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ABSTRACT

Integrally bladed disks, or blisks, are critical components within compressors of modern tur-

bomachinery, and during operation can exhibit complex dynamic behaviors. Understanding and

accurately modeling these dynamics is crucial for blisk design and safe operation. To model blisk

dynamics, large �nite-element models containing millions of degrees of freedom are often used.

However, simulating blisk dynamics using these models can be computationally expensive and

frequently infeasible. As such, physics-based reduced-order models are currently the preferred

method for modeling blisk behavior and performing stress analyses. These models typically are

used to run probabilistic analyses such as Monte Carlo simulations for capturing the effects of

variabilities in blisk dynamics produced from unavoidable deviations in material properties and

geometry, called mistuning. Mistuning is known to cause energy localization within the blisk,

resulting in ampli�ed response amplitudes and greater stresses than those present in a nominally

cyclic-symmetric blisk. Because the uncertainties introduced by mistuning cannot be removed,

it is of great interest to both understand the effects of mistuning and identify it in order to accu-

rately predict forced responses during operation when designing a blisk. Additionally, to mitigate

large response amplitudes, nonlinear damping mechanisms such as ring dampers or shrouds can

be employed, which dissipate energy through friction contacts. For both linear and nonlinear sys-

tems, physics-based reduced-order models, however, often cannot incorporate experimental data

to improve their accuracy and applicability to as-manufactured models and/or rely on experimen-

tal modal identi�cation that can be challenging within the often unavoidable high-modal density

regimes of blisk structures.

To address these challenges, this work presents novel data-driven methods for 1) forced-response

prediction of mistuned blisks with and without introducing friction nonlinearities, and 2) identify-

ing the mistuning of as-manufactured blisks. All presented methodologies focus on sector-level,

xiii



frequency-domain formulations to reduce necessary training data and avoid dif�culties associated

with time-domain data generation and experimental collection. First, a data-driven method for

forced-response prediction is presented and demonstrated for a lumped mass model mimicking a

mistuned blisk. This method is based on two arti�cial neural networks and a cyclic coupling pro-

cedure, and is applicable to linear mistuned cyclic structures in general. Next, a novel data-driven

approach for mistuning identi�cation is developed. Unlike previous methods, this approach does

not require any modal analyses nor isolation of individual blades, and it removes all effects of forc-

ing amplitude via a developed robust data processing, selection, and conditioning procedure. This

approach is validated for a high-dimensional �nite-element blisk model considering signi�cant

measurement noise similar to that observed experimentally. A �rst-of-its-kind physics-informed

machine learning modeling approach for forced response prediction is developed that incorporates

physical laws directly into a network architecture, still maintains a sector-level viewpoint, and only

considers response data from easily experimentally measurable points along blade tips. With this

approach, a series of numerical techniques are developed to signi�cantly improve robustness and

generalizability. Lastly, to predict forced responses of blisk systems containing contact nonlineari-

ties, the original linear approach is extended using a harmonic-balance formulation. This includes

the development of an ef�cient data selection and training scheme to further reduce the amount of

necessary training data. Validation is shown for a nonlinear lumped mass model representative of

a mistuned blisk with a friction ring damper and signi�cant mistuning and nonlinear effects.
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CHAPTER 1

Introduction

1.1 Motivation

Modern aircraft and spacecraft propulsion and power systems require an enhanced understand-

ing of their complex underlying physics. The ability to understand, model, and design these sys-

tems is key for increasing their ef�ciency and reliability [1,2]. From the demand for lighter aircraft

and increased engine ef�ciency, integrally bladed disks, also known as blisks, manufactured as a

single component have seen increased use in the compressor stages of modern turbomachinery.

Unlike rotors with a separate disk and inserted blades containing friction interfaces at blade roots

and/or due to under-platform dampers [3,4], blisks are inherently linear structures and contain very

low inherent damping.

During operation, blisks are subject to traveling-wave excitation (TWE) approximating aero-

dynamic loading from passing air�ow [5, 6]. Nominally, blisks are cyclic-symmetric structures

(i.e., tuned) de�ned by a single sector geometry and material properties that are identical for all

sectors. In reality, however, even before being used in operation, cyclic symmetry is destroyed

due to inherent deviations from nominal geometry and material properties known as mistuning [7].

Mistuning is known to signi�cantly affect blisk dynamics and induce energy localization [7–11],

resulting in larger vibration amplitudes and stress concentrations relative to the nominal structure

that can contribute to increased risk of high-cycle fatigue (HCF), and consequently, component

and engine failure [12–14]. Mistuning effects are further exacerbated by often unavoidable high-

modal density excitation regimes within desired operating conditions. Thus, modeling mistuned
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blisk dynamic behavior is crucial for blisk design to mitigate these potential failure mechanisms

and ensure safe engine operation.

To model dynamic blisk behavior subject to TWE over a frequency range of interest (cor-

responding to a range of rotational speeds), high-�delity �nite-element (FE) models containing

millions of degrees of freedom (DoFs) are often used, especially for industrial models [7, 15].

However, because of their large size, even simulating tuned blisk dynamics with these models can

be computationally prohibitive. Further, because mistuning is not known prior to manufacturing

and varies stochastically sector-to-sector, probabilistic analyses (e.g., Monte Carlo simulations) are

often employed to comprehensively study the distribution of possible mistuned forced responses,

and in particular, the maximum mistuned response amplitude over the entire frequency range of

interest [7,8,11,15–20]. However, even using techniques to accelerate the estimation of the proba-

bility density function for the maximum mistuned response amplitude [16,18,19], many mistuned

system simulations are often still needed. Thus, to simulate mistuned blisk dynamics and per-

form these analyses while remaining computationally feasible, reduced-order models (ROMs) are

needed.

