
Quantum Ergodicity on Bruhat-Tits Buildings

by

Carsten Peterson

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mathematics)

in The University of Michigan
2023

Doctoral Committee:

Professor Ralf J. Spatzier, Chair
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ABSTRACT

We study eigenfunctions of the spherical Hecke algebra acting on L2(Γn\G/K) where

G = PGL(3, F ) with F a non-archimedean local field of characteristic zero, K = PGL(3,O)

with O the ring of integers of F , and (Γn) is a sequence of cocompact torsionfree lattices.

We prove a form of equidistribution on average for eigenfunctions whose spectral parameters

lie in the tempered spectrum when the associated sequence of quotients of the Bruhat-Tits

building Benjamini-Schramm converges to the building itself.
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CHAPTER I

Introduction

I.1: Quantum ergodicity in the large eigenvalue limit

Originally quantum ergodicity concerned eigenfunctions of the Laplacian on a closed Rie-

mannian manifold (M, g) with ergodic geodesic flow. The geodesic flow being ergodic implies

that a “classical particle” moving along a generic geodesic is equally likely to end up every-

where on M in the long run. On the other hand, a “quantum particle” on M with wave

function ψ has probability measure |ψ|2dvolg of being “observed” in a given region of M . If

the geodesic flow is ergodic, we expect the quantum particle is equally likely to be observed

everywhere.

Through a procedure known as quantization, one is led to studying the Laplacian on M

in place of the geodesic flow. The Laplacian has an orthonormal basis of L2-eigenfunctions

{ψj}. The associated eigenvalues 0 = λ1 ≤ λ2 ≤ ... are all non-negative and go to infinity

as j goes to infinity. Šnirelman [Sni74], Zelditch [Zel87], and Colin de Verdière [CdV85]

proved the quantum ergodicity theorem which says that for a density-one subsequence of

the eigenfunctions (ψjk), the associated measures |ψjk |2dvolg weak-* converge to dvolg
vol(M)

, the

normalized volume measure. In fact this statement is a consequence of the following:

Theorem I.1 (Quantum ergodicity theorem [Sni74, Zel87, CdV85]). Suppose (M, g) is a

closed Riemannian manifold with ergodic geodesic flow. Then for every smooth test function

a ∈ C∞(M),

lim
λ→∞

1

N(λ)

∑
λj≤λ

∣∣∣⟨ψj, aψj⟩ − 1

vol(M)

∫
M

a dvolg

∣∣∣2 = 0, (I.1.1)

where N(λ) = #{i : λi ≤ λ}.

In a certain sense letting the eigenvalue go to infinity is analogous to letting Planck’s constant
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go to zero, so we expect to recover “classical mechanical” results (e.g. equidistribution of

generic orbits when the geodesic flow is ergodic) in such a limit.

Remark I.2. In fact Theorem I.1 can be strengthened to replacing the summands in (I.1.1)

by ∣∣∣⟨ψj, T ψj⟩ − ∫
S∗M

σ0(T )dL
∣∣∣2, (I.1.2)

where T is an order 0 pseudodifferential operator on M , S∗M is the unit (co)tangent bun-

dle of M (which is the space on which the geodesic flow occurs and is ergodic), σ0(T ) is

the principal symbol of T (which is a function on S∗M), and dL is the Louiville measure

(normalized so that the total measure of S∗M is 1).

Remark I.3. Rudnick-Sarnak [RS94] conjectured quantum unique ergodicity, namely that, if

M has negative curvature, then the only weak-* limit of the eigenfunction measures (or their

microlocal lifts as in (I.1.2)) is the normalized volume measure on M (or the Liouville measure

on S∗M). Lindenstrauss [Lin06] proved quantum unique ergodicity for joint eigenfunctions

of the Laplacian and the Hecke operators on compact arithmetic hyperbolic surfaces (see

also [Lin01, Sou10, BL14]).

I.2: Quantum ergodicity in the Benjamini-Schramm limit

As opposed to the original quantum ergodicity theorem, which concerns eigenfunctions

of the Laplacian on a fixed manifold, more recently many authors have considered quantum

ergodicity in the Benjamini-Schramm limit, which concerns eigenfunctions of Laplacian-like

operators for sequences of spaces “converging” to their common universal cover. More specif-

ically, we say that a sequence of spaces Benjamini-Schramm converges to their common

(contractible) universal cover if asymptotically almost every point has arbitrarily large in-

jectivity radius [BS01]. Benjamini-Schramm convergence may be viewed as a probabilistic

version of Gromov-Hausdorff convergence of metric spaces.

Many authors have studied the relationship between Benjamini-Schramm convergence

and the distribution of eigenvalues (for example, Kesten [Kes59] and Mckay [McK81] for

regular graphs, or the more recently Abert-Bergeron-Biringer-Gelander-Nikolov-Raimbault-

Samet [ABB+17] for locally symmetric spaces). Such results are often closely related to

representation theory in which case they often appear in the literature as limit multiplicity

theorems. Quantum ergodicity in the Benjamini-Schramm limit may be seen as an extension
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of such questions to eigenfunctions; on the other hand it arose out of attempts to extend

quantum ergodicity ideas to different contexts.

One such precedent for quantum ergodicity in the Benjamini-Schramm limit is modular

forms on congruence coverings of the modular surface. Modular forms have two natural

parameters: weight and level. Weight is roughly analogous to Laplacian eigenvalue and level

relates to the congruence covering. Holowinsky and Soundararajan [HS10] proved quantum

unique ergodicity for fixed level and letting weight go to infinity. Fixing weight and letting

level go to infinity results in a sequence of hyperbolic surfaces which Benjamini-Schramm

converge to the hyperbolic plane as proven by Fraczyk [Fra21], and quantum unique ergod-

icity in this context was proven by Nelson [Nel11] and Nelson-Pitale-Saha [NPS14]. These

latter results are referred to in the literature as quantum ergodicity in the level aspect, and

consequently this terminology is also used in place of quantum ergodicity in the Benjamini-

Schramm limit.

Another motivating example of quantum ergodicity in the Benjamini-Schramm limit

comes from the work of Anantharaman-Le Masson [ALM15] who proved that for sequences of

regular graphs Benjamini-Schramm converging to the infinite regular tree, the eigenfunctions

of the adjacency operator are, on average, equidistributed in a weak sense. In particular their

results include the following:

Theorem I.4 (Quantum ergodicity on large regular graphs [ALM15]; see also [BLML16,

Ana17, AS19]). Suppose (Gn) is a sequence of (q + 1)-regular graphs which Benjamini-

Schramm converge to the (q + 1)-regular tree. Suppose also that there is a uniform spectral

gap for the adjacency operator, namely all non-trivial eigenvalues are uniformly bounded

away from ±(q+ 1). Let an be a function on the vertices of Gn such that ||an||∞ ≤ 1, and let

card(Gn) denote the number of vertices of Gn. Let I be a closed subinterval of [−2
√
q, 2

√
q]

with non-empty interior. Let ψ
(n)
1 , . . . , ψ

(n)
card(Gn)

be an orthonormal basis of eigenfunctions of

the adjacency operator on Gn with associated eigenvalues λ
(n)
1 , . . . , λ

(n)
card(Gn)

. Then

lim
n→∞

1

N(I,Gn)

∑
ψ
(n)
j :λ

(n)
j ∈I

∣∣∣⟨ψ(n)
j , anψ

(n)
j ⟩ − 1

card(Gn)

∑
vertices v∈Gn

an(v)
∣∣∣2 = 0, (I.2.1)

where N(I,Gn) = #{j : λ
(n)
j ∈ I}.

Le Masson-Sahlsten [LMS17] noted the similarities between quantum ergodicity in the

level aspect for modular forms and quantum ergodicity on large regular graphs, and they

proved that for sequences of compact hyperbolic surfaces which Benjamini-Schramm con-
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verge to the hyperbolic plane, eigenfunctions of the Laplacian with eigenvalue in a fixed

compact subinterval of [1/4,∞) are, on average, equidistributed in a weak sense. Parts of

their technique were adapted from that of Brooks-Le Masson-Lindenstrauss [BLML16] who

reproved Theorem I.4. This technique was further adapted by Abert-Bergeron-Le Masson

[ABLM18] to prove analogous results for sequences of compact rank one locally symmetric

spaces converging to the their common universal cover; these authors also connect the orig-

inal quantum ergodicity theorem (Theorem I.1) with quantum ergodicity in the Benjamini-

Schramm limit. More recently Le Masson and Sahlsten [LMS20] have further adapted the

technique to handle finite-volume non-compact hyperbolic surfaces.

I.3: Quantum ergodicity in higher rank

Much of the research in quantum ergodicity has been focused on the case of hyperbolic

surfaces. Such manifolds are very special: their universal cover is a symmetric space. More

precisely, the hyperbolic plane H may be realized as SL(2,R)/SO(2), and each hyperbolic

surface X may be realized as Γ\SL(2,R)/SO(2) for some discrete subgroup Γ (which must

be a cocompact lattice in case X is compact). Furthermore, the geodesic flow on the unit

tangent bundle of X may be identified with the right action of the subgroup
(
et/2 0
0 e−t/2

)
on

Γ\SL(2,R)/{±I}.

Now suppose G is a non-compact semisimple Lie group with Lie algebra g. Using a Cartan

involution, we may write g = k⊕ p where K = exp(k) is a maximal compact subgroup. Let

a ⊂ p be a maximal toral subalgebra, and let A = exp(a). Then G/K has a natural

G-invariant metric with respect to which it is a contractible manifold with non-positive

curvature; such spaces are called symmetric spaces of non-compact type, and K is clearly

the stabilizer of the point 1K. The orbit of 1K under A is a flat subspace; it is an example

of a maximal flat in G/K.

Let Γ < G be a lattice. The manifold Γ\G/K is called a locally symmetric space. If the

(real) rank of G, or equivalently the dimension of a, is greater than one, then the geodesic

flow on any associated locally symmetric space is never ergodic [BM00]. On the other hand,

we may consider the A-action on the space Γ\G/M where M = ZK(A); this double coset

space may be viewed as the “bundle of oriented flats with basepoint” over the underlying

locally symmetric space (see, e.g., Section 5.3 of [SV07]). This A-action is ergodic and

reduces to the geodesic flow in rank one [BM00].

The validity of the strengthened version of Theorem I.6 as in Remark I.2 is in fact
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known to be equivalent to the ergodicity of the geodesic flow [Zel06]. Hence to extend

the ideas of quantum ergodicity to a higher rank setting, it no longer suffices to simply

consider eigenfunctions of the Laplacian. Lindenstrauss [Lin01] suggested eigenfunctions of

D(G/K), the algebra of invariant differential operators on G/K, as the object of study for

quantum ergodicity on higher rank locally symmetric spaces. This perspective was taken up

in [SV07, AS13, SV19, BM21]. In particular, Brumley-Matz [BM21] investigated quantum

ergodicity in the Benjamini-Schramm limit result for sequences of locally symmetric spaces

Γn\SL(d,R)/SO(d) which Benjamini-Schramm converge to SL(d,R)/SO(d).

In rank one, the algebra D(G/K) is generated by the Laplacian [Kna86]. More generally,

via the Harish-Chandra isomorphism, one may identify D(G/K) with a polynomial ring

whose associated variety may be identified with a∗C/W where W = NG(a)/ZG(a) is the Weyl

group. Given a joint eigenfunction ψ of D(G/K) acting on Γ\G/K, we get an associated

homomorphism χ ∈ HomC-alg.(D(G/K),C) via Dψ = χ(D)ψ, and hence an associated point

ν ∈ a∗C/W which is called the spectral parameter of ψ. The locus ia∗/W ⊂ a∗C/W plays a

distinguished role and is called the tempered spectrum. In case G = SL(2,R), the tempered

spectrum may be identified under a natural mapping with [1/4,∞) which is often referred

to as the tempered spectrum of the Laplacian on H.

We now state the main theorem of Brumley-Matz [BM21], but we first recall that a

sequence of lattices in G is called uniformly discrete if there is a universal lower bound on

the injectivity radii of the associated locally symmetric spaces.

Theorem I.5 (Brumley-Matz [BM21]). Let d ≥ 3. Let G = SL(d,R) and K = SO(d).

Suppose Γn < G is a uniformly discrete sequence of torsionfree cocompact lattices. Let

Yn = Γn\G/K. Suppose vol(Yn) → ∞. Let an be a measurable function on Yn such that

||an||∞ ≤ 1. Let {ψ(n)
j } be an orthonormal basis for L2(Yn) of eigenfunctions of D(G/K)

with associated spectral parameters {ν(n)j }. Then, there is ρ > 1 such that for sufficiently

regular ν ∈ ia∗, we have

lim
n→∞

1

N(B0(ν, ρ), Yn)

∑
j:ν

(n)
j ∈B0(ν,ρ)

∣∣∣⟨ψ(n)
j , anψ

(n)
j ⟩ − 1

vol(Yn)

∫
Yn

an dvolYn

∣∣∣2 = 0,

where B0(ν, ρ) = {λ ∈ ia∗ : ||λ−ν||2 ≤ ρ} is the ball of radius ρ centered at ν in the tempered

spectrum, and N(B0(ν, ρ), Yn) = #{j : ν
(n)
j ∈ B0(ν, ρ)}.

The assumption that vol(Yn) → ∞ is in fact known to be equivalent to Benjamini-

Schramm convergence in rank at least 2 [ABB+17]. Furthermore, in contrast to Theorem
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I.4 and the work of [LMS17, ABLM18] for rank one locally symmetric spaces, there is no

uniform spectral gap assumption needed as it is in fact automatic in rank at least 2 by

property (T) [BdlHV08].

I.4: Main result: quantum ergodicity in the Benjamini-Schramm

limit for the Bruhat-Tits building associated to PGL(3, F )

Bruhat-Tits buildings are infinite simplicial complexes constructed from reductive alge-

braic groups over non-archimedean local fields [BT72]. The simplest example is the Bruhat-

Tits building associated to SL(2,Qp), which is the infinite (p+ 1)-regular tree. Bruhat-Tits

buildings may be viewed as non-archimedean analogues of symmetric spaces of non-compact

type. On the other hand, their quotients may be seen as “higher rank” generalizations of

regular graphs. Such quotients have also been studied recently because, in certain cases,

they provide examples of high-dimensional expanders known as Ramanujan complexes (see,

e.g. [LSV05b, LSV05a, Lub14]).

Suppose F is a non-archimedean local field of characteristic zero, and O is its ring of

integers. Suppose G is a reductive algebraic group over F , and K is a hyperspecial maximal

compact subgroup. Let B be the associated building. Then K is the stabilizer of a unique

special vertex x0 ∈ B. There is a correspondence between maximal F -split tori in G and

so-called apartments in B; these apartments are the analogues for Bruhat-Tits buildings of

maximal flats in symmetric spaces. Let T < G be a maximal F -split torus whose associated

apartment contains x0. Let Γ < G be a lattice. Let M = ZK(T ) and let A = T/(T ∩K).

Similarly to the case of (locally) symmetric spaces, there is an ergodic right A-action on

Γ\G/M . This double coset space may be viewed as the “bundle of oriented apartments with

special vertex basepoint” over Γ\B. It is this ergodic action which in some sense we are

“quantizing” in this work.

We shall be particularly concerned with the Bruhat-Tits building associated to G =

PGL(d, F ) (specifically the case of d = 3). Then K = PGL(d,O), and G/K may be identified

with the vertices of B. The spherical Hecke algebra H(G,K) is the analogue of D(G,K) in

this context, and it acts on functions on G/K (or quotients thereof). In the case of d = 2, the

algebra H(G,K) is generated by one element whose associated action on G/K is equivalent

to the adjacency operator on the infinite (q+1)-regular tree [Ser80]. If Γ < G is a cocompact

torsionfree lattice, then Y = Γ\G/K is a finite simplicial complex. The space L2(Y ) has

an orthonormal basis of eigenfunctions {ψj} of H(G,K). By the Satake isomorphism, the
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spherical Hecke algebra is isomorphic to the coordinate ring of a variety Ω, and hence given

an eigenfunction ψj, it makes sense to talk about its associated spectral parameter νj ∈ Ω.

There is a distinguished sublocus of Ω called the tempered spectrum, denoted by Ω+
temp. The

tempered spectrum carries a natural probability measure called the Plancherel measure. In

the case of n = 2, the tempered spectrum is transformed into [−2
√
q, 2

√
q] under a natural

mapping; this locus is often referred to as the tempered spectrum of the adjacency operator

on the (q + 1)-regular tree, and it appeared in Theorem I.4.

Our main result is the following:

Theorem I.6. Let G = PGL(3, F ) and K = PGL(3,O), where F is a non-archimedean

local field of characteristic zero and O is its ring of integers. Let Γn < G be a sequence

of torsionfree lattices. Let Yn = Γn\G/K. Suppose card(Yn) → ∞. Let an be a function

on Yn such that ||an||∞ ≤ 1. Let Θ ⊂ Ω+
temp be a compact subset with positive Plancherel

measure and not meeting a certain codimension one exceptional locus Ξ. Let {ψ(n)
j } denote

an orthonormal basis of eigenfunctions of H(G,K) acting on L2(Yn). Then

lim
n→∞

1

N(Θ, Yn)

∑
ψ
(n)
j :ν

(n)
j ∈Θ

∣∣∣⟨ψ(n)
j , anψ

(n)
j ⟩ − 1

card(Yn)

∑
vertices v∈Yn

an(v)
∣∣∣2 = 0, (I.4.1)

where

N(Θ, Yn) = #{j : ν
(n)
j ∈ Θ}. (I.4.2)

The notation card(·) refers to the cardinality of a set. The codimension one exceptional

locus Ξ is defined in Chapter IV.2.

Remark I.7. Theorem I.6 may be viewed simultaneously as a higher rank analogue of Theo-

rem I.4 and a non-archimedean analogue of Theorem I.5. The assumption that card(Yn) → ∞
is in fact known to be equivalent to Benjamini-Schramm convergence in this setting by

Gelander-Levit [GL18]. No spectral gap assumption need be made as it is automatic by

property (T) [BdlHV08]. Since we are assuming char(F ) = 0, no uniform discreteness as-

sumption need be made [Mar91], and in fact all lattices are cocompact which implies that

the underlying Yn’s are finite simplicial complexes [Ser80].

Remark I.8. The analogue of the exceptional locus (or, more precisely, of what is called Ξ1 in

Chapter IV.2) for the (q+ 1)-infinite regular tree is the set {−2
√
q, 2

√
q}, for the hyperbolic

plane is {1/4}, and for SL(d,R)/SO(d) is those points in ia∗/W whose stabilizer is non-

trivial (i.e. the non-regular points of a Weyl chamber). Notice that in Theorem I.4, subsets
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of the tempered spectrum meeting this exceptional locus are allowed. However, in all of the

aforementioned works regarding symmetric spaces [LMS17, ABLM18, BM21], one does not

allow subsets of the tempered spectrum intersecting the exceptional locus. We believe that

we can in fact strengthen Theorem I.6 to not have the condition about avoiding Ξ, but such

results are still in preparation. See also Chapter III.2 and (the proof of) Lemma III.1.
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CHAPTER II

Outline of the Proof of Theorem I.6

II.1: Notation and summary of preliminaries

We now set the notation and summarize the preliminary material needed to outline the

proof of Theorem I.6. This preliminary material is further discussed in Appendices A, B,

and C. The relevant propositions and lemmas are combined to explain the proof of Theorem

I.6 in Chapter II.3.

II.1.1: The group G and associated objects

We let G = PGL(3, F ) and K = PGL(3,O) where F is a non-archimedean local field of

characteristic zero and O is its ring of integers. We denote the Haar measure on G by vol(·)
and normalize it so that vol(K) = 1. Let ϖ be a uniformizer of O, and let q be the order of

the residue field. We let π : G→ G/K denote the obvious projection.

Let Γ < G denote a torsionfree lattice, and (Γn) denote a sequence of torsionfree lattices

whose covolume goes to infinity. Let ρΓ be the unitary G-representation corresponding to the

right action on L2(Γ\G). Let E ⊂ G be a set with positive, finite Haar measure. Suppose

f ∈ L2(Γ\G). We define ρΓE to be the operator on L2(Γ\G) such that

[ρΓE.f ](Γh) :=
1

vol(E)

∫
E

f(Γhg)dg. (II.1.1)

We say that a function on G is (M1,M2)-invariant, with M1,M2 < G, if it is left-invariant

under M1 and right-invariant under M2. The spherical Hecke algebra H(G,K) is the algebra

of compactly supported (K,K)-invariant functions on G with product structure given by

convolution.

Let T < G denote the maximal F -split torus consisting of all diagonal matrices, and let

A < T denote the subgroup of matrices all of whose diagonal entries are powers of ϖ. Let A+
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denote those elements in A whose diagonal powers of ϖ are weakly decreasing. By reading

off the exponents of ϖ along the diagonal, we may associate to each element in A a tuple

λ = (λ1, λ2, λ3) ∈ Z3 up to shifting all entries by the same integer. Elements in A+ may be

parametrized by partitions: λ1 ≥ λ2 ≥ λ3 = 0. We define ϖλ := diag(ϖλ1 , ϖλ2 , ϖλ3).

II.1.2: Identification of A with a lattice in R2

Let a denote the vector space

a := {(x1, x2, x3) : xi ∈ R and x1 + x2 + x3 = 0}.

Then a naturally sits inside of R3. Let p : R3 → a denote the orthogonal projection using the

standard inner product on R3. Under p, the image of A ≃ Z3/⟨(1, 1, 1)⟩ is a lattice Λ inside

of a. The identity matrix in A gets mapped to the origin, and elements in A+ correspond

to the intersection of Λ with the standard Weyl chamber a+, namely the image under p of

the region x1 ≥ x2 ≥ x3 in R3; we call this intersection Λ+. We let (·, ·) denote the standard

pairing between a∗ and a. We let δ = (1, 0,−1). If we think of a as the collection of diagonal

trace zero matrices in sl(3) and we identify a ≃ a∗ using the coordinates on a (and the

standard dot product in these coordinates), then δ corresponds to half the sum of positive

roots.

II.1.3: The Bruhat-Tits building B

Let B denote the Bruhat-Tits building (as a simplicial complex) associated to G, and

G/K denote the set of vertices of B induced by identifying some particular vertex in B with

the coset 1K. If B ⊂ G/K is a set of vertices of B, we let card(B) denote the cardinality of

this set; this is equivalent to computing the Haar measure of π−1(B) ⊂ G.

Let Y = Γ\G/K (and Yn = Γn\G/K, resp.) denote the vertices of the simplicial complex

Ŷ = Γ\B (and Ŷn = Γn\B, resp.). Let τΓ : G/K → Y and τ̂Γ : B → Ŷ denote the obvious

projections. Let a ∈ L∞(Y ) (and an ∈ L∞(Yn), resp.) be a test function with ||a||∞ ≤ 1

(and ||an||∞ ≤ 1, resp.). Let D (and Dn, resp.) be a fundamental domain for the action

of Γ (and Γn, resp.) on G/K. Notice that functions on Y are the same as (Γ, K)-invariant

functions on G.

The building B has a natural metric d(·, ·) which is invariant under the G-action. This

metric descends to any Ŷ (see Appendix B.6.7). This metric is normalized so that the

distance between adjacent vertices is 1.
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See also Appendix B.6.1.

II.1.4: Benjamini-Schramm convergence and injectivity radius

Recall that Y corresponds to the vertices of the simplicial complex Ŷ , which is a metric

space. Suppose y ∈ Y . Let ỹ ∈ B be any lift of y under τ̂Γ. We define the injectivity

radius of y, denoted InjRadY (y), to the supremum of all r such that the ball of radius r

in B centered at ỹ (with respect to the metric d(·, ·)) maps injectively under τ̂Γ to Ŷ . We

define the injectivity radius of Y , denoted InjRad(Y ), to be the supremum over all y ∈ Y of

InjRadY (y). We say that (Yn) Benjamini-Schramm converges to G/K if, for every R > 0,

we have

card({y ∈ Yn : InjRadYn(y) ≤ R})

card(Yn)
→ 0 (II.1.2)

as n → ∞. The assumption that card(Yn) → ∞ implies that (Yn) Benjamini-Schramm

converges to G/K [GL18].

II.1.5: The Weyl chamber-valued metric and polytopal balls

The Cartan decomposition (Proposition A.1) allows us to define a Weyl chamber-valued

metric dA+(·, ·) on G/K taking values in A+ (or equivalently, in Λ+). Suppose Q ⊂ a is a

polytope. Let Qm denote the mth dilate of Q, and let QΛ
m := Qm ∩Λ (when m = 1, we omit

the subscript). We may naturally view any QΛ
m as subset of A, and hence also of G, in which

case it makes sense to consider KQΛ
mK ⊂ G.

Given Q, we may define associated polytopal balls: given a vertex v ∈ G/K, we define

the Q-shaped ball at v to be:

BQ(v) := {w ∈ G/K : dA+(v, w) ∈ QΛ}.

We may also define a polytopal norm on a+ induced by Q as follows:

|λ|Q := inf{m ∈ R≥0 : λ ∈ Qm}.

We shall often be interested in the ceiling of the polytopal norm which we denote

|λ|ceilQ := ⌈|λ|Q⌉.
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There are three polytopes which are of particular interest to us in this paper which we

call P , P ∗, and H; their definitions are given in Appendix C.6.1. The polytope P has a

distinguished vertex

p† := (4/3,−2/3,−2/3).

See also Appendices B.6.6 and C.6.

II.1.6: Conventions and notations for Hilbert spaces

We denote inner products on Hilbert spaces by ⟨·, ·⟩, and we follow the convention that

inner products are C-linear in the second entry and sesquilinear in the first entry.

Suppose U is an operator on a Hilbert space H. Recall that

||U ||HS :=
(∑

j

||Uej||2
)1/2

is the Hilbert-Schmidt norm of U , where {ej} is any orthonormal basis of H.

Suppose H = L2(X,µ) where (X,µ) is a measure space. An operator U acting on H has

a kernel function K : X ×X → C if

[U.f ](x) =

∫
X

K(x, y)f(y)dµ(y)

for all f ∈ H.

II.1.7: Tempered spectrum and Plancherel measure

We denote the tempered spectrum by Ω+
temp, and let µ denote the Plancherel measure

normalized so that µ(Ω+
temp) = 1. We let Ξ denote the exceptional locus.

See Appendices A.16, A.10 and A.11, as well as Chapters IV.1 and IV.2.

II.1.8: A word on the use of “≲”

We use the notation f ≲ g to mean that an inequality is true up to a positive multiplica-

tive constant. If both f and g depend on some parameter b, then the notation f ≲b g means

that the inequality is true up to a positive multiplicative constant (not depending on b) for

all b sufficiently large. We also use the notation f ≲b,c g, where b and c are two different

parameters (in the sequel, often b, c = n,M), to mean that we both have f ≲b g and f ≲c g

12



independently, namely there exist b0 and c0 such that for all (b, c) such that b ≥ b0 and

c ≥ c0, we have f(b, c) ≲ g(b, c).

II.2: Ancillary propositions and lemmas

In this subsection, we collect a sequence of Propositions and Lemmas which will allow

us to prove Theorem I.6. In cases where these results have straightforward or non-technical

proofs, we include them here; otherwise we defer the proof to a later chapter.

II.2.1: Reduction to the case of mean-zero test function

Given a test function an, we may subtract off its mean to get a mean-zero test function:

ān := an −
1

card(Yn)

∑
v∈Yn

an(v).

This simplifies the summands in (I.4.1) to |⟨ψ(n)
j , ānψ

(n)
j ⟩|2. Notice also that if ||an||∞ ≤ 1,

then ||ān||∞ ≤ 2. Hence from now on we shall assume that an is a mean-zero test function

such that ||an||∞ ≤ 2.

II.2.2: Polytopal ball averaging operators

Let Em denote the Pm-shaped ball centered at 1K:

Em := BPm(1K) = KPΛ
mK.

We shall abuse notation and let

xEm := BPm(x),

with x ∈ G/K. Notice that Em is a K-invariant set in G/K and hence

Ẽm := π−1(Em)

is a (K,K)-invariant set in G. The function 1Ẽm
is in H(G,K) and hence acts on functions

on G by right convolution (see Appendix B.7). Furthermore it preserves (Γ, K)-invariant

functions, so it acts on functions on both G/K and on Y . We let Um denote the operator
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corresponding to right convolution with 1Ẽm
. As explained in Appendix B.7.1, when Um is

applied to a function on G/K (or equivalently, a (1, K)-invariant function on G) we obtain:

[Um.f ](gK) =
∑

hK∈gẼ−1
m

f(hK).

Also note that

gẼm = π−1(BPm(gK)).

The operator Um has kernel function Km : G×G→ C defined as

Km(g, h) =

1 g−1h ∈ Ẽ−1
m

0 otherwise.
(II.2.1)

As explained in Appendix C.6.1, the polytope P ∗ satisfies π(Ẽ−1
m ) = BP ∗

m
(1K) = K(P ∗

m)ΛK.

Hence Um acting on L2(G/K) corresponds to summing up over the P ∗
m-shaped ball centered

at each vertex. From (II.2.1), it is clear that the formula for kernel function of the adjoint

U∗
m is given by

K∗
m(g, h) := Km(h, g) =

1 g−1h ∈ Ẽm

0 otherwise.
(II.2.2)

Recall that a denotes a test function on Y . We identify a with the operator corresponding

to multiplication by a. Suppose M is a positive integer. Consider the following operator on

L2(Y ):

AM :=
1

M

M∑
m=1

1

card(Em)
U∗
m ◦ a ◦ Um. (II.2.3)

When we use an instead of a, we shall refer to the corresponding operator as AnM . Note that

we may also consider AM as an operator on functions on G.

If ψν is an eigenfunction of the H(G,K)-action on L2(Y ) with spectral parameter ν (see

Appendix A.7), then Umψν = hm(ν)ψν for some complex number hm(ν). We then get that

∣∣∣⟨ψν , AMψν⟩∣∣∣2 =
( 1

M

M∑
m=1

|hm(ν)|2

card(Em)

)2∣∣∣⟨ψν , aψν⟩∣∣∣2. (II.2.4)
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II.2.3: Spectral bound

Proposition II.1 (Spectral Bound; proof in Chapter IV.6). Let Θ ⊂ Ω+
temp be a compact

subset of the tempered spectrum with positive Plancherel measure and not intersecting the

exceptional locus Ξ. Then for all ν ∈ Θ,

1

M

M∑
m=1

|hm(ν)|2

card(Em)
≳M 1,

with the implied constant only depending on Θ and not on ν or M .

The proof of this proposition requires analysis of the spherical functions associated to

each ν. The strategy is as follows: we first rearrange the relevant expression so that it

essentially becomes the sum of an exponential function on the lattice points in a polytope.

We then apply Brion’s formula (see Appendix C.3) which in particular allows us to identify

the dominating term. Finally we bound this dominating term asymptotically using a “linear

independence of characters” argument. See Chapter IV.

II.2.4: Benjamini-Schramm convergence implies Plancherel convergence

Recall the definition of N(Θ, Yn) in (I.4.2).

Proposition II.2 (BS Convergence Implies Plancherel Convergence; proof in Chapter V.3).

The distribution of spectral parameters associated to the H(G,K)-action on L2(Yn) weak-*

converges to the Plancherel measure µ as n → ∞ if (Yn) Benjamini-Schramm converges to

G/K. In particular for any compact Θ ⊆ Ω+
temp, we have

lim
n→∞

N(Θ, Yn)

card(Yn)
= µ(Θ).

This proposition follows almost immediately from results of Deitmar [Dei18] regarding

the relationship between Benjamini-Schramm convergence and convergence to the Plancherel

measure. Similar results in the case of semisimple algebraic groups over local fields of char-

acteristic zero appears in the work of Gelander-Levit [GL18].

The Plancherel measure is in fact a measure with respect to a certain topology on Ω+
temp

called the Fell topology (see Appendix A.5.4). This topology is closely related to a more

obvious “Euclidean” topology on Ω+
temp. The work of proving Proposition II.2 using the

theorems of Deitmar and Gelander-Levit lies in relating these two topologies. In particular
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we show that if a set is compact in the Euclidean topology, then it is also compact and

µ-regular in the Fell topology. See Chapter V.

II.2.5: Reduction to bounding the Hilbert-Schmidt norm

The expression |⟨ψ(n)
j , anψ

(n)
j ⟩|2 is often referred to as the quantum variance (of an with

respect to the wave function ψ
(n)
j ).

Proposition II.3 (Quantum Variance Bounded by Hilbert-Schmidt Norm). Suppose Θ ⊂
Ω+

temp is compact and µ(Θ) > 0. Suppose (Yn) Benjamini-Schramm converge to G/K. Then

1

N(Θ, Yn)

∑
ψ
(n)
j :ν

(n)
j ∈Θ

∣∣∣∣⟨ψ(n)
j , anψ

(n)
j ⟩
∣∣∣∣2 ≲n,M

1

card(Yn)
||AnM ||2HS,

where the implied constant depends on Θ, but does not depend on n,M as long as both n and

M are sufficiently large (recall the notation in Chapter II.1.8).

Proof. Note that by Cauchy-Schwarz |⟨ej, Uej⟩|2 ≤ ||Uej||2||ej||2 for any operator U acting

on some Hilbert space, and hence, if {ej} is an orthonormal basis of the underlying Hilbert

space, ∑
j

|⟨ej, Uej⟩|2 ≤ ||U ||2HS. (II.2.5)

We thus have:

1

N(Θ, Yn)

∑
ψ
(n)
j :ν

(n)
j ∈Θ

∣∣⟨ψ(n)
j , anψ

(n)
j ⟩
∣∣2 ≲M

1

N(Θ, Yn)

∑
ψ
(n)
j :ν

(n)
j ∈Θ

∣∣⟨ψ(n)
j , AnMψ

(n)
j ⟩
∣∣2

(by (II.2.4) and Prop. II.1)

≲n
1

card(Yn)

∑
ψ
(n)
j :ν

(n)
j ∈Θ

∣∣⟨ψ(n)
j , AnMψ

(n)
j ⟩
∣∣2

(by Prop. II.2)

≤ 1

card(Yn)

∑
all ψ

(n)
j

∣∣⟨ψ(n)
j , AnMψ

(n)
j ⟩
∣∣2

≤ 1

card(Yn)
||AnM ||2HS

(by (II.2.5)).
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II.2.6: Bounding the Hilbert-Schmidt norm using the kernel function on G/K

Recall that when an operator has an associated kernel function, then its Hilbert-Schmidt

norm may be computed by computing the L2-norm of the kernel function. An operator

acting on L2(Y ) would then naturally have its associated kernel function as a function on

Y × Y . However, in many ways it’s easier to work with functions on G/K × G/K because

this space is homogeneous. If we have a function on G/K × G/K which is invariant under

the diagonal Γ-action and is only supported near the diagonal, then by summing up over Γ,

we may define an operator on L2(Y ). The following lemma allows us to relate the Hilbert-

Schmidt norm of this descended operator to the L2-norm of the kernel function on D×G/K
where D is a fundamental domain for the Γ-action on G/K. We also obtain an error term

in terms of number of points in Y with small injectivity radius.

Lemma II.4 (Lifting the Kernel to G/K; proof in Chapter VI.2). Let K : G/K×G/K → C
be a function which is invariant under the diagonal Γ-action. Suppose R ≥ 0 is such that

K(z, w) = 0 whenever d(z, w) ≥ R. Let K̄Op
Y denote the operator on L2(Y ) defined by this

kernel. Then there exist C1, C2 > 0, independent of R and Γ, such that

||K̄Op
Y ||2HS ≤

∑
z∈D

∑
w∈G/K

|K(z, w)|2 (II.2.6)

+
C1q

C2R

InjRad(Y )2
||K||2∞card({y ∈ Y : InjRadY (y) ≤ R}). (II.2.7)

Note that the term of the form qC2R comes from the “volume” of a ball of radius R in B
(with respect to d(·, ·)), and the term InjRad(Y )2 in the denominator comes from the area

of a Euclidean ball of radius InjRad(Y ) in R2. See Chapter VI.

II.2.7: Explicit formula for the kernel function of AM

We ultimately wish to apply Lemma II.4 to the appropriate function K : G/K×G/K → C
so that AM = K̄Op

Y .

Proposition II.5 (Formula for the Kernel Function). Let LM : G×G→ C be defined by:

LM(x, y) :=
1

M

M∑
m=1

1

card(Em)

∫
xẼm∩yẼm

a(z)dz. (II.2.8)
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Then LM is invariant under the right (K × K)-action and the left diagonal Γ-action and

hence defines a function L′
M : G/K ×G/K → C as in Lemma II.4. The associated operator

on L2(Y ) is exactly AM .

Proof. We first find the kernel function for U∗
m ◦ a ◦Um. Suppose f is a function on G. Then

by (II.2.1) and (II.2.2),

[(a ◦ Um).f ](z) = a(z)

∫
zẼ−1

m

f(y)dy,

[U∗
m.g](x) =

∫
xẼm

g(z)dz,

[(U∗
m ◦ a ◦ Um).f ](x) =

∫
xẼm

a(z)

∫
zẼ−1

m

f(y)dydz. (II.2.9)

We now wish to change the order of integration. Suppose y is fixed. We then must consider

those z such that y ∈ zẼ−1
m and z ∈ xẼm. But y ∈ zẼ−1

m ⇐⇒ z ∈ yẼm. Hence we need

z ∈ xẼm ∩ yẼm. Therefore we may rewrite (II.2.9) as∫
G

(∫
xẼm∩yẼm

a(z)dz
)
f(y)dy,

from which it is clear that the kernel function for U∗
m ◦ a ◦ Um is exactly

Hm(x, y) :=

∫
xẼm∩yẼm

a(z)dz.

Thus by (II.2.3), it is clear that the kernel function for AM is exactly

LM(x, y) :=
1

M

M∑
m=1

Hm(x, y)

card(Em)
.

If we replace (x, y) by (xk1, yk2) in (II.2.7), with k1, k2 ∈ K, then we instead integrate

over xk1Ẽm ∩ yk2Ẽm, but because Ẽm is (K, 1)-invariant, this is the same as xẼm ∩ yẼm.

Similarly, if we replace (x, y) in (II.2.7) by (γx, γy) with γ ∈ Γ, we now integrate a(z) over z

in γxẼm ∩ γyẼm = γ(xẼm ∩ yẼm), but this is the same as integrating a(γu) = a(u) over u

in xẼm ∩ yẼm. Hence LM is invariant under the right (K ×K)-action and the left diagonal

Γ-action.

If we replace a with an in the formula for LM , we instead write the kernel function as LnM ,

and similarly we write (LnM)′ for the associated function on G/K ×G/K.
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II.2.8: Determining when two polytopal balls intersect

In addition to P , another polytope that is of interest is the polytope H which is defined

in Appendix C.6.1. The following proposition explains its importance.

Proposition II.6 (When Polytopal Balls Intersect; proof in Chapter IX.5). Suppose x, y ∈
G/K. The polytopal balls xEm and yEm intersect if and only if dA+(x, y) ∈ HΛ

m. Phrased

another way, we have xEm ∩ yEm ̸= ∅ if and only if |dA+(x, y)|ceilH ≤ m.

The polytope HM is contained in the restriction to a+ of the ball of radius (2
√

3)M .

Corollary II.7 (Kernel Function is Supported Near the Diagonal; proof in Chapter IX.5).

We have LM(z, w) = 0 if d(zK,wK) > (2
√

3)M .

II.2.9: Bounding the error term from lifting the kernel to G/K

We wish to use Lemma II.4 (Lifting the Kernel Function to G/K) and Proposition II.5

(Explicit Formula for the Kernel Function) to reduce to analyzing a function on G × G.

However, there is an error term showing up in (II.2.7) which is handled by the following

lemma.

Lemma II.8 (Bounding the Error Term from Lifting the Kernel Function). Suppose (Yn)

Benjamini-Schramm converges to G/K. Then, for every positive integer M and ε > 0, there

exists an nM,ε such that for all n ≥ nM,ε, we have

C1q
C2(2

√
3)M

InjRad(Yn)2
||LnM ||2∞

card({y ∈ Yn : InjRadYn(y) ≤ (2
√

3)M})

card(Yn)
≤ ε. (II.2.10)

Proof. As mentioned in Remark I.7, we know that there exists a positive lower bound on

InjRad(Yn) for all n (i.e. uniform discreteness is automatic). Furthermore, by the explicit

formula for LnM in Proposition II.5, it is clear that ||LnM ||∞ ≤ ||an||∞ and we have ||an||∞ ≤ 2

by assumption. Furthermore, by the definition of Benjamini-Schramm convergence (II.1.2),

we know that for any fixed M ,

lim
n→∞

card({y ∈ Yn : InjRadYn(y) ≤ (2
√

3)M})

card(Yn)
= 0.

By combining these observations we conclude that such an nM,ε exists.

19



II.2.10: Changing variables in the integral of the kernel function

We wish to rewrite the expression on the right hand side of (II.2.6). Rather than sum

over pairs (z, w) ∈ D × G/K, we instead group elements based on their relative positions,

namely dA+(z, w). For any given point z ∈ G/K and λ ∈ A+, there are exactly Nλ many

w’s such that dA+(z, w) = λ; Nλ is defined in (II.2.11). The shape of any given xEm ∩ yEm
with x, y ∈ G/K only depends on m and λ = dA+(x, y). These intersections are exactly

translations of the set Eλ
m = Em ∩ ϖλEm. Translating Eλ

m to be based at all the different

vertices of Y and then integrating the test function a over these translated sets amounts to

convolving the indicator function of the lift of Eλ
m to G (namely Ẽλ

m defined in (II.2.12))

with the lift of a to a K-invariant function on Γ\G (recall the definition of ρΓE in (II.1.1)).

Unraveling all of these observations ultimately results in the following proposition.

Proposition II.9 (Changing Variables in the Kernel Integral; proof in Chapter VII.2). We

have

∑
z∈D

∑
w∈G/K

|L′
M(z, w)|2 =

1

M2

∑
λ∈A+

Nλ

∫
Γ\G

∣∣∣∣ M∑
m=1

card(Eλ
m)

card(Em)
[ρΓ
Ẽλ

m
.a](Γg)

∣∣∣∣2dg,
where

Nλ : = vol(KϖλK), (II.2.11)

Eλ
m : = Em ∩ϖλEm,

Ẽλ
m : = {g ∈ G : dA+(1K, gK) ∈ PΛ

m and dA+(ϖλK, gK) ∈ PΛ
m} (II.2.12)

= π−1(Eλ
m).

II.2.11: Changing the order of integration

A straightforward application of the Minkowski integral inequality allows us to change

the order of integration in the integral for the L2-norm of the kernel function.

Proposition II.10 (Changing the Order of Integration in the Kernel Integral). We have

∑
λ∈A+

Nλ

∫
Γ\G

∣∣∣∣ M∑
m=1

card(Eλ
m)

card(Em)
[ρΓ
Ẽλ

m
.a](Γg)

∣∣∣∣2dg ≤ ∑
λ∈HΛ

M

Nλ

( M∑
m=|λ|ceilH

card(Eλ
m)

card(Em)
||ρΓ

Ẽλ
m
.a||L2(Γ\G)

)2
.

(II.2.13)
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Proof. Because of Proposition II.6 (When Polytopal Balls Intersect) card(Eλ
m) ̸= 0 only if

m ≥ |λ|H , so we may replace the sum on the right hand side of (II.2.13) with a sum starting

from m = |λ|ceilH . Furthermore we have m ≤ M ; thus in order to have |λ|H ≤ M , we must

also have λ ∈ HΛ
M . Therefore we can replace the sum over A+ with simply the sum over HΛ

M .

Recall that the Minkowski integral inequality says the following: suppose S1 and S2 are

two measure spaces and F (x, y) is a jointly measurable function. Then∫
S2

∣∣∣ ∫
S1

F (x, y)dx
∣∣∣2dy ≤

(∫
S1

∣∣∣ ∫
S2

|F (x, y)|2dy
∣∣∣1/2dx)2

.

If we apply this to the right side of (II.2.13) with S1 = {|λ|ceilH , . . . ,M} and S2 = Γ\G, we

obtain

∫
Γ\G

∣∣∣ M∑
m=|λ|ceilH

card(Em
λ )

card(Em)
[ρΓ
Ẽλ

m
.a](Γg)

∣∣∣2dg ≤ ( M∑
m=|λ|ceilH

card(Eλ
m)

card(Em)

∣∣∣ ∫
Γ\G

∣∣[ρΓ
Ẽλ

m
.a](Γg)

∣∣2dg∣∣∣1/2)2

=

(
M∑

m=|λ|ceilH

card(Eλ
m)

card(Em)

∣∣∣∣ρΓ
Ẽλ

m
.a
∣∣∣∣
L2(Γ\G)

)2

.

II.2.12: A Nevo-style ergodic theorem for G

On the right hand side of (II.2.13) we have an expression containing ||ρΓ
Ẽλ

m
.a||. The

following proposition shows that we can bound this just in terms of the volume of Ẽλ
m and

the L2-norm of a. This is quite remarkable as many drastically different sets in G have

the same volume. A result of this form for semisimple Lie groups is due to Nevo [Nev98].

One of the ingredients in Nevo’s proof is the Kunze-Stein phenomenon for semisimple Lie

groups [KS60, Cow78]. The Kunze-Stein phenomenon was later shown by Veca [Vec02] to

also hold for simply connected simple algebraic groups over non-archimedean local fields

(such as SL(d, F )). In Chapter VIII, we explain how this in turn implies that PGL(d, F )

also has the Kunze-Stein phenomenon. We may then retrace Nevo’s proof [Nev98] to obtain

the following proposition. See also [GN10, GN15].

Proposition II.11 (Nevo-Style Ergodic Theorem; proof in Chapter VIII.4). Suppose a is a

mean-zero function in L2(Γ\G). There exist constants θ > 0 and C > 0, not depending on
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a or Γ, such that for any E ⊂ G with finite positive Haar measure,

||ρΓE.a||L2(Γ\G) ≤
C

vol(E)θ
||a||L2(Γ\G).

Corollary II.12 (Applying the Nevo-Style Ergodic Theorem). There exists a θ > 0 such

that

∑
λ∈HΛ

M

Nλ

( M∑
m=|λ|ceilH

card(Eλ
m)

card(Em)
||ρΓ

Ẽλ
m
.a||L2(Γ\G)

)2
≲ ||a||22

∑
λ∈HΛ

M

Nλ

( M∑
m=|λ|ceilH

card(Eλ
m)1−θ

card(Em)

)2
,

where the implied constant does not depend on Γ or M .

Proof. This follows immediately from Proposition II.11 (Nevo-Style Ergodic Theorem) using

the fact that vol(Ẽλ
m) = card(Eλ

m).

II.2.13: Bounding the size of intersections of polytopal balls

Corollary II.12 (Applying the Nevo-Style Ergodic Theorem) allows us to now focus on

bounding the size of Nλ and the cardinality of the sets Em and Ẽλ
m. There is an explicit

formula for Nλ due to MacDonald [Mac95] from which the following is an easy consequence.

Proposition II.13 (Upper Bound on Nλ; proof in Chapter IV.5). We have

Nλ = vol(KϖλK) ≲ (q2)(δ,λ),

where the implied constant does not depend on λ.

Recall that the polytope P has a distinguished vertex p† = (4/3,−2/3,−2/3) and that

δ = (1, 0,−1) is half the sum of positive roots. Note that (δ, p†) > 0. Using the explicit

formula for Nλ together with Brion’s formula (Theorem C.3), one may show the following:

Proposition II.14 (Lower Bound on card(Em); proof in Chapter IV.5). We have

card(Em) ≳ (q2)(δ,m·p†),

where the implied constant does not depend on m.

The following proposition is the most difficult in the entire paper. It provides an upper

bound on the size of Eλ
m.
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Proposition II.15 (Upper Bound on card(Eλ
m); proof in Chapter X.4). We have that

card(Eλ
m) ≲ (q2)(δ,m·p†−λ

2
),

where the implied constant does not depend on m or λ.

The method of proof of Proposition II.15 (Upper Bound on card(Eλ
m)) goes roughly as

follows:

(1) (Roughly) classify relative positions of triples of points in B. See Chapter IX.4.

(2) Use the classification in Step (1) to “coordinatize” those possible z which appear in

xEm ∩ yEm with x, y ∈ G/K. For each fixed m and λ = dA+(x, y), the allowable

collection of coordinates will correspond to lattice points in some higher-dimensional

polytope P(m,λ). See Chapter X.2 and Proposition X.4.

(3) Count the number of z with a given set of coordinates as in Step (2). The number

will be roughly equal to an exponential function (with base q2) whose power is a linear

functional in these coordinates. See Lemma X.3.

(4) Identify that the greatest value that the linear functional in Step (3) can take is exactly

equal to (δ,m · p† − λ
2
). See Lemma X.5

(5) Use Brion’s formula (Theorem C.3) to bound the size of xEm ∩ yEm by summing the

exponential function in Step (3) over all lattice points in P(m,λ) from Step (2). In

fact Brion’s formula as originally stated does not work because certain “degeneracies”

can occur. Hence we instead derive in Appendix C.5.2 a so-called “degenerate Brion’s

formula.”

(6) Notice that as m and λ = dA+(x, y) change, the collection of polytopes arising in Step

(2) belong to finitely many “families” of polytopes of the same “type” parametrized by

(m,λ) (see Appendix C.2.1). Analyze the exact formula given by (degenerate) Brion’s

formula from Step (5) to uniformly bound the size of xEm ∩ yEm over all polytopes in

a given family. See Chapter X.4.

We may now combine the bounds on Nλ (Proposition II.13), the size of Em (Proposition

II.14), and the size of Eλ
m (Proposition II.15) to obtain the following.
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Corollary II.16 (Combining Bounds on Nλ, card(Em), and card(Eλ
m)). We have

∑
λ∈HΛ

M

Nλ

( M∑
m=|λ|ceilH

card(Eλ
m)1−θ

card(Em)

)2
≲
∑
λ∈HΛ

M

(q2)θ(δ,λ−2|λ|H ·p†), (II.2.14)

where the implied constant does not depend on M .

Proof. By Propositions II.14 (Lower Bound on card(Em)) and II.15 (Upper Bound on

card(Eλ
m)), we get that

card(Eλ
m)1−θ

card(Em)
≲

(q2)(δ,m·p†−λ
2
)(1−θ)

(q2)(δ,m·p†)

= (q2)−θ(δ,m·p†)(q2)−(1−θ)(δ,λ
2
).

So then

( M∑
m=|λ|ceilH

vol(Ẽλ
m)1−θ

card(Em)

)2
≲ (q2)−(1−θ)(δ,λ)

( M∑
m=|λ|ceilH

(q2)−θ(δ,m·p†)
)2
. (II.2.15)

We have

M∑
m=|λ|ceilH

(q2)−θ(δ,m·p†) =
(q2)−|λ|ceilH θ(δ,p†) − (q2)−(M+1)θ(δ,p†)

1 − (q2)−θ(δ,p†)

≲ (q2)−|λ|ceilH θ(δ,p†)

≲ (q2)−|λ|Hθ(δ,p†), (II.2.16)

because (δ, p†) > 0 and |λ|ceilH ≥ |λ|H .

Combining Proposition II.13 (Upper Bound on Nλ) with (II.2.15) and (II.2.16), we obtain

∑
λ∈HΛ

M

Nλ

( M∑
m=|λ|ceilH

card(Eλ
m)1−θ

card(Em)

)2
≲
∑
λ∈HΛ

M

(q2)(δ,λ) · (q2)−(1−θ)(δ,λ) · (q2)−2|λ|Hθ(δ,p†)

=
∑
λ∈HΛ

M

(q2)θ(δ,λ−2|λ|H ·p†).
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II.2.14: Bounding the sum over HΛ
M

We now wish to apply Brion’s formula yet again. However, the expression on the right

hand side of (II.2.14) is not exactly an exponential function whose power is a linear functional

in the coordinates of Λ. However, we may derive an explicit formula for |λ|H . From this

we observe that we may partition a+ into two sub-polytopes such that on each one |λH | is

a linear functional. This allows us to split the sum on the right hand side of in (II.2.14)

into two pieces and and apply (degenerate) Brion’s formula on each piece to arrive at the

following proposition.

Proposition II.17 (Bounding the Sum over HΛ
M ; proof in Chapter XI). We have∑

λ∈HΛ
M

(q2)θ(δ,λ−2|λ|H ·p†) ≲M,

where the implied constant does not depend on M .

II.3: Proof of Theorem I.6

Proof of Theorem I.6 (Quantum Ergodicity in the BS Limit for PGL(3, F )). We now com-

bine all of the preceding propositions and lemmas. Recall from Theorem I.6 that we must

show that

1

N(Θ, Yn)

∑
ψ
(n)
j :ν

(n)
j ∈Θ

∣∣∣⟨ψ(n)
j , anψ

(n)
j ⟩
∣∣∣2 → 0 (II.3.1)

as n→ ∞, where an is a mean-zero test function such that ||an||∞ ≤ 2 (see Chapter II.2.1).

By Proposition II.3 (Quantum Variance Bounded by Hilbert-Schmidt Norm), we know that

to show (II.3.1) it suffices to show that along some sequence (n,Mn) with Mn eventually

always larger than some specific M0, we have

1

card(Yn)
||AnMn

||HS → 0

as n→ ∞.

By Lemma II.4 (Lifting the Kernel to G/K), Proposition II.5 (Formula for the Kernel

Function), and Corollary II.7 (Kernel Function is Supported Near the Diagonal) it suffices
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to show that for some such sequence (n,Mn) as above, we have both

1

card(Yn)

∑
z∈Dn

∑
w∈G/K

|(LnMn
)′(z, w)|2 → 0, (II.3.2)

C1q
C2R

InjRad(Yn)2
||(LnMn

)′(z, w)||2∞
card({y ∈ Yn : InjRadYn(y) ≤ 2

√
3Mn})

card(Yn)
→ 0. (II.3.3)

We handle each piece separately. We first handle (II.3.2). Combining Propositions II.9

(Changing Variables in the Kernel Integral) and Proposition II.10 (Changing the Order of

Integration in the Kernel Integral) with Corollary II.12 (Applying the Nevo-Style Ergodic

Theorem), we get

1

card(Yn)

∑
z∈Dn

∑
w∈G/K

|(LnMn
)′(z, w)|2

=
1

card(Yn)

1

M2

∑
λ∈A+

Nλ

∫
Γ\G

∣∣∣∣ M∑
m=1

card(Eλ
m)

card(Em)
[ρΓ
Ẽλ

m
.a](Γg)

∣∣∣∣2dg
≤ 1

card(Yn)

1

M2

∑
λ∈HΛ

M

Nλ

( M∑
m=|λ|ceilH

card(Eλ
m)

card(Em)
||ρΓ

Ẽλ
m
.a||L2(Γ\G)

)2
≲

||an||22
card(Yn)

1

M2

∑
λ∈HΛ

M

Nλ

( M∑
m=|λ|ceilH

card(Eλ
m)1−θ

card(Em)

)2
.

Notice that

||an||22
card(Yn)

≤ ||an||2∞.

Hence by Corollary II.16 (Combining Bounds on Nλ, card(Em), and card(Eλ
m)) and Propo-

sition II.17 (Bounding the Sum over HΛ
M) we have

||an||22
card(Yn)

1

M2

∑
λ∈HΛ

M

Nλ

( N∑
m=|λ|ceilH

card(Eλ
m)1−θ

card(Em)

)2
≲

1

M2

∑
λ∈HΛ

M

(q2)θ(δ,λ−2|λ|ceilH ·p†)

≲
1

M
.

Therefore (II.3.2) is true as long as M → ∞.

Lastly we may bound (II.3.3) using Lemma II.8 (Bounding the Error Term from Lifting
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the Kernel Function): let M (k) be some sequence going to infinity. By Lemma II.8, for

every k we can find an nM(k) such that for every n ≥ nM(k) , the expression in (II.2.10) holds

with ε = 1
k
. Let nk be some increasing sequence such that nk → ∞ and nk ≥ nM(k) . Let

λ(n) = sup{k : n ≥ nk}. Notice then that λ(n) → ∞ as n → ∞. Let Mn = M (λ(n)). Then,

since n ≥ nλ(n) ≥ nM(λ(n)) , we have that

C1q
C2R

InjRad(Yn)2
||(LnMn

)′(z, w)||2∞
vol({y ∈ Yn : InjRadYn(y) ≤ 2

√
3Mn})

vol(Yn)
≤ 1

λ(n)
.

Hence for this choice of Mn, we have this quantity going to zero as n→ ∞.

II.4: Some analogies between the style of proof of Theorem I.6 and

Theorem I.1

II.4.1: Sketch of the proof of Quantum Ergodicity in the Large Eigenvalue Limit

We now sketch the proof of the original quantum ergodicity theorem (Theorem I.1) so

that we may point out its similarities to the proof of quantum ergodicity in the Benjamini-

Schramm limit. First suppose a ∈ C∞(M) is a mean-zero test function. Let Oph denote

a quantization scheme parametrized by a small parameter h which we may interpret as

“Planck’s constant”. Let {ψn} be the eigenfunctions of ∆ with eigenvalues {λn} ordered by

magnitude. Let hn be such that λnh
2
n = 1. Let p(x, ξ) = |ξ|2, with x ∈M and ξ ∈ TxM , be

the symbol of the Laplacian/Hamiltonian function generating the geodesic flow.

(1) Use the approximate functional calculus to construct a compactly supported symbol

â, i.e. a function in C∞
0 (T ∗M), such that, for each eigenfunction ψj with eigenvalue at

most λn, we have

⟨ψj, aψj⟩ = ⟨ψj,Ophn(â)ψj⟩ +O(hn).

Then use the unitarity of the operators eit∆ to obtain that

⟨ψj,Ophn(â)ψj⟩ = ⟨ψj,
1

T

∫ T

0

e−ithn∆Ophn(â)eithn∆dt ψj⟩,

for all T > 0. This allows us to reduce to analyzing a two-parameter family of operators

depending on n and T .
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(2) Use the Egorov theorem to obtain that

⟨ψj,
1

T

∫ T

0

e−ithn∆Ophn(â)eithn∆dt ψj⟩ = ⟨ψj,Ophn([â]T )ψj⟩ +OT (hn),

where

[â]T :=
1

T

∫ T

0

Φt.â dt

with Φt denoting the geodesic flow on symbols. This allows us to incorporate the

underlying R-action into the analysis.

(3) Use the approximate homomorphism between the (Poisson) algebra of symbols and

the algebra of operators on L2(M), together with Cauchy-Schwarz, to obtain

|⟨ψj,Ophn([â]T )ψj⟩|2 ≤ ⟨ψj,Ophn(|[â]T |2)ψj⟩ +OT (hn).

This allows us to focus on bounding the operator Ophn(|[â]T |2).

(4) Use the local Weyl law to obtain that, for fixed T :

lim
n→∞

1

N(λn)

∑
h2nλj≤1

|⟨ψj,Ophn(|[â]T |2)ψj⟩|2 = C

∫
p−1([0,1])

|[â]T |2dxdξ,

for an appropriate constant C.

(5) Use the ergodicity of the geodesic flow (and the fact that a and thus â is mean-zero)

to obtain that, as T → ∞,

|[â]T |2 → 0,

on every level set of p.

II.4.2: Analogous steps in Quantum Ergodicity in the Benjamini-Schramm Limit

All of the steps listed above have analogues in this proof. The role of h is replaced by the

“distance” of each Yn from the universal cover; namely we will have approximate equalities

and inequalities up to an error that goes to zero under the assumption of Benjamini-Schramm

convergence.
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(1) The analogue of Step (1) is Proposition II.1 (Spectral Bound). Instead of consider-

ing the R-parametrized Schrödinger flow (namely conjugation by eithn∆), we instead

consider the N-parametrized “wave propagation” corresponding to polytopal ball av-

eraging operators of different radii. The spectral bound tells us that AnM roughly

preserves the mass of the eigenfunctions with spectral parameter in Θ; this may be

seen as a substitute of the unitarity of the Schrödinger propagator.

(2) In Lemma II.4 (Lifting the Kernel to G/K) and Proposition II.9 (Changing Variables

in the Kernel Integral), we lift to the universal cover up to an error which goes to

0 under Benjamini-Schramm convergence, then perform a change of variables and a

change in the order of integration. This allows us to incorporate the G-action on Γ\G
into the analysis and then ultimately to reduce to bounding the operator norms of

certain elements in L1(G) acting on L2(Γ\G). This may be seen as a rough substitute

for the Egorov theorem in Step (2) above which also relates the operator from Step (1)

to the underlying group action (the geodesic flow).

(3) In Proposition II.3 (Quantum Variance Bounded by Hilbert-Schmidt Norm), we reduce

to bounding the Hilbert-Schmidt norm of an appropriate operator which is somewhat

analogous to Step (3) above.

(4) A special case of the local Weyl law is the classical Weyl law telling us that the

number of eigenvalues satisfying h2nλj ≤ 1 is asymptotically equal to the volume of

p−1([0, 1]) ⊂ T ∗M with respect to the Liouville measure. This aspect of the local Weyl

law is analogous to Proposition II.2 (BS Convergence Implies Plancherel Convergence)

which tells us that the distribution of spectral parameters asymptotically agrees with

the distribution of spectral parameters on the universal cover (which is controlled by

the Plancherel measure).

(5) In Corollary II.12 (Applying the Nevo-Style Ergodic Theorem), we utilize the Nevo

ergodic theorem which allows us to relate the spectral gap of the underlying G-action on

L2(Γ\G) with the decay of operator norms of certain operators coming from functions

in L1(G). This may be seen as the analogue of the use of the ergodicity of the geodesic

flow in Step (5) above.
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II.5: The polytope P vs. the polytope used in Brumley-Matz

We use the polytope P to define our polytopal ball averaging operators. Brumley-Matz

[BM21] define analogous polytopal ball averaging operators but using a polytope which,

somewhat conincidentally, is essentially identical to the polytope that we call H. The prop-

erties that P has which are used critically at various steps in the proof of Theorem I.6 (Main

Theorem) are:

(1) The vertices of P are lattice points in Λ. This is necessary to be able to apply Brion’s

formula such as is done in the Proposition II.1 (Spectral Bound) and Proposition II.15

(Upper Bound on card(Eλ
m)).

(2) There is a unique vertex p† maximizing the dot product with δ. This in particular

implies that the volume of our polytopal ball averaging operators grows like (q2)m(δ,p†)

as opposed to some polynomial times such an expression. This is used in the spectral

bound and the geometric bound. This is in contrast to metric balls which do not have

this property. See also (IV.4.1) and the discussion in Section 2.5 of Brumley-Matz

[BM21].

(3) The vertex p† is on the boundary of a+. This is the property that distinguishes our

polytope from the one used by Brumley-Matz. This property is used critically in the

proof of Proposition II.15 (Upper Bound on card(Eλ
m)). See also Remark X.5.

(4) The orbit of P under S3 results in a convex polytope in a. This is used critically in the

proof of Proposition II.6 (When Polytopal Balls Intersect) which shows that whether or

not two polytopal balls intersect is controlled by yet another convex polytope, namely

H.
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CHAPTER III

The Case of Regular Graphs

III.1: Previous results regarding quantum ergodicity on regular

graphs

III.1.1: Work prior to Anantharaman-Le Masson [ALM15]

Notions of quantum ergodicity (and delocalization of eigenfunctions) on graphs appeared

prior to the work of Anantharaman-Le Masson [ALM15]. In the physics literature, it was

noted in [KS97] that regular graphs provide a good toy model for exploring quantum ergod-

icity. A form of quantum ergodicity for certain families of “quantum graphs” was shown in

[BKS07]. On the other hand, Brooks-Lindenstrauss [BL13] proved delocalization of all eigen-

functions on large regular graphs using harmonic analysis on regular trees/regular graphs.

That paper has overlap with the tools used in Brooks-Lindenstrauss-Le Masson [BLML16]

to reprove Theorem I.4; this latter paper contains the original inspiration for many of the

tools used in the sequel.

III.1.2: The work of Anantharaman-Le Masson [ALM15]: spherical function

quantum ergodicity

The work of Anantharaman-Le Masson [ALM15] in fact proves a stronger result than

Theorem I.4. Every eigenvalue of the adjacency operator on any (q+ 1)-regular graph lies in

the interval [−(q+1), q+1]. Given a value λ ∈ [−(q+1), q+1] and a choice of distinguished

vertex v0 on the infinite regular tree Tq+1, there is a distinguished eigenfunction of the

adjacency operator on Tq+1 known as the spherical function associated to λ and denoted Φλ

(note that if we write λ = q
1
2
+s + q

1
2
−s, then Φλ(x) = ωs(ϖ

(d(v0,x),0)) using the notation of

(A.3.3) with G = PGL(2, F )). This function has the property that Φλ(v0) = 1 and its value

at a vertex x only depends on d(v0, x); in fact these properties uniquely define Φλ. Because
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of the radial invariance, we may define

Φ̂λ : N → C, k 7→ Φ(v0, x) with d(v0, x) = k.

Now suppose (Gn) is a sequence of regular graphs satisfying the hypotheses of Theorem

I.4. Suppose for each n we have a function Kn : Vn × Vn → C such that there exists a D,

independent of n, such that Kn(x, y) = 0 if d(x, y) > D, and |Kn(x, y)| ≤ 1 for all x, y. Let

KOp
n denote the operator on L2(Vn) whose kernel function is given by Kn. Suppose {ψ(n)

j } are

the eigenfunctions of the adjacency operator acting on L2(Vn) with associated eigenvalues

{λ(n)j }. We then have that

⟨ψ(n)
j ,KOp

n ψ
(n)
j ⟩ =

∑
x,y∈Vn

Kn(x, y)ψ
(n)
j (x)ψ

(n)
j (y).

Hence we can think of KOp
n as providing a means to test the correlation of eigenfunctions at

different vertices whose distance is at most D apart.

On the other hand, we can compare this correlation with the correlation of the spherical

function Φ
λ
(n)
j

at different vertices. Consider the following expression:

⟨Kn⟩λ : =
1

card(Gn)

∑
x,y∈Vn

Kn(x, y)Φ̂λ(d(x, y))

=
1

card(Gn)

∑
x∈Vn

∑
y∈Vn s.t. d(x,y)≤D

Kn(x, y)Φ̂λ(d(x, y)). (III.1.1)

Let x ∈ Vn and suppose for simplicity that the injectivity radius of x is at least D. Let

τ : Tq+1 → Gn be a covering map sending v0 to x. Then τ is invertible on a ball of radius

D centered at v0. The inner sum in (III.1.1) thus expresses what the correlation is of the

function Φλ ◦ τ−1 between x and all other vertices in the ball of radius D centered at x as

“tested” via Kn(x, y) (treating Φλ as being centered at x). Then the entire expression in

(III.1.1) is the average of this procedure over all vertices in Gn.

Anantharaman and Le Masson [ALM15] showed that

lim
n→∞

1

N(I,Gn)

∑
ψ
(n)
j :λ

(n)
j ∈I

∣∣∣⟨ψ(n)
j ,KOp

n ψ
(n)
j ⟩ − ⟨Kn⟩λ(n)

j

∣∣∣2 = 0, (III.1.2)

assuming the hypotheses in Theorem I.4 hold with the conditions on an now replaced with
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the conditions given above on Kn. This expression going to zero implies that, for large

graphs and in a weak sense, the eigenfunctions ψ
(n)
j “look like” the spherical function with

the same eigenvalue, which is some sense in the “canonical” choice of eigenfunction with

that eigenvalue on Tq+1. If we restrict to the case of D = 0, then Kn is only non-zero along

its diagonal, in which case KOp
n is equivalent to multiplication by a test function an on the

vertices. Hence we can recover (I.2.1) from (III.1.2).

As explained in [Ana17], there’s a sense in which we should think of these operators

Kn as coming from functions on non-backtracking paths of length at most D in Gn. The

quantity (III.1.1) then provides a “microlocal lift” of the measure |ψ(n)
j |2 from Gn to this

“path space.” We can think of such path spaces as approximations to the “unit tangent

bundle” of Gn, namely the space of (rooted and directed) infinite paths in Gn, which has

on it an ergodic “geodesic flow”. Hence (III.1.2) is more in line with the full version of the

Quantum Ergodicity Theorem I.1 which concerns not only the eigenfunction measures on

the manifold M , but also their microlocal lifts to the unit tangent bundle S∗M (see Remark

I.2). In fact the proof of (III.1.2) originally given in [ALM15] utilized a “microlocal calculus”

on trees developed in [LM14].

III.1.3: The work of Brooks-Le Masson-Lindenstrauss

Brooks-Le Masson-Lindenstrauss [BLML16] reproved Theorem I.4 using a new technique.

Their techniques did not recover the full strength of (III.1.2), but the core ideas of their

technique have subsequently been applied to many other contexts, namely hyperbolic surfaces

[LMS17], rank one locally symmetric spaces [ABLM18], locally symmetric spaces associated

to SL(d,R)/SO(d) [BM21], and, in this work, compact quotients of the Bruhat-Tits building

associated to SL(3, F ). One of the main ideas is to use a sort of “wave propagator” on

regular graphs which roughly preserves the mass of eigenfunctions. This property allows one

to instead analyze the kernel function of certain operators derived from this wave propagator.

See also Chapter III.2.

III.1.4: The work of Nelson [Nel18]

An approach to quantum (unique) ergodicity on regular graphs via p-adic representation

theory can be found in Nelson [Nel18]. He consider a fixed finite regular graph Y arising

as Γ\GL(2,Qp)/GL(2,Zp) for a (necessarily cocompact) arithmetic lattice Γ. Similarly to

the discussion in Chapter III.1.2, for each N he considers the space YN of non-backtracking

paths of length 2N on Y . For each prime ℓ ̸= p, there is an associated Hecke correspondence
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Tℓ coming from the arithmetic structure which we may use to put a graph structure on

this path space. These operators are analogous to the Hecke correspondences on arithmetic

hyperbolic surfaces which were used crucially in Lindenstrauss’ proof of quantum unique

ergodicity [Lin06]. We may think of these spaces YN as providing better and better ap-

proximations to the space Γ\GL(2,Qp) which essentially corresponds to the collection of

bi-infinite non-backtracking paths on Y and which carries an action of the diagonal sub-

group of GL(2,Qp); geometrically this action essentially corresponds to the geodesic flow

on Y . This space is the inverse limit as N → ∞ of the YN ’s. Given an eigenfunction

ϕ of all the Hecke correspondences on YN (more precisely a “newvector”, see Definition 1

in [Nel18]), its pullback to Γ\GL(2,Qp) generates an irreducible subrepresentation under

the GL(2,Qp)-action. Furthermore, we may pullback the measure |ϕ|2 on YN to GL(2,Qp).

Nelson proves that, given a sequence of such eigenfunctions on YN as N → ∞ whose pull-

backs each generate subrepresentations belonging to the “principal series”, then the only

“quantum limit” of the associated pullback measures is the Haar measure on Γ\GL(2,Qp).

Along the way he constructs a representation theoretic “microlocal lift” which, asymptot-

ically as N → ∞, agrees with the above-described lifts of eigenfunction measures on YN

to Γ\GL(2,Qp). This is analogous to representation theoretic microlocal lifts that were

considered in [Zel87, Wol01, Lin06, SV07].

III.2: “Wave propagators” vs. (polytopal) ball averaging operators

Many of the techniques of this paper may be seen to have their origins in [BLML16]

which concerned regular graphs of any degree. However, for the sake of simplifying the

following discussion, we shall only focus on the case of (q + 1)-regular graphs where q is a

power of a prime. In [BLML16] the authors do not work with operators which correspond to

summing up over a ball of radius m but instead consider the operators obtained by plugging

the adjacency operator into the mth Chebyshev polynomial of the first kind. Suppose Cm

is the mth Chebyshev polynomial of the first kind and A is the adjacency operator of

some finite (q + 1)-regular graph. Let ψ be an eigenfunction of A, and hence also an

eigenfunction of the entire spherical Hecke algebra when we identify the (q + 1)-regular

tree with PGL(2, F )/PGL(2,O) and identify ψ with a function on PGL(2, F ) in the usual

way. Suppose ψ has Satake parameters (qs, q−s) with s ∈ (iR)/( 2πi
ln(q)

Z); this implies that
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Aψ =
√
q(qs + q−s). The defining property of Cm implies

Cm

( A
√
q

)
ψ = (qms + q−ms)ψ. (III.2.1)

This remarkable spectral property makes the subsequent analysis in the spectral bound of

the graph case simpler because, when s is fixed and m varies, the eigenvalue associated to

Cm( A√
q
) is a sum of exponentials each of whose exponents depend linearly on m (see Lemma

2.1 in [BLML16]).

An analogous spectral property occurs when one uses the generalized Chebyshev polyno-

mials of the first kind. These polynomials Cλ are indexed by partitions λ = (λ1, . . . , λd = 0).

When G = PGL(d, F ) and K = PGL(d,O), there is a natural generating set for H(G,K)

(as an algebra) given by A1, . . . ,Ad−1 (see Appendix B.7.2). If ψ is an eigenfunction of

H(G,K) with Satake parameters (qs1 , . . . , qsd) with sj ∈ (iR)/( 2πi
ln(q)

Z) and s1 + · · ·+ sd = 0,

then we have that (see Proposition 2.1 in [LSV05b]):

Akψ = qk(d−k)/2τk(q
s1 , . . . , qsd)

where τk is the kth elementary symmetric function. Then the defining property of the

generalized Chebyshev polynomials of the first kind (see Section 6.1 in [Bee91]) tells us that:

Cλ

( A1

q(d−1)/2
,

A2

q2(d−2)/2
, . . . ,

Ad−1

q(d−1)/2

)
ψ = (

∑
σ∈Sd

q(σ.λ,s))ψ. (III.2.2)

Hence, when s is fixed and λ varies, we obtain that the associated eigenvalue is a sum of

exponentials whose exponent is a linear functional in λ.

In Lemma 3.1 of [BLML16] the authors give a geometric interpretation of the operator

in (III.2.1); it involves a sort of weighted sum over a ball of radius m but with some weights

positive and others negative. The analysis required in the geometric bound is dependent

on the initial choice of “wave propagator”. The authors are able to perform the requisite

analysis by direct analysis of the geometry of the regular tree (they also do not use a Nevo-

style ergodic theorem, relying instead on a direct spectral bound on the relevant operators

by passing to an analysis of the non-backtracking random walk).

In the work of [LMS17, ABLM18, BM21], the “wave propagator” used corresponds to

summing up over some sort of (potentially “polytopal”) ball. This is the approach that we

have also used. However, it would be interesting to try to carry out the argument instead
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using the operators defined in (III.2.2). This would simplify the proof of the spectral bound,

but would result in new complications in the geometric bound; in fact it is not clear what the

geometric interpretation of these operators is. Given that the operators defined in (III.2.1)

have been interpreted as the “right” analogue of wave propagation on regular graphs, and

their utility in the proof of quantum unique ergodicity [Lin06, BL14], further analyzing

the operators in (III.2.2) may be of interest in their own right and may connect to “wave

propagation” on buildings.

III.3: The metric ball in a tree as a “polytopal ball”

Consider the Bruhat-Tits tree Tq+1 associated to G = PGL(2, F ) (see Appendix B.8).

Let K = PGL(2,O). Recall that A+ < G is those matrices of the form diag(ϖλ1 , ϖλ2) with

λ1 ≥ λ2. Because we may shift both entries of (λ1, λ2) by the same integer amount and

obtain the same element in G, we may parametrize A+ via N with λ ∈ N corresponding

to diag(ϖλ, 1) ∈ A+. The Weyl-chamber valued metric now takes values in N and in fact

exactly agrees with the Euclidean metric on Tq+1 (normalized so that adjacent vertices are

distance 1 apart).

We may in turn identify A with lattice points Z · (1/2,−1/2) ⊂ a with

a = {(x1, x2) : x1 + x2 = 0}.

We let a+ = {(x1, x2) ∈ a : x1 ≥ x2}. Then we may identify elements in A+ with elements

of the form N · (1/2,−1/2).

An alternate way of coordinatizing a is in terms of the basis {(1/2,−1/2)} in which case

the lattice in question is simply Z; we call this coordinatization the cone coordinates, and

the original coordinatization the a-coordinates. The interval Pm = [0,m] in cone coordinates

is a convex lattice polytope and we may take the Pm-shaped ball centered at 1K ∈ G/K.

This is exactly the same as the (vertices of the) metric ball in T of radius m centered at 1K.

III.4: Spectral bound for averaging over a ball (including on the

exceptional locus of the tempered spectrum)

Suppose we have a sequence of finite (q + 1)-regular graphs which may be realized as

quotients of the Bruhat-Tits tree for PGL(2, F ). We wish to present a reworking of some
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steps of the proof of Theorem I.4 (Quantum Ergodicity on Large Regular Graphs) but in

such a way as to motivate some of the new ideas which are involved in the PGL(3, F ) case.

Let

S := (iR)/
( 2πi

ln(q)
Z
)
.

We can parametrize Ω+
temp as:

Ω+
temp := {(qs, q−s) : s ∈ S}/S2,

where S2 acts by permuting the coordinates. Topologically this corresponds to an interval

(an alternate and perhaps more standard way to parametrize the tempered spectrum is by

the interval [−2
√
q, 2

√
q] = {q1/2+s + q1/2−s : s ∈ S}).

Let Em be the ball of radius m centered at 1K, and let Um be the operator (on the tree)

corresponding to summing up over a ball of radius m. Suppose ψs is an eigenfunction of

H(G,K) with associated spectral parameter (qs, q−s) as above. Let hm(s) be defined by the

equation Umψs = hm(s)ψs. Then, by following a completely identical procedure to Chapter

II.2.2, we are naturally led to analyzing

1

M

M∑
m=1

|hm(s)|2

card(Em)
.

Proposition III.1. For all (qs, q−s) ∈ Ω+
temp we have

1

M

M∑
m=1

|hm(s)|2

card(Em)
≳M 1,

with the implied constant not depending on s or M .

Sketch of proof. We may compute hm(s) using the spherical function. We obtain

hm(s) =
m∑
d=0

q
d
2

ν(d,0)(q−1)
(qs·dc(s) + q−s·dc(−s)),

where

c(s) =
qs − q−1q−s

qs − q−s
,
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and ν(d,0)(q
−1) = 1 if d ̸= 0 and ν(d,0)(q

−1) = 1 + q−1 is d = 0.

Using geometric series, we get that

hm(s) = c(s)
q(m+1)(s+ 1

2
) − 1

qs+
1
2 − 1

+ c(−s)q
(m+1)(−s+ 1

2
) − 1

q−s+
1
2 − 1

+
( 1

1 + q−1
− 1
)

(c(s) + c(−s))

≈ q
m
2

( c(s)

qs+
1
2 − 1

qms +
c(−s)
qs−

1
2 − 1

q−ms
)
,

card(Em) ≈ qm.

Hence,

hm(s)√
card(Em)

≈ κ(s)qms − κ(−s)q−ms,

where

κ(s) :=
c(s)

qs+
1
2 − 1

.

We also define

κ′(s) :=
qs − q−1q−s

qs+
1
2 − 1

so that κ(s) = κ′(s)/(qs − q−s).

There are two “exceptional points” where the above formulas no longer work: (1, 1) and

(−1,−1), namely s = 0 and s = iπ/ ln(q). We shall separate the analysis into those points

which are of distance of order at least 1
M

away from these points, and those which are a

distance of order at most 1
M

away.

Let A > 0 be some constant. Suppose s is such that |qs − 1| ≥ A
M

. We then have:

1

M

M∑
m=1

|hm(s)|2

card(Em)
≈ 1

M

M∑
m=1

|κ(s)qms + κ(−s)q−ms|2

≈ |κ(s)|2 + |κ(−s)|2 + κ(s)κ(−s) qMs − 1

M(qs − 1)
+ κ(s)κ(−s) q−Ms − 1

M(q−s − 1)
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≥ |κ(s)|2 + |κ(−s)|2 − |κ(s)||κ(−s)|

(∣∣∣ qMs − 1

M(qs − 1)

∣∣∣+
∣∣∣ q−Ms − 1

M(q−s − 1)

∣∣∣)
≥ 1

|qs − q−s|2
(|κ′(s)|2 + |κ′(−s)|2 − 2

A
(sup

r
|κ′(r)|)2

Because |κ′(r)| is bounded on Ω+
temp, we get that we can choose A large enough that

1

M

M∑
m=1

|hm(s)|2

card(Em)
≥ 1

2
(|κ(s)|2 + |κ(−s)|2). (III.4.1)

The right hand side of (III.4.1) has a universal positive lower bound.

Notice that, for M large, |qs − 1| ≳ 1
M

implies |s| ≳ 1
M

. Hence the above shows that

we can find a universal lower bound on the quantity of interest (which depends on M) for

points which whose distance from s = 0 is of order 1
M

.

We now consider points whose distance from s = 0 is of size at most 1
M

. For these points

we employ a different strategy. First note that by Cauchy-Schwarz we have:

∣∣∣ 1

M

M∑
m=1

hm(s)√
card(Em)

∣∣∣2 ≤ 1

M

M∑
m=1

|hm(s)|2

card(Em)
.

On the other hand we have

1

M

M∑
m=1

hm(s)√
card(Em)

≈ κ(s)
qsM − 1

M(qs − 1)
+ κ(−s) q−sM − 1

M(q−s − 1)
. (III.4.2)

Let s = t
M

. By a L’Hopital argument, one can show that

lim
M→∞

1

M

(
κ
( t

M

) qt − 1

M(q
t
M − 1)

+ κ
(
− t

M

) q−t − 1

M(q−
t
M − 1)

)
=

1 − q−1

q
1
2 − 1

(qt − 1) + (q−t − 1)

2 ln(q)2t2
,

and the convergence is uniform on compact sets such as |t| ≤ B. The term in the limit on

the left hand side is exactly (III.4.2) divided by M . Also notice that the term on the right

hand side has a positive limit as t → 0 and is in fact positive for all t values. We therefore

can find a positive lower bound of the form C2 ·M for all s such that |s| ≤ B
M

for any B.

Combining this with (III.4.1) (taking B ≥ A), we obtain the result (a similar argument can

be carried out near s = iπ/ ln(q)).

Remark III.2. Notice that in contrast to Proposition II.1 (the Spectral Bound for the
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PGL(3, F ) case), here we have obtained a spectral bound for the entire tempered spectrum

including the “exceptional locus” {(1, 1), (−1,−1)}. We strongly believe that the methods

presented here for the spectral bound can be adapted to strengthen Proposition II.1 to also

hold on the exceptional locus, and we have made a lot of progress in this direction; we are

still in the process of writing up these results. See also Remark III.2.

III.5: The geometric bound on the regular tree

In order to motivate the method of proof for the geometric bound, we shall present a

proof of the geometric bound on the tree using the same method that we employ in rank

2. As in Chapter III.4, we use the metric ball to define our “wave propagator.” One may

perform a similar analysis to that carried out in Chapters II.2.10, II.2.11, and II.2.12 to

reduce to computing the size of sets of the form

Er
m := Em ∩ϖ(r,0)Em.

Notice that in a-coordinates dA+(1K,ϖ(r,0)K) = (r/2,−r/2).

The polytope Pm defining Em is the interval [0,m] in cone coordinates, or equivalently

the convex hull of (0, 0) and (m
2
,−m

2
) in a-coordinates. We have that

δ =
(1

2
,−1

2

)
in a-coordinates, and the vertex of Pm maximizing (δ, ·) is

p† :=
(m

2
,−m

2

)
in a-coordinates. The analogue of Proposition II.15 (Upper Bound on card(Eλ

m)) is the

following:

Proposition III.3. We have

card(Er
m) ≲ q(2δ,m·p†− 1

2
( r
2
,− r

2
)) = qm− r

2 ,

where the implied constant does not depend on m or r.

We now describe the steps of the procedure from Chapter II.2.13 as applied to bounding

card(Er
m).
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III.5.1: Classify triples of points

Given two points x, y ∈ T , there is a unique geodesic segment connecting them which

we denote by geod(x, y); this is the rank one analogue of the parallelograms used later in

Chapter IX.4. We say that (x, y; z) forms a primitive triple if geod(x, z) ∩ geod(y, z) = {z}.

We claim that that the only such triples are (x, y; z) such that z ∈ geod(x, y). To see this,

note that geod(x, z)∩geod(y, z) is a geodesic segment. One of the endpoints of this geodesic

segment is z, and the other, call it w, must be closer to x and y than z is. The initial

edge of the geodesic from w to x and the initial edge of the geodesic from w to y must be

distinct (otherwise there would be additional points in geod(x, z)∩ geod(y, z)). Therefore in

concatenating these geodesics, we must obtain the unique geodesic from x to y which is to

say that z lies along this geodesic.

III.5.2: Coordinatization of triples of points

Now given any triple of points (x, y; z), we may associate a confluence-branch point w,

namely the unique vertex on geod(x, y) contained in geod(x, z)∩geod(y, z); this terminology

is such because w is simultaneously playing the role of the confluence point and the branch

line as in the discussion in Chapter X.2. Let a = d(x,w) and let b = d(w, z). Let r = d(x, y).

We thus have that d(x, z) = a+ b and d(y, z) = (r − a) + b.

Now consider the intersection of two balls of radius m, one centered at x and the other at

y (with d(x, y) = r). For each point z in the intersection, we can associate to it a confluence-

branch point w and a tuple (a, b). The collection of coordinates (a, b) which show up this

way for some m and some r is exactly the integer lattice points satisfying:

a+ b ≤ m

(r − a) + b ≤ m

a ≤ r

m, r, a, b ≥ 0. (III.5.1)

When m and r are fixed, the shape of the corresponding intersection of balls looks like

Figure 1. The collection of allowable (a, b)’s corresponds to lattice points in a polytope whose

“type” is as in Figure 2 (actually there are two possible types depending on whether or not

r ≥ m).
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x y

Figure 1: This figure shows the intersection in a 3-regular tree (hence q = 2) of two balls
of radius 8 centered at two points x, y whose distance apart is 6 (hence r = 6 and m = 8).
The red edges represent the geodesic segment connecting x and y. The possible confluence-
branch points are the points along these red edges. We may associate coordinates (a, b) to
each point. All points which receive the same coordinates are colored with the same color.
Notice that the greatest contribution comes from those vertices whose confluence-branch
point is the midpoint of the geodesic segment joining x and y.

(0, 0)

( r
2
,m− r

2
)

Figure 2: The collection of possible coordinates (a, b) of vertices in Figure 1 corresponds to
lattice points in a convex polytope as below. We have colored each lattice point with the
same color as all vertices in Figure 1 which receive those coordinates. As we vary r and m
(but keep satisfying r ≤ m), then all of the resulting polytopes have the same “type” (see
Appendix C.2.1).
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III.5.3: Counting the number of points with a given set of coordinates

Suppose m and r are fixed. The points z whose associated coordinates are (a, b) are

exactly those vertices which are obtained by taking b steps away from the geodesic joining

x and y starting from the point along this geodesic whose distance from x is a. At the first

step we have (q − 1) choices (unless a = 0 or a = r in which case we have q choices), and

every subsequent step we have q choices. Therefore

#{z with coordinates (a, b)} ≤ qb. (III.5.2)

III.5.4: Identifying the dominating term

We now wish to understand what the greatest value that b can take is on the lattice

points in the polytopes in (III.5.1). If we branch at some vertex w with d(x,w) = a, then

we may take at most min{m− a,m− r − a} steps. The greatest this can ever be is exactly

when a = r
2
, namely w is exactly the midpoint of the geodesic from x to y, in which case we

may take exactly m− r
2

steps.

III.5.5: Bounding the size of the intersection of balls

We now wish to bound card(Er
m). By (III.5.2), we know that we can bound this quantity

by the sum of qb over the lattice points (a, b) in the associated polytope. If we restrict to the

case of r ≤ m (as in Figure 2), then all of the associated polytopes have the same type. We

always have a vertex at (r/2,m − r/2). The cone generated by this vertex in the polytope

contains the rest of the polytope; as we vary over polytopes in this family, we always get the

same cone but shifted; see Figure 3. It is straightforward to see that the sum of qb over the

lattice points in this cone is bounded by (see C.3.2):

(1 + q−1)

(1 − q−1)(1 − q−1)
qm− r

2 .

This hence provides an upper bound on card(Er
m).
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Figure 3: In this figure, the vertex of the cone has coordinates (r/2,m − r/2), the purple
polytope is the same as the polytope from Figure 2, and the red cone is the cone generated
by the rays at the vertex in that polytope.
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CHAPTER IV

Spectral Bound for Polytopal Ball Averaging

Operators

IV.1: Parametrization of the tempered spectrum

Let S be defined as:

S := {(s1, s2, s3) : sj ∈ (iR)/
( 2πi

ln(q)
Z
)

and s1 + s2 + s3 = 0
(

mod
2πi

ln(q)
Z
)
}.

Notice that we may naturally view S as a two-torus. Given s = (s1, s2, s3) ∈ S, we define

qs := (qs1 , qs2 , qs3).

Then qs parametrizes the tempered spectrum Ω+
temp uniquely up to permuting coordinates;

this essentially corresponds to the Satake parameters (see Appendix A.4.3). Hence Ω+
temp

corresponds to the two-torus corresponding to S quotiented by the S3-action of permuting

the coordinates.

In the sequel we shall let σ.s with σ ∈ S3 denote the associated permutation of the entries

(not the indices), e.g. (1 2 3).(s1, s2, s3) = (s3, s1, s2). Notice that entrywise multiplication

by −1 is well-defined on S. We shall, e.g., use the notation −σ.s mean the result of applying

σ to the entries of s, and then multiplying each entry by −1.

IV.2: The exceptional locus

The exceptional locus Ξ ⊂ Ω+
temp is composed of two pieces:

Ξ1 := {qis : σ.s = s for some σ ̸= 1 in S3}/S3,
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Ξ2 := {qis : q(p
†,−σ1.s+σ2.s) = 1 for some σ1, σ2 ∈ S3}/S3.

See Figure 4 for a visualization of Ω+
temp.

Ξ1

Ξ2

Ω+
temp

Figure 4: The red hexagon represents a fundamental domain for the hexagonal lattice in
R2 (represented by the black dots). We may naturally identify this fundamental domain
with S (or equivalently with {qs : s ∈ S}). The blue region is a fundamental domain for
the S3-action of permuting the coordinates and hence provides a realization of Ω+

temp. The
brown lines in the blue region correspond to the locus Ξ1, and the green line in the blue
region corresponds to Ξ2.

IV.3: Explicit formula for |hm(s)|2

Suppose Y = Γ\G/K. Let ψs be an eigenfunction of the H(G,K)-action on L2(Y ) with

spectral parameter qs ∈ Ω+
temp. We may think of ψs as a (Γ, K)-invariant function on G. Let

ωs be the spherical function with spectral paramter qs. For any function h ∈ H(G,K), we
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know that ψs ∗ h = ĥ(s)ψs with ĥ(s) := (ωs ∗ h)(1). On the other hand, we know that

gλ(s) := (ωs ∗ 1KϖλK)(1) = q(δ,λ)Pλ(q−s1 , q−s2 , q−s3 ; q−1)

where ϖλ ∈ A+ and Pλ is the Hall-Littlewood polynomial associated to λ = (λ1, λ2, λ3) (see

Appendix A.2.3). Plugging in the explicit formula for Pλ, we obtain

gλ(s) =
q(λ,δ)

νλ(q−1)

∑
σ∈S3

σ.
(
q(λ,−s)

∏
j<k

q−sj − q−1q−sk

q−sj − q−sk

)
=

1

νλ(q−1)

∑
σ∈S3

(
c
(
− σ.s

)
q(λ,δ−σ.s)

)
,

where the c-function c(s) is defined as

c(s) =
∏
j<k

qsj − q−1qsk

qsj − qsk
, (IV.3.1)

and

νλ(q−1) = 1 if λ1 > λ2 > λ3,

νλ(q−1) = 1 + q−1 if λ1 = λ2 > λ3 or λ1 > λ2 = λ3,

νλ(q−1) = (1 + q−1)(1 + q−1 + q−2) if λ1 = λ2 = λ3.

(IV.3.2)

We are in particular interested in computing hm(s), which is defined by ψs ∗ 1Em =

hm(s)ψs. Hence hm(s) = (ωs ∗ 1Em)(1). On the other hand

1Em =
∑
λ∈PΛ

m

1KϖλK .

We therefore arrive at the formula

hm(s) =
∑
σ∈S3

∑
λ∈PΛ

m

1

νλ(q−1)

(
c
(
− σ.s

)
q(λ,δ−σ.s)

)
.

If s ∈ S and σ ∈ S3 are fixed and we ignore the factor 1
νλ(q−1)

, then the inner sum reduces

to a sum of an exponential function over PΛ
m and hence may be handled by Brion’s formula

(see Appendix C.3). However, νλ(q−1) is not constant in λ: it is 1 on the interior of the Weyl

chamber a+, it is 1 + q−1 on the intersection of Λ with the interior of each extremal ray of
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a+, and it is (1 + q−1)(1 + q−1 + q−2) at the base vertex of a+ namely (0, 0, 0) ∈ a. Therefore,

using inclusion-exclusion and the labels as in Figure 5, we can write

hm(s) =
∑
σ∈S3

c(−σ.s)

( ∑
λ∈PΛ

m

q(λ,δ−σ.s)

+
( 1

1 + q−1
− 1
) ∑
λ∈(e1,2)Λm

q(λ,δ−σ.s)

+
( 1

1 + q−1
− 1
) ∑
λ∈(e1,3)Λm

q(λ,δ−σ.s)

+
( 1

(1 + q−1)(1 + q−1 + q−2)
− 1 − 2

( 1

1 + q−1
− 1
)))

.

p1

p2

p3 = p†

e1,2

e1,3

e2,3

Figure 5: This shows the vertices and edges of P .

We can use Brion’s formula to compute each term:

hm(s) =
∑
σ∈S3

c(−σ.s)

( ∑
j∈{1,2,3}

σ(ConeP (pj); δ − σ.s)qm(pj ,δ−σ.s)

+
( 1

1 + q−1
− 1
) ∑
j∈{1,2}

σ(Conee1,2(pj); δ − σ.s)qm(pj ,δ−σ.s)

+
( 1

1 + q−1
− 1
) ∑
j∈{1,3}

σ(Conee1,3(pj); δ − σ.s)qm(pj ,δ−σ.s)

48



+
( 1

(1 + q−1)(1 + q−1 + q−2)
− 1 − 2

( 1

1 + q−1
− 1
)))

.

IV.4: The cardinality of Em

Now let’s compute card(Em). We have that (see (II.2.11)):

Nλ := vol(KϖλK) = q2(λ,δ)
ν3(q

−1)

νλ(q−1)
,

where ν3(q
−1) is given by (A.2.2); notice that it is non-zero and does not depend on λ. Using

the same style of analysis as before, we get that

card(Em) =
∑
λ∈PΛ

m

Nλ

= ν3(q
−1)

( ∑
j∈{1,2,3}

σ(ConeP (pj); 2δ)q2m(pj ,δ)

+
( 1

1 + q−1
− 1
) ∑
j∈{1,2}

σ(Conee1,2(pj); 2δ)q2m(pj ,δ)

+
( 1

1 + q−1
− 1
) ∑
j∈{1,3}

σ(Conee1,3(pj); 2δ)q2m(pj ,δ)

+
( 1

(1 + q−1)(1 + q−1 + q−2)
− 1 − 2

( 1

1 + q−1
− 1
)))

(IV.4.1)

IV.5: Proof of Propositions II.13 and II.14

Proof of Proposition II.13 (Upper Bound on Nλ). From (A.3.2) and (IV.3.2), it is clear that

Nλ ≤ ν3(q
−1)q2(δ,λ).

Proof of Proposition II.14 (Lower Bound on card(Em)). Recall that card(Em) is computed

by summing up Nλ over PΛ
m. Furthermore Nλ is positive for every λ. We always have
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m · p† ∈ PΛ
m. If m ≥ 1, then

Nm·p† =
ν3(q

−1)

1 + q−1
q2(δ,m·p†) ≤ card(Em).

If m = 0 we get

Nm·p† = 1 = q2(δ,m·p†) = card(Em).

IV.6: Proof of Proposition II.1

Proof of Proposition II.1 (Spectral Bound). We wish to find a lower bound for

1

M

M∑
m=1

|hm(s)|2

card(Em)
.

We first seek to bound |hm(s)|2
card(Em)

. Analyzing Figure 5, we see that p† is the unique vertex of

P maximizing |q(λ,δ−σ.s)| (recall that q(λ,s) is on the unit circle), and that p† = p3 is part of

P and e1,3. Furthermore, observe that the c-function (IV.3.1) is holomorphic away from Ξ1.

Hence because we are assuming that Θ is a compact subset not meeting Ξ1, we conclude

that the norm of the c-function has a universal upper bound on Θ. Also note that all of

the terms of the form σ(C; δ − w.s), where C is some cone, are independent of m and also

universally upper bounded in norm for all qs ∈ Θ (in fact for all qs ∈ Ω+
temp). Therefore, we

obtain

hm(s) =
( ∑
σ∈S3

κ(σ.s)qm(p†,−σ.s)
)
qm(δ,p†) +R1(m, s)q

m((p†,δ)−η1), (IV.6.1)

where

κ(s) = c(−s)
[
σ(ConeP (p†); δ − s) −

σ(Conee1,3(p
†); δ − s)

q + 1

]
, (IV.6.2)

and R1(m, s) is some function which is universally bounded for all m and all qs ∈ Θ, and η1

is some positive constant.
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Since we also have that κ(σ.s) is bounded for all σ ∈ S3 and qs ∈ Θ, we get that

|hm(s)|2 =
∣∣ ∑
σ∈S3

κ(σ.s)qm(p†,−σ.s)∣∣2q2m(δ,p†) +R2(m, s)q
2m((p†,δ)−η2),

where R2(m, s) is some function which is universally bounded for all m and all qs ∈ Θ, and

η2 is some positive constant.

We now analyze card(Em). Again, because p† is the unique vertex in P maximizing

q2(λ,δ), we see that

card(Em) = (D +R3(m))q2m(δ,p†),

where

D = ν3(q
−1)

(
σ(ConeP (p†); 2δ) + (

1

1 + q−1
− 1)σ(Conee1,3(p

†); 2δ)

)
, (IV.6.3)

and R3(m) → 0 as m→ ∞. A straightforward calculation shows that D is positive.

Therefore, using the identity

C1

C2 +R
=
C1

C2

− C1R

C2(C2 +R)
,

we obtain

|hm(s)|2

card(Em)
=

|
∑

σ∈S3
κ(σ.s)qm(p†,−σ.s)|2q2m(δ,p†) +R2(m, s)q

2m((p†,δ)−η2)

(D +R3(m))q2m(δ,p†)

=
|
∑

σ∈S3
κ(σ.s)qm(p†,−σ.s)|2

D

−
|
∑

σ∈S3
κ(σ.s)qm(p†,−σ.s)|2R3(m)

D(D +R3(m))
+

R2(m, s)

(D +R3(m))q2m·η2
. (IV.6.4)

Because R3(m) → 0 as m→ ∞, it is clear that given ε > 0, there exists an M0 such that for

all m ≥ M0 and for all qs ∈ Θ, the first term in (IV.6.4) is bounded in absolute value by ε.

Furthermore, since η2 > 0, it is also clear that there exists an M1 such that for all m ≥ M1

and for all s ∈ Θ, the second term in (IV.6.4) is bounded in absolute value by ε.
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Let R4(m, s) equal (IV.6.4). We define R5(m):

R5(m) := sup
{s:qs∈Θ}

|R4(m, s)|.

It is clear that R5(m) → 0 as m→ ∞. We therefore have that for all qs ∈ Θ,

∣∣∣ 1

M

M∑
m=1

R4(m, s)
∣∣∣ ≤ 1

M

M∑
m=1

R5(m) → 0

as m→ ∞.

In the sequel we shall prove the following lemma:

Lemma IV.1. There exist an M2 ∈ N and C > 0 such that for all M ≥ M2 and for all

qs ∈ Θ,

1

M

M∑
m=1

∣∣∣ ∑
σ∈S3

κ(σ.s)qm(p†,−σ.s)
∣∣∣2 ≥ C.

Given this lemma we can finish the proof of Proposition II.1. Let M3 be such that for all

M ≥M3, we have

1

M

M∑
m=1

R5(m) ≤ C

2D
,

with C given by Lemma IV.1 and D given by (IV.6.3). We then have that if M ≥ M2 and

M ≥M3, then

1

M

M∑
m=1

|hm(s)|2

card(Em)
=

1

M

M∑
m=1

|
∑

σ∈S3
κ(σ.s)qm(p†,−σ.s)|2

D
+

1

M

M∑
m=1

R4(m, s)

≥ C

D
− C

2D

=
C

2D
.

Proof of Lemma IV.1. Recall that p† = (4/3,−2/3,−2/3), which is fixed by the permutation

(23) (and the trivial permutation). Let L = {1, (23)}. Notice that if σ1σ
−1
2 ∈ L (i.e. σ1

and σ2 send the same element to 1), then q(p
†,−σ1.s+σ2.s) = 1. Notice also that κ(s) = κ(−s).
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Therefore we shall expand and group terms as follows

1

M

M∑
m=1

∣∣∣ ∑
σ∈S3

κ(σ.s)qm(p†,−σ.s)
∣∣∣2 =

1

M

M∑
m=1

∑
σ1,σ2∈S3

κ(σ1.s)κ(−σ2.s)qm(p†,−σ1.s+σ2.s)

=
∑
σ∈S3

|κ(σ.s)|2 +
∑
σ∈S3

κ(σ.s)κ
(
− (23)σ.s

)
+ r.t.

=
∑

right cosets L.σ

|κ(σ.s) + κ
(
(23)σ.s

)
|2 + r.t., (IV.6.5)

where r.t. stands for remainder terms. We wish to show that the sum in (IV.6.5) is non-zero.

Evidently this amounts to showing that at least one κ(σ.s) + κ
(
(23)σ.s

)
̸= 0 for every s.

Recall that s = (s1, s2, s3) with s1 + s2 + s3 = 0 and each si purely imaginary and only

defined up to 2πiZ/ ln(q). For the polytope P , the coprime generators for the rays generating

the cone at p† are {(−2
3
, 1
3
, 1
3
), (−1, 1, 0)}. For the polytope e1,3, the coprime generator for

the ray generating the cone at p† is (−2
3
, 1
3
, 1
3
). Therefore, using (C.3.1), we obtain

σ(ConeP (p†); δ − s) =
1

1 − q(δ−s,(−
2
3
, 1
3
, 1
3
))
· 1

1 − q(δ−s,(−1,1,0))

=
1

1 − q−1+s1
· 1

1 − q−1+s1−s2
, (IV.6.6)

σ(Conee1,3(p
†); δ − s) =

1

1 − q(δ−s,(−
2
3
, 1
3
, 1
3
))

=
1

1 − q−1+s1
. (IV.6.7)

Using (IV.3.1), (IV.6.2), (IV.6.6), and (IV.6.7), we can perform a change a variables

x1 = q−s1 , x2 = q−s2 , x3 = q−s3 , t = q−1 and write each term as a rational function in these

variables. We also have the condition x1x2x3 = 1 coming from q−s2−s2−s3 = 1. Using a

computer algebra system (such as Mathematica), we find for example that κ(s) + κ
(
(23).s

)
becomes

x1(x
2
1 − t3x2x3)

(−t+ x1)(x1 − x2)(x1 − x3)
.

If this were zero, then x1(x
2
1 − t3x2x3) = 0. Then x31 = t3x1x2x3 = t3. However, x1 is on the

unit circle, and t3 = 1
q3
< 1. Hence this expression is never zero on the locus of interest to

us.

Now we focus on the remainder terms which are all of the form:

1

M

M∑
m=1

(
κ(σ1.s) + κ

(
(23)σ1.s

))(
κ(σ2.s) + κ

(
(23)σ2.s

))
qm(p†,−σ1.s+σ2.s),
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where σ1, σ2 satisfy L.σ1 ̸= L.σ2. Since Θ does not intersect Ξ1, and hence the c-function is

bounded on Θ, we get the following bound for all qs ∈ Θ:∣∣∣(κ(σ1.s) + κ
(
(23)σ1.s

))(
κ(σ2.s) + κ

(
(23)σ2.s

))∣∣∣ ≤ F

for all choices of σ1 and σ2, and some F . Furthermore, since Θ does not intersect Ξ2, we get

that

|q(p†,−σ1.s+σ2.s) − 1| ≥ η > 0,

for all qs ∈ Θ, all choices of σ1 and σ2, and some η > 0. Therefore, using geometric series, we

get that each remainder term (of which there are finitely many) can be uniformly bounded

by an expression of the form

F
qM(p†,−σ1.s+σ2.s) − q(p

†,−σ1.s+σ2.s)

M(q(p†,−σ1.s+σ2.s) − 1)
≤ 2F

Mη
.

This bound goes to zero as M → ∞. Hence Lemma IV.1 is proven.
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CHAPTER V

Benjamini-Schramm Convergence and Plancherel

Convergence

V.1: Benjamini-Schramm convergence implies Plancherel conver-

gence

V.1.1: Plancherel sequences

Suppose M is a topological group. Let M̂ denote the collection of irreducible unitary

representations of M ; it is a topological space with respect to the Fell topology (see Appendix

A.5.4). Suppose Γ is a cocompact lattice in M . We then have

L2(Γ\M) =
⊕
ρ∈M̂

NΓ(ρ)ρ

with each NΓ(ρ) finite, and only countably many of them non-zero. Let C∞
c (M) denote space

of test functions on M (see, e.g., Definition 1.2 of [Dei18]); in case M = PGL(d, F ), then

C∞
c (M) is the set of compactly supported locally constant functions on M . Each f ∈ C∞

c (M)

defines an operator on each ρ (in Appendix A.10.3 this is denoted by f̂(ρ)), and hence also

on L2(Γ\M); it turns out this operator is in fact trace class ([DE09], Theorem 9.3.2).

We shall define a measure on M̂ , called the spectral measure associated to Γ, by

νΓ =
∑
ρ∈M̂

NΓ(ρ)δρ,

where δρ is the indicator function for ρ ∈ M̂ . Suppose (Γn) is a sequence of cocompact

lattices and assume that M is type I (see Appendix A.10.2). We say that (Γn) is a Plancherel
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sequence if, for every f ∈ C∞
c (M),

1

vol(Γn\M)

∫
M̂

Tr[f̂(ρ)] dνΓn(ρ) →
∫
M̂

Tr[f̂(ρ)] dν(ρ),

where ν is the Plancherel measure. We refer to this type of convergence as Plancherel

convergence.

Remark V.1. When M is a product of groups, each one a linear reductive group over a local

field of characteristic zero, then Plancherel convergence implies that

1

vol(Γn\M)
νΓn(E) → ν(E) (V.1.1)

for every E which is relatively compact and ν-regular with respect to the Fell topology (see

Remark 1.6 of [Dei18] and Theorem 10.2 of [GL18] which both cite the Sauvageot density

principle [Sau97]). See also Remark V.4

V.1.2: Benjamini-Schramm convergence

We say that (Γn) Benjamini-Schramm converges to {1} if, for every compact subset

C ⊂M ,

vol({x ∈ Γn\M : x−1(Γn \ {1})x ∩ C ̸= ∅})

vol(Γn\M)
→ 0.

Here in the numerator we are using the volume on Γn\M since the set in question is clearly

(Γn, 1)-invariant.

On the other hand, suppose (Γn\G/K) is a sequence of compact quotients of the Bruhat-

Tits building. As discussed previously, we say this sequence Benjamini-Schramm converges

to G/K if, for every R > 0,

card({x ∈ Γn\G/K : InjRadΓn\G/K(x) ≤ R})

card(Γn\G/K)
→ 0.

Proposition V.2. The sequence of lattices (Γn) Benjamini-Schramm converges to {1} if

and only if the sequence of spaces (Γn\G/K) Benjamini-Schramm converges to G/K.

Proof. The proof of Proposition 2.4 in [Dei18] also works in this case.
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V.1.3: Uniform discreteness

We say that (Γn) is uniformly discrete if there exists a neighborhood U of the identity

such that x−1Γnx ∩ U = {1} for every n and for every x ∈ M . In the case that M is

a semisimple algebraic group over a non-archimedean local field of zero characteristic, any

sequence of lattices is uniformly discrete (see Remark 1.6 of [GL18] and the Remark on p. 1

of [PT21] which both draw from [Mar91]).

V.1.4: Statement of theorem

Theorem V.3 ([Dei18] Theorem 2.6; see also Theorem 1.3 of [GL18]). Suppose (Γn) is a

sequence of cocompact, uniformly discrete lattices in a locally compact group M . Then the

following are equivalent

(1) (Γn) is a Plancherel sequence.

(2) (Γn) Benjamini-Schramm converges to {1}.

V.2: The Fell topology vs. the Euclidean topology on Ω+
temp

Now let G = PGL(3, F ) as before. Let Ω+ denote the class 1 representations of G, or

equivalently the elements in Ĝ containing a K-fixed vector (see Appendix A.6). Recall that

Ω+
temp ⊂ Ω+ denotes the tempered representations. Elements of Ω+ all arise as subquotients

of representations Iχ as in Proposition A.7 which are induced from (not necessarily unitary)

characters χ of a torus. Further, up to the S3-action of permuting coordinates, each element

in Ω+ is associated to a unique χ. By Theorem A.17, the Plancherel measure of G restricted

to Ω+ is supported on Ω+
temp, and the χ associated to these latter representations are all

unitary characters. We shall let ĜP denote the collection of all unitarizable irreducible

subquotients of any Iχ (the subscript P appears here because ĜP relates to the minimal

parabolic subgroup which consists of all upper triangular matrices in G).

On Ω+ we have two natural topologies: the Fell topology and the topology of (pointwise)

convergence of the underlying χ. We shall call this second topology the Euclidean topology.

In this paper we shall work with Euclidean compact subsets of Ω+
temp. In light of Remark

V.1, we wish to show that such sets are relatively compact and ν-regular with respect to

the Fell topology. Along the way of showing this we shall partially elucidate the relationship

between these two topologies.
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Note that the Fell topology in general is not Hausdorff. See [Fol95] (specifically Figure

7.3 on p. 247) for an illustrative picture of the Fell topology for SL(2,R) (of particular

note in this picture is that as we move towards one end of the complementary series, we

converge to three different points: the trivial representation and two mock discrete series

representations). These non-Hausdorff points can be understood as arising from the fact

that, e.g., the Iχ may have several distinct irreducible unitarizable subquotients (at most d!

of them for PGL(d, F ); see, e.g., [Cas95] Corollary 7.2.3).

The following result of Tadic [Tad83b] explains much of the connection between the two

topologies. It essentially tells us that convergence in the Fell topology implies convergence

in the Euclidean topology.

Proposition V.4 ([Tad83b], Theorem 5.6). Suppose (ρn, Vn) is a sequence in Ĝ converging

in the Fell topology to some irreducible subquotient of Iχ (i.e. a point in ĜP ). Then past

some point all of the (ρn, Vn) are irreducible subquotients of some Iχn (i.e. lie in ĜP ) and

χn → χ.

It is known that Ĝ is first countable ([Tad87], p. 388), and that in first countable spaces,

the closure of a set is the set of sequential limit points.

Lemma V.5. The set Ω+ ⊂ Ĝ is open in the Fell topology.

Proof. We shall show that (Ω+)c is closed. Suppose ρn → ρ with ρn ∈ (Ω+)c. This means

that ρ ≺ ⊕ρn by Proposition A.10. Suppose for the sake of contradiction that ρ contains

a K-fixed vector (i.e. ρ ∈ Ω+). We know that ρ|K ≺ ⊕ρn|K , and since K is compact,

weak containment implies strong containment ([BdlHV08], Appendix F). Since ρ|K contains

a trivial representation, so must one of the ρn|K , i.e. one of them contains a K-fixed vector,

which would contradict the fact that ρn /∈ Ω+.

Lemma V.6. Suppose U ⊂ Ω+ is open in the Euclidean topology. Then it is also open in

the Fell topology.

Proof. Let U ′ = Ω+ \ U . This set is clearly closed in the Euclidean topology (on Ω+). Let’s

compute its closure in the Fell topology. If ρn → ρ in the Fell topology, then we have χn → χ

for the associated torus characters by Proposition V.4. But this is the same as convergence

in the Euclidean topology, i.e. the class 1 subquotient of Iχ must be in U ′. Therefore U ′ is

closed in the Fell topology, so (U ′)c is open in the Fell topology. Since Ω+ is also open, we

get that (U ′)c ∩ Ω+ = U is open in the Fell topology.
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Lemma V.7. If C ⊆ Ω+ is compact in the Euclidean topology, then it is also compact in

the Fell topology.

Proof. The space Ω+ is known to be compact in the Fell topology (since K is open; see

[Mac71] p. 12). If C is compact in the Euclidean topology, then it is closed in the Euclidean

topology and hence closed in the Fell topology. Therefore, as a closed subset of a compact

space, C is compact in the Fell topology.

Lemma V.8. Suppose C ⊆ Ω+ is compact in the Euclidean topology. Then C is relatively

compact and ν-regular.

Proof. By Lemma V.7, C is clearly relatively compact (since it is compact). We know

that C is regular with respect to Lebesgue measure and the Euclidean topology. Since ν is

absolutely continuous with respect to Lebesgue measure by (A.9.1), C must also be ν-regular

with respect to the Euclidean topology. Since the Fell topology is finer than the Euclidean

topology, we get that C is ν-regular with respect to the Fell topology.

V.3: Proof of Proposition II.2

Proof of Proposition II.2 (BS Convergence Implies Plancherel Convergence). Suppose Θ ⊂
Ω+

temp is compact in the Euclidean topology. By Lemma V.8 this implies that Θ is relatively

compact and ν-regular. We clearly have N(Θ,Γn) = νΓn(Θ). Therefore by Theorem V.3, we

have

N(Θ,Γn)

card(Yn)
→ ν(Θ).

V.4: Effective rate of convergence

By unpacking the contents of the proof of Theorem V.3 and the Sauvageot density prin-

ciple, we may obtain an effective bound on the rate of convergence in Proposition II.2.

More specifically, the Sauvageot density principle tells us the following:

Proposition V.9. Let E be a ν-measurable, relatively compact subset of Ĝ, with G a re-

ductive algebraic group over a local field of characteristic zero. Let ε > 0. Then there exist

functions ϕ, ψ ∈ C∞
c (G) such that
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(1)
∣∣1E(ρ) − Tr[ϕ̂(ρ)]

∣∣ ≤ Tr[ψ̂(ρ)] for all ρ ∈ Ĝ.

(2)
∫
Ĝ

Tr[ψ̂]dν ≤ ε.

We therefore get:∣∣∣ N(E, Yn)

vol(Γn\G)
− ν(E)

∣∣∣ =
∣∣∣ 1

vol(Γn\G)

∫
Ĝ

1E(ρ)dνΓn −
∫
Ĝ

1E(ρ)dν
∣∣∣

=
1

vol(Γn\G)

∣∣∣ ∫
Ĝ

(1E(ρ) − Tr[ϕ̂(ρ)]) + Tr[ϕ̂(ρ)] dνΓn

−
(∫

Ĝ

(1E(ρ) − Tr[ϕ̂(ρ)]) + Tr[ϕ̂(ρ)] dν
)∣∣∣

≤ 1

vol(Γn\G)

∫
Ĝ

Tr[ψ̂(ρ)] dνΓn + ε

+
1

vol(Γn\G)

∣∣∣ ∫
Ĝ

Tr[ϕ̂(ρ)]dνΓn −
∫
Ĝ

Tr[ϕ̂(ρ)]dν
∣∣∣

≤
∣∣∣ 1

vol(Γn\G)

∫
Ĝ

Tr[ψ̂(ρ)] dνΓn −
∫
Ĝ

Tr[ϕ̂(ρ)]dν
∣∣∣+ 2ε

+
∣∣∣ 1

vol(Γn\G)

∫
Ĝ

Tr[ϕ̂(ρ)]dνΓn −
∫
Ĝ

Tr[ϕ̂(ρ)]dν
∣∣∣

We now follow the argument in [Dei18] p. 9-10 (which relies on the trace formula).

Continuing the above inequality, we obtain that there exists an r ≥ 0 and a compact subset

C ⊂ G such that∣∣∣ N(E, Yn)

vol(Γn\G)
− ν(E)

∣∣∣ ≤ r(||ϕ||∞ + ||ψ||∞)
vol({x : x−1(Γn \ {1})x ∩ C ̸= ∅})

vol(Γn\G)
+ 2ε.
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CHAPTER VI

Lifting the Kernel Function to G/K

VI.1: The volume of balls in B

Recall that elements in G/K correspond to vertices on the building B. Let d(·, ·) be

the Euclidean metric on B normalized so that adjacent vertices are distance 1 apart. With

respect to this metric, B is a CAT(0) space, and hence in particular there is a unique geodesic

joining any two points. The group G acts on B by isometries with respect to this metric on

B.

There is a natural measure on B coming from the Lebesgue measure on each apartment;

we shall denote this measure by by vold(·,·). Under the above normalization, each chamber has

measure
√
3
4

(the area of an equilateral triangle with side lengths 1). Since G acts transitively

on vertices, the volume of a ball of radius R centered at any vertex is independent of that

vertex. We let B(x,R) denote the ball of radius R centered at vertex x, and we let vold(·,·)(BR)

denote the volume of the ball of radius R centered at any vertex.

There is another natural measure on B coming from the Haar measure on G which is

obtained by simply counting the number of vertices in a given set. We shall refer to this as

volG/K (this is essentially the same as what has previously been referred to as card(·)).

Proposition VI.1 (Lemma 2 in Leuzinger [Leu06]). There exist constants C,D > 0 such

that for all R ≥ 0,

vold(·,·)(BR) ≤ C · volG/K(BR) ≤ vold(·,·)(BR+D).

On the other hand, Leuzinger [Leu06] also shows that

Proposition VI.2 ([Leu06], p. 487). There exist constants C1, C2 > 0 and ℓ ∈ N such that

61



for all R ≥ 0,

C1q
2R ≤ volG/K(BR) ≤ C2R

ℓq2R.

Remark VI.3. In fact Proposition VI.2 can also be derived by using the techniques of Chapter

IV. See Figure 6.

Figure 6: A ball of radius R in the Euclidean metric in the building centered at, say, 1K is
obtained by taking the K-orbit of the restriction to a+ of the ball of radius R centered at
0 ∈ a; this is represented by the purple circular slice in the figure. This set in contained in the
red polytopal region and contains the green polytopal region. By using similar techniques to
the computation of the cardinality of Em (see Chapter IV.4), we obtain that the cardinality
of the K-orbit of the lattice points in the Rth dilate of green polytope is of order q2R, and
the cardinality of the K-orbit of the lattice points in the Rth dilate of the red polytope is of
order Rq2R (one must use degenerate Brion’s formula to obtain this bound). These provide
upper and lower bounds for volG/K(BR).

Combining these facts, we get the following:

Proposition VI.4. There exists C1, C2 > 0 and ℓ ∈ N such that for all R,

vold(·,·)(BR) ≤ C1R
ℓqC2R.

Proposition VI.5. There exist universal constants C1, C2 > 0 such that for every R, for
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every lattice Γ, and for every z, w ∈ G/K,

NΓ(z, w;R) := #{γ ∈ Γ : d(z, γ.w) ≤ R} ≤ C1q
C2R

InjRad(Γ\G/K)2
. (VI.1.1)

Proof. This essentially just the combination of (the proof of) Lemma 6.18 in [ABB+17] and

(the proof of) Lemma 5.1 in [BM21]. For completeness we include the argument here. First

we show that it is true when z = w. Let Y = Γ\G/K. First note that the inequality

is clearly true when R < InjRadY (z) as then the left hand side is one and, changing the

constant C1 if necessary, the right hand side is bounded from below by one. Hence we may

assume R ≥ InjRadY (z). We then obtain

NΓ(z, z;R) · vold(·,·)(z, InjRadY (z)) ≤ vold(·,·)(B(z, R + InjRadY (z)))

≤ vold(·,·)(B(z, 2R)).

By Proposition VI.4, we have that

vold(·,·)(B(z, 2R)) ≤ C1q
C2R.

On the other hand, by the definition of vold(·,·), we clearly have that the volume of a ball of

radius R based at z in B is greater than the volume of a ball in any apartment containing

z, namely πR2. Therefore,

vold(·,·)(z, InjRadY (z)) ≥ πInjRadY (z)2.

Therefore,

N(z, z;R) ≤ C1q
C2R

πInjRadY (z)2
,

for all z ∈ G/K.

Now suppose z, w ∈ G/K. If d(z, w) > R, then the left hand side of (VI.1.1) is one, and

the right hand side is bounded from below by a constant (which can be adjusted to be equal

to at least one), so we need only handle the case when d(z, w) ≤ R. Then for any γ ∈ Γ

such that d(z, γ.w) ≤ R, we also have d(z, γz) ≤ d(z, h) + d(z, γ.h) ≤ 2R. Therefore,

N(z, w;R) ≤ N(z, z; 2R) ≤ C1q
2C2R

πInjRadY (z)2
≤ C1q

2C2R

πInjRad(Y )2
.
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VI.2: Proof of Lemma II.4

Proof of Lemma II.4 (Lifting the Kernel to G/K). Let D be a fundamental domain in G/K

for the action of Γ and let Y = Γ\G/K. Given x ∈ Y , we let x̃ denote its unique lift to D,

and given w ∈ D, we let w̄ denote its projection to Y .

Suppose K : G/K × G/K → C is invariant under the diagonal Γ-action and satisfies

K(z, w) = 0 if d(z, w) > R for some R ≥ 0. Let KOp denote the associated operator on

L2(G/K). Suppose f ∈ L2(G/K) is (Γ, 1)-invariant. We claim that its image under this

operator is also (Γ, 1)-invariant:

[KOp.f ](γ.z) =
∑

w∈G/K

K(γ.z, w)f(w)

=
∑

w∈G/K

K(z, γ−1.w)f(w) (K is invariant under diagonal Γ-action)

=
∑

w∈G/K

K(z, γ−1.w)f(γ−1.w) (Γ-invariance of f)

=
∑

u∈G/K

K(z, u)f(u) (u = γ−1.w)

= [KOp.f ](z).

Hence this descends to a well-defined operator on L2(Y ) which we denote K̄Op. We claim

that on this space this operator is represented by the kernel

K̄(x, y) =
∑
γ∈Γ

K(x̃, γ.ỹ),

with x, y ∈ Y . To see this:

[KOp.f ](x̃) =
∑

w∈G/K

K(x̃, w)f(w)

=
∑
ỹ∈D

∑
γ∈Γ

K(x̃, γ.ỹ)f(γ.ỹ)

=
∑
y∈Y

K̄(x, y)f(y).
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Thus the Hilbert-Schmidt norm of K̄Op is

||K̄Op||2HS =
∑
y∈Y

∑
x∈Y

∣∣∣∑
γ∈Γ

K(x̃, γ.ỹ)
∣∣∣2 =

∑
ỹ∈D

∑
x̃∈D

∣∣∣∑
γ∈Γ

K(x̃, γ.ỹ)
∣∣∣2.

Now we use the assumption that K(z, w) = 0 whenever d(z, w) > R to bound this

Hilbert-Schmidt norm. Let I(R) be the points in Y with injectivity radius greater than R.

Let I(R)C be the remaining points in Y . We claim that if y ∈ I(R), then the injectivity

radius at y is greater than R, and thus d(z, γ.ỹ) ≤ R for at most one γ ∈ Γ for a given

z ∈ G/K.

Note that y ∈ I(R) implies that d(ỹ, γ.ỹ) > 2R for γ ̸= 1. Suppose d(z, ỹ) ≤ R. Suppose

for the sake of contradiction that d(z, γ.ỹ) ≤ R for some γ ̸= 1. Then by joining geodesic

segments from ỹ to z, then from z to γ.ỹ, we’d get that d(ỹ, γ.ỹ) ≤ 2R, a contradiction.

Hence there is at most one γ such that d(z, γ.ỹ) ≤ R. This implies that for y ∈ I(R), we

have ∣∣∣∑
γ∈Γ

K(z, γ.ỹ)
∣∣∣2 =

∑
γ∈Γ

|K(z, γ.ỹ)|2

since both sides have at most one term.

We clearly have |K(x̃, γ.w)| ≤ ||K||∞, and by Cauchy-Schwarz we have:∣∣∣∑
γ∈Γ

K(x̃, γ.w) · 1
∣∣∣2 ≤ #{γ ∈ Γ : d(x̃, γ.w) ≤ R} ·

∑
γ∈Γ

|K(x̃, γ.w)|2

= NΓ(x̃, w;R)
∑
γ∈Γ

|K(x̃, γ.w)|2.

Therefore, combining this with Proposition VI.5, we get

∑
w̄∈I(R)C

∑
x̃∈D

∣∣∣∑
γ∈Γ

K(x̃, γ.w)
∣∣∣2 ≤ C1q

C2R

InjRad(Y )2

∑
w̄∈I(R)C

∑
x̃∈D

∑
γ∈Γ

|K(x̃, γ.w)|2

=
C1q

C2R

InjRad(Y )2

∑
w̄∈I(R)C

∑
x̃∈D

∑
γ∈Γ

|K(γ−1.x̃, w)|2

=
C1q

C2R

InjRad(Y )2

∑
y∈I(R)C

∑
u∈G/K

|K(u, ỹ)|2

=
C1q

C2R

InjRad(Y )2

∑
y∈I(R)C

∑
{u∈G/K:d(u,ỹ)≤R}

|K(u, ỹ)|2
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≤ C1q
C2R

InjRad(Y )2

∑
y∈I(R)C

||K||2∞volG/K(BR)

=
C1q

C2R

InjRad(Y )2
volG/K(BR)||K||2∞card(I(R)C).

Putting everything together and using Proposition VI.4 we get that there exist C3, C4 ≥ 0

such that:

||K̄Op||2HS =
∑

w̄∈I(R)

∑
x̃∈D

∣∣∣∑
γ∈Γ

K(x̃, γ.w)
∣∣∣2 +

∑
w̄∈I(R)c

∑
x̃∈D

|
∑
γ∈Γ

K(x̃, γ.w)|2

≤
∑

w̄∈I(R)

∑
x̃∈D

∑
γ∈Γ

|K(x̃, γ.w)|2 +
C1q

C2R

InjRad(Y )2
volG/K(BR)||K||2∞card(I(R)C)

≤
∑
z∈D

∑
w∈G/K

|K(z, w)|2 +
C3q

C4R

InjRad(Y )2
||K||2∞card({y ∈ Y : InjRadY (y) ≤ R}).
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CHAPTER VII

Changing Variables in the Kernel Function Integral

VII.1: Geometric interpretation of Γ\G/Mλ

Let o denote the point 1K in G/K. Given λ ∈ A+, let zλ := ϖλK. Then dA+(o, zλ) = λ.

Let Mλ be the joint (pointwise) stabilizer of o and zλ, namely Mλ = K ∩ (ϖλKϖ−λ). Let

D be a fundamental domain for the Γ-action on G/K. Recall that we always assume that Γ

is torsionfree.

Proposition VII.1. Assuming that the Haar measure on G is normalized such that

vol(K) = 1, we have

vol(Mλ) =
1

vol(KϖλK)
=

1

Nλ

.

Proof. We clearly have Mλ < K. Consider the right action of K on right cosets of Mλ in

K. Given a coset Mλk, we may associate to it the point zk := k−1zλ. This point is clearly

independent of the choice of coset representative (since Mλ stabilizes zλ). Furthermore, if

k′ ∈ K satisfies (k′)−1.zλ = k−1.zλ, then k′k−1 ∈ Mλ, and thus Mλk = Mλk
′. Therefore we

have an injection from the cosets Mλk to the points in the K-orbit of zλ. However, by the

Cartan decomposition we know that the K-orbit of zλ is exactly those points w satisfying

dA+(o, w) = λ. Therefore we have a surjection, and hence a bijection, between the cosets of

Mλ in K and those points in the K orbit of zλ, namely KϖλK. Therefore, the number of

Mλ cosets is exactly equal to card(Kzλ) = vol(KϖλK). This in turn is equal to the index

of Mλ in K.

Proposition VII.2. Let Dλ be defined as

Dλ := {(x, y) ∈ D ×G/K : dA+(x, y) = λ}.
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Consider the map

fλ : Dλ → Γ\G/Mλ

defined as follows: given (x, y) ∈ Dλ, choose any g ∈ G such that g.(o, zλ) = (x, y); set

fλ(x, y) = Γ\g/Mλ.

Then fλ is well-defined and defines a bijection between Dλ and Γ\G/Mλ.

Proof. First we show that a g as in the statement of the proposition exists. We can clearly

find some g1 such that g1.x = o. Then dA+(o, g1.y) = λ. Suppose g1.y = hK. Writing

h = k1ak2 with a ∈ A+ (the Cartan decomposition), we must have that a = ϖλ. Thus

k−1
1 hK = ϖλK, so we may take g = g−1

1 k1.

Next we show that the map fλ is well-defined, i.e. does not depend on the choice of g.

If g and g′ both map (o, zα) to (x, y), then g−1g′ ∈ Mλ, so they generate the same double

coset.

We now show injectivity of fλ. Consider the set GD := {g ∈ G : g.o ∈ D}. Then clearly

the collection of g’s which arise in the definition of the map fλ (for all choices of (x, y) ∈ Dλ)

is exactly GD. Suppose g1, g2 ∈ GD are in the same (Γ,Mλ)-double coset. Then g1 = γg2m

with γ ∈ Γ and m ∈ Mλ. Therefore g1.o = γg2m.o = γg2.o. Since g1 ∈ GD, we know that

g1.o ∈ D. Since we also have g2 ∈ GD, we must have γ = 1. Therefore g1.o = g2.o. We clearly

then also have that g1.zλ = γg2m.zλ = g2.zλ. Therefore the double coset Γg1Mλ = Γg2Mλ

has exactly one preimage, namely (g1.o, g1.zλ). Therefore fλ is injective.

Lastly we show that fλ is surjective. Let g be some double coset representative. Then for

a unique γ ∈ Γ, γg.o ∈ D. Thus this double coset is the image under fλ of (γg.o, γg.zλ) ∈
Dλ.

Proposition VII.3. Suppose {gi} is a complete set of double coset reprensenatives of

Γ\G/Mλ. Then the map:

jλ : Γ\G/Mλ ×Mλ → Γ\G, (gi,m) 7→ Γgim,

is a bijection. Furthermore this identification is measure-preserving when we take Mλ to

have measure 1/Nλ.

Proof. Because Γ is torsionfree (by assumption), no conjugate of Γ can intersect Mλ non-

trivially because the intersection would be a compact discrete group which necessarily has
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torsion. We claim that this implies that every g ∈ G may be represented uniquely as

g = γgjm with γ ∈ Γ and m ∈ Mλ. To see this, first note that gj clearly must be the

unique element in {gj} generating the same (Γ,Mλ)-double coset as g. Suppose we have

some equation of the following form:

γ1gjm1 = γ2gjm2 ⇐⇒ g−1
j (γ−1

2 γ1)gj = m2m
−1
1 .

Because we know that g−1
j Γgj ∩Mλ = {1}, we must have γ1 = γ2 and m1 = m2.

From this we can conclude that jλ is injective: if Γgjm1 = Γgkm2, then γ1gjm1 = γ2gkm2,

and thus gj = gk and m1 = m2.

Lastly we show that jλ is surjective. Given a coset Γg, we write g = γgjm. Therefore

jλ(gj,m) = Γg.

Clearly this map is measure-preserving as Γ\G/Mλ is a discrete set.

VII.2: Proof of Proposition II.9

Proof of Proposition II.9 (Changing Variables in the Kernel Integral). Suppose x ∈ G/K.

We now wish to rewrite the following integral:

∑
x∈D

∑
y∈G/K

∣∣∣ 1

M

M∑
m=1

1

card(Em)

∑
z∈xEm∩yEm

a(z)
∣∣∣2. (VII.2.1)

We first focus on rewriting ∑
z∈xEm∩yEm

a(z).

Recall the definition of the following sets:

Eλ
m := Em ∩ϖλEm,

Ẽλ
m := π−1(Eλ

m).

Notice that both sets are setwise invariant under left multiplication by elements in Mλ. Also

notice that we have a (non-canonical) identification:

Ẽλ
m ≃ Eλ

m ×K
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by choosing coset representatives w̃ for each w ∈ Eλ
m (recall w ∈ G/K). This identification

is measure-preserving because Eλ
m is a discrete set.

Notice that if fλ(x, y) = ΓgMλ as in Proposition VII.2, then gEλ
m = xEm ∩ yEm. We

therefore have (recalling that a may be viewed as a (1, K)-invariant function on Γ\G):

[ρΓ
Ẽλ

m
.a](Γg) =

1

vol(Ẽλ
m)

∫
Ẽλ

m

a(Γgh)dh

=
1

vol(Ẽλ
m)

∑
w∈Eλ

m

∫
K

a(Γgw̃k)dk

=
1

vol(Ẽλ
m)

∑
w∈Eλ

m

a(Γgw̃)

=
1

vol(Ẽλ
m)

∑
z∈gEλ

m

a(Γz̃)

=
1

vol(Ẽλ
m)

∑
z∈xEm∩yEm

a(z).

Let {gi} be a complete set of coset representatives for Γ\G/Mλ. Thus our original integral

from (VII.2.1) can now be written as

∑
x∈D

∑
y∈G/K

∣∣∣ 1

M

M∑
m=1

1

card(Em)

∑
z∈xEm∩yEm

a(z)
∣∣∣2

=
1

M2

∑
λ∈A+

∑
gi∈Γ\G/Mλ

∣∣∣ M∑
m=1

vol(Ẽλ
m)

card(Em)
ρΓ
Ẽλ

m
a(Γgi)

∣∣∣2.
We now utilize Proposition VII.3:

∫
Γ\G

∣∣∣ M∑
m=1

vol(Ẽλ
m)

card(Em)
[ρΓ
Ẽλ

m
.a](Γg)

∣∣∣2dg =
∑

gi∈Γ\G/Mλ

∑
n∈Mλ

∣∣∣ M∑
m=1

vol(Ẽλ
m)

card(Em)
[ρΓ
Ẽλ

m
.a](Γgin)

∣∣∣2
=

∑
gi∈Γ\G/Mλ

∑
n∈Mλ

∣∣∣ M∑
m=1

vol(Ẽλ
m)

card(Em)
[ρΓ
n.Ẽλ

m
.a](Γgi)

∣∣∣2
=

∑
gi∈Γ\G/Mλ

∑
n∈Mλ

∣∣∣ M∑
m=1

vol(Ẽλ
m)

card(Em)
[ρΓ
Ẽλ

m
.a](Γgi)

∣∣∣2
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=
∑

gi∈Γ\G/Mλ

vol(Mλ)
∣∣∣ M∑
m=1

vol(Ẽλ
m)

card(Em)
[ρΓ
Ẽλ

m
.a](Γgi)

∣∣∣2.
Here we have used that Ẽλ

m is invariant (as a set) under Mλ.

We therefore obtain that

1

M2

∑
λ∈A+

∑
gi∈Γ\G/Mλ

∣∣∣ M∑
m=1

vol(Ẽλ
m)

card(Em)
[ρΓ
Ẽλ

m
.a](Γgi)

∣∣∣2
=

1

M2

∑
λ∈A+

Nλ

∫
Γ\G

∣∣∣ M∑
m=1

card(Eλ
m)

card(Em)
[ρΓ
Ẽλ

m
.a](Γg)

∣∣∣2dg.
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CHAPTER VIII

The Kunze-Stein Phenomenon and an Ergodic

Theorem in the Style of Nevo

VIII.1: The Kunze-Stein phenomenon

Suppose M is a locally compact topological group. Let M(M) denote the collection of

measurable functions on M . We say that M satisfies the Kunze-Stein phenomenon (or is a

KS group, for short), if for every 1 ≤ p < 2, the map Lp(M) × L2(M) → M(M) defined by

convolution is continuous and has image contained in L2(M). This means that, for a fixed

p, there exists a Cp such that for all f ∈ Lp(M) and g ∈ L2(M) we have

||f ∗ g||2 ≤ Cp||f ||p||g||2. (VIII.1.1)

Another way of expressing this is that for all f ∈ Lp(M) we have ||f̂(λM)|| ≤ Cp||f ||p, where

λM is the (left) regular representation and f̂(λM) is the operator on L2(M) given by (left)

convolution with f .

VIII.2: The Kunze-Stein phenomenon and finite group extensions

Lemma VIII.1. If M is a KS group, and N ◁M is a finite normal subgroup, then M/N

is a KS group.

Proof. Let π : M → M/N be the projection map. Let the Haar measures volM and volM/N

on M and M/N be normalized such that for all U ⊂ M/N measurable, volM(π−1(U)) =

volM/N(U) (notice then that volM/N(π(V )) = volM (V ·N)
|N | for V ⊂ G measurable). Given

a ∈ M(M/N), let ã ∈ M(M) be the lift of a to a (1, N)-invariant function on M . Because
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N is normal, ã must in fact be (N,N)-invariant:

ã(nm) = ã
(
m(m−1nm)

)
= ã(m),

with n ∈ N . The normalization of Haar measures makes it so that∫
M

ã(m)dm =

∫
M/N

a(ℓN)dℓ.

We claim that we have the following commutative diagram:

Lp(M/N) × L2(M/N) Lp(M) × L2(N)

M(M/N) M(M).

π∗

∗M/N ∗M

π∗

Let a, b ∈ M(M/N). We have:

[ã ∗M b̃](x) =

∫
M

ã(m)b̃(m−1x)dm

=

∫
M/N

∫
N

ã(yn)b̃(n−1y−1x)dndy

=

∫
M/N

a(yN)b(y−1xN)dy

= [a ∗M/N b](xN)

= [ ˜a ∗M/N b](x).

Therefore ã ∗M b̃ = ˜a ∗M/N b.

Now suppose a ∈ Lp(M/N) and b ∈ L2(M/N); then ã ∈ Lp(M) and b̃ ∈ L2(N). Since M

is a KS group, ã∗M b̃ ∈ L2(M). On the other hand ã∗M b̃ = ˜a ∗M/N b. Since ˜a ∗M/N b ∈ L2(M),

we must have a∗M/N b ∈ L2(M/N). Therefore M/N is a KS group. Because we may directly

relate the Lp-norms of a, b and ã, b̃, it is clear that we can find a Cp as in (VIII.1.1) using

the KS property for M .

Lemma VIII.2. If N is a KS group, and N ◁M is a normal finite index subgroup, then

M is a KS group.

Proof. Let the Haar measure on M be such that if U ⊆ N measurable, then µN(U) = µM(U).

This convention implies that integration on M of a function supported on a single coset
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of N is the same as integration of the analogous function on N . Suppose a ∈ Lp(M) and

b ∈ L2(M). Let x1N, . . . , xℓN be the cosets of N . Write a = a1+ · · ·+aℓ and b = b1+ · · ·+bℓ

for the decomposition of a and b into their components supported on each coset. Clearly

a ∈ Lp(M) if and only if ai ∈ Lp(N) for all i.

Let’s consider ai ∗ bj. We claim that this is supported on the coset xixjN . Let n ∈ N .

We have

ai ∗ bj(xkn) =

∫
M

ai(m)bj(m
−1xkn)dm.

For this integral to be non-zero, we need m = xin1 and m−1xkn = n−1
1 x−1

i xkn = xjn2 for

some n1, n2 ∈ N . Since N is normal, this is the same as x−1
i xkN = xjN , which is the same

as xkN = xixjN . Hence, if xkN = xixjN , we get that the above integral reduces to just the

integral over m ∈ xiN = Nxi. Therefore,

ai ∗ bj(nxixj) =

∫
Nxi

ai(m)bj(m
−1nxixj)dm

=

∫
N

ai(ℓxi)bj(x
−1
i ℓ−1nxixj)dℓ.

Define the following functions on N :

âi(n) := ai(nxi),

b̂j(n) := bj(x
−1
i nxixj).

Then,

âi ∗ b̂j(n) =

∫
N

âi(ℓ)b̂j(ℓ
−1n)dℓ

=

∫
N

ai(ℓxi)bj(x
−1
i ℓ−1nxixj)dn.

The above shows that convolution of ai and bj on M , which is supported on a single

coset of N , is the equivalent to convolution of analogous functions on N . In particular,

âi ∗ b̂j ∈ L2(N) implies that ai ∗ bj ∈ L2(M). By using the distributivity of convolution,

we get that since N satisfies KS, M also satisfies KS. Because of the explicit relationship

between convolution in N and M , it is clear that we can find a Cp as in (VIII.1.1) using the

KS property for N .
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VIII.3: The Kunze-Stein phenomenon for PGL(d, F )

We now wish to show that G = PGL(d, F ) is a KS group. We utilize the above lemmas

and the following results.

Theorem VIII.3 (Veca [Vec02]). Let F be a non-discrete, totally disconnected local field,

and let M be the group of F -rational points of a simply connected algebraic group defined

over F . Then M is a KS group.

In particular this applies to the group SL(d, F ).

Proposition VIII.4 ([Ser79], p. 214). If d is relatively prime to the characteristic of F ,

then F×/(F×)d has finite order.

Corollary VIII.5. The group PGL(d, F ) is a KS group as long as d is relatively prime to

the characteristic of F .

Proof. We have the following long exact sequence:

1 → µd(F ) → SL(d, F ) → PGL(d, F ) → F×/(F×)d → 1,

where µd(F ) is the group of dth roots of unity of F . Since SL(d, F ) is a KS group by Theorem

VIII.3, and since µd(F ) ◁ SL(d, F ) is finite, SL(d, F )/µd(F ) is also a KS group by Lemma

VIII.1. This group sits inside PGL(d, F ) as a finite index normal subgroup, so by Lemma

VIII.2, we get that PGL(d, F ) is also a KS group as long as F×/(F×)d is finite (which occurs

if, e.g., d is relatively prime to the characteristic of F by Proposition VIII.4).

VIII.4: Proof of Proposition II.11

Let M be a semisimple algebraic group over a local field.

Lemma VIII.6. Suppose (ρ,H) is a unitary representation of M . Let ψ ∈ L1(M) be such

that
∫
M
ψdg = 1 and ψ is non-negative and real-valued. Then for any even positive integer

2m,

||ψ̂(ρ)||2m ≤ ||ψ̂(ρ⊗2m)||.

Proof. This essentially follows from the proof of Theorem 1 in Nevo [Nev98]. The main idea

here is Jensen’s inequality (and the convexity of the function t2m).
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Recall the definition of integrability exponenent in Appendix A.11. It follows from

Hölder’s inequality that if ρ has integrability exponent t, then ρ⊗n has integrability ex-

ponent t/n (the product of a function in Lp(M) and a function in Lq(M) is in Lr(M) where

1/r = 1/p+ 1/q).

Corollary VIII.7. Let (ρ,H) be a unitary representation of M with integrability exponent

q(ρ) < ∞. Let m be an integer such that q(ρ) < 4m. Then ρ⊗2m is weakly contained in the

regular representation.

Proof. The integrability exponenent of ρ⊗2m is q(ρ)/2m ≤ 2, hence ρ⊗2m ≺ λM by Proposi-

tion A.20.

Lemma VIII.8. Suppose M is a KS group. Let ρ be a unitary representation with almost

integrability exponent q(ρ). Let m be an integer such that q(ρ) < 4m. Let 1 ≤ p < 2. Suppose

ψ ∈ L1(M) ∩ Lp(M) with ψ non-negative, real-valued, and
∫
M
ψdg = 1. Then there exists

Cp such that

||ψ̂(ρ)|| ≤ Cp||ψ||1/2mp .

Proof. By Corollary VIII.7, we have that ρ⊗2m is weakly contained in the regular represen-

tation. From Lemma VIII.6 and Proposition A.9, we have that

||ψ̂(ρ)||m ≤ ||ψ̂(ρ⊗2m)|| ≤ ||ψ̂(λM)||.

By the KS property, we get that there exists a Cp depending only on p such that for all

ψ ∈ Lp(G),

||ψ̂(λM)|| ≤ C2m
p ||ψ||p.

Combining these inequalities, we get that

||ψ̂(ρ)|| ≤ Cp||ψ||1/2mp .

Theorem VIII.9. Suppose M is a KS group. Suppose M acts ergodically on the probability

space (Y, ν) and with finite integrability exponent on L2
0(Y, ν). Then there exist C > 0

depending only on M , and θ > 0 depending only on the integrability exponent, such that for
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every measurable subset E ⊂M with finite positive measure and every f ∈ L2
0(Y, ν),∣∣∣∣∣∣ 1

vol(E)

∫
E

f(m−1.x)dm
∣∣∣∣∣∣
2
≤ Cvol(E)−θ||f ||2. (VIII.4.1)

Proof. The function ψ = 1
µ(E)

1E is in L1(M) ∩ Lp(M) for every p and is non-negative, real,

and has L1-norm equal to 1. Therefore, if 1 ≤ p < 2 we have

||ψ̂(ρ)|| ≤ Cp||ψ||1/2mp .

Notice that in fact ψ̂(ρ) is exactly the expression inside the || · ||2 on the left hand side of

(VIII.4.1).

We also have that

||ψ||p = vol(E)−1+1/p.

Therefore,

||ψ̂(ρ)|| ≤ Cpvol(E)−1/(2m)+1/(2pm).

We see that in fact we can choose θ to be of the form −1/(4m) + δ for any δ > 0.

Proof of Proposition II.11 (Nevo-Style Ergodic Theorem). This follows immediately from

Theorem VIII.9. In particular, we take (Y, ν) = L2(Γ\G) with the underlying G-action

given by ρΓ. Then if a is a mean-zero function, we have that a ∈ L2
0(Γ\G). Then (VIII.4.1)

exactly turns into

||ρΓE.a||L2(Γ\G) ≤
C

vol(E)θ
||a||L2(Γ\G).

Proposition A.21 tells us that we can in fact take the same θ for all Γ.
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CHAPTER IX

Classification of Primitive Triples of Vertices in B

IX.1: Parallelograms in the Coxeter complex

Let a denote the space {(x1, x2, x3) : x1 + x2 + x3 = 0}, and let a+ denote the standard

Weyl chamber in a, namely {(x1, x2, x3) ∈ a : x1 ≥ x2 ≥ x3}. We let a++ denote the regular

elements in a+, namely those elements for which x1 > x2 > x3. There is a bijection between

the Weyl chambers (centered at 0 ∈ a) and elements of S3; it arises from the S3-action on

coordinates (see Appendix B.3).

We may tesselate a by equilateral triangles in such a way that, treating the resulting

object as a simplicial complex X , we obtain the Coxeter complex associated to Ã2 (see

Appendix B.6.4), and the vertices of this simplicial complex correspond to the lattice Λ. Let

Λ+ = Λ∩a+. As discussed previously, there is a natural identification of Λ with A < G, and

Λ+ with A+ ⊂ G.

Given x ∈ Λ and σ ∈ S3, we define

S(x;σ) := {y ∈ Λ : y − x ∈ σ.a+}.

This defines a sector based at x which is a translated copy of the sector σ.a+ based at 0. We

shall call two sectors S(x1;σ1) and S(x2;σ2) parallel if σ1 = σ2.

Let σmax = (1 3) denote the element in S3 with greatest Coxeter word length. Then,

given σ ∈ S3, the Weyl chambers based at 0 associated to σ and to σ.σmax are opposite in

the spherical Coxeter complex associated to S3 (which we may identify with Weyl chambers

based at 0).

Proposition IX.1. Suppose a, b ∈ a+. If σ1.a+σ2.b = a+ b with σ1, σ2 ∈ S3, then σ1.a = a

and σ2.b = b. If a, b ∈ a++, then σ1 = σ2 = 1.

Proof. Suppose a = (a1, a2, a3) and b = (b1, b2, b3). Since a1 ≥ a2 ≥ a3 and b1 ≥ b2 ≥ b3,
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if aσ−1
1 (1) + bσ−1

2 (1) = a1 + b1, we must have a1 = aσ−1
1 (1) and b1 = bσ−1

2 (1) because a1 + b1 is

the greatest possible value that α1.a + α2.b could have for its first entry for all choices of

α1, α2 ∈ S3. We must also have aσ−1
1 (2) + bσ−1

2 (2) = a2 + b2, but we know that the largest a

coordinate and the largest b coordinate have already occurred in aσ−1
1 (1) + bσ−1

2 (1), so we must

have a2 = aσ−1
1 (2) and b2 = bσ−1

2 (2). Similarly we have aσ−1
1 (3) + bσ−1

2 (3) = a3 + b3, but we know

that the two largest a coordinates and two largest b coordinates have already occurred in

forming the first two entries of σ1.a+ σ2.b, and hence a3 = aσ−1
1 (3) and b3 = bσ−1

2 (3).

Given x, y, z ∈ Λ, we say that (x, y; z) is an additive triple if

dA+(x, z) + dA+(z, y) = dA+(x, y). (IX.1.1)

Given x and y, we define cone(x, y), to be the intersection of all sectors based at x containing

y. We define the parallelogram of x and y by para(x, y) = cone(x, y) ∩ cone(y, x).

Proposition IX.2. Suppose x, y, z ∈ Λ. The following are equivalent:

(1) (x, y; z) is an additive triple.

(2) For every sector S(x;σ) based at x containing y, we have z ∈ S(x;σ) and y ∈ S(z;σ).

(3) z ∈ para(x, y).

Proof. (1) =⇒ (2): Suppose (x, y; z) is an additive triple. Without loss of generality

suppose x = 0, and y ∈ a+ (we can always apply some translation followed by some element

in S3 to achieve this; doing so preserves the Weyl chamber-valued metric). Then S(x;σ) =

a+. We now have reduced to showing that z ∈ a+ and y − z ∈ a+. We clearly have

that z + (y − z) = y = dA+(x, z) + dA+(z, y). Furthermore, clearly z = σ1.dA+(x, z) and

y − z = σ2.dA+(y, z) for some σ1, σ2 ∈ S3. However by Proposition IX.1 we conclude that

z = σ−1
1 .dA+(x, z) = dA+(x, z) and y − z = σ−1

2 .dA+(y, z) = dA+(y, z). Therefore, we have

that z and y − z are in a+.

(2) =⇒ (1): Suppose z is contained in every sector based at x containing y, and y is in

the parallel sector based at z. Again, we may assume that x = 0 and the sector based at x

containing y is a+. Then we have dA+(x, z) = z, dA+(x, y) = y, and dA+(z, y) = y− z, so we

clearly have dA+(x, z) + dA+(z, y) = dA+(x, y).

(2) =⇒ (3): In general we have that b ∈ S(a;σ) if and only if a ∈ S(b;σ.σmax). Suppose

z is such that every for every y ∈ S(x;σ), we have z ∈ S(x;σ) and y ∈ S(z;σ). Then

clearly z ∈ cone(x, y). We also wish to show that z ∈ cone(y, x). Thus, suppose x ∈ S(y; τ)
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for some τ ∈ S3. Then y ∈ S(x; τ.σmax), so y ∈ S(z; τ.σmax), so z ∈ S(y; τ). Therefore

z ∈ cone(y, x). Thus z ∈ para(x, y).

(3) =⇒ (2): Suppose z ∈ para(x, y). Let S(x;σ) be some sector containing y. Then

z ∈ S(x;σ). Furthermore, we know that z ∈ S(y;σ.σmax) as this sector contains x. However,

z ∈ S(y;σ.σmax) in turn implies that y ∈ S(z;σ).

Remark IX.3. Suppose y = (r, s) ∈ Λ+ (in cone coordinates). Then clearly dA+(0, y) = (r, s).

Then clearly

para(0, y) = {(r′, s′) ∈ Λ : (0, 0) ⪯ (r′, s′) ⪯ (r, s)}.

This follows from the fact any such point in the set on the right hand side satisfies Property

(2) of Proposition IX.2, and, by Property (1) of IX.2, any point in para(x, y) must be as in

the set on the right hand side. Because up to translation and the action of S3, any pair of

vertices in X can be converted to (0, y) as above, we see that para(x, y) is indeed a (possibly

degenerate) parallelogram in the Euclidean sense and with x and y at opposite corners.

x

y

Figure 7: The parallelogram of x and y is the intersection of cone(x, y) (the red sector) and
cone(y, x) (the blue sector). In this case dA+(x, y) ∈ a++, and the germs of the cones give
us cx,y (the green chamber) and cy,x (the magenta chamber).

Proposition IX.4. Suppose z ∈ para(x, y). Then para(x, z) ⊆ para(x, y).
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Proof. Without loss of generality, suppose x = 0, and y ∈ a+. Then z ∈ a+ and y ∈ S(z; 1).

Suppose w ∈ para(x, z). Then z ∈ S(w; 1). Therefore S(z; 1) ⊆ S(w; 1) and therefore

y ∈ S(w; 1). Therefore w ∈ para(x, y).

Proposition IX.5. Suppose dA+(x, y) = (r, s) and dA+(y, z) = (1, 0). Then

dA+(x, z) ∈ {(r + 1, s), (r, s− 1), (r − 1, s+ 1)}. (IX.1.2)

Suppose dA+(y, z) = (0, 1). Then

dA+(x, z) ∈ {(r, s+ 1), (r − 1, s), (r + 1, s− 1)}. (IX.1.3)

Proof. The vector (1, 0) in cone coordinates corresponds to (2/3,−1/3,−1/3) in a-

coordinates. Its orbit under S3 also contains (−1/3, 2/3,−1/3) and (−1/3,−1/3, 2/3)

which corresponds to (−1, 1) and (0,−1) in cone coordinates. We clearly have dA+(x, z) =

dA+(x, y) + σ.dA+(y, z) for some σ ∈ S3, from which the result follows (a similar calculation

can be done for the S3-orbit of (0, 1)). See also Figure 8.

x

y

Figure 8: The figure illustrates Proposition IX.5: suppose the black point x has cone coor-
dinates (0, 0). The gray point y has three neighbors z for which dA+(y, z) = (1, 0) (the red
points), and three for which dA+(y, z) = (0, 1) (the blue points). It is straightforward from
this diagram to compute what dA+(0, z) is for these points.

We define a combinatorial path in X to be any path between vertices along edges, and we

define the length of such paths to be the number of edges traversed in the path. We define a

81



combinatorial geodesic between two vertices x and y to be any shortest combinatorial path

from x to y. We define the combinatorial distance between vertices, dc(x, y), to be the length

of any combinatorial geodesic connecting them. Notice that dc(x, y) = 1 if and only if x and

y are adjacent, if and only if dA+(x, y) = (1, 0) or (0, 1).

Proposition IX.6. Suppose x, y ∈ Λ. Then dA+(x, y) = (r, s) for some r + s = n if and

only if dc(x, y) = n. Furthermore, the union of all vertices appearing along combinatorial

geodesics from x to y is exactly para(x, y).

Proof. We proceed by induction on n. The case of n = 1 is obvious. Now suppose dA+(x, y) =

(r, s) with r+s = n. By the inductive hypothesis, we couldn’t possibly have dc(x, y) ≤ n−1

as that would imply that r+ s ≤ n− 1. Thus dc(x, y) ≥ n. On the other hand, y must have

a neighbor z satisfying either dA+(x, z) = (r− 1, s) or (r, s− 1) (this can be seen by the fact

that if y = (r′, s′) ∈ a+ in cone coordinates, then dA+(0, y) = (r′, s′) and at least one of the

points in {(r′ − 1, s′), (r′, s′ − 1)} also lies in a+). By the inductive hypothesis, this implies

that there is a combinatorial geodesic from x to z of length n−1, and hence a combinatorial

geodesic from x to z of length n. Hence dc(x, y) ≤ n, and thus must be exactly n.

Now suppose dc(x, y) = n. Suppose dA+(x, y) = (r, s). By the inductive hypothesis, we

must have r + s ≥ n. Let z be the penultimate vertex along some combinatorial geodesic

from x to y. As this is a neighbor of y, by Proposition IX.5 we must have dA+(x, z) ∈
{(r−1, s), (r+1, s), (r−1, s+1), (r+1, s−1), (r, s+1), (r+1, s)}. Furthermore dc(x, z) = n−1,

so the sum of the entries of dA+(x, z) must be exactly n − 1 by the inductive hypothesis.

Hence the only possibility is dA+(x, z) ∈ {(r − 1, s), (r, s − 1)} in which case we must have

r + s = n.

Now suppose z is the penultimate vertex of some combinatorial geodesic from x to y.

Then by the inductive hypothesis, all but the last step of this combinatorial geodesic must

lie in para(x, z). Furthermore, by the analysis in the preceding paragraph, it is clear that we

have dA+(x, z) + dA+(z, y) = dA+(x, y). Hence z ∈ para(x, y) by Proposition IX.2. Therefore

all of this combinatorial geodesic lies in para(x, y). On the other hand, if w ∈ para(x, y)

with dA+(x,w) = (r′, s′), then by the fact that (x, y;w) is an additive triple, we can find a

combinatorial geodesic from x to w of length r′ + s′, and a combinatorial geodesic from w

to x of length r + s− r′ − s′; the concatenation of these combinatorial geodesics has length

r+ s, implying that it is also a combinatorial geodesic. Therefore the elements in para(x, y)

are exactly the vertices that appear along combinatorial geodesics joining x to y.

Proposition IX.7. Suppose x, y ∈ Λ are such that dA+(x, y) = (r, s) ∈ a++ (i.e. r, s ≥ 1).

Let γ be the (Euclidean) geodesic joining x and y. Let cx,y and cy,x be the unique chambers
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that γ passes through which contain x and y, respectively. Then the combinatorial convex

hull of the chambers cx,y and cy,x is exactly para(x, y).

Proof. See Appendix B.1 for the definition of the combinatorial convex hull and for the

definition of roots. The combinatorial convex hull is the intersection of all roots containing

cx,y and cy,x. Furthermore, all roots are of one of the following forms (using the coordinates

on a of the form (α1, α2, α3); a is some constant):

(1) α1 − α2 ≥ a or α1 − α2 ≤ a.

(2) α2 − α3 ≥ a or α2 − α3 ≤ a.

(3) α1 − α3 ≥ a or α1 − α3 ≤ a.

Without loss of generality, suppose x = 0 and y ∈ a+. Then y satisfies y1 ≥ y2 ≥ y3.

The vertices of cx,y are 0 and (2/3,−1/3,−1/3) and (1/3, 1/3,−2/3). The vertices of cy,x

are (y1, y2, y3) and (y1 − 2/3, y2 + 1/3, y3 + 1/3) and (y1 − 1/3, y2 − 1/3, y3 + 2/3). A point

z is in para(x, y) if and only if z ∈ a+ and y − z ∈ a+, i.e. z1 − z2 ≥ 0 and z2 − z3 ≥ 0 and

y1 − y2 ≥ z1 − z2 and y2 − y3 ≥ z2 − z3.

We first show that if all vertices of cx,y and cy,x are in a root, then z is also in that root.

For roots of Type (1), if α1 − α2 ≥ a for α = 0, then a ≤ 0, in which case we clearly have

α1 − α2 ≥ 0 for z. If α1 − α2 ≤ a for α = y, then a ≥ y1 − y2, in which case z is also in the

root. The other cases follow from a similar analysis. This show that para(x, y) is contained

in the convex hull. On the other hand, it is clear that para(x, y) may be expressed as the

intersection of finitely many roots, so the convex hull is contained in para(x, y). Hence they

are equal.

IX.2: Parallelograms in the building

Now suppose that x and y are two vertices in the building B. Then there exists some

apartment Σ containing both of them, and that apartment is itself a Coxeter complex, so it

makes sense to talk about para(x, y) inside of Σ. It also makes sense to define combinatorial

geodesics in B as any shortest path along edges connecting vertices (not necessarily only

paths along edges which lie in some apartment). The following shows that para(x, y) is

well-defined independently of the choice of Σ and that combinatorial geodesics in fact do lie

in an apartment.
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Proposition IX.8. Suppose x and y are two vertices in B. Let Σ be any apartment con-

taining x and y. Then para(x, y) ⊂ Σ is contained in all apartments containing x and y,

and its vertices are exactly the union of all vertices appearing along combinatorial geodesics

connecting x and y in B.

Proof. Let γ be the unique Euclidean geodesic connecting x and y. Suppose first that γ

purely consists of edges of B. Then clearly the only combinatorial geodesic from x to y is

exactly γ, and by [Bro89] p. 152, γ is independent of the choice of apartment.

Suppose instead that γ does not consist only of edges. Then dA+(x, y) ∈ a++. Let cx,y and

cy,x be as in Proposition IX.7. Consider the union of all chambers appearing along minimal

galleries from cx,y to cy,x. Call this set B. Then B is the smallest convex subcomplex of B
containing cx,y and cy,x, and it must lie in some apartment (by the building axioms some

apartment contains cx,y and cy,x, and all apartments are convex). Since the intersection of

any number of apartments is convex, the intersection of all apartments containing cx,y and

cy,x, or equivalently the intersection of all apartments containing x and y, must contain B.

On the other hand B is exactly para(x, y) by Proposition IX.7.

What remains to be shown is that all combinatorial geodesics from x to y lie within

para(x, y). Suppose P is some such combinatorial geodesic. Let Σ be some apartment

containing x and y. Consider the retraction ρcx,y ,Σ from B onto Σ based at cx,y (see Appendix

B.6.8). The image of P must again be a combinatorial path from x to y inside Σ of the

same number of steps. However, all shortest paths from x to y in Σ are of length r + s if

dA+(x, y) = (r, s) by Proposition IX.6. Hence the length of P must be equal to r + s.

Let z be the vertex along P right before the first time P leaves para(x, y). Let w be the

next vertex after z along P . We must have that

dc(y, w) = dc(y, z) − 1. (IX.2.1)

Suppose that dA+(y, z) = (r′, s′). Then, using the retraction onto any sector based at y

containing z (see Appendix B.6.9), any neighbor of z must have dA+(y, w) belonging to one

of the elements in (IX.1.2) or (IX.1.3) (replacing r with r′ and s with s′). However, given

(IX.2.1), we see that in fact dA+(y, w) ∈ {(r′ − 1, s′), (r′, s′ − 1)}. On the other hand, by

[CMo94] Lemma 2.1, there is at most one such w which is a neighbor of z for each of these

possible values of dA+(y, w). In all such cases, that unique such w lies is para(y, z) (as we

can always find an element w′ ∈ para(y, z) satisfying dA+(y, w′) = dA+(y, w)). Therefore in

fact w ∈ para(y, z) ⊂ para(y, x) = para(x, y) by Proposition IX.4.
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IX.3: Classification of nearly opposite sectors

Suppose p is a vertex in B. Recall that the link of p is itself a spherical building (see

Appendix B.6.5). Hence given chambers c1 and c2 containing p, we may associate an element

dW (c1, c2) ∈ S3 using the Coxeter group-valued metric. Up to simplicial automorphisms of

the Coxeter complex of S3, there are four relative positions that two chambers in a given

apartment in the local spherical building can be in:

(1) dW (c1, c2) = 1, i.e. c1 = c2.

(2) dW (c1, c2) = (12) or (23), i.e. c1 and c2 are adjacent.

(3) dW (c1, c2) = (132) or (123), i.e. c1 and c2 are nearly opposite.

(4) dW (c1, c2) = (13), i.e. c1 and c2 are opposite.

1

(12)

(123)

(23)(13)

(132)

Figure 9: The red sectors are adjacent to the brown sector, the blue sectors are nearly
opposite the brown sector, and the green sector is opposite the brown sector.

Now suppose x, y, p are vertices of B. We say that (x, y; p) is a primitive triple if

para(x, p) ∩ para(y, p) = {p}. If we have dA+(x, p) ∈ a++ and dA+(y, p) ∈ a++, then any

sector S based at p containing x must have c1 := cp,x as its germ, and similarly for c2 := cp,y.

We clearly have c1 ∩ c2 ⊂ para(x, p) ∩ para(y, p) = {p}. Therefore c1 and c2 must be either

opposite or nearly opposite (Cases (3) and (4) above).

If instead (x, y; p) is a primitive triple but at least one of dA+(p, x) and dA+(p, y) is not

in a++, then we may find sectors S1 based at p containing x, and S2 based at p containing

y such that their germs c1 and c2 are either opposite or nearly opposite.
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We now wish to classify primitive triples. There are a couple of facts about affine buildings

that we shall utilize.

Proposition IX.9 ([Bro89] p. 169). Suppose H is a half apartment in B with boundary wall

∂H. Suppose c is a chamber in B with a panel lying in ∂H. Then there exists an apartment

in B containing H and c.

Proposition IX.10 ([BS14], therein referred to as property (EC)). Suppose Σ1 and Σ2 are

two apartments that intersect in some half apartment H. Let Hi be the other half apartment

of Σi. Then H1 and H2 together form an apartment.

Proposition IX.11 ([BS14], therein referred to as property (CO)). Suppose S1 and S2 are

two sectors in B based at the same point p. Suppose the Si’s determine opposite chambers

in the link of p (which is a spherical building). Then S1 and S2 are contained in a unique

apartment.

If (x, y; p) is a primitive triple and c1 = cp,x and c2 = cp,y are opposite, then by Proposition

IX.11 one can find an apartment containing all three points. It is then clear that in fact

p ∈ para(x, y).

We thus are left with understanding the situation when c1 and c2 are nearly opposite.

We extend the terminology and say that two sectors based at the same vertex are nearly

opposite if their germs are.

IX.3.1: Strips and levels of sectors

We define a wall in the Coxeter complex X to be any union of edges which form an

infinite line in the Euclidean sense. We define a half-wall to be any union of edges which

form a ray in the Euclidean sense. We define a combinatorial line segment to be any union of

edges which forms a line segment in the Euclidean sense. We define a strip of width k (with

k ≥ 1) in the Coxeter complex X to be the region bounded between two parallel walls whose

combinatorial distance apart is k. We define a half-strip to be the intersection of a strip

with any root in X which is not parallel to the walls defining the strip. Given a half-strip

there is a unique chamber which has one of its edges along one of the defining walls, and the

other edge along the boundary of the defining root; we call this the germ of the half-strip.

See Figure 10.

Given a sector S, and a choice of one of its bounding half-walls ℓ, we get an associated

partition of S into levels, each of which is a half-strip of width one, which we shall index by
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k ∈ N (starting from k = 1). Let Level(S, k) denote the kth level, and let S(k) denote the

sector obtained by removing the first k levels (i.e. S(k) is the union of levels k+1, k+2, . . . ).

See Figure 11.

Figure 10: The red and blue regions together form a strip of width three. The red and blue
regions are each half-strips. The solid blue chamber is the germ of the blue half-strip

Figure 11: A sector may be partitions into levels, each of which is a half-strip of width one.

Suppose Σ is some apartment in B. Suppose c ⊂ Σ is a chamber and ℓ ⊂ Σ is a

combinatorial line segment whose edges form part of a wall in Σ. Suppose the endpoints of

ℓ are the vertices v1 and v2. Suppose the edge of ℓ containing v1 is also one of the edges of

c. Let w be the opposite vertex in c to this edge. Then the convex hull of c and ℓ is clearly

para(w, v2) ∪ c. See Figure 12.

w

c
ℓ

v1 v2

Figure 12: The convex hull of the blue chamber c and the brown line ℓ is the union of c and
the red parallelogram para(w, v2), where w is the opposite vertex of the blue chamber, and
v2 is the opposite vertex of the brown line.

Repeated application of this observation gives the following:
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Lemma IX.12. Suppose Σ is an apartment in B, and c ⊂ Σ is a chamber, and ℓ ⊂ Σ is a

half-wall whose initial edge is one of the edges of c. Then the combinatorial convex hull of c

and ℓ is the half-strip in Σ of width one which has one of its bounding half-walls equal to ℓ

and has germ equal to c. If instead ℓ is a wall, one of whose edges is one of the edges of c,

then the convex hull of c and ℓ is the strip of width one containing c and which has ℓ as one

of its bounding walls.

Corollary IX.13. Suppose H is a half-apartment in B. Suppose c is a chamber not lying

in H but which shares a panel with ∂H. Then all apartments containing H and c (such

apartments exist by Proposition IX.9) must contain the strip determined by ∂H and c as in

Lemma IX.12.

IX.3.2: Classification of nearly opposite sectors

Let S1 and S2 be nearly opposite sectors with common vertex p. Let P be the local

spherical building obtained from the link of p. Let a1, b1 be the boundary half-walls of S1

and a2, b2 the boundary half-walls of S2 with a1 and a2 determining opposite vertices in the

link of p. Let s1 and s2 be the germs of S1 and S2 respectively.

We claim that the union of a1 and a2 forms an infinite (Euclidean) geodesic (and hence

there exists some apartment containing a1 ∪ a2 in which this set corresponds to a wall). Let

ā1 and ā2 be the neighbors of p in a1 and a2 respectively. Notice that a1 is a geodesic, a2 is

a geodesic, and the path ā1 → p → ā2 is a geodesic. Hence a1 ∪ a2 is locally geodesic and

therefore globally geodesic by the CAT(0) geometry.

In the sequel, any time we talk about levels of the sectors Sj, it is with respect to the

half-wall aj.

Lemma IX.14. Suppose S1 and S2 are as above. Then there exists a half-apartment H

such that ∂H = a1 ∪ a2, and H does not otherwise intersect S1 or S2. Furthermore H can

be extended to a half-apartment H1 by appending Level(S1, 1), Level(S2, 1), and a uniquely

determined chamber t.

Proof. Because the link of p is a spherical building, we know that there is some apartment

Π in the local spherical building P containing s1 and s2. Let t be the chamber connecting

s1 and s2 along the minimal gallery in Π from s1 to s2. Then t must have p as a vertex

as well as the neighbors of p in b1 and b2. Since any three vertices determine at most one

chamber, t is well-defined independently of the choice of Π. Notice also that {s1, t, s2} form
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t

p

s2s1

b1 b2

a1 a2

S1 S2

H

Figure 13: Given two nearly opposite sectors S1 (the blue sector) and S2 (the red sector),
we may find a unique chamber t (the green chamber) “connecting” the germs of S1 and S2,
and a half-apartment H (the yellow region) for which ∂H is composed of the union of one of
the bounding half-walls of S1 (denoted above as a1) and one of the bounding half-walls of
S2 (denoted above as a2). Furthermore, the yellow region together with the green chamber
and the first levels of the red and blue sectors also forms a half-apartment.

a half-apartment in P , and therefore by [Ron89] Lemma 6.3, any chamber adjacent to s2

which has s2 ∩ a2 as one of its panels must be opposite to s1.

Let Σ be any apartment in B containing S2. Let R be the sector based at p in Σ which

shares the half-wall a2 with S2. Let r be the germ of R. Because r shares a panel with s2, we

conclude that it is opposite to s1 in P . Therefore by Proposition IX.11, there exists a unique

apartment Σ′ containing S1 and R. Furthermore the half-apartment H in Σ′ containing both

a1∪a2 and R clearly does not intersect S1 other than along a1. We claim that it also cannot

intersect S2 other than along a2. This shall follow from the following in which we show that

we may append a level to H to obtain a bigger half-apartment as in the statement of the

lemma.

Consider the convex hull of s1 and ∂H. By Proposition IX.9, this adds on a strip to H.

This strip clearly contains Level(S1, 1) by Corollary IX.13. Furthermore the convex hull of s1

and r must contain t and s2 (because they are opposite, they determine a unique apartment

in P by [Ron89] Chapter 6.1). Since the convex hull of s2 and a2 is Level(S2, 1), we conclude

the proof of the lemma. See Figure 13.

We define an equilateral triangle in B to be the intersection of a sector S with any half-

apartment J which has an extension to an apartment containing S and such that ∂J is

transverse (i.e. not parallel) to the half-walls of S. Such a region lies in an apartment, and
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in that apartment it is a Euclidean equilateral triangle. The size of the equilateral triangle

is the length of any one of its sides.

Lemma IX.15. Suppose S1 and S2 are as before. Let S(n)
1 and S(n)

2 be the sectors obtained

by removing the first n levels. Let p
(n)
1 and p

(n)
2 be the base vertices of these sectors. Let a

(n)
1

and a
(n)
2 be the bouding half-walls of these sectors parallel to a1 and a2. Then either S1 and

S2 are contained in an apartment, or there exists a k such that all of the following hold:

(1) S(k)
1 and S(k)

2 are contained in an apartment Σ,

(2) p
(k)
1 and p

(k)
2 are the endpoints of a line segment of length k in Σ,

(3) ℓ ∪ a(k)1 ∪ a(k)2 is a wall in Σ,

(4) given x ∈ S(k)
1 and y ∈ S(k)

2 , we have ℓ ⊂ para(x, y) ⊂ Σ,

(5) and p
(k)
1 , p

(k)
2 , and p form the vertices of an equilateral triangle of size k and one of

whose sides is ℓ.

p

x

y

Figure 14: Given vertices x, y, and p, we can consider para(x, y), which is the black paral-
lelogram in the figure. If para(x, p) and para(y, p) only intersect at p, and the associated
chambers cp,x and cp,y are nearly opposite, then we may find nearly opposite sectors at p,
one of which contains x (the blue sector) and the other of which contains y (the red sector).
Certain half-strips of these sectors may be combined with an equilateral triangle (the green
triangle) to form a strip. The remaining part of these sectors may then we placed in some
apartment (containing x and y) which is the brown apartment in the figure. In this apart-
ment, the remaining parts of these sectors are oriented opposite.

Proof. The strategy is to attempt to add levels to the half-apartment H from Lemma IX.14.

In fact Lemma IX.14 already tells us that we can add the first level. Let Hk denote the half
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p
(k)
1 p

(k)
2

ℓ

x

y

Figure 15: This shows essentially the same picture as Figure 14 from the “perspective” of
the brown apartment. The blue sector is exactly S(k)

1 and the red sector is exactly S(k)
2 as in

Lemma IX.15 (here k = 3).

apartment obtained by appending the first k levels of S1 and S2 to H, assuming we are able

to do so. We thus know that H1 exists.

If we are able to keep adding levels indefinitely, then, by taking the union of these

levels together with H, we obtain a apartment containing S1 and S2 (the union is clearly an

apartment in the complete apartment system; see Appendix B.4.2).

Suppose instead that n is such that we have successfully added n levels (and hence

constructed Hn) but are not able to add the (n + 1)st level. By Proposition IX.11, we may

find apartments Σ1 and Σ2 such that Σj contains Hn and S(n)
j . We clearly have Σ1∩Σ2 ⊃ Hn.

Suppose some other chamber c were in the intersection. Let c′ be the last chamber not

in Hn along any minimal gallery from c to any chamber in Hn. This gallery must lie in

the intersection Σ1 ∩ Σ2 as the intersection is combinatorially convex. Therefore c′ is a

chamber in the intersection which is not contained in Hn but shares a panel with ∂Hn. By

Corollary IX.13, any apartment containing Hn and c′ must also contain the strip parallel to

∂Hn containing c′ and hence this strip is in Σ1 ∩ Σ2. However, this strip clearly contains

Level(Sj, n + 1) for j = 1, 2, so we would be able to form Hn+1, which is a contradiction.

Therefore, Σ1 ∩ Σ2 = Hn.

Let J1 and J2 be the other half apartments of Σ1 and Σ2. By Proposition IX.10, we may

form an apartment Σ = J1 ∪J2. It is clear from the construction that Σ satisfies Properties

(1), (2), (3), and (5) (with n = k). Property (4) follows from the observation that in Σ, the

sectors S(n)
1 and S(n)

2 have opposite orientations.
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IX.4: Classification of primitive triples

IX.4.1: Existence of confluence points

Lemma IX.16. Suppose x, y, and p are vertices of B. Let D = para(x, p)∩para(y, p). Then

there exist points z ∈ D which simultaneously minimize dc(x, ·) and dc(y, ·) over all points

in D. Furthermore, for any such z, (x, y; z) forms a primitive triple.

Proof. Let z ∈ D. By Proposition IX.8, this implies that there exist combinatorial geodesics

from x to p and from y to p which both pass through z, and hence,

dc(x, p) = dc(x, z) + dc(z, p),

dc(y, p) = dc(y, z) + dc(z, p).

Now suppose z ∈ D is as close to x with respect to dc(·, ·) as any other point in D.

Suppose w ∈ D is some other point. We wish to show that dc(y, z) ≤ dc(y, w). By (IX.1.1)

we have:

dc(x, z) + dc(z, p) = dc(x,w) + dc(w, p),

dc(y, z) + dc(z, p) = dc(y, w) + dc(w, p),

dc(x, z) − dc(y, z) = dc(x,w) − dc(y, w),

dc(x, z) − dc(x,w) = dc(y, z) − dc(y, w).

By assumption dc(x, z)− dc(x,w) ≥ 0. Therefore, the same holds for dc(y, z)− dc(y, w), and

therefore z is as close to x and y as any other point in D.

We now show that (x, y; z) is a primitive triple. Suppose w ∈ para(x, z) ∩ para(y, z).

Then, on the one hand w ∈ D by Proposition IX.4, and on the other hand w lies along some

combinatorial geodesic from x to z and hence w could not be further away from z than x is.

But z is as close to x as any other point in D. Therefore w = z.

Given x, y, and p, we call any point z ∈ para(x, p) ∩ para(y, p) satisfying the conditions

in Lemma IX.16 a confluence point of (x, y; p).

Remark IX.17. In general (x, y; p) may have several confluence points. For example suppose

dA+(x, y) = (1, 1). Consider the unique edge e ∈ para(x, y) which passes through the

interior of para(x, y). Let p be any point such that e ∪ p forms a chamber c ⊂ B. Then
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para(x, p) ∩ para(y, p) = c. Therefore, either endpoint of e may be considered a confluence

point of (x, y; p).

IX.4.2: Directions of the bounding line segments of a parallelogram

Suppose dA+(x, y) = (r, s). The parallelogram para(x, y) viewed as a Euclidean parallel-

ogram has as its corners x, y as well as two other vertices w, z. One of these, say w, satisfies

dA+(x,w) = (r, 0), and the other, say z, satisfies dA+(x,w) = (0, s). In such a case we say

that the line from x to w is in the (1, 0)-direction with respect to x, and the edge from x to

z is in the (0, 1)-direction with respect to x. Combinatorial line segments inside of para(x, y)

which are parallel to, e.g., the combinatorial line segment from x to w are also said to be in

the (1, 0)-direction with respect to x.

Given a combinatorial line segment ℓ we may consider its midpoint z. Then z is not

necessarily in Λ, but it is inside of Λ/2, and we may extend dA+(·, ·) to also make sense for

points in Λ/2.

IX.4.3: Branch lines and statement of the classification

The following is a summary of the content of Chapter IX.3 applied towards the classifi-

cation of primitive triples (together with some straightforward calculations which have been

suppressed).

Lemma IX.18. Suppose (x, y; p) is a primitive triple. Let Sx (and Sy, resp.) be any sector

based at p containing x (containing y, resp.).

(1) If Sx and Sy are opposite, then p ∈ para(x, y). We define ℓ = p to be the branch line

of the primitive triple (we may consider a point to be a line of length 0).

(2) Suppose Sx and Sy are nearly opposite.

(a) Suppose there exists an apartment Σ containing Sx and Sy. Let T be the sector

joining these two sectors in Σ. Let ℓ be all points in T ∩ para(x, y) minimizing

dc(p, ·). Then ℓ consists of a line segment; we define ℓ to be the branch line of the

primitive triple.

(b) Suppose there does not exist an apartment containing Sx and Sy. Let ℓ be as in

Lemma IX.15. Then ℓ is defined to be the branch line of the primitive triple.

Now suppose ℓ has midpoint z and ℓ has length k.
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(1) If ℓ is in the (1, 0)-direction, then

dA+(x, p) = dA+(x, z) − (k/2, 0) + (0, k)

dA+(y, p) = dA+(y, z) − (0, k/2) + (k, 0).

(2) If ℓ is in the (0, 1)-direction, then

dA+(x, p) = dA+(x, z) − (0, k/2) + (k, 0)

dA+(y, p) = dA+(y, z) − (k/2, 0) + (0, k).

IX.5: Proof of Proposition II.6 and Corollary II.7

Recall the definition of the polytope H from Appendix C.6.1. We wish to prove Propo-

sition II.6, namely that given x, y ∈ G/K, we have xEm ∩ xEm ̸= ∅ if and only if

dA+(x, y) ∈ HΛ
m.

Proof of Proposition II.6 (When Polytopal Ball Intersect). Let x and y be vertices in the

building. We first claim the following: if xEm ∩ yEm ̸= ∅, then there exists a p in the

intersection such that (x, y; p) forms a primitive triple. To see this: first suppose w ∈
xEm ∩ yEm. Suppose (x, y;w) is not a primitive triple. Then, by Lemma IX.16, there exists

a p ∈ para(x,w) ∩ para(y, w) such that dA+(x, p) ⪯ dA+(x,w), and dA+(y, p) ⪯ dA+(y, w),

and (x, y; p) is a primitive triple; we clearly have p ∈ xEm ∩ yEm.

We now use the classification of primitive triples to show that there is a w ∈ xEm ∩ yEm
such that (x, y;w) is an additive triple. Let ℓ be the branch line of the primitive triple

(x, y; p), and suppose ℓ has length k (see Lemma IX.18). Suppose z is the midpoint of ℓ.

Suppose ℓ is in the (1, 0)-direction. Suppose dA+(x, z) = (a, b). Then by Table 1:

dA+(x, p) = dA+(x, z) − (k/2, 0) + (0, k),

|dA+(x, p)|P = (a− k/2) + 2(b+ k) = a+ 2b+ k/2 = |dA+(x, z)|P + k/2

Suppose dA+(y, z) = (c, d). Then:

dA+(y, p) = dA+(y, z) − (0, k/2) + (k, 0),

|dA+(y, p)|P = (c+ k) + 2(d+ k/2) = c+ 2d = |dA+(y, z)|P
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Hence we conclude that if p ∈ xEm ∩ yEm, namely |dA+(x, p)|P ≤ m and |dA+(y, p)|P ≤ m,

then z is also in xEm ∩ yEm. A similar calculation may be performed in case ℓ is in the

(0, 1)-direction (the roles of x and y will be reversed). We therefore conclude that if xEm

and yEm intersect, then the intersection contains an additive triple, namely (x, y; z).

Without loss of generality, we may take x = 1K ∈ Λ and assume that y ∈ a+. By above

discussion implies that xEm ∩ yEm ̸= ∅ if and only if ((xEm) ∩ a) ∩ ((yEm) ∩ a) ̸= ∅, i.e. it

suffices to determine when translated copies of Pm intersect Pm. By Figure 16 we conclude

that when m = 1, this occurs if and only if y ∈ H. The case of general m follows immediately

by simply scaling up Figure 16 by a factor of m.

Figure 16: The blue triangle represents the S3-orbit of the polytope P in a. The green
triangles represent translated copies of this polytope. We wish to understand where the
centers of the green triangles may be so that the intersection with the blue triangle is non-
empty. This is exactly the pink hexagon. The restriction of the pink hexagon to a+ tells us
what the possible values of dA+(x, y) are (with x equal to the center of the blue triangle, and
y equal to the center of one of the green triangles) such that the triangles intersect; this is
exactly the polytope H which is represented by the pink shaded region.

Remark IX.19. At its heart, the proof of Proposition II.6 relies on the convexity of the

polytope obtained by taking the S3 orbit of P in a. See Figure 25. Though we do not wish
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to discuss it at length here, using the theory of Hecke paths (see [KM08]), one may show

that if one has a polytope Q ⊂ a+ whose S3 orbit is convex, then for vertex x in B, the

collection of values that dA+(x, y) obtains for y such that the Q-shaped ball centered at x

and the Q-shaped ball centered at y intersect is itself a convex polytope.

Proof of Corollary II.7 (Kernel Function is Supported Near the Diagonal). Notice that H is

completely contained in the ball of radius 2
√

3 centered at 1K (recall that we are using the

normalization of the metric such that if dA+(x, y) = (1, 0) or (0, 1), then d(x, y) = 1).

Therefore LM(g, h) ̸= 0 implies that gEm ∩ hEm ̸= 0 for some m ≤ M , which implies that

dA+(gK, hK) ∈ HM , which implies that d(gK, hK) ≤ 2
√

3M .
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CHAPTER X

Geometric Bound on the Size of the Intersection of

Polytopal Balls

X.1: The number of equilateral triangles corresponding to a given

combinatorial line segment

Proposition X.1. The number of chambers in B containing a given edge is exactly q + 1.

Proof. This follows from counting the number of ways to extend a line in F3
q to a plane.

Given a combinatorial line segment (which is composed of finitely many edges), we call

any edge containing one of the endpoints of the line segment a boundary edge.

Given an equilateral triangle T in B and a choice of one of its bounding combinatorial

line segments, we may partition T into levels similarly to the way in which we partitioned

sectors into levels. Each level is a trapezoid of width one as in Figure 12.

Lemma X.2. Suppose ℓ is a combinatorial line segment in B of length k. The number of

equilateral triangles which have ℓ as one of their sides is equal to (q + 1)qk−1.

Proof. Let e1 be one of the boundary edges of ℓ. By Proposition X.1, there are q+1 chambers

containing e1. Let c1 be one such chamber. Then by Lemma IX.12, the convex hull of ℓ

and c1 is a trapezoid as in Figure 12; this shape exactly corresponds to the first level of

an equilateral triangle containing e1. We now wish to add a second level. Let e2 be one

of the boundary edges of the combinatorial line bounding this trapezoid which is parallel

and opposite to ℓ. Again, e2 is contained in q + 1 chambers, one of which already occurs in

the trapezoid we already constructed. For each of the q other choices, we may subsequently

add another level to our trapezoid. We may continue this process until we end up with an

equilateral triangle; at each step after the first there are q choices for how to add the next

level.
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X.2: Coordinatizing the relative position of triples

Suppose (x, y; z) is a triple of vertices in B. Suppose dA+(x, y) = (r, s). Let p be any

confluence point of (x, y; z). Let ℓ be the branch line of (x, y; p). Suppose ℓ has length k

and is in the α-direction with respect to x (i.e. α ∈ {(1, 0), (0, 1)}). Let w be the point

on ℓ closest to x (with respect to dc(·, ·), or equivalently with respect to d(·, ·)). Suppose

dA+(x,w) = (a1, a2) and dA+(p, z) = (b1, b2). Then we assign to (x, y; p; z) the “coordinates”

(r, s; a1, a2, k, α; b1, b2). Note, that by Remark IX.17, a given point may get assigned multiple

“coordinates” because there may be multiple choices of confluence points. Our next goal is

to bound, for a given x, y with dA+(x, y) = (r, s) and a give choice of (r, s; a1, a2, k, α; b1, b2),

the number of z such that there exists a confluence point p for (x, y; z) such that (x, y; p; z)

gets assigned the given coordinates.

Lemma X.3. Suppose x, y are fixed with dA+(x, y) = (r, s). Then{
#z s.t. ∃ confluence point p of (x, y; z) s.t.

coordinates of (x, y; p; z) are (r, s; a1, a2, k, α; b1, b2)

}
≤ 2

ν3(q−1)
(q2)

k
2
+b1+b2 . (X.2.1)

Proof. The choice of coordinates uniquely determines the branch line ℓ. Let T denote the

collection of all equilateral triangles which have one of their bounding line segments equal

to ℓ; the cardinality of this set is given by Lemma X.2. Given T ∈ T, let a(T ) denote the

vertex of T opposite to ℓ. Let X denote the set:

X := {(T , w) : T ∈ T and w ∈ G/K and dA+(a(T ), w) = (b1, b2)}.

Given (x, y; p; z) on the left hand side of (X.2.1), we can associate to it an element of X,

namely the equilateral triangle T ′ associated to the primitive triple (x, y; p) as in Lemma

IX.18 (clearly then a(T ′) = p)) and the point z itself. This map is clearly an injection. On

the other hand, for a fixed T ∈ T, the number of points in X whose first entry is T is exactly

N(b1,b2) which is given by (A.3.2) (note that that formula is given in partition coordinates,

but here we are using cone coordinates). Therefore the cardinality of X is exactly given by

the right hand side of (X.2.1).

Suppose (x, y; p; z) has coordinates (r, s; a1, a2, k, α; b1, b2). Then if α = (1, 0), we have

dA+(x, p) = (a1, a2 + k)

dA+(y, p) = (s− a2 + k, r − a1 − k).
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If α = (0, 1), we have

dA+(x, p) = (a1 + k, a2)

dA+(y, p) = (s− a2 − k, r − a1 + k).

This follows from Lemma IX.18.

X.3: The polytope parametrizing allowable coordinates of triples

of points

X.3.1: The defining inequalities of the polytope

Proposition X.4. Suppose (x, y; p; z) has coordinates (r, s; a1, a2, k, α; b1, b2) with z ∈ xEm∩
yEm. Then the following inequalities are satisfied:

r + 2s ≤ 6m dA+(x, y) ∈ Hm

2r + s ≤ 6m dA+(x, y) ∈ Hm

a1 ≤ r ℓ ⊂ para(x, y)

a2 ≤ s ℓ ⊂ para(x, y)

r, s, a1, a2, k, b1, b2,m ≥ 0. (X.3.1)

(1) Suppose α = (1, 0). Then the following inequalities are also satisfied:

(a1 + b1) + 2(a2 + k + b2) ≤ 2m dA+(x, z) ∈ Pm

(s− a2 + k + b1) + 2(r − a1 − k + b2) ≤ 2m dA+(y, z) ∈ Pm

a1 + k ≤ r ℓ ⊂ para(x, y). (X.3.2)

(2) Suppose α = (0, 1). Then the following inequalities are also satisfied:

(a1 + k + b1) + 2(a2 + b2) ≤ 2m dA+(x, z) ∈ Pm

(s− a2 − k + b1) + 2(r − a1 + k + b2) ≤ 2m dA+(y, z) ∈ Pm

a2 + k ≤ s ℓ ⊂ para(x, y). (X.3.3)
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X.3.2: The dominating term of the sum over lattice points in the polytope

Lemma X.5. All z ∈ xEm ∩ yEm with dA+(x, y) = (r, s) have their coordinates (x, y; p; z)

(with any choice of confluence point p) satisfying:

k

2
+ b1 + b2 ≤ 2m− r

2
− s

2
. (X.3.4)

Furthermore, when m, r, s are fixed, there is at most one possible set of coordinates for such

(x, y; p; z) such that (X.3.4) becomes an equality.

Proof. Suppose (x, y; z; p) is as in the statement of the lemma. Depending on α, the co-

ordinates of z must satisfy all of (X.3.1) plus either all of (X.3.2) or all of (X.3.3). In all

cases we refer to these inequalities collectively as the coordinates inequalities. Suppose the

coordinates of z also satisfy the inequality:

k

2
+ b1 + b2 ≥ 2m− r

2
− s

2
. (X.3.5)

The set of points in R8 satisfying the coordinates inequalities as well as (X.3.5) forms a

convex polyhedron. Using the Polyhedra functionality in Sage, one realizes that, regard-

less of what α is, this polytope is the conical span of the following vectors in coordinates

(m, r, s, a1, a2, k, b1, b2):

u1 = (1, 2, 2, 2, 0, 0, 0, 0)

u2 = (1, 0, 0, 0, 0, 0, 2, 0).

Any vector in this conical span results in (X.3.5) becoming an equality. Hence no point in

this polytope ever violates (X.3.4). Furthermore, when m, r, s are fixed, there is at most one

point in the conical span whose first three coordinates are (m, r, s) because the first three

coordinates of u1, namely (1, 2, 2), and the first three coordinates of u2, namely (1, 0, 0), are

linearly independent in R3. In fact for such a point we must have

r = s

a1 = r

a2 = 0

k = 0

b1 = 2m− r
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b2 = 0.

x

y

p = ℓ

Figure 17: The only way that (x, y; p; z) can have coordinates which results in (X.3.4) being
an equality is when r = s and a1 = r and k = 0. This means that the sides of para(x, y) are
both the same, and that the branch line ℓ is a single point and is equal to p, and that this
point is at the corner of para(x, y) which is obtained by moving from x in the (1, 0)-direction.
We then see that dA+(x, p) = dA+(y, p) = (r, 0) (in this case r = s = 4).

X.4: Proof of Proposition II.15

Proof of Proposition II.15 (Upper Bound on card(Eλ
m)). Recall that Ẽλ

m is the pullback to

G of Eλ
m = Em ∩ ϖλEm ⊂ G/K with λ ∈ A+. Clearly vol(Ẽλ

m) = card(Eλ
m). Sup-

pose λ = (r, s) in cone coordinates. We can associate to each z ∈ Eλ
m the coordinates

(m; r, s; a1, a2, k, α; b1, b2) (after choosing some confluence point p). Let (β, ·) be the func-

tional defined by

(β, (a1, a2, k, b1, b2)) =
k

2
+ b1 + b2. (X.4.1)

By Lemma X.3, the number of z which map to a given set of coordinates is at most

(q2)
k
2
+b1+b2 = (q2)(β,(a1,a2,k,b1,b2)). (X.4.2)
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x, y p m · p†

Figure 18: This is a continuation of Figure 17. Here the line from x to p (the red line) and
from y to p (the dotted blue line) are moved into a+ by applying the appropriate element
of S3. We then add the same vector, namely (b1, b2) to both of these line segments. In this
case the line from p to m · p† (represented by the pink line) is the unique line we can add
on that will maximize the dot product with δ and also keep us inside of Pm (represented by
the brown polygon).

Let Pα(m, r, s) be the polytope defined by the inequalities in (X.3.1) and either (X.3.2) (if

α = (1, 0)) or (X.3.3) (if α = (0, 1)). We can then bound card(Eλ
m) by summing (X.4.2)

over all integer points (in coordinates (a1, a2, k, b1, b2)) in the polytopes P(1,0)(m, r, s) and

P(0,1)(m, r, s).

For the remainder of the proof, we assume that we have fixed an α (the subsequent

discussion does not depend on α). Notice that all of the defining inequalities of Pα(m, r, s)

are of the form

fi(a1, a2, k, b1, b2) ≤ gi(m, r, s),

where fi and gi are linear functionals. We have that (m, r, s) parametrizes some vector space

which we call V(m,r,s).

We also have each of our polytopes Pα(m, r, s) living inside of some five-dimensional

space which we call W and which is naturally coordinatized via (a1, a2, k, b1, b2). We can

partition up V(m,r,s) according to the type of the underlying polytope in W together with the

information about which vertices maximize (β, ·). We call each such component a β-region.

Clearly there are only finitely many such regions.

Because all polytopes associated to a given β-region have the same type, it makes sense

to discuss the “same” vertex for different polytopes in a given β-region. Some β-regions are

such that their associated polytopes have a vertex v∗ which, at least for some polytopes in the
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β-region, satisfies (β, v∗) = 2m− r/2− s/2; we shall refer to such β-regions as extremal. By

Lemma X.5, in such cases v∗ is the unique vertex satisfying this equation and is the unique

vertex maximizing (β, ·). In general, at the vertex w maximizing (β, ·) in any polytope, we

have that β is in the polar cone of the cone generated at w. Hence β is in the polar cone of

ConePα(m,r,s)(v
∗) (which we view as a cone based at the origin, not based at v∗). Furthermore,

because v∗ is the unique vertex maximizing (β, ·), we must have β in the interior of the polar

cone.

Recall that the structure of ConePα(m,r,s)(v
∗) only depends on the type of the underlying

polytope (see Appendix C.2.1). Hence this cone does not depend on (m, r, s) (as long as we

stay in the same β-region). Because β is in the interior of the polar cone, we have that the

sum of (X.4.2) over the lattice points in ConePα(m,r,s)(v
∗) has a finite value; in fact this is

exactly what is referred to as

σ(ConePα(m,r,s)(v
∗); 2β) (X.4.3)

in Appendix C.3.2. If we translate this cone to be based at v∗, then the sum of (X.4.2)

over the lattice points in this cone gives an upper bound on the sum of (X.4.2) over the

lattice points in Pα(m, r, s). On the other hand, this quantity is at most (q2)2m−r/s−s/2 times

(X.4.3). Hence we obtain that for polytopes in extremal β-regions:

card(Eλ
m) ≤ σ(ConePα(m,r,s)(v

∗); 2β)(q2)2m−r/2−s/2.

We now consider β-regions which are adjacent to extremal ones, namely ones whose

closure intersects the closure of an extremal β-region. If we have a sequence of points

(mi, ri, si) in such a β-region which approaches the boundary of an extremal β-region, any

vertex wi in the associated polytopes which maximizes (β, ·) must converge to v∗ and hence

the collection of coordinate inequalities which become equalities at wi must be a subset of

the inequalities that become equalities at v∗.

From the analysis in the proof of Lemma X.5, we must have

v∗ = (r, 0, 0, 2m− r, 0)

with r = s. Therefore the collection of inequalities which become equalities at v∗ is (suppos-

ing, for the moment, that α = (1, 0)):

a1 ≤ r
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a2 ≥ 0

k ≥ 0

b2 ≥ 0

a1 + 2a2 + 2k + b1 + 2b2 ≤ 2m

−2a1 − a2 − k + b1 + 2b2 ≤ 2m− s− 2r

a1 + k ≤ r.

The cone of any such wi in a region adjacent to an extremal β-region must be contained

in the cone obtained from at least 5 of these inequalities (as the relevant polytope lives in

a five-dimensional space). Furthermore this cone must contain β in its polar cone. Using

the Sage Polyhedron package, we can enumerate all such possible cones; we in fact find that

there are 4 possibilities and in all cases we have that β is in the interior of the polar cone.

We may then use the same style of analysis as for the extremal β-regions to conclude that

there exists a C1 such that the following holds: (we can take C1 to be the maximum over all

possible σ(ConePα(m,r,s)(wi); 2β); by the preceding analysis this set is finite and hence the

maximum is finite)

card(Eλ
m) ≤ C1(q

2)(β,wi) ≤ C1(q
2)2m−r/2−s/2,

for all (m, r, s) in a β-region adjacent to an extremal one. A similar analysis can be performed

for α = (0, 1).

We are left now with analyzing the β-regions which are not extremal nor adjacent to an

extremal one; we call such β-regions tame. Let B be a tame β-region. We seek to apply the

degenerate case of Brion’s formula for polytopes associated to points in B. However, we first

note that Brion’s formula requires that all vertices of the underlying polytope lie in some

lattice. We are in particular interested in Z5 ⊂ W , but the vertices of the polytopes might not

always be integer points. However, because all of the defining coordinate inequalities have

integer coefficients, and because we are only really interested in the case when (m, r, s) ∈ Z3,

there exists L ∈ N such that the vertices of the underlying polytopes always lie in (Z/L)5

(assuming m, r, s are integers). If we sum up (X.4.2) over the lattice points in this bigger

lattice lying inside of the underlying polytope, then we still obtain an upper bound for

card(Eλ
m).

We are now in a position to use degenerate Brion’s formula (see Appendix C.5.2). This
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tells us that for all polytopes associated to points in B, we have∑
x∈Pα(m,r,s)∩(Z/L)5

=
∑

vertices v of Pα(m, r, s)

Rv(m, r, s)(q
2)hv(m,r,s),

where Rv(m, r, s) is a polynomial in m, r, s and hv(m, r, s) is some linear functional in m, r, s.

More specifically hv(m, r, s) is obtained by dotting β with a given vertex v in the family

of polytopes associated to points in B; the coordinates of that vertex are in turn linear

functionals in m, r, s so long as we are in a given β-region.

Consider the following locus in V(m,r,s):

A = {(m, r, s) : m+ r + s = 1 and m, r, s ≥ 0}.

Consider the set A ∩ B. Elements in this set are uniformly far away (in, say, the Euclidean

metric) from the intersection of the extremal β-regions with A because all adjacent β-regions

to the extremal ones are also in the complement of B. On A ∩ B consider the function

hv(m, r, s)− (2m− r/2− s/2). By Lemma X.5, this function is negative on A∩B, but since

A is compact we in fact must have that there exists a C2 such that

hv(m, r, s) − (2m− r/2 − s/2) ≤ C2 < 0

on A ∩B.

Suppose m + r + s ≥ 1 (since we assume (m, r, s) ∈ Z3, this only excludes the case of

m = r = s = 0; in that case card(Eλ
m) = 1). We therefore get that there exists a C3, C4 > 0

and a p ≥ 0 such that:

Rv(m, r, s)(q
2)hv(m,r,s) ≤ C3(m+ r + s)p

(q2)hv(m,r,s)

(q2)2m−r/2−s/2 (q2)2m−r/2−s/2

≤ C3(m+ r + s)p(q2)C2(m+r+s)(q2)2m−r/2−s/2

≤ C4(q
2)2m−r/2−s/2.

By combining this bound over all vertices in v, we get that there exists a C5 > 0 such

that for all (m, r, s) in B:

card(Eλ
m) ≤ C5(q

2)2m−r/2−s/2.

Finally, by combining the bounds we obtained for the extremal, adjacent to extremal,
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and tame β-regions (which altogether consist of only finitely many regions), we get that

there exists a C6 such that for all (m, r, s) ∈ N3 we have:

card(Eλ
m) ≤ C6(q

2)2m−r/2−s/2 = C6(q
2)(δ,m·p†−λ

2
).

X.5: The geometric bound using the Brumley-Matz polytope

We originally attempted to prove the analogue of Proposition II.15 using the polytope

defined by Brumley-Matz in [BM21] which, somewhat coincidentally, is essentially exactly

equal to the polytope that we call H. For simplicity assume that α = (1, 0). If we replace the

first two equations of (X.3.2) in with the condition that dA+(x, z) ∈ Hm and dA+(y, z) ∈ Hm,

namely

(a1 + b1) + 2(a2 + k + b2) ≤ 6m

2(a1 + b1) + (a2 + k + b2) ≤ 6m

(s− a2 + k + b1) + 2(r − a1 − k + b2) ≤ 6m

2(s− a2 + k + b1) + (r − a1 − k + b2) ≤ 6m,

and we replace (X.3.4) with the condition that

k

2
+ b1 + b2 ≥ (δ,m · h† − dA+(x, y)

2
) = 4m− r

2
− s

2
, (X.5.1)

we get that such coordinates are exactly the conical row span of the following matrix in

coordinates (m, r, s, a1, a2, k, b1, b2):
1 0 0 0 0 0 2 2

1 2 2 0 2 0 2 0

1 2 2 2 0 0 0 2

1 6 0 2 0 2 0 0

1 4 4 2 2 0 0 0

 .

All such vectors in this cone in fact achieve equality in (X.5.1). Suppose for example we

have (m, r, s) fixed such that s = r = 2j for some j ∈ N, and 2m ≥ r. Then for every
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0 ≤ t ≤ 2j = r, the following element is in the cone:

m

2j

2j

t

2j − t

0

2m− t

2m− 2j + t


= (m− j)



1

0

0

0

0

0

2

2


+
t

2



1

2

2

2

0

0

0

2


+ (j − t

2
)



1

2

2

0

2

0

2

0


.

See Figures 19 and 20.

x

y

p = ℓ

Figure 19: Suppose dA+(x, y) = (r, s) with r = s. Suppose our confluence point p is some
point along the “diagonal” of para(x, y) (the yellow line). Then dA+(x, p) and dA+(y, p) are
equal.

This implies that for such (m, r, s), the cardinality of E
(r,s)
m can only be upper bounded

by something of size at least r(q2)(δ,mh
†− r

2
− s

2
). As mentioned in Remark IX.17, there is in fact

some redundancy in the counting one obtains by this method. However, using the theory of

Hecke paths [KM08], which we do not discuss here, one may in fact show that

card(E(r,s)
m ) ≳ r(q2)(δ,mh

†− r
2
− s

2
).

This extra polynomial factor in fact results in an inability to complete the last step of the
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x, y

p

m · h†

Figure 20: For each point p as in Figure 19 (here represented by the yellow line), we get that,
after applying the appropriate element of S3 to bring it into a+, the line segments from x
to p and from y to p are the same (represented by the solid red and blue dotted lines). For
all such points p we have that dA+(p,m · h†) (represented by the pink line) has the same dot
product with δ, namely (δ,m · h† − r/2 − s/2), and such points result in (X.5.1) becoming
an equation. Notice that the yellow line grows linearly with r = s, so we end up with an
upper bound on Eλ

m of size r(q2)(δ,m·h†−r/2−s/2).

proof which is carried out in Chapter XI. It is for this reason that we ended up changing our

polytope to P . In fact the important feature of p that circumvents this issue is that P has

its vertex p† “maximally singular”, i.e. on the boundary of a+.
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CHAPTER XI

Bounding the Sum over HΛ
M

XI.1: Proof of Proposition II.17

Proof of Proposition II.17 (Bounding the Sum over HΛ
M). We now seek to prove:∑

λ∈HΛ
M

(q2)θ(δ,λ−2|λ|H ·p†) ≲M. (XI.1.1)

We wish to use Brion’s formula. However, the exponent in each summand is not quite a

linear functional.

We now examine |λ|H more closely. Recall that H is defined by the following inequalities:

2r + s ≤ 6,

r + 2s ≤ 6.

We therefore have that

|λ|H = max
{2r + s

6
,
r + 2s

6

}
,

where λ = (r, s) in cone coordinates. The locus where 2r + s = r + 2s is exactly the locus

r = s. We may partition H into two pieces: Hr≤s and Hr≥s by adding in the relevant

constraint to the definition of H. See Figure 21. On Hr≤s, we have that |λ|H = r
6

+ s
3
, and

on Hr≥s, we have |λ|H = r
3

+ s
6
. Hence we define:

αr≤s :=
r

6
+
s

3
,

αr≥s :=
r

3
+
s

6
.
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Hence we may split up the left hand side of (XI.1.1) into a sum over (Hr≤s)ΛM and (Hr≥s)ΛM ,

and on each piece the summands become exactly of the form (q2)f(r,s) where f is a linear

functional in r, s.

Hr≥s

Hr≤s

h1 h2

h3

h4 = h†

Figure 21: We may split up H (the brown polytope) into the locus where r ≥ s (the red
region), and where r ≤ s (the blue region).

Let’s focus now on Hr≤s. On this polytope we have:

θ(δ, λ− 2|λ|H · p†) = θ
(
δ, λ− 2(αr≤s, λ) · p†

)
= θ
(

(δ, λ) − 2(αr≤s, λ) · (δ, p†)
)

= θ
(
λ, δ − 2(δ, p†)αr≤s

)
.

In cone coordinates, we have

δ = (1, 1),

p† = (2, 0),

αr≤s =
(1

3
,
1

6

)
,

δ − 2(δ, p†)αr≤s =
(1

3
,−1

3

)
=: βr≤s.
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Similarly we have

αr≥s =
(1

6
,
1

3

)
,

δ − 2(δ, p†)αr≥s =
(
− 1

3
,
1

3

)
=: βr≥s.

The vertices of H are:

h1 = (0, 0),

h2 = (3, 0),

h3 = (0, 3),

h4 = (2, 2) =: h†.

We have that the vertices of Hr≤s are h1, h3, h4, and the vertices of Hr≥s are h1, h2, h4.

On Hr≤s we have:

(h1, βr≤s) = 0

(h3, βr≤s) = −1

9

(h4, βr≤s) = 0.

Using degenerate Brion’s formula (see Appendix C.5.2), we get that there exists a constant

C1 and a degree one polynomial f(M) such that∑
λ∈(Hr≤s)ΛM

(q2)θ(δ,λ−2|λ|H ·p†) = f(M) + C1(q
2)−

M·θ
9

≤ C2 ·M

for some C2 and for all M ≥ 1. An analogous analysis may be carried out on (Hr≥s)ΛM .
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APPENDIX A

Representation Theory Preliminaries

A.1: Notation and conventions

A.1.1: Notation relating to PGL(d, F ) and GL(d, F )

Let F be a non-archimedean local field, O its ring of integers, ϖ a uniformizer of O, and

q the order of the residue field. Let G = PGL(d, F ) and K = PGL(d,O). Let G′ = GL(d, F )

and K ′ = GL(d,O). Let (G,K) denote either the pair (G,K) or the pair (G′, K ′). We denote

the Haar measure by vol(·) and assume that it is normalized so that vol(K) = 1. We let

Γ < G denote a lattice. Let Sd denote the symmetric group on d elements.

Let T < G (and T ′ < G′, resp.) denote the subgroup of diagonal matrices. Let A < T

(and A′ < T ′, resp.) denote the subgroup of matrices all of whose diagonal entries are powers

of ϖ. Let A+ ⊂ A (and A′+ ⊂ A′, resp.) denote those elements for which the powers of ϖ

along the diagonal are weakly decreasing. We use the shorthand T ,A,A+ to denote one of

either {T, T ′}, {A,A′}, {A+, A′+}, respectively. To each element a ∈ A we can associate a

tuple λ = (λ1, . . . , λd) by recording the powers of ϖ along the diagonal (for A this tuple is

only well-defined up to shifting all entries by the same integer). In case a ∈ A+, we have

that λ1 ≥ · · · ≥ λd. We let ϖλ denote the matrix diag(ϖλ1 , . . . , ϖλd). We let (kd) denote

the tuple (k, . . . , k) of length d.

A.1.2: Notation relating to topological groups and vector spaces

We use M to denote a topological group. If M1,M2 < M , then we say that a function

on M is (M1,M2)-invariant if it is invariant by M1 multiplication on the left and by M2

multipication on the right.
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We use the convention that convolution is defined by:

f1 ∗ f2(n) =

∫
M

f1(m)f2(m
−1n)dm.

Note that in case M is unimodular, all conventions for defining convolution are equivalent.

We shall use V to denote a (possibly infinite-dimensional) C-vector space, and H to

denote a separable Hilbert space. We let (·, ·) denote the pairing between V ∗ and V , and let

⟨·, ·⟩ denote the inner product on H. We use the convention that the inner product is linear

in the second entry and sesquilinear in the first.

A.2: The structure of the spherical Hecke algebra

A.2.1: The spherical Hecke algebra

We define H(G,K) to be the algebra of compactly supported (K,K)-invariant C-valued

functions on G with product given by convolution. This algebra is called the spherical Hecke

algebra (of G with respect to K).

A.2.2: The Cartan decomposition

Proposition A.1 (Cartan decomposition; [Mac95], p. 294). G is the disjoint union of the

double cosets KϖλK with ϖλ ∈ A+.

This implies that each element of H(G,K) is completely determined by its restriction to A+.

An obvious vector space basis for H(G,K) is given by the indicator functions for KϖλK with

ϖλ ∈ A+. We shall denote these functions as cλ and c′λ respectively for G and G′.

A.2.3: Hall-Littlewood polynomials

Given λ = (λ1, . . . , λd) with λ1 ≥ · · · ≥ λd, we let Pλ(x1, . . . , xd; t) be the Hall-Littlewood

polynomial associated to λ defined as follows (note that in the definition, σ is permuting the

xi’s rather than the λi’s; see also [Mac95], Chapter III, Section 2):

Pλ(x1, . . . , xd; t) =
1

νλ(t)

∑
σ∈Sd

σ.
(
xλ11 . . . xλdd

∏
i<j

xi − txj
xi − xj

)
, (A.2.1)

νλ(t) =
∏
i≥0

νmi
(t),
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mi = # of λj equal to i,

νm(t) =
m∏
i=1

1 − ti

1 − t
. (A.2.2)

A.2.4: The Satake isomorphism

Proposition A.2 (Satake isomorphism for GL(d, F ); [Mac95], p. 296-297). Let G′ =

GL(d, F ) and K ′ = GL(d,O). There is a C-algebra isomorphism

θ : H(G′, K ′) → C[x±1
1 , . . . , x±1

d ]Sd

given by

θ(cλ) = q−n(λ)Pλ(x1, . . . , xd; q
−1), (A.2.3)

where n(λ) =
∑

i(i− 1)λi.

We have a surjective C-algebra homomorphism from the spherical Hecke algebra for

GL(d, F ) to the spherical Hecke algebra for PGL(d, F ) given by integrating a function over

its F×-orbit (we shall prove that this is an algebra homomorphism as part of the proof of

Proposition A.3 below). We call this map sumF× . The kernel of sumF× is those functions

whose F×-integral is zero. We have an explicit isomorphism F× ≃ O× × Z after choosing

a uniformizer ϖ. Under the embedding F× ↪→ GL(d, F ), notice that O× ↪→ GL(d,O). We

normalize the Haar measure on F× so that O× has measure 1.

Proposition A.3 (Satake isomorphism for PGL(d, F )). Let G = PGL(d, F ) and K =

PGL(d,O). The map θ in (A.2.3) restricted to the kernel of sumF× has image equal to the

ideal generated by q−d(d−1)/2x1 . . . xd − 1. Hence we have a C-algebra isomorphism

θ̄ : H(G,K) → C[x±1
1 , . . . , x±1

d ]Sd/(q−d(d−1)/2x1 . . . xd − 1).

Proof. First we prove that sumF× is an algebra homomorphism (that it is surjective is clear).

Given x ∈ GL(d, F ), we let x̄ ∈ PGL(d, F ) denote its image under the natural map. On the

other hand, given an element y ∈ PGL(d, F ), we let ỹ ∈ GL(d, F ) be any lift of y. Given f

in the spherical Hecke algebra for GL(d, F ), we let f̄ denote its image under sumF× . Hence

we wish to show that f ∗ g = f̄ ∗ ḡ.
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Suppose h is in the spherical Hecke algebra for GL(d, F ). Then∫
F×

h(xγ)dγ =
∑
m

∫
O×

h(xηϖ(md))dη

=
∑
m

h(xϖ(md)),∫
GL(d,F )

h(x)dx =

∫
PGL(d,F )

∑
ℓ

h(ỹϖ(ℓd))dy.

Therefore,

f ∗ g(x) =

∫
PGL(d,F )

∑
ℓ

f(ỹϖ(ℓd))g(ϖ((−ℓ)d)ỹ−1x)dy,

f ∗ g(x̄) =
∑
m

f ∗ g(xϖ(md))

=
∑
m

∫
PGL(d,F )

∑
ℓ

f(ỹϖ(ℓd))g(ỹ−1ϖ((−ℓ)d)xϖ(md))dy

=

∫
PGL(d,F )

∑
m

∑
ℓ

f(ỹϖ(ℓd))g(ỹ−1xϖ(md))dy.

On the other hand,

f̄ ∗ ḡ(x̄) =

∫
PGL(d,F )

f̄(y)ḡ(y−1x̄)dy

=

∫
PGL(d,F )

(∑
ℓ

f(ỹϖ(ℓd))
)(∑

m

g(ỹ−1xϖ(md))
)
dy

=

∫
PGL(d,F )

∑
m

∑
ℓ

f(ỹϖ(ℓd))g(ỹ−1xϖ(md))dy.

Now we wish to prove that the image under θ of the kernel of sumF× is the ideal generated

by q−n(n−1)/2x1 . . . xd − 1. MacDonald computes that θ(c(1d)) = q−n(n−1)/2x1 . . . xd ([Mac95],

p. 297). Clearly θ(c(0d)) = 1. Hence we are really trying to show that the kernel of sumF× is

the ideal generated by c(1d) − c(0d). It is immediate that this element is indeed in the kernel

because ϖ(1d) ·Kϖ(0d)K = Kϖ(1d)K. More generally we have ϖ(1d) ·KϖλK = Kϖλ+(1d)K.

Now suppose f is in the spherical Hecke algebra for GL(d, F ). Then we can write

f =
∑
λ

αλcλ
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=
∑

λ with λd = 0

(∑
k

αλ+(kd)cλ+(kd)

)
,

f̄ =
∑

λ with λd = 0

(∑
k

αλ+(kd)

)
cλ (A.2.4)

with αλ ∈ C. For a fixed λ with λd = 0, only finitely many of the αλ+(kd) are non-zero since

f is compactly supported. Let N be the largest such k.

Let’s now subtract off the following element from f (notice that cλ ∗ c(kd) = cλ+(kd);

[Mac95], p. 295):

αλ+(Nd) (cλ+(Nd) − cλ+((N−1)d)) = αλ+(Nd) cλ+((N−1)d) (c(1d) − c(0d)).

Then the coefficient of cλ+(Nd) becomes zero and the coefficient of cλ+((N−1)d) becomes

αλ+((N−1)d) + αλ+(Nd).

Suppose L is the smallest k such that dλ+(kd) ̸= 0. If we repeat the above process N −L

times, then we will get that all coefficients of cλ+(kd) are zero except possibly for cλ+(Ld) whose

coefficient will be
∑

k αλ+(kd). If f is in the kernel, then f̄ = 0, so by (A.2.4), this coefficient

is also zero. If we repeat this process with each λ such that λd = 0, we end up with the zero

function after subtracting off an element in the ideal generated by c(1d) − c(0d).

A.3: Spherical functions

A.3.1: Spherical functions

A (K-)spherical function on G is a complex-valued continuous function ω on G satisfying:

(1) ω is (K,K)-invariant.

(2) ω ∗ f = λf · ω for each f ∈ H(G,K), where λf ∈ C.

(3) ω(1) = 1.

A.3.2: The spherical Fourier transform

We define the spherical Fourier transform of f ∈ H(G,K) to be the function f̂ on the set

of spherical functions defined by f̂(ω) = (ω ∗ f)(1) (that is, ω ∗ f = f̂(ω) · ω). On the other

hand, given a spherical function ω, we may take its spherical Fourier transform by defining

a function ω̂ on H(G,K) by ω̂(f) = (ω ∗ f)(1).
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Proposition A.4 ([Mac71], Proposition (1.2.6), p. 6). The map ω̂ : H(G,K) → C is a C-
algebra homomorphism. Furthermore, there is a bijection from the set of spherical functions

to the set HomC−alg.(H(G,K),C) given by the spherical Fourier transform.

A.3.3: The variety Ω(G)

Propositions A.2 and A.3 identify the spherical Hecke algebras with the coordinate rings

of affine varieties. Recall that by the nullstellensatz, the points of these varieties are in

bijection with C-algebra homomorphisms of the coordinate rings to C (given by evaluation

at a point). However, we have identified C-algebra homomorphisms of the spherical Hecke

algebra to C with spherical functions in Proposition A.4. Hence the points on these affine

varieties can be naturally identified with spherical functions. Furthermore, since all the

isomorphisms and bijections are explicit, we can derive an explicit formula for the spherical

functions.

Let Ω(G) denote the affine variety associated to G. Points on Ω(GL(d, F )) correspond to

tuples (z1, . . . , zd) with zi ∈ C× modulo permuting the coordinates. We can change variables

by letting zi = q
1
2
(d−1)−si with si ∈ C (mod 2πiZ/ ln(q)). Points on Ω(PGL(d, F )) under

these coordinates are now tuples s = (s1, . . . , sd) such that s1+· · ·+sd = 0 (mod 2πiZ/ ln(q)).

A.3.4: Formula for the spherical functions

Consider c′λ in the spherical Hecke algebra for GL(d, F ). Let

δ :=
1

2
(d− 1, d− 3, . . . , 3 − d, 1 − d);

this is exactly half the sum of positive roots for the Lie algebra sl(d). Given s = (s1, . . . , sd)

determining a point on Ω(GL(d, F )), let ωs be the associated spherical function. Then

ĉ′λ(ωs) = ω̂s(c
′
λ) is given by evaluating θ(c′λ) at the point (q

1
2
(d−1)−s1 , . . . , q

1
2
(d−1)−sd) in

Ω(GL(d, F )) which results in

ĉ′λ(ωs) = q(δ,λ)Pλ(q−s1 , . . . , q−sd ; q−1). (A.3.1)

On the other hand,

ĉ′λ(ωs) = ωs(ϖ
−λ) · vol(KϖλK),
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and it is known that ([Mac95], p. 298)

vol(KϖλK) = q2(δ,λ)
νd(q

−1)

νλ(q−1)
. (A.3.2)

Therefore

ωs(ϖ
−λ) =

q−(δ,λ)

νd(q−1)

∑
σ∈Sd

σ.
(
q−(s,λ)

∏
i<j

q−si − q−(sj+1)

q−si − q−sj

)
. (A.3.3)

The λ ∈ A+ such that λd = 0 give elements c′λ in the spherical Hecke algebra for

GL(d, F ) whose images c′λ under sumF× give a basis for the spherical Hecke algebra for

PGL(d, F ) (namely the elements cλ). Similarly to before we can compute ω̂s(c′λ), with s now

determining a point in Ω(PGL(d, F )), by simply taking θ(c′λ) and restricting it to points

such that s1 + · · · + sd = 0 (mod 2πiZ/ ln(q)). Hence (A.3.1) also gives a formula for the

spherical functions for PGL(d, F ).

A.4: Spherical representations

Recall that G = PGL(d, F ) and K = PGL(d,O). We write Ω as shorthand for Ω(G).

We shall now turn our attention to representations of G. Much of the content of this section

can be found in Cartier [Car79].

A.4.1: Spherical representations

We say that a representation (ρ, V ) is smooth if for each v ∈ V , StabG(v) contains a

compact open subgroup. We say that it is admissible if V H is finite dimensional for each

compact open subgroup H. We shall be particularly interested in the smooth, admissible, ir-

reducible representations of G which contain a non-zero K-fixed vector. Such representations

are called spherical representations.

Proposition A.5 ([Car79], p. 152). If (ρ, V ) is a smooth, admissible, irreducible represen-

tation of G, then V K is at most one-dimensional. Hence for spherical representations, V K

is exactly one-dimensional.

Any time we have a smooth, admissible, irreducible representation, we get an induced

representation of H(G,K). Furthermore, each f ∈ H(G,K) acts as a projection operator
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onto V K ([Car79], p. 117). Since V K is one-dimensional in the case of spherical representa-

tions, we can in fact associate an element in C to each f ∈ H(G,K). Hence given such a

representation we get a C-algebra homomorphism from H(G,K) to C.

Proposition A.6 ([Car79], p. 152). The above-described map defines a bijection:

{
spherical representations of G

}
↔ HomC-alg.(H(G,K),C).

A.4.2: Explicit description of the spherical representations

In fact we can explicitly construct all of these representations. A character of F× is called

unramified if it is invariant under O×. Since the choice of a uniformizer gives an isomorphism

F× ≃ Z × O×, we may identify unramified characters with characters of Z (as an additive

group).

Recall that T consists of all diagonal matrices in G; it is a maximal split torus. We say

that a character of T is unramified if it is invariant under K∩T . Since T/(K∩T ) ≃ A ≃ Zd−1,

an unramified character is determined by just d− 1 non-zero complex numbers, or, perhaps

more naturally, d complex numbers whose product is 1. There is a natural Sd-action on

such characters given by permuting this d-tuple.

Let B < G be the collection of all upper triangular matrices and let χ be an unramified

character of T . We can extend χ to B using the homomorphism B → T which simply reads

off the diagonal entries. Let ∆ be the modular character for B, that is, given b ∈ B with

diagonal entries (a1, . . . , ad),

∆(b) = |a1|d−1|a2|d−3 . . . |ad|1−d,

where | · | is the norm induced by the valuation on F (which is normalized so that |ϖ| = q−1).

Notice that ∆(b) is actually the extension of an unramified character on T to B.

Let Iχ be defined as the space of locally constant functions f : G→ C such that

f(bg) = ∆1/2(b)χ(b)f(g), b ∈ B, g ∈ G

with the action of G from the right (g.f(x) = f(xg−1)). This is simply the usual definition

of induction IndGB(χ) twisted by the character ∆1/2.

Two spaces Iχ and Iχ′ are isomorphic if and and only if χ′ = σ.χ for some σ ∈ Sd

([Car79], Section 3.3). The Iwasawa decomposition tells us that G = BK, and it is clear

that B∩K is those matrices which are upper triangular with entries in O and with diagonal
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entries in O×. Thus, inside of Iχ we have an obvious choice of K-fixed vector, fχ ([Car79],

p. 143):

fχ(bk) := ∆1/2(b)χ(b).

In general the Iχ are not irreducible. However, Iχ has a finite decomposition series as a

G-module, and exactly one of its factors is spherical.

Proposition A.7 ([Car79], p. 152). Every spherical representation of G is isomorphic to a

subquotient of some Iχ, with χ unique up to permutation.

A.4.3: Spherical representations, spherical functions, and the variety Ω

Proposition A.3 identifies spherical functions with points on the variety Ω. On the

other hand Proposition A.7 identifies spherical functions with unramified characters, i.e.

Homgps(A,C×). A straightforward calculation shows that if s = (s1, . . . , sd), then combining

these identifications gives:(
χ : ϖλ 7→ q(λ,s)

)
∈ Homgps(A,C×) ↔ (qs1 , . . . , qsd) ∈ Ω.

The tuple (qs1 , . . . , qsd) is called the Satake parameters of χ.

A.5: Unitary representations

A.5.1: Unitary representations

Suppose M is a topological group. Suppose (ρ,H) is a representation of M on a Hilbert

space H such that M acts by unitary transformations, and the map M → H defined by

m 7→ ρ(m).v is continuous for every v ∈ H; then ρ is called a unitary representation. Given

vectors v, w ∈ H, we obtain a function on M via m 7→ ⟨v, ρ(m).w⟩; such functions are known

as matrix coefficients. When v = w, it is called a diagonal matrix coefficient. Two unitary

representations (ρ1,H1) and (ρ2,H2) are equivalent if there is an intertwining Hilbert space

isomorphism between H1 and H2. The collection of all irreducible unitary representations

of M up to equivalence is called the unitary dual, denoted M̂ .

Given a unitary representation (ρ,H) and a function f ∈ L1(M), we can construct a
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corresponding operator on H which we denote by f̂(ρ). It is defined by

f̂(ρ).v :=

∫
M

f(m)ρ(m−1).v dm,

with v ∈ H. In particular, elements of H(G,K) are clearly in L1(G); hence given a unitary

representation of G, we always get an associated H(G,K)-representation.

A.5.2: Functions of positive type

A function ϕ : M → C is said to be of positive type if it is continuous and for every

m1, . . . ,mn ∈ M , the matrix [ϕ(m−1
j mi)]i,j is positive semidefinite. Diagonal matrix coeffi-

cients are functions of positive type; in fact the converse is also true as formalized by the

following theorem.

Theorem A.8 (GNS construction; [BdlHV08], Theorem C.4.10, p. 376). Suppose ϕ is a

function of positive type on the topological group M . Then there exists a triple (ρϕ,Hϕ, vϕ)

consisting of a cyclic unitary representation ρϕ acting on a Hilbert space Hϕ with cyclic

vector vϕ such that ϕ(m) = ⟨vϕ, ρϕ(m).vϕ⟩. Furthermore, this triple is unique.

A.5.3: Weak containment

We can use functions of positive type to measure how similar two different representations

are. Suppose (ρ1,H1) and (ρ2,H2) are two not necessarily irreducible unitary representations.

We say that ρ1 is strongly contained in ρ2, written ρ1 < ρ2, if ρ1 occurs as a subrepresentation

of ρ2. Notice that this would imply that every function of positive type associated to ρ1

(i.e. diagonal matrix coefficients) are also functions of positive type associated to ρ2. This

motivates the following definition: we say that ρ1 is weakly contained in ρ2, written ρ1 ≺ ρ2, if

every function of positive type associated to ρ1 can be uniformly approximated on compact

subsets of M by finite sums of functions of positive type associated to ρ2. Formally this

means that for every v ∈ H1, every compact subset Q ⊂ M , and every ε > 0, there exist

w1, . . . , wn ∈ H2 such that, for all x ∈ Q:

∣∣∣⟨v, ρ1(x).v⟩ −
n∑
i=1

⟨wi, ρ2(x).wi⟩
∣∣∣ < ε.

Proposition A.9 ([BdlHV08], Appendix F). We have ρ1 ≺ ρ2 if and only if for every

f ∈ L1(M), we have ||f̂(ρ1)|| ≤ ||f̂(ρ2)|| where || · || denotes the operator norm.
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A.5.4: The Fell topology

We may also use functions of positive type to define a topology on M̂ called the Fell

topology. Let ϕ1, . . . , ϕn be functions of positive type associated to ρ, let Q be a compact

subset of M , and let ε > 0. Let U(ρ;ϕ1, . . . , ϕn;Q; ε) be the set of all elements ι ∈ Ĝ

such that for each ϕi, there exists a function ψ of positive type associated to ι such that

|ϕi(x) − ψ(x)| < ε for all x ∈ Q. We takes these sets as a basis of open sets for the Fell

topology.

Proposition A.10 ([BdlHV08], Appendix F). A net (ρi)i converges to ρ in the Fell topology

if and only if ρ ≺ ⊕jρj for every subset (ρj)j of (ρi)i.

A.6: Class 1 representations

A.6.1: Unitary representations are smooth and admissible

The following proposition shows that unitary representations of G = PGL(d, F ) (or in

fact any semisimple algebraic group over a non-archimedean local field) are essentially also

smooth and admissible.

Proposition A.11 ([Car79], Corollary 2.3, p. 133). Suppose (ρ,H) is an irreducible unitary

representation of G. Let H∞ be the collection of vectors in H whose stabilizer contains a

compact open subgroup. Then H∞ is dense in H, and (ρ|H∞ ,H∞) is a smooth, admissible,

irreducible representation of G.

A.6.2: Class 1 representations, principal series, and complementary series

We call a unitary representation of G class 1 if it is irreducible and contains a K-fixed

vector (K = PGL(d,O)). The classification of class 1 representations is hence reduced to

figuring out which spherical representations are unitarizable. This is in general a difficult

question to answer, but there is a natural class of representations which are known to be

unitarizable (recall the definition of Iχ from Appendix A.4):

Proposition A.12 ([Mac71], Proposition 3.3.1, p. 45). Suppose χ is an unramified unitary

character, i.e., its Satake parameters lie on S1. Then Iχ is unitarizable.

Such unitary representations are known as the principal series. All the other unitary spherical

representations are called the complementary series.

123



A.6.3: Class 1 representations and spherical functions of positive type

It turns out that the spherical functions of positive type are exactly the diagonal matrix

coefficients for class 1 representations corresponding to the K-fixed vector.

Proposition A.13 ([Mac71], Theorem 1.4.4, p. 10). Suppose (ρ,H) is a class 1 repre-

sentation. Let v be a K-invariant unit vector. Then the function ⟨v, ρ(g).v⟩ is a spherical

function and of positive type. On the other hand, if (ρ, V ) is a spherical representation and

the associated spherical function is of positive type, then (ρ, V ) is unitarizable.

A.7: Spectral parameters

Recall that we have the following bijections:

HomC-algs.(H(G,K),C) ↔ Ω(G) ↔ spherical representations of G.

Hence given a spherical representation, we get an associated point in Ω(G). We shall refer to

this point as the spectral parameter of the representation. On the other hand, given a space

with an H(G,K)-action (such as any representation of G) and an eigenvector v of H(G,K),

we get an associated algebra homomorphism of H(G,K) by reading off the eigenvalue of

each element. Hence this also gives us a point in Ω(G). We shall refer to this as the spectral

parameter of the eigenvector.

A.8: Unitary representations from measure-preserving actions

Suppose M acts in a measure-preserving way on a measure space (X,µ). Then we

get an associated unitary representation of M on L2(X,µ). A common occurrence of this

construction is the action of G on Γ\G where Γ is a lattice and the associated unitary

representation is L2(Γ\G). The case of Γ a cocompact is particularly nice.

Proposition A.14 ([DE09], Theorem 9.2.2). Suppose Γ < G is a cocompact lattice. Then

L2(Γ\G) decomposes as a countable direct sum of orthogonal irreducible unitary representa-

tions, each of finite multiplicity.

We can also consider the space L2(Γ\G/K). Elements in this space may be thought of as

(Γ, K)-invariant functions on G. When we convolve on the right with elements in H(G,K),

we end up with functions which are still (Γ, K)-invariant, so we have an H(G,K)-action.
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In fact elements in H(G,K) act as normal operators, so since H(G,K) is a commutative

algebra, L2(Γ\G/K) has an orthonormal basis of joint eigenfunctions of H(G,K).

Proposition A.15. There is a bijection between the eigenspaces of H(G,K) acting on

L2(Γ\G/K) and the isotypic components of class 1 representations that show up in the

decomposition of L2(Γ\G) into irreducibles. The dimension of each eigenspace is equal to

the multiplicity of the corresponding class 1 representation.

Proof. Let (ρ,H) be a class 1 representation that shows up with multiplicity nρ. By decom-

posing the (ρ,H)-isotypic component into a direct sum of nρ copies of this representation,

we may subsequently pick out a unique (up to scaling) unit vector in each copy which is K-

invariant. Each of these functions define (Γ, K)-invariant functions on G. Furthermore, they

must each be eigenfunctions of H(G,K) all with the same spectral parameter. Hence they

span an eigenspace of dimension nρ inside L2(Γ\G/K). We claim that all of these H(G,K)-

eigenspaces from all isotypic components of class 1 representations must span L2(Γ\G/K).

This is because any K-invariant vector in L2(Γ\G), when projected orthogonally onto each

isotypic components must only have non-zero component in the class 1 representations (be-

cause all other representations do not have any K-invariant vectors). Furthermore, the

dimension of K-invariant vectors in each isotypic component is exactly nρ. Hence these

eigenspaces span L2(Γ\G/K).

If all isotypic components have multiplicity one, then all eigenspaces are one-dimensional

and there is a canonical (up to scaling) orthonormal basis for L2(Γ\G/K). If some isotypic

component has multiplicity nρ > 1, then, on the one hand there are many ways to decom-

pose the isotypic component into irreducible subspaces, and on the other hand there are

many ways to refine the corresponding eigenspace into an orthonormal basis. In fact, it is

straightforward to see that doing one of these further decompositions forces a corresponding

decomposition on the other side.

A.9: Spherical Plancherel measure

A.9.1: Plancherel-Godement theorem

Let Ω+ be the set of class 1 representations of G, or equivalently the set of spherical

functions of positive type. Let Lp(G,K) denote the space of Lp functions on G which are

(K,K)-invariant. Recall that we previously defined the spherical Fourier transform, which
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mapped elements of H(G,K) to functions on Ω via

f̂(ω) =

∫
G

f(g)ω(g−1)dg.

We now modify the definition so that we map elements in L1(G,K) to functions on Ω+ (by

only integrating against spherical functions of positive type). We then give Ω+ the weakest

topology making all of the Fourier transforms of elements in L1(G,K) continuous. This

is equivalently the topology with basis given by N(C,U) = {ω ∈ Ω+ : ω(C) ⊂ U} where

C ⊂ G is compact and U ⊂ C is open ([Mac71], p. 12). From this latter definition we see

that this topology is equivalent to the restriction of the Fell topology on Ĝ to the class 1

representations.

Proposition A.16 (Plancherel-Godement theorem; [Mac71], Theorem 1.5.1, p. 13). There

exists a unique measure µ on Ω+ such that

(1) f ∈ H(G,K) ⇒ f̂ ∈ L2(Ω+, µ),

(2)
∫
G
|f(g)|2dg =

∫
Ω+ |f̂(ω)|2dµ(ω) for all f ∈ H(G,K).

Moreoever, the mapping f 7→ f̂ extends to an isomorphism of Hilbert spaces L2(G,K) →
L2(Ω+, µ).

We call µ the spherical Plancherel measure.

A.9.2: Explicit formula for the spherical Plancherel measure

The measure µ is known explicitly for G = PGL(d, F ) and K = PGL(d,O). This was

essentially first computed by MacDonald ([Mac71], Theorem 5.1.2; see also Tadic [Tad83a],

p. 230). Recall that T denotes the subgroup of diagonal matrices in G. Let T̂ denote the

collection of unramified unitary characters of T . As noted previously, given χ ∈ T̂ , we get

an associated class 1 representation of G which is unique up to the Sd-action on T̂ coming

from the Sd-action on T given by permuting diagonal elements. We can associate to χ a

tuple s = (s1, . . . , sd) with sj ∈ (iR)/
(

2πi
ln(q)

Z
)

such that χ(ϖλ) = q(s,λ) (notice then that∏
qsj = 1 and hence s1 + · · · + sd = 0).

We define the c-function on T̂ by the formula

c(s) =
∏
j<k

qsj − q−1qsk

qsj − qsk
.
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Let Q(t) be the Poincaré polynomial for Sd (as a Coxeter group; see Appendix B.1), that is

Q(t) =
∑
σ∈Sd

tℓ(σ) =
d−1∏
i=1

1 − ti+1

1 − t
,

with ℓ(σ) equal to the Coxeter length of σ. The spherical Plancherel measure is supported

on T̂ (or really T̂ /Sd) and is given by the formula

dµ(ωs) =
Q(q−1)

n!

ds

|c(s)|2
. (A.9.1)

The most salient feature of this formula for our purposes is simply that it shows that the

spherical Plancherel measure is absolutely continuous with respect to the Haar measure on

T̂ .

A.10: The Plancherel theorem

A.10.1: von Neumann algebras and type I groups

A von Neumann algebra is a ∗-algebra of bounded operators on a Hilbert space which is

closed in the weak operator topology and contains the identity operator. Given a group M

and a unitary representation (ρ,H), we can consider the von Neumann algebra generated by

ρ(M) ⊂ B(H), the algebra of bounded operators. A von Neumann algebra is called a factor

if its center is trivial, that is, only consists of scalar multiples of the identity. It is called

a type I factor if it is isomorphic to the full algebra of bounded operators on some Hilbert

space. A group M is called type I if every factor representation is type I. All reductive

algebraic groups over p-adic fields are known to be type I [Ber74].

A.10.2: Direct integral representations

Suppose (X, ν) is a measure space with measure ν. The Hilbert space L2
ν(X,H) is defined

as all measurable functions from f : X → H such that
∫
X
||f(x)||2dν <∞ modulo functions

which are zero outside of a measure zero set.

A measurable family of Hilbert spaces over a Borel space X is a collection of (separable)

Hilbert spaces {Hx}x∈X such that the for every n ∈ N ∪ ω, the set Xn = {x : dim(Hx) = n}
is measurable, and all these Hx’s have been explicitly identified with the same n-dimensional

Hilbert space Hn. This is equivalent to choosing a collection of n functions ζi(x) for x ∈ Xn
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with ζi(x) ∈ Hx such that for each x ∈ Xn, the ζi(x) form an orthonormal basis of Hx. This

structure allows us to specify which sections {sx}x∈X are measurable; namely we need that

on each Xn, the map from Xn to Hn is measurable. Such sections are called measurable

vector fields. If we further specify a measure ν on X, we can then define the direct integral∫ ⊕
X
Hxdν(x) as the Hilbert space direct sum of the L2

µ(Xn,Hn).

Let M be a second countable, locally compact, unimodular, type I group. Let Hn be a

fixed n-dimensional Hilbert space. Let Irrn denote the set of all irreducible unitary repre-

sentations of M on Hn (not up to equivalence!). Define a σ-algebra on Irrn by taking the

smallest σ-algebra such that ⟨v, ρ(m).w⟩ is measurable for all m ∈M and v, w ∈ Hn. Let Ĝn

denote the set of all equivalence classes of irreducible unitary n-dimensional representations

of G. We clearly have a surjection from Irrn to Ĝn. Define a σ-algebra structure on Ĝn

as the one induced from this surjection (a set is measurable if and only if its preimage is

measurable). Take the union σ-algebra on all of Ĝ in this way (all irreducible representations

of G are countable dimensional; [Car79] p. 118). This is called the Mackey Borel structure.

In our case it is known to be a standard Borel space ([Fol95], Theorem 7.6).

Given a measurable family of Hilbert spaces {Hx}x∈X and an operator on each Hilbert

space, we say that this is a measurable family of operators if it maps measurable vector

fields to measurable vector fields. A measurable field of representations of a group M is a

measurable family of Hilbert spaces, each of which carries a unitary action of M , such that

the field of operators {ρx(m)}x∈X is a measurable for all m ∈M . If we also have a measure,

we can construct the direct integral representation by letting M act on the direct integral

in the natural way.

Associated to M̂ (with the Mackey Borel structure), we have an obvious choice of measur-

able family of Hilbert spaces. Furthermore, in case the Mackey Borel structure is standard

(which it is in case M = G) there is a measurable field of representations {ρp} acting on

this measure field of Hilbert spaces such that ρp ∈ p for all p ([Fol95], Lemma 7.39). This is

tautological if we work with Irrn but is no longer obvious if we work with M̂ .

A.10.3: The Plancherel theorem

In addition to Proposition A.16, there is another theorem which is rightly called the

Plancherel theorem and which also specifies the existence of a certain measure known as

the Plancherel measure. Recall that the left (right, resp.) regular representation of M is

the unitary representation L2(M) with M acting on the left (right, resp.) and is denoted

λM (ρM , resp.). In fact the M ×M action on L2(M) corresponding to both left and right
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translation encapsulates both the left and right regular representations; this is called the

two-sided regular representation and is denoted τ . The Plancherel theorem is concerned

with decomposing this representation into a direct integral of representations.

Given a unitary representation (ρ,H) of M , we can form the contragredient representation

(ρ∗,H∗) by letting ρ∗(m) = ρ(m−1)T . Given representations (ρ1,H1) of M1 and (ρ2,H2) of

M2, we can form a representation of M1×M2 on H1⊗H2 via (m1,m2).v1⊗v2 = (ρ1(m1).v1)⊗
(ρ2(m2).v2). If M1 = M2 = M , H1 = H∗

2 = H, and ρ1 = ρ∗2 = ρ, then M ×M acts on

H⊗H∗ which is canonically isomorphic to the vector space of Hilbert-Schmidt operators on

H via v ⊗ α 7→ (w 7→ α(w) v).

Let f ∈ L1(M) and (ρ,Hρ) ∈ M̂ . Recall that we define f̂(ρ) =
∫
M
f(x)ρ(x−1)dx. This

operator is Hilbert-Schmidt, hence can be identified with an element of Hρ ⊗ Hρ∗ . With

respect to the measurable family of Hilbert spaces over M̂ discussed in A.10.2, f̂(ρ) is a

measurable field of operators called the Fourier transform of f . Let J 1 = L1(M) ∩ L2(M)

and let J 2 be the linear span of f ∗ g with f, g ∈ J 1.

Theorem A.17 (Plancherel theorem; [Fol95], Theorem 7.44). Suppose M is a second count-

able, unimodular, type I group. There is a measure ν on M̂ , uniquely determined once the

Haar measure on M is fixed, with the following properties. The Fourier transform f → f̂

maps

J 1 →
∫ ⊕

Ĝ

Hρ ⊗Hρ∗ , dν(ρ)

and it extends to a unitary isomorphism

L2(M) →
∫ ⊕

Ĝ

Hρ ⊗Hρ∗dν(ρ)

that intertwines the two-sided regular representation τ with
∫ ⊕
Ĝ
ρ⊗ ρ∗dν(ρ).

For f, g ∈ J 1 one has the Parseval formula∫
M

f(x) ¯g(x)dx =

∫
M̂

Tr[f̂(ρ)ĝ(ρ∗)]dν(ρ),

and for h ∈ J 2 one has the Fourier inversion formula

h(x) =

∫
M̂

Tr[ρ∗(x)ĥ(ρ)]dν(ρ).
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A.10.4: The relationship between the spherical Plancherel measure and the

Plancherel measure

Proposition A.18. The measure µ in Proposition A.16 is the same as the restriction of ν

in Theorem A.17 to the set Ω+ ⊂ Ĝ.

Proof. Suppose f ∈ H(G,K). We shall compute its image under the Fourier transform as in

Theorem A.17. Let (ρ,H) ∈ Ĝ. First off we observe that f̂(ρ) projects onto the K-invariant

subspace of H. If we let v ∈ H and k ∈ K then

k.(f̂(ρ).v) =

∫
G

f(x)ρ(kx−1).vdx

=

∫
G

f(ku)ρ(u−1).vdu

=

∫
G

f(u)ρ(u−1).vdu

= f̂(ρ).v.

We know that all elements in Ĝ have their K-fixed subspace of dimension either 0 or 1

depending on whether it is class 1 (see Proposition A.5). If its dimension is 0, then f̂(ρ) =

0. Otherwise f̂(ρ) is the composition of projection onto the one-dimensional K-invariant

subspace and some scaling operator. We now compute this scaling factor.

Let vρ be a unit K-fixed vector in H. Then

⟨vρ, f̂(ρ).vρ⟩ =

∫
G

f(x)⟨vρ, ρ(x−1).vρ⟩

=

∫
G

f(x)ωρ(x
−1)dx.

Thus we see that the underlying scaling operator is f̂(ωρ).

From Theorem A.17 and Proposition A.16 we know now that∫
G

|f(x)|2dx =

∫
Ĝ

Tr[f̂(ρ)f̂(ρ∗)]dν(ρ)

=

∫
Ω+

|f̂(ωρ)|2dν(ρ).

Since the measure µ in Proposition A.16 is uniquely characterized by satisfying the above

identity, and ν restricted to Ω+ also satisfies the identity, we get that they must be equal.
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It is also worth noting that the image of L2(G/K), thought of as a subspace of L2(G),

under the Fourier transform is equal to∫ ⊕

Ω+

vρ ⊗H∗
ρdν(ρ).

The proof of the above proposition also shows that L2(K\G/K) is isomorphic to∫ ⊕

Ω+

vρ ⊗ v∗ρdν(ρ).

A.11: Tempered representations, integrability exponents, and

property (T)

A.11.1: Tempered representations and the tempered spectrum

An irreducible unitary representation (ρ,H) is called tempered if it is weakly contained in

the regular representation. In light of the Plancherel theorem we see that this is equivalent

to ρ lying in the support of the Plancherel measure on M̂ .

In case G = PGL(d, F ), we have by Proposition A.6 and (A.9.1) that the tempered rep-

resentations which are also spherical are exactly those appearing as (the unitarization of) the

unique spherical subquotient of Iχ with χ a unitary character. This defines a distinguished

sublocus of Ω+ whose points correspond to these tempered class 1 representations. We call

this sublocus the tempered spectrum, denoted Ω+
temp; explicitly points in Ω+

temp are of the form

(qs1 , . . . , qsd) with qsj ∈ S1 and Πqsj = 1.

A.11.2: Integrability exponents

In [CHH88], an alternative criterion for a representation to be tempered is given:

Proposition A.19. Let ρ be a unitary representation of a locally compact group M on

a Hilbert space H. Let v be a cyclic vector for (ρ,H). If the diagonal matrix coefficient

⟨v, ρ(m).v⟩ is in L2+ε(M) for every ε > 0, then (ρ,H) is tempered.

This suggests studying which Lp-space matrix coefficients of unitary representations lie

in. Given a unitary representation (ρ,H), we define its integrability exponent q(ρ) to be

inf{p : ⟨v, ρ(m).v⟩ ∈ Lp(M) for v ∈ V ⊂ H a dense subset}.
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Proposition A.20 ([CHH88]). Suppose M is a semisimple algebraic group over a local field.

Let (ρ,H) be a unitary representation with integrability exponent q(ρ) ≤ 2. Then (ρ,H) is

tempered.

A topological group M is said to have property (T) if the trivial representation is an

isolated point in M̂ with respect to the Fell topology. We say that a unitary representation

(ρ,H) has a spectral gap if there exists ε > 0 and a compact subset C ⊂ M such that for

every unit vector v ∈ H and for every m ∈ C, we have ||ρ(m).v − v|| > ε. Property (T)

is in fact equivalent to all non-trivial representations having a spectral gap. For semisimple

algebraic groups over local fields, having a spectral gap is equivalent to q(ρ) <∞ ([GN10]).

The group G = PGL(d, F ) is known to have property (T) if d ≥ 3.

Proposition A.21 ([GN10]). Suppose M is a semisimple algebraic group over a local field

and has property (T). Then there exists a q0 < ∞ such that for all non-trivial ρ ∈ M̂ , we

have q(ρ) ≤ q0.
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APPENDIX B

Coxeter Complexes and Buildings

B.1: Coxeter groups and Coxeter complexes

The material of this section is standard and may be found in Chapter 2 of [Ron89].

B.1.1: Coxeter groups

A Coxeter group W is any group which has a presentation of the form:

W = ⟨ri|r2i = (rirj)
mij = 1 for all i, j ∈ I⟩

where I is a finite set. The mij’s are also allowed to be ∞. The ri’s are called the Coxeter

generators.

B.1.2: The Coxeter complex

Given a Coxeter group W , there is a way of constructing an associated cell complex.

Each w ∈ W defines a top-dimensional cell of dimension |I| − 1. The top-dimensional cells

are called chambers (sometimes also referred to in the literature as alcoves). Two chambers

are adjacent, i.e. share a codimension one face, if they differ by a Coxeter generator. More

specifically, we say that chambers w1 and w2 are i-adjacent if w2 = w1ri. Codimension one

faces are called panels. It is clear from the construction that W acts simply transitively on

chambers in such a way that the I-valued adjacency relations are preserved (i.e. W acts by

multiplication on the left) and that each chamber has exactly one neighbor of each type for

i ∈ I. This cell complex is called the Coxeter complex associated to W .
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B.1.3: Coloring of the vertices

If we pick a coloring of the vertices of some fixed chamber, we can use this coloring and

the W -action to color each vertex one of |I| colors such that W preserves the coloring.

B.1.4: The W -valued metric

Let X be the Coxeter complex associated to W . There is a W -valued metric dW (·, ·) on

chambers: given two chambers represented by elements w1, w2 ∈ W , we define dW (w1, w2) =

w−1
1 w2. Then if two chambers are i-adjacenct, dW (w1, w2) = ri. Notice that dW is preserved

by the left W -action.

B.1.5: Galleries

A gallery from w1 to w2 is any sequence of chambers

(c1 = w1, c2, . . . , ck−1, ck = w2)

such that cj+1 = cjrij , i.e. consecutive chambers are adjacent. Then in fact ri1ri2 . . . rik−1
=

dW (w1, w2) for all galleries. A minimal gallery is a gallery of minimal length. Minimal

galleries are in some sense “combinatorial chamber geodesics”.

B.1.6: Convex sets in Coxeter complexes

We say that a subset Y of chambers of X is combinatorially convex if every minimal

gallery between any two elements in Y lies entirely in Y . We define the combinatorial convex

hull of two chambers c1, c2 to be the intersection of all combinatorially convex subsets of X

which contain c1 and c2.

B.1.7: The Coxeter length of a word

We may convert dW (·, ·) to an actual metric d̃(·, ·) between chambers by simply recording

the length of any minimal gallery. This also allows us to define the length of elements in

w ∈ W which we denote by ℓ(w) := d̃(1, w).

B.1.8: Reflections and roots

A reflection r ∈ W is any conjugate of a Coxeter generator. Its wall Mr is all simplices

fixed by r. We can define an equivalence relation on chambers by specifying two chambers
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to be equivalent if any (or equivalently all) galleries connecting them never cross Mr (that

this is well-defined is standard). This partitions chambers into two distinct sets. Each such

set is called a root (also referred to as a half-apartment).

B.2: Spherical Coxeter complexes

Material for this section may also be found in Chapter 2 of [Ron89].

B.2.1: Geometric realization of a spherical Coxeter group

Let W be a finite Coxeter group. Then W has a faithful representation as isometries of

Rd (for some d) which fix the origin and such that each Coxeter generator corresponds to

reflection across some hyperplane through the origin. Consider the collection of all hyper-

planes obtained as the image under W of one of the generating hyperplanes. This partitions

Rd into polyhedral cones called Weyl chambers. By restricting to the unit sphere, we may

identify each Weyl chamber with a simplex in Sd−1, the (d− 1)-sphere. These simplices give

a triangulation of Sd−1 which we may identify with the associated Coxeter complex. Such

Coxeter groups and Coxeter chambers are called spherical.

Each reflection corresponds to the restriction to Sd−1 of reflection across one of the

hyperplanes, and the associated wall is the intersection of Sd−1 with that hyperplane. The

roots correspond to all chambers on a given side of one of these walls. There is a unique

element of W of greatest length. Because of this each chamber has a unique opposite chamber

which is obtained by multiplying on the right by this longest element.

B.2.2: The symmetric group as a spherical Coxeter group

An important class of spherical Coxeter groups are the symmetric groups Sd with gener-

ators (1 2), (2 3), . . . , (d−1 d). In fact all Weyl groups of roots systems are spherical Coxeter

groups.

We shall in particular be interested in the case of S3, in which case the associated Coxeter

complex is a triangulation of the unit circle into six equal pieces.

B.3: Affine Coxeter complexes

Material for this section may be found in Chapter 9.1 of [Ron89].
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B.3.1: Geometric realization of an affine Coxeter group

In other cases a Coxeter group W has a faithful representation as isometries of some d-

dimensional Euclidean space Ed (with |I| = d+1) in such a way that each Coxeter generator

corresponds to reflection across some affine hyperplane. If we again consider all hyperplanes

obtained by the orbit under W of the generating hyperplanes, we end up with a tessellation,

this time of Ed, into simplices. We may identify this tessellation with the associated Coxeter

complex. We call the Coxeter group and the associated Coxeter complex affine.

Each reflection corresponds to reflection across one of the hyperplanes, and the associated

wall is exactly that hyperplane. The roots correspond to all chambers on a given side of one

of these walls.

The group W may hence be realized as a collection of affine isometries of a Euclidean

space; this latter group, after choosing an origin, may be identified with Rd ⋊ O(d).

B.3.2: The associated spherical Coxeter group W0 and special vertices

The group Rd ⋊ O(d) projects to O(d). The image of W inside of O(d) is a discrete,

and hence finite, group denoted W0. It is in fact a spherical Coxeter group generated by

d Coxeter generators. Suppose α1, . . . , αd ∈ W are reflections whose images generate W0.

Then the intersection of the associated walls of the αi’s must intersect in a unique vertex.

Any vertex that arises in this way is called a special vertex. Hence the special vertices have

associated “residual” spherical Coxeter groups and in fact the link of a special vertex is

isomorphic to the Coxeter complex associated to W0.

B.3.3: Sectors

Suppose now p is a special vertex. Let c be a chamber having p as one of its vertices. The

panels of c containing p determine d roots r1, . . . , rd each containing c. Their intersection S is

called the sector based at vertex p with germ c. We may generate a copy of W0 by reflection

across the walls of r1, . . . , rd. From this perspective we see that sectors are the same thing

as the Weyl chambers for the spherical Coxeter group W0 thought of as acting on the vector

space Ed with origin at p. Thus sectors are in some sense “affine Weyl chambers.”

B.3.4: Coxeter groups of type Ãd

Particularly important examples of affine Coxeter groups are those of type Ãd which arise

by reflections across the d+ 1 faces of a regular d-simplex sitting inside Rd. The group W0 is
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the Coxeter group of type Ad which is just an alternate name for Sd+1. For the associated

Coxeter complex, all vertices are special.

B.4: Buildings

Material for this section may be found in [Bro89].

B.4.1: The axioms of a building

A building is a simplicial complex ∆ which can be expressed as the union of subcomplexes

Σ (called apartments) satisfying:

(1) Each apartment is a Coxeter complex.

(2) For any two simplices c1, c2 ∈ ∆, there is an apartment Σ containing both of them.

(3) If Σ and Σ′ are two apartments containing c1 and c2, then there is an isomorphism

Σ → Σ′ fixing c1 and c2 pointwise.

Each building has an associated Coxeter group W . We shall in particular be concerned with

thick buildings, meaning that every codimension one face is contained in at least 3 chambers.

When the underlying Coxeter group is spherical (affine, resp.), the building is called

spherical (affine or Euclidean, resp.).

B.4.2: Apartment systems

Any time we have a collection of apartments C whose union is ∆ and whose elements

Σ satisfy the above axioms, we call C a system of apartments. There is a unique maximal

system of apartments which is referred to as the complete system of apartments.

B.4.3: The W -valued metric on chambers and coloring of vertices in ∆

If we fix a particular chamber in a particular apartment and color each of its vertices

one of |I| colors, then this coloring extends uniquely to all vertices of ∆ using the W -action

on each apartment. The isomorphisms Σ → Σ′ in the above axioms can be taken to be

color-preserving. The Coxeter group-valued metric dW (·, ·) also extends to pairs of chambers

in ∆.
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B.5: The spherical building associated to SL(d,K)

Material in this section may be found in [Ron89].

Given any field K, we may construct a spherical building Π of type Ad−1. We define

the vertices of Π to be the non-trivial subspaces of Kd. A collection of vertices form a

simplex if there is some ordering of the underlying vector spaces such that they formed a

nested containment. From this we see that the top-dimensional simplices (i.e. chambers)

correspond to full flags in Kd. The apartments correspond to bases of Kd, and the individual

chambers in an apartment correspond to all ways of creating a full flag using elements in a

given basis. That B satisfies the axioms of a (spherical) building (in particular that any two

chambers are contained in an apartment) essentially follows from the Bruhat decomposition.

We shall be particularly interested in the case when K = Fq, in which case Π is a finite

simplicial complex.

B.6: The affine building associated to SL(d, F )

Material in this section may be found in [Ron89].

B.6.1: The construction of B

Now suppose F is a non-archimedean local field with ring of integers O, uniformizer ϖ,

and residue field of order q. Let L denote the set of O-modules of rank d inside of F d;

elements of L are called lattices. We have a surjection GL(d, F ) ↠ L by taking the lattice

spanned by the columns. Hence every L ∈ L can be represented by a matrix ML ∈ GL(d, F ).

We now form the quotient set B of L by declaring two elements L1, L2 of L equivalent if

for some c ∈ F× we have cL1 = L2. We can furthermore put a simplicial complex structure

on B by declaring a collection of elements of {[L1], . . . , [Lm]} of B to form a simplex if for

some ordering of these elements and some choice of representative Li ∈ [Li], we have

Li1 ⊊ Li2 ⊊ · · · ⊊ Lim ⊊ ϖLi1 .

Since Li1/(ϖLi1) ≃ Fdq , we see that under this identification we can associate to each Li a

subspace of Fdq . The largest any simplex can be is thus a set of d elements (a d−1-dimensional

simplex) corresponding to some full flag in Fdq .
The resulting object is an affine building with associated Coxeter group of type Ãd−1.

It is known as the Bruhat-Tits building associated to SL(d, F ). In fact, given any reductive
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algebraic group M over a non-archimedean local field, one may construct its associated

Bruhat-Tits building. In the case that M is simply connected, one may construct it in

general using the theory of BN-pairs; however, the case of SL(d, F ) has a more intuitive

construction which we have described above. The Bruhat-Tits building only depends on

the isogeny class of M , so it makes sense to also call the above B the Bruhat-Tits building

associated to PGL(d, F ). That B satisfies the building axioms essentially follows from the

Iwahori decomposition.

B.6.2: The vertices of B as the set G/K

Let G = PGL(d, F ) and K = PGL(d,O). Notice that G acts transitively on the vertices

of B, and the stabilizer of the lattice represented by the identity matrix has stabilizer equal

to K. Hence we can identify the vertices of B with G/K.

B.6.3: The coloring of the vertices of B

We may color the vertices as follows: each lattice L may be represented (non-uniquely)

by some element in ML ∈ GL(d, F ). We then color L with the valuation of det(ML) mod d

(hence the color takes values in Z/dZ). Each chamber has exactly one vertex of each color.

We can also color directed edges by taking the difference in colors between the tip and the

base of the directed edge mod d.

The group SL(d, F ) acts on B simplicially and in such a way that coloring of vertices is

preserved. In fact it acts transitively on all vertices of a given color. On the other hand, the

group PGL(d, F ) also acts on B simplicially. It acts transitively on vertices but it does not

preserve the coloring of the vertices. However it does preserve the coloring of directed edges.

B.6.4: Apartments in B

Apartments in B correspond to maximal split tori in G = PGL(d, F ). As long as F

is complete with respect to the valuation, this collection of apartments is the complete

apartment system. We define a sector in B to be any sector in any apartment of B.

Recall that T < G consists of all diagonal matrices, A < T consists of those whose

diagonal entries are powers of ϖ, and A+ ⊂ A consists of those for which the powers of ϖ

along the diagonal are weakly decreasing. The subgroup T is a maximal split torus defining

an apartment which we call the standard apartment X . Concretely, this apartment consists

of all lattices which may be expressed as the O-span of {ϖλ1e1, . . . , ϖ
λded}. There is a
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bijection between the vertices of X and elements of A. Furthermore the image of A+ defines

a sector W in X based at the vertex o corresponding to the lattice Oe1 + · · ·+Oed and with

germ equal to the chamber corresponding to the chain
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1
. . .

1

1


⊇



ϖ
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1

1
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Figure 22: This shows the Coxeter complex of type Ã2, or equivalently an apartment in the
Bruhat-Tits building associated to PGL(3, F ). We may color the vertices one of three colors;
this coloring is preserved by the action of the underlying affine Coxeter group which acts
simply transitively on chambers. Given a fixed vertex, we can partition the Coxeter complex
into six Weyl chambers which are parametrized by elements in S3.
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B.6.5: The local spherical building of a vertex

The link of a vertex p in B is a spherical building which we call the local spherical building

at p. In fact it is exactly the spherical building Π constructed in Appendix B.5 for the field

Fq.

B.6.6: The Weyl-chamber valued metric

We may use the Cartan decomposition to define a “Weyl chamber-valued metric” dA+(·, ·)
between vertices in the Bruhat-Tits building B. Given two vertices v1, v2 ∈ B, choose

representatives x1, x2 ∈ G and define dA+(v1, v2) = λ where x−1
1 x2 = k1ϖ

λk2 in the Cartan

decomposition (with ϖλ ∈ A+). It is invariant under multiplication by G (on the left).

B.6.7: The Euclidean metric on B

Given two points in B, we can find some apartment containing both of them and consider

the straight line segment in that apartment connecting them. By measuring the length of

that line segment we may define a metric d(·, ·) on the building. With respect to this metric

the building is a CAT(0) space. In particular there is a unique geodesic connecting any two

points. We normalize d(·, ·) so that the distance between two vertices in a given chamber is

exactly 1.

B.6.8: The retraction onto an apartment centered at a chamber

Given any fixed chamber c and a fixed apartment Σ containing c, there is a unique

simplicial retraction ρc,Σ which maps B onto Σ in such a way that for any chamber d ∈ B
we have dW (c, d) = dW (c, ρc,Σ(d)). However, in general ρc,Σ has the property that it does not

increase distances between chambers (and it preserves the distance between c and any other

chamber).

B.6.9: The retraction onto a sector based at a vertex

Suppose p is a special vertex and S is some sector based at p. There is a unique simplicial

retraction Rp,S which maps B onto S in such a way that for any vertex x ∈ B we have

dA+(p, x) = dA+(p,Rp,S(x)). In general, Rp,S has the property that it does not increase

distances between vertices (and it preserves the distance between p and any other vertex).
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B.7: The H(G,K)-action on B

B.7.1: Geometric interpretation of convolving with cλ

A function f on the vertices of the building is the same thing as a (1, K)-invariant

function on G. Elements in H(G,K) act on these functions. Recall that a vector space

basis for H(G,K) is the functions cλ, which is the indicator function for KϖλK where

ϖλ = diag(ϖλ1 , . . . , ϖλd). Given λ = (λ1, . . . , λd) with λ1 ≥ · · · ≥ λd = 0, let λ∨ be:

λ∨ := (λ1 − λd, λ1 − λd−1, . . . , λ1 − λ2, 0). (B.7.1)

Notice then that (KϖλK)−1 = Kϖλ∨K. Furthermore we have

dA+(x, y) = λ ⇐⇒ dA+(y, x) = λ∨.

We claim that

f ∗ cλ(x) =
∑

yK such that dA+ (xK, yK) = λ∨

f(yK). (B.7.2)

First off note that KϖλK is the disjoint union of finitely many cosets {Kzi}. Then Kϖλ∨K

consists of the cosets {z−1
i K}. Notice that dA+(1K, xK) = λ∨ if and only if xK ∈ Kϖλ∨K.

Hence the points {z−1
i K} ⊂ G/K exhaust the points in G/K such that dA+(1K, xK) = λ∨.

Since G preserves dA+(·, ·), the points y such that dA+(xK, yK) = λ∨ for a fixed xK are

exactly {xz−1
i K}. So we have

f ∗ cλ(x) =

∫
G

f(y)cλ(y−1x)dy

=
∑
i

∫
K

f(xz−1
i k)dk

=
∑
i

f(xz−1
i ).

B.7.2: Coloring on directed edges

We may color every directed edge in B with colors in {1, 2, . . . , d − 1} depending on

the difference in color between the end point and the starting point (this takes values in

(Z/dZ)×). Define Ak to be the operator corresponding to summing up over all adjacent
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vertices which can be reached by going along a directed edge of color k. These operators

generate H(G,K); in terms of the standard basis for H(G,K), this operator corresponds to

the element c(1,1,...,1,0,...,0) where the associated partition has d− k ones.

B.7.3: The H(G,K)-action on L2(Γ\G/K)

Now suppose Γ is a cocompact torsionfree lattice inside of G. Then Γ acts on G/K (on

the left), and we may quotient the building by this action to get a finite simplicial complex.

Functions on this simplicial complex may be identified with (Γ, K)-invariant functions on

G. This space is preserved under the H(G,K)-action described above (convolution on the

right). There’s a natural Hilbert space structure on functions on the vertices of the quotient

of the building by declaring functions supported at different vertices to be orthogonal. This

identifies this space with L2(Γ\G/K). The spherical Hecke algebra acts by normal operators

since (· ∗ cλ)∗ = (· ∗ cλ∨) and these two operators commute (since H(G,K) is commutative).

Thus L2(Γ\G/K) has an orthogonal basis of joint eigenfunctions of H(G,K). By Proposition

A.15 we know that these correspond to the class 1 representations that show up in the

representation L2(Γ\G).

B.8: The Bruhat-Tits tree for PGL(2, F )

In the case of d = 2, the Bruhat-Tits building is the infinite regular (q + 1)-regular

tree. The spherical Hecke algebra is generated (as an algebra) by one element, namely c(1,0).

Geometrically this corresponds to the adjacency operator on the tree. If we quotient by a

cocompact torsionfree lattice, we get a finite (q + 1)-regular graph. Studying the C-algebra

homomorphisms of H(G,K) in this case reduces to studying eigenvalues of the adjacency

operator (or the Laplacian operator). The image of A gives a bi-infinite path through the

tree, and the image of A+ gives a one-sided infinite path.

B.9: Specific computations the building associated to PGL(3, F )

B.9.1: Coordinates on the standard apartment X

We now focus on the case of d = 3. Let X denote the standard apartment. We can

identify A with the vertices of X ; on the other hand we may identify A with lattice points
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for a certain lattice Λ ⊂ a (see Chapter II.1.2). Explicitly,

Λ = {(x1, x2, x3) : x1 − x2 ∈ Z and x1 − x3 ∈ Z and x1 + x2 + x3 = 0}

= Z ·
(2

3
,−1

3
,−1

3

)
+ Z ·

(1

3
,
1

3
,−2

3

)
.

We shall refer to these coordinates as the a-coordinates.

There are other natural ways to coordinatize A and X : to each element in A was can

associate a tuple λ = (λ1, λ2, 0) (i.e. shift all entries so that the last entry is zero) or we can

write λ as a linear combination, λ = r(1, 0, 0)+s(1, 1, 0), and assign it the coordinates (r, s).

The vectors (1, 0, 0) and (1, 1, 0) give a basis for the cone corresponding to A+. We shall call

the first set of coordinates partition coordinates and the second set cone coordinates. We let

⪯ denote the partial ordering on a defined in cone coordinates by:

(r1, s1) ⪯ (r2, s2) ⇐⇒ r1 ≤ r2 and s1 ≤ s2.

x = (0, 0)

y

Figure 23: Suppose x = (0, 0) in cone coordinates. If we have dA+(x, y) = (2, 4) in cone
coordinates, then we may reach y from x by going two steps in the direction of (1, 0) and 4
steps in the direction of (0, 1). In cone coordinates the vectors (1, 0) and (0, 1) generate the
Weyl chamber a+.
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APPENDIX C

Polytopes and Brion’s Formula

C.1: Convex polytopes

Suppose {βi(x)}i∈I is a finite set of linear functionals on Rd, and {bi}i∈I is a finite set of

real numbers; we call the elements bi cutoffs. The set of solutions to the system of inequalities

{βi(x) ≤ bi}i∈I is called a (convex) polytope, denoted Q.

From the definition we see that Q is in fact the intersection of finitely many affine halfs-

paces. The interior of Q is those points satisfying {βi(x) < bi}i∈I . The set of all points in Q

along which some subset of the defining inequalities becomes equalities is called a face f. We

can associate to f the collection of functionals Func(f) for which the associated inequality

becomes an equality. A vertex of Q is a zero-dimensional face (hence consists of exactly one

point) and an edge is a one-dimensional face.

Let f be a face of Q. Let Aff(f) denote the affine span of points in f. The dimension of f

is defined as the dimension of Aff(f). The dimension of Q is the dimension of the affine space

spanned by all points in Q. We shall always assume that we are working with d-dimensional

polytopes (i.e. the dimension is equal to the dimension of the underlying Euclidean space;

all polytopes have representations for which this is the case up to an appropriate definition

for isomorphism of polytopes).

Proposition C.1. Let B be the set of simultaneous solutions to βj(x) = bj for all βj ∈
Func(f). Then B = Aff(f).
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C.2: The type of a polytope and the cone of a vertex

C.2.1: The type of a polytope

By associating to each face f the collection of functionals Func(f), we obtain a subset of

the power set of the functionals. We call this the type of Q. We shall later on work with

families of polytopes for which the functionals remain constant but the cutoffs change. In

such a setting it makes sense to talk about when two polytopes in the family have the same

type.

Suppose Q is a family of polytopes all of the same type. If Q ∈ Q, and f is a face of Q,

then there is an analogous face f′ for each Q′ ∈ Q. Let v be a vertex of Q and e an edge

associated to v.

Proposition C.2. The direction of the ray based at v in the direction of e is completely

determined by the type of Q.

Proof. By Proposition C.1, we can pick out from Func(e) a subset of d− 1 linearly indepen-

dent functionals, call them β1, . . . , βd−1, such that Aff(e) is the set of solutions to βi(x) = bi

for 1 ≤ i ≤ d−1. We then can realize Aff(e) as the solutions to Mx = b for M an (d−1)×d
matrix of rank d− 1. The solutions to this may be described as any particular solution plus

vectors in the kernel of M . However we can take the same matrix M for all polytopes of the

same type.

All that is left to do now is orient this line to get a ray. Choose some βj ∈ Func(v) which

is linearly independent from the β1, . . . , βd−1 above. We orient the ray so it points in the

direction so that motion in this direction decreases the value of the functional βj.

C.2.2: The cone of a vertex

Suppose we translate Q so that v is moved to the origin. Let RaysQ(v) be the collection

of rays associated to v now thought of as based at the origin. If we take the conical span of

RaysQ(v) we get a polyhedral cone which we shall denote by ConeQ(v). The main purpose

of the above discussion is the following conclusion: ConeQ(v) only depends on the type of Q

and not on Q itself!

A cone is called simplicial if it has exactly d generators. A polytope is called simplicial

if the cone at every vertex is simplicial.
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C.3: Brion’s formula

C.3.1: Lattice polytopes

Now suppose Λ is a lattice inside Rd. Suppose Q is a polytope such that all vertices are

in Λ; such polytope are called lattice polytopes. Let QΛ := Q ∩ Λ. Consider C := ConeQ(v)

for some vertex v. Then to each ray r ∈ RaysQ(v), we can associate the smallest non-zero

element in Λ on the ray. We will call this the coprime generator of the ray. Let Coprime(C)

denote the union of all coprime generators for all rays of C. If C is simplicial, we let PP(C)

be the parallelpiped formed by taking [0, 1) · r1 + . . . [0, 1) · rd for coprime generators rk.

C.3.2: Summing an exponential function over a polyhedral cone

Suppose C is a polyhedral cone based at the origin such that all of its extremal rays

intersect Λ. Let C∗ be the polar cone of C, that is C∗ = {x ∈ (Rn)∗ : (x, y) ≤ 0 for all y ∈
C}. Let α be a (possibly C-valued) functional. Define

σ(C;α) :=
∑

γ∈C∩Λ

q(α,γ).

This quantity converges if Re(α) is in the interior of C∗.

Suppose now that C is simplicial. Then using power series it is easy to see that

σ(C;α) =

( ∑
β∈PP(C)∩Λ

q(α,β)

)( ∏
r∈Coprime(C)

1

1 − q(α,r)

)
. (C.3.1)

If C is not simplicial, then there exists a partition of C into simplicial cones such that each

simplicial cone has its ray generators among the extremal rays of C. This implies that in all

cases

σ(C;α) =
R(α)∏

r∈Coprime(C) 1 − q(α,r)
,

where R(α) is a Laurent polynomial in qαi (where α = (α1, . . . , αn)). Hence the whole

expression is a rational function in these variables.

C.3.3: Brion’s formula

Theorem C.3 (Brion’s formula [Bri88]; see also [Bar93] Theorem 4.5). Suppose Λ is a lattice

and Q is a polytope with vertices V, and V ⊂ Λ. Let α be a functional for which no ray
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associated to any vertex is in its kernel (i.e. α is not orthogonal to any face of Q). Then,∑
γ∈QΛ

q(α,γ) =
∑
v∈V

σ(ConeQ(v);α) · q(α,v). (C.3.2)

Notice that each term in the sum is a product of two terms. The first term depends only

on the structure of the cone at each vertex (and on Λ and α) and the second term is purely

exponential.

C.3.4: Brion’s formula as a generalization of geometric series

One may think of Brion’s formula as a vast generalization of the geometric series formula.

First we can rewrite a geometric series as:

1 + x+ · · · + xn = qlogq(x)·0 + qlogq(x)·1 + · · · + qlogq(x)·n.

Hence if we let α be logq(x) ∈ R (treating x as a constant), let Λ = Z, and let Q = [0, n],

then the above is exactly of the form of the left hand side of Brion’s formula. Q has two

vertices, 0 and n. At 0, the only coprime ray generator is 1, and at n the only coprime ray

generator is −1. The only lattice point in PP(0) is 0 and the only lattice point in PP(n) is

0. Hence the right hand side of Brion’s formula gives

1

1 − qlogq(x)
+

1

1 − q− logq(x)
· qlogq(x)·n =

1

1 − x
+

xn

1 − x−1
=

1 − xn+1

1 − x
.

C.3.5: The asymptotics of Brion’s formula

One important takeaway of Brion’s formula is that the left hand side of (C.3.2) is domi-

nated by its largest term. More specifically, if we fix Q and then dilate it by integer multiples,

then the cone and coprime ray generators at each vertex stay the same; all such polytopes

have the same type. The nondegeneracy assumption on α implies that there is a unique ver-

tex v† maximizing the dot product with α (if we assume that α is an R-valued functional).

Then the dominating term on the left hand side of (C.3.2) is q(α,n·v
†). On the right hand side

of (C.3.2) we always get something of the form
∑

v C(v)q(α,n·v) where C(v) does not depend

on n. Hence as n→ ∞, the right hand side of (C.3.2) grows like q(α,n·v
†) as well.
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C.4: Motivation for degenerate Brion’s formula

We shall ultimately also be interested in the case when α is orthogonal to some face of

Q. We call this the degenerate case. We would like a formula which allows us to understand

the growth rate of the right hand side as some parameter in a family of polytopes goes to

infinity. In such a case we will have potentially an entire face f of Q for which on f∩Λ the dot

product with α is maximized. Call this maximal dot product value M . Then heuristically

we should expect the growth to be something of the form Area(f) · qM .

An illustrative example is the polytope Q = [0, 1] × [0, 1], the lattice Λ = Z2, and the

functional α = (0, logq(x)) for some value of x > 1. Then Q can be defined by {x1 ≥ 0;x2 ≥
0;x1 ≤ 1;x2 ≤ 1}. The dot product with α is maximized at both (0, 1) and (1, 1). Let Qm,n

be the polytope defined by {x1 ≥ 0;x2 ≥ 0;x1 ≤ m;x2 ≤ n}. All Qm,n have the same type.

It is easy to calculate that

∑
γ∈QΛ

m,n

q(α,γ) = (m+ 1) · 1 − xn+1

1 − x
.

This grows like m ·xn = m · qlogq(x)·n as m,n→ ∞, matching our above heuristic (the length

of the side in Qm,n along which the dot product with α is maximized is m, and the value of

that dot product is logq(x) · n).

C.5: Degenerate Brion’s formula

C.5.1: Degeneracy of a vertex

Suppose α is a functional. For each v ∈ Q define the degeneracy of v with respect to α

as the dimension of the span of the rays which are orthogonal to α. We say that a vertex is

good if its degeneracy is zero; other it is bad. We say that a ray at a bad vertex is bad if it

is orthogonal to α.

C.5.2: Degenerate Brion’s formula

We shall now derive a degenerate form of Brion’s formula. It is likely that some form of

this already exists in the literature but we have been unable to find it. It is also likely that

more elegant formulations along the same lines exist but for our purposes the below suffices.
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Proposition C.4. Suppose Λ is a lattice and Q(b1, . . . , bℓ) is a family of lattice polytopes of

the same type defined by βi(x) ≤ bi. Let α be some functional. For all Q in this family∑
γ∈QΛ

q(α,γ) =
∑
v∈V

Rv(b1, . . . , bℓ)q
(α,v),

where each Rv is a polynomial in the bj whose degree is bounded by greatest degeneracy of

any vertex in V (which is at least the largest dimension of any face orthogonal to α) and

which is degree 0 if v has degeneracy 0.

Proof. Let τ be any functional which is not orthogonal to any edge in Q. Theorem C.3

allows us to express for any ε small enough∑
γ∈QΛ

q(α+ε·τ,γ) =
∑
v

σ(ConeQ(v);α + ε · τ)q(α+ε·τ,v). (C.5.1)

We shall further separate out the sum on the left hand side into the sum over good and

bad vertices. The terms coming from the good vertices define holomorphic functions in ε

near ε = 0. When ε = 0, the term corresponding to a good vertex v is exactly

σ(ConeQ(v);α)q(α,v).

The coefficient of q(α,v) only depends on the type of Q, and hence is a non-zero constant

when viewed as a function of the bj’s.

The left hand sum in (C.5.1) is also clearly a holomorphic function in ε as it is a finite sum

of exponential functions. Consequently, the sum over the bad vertices also has a holomorphic

extension to ε = 0.

Recall that σ(ConeQ(v);α+ ε · τ) corresponds to the (analytic continuation) of the sum

of q(α+ε·τ,λ) over λ ∈ Λ ∩ ConeQ(v). We may partition this cone into simplicial cones, then

partition the intersection of two of these cones into simplicial cones (of smaller dimension),

and so on. In this way, by using inclusion-exclusion, we can express the sum of q(α+ε·τ,λ) over

the lattice points of ConeQ(v) as a weighted sum of q(α+ε·τ,λ) over lattice points in simplicial

subcones, each of whose rays are contained among the rays of ConeQ(v).

Suppose now v is a bad vertex and we have partitioned ConeQ(v) into simplicial cones C
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as described above. We then have

σ(ConeQ(v);α + ε · τ) =
∑

(v,C) with C simplicial

B(C,v) ·
PP(C;α + ε · τ)∏

rays r of C

1 − q(α+ε·τ,r)

for some constants B(C,v).

We now analyze the following sum:

∑
(v,C) s.t. v bad, C simplicial

B(C,v) ·
PP(C;α + ε · τ)∏

rays r of C

1 − q(α+ε·τ,r)
q(α+ε·τ,v). (C.5.2)

This is simply a rewriting of the right hand side of (C.5.1) with the terms correspond to

good vertices removed.

Let vbad be the vertex whose associated cone Cbad contains the greatest number of bad

rays. Let BR denote these corresponding bad rays. Let k be the cardinality of BR. Notice

then that k is at most the maximal degeneracy of any vertex. We shall multiply (C.5.2) by

a “fancy one” given by the expression∏
t∈BR

(
1 − q(α+ε·τ,t)

)
∏
t∈BR

(
1 − q(α+ε·τ,t)

) ,
which has a removable singularity at ε = 0. Let

ν(v, C;α, ε, τ) := B(C,v) · PP(C;α + ε · τ)q(α+ε·τ,v).

We thus obtain∑
(v,C) s.t. v bad

(
ν(v, C;α, ε, τ)

∏
t∈BR

(
1 − q(α+ε·τ,t)

) ∏
r∈Rays(C)

(
1 − q(α+ε·τ,r)

)−1
)∏

t∈BR

(
1 − q(α+ε·τ,t)

) . (C.5.3)

We wish to take a limit as ε→ 0. We shall pair every term in the product over Rays(C) in

the numerator of (C.5.3) coming from a bad ray with some term in the product over BR; we

can do this because the number of bad rays at each v is at most k. These give expressions of

the form 1−qaε
1−qbε with a and b non-zero (each term has a different a and b), and these functions

extend holomorphically to ε = 0 (it is a removable singularity). All the remaining terms in
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the numerator are also holomorphic at ε = 0.

We now wish to apply L’Hopital’s rule. We know that the limit at ε → 0 must exist

because, as discussed above, this function must extend holomorphically to ε = 0. The

denominator vanishes to order k. Hence the numerator must also vanish to order k. We now

apply L’Hopital k times.

When we differentiate the denominator k times and set ε = 0 we get∏
t∈BR

(
− (τ, t)

)
ln(q)k.

This expression only depends on the type.

Now let’s rewrite the numerator in the form∑
(v,C) s.t. v bad

F (C;α, ε, τ)q(α+ε·τ,v).

The functions F depends only on α, ε, τ , and the cone at v, but not on the specific coordinates

of v (that it, for a family of polytopes with the same fixed type, F stays the same). The kth

derivative of this expression is

k∑
ℓ=0

∂k−ℓF (C;α, ε, τ)

∂εk−ℓ
q(α+ε·τ,v)(τ, v)ℓ ln(q)ℓ

and when we set ε = 0, we get(
k∑
ℓ=0

∂k−ℓF (C;α, ε, τ)

∂εk−ℓ

∣∣∣∣∣
ε=0

(τ, v)ℓ ln(q)ℓ

)
q(α,v).

The coordinates of v are in turn linear functionals in the bi. Hence these terms are degree

(at most) k polynomials in the bi.

C.6: Polytopal balls and polytopal norms on affine buildings

Let B be the Bruhat-Tits building associated to G = PGL(3, F ). Recall that we may

identify the vertices of B with G/K where K = PGL(3,O). The Weyl-chamber valued

metric dA+(·, ·) allows us to define certain sets in the building B using polytopes defined in

some apartment.
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Recall that A < G denotes the collection of diagonal matrices whose diagonal entries

are powers of ϖ, and A+ denotes those elements in A for which the diagonal powers of ϖ

are weakly decreasing. We may identify A with elements in the lattice Λ ⊂ a. Recall that

a+ ⊂ a denotes the positive Weyl chamber, and we may identify elements in A+ with a+∩Λ.

Suppose Q ⊂ a+ is a convex polytope whose vertices lie in Λ. Given a vertex x ∈ B, we

may consider the polytopal ball centered at x whose “shape” is determined by Q; we call

this the Q-shaped ball centered at x:

BQ(x) := {y ∈ G/K : dA+(x, y) ∈ QΛ}.

Similarly we can define a polytopal norm by

|x|Q := inf{m ∈ R≥0 : dA+(1K, x) ∈ QΛ
m}

where Qm is the mth dilate of Q. This tells us what the smallest dilate of Q is such that x

is contained in the associated polytopal ball centered at 1K.

Analogues of such polytopal balls for symmetric spaces appeared previously in the work

of Brumley-Matz [BM21]. Also note that in rank one (such as the case of a regular tree or

the hyperbolic plane), such polytopal balls are simply balls with respect to the usual metric.

C.6.1: The polytopes P , P ∗, and H

p†

P

(a) P

P ∗

(b) P ∗

h†

H

(c) H

Figure 24: Geometric realization of the polytopes P , P ∗, and H.

In this work with shall be concerned with polytopes which we call P , P ∗, and H. Their

defining linear inequalities in cone coordinates (r, s) are given in Table 1 (see Appendix B.9.1
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for the definition of cone coordinates). Notice that Table 1 implies that if dA+(1K, x) = (r, s),

then

|x|P =
r + 2s

2
,

|x|H = max
{2r + s

6
,
r + 2s

6

}
.

Polytope P Polytope P ∗ Polytope H
r ≥ 0 s ≥ 0 r ≥ 0
s ≥ 0 r ≥ 0 s ≥ 0

r + 2s ≤ 2 2r + s ≤ 2 2r + s ≤ 6
r + 2s ≤ 6

Table 1: Defining inequalities for P , P ∗ and H.

Notice that P ∗ is obtained from P by simply swapping the coordinates r and s. Recall the

definition of λ∨ from (B.7.1). If λ = (r, s) is cone coordinates, then λ∨ = (s, r). Therefore,

by the defining property of λ∨, we get that

KϖλK ⊂ BPm(1K) ⇐⇒ (KϖλK)−1 = Kϖλ∨K ⊂ BP ∗
m

(1K).

The polytope P has a distinguished vertex which we denote by p†. What distinguishes

a-coordinates (4
3
,−2

3
,−2

3
)

Partition coordinates (2, 0, 0)
Cone coordinates (2, 0)

(a) Coordinates of p†.

a-coordinates (2, 0,−2)
Partition coordinates (4, 2, 0)

Cone coordinates (2, 2)

(b) Coordinates of h†.

Table 2: The points p† and h† in various coordinate systems.

p† is that its dot product with δ = (1, 0,−1) is maximal among all vertices of P . Recall that

δ is equal to (1, 0,−1) in a-coordinates.

The polytope H also has a distinguished vertex which we denote by h†. What distin-

guishes h† is that its dot product with δ is maximal among all vertices of H.

An important property of all 3 polytopes is that their orbit under the S3-action on a

forms a convex set. See Figure 25.
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P

Figure 25: The blue polytope represents the orbit of P under S3. Notice that this resulting
polytope is convex.
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