distribution
fvPed

(vPed), so that the test samples recover the way pedestrians walk in the real world. As the
marginal distribution of a TGMM is not a TGMM anymore [107], we fit the data with one truncated
Gaussian distribution, as shown in Figure 2.9 on the right.

Then, conditioned on the vPed and vV eh, the feasible region for TTC to be sampled from be-
comes a 1-dimension interval, as shown with the blue arrow in Figure 2.9. The interval is again
segmented by the three RLSs into subintervals:

Ihigh = [TTC lb
high, TTC

ub
high)

Imid = [TTC lb
mid, TTC

ub
mid)

Ilow = [TTC lb
low, TTC

ub
low].

Then, we sample TTC from a 1-dimensional importance sampling distribution (ISD) in each in-
terval.

Here, we propose a VUT-independent way to generate the ISD. If a total of N test cases are to
be generated, we denote the ratio of test cases within high, medium and low-risk sets as: RIS =

[rhigh : rmid : rlow], where rhigh+rmid+rlow = 1. RIS determines the probability of sampling from
each risk level, which is left to the testers to decide. It serves as a tuning knob for designing tests
to the desired difficulty. Then, we propose to sample TTC−1 from a piece-wise uniform proposal

30

Figure 2.10: 300 test cases drawn from the ISD.

distribution.

f ∗
TTC−1(TTC−1|vPed, vV eh) =



knrhigh
1

TTClb
high

− 1

TTCub
high

TTC ∈ Ihigh

knrmid
1

TTClb
mid

− 1

TTCub
mid

TTC ∈ Imid

knrlow
1

TTClb
low

− 1

TTCub
low

TTC ∈ Ilow

0 otherwise

(2.23)

kn is the normalizing factor that renders the integral of the PDF to be 1. Given the RLS to sampled
from, the TTC−1 is sampled uniformly in the corresponding region. Finally, the formula for the
proposed ISD is:

f ∗(TTC−1, vPed|vV eh) = fvPed
(vPed)× f ∗

TTC−1(TTC−1|vPed, vV eh) (2.24)

After having both the ISD f ∗ from Eq. (2.24) and the ND f from Eq. (2.18), we can calculate
the likelihood ratio for each test case according to Eq. (2.8), where f ∗(p) ̸= 0 if the sample is in
X1
f , X2

f or X3
f , according to the definition of f ∗.

In Figure 2.10, we show an example of 300 samples generated with the aforementioned proce-
dure. The ratio is RIS = [1/2 : 1/3 : 1/6]. Most samples have vPed between 1 m/s and 2 m/s,
as suggested by the distribution of vPed. All of the samples lie in the desired RLSs. In addition,
the test cases are generated prior to the testing, and are independent of the VUT, which ensures
fairness of the testing procedure for different VUTs from different companies.

Finally, we can run tests in simulation and estimate the crash rate, which will be covered in the

31

next section.

2.4 Simulation Results and Discussions

The usefulness of the proposed accelerated evaluation framework is demonstrated in simulation.
The safety performance of the VUT is evaluated with the estimated crash rate γ̂crash in the test.
The controller of the VUT is assumed to be a combination of an Adaptive Cruise Control (ACC)
algorithm and an Autonomous Emergency Braking (AEB) algorithm. The ACC is a PI controller
targeting a desired time headway, while the AEB is from [108], which is similar to the system on
a 2011 Volvo V60. Only the control algorithm is being evaluated without any perception module.
Without loss of generality, the pedestrian is assumed to cross from left to right. A collision is reg-
istered if the VUT encroaches into the crosswalk whenever the pedestrian is still on the crosswalk,
i.e., whether the pedestrian is in the left or right lane does not matter.

Figure 2.11: Simulation results: CMC v.s. proposed accelerated evaluation method.

In the simulations, we assume vV eh is 8 m/s, i,e., around the posted speed limit of the road
where data were collected. We compare the testing results using CMC and the proposed evaluation
method. For the former, test cases are sampled according to the ND, which is truncated and
constrained inside Xf , the region of feasible initial conditions. The probability density has been
normalized according to the truncated region numerically. For the proposed method, we sample
using the above ISD, where three RLSs are sampled with ratioRIS = [1/2 : 1/3 : 1/6]. We run the
simulation until the crash rate converges for both methods. The results are shown in Figure 2.11.
The two simulation schemes both converge to the same crash rate estimates around 1.0 × 10−4.
The proposed method, shown in red, converges to the value earlier (after 7,000 samples), while

32

CMC takes around 70,000 samples. For both methods, the two dashed lines around the solid line
show the error bound γ̂crash±1.64σ̂crash, which is the region that with 90% of confidence level the
real crash rate γcrash lies in. The proposed accelerated evaluation method requires 1/10 of cases to
reach the same confidence value as CMC sampling from the ND. In addition, it is observed that all
test cases leading to a crash are from the high risk set, which demonstrated the significance of the
risk level characterization.

Even before the crash rate reaches convergence, we are able to see how the VUT behaved. As
all test cases are guaranteed to be feasible (within the assumed vehicle capability), any crash can
be blamed on the ineptitude of VUT. Moreover, whether the VUT failed in a high-risk case or a
medium-risk case can be used to rate the performance of the VUT. These kinds of knowledge were
not available in the original accelerated evaluation framework in [32].

2.5 Extension to Other Reactive Scenarios

The complete evaluation framework is presented above. However, it is still expensive to execute
in practice. It requires thousands of test cases to reach the unbiased crash rate estimate, while
in real-world acceptance testing, we will only have days/weeks to test each VUT. Therefore, the
accelerated evaluation could only be implemented in a ”best-effort” fashion, where the number of
test cases is constrained, and the testing will be terminated before the convergence is reached. In
this section, we will extend the simplified version of the accelerated evaluation framework to two
other scenarios, unprotected left turn (ULT) and cut-in.

2.5.1 Scenario Model

Unprotected Left Turn (ULT) Scenario

We focus on a typical ULT scenario, left turn across path/ opposite direction (LTAP/OD), which
is the 3rd most fatal pre-crash scenario involving multiple vehicles [25]. The configuration is
shown in Figure 2.12. The POV makes an unprotected left turn in front of the VUT, while the
VUT is traveling straight through the intersection. The POV intentionally steals the ROW from the
VUT, and the VUT needs to react appropriately. The following assumptions are made for the ULT
scenario:

• The POV goes straight before the left turn. Then, the left-turn trajectory is a 90-degree arc
with a constant radius.

• The speed of the POV is fixed during the turning phase. Under such speed, the lateral
acceleration of the POV is within the friction limit of the tires.

33

• The VUT travels straight in the scenario.

• The initial condition is defined at tLT , the moment when the POV initiates the left turn, i.e.
when it is at the start of the arc.

• The VUT can recognize the turning intention of POV no earlier than tLT .

This research only focuses on one intersection inside the Mcity test track. However, the method
is generalizable to different intersection geometries and configurations. From our previous work
[109], we model the initial condition of a ULT test case using 3 variables at tLT :

1. ∆x: the longitudinal distance between POV and VUT.

2. vPOV : the speed of POV.

3. vV UT : the speed of VUT.

Figure 2.12: Configuration of the ULT scenario.

Cut-in Scenario

In the cut-in scenario, the POV and the VUT drive along a straight road in adjacent lanes with the
POV leading. Then, the POV makes a lane change to the VUT’s lane, as shown in Figure 2.13. We
make the following assumptions on the lane-change maneuver of the POV:

• POV’s speed remains constant during the maneuver.

• The heading angle change of the POV is neglected.

• The duration of the lane change is fixed at TLC = 4.2s, which is the mean lane change
duration according to the Safety Pilot naturalistic driving dataset [33].

34

• The lateral motion of the lane-change follows a sinusoidal acceleration profile, as suggested
in [110].

• The VUT can recognize the cut-in intention of POV no earlier than the starting time of the
lane change tLC .

Therefore, the lateral acceleration and displacement profile of the lane change can be written
as:

aLC(t) =
2πWL

T 2
LC

sin(
2πt

TLC
) (2.25)

yLC(t) = −WL −
WL

2π
sin(

2π

TLC
t) +

WLt

TLC
(2.26)

where WL is the lane width. For the cut-in scenario, the following key variables are considered,
which are measured at tLC :

• ∆v: the speed difference; ∆v = vV UT − vPOV .

• ∆x: the longitudinal distance between the POV and the VUT; ∆x = xPOV − xV UT − L0,
where xPOV and xV UT are measured at the center of mass of vehicles; L0 is the nominal
length of a vehicle.

Figure 2.13: Configuration of the cut-in scenario.

2.5.2 Test Case Generation

Unprotected Left Turn (ULT) Scenario

Following the procedure in Section 2.3.5, we first analyze the risk of a given test initial condition.
Then, we divide the testing space of the ULT scenario, i.e. [vPOV , vV UT ,∆x], into five RLSs: the
sets of infeasible, high-risk, medium-risk, low-risk and trivial cases. We first find the boundary
between infeasible and feasible sets using model-based analysis, then lower the capability of the
VUT to obtain the boundaries between other RLSs.

35

First, we define the conflict zone, which is a rectangular region at the center of the intersection.
The dimension of the target intersection is shown in Figure 2.14.

Figure 2.14: The dimension of the intersection and the left-turn maneuver; the conflict zone is
shown in red, with width w2 and length d2. l2 is the arc length of the maneuver inside the zone; d1
and w1 are the longitudinal and lateral distance from the starting point of the left turn to the edge
of the conflict zone, and l1 is the corresponding arc length. R is the radius of the arc.

When the centers of mass of both vehicles are inside the conflict zone simultaneously, it is
deemed a crash and a failed test case for the VUT. To avoid a crash, the VUT has to slow down to
not enter the conflict zone until the POV clears it, assuming the POV arrives earlier than the VUT.
The braking capability of VUT is assumed as follows: the VUT has a maximum deceleration of
amin, which can be achieved after the reaction time treact. During treact, the VUT maintains its
speed. For a given initial condition, we can determine whether it is possible to avoid a collision
according to the best effort of the VUT. If not, such a case is regarded as infeasible, i.e. a crash is
unavoidable. Considering the monotonicity nature of our problem (the smaller ∆x is, the harder it
is for collision avoidance), we can compute the boundary on ∆x for feasible test cases given vPOV
and vV UT , denoted by ∆xmin. There are two possible outcomes:

If vV UT is small enough so that VUT can come to a stop before entering the conflict zone, then
the minimum distance is calculated as:

∆xmin = vV UT treact − v2V UT/(2amin) + d2 + d1 (2.27)

Else, if vV UT is high, and the VUT cannot stop before entering the conflict zone, it may still
avoid a crash if it enters the conflict zone after the POV clears it. Then, the minimum distance is
calculated as:

∆xmin = vV UT (t1 + t2) + 0.5amin(t1 + t2 − treact)2 + d2 + d1 (2.28)

36

Figure 2.15: The risk level sets for the ULT scenario. Red for the infeasible set, orange for the high
risk set, yellow for the medium risk set, green for the low risk set, and purple for the trivial set.

where t1 = l1/vPOV , t2 = l2/vPOV .
The deceleration threshold separating feasible and infeasible cases is set to amin =-0.65g, same

as the threshold in the pedestrian crossing scenario. The treact is set to 0.2s, considering the per-
ception, decision-making and actuation delays. Subsequently, the threshold amin to separate other
RLSs are the same values as in the pedestrian crossing scenario, i.e. 0.41g for the boundary be-
tween high and medium RLSs, 0.23g for medium and low RLSs, and 0 acceleration for low and
trivial RLSs. The resulting RLSs for the ULT scenario are shown in Figure 2.15.

Then, we sample test cases from the high, medium and low risk level sets. During a ULT test,
the VUT chooses its speed when approaching the intersection. Therefore, the initial conditions to
be determined are only vPOV and ∆x, which lie in a 2-dimensional space. Then, we can repeat
the procedure in Section 2.3.6 to generate samples from each RLS stochastically and efficiently
according to a given sample ratio RIS . In Figure 2.16, we compare the 300 test cases generated
according to the proposed method and according to the naturalistic driving distribution for the ULT
scenario from [109]. It shows that cases generated from the naturalistic distribution are mostly
trivial or in the low-risk region, resulting in an easy test for the VUT. On the other hand, cases
generated from the proposed method can be tuned to spread across risk levels with different ratios,
making the test more challenging and efficient. This ratio will decide the acceleration ratio of
the evaluation procedure, although knowing the exact acceleration ratio might not be necessary in
real-world testing.

37

(a) (b)

Figure 2.16: Risk level sets and generated test cases for the ULT scenario when vV UT = 8 m/s.
300 test cases are generated based on (a) naturalistic distribution and (b) accelerated evaluation
distribution with ratio RIS = [1/3 : 1/3 : 1/3]. The testing space is partitioned into infeasible
(red), high (orange), medium (yellow), low (green) and trivial (blue) risk sets.

Cut-in Scenario

For the cut-in scenario, test parameters are directly sampled from the 2-dimensional space of ∆x
and ∆v. The RLS decomposition of the testing space adopts the same method and threshold
parameters as in the ULT scenario. The resulting RLSs are shown in Figure 2.17. There is no
trivial set, since all cut-in cases have positive ∆v, meaning all cases require deceleration efforts
from the VUT to avoid. We also compare the cut-in test cases sampled according to the proposed
method and according to the naturalistic driving model for cut-in from [32]. It is shown that the
naturalistic distribution rarely generates medium or high-risk test cases, while the proposed method
is able to do so, thus accelerating the test procedure in terms of covering the higher-risk region.

2.6 Summary

This chapter presents the accelerated evaluation methodology for reactive scenarios. The main
contributions of this chapter include the following: first, a statistical model of pedestrian crossing
scenario is built based on 2689 events extracted from open-source video data; second, an acceler-
ated evaluation framework for test case generation is proposed. The test cases are guaranteed to
be feasible (i.e. no unavoidable collisions), and have a known level of risk. The usefulness of the
evaluation framework is demonstrated in simulations, where the proposed method can achieve un-
biased crash rate estimation with only 1/10 of test cases compared to the CMC sampling baseline.
In addition, we demonstrate that this framework can be easily extended to two other reactive sce-
narios, cut-in and unprotected left turn. In summary, the proposed method can efficiently generate

38

(a) (b)

Figure 2.17: Risk level sets and generated test cases for the cut-in scenario. 300 test cases are
generated based on (a) naturalistic distribution and (b) accelerated evaluation distribution with
ratio RIS = [1/3 : 1/3 : 1/3]. The parameter space is partitioned into infeasible (red), high
(orange), medium (yellow) and low (green) risk sets.

test cases with defined risk levels in a variety of reactive scenarios.

39

CHAPTER 3

Safety Evaluation for Interactive Scenarios

3.1 Motivation and Background

In this chapter, we propose a method for conducting behavior competence testing for interactive
scenarios. In interactive scenarios, the POV (mostly representing a human-driven vehicle) and the
VUT both can be interaction-aware agents. An interaction-aware agent needs to not only react to
the motion of other agents, but also be aware of the impact of itself on others. Therefore, to design
a comprehensive evaluation framework for interactive scenarios, extra factors should be considered
compared to the reactive scenarios.

First, the diversity in human driver behaviors is not present in reactive scenarios due to the
short duration of the challenge phase. In an interactive scenario, with the extended period of the
challenge phase, different human drivers may exhibit different behaviors even with the same initial
condition, including coasting, accelerating, yielding, etc. This poses challenges to the behavioral
prediction and decision-making modules of the VUT. Therefore, the testing space of the evaluation
framework should have the modeling capability to capture diverse interactive behaviors.

Second, in interactive scenarios, there is no universal definition of “risk level” as in reactive
scenarios. Different VUTs will have vastly different failure modes, which cannot be anticipated
prior to the testing. In Chapter 2, the risk of a test case is characterized by the avoidability of a
potential collision, which depends on the initial condition. It can be computed with model-based
analysis prior to the testing. For example, in the cut-in scenario, the risk is higher if the POV starts
the lane change with closer distance and higher relative velocity. Therefore, the failure modes of
a given VUT can be predicted. On the other hand, for interactive scenarios, the risk depends on
a combination of initial conditions, POV’s behavior, and VUT’s recognition and response to it,
which cannot be analyzed a priori. For example, in a highway merging scenario, the POV is on
the main road while the VUT tries to merge from the ramp. A yielding POV may create an easy
test case for an aggressive VUT, who can easily merge ahead with hard acceleration; but it can be
a failure case for a timid VUT, who tries to slow down as well and creates a dead-lock situation

40

between the POV and the VUT. In contrast, An aggressively-passing POV can be easily handled
by a timid VUT, but not necessarily by an aggressive VUT. The risk is highly dependent on the
VUT itself. Therefore, the goal of the test case generation method is to test adaptively for each
VUT to discover its failure modes.

3.2 Problem Formulation

In this chapter, the research goal is to systematically evaluate the safety performance of a given
VUT in interactive scenarios with limited test cases. The problem can be decomposed into two
tasks. First, a testing space will be constructed, which determines all the possible test cases (with
interactions) to be evaluated. Second, a mechanism to select test cases from the testing space will
be developed. For the first task, the testing space can be characterized by two sets of attributes:
the first set defines the initial condition of the scenario, same as in Chapter 2; the second set
describes the interactive and behavioral properties of the POV, which then formulates the POV
library (introduced in Section 3.4, 3.5 and 3.6). In the second task, the test case generation scheme
aims to evaluate the safety performance of a black-box VUT by adaptively discovering its failure
modes through efficient sampling schemes (introduced in Section 3.7). We will demonstrate the
performance of the proposed method in two typical interactive scenarios, highway merging and
roundabout entering (Section 3.8). The overall concept of the proposed interaction-aware evalua-
tion framework is shown in Figure 3.1.

3.3 Review on Interaction-aware Driver Models

Modeling the interaction between human drivers has been a crucial problem in multiple key ar-
eas of self-driving research, including behavior prediction, motion planning, V&V, etc. Existing
approaches can be categorized into three groups [111]:

1. Rule-based models, e.g., intelligent driver model (IDM) [112], MOBIL model [113].

2. Learning-based models, e.g., variational auto-encoder (VAE) [114], generative adversarial
network (GAN) [115].

3. Game-theoretic models [39, 111, 116–123].

Among them, the game-theoretic model blends the interpretability, data-efficiency of rule-based
models, and the flexibility of learning-based models, and is adopted as the basis of our approach.
Game-theoretic models represent driving as a game. Human drivers are assumed to be rational
players that behave (near) optimally according to some utility functions. Nash [116] or Stackelberg

41

Figure 3.1: The pipeline of the interaction-aware evaluation framework.

[117–119] equilibrium models have been applied to model human driving behaviors. However,
they rely on the assumption that each player has an infinite level of rationality, which may not be
realistic considering that human drivers have to make quick decisions in a complex environment.
Other researchers assumed bounded rationality of human drivers. To model this non-ideal nature
of driver behaviors, existing studies have applied level-k game theory [39, 120], quantal response
[121] or cumulative prospect theory [111], etc. Among them, level-k game theory has been shown
to outperform the equilibrium model in predicting human decision-making behaviors [124]. On the
other hand, [116, 119, 122, 123] considered the different social value preferences of human drivers
in a game-theoretic setting, which help explain the altruistic or competitive behaviors observed in
driving data.

3.4 Basic Methodologies for Primary Other Vehicle (POV) Li-
brary Construction

The POV library needs to incorporate interactive driver models that capture the diverse driving
styles and behaviors of human drivers for the target scenario. To approximate the decision-making
procedure of human drivers, we assume that a POV is a bounded-rational game-theoretic agent,
which takes the (near) optimal action with respect to its utility function and assumptions on the
opponents.

42

3.4.1 Markov Game formulation

The problem of solving the optimal policy for one rational agent can be modeled as a Markov
Decision Process (MDP), which is defined byM = (X ,U ,P , r, γ), with the state space X ⊆ Rn,
the action space U ⊆ Rm, the transition dynamics of the environment P : X ×U → X , the reward
function r : X × U → R, and the discount factor γ ∈ (0, 1).

When there are multiple rational agents interacting with each other, they can be mod-
eled as a Markov game (MG), which is a generalization of MDP [125], defined by the tu-
ple G = (N ,X , {U i}i∈N ,P , {ri}i∈N , γ). Other than what is defined in the MDP formulation,
N = {1, 2...Ng} denotes the collection of indices of Ng agents; U i and ri denotes the action space
and reward function of the ith agent respectively. A policy for agent i is a state-action mapping,
i.e. πi : X → U i. The goal of the ith agent is to find a policy πi∗ that maximizes its expected
cumulative reward from any initial state x:

πi∗(x) = argmax
πi

V (x, πi, π−i)

= argmax
πi

E

[∑
t≥0

γtri(xt, ut)

∣∣∣∣∣ui = πi(xt), u
−i = π−i(xt), x0 = x

] (3.1)

In Eq. (3.1), xt, ut represent the state and action at time t respectively; −i represents the indices of
all agents in N except agent i.

It is desirable for the POV library to cover a wide range of possible driving behaviors. With
the MG formulation, we are able to achieve such modeling capability by either making the POV
agent have different assumptions on the opponents’ policy π−i, or using different reward functions
ri. Specifically, in this research, we adopt the idea of level-k game theory (for modeling different
opponents) and social value orientation (for designing different rewards) to describe the diversified
POVs. For simplicity, it is assumed that each POV is involved in a two-player Markov game, i.e.
Ng = 2, with one opponent vehicle (OV), which could be the VUT or another POV.

3.4.2 Level-k Game Formulation

The level-k game theory model [126] is based on the idea that an intelligent agent (such as a human
driver) has a finite level of reasoning depth. For a two-player game with agents A and B, instead
of reaching an equilibrium with the opponent assuming that they are infinitely rational, each agent
assumes that her/himself is ”one level smarter” than the opponent. The model first assumes that a
level-0 policy π0 is known a priori, which could be a naive policy that behaves in a non-interactive
way and has no utility function. Then, a level-k agent (k > 0) follows a utility-maximizing policy
assuming that the opponent is a level-(k − 1) agent. Using the level-0 policy as the starting point,

43

Figure 3.2: The SVO ring: we will focus on ψ ∈ [0, π/2).

the optimal policy for a level-k agent can be generated recursively. Specifically, the optimal policy
of a level-k agent A, denoted as πA∗k , can be calculated from:

πA∗k (x) = argmax
πA

V (x, πA, πB∗
k−1) (3.2)

Where πB∗
k−1 denotes the policy of a level-(k − 1) agent B. Since πB∗

k−1 is already known and fixed
when computing πA∗k , the two-player MG degenerates to an MDP that is easier to solve. On the
other hand, since agents at different levels have different assumptions about their opponents, they
represent agents with different thinking styles and complexity levels, contributing to the diversity
of the POV library. The effectiveness of the level-k game formulation in explaining human driving
behaviors has been validated in [127] using real traffic data. According to a study in economics
[128], human decision-makers are usually as high as level-2 thinkers. Therefore, we only consider
agents that are up to level-2 in this research.

3.4.3 Social Value Orientation

To systematically capture a set of diverse reward functions for the POV, we incorporate the social
value orientation (SVO) in the design of the POV library. SVO is a concept from the social psy-
chology literature, which characterizes the degree of selfishness of an agent [129]. It quantifies
the preference of an agent regarding optimizing the utility for itself versus for others, which could
be represented as an angle ψ on a 2-dimension plane as shown in Figure 3.2. Here, different ψ
represents a range of personalities including egoism, altruism, competitiveness, etc. In the original
game-theoretic setting, an agent is egoistic and will solely optimize for its own utility function, i.e.

44

ψ = 0. When combining variable SVO with a game-theoretic driver model, as shown in [116], it
could improve the accuracy of trajectory prediction, i.e., explain human driving behaviors better.
Moreover, agents with different SVO can represent a continuous spectrum of human drivers, which
complement the level-k framework where drivers have discrete types and enrich the POV library.
In this work, the SVO is combined with the level-k game theory to model POV behaviors.

3.4.4 Combining Level-k with Social Value Orientation

Based on the level-k game theory and SVO, we create a library with the following types of POV
agents: the level-0 POV, the level-1 POV, and the level-2 POV with varying SVO. Due to the
non-competitive nature of driving tasks, we only consider the SVO angle in the 1st quadrant, i.e.
0 ≤ ψ < π/2. The reasons that we do not consider SVO for lower-level POVs are that: a level-0
POV is non-interactive, thus SVO cannot be defined; a level-1 POV assumes its opponent is level-0,
which has no utility function, thus SVO is not defined either.

