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Abstract 

 
Sepsis is a life-threatening clinical syndrome characterized by a dysregulated 

host-response to infection and organ dysfunction. There are variable clinical course 

trajectories in patients with sepsis, and the precise reasons why the illness resolves in 

some individuals, causes long-term sequela in others, and is deadly to many remains 

poorly understood. This heterogeneity has contributed to the litany of failed clinical trials 

for novel therapeutics such that sepsis therapy remains largely supportive and non-

specific.  

This dissertation leverages patient data and biospecimen from a recently 

completed clinical trial to investigate the metabolic pathways that drive sepsis mortality 

and patient response to a metabolic therapeutic, levocarnitine (L-carnitine). Using data 

from the placebo arm of the trial, I determined that baseline clusters of metabolomics 

data can identify patient subgroups characterized by differential organ function and 

mortality. I also modeled the early trajectory of metabolite changes over the first 48-

hours of septic shock and found several acylcarnitines and IL-8 were persistently 

elevated in patients who died. I then found higher concentrations of acylcarnitines and 

amino acids in serum were related to non-mortality endpoints, including the continued 

need for vasopressors and mechanical ventilation.     

With logistic regression models and a grid search methodology of the entire 

metabolomics dataset from the trial, I discovered a signal that L-carnitine treatment 

response varies depending on a patient’s baseline metabolic status. Namely, that those 
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patients with elevated acetylcarnitine and/or valine derived a mortality benefit upon 

having been randomized to high dose L-carnitine over placebo. I also built a population 

pharmacokinetic model that describes L-carnitine concentrations over time in patients 

with sepsis. I then validated that renal function is a key patient covariate on the 

elimination rate of the drug, particularly when renal function estimates were built from 

equations using serum cystatin C without a patient’s self-identified race. These results 

add to growing calls to reconsider renal function estimates based on serum creatinine 

and/or race. 

In aggregate, this thesis explores sepsis-induced perturbations in metabolism 

and how they relate to patient outcomes and the pharmacokinetic and clinical response 

to L-carnitine. This work implicates energetic and mitochondrial metabolic dysfunction, 

particularly related to the impairment of fatty acid beta-oxidation, in explaining some of 

the observed heterogeneity in sepsis outcomes and response to treatment. Future pre-

clinical and clinical follow-up studies are necessary to understand: 1) the mechanisms 

driving perturbed host metabolism and the development of sepsis-induced organ 

dysfunction and 2) if these metabolic measures hold further promise as prognostic 

and/or predictive biomarkers in patients with sepsis.   
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Chapter 1: Introduction 

 

Aspects of this work have been published as an original review article in 

Pharmacotherapy.1 

1.1 Sepsis is a heterogeneous clinical syndrome 

Sepsis is a life threatening, dysregulated host response to infection, which is 

characterized by systemic organ dysfunction.2 One in three Americans who die in the 

hospital have sepsis, and in 2017 there were an estimated 48.9 million cases 

worldwide.3 Moreover, sepsis prevalence is rising, and in 2013 cost an estimated $24 

billion, making it the most expensive inpatient diagnosis.4 

Sepsis is best described as a highly heterogenous clinical syndrome, with 

patients presenting along a continuum of clinical signs, symptoms, and severity of 

illness.5 Multi organ failure, as measured by the Sequential Organ Failure Assessment 

(SOFA) score, is a hallmark of sepsis and can impact all major systems of the body 

including the heart, kidney, liver, lungs, central nervous system, and circulatory 

systems.6,7 The mechanism and pathophysiology underlying highly variable clinical 

trajectories and the development of specific organ failures are complex, and the precise 

reasons some patients exhibit severe dysregulated responses while others recover from 

their initial infection in an uncomplicated fashion remains poorly understood. Such host-

response heterogeneity muddies the interpretation of treatment response and is a major 

reason why novel pharmacotherapy often fails. Absence of adequate stratification of 
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patients based on their underlying pathophysiology may contribute to this.8 The need to 

advance mechanistic understanding of sepsis heterogeneity has led to funding calls 

from the National Institutes of Health (NIH), Institute of General Medical Sciences 

(NIGMS) for studies that seek to determine the effect of patient characteristics on 

differential treatment response (NIH Notice of Information, GM-19-054).9 Teasing out 

this variability is necessary to bring about a precision medicine approach to sepsis. 

1.2 Perturbed metabolism is a pillar of sepsis pathophysiology  

Ample evidence suggests a hypermetabolic component and derangement of host 

metabolism is central to sepsis pathophysiology.10 Recently revised consensus 

guidelines define the most severe manifestation, septic shock, as infection with 

sustained hypotension despite recommended evidence-based treatment interventions 

(e.g., fluid resuscitation), and pertinent to this discussion, metabolic dysfunction and/or 

tissue hypoperfusion as evidenced by an elevated blood lactate concentration.2 Altered 

energy utilization results in hyperglycemia, protein catabolism, and lipolysis and 

contributes to poor patient outcomes.11 While several studies have targeted lactate level 

as a resuscitation goal12-14, these trials have typically utilized fluids, vasopressors, or 

other agents designed to improve organ perfusion under the assumption that lactate 

elevations are predominantly explained by ongoing tissue ischemia, which may not 

necessarily be true.15  

Current pharmacotherapy neither targets nor corrects these metabolic 

perturbations, although restoration of host bioenergetics offers a promising therapeutic 

target. Moreover, given the prevalence, persistent mortality, and lack of specific 

treatment paradigms, there is a critical need to advance understanding of the metabolic 
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consequences of sepsis. This includes capturing dynamic alterations in host 

metabolism, measuring a greater diversity of potential metabolite biomarkers, and 

moving beyond observational studies.  

1.3 Metabolomics as a tool to understand sepsis heterogeneity  

Metabolomics seeks to identify and quantify small molecule metabolites, the full 

collection of which define the metabolome, in a given biofluid.16 The metabolome 

encompasses both endogenous and exogenous compounds (i.e., not produced by the 

body) that play critical roles in cellular homeostasis and human health/disease. With 

well over 200,000 metabolite entries in the Human Metabolome Database (HMDB)17, 

the diversity of the metabolome presents both an exciting opportunity for describing 

molecular phenotypes as well as an analytical challenge.18 The two most common 

methods for measuring metabolites include nuclear magnetic resonance spectroscopy 

(NMR) and mass spectrometry (MS), typically coupled with a chromatography column to 

separate compounds based on chemical characteristics.19 While NMR is highly 

reproducible, it suffers from a lack of sensitivity and provides a more limited read of the 

metabolome compared to most MS-based methods.20 Both techniques can provide 

quantitative information about the abundance of individual metabolites in a given 

sample are used extensively throughout the remainder of this dissertation.  

Importantly, metabolites provide a molecular phenotype of the host, since they 

are the product of the body’s biochemistry. An advantage of metabolomics is that 

phenotypes are downstream of genetic, transcriptomic, and proteomic influence and 

sensitive to microbiotic and environmental variability (Figure 1-1).21 As such, 

metabolomics reflects the culmination of these regulators on the host. In addition, 
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metabolism is dynamic on a practical and physiological time-scale, and this sensitivity 

informs heterogeneity in disease trajectory and treatment response.20,22,23 Finally, 

metabolomics findings are translatable. They can direct the development of point of 

care measurements that are feasible in existing care models, and most diagnostic 

assays are measurements of small molecules.24  

 

Figure 1-1. Overview of biology’s central dogma and molecular phenotypes.  

Conventional wisdom displays the central dogma of molecular biology as a linear process by which DNA 
is transcribed to RNA that is then translated to protein. In reality, the processes of systems biology are 
nonlinear with important feedback loops and self-sustaining mechanisms. Metabolites include a diverse 
class of chemical compounds including but not limited to sugars, organic acids, ketones, aldehydes, 
amines, amino acids, lipids, steroids, alkaloids and drugs. These compounds play vital roles in 
maintaining homeostasis, cellular signaling, and the balance between health and disease. The 
metabolome is thought of as ‘down-stream’ and thus a closer description of molecular phenotype 
compared to other multi-‘omic’ discovery sciences, as small molecules are the product of cellular 
biochemistry. The exposome, including the bacteria, nutrients, and exogenous compounds in our 
environment, interact with systems biology at all levels, but their impact can be most directly measured 
through the metabolome. Figure created with BioRender.com. 
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Known perturbations of host metabolism has pushed metabolomics to the 

forefront for studying sepsis. Sepsis induces derangements in amino acid metabolism, 

mitochondrial function and oxidation of fatty acids (FAs), and the tricarboxylic acid 

cycle.20,22 Previous work has shown differences in the metabolome are associated with 

mortality, organ function, and differentiation of sepsis severity.25-31 While these have 

provided insight into the metabolic component to sepsis pathology, there are important 

drawbacks that deserve consideration. Past work has largely relied on single, point-in-

time samples of convenience. These ‘snapshots’ cannot capture the dynamic and time-

sensitive nature of metabolism. Consequently, little is known about sepsis metabolism 

over time. Moreover, the metabolome encompasses a diverse set of chemical 

compounds, which cannot be detected by a single analytical approach. Innovations in 

technology and instrumentation have increased the ability to detect and quantify low 

abundant compounds.32 These, ‘untargeted’ approaches hold promise in defining 

molecular phenotypes of sepsis, yet can suffer from correlated, redundant features.33 

Finally, prior work in metabolomics of sepsis has been largely observational and has not 

delved into understanding heterogeneity of treatment effect, where a treatment may 

only be efficacious when used in a more homogenous, metabolic subgroup. In this 

dissertation, I leveraged a completed clinical trial of levocarnitine (L-carnitine) in patients 

with septic shock and the ancillary metabolomics study to understand the metabolic 

alterations of sepsis and variable response to treatment.  

1.4 Leveraging a completed clinical trial to study sepsis heterogeneity 

1.4.1 Physiological role of L-carnitine  
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L-carnitine is an endogenous, polar small-molecule derived from lysine and 

methionine, which plays a well-established, crucial role in transport of long-chain fatty 

acids into the mitochondria for β-oxidation. Other key roles during times of metabolic 

stress include maintenance of coenzyme A homeostasis, metabolic flexibility and 

promotion of normal TCA cycle function, and further oxidation of fatty acids by 

peroxisomes.34 A full, in-depth review of carnitine and acylcarnitine homeostasis and 

biochemistry has been extensively reviewed elsewhere.34,35 Briefly, the carnitine shuttle 

allows for fatty acid entrance to the mitochondria for oxidation and subsequent energy 

production through transfer of acyl groups and conversion into acylcarnitines (Figure 1-

2). Acylcarnitines are esters formed in peroxisomes and the mitochondria from the 

conjugation of fatty acids with L-carnitine and are numbered based on the chain length 

and saturation of the parent fatty acid.36 Together, this class of compounds are 

important markers of metabolic mitochondrial dysfunction, particularly related to β-

oxidation, and perturbed systemic concentrations have been found in cardiovascular 

disease, diabetes, and cancer.37 
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Figure 1-2. Overview of carnitine transport into the cell and its enzymatic conversions in the 
mitochondria 

Carnitine enters the cell from the blood through an organic cation transporter (OCTN2), after which 
carnitine palmitoyl transferase I (CPT1) facilitates the conversion of carnitine and long chain fatty acid-
CoAs to acylcarnitines and coenzyme A (CoA). The transporter carnitine-acylcarnitine translocase 
(CACT) moves the newly formed long-chain acylcarnitines into the mitochondrial matrix in exchange for 
free carnitine. Here, long chain acyl groups are transferred back to CoA by carnitine palmitoyl transferase 
II (CPT2). The newly regenerated acyl-CoA undergoes β-oxidation into Acetyl-CoA, which feeds into the 
TCA cycle. Alternatively, carnitine acetyl-transferase (CAT) converts free carnitine and Acetyl-CoA to 
acetylcarnitine, which can freely diffuse through CACT and OCTN2 back into the bloodstream. This latter 
process may be enhanced during sepsis and times of metabolic stress, serving as a crucial sink for 
excess acetyl groups that may be toxic to the cell. The ladder cartoon represents the plasma membrane 
separating the blood and the cytosol of the cell, while grey boxes represent the outer and inner 
membranes of a mitochondrion. (Open-source through the Creative Commons Attribution, obtained with 
permission from https://doi.org/10.1016/j.ebiom.2017.01.026).38 
 

In sepsis, mitochondrial dysfunction has been increasingly reported as a critical 

factor in persistent organ failure and altered peripheral cell mitochondrial function is 

known to be associated with sepsis mortality.39,40 Further evidence of mitochondrial 

dysfunction includes elevations of systemic acylcarnitines, indicating incomplete β-

https://doi.org/10.1016/j.ebiom.2017.01.026
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oxidation of fatty acids, and the presence of mitochondrial DNA in plasma.25,26 Sepsis 

alterations in mitochondrial metabolic function and lipid metabolism are associated with 

kidney and liver function that are driven in part through inhibition of the pyruvate 

dehydrogenase complex and decreased activity of carnitine palmitoyltransferase I.41,42 

Prior clinical studies of intravenous (IV) L-carnitine and acetylcarnitine given to patients 

in cardiogenic and circulatory shock found an overall benefit on hemodynamic 

parameters and patient survival.43-45  

1.4.2 L-carnitine as a targeted metabolic therapeutic in sepsis 

These principles served as the basis for two recent clinical trials of L-carnitine in 

septic shock. The first was a phase I, randomized, double-blind clinical trial of L-

carnitine (12 g IV) vs. saline placebo conducted in 31 patients with septic shock enrolled 

within 16 hours of diagnosis.46 Study drug was given as an IV bolus (33% of total dose), 

followed by a 12-hour infusion that delivered the remaining drug. This study found no 

difference in the reduction of Sequential Organ Failure Assessment (SOFA) score at 24 

hours, but there was an improvement in mortality at 28 days (4/16 vs. 9/15, p=0.048) 

and 1-year (8/16 vs. 12/15, p = 0.081) in L-carnitine treated patients. Adverse events 

sometimes attributable to L-carnitine, including gastrointestinal distress, body odor, and 

a decreased seizure threshold were not observed in the study. In addition, serious 

adverse events were not significantly different between the L-carnitine and placebo 

treatment arms. A follow-up phase II multicenter, double-blind, adaptive dose-finding 

trial randomized 250 patients within 24 hours of identified septic shock to IV L-carnitine 

(6 g, 12 g, or 18 g) vs. placebo.47 In the primary analysis, the highest dose (18 g) of L-

carnitine was not found to be superior to placebo in reducing the total SOFA score at 48 
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hours, and the predicted probability of success of a subsequent phase III trial in 

reducing mortality at 28 days did not exceed the a priori threshold of 90%. The 6 g and 

12 g L-carnitine doses underperformed in the trial and were adaptively dropped from the 

randomization scheme as the trial progressed.  

However, the primary endpoints of both clinical studies do not describe a critical 

component of drug response to supplemental L-carnitine in patients with septic shock. 

The pharmacometabolomics data from the Phase I trial reveal substantial interpatient 

variability in serum carnitine and acetylcarnitine concentrations post-infusion.29,30 

Patients receiving L-carnitine in the phase I study had 24-hour post infusion (T24) 

serum carnitine levels ranging from 30 µM to over 1600 µM (median = 368 µM). The 

temporal changes in carnitine and acetylcarnitine for the treatment and placebo arms 

are shown in Figure 1-3. Critically, L-carnitine treated non-survivors (based on 1-year 

mortality) had elevated carnitine and acetylcarnitine (C2), short chain acylcarnitines (C3, 

C4, and C5), and long chain acylcarnitines (C14 and C16) compared to L-carnitine 

treated survivors. This suggests the observed variability in measured peak 

concentrations and metabolic response profiles are associated with clinical outcomes. 

As such, identification of the patient-level factors associated with peak 

carnitine/acylcarnitine concentrations may help identify patient most likely to derive a 

mortality benefit from L-carnitine and inform the design of future clinical studies. 
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Figure 1-3. Levocarnitine induced metabolic phenotype. 

Serum carnitine and acetylcarnitine concentrations are elevated in sepsis non-survivors. Concentrations 
of carnitine and acetylcarnitine are plotted over time for patients treated with either L-carnitine (panels A 
and C) or saline placebo (panels B and D). Data plotted are the median, 25th, and 75th percentile of 
observed serum concentrations, and the Mann-Whitney U test was used to determine significant 
differences between non-survivors and survivors at each timepoint. All p-values are corrected for multiple 
comparison using a false discovery rate method according to Storey et. al and are reported as q-values.48 
L-carnitine treated non-survivors (N=7-8) at 1-year had significantly higher concentrations of carnitine 
relative to survivors (N=8) at baseline (BL, q=0.02); 24-hours (T24, q=0.004); and 48-hours (T48, q=0.02) 
post-treatment. Similar trends were observed for acetylcarnitine (BL, q=0.01; T24, q=0.003; and T48, 
q=0.02). No significant differences in carnitine or acetylcarntine concentrations were observed between 
placebo treated non-survivors (N=8-12) and survivors (n=3). 

1.4.3 Candidate mechanisms of interpatient variability of drug response  

Pharmacogenomics 

Pharmacogenomics seeks to explain variability in drug exposure and response 

based on genetic differences between individuals. Genetic variation in drug 

metabolizing enzymes, transporters, and targets impacts an individual’s exposure 
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and/or response to a given pharmacologic therapy, which can manifest as distinct drug-

response phenotypes. Genetic variability is known to alter patient response to across 

disease states and in medications commonly used in the intensive care unit (ICU).49 

Treatment and dosing paradigms which incorporate patient-specific pharmacogenomic 

data hold promise in decreasing adverse drug events (ADRs) and improving efficacy.50 

Moreover, rationale clinical trial enrollment based on pharmacogenomic phenotypes can 

foster a more homogenous patient cohort and target patient populations most likely to 

benefit from therapy (Table 1-1).  

Table 1-1. Patient variables that could influence clinical trials of sepsis therapeutics 

Candidate mechanisms of 

interpatient variability  

Impact on levocarnitine trial design 

and interpretation 

Influence on improving 

precision medicine in sepsis 

Pharmacogenomics Genetic variance in the transport 

receptor of L-carnitine (OCTN2) may 

influence drug concentration at site of 

action 

Stratify patients by genotype at 

the time clinical trial enrollment 

Pharmacometabolomics Baseline and dynamic metabolic 

signatures are associated with 

elevated drug concentrations and 

patient mortality  

Target metabolic subgroups for 

trial enrollment and measure 

metabolic response signatures 

post treatment  

Morphomics Patient muscle mass and body 

composition may influence metabolic 

adaptability, energetic stores, and 

drug distribution 

Consider variation in body size 

and composition when testing 

targeted metabolic therapeutics 

Renal function and 

Pharmacokinetics (PK) 

Altered renal clearance and 

reabsorption of drug and acyl-

Embedded clinical 

pharmacology studies to 

quantify sepsis-



 12 

metabolites may influence drug 

concentrations and patient outcomes 

pathophysiology induced 

alterations in drug PK 

 

Genetic variability in a number of enzymes and transporters could contribute to 

L-carnitine drug response including those highlighted in the carnitine shuttle (Figure 1-

2). Carnitine acts intracellularly and is highly sequestered in skeletal muscle and other 

tissues of the body.34 Given the polar structure of carnitine, active sodium-dependent 

transport by organic cation/carnitine transporters (OCTNs) is required for entry from the 

blood into the cell and subsequent facilitation of fatty acid β-oxidation. The primary 

carnitine transporter, OCTN2, thus represents the focus of this section. 

The OCTN2 transporter is encoded by the SLC22A5 gene located on 

chromosome 5q31.1. Spanning 25 kb, the 10 exons of this gene encode the full length 

557 amino acid protein. Numerous autosomal recessive mutations in the SLC22A5 

gene are responsible for primary carnitine deficiency and results in low serum carnitine 

levels due to the kidney’s impaired ability to reabsorb the molecule.51 Missense 

mutations are exceedingly rare, result in severe metabolic and mitochondrial 

dysfunction, and manifest clinically as a primary carnitine deficiency at a young age. As 

such, loss of function mutations are unlikely to play a role in explaining variability in L-

carnitine concentrations or response in clinical studies of adults with septic shock. 

Nonetheless, given the vital role of OCTN2 in carnitine uptake into the cell, and 

considering the large doses administered in these trials, more common genetic 

polymorphisms in OCTN2 resulting in reduced function and / or expression may 

improve understanding of the mechanisms that explain the broad dynamic range of 

carnitine concentrations following supplementation.  
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Common polymorphisms (i.e., minor allele frequency greater than 1%) in the 

OCTN2 gene and their impact on carnitine transport outside the context of primary 

carnitine deficiency are rare.52-54 Three SNPs (Phe17Leu, Tyr449Asp, Val481Asp) were 

associated with reduced OCTN2 function compared to wild-type (WT), and a SNP in the 

promoter region of the gene (-207C>G) was associated with increased carnitine 

transport capacity and trended toward increase mRNA expression in cell lines.52 Out of 

these, only the promoter region variant (-207C>G, rs2631367) could be considered 

common according to the National Center for Biotechnology Information database of 

genetic variation (dbSNP).55 Further studies have observed a tissue-specificity to the -

207C>G variant’s effect on mRNA expression levels.53,54 

To supplement the limited literature regarding common polymorphisms effecting 

OCTN2, we conducted a systematic bioinformatics search for potentially relevant SNPs. 

We queried the Genotype-Tissue Expression (GTEx) Project (available at 

https://gtexportal.org/home/), which seeks to explain variability in mRNA expression 

levels from previously healthy human cadavers with whole genome sequencing.56 The 

goal of this query was to determine common genetic variants (i.e., SNPs) that 

significantly alter gene expression of the OCTN2 transporter. Using expression 

quantitative trait loci (eQTL) analysis, approximately 1500 variants were found to be 

associated with altered gene expression at the tissue level. Summing across more than 

6,000 SNP/tissue pairs, the variant with the largest effect on net OCTN2 gene 

expression was the promoter region variant (-207C>G, rs2631367).  

In previously unpublished data from our group, patients treated with L-carnitine in 

the phase I trial46 were genotyped for the OCTN2 (-207C>G) SNP. In this preliminary 
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study, fourteen patients had both genomic and serum carnitine concentrations 

measured at 24 hours (T24). Among these, four patients were wild-type (CC), while ten 

carried one or two copies of the G allele. Patients with the C/G or G/G genotype trended 

toward lower T24 plasma levels of L-carnitine (p=0.11), suggesting that genetic variation 

in the OCTN2 transporter may contribute to variability and persistent elevations in L-

carnitine following supplementation during septic shock. More pharmacogenetic studies 

are needed and are underway in the phase II trial47 to determine if variation in OCTN2 

and other carnitine-specific enzymes and / or transporters explain interpatient variability 

in L-carnitine drug response.  

Pharmacometabolomics 

Metabolomics seeks to identify and quantify small molecules, the full collection of 

which define the metabolome, in a given biofluid.16 The metabolome constitutes a read-

out of underlying cellular and biochemical events that reflect the genetic makeup of the 

host, transcriptomic and proteomic influence, as well as variability in the microbiome 

and environmental exposure (Figure 1-1). As such, metabolomics represents the 

culmination of these important regulators on the host. In addition, given that metabolism 

is dynamic on a practical and physiological time-scale, this sensitivity can inform 

heterogeneity in disease trajectory and treatment response. Pharmacometabolomics 

exploits this paradigm and is aimed at understanding and predicting response to drug 

treatment. In short, clinical application of metabolomics holds great promise in 

improving the diagnosis and risk stratification of critically ill patients, furthering drug 
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discovery through metabolic signatures of drug response and/or ADRs, and elucidating 

biochemical pathways involved in the pathophysiology of critical illness (Table 1-1).   

A pharmacometabolomic approach was utilized to understand baseline metabolic 

differences in patients treated in the Phase I study of L-carnitine.30 Patients treated with 

L-carnitine who had low baseline levels of the ketone body, 3-hydroxybutyrate, also had 

lower post-treatment carnitine levels at 24 hours. The L-carnitine treated, low-ketone 

patients also had better clinical outcomes as evidenced by a timelier reduction in 

vasopressor requirement and decreased 1-year mortality. A follow-up, an untargeted 

metabolomics approach was employed in male patients from the Phase I study.33 L-

carnitine treated non-survivors were found to have post-treatment elevations in 

metabolites related to vascular inflammation including histamine, allysine, and 

fibrinopeptide A. Along with the differential metabolic response of survivors and non-

survivors highlighted in Figure 1-2, these data suggest both baseline metabolic 

signatures and metabolic profiles over time may be predictive of L-carnitine treatment 

responsiveness.   

Morphomics 

Analytic morphomics is a new and rapidly growing scientific discipline within 

precision pharmacotherapy that studies how variation in body size, composition and 

structure are associated with drug and disease response.57 In sepsis, two recent meta-

analyses have observed a paradox between body composition and survival, whereby 

particularly overweight (BMI between 25 kg/m2 and 29.9 kg/m2), and to a lesser extent 

obese (BMI between 30 kg/m2 and 40 kg/m2), patients tend to have better mortality 

outcomes compared to normal weight individuals (BMI between 18.5 kg/m2 and 24.9 
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kg/m2).58,59 Notably, underweight (BMI less than 18.5 kg/m2) and morbidly obese (BMI 

greater than 40 kg/m2) patients were found to have similar risk of mortality relative to 

normal weight individuals. Neither measured peak concentrations of L-carnitine nor 

mortality were significantly associated with BMI in patients who received study drug in 

the phase I study.  However, the observed “obesity paradox” reinforces the concept of a 

metabolic and energy-driven component to sepsis pathophysiology and has a number 

of possible pathophysiological explanations including increased energy stores, anti-

inflammatory mediator release from adipose tissue, and lipoprotein binding of bacterial 

cellular components.60  

Another possible explanation is that increased muscle mass offers energetic and 

metabolic adaptability to patients within a window of the BMI spectrum. Protein 

catabolism and subsequent myopathy is observed in critically ill patients, and skeletal 

muscle, an important energetic source to the host, sustains mitochondrial injury over the 

course of sepsis.61 Indeed, recent studies have found an association between low 

muscle mass and increased risk of mortality for patients with sepsis. In 74 patients with 

liver cirrhosis and sepsis, patients with low muscle mass (defined as mid-arm muscle 

circumference lower than the 5th percentile of the population) had increased mortality 

compared to patients with normal muscle mass (47% compared to 26%, p=0.06).62 In a 

separate retrospective review of 627 patients with a diagnosis of sepsis and an 

available abdominal computed tomography scan of the psoas muscle, muscle mass 

depletion was associated with 28-day mortality in both univariate and multivariate 

logistic regression (OR 2.79, p=0.01).63 Given the extent of protein catabolism, the 

sepsis-obesity paradox, and the known sequestering of carnitine into muscle tissue, 
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morphomics and variability in body composition offers a currently untapped field that 

could aid in explaining the observed variability in response to supplemental L-carnitine 

and patient mortality in sepsis broadly (Table 1-1).    

Pharmacokinetics and Renal Function  

Pharmacokinetics (PK) as a science seeks to understand what the body does 

with and to drugs. More specifically, it is the study of how drugs are absorbed, 

distributed, metabolized, and eliminated from the body. Previous studies have 

highlighted that there is profound sepsis-induced variation in drug PK. The reasons for 

this are likely multifaceted but include altered protein binding, perturbed vascular and 

tissue permeability, decreased hepatic and renal blood flow, and lower activity of drug 

metabolizing enzymes.64 High interpatient variability in drug PK in sepsis clinical trials 

contributes to overall heterogeneity of the patient cohort and may confound trial results 

unless careful analysis of drug exposure is considered (Table 1-1).  

