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ABSTRACT

Earth’s magnetic field is a ubiquitous signal commonly used to orient one’s heading relative to
North. Typical magnetic field navigation techniques assume the ambient field points Northward and
remains constant in a local area. Both assumptions break down inside buildings due to distortions
caused by ferrous materials in modern structural components. In this dissertation, we show how to
make maps of magnetic field distortions to improve our ability to orient and traverse through indoor
spaces. Because the magnetic field is ubiquitous on Earth and magnetometers are present on most
modern smartphones and IMUs (inertial measurement units), our methods can be applied nearly
anywhere on Earth.

This dissertation presents three major contributions towards the use of magnetic fields for
indoor navigation. First, we show how to use a small UAV (unmanned aerial vehicle) to measure
the ambient field throughout a workspace and create three-dimensional magnetic field maps. We
leverage a machine learning tool called Gaussian process regression (GPR) as the backbone of
our magnetic field maps to interpolate the field at unobserved locations. This first contribution is
grounded in practical tradeoffs between the convenience of using an autonomous UAV for indoor
mapping and the magnetic disturbances created by the UAV’s electronics. Here, we present methods
to reduce the UAV-induced magnetic disturbances, a new technique to create magnetic field maps,
and a set of best practices creating and utilizing indoor magnetic field maps.

Second, we use a multiplicative extended Kalman filter (MEKF) with our GPR-based maps to
estimate the attitude (orientation) of a UAV. Here, we introduce the concept of spatial variation
which describes how much the magnetic field changes locally. Essentially, outdoor environments
have low spatial variation while indoor spaces typically have higher spatial variation in the magnetic
field. Results show that our magnetic maps yield a two-fold improvement of attitude estimates
indoors (where there is high spatial variation), but are unnecessary for outdoor environments where
a constant-field assumption is appropriate.

Finally, we use a particle filter to estimate the position of a UAV using indoor magnetic fields.
This last innovation is important because GPS (a staple for position estimation outdoors) is not
available inside buildings. Instead, we use our GPR-based magnetic field maps to track the UAV’s
motion through our mapped space. Our results give three-dimensional position estimates of a UAV
within 0.2m for six of our eight test cases. In addition, we show how the amount of magnetic field’s

xi



spatial gradient correlates with our position estimation accuracy.
With some improvements, our methods can be used to transform the way people navigate

through buildings. Imagine an indoor route planning application that guides someone to their
terminal at an airport, to a book at their local library, or to their office at a new job. Because
magnetic fields are everywhere on Earth, we can apply our mapping and navigation techniques to
any building on the planet. In addition, the presence of magnetometers in modern smartphones
gives everyone the ability to benefit from the invisible field all around them.

To make this vision a reality, our methods need to be less sensitive to changes in the magnetic
field. Although this dissertation does not investigate robust navigation or time-varying magnetic
field mapping, it does present important foundations on the practice of creating magnetic field maps
and their value in enabling indoor navigation.
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CHAPTER 1

Introduction

1.1 Motivation

Sensor fusion is a technique that leverages information from different sensing modalities to
estimate the position and attitude state of a vehicle [1]. Vision and LIDAR are common exteroceptive

sensing modalities that provide information about the vehicle’s surroundings while gyroscopes,
accelerometers, and magnetometers give proprioceptive information about the vehicle’s motion.
A key goal of sensor fusion is for one sensing modality to enable accurate navigation in the event
another modality fails (e.g., a sudden change in ambient light when using a vision-based system).
The goal of this dissertation is to improve the use of magnetometers as a sensing modality for
navigation.

Magnetometers provide point-wise measurements of the magnetic field created by Earth, nearby
ferromagnetic objects, and electric currents. They are often present in inertial measurement units
(IMUs) that consist of a gyroscope, accelerometer, and a magnetometer to provide proprioceptive
data. Today, IMUs with magnetometers are ubiquitous, appearing on cell phones and low-cost
robotics sensing kits. Despite the prevalence of magnetometers in modern electronics, their use
case is often restricted to estimating heading relative to magnetic north while outdoors [2, 3] or
assisting in three degree of freedom (3DOF) attitude estimation for spacecraft in Earth’s orbit [4].
They find less use inside or near buildings where ferromagnetic materials distort the local magnetic
field making it unintuitive and noisy.

This dissertation investigates how magnetometers can be used to improve indoor position and
attitude estimates. Typically, we use GPS and cell towers to estimate our position on Earth [5],
however both become unavailable or less reliable when near or inside a building. Alternatives arise
to estimate position in GPS-denied environments like visual fiducial markers [6], feature-based
tracking [7], point-cloud-based spatial mapping [8], and signal mapping of Wi-Fi router signals
[9] or magnetic fields [10]. However, many of these require additional hardware to be placed on
the vehicle (e.g., camera, LiDAR, or Wi-Fi receiver) or in the environment the vehicle will move
through (e.g., fiducial markers). We propose the use of magnetic fields to improve navigation
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Northward

(a)

Northward

(b)

Figure 1.1: Motivation for local magnetic field maps. Outdoor magnetic fields (a) generally point
northwards, have low spatial variation, and typically agree with WMM. Indoor fields (b) can have
high spatial variation that is not captured by WMM or other global magnetic maps.

in GPS-denied environments. Since there is an ambient magnetic field everywhere on Earth and
magnetometers are commonplace (via IMUs), use of this sensing modality requires no additional
hardware on or off the vehicle. However, as with all sensing modalities, there are tradeoffs.

Most uses of magnetometers assume that the magnetic field is generally pointing Northward
and remains spatially constant throughout the workspace. These assumptions tend to hold well
outdoors and away from buildings but are inaccurate for the magnetic field inside modern buildings
(Figure 1.1). Figure 1.1a shows an outdoor magnetic field map where the planar magnetic field
(black arrows) generally point North. Figure 1.1b is the same visualization method for an indoor
workspace showing that materials in the building create high spatial variation and distort the planar
direction of the magnetic field. This means many classical methods of navigating using the magnetic
field (which assume a constant, Northward field) are not applicable in or near buildings. Spacecraft
applications like Ref. [4] relax these assumptions by using global models of the Earth’s magnetic
field like the World Magnetic Model (WMM) [11]. However, WMM estimates do not account for
distortions in Earth’s magnetic field due to human-made structures. As an example, WMM returns a
constant magnetic field vector for all locations in Figure 1.1b despite the depicted change in vector
strength from ∼40µT to ∼70µT .

In this dissertation, we show how to improve the usability of magnetometers in locations where
global maps like WMM are inaccurate. We do this by creating local magnetic field maps and
showing how these local maps can improve IMU-based attitude estimates in regions where the
WMM is inaccurate. Additionally, the distortions caused by human-made structures create spatial
variations in the magnetic field that, when accurately mapped, can be utilized to improve position
estimates of a vehicle. We expect our methods to be of most use in places where GPS is not available,
WMM is not accurate, and there is sufficient spatial variation in the ambient magnetic field to
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localize position. Though we typically refer to such locations as “indoor” spaces, we acknowledge
that not all indoor locations have these properties while some outdoor ones might.

The emphasis of our work is not that magnetometers and magnetic fields should replace other
sensing modalities for GPS-denied navigation. Instead, we aim to highlight that magnetometers
already exist on most sensing platforms yet find little use for most navigation-based applications.
This dissertation demonstrates the potential and value of magnetic field measurements in GPS-denied
navigation to improve sensor fusion methods.

1.2 Problem Statement

In this dissertation, we aim to address the following challenges:

1. Indoor magnetic fields are complex and difficult to model without full knowledge of ferrous
materials and their location. How can we create magnetic field maps of indoor spaces and
ensure they accurately represent the ambient magnetic field? In this dissertation, we propose
gathering observations with an unmanned aerial vehicle (UAV) and interpolating them with
Gaussian Process Regression (GPR) to make a GPR-based magnetic field map.

2. Magnetometers are used to assist attitude estimates outdoors but find little use for indoor and
GPS-denied navigation. The inaccuracies of the World Magnetic Model (WMM) in indoor
environments make it difficult to extract value from magnetometers inside. In this work, we
investigate how local magnetic field maps might improve both position and attitude estimates
of a flight vehicle.

3. Buildings create distortions in the magnetic field that are often treated as a disturbance.
However, these distortions create spatial variation in the field that can improve our ability to
localize position. This dissertation presents novel metrics and tools that show the relationship
between magnetic field gradients and position localization accuracy.

1.3 Related Works

This dissertation aims to address problems related to creating accurate indoor magnetic field
maps, using magnetometers to estimate attitude indoors, and comparing magnetic field spatial
gradient to position localization accuracy. In this section, we present related works on each topic.

1.3.1 Indoor Magnetic Field Mapping

A magnetic field map must have an input dimension p and output dimension m, which we will
denote as a p→ m map. The choice of input dimension p often depends on the agent making the
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map. For example, p = 2 for wheeled robots [12, 13, 14, 15] and most pedestrian localization while
p = 3 for UAVs [16, 17], multi-floor pedestrian localization [18], or specially-outfitted ground
robots [19, 20]. The output m is set by how the map will be utilized. Works like [21, 22] use m = 1

for the orientation or magnitude of the magnetic field vector, while other works like [23, 19, 18] use
all three vector components of the magnetic field with m = 3.

A number of works using indoor magnetic field maps are focused on pedestrian localization.
Such works often utilize foot-mounted, or calf-mounted sensor suites [24, 25, 26] that can leverage
zero-velocity updates to help with localization. Alternatively, many such works utilize the ubiquity
of smartphones [27] and even consider constructing maps by crowdsourcing magnetic field measure-
ments from many users [28]. To our knowledge, all pedestrian-localization-based magnetic field
maps are 2→ m (or “2.5→ m” maps [26]), which assume a constant (or near-constant) altitude.

Ground vehicles are another common platform for indoor magnetic field mapping [29, 20, 30,
24]. These platforms benefit from wheel encoder odometry to assist their state estimates. Most
of such works also create 2 → m maps since the platform is confined to the ground. However,
some researchers outfit their wheeled robots with a magnetometer on a vertical actuator [19] or
vertically-spaced magnetometers [20] that let them create 3→ m maps. The latter is a recent work
by Hanley et al. showing that indoor magnetic fields can be quite sensitive to changes in altitude
[20] and emphasizing some issues with 2→ m planar magnetic field maps.

UAVs are used more regularly for outdoor magnetic field surveys than for indoor mapping. A
recent review paper by Zhang et al. [31] presents works on outdoor magnetic field surveillance and
also addresses methods of characterizing and suppressing UAV-induced magnetic noise. From the
papers in their review, it is clear that the size and cost of the outdoor survey vehicles and sensors
tend to be much larger. For example, [32] mounted a Geometrics G823A cesium magnetometer
on a gas-powered helicopter and measured 800nT of magnetic variation caused by components on
the vehicle when it is not powered. This reduced to 80nT and 40nT when the magnetometer was
attached to a boom of length 0.5m and 1.2m, respectively. Additionally, they consider vehicles
that cost $2K - $45K USD and weigh 7lbs - 51lbs. The larger vehicle size of outdoor magnetic
surveys allows for interventions like suspending a magnetometer at the end of a 4.5m-long cable
[33]. Thus, the vehicle size and project budget of outdoor surveying techniques allow for solutions
to vehicle-induced magnetic noise (and magnetometers with better sensing capabilities) that are not
applicable to (or not used on) indoor platforms. Zheng et al. cover other UAV noise characterization
and mitigation efforts for outdoor magnetic surveys in Section 3 of ref. [31].

By contrast, some works use UAVs with magnetometers indoors, but do not create a map of
the magnetic field for their implementation. Brzozowski et al. describe methods to support the
use of indoor magnetic fields on UAVs in refs. [16, 17], but mostly present methods of gathering
and visualizing magnetic field observations. They stop short of interpolating their magnetic field
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observations to create a queryable map or perform any state estimation. Furthermore, they do
not actually use a flight vehicle (real or simulated) to gather or validate their magnetic field
measurements. The authors in ref. [34] perform 3D position localization of a UAV near a two-wire
power line setup in their lab space, but do not attempt to map the magnetic field near the wires in
the process. Li et al. estimate the 6DOF pose of a UAV indoors using magnetometers (among other
sensors), but only use the magnetometer for heading estimates and achieve this without a magnetic
field map [35]. Zahran et al. leverage hall effect sensors (a type of magnetometer) in a clever way to
estimate the velocity of a quadrotor and improve the dead reckoning of such flight vehicles (again,
without magnetic field maps) [36].

There are works that use UAVs to map signals like ultra-wideband (UWB) radio [37] and visual
light communication (VLC) [38]. Some works often use the term “fingerprinting” to describe the
association of unique features in a reference signal to specific locations in a workspace. In this
dissertation, we describe the same process as mapping.

To our knowledge, however, there is only one other paper that uses a UAV to make or leverage
indoor magnetic field maps. Lipovsky et al. [39] uses observations from a UAV and cubic spline
interpolation to create 3→ 3 maps of the DC, 50Hz, and 150Hz magnetic fields in a [5×5×2.5]m
room. Ref. [39] mounts their magnetometer 40cm away from the drone based on lessons learned
from their previous investigation on drone-induced magnetic noise [40].

In Chapter 2, we use a UAV to create 3 → 3 indoor magnetic field maps. A flight vehicle
allows for quick and repeatable mapping and validation of an indoor volume but can also impede
accurate measurements of the ambient field with magnetic noise generated by the motors and ESCs
(electronic speed controllers). The focus of Chapter 2 is on identifying the type of magnetic noise
our UAV creates, reducing the amount of magnetic noise, and finally incorporating any remaining
measurable variations into the magnetic field map.

1.3.2 Attitude Estimation

Attempts to estimate attitude indoors tend towards detecting and rejecting perturbations in
Earth’s magnetic field [41, 42, 43]. However, the methods from these works do not easily extend
to full 3DOF roll, pitch, and yaw estimation and require multiple magnetometers. References
[44, 45, 46, 47, 48] and others mitigate the effect of disturbances by adjusting the credibility of the
magnetometer’s or accelerometer’s measurements when distortions in either are detected. Such
works propose different methods of detecting disturbances, but generally assume that disturbances
are brief and the magnetic field will return back to some expected value. Reference [49] relaxes this
assumption by requiring only that the norm of the magnetic field remains constant over small time
periods. However, Reference [49] does not provide 3DOF attitude estimation metrics of their indoor
tests to understand how well this method works for indoor navigation. Reference [48] compares
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their disturbance rejection method to that of [49] and other works with brief, yet large, magnetic
field disturbances.

In Chapter 3, we perform 3DOF attitude estimation using a gyroscope, an accelerometer, and a
single magnetometer despite magnetic field disturbances from buildings and human-made structures.
Using magnetic field maps, we leverage the spatial variation of the field to assist in 3DOF attitude
estimation rather than rejecting these features as disturbances. Such capabilities are important
for full pose estimation using magnetometers indoors since spatial variation in the magnetic field
is desirable for position localization. Although we draw a distinction in our method from the
disturbance rejection paradigm, our mapping-based methods can still be paired with the disturbance
rejection methods if a magnetic field map is locally inconsistent in a region near doors, elevators, or
other mobile ferromagnetic objects. Time-varying magnetic field mapping is addressed in [10], but
not in this dissertation.

1.3.3 Position Localization

The position estimation accuracy of works that estimate position with the magnetic field range
by a couple orders of magnitude. A direct comparison across all related works is difficult due to
differences in the size of their workspaces and the varying sensors and algorithms used to compute
ground-truth pose estimates.

Recent results from Almeida et al. in [30] give an average of 0.07m of 2D position error on a
ground robot across three different test cases in an 8m×10m room. Their work has a 2D LIDAR
sensor for ground-truth, uses a particle filter to estimate position, and presents estimation accuracy
after their particle filter (PF) has converged (i.e., after the PF first achieves error within 0.1m).
Similarly in 2013 Frassl, Robertson, et al. obtain 2D position estimates of 0.064m for their wheeled
robot and 0.08m for a pedestrian walking through a 6m×10m room in [24]. They use the same
room in a SLAM-based approach and obtain 0.01m to 0.2m of average error for foot-mounted
pedestrian localization on the last 80% of their four test trials [25]. For both works, the authors use
Vicon motion capture for ground-truth, a particle filter for position estimates, and initialize their PF
with ground-truth position and attitude like in our work.

We suggest Refs. [30, 24, 25] provide the most direct and fair comparisons to our work in
Chapter 4 given the size of the respective workspaces and their method of computing position
estimation error throughout the trajectory. This is despite differences in the respective vehicles (i.e.,
wheeled robots and pedestrians vs UAV). Finally, we mention [50] by Lee et al. which achieves
0.1m of minimum mean squared error (MMSE) across four trials using a SLAM-based magnetic
field mapping method on a wheeled robot. Though [50] also tests in rooms of similar size (e.g.,
5m×4m), they compute their position estimation error at ∼10 known ground-truth locations instead
of throughout their trajectories.
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In Chapter 4, we use an accelerometer, altimeter, and magnetometer to estimate the position
of a UAV in our indoor workspace. These position estimates are compared against errors in our
magnetic map to investigate the cause of our position estimation errors. Here, we use an altimeter to
demonstrate how another sensing modality can improve position estimates when the given magnetic
field map is erroneous.

The core focus of Chapter 4 is to relate the gradients of the magnetic field to localization
accuracy. In a workspace with a constant magnetic field in all locations, it would be impossible to
localize position using the magnetic field alone. As such, we see the gradient of the magnetic field
as a source of information and aim to analyze the relationship between the signal’s spatial gradient
and our ability to localize. To our knowledge, there are no other works that quantitatively compare
the spatial gradient of an indoor magnetic field to the accuracy of their position localization. A
closely-related set of works, however, utilize gradients of a signal as their fingerprints and obtain
less spatial ambiguities in their maps [51], better motion tracking through a workspace [52], or
better agreement in fingerprints across different devices [53]

1.4 Research Approach

This dissertation focuses on experimental analysis and validation of magnetic-field-based
navigation techniques applied to small, low-cost unmanned aerial vehicles (UAVs). Some works
like Ref. [20] have shown that the magnetic field inside buildings can vary significantly with
changes in altitude. As such, we use a UAV to repeatably gather observations at various altitudes
since it can be time consuming to do so by hand [19].

