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ABSTRACT

The prediction of extreme ship responses remains an important and longstanding

topic in ship hydrodynamics, with continued focus on developing probabilistic methods

based on simplified descriptions of the hydrodynamics that mainly produce qualitative

observations. While simpler hydrodynamic formulations provide insight into extreme

events, their underlying assumptions can prevent accurate quantitative representations

of the mechanisms ultimately responsible for the extreme responses. With this limita-

tion in mind, research must strive to utilize increasingly more accurate hydrodynamic

formulations to provide quantitative observations and statistical characterization of

extreme ship response events. Additionally, previous work in the prediction and

quantification of extreme events has involved simplifications such as only considering

zero speed or constant speed and heading. Consequently, resulting calculations have

largely neglected free-running vessels traveling with 6 degrees-of-freedom (6-DoF),

where surge, sway, and yaw motions, in conjunction with propeller and rudder forces,

contribute to extreme events and failures. The following research develops the CCS

extreme event probabilistic framework capable of both observing and quantifying the

probability of extreme events by integrating the critical wave groups (CWG) extreme

event probabilistic method, fully nonlinear Computational Fluid Dynamics (CFD)

to achieve a high-fidelity representation of the hydrodynamics, and long short-term

memory (LSTM) neural networks to build surrogate models of the CFD predictions

to improve the overall computational efficiency. This framework intentionally accom-

modates free-running vessels as well as various physical dynamical mechanisms that

could lead to extreme events, without the need for intrusive dynamic constraints. As
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a result, this approach provides an avenue forward for high-fidelity extreme event

analysis at a practical computational cost.

This dissertation demonstrates the CCS framework on case studies utilizing a

two-dimensional (2-D) midship section and a three-dimensional (3-D) representation

of the Office of Naval Research Tumblehome (ONRT) hull form. The CCS framework

is first demonstrated with a 2-D midship section of the ONRT in Sea State 7 beam

seas that is only free to heave and roll. The case study implements the CCS framework

with and without the LSTM neural networks to understand both the accuracy of the

framework as well as the accuracy of the surrogate modeling technique for extremes.

The CCS framework is able to produce responses and probability predictions that are

representative of a purely CFD-driven CCS framework with 200 high-fidelity CFD

training simulations, corresponding to seven orders of magnitude of computational cost

savings when compared to a Monte Carlo approach. The other case study implements

the CCS framework for a free-running 3-D ONRT, traveling in stern-quartering Sea

State 7 seas and free to move in all 6-DoF. The case study tests the ability of the CCS

framework to handle arbitrary frames of encounter when enforcing initial conditions as

well as the ability of the LSTM neural networks to represent the extreme 6-DoF vessel

response. Similarly to the 2-D case study, the probability of exceedance calculations

from the surrogate models converge at around 200 training runs and produce LSTM

predictions that are representative of the CFD validation simulations. The 3-D case

study provides a total of three orders of magnitude in computational cost savings

compared to Monte Carlo.

This dissertation develops the CCS framework and an LSTM neural network

surrogate modeling methodology, as well as showcases significant advancement in

the observation and probabilistic quantification of extreme ship response events with

significant reductions in computational cost.
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CHAPTER I

Introduction

Vessels experience a wide range of wave groups throughout their lifetime, some of

which may lead to extreme events such as capsizing, broaching, large loads, etc., that

can cause catastrophic failures and result in the casualty of vessels, equipment and

personnel. Designers typically optimize performance for normal operating conditions,

while at the same time ensuring survival in the most extreme conditions through either

model testing or numerical hydrodynamic simulations to measure quantities such as

the mean or standard deviation of a particular response. However, it is likely that

assessments in random waves will lack the ability to capture the extremes for events

like those in Figure 1.1, and will not deepen the understanding of the mechanisms and

environmental characteristics that trigger extreme responses. Not only is it important

to understand the dynamical behavior of ships due to a discrete wave environment

that induces an extreme event, but it is also important to understand the probability

of the event and others like it that also lead to extremes. Proper understanding and

categorizing of the possible dynamical responses and the corresponding wave sequences

during extreme events is crucial and constitutes one of the most difficult topics in ship

hydrodynamics.
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Figure 1.1: Depiction of significant extreme ship response events.

The observation and probabilistic quantification of extreme ship responses is

challenging due to three main reasons:

1. Stochasticity of the ocean environment and rareness of extreme events

2. Complex nonlinear hydrodynamic behavior of a vessel in large amplitude waves

3. Evaluation costs associated with nonlinear hydrodynamic behavior

The stochastic nature of the ocean environment signifies that a large variety of wave

sequences are possible and the time between extreme events is long. Monte Carlo-type

direct assessments require many realizations of random wave fields to identify extreme

events, and become impractical as the rarity of an event increases. The exposure

time required to observe an extreme event increases exponentially with respect to the

rarity of the response (Ochi , 1998). Figure 1.2 demonstrates a Probability Density

Function (PDF) for a given response φ. The tail region of the PDF is highlighted in

red and is the region of interest for extreme events that is computationally expensive

to quantify through random observations. Probabilistic methods have been developed

to help address this issue by directly targeting and resolving the tail region of the

PDF and are summarized in Section 1.1 in relation to marine dynamics problems.
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Figure 1.2: Tail region of the PDF.

Extreme event evaluations also require a characterization of the dynamical rela-

tionship between the environment and the resulting ship responses. The largest waves

in the environment may not lead to the largest responses. Frequently, a series of

successive waves may produce a more severe response than a single wave. Additionally,

ship responses are highly nonlinear during extreme events for both the ship dynamics

and hydrodynamics, and require advanced numerical hydrodynamic methods to re-

solve this phenomena which increases the computational cost of any extreme event

evaluation. Different numerical hydrodynamic methods are reviewed in Section 1.2.

Due to the nonlinearity of extreme events, they are also influenced by initial

conditions. Figure 1.3 shows an example case study from Lee et al. (2006), where the

response of a floating box barge due to same wave excitation but different initial roll

and roll velocity is investigated with both numerical simulations and experiments. Each

marker in Figure 1.3 corresponds to whether a numerical simulation or experiment

resulted in a capsize or not as a consequence of the initial condition. Figure 1.3

showcases not only that different initial conditions can lead to different responses, but

it could also be the difference between safe operations or a failure event like a capsize.

For extreme event evaluations, both the probabilistic and numerical hydrodynamic

methods must be able to consider the influence of initial conditions. Figure 1.3 also

shows results from experiments that denote capsize and no capsize for virtually the
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same initial conditions, which demonstrates the high level of difficulty in precisely

enforcing initial conditions of interest consistently and repeatedly in an experimental

setting.

factors for heave, heave velocity, and sway velocity that will be
used later in the data presented in Figs. 5 to 9. By means of this
analysis, the six-dimensional space can be represented in two-
dimensional graphical form. It is not truly necessary for each
initial condition to have its own normalization factor. However,
one must consider that various effects alter normalization. Since
the integrity point is defined as the ratio of safe area to capsize
area at a given wave height normalized by the ratio of safe area to
capsize area for zero wave height, normalization will change
based upon the size of the initial condition grid. In that regard
normalization factors are somewhat arbitrary. To not normalize
every initial condition to 1.0 could then make some integrity
curves collapse to a flatter line and thus appear less steep or
dangerous than the effects of variations in other degrees of free-
dom. This could cause one to falsely trivialize the effects of some
degrees of freedom, and so each initial condition curve is normal-
ized to 1.0 with normalization factors also presented graphically.

Consider Fig. 3, where the normalization factor is plotted versus
initial heave displacement. The curve passes through (0,1), indi-
cating that zero heave is defined as the reference condition. If the
model starts with an initial heave of yo/B ! 0.04, the normalization
factor increases to 1.06, indicating that the safe area associated
with that heave initial condition has 6% more “safe” area. Con-
versely, for a heave displacement of yo/B ! −0.04, the integrity
factor decreases to 0.84, indicating that the safe area has decreased
by 16% relative to the zero heave reference condition.

Figure 5 represents a series of sway integrity curves over one
wave length, i.e., 0 ! xo ! ", where xo is the initial sway
displacement. That is, the sway displacement is the only nonroll
initial condition varied; the heave displacement and the heave and
sway velocities are all initially zero. In sway each curve is nor-
malized by the same factor, because a sway of any amount, with
a wave amplitude of zero, yields identical results. Additionally,
the integrity curves were generated with a simple cosine wave
forcing ensuring that xo ! 0 and xo ! " represent identical
curves. This would not be true for the time-varying envelope fit of
the forcing. Figure 5 clearly demonstrates the influence of sway
initial condition on the ultimate state of the vessel. Capsize simu-
lation starting with xo ! 0 to .68" produces the smallest range of
wave amplitudes where the integrity curve is nonzero, while simu-
lations starting with xo ! .74" to " appear to be significantly safer
over a wider incident wave amplitude range. Slight changes in
sway initial position (or conversely in release time, altering one’s
location on the wave profile) can be the difference between cap-
size and safe behavior.

In Fig. 6, it is shown that the size of the grid used for each phase
space makes small differences primarily in the steepness of the
“cliff” (Soliman & Thompson 1991) with which the safe basin
degrades. Unless otherwise noted, the safe basins that result in the
included integrity curves are based on a phase space defined as
ranging from roll angles of −20 to 20 deg and roll velocities of −15
to 15 deg/s with increments of 1 deg and 1 deg/s, respectively. For

Fig. 17 Comparison of numerical and experimental capsize basin boundaries at to−2. Heave and sway displacements and velocities initially set
equal to zero

MARCH 2006 JOURNAL OF SHIP RESEARCH 75

Figure 1.3: Comparison of capsize basin boundaries for same regular wave at different
initial conditions from Lee et al. (2006).

Probabilistic methods aim to reduce the computational cost associated with

the stochastic ocean environment, while numerical hydrodynamic methods provide

observations of the ship response . However, many evaluations with a higher-fidelity

numerical hydrodynamic method can be computationally expensive and render a

complete characterization of extreme responses impractical. Surrogate modeling

techniques can be leveraged to create representative models of the ship’s response to

reduce the overall computational cost. A review of surrogate modeling techniques for

marine dynamics is summarized in Section 1.3.

The objective of this dissertation is to develop a framework capable of both

observing realizations of extreme events and quantifying the probability of their
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occurrence. The framework should consist of a probabilistic method to reduce the cost

of evaluating the environment and quantify the probability of extremes, a numerical

hydrodynamic method for producing observations of the extreme events to not only

understand mechanisms that cause them, but that provides quantitative information

of the extreme responses to the probabilistic calculation, and surrogate modeling

techniques that reduces the computational cost of the entire framework. Additionally,

the framework should be able to handle arbitrary ship responses, be applicable to

free-running vessels, and quantitatively evaluate the extreme response.

1.1 Literature Review: Probabilistic Methods

Probabilistic methods are employed to address the computational cost of Monte

Carlo-type assessments of extreme events. A large body of research has focused on the

probabilistic description of extreme events as a consequence of the random nature of

the ocean environment. Due to their rarity, a Monte Carlo-type direct assessment to

identify extremes is impractical. The time between events is long, and a vast amount of

data is needed to make meaningful assessments. Additionally, the largest waves do not

necessarily equate to the largest responses, therefore, the selected probabilistic method

must be flexible enough to incorporate this phenomena. There are several types of

extreme event probabilistic methods, each with their own limitations. The objective

of this dissertation is to develop a framework that can both observe realizations

of extreme events and quantify the probability of their occurrence. Therefore, a

probabilistic method chosen within this framework must allow for both. In the context

of the framework developed in this dissertation, the invoked probabilistic method must

also consider initial conditions, account for nonlinearity, allow for analysis of arbitrary

responses of free-running vessels and not assume the response fits into any distribution.

Together, these criteria ensure that extreme event evaluations are quantitative and

completed comprehensively, without limiting assumptions. The following sections in
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this chapter provide a brief overview of several popular methodologies and their ability

to accomplish the overarching objectives of this dissertation.

1.1.1 Extrapolation Methods

Historically, the most common approaches for characterizing ship responses have

been extrapolation-type methods, where limited observations of a dynamical response

are extrapolated to regimes beyond the available dataset. An advantage of these

methods is that they can leverage available datasets and are flexible enough to

handle both simulation, experimental, and full-scale datasets (Gaidai et al., 2016).

Additionally, extrapolation methodologies can be applied to arbitrary responses, free-

running vessels and initial conditions are inherently included if sufficiently long time

windows are observed.

A popular concept in the probabilistic characterization of extreme ship response

events is to employ the principle of separation (Belenky et al., 2012). The principle of

separation divides the ship response problem into two sub-problems, a rare and non-

rare sub-problem. The non-rare sub-problem focuses on determining the probabilities

of environmental conditions that precipitate extreme responses and the distribution of

initial conditions. The rare sub-problem assesses whether an extreme response will

occur, given the environmental and initial conditions, as well as the corresponding

probability. The principle of separation is employed in the Peaks Over Threshold (POT)

(Campbell and Belenky , 2010a), which identifies upcrossings of a moderate threshold

for a given response to characterize the non-rare sub-problem and then extrapolates

all the peaks above the prescribed threshold to solve the rare sub-problem. An

alternative to the POT method is the Envelope Peaks Over Threshold (EPOT) method

(Campbell and Belenky , 2010b; Belenky and Campbell , 2011), where the identification

of upcrossings and the fitting of the peaks is performed on a characteristic envelope of

the peaks, rather than the peaks themselves.
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One of the largest disadvantages of extrapolation methods is that the they do not

contain an explicit model of extreme nonlinear motions, thus analysis performed by

these extrapolation methods is limited by the available data. Therefore, any nonlinear

phenomena present outside of the available data is unknown and not incorporated into

the extrapolation explicitly. Another disadvantage of extrapolation methods is that

they are performed a posteriori and do not actually produce observations, but rather

they conduct analysis with existing data. An additional limitation of extrapolation

methods is that they require an assumption of the underlying distribution. Therefore,

different vessels or responses may require different fitting techniques and may not

provide generalized models.

1.1.2 Split-Time Method

The split-time method is a perturbation method first developed in Belenky (1993)

that also employs the principle of separation and divides the extreme ship response

problem into rare and non-rare sub-problems with a threshold. The non-rare sub-

problem for the split-time method is reliant on identifying up-crossings of a moderate

threshold for a response of interest. The rare sub-problem involves the determination of

a perturbation that leads to a failure, thus calculating a distance to danger. Figure 1.4

shows an application of the split-time method for pure loss of stability from Belenky

et al. (2012). In the case of pure loss of stability, the threshold for the non-rare problem

is θm, the time-dependent instantaneous angle of the righting arm (GZ) maximum

(Belenky et al., 2010). Up-crossings of the time-dependent threshold θm are observed

for roll θ, and the perturbation θ̇cr, is the roll velocity θ̇ required to trigger a capsize.

The split-time method contains an explicit model of nonlinearity and can be

generalized for both pure loss of stability (Belenky et al., 2010, 2011), and capsizing

caused by broaching-to (Weems et al., 2020). Additionally, the split-time method is

suitable for free-running vessels because the vessel location in space and time is known
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at the moment a moderate upcrossing occurs, and perturbations can be performed at

that exact location (Weems et al., 2020). The split-time method could, in principle,

be applied to arbitrary response quantities, but would require research into what

the appropriate upcrossing and perturbation quantities are for each new problem.

Additionally, initial conditions are included through the identification of upcrossings,

and the split-time method does not assume the distribution of the responses.

Figure 1.4: Split-Time method for pure loss of stability (Belenky et al., 2012).

The split-time method provides observations of extreme events through the per-

turbations. However, for the case of pure-loss of stability, the threshold up-crossings

are for roll and the perturbation is applied to the roll velocity. This intrusive per-

turbation requires an instantaneous acceleration of the Degrees-of-Freedom (DoF) of

interest, and could lead to an unnatural event that would be challenging to validate
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experimentally. In higher fidelity numerical hydrodynamic simulation tools, it would

be difficult to differentiate whether the perturbation leading to an extreme event is

physical, or purely a numerical instability.

1.1.3 First Order Reliability Method (FORM)

The First Order Reliability Method (FORM) is another probabilistic method that

was popularized for extreme marine dynamics by Jensen (2007) and other subsequent

research. The wave field is considered to be a Gaussian process and can be represented

as:

η (x, t)
J∑
j

= ajσjcos(ωjt− kjx) + bjσjsin(ωjt− kjx) (1.1)

where J is the number of components, aj and bj are uncorrelated standard normal

random variables, ωj is the wave frequency, kj is the wave number, σj =
√
S(ωj)∆ωj,

and S(ω) is the wave spectrum. For a given wave spectrum, the response φ of a

dynamical system at time t excited by Equation 1.1, is dependent on the variables

aj and bj. As illustrated in Figure 1.5, an limit state surface can be defined for a

pre-determined extreme response φ0 as:

G = φ (t|a1, b1, a2, b2, . . . , aJ , bJ)− φ0 = 0 (1.2)

where the goal of FORM is to identify, through iteration, the most probable a∗ and b∗

that leads to the pre-determined extreme response at G = 0, with the limit state surface

linearized at the most probable point. The exceedance region, G > 0, corresponds

to observations that exceed the desired response, the non-exceedance region, G < 0,

denotes observations that are smaller than the desired response the the exceedance

surface, G = 0.
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Figure 1.5: Illustration of FORM exceedance surface (Xu, 2020).

FORM allows for observation of extreme events through iterative search, where

initial conditions are implicitly included in the random wave field description, and

the response of the vessel is allowed to be nonlinear and is not required to fit any

prescribed distribution. However, the objective of FORM is to identify the most

probable wave sequence that will lead to a pre-determined response. Therefore, it

does not attempt to understand the probabilistic space of all wave sequences that

will lead to the pre-determined response, and is not a comprehensive probabilistic

quantification of the extremes. An ensemble of observations is required to understand

the mechanism behind the extremes.

Additionally, the iterative nature of FORM has the potential of being cost pro-

hibitive. If many iterations are required, the cost would scale linearly. Additionally,

the computational cost of a simulation is not only defined by the total Central Pro-

cessing Unit (CPU) time, but also the the time-to-solution. For example, launching

ten simulations in parallel simultaneously would provide a faster time-to-solution than

launching one simulation sequentially for ten iterations. Therefore, a methodology

that does not require iteration would be preferable.
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1.1.4 Design Loads Generator (DLG)

The Design Loads Generator (DLG) developed in Alford (2008); Alford et al.

(2011); Kim (2012) uses a calculated response spectrum to predict the Extreme

Value Distribution (EVD), then generates random non-uniform phases that match the

distribution, and finally maps the phases to a wavemaker that generates the waves

that lead to the response. An advantage of this method is that an infinite number of

events can be generated, which gives an opportunity to realize multiple extreme events

for an arbitrary response. This capability allows engineers to generate short-time

window events that can be realized with experiments or high-fidelity simulations to

observe the physics and mechanisms at play during extreme events.

However, a disadvantage of DLG is that the EVD is built with a response spec-

trum based on a Response Amplitude Operator (RAO), which is inherently a linear

prediction that differs from the nonlinear state involved during an extreme event. All

of the observations in the DLG method are utilized with information from the RAO.

Therefore, the new information from the generated events does not feed back into

the EVD prediction, and all of the probabilistic calculations are completed a priori.

Additionally, the overarching DLG method is based on linear methods, thus inheriting

the Gaussian assumption of the ship’s response.

The DLG is only focused on generating wave sequences that are derived from EVD

and does not explicitly include initial conditions. During an observation, the initial

conditions of the vessel state could be varied prior to encountering the wave sequences

generated by the DLG. However, there is not a mechanism for relating the resulting

observations to relevant statistics. Therefore, the observations do not provide any

quantitative probabilistic information.
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1.1.5 Reduced Order Wave Groups

A general category of probabilistic methods that allow both the observation and

probabilistic quantification of extremes are Reduced Order Wave Groups (ROWG)

methods. There are different ways to parameterize wave groups from existing ob-

servations, but some of the most popular are envelope type-approaches performed

in Cousins and Sapsis (2016); Gong et al. (2020) and shown in Figure 1.6. The

envelope ρ(m) in Figure 1.6 is applied to the wave elevation and allows for a simple

parameterization based on group amplitude A and the group length L.

The objective of any wave parameterization is to reduce the stochastic wave field

down to an exhaustive collection of groups with a corresponding probabilistic map like

that shown in Figure 1.7. Then, the wave groups can be discretized and observations

of the ship response due to a given wave group can be made with experiments or

simulations. The maximum response due to each of these wave groups can then be

related to the probability of each group. With enough observations to cover the entire

probability space, the probability of extremes can be determined.

Figure 1.6: Envelope approach for identifying wave groups (Gong et al., 2020).
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Figure 1.7: PDF for reduced order wave groups from (Gong et al., 2020).

ROWG methods are similar to the DLG method in that they allow for the short

time-window observations of extreme events that are suitable for either experiments

or high-fidelity simulations. However, the ROWG methods do not make any assump-

tion about the ship’s response, and while it could handle arbitrary responses and

nonlinearity, all of the assumptions and simplifications of this method are in the wave

parameterization and its respective probabilities. Additionally, since the probabilities

are calculated directly through observations, initial conditions can be included in the

observations as well (Gong and Pan, 2022a,b). ROWG methods could also be applied

to free-running vessels, but would require care to ensure the wave group is encountered

correctly. The main issue with ROWG methods is that it is difficult to parameterize

wave groups down to an exhaustive set without significant variability within each

group description. The popular parameterization methods like envelope approaches

tend to perform better for narrow-banded spectra (Cousins and Sapsis , 2016), where

the group shape is more distinct but are difficult to implement in a generalized manner

for arbitrary seaways.
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1.1.6 Critical Wave Group (CWG) Method

The Critical Wave Groups (CWG) method was first developed in Themelis and

Spyrou (2007) for regular waves and then further extended to irregular waves and

explored in Anastopoulos et al. (2016); Anastopoulos and Spyrou (2016, 2017, 2019).

The main idea of the CWG method is that the probability of a response exceeding a

specified threshold is equal to all the wave groups and ship states at the moment of

encountering the wave group that lead to an exceedance.

CWG also utilizes the principle of separation, where the non-rare sub-problem

consists of the probability of the different ship states at the moment of encounter, and

the rare sub-problem determines which wave group leads to the threshold exceedence.

Separating the problem in this manner allows for the randomness and probabilities to

be captured in the non-rare sub-problem, and the rare sub-problem is deterministic.

The main advantage of the CWG method is that extreme events are observed as in

the DLG method, but the results contribute to the formation of the extreme response

distribution like a ROWG method. The CWG method is a type of ROWG method

aside from the fact that the objective of the CWG is not to develop a mapping of

all wave groups to a corresponding maximum response. Instead, the CWG method

attempts to identify wave groups that lead to a near-exceedance of a specified threshold

for specified ship states at the moment of encountering the group. These wave groups

that lead to a near exceedance are referred to as a critical group and the CWG makes

an assumption that any group of similar shape with larger wave heights should also

lead to an exceedance. Therefore, for an exhaustive set of wave group shapes, only

observations of the critical wave groups are needed and the probability of all wave

groups larger than the critical group can be combined to calculate probability of

exceedance at a particular threshold.

The CWG method does not make any assumption about ship response distribution,

allows for nonlinearity in the ship response, and can be applied to arbitrary responses

14



as well as free-running vessels, although careful consideration of the different encounter

frames must be taken. The method also includes initial conditions explicitly through

the consideration of the ship state at the moment of encountering the wave group.

Out of all the probabilistic methods reviewed, the CWG method has the greatest

potential of accomplishing the overarching objectives of the desired framework from

the probabilistic perspective. A complete description of the CWG method is described

in detail in Chapter II.

The main drawback of the CWG method is that all of the previous research

consists of case studies with One Degree-of-Freedom (1-DoF) Ordinary Differential

Equation (ODE) models for roll. Only the response due to the wave group is simulated

with the ODE and the ship state at the moment of encountering the wave group can

be varied and prescribed as the initial condition for the ODE. However, impulsively

starting a wave group from rest and prescribing a complete description of the body

and fluid state at the moment of encounter is not physically possible. These issues

must be addressed if the CWG method were to be implemented with higher-fidelity

numerical hydrodynamic methods or experiments. Further discussion on proposed

remedies for this limitation and information on physically realizable initial conditions

can be found in Chapter IV.

1.2 Literature Review: Numerical Hydrodynamics

The hydrodynamics during extreme events are significantly nonlinear and complex,

and require resolution of the different physical phenomena involved. Experiments

provide an avenue to reproduce quantitative evaluations of the ship response. However,

the cost of constructing a physical model and operating a facility to perform the testing

can be prohibitive, especially if a large volume of observations or hull form geometry

variants are desired. Therefore, within a framework for observing and quantifying the

probability of extreme events, numerical hydrodynamic methods provide an avenue for
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producing observations of a given ship’s response during extremes virtually through

simulation.

Numerical hydrodynamic methods have been developed with different levels of

fidelity and computational cost. For inclusion within the framework desired in this

dissertation, a numerical hydrodynamic method is required to resolve the the different

phenomena in Figure 1.8 for a free-running vessel. The forces acting on the hull

include the hydrodynamic radiation and diffraction, the hydrostatic restoring, the

wave excitation, circulatory lift and cross-flow drag, the wind, and the contributions

from the various appendages. To achieve quantitative evaluations of extreme events,

the outlined forces illustrated in Figure 1.8 must be considered with as little empirical

modeling as possible, but at a reasonable computational cost.

The following sections in this chapter provide a brief overview of several numerical

hydrodynamic methodologies and their ability to accomplish the overarching objectives

of this dissertation. These methods range from low-fidelity (computationally fast

and less accurate) to high-fidelity (computationally slow, but more accurate), as well

as medium-fidelity methods that provide a balance between computational cost and

accuracy.