The PK of L-carnitine has been described, however no studies have determined 

the precise PK of L-carnitine in sepsis or at such high intravenous doses. As discussed 

above, OCTN2 is a critical carnitine transporter that is responsible for carnitine uptake 

into cells/tissues, however it is also responsible for reabsorption of carnitine in the 

kidney proximal tubule. As such, kidney function may play a vital role in the interpatient 

variability in serum carnitine concentrations that result following supplementation. 

Previous reviews, report an average renal clearance of endogenous carnitine of 1-3 

mL/min, indicating that, at physiologically relevant concentrations, up to 99% of carnitine 

is reabsorbed by the kidney.65 Exogenous carnitine administered to healthy volunteers, 

increased renal clearance of carnitine and acetylcarnitine, indicating saturation of the 
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OCTN2 transporter and the reabsorption process, which may be relevant for 

supraphysiologic doses of intravenous carnitine like those given in septic shock trials.65 

Unfortunately, urine samples were not collected in these studies, which prevents us 

from estimating renal clearance of relevant carnitine species in these patients. Both 

studies reported similar serum creatinine levels among survivors and non-survivors 

indicating renal function alone does not explain heterogeneity in L-carnitine and 

acylcarnitine concentrations among patients. However, the reliability of creatinine as a 

biomarker in the setting of acute kidney injury (AKI), sepsis and other critical illness, and 

in drug development broadly been called into question.66,67 New investigations of 

biomarkers of kidney injury and function are underway, but have yet to be widely 

adapted or clinically validated. Further investigations of the variability in L-carnitine drug 

response stratified by the presence of AKI and acute liver injury, and among other 

measures of organ dysfunction are warranted before precise clinical recommendation 

can be made in these patient groups. Moreover, modeling the impact of patient-level 

biological variables such as sex, age, and race is critical to understand the observed 

heterogeneity in L-carnitine drug response.  

1.5 Thesis aims and objectives 

Sepsis is a clinical syndrome characterized by substantial clinical and biological 

heterogeneity such that the individual host response to infection and treatment 

strategies are highly variable. This profound variability has led to an incomplete 

understanding of sepsis pathophysiology at the patient level and resulted in a litany of 

failed clinical trials. Part of the variability in patient outcomes and response to therapy in 

sepsis may be explained by metabolomics, particularly by a more complete and 
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dynamic assessment of an individual’s metabolic status. The central hypothesis of this 

dissertation is that there are distinct metabolic signatures related to carnitine 

homeostasis and mitochondrial metabolic function that are associated with sepsis 

mortality and other clinical outcomes. To advance precision pharmacotherapy and 

address knowledge gaps in the mechanisms that underlie sepsis heterogeneity I 

leveraged time-series blood samples and metabolomics data from the phase II, 

placebo-controlled, clinical trial – RACE (Rapid Administration of Carnitine in 

sEpsis).47,68 

My first aim was to determine baseline and dynamic metabolic signatures 

associated with mortality in the ‘natural’ sepsis phenotype (i.e., placebo treated 

patients). This aim is addressed in chapters 2 and 3 using baseline and longitudinal 

metabolomics data from patients who were randomized to receive saline placebo. 

Chapter 2 focuses on the association between dynamic metabolic changes and 

mortality, outcomes among metabolic subgroups derived through unsupervised 

machine learning, and the correlation between metabolites and protein biomarkers of 

the host-response. In contrast, chapter 3 emphasizes the relationship between 

metabolites and non-mortality endpoints, namely the need for persistent organ support 

and life sustaining interventions.  

My second aim was to identify metabolic, genomic, and patient-level factors 

associated with L-carnitine pharmacokinetics and patient outcomes. Chapter 4 

describes the search for heterogeneity of treatment effect to L-carnitine based on an 

individual’s baseline metabolic status, while chapter 5 explains a population PK model 
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for L-carnitine in septic shock and the important patient factors that impact response to 

the drug. 

Finally, in chapter 6 I summarize the implications and the outlook of this work. 

This includes an assessment of its strengths and limitations, as well as a glimpse at 

future projects that could leverage data from the RACE cohort. 
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Chapter 2: Sustained Perturbation of Metabolism and Metabolic Subphenotypes 

are Associated with Mortality and Protein Markers of the Host Response  

 

This work has been submitted as an original research manuscript and is under revision. 

It was presented in abstract form at the 2022 American Thoracic Society International 

Meeting.1 

2.1 Chapter Abstract 

Perturbed host metabolism is increasingly recognized as a pillar of sepsis 

pathogenesis, yet the dynamic alterations in metabolism and its relationship to other 

components of the host response remain incompletely understood. 

We sought to characterize the early host-metabolic response in patients with 

septic shock and to explore bio-physiological phenotyping and differences in clinical 

outcomes among metabolic subgroups. 

We measured serum metabolites and proteins reflective of the host immune and 

endothelial response in patients with septic shock. We considered patients from the 

placebo arm of a completed phase II, randomized controlled trial. Patients had 

moderate organ dysfunction and were identified within 24-hours of septic shock. Serum 

was collected at baseline (within 24-hours of the identification of septic shock), 24-, and 

48-hours post enrollment. Linear mixed models were built to assess the early trajectory 

of protein analytes and metabolites stratified by 28-day mortality status. Unsupervised 
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clustering of baseline metabolomics data was conducted to identify subgroups of 

patients. 

Fifty-one metabolites and 10 protein analytes were measured longitudinally in 72 

patients with septic shock. In the 30 (41.7%) patients who died prior to 28-days, 

systemic concentrations of short-chain acylcarnitines and IL-8 were elevated at baseline 

and persisted at T24 and T48 throughout early resuscitation. Concentrations of 

pyruvate, IL-6, TNF-α, and angiopoietin-2 decreased at a slower rate in patients who 

died. Two groups emerged from clustering of baseline metabolites. Group 1 was 

characterized by higher levels of acylcarnitines, greater organ dysfunction at baseline 

and post-resuscitation (p<0.05), and greater mortality over one-year (p<0.001).   

Among patients with septic shock, non-survivors exhibited a more profound and 

persistent dysregulation in protein analytes and metabolism related to mitochondrial 

function and neutrophil activation.  

2.2 Introduction 

Sepsis is a syndrome characterized by a dysregulated host response to an 

infection, which manifests as life-threatening multiorgan dysfunction 2. The clinical 

trajectory and outcomes for patients with sepsis is highly heterogeneous, with mortality 

in septic shock exceeding 40% 3. The mechanisms underlying this variability in patient 

outcomes remain poorly understood, threatening the development of novel 

pharmacotherapy and improvement of care for patients with sepsis 4. Identification of 

the biological mechanisms underlying sepsis heterogeneity holds promise in 

personalizing care for patients with sepsis through predictive and prognostic 

enrichment, disease subphenotyping, and rational drug discovery 5.  
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Altered metabolism and host bioenergetics are increasingly recognized as 

cornerstones of sepsis pathophysiology and sepsis heterogeneity 6. The Surviving 

Sepsis Campaign recently listed an improved understanding of sepsis-induced 

metabolic disruptions as one of five key translational research questions in the field, and 

elevated lactate concentrations are associated with mortality and are formally codified in 

the definition of septic shock 2,7. Clearance of lactate has also been proposed as a 

metabolic biomarker and physiologic endpoint of randomized controlled clinical trials 8-

10, yet the kinetics and bioenergetics of lactate are complex and remediation of elevated 

concentrations have not consistently translated to improved survival 11-14. This stresses 

the need for additional prognostic and predictive metabolic biomarkers beyond lactate in 

patients with sepsis.  

Metabolomics is a discovery science that seeks to identify and quantify small 

molecules in a given biospecimen 15. In sepsis and other critical illnesses, metabolomics 

studies have consistently identified differences among patients stratified by mortality 

and organ function 16-18, and shown promise in understanding variable response to 

treatment 19,20. These studies have implicated mitochondrial dysfunction, protein 

catabolism, and perturbed lipid metabolism as potential drivers of poor patient 

outcomes. However, most studies in critical care metabolomics have been cross-

sectional, leveraging single blood samples of convenience, and included patients with 

highly variable illness severity and/or diagnosis at presentation.   

In this study, we analyzed longitudinal serum samples from patients in the 

placebo arm of the Rapid Administration of Carnitine in sEpsis (RACE) clinical trial 21. 

Our primary goal was to characterize the early host-metabolic response in patients with 



 29 

vasopressor-dependent shock. We also sought to determine if metabolomics data alone 

could identify clusters or subphenotypes of septic shock and assess the relationship 

between metabolites and protein biomarkers of the host response.  

2.3 Methods 

2.3.1 Study population and design  

We performed a secondary analysis of patients who were randomized to the 

saline placebo arm of the RACE clinical trial 21. Abbreviated inclusion criteria for the 

parent trial included: 1) enrollment within 24-hours of the identification of septic shock; 

2) a blood lactate level exceeding 18 mg/dL; 3) a Sequential Organ Failure Assessment 

(SOFA) score of at least six; and 4) receipt of high-dose vasopressors within 4 hours of 

enrollment 22. Patients in the placebo arm received a 20 mL bolus of 0.9% normal saline 

(NS) followed by a 1 liter 12-hour infusion, rather than an equivalent volume of L-

carnitine. Patients in this analysis were also required to have at least one serum sample 

available for metabolomics. We excluded patients who were allocated to receive 

intravenous L-carnitine to focus on the metabolic trajectory of the disease course 

without any interference that may be introduced by the study drug. Furthermore, we 

have previously identified phenotypes of L-carnitine response 20.  The trial protocol was 

approved by the institutional review board of all 16 centers and registered with 

clinicaltrials.gov (NCT01665092) prior to patient enrollment. All patients or their legally 

authorized representative provided informed consent prior to randomization.   

2.3.2 Serum sampling and assays  
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Blood samples were collected at enrollment (baseline or Day 0), 24-hours (Day 

1), and 48-hours (Day 2) after saline initiation (Figure 2-1). Serum was obtained from 

whole blood, frozen at -80°C, and shipped on dry ice to the University of Michigan 

College of Pharmacy NMR Metabolomics Laboratory to await metabolomics assays. 

Further details regarding sample processing from this trial have been reported 

elsewhere 20,23.  

 

Figure 2-1. Abbreviated inclusion criteria and study flow diagram 

Patients with vasopressor dependent septic shock from the Rapid Administration of Carnitine in Sepsis 
(RACE) trial were considered. Patients randomized to receive saline placebo and who had at least one 
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serum sample available for analysis were included in this secondary analysis. Longitudinal serum 
samples were analyzed for acylcarnitines by liquid chromatography – mass spectrometry (LC-MS), small 
polar metabolites by nuclear magnetic resonance (NMR), and protein markers of the host response by 
immunoassays. 
 

 For our analysis we used existing metabolomics data that was generated as part 

of an ancillary metabolomics study to the RACE trial 20. We employed the same 

metabolomics strategy as our prior work which included the measurement of low-

molecular weight, polar metabolites as measured by NMR spectroscopy using 

previously described methods 19. Briefly, spectra were acquired on a Varian (now 

Agilent, Inc., Santa Clara, CA) 11.74 Tesla (500 MHz) NMR spectrometer 24. Spectra 

were acquired at room temperature using a 1 H,1 H-NOESY (METNOSEY) pulse 

sequence and analyzed using the Processor and Profiler modules of the Chenomx 

NMR Suite 8.2 (Edmonton, AB, Canada) software. Acylcarnitines were measured by 

reverse-phase liquid chromatography with tandem mass spectrometry (LC-MS/MS) 25. 

Internal standards (NSK-B Cambridge Isotope Laboratories) were used to allow for 

absolute quantification of L-carnitine and C2, C3, C4, C5, C8, C14, and C16, while other 

acylcarnitine species were measured using relative quantification by peak area.  

Residual serum was used to measure inflammatory and immune-related 

cytokines of the host-response on a Milliplex® magnetic bead immunoassay panel run 

on a Luminex™ 200™ Instrument. Angiopoietin-2 (ANG-2) was measured using a 

commercially available enzyme-linked immunoassay (Invitrogen™, Thermo Fisher) in 

accordance with the manufacturer’s instructions.  

2.3.3 Statistical analyses and outcomes  

Missing data for metabolites quantified by NMR and protein markers were 

assumed to be left-censored and below the limit-of-detection 26. For each analyte, we 
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imputed missing observations as the minimum concentration observed divided by two. 

Following imputation, concentrations were log-transformed and z-scaled to have a 

mean of zero and standard deviation of one. There were no missing data for 

acylcarnitines quantified by LC-MS. 

For the primary analysis, we fit a series of general linear mixed models to assess 

metabolite concentrations over time in patients stratified by their mortality status at 28-

days. Similar approaches have been successfully used in the analysis of multi-omics 

biomarker data in other cohorts of patients with critical illness 27,28. For each metabolite 

we built: 1) a null model consisting of a patient-level (random) intercept; 2) a fixed-effect 

model which added Time (Baseline, Day 1, Day 2) and Mortality Status (Survivor vs. 

Non-Survivor at 28-days); and 3) an interaction model which further added a 

Time*Mortality interaction. All models contained patient age, sex, and baseline 

Sequential Organ Failure Assessment (SOFA) Score as covariates.  

Models were compared based on the approximate F-test according to the 

Kenward-Roger approach with the ‘pbkrtest’ R package 29,30. We selected between the 

fixed-effect and interaction models, opting for the latter when the interaction p-value was 

less than 0.05. The overall p-value value was then determined by comparing the 

selected model to the null model. The resulting p-values were rank-ordered to 

determine the most perturbed signals and corrected for multiple comparison according 

to the false discovery procedure of Benjamini and Hochberg 31. Analyte concentrations 

of sepsis survivors and non-survivors were visualized on the log10-scale, with 

differences at each timepoint assessed by the Mann-Whitney U test. We assessed the 
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correlation between metabolites and protein biomarkers over time using repeated 

measure correlation analysis using the ‘Rmcorr’ R package 32.  

We also sought to identify if there were clusters or metabolic subtypes of patients 

with septic shock at trial enrollment. We employed an unsupervised clustering approach 

(i.e., naïve to patient demographics, outcomes, and clinical status) using baseline 

metabolomics data and the K-means algorithm 33. To prevent overfitting, clustering was 

done on the first five principal components of the metabolomics data, representing 

~70% of the variance in the dataset. The optimal number of clusters was selected using 

the Silhouette method and the ‘NbClust’ R package 34, and the individual metabolites 

driving cluster separation were visualized using the ‘ComplexHeatMap’ R package 35. 

 We assessed for patient differences in demographics, comorbidities, and organ 

dysfunction between metabolic clusters using linear mixed models, the Mann-Whitney 

U-test, or Chi-Square test, as appropriate. We also tested the impact of metabolic 

cluster assignment on mortality status at 28-days using logistic regression and on 

mortality out to one-year using Kaplan-Meir analysis and the log-rank test. All data 

analysis and figure generation were completed using the statistical programming 

language R (version 4.1.0) 36. All raw data and the code used to conduct our analysis 

are available on Github (https://github.com/UMichNMR-Metabolomics, accessed 

06/22/2022).   

2.4 Results 

2.4.1 Patient characteristics, metabolites and protein analytes of the host 

response 

https://github.com/UMichNMR-Metabolomics
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Seventy-two patients from the RACE trial were randomized to receive saline 

placebo and had at least one serum sample available for metabolomics (Figure 2-1). Of 

these, 30 patients (41.7%) died within 28-days of trial enrollment. Patients who died had 

greater organ dysfunction but were similar with respect to age, sex, and baseline co-

morbidities as measured by a modified version of the Charlson Comorbidity Index 1,37 

(Table 2-1).  

Table 2-1. Patient demographics, laboratory values, and physiologic parameters stratified by 28-
day mortality. 

Patient Characteristic  28-Day Survivor,  
N = 421 

28-Day Non-Survivor, 
N = 301 

p-
value2 

Age (years) 62 (54, 70) 62 (47, 72) 0.8 

Sex 
 

  0.4 

Female 22 (52%) 13 (43%)  
Male 20 (48%) 17 (57%)  

Self-Reported Race 
 

  >0.9 

African American 13 (31%) 9 (30%)  
Caucasian  29 (69%) 21 (70%)  

Total SOFA Score 11 (7, 13) 13 (9, 15) 0.016 

Charlson Comorbidity 
Index 

4.00 (2.25, 4.75) 5.00 (3.00, 5.75) 0.4 

Clinical Lactate 
(mmol/L) 
 

3.15 (2.58, 6.20) 4.20 (2.90, 6.50) 0.9 

Unknown (N) 6 5  

Creatinine (mg/dL) 1.90 (1.47, 2.70) 1.81 (1.12, 2.88) 0.6 

Platelet Count 
(cells/mm3) 
 

165 (101, 227) 146 (75, 215) 0.4 

Unknown (N) 0 1  

Total Bilirubin (mg/dL) 
 

0.95 (0.40, 1.99) 2.40 (0.70, 4.20) 0.005 

Unknown (N) 0 1  

White Blood Cell 
Count (cells/mm3) 
 

25 (14, 31) 18 (12, 25) 0.7 

Unknown (N) 9 9  

Body Mass Index 29 (23, 37) 24 (21, 35) 0.14 
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1Described as median (IQR) for continuous variables and n (%) for categorical variables 
2Calculatd by one-way ANOVA for continuous variables or Pearson's Chi-squared test for 
categorical variables. 

 

A total of 51 metabolites and 10 protein biomarkers of the host response were 

measured at baseline, 24-hours, and 48-hours. Metabolites included 24 acylcarnitines 

measured by LC-MS and 27 small, predominately polar, molecules by NMR 

spectroscopy. Protein analytes included markers of the host-immune and inflammatory 

response and endothelial cell activation. A full list of the measured analytes and the 

analytical platform used are provided in the first two columns of Supplementary Table 

S-1.  

2.4.2 Early host response over time stratified by 28-day mortality status  

We fit linear mixed models for each protein analyte and metabolite and found the 

inclusion of fixed effects for time and mortality status improved model fit across 39 

(76%) metabolites and 10 (100%) protein markers of the host response (overall FDR < 

0.05). This indicates the concentration of analytes and metabolites indicative of the host 

response significantly changed throughout the early course of shock and/or by a 

patient’s mortality status. In addition, the linear trajectory of 15 of these analytes and 

metabolites varied based on mortality status, as indicated by a significant Time*Mortality 

interaction, p<0.05. 

 
Unknown (N) 0 1  

Respiratory Rate 
(breaths/min) 

20 (17, 24) 20 (16, 26) 0.7 

Heart Rate (beats/min) 101 (94, 113) 104 (92, 114) >0.9 

Cumulative 
Vasopressor Index 
 

4 (3, 8) 6 (4, 8) 0.092 

Unknown (N) 2   1  
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 The most perturbed signals across analytical platforms are highlighted in Figure 

2-2 and included the acylcarnitines, C2, C6, and C8 (LC-MS, Figure 2-2A); lactate, 

pyruvate, and isoleucine (NMR, Figure 2-2B); and IL-6, IL-8, and TNFα (protein 

immunoassays, Figure 2-2C). Patients who died experienced greater inflammation and 

mitochondrial dysfunction that were sustained over the two days post-enrollment, as 

evidenced by persistent elevations in IL-8 and short-chain acylcarnitines. IL-6, TNFα, 

and pyruvate concentrations were similar at individual timepoints (Mann Whitney U-test, 

p>0.05), but decreased, or were cleared, at a much slower rate in patients who died, as 

indicated by a significant and positive Time*Mortality interaction (βTime*Mortality > 0, 

p<0.05). Lactate levels tended to steadily decline in both groups (βTime = -0.456, 95% CI: 

-0.583, -0.33), while isoleucine levels increased (βTime = 0.346, 95% CI: 0.223, 0.469).  
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Figure 2-2. Early host response in patients with septic shock stratified by 28-day mortality status. 

The most perturbed analytes across time and 28-day mortality status measured using three analytical 
platforms: (A) acylcarnitines measured by liquid chromatography – mass spectrometry (LC-MS); (B) 
Metabolites measured by nuclear magnetic resonance (NMR); and (C) Proteins measured by 
immunoassays. Analyte concentrations at each timepoint are visualized with the median ± 25th and 75th 
percentiles, with differences between mortality groups assessed by the Mann-Whitney U test. Analytes 
presented here were chosen according to the rank-ordered overall p-value from linear mixed modeling as 
described in the Methods section. 
 

The full linear mixed modeling results for all protein analytes and metabolites are 

shown in Supplementary Table S-1. Numerous metabolites were elevated in patients 
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who did not survive past 28-days, indicated by a βMortality coefficient significantly greater 

than zero. This included many acylcarnitines of varying chain length, 2-hydroxybutyrate 

and 3-hydroxybutyrate (a ketone body), propylene glycol, and amino acids (methionine, 

glycine, alanine, tyrosine, and glutamine). Among patients who died, concentrations of 

angiopoietin (ANG)-2 decreased more slowly (βTime*Mortality > 0), while concentrations of 

nine long-chain acylcarnitines decreased more rapidly (βTime*Mortality < 0) than in 

survivors.  

Repeated measure correlations between protein analytes and metabolites are 

shown in Figure 2-3. Notably, strong positive correlations included those between 

numerous inflammatory cytokines and markers of endothelial activation (ANG-2 and 

fractalkine) with lactate and pyruvate. In contrast, branched-chain and numerous other 

amino acids tended to be negatively correlated with inflammatory cytokines. Similarly, 

long-chain acylcarnitines were negatively correlated with endothelial markers.  

 

Figure 2-3. Repeated-measure correlations between protein and metabolite analytes. 

The Rmcorr R package was used to determine the repeated-measure correlation coefficient between 
proteins and metabolites measured across three timepoints. The ggcorrplot R package was used to 
visualize the results. Positive correlations are indicated in red, while negative correlations are shown in 
blue, and only significant (p<0.05) correlation pairs are included.   

2.4.3 Baseline Metabolic Clustering 
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Unsupervised clustering of baseline metabolomics data revealed two distinct 

groups of patients. The heatmap of metabolites driving separation demonstrates 

significant metabolic heterogeneity among patients with septic shock at trial enrollment 

(Figure 2-4A). Clusters differed most dramatically across medium and long chain 

acylcarnitines. Across clusters, patient age, sex, self-identified race, and baseline 

comorbidities were similar (Figure 2-4B).  
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Figure 2-4. Metabolite concentration and patient characteristics stratified by cluster assignment.  

(A) Heatmap comparison of metabolites stratified by cluster assignment. Concentrations of metabolites 
were log-transformed and z-scaled as described in the methods. Patients were clustered after principal 
component analysis of the baseline metabolomics data, with two groups best separating the data (Cluster 
1: N=28 and Cluster 2: N=41). Patient age and 28-day mortality are shown as annotation above the 
heatmap. (B) Patient demographics, comorbidities, sex, and self-identified race stratified by metabolic 
cluster assignment. P-values reported are from the Mann-Whitney U-test or Chi-Square test, as 
appropriate. 
 

We assessed the trajectory of organ dysfunction between groups using linear 

mixed models with a patient-level intercept and time, cluster, and their interaction as 
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fixed effects (Figure 2-5A). The linear SOFA score trajectory was not different between 

metabolic clusters (βTime*Cluster1 = 0.536, 95% CI: -0.15, 1.22, p=0.12); however, patients 

in cluster one had worse organ function at baseline (Mann-Whitney U-test, p <0.05), 

which was sustained over the early course of their illness (Mann Whitney U-test at T24 

and T48, p<0.01).  

 

Figure 2-5. Patient outcomes stratified by metabolic cluster assignment. 

(A) Model coefficients (left) and predictions (right) from linear mixed models, with SOFA score as the 
outcome variable. The fixed-effect model included the Time when SOFA was measured and Cluster 
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assignment. The interaction model also included the Time*Cluster interaction, and its inclusion was 
assessed with the Kenward-Roger F-test. The SOFA score predictions for each cluster (cluster 1 in 
purple, cluster 2 in green) from the interaction model are shown with their 95% confidence interval. The 
median and interquartile range are also plotted for each timepoint, with between-cluster differences assed 
by the Mann-Whitney U-test. (B) Model coeffiicents from logistic regression, with 28-day mortality (left) 
and survival curves out to one-year (right) between cluster. The probability of 28-day mortality was 
modeled with a covariate model that included age, baseline SOFA score, and the Charlson Comorbidity 
Index. A second model added cluster assignment as a predictor variable, and the likelihood ratio test was 
used to determine the impact of its inclusion. Survival curves for each metabolic cluster were plotted and 
assessed with the log-rank test.   
 

We also assessed differences in mortality between the metabolic clusters. In a 

logistic regression model adjusted for age, baseline SOFA score, and comorbidities, 

assignment to cluster 1 was associated with a greater probability of 28-day mortality 

(Figure 2-5B, OR = 7.8, 95%CI: 2.45, 28.62, p< 0.001). One year survival curves 

between the two metabolic clusters were also significantly different (log-rank test, 

p<0.001).   

2.5 Discussion 

In this study, we found a distinct metabolic and inflammatory signature in the 

early host response in 28-day non-survivor patients with septic shock. This signature 

was derived from measurements of serum acylcarnitines, small polar metabolites, and 

protein biomarkers of inflammation and endothelial activation. Specifically, patients who 

died had sustained elevations in IL-8 and acylcarnitines throughout the first 48 hours 

after the identification of septic shock. In addition, levels of pyruvate, IL-6, TNF, and 

ANG-2 declined at a slower rate in patients who died. Importantly, we also found a 

metabolic pattern of inflammation, whereby inflammatory cytokines were correlated with 

glycolysis products and branched-chain amino acid catabolism. Taken together, our 

work reinforces that mitochondrial dysfunction and host inflammation are related to 
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clinical outcomes, continue early during septic shock, and persist in patients who die by 

28 days.  

In addition to our main findings, unsupervised clustering revealed two distinct 

metabolic groups. These subgroups of patients with septic shock had similar 

demographics and comorbidities, however patients in the first cluster were 

characterized by greater organ dysfunction and had a greater likelihood of one-year 

mortality. Our findings demonstrate the substantial metabolic heterogeneity of patients 

within a well-defined cohort of septic shock, highlighting the syndromic nature of the 

disease and the potential for multi-omic data to inform biologically-driven endotyping of 

sepsis.  

Metabolic perturbations are a well-established aspect of sepsis pathophysiology 

and have reliably been linked to acute illness severity and patient mortality 4. Described 

disruptions include a hypermetabolic state that results in catabolism of protein and fat, a 

glycolytic shift with a subsequent upregulation of the TCA cycle, and mitochondrial 

dysfunction 38-40. Our work contributes toward the Surviving Sepsis Campaign’s goal to 

better understand sepsis-induced metabolic disruptions 7 by providing a more 

comprehensive mapping of the dynamic metabolic changes in sepsis and its 

relationship to the host-immune response. This information is needed to direct the 

rationale design of targeted, metabolic pharmacotherapy and to inform biologic 

mechanisms underlying sepsis phenotypes and heterogeneity. 

The enhancement of analytical platforms and the growth of metabolomics as a 

field have shown promise in addressing these questions of variable patient outcomes in 

sepsis and other critical illness 41,42. An integrated metabolomic and proteomic analysis 
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by Langley et al. found alterations in fatty acid oxidation in sepsis non-survivors 16. 