The approach and ability to navigate using magnetic fields depends on how much the magnetic
field varies in a target area. If the magnetic field is constant in the region of interest, then there
are well-known tools to incorporate magnetometer measurements to assist with attitude estimation.
However, in this constant-field case, it is impossible to distinguish one location from another simply
by measuring the magnetic field. Basically, it becomes difficult to track the vehicle’s motion if
the measured magnetic field is the same whether we remain stationary or move around. On the
other hand, a local magnetic field that varies significantly within a workspace can yield rich, unique
signatures that can improve position localization. However, indoor magnetic fields with such spatial
variation are not accurately mapped by WMM making it more difficult to use magnetic fields for
attitude estimation without local maps.

Since the approach to magnetic-field-based navigation is so dependent on the spatial variation

of the magnetic field within a workspace, it is important to understand how much spatial variation
one would experience in real environments. Simulations would enable a careful analysis of how
valuable magnetic fields are for improving navigation and how that value relates to spatial variation
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in the field. For this, it can be tempting to simulate arbitrarily complex or trivially simple magnetic
fields that show promising results. However, if these simulated fields would never be seen anywhere
on Earth, then the simulation fails to demonstrate the value of magnetic fields in practice.

To our knowledge, there are not any rules or best practices on how to model, or even characterize,
indoor magnetic fields. As such, this dissertation relies on gathering measurements of the magnetic
field in various locations to better understand how much spatial variation exists in real-world
magnetic fields and how to leverage the information stored in magnetic fields for indoor navigation.
We believe our findings and data uncover targeted questions that can now be addressed more readily
with modeling and simulation.

Anyone interested in developing best practices for modeling indoor magnetic fields may benefit
from the following references that include open-source data on indoor magnetic fields [54, 55, 56,
57, 58, 59, 60, 61, 62, 63, 64, 65, 66] with reviews like [55] covering more details of such databases.

1.5 Contributions and Innovations

Contributions are best described as “things I worked hard on”. The contributions of this thesis are:

• Taking attitude estimation methods traditionally used for spacecraft in low Earth orbit and
applying them to UAVs for indoor navigation.

• Several contributions to the rc pilot a2sys autopilot software developed by myself and
other labmates in the A2sys (Autonomous Aerospace Systems) lab at University of Michigan.

• A comprehensive experimental analysis using data from 130+ test flights.

• Analytical tools to determine if position localization errors are caused by low spatial variation
in the magnetic field, error in the GPR map, or magnetic ambiguities in nearby areas.

• An investigation showing that higher magnetic field spatial variation correlates with more
accurate position estimates.

• An investigation showing magnetic field maps can improve 3DOF (degree of freedom) attitude

estimates in regions of high magnetic field spatial variation but are less valuable in regions of
low spatial variation.

Innovations are novel methods and tools. The innovations of this thesis are:

• GPR (Gaussian Process Regression)-based “compromise maps” that learn the time-varying
magnetic biases from a UAV (unmanned aerial vehicle) over several flights without signifi-
cantly increasing prediction time.
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• A visualization method for 3D magnetic fields that show planar direction and downward-
vector component of the magnetic field at various altitudes.

• A new magnetic gradient localization metric meant to predict the accuracy of position
estimates using magnetic fields.

• A new “consistency metric” meant to indicate when magnetometer measurements should be
used or rejected.

1.6 Thesis Outline

The outline of this dissertation is summarized in Figure 1.2.

Motion Capture Magnetometer

Gyroscope Accelerometer Altimeter

Position 
Estimation (Ch. 4)

Attitude 
Estimation (Ch. 3)

Magnetic Field 
Map (Ch. 2)

Reference
Vector

Spatial
Variation

Accelerometer

UAV

Figure 1.2: Dissertation outline.

Chapter 2 explains how to create 3D magnetic field maps using observations from a UAV and
Gaussian Process Regression (GPR) for interpolation. The UAV helps by allowing us to quickly,
and repeatably, gather observations of the magnetic field at various altitudes. However, it also
creates magnetic noise that makes it difficult to map the ambient magnetic field. We discuss tools
and procedures on how to identify, reduce, and incorporate UAV-induced magnetic noise into the
maps.

In Chapter 3, we demonstrate the use of local magnetic field maps for attitude estimation using
a Multiplicative Extended Kalman Filter. Here, we find that local maps are not valuable in outdoor
locations (really regions accurately represented by WMM). However, when navigating indoors,
local magnetic field maps become necessary for IMU-based attitude estimation since the magnetic
field is significantly different from WMM estimates. This chapter is largely similar to Ref. [23]
with some updates on lessons learned since then.
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Chapter 4 investigates how spatial variation in the magnetic field related to position localization
estimates from a particle filter. Here, we introduce metrics for describing magnetic spatial variation
to show that position estimates often improve as the magnetic field gradient increases.

Finally, Chapter 5 summarizes our major findings and proposes ideas for future work.
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CHAPTER 2

Enhanced Magnetic Field Mapping

2.1 Introduction

This chapter, outlined in Figure 2.1, aims to augment indoor sensor suites with magnetic field
data by demonstrating how to create and validate magnetic field maps of indoor spaces. The key
idea is to enable the creation of local indoor magnetic field maps that can then be leveraged to
improve position and attitude estimates. The value of indoor magnetic field maps is demonstrated
in works that use them to estimate the position of pedestrians and robotic vehicles inside buildings
and to estimate the attitude of a drone indoors. As shown by ref. [19], gathering observations for a
magnetic field map by hand is time-consuming and does not scale to mapping increasingly large
spaces. As such, we propose using an unmanned aerial vehicle (UAV) to gather observations in the
target volume of the workspace, using Gaussian Process Regression (GPR) to interpolate between
these observations, then finally leveraging the map in future experiments within the mapped volume.

The contributions of this chapter are as follows.

1. The magnetic noise induced by the motors and ESCs on a UAV can be reduced by removing
high-frequency commands from the flight controller to the motors.

2. Our UAV produces magnetic biases that occasionally change in magnitude and direction. We
were unable to identify the underlying cause but found that distancing the magnetometer from
the electronics, a commonly used intervention to reduce the measured magnetic field noise,
decreased the measured variation of these biases.

3. Our “compromise map” can be trained on large datasets to prevent overfitting to a single flight
test and learn the flight-by-flight variations of the drone without incurring high computation
costs when predicting the magnetic field.

4. We find that our compromise map has similar accuracy if the location of training observations
is no further than 0.55m apart. This agrees with a similar, qualitative study by Akai and Ozaki
in ref. [19].
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3) Utilization of GPR Map
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Main Conclusions
• Vehicle controller’s motor commands can add magnetic noise
• The quadrotor platform injects changing biases in measured magnetic field
• Our “compromise map” learns magnetic variations without increasing runtime
• Our “consistency test” compares agreement between map and new flight data

Iterate to Improve Map Accuracy

Figure 2.1: Methods to reduce, incorporate, and identify vehicle-induced magnetic field noise. Our
suggested interventions can be progressively added until the user’s GPR map is sufficiently accurate

for the application.

5. We introduce a consistency test to indicate if a given GPR map has good agreement with
new measurements from a subsequent flight test. This consistency test was important for
contextualizing our position localization accuracy in Chapter 4.

6. In a comparison of two methods of mapping the norm (magnitude) of the magnetic field, we
find (empirically) that creating a specialized map on the norm of the field is equivalent to
taking the norm of estimates from a vector-valued magnetic field map.

The remainder of this chapter is structured as follows. Section 2.2 presents related works,
and Section 2.3 introduces our mathematical notation for Gaussian process regression and our
compromise map. Section 2.4 introduces our UAV and testing methodology for this chapter. Finally,
Section 2.5 presents our results, while conclusions and future work appear in Section 2.6.

2.2 Related Works

A magnetic field map must have an input dimension p and output dimension m, which we will
denote as a p→ m map. The choice of input dimension p often depends on the agent making the
map. For example, p = 2 for wheeled robots [12, 13, 14, 15] and most pedestrian localization while
p = 3 for UAVs [16, 17], multi-floor pedestrian localization [18], or specially-outfitted ground
robots [19, 20]. The output m is set by how the map will be utilized. Works like [21, 22] use m = 1

12



for the orientation or magnitude of the magnetic field vector, while other works like [23, 19, 18] use
all three vector components of the magnetic field with m = 3.

A number of works using indoor magnetic field maps are focused on pedestrian localization.
Such works often utilize foot-mounted, or calf-mounted sensor suites [24, 25, 26] that can leverage
zero-velocity updates to help with localization. Alternatively, many such works utilize the ubiquity
of smartphones [27] and even consider constructing maps by crowdsourcing magnetic field measure-
ments from many users [28]. To our knowledge, all pedestrian-localization-based magnetic field
maps are 2→ m (or “2.5→ m” maps [26]), which assume a constant (or near-constant) altitude.

Ground vehicles are another common platform for indoor magnetic field mapping [29, 20, 30,
24]. These platforms benefit from wheel encoder odometry to assist their state estimates. Most
of such works also create 2 → m maps since the platform is confined to the ground. However,
some researchers outfit their wheeled robots with a magnetometer on a vertical actuator [19] or
vertically-spaced magnetometers [20] that let them create 3→ m maps. The latter is a recent work
by Hanley et al. showing that indoor magnetic fields can be quite sensitive to changes in altitude
[20] and emphasizing some issues with 2→ m planar magnetic field maps.

UAVs are used more regularly for outdoor magnetic field surveys than for indoor mapping. A
recent review paper by Zhang et al. [31] presents works on outdoor magnetic field surveillance and
also addresses methods of characterizing and suppressing UAV-induced magnetic noise. From the
papers in their review, it is clear that the size and cost of the outdoor survey vehicles and sensors
tend to be much larger. For example, [32] mounted a Geometrics G823A cesium magnetometer
on a gas-powered helicopter and measured 800nT of magnetic variation caused by components on
the vehicle when it is not powered. This reduced to 80nT and 40nT when the magnetometer was
attached to a boom of length 0.5m and 1.2m, respectively. Additionally, they consider vehicles
that cost $2K - $45K USD and weigh 7lbs - 51lbs. The larger vehicle size of outdoor magnetic
surveys allows for interventions like suspending a magnetometer at the end of a 4.5m-long cable
[33]. Thus, the vehicle size and project budget of outdoor surveying techniques allow for solutions
to vehicle-induced magnetic noise (and magnetometers with better sensing capabilities) that are not
applicable to (or not used on) indoor platforms. Zheng et al. cover other UAV noise characterization
and mitigation efforts for outdoor magnetic surveys in Section 3 of ref. [31].

By contrast, some works use UAVs with magnetometers indoors, but do not create a map of
the magnetic field for their implementation. Brzozowski et al. describe methods to support the
use of indoor magnetic fields on UAVs in refs. [16, 17], but mostly present methods of gathering
and visualizing magnetic field observations. They stop short of interpolating their magnetic field
observations to create a queryable map or perform any state estimation. Furthermore, they do
not actually use a flight vehicle (real or simulated) to gather or validate their magnetic field
measurements. The authors in ref. [34] perform 3D position localization of a UAV near a two-wire
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power line setup in their lab space, but do not attempt to map the magnetic field near the wires in
the process. Li et al. estimate the 6DOF pose of a UAV indoors using magnetometers (among other
sensors), but only use the magnetometer for heading estimates and achieve this without a magnetic
field map [35]. Zahran et al. leverage hall effect sensors (a type of magnetometer) in a clever way to
estimate the velocity of a quadrotor and improve the dead reckoning of such flight vehicles (again,
without magnetic field maps) [36].

There are works that use UAVs to map signals like ultra-wideband (UWB) radio [37] and visual
light communication (VLC) [38]. Some works often use the term “fingerprinting” to describe the
association of unique features in a reference signal to specific locations in a workspace. In this
dissertation, we describe the same process as mapping.

To our knowledge, however, there are only two works that use a UAV (drone, multirotor, flight
vehicle, etc...) to make or leverage indoor magnetic field maps. One is Chapter 3 of this dissertation
which uses Gaussian process regression (GPR) to make 3 → 3 magnetic field maps of the DC
magnetic field in an indoor workspace of dimensions [4×3×2.25]m. The other work, by Lipovsky
et al. [39] uses observations from a UAV and cubic spline interpolation to create 3 → 3 maps
of the DC, 50Hz, and 150Hz magnetic fields in a [5×5×2.5]m room. Ref. [39] mounts their
magnetometer 40cm away from the drone based on lessons learned from their previous investigation
on drone-induced magnetic noise [40].

In this chapter, we use a UAV to create 3 → 3 indoor magnetic field maps. A flight vehicle
allows for quick and repeatable mapping and validation of an indoor volume, but can also impede
accurate measurements of the ambient field with magnetic noise generated by the motors and ESCs
(electronic speed controllers). The focus of this chapter is on identifying the type of magnetic noise
our UAV creates, reducing the amount of magnetic noise, and finally incorporating any remaining
measurable variations into the magnetic field map.

Additionally, we study how the spatial density of magnetic observations affect the accuracy of a
magnetic field map (similar to a study done in [19]) and empirically demonstrate the equivalence of
two maps that estimate the norm of the ambient magnetic field. Finally, we introduce a consistency
check to reason about when a GPR-based magnetic field map is appropriate to use for state
estimation.

The interventions and studies done in this chapter are lessons we learned while investigating
the 3D position localization of a UAV using a low-cost IMU and magnetometer (Chapter 4). It is
important to emphasize that some of our interventions may not be needed for other applications of
indoor magnetic field maps (e.g., they were not applied for our study on attitude estimation using
indoor magnetic field maps in Chapter 3).

14



2.3 Mathematical Preliminaries and Methodology

This section introduces our use of Gaussian Process Regression (GPR) to interpolate a set
of magnetic field observations in our workspace. Special notation is used to distinguish a set
of n2 observations used to train hyperparameters and a separate set of n1 observations used to
perform inference. Additionally, we introduce performance metrics used later in our analysis of our
GPR-based magnetic field maps.

We first introduce some notation. A single measurement of the magnetic field at an unspecified
location is ỹ ∈ R3 with the x, y, and z components of this measurement denoted as ỹx, ỹy, ỹz ∈ R
respectively. In general, a subscript of x, y, or z denotes that respective component of the magnetic
field while an overhead tilde˜denotes a measured value. Ỹ n ∈ R3×n is a set of n magnetic field
measurements while Ỹ n

z ∈ Rn denotes the z component of each magnetic field measurement in the
set. Similarly, Xn ∈ R3×n is a collection of n spatial locations in our workspace. The predicted

or estimated magnetic field m̂ at some location r ∈ R3 is denoted as m̂(r) ∈ R3 and the x
component of this prediction is m̂x(r) ∈ R. Thus, a collection of n magnetic field estimates will be
M̂n(Xn) ∈ R3×n. Similarly, M̂n is a set of predictions of the magnetic field where the location
of these predictions is arbitrary and M̂n

y ∈ Rn gives just the predictions from GPy. Generally, an
overhead hatˆdenotes a prediction/estimate while a superscript integer n denotes the number of
measurements/predictions/locations of the respective matrix.

2.3.1 Gaussian Process Regression

Gaussian Process Regression (GPR) is a machine learning tool that can be used to estimate a
signal given a set of noisy measurements. Here, we use GPR as the backbone of our magnetic field
map leveraging methods from Rasmussen et al. in [67]. The goal is to have a magnetic field map of
the flight workspace which will provide an estimated magnetic field vector at any location in the
working volume.

Throughout this dissertation, we use GPR to create three separate 3→ 1 maps each responsible
for estimating the x, y, and z components of the magnetic field vector in our workspace. To create
the GPR-based map, we first gather n observations of the magnetic field throughout the workspace.
Observation sets give the three components of the measured magnetic field Ỹ n

x , Ỹ n
y , Ỹ n

z ∈ Rn at
each 3D position in our design matrix Xn ∈ R3×n. Together, these quantities define the training
sets Dx = (X, Ỹx), Dy = (X, Ỹy), and Dz = (X, Ỹz) for the x, y, and z GPRs respectively.

In Ref. [67], Rasmussen and Williams define a Gaussian process as a distribution over functions
written as

f(r) = N
(
f̄ ,V(f)

)
∼ GP (0, k(r, r′)) (2.1)

where 0 is the zero-mean function, k is the covariance function (or kernel) and r, r′ ∈ R3 are 3D
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positions. This dissertation uses the squared exponential covariance function

k(r, r′) = σ2
f exp

(
− 1

2l2
(r − r′)>(r − r′)

)
+ σ2

n (2.2)

with σf as the signal variance, l as the length scale, and σn as the sensor noise variance which define
our set of hyperparameters Θ = {σf , l, σn} for this kernel. In essence, the squared exponential
kernel is a measure of similarity between two 3D locations r and r′ (scaled by the hyperparameters)
and will serve as a weighting term in the inference of the magnetic field at unobserved locations.

Recall that we perform regression using three Gaussian processes GPx, GPy, and GPz to
represent the full magnetic field anywhere in the workspace. As such, we need three sets of
hyperparameters (Θx, Θy, Θz) each computed using the Gaussian Processes for Machine Learning
gpml-matlab 1 toolbox by minimizing the negative log marginal likelihood of the respective
training sets Dx, Dy, and Dz. We define hyperparameters optimized over the observations in a
training set Dx as Θ∗x(Dx).