Figure 1.8: Illustration of the ship maneuvering in waves from Belknap and Reed
(2019).
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1.2.1 Low-Fidelity

Low-fidelity numerical hydrodynamic tools have the advantage of being computa-

tionally inexpensive, allowing for faster evaluations, which enables longer exposure

observations of the dynamical response of a vessel. Historically, the probabilistic meth-

ods outlined in Section 1.1 are implemented with low-fidelity numerical hydrodynamic

simulation tools due to their computational efficiency. Popular low-fidelity methods

in the field of extreme ship response probabilistic methods are typically ODE type

models. An example of a prototypical ODE model for roll from Kogiso and Murotsu

(2018); Paroka and Umeda (2006) is:

(Ixx + Axx)θ̈ +D(θ̇) + ∆GZ(θ) = Mwind(t) +Mwave(t) (1.3)

where θ(t) is the roll angle of the ship, Ixx is mass moment of inertia of the ship, Axx

is added mass, D(θ̇) is the roll damping moment, ∆ is the displacement, GZ(θ̇) is the

righting arm, Mwind(t) is the wind-induced moment, and Mwave(t) is the wave-induced

moment. Equation 1.3 and others like it only consider roll and each of the individual

terms require modeling. Nonlinearity and complicated relationships can be included

in an ODE model like Equation 1.3. However, the resulting formulation will never be

able to represent the complex phenomena of a ship traveling through large-amplitude

waves and the forces illustrated in Figure 1.8 quantitatively and with high-accuracy.

Another popular low-fidelity numerical hydrodynamic method is the volume-based

approach from Weems and Wundrow (2013) that developed the simulation tool called

SimpleCode. The dominant forces present when a ship is traveling through large

amplitude waves are the nonlinear hydrostatic restoring and Froude-Krylov (forcing

due to the undisturbed wave impact) forces, which are typically solved through a

pressure integration over the instantaneous wetted surface, and can be computationally

intensive. The volume-based approach uses Gauss’s theorem to relate the pressure
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integration over the wetted surface to the instantaneously submerged volume. The

volume and volume moments are interpolated from pre-computed Bonjean curves and

corrected for roll and wave slope as demonstrated in Figure 1.9 from Weems and

Wundrow (2013). The conversion to this volume-based methodology allows for a 2,000

to 5,000 times increase in speed, and is able to maintain an accurate representation of

one of the dominant excitation forces for extremes. The main hurdle with the volume-

based methodology is that the other forces in Figure 1.8 all still require empirical

models, and more advanced empirical models may interfere with the computational

efficiency that makes the method favorable. Volume-based approaches are an upgrade

from traditional ODE models, but are still lack accuracy for quantitative observations

of extreme events.

Figure 1.9: Station offsets and incident wave intersection points (Weems and Wundrow ,
2013).

All of the low-fidelity methodologies provide a critical role in the development and

testing of probabilistic methods. However, their formulation renders them qualitative

and they are inadequate for developing realistic observations of extreme events or

calculating the probability of their occurrence.

18



1.2.2 Medium-Fidelity

Medium-fidelity numerical hydrodynamic methods in this dissertation refer to

potential flow methods that are typically the most popular approaches for general

seakeeping evaluations. Reed and Beck (2016) provides a comprehensive overview

of potential flow approaches, as well as previous and present developments. The

approaches solve the wave-body interaction problem and are able to calculate the

hydrodynamic perturbation, hydrostatic restoring and Froude-Krylov forces, either

over the mean wetted surface (body-linear), or over the instantaneous wetted surface

(body-nonlinear). Potential flow methods are inviscid and require empirical models to

account for any viscosity-related forces. There are several approaches that fall within

the category of potential flow methods for large amplitude ship motion. One such

approach is the Three-Dimensional (3-D) Boundary Element Methods (BEM) (Lin

and Yue, 1990, 1993; Shin et al., 2003), where a 3-D perturbation velocity potential is

computed by solving an initial boundary value problem with a potential flow BEM,

and then Bernoulli’s equation to compute the hull pressure distribution including the

second-order terms. The Large Amplitude Motion Program (LAMP) (Shin et al., 2003)

is one example of a simulation tool that applies BEM on the mean wetted surface and

hydrostatic restoring and Froude-Krylov forces on the instantaneous wetted surface

to achieve a blended calculation. An alternative to the 3-D BEM is a body-exact

strip-theory approach (Bandyk , 2009; Belknap and Reed , 2019), where impulsive and

wave-memory problems are solved on individual Two-Dimensional (2-D) strips at

every time step. Performing the evaluations at each 2-D strip allows for reduction in

computational cost.

Medium-fidelity potential flow methods provide a more accurate alternative to

the low-fidelity methods, but at an increased computational cost corresponding to

real-time computations (Belknap and Reed , 2019). However, the medium-fidelity

methods still require empirical models to solve the other forces outlined in Figure 1.8.
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In particular, green water is not captured by the potential flow methods and requires

supplemental modeling, but can play a large role in the overall response of the ship

during extremes. Even with empirical modeling that accounts for water accumulating

on the deck, cases with significant green water like those in Figure 1.1 will never be

fully captured quantitatively when employing typical medium-fidelity potential flow

methods that are considered in seakeeping evaluations. The phenomena experienced

during various extreme events can be strongly nonlinear, complex, and violent, and

the hydrodynamic tools may not provide quantitative representations of these physics

during extremes, especially for a free-running vessel where the propeller and rudder

forces must also be considered.

1.2.3 High-Fidelity

In the context of this dissertation, higher-fidelity numerical hydrodynamic methods

correspond to Computational Fluid Dynamics (CFD) approaches such as Unsteady

Reynolds-averaged Navier-Stokes (URANS). URANS can provide a more complete

analysis than the low and medium-fidelity methods for extreme events and the various

forces that dominate the response of the vessel. Unlike the medium-fidelity potential

flow methods, URANS methods are not inviscid and provide an avenue forward for

a full flow-field description of extreme events that allows for the characterization

of all the necessary forces outlined in Figure 1.8. URANS has been increasingly

applied to ship hydrodynamics problems in recent years, including simulations of

extreme ship responses. The research of Hosseini (2009) and Mousaviraad (2010)

demonstrated the ways in which CFD tools can be implemented to model extreme

behaviors such as capsize and broaching of free-running vessels qualitatively. Other

research has explored the use of CFD in probabilistic methods for extremes. Filip

et al. (2020) and Xu et al. (2020) utilized CFD to simulate extreme events produced by

the DLG for a fixed platform and an Office of Naval Research Tumblehome (ONRT)
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hull traveling at constant speed in stern-quartering seas, while Knight et al. (2020)

employed CFD with DLG to predict the extremes of a self-propelled ONRT hull in

head seas. However, these methods only produced observations of the extremes and

did not focus on quantifying them statistically due to the limitations of DLG. Of the

reviewed numerical hydrodynamic methods, URANS provides the most potential of

accomplishing the overarching objectives of the current research from the perspective

of actually observing the extreme events with little empiricism. The main drawback of

URANS is the computational cost of the methodology, which requires targeted short

time-window realizations to be practical. For one hour of of full-scale simulated time,

the estimated required computational cost in CPU hours is around one second for

low-fidelity methods, one hour for medium-fidelity, and one million for high-fidelity

(Serani et al., 2021). Additionally, the computational cost of a URANS simulation is

dependent on the High-Performance Computing (HPC) system, the specific software,

and computational schemes, as well number of cells in the considered computational

mesh which dictates the breadth of calculations required at each time-step. Therefore,

simulation of extremes with URANS should only consider short time window events

like the 45 deg roll event depicted in Figure 1.10, where each simulation directly

impacts the probability calculation.

Figure 1.10: URANS observation of a 45 deg roll event.
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1.3 Literature Review: Surrogate Modeling

As with many complex phenomena, accurate and quantitative predictions of ship

responses in large waves are computationally expensive with advanced numerical

hydrodynamic methods. Surrogate modeling techniques attempt to create models

based off a limited set of data that can then be used to provide a wider range of

predictions at a fraction of the computational cost of the numerical hydrodynamic

tools. The need for surrogate models becomes especially important when predictions

are being made with higher fidelity URANS methods discussed in Section 1.2.

The computational expense of evaluating extreme events can be broken into an

observation cost and a quantification cost. The observation cost is that of a single

observation and the quantification cost is the number of events required to calculate the

relevant statistics. A quantification-cost driven framework requires a statistics-focused

surrogate modeling technique, while an observation-focused cost-driven framework

requires a prediction-focused methodology. The following sections in this chapter

provide a brief overview of the various relevant surrogate modeling techniques for ship

dynamics and their ability to meet the overarching objectives of this dissertation.

1.3.1 Statistics-Focused Surrogates

A statistics-focused surrogate methodology addresses the quantification cost by

calculating the overall statistics of interest for a particular dynamical system. One

example of a statistics-focused surrogate methodology is the research of Schirmann

et al. (2020), where predictions of the heave, pitch, and roll standard deviation from a

low-fidelity numerical hydrodynamic tool are corrected with full-scale data. A popular

statistics-focused surrogate technique that has been implemented for extreme marine

dynamics is the concept of sequential sampling with an ROWG method. A ROWG

probabilistic method requires a map of the maximum response of a vessel with respect

to a specific parameterized wave group. The evaluation of this mapping with sufficient
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resolution can be computationally expensive, thus a sequential sampling methodology

attempts to develop a surrogate model of this mapping, typically through Gaussian

Process Regression (GPR) (Gong et al., 2020; Mohamad and Sapsis, 2018; Sapsis,

2021).

Figure 1.11 from Gong et al. (2020) shows an example of sequential sampling

in practice with an ROWG method. Figure 1.11a demonstrates a probability dis-

tribution with respect to the non-dimensional wave group amplitude A/Hs and the

non-dimensional wave group length L/Lp, where the different sample points are shown

throughout the space.

In Gong et al. (2020), six initial random sample points are selected, observations

of the wave groups that correspond to those points are made, and a GPR model is

constructed. GPR models naturally produce an estimate of the uncertainty. Therefore,

the predictions and uncertainty in the model can be considered to select sample points

for the next sequence in areas where the model has the largest uncertainty and an

extreme event is likely. The objective function considered in Gong et al. (2020) is

described by:

Q(θ∗) =

∞∫
0

| p̂+
n+1(r;θ∗)− p̂−n+1(r;θ∗) | rsdr (1.4)

where r is the roll angle, θ∗, is the wave group parameter (A,L), s is a tunable

parameter that targets different portions of the PDF tail, p̂+
n+1(r;θ∗) and p̂−n+1(r;θ∗) are

uncertainty bands (one standard deviation) on the probability distribution p̂n+1(r;θ∗)

that is calculated from the group-maximum to group property mapping developed

from the GPR model. Optimizing Equation 1.4 provides an estimate of the next

best sample to produce an observation and update the GPR model. This procedure

of predicting the next best sample to produce an observation for and updating the

GPR is completed sequentially until the probability distribution p̂n+1(r) converges as

shown in Figure 1.11b, where 18 sequential samples pseq18 (r) is compared to the actual
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distribution pe(r) and 126 random samples pran126 .

(a) Sampling (b) PDF

Figure 1.11: Construction of PDF through sequential and random sampling from
Gong et al. (2020).

A methodology like sequential sampling is efficient and is capable of producing

the underlying distribution of interest with few observations. The GPR and utilizing

uncertainty-based sampling is a key aspect of the methodology and greatly accelerates

the convergence of the surrogate model with limited computational cost. However,

sequentially sampling has drawbacks that are similar to the probabilistic methodology

FORM. Producing observations sequentially introduces an increase in your time-to-

solution (Filip et al., 2014) because all of the simulations must be performed serially,

and they cannot be launched in parallel. Although the overall computational cost may

be small, the time-to-solution for a sequential sampling with high-fidelity numerical

hydrodynamic methods is large. Generally, although statistics-focused techniques

have been shown to be useful and accurate, a major limitation in the context of this

dissertation’s objectives is that they do not retain the underlying temporal response

and lose the ability to understand the mechanisms that trigger an extreme event.

Therefore, they would only be able to satisfy the probabilistic quantification pursuit

of the desired framework but not the observation aspects.
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1.3.2 Prediction-Focused Surrogates

A prediction-focused methodology builds surrogate models that focus on reducing

the computational cost per event by building a surrogate through System Identification

(SI), as shown in Figure 1.12, to provide temporal predictions that are representative

of the numerical hydrodynamic method. Unlike a statistics-focused methodology, a

prediction-focused surrogate model retains the temporal response information required

to understand how different DoFs interact and the mechanisms that trigger an extreme.

In recent years, neural networks and Long Short-Term Memory (LSTM) neural

networks in particular, have increased in popularity for system identification of ship

responses as well as for marine dynamics in general. Xu (2020) produced several case

studies with a methodology developed with LSTM neural networks for different marine

dynamics problems such as a nonlinear wave propagation, nonlinear ship roll described

by an ODE, a sloshing tank, and a simplified floating object in irregular waves with

URANS. Additionally, del Águila Ferrandis et al. (2021) utilized standard Recursive

Neural Networks (RNN), LSTM, and Gated Recurrent Units (GRU) architectures

to represent the Three Degrees-of-Freedom (3-DoF) URANS predicted response of a

vessel at constant speed and heading in random irregular waves.

Figure 1.12: System identification flow chart from Xu (2020).
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Xu (2020) and del Águila Ferrandis et al. (2021) both consider simplified cases

of ship motion at either zero speed or constant speed and heading. Therefore, the

exact path of the ship was known and the wave excitation along this path was utilized

as an input into the surrogate model, while the output was the response of the

vessel. D’Agostino et al. (2022) cast more emphasis on forecasting than solely system

identification and utilized previous time steps of wave elevation and response quantities

to forecast into the future for a free-running vessel in random irregular waves. The

predictions seem to perform fairly well for the cases demonstrated in D’Agostino et al.

(2022) but can only predict one or two waves into the future. A short-term forecast, as

shown in Figure 1.13, in an extreme event framework would require multiple forecasts

into the future, utilizing previous predictions as inputs, to produce a prediction with

enough exposure time to realize a wave environment that leads to an extreme. With

each sequential model prediction, the error from the previous prediction has the

possibility of compounding and causing erroneous results.

Out of all the surrogate modeling methods reviewed, the LSTM neural network

method has the most potential of accomplishing the overarching objectives of this

dissertation when creating surrogate models for nonlinear ship dynamics. After

training, LSTM neural networks allow for highly computationally efficient predictions

of the temporal response that helps formulate the extreme statistics, while maintaining

the ability to understand the mechanisms behind them. However, the previous research

reflects few examples of application to free-running vessels and extreme events in

general. Typical case studies have focused on simplified problems in random wave

fields. If LSTM neural networks are to be incorporated into a framework with a

probabilistic method and numerical hydrodynamic method, the resulting modeling

methodology must be able to handle any extreme response for free-running vessels, as

well as arbitrary operating and environmental conditions.
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Figure 1.13: Examples of forecasts with different neural network architectures from
D’Agostino et al. (2022).

1.4 Overview of Thesis

A large volume of critical research has been produced in the areas of extreme

probabilistic methods, numerical hydrodynamic simulation approaches, and surrogate

modeling techniques for ship responses in waves. Sections 1.1 through 1.3 review some

of the most pertinent methods to the extreme ship response problem. Individually,

none of the research areas alone can produce a quantitative analysis of extreme events

with high fidelity. Although significant progress has been made in each area, they

have historically been developed and researched independently of one another, with

little interaction between the state-of-the-art methods in each area. Recent research

has resulted in the incorporation of surrogate models in probabilistic methods and

numerical hydrodynamic methods separately. However, simulations of ship responses
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in waves with higher-fidelity numerical hydrodynamic methods have typically only

considered simplified and canonical cases and have not been fully immersed into

a probabilistic method for free-running vessels. This disconnect has created a gap

in the literature of a framework capable of addressing all of the challenges of the

extreme ship response problem, and allows for the efficient observation and probabilistic

quantification of arbitrary extreme ship response events. Of the reviewed literature, the

CWG probabilistic method, CFD (more specifically URANS) numerical hydrodynamic

methods, and LSTM neural networks for surrogate modeling, provide the greatest

potential to perform high fidelity observations of extreme events and quantify their

probability.

This dissertation develops the CCS framework which utilizes the CWG proba-

bilistic method for generating wave group descriptions and handling the probability

calculations, CFD which produces observations of extreme events through simulation,

and LSTM neural networks to develop a Surrogate model of the CFD predictions to

reduce the overall computational cost of the framework. In their current state, none

of the methodologies explored are capable of combining into a framework immediately

and require modification and advancement prior to their integration. The CWG

method has only been implemented with 1-DoF ODE models of the ship response,

where the encounter condition can be prescribed as an initial condition and the wave

groups are not physically realizable. CFD methods are computationally expensive

and require simulations be short to reduce the cost but long enough to generate waves

in both time and space to observe the generated extreme events. Additionally, there

are not any instances of LSTM neural networks or other prediction-focused surrogate

modeling techniques producing models that are accurate enough to predict extreme

events for free-running vessels traveling in large-amplitude waves.

This dissertation expands upon the author’s published research that shape the

foundation of the developed methodologies (Xu et al., 2021; Silva and Maki , 2021a,b,
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2022b,a, 2023; Silva et al., 2021, 2022; Knight et al., 2022). Complete descriptions of

each methodology, technique, and case study developed in the previous publications

by the author are included and expounded upon in this dissertation for completeness.

Chapter I gives an overview of the extreme ship response problem and relative liter-

ature associated with it. The literature review is broken into the areas of probabilistic

methods, numerical hydrodynamics, and surrogate modeling techniques. Chapter II

provides a detailed description of the CWG method in the context of this dissertation.

This chapter details how the probability of exceedance problem is formulated, the

way in which wave groups are constructed, and how the methodology is practically

implemented. Chapter III provides an overview of the CFD solver and methodology

considered in this dissertation for the case studies. The chapter details the boundary

conditions, the wave generation methodology, and the propeller and rudder models

that are employed to produce free-running simulations.

Both Chapter IV and V describe critical components of the CCS framework.

Chapter IV gives an overview of initial conditions and how to implement and enforce

them practically within an extreme ship response framework, using either high-fidelity

numerical hydrodynamic tools or experiments. The chapter introduces the idea of

the natural initial condition which is fundamental in the implementation of the CWG

method with CFD. Additionally, Chapter IV provides a case study demonstrating

how uncertainty in the enforcement of initial conditions can be quantified within the

CCS framework. Chapter V describes LSTM neural networks in more detail and

gives an overview of an SI methodology developed in this dissertation to represent the

Six Degrees-of-Freedom (6-DoF) response of a free-running vessel in large-amplitude

waves. This chapter also provides several case studies demonstrating the ability

of the methodology to represent the 6-DoF response in random irregular waves for

course-keeping, turning circles, as well as multiple speeds, headings, and sea states.

Chapter VI describes the CCS framework developed in this dissertation. The
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chapter details how the CWG method, CFD, and LSTM neural networks are combined

and the ways in which they work together to produce observations of extreme events

and quantify the probability of their occurrence.

Chapter VII implements CCS framework and details a case study for a 2-D midship

section of the ONRT in Sea State 7 beam seas that is only free to heave and roll. The

case study presents an implementation of the CCS framework with and without the

LSTM neural networks to understand both the accuracy of the framework as well as

the accuracy of the surrogate modeling technique for extremes. Example observation

time-history predictions, the extreme statistics, and the computational cost of the

framework are discussed for the case study.

Chapter VIII extends the case study in Chapter VII to a free-running a 3-D ONRT

in Sea State 7, traveling in stern-quartering seas and free in all 6-DoF. The case study

tests the ability of the CCS framework to handle arbitrary frames of encounter when

enforcing initial conditions as well as the ability of the LSTM neural networks to

represent the 6-DoF vessel response. Finally, Chapter IX concludes the dissertation,

discusses its specific contributions, and provides suggestions for future opportunities

of expansion.

Throughout the dissertation, the primary focus is aimed at producing a framework

that can provide quantitative observations of the extremes and quantify the probability

of their occurrence. An additional focus will be placed on reducing the overall

computational cost of the framework. Striking this balance between accuracy and cost

is a crucial consideration that is a major theme throughout the dissertation.
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CHAPTER II

Critical Wave Group (CWG) Method

The CWG method is a probabilistic framework for observing and quantifying

extreme ship response events that was first developed for regular waves in Themelis

and Spyrou (2007) and later extended to irregular waves in Anastopoulos et al. (2016);

Anastopoulos and Spyrou (2016, 2017, 2019). This dissertation relies heavily on

the probabilistic description and wave group construction techniques presented in

Anastopoulos and Spyrou (2019) and this chapter will describe the CWG method as it

is implemented within the developed CCS framework.

2.1 Probability of Exceedance

The CWG method is concerned with the calculation of the probability that a

given response φ exceeds a threshold φcrit. Due to the randomness of the ocean and

the larger number of waves a vessel will experience throughout its lifetime. The

CWG method assumes that a given ship response φ is a function of the wave group

that causes an external excitation on the ship, and the motion state of the vessel

at the moment the wave group is encountered, referred herein as the encounter

condition, but also sometimes referred to as the initial condition. For sample spaces of

arbitrary parameterized wave groups, G, and encounter conditions, E, a probability
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of exceedance can be generally defined as:

p [φ > φcrit] =

∫
1Θ(g,e)>φcritfG,E (g, e) dg de (2.1)

where fG,E (g, e) is the joint PDF of wave groups and encounter conditions, Θ is

a mapping describing the absolute maximum response for a given wave group and

encounter condition (φ = Θ (G,E)), and 1Θ(g,e)>φcrit is an indicator function that

denotes a result of one when a particular wave group/encounter condition pair exceeds

a given threshold, and an output of zero when it does not. To evaluate Equation 2.1,

simulations or experiments of the ship response due to different wave groups and

encounter conditions are needed to develop the mapping Θ. However, the stochastic

nature of the ocean and the infinite possible combinations of wave groups and encounter

conditions renders a full description of Θ to be expensive and akin to a Monte Carlo-

type approach. Therefore, the CWG method focuses on defining the boundary created

by the indicator function in Equation 2.1. The corresponding wave groups and

encounter conditions along this indicator function boundary lead to responses that

cause a near-exceedance of the specified response threshold. These wave groups are

referred to as the critical wave groups.

Equation 2.1 is general and does not make any assumption about the shape of the

wave groups or the nature of the encounter conditions. However, if the wave groups

are parameterized in such a way that their shape is similar with time and only the

height of the waves in the groups is varied, then an assumption can be made that any

wave group of similar shape that is larger than the critical wave group for a particular

encounter condition will also lead to an exceedance. Figure 2.1 shows an example of a

normalized wave elevation time-history η/Hs and the corresponding response φ/φcrit

for wave groups with the same shape that starts at dimensionless time t/Tp = 0. Hs

and Tp correspond to the significant wave height and peak modal period of the wave
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field, respectively. By prescribing the same encounter condition and increasing the

height of the waves in the wave groups, a critical wave group can be determined that

leads to a near exceedance. Proper identification of the critical wave groups allows for

Equation 2.1 to be evaluated without a complete description of Θ, thus reducing the

computational cost of the probability calculations.

0 1 2 3
t / Tp

1.0

0.5

0.0

0.5

1.0

 / 
H

s

(a) Wave Groups

0 1 2 3
t / Tp

1.0

0.5

0.0

0.5

1.0

 / 
cr

it

Wave Groups Critical Wave Group Threshold

(b) Response

Figure 2.1: Identification of a critical wave group for a given set of wave groups with
similar shapes.

In order to evaluate Equation (2.1) practically, the wave groups must be param-

eterized to take advantage of the concept of critical wave groups. If wave groups

are parameterized by an arbitrary shaping parameter q and encounter conditions eck,

Equation 2.1 can be rewritten as:

p [φ > φcrit] =
∑
k

p

[⋃
q

wgk,q, eck

]
(2.2)

where eck is the kth encounter condition, and wgk,q are all the wave groups for the kth

encounter condition and qth wave group shape that lead to the response exceeding a

specified threshold. Each of the wave groups in wgk,q are either critical wave groups

or larger than their respective critical groups. Since the wave group shaping q is

arbitrary, there is a possibility of waves and groups that are not mutually exclusive,

such as a single wave being a part of a two-wave group or a two-wave group being a

part of a three-wave group. Therefore, the wave group probabilities in Equation 2.2

are combined with a union, with respect to q.
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To properly evaluate the wave group and encounter condition probabilities sepa-

rately, Equation 2.2 can be written as:

p [φ > φcrit] =
∑
k

p

[⋃
q

wgk,q|eck

]
× p [eck] (2.3)

Equation 2.3 is an example of the principle of separation (Belenky et al., 2012).

p [eck] is the probability of encounter conditions and corresponds to the non-rare

portion of the problem, while p
[⋃

q wgk,q|eck
]

is the rare portion of the problem and

contains the probability of the threshold-exceeding wave groups. Since the wave groups

wgk,q are defined as all the wave groups for the kth encounter condition and qth wave

group shape that lead to the response exceeding a specified threshold, the conditional

relation of eck in Equation 2.3 is not necessary and probability of exceedance can be

further simplified to:

p [φ > φcrit] =
∑
k

p

[⋃
q

wgk,q

]
× p [eck] (2.4)

An important consideration in a practical implementation of the CWG method is a

proper parameterization of the wave groups and the shaping parameter q. Anastopoulos

and Spyrou (2017, 2019) developed the methodology of constructing a set of mutually

exclusive and collectively exhaustive wave groups by classifying wave groups in terms

of their run length j and m wave period groupings, which translates Equation 2.4 to:

p [φ > φcrit] =
∑
k

∑
m

p

[⋃
j

wg
(k)
m,j

]
× p [eck] (2.5)

where wg
(k)
m,j are all the wave groups leading to a threshold exceedance with j waves,

wave periods in the mth wave period range, and the kth encounter condition. To

avoid overlap in wave groups, the union with respect to j remains, but the probability

summation is now with respect to k encounter conditions and m wave period ranges,
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but do not intersect.

To enable the solution of Equation 2.5, Anastopoulos and Spyrou (2017, 2019)

assumed that for sufficiently large response thresholds, the wave groups wg
(k)
m,j were

rare events and statistically independent of one another. With this assumption of

independence, De Morgan’s law can be applied to remove the union with respect to j

and results in the following final parameterized probability of exceedance calculation:

p [φ > φcrit] =
∑
k

∑
m

(
1−

∏
j

(
1− p

[
wg

(k)
m,j

]))
× p [eck] (2.6)

where the probability of exceedance is broken into two main calculations: the probabil-

ity of the kth encounter condition p [eck], and the probability of wave group exceedance

p
[
wg

(k)
m,j

]
, for the mth wave period range, j waves in the group, and the kth encounter

condition.