Namely, patients who died had consistent elevations in acylcarnitines of various chain 

lengths and down regulation of fatty-acid transport proteins, suggesting a decreased 

capacity for β-oxidation of fats by the mitochondria. Subsequent studies have been 

largely consistent with these findings and demonstrated elevations in acylcarnitines are 

related to not only differential mortality and organ dysfunction 17,43,44, but also systemic 

levels of mitochondrial DNA 45 and concentrations of inflammatory cytokines 18. Our 

work here further corroborates that sepsis non-survivors are characterized by persistent 

elevation in acylcarnitines, mitochondrial dysfunction, and perturbed fatty acid 

metabolism and adds a longitudinal component. By leveraging the serially collected 

blood samples of the RACE trial, we show that these elevations persist early in the 

course of illness despite shock resuscitation treatment.  

Endothelial dysfunction and hyperinflammation are also well characterized 

components of sepsis pathophysiology, associated with patient outcomes, and 

represent potential avenues for targeted therapeutic development. Elevated 

concentrations of IL-8 have been associated with patient mortality in multiple cohorts of 

patients with sepsis and have been proposed as a prognostic biomarker for clinical trial 

enrichment 46-48. Similar findings have been reported in sepsis or sepsis-induced ARDS 

for IL-6 49-51 and ANG-2 52-54. Consistent with these studies, we found that 

concentrations of IL-8 were elevated in sepsis non-survivors over the first two days. 

While we did not observe the same differences for IL-6 or ANG2, the rate of decline for 

these protein analytes was slower in patients who died. These differences may be 
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attributed to the fact that this cohort was comprised exclusively of patients with septic 

shock, presenting at a more advanced stage of infection.  

Our study also further informs details of the interaction between the host 

metabolic and immune response, finding a positive correlation between numerous 

hyper-inflammatory cytokines and the glycolysis end-products, pyruvate and lactate. In 

contrast, the branched chain amino acids (BCAA), leucine, isoleucine, and valine, 

tended to be lower in patients with a more hyper-inflamed state. Alanine, known to be 

released from skeletal muscle following oxidation of BCAA 55, was positively correlated 

to both IL-8 and IL-10. Our findings here are consistent with a signature of BCAA 

catabolism that may result from a shifting preference for different energy substrates and 

a variable metabolic response that tracks with the host-immune response to infection 44. 

Conditions of chronic, low-grade inflammation such as obesity and type 2 diabetes are 

associated with increased systemic levels of BCAA (e.g., less catabolism) 56, while the 

inverse or normal levels have been reported in sepsis 57,58. While the precise 

mechanism for this has not been elucidated, we hypothesize that accelerated oxidation 

of BCAA results from a heighted acute inflammatory response.  

The failure of numerous clinical trials and the lack of any targeted therapy 

beyond antibiotics has led to calls to reevaluate the approach to defining and treating 

sepsis and other critical care syndromes 5,59. This shift toward disease subphenotyping 

(or endotyping) and defining treatable traits leverages individual patient characteristics 

and laboratory values, -omic based descriptions of an individual’s biological response, 

and unsupervised statistical or machine learning methods to cluster similar patients. 

These efforts have recently been reviewed 60, but notably include the identification of 
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distinct patient clusters based on electronic health record data 61-63 and gene expression 

data 64,65. In ARDS, similar approaches have defined hyper-inflammatory and hypo-

inflammatory subphenotypes, with dramatic differences in clinical outcomes and 

response to therapy 66-70. Rogers et al. recently used metabolomics data from patients 

with sepsis and found distinct groups separated by concentrations of plasma lipids and 

with variable organ dysfunction and mortality 71. Here, we employed a similar approach 

on a smaller, but well-defined, cohort of patients exclusively with septic shock. Using 

metabolomics and a widely-used clustering algorithm, we found two distinct groups of 

patients driven primarily by increased systemic concentrations of long-chain 

acylcarnitines, suggesting excess fatty acid supply and/or incomplete β-oxidation 72. 

Patients assigned to cluster one tended to have significantly more organ dysfunction at 

baseline and post-resuscitation and a greater risk of death. These findings demonstrate 

that metabolomic data is beneficial for defining subclasses of sepsis and directing future 

work that seeks to re-define critical illness based on biological underpinnings of disease 

pathobiology.  

Our work has several limitations that are worthy of consideration. Sepsis 

heterogeneity is multifaceted. The sample size of the cohort limited our ability to assess 

the impact of variability in the site of infection and treatment with specific pharmacologic 

agents (antibiotics, corticosteroids, and specific sedative agents or vasopressors). We 

acknowledge too that this only permits the introduction of this concept and that a larger 

cohort of patients will be needed for reproducibility and validation. As part of future 

validation, while we assayed samples using the same analytical platform, assessment 

of plasma analyte measurements may be warranted since we used residual serum 
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volume for our analyte assays 73.  For our analysis we used an existing metabolomics 

data set that was generated as part of an ancillary study to the parent clinical trial 20. 

Directed by our prior work, these assays were targeted and relatively limited in scope, 

measuring only acylcarnitines and a modest number of polar molecules 19. Use of larger 

cohorts of patients using untargeted metabolic profiling will likely find additional signals 

related to patient outcomes and may result in additional clusters of metabolically distinct 

patients. These studies should ideally integrate other patient characteristics and 

measures of the host-biological response to provide a more comprehensive 

understanding of the biological changes during sepsis. Finally, metabolomic and other -

omic data are not currently readily available within clinical practice. Point of care testing 

and thoughtful assay development and implementation will be required for the 

translation of metabolomics and sub-phenotyping findings.  

2.6 Conclusions 

 In summary, we found that early concentrations of acylcarnitines and IL-8 are 

persistently elevated in patients with septic shock who do not survive. Unsupervised 

clustering of baseline metabolomics data also revealed two groups of patients with 

differentiating organ function and mortality. These findings reinforce that metabolic 

derangements of the host, particularly related to fatty acid metabolism and 

mitochondrial dysfunction, continue post-resuscitation and may be useful for prognostic 

and/or predictive enrichment to combat sepsis heterogeneity.  
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Chapter 3: Serum Levels of Acylcarnitines and Amino Acids Are Associated with 

Liberation from Organ Support in Patients with Septic Shock 

 

This work has been published as an original research manuscript in the Journal of 

Clinical Medicine.1  

3.1 Chapter Abstract 

Sepsis-induced metabolic dysfunction is associated with mortality, but the 

signatures that differentiate variable clinical outcomes among survivors are unknown. 

Our aim was to determine the relationship between host metabolism and chronic critical 

illness (CCI) in patients with septic shock. We analyzed metabolomics data from 

mechanically ventilated patients with vasopressor-dependent septic shock from the 

placebo arm of a recently completed clinical trial. Baseline serum metabolites were 

measured by liquid chromatography-mass spectrometry and 1H-nuclear magnetic 

resonance. We conducted a time-to-event analysis censored at 28 days. Specifically, 

we determined the relationship between metabolites and time to extubation and 

freedom from vasopressors using a competing risk survival model, with death as a 

competing risk. We also compared metabolite concentrations between CCI patients, 

defined as intensive care unit level of care ≥ 14 days, and those with rapid recovery. 

Elevations in two acylcarnitines and four amino acids were related to the freedom from 

organ support (Subdistributional Hazard Ratio <1 and False Discovery Rate <0.05). 

Proline, glycine, glutamine, and methionine were also elevated in patients who 



 55 

developed CCI. Our work highlights the need for further testing of metabolomics to 

identify patients at risk of CCI and to elucidate potential mechanisms that contribute to 

its etiology. 

3.2 Introduction 

Sepsis is a prevalent, costly, and life-threatening syndrome, formally defined as 

organ dysfunction occurring secondary to an infection resulting from a dysregulated 

host response.2-4 Mortality from the most severe form of sepsis, septic shock, 

approaches 40.5 Furthermore, survivors of sepsis experience highly variable clinical 

trajectories6, with some patients rapidly recovering (within days) and others developing 

chronic critical illness (CCI) and suffering profound morbidity, long-term sequela, and an 

increased risk of late mortality.7-9 The poor outcomes of this latter phenotype are driven 

in part by the initial sepsis-induced organ injury and dependence on mechanical 

ventilation or other organ support measures.10 Furthermore, these patients also have 

prolonged stays in the intensive care unit (ICU), characterized by cascading, late-onset 

organ failures.11 Improved understanding of the patient risk-factors and biologic 

mechanisms driving CCI are key for the development of novel pharmacotherapy and 

improvement of long-term sepsis outcomes. 

Previous attempts to discriminate who is at risk for developing CCI using 

electronic health record data at ICU admission have proven unsuccessful.11-13 These 

findings imply a need for deeper phenotyping of patients, derived from biologic signals 

of the host-response to infection, for full risk stratification and identification of modifiable 

drug targets. Recent work provides evidence of biologic differences among patients who 

develop CCI at the transcription, protein, and metabolism levels14-17, though further 
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studies in different patient cohorts that leverage and integrate other ‘omic’-technologies 

are still needed.  

Sepsis induces a deranged energy metabolism that manifests as elevated blood 

lactate and glucose levels, muscle catabolism and perturbed amino acid concentrations, 

and mitochondrial dysfunction.18-20 Metabolomics, as an applied science, identifies small 

molecules in a biological sample.21 In doing so, metabolomics provides a physiological 

“snapshot” and molecular phenotype of the host and has proven useful in differentiating 

patient outcomes and response to drug therapy in patients with sepsis.22-28 As such, we 

sought to determine among mechanically ventilated patients with septic shock, if the 

baseline patient metabolic status could help distinguish CCI from patients with rapid 

recovery. 

3.3 Materials and Methods 

3.3.1 Patient population  

The Effect of Levocarnitine vs Placebo as an Adjunctive Treatment for Septic 

Shock -the Rapid Administration of Carnitine in Sepsis (RACE) clinical trial was a 

multicenter, placebo-controlled, phase II study that adaptively randomized patients with 

vasopressor-dependent septic shock and moderate organ dysfunction to saline placebo 

or low (6 g), medium (12 g), or high dose (18 g) levocarnitine.29 Enrolled patients 

included adults with a confirmed or suspected bloodstream infection who were identified 

within 24 hours of recognized septic shock and initiation of a standardized sepsis 

treatment guidelines. In addition, inclusion required a total sequential organ failure 

assessment (SOFA) score30 greater than 6, a clinical lactate level greater than 2 

mmol/L, and treatment with high-dose vasopressors within 4 hours of enrollment. 
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Additional inclusion criteria for this secondary analysis were: (a) allocation to the saline 

placebo treatment arm; (b) receipt of invasive mechanical ventilation; and (c) a serum 

blood sample available for metabolomics collected within 36 hours of onset of 

mechanical ventilation (Figure 3-1). These criteria were chosen to provide a more 

homogeneous cohort that required multiple types of organ support (both endotracheal 

intubation and exogeneous vasopressors) and were at high risk of developing CCI. The 

inclusion of only placebo-treated patients removed any potential modifying effect from a 

putative metabolic treatment (L-carnitine). 

All patients or their legally authorized representative provided informed consent 

and the trial protocol was registered with clinicaltrials.gov (NCT01665092) and 

approved by the Institutional Review Board of all participating study sites. The trial was 

conducted ethically according to Good Clinical Practice guidelines and in accordance 

with local and federal guidelines and statutes.  

3.3.2 Blood sampling and metabolomics  

Detailed descriptions of the blood sampling, handling, and processing from this 

cohort have been previously reported.27,31 Briefly, baseline whole blood samples were 

collected at the time of clinical trial enrollment. Samples were allowed to clot at room 

temperature for at least 30 minutes, aliquoted, and centrifuged to obtain serum. 

Technical replicates were frozen (-80C), de-identified, and shipped on dry ice to the 

NMR Metabolomics Laboratory at the University of Michigan.  

Acylcarnitines were measured by reverse-phase liquid chromatography mass 

spectrometry (LC-MS/MS) at the Michigan Regional Comprehensive Metabolomics 

Research Core as previously described.26 Samples were analyzed using an Agilent 
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1200 LC coupled to an Agilent 6410 tandem quadrupole (Santa Clara, CA). Absolute 

quantification using stable isotope internal standards was completed for the following 

carnitine species: Levocarnitine, C2, C3, C4, C5, C8, C14, C16. Relative quantification 

by peak area was utilized for 16 additional acylcarnitine compounds.  

Abundant polar compounds were measured by quantitative proton nuclear 

magnetic resonance (1H-NMR) on a Varian (now Agilent, Inc., Santa Clara, CA) 11.74 

Tesla (500 MHz) spectrometer consistent with our prior methods.32,33 Spectra were 

processed using Chenomx NMR Suite 8.2 (Edmonton, AB, Canada) software as 

previously described.33 Briefly, compounds were identified in the profile module using 

the Chenomx spectral library and quantified relative to the area of a formate internal 

standard (50µL of 9.64 mM). The complete list of acylcarnitines and NMR metabolites is 

available in the online supplement (Supplementary Table S-2). 

In preparation for downstream statistical analysis, missing concentration data in 

the NMR dataset were assumed to be left-censored and missing not at random due to 

falling below the limit of detection.34 As such, missing data was imputed for each 

metabolite as the minimum concentration observed divided by 2. There were no missing 

data present in the acylcarnitine dataset. After imputation, metabolite concentrations 

were log-transformed and standardized to have a mean of zero and standard deviation 

of one.35,36  
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Figure 3-1. Study Flow Diagram 

Patients were considered for this secondary analysis of the RACE clinical trial if they were randomized to 
(a) receive saline placebo; (b) required mechanical ventilation; and (c) had a blood sample collected 
within 36 hours of the initiation of mechanical ventilation. Metabolomics data were generated and 
available for a subset of patients. RACE = Rapid Administration of Carnitine in Sepsis; LC-MS/MS= liquid 
chromatography mass spectrometry; NMR= nuclear magnetic resonance. 

3.3.3 Clinical outcomes and statistical analysis  

For the primary outcome, we considered each patient’s ventilator free days and 

vasopressor free days as a time-to-event analysis censored at 28 days, with death as a 

competing risk.37,38 Specifically, an endpoint of successful extubation without continued 

need of vasopressors was modeled as a function of time, with death over 28 days 

considered the competing event. We then fit a series of competing risk survival models, 

first for patient characteristics at enrollment and then one for each metabolite measured 

and determined the subdistributional hazard ratio (SHR). Patient characteristics 

included demographics, clinical laboratory values, and other physiologic parameters 

(Figure 3-2). Covariates were chosen a priori, and we adjusted metabolite models for 

sex, baseline SOFA score, and a modified Charlson Comorbidity Index (see methods in 



 60 

the online supplement), which also accounts for patient age.30,39 Given the use of 

sedation in this patient population and its impact on the Glasgow Coma Score, we 

excluded the neurological component of the SOFA score.40,41 The p-value 

corresponding to each metabolite’s adjusted SHR was corrected for multiple 

comparisons according to the false discovery rate (FDR) procedure of Benjamini–

Hochberg.42 Metabolites with an FDR <0.05 were then rank ordered by the adjusted 

SHR and plotted with the 95% confidence interval.  

To help further visualize the results of the competing risk models, we 

dichotomized the cohort based on the median value of the top metabolic predictor. We 

then plotted time to event curves for successful extubation and freedom from 

vasopressors over 28 days in patients at or above and those below the median 

metabolite concentration. Patients who died during the 28-days were considered to 

have zero ventilator free days and vasopressor free days to account for the competing 

risk of death.43  

As an exploratory analysis, we sought to determine the relationship between host 

metabolism and CCI. Importantly, enrollment and blood sampling in the RACE clinical 

trial were anchored to onset of septic shock rather than ICU admission. While total 

patient days in the ICU were recorded, it was not possible to determine how long a 

patient had been in the ICU prior to enrollment in the study. This complicated our ability 

to classify patients into common phenotypes of CCI that are derived from ICU length of 

stay.6,44-46 As such, we classified patients based on a competing risk of death and the 

continued need for vasopressors and/or mechanical ventilation. Patients were classified 

as follows: (a) ‘Death’: mortality within 28 days of enrollment; (b) ‘CCI’: survival at 28-
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days with a continued need for mechanical ventilation and/or vasopressors for at least 

14 days; and (c) ‘Rapid Recovery’: survival at 28-days and free from mechanical 

ventilation and vasopressors before 14 days. We then used Metaboanalyst to perform 

principal component analysis (PCA) and conducted a one-way ANOVA for each 

metabolite to determine if there were metabolic differences stratified across outcomes.47 

The ANOVA p-values were corrected for multiple comparison as described above, and 

post-hoc testing for between-group differences was performed for metabolites with an 

FDR <0.05 according to Fisher’s Least Square Difference. All data analysis and figure 

generation were completed in Metaboanalyst (v 5.0; https://www.metaboanalyst.ca/) or 

RStudio with R (version 3.6.2; Boston, MA).47,48  

3.4 Results 

3.4.1 Patient characteristics and time to freedom from organ support  

A total of 52 patients from the RACE trial were randomized to the placebo arm 

and had a baseline blood sample taken within 36 hours of the onset of mechanical 

ventilation. Acylcarnitines data generated by LC-MS/MS were available for 47 patients 

and corresponding data generated by NMR were available for all but one patient 

(Figure 3-1). Of these, 21 patients (N = 21/47; 44.7%) were successfully extubated and 

free of vasopressors over 28-days, 6 (N= 6/47; 12.8%) required persistent mechanical 

ventilation and/or vasopressors, and 20 (N=20/47; 42.6%) died prior to 28-days. Patient 

characteristics at baseline are provided in the supplement (Supplementary Table S-3). 

First, we compared the impact of patient characteristics on time to successful 

extubation and freedom from vasopressors, with any death over 28-days as a 

competing risk (Figure 3-2). Female sex was associated with a higher rate of intact 
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extubation and freedom from vasopressors (SHR: 2.49, 95% CI: 1.05 – 5.90), while 

respiratory rate (SHR: 0.92, 95% CI: 0.86 – 0.99) and baseline total bilirubin (SHR: 

0.69, 95% CI: 0.53 – 0.9) were associated with a lower likelihood. In addition, baseline 

SOFA score (SHR: 0.87, 95% CI: 0.74 – 1.01) and clinical lactate levels (SHR: 0.79, 

95% CI: 0.59 – 1.05) were moderately related to time to successful extubation. Patient 

characteristics were otherwise similar based on the primary outcome.  

 
Figure 3-2. Time to successful extubation and freedom from vasopressors based on baseline 
patient characteristics. 

Comparison of time to successful extubation and freedom from vasopressors based on patient 
characteristics at baseline. The unadjusted subdistributional hazard ratio (SHR) was determined for 
demographic, clinical laboratory, and physiologic characteristics of patients at time of enrollment. The 
SHR was determined using a competing risk survival model for time to extubation and freedom from 
vasopressors, with death in the first 28 days as a competing risk. Here, an SHR < 1 indicates that, with 
increases in the predictor variable, there is a lower incidence of intact extubation and freedom from 
vasopressors. Female sex and African American self-reported race were coded as 1, while male sex and 
Caucasian race were coded as 0. Complete data (N=47) were available for all variables except Race 
(N=46); Clinical Lactate (N=37); Platelet Count and Cumulative Vasopressor Index (N=46); and White 
Blood Count (N=34). Patient characteristics can be found in Supplementary Table S-3. 

3.4.2 Metabolite concentrations and time to freedom from organ support  
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We identified and measured twenty-four acylcarnitine species by LC-MS/MS 

(N=47) and 27 small, polar molecules by NMR (N=46). Levocarnitine (LC) and 

acetylcarnitine (C2) are measured by both methods. A comprehensive list of these 

metabolites is available in the supplement (Supplementary Table S-2). All 

metabolomics data are publicly available through the National Institutes of Health 

Metabolomics Workbench (https://www.metabolomicsworkbench.org/; accession 

number ST001319).  

In adjusted competing risk survival models, a significant difference was detected 

in the incidence of successful extubation and freedom from vasopressors based on the 

baseline concentration of six metabolites (Figure 3-3A, FDR<0.05). These metabolic 

features included acetylcarnitine (C2), valerylcarnitine (C5-carnitine), and four amino 

acids (glutamine, glycine, proline, and methionine). All significant features had an 

adjusted SHR less than 1, indicating elevations in the baseline metabolite concentration 

were associated with a reduction in the incidence of the event, in this case no longer 

requiring ICU-level of care.49 To help further visualize the results of the competing risk 

models, we stratified patients based on the top metabolic signature, acetylcarnitine 

(adjusted SHR: 0.23, 95% CI: 0.13 – 0.40), as measured by LC-MS/MS (Figure 3-3A). 

Patients with acetylcarnitine concentrations at or above the median were designated as 

`High-C2` and those below the median as `Low-C2` (Figure 3-3B). As a dichotomous 

variable, the adjusted SHR for acetylcarnitine was 0.28 (95% CI: 0.11 – 0.75). 
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Figure 3-3.Time to successful extubation and freedom from vasopressors based on baseline 
serum metabolite levels. 

A) The adjusted sub-distributional hazard ratio (SHR) for top metabolic features (FDR <0.05) related to 
time to extubation and freedom from vasopressors. The SHR was determined using a competing risk 
survival model for time to extubation, with death in the first 28 days as a competing risk. Each model was 
adjusted for baseline SOFA score, sex, and the Charlson comorbidity index. For all metabolites displayed 
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above, lower concentrations were associated with a greater incidence of successful extubation and 
freedom from vasopressors. B) Visualization of time to breathing unassisted upon dichotomizing the top 
metabolic feature, acetylcarnitine (C2), above and below the median value. There was a higher proportion 
of patients with low C2 that survived, were extubated and shock-free over time versus patients with high 
C2. 

3.4.3 Metabolic differences between CCI and rapid recovery with death as a 

competing risk 

In the exploratory analysis, among patients with both acylcarnitine and NMR 

data, 9 patients developed CCI (N= 9/46; 19.6%), 17 (N=17/46; 37.0%) experienced a 

rapid recovery, and 20 (N= 20/46; 43.5%) died prior to 28-days. Patients who 

experienced a rapid recovery were more likely to be alive at one-year compared to 

patients who developed CCI (82.4% vs. 66.7%, p = 0.03). In multivariable PCA analysis, 

metabolic differences were most pronounced in the mortality outcome group. There was 

substantial overlap between patients who developed CCI and those who experienced 

rapid recovery (Supplementary Figure S-1). In our univariate one-way ANOVA 

analysis, 24 metabolites were significantly different among the three groups (ANOVA 

FDR<0.05). Post-hoc testing for between-group differences by Fisher’s Least Square 

Differences revealed this was largely driven by metabolic differences in the mortality 

outcome group (Supplementary Table S-4). Nonetheless, after post-hoc testing, the 

same four amino acids identified in our organ failure support analysis were also 

elevated in patients who went on to develop CCI relative to those who had a rapid 

recovery (FDR <0.05, Figure 3-4, Supplementary Table S-4).  
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Figure 3-4. Serum amino acid concentration differences between chronic critical illness (CCI) and 
rapid recovery (RR) patients 

One-way analysis of variance (ANOVA) was used to determine differences in metabolite concentrations 
stratified by patient outcomes. The ANOVA p-values were corrected for multiple comparisons according 
to the false discovery rate (FDR) procedure of Benjamini–Hochberg and post-hoc testing for between-
group differences was done according to Fisher’s Least Square Difference when the FDR was less than 
0.05. Four metabolites (proline, glycine, glutamine, and methionine) were different (FDR < 0.05) between 
patients who developed CCI and those who experienced a RR.  

3.5 Discussion 

Our study sought to determine if metabolic differences among mechanically 

ventilated patients with septic shock were associated with the liberation from organ 

support and duration of ICU-level of care. In a competing risk, time-to-event analysis we 
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demonstrated that serum concentrations of short chain acylcarnitines (C2 and C5) and 

four amino acids (proline, glycine, glutamine, and methionine) are related to liberation 

from mechanical ventilation and vasopressors over 28-days. Additionally, we found that 

these same amino acids were elevated in CCI patients who required at least 14 days of 

mechanical ventilation and/or vasopressors relative to those who rapidly recovered. Our 

findings provide new insights into candidate biochemical pathways that are perturbed in 

sepsis-survivors and suggest metabolomics may provide prognostic detail beyond 

mortality outcomes. 

A dysregulated host metabolic response is formally defined in the Sepsis-3 

definition and increasingly understood as a hallmark of sepsis pathophysiology.2,50 This 

perturbation of metabolism has been consistently linked with alterations in energy 

utilization, mitochondrial dysfunction, organ failure, and mortality.20,51-55 Our work 

supports this growing body of evidence, finding that the mortality group in our study was 

the most metabolically disrupted (Supplementary Figure S-1 and Supplementary 

Table S-4). Perhaps more importantly however, our study introduces the utility of 

metabolomics to differentiate sepsis survivor phenotypes, CCI, and rapid recovery. The 

role of deranged metabolism in CCI following sepsis survival is best understood in work 

surrounding the Persistent Inflammation, Immunosuppression and Catabolism 

Syndrome.56-58 This syndrome is characterized in part by persistent inflammation 

leading to profound muscle catabolism and a cachexia-like response.6,59 Elevations in 

two of key metabolites from our study, acetylcarnitine and valerylcarnitine (Figure 3-3), 

are broadly indicative of altered energy demand, β-oxidation of fatty acids, mitochondrial 

dysfunction, and metabolic inflexibility60; and acetylcarnitine was recently further linked 
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with the systemic inflammatory response in patients with sepsis.53 Here, we implicate 

short-chain acylcarnitines as markers of not only mortality, but also the differential need 

for life-supporting measures in the ICU.  

Other proposed metabolic biomarkers of CCI have included low serum albumin 

and increased frailty (as a surrogate for poor nutritional status)61, and the urea to 

creatinine ratio, a biochemical signature related to muscle catabolism.16,62 We were not 

able to assess the impact of serum albumin or measures of frailty in our cohort, and 

although creatine, a key metabolite of skeletal muscle energy homeostasis, was 

detected by our NMR assay, it was not found to be a strongly related to the time to 

extubation and freedom from vasopressors. However, serum concentrations of four 

amino acids (all of which are non-essential except for methionine) were strongly related 

in both our competing risk models and when CCI was defined with a 14-day cut point.  

Differentiating blood levels of amino acids are metrics of the overall energy 

economy of the host and are related to patient outcomes in critical illnesses.63,64 We 

have previously shown that serum levels of methionine are increased in patients with 

persistent septic shock compared with those whose shock resolved.65 Methionine is 

important for immune function and its dietary restriction has been shown to decrease 

inflammation and improve skeletal muscle health in animal models.66,67 Glutamine is the 

most abundant amino acid in humans and sources numerous metabolic pathways many 

of which are important in maintaining energy homeostasis.68 It and glycine are 

precursors of the antioxidant, glutathione69, and glutamine, glycine and proline are all 

precursors of bacterial (microbiome) production of short-chain fatty acids (e.g., butyrate) 

which participate in maintaining immune function.70 In critically ill patients, both low71,72 
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and high levels73,74 of glutamine have been previously shown to be related to mortality, 

and supplementation has failed to consistently demonstrate clinical benefit.75,76 This has 

led many to question the indiscriminate supplementation of glutamine77,78 and suggests 

a precision approach may be warranted. In this cohort of patients with septic shock, 

high levels of glutamine were related to a prolonged need for organ support and poor 

clinical outcomes; further studies in this specific patient population are warranted. In 

aggregate, our findings suggest that metabolic differences among patients with septic 

shock may lend insight into mechanisms that contribute to sepsis outcome phenotypes 

and could be used as predictive biomarkers of CCI. Future metabolomics studies in 

patients at risk of CCI will permit further assessment of the prognostic value of 

candidate metabolite biomarkers and inform targeted metabolic pharmacotherapy 

and/or adjunctive nutritional support.  