Now, to estimate the magnetic field at some location r∗, we need a training set D and a set of
hyperparameters Θ corresponding to a selected kernel k. A squared exponential kernel k using
optimal hyperparameters Θ∗(D) is denoted as kΘ∗(D)(r, r

∗) where the subscript on the kernel k
specifies which set of hyperparameters are used and r ∈X is a location in the training set.

This is the extent of our notation, but an example is helpful. Say we want to estimate the
z component of the magnetic field m̂z(r

∗) at some location r∗. For this, GPz requires a kernel
k to compare the target location r∗ against locations Xn1 in its training set Dn1

z = (Xn1 , Ỹ n1
z ).

Additionally, its hyperparameters Θ∗(Dn2
z ) are optimized over a separate set of observations

Dn2
z = (Xn2 , Ỹ n2

z ). Mathematically, we express this as

m̂z(r
∗) = GPRz(r

∗)

= E
[
GPz

(
0, KΘ∗

z(D
n2
z )(X

n1 , r∗)
)] (2.3)

where a matrix K(X, r∗) has scalar elements k
(
X{i}, r∗

)
with each X{i} ∈ R3 a column of

X ∈ R3×n while m̂z(r
∗) ∈ R. Finally, GPRz(r

∗) is a shorthand for the predicted magnetic field
value of the z-component Gaussian process GPz at r∗.

The reason for the verbosity in Equation 2.3 is to allow an observation set for optimizing hyper-
parametersDn2

z = (Xn2 , Ỹ n2
z ) and a separate “inference set”Dn1

z = (Xn1 , Ỹ n1
z ) for computing the

similarity weights when predicting the magnetic field at some location r∗. This is important because
hyperparameter optimization, typically done offline, scales withO (n2

3) while inference scales with

1gpml-matlab was created by Carl Edward Rasmussen and Hannes Nickisch http://www.
gaussianprocess.org/gpml/code/matlab/doc/ accessed on September 2021
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O (n1
2). With this formulation, our map can encode information from a large set of flights offline,

then use a subset of these observations during the actual inference to reduce computational load.
We leverage this idea in Section 2.4.4 to create and query our magnetic field map.

2.3.2 Magnetometer Calibration

To calibrate our vehicle’s magnetometer, we use the model and iterative least squares solver
from Ref. [68] along with the two-step calibration procedure from Ref. [69]. The magnetometer
model from [68] is repeated here

B̃x = θaBx + θx0 + ηx (2.4)

B̃y = θb(B̃y cos(θρ) +Bx sin(θρ)) + θy0 + ηy (2.5)

B̃z = θc(Bx sin(θλ) +By sin(θφ) cos(θλ)

+Bz cos(θφ) cos(θλ)) + θz0 + ηz
(2.6)

where (B̃x, B̃y, B̃z) are measured magnetic field values, (Bx, By, Bz) are the true magnetic field,
and the parameters to solve for are bias (θx0 , θy0 , θz0), scale factor (θa, θb, θc), and non-orthogonality
terms (θρ, θλ, θφ).

Ultimately, we aim to find parameters θ = [θa, θb, θc, θx0 , θy0 , θz0 , θρ, θλ, θφ]> by minimizing the
following cost function via an iterative non-linear least squares solver

∆B = B2
R −B2

= B2
R − (B2

x +B2
y +B2

z )

= B2
R − g(B̃x, B̃y, B̃z, α)

(2.7)

where BR is the reference magnetic field strength (taken from the World Magnetic Model) and g()

is obtained by solving Equations 2.4 - 2.6 for (Bx, By, Bz).
The key difference from Springmann’s method [68] is to estimate the nine θ parameters in

two separate minimization steps like Wu et al. demonstrate in [69]. We found that this two-step
approach gave more consistent results for another magnetometer (not used in this dissertation) on
our UAV. As such, we adopted the two-step calibration technique for our primary magnetometer as
well.

First, a simplified magnetometer model is created by setting all scaling terms to 1 and non-
orthogonalities to 0 leaving just the bias terms (θx0 , θy0 , θz0) in Equations 2.4 - 2.6. The first
minimization is done on this simplified model to find an optimal set of bias terms (θ∗x0 , θ

∗
y0
, θ∗z0) which

are in turn used as initial conditions for the second optimization where θ0 = [1, 1, 1, θ∗x0 , θ
∗
y0
, θ∗z0 ,

0, 0, 0]>. The nine optimal parameters from this second optimization are used as the calibration
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terms for the magnetometer.

2.3.3 Performance Metrics

We use the root mean squared error (RMSE) of each GPR’s prediction m̂x against the corre-
sponding component of the measured field ỹx across a validation set. With this, the RMSE for GPx
over some validation set Dnv

x = (Xnv , Ỹ nv
x ) is defined as

RMSEx =

√√√√ 1

nv

nv∑
i=1

(m̂
{i}
x − ỹ{i}x )2 (2.8)

where M̂nv
x = GPRx(X

nv) is the x component of the predicted magnetic vector, m̂{i}x is the ith
prediction in M̂nv

x , and ỹ{i}x is the corresponding ith measurement in Ỹ nv
x .

Although we have three GPRs, it is sometimes convenient to summarize the accuracy of their
composite estimate as

RMSEnorm =
√
RMSEx

2 +RMSEy
2 +RMSEz

2. (2.9)

2.4 Experimental Procedure

This section introduces our quadrotor unmanned aerial vehicle (UAV), testing locations, and
flight trajectories used to construct and validate our magnetic field maps.

2.4.1 Equipment, Facilities, and Setup

All tests for this chapter were conducted at the Robot Fly Lab in the University of Michigan
Ford Motor Company Robotics Building. This indoor flight arena is equipped with eight OptiTrack
motion capture cameras that give a working volume of 4m × 3m × 2.25m as shown in Figure 2.2.
A ground station computer connected to the OptiTrack system provides ground-truth position and
attitude estimates of the vehicle at 120Hz. The communication setup for the ground station, pilot
transmitter, and flight vehicle is the same as that depicted in Figure 3.3 of Chapter 3, but with one
less BeagleBone Blue on the UAV.

The motion capture pose estimate is streamed to the flight vehicle in real-time, but with a
communication latency of about 40ms. For this, the vehicle’s onboard estimate of roll and pitch is
used for control while the remaining states (position and heading) are taken from the 40ms-delayed
motion capture packets.

Time synchronization is important to properly associate each onboard magnetometer measure-
ment with a ground-truth pose when creating and validating our magnetic field maps. During flights,
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Figure 2.2: Flight vehicle Q1 in the Robot Fly Lab within the Ford Motor Company Robotics
Building at the University of Michigan.

our UAV’s BeagleBone Blue is synchronized with the ground station laptop and ground station
BeagleBone Green using a Linux tool called chrony 2 .

In post-processing, this synchronization allows us to associate the non-delayed motion capture
data with the drone’s magnetometer readings. Additionally, we use motion capture pose (position
and attitude) estimates to rotate the magnetometer data into the world frame and determine the
location each magnetic field measurement was collected.

This dissertation uses time-invariant magnetometer calibration combining techniques from Refs.
[68] and [69] (see Section 2.3.2). Magnetometer calibration is performed outdoors, just South of the
University of Michigan’s outdoor netted flight facility, M-Air. This location is far enough away from
any buildings that the magnetic field strength is constant over a few meters and should be accurately
reflected by the World Magnetic Model (WMM) [11]. For the data gathered on September 1st, 2022
(test series t6), the ambient magnetic field reference term used in our calibration isBR = 53.1351µT

as taken from a WMM online calculator for M-Air’s location at 42.294431◦N, 83.710442◦W, and
270m above sea level.

Our flight vehicle “Q1” (Quadrotor one) is shown in Figure 2.3 and has an RM3100 magnetome-
ter that is sampled at 200Hz and an MPU9250 IMU (gyroscope, accelerometer, and magnetometer)
sampled at 200Hz. This dissertation made no use of the magnetometer on the MPU9250 relying
solely on the RM3100 for all magnetic field measurements. The BeagleBone Blue (BBB) micropro-

2chrony was created by the Red Hat Software company https://chrony.tuxfamily.org/ accessed on
February 2022
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(a) Main components of Q1. S2 = 2cm. (b) Definition of S1 and S2. S2 = 8cm.

Figure 2.3: Q1: The flight vehicle used for experiments in this chapter.

cessor handles communication with the ground station via Xbee radio, logs all sensor data locally,
and commands the four motors to achieve the desired flight trajectory. A Turnigy 4S 2650mAh 20C
LiPo battery provides the main power on Q1 while a Turnigy 2S 300mAh LiPo battery keeps the
BBB powered on when swapping 4S batteries between flights.

Figure 2.3b shows Q1 with different distances from the magnetometer to the rest of the vehicle’s
electronics. S1 is defined as the distance from the top of the battery mounting plate to the top of
the BBB. This distance is S1 = 4.79cm on Q1 and will not change in any experiments through
this chapter. S2 is an adjustable distance defined from the top of the BBB to the bottom of the
magnetometer’s mounting plate that allows us to investigate how the magnetometer’s proximity to
other electronics affects the consistency of magnetic field measurements on a quadrotor.

Finally, we placed a stationary RM3100 magnetometer in the corner of the flight lab that gathers
data every 10 seconds (0.1Hz). This stationary sensor is on the ground at approximately (-3.5m,
+2.5m) in the (XW , YW ) frame defined in Figure 2.2 and was used to confirm that the ambient
magnetic field remained constant during our experiments.

2.4.2 Flight Profiles

The flight tests conducted for this chapter are all designed around single-altitude scanning
patterns that gather observations at a planar slice of the working volume. Figure 2.4 shows the
desired trajectory (blue, solid line) has 4m x-axis strides separated by 0.25m y-axis strides. Since
all flights begin with the drone at the origin (0m, 0m) of our working volume, the trajectory in
Figure 2.4 includes diagonal strides to leave and return to the origin at the start and end of each
flight test. Finally, some trajectories gather observations at multiple altitudes in a single flight and
include z-axis strides between each planar trajectory. For multi-altitude tests, the drone traverses a
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Figure 2.4: Single-altitude lawnmower trajectory used in all trajectories in this chapter.

single diagonal stride from the origin to the corner at the first altitude, and another diagonal stride
from the corner to the origin at the final altitude.

All linear strides are created from quintic spline trajectories that are hand-tuned to enforce a
1.9m/s speed limit which is a compromise between the desire for shorter flight tests (that allow for
more frequent data collection) and the limitations of our flight controller.

The 0.25m y-axis spacing is selected to enable a study on how the spatial density of observations
used to train a GPR-based map affects the accuracy of the said map (Section 2.5.4). A similar
study was done in ref. [19] where magnetic field observations in a 3m × 3m × 2.2m volume are
hand-gathered at 0.2m increments in all axes. For our study, having 0.2m y-axis and 0.2m z-axis
spacing that would scan all altitudes in our working volume created a flight trajectory duration that
exceeded the maximum flight time of our vehicles. Thus, a 0.25m minimum separation distance is
used in this chapter instead.

2.4.2.1 Flight Profile Nomenclature

Throughout this dissertation, we refer to flights with ID tags like “tY XX” where Y refers to the
flight test series and XX is the two-digit ID of the flight test in that series. This allows the reader to
reference our raw experimental data to improve the reproducibility of our results. Appendix A has
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more details on the matter.

2.4.3 Pre-Processing Magnetic Observations

When creating our hyperparameter (Dn2) and inference sets (Dn1), we first pre-process the
magnetic field data gathered by the RM3100.

Figure 2.5 shows data from the UAV’s RM3100 for a segment of time when the drone is not
moving and the motors are not spinning. The black dots are raw magnetometer measurements that
are mostly constant, but frequently have spurious measurements that vary by ±3µT for each axis
respectively. We have seen such spurious measurements from three different RM3100 sensors; even
one mounted on a platform with no motors or ESCs (electronic speed controllers). Other works
using RM3100s have not reported such spurious readings [20, 70]. Thus, we believe this could be
a result of our 200Hz sampling rate (600Hz for the whole device to achieve 200Hz per axis) and
something with the RM3100’s firmware that does not like such a fast sampling rate. Alternatively,
this could be caused by some poor voltage regulation on the BeagleBone Blue. We have not tried
sampling from other microprocessors to see if the BeagleBone is the cause of this issue.

Nonetheless, all RM3100 data we use throughout this dissertation is first put through a moving
median filter with a window size of 5. The resultant observations from the median filter are shown
in red in Figure 2.5. Clearly, there are still some outliers in red, but increasing the window size of
the moving median filter to remove these outliers delays the signal enough to cause problems for
state estimation. Since we want to construct and validate maps with the same pre-processing steps
used when performing state estimation, we fix a window size of 5 and work with the remaining
outliers.

In addition to a median filter, we downsample the 200Hz of data gathered during the flight test.
Since the drone does not move very far in 1/200th of a second, many observations are spatially
redundant. As such, we temporally downsample our observations to 2Hz, 4Hz or 10Hz when
creating or validating our GPR maps. Figure 2.4 shows the spatial distribution of 2Hz and 10Hz
downsampling during a flight test.

Since motion capture data is used to rotate the magnetometer data from the body frame to
the world frame, we perform one final check to ensure a timely ground-truth pose estimate. Any
temporally downsampled observation with a motion capture pose older than 50ms is considered
“stale” and replaced with the nearest (in time) observation that has a more timely motion capture
pose. If the “fresh” replacement is already in the downsampled observation set, the redundant
observation is removed leaving one instance of it in the final set.
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Figure 2.5: Data from a stationary RM3100 placed at the origin of our flight arena and sampled at
200Hz. Spurious measurements are reduced with a moving median filter with a window size of 5.

2.4.4 Creating and Querying the “Compromise” Map

As mentioned in Section 2.3.1, creating a GPR-based map requires each Gaussian process
{GPx, GPy, GPz} to have a set of hyperparameters optimized over an observation set {Θ∗x(Dn2

x ),

Θ∗y(D
n2
y ), Θ∗z(D

n2
z )} and an inference set {Dn1

x , D
n1
y , D

n1
z } to compare the target locations. This

section explains how we use flight data to create the hyperparameter observation sets (with n2

observations) and then use inference from an intermediate magnetic field map to make “compromise”
inference sets (with n1 observations) where n1 < n2. The goal of the compromise map is to
leverage the flight-by-flight variation in magnetic field measurements (Section 2.5.2) by training
hyperparameters on n2 observations from many flights without incurring the computational cost of
having a large inference set size n1.

The “hyperparameter observation set” for the y component Gaussian process GPy is Dn2
y =

(Xn2 , Ỹ n2
y ) and similar for Dn2

x and Dn2
z . All three hyperparameter observation sets share the

same observed locationsXn2 ∈ R3×n2 taken from downsampled observations from any number of
training flights.

These observations are used to compute {Θ∗x(Dn2
x ), Θ∗y(D

n2
y ), Θ∗z(D

n2
z )} by minimizing the

negative log marginal likelihood of the observations over the hyperparameters of each respective
Gaussian process. The optimal hyperparameters, along with their corresponding observation sets of
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size n2, will serve as an “intermediate” magnetic field map.
From here, we query our intermediate map at n1 user-selected locations to generate n1 magnetic

field observations for the compromise map. The result of this step is a set of n1 locations around
the workspace that make upXn1 ∈ R3×n1 . The magnetic field “measurements” that complete the
inference set Dn1

x = (Xn1 ,M̂n1
x ) come from the estimated magnetic field values at each location

inXn1 where

M̂n1
x = E

[
GPx

(
0, KΘ∗

x(D
n2
x )(X

n2 ,Xn1)
)]
∈ Rn1 (2.10)

and similarly for the magnetic field “measurements” M̂n1
y and M̂n1

z for inference sets Dn1
y and Dn1

z

respectively. Here, the GPR maps estimate the magnetic field at locationsXn1 by computing their
similarity to locationsXn2 . The notation used in Equation 2.10 was introduced in Section 2.3.1.

At last, we have what we call our “compromise inference sets” (Dn1
x , D

n1
y , D

n1
z ) (or just “infer-

ence sets”) comprised of magnetic field estimates from the intermediate map at n1 user-selected
locations around our workspace.

Our construction of the compromise map gives two benefits. First, it allows our GPR-based
maps to avoid overfitting to a single training flight by allowing large hyperparameter observation
sets (n2) that can incorporate observations from several flights of a quadrotor (or potentially even
flights from multiple quadrotors for a multi-agent system). Next, it allows us to perform inference
in O(n1

2nq) rather than O(n2
2nq) where nq is the number of points queried.

2.5 Results and Discussion

This section starts by explaining how the derivative gains from the PID controller of our
UAV’s autopilot create measurable magnetic noise (Section 2.5.1). Next, Section 2.5.2 introduces
the unusual magnetic biases our UAV injects into our measurements and how distancing the
magnetometer from the electronics improves the consistency of measurements. We then show that
our compromise map (which uses n1 = 511 observations for inference) yields estimates within
0.013µT of our intermediate map (which uses n2 = 2001 observations for inference) in Section
2.5.3.

We follow with an analysis of the spatial density of observation points used to train the GPR
map in Section 2.5.4 and find that using observations within 0.55m of one another is sufficient to
accurately represent the magnetic field in our flight arena. Section 2.5.5 shows that it is equivalent
to either create a specialized map on the norm of the field or simply take the norm of estimates from
a vector-valued magnetic field map. Finally, Section 2.5.6 presents our consistency metric which is
a tool to identify when a user can rely on the predictions from their GPR-based magnetic field map.
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(a) Test t5 00: Flight with “noisy” gains.
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(b) Test t5 01: Flight with “quiet” gains.

Figure 2.6: Vehicle “Maggie” flying two instances of the same flight trajectory showing how the
flight controller can inadvertently create noise in the measured magnetic field.

