
Efficient and Dependable Deep Learning Systems

by

Salar Latifi

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2023

Doctoral Committee:

Professor Scott Mahlke, Chair
Associate Professor Ronald G. Dreslinski
Associate Professor Lingjia Tang
Associate Professor Zhengya Zhang

Salar Latifi

salar@umich.edu

ORCID iD: 0000-0001-6933-615X

© Salar Latifi 2023

ACKNOWLEDGEMENTS

In this section, I would like to first acknowledge my advisor, Prof. Scott Mahlke, who

has been guiding me through the PhD program since Fall 2016. Without his supports,

feedbacks, and his generous time and thoughts, I wouldn’t be able to reach to this point

and achieve the same results. I would also like to acknowledge my dissertation committee,

Prof. Ronald Dreslinski, Prof. Lingjia Tang, and Prof. Zhengya Zhang, for their valuable

time and feedback throughout both my thesis proposal and defense. They have been highly

friendly while helping me prepare this dissertation, which I am really appreciative of.

I would also like to acknowledge each one of my family members for their full support

throughout my PhD degree. First, my mom and dad who have been patiently tolerating

the distance while providing me the full strength to go through the lows and highs of this

program. I also want to say special thanks to Babak, Baharak, Navid, and Aysan, my brothers

and sisters for being on my side all the time and pushing me to cope with the difficulties and

to try my best moving forward.

Finally, I want to say thank you to all my dear friends and labmates in Ann Arbor.

We have made lots of enjoyable memories, good and bad moments, and controversial

discussions, all helping me to have the necessary energy and recovery time to be able to go

back and face the challenges of my thesis. Without having you, I wouldn’t be able to reach

my current position.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii

LIST OF FIGURES vi

LIST OF TABLES ix

ABSTRACT x

CHAPTER

I. Introduction . 1

1.0.1 Enhancing the Reliability of Image Classifiers 5
1.0.2 Enhancing the Reliability of Object Detectors 6
1.0.3 Enhancing the Inference Efficiency of Transformer Ar-

chitectures . 6
1.0.4 Road Map . 7

II. PolygraphMR . 8

2.1 Introduction . 8
2.2 Motivation . 11

2.2.1 High-Confidence Wrong Answers 11
2.2.2 Limitations of the Confidence Metric 12
2.2.3 Misclassification Analysis 13

2.3 PolygraphMR . 15
2.3.1 Overall Design . 15
2.3.2 Layer 1: Pool of Preprocessors 16
2.3.3 Layer 2: Heterogeneous Modular Redundancy 17
2.3.4 Resource-aware MR (RAMR) 20
2.3.5 Layer 3: Decision Engine 21
2.3.6 Resource-aware Decision Engine (RADE) 22
2.3.7 PolygraphMR System Design 24

2.4 Evaluation . 25

iii

2.4.1 Methodology . 26
2.4.2 Reliability Results . 27
2.4.3 Energy/Latency Optimizations 29
2.4.4 Preprocessing and Decision Engine 32
2.4.5 Comparison with Network Calibration 34

2.5 Related Work . 35
2.6 Conclusion . 37

III. SoftFusion . 38

3.1 Introduction . 38
3.2 Motivation . 41

3.2.1 Design Trends of Object Detectors 41
3.2.2 Reliability Analysis of Available Object Detectors . . . 42

3.3 Proposed Work . 43
3.3.1 Overall Design . 43
3.3.2 Step 1: Hierarchical Augmentation 44
3.3.3 Step 2: Batched Inference 45
3.3.4 Step 3: Proposal Post-processing 46
3.3.5 Step 4: Proposal Engine 47
3.3.6 SoftFusion System Design 49

3.4 Evaluation . 49
3.4.1 Methodology . 50
3.4.2 Accuracy Results . 51
3.4.3 Performance Analysis 52
3.4.4 Reliability Analysis of Object Detections 53

3.5 Related Works . 53
3.6 Conclusion . 55

IV. PLANER . 56

4.1 Introduction . 56
4.2 Background and Motivation . 58
4.3 Searching for Efficient Transformers 61

4.3.1 Phase 1: Search Space Exploration 61
4.3.2 User-defined Latency Optimization 63
4.3.3 Phase 2: Architecture Sampling and Retraining 64
4.3.4 Balancing Load Across Experts in MoE Layers 65

4.4 Evaluation . 66
4.4.1 Methodology . 67
4.4.2 Accuracy and Performance Trade-offs 69
4.4.3 Comparison to Iso-parametric Setting 72
4.4.4 Validating Estimated and End-to-end Runtime 73
4.4.5 Repeatability Evaluation 73

4.5 Related Work . 74

iv

4.6 Conclusion . 76

V. Conclusion . 78

5.1 Summary . 78
5.2 Future Directions . 80

BIBLIOGRAPHY 82

v

LIST OF FIGURES

Figure

1.1 Progress of deep learning models in ILSVRC-2012 Image Classification
task over the past decade. 2

1.2 Definition of dependability concept in deep learning inference. 3
1.3 Confidence checking with Softmax probability outputs for accepting a

reliable prediction. 4
2.1 Histogram of normalized wrong answers generated by AlexNet [56],

VGG16 [108], GoogleNet [110], ResNet 152 [34], Inception V3 [111],
and ResNeXt 101 [128]. 12

2.2 Effect of the probability threshold on the network predictions. (a) Dis-
tribution of true positives over threshold value. (b) Distribution of false
positives over threshold value. 13

2.3 Misclassification analysis on ImageNet dataset. 14
2.4 General design of a PolygraphMR system: Layer 1 is responsible to

preprocess input image and inject diversity to system, layer 2 provides re-
dundancy by making prediction on individual inputs, and layer 3 generates
final prediction and decide on output reliability. 15

2.5 Different modular redundancy methods applied to ConvNet on CIFAR10. 18
2.6 Effect of precision reduction on original and PolygraphMR system using

AlexNet. 20
2.7 Histogram of prediction agreements in a system with 4 CNNs, profiled on

LeNet-5, ConvNet, and AlexNet. 22
2.8 Comparing effects of AdHist and Scale 80% on confidence changes with

respect to original CNN. 24
2.9 Comparison of normalized FP rate for each design on different benchmarks

(TP rate of all design points are matching baseline accuracy level). 26
2.10 Energy, latency, and FP rate trend during cost-oriented optimization. . . . 29
2.11 Pareto frontier comparison of precision reduced AlexNet on ImageNet

dataset. 30
2.12 Distribution of number of networks activated in 4 PGMR system over test

set of individual benchmarks. 31
2.13 System configuration optimality analysis. 33
2.14 Temperature scaling results . 34

vi

3.1 Multi-sensor fusion setup in modern self driving cars [95] 39
3.2 A performance overview of object detection models proposed for COCO

dataset from 2016 to 2020 . 41
3.3 Evaluation of the reliability of prediction made by 5 different benchmarks

on COCO dataset with diverse accuracy levels 43
3.4 General design of SoftFusion system: In step 1 we synthesize a diverse

set of inputs for object detection. In step 2, we run a batched inference
on the augmented list of inputs. During step 3, the impact of individual
augmentations on the proposed bounding boxes is reversed. In step 4,
object proposals from individual images are fused for the final set of
bounding boxes. 44

3.5 Comparison of hierarchical and exhaustive augmentation over YOLOv3
and v4 benchmarks on Pascal VOC and COCO datasets 45

3.6 Normalized latency comparison of batched inference and sequential infer-
ence on YOLOv4 and COCO dataset. 46

3.7 Post-processing the proposed bounding boxes by inference engine 47
3.8 Comparing the reliability of predictions made by SoftFusion-L2 with the

baseline detector across 5 different benchmarks on 2017 COCO validation
set . 53

4.1 Profiling results for different Transformer-XL layers on NVIDIA V100
and A100 GPUs . 57

4.2 Exploration results for Transformer-XL Base model on the enwik8 dataset
for different latency targets. The width of the attention layer blocks
represent the relative number of heads. 57

4.3 General overview of MoE layers and gate function. 59
4.4 Latency comparison of attention, FFL, and MoE layers normalized w.r.t.

attention with 8 heads, profiled on NVIDIA A100 GPU with batch size of
64, sequence length of 192, and half-precision. 60

4.5 Composing the search network from the input network backbone 62
4.6 Formulating super blocks from the search space. 62
4.7 Impact of relaxing or enforcing the balance loss on training flow as well

as MoE runtime. 65
4.8 Layer-wise breakdown of each evaluated architecture for WT103 (top) and

enwik8 and text8 (bottom). 69
4.9 Speedups obtained by PLANER w.r.t. various baselines across different

batch sizes and sequence length of 64, profiled on NVIDIA A100. For
each task, the PLANER target latency was in the range of 50% to 65%. . . 70

4.10 Runtime comparison of FFL, MHA, and MoE layers across different batch
sizes normalized to FFL runtime. 71

4.11 Comparison of the Pareto frontiers of the optimized architectures obtained
by PLANER for MoE and Iso-parameter scaled FFL setups. Profiled on
NVIDIA A100 with batch size of 64 and sequence length of 64. 72

4.12 Correlation between target, estimated, and end-to-end latency. 73
4.13 Speedup and accuracy results for the repeatability experiment. 74

vii

4.14 Explored architectures through repeatability experiment on WT103 and
enwik8 dataset. 75

viii

LIST OF TABLES

Table

2.1 Image preprocessors and their functionality. 17
2.2 Benchmark set used to evaluate PolygraphMR. 25
2.3 4 PGMR configuration selected for each benchmark (ORG stands for

original baseline network). 27
3.1 Benchmark set used to evaluate SoftFusion. 50
3.2 Average precision results on Pascal VOC dataset. 50
3.3 Average precision, recall, and speed comparison results on COCO val-

2017 dataset. 51
4.1 Accuracy comparison of PLANER with prior work and baselines (scores

marked with ∗ are referenced). Lower is better for both PPL and BPC
metrics. 68

ix

ABSTRACT

Deep learning is overhauling a plethora of applications, and we can see its impact in our

day to day experiences-including voice assistants, autonomous vehicles and driving assist

technologies, and e-commerce. With such a huge impact on human daily life, researchers

are pushing towards better deep learning models with higher quality and better performance.

However, the trend of training bigger and higher quality models, potentially could lead

to higher demands of the hardware resources to be able to process and service the daily

applications in an efficient and timely manner. While there are also significant efforts

going on in the hardware domain to adapt with the future and more expensive models and

applications, considering the at-scale inference performance while designing novel deep

learning architectures could also have a vital impact on the efficacy and practicality of these

deep learning models.

On the other hand, Deep neural networks (DNNs) are also now starting to emerge

in mission critical applications including autonomous vehicles and precision medicine.

Therefore another important question is the dependability of DNNs and trustworthiness of

their predictions. Considering the irreparable damage that can be caused by mispredictions,

assessment of their potential misbehavior is necessary for safe deployment.

In this research dissertation, I am aiming to tackle both of these problems. The goal

is to optimize different deep learning applications with respect to the reliability of their

predictions, and improve their inference performance by reducing their latency and energy

requirements. In the first two parts of this dissertation, I focus on vision models which

have a wide function in mission critical applications, such as self-driving cars and precision

medicine, for their efficient and safe deployment. And in the final part, I will be mainly

x

focusing on the performance and efficiency of the at-scale inference of recommendation

systems, which are widely used in e-commerce and online advertisement, and are getting a

significant attention due to their large financial impacts on the industry.

In Chapter II, I will be focusing on the dependability of image classifiers as the first

vision application. First, I characterize the modern image classifiers and explore the root

reasons for the misclassification cases that they exhibit. Then, I analyze the traditional

confidence threshold checking as a reliability metric, and show its deficiencies. Next,

traditional hardware reliability solutions such as modular redundancy are explored for their

practicality in the deep learning domain. And finally, I propose a heterogeneous solution

based on modular redundancy to detect up to 50% of the mispredictions while preserving

the original accuracy levels of the baseline model.

In chapter III, I will be extending the learnings from image classification space to

object detectors as the second vision application. I analyze the state of the art object

detectors for different causes of unreliability. It is observed that nearly 40% of objects are

completely missed without even being detected. Next, I modify the modular redundancy

based heterogeneous system proposed in Chapter II to adapt for the low-latency and high

throughput requirements of the object detectors. In addition, a new fusion algorithm is also

proposed to combine the predictions of individual modules in the system with the goal of

dependability and recovering the undetected objects of the baseline model. The resulting

solution, which is called intra-sensor fusion, is shown to improve the average precision of

the baseline by 3.45% with less than 25% overhead on the latency.

Finally in chapter IV, I will be focusing on designing hardware-aware and efficient

Transformer architectures for the language modeling tasks. First, I will discuss the significant

performance costs of the multi-head attentions. Then I will introduce the PLANER optimizer

which takes an existing Transformer-based network and a user-defined latency target and

automatically produces an optimized, sparsely-activated version of the original network that

tries to meet the latency target while maintaining baseline accuracy.

xi

CHAPTER I

Introduction

There is a diverse set of applications for deep learning in many different fields. Due

to their critical role and immense functionality, substantial research is being done on deep

learning in different domains. We have the deep learning researchers focusing on designing

higher quality models and applying deep learning to new applications, as well as focusing

on side effects of the deep learning in practice, including their execution performance or

their resiliency against adversarial attacks [3, 135, 86, 87]. In hardware domain, the main

focus is to design new hardware architectures/infrastructures or optimizing the existing ones

to better suit for the computation demands of these models [20, 45, 65]. All of these efforts

are necessary to enable efficient, reliable, and practical deployment of deep learning in real

life.

In this dissertation, the main focus is to propose systematic solutions to optimize the ex-

isting deep learning solutions with two different targets: First, to improve the computational

efficiency and inference performance of these models, and second, to introduce the concept

of dependability in deep learning and facilitate reliable inference predictions.

Computational Efficiency and Inference Performance: Due to the significant num-

ber of applications that are deploying deep learning models, researchers are pushing towards

models with higher accuracy levels by creating more complex and capable architectures.

Figure 1.1 represents the accuracy improvement over the past decade on the image classifi-

1

Figure 1.1: Progress of deep learning models in ILSVRC-2012 Image Classification task over the
past decade.

cation task. We can see that classification accuracy on ImageNet dataset has been improved

by more than 20% with the introduction of the new architectures. However, this accuracy

improvement does not come free of cost, Figure 1.1 also depicts an exponential growth in

the computational demands of these models. As a result, the cost of running these models for

inference tasks is getting more expensive, which could also end up limiting the deployment

of these models in time sensitive applications due to their extensive cost. We can see similar

trends in other machine learning domains as well. For example, the number of parameters in

the proposed architectures for language modeling domain has been increased by more than

300× in less than three years, e.g., 1.5B parameters in GPT-2 [92] and 450B parameters in

PaLM [19].

My first goal in this thesis is to optimize deep learning models with respect to their

inference figures, which would make them more efficient and facilitate bigger and better

models to be deployed in industry. All of the projects discussed in the next chapters share

this efficiency optimization target.

2

(a) Training (b) Baseline Inference

(c) Dependable Inference

Figure 1.2: Definition of dependability concept in deep learning inference.

Some of the common practices for optimizing the inference runtime of the deep learning

models could be categorized in two different groups. The first group consists of the

network compression techniques [34] such as pruning, quantization and tensorization.

The common goal in this set of solutions is to enable architectures with lower performance

and memory footprint by shrinking down the necessary computations while achieving a

similar function as the baseline. The second group of the techniques is composed of the

compiler optimization solutions [17]. This group includes approaches such as layer/tensor

fusion, kernel configuration tuning, dynamic memory mapping/allocation. The main idea

with this group is to perform the exact computations as the baseline in a more efficient

manner according to the underlying hardware platform.

Most of these common practices rely on post-design/train optimization of the system.

However, a question that I want to explore during this thesis is: Can we further improve the

efficiency by also considering hardware-awareness in our design/train process?

Dependability in Deep Learning and Inference Prediction Reliability: With the

emergence of the deep learning solutions in the mission critical applications such as au-

tonomous vehicles or medical imaging, a key question is faced which is how to ensure the

3

Figure 1.3: Confidence checking with Softmax probability outputs for accepting a reliable prediction.

reliability of the predictions made by these probabilistic algorithms. To be able to safely

deploy deep learning models in the mission critical systems, we need to introduce the con-

cept of dependability in the inference pipeline of these algorithms. Figure 1.2 illustrates the

concept of dependability: during the training phase of a deep learning model(Figure 1.2a),

we know the ground truth labels associated with the training samples fed to the system,

therefore, we can easily evaluate the correctness of the predictions and optimize the model

towards higher accuracy levels. However in a baseline inference pipeline(Figure 1.2b),

both input samples as well as the ground truth outputs will be unknown. As a result, the

deep learning model is treated as a black box, where the prediction outputs are blindly

used without validating their correctness status. This introduces the dependability problem

considering that deep learning models are a probabilistic approaches with limited accuracy

levels, as a result, it is guaranteed for these algorithms to output incorrect predictions. What

we need in a dependable inference pipeline, is the functionality for the deep learning system

to prohibit making a blind prediction when it faces challenging inputs, or when a guaranteed

reliable and correct prediction can not be made depending on the current status of the system

and environment(Figure 1.2c).

A prominent example of introducing dependability in a deep learning inference pipeline,

is to use the probability output of the Softmax layer as a metric of network confidence [35,

36]. Figure 1.3 presents the formulation of this approach, in which the probability output of

the final prediction is associated with the confidence level of the network in the correctness

4

of its prediction. And to validate the reliability of a prediction, a scalar threshold value could

be used in which the output is assumed correct and reliable if the corresponding confidence

value is higher than the threshold, and is considered an unreliable prediction vice versa. I

will discuss the deficiency of this solution in detail in Section 2.2.2.

Another common practice to improve the dependability, is to introduce redundancy

in the system. A perfect example of this approach is sensor fusion in the AV systems, in

which multiple physical sensors are used in order to capture and process the surrounding

environment. However, a notable problem with the redundancy is the runtime and energy

cost of the system, which could easily surpass the limits if not designed carefully.

In this dissertation, my second target is to answer the following question: How can we

efficiently improve the reliability of predictions made by the probabilistic deep learning

systems?. The goal is to come up with systematic solutions to tackle the inherent inaccuracy

of the deep learning models, and to design deep learning systems in which we have the

ability to efficiently tell apart when the networks are making incorrect predictions, rather

than treating them as black boxes and blindly relying on their raw results. The first two

projects in this thesis are mainly aligned with this goal, each optimizing different deep

learning solution in computer vision, i.e., image classification and object detection.

1.0.1 Enhancing the Reliability of Image Classifiers

In the first part of the thesis, the main focus is going to be on the reliability and de-

pendability of the image classifiers. In this project, I first show the deficiency of current

confidence-based methods as reliability measurement, and assess the effectiveness of tradi-

tional architecture reliability methods such as modular redundancy (MR). Then, I propose

PolygraphMR and show that the combination of input preprocessing, smarter decision poli-

cies, and inclusion of prediction confidences can substantially improve the effectiveness of

MR for DNNs. Next, I show how to prohibit explosive growth in the cost of MR by the help

of reduced-precision designs and staged activations. Across six benchmarks, PolygraphMR

5

detects an average of 33.5% of the baseline mispredictions with less than 2× overhead.

1.0.2 Enhancing the Reliability of Object Detectors

Object detection is another important deep learning solution that is being deployed

in mission critical applications such as autonomous vehicles. Ensuring the reliability of

detections made by these models play an essential role in safety and robustness of these

applications. By analyzing the available object detectors, I observe a significant number of

objects being missed by the detector, which is a sign of unreliability. Being inspired by the

sensor-fusion systems in AVs, I propose SoftFusion in this paper. SoftFusion introduces the

concept of intra-sensor fusion wherein a diversity of inputs is efficiently synthesized during

runtime to be evaluated by the original object detector. The predictions are then intelligently

combined to realize more robust detections compared to the baseline detector. SoftFusion is

evaluated across 7 different benchmarks over 2 different datasets, and is shown to achieve

3.45% gain in average precision with less than 24% latency overhead in comparison to the

baseline.

1.0.3 Enhancing the Inference Efficiency of Transformer Architectures

In my last project, I will be focusing on optimizing the inference time and quality

of Transformer architectures. These models are the backbone of many different tasks in

natural language processing and computer vision. Recent developments in transformer

architectures are scaling them towards higher accuracy levels [105, 14]. However, the result

of this parameter scaling could be seen in significant increases in resource demands, both in

memory footprint as well as computation, of Transformers. For instance, both Megatron-LM

and GPT-3 deploy parameters in the scale of billion, and require 100s of GPUs for both

training and inference.

In this project, I will present PLANER, a systematic search methodology to design latency-

aware transformer models. The inputs to the system consist of a baseline transformer-based

6

architecture, as well as the user’s latency target, e.g., 60% latency of the baseline model. The

output of the system includes the proposed optimized architecture that meets the runtime

goals of the user, while maximizing the achievable accuracy levels. PLANER is evaluated

across three different tasks in language modeling domains, and an speedup of over 2× is

achieved across the board while still maintaining the baseline accuracy levels.