Our study has important limitations that warrant further consideration. First, our 

study was cross-sectional in nature, leveraging only a single metabolic timepoint. While 

the collection of serum samples was carefully anchored to a clinical event (onset of 

mechanical ventilation), future work that follows the trajectory of metabolic changes in 

the ICU may provide additional prognostic value and mechanistic insight. In addition, we 

considered only a limited read of the serum metabolome using normalized 

concentrations and acknowledge that our metabolomics data are not comprehensive. 

Absolute quantification of potential biomarkers will be essential for ultimate clinical 

translation, while a broader read of the metabolome combined with data acquired at the 

transcription and protein level offers an exciting and potentially more fruitful assessment 

of the pathophysiology of CCI. Moreover, we used a definition of CCI based on the 
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continuous need for mechanical ventilation and vasopressors, while much of the CCI 

literature relies on ICU length of stay. Finally, our study was observational and thus our 

findings are hypothesis-generating and require rigorous validation in prospective 

cohorts.  

3.6 Conclusion 

Among mechanically ventilated patients with septic shock, serum concentrations 

of two acylcarnitines and four amino acids were related to the time to extubation and 

freedom from vasopressors. Our work supports the feasibility of metabolomics to 

interrogate the mechanisms of CCI and the hypothesis that altered host metabolism is a 

sign of and/or contributes to CCI. 

3.7 References 

1. Jennaro TS, Viglianti EM, Ingraham NE, Jones AE, Stringer KA, Puskarich MA. 
Serum Levels of Acylcarnitines and Amino Acids Are Associated with Liberation from 
Organ Support in Patients with Septic Shock. Journal of Clinical Medicine. 
2022;11(3):627.  

2. Singer M, Deutschman CS, Seymour CW, et al. The Third International 
Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. Feb 23 
2016;315(8):801-10.  

3. Torio CM, Moore BJ. National Inpatient Hospital Costs: The Most Expensive 
Conditions by Payer, 2013: Statistical Brief #204. Healthcare Cost and Utilization 
Project (HCUP) Statistical Briefs. Agency for Healthcare Research and Quality (US); 
2016. 

4. Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis 
incidence and mortality, 1990&#x2013;2017: analysis for the Global Burden of Disease 
Study. The Lancet. 2020;395(10219):200-211.  

5. Vincent J-L, Jones G, David S, Olariu E, Cadwell KK. Frequency and mortality of 
septic shock in Europe and North America: a systematic review and meta-analysis. Crit 
Care. 2019/05/31 2019;23(1):196.  



 71 

6. Hawkins RB, Raymond SL, Stortz JA, et al. Chronic Critical Illness and the 
Persistent Inflammation, Immunosuppression, and Catabolism Syndrome. Review. 
Frontiers in Immunology. 2018-July-02 2018;9(1511) 

7. Brakenridge SC, Efron PA, Cox MC, et al. Current Epidemiology of Surgical 
Sepsis: Discordance Between Inpatient Mortality and 1-year Outcomes. Ann Surg. Sep 
2019;270(3):502-510.  

8. Ingraham NE, Vakayil V, Pendleton KM, et al. National Trends and Variation of 
Functional Status Deterioration in the Medically Critically Ill. Crit Care Med. Nov 
2020;48(11):1556-1564.  

9. Prescott HC, Osterholzer JJ, Langa KM, Angus DC, Iwashyna TJ. Late mortality 
after sepsis: propensity matched cohort study. Bmj. May 17 2016;353:i2375.  

10. Nelson JE, Cox CE, Hope AA, Carson SS. Chronic critical illness. Am J Respir 
Crit Care Med. Aug 15 2010;182(4):446-54.  

11. Viglianti EM, Kramer R, Admon AJ, et al. Late organ failures in patients with 
prolonged intensive care unit stays. J Crit Care. Aug 2018;46:55-57.  

12. Viglianti EM, Zajic P, Iwashyna TJ, Amrein K. Neither vitamin D levels nor 
supplementation are associated with the development of persistent critical illness: a 
retrospective cohort analysis. Critical care and resuscitation : journal of the Australasian 
Academy of Critical Care Medicine. 2019;21(1):39-44.  

13. Viglianti EM, Bagshaw SM, Bellomo R, et al. Late Vasopressor Administration in 
Patients in the ICU: A Retrospective Cohort Study. Chest. 2020;158(2):571-578.  

14. Darden DB, Ghita GL, Wang Z, et al. Chronic Critical Illness Elicits a Unique 
Circulating Leukocyte Transcriptome in Sepsis Survivors. 2021;10(15):3211.  

15. Mankowski RT, Anton SD, Ghita GL, et al. Older Adults Demonstrate Biomarker 
Evidence of the Persistent Inflammation, Immunosuppression, and Catabolism 
Syndrome (PICS) After Sepsis. The Journals of Gerontology: Series A. 2021; 

16. Haines RW, Zolfaghari P, Wan Y, Pearse RM, Puthucheary Z, Prowle JR. 
Elevated urea-to-creatinine ratio provides a biochemical signature of muscle catabolism 
and persistent critical illness after major trauma. Intensive Care Med. Dec 
2019;45(12):1718-1731.  

17. Acharjee A, Hazeldine J, Bazarova A, et al. Integration of Metabolomic and 
Clinical Data Improves the Prediction of Intensive Care Unit Length of Stay Following 
Major Traumatic Injury. Metabolites. 2022;12(1):29.  

18. Plank LD, Connolly AB, Hill GL. Sequential changes in the metabolic response in 
severely septic patients during the first 23 days after the onset of peritonitis. Ann Surg. 
Aug 1998;228(2):146-58.  



 72 

19. Freund H, Atamian S, Holroyde J, Fischer JE. Plasma amino acids as predictors 
of the severity and outcome of sepsis. Ann Surg. Nov 1979;190(5):571-6.  

20. Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ 
failure. Virulence. 2014;5(1):66-72.  

21. Serkova NJ, Standiford TJ, Stringer KA. The emerging field of quantitative blood 
metabolomics for biomarker discovery in critical illnesses. Am J Respir Crit Care Med. 
Sep 15 2011;184(6):647-55.  

22. Langley RJ, Tipper JL, Bruse S, et al. Integrative "omic" analysis of experimental 
bacteremia identifies a metabolic signature that distinguishes human sepsis from 
systemic inflammatory response syndromes. Am J Respir Crit Care Med. 
2014;190(4):445-455.  

23. Liu Z, Triba MN, Amathieu R, et al. Nuclear magnetic resonance-based serum 
metabolomic analysis reveals different disease evolution profiles between septic shock 
survivors and non-survivors. Crit Care. May 14 2019;23(1):169.  

24. Mickiewicz B, Duggan GE, Winston BW, Doig C, Kubes P, Vogel HJ. Metabolic 
profiling of serum samples by 1H nuclear magnetic resonance spectroscopy as a 
potential diagnostic approach for septic shock. Crit Care Med. May 2014;42(5):1140-9.  

25. Puskarich MA, Finkel MA, Karnovsky A, et al. Pharmacometabolomics of l-
carnitine treatment response phenotypes in patients with septic shock. Annals of the 
American Thoracic Society. Jan 2015 2015;12(1):46-56.  

26. Puskarich MA, Evans CR, Karnovsky A, Das AK, Jones AE, Stringer KA. Septic 
Shock Nonsurvivors Have Persistently Elevated Acylcarnitines Following Carnitine 
Supplementation. Shock. Apr 2018;49(4):412-419.  

27. Puskarich MA, Jennaro TS, Gillies CE, et al. Pharmacometabolomics identifies 
candidate predictor metabolites of an L-carnitine treatment mortality benefit in septic 
shock. Clinical and translational science. Jul 3 2021; 

28. Wang J, Sun Y, Teng S, Li K. Prediction of sepsis mortality using metabolite 
biomarkers in the blood: a meta-analysis of death-related pathways and prospective 
validation. BMC Med. 2020/04/15 2020;18(1):83.  

29. Jones AE, Puskarich MA, Shapiro NI, et al. Effect of Levocarnitine vs Placebo as 
an Adjunctive Treatment for Septic Shock: The Rapid Administration of Carnitine in 
Sepsis (RACE) Randomized Clinical Trial. JAMA Netw Open. 2018/12/07 
2018;1(8):e186076-e186076.  

30. Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure 
Assessment) score to describe organ dysfunction/failure. On behalf of the Working 
Group on Sepsis-Related Problems of the European Society of Intensive Care 
Medicine. Intensive Care Med. Jul 1996;22(7):707-10.  



 73 

31. Gillies CE, Jennaro TS, Puskarich MA, et al. A Multilevel Bayesian Approach to 
Improve Effect Size Estimation in Regression Modeling of Metabolomics Data Utilizing 
Imputation with Uncertainty. Metabolites. Aug 6 2020;10(8) 

32. Labaki WW, Gu T, Murray S, et al. Serum amino acid concentrations and clinical 
outcomes in smokers: SPIROMICS metabolomics study. Sci Rep. Aug 6 
2019;9(1):11367.  

33. McHugh CE, Flott TL, Schooff CR, et al. Rapid, Reproducible, Quantifiable NMR 
Metabolomics: Methanol and Methanol: Chloroform Precipitation for Removal of 
Macromolecules in Serum and Whole Blood. Metabolites. Dec 14 2018;8(4) 

34. Antonelli J, Claggett BL, Henglin M, et al. Statistical Workflow for Feature 
Selection in Human Metabolomics Data. Metabolites. Jul 12 2019;9(7) 

35. Everitt B, Hothorn T, SpringerLink (Online service). An introduction to applied 
multivariate analysis with R. Springer; 2011. https://link.springer.com/10.1007/978-1-
4419-9650-3 

36. van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. 
Centering, scaling, and transformations: improving the biological information content of 
metabolomics data. BMC Genomics. Jun 8 2006;7:142.  

37. Yehya N, Harhay MO, Curley MAQ, Schoenfeld DA, Reeder RW. Reappraisal of 
Ventilator-Free Days in Critical Care Research. Am J Respir Crit Care Med. 
2019;200(7):828-836.  

38. Fine JP, Gray RJ. A Proportional Hazards Model for the Subdistribution of a 
Competing Risk. Journal of the American Statistical Association. 1999/06/01 
1999;94(446):496-509.  

39. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying 
prognostic comorbidity in longitudinal studies: development and validation. J Chronic 
Dis. 1987;40(5):373-83.  

40. Gordon AC, Perkins GD, Singer M, et al. Levosimendan for the Prevention of 
Acute Organ Dysfunction in Sepsis. N Engl J Med. 2016;375(17):1638-1648.  

41. Lambden S, Laterre PF, Levy MM, Francois B. The SOFA score—development, 
utility and challenges of accurate assessment in clinical trials. Crit Care. 2019/11/27 
2019;23(1):374.  

42. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and 
Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B 
(Methodological). 1995 1995;57(1):289-300.  

https://link.springer.com/10.1007/978-1-4419-9650-3
https://link.springer.com/10.1007/978-1-4419-9650-3


 74 

43. Sjoding MW, Admon AJ, Saha AK, et al. Comparing Clinical Features and 
Outcomes in Mechanically Ventilated Patients with COVID-19 and the Acute 
Respiratory Distress Syndrome. Annals of the American Thoracic Society. Feb 12 2021; 

44. Stortz JA, Murphy TJ, Raymond SL, et al. Evidence for Persistent Immune 
Suppression in Patients Who Develop Chronic Critical Illness After Sepsis. 
2018;49(3):249-258.  

45. Stortz JA, Mira JC, Raymond SL, et al. Benchmarking clinical outcomes and the 
immunocatabolic phenotype of chronic critical illness after sepsis in surgical intensive 
care unit patients. The journal of trauma and acute care surgery. Feb 2018;84(2):342-
349.  

46. Iwashyna TJ, Hodgson CL, Pilcher D, et al. Timing of onset and burden of 
persistent critical illness in Australia and New Zealand: a retrospective, population-
based, observational study. The Lancet Respiratory medicine. Jul 2016;4(7):566-573.  

47. Chong J, Wishart DS, Xia J. Using MetaboAnalyst 4.0 for Comprehensive and 
Integrative Metabolomics Data Analysis. Current Protocols in Bioinformatics. Dec 2019 
2019;68(1):e86.  

48. R Core Team (2019). R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.  

49. Austin PC, Fine JP. Practical recommendations for reporting Fine-Gray model 
analyses for competing risk data. Stat Med. 2017;36(27):4391-4400.  

50. Cavaillon J-M, Singer M, Skirecki T. Sepsis therapies: learning from 30 years of 
failure of translational research to propose new leads. EMBO Molecular Medicine. April 
7, 2020 2020;12(4):e10128.  

51. Langley RJ, Tsalik EL, van Velkinburgh JC, et al. An integrated clinico-
metabolomic model improves prediction of death in sepsis. Sci Transl Med. 
2013;5(195):195ra95-195ra95.  

52. Rogers AJ, McGeachie M, Baron RM, et al. Metabolomic derangements are 
associated with mortality in critically ill adult patients. PLoS ONE. 2014;9(1):e87538.  

53. Chung KP, Chen GY, Chuang TY, et al. Increased Plasma Acetylcarnitine in 
Sepsis Is Associated With Multiple Organ Dysfunction and Mortality: A Multicenter 
Cohort Study. Crit Care Med. Feb 2019;47(2):210-218.  

54. Puskarich MA, Finkel MA, Karnovsky A, et al. Pharmacometabolomics of l-
carnitine treatment response phenotypes in patients with septic shock. Annals of the 
American Thoracic Society. Jan 2015;12(1):46-56.  

https://www.r-project.org/


 75 

55. Ferrario M, Cambiaghi A, Brunelli L, et al. Mortality prediction in patients with 
severe septic shock: a pilot study using a target metabolomics approach. Sci Rep. 
2016;6:20391-20391.  

56. Mira JC, Gentile LF, Mathias BJ, et al. Sepsis Pathophysiology, Chronic Critical 
Illness, and Persistent Inflammation-Immunosuppression and Catabolism Syndrome. 
Crit Care Med. Feb 2017;45(2):253-262.  

57. Mira JC, Brakenridge SC, Moldawer LL, Moore FA. Persistent Inflammation, 
Immunosuppression and Catabolism Syndrome. Crit Care Clin. Apr 2017;33(2):245-
258.  

58. Gentile LF, Cuenca AG, Efron PA, et al. Persistent inflammation and 
immunosuppression: A common syndrome and new horizon for surgical intensive care. 
2012;72(6):1491-1501.  

59. Rosenthal MD, Bala T, Wang Z, Loftus T, Moore F. Chronic Critical Illness 
Patients Fail to Respond to Current Evidence-Based Intensive Care Nutrition 
Secondarily to Persistent Inflammation, Immunosuppression, and Catabolic Syndrome. 
2020;44(7):1237-1249.  

60. Sharma S, Black SM. CARNITINE HOMEOSTASIS, MITOCHONDRIAL 
FUNCTION, AND CARDIOVASCULAR DISEASE. Drug Discov Today Dis Mech. 
2009;6(1-4):e31-e39.  

61. Ingraham NE, Tignanelli CJ, Menk J, Chipman JG. Pre- and Peri-Operative 
Factors Associated with Chronic Critical Illness in Liver Transplant Recipients. Surg 
Infect (Larchmt). Apr 2020;21(3):246-254.  

62. Zhang Z, Ho KM, Gu H, Hong Y, Yu Y. Defining persistent critical illness based 
on growth trajectories in patients with sepsis. Crit Care. 2020/02/18 2020;24(1):57.  

63. Mierzchala-Pasierb M, Lipinska-Gediga M, Fleszar MG, et al. Altered profiles of 
serum amino acids in patients with sepsis and septic shock – Preliminary findings. Arch 
Biochem Biophys. 2020/09/30/ 2020;691:108508.  

64. Su L, Li H, Xie A, et al. Dynamic Changes in Amino Acid Concentration Profiles 
in Patients with Sepsis. PLoS ONE. 2015;10(4):e0121933.  

65. Puskarich MA, McHugh C, Flott TL, Karnovsky A, Jones AE, Stringer KA. Serum 
Levels of Branched Chain Amino Acids Predict Duration of Cardiovascular Organ 
Failure in Septic Shock. Shock. Jul 1 2021;56(1):65-72.  

66. Swaminathan A, Fokin A, Venckūnas T, Degens H. Methionine restriction plus 
overload improves skeletal muscle and metabolic health in old mice on a high fat diet. 
Sci Rep. 2021/01/13 2021;11(1):1260.  



 76 

67. Wanders D, Forney LA, Stone KP, Hasek BE, Johnson WD, Gettys TW. The 
Components of Age-Dependent Effects of Dietary Methionine Restriction on Energy 
Balance in Rats. Obesity (Silver Spring, Md). Apr 2018;26(4):740-746.  

68. Asantewaa G, Harris IS. Glutathione and its precursors in cancer. Curr Opin 
Biotechnol. 2021/04// 2021;68:292-299.  

69. Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: 
Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients. 
Oct 23 2018;10(11) 

70. Ma N, Ma X. Dietary Amino Acids and the Gut-Microbiome-Immune Axis: 
Physiological Metabolism and Therapeutic Prospects. Comprehensive Reviews in Food 
Science and Food Safety. 2019;18(1):221-242.  

71. Oudemans-van Straaten H, Bosman R, Treskes M, Van der Spoel H, Zandstra 
D. Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive 
Care Med. 2001;27(1):84-90.  

72. Rodas PC, Rooyackers O, Hebert C, Norberg Å, Wernerman J. Glutamine and 
glutathione at ICU admission in relation to outcome. Clin Sci. 2012;122(12):591-597.  

73. Van Zanten AR, Sztark F, Kaisers UX, et al. High-protein enteral nutrition 
enriched with immune-modulating nutrients vs standard high-protein enteral nutrition 
and nosocomial infections in the ICU: a randomized clinical trial. JAMA. 
2014;312(5):514-524.  

74. Hirose T, Shimizu K, Ogura H, et al. Altered balance of the aminogram in 
patients with sepsis–the relation to mortality. Clin Nutr. 2014;33(1):179-182.  

75. Wischmeyer PE, Dhaliwal R, McCall M, Ziegler TR, Heyland DK. Parenteral 
glutamine supplementation in critical illness: a systematic review. Crit Care. 
2014;18(2):1-17.  

76. Tao KM, Li XQ, Yang LQ, et al. Glutamine supplementation for critically ill adults. 
Cochrane Database Syst Rev. 2014;(9) 

77. Van Zanten A, Hofman Z, Heyland DK. Consequences of the REDOXS and 
METAPLUS trials: the end of an era of glutamine and antioxidant supplementation for 
critically ill patients? JPEN Journal of parenteral and enteral nutrition. 2015;39(8):890-
892.  

78. Smedberg M, Wernerman J. Is the glutamine story over? Crit Care. 2016/11/10 
2016;20(1):361.  



 77 

Chapter 4: Pharmacometabolomics Identifies Candidate Predictor Metabolites of 

a L-Carnitine Treatment Mortality Benefit in Septic Shock 

 

This work has been published as an original research manuscript in Clinical 

Translational Science.1  

4.1 Chapter Abstract 

Sepsis-induced metabolic dysfunction contributes to organ failure and death. 

Levocarnitine (L-carnitine) has shown promise for septic shock, but a recent phase II 

study of patients with vasopressor-dependent septic shock demonstrated a non-

significant reduction in mortality. We undertook a pharmacometabolomics study of these 

patients (n = 250) to identify metabolic profiles predictive of a 90-day mortality benefit 

from L-carnitine. The independent predictive value of each pretreatment metabolite 

concentration, adjusted for L-carnitine dose, on 90-day mortality was determined by 

logistic regression. A grid-search analysis maximizing the Z-statistic from a binomial 

proportion test identified specific metabolite threshold levels that discriminated L-

carnitine responsive patients. Threshold concentrations were further assessed by 

hazard ratio and Kaplan-Meier estimate. Accounting for L-carnitine treatment and dose, 

11 1H-NMR metabolites and 12 acylcarnitines were independent predictors of 90-day 

mortality. Based on the grid-search analysis numerous acylcarnitines and valine were 

identified as candidate metabolites of drug response. Acetylcarnitine emerged as highly 

viable for the prediction of an L-carnitine mortality benefit due to its abundance and 



 78 

biological relevance. Using its most statistically significant threshold concentration, 

patients with pretreatment acetylcarnitine greater than or equal to 35 µM were less likely 

to die at 90 days if treated with L-carnitine (18 g) versus placebo (p = 0.01 by log rank 

test). Metabolomics also identified independent predictors of 90-day sepsis mortality. 

Our proof-of-concept approach shows how pharmacometabolomics could be useful for 

tackling the heterogeneity of sepsis and informing clinical trial design. In addition, 

metabolomics can help understand mechanisms of sepsis heterogeneity and variable 

drug response, because sepsis induces alterations in numerous metabolite 

concentrations. 

4.2 Introduction 

Sepsis represents the leading cause of death in the intensive care unit and the 

single most expensive inpatient diagnosis, representing more than $17 billion in 

healthcare costs annually in the United States.2-4 Septic shock carries a particularly poor 

prognosis, with short-term mortality rates of approximately 40%. Among the many 

physiologic disturbances associated with sepsis is a profound shift in metabolism.5 

Hyperlactatemia represents one of the hallmarks of sepsis and is now considered a 

criterion for the diagnosis of septic shock.6 However, hyperglycemia, lipolysis, and 

protein catabolism are also common and similarly associated with increased mortality.5,7 

Manipulation of these processes represents an underdeveloped but promising target for 

novel pharmacotherapies. 

Despite the concerning sepsis mortality statistics and an increasingly focused 

research effort on the condition, clinical trials of novel sepsis pharmacotherapies have 

traditionally yielded disappointing results. While the causes of the failure of clinical trials 
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to further novel treatments are multifactorial, the highly heterogeneous nature of sepsis 

certainly contributes to these results.8,9 This highlights the need to forge a better 

understanding of the heterogeneity and complexity of the clinical illness by identifying 

sepsis endotypes.10 In doing so, strategies for enriched patient selection could be used 

to improve the precision of clinical trials. Importantly, predictive and prognostic 

enrichment strategies for clinical trials have been advocated by many and have been 

issued as guidance by regulatory agencies like the U.S. Food and Drug 

Administration.11-13 

We recently completed a phase II, Bayesian adaptive dose-finding randomized 

control trial comparing L-carnitine (6, 12, or 18 g) treatment to saline (placebo) for the 

early treatment of septic shock. None of the tested doses of L-carnitine resulted in a 

significant reduction in sequential organ failure assessment (SOFA) score at 48 hours, 

though the highest and best performing dose (18 g) demonstrated a non-significant 3% 

and 6% absolute mortality reduction at 28 days in the intention to treat and per protocol 

analyses compared to saline placebo, respectively. 

In parallel with the planning of the original trial, we designed an ancillary 

metabolomics study, the L-carnitine Pharmacometabolomics in Sepsis (CaPS) study, to 

identify candidate metabolites of drug response that could serve to endotype a 

heterogeneous septic shock cohort and direct the design of a clinical enrichment 

strategy for a phase III trial. A number of studies have demonstrated the importance of 

energy-related metabolites for the differentiation of sepsis survivors and the 

identification of sepsis endotypes,5,7,14-17 most of which are readily detected by nuclear 

magnetic resonance (NMR) spectroscopy7,15,16 and targeted liquid chromatography – 
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mass spectroscopy (LC-MS) assays.17 Furthermore, we have previously demonstrated 

the utility of metabolomics in predicting drug response (pharmacometabolomics) in 

sepsis16 employing relatively quantified NMR metabolites and acylcarnitines generated 

by an LC-MS assay. With this background in mind, we hypothesized that serum 

concentrations of acylcarnitines and/or other metabolites could differentiate patients that 

disproportionately benefit from L-carnitine treatment as measured by mortality.  

4.3 Methods 

4.3.1 Study design 

This study utilized pre-treatment serum samples collected from 236 of the 250 

patients enrolled in the Rapid Administration of Carnitine (RACE) in Sepsis clinical 

trial.18 The parent trial was approved by each site’s institutional review board, all 

patients or their surrogate gave written informed consent, and it was registered at 

clinicaltrials.gov prior to initiation (NCT 01665092). Details of the blood samples 

included in the study are provided in the supplementary material, Figure S-2. Serum 

samples were assayed for acylcarnitines by LC-MS17 and by quantitative proton (1H) 

nuclear magnetic resonance (NMR) as previously described.19,20 More details about the 

methods for these measurements can be found in the supplementary material. 
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Figure 4-1. Statistical and logistic regression modeling workflow. 

We first natural log transformed and normalized each metabolite to have a mean of 0 and SD of 1. For 
each metabolite, we then considered a series of logistic regression models with an outcome of 90-day 
mortality (p). The full model descriptions are provided below. In the metabolite base model, the p value 
corresponds to the likelihood ratio test for inclusion of the metabolite coefficient, BM, compared to the 
nested null model with only L-carnitine dose (BD) as a predictor. For the interaction model, the p value 
corresponds to the likelihood ratio test for inclusion of the interaction coefficient, BMD, compared to a 
nested model with dose (BD) and metabolite concentration (BM) as predictors. 1Null model: 
logit(p) = B0 + BD * Dose. 2Metabolite base model: logit(p) = B0 + BD * Dose + BM * Metabolitei. 3Interaction 
model: logit(p) = B0 + BD * Dose + BM * Metabolitei + BMD * Metabolitei * Dose 

4.3.2 Outcomes 

We elected to use mortality as the outcome of our analysis because the primary 

end point of the RACE trial (reduction in SOFA score at 48 h) was not met, but the 18 g 

dose of L-carnitine resulted in a trend towards a reduction in mortality. Based on data 

suggesting a substantial continued decline in mortality among sepsis patients beyond 
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28 days and preliminary data from our phase I data suggesting continued benefit from 

L-carnitine treatment on longer term mortality rates,21 we elected to assess the 

cumulative distribution mortality function to find the optimal time frame for assessment 

of mortality (28, 90, 180, or 365 days). By 90-days, ~90% of the deaths had occurred, 

(see Figure S-3 in the supplementary material), based on this analysis, we chose 90-

day mortality as the primary clinical outcome.  

4.3.3 Statistical Analyses 

Descriptive data are reported as means and standard deviations, medians with 

interquartile ranges, or proportions as appropriate. Differences in categorical outcomes 

were compared using chi-square tests, while Student t-tests and Wilcoxon rank sum 

tests were used to compare continuous variables. The aims of our primary analyses 

were to: 1) determine the relationship between individual metabolites and 90-day 

mortality; 2) determine if the relationship between a predictive metabolite and mortality 

depends on treatment allocation; and 3) using metabolites most associated with 

mortality, determine the optimal (threshold) metabolite level that could be used to 

identify patients with septic shock most likely to respond favorably to L-carnitine 

treatment. Collectively, and similar to other secondary analyses or ancillary studies of 

clinical and observational trials,22-26 achievement of these goals would provide clinical 

proof of concept of a metabolically informed strategy to tackle the heterogeneity of 

sepsis that also could be used for a predictive enrichment design of a phase III 

study.11,12  

Since metabolomics data are on different scales due to varying abundance, in 

preparation for statistical analyses, data were natural-log transformed and Z-score 
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normalized to have a mean of 0 and a standard deviation of 1.27,28 We began our 

analysis using partial least squares-discriminant analysis (PLS-DA)29 to visualize the 

overall metabolic heterogeneity of the study participants and determine whether there 

were metabolic differences between sexes and the treatment groups.  

We followed PLS-DA by an assessment of the predictive value of individual 

metabolites on 90-day mortality. To accomplish this, we constructed a series of logistic 

regression models and adjusted for treatment assignment (Figure 4-1).30 We then 

tested if the relationship between metabolite predictors and mortality varied across 

treatment groups using a logistic regression interaction model. The likelihood ratio test 

was used to determine the impact of baseline concentration and the interaction between 

concentration and dose for each metabolite (Figure 4-1). Age31 and SOFA score32 were 

considered as covariates in further multivariable modelling since they are clinically 

available at the time of therapeutic decision making.  

To test the potential clinical application of our pharmacometabolomics approach, 

after identifying metabolites strongly related to 90-day mortality that also had a 

significant interaction with treatment allocation, we aimed to identify the specific 

concentration or levels of these candidate metabolites that could be used to predict 

which patients would be most likely to derive a mortality benefit from L-carnitine (Figure 

4-2). To achieve this, we used a grid-search methodology to compute the Z-statistic 

from the binomial proportion test at every possible threshold metabolite concentration or 

level.33 For this example, since the 18g dose of L-carnitine was the most efficacious in 

the RACE trial and would be the one most likely to be tested in a phase III trial, we used 

the Z-statistic to quantify the standardized difference in the proportion of deaths 
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between those patients who received L-carnitine (18 g) and those who received 

placebo. For this analysis, the metabolite level at each threshold was used as the 

criterion for inclusion into the proportion test. We then computed a two-sample 

(binomial) proportion test34 which compared the proportion of patients treated with L-

carnitine who died by 90 days to those that were treated with placebo. This permitted 

the identification of metabolite levels associated with a range of Z-statistics including the 

maximum Z-statistic and their corresponding p values. The Z-statistic simultaneously 

accounts for the difference in the proportion of patients who died in the treatment versus 

placebo groups and the sizes of each group, thereby suggesting the most optimal 

metabolite threshold level. Metabolites were then ranked by descending maximum Z-

statistic. Similar approaches have been used by other studies that have sought to 

identify the responder population in clinical and observational trials.22-26 To further 

illustrate the implications of the use of different metabolite concentrations as predictors 

of mortality, hazard ratios were calculated using the Mantel-Haenszel method and 

Kaplan-Meier curves were constructed (log-rank [Mantel-Cox] test). Metabolite 

concentration cut points were selected according to different trial scenarios and the grid-

search analysis described above. All statistical tests except for hazard ratios (Mantel-

Haenszel) and log-rank (Mantel-Cox) tests which were done using PRISM, were 

performed in R studio (R version 3.6.2 (2019-12-12) Copyright 2019 The R Foundation 

for Statistical Computing) and figures were constructed in R and PRISM (version 8.4.3, 

June 10, 2020).  
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Figure 4-2. Grid-search methodology workflow. 

After identifying metabolites with the strongest interaction in the logistic regression modeling, the 
metabolite concentration threshold or cut point that maximized the interaction was determined. For every 
possible threshold concentration, patients randomized to receive either placebo or 18 g L-carnitine were 
considered. For patients whose values exceeded the concentration threshold, we stratified patients by 
treatment allocation and 90-day mortality status and calculated the Z-statistic from the two-sample 
binomial proportion test. This was done iteratively for each metabolite, and the maximum Z-statistic was 
identified from the grid-search (see Table S-8). LC, L-carnitine 

4.4 Results 

Of the 250 participants randomized in the parent trial, 1H-NMR metabolomics and 

acylcarnitine data were available from 228 and 236 patient serum samples, respectively 

(see Figure S-2 in the supplementary material). We identified and quantified 27 serum 

metabolites by 1H-NMR and 24 acylcarnitines by LC-MS (see Table S-5 in the 

supplementary material). Representative 1H-NMR and LC spectra are shown in Figures 

S-4 and S-5 in the supplementary material. All-cause 90-day mortality was 124/236 
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(52.5%), while 28-day and 1-year mortality were 104/236 (44.1%) and 136/236 (57.6%), 

respectively. Clinical and demographic variables of the cohort stratified by the primary 

outcome are summarized in Table 4-1. As expected, patients who died were older and 

had a higher SOFA score. The PLS-DA plots of the acylcarnitine data and the NMR 

metabolites by treatment category (supplementary Figure S-6A and B) and sex 

(supplementary Figure S-7A and B) illustrate the metabolic heterogeneity of the study 

cohort and do not demonstrate any significant metabolic distinction between these 

groups.  

Table 4-1. Demographics and clinical characteristics of the cohort, stratified by 90-day mortality 

 Survived (n = 111) Died (n = 125) p value 

Age, years (IQR) 61 (49, 69) 66 (57, 76) 0.002 

Male, n (%) 

Female, n (%) 

60 (54) 

51 (46) 

 74 (41) 

51 (59) 

0.43 

Race 

 Black, n (%) 

 Asian, n (%) 

 White, n (%) 

 Other, n (%) 

  

33 (30) 

3 (3) 

68 (61) 

7 (6) 

 

39 (31) 

2 (2) 

74 (59) 

10 (8) 

0.88 

Ethnicity 

 Hispanic, n (%) 

 

5 (4) 

 

7 (6) 

0.70 

Diabetes, n (%) 34 (31) 46 (37) 0.32 

Liver disease, n (%) 11 (10) 25 (20) 0.03 
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Renal disease, n (%) 10 (10) 24 (20) 0.03 

Heart rate, beats per minute (IQR) 100 (84, 113) 100 (87, 114) 0.70 

Respiratory rate, breaths per minute (IQR) 20 (16, 24) 21 (18, 26) 0.09 

Cumulative vasopressor index (IQR) 4 (3, 8) 6 (4, 8) <0.001 

Body mass index (IQR) 28 (25, 36) 27 (22, 35) 0.10 

White blood count, cells/mm3 (IQR) 22.0 (12.3, 28.7) 16.1 (11.4, 23.7) 0.24 

Platelet count, cells/mm3 (IQR) 161 (99, 232) 129 (65, 210) 0.02 

Creatinine, mg/dL (IQR) 1.6 (1.1, 2.4) 2.1 (1.4, 3.0) 0.003 

Total Bilirubin, mg/dL (IQR) 0.9 (0.5, 1.7) 1.6 (0.7, 3.7) <0.001 

Clinical lactate, mmol/L (IQR) 3.1 (2.3, 4.8) 4.9 (2.7, 8.4) <0.001 

SOFA score 10 (8, 12) 12 (9, 15) <0.001 

 

We then conducted multivariate logistic regression using L-carnitine dose and 

metabolites as covariates (base model) and applied a conservative Bonferroni 

correction for multiple comparisons. The base model identified in 11/27 1H-NMR 

metabolites and 12/24 acylcarnitines that significantly discriminated 90-day mortality 

(Table 4-2; the complete list can be found in Table S-6 of the supplementary material). 

We then tested whether the relationship between predictive metabolites and mortality 

depends on treatment allocation. This was done with the addition of an interaction term 

between L-carnitine dose and metabolite level (interaction model) which reduced the 

number of significant metabolites from 23 to 14, of which all but three metabolites were 



 88 

acylcarnitines (Table 4-3; a comprehensive list can be found in Table S-7 in the 

supplementary material); these were not in range to withstand a conservative 

adjustment (e.g., Bonferroni) for multiple comparisons. In this analysis, a statistically 

significant and negative interaction term indicates that the predicted probability of 90-

day mortality for a given metabolic feature is lower at higher doses of L-carnitine. To 

determine whether the signals found in the base and interaction models was merely due 

to factors associated with the risk of death, we controlled for both age31 and SOFA 

score32. Several acylcarnitines and choline tolerated this adjustment (see Table S-8  

in the supplementary material for the full list of metabolites); notably, lactate was not 

significant in either model (p=0.96 and p=0.22, respectively).  

Table 4-2. Logistic regression model for the prediction of 90-day mortality adjusted for treatment. 

 Base model* 

Metabolite predictor‡ Metabolite 

Coefficient (βM) 

βM 

Standard 

Error 

βM 

P value 

(Bonferonni) 

Acetylcarnitine (C2)§ 0.85 0.16 <0.0001 

C18:1§ 0.84 0.17 <0.0001 

Acetylcarnitine (C2)ll 0.76 0.16 <0.0001 

C20:1§ 0.74 0.16 <0.0001 

Tyrosine ll 0.68 0.16 0.0002 

Betaine ll 0.68 0.16 0.0002 

Propionylcarnitine (C3)§ 0.64 0.15 0.0002 

Propylene glycol ll 0.66 0.16 0.0003 

C16:1§ 0.60 0.15 0.001 

Lysine ll 0.58 0.15 0.002 

Glycinell 0.56 0.15 0.003 
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C20-carnitine§ 0.56 0.15 0.004 

Glutaminell 0.55 0.15 0.01 

C14-carnitine§ 0.53 0.15 0.01 

C16-carnitine§ 0.52 0.15 0.01 

Methioninell 0.51 0.15 0.01 

Lactatell 0.51 0.15 0.02 

C12:1-carnitine§ 0.51 0.15 0.02 

C4-carnitine§ 0.48 0.14 0.02 

C20:2-carnitine§ 0.49 0.15 0.03 

Prolinell 0.47 0.14 0.03 

C8-carnitine§ 0.46 0.14 0.04 

Alaninell 0.46 0.14 0.05 

 
*The base model is described as logit(p) = B0 + BD * Dose + BM * Metabolitei, where p is the probability of 
mortality in 90 days 
‡compounds with Bonferonni adjusted p values <0.05 ranked in ascending order; for the complete list see 
supplementary Table S-6 in additional file 1 
§as measured by LC-MS 
llas measured by 1H-NMR 
 
Table 4-3. Logistic regression interaction model. 

Tests the relationship between metabolite predictors and mortality by treatment (L-carnitine dose or 
placebo) for the prediction of 90-day mortality ranked by descending p value. 
 

 Interaction model† 

Metabolite predictor‡ 
Interaction 

Coefficient (βM*D) 

βM*D 

Standard  

Error 

βM*D 

P value# 

(Raw) 

C10:1-carnitine§ -1.22 0.37 <0.0001 

C8:1-carnitine§ -1.07 0.35 0.001 

C8-carnitine§ -0.97 0.36 0.01 

C10-carnitine§ -0.97 0.36 0.01 

C18:2-carnitine§ -0.96 0.35 0.01 
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C14:1-carnitine§ -0.90 0.34 0.01 

C12-carnitine§ -0.77 0.33 0.02 

C16:1-carnitine§ -0.84 0.38 0.02 

Cholinell -0.74 0.33 0.02 

C16-carnitine§ -0.82 0.38 0.02 

Oxoisocaproatell -0.74 0.34 0.03 

C5-carnitine§ -0.70 0.36 0.04 

Valinell -0.69 0.35 0.05 

Acetylcarnitine (C2)§ -0.81 0.42 0.05 

 
†The interaction model is described as logit(p) = B0 + BD * Dose + BM * Metabolitei + BMD * Metabolitei * 
Dose  
§as measured by LC-MS 
llas measured by 1H-NMR 
#Raw p values are not adjusted for multiple comparisons. 

 

As these findings were not evident in the parent clinical trial and they suggest 

that there may be a sepsis endotype that may derive a therapeutic benefit from 

supplement L-carnitine, we hypothesized that a pharmacometabolomics approach may 

aid in defining this sub-group of patients. To identify the candidate metabolites, we took 

a hypothesis-generating approach and considered all metabolites with significant (< 

0.05) unadjusted p values (n=14 in the logistic regression interaction model; Table 4-3) 

and assessed the Z-statistic of each. Based on this analysis, the metabolites with 

significant (FDR-corrected p values < 0.05) maximum Z-statistics included a number of 

acylcarnitines as well as the branched chain amino acid, valine (Table 4-4; also see 

supplementary Table S-9). In addition to the Z-statistic values, to identify candidate 

metabolites, we also considered the prevalence of the acylcarnitine signal, the known 

potential of acetylcarnitine (C2) to predict drug responsiveness16 and its close metabolic 

relationship with L-carnitine. Furthermore, the maximum Z-statistic of C12 and C8:1 
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represented a lower percentage of the clinical cohort than either C5 or acetylcarnitine 

(C2). As such, we selected acetylcarnitine (C2) as the most viable metabolite candidate 

to demonstrate the utility of our pharmacometabolomics approach. As examples, we 

assessed several concentrations of both acetylcarnitine (C2) and valine, including the 

ones at the maximum Z-statistic, 35 µM (p=0.002; as measured by LC-MS) (Figure 4-3) 

and 88µM (p=0.009), respectively (also see Figure S-8 and Table S-9 in the 

supplementary material). These analyses illustration how a pharmacometabolomics 

may aid in the design of a precision trial of L-carnitine for the treatment of septic shock 

using the scheme as illustrated in Figure 4-4. 

Table 4-4. Significant metabolites from logistic regression interaction model ranked by 
descending maximum Z-statistic 

Metabolite predictor Maximum Z-statistic P value FDR (%)* 

C10:1-carnitine§ 3.71 0.0002 0.30 

C8:1-carnitine§ 3.50 0.0005 0.33 

C10-carnitine§ 3.10 0.002 0.73 

Acetylcarnitine (C2)§ 3.06 0.002 0.73 

C8-carnitine§ 3.01 0.003 0.73 

C5-carnitine§ 2.77 0.01 1.29 

Valinell 2.63 0.01 1.73 

C12-carnitine§ 2.58 0.01 1.73 

C14:1-carnitine§ 2.54 0.01 1.75 

C18:2-carnitine§ 2.50 0.01 1.75 

C16-carnitine§ 2.40 0.02 1.96 

C16:1-carnitine§ 2.39 0.02 1.96 

Cholinell 1.72 0.08 9.19 

Oxoisocaproatell 1.68 0.09 9.25 

§as measured by LC-MS 
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llas measured by 1H-NMR 
*calculated in MS Excel using the method of Storey, et al35 
 
Figure 4-3. Pretreatment acetylcarnitine (C2) concentration as a predictive clinical trial enrichment 
strategy. 

 

Four scenarios illustrate how different threshold concentrations of acetylcarnitine (C2), a high abundant 
acylcarnitine would have impacted the outcome of the Rapid Administration of Carnitine (RACE) in Sepsis 
clinical trial in patients treated with either L-carnitine (18 g) or placebo. In scenario one, no threshold 
concentration is used so the entire RACE cohort (n = 236) is eligible. The sample size of 170 patients 
represents those that received either L-carnitine (18 g; n = 100) or placebo (n = 70). The hazard ratio is 
not significant, and consistent with the parent trial, the Kaplan-Meier curve shows no mortality benefit of 
L-carnitine (p = 0.57). In scenario two, an acetylcarnitine (C2) threshold concentration of greater than 
21 µM is used. Forty-four percent (n = 104) of the RACE cohort met this criterion and of these, 68 patients 
received either L-carnitine (18 g) or placebo. The hazard ratio is not improved, and the Kaplan-Meier 
curve shows no mortality benefit of L-carnitine (p = 0.59). In scenario three, an acetylcarnitine (C2) 
threshold concentration of greater than 30 µM is used. Twenty-seven percent (n = 64) of the RACE cohort 
met this criterion and of these, 42 patients received either L-carnitine (18 g) or placebo. The hazard ratio 
is significant and favors L-carnitine (18 g); the Kaplan-Meier curve shows a mortality benefit of L-carnitine 
(p = 0.04). Finally, scenario four uses the acetylcarnitine (C2) concentration associated with the maximum 
Z-statistic (Table S-9), greater than 35 µM. Twenty-three percent (n = 54) of the RACE cohort met this 
criterion and of these, 37 patients received either L-carnitine (18 g) or placebo. The hazard ratio is 
significant, and the Kaplan-Meier curve shows a mortality benefit of L-carnitine (p = 0.01). The number of 
patients at risk at each time point and the number of censored subjects, which was due to the end of the 
study (1 year), can be found here: https://doi.org/10.7302/vvqp-ma61. N/A, not applicable 
 

https://doi.org/10.7302/vvqp-ma61
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Figure 4-4. A clinical trial enrichment strategy for heterogeneous critical illnesses like sepsis.  

An example of a scheme for a hypothetical phase III clinical trial of supplement L-carnitine for the 
treatment of septic shock that uses an a priori determined acetylcarnitine (C2) threshold concentration to 
determine whether a patient is enrolled and randomized to receive either L-carnitine (18 g) or placebo. 
 

 

4.5 Discussion 

Our pharmacometabolomics study, CaPS, aimed to identify pre-treatment, 

sepsis-induced metabolic derangements in survivors and non-survivors treated with L-

carnitine. We found that there are likely metabolically distinct groups (endotypes) of 

patients that do proportionally better when they receive an 18 g dose of supplemental L-

carnitine. These findings imply that a precision, clinical trial enrichment strategy using 
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pharmacometabolomics could help combat the heterogeneity of sepsis and drug 

response, which is known to have contributed to numerous negative clinical studies.8  

Here we show that a pharmacometabolomics approach identified clinically 

indistinguishable sepsis endotypes that are more likely to derive a mortality benefit from 

treatment with L-carnitine (18 g), a finding not evident in the metabolically naive parent 

trial. To accomplish this, we used a metabolomics analysis to capture high abundant 

polar compounds (quantitative 1H-NMR) and acylcarnitines (LC-MS) in serum samples 

collected from patients enrolled in a phase II clinical trial of L-carnitine therapy.18 Using 

this approach, similar to our prior study17, we found a prevalent acylcarnitine signal. 

From this profile, we selected acetylcarnitine (C2) and valine to illustrate how different 

threshold concentrations could influence mortality outcome in patients randomized to 

either placebo of L-carnitine (18 g). Specifically, patients with higher (e.g., > 30µM) 

acetylcarnitine (C2) levels at enrolment may be more likely to derive a treatment benefit 

as defined by decreased intermediate term (90-day) mortality; this benefit is maximized 

at acetylcarnitine (C2) concentrations > 35µM. While severity of illness could contribute 

to this finding, clinical variables alone do not seem to account for the identification of the 

drug-responsive endotype since the finding is retained when accounting for factors 

associated with the risk of death (age and SOFA score, see supplementary Table S-8). 

Notably, we also found that serum concentrations of the branched chain amino acid, 

valine, could also be used to identify a mortality benefit of L-carnitine but not to as great 

an extent as acetylcarnitine (C2). Collectively, these data suggest that there are patients 

that are in clinically occult subgroups. Should these data be validated, metabolically 

informed clinical trial design36 and ultimately, precision treatment strategies, could 
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represent a new paradigm of sepsis care. These data provide the groundwork and 

rationale for a pharmacometabolomics directed clinical trial to test L-carnitine therapy 

efficacy for septic shock using a specific concentration of a key metabolite (e.g., 

acetylcarnitine (C2) to guide inclusion criteria (Figure 4-2).  

Importantly, the current study also shows that numerous metabolites may have 

predictive value for sepsis mortality, even after controlling for factors associated with the 

risk of death (see Table S-8 in the supplementary material). These data provide further 

evidence that sepsis induces broad metabolic disruption that is linked to patient 

outcomes, corroborating prior studies.37,38 Of note, numerous acylcarnitines, including 

unsaturated acylcarnitines, predicted mortality, suggesting significant disruption in fatty 

acid metabolic pathways.38 Overall, the broad range in disruption of acylcarnitines may 

reflect differential and variable mobilization of fatty acids,39 rather than disruption of a 

specific enzyme or pathway. We have previously demonstrated this in a smaller cohort 

of septic shock patients.17 Despite this variance, acetylcarnitine (C2) was the most 

robust predictor of overall sepsis mortality. This corroborates a previous study that 

identified acetylcarnitine (C2) as being associated with the severity of sepsis-induced 

organ dysfunction, inflammation and infection.37 Acetylcarnitine (C2) also happens to be 

one of only two compounds (with L-carnitine) detected by both the LC-MS and NMR 

analytical platforms; regardless of the detection method, it performed similarly in the 

regression models.  

Interestingly, acetylcarnitine (C2) outperformed the more clinically ubiquitous 

lactate level in predicting sepsis mortality. After correcting for age and SOFA score, 

lactate was not a significant independent predictor (supplementary Table S-8) whereas 
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acetylcarnitine (C2) retained its predictive value following this correction, which 

suggests the potential for its use as an adjunctive clinical test for risk prognosis. 

However, as our cohort was highly selected and involved only participants receiving 

vasopressors (which affect glycolysis and lactate production)40,41 who were already 

resuscitated, it would be inappropriate to interpret these data to imply that lactate does 

not serve an important role in the early identification and prognosis patients with 

suspected infection. In particular, serial lactate levels and its clearance rate have been 

used to assess the adequacy of resuscitation and lactate is included in the sepsis 

definition.6,42-44 Nevertheless, limitations of lactate have been recognized42 and, notably, 

others have demonstrated that acylcarnitines outperform lactate in predicting sepsis 

mortality.38 Our data suggest that acetylcarnitine (C2) may represent a superior risk 

stratification tool in a selected cohort of fully resuscitated patients undergoing treatment 

with vasopressor infusions. 

We also learned from the CaPS study that pre-treatment serum L-carnitine 

concentrations did not predict a L-carnitine treatment mortality benefit, suggesting 

against the hypothesis that serum L-carnitine deficiency drives the response to 

supplemental L-carnitine in sepsis patients. Rather, in aggregate, these data provide 

evidence to support the hypothesis that sepsis induces an impairment in the 

mobilization of acetyl groups. While there may be a number of biologically plausible 

hypotheses, our findings could be due to sepsis-induced increased intracellular 

accumulation of acetyl-CoA secondary to its decreased metabolism via the tricarboxylic 

acid cycle (TCA) or enhanced acetyl-CoA production via fatty acid (beta-oxidation) 

metabolism (Figure S-9 in the supplementary material). Consequently, increases in 
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acetyl-CoA are managed by a number of mechanisms one of which is via the 

mitochondrial enzyme, carnitine acetyltransferase (EC 2.3.1.7). Carnitine 

acetyltransferase transfers acetyl groups to carnitine, displacing the hydrogen atom in 

its hydroxyl group45 converting it to the membrane-permeable, acetylcarnitine (C2) 

(Figure S-9 in the supplementary material). Acetylcarnitine (C2), the shortest of the 

acylcarnitines, is important because it plays a controlling role over acetyl-CoA on 

metabolic substrate switching and therefore, enables metabolic flexibility.45 As the need 

for ATP increases, acetyl-CoA is diverted to the TCA cycle. However, in sepsis, the 

TCA cycle may fail to metabolize these groups resulting in excess acetyl-CoA and 

subsequent elevation in measured serum acetylcarnitine (C2) concentrations. The 

elevation in acetylcarnitine (C2) may reflect the ability of L-carnitine to serve as route for 

the disposal of excess acetyl groups which has been demonstrated in the myocardium46 

and during exercise.47 However, unlike acetylcarnitine (C2), the metabolic link between 

L-carnitine therapeutic response and BCAA concentrations is less clear. We and others 

have shown that levels of branched chain amino acids (BCAA) influence sepsis 

outcome16,38 and shock resolution.48 It is possible that patients with elevated BCAA 

blood concentrations represent those with a metabolic reserve that enables them to 

more efficiently utilize supplemental L-carnitine49 but in general, the mechanisms of 

BCAA signaling and metabolic mechanisms of action are poorly understood.50 In 

aggregate, our findings suggest that the magnitude of sepsis-induced disruptions in 

energy metabolism may be associated with a therapeutic benefit of L-carnitine. This 

relationship and the mechanisms that underlie it warrant further interrogation.  
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Despite the encouraging results of our study, we acknowledge that there are 

several important weaknesses. We recognize that “real-time” metabolomics is not 

feasible in clinical practice and that routine measurement of these compounds, including 

acetylcarnitine (C2), for routine clinical use is not currently available. We also employed 

a limited, focused metabolomic approach, measuring high abundant polar compounds 

(1H-NMR) and acylcarnitines. We acknowledge that a broad, untargeted approach may 

have yielded additional compounds predictive of outcomes or treatment response. With 

our targeted approach, we still made multiple comparisons testing involving over 50 

metabolites in this study, which opens the door to false positive findings. Our findings 

persisted after application of a conservative Bonferroni correction, but we acknowledge 

that the predictive capacity of acetylcarnitine (C2) and valine, when accounting for 

interactions between baseline metabolite and treatment assignment (interaction model), 

was not amenable to correction for multiple comparisons. As such, and given that this 

was an ancillary study, we acknowledge that any conclusions regarding the accurate 

prediction of clinical drug responsiveness are only hypothesis generating and will 

require rigorous prospective testing. We did, however, highlight how the use of a 

number of different acetylcarnitine (C2) and valine concentrations would influence the 

mortality outcome of the RACE trial (Figure 4-3 and supplementary Figure S-8). These 

were merely used as examples to illustrate the utility of a pharmacometabolomics 

approach and despite including almost 250 patients, we acknowledge that our results 

may overestimate the true effect size and will require validation in an external cohort. 

Nevertheless, even though these subgroups represent < 50% of the total RACE trial 

cohort, they highlight the value of a predictive enrichment strategy that could be used to 
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design a phase III clinical trial of L-carnitine supplementation for septic shock. 

Importantly, the pharmacometabolomics approach was developed concurrent with the 

design of the parent trial, and the conceptual model was based on and is consistent with 

our preliminary work in a unique, though smaller cohort,16 strengthening the validity of 

the findings.  

In summary, an ancillary pharmacometabolomics study, CaPS, of the parent 

clinical trial, RACE, found numerous predictors, independent of intervention, age and 

SOFA score, for 90-day mortality in septic shock including many acylcarnitines and 

other metabolites such as tyrosine, betaine, lysine and glycine. We also demonstrate 

the translational value of the work by showing how the application of a 

pharmacometabolomics-based clinical trial enrichment strategy, using pre-treatment 

acetylcarnitine (C2) concentrations as an example, could be used to identify the 

responder population, a sepsis endotype, that may derive a mortality benefit from L-

carnitine supplementation. This represents a unique clinical trial enrichment strategy 

that could be employed to improve the efficiency of a phase III L-carnitine efficacy study 

in patients with septic shock10 and other emerging therapeutics in heterogeneous critical 

illnesses. These findings also support the notion that distinct metabolic endotypes 

contribute to sepsis heterogeneity.  
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Chapter 5: Population Pharmacokinetics to Understand the Disposition of High-

Dose L-Carnitine in Septic Shock 

 

This work is in preparation and will be submitted as an original research manuscript in 

Spring of 2023. It was presented in abstract form at the 2022 American College of 

Clinical Pharmacology Annual Meeting.1  

5.1 Chapter Abstract 

 Levocarnitine (L-carnitine), an endogenous regulator of fatty acid oxidation and 

mitochondrial function, has shown promise as a metabolic-therapeutic for septic shock, 

where mortality approaches 40%. In these patients, high-dose (≥ 6 grams) intravenous 

supplementation results in a broad range of concentrations, the highest of which are 

associated with mortality. This is not attributable to L-carnitine toxicity but may reflect 

inherent differences in host-related factors. We sought to describe the population 

pharmacokinetics (PK) of high-dose L-carnitine in patients with septic shock and test 

whether metabolic status, genetic variability in a transporter, or clinical outcomes were 

related to estimated individual parameters.   

 We leveraged serial serum samples collected from the Rapid Administration of 

Carnitine in Sepsis (RACE) phase II clinical trial. Patients with vasopressor-dependent 

septic shock were adaptively randomized to receive intravenous L-carnitine (6 grams, 

12 grams, or 18 grams) vs. placebo. Serum was collected at baseline (T0); end-of-

infusion (T12); and 24, 48, and 72 hours after treatment. L-carnitine and acylcarnitine 
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derivatives were measured by liquid-chromatography – mass spectrometry and low-

molecular weight, polar metabolites were measured using nuclear magnetic resonance 

spectrometry. Patients were genotyped by TaqMan at a single nucleotide polymorphism 

(rs2631367) in the predominant organic carnitine transporter (OCTN2). Population PK 

analysis was done with baseline normalized L-carnitine concentrations using nonlinear 

mixed effect models in Monolix (version 2021R1). Age, sex, body mass index, weight, 

the Sequential Organ Failure Assessment score, transporter genotype, and estimated 

kidney function were tested as covariates. Final model selection was based on the 

Bayesian Information Criterion (BIC), visual predictive checks (VPC), and other 

diagnostics.  

We measured LC concentrations in 542 serum samples from 130 patients who 

received treatment with study drug. A two-compartment model with linear elimination 

and a fixed volume of distribution (17.1 liters) best described the data and was chosen 

as a base model. Estimated glomerular filtration rate (eGFR), measured by the 2021 

CKD-EPI Creatinine and Cystatin C equation, as a covariate on the elimination rate 

constant (k) significantly improved model fit and outperformed creatinine clearance 

(Cockcroft-Gault) and CKD-EPI equations, some of which use an adjustment for self-

identified race. Other clinical and demographic covariates on transfer rate constants did 

not improve model fit. Patients who died prior to 28-days had significantly lower 

elimination rates (Wilcoxon Signed-Rank, p<0.001). The correlation between individual 

parameter estimates and baseline metabolites were determined and indicated that short 

chain acylcarnitines were related to both k and k21. Genotype at rs2631367 in the gene 
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encoding OCTN2 was not related to individual patient parameters (Kruskal–Wallis 

ANOVA, p>0.05).  

L-carnitine population PK is well-described by a two-compartment model 

following high-dose supplementation in patients with septic shock. Kidney function is an 

important driver of L-carnitine elimination in this patient group, and baseline metabolic 

status and clinical outcomes are further associated with interindividual variability. Future 

investigations are warranted to differentiate which patient factors drive drug response 

and define subgroups of patients most likely to benefit from therapy.  

5.2 Introduction 

Sepsis is a clinical syndrome defined by life-threatening organ dysfunction and a 

dysregulated host response to infection.2 In 2017, nearly 50 million cases were 

identified worldwide, with one in five deaths recorded attributable to sepsis.3 Beyond 

antimicrobials, treatment for sepsis remains largely non-specific and supportive with a 

litany of failed clinical trials for more targeted interventions.4  

L-carnitine is an endogenous molecule that plays a vital bioenergetic role in the 

mobilization of fatty acids into the mitochondria for subsequent beta oxidation.  Given 

the hypermetabolic state and mitochondrial dysfunction that ensues in many patients 

with sepsis5,6, L-carnitine was recently tested as a targeted, metabolic agent in patients 

with sepsis. In a phase I, randomized, double-blind trial, high-dose L-carnitine was 

found to be safe in 31 patients with septic shock and demonstrated a modest, but 

significant improvement in patient mortality.7 A follow-up phase II-b trial did not find 

evidence that L-carnitine significantly improved patient mortality or organ dysfunction8, 

as measured by the Sequential Organ Failure Assessment (SOFA) score.9 However, 
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pharmacometabolomic analyses of the phase I trial have demonstrated significant 

interpatient variability in L-carnitine and acylcarnitine concentrations post-treatment10 

and that genetic variability in the organic cation transporter (OCTN2), body size, and 

renal function may be important drivers of the observed variability.11 Furthermore, a 

significant mortality benefit was observed in the phase IIb trial in patients who were 

metabolically more perturbed at baseline.12 Taken together, these findings suggest 

heterogeneity in the pharmacokinetics (PK) and effectiveness (pharmacodynamics, PD) 

of high-dose L-carnitine in septic shock.  

 The overall goal of our study was to describe the population PK of high-dose, IV 

L-carnitine in an acutely ill cohort of patients with septic shock. We also sought to 

determine the patient covariates that improved the model’s fit and description of drug 

concentrations over time. Given that L-carnitine is extensively cleared by renal 

elimination13, we recognized an additional opportunity to leverage trial data and 

contribute to the ongoing debate regarding the ideal approach to estimate kidney 

function. A secondary goal of this study was to test different equations that estimate 

kidney function based on serum creatinine (Scr), serum cystatin C (Scys), and self-

identified race in critically ill patients using L-carnitine as a probe molecule.  

5.3 Methods 

5.3.1 Study design and participants 

This was a secondary analysis of the Rapid Administration of Carnitine in Sepsis 

(RACE) clinical trial (NCT01665092).8 The RACE study was a multicenter, placebo-

controlled, phase IIb clinical trial that adaptively randomized patients with septic shock 

to saline placebo or three dosing arms of IV L-carnitine: 6 grams, 12 grams, or 18 
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grams. The Bayesian adaptive randomization scheme selected the highest dose as the 

most efficacious.14 Study drug or an equivalent volume of saline placebo was given as 

an IV bolus (33% of dose) immediately followed by a 12-hour infusion. The trial was 

conducted in accordance with the Declaration of Helsinki, where all patients or their 

legal representatives provided informed consent and all sites were approved by their 

local Institutional Review Board.  

Adult patients were eligible for the trial if they were: 1) identified within 24-hours 

of the identification of septic shock; 2) required high-dose vasopressors; 3) presented 

with moderate organ dysfunction (SOFA  6); and 4) had a blood lactate of at least 18 

mg/dL (2 mmoles/L). Patients who were pregnant, breastfeeding, immunocompromised, 

or had a history of seizures were excluded. Serum samples for drug and other 

metabolomics analysis were collected at baseline (T0), end-of-infusion (T12), and 24 

hours (T24), 48 hours (T48), and 72 hours (T72) after treatment initiation. Full inclusion 

and exclusion criteria, as well as detailed sample collection and processing have been 

previously described.8,12  

5.3.2 Drug and Metabolite Quantification  

Carnitine and acylcarnitines  

L-carnitine and acylcarnitines, which are esters formed from the conjugation of L-

carnitine and fatty acids of various chain length, were measured by reverse phase, 

liquid-chromatography mass-spectrometry at the Michigan Regional Comprehensive 

Metabolomics Resource Core at the University of Michigan as previously described.10,12 

Absolute quantification for L-carnitine and several acylcarnitines (C2, C3, C4, C5, C8, 

C14, and C16) was achieved through stable isotope internal standards at a known 
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concentration (NSK-B Cambridge Isotope Laboratories). An additional eight 

acylcarnitines were relatively quantified by peak area. 

Small polar molecules  

Proton nuclear magnetic resonance spectroscopy (1H-NMR) was used to 

measure 27 low-molecular weight metabolites at the University of Michigan College of 

Pharmacy NMR Laboratory using standard methods.15 Metabolites identified included 

several amino acids, intermediates of the tricarboxylic acid (TCA) cycle, and other 

bioenergetic compounds.  

5.3.3 Renal Function Estimates 

Quantification of serum creatinine and cystatin C 

Serum creatinine was measured clinically as part of the RACE study, and 

baseline measures were abstracted from the trial’s research electronic data capture 

(REDCap) database.16 Cystatin C was measured using biobanked residual serum 

samples using a standard, commercially available enzyme-linked immunoassay (ELISA) 

assay according to the manufacturer’s instructions (R & D Systems). 

Equations to estimate renal function 

The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) has 

established equations to determine a patient’s estimated glomerular filtration rate 

(eGFR) based on Scr and/or Scys, patient age, sex, and race. Given the increasing 

controversy about inclusion of patient race as a variable17 and the drawbacks of serum 

creatinine as a renal biomarker18, we estimated eGFR using four iterations of the CKD-

EPI equation: the 2009 CKD-EPI19 (includes patient race and Scr); the 2021 CKD-EPI 
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equation20 (uses Scr but drops patient race); the 2012 CKD-EPI21 (uses only Scys); and 

the 2021 CKD-EPI20 (includes both Scr and Scys without an adjustment for race). All 

eGFR calculations were calculated according to standard body surface area and are in 

the units of mL/min per 1.73 m2.  

5.3.4 Transporter Genotyping 

L-carnitine is transported into the cell through the OCTN2 transporter, which is 

also responsible for its renal tubular reabsorption.13 Given L-carnitine’s critical role in 

metabolic homeostasis, loss of function variants in the gene encoding OCTN2 

(SLC22A5) are rare and result in-born errors of metabolism. Nonetheless, a single 

nuclear polymorphism (rs2631367, −207C>G) has been associated with lower mRNA 

levels in previous studies and in the Genotype-Tissue Expression (GTEx) Project.22-24 

We isolated DNA from buffy coat collected in the RACE trial and genotyped patients at 

the rs2631367 loci using a commercially available TaqMan genotyping assay 

(ThermoFisher®,  assay ID C__26479161_30).  

5.3.5 Pharmacokinetic modeling 

We restricted our secondary analysis to patients who were randomized to receive 

study drug and who had a baseline and at least one post-treatment serum sample 

available. For population PK analysis, post-treatment L-carnitine concentrations were 

baseline normalized in accordance with FDA guidance for modeling endogenous 

molecules.25 

All data were cleaned in RStudio, and population PK analysis was performed in 

Monolix (Version 2021R1, Lixoft SAS, Antony, France). Given the sparse sampling 
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scheme of the RACE trial in relationship to the drug infusion time, we opted for a fixed 

population parameter for the volume of distribution (Vd) based on the median weight of 

the cohort and previous PK reports that Vd for IV L-carnitine is 0.2 to 0.3 L/kg.13 

To determine the optimal number of compartments and linear versus nonlinear 

elimination, we first built a base model with one compartment and with a linear 

elimination rate constant (k). We then built two and three compartment models with 

linear and Michaelis Menten elimination and selected the model based on the Akaike 

information criterion (AIC) and model diagnostic plots. In all model comparisons, a two-

point reduction or more in the AIC value was considered meaningful.  

For the best performing model, we assessed the impact of different renal function 

parameters as a covariate on the elimination rate constant. We tested the performance 

of eGFR as estimated by the CKD-EPI equations described above; the CrCL according 

to Cockgroft-Gault; and Scr and Scys as standalone biomarkers. In addition, we 

considered the sarcopenia index, calculated as 100*( Scr / Scys ), which is biomarker of 

muscle mass rather than true renal function.26 

We considered additional clinical and demographic patient variables as 

covariates using the available automated stepwise covariate model (SCM) building 

algorithm in Monolix. Once the final model was selected, we assessed the relationship 

between individual patient PK parameters to baseline metabolites, OCTN2 genotype, 

and patient mortality using standard nonparametric statistical methods.  

5.4 Results 

5.4.1 Patients and pharmacokinetic data 
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Of the 175 patients randomized to receive L-carnitine in the RACE trial, 130 

patients had a baseline and follow-up serum sample available for population PK 

analysis. In these patients, we measured drug concentrations in 542 serums samples. 

Observations at end-of-infusion (T12) and T72 were underrepresented (Table 5-1), as 

these samples were only collected during the an initial ‘burn-in’ phase of the trial, where 

the first 40 patients were randomized equally to all trial arms.14 As such, 60% of the 

cohort in this secondary analysis was randomized to the 18g treatment arm, which was 

selected as the most efficacious by the Bayesian adaptive design.  

Table 5-1. Characteristics for patients considered in population pharmacokinetic modeling. 

Patient characteristics Total Patients, N = 1301 

L-carnitine dose received  
Low dose (6 grams) 27 (21%) 
Medium dose (12 grams) 25 (19%) 
High dose (18 grams) 78 (60%) 

Sex  
Female 50 (38%) 
Male 80 (62%) 

Age 62 (53, 70) 

Weight 85 (70, 102) 

Self-Identified Race  
Black 41 (32%) 
White, Asian, or Other 89 (68%) 

Body Mass Index 28 (23, 35) 

Serum Creatinine 1.93 (1.29, 2.79) 

Serum Cystatin C 2.44 (1.57, 3.66) 

Baseline SOFA Score 10.0 (8.0, 13.0) 

OCTN2 genotype at rs2631367  
CC 23 (21%) 
CG 50 (45%) 
GG 37 (34%) 
Unknown 20 

Serum samples analyzed for pharmacokinetics   
Baseline, T0 130 (100%) 
End-of-infusion, T12 23 (18%) 
24-hours after treatment initiation, T24 127 (98%) 
48-hours after treatment initiation, T48 114 (88%) 
72-hours after treatment initiation, T72 18 (14%) 

 

1n (%); Median (IQR) 
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 Baseline Scr was available for all patients. Four patients did not have a sufficient 

volume of residual baseline serum to measure Scys, and values were imputed from a 

simple linear model using Scr and patient age, sex, and weight as predictors 

(Supplementary Figure S-10). Genotype data for OCTN2 at rs2631367 was available 

for 110 patients (Table 5-1). 

5.4.2 Population pharmacokinetic modeling  

A two-compartment model with a linear elimination and a fixed volume of 

distribution (17.1 L) provided an optimal model fit (Table 5-2). Renal function as a 

covariate on the elimination rate constant reliably improved model fit regardless of the 

equation or biomarker used. Table 5-2 shows the impact on the AIC after including 

various renal parameters as a covariate on the elimination rate constant. The eGFRcr,cys, 

estimated according to the the 2021 CKD-EPI equation and using both Scr and Scys, 

provided the largest reduction in AIC (-52.93 points). The eGFRcr (2021 CKD-EPI using 

only Scr) and eGFRCys (2012 CKD-EPI using only Scys) provided a similar improvement 

over the base model, while the eGFRcr, race (2009 CKD-EPI using both self-identified 

race and Scr) resulted in marginally ‘worse’ model. All estimates of eGFR outperformed 

CrCL, according to Cockgroft-Gault. Inclusion of Scys concentration (Δ AIC = -38.62 

points) outperformed Scr (Δ AIC = -34.68 points) as a single covariate. The sarcopenia 

index, a measure of muscle loss rather than true renal function, provided no 

improvement over the base model (Δ AIC = -1.56 points).   

Table 5-2. Comparison of pharmacokinetic models with various renal function parameters as a 
covariate on the elimination rate.  

Model performance with covariate on k Δ AIC 
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Systemic Biomarkers  

Serum Creatinine (Scr)  -34.68 

Cystatin C (Scys) -38.62 

Sarcopenia Index -1.56 

Renal Function Estimates 

Creatinine Clearance -39.48 

eGFR+ 2009 (Race, SCr) -42.19 

eGFR 2012 (CysC) -45.14 

eGRR 2021 (SCr) -44.78 

eGFR 2021 (SCr, CysC) -52.93 

 
+eGFR = estimated glomerular filtration rate 
 

The population parameters for the ‘best’ performing model with eGFRcr,Cys as a 

covariate on the elimination rate is shown in Table 5-3. The visual predictive check 

(VPC, Figure 5-1A), the probability of individual weighted residual (IWRES) plot (Figure 

S-11), and plot of observed versus predicted concentrations (Figure S-12) show model 

diagnostics and performance. Automated SCM did not identify any additional patient 

demographics or clinical covariates that substantially improved model performance. 

Table 5-3. Top performing population pharmacokinetic model for high-dose intravenous L-
carnitine.  

Population Parameters Value S.E. R.S.E.(%) 

Fixed Effects 

V_pop (L) 17.1 - - 

k_pop (hr-1) 0.21 0.012 5.51 
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βeGFR on k (hr-1) 0.49 0.068 13.8 

k12_pop (hr-1) 0.38 0.05 13.2 

k21_pop (hr-1) 0.16 0.017 10.8 

Standard Deviation of the Random Effect 

ωV 0.32 0.066 20.7 

ωk 0.44 0.045 10.2 

ωk12 0.39 0.08 20.8 

ωk21 0.53 0.087 16.3 

Error Model Parameters 

b 0.37 0.025 6.69 

 
The population pharmacokinetic model shown below is a two-compartment model with linear elimination 
and a fixed volume distribution (17.1 L). The eGFRcr,cys as a covariate on the elimination rate constant is 
estimated according to the the 2021 CKD-EPI equation with both serum cystatin C and serum creatinine. 
The V_pop parameter was fixed based on the median weight of the cohort and literature estimates for L-
carnitine’s volume of distribution. S.E. = standard error. R.S.E. = residual standard error as a percentage. 
 



 116 

 

Figure 5-1. L-carnitine population pharmacokinetics and individual parameter associations with 
sepsis survival and metabolic status.  

A) Visual predictive check (VPC) for the predicted concentration of L-carnitine over time. B) Boxplots of 
estimated elimination rate constant (k) stratified by 28-day mortality status. C) Correlation heatmap of 
correlations between conditional mode estimated individual parameters and baseline metabolites. 
Individual parameters considered were k and rate in to (k1) and out of (k2) tissue.  

5.4.3 Other patient factors and individual variation in pharmacokinetics 

From the final model, we determined the individual population PK parameters for 

the elimination rate (k), the rate out of compartment one (k12), and the rate out of 

compartment two (k21). These individual parameters were compared to OCTN2 
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genotypes (rs2631367), baseline metabolite concentrations, and patient mortality at 28-

days.  

Twenty-three patients were wildtype (CC) at rs2631367, while 87 patients 

contained either one (CG, 50 patients) or two (GG, 37 patients) copies of the G allele, 

which has been associated with greater transporter expression. There was no evidence 

of a relationship between OCTN2 genotype and any individual PK parameters (by the 

Kruskal–Wallis rank test, p>0.05). Patients who died before 28-days had a lower 

predicted value for k (Wilcoxon signed rank test, p=5.2e-05, Figure 5-1B), but similar 

values for k12 and k21. Figure 5-1C shows the correlation between individual PK 

parameters and baseline metabolites measured by LC-MS or NMR. Baseline 

acylcarnitines tended to be negatively correlated to k and positively correlated to k21. 

Lactate and creatinine were also negatively correlated to k, while lactate and glucose 

were positively correlated to k12. 

5.5 Discussion 

The host-response to infection and pharmacotherapy in sepsis is often highly 

heterogeneous.27 A phase I trial of intravenous L-carnitine in patients with septic shock 

demonstrated a high degree of interindividual variability in the response to the candidate 

metabolic therapeutic.7,10 In this secondary population PK analysis of the subsequent 

phase IIb trial, a two-compartment model with a fixed population parameter for the 

volume of distribution and eGFR as covariate on the elimination rate constant best fit 

the observed data. Patient mortality and baseline metabolic status, but not transporter 

genomics, were related to individual drug response.  
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L-carnitine is taken orally as a supplement and prescribed intravenously to treat 

primary carnitine deficiency in patients with end-stage renal disease or with in-born 

errors of metabolism. As such, the PK of L-carnitine has been previously reported13,28, 

albeit at lower routinely clinically used doses and in patients who are not acutely ill. The 

lack of PK data for L-carnitine given at high-doses in patients with septic shock served 

as the primary justification for our analysis.  

Administration of radiolabeled L-carnitine has demonstrated a renally eliminated 

drug that can be represented as a 3 compartment model with a central pool 

(approximating extracellular fluid), a faster equilibrating compartment (likely generalizing 

to kidney and liver), and a slowly equilibrating compartment (i.e., skeletal muscle).29 

Moreover, endogenous L-carnitine is extensively (>98%) reabsorbed in the renal 

tubules, and single intravenous doses demonstrate saturation of this process and 

increased clearance of the compound.30,31  Although we tested more complex 

population PK models with nonlinear elimination and multiple compartments, these 

models were characterized by a higher AIC and poor predictions compared to the 2-

compartment model with linear elimination. However, our work does strongly support 

the importance of renal function in the elimination of high-dose exogenous L-carnitine, 

as each renal function estimate we considered as a covariate on k dramatically lowered 

the AIC compared to the base model (Table 5-1). This strengthens our justification in 

using L-carnitine as a probe drug to test alternative approaches when estimating renal 

function in critically ill patients.  

Current clinical and drug development standards rely on the measurement of Scr 

as a biomarker of renal function. While wide use and the international standardization of 
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the analytical method to quantify Scr are strengths of this paradigm, there are increasing 

calls to adopt alternative renal biomarkers. Another endogenous biomarker, Scys, has 

demonstrated modest improvement in estimating kidney function for renally eliminated 

drugs.32 Recent work using vancomycin as a renally eliminated probe molecule has 

shown the value of Scys over Scr in population PK models.33 In cases when only Scr is 

available, inclusion of patient race to estimate eGFR has resulted in worse performing 

models for vancomycin and aminoglycosides.33,34  In this analysis, we find that Scys 

outperformed Scr as an individual renal biomarker and covariate on the elimination rate 

of a renally cleared compound. We also found eGFR equations that leverage Scys 

provided superior model performance and that inclusion of race to estimate eGFR hurt 

model fit. Our work adds to growing calls to reconsider the approach to estimating renal 

function in clinical practice and drug development.   

In the phase I trial of L-carnitine in septic shock there was considerable 

interpatient variability in carnitine and acylcarnitine concentrations post-treatment, with 

elevated levels associated with mortality.7,10 Here, we see a similar broad-dynamic 

range in concentrations following treatment, with non-survivors characterized by lower 

individual values for the elimination rate and consequently higher concentrations 

(Figure 5-1). Similarly, all acylcarnitines measured were negatively correlated with 

individual parameters for the elimination rate (Figure 5-2). Adverse drug reactions due 

to L-carnitine were assessed in the phase I and II trials of L-carnitine but known toxicity 

to the compound including an increased potential for seizures, gastrointestinal side 

effects, and body odor were not widely reported. This suggests the higher mortality in 

patients with elevated concentrations is not directly attributable to L-carnitine toxicity, 



 120 

however this cannot be completely ruled out. Rather, we speculate that the patients with 

elevated concentrations had worse renal function and/or greater metabolic dysfunction 

over the course of the study and that decreased clearance of L-carnitine and its acyl 

derivatives account for our observations.  

Genetic variability at rs2631367 in the OCTN2 transporter were associated with 

peak concentrations of L-carnitine in the smaller phase I study.11 The G allele has been 

associated with increased mRNA expression of the transporter in eQTL analysis, 

potentially granting systemic tissue a greater ability to sequester exogenous L-

carnitine.11 Our results here found that the elimination rate and the rates into and out of 

tissue were not meaningfully related to OCTN2 genotype. Given that OCTN2 is a highly 

conservative transporter, owing to its critical in biochemistry, it is possible the impact of 

altered gene transcription was insufficient to impact drug response in a heterogeneous, 

acutely ill clinical cohort. Moreover, we were unable to account for the potential of drug-

transporter interactions that could impact tissue sequestration of L-carnitine given the 

lack of detailed concomitant medications in the RACE trial data.  

Our study has several strengths and limitations that warrant further 

consideration. We employed rigorous metabolomics and PK methods to build a well-

performing population model of high-dose, intravenous L-carnitine in the setting of 

septic shock. In building the population model, we chose to test the impact of only 

patient covariates commonly available in the clinical setting. However, we also 

assessed the relationship between less commonly available patient information 

including OCTN2 transporter genotype and baseline metabolic status. We were also 

able to assess different approaches to estimating renal function in critical illness using a 
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probe drug candidate in the setting of a multicenter clinical trial. Nonetheless, the blood 

sampling scheme for the trial was rather sparce, particularly early during the drug’s 

infusion, which superseded our ability to fit a population parameter for the volume of 

distribution. In addition, we were forced to use baseline normalization when considering 

drug concentrations post-treatment, as L-carnitine is an endogenous molecule and the 

investigative product administered was not radio-labeled. Finally, our measurement of 

Scys was done using residual, biobanked serum and a commercially available ELISA kit 

rather than a clinical measurement from a fresh patient sample. As such our results 

regarding the optimal method for estimating eGFR must be interpreted as exploratory 

and requires rigorous further validation using additional cohorts of critically ill patients 

and probe drug molecules.  

In conclusion, we found that high-dose intravenous L-carnitine in patients with 

septic shock can be reliably modeled at the population level using a two-compartment 

model with linear elimination. Renal function as a covariate on the elimination 

dramatically improved model performance, with methods that incorporate Scys but not 

patient race providing the greatest improvement. We also found that patient mortality 

and baseline metabolites were strongly related to individual patient PK parameters.  
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Chapter 6: Concluding Remarks and Future Directions 

6.1 Summary of project goals  

Sepsis is a severe and dysregulated response to infection that is also 

characterized by organ dysfunction.1 Despite significant research investment, the 

mortality in septic shock approaches 40%, and new paradigms in the pharmacotherapy 

of sepsis have remained elusive in large part due to the clinical heterogeneity of the 

disease.2 In addition, sepsis is mechanistically complex and the underpinnings for why 

some patients have an uncomplicated trajectory, while others suffer from chronic critical 

illness and/or death is poorly understood.  

Sepsis induces profound changes in host metabolism that are associated with 

organ dysfunction, the inflammatory and immune responses, and patient’s clinical 

outcomes.3,4 Levocarnitine (L-carnitine), a key regulator of fatty acid oxidation and 

mitochondrial function, has shown promise as a targeted metabolic-therapeutic agent 

for the treatment of septic shock.5 However, L-carnitine’s administration is associated 

with substantial interpatient variability in pharmacokinetics (PK), and patients with 

elevated peak concentrations of carnitine and acyl-carnitines (ACs) have increased 

mortality.6  

The overall objective of this dissertation was to determine metabolic pathways 

that drive sepsis mortality and patient response to L-carnitine. In these pursuits, I have 

leveraged time-series metabolomic and patient data from a randomized, double-blinded, 
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placebo-controlled clinical trial of intravenous l-carnitine vs. saline placebo in patients 

with septic shock (RACE).7  

6.2 Dysregulated metabolism is associated with variable patient outcomes in 

septic shock 

In Chapters 2 and 3, I explore the relationship between baseline and dynamic 

metabolic signatures associated with patient outcomes in the natural’ sepsis phenotype 

(i.e., patients randomized to the placebo arm of the trial). I found differentiating 

trajectories for several acylcarnitines and IL-8 over the first 48-hours among septic 

shock survivors and non-survivors at 28-days.8 We also described the correlation 

between metabolic analytes and protein markers of the host response showing that 

hyper-inflammatory cytokines were strongly related to lactate and pyruvate, the 

products of glycolysis. In addition, unsupervised clustering of baseline metabolomics 

data identified two clinically occult groups that were characterized by distinct organ 

function over the first 48-hours and mortality outcomes out to one year. The 

concentration of two acylcarnitines and four amino acids were also found to be 

associated with prolonged need for organ support (vasopressors and mechanical 

ventilation) in competing risk regression.9 Continued need for these life-supporting 

measures for more than 14 days (defined as chronic critical illness) was similarly related 

to elevated concentrations of amino acids in the systemic circulation. Together, our 

findings add to the existing evidence that dysregulated host metabolism, particularly 

related to impaired -oxidation of fatty acids and mitochondrial dysfunction, are 

associated with not only death, but also sepsis morbidity.   
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6.3 Patient factors drive variable drug response to L-carnitine in septic shock 

In Chapters 4 and 5, I identified metabolic, genomic, and other patient covariates 

associated with drug response to L-carnitine. Using logistic regression interaction 

models and a grid-search methodology across the metabolomics dataset, I tested for 

candidate metabolic predictors of L-carnitine drug response.10 I discovered that 

subgroups of patients who were more metabolically perturbed, namely those with 

elevated acetylcarnitine and valine, appeared to derive a mortality benefit from L-

carnitine that was not present in the trial population at large.10 This shows the power of 

metabolomics in limiting the heterogeneity of drug response in sepsis, as predictive 

metabolic biomarkers could enrich clinical trial design and establish subgroups of 

patients most likely to respond to specific therapy. I then established a population PK 

model for high-dose, intravenous L-carnitine in septic shock and explored the impact of 

different renal function estimates and patient covariates on model performance.11 Renal 

function estimates as a covariate on the elimination rate reliably improved model fit. 

Specifically, renal function calculated with equations that leverage serum cystatin C 

proved superior to equations based on serum creatinine and self-identified race. Patient 

mortality and concentrations of other baseline metabolites were related to individual 

pharmacokinetic parameters; however, I was unable to validate our previous work that 

implicated a single nucleotide polymorphism in the carnitine organic cation transporter 

as an important driver of drug response. In summary, this work has established patient 

variables that are related to the pharmacokinetic and pharmacodynamic response to 

supplemental L-carnitine in patients with sepsis.  
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6.4 Future directions 

In future work, metabolomics and other patient data from the clinical trials of L-

carnitine can be leveraged to further the understanding of the metabolic nature of sepsis 

and identify patients who may derive a benefit from supplemental L-carnitine.  

Recent work combining data science with biological and clinical patient 

characteristics has consistently identified two subphenotypes of acute respiratory 

distress syndrome.12,13 Importantly, the hyper- and hypo-inflammatory subgroups are 

associated with differential mortality (up to 20% higher in inflamed patients), differential 

response to treatment14,15, and are generalizable to sepsis.16,17 Acetylcarnitine, which 

our work has identified with as a metabolic signal of drug response to L-carnitine,  is 

strongly associated with inflammatory cytokines in patients with sepsis4, and recent 

work has shown a glycolytic shift and impaired lipid metabolism among hyper-

inflammatory patients with sepsis and ARDS.18 Taken together, these findings imply a 

greater metabolic dysfunction within hyper- compared to hypo-inflammatory patients 

that may have been mitigated by a targeted metabolic agent, L-carnitine. The hyper- 

and hypo-inflammatory subphenotypes of patients in the RACE trial could be predicted 

with either machine learning models of patient covariates in the electronic health 

record19, or from parsimonious models of a few key biomarkers measured in residual 

blood samples.20 This work would show if L-carnitine drug response varies among 

inflammatory phenotypes with point-of-care potential that have been identified across 

several cohorts and thousands of patients.  

Acetylcarnitine has previously been consistently associated with mortality, organ 

dysfunction, and inflammation in patients with sepsis.4,21,22 The work in this dissertation 
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has largely corroborated these findings in septic shock.9,23 Our group is collecting 

available metabolomics data in patients with sepsis to conduct an individual participant 

data meta-analysis. We will compare acetylcarnitine and lactate, a clinical defining 

metabolic biomarker of sepsis, and their relationship to mortality and organ dysfunction 

across hundreds of patients. Our hypothesis is that acetylcarnitine has additional 

prognostic value for patient outcomes in sepsis.  

Metabolomics remains primarily a discovery science, yet its potential to impact 

patient care and treatment decisions in critically patients is growing. Outside of sepsis, 

metabolomics has been associated with patient outcomes and employed to 

understanding the pathophysiology of other critical illness syndromes including ARDS 

and COVID-19.24,25 Our group has collected baseline and follow-up blood samples in 

patients admitted to Michigan Medicine during the first wave of the COVID-19 

pandemic. We will employ an untargeted metabolomics assay to determine the 

relationship between individual metabolites and patient outcomes including mortality, 

the need for prolonged respiratory support (e.g., mechanical ventilation), and 

development of additional non-pulmonary organ failures.  

6.5 Concluding remarks 

In determining metabolic pathways that drive sepsis mortality and patient 

response to L-carnitine, I hypothesized that there are distinct metabolic signatures 

related to L-carnitine homeostasis and mitochondrial metabolic function that are 

associated with mortality and drug response in patients with sepsis. Using data from the 

RACE trial, I have completed several analyses that implicate metabolic dysfunction as a 

factor that contributes to heterogenous outcomes and response to L-carnitine in patients 
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with sepsis. However, this line of research is largely embedded in a single clinical trial, 

and as such the results and conclusions here should be interpreted as hypothesis-

generating. Nonetheless, our work demonstrates the potential for integrating 

metabolomics with other patient and multi-‘omics’ data to advance the molecular basis 

for patient outcomes and differential response to therapy in patients with sepsis. Further 

pursuit of this research in combination with the principles of clinical pharmacology can 

help transform the care of sepsis and dramatically improve patient lives.  
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Appendices  

Appendix A – Supporting Information for Chapter 2 

A.1 Tables 

Table S-1. Linear mixed model results for measured metabolite and protein analytes. 

For each analyte a fixed vs. interaction model was selected as described in the methods. The overall p-
value was determined by comparing the selected model to a null model, which only included a patient-
level intercept and covariates. Resulting p-values were corrected for multiple comparisons according to 
Benjamini and Hochberg and are reported as q values. Model coefficients for Time, Mortality, and their 
Interaction are reported with their 95% confidence interval. Blue coefficients indicate a negative slope 
significantly different from zero, while red coefficients indicate a positive slope significantly different from 
zero.  
 

Metabolite/Protein Model  Q-Value Time Mortality Interaction 

C61 FE 8.10e-05 -0.196 (-0.284, -0.107) 0.433 (0.027, 0.839)  

C2 
(Acetylcarnitine)1 

FE 2.76e-04 -0.093 (-0.173, -0.014) 0.779 (0.382, 1.176)  

C81 FE 2.76e-04 -0.115 (-0.193, -0.037) 0.667 (0.28, 1.055)  

C161 IM 3.02e-04 0.167 (0.068, 0.267) 0.958 (0.498, 1.418) -0.275 (-0.448, -0.103) 

C41 FE 3.05e-04 -0.154 (-0.234, -0.074) 0.497 (0.07, 0.924)  

C20.11 IM 4.36e-04 0.163 (0.059, 0.267) 0.972 (0.508, 1.437) -0.194 (-0.375, -0.014) 

C14.11 IM 4.66e-04 0.074 (-0.02, 0.169) 1.026 (0.57, 1.482) -0.225 (-0.39, -0.061) 

C121 FE 6.19e-04 -0.056 (-0.138, 0.027) 0.869 (0.439, 1.299)  

C16.11 IM 6.97e-04 0.072 (-0.022, 0.166) 0.98 (0.533, 1.428) -0.216 (-0.38, -0.053) 

C12.11 IM 1.08e-03 0.057 (-0.03, 0.144) 0.98 (0.522, 1.438) -0.18 (-0.332, -0.028) 

C18.11 FE 1.28e-03 -0.023 (-0.094, 0.048) 0.848 (0.422, 1.273)  

C141 IM 1.42e-03 0.023 (-0.083, 0.128) 0.919 (0.475, 1.363) -0.19 (-0.372, -0.008) 

C18.21 IM 1.85e-03 0.02 (-0.069, 0.109) 0.848 (0.374, 1.323) -0.207 (-0.362, -0.052) 

C10.11 FE 2.64e-03 -0.002 (-0.073, 0.07) 0.776 (0.368, 1.183)  

C31 FE 2.77e-03 -0.067 (-0.148, 0.015) 0.705 (0.282, 1.128)  

C8.11 FE 3.00e-03 -0.178 (-0.276, -0.081) 0.146 (-0.294, 0.586)  

C20.21 IM 3.93e-03 0.056 (-0.046, 0.157) 0.913 (0.437, 1.389) -0.189 (-0.365, -0.013) 

C201 FE 4.07e-03 0.103 (0.022, 0.184) 0.607 (0.156, 1.059)  
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C101 FE 5.15e-03 -0.028 (-0.113, 0.058) 0.689 (0.289, 1.09)  

C181 IM 6.18e-03 0.142 (0.025, 0.259) 0.817 (0.339, 1.295) -0.207 (-0.41, -0.004) 

L-carnitine1 FE 1.18e-02 -0.097 (-0.17, -0.025) 0.38 (-0.073, 0.833)  

C51 FE 2.37e-02 -0.025 (-0.098, 0.048) 0.591 (0.175, 1.008)  

C20.41 FE 2.26e-01 0.062 (-0.052, 0.176) -0.272 (-0.657, 0.112)  

C20.31 FE 2.67e-01 -0.028 (-0.188, 0.132) 0.291 (-0.057, 0.639)  

      

Lactate2 FE 1.72e-09 -0.456 (-0.583, -0.33) 0.309 (-0.045, 0.664)  

Pyruvate2 IM 2.39e-09 -0.53 (-0.683, -0.377) 0.089 (-0.336, 0.515) 0.287 (0.023, 0.551) 

Isoleucine2 FE 7.82e-06 0.346 (0.223, 0.469) 0.144 (-0.28, 0.567)  

Lysine2 FE 7.82e-06 0.293 (0.187, 0.399) 0.336 (-0.073, 0.745)  

Propylene glycol2 FE 5.66e-05 -0.274 (-0.398, -0.15) 0.401 (0.033, 0.769)  

Methionine2 FE 3.53e-04 0.263 (0.138, 0.389) 0.402 (0.026, 0.779)  

Valine2 FE 3.96e-04 0.28 (0.156, 0.405) 0.132 (-0.279, 0.543)  

C2 
(Acetylcarnitine)2 

FE 4.66e-04 -0.113 (-0.221, -0.005) 0.679 (0.312, 1.046)  

L-carnitine2 FE 1.19e-03 -0.179 (-0.31, -0.047) 0.533 (0.153, 0.914)  

3-Hydroxybutyrate2 FE 2.80e-03 -0.182 (-0.325, -0.039) 0.45 (0.094, 0.807)  

Leucine2 FE 4.07e-03 0.21 (0.093, 0.327) 0.18 (-0.243, 0.602)  

Ornithine2 FE 5.37e-03 0.223 (0.095, 0.351) -0.033 (-0.461, 0.395)  

Creatinine2 FE 6.16e-03 -0.172 (-0.275, -0.069) 0.133 (-0.289, 0.555)  

Glycine2 FE 1.33e-02 0.115 (0.019, 0.21) 0.443 (0.05, 0.835)  

2-Hydroxybutyrate2 FE 3.20e-02 -0.092 (-0.195, 0.011) 0.425 (0.012, 0.837)  

Alanine2 FE 3.32e-02 -0.083 (-0.186, 0.021) 0.44 (0.035, 0.846)  

Tyrosine2 FE 3.35e-02 0.077 (-0.024, 0.179) 0.521 (0.097, 0.945)  

Citrate2 FE 5.51e-02 0.128 (0.013, 0.243) 0.317 (-0.105, 0.74)  

Betaine2 FE 1.12e-01 -0.085 (-0.176, 0.006) 0.229 (-0.176, 0.634)  

Glutamine2 FE 1.43e-01 -0.008 (-0.114, 0.098) 0.422 (0.019, 0.826)  

Phenylalanine2 FE 2.06e-01 0.093 (-0.018, 0.204) 0.234 (-0.204, 0.672)  

2-Oxoisocaproate2 FE 4.04e-01 -0.07 (-0.219, 0.078) 0.196 (-0.197, 0.59)  

Creatine2 FE 4.10e-01 0.026 (-0.048, 0.099) 0.29 (-0.164, 0.743)  

Proline2 FE 4.10e-01 0.02 (-0.095, 0.135) 0.278 (-0.121, 0.677)  

Glucose2 FE 5.74e-01 0.091 (-0.075, 0.258) -0.015 (-0.366, 0.335)  
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1Measured by liquid-chromatography mass-spectrometry  
2Measured by nuclear magnetic resonance spectroscopy  
3Measured by protein immunoassay  
FE = fixed effects model  
IM = interaction model 

Histidine2 FE 6.16e-01 0.052 (-0.056, 0.16) 0.088 (-0.32, 0.495)  

Choline2 FE 9.47e-01 -0.024 (-0.167, 0.119) -0.007 (-0.408, 0.395)  

      

IL-63 IM 2.10e-26 -0.759 (-0.87, -0.647) -0.224 (-0.625, 0.177) 0.228 (0.038, 0.419) 

IL-83 IM 9.56e-24 -0.577 (-0.674, -0.48) 0.654 (0.231, 1.076) 0.185 (0.018, 0.352) 

TNFα3 IM 1.80e-22 -0.531 (-0.619, -0.444) -0.164 (-0.628, 0.301) 0.17 (0.019, 0.322) 

IL-103 FE 6.40e-19 -0.456 (-0.535, -0.377) 0.496 (0.084, 0.909)  

IL-12(p40)3 FE 1.57e-11 -0.342 (-0.422, -0.263) 0.001 (-0.455, 0.457)  

ANG23 IM 2.39e-09 -0.327 (-0.412, -0.242) -0.194 (-0.636, 0.249) 0.314 (0.165, 0.463) 

IL-1β3 FE 2.21e-08 -0.252 (-0.326, -0.177) 0.332 (-0.131, 0.796)  

Fractalkine3 FE 3.44e-06 -0.221 (-0.299, -0.143) 0.296 (-0.154, 0.746)  

IL-1α3 FE 1.08e-03 -0.156 (-0.242, -0.07) 0.403 (-0.045, 0.851)  

IL-183 FE 1.63e-03 -0.104 (-0.157, -0.052) 0.025 (-0.491, 0.542)  
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Appendix B – Supporting Information for Chapter 3 

 

B.1 Supporting Methods 

Definition of modified Charlson Comorbidity Index: Patient demographics, comorbidities, 

and clinical outcomes were recorded and are maintained in a secure research electronic 

data capture (REDCap) database.1 However, it was not possible to obtain all 

comorbidities necessary to calculate a full comorbidity score according to Charlson.2 

Specifically, we lacked information on peptic ulcer disease and connective tissues 

diseases and could not distinguish between uncomplicated diabetes vs. diabetes with 

residual organ damage or HIV positive vs. Acquired immunodeficiency syndrome. Thus, 

our modified scale assigns a score of +1 to any patient with documented diabetes and 

does not account for the remaining disease states.  
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B.2 Figures  

 

Figure S-1. Principal component analysis (PCA) stratified by patient outcomes. 

The first three principal components explained ~62% variation; 33.9% (PC1), 18.4% (PC2), and 9.3% 
(PC3). Patients who required at least 14 days of mechanical ventilation or vasopressors were classified 
as chronic critical illness (‘CCI’, blue circles) and were more similar to patients who experienced rapid 
recovery (‘Rapid-Recovery’, purple diamonds) than patients who died at or prior to 28 days (‘Competing-
Death’, orange triangles). 
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B.3 Tables  

Table S-2. Metabolites detected and quantified by LC-MS/MS and 1H-NMR. 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) identification (ID) number is provided when 
available (+). When a corresponding KEGG ID does not exist, the human metabolomics database 
(HMDB) ID number is provided (*). When neither a KEGG nor HMDB ID is available, a metabolite is 
assigned N/A. The missingness for NMR metabolites represents the percentage of samples for which that 
respective compound did not have a reported value. 
 

LC-MS/MS Metabolites 1H-NMR Metabolites 

Compound Name KEGG ID+ Compound Name KEGG ID+ Missingness 

Levocarnitine 
C00318 2-

Hydroxybutyrate 
C05984 0% 

Acetylcarnitine (C2) C02571 2-Oxoisocaproate C00233 17.4% 

Propanoylcarnitine (C3) 
C03017 3-

Hydroxybutyrate 
C01089 2.2% 

Butanoylcarnitine (C4) 
C02862 Acetylcarnitine 

(C2) C02571 
2.2% 

Valerylcarnitine (C5) HMDB0013128* Alanine C00041 0% 

Hexanoylcarnitine (C6) HMDB0000756* Betaine C00719 2.2% 

C8:1-carnitine HMDB0013324* Levocarnitine C00318 10.9% 

Octanoylcarnitine (C8) C02838 Choline C00114 19.6% 

C10:1-carnitine HMDB0240585* Citrate C00158 15.2% 

Decanoylcarnitine (C10) C03299 Creatine C00300 0% 

C12:1-carnitine HMDB0013326* Creatinine C00791 0% 

Dodecanoylcarnitine (C12) HMDB0002250* Glucose C00221 0% 

C14:1-carnitine HMDB0002014* Glutamine C00064 0% 

Tetradecanoylcarnitine 
(C14) 

HMDB0005066* 
Glycine C00037 

0% 

C16:1-carnitine HMDB0006317* Histidine C00135 8.7% 

C20:4-carnitine HMDB0006455* Isoleucine C00407 15.2% 

C18:2-carnitine HMDB0006469* Lactate C00186 0% 

C20:3-carnitine N/A Leucine C00123 0% 

Palmitoylcarnitine (C16) C02990 Lysine C00047 2.2% 

C18:1-carnitine HMDB0006464* Methionine C00073 15.2% 

C20:2-carnitine N/A Ornithine C00077 26.1% 

Stearoylcarnitine (C18) HMDB0000848* Phenylalanine C00079 0% 

C20:1-carnitine N/A Proline C00148 15.2% 

Arachidonoylcarnitine 
(C20) 

HMDB0006455* 
Propylene glycol C00583 

0% 

  Pyruvate C00022 0% 

  Tyrosine C00082 0% 

  Valine C00183 0% 
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Table S-3. Patient demographics and clinical characteristics. 

Patient characteristic N = 47 

Age (years)1 61 (46, 70) 

Sex2 

Female  

Male  

 

21 (45%) 

26 (55%) 

Race2 

African American 

Caucasian 

Unknown 

 

14 (30%) 

32 (70%) 

1 

Charlson Comorbidity Index1 4.00 (2.00, 5.50) 

Heart Rate (beats/minute)1 103 (94, 113) 

Respiratory Rate (breaths/minute)1 20.0 (16.5, 25.0) 

Cumulative vasopressor index1 

Unknown 

4.00 (4.00, 8.00) 

1 

Body mass index1 27 (22, 35) 

SOFA score1,3 9.00 (8.00, 11.00) 

White blood count (cells/mm3)1 

Unknown 

24 (12, 31) 

13 

Platelet (cells/mm3)1 

Unknown 

147 (126, 214) 

1 

Creatinine (mg/dL)1 1.60 (1.16, 2.33) 

Total bilirubin (mg/dL)1 1.30 (0.60, 3.30) 

Clinical lactate (mmol/L)1 

Unknown 

3.60 (2.30, 6.50) 

10 

 
1Median (IQR) 
2N (%) 
3Neurological component removed 
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Table S-4. One-way analysis of variance (ANOVA) for differences in metabolite concentrations 
stratified by patient outcomes. 

The ANOVA p-values were corrected for multiple comparisons according to the false discovery rate 
(FDR) procedure of Benjamini–Hochberg. For metabolites with an FDR <0.05, post-hoc testing for 
between group differences was done according to Fisher’s Least Square Difference and reported when 
significant (FDR <0.05). CCI = chronic critical illness; RR = rapid recovery. 
 

Metabolite F-Value P-Value FDR Post-hoc Testing 

C16:1-carnitine 14.38 1.65E-05 8.43E-04 Death vs. CCI; Death vs. RR 

C14:1-carnitine 12.36 5.75E-05 1.47E-03 Death vs. CCI; Death vs. RR 

Dodecanoylcarnitine (C12) 11.56 9.61E-05 1.63E-03 Death vs. CCI; Death vs. RR 

Tetradecanoylcarnitine (C14) 10.95 1.43E-04 1.83E-03 Death vs. CCI; Death vs. RR 

Palmitoylcarnitine (C16) 10.20 2.38E-04 2.42E-03 Death vs. CCI; Death vs. RR 

Acetylcarnitine (C2, LC-MS) 9.69 3.35E-04 2.82E-03 Death vs. CCI; Death vs. RR 

Decanoylcarnitine (C10) 9.22 4.66E-04 2.82E-03 Death vs. CCI; Death vs. RR 

C12:1-carnitine 9.10 5.05E-04 2.82E-03 Death vs. CCI; Death vs. RR 

C20:2-carnitine 9.04 5.29E-04 2.82E-03 Death vs. CCI; Death vs. RR 

C18:1-carnitine 8.97 5.53E-04 2.82E-03 Death vs. CCI; Death vs. RR 

C18:2-carnitine 8.32 8.79E-04 4.08E-03 Death vs. CCI; Death vs. RR 

C20:1-carnitine 7.93 1.17E-03 4.97E-03 Death vs. CCI; Death vs. RR 

Acetylcarnitine (C2, NMR) 7.81 1.28E-03 5.02E-03 Death vs. RR 

Stearoylcarnitine (C18) 7.06 2.23E-03 8.13E-03 Death vs. CCI; Death vs. RR 

C20:3-carnitine 6.62 3.11E-03 1.06E-02 Death vs. CCI; Death vs. RR 

Proline 6.41 3.66E-03 1.17E-02 CCI vs. RR; Death vs. RR 

C10:1-carnitine 5.68 6.48E-03 1.94E-02 Death vs. CCI; Death vs. RR 

Octanoylcarnitine (C8) 5.45 7.80E-03 2.03E-02 Death vs. CCI; Death vs. RR 

Glycine 5.43 7.90E-03 2.03E-02 CCI vs. RR; Death vs. RR 

C20-carnitine 5.42 7.95E-03 2.03E-02 Death vs. CCI; Death vs. RR 

Propanoylcarnitine (C3) 5.05 1.07E-02 2.60E-02 Death vs. RR 

Glutamine 4.61 1.53E-02 3.55E-02 CCI vs. RR; Death vs. RR 

Methionine 4.32 1.95E-02 4.32E-02 CCI vs. RR; Death vs. RR 

C20:4-carnitine 4.11 2.32E-02 4.93E-02 Death vs. CCI 

L-Carnitine (LC-MS) 4.03 2.48E-02 5.06E-02 NA 

Valerylcarnitine (C5) 3.76 3.13E-02 6.14E-02 NA 

L-carnitine (NMR) 3.46 4.05E-02 7.65E-02 NA 

Betaine 3.25 4.83E-02 8.81E-02 NA 

Propylene Glycol 3.09 5.56E-02 9.77E-02 NA 

Alanine 2.94 6.36E-02 1.08E-01 NA 

Citrate 2.78 7.31E-02 1.20E-01 NA 

3-Hydoxybutyrate 2.55 8.98E-02 1.43E-01 NA 

Tyrosine 2.45 9.80E-02 1.52E-01 NA 

Phenylalanine 2.34 1.08E-01 1.63E-01 NA 
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Choline 2.05 1.42E-01 2.06E-01 NA 

Leucine 1.87 1.67E-01 2.37E-01 NA 

Histidine 1.82 1.75E-01 2.41E-01 NA 

2-Hydroxybutyrate 1.69 1.97E-01 2.58E-01 NA 

Butanoylcarnitine (C4) 1.65 2.03E-01 2.58E-01 NA 

Hexanoylcarnitine (C6) 1.65 2.04E-01 2.58E-01 NA 

Lysine 1.63 2.07E-01 2.58E-01 NA 

Valine 1.50 2.34E-01 2.84E-01 NA 

Lactate 1.38 2.62E-01 3.10E-01 NA 

C8:1-carnitine 1.05 3.60E-01 4.17E-01 NA 

Glucose 0.81 4.52E-01 5.12E-01 NA 

Isoleucine 0.77 4.70E-01 5.21E-01 NA 

Creatine 0.70 5.02E-01 5.45E-01 NA 

Pyruvate 0.60 5.53E-01 5.88E-01 NA 

Ornithine 0.25 7.78E-01 8.09E-01 NA 

2-Oxoisocaproate 0.12 8.89E-01 9.07E-01 NA 

Creatinine 0.07 9.32E-01 9.32E-01 NA 
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Appendix C – Supporting Information for Chapter 4 

 

C.1 Methods 

Patient selection: Detailed inclusion and exclusion criteria have been previously 

reported.1 Briefly, patients presenting with suspected or confirmed infection and meeting 

consensus criteria for septic shock including administration of continuous vasopressors 

despite adequate fluid resuscitation, an elevated lactate >2 mmol/L, and a SOFA score 

of at least 5 were eligible for inclusion. All patients enrolled in the clinical trial were 

included in the present analysis with the exception of 2 patients who withdrew consent 

following randomization and 12 that lacked a T0 sample (Figure S1). 

 

Blood sampling:  Following consent but prior to initiation of therapy, whole blood was 

drawn into serum separator tubes (SST®; Vacutainer, Becton Dickinson, Franklin 

Lakes, NJ) and was allowed to clot for at least 30 min at room temperature. A portion of 

whole blood was aliquoted, while the remainder was centrifuged to yield serum. All 

samples were then frozen at -80C within 60 minutes of the initial sample acquisition. 

Since blood samples were collected from study participants enrolled in a clinical trial, 

the collection time (T0) of the pre-treatment sample was at the time of enrollment. This 

was based on when the patient met the study’s inclusion criteria and was not anchored 

to the timing of ICU or hospital admission. This approach has been previously utilized 

by our group to yield samples appropriate for metabolomics analyses.2 At the 
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completion of the clinical trial, de-identified serum samples were shipped on dry ice to 

the University of Michigan (NMR Metabolomics Laboratory) for assay. The CaPS study 

was deemed “not regulated” by the University of Michigan’s institutional review board 

since only de-identified samples and data would be used (HUM00104311). 

 

Sample handling: Upon receipt, technical replicate frozen serum samples were 

transported on dry ice from the NMR Metabolomics Laboratory to the Michigan Regional 

Comprehensive Metabolomics Research Core. Samples were inventoried, assigned a 

unique identifier and stored (-80C) until the time of assay. In preparation for assay, 

samples were randomized and batched. Samples from a total of 236 of the 250 patients 

enrolled in the parent clinical trial were assayed; 40 from the dose-response phase of 

RACE, and 196 from the block randomization phase.1 Dose response samples were 

received, processed, and were assayed in advance and separately from the block 

randomization samples but the randomization schemes were the same for both and the 

resulting data were combined. For both metabolomics assays, each sample was 

assigned a random number and samples were ordered by this number for assay. A 

small volume (50µL) from each sample was reserved for assay of free hemoglobin.3 

The dose response samples were analyzed with Cayman Chemicals hemoglobin 

colorimetric assay (Ann Arbor, MI; catalog #: 700540), and block randomization 

samples were analyzed with Arbor Assays hemoglobin high sensitivity detection kit (Ann 

Arbor, MI; catalog #: K013-HX1). Sample handling was done in accordance with BRISQ 

guidelines.4 
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Measurement of Acylcarnitines: Analysis was performed consistent with our prior 

methods.5 Briefly, at the time of analysis, serum samples were thawed on ice and 

extraction solvent was prepared consisting of a 1:1:1 mixture of 

methanol:acetonitrile:acetone plus a 1:200 dilution of a stock mixture of stable-isotope 

labeled acylcarnitine standards dissolved according to manufacturer instructions (NSK-

B, Cambridge Isotope Laboratories).  Acylcarnitine species were then analyzed without 

derivatization by RPLC-MS/MS using an Agilent 1200 LC coupled to an Agilent 6410 

tandem quadrupole (Santa Clara, CA). A pooled sample generated by combining a 

small volume of all study samples was injected every 10th run and was used for intra- 

and inter-batch drift correction as described below. Absolute quantitation by isotope 

dilution mass spectrometry was performed for acylcarnitine species with exact-matching 

stable isotope internal standards (L-carnitine, C2, C3, C4, C5, C8, C14, C16) by 

multiplying the unlabeled / labeled peak area ratio by the known concentration of 

acylcarnitine in the extraction solvent, then adjusting for dilution of the original serum 

sample.  Other acylcarnitine species were limited to relative quantitation by peak area. 

 

Quantitative Nuclear Magnetic Resonance (NMR) metabolomics: Serum samples were 

prepared by methanol precipitation followed by ultrafiltration as previously described.6 

1H-NMR spectra were acquired at the University of Michigan’s Biochemical NMR Core 

Laboratory on a Varian (now Agilent, Inc., Santa Clara, CA) 11.74 Tesla (500 MHz) 

NMR spectrometer with a VNMRS console operated by host software VNMRJ 4.0 and 

equipped with a 5-mm Agilent “One-probe.” NMR spectra were recorded using 32 scans 

of the first increment of a 1 H,1 H-NOESY (commonly referred to as a 1D-NOESY or 
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METNOESY) pulse sequence. Spectra were acquired at a room temperature of 295.45 

± 0.3 K. The NMR pulse sequence was as follows: a 1 s recovery delay, a 990 ms 

saturation pulse of 80 Hz (gB1) induced field strength empirically centered on the water 

resonance, 2 calibrated 90° pulses, a mixing time (tmix) of 100 ms, a final 90° pulse, 

and an acquisition period of 4 s. Optimal excitation pulse widths were obtained by 

utilizing an array of pulse lengths as previously described.7 Individuals, blinded to the 

treatment designation of each sample, analyzed NMR spectra (e.g., carnitine treatment) 

using Chenomx NMR Suite 8.2 (Edmonton, AB, Canada) software. The Processor 

module was used to phase shift, baseline correct and excise water from each spectrum. 

Compounds were identified and relatively quantified using the Profiler module of the 

software, which allows metabolites to be quantified relative to the area of the internal 

standard (formate, 50µL of 9.64 mM) added to each sample. Before statistical analysis, 

data were scaled to correct for differences in initial sample volumes. Only metabolites 

detected in at least 70% of all samples were considered in the analysis and some 

samples were excluded because of technical issues (Figure S1). 

 

Preparation of metabolomics data for statistical analyses: Patients with any 

metabolomic data were included in the analyses. Assayed acylcarnitines were detected 

in all samples. Because the samples for the acylcarnitine assay were batched and 

assayed by LC-MS, we assessed and corrected for batch related differences and within-

batch intensity using custom-written scripts operating in R.  These scripts use local 

estimate of scatterplot smoothing (LOESS) to correct for within- and between-batch 

intensity drift in each acylcarnitine species individually, based on peak intensity 
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measured in a pooled QC sample run every 10th sample through all batches.8,9  For the 

NMR data set, in preparation for statistical analysis and since concentration values for 

metabolites that are typically detected can be being missing in the final data set, 

missing data were replaced with half of the minimum concentration of the respective 

metabolite across all samples. All detected metabolites and their Kyoto Encyclopedia of 

Genes and Genomes (KEGG) identification numbers are shown in Table S1. The 

metabolomics data sets, subject demographics and R code used in the manuscript’s 

data analyses can be found at: https://github.com/UMichNMR-Metabolomics. All 

analytical protocols will be made available upon request. 

 

C.2 Results 

The acquisition of the T0 blood sample occurred at a mean (+SD) of 11(+7) hours from 

the time of meeting inclusion criteria. 

Serum free hemoglobin: We assayed all samples for free hemoglobin since we have 

previously shown that, in serum samples, it may contribute to a distortion in the 

concentration of certain metabolites particularly if the hemoglobin concentration is 

greater than 0.1 g/dL.3 All but one (0.2g/dL) of the assayed samples had a free 

hemoglobin concentration below 0.1 g/dL (data not shown).  
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C.3 Figures  

 

Figure S-2. Consort diagram of patient samples for metabolomics analysis. 

Consort diagram of patient samples for metabolomics analysis. A total of 250 patients were enrolled and 
randomized in the Rapid Administration of Carnitine in Sepsis (RACE) trial 1. Twelve participants did not 
have a T0 blood sample because the sample was not collected. Of the total of 238 samples that were 
received for metabolomics analysis, two were excluded from analysis because of withdrawal of consent. 
Of the 236 samples that were submitted for NMR analysis, there were 8 that had insufficient volume or 
did not extract properly. The final data set are represented by 228 samples with NMR metabolomics data 
and 236 with acylcarnitine data.   
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Figure S-3. Cumulative fraction of deaths of the patients who died in the Rapid Administration of 
Carnitine in Sepsis (RACE) clinical trial. 

The dotted line corresponds to the cumulative fraction of deaths at 28 days (0.78) and the solid line 
corresponds to the cumulative fraction of deaths at 90 days (0.91). 
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Figure S-4. Representative proton (1H) nuclear magnetic resonance (NMR) spectra. 

A) a serum sample from a patient with “high” acetylcarnitine (C2) concentration (> 35 µM) and (B) a “low” 
acetylcarnitine (C2) concentration (< 35µM). Formate was added to each sample as the internal standard 
(I.S.). The compounds (glucose, L-carnitine and acetylcarnitine) are the most abundant in the spectral 
region shown in the insets. Methanol is introduced into samples via the precipitation process. 
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Figure S-5. Representative liquid chromatography-mass spectroscopy chromatogram of 
acylcarnitines in a pooled plasma sample. 

The chromatogram was generated by overlaying multiple reaction monitoring transitions for all detected 
acylcarnitine species; major species were identified by peak labels in the chromatogram. Isotopically-
labeled internal standard peaks are omitted from this chromatogram for clarity, but essentially co-eluted 
with the matching unlabeled acylcarnitine species. 
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Figure S-6. Partial Least Squares-Discriminant Analysis (PLS-DA) does not discriminate detected 
metabolites stratified by treatment. 

PLS-DA (and associated multivariate t distribution) of serum acylcarnitines (A) and NMR-detected 
metabolites (B) from the 236 and 228 patients, respectively, of the 250 patients enrolled in the Rapid 
Administration of Carnitine (RACE) in Sepsis clinical trial.1 The results highlight the metabolic 
heterogeneity of the cohort and demonstrate that there were no detectable metabolic differences across 
the treatment groups. 
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Figure S-7. Partial least squares-discriminant analysis (PLS-DA) does not differentiate metabolites 
stratified by sex. 

PLS-DA (and associated multivariate t distribution) of serum acylcarnitines (A) and the NMR-detected 
metabolites (B) from the 236 (102, female) and 228 (100, female) patients, respectively, of the 250 
patients enrolled in the Rapid Administration of Carnitine (RACE) in Sepsis clinical trial.1 
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Figure S-8. Pre-treatment valine concentration may be predictive of an L-carnitine treatment 
mortality benefit in patients with septic shock. 

We present four scenarios to illustrate how different threshold concentrations of valine, a branched chain 
amino acid, would have impacted the outcome of the Rapid Administration of Carnitine (RACE) in Sepsis 
clinical trial in patients treated with either L-carnitine (18 g) or placebo. In scenario 1, no threshold 
concentration is used so the entire RACE cohort (n=228) is eligible. The sample size of 165 patients 
represents those that received either L-carnitine (18 g; n=96) or placebo (n=69). The hazard ratio is not 
significant, and consistent with the parent trial, the Kaplan-Meier curve shows no mortality benefit of L-
carnitine (p=0.59). In scenario 2, a valine threshold concentration of >60µM is used. Eighty-seven percent 
(n=198) of the RACE cohort met this criterion and of these, 146 patients received either L-carnitine (18 g) 
or placebo. The hazard ratio is not improved, and the Kaplan-Meier curve shows no mortality benefit of L-
carnitine (p=0.41). In scenario 3, valine threshold concentration of >75µM is used. Seventy percent 
(n=160) of the RACE cohort met this criterion and of these, 119 patients received either L-carnitine (18 g) 
or placebo. The hazard ratio is modestly improved but is not significant; the Kaplan-Meier curve shows no 
mortality benefit of L-carnitine (p=0.11). Finally, scenario 4 uses the valine concentration associated with 
the maximum Z-statistic (see Table S4), >88µM. Fifty-two percent (n=119) of the RACE cohort met this 
criterion and of these, 85 patients received either L-carnitine (18 g) or placebo. The hazard ratio is 
significant, and the Kaplan-Meier curve shows a mortality benefit of L-carnitine (p=0.04). Kaplan-Meier 
curves were interpreted using log-rank (Mantel-Cox) tests; hazard ratios were calculated using Mantel-
Haenszel. The number of patients at risk at each time point and the number of censored subjects, which 
was due to the end of the study (1 year), can be found here: https://doi.org/10.7302/vvqp-ma61.  

 

 
 

https://doi.org/10.7302/vvqp-ma61
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Figure S-9. Illustration of sepsis energy alterations and proposed mechanism of L-carnitine 
treatment benefit. 

In the mitochondria, sepsis induced altered flux through -oxidation and TCA cycle energy pathways, 
including a possible TCA cycle “stall”, may lead to increased levels of acetyl-CoA. These excess acetyl-
groups are removed via carnitine acetyl-transferase (CAT) mediated metabolism of carnitine converting it 
to acetylcarnitine (C2). In the setting of sepsis, this could be a plausible mechanism that explains the 
broad range of extracellular (serum) acetylcarnitine (C2) concentrations in sepsis patients. In patients with 
higher acetylcarnitine (C2), the mortality benefit of supplemental L-carnitine may be driven by it serving as 
a “sink” for excess acetyl-CoA/acetyl-groups. 
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C.4 Tables 

Table S-5. Acylcarnitines and 1H-NMR Detected and Quantified Metabolites 

Acylcarnitines 1H-NMR Metabolites 

Compound Name KEGG ID+ Compound Name KEGG ID+ 

L-Carnitine C00318 2-Hydroxybutyrate C05984 

C2-carnitine C02571 2-Oxoisocaproate C00233 

C3-carnitine C03017 3-Hydroxybutyrate C01089 

C4-carnitine C02862 Acetylcarnitine (C2) C02571 

C5-carnitine HMDB0013128* Alanine C00041 

C6-carnitine HMDB0000756* Betaine C00719 

C8:1-carnitine HMDB0013324* Carnitine C00318 

C8-carnitine C02838 Choline C00114 

C10:1-carnitine HMDB0240585* Citrate C00158 

C10-carnitine C03299 Creatine C00300 

C12:1-carnitine HMDB0013326* Creatinine C00791 

C12-carnitine HMDB0002250* Glucose C00221 

C14:1-carnitine HMDB0002014* Glutamine C00064 

C14-carnitine HMDB0005066* Glycine C00037 

C16:1-carnitine HMDB0006317* Histidine C00135 

C20:4-carnitine HMDB0006455* Isoleucine C00407 

C18:2-carnitine HMDB0006469* Lactate C00186 

C20:3-carnitine N/A Leucine C00123 

C16-carnitine C02990 Lysine C00047 

C18:1-carnitine HMDB0006464* Methionine C00073 

C20:2-carnitine N/A Ornithine C00077 

C18-carnitine HMDB0000848* Phenylalanine C00079 

C20:1-carnitine N/A Proline C00148 

C20-carnitine HMDB0006455* Propylene glycol C00583 

  Pyruvate C00022 

  Tyrosine C00082 

  Valine C00183 

 
+Kyoto Encyclopedia of Genes and Genomes (KEGG) identification number 
*Human metabolomics database (HMDB) identification number; KEGG ID not available 
N/A = neither a KEGG nor HMDB ID is available 
Bolded acylcarnitines were quantified using an exact-matching stable isotope internal standard; all others 
were relatively quantified based on peak-area. #NMR metabolites were quantified from the addition of a 
known concentration of an internal standard (formate) that was added to each sample. 
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Table S-6. Logistic regression base model for the prediction of 90-day mortality (all metabolites) 
ranked by ascending Bonferroni-corrected p value.  

 Base model* 

Metabolite predictor Metabolite 

Coefficient (βM) 
βM 

Standard  
Error 

βM 
P value 

(Bonferroni)  

Acetylcarnitine (C2)§ 0.85 0.16 <0.0001 

C18:1-carnitine§ 0.84 0.17 <0.0001 

Acetylcarnitine (C2)ll 0.76 0.16 <0.0001 

C20:1-carnitine§ 0.74 0.16 <0.0001 

Tyrosine ll 0.68 0.16 0.0002 

Betaine ll 0.68 0.16 0.0002 

Propionylcarnitine 

(C3)§ 
0.64 0.15 

0.0002 

Propylene glycolll 0.66 0.16 0.0003 

C16:1-carnitine§ 0.60 0.15 0.001 

Lysinell 0.58 0.15 0.002 

Glycinell 0.56 0.15 0.003 

C20-carnitine§ 0.56 0.15 0.004 

Glutaminell 0.55 0.15 0.006 

C14-carnitine§ 0.53 0.15 0.007 

C16-carnitine§ 0.52 0.15 0.01 

Methioninell 0.51 0.15 0.01 

Lactatell 0.51 0.15 0.02 

C12:1-carnitine§ 0.51 0.15 0.02 

C4-carnitine§ 0.48 0.14 0.02 

C20:2-carnitine§ 0.49 0.15 0.03 

Prolinell 0.47 0.14 0.03 

C8-carnitine§ 0.46 0.14 0.04 

Alaninell 0.46 0.14 0.05 

C18-carnitine§ 0.44 0.15 0.09 

Creatininell 0.43 0.14 0.09 

C10-carnitine§ 0.41 0.14 0.13 

C5-carnitine§ 0.41 0.14 0.14 

Phenylalaninell 0.39 0.15 0.29 

Citratell 0.36 0.14 0.45 

Carnitinell 0.35 0.14 0.52 

Histidinell 0.35 0.14 0.52 

C10:1-carnitine§ 0.34 0.14 0.58 

C6-carnitine§ 0.34 0.14 0.59 

C12-carnitine§ 0.31 0.14 1.00 
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*The base model is described as logit(p) = B0 + BD * Dose + BM * Metabolitei, where p is the probability of 
mortality in 90 days 
§as measured by LC-MS 
llas measured by 1H-NMR 
 
  

C18:2-carnitine§ 0.30 0.14 1.00 

Ornithinell 0.29 0.14 1.00 

C14:1-carnitine§ 0.29 0.14 1.00 

Creatinell 0.25 0.14 1.00 

Carnitine§ 0.25 0.14 1.00 

Pyruvatell 0.23 0.14 1.00 

Leucinell 0.21 0.14 1.00 

Cholinell 0.20 0.14 1.00 

Valinell 0.18 0.14 1.00 

2-hydroxybutyratell 0.18 0.14 1.00 

C20:3-carnitine§ 0.17 0.14 1.00 

C8:1-carnitine§ 0.16 0.13 1.00 

C20:4-carnitine§ 0.11 0.14 1.00 

3-hydroxybutyratell 0.10 0.14 1.00 

Isoleucinell 0.08 0.13 1.00 

Glucosell 0.07 0.14 1.00 

Oxoisocaproatell -0.06 0.14 1.00 
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Table S-7. Logistic regression interaction model for the prediction of 90-day mortality (all 
metabolites) ranked by ascending p value. 

 Interaction model† 

Metabolite predictor Interaction 

Coefficient (βM*D) 

βM*D 

Standard Error 

βM*D 

P value‡ (Raw) 

C10:1-carnitine§ -1.22 0.37 <0.0001 

C8:1-carnitine§ -1.07 0.35 0.001 

C8-carnitine§ -0.97 0.36 0.01 

C10-carnitine§ -0.97 0.36 0.01 

C18:2-carnitine§ -0.96 0.35 0.01 

C14:1-carnitine§ -0.90 0.34 0.01 

C12-carnitine§ -0.77 0.33 0.02 

C16:1-carnitine§ -0.84 0.38 0.02 

Cholinell -0.74 0.33 0.02 

C16-carnitine§ -0.82 0.38 0.02 

Oxoisocaproatell -0.74 0.34 0.03 

C5-carnitine§ -0.70 0.36 0.04 

Valinell -0.69 0.35 0.05 

Acetylcarnitine (C2)§ -0.81 0.42 0.05 

C12:1-carnitine§ -0.70 0.37 0.06 

Isoleucinell -0.57 0.31 0.06 

Carnitinell -0.64 0.36 0.07 

Glycinell -0.62 0.35 0.08 

C14-carnitine§ -0.56 0.35 0.10 

C18-carnitine§ -0.56 0.36 0.11 

Prolinell -0.52 0.34 0.12 

Acetylcarnitine (C2)ll -0.57 0.40 0.14 

C6-carnitine§ -0.47 0.33 0.14 

Lactatell 0.52 0.37 0.15 

Propylene glycolll -0.54 0.39 0.16 

Citratell -0.47 0.34 0.16 

Leucinell -0.45 0.34 0.17 

Carnitine§ -0.44 0.33 0.18 

C20:4-carnitine§ 0.44 0.44 0.21 

C20:3-carnitine§ -0.39 0.32 0.22 

Methioninell -0.40 0.34 0.23 

Propionylcarnitine (C3)§ -0.42 0.36 0.24 

Pyruvatell 0.36 0.33 0.28 

C20:2-carnitine§ -0.37 0.36 0.30 

2-hydroxybutyratell -0.30 0.31 0.34 

3-hydroxybutyratell -0.30 0.32 0.34 
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C20-carnitine§ -0.27 0.38 0.47 

Phenylalaninell -0.23 0.35 0.51 

Creatinell -0.18 0.33 0.58 

Tyrosine ll 0.16 0.39 0.68 

Ornithinell 0.13 0.32 0.69 

Alaninell -0.13 0.35 0.71 

Creatininell -0.10 0.33 0.75 

C20:1-carnitine§ -0.10 0.39 0.80 

C18:1-carnitine§ -0.10 0.39 0.80 

Glucosell 0.06 0.33 0.86 

C4-carnitine§ -0.03 0.34 0.92 

Histidinell 0.03 0.34 0.93 

Glutaminell -0.03 0.37 0.94 

Betaine ll 0.02 0.38 0.96 

Lysinell 0.01 0.35 0.97 

 
†The interaction model is described as logit(p) = B0 + BD * Dose + BM * Metabolitei + BMD * Metabolitei * 
Dose  
§as measured by LC-MS 
llas measured by 1H-NMR 
#Raw p values are not adjusted for multiple comparisons. 
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Table S-8. Logistic regression models for the prediction of 90-day mortality adjusted for age and 
Sequential Organ Failure Assessment (SOFA) Score 

 Base model* Interaction model† 

Metabolite predictor Metabolite 

Coefficient 

(βM) 

βM 

Standard  

Error 

βM 

P value‡ 

(Bonferonni)  

Interaction 

Coefficient 

(βM*D) 

βM*D 

Standard  

Error 

βM*D 

P value‡ 

(Raw) 

C18:1-carnitine§ 0.73 0.18 0.0004 -0.02 0.41 0.96 

Acetylcarnitine (C2) § 0.70 0.17 0.001 -0.82 0.43 0.05 

C20:1-carnitine § 0.67 0.18 0.002 -0.05 0.41 0.90 

Betainell 0.62 0.18 0.009 -0.12 0.41 0.76 

Acetylcarnitine (C2)§ 0.57 0.17 0.02 -0.46 0.41 0.25 

Tyrosine ll 0.55 0.17 0.02 0.10 0.40 0.79 

C16-carnitine§ 0.53 0.16 0.03 -0.85 0.41 0.03 

C16:1-carnitine§ 0.53 0.16 0.03 -0.90 0.41 0.02 

C20-carnitine§ 0.53 0.16 0.03 -0.17 0.40 0.67 

Propionylcarnitine (C3)§ 0.49 0.16 0.06 -0.35 0.38 0.35 

C18-carnitine§ 0.46 0.16 0.11 -0.49 0.39 0.20 

Lysinell 0.47 0.16 0.12 0.00 0.37 0.99 

C20:2-carnitine§ 0.45 0.16 0.16 -0.39 0.38 0.29 

Glycinell 0.47 0.16 0.16 -0.69 0.38 0.07 

Glutaminell 0.47 0.17 0.17 -0.12 0.40 0.76 

C14-carnitine§ 0.44 0.15 0.18 -0.57 0.37 0.12 

C12:1-carnitine§ 0.44 0.16 0.25 -0.83 0.40 0.03 

Prolinell 0.41 0.16 0.36 -0.57 0.37 0.11 

Propylene glycolll 0.44 0.17 0.36 -0.39 0.40 0.33 

Methioninell 0.40 0.16 0.46 -0.39 0.36 0.26 

Creatininell 0.35 0.15 0.92 -0.03 0.35 0.94 

Lactatell 0.37 0.16 0.96 0.47 0.39 0.22 

C10--carnitine§ 0.34 0.15 0.98 -0.94 0.37 0.01 

Carnitine§ 0.08 0.15 1.00 -0.35 0.36 0.32 

C4-carnitine§ 0.31 0.15 1.00 0.16 0.36 0.66 

C5-carnitine§ 0.24 0.15 1.00 -0.57 0.38 0.12 

C6-carnitine § 0.18 0.15 1.00 -0.37 0.34 0.28 

C8:1-carnitine§ 0.09 0.14 1.00 -1.06 0.37 0.003 

C8--carnitine§ 0.31 0.15 1.00 -0.87 0.37 0.02 

C10:1-carnitine§ 0.26 0.15 1.00 -1.23 0.39 0.001 

C12-carnitine§ 0.30 0.15 1.00 -0.88 0.37 0.01 

C14:1-carnitine§ 0.27 0.15 1.00 -0.98 0.37 0.01 

C20:4-carnitine§ -0.06 0.16 1.00 0.86 0.78 0.05 

C18:2-carnitine§ 0.28 0.15 1.00 -0.93 0.38 0.01 

C20:3-carnitine§ 0.20 0.15 1.00 -0.34 0.34 0.33 
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*The base model is described as logit(p) = B0 + BD * Dose + BM * Metabolitei + BSOFA * SOFA + BAge * Age 
where p is the probability of mortality in 90 days 
†The interaction model is described as logit(p) = B0 + BD * Dose + BM * Metabolitei + BMD * Metabolitei * 
Dose + BSOFA * SOFA + BAge * Age 
‡ p-values were calculated upon comparison to the appropriate nested model using the likelihood ratio 
test; raw p values are not adjusted for multiple comparisons.  
§as measured by LC-MS 
llas measured by 1H-NMR 
 
 

  

2-Hydroxybutyratell 0.11 0.15 1.00 -0.19 0.33 0.56 

Oxoisocaproatell 0.00 0.15 1.00 -0.42 0.38 0.27 

3-Hydoxybutyratell 0.11 0.15 1.00 -0.29 0.34 0.40 

Alaninell 0.35 0.16 1.00 -0.15 0.37 0.69 

Carnitinell 0.20 0.15 1.00 -0.61 0.38 0.10 

Cholinell 0.12 0.15 1.00 -0.68 0.35 0.05 

Citratell 0.28 0.16 1.00 -0.47 0.37 0.21 

Creatinell 0.10 0.15 1.00 -0.24 0.36 0.50 

Glucosell 0.04 0.15 1.00 0.04 0.35 0.91 

Histidinell 0.24 0.15 1.00 -0.14 0.36 0.70 

Isoleucinell 0.09 0.15 1.00 -0.45 0.33 0.17 

Leucinell 0.23 0.15 1.00 -0.36 0.36 0.32 

Ornithinell 0.29 0.15 1.00 0.24 0.34 0.49 

Phenylalaninell 0.34 0.16 1.00 -0.10 0.38 0.80 

Pyruvatell 0.13 0.15 1.00 0.41 0.35 0.24 

Valinell 0.21 0.15 1.00 -0.52 0.38 0.17 
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Table S-9. All Metabolites Ranked by Descending Maximum Z-statistic  

Metabolite Predictor Maximum Z–Statistic 95% CI 
C10:1-carnitine 3.67 2.05–5.29 
C8:1-carnitine 3.44 2.01–4.87 
C10-carnitine 3.06 1.44–4.67 
Acetylcarnitine (C2)+ 3.01 1.93–4.09 
C8-carnitine 2.98 1.24–4.72 
C5-carnitine 2.74 1.76–3.73 
Isoleucine 2.71 0.91–4.50 
Valine 2.61 0.79–4.43 
C18-carnitine 2.53 0.88–4.18 
C12-carnitine 2.52 0.74–4.30 
C20:4-carnitine 2.48 0.57–4.40 
Leucine 2.46 0.59–4.32 
C18:2-carnitine 2.41 1.18–3.64 
C14:1-carnitine 2.40 1.2–3.60 
C16-carnitine 2.39 0.55–4.23 
C16:1-carnitine 2.38 0.52–4.23 
L-Carnitine^ 2.32 1.20–3.45 
L-Carnitine+ 2.29 0.71–3.88 
Glycine 2.29 0.39–4.18 
Acetylcarnitine (C2)^ 2.28 0.76–3.81 
Propylene glycol 2.24 0.70–3.79 
C12:1-carnitine 2.20 0.28–4.12 
Alanine 2.18 0.28–4.08 
Methionine 2.14 0.24–4.03 
C14-carnitine 2.13 0.65–3.62 
Phenylalanine 2.11 0.24–3.99 
C20:3-carnitine 2.05 0.15–3.95 
Creatine 2.04 0.21–3.87 
C6-carnitine 1.97 0.83–3.11 
Proline 1.92 -0.02–3.86 
Citrate 1.87 -0.06–3.81 
C20-carnitine 1.86 -0.06–3.78 
3-Hydroxybutyrate 1.83 -0.11–3.76 
2-Hydroxybutyrate 1.82 0.04–3.61 
C20:2-carnitine 1.79 -0.12–3.70 
C3-carnitine 1.73 0.05–3.41 
Choline 1.71 -0.24–3.67 
Glutamine 1.69 -0.25–3.64 
2-Oxoisocaproate 1.68 -0.28–3.63 
C18:1-carnitine 1.60 -0.25–3.46 
C20:1-carnitine 1.59 -0.33–3.51 
C4-carnitine 1.53 -0.33–3.40 
Histidine 1.43 -0.53–3.38 
Lysine 1.40 -0.56–3.35 
Tyrosine 1.36 -0.59–3.31 
Creatinine 1.29 -0.67–3.24 
Ornithine 1.24 -0.70–3.18 
Lactate 1.15 -0.81–3.10 
Betaine 1.11 -0.85–3.07 
Glucose 1.08 -0.84–3.00 
Pyruvate 0.82 -1.15–2.79 

 
Bolded metabolite predictors are significant in the logistic regression interaction model; see Table 3 and 4 
in the main manuscript 
+as measured by LC-MS 
^as measured by 1H-NMR 
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Appendix D – Supporting Information for Chapter 5 

 

A.1 Figures 

 

Figure S-10. Concentrations of cystatin C versus creatinine in baseline serum.  

Residual serum was available to measure cystatin C in 126 (97%) of the patients considered for 
population pharmacokinetic analysis. This plot shows the concentrations of cystatin C versus clinical 
measurements of serum creatinine. For patients with missing observations, cystatin C was imputed from 
a simple linear regression model (shown as the solid, black line) using patient sex, age, weight, and 
serum creatinine. 
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Figure S-11. Probability of individual weighted residual (IWRES) for the top performing population 
pharmacokinetic model of high-dose L-carnitine.  
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Figure S-12. Scatter plot of observed vs. predicted concentrations for L-carnitine from the top 
performing population pharmacokinetic model.  