2.5.1 Flight Controller Creating Magnetic Field Noise

Our vehicles use the rc pilot a2sys autopilot originally forked from the open-source
rc pilot 3 repository. rc pilot a2sys uses a four-stage cascaded PID controller as explained
in Section IV.B.1 of [71]. Our work started with the gains used in Ref. [71] but adjusted them to
reduce noise from the motors and ESCs.

Figure 2.6 shows magnetometer data from a segment of an experiment where the flight vehicle
(not Q1, but another vehicle of the same construction) was commanded to a single-altitude scanning
pattern (Figure 2.4) at 1.5m altitude. The data in Figure 2.6 was rotated from the vehicle’s body
frame to the world frame using attitude estimates from motion capture cameras.

Figure 2.6a (t5 00) is the magnetometer data with the gains inherited from ref. [71]. Here, the
drone moves along the x axis (4m stride) of the flight space from 24s - 30s, and again from about
36s - 42s. During these time segments, there is a large variance in the measured magnetic field due
to commands from the flight controller to the motors and ESCs.

Figure 2.6b (t5 01) shows another instance of the same trajectory, but with new controller gains.
The plots are temporally aligned to easily compare corresponding flight segments. At a glance, it
is clear that the variance in the magnetic field measurements is much lower in Figure 2.6b than in
Figure 2.6a, but not completely gone. This is most evident in the “Mag Y - World” plot of Figure
2.6b where the drone moves along the x axis (4m stride) of the flight space from 21s-26s and again
from 34s - 40s.

3rc pilot was created by James Strawson and Librobotcontrol https://github.com/
StrawsonDesign/rc_pilot

25

https://github.com/StrawsonDesign/rc_pilot
https://github.com/StrawsonDesign/rc_pilot


As explained in Section IV.B.1 of ref. [71], the controller used on this vehicle is a four-stage
cascaded PID controller with an outer loop that operates on position error and an inner-most loop
controlling angular rate error. The math for the inner loop is shown below in Equation 2.11

τφ = KP
4,φ (φ̇d − ω̃x)

+KI
4,φ

∫ t

0

(φ̇d − ω̃x) ds

+KD
4,φ

d

dt
(φ̇d − ω̃x)

, (2.11)

where τφ is the desired torque for roll (φ), {KP
4,φ, K

I
4,φ, K

D
4,φ} are the P, I, and D gains for the

fourth-stage controller along the roll axis, φ̇d is the desired roll rate, and ω̃x is the measured roll
rate from the gyroscope. There are similar fourth-stage PID loops for pitch (θ̇) and yaw (ψ̇) rates
respectively.

The ‘noisy’ gains, inherited from [71], used KD
4,φ = KD

4,θ = KD
4,ψ = 0.01 while the modified

‘quiet’ gains set all three of these values to 0. This change alone is responsible for the reduction in
motor-induced noise in Figure 2.6.

The derivative term of the attitude rate controllers (e.g., Equation 2.11 for roll rate) uses nu-
merical derivatives of gyroscope measurements (Figure 2.7) as part of their computation. As the
quadrotor flies, the propellers induce vibrations that make the gyroscope (and accelerometer) mea-
surements rather noisy. Taking numerical derivatives of these noisy gyroscope measurements causes
the motors to be commanded with high-frequency inputs that induce measurable electromagnetic
noise. We believe this problem is amplified as the total amount of current pulled from the 4S
batteries increases. This would explain why the magnetometer variance is larger during the 4m,
X-axis stride (with a max commanded velocity of 0.75m/s for this set of tests) than during the
0.25m, Y-axis stride (max commanded velocity of 0.47m/s).

Aside from changing controller gains, other possible solutions include commanding less-
aggressive maneuvers during flight tests, moving the magnetometer further from the motors and
ESCs (Section 2.5.2), or time-varying magnetometer calibration [68]. In addition, from some
preliminary data gathered when trying to understand this problem, we believe that differences in
motors and ESCs (even those of the same make and model) may create different magnitudes of
measurable magnetic noise.

The remainder of this chapter uses only the ‘quiet’ controller gains. Note that the analysis for
this section used S2 = 2cm (Figure 2.3b). In the following section, we analyze how the distance of
the magnetometer from the motors and ESCs affects the variation in the measured magnetic field.
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Figure 2.7: Raw gyroscope data from t5 00 . Vibrations from UAV propellers create noisy
gyroscope data. Differentiating this noisy data creates the high-frequency magnetic noise seen in

Figure 2.6a.

2.5.2 Varying S2: Distance from Magnetometer to Electronics

Though the flight controller created motor-induced, high-frequency magnetic field noise, there
is another measurable magnetic anomaly at play with our quadrotors that causes flight-by-flight
variation in the measured magnetic field. Here, we distinguish variance (the spread of a distribution
of points) from variation (more of an offset). We will reserve variance to describe the spread
of points around a probabilistic mean. For this, removing the derivative gains from a particular
PID loop of our flight controller reduced the variance of motor-induced magnetic noise (Figure
2.6). To avoid ambiguity, variation will be used to describe the differences in the magnetic field
between subsequent flights of the same trajectory. As we will show in this section, the differences
in measured magnetic field values are not obviously spread around some average signal.

Recall that S2 (Figure 2.3b) is the distance from the top of the BeagleBone Blue (BBB) to
the bottom of the magnetometer’s mounting plate. In this section, we will vary the parameter
S2 to show that increasing the distance of the magnetometer from the other electronics reduces
the flight-by-flight variations we see in the measured field. It is easier to explain these anomalies
graphically, which we will do in a moment, but first, we explain our testing methodology.
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2.5.2.1 Testing Methodology

Q1 was commanded to fly the same single-altitude scanning trajectory (Figure 2.4) at an altitude
of 1.5m. Initially, in our investigation of these flight-by-flight variations, we believed that each
4S LiPo battery could have a different amount of “resting current” it provided to the motors to
achieve the same flight maneuver as another 4S battery. Though we could not conclusively prove or
disprove this hypothesis with our data, it did drive the design of our experiments. For this, each
battery started at full charge and Q1 flew the same 1.5m scanning trajectory several times in a row.
This allowed us to see if the flight-by-flight variations were due to the battery’s voltage during a
flight. After a few repetitions with the first 4S battery, a new (fully charged) 4S battery was used to
power Q1 as it flew more repetitions of the same trajectory. By testing different batteries, we could
see if the cause of the flight-by-flight anomalies was tied to which battery was powering the motors
and ESCs.

Three Turnigy 4S 2650mAh 20C batteries (denoted as #02, #04, and #14) were used for this
analysis. The charge/discharge and storage history of these batteries are largely unknown as they
have been used by multiple members in the lab since they were purchased in May of 2021. The only
thing we could rigorously control for is fully charging each battery to 16.8V just before a flight test.

For this analysis, each flight was downsampled to 10Hz or 2Hz to reduce spatially redundant
observations resulting in ∼900 or ∼180 observations respectively for each flight. Figure 2.4 shows
the observation set from one flight with 10Hz and 2Hz downsampling. Although 10Hz clearly shows
better coverage of the flight space, the RMSE values for this analysis changed by at most 0.03µT
on the S2=8cm dataset when training on 10Hz vs 2Hz downsampling sets. Thus, we sometimes
use 10Hz downsampling to illustrate specific points but typically use 2Hz downsampling for faster
training and validation of the magnetic field maps.

With this gathered data, we can train a GPR-based map of the magnetic field at a 1.5m single-
altitude slice of the working volume and compare the predictions of that single-altitude map to
the measurements gathered from the other repetitions of the same trajectory. Since we assume the
ambient magnetic field is not changing throughout our experiments, we expect the magnetic field
measurements to be nearly identical between each flight.

2.5.2.2 Flight-by-flight variations

By training the map on a single repetition and validating on another, we get data that looks like
Figure 2.8 which has two types of plots: one with red and blue lines with blue shading and another
type of plot in grayscale.

For the first type (e.g., Figure 2.8a), each actual magnetometer measurement (in the world frame)
from the validation dataset is shown as a red cross. The blue line is the GPR’s predicted mean at the
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location the drone was during that timestamp in the validation flight. The blue shading around the
solid blue line depicts the two standard deviations (2σ) of the GPR’s uncertainty with its prediction.

The second type of plot (e.g., Figure 2.8b) depicts a black dot as the error between the red cross
and blue line while the GPR’s 2σ uncertainty is the gray shading. Here, we plot the absolute value
of the error since the sign of the error does not indicate anything of interest. The percentage in the
grayscale plots depicts how often the black dots (GPR error) are within the gray shading (GPR’s 2σ

uncertainty).
In Figure 2.8, the GPR map is trained on 2Hz-downsampled observations from a single flight

(t1 09) and validated against 10Hz-downsampled observations from three flight tests from the same
t1 flight series. These three validation examples are generally representative of the different flight-
by-flight magnetic field anomalies we have seen. Figure 2.8b shows a relatively large steady-state
prediction error throughout, Figure 2.8c has a steady-state error that changes suddenly partway
through the flight, while Figure 2.8d is an ideal case where the mapping and validation flights have
agreeable measurements.

This is why we refer to this anomaly as “flight-by-flight variation”. The type of GPR error
we see here across consecutive flights in the same test segment (e.g., t1 XX) does not seem to be
cleanly distributed around some mean bias value. Instead, repetition t1 09 had similar magnetic
observations as t1 15 (Figure 2.8d) yet starkly different observations than t1 05 (Figure 2.8b).
Further complicating the matter are cases like t1 04 (Figure 2.8c) with a time-varying bias.

There is evidence in Figure 2.8 that suggests these magnetic anomalies are caused by the ESCs
and motors. The initial black dots in Figures 2.8b and 2.8c have low errors before the anomalous
bias takes effect. These beginning points are observations gathered when the drone is at rest on the
ground (before it has taken off) and the bias sets in, if at all when the quadrotor is in the air. This
suggests that before the motors and propellers are spinning, the observations from t1 05 and t1 04
are similar to those from t1 09.

This insight begs the obvious experiment of constraining the motion of the quadrotor and
sampling the magnetometer with and without the propellers spinning. Unfortunately, we could not
safely conduct such a test with our current setup, but we plan to test this in the future.

Finally, it is possible that the ambient magnetic field in our flight arena is changing over time.
To check this, placed a stationary RM3100 in our workspace for 3+ hours sampling data once every
10 seconds (0.1Hz). The raw data from this experiment is shown in Figure 2.9. Here, we still
have regular, spurious measurements (like in Figure 2.5) but the main signal does not change by
more than 0.15µT within each respective component of the measured magnetic field. This is much
smaller than the 1.8µT of variation we see in the Z component of Figure 2.8b. Thus, we believe the
flight-by-flight variations are due primarily to UAV-induced noise and not by time-varying changes
in the ambient magnetic field.
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(a) S2=2cm. Trained on t1 09 (#04). Validated on
t1 05 (#14). Same data as Figure 2.8b
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(b) S2=2cm. Trained on t1 09(#04). Validated on
t1 05(#14). Same data as Figure 2.8a
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(c) S2=2cm. Trained on t1 09(#04). Validated on
t1 04(#14).

0 100 200 300 400 500 600 700 800 900
0

1

2

3

0 100 200 300 400 500 600 700 800 900
0

1

2

3

0 100 200 300 400 500 600 700 800 900
0

1

2

3

(d) S2=2cm. Trained on t1 09(#04). Validated on
t1 15(#02).

Figure 2.8: Flight-by-flight variations shown through three validation tests.
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Figure 2.9: Stationary RM3100 data sampled at 0.1Hz over 3+ hours during t6 XX flight tests. x, y
or z components of the magnetic field never change by more than 0.15µT respectively.

2.5.2.3 LiPo Batteries and Magnetic Variation

From the three cases in Figure 2.8, it is tempting to conclude that differences in batteries are the
cause of these flight-by-flight anomalies. Here, we see that batteries #04 (used for t1 09) and #02
(used for t1 15) yield agreeable observations. However, from Figures 2.8b and 2.8c, it seems that
battery #14 (used for t1 05 and t1 04) is disagreeable with the other two.

To investigate this idea, we flew 60 repetitions of the 1.5m-scanning trajectory from Figure
2.4 over four test sessions (t1 XX, t2 XX, t3 XX, and t4 XX) each corresponding to a different
value of S2 (2cm, 4cm, 6cm, and 8cm). For these tests, we used the same three batteries (#02, #04,
and #14) and flew consecutive repetitions of the scanning trajectory for each battery. For each test
session, we trained the GPR map on the first battery #04 flight and validated the map on all flight
tests of the same test session. Note that the data in Figure 2.8 (tests t1 04, t1 05, t1 09, and t1 15)
are four of the S2=2cm repetitions used in this larger analysis.

The results of this 60-flight analysis are summarized as a scatter plot in Figure 2.10. The
horizontal position of each point is meant to signify the value of S2 as 2cm, 4cm, 6cm, or 8cm. Any
horizontal deviations from these discrete values are only for visual clarity and do not reflect any
deviation in the actual value of S2 when the data was gathered. The vertical position is the vector
RMSE of all three GPRs (Equation 2.9). Finally, the colors and symbols identify which battery was
used for each repetition with a green + for battery #04, an orange4 for #02, and purple � for #14.
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Figure 2.10: S2 versus vector GPR RMSE. At each S2, the map is trained on one flight from battery
#04 (green +). For S2={2,4,6,8}cm there are N={5,4,3,8} reps per battery.

At S2 = {2, 4, 6, 8}cm, each battery flew N = {5, 4, 3, 8} repetitions of the 1.5m scanning
trajectory. For S2 = 8cm, each battery started at full charge, flew four consecutive reps, was
re-charged, then flew four more repetitions. We present the second charge of each battery in the
S2=8cm dataset with a rotated +. 4, and � respectively.

Figure 2.10 shows two things. First, increasing S2 makes the observations of each flight more
consistent with one another. Since the GPR-based map (for each S2) is trained on a battery #04
flight, the scatter plot really shows us the magnitude of the flight-by-flight variations relative to an
arbitrary battery #04 flight. As we increase S2, the variations tend towards a difference of about
0.3µT to 0.5µT.

Note that for each value S2, there is a single green + that is validated on the same observations
used to train the GPR map. Even so, we do not see any of the validation tests going much below
0.3µT meaning this may be something of a lower limit on how accurate our GPR maps can be with
our testing platform which would include inaccuracies due to sensor noise (a function of our 200Hz
sampling rate) and any electromagnetic noise the quadrotor generates.

The second realization is that, unlike what the three examples in Figure 2.8 may suggest, there
is not a clear relationship between battery choice and flight-by-flight variation. Although battery
#14 (purple �) tends to be most disparate from battery #04 at S2 of 2cm, 4cm, and 6cm, we see its
observations fall in line with the rest by S2 = 8cm.
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We take this moment to point out a flawed conclusion we stated in our previous work (Note: the
data and analysis in Chapter 3 of this dissertation was done before any of the work discussed in this
chapter). In Figure 3.10b (Chapter 3), observations from a rectangular trajectory (the first ∼500
points) are validated on a GPR-based map. In that plot, there is about 2µT of an error on each of
the x and z GPR validation sets except before takeoff and after landing. When originally working
on the work for Chapter 3, we hypothesized that this error in x and z was caused by a pitching
misalignment in the magnetometer for that single flight (relative to the pitch angle for all the other
flights). However, if this were the case, there likely would not be the brief moments of agreement
before takeoff and after landing as shown in Figure 3.10b. With what we have learned since, we
now believe this was actually an example of these flight-by-flight variations.

For the work in Chapter 3, these anomalies may not have happened as often due to us using a
different instance of the M330 quadrotor. Alternatively, it could be that the nature of attitude estima-
tion (the focus of Chapter 3) is fairly robust to 2-3µT variations between flights if such anomalies do
not significantly change the angle of the ambient magnetic field (which has a magnitude of 40-70µT
in our workspace). Thus, it is likely that these variations were simply less salient in Chapter 3 given
our previous application of attitude estimation.

We believe that time-varying magnetometer calibration could address the flight-by-flight vari-
ation issues presented here. In ref. [68], they use measurements of the electric current near
high-powered devices to estimate and offset vehicle-induced magnetic fields from their measure-
ments. However, our vehicle does not have any electric current sensors, so such a time-varying
calibration solution is out of reach for our platform. Instead, we address the problem with our
“compromise” map.

2.5.3 Accuracy of Compromise Map

In this section, we propose a solution to the flight-by-flight variations that incorporate data
from several training flights into a single magnetic field map. Since each flight has a chance
of giving a different bias in the measured magnetic field, the GPR-based map will overfit if
trained on only a single flight test. Thus, we instead, use n2 observations from many flights
that span the working volume to create an “intermediate map” that optimizes hyperparameters
{Θ∗x(Dn2

x ), Θ∗y(D
n2
y ), Θ∗z(D

n2
z )} and predicts with the n2 observations. The compromise map

then uses the intermediate map’s estimates at n1 user-selected locations to predict the magnetic field
using only n1 points. The goal of this section is to see how the accuracy of the compromise map
varies as a function of n1; specifically, taking after ref. [19], to see how the spatial density of the n1

training points effects map accuracy.
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Table 2.1: Separate flights are used for training and validation. All magnetic field observations
were downsampled to 2Hz for training and validation. Number of observations each training flight
contributes to the map is listed.

Flight Flight Training [2 Hz] Validation [2 Hz]
ID Description (# Observations) (# Observations)

t6 00 Lower Four Alts. 571 –
t6 01 Upper Four Alts. 580 –
t6 03 Scan-γ 442 –
t6 21 Scan-ε⊥ 408 –

t6 04 Lower Four Alts. – 573
t6 05 Upper Four Alts. – 573
t6 06 Scan-γ – 441
t6 20 Scan-ε – 384

Table 2.2: Multi-altitude map error. Trained on n2 = 408 observations from flight test t6 21
(Scan-ε⊥).