The probability of encounter conditions can be found through observations of

the vessel response in random waves. In all the previous research with the CWG

method, the response of interest was the roll angle, which was modeled with a 1-DoF

second-order ODE. Therefore, the ship state at the moment of encountering the wave

group was described by the roll and roll velocity. Figure 2.2 represents an example

of several random wave observations of the roll and roll velocity and the associated

joint PDF. Figure 2.2b must be discretized to provide a set of collectively exhaustive

and mutually exclusive encounter conditions for consideration when identifying the

critical wave groups. The probability of each encounter condition is found through

the integration of the PDF for each discrete region corresponding to an evaluated

encounter condition. More discussion on the selection and enforcement of encounter

conditions can be found in Chapters IV and VI.
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Figure 2.2: Example of calculation of probability of encounter conditions.

The probability of wave group exceedance, p
[
wg

(k)
m,j

]
, is the probability of all the

wave groups with a shape defined by the indices m and j that lead to a response

threshold exceedance for the encounter condition k, and can be defined as:

p
[
wg

(k)
m,j

]
= p

[
Hj > h

(k)
cr,j,m,Tj ∈ Tcr,m

]
(2.7)

where the probability of wave group exceedance is equal to the probability that the

heights of each individual wave in a given wave group, Hj, are larger than those of

the critical wave group h
(k)
cr,j,m, and that the wave periods of the given wave group Tj

are within the range Tcr,m of the critical wave group.

2.2 Wave Group Construction

The concept of identifying critical wave groups provides a means for calculating

the extreme probability of ship responses through the evaluation of Equation 2.7, in

particular. However, the parameterization of wave groups by the number of waves

in the group and the wave period range of waves in the group does not provide any

insight into the height of the waves in the group. Kimura (1980) introduced the idea
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that successive wave heights and periods can be modeled as Markov chains. Markov

chains contain a memorylessness property where the future state only depends on the

current state and not anything else that occurred prior to the current state. In the case

of wave successions, it means the attributes of a wave only depend on the attributes

of the waves that directly precede or follow it. The Markov chain wave group model

developed in Kimura (1980) considered wave heights and periods separately and did

not contain any cross-correlation that are present between successive wave heights

and periods. Anastopoulos et al. (2016) improved the Markov chain wave group model

developed in Kimura (1980) in order to create a systematic procedure of constructing

irregular wave groups that match the parameterization needed for Equation 2.7.

Equations 2.8 and 2.9 demonstrate how the period of the most expected successive

wave tn can be calculated based off the current wave height hn−1 and period tn−1, as

well as the conditional PDF (or transition kernel) that represents the relationship

between the succeeding wave period tn, based on the current wave’s height and period.

The integration region Tcr,m limits the prediction of wave period to fall within the wave

period range of interest. The transition kernels and all of the marginal and joint PDFs

required for the wave group portion of the CWG method can be developed through

either observations of the wave field in a purely data-driven manner, or through

spectral methods where parameters are tuned utilizing limited observations of the

wave field and theoretical relationships between successive wave heights and periods

through the use of copulas (Anastopoulos et al., 2016). This dissertation develops all

of the statistical relationships of successive waves through observations of the random

wave field, which Chapter VI describes in further detail.

tn =
1

pTn

∫
Tcr,m

tnfTn|Hn−1,Tn−1 (tn|hn−1, tn−1) dtn (2.8)
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pTn =

∫
Tcr,m

fTn|Hn−1,Tn−1 (tn|hn−1, tn−1) dtn (2.9)

Anastopoulos and Spyrou (2019) introduced the idea of also considering the Markov

chain prediction of wave period in the prediction of the successive wave height in

Equation 2.10. Therefore, the transition kernel now considers the relationship for the

most expected successive wave height hn, based on the Markov chain predicted wave

period tn and the current wave height hn−1, as well as period tn−1.

hn =

∞∫
0

hnfHn|Tn,Hn−1,Tn−1

(
hn|tn, hn−1, tn−1

)
dhn (2.10)

Due to the memorylessness property of Markov chains, each individual wave

prediction only depends on the waves directly preceding or succeeding it. By selecting

the height, Hc, and period, Tc, of the largest wave in a given wave group, the height,

hn, and period, tn, of the most likely preceding and following wave can be determined

from Equations (2.8) through (2.10). The Markov chain assumption dictates that any

wave only depends on the wave that either precedes it or follows it; thus, once waves

are predicted from the largest wave in the group, the next series of waves can be found

from the previous predictions, and so on, to build a full wave group. Therefore, a

wave group can be uniquely described by the Hc, Tc, and j.

The Markov chain procedure produces heights and periods of each wave in a

particular group. However, to evaluate the corresponding ship response to a particular

wave group, those heights and periods must be constructed into a continuous temporal

representation. Figure 2.3 shows an example time-history of a wave group with the

heights and periods predicted by the Markov chains. For each wave in the group, the

crest and trough are assumed to each be half the wave height, and the time derivative

of wave elevation is set to zero at the crest and trough to ensure they are peaks. Also,

the crest and trough occur at the center of the time interval defined by the successive
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zero-crossings, and the zero-crossings occur at instances of half of the current wave

period. This dissertation assumes symmetry between the crest and troughs for each

wave, but extension to nonlinear wave fields in future research should investigate how

to allow for asymmetry between peaks and troughs. With these geometric constraints,

trigonometric interpolation can be performed following the research of Anastopoulos

and Spyrou (2019) and Nathan (1975) to build a continuous time representation of

each wave group. Figure 2.4 provides an example of wave groups with the same Tc

and j, but with a varying Hc, to illustrate how the Markov chain predictions predict

the successive waves. σ in Figure 2.4 corresponds to the standard deviation of the

wave height from random observations.

Tc/2 Tc/2

Hc/2

Hc/2

t

Wave Group
Markov Chain Predictions
Additional Constraints

Figure 2.3: Markov chain construction of wave groups and additional geometric
constraints (figure adapted from Anastopoulos and Spyrou (2016)).
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Figure 2.4: Ensemble of wave groups with the same Tc, j, and Hc = 5σ, 6σ, 7σ, 8σ,
and 9σ.

2.3 Wave Group Probability

The Markov chain predictions provide a methodology for producing a wave group

that can be utilized to predict the corresponding ship response and identify the

critical wave groups. Markov chains can also be considered when evaluating the

probability that a wave group exceeds the critical wave group. For a single wave,

j = 1, Equation 2.7 reduces to:

p
[
wg

(k)
m,1

]
= p

[
H1 > h

(k)
cr,1,m,T1 ∈ Tcr,m

]
= p [H1, T1] (2.11)

where Hi corresponds to the ith wave in the group exceeding the height of the ith wave

in the critical wave group and Ti resides in the region defined by Tcr,m. The notation

of Hi and Ti in Equations 2.12 through 2.14 is intended to simplify the probability

calculations for wave groups with more than one wave. Equation 2.11 corresponds to

the joint probability of the single wave exceeding a critical wave height and the modal

period of the wave being in the range of interest.
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For two consecutive waves, j = 2, Equation 2.11 expands to:

p
[
wg

(k)
m,2

]
= p [H1, H2, T1, T2]

= p [T1, T2|H1, H2]× p [H1, H2]

(2.12)

and increases in complexity for three consecutive waves, j = 3 to:

p
[
wg

(k)
m,3

]
= p [H1, H2, H3, T1, T2, T3]

= p [H3, T3|H1, H2, T1, T2]× p [H1, H2, T1, T2]

= p [H3, T3|H2, T2]× p
[
wg

(k)
m,2

]
=

p [H2, H3, T2, T3]

p [H2, T2]
× p

[
wg

(k)
m,2

]
=

p [T2, T3|H2, H3]

p [H2, T2]
× p [H2, H3]× p

[
wg

(k)
m,2

]
(2.13)

In Equation 2.13, the Markov chain assumption from Anastopoulos and Spyrou

(2019) is employed to simplify the conditional probability by assuming that H3 and

T3 do not depend on H1 and T1. Additionally, in the probability of three consecutive

waves appears the probability of two consecutive waves, and the same observation is

true for larger values of j. Therefore, Equation 2.7 can be generalized to:

p (Hj,Tj) = p (H1, T1)
∏
j=2

p (Tj−1, Tj|Hj−1, Hj) p (Hj−1, Hj)

p (Hj−1, Tj−1)
(2.14)

Following the research of Anastopoulos and Spyrou (2019), Equation 2.7 can be

rewritten as:

p
[
wg

(k)
m,j

]
= p0 ×

j∏
n=2

p
(n)
1 × p

(n)
2

p
(n−1)
01 × p

(n−1)
02

(2.15)

where Equations 2.16 through 2.20 elaborate the calculation of p0, p
(n)
1 , p

(n)
2 , p

(n)
01 , and

p
(n)
02 respectively, and provide a systematic probability calculation for any Markov
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chain wave group with arbitrary j.

p
(n)
1 =

∫
Tcr,m

∫
Tcr,m

fTn,Tn−1|Hn (tn, tn−1|Hn > hcr,n) dtndtn−1 (2.16)

p
(n)
2 =

+∞∫
hcr,n

+∞∫
hcr,n

fHn,Hn−1 (hn, hn−1) dhndhn−1 (2.17)

p
(n)
01 =

∫
Tcr,m

fTn|Hn (tn|Hn > hcr,n) dtn (2.18)

p
(n)
02 =

+∞∫
hcr,n

fHn (hn) dhn (2.19)

p0 = p
(1)
01 × p

(1)
02 (2.20)
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CHAPTER III

Computational Fluid Dynamics (CFD)

This chapter describes the CFD solver utilized throughout the case studies in this

dissertation. The CFD simulations were performed with the open-source toolkit Open-

FOAM® v2006 with customized CFD solvers and libraries developed for simulating

ship responses in nonlinear seaways by the CSHL at The University of Michigan (Filip

et al., 2017; Piro and Maki , 2013). The flow field is described by the incompressible

URANS equations, where the conservation of mass and momentum respectively are:

∇ · u = 0 (3.1)

∂ρu

∂t
+∇ · ρuu = −∇p+ ρg +∇ ·

[
µeff

(
∇u +∇uT

)]
− ρfu (3.2)

where ρ is the fluid density, u is the fluid velocity vector, p is the pressure, g is the

gravity vector, fu is a relaxation source term, and µeff is the effective dynamic viscosity,

which is equal to the sum of the physical viscosity µ, and the eddy viscosity µT . This

dissertation employs a k − ω SST turbulence model (Menter et al., 2003) to solve

for the eddy kinematic viscosity νT , which is then translated to the eddy dynamic

viscosity as µT = ρνT

The two-phase flow in URANS is achieved through a Volume-of-Fluid (VOF)
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method where the water and air are distinguished with a volume-fraction parameter

α, where an α value of one denotes to water, and a value of zero corresponds to air,

and anything greater than zero but less than one is the air-water interface region. The

transport of α in space and time is described by:

∂α

∂t
+ ∇ · uα + ∇ ·w (α (1 − α)) + fα = 0 (3.3)

where w is a compression velocity that acts normal to the air-water interface and

prevents diffusion to maintain a sharp interface and fα is a relaxation source term.

The volume fraction is introduced into Equations 3.1 and 3.2 through the density and

viscosity fields described for the two-phase flow by:

ρ (x, t) = ρwα (x, t) + ρa (1 − α (x, t)) (3.4)

µ (x, t) = µwα (x, t) + µa (1 − α (x, t)) (3.5)

where ρw and ρa are the density of water and air, respectively, and µw and µa are the

dynamic viscosity of water and air, respectively.

A tightly-coupled algorithm is implemented to solve the rigid-body and fluid

equations, where the fluid is acted upon by the body through a no-slip velocity

boundary condition on the moving body, while the fluid provides external forcing

on the body. Within each time step, an explicit acceleration relaxation technique

is applied to ensure that the coupling between the fluid and body stays numerically

stable. Body motion is achieved through an Arbitrary Lagrangian-Eulerian (ALE)

method, where the entire domain translates and rotates with the body motions.
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3.1 Wave Generation

Waves within the OpenFOAM® simulations are generated with the waves2Foam

toolkit (Jacobsen et al., 2012) with a modified version of the solver, waveDyMFoam.

All the waves simulated in CFD for the present dissertation utilized the earth-fixed

irregular wave description:

η (x, t) =
∑
f

afcos (ωf t − kf · x + φf ) (3.6)

where η (x, t) is the instantaneous wave elevation in both space and time, af , ωf , and

φf are Fourier components of amplitude, frequency, and phase, respectively, and kf is

the wavenumber, specified as a vector, to denote direction of the wave components.

The wavenumber kf , comes from the dispersion relation:

ω2
f = gkf tanh(hkf ) (3.7)

where g is acceleration due to gravity and h is the water depth. As h trends toward

infinity for deep water, tanh(hkf ) approaches one and the dispersion relation simplifies

to:

ω2
f = gkf (3.8)

In addition to prescribing the wave description at the boundary, an implicit

relaxation zone approach is also used to maintain wave propagation throughout the

domain and blend the prescribed wave kinematics with the computed fluid solution.

The implicit wave relaxation is imposed through an addition of a source term to the

momentum and volume-fraction equations. For the momentum shown in Equation 3.2

and the volume-fraction transport in Equation 3.3, the relaxation source terms fu and

fα can be described by:

fu =
χ (σ)

∆t
(u− utheory) (3.9)
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fα =
χ (σ)

∆t
(α− αtheory) (3.10)

where u and α are the calculated velocity and volume-fractions fields, respectively,

utheory and αtheory are the theoretical wave velocity and volume-fraction from the

prescribed wave description, χ is a blending function described by Equation 3.11, σ is

a non-dimensional radial coordinate, and ∆t is the time step size.

χ (σ) = 1− exp (σ3.5)− 1

exp (1)− 1
(3.11)

Figure 3.1 shows the cylindrical relaxation zones utilized in this dissertation, where

a value of one for χ near the boundaries corresponds to a purely analytical wave

description and a χ value of zero indicates a purely computational solution in the

interior of the domain.

Figure 3.1: Depiction of the cylindrical relaxation zones and the associated relaxation
weights.

The non-dimensional radial coordinate σ is calculated throughout the domain

with Equation 3.12 to indicate the location of the relaxation zones through an inner

radius ri and outer radius ro for dimensional radial coordinates r. Typical values of ri

46



and ro in terms of the ship’s length between perpendicular (Lpp) are 1.2Lpp and 2Lpp,

respectively (White, 2020). The relaxation scheme described in Equations 3.9 through

3.12 and illustrated in Figure 3.1 allows for large amplitude waves to be generated and

propagated accurately and also ensures that the relaxation techniques are not being

applied too close to the vessel, which would interfere with the fluid-body solution.

σ (r) =
r − ri
ri − ro

for ri < r < ro (3.12)

3.2 Boundary Conditions

Solution of the governing equations described in Equations 3.1 through 3.3, and

the k − ω SST turbulence model, require boundary conditions. Boundary conditions

are required for the velocity u, the dynamic pressure p′, the volume fraction α, the

eddy viscosity νT , the turbulent kinetic energy k, and dissipation rate ω. Table 3.1

lists of all the OpenFOAM® boundary conditions applied in the dissertation with a

short description of each.

The computational domain shown in Figure 3.2 demonstrates how the domain

boundaries are segmented into patches such as the Top patch in yellow, the Inlet in

blue, and the Hull in red, where the Hull patch includes all of the appendages and

relevant vessel geometry.
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Table 3.1: Summary of OpenFOAM® boundary condition terminology.

Name Description

fixedValue
Dirichlet boundary condition that applies a fixed

value to either a scalar or vector field

zeroGradient
Neumann boundary condition where a zero normal

gradient is applied.

inletOutlet
fixedValue is applied to cell faces with flux into
the domain and zeroGradient is applied for cell

faces with flux out of the domain.

pressureInletOutletVelocity

zeroGradient is applied to each velocity
component for all outflow and assigns a fixedValue

velocity based on the flux in the patch-normal
direction. This condition works with the

totalPressure boundary condition.

totalPressure

Applies a dynamic pressure p′ = −1/2ρ|U|2 for
inward flux and p′ = 0 for outward flux and works

with the pressureInletOutletVelocity boundary
condition.

waveAlpha

Prescribes the volume fraction α(x, t) at the
boundary based on an analytical wave elevation

and works with the waveVelocity boundary
condition.

waveVelocity
Prescribes the velocity at the boundary based on
an analytical wave velocity and works with the

waveAlpha boundary condition.

movingWallVelocity
Applies the velocity u on the boundary patch

from the equation of motion solver and enforces a
no-slip condition.

nutkWallFunction
Provides a wall constraint on the turbulent

viscosity νT based on the turbulent kinetic energy
k.

kqRWallFunction
Provides a zeroGradient boundary conditions for

the turbulent kinetic energy k.

omegaWallFunction
Applies a constraint on the specific dissipation

rate ω and turbluence kinetic energy production
contribution G.
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Figure 3.2: Separation of the computational domain boundaries into patches for y ≥ 0.

Table 3.2 summarizes all the boundary conditions for the computational domain,

separated by variables and patches. The Top boundary patch represents the atmo-

sphere and considers the pressureInletOutletVelocity boundary condition for velocity,

inletOutlet for α, totalPressure for p′, and zeroGradient for all the turbulent quanti-

ties. The Inlet is responsible for handling the generation of the waves by prescribing

the wave velocity and elevation at the boundary with waveVelocity and waveAlpha,

respectively, fixedFluxPressure for p′, and inletOutlet for the turbulent quantities. The

final boundary patch is Hull, which corresponds to the entire vessel and all of its

appendages. The no-slip boundary condition of the body is applied to the fluid through

the movingWallVelocity boundary condition, while zeroGradient is enforced for alpha,

fixedFluxPressure is applied to p′, and the different wall functions are applied for the

turbulent quantities.
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Table 3.2: Summary of boundary conditions for each boundary patch in the CFD
simulations.

Variable Top Inlet Hull
U pressureInletOutletVelocity waveVelocity movingWallVelocity
α inletOutlet waveAlpha zeroGradient
p′ totalPressure fixedFluxPressure fixedFluxPressure
νT zeroGradient inletOutlet nutkWallFunction
k zeroGradient inletOutlet kqRWallFunction
ω zeroGradient inletOutlet omegaWallFunction

3.3 Propeller and Rudder Model

CFD-based seakeeping or maneuvering analysis with a discretized propeller and

rudder can be accurate, but is computationally expensive and often requires the

use of overset grids (Shen et al., 2015). The computational expense is due to the

small time and length scales required to resolve the flow around the propellers and

rudders accurately. Body-force propeller models significantly reduce the computational

cost of a free-running CFD simulation, but often apply simplifying assumptions

such as using the open-water propeller curve and neglecting the propeller side-force

(Araki et al., 2012). The side force acting on the propeller can be significant on the

maneuvering and seakeeping motions. The propeller side force contributes to sway

and induces a yaw moment. The propellers operate in the behind condition and

the hull-propeller interaction influences the forces of the propeller. One approach

to maintain the accuracy of using a discretized propeller is to develop a data-driven

propeller model that is trained with CFD simulations of the propeller operating in the

behind condition, as developed by Knight (2021) and implemented for turning-circle

and zig-zag maneuvers in Knight et al. (2022). Knight et al. (2020) demonstrated that

the orbital-wave velocity and the behind condition effects are important to include in

a propeller model for CFD seakeeping analysis in large amplitude waves.

The propeller and rudder model considered in this dissertation were developed and
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implemented in the previous research of Knight et al. (2020); Knight (2021); Knight

et al. (2022); Silva et al. (2022) and is included and described in this dissertation for

completeness. The rudders operate in the wake of the hull, as well as the respective

upstream propeller. When the rudder is discretized, it often requires overset grids

and also that the upstream propeller force and body-force distribution be accurately

modeled, if a propeller model is used. In this dissertation, a data-driven propeller

model is trained with double-body CFD simulations with the propeller operating in

the behind condition, employing the same approach as Knight (2021); Knight et al.

(2022); Silva et al. (2022). The rudder forces are determined with the Whicker and

Fehlner (WF) rudder model (Whicker and Fehlner , 1958). The effects of the hull and

propeller wake on the rudder is modeled similarly to Araki et al. (2012). Wave velocity

effects are accounted for by determining the analytical orbital wave velocity at the

respective instantaneous propeller and rudder locations in the wave field.

The data-driven propeller model determines the axial force coefficient KX in

Equation 3.13 and the side force coefficient KY in Equation 3.14 for each propeller in

terms of the axial force Fx, the side force Fy, the propeller revolution rate n, and the

propeller diameter D.

KX =
Fx

ρn2D4
(3.13)

KY =
Fy

ρn2D4
(3.14)

Eight CFD-based training simulations with the discretized propeller and undeflected

rudder operating in the behind condition are used to develop a regression-based

surrogate model for KX and KY in terms of the advance coefficient J and the oblique

flow angle at the propeller plane βP . The eight training points are stratified in the J-β

space that the vessel is expected to operate in during the free-running maneuver. The
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CFD training simulations are described in Knight et al. (2022) and Knight (2021), in

which the error of the data-driven propeller model is quantified in detail. The training

simulations are performed with a double-body approximation, and unique forward

speeds and drift angles are examined for each sample point. J is a function of the

instantaneous surge velocity of the vessel u, the instantaneous analytical orbital wave

velocity projected into the body frame uw, n, and D as shown by Equation 3.15. βP

is defined by Equation 3.16 and is a function of the instantaneous sway velocity v,

the instantaneous analytical orbital wave velocity projected into the sway degree of

freedom of the body frame vw, the longitudinal distance between the center of gravity

of the vessel and the propeller plane dpx, the instantaneous yaw rate ψ̇, u, and uw.

J =
u− uw
nD

(3.15)

βP = tan−1

(
v − vw − dpxψ̇

u− uw

)
(3.16)

The wave velocities and the yaw rate are set to zero for the training simulations,

which reduces the computational cost of training the model. When the propeller

model is implemented in free-running CFD analysis, the wave velocities and yaw rate

are accounted for. The form of the regression model is denoted in Equations 3.17

and 3.18. For a twin-screw vessel, symmetry can also be assumed to simplify the

training. The CFD training simulations are performed with negative βP , such that

the starboard side is windward and the port side is leeward. During a free-running

CFD simulation, when the sign of βP changes, the side that is treated as windward

and leeward switch, and the direction of the propeller side force changes as described

in Knight (2021). The force in the axial direction and the side force are applied to

the equations of motion, and the body-force is applied uniformly in the swept volume

of each propeller. The yaw moment of the propeller MPz, defined by Equation 3.19, is

52



also applied to the equations of motion. MPz is a function of Fx, dpx, and Fy, as well

as the lateral distance of the propeller from the center of gravity of the vessel dpy.

KX = a1 + a2J + a3J
2 + a4|βP |+ a5β

2
P + a6J |βP | (3.17)

KY = b1 + b2J + b3J
2 + b4|βP |+ b5β

2
P + b6J |βP | (3.18)

MPz = −(Fydpx + Fxdpy) (3.19)

The WF rudder model implementation is performed similarly to Knight et al.

(2022), with the exception that the wave orbital velocity effect is also accounted for,

like in Silva et al. (2022). The rudder force depends upon the induced velocity of the

upstream propeller for each respective rudder as shown by Equations 3.20 through 3.23.

The axial velocity at the rudder plane is described by Equation 3.21, in terms of u, the

wake fraction w, and uw. The lateral velocity at the rudder plane is represented by

Equation 3.22 in terms of v, vw, ψ̇, the straightening coefficient γ, and the longitudinal

distance from the center of gravity to the rudder stock dr. The velocity magnitude at

each rudder is shown in Equation 3.23.

CT =
8KX

πJ2
(3.20)

Ux = u(1− w)− uw (3.21)

Uy = γ(v − vw − drψ̇) (3.22)

uR =

√
(Ux
√

1 + CT )2 + (Uy)2 (3.23)

The angle of attack of the rudder αr, is calculated by Equation 3.24, which is a

function of the rudder angle δ, Uy, Ux, and CT . The WF rudder model (Whicker and
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Fehlner , 1958) is considered to determine the coefficient of lift CL and the coefficient

of drag CD of the rudder. The CL is determined by Equation 3.25, in terms of the

cross-flow drag coefficient CDc = 0.9, the aspect ratio of the rudder Λ, αr, and the

lift curve slope as defined by Equation 3.26. The lift curve slope is determined as a

function of the Oswald efficiency factor ε, the aspect ratio Λ, and the sweep of the

quarter-chord φ. The CD is determined as a function of the minimum drag coefficient

Cdo and the CL. The lift LR and drag DR are calculated as a function of the lateral

surface area of the rudder S, ρ, and UR as shown by Equations 3.28 through 3.29. LR

and DR are used to determine the rudder axial force, side force, and yaw moment

for each rudder. The force is applied to the equations of motion and is uniformly

distributed to the respective rudder zone as a body force.

αr = δ − tan−1

(
Uy

Ux
√

1 + CT

)
(3.24)

CL =

(
∂CL
∂αr

)
αr +

CDc
Λ
α2
r (3.25)

∂CL
∂αr

=
2πεΛ

cos φ
√

Λ2

cos4φ
+ 4 + 1.8

(3.26)

CD = Cdo +
C2
L

πΛε
(3.27)

LR =
1

2
ρU2

RSCL (3.28)

DR =
1

2
ρU2

RSCD (3.29)

A Proportional–Integral–Derivative (PID) controller is implemented for the rudder

motion to maintain heading during course-keeping. Given a desired heading ψd and

the instantaneous yaw ψ and yaw rate ψ̇ of the vessel, a proportional Gp, integral Gi,
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and derivative Gd gain can be prescribed to calculate a rudder angle command with:

δc = Gp(ψd − ψ) +Gi

t∫
0

(ψd − ψ(τ))dτ −Gdψ̇ (3.30)

The propeller and rudder models considered in this dissertation neglect the effects

of emergence above the free-surface. In the case studies described in this dissertation,

propeller emergence does not occur until the extreme event and is a consequence of the

event itself. Therefore, propeller emergence does not play a large role in influencing

the extreme response of the vessel.

55



CHAPTER IV

Initial Conditions

The CWG method provides the most comprehensive means of both observing and

quantifying the probability of extreme events, while CFD can provide high fidelity

predictions of the ship responses in extreme waves. When combined, the CWG method

can construct deterministic wave groups with associated probabilities and then CFD

can simulate the wave groups with different encounter conditions to identify the

critical wave groups that subsequently feed back into the CWG method to calculate

the probability of exceedance at different thresholds. However, previous research with

CWG and other wave group methods have not fully addressed the enforcement of

encounter conditions prior to a sequence of waves of interest. Extreme events can be

strongly nonlinear, and different encounter conditions are expected to influence the

response for a wave group that leads to a large response. Traditionally, this encounter

condition is referred to as the initial condition, which originates from previous research

only considering 1-DoF roll ODE models. In the ODE models, the wave group starts

instantaneously without any preceding wave information, Therefore, the encounter

condition is the initial condition of the ODE.