Traditionally, ROMs for predicting mistuned blisk dynamics have been primarily physics-

based. Typically, these ROMs are based on projection and/or substructuring techniques [21–

28], with mistuning modeled as small or large variations in the blade-alone Young's moduli or

cantilever-blade mode natural frequencies (i.e., frequency mistuning), or variations in blade geom-

etry (i.e., geometric mistuning). As �rst shown by Yang and Grif�n in [22], for small frequency

mistuning the mistuned system dynamics can be represented accurately via a Galerkin projection

onto signi�cantly easier-to-compute tuned system modes. As such, many physics-based ROMs

have taken advantage of this to de�ne and use one or more tuned blisk systems to project system

and/or sector-level matrices onto a reduced-order space [22–28], with each ROM varying with re-

spect to the supported mistuning parametrization(s) and projection scheme. However, these ROMs

can still require the explicit or implicit of�ine use of the original high-dimensional system matri-

ces to obtain the reduced system. Additionally, a primary drawback of many purely physics-based
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models is they cannot easily incorporate experimental data to improve prediction accuracy and/or

applicability to as-manufactured blisks in operating conditions. However, this can be much more

easily accomplished with data-driven approaches, thus in part motivating the development of the

data-driven ROMs presented in this dissertation. Moreover, previous purely physics-based ROMs

do not leverage any potential computational bene�ts of data-driven and machine-learning-based

approaches, further motivating the development of the data-driven ROMs presented here.

To reduce vibration amplitudes and mitigate the effects of mistuning for blisks speci�cally,

one can introduce nonlinear friction-based damping mechanisms. These methods have typically

included adding shrouds at blade tips [29, 30], a ring damper within an underside groove in the

disk portion [28, 31], or more recently, a friction-enhanced tuned ring damper with resonant ab-

sorbers [32]. However, the introduction of contact nonlinearities via these damping mechanisms

can make the previously aforementioned computational analyses infeasible, necessitating the use

of specialized modeling techniques to even simulate tuned nonlinear systems. Like linear sys-

tems, however, ROMs for simulating nonlinear blisk systems have been almost entirely purely

physics-based. For example, many previous methods �rst begin by using a substructuring tech-

nique such as Craig-Bampton component mode synthesis (CB-CMS) [33] to perform an initial

reduction, retaining primary DoFs as those where nonlinearities are present. This can be followed

by further reductions of nonlinear DoFs based on one or more linear systems [15,29,30,34,35] or

nonlinear normal modes (NNMs) [36–39], among others [3]. In addition, though typically always

de�ned in the time domain, the friction contact model considered varies with respect to the ROM

employed [15].

When subject to TWE, a primary assumption of many previous physics-based ROMs is to

solve for steady-state periodic solutions in the frequency domain, avoiding the considerable com-

putational expense of time-marching solutions. Thus, in combination with the ROM reduction

techniques applied to blisk system or sector-level matrices, the harmonic balance method (HBM) in

conjunction with an alternating frequency-time (AFT) solution scheme is often used [3,30,36,40].

A major bene�t of using the HBM is that the original system of coupled nonlinear ordinary dif-
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ferential equations in the time domain is reformulated in the frequency domain as a system of

coupled nonlinear algebraic equations. Though this results in more equations than in the time

domain, this set of frequency-domain equations can be easier to solve and with signi�cantly less

computational expense. The HBM-AFT scheme is necessitated because contact models de�ned

in the time domain often have no analytical representation in the frequency domain [15]. There-

fore, the frequency-domain coordinates must be transformed back into the time domain using an

inverse fast Fourier transform (iFFT) to evaluate the contact model, and frequency-domain co-

ordinates recalculated using an FFT within an iterative nonlinear solver. Thus, as discussed for

linear systems and unlike many previous nonlinear ROMs, developing a data-driven approach to

model blisk systems with contact nonlinearities is of interest in order to 1) allow one to more easily

incorporate both computational and experimental data to improve model robustness and applica-

bility to as-manufactured systems, 2) remove the need for any projection bases and their associated

assumptions, and/or 3) provide an alternative computational solution scheme in which expensive

computational operations such as AFT are not needed.

Data-driven methods have broadly seen increased interest across a wide range of �elds and

applications. As previously discussed, these methods can often allow for signi�cant computational

savings, such as for reduced-order modeling of high-�delity, computationally taxing, or infeasible

simulations, as well as allow for the incorporation of experimental data directly into the model. To

model structural dynamics, in general, using data-driven techniques, most previous methods have

focused on time-domain analyses with intrinsic state dependencies. For example, Stoffel et al. [41]

compared the application of a feed-forward neural network (FFNN), radial basis network (RBN),

and deep convolutional neural network (CNN) for predicting time series data of a steel plate sub-

ject to shock-wave excitation. CNNs have also been explored in [42–44] for predicting time-series

responses of both linear and nonlinear systems subject to seismic [42, 43] or harmonic [44] ex-

citations. More generally, methods based dynamic mode decomposition (DMD) [45–47] have

seen signi�cant interest for reducing high-dimensional dynamical systems, though typically these

have been used with applications in �uid dynamics [47]. Recurrent neural network (RNN) and
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more speci�cally long short-term memory (LSTM) network [48] architectures have also been

used [48, 49], in which the next state is dependent on the current and/or previous states. Non-

linear autoregressive with exogenous input networks (NARX) also include external inputs at each

time step, such as in [50] where a NARX network is used to predict gas turbine vibration dynamics

to avoid engine failures. In [49], multiple LSTMS are trained which explicitly incorporate phys-

ical laws directly into the training and network architectures. For systems obeying Hamiltonian

mechanics as is the case for blisks, or more generally time series with dynamics approximated via

a Koopman operator, autoencoders have also been explored [51–53]. In these methods, the poten-

tially high-dimensional state information at a given time step is provided as input, followed by an

encoder to learn a signi�cantly smaller set of latent parameters. The dynamics/governing equations

are enforced in the latent space, followed by a decoder to output the system state at the following

time step. An important element of many of these approaches is that incorporating physical laws

either via the network training or architecture can 1) help signi�cantly mitigate compounding er-

ror accumulation often present with traditional RNNs, 2) allow for prediction over longer time

histories, 3) provide physically viable solutions, and/or 4) reduce training time. This is certainly

not an exhaustive list, as variations and/or combinations including one or more of these network

architectures or techniques may be combined for complete prediction frameworks (e.g., [54,55]).

Data-driven approaches for predicting mistuned blisk dynamics and more generally mistuned

rotationally periodic structures, however, have remained relatively unexplored before the develop-

ments presented in this work. For geometric mistuning speci�cally, Sinha [56] included measure-

ments based on proper orthogonal decomposition (POD) to enhance a Galerkin projection basis.

However, while POD-based methods can be applied to linear or nonlinear systems [57, 58], in

general, they are often highly dependent on the time series/snapshots used for model generation.