Flight ID and GPR RMSE (µT) Error within 2σ (%)
Description Norm—X—Y—Z X—Y—Z

t6 04 (Lower Alts.) 0.595 0.256 0.284 0.456 74.69 87.09 52.88
t6 05 (Upper Alts.) 0.998 0.633 0.541 0.551 6.81 19.72 32.11
t6 06 (Scan-γ) 0.642 0.362 0.318 0.424 56.01 86.62 68.25
t6 20 (Scan-ε) 0.556 0.229 0.293 0.413 56.25 47.40 39.06

2.5.3.1 Multi-Altitude Trajectories

This section uses data from eight different flight tests listed in Table 2.1 where the first four
flights are typically used for training the intermediate/compromise map while the remaining four
are used for validation. The trajectories listed in Table 2.1 are all multi-altitude tests where each
single-altitude slice is the same trajectory from Figure 2.4. “Lower Four alts.” flies at altitudes
Z = [-0.5, -0.75, -1.0, -1.25]m, “Upper Four alts.” at Z = [-1.5, -1.75, -2.0, -2.25]m, “Scan-γ” at
Z = [-0.5, -1.375, -2.25]m, while “Scan-ε” and “Scan-ε⊥” fly at Z = [-0.75, -1.5, -2.0]m. The idea
here is to gather redundant observations throughout the working volume to help our GPR map learn
the flight-by-flight variations.

Additionally, Table 2.1 lists the number of 2Hz downsampled observations from each flight. The
number of 4Hz and 10Hz observations are approximately 2× and 5× the values listed in Table 2.1.
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Table 2.3: GPR error for multi-altitude intermediate map trained on n2 = 2001 observations from
tests t6 00, t6 01, t6 03, and t6 21.

Flight ID and GPR RMSE (µT) Error within 2σ (%)
Description Norm—X—Y—Z X—Y—Z

t6 04 (Lower Alts.) 0.466 0.144 0.145 0.419 98.43 98.08 85.17
t6 05 (Upper Alts.) 0.713 0.403 0.447 0.382 45.55 23.73 90.05
t6 06 (Scan-γ) 0.378 0.184 0.155 0.292 97.96 96.83 96.83
t6 20 (Scan-ε) 0.406 0.111 0.222 0.321 99.48 92.97 93.75

2.5.3.2 Intermediate Map Accuracy

To start, we demonstrate the value of adding observations from many flights to a GPR-based
map. We call GPR maps that are trained on observations from multiple flights an intermediate map.

Table 2.2 gives the performance of a multi-altitude magnetic field map trained on n2 = 408

(2Hz downsampling) observations from flight test t6 21 and validated on observations from four
different flight tests. The table is split into three major columns that give the details of the validation
flight and the vector RMSE (µT) of all three GPRs along with the RMSE of each x, y, and z GPR
respectively. The third major column quantifies how often (as a percentage) an error data point lies
within the 2σ uncertainty of the respective GPR. The performance metrics from the second and
third major columns are the same as those listed in the grayscale plots of Figure 2.8 (with different
training and validation flights in this section).

The underlying issue is the map will overfit to the observations gathered from t6 21. In Section
2.5.2, we showed that there are flight-by-flight variations in the measured magnetic field. By training
a GPR-based magnetic field map on a single flight, we prevent the map from learning to account
for these flight-by-flight variations. Note that training the map on n2 = 2038 observations (10Hz
downsampling) from t6 21 gives norm RMSE values of 0.629µT, 1.034µT, 0.751µT, and 0.552µT
when validating on t6 04, t6 05, t6 06, and t6 20 respectively. Thus, simply increasing the number
of training samples from a single flight test does not improve the map’s performance.

By comparison, Table 2.3 trains the GPR hyperparameters (and performs inference) on n2 =

2001 observations (2Hz downsampling) from four different flight tests: t6 00, t6 01, t6 03, and
t6 21. Note, from Table 2.1, that we are now training and validating on one instance each of all four
types of flights conducted for this analysis: lower four altitudes, upper four altitudes, scan-γ, and
scan-ε. By comparing Table 2.2 to 2.3, we see that adding observations from a variety of flights
uniformly reduces RMSE and increases the frequency that error falls within each GPR’s 2σ error
(usually caused by an increase in each GPR’s uncertainty).

Additionally, training on n2 = 9999 observations (10Hz downsampling) from the four training
flights gives norm RMSE values of 0.497µT, 0.686µT, 0.406µT, and 0.408µT when validating on
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t6 04, t6 05, t6 06, and t6 20 respectively. Again, a bit to our surprise in this second case, adding
more observations from the same ensemble of training flights does not necessarily improve the
map’s performance. However, it is clear that training on multiple flights (Table 2.3) is better than
training on a single flight (Table 2.2).

Aside from the 2Hz vs. 10Hz comparisons done in this section, we do not aim to directly address
ways to reduce the cost of training hyperparameters. Instead, we focus on the inference costO (n2

2)

with what we call a compromise map.
The idea here is to query the intermediate map (which uses n2 observations for inference) at

n1 user-selected locationsXn1 ∈ R3×n1 in the working volume. The intermediate map’s estimates
of the magnetic field at these n1 locations give us a set of “measurements” M̂n1 ∈ R3×n1 which
(together with Xn1) form the “observations” used by the compromise map to perform inference.
Note that the compromise map will use the same hyperparameters from the intermediate map for its
inference. Section 2.4.4 gives a more detailed explanation of the process of creating a compromise
map from an intermediate map.

2.5.3.3 Intermediate Map vs. Compromise Map

We now compare the accuracy of the intermediate map, which uses n2 = 2001 observations
(2Hz downsampling) to perform inference, to that of the “compromise” map which uses only
n1 = 511 inference points. Recall that both use the same sets of hyperparameters optimized over
n2 = 2001 observations.

The n1 = 511 user-selected locations for this analysis are chosen as follows. Points are
distributed evenly through the [-2, 2]m x axis span, [-1.5, 1.5]m y axis span, and [-2.25, -0.5]m z

axis span of the working volume. A compromise map location is selected every 0.5m, 0.5m, and
0.25m for the x, y, and z axes respectively. In total, this gives 504 locations within the working
volume. The remaining 7 points are evenly spaced from the ground to an altitude of 0.5m so the
compromise map has some observations during the takeoff and landing sequence (which, for all our
flights, are above the origin). The number n1 = 511 is an important constraint for another toolbox
we used for position localization. Thus, this spatial discretization (0.5m × 0.5m × 0.25m) became
a common test state in our work.

We can see these trends better in Figure 2.11 which is similar in style to the grayscale plots from
Figure 2.8, but with the subplots as three columns rather than as three rows. This format fits more
figures on a single page to more easily compare the intermediate and compromise maps.

Figure 2.11 gives plots for the intermediate map on the left column and the compromise map
on the right. Here, we see the compromise map has both quantitatively and qualitatively similar
performance to the intermediate map despite using nearly a fourth of the points for inference. By
comparing the norm RMSE values (in the titles) across the two columns of Figure 2.11, we see the
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two maps are never off by more than 0.013µT (13 nanoTesla) in norm RMSE. This difference is
within the noise of the magnetic field measurements of our platform.

For reference, training a GPR map on 408 observations (2Hz downsample) from t6 21 and
validating this map on the same 408 observations gives RMSE values of (0.196µT, 0.089µT,
0.108µT, 0.136µT) for norm, x, y, and z RMSE values respectively. This means that on our flight
platform, even when the map has overfit for the exact observations it will be validated on, it still
cannot discern differences of 0.013µT.

Thus, we take the differences between the intermediate map (n2 = 2001) and the compromise
map (n1 = 511) in Figure 2.11 to be negligible and assert that their RMSE performance is effectively
identical.

Of course, a lot of valuable information can be lost by simply comparing RMSE values.
However, visual comparison across the two columns of Figure 2.11 further emphasizes that both the
intermediate and compromise maps yield very similar prediction results. The key difference is in
the uncertainty of the two maps.

It’s easiest to see this in row three (Figures 2.11d vs. 2.11e) where the compromise map (right)
has spikier gray shading (2σ uncertainty) than the intermediate map (left). The compromise map’s
increased uncertainty is primarily due to our choice of prediction locations Xn1 ∈ R3×n1 which
have 504 points selected from a (0.5m × 0.5m × 0.25m) spatial discretization of our working
volume. Recall that each altitude of our validation trajectories traverses lanes separated by 0.25m
(Figure 2.4). Thus, anytime the compromise map is queried at a location between the (0.5m ×
0.5m) x-y points, it will report a higher uncertainty in its predicted magnetic field estimate.

The overall increased uncertainty of the compromise map also explains why the respective
GPR errors more frequently fall within two standard deviations of their respective uncertainties.
Said another way: the plots on the right column of Figure 2.11 will almost always have higher red
percentages than the comparative GPR on the left column given our selected spatial discretization

of (0.5m × 0.5m × 0.25m).
In general, we expect the overall uncertainty of the compromise map to decrease with increased

spatial density in our selection of locations forXn1 . The next section will further investigate how
the spatial density of the pointsXn1 affect the performance of the compromise map.

2.5.4 Compromise Map - Spatial Density Analysis

This section seeks to understand how the accuracy of the compromise map changes as a function
of the spatial density of the locations used inX1. Generally, we expect GPR error to increase, the
number of error points captured by 2σ uncertainty to increase, and the computation time to decrease

as the training set points become more sparse. In this section, we will only analyze the first of these
(GPR accuracy).
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(a) n2 for t6 04. No outliers.
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(b) n1 for t6 04. No outliers.
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(c) n2 for t6 05. Outliers {[2.89], [], [2.42]}µT.
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(d) n1 for t6 05. Outliers {[2.49],[],[2.39]}µT.
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(e) n2 for t6 06. Outliers {[2.41],[],[]}µT.
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(f) n1 for t6 06. Outliers {[2.36], [], []}µT.
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(g) n2 for t6 20. No outliers.
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Figure 2.11: Performance of the intermediate map (left column) and compromise map (right
column). Outliers larger than 2µT are listed for { [GPRx], [GPRy], [GPRz] } in each subplot.
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In the last section, our n1 = 511 compromise training points came from a custom spatial
density of (0.5m × 0.5m × 0.25m) which gave 504 locations, plus an additional 7 locations to have
observations along the takeoff and landing segment for each flight. In this section, we will work
with a uniform spatial density in all directions (S × S × S). Additionally, to simplify matters a bit,
we will use a naive linear spacing of [min : S : max] for the locations along each respective spatial
axis of the lab. This means that different spatial densities S can yield the same number of points n1

but at different locations. Recall that our working volume has spatial limits of [-2, 2]m in x, [-1.5,
1.5]m in y, and [-2.25, -0.5]m in z.

In this study, we vary S from 0.2m to 1m to emulate the study done in ref. [19]. However, our
study will quantify the RMSE of the magnetic field map rather than relying exclusively on visual
comparisons of the map. For the 17 values of S tested (in increasing order), n1 = [3031, 1775, 931,
655, 447, 259, 259, 199, 133, 112, 97, 97, 79, 67, 47, 47, 47]. Recall, seven of the n1 values listed
here are for the takeoff and landing sequence.

Figure 2.12 shows the norm RMSE of the compromise map (validated on t6 04, t6 05, t6 06,
t6 20) as a function of the spatial density term S. A zoomed version of the initial segment of data
is embedded in the same figure. Here we see that the norm RMSE is fairly constant for values
S ≤ 0.5m with a small spike in norm RMSE at S = 0.45m. This spike is caused by our naive linear
spacing which occasionally causes poor sampling along altitudes. At S = 0.45m, we get altitudes
of z = [-2.25, -1.8, -1.35, -0.9]m. Recall from Section 2.5.3.1 that some of our validation flights
have measurements as low as z = -0.5m.

Combining these sources of information, we can see that the black-× (t6 06; Scan-γ) and red-�
(t6 04; Lower four alts) suffer the worst increases at S = 0.45m. Since the compromise map’s
observations only go as low as z = −0.9m, both these trajectories have higher GPR RMSE when
validated at their z = −0.5m observations. Meanwhile, blue-◦ (t6 20; Scan-ε) shows little change
at S = 0.45m since all its observations are away from the extremes of the working volume. The
other transient spikes in Figure 2.12 (e.g., S = 0.6m) are caused by similar z-axis sampling from
our naive linear spacing. t6 04 and t6 06 continue to be the most sensitive to certain values S when
the map has no observations near z = −0.5m.

Despite these transient spikes, there are two clear trends we can see from Figure 2.12. First, for
values of S ≤ 0.55m (with S = 0.45m as an exception), the norm RMSE is relatively insensitive to
changes in S. This agrees quite well with the ref. [19] where they show (visually) that their magnetic
field map is qualitatively similar for values of S = [0.2, 0.4, 0.6]m. In [19], their analysis led them
to use 0.6m as a standard distance between observations in another experiment they conduct.

For comparison, we briefly summarize the spatial density of observations used by some other
indoor magnetic field mapping works. Some works map along a single axis (p = 1) such as [22]
that separates observations by 0.04m and 0.1m on a ground robot and chest-mounted pedestrian
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Figure 2.12: GPR norm RMSE fairly constant for S ≤ 0.55m. Flights t6 04 (red �) and t6 06
(black ×) have observations at z = −0.5m causing higher errors for certain values S.

setup respectively through hallway networks of up to 350m in length. Additionally, [21] makes a
p = 1 map with 0.2m between each observation and [29] make a p = 1 map with 0.1m between
observations.

For p = 2, planar maps [12] create a constant-altitude planar map using S = 0.305m separation
in x and y for their coarse grid and S = 0.005m for fine grid spacing. This mapping is done
in a 2.1m×2.1m room. Ref. [13] uses a type of occupancy grid for their p = 2 magnetic field
SLAM solution with grid size 0.05m×0.05m. The solution ignores all previous magnetic field
measurements further than 0.5m from the vehicle’s current position. Ref. [15] makes p = 2 maps
with lanes separated by 0.38m. Ref. [20] creates p = 2 maps at different heights along hallways in
three separate buildings. The authors use a longitudinal separation distance of about 0.4m (varies
per building) and a vertical separation of 0.08m between their observations.

Finally, Ref. [16] makes a p = 3 “map” of a hallway (no explicit interpolation of observations)
with (0.33m × 0.45m × S?) where the vertical spacing S? is not explicitly listed in their work, and
[39] makes p = 3 maps with S = 0.5m uniform spacing in all axes. Chapter 3 of this dissertation
uses planar lawnmower patterns like in Figure 2.4, but with 0.5m spacing in the y axis (instead of
the 0.25m spacing used in this chapter). Furthermore, we used a vertical spacing of 0.75m in our
training sets to investigate the accuracy of p = 3 magnetic field maps when interpolating between
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and extrapolating outside of pre-mapped altitudes.
In short, for 1D, 2D, or 3D indoor magnetic field maps, we have not seen any previous works

using separation distances S larger than 0.6m. The exceptions are [19] where the authors explicitly
study a reasonable upper limit on S and our work in Chapter 3 which studies the interpolative and
extrapolative limits of p = 3 GPR maps.

We believe the empirical upper bound of S = 0.6m described above might be driven by
proximity to walls and the floor. If this is the case, S ≤ 0.6m might only be the upper bound for
indoor regions that are within a couple meters from some wall or the floor. We acknowledge that
this includes nearly every room or hallway in most buildings, but a large, multi-story atrium might
be an exception. Portions of such a large, open, yet indoor volume may have lower spatial variation
and can be accurately mapped with values S > 0.6m. The size of the two works that explicitly
study spatial density indoor magnetic field mapping (3m ×3m×2.2m for [19] and 4m×3m×2.25m
in this chapter) might be too small (i.e., too close to the walls and floor) to test this idea.

It is also possible that the floor, and not walls, are the dominating factor for spatial variation in
indoor magnetic fields. In [20], Hanley et al. show that that the magnetic field near the floor (within
0.5m from the ground) of three university buildings is most distinct from the field at other altitudes
up to 2m. This might explain why the other works in our spatial density summary, which mostly
use ground robots and pedestrians that remain “near” the floor, have S ≤ 0.6m.

The second conclusion, the complement of the first, is that values of S ≥ 0.6m start to show
steady increases in norm RMSE. It is not clear what trends hold for S > 1m, but such separation
distances are somewhat degenerate given the size of our working volume. Further, it is unlikely for
the norm RMSE values to return to their S = 0.2m for values of S > 1m (which is what we are
most interested in).

This analysis is what led us to use S = 0.5m for the x-y separation distance for the n1 = 511

compromise map used elsewhere in this chapter. We chose S = 0.25m for z because we found
(empirically) that the GPR’s performance is most sensitive to omissions in observed altitudes.
Recent works on indoor magnetic field mapping have shown similar trends: that indoor magnetic
fields change noticeably as a function of altitude [23, 20]. For our analysis, similarly for [23, 20], it
is not clear how much this altitude-based sensitivity is driven by the fact that all our flights (training
and validation) are comprised of many single-altitude slices.

This section has shown that our compromise map can perform accurate magnetic field inference
with fewer prediction points n1 < n2. Remember the goal here was to allow the GPR-based
magnetic field map to learn the flight-by-flight variations across several training flights without
incurring high computation costs when performing inference. However, some validation flights like
t6 05 (Figures 2.11c and 2.11d) still have steady-state errors that even the compromise map (or the
intermediate map) is unable to resolve given a set of training flights.
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In the following section, we compare two methods of mapping the norm of the magnetic field in
our workspace to investigate if composing the three outputs from a 3→ 3 map gives a less-accurate
norm estimate than training a specialized 3→ 1 map on the magnetic field norm.

2.5.5 Creating a 3→ 1 map from estimates of a 3→ 3 map

This section compares two ways of estimating the norm of the magnetic field in a workspace.
The first takes the three estimates from our 3→ 3 map and computes the norm of these estimates√
m̂2
x + m̂2

y + m̂2
z. The alternative is to create a new 3→ 1 map, called GPRnrm, trained on the

norm of our measurements

ỹnrm =
√
ỹ2
x + ỹ2

y + ỹ2
z ∈ R (2.12)

to create hyperparameter (Dn2
nrm) and inference (Dn1

nrm) sets. The scalar predictions from this new
GPR are defined as m̂nrm ∈ R.