The primary challenge of implementing CWG with CFD, or experiments, is that

both the encounter state and wave group must be physically realizable and cannot be

impulsively instantiated with initial conditions. With ODE models, the wave group
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can instantaneously start just like the body motion, and does not require any preceding

wave information. This is not physically possible and cannot be reproduced in an

experimental or simulation environment. Wave groups need to be generated from a

wavemaker and propagate in both space and time. When utilizing CFD or experiments,

additional DoF that describe the fluid must also be considered in addition to the

body state. The research of Anastopoulos et al. (2016); Bassler et al. (2019) proposes

a mechanism (see Figure 4.1) to release the ship at a desired encounter condition.

While restraining a model in a desired orientation and then releasing it at a prescribed

time is difficult but possible, releasing the model with a desired velocity is much more

difficult. To arrive at a velocity from rest, acceleration is necessary. The manner

in which the model accelerates will influence the radiation force and wave field, and

hence, influence the hydrodynamic response. The fact that such a release mechanism

requires the selection of an acceleration profile now introduces an additional parameter

that must be selected. It is not clear how to distinguish phenomena associated with

the encounter conditions from that which is caused by the release method of the ship

model. All of these experimental drawbacks also arise in application of the CWG in

CFD. Even though a great deal of control exists within CFD to prescribe encounter

conditions explicitly (like in ODE models), the impact of the acceleration or impulsive

start of the body motion on its subsequent response is of concern.
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(a) Carriage (b) Mechanism

Figure 4.1: Illustration of a proposed initial condition enforcement mechanism from
Anastopoulos et al. (2016).

A free-running vessel requires even more consideration when it pertains to the

enforcement of encounter conditions. Knight et al. (2020) implemented the DLG

methodology for a self-propelled ship in head seas that is fixed in sway, roll, and yaw,

but free in heave and pitch. Surge is constrained to a constant speed up until the

moment the wave group is encountered and then it is released to surge freely. Although

the event is experienced in a self-propelled state, there may be some transients from the

release that are present in the extreme response. Additionally, a 6-DoF example of this

methodology in quartering seas would require surge, sway, and yaw to be constrained

until the moment the wave group is encountered. The consequence of releasing all the

DoF is unknown and does not produce a realistic wave group encounter.

To address this issue, the natural initial condition method is proposed that embeds

the deterministic wave groups produced in the CWG method into an irregular seaway

with a known response referred to as the irregular prelude. The composite wave

system possesses a consistent set of initial conditions for the fluid and body motion

that satisfies the encounter condition at the moment the wave group is encountered

for the CWG method, and provides physically realizable wave trains for the CFD

simulations.
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4.1 Natural Initial Condition

This dissertation proposes a new method for prescribing the encounter conditions

by introducing the idea of a natural initial condition. Natural initial conditions

are achieved by embedding deterministic wave groups into an ensemble of irregular

seaways that will naturally produce different encounter conditions as a ship reaches the

wave group of interest. This methodology avoids the issues associated with explicitly

prescribing initial conditions, and instead allows for the fluid flow and ship responses

to develop naturally. Additionally, prescribing the encounter conditions in this manner

preserves the integrity of the CWG methodology developed for an ODE, while making

the method accessible for higher-fidelity numerical hydrodynamic tools and physical

experiments.

Consider a single realization of a free-running vessel starting from rest and traveling

through a random seaway that evolves in space and time. Throughout the realization,

a specific encounter condition of interest identified for the CWG method occurs at time

te. The waves experienced by the vessel in the encounter frame can be approximated

as the wave elevation function η
(E)
IP (t), which up until time te is referred to as the

irregular prelude. The ship speed Ue = xe/te, can also be estimated based on the ship

traveling a distance of xe in time te. The deterministic wave groups are defined in the

earth-fixed frame with Markov Chains as described in Chapter II, which result in a

wave group elevation time-history at the origin (x, y = 0, 0):

ηWG (t) =
∑
f

agf cos
(
ωgf t + φgf

)
(4.1)

where agf , ωgf , and φgf are the Fourier amplitudes, frequencies, and phases found

through trigonometric interpolation of the Markov chain predictions, as well as the

wave group constraints detailed in Figure 2.3 that describe the wave group. Figure 4.2

shows the wave elevation at the origin described by the Fourier components for the
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wave group, agf , ωgf , and φgf . The Fourier components only correspond to the wave

group. Therefore, the wave group continuously repeats in time.
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Figure 4.2: Representation of deterministic wave group at origin with Fourier compo-
nents.

An estimate of encountering the wave group in a constant moving frame can be

made by utilizing the deep water dispersion relation for the wavenumber, kgf = ω2
gf
/g,

along with Ue to transform the wave group time-history at a single point into a wave

train that repeats in space and time. This modifies Equation 4.1 to describe the wave

group in the estimated encounter frame:

η
(E)
WG (t) =

∑
f

agf cos
(
ωgf t − kgf (cos(µ)Uet) + φgf

)
(4.2)

where µ is the wave heading defined such that 180 deg is head seas, 0 deg is following

seas, and 90 deg is starboard beam seas. Figure 4.3 shows the encountered wave field

as a vessel travels through the origin at t = 0 at constant speed and heading. The

wave group of interest is encountered over a different time-interval due to the forward

speed of the vessel. Like the wave group wave elevation at the origin, the encountered

wave group is repeated in time for the Fourier representation.
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Figure 4.3: Encountered wave elevation traveling through the repeating wave group
wave field with constant speed and heading.

To implement the CWG method with CFD, the deterministic wave group in the

estimated encounter frame η
(E)
WG(t) is embedded into the encountered irregular prelude

η
(E)
IP (t). The encountered wave group η

(E)
WG is shifted by te such that the group starts at

location xe, thus ensuring that the encountered wave group η
(E)
WG(t) will start directly

te. The new composite seaway in the estimated encounter frame Uet is formed with

the blending functions β1 and β2 as:

η
(E)
C (t) = (1− β2)

[
(1− β1)η

(E)
IP (t) + β1η

(E)
WG(t− te)

]
+ β2η

(E)
IP (t) (4.3)

where each blending function is defined as:

β =
1

2

(
1 + tanh

(
t − te
to

))
(4.4)

The functions β1 and β2 correspond to the blending at the start and end of the wave

group, respectively. Figure 4.4 shows the blending process for embedding the wave

group into an irregular wave train to create a single composite wave train. The wave

elevation and time in Figure 4.4 are non-dimensionalized by the standard deviation of
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the height from the specified wave spectrum σ and the period of the largest wave in

the group Tc, respectively.

0 4 8 12 16
5.0
2.5
0.0
2.5
5.0

/
Irregular Prelude, (E)

IP

0 4 8 12 16
t/Tc

0.0

0.5

1.0

Bl
en

di
ng

 F
un

ct
io

n

1- 1

2

0 4 8 12 16
5.0
2.5
0.0
2.5
5.0

Repeat
Wave Group, (E)

WG

0 4 8 12 16
t/Tc

0.0

0.5

1.0
1

1- 2

0 2 4 6 8 10 12 14 16
t/Tc

5.0
2.5
0.0
2.5
5.0

/

Irregular Prelude, (E)
IP

Wave Group, (E)
WG

Composite Wave, (E)
C

Figure 4.4: Formation of a composite wave by embedding a deterministic wave group
into the irregular prelude in the estimated encounter frame.

The two parameters that define the blending function, control the time shift and

time scale of the overlap of the two signals: te and to. The time shift is selected to

be te/Tp = 0.1 from the start or end of the wave group, such that at the start of

the wave group te, 95 % of the signal is the irregular wave train. Here, Tp is the

peak modal period of the selected wave spectrum and is included to provide a time

scale for blending that is specific to the wave environment. Therefore, the magnitude

of blending is dependent on the specified wave spectrum. The sensitivity to these

parameters has not been fully tested, and future research should explore using the

period of the largest wave in the embedded wave group instead, as it would enable

the blending process to be specific to the actual wave group.
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The time scale to is selected with Equation 4.5 where the factor of 0.9 corresponds

to approximately 95 % of the first signal at the start of the interval and 95 % of the

second signal at the end. Equation 4.5 results in a composite wave, where the majority

of the blending process occurs within two time intervals of duration Tp/5. To form the

full composite wave train, to is the same for β1 and β2, while te depends on the start

and end of the wave group. The portion of the composite wave train after the wave

group is not considered when assessing the extreme ship response, but is required for

the wave generation within CFD to ensure that the wave group sequences of interest

are not repeated in the observed simulation time.

to =
Tp

10 · tanh−1(0.9)
(4.5)

The blending procedure outline in Figure 4.4 produces a description of the composite

wave train in the estimated encounter frame η
(E)
C (t). To generate the necessary waves for

CFD, a full spatial and temporal description of the wave field is required. Therefore,

η
(E)
C (t) must be transformed to an earth-fixed frame. In beam to head seas (90-

180 deg/180-270 deg), the transformation is straight forward utilizing the relationship

ωe = ωo −Ψω2
o , where Ψ = cos(µ)Ue/g. With the conversion of the frequencies to the

absolute frame and calculation of the wavenumber through the dispersion relation,

the resulting composite wave train η
(E)
C (x, t) is a function of both space and time, as

is required by CFD. However, in beam to following seas (0-90 deg, 270-360 deg), the

Doppler effect causes the transformation to be multi-valued due to do the movement

of ship relative to the direction of the waves. Figure 4.5 illustrates the 3-to-1 mapping

problem, where under the right conditions, an encounter frequency ωe can correspond

to three separate absolute frequencies ωo. Nielsen (2017) introduced an algorithm

to address this issue. In cases where this multi-valued problem exists, the encounter
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frequency can be mapped to the three separate absolute frequencies. A scale factor is

then applied to the original corresponding amplitude Fourier components, based on a

nominal wave spectrum estimated from the Fourier components in the encounter frame.

This dissertation includes a case study for a 3-D free-running ship in stern-quartering

seas and implements the Nielsen (2017) methodology to address this 3-to-1 mapping

problem.

Δ ! u¼ 0; (1)

∂tðρuÞþ∇ ! ðρuÞuT &∇pþ ρgþ∇ !
!
μeff

!
∇uþ∇uT

""
; (2)

∂tðαÞþ∇ ! ðuαÞþ∇ ! ðW ðαð1& αÞÞÞ¼ 0; (3)

where u is the fluid velocity vector, ρ is the fluid density, μeff¼ μvþ
μt is the effective dynamic viscosity, p is the fluid pressure, g is the
gravity vector, α is the phase fraction of water, andW is the artificial
compressive velocity acting to sharpen the air–water interface. The
turbulent eddy viscosity μt is a function of the turbulence model.
The two-phase flow is modeled using the one-fluid representation
of a multiphase flow where the fluid interface is captured with the
volume-of-fluid method (Hirt & Nichols 1981). The fluid param-
eters within the multiphase domain are functions of the phase
fraction and the individual phase properties:

ρðX ; tÞ¼ ρwαðx; tÞþ ρað1& αðx; tÞÞ; (4)

μðx; tÞ¼ μwαðx; tÞþ μað1& αðx; tÞÞ; (5)

where the subscripts w and a correspond to water and air, re-
spectively. Phase fraction α ¼ 1 denotes pure water, α ¼ 0 rep-
resents pure air, and 0 < α < 1 is a weighted mixture of the two
phases. The air–water interface is defined as α ¼ .5.

The wave environment is generated using the waves2Foam
toolkit (Jacobsen et al. 2012) which uses wave boundary conditions
for the phase fraction variable and the fluid velocity, and wave
relaxation zones. The relaxation zones minimize wave reflection in
the farfield by implicitly weighting the target solution with the
computed nonlinear solution of the phase fraction and fluid velocity
(Jacobsen 2017). The free-surface elevation η0 is represented by
monochromatic waves using the fifth-order Stokes theory (Fenton
1985), and irregular seaways are modeled with a Fourier sum of
wave components. The generation of realistic short-crested seaways
is based on a spreading functionM(μ) that modifies the long-crested
spectrum S(ω),

Sðω; μÞ¼ SðωÞMðμÞ; (6)

MðμÞ¼ 2ð2s&1Þs!ðs& 1Þ!
πð2s& 1Þ! cos2sðμ& μ0Þ; (7)

over the range &π/2 < μ & μ0 < π/2, where μ0 is the main wave
propagation direction with μ¼ 0 corresponding to following seas, s
is the spreading factor, andω is the wave component frequency. The
prescribed irregular spectra are discretized using nonuniformly
distributed intervals to minimize the effects of the repeat period in
the wave elevation signal (Belenky 2011).

Seakeeping in following seas presents a unique challenge in the
identification and generation of the seaway (Lewis 1989). Figure 2
illustrates three distinct regions characteristic of seakeeping in
following seas and the multivalued nature of the 3-to-1 frequency
mapping problem. The waves are encountered at the frequency

ωe ¼ωo &ω2
oψ; (8)

whereωo is the absolute wave frequency andψ¼U/gcosμ. Region I
includes waves whose phase and group speeds in the direction of
ship travel are greater than the speed of the vessel, and thus, they

propagate from the stern to the bow and overtake the ship. Region II
waves are shorter than those in region I, but they are long enough to
have a phase speed that exceeds the ship speed but a group speed
that is slower than the ship. The ship overtakes the shortest waves in
region III. The expression for energy equivalence in both the ab-
solute and encountered domains requires that

SeðωeÞdωe ¼ SoðωoÞdωo; (9)

to conserve the total wave energy (Nielsen 2017). The absolute
spectrum So is then transformed into the encountered spectrum Se
using

SeðωeÞ¼ SoðωoÞ
1

1& 2ωoψ
: (10)

The vessel moves relative to the inertial coordinate system, and the
governing equations are solved using the arbitrary Eulerian–
Lagrangian method. The ship starts from rest and is then accelerated
over a short time to reach the steady-state forward speed. The X axis
is positive toward the bow, the Y axis is positive toward starboard,
and the Z axis is positive downward. The heave η3, roll η4, and pitch
η5 degrees of freedom are solved through the integration of pressure
and viscous forces acting on the hull while the vessel advances at a
constant forward speed. The three–degree-of-freedom motion is
solved using a tightly coupled implicit rigid-bodymotion solver that
uses inertial under-relaxation to ensure numerical stability in the
case of small body mass relative to the fluid added mass. An es-
timate of the added mass modifies both sides of the governing
equation for the rigid-body motion, and iteration between the fluid
and body equations is used to reach the converged solution (Filip
et al. 2017).

The numerical grids are created with the semiautomatic snap-
pyHexMesh utility starting with a base grid consisting of uniform
cells in the proximity of the ship and grid stretching in the farfield.
Regions of refinement allow for clustering of cells to increase the
spatial resolution where necessary, and the resultant hex-dominant

Fig. 2 Relationship between encounter and absolute frequencies.
Black dots show minimum and maximum frequencies of the prescribed

wave spectrum
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Figure 4.5: Relationship between encounter (ωe) and absolute (ωo) frequencies (Xu
et al., 2020)

The natural initial condition method allows for enforcement of the encounter

conditions of interest and generation of the wave group in a natural manner without

intrusive and nonphysical measures or mechanisms (physical or virtual). All of the

necessary information needed for the CFD is contained within the composite wave

train. Figure 4.6 reflects an ensemble of composite waves that possess the same wave

group with different irregular preludes. The time-histories in Figure 4.6 have been

shifted such that the peak of the largest wave in the group occurs at the same time for

the composite wave trains to illustrate the methodology. All of the irregular preludes

must account for the ramping up of the wave generation and the vessel reaching it’s
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target speed. This logic ensures that the vessel will reproduce the previously simulated

results that led to the encounter condition.
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Figure 4.6: Ensemble of various waves with corresponding different irregular preludes
for the same wave group that is shifted in time such that the largest wave in the
group’s peak occurs at the same time.

An added benefit of the natural initial condition method is that a separate set of

irregular wave trains that satisfy the same encounter condition can be determined.

This identification allows for the construction of an ensemble of composite wave trains

that can be studied to further understand sensitivity to encounter conditions. For

instance, if only roll and roll velocity are considered for the encounter condition, but

sway velocity contributes significantly, then irregular preludes with different sway

velocities can be found to assess the importance of sway. Conversely, if unfavorable

encounter conditions are selected such as heave motion and surge velocity when

considering large roll, recognition of unsuitable quantities would be simple. Significant

differences would occur in the ship response for the same encounter condition and

wave group. This aspect of the natural initial condition methodology yields greater

utility with more complicated failure mechanisms like capsizing due to broaching-to,

where the quantities considered for the encounter conditions are not evident.
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CHAPTER V

System Identification with LSTM Neural Networks

This dissertation is focused on both the probabilistic quantification and observation

of extreme ship response events. To reduce the computational cost of implementing

the CWG method with CFD, a prediction-focused surrogate modeling technique is

required in order to retain the temporal response of a vessel, allowing for insight into

the mechanisms behind a particular response. This chapter details the SI modeling

methodology developed to reproduce the 6-DoF response of a free-running vessel in

large amplitude waves with LSTM neural networks.

The overall objective of an SI technique is to develop a model that, given an input,

can produce an output that is representative of the underlying system of interest. In

the case of a causal dynamical system e.g. ship responses in waves), the output is not

only dependent on the external forcing at the current time step, but it also depends

on the history of both the external forcing as well as the state of system. The output

of a discrete dynamical system yt at any time index t can be described by:

yt = f(xt, xt−1, xt−2, · · · ) (5.1)

where f is a mapping function and xt corresponds to the input at time index t.

Equation 5.1 shows that the output state yt not only depends on the current input xt,

but also the previous values (xt−1, xt−2, ...). The overall goal of any surrogate modeling
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technique is to develop the best nonlinear mapping f that describes the system.

5.1 Neural Networks

The developed methodology leverages LSTM neural networks (Hochreiter and

Schmidhuber , 1997), which are an implementation of RNN that attempt to solve

the vanishing gradient problem. The vanishing gradient problem is a consequence of

gradient values in the optimization scheme becoming too small during training, and can

result in the training completely stopping. LSTM neural networks address this issue

through the implementation of different gates that regulate how much information is

transferred between time-steps and how weights are optimized. Figure 5.1 demonstrates

a single LSTM cell and demonstrates how a cell input xt is translated into the cell

output ht through the mathematical operations outlined in Equations 5.2 through 5.7,

where σ(·) is the sigmoid function and ∗ is the elementwise multiplication, while Wf ,

bf , Wi, bi, WC , bC , Wo, and bo are the LSTM parameters to learn from the data.

Figure 5.1: Diagram of an LSTM cell.
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ft = σ(Wf [ht−1, xt]︸ ︷︷ ︸
concatenate

+bf ) (5.2)

it = σ(Wi [ht−1, xt]︸ ︷︷ ︸
concatenate

+bi) (5.3)

C̃t = tanh(WC [ht−1, xt]︸ ︷︷ ︸
concatenate

+bC) (5.4)

Ct = ft ∗ Ct−1 + it ∗ C̃t (5.5)

ot = σ(Wo [ht−1, xt]︸ ︷︷ ︸
concatenate

+bo) (5.6)

ht = ot ∗ tanh(Ct) (5.7)

The singular LSTM cell in Figure 5.1 can extend to multiple cells and layers to build

a deep neural network. Figure 5.2 displays an example neural network architecture

with five LSTM layers, followed by a dense layer. Inputs and outputs are denoted as

xt and yt, respectively, where t is the time step index that ranges from 1 to T . Cn
t and

hnt correspond to state and output of LSTM cell n at time index t. hnt is the output of

the cell but it (along with Ct) are also shared with neighboring cells. The stacking of

LSTM layers allows for the output of the previous layers to be used as the input for the

next layer. Generally, adding layers to the neural network model architecture creates a

greater level of abstraction within the trained model, which helps establish generalized

predictions of input scenarios that are not considered during the model training. The

dense layer in Figure 5.2 employs a linear activation function and receives the last of

the LSTM layers as input, and outputs the final result of the neural network model.

68



Figure 5.2: Diagram of the neural network architecture.

Machine learning and neural networks in particular have gained a tremendous

amount of popularity in recent years and are being implemented across many disciplines

in both academia and industry. Although much focus has been placed on development

of the most accurate models to describe a dataset, knowing when the models are not

applicable can be just as or even more important. Therefore, the quantification of

uncertainty in neural network predictions is a necessity in any of their applications.

This dissertation considers the Monte Carlo Dropout approach developed by Gal and

Ghahramani (2016a,b) to quantify uncertainty. Dropout is a common regularization

technique employed in training neural networks, where a portion of the neurons are

randomly excluded from activation and weight updates while training the model. This

technique, demonstrated in Figure 5.3, helps to prevent the model from over-fitting,

as well as propels the optimization scheme toward a more generalized model capable

of producing accurate predictions outside of the training dataset.
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Figure 5.3: Application of dropout regularization technique.

Gal and Ghahramani (2016a,b) proposed the Monte Carlo dropout approach, where

dropout is also performed during prediction, thus providing an ensemble of predictions.

This ensemble of predictions can then be used to provide uncertainty estimates. In

the context of this dissertation, a dropout layer is added after each LSTM layer to

implement the Monte Carlo dropout methodology. This type of uncertainty estimate

is extremely useful, as it does not require any intrusive modification to the neural

network architecture, other than adding the dropout layers. Previous research with

the Monte Carlo dropout method has demonstrated its effectiveness in providing

larger uncertainty estimates when a model performs a prediction that is outside of

the training dataset. Figure 5.4 shows an example with the Monte Carlo dropout

approach for uncertainty. The observed function in red resides to the left of the dashed

line, while the predictive mean is in black and an uncertainty of plus and minus two

standard deviations is reflected in blue, where each shade represents half of a standard

deviation. With the Monte Carlo dropout approach, the model is able to denote an

area of large uncertainty outside of what was previously observed, indicating a region

where a lower accuracy prediction is more probable. The ability to produce larger

uncertainty estimates for cases where the model is more likely to perform poorly is

desirable in its application to extreme, events as the model uncertainty can propagate
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through the probability calculations to provide uncertainty estimates on the relevant

statistics to inform decisions.

Figure 5.4: Demonstration of Monte Carlo dropout from Gal and Ghahramani (2016a).

5.2 Framework

The majority of the previous research modeling ship responses with neural networks

has typically focused on simpler application such as a 2-D midship sections (Xu et al.,

2021), constant speed and heading (del Águila Ferrandis et al., 2021), or extremely

short time windows (D’Agostino et al., 2022). Xu et al. (2021), which drew inspiration

from Xu (2020), was able to represent the heave and roll of a 2-D midship section that

was constrained in surge, sway, and yaw by developing a relationship between the wave

elevation at the inlet of the URANS computational domain and the motions of the hull.

However, a methodology capable of predicting the response of a free-running vessel

must account for the ship moving in space, and static wave probes are not sufficient

as input into the neural network. Not only must the model learn the resulting ship

motions, but it also must be trained to understand the wave propagation from a static

wave probe to a moving vessel with unknown trajectory.

The primary concept driving the present methodology is that a vessel experiences

wave excitation in the encounter frame-of-reference. Therefore, instantaneous wave

elevation around the hull should serve as the input into the model. However, the

trajectory of the vessel and thus the instantaneous encounter frame, is not known
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a priori and must be estimated. The following procedure describes the proposed

modeling approach and training process:

1. Select K wave probe locations in the initial earth-fixed coordinate frame.

2. Estimate the encounter frame with the surge, sway, and yaw motions from the

training data.

3. Find the instantaneous wave elevation at each wave probe moving with the

estimated encounter frame.

4. Standardize the datasets for each respective wave probe and ship motion DoF.

5. Train the model to develop a relationship between the wave elevation time

histories of the moving wave probes, and the 6-DoF motions of the vessel.

The first step in the training procedure is to select K wave probe locations in the

initial coordinate frame around the hull. The probe locations should be somewhat close

to the hull (e.g. within one wavelength corresponding to the peak modal period of the

waves). Then, the encounter frame is estimated from the surge, sway, and yaw motions

in the training dataset. Figure 5.5 demonstrates an example of estimated encounter

frames developed with a series of training data trajectories from course-keeping and

turning circle simulations. The encounter frame is estimated by averaging the position

of the vessel at every time step, thus accounting for an arbitrary maneuver. The

encounter frame can also be estimated for course-keeping, with the nominal speed and

heading, but would not include any appreciable drift or speed gain/loss that may be

more evident in large amplitude waves.
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(a) Course-keeping (b) Turning Circle

Figure 5.5: Estimation of encounter frame based on training data.

With an estimate of the encounter frame through the mean trajectories observed

in the training data, and a wave definition in the earth-fixed frame, the instantaneous

wave elevation time-histories for a set of K wave probes that move with the estimated

encounter frame can be characterized. Given a wave probe k, the instantaneous

estimated encounter wave elevation ηk (xk, t) can be described by:

ηk (xk, t) =
∑
f

afcos (ωf t − kf · (xE(t) + RE(t)xk) + φf ) (5.8)

where af , ωf , and φf correspond to the amplitude, frequency, and phase of the F wave

Fourier components, kf is a vector describing the wavenumber and direction of each

component, xE(t) is the coordinate location of the estimated encounter frame with

respect to time t, xk is the coordinate location of probe k in the initial earth-fixed
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frame, and RE(t) is a rotation matrix of the mean yaw trajectory described by:

RE(t) =

 cosψE(t) − sinψE(t)

sinψE(t) cosψE(t)

 (5.9)

Equation 5.8 provides a wave elevation time-history of T time steps for probe k

that travels with the estimated encounter frame. Additionally, the wave elevation

in the encounter frame is known for K wave probes around the ship. Thus, for M

different training cases, a 3-D input matrix can be defined as:

X =



x11 x12 · · · x1T

x21 x22 · · · x2T

...
...

...
...

xM1 xM2 · · · xMT


(5.10)

where each entry, xmt =
[
x

(1)
mt, x

(2)
mt, ..., x

(K)
mt

]
, corresponds to all of the wave elevation

values for the K probes. The output matrix is described by:

y =



y11 y12 · · · y1T

y21 y22 · · · y2T

...
...

...
...

yM1 yM2 · · · yMT


(5.11)

where each entry, ymt =
[
y

(1)
mt , y

(2)
mt , ..., y

(6)
mt

]
, corresponds to the surge and sway

velocity, heave, roll, pitch, and yaw response of the vessel. The surge and sway

velocities are included since their values in time typically oscillate about a more

stationary mean.

Once the input and output training matrices are constructed, both are standardized

with respect to each input feature (i.e. individual wave probe) and output label (i.e.
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a single motion DoF). The standardization results in each feature and label entering

the training phase with zero mean and a standard deviation of one. After the data

has been standardized, the training process begins where the various parameters in

the neural network are continuously updated through several iterations within an

optimization scheme that aims to minimize the loss function shown in Equation 5.12,

where ŷ is the prediction of the model, y is the true output label, and N is the number

of elements in the output matrix y reflected in Equation 5.11, which corresponds to

N = 6MT .

L(ŷ, y) =
1

T

N∑
t=1

(ŷn − yn)2 (5.12)

The current implementation develops a neural network for a single vessel and

loading condition. The neural network does not contain any explicit information about

the hull geometry or mass properties, and is not a generally applicable independent

hydrodynamic model. The modeling methodology requires training in the form of

external data from either simulations, model tests, or full-scale trials, in order to

build the relationship between the wave environment and the associated dynamical

response of the vessel. The model architecture in this dissertation is implemented

with the toolbox Keras (Chollet et al., 2015) with TensorFlow (Abadi et al., 2015) as

its backend.

5.3 Case Study: 3-D 6-DoF 5415

The proposed surrogate modeling methodology for representing 6-DoF ship re-

sponses with an LSTM neural network is demonstrated with simulations performed

with LAMP for the David Taylor Model Basin (DTMB) 5415 hull form shown in

Figure 5.6 for both course-keeping and turning circles. This case study is largely based

on the case study from Silva and Maki (2022a) and is included here for completeness.
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LAMP is a potential flow time-domain ship motion and wave loads simulation tool.

LAMP invokes a time-stepping scheme where all forces and moments acting upon the

ship (e.g. wave-body interaction, appendages, control systems, green-water-on-deck,

etc.) are evaluated at each time step and the 6-DoF equations of motion are integrated

in time to advance the solution. At the center of the LAMP calculation scheme is the

solution of the 3-D wave-body interaction problem (Lin and Yue, 1990; Lin et al.,

1994). A 3-D perturbation velocity potential is computed by solving an initial bound-

ary value problem with a potential flow BEM. Subsequently, Bernoulli’s equation is

used to compute the hull pressure distribution, including the second-order terms. The

current case study employed the LAMP-3 approach, where the perturbation velocity

potential is solved over the mean wetted surface (body-linear), while the nonlinear

Froude-Krylov and hydrostatic restoring forces are solved over the instantaneously

wetted area of the hull below the incident wave (body-nonlinear). This blended

nonlinear methodology captures the significant portion of nonlinear effects in most

ship-wave problems at a fraction of the computational effort required for the general

body-nonlinear formulation. LAMP-3 also allows for large lateral motions and gener-

alized 6-DoF motions. LAMP is considered in this case study as a proving ground for

the 6-DoF methodology before its application to high-fidelity CFD. Although LAMP

does not provide as quantitative of a prediction as CFD, some of the main sources of

nonlinearity, such as the hydrostatic restoring and Froude-Krylov forces, are included.

Performance of the surrogate modeling methodology with LAMP provides insight into

its applicability to CFD and physical experiments.

Table 5.1 shows the loading condition and fluid properties for the DTMB 5415

case study. The loading condition is derived from CFD validation studies performed

for the 5415M in Sadat-Hosseini et al. (2015), while the fluid properties represent

seawater at 20 ◦C (ITTC , 2011).
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Figure 5.6: LAMP representation of the DTMB 5415 hull form.

Table 5.1: Loading condition of DTMB 5415 hull and fluid properties.

Properties Units Value
Length Between Perpendiculars, Lpp m 142.0
Beam, B m 19.06
Draft, T m 6.15
Displacement, ∇ tonnes 8431.8
Longitudinal Center of Gravity, LCG (+Fwd of AP) m 70.317
Vertical Center of Gravity, KG (ABL) m 7.51
Transverse Metacentric Height, GMT m 1.95
Roll Gyradius, kxx m 7.62
Pitch Gyradius, kyy m 35.50
Yaw Gyradius, kzz m 35.50
Density of Water, ρw kg/m3 1024.81
Kinematic Viscosity of Water, νw m2/s 1.0508e-06
Acceleration due to Gravity, g m/s2 9.80665

Table 5.2 demonstrates a summary of the operating and seaway conditions consid-

ered for the case study, as well as other details of the simulation dataset. The DTMB

5415 hull is set to operate at 20 knots in Sea State 7, stern-quartering long-crested seas

described by the Bretschneider spectrum (Bretschneider , 1959). The significant wave

height Hs, corresponds to the middle of the Sea State 7 band, while the peak modal

period Tp, is the most probable modal period for Sea State 7 in the North Atlantic

(Bales , 1983). All of the simulations are performed in random irregular seaways with

250 Fourier components. Although rare and extreme wave events are not expected to
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occur regularly throughout the dataset produced in this case study, the data provides

a means of testing the surrogate modeling methodology as well as the effectiveness of

the estimated encounter frame.

Table 5.2: Operating and seaway conditions for the DTMB 5415 case study.

Properties Units Value
Speed knots 20
Wave Heading deg 45 (Stern Quartering)
Sea State - 7
Spectrum - Bretschneider
Significant Wave Height, Hs m 7.5
Peak Modal Period, Tp s 15
Fourier Components - 250
Proportional Gain, Gp deg/deg 4
Integral Gain, Gi 1/s 0
Differential Gain, Gd deg/(deg/s) 1

Max Rudder Rate, δ̇max deg/s 9
Max Rudder Deflection, δmax deg 35
Rudder Deflection (Turning Circle), δturn deg 35

The DTMB 5415 hull is free to surge, sway, heave, roll, pitch and yaw in the

simulations. The LAMP simulations utilize a quasi-steady propeller performance

model from Lee et al. (2003) for both the course-keeping and turning circle cases.

Course-keeping is maintained with two rudders modeled as low aspect ratio foils

operated by the PID-controller in Equation 3.30. For course-keeping, the commanded

rudder deflection δc is calculated with the proportional Gp, integral Gi, and derivative

Gd gains as well as the desired heading ψd and the current heading ψ. All the gains

for the course-keeping case study are tabulated in Table 5.2. The turning circle cases

maintained a 35 deg rudder deflection during the entire simulation.

Various neural network architectures are examined and the final selection is

determined from a grid-search of different values of the cells per LSTM layer, number

of LSTM layers, and the dropout value. Each neural network is trained with the

27 probes and 640 training runs, and the accuracy is evaluated with the loss function
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calculation for the validation dataset. Table 5.3 demonstrates a comparison of all

the considered neural network architectures and the corresponding loss function in

Equation 5.12 for the validation dataset described in Table 5.4. The dropout quantity

refers to the percentage of the network that is randomly excluded during training.

Overall, the architecture with 250 cells per LSTM layer, 3 LSTM layers, and dropout

of 10% provided the most accurate predictions and is utilized in building all of the

models in this dissertation for free-running vessels.

Table 5.3: Comparison of loss function for validation data using different neural
network architectures for the 27 probe and 640 training runs course-keeping DTMB
5415 case study.

Cells per Layer Dropout 2 Layers 3 Layers
50 10% 0.1231 0.1195
50 20% 0.1405 0.1374
100 10% 0.0972 0.0817
100 20% 0.1057 0.1000
150 10% 0.0768 0.0525
150 20% 0.0844 0.0727
200 10% 0.0484 0.0434
200 20% 0.0576 0.0539
250 10% 0.0433 0.0359
250 20% 0.0512 0.0446
300 10% 0.0407 0.0361
300 20% 0.0518 0.0396
350 10% 0.0363 0.0360
350 20% 0.0435 0.0381

The complete training dataset consists of 640 simulations, each 360 s in length, for

a total exposure window of 64 hours. Several models are constructed in the case study

and vary in the quantity of data in the training, but they all draw from the same

collection of 640 simulations. For example, 10 run models utilize training data that is

a subset of the 20 run models, the 20 run models consider training data that is a subset

of the 40 run models, and so on. Additionally, all the models were evaluated with

the same validation dataset that is independent of the training dataset and contained
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1000 simulations, corresponding to 100 hours of total exposure time. To evaluate

the efficacy of the proposed LSTM neural network model building methodology,

understanding the behavior and convergence is imperative for models trained with

different quantities of data and the fidelity of the wave field description. Table 5.4

reflects the different neural network parameters utilized in the training of the models.

The course-keeping and turning circle case studies in Sections 5.3.1 and 5.3.2 employ

completely different datasets, but each of the case studies consider the same neural

network architecture and total quantity of simulations for the respective training and

evaluations shown in Table 5.4. The number of training runs for each case study varies

from 10 to 640, while the number of wave probes for the input ranged from 1 to 27, for

a total of 28 unique models. The same neural network architecture, hyper-parameters,

and training approach are implemented for each of the constructed models. The

hyper-parameters refer to the the quantities (e.g. learning rate, epochs) that guide

the optimization algorithm when training the model.

Table 5.4: Training matrix, neural network architecture, and hyper-parameters for
the DTMB 5415 course-keeping and turning circle case studies.

Properties Units Value
Total Training Runs - 10, 20, 40, 80, 160, 320, 640
Total Validation Runs - 1000
Total Wave Probes - 1, 3, 9, 27
Time Steps per Run - 720
Individual Run Length s 360
Units per Layer - 250
Layers - 3
Dropout - 0.1
Learning Rate - 0.00001
Epochs - 2000
Optimizer - Adam (Kingma and Ba, 2014)

The probe locations considered for the case study are shown in Figure 5.7, where λp

is a nominal wavelength, calculated based on Tp. When only one probe is considered,
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that wave probe is located at the center of gravity (CG). Models built with more

than one wave probe share the same extents based on λp, but the spacing between

probes ∆λp is described by:

∆λp =
λp

K − 1
for K = 3, 9, 27 (5.13)

In this dissertation, wave probe locations varied either longitudinally along the

ship centerline for the 3-D case studies in Chapter VIII and V or aligned with the wave

direction for the 2-D case study in Chapter VII. For the 3-D cases, no improvement

in model accuracy is observed when probes are placed away from the ship centerline.

This may be specific to the current case and future research is required in order to

investigate the influence of lateral wave probe locations.

p/2 p/2CG

27 Probes
9 Probes

3 Probes
1 Probe

Figure 5.7: Probe locations relative to the ship’s CG.

5.3.1 Course-keeping in Random Irregular Waves

A series of models are constructed to evaluate their accuracy and convergence with

respect to the quantity of input wave probes and training data for course-keeping

LAMP simulations. The accuracy of the different models are evaluated with the L2

and L∞ error between the LAMP simulations y and neural network predictions ŷ.

The L2 error in Equation 5.14 is a measure of the Root Mean Square Error (RMSE),

which is the same as the loss function, across a particular time series with time indices

ranging from i to T . The L∞ error in Equation 5.15 quantifies the largest error

observed in a given time series.
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L2(y, ŷ) =

√√√√ 1

T

T∑
i=1

(yi − ŷi)2 (5.14)

L∞(y, ŷ) = max
i=1,··· ,T

|yi − ŷi| (5.15)

Figures 5.8 and 5.9 show comparisons of the L2 and L∞ error for each DoF of

each neural network model trained with various quantities of training data and wave

probes as input into the models. Each marker denotes the median error for all of

the validation runs, while the upper and lower error bars correspond to the 75%

and 25% quantiles, respectively. The data trends toward smaller error, as both

the wave probe and training data quantities are increased. As the median error

decreases, so does the spread of the total error denoted by the error bars. Although

the error is decreased by increasing the number of wave probes from 9 to 27, the

difference is much smaller in comparison to the coarser wave descriptions with 1 and

3 probes. Additionally, although the difference between models decreases as number

of training runs increases from 320 to 640, the overall trends of the models indicate

that the predictions continue to improve as the training data quantity increases. This

convergence provides confidence in the modeling approach and indicates that when

applied to extreme events, the continual addition of more data will provide an increase

in accuracy.
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Figure 5.8: Comparison of L2 error for each DoF in the course-keeping DTMB 5415
case study.

0 80 160 240 320 400 480 560 6400.0
0.2
0.4
0.6
0.8
1.0
1.2

Su
rg

e 
Ve

l. 
L

 [m
/s

] 1 Probe
3 Probes
9 Probes
27 Probes

0 80 160 240 320 400 480 560 6400.0
0.2
0.4
0.6
0.8
1.0
1.2

Sw
ay

 V
el

. L
 [m

/s
]

0 80 160 240 320 400 480 560 6400.0
0.5
1.0
1.5
2.0
2.5

He
av

e 
L

 [m
]

0 80 160 240 320 400 480 560 6400
2
4
6
8

10
12

Ro
ll 

L
 [d

eg
]

0 80 160 240 320 400 480 560 640
# of Training Runs

0.0
0.5
1.0
1.5
2.0
2.5

Pi
tc

h 
L

 [d
eg

]

0 80 160 240 320 400 480 560 640
# of Training Runs

0
1
2
3
4
5
6

Ya
w 

L
 [d

eg
]

Figure 5.9: Comparison of L∞ error for each DoF in the course-keeping DTMB 5415
case study.
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Figures 5.8 and 5.9 demonstrate an increase in accuracy as the quantity of wave

probes and training data is increased, resulting in the most accurate model being

built with 27 wave probes and 640 training data runs. Though the comparison of L2

and L∞ provides an overall assessment of the models, one benefit of considering a

prediction-focused surrogate modeling technique is the ability to produce an accurate

temporal response. Figures 5.10 and 5.11 show comparisons between LAMP and the

neural network model built with 27 wave probes and 640 training data runs for the

three validation runs with the smallest L2 and L∞ error for each DoF. The LSTM

prediction, denoted by a red dashed line, is the mean of the stochastic predictions

made by the Monte Carlo dropout approach, while the uncertainty ULSTM, highlighted

in red, is calculated to be ±5σ based on the Monte Carlo dropout realizations. ±5σ is

chosen for the uncertainty interval, as the overall uncertainty in the developed models

is low and increasing the interval size allowed the larger uncertainty regions to be

observed visually. Overall, for the cases with the lowest L2 and L∞ error, the LSTM

model predicts the 6-DoF response well and the uncertainty ULSTM, predicted with

the Monte Carlo dropout approach, is small.

Figures 5.12 and 5.13 illustrate the comparisons between LAMP and the LSTM

model built with 27 wave probes and 640 training data runs for the three validation

cases with the largest L2 and L∞ error for each DoF. The magnitude of the responses

is much greater in Figures 5.12 and 5.13 than in Figures 5.10 and 5.11, thus the model

is capable of providing better predictions for cases with an overall smaller response.

In contrast with Figures 5.10 and 5.11, the uncertainty is larger in Figures 5.12 and

5.13, especially for the DoF and sequences where the LSTM prediction is poor, such

as the roll and yaw motions between 40-120 s. Although the predictions are not as

accurate as what is shown in Figures 5.10 and 5.11, the amplitude and phase of the

LSTM and LAMP predictions are similar, and the uncertainty estimates are larger in

areas where the model accuracy is lower.
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Figure 5.10: Best (ranked by L2 error) motion predictions for a model with 27 probes
and 640 training runs in the course-keeping DTMB 5415 case study.
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Figure 5.11: Best (ranked by L∞ error) motion predictions for a model with 27 probes
and 640 training runs in the course-keeping DTMB 5415 case study.
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Figure 5.12: Worst (ranked by L2 error) motion predictions for a model with 27 wave
probes and 640 training runs in the course-keeping DTMB 5415 case study.
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Figure 5.13: Worst (ranked by L∞ error) motion predictions for a model with wave 27
probes and 640 training runs in the course-keeping DTMB 5415 case study.
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Although temporal responses are critical for understanding the mechanisms of

large amplitude responses, understanding the probability distribution of a particular

response is necessary to produce a statistical description of the ship’s operability.

In particular, this dissertation is concerned with extreme events. Therefore, the

models must be able to also represent extreme events. Comparisons of probability

distributions also provide a useful method of validating models and have been used in

previous research validating CFD tools in Serani et al. (2021).

Figure 5.14 shows a comparison of the probability distribution function (PDF) for

each DoF, for models built with 27 wave probes and training data of 10, 80, and 640

runs. The PDF is displayed with a logarithmic scale to emphasize the response in

the tails of the distributions, and also includes the uncertainty estimates from the

neural network models using the Monte Carlo dropout technique. The neural network

predictions perform well in reproducing motions larger than the statistical mean.

However, the model trained with 10 runs demonstrates a larger difference for surge

velocity and yaw. When the quantity of training data is increased, the models converge

toward the LAMP predictions, and the uncertainty in the tail region also reduces.

Figure 5.14 indicates that this approach, with some considerations about what wave

sequences are considered during training, could be useful for predicting extremes.

However, the models are limited by their training data, and it remains unlikely that

any random set of training contains extremes. Therefore, targeted training runs

containing extremes can provide an avenue forward for producing surrogate models

that yield responses that are statistically representative of the high-fidelity predictions

of the dynamical quantities.
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Figure 5.14: Comparison of the PDF tails for each DoF with models trained with 27
wave probes in the course-keeping DTMB 5415 case study.

A key limitation of the present methodology is that the encounter frame must

be estimated, as the actual trajectory of the vessel in waves is not known a priori.

Therefore, the wave probes utilized as input into the neural network models are not

in the actual instantaneous encounter frame of the vessel. Considerable deviations

between the estimated and actual frames can produce poor predictions. To investigate

the accuracy of the estimated encounter frame methodology, separate models are

built with 27 wave probes and the actual encounter frame from each training run.

Predictions are also made with validation dataset with the new model as well as

the actual encounter frame from each of those runs. The difference between these

new set of models and the ones built with the estimated encounter frame, is a direct

quantification of the consequences of estimating the encounter frame.
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Figures 5.15 and 5.16 directly compare models with the actual and estimated

encounter frames for both the L2 and L∞ error for each DoF. By utilizing the actual

encounter frame in the training and inference of the model, the error is roughly

half of the estimated frame. These comparisons indicate that a better estimate of

the encounter frame could further reduce the error, without requiring more training

data. Future research should explore an encounter frame estimator that is wave

excitation-dependent to further improve the models presented.

0 80 160 240 320 400 480 560 6400.0

0.1

0.2

0.3

Su
rg

e 
Ve

l L
2 [

m
/s

] Actual Trajectory
Estimated Trajectory

0 80 160 240 320 400 480 560 6400.0

0.1

0.2

0.3

Sw
ay

 V
el

 L
2 [

m
/s

]

0 80 160 240 320 400 480 560 6400.0

0.2

0.4

0.6

He
av

e 
L 2

 [m
]

0 80 160 240 320 400 480 560 6400

1

2

3
Ro

ll 
L 2

 [d
eg

]

0 80 160 240 320 400 480 560 640
# of Training Runs

0.0

0.2

0.4

0.6

Pi
tc

h 
L 2

 [d
eg

]

0 80 160 240 320 400 480 560 640
# of Training Runs

0.0

0.5

1.0

1.5

Ya
w 

L 2
 [d

eg
]

Figure 5.15: Comparison of L2 error for each DoF with models trained with the actual
and estimated encounter frames in the course-keeping DTMB 5415 case study.
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Figure 5.16: Comparison of L∞ error for each DoF with models trained with the
actual and estimated encounter frames in the course-keeping DTMB 5415 case study.

5.3.2 Turning Circle in Random Irregular Waves

A separate set of models are constructed for turning circle simulations. The models

are then evaluated for their accuracy and convergence with respect to the quantity

of input wave probes and training data in the same manner that is performed for

the course-keeping case study. The turning circle models are built and evaluated

identically to the course-keeping models, aside from the fact that the encounter frame

is estimated and the models are trained and evaluated with turning circle simulations.

Figures 5.17 and 5.18 show the comparison of L2 and L∞ error for each DoF for the

turning circle case study with the validation runs. The trends are similar to what is

observed for course-keeping, where increasing the quantity of wave probes and training

data leads to a more accurate model. However, the decrease in error as the quantity

of wave probes increases is less dramatic for the turning circles, and the overall error

for all models is larger in comparison to the course-keeping.
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Similar to the course-keeping case, the most accurate model for the turning circle

case is built with 27 wave probes and 640 training data runs. Figures 5.19 and 5.20

illustrate the temporal response comparison between LAMP and the LSTM model

for the validation runs with the lowest L2 and L∞ error for each DoF in the turning

circle case study. Overall, the LSTM model predicts the 6-DoF response well with

low uncertainty.

Figures 5.21 and 5.22 compare LAMP and the LSTM model built with 27 wave

probes and 640 training data runs for the validation runs with the largest L2 and

L∞ error for each DoF in the turning circle case study. Some regions of the temporal

response are predicted well, while others reveal a large discrepancy between LAMP and

the LSTM model that drives the error. The overall uncertainty in the time-histories is

larger in those regions, which can provide an indicator of a lower-accuracy prediction.

The response of the vessel in the turning circle leads to a higher frequency response

than what is observed in the course-keeping simulations. The difference in response

frequency could the cause of the overall error increase for the turning circle and

indicates that these dynamical responses are more difficult to learn with the current

methodology.
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Figure 5.17: Comparison of L2 error for each DoF in the turning circle DTMB 5415
case study.
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Figure 5.18: Comparison of L∞ error for each DoF in the turning circle DTMB 5415
case study.
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Figure 5.19: Best (ranked by L2 error) motion predictions for a model with 27 probes
and 640 training runs in the turning circle DTMB 5415 case study.
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Figure 5.20: Best (ranked by L∞ error) motion predictions for a model with 27 probes
and 640 training runs in the turning circle DTMB 5415 case study.
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Figure 5.21: Worst (ranked by L2 error) motion predictions for a model with 27 probes
and 640 training runs in the turning circle DTMB 5415 case study.
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Figure 5.22: Worst (ranked by L∞ error) motion predictions for a model with 27
probes and 640 training runs in the turning circle DTMB 5415 case study.
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The comparison between LAMP and the LSTM models for the PDF of each DoF

is displayed in logarithmic scale in Figure 5.23 for turning circle models built with

27 waves probes and training data quantities of 10, 80, and 640 runs. Similar to the

course-keeping case study, Figure 5.23 shows that the PDF constructed from LSTM

predictions closely represent the models trained with 80 and 640 runs. However, the

model trained with 10 runs performs poorer than that of its course-keeping counterpart.
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Figure 5.23: Comparison of the PDF tails for each DoF with models trained with 27
wave probes in the turning circle DTMB 5415 case study.
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In all of the previous evaluations demonstrated for the turning circle LSTM models,

the differences between LAMP and the LSTM predictions is shown again to be larger

for turning circles than it is for course-keeping. Although the higher frequency response

could be the root cause, the encounter frame is also much more complicated for the

turning circle, as highlighted in Figure 5.5. Figures 5.24 and 5.25 illustrate the

comparisons of different LSTM models built with 27 wave probes and 640 training

runs for turning circles, where the only difference is the encounter frame. Again, the

differences are much more dramatic for the turning circle, where knowing the actual

frame can greatly improve the predictions made by the LSTM model. These results

further indicate that an accurate prediction of the encounter frame will enhance the

model’s accuracy.
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Figure 5.24: Comparison of L2 error for each DoF with models trained with the actual
and estimated encounter frames in the turning circle DTMB 5415 case study.
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Figure 5.25: Comparison of L∞ error for each DoF with models trained with the
actual and estimated encounter frames in the turning circle DTMB 5415 case study.

5.4 Case Study: Multiple Speeds, Headings and Sea States

Sections 5.3.1 and 5.3.2 describe case studies for the DTMB 5415 for course-keeping

and turning circles, respectively, for a single vessel speed, relative wave heading, and

sea state. However, predictions of vessel response are typically required for multiple

maneuvers, ship speeds, wave headings, and sea states. Training separate models for

each condition requires sufficient data at each discrete condition and the individual

models are not capable of producing predictions for alternative conditions. Therefore, a

generalized model capable of producing predictions for multiple conditions is extremely

desirable.

The case study in this section extends the case studies in Sections 5.3.1 and 5.3.2 to

multiple speeds, headings, and sea states. Table 5.5 outlines the operating and seaway

conditions considered. The dataset consists of a total of 60 conditions comprising of
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four speeds, five headings, and three seaways, all representing the top of the sea state

in terms of Hc and the most probable modal period with respect to Tp.

Table 5.5: Operating and seaway conditions for the DTMB 5415 case study with
multiple conditions.

Properties Units Value
Speeds knots 5, 10, 20, 30
Wave Heading deg 0, 45, 90, 135, 180
Sea State - 4, 5, 6
Significant Wave Height, Hs m 2.5, 4.0, 6.0
Peak Modal Period, Tp s 8.8, 9.7, 12.4
Spectrum - Bretschneider
Fourier Components - 250
Proportional Gain, Gp deg/deg 4
Integral Gain, Gi 1/s 0
Differential Gain, Gd deg/(deg/s) 1

Max Rudder Rate, δ̇max deg/s 9
Max Rudder Deflection, δmax deg 35

The case study explores four different modeling approaches. The general approach

trains the model with data from all conditions. The speed, heading, and sea state

approaches each consider data for a discrete speed, heading, and sea state, respectively.

For example, there are four speeds considered in the case study. Therefore the speed

approach would build an individual model for each discrete speed. The same is true

for the heading and sea state approaches. The four different modeling approaches are

employed to investigate the accuracy of the general approach to develop models that

are generalized across a wide range of conditions. For all the approaches, there is a

separate encounter frame estimated for each speed, heading, and sea state.

Table 5.6 describes the neural network architecture as well as the training and

validation datasets. The datasets are divided such that each modeling approach uses

the same training data. The only difference is the manner in which the data is divided

between the models. For example, the 3,840 training runs for the general approach is

the same dataset as the four speed approach models with 960 training runs each. All of
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the modeling approaches are evaluated on the same validation dataset as well, which

is divided similarly to the training dataset across the approaches. All the constructed

models considered 27 wave probes for the input wave elevation.

Table 5.6: Training matrix, neural network architecture, and hyper-parameters for
the DTMB 5415 case study with multiple conditions.

Properties Units Value
Total Training Runs - 60, 120, 240, 480, 960, 1920, 3840
Training Runs/Model (Speed) - 15, 30, 60, 120, 240, 480, 960
Training Runs/Model (Heading) - 12, 24, 48, 96, 192, 384, 768
Training Runs/Model (Sea State) - 20, 40, 80, 160, 320, 640, 1280
Total Validation Runs - 6000
Validation Runs/Model (Speed) - 1500
Validation Runs/Model (Heading) - 1200
Validation Runs/Model (Sea State) - 2000
Total Wave Probes - 27
Time Steps per Run - 720
Individual Run Length s 360
Units per Layer - 250
Layers - 3
Dropout - 0.1
Learning Rate - 0.00001
Epochs - 2000
Optimizer - Adam (Kingma and Ba, 2014)

Figures 5.26 and 5.27 depict the L2 and L∞ error across all the modeling approaches

for various quantities of training data. Each marker denotes the median error for all of

the validation runs, while the upper and lower error bars correspond to the 75% and

25% quantiles, respectively. Overall, the general approach is the most accurate, and

the heading approach is the least accurate across all DoF and quantities of training

data. Additionally, with less total training data, the general and sea state approaches

are more accurate than the other two approaches. The higher accuracy of the sea state

approach is due to the training runs spanning a range of different speeds and headings,

as well as more training data per model. With a sufficient amount of training data,

all of the approaches converge and the differences between them decrease.
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Figure 5.26: Comparison of L2 error for each DoF with different modeling approaches
for the DTMB 5415 case study with multiple conditions.
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Figure 5.27: Comparison of L∞ error for each DoF with different modeling approaches
for the DTMB 5415 case study with multiple conditions.
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Figures 5.28 and 5.29 compare the validation runs with the smallest L2 and

L∞ error for each DoF using the general approach LSTM models trained with 3840

simulations, consisting of multiple speeds, headings, and sea states. Overall, the LSTM

predictions match the phase and amplitude of the best-predicted LAMP validation

runs for all the DoF.

Figures 5.28 and 5.29 compare the validation runs with the largest L2 and L∞

error for each DoF utilizing the general approach LSTM models trained with 3,840

simulations, comprising of multiple speeds, headings, and sea states. The results

in Figures 5.28 and 5.29 consist of the worst-predicted validation runs that the

LSTM model produced. In general, the LSTM model still yields responses that are

representative of the LAMP predictions.
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Figure 5.28: Best (ranked by L2 error) motion predictions from the general approach
for the DTMB 5415 case study with multiple conditions.
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Figure 5.29: Best (ranked by L∞ error) motion predictions from the general approach
for the DTMB 5415 case study with multiple conditions.
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Figure 5.30: Worst (ranked by L2 error) motion predictions from the general approach
for the DTMB 5415 case study with multiple conditions.
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Figure 5.31: Worst (ranked by L∞ error) motion predictions from the general approach
for the DTMB 5415 case study with multiple conditions.

Introducing the general approach to LSTM modeling methodology shows promise

in developing models that can predict ship responses for arbitrary speeds, headings,

and sea states. However, the difference between the estimated and actual encounter

frames is exacerbated when the models must now consider an estimated frame for

each individual condition that differs from the actual frame of each condition and

irregular wave train. Future research developing enhanced predictions of the estimated

encounter frame could enable the general methodology to increase in accuracy greatly

and possibly reduce the computational cost of training the models.
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CHAPTER VI

CCS Framework

The CWG method, CFD, and LSTM neural networks described in Chapters II, III,

and V provide an avenue forward, not only for efficiently quantifying the probability of

extreme ship response events, but also observing them to understand the mechanisms

that trigger them. This chapter presents the CCS framework, which combines the best

aspects of each of these methodologies into a single system that can systematically

observe and quantify extreme events practically, efficiently, and without inherent

dynamic constraints. An overview of the proposed framework for implementing the

CWG method with CFD and LSTM neural network surrogate models is outlined

in Figure 6.1. Although LSTM neural networks are considered in this dissertation,

any prediction-focused surrogate modeling technique would be appropriate provided

it maintains the same accuracy shown for the LSTM. The framework begins with

the selection of a vessel and its respective properties (loading condition, appendages,

autopilot, etc.), the speed, the heading, the maneuver (e.g. course-keeping, turning

circle, etc.), the seaway description, the response of interest, and the thresholds to

characterize exceedances, as well as the selection of response quantities for encounter

conditions. The selection of these parameters sets the stage for the remainder of the

framework and the associated probability calculations.
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Figure 6.1: Flow chart of the proposed CCS framework.
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The seaway is described with a random wave spectrum, such as the Bretschneider

(Bretschneider , 1959) or JONSWAP (Hasselmann et al., 1973), which are typically

defined by a significant wave height Hs and the peak modal period Tp. An example

wave spectral density, S is depicted in Figure 6.2, where S is described as a function

of the wave frequency ω.

Frequency, 

S(
)

Figure 6.2: Example JONSWAP wave spectrum.

The wave spectrum is then discretized into F Fourier components with uniform

frequency spacing dω, and the amplitudes are described by:

af =
√

2 Sf dω (6.1)

where Sf reflects spectral density at the f th frequency. With the wave spectrum

discretized into amplitudes af and frequencies ωf , random phases φf are generated

with uniform random sampling from 0 to 2π to produce independent and random

realizations of a unidirectional wave field η, with respect to time t and space x:

η (x, t) =
∑
f

afcos (ωf t − kf · x + φf ) (6.2)

106



Several realizations (≥100,000 hours) of the wave field are produced with Equa-

tion 6.2 at the origin (x, y = 0) and individual waves are identified in the observations

by detecting all zero-upcrossings. The period of each wave is calculated with the

time between the zero-upcrossings and the wave height is calculated by adding the

maximum and minimum wave elevation between zero-upcrossings. With wave heights

and periods for each individual wave, the height and period of the waves directly

preceding and following each wave are also recorded. The identification of these

successive waves allows for the development of the statistical relationships that are

needed to build the deterministic wave groups with Markov chains and calculate their

associated probabilities (see Section 2.2).

When constructing the deterministic wave groups, the values for Hc, Tc, and j need

to be selected specifically for the desired problem to ensure an exhaustive collection of

the possible wave groups. This dissertation utilizes values of Hc of 4σ, 5σ, 6σ, 7σ, 8σ,

and 9σ, Tc values of Tp - 2∆T , Tp - ∆T , Tp, Tp + ∆T , and Tp + 2∆T , and j of one

and two, where σ is the standard deviation of the wave height, Tp is the peak modal

period, and ∆T is the size of the m wave period ranges, which is set to a full scale

value of one second in this dissertation, in accordance with Anastopoulos and Spyrou

(2019). The selection of Hc, Tc, and j should be catered to the problem of interest,

as different responses may be excited by modal periods outside the outlined period

ranges or could be more sensitive to resonance and require larger values of j.

Additionally, CFD simulations of the vessel in random waves described by Equa-

tion 6.2 are performed to characterize the probability of the encounter conditions, the

selection of the encounter conditions, and the identification of the irregular preludes

(i.e. random wave trains that lead to the encounter condition of interest). The

random wave ship simulations are focused on recognizing non-rare ship response

events and typically only require on the order of 0.5 full-scale hours of exposure time

( 100 encounters), as opposed to the large amount observations necessary to develop
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statistical relationships for wave groups. All of the simulations that record an event

matching the selected encounter conditions within 1% are identified. The instances

with lowest combined percent difference are selected as the primary irregular preludes.

However, recording all of the instances that matched the initial conditions within 1%

allows for ensembles of equivalent encounter conditions to be simulated in order to

better understand if the selected states are appropriate for the problem, or if another

quantity shows considerable influence.

After the irregular preludes are identified and the deterministic wave groups are

constructed, the wave groups are embedded into the irregular preludes to create

composite wave trains utilizing the blending methodology outlined in Section 4.1. A

Fast Fourier Transform (FFT) is then applied to the composite wave train in the

encounter frame to retrieve Fourier components in accordance with Equation 6.2.

From the newly constructed composite wave trains, M composite waves are randomly

selected for training, V composite wave trains are randomly selected for validation,

and the M + V cases are simulated with CFD to predict the corresponding ship

response. Typical values for M and V are 400 and 100, respectively, which represents

a 80/20 split for training and validation.

After all of the CFD simulations are complete, an LSTM neural network is trained

with the M simulations. The resulting model is evaluated with the V validation

simulations and the hyper-parameters are tuned to gain the best performance. This

tuning is repeated until the best parameters are found for the M training simulations.

The resulting neural network model then predicts the ship response due to all of

the constructed individual composite wave trains. The case studies presented in

Chapters VII and VIII provide insight into the quantity of M and V required to

produce an accurate representation of the extreme events.

For each of the composite wave train predictions, the maximum response of the

quantity of interest is recorded. The maximum of the quantity interest is calculated
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within the time window te ≤ t ≤ te + Tc(j + 2) to ensure that maximum response

occurs either during the wave group or directly following it. Therefore, for every

encounter condition, Hc, Tc, and j, there is a corresponding maximum response. At

each threshold φcrit, and for each encounter condition, Tc, and j, the values of Hc and

the maximum response are interpolated to distinguish the Hc that corresponds to a

near exceedance of the threshold of interest, thus identifying all of the critical wave

groups. The probability of exceeding each of these critical wave groups can then be

calculated with Equation 2.15. With the probability of encounter conditions and all

the critical wave groups pinpointed, as well as their associated probabilities calculated

at each threshold, the probability of exceedance in Equation 2.6 is found. Additionally,

the LSTM models each contain uncertainty estimates from the Monte Carlo dropout

approach. Therefore, the upper and lower bands of the LSTM uncertainties can also

be employed to uncover their own separate critical wave groups that have associated

probabilities. The critical wave groups associated with the uncertainty estimates

can then be compiled to produce uncertainty estimates for the the probability of

exceedance calculations. The resulting uncertainty is solely based on the LSTM

models.

Combining the CWG method, CFD, and LSTM neural networks into the CCS

framework, described in this chapter, allows for a holistic and quantitative probabilistic

evaluation and observation of extreme ship response events. The developed framework

requires as few assumptions as possible, and produces realistic extreme events without

unnatural dynamical constraints that are only suitable for simplified lower fidelity

hydrodynamic predictions.

6.1 Uncertainty in Initial Conditions

The natural initial condition methodology enables the enforcement of prescribed

encounter conditions through an irregular prelude and produces physically realizable
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wave trains with embedded deterministic wave groups. If the entire body and fluid

states were captured in the encounter condition, then the response to the determin-

istic wave group would be deterministic. However, this is impractical and requires

discretization of the high-dimensional combination of the flow field and body state.

Therefore, the encounter condition is a reduced-order series of quantities that attempts

to summarize the dominating contributions of both the state of the body and the fluid.

In the example of extreme roll, the encounter conditions are typically the roll and roll

velocity. The roll and roll velocity attempt to capture all of the body dynamics and

hydrodynamics into two simplified quantities. In the context of the natural initial

condition, an infinite number of combinations of body and fluid states can lead to the

same encounter condition for a free-running vessel. The irregular prelude only ensures

that the prescribed encounter condition occurs, but it does not guarantee that the

resulting ship response will be identical for different irregular preludes with the same

encounter condition. Therefore, an uncertainty estimate is required to quantify the

variation due to different irregular preludes.

It is important to quantify the uncertainty due to different irregular preludes that

lead to the same encounter condition and understand how it propagates through the

different calculations into the probability of exceedance calculations. In the case of

the CWG method, the uncertainty from the irregular preludes is easily defined in the

identification of critical wave groups. Figure 6.3 illustrates example observations of

the absolute maximum roll for 18 different irregular preludes of the same encounter

condition for wave groups with different Hc but the same shape (Tc and j). The

variation of the maximums across different irregular preludes with the same encounter

condition can vary across all observations with the same Hc.

A critical wave group can be identified for each irregular prelude at the various

critical roll angle thresholds φcrit, through the interpolation of Hc and and the absolute

maximum roll predictions in Figure 6.3. Figure 6.4 demonstrates the mean and
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uncertainty in the prediction of Hc, from the different irregular preludes for the

same encounter condition. Different levels of uncertainty are shown in terms of the

standard deviation s of the Hc predictions across all the irregular preludes. Overall, the

uncertainty due to the irregular preludes increases as the critical roll angle threshold

increases and there is more variation the roll response.
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Figure 6.3: Example absolute maximum roll for different irregular preludes of the
same encounter condition for wave groups with different Hc but the same shape (Tc
and j).
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Figure 6.4: Illustration of quantification of the uncertainty due to the irregular preludes
through the identification of critical wave groups.

Once the critical wave groups are identified as shown in Figure 6.4, they can

be evaluated probabilistically for the mean, as well as a lower and upper bound,
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individually with the CWG methodology in Chapter II. The only difference between

the probability calculations would be that the mean, lower bound, and upper bound,

all of their own set of unique critical wave groups for each encounter condition and

wave group shape. The probability of encounter conditions remains the same and is

independent of this irregular prelude variation.

If the uncertainty due to the irregular prelude were to be quantified purely with

CFD without LSTM neural networks, the increase in computational cost would scale

linearly with the quantity of irregular preludes per encounter condition. To maintain

the accuracy and the decrease in computational cost that the LSTM provides, the

training dataset should include some variation in irregular prelude for the same

encounter condition so that the models better understand this variation. Currently,

the same wave trains are used to develop irregular preludes for multiple encounter

conditions and may introduce bias to the models. This section describes a methodology

for quantifying the uncertainty due to the irregular prelude through identifying a

different set of critical wave groups for a mean response as well as an upper and lower

bound. However, this dissertation does not consider this uncertainty in the provided

case studies and the procedure is described here to guide future exploration in the

implementation of this methodology. Future research will have to investigate this

phenomena further and quantify the uncertainty for a case study with a free-running

vessel.
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CHAPTER VII

Case Study: 2-D 2-DoF ONR Tumblehome

Midship Section

This chapter presents a case study utilizing the CCS framework for a full-scale 2-D

midship section of the ONRT geometry with bilge keels (Bishop et al., 2005) shown in

Figure 7.1 at zero speed in beam seas that is only free to heave and roll. A 2-D Two

Degrees-of-Freedom (2-DoF) midship section is selected to evaluate CCS framework

because it provides a problem with strong nonlinearity, but allows for events to be

simulated quickly in order to demonstrate the framework’s ability to calculate the

probability of exceedance and to do so efficiently with a LSTM neural network.

The case study uses a JONSWAP spectrum (Hasselmann et al., 1973) with a peak

enhancement factor of 3.3 and a significant wave height Hs = 7.5 m, and a peak modal

period Tp = 15 s, corresponding to a Sea State 7 (NATO , 1983) with longcrested

seas. The response quantity of interest for the case study is the roll angle, and the

probability of exceedance is evaluated for roll angles ranging from 30 to 57.5 deg. The

roll angle and velocity are chosen to be the encounter conditions for the CWG method.

The hull and fluid properties are shown in Table 7.1. The loading condition for the

current study is derived from Bishop et al. (2005), where the vertical center of gravity

KG is selected to achieve a transverse metacentric height GMT of 1.5 m.
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Figure 7.1: 2-D ONRT midship section geometry.

Table 7.1: Loading condition and fluid properties of the 2-D ONRT midship section.

Properties Units Value
Beam, B m 18.8
Draft, T m 5.5
Vertical Center of Gravity, KG (ABL) m 7.881
Transverse Metacentric Height, GMT m 1.5
Roll Gyradius, kxx m 7.118
Density of Water, ρw kg/m3 1000
Density of Air, ρa kg/m3 1
Kinematic Viscosity of Water, νw m2/s 1e-06
Kinematic Viscosity of Air, νa m2/s 1.48e-05
Accel. due to Gravity, g m/s2 9.80665

7.1 Mesh Sensitivity

Three separate 2-D computational meshes (G1, G2, and G3) were developed for

the present case study and are summarized in terms of total cell count and near-hull

spacing in Table 7.2. All the meshes were built with the native OpenFOAM® mesher,

snappyHexMesh. Each of the structured domains are a square with a height and width

of 370 m, which is roughly equivalent to 20B. The only difference between the meshes
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is the resolution throughout the domain that is characterized by the uniform spacing

near hull. The G2 mesh in Figure 7.2 has a spacing 1 m near the hull and 2 × 1

(width and height) in the far field. The grading of the cell size was selected to ensure

that as the domain rotates to large roll angles with the hull, the propagating wave is

sufficiently resolved.

Table 7.2: Summary of mesh statistics for the 2-D ONRT midship section case study
where H = 7.5 m and T=15 s.

Properties G1 G2 G3
Width [m] 370 370 370
Height [m] 370 370 370
# of Cells (w/o Ship) 39,590 79,180 158,360
# of Cells (w/ Ship) 21,669 83,103 326,736
λ/∆y (Uniform) 175 350 700
H/∆z (Uniform) 3.5 7 14
λ/∆y 101 202 404
H/∆z 3.5 7 14

Figure 7.2: 2-D ONRT midship section case study computational mesh (G2).

A single composite wave train with a large embedded wave group was selected for

a mesh refinement study. Figure 7.3 shows a comparison of the wave elevation at the
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origin for the three mesh resolutions. The comparison of wave elevation in Figure 7.3

reflect computational meshes that only include the background mesh depicted in

Figure 7.2, without the hull to investigate solely the wave propagation. Overall,

the three meshes to able to produce wave elevations at the origin that resemble the

analytical description of the wave. There is not a substantial difference between the

three mesh resolutions.
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Figure 7.3: Mesh refinement evaluation (without the hull) of wave elevation at the
origin for the 2-D ONRT midship section case study with a sample embedded wave
group of Hc = 16.875 m, Tc = 15 s, and j = 3.

Figure 7.4 shows the heave and roll response predictions with the same wave train

from Figure 7.3, but with the hull included in the mesh. Figure 7.4 elucidates some

differences between the three different meshes for heave and roll. Overall, the phasing

between the different meshes is consistent. However, the difference in magnitude of

the roll during the largest event is distinct between G1 and either G2 or G3. The

difference in the maximum roll is approximately 10 deg. The G2 and G3 meshes are in

better agreement with each other and only differ by a maximum of 1-2 deg throughout

the entire simulation.
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Figure 7.4: Mesh refinement evaluation of heave and roll for the 2-D ONRT midship
section case study with a sample embedded wave group of Hc = 16.875 m, Tc = 15 s,
and j = 3.

Table 7.3 summarizes the overall RMSE for both the wave propagation and motion

mesh refinement cases. For the wave propagation case, the time-histories of wave

elevation for each mesh are compared to the analytical wave elevation at the origin.

Since there is no analytical solution for motion prediction, the RMSE for the G1 and

G2 meshes is calculated with respect to the G3 mesh. Overall, both cases observe a

decrease in RMSE as the mesh size increased. The evaluated cases provide confidence

that the CFD setup is sufficient for demonstrating the different aspects of the CCS

framework. Additionally, the results with the G2 mesh are comparable to predictions

with the G3 mesh. Therefore, all simulations in the present case study are performed

utilizing the G2 mesh to reduce the overall computational cost.
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Table 7.3: Comparison of the RMSE for the various 2-D ONRT meshes.

Case G1 G2 G3
Wave Probe Elevation [m] 1.4954 1.3860 1.3853
Heave [m] 0.4633 0.0962 -
Roll [deg] 5.1928 1.3998 -

7.2 Extreme Roll Response

The Sea State 7 JONSWAP spectrum is sampled to produce 100,000 hours of

of random wave elevation observations at the origin. The 100,000 h of of random

wave elevations consisted of 100,000 1 hours realizations with the superposition of

1000 Fourier components describing the wave field (see Equation 3.6). From the

100,000 hours, the successive wave relationships described in Section 2.2 are developed

to construct the wave groups show in Figure 7.5. The current case study considered

Tc of 13, 14, 15, 16, and 17 s, j ≤ 2, and Hc of 9.375, 11.25, 13.125, 15, and 16.875,

which corresponds to 5σ, 6σ, 7σ, 8σ, and 9σ respectively. In total, 10 Tc and j pairs

are considered.
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Figure 7.5: Ensemble of different wave groups with ∆T = 1 s, j = 3, Tc = 15 s and
Hc = 5σ, 6σ, 7σ, 8σ, and 9σ for the 2-D ONRT midship section case study.

Five six-minute (0.5 hours total) CFD simulations are also performed in the random

waves for the 2-D ONRT to develop the probability of encounter conditions, and identify
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wave trains that lead to the encounter conditions of interest (irregular preludes).

Figure 7.6 showcases both the random wave observation and the corresponding joint

probability of encounter condition for roll angle and roll velocity developed through

Kernel Density Estimation (KDE) with the random wave ship response observations.

Figure 7.6b also denotes with black circles, the selection of encounter conditions.
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(a) Random Wave Observations

10 5 0 5 10
Roll Velocity [deg/s]

20

15

10

5

0

5

10

15

20

Ro
ll 

An
gl

e 
[d

eg
]

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

(b) Probability

Figure 7.6: Observation and probability distribution of encounter conditions for the
2-D ONRT midship section case study.

This case study considers both a general and an ensemble approach to train the

neural network surrogate models. The general approach trains a single neural network

model with randomly selected composite wave trains. The ensemble approach utilizes

several models, each responsible for composite wave trains with a specified period of

the largest wave Tc and run length j. Both modeling approaches are explored because

although the general approach allows for more training runs per model compared to

an ensemble approach in terms of total training runs required, it must predict the

dynamics over a larger parameter range. The ensemble model approach only considers

wave groups within a smaller subset of the total parameter range. Therefore, the

ensemble model approach only has to differentiate between the height of the largest

wave in the group and the various encounter conditions, which can enhance accuracy

119



and produce faster convergence with respect to training data quantity.

The training matrix, neural network architecture, and hyper-parameters for the

case study are presented in Table 7.4. The CCS framework is evaluated with training

datasets of 50, 100, 200, or 400 training runs for both the ensemble and general neural

network modeling approaches. The training dataset is identical between the general

and ensemble modeling approaches, and the smaller sized training datasets are a

subset of the larger training runs. For example, the models with 100 total training

runs utilize the same 50 runs as the models trained with only 50 training runs. For

each total quantity level of training data, the runs are segregated equally across the 10

Tc and j pairs. For each Tc and j pair, training runs are selected randomly in terms

of Hc and the encounter conditions. For the ensemble approach, a separate model

is constructed for each of the Tc and j pairs. The general approach uses all of the

training data as the ensemble model approach, but only builds a single model. For

example, the ensemble model approach for 400 total training runs contains 40 runs

for each of the 10 Tc and j, while the general approach would train off the same 400

runs. The same is true for other training dataset sizes. This consistency ensures that

both modeling approaches have the same information available to remove bias in the

training. In accordance with the case study in Section 5.3, 27 wave probes around the

hull are utilized in the construction of the neural network.

Each model utilizes the same architecture and training methodology and is eval-

uated against 25,100 validation runs, which corresponds to all of CFD simulations

required to calculate the probability of exceedance, purely considering CFD without

any surrogate modeling. Every model is evaluated in terms of the L2 (formulated as

the root mean squared error) and L∞ error, described in Equations 5.14 and 5.15,

respectively, for each individual validation run.

Figures 7.7 and 7.8 compare the L2 and L∞ error, respectively, for heave and

roll, employing both the ensemble and general approaches with various quantities of
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Table 7.4: Training matrix, neural network architecture, and hyper-parameters for
the case study.

Properties Value
Total Training Runs 50, 100, 200, 400
Training Runs per Model (Ensemble) 5, 10, 20, 40
Total Validation Runs 25,100
Time Steps per Run 200
Units per Layer 50
Layers 2
Dropout 0.1
Learning Rate 0.001
Epochs 2,000
Optimizer Adam (Kingma and Ba, 2014)

training data. The error calculation in Equations 5.14 and 5.15 are performed for

each of the validation runs. The triangle and rectangle markers in Figures 7.7 and

7.8 correspond to the median error across all validation runs, while the error bars

denote the 25th and 75th percentiles. For both the general and ensemble approaches,

the L2 and L∞ error for heave and roll decreases as the quantity of training data

increases. Additionally, the size of the error bars for the L2 and L∞ error decreases as

the quantity of training data increases. Overall, the general approach provides better

predictions for heave, but the roll predictions are similar between the two modeling

approaches.
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Figure 7.7: Comparison of L2 error for heave and roll for the 2-D ONRT midship
section case study.
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Figure 7.8: Comparison of L∞ error for heave and roll for the 2-D ONRT midship
section case study.

Figures 7.7 and 7.8 show the overall performance and accuracy of the neural network

in terms of L2 and L∞, but do not show the actual temporal LSTM prediction error.

Figures 7.9 and 7.10 demonstrate the three validation runs that resulted in the smallest

L∞ and L2 error, respectively, for heave and roll for the general approach model trained

with 400 runs. CFD is compared in Figures 7.9 and 7.10 to the LSTM predictions with

uncertainty estimates from the Monte Carlo Dropout approach that corresponds to

two standard deviations. The LSTM predictions are able to match both the phasing

and magnitude of the CFD predictions well. Figures 7.11 and 7.12 showcase the three

validation runs with the largest L∞ and L2 error, respectively. For both heave and

roll, portions of the LSTM predictions match the CFD well, while other parts of

the time-history are not predicted as accurately, especially after significant response

magnitudes. Overall, the uncertainty is on the order of 1-2 deg for the largest roll

angles and is typically larger at the response peaks.
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Figure 7.9: Three observations with the smallest L∞ error for each DoF using a model
trained with 400 simulations for the 2-D ONRT midship section case study.

0 20 40 60 80 100
Time [s]

10

0

10

He
av

e 
[m

]

Validation Run: 1375

CFD General UGeneral

0 20 40 60 80 100
Time [s]

40

20

0

20

40

Ro
ll 

[d
eg

]

Validation Run: 1473

0 20 40 60 80 100
Time [s]

10

0

10

He
av

e 
[m

]

Validation Run: 2600

CFD General UGeneral

0 20 40 60 80 100
Time [s]

40

20

0

20

40

Ro
ll 

[d
eg

]

Validation Run: 1598

0 20 40 60 80 100
Time [s]

10

0

10

He
av

e 
[m

]

Validation Run: 5899

CFD General UGeneral

0 20 40 60 80 100
Time [s]

40

20

0

20

40

Ro
ll 

[d
eg

]

Validation Run: 2716

Figure 7.10: Three observations with the smallest L2 error for each DoF using a model
trained with 400 simulations for the 2-D ONRT midship section case study.
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Figure 7.11: Three observations with the largest L∞ error for each DoF using a model
trained with 400 simulations for the 2-D ONRT midship section case study.
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Figure 7.12: Three observations with the largest L2 error for each DoF using a model
trained with 400 simulations for the 2-D ONRT midship section case study.
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Figures 7.7 through 7.11 provide overall assessments on the accuracy of the LSTM

models to reproduce the temporal response of the CFD simulations. However, the

CWG methodology is concerned with the extremes, and therefore, the absolute

maximums are of greater importance than the temporal predictions. The CFD and

LSTM predictions of the maximum heave and roll due to each composite wave train

are compared in Figures 7.13 and 7.14, respectively, for the ensemble and general

approaches.

Each marker in Figures 7.13 and 7.14 for a particular model corresponds to a single

composite wave train and the corresponding CFD and LSTM predictions. The solid

black line denotes identical values for CFD and LSTM. Similar to the comparisons of

L∞, the 400 training run models have similar trends, while there seems to be more

spread in the data for models trained with less data. Both approaches demonstrate

convergence towards better correlation. There is much more spread in the absolute

maximum predictions of roll than heave. Overall, the LSTM neural networks are

much more accurate in representing heave than roll.

(a) Ensemble (b) General

Figure 7.13: CFD and LSTM predictions of the absolute maximum heave for all the
composite wave trains for the 2-D ONRT midship section case study.
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(a) Ensemble (b) General

Figure 7.14: CFD and LSTM predictions of the absolute maximum roll for all the
composite wave trains for the 2-D ONRT midship section case study.

Figure 7.15 compares the probability of exceedance results of both modeling

approaches with various amounts of training data, predictions that combine CWG

and CFD without surrogate models (CC), and Monte Carlo results from 100 hours of

exposure time. With 200 training runs, both approaches are able to represent results

produced without surrogate modeling utilizing, only CFD. When less training data

is available, the general model is more accurate. However, with at least 200 training

runs available both are able to reproduce the CWG-CFD prediction of probability of

exceedance.

Figure 7.15c compares the uncertainty in the LSTM predictions with both ap-

proaches for 400 total training runs. The uncertainty for both approaches increases

as the roll angle of interest increases. Although the uncertainty is low in the time-

history predictions in Figures 7.7 through 7.11, it compounds across all the considered

composite wave trains. The compounding of uncertainty and the sensitivity of the

probability of exceedance calculation yields uncertainty in the probability calculation

that is of the same order of magnitude as the probability itself at the largest roll

angles. The large uncertainty highlights that as a response of interest becomes more
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extreme and rare, the probability calculation is detrimentally sensitive to underlying

LSTM error.
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Figure 7.15: Probability of exceedance of roll in Sea State 7 for the 2-D ONRT midship
section case study.

The CWG method is a systematic methodology that attempts to reduce the total

computational cost of extreme event event evaluations with respect to a Monte Carlo

approach. However, the introduction of the natural initial conditions make the events

produced by the CWG method physically realizable and the utilization of high-fidelity

and costly CFD increases the cost per observed event. The total CPU and exposure

127



time of the CWG-CFD and CCS methods are shown in Figure 7.16 and compared with

the required simulation time for Monte Carlo analysis estimated with Equation 7.1

from Ochi (1998). In Equation 7.1, yn is the most probable maximum response, T is

the exposure time in hours, m0 and m1 are the zeroth and second spectral moments

of the response, respectively.

yn =
√
m0

[
2 ln

(
602T

2π

√
m2

m0

)] 1
2

(7.1)

The CPU time corresponds to the total computational cost of the methodologies

and is specific to the considered mesh, software, and computing system. Meanwhile,

the exposure time is the actual response time simulated, which is consistent across

systems and would be applicable to model testing and a 3-D ship as well. The CPU and

exposure time required of the CWG implementations also includes the random wave

simulations considered in the identification of the irregular preludes and the associated

probability distribution of the encounter conditions. The CWG-CFD methodology, as

shown in Figure 7.16, reduces the computational cost over Monte-Carlo simulation for

the same case study by roughly five orders of magnitude at a roll angle of 57.5 deg. The

CCS model utilizing 400 training runs results in two orders of magnitude reduction in

the total computational cost of the CWG-CFD approach. Thus, the CCS methodology

results in a total estimated reduction of seven orders of magnitude in computational

cost to produce a probability of exceedance of up to a threshold of 57.5 deg. The cost

of the CCS methods is close to that of the Monte Carlo for producing probability of

exceedance predictions up to a roll angle of 30 deg.
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Figure 7.16: Required CPU and exposure time for the Monte Carlo, CC, and CCS
methods for the 2-D ONRT midship section case study.

This case study constitutes significant progress, not only in the development of a

computationally efficient framework for extreme ship response quantification, but also

demonstrates a means of training neural networks to produce real-time observations

of extremes. Previous research training neural networks to represent the dynamical

response of vessels has focused on random waves and has not explored the application

to extremes. Neural networks, in general, are better at interpolation than extrapolation

and are thought to perform poorly in predicting extreme events when trained with

random data. However, the present neural nets are trained with composite wave trains

that contain large and rare deterministic wave groups that lead to extremes. Therefore,

the 400 composite wave trains can be used, in principle, to train robust neural network

surrogate models capable of performing Monte Carlo analysis that recover the entire

PDF of each DoF and not simply the probability of exceedance that is calculated

within the CWG method. Figure 7.17 compares CFD and LSTM predictions of heave

and roll PDF in logarithmic scale utilizing only the general modeling approach for

100 hours of exposure time in random irregular waves. The roll and negative portion

of the heave are well represented, but the positive heave is under-predicted. Similar
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to the probability of exceedance comparisons, the PDF converges around 200 training

runs. Although the LSTM models perform well and recovers the underlying PDF,

the presented CFD results only consider a 100 hour exposure window, which is not

enough to induce significant extremes. The exposure time projections in Equation 7.1

and shown in Figure 7.16 predict a most probable maximum of 35 deg with a 100 hour

exposure window, which qualitatively agrees with the absolute maximum roll angles

observed in Figure 7.17 even though the models were trained with the composite

wave trains rather than random irregular waves. To achieve the larger roll angles in

Figure 7.15, significantly more exposure time is required. Therefore, although the

prediction of the PDF with the LSTM neural networks is encouraging, further research

is needed to evaluate whether CCS training methodology is suitable for recovering

the entire extreme PDF through a Monte Carlo prediction with am LSTM neural

network.
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Figure 7.17: Comparison of the PDF in a logarithmic scale for each DoF with models
trained with the general approach for the 2-D ONRT midship section case study.
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CHAPTER VIII

Case Study: 3-D 6-DoF ONR Tumblehome

This chapter presents a case study demonstrating the CCS framework with a 3-D

free-running model-scale ONRT hull in stern-quartering Sea State 7 seas. The vessel

is self-propelled and maintains heading by utilizing the propeller and rudder model

described in Section 3.3 with a PID-controlled rudder model. The rudder model

employed in this case study follows the research of Araki et al. (2012), using a wake

fraction w of 0 and a straightening coefficient γ of 0.7. The propeller model was

developed with a propeller revolution rate n = 8.97 rps, and the propeller diameter

D = 0.1066 m. Table 8.1 shows the particulars and loading condition for the ONRT,

as well as the fluid properties utilized in the CFD simulations. The length between

perpendiculars Lpp, longitudinal center of gravity LCG, vertical center of gravity

V CG, and the transverse metacentric height GMT , all reflect model-scale parameters

from Larsson et al. (2015). However, the gyradii are adjusted to match ongoing

work with North Atlantic Treaty Organization Applied Vehicle Technology (NATO

AVT-348) activity Assessment of Experiments and Prediction Methods for Naval Ships

Maneuvering in Waves.

Three different meshes developed utilizing the snappyHexMesh meshing tool (G1,

G2, and G3) are considered in the present case study and are summarized in Table 8.2.

The different meshes employ the same domain extents and are refined by a factor
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of
√

2 in each direction to result in mesh sizes of 1.57, 4.07, and 10.95 million cells

with the ship for the G1, G2, and G3 meshes, respectively. The G1 mesh is primarily

utilized in the extreme event portion of the case study, while the G2 and G3 meshes

were used in a small grid sensitivity study to asses the accuracy of the G1 mesh.

Table 8.1: Loading condition and fluid properties of 3-D ONRT midship section.

Properties Units Value
Length Between Perpendiculars, Lpp m 3.147
Beam, B m 0.384
Draft, T m 0.112
Displacement, ∇ kg 72.6
Longitudinal Center of Gravity, LCG (+Fwd of AP) m 1.625
Vertical Center of Gravity, KG (Above Baseline) m 0.156
Transverse Metacentric Height, GMT m 0.0422
Roll Gyradius, kxx m 0.1448
Pitch Gyradius, kyy m 0.7742
Yaw Gyradius, kzz m 0.7742
Density of Water, ρw kg/m3 998.72
Density of Air, ρa kg/m3 1
Kinematic Visc. of Water, νw m2/s 1.0703e-6
Kinematic Visc. of Air, νa m2/s 1.48e-5
Accel. due to Gravity, g m/s2 9.80665

Figures 8.1 and 8.2 show the G1 mesh for the hull surface and computational

domain. Since the CFD simulations utilize a propeller and rudder model, the developed

surface mesh neglects both the propeller and rudder geometries. Instead, a body

force is added to the fluid solution uniformly for the group of cells encompassing their

respective locations in the mesh. The computational domain contains a structured

background mesh with dimensions (3.5× 3.5× 2.5)Lpp. The length and width are set

as equal to aid with the quartering wave generation. The meshes contain a uniform

inner region around the hull, while the rest of the domain is graded from the uniform

region to the boundaries of the domain. Spacing details of the mesh cells are provided

in Table 8.2 for a regular wave with height, H = 0.1430 m and period, T=1.6868 s,
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where λ corresponds to the wavelength of the wave, ∆x, ∆y, and ∆z correspond to the

cell size in the uniform region closest to the hull, while ∆x, ∆y, and ∆z correspond

to the average spacing for the entire mesh.

Table 8.2: Summary of mesh statistics for the 3-D ONRT case study where H =
0.143 m and T=1.6868 s.

Properties G1 G2 G3
Length [m] 11.0145 11.0145 11.0145
Width [m] 11.0145 11.0145 11.0145
Height [m] 7.8675 7.8675 7.8675
# of Cells (w/o Ship) 1.31 mil 3.71 mil 10.42 mil
# of Cells (w/ Ship) 1.57 mil 4.07 mil 10.95 mil
λ/∆x (Uniform) 248 351 496
λ/∆y (Uniform) 248 351 496
H/∆z (Uniform) 4.94 6.99 9.88
λ/∆x 115 162 229
λ/∆y 65 93 130
H/∆z 1.35 1.91 2.69

Figure 8.1: Surface mesh of the 3-D ONRT hull for the G1 mesh.
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Figure 8.2: G1 Computational domain utilized for the 3-D ONRT CFD simulations.

8.1 Mesh Sensitivity

To confirm the meshes are adequate for the present case study, a grid sensitivity

study is performed for both a regular wave propagation and a 6-DoF ship motion in

irregular waves case. The regular wave case utilizes a mesh without the ship, and

focuses on evaluating whether the grid refinement is sufficient to simulate a stern-

quartering regular wave with height H = 0.143 m and period T = 2.1443 s. Figure 8.3

shows a comparison between the analytical wave solution and the predicted wave

elevation at three wave probes distributed diagonally across the domain in the direction

of the waves. The longitudinal and lateral location pairs of the probes in meters are

(-3,-3), (0,0), and (3,3), ranging from the most upstream probe (Probe 1), to the most

downstream probe (Probe 3). The comparison between the analytical solution and the

CFD predictions in Figure 8.3 are demonstrated with a non-dimensional time t/T and

wave amplitude η/A, where A is the nominal wave amplitude. After the initial growth

of the waves over the first several periods, the predicted waves are nearly identical to
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the analytical solution for all the observed probes. The close agreement between CFD

and the analytical wave observed in Figure 8.3 indicates that all the developed grids

have sufficient resolution to propagate waves throughout the domain.
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Figure 8.3: Comparison of different 3-D ONRT grid refinements for a regular wave
with H = 0.143 m and T = 2.1443 s.

The other considered case was simulating the 6-DoF response of a free-running

ONRT for a composite wave train with an embedded wave group Hc = 0.3218, Tc =

2.4302 s, and j = 3. The free-running ONRT is self-propelled with a propeller model,

and its heading is controlled with a PID-controller and a rudder model. Comparisons

of the surge velocity, sway velocity, heave, roll, pitch, and yaw are shown in Figure 8.4

for the G1, G2, and G3 meshes. Overall, the different meshes demonstrate little

difference between the mesh refinements with the exception of surge velocity and yaw,

where the G1 grid deviates from the G2 and G3 grid for a short period of time. The

discretization error is the cause for this deviation. Although the yaw responses revealed

differences between the mesh refinements, the variation in other DoF is negligible and

the G1, G2, and G3 predictions of the wave-body interaction are comparable.
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Figure 8.4: Comparison of the different 3-D ONRT grid refinements for ship response
due to a sample composite wave train with an embedded wave group of Hc = 0.3218,
Tc = 2.4302 s, and j = 3.

Table 8.3 summarizes the overall RMSE for both the wave propagation and 6-DoF

motion case. For the wave propagation case, the time-histories of wave elevation for

each mesh are compared to the analytical wave elevation at each probe for t/T ≥ 5.

Since there is not an analytical solution for 6-DoF motion case, the RMSE for the

G1 and G2 meshes is calculated with respect to the G3 mesh. Overall, both cases

observe a decrease in RMSE as the mesh size increased. The selected wave propagation

and 6-DoF motion cases demonstrate that the mesh and CFD simulation setup can

propagate waves throughout the domain, and also resolve the hydrodynamic forces

acting on the body. The evaluated cases provide confidence that the CFD setup is

sufficient for showcasing the different aspects of the 6-DoF implementation of the CCS

framework. Additionally, the results with the G1 mesh are comparable to predictions

with the G2 and G3 meshes. Therefore, all simulations for the CCS 6-DoF framework

are performed utilizing only the G1 mesh to reduce the overall computational cost.
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Table 8.3: Comparison of the RMSE for the different 3-D ONRT meshes.

Case G1 G2 G3
Wave Probe #1 [-] 2.310e-2 2.303e-2 2.296e-2
Wave Probe #2 [-] 2.909e-2 2.752e-2 2.671e-2
Wave Probe #3 [-] 3.252e-2 3.139e-2 3.022e-2
Surge Vel. [m/s] 1.374e-2 6.640e-4 -
Sway Vel. [m/s] 6.924e-3 7.193e-4 -
Heave [m] 1.480e-3 5.533e-4 -
Roll [deg] 3.677e-1 5.810e-3 -
Pitch [deg] 1.041e-1 5.672e-3 -
Yaw [deg] 4.437e-1 5.533e-3 -

8.2 Extreme Roll Response

The CCS method is implemented for a free-running model-scale ONRT hull in

Sea State 7 with the operating and seaway conditions defined in Table 8.4, where the

response of interest is the roll angle. This case study considers a Froude number of

0.2, which corresponds to a speed of 1.111 m/s at model-scale. The ship is free in all

DoF and is propelled with a propeller model. The heading is controlled with a rudder

model as well as a PID-controller that employs the gains detailed in Table 8.4.

The selected seaway utilizes the stern-quartering seas defined by the JONSWAP

spectrum outlined in Hasselmann et al. (1973) with a significant wave height Hs of

0.1839 m, a peak modal period Tp of 1.6868 s, and a peak enhancement factor γ of

3.3. 14,286 hours (1̃00,000 hours at full-scale) of random irregular wave data are

produced by sampling the spectrum to yield the successive wave relationships required

to construct deterministic wave groups with the Markov chain methodology. All of

the wave groups constructed in the presented case study are for a Tc of 1.4009, 1.5439,

1.6868, 1.8298, and 1.9727 s and j ≤ 2.

Thirteen random irregular wave CFD simulations of 20 s in length (260 s total at

model-scale and 30 min total at full-scale) are performed for the free-running ONRT

hull to develop the PDF shown in Figure 8.5 for roll and roll velocity utilizing KDE.
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Table 8.4: Operating and seaway conditions for the 3-D ONRT case study.

Properties Units Value
Froude number, Fn - 0.2
Speed m/s 1.111
Wave Heading deg 60 (Stern Quartering)
Sea State - 7
Spectrum - JONSWAP
Significant Wave Height, Hs m 0.1839
Peak Modal Period, Tp s 2.1433
Peak Enhancement Factor - 3.3
Proportional Gain, Gp deg/deg 4
Integral Gain, Gi 1/s 0
Differential Gain, Gd deg/(deg/s) 1
Max Rudder Angle, δmax deg 35

Max Rudder Rate, δ̇max deg/s 35

The roll and roll velocity in random irregular waves demonstrates that the largest roll

angles observed within the random irregular wave runs were approximately 40 deg in

magnitude. The encounter conditions selected for the CWG method are denoted by

black circles in Figure 8.5 and span the non-zero portion of the joint PDF. Each of

the 13 random wave simulations are scanned between 8 and 14 s for response values

that best match the encounter condition to develop the irregular preludes required for

the natural initial condition. The time interval between 8 and 14 s is chosen to ensure

that the waves and motions have sufficiently developed from rest, and the simulations

with the embedded wave groups would not be longer than 20 s. Once the irregular

preludes are identified, a series of composite wave trains are constructed for each wave

group and encounter condition.

Table 8.5 shows a summary of the training and validation data, the neural network

architecture, and the training parameters. For the present study, 500 of the constructed

composite wave trains are randomly selected for the neural network construction and

evaluation. 400 of the 500 chosen composite wave trains are used for training a variety

of models with different quantities of training data to observe convergence. The other
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100 composite wave trains are selected as validation runs for each model. Both the

training and validation runs are spread across the 10 Tc and j pairs corresponding

to 40 training and 10 validation composite wave trains for each pair. In accordance

with the case study in Section 5.3, 27 wave probes around the hull are utilized in the

construction of the neural network.
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Figure 8.5: Observation and probability distribution of encounter conditions for the
3-D ONRT case study.

Table 8.5: Training matrix, neural network architecture, and hyper-parameters for
the 3-D ONRT case study.

Properties Value
Total Training Runs 50, 100, 200, 400
Total Validation Runs 100
Time Steps per Run 400
Units per Layer 250
Layers 3
Dropout 0.1
Learning Rate 0.0001
Epochs 2,000
Optimizer Adam (Kingma and Ba, 2014)

Four different neural network models are built with training data quantities of 50,

100, 200, and 400 simulations of composite wave trains. Each model employs the same
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architecture and training methodology and is compared against the 100 validation runs

for both the L2 (formulated as the root mean squared error) and L∞ error described

in Equations 5.14 and 5.15, respectively. Only the general approach is considered in

this case study. Therefore, only one model is built for all Tc and j at a particular

training data quantity. Figures 8.6 and 8.7 show the L2 and L∞ error, respectively, for

each DoF and different training data quantities. Each square represents the median

error across all validation runs, while the error bars correspond to the 25% and 75%

quantiles.
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Figure 8.6: Convergence of neural network models with respect to training data for
L2 error for the 3-D ONRT case study.
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Figure 8.7: Convergence of neural network models with respect to training data for
L∞ error for the 3-D ONRT case study.

In general, as the training data quantity increases, the overall L2 and L∞ error

decreases, and they all trend towards zero error with 400 training runs. Each DoF

demonstrates convergence and less spread in error as training data is increased,

indicating that the produced models build an accurate surrogate of the entire dynamical

response. L2 error provides a measure of the entire predicted response time-history.

Since the CWG method is interested in the maximum response due to every pair of

encounter conditions and wave groups, a low L∞ error is an indication that the largest

values in time-histories are captured. Thus, a low L2 and L∞ error, as shown in the

model trained with 400 runs, is an indication that not only are response time-histories

well-represented in the neural network, but these models could also serve as surrogates

for CFD within the CWG method.

A significant advantage of the LSTM neural network surrogate modeling of extreme

responses is that it retains the entire prediction time-history of each event, and in
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the case of the present methodology, the full 6-DoF representation of the dynamical

response can be produced for each composite wave train. This approach differs from

the sequential sampling methodologies of Mohamad and Sapsis (2018) and Gong

et al. (2020), which only retain the maximum response due to each wave group with

a GPR surrogate. Figures 8.8 through 8.10 and Figures 8.11 through 8.13 show the

three time-history predictions for the validation runs with the smallest L2 and L∞

error, respectively, for each DoF, with the model trained with 400 runs. The CFD

simulations are compared with predictions from neural network model trained with

400 runs and the uncertainty ULSTM, corresponding to 2σ using the Monte Carlo

Dropout methodology. Each sub-figure within Figures 8.8 and 8.13 is the time-history

with the three smallest evaluations of the L2 and L∞ error for that particular DoF

and is labeled with the respective validation run index, for reference.
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Figure 8.8: Observations with the smallest L2 error for each DoF with a model trained
using 400 simulations for the 3-D ONRT case study.
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Figure 8.9: Observations with the second smallest L2 error for each DoF with a model
trained using 400 simulations for the 3-D ONRT case study.
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Figure 8.10: Observations with the third smallest L2 error for each DoF with a model
trained using 400 simulations for the 3-D ONRT case study.

143



0 2 4 6 8 10 12 14 16 18 200.4

0.8

1.2

1.6

Su
rg

e 
Ve

l. 
[m

/s
] Validation Run: 6

CFD LSTM ULSTM

0 2 4 6 8 10 12 14 16 18 200.4

0.0

0.4

0.8

Sw
ay

 V
el

. [
m

/s
] Validation Run: 35

0 2 4 6 8 10 12 14 16 18 200.4

0.2

0.0

0.2

0.4

He
av

e 
[m

]

Validation Run: 6

0 2 4 6 8 10 12 14 16 18 2060

30

0

30

60

Ro
ll 

[d
eg

]

Validation Run: 50

0 2 4 6 8 10 12 14 16 18 20
Time [s]

8

4

0

4

8

Pi
tc

h 
[d

eg
]

Validation Run: 93

0 2 4 6 8 10 12 14 16 18 20
Time [s]

10
5
0
5

10
15

Ya
w 

[d
eg

]

Validation Run: 50

Figure 8.11: Observations with the smallest L∞ error for each DoF with a model
trained using 400 simulations for the 3-D ONRT case study.
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Figure 8.12: Observations with the second smallest L∞ error for each DoF with a
model trained using 400 simulations for the 3-D ONRT case study.
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Figure 8.13: Observations with the third smallest L∞ error for each DoF with a model
trained using 400 simulations for the 3-D ONRT case study.

For the validation run with the smallest L2 and L∞ error in Figures 8.8 through

8.13, the LSTM predictions agree well with the CFD simulations. Figures 8.14 through

8.16 and Figures 8.17 through 8.19 show the three time-history predictions for the

validation runs with the largest L2 and L∞ error, respectively, for each DoF, for the

model trained with 400 runs. The runs with the largest L2 and L∞ error demonstrate

much more deviation between the LSTM predictions and the CFD simulations. With

the exception of validation run 65 in Figure 8.18, the roll LSTM predictions capture

the amplitude of the responses well but with a slight phase shift, which was identified

in Section 5.3 as being caused by the difference between the actual and estimated

trajectories. The ultimate goal of the CCS framework with the considered encounter

conditions in the current case study is to predict the extreme roll for this operating

and seaway condition. The observed set of validation runs indicate that the developed

LSTM models are able to represent the extreme predictions produced by the CFD
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simulations. The LSTM predictions with the largest errors still produced temporal

responses that were representative of the desired CFD response.
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Figure 8.14: Observations with the largest L2 error for each DoF with a model trained
using 400 simulations for the 3-D ONRT case study.
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Figure 8.15: Observations with the second largest L2 error for each DoF with a model
trained using 400 simulations for the 3-D ONRT case study.
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Figure 8.16: Observations with the third largest L2 error for each DoF with a model
trained using 400 simulations for the 3-D ONRT case study.
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Figure 8.17: Observations with the largest L∞ error for each DoF with a model trained
using 400 simulations for the 3-D ONRT case study.
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Figure 8.18: Observations with the second largest L∞ error for each DoF with a model
trained using 400 simulations for the 3-D ONRT case study.
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Figure 8.19: Observations with the third largest L∞ error for each DoF with a model
trained using 400 simulations for the 3-D ONRT case study.
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Identifying of critical wave groups in the CWG method is fundamental to developing

a relationship between the absolute maximum of the response and the encounter

conditions and wave groups. Figure 8.20 compares the absolute maximum of heave

and roll after the wave group is encountered for the validation dataset. Each marker

in Figure 8.20 for a heave and roll corresponds to a single composite wave train and

the resulting CFD and LSTM predictions. The solid black line illustrates identical

values between the simulation and surrogate model predictions. Each of the trained

models follow the solid black line, but there is much more spread between CFD and

LSTM predictions for roll. As the training data quantity is increased, the models

shift toward the solid black line, indicating higher accuracy as demonstrated in

Figures 8.6 and 8.7. Although producing a validation dataset for the entire CC

calculation is computationally prohibitive for this case study, the trends in Figure 8.20

are similar to what was demonstrated in the case study in Chapter VII, providing

confidence that the LSTM neural network models are capable of reproducing the

extreme responses for all the required composite wave trains.

(a) Heave (b) Roll

Figure 8.20: Comparison of the absolute maximum heave and roll for each composite
wave run with CFD and LSTM models with varying amounts of training data for the
3-D ONRT case study.
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Figure 8.21 compares the probability of exceedance predictions for all the con-

structed models in the case study. As the quantity of training data increases, the

difference between the probability of exceedance predictions decreases, as does the

magnitude of uncertainty from the LSTM models. The clustering of predictions as

the quantity of training data increases is an indication of convergence in the LSTM

models.
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Figure 8.21: Probability of exceedance of roll in Sea State 7 for the 3-D ONRT case
study.

The 3-D case study resulted in a probability of exceedance for 57.5 deg of roll

that was roughly an order of magnitude more probable than the 2-D case study in

Chapter VII. The increased likelihood of extremes results in less computational cost

to observe with Monte Carlo, as reflected in Figure 8.22. The difference between

Monte Carlo, estimated by Equation 7.1, and CC for CPU and exposure time is

only one order of magnitude at 57.5 deg, as opposed to five orders of magnitude

in the 2-D. With this current implementation and due to the systematic nature of

combining CWG and CFD, the computational cost is roughly the same across case

studies. Therefore, cases with less likely extremes will benefit more from the CCS

framework than those with frequent extremes.
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Figure 8.22: Required CPU and exposure time for the Monte Carlo, CC, and CCS
methods for the 3-D ONRT case study.

The probability of exceedance of roll predictions in Figure 8.21 demonstrate the

LSTM predictions converge as the quantity of training data increases. The prediction-

focused surrogate model retains the temporal predictions for a given wave train and can

be applied to random irregular waves as well. Predicting the ship response for 1,000

hours of random irregular waves yields the PDF in Figure 8.23. The sway velocity,

heave, roll, and pitch are converging, but there is large spread in the surge velocity and

yaw. This difference is likely due to considering a fixed estimated encounter frame for

all wave trains. As identified in Section 5.3, a more accurate estimate of the encounter

frame results in better overall LSTM models.
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Figure 8.23: Comparison of the PDF in a logarithmic scale for each DoF for the 3-D
ONRT case study.

The presented 3-D case study constitutes the first time that a probabilistic method

and CFD are combined to not only observe extreme events for a free-running vessel,

but also quantify the probability of their occurrence with the observations. Although

developing a complete validation dataset for Monte Carlo or CC is computationally

expensive, the limited validation dataset and the case study in Chapter VII provides

confidence that the CCS framework produces observations of extremes that yield

quantitative probabilities of their occurrence.
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CHAPTER IX

Conclusion

Ensuring the safety of a vessel in extreme ocean conditions is a crucial consideration

for designers and operators. Vessels must withstand a variety of responses through

their lifetime, and proper probabilistic characterization of the extremes is critical, as

is understanding what causes the extreme events, in order to identify an issue in a

design or limit the operational profile of existing platforms. This dissertation develops

the CCS framework in order to address the three main challenges in the observation

and probabilistic quantification of extreme ship responses:

1. Stochasticity of the ocean environment and rareness of extremes

2. Complex nonlinear hydrodynamic behavior of a vessel in large amplitude waves

3. Evaluation costs associated with nonlinear hydrodynamic behavior

The stochasticity of the ocean environment and rareness of extremes is addressed

by implementing the CWG method, which provides a systematic methodology of

constructing deterministic wave groups, evaluating the ship response due to the

different wave groups and encounter conditions to identify critical wave groups that

cause near-exceedances of thresholds of interest, and combines the probability of these

critical wave groups to calculate a probability of exceedance.
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The complex nonlinear hydrodynamic behavior of a vessel in large amplitude waves

is managed by introducing high-fidelity numerical hydrodynamic predictions with

CFD, specifically URANS. High-fidelity numerical hydrodynamic methods can provide

quantitative evaluations of the extreme ship responses in waves. However, the accuracy

of URANS methods comes at a considerable computational cost.

The evaluation costs associated with nonlinear hydrodynamic behavior from the

URANS simulations is addressed by the introduction of LSTM neural networks to

construct a surrogate model of a limited set of URANS predictions. The trained

LSTM neural network can then be utilized to perform all the response evaluations

required for the CWG method. The LSTM neural network model yields temporal

predictions of the ship response. Therefore, the ability to produce observations with

the CCS framework is maintained.

The concept of natural initial conditions was developed in this dissertation by em-

bedding deterministic wave groups into random wave trains from previous simulations

of ship responses in waves in a manner with which a specified encounter condition is

achieved at the moment the wave group is encountered. The natural initial condition

allows for the enforcement of encounter conditions and the generation of wave groups

to be both physically realizable and reproducible, without any intrusive constraints.

This dissertation also established a methodology of representing the 6-DoF response

of a free-running vessel with LSTM neural networks. One main issue with creating

a SI model for free-running vessels is that the instantaneous trajectory is unknown

a priori. Therefore, the encountered wave field around the ship is also unknown.

However, if the trajectories are estimated from the training data, the wave field in

an approximate encounter frame provides a first-order estimate of the waves that the

ship encounters, which makes the LSTM possible for 6-DoF motions.

Three different case studies are described in this dissertation. Section 5.3 contains

a case study with the DTMB 5415 hull form and simulations from the medium-fidelity

154



numerical hydrodynamic simulation tool LAMP, in random irregular waves. This

case study focuses on evaluating the ability of the developed LSTM neural network

modeling methodology to represent the 6-DoF response of a free-running vessel for

both course-keeping as well as turning circles in random irregular waves. The developed

modeling methodology with the estimated encounter frames is able to reproduce the

temporal predictions from LAMP.

Chapter VII outlines a case study for a 2-D midship section of the ONRT employing

the CCS framework. Probability of exceedance calculations are performed for the

CCS framework with models trained with varying amounts of training data and an

alternative methodology, where CFD is only considered to develop the probability

calculations (CWG-CFD). With 200 training runs, the LSTM neural network model

reproduces the CC results at a computational cost savings of two orders of magnitude,

with respect to the CC method and seven orders of magnitude, with respect to a

Monte Carlo approach.

Chapter VIII extends the 2-D case study in VII to a 3-D free-running 6-DoF ONRT.

Similarly to the 2-D case study, LSTM neural network models are constructed with

varying levels of training data. However, due to the large increase in computational

cost for 3-D CFD simulations, only 100 validations runs were available to evaluate

the models. In accordance with the 2-D case study, the resulting probability of

exceedance calculations converge at around 200 training runs and produce LSTM

predictions that are representative of the CFD validation simulations. The similarities

between the results of the 3-D and 2-D case studies builds confidence that the CCS

framework produces quantitative probabilistic evaluations and observations of extreme

ship response events.
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9.1 Contributions

This dissertation contributes extensively to the areas of probabilistic methods

for extremes, numerical hydrodynamics, and prediction-focused surrogate modeling

for marine dynamics. The major contribution from this dissertation is the overall

development of the CCS framework outlined in Chapter VI. Each resulting contribution,

is a consequence of the different methodologies required within the framework. The

CCS framework develops a methodology for quantifying the probability of extreme

events and producing quantitative observations of these extremes to provide insight

into the mechanisms that cause them. Previous extreme event methodologies have

typically focused on only the statistics or the observations. If both were included, it

was typically for cases with simplified hydrodynamic models that did not produce

physically realizable events.

Another large contribution is the development of the natural initial condition in

Section 4.1. As described in Chapter IV, prior to the research in this dissertation, initial

conditions were typically ignored, enforced intrusively, or implemented in simplified

ODE models for extreme event evaluations. None of the previous research addressed

the need for both enforcing initial conditions and producing physically realizable

wave groups simultaneously. The natural initial condition methodology provides a

solution to this issue and not only produces physically realizable initial conditions and

wave groups, but also provides control over what the encounter condition is at the

precise moment of wave group encounter so that the variation of the encounter state is

prescribed and not random. Additionally, the natural initial condition is valid for both

simulations and experiments. Previous research with initial conditions and wave group

methods discussed experimental implementations that required intrusive dynamic

mechanisms that would lead to unrealistic events. The natural initial condition enables,

for the first time, the observation of curated extreme events with initial conditions in

an experimental setting.
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A significant contribution that arose as a result of the expensive CFD simulations,

is the development of the LSTM modeling methodology for free-running vessels in

Chapter V. In the context of this dissertation, it is a technique of yielding observations

of extreme events that are not only statistically representative of the CFD-produced

extreme statistics, but also are able to provide temporal predictions with uncer-

tainty estimates that are aligned with high-fidelity predictions. This dissertation

constitutes the first time that a neural network model was employed to represent

the 6-DoF response of free-running vessels for course-keeping, turning circles, and

extreme roll with rigorous and extensive validation. Although the LSTM models in

Chapters VII and VIII are constructed with wave groups from the CWG method, they

are not constrained to only wave groups generated within those methods, and the

models could be applied to random irregular waves as well to construct PDFs of each

DoF, as is demonstrated throughout the cases studies. The CWG method, or another

wave group method, could serve as a means of developing extreme ship response events

that serve as training data for the surrogate models. The resulting models can then be

employed as a proxy for simulation in a wide variety of areas. Outside of the extreme

event evaluations that this dissertation focused on, the LSTM methodology developed

for the CCS framework could and should be adapted for real-time forecasting and

other SI applications.

The final contribution of this dissertation is the utilization of CFD for ship responses

in extreme waves. Previous research and application of CFD for ship hydrodynamics

has typically emphasized resistance, maneuvering and other similar cases, but routinely

is not considered for seakeeping due to its computational cost and the large amount

of exposure time required to gain meaningful statistics. Outside of research, an

aversion persists to applying CFD to seakeeping problems across the international ship

hydrodynamics community, which tends to focus on potential flow BEM approaches.

This dissertation demonstrates that 6-DoF CFD simulations can be applied to ship
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motion in wave problems with careful consideration and targeting of prescribed events

of interest, like the CWG method provides. Not only can CFD be employed when short-

time window events of interest are available, but it also absolutely should be considered

for problems that are inherently poorly predicted in the medium-fidelity methods,

such as significant green water events. The simulation setup in this dissertation, and

the previous research that inspired it should provide a sufficient starting point.

9.2 Future Work

This dissertation developed several methodologies that enabled the observation

and probabilistic quantification of extreme ship response events. Advancement of

the state-of-the-art in multiple areas has also revealed future research avenues. For

instance, the case studies presented denote a subset of the possible extremes that a

vessel can experience throughout their lifetime. In the future, the CCS framework

should be applied to cases of extreme pitch, surf-riding, broaching, and seaway loads.

Application to different response quantities will require some investigation of the proper

encounter conditions, and the natural initial condition methodology can be employed

to understand the sensitivity of different quantity combinations. Additionally, steps

toward including the uncertainty of the encounter conditions in the probability of

exceedance were taken in Section 6.1, but further research is required for understanding

its propagation from the response to the statistics.

Furthermore, the case studies in Chapters VII and VIII considered extreme roll,

but the datasets did not include any observations of capsizing. The CWG method

and CFD have been applied to instances of capsizing, but future research should look

into the application of the LSTM methodology to capsizing and other instabilities.

Progress was also made in the extension of the LSTM neural network to include

multiple speeds, headings, and seas states in random irregular waves for course-keeping

in Section 5.4. Both of the extreme roll case studies and the formulation of LSTM
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neural networks within the CCS framework focused on training with data from a

single condition. The CCS framework should be extended to multiple conditions in

order to benefit from the computational cost savings that are a result of creating more

generalized models, instead of creating several condition-specific models. Additionally,

the main deficiency in the LSTM surrogate modeling technique is that the current

methodology considers a single encounter frame for a particular condition, and it is

not specific to individual wave trains. Future research should consider developing a

methodology for providing an improved estimate of the instantaneous encounter frame

for each specific wave train. As demonstrated in the case studies in Section 5.3, the

better the encounter frame is estimated, the more accurate the LSTM models are.

Everything in this dissertation was completed for uni-directional linear wave fields.

Future research should extend the CCS framework to multi-directional seas and and

nonlinear waves (Gong et al., 2021). Extension to other wave fields may require some

modifications to the Markov chain wave group construction.

Validation of the methodology and neural networks are provided throughout the

dissertation in every case study. However, the computational cost of CFD prevented

the development of an extensive Monte Carlo dataset for complete validation of the

probability of exceedance calculation for free-running vessels for the cases study in

Chapter VIII. There is high confidence that the LSTM neural network can represent

predictions resulting from CWG method and CFD, but more research is needed to

fully validate the framework for free-running vessels. Future research should produce

an extensive Monte Carlo dataset for validation with a medium-fidelity numerical

hydrodynamic tool like LAMP, which is much more computationally efficient than

CFD, but is capable of reproducing much of the dominating phenomena in extreme

ship responses in waves. The CCS framework could then be implemented with LAMP

to provide further validation.
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del Águila Ferrandis, J., M. S. Triantafyllou, C. Chryssostomidis, and G. E. Karniadakis
(2021), Learning functionals via LSTM neural networks for predicting vessel dynam-
ics in extreme sea states, Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 477 (2245), 20190,897, doi:10.1098/rspa.2019.0897.

Filip, G., D.-H. Kim, S. Sahu, J. de Kat, and K. Maki (2014), Bulbous Bow Retrofit
of a Containership Using an Open Source Computational Fluid Dynamics (CFD)
Toolbox, in Proceedings of the 2014 SNAME Maritime Convention.

Filip, G. P., W. Xu, and K. J. Maki (2017), URANS predictions of resistance and
motions of the KCS in head waves, Tech. Rep. 355, University of Michigan, Ann
Arbor, MI.

Filip, G. P., W. Xu, and K. J. Maki (2020), A method for the prediction of extreme
wave loads on a fixed platform, Applied Ocean Research, 97, 101,993, doi:https:
//doi.org/10.1016/j.apor.2019.101993.

Gaidai, O., G. Storhaug, and A. Naess (2016), Extreme Value Statistics of Large
Container Ship Roll, Journal of Ship Research, 60 (02), 92–100, doi:10.5957/jsr.2016.
60.2.92.

Gal, Y., and Z. Ghahramani (2016a), Dropout as a Bayesian Approximation: Repre-
senting Model Uncertainty in Deep Learning, in Proceedings of the 33rd International
Conference on Machine Learning (ICML-16).

Gal, Y., and Z. Ghahramani (2016b), A Theoretically Grounded Application of Dropout
in Recurrent Neural Networks, in Advances in Neural Information Processing
Systems, vol. 29, pp. 1019–1027.

Gong, X., and Y. Pan (2022a), Sequential bayesian experimental design for estimation
of extreme-event probability in stochastic input-to-response systems, Computer
Methods in Applied Mechanics and Engineering, 395, 114,979, doi:https://doi.org/
10.1016/j.cma.2022.114979.

Gong, X., and Y. Pan (2022b), Effects of varying initial conditions of ship encountering
wave groups in computing extreme motion statistics, in Proceedings of the 34rd
Symposium on Naval Hydrodynamics.

Gong, X., Z. Zhang, K. Maki, and Y. Pan (2020), Full Resolution of Extreme Ship
Response Statistics, in Proceedings of the 33rd Symposium on Naval Hydrodynamics.

Gong, X., K. M. Silva, K. J. Maki, and Y. Pan (2021), Effect of wave nonlinearity on
the statistics of wave groups and extreme ship motions, in Proceedings of the 36th
International Workshop on Water Waves and Floating Bodies.

163



Hasselmann, K., et al. (1973), Measurements of wind-wave growth and swell decay
during the Joint North Sea Wave Project (JONSWAP), Deutshes Hydrographisches
Institut, Hamburg, Germany.

Hochreiter, S., and J. Schmidhuber (1997), Long short-term memory, Neural computa-
tion, 9 (8), 1735–1780.

Hosseini, S. H. S. (2009), CFD prediction of ship capsize: parametric rolling, broaching,
surf-riding, and periodic motions, Ph.D. thesis, University of Iowa, doi:10.17077/
etd.c2qgkc5s.

ITTC (2011), Fresh Water and Seawater Properties, ITTC Procedure 7.5-02-01-03,
Revision 02, 26th International Towing Tank Conference.

Jacobsen, N. G., D. R. Fuhrman, and J. Fredsøe (2012), A wave generation toolbox for
the open-source CFD library: OpenFOAM®, International Journal for Numerical
Methods in Fluids, 70 (9), 1073–1088, doi:10.1002/fld.2726.

Jensen, J. (2007), Efficient estimation of extreme non-linear roll motions using the
first-order reliability method (FORM), Journal of Marine Science and Technology,
12, 191–202, doi:https://doi.org/10.1007/s00773-007-0243-z.

Kim, D.-H. (2012), Design loads generator: Estimation of extreme environmental
loadings for ship and offshore applications, Ph.D. thesis, The University of Michigan,
Ann Arbor, MI.

Kimura, A. (1980), Statistical properties of random wave groups, in Proceedings of the
17th International Coastal Engineering Conference, pp. 2955–2973, ASCE, Sydney,
Australia.

Kingma, D. P., and J. Ba (2014), Adam: A method for stochastic optimization,
doi:10.48550/ARXIV.1412.6980.

Knight, B. (2021), Data-Driven Propeller Modeling for Ship Maneuvering, Ph.D.
thesis, University of Michigan.

Knight, B., W. Xu, and K. Maki (2020), Numerical Prediction of Self-Propulsion in
Extreme Head Seas, in Proceedings of the 33rd Symposium on Naval Hydrodynamics.

Knight, B., K. Silva, and K. Maki (2022), Data-Driven Propeller and Rudder Modeling
for Maneuvering Analysis of the ONR Tumblehome, in Proceedings of the 41st
International Conference on Ocean, Offshore & Arctic Engineering OMAE 2022.

Kogiso, N., and Y. Murotsu (2018), Application of first order reliability method to
ship stability–final report of SCAP committee (part 5), in Proceedings of the 6th
Osaka Colloquium on Seakeeping and Stability of Ships.

Larsson, L., F. Stern, M. Visonneau, T. Hino, N. Hirata, and J. Kim (2015), Proceedings
of the Tokyo 2015 Workshop on CFD in Ship Hydrodynamics.

164



Lee, T., K. Ahn, H. Lee, and D. Yum (2003), On an Empirical Prediction of Hydro-
dynamic Coefficients for Modern Ship Hulls, in Proceedings of the International
Conference on Marine Simulation and Ship Maneuverability (MARSIM 03).

Lee, Y.-W., L. McCue, M. Obar, and A. Troesch (2006), Experimental and Numerical
Investigation Into the Effects of Initial Conditions on a Three Degree of Freedom
Capsize Model, Journal of Ship Research, 50 (01), 63–84, doi:10.5957/jsr.2006.50.1.
63.

Lin, W., and D. Yue (1993), Time-Domain Analysis for Floating Bodies in Mild-Slope
Waves of Large Amplitude, in Proceedings of the 8th International Workshop on
Water Waves and Floating Bodies.

Lin, W., M. Meinhold, N. Salvesen, and D. Yue (1994), Large-Amplitude Motions
and Waves Loads for Ship Design, in Proceedings of the 20th Symposium on Naval
Hydrodynamics.

Lin, W. M., and D. Yue (1990), Numerical Solutions for Large-Amplitude Ship Motions
in the Time-Domain, in Proceedings of the 18th Symposium on Naval Hydrodynamics.

Menter, F., M. Kuntz, and R. Langtry (2003), Ten years of industrial experience with
the SST turbulence model, in Proceedings of the fourth international symposium on
turbulence, heat and mass transfer.

Mohamad, M. A., and T. P. Sapsis (2018), Sequential sampling strategy for extreme
event statistics in nonlinear dynamical systems, Proceedings of the National Academy
of Sciences, 115 (44), 11,138–11,143, doi:10.1073/pnas.1813263115.

Mousaviraad, S. M. (2010), Cfd prediction of ship response to extreme winds and/or
waves, Ph.D. thesis, University of Iowa, doi:10.17077/etd.9qppvv9h.

Nathan, A. (1975), Trigonometric interpolation of function and derivative data, Infor-
mation and Control, 28 (3), 192–203, doi:https://doi.org/10.1016/S0019-9958(75)
90279-X.

NATO (1983), Standardized Wave and Wind Environments and Shipboard Reporting of
Sea Conditions, Standardization Agreement STANAG 4194, North Atlantic Treaty
Organization.

Nielsen, U. D. (2017), Transformation of a wave energy spectrum from encounter to
absolute domain when observing from an advancing ship, Applied Ocean Research,
69, 160–172, doi:https://doi.org/10.1016/j.apor.2017.10.011.

Ochi, M. K. (1998), Ocean Waves: The Stochastic Approach, Cambridge Ocean
Technology Series, Cambridge University Press, doi:10.1017/CBO9780511529559.

Paroka, D., and N. Umeda (2006), Capsizing probability prediction for a large passenger
ship in irregular beam wind and waves: comparison of analytical and numerical
methods, Journal of Ship Research, 50 (4), 371–377.

165



Piro, D. J., and K. J. Maki (2013), Hydroelastic analysis of bodies that enter and exit
water, Journal of Fluids and Structures, 37, 134 – 150, doi:https://doi.org/10.1016/
j.jfluidstructs.2012.09.006.

Reed, A. M., and R. F. Beck (2016), Advances in the Predictive Capability for
Ship Dynamics in Extreme Waves, in Proceedings of the 2016 SNAME Maritime
Convention.

Sadat-Hosseini, H., D. Kim, S. Toxopeus, M. Diez, and F. Stern (2015), Cfd and
potential flow simulations of fully appended free running 5415m in irregular waves,
in World Maritime Technology Conference.

Sapsis, T. P. (2021), Statistics of Extreme Events in Fluid Flows and Waves, Annual
Review of Fluid Mechanics, 53 (1), 85–111, doi:10.1146/annurev-fluid-030420-032810.

Schirmann, M. L., M. D. Collette, and J. W. Gose (2020), Improved vessel motion
predictions using full-scale measurements and data-driven models, in Proceedings of
the 33rd Symposium on Naval Hydrodynamics.

Serani, A., M. Diez, F. van Walree, and F. Stern (2021), URANS analysis of a free-
running destroyer sailing in irregular stern-quartering waves at sea state 7, Ocean
Engineering, 237, 109,600, doi:https://doi.org/10.1016/j.oceaneng.2021.109600.

Shen, Z., D. Wan, and P. M. Carrica (2015), Dynamic overset grids in OpenFOAM
with application to KCS self-propulsion and maneuvering, Ocean Engineering, 108,
287 – 306.

Shin, Y. S., V. L. Belenky, W. M. Lin, K. M. Weems, and A. H. Engle (2003), Nonlinear
time domain simulation technology for seakeeping and wave-load analysis for modern
ship design, Transactions, Society of Naval Architects and Marine Engineers, 111,
557–578.

Silva, K., B. Knight, and K. Maki (2022), Numerical Prediction of Extreme Roll of a
Free-Running Ship with Computational Fluid Dynamics and Neural Networks, in
Proceedings of the 34rd Symposium on Naval Hydrodynamics.

Silva, K. M., and K. J. Maki (2021a), Data-Driven Identification of Critical Wave
Groups, in Proceedings of the 9th Conference on Computational Methods in Marine
Engineering (MARINE 2021).

Silva, K. M., and K. J. Maki (2021b), Towards a Computational Fluid Dynamics
implementation of the critical wave groups method, Ocean Engineering, 235, 109,451,
doi:https://doi.org/10.1016/j.oceaneng.2021.109451.

Silva, K. M., and K. J. Maki (2022a), Data-Driven System Identification of 6-DoF
Ship Motion in Waves with Neural Networks, Applied Ocean Research, 125, 103,222,
doi:https://doi.org/10.1016/j.apor.2022.103222.

166



Silva, K. M., and K. J. Maki (2022b), Towards a Generalized Neural Network Approach
for Identifying Critical Wave Groups, in Proceedings of the 18th International Ship
Stability Workshop.

Silva, K. M., and K. J. Maki (2023), Implementation of the critical wave groups
method with computational fluid dynamics and neural networks, doi:10.48550/
ARXIV.2301.09834.

Silva, K. M., W. Xu, and K. J. Maki (2021), Critical Wave Group Implementation
with Computational Fluid Dynamics and Neural Networks, in 1st International
Conference on the Stability and Safety of Ships and Ocean Vehicles (STAB&S 2021).

Themelis, N., and K. J. Spyrou (2007), Probabilistic assessment of ship stability,
SNAME Transactions, 115, 181–206.

Weems, K., and D. Wundrow (2013), Hybrid Models for Fast Time-Domain Simulation
of Stability Failures in Irregular Waves With Volume-Based Calculations for Froude-
Krylov and Hydrostatic Forces, in Proceedings of the 13th International Ship Stability
Workshop.

Weems, K., V. Belenky, K. Spyrou, S. Aram, and K. Silva (2020), Towards Numerical
Estimation of Probability of Capsizing Caused by Broaching-to, in Proceedings of
the 33rd Symposium on Naval Hydrodynamics.

Whicker, L., and L. Fehlner (1958), Empirical formulas for low-aspect ratio, all-
moveable foils, DTMB Report 933.

White, P. (2020), A Hybrid Computational Framework for the Simulation of Ships
Maneuvering In Waves, Ph.D. thesis, University of Michigan.

Xu, W. (2020), A Machine Learning Framework to Model Extreme Events for Nonlinear
Marine Dynamics, Ph.D. thesis, University of Michigan.

Xu, W., G. P. Filip, and K. J. Maki (2020), A Method for the Prediction of Extreme
Ship Responses Using Design-Event Theory and Computational Fluid Dynamics,
Journal of Ship Research, 64, 48–60.

Xu, W., K. J. Maki, and K. M. Silva (2021), A data-driven model for nonlinear marine
dynamics, Ocean Engineering, 236, 109,469, doi:https://doi.org/10.1016/j.oceaneng.
2021.109469.

167


	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	ABSTRACT
	Introduction
	Literature Review: Probabilistic Methods
	Extrapolation Methods
	Split-Time Method
	First Order Reliability Method (FORM)
	Design Loads Generator (DLG)
	Reduced Order Wave Groups
	Critical Wave Group (CWG) Method

	Literature Review: Numerical Hydrodynamics
	Low-Fidelity
	Medium-Fidelity
	High-Fidelity

	Literature Review: Surrogate Modeling
	Statistics-Focused Surrogates
	Prediction-Focused Surrogates

	Overview of Thesis

	Critical Wave Group (CWG) Method
	Probability of Exceedance
	Wave Group Construction
	Wave Group Probability

	Computational Fluid Dynamics (CFD)
	Wave Generation
	Boundary Conditions
	Propeller and Rudder Model

	Initial Conditions
	Natural Initial Condition

	System Identification with LSTM Neural Networks
	Neural Networks
	Framework
	Case Study: 3-D 6-DoF 5415
	Course-keeping in Random Irregular Waves
	Turning Circle in Random Irregular Waves

	Case Study: Multiple Speeds, Headings and Sea States

	CCS Framework
	Uncertainty in Initial Conditions

	Case Study: 2-D 2-DoF ONR Tumblehome Midship Section
	Mesh Sensitivity
	Extreme Roll Response

	Case Study: 3-D 6-DoF ONR Tumblehome
	Mesh Sensitivity
	Extreme Roll Response

	Conclusion
	Contributions
	Future Work

	BIBLIOGRAPHY