Because the effects of random mistuning on the underlying blisk dynamics and participating spa-

tial correlations are unknown a priori, as discussed in [15], a purely POD-generated basis can often

have little applicability for other EO excitations and potentially other mistuning patterns (i.e., sets

of applied mistuning deviations from nominal geometry and/or material properties).
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Motivated by the challenges of purely physics-based ROMs and given the lack of data-driven

methods developed for blisks with or without introduced nonlinearities, this research presents

novel, data-driven ROMs leveraging the advantages of both physics-based and data-driven tech-

niques to model mistuned blisk dynamics subject to TWE, and in extension general rotationally

periodic structures.

In addition to predicting mistuned blisk dynamics, it is of interest to also identify (ID) mis-

tuning in order to use the aforementioned ROMs to predict the response ampli�cation and stress

concentrations of an as-manufactured blisk. For bladed disks with inserted blades, blades can be

individually isolated and tested to determine mistuning. However, this is not possible for blisks.

Thus, specialized approaches for blisk mistuning ID have been developed [17, 25, 59–66]. These

previous mistuning ID approaches often require modal response information of the entire blisk

or individual sectors [25] and/or blade isolation through mass detuning [63, 64, 66] or damping

pads [65]. However, experimental modal response information can be dif�cult to obtain without

signi�cant noise even in bench conditions, especially in regions of high modal density that are

common for blisks. Additionally, because blisks are made of a single piece of material and due

to their low inherent damping, it can be dif�cult to fully isolate blades using mass detuning or

damping pads, or possibly be infeasible due to geometric constraints. For cases when suf�cient

isolation cannot be achieved, mistuning ID may not be effective.

To address these concerns, alternative data-driven methods can be leveraged to remove many

of the challenges associated with these previous mistuning ID methods for blisks. Thus, part of

this work focuses on the development of a novel data-driven mistuning ID approach for identify-

ing small mistuning parametrized as deviations in blade-alone Young's moduli. Such mistuning

parameterization is popular because it can be applied through blade-to-blade stiffness deviations

as considered for many previous mistuning ID methods [25, 62, 64] and previous physics-based

ROMs to predict blisk dynamics [7, 21, 22, 24, 27]. As such, the primary goals of the data-driven

approach developed in this dissertation were to 1) not require modal information either for system-

level or sector-level modes (hence avoiding the need for experimental modal analyses), 2) not need
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mass detuning or isolation techniques, 3) consider TWE like that experienced in operation, and

4) minimize the necessary data requirements to achieve high ID accuracy while being robust to

signi�cant measurement noise.

1.2 Dissertation Outline and Contributions

From the motivation in Section 1.1, this dissertation presents novel data-driven modeling ap-

proaches for 1) the forward problem of predicting mistuned blisk dynamics subject to TWE with

or without introducing contact nonlinearities, and 2) the inverse problem of identifying mistuning

in as-manufactured blisks. Because a primary bene�t of data-driven approaches relative to purely

physics-based methods is the possibility to more easily include experimental data, speci�c care

is taken to consider experimental data availability and potential use within the presented meth-

ods. A summary of the contributions toward these goals is provided in Sections 1.2.1 and 1.2.2.

Additionally, note that the chapters of this dissertation are largely compiled from published or cur-

rently submitted manuscripts, and some information provided in individual chapter introductions

and background sections may reiterate previously covered materials.

1.2.1 Data-Driven Response Prediction of Mistuned Blisk Dynamics

For all models developed to predict mistuned blisk responses, a TWE excitation is considered,

and mistuning is applied as deviations in blade-alone stiffness for lumped mass models (LMMs)

and blade-alone Young's moduli for high-�delity FE blisk models. Additionally, all models con-

sider sector-level viewpoints. As will be discussed, this signi�cantly reduces the amount of system-

level (i.e., entire mistuned blisk) simulations required to generate suf�cient training data while en-

suring adequate model robustness and generalization to test cases not used for model training or

parameter selection.

In Chapter 2, an approach based on two feed-forward neural networks (FFNNs) is developed

directly using physical responses and parameters from an individual sector of a general mistuned

cyclic structure. To formulate these networks, a boundary-value-problem (BVP) interpretation of
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a single sector is considered, with both networks being fully generalized for any sector of the

mistuned model. The desired physical responses of all sectors are predicted via a cyclic coupling

procedure with an analytical Jacobian and associated vectorized computation scheme provided in

Appendix A. Again, by only using sector-level data, the number of simulations and/or experiments

required to generate training data is substantially reduced, and the approach is not restricted to

a speci�c projection basis unlike previous physics-based methods. Additionally, this approach

is formulated completely in the frequency domain, avoiding complications that can arise from

time-series prediction methods and the need for time-series training data. An LMM of a blisk

with stiffness mistuning is used to generate computational surrogate data for training and valida-

tion. Example results illustrating the training accuracy and generalization of both FFNNs show

high prediction accuracy on both training and test data sets. For a test case mistuning pattern,

this approach shows strong agreement with known actual responses of all blades and importantly,

maximally responding blades over a frequency range with signi�cant mistuning effects.

Based on the work developed in Chapter 2, a data-driven ROM is developed in Chapter 4 that

addresses many of the limitations of the approach in Chapter 2. In Chapter 4, a novel �rst-of-

its-kind physics-informed machine learning modeling approach that incorporates physical laws

directly into a novel network architecture while still maintaining a sector-level viewpoint is devel-

oped. The approach is combined with an assembly procedure resulting in a signi�cantly smaller

linear system that 1) is based only on blade-alone response data, 2) does not require any modal pro-

jections nor modal data, and 3) can directly incorporate physical response data like that measured

in operation with TWE and blade-tip timing [67]. This approach develops a physics-informed

neural network (PINN) that directly considers frequency-domain response data from blade tips

alone and maintains analytically derived linear and nonlinear relationships with respect to input

parameters and response data. Because blade tip timing data is often highly undersampled [68],

the avoidance of time-domain data is a signi�cant bene�t. To apply this approach in practice, many

additional numerical techniques are developed to achieve the presented results. As will be shown,

these techniques help to signi�cantly improve robustness and prediction accuracy. The developed
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techniques are all based on training data alone, with almost all additional computational costs asso-

ciated with completely of�ine operations. Comprehensive discussion, mathematical backing, and

illustration of all numerical techniques are provided in Chapter 4 and Appendix C. These devel-

oped techniques can be used individually or in combination depending on model needs and can

be generally applied for frequency-domain data-driven ROMs of structural systems. A complete

solution procedure integrating all developed techniques is presented. Validation of the developed

modeling approach is shown using a high-�delity FE blisk model, with multiple traveling-wave

forced-response predictions and response selection cases considered. Using only as little as a sin-

gle DoF per sector from the blade tip, this approach shows high accuracy relative to high-�delity

simulations targeting an isolated set of �rst bending modes. Supplemental results for other DoF

selection cases near the blade roots are also provided in Appendix B. Lastly, using as few as

two DoFs per blade tip, validation and additional considerations are provided targeting modes in a

veering region in which multiple higher mode families including both bending and torsional modes

participate in the mistuned response.

In Chapter 5, an extension of the original data-driven approach in Chapter 2 is presented for

blisks with added friction nonlinearities. This approach is based on the HBM, and unlike many

previous physics-based modeling approaches for blisks with friction nonlinearities, does not re-

quire an AFT-based solution scheme. That is, the solution procedure remains completely in the

frequency domain using only two FFNNs, and the same analytical Jacobian formulation in Ap-

pendix A can be used. In addition to the signi�cant training data reduction achieved by using a

sector-level viewpoint for both FFNNs, an ef�cient data selection and iterative training procedure

is developed to further reduce the amount of necessary training data. This approach is validated

for a nonlinear LMM that is representative of a mistuned blisk with a friction ring damper and

TWE. Accurate response predictions are shown for a test case mistuning pattern with signi�cant

mistuning localization and nonlinear effects present.
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1.2.2 Data-Driven Mistuning ID for As-Manufactured Blisks

In addition to the models developed for predicting mistuned blisk dynamics, the inverse prob-

lem of identifying mistuning of as-manufactured blisks is addressed. As in previous mistuning

modeling and identi�cation approaches, the mistuning of interest is small and parameterized by

using deviations blade-alone Young's moduli. In Chapter 3, a data-driven approach for mistun-

ing ID is presented based on a single sector-level FFNN trained using surrogate computational

data. With the trained network, mistuning in all sectors of blisks with the same nominal geometry

can be identi�ed by using a small number of forced responses, the excitation frequency, and the

forcing phase information from a TWE targeting mistuned system resonances. In this approach

and unlike previous approaches for blisk mistuning ID, no system or sector-level modal response

information, restrictive blade isolation, or mass detuning is required. To ensure robustness and

ID accuracy, systematic methods for forcing frequency selection and response conditioning are

developed. Validation of this approach is presented using the same high-�delity FE blisk model

considered in Chapter 4. It is shown that mistuning can be identi�ed accurately using forced re-

sponses containing a signi�cant amount of absolute and relative measurement noise, mimicking

responses like those observed experimentally. In addition, it is shown that mistuning can be iden-

ti�ed independently and accurately using different TWEs in excitation regimes with high modal

density.
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CHAPTER 2

Data-Driven Modeling Approach for Mistuned Cyclic

Structures

2.1 Introduction

Cyclic structures are common in engineering applications, such as impellers within centrifugal

pumps or turbomachinery bladed disks (i.e., blisks). These are structures that are obtained by peri-

odically repeating a sector rotated by2�=N radians around the axis of symmetry and coupling the

sector interfaces, whereN is the number of sectors. While these structures are nominally cyclic

symmetric, their symmetry is destroyed by imperfections in the manufacturing process and by

variabilities in material properties, called mistuning [7,24]. When mistuning is present, the forced

response of a cyclic structure can drastically change, resulting in energy and mode localization

which can induce larger vibratory responses and stresses compared to the nominal [11, 69, 70].

The cyclicity of these structures can be used to signi�cantly reduce the computational effort if

all sectors are identical (i.e., the structure is tuned). However, cyclic symmetry cannot be ex-

ploited when mistuning is present [15,69]. As such, physics-based reduced-order models (ROMs)

have been necessary for generating computationally inexpensive dynamic responses of mistuned

systems. Currently, physics-based ROMs are the preferred method for modeling linear and non-

linear cyclic systems, such as blisks, with examples including the subset of nominal modes [22],

component mode mistuning [24], pristine-rogue-interface modal expansion [69], and adaptive mi-

croslip projection [30] among many others [21, 23, 27, 57, 58, 71, 72]. These ROMs often also
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use Craig-Bampton component mode synthesis [33], and each de�ne a unique substructuring and

projection-based approach for capturing mistuned system responses at a reduced computational

cost. As discussed in Chapter 1, due to the stochastic nature of mistuning, probabilistic analyses

are often used to study the range of possible mistuned system dynamics. However, these analyses

often require many different mistuned systems to be simulated to ensure adequate convergence

and robustness, which for large industrial �nite-element (FE) blisk models in particular, is only

computationally feasible using ROMs [15,28].

These previously developed ROMs have been shown to be accurate and ef�cient at approxi-

mating the dynamics of high-�delity FE models of cyclic structures such as blisks. However, they

cannot necessarily be easily applied to other general mistuned cyclic or rotationally periodic struc-

tures. While work has been done using a data-driven approach to dynamically update a ROM based

on proper orthogonal decomposition (POD) using sensor data [55], most previous ROMs created

speci�cally for blisks cannot be updated using data to further increase their prediction accuracy. In

contrast, the primary goal of the work presented in this chapter is to develop a data-driven approach

to accurately predict the forced response dynamics of the mistuned structure while exploiting the

cyclicity of the nominal structure.

The applicability of data-driven methods, such as machine learning and arti�cial neural net-

works (ANNs), has received growing interest in recent years for modeling structural dynamic

systems due to their ability to approximate nonlinear functions with good accuracy [73–76]. Previ-

ous studies have focused on predicting time series data for structural health monitoring and fatigue

analysis of structures, such as wind turbines subject to nonlinear loading [77], buildings subject to

base excitation similar to earthquakes [78], �oating structures [79], or engine vibrations [80, 81].

These studies have used recurrent neural networks (RNNs) [77], and more speci�cally long short-

term memory networks (LSTMs) [80, 81], nonlinear autoregressive networks with exogenous in-

puts (NARX) [79], or generalized regression neural networks [78] which use states and/or param-

eters at previous states to predict the current state. More recently, convolutional neural networks

traditionally used for pattern and object identi�cation [82–84] have been applied in the time do-

12



main for modeling the structural dynamics of single DoF and small multi-DoF lumped parameters

systems [43].

Though all of these neural network-based approaches have been shown to predict time series

response data with good agreement, a key disadvantage for recurrent-based methods is the need

for previous states when attempting to model differential equations of motion. This can lead to the

common vanishing or exploding gradient problems that LSTMs and techniques such as gradient

clipping and layer normalization attempt to address. However, stability and sensitivity issues often

can still arise during training [85–87]. Additionally, these networks can be very sensitive to the

initialization of the weights and biases [85, 87], which due to the stochastic nature of mistuning

can be dif�cult to approximate a priori for mistuned cyclic structures. Traditional feed-forward

neural networks (FFNNs) do not use previous states and consequently can be relatively shallower

(i.e., contain fewer layers) compared to sequence-based or time-series RNNs [85]. Additionally,

when nonlinear activation functions are used, it is well known that a simple FFNN containing only

as little as two fully-connected layers is a universal function approximator [88]. This general ar-

chitecture is depicted in Fig. 2.1. However, there are no universal theoretical guarantees regarding

how many nodes, layers, type of activation function, and training algorithm properties among other

factors are needed to achieve an arbitrary degree of accuracy.

In recent work, the applicability and power of deep FFNNs for approximation of nonlinear

partial differential equations using physics-informed loss functions has been shown successfully

[89]. While deep FFNNs containing many layers also can suffer from vanishing or exploding

gradient problems, FFNNs are preferred for the proposed approach in this chapter due to: 1) their

general lesser susceptibility to these problems (by virtue of being shallower), 2) the general ease

of training FFNNs relative to RNNs, and 3) the use of frequency-domain analysis which does not

require previous states for function approximations.

In this chapter, a purely sector-level data-driven approach that uses FFNNs to capture the dy-

namics of mistuned cyclic systems is presented. Two FFNNs are trained with surrogate data gen-

erated computationally. The data used for training consists only of parameters associated with an
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individual sector and response information at de�ned sector boundaries. The �rst of these FFNNs,

called the coupling network, is used to capture cyclic coupling between sectors via a coupling

procedure. In this coupling procedure, compatibility between sector interfaces is enforced to en-

sure the feasibility of the �nal physical response predictions. The second FFNN, called the sector

response network, is used to output the desired physical responses within each sector. For both

networks, physical responses are used directly instead of modal coordinates. Therefore, unlike

previous projection-based methods, this approach is not restricted to a particular modal basis. The

presented approach is validated using a lumped mass model (LMM) representative of a blisk con-

taining stiffness mistuning. Additionally, a special case of cyclic structures is studied to show that

training data can be obtained using a less computationally expensive model and yet applied for

accurate response prediction of larger cyclic systems.

2.2 Background

2.2.1 Overview of Feed-forward Neural Networks

ANNs are methods developed to simulate the learning processes observed in biological systems

[85]. FFNNs such as that shown in Fig. 2.1 consist of a single input layer, one or multiple hidden

layers, and an output layer, each containing a prescribed number of nodes. The goal of an FFNN is

to map a vector of input values to a vector of output values through a series of operations performed

while data is passed through the hidden layers.

Layers are connected using weight matrices and bias vectors, which can vary in size and value

across the FFNN depending on the number of nodes in each layer. To calculate the output, input

values are provided as a vector to the input layer (one value per node), and remain unchanged

as they are passed to the �rst hidden layer. To calculate the output from a nodei in any hidden

layerL, the weight matrix connecting layersL � 1 andL and the vector of biases for layerL are

needed. The weight matrix connecting layersL � 1 andL is W (L )( L � 1), and the vector of biases
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Figure 2.1: General feed-forward neural network (FFNN) structure

for layerL is b (L ) . Thei th node output from layerL in an FFNN is given by

z(L )
i = f act

�
W (L )( L � 1)

i z(L � 1) + b(L )
i

�
(2.1)

wheref act is the activation function used in layerL, W (L )( L � 1)
i is thei th row of the weight matrix

connecting layersL � 1 andL, z(L � 1) is the vector of outputs from the previous layer (L � 1), and

b(L )
i is thei th element from the vector of biases for layerL. A weighted sum of the outputs from

the previous layer using the rows of the weight matrix (or for the �rst hidden layer, the input layer)

plus a bias term are input to the activation function. There are several activation functions, such

as the sigmoid, tanh, and recti�ed linear unit (ReLU) functions, among many others [85]. Note

that nonlinear activation functions are almost always used, due to these functions often resulting in

signi�cantly increased prediction accuracy relative to a purely linear counterpart (i.e., the identity

f act(z) = z for general inputz 2 R) [85]. For an FFNN, data is passed from the input layer

through successive hidden layers using Eq. 2.1 to calculate each node output, and the values from

the output layer are the network's prediction(s). This process is referred to as forward propagation

through the network.

To train a network, i.e. to �t the known output data for the provided inputs, weights and biases
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are updated. This is classi�ed as supervised learning where known output values are available.

A common method for updating weights and biases is backpropagation in combination with a

user-de�ned loss function. The loss function calculates the error between predictions and known

outputs, with the goal to minimize the value of this loss function during training. To update weights

and biases many methods have been developed, often using the gradient of the loss function with

respect to the network weights and biases [90–92]. For this approach, FFNNs are used to approx-

imate functions (i.e., regression), for which a common loss function is the mean squared error

(MSE) [85] given by

MSE =
1

Ns

N sX

i =1

(yi � yi; actual)2 (2.2)

whereNs is the number of input-output pairs used for training,yi is a predicted output, andyi; actual

is a known output. Loss functions can be tailored for speci�c applications [82,89]. For all work in

this chapter, MSE was used. More information regarding loss functions and properties of the MSE

loss speci�cally is available in [85].

Using known instances of input-output pairs, the inputs are forward propagated through the

network, and the error in predictions is calculated. The gradient of the loss function is computed

with respect to each weight and bias value of each layer and used to update each value. There are a

variety of methods to train FFNNs [91, 92]. For work in this chapter, the network weights and bi-

ases were updated using scaled conjugate gradient (SCG) descent, a supervised learning approach

with a variable step size that avoids performing a line search for each update, unlike standard con-

jugate gradient descent [90]. It is worth noting that NN training has been extensively studied, and

the NN architecture and the training method chosen in this work are not the primary focus. Ref-

erences [85] and [92] provide useful background regarding the NN architecture and training, and

reference [90] provides useful information regarding scaled conjugate gradient descent.
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2.2.2 Lumped Mass Model

The cyclic LMM used for demonstrating the proposed approach consists of nominally cyclic

sectors containing random stiffness mistuning. Within each sector, there are 8 masses (i.e., 8 DoFs)

connected using linear springs as shown in Fig. 2.2. Though not shown for clarity, the system is

Figure 2.2: Lumped mass model (LMM) of single sector used for assembling mistuned cyclic
system (dampers not shown)

assumed to contain proportional viscous dampers connected in the same manner as the springs

shown in Fig. 2.2. The system is damped at levels similar to manufactured blisks.

The sector and overall LMM are built to mimic the general structure of a blisk, and consist of

two primary portions: the disk portion, and the blade portion. The disk portion contains 6 DoFs,

and the blade portion contains 2 DoFs, with the outermost mass labeledmi
b2 representing the blade

tip. As is common for studying mistuning, stiffness mistuning is applied to the springs within the

blade portion of each sector (sometimes also referred to as blade frequency mistuning) [22,24,25].

Similar LMMs have been used previously to understand the underlying physics and behavior of

cyclic systems with mistuning, speci�cally in blisks [11, 93–97]. To form the full system for the

LMM considered here, sectors are elastically connected through disk-interface masses. To mimic

the forcing present during blisk operation, the blade tips of the LMM are subject to a traveling-

wave excitation (TWE) with the forcing amplitude assumed equal on all sectors, but shifted in

phase as a function of the engine order of excitation, denoted as EO. The forcing on a sectori is
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given by

Fi = Re
�

F exp
�
� j

�
!t � (i � 1)

2� EO
N

���
(2.3)

whereF is the forcing amplitude applied to all sectors,! is the excitation frequency,t is time,

andj =
p

� 1. With this forcing formulation, the forcing phase difference between neighboring

sectors, called the inter-blade phase angle, remains constant. Note that three of the six disk masses

are connected to ground springs which remove rigid body modes.

A set of N random valuesr i are generated from a normal distribution with 0 mean and unit

standard deviation, and then multiplied by a scalar constant� , referred to as the mistuning magni-

tude, to form stiffness mistuning. Note that the set of random values does not necessarily have a 0

mean. The mistuning stiffnesses for sectori are calculated as

ki
b1 = kb1;0(1 + � i ) = kb1;0(1 + �r i )

ki
b2 = kb2;0(1 + � i ) = kb2;0(1 + �r i )

(2.4)

whereki
b1 andki

b2 are the mistuned blade stiffnesses,kb1;0 andkb2;0 are the nominal blade stiff-

nesses, and� i is the stiffness mistuning calculated as� i = �r i , wherer i is the random value

generated corresponding to sectori . The sector-level stiffness matrix with mistuning is given by

eK i =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

ki
b2 � ki

b2 0 0 0 0 0 0

� ki
b2 ki

b2 + ki
b1 � ki

b1 0 0 0 0 0

0 � ki
b1 ki

b1 + 3kd � kd � kd 0 � kd 0

0 0 � kd 3kd 0 � kd 0 0

0 0 � kd 0 3kd 0 0 � kd

0 0 0 � kd 0 3kd + kg � kd 0

0 0 � kd 0 0 � kd 3kd + kg � kd

0 0 0 0 � kd 0 � kd 3kd + kg

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(2.5)
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wherekd is the stiffness between disk masses, andkg is the stiffness of the ground springs, both of

which remain identical across all sectors even in mistuned systems. The corresponding sector-level

mass matrix is diagonal and can be de�ned as

fM = diag(mb2; mb1; md2; md1; md3; md4; md5; md6) (2.6)

Similarly, a sector-level damping matrixeC of the same structure aseK i is also constructed.

To couple sectors, a sparse8 � 8 coupling stiffness matrixeK c is de�ned such that

eK c(5; 4) = eK c(8; 6) = � kd, with all other entries being 0. Using these matrices, the mistuned

system stiffness matrixK can be formed as

K =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

eK 1
eK c 0 0 : : : 0 0 0 eK T

c

eK T
c

eK 2
eK c 0 : : : 0 0 0 0

0 eK T
c

eK 3
eK c : : : 0 0 0 0

...
...

...
...

...
...

...
...

...

0 0 0 0 : : : eK T
c

eK N � 2
eK c 0

0 0 0 0 : : : 0 eK T
c

eK N � 1
eK c

eK c 0 0 0 : : : 0 0 eK T
c

eK N

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(2.7)

The system damping matrixC is formed in the same manner asK using eC and an analogous

coupling damping matrixeCc. The system mass matrix is a block diagonal8N � 8N matrix that

can be written as

M =

2

6
6
6
6
4

fM 0
...

0 fM

3

7
7
7
7
5

8N � 8N

(2.8)

Lastly, de�ning the forcing vector on sectori as~f i =
�

Fi 01� 7

� T

, the system forcing vector is
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written as

f =

2

6
6
6
6
6
6
6
4

~f1

~f2

...

~fN

3

7
7
7
7
7
7
7
5

(2.9)

The nominal mass and stiffness parameter values for the LMM in Fig. 2.2 are shown in

Table 2.1. Due to the high thickness of the disk of manufactured blisks, the stiffness and mass

values of the disk portion are often much higher than those in the blade portion. Therefore, the

values chosen are based on similar order of magnitude approximations for an actual blisk in order

to provide representative dynamic response characteristics.

Table 2.1: Lumped mass model (LMM) parameter values

Component Parameter Parameter Value

Blade

mb2 0.1 kg
mb1 0.126 kg
kb2;0 2.6 � 106 N/m
kb1;0 6.8 � 106 N/m

Disk
mdk for k = 1; 2::::; 6 0.2675 kg
kd 109 N/m
kg 3:33 � 107 N/m

2.2.3 Generating Physical Responses for Training

The equations of motion (EoMs) for the full mistuned damped system can be written as

M •x + C _x + Kx = f (2.10)

where•x, _x, andx are the system-level acceleration, velocity, and displacement vectors. In complex

models containing many DoFs, the computational expense associated with solving for physical

responses can be extremely large. In contrast to nominally tuned systems, cyclic analysis cannot
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be used for mistuned systems [98]. Due to the small size of this LMM, system-level modal analysis

of the mistuned system can be used to obtain the physical responses of all DoFs directly using the

full system model.

For large systems, even using a ROM, generating physical response data for many mistuning

patterns can be computationally intensive, a problem often faced when using Monte Carlo simula-

tions to study mistuning [7]. To address this concern, the proposed approach uses only sector-level

data (i.e., responses and parameters only associated with single sectors over a frequency range of

interest), instead of data from the entire system. Therefore, in a system withN sectors, for every

simulation using a single mistuning pattern,N times the amount of sector-level data is generated.

This is because response data forN sectors is available over the desired frequency range of in-

terest. This is an important advantage of this sector-level approach and allows for many fewer

simulations. It also provides signi�cant computational savings compared to using system-level

data sets for training the FFNNs in this work.

2.3 Sector-Level Data-Driven Modeling Approach

First, the sector-level boundary-value problem formulation used for training the FFNNs is pre-

sented. Next, the two sector-level FFNNs used in this approach, called the coupling and sector

response networks, are developed. Lastly, the solution procedure for obtaining blade-tip physical

responses using both FFNNs is presented.

2.3.1 Sector-Level Boundary Value Problem Formulation

For both FFNNs used in this approach, the fundamental idea behind sector-level training is

to view the dynamics of each sector as a boundary value problem (BVP). If boundary motion,

forcing, and unique sector-speci�c structural parameters are known, then the response of any DoFs

within the sector can be calculated. Using Fig. 2.2, for any given sectori , the real and imaginary

components of the response of any DoF within the sector can be calculated given the following:

• complex values of the responses from the sectori � 1 right interface,
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• complex values of the responses from the sectori + 1 left interface,

• � i , sector mistuning,

• \ Fi , phase of the TWE forcing,

• ! , excitation frequency in rad/s.

This can be shown by the equations of motion of sectori for a harmonic motionx i = x̂ i ej!t , where

x̂ i is a complex vector. The sector-level equations of motion are given by

(� ! 2fM + j! eC + eK i )x̂ i ej!t = eZ i (!; � i )x̂ i ej!t =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
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6
4

Fi

0

0

kdx̂ i � 1
d3 ej!t

kdx̂ i +1
d1 ej!t

kdx̂ i � 1
d6 ej!t

0

kdx̂ i +1
d4 ej!t

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(2.11)

whereeZ i (!; � i ) is the sector-level dynamic stiffness matrix, and the vector of physical responses

for all DoFs in sectori is de�ned as

x̂ i =
�

x̂ i
b2 x̂ i

b1 x̂ i
d2 x̂ i

d1 x̂ i
d3 x̂ i

d4 x̂ i
d5 x̂ i

d6

� T

(2.12)

From the perspective of an FFNN, parameters which remain constant over the entire range of

solutions used for training do not provide any information about the nature of the target data to

�t. For generating surrogate training data, only the mistuning pattern (i.e., the set of� i values)

is varied, andN , EO, the damping ratio� , � , andF remain constant. Thus, all quantities infM

and eC remain constant across all sectors in all solutions regardless of the mistuning pattern. For

example, the mass corresponding to each DoF in a sector does not vary between sectors because
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mass mistuning is not considered. Hence the masses do not need to be included in the training.

With this formulation, a network aims to learn the effects of varying! and� i on eZ i (!; � i ), with

all other factors de�ningeZ i (!; � i ) remaining unchanged. Applying this idea, the FFNNs in this

work take as input only varying parameters which are all contained withineK i (which only varies

according to� i ), the neighboring interface sector physical responses, and the forcing on sectori ,

which is de�ned fully using the excitation frequency! and the phase of the forcing on sectori .

This is explained in more detail in the next Sections 2.3.2 and 2.3.3.

2.3.2 Sector Coupling Network

Response data from the full system over a range of excitation frequencies is used. Interface

responses needed for satisfying Eq. 2.11 form columns of the input matrix used for training the

coupling network, denoted as NNc, along with sector-speci�c parameters for respective responses.

A single input column of the training matrix consists of

• � i , sector mistuning,

• ! j , j th excitation frequency in rad/s,

• \ Fi , phase of the TWE forcing,

• x̂ i � 1
R , complex values of the responses from the sectori � 1 right interface,

• x̂ i +1
L , complex values of the responses from the sectori + 1 left interface.

The coupling network, denoted as NNc, is trained to predict the complex responses of the

right and left interface masses within sectori , i.e. x̂ i
R andx̂ i

L , respectively. For the LMM, these

correspond to massesmi
d1, mi

d3, mi
d4, andmi

d6. The input and output of the coupling network

for sectori at excitation frequency! j are visualized in Fig. 2.3, where the sector mistuning,

excitation frequency, and forcing phase are stored in a parameter vectorp i
j . The concatenation of

such instances over the entire range of! values for a set of mistuning patterns forms the columns
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of an input matrix used for training. Note that NNc has inputs dependent oni , but the network

itself does not depend oni . There is a single NNc for an entire blisk.

Figure 2.3: Structure of the coupling network NNc for sectori at excitation frequency! j for a
given mistuning pattern

2.3.3 Sector Response Network

The sector response network, denoted as NNs, is de�ned in a similar manner to the coupling

network, and uses a similar BVP interpretation of the sector to de�ne its input and output. However,

in this case, the real and imaginary responses of the interface DoFs within sectori , x̂ i
R andx̂ i

L ,

de�ne the boundaries. These vectors, along with the sector-speci�c parametersp i
j , are used as

input to the sector response network. The network is then trained to predict the complex responses

x̂ i
b2 of the blade tip DoF within sectori . The sector response network for sectori at excitation

frequency! j is shown in Fig. 2.4. Note that NNs has inputs dependent oni , but the network itself

does not depend oni . There is a single NNs for an entire blisk.

Unlike many previous approaches for modeling structural dynamic behavior, both the coupling

and the sector response networks are FFNNs and not RNNs. As shown in Eq. 2.11, for a given

solution there are no dependencies on solutions at other excitation frequencies or states. This is be-

cause the dynamics is modeled in the frequency domain. This is a great advantage, as information

from other solutions would be needed if the targeted set of equations contained time and/or state
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Figure 2.4: Structure of the sector response network NNs for sectori at excitation frequency! j

for a given mistuning pattern

dependencies. Additionally, since physical responses are used for inputs and outputs instead of

modal coordinates, projection onto a set of modes is not required, as is done for many projection-

based methods [22,24,27,69]. Because no modal projection is performed, the network training is

not hindered by limitations or approximations possibly introduced by performing projections and

remains general. Lastly, there is no restriction requiring that the right and left interfaces contain the

same number of DoFs, even though they are equal for the LMM studied here. However, the right

and left interface DoFs need to be de�ned identically across all sectors. The sector response FFNN

can be trained to output the responses of any DoFs of interest within the sector. In this study, the

sector response network is trained to output blade tip physical responses.

2.3.4 Cyclic Coupling and Prediction Using NNc and NNs

After training the two individual networks, a global coupling method is needed to replicate the

full system behavior for a given mistuning pattern. The overall solution procedure for obtaining

blade tip responses for any given mistuning pattern is outlined as a �ow chart in Fig. 2.5.

The general idea consists of de�ning a vector�̂x0 which contains initial guesses for all sector

interface DoF real and imaginary responses. This vector is input to a system containingN identical

copies of the coupling network, each representing a sector. The vector�̂x0 contains the individual
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Figure 2.5: Solution procedure �ow chart

vectors of interface DoF responsesx̂ i
R;0 andx̂ i

L; 0 for sectori = 1; 2; :::; N . The parameter setp i
j

and responseŝx i � 1
R;0 and x̂ i +1

L; 0 are input to thei th copy of NNc, which outputs internal interface

physical responseŝx i
R andx̂ i

L . To enforce the cyclicity of the system, for the case ofi = 1, the

right and left interface physical responsesx̂N
R;0 and x̂2

L; 0 are input. For the case ofi = N , the

right and left interface physical responsesx̂N � 1
R;0 andx̂1

L; 0 are input. As a result, the copies of NNc

in Fig. 2.5 are cyclically coupled. After obtaining all responses from each copy of NNc, they are

arranged into a single vector�̂x matching the order of DoFs of the original input vector�̂x0. These

vectors are subtracted to form the �xed-point iteration equation

�̂x � �̂x0 = 0 (2.13)

which enforces interface compatibility conditions. If Eq. 2.13 is not satis�ed within speci�ed con-

vergence tolerances,�̂x is updated via a trust-region optimization algorithm and input back into the

system of coupling networks and the process repeated until convergence is achieved. Here, conver-

gence is achieved when the unconstrained �rst-order optimality measure is less than a prescribed

quantity"opt, as
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�rst-order optimality= jj (JT
sys( �̂x � �̂x0))k jj 1 < " opt (2.14)

and the relative function tolerance on the left-hand side of Eq. 2.13 is such that

jj ( �̂x � �̂x0)k � ( �̂x � �̂x0)k+1 jj 2
2 < " tol

�
1 + jj ( �̂x � �̂x0)k jj 2

2

�
(2.15)

wherek denotes thekth iteration (i.e.,kth update),Jsys is the system Jacobian matrix for the left-

hand side of Eq. 2.13 with respect to�̂x0 (see Appendix A), and" tol is a prescribed relative function

tolerance. Eq. 2.14 states that the maximum absolute value across all entries in the gradient of

the difference vector̂�x � �̂x0 is less than"opt. Eq. 2.15 states that the change in the value of the

left-hand side of Eq. 2.13 of an iterationk+1 is less than a relative function tolerance scaled by the

left-hand side of the current iterationk. Both Eqs. 2.14 and 2.15 must be satis�ed for convergence

to be achieved.

To increase the convergence speed of the trust-region optimization algorithm, an analytical

system Jacobian matrixJsys and for the left-hand side of Eq. 2.13 with respect to�̂x0 is provided

to the algorithm for each update. A derivation of the analytical form for the system Jacobian

matrix along with a vectorized computation scheme is presented in Appendix A, starting with the

derivation of the Jacobian matrix for a general FFNN, which is then used to formulate the system

Jacobian matrix.

The converged vector of interface DoFs�̂x is then used to predict the blade tip responses in each

sector. For a sectori , the values of̂x i
R andx̂ i

L along withp i
j are input to a copy of NNs. This

is repeated fori = 1; 2; :::; N . The outputs from each copy of NNs are the desired sector blade

tip complex responses. Note that no convergence procedure using NNs is needed, and thus this

process can be carried out independently from the solution of Eq. 2.13.

The initial guess vector̂�x0 for each excitation frequency is generated as follows. Starting with

the �rst excitation frequency! 1 in the range of interest, the interface DoF responses of a fully

tuned system are input as an initial solution guess for the solver. The tuned response was chosen
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as the initial guess due to the ease of solving for the responses of a tuned system, even for larger

models. For the second excitation frequency! 2, the converged interface DoF responses from! 1

are used as an initial guess. This process is repeated where the converged interface DoF responses

from ! j � 1 are used as an initial guess for the interface DoF responses for! j for j � 2.

2.4 Results and Discussion

To train the networks, 15 system-level forced response data sets were generated for the LMM in

Fig. 2.2 usingN = 16 sectors. The training matrices for both NNc and NNs contained data for 15

different mistuning patterns, with one of those being the nominally tuned case. In all simulations,

EO = 4, � = 0:0002 = 0:02%, � = 0:01 = 1%, and the excitation frequencies range between

600 to 700 Hz at 0.5 Hz intervals. Note that these simulations comprise 15 system-level data

sets over this frequency range. Because both networks are trained using sector-level data, each

simulation providesN = 16 sector-level data sets, resulting in 240 total sector-level data sets used

for training. An additional 5 cases with mistuning patterns different from those used for training

were also generated as unseen test data. They are used to test the networks' ability to generalize

and capture the behavior of the system for any general mistuning pattern. For the results presented,

both NNc and NNs have 4 hidden layers with 50 nodes each, all using the tanh activation function.

For both NNc and NNs, the architecture and properties were chosen such that little to no over�tting

occurred for the amount of provided training data (i.e., the networks generalize well to unseen test

data) and the training accuracy was found to be suf�cient (i.e., no under�tting occurred). These

two factors were found to most signi�cantly dictate the accuracy of the �nal predicted responses.

It should be noted that training time heavily depends on the NN architecture, training method,

amount of training data, the number of cores and/or graphics processing units (GPUs) available,

and the cyclic structure being analyzed among other factors. Thus, while this NN architecture and

amount of training data was found to be suf�cient, training time can vary widely. Additionally,

in order to ensure that the networks were converged while training (i.e., only minimal changes to

weights and biases at each update), training was allowed to continue for many epochs past what
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