The goal here is to see if a specialized 3→ 1 map can more accurately estimate the magnetic
field norm than a composition of the estimates from a 3→ 3 map. This is an important distinction
since some works create maps on special components of the ambient magnetic field like a 2→ 2

map on the horizontal and vertical components of the field [72, 73] or a 1→ 1 map on the heading
(or declination) of the field [21]. Here, we aim to check if composing the three estimates from a
3→ 3 map accumulates error in estimating the norm of the field in ways that a specialized 3→ 1

map, which estimates the norm directly, would not.
The procedure for training hyperparameters and creating the n1 = 511 compromise map for

our new GPRnrm is the same as described in Section 2.4.4, but with measurements as defined in
Equation 2.12.

The RMSE accuracy of our maps requires a prediction from a GPR (or a set of GPRs) at location
r∗ and a measurement taken at the same location. We refer to the prediction given by our typical
3→ 3 map as our vector prediction

m̂vec(r
∗) =

m̂x(r
∗)

m̂y(r
∗)

m̂z(r
∗)

 =

GPRx(r
∗)

GPRy(r
∗)

GPRz(r
∗)

 . (2.13)

Now we define two error terms meant to compare the accuracy of estimating the magnetic field
norm in our workspace. One is for the accuracy of our 3→ 3 vector map (vec) while the other is
for the 3→ 1 norm map (nrm).
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Table 2.4: Norm (nrm) GPR versus vector (vec) GPR on estimating norm of magnetic field.

Flight ID and RMSE (µT)
Description evec nrm ehrz nrm

t6 04 (Lower Four Alts.) 0.391 0.390
t6 05 (Upper Four Alts.) 0.256 0.257
t6 06 (Scan-γ) 0.245 0.246
t6 20 (Scan-ε) 0.301 0.301

evec nrm =
√
m̂2
x + m̂2

y + m̂2
z − ỹnrm

enrm nrm = m̂nrm − ỹnrm.
(2.14)

The error terms in Equation 2.14 are used to create RMSE metrics (Equation 2.8) for the accuracy
of each respective GPR against some validation set.

Table 2.4 computes RMSE on the error metrics of Equation 2.14 for the four validation flights
we used in the previous section. From this, we see that both methods of estimating the norm of the
magnetic field are equivalent. There is never more than 1nT of difference between the two RMSE
values which is well within the noise floor of the PNI RM3100 (even without accounting for noise
generated by the drone).

Our result is reassuring in that there is no need to train a fourth GPR GPRnrm if a user wants the
three vector components and the norm of the magnetic field in their workspace. It is not immediately
clear if this result extends to angle-based compositions of the magnetic field map like declination
[21] or inclination of the ambient field.

Our last tool in this chapter, which we call the “consistency metric”, uses the frequency of error
falling with a GPR’s 2σ interval to indicate if a validation flight is consistent with a given GPR map.

2.5.6 Consistency Check

Despite our efforts to reduce magnetic noise from motors and ESCs (Sections 2.5.1 and 2.5.2)
and incorporate flight-by-flight variations into a compromise map (Section 2.5.3), there may still be
flight tests with significantly different magnetic field observations than what a given GPR map can
predict. Such cases can arise from the flight-by-flight variations of the same vehicle (e.g., Figures
2.11c and 2.11d), but may also come into play if different platforms are used for mapping and
utilization (e.g., GPR map trained on drone data but utilized for indoor pedestrian localization). As
such, it is important for users to know when they can rely on the predictions from their GPR-based
magnetic field map, and when it may be better to leverage a different sensing modality for their
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state estimates.
For this, we introduce the concept of “consistency” between a GPR-based map and a validation

flight. Given a p→ m magnetic field map, we say that a validation flight is consistent with the map
if all m GPRs respectively capture 96% of their error within two standard deviations (2σ) of their
uncertainty.

Of course, the 96% threshold is inspired by the expected number of points that fall within two
standard deviations of a univariate normal (Gaussian) distribution. Additionally, we note that a 96%
threshold works well for our test platform, our choice of GPR kernel (squared exponential), the
way we optimize hyperparameters (minimization of log marginal likelihood; Section 2.3.1), and
our target application of position localization. Although these kernel and optimization methods
are common, we have not investigated how GPR-based maps generated with different kernels or
different hyperparameters behave in regard to our notion of consistency.

To demonstrate, we create a n1 = 511 compromise map of 2Hz-downsampled observations from
the following seven flight tests: t6 0, t6 1, t6 3, t6 4, t6 5, t6 6, t6 16. We validate this compromise
map on 10Hz samples from four flight tests (t6 09, t6 11, t6 15, t6 18) to illustrate how we use the
consistency metric. Note that we are training and validating on different t6 XX tests compared to
the previous sections. The training flights used here are from an analysis of magnetic field position
localization which we will explore more in Chapter 4.

Figure 2.13 shows the GPR’s performance on the four selected validation flights. We start with
a case that easily passes our consistency test (Figure 2.13a). Test t6 11 (Figure 2.13b) fails the
consistency test since the GPz does not capture enough of its error within its 2σ uncertainty. Note
that even though x and y GPRs have a great understanding of their error, the poor performance
of the GPz alone means that test t6 11 is inconsistent with this 3→ 3 map. However, if the user
needed only the outputs of the GPx and GPy (say for localization using magnetic field heading
[21]), then the poor performance of GPz may be irrelevant and the map could still be useful for
such an application.

Figure 2.13c shows an example of the flight-by-flight variation changing partway through a
validation flight. In this case, the first 1220 validation points easily pass our consistency metric for
all three GPRs. From 1220 to 1335, things get worse and GPx barely fails our consistency test.
After data point 1335, all three GPRs fail the consistency check.

Note that the 3+ hours of 0.1Hz data from our stationary ”corner” magnetometer in Figure 2.9
was gathered throughout the t6 XX test flights. As such, we believe the change at index 1220 of
Figure 2.13c is from the UAV-induced noise and not a change in the ambient magnetic field.

This example allows us to emphasize an important point about how we use the consistency metric.
Since most of test t6 15 (up to point 1220) is consistent with the compromise map, computing our
2σ percentage across the entire validation set gives (97%, 95%, 95%) for each GPR respectively.
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Figure 2.13: Consistency metric (red percentage) across four validation flights. Some error points
are larger than 2µT and are cut off in the graphs. Such outliers are listed for { [GPRx], [GPRy],
[GPRz] } in the respective subplot caption. Empty brackets indicate no hidden outliers for the
respective GPR.
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Working with these numbers alone (without having Figure 2.13c for context), it’s tempting to say
all of t6 15 is consistent with the map (although barely). The reality is that since the flight-by-flight
variations can change bias values partway through a single flight test, it is sometimes necessary to
see if a portion of a flight test fails the consistency test rather than checking the 2σ metrics across
the whole flight.

Finally, validating on t6 18 gives Figure 2.13d which is another gray area in our use of the
consistency check. Here, the first 1242 validation points undoubtedly pass the consistency test.
However, the remaining points fail the consistency check on the z-component of the magnetic field.
Note that the GPy plot in Figure 2.13d also changes behavior near index 1380, but our analysis
focuses on GPz since it fails the consistency check before GPy does.

96% should be taken as a “rule of thumb” rather than a magic threshold where something
fundamentally different occurs with our construction of magnetic field maps. With this in mind, it
is important to consider how the map will be used when deciding whether a validation test should
be rejected on the basis of the consistency check alone. Here, for t6 18 in Figure 2.13d, we also
include the RMSE values (in blue) for all points before and after 1242 to illustrate the accuracy of
our compromise map before and after the mid-flight bias shift.

For our analysis in Chapter3, though we did not realize it at the time, these flight-by-flight
variations were still present. Yet, we were still able to use our magnetic field maps (at the time,
trained on a single flight test rather than our new compromise map method) to perform good attitude
estimates. We believe this is due to the nature of attitude estimation which compares the angle
of a measured vector against its corresponding reference vector. In this case, the flight-by-flight
variations did not significantly change the angle of the magnetic field reference vectors given by our
GPR maps.

However, our preliminary results on magnetic field position localization show that inconsis-
tencies like those at the end of t6 15 (Figure 2.13c) and the end of t6 18 (Figure 2.13d) is enough
to confuse a particle filter and cause noticeably larger estimation errors. The use of GPR-based
magnetic field maps for position localization (via a particle filter) has been the motivation for much
of this chapter. However, if the intended application is more robust to “small” inaccuracies of the
GPR map, then a more lenient consistency check threshold may work.

2.6 Conclusions and Future Work

This chapter presents practical methods to address vehicle-induced noise when creating and
validating GPR-based magnetic field maps with a UAV. First, we showed that certain portions of a
vehicle’s PID controller can increase the measurable magnetic noise when commanding the motors
and ESCs on a flight vehicle.
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Next, we introduced the flight-by-flight magnetic field variations present on our quadrotor
and presented two ways to address them. The first involves moving the magnetometer further
from the electronics on the vehicle while the second aims to teach the GPR-based map about the
flight-by-flight variations through a “compromise” map. We show that our compromise map has
similar accuracy to the “intermediate” map which uses four times as many reference points to
estimate the magnetic field through in our working volume. We found that a compromise map
trained on observations spaced no more than S = 0.55m give comparable accuracy.

Finally, we note that our proposed methods of reduction and incorporation do not encompass
all possible mapping errors. As such, we introduce a “consistency check” as a rule of thumb to
help experimentalists quickly assess if magnetic field observations from a particular test dataset are
consistent with their magnetic field map. Later in Chapter 4, we use these new mapping techniques
to demonstrate 3D position localization of a UAV using indoor magnetic field maps. Per Section
2.5.5, we aim to conduct studies similar to [72, 22, 73] that compare the position localization
accuracy of magnetic maps with different output dimensions m.

Additionally, investigating time-varying magnetic fields (due to the position of large, metallic
objects like elevators and doors) is important and can be complicated by vehicle-induced magnetic
variations that may be confused for a change in the ambient magnetic field. Throughout this
dissertation, we assume the indoor magnetic field is constant. This tends to be a good assumption
unless large metal objects (like doors and elevators) are moved in the mapped area [22, 10, 48].
As such, we aim to extend our methods into time-varying magnetic field mapping that uses our
consistency check (Section 2.5.6) to decide when a portion of a map may be out of date and needs
to be updated.

Finally, a component-wise causal analysis of observed flight-by-flight variations may better help
us understand measurable bias and noise sources to modify or eliminate entirely. For example, it is
possible that simply using different brands/models of ESCs and motors could make the UAV more
magnetically quiet.
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CHAPTER 3

Using GPR-based Maps to Improve Attitude Estimation in Non-Constant
Magnetic Fields

3.1 Introduction

The data and analysis used in this chapter were done before any work for Chapter 2 began. As
such, this chapter (Chapter 3) does not use a compromise map (Section 2.5.3) to avoid overfitting.
nor does it account for the UAV-induced flight-by-flight variations (Section 2.5.2.2) in any other way.
The focus on this chapter is on using local magnetic field maps for IMU-based attitude estimation.

This chapter presents a pipeline to generate and validate 3D magnetic field maps, interpret the
spatial variation of such maps via a new visual representation, and extract the value of magnetic
field maps by leveraging them for three-degree-of-freedom (3DOF) attitude estimation. The maps
utilize Gaussian process regression (GPR) to represent the magnetic field based on observations
gathered during training flights. The GPR-based maps can then interpolate to provide estimates of
the magnetic field at locations that were not directly sampled in the training set. These interpolated
estimates of the field serve as a source of magnetic field reference vectors to estimate the attitude of
a flight vehicle.

There are two opposing methods of using indoor magnetic fields in the literature. When the
goal is to estimate attitude or heading using an indoor magnetic field, some works aim to remove or
mitigate anomalies in the magnetic field [41, 42, 43] or reduce the impact of the magnetometer’s
effect on attitude estimates if disturbances are detected [44, 45, 46, 47, 48]. In this paradigm,
Earth’s magnetic field is seen as the signal, while any disturbances or anomalies are treated
as noisy perturbations to be rejected. This methodology assumes that large perturbations are
temporary and can have increased estimation errors if disturbances exist for long durations [41].
However, when performing position localization or full-pose (position and attitude) estimation
[18, 13, 14, 29, 19, 21, 12, 22, 15], these “disturbances” become a signal whose spatial variation is
needed to distinguish one location from another.

This chapter performs attitude estimation by mapping and leveraging magnetic field disturbances
as a complement to works that use magnetic fields for position localization. Other works have
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shown that using magnetometers for attitude estimation indoors requires more care than outdoor
spaces. Here, we investigated if creating magnetic field maps can solve this problem. To test this,
we conducted a set of flight experiments both indoors and outdoors to compare the spatial variation
of their respective magnetic fields and show how this spatial variation drives the need for mapping.
In this chapter, the utility of a magnetic field map was measured by its accuracy in representing the
local magnetic field and its ability to enable accurate 3DOF attitude estimates. As such, five distinct
flight trajectories were flown to analyze the value of both indoor and outdoor magnetic field maps
under different flight conditions that excite the roll, pitch, and yaw of a flight vehicle. The outline
of our chapter is summarized in Figure 3.1.

1) Creating and Validating GPR map

Scanning Coverage 
Flight Profiles

Scan-𝛼

Training 
Compute hyperparameters

Gaussian Process Regression (GPR)

Attitude Estimation 
Flight Profiles

FP-A through FP-E

2) Usage of GPR map

Utilization
Attitude estimation with 

GPR-based map
Multiplicative EKF

(MEKF)

Attitude Estimation 
Flight Profiles

FP-A through FP-E

Reference 
Vector

𝑟𝑘,𝑚𝑎𝑔

Outdoor vs. Indoor

Outdoor
• Low magnetic field 

spatial variation
• GPR map does not 

improve or worsen 
attitude estimates

Indoor
• Higher magnetic field 

spatial variation
• GPR map improves attitude 

estimates over constant 
field assumption

Interpolation 
Estimate magnetic field 
at unobserved locations

GPR

Magnetic Field Observations
Training Set

Validation
Analyze accuracy of GPR-based map

Scan-𝛽 and FP-A through FP-E

Figure 3.1: Outline of the main methods of this chapter. Several flight profile (FP) trajectories are
used to train, validate, and utilize a Gaussian process regression (GPR)-based map.

The contributions of this chapter are as follows. First, we propose a new way of visualizing 3D
magnetic fields that utilizes the interpolative power of GPR-based maps to show the planar direction
and downward magnitude of the magnetic field at various altitudes. Next, we present different
flight patterns and demonstrate how they can be used to train, validate, and utilize 3D magnetic
field maps. Although this dissertation uses GPRs as the interpolative tool of the magnetic field
maps, other interpolation methods might still find value in these flight patterns and our training,
validation, and utilization techniques. Finally, to our knowledge, no other work has analyzed the
accuracy of 3DOF attitude estimation using a single gyroscope, accelerometer, and magnetometer
in an environment with the type of spatial variation in the magnetic field in which we tested. With
an accurate magnetic field map, one can attain accurate 3DOF attitude estimates in locations with
the spatial variation needed to perform magnetic field position localization. We understand that
this last contribution comes with many qualifiers, and we will further discuss similar works in the
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literature and how our work is distinct from theirs in the Related Works Section (Section 3.2).
The remainder of this chapter is structured as follows. Section 3.2 of this chapter outlines related

work before mathematical preliminaries are introduced in Section 3.3. The experimental setup and
testing procedure are explained in Section 3.4. Finally, Section 3.5 presents results and discussion
followed by a conclusion in Section 3.6.

3.2 Related Work

Previous publications have shown that modalities such as vision [74, 75] and wireless tech-
nologies [9] can be used for indoor navigation with demonstrations of these methods on UAVs
[76, 77, 37]. However, these modalities add equipment to the test vehicle and sometimes require
changes to the workspace (e.g., fiducial markers, ultra-wideband transmitters, etc.) for them to work
effectively. Meanwhile, most modern IMUs have magnetometers that can leverage the magnetic
fields already present in every building on Earth. Learning to extract value from indoor magnetic
fields can improve the indoor navigation capabilities without additional equipment on or off the test
vehicle.

Using magnetic fields as a modality is not without its own problems. Previous works have shown
that the movement of doors, elevators [22], tool chests [10], and even whiteboards [48] can distort
the magnetic field. However, these distortions have been shown to be very localized, while the
remainder of the indoor magnetic field has been shown to vary slowly in time [22, 12]. Additionally,
creating magnetic field maps of large volumes can be computationally expensive [19] if the user is
not careful in modeling the magnetic field [10]. Despite this, several previous publications have
leveraged the magnetic field of indoor spaces to improve position and attitude estimates for mobile
robots such as [22, 21] with one dimension of translation, [12, 13, 14, 15, 29, 20] in planar motion
and [18, 19] for three dimensions of translation. These works showed that with a magnetic field
map of a workspace, it is possible to localize the position of a robot within the given magnetic field
map. For localization to work, however, there must be sufficient spatial variation in the magnetic
field for any algorithm to distinguish any one location from another.

To our knowledge, there is not yet a consistent method of defining spatial variation in the
magnetic field. Reference [41] quantified the change in the magnetic field norm; Reference [12]
discussed changes in each component of the magnetic field; Reference [20] used the mean and
standard deviation of the change in the magnetic field norm as position changes. By contrast,
Vallivaara et al. discussed spatial variation in a binary sense, by assessing if there was sufficient
variation to localize or perform SLAM, which can depend on the parameters in the estimation
algorithm [14, 13]. References [2, 3] were works on outdoor magnetic field navigation for fishing
vessels and red-spotted newts, respectively. These works described the spatial variation as a gradient
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of change in the magnetic field strength or direction over some distance. This chapter presents
a method to visualize the spatial variance of the magnetic field in a workspace and qualitatively
compared the spatial variance in different areas.

Unlike position localization, attempts to estimate attitude indoors tend towards detecting and
rejecting perturbations in Earth’s magnetic field [41, 42, 43]. However, the methods from these
works do not easily extend to full 3DOF roll, pitch, and yaw estimation and require multiple
magnetometers. References [44, 45, 46, 47, 48] and others mitigated the effect of disturbances by
adjusting the credibility of the magnetometer’s or accelerometer’s measurements when distortions
in either were detected. Such works proposed different methods of detecting disturbances, but
generally assumed that the disturbance was brief and the magnetic field would return back to some
expected value. Reference [49] relaxed this assumption by requiring only that the norm of the
magnetic field remain constant over small time periods. However, Reference [49] did not provide
3DOF attitude estimation metrics of their indoor tests to understand how well this method works
for indoor navigation. Reference [48] compared their disturbance rejection method to that of [49]
and other works with brief, yet large, magnetic field disturbances.

In this chapter, we performed 3DOF attitude estimation using a gyroscope, an accelerometer,
and a single magnetometer despite magnetic field disturbances from buildings and human-made
structures. Using magnetic field maps, we leveraged the spatial variation of the field to assist in
3DOF attitude estimation rather than rejecting these features as disturbances. Such capabilities
are important for full pose estimation using magnetometers indoors since spatial variation in the
magnetic field is desirable for position localization. Although we drew a distinction in our method
from the disturbance rejection paradigm, our mapping-based methods can still be paired with
the disturbance rejection methods if a magnetic field map is locally inconsistent in a region near
doors, elevators, or other mobile ferromagnetic objects. Time-varying magnetic field mapping was
addressed in [10], but not in this dissertation.

Previous works that generated magnetic field maps can be split into two groups. Some performed
simultaneous localization and mapping (SLAM) and were able to construct a magnetic field map
as they estimated the pose of their vehicle [18, 13, 14]. Others first had their robot traverse the
workspace to learn the magnetic field and construct a map, then utilized this map in a separate
trial to perform state estimation or localization [29, 19, 21, 12, 22, 15, 20]. Our work adopted the
philosophy of the latter group by performing a set of training test flights to construct a magnetic
field map followed by a separate set of utilization flights meant to assess the accuracy of our attitude
estimates by leveraging an existing map. We analyzed the accuracy of our maps by using validation

test flights and compared two methods of training a GPR-based magnetic field map.
There are different methods of representing magnetic field maps with varying complexities

depending on the degrees of freedom of the state to estimate. A magnetic field map with an input of
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dimension p and output of dimension m is denoted as a p→ m map. Generally, p depends on how
the vehicle can traverse in space (e.g., p = 2 for ground-based, wheeled robots and p = 3 for flying
vehicles or pedestrian localization), while m depends on how many components of the magnetic
field are to be tracked. Typically, m = 1 when the map gives the norm of the magnetic field for each
position, and m = 3 when all three components of the magnetic field are tracked. The methods of
representing the magnetic field tend to differ based on the size of p. Note that the works that tried to
detect and mitigate perturbations in Earth’s magnetic field did not create local magnetic field maps
[43, 42, 41, 44, 45, 46, 47].

Reference [21] constructed a 1→ 1 map of the magnetic field’s declination using least squares
to interpolate and create unique signatures at select locations of interest. Reference [22] constructed
a 1→ 1 map of the magnetic field norm via linear interpolation. Reference [22] preceded [14, 13] in
using Gaussian processes to create 2→ 3 maps. References [15, 78] constructed 2→ 3 and 2→ 2

maps respectively using bilinear interpolation of the four nearest observations gathered at evenly
spaced locations. Reference [12] compared the position localization accuracy of a 2 → 2 map
against a 2→ 3 magnetic field map by sampling the magnetic field at discrete locations. However,
Reference [12] did not interpolate the magnetic field between observed locations, which made their
“map” differ from other maps cited in this discussion. In [29, 19], Akai and Ozaki constructed
2→ 3 and 3→ 1 maps, respectively, inside a building to demonstrate the use of Gaussian processes
maps in large volumes. Finally, Reference [18] created a 3→ 3 map also using Gaussian processes.

Linear interpolation is intuitive when p = 1 [22], but the bilinear interpolation for p = 2 used
in [15, 78] requires magnetic field observations to be gathered at points on an evenly spaced grid
throughout the workspace. Such a constraint is restrictive in how magnetic field map observations
are gathered (Section 3.5.4), is time-consuming for p = 3 [19], and does not allow for extrapolation
of points outside of those found in the training set (Section 3.5.1). It is not clear how the p = 1
least-squares-based feature selection in [21] could extend to p = 2 or p = 3. By contrast, Gaussian
processes are a prominent way of representing local magnetic fields for p = 2 or p = 3 as per
[14, 13, 29, 19, 18]. Many GPR-based applications appear to build on the methods of [67]. Gaussian
process regression has no hard constraints on the spatial layout of observations, is able to extrapolate
and estimate at locations outside of those found in the training set, as well as provides uncertainty
metrics on the confidence of a provided magnetic field estimate. However, GPR comes with a high
computational cost as a function of the training set size [10, 19]. Due to these listed advantages and
their use in other magnetic field mapping works, we used three independent Gaussian processes to
represent a 3→ 3 magnetic field map.

Kalman filters are a common way to conduct state estimation of dynamic systems: particularly
when the rate of change of certain states can be measured or modeled well. Since Kalman filters
assume the state and sensor measurements are all Gaussian, particle filters can outperform Kalman
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filters if parts of the system are non-Gaussian. However, particle filters come at an increased
computational cost to track multiple hypotheses of the state, while Kalman filters only work with a
single hypothesis. Methods such as TRIAD and derivatives of Wahba’s problem are for attitude
determination and do not incorporate system dynamics to integrate current estimates forward
in time. In this chapter, we used a multiplicative extended Kalman filter (MEKF) which uses
quaternions to represent attitude, is more careful to respect the constraints of rotations than a typical
extended Kalman filter, and has been used on many platforms with an IMU [79, 80, 47, 81, 82, 83].
Here, we used the MEKF derived from [84, 85] to perform attitude estimation with a gyroscope,
accelerometer, and magnetometer.

3.3 Mathematical Formulation

This section introduces the mathematical preliminaries used throughout the chapter. First, we
summarize the multiplicative extended Kalman filter (MEKF) from [84, 85] that we used to perform
attitude estimation from the vehicle’s sensors. Next, we show how the Gaussian processes regression
(GPR) method from [67] can be used to generate maps of the magnetic field in an area of interest.
Finally, the magnetometer calibration method from [68] is introduced with a nine-parameter sensor
model.

We point out a change in notation from Chapter 2. The variables z̃k,accl and z̃k,mag will now refer
to accelerometer and magnetometer measurements. Additionally, rk,accl and rk,mag are reference
vectors for the accelerometer and magnetometer respectively. In Chapter 2, r was a location in 3D
space.

3.3.1 Multiplicative Extended Kalman Filter for 3DOF Attitude Estimation

The MEKF is a variation on the extended Kalman filter (EKF) that computes attitude error as
the quaternion product of the true attitude and the estimated attitude [84, 85]. As with the EKF, the
MEKF propagates the current attitude forward in time with a prediction step and uses measurements
to correct this prediction in the update step. Estimates of the gyroscope (gyro) bias are used to
correct for gyro drift. The formulation of the MEKF presented here was from Chapter 7.1 of [84].
A quaternion was used to represent vehicle global attitude. Instead of updating the four-element
quaternion at each step, the MEKF tracks a three-element parameterization of the attitude error used
to adjust the global attitude quaternion. As recommended by Section 6.2 of [85], gyro measurements
were used for the prediction step instead of a dynamics model of the vehicle. An accelerometer and
a magnetometer were used for the correction step.

The MEKF estimates vehicle attitude relative to a world-fixed frame with a quaternion q̂k
and a gyroscope bias parameter β̂k at discrete time step k. During the prediction step, the gyro
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measurement was used to integrate the quaternion estimate to the next discrete time step q̂−k+1 =

Ω(ω̂k,∆t)q̂
+
k where superscript − indicates a value immediately after the prediction step and + is the

value immediately after the update step. During the update step, the MEKF uses a six-component

state vector ∆x̂k =
[
δα̂>k ∆β̂>k

]>
, where δα̂k is the three-component attitude estimate error

vector and ∆β̂k = βk − β̂k is a three-component gyro bias estimate error vector, to correct the
prediction. In effect, the update step computes q̂+

k+1 = q̂−k+1 + 1
2
Ξ(q̂−k+1)δα̂k for the attitude and

β̂+
k+1 = β̂−k + ∆β̂−k for the gyro bias.

As with all Kalman filters, the MEKF also keeps track of its estimate uncertainty with a 6×6
covariance matrix Pk where the six-dimensional estimate is assumed to be drawn from a Gaussian
distribution ∆x̂k ∼ N (∆ˆ̄xk,Pk).

3.3.1.1 MEKF Prediction Step

The MEKF prediction step uses gyro data to march the current estimate forward. Gyroscope
values are modeled as:

ω̃k = ωk + ν ν ∼ N (0,Qk) (3.1)

where ωk is the true angular velocity andQk is the process noise matrix. The MEKF first offsets
the measured gyro value by current gyro bias estimate ω̂k = ω̃k − β̂k where ω̃k is the raw gyro
measurement and ω̂k was offset by our bias estimate β̂k. We then updated the quaternion and gyro
bias with:

q̂−k+1 = Ω(ω̂k,∆t)q̂
+
k

β̂−k+1 = β̂+
k

(3.2)

where Ω(ω̂k,∆t) was defined in Chapter 7.1.2 of [84] and depends only on the bias-adjusted gyro
measurement ω̂k and the amount of time given by discrete time step ∆t. Note the gyro bias estimate
is unchanged during the prediction step.

The covariance matrix becomes:

P−k+1 = ΦkP
+
k Φ>k + ΥQkΥ

> (3.3)

where Φk = Φk(ω̂k,∆t) is a state transition matrix that depends on ω̂k and ∆t, while Υ is a
constant matrix. Qk = Qk(σu, σv,∆t) is a process noise matrix that depends on gyroscope noise
parameters σu and σv and the change in time ∆t. All three of these matrices were defined in Chapter
7.1.2 of [84].
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3.3.1.2 MEKF Update Step

The update step receives accelerometer z̃k,accl and magnetometer z̃k,mag measurements, com-
pares these to their respective “reference vectors” in world frame rk,accl and rk,mag, and uses the
difference between the measurement and reference vector to update the estimate. Reference vectors
are effectively what we expected each sensor to measure given the current vehicle state estimate.
It was assumed that the gyro data used in the prediction step be measured at the same time as
the accelerometer and magnetometer data. On our test UAV, the magnetometer was sampled less
frequently than the accelerometer and gyroscope. As such, we used a sequential update method
explained in Chapter 7.1.3 of [84] so that the matrices used in the update step need not change size
depending on the availability of magnetometer data.

First, we define a rotation matrixA(qk) that transforms a vector represented in the world frame
to the same vector represented in the vehicle body frame. We then define the Kalman gain:

Kk = P−k H
>
k

[
HkP

−
k H

>
k + σ I3×3

]−1
(3.4)

where I3×3 is the 3×3 identity matrix, and the 3×6 sensitivity matrixHk is:

Hk =
[[
A(q̂−k )rk,

]×
03×3

]
=

∂h

∂(∆x)
= [Hα Hβ]. (3.5)

σ is a measurement noise parameter that depends on which sensor is being used (i.e., σaccl or σmag)
and rk, is the corresponding accelerometer or magnetometer reference vector. Hk is a Jacobian
matrix of the measurement model:

z̃k,mag = hmag(qk) + ηmag

z̃k,accl = haccl(qk) + ηaccl
(3.6)

where

ηmag ∼ N (0, σmagI3×3)

ηaccl ∼ N (0, σacclI3×3).
(3.7)

In general, hmag varies as a function of position if the magnetic field is not constant. However,
this has no effect on the Jacobian Hk = ∂h

∂(∆x)
since position is not part of the state ∆x. The

sensor-based subscript (i.e., mag or accl) was omitted from Hk for brevity. Finally, the operator
[a]× takes a vector a = [ax ay az]

> as the input and returns a skew-symmetric cross-product matrix
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where:

[a]× =

 0 −az ay

az 0 −ax
−ay ax 0

 S.T. a× b = [a]× b. (3.8)

The estimate error state is then updated with:

εk, = z̃k, −A(q̂−k )rk,

∆x̂+
k = ∆x̂−k +Kk

[
εk, −Hk∆x̂

−
k

] (3.9)

where εk, is often denoted the “residual” or “innovation” and z̃k, is either the accelerometer or
magnetometer measurement. ∆x̂+

k is used to update the estimate quaternion q̂+
k and gyro bias

estimate β̂+
k as specified in Chapter 7.1.1 of [84]. Finally, the covariance matrix is updated with:

P+
k = [I6×6 −KkHk]P

−
k . (3.10)

3.3.2 Gaussian Process Regression

The purpose of the GPR-based map is to take observations around the flight space and interpolate
these measurements to predict the magnetic field at any point in and around the workspace. When
estimating attitude, the GPR-based map is queried at the vehicle’s location to provide a magnetic
field reference vector rk,mag to the MEKF.

Gaussian process regression uses a “training set” of observations to make predictions of the
magnetic field. The predictions tend to only be accurate near positions used in the training set.
Each observation has a 3D position and the three components of the magnetic field observed at
position (B̃x, B̃y, B̃z). Throughout this dissertation, we used three independent Gaussian processes,
each with a 3D input (the position) and a scalar prediction as the output (the x, y, or z component
of the magnetic field). As such, for a training set with n observations, we defined the design
matrixX ∈ R3×n as a collection of the n 3D positions and defined vectors ỹx, ỹy, ỹz ∈ Rn as the
corresponding magnetic field observations for B̃x, B̃y, and B̃z, respectively.

In [67], Rasmussen and Williams defined a Gaussian process as a distribution over functions
written as:

f(x) ∼ GP (0, k(x,x′)) (3.11)

where 0 is the zero-mean function, k is a covariance function (or kernel), and x, x′ ∈ R3 are the
3D positions. The covariance function quantifies correlation, or similarity, in observations based on
their spatial proximity. Throughout this dissertation, we used three separate Gaussian processes
GPx, GPy, and GPz that have a zero mean function and a squared exponential covariance function.
Given a training dataset and a set of hyperparameters, each Gaussian process can be queried at
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a 3D location to provide a prediction of a single component of the magnetic field along with the
uncertainty of each prediction. The “map” of the magnetic field is actually these three Gaussian
processes with their corresponding training sets Dx = (X, ỹx), Dy = (X, ỹy), and Dz = (X, ỹz)

and their respective optimized hyperparameters.
The hyperparameters are adjustable terms from the covariance function. With a squared exponen-

tial covariance function, the hyperparameters are a length scale and a signal standard deviation. Each
of the three Gaussian processes had distinct hyperparameters computed by minimizing the negative
log marginal likelihood over their corresponding training datasets. Hyperparameter optimization
was performed using the gpml-matlab toolbox 1.

In this dissertation, we refer to the three Gaussian processes as a single object (e.g., “map”,
“magnetic field map”, “GPR-based map”, “GPR”) since they were used together to predict the full
magnetic field vector at a desired location. These predictions are used by the MEKF as magnetic
field reference vectors rk,mag and to assess the accuracy of the GPR-based maps via a validation set
per Sections 3.5.1 and 3.5.4. Finally, the predictions are used to visualize the magnetic field of our
workspaces in Sections 3.5.2.

3.3.3 Magnetometer Measurement Model

To calibrate the magnetometer on our flight vehicle, we used the model and procedure from
[68]. Measurements from a three-axis magnetometer can differ from the actual magnetic field
because of noise, sensor bias, non-unit scaling factors, and nonorthogonalities in the alignment of
the magnetometer’s measurement axes. These imperfections are captured by the following model:

B̃x = aBx + x0 + ηx (3.12)

B̃y = b(B̃y cos(ρ) +Bx sin(ρ)) + y0 + ηy (3.13)

B̃z = c(Bx sin(λ) +By sin(φ) cos(λ)

+Bz cos(φ) cos(λ)) + z0 + ηz
(3.14)

where (B̃x, B̃y, B̃z) are measured values, (Bx, By, Bz) are the true magnetic field, (a, b, c) are
scaling factors, (x0, y0, z0) are constant bias, (ηx, ηy, ηz) are zero-mean noise, and (ρ, λ, φ) are
angles quantifying the nonorthogonality of the axes (Figure 1 in [68]). The goal is to estimate
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α = [a, b, c, x0, y0, z0, ρ, λ, φ]> by minimizing:

∆B = B2
R −B2

= B2
R − (B2

x +B2
y +B2

z )

= B2
R − g(B̃x, B̃y, B̃z, α)

(3.15)

where BR is the magnitude of the magnetic field reference vector obtained from the GPR-based
map and g() is a nonlinear function obtained by re-arranging Equations (3.12) through (3.14)
for (Bx, By, Bz). The estimated α is obtained by iterative nonlinear least squares with α0 =

[1, 1, 1, 0, 0, 0, 0, 0, 0]> as an initial condition.

3.4 Experimental Setup and Procedure

The purpose of our experiments was to gather sensor data to create magnetic field maps, assess
their accuracy in representing the local magnetic field, and analyze their ability to enable the 3DOF
attitude estimation of a UAV. To this end, we created coverage flight patterns (Scan-α and Scan-β)
to study different ways of gathering observations to train magnetic field maps and investigate the
interpolation and extrapolation capabilities of GPR-based maps. Then, we flew five different flight
profiles (FP-A through FP-E) that distinctly excited the roll, pitch, and yaw of the flight vehicle
to provide different test cases for attitude estimation. These profiles were flown both indoors and
outdoors to investigate how spatial variation in the magnetic field affects the utility of our magnetic
field maps.