1.0.4 Road Map

Throughout the remainder of this dissertation, I first elaborate on my major contributions

towards efficiently improving the reliability and trustworthiness of computer vision domain

in Chapters II and III. I then discuss my two-step optimization solution for decreasing the

inference latency of the transformer architectures in Chapter IV. Finally, I summarize this

dissertation in Chapter V and describe how we can extend the learnings in this dissertation

to other tasks and deep learning domains.

7

CHAPTER II

PolygraphMR: Enhancing the Reliability and

Dependability of CNNs *

2.1 Introduction

There is no doubt that Deep Neural Networks (DNN) have revolutionized many domains

of applications including computer vision [96, 47], natural language processing [133],

speech recognition [4] and handwriting recognition [122]. More and more products and

services such as smart speakers, mobile photography, and social networks are integrating

these algorithms to facilitate and enhance their usability and functionality. Many different

types of DNNs are proposed each targeting different kinds of tasks, for instance, recurrent

neural networks (RNNs) are available for tasks like speech recognition, or convolutional

neural networks (CNNs) are well-established for image classification problems. Our target

in this project are CNNs for image classification tasks.

CNNs are now moving from non-critical tasks such as gaming and labeling personal pho-

tos to mission critical tasks such as pedestrian identification for autonomous vehicles [129],

steering commands generation for self-driving cars [12], and patient diagnoses with pre-

cision medicine [74, 94]. With mission critical tasks, incorrect answers can be disastrous.

While CNN accuracies will continue to rise, robust and reliable CNNs must be realized

*Published in the 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN’20) [61]

8

with imprecise networks. Furthermore, CNNs may never achieve acceptable accuracies for

mission critical tasks due to inherent limitations of their mathematical models. Constraints

on computation, storage, and energy consumption may also place practical limits on growing

CNN sizes, thereby limiting accuracy particularly for energy-constrained environments.

Despite the widespread use of deep learning, there are few metrics to determine the

reliability of predictions made by CNNs. When a CNN assigns a label for an input image,

there is not any established solution to determine correctness of the prediction and tell apart

the correct ones from unreliable wrong answers. This phenomenon leads to an uncertain

and unreliable environment when deploying CNN algorithms.

The most apparent solution to this problem is to design networks with higher accuracy.

Considering the recent trends in the ImageNet image classification task [98], deeper models

with more layers and parameters greatly improve the accuracy of these CNNs [56, 34, 40].

But, unless we have networks with 100% accuracy, which may not be possible to achieve,

this solution is not sufficient by itself. Considering the vital demand for a practical solution,

alternative approaches are necessary to assure reliable operation of CNNs.

In prior works [35, 36, 32], it is argued that the output of the last layer (Softmax) in

CNNs can be used as a confidence meter for the network result. The output of the Softmax

layer is a vector with size equal to the number of classes in the classification problem,

which computes exponentially normalized values of the final fully-connected layer outputs.

The final network prediction is the class number with the maximum value in this vector.

Therefore, it is possible to interpret the vector values as the probability of assigning the

input to the corresponding class, and if the probability value of predicted class is higher,

we can make the statement that network is more confident about the generated result. We

investigated the use of network confidence for reliability and show that DNNs produce

substantial numbers of high-confident wrong answers, thus this metric does not solve the

reliability problem by itself (see Section 2.2.2).

The machine learning community proposed network calibration [83] to improve confi-

9

dence metric credibility. According to network calibration, the reason for high-confidence

wrong answers comes from two sources: miscalibration of the CNNs; and, confidence values

are not well-correlated with the actual accuracy of predictions [32]. In other words, if a

CNN generates an output which has a confidence of 90%, we cannot make the statement that

the probability of answer being correct is also 90%. Network calibration tries to solve this

problem by correlating the confidence values with accuracy. Unfortunately, we demonstrate

that even with well-calibrated networks, using confidence as a reliability metric still results

in considerable mispredictions with high confidence (see Section 2.4.5).

In this project, our goal is to develop a practical method to design and realize systems of

CNNs that can increase robustness and reliability of classification results with imprecise

and currently available CNNs as the building blocks. The goal is not to increase accuracy

but rather focus on the dependability of results. PolygraphMR uses input preprocessing

techniques to develop different variations of a CNN and combines them as a modular

redundant (MR) system of heterogeneous CNNs. It also employs a tunable decision policy

engine that uses outputs of the networks and user’s reliability demands to make decisions on

the trustworthiness of each prediction. However, MR systems are notoriously expensive in

terms of area and energy consumption. Thus, the footprint of each CNN variant in the MR

system is reduced by scaling down the data precision and intelligently staging activations of

individual CNNs so that most of the time only a subset of the MR system is active.

PolygraphMR enhances reliability by leveraging variations in behavior of each CNN

that is trained in different circumstances and environments. It takes advantage of behavior

diversity to detect symptoms of unreliability from the predictions of different CNN variants.

A systematic approach is used to develop an efficient PolygraphMR system for any bench-

mark using the initial CNN as the basic building block. The functionality of PolygraphMR

is orthogonal to the accuracy and topology of baseline CNN and can be applied to the future

networks with higher accuracy levels for further reliability enhancement.

This project makes the following contributions:

10

• We demonstrate that high confidence, but wrong answers are a problem for most

CNNs. We also show that current solutions such as using a confidence threshold or

calibrating the network confidence do not satisfactorily solve the reliability problem.

• We introduce PolygraphMR, a heterogeneous MR system of CNNs that detects

unreliable predictions by recognizing the symptoms of unreliability in the behavior

variation among the constituent CNNs. Behavior diversity is synthesized by using a

set of simple image preprocessing techniques for training/inference.

• We eliminate a large fraction of traditional MR overheads by scaling down the data

precision of individual CNNs and deploying a resource-aware decision engine to

activate only a subset of CNNs for each inference. We show that more aggressive

data precision scaling without sacrificing prediction accuracy is possible with a

PolygraphMR system than for a standalone CNN.

• We evaluate PolygraphMR system across three well-known image classification

datasets and six CNNs and show that it is capable of detecting an average of 40.8% of

mispredictions in a non-constrained resource environment, or 33.5% of mispredictions

with less than 86.5% overhead on energy and latency.

2.2 Motivation

2.2.1 High-Confidence Wrong Answers

In order to better understand the reliability problem of current CNNs, we analyze errors

of the six well-known networks for ImageNet dataset [23]. Benchmarks and their top-1

accuracies for the validation set are presented in Figure 2.1. The output of Softmax layer is

used as the probability/confidence values of labels as suggested by previous works [35, 32].

Figure 2.1 presents the distribution of wrong predictions made by CNNs across the entire

validation set. To ease the analysis, wrong answers are grouped into four categories based

11

Low Confidence
(0−30%)

Medium Confidence
(30−60%)

High Confidence
(60−90%)

 Very High Confidence
(90−100%)

N
or

m
al

iz
ed

 W
ro

ng
A

ns
w

er
s

(%
)

0

5

10

15

20
AlexNet − 57.4%
VGG16 − 65.7%
GoogleNet − 68%
ResNet_152 − 72.9%
Inception_v3 − 77.9%
ResNeXt_101 − 79.6%

Figure 2.1: Histogram of normalized wrong answers generated by AlexNet [56], VGG16 [108],
GoogleNet [110], ResNet 152 [34], Inception V3 [111], and ResNeXt 101 [128].

on their prediction probabilities: low (0−30%), medium (30−60%), high (60−90%) and

very high (90−100%) confidence. All bars are normalized by the total number of samples

in the validation set, so the distributions can be compared to each other.

It is clear that the low and medium confidence wrong answers are the largest for most

CNNs, which is intuitive. But, nearly 10% of the answers are wrong with high or very

high confidence for each CNN. From a reliability perspective, 10% high confidence wrong

answers is quite large. Figure 2.1 also exposes a more subtle, but concerning trend. As the

CNNs become more accurate, severity of problem increases and there are a higher fraction

of high confidence mispredictions. This shows that the higher accuracy is mainly coming

from correctly predicting low confidence wrong answers of less accurate CNNs, and overall,

confidence values for majority of predictions, whether correct or wrong, are shifted higher

which makes them less reliable.

2.2.2 Limitations of the Confidence Metric

To explore the use of confidence as a reliability metric more deeply, one approach is to

choose a minimum threshold for the prediction probability in order to consider it reliable.

When the prediction probability falls below the threshold, the CNN output is unreliable.

Figure 2.2 demonstrates the rate of undetected mispredictions, or False positives (FP), and

correct predictions, or True positives (TP), as a function of the confidence threshold. At a

12

●●
●
●
●
●
●

●

●

0 20 40 60 80 100

0
20

40
60

80

Threshold (%)

Tr
ue

 P
os

iti
ve

 (
%

)
●●

●
●
●
●
●
●
●
●
●
●

●

●

●

●●
●
●
●
●
●
●
●
●
●

●

●

●

●

●●●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●●
●●●●
●●
●●
●●●●●

●
●
●
●
●●
●
●●
●
●
●●
●
●●
●
●
●
●
●
●
●
●
●●●●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●

●

●●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

AlexNet
VGG16
GoogleNet
ResNet_152
Inception_v3
ResNeXt_101

(a) True Positives

●●●

0 20 40 60 80 100

0
10

20
30

40

Threshold (%)

Fa
ls

e
P

os
iti

ve
 (

%
)

●●●

●●●

●●●

●●●

●●
●

AlexNet
VGG16
GoogleNet
ResNet_152
Inception_v3
ResNeXt_101

(b) False Positives

Figure 2.2: Effect of the probability threshold on the network predictions. (a) Distribution of true
positives over threshold value. (b) Distribution of false positives over threshold value.

threshold of 0, none of the predictions are affected and the rate of FP and TP matches the

original accuracy. As the threshold increases, the FP rate is decreased but at the same time,

TP rate goes down as a portion of correct predictions are lost due to their low confidence.

As depicted in Figure 2.2a, the change in TP rates for different CNNs tends to be similar,

thereby maintaining a relatively constant difference in TP values regardless of threshold.

Conversely, Figure 2.2b demonstrates the higher vulnerability of more accurate CNNs to

the high confident wrong answers. Although the FP rate is initially lower in more accurate

CNNs, the curves cross and the less accurate CNNs get lower FP rates at higher thresholds.

This result again reinforces a somewhat counter-intuitive result that as accuracies go up, it is

more difficult to eliminate the FPs and overall we have more high-confident wrong answers.

2.2.3 Misclassification Analysis

To get a better understanding of CNN behavior, we analyzed the wrong predictions

of AlexNet over the validation set of ImageNet. The highest confidence wrong answers,

i.e, mispredictions with confidence of 90% or more, which corresponds to about the top

5% of wrong answers, were manually examined to determine if any trends were apparent.

Figure 2.3 summarizes the top 3 characteristics. The first characteristic is having poor image

13

(a) Image Details (b) Multiple Objects (c) Class Similarity

Figure 2.3: Misclassification analysis on ImageNet dataset.

detail which includes obstruction, obfuscation, blur, etc. Figure 2.3a presents an example

where the crocodile is obstructed by leaves in the foreground. The second characteristic

is to have multiple objects in the image as shown by Figure 2.3b. This picture contains

two objects, a seashore in the front and a mountain in the back. In this example, network

incorrectly predicted the mountain whereas seashore was the correct label. Finally, the third

characteristic is the similarity between classes as shown in Figure 2.3c. The right image is

labeled as bald eagle in the dataset, while it is mispredicted as a kite, and the left image is a

sample of kite class, which shows its similarity.

The critical problem is not that these images are mispredicted, but rather the wrong

prediction is made with very high confidence (e.g., over confident predictions). Humans may

also classify these images incorrectly, but in contrast would likely have lower confidence due

to the image characteristics. This points out one of the limitations of machine learning that

the underlying mathematical models do not differentiate hard versus easy to classify images

nor utilize confidence as an input to the training process. Rather, training designates a

ground truth class for each sample. During training, weights of the network are continuously

updated until the probability outputs are converged toward the ground truths. So, the network

is forced to get the probability of the output corresponding to the label class number to

100%, making it more sensitive and reducing the generality of the trained model [87]. And

as a result, the network ends up making over confident predictions.

We hypothesize that this limitation can be alleviated by creating a system of networks

14

Layer 2Layer 1

User Preferences

Prediction: Car

Reliable:Thr_Conf

Car

Car
Truck

Ca
r

Tru
ck

Thr_Freq

Layer 3

Figure 2.4: General design of a PolygraphMR system: Layer 1 is responsible to preprocess input
image and inject diversity to system, layer 2 provides redundancy by making prediction on individual
inputs, and layer 3 generates final prediction and decide on output reliability.

that provides both multiplicity and diversity. Multiplicity enables multiple independent

predictions on the same input and can be used to adjust confidence based on agreement of

answers. And diversity further enhances multiplicity by differentiating individual learners,

thus increasing overall comprehensiveness of prediction space. We believe combination of

these two characteristics can help our system to perform better at approaching and resolving

more demanding inputs. The challenges are then to systematically create heterogeneous

systems of multiple networks so the user is not burdened with this task and mitigate the

multiplicative factors of energy/cost that deploying multiple networks will seemingly require.

Evaluating the merits of this hypothesis while overcoming these challenges is the focus of

PolygraphMR and the rest of this project.

2.3 PolygraphMR

2.3.1 Overall Design

PolygraphMR (PGMR) uses available imprecise CNNs as building blocks and leverages

behavior diversity between them as symptoms of unreliability and likelihood of unreliable

predictions. Figure 2.4 shows an overview of the system for single discrete inputs, still

images in the illustration. The design consists of three layers: preprocessing units (Sec-

tion 2.3.2), modular networks (Section 2.3.3), and decision making engine (Section 2.3.5).

15

For inference, the system operates as a group of heterogeneous DNNs (Layer 2) that

are driven by a diverse set of real and synthetic inputs crafted from the original input by

the available preprocessors (Layer 1). The goal of creating such a wide input diversity is

to provide more information in order to render more confident predictions. Outputs of the

heterogeneous group are analyzed to determine the final prediction and also whether or not

the answer is reliable (Layer 3). The decision making portion is configurable and users

can specify the target reliability for the system. The final output of this system could land

in one of the following three domains: True Positives (TP) which are correct and reliable

answers, False Positives (FP) which are undetected mispredictions, and Unreliable answers

which are composed of detected wrong answers (false negatives) and correct answers that

are undesirably marked as unreliable (true negatives). Our reliability goal in this project is

to reduce FPs as much as possible by marking them as unreliable predictions, while keeping

the desired TPs unchanged.

2.3.2 Layer 1: Pool of Preprocessors

Traditionally, diversity in CNNs is created by random initialization of weights in the

training phase. However, as expected, the amount of diversity is very limited as will be

shown in Section 2.3.3. Instead, we turn to prior work that has studied image preprocessors

and shown they are helpful in improving the overall accuracy of CNNs [21, 53, 126]. Our

goal of preprocessing is instead to create a group of CNNs with diversity in behavior. We

hypothesize that diversity will help us identify inputs where the prediction should be treated

as unreliable due to behavior variation across the CNNs.

Each CNN in layer 2 will be fed by transformed images generated by one of the prepro-

cessors. We can use simple linear transformations like flipping, or more complex nonlinear

functions like histogram equalization or contrast normalization as preprocessors. Each of

these preprocessors introduces a different level of diversity to the system depending on the

dataset or functionality of the preprocessor itself. We examine the effectiveness of each

16

Table 2.1: Image preprocessors and their functionality.

Preprocessor Functionality
AdHist Locally adjusts image intensities to enhance contrast

ConNorm Locally normalizes image contrast
FlipX Flips image in the horizontal axis
FlipY Flips image in the vertical axis

Gamma Gamma correction, controls the overall brightness
Hist Adjusts image intensities to enhance contrast

ImAdj Maps image intensity values to a new range

preprocessor and compare them together in Section 2.3.7. Table 2.1 presents the preproces-

sors that are used across our benchmarks in Section 2.9. Among these preprocessors, FlipX

and FlipY are used more frequently. On the other hand, ImAdj is used only by one of the

benchmarks. Overall, we observed that the preprocessors which preserve the vital features

of the inputs while providing sufficient diversity to the system, are more frequently used

across different datasets. Whereas a preprocessor like ImAdj, which heavily modifies the

input features, like pixel colors, is less useful.

2.3.3 Layer 2: Heterogeneous Modular Redundancy

The base of layer 2 is Modular Redundancy (MR), which is well recognized as a standard

solution for building mission critical computer systems [58]. With this approach, multiple

copies of the unreliable module are instantiated and activated with a majority vote taken to

decide the final answer. If the modules operate correctly most of the time, then the majority

are likely correct for any single input. For probabilistic models including CNNs, the goal of

using MR is separating reliable and unreliable answers rather than increasing the accuracy.

Therefore, when the CNNs agree, the output is labeled as reliable and when they disagree

then unreliable. To assess the success of MR, FP rates are measured.

We extend the traditional MR design with two modifications to account for the proba-

bilistic behavior of CNNs:

1. We change the decision policy from majority voting to require a specific number of

17

0 5 10 15 20 25 30

0
5

10
15

20
25

30

Redundancy Degree

Fa
ls

e
P

os
iti

ve
 (

%
)

1.01

25.18

0.18

●

●
● ●

●Majority Vote All Identical
All Identical
with Threshold

Figure 2.5: Different modular redundancy methods applied to ConvNet on CIFAR10.

networks to agree on the final prediction. We call this number the frequency threshold

(T hr Freq).

2. We include a confidence threshold for accepting the prediction result from each

network. If the confidence of a specific prediction is below the threshold, it will be

neglected. For the rest of the chapter, we call this value the confidence threshold

(T hr Con f).

To evaluate traditional MR, we run an experiment using ConvNet on the CIFAR-10

dataset [55]. This dataset contains 10k images which are classified into ten categories (1k

images per category) with a baseline accuracy of 74.7%. The degree of MR varies from 2 to

30. MR networks are created by instantiating n copies of the baseline CNN, randomizing

the starting weights, and training each on the original dataset. Each CNN ends with different

weights and thus behaves differently. Figure 2.5 shows the impact of redundancy degree on

the number of wrong answers predicted by the MR system with different decision policies:

1) Traditional MR with majority voting (Majority Vote), 2) MR with a T hr Freq equal

to the number of CNNs, which will require all networks to predict the same label and is

the most restrictive threshold (All identical), 3) the previous MR design plus a T hr Con f

of 75% (All identical with Threshold). The T hr Con f is chosen somewhat arbitrarily, but

which corresponds to a relatively high confidence threshold. Note that for the design with

18

majority voting if two classes share the same highest frequency, the result is considered

unreliable.

From Figure 2.5, majority voting does not provide a significant decrease in FPs regardless

of the redundancy degree. The FP rate flattens at about 20%, after starting at 25.2% with a

single CNN. MR with the T hr Freq is much more successful, reducing the FP rate down to

1%. MR with both T hr Freq and T hr Con f decreases the FP rate even further to 0.18%.

However, the latter two solutions have an undesirable side effect of substantially decreasing

the number of TPs. For example with the All Identical method, to achieve a 1% FP rate,

TPs reduce from 74.7% with a single network to 40.4% because a large number of correct

predictions are considered unreliable.

We make three conclusions based on these results:

First, traditional MR is incapable of effectively reducing the FP rate regardless of the

redundancy degree, whereas they are shown to be practical while applied to other computer

reliability problems such as transient faults [106, 7]. The reason is that with traditional

computer systems, execution of applications is flawless in a fault-free setting and faults are

relatively rare. However, CNNs are inherently faulty regardless of the hardware, and errors

are much more common due to the inherent inaccuracy of the mathematical models. This

results in a significant disagreement between individual CNNs and poor results.

Second, from the majority voting results, the effect of behavior diversity reduces the FP

rate by 5% without any loss of TPs. Conversely, the all identical voting has much larger

drops in FPs, but loses too many TPs. Thus, it is important to have less restrictive voting

mechanisms like majority while at the same time injecting larger amounts of diversity than

simply random initial weights, which led to our decision to use input preprocessing.

And finally, single CNNs are expensive in terms of computation, storage, and energy

consumption. Thus, the multiplicative cost increase of CNNs in an MR system could easily

become infeasible. Thus, we need to deploy an resource-aware implementation of our MR

system.

19

10 15 20 25 30
Precision

0

20

40

60

80

100

No
rm

al
ize

d
TP

[%
]

Baseline
PolygraphMR

12 13 14 15 16 17 18
97

98

99

100

Figure 2.6: Effect of precision reduction on original and PolygraphMR system using AlexNet.

2.3.4 Resource-aware MR (RAMR)

Due to inherent redundancy in Layer 2, computation of PolygraphMR introduces new

energy and latency overheads per inference. To mitigate a portion of these overheads, we

explore narrow-precision floating-point representation for each CNN in the system.

We follow a similar implementation introduced in [46, 38] and reduce the overhead of

data transfer by precision reduction. We assume all weights and intermediate values are

using a lower precision. Hence, it is possible to pack them together during both on-chip and

off-chip data transfer. As a result, the reduced traffic on memory hierarchy leads to higher

utilization of compute units and higher performance.

Although there is an opportunity to reduce the cost of PolygraphMR by using narrow-

precision computation, we should acknowledge that this solution is not unique to our system

and can be applied to any CNN for energy saving purposes. To analyze the effect of lower

precision, we run an experiment using AlexNet [55] on the ImageNet [23] dataset. The goal

is to compare the degree of precision reduction on a PolygraphMR system with a baseline of

an individual AlexNet. We hope that the combination of diverse CNNs in our system would

be more resilient against the negative effects of lower precision on accuracy. Therefore, we

would be able to further reduce the precision of each individual CNN in comparison to the

baseline.

20

Figure 2.6 presents the accuracy of both PolygraphMR and the baseline CNN with

respect to the precision they are using. We focus on maintaining the accuracy level of the

baseline CNN, which is 57.4% for AlexNet, and investigate the possibility of achieving this

accuracy at each precision level. At the first glance, both designs seem to be responding

equally to the reduction of precision. But in a closer look, we can see that the baseline

AlexNet starts to lose its accuracy passing 17 bits precision level. On the other hand,

PolygraphMR can still tolerate lower precision levels of up to 14 bits. In fact, the accuracy

of each individual CNN in PolygraphMR also follows a similar trend to the baseline AlexNet,

but combining their predictions and then making decision performs similar to ensembles

and compensates for the individual accuracy drop. As a result, we can further reduce the

precision on PolygraphMR system and mitigate a portion of the multiplicative energy and

latency overhead.

2.3.5 Layer 3: Decision Engine

The last layer of PolygraphMR is responsible for collecting the outputs from layer 2,

generating the final prediction of the system, and determining whether or not the prediction

is reliable. This happens in two steps during the system inference phase. First, the decision

engine compares the probability vectors generated by the softmax layer of each network,

with the designated T hr Con f value and forms a histogram of acceptable votes for each

class. As a result, all labels in individual output vectors, which meet threshold restrictions,

are recorded in the histogram. Next, the decision engine reports the class label with the

highest frequency as the final prediction of the system and reports the reliability of the label

by comparing the respective frequency with the preselected T hr Freq.

The appropriate values for T hr Freq and T hr Con f are determined after training the MR

networks and during an offline profiling stage. First, the value space for the set of thresholds

is swept, and the respective TP and FP rates of the design points over the validation dataset

is recorded. This process is not time consuming and has a negligible overhead compared

21

2 3 4
of Network Agreements

N
or

m
al

iz
ed

 #
 o

f S
am

pl
es

[%
]

0
20

60
10

0

LeNet−5
ConvNet
AlexNet

Figure 2.7: Histogram of prediction agreements in a system with 4 CNNs, profiled on LeNet-5,
ConvNet, and AlexNet.

to the actual training of the MR networks. Next, a Pareto frontier for the threshold values,

which maximizes the TPs and minimizes the respective FPs, is formed. And finally, a set

of T hr Con f and T hr Freq values is selected from the Pareto frontier based on the user

demands, which might be a specific TP or FP limit.

The threshold values selected in the profiling stage, will be fixed during the inference

phase of the system. But, if the user demands are updated at any point, a new set of threshold

values can be selected from the Pareto frontier to meet the new requirements.

2.3.6 Resource-aware Decision Engine (RADE)

To further reduce the performance overhead of Layer 2, we deploy a resource-aware

decision policy. Unlike the traditional MR with majority voting which requires all prediction

outputs from every network to be present in order to make the final decision, PolygraphMR

can decide on the reliability of the prediction if a subset of the networks provide the same

label with a minimal confidence.

To analyze the number of networks that need to be activated, we run an experiment

using a PolygraphMR with four networks on three benchmarks: LeNet5 [63] on MNIST

[64], ConvNet [54] on CIFAR-10 [55], and AlexNet [55] on ImageNet [23] dataset. Our

goal from this experiment is to gain a general idea about how often we need to activate all

networks to get a reliable prediction. We collect the prediction results of each network to

22

see how often they are in agreement with each other. To simplify the experiment, we do

not use any Thr Conf and just gather the top prediction from each network regardless of its

confidence. Figure 2.7 presents histogram of network agreements for our benchmark. The

x-axis shows the number of agreements among the four CNNs, and the y-axis represents

the corresponding normalized frequency over test samples. We can see that in more than

50% of times, we don’t need to activate all the CNNs since their prediction results are in

harmony with each other. This gives us the opportunity to activate just a portion of CNNs

and reduce the performance overhead. But, the key point is to decide on which network(s)

to activate, since there is a possibility that we would face an input where predictions from

the selected networks might conflict with each other. An oracle decision engine would be

the one which activates the single reliable CNN per input sample. But even if it is possible

to design such an engine, it is likely complex and would consume considerable energy.

In order to design a resource efficient decision engine, we use a priority scheme on CNN

activations. In this case, we can stage activation by activating a batch of high priority CNNs

first to check their predictions, and only continue to execute other CNNs if we are not able

to determine the final answer after the first round of invocations. This approach can give

us the opportunity to have early detection of TP or unreliable answers, and result in lower

energy consumption.

To come up with a priority scheme, we statistically analyze the contribution of each

CNN in the system. In other words, we record the frequency of instances that each network

provides a correct label to the decision engine over a specific number of test cases during

training. Next, we use the measured frequency numbers to give priority to each network. In

the inference phase, we first execute the top Thr Freq networks to see if we can determine

the final answer. Next, we move to other networks based on their contribution until we’re

ready to generate the output. Energy saving results and latency improvement of this decision

engine are discussed in Section 2.4.3.

23

−1.0 −0.5 0.0 0.5

0
20

40
60

80

Confidence Difference (%)

C
D

F
 (

%
)

AdHist
Scale 80%

(a) Wrong predictions.

−1.0 −0.5 0.0 0.5

0
20

40
60

80

Confidence Difference (%)

C
D

F
 (

%
)

AdHist
Scale 80%

(b) Correct predictions.

Figure 2.8: Comparing effects of AdHist and Scale 80% on confidence changes with respect to
original CNN.

2.3.7 PolygraphMR System Design

We use a two-step procedure to select the best preprocessors and form a PolygraphMR

system for each individual application and dataset. First, we compare the relative perfor-

mance of preprocessors regarding the potential behavior diversity each can introduce. Next,

a set of candidate preprocessors is used in a greedy approach to select the final preprocessed

networks. As discussed in Section 2.3.2, a wide range of linear and non-linear preprocessors

are available to use. But, not all of them provide sufficient behavior diversity to justify their

energy overhead. Hence, the first step is to compare preprocessors and select the best ones.

For each input instance, we profile the difference between prediction confidence of the

baseline CNN and each preprocessed CNN, called delta. The delta values are then used to

compare pairs of preprocessors. Figure 2.8 presents a comparison between AdHist (in which

image intensities are locally adjusted to enhance contrast) and Scale 80% (where input image

is scaled down and up by 20% to soften noise levels) on ConvNet. The x-axis presents delta

values, and y-axis projects the corresponding cumulative distribution. Figure 2.8a displays

the distribution of delta values for inputs that are initially mispredicted by the baseline CNN.

As shown, AdHist has a higher probability in negative deltas. Even though the difference

24

Dataset CNN Accuracy # of Layers # of Classes
MNIST LeNet-5 [63] 99.01% 5 10

CIFAR10
ConvNet [54] 74.70% 4 10
ResNet20 [34] 91.50% 20 10

DenseNet40 [41] 93.07% 40 10

ImageNet
AlexNet [55] 57.40% 8 1000

ResNet34 [34] 71.46% 34 1000

Table 2.2: Benchmark set used to evaluate PolygraphMR.

is relatively small, the likelihood of having lower confidence for mispredicted results with

the AdHist is higher. Thus, the probability of getting the same misprediction with AdHist

is lower than Scale 80%, and AdHist would be a better preprocessor to introduce behavior

diversity for this network. In addition to Figure 2.8b, Scale 80% has higher probability in

negative deltas, which means there is a higher chance of getting a lower confidence for

samples that are correctly predicted by the baseline. Hence, the probability of predicting the

same correct answer is lower compared to AdHist. This comparison shows that the AdHist

has a higher potential for introducing behavior diversity to our system. In our experiments,

preprocessors listed in Table 2.1 are the most frequently selected ones.

The second step is to run an iterative greedy approach on candidate preprocessors to

select the final networks for PolygraphMR. First, it starts by selecting a baseline CNN as

the first network in layer 2. It also gathers the respective TP and FP rates to be used as

baseline. Next, each of the preprocessed CNNs is separately selected and added to the

current configuration and reduction in FP rate is recorded. Then, the best preprocessor for

the current iteration is added to the final design. We keep iterating through this algorithm

until a predefined maximum number of CNNs is reached.

2.4 Evaluation

We evaluate PolygraphMR in two stages. First, we focus solely on reliability improve-

ments without considering any performance optimizations in Section 2.4.2. Next, we apply

RAMR and RADE to reduce the overheads in Section 2.4.3.

25

N
or

m
al

iz
ed

 F
P

[%
]

0

20

40

60

80

100

MNIST:
LeNet−5

CIFAR10:
ConvNet

CIFAR10:
ResNet20

CIFAR10:
DenseNet40

ImageNet:
AlexNet

ImageNet:
ResNet34

GeoMean
0

20

40

60

80

100 100.0

 72.3

 60.6
 56.4

100.0

 71.4
 63.0

 45.8

100.0

 65.3

 50.9
 45.0

100.0

 74.9

 64.5 61.1

100.0

 75.1

 64.6
 55.6

100.0

 67.5

 53.3
 48.7

100.0

 71.0

 59.2
 51.8

ORG 4_MR 4_PGMR 6_PGMR

Figure 2.9: Comparison of normalized FP rate for each design on different benchmarks (TP rate of
all design points are matching baseline accuracy level).

2.4.1 Methodology

Benchmarks: Three datasets are selected for evaluation: MNIST [64], CIFAR-10 [55],

and ImageNet [23] dataset. As for the CNNs, we choose six networks with different ranges of

accuracies and topologies to show that our solution is independent from the original network

correctness level and architecture. Table 2.2 presents the accuracies and specifications of

each benchmark.

Comparisons: To evaluate reliability of optimal configurations proposed for each

benchmark, two comparisons are made. We compare PolygraphMR with N networks

(N PGMR) with the original baseline network (ORG), and with an MR system composed of

N networks (N MR).

Evaluation Metrics: For the reliability comparison metric, we use FP rate of design

points where no desirable correct predictions are lost. Therefore, the FP rates included in

the rest of the results section correspond to design points with normalized TP of 100% of

the baseline network. FP rates are also normalized with respect to the ORG FP rate.

We also use latency and energy of original CNNs for each benchmark as our performance

measurement baseline.

Preprosseing: We use OpenCV library and MATLAB for preprocessing of the datasets

during training and testing.

Reliability Modeling: We use Caffe [44] framework to implement, train and test our

CNNs. To evaluate the accuracy of low-precision networks used in RAMR, we modify the

26

Dataset CNN Configuration
MNIST LeNet-5 ORG, ConNorm, FlipX, Gamma (γ = 2)

CIFAR10
ConvNet ORG, AdHist, FlipX, FlipY (γ = 2)
ResNet20 ORG, FlipX, FlipY, Gamma (γ = 1.5)

DenseNet40 ORG, ImAdj, Gamma (γ = 1.5), Gamma (γ = 2)

ImageNet
AlexNet ORG, FlipX, FlipY, Gamma (γ = 2)

ResNet34 ORG, FlipX, FlipY, Gamma (γ = 2)

Table 2.3: 4 PGMR configuration selected for each benchmark (ORG stands for original baseline
network).

Caffe library by replacing default cuDNN framework with our custom CUDA kernels that

support variable precision. This enables changing inference precision by truncating values

of load and store instructions to the desired settings. We use a unified precision throughout

the network and for all layers.

Performance Modeling: Energy and latency of PolygraphMR are measured on a

machine with Intel Core i7-5930K CPU and an NVIDIA TITAN X (Pascal) GPU. Inference

of each CNN in PolygraphMR is done sequentially, and at the end, decision policy is

deployed to get the final result. In this pipeline, preprocessing and CNN inference are

executed on GPU, whereas decision policy is based on CPU.

To measure the performance of low-precision CNNs, we model data packing and

unpacking in software which is then integrated in our kernels. Next, GPGPUsim v4.0 [6]

and GPUWattch v1.0 [66] are used with TITAN X configuration [50] to run the simulation

on individual benchmarks.

2.4.2 Reliability Results

In this section, we assess the reliability results of PolygraphMR without including any

side effects of performance optimization. We evaluate two configurations of PolygraphMR,

one with four networks (4 PGMR) and another with six networks(6 PGMR) to show the

scalability.

Figure 2.9 shows the evaluation results for all six benchmarks. We compare the normal-

ized FP rate of the PolygraphMR system with other designs. The y-axis displays FP rate

27

which is normalized to the FP rate of the corresponding baseline CNN. All design points

also have a normalized TP of 100%. One can see that on average, 4 PGMR can reduce the

FP rate of the baseline CNN by 40.8%. This value is also 16.6% lower compared to MR

configuration with the same number of CNNs. Table 2.3 summarizes the preprocessors

selected for each benchmark in 4 PGMR configuration.

Figure 2.9 also shows that PolygraphMR designs are orthogonal from the baseline accu-

racy. For example in CIFAR10, three benchmarks with different accuracy and complexity

levels are evaluated. We can see that 4 PGMR is successfully reducing FPs in all three

benchmarks. The same observation can be made on the ImageNet based benchmarks. In

conclusion, PolygraphMR can work in harmony with future more accurate networks to

enhance their reliability.

Another interesting point is the selection of FlipX preprocessor in the benchmarks

that are evaluated on ImageNet. During the training of AlexNet and ResNet34, samples

are randomly flipped and fed to the network to introduce robustness towards the rotation

of objects in the image. Hence, there was not any gain expectation by addition of this

preprocessor, since we believed that the intended diversity was already introduced to the

system during the training. But as the result of final configuration depicts, we still get

benefits by deploying FlipX. This shows the sensitivity of the network to minor changes in

the input and the explanation for this phenomenon is discussed in Section 2.3.

Figure 2.9 also presents FP rates for 6 PGMR configurations. On average, 6 PGMR

designs can detect 48.2% of baseline FPs, which is 12.5% improvement over 4 PGMR.

Among all benchmarks, ConvNet on CIFAR10 and AlexNet on ImageNet benefit the most

from increased diversity by, respectively, detecting 27.3% and 14% more FPs over their

4 PGMR counterparts. But, we observe that for the majority of benchmarks, 4 PGMR

provides the sweet spot in reliability and cost trade-off. For the rest of chapter, 4 PGMR

designs are used for further analysis.

28

0

100

200

300

400

MNIST:
LeNet−5

CIFAR10:
ConvNet

CIFAR10:
ResNet20

CIFAR10:
DenseNet40

ImageNet:
AlexNet

ImageNet:
ResNet34

GeoMean

N
or

m
al

iz
ed

 E
ne

rg
y

[%
]

0

100

200

300

400

4_PGMR
4_PGMR + RAMR

4_PGMR + RAMR + RADE (1GPU)
4_PGMR + RAMR + RADE (2GPU)

(a) Energy change

MNIST:
LeNet−5

CIFAR10:
ConvNet

CIFAR10:
ResNet20

CIFAR10:
DenseNet40

ImageNet:
AlexNet

ImageNet:
ResNet34

GeoMean

N
or

m
al

iz
ed

 L
at

en
cy

 [%
]

0

100

200

300

400
Mean TailMean Tail

(b) Latency change

0

20

40

60

80

100

MNIST:
LeNet−5

CIFAR10:
ConvNet

CIFAR10:
ResNet20

CIFAR10:
DenseNet40

ImageNet:
AlexNet

ImageNet:
ResNet34

GeoMeanN
or

m
al

iz
ed

 F
P

 [%
]

0

20

40

60

80

100

(c) FP change

Figure 2.10: Energy, latency, and FP rate trend during cost-oriented optimization.

2.4.3 Energy/Latency Optimizations

To alleviate performance overhead of PolygraphMR, we deploy a two-step optimization

procedure. First, we reduce the precision of each individual CNN in the 4 PGMR as

discussed in Section 2.3.4. Next, we replace the decision engine of the new system with a

resource-aware version.

In our evaluation, we assume that the proposed design is executed on an average hardware

setup including only one GPU. This is the worst case scenario which requires PolygraphMR

29

20 40 60 80 100
0

20

40

60

80

100

Normalized TP (%)

N
or

m
al

iz
ed

 F
P

 (
%

) ORG
ORG + RAMR
4_PGMR
4_PGMR + RAMR

Figure 2.11: Pareto frontier comparison of precision reduced AlexNet on ImageNet dataset.

to execute individual networks sequentially. Therefore, the latency and energy overhead

will grow linearly with the number of networks. If a more advanced hardware setup with

multiple GPUs is available, such as the NVIDIA DRIVE AGX self-driving compute platform

equipped with two TensorCore GPUs [85], latency overhead can be scaled correspondingly

down. The latencies of the preprocessing and decision engine are also measured, but their

overhead is negligible compared to CNN computation, e.g., 2.5% for AlexNet and 0.6% for

ResNet34.

4 PGMR + RAMR: For each benchmark, we reduce the precision of both the baseline

CNN as well as all CNNs in the 4 PGMR. As shown in Section 2.3.4, the PolygraphMR

system is more resilient to precision reduction than a single CNN. Therefore, we can reduce

the precision of individual CNNs in the 4 PGMR more aggressively. Figure 2.11 presents

the precision reduction results on AlexNet benchmark. We compare the Pareto frontier of

baseline and 4 PGMR in full precision and reduced precision settings. To get the Pareto

frontier of ORG, it is coupled with a confidence threshold. In this figure, the x-axis represents

the TP rate and y-axis stands for FP rate, both normalized to corresponding baseline rates.

In this experiment, the precision of ORG is reduced to 17bits without any accuracy loss. As

for 4 PGMR, precision is further decreased to 14bits again with no accuracy loss. But, as

shown in Figure 2.11, the FP rate of 4 PGMR system is little changed with RAMR, and still

30

0

20

40

60

80

100

MNIST:
LeNet−5

CIFAR10:
ConvNet

CIFAR10:
ResNet20

CIFAR10:
DenseNet40

ImageNet:
AlexNet

ImageNet:
ResNet34

Te
st

 S
am

pl
es

 [%
]

0

20

40

60

80

100
2 CNNs 3 CNNs 4 CNNs

Figure 2.12: Distribution of number of networks activated in 4 PGMR system over test set of
individual benchmarks.

offers 28.1% FP detection rate. We observe a similar behavior for other benchmarks and

precision of each CNN is further-decreased by two to four bits.

The second bars in Figure 2.10 summarize the effect of RAMR on energy, latency,

and normalized FP rate. On average, we can reduce the energy consumption and latency

overhead by 76.5% and 75.0%, respectively. Whereas, FP rate is modestly increased by

5.4%.

4 PGMR + RAMR + RADE: Next, we deploy the resource-aware decision engine

described in Section 2.3.6. Figure 2.12 presents distribution of the number of networks

activated by RADE for individual benchmarks over test set. We observe that the majority of

samples only require two CNNs to get the prediction. We only need to activate more net-

works for more demanding and complicated inputs. Figure 2.12 also shows that benchmarks

with a higher accuracy baseline, less frequently require the activation of extra networks.

The third bars in Figure 2.10 present the energy and latency reductions as well as FP rate

changes. By applying both performance optimization, we reduce average energy overhead

to 185.5% and normalized average latency to 186.3%. On the other hand, normalized FP

rate is increased by 7.2%.

Although RADE is effective on reducing the average latency, the tail latency is left

unaffected. This might be problematic on real-time applications that have a latency budget

per input. As an important example, self-driving car systems are required to have a tail

31

latency threshold of 100ms [71]. But, considering the overall low latency of baseline

networks, it is still possible to satisfy the latency requirements while providing predictions

with higher reliability. For example, ResNet34 as the most demanding network in our

benchmark suite, requires less than 17ms on TITAN X (Pascal) to do a forward pass on

single input.

Optimized 4 PGMR is also evaluated on a hardware with two GPUs similar to NVIDIA

DRIVE AGX platform. In this scenario, CNNs are activated in a batch of two over available

GPUs. As shown in Figure 2.12, the majority of inputs only require two networks to get the

expected reliability. Therefore as shown in Figure 2.10b, the average latency can be reduced

to baseline levels.

Discussion: To give perspective on the significance of these results, we consider an

example of reliability improvement achieved by using networks with higher accuracy

and complexity. We compare accuracy and cost of ResNet20 and DenseNet40 on the

CIFAR10. Based on Table 2.2, DenseNet40 reduces FP rate of ResNet20 by 18%. Whereas,

MAC operations are increased from 41 MFLOPs to 267 MFLOPs, more than 6× extra

computation. This shows the inevitable trade-off between reliability and cost. In comparison,

4 PGMR on ResNet20 reduces FPs by 49.0% with 4× cost, or by 46.3% with 1.6× cost

after optimizations. We observe that in this case, 4 PGMR is more cost effective to get

higher reliability. It is good to mention that we are not suggesting to use PolygraphMR as a

replacement for more accurate networks. Instead, our preference is to deploy PolygraphMR

on top of them to achieve even a higher reliability as discussed in Section 2.4.2.

2.4.4 Preprocessing and Decision Engine

To show the impact of preprocessors and decision engine used in PolygraphMR, two

separate experiments are run on CIFAR10 dataset with ConvNet. First, 6 PGMR is compared

to a modified version of traditional MR, which deploys the smart decision policy proposed

in Section 2.3.5. We call this new system 6 MR DE. By analyzing the changes in FP

32

0 20 40 60 80 100
0

20

40

60

80

100

Normalized TP (%)

N
or

m
al

iz
ed

 F
P

 (
%

) ORG
6_MR
6_MR_DE
100_MR_DE
6_PGMR

Figure 2.13: System configuration optimality analysis.

rates by moving from 6 MR to 6 MR DE and from 6 MR DE to 6 PGMR, we can observe

the effect of decision engine and preprocessing, individually. Next, the 6 PGMR system

is challenged by an extension of the modified MR used in the first experiment, which is

assembled by training 100 copies of the baseline ConvNet.

Figure 2.13 compares the Pareto frontier of different designs. To get the Pareto frontier

of baseline CNN and 6 MR, they are coupled with a confidence threshold(T hr Con f). It can

be seen that both modified MRs are outperformed by PolygraphMR system. By comparing

6 PGMR with 6 MR DE, we can see the extra gain of 18.5% in robustness introduced by

preprocessing. We can also observe the gains from decision engine by comparing 6 MR DE

and 6 MR. The former provides 4.1% more normalized FP detection which is the result of

using a smarter decision engine instead of just taking majority vote.

As for comparison of 6 PGMR and 100 MR DE, even though the number of networks

used in modified MR is 16 times more compared to 6 PGMR, the diversity introduced by

using only 5 preprocessors is still higher. As a result, the reduction that 6 PGMR offers in

the normalized FP rate is still 15.3% more than what 100 MR DE can do.

33

0 20 40 60 80 100

0
10

20
30

40

Threshold (%)

Fa
ls

e
P

os
iti

ve
 (

%
)

AlexNet_org
AlexNet_scaled
VGG16_org
VGG16_scaled
GoogleNet_org
GoogleNet_scaled
ResNet_152_org
ResNet_152_scaled

(a) False Positive

0 20 40 60 80 100

0
20

40
60

80

Threshold (%)

Tr
ue

 P
os

iti
ve

 (
%

)

AlexNet_org
AlexNet_scaled
VGG16_org
VGG16_scaled
GoogleNet_org
GoogleNet_scaled
ResNet_152_org
ResNet_152_scaled

(b) True Positive

0 10 20 30 40 50 60 70

0
10

20
30

40

True Positive (%)

Fa
ls

e
P

os
iti

ve
 (

%
)

AlexNet_org
AlexNet_scaled
VGG16_org
VGG16_scaled
GoogleNet_org
GoogleNet_scaled
ResNet_152_org
ResNet_152_scaled

(c) Pareto Frontier of Confidence Threshold

Figure 2.14: Temperature scaling results

2.4.5 Comparison with Network Calibration

Finally, we analyze network calibration as a solution to unreliability of confidence

metric [130, 82, 90, 83]. As an experiment and to see the effects of calibration on the

high confidence wrong answers, we implement the temperature scaling method proposed in

the recent works [32]. Temperature scaling uses a scalar parameter to scale the output of

softmax layer. The desired value of scaling for each benchmark is derived by solving an

optimization problem [32].

The temperature scaling method is implemented and tested on 4 benchmarks over

ImageNet dataset. Figure 2.14 shows the result prior to and after the temperature scaling.

The dashed lines are for the original CNN and the solid lines report the results for scaled

34

CNNs. The effect of confidence as a reliability metric is studied through Figure 2.14. Both

Figure 2.14a and 2.14b show the effect of temperature scaling on FP or TP rate, with respect

to the selected confidence threshold. If we compare FP and TP rate of the scaled and

original network for each threshold value, we can see a reduction in both parameters. This

gives the intuition that confidence of the undesired overconfident predictions is decreased

which would make the confidence metric an appropriate reliability metric. But based on

Figure 2.14c, we can see that Pareto frontier of TPs and FPs is unchanged after scaling.

In other words, since the scaling is done by using the same parameter for all confidence

values regardless of the correctness of answers, the final Pareto chart of the TPs and FPs is

kept untouched. The only change is that for accessing a specific set of TP and FP, a lower

confidence threshold is required for the scaled network. Hence, the initial reliability problem

of confidence is still in place.

2.5 Related Work

We focus on different areas which target the reliability or security aspects of CNNs, or

target to better understand the irrational behavior of CNNs.

Model uncertainty and Bayesian NNs are a closely related area of research [30, 49,

51, 58]. The idea is to add uncertainty to the predictions of NN models, and to be able

to understand when the network is not confident with the generated results. Although the

concept of model uncertainty is highly promising for reliable CNN inferences, but current

solutions mainly target regression tasks [49, 30], or add a very high execution overhead,

e.g., 10× to 100× in solutions based on the ensembles [58] or dropout sampling [30, 51].

However in PolygraphMR, we target improving classification reliability in CNNs, while

considering the performance overhead implications of the proposed solution.

Researchers are also focusing on corner-case behaviors of the CNNs. They try to come

up with systematic approaches and testing tools to detect erroneous behaviors [113, 88]. A

number of works are also attempting to detect the anomalies in CNN applications. Their

35

goal is to make CNNs more resilient against out-of-distribution examples that have not been

seen before [36, 70, 25, 37, 126].

Security researchers are also focusing on the robustness of CNNs. They seek to find new

techniques of generating adversarial inputs, to fool the network and induce their desired

results. They add perturbations to the inputs, which in some cases is not even visible to

the naked eye, leading to mispredictions [86, 80, 112]]. In contrast, they try to make the

network robust against the state of the art adversarial generation methods [31, 87, 39].

A number of works are also focusing on the understandability and interpretability of

CNNs in order to add more transparency to these algorithms. Samek et al. [99] try to explain

the predictions of CNNs by measuring the sensitivity of the outputs to the individual input

variables. Turner [115] proposes a general model for explaining the output of the classifiers.

Zeiler et al. [131] propose a visualization technique to get an insight into the functionality

of the intermediate features and operations of the classifier.

There are also numerous works on the reliability of CNNs against the transient faults

and soft errors [68, 9, 89]. These works study fault injection in the CNN executions and

analyze the response of the network to the faults. The solutions proposed for these reliability

issues include modular redundancy in the level of application, instruction, and transistors.

Our work however, focuses on the internal reliability problems of the DNNs which are also

very vital considering that unlike transient faults, DNN prediction faults are quite common

and happen frequently regardless of the hardware system that they are executed upon.

To the best of our knowledge, reliability problem of deep learning algorithms is a new

topic for research in this area. Considering the increasing utilization of these algorithms

in real world and vital applications such as autonomous vehicles, assuring their reliability

needs to be well studied.

36

2.6 Conclusion

CNNs are extensively utilized in mission critical applications such as autonomous

vehicles. These applications require high levels of robustness since any error can cause

irreparable damages. In this work, we demonstrated that current CNNs are failing to

meet the reliability requirements of such applications by exposing a significant number

of high confident mispredictions. We find that recent solutions that utilize confidence

values as a metric of reliability are faulty and can lead to a significant number of false

positives. We propose a new system called PolygraphMR composed of a number of CNNs

as building blocks. Each network is accompanied by a specific preprocessor to provide

behavior diversity among the CNNs and detect the unreliable wrong answers based on the

contradictions observed due to the behavior variations. An energy efficient version of the

system is also proposed that deploys precision reduction and staged activation to reduce

the multiplicative costs of MR. As a result, our solution is capable to provide an average

of 33.5% reduction in false positives of the original CNN, while requiring less than 2×

performance overhead.

37

CHAPTER III

SoftFusion: A Low-Cost Approach to Enhance Reliability

of Object Detection Applications *

3.1 Introduction

Deep Neural Networks (DNNs) are now being deployed in mission-critical applica-

tions such as object detection in Autonomous Vehicles (AVs) [129, 12] and computational

medicine [74, 94]. Ensuring the reliability, security, and safety of predictions made by

DNNs plays an essential role in deploying these solutions in critical domains. For example,

there have been numerous reported failures in object detection models deployed in AVs,

which further underscores the requirement of reliability assurance in these applications [28].

A common solution to develop more accurate object detection models used in AVs is

sensor fusion, which is based on the traditional modular redundancy methods. Sensor fusion

combines the strengths of individual physical sensors for more reliable perception [101],

and provides resilience against sensor failures [81]. Figure 3.1 depicts an example of fusion

which deploys multiple physical sensors like cameras, LiDAR, and radar. Each sensor has its

own positives and negatives. For example, cameras are capable of capturing high-resolution

RGB data, but in contrast, they are not as powerful to capture depth information. On the

other hand, LiDAR can effectively receive depth information from long range, but it can get

*Published in the 40th IEEE International Conference on Computer Design (ICCD’22) [62]

38

Figure 3.1: Multi-sensor fusion setup in modern self driving cars [95]

degrade in bad weather conditions, in which radar comes into play. This inter-sensor fusion

scheme helps by gathering input data from individual sensors and processing them through

individual models for more robust object detection. Multiplicative cost is the primary

negative of this approach that includes additional physical sensors as well as the computing

and memory requirements for the DNNs associated with each sensor.

In this paper, we present intra-sensor fusion, referred to as SoftFusion. A complementary

approach to traditional sensor fusion is to examine intra-sensor fusion wherein a diversity

of inputs is synthesized at runtime, e.g., image/video filtering, to feed the original object

detector. Intelligent combination of the output data from individual inputs can identify

unreliable answers as well as potential adversarial attacks. Intra-sensor fusion can be applied

to individual physical sensors available in an AV, and can deploy any off-the-shelf object

detector. This could increase the reliability of predictions from individual physical sensors,

leading to overall more robust object detection systems, or reduce the need for traditional

fusion, lowering the cost of providing a target level of robustness. Moreover, as the newer

and more accurate detection architectures are designed, they could be swapped in for further

robustness.

The goal of SoftFusion is to achieve higher detection accuracy and reliability, with the

39

least amount of overhead introduced in latency and cost. With careful design of synthesized

inputs, it is possible to run inference in a batched fashion on GPU systems and eliminate the

multiplicative cost of multiple inferences as in traditional modular redundancy solutions.

Furthermore, with intelligently processing the data from individual inputs, we can achieve

more precise bounding box proposals with fewer objects left undetected.

This paper makes the following contributions:

• We demonstrate that with the current object detection models, there are still a large

number of objects that are left undetected, which are clear safety concerns.

• We propose SoftFusion based on the concept of intra-sensor fusion, which synthesizes

a group of images from the original input at runtime. Moreover, by effectively

combining the bounding boxes from individual predictions, it composes more precise

and reliable outputs.

• With the systematic selection of online augmentation techniques, we can minimize the

runtime overhead of the system by deploying the underutilized hardware resources,

prohibiting the multiplicative costs of multi-sensors.

• A proposal engine is introduced to combine the generated bounding boxes based on

the confidence levels of each individual prediction to increase the precision and recall

of the detector.

• SoftFusion is evaluated across a wide range of benchmarks with different baseline

accuracy levels, and is shown to provide 3.45% gains in the mAP with less than

23% overhead on baseline latency. For context comparison, prior research on hard

sensor fusion of camera and LiDAR achieves on average 4.02% gain in mAP in

similar object detection tasks while leading to an approximately up to 2× computation

overhead [69, 119].

40

0 100 200 300 400

25
30

35
40

45

Inference Time [ms]

m
A

P
 [%

]

2016
2017
2018
2019
2020

Figure 3.2: A performance overview of object detection models proposed for COCO dataset from
2016 to 2020

3.2 Motivation

3.2.1 Design Trends of Object Detectors

To get familiarized with the design space of object detectors and see what has been the

focus on creating novel architectures, we analyzed the recent object detectors emerged in

the recent years. We gathered the reported data for their inference time and accuracy values

on COCO test-dev 2017 [73] from multiple sources [11, 2, 120].

Figure 3.2 represents the summary of design points for 87 different object detectors

from 2016 to 2020. The x-axis represents the inference time for a single image, and the

y-axis shows the mean Average Precision (mAP). By analyzing this graph, two trends can

be observed. The first trend is the push for more accurate network architectures, which is

absolutely expected. The second trend, on the other hand, is more interesting. We can see

a higher emphasis on the latency of models. In other words, we can find a design point

in 2020 which has a similar accuracy to the earlier models, but with a lower latency. In

41

fact, the absolute accuracy improvement over models from 2019 is marginal in 2020. This

pattern could be reasoned by considering that object detection models are mainly deployed

in time-sensitive domains such as self-driving cars, which require making decisions in a

timely manner.

This sets our first goal in designing SoftFusion which should induce the least amount of

latency overhead over the baseline.

3.2.2 Reliability Analysis of Available Object Detectors

In another experiment, we analyze the reliability of predictions made by the object

detection models. We choose 5 different models from Figure 3.2 with mAP values varying

from 31.4% to 47.2% in order to cover the full spectrum of the accuracy space. Next, we

evaluate these models over the 2017 validation set of the COCO dataset.

We analyzed individual objects in each image to see if there was a matching Bounding

Box (BB) generated for it by the detector. We calculated the Intersection over the Union

(IoU) of the ground truth BB with respect to all bounding boxes proposed by the detector

for that specific image. An acceptance threshold of 75% was used for IoU result to mark

an object as detected (the IoU threshold used in literature varies from 50% to 95%, so we

used 75% as a middle ground). As a result, we could have three possible outcomes for each

ground truth object: First, no matching BB is discovered (Wrong BB). Second, a matching

BB is detected, but the predicted label for the output BB is different from ground truth

(correct BB, wrong label). In the final case, there is a matching BB and label in the detector

outputs.

Figure 3.3 presents the distribution of all objects in the validation set across the three

possible output categories. The key observation is the large share of the objects that are

missed by each detector. On average, 44.4% of the objects are missed across the 5 evaluated

models. Therefore, we set our second goal to increase the reliability of detections in

SoftFusion by reducing the number of undetected objects. Our primary goal is to generate

42

N
or

m
al

iz
ed

 #
 o

f S
am

pl
es

0
10

20
30

40
50

60
70

Wrong Bounding Box Correct Bounding Box,
Wrong Label

Correct Bounding Box
and Label

0
10

20
30

40
50

60
70 EfficientDet−D0

mAP = 31.4%
YOLOv3
mAP = 38.1%

RetinaNet
mAP = 40.4%

Faster−RCNN
mAP = 43%

YOLOv4
mAP = 47.2%

Figure 3.3: Evaluation of the reliability of prediction made by 5 different benchmarks on COCO
dataset with diverse accuracy levels

correct BB and label for the originally missed objects. However, even by having a correct

BB detected for an object and incorrectly classifying its label, we would have a more robust

design compared to completely missing it.

3.3 Proposed Work

3.3.1 Overall Design

We propose SoftFusion based on the concept of intra-sensor fusion. Figure 3.4 represents

the general inference pipeline of SoftFusion. At step 1, the input image is passed through a

hierarchical augmenter to generate different variants of the input image. Next, the baseline

detector is deployed to run a batched inference on the set of augmented inputs. In the next

step, the proposed bounding boxes for each augmented input is post-processed to invert

the effect of respective augmentation, and map the location of generated proposals to the

original input . At the last step, all bounding boxes are gathered and passed through the

proposal engine for analysis. During this step, overlapping bounding boxes are merged

according to their confidence values into a more accurate proposal. Finally, each proposed

bounding box is examined based on the number of received votes in order to decide on its

reliability.

43

P-1

P-1

P-1

P-1

Detector

IOU Measurements

Proposal Voting and Merging

P1 P2

Step 1: Hierarchical Augmentation Step 2: Batched Inference Step 3: Proposal
 Postprocessing Step 4: Proposal Engine

Figure 3.4: General design of SoftFusion system: In step 1 we synthesize a diverse set of inputs for
object detection. In step 2, we run a batched inference on the augmented list of inputs. During step 3,
the impact of individual augmentations on the proposed bounding boxes is reversed. In step 4, object
proposals from individual images are fused for the final set of bounding boxes.

3.3.2 Step 1: Hierarchical Augmentation

The goal of augmentation is to generate a diverse set of inputs for intra-fusion. This

would provide the opportunity for the detector to analyze the same input from different

synthetic viewpoints. To achieve this goal, we are deploying a hierarchical scheme of aug-

mentation. Each level of hierarchy would double the number of images in the augmentation

set. As a result, if we have an N-level hierarchy, we would end up with 2N samples of

augmented images.

We start by initializing the augmentation set with the original input. Next, at each level

of the hierarchy, a different image processing technique is applied to individual samples of

the current set, and the result is appended back to the set.

The hierarchical scheme provides us the opportunity to generate the desired number

of augmented samples with the least number of image processing techniques. This would

significantly reduce the search space for selecting the image processors. For example, we

would need to search for 7 different image processors to generate an augmented set of size

8 in the exhaustive approach. However with hierarchical scheme, we would only need to

search for 3.

Figure 3.5 compares the mean average precision(mAP) gains for hierarchical and tra-

ditional augmentation methods, both using total number of 4 images in the augmentation

44

N
or

m
al

iz
ed

 m
A

P
 [%

]
80

85
90

95
10

0
10

5
11

0

Pascal VOC:
YOLOv3

Pascal VOC:
YOLOv4

COCO:
YOLOv3

COCO:
YOLOv4

80
85

90
95

10
0

10
5

11
0 Baseline

SoftFusion − Hierarchical Search
SoftFusion − Exhaustive Search

Figure 3.5: Comparison of hierarchical and exhaustive augmentation over YOLOv3 and v4 bench-
marks on Pascal VOC and COCO datasets

list, on YOLO family of object detectors across two datasets. The y-axis presents the mAP

values normalized with respect to the baseline values. We observe that the differences in the

mAP gains are similar on both augmentation methods.

Since one of the goals in SoftFusion is to limit the overhead of latency, the selection

of image processing techniques is limited to linear transformations that do not alter the

original distribution of the input images. This ensures achieving similar accuracy levels on

the inference of augmented images, without requiring any retraining or fine-tuning of the

detector. Image processors such as flipping the image, scaling, and translation, all meet the

mentioned criteria. On the other hand, non-linear techniques, such as histogram equalization,

alter different features of the image like brightness intensity, and are prone to significant

accuracy drops with the original detector.

3.3.3 Step 2: Batched Inference

Due to the careful selection of augmentation techniques, SoftFusion can use the same

detector to do inference on all samples. This gives us the opportunity to deploy batch-

processing of the inputs. As a result, the overhead of the multi-inference approach is

significantly reduced compared to running inference on individual samples sequentially.

To further analyze the effect of batched inference on latency, we run an experiment on

the YOLOv4 [11] using the validation set of the COCO [73], in which the number of inputs

45

1 2 4 8 16
Number of Inputs

N
or

m
al

iz
ed

 L
at

en
cy

0
5

10
15

1 2 4 8 16

0
5

10
15 Batched Inference

Sequential Inference

Figure 3.6: Normalized latency comparison of batched inference and sequential inference on
YOLOv4 and COCO dataset.

for inference is changed from 1 to 16. We use the Ultralytics [116] framework and NVIDIA

Tesla V100 [1] to run the inference. Figure 3.6 presents the average latency of sequential

and batched inference, which is normalized with respect to single input inference. Based on

Figure 3.6, batched inference causes very low overhead over single image inference with

varying size of inputs. To be more specific, the overhead of batched inference for input

size of 4 is 22%, which is also the same number that majority of the benchmarks use in

Section 3.4.

3.3.4 Step 3: Proposal Post-processing

Since the augmentations used in Section 3.3.2 would affect the location of objects in the

original image, we need to post-process the proposed bounding boxes to revert the impact

of augmentation before passing them to the proposal engine.

Figure 3.7a presents the required post-processing for scaled up bounding boxes. First,

we need to reverse the center cropping by shifting the center of the bounding box. Next,

each bounding box is scaled down with respect to the scaling factor. Figure 3.7b also shows

the required post-processing for the samples that are both scaled-up and flipped. First, the

bounding boxes are scaled down, and then, they are mirrored in order to map them to the

46

Center: (x + δ, y + δ)
Length: d

δ

Center: (x, y)
Length: d

Center: (x + δ, y + δ) / !
Length: d / !

Invert Center
Cropping Scale Down

(a) Post-processing scaled up bounding boxes

Invert Center
Cropping Scale Down Flip Back

(b) Post-processing flipped and scaled up bounding boxes

Figure 3.7: Post-processing the proposed bounding boxes by inference engine

original image.

3.3.5 Step 4: Proposal Engine

At the final step, proposal engine gathers all bounding boxes (BBs) from individual

inferences to generate the final set of predictions. Each input BB includes three different

features: The first one is the location with respect to the image. The second feature is the

confidence of the detector about the existence of an object in the generated BB. Finally, the

last feature is the label of the object.

Algorithm 1 describes the proposal function that is called for each set of bounding boxes

that have the same label. First, the BBs are sorted based on their confidence levels (line

3). Next, starting from the most confident prediction, each prediction is compared with the

remaining ones with respect to their Intersection over Union (IoU) (line 13). If the IoU

is bigger than the provided threshold (IOU thr), the two BBs are overlapping with each

other and can be merged (line 17). The merging function receives the location of BBs and

their confidence levels as input (line 18), and merges them together by taking a weighted

average according to their confidence values. The confidence value for the merged BB is

47

Algorithm 1: Proposal engine called for each class
Input: BBs, BBs len, IoU thr, Vote thr
Output: BBs out
Sort(BBs)
visited = [f alse]×BBs len
for i = 0 to BBs len do

if visitedi then
continue

end if
visitedi = True
cur votes = 1
cur BB = BBsi.BB
cur con f = BBsi.con f
for j = i to BBs len do

if visited j then
continue

else
if IoU(cur BB,BBs j.BB)> IOU thr then

cur BB = Merge(cur BB,BBs j.BB,
cur con f × cur votes,BBs j.con f)

cur votes++
visited j = True

end if
end if
if cur votes >Vote thr then

BBs out.append([cur BB,cur con f])
end if

end for
end for

further emphasized with respect to the number of votes that it has received so far. Finally,

the merged BB is appended to the output list if it has received sufficient votes (line 24).

The proposal engine results in more accurate and reliable predictions in two different

ways:

• It makes the originally detected BBs more accurate, thereby improving the overall

precision of predictions.

• It improves the reliability of predictions by detecting the originally missed objects,

thereby increasing the overall recall of objects by the detector.

48

3.3.6 SoftFusion System Design

To configure SoftFusion for a provided detector, there are two sets of decisions to be

made. The first decision is the number of levels and the choice of image processors to

be used in hierarchical augmentation. The second design point is the threshold values to

be selected for the proposal engine. Configuring both of these settings is done offline by

evaluating the accuracy of different setups over the validation set.

We tried hierarchical augmentation setups with different number of levels and choice

of linear image processing solutions. Based on our preliminary experiments, we saw that

a hierarchy of up to 2 levels gives us the sweet spot in the accuracy gains and speed. As

for the augmentation methods, flipping horizontally was giving us the maximum accuracy

improvements. Therefore, the first level of hierarchy is fixed with horizontal flipping. The

second level is also using either scale up plus center cropping, or translation in both x

and y dimensions. The selection of the second image processor and the corresponding

transformation factor, e.g., how much the input image should be scaled up or translated,

is decided based on the profiling experiment. We further discuss the decision choices for

individual detectors in Section 3.4.

After the augmentation hierarchy is fixed, we profile the threshold values of IoU thr

and Vote thr offline for the maximum accuracy gains. Based on our experiments over

different detectors and datasets, an IOU thr in the range of 50% to 70%, and a Vote thr of

N
2 (N being the total number of images of the augmentation set), was giving us the desired

accuracy improvements. However, these threshold values could be configured more/less

aggressively depending on the tolerance of false positives in the corresponding application.

3.4 Evaluation

We evaluate SoftFusion in multiple aspects. First, we evaluate its impact on overall

accuracy of detections on two different datasets. Next, we analyze the performance overhead

49

Dataset Detector Level 1 Preprocessor Level 2 Preprocessor

Pascal VOC
YOLOv3 Horizantal Flip Scale Up

YOLOv4 Horizantal Flip Scale Up

COCO

EfficientDet-D0 Horizantal Flip Translation

YOLOv3 Horizantal Flip Scale Up

RetinaNet Horizantal Flip Translation

Faster-RCNN Horizantal Flip Translation

YOLOv4 Horizantal Flip Scale Up

Table 3.1: Benchmark set used to evaluate SoftFusion.

Detector Backbone Input Size mAP
YOLOv3 Darknet53 416 x 416 78.83

SoftFusion YOLOv3 - L1 Darknet53 416 x 416 81.34
SoftFusion YOLOv3 - L2 Darknet53 416 x 416 81.72

YOLOv4 CSPNet 416 x 416 80.17

SoftFusion YOLOv4 - L1 CSPNet 416 x 416 81.6
SoftFusion YOLOv4 - L2 CSPNet 416 x 416 82.17

Table 3.2: Average precision results on Pascal VOC dataset.

of the proposed solution. Then, we analyze the impact of individual components of the

SoftFusion in terms of accuracy gain. And finally, we evaluate the overall impact of

SoftFusion on the robustness of the predictions.

3.4.1 Methodology

Benchmarks: We use two different datasets on object detection. The first one is the

Pascal VOC [27] which includes 20 different classes of objects. We use Pascal VOC 2007

and 2012 for training purposes, and the test set of Pascal VOC 2007 to evaluate the accuracy.

The 2007 validation set is used to configure the SoftFusion system. The second dataset is

COCO [73] which is composed of 80 different object classes. The 2014 training set is used

to train the models, and the 2017 validation set is used for evaluation purposes. We also

use 20% of the validation set to configure the SoftFusion system on COCO benchmarks.

Table 3.1 summarizes the 7 different benchmarks and the proposed SoftFusion configuration.

Frameworks: Darknet [5] framework is used to train and evaluate the YOLO bench-

50

Detector Backbone Input Size FPS (V100) AP AP0.5 AP0.75 AR1 AR10 AR100

EfficientDet-D0 EfficientNet-B0 + BiFPN 512 x 512 62.5 31.4 46.1 34.3 26.8 38.2 40.3

SoftFusion EfficientDet-B0 - L1 EfficientNet-B0 + BiFPN 512 x 512 54.4 32.1 47.5 34.6 27.6 39.3 41.5

SoftFusion EfficientDet-B0 - L2 EfficientNet-B0 + BiFPN 512 x 512 51.8 32.1 47.6 34.7 27.7 39.5 41.8

YOLOv3 Darknet53 416 x 416 54 38.1 67.8 39.2 30.5 47.9 51

SoftFusion YOLOv3 - L1 Darknet53 416 x 416 50.1 40.1 69.4 41.6 31.6 49.8 53.3

SoftFusion YOLOv3 - L2 Darknet53 416 x 416 42.5 40.4 69.9 42 31.7 50.1 54

RetinaNet ResNet-101 + FPN 800 x 800 19.6 40.4 60.2 43.2 33.6 53.2 56.3

SoftFusion RetinaNet - L1 ResNet-101 + FPN 800 x 800 12.55 41 60.4 44 34.2 54.5 58.3

SoftFusion RetinaNet - L2 ResNet-101 + FPN 800 x 800 5.9 41 60.2 44.2 34.1 55.1 59.7

Faster-RCNN ResNeXt-101 + FPN 800 x 800 9 43 63.7 46.9 34.1 53 53.3

SoftFusion Faster-RCNN - L1 ResNeXt-101 + FPN 800 x 800 6.2 43.9 64.3 48.2 34.6 54.5 57.1

SoftFusion Faster-RCNN - L2 ResNeXt-101 + FPN 800 x 800 2.9 44.1 64.3 48.3 35 55.3 58.5

YOLOv4 CSPNet 416 x 416 96 47.2 71.3 51.1 35.7 56.6 59.8

SoftFusion YOLOv4 - L1 CSPNet 416 x 416 82.1 48.5 72 52.6 36.5 0.5 61.6

SoftFusion YOLOv4 - L2 CSPNet 416 x 416 78.6 48.9 72.3 53.7 36.5 58.3 62.7

Table 3.3: Average precision, recall, and speed comparison results on COCO val-2017 dataset.

marks. Detectron2 [127] and Pytorch frameworks are used for the pre-trained models of

EfficientDet-D0, RetinaNet and Faster-RCNN.

Performance Analysis: We use NVIDIA Tesla V100 GPU for speed evaluation. Ultra-

lytics [116] framework is used for YOLO benchmarks, while Detectron2 and PyTorch are

used for speed evaluation of RetinaNet and Faster-RCNN. EfficientDet-D0 is also evaluated

on TensorRT [117].

3.4.2 Accuracy Results

First, we analyze the effect of SoftFusion on the accuracy of the benchmarks. Table 3.1

includes the detail for the image processing techniques used in each level of the hierarchy.

We evaluate two versions of the SoftFusion designs. The first version only includes a single

level of hierarchy for the augmentation (SoftFusion-L1). All benchmarks used horizontal

flipping as the augmentation method in L1. The second version of SoftFusion deploys two

levels of augmentation (SoftFusion-L2). Benchmarks use scaling up or translation in L2

depending on the offline profiling results.

Table 3.2 presents the mean average precision(mAP) gains on Pascal VOC benchmarks.

51

On average, we can achieve 2.48% normalized mAP improvement over baseline with single

level of augmentation. In addition, by deploying a 2-level hierarchy, the mAP gains can

further be improved to 3.08%.

Next, we analyze the accuracy gains on COCO benchmarks. Two groups of metrics

are used to evaluate SoftFusion. The first group is average precision which includes three

different configurations with respect to the IoU threshold used: AP0.5 uses an IoU threshold

of 50%, whereas AP0.75 uses a threshold value of 75%. On the other hand, AP is the mean of

average precision evaluated with different IoU threshold values ranging from 50% to 95%

with a step of 5%. The second group of metrics analyzes the average recall of the detector,

i.e., how many objects it successfully detects in each image. AR is measured according to

the top-k detections for each image based on the confidence values of the proposals.

Table 3.3 presents the results for both average precision and recall. By applying

SoftFusion-L1, we achieve an average of 3.16% normalized improvement on AP com-

pared to the baseline. By moving to a higher level of hierarchy we can get an additional

0.53% of gains in AP. The highest gain is achieved in the YOLOv3 benchmark which

achieves 6.3% improvement with SoftFusion-L2. Whereas RetinaNet receives the lowest

amount of gain. By inspecting the AR values we can also see a higher recall factor with

increasing hierarchy level, which leads to lower number of undetected objects.

3.4.3 Performance Analysis

Table 3.3 also presents the performance evaluation results for COCO benchmarks. For

each benchmark, we compare the speed of baseline model on a single image inference with

the speed of SoftFusion designs. Due to low overhead of the batch-processing of the inputs,

we can still maintain the real-time performance of the baseline models with the SoftFusion

applied. On average, SoftFusion-L1 reduces the FPS of the real-time applications by less

than 12.9%. By increasing the hierarchy level to 2, we observe 22.6% reduction in the

number of frames processed per second.

52

N
or

m
al

iz
ed

 #
 o

f S
am

pl
es

0
10

20
30

40
50

60
70

Wrong BB Correct BB,
Wrong Label

Correct BB
and Label

Wrong BB Correct BB,
Wrong Label

Correct BB
and Label

Wrong BB Correct BB,
Wrong Label

Correct BB
and Label

Wrong BB Correct BB,
Wrong Label

Correct BB
and Label

Wrong BB Correct BB,
Wrong Label

Correct BB
and Label

0
10

20
30

40
50

60
70 Baseline SoftFusion − L2

EfficientDet−D0 YOLOv3 RetinaNet Faster−RCNN YOLOv4

Figure 3.8: Comparing the reliability of predictions made by SoftFusion-L2 with the baseline detector
across 5 different benchmarks on 2017 COCO validation set

3.4.4 Reliability Analysis of Object Detections

Finally, we compare the robustness of the predictions made by SoftFusion to the baseline

by running a similar experiment as described in Section 3.2.2. Each object in individual

images of the COCO validation set is cross checked with respect to baseline and SoftFusion-

L2 proposed bounding boxes.

Figure 3.8 compares the distribution of all objects across the three possible categories of

outputs for baseline and SoftFusion-L2. In every benchmark, we can observe the reduction

in undetected objects, and increase in the other categories. SoftFusion-L2 results in 9.70%

reduction in the number of undetected objects, and achieves 5.96% increase in the correct

bounding box and label detections.

Overall, SoftFusion results in more robust predictions by reducing the number of unde-

tected objects and either correctly predicting the labels and bounding boxes for them, or at

least realizing their existence.

3.5 Related Works

A set of related works includes the robust fusion of available perception sensors which

plays a vital role [57, 104, 18] in the functional safety of AVs. An important aspect of

fusion is to deal with noisy inputs from individual sensors and generate a probabilistically

reasonable estimate of the environment [100, 97]. [16, 10] discuss how combining vision

53

camera systems with radars can improve the detection rates with decreased false detection in

different climate conditions. Radars benefit from lateral resolution and cameras from feature

richness, and the absence of sensing range of cameras is compensated by radars [48, 13, 123].

[18] evaluated a two-layer sensor fusion system consisting of 14 on-board sensors to achieve

93.7% detection rate. [69, 119] fuses LiDAR and camera data to improve the accuracy

of object detection on KITTI dataset. While the hard fusion results in significant gains in

precision of detectors, they are also susceptible to higher runtime overheads due to the need

to process both image and LiDAR data.

Another set of prior works attempts to improve the accuracy of object detectors by fusing

the intermediate semantics representations that are generated throughout the object detection

models. Feature Pyramid Networks (FPNs) is an example for these line of techniques, which

are applied to different baseline object detectors for accuracy gains [72, 76, 134]. Unlike

multi-sensor counterparts, the FPN fusion techniques cause minimal runtime overhead,

since the semantics representations used in fusion are already computed throughout the

baseline object detection procedure. While FPNs are the most related to SoftFusion in

terms of deploying intra-sensor fusion, we can further improve their average precision by

deploying SoftFusion on top of them. This orthogonality effects can be observed in three

of the evaluated benchmarks (EfficientDet-D0, RetinaNet, and Faster-RCNN) which are

deploying FPNs and also benefit in accuracy by addition of SoftFusion.

Sensor fusion also provides the system redundancy, both in spatial domain (different

available sensors) and also time domain(different instances from the same sensor in continu-

ous frames). Space redundancy and time redundancy are recognized standard solutions to

increase the reliability of computer systems. In time redundancy the computation or data

transmission is repeated and the result is compared to the previous result [68, 43, 109]. A

well-known technique to increase the reliability based on replication is n-modular redun-

dancy [106, 8]. Dual modular redundancy (DMR) requires two replications of each element.

It can only detect a mismatch by voting and is not able to help with recovery. To help the

54

recovery issue, triple modular redundancy (TMR) uses three replications of each element to

output the correct result when one of the replications fails [77, 107].

Another group of related works focuses on the deployment of image processing tech-

niques with the goal of increased accuracy and reliability [53, 126, 61]. Ensemble methods

for object detection is analyzed by recent work [15], which also proposes the test time

augmentation. But, the solution requires retraining of the networks which eliminates the

possibility of batched inference.

3.6 Conclusion

DNNs are getting deployed in mission critical applications such as object detection in

self-driving cars, or computational health. However, an important question is how reliable

available object detection models are. A widely deployed solution in the AV domain, is

sensor fusion, which introduces redundancy into the system by incorporating different

physical sensors, and results in resiliency against individual sensor failures. In this paper,

we propose SoftFusion which is inspired by the sensor fusion. SoftFusion introduces the

concept of intra-sensor fusion, in which the input for individual sensors could be processed

to generate a diverse set of augmented samples with the goal of adding redundancy per

sensor. In SoftFusion, a hierarchical augmentation unit is proposed to produce the desired

diversity levels for the detector without any implication of retraining required. As a result,

the augmented set of input could be processed in a batched-inference fashion to minimize

the overhead of the multiple inferences. Next, SoftFusion deploys the proposal engine to

effectively combine the bounding boxes proposed for individual samples by taking into

account the confidence level and the number of votes that each prediction receives. With the

combination of augmentation module and proposal engine, SoftFusion can lead to a more

robust object detection in a cost-effective manner. The proposed solution is evaluated on 7

benchmarks and 2 datasets, which shows that SoftFusion can increase the average precision

of the predictions by 3.45% with less than 23% overhead on the baseline latency.

55

CHAPTER IV

Efficient Sparsely Activated Transformers * †

4.1 Introduction

Attention-based deep neural networks (DNNs) such as Transformer [118] and BERT [24]

have been shown to exhibit state-of-the-art performance across a variety of machine learning

domains, including natural language processing [124] and computer vision [26]. Due to

their size and complexity, they are expensive to train and deploy, especially on resource-

constrained hardware. In particular, attention layers, which form the building blocks of

such networks, account for the majority of network runtime. Figure 4.1 illustrates this using

the Transformer-XL network [22]; here, we show the proportion of inference latency that

each layer type is responsible for on two different GPUs: the NVIDIA V100 and NVIDIA

A100. We notice that on both GPUs, attention layers (shown in red) account for over 80%

of total inference latency, with the rest coming from feed-forward (blue) and embedding

layers (yellow). Due to their outsize influence on total inference latency, recent work has

explored various approaches for runtime performance optimization that specifically target

attention layers; this includes work such as PAR Transformer [78], where attention layers are

re-distributed within the network to optimize performance, and various papers on pruning

either attention heads and/or entire attention layers [121].

*Published in the 1st Workshop on Dynamic Neural Networks, International Conference on Machine
Learning (ICML’22) [59]

†Submitted to 6th Conference on Machine Learning and Systems (MLSys’23) [60]

56

N
or

m
al

iz
ed

 L
at

en
cy

 B
re

ak
do

w
n

(%
)

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

V100 A100

1.10 %

84.40 %

14.50 %

1.00 %

83.00 %

16.00 %

Embedding Layer Attention Layers Feed−forward Layers

Figure 4.1: Profiling results for different Transformer-XL layers on NVIDIA V100 and A100 GPUs

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Block 11 Block 12

Baseline

60% Latency
Target

70% Latency
Target

80% Latency
Target

Attention Layer Feed-forward Layer Mixture of Expert LayerSkip

Figure 4.2: Exploration results for Transformer-XL Base model on the enwik8 dataset for different
latency targets. The width of the attention layer blocks represent the relative number of heads.

A separate body of work has explored the addition of sparsely activated layers to

Transformer models to improve task performance [102]. In particular, mixture-of-expert

(MoE) Transformer variants such as Switch Transformer [29] have demonstrated state-

of-the-art task performance while simultaneously improving training and inference costs.

While most work in this direction has focused on improving task accuracy, in this paper

we attempt to answer the following question: can the addition of sparsely activated layers

help preserve accuracy in the face of latency-optimizing network transformations such as

skipping/pruning attention layers? And if so, to what extent?

To help answer this question, we present PLANER, a novel system for designing latency-

57

aware sparsely activated Transformer networks. Given a Transformer-based model as input,

along with an inference latency target expressed as a percentage of the baseline model’s

latency, PLANER produces a sparsely-activated Transformer model that fulfills the latency

objective while preserving baseline accuracy. PLANER employs an efficient two-phase

gradient descent-based neural architecture search (NAS) strategy with a dynamic loss

formulation to achieve this. During the search process, PLANER efficiently explores the large

number of alternative architectures arising from different combinations of feed-forward,

attention (with varying number of heads), and mixture-of-expert layers; as a concrete

example, PLANER considers over 68 billion unique architectures for the Transformer-XL

model in our evaluation. The optimized architecture obtained from NAS is then fine-tuned

using a load-balancing loss term to produce the final network. Figure 4.2 demonstrates

how PLANER infers different architectures depending on the user-provided inference latency

targets. Here, each of the inferred architectures matches baseline accuracy, but has different

inference latencies. Depending on the latency target, we notice that PLANER progressively

reduces the number of attention layers and their widths, while using additional MoE and/or

feed forward layers to compensate for potential accuracy drops.

We evaluate PLANER on three different Transformer-based networks drawn from lan-

guage modeling, and demonstrate an inference latency reduction of at least 2× for each

network while maintaining baseline accuracy. We also compare PLANER with prior work

such as PAR Transformer [78] and Sandwich Transformer [91], and with parameter-matched

non-MoE implementations of the final optimized networks.

4.2 Background and Motivation

Mixture-of-expert (MoE) networks [79] dynamically partition the input domain so

that each sub-network or “expert” specializes in one or more input partitions, yielding a

sparsely activated network. Recent work has explored the application of MoE layers to

efficiently increase the model capacity of Transformer-based architectures [102, 67, 29,

58

Expert1 Expert2 Expert3

Gate

Gather

Input Sequence: [T1, T2, T3, T4]

Output Sequence: [O1, O2, O3, O4]

 [T2, T4] [T1, T3, T4] [T1, T2, T3]

(a) MoE Layer

Linear

Softmax

T1

Expert Scores:
 [P1, P2, P3]

(b) Gate

Figure 4.3: General overview of MoE layers and gate function.

33]. These sparsely-activated architectures are shown to achieve similar accuracy gains

without the proportional increase in computation compared to traditional scaling of network

parameters [93]. In this work, we focus on applying MoE layers to improve inference

latency while maintaining baseline accuracy.

Figure 4.3a depicts a general implementation of an MoE layer with three experts. The

sequence of input tokens are distributed among the experts for processing, where each token

is processed by one or more experts. The number of experts per token is denoted as TopK

in this work. In Figure 4.3a, TopK is two. A single-layer linear classifier called a Gate

(Figure 4.3b) decides which expert(s) to use to process a specific token. The Gate generates

a probability distribution across the experts per token, which will then be used to select the

TopK experts.

Layer-wise Performance Analysis: To better understand the performance behavior of

Transformer-based networks, we present layer-wise profiled latencies for the Transformer-

XL Base network in Figure 4.4. Here, each bar represents the latency of a network block

normalized to the latency of default multi-head attention with 8 heads. Note that the default

FFL inner dimension in the Transformer-XL Base network is 2048. Profiling is performed

with a model dimension of 512, sequence length of 192, and batch size of 64 on an NVIDIA

A100 GPU. We observe three key points from the figure: (1) the significant cost of the

59

N
or

m
al

iz
ed

 L
at

en
cy

M
HA, N

=8

M
HA, N

=4

M
HA, N

=2

M
HA, N

=1

FFL,
 D

=1
02

4

FFL,
 D

=2
04

8

FFL,
 D

=1
63

84

M
oE

, D
=1

02
4,

 E
=4

, K
=1

M
oE

, D
=1

02
4,

 E
=8

, K
=1

M
oE

, D
=1

02
4,

 E
=4

, K
=2

M
oE

, D
=1

02
4,

 E
=8

, K
=2

M
oE

, D
=2

04
8,

 E
=4

, K
=1

M
oE

, D
=2

04
8,

 E
=8

, K
=1

M
oE

, D
=2

04
8,

 E
=4

, K
=2

M
oE

, D
=2

04
8,

 E
=8

, K
=2

M
HA, N

=8

M
HA, N

=4

M
HA, N

=2

M
HA, N

=1

FFL,
 D

=1
02

4

FFL,
 D

=2
04

8

FFL,
 D

=1
63

84

M
oE

, D
=1

02
4,

 E
=4

, K
=1

M
oE

, D
=1

02
4,

 E
=8

, K
=1

M
oE

, D
=1

02
4,

 E
=4

, K
=2

M
oE

, D
=1

02
4,

 E
=8

, K
=2

M
oE

, D
=2

04
8,

 E
=4

, K
=1

M
oE

, D
=2

04
8,

 E
=8

, K
=1

M
oE

, D
=2

04
8,

 E
=4

, K
=2

M
oE

, D
=2

04
8,

 E
=8

, K
=2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
N: # of Heads

D: Inner Dimension

E: # of Experts

K: # of Experts per Token

1.00 x

0.48 x

0.28 x

0.17 x

0.10 x

0.16 x

1.01 x

0.18 x 0.20 x

0.32 x 0.32 x

0.25 x 0.26 x

0.44 x 0.45 x

1.00 x

0.48 x

0.28 x

0.17 x

0.10 x

0.16 x

1.01 x

0.18 x 0.20 x

0.32 x 0.32 x

0.25 x 0.26 x

0.44 x 0.45 x

1.00 x

0.48 x

0.28 x

0.17 x

0.10 x

0.16 x

1.01 x

0.18 x 0.20 x

0.32 x 0.32 x

0.25 x 0.26 x

0.44 x 0.45 x

1.00 x

0.48 x

0.28 x

0.17 x

0.10 x

0.16 x

1.01 x

0.18 x 0.20 x

0.32 x 0.32 x

0.25 x 0.26 x

0.44 x 0.45 x

1.00 x

0.48 x

0.28 x

0.17 x

0.10 x

0.16 x

1.01 x

0.18 x 0.20 x

0.32 x 0.32 x

0.25 x 0.26 x

0.44 x 0.45 x

1.00 x

0.48 x

0.28 x

0.17 x

0.10 x

0.16 x

1.01 x

0.18 x 0.20 x

0.32 x 0.32 x

0.25 x 0.26 x

0.44 x 0.45 x

1.00 x

0.48 x

0.28 x

0.17 x

0.10 x

0.16 x

1.01 x

0.18 x 0.20 x

0.32 x 0.32 x

0.25 x 0.26 x

0.44 x 0.45 x

1.00 x

0.48 x

0.28 x

0.17 x

0.10 x

0.16 x

1.01 x

0.18 x 0.20 x

0.32 x 0.32 x

0.25 x 0.26 x

0.44 x 0.45 x

1.00 x

0.48 x

0.28 x

0.17 x

0.10 x

0.16 x

1.01 x

0.18 x 0.20 x

0.32 x 0.32 x

0.25 x 0.26 x

0.44 x 0.45 x

1.00 x

0.48 x

0.28 x

0.17 x

0.10 x

0.16 x

1.01 x

0.18 x 0.20 x

0.32 x 0.32 x

0.25 x 0.26 x

0.44 x 0.45 x

1.00 x

0.48 x

0.28 x

0.17 x

0.10 x

0.16 x

1.01 x

0.18 x 0.20 x

0.32 x 0.32 x

0.25 x 0.26 x

0.44 x 0.45 x

1.00 x

0.48 x

0.28 x

0.17 x

0.10 x

0.16 x

1.01 x

0.18 x 0.20 x

0.32 x 0.32 x

0.25 x 0.26 x

0.44 x 0.45 x

1.00 x

0.48 x

0.28 x

0.17 x

0.10 x

0.16 x

1.01 x

0.18 x 0.20 x

0.32 x 0.32 x

0.25 x 0.26 x

0.44 x 0.45 x

1.00 x

0.48 x

0.28 x

0.17 x

0.10 x

0.16 x

1.01 x

0.18 x 0.20 x

0.32 x 0.32 x

0.25 x 0.26 x

0.44 x 0.45 x

1.00 x

0.48 x

0.28 x

0.17 x

0.10 x

0.16 x

1.01 x

0.18 x 0.20 x

0.32 x 0.32 x

0.25 x 0.26 x

0.44 x 0.45 x

Figure 4.4: Latency comparison of attention, FFL, and MoE layers normalized w.r.t. attention
with 8 heads, profiled on NVIDIA A100 GPU with batch size of 64, sequence length of 192, and
half-precision.

default attention configuration, amounting to a 6.2× higher runtime compared to the default

feed-forward layer (FFL) with an inner dimension of 2048, (2) the approximately linear

scaling of the attention cost with respect to the number of heads (pruning attention heads

and/or blocks could thus play a significant role in improving network performance), and (3)

the compute efficiency of the MoE blocks compared to both attention and iso-parametric

FFL blocks (iso-parametric FFL blocks are obtained by scaling up an FFL block according

to the number of experts to match the number of parameters in a corresponding MoE block),

signifying the promise of using MoE blocks as a cost-effective solution to scale the learning

capacity and compensate for the potential accuracy loss caused by aggressive attention

pruning.

60

4.3 Searching for Efficient Transformers

In this section, we provide a thorough description of PLANER’s two-phase NAS method-

ology for finding optimal latency-aware Transformers.

4.3.1 Phase 1: Search Space Exploration

Transformer-based models are composed of multiple blocks, where each block consists

of multi-head attention (MHA) and feed-forward layers (FFLs) [118]. MoEs could thus

be applied to either MHA or FFLs, or both. In this work, we only explore MoE FFLs

in the design space; this is primarily due to the runtime overhead introduced by dynamic

behavior, which we found to be prohibitively high for the already expensive attention layers.

PLANER’s first phase explores the large design space composed of different configurations

of MHAs, FFLs, and MoE layers (see Section 4.4.1 for the full search space). The inputs to

the first phase are the design space, the backbone of the baseline network architecture, and a

target latency, expressed as a ratio with respect to the baseline latency.

For real-world networks, the design space of alternative architectures often gets pro-

hibitively large; for instance, the Transformer-XL Base network on the enwik8 dataset yields

a search space size of over 68 billion architectures. To keep the search tractable, we deploy

a differentiable NAS strategy, which has been shown to be significantly more efficient than

reinforcement-learning-based approaches [135]. We follow a NAS algorithm similar to the

one proposed by [125].

Phase 1 first composes a search architecture using the baseline network’s backbone

as depicted in Figure 4.5. The backbone includes details on the number of blocks (MHA

or FFLs) and their configuration (number of heads or hidden dimension). Using the input

backbone, each of the MHA or FFL blocks in the baseline network are replaced with Super

Blocks (SB), which includes all the search options in the design space. The goal is to find

the best option for each block so that overall accuracy is maximized and the latency target is

achieved. Figure 4.6 depicts the formulation of super blocks. Each of the search options

61

A
ttention

FFN

Super
B
lock

A
ttention

A
ttention

FFN

FFN

Super
B
lock

Super
B
lock

Super
B
lock

Super
B
lock

Super
B
lock

Input
Network

Search
Network

A
ttention

FFN

Super
B
lock

Super
B
lock

Figure 4.5: Composing the search network from the input network backbone

Input

+
Output

Attention FFL MoESkip

⍺0 ⍺1 ⍺k ⍺k+1 ⍺m ⍺m+1 ⍺n

Figure 4.6: Formulating super blocks from the search space.

Blocki is accompanied by corresponding architectural weights αi, which are trained using

gradient descent to represent the benefit factor of the search option [125]. To make the

optimization graph differentiable with respect to the architecture weights, the output of the

super block is formulated as:

Out put =
n

∑
i=0

Pi×Blocki(Input)

s.t. Pi = GumbelSo f tmax(αi, [α0, ...,αn]) (4.1)

Where the GumbelSo f tmax generates probability values by sampling the Gumbel distribu-

tion based on α weights.

This formulation yields two sets of parameters to be trained in Phase 1. The first group

contains the actual network weights (Blocki), and the second group the architectural weights

62

(αi). Training of each parameter group is done sequentially in each epoch, using separate

optimizers. Thus each epoch of training in phase 1 consists of optimizing the network

weights using 100% of the training samples, and then training the architecture weights using

20% of the randomly sampled training data. We use soft sampling for GumbelSo f tmax

during architecture optimization, and hard-sampling while training the network weights to

reduce the overheads associated with the super blocks. To ensure that neither of the network

weight sets are starved due to the hard-sampling of GumbelSo f tmax, the architecture

optimization is initially disabled for 10% of the epochs, and an annealing temperature

scheduling is used for later epochs. These settings allow the blocks to be randomly sampled

for the appropriate number of search epochs.

4.3.2 User-defined Latency Optimization

PLANER supports the specification of a latency target to provide more flexibility to users

in exploring the performance-accuracy trade-off curve. To incorporate latency optimization

in the search phase, we formulate an auxiliary loss based on the latencies of the search and

baseline network, as well as the target latency. We use an estimation for the end-to-end

latency of the search network as well as baseline in phase 1, using lookup tables filled with

individual block latencies similar to prior work [125]. Equation (2) presents the formulation

for the estimated latency which is composed of accumulating the latencies of each super

block (Lat SB).

Lat =
B

∑
b=0

Lat SBb,

s.t. Lat SBb =
n

∑
i=0

Pbi×Lat i (4.2)

Here, Lat i represents the profiled latency of Blocki in isolation, and Pbi values correspond to

the probability values for super block of b as sampled in Equation (1) with respect to the

architecture weights.

63

The latency loss LatLoss is implemented as the ratio of the estimated latency of the search

network (Lat) over the normalized baseline latency with respect to the target latency.

Loss =CELoss +β ×LatLoss

s.t. LatLoss = Lat / (LatBaseline×TargetLat)

s.t. β = 1 i f (LatLoss > 1) else 0 (4.3)

During the training of the architecture weights, the latency loss will be automatically

activated depending on whether the estimated latency of the search network is meeting the

target latency requirement. For example, if the target latency is set to 50% of the baseline,

the latency loss will only get included if the estimated latency is higher than 0.5×LatBaseline.

Otherwise, the scalar factor of β would be 0 in Equation 3, leading the optimizer to adjust the

architecture weights solely in the direction of minimizing the CELoss. This novel dynamic

functionality helps the search progress towards the user latency target without the need for

additional hyper-parameter tuning.

4.3.3 Phase 2: Architecture Sampling and Retraining

The optimized architecture obtained from Phase 1 is now instantiated for retraining.

Since the weights of this final architecture were shared with other search points during Phase

1, a retraining step is necessary to avoid under-fitting and to obtain optimal accuracy. We

construct the optimized architecture by selecting the blocks with the highest architecture

weight values in each super block; from our empirical evaluation, this sampling strategy

best balances additional training overheads with accuracy compared to other approaches

such as the one described in [75]. We retrain the sampled architecture from scratch using

the same settings as the baseline.

64

0 10000 20000 30000 40000

3

4

5

6

7

8

9

10

Training Iteration

C
E

Lo
ss

0.8

1.0

1.2

1.4

1.6

B
al

an
ce

Lo
ss

CELoss − Relaxed Load Balancing
CELoss − Enforced Load Balancing
BalanceLoss − Relaxed Load Balancing
BalanceLoss − Enforced Load Balancing
Theoretical Fully Uniform BalanceLoss

(a) Comparison of CELoss and BalanceLoss.

S
pe

ed
up

 o
ve

r
R

el
ax

ed
 L

oa
d

B
al

an
ci

ng

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Batch
Size = 1

Batch
Size = 32

Batch
Size = 64

Batch
Size = 96

Batch
Size = 128

Batch
Size = 160

1.
00

 x 1.
16

 x

1.
00

 x 1.
10

 x

1.
00

 x

1.
02

 x

1.
00

 x

1.
01

 x

1.
00

 x

1.
03

 x

1.
00

 x

1.
01

 x

Relaxed Load Balancing Enforced Load Balancing

(b) Comparison of MoE Runtime across different batch sizes.

Figure 4.7: Impact of relaxing or enforcing the balance loss on training flow as well as MoE runtime.

4.3.4 Balancing Load Across Experts in MoE Layers

Since MoE blocks may be part of the final architecture, we incorporate an auxiliary loss

during Phase 2 to enforce a balanced load across the experts. We follow the same imple-

mentation of the auxiliary loss for load balancing (BalanceLoss) as Switch Transformer [29].

65

Consider an MoE layer with E experts:

Loss =CELoss +BalanceLoss

s.t. BalanceLoss = E×
E

∑
e=0

Fe×Ge (4.4)

Here, Fe represents the fraction of the tokens processed by expert e, and Ge measures the

average gate score received by expert e across the input tokens.

The BalanceLoss provides an approximation for the load balancing score across experts.

If the tokens are distributed uniformly across the experts by the gate function, we can

expect each expert to process 1
E of the input tokens, while receiving an average score of

1
E from the gate. This would result in BalanceLoss having an ideal value of 1 in a fully-

uniform distribution of tokens across the experts. If there is more than one MoE layer in

the architecture, the BalanceLoss is the average of the individual loss values across the MoE

layers.

Figure 4.7a compares the Phase 2 training progress of a Transformer-XL architecture

with multiple MoE layers under two scenarios: (1) when the BalanceLoss term is excluded

from the loss function (Relaxed Load Balancing), and (2) when the loss function includes

the BalanceLoss term (Enforced Load Balancing). From the figure, we notice that trends for

the CELoss term are similar in both scenarios, highlighting the fact that overall accuracy of

the network is unaffected by load balancing constraints. From our experiments, we also

notice that a balanced load improves the runtime of MoE layers by reducing tail latency -

we illustrate this in Figure 4.7b. Here, we notice a runtime speedup of up to 1.16× for MoE

layers when load balancing is enforced.

4.4 Evaluation

We evaluate PLANER on three real-world language modeling tasks and compare the

performance of the latency-optimized networks to other state-of-the-art efficient Transformer

66

models. We also provide a detailed analysis of the impact of using our dynamic loss

formulation.

4.4.1 Methodology

We use Transformer-XL (TXL) Base on the WikiText-103 (WT103), enwik8, and text8

datasets as our baseline networks. WT103 is a large word-level language modeling dataset

composed of more than 100M training tokens and a vocabulary size of 267735 words.

enwik8 and text8 are both character-level language modeling benchmarks with more than

90M training characters. While enwik8 treats the data as a sequences of bytes and has a

vocabulary size of 204 Unicode symbols, text8 is composed of English characters and spaces

(vocabulary size of 27 characters).

The backbone architecture for all datasets uses a model dimension of 512 and an

interleaved pattern of multi-head attention (MHA) with 8 heads and feed-forward layer

(FFLs) with an inner dimension of 2048. The total number of blocks (MHA/FFL) is 24 for

enwik8 and text8, whereas WT103 uses 32 blocks‡. The search space for phase 1 includes:

(1) Skip connection, (2) MHA with 1, 2, 4, or 8 heads, (3) FFL with inner dimension of 2048,

and (4) MoE FFL with inner dimension of 2048, 8 experts, where each token is processed

by either 1 or 2 experts (TopK = 1 or 2).

To evaluate the performance of PLANER, we compare the latency and accuracy of

the optimized models with the baseline TXL model and two prior papers: Sandwich

Transformer [91] and PAR Transformer [78].

We explore the design space for WT103 and enwik8 using PLANER’s 2-phase method-

ology (described in more detail in Section 4.3) with target latencies ranging from 50% to

95%. Due to its similarity to the enwik8 dataset, we only perform phase 2 retraining for

text8 using the same network architecture found by PLANER for enwik8 [22].

All training is performed on a node with 8 NVIDIA V100 GPUs. Inference evaluation

‡The number of MHA/FFL blocks is 2× of the number of Transformer blocks.

67

Model WT103 (PPL) enwik8 (BPC) text8 (BPC)
Dev Test Dev Test Dev Test

Transformer-XL Base 22.7 23.4 1.114 1.088 1.128 1.194
Sandwich Transformer-XL 22.6∗ - 1.107 1.083 1.122 1.188

PAR Transformer-XL 22.7∗ - 1.121 1.119 1.129 1.197
PLANER Transformer-XL 22.5 23.5 1.109 1.083 1.127 1.191

Table 4.1: Accuracy comparison of PLANER with prior work and baselines (scores marked with ∗ are
referenced). Lower is better for both PPL and BPC metrics.

and look-up table generation done on A100. We use the settings published by NVIDIA for

hyper-parameters [84]. The exact hyper-parameters used for each dataset are:

• WikiText-103 - Network Weights (Phase 1 and 2): JITLamb optimizer, learning

rate of 0.01, batch size of 256, target and memory length of 192, dropout rate of 0.1

for non-MoE layers and 0.2 for MoE layers, and 40000 iterations.

• WikiText-103 - Architecture Weights (Phase 1): Adam optimizer, learning rate of

0.01, initial temperature of 5 for the Gumbel Softmax, and temperature annealing rate

of 0.6.

• enwik8 - Network Weights (Phase 1 and 2): JITLamb optimizer, learning rate of

0.004, batch size of 64, target and memory length of 512, dropout rate of 0.1 for

non-MoE layers and 0.3 for MoE layers, and 120000 iterations.

• enwik8 - Architecture Weights (Phase 1): Adam optimizer, learning rate of 0.01,

initial temperature of 5 for the Gumbel Softmax, and temperature annealing rate of

0.7.

• text8 - Network Weights (Phase 1 and 2): Learning rate of 0.003, other settings

same as enwik8.

• text8 - Architecture Weights (Phase 1): Same as enwik8.

68

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Block 11 Block 12

Transformer XL

PLANER
Transformer XL

Attention Layer Feed-forward Layer
D = 2048

Mixture of Expert Layer
D = 2048, Exp = 8, K = 2Skip

N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8

N = 4

N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8
Sandwich

Transformer XL

N = 2 N = 2 N = 2 N = 2

N = 8 N = 8 N = 8 N = 8

Block 13 Block 14 Block 15 Block 16

N = 8 N = 8 N = 8 N = 8

N = 8
PAR

Transformer XL N = 8 N = 8 N = 8 N = 8 N = 8

Iso-parameter
Transformer XL

N = 2

N = 8N = 8N = 4 N = 4 N = 4 N = 4 N = 4 N = 4 N = 4 N = 4 N = 2N = 2N = 4N = 4

Scaled Feed-forward Layer
D = 16384

(a) WT103

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Block 11 Block 12

Transformer XL

PLANER
Transformer XL

Attention Layer Feed-forward Layer
D = 2048

Mixture of Expert Layer
D = 2048, Exp = 8, K = 2Skip

N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8

N = 2 N = 2 N = 4

N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8
Sandwich

Transformer XL

N = 2 N = 2 N = 2 N = 2 N = 2N = 4

N = 8
PAR

Transformer XL N = 8 N = 8 N = 8 N = 8

N = 8

(b) enwik8 and text8

Figure 4.8: Layer-wise breakdown of each evaluated architecture for WT103 (top) and enwik8 and
text8 (bottom).

4.4.2 Accuracy and Performance Trade-offs

Table 4.1 lists the accuracy numbers obtained by PLANER and compares them with

the baseline architectures across both validation and test sets (columns labeled ‘Dev’ and

‘Test’, respectively, in Table 4.1). Here, PPL and BPC denote model perplexity and bits-

per-character, respectively. For the WT103 dataset and Sandwich/PAR Transformer-XL, we

reference the reported PPL numbers in the literature for the Dev set (entries labeled with

asterisks). For enwik8 and text8, all the architectures are re-trained and evaluated across both

Dev and Test sets. We notice that all the TXL variants, including ones produced by PLANER,

69

W
ik

iT
ex

t−
10

3
S

pe
ed

up
 o

ve
r

T
X

L
B

as
e

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

Batch
Size = 1

Batch
Size = 32

Batch
Size = 64

Batch
Size = 96

Batch
Size = 128

Batch
Size = 160

1.
04

 x

1.
60

 x

0.
75

 x 1.
00

 x

1.
70

 x

1.
66

 x

1.
00

 x

1.
75

 x

1.
95

 x

1.
00

 x

1.
78

 x 2.
06

 x

1.
00

 x

1.
79

 x 2.
12

 x

1.
00

 x

1.
85

 x

2.
28

 x

TXL Base Sandwich TXL PAR TXL PLANER TXL

(a) WT103
en

w
ik

8
S

pe
ed

up
 o

ve
r

T
X

L
B

as
e

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Batch
Size = 1

Batch
Size = 32

Batch
Size = 64

Batch
Size = 96

Batch
Size = 128

Batch
Size = 160

1.
04

 x

1.
58

 x

0.
69

 x 1.
00

 x

1.
62

 x

1.
60

 x

1.
00

 x

1.
67

 x

1.
86

 x

1.
00

 x

1.
70

 x 1.
96

 x

1.
00

 x

1.
71

 x 2.
00

 x

1.
00

 x

1.
75

 x 2.
11

 x

TXL Base Sandwich TXL PAR TXL PLANER TXL

(b) enwik8

te
xt

8
S

pe
ed

up
 o

ve
r

T
X

L
B

as
e

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Batch
Size = 1

Batch
Size = 32

Batch
Size = 64

Batch
Size = 96

Batch
Size = 128

Batch
Size = 160

0.
99

 x

1.
48

 x

0.
68

 x 1.
00

 x

1.
62

 x

1.
60

 x

1.
00

 x

1.
67

 x

1.
86

 x

1.
00

 x

1.
70

 x 1.
95

 x

1.
00

 x

1.
71

 x 2.
00

 x

1.
00

 x

1.
75

 x 2.
10

 x

TXL Base Sandwich TXL PAR TXL PLANER TXL

(c) text8

Figure 4.9: Speedups obtained by PLANER w.r.t. various baselines across different batch sizes and
sequence length of 64, profiled on NVIDIA A100. For each task, the PLANER target latency was in
the range of 50% to 65%.

maintain baseline accuracy levels. Figure 4.8 provides a deeper dive into the various network

architectures we evaluate for the individual datasets. We notice that PLANER aggressively

prunes/skips attention layers, while intelligently introducing sparsely activated layers for

accuracy recovery.

Figure 4.9 shows the speedups obtained by PLANER and the various baselines (described

in Section 4.4.1) across all three datasets and varying batch sizes. For each task, the PLANER

target latency was in the range of 50% to 65%. From the Figure, we notice that PLANER

70

Batch Size

N
or

m
al

iz
ed

 R
un

tim
e

w
.r.

t.
F

F
L

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

0 32 64 96 128 1600 32 64 96 128 160

Feed−forward Layer − d_inner = 2048
Multi−head Attention − n_head = 8

MoE − d_inner = 2048, Exp = 8, Top_K = 2
Oracle Normalized MoE Runtime

Figure 4.10: Runtime comparison of FFL, MHA, and MoE layers across different batch sizes
normalized to FFL runtime.

provides speedups of over 2× at larger batch sizes. On smaller batch sizes, PAR Transformer

outperforms PLANER; this is primarily due to the non-optimized MoE layers used in our

current implementation. Specifically, our current implementation computes the outputs

of each expert sequentially, where a batch of sequences with N tokens are sequentially

processed in mini-batches of size TopK×N
Experts . This consequently leads to under-utilization of

the compute units.

Figure 4.10 provides a more detailed overview of the current deficiencies in the sequential

implementation of the MoE layers; here, we provide a runtime comparison of the FFL,

MHA, and MoE layers across different batch sizes normalized with respect to FFL runtime.

At lower batch sizes, MoE layers have an overhead of 7× over FFL, which is also higher

than the MHA layers. However, as batch size increases, GPU resource utilization goes

up, consequently decreasing the overhead of MoE layers to less than 3×. The oracle

implementation (dashed orange line in Figure) shows the theoretically optimal runtime of

the MoE layer. Since we use a Topk value of 2 (viz., each input token is processed by

2 experts), we notice a corresponding 2× runtime overhead over the baseline FFL. Note

that the oracle runtime does not take overheads related to gate function evaluation and the

gathering/scattering of tokens across experts into account - the real-world runtime is thus

71

22.0

22.5

23.0

23.5

24.0

Normalized Latency (%)

P
P

L
(T

es
t) PPL = 23.4

25 50 75 100 125 15025 50 75 100 125 150

TXL Base
Iso−parameter TXL
PLANER TXL

Figure 4.11: Comparison of the Pareto frontiers of the optimized architectures obtained by PLANER

for MoE and Iso-parameter scaled FFL setups. Profiled on NVIDIA A100 with batch size of 64 and
sequence length of 64.

likely to be higher. We are currently working on a more optimized parallel implementation

of MoE layers, which will help plug this performance gap across various batch sizes.

4.4.3 Comparison to Iso-parametric Setting

We also compare PLANER to an iso-parameter setup, which replaces the MoE with a

scaled FFL in the search space. The scaled FFL has an inner dimension of 16384, which

results in the same number of parameters as the MoE with 8 experts. The goal of the

iso-parameter experiment is to analyze the effectiveness of different model scaling solutions

in compensating for accuracy drops caused by aggressive attention pruning.

Figure 4.11 presents the comparison of the Pareto frontiers of the architectures obtained

by PLANER with different latency targets on the WT103 dataset. From the Figure, we clearly

notice that the use of MoE layers results in higher performance architectures across the

board at different accuracy levels. Further performance benchmarking reveals that scaled

FFL layers are at least 2× slower than our (relatively unoptimized) MoE layers and actually

approach the runtime of the much slower MHA layers with 8 heads. Naively scaling up the

size of FFLs is thus not an ideal option for either improving accuracy or performance.

72

40 60 80 100

40
60

80
10

0

Target Latency (%)

E
st

im
at

ed
 L

at
en

cy
 (

%
)

wt103
enwik8
Y=X

(a) Target vs estimated

40 60 80 100

40
60

80
10

0

Estimated Latency (%)

E
nd

−
to

−
en

d
La

te
nc

y
(%

)

wt103
enwik8
Y=X

(b) Estimated vs end-to-end

Figure 4.12: Correlation between target, estimated, and end-to-end latency.

4.4.4 Validating Estimated and End-to-end Runtime

In this section, we analyze the performance of the dynamic latency loss used in Phase 1.

Figure 4.12a shows the correlation between input target latency and the estimated latency of

the architectures sampled at the end of Phase 1, while Figure 4.12b shows the correlation

between estimated latency and profiled end-to-end latency. We make two important observa-

tions from the figures: (1) our dynamic latency loss formulation successfully steers the NAS

towards architectures that match the input target latency, and (2) the latency estimated in

Equation (2) is highly correlated with real-world latency, making it an appropriate option

for PLANER’s Phase 1 search.

4.4.5 Repeatability Evaluation

To evaluate and validate the reproducibility of our experiments, and observe any po-

tential variations in the final architectures, we also repeat the PLANER optimization of the

architectures evaluated in Section 4.4.2. For this experiment, we keep all hyper-parameters

fixed, but repeat PLANER’s search process four times. Figure 4.13 presents the achieved

73

1.0 1.2 1.4 1.6 1.8 2.0 2.2

22.5

23.0

23.5

24.0

24.5

25.0

Speedup over TXL Base

P
P

L
(T

es
t)

TXL Base
PLANER TXL

(a) WT103

1.0 1.2 1.4 1.6 1.8 2.0 2.2

1.07

1.08

1.09

1.10

1.11

Speedup over TXL Base

B
P

C
 (

Te
st

)

TXL Base
PLANER TXL

(b) enwik8

Figure 4.13: Speedup and accuracy results for the repeatability experiment.

accuracy and speedup numbers from our experiment. We notice that all the accuracy values

are within 0.5% of the baseline, with speedups consistently over 2×.

Figure 4.14 illustrates the variations in the final architectures explored at the end of

phase 1 for both the WT103 and enwik8 datasets. Although the architectures do not match

exactly, we notice a strong similarity in the total number of heads in the attention layers

(14± 0 heads for WT103 and 20± 2 heads for enwik8, across all four repeats). We also

notice that MoE layers tend to be concentrated towards the end of the networks across both

datasets.

4.5 Related Work

The introduction of the Transformer family of networks has overhauled the domain

of NLP. These attention-based architectures have been shown to outperform their LSTM-

based counterparts both in terms of effectively capturing time dependencies [118] as well

as inference latency [103]. The general architecture of these models consists of multiple

Transformer blocks, where each Transformer block consists of multi-head attention(s) and

74

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Block 11 Block 12

Transformer XL

PLANER
TXL - 1

Attention Layer Feed-forward Layer
D = 2048

Mixture of Expert Layer
D = 2048, Exp = 8, K = 2

Skip

N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8

N = 4N = 2 N = 2 N = 2 N = 2

N = 8 N = 8 N = 8 N = 8

Block 13 Block 14 Block 15 Block 16

N = 2

PLANER
TXL - 2

N = 4N = 2 N = 2 N = 2

PLANER
TXL - 3

N = 2 N = 2 N = 2

PLANER
TXL - 4

N = 4N = 2N = 2 N = 2 N = 2

N = 4

N = 2 N = 2 N = 4

N = 2

(a) WT103

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Block 11 Block 12

Transformer XL

PLANER
TXL - 1

Attention Layer
Feed-forward Layer

D = 2048
Mixture of Expert Layer
D = 2048, Exp = 8, K = 2Skip

N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8 N = 8

PLANER
TXL - 2

PLANER
TXL - 3

PLANER
TXL - 4

N = 2 N = 2 N = 4N = 2 N = 2 N = 2 N = 2 N = 2N = 4

N = 2 N = 2 N = 4N = 2 N = 2 N = 2N = 4

N = 2 N = 2 N = 4N = 2 N = 2N = 4

N = 2 N = 4N = 2 N = 2 N = 2N = 4

N = 2

N = 2

(b) enwik8

Figure 4.14: Explored architectures through repeatability experiment on WT103 and enwik8 dataset.

feed-forward layers.

Recent work has introduced Mixture-of-Expert (MoE) layers within networks to de-

compose tasks into sub-tasks, where experts could be trained on individual sub-tasks [79].

One motivation behind this idea is to dynamically partition the input space, with experts

getting specialized on individual partitions. Recent work has also studied the application

of MoE layers to efficiently increase the model capacity of Transformer-based architec-

tures [102, 67, 29, 33]. These sparsely-activated architectures have been shown to achieve

accuracy gains without the proportional increase in computation compared to traditional

scaling of network parameters [93]. While MoE layers have been applied for accuracy

75

improvement and training speed-ups, their use in designing latency-aware architectures have

not been explored as thoroughly.

A separate body of work has also focused on optimizing the performance of Transformer

models. In particular, [91] show that it is possible to achieve better accuracy by redistributing

multi-head attention and FFL layers across the network while maintaining the original

runtime. PAR [78] deploys NAS to explore the number and distribution of attention layers

(while keeping the same head count) for improved latency. [121] prune attention heads

and reduce the width of FFLs (while keeping the same backbone as the baseline) using an

evolutionary NAS algorithm to design hardware-aware Transformers. While these works

have explored the distribution or configuration of individual (non-MoE) layers in isolation,

none of them consider both aspects simultaneously as part of a larger NAS search space.

Additionally, as we demonstrate in this paper, the inclusion of MoE layers in the design

space can help reduce inference latency further by removing/pruning attention layers more

aggressively while maintaining baseline accuracy.

Finally, [42] explore the possibility of employing sparsely activated layers for designing

more computationally efficient Transformer architectures. While this work shares some

of the the same goals as PLANER, it primarily targets floating point operation (FLOP)

reduction, which has been demonstrated to have little to no correlation with actual measured

runtime, especially on parallel hardware [132]. Additionally, [42] limit the NAS space by

constraining the location of attention and MoE layers to those in the baseline Transformer

architecture. While this could potentially help reduce search complexity, it also significantly

limits performance gains and speedups [91].

4.6 Conclusion

This paper has presented PLANER, an automated system for optimizing the inference

latency of Transformer-based networks. PLANER employs a two-phase NAS methodology

to systematically introduce sparsely activated layers into the given network, and uses a

76

dynamic loss formulation to achieve user-provided latency targets while preserving accuracy.

On three real-world NLP models, PLANER achieves inference latency reductions of over 2×

at iso-accuracy.

77

CHAPTER V

Conclusion

5.1 Summary

The overarching goal of my research is to optimize deep learning applications both in

the efficiency of executing them on various hardware platforms, and also trustworthiness

of the outputs predicted by them. My work was aiming diverse domains in deep learning

such as computer vision and natural language processing, including applications including

autonomous vehicles such as self-driving cars, machine learning in healthcare such as

precision medicine, and many other mainstream deep learning applications both in servers

and also mobile platforms such as language modeling, machine translation, image processing,

and etc.

In Chapters II and III, my focus was to improve the reliability aspects of deploying deep

learning modules in the mission critical applications. The goal was to provide systematic

solutions to efficiently identify the unreliable behaviors in the deep learning inference due to

the inherent inaccuracy problems of these probabilistic models. In both of theses chapters,

my optimizations were targeting both the reliability and efficiency of the deep learning

systems. In Chapter IV, the goal was to optimize the compute efficiency of the Transformer

architectures in the means of reducing the inference latency of these architectures. The

reliability aspect of this project was on the lines of maintaining the baseline accuracy levels,

in order to preserve the original quality of the Transformer architecture.

78

During the Chapter II, the goal was to develop a practical method to design and realize

systems of CNNs that can increase robustness and reliability of classification results with

imprecise and currently available CNNs as the building blocks. During the initial reliability

assessment, I observed that regardless of the baseline accuracy of the CNN, nearly 10% of

the predictions made by are wrong with a high confidence, which is a significant number.

Next, inspired by the modular redundancy techniques in hardware reliability domain, I

proposed the PolygraphMR system. PolygraphMR uses input preprocessing techniques to

develop different variations of a CNN and combines them as a modular redundant system

of heterogeneous CNNs. PolygraphMR enhances reliability by leveraging variations in

behavior of each CNN that is trained in different circumstances. It takes advantage of

behavior diversity to detect symptoms of unreliability from the predictions of individual

CNN variants. Different performance optimizations were also applied to reduce the overhead

of the system by: First, by reducing the energy consumption of the individual CNNs in the

system by compressing the network weights using precision reduction. Second, by activating

only a portion of the CNNs by default and activating other CNNs in case the reliability status

could not be determined by the initially activated CNNs. Across six benchmarks evaluated,

PolygraphMR detects an average of 33.5% of the baseline mispredictions with less than 2x

overhead.

In Chapter III, I extended my learnings from image classification to the object detection

domain. I studied intra-sensor fusion as complementary approach to traditional sensor fusion

to increase both the precision as well as recall of the object detectors. With intra-sensor

fusion, a diversity of inputs is synthesized at runtime, e.g., image/video filtering, to feed

the original object detector. Intelligent combination of output data from individual inputs

can lead to improvement in the precision of detections in the original objects as well as

detection of the new objects that were missed by the original detector. My goal in this

project was to achieve higher detection accuracy and reliability, with the least amount of

overhead introduced in latency and cost. With careful design of synthesized inputs, it is

79

possible to run inference in a batched fashion and stay away from the multiplicative cost of

multiple inferences as in traditional modular redundancy. Furthermore, with intelligently

processing the data from individual inputs, we can achieve more precise bounding box

proposals with fewer objects left undetected. The evaluatation results show an improvement

of 3.45% in the average precision of the predictions, with less than 23% latency overheads

over the baseline.

Finally in Chapter IV, I targeted the efficiency of the Transformer architectures that

are getting widely deployed both in natural language processing and computer vision

domains. I discovered that main bottleneck in the inference of these models correspond to

the multi-head attention layers. So a systematic optimization methodology is proposed to

automatically alter the baseline Transformer architecture to satisfy user’s latency targets.

PLANER dynamically decides on the distribution of attention layers and their number of

heads in order to comply with the latency requirements, and it employs mixture-of-expert

layers when necessary throughout the network architecture to compensate for potential

accuracy loss caused by attention pruning. PLANER achieves more than 2× reduction in the

inference latency of three language modeling tasks, while preserving the original accuracy

levels.

5.2 Future Directions

Based on the solutions proposed in this dissertation, there are different new directions

that could be explored as future directions.

PolygraphMR and SoftFusion adapt the idea of modular redundancy in computer vision

domain for improved reliability. The proposed systems target image inputs in image

classification and object detection tasks. However, there are two main directions that we

could explore as future directions. First, we could extend the modular redundancy idea

to other tasks in computer vision that are also being deployed in mission-critical tasks.

An example for this is the Image Segmentation that has applications in the self-driving

80

cars. Compared to image-classification, in segmentation we need to do the classification

task for each individual pixel of the input image. This could provide new challenges and

opportunities for us. For instance in the decision engine, we should consider the additional

computational costs due to the scope of the problem. On the other hand, continuity of the

objects in the neighboring pixels of an image, could provide us new opportunities to be

explored in the decision policy for improved reliability.

Another direction that we could follow in the scope of reliability, is to adapt the idea of

intra-sensor fusion proposed in SoftFusion to other input domains, i.e., LIDAR and Radar

data. Considering the availability of LIDAR and Radar sensors in the self-driving cars, we

could ask the question of what preprocessing techniques we could apply to these non-image

input domains in the augmentation step.

Finally, the optimization methodology proposed in PLANER could be employed for

any deep learning task using the Transformer architectures. This includes other tasks such

as machine translation in the natural language processing domain, as well as the recently

emerging applications in the computer-vision domain that are also based on these attention-

based architectures [114, 52]. A future direction for PLANER, is to extend it to other domains

in deep learning and assess the potential achievable speedup rates. On the other hand, the

optimizations in the PLANER is hardware-aware, and I have only targeted GPU platforms.

Therefore, analyzing the explored architectures by PLANER for other hardware platforms

such as mobile accelerators, is another potential direction.

81

BIBLIOGRAPHY

82

BIBLIOGRAPHY

[1] Nvidia tesla v100.

[2] Papers with code - coco test-dev benchmark (object detection).

[3] Papers with code - imagenet benchmark (image classification).

[4] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald Penn,
and Dong Yu. Convolutional neural networks for speech recognition. IEEE/ACM
Transactions on audio, speech, and language processing, 22(10):1533–1545, 2014.

[5] AlexeyAB. Alexeyab/darknet.

[6] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.
Analyzing cuda workloads using a detailed gpu simulator. In 2009 IEEE International
Symposium on Performance Analysis of Systems and Software, pages 163–174. IEEE,
2009.

[7] Wendy Bartlett and Lisa Spainhower. Commercial fault tolerance: A tale of two
systems. IEEE Transactions on dependable and secure computing, 1(1):87–96, 2004.

[8] David Bernick, Bill Bruckert, Paul Del Vigna, David Garcia, Robert Jardine, Jim
Klecka, and Jim Smullen. Nonstop/spl reg/advanced architecture. In Dependable
Systems and Networks, 2005. DSN 2005. Proceedings. International Conference on,
pages 12–21. IEEE, 2005.

[9] Simone Bettola and Vincenzo Piuri. High performance fault-tolerant digital neural
networks. IEEE transactions on computers, 47(3):357–363, 1998.

[10] Christophe Blanc, Laurent Trassoudaine, and Jean Gallice. Ekf and particle filter
track-to-track fusion: A quantitative comparison from radar/lidar obstacle tracks. In
2005 7th International Conference on Information Fusion, volume 2, pages 7–pp.
IEEE, 2005.

[11] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal
speed and accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.

[12] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Ji-
akai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

83

[13] Luca Bombini, Pietro Cerri, Paolo Medici, and Giancarlo Alessandretti. Radar-vision
fusion for vehicle detection. In Proceedings of International Workshop on Intelligent
Transportation, pages 65–70, 2006.

[14] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[15] Ángela Casado-Garcı́a and Jónathan Heras. Ensemble methods for object detection.
In ECAI 2020, pages 2688–2695. IOS Press, 2020.

[16] Josip Ćesić, Ivan Marković, Igor Cvišić, and Ivan Petrović. Radar and stereo vi-
sion fusion for multitarget tracking on the special euclidean group. Robotics and
Autonomous Systems, 83:338–348, 2016.

[17] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An
automated {End-to-End} optimizing compiler for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18), pages
578–594, 2018.

[18] Hyunggi Cho, Young-Woo Seo, BVK Vijaya Kumar, and Ragunathan Raj Rajkumar.
A multi-sensor fusion system for moving object detection and tracking in urban
driving environments. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pages 1836–1843. IEEE, 2014.

[19] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv preprint
arXiv:2204.02311, 2022.

[20] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian
Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Hasel-
man, et al. Serving dnns in real time at datacenter scale with project brainwave. iEEE
Micro, 38(2):8–20, 2018.

[21] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep neural
networks for image classification. In Computer vision and pattern recognition
(CVPR), 2012 IEEE conference on, pages 3642–3649. IEEE, 2012.

[22] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. Transformer-XL: Attentive Language Models beyond a Fixed-length
Context. arXiv preprint arXiv:1901.02860, 2019.

[23] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

84

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[25] Terrance DeVries and Graham W Taylor. Learning confidence for out-of-distribution
detection in neural networks. arXiv preprint arXiv:1802.04865, 2018.

[26] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[27] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-
serman. The pascal visual object classes challenge: A retrospective. International
Journal of Computer Vision, 111(1):98–136, January 2015.

[28] Francesca M Favarò, Nazanin Nader, Sky O Eurich, Michelle Tripp, and Naresh
Varadaraju. Examining accident reports involving autonomous vehicles in california.
PLoS one, 12(9):e0184952, 2017.

[29] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling
to trillion parameter models with simple and efficient sparsity. arXiv preprint
arXiv:2101.03961, 2021.

[30] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning. In international conference on machine
learning, pages 1050–1059, 2016.

[31] Ji Gao, Beilun Wang, Zeming Lin, Weilin Xu, and Yanjun Qi. Deepcloak: Masking
deep neural network models for robustness against adversarial samples. 2017.

[32] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of
modern neural networks. In International Conference on Machine Learning, pages
1321–1330, 2017.

[33] Jiaao He, Jiezhong Qiu, Aohan Zeng, Zhilin Yang, Jidong Zhai, and Jie Tang. Fast-
MoE: A Fast Mixture-of-Expert Training System. arXiv preprint arXiv:2103.13262,
2021.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[35] Meijun He, Shuye Zhang, Huiyun Mao, and Lianwen Jin. Recognition confidence
analysis of handwritten chinese character with cnn. In Document Analysis and
Recognition (ICDAR), 2015 13th International Conference on, pages 61–65. IEEE,
2015.

85

[36] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

[37] Dan Hendrycks, Mantas Mazeika, and Thomas G Dietterich. Deep anomaly detection
with outlier exposure. arXiv preprint arXiv:1812.04606, 2018.

[38] Parker Hill, Animesh Jain, Mason Hill, Babak Zamirai, Chang-Hong Hsu, Michael A
Laurenzano, Scott Mahlke, Lingjia Tang, and Jason Mars. Deftnn: Addressing
bottlenecks for dnn execution on gpus via synapse vector elimination and near-
compute data fission. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 786–799. ACM, 2017.

[39] Hossein Hosseini, Yize Chen, Sreeram Kannan, Baosen Zhang, and Radha Pooven-
dran. Blocking transferability of adversarial examples in black-box learning systems.
arXiv preprint arXiv:1703.04318, 2017.

[40] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. arXiv preprint
arXiv:1709.01507, 2017.

[41] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 4700–4708, 2017.

[42] Ganesh Jawahar, Subhabrata Mukherjee, Xiaodong Liu, Young Jin Kim, Muhammad
Abdul-Mageed, Laks VS Lakshmanan, Ahmed Hassan Awadallah, Sebastien Bubeck,
and Jianfeng Gao. Automoe: Neural architecture search for efficient sparsely activated
transformers. arXiv preprint arXiv:2210.07535, 2022.

[43] Saurabh Jha, Timothy Tsai, Siva Hari, Michael Sullivan, Zbigniew Kalbarczyk,
Stephen W Keckler, and Ravishankar K Iyer. Kayotee: A fault injection-based system
to assess the safety and reliability of autonomous vehicles to faults and errors.

[44] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[45] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
datacenter performance analysis of a tensor processing unit. In Proceedings of the
44th annual international symposium on computer architecture, pages 1–12, 2017.

[46] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt, Natalie Enright
Jerger, and Andreas Moshovos. Proteus: Exploiting numerical precision variability
in deep neural networks. In Proceedings of the 2016 International Conference on
Supercomputing, page 23. ACM, 2016.

[47] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar,
and Li Fei-Fei. Large-scale video classification with convolutional neural networks.

86

In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pages 1725–1732, 2014.

[48] Takeo Kato, Yoshiki Ninomiya, and Ichiro Masaki. An obstacle detection method by
fusion of radar and motion stereo. IEEE transactions on intelligent transportation
systems, 3(3):182–188, 2002.

[49] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning
for computer vision? In Advances in neural information processing systems, pages
5574–5584, 2017.

[50] Mahmoud Khairy, Jain Akshay, Tor Aamodt, and Timothy G Rogers. Exploring
modern gpu memory system design challenges through accurate modeling. arXiv
preprint arXiv:1810.07269, 2018.

[51] Salman Khan, Munawar Hayat, Syed Waqas Zamir, Jianbing Shen, and Ling Shao.
Striking the right balance with uncertainty. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 103–112, 2019.

[52] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shah-
baz Khan, and Mubarak Shah. Transformers in vision: A survey. ACM computing
surveys (CSUR), 54(10s):1–41, 2022.

[53] Bo-Kyeong Kim, Hwaran Lee, Jihyeon Roh, and Soo-Young Lee. Hierarchical
committee of deep cnns with exponentially-weighted decision fusion for static facial
expression recognition. In Proceedings of the 2015 ACM on International Conference
on Multimodal Interaction, pages 427–434. ACM, 2015.

[54] Alex Krizhevsky. cuda-convnet: High-performance c++/cuda implementation of
convolutional neural networks, 2012.

[55] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny
images. 2009.

[56] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[57] Felix Kunz, Dominik Nuss, Jürgen Wiest, Hendrik Deusch, Stephan Reuter, Franz
Gritschneder, Alexander Scheel, Manuel Stübler, Martin Bach, Patrick Hatzelmann,
Cornelius Wild, and Klaus Dietmayer. Autonomous driving at ulm university: A
modular, robust, and sensor-independent fusion approach. In 2015 IEEE intelligent
vehicles symposium (IV), pages 666–673. IEEE, 2015.

[58] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and
scalable predictive uncertainty estimation using deep ensembles. In Advances in
Neural Information Processing Systems, pages 6405–6416, 2017.

87

[59] Salar Latifi, Saurav Muralidharan, and Michael Garland. Efficient sparsely activated
transformers. https://dynn-icml2022.github.io/spapers/paper_
10.pdf.

[60] Salar Latifi, Saurav Muralidharan, and Michael Garland. Efficient sparsely activated
transformers. arXiv preprint arXiv:2208.14580, 2022.

[61] Salar Latifi, Babak Zamirai, and Scott Mahlke. Polygraphmr: Enhancing the reli-
ability and dependability of cnns. In 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 99–112. IEEE, 2020.

[62] Salar Latifi, Babak Zamirai, and Scott Mahlke. Softfusion: A low-cost approach to
enhance reliability of object detection applications. In 2022 IEEE 40th International
Conference on Computer Design (ICCD), pages 344–351. IEEE, 2022.

[63] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[64] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of
handwritten digits, 1998.

[65] Kevin Lee, Vijay Rao, and William Christie Arnold. Accelerating facebook’s infras-
tructure with application-specific hardware. Facebook. Retrieved August, 20:2020,
2019.

[66] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim,
Tor M Aamodt, and Vijay Janapa Reddi. Gpuwattch: enabling energy optimizations
in gpgpus. ACM SIGARCH Computer Architecture News, 41(3):487–498, 2013.

[67] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yan-
ping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. GShard: Scaling
giant models with conditional computation and automatic sharding. arXiv preprint
arXiv:2006.16668, 2020.

[68] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik
Pattabiraman, Joel Emer, and Stephen W Keckler. Understanding error propagation in
deep learning neural network (dnn) accelerators and applications. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis, page 8. ACM, 2017.

[69] Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun. Deep continuous fusion
for multi-sensor 3d object detection. In Proceedings of the European conference on
computer vision (ECCV), pages 641–656, 2018.

[70] Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-
of-distribution image detection in neural networks. arXiv preprint arXiv:1706.02690,
2017.

88

https://dynn-icml2022.github.io/spapers/paper_10.pdf
https://dynn-icml2022.github.io/spapers/paper_10.pdf

[71] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E Haque, Lingjia
Tang, and Jason Mars. The architectural implications of autonomous driving: Con-
straints and acceleration. In Proceedings of the Twenty-Third International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
pages 751–766. ACM, 2018.

[72] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. Feature pyramid networks for object detection. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 2117–2125,
2017.

[73] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in
context. In European conference on computer vision, pages 740–755. Springer, 2014.

[74] Zachary C Lipton, David C Kale, Charles Elkan, and Randall Wetzell. Learning
to diagnose with lstm recurrent neural networks. arXiv preprint arXiv:1511.03677,
2015.

[75] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li,
Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural
architecture search. In Proceedings of the European conference on computer vision
(ECCV), pages 19–34, 2018.

[76] Songtao Liu, Di Huang, and Yunhong Wang. Learning spatial fusion for single-shot
object detection. arXiv preprint arXiv:1911.09516, 2019.

[77] Robert E Lyons and Wouter Vanderkulk. The use of triple-modular redundancy to
improve computer reliability. IBM Journal of Research and Development, 6(2):200–
209, 1962.

[78] Swetha Mandava, Szymon Migacz, and Alex Fit Florea. Pay attention when required.
arXiv preprint arXiv:2009.04534, 2020.

[79] Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a literature survey.
Artificial Intelligence Review, 42(2):275–293, 2014.

[80] Seyed Mohsen Moosavi Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool:
a simple and accurate method to fool deep neural networks. In Proceedings of 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), number
EPFL-CONF-218057, 2016.

[81] Michael Munz, Mirko Mahlisch, and Klaus Dietmayer. Generic centralized multi
sensor data fusion based on probabilistic sensor and environment models for driver
assistance systems. IEEE Intelligent Transportation Systems Magazine, 2(1):6–17,
2010.

[82] Mahdi Pakdaman Naeini, Gregory F Cooper, and Milos Hauskrecht. Obtaining well
calibrated probabilities using bayesian binning. In AAAI, pages 2901–2907, 2015.

89

[83] Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with
supervised learning. In Proceedings of the 22nd international conference on Machine
learning, pages 625–632. ACM, 2005.

[84] NVIDIA. Transformer-XL for PyTorch: NVIDIA NGC.

[85] NVIDIA. Nvidia drive agx self driving compute platform, 2011.
https://www.nvidia.com/en-us/self-driving-cars/drive-platform/hardware/.

[86] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. The limitations of deep learning in adversarial settings.
In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on, pages
372–387. IEEE, 2016.

[87] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
Distillation as a defense to adversarial perturbations against deep neural networks. In
Security and Privacy (SP), 2016 IEEE Symposium on, pages 582–597. IEEE, 2016.

[88] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated
whitebox testing of deep learning systems. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 1–18. ACM, 2017.

[89] Vincenzo Piuri. Analysis of fault tolerance in artificial neural networks. Journal of
Parallel and Distributed Computing, 61(1):18–48, 2001.

[90] John Platt et al. Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. Advances in large margin classifiers, 10(3):61–74,
1999.

[91] Ofir Press, Noah A Smith, and Omer Levy. Improving Transformer Models by
Reordering their Sublayers. arXiv preprint arXiv:1911.03864, 2019.

[92] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,
2019.

[93] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

[94] Sivaramakrishnan Rajaraman, Sameer K Antani, Mahdieh Poostchi, Kamolrat Sil-
amut, Md A Hossain, Richard J Maude, Stefan Jaeger, and George R Thoma. Pre-
trained convolutional neural networks as feature extractors toward improved malaria
parasite detection in thin blood smear images. PeerJ, 6:e4568, 2018.

[95] Shaan Ray. What is sensor fusion?, Sep 2020.

[96] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: towards
real-time object detection with region proposal networks. IEEE transactions on
pattern analysis and machine intelligence, 39(6):1137–1149, 2017.

90

[97] G Rigatos and S Tzafestas. Extended kalman filtering for fuzzy modelling and
multi-sensor fusion. Mathematical and computer modelling of dynamical systems,
13(3):251–266, 2007.

[98] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International Journal of Computer Vision,
115(3):211–252, 2015.

[99] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. Explainable artificial
intelligence: Understanding, visualizing and interpreting deep learning models. arXiv
preprint arXiv:1708.08296, 2017.

[100] JZ Sasiadek and P Hartana. Sensor data fusion using kalman filter. In Proceedings of
the Third International Conference on Information Fusion, volume 2, pages WED5–
19. IEEE, 2000.

[101] Brandon Schoettle. Sensor fusion: A comparison of sensing capabilities of hu-
man drivers and highly automated vehicles. University of Michigan, Sustainable
Worldwide Transportation, Tech. Rep. SWT-2017-12, 2017.

[102] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geof-
frey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer. arXiv preprint arXiv:1701.06538, 2017.

[103] Yangyang Shi, Yongqiang Wang, Chunyang Wu, Ching-Feng Yeh, Julian Chan, Frank
Zhang, Duc Le, and Mike Seltzer. Emformer: Efficient memory transformer based
acoustic model for low latency streaming speech recognition. In ICASSP 2021-
2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6783–6787. IEEE, 2021.

[104] Patrick Y Shinzato, Denis F Wolf, and Christoph Stiller. Road terrain detection:
Avoiding common obstacle detection assumptions using sensor fusion. In 2014 IEEE
Intelligent Vehicles Symposium Proceedings, pages 687–692. IEEE, 2014.

[105] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language
models using model parallelism. arXiv preprint arXiv:1909.08053, 2019.

[106] Daniel Siewiorek and Robert Swarz. Reliable Computer Systems: Design and
Evaluatuion. Digital Press, 2017.

[107] Daniel P Siewiorek and Robert S Swarz. The theory and practice of reliable system
design. Digital press, 1982.

[108] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

91

[109] Jared C Smolens, Brian T Gold, Jangwoo Kim, Babak Falsafi, James C Hoe, and
Andreas G Nowatzyk. Fingerprinting: bounding soft-error detection latency and
bandwidth. In ACM SIGPLAN Notices, volume 39, pages 224–234. ACM, 2004.

[110] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, et al. Going
deeper with convolutions. Cvpr, 2015.

[111] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 2818–2826,
2016.

[112] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[113] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the 40th
International Conference on Software Engineering, pages 303–314. ACM, 2018.

[114] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablay-
rolles, and Hervé Jégou. Training data-efficient image transformers & distillation
through attention. In International Conference on Machine Learning, pages 10347–
10357. PMLR, 2021.

[115] Ryan Turner. A model explanation system. In Machine Learning for Signal Pro-
cessing (MLSP), 2016 IEEE 26th International Workshop on, pages 1–6. IEEE,
2016.

[116] Ultralytics. ultralytics/yolov5.

[117] Han Vanholder. Efficient inference with tensorrt, 2016.

[118] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[119] Sourabh Vora, Alex H Lang, Bassam Helou, and Oscar Beijbom. Pointpainting:
Sequential fusion for 3d object detection. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 4604–4612, 2020.

[120] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Scaled-yolov4:
Scaling cross stage partial network. arXiv preprint arXiv:2011.08036, 2020.

[121] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan,
and Song Han. Hat: Hardware-aware transformers for efficient natural language
processing. arXiv preprint arXiv:2005.14187, 2020.

92

[122] Tao Wang, David J Wu, Adam Coates, and Andrew Y Ng. End-to-end text recognition
with convolutional neural networks. In Pattern Recognition (ICPR), 2012 21st
International Conference on, pages 3304–3308. IEEE, 2012.

[123] Xiao Wang, Linhai Xu, Hongbin Sun, Jingmin Xin, and Nanning Zheng. On-road
vehicle detection and tracking using mmw radar and monovision fusion. IEEE
Transactions on Intelligent Transportation Systems, 17(7):2075–2084, 2016.

[124] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Trans-
formers: State-of-the-art natural language processing. In Proceedings of the 2020
conference on empirical methods in natural language processing: system demonstra-
tions, pages 38–45, 2020.

[125] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu,
Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. FBNet: Hardware-aware
efficient convnet design via differentiable neural architecture search. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
10734–10742, 2019.

[126] Weibin Wu, Hui Xu, Sanqiang Zhong, Michael R Lyu, and Irwin King. Deep
validation: Toward detecting real-world corner cases for deep neural networks. In
2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 125–137. IEEE, 2019.

[127] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick.
Detectron2. https://github.com/facebookresearch/detectron2,
2019.

[128] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated
residual transformations for deep neural networks. arXiv preprint arXiv:1611.05431,
2016.

[129] Jian-ru Xue, Di Wang, Shao-yi Du, Di-xiao Cui, Yong Huang, and Nan-ning Zheng. A
vision-centered multi-sensor fusing approach to self-localization and obstacle percep-
tion for robotic cars. Frontiers of Information Technology & Electronic Engineering,
18(1):122–138, 2017.

[130] Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from
decision trees and naive bayesian classifiers. In ICML, volume 1, pages 609–616.
Citeseer, 2001.

[131] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818–833. Springer,
2014.

93

https://github.com/facebookresearch/detectron2

[132] Li Lyna Zhang, Yuqing Yang, Yuhang Jiang, Wenwu Zhu, and Yunxin Liu. Fast
hardware-aware neural architecture search. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Workshops, pages 692–693,
2020.

[133] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks
for text classification. In Advances in neural information processing systems, pages
649–657, 2015.

[134] Qijie Zhao, Tao Sheng, Yongtao Wang, Zhi Tang, Ying Chen, Ling Cai, and Haibin
Ling. M2det: A single-shot object detector based on multi-level feature pyramid
network. In Proceedings of the AAAI conference on artificial intelligence, volume 33,
pages 9259–9266, 2019.

[135] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578, 2016.

94

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Enhancing the Reliability of Image Classifiers
	Enhancing the Reliability of Object Detectors
	Enhancing the Inference Efficiency of Transformer Architectures
	Road Map

	PolygraphMR
	Introduction
	Motivation
	High-Confidence Wrong Answers
	Limitations of the Confidence Metric
	Misclassification Analysis

	PolygraphMR
	Overall Design
	Layer 1: Pool of Preprocessors
	Layer 2: Heterogeneous Modular Redundancy
	Resource-aware MR (RAMR)
	Layer 3: Decision Engine
	Resource-aware Decision Engine (RADE)
	PolygraphMR System Design

	Evaluation
	Methodology
	Reliability Results
	Energy/Latency Optimizations
	Preprocessing and Decision Engine
	Comparison with Network Calibration

	Related Work
	Conclusion

	SoftFusion
	Introduction
	Motivation
	Design Trends of Object Detectors
	Reliability Analysis of Available Object Detectors

	Proposed Work
	Overall Design
	Step 1: Hierarchical Augmentation
	Step 2: Batched Inference
	Step 3: Proposal Post-processing
	Step 4: Proposal Engine
	SoftFusion System Design

	Evaluation
	Methodology
	Accuracy Results
	Performance Analysis
	Reliability Analysis of Object Detections

	Related Works
	Conclusion

	PLANER
	Introduction
	Background and Motivation
	Searching for Efficient Transformers
	Phase 1: Search Space Exploration
	User-defined Latency Optimization
	Phase 2: Architecture Sampling and Retraining
	Balancing Load Across Experts in MoE Layers

	Evaluation
	Methodology
	Accuracy and Performance Trade-offs
	Comparison to Iso-parametric Setting
	Validating Estimated and End-to-end Runtime
	Repeatability Evaluation

	Related Work
	Conclusion

	Conclusion
	Summary
	Future Directions

	BIBLIOGRAPHY