To construct the POV library, we first design the policy for a level-0 POV as a baseline. It is
a non-interactive policy with a fixed speed profile longitudinally and laterally, which captures the
behavior of inattentive drivers. Next, to generate the policy for a level-k POV (k > 0), a level-
(k − 1) OV is needed in advance. The level-0 OV policy can be predetermined in the same way
as the level-0 POV policy. Therefore, the procedure starts with computing level-0 policies for both
POV and OV, and then level-k (k > 0) POV and OV are generated sequentially by assuming a
level-(k − 1) opponent is known respectively. Although the targets are level-k POVs, level-k OVs
are needed as the stepping stones to obtain higher-level POVs.

In the following sections, we will present the details of POV library construction using two
important interactive scenarios as examples: highway merging and roundabout entering.

3.5 POV Library for the Highway Merging Scenario

3.5.1 Scenario Model

The configuration of the highway merging scenario is illustrated in Figure 3.3. The VUT attempts
to merge onto the highway from the ramp, while the POV is driving on the main road. For the
POV, the only OV is the VUT. We make the following assumptions for the scenario:

1. The POV and the VUT see and interact with each other throughout the horizon of the sce-
nario.

2. The POV is not able to change lanes to yield to the VUT; the VUT can only merge at the
merge point M , which is the origin of the lane-fixed coordinates for both the ramp and the

45

Figure 3.3: The configuration of the highway merging scenario.

main road.

3. There is only one POV on the main road and there is no vehicle in front of the VUT on the
ramp.

4. The scenario ends when the VUT reaches point M , and the end time is denoted as t1.

We model both vehicles as double integrators and they only move longitudinally in their own
lane. The discrete-time state-space model of the two-vehicle system can be written as:

x(k + 1) = f(x(k), u(k)) = Adx(k) +Bdu(k) (3.3)

where

Ad =


1 ∆t 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1

 , Bd =


1
2
∆t2 0

∆t 0

0 1
2
∆t2

0 ∆t

 ,
x = [xPOV , vPOV , xV UT , vV UT]

T , u = [aPOV , aV UT]
T .

where xPOV , xV UT are the longitudinal position, and vPOV , vV UT are the longitudinal speed of
POV and VUT in their lanes. The input for each vehicle is the longitudinal acceleration, which
ranges between [amin, amax]. The initial condition is characterized by [x0POV , v

0
POV , x

0
V UT , v

0
V UT]

T .
Without loss of generality, we assume x0V UT is fixed. Moreover, v0V UT is observed rather than
determined by the test conductor. Therefore, the initial condition to sample from is x0 =

[x0POV , v
0
POV]

T .

3.5.2 Level-0 Policy

For the highway merging scenario, a level-0 POV is assumed to keep a constant speed, regardless
of the VUT. A level-0 VUT will accelerate with constant acceleration (1 m/s2) until the assumed

46

(a) (b)

Figure 3.4: The procedure of computing a sequence of level-k agents for (a) the highway merging
scenario and (b) the roundabout entering scenarios. The level-2 POVs have an extra parameter ψ
characterizing their SVO angle.

highway speed (28 m/s).

3.5.3 POV Behavior Generation Using Reinforcement Learning

To compute the driving policy for a level-k agent (k > 0), we use single-agent reinforcement
learning (RL) to solve the MDP. To train a level-k POV, we model it as an agent operating in an
environment consisting of level-(k − 1) VUT. The same idea applies to the training of a level-k
VUT. To incorporate the factor of SVO, we consider the SVO angle ψ as an extra state of the model
when a level-2 POV is trained to generate a continuum of level-2 POVs. The overall procedure is
shown in Figure 3.4a.

For a level-k VUT, the state space of the MDP includes all continuous physical states of the
POV and the VUT, denoted as X (X = X). For POVs, the SVO angle is additionally considered
in the states space, which is held constant in each episode, i.e. X = X× [0, π/2). For the highway
merging scenario, the physical state space X is 4-dimensional, as shown in Section 3.5.1. The
transition dynamics are illustrated in Eq. (3.3), with the opponent’s action governed by the level-
(k-1) policy. The actions are discrete acceleration choices within amin and amax for both POV and
VUT, i.e. u = aPOV /aV UT ∈ U = {−4,−3, ..., 0,+1,+2}. Each episode terminates when the
VUT reaches the merge point xV UT (t1) = 0. The timestep for simulation is δt = 0.1s, while the
timestep for the MDP is ∆t = 0.5s.

The reward function reflects the goal of driving for each agent. We assume that the reward

47

function can be represented as a linear combination of K reward feature terms:

r(x, u) = W TΦ(x, u) =
K∑
i=1

wiϕi(x, u) (3.4)

where wi is the weight of each term, ϕi(x, u) represents each feature, which represents a different
attribute for driving. The rewards can be classified into three categories:

1. Ego reward for POV: rPOV e = W T
POV eΦPOV e.

2. Ego reward for VUT: rV UTe = W T
V UTeΦV UTe.

3. Safety reward for both: rsafe = W T
safeΦsafe.

The detailed definitions of the rewards are as follows:
ΦPOV e = [ϕacc, ϕvHW

]T , where ϕacc penalizes acceleration action; ϕvHW
penalizes speed ex-

ceeding the highway speed limits (either vHWmin or vHWmax). The parameter values are shown in
Table 3.1.

ΦV UTe = [ϕacc, ϕvmin
, ϕvend

]T , where ϕacc is the same as in ΦPOV e; ϕvmin
penalizes speed lower

than a minimum speed vmin during the episode; ϕvend
penalizes final merging speed of the VUT

that is faster or slower than the highway speed limit.
Φsafe = [ϕTTC , ϕ∆x, ϕcrash]

T are the safety terms evaluated at the end time t1. We define:

∆x1 = xPOV (t1)− xV UT (t1)

∆v1 = vPOV (t1)− vV UT (t1)

TTC =

 ∆x1
−∆v1

when ∆x1∆v1 < 0

∞ otherwise

where ϕTTC gives penalty when TTC < TTCmin; ϕ∆x rewards large |∆x|, and gives penalty
when |∆x| < ∆xcritical; ϕcrash gives heavy penalty when |∆x| < ∆xcrash.

Then, the final reward function for a VUT is:

rV UT = rsafe + rV UTe (3.5)

For a POV with SVO angle ψ, the reward function is:

rPOV = rsafe + rPOV e cos(ψ) + rV UTe sin(ψ) (3.6)

where ψ modulates the rewards between POV and VUT. For a level-1 POV, ψ ≡ 0.

48

Parameter Value Parameter Value
vHWmax 35.0 m/s vHWmin 24.6 m/s
vmin 12.0 m/s TTCmin 7.0 s

∆xcrash 6 m ∆xcritical 15 m

Table 3.1: Parameters for reward design: highway merging.

To learn the optimal policy for a level-k POV/VUT, we apply the Q-learning method [130]. The
action-value function Q is defined as:

Q(x, u|π) = Eπ

[
t1∑
t=0

γtrt|x0 = x, u0 = u

]
(3.7)

Q-learning uses temporal difference to estimate the optimal Q function, i.e. Q∗(x, u|π∗), and learn
the optimal policy π∗. For details, please refer to [130]. In this work, the reinforcement learning
algorithm we use is Double deep Q-network (DDQN) [131]. DDQN is based on the Deep Q-
network (DQN) [132] method. It addresses the problem of overestimating the future return of
DQN by decoupling the action evaluation and action selection into max operations in two different
Q-networks.

3.6 POV Library for the Roundabout Entering Scenario

Roundabouts are becoming popular in the US due to their significant benefits compared with stop
signs and traffic signals [133]. Roundabout driving has been actively studied in the literature
[111, 134, 135]. The roundabout entering scenario is a complex interactive scenario due to the
multiple entrances and exits, which result in a variety of possible interaction patterns between
the subject vehicle and the surrounding vehicles from different branches. This complexity makes
designing decision-making and path-planning algorithms for HAVs at roundabouts challenging,
and it is even harder for the evaluation of such algorithms. Specifically, vehicles coming from
different entrances will predict and influence each other’s future motions. Therefore, the interaction
between a POV and a VUT, and possibly between multiple POVs need to be modeled by the
evaluation framework.

3.6.1 Two-layer Framework for POVs in the Roundabout Scenario

According to common US traffic rules for roundabout entering, e.g., [136], the entering vehicle
should yield to all other vehicles that are already in the roundabout or approaching from upstream.
For example, in a 4-way roundabout shown in Figure 3.5a, the red vehicle should yield not only

49

(a) (b)

Figure 3.5: (a) The configuration of the roundabout entering scenario and the reference path of the
two POVs and one VUT. (b) Definition of variables for each pair of vehicles.

to the closest vehicle to its left, i.e. the green vehicle, but also to the blue vehicle. On the other
hand, if the green or blue vehicle offers to yield the right-of-way to the red vehicle, it should also
proceed responsively and cautiously. Therefore, since only one POV is present in the scenario
formulation in Section 3.5, it cannot represent the diverse situations that an HAV could encounter
in a real-world roundabout. In this section, we consider a roundabout scenario with two POVs and
one VUT to generate more diverse test cases to challenge the VUT. The proposed framework can
scale up to include more POVs.

The geographical layout of the example roundabout for this work is based on a 4-way round-
about inside Mcity, as shown in Figure 3.5a. Each vehicle is assumed to drive along a predeter-
mined reference path. Frenet frame [137] is used to represent the motion of each vehicle along the
path.

Though three vehicles are present, we only consider pairwise interaction at any time for sim-
plicity. For each pair, the vehicles are modeled as a double integrator as they move along their
reference paths, which are shown in Figure 3.5b. The joint state of the two-vehicle system is
[xA, vA, xB, vB]

T . xA, xB are the longitudinal position and vA, vB are the longitudinal speed of ve-
hicles A and B respectively. Here, all states are defined in the respective Frenet frame. The origin
for both frames is the conflict point M , the intersection point of the two reference paths. The input
for each vehicle is the longitudinal acceleration, denoted as aA and aB.

When multiple POVs are present in the scenario, a key problem is modeling the interaction
between POVs. Previous work on decision-making at roundabout [134, 138] assumes that each
pair of interactive vehicles are in a fixed two-player game with each other throughout the scenario.

50

(a) (b)

Figure 3.6: (a) Phase-1 interaction for POV #1; the opponent is the green vehicle. (b) Phase-2
interaction for POV #1; the opponent is the red vehicle.

This formulation not only makes the algorithm not scalable to more vehicles, but also deviates
from human driving behaviors. In reality, a vehicle at the roundabout may shift its focus during
the scenario. Before entering the roundabout, it will first look for incoming traffic from upstream
of the roundabout; after entering, it will ensure safety by looking at downstream vehicles that are
about to enter. Therefore, we divide the POV policy into two phases, in which the POV will be
involved in different games with different agents in different phases.

• Phase-1: the POV is in phase-1 when it has not entered the roundabout (xPOV < 0). Since
it needs to yield to vehicles from upstream according to traffic rules, it is involved in a two-
player game with the closest vehicle upstream, as shown by the blue (POV) and green (OV)
vehicles in Figure 3.6a. It assumes that the OV is either non-interactive with the POV (when
OV is outside the roundabout) or in its phase-2 (when OV is inside the roundabout). This
phase ends when the POV enters the roundabout (xPOV ≥ 0).

• Phase-2: the POV is in phase-2 when it is inside the roundabout (xPOV ≥ 0). It is involved
in a two-player game with the vehicle outside the roundabout downstream in the nearest
branch, as shown by the blue (POV) and red (OV) vehicles in Figure 3.6b. The opponent is
assumed to be in its phase-1. This phase ends when the OV enters the roundabout (xOV ≥ 0)
or when POV passes OV.

Therefore, a POV is involved in one of the two-player games at any given time according to its
location with respect to the roundabout. Each phase corresponds to a set of driving policies. Since

51

the combination of level-k game theory and SVO is used to model the POVs, a level-k phase-1
POV assumes that its opponent is following a level-(k − 1) phase-2 policy; by the same token,
a level-k phase-2 POV assumes that its opponent is following a level-(k − 1) phase-1 policy. In
addition, if the POV is in phase-1 but there is no vehicle upstream inside the roundabout, then the
POV follows a level-0 phase-1 policy; if the POV is in phase-2 but there is no vehicle downstream
in the roundabout, then the POV follows a level-0 phase-2 policy. If there are multiple vehicles
in phase-2 (inside the roundabout), each of the following phase-2 POVs will regulate the distance
to the preceding vehicle with a rule-based algorithm, in addition to following the nominal phase-2
policy.

Finally, we can combine this two-phase framework with the aforementioned computing pro-
cedure for level-k agents to retrieve the policies for all phases and construct the POV library for
the roundabout entering scenario. The procedure is demonstrated in Figure 3.4b. We first assume
that the level-0 policies for phase-1 and phase-2 are both known: a level-0 phase-2 POV follows a
constant speed; a level-0 phase-1 POV decelerates at 1 m/s2 if vPOV > vmax, then follows a con-
stant speed. Next, we can generate the level-1 phase-1 policy from the level-0 phase-2 policy, and
generate the level-1 phase-2 policy from the level-0 phase-1 policy. In this way, we can compute
any level-k phase-1 or phase-2 POV policies from the lower-level policies by induction. Finally,
a full POV policy is acquired by combining phase-1 and phase-2 policies with the same level and
SVO.

In addition, we need to ensure that the behaviors of multiple POVs are compatible with each
other. If two POVs have the same level, or one is level-0 and the other is level-2, then both POVs
will have wrong assumptions on the opponents, thus collisions may happen. Therefore, we pick
four compatible combinations of the two POVs as the ”POV categories” for the testing space,
which form the POV library that will be considered for this scenario:

1. POV #1 is level-0; POV #2 is level-1;

2. POV #1 is level-1; POV #2 is level-0;

3. POV #1 is level-1; POV #2 is level-2 with any ψ;

4. POV #1 is level-2 with any ψ; POV #2 is level-1.

3.6.2 POV Behavior Generation

We adopt the same RL approach used for the highway merging scenario, with some modifications
to the terms in the reward function Eq. (3.4). There are K = 6 features, and their definitions are
as follows:

52

Parameter Value Parameter Value
amin -4.0 m/s2 amax 3.0 m/s2

vmax 10.0 m/s TTCmin 4.0 s
dcritical 8.0 m dcrash 6.0 m

Table 3.2: Parameters for reward design: roundabout entering.

1. ϕ1 = ϕacc = −aPOV (t)2: negative reward on acceleration action.

2. ϕ2 = ϕstep = −1: constant step cost to encourage shorter time to finish.

3. ϕ3 = ϕvmax = −1vPOV (t)>vmax: penalty on over-speeding inside the roundabout; 1 is the
indicator function.

4. ϕ4 = ϕDist = 1dist(t)<dcritical(dcritical − dist(t)): dist is the distance to the OV (in Cartesian
frame); penalty for being too close.

5. ϕ5 = ϕcrash = 1dist(t)<dcrash : penalty on collision. dcrash is the threshold distance for defin-
ing a collision between POV and OV.

6. ϕ6 = ϕTTC = 1TTC(t1)<TTCmin
(TTC(t1) − TTCmin): penalty for the time-to-collision

between POV and OV (in the Frenet frame) being too small at the terminal time t1.

The values of the reward parameters are shown in Table 3.2.
For level-2 POV with SVO angle ψ, the feature ϕ1 is modified such that the acceleration of the

OV is also considered:

ϕ1 = −(cos(ψ)aPOV (t)2 + sin(ψ)aOV (t)
2)

Since ϕ2 will take effect on both vehicles equally in each episode, and ϕ4 ∼ ϕ6 are safety features
shared by both vehicles, they will not be regulated by the SVO. ϕ3 will not be considered for SVO
because the speed violation of the OV is independent of the action of a POV.

3.7 Adaptive Test Case Generation

3.7.1 Problem Formulation

In the above sections, we systematically generated a library of interactive POVs for each interactive
scenario, which is characterized by the SVO ψ and level-k. The testing space can be constructed
then by combining the POV library with the initial condition. In this section, we present the method

53

for generating test cases from the testing space to effectively identify the failure modes of the VUT.
We will use the above roundabout-entering scenario as the running example, but the method is
directly applicable to all other interactive scenarios. For the two-POV roundabout scenario, the
initial condition x0 is defined as:

x0 = [x0POV 1, x
0
POV 2, x

0
V UT , v

0
POV 1, v

0
POV 2, v

0
V UT]

T (3.8)

By combining x0 with the SVO of each POV (ψ1, ψ2), the category c of two-POV combination,
we form the testing space, denoted as S, where each case s is:

s = [xT0 , ψ1, ψ2, c]
T (3.9)

A test case generation scheme will pick N test cases s = [s1, ...sN] from the testing space to
locate low-score cases (”failure modes”) of the VUT. The main challenge is that different VUTs
may have different behaviors and weaknesses, and thus the failure modes are unknown prior to
the testing. Therefore, the proposed scheme should select new cases based on past test results to
adaptively search for the weaknesses of each VUT as the test proceeds. The goals of the test case
generation scheme are two-fold:

1. Challenge: find test cases where the VUT performs poorly (i.e. identify the weakness).

2. Coverage: explore (possibly disjoint) regions of poor performance as many as possible.

The 2nd goal on coverage differentiates our work from other research on falsification-based testing,
in which the goal is just to find the ”worst case” by solving a minimization problem (e.g. [35]).

For each test case s and a given VUT, we define the performance score P (s) as:

P (s) = µ1Icrash(τ) + µ2Psafety(τ) + µ3Ptask(τ) (3.10)

where τ is the resulting joint trajectory of POVs and the VUT; Icrash is the indicator for collision;
Psafety is the safety score; Ptask is the score of task accomplishment; µ1, µ2, µ3 are weighting
factors. The failure modes of a VUT are defined as: Sf (λ) = {s|s ∈ S, P (s) < λ}, where λ is the
performance score threshold for a failure. All cases in Sf (λ) are failure cases. The key objectives
can be translated to maximizing the coverage of the failure modes.

3.7.2 Adaptive Testing Method Overview

We will generate N test cases in batches, with batch size nb. For the testing space S, the last
attribute for the POV category c ∈ C is a categorical variable, while all others are continuous

54

variables. Subsequently, the testing space can be decomposed into two parts, written as: S =

S × C, where S is the subspace with continuous variables.
Sampling from continuous and categorical attributes need to be treated differently, since sam-

ples in one category have little correlation with samples in another category. Therefore, the test
case generation scheme can be divided into two stages for each batch, as shown in the lower part
of Figure 3.1. In the 1st stage, we allocate the quota of samples into different POV categories, i.e.
assign nic cases to category c at batch i. Sample allocation methods will be introduced in Section
3.7.5. In the 2nd stage, we sample new test cases within each category from S using an adap-
tive sampling method based on the Gaussian process regression (GPR). We will first introduce the
proposed method for the 2nd-stage next.

3.7.3 Adaptive Sampling within Single POV Category

We start with the 2nd-stage of test case generation, which operates on the continuous test attributes.
First, to assess the quality of test samples in each POV category, we define the criterion FMC to
formally characterize the failure mode coverage in each subspace S:

FMC(sc, ρ, λ) =
∫
⋃
Bdim(ρ,sλ)

1 dv (3.11)

In Eq. (3.11), sc are the test cases within the cth POV category, dim is the dimensionality of S, and
Bdim(ρ, s) is a dim-dimensional hyper-ball centered around case swith radius ρ. sλ = Sf (λ)

⋂
sc,

which consists of all the failure cases in sc. The FMC evaluates the generalized volume of the union
of hyper-balls centered around identified failure cases, which characterizes the coverage. Here, all
dimensions of S are normalized between [0,1]. Figure 3.7 is a graphic illustration of the FMC in 1
dimension.

Within each POV category, we conduct adaptive sampling with a Gaussian process regression
(GPR) meta-model. The adaptive sampling method alternates between the two steps: updating
meta-models with prior testing results and generating samples from the new meta-models [139].
GPR is a non-parametric probabilistic model [140] that is popular for its ability to model complex
functions and infer the value around unexplored regions [141]. The key idea is to maintain and up-
date a GPR-based meta-model according to existing samples, and use the meta-model to generate
new samples.

Gaussian process (GP) is a stochastic process, for which the joint distribution of every finite
collection of random variables follows a multivariate Gaussian distribution. A GP is characterized

55

Figure 3.7: Measuring the failure mode coverage (FMC) of test samples on a 1-dimension continu-
ous testing space. The blue curve shows the performance score P (s), the red dashed line represents
the score threshold λ, and the regions where the curve is under λ are the failure modes. For this
example, FMC(s, ρ, λ) = l1 + l2 + l3 + l4.

by its mean function m(s) and covariance function k(s, s′) (kernel), as shown in Eq. (3.12).

f(s) ∼ GP (m(s), k(s, s′)) (3.12)

In this work, we use GP as the surrogate model of the performance score profile of each VUT, as
shown in Eq. (3.13). GP characterizes the prior belief of P (s), which is updated by the new test
samples and their test results.

P (s) = δ + f(s), where f(s) ∼ GP (0, k(s, s′|θ)), δ ∼ N(β, σ2) (3.13)

In Eq. (3.13), θ is the kernel parameter, (β, σ, θ) constitute the hyper-parameters of the model.
In this work, we use a zero mean function and a square exponential kernel function for the GPR
model, as shown in Eq. (3.14), where θ = [θ1, θ2]

T . Hyper-parameters are optimized using maxi-
mum likelihood estimation.

k(s, s′|θ) = θ21 exp

(
−(s− s′)T (s− s′)

2θ22

)
(3.14)

With a GPR model P̂ (.) based on existing testing cases s and their results y, for any unobserved
query case s0, the joint distribution of P̂ (s0|s,y) and y is also a Gaussian distribution. Therefore,

56

the conditional mean and variance of P̂ (s0|s,y) are:

E
(
P̂ (s0|s,y)

)
=k(s0, s)(k(s, s) + σ2I)−1(y − β)

Var
(
P̂ (s0|s,y)

)
=k(s0, s0)− k(s0, s)(k(s, s) + σ2I)−1k(s, s0)

(3.15)

The procedure of adaptive sampling is illustrated in Algorithm 1. Details about selecting new
samples using the meta-model (lines 6-9) are explained in Section 3.7.4.

Algorithm 1 Adaptive sampling for one step

Input: batches number i; batch size nic; previous GPR model P̂ i−1
c ; exploration factor ϵ0.

Output: test cases with POVs of category c, sic, and test results yic; updated GPR model P̂ i
c .

1: if i = 1 then
2: Sample initial test batch s1c uniformly from S.
3: else
4: Randomly sample p queries š from S based on uniform distribution (p≫ nic).
5: ϵ = ϵ0α

i−1.
6: Pick (1 − ϵ)nic queries from š according to Cexploit(s) as exploitation samples, denoted as

sexploit.
7: Pick ϵnic(1−rBMB) queries from š according to Cexplore(s) as a part of exploration samples,

denoted as sexplore-1.
8: Sample ϵnicrBMB cases according to Algorithm 2 as the rest of exploration samples, de-

noted as sexplore-2.
9: sic = [sexploit, sexplore-1, sexplore-2].

10: end if
11: Execute test cases sic, acquire results yic = P (sic).
12: Fit/Update the GPR model: y = P̂ i

c(s) = P̂ (s|s1:ic ,y1:i
c).

3.7.4 Test Case Selection

To achieve good coverage of the failure modes, we need to balance exploitation and exploration
when choosing a new batch of samples. On the one hand, samples with low predicted P̂ (s) repre-
sent more challenging cases, which are preferred for the goal of challenge. On the other hand, it
is desirable to explore regions with high uncertainty to pick more informative samples for a better
meta-model, which helps coverage. We will describe the criteria C(s) that evaluate the potential
quality of a query s for both exploration and exploitation, and how to balance between these two
goals.

57

(a) (b)

Figure 3.8: (a) Compute expected FMC improvement through volume approximation. The yellow
region on the left shows the real Vadd brought by the new sample, while on the right shows the ap-
proximated V̂add. (b) Sample along the performance boundary. Points with different colors belong
to different behavior modes. a.,b.,c.,d. correspond to line 3,4,5,6 in Algorithm 2 respectively.

Exploitation: Modified Expected Improvement (MEI) Criterion

Expected improvement (EI) is a popular acquisition function for choosing the most promising
samples in Bayesian optimization [142], a closely-related method with the GPR-based adaptive
sampling. EI indicates the possible improvement in the optimal value brought by the new query.

C(s) = E(I(s))

where I(s) = max(Pmin − P̂ (s), 0)
(3.16)

In Eq. (3.16), Pmin is the minimal performance score achieved by existing test samples. To better
suit our problem settings and goals, we modify the EI criterion to explicitly consider the possible
FMC improvement from the new query:

Cexploit(s) = E(I(s))× Vadd
where I(s) = max(λ− P̂ (s), 0)

(3.17)

In Eq. (3.17), Vadd is the additional volume covered by Bdim(ρ, s). Since the actual Vadd is hard
to compute due to its highly non-convex shape, we use an approximation of Vadd for the above
computation, as demonstrated in Figure 3.8a and Eq. (3.18):

Vadd ≈ V̂add ∝ ρdim − (max(ρ− dmin(s), 0))dim (3.18)

58

where dmin(s) is the distance from s to the nearest identified failure case. A sample with a high
MEI means that it has a high chance of being a failure case, and it is far from previous failure
cases.

Exploration #1: Standard Deviation Criterion

For exploration, a straightforward query criterion is the posterior standard deviation.

Cexplore(s) = σ̂(s) (3.19)

where σ̂(s) =

√
Var[P̂ (s)]. Higher Cexplore(s) indicates that the current GPR meta-model has

higher uncertainty at s, i.e., higher exploration return.

Exploration #2: Sampling on the Behavior Mode Boundary (BMB)

In the aforementioned sampling schemes, the only information from past test cases that aids the
adaptive sampling is the performance score. However, utilizing more contextual information of
test cases for selecting new test queries can be beneficial, especially for a high-dimensional testing
space. Therefore, we consider the behavior mode of a test case as additional information to guide
adaptive sampling. The idea is inspired by [68], where the performance mode boundaries of a
system under test are identified in hope of generating informative test cases. The intuition is that a
switch between performance modes has the potential to induce confusion and fail the VUT.

We define the behavior mode boundary (BMB) for our test scenario. In the roundabout entering
scenario with two POVs, the BMB is defined as the final passing order of the VUT. There are three
BMBs: VUT being the first to pass, the second to pass or the last to pass.

The process of generating test cases using BMB is illustrated in Algorithm 2. Here, the BMB
is estimated locally using existing test cases of different behavior modes. Then, new test cases
are sampled along the estimated BMB. The procedure is visualized in Figure 3.8b. Therefore, the
BMB becomes another heuristic that guides exploratory sampling in the testing space.

Balancing Exploration and Exploitation

For each batch, We pick test cases according to the three criteria above. The percentage of cases
for exploration and exploitation are determined by the parameter ϵ, which gradually decreases at
the rate of α (α ∈ (0.9, 1)), such that the procedure will start with more exploration, and bias
towards exploitation as more data are collected and a better meta-model is built. Between the two
exploration criteria, we allocate a fixed ratio rBMB of all exploration cases to be sampled from the
BMBs, while the others are chosen based on the standard deviation criterion (e.g. rBMB = 1/4).

59

Algorithm 2 Sampling near the behavior mode boundary
Input: number of cases to be sampled along BMBs nBMB; all previous test cases s, and their

corresponding behavior modes BMs.
Output: sBMB: test cases sampled at the behavior mode boundaries.

1: sBMB = []
2: for k ← 1 to nBMB do
3: Randomly pick two behavior modes, BM1&BM2

4: Randomly pick a point from mode BM1: ŝ′1.
5: Find the closest neighbor of ŝ′1 in mode BM2: ŝ2.
6: Find the closest neighbor of ŝ2 in BM1: ŝ1
7: Draw a sample ŝ randomly on the bisection subspace of ŝ1 and ŝ2: sBMB = [sBMB, ŝ]
8: end for

It is important to note that the proposed method has different goals compared to the Bayesian op-
timization methods though they have similar formulations and usages of the GPR model and the
EI criterion. The Bayesian optimization focuses on solving an optimization problem, i.e. find-
ing one global optimal point on the performance surface, while the proposed adaptive sampling
method focuses on identifying failure modes, i.e. finding more ”valleys” of the performance sur-
face. Therefore, the exploration criteria are added compared to standard Bayesian optimization
methods.

3.7.5 Sample Allocation between POV Categories

In this section, we discuss the 1st stage of the adaptive testing framework, i.e. how to optimally
distribute test samples into different categories of POVs. Since the potential of finding failure cases
in each category is unknown a priori, the sample allocation method needs to balance exploration
(finding out which category is the most promising) and exploitation (sample more from the most
promising category). The key objective can take two different forms: (1) to maximize the total
number of identified failure cases from all categories; (2) to find more failure cases in total, while
preferring failure cases that are scattered in more categories. Since both forms of the objective
have their significance and applicability, we propose two sample allocation methods to handle
them separately.

Balancing Failure Case Number and Diversity

To handle the trade-off between the diversity and richness of the failure cases, we propose to find
the best allocation policy by solving a stochastic optimization problem.

First, we define the failure case reward for each category as a function of the number of failure

60

cases n̄ic at batch i and category c ∈ C, denoted as βic:

βic = h(n̄ic) (3.20)

h(.) is a concave and monotonically increasing function defined over [0,+∞]. In this research, we
choose h(x) = xτ , τ ∈ (0, 1). Such an h(.) will encourage more failure cases in each category. On
the other hand, the reward for each extra failure case of the same category will diminish (dh/dn̄ic
decreases as n̄ic increases), which encourages finding failure cases in other categories rather than
concentrated in a single category, i.e., exploration is encouraged.

We define the optimization problem below. Since n̄ic is unknown beforehand, we will estimate
it according to the results from previous iterations, which can be written as n̄ic = ηicnbq

i
c. Here,

ηic is the variable being optimized, the ratio of samples assigned to category c at batch i; nb is the
batch size, and qic ∈ [0, 1] is a random variable describing the belief on the failure case probability
(FCP) of cth category in batch i. Specifically, the test-case sampling from each category can be
approximated as independent Bernoulli trials, with the “probability of successfully finding a failure
case in each trial” being qic. The goal is to maximize the overall expected failure case reward Rfc,
as stated in Eq. (3.21).

max
ηic

Eqic(Rfc) =

|C|∑
c=1

Eqic(β
i
c)

s.t.
|C|∑
c=1

ηic = 1

ηic ≥ 0, c = 1....|C|

(3.21)

|C| is the cardinality of the set of categories C. qic can be modeled by a Beta distribution: qic ∼
Beta(αic, β

i
c), where αic, β

i
c are the parameters that control the shape of the Beta distribution [143].

Without loss of generality, we assume q1c ∼ Beta(1, 1), i.e. q1c has a uniform prior. Assuming that
for batch i and category c, aic failure cases and bic non-failure cases were found, and we denote the
observation Di

c as Di
c = [aic, b

i
c]. Then, we can conduct a Bayesian update on qic according to the

existing testing results:
Pr(qic|Di

c) ∝ Pr(Di
c|qic)Pr(qic)

Pr(qi+1
c) = Pr(qic|Di

c),
(3.22)

where the 1st line is the Bayes theorem; the 2nd line states that the the prior of qi+1
c is defined as

the posterior of qic. Since Beta distribution is the conjugate prior of the binomial distribution [143],
the posterior distribution of qic will have the same form, i.e. a Beta distribution. Therefore, we can

61

compute the distribution of qi+1
c with the following updating rules on its parameters:

qi+1
c ∼ Beta(αi+1

c , βi+1
c), where

αi+1
c = aic + γ̂(αic − 1)

βi+1
c = bic + γ̂(βic − 1)

(3.23)

When the constant γ̂ = 1, Eq. (3.23) is equivalent to Eq. (3.22). However, in the adaptive
sampling procedure, we acquire more knowledge about the failure modes with more test cases, and
subsequently, the FCP qic will likely not stay stationary with respect to i. Therefore, we assume
γ̂ ∈ (0, 1) and use it as a discounting factor to attenuate earlier information.

In each iteration, we solve the optimization problem Eq. (3.21) to acquire an optimal allocation
of samples in each category, i.e. ηic. This strategy will invest more samples in better-performing
categories, while maintaining some samples in all categories.

Greedy Optimization for Failure Case Number

When the only goal is to find as many failure cases as possible, we model the reward of each
sample as a binary variable, i.e. 1 if the sample is a failure case, and 0 if not. Then, this problem is
akin to the stochastic multi-arm bandit (MAB) problem [144].

In a MAB problem, one needs to allocate limited resources to competing choices to maximize
the expected reward (minimize the total expected regret). Assume we have N rounds to play and
have K choices (arms) to choose from for each round, lt ∈ L = {1, ...K}. Each choice has a
stochastic reward, whose distribution is unknown a priori, denoted as νl, l ∈ L. We receives a
reward Xt ∼ νlt for the tth round. The goal is to minimize the expected regret, defined as:

E(RN) = Nµ∗ −
N∑
t=1

E(Xt) (3.24)

where µ∗ = maxl∈L EX∼vl(X) is the expected reward for the best arm.
There have been many classical algorithms for solving the MAB, including upper confidence

bound (UCB) [145], Thompson sampling (TS) [146], etc. Both methods can achieve sub-linear
regret with respect to the number of samples [144]. In standard MAB formulation, the reward for
each choice follows a stationary distribution. However, in our problem setting, the goodness of
each category (i.e. the qic) will change over time due to more informed sampling, as explained in
the above section. Therefore, directly applying the above methods will not yield ideal results.

In this paper, we propose a modified version of the UCB algorithm for sample allocation, named
“UCB-dynamic”. At each time-step t, We pick a new sample from category cUCBt based on the

62

following criterion:
cUCBt = argmax

c∈C
Q̂t(c) + Ut(c)

where Ut(c) =

√
2 log t

Nt(c)
, Q̂t(c) = E(qic).

(3.25)

Here, i is the batch number that the tth sample belongs to; Q̂t(c) and Ut(c) are the estimated reward
and upper confidence bound on that reward estimation respectively for category c; Nt(c) is the
number of total samples in category c as of time t. The algorithm starts by exploring the under-
discovered categories (Ut(c) dominated). Then it gradually turns to exploit the category with the
best estimated reward (Q̂t(c) dominated). There are several modifications we made compared to
the standard UCB algorithm:

1. In a standard UCB, Q̂t(c) equals the sample mean of the reward, i.e. the cumulative ratio of
failure cases for each category. In our setting, since the reward distribution for each category
is not stationary, we set Q̂t(c) = qic to ensure that the estimated reward adapts to the dynamics
of the FCP.

2. Since we generate and execute test samples in batches, Q̂t(c) will stay constant throughout
each batch, whereas Q̂t(c) is updated at every new sample in the standard UCB.

It is worth noting that the POV category is just one example of categorical variables in the
testing space. The proposed methods can be directly applied to other testing space designs with
categorical attributes like weather, lighting conditions, vehicle/VRU types, etc.

3.8 Simulation Results

In this section, we first evaluate the performance of the proposed sample allocation methods us-
ing fictitious experiments. Then, we show some example test cases generated for both highway
merging and roundabout entering scenarios to demonstrate the behavior-generation capability of
the proposed POV library scheme. Finally, we conduct interaction-aware testing at the roundabout
entering scenario in simulation to validate the effectiveness of the proposed test case generation
scheme.

3.8.1 Comparison of Sample Allocation Methods

We evaluate the two sample allocation methods proposed in Section 3.7.5 using four fictitious ex-
periments. During the test case generation procedure, the sample allocation (1st stage) is followed
by adaptive sampling within each category (2nd stage), which will introduce uncertainty due to

63

Figure 3.9: The FCP dynamics for each category for the 4 simulated experiments. The experiment
indices are shown in parentheses.

the randomness in sampling. To reduce the impact of the 2nd-stage process and to compare the
performance of the sample allocation methods in isolation, we abstract the 2nd stage into Bernoulli
trials with varying parameters for this comparison. Here is the simulation setup:

• Each test sample is an independent trial with a binary outcome, either 0 (not a failure case)
or 1 (failure case). The probability of a case being a failure case is pc(Nc) ∈ [0, 1), which
depends on the property of the category c, and the number of samples so far in that category,
denoted as Nc.

• There are four categories (C = {c1,c2,c3,c4}), each with a different FCP dynamics
pc(Nc), c ∈ C. Each category has a fixed maximum FCP.

• We conduct four experiments. In all of them, no failure cases could be found in c1 (pc1 = 0);
pc2 is set to be the same linear function; pc3, pc4 are linear in the first two experiments,
and quadratic in the last two experiments, each with different parameters. The presented
FCP dynamics are meant to mimic the different phenomena in adaptive sampling, including
increased FCP due to more informed sampling, or decreased FCP due to depleted failure
modes, etc. The dynamics of the FCP for the comparison experiments are shown in Figure
3.9.

• In each run, cases are generated in 20 batches, each batch with 60 cases. This is the same
setting as the final experiments for interaction-aware testing in Section 3.8.4. 100 repeated
runs are conducted for each method in one experiment.

We compare the proposed methods (stochastic optimization and UCB-dynamic) with other popular
algorithms for the MAB problem, including the allocation method from the previous paper [147];
the standard UCB algorithm [145]; the Thompson sampling method with the same modification on

64

Method Mean # of Failure Cases
1st exp. 2nd exp. 3rd exp. 4th exp.

Stochastic optimization 366.5 151.3 302.9 121.2
UCB-dynamic 420.6 209.8 372.8 125.2

Heuristics in [147] 288.0 135.5 262.8 111.2
UCB 421.5 182.3 356.6 111.0

TS-dynamic 394.3 147.8 280.1 116.0
Uniform allocation 172.4 108.7 158.2 105.1

Table 3.3: Comparison of the number of failure cases for different sample allocation methods.

reward update as UCB-dynamic (named as TS-dynamic); and the most basic baseline, the uniform
allocation. The comparison metric is the average number of failure cases in the 100 repeated runs.
The results are shown in Table 3.3.

It is shown that the proposed UCB-dynamic method outperforms the other methods. It can
find the most failure cases across all the experiments, except a close-2nd place in the 1st exper-
iment. Though the goodness of each category changes in various ways in different experiments,
the proposed method can always allocate samples wisely to all categories. Compared with the
standard UCB, UCB-dynamic shows significant improvement in 3 out of 4 experiments. The TS-
dynamic method, though received the same treatment as UCB-dynamic, has uniformly inferior
performance. The stochastic optimization method sacrifices the count of failure cases to diversity,
but it still outperforms the method from our previous work [147].

3.8.2 Baseline Algorithm for the Vehicle Under Test (VUT)

Highway Merging Scenario

For the highway merging scenario, we design a rule-based algorithm for the merging vehicle (the
VUT). This is a flawed algorithm by design, such that it has failure modes to be discovered. Its
decision-making procedure has 3 modes:

1. The VUT starts by following the speed profile of a level-0 VUT policy π0
V UT . Go to mode 2

when the distance to the merge point M is xrb1 .

2. The VUT predicts ∆xwith the POV when arriving atM , assuming the POV keeps a constant
speed, and VUT follows π0

V UT . If ∆x is too close, switch to coast; else, keep following
π0
V UT . Go to mode 3 when the distance to point M is xrb2 (xrb2 < xrb1).

3. The VUT predicts ∆x with the POV when arriving at M , assuming POV keeps a constant

65

speed, and VUT follows π0
V UT . If the predicted ∆x is too close, the VUT switches to PID-

control to change acceleration reactively; if not, it keeps following π0
V UT .

By adjusting the parameters, we can have VUT designs that have different failure modes.

Roundabout Entering Scenario

For the roundabout scenario, we design a rule-based speed planning algorithm for the VUT, which
is also flawed by design. Its decision-making has 3 modes:

1. The VUT starts by coasting at a constant speed. Go to mode 2 when it is xrb1 close to point
M in Figure 3.5b.

2. The speed of the VUT is regulated by a PID controller to a target speed vtar. The VUT
predicts the projected final gap with both POVs, and makes an online decision between three
options: yield (to both), slip between (two POVs), or pass in front (of both). If ”yield” or
”slip in”, then decelerate (set vtar = 0); Else, vtar = v0, v0 is a default desired speed. Go to
mode 3 when the distance from VUT to point M is less than xrb2 (xrb2 < xrb1).

3. Execute the last decision from mode 2. If ”yield”, wait for both POVs to pass, and then
perform car-following with the last POV; if ”slip in”, wait for the 1st POV to pass, then
perform car-following with the first POV; if ”pass”, then maintain the PID control in mode
2 with vtar = v0.

This same VUT algorithm will be the subject VUT of the experiments in the following sections.

3.8.3 Example Interactive Test Cases

Highway Merging Scenario

We first present several exemplar test cases with different interactions between the POV and the
VUT in the highway merging scenario. The road geometry of the highway merging scenario is
based on an entrance ramp on US 23 North near exit 41. The VUT started at x0V UT = −182[m].
In Figure 3.10, we present three test cases with different POVs and VUTs. In all cases, the initial
conditions are the same. In the 1st case, as shown in Figure 3.10a, the level-0 VUT accelerates
non-cooperatively, while the POV yields by reducing its speed to let the VUT merge first. In the
2nd scenario (Figure 3.10b), the level-1 VUT yields by starting its accelerating phase later, while
the level-2 POV with a cooperative SVO accelerates to leave more room for the VUT to merge
behind. In the 3rd scenario, (Figure 3.10c), the same level-2 POV yields to let the VUT enter
first. However, the rule-based VUT fails to understand the POV’s intention. It starts to accelerate,

66

(a) Level-1 POV & Level-0 VUT

(b) Level-2 POV & Level-1 VUT; ψ = 0.60

(c) Level-2 POV & rule-based VUT; ψ = 0.60

Figure 3.10: Highway merging test cases with initial condition: x0POV = -273 m, v0POV = 33 m/s,
v0V UT = 18 m/s; blue for VUT, red for POV; the numbers show time lapses in seconds.

then coasts and even decelerates heavily before it crashes with the VUT. This last case shows a
”stalemate” situation, when both agents try to yield to each other and create an inefficient and
dangerous scene. These three test cases capture different interactions, which makes the evaluation
scenarios diverse and rich.

Roundabout Entering Scenario

In the roundabout scenario, the diversity of interaction patterns is reflected by the different pass-
ing orders of the involved vehicle, i.e. the behavior modes. The order is jointly determined by
the timing of entering the roundabout and the yielding/passing decision for each pair of vehicles
during their right-of-way negotiations. In this section, we present a variety of simulated test cases

67

(a) 1st case: POV #1 with ψ = 0. The final order: POV #2, POV #1, VUT.

(b) 2nd case: POV #1 with ψ = 0.2π. The final order: POV #2, VUT, POV #1 (crash).

(c) 3rd case: POV #1 with ψ = 0.35π. The final order: POV #2, VUT, POV #1.

Figure 3.11: Roundabout entering test cases with initial condition: Level-2 POV #1, Level-1 POV
#2, x0POV 1 = -30.5 m, x0POV 2 = -4.5 m, v0POV 1 = 8.0 m/s, v0POV 2 = 10.0 m/s, v0V UT = 8.0 m/s;
blue for POV #1, green for POV #2, red for VUT.

generated by the proposed POV library that demonstrates such diversity.
In Figure 3.11, we present three test cases with the same initial condition but with different

POV properties. In the 1st case, as shown in Figure 3.11a, the level-1 POV #2 accelerates to pass
POV #1, then passes the VUT. The POV #1 first decelerates to yield POV #2, then keeps a steady
speed to pass ahead of the VUT. The VUT slows down to yield to both vehicles, and enters the
roundabout behind POV #1. The final order is: POV #2, POV #1, VUT.

In the 2nd case (Figure 3.11b), all the initial conditions and attributes are the same as the 1st
case, except that the SVO of the level-2 POV #1 increases from 0 to 0.2π, i.e. POV #1 is more
cooperative. Major difference starts when the VUT interacts with POV #1 after t = 2s: the VUT
switches from ”yield to both” to ”slip in”, while POV #1 still chooses to drive ahead of the VUT.
Then a collision happens between POV #1 and VUT. A slight change in the test parameters incurs
completely different interactive behaviors and reveals a failure mode of this VUT.

68

(a) 4th case: x0POV 2 = −18.0 m. The final order: VUT, POV #1, POV #2.

(b) 5th case: x0POV 2 = −12.0 m. The final order: POV #1, POV #2, VUT.

Figure 3.12: Testing cases with parameters: Level-1 POV #1, Level-2 POV #2, x0POV 1 = −34.0m,
, v0POV 1 = 8.0m/s, v0POV 2 = 8.0m/s, v0V UT = 9.0m/s; blue for POV #1, green for POV #2, red
for VUT.

In the 3rd case (Figure 3.11c), all are unchanged except the SVO of POV #1 increases to 0.35π.
Although the VUT still attempts to slip in ahead of the POV #1, the POV #1 chooses to yield and
there is no collision this time. The final order is: POV #2, VUT, POV #1.

In Figure 3.12, we present two test cases with different initial conditions. In the 4th case (Figure
3.12a), the level-1 POV #1 first passes the POV #2, then yields to the approaching VUT. The VUT
first reduces speed, and then accelerates to pass first after observing the yielding of POV #1.

In the 5th case (Figure 3.12b), the initial position of the POV #2 is closer than in the previous
case. The POV #1 first accelerates harder to pass the POV #2, then it accelerates again to pass
the VUT. The POV #2 keeps a steady speed and also passes the VUT. The VUT stops before the
roundabout to yield both POVs before it proceeds. By altering only the initial conditions, we also
generate different interaction patterns and passing orders of vehicles.

In addition, to demonstrate that the proposed POV library is scalable to different roundabout
layouts, we present two additional test cases at another 3-branch roundabout from the INTERAC-
TION dataset [148] in Figure 3.13. Each POV follows a reference path defined along the lane
center, while following the same driving policy computed in Section 3.6 to plan the longitudinal
speed. The VUT follows the same rule-based algorithm.

In the 6th case (Figure 3.13a), all vehicles enter the roundabout from different branches and exit
at the same branch (top left). The POV #1 first accelerates to pass the POV #2, then keeps constant
speed to pass the VUT; the POV #2 accelerates to pass the VUT; the VUT yields to both POVs.

69

(a) 6th case: both POVs exit at the same branch; Level-1 POV #1, Level-2 POV #2 with ψ = 0. The
final order: POV #1, POV #2, VUT.

(b) 7th case: POV #2 exit one branch earlier; Level-2 POV #1 with ψ = 0.2π, Level-1 POV #2. The
final order: POV #1, VUT.

Figure 3.13: Testing cases in a different roundabout site, with parameters: x0POV 1 = -42.0 m,
x0POV 2 = -25.0 m, v0POV 1 = 8.0 m/s, v0POV 2 = 7.0 m/s, v0V UT = 8.0 m/s; blue for POV #1, green
for POV #2, red for VUT.

The final order is: POV #1, POV #2, VUT.
In the last case, (Figure 3.13b), the initial states for all vehicles are the same as the 4th case,

while the POV #2 exits the roundabout one intersection earlier, thus there is no potential conflict
between POV #2 and VUT. The POV #1 first accelerates to pass the POV #2, then passes the VUT;
The POV #2 yields to the POV #1, then exit the roundabout; the VUT yields to only POV #1. The
final order is: POV #1, VUT.

The presented seven cases show that we can generate different interaction patterns, and thus
challenge the VUT in different ways. Moreover, the approach can be extended to roundabout sce-
narios with different road geometry and route configurations. Therefore, the richness and flexibility
of the proposed testing space are demonstrated.

3.8.4 Results of the Interaction-aware Testing

Then, we present the results of interactive-aware testing for a baseline VUT in MATLAB simula-
tions for the roundabout entering scenario. The VUT follows the rule-based algorithm presented
in 3.8.2. A test case at the two-POV roundabout scenario is defined by Eq. (3.8) and Eq. (3.9).
We fix the initial position for the VUT, x0V UT = −60m and assume the speed of the VUT v0V UT
is given to us. The POV category c is also fixed in each experiment. Only a subset of the testing
space will be the sampling space for each experiment, where each sample is denoted as s∗. For the
following experiments, the threshold for a failure case is set to λ = −500, which indicates that a

70

collision had happened.

Results for Sampling within One POV Category

We first show the results of testing experiments with a fixed POV category. We compare the
proposed GPR-based adaptive sampling method to other test case generation methods, including
uniform sampling, simulated annealing [35], and subset simulation [33]. The FMC criterion is
computed for all methods to compare their capability of discovering failure modes.

Figure 3.14 shows the testing result comparison when the sampling space is set to 2-dimension.
Only the initial positions of both POVs are sampled, i.e. s∗ = [x0POV 1, x

0
POV 2]. All methods

are compared against the ground truth, which is generated with 40000 samples using uniform
sampling. As shown in 3.14a, the ground truth has several disjoint regions with red colors, i.e.
the failure modes. For each method from Figure 3.14b to 3.14e, the total number of test cases is
N = 400. Specifically, for the proposed method, the batch size is nb = 20, and it runs for 20
batches.

Uniform sampling locates one failure region with very few failure cases within 400 cases; sim-
ulated annealing identifies many failure cases, but all concentrated around two failure modes at the
lower-left corner, which results in low FMC value; subset simulation performs better than simu-
lated annealing, but failure cases are also not distributed in multiple failure modes. The proposed
method stands out by identifying failure cases at more diverse failure modes and achieving the
highest FMC value. Specifically, failure cases in Figure 3.14e are not too concentrated thanks to
the MEI exploitation criterion, which explicitly discourages failure cases that are too close. With
only 1% of the sample sizes of the ground truth, the proposed method discovers most of the failure
modes qualitatively.

Then, we present the comparison of quantitative results when the sampling space has a higher
dimension in table 3.4. Two POV categories are evaluated:

• Category #1: level-0 POV1 and level-1 POV2, with s∗ = [x0POV 1, x
0
POV 2, v

0
POV 1, v

0
POV 2]

(4-dimension);

• Category #4: level-2 POV1 and level-1 POV2, with s∗ = [x0POV 1, x
0
POV 2, v

0
POV 1, v

0
POV 2, ψ1]

(5-dimension).

The high dimensionality of the sampling space makes the test case generation results sensitive to
the initialization of the proposed and comparison methods. Therefore, we run 100 repeated test
runs for each method (except uniform sampling) and compare their average performance. For
uniform sampling, to ensure that each dimension is discretized in the same resolution, we allow
for more test samples (625 cases for category #1, 1024 for category #4). Each experiment with all

71

(a) Ground truth: FMC = 0.1224 (b) Uniform sampling: FMC = 0.0128

(c) Simulated annealing: FMC = 0.0252 (d) Subset simulation: FMC = 0.0421

(e) Proposed method: FMC = 0.0659

Figure 3.14: Testing experiment results with level-1 POV #1 and level-0 POV #2. v0POV 1 =
v0POV 2 = 9m/s, v0V UT = 10m/s. The samples are color coded by the performance score (truncated
at 0 and -600), where red means lower score.

72

Method FMC(s∗, 0.05,−500)
L-0 POV#1, L-1 POV#2 L-2 POV#1,L-1 POV#2

Uniform sampling 0.92 × 10-4 1.97 × 10-5

Simulated annealing 0.79 × 10-4 0.68 × 10-5

Subset simulation 1.54 × 10-4 2.21 × 10-5

Adaptive sampling in [147] 4.07 × 10-4 3.55 × 10-5

Proposed w/o BMB 4.38 × 10-4 3.59 × 10-5

Proposed method 4.86 × 10-4 4.09 × 10-5

Table 3.4: Results comparison for adaptive test case generation in one category.

other methods has 400 test cases. The adaptive sampling method from our previous work [147]
is also added for comparison. Even with the advantage on the case number, the uniform sampling
method only achieves slightly better results than simulated annealing. Subset simulation performs
better than the above two methods, but fall short compared to the three variant of the GPR-based
adaptive sampling methods. By modifying the sample selection techniques, the proposed method
achieves significant FMC improvement compared to the scheme in [147] in both experiments.
Moreover, By adding the step of BMB identification, the proposed method also achieves better
results than the variant without it consistently.

Results for Sampling from All Categories

Finally, we simulate the adaptive test case generation procedure with all four POV categories. The
goal is to identify more failure cases given a fixed number (N = 1200) of cases. Figure 3.15 shows
the change of sample allocation across different POV categories, and the ratio of failure cases for
each category. The results are presented for both of the proposed sample allocation methods. Here,
the sample allocation in batch i is determined by the failure case ratios in batch (i−1) and in earlier
batches.

When using the stochastic optimization method, the sample sizes start evenly. Then, since
more failure cases have been found within category #1, #3, #4, and none for category #2 POVs,
the sample sizes increase for the other three categories while reducing gradually for category #2.
This helps to focus on the more promising categories, while maintaining some exploration in the
under-performing ones. Finally, we find 271 failure cases in total: 47 failure cases in category #1,
203 in category #3, and 21 in category #4.

When applying the UCB-dynamic method, category #3 is quickly identified as the most promis-
ing one, and is then exploited extensively. Finally, we find 518 failure cases in total: 516 in category
#3, 2 in category #4. More failure cases are found compared to the previous method, while the di-
versity of samples is not as good. The two presented methods have their own strengths, which can

73

be utilized by testers with different goals.

(a) (b)

(c) (d)

Figure 3.15: Testing experiment results for the roundabout entering scenario, with the full POV
library; batch size nb = 60, run for 20 batches. The sample allocation and the failure case ratio
across POV categories in all batches are demonstrated for the stochastic optimization method in
(a), (b); for the UCB-dynamic method in (c),(d).

3.9 Summary

In this chapter, we develop a framework for evaluating black-box HAVs in interactive scenar-
ios. We combine two game-theoretic formulations, level-k game theory and SVO, and generate a
library of interactive POVs using reinforcement learning. The idea is applied to two important sce-
narios with strong inter-vehicle interactions, highway merging and roundabout entering. For the
roundabout-entering scenario specifically, we formulate a realistic two-phase planning algorithm
for each POV, making the POV models scalable to the presence of multiple POVs. On the other
hand, we design a two-stage adaptive test case generation scheme: a sample allocation procedure

74

that distributes samples into different scenario categories to ensure case diversity and challenging-
ness; and an adaptive sampling procedure for a single category that aims at failure mode coverage.
For sample allocation, we propose two methods based on different objectives. For adaptive sam-
pling, multiple exploration and exploitation criteria are designed and implemented. In addition,
We propose the metric FMC to measure the test sample quality. Finally, we demonstrate the use-
fulness of the proposed framework by running testing in simulation with a rule-based VUT. Our
POV library is able to capture a wide variety of interactive behaviors for the two above scenarios,
and it can be extended to different locations with different road configurations. The test case gen-
eration scheme can customize test samples to discover the failure modes of the VUT efficiently. It
outperforms other sampling methods according to the FMC metric. The primary use case of this
framework is the acceptance testing. However, HAV companies can also utilize it in their develop-
ment tests to explore the weaknesses of their algorithms in interactive scenarios. For future work,
we plan to extend the current framework to other interactive scenarios including crowded parking
lots, unsignalized intersections, etc.

75

CHAPTER 4

Interaction-aware Corner Case Generation

4.1 Motivation and Background

Corner case testing has been a crucial part of the evaluation paradigm. According to [8], corner
cases refer to rare conditions that challenge the capabilities of the VUT while still being within its
capability. The term corner cases are used interchangeably with the notion of ”edge cases” [149].
They aim to assess the VUT’s competence under the worst-case situations. Most existing methods
focus on challenging the perception, motion planning or the control capability of the VUT, using
situations including adversarial lighting conditions [50], aggressive PORU behaviors [54,81], near-
crash initial conditions [58, 59], etc. However, for interactive scenarios, another aspect that should
be examined is VUT’s interaction capability, namely to recognize the intent of the PORU and make
reasonable behavioral decisions. For example, in a highway merging scenario with one human-
driven vehicle on the main road and one VUT on the entrance ramp, an inexperienced human driver
might not be able to make up his/her mind to pass ahead or yield behind, and may behave in an
indecisive or ambiguous way. Another example is a staggered or distracted pedestrian walking near
an intersection. A capable HAV should be able to handle these situations. Hence, it is important
that we generate corner test cases to cover the possible interactions between the HAV and human
drivers/road users in the real world. Despite its significance, this problem has not been discussed
in the existing literature to our knowledge.

This chapter presents a novel method for corner case generation for interactive scenarios. In
our setting, the desirable corner cases should have the following attributes. First, the PORU should
not egregiously try to collide into the VUT like in [81], since interaction modeling requires basic
rationality of agents. Second, the corner case should have interpretable difficulty levels to improve
the test case generation procedure. Third, the corner cases should be intrinsically difficult, such
that they are generalizable to different VUTs. Therefore, our key idea is to generate adversarial
PORU behaviors that are ambiguous with intentions. These ambiguous behaviors will form at least
a major type of corner case for interactive scenarios.

76

4.1.1 Related Work

Types of Corner Case Evaluation for HAVs

Corner evaluation refers to testing methods that focus on the capability limit of the VUT. As re-
viewed in Section 1.2.2, many notions of corner cases exist, which correspond to different eval-
uation schemes. Adversarial falsification methods (e.g. [35, 64]) view corner cases as the failure
modes of a given VUT, which are not generalizable or transferable to other VUTs. The failure
cases generated in Chapter 3 can be seen as corner cases from this perspective. Several other
studies focus on generating test cases that are universally difficult regardless of the VUT, with ob-
jective metrics for test difficulty. The difficulty is characterized by the size of the solution space for
a VUT [57, 58], by the distance to the boundary of the control invariant set of the VUT [59], or by
the product of exposure frequency and the failure probability [34]. However, the above ideas are
not suitable for interactive scenarios, since the difficulty metrics are mainly based on the physical
limits of the VUT. In [150], corner cases are defined by the lack of predictability of surrounding
objects, quantified by the error of a nominal motion prediction model. Though their focus was on
the perception task of HAVs, their intuition matches ours for the interaction-aware evaluation task.

Interactive and Hierarchical PORU Modeling

Modeling interactive human driver/pedestrian behaviors has been extensively studied due to its sig-
nificance to HAV prediction and decision-making. Many game-theoretic PORU modeling methods
have been reviewed in Section 3.3. On the other hand, hierarchical decision-making models as-
sume the observed human actions are governed by their high-level latent states, either directly [151]
or indirectly through different utility functions [152]. The latent states can be their goals [153],
intents [154, 155], personalities [156] or other behavioral properties. To achieve accurate predic-
tion and successful interaction with human agents, the robots need to effectively estimate the latent
states of human agents using online observation. In [157], a planning framework was developed for
an indoor robot that navigates around people, which estimates human intents and communicates
its intent both implicitly (with motion) and explicitly. In [154, 156], Shannon entropy was used
to categorize the expected information gain of the robot action with respect to the human agent’s
latent states, thus guiding the robot to take information-gathering actions to reduce the uncertainty
in human behavior prediction. This idea has inspired our work: for evaluation purposes, we could
approach the interactive prediction problem from an opposite direction, i.e, to reduce the amount
of information revealed in the action of the PORU, which then confuses the VUT.

77

Figure 4.1: The core concept of corner case generation for interactive scenarios: to create PORU
behaviors that confuse the surrogate-VUT prediction model with the intention of the PORU.

4.1.2 Contributions

In this chapter, we propose a corner case generation method for HAV evaluation in interactive
scenarios. The key contributions are as follows:

• We proposed a novel definition of corner cases for interactive scenarios based on the ambigu-
ity of the PORU, which enables the process to be generalizable (i.e., not targeting a specific
VUT).

• We proposed an MPC-based behavior planning method for the adversarial PORU that ac-
tively generates ambiguous behaviors.

• We implemented the PORU algorithm in two interactive scenarios, highway merging and
pedestrian crossing.

• We proposed a corner case testing framework. We demonstrated the efficacy of the frame-
work through simulation tests for several off-the-shelf VUT algorithms.

78

4.1.3 Organization

The rest of the chapter is organized as follows: Section 4.2 describes the basic formulations of
the interactive scenarios, and presents the definition of ambiguity-based corner cases. Section 4.3
presents the MPC formulation for both nominal and adversarial settings, and describes the method
for computing the ambiguity. Section 4.4 presents the implementation of the proposed PORU
algorithm in two interactive scenarios, highway merging and pedestrian crossing. Section 4.5
presents the simulation results. Finally, Section 4.6 summarizes the chapter and discusses future
research directions.

4.2 Problem Formulation

In this chapter, we study how to generate corner cases in interactive scenarios. we assume that
there is one VUT and one PORU. The VUT is a black box, namely its algorithmic details are
fully unknown to the PORU, and only the actions and states are observable. The overall idea is
illustrated in Figure 4.1. As a starting point, we propose a nominal PORU, denoted as nominal-
PORU, which has a known set of intentions, and moves safely and efficiently interacting with the
VUT. Then, we assume the existence of a surrogate model for the VUT that governs its interaction
with the PORU, denoted as surrogate-VUT. The nominal-PORU assumes that the surrogate-VUT
follows a known execution model; conversely, the nominal-PORU serves as the mental model of a
PORU for the prediction model in the surrogate-VUT. Finally, the final (adversarial) PORU aims
to challenge the above surrogate-VUT prediction model. To generate corner cases, the final PORU
will systematically deviate its behaviors from the nominal-PORU, so that it is ambiguous with its
true intention, and thus makes itself unpredictable by the above prediction model.

4.2.1 Nominal Decision Model for the Primary Other Road User (PORU)

The nominal-PORU is modeled as a rational agent that optimizes a cost function. Moreover, it is
assumed to follow a 3-stage hierarchical decision-making procedure:

1. The high-level intention, ψ1 ∈ Ψ1. This represents the motion targets of the PORU. E.g., the
target maneuvers of a car on the highway (lane following, lane changing, merge out, etc);
the target location of a pedestrian near the crosswalk (across the street, along the sidewalk,
etc). In our evaluation setting, we assume that the high-level intention is fixed throughout a
scenario, i.e. the PORU will not change its mind on ”where to go”.

2. The low-level intention, ψ2 ∈ Ψ2. This represents different passing orders with another
traffic agent, i.e. to pass first or yield. The PORU can alter its low-level intention online

79

according to the cost of each option.

3. The control input u ∈ U . The action of the PORU depends on its high-level and low-level
intentions, and may include input including acceleration, yaw rate, etc.

In summary, the nominal-PORU takes optimal action with respect to a cost function that de-
pends on the high-level and low-level intentions, denoted as Jn(ψ1, ψ2).

4.2.2 The Surrogate VUT Model

The model of the surrogate-VUT consists of two parts, the prediction model and the execution
model.

The prediction model of the surrogate-VUT predicts the future motion of the nominal-PORU.
It knows the intention set Ψ1 and Ψ2, and the corresponding cost functions. At each time-step, the
surrogate-VUT first estimates the intention of the nominal-PORU, then subsequently predicts its
control input.

The execution model of the surrogate-VUT is assumed to follow a known policy given the
current state. With this assumption, the problem of solving an interactive driving policy for the
nominal-PORU is simplified from a multi-agent game-theoretic problem to a single-agent planning
problem. In other words, the nominal-PORU can optimize its policy by assuming full knowledge
of the actions of surrogate-PORU execution model.

4.2.3 Definition of Ambiguity

Since the real intentions of the PORU are not observable, the VUT could only estimate the prob-
abilistic distribution of the intention (i.e. belief) according to the observed states and actions. For
an intention ψ of the PORU (either high-level or low-level), we define ambiguity as the Shannon
entropy [158] of the belief on ψ by the surrogate-VUT in Eq. (4.1).

H(P (ψ)) = E[− log(P (ψ))] (4.1)

In this way, high ambiguity means the intention of the PORU has higher uncertainty in the predic-
tor’s eyes, which leads to unpredictable future actions of the PORU, thus becoming corner cases in
the sense of interactive prediction and decision-making. Ambiguity is the key concept for generat-
ing adversarial PORU behaviors, and the computation details are illustrated in the next section.

80

4.3 Solution Method

4.3.1 MPC Formulation for the Nominal-PORU

Model predictive control (MPC) is a popular control algorithm that iteratively solves an optimal
control problem for a rolling horizon [102]. We assume that the nominal-PORU plans its future
motion following the MPC framework. Given the joint state of the 2-agent-system at time t,
denoted as x(t), the MPC for the nominal-PORU can be formulated as the following optimization
problem:

min
u

Jn(x0,u|ψ1, ψ2)

s.t. xi+1 = f(xi, ui),∀i ∈ {0, 1...Nh − 1}

x0 = x(t),u = {u0, u1...uNh−1}

ui ∈ U , xi+1 ∈ X ,∀i ∈ {0, 1...Nh − 1}

(4.2)

Here Jn denotes the cost function of the nominal-PORU. The cost function depends on the chosen
intention (ψ1 and ψ2). The discrete-time dynamics is described by xi+1 = f(xi, ui). Nh denotes
the time horizon of the MPC. X ⊂ Rnx , U ⊂ Rnu are the state and input sets respectively. After
solving (4.2), we obtain the optimal open-loop input trajectory u∗. We will only execute the input
at the 1st time-step, i.e. u∗0, then update the dynamics and re-solve the MPC at the next time-step.

4.3.2 Prediction Model of Surrogate-VUT

The prediction model of the surrogate-VUT will estimate the intentions of the nominal-PORU ac-
cording to its current state and action. The intention estimation procedure is modeled as a Bayesian
inference procedure, which is updated at every time-step.

First, an observation model needs to be defined. To reflect the uncertainty of the human
decision-making process, it assumes that PORU’s action is only ”noisily rational” with respect
to the cost function. We apply the principle of maximum entropy [159], which has been widely
used in the human-robot interaction community. It states that the likelihood of observing an action
is exponentially proportional to the estimated utility of that action, as expressed in Eq. (4.3).

P (u|x, ψ1, ψ2) =
exp(Q(x, u|ψ1, ψ2))

Σū∈U exp(Q(x, ū|ψ1, ψ2))
(4.3)

where
Q(x, u|ψ1, ψ2) = −min

u
Jn(x,u|ψ1, ψ2, u0 = u) (4.4)

Here, Q(x, u|ψ1, ψ2) is the estimated utility of action u at state x with intention ψ1, ψ2, similar to
the Q-value function in the Q-learning algorithm [160]. It is derived from the cost function of the

81

nominal MPC in (4.2). Eq. (4.3) bridges the cost function and the action observation likelihood.
Thereby, the surrogate-VUT is able to update its belief on the high-level and low-level intentions
of the PORU through continuous observation, as discussed in the following sections.

4.3.3 Low-level Intention Estimation

Assuming the high-level intention of the PORU is known, the low-level intention can be estimated
from the Bayesian theorem.

P (ψ2|x, u, ψ1) ∝ P (u|x, ψ2, ψ1)P (ψ2|x, ψ1) (4.5)

In Eq. (4.5), the 1st term of the right-hand side is the action likelihood, as shown in Eq. (4.3); the
2nd term is the prior belief on the PORU’s low-level intention. The prior can be obtained from two
possible sources:

1. From the posterior belief at the last time-step,

P1(ψ2|xt, ψ1) = P (ψ2|xt−1, ut−1, ψ1) (4.6)

2. From the estimated utility of each low-level intention at the current state without observ-
ing the action. Following the same idea as in Eq. (4.3), we assume that the prior can be
represented as:

P2(ψ2|x, ψ1) ∝ max
u∈U

(exp(Q(x, u|ψ1, ψ2)) (4.7)

It means that the prior probability is exponentially proportional to the best-case utility of that
intention at the current state.

The actual prior probability is computed as an affine combination of Eq. (4.6) and Eq. (4.7).

P (ψ2|x, ψ1) = µP1(ψ2|x, ψ1) + (1− µ)P2(ψ2|x, ψ1) (4.8)

Using Eq. (4.5)-(4.8), the VUT updates the posterior estimate on the PORU’s low-level inten-
tion.

82

4.3.4 High-level Intention Estimation

Based on the low-level intention, the belief on the high-level intention of the PORU can be updated
according to the latest observation.

P (ψ1|x, u) =
∑
ψ2∈Ψ2

P (ψ1, ψ2|x, u)

∝
∑
ψ2∈Ψ2

P (u|x, ψ2, ψ1)P (ψ1, ψ2|x)

=
∑
ψ2∈Ψ2

P (u|x, ψ2, ψ1)P (ψ2|x, ψ1)P (ψ1|x)

(4.9)

In the last line, the first two terms are defined in Eq. (4.3) and (4.8), respectively. The 3rd term is
the prior belief on the high-level intention. It is computed in a similar way as the prior belief of
low-level intention by combining two sources.

P (ψ1|x) = µP1(ψ1|x) + (1− µ)P2(ψ1|x) (4.10)

where
P1(ψ1|xt) = P (ψ1|xt−1, ut1)

P2(ψ1|x) ∝ max
u∈U,ψ2∈Ψ2

(exp(Q(x, u|ψ1, ψ2)).
(4.11)

Here, P1 is the posterior belief on the high-level intention at the last time-step; P2 is computed
based on the best-case utility of all inputs and all low-level intentions at the current state. Thereby,
the VUT can update the belief on the PORU’s high-level intention.

4.3.5 Estimation of Q-value Function

To estimate the PORU’s intention online, The Q-value function (Eq. (4.4)) needs to be computed at
every time-step for every input candidate. The most straightforward way is to solve the MPC with
the 1st input fixed as the input candidate. However, this approach will introduce high computation
costs. To estimate the Q-value function more efficiently, we propose to approximately compute the
Q-value function, which only requires solving the MPC in (4.2) once every time-step. Assume we
are at state x̄ and want to evaluate the Q-value function of input ū. The procedure is as follows.

1. We solve the MPC in (4.2) to obtain the optimal input sequence u∗ = {u∗0, ...u∗Nh−1} and
state trajectory x∗ = {x∗0, ...x∗Nh

}, where x∗0 = x̄.

2. We replace u∗0 with ū. For the rest of the inputs, additional proportional control is used to

83

track the nominal state trajectory x∗.û0 = ū

ûi = u∗i +Kp(x
∗
i − xi), i = 1, ...Nh − 1

(4.12)

3. The cost of the trajectory generated with û is evaluated, and is used to approximate the actual
Q-value function.

Q(x, ū|ψ1, ψ2) ≈ −Jn(x, û|ψ1, ψ2) (4.13)

where û = {û0, ...ûNh−1}.

4.3.6 Adversarial Interactive PORU Model

With the above formulation as the basis, we finally present the planning algorithm for the adver-
sarial PORU. It shares the same MPC planning pipeline as the nominal-PORU described in (4.2).
The only difference is in the cost function, since an adversarial PORU has an extra goal of being
ambiguous. To achieve this, the cost function comprises two terms:

Jadv = Jn + λJambi (4.14)

Here, Jn is the same nominal cost function as in (4.2). Jambi is the ambiguity cost that encourages
the PORU to take ambiguous actions. λ is the weight of Jambi in the final cost. λ is named the
ambiguity level, since it determines to what extent the PORU focuses on ambiguity-maximizing.
When λ = 0, the PORU plans its motion the same way as the nominal-PORU. When λ increases,
the PORU becomes more ambiguous in its actions. Jambi is defined as:

Jambi(x, u|ψ1, ψ2) = −(αH(P (ψ1|x, u)) + (1− α)H(P (ψ2|x, u, ψ1))). (4.15)

Here, Jambi is an affine combination of the ambiguity for the high-level intention (1st term) and the
low-level intention (2nd term), where the ambiguity is defined in Eq. (4.1). It means that a PORU
action that confuses the surrogate-VUT with both the high-level and low-level intentions is more
desirable. To generate adversarial behaviors that serve as corner cases in evaluation, the PORU
prefers to take the least informative action regarding its intentions. The overall algorithm is shown
in Algorithm 3.

84

Algorithm 3 Ambiguity-guided PORU behavior generation (one time-step)
Input: Ψ1, Ψ2, X , U ; current time-step k, state x(k); previous belief on intentions of the

surrogate-VUT:
b(ψ1|k − 1) = P (ψ1|x(k − 1), u(k − 1))
b(ψ2|ψ1, k − 1) = P (ψ2|x(k − 1), u(k − 1), ψ1).

Output: PORU action u(k); next state x(k + 1); current belief on intentions of the surrogate-
VUT b(ψ1|k), b(ψ2|ψ1, k).

1: for each intention ψ1 ∈ Ψ1 do
2: for each intention ψ2 ∈ Ψ2 do
3: Solve the nominal MPC defined in (4.2).
4: for each input candidate u ∈ U do
5: Estimate Q-value function Q(x(k), u|ψ1, ψ2). (cf. Section 4.3.5).
6: end for
7: Update posterior distribution for low-level intentions if u applied: P (ψ2|x(k), u, ψ1).

(cf. Section 4.3.3)
8: end for
9: Update posterior distribution for high-level intentions if u applied: P (ψ1|x(k), u). (cf.

Section 4.3.4)
10: end for
11: Compute ambiguity cost Jambi (cf. Section 4.3.6).
12: for each intention ψ2 ∈ Ψ2 do
13: Solve the adversarial MPC with cost function defined in Eq. (4.14), obtain first input u∗ψ2

(cf. Section 4.3.6).
14: end for
15: Pick the intention ψ2 with the lowest cost; adopt corresponding input as u(k); x(k + 1) =

f(x(k), u(k)).
16: Update belief on high-level / low-level intentions: b(ψ1|k), b(ψ2|ψ1, k).

4.4 Implementation for two interactive scenarios

In this section, we implement the above adversarial PORU algorithm in two typical interactive
scenarios, highway merging and pedestrian crossing.

4.4.1 Highway Merging Scenario

Scenario Setup

In the highway merging scenario, the PORU is a primary other vehicle (POV), which is driving on
the main road with the right-of-way. The VUT attempts to merge onto the highway while keeping
a safe distance from the POV. The configuration is the same as Figure 3.3 in Chapter 3. The VUT
has a target merge point M, which is the origin of the lane-fixed coordinates for both the ramp and
the main road. The scenario ends when the VUT reaches point M, and the end time is denoted as

85

t1. The POV has one high-level intention, which is point M. For low-level intention, the POV can
either merge ahead or behind the POV, i.e. Ψ2 = {pass, yield}.

We model both vehicles as double integrators and they only move longitudinally in their lane.
The joint state of the two-vehicle system is [xPOV , vPOV , xV UT , vV UT]

T , where xPOV , xV UT are
the longitudinal positions of POV and VUT, and vPOV , vV UT are their longitudinal speeds. The
input for each vehicle is the longitudinal acceleration, denoted as aPOV and aV UT . u = aPOV

is solved by the MPC scheme, while the disturbance input aV UT is controlled by the black-box
VUT. For the surrogate VUT model, aV UT is computed non-reactively from a known model: it
accelerates with constant acceleration (1 m/s2) until the highway target speed (28 m/s) and then
drives at that constant speed. It is the same model as the level-0 policy in Section 3.5.

To avoid the deadlock between the POV and the VUT, the closed-loop planning for the POV
will stop when the predicted remaining time of the scenario is less than the MPC time horizon.
After that, the POV will follow the latest MPC solution for the rest of the scenario in an open-loop
way. Therefore, even in a corner case, the PORU will stop to be adversarial eventually, and the
open-loop behavior will leave time for a potent VUT to avoid collisions.

Cost Function Design

The goal of the nominal POV is to leave the VUT enough gap with minimal effort and minimal
deviation from its desired speed. Its cost function Jn can be described as follows.

Jn = W T
merge[J∆v Ju Jgap]. (4.16)

Where Wmerge is the cost weight. The three cost terms are explained below.

1. J∆v: deviation from the initial speed.

J∆v =

Nh∑
i=1

(vPOV,i − v0POV)2 (4.17)

2. Ju: input cost at every stage:

Ju =

Nh−1∑
i=0

u2i (4.18)

3. Jgap: cost on the final gap between the POV and VUT. This term characterizes the predicted
distance gap between them when the VUT reaches the merge point. It is dependent on the

86

low-level intention.

Jgap =

 1
1+exp(β(xPOV (tx)))

, if ψ2 = pass
1

1+exp(β(−xPOV (tx)))
, if ψ2 = yield

(4.19)

tx represents the estimated time that the VUT arrives at the merge point. If the intention is
to pass, Jgap is low if the POV is expected to lead the VUT by a large margin at tx, and vice
versa when the intention is to yield.

4.4.2 Pedestrian Crossing Scenario

(a) (b)

Figure 4.2: (a) The configuration of the pedestrian crossing scenario, where G1, G2 and G3 are
the three goal locations, the blue arrows are sketches of the nominal trajectory for each goal; the
purple lines show the ”point of no return” for each goal. (b) Definition of the variables and the
frame for the pedestrian scenario.

The 2nd target scenario is the pedestrian crossing scenario. The scenario configuration is shown
in Figure 4.2a. The PORU refers to the pedestrian, which is walking towards an unsignalized
intersection, for which a VUT is approaching from the top. The pedestrian is assumed to have
three possible routes: go up along the sidewalk, go down to cross the side street, and go right
to cross the main road. Each route is represented by a target location, which form the high-level
intention set of the pedestrian, i.e. Ψ1 = {G1, G2, G3}. Since only the goal G1 has potential traffic
conflict with the VUT, the low-level intention set ofG1 is Ψ2(ψ1 = G1) = {pass, yield}. For target
locations G2 and G3, the low-level intention is irrelevant. Each scenario will have a fixed duration,
which is set to 8s in the following discussion.

87

Scenario Model

The dynamics of the pedestrian can be represented as a nonlinear state-space model, as shown in
Eq. (4.20). 

xp(k + 1) = xp(k) + vp(k) cos θp(k)∆t

yp(k + 1) = yp(k) + vp(k) sin θp(k)∆t

vp(k + 1) = vp(k) + ap(k)∆t

θp(k + 1) = θp(k) + ωp(k)∆t

(4.20)

The model has four states: x = [xp, yp, vp, θp]
T . xp and yp are the coordinates of the pedestrian

in a global Cartesian frame, vp is its speed, θp is its heading angle. The model has two control
inputs: u = [ap, wp]

T , where ap is the acceleration, wp is the yaw rate. The definition of the state
variables is shown in Figure 4.2b. The surrogate-VUT is assumed to drive at a constant speed.

During the evolution of the scenario, the ambiguous behavior of the pedestrian will last until
it reaches the ”point of no return” for each intention, which is defined as thresholds on its x / y
location. After that, the pedestrian will follow the current intentions with λ = 0. In addition,
similar to the highway merging scenario above, the closed-loop planning for the pedestrian will be
replaced with open-loop planning when the predicted remaining time of the scenario is less than
the MPC time horizon.

Cost Function Design

The goal of the nominal pedestrian is to reach its target location in a fast and safe manner. Its cost
function Jn can be described as follows.

Jn = W T
ped[J∆x Ju Jgap Jcorridor]. (4.21)

Where Wped is the cost weight. The four cost terms are explained below.

1. J∆x: deviation from the goal state.

J∆x =

Nh∑
i=1

∆xTi Q∆xi (4.22)

where ∆xi = xi − xgoal, xgoal is predefined for each goal location in Ψ.

2. Ju: input cost at every stage:

Ju =

Nh−1∑
i=0

uTi Rui (4.23)

88

3. Jgap: cost on the gap between the pedestrian and VUT. This term characterizes the time gap
between them regarding the predicted moment that each of them reaches the crosswalk. It is
only active of ψ1 = G1. It is dependent on the low-level intention.

Jgap =

 1
1+exp(β(TTAV UT−TTAPed))

, if ψ2 = pass
1

1+exp(β(TTAPed−TTAV UT))
, if ψ2 = yield

(4.24)

TTA represents the estimated time-to-arrival to the crosswalk for the PORU or the VUT,
according to the current input trajectory. If the choice is to pass, Jgap is low when the
pedestrian is expected to enter the crosswalk much sooner than the VUT, and vice versa
when the choice is to yield.

4. Jcorridor: a soft constraint that avoid the pedestrian to walk outside a valid corridor defined
for the chosen high-level intention.

4.5 Simulation Results

The simulation results include both qualitative case studies and quantitative analysis. The PORU
algorithm and the simulation environment for both scenarios are implemented in MATLAB. The
nonlinear MPC is set up and solved with MATLAB model predictive control toolbox [161]. The
simulation parameters are listed in Table 4.1.

Highway merging
Simulation time-step 0.1s

MPC time-step 0.5s
Nh 5

aPOV range [−4, 3] m/s2

Pedestrian crossing
Simulation time-step 0.1s

MPC time-step 0.4s
Nh 6

ap range [−2, 2] m/s2

ωp range [−π/2, π/2] rad/s

Table 4.1: Simulation parameters for corner case generation.

89

4.5.1 VUT Algorithms

The VUT algorithms used in the simulations are described below. For both scenarios, the VUT
only moves in the longitudinal direction. The input is the acceleration, which is bounded to [−4, 2]
m/s2. The VUT algorithms we tested are not meant to be flawless; the goal is to demonstrate our
capability of generating corner cases against different VUTs.

Highway Merging Scenario

We tested two state-of-the-art VUT algorithms. The first algorithm is based on the deterministic
sampling method from [162]. The VUT plans its motion in a receding-horizon fashion at every
time-step: it first samples the target state in a 5-second horizon from 208 target candidates, then
connects the current state with the targets using quintic polynomials to form jerk-optimal trajec-
tory candidates [137]. Next, trajectories are screened with constraints, and the best trajectory is
picked based on a cost function. The second algorithm is the Generalized Intelligent Driver Model
(GIDM) [163], which is an extension of the widely-used Intelligent Driver Model (IDM) [112]
and was specifically developed for the highway merging scenario. It projects the main-lane vehicle
(POV) onto the ramp to determine the passing order.

Pedestrian Crossing Scenario

We tested VUT algorithms that are based on the IDM model [112]. The IDM is modified to
interact with oncoming pedestrians. Specifically, the pedestrian is treated as the target ”preceding
vehicle” and the VUT will try to yield to the pedestrian if the predicted arrival time to the conflict
region (time-to-arrival) of the pedestrian is earlier than the VUT’s. Otherwise, the VUT will ignore
the pedestrian and keep its target speed. We tested two variants of this algorithm. The first one
computes the time-to-arrival of the pedestrian assuming that it keeps current acceleration until it
stops or reaches the max walking speed. It is denoted as ”CA-VUT”. The second one predicts the
time-to-arrival assuming a constant-walking-speed pedestrian, denoted as ”CV-VUT”.

4.5.2 Adversarial Test Cases

We present selected resulting test cases for the target scenarios to demonstrate the effectiveness of
generating interaction-aware corner cases using the proposed ambiguity-guided PORU planner.

Highway Merging Scenario

For the highway merging scenario, the road geometry of the simulation is based on an entrance
ramp on the US 23 North near exit 41 in Ann Arbor, Michigan, US. We present two groups of test

90

(a) POV is non-interactive, VUT with GIDM

(b) Proposed POV with λ = 0, VUT with GIDM

(c) Proposed POV with λ = 400, VUT with GIDM

Figure 4.3: The 1st case of highway merging scenario: x0POV = −220m, v0POV = 30m/s, x0V UT =
−182m, v0POV = 18m/s.

cases, each with the same initial condition, but different combinations of the POV and VUT.
The first group of cases is shown in Figure 4.3, where the VUT is controlled by the GIDM

algorithm. The position of the POV (blue) and the VUT (red) are shown on the left figure; each
top right figure shows the speed trajectories of both vehicles, with the background color showing
the pass/yield decision of the POV; each bottom right figure shows the evolution of the belief on
low-level intention b(ψ2 = pass|ψ1, k), denoted here as Ppass. The closer Ppass is to 0.5, the more
ambiguous POV appears. We first show the baseline case of running a non-interactive POV in
Figure 4.3a. As the POV kept a constant speed, its predicted intention converged to ”pass” very
early, making the case unambiguous and easy to deal with. The VUT resolved the situation with a
brief stage of deceleration to let the POV pass.

91

(a) λ = 0, VUT with GIDM

(b) λ = 400, VUT with GIDM

(c) λ = 400, VUT with Deterministic Sampling

Figure 4.4: The 2nd case of highway merging scenario: x0POV = −250m, v0POV = 30m/s, x0V UT =
−182m, v0POV = 18m/s.

In the second case, as shown in Figure 4.3b, The nominal MPC-based POV decided to pass all
along, and it accelerated to create more room for the VUT to merge from behind. Therefore, the
VUT was required to decelerate less. Moreover, the estimated intention also converged to ’pass’
quickly.

In the third case (Figure 4.3c), The POV is adversarial with λ = 400, so its behavior is am-
biguous. Though the POV decided to pass at 4s, it decelerated and reduced the gap to the VUT
behind, which pushed the VUT to decelerate more. In this case, the VUT was able to merge onto
the highway without collision but the final gap was smaller than in the two previous cases. The
adversarial POV achieved this by keeping Ppass close to 0.5 until the open-loop stage.

The second group of cases is shown in Figure 4.4, where the starting position of the POV is

92

shifted 30m behind. In the first case in Figure 4.4a, the nominal POV decided to yield to the VUT
by decelerating. The GIDM-based VUT safely merged onto the highway. For this case, Ppass
approached zero quickly, indicating that the POV signaled its yielding attention clearly.

In the next case in Figure 4.4b, the POV is adversarial with λ = 400. Though the POV started
much behind, the POV chose to pass until 5.5s and it accelerated to catch up with the VUT. The
VUT failed to respond to the passing decision of the POV and a collision did occur. The value
Ppass was kept close to 0.5 for most of the time, representing the ambiguous nature of the POV’s
behavior. A failure mode of the GIDM-based VUT is identified.

In the last case in Figure 4.4c, the same adversarial POV is put against a VUT controlled by the
deterministic sampling algorithm. This VUT was able to respond to the passing intention of the
POV promptly and a collision was avoided. The VUT still presented a challenge by keeping the
passing probability close to 0.5 the whole time. Specifically, the POV decelerated between 4-7 s
even though its intention was to pass, which indicated its adversarial nature.

Pedestrian Crossing Scenario

For the pedestrian crossing scenario, the road layout of the simulation is based on a junction inside
Mcity. We present three groups of example test cases, each with the same initial conditions. In both
scenarios, the VUT comes from the north with an initial velocity v0V UT = 10m/s, controlled by the
”CA-VUT” algorithm. The pedestrian has an initial position of [−3, 0], heading east (θp = 0). The
varying conditions are the initial velocity of the pedestrian and the initial position of the VUT.

The first group of test cases is shown in Figure 4.5. In the figure for each case, the top figure
shows the pose of the pedestrian and the VUT at different time-steps. The bottom left figure shows
the speed and heading angle of the pedestrian, with the background color showing the pass/yield
decision of the pedestrian. The bottom right figure shows the evolution of the belief on high-level
intention b(ψ1) (Pgoal) and on low-level intention b(ψ2 = pass|ψ1 = G1) (Ppass). In the first
case (Figure 4.5a), the nominal pedestrian went directly to the goal G1, making Pgoal converge
to G1 quickly. On the other hand, the pedestrian chose to yield to the oncoming VUT, and Ppass
converged to 0 quickly. This shows a case where the pedestrian has a clear and unambiguous
intention and is not challenging to the VUT.

In the second case (Figure 4.5b), The goal location is still G1, but the pedestrian is adversarial
(λ = 400). The pedestrian had lateral motions between 3-5 s, which induced uncertainty with
respect to its goal location, and caused b(ψ1 = G2) to increase and b(ψ1 = G1) to decrease briefly.
On the other hand, the pedestrian shifted from ”yielding” to ”passing” before 3s, but it kept slowing
down and even switched back to ”yielding” briefly before committing to pass. This behavior kept
Ppass close to 0.5 for longer. Thereby, the VUT could not decelerate promptly and collided with
the pedestrian.

93

(a) λ = 0

(b) λ = 400

Figure 4.5: The 1st group of cases of the pedestrian crossing scenario: x0V UT = −46.0m, v0p =
1.3m/s. The goal is G1. In the top figure, numbers represent timestamps in seconds; the compass
icon shows the orientation.

94

(a) λ = 0

(b) λ = 400

Figure 4.6: The 2nd group of cases at the pedestrian crossing: x0V UT = −51.4m v0p = 1.3m/s. The
goal is G1.

95

(a) λ = 0

(b) λ = 400

Figure 4.7: The 3rd group of cases at the pedestrian crossing: x0V UT = −51.4m v0p = 1.3m/s. The
goal is G2.

96

In the second group of test cases (Figure 4.6), the initial range of the VUT is farther. In the first
case (Figure 4.6a), the non-adversarial pedestrian walked directly to its goal G1 with no lateral
deviation, rendering a fast-converging belief on its high-level intention. For longitudinal motion,
it switched from yield to pass at 2.5s and started accelerating immediately. The VUT successfully
yielded to the pedestrian. Ppass started near 0.5, but converged to 1 soon after the pedestrian
decided to pass.

In the second case in Figure 4.6b, the adversarial pedestrian had more lateral motion and kept
the uncertainty on Pgoal high until 4.5s. For the longitudinal motion, though the pedestrian decided
to pass at 2.0s, it kept decelerating for more than 2s afterwards, then it accelerated to pass. Ppass
was kept close to 0.5 for longer than the 1st case. It entered the junction at 4.9s, 1.0s later than the
previous case. The VUT reacted late and barely collided with the pedestrian. Therefore, another
corner case is identified.

In the third group of cases in Figure 4.7, the goal of the pedestrian is switched to G2. In Figure
4.7a, the nominal pedestrian walked directly to G2 with smooth actions. The intention became
obvious as early as 1s. In Figure 4.7b, the adversarial pedestrian pretended to aim for G1 at first.
It first walked towards the edge of the sidewalk, and loitered there before it turned north to its
actual goal around 4s. Though there was no conflict in the intended path of the pedestrian and
the VUT, this behavior confused the VUT about its high-level intention, as shown in the figure of
Pgoal. Subsequently, the VUT braked for the pedestrian. This example showcases a different kind
of corner case for the VUT, where both unnecessary timidness and recklessness are undesirable.

In addition, it is worth mentioning the difference between the above test cases with the high-risk
test cases in Chapter 2, even though both are designed for challenging the VUT at unsignalized
pedestrian crossings. In Chapter 2, the pedestrian is assumed to become observable right when
they enter the junction area. Due to the short horizon, the interaction between the VUT and the
pedestrian is not considered, thus it is viewed as a reactive scenario. It is only the short-term
reflex of the emergency braking on the VUT that is examined. In this chapter, the pedestrian can
be observed from much earlier and throughout the build-up of the conflict. Therefore, the corner
cases in this chapter are always physically avoidable due to the observability of the pedestrian, but
it requires sufficient interaction capability on the VUT to achieve so. Therefore, different aspects
of the VUT’s capability are addressed in these two chapters.

4.5.3 Implementation of a Corner Case Testing Scheme

In this section, we propose a practical corner case testing scheme based on the aforementioned
ambiguity-based PORU planner. The goal is to test the capability limit of the VUT with a fixed
number of randomly-generated corner cases.

97

We propose to generate cases with three difficulty levels: easy, medium and hard. Each dif-
ficulty is categorized by a unique ambiguity level value (λ) of the PORU: for easy cases, the
interactive PORU has λ = 0. The medium cases are created with an intermediate λ value and hard
cases with a high λ value. The values may need to be tuned in simulations for different driving
scenarios.

For each interactive scenario, we first determine the testing space, which consists of key initial
conditions of the PORU or the VUT. Then, assuming the number of test cases from each difficulty
level is given, we generate uniform samples for each level. The samples are generated using the
Halton sequence, a popular quasi-random sequence [164]. It is designed to fill the sampling space
with lower discrepancy than sampling with uniform distribution.

To evaluate the performance of the VUT in each test case, we define a performance score similar
to Section 3.7. The score is determined by the minimal separation between the PORU and the
VUT, and the task accomplishment. A lower value represents poorer performance, and a collision
is given an extremely low score (e.g., <-500). For details on the performance score please refer to
Section 3.7.

Results for Highway Merging Scenario

We first show the results for the highway merging scenario. We assign medium cases with λ = 85

and hard cases with λ = 400. The testing space is composed of two variables: the initial position
and speed of the POV: ([x0POV , v

0
POV]). The initial conditions of the VUT are held fixed: x0V UT =

−182m, v0POV = 18m/s.
We first compare the performance of a GIDM-based VUT under different difficulty levels of

PORU. Additionally, we add a non-interactive PORU into comparison, which drives at a constant
speed. Each test run includes the same 100 test cases generated by a Halton sequence. We com-
pare the number of poor cases and failure cases for each PORU. Poor cases refer to cases with a
performance score below -100, while failure cases with a score below -500 (collision). The results
are shown in Table 4.2. Non-adversarial (easy) PORU results in neither poor nor failure cases,
proving that they are easy to deal with. Medium PORU creates several poor and failure cases,
while the hard PORU creates the most. It is demonstrated that for this VUT, a higher ambiguity
level translates to more failures.

Then, for the corner-case testing scheme, we combine the three difficulty levels to form the test
library. Assuming 200 cases to be tested, we allocate them as 20 easy cases, 60 medium cases and
120 hard cases, since the hard cases are our focus and easy cases serve as pilot experiments. We
test the above two VUTs with the same set of test cases, and the results are shown in Figure 4.8.
The VUT with GIDM has 8 collisions, where 7 of them are hard cases and one is a medium case.
The VUT based on deterministic sampling has no collision, with 28 poor-performing cases, all are

98

PORU type Poor Cases Failure Cases
Non-interactive 2/100 0/100

None Ambiguous (Easy) 0/100 0/100
Mildly Ambiguous (Medium) 4/100 1/100

Ambiguous (Hard) 32/100 7/100

Table 4.2: Test results comparison for different PORUs for the highway merging scenario.

(a) (b)

Figure 4.8: Corner case testing results at highway merging scenario. (a) VUT with GIDM algo-
rithm; (b) VUT with deterministic sampling algorithm.

hard cases. It is shown that the proposed corner case generation method can create challenging
test cases to evaluate different VUT algorithms. Moreover, the deterministic sampling method is
superior to GIDM in this corner-case test.

Results for Pedestrian Crossing Scenario

For the pedestrian crossing scenario, we assign medium cases with λ = 100 and hard cases with
λ = 400. The testing space is composed of two variables: the initial velocity of the pedestrian
and the initial position of the VUT when the pedestrian is launched: ([v0p, x

0
V UT]). The other initial

VUT type Failure Cases
CA-VUT (nominal conflict region) 15/200
CV-VUT (nominal conflict region) 0/200
CV-VUT (west boundary -0.6m) 1/200
CV-VUT (west boundary -0.9m) 9/200

Table 4.3: Test results comparison for different VUTs for the pedestrian crossing scenario.

99

Figure 4.9: Corner case testing results for the CA-VUT at the pedestrian crossing scenario: 15/200
failures, in which 13/120 are hard cases, 2/60 are medium cases, 0/20 are easy cases.

conditions are the same as in Section 4.5.2.
The test library is created similarly as in the highway merging scenario. Assuming 200 cases

in total, the allocation to easy, medium and hard cases is 20, 60 and 120 respectively. Since only
pedestrians with goal G1 are in potential conflict with the VUT, we assume all hard and medium
cases have the goal as G1. For easy cases, 60% of the cases target G1, while the rest of the
cases choose the goal randomly between G2 and G3. The reason for adding cases with other goal
locations is to keep the uncertainty on the intended goal of the pedestrian, thereby avoiding the
VUT to always assume that the pedestrian will go to G1.

We compare the testing results of the CA-VUT and the CV-VUT on the same set of test cases.
Moreover, for CV-VUT, we vary the assumed west boundary of the conflict region for computing
the time-to-arrival for the pedestrian. The results are shown in Table 4.3. While the CA-VUT
encounters 15 collisions, the nominal CV-VUT has none. On the other hand, by shrinking the left
boundary of the conflict region, the CV-VUT has more collisions. Specifically, by reducing the
assumed conflict region, the predicted pedestrian arrival time becomes later, which translates to a
more aggressive VUT that chooses to pass under more circumstances.

Therefore, it is demonstrated that the CV-VUT has superior performance than the CA-VUT.
Moreover, a conservative CV-VUT also has fewer failures than the more aggressive variants. In
Figure 4.9, we show the performance scores of the CA-VUT under all test cases. It is again
demonstrated that hard cases have a higher collision rate than medium cases, and no failure is
found for easy cases.

100

4.5.4 Discussions

The results from case studies in 4.5.2 demonstrate that by increasing the ambiguity level, the be-
havior of the PORU becomes more erratic and ambiguous in both scenarios. Therefore, introducing
ambiguity into the PORU planning algorithm creates corner cases in the qualitative sense. On the
other hand, results from simulation tests in 4.5.3 demonstrate that by increasing the ambiguity
level, higher rates of poor cases and failure cases are observed regardless of VUTs or scenarios. It
shows that increasing the ambiguity level of the PORU creates more challenging cases quantita-
tively. Therefore, we can conclude that the proposed ambiguity concept is effective in generating
corner cases for interactive scenarios. Moreover, it is shown that the ambiguity level provides us
with a tuning knob for varying the difficulty of interactive test cases, which is similar to the risk
level sets in Chapter 2. It improves the interpretability of corner cases, and helps generate test
cases in a principled way.

4.6 Summary

This chapter proposes a systematic and generalizable method of modeling and creating corner
cases for human-HAV interaction based on the notion of ambiguity. We model the PORU as a
cost-minimizing agent controlled by MPC with hierarchical intentions. Then, ambiguity is de-
fined as the entropy of the belief on PORU intentions by a surrogate prediction model, which is
updated online according to a Bayesian inference procedure. To generate interactive behaviors
that lead to corner cases, the MPC of the adversarial PORU is modified with an extra ambiguity
cost, which encourages the PORU to take ambiguity-maximizing actions, while taking nominal
behavior planning goals into consideration. Then, we implement this PORU algorithm in two in-
teractive scenarios, highway merging and pedestrian crossing. In both scenarios, corner cases are
successfully generated by increasing the ambiguity level. Finally, we propose a practical corner
case testing procedure for both scenarios, using the ambiguity level to represent difficulties. The
testing scheme presents objectively challenging test cases, and evaluates the safety performance of
different VUTs, which meets the original goal of this study. As one of the first studies to consider
corner cases in interactive scenarios, the proposed method could advance the field of HAV safety
evaluation, and help us better understand the capability of HAVs in a realistic driving environment.
In the future, we plan the improve the computation time of the current PORU algorithm by replac-
ing the online MPC optimization with an offline-trained neural network using imitation learning, so
that it is real-time implementable for complex interactive scenarios. Moreover, we plan to extend
the framework to interactive scenarios with multiple PORUs, and create a multi-agent simulation
environment to test the interaction capability of the HAV in a more realistic setting.

101

CHAPTER 5

Execution of the Behavior Competence Testing

As discussed in Section 1.3.3, once the test cases are generated, the last step is to execute them
in a simulated or real-world environment accurately and reliably. This procedure is defined for
the behavior competence test and shared across different testing paradigms. This chapter focuses
on the execution procedure of behavior competence tests, specifically for reactive scenarios. We
follow the pipeline in Figure 1.2, which consists of the following two tasks when applied to reactive
scenarios:

1. Closed-loop motion synchronization in the preparation phase: synchronize the motion of the
POV with the VUT, so that target test parameters are reached accurately.

2. Open-loop maneuver execution in the challenge phase: the POV executes the test maneuver
to challenge the VUT.

The 1st task requires the POV to swiftly adjust its speed according to the motion of the VUT
regardless of the speed profile of the VUT. This is the key to the successful execution of a test, thus
it will be the focus of this chapter. We will first introduce the speed planning algorithm for motion
synchronization for both cut-in and ULT scenarios. Then, we present the vehicle longitudinal
dynamics modeling and control for the experimental vehicle platform to enable accurate speed
tracking. Finally, we show the implementation results in both a simulated environment and the
real Mcity test track. Regarding the 2nd task, the main requirement is to accurately track the
predetermined maneuvers, including lane change, left turn, etc. This will be solved with an existing
vehicle lateral controller from [165], and will not be addressed in detail.

5.1 Motion Synchronization for the POV

5.1.1 Problem Formulation

The POV needs to synchronize its speed profile with the VUT such that it can initiate the maneuver
at the specified condition. Compared with existing research on vehicle speed planning and control,

102

where the focus is either the passenger comfort [166] or fuel/energy saving [167], we requires the
POV to adapt its speed agilely and accurately according to the movement of the VUT in real-time.
This problem is non-trivial due to the uncertain nature of VUT’s behaviors and the nonlinearities
in the powertrain dynamics of the POV.

We make the following assumptions. First, the POV knows the position and velocity of the
VUT through communications, and in our case by using the 4G cellular network. Second, the
target nominal speed or reference speed of the VUT is known to the POV, denoted as vrV UT .

Then, depending on the nature of the conflict point, we can categorize reactive scenarios into
two types: scenarios with a floating conflict point and scenarios with a fixed conflict point. For
the former, the conflict of POV and VUT can take place at any location along a road segment,
e.g. cut-in scenario, opposite-direction-passing scenario, etc. The POV can initiate the maneuver
whenever the set distance/time margin and speed value are met. For the latter type, the conflict
must happen at a fixed location. Therefore, the POV needs to arrive at a certain location with
the set distance/time margin as well as speed value before it initiates the maneuver. Examples
are unprotected left turn, right turn, or other intersection scenarios with crossing paths. In the
following sections, we introduce motion synchronization methods for both types separately, with
one scenario for each as an example.

5.1.2 Motion Synchronization for the Cut-in Scenario

The cut-in scenario is a representative example of scenarios with a floating conflict point. The goal
of motion synchronization is to reach the desired initial condition [∆xr,∆vr] accurately before
starting the lane change maneuver. Since all target cut-in scenarios will have the POV moving
slower than VUT at the start of cut-in (∆v(tLC) > 0), we can achieve motion synchronization with
a simple design: the POV first accelerates and increases its range ahead from VUT, then reach the
set speed, and wait for VUT to catch up. The detailed steps are the following:

1. When the test begins, the POV has an initial target speed of vrV UT + vmargin, until ∆x(t) =
∆xr +Dmargin, where vmargin and Dmargin are parameters with small positive values.

2. POV tracks the target speed vV UT (t)−∆vr.

3. When the target distance is achieved, i.e. ∆x(t) = ∆xr, the lane-change maneuver is initi-
ated.

This process can be extended to other scenarios with a floating conflict point.

103

Figure 5.1: Proposed speed profile for PSP method

5.1.3 Motion Synchronization for the Unprotected Left Turn Scenario

We use the ULT scenario as the illustrative example for scenarios with a fixed conflict point. In the
ULT scenario, the POV needs to reach the start of the intersection at the target speed vrPOV when
the VUT is ∆xr distance away, and execute the left turn with speed vrPOV to pass the intersection
ahead of the VUT. We presented two methods for this task.

Synchronization with a Parameterized Speed Profile (PSP)

A straightforward way is to assume a parameterized speed profile. At each timestep, we denote the
current speed of POV as v0, and the distance-to-go as s0. Based on the predicted VUT motion, the
time-to-go is denoted as t1. The POV speed profile needs to simultaneously fulfill the above three
constraints. If we propose a linear speed profile, then it only has 2 degree-of-freedom (slope and
duration). Therefore, we propose a speed profile that consists of two phases: an accelerating phase
followed by a decelerating phase, as shown in Figure 5.1. Then we have 4 degrees of freedom,
which is enough to meet all the constraints and there is one spare parameter to tune for better
performance. The speed profile can be solved with (5.1).

s0 = v0tr + art
2
r/2 + (v0 + artr + vrPOV)(t1 − tr)/2 (5.1)

Here, tr is the duration of the 1st phase, ar is the acceleration during the 1st phase, i.e. the target
acceleration for current time-step. By fixing tr, we can solve the proposed acceleration. Different
tr will result in different shapes of the proposed speed profile.

At each time-step, we will update the speed profile based on the latest measurement of the
kinematics of POV and VUT. As for the estimation of t1, we predict the future speed of VUT
based on an explicit rule: If VUT is slower than vrV UT , it will keep current acceleration until it

104

reaches vrV UT , then stay at constant speed; otherwise, it will keep the current speed. Based on the
predicted VUT’s speed profile and the distance-to-go, the time-to-go t1 is estimated.

One issue that arises is the singular point of ar as the VUT approaches the target point, i.e.,
when t1 becomes infinitesimal. The POV thus needs infinitely large acceleration to hit the target
exactly. To address this issue, we adopt a heuristic rule: when t1 drops below a certain threshold
Top, the POV will try to match vrPOV only. We adopt Top = 2s in our simulations and field tests.

Synchronization with Optimal Control

Alternatively, we can formulate the motion synchronization as an optimal control problem (OCP)
with a finite horizon, and solve it using the Pontryagin maximum principle (PMP). The longitudinal
dynamics of the POV can be modeled as a double-integrator. Then, the state-space model is

ẋ = Ax+Bu (5.2)

where x = [sPOV , vPOV]
T , u = aPOV ,

A =

[
0 1

0 0

]
, B =

[
0

1

]
.

We assume that the initial condition x0 and the end condition x1 are both fixed and known. The
time duration t1 is based on the predicted VUT motion. To achieve a smooth and efficient speed
profile, the cost function is quadratic with respect to the acceleration input, i.e. J =

∫ t1
0
u2(t)dt.

Then, the Hamiltonian of this OCP is:

H(t) = p0(
1

2
u(t)2) + pT (t)(Ax(t) +Bu(t)), p0 ∈ {0, 1} (5.3)

It can be shown that p0 = 1. Then, according to the PMP, we have

∂H

∂u
= u+BTp = 0→ u∗(t) = −BTp(t) (5.4)

The adjoint equation for costate p is:

ṗ = −
[∂H
∂x

]T
= −ATp (5.5)

Thus, the optimal control input can be solved analytically:

u∗(t) = −BT e−A
T tp(0) (5.6)

105

For this particular system, we have:

u∗(t) = [t − 1] p(0) (5.7)

Therefore, the optimal speed trajectory will have a constant acceleration derivative (jerk), i.e.
u∗(t) = k1t + k2. Given the initial and final conditions, we can compute the optimal accelera-
tion profile by solving k1 and k2 analytically. At each time step, the speed profile is updated based
on the latest measurement of the kinematics of POV and VUT.

To estimate the end time t1, we predict the future average speed of VUT v̄V UT to be a weighted
sum of the nominal speed vrV UT and the current speed of the VUT. Then, t1 is estimated by dividing
the distance to-go of the VUT over v̄V UT .

5.2 Vehicle Longitudinal Dynamics and Control

5.2.1 Vehicle Longitudinal Model

The experimental vehicle is a 2015 Lincoln MKZ hybrid with an E-CVT transmission. The longi-
tudinal dynamics of the system explain the relationship between the throttle / braking input (ϕt, ϕb),
the speed v and the resulting acceleration a. It can be represented as the following [166]:

a = Ψ(v, ϕt, ϕb)− ar(v)− g sin θr (5.8)

Here, ar is the lumped road load term (aerodynamic drag and rolling resistance), which is a func-
tion of the longitudinal speed; θr is the road grade; Ψ(·, ·, ·) is the nonlinear map between throt-
tle/brake pedal input to the traction/braking force at tires. Assuming zero wind speed, ar can be
written as the following:

ar(v) = Froad + Fair =Mg cos θrµz +
1

2
ρairCdAfv

2 (5.9)

where M is the mass of the vehicle, µz is the road rolling resistance coefficient, ρair is the air
density, Af and Cd are the frontal area and the drag coefficient of the vehicle respectively. The
parameters are extracted according to the vehicle’s properties (such as vehicle mass, etc), as well
as from Chapter 4 of [168], which are presented in Table 5.1.

Since Ψ(·, ·, ·) is vehicle-dependent, we calibrate it for the experimental vehicle in a field ex-
periment. The calibration took place in the Mcity on a straight road with constant and known
inclination. Fixed throttle or brake command was sent to the vehicle through the by-wire control
interface, and the speed profile of the vehicle was recorded. This was repeated for multiple runs

106

(a) Ψ(v, ϕt, ϕb = 0) (b) Ψ(v, ϕt = 0, ϕb)

Figure 5.2: Throttle and brake map.

with different throttle/brake input values. The resulting throttle/brake map is shown in Figure 5.2.
With these maps, we are able to translate the target acceleration to the throttle and brake command
to the vehicle.

However, since Ψ(·, ·, ·) only accounts for the quasi-static relationship between pedal input and
force at tires, a separate dynamic model is needed for the lag and delay in the powertrain of the
vehicle, which has been observed during the experiment. We describe the longitudinal dynamics
using a linear dynamic model with delay. The input is the acceleration command, the output is the
actual acceleration and speed of the vehicle. The lag and delay are identified experimentally and
modeled as:

ẋ(t) = Acx(t) +Bcu(t− dt), Ac =

[
0 1

0 −1/τ

]
, Bc =

[
0

1/τ

]
(5.10)

where the state is x = [v, ueff]
T , ueff is the effective input, and u = a is the acceleration

command, dt is the time delay, and τ is the time constant of the first-order lag. Compared to [166],
the delay is considered explicitly in the model. Then, assuming the delay dt is a multiple of the
time step Ts, we can rewrite the discretized system model into a linear state-space model:

xaug(k + 1) = Aaugx
aug(k) +Baugu(k) (5.11)

where

Aaug =

[
Ad Bdel

0 Adel

]
, Baug =

[
0(nx+nd−1)×1

1

]

107

Adel =



0 1 0 · · ·
0 0 1 · · ·
...

...
· · · 0 0 1

· · · 0 0 0


nd×nd

, Bdel =
[
Bd 02×(nd−1)

]
,

xaug(k) =

[
x(k)

ũ(k)

]
, ũ(k) =

u(k − nd). . .

u(k − 1)

 ,
Ad = eAcTs , Bd =

(∫ (k+1)Ts

kTs

eAc((k+1)Ts−t)dt
)
Bc

where nx = 2, nd = dt/Ts.

Parameter Value
Mass M 1800 kg

Air density ρair 1.23 kg/m3

Drag coefficient Cd 0.30
Frontal area Af 2.18 m3

Rolling resistance coefficient µz 0.015
Time constant Ts 0.04 s

Time Delay dt 0.40 s
Time constant τ 0.17 s

Table 5.1: Vehicle parameters.

5.2.2 Speed Control with Preview Control Method

To track the aforementioned speed profile accurately, we apply the preview control algorithm as
the low-level speed controller. Preview control is based on the linear quadratic optimal control
theory, where the future reference signals are ingested into an enlarged state-space model [166].
Compared to model-free PID control, the lag and delay in the system are explicitly represented
in the dynamic model. Compared to the popular model predictive control (MPC), preview control
does not need to solve an optimization problem numerically in real-time, which drastically reduces
the computational load.

We design the preview tracking controller that takes in future desired speed profile: Vd(k) =

[vd(k + 1), vd(k + 2)...vd(k + Nv)]
T , where Nv is the horizon of the preview window. We apply

the delta input formulation [102], and the transformed state-space model of the system will have

108

the extended state defined as:

X =

 ev(k)

∆xaug(k)]

∆Vd(k)

 =

 v(k)− vd(k)
xaug(k)− xaug(k − 1)

Vd(k)− Vd(k − 1)

 ,
and input: ∆u = u(k)− u(k − 1).

Subsequently, we formulate an OCP with the cost function defined as:

J =
∞∑
k=0

X T (k)QX (k) + ∆uT (k)R∆u(k) (5.12)

In Eq.(5.12), Q and R are the weighting matrices. The problem then becomes a standard linear
quadratic regulator (LQR), for which there is a time-invariant state feedback gain K∗ by solving
a discrete-time algebraic Riccati Equation. Noted that since the control horizon is infinite and the
preview horizon is finite, we set the preview speed beyond the horizon Nv to be zero, since their
impact on the final control law can be ignored.

Finally, if we decompose the optimal gain asK∗ = [Ke, Ks, Kv], the final control law becomes:

u∗c(k) = −
(
Ke

k∑
i=0

ev(i) +Ksx(k) +Kvvd(k + 1 : k +Nv)
)

(5.13)

We refer interested readers to [166] for more details about the derivation. Finally, we compute the
throttle and brake pedal command to the vehicle by plugging a = u∗c(k) into Eq. (5.8).

Figure 5.3: The diagram for the motion synchronization algorithm.

In summary, the overall motion synchronization algorithm is illustrated in Figure 5.3, which
consists of a high-level speed planning module and a low-level speed tracking controller. The high-
level planner computes an optimal speed profile to match the motion with the VUT by solving an
OCP for a simplified vehicle longitudinal dynamic model. Then, the low-level controller applies
the preview control algorithm for a more detailed dynamic model to track the high-level speed
profile. This algorithm can be directly applied to many other test scenarios at the intersection,

109

(a) OCP + Preview (b) OCP + Preview

(c) PSP + Preview (d) The speed profiles

Figure 5.4: The simulation results of three motion synchronization methods for the ULT scenario.
(a)-(c) show target-hitting performance comparison. (d) shows the speed curve comparison. The
dashed lines represent the tLT for each run respectively.

including roundabout entering, straight crossing path, etc.

5.3 Results in Simulation and Field Testing

5.3.1 Simulation Results for Motion Synchronization

We first present the simulation results of the proposed motion synchronization method for the ULT
scenario. The VUT speed profile is recorded from an actual run of the experimental vehicle inside
Mcity, using the planning and control stack introduced in [162], as shown in Figure 5.4d as the
blue curve. The speed profile has several acceleration and deceleration phases because the route
involves several turns at intersections. This varying speed profile presents challenges for speed
synchronization on the POV. In simulations, the longitudinal dynamic model is the same as is
discussed in 5.2.1.

110

Method OCP+Preview OCP+PID PSP+Preview
∆x mean error 0.43 m 0.48 m 0.55 m
vPOV mean error 0.22 m/s 0.25 m/s 0.27 m/s

Table 5.2: Results on the accuracy of motion synchronization in simulation for the ULT scenario.

We compare the results of the two proposed methods (OCP+Preview and PSP+Preview) with
another method, which is OCP for speed planning + PID control for speed tracking. We run
simulations with the same initial condition for all test cases. The results are shown in Figure 5.4
(a)-(c) and in Table 5.2. It is shown that the OCP+Preview achieves the lowest error across multiple
test cases for both target ∆xr and vrPOV . For the other two methods, they both can achieve similar
accuracy in some cases (e.g. when target vrPOV = 5.0 m/s), but not in other cases, especially when
the vrPOV increases. In Figure 5.4d, we compare the resulting speed curve from the three methods
in one case. Though the point-wise target-hitting performance is similar for these three runs, the
proposed method generates the smoothest speed profile and tracks the target speed after tLT more
accurately.

5.3.2 Field Testing

Figure 5.5: The hardware set-up of the experimental vehicle platform for POV.

We implement the test procedure for cut-in and ULT scenarios on our experimental vehicle
platform which serves as the POV, and conduct field testing inside Mcity with a real VUT. Both
vehicles are equipped with an RTK-GPS (Oxford RT3003) that can provide accurate position mea-
surement (± 2 cm), and a Pepwave cellular router that broadcasts Basic safety messages (BSMs) at
around 5Hz (a DSRC onboard unit was used previously). The algorithms are implemented in C++
on a computer running Ubuntu OS and Robotic Operating System (ROS). The control frequency is
25 Hz. The hardware set-up of the POV is shown in Figure 5.5, and the VUT has a similar set-up.

111

Case Number
Cut-In ULT

∆x (m) ∆v (m/s) ∆x (m) vPOV (m/s)
1 12.0 1.0 40.0 5.0
2 10.0 1.0 36.0 5.0
3 8.0 1.0 32.0 5.0
4 12.0 1.5 40.0 6.0
5 10.0 1.5 36.0 6.0
6 8.0 1.5 32.0 6.0
7 12.0 2.0 40.0 7.0
8 10.0 2.0 36.0 7.0
9 8.0 2.0 32.0 7.0

Table 5.3: Test cases for real-world testing.

(a) (b)

Figure 5.6: Conducting real-world testing for (a) the cut-in scenario and (b) the unprotected left
turn scenario. In each figure, the left vehicle is the POV while the right one is the VUT.

in The VUT uses planning and control algorithms from [162]. For the POV, we use the OCP as the
speed planning algorithm and the above preview controller for speed-tracking. For lateral control,
the POV tracks the given path with the preview controller from [165], which regulates the steering
input. Figure 5.6 displays photos taken at the real-world testing for the cut-in and ULT scenarios.
Nine predetermined test cases are conducted for each scenario to showcase the capability of test
execution and scoring, whose initial conditions are listed in Table 5.3. All the cut-in cases have
low risk level. For the ULT scenario, case No.4, No.7 are trivial, while all others have low risk.

For the cut-in scenario, the POV and the VUT travel on the highway section of Mcity, which
is a 300-meter long two-lane straight road. The POV makes a lane change when the target ∆xr

and ∆vr are met, as shown in Figure 5.7a. The motion synchronization results across nine cases
are shown in Figure 5.7b. The proposed method can hit the target initial conditions for the cut-in

112

(a) (b)

Figure 5.7: (a) The trajectories of POV and VUT in one cut-in case. Different colors represent
waypoints at different timesteps (b) Motion synchronization results for multiple cut-in cases. The
root-mean-square error (RMSE) on ∆x is 0.19m, RMSE on ∆v is 0.08 m/s.

accurately in all of the cases.
For the ULT scenario, we first present the testing results of one test case in Figure 5.8(a)-(c),

with vrPOV = 6.0m/s, ∆xr = 40m. The trajectory of the POV and VUT are demonstrated in
Figure 5.8a. The POV hits the target initial condition accurately, creates a challenging scenario for
the VUT and forces it to decelerate. To test the consistency of the motion synchronization method,
we conducted 5 repetitive runs for this test case. The achieved result is vPOV = 6.02 ± 0.34m/s,
∆x = 39.83± 0.17m, as shown in Figure 5.8c. The POV is able to consistently and accurately hit
the target initial condition.

Then, we present the motion synchronization results at nine test cases in real-world tests in
Figure 5.8d. All initial conditions can be accurately hit by the POV.

5.3.3 ABC Test Demo

Finally, we demonstrate our effort in extending this testing methodology to more scenarios. We
conducted the Mcity ABC test demo in June 2021, where the VUT runs a route with seven chal-
lenging scenarios in autonomous mode. The choreography of all scenarios is shown in Figure 5.9a.
Two POVs participated in this demo, which are both controlled by the proposed algorithms in this
chapter. Here is a brief introduction to all scenarios that involve the POVs:

1. Ramp merge-in: The POV #1 participated in this scenario. POV #1 is controlled to arrive at
the merge point with a predetermined distance margin and speed, and then coast at a constant
speed. The VUT is anticipated to yield by slowing down. The motion synchronization

113

(a) (b)

(c) (d)

Figure 5.8: Motion synchronization results at the ULT scenario in field testing. (a) Trajectories
of real POV and VUT in one test run. (b) The speed profiles; the dashed line represents tLT . (c)
Achieved results after 5 repeated runs of one test case. (d) Results of multiple ULT test cases. The
root-mean-square error on vPOV and ∆x are 0.20m/s, 0.56m respectively.

114

(a) (b)

Figure 5.9: The choreography of (a) the Mcity ABC test demo in the real world and (b) the Mcity
CARLA challenge in simulation.

method is the same as introduced in 5.1.3.

2. Cut-in: the setting is the same as 5.3.2, where the POV #1 makes a lane change ahead of the
VUT with a lower speed.

3. ULT: the setting is the same as 5.3.2, where the POV #1 turns left ahead of the VUT at a set
speed with a set distance margin.

4. Roundabout: The POV #2 participated in this scenario. POV #2 is controlled to arrive at the
entrance point of one branch of the roundabout ahead of the VUT with a certain time margin
and speed. The VUT is anticipated to yield by slowing down. The motion synchronization
method is the same as introduced in 5.1.3.

Note that the roundabout and ramp merge-in scenarios are viewed as reactive scenarios here for
simplicity, different from the formulation in Chapter 3. The behavior of the POV is fixed after
hitting the initial conditions. The link to the demo video is here.

5.4 Digital Twin of Mcity Test in CARLA Simulator

In addition, we have created the digital twin of the Mcity ABC test in the CARLA simulator [169].
This simulated version enables more agile development and more efficient testing.

115

https://www.youtube.com/watch?v=2-AlCdiZoUE&t=489s

Figure 5.10: The Mcity in the CARLA simulator

CARLA has been a popular open-source simulator for autonomous driving research. Based
on the Unreal game engine, it provided s state-of-the-art rendering quality, realistic physics, rich
sensor models and well-developed APIs for interacting with the simulation environment [169].
Our group has developed a custom map of Mcity inside the CARLA simulator, which reconstructs
the 2-D features of the real Mcity test track, as shown in Figure 5.10.

We implement a virtual version of the Mcity ABC test in the Mcity CARLA Map. Four scenar-
ios are implemented: cut-in, car-following, ULT and pedestrian-crossing scenarios. We develop
the API to control the generation and triggering of the POV or the pedestrian based on Scenari-
oRunner, the traffic scenario definition and execution engine for CARLA [170]. We integrate the
tasks of test case sampling, simulation flow control, motion synchronization, test execution, and
result visualization into a software with a graphical user interface (GUI), as shown in Figure 5.11.

The user can first select the target scenario, and then the number and difficulty levels of the test
cases. Next, the user can connect the VUT of their own to the CARLA server, or specify a provided
baseline VUT algorithm to be tested. The two baseline methods are: manual control using the
keyboard, and the motion planning and control algorithm developed in [171]. By clicking ”Run”,
the test cases for the target scenario will be generated and visualized in the bottom left corner,
using methods introduced in 2.5.2. Then, the test cases will be executed one by one automatically.
The POV or the pedestrian will adjust its speed and timing against the motion of the VUT using
methods in 5.1.3 to hit the set initial condition of test cases. Screenshots for supported scenarios
are presented in Figure 5.12. After the completion of each test case, the test results and details will
be presented in the right lower panel of the GUI. More details could be found here.

In addition, we connected the targeted scenarios to create a route for competitive testing of self-
driving algorithms, which become the ”Mcity CARLA challenge”. The choreography is similar to
the real-world ABC testing, as demonstrated in 5.9b. The participated VUT is asked to follow a

116

https://yyab.github.io/acceleratedEvaluationCarlaMcity.io/

Figure 5.11: Software GUI for the ABC test in the CARLA Mcity.

Figure 5.12: Screenshots of supported scenarios by the ABC test in the CARLA Mcity. From left
to right: cut-in, car-following, pedestrian-crossing, ULT scenario.

nominal route, (the blue trace), on which the four scenarios are executed sequentially to challenge
the VUT. The parameters of each scenario will be randomly sampled from its testing space accord-
ing to the given risk level to ensure that the test cases cannot be anticipated in advance. In each run,
only one participant will connect to the server remotely and control the VUT. The VUT will be
graded based on safety, traveling time, path deviation, speed compliance and driving smoothness.
More details can be found here.

5.5 Summary

This chapter presents the procedure and results of implementing behavior competence testing for
HAVs in reactive scenarios. We first solve the motion synchronization problem for scenarios with
both floating and fixed conflict points. Specifically, we propose two speed planning methods for
scenarios with a fixed conflict point, one is based on a parameterized speed profile, and the other is

117

https://yyab.github.io/mcityCarlaChallenge.io/

based on optimal control. Then, we present the longitudinal vehicle dynamics model of the experi-
ment POV considering lag and delay. We then introduce the speed tracking controller based on the
preview control algorithm, which analytically solves the control law considering the complex pow-
ertrain dynamics and future speed targets. Finally, we report simulation and real-world experiment
results for both cut-in and ULT scenarios with the full speed planning and control algorithm. It is
demonstrated that we can conduct behavior competence tests repeatably, accurately and robustly.
In addition, we extend the testing framework into a digital twin of Mcity in the CARLA simulator,
and create software tools for executing the tests in the simulation.

Finally, though we have focused on the implementation for reactive scenarios, the presented
methods will also apply to interactive scenarios, since they follow the same pipeline in Figure
1.2. For the preparation phase, the same motion synchronization algorithm can be directly applied
to interactive scenarios. For the challenge phase, the interactive POVs will no longer follow the
predetermined maneuver. Instead, they may follow any of the closed-loop policies introduced in
Chapter 3 or Chapter 4. The preview controller will be able to track the speed profile in real-time.
The implementation of interactive scenarios will be a part of our future work.

118

CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, we present a framework and a suite of methods for conducting scenario-based
safety evaluation for HAVs. The framework consists of three parts: scenario modeling and testing
space formulation, test case generation, and the implementation of testing in simulated or real-
world environments. We introduce the evaluation methodologies for both reactive and interactive
scenarios, and for all three evaluation paradigms under the ABC test concept.

For reactive scenarios, we first create statistical models using naturalistic traffic data. We cre-
ate the testing space with key variables that define the initial condition of a scenario. Then, we
decompose the testing space into different risk level sets (RLSs) based on the required effort from
the VUT to avoid collisions using backward reachability analysis. Subsequently, we generate test
cases by conducting importance sampling on the RLSs. The feasibility and interpretability of test
cases are guaranteed. Moreover, we are able to achieve unbiased crash rate estimation for the VUT
in simulation tests with only a fraction of test cases compared with the baseline CMC method. The
methodology is shown to be widely and directly applicable to multiple reactive scenarios.

For interactive scenarios, we enrich the testing space with an interaction-aware POV library,
which is constructed based on the theory of level-k game and the concept of social value orienta-
tion. The POV library enables the representation of a wide variety of possible interactive behaviors
of the POV. On the other hand, since the risk levels cannot be directly characterized for interac-
tive scenarios, we proposed an adaptive test case generation method that discovers challenging
yet diverse test samples from the testing space with both discrete and continuous attributes. This
method is able to tailor test cases for each VUT to identify its failure modes more efficiently and
comprehensively than other sampling methods.

In addition, we propose a systematic way of generating corner cases for interactive scenar-
ios. Objectively adversarial PORU behaviors are created by injecting ambiguity into the nominal
interaction-aware PORU agents, which are based on hierarchical decision-making and MPC. Based

119

on this method, the corner case testing process is designed and implemented for two typical inter-
active scenarios, highway merging and pedestrian crossing. The novel concept of ambiguity also
serves a valid metric of the intrinsic difficulty of interactive driving scenarios.

Finally, we present the implementation and results of the behavior competence tests in both
a real test track and the CARLA simulation software for multiple reactive scenarios. With the
proposed planning and control algorithms, we can place the POV in the right place at the right
timing with the right speed across different scenarios. Therefore, test cases can be executed in an
accurate, robust, repeatable, and automated fashion.

In this dissertation, we demonstrate the procedure of scenario-based HAV safety evaluation
in practice from start to finish, which may provide some instructions and guidelines for govern-
ments or 3rd-party organizations that want to conduct such a certification process for HAVs. With
stochastically-generated test cases, VUTs cannot be “tuned” to pass tests like before, therefore the
generalizability of test results is improved. With interpretable difficulty levels in both reactive sce-
narios (i.e. risk levels) and interactive scenarios (i.e. ambiguity levels), test cases can be generated
in a principled and fair way for different VUTs. Specifically, our emphasis on modeling interactive
scenarios could raise more attention on traffic interaction in the community of HAV evaluation.
Most existing evaluation efforts do not handle interactive scenarios much differently from reactive
scenarios, which could benefit from more explicit and realistic interactive POV models like ours.
In addition, the implementation of behavior competence testing provides a promising prototype
for a fully-automated testing procedure, which can be widely adopted for different scenarios by
practitioners with little revision.

On the other hand, the proposed methods for scenario modeling and test case generation may
provide tools and insights for self-driving research and development entities on the safety analysis
and performance improvement of the HAV. The proposed adaptive test case generation methods
can be applied to quickly identify the failure modes of the existing HAV stack, which could accel-
erate the iterative development of HAV software and hardware. The several proposed interactive
driver models based on the theory of mind could enrich the agent simulation models in high-fidelity
traffic simulators, which have been used extensively for both driving policy training and testing by
many top HAV companies and research organizations. In addition, the proposed notion of ”ambi-
guity” also provides a new viewpoint on the adversary for interaction-aware HAVs. Although it
cannot explain all the interactive corner cases exhaustively, it may inspire the community to come
up with more concepts to categorize the difficulty or complexity of interactive scenarios.

120

6.2 Future Directions

Reward learning for PORUs. In Chapter 3 and 4, the PORUs are modeled as utility-maximizing
agents, where the utility functions are designed based on our domain knowledge. A natural exten-
sion would be to learn the utility functions of PORUs from real driving data. For this task, inverse
reinforcement learning (IRL) techniques have been widely applied [159, 172, 173]. On the other
hand, since PORUs have diverse individual attributes like personalities, SVO, etc., a key desider-
atum for such a method is to learn a universal underlying utility of PORUs while capturing this
diversity in behaviors. Several recent studies have worked on this problem, assuming the diversity
on discrete attributes [174–176]. In the future, we plan to develop an IRL method to learn the
utility of PORUs that can consider both discrete (e.g. level-k) and continuous individual attributes
(e.g. SVO) simultaneously.

Expanding to more complex scenarios. The studied scenarios in this dissertation mostly have
one or two surrounding agents, all of which are PORUs. This has been a realistic assumption for
acceptance testing with real vehicles. To expand the usefulness of the proposed scenario modeling
techniques to development testing, we plan to work on modeling scenarios with more complex and
realistic environments with more agents. There are two major potential challenges. The first one is
to scale the current PORU modeling method to the simulation of large-scale traffic environments,
while the second is to apply the test case generation method to high-dimensional testing spaces
resulting from the more complex scenarios. To tackle these challenges, a possible direction is to
combine the current PORU model with the state-of-the-art large-scale agent simulation framework
reviewed in Section 1.2.2. The most relevant surrounding agents will be modeled by our PORU
models, which create a local environment around the VUT with a controlled adversarial level.
Other agents can be modeled by a naturalistic agent simulation model, as demonstrated in [81].
Moreover, this could reduce the dimensionality of the testing space by only varying the behaviors
of the most relevant surrounding agents. Another stream of future work would be to investigate
and improve the performance of the proposed adaptive sampling method in higher-dimensional
testing space, ensuring good coverage of the failure modes for more complex scenarios.

Estimating the completeness of the failure mode identification process. The test case gen-
eration method proposed in Chapter 3 shows good performance in finding disjoint failure modes
of the VUT. However, some natural follow-up questions are: How many failure modes could there
be? How confident are we with that estimation? Characterizing the completeness of the failure
modes identification process provides important insights for terminating the evaluation process,
quantifying the HAV performance and enhancing public trust. Related work exists on probably ap-
proximately correct testing framework [67], and on uncertainty bound for probabilistic surrogate
models like Gaussian Process Regression [177]. This topic will be explored more in the future.

121

Safeguard algorithm for real-world testing. For the implementation of behavior competence
testing, another important consideration is the safety assurance for real-vehicle tests. Challenging
test cases are informative, but a collision with a real VUT is hugely undesirable. In our current
experiments, a safety driver always monitors the situation and takes avoidance maneuvers when
needed. It can be dangerous for the driver, and the reaction of a human can be unreliable and
inconsistent. In the next step, we plan to work on a safeguard algorithm for the POV, which can
abort the test maneuver when the situation is deemed too dangerous, and then plan and execute a
collision-avoidance maneuver for the POV at the last moment. The challenge lies in balancing the
safety assurance and limiting the conservativeness of the safeguard, such that challenging tests can
be executed safely, and will not be aborted prematurely.

Scoring criteria for acceptance testing. For the practitioners of acceptance testing, another
crucial task to work on is the development of scoring and rating systems for HAVs. The VUT
can be assessed with multiple objectives, including safety, smoothness, roadmanship (i.e. how
human-like the VUT drives [178]), etc. The key is to integrate the multiple objectives into a final
verdict for the VUT, which is not only a coherent measure of the VUT’s performance, but also
interpretable and perceivable by the public.

122

BIBLIOGRAPHY

[1] “J3016 - taxonomy and definitions for terms related to driving automation systems for on-
road motor vehicles,” 2021.

[2] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous vehicles: opportu-
nities, barriers and policy recommendations,” Transportation Research Part A: Policy and
Practice, vol. 77, pp. 167–181, 2015.

[3] “Mercedes Drive Pilot Level 3 Autonomous System to Launch in
Germany.” [Online]. Available: https://www.caranddriver.com/news/a38475565/
mercedes-drive-pilot-autonomous-germany/

[4] “TuSimple completes its first driverless autonomous truck run on public
roads — TechCrunch.” [Online]. Available: https://techcrunch.com/2021/12/29/
tusimple-completes-its-first-driverless-autonomous-truck-run-on-public-roads/

[5] “Self-driving uber car that hit and killed woman did not recognize that
pedestrians jaywalk.” [Online]. Available: https://www.nbcnews.com/tech/tech-news/
self-driving-uber-car-hit-killed-woman-did-not-recognize-n1079281

[6] “China’s robotaxis charged ahead in 2021 — TechCrunch.” [Online]. Available:
https://techcrunch.com/2022/01/14/2021-robotaxi-china/

[7] “ISO - ISO 26262-1:2011 - Road vehicles — Functional safety.” [Online]. Available:
https://www.iso.org/standard/43464.html

[8] “ISO - ISO/PAS 21448:2019 - Road vehicles — Safety of the intended functionality.”
[Online]. Available: https://www.iso.org/standard/70939.html

[9] L. Fraade-Blanar, M. S. Blumenthal, J. M. Anderson, and N. Kalra, Measuring automated
vehicle safety: Forging a framework, 2018.

[10] V. L. Neale, T. A. Dingus, S. G. Klauer, J. Sudweeks, and M. Goodman, “An overview of
the 100-car naturalistic study and findings,” National Highway Traffic Safety Administration,
Paper, vol. 5, p. 0400, 2005.

[11] J. Sayer, D. LeBlanc, S. Bogard, D. Funkhouser, S. Bao, M. L. Buonarosa, A. Blanke-
spoor et al., “Integrated vehicle-based safety systems field operational test: Final program
report,” United States. Joint Program Office for Intelligent Transportation Systems, Tech.
Rep., 2011.

123

https://www.caranddriver.com/news/a38475565/mercedes-drive-pilot-autonomous-germany/
https://www.caranddriver.com/news/a38475565/mercedes-drive-pilot-autonomous-germany/
https://techcrunch.com/2021/12/29/tusimple-completes-its-first-driverless-autonomous-truck-run-on-public-roads/
https://techcrunch.com/2021/12/29/tusimple-completes-its-first-driverless-autonomous-truck-run-on-public-roads/
https://www.nbcnews.com/tech/tech-news/self-driving-uber-car-hit-killed-woman-did-not-recognize-n1079281
https://www.nbcnews.com/tech/tech-news/self-driving-uber-car-hit-killed-woman-did-not-recognize-n1079281
https://techcrunch.com/2022/01/14/2021-robotaxi-china/
https://www.iso.org/standard/43464.html
https://www.iso.org/standard/70939.html

[12] K. Gay and V. Kniss, “Safety Pilot Model Deployment Lessons Learned and Recommen-
dations for Future Connected Vehicle Activities,” U.S. Department of Transportation, Tech.
Rep., 2015.

[13] “Autonomous Vehicle Testing Permit Holders - California DMV.” [Online].
Available: https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/
autonomous-vehicle-testing-permit-holders/

[14] “Waymo’s autonomous vehicles have clocked 20 million miles on pub-
lic roads — Engadget.” [Online]. Available: https://www.engadget.com/
waymo-autonomous-vehicles-update-san-francisco-193934150.html

[15] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Bal-
dan, and O. Beijbom, “nuscenes: A multimodal dataset for autonomous driving,” in Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 11 621–11 631.

[16] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr,
S. Lucey, D. Ramanan et al., “Argoverse: 3d tracking and forecasting with rich maps,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 8748–8757.

[17] “Traffic Safety Facts 2019: A Compilation of Motor Vehicle Crash Data,” NHTSA, Tech.
Rep. [Online]. Available: https://crashstats.nhtsa.dot.gov/.

[18] N. Kalra and S. M. Paddock, “How many miles of driving would it take to demonstrate au-
tonomous vehicle reliability,” RAND Corporation, Santa Monica, CA, Tech. Rep, pp. 1129–
1134, 2016.

[19] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Diermeyer, “Survey on scenario-based
safety assessment of automated vehicles,” IEEE Access, vol. 8, pp. 87 456–87 477, 2020.

[20] “Pegasus method - pegasus-en.” [Online]. Available: https://www.pegasusprojekt.de/en/
pegasus-method

[21] “SAKURA Project.” [Online]. Available: https://www.sakura-prj.go.jp/

[22] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer, “Defining and substanti-
ating the terms scene, situation, and scenario for automated driving,” in 2015 IEEE 18th
international conference on intelligent transportation systems. IEEE, 2015, pp. 982–988.

[23] T. Menzel, G. Bagschik, and M. Maurer, “Scenarios for development, test and validation of
automated vehicles,” in 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018, pp.
1821–1827.

[24] A. Svensson, A method for analysing the traffic process in a safety perspective. Lund
Institute of Technology Sweden, 1998.

124

https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-testing-permit-holders/
https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-testing-permit-holders/
https://www.engadget.com/waymo-autonomous-vehicles-update-san-francisco-193934150.html
https://www.engadget.com/waymo-autonomous-vehicles-update-san-francisco-193934150.html
https://crashstats.nhtsa.dot.gov/.
https://www.pegasusprojekt.de/en/pegasus-method
https://www.pegasusprojekt.de/en/pegasus-method
https://www.sakura-prj.go.jp/

[25] E. D. Swanson, F. Foderaro, M. Yanagisawa, W. G. Najm, P. Azeredo et al., “Statistics of
light-vehicle pre-crash scenarios based on 2011–2015 national crash data,” United States.
Department of Transportation. National Highway Traffic Safety . . . , Tech. Rep., 2019.

[26] E. de Gelder, O. O. den Camp, and N. de Boer, “Scenario categories for the assessment of
automated vehicles,” CETRAN, Singapore, Version, vol. 1, 2020.

[27] E. Thorn, S. C. Kimmel, M. Chaka, B. A. Hamilton et al., “A framework for automated
driving system testable cases and scenarios,” United States. Department of Transportation.
National Highway Traffic Safety Administration, Tech. Rep., 2018.

[28] “Waymo Safety Report,” Tech. Rep., 2021.

[29] H. Peng and R. McCarthy, “Mcity abc test,” 2019.

[30] G. Bagschik, T. Menzel, and M. Maurer, “Ontology based scene creation for the develop-
ment of automated vehicles,” in 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE,
2018, pp. 1813–1820.

[31] J. Sun, H. Zhou, H. Zhang, Y. Tian, and Q. Ji, “Adaptive design of experiments for acceler-
ated safety evaluation of automated vehicles,” in 2020 IEEE 23rd International Conference
on Intelligent Transportation Systems (ITSC). IEEE, 2020, pp. 1–7.

[32] D. Zhao, H. Lam, H. Peng, S. Bao, D. J. LeBlanc, K. Nobukawa, and C. S. Pan, “Accelerated
Evaluation of Automated Vehicles Safety in Lane-Change Scenarios Based on Importance
Sampling Techniques,” IEEE Transactions on Intelligent Transportation Systems, vol. 18,
no. 3, pp. 595–607, 3 2017.

[33] S. Zhang, H. Peng, D. Zhao, and H. E. Tseng, “Accelerated Evaluation of Autonomous
Vehicles in the Lane Change Scenario Based on Subset Simulation Technique,” in 2018
21st International Conference on Intelligent Transportation Systems (ITSC). IEEE, 11
2018, pp. 3935–3940.

[34] S. Feng, Y. Feng, C. Yu, Y. Zhang, and H. X. Liu, “Testing scenario library generation for
connected and automated vehicles, part i: Methodology,” IEEE Transactions on Intelligent
Transportation Systems, 2020.

[35] C. E. Tuncali, T. P. Pavlic, and G. Fainekos, “Utilizing S-TaLiRo as an automatic test gener-
ation framework for autonomous vehicles,” IEEE Conference on Intelligent Transportation
Systems, Proceedings, ITSC, no. ii, pp. 1470–1475, 2016.

[36] D. Zhao, X. Huang, H. Peng, H. Lam, and D. J. LeBlanc, “Accelerated Evaluation of Au-
tomated Vehicles in Car-Following Maneuvers,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 19, no. 3, pp. 733–744, 3 2018.

[37] S. Feng, Y. Feng, H. Sun, S. Bao, Y. Zhang, and H. X. Liu, “Testing scenario library gen-
eration for connected and automated vehicles, part ii: Case studies,” IEEE Transactions on
Intelligent Transportation Systems, vol. 22, no. 9, pp. 5635–5647, 2020.

125

[38] A. Corso, P. Du, K. Driggs-Campbell, and M. J. Kochenderfer, “Adaptive stress testing
with reward augmentation for autonomous vehicle validation,” in 2019 IEEE Intelligent
Transportation Systems Conference (ITSC). IEEE, 2019, pp. 163–168.

[39] N. Li, D. W. Oyler, M. Zhang, Y. Yildiz, I. Kolmanovsky, and A. R. Girard, “Game theoretic
modeling of driver and vehicle interactions for verification and validation of autonomous
vehicle control systems,” IEEE Transactions on Control Systems Technology, vol. 26, no. 5,
pp. 1782–1797, 2018.

[40] L. Bergamini, Y. Ye, O. Scheel, L. Chen, C. Hu, L. Del Pero, B. Osiński, H. Grimmett, and
P. Ondruska, “Simnet: Learning reactive self-driving simulations from real-world observa-
tions,” in 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 5119–5125.

[41] S. Suo, S. Regalado, S. Casas, and R. Urtasun, “Trafficsim: Learning to simulate realistic
multi-agent behaviors,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021, pp. 10 400–10 409.

[42] D. Xu, Y. Chen, B. Ivanovic, and M. Pavone, “Bits: Bi-level imitation for traffic simulation,”
arXiv preprint arXiv:2208.12403, 2022.

[43] M. Igl, D. Kim, A. Kuefler, P. Mougin, P. Shah, K. Shiarlis, D. Anguelov, M. Palatucci,
B. White, and S. Whiteson, “Symphony: Learning realistic and diverse agents for au-
tonomous driving simulation,” arXiv preprint arXiv:2205.03195, 2022.

[44] Q. Zhang, Y. Gao, Y. Zhang, Y. Guo, D. Ding, Y. Wang, P. Sun, and D. Zhao, “Trajgen:
Generating realistic and diverse trajectories with reactive and feasible agent behaviors for
autonomous driving,” arXiv preprint arXiv:2203.16792, 2022.

[45] M. Zhou, J. Luo, J. Villella, Y. Yang, D. Rusu, J. Miao, W. Zhang, M. Alban, I. Fadakar,
Z. Chen et al., “Smarts: Scalable multi-agent reinforcement learning training school for
autonomous driving,” arXiv preprint arXiv:2010.09776, 2020.

[46] NCAP, “European new car assessment programme - test protocol – aeb systems,” Tech.
Rep., 2015.

[47] ——, “European new car assessment programme - test protocol – lane support systems,”
Tech. Rep., 2015.

[48] IIHS, “Autonomous emergency braking test protocol (version i),” 2013. [Online]. Available:
http://www.iihs.org/iihs/ratings/technical-information/technical-protocols

[49] W.-L. Loh, “On latin hypercube sampling,” The annals of statistics, vol. 24, no. 5, pp. 2058–
2080, 1996.

[50] C. E. Tuncali, G. Fainekos, D. Prokhorov, H. Ito, and J. Kapinski, “Requirements-driven test
generation for autonomous vehicles with machine learning components,” IEEE Transactions
on Intelligent Vehicles, vol. 5, no. 2, pp. 265–280, 2019.

126

http://www.iihs.org/iihs/ratings/technical-information/technical-protocols

[51] H.-H. Yang and H. Peng, “Development and evaluation of collision warning/collision avoid-
ance algorithms using an errable driver model,” Vehicle System Dynamics, vol. 48, no. sup1,
pp. 525–535, 12 2010.

[52] T. A. Wheeler and M. J. Kochenderfer, “Factor graph scene distributions for automotive
safety analysis,” in 2016 IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2016, pp. 1035–1040.

[53] M. O’Kelly, A. Sinha, H. Namkoong, R. Tedrake, and J. C. Duchi, “Scalable end-to-end
autonomous vehicle testing via rare-event simulation,” Advances in neural information pro-
cessing systems, vol. 31, 2018.

[54] S. Feng, Y. Feng, H. Sun, Y. Zhang, and H. X. Liu, “Testing Scenario Library Generation
for Connected and Automated Vehicles: An Adaptive Framework,” IEEE Transactions on
Intelligent Transportation Systems, pp. 1–10, 3 2020.

[55] J. Norden, M. O’Kelly, and A. Sinha, “Efficient black-box assessment of autonomous vehi-
cle safety,” arXiv preprint arXiv:1912.03618, 2019.

[56] S.-K. Au and J. Beck, “Important sampling in high dimensions,” Structural safety, vol. 25,
no. 2, pp. 139–163, 2003.

[57] M. Althoff and S. Lutz, “Automatic Generation of Safety-Critical Test Scenarios for Colli-
sion Avoidance of Road Vehicles,” in 2018 IEEE Intelligent Vehicles Symposium (IV), vol.
2018-June. IEEE, 6 2018, pp. 1326–1333.

[58] M. Klischat and M. Althoff, “Generating critical test scenarios for automated vehicles with
evolutionary algorithms,” in 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019,
pp. 2352–2358.

[59] G. Chou, Y. E. Sahin, L. Yang, K. J. Rutledge, P. Nilsson, and N. Ozay, “Using control
synthesis to generate corner cases: A case study on autonomous driving,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp. 2906–
2917, 2018.

[60] P. Akella, M. Ahmadi, R. M. Murray, and A. D. Ames, “Formal test synthesis for safety-
critical autonomous systems based on control barrier functions,” in 2020 59th IEEE Confer-
ence on Decision and Control (CDC). IEEE, 2020, pp. 790–795.

[61] C. E. Tuncali and G. Fainekos, “Rapidly-exploring random trees-based test generation for
autonomous vehicles,” arXiv preprint arXiv:1903.10629, 2019.

[62] T. Dreossi, T. Dang, A. Donzé, J. Kapinski, X. Jin, and J. V. Deshmukh, “Efficient guiding
strategies for testing of temporal properties of hybrid systems,” in NASA Formal Methods
Symposium. Springer, 2015, pp. 127–142.

[63] A. Wachi, “Failure-scenario maker for rule-based agent using multi-agent adversar-
ial reinforcement learning and its application to autonomous driving,” arXiv preprint
arXiv:1903.10654, 2019.

127

[64] S. Zhang, H. Peng, S. Nageshrao, and H. E. Tseng, “Generating socially acceptable pertur-
bations for efficient evaluation of autonomous vehicles,” IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition Workshops, vol. 2020-June, pp. 1341–
1347, 2020.

[65] B. Chen, X. Chen, Q. Wu, and L. Li, “Adversarial evaluation of autonomous vehicles in
lane-change scenarios,” IEEE Transactions on Intelligent Transportation Systems, 2021.

[66] B. Gangopadhyay, S. Khastgir, S. Dey, P. Dasgupta, G. Montana, and P. Jennings, “Identi-
fication of test cases for automated driving systems using bayesian optimization,” in 2019
IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, 2019, pp. 1961–1967.

[67] L. Li, N. Zheng, and F.-Y. Wang, “A theoretical foundation of intelligence testing and its ap-
plication for intelligent vehicles,” IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 10, pp. 6297–6306, 2020.

[68] G. E. Mullins, P. G. Stankiewicz, and S. K. Gupta, “Automated generation of diverse and
challenging scenarios for test and evaluation of autonomous vehicles,” Proceedings - IEEE
International Conference on Robotics and Automation, pp. 1443–1450, 2017.

[69] Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek, “Generating adversarial driving sce-
narios in high-fidelity simulators,” in 2019 International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2019, pp. 8271–8277.

[70] J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren, and R. Urtasun,
“Advsim: Generating safety-critical scenarios for self-driving vehicles,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 9909–
9918.

[71] “How agent simulation enables the collective safety assessment of AV in simula-
tion at Cruise — LinkedIn.” [Online]. Available: https://www.linkedin.com/pulse/
how-agent-simulation-enables-collective-safety-assessment-jing-lu/?trackingId=5pC9%
2B41URJWSQCfIDBLBkw%3D%3D

[72] W. Ding, M. Xu, and D. Zhao, “Cmts: A conditional multiple trajectory synthesizer for
generating safety-critical driving scenarios,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2020, pp. 4314–4321.

[73] D. Rempe, J. Philion, L. J. Guibas, S. Fidler, and O. Litany, “Generating useful accident-
prone driving scenarios via a learned traffic prior,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2022, pp. 17 305–17 315.

[74] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-based approaches
for verification of embedded control systems: An overview of traditional and advanced
modeling, testing, and verification techniques,” IEEE Control Systems Magazine, vol. 36,
no. 6, pp. 45–64, 2016.

128

https://www.linkedin.com/pulse/how-agent-simulation-enables-collective-safety-assessment-jing-lu/?trackingId=5pC9%2B41URJWSQCfIDBLBkw%3D%3D
https://www.linkedin.com/pulse/how-agent-simulation-enables-collective-safety-assessment-jing-lu/?trackingId=5pC9%2B41URJWSQCfIDBLBkw%3D%3D
https://www.linkedin.com/pulse/how-agent-simulation-enables-collective-safety-assessment-jing-lu/?trackingId=5pC9%2B41URJWSQCfIDBLBkw%3D%3D

[75] S. A. Seshia, D. Sadigh, and S. S. Sastry, “Formal methods for semi-autonomous driving,”
in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 2015, pp.
1–5.

[76] M. E. O’Kelly, H. Abbas, S. Gao, S. Kato, S. Shiraishi, and R. Mangharam, “Apex: Au-
tonomous vehicle plan verification and execution,” SAE Technical Paper, Tech. Rep., 2016.

[77] T. Kaga, M. Adachi, I. Hosotani, and M. Konishi, “Validation of control software specifi-
cation using design interests extraction and model checking,” SAE Technical Paper, Tech.
Rep., 2012.

[78] A. Abhishek, H. Sood, and J.-B. Jeannin, “Formal verification of braking while swerving
in automobiles,” in Proceedings of the 23rd International Conference on Hybrid Systems:
Computation and Control, 2020, pp. 1–11.

[79] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model of safe and scalable
self-driving cars,” arXiv preprint arXiv:1708.06374, 2017.

[80] S. Kitajima, K. Shimono, J. Tajima, J. Antona-Makoshi, and N. Uchida, “Multi-agent traf-
fic simulations to estimate the impact of automated technologies on safety,” Traffic injury
prevention, vol. 20, no. sup1, pp. S58–S64, 2019.

[81] S. Feng, X. Yan, H. Sun, Y. Feng, and H. X. Liu, “Intelligent driving intelligence test for au-
tonomous vehicles with naturalistic and adversarial environment,” Nature communications,
vol. 12, no. 1, pp. 1–14, 2021.

[82] “Future certification of automated/autonomous driving systems,” 2019.

[83] J. Sun, H. Zhang, H. Zhou, R. Yu, and Y. Tian, “Scenario-based test automation for highly
automated vehicles: A review and paving the way for systematic safety assurance,” IEEE
Transactions on Intelligent Transportation Systems, 2021.

[84] Y. Ma, C. Sun, J. Chen, D. Cao, and L. Xiong, “Verification and validation methods for
decision-making and planning of automated vehicles: A review,” IEEE Transactions on
Intelligent Vehicles, 2022.

[85] National Highway Traffic Safety Administration, “Traffic Safety Facts: 2017 data: pedes-
trians,” NHTSA, Tech. Rep. March, 2019.

[86] M. Enzweiler and D. Gavrila, “Monocular Pedestrian Detection: Survey and Experiments,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 12, pp. 2179–
2195, 12 2009.

[87] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian Detection: A Benchmark,” in
CVPR, 2009.

[88] B. Chen, D. Zhao, and H. Peng, “Evaluation of automated vehicles encountering pedestrians
at unsignalized crossings,” in 2017 IEEE Intelligent Vehicles Symposium (IV), no. February.
IEEE, 6 2017, pp. 1679–1685.

129

[89] B. Schroeder, N. Rouphail, K. Salamati, E. Hunter, B. Phillips, L. Elefteriadou, T. Chase,
and Y. Zheng, “Empirically-Based Performance Assessment and Simulation of Pedestrian
Behavior at Unsignalized Crossings,” Tech. Rep., 2014.

[90] R. Knoblauch, M. Pietrucha, and M. Nitzburg, “Field Studies of Pedestrian Walking Speed
and Start-Up Time,” Transportation Research Record: Journal of the Transportation Re-
search Board, vol. 1538, pp. 27–38, 1996.

[91] K. Ismail, T. Sayed, and N. Saunier, “Automated Analysis of Pedestrian-Vehicle,” Trans-
portation Research Record: Journal of the Transportation Research Board, vol. 2198, no.
2198, pp. 52–64, 2010.

[92] “View Mobotix camera in Canada. URL: https://www.insecam.org/en/view/516710/.”

[93] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” 4 2018.

[94] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Second Edition,
2000.

[95] J. Munkres, “Algorithms for the assignment and transportation problems,” Journal of the
society for industrial and applied mathematics, vol. 5, no. 1, pp. 32–38, 1957.

[96] S. Bennett, A. Felton, and R. Akçelik, “Pedestrian movement characteristics at signalised
intersections,” in 23rd Conference of Australian Institutes of Transport Research, no. De-
cember, 2001, pp. 10–12.

[97] G. Lee and C. Scott, “EM algorithms for multivariate Gaussian mixture models with trun-
cated and censored data,” Computational Statistics and Data Analysis, vol. 56, no. 9, pp.
2816–2829, 2012.

[98] A. B. Owen, Monte Carlo theory, methods and examples, 2013.

[99] J. Blanchet and H. Lam, “State-dependent importance sampling for rare-event simulation:
An overview and recent advances,” Surveys in Operations Research and Management Sci-
ence, vol. 17, no. 1, pp. 38–59, 1 2012.

[100] M. Althoff, “Reachability Analysis and its Application to the Safety Assessment of Au-
tonomous Cars,” Fakultät für Elektrotechnik und Informationstechnik, p. 221, 2010.

[101] J. Nilsson, J. Fredriksson, and A. C. Ödblom, “Verification of Collision Avoidance Systems
using Reachability Analysis,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 10 676–10 681,
2014.

[102] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control For Linear and Hybrid Sys-
tems. Cambridge University Press, 2017.

[103] N. Li, K. Han, A. Girard, H. E. Tseng, D. Filev, and I. Kolmanovsky, “Action governor for
discrete-time linear systems with non-convex constraints,” IEEE Control Systems Letters,
vol. 5, no. 1, pp. 121–126, 2020.

130

[104] K. Vogel, “A comparison of headway and time to collision as safety indicators,” Accident
Analysis and Prevention, vol. 35, no. 3, pp. 427–433, 2003.

[105] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, “Multi-Parametric Toolbox 3.0,” in
2013 European Control Conference (ECC), Zürich, Switzerland, 7 2013, pp. 502–510.

[106] K. Lee and H. Peng, “Evaluation of automotive forward collision warning and collision
avoidance algorithms,” Vehicle System Dynamics, vol. 43, no. 10, pp. 735–751, 10 2005.

[107] W. C. Horrace, “Some results on the multivariate truncated normal distribution,” Journal of
Multivariate Analysis, vol. 94, no. 1, pp. 209–221, 5 2005.

[108] T. I. Gorman, “Prospects for the collision-free car: The effectiveness of five competing
forward collision avoidance systems,” Ph.D. dissertation, Virginia Tech, 2013.

[109] X. Wang, D. Zhao, H. Peng, and D. J. LeBlanc, “Analysis of unprotected intersection left-
Turn conflicts based on naturalistic driving data,” in IEEE Intelligent Vehicles Symposium,
2017, pp. 218–223.

[110] V. A. Butakov and P. Ioannou, “Personalized driver/vehicle lane change models for adas,”
IEEE Transactions on Vehicular Technology, vol. 64, no. 10, pp. 4422–4431, 2014.

[111] L. Sun, W. Zhan, Y. Hu, and M. Tomizuka, “Interpretable Modelling of Driving Behav-
iors in Interactive Driving Scenarios based on Cumulative Prospect Theory,” in 2019 IEEE
Intelligent Transportation Systems Conference (ITSC). IEEE, 10 2019, pp. 4329–4335.

[112] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observa-
tions and microscopic simulations,” Physical review E, vol. 62, no. 2, p. 1805, 2000.

[113] A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model mobil for car-
following models,” Transportation Research Record, vol. 1999, no. 1, pp. 86–94, 2007.

[114] Y. Hu, W. Zhan, L. Sun, and M. Tomizuka, “Multi-modal probabilistic prediction of inter-
active behavior via an interpretable model,” in 2019 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2019, pp. 557–563.

[115] J. Li, H. Ma, and M. Tomizuka, “Interaction-aware multi-agent tracking and probabilistic
behavior prediction via adversarial learning,” in 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 2019, pp. 6658–6664.

[116] W. Schwarting, A. Pierson, J. Alonso-Mora, S. Karaman, and D. Rus, “Social behavior
for autonomous vehicles,” Proceedings of the National Academy of Sciences of the United
States of America, vol. 116, no. 50, pp. 2492–24 978, 2019.

[117] J. F. Fisac, E. Bronstein, E. Stefansson, D. Sadigh, S. S. Sastry, and A. D. Dragan, “Hier-
archical game-theoretic planning for autonomous vehicles,” in Proceedings - IEEE Interna-
tional Conference on Robotics and Automation, vol. 2019-May, 2019, pp. 9590–9596.

[118] J. H. Yoo and R. Langari, “A stackelberg game theoretic driver model for merging,” ASME
2013 Dynamic Systems and Control Conference, DSCC 2013, vol. 2, pp. 1–8, 2013.

131

[119] J. Geary, H. Gouk, and S. Ramamoorthy, “Active altruism learning and information suffi-
ciency for autonomous driving,” arXiv preprint arXiv:2110.04580, 2021.

[120] B. M. Albaba and Y. Yildiz, “Driver modeling through deep reinforcement learning and
behavioral game theory,” IEEE Transactions on Control Systems Technology, 2021.

[121] A. Sarkar and K. Czamecki, “A behavior driven approach for sampling rare event situations
for autonomous vehicles,” in 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 11 2019, pp. 6407–6414.

[122] L. Sun, W. Zhan, M. Tomizuka, and A. D. Dragan, “Courteous Autonomous Cars,” IEEE
International Conference on Intelligent Robots and Systems, pp. 663–670, 2018.

[123] B. Toghi, R. Valiente, D. Sadigh, R. Pedarsani, and Y. P. Fallah, “Social coordination and
altruism in autonomous driving,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 12, pp. 24 791–24 804, 2022.

[124] T. H. Ho and X. Su, “A dynamic level-K model in sequential games,” Management Science,
vol. 59, no. 2, pp. 452–469, 2 2013.

[125] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning: A selective overview
of theories and algorithms,” arXiv preprint arXiv:1911.10635, 2019.

[126] R. Nagel, “Unraveling in guessing games: An experimental study,” The American Economic
Review, vol. 85, no. 5, pp. 1313–1326, 1995.

[127] B. M. Albaba and Y. Yildiz, “Modeling cyber-physical human systems via an interplay
between reinforcement learning and game theory,” Annual Reviews in Control, vol. 48, pp.
1–21, 2019.

[128] M. A. Costa-Gomes, V. P. Crawford, and N. Iriberri, “Comparing Models of Strategic Think-
ing in Van Huyck, Battalio, and Beil’s Coordination Games,” Journal of the European Eco-
nomic Association, vol. 7, no. 2-3, pp. 365–376, 4 2009.

[129] C. G. McClintock and S. T. Allison, “Social Value Orientation and Helping Behavior,” Jour-
nal of Applied Social Psychology, vol. 19, no. 4, pp. 353–362, 3 1989.

[130] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[131] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double Q-
Learning,” in 30th AAAI Conference on Artificial Intelligence, AAAI 2016, 2016, pp. 2094–
2100.

[132] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602,
2013.

[133] “Roundabouts.” [Online]. Available: https://www.iihs.org/topics/roundabouts

132

https://www.iihs.org/topics/roundabouts

[134] R. Tian, S. Li, N. Li, I. Kolmanovsky, A. Girard, and Y. Yildiz, “Adaptive game-theoretic
decision making for autonomous vehicle control at roundabouts,” in 2018 IEEE Conference
on Decision and Control (CDC). IEEE, 2018, pp. 321–326.

[135] S. Masi, P. Xu, and P. Bonnifait, “A curvilinear decision method for two-lane roundabout
crossing and its validation under realistic traffic flow,” in 2020 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2020, pp. 1290–1296.

[136] “SOS - What Every Driver Must Know.”

[137] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory generation for
dynamic street scenarios in a frenet frame,” in 2010 IEEE International Conference on
Robotics and Automation. IEEE, 2010, pp. 987–993.

[138] L. Wang, L. Sun, M. Tomizuka, and W. Zhan, “Socially-compatible behavior design of
autonomous vehicles with verification on real human data,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 3421–3428, 2021.

[139] G. E. Mullins, P. G. Stankiewicz, R. C. Hawthorne, and S. K. Gupta, “Adaptive generation
of challenging scenarios for testing and evaluation of autonomous vehicles,” Journal of
Systems and Software, vol. 137, pp. 197–215, 2018.

[140] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. Cam-
bridge, Massachusetts: MIT Press, 2006.

[141] M. J. Kochenderfer and T. A. Wheeler, Algorithms for optimization. Mit Press, 2019.

[142] P. I. Frazier, “A tutorial on bayesian optimization,” arXiv preprint arXiv:1807.02811, 2018.

[143] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[144] T. Lattimore and C. Szepesvári, Bandit algorithms. Cambridge University Press, 2020.

[145] R. Agrawal, “Sample mean based index policies by o (log n) regret for the multi-armed
bandit problem,” Advances in Applied Probability, vol. 27, no. 4, pp. 1054–1078, 1995.

[146] O. Chapelle and L. Li, “An empirical evaluation of thompson sampling,” Advances in neural
information processing systems, vol. 24, 2011.

[147] X. Wang, H. Peng, S. Zhang, and K.-H. Lee, “An interaction-aware evaluation method for
highly automated vehicles,” in 2021 IEEE International Intelligent Transportation Systems
Conference (ITSC). IEEE, 2021, pp. 394–401.

[148] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann, J. Kummerle, H. Konigshof,
C. Stiller, A. de La Fortelle et al., “Interaction dataset: An international, adversarial and co-
operative motion dataset in interactive driving scenarios with semantic maps,” arXiv preprint
arXiv:1910.03088, 2019.

133

[149] X. Zhang, J. Tao, K. Tan, M. Torngren, J. M. G. Sanchez, M. R. Ramli, X. Tao, M. Gyl-
lenhammar, F. Wotawa, N. Mohan et al., “Finding critical scenarios for automated driving
systems: A systematic mapping study,” IEEE Transactions on Software Engineering, 2022.

[150] J.-A. Bolte, A. Bar, D. Lipinski, and T. Fingscheidt, “Towards corner case detection for
autonomous driving,” in 2019 IEEE Intelligent vehicles symposium (IV). IEEE, 2019, pp.
438–445.

[151] Z. Huang, Y.-J. Mun, X. Li, Y. Xie, N. Zhong, W. Liang, J. Geng, T. Chen, and K. Driggs-
Campbell, “Hierarchical intention tracking for robust human-robot collaboration in indus-
trial assembly tasks,” arXiv preprint arXiv:2203.09063, 2022.

[152] L. Sun, W. Zhan, and M. Tomizuka, “Probabilistic prediction of interactive driving behavior
via hierarchical inverse reinforcement learning,” in 2018 21st International Conference on
Intelligent Transportation Systems (ITSC). IEEE, 2018, pp. 2111–2117.

[153] H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadarajan, Y. Shen, Y. Shen, Y. Chai,
C. Schmid et al., “Tnt: Target-driven trajectory prediction,” in Conference on Robot Learn-
ing. PMLR, 2021, pp. 895–904.

[154] D. Sadigh, N. Landolfi, S. S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for cars
that coordinate with people: leveraging effects on human actions for planning and active
information gathering over human internal state,” Autonomous Robots, vol. 42, no. 7, pp.
1405–1426, 2018.

[155] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov, “Multipath: Multiple probabilistic anchor
trajectory hypotheses for behavior prediction,” arXiv preprint arXiv:1910.05449, 2019.

[156] R. Tian, L. Sun, M. Tomizuka, and D. Isele, “Anytime game-theoretic planning with active
reasoning about humans’ latent states for human-centered robots,” in 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2021, pp. 4509–4515.

[157] Y. Che, A. M. Okamura, and D. Sadigh, “Efficient and trustworthy social navigation via
explicit and implicit robot–human communication,” IEEE Transactions on Robotics, vol. 36,
no. 3, pp. 692–707, 2020.

[158] C. E. Shannon, “A mathematical theory of communication,” ACM SIGMOBILE mobile com-
puting and communications review, vol. 5, no. 1, pp. 3–55, 2001.

[159] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey et al., “Maximum entropy inverse
reinforcement learning.” in Aaai, vol. 8. Chicago, IL, USA, 2008, pp. 1433–1438.

[160] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3, pp. 279–292,
1992.

[161] “Model predictive control toolbox.” [Online]. Available: https://www.mathworks.com/
products/model-predictive-control.html

134

https:// www.mathworks.com/products/model-predictive-control.html
https:// www.mathworks.com/products/model-predictive-control.html

[162] S. Xu, R. Zidek, Z. Cao, P. Lu, X. Wang, B. Li, and H. Peng, “System and experiments of
model-driven motion planning and control for autonomous vehicles,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 2021.

[163] K. Kreutz and J. Eggert, “Analysis of the generalized intelligent driver model (gidm) for
merging situations,” in 2021 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2021, pp.
34–41.

[164] L. Kocis and W. J. Whiten, “Computational investigations of low-discrepancy sequences,”
ACM Transactions on Mathematical Software (TOMS), vol. 23, no. 2, pp. 266–294, 1997.

[165] S. Xu and H. Peng, “Design, Analysis, and Experiments of Preview Path Tracking Con-
trol for Autonomous Vehicles,” IEEE Transactions on Intelligent Transportation Systems,
vol. PP, pp. 1–11, 2019.

[166] S. Xu, H. Peng, Z. Song, K. Chen, and Y. Tang, “Accurate and Smooth Speed Control for an
Autonomous Vehicle,” in 2018 IEEE Intelligent Vehicles Symposium (IV), vol. 2018-June.
IEEE, 6 2018, pp. 1976–1982.

[167] A. Vahidi and A. Sciarretta, “Energy saving potentials of connected and automated vehi-
cles,” Transportation Research Part C: Emerging Technologies, vol. 95, pp. 822–843, 2018.

[168] R. Rajamani, Vehicle dynamics and control. Springer Science & Business Media, 2011.

[169] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open urban
driving simulator,” in Conference on robot learning. PMLR, 2017, pp. 1–16.

[170] “Scenariorunner for carla: Traffic scenario definition and execution engine.” [Online].
Available: https://github.com/carla-simulator/scenario runner

[171] Y. Zhong, Z. Cao, M. Zhu, X. Wang, D. Yang, and H. Peng, “Clap: Cloud-and-learning-
compatible autonomous driving platform,” in 2020 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2020, pp. 1450–1456.

[172] S. Levine and V. Koltun, “Continuous inverse optimal control with locally optimal exam-
ples,” arXiv preprint arXiv:1206.4617, 2012.

[173] Z. Yang, R. Zhang, and H. X. Liu, “A hierarchical behavior prediction framework at signal-
ized intersections,” in 2021 IEEE International Intelligent Transportation Systems Confer-
ence (ITSC). IEEE, 2021, pp. 515–521.

[174] M. Kuderer, S. Gulati, and W. Burgard, “Learning driving styles for autonomous vehicles
from demonstration,” in 2015 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2015, pp. 2641–2646.

[175] L. Sun, Z. Wu, H. Ma, and M. Tomizuka, “Expressing diverse human driving behavior with
probabilistic rewards and online inference,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 2020–2026.

135

https://github.com/carla-simulator/scenario_runner

[176] R. Tian, M. Tomizuka, and L. Sun, “Learning human rewards by inferring their latent in-
telligence levels in multi-agent games: A theory-of-mind approach with application to driv-
ing data,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2021, pp. 4560–4567.

[177] C. Fiedler, C. W. Scherer, and S. Trimpe, “Practical and rigorous uncertainty bounds for
gaussian process regression,” in Proceedings of the AAAI conference on artificial intelli-
gence, vol. 35, no. 8, 2021, pp. 7439–7447.

[178] H. Peng, S. Zhang, J. K. Lenneman, and E. Pulver, “Roadmanship systems and methods,”
Sep. 29 2022, uS Patent App. 17/210,038.

136

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Abstract
	Introduction
	Background and Motivation
	Literature Review
	Naturalistic Field Operational Testing
	Scenario-based Safety Evaluation
	Other Types of Evaluation Methods

	HAV Evaluation Problem Formulation
	Development Testing v.s. Acceptance Testing
	ABC Test
	The Decomposition of Scenario-based Evaluation Procedure
	Scenario Categorization

	Contributions
	Outline of the Dissertation

	Safety Evaluation for Reactive Scenarios
	Problem Formulation
	Model of the Pedestrian Crossing Scenario
	Literature Review
	Collection of Pedestrian Crossing Events
	Statistical Model of the Scenario

	Accelerated Evaluation Framework
	Mathematical Tools
	Kinematic Model of the Scenario
	Overview of the Evaluation Framework
	Generating Naturalistic Distribution
	Computing Risk Level Sets
	Test Cases Generation with Importance Sampling

	Simulation Results and Discussions
	Extension to Other Reactive Scenarios
	Scenario Model
	Test Case Generation

	Summary

	Safety Evaluation for Interactive Scenarios
	Motivation and Background
	Problem Formulation
	Review on Interaction-aware Driver Models
	Basic Methodologies for Primary Other Vehicle (POV) Library Construction
	Markov Game formulation
	Level-k Game Formulation
	Social Value Orientation
	Combining Level-k with Social Value Orientation

	POV Library for the Highway Merging Scenario
	Scenario Model
	Level-0 Policy
	POV Behavior Generation Using Reinforcement Learning

	POV Library for the Roundabout Entering Scenario
	Two-layer Framework for POVs in the Roundabout Scenario
	POV Behavior Generation

	Adaptive Test Case Generation
	Problem Formulation
	Adaptive Testing Method Overview
	Adaptive Sampling within Single POV Category
	Test Case Selection
	Sample Allocation between POV Categories

	Simulation Results
	Comparison of Sample Allocation Methods
	Baseline Algorithm for the Vehicle Under Test (VUT)
	Example Interactive Test Cases
	Results of the Interaction-aware Testing

	Summary

	Interaction-aware Corner Case Generation
	Motivation and Background
	Related Work
	Contributions
	Organization

	Problem Formulation
	Nominal Decision Model for the Primary Other Road User (PORU)
	The Surrogate VUT Model
	Definition of Ambiguity

	Solution Method
	MPC Formulation for the Nominal-PORU
	Prediction Model of Surrogate-VUT
	Low-level Intention Estimation
	High-level Intention Estimation
	Estimation of Q-value Function
	Adversarial Interactive PORU Model

	Implementation for two interactive scenarios
	Highway Merging Scenario
	Pedestrian Crossing Scenario

	Simulation Results
	VUT Algorithms
	Adversarial Test Cases
	Implementation of a Corner Case Testing Scheme
	Discussions

	Summary

	Execution of the Behavior Competence Testing
	Motion Synchronization for the POV
	Problem Formulation
	Motion Synchronization for the Cut-in Scenario
	Motion Synchronization for the Unprotected Left Turn Scenario

	Vehicle Longitudinal Dynamics and Control
	Vehicle Longitudinal Model
	Speed Control with Preview Control Method

	Results in Simulation and Field Testing
	Simulation Results for Motion Synchronization
	Field Testing
	ABC Test Demo

	Digital Twin of Mcity Test in CARLA Simulator
	Summary

	Conclusions and Future Work
	Conclusions
	Future Directions

	Bibliography