3.4.1 Equipment, Facilities, and Setup

Our experimental flight vehicle, shown in Figure 3.2, is a multirotor equipped with a gyroscope,
accelerometer, and magnetometer. The multirotor used here were introduced in Section IV of [86]
and flies an MPU9250 IMU (gyro, accelerometer, magnetometer) and BMP280 barometer. Since
the work in [86], a second BeagleBone Blue microprocessor, a PNI RM3100 magnetometer, and a
DJI Naza-M V2 GPS unit were added to the vehicle. In addition, the flight controller was changed
to rc pilot a2sys modified from the open-source rc pilot 3.

Figure 3.3 shows the major components of the experimental setup. The flight vehicle was
equipped with two BeagleBone Blue (BB-Blue) microprocessors both running RC pilot. The
controller BB-Blue uses pregenerated trajectories as guidance and uses a linear quadratic regulator
(LQR) controller to maneuver the vehicle along the desired trajectory. The controller used in this
chapter was a modified version of the LQR controller from [87]. For navigation, the MPU9250
IMU has a built-in processor that provides roll and pitch estimates, while motion capture position
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and yaw estimates are streamed from the ground station to the vehicle via wireless XBee radios
during each flight.

(a) Vehicle body frame (b) Flight vehicle components

Figure 3.2: Flight vehicle.

Flight Vehicle Ground Control Station (GCS)

Rotors

GCS Computer
BeagleBone Blue

(Controller)

Mocap System

WiFi DSMX XBee Data

BeagleBone Green

BeagleBone Blue
(Estimator)

NAZA-M V2 GPS

PNI RM3100 
Magnetometer

Motion Capture 
Markers

Figure 3.3: Diagram of the devices used to the gather experimental data.

The estimator BB-Blue logs data from the NAZA-M V2 GPS, PNI RM3100 magnetometer,
MPU9250 IMU (gyro and accelerometer), BMP280 barometer, and Qualisys motion capture with
a timestamp from when each respective value was logged. The MPU9250 IMU and BMP280
barometer are included with each BeagleBone Blue and are thus not included individually in Figure
3.3. The IMU was sampled at 200Hz, the magnetometer at approximately 144Hz, the barometer at
20Hz, and the GPS at 4Hz. The Qualisys (outdoor) motion capture pose estimates were computed
at 100Hz, while the OptiTrack (indoor) system provides ground truth at 120Hz. The GPS and
barometer data were not used in this chapter.

The LQR controller from [87] did not use integrator terms on position, altitude, or yaw angle.
The controller was not tuned rigorously for this analysis, so there tended to be a slight, but slow
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decrease in altitude during each flight. In addition, the guidance method assumed the processor
updates the outputs at 200Hz consistently, which is not true in reality. The result is that the desired
position, velocity, and attitude fed to the controller is sometimes behind a location the drone has
already passed. This causes some undesirable motion from a control perspective, but actually
presents interesting oscillatory features for our MEKF to track. For each flight, the vehicle was
placed near the motion capture origin with the +x axis of the vehicle’s body frame roughly aligned
with the +x axis of the motion capture origin. To prevent large, unpredictable motion during takeoff,
the controller’s initial reference xy position and heading were the initial position and heading of the
vehicle before takeoff

The Network Time Protocol (NTP) was used to synchronize all data-gathering processors to
ensure proper temporal correspondence between sensor data gathered onboard the vehicle and
the ground truth from the motion capture system. There was a ∼40ms delay when wirelessly
transmitting the motion capture pose from the ground station to the flight vehicle via Xbee radio.
In order to correlate onboard sensor data to motion capture ground truth values, all BeagleBone
processors (the two BB-Blues on the vehicle and the BB-Green on the ground station per Figure 3.3)
used NTP to synchronize their local clock with the ground station’s clock during the initial setup.
Each BeagleBone then recorded their NTP clock offset from the ground station clock at the start
and end of each flight trial. These offsets were linearly interpolated for all other points throughout
the flight to serve as a method of synchronization between sensor data captured onboard the vehicle
and motion capture data captured on the ground station before it was sent over the wireless XBee
radio channel and subject to the 40ms delay. Note, after the work in this chapter, we came to use
chrony2 to solve this synchronization issue with less post-processing.

For the outdoor and indoor flight test sessions, a single gyro and accelerometer calibration was
performed during the initial setup to remove any large offsets in either sensor. Calibration bias
and scaling factors were automatically applied to all raw values for both sensors as a feature of the
MPU9250 IMU. The outdoor dataset used in this chapter was not originally meant for an analysis of
magnetic fields. As such, no magnetometer calibration procedure was performed before the outdoor
flight data were gathered. Since the indoor data were gathered specifically for this chapter, we used
the calibration method from [68]. Table 3.1 shows the scaling factor, bias, and nonorthogonality
metrics for the PNI RM3100 applied to the magnetometer measurements for the indoor flight tests.
A perfect sensor would have scale factors of 1 and bias and nonorthogonalities of 0. Even though
we did not have a calibrated magnetometer for the outdoor readings, Table 3.1 gives us confidence
that the RM3100 provides good measurements with uncalibrated errors that are small relative to the
50 µT field at the outdoor flight space.
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Table 3.1: Calibration parameters of RM3100 magnetometer from indoor flight tests.

Scale Factor (-) Bias (µT) Non-Orthogonalities (◦)

a b c x0 y0 z0 ρ λ φ

1.01 0.955 0.942 −1.26 −2.46 3.24 0.182 2.28 −0.118

All outdoor tests were conducted at the University of Michigan’s outdoor netted drone facility,
M-Air, equipped with 30 Qualisys motion capture cameras for ground truth position and attitude.
The indoor flight tests were conducted in the Robot Fly Lab in the Ford Motor Company Robotics
Building equipped with 8 OptiTrack motion capture cameras for the ground truth (Figure 2.2).
The outdoor data were collected in a single August 2020 evening in M-Air. The indoor data were
gathered in March 2021 inside the Robot Fly Lab. The usable volume for the indoor flight lab space
is smaller than that of M-Air. As such, the flight profiles used outdoors (Section 3.4.2) covered
larger areas than their indoor equivalents (Section 3.4.3)

For the outdoor flights, the motion capture origin was set at the center of M-Air, which was
surveyed to be 42◦17’39.95257” N, 83◦42’37.59818” W. According to Google Earth, the center
of M-Air has an altitude of 270m above sea level. M-Air has pillars that align with geographic
north–south and east–west. Using these pillars, the +x axis of the motion capture system was
aligned with geographic north (by visual inspection) and the +z motion capture axis aligned with
the gravity vector using a leveling tool.

For indoor flights, the +x axis of the motion capture origin was aligned with the long axis of the
indoor flight space. There is no special relationship between the indoor fly lab’s selected origin and
Geographic North. To achieve consistency between flights, we marked the position and orientation
of the desired motion capture origin on the ground. The +x axis of the indoor motion capture origin
was aligned with this tape marker via visual inspection while the +z axis of the motion capture
system was aligned with the gravity vector using a leveling tool.

Motion capture position and attitude estimates are given with respect to a virtual rigid body
defined from a set of motion capture markers on the vehicle. The body frame for the virtual vehicle
is the centroid of all motion capture markers used to define the rigid body and does not necessarily
coincide with the center of mass of the actual vehicle. For outdoor data, the orientation of the
virtual rigid body was aligned with the physical vehicle through select placement of motion capture
markers, a feature of the Qualisys motion capture system. The indoor OptiTrack motion capture
system has no feature to align the virtual rigid body with the physical vehicle, but our motion
capture targets were only placed once for all indoor flights, so any systematic bias was consistent in
all data gathered. To characterize the performance of our attitude estimator under different flight
maneuvers, each flight test followed a trajectory from one of the flight profiles detailed below.
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3.4.2 Outdoor Flight Profiles

To investigate the value of magnetic field maps for attitude estimation, the multirotor flew five
different flight profiles, each meant to excite roll, pitch, and yaw in different ways. Flight Profile
A (FP-A) is a square trajectory where the vehicle hovers at each corner of the square. This flight
profile offers large translations with constant altitude and heading. Flight Profiles B and C are level
circle trajectories with large, continuous translations, constant altitude, and a desired heading that is
always tangent to the circle. FP-B has a slower tangential speed than FP-C. Flight Profile D is an
inclined circle similar to B and C, but altitude is no longer constant. Finally, profile E is an angular
oscillation test featuring small translation, but large oscillations in roll and pitch. All trajectories
were flown at an altitude of 1.5m except FP-D (the inclined circle) with the desired altitude varied
from 0.7m to 3.3m. Figure 3.4 shows the five outdoor flight profiles. All outdoor flight tests have
two-digit identification numbers per Table 3.2.

FP-A flown outdoors has side length 10m. The vehicle is commanded to hover at each corner of
the square for 10s followed by a 10s cubic spline translation to the next corner. From the takeoff
point, the vehicle moves to the −x,−y (southwest) corner, then traces a square by moving +x

(north), +y (east), −x (south), then −y (west) two times before returning to the origin to land.
Cubic spline velocities start and end at rest while position constraints change as appropriate to
traverse the square resulting in a maximum commanded speed of 1.5m/s.

(a) xy View (b) yz View

Figure 3.4: Five outdoor flight profiles.

Circular profiles FP-B and FP-C have turning radius 5m, while FP-D is inclined with respect to
the horizontal plane by 30◦ and has turning radius 3m. FP-B and FP-C maintain an altitude of 1.5m,
while the inclined circle’s altitude varies from 0.7m to 3.3m. The tangential velocity of Profiles B
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and D are both “slow” at 1m/s, while Profile C has a commanded tangential velocity of 3m/s. For
all three circular trajectories, the UAV heading is directed to follow a tangent to the circular path.

Flight Profile E follows a sinusoidal desired position in the x and y axes. The net result is small
linear motion and fast changes in vehicle roll and pitch. The sinusoidal reference trajectory has a
0.3m amplitude with a frequency of 3Hz. In each trial of FP-E, the vehicle oscillates along the pitch
axis (±x direction) first for 90s followed by oscillations in the roll axis (±y direction) for the same
duration. The UAV is commanded to maintain a constant heading throughout the flight and remain
stationary for 5s between roll and pitch oscillations to decouple motion in each axis.

Two three-minute trials of each flight profile were conducted with all sensors sampled per
Section 3.4. One trial from each profile was used to create the GPR-based map (training data), while
the other was used to perform attitude estimation with an MEKF (utilization data). The specific
trials used for training and utilization are shown in Table 3.2. For the training data, all observations
were downsampled to 1Hz before being fed into the GPR. In the case of the utilization data, the
MEKF was given all sensor data at the respective sampling rates.

The flight profiles in this chapter were meant to capture different types of flight methods. FP-A
has short periods of motion with long segments of stationary hover that emulate surveillance-based
applications of multirotors. This trajectory enables the drone to experience the planar spatial
variation of the workspace by covering the span of the workable area. FP-B was meant to emulate
the continuous motion of fixed-winged vehicles, but we settled on a circular trajectory due to the
space constraints of our workspace. In retrospect, an elongated and beveled rectangular circuit
would allow for periods of straight flight with some banked turns to better represent fixed-winged
flight. FP-C is a more aggressive version of FP-B, while FP-D was designed to capture the vertical
spatial variation of the workspace. Finally, FP-E is a stress test of roll and pitch estimation, but not
a typical maneuver one would expect a flight vehicle to perform.

Our vehicle and its controller are not able to safely execute aggressive maneuvers as seen in
drone racing or in acrobatic drones. Though such cases would be good stress tests for the attitude
estimation portion, they were not achievable with our current setup. As such, we used FP-C and
FP-E as stand-ins for “aggressive” flight maneuvers within the capabilities of our system.

3.4.3 Indoor Flight Profiles

The five flight profiles from the outdoor dataset were repeated inside the Robot Fly Lab with
the following differences. To distinguish between outdoor and indoor trajectories, let FP-A denote
the outdoor level square, while FP-In-A the indoor variant; analogous notation was adopted for the
other four flight profiles. The indoor profiles have smaller x− y footprints to fit the indoor flight
space, so more laps were traversed to achieve the desired three-minute flight duration.

FP-In-A is a rectangle with a 4m side length in the x direction and a 3m side length in y; it
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is otherwise the same as FP-A. FP-In-B (slow level circle) has a 1.5m radius, but is otherwise
identical to FP-B. FP-In-C (fast level circle) has a 1m radius and a commanded tangential velocity of
1.5m/s, but is otherwise identical to FP-C. FP-In-D (slow inclined circle) has a 1.5m radius and 30◦

inclination, which bounds its commanded altitude between 0.85m and 2.15m. FP-In-E (stationary
oscillations) is identical to the outdoor FP-E. Figure 3.5 shows the five indoor flight profiles. All
flight tests conducted indoors have a three-digit number starting with a “1” per Table 3.3.

(a) xy View (b) yz View

Figure 3.5: Five indoor flight profiles.

Two additional trajectories (Scan-α and Scan-β) were flown indoors to train and validate the
GPR-based magnetic field map. Both are a lawnmower coverage pattern in the x − y plane at
three different altitudes. Scan-α (training set) was flown at 0.75m, 1.5m, and 2.25m altitudes,
while Scan-β (validation set) was flown at 0.5m, 1.5m, and 2m altitudes. The goal was for the
validation set to have an altitude that forced the GPR to extrapolate (0.5m), interpolate (2m), and
match (1.5m) the training set altitudes. At each altitude, the drone flew a lawnmower pattern in the
x− y plane by traversing from −2m to +2m in the x direction, then changing the y position from
−1.5m to +1.5m in 0.5m increments. Similar coverage patterns have been used in other magnetic
field mapping works [88, 89, 90]. Figure 3.6 shows the desired positions and actual flight position
Scan-α (test 100) and Scan-β (test 102) trajectories. In Figure 3.6b, the lines show the ground
truth position of the vehicle at 120Hz, while the dots are downsamples of the position used to train
(downsampled to 1Hz) and validate (downsampled to 2Hz) the GPR-based map.

Two trials of each flight profile were conducted with all sensors being sampled at the aforemen-
tioned frequencies (Section 3.4). For the indoor data, we trained the GPR in two different ways.
One methodology is to train the GPR using the Scan-α lawnmower pattern, and the alternative is
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to train the GPR using one trial each of the five indoor flight profiles (FP-In-A through FP-In-E),
as summarized in Table 3.3. In both cases, we used both the Scan-β trajectory and separate tests
of the FP-In flights to validate the map. Below, we use these two methods of training the GPR to
analyze which yields more accurate maps (Sections 3.5.1 and 3.5.4). In general, training tests were
downsampled to 1Hz, while validation sets were downsampled to 2Hz. The one exception is when
training with FP-In-A, we downsampled to 2Hz to provide better coverage along the edges of the
planar rectangle. The FP-In-A locations shown in Figure 3.5 were downsampled to 2Hz, while all
others were at 1Hz.

(a) Desired positions of Scan-α (training)
and Scan-β (validation) trajectories.

(b) Actual positions where the magnetic field was sam-
pled during test 100 and test 102. The dots show the
1Hz and 2Hz downsampled locations, respectively.

Figure 3.6: Scan-α and Scan-β: coverage patterns to train and validate the magnetic field map for
the indoor flights.

3.4.4 Creating the GPR-Based Magnetic Field Reference Map

To create the GPR-based magnetic field map, we first sampled the magnetic field at the desired
locations to form a training dataset. For this, we split the flight tests into three sets: GPR training,
GPR validation, and MEKF utilization. Table 3.2 shows which tests were used in each respective
set for the outdoor dataset, while Table 3.3 shows analogous data for the indoor dataset. At the IMU
200Hz sampling rate, each three-minute flight generated over 40,000 datasets. However, many of
these points are spatially redundant since the vehicle does not move very far in 1/200 of a second.
In order to maintain efficient GPR execution, all training datasets were downsampled to 1Hz. The
exception is FP-In-A, which was downsampled to 2Hz to provide better coverage on the edges of
the planar rectangle. The outdoor GPR map uses 1157 observations from the five outdoor flight
profiles. Each point in Figure 3.4 is an observation used to create the outdoor map. The indoor map
was trained in two different ways, either using the ∼250 observations from one of the two Scan-α
tests (Figure 3.6b) or using 1298 observations from the indoor flight profiles (Figure 3.5).
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For each map, the observations that made the training set were used to train three separate
Gaussian processes. Each observation has a 3D input (x, y, and z position of the observation)
and a 1D output (a single component of the 3D magnetometer measurement). Once trained, each
Gaussian process can be queried to give the x, y, or z component of the magnetic field at any desired
position, including locations that were not directly observed in the training set. In effect, we used
the GPR to interpolate and predict the magnetic field at unobserved locations in each flight space.
Although three independent Gaussian processes performed regression for each of the x, y, and z
components of magnetic field, we refer to the composition of these as a single unit (e.g., “GPR”,
“map”, “GPR-based map”, etc.).

Table 3.2: Outdoor flight profiles from Section 3.4.2 were split into a “training” set (to create the
GPR map) and a “utilization” set (to analyze attitude estimation). Each flight profile contributes a
single training flight and a single utilization flight.

Training (1.0 Hz) Validation Utilization (Max Sensor Frequency)

FP-A test 01 – test 10
FP-B test 03 – test 11
FP-C test 05 – test 12
FP-D test 07 – test 13
FP-E test 09 – test 14

Table 3.3: The indoor flight profiles from Section 3.4.3 have dedicated flight trajectories for GPR
training and validation. The indoor experimental profiles match the outdoor versions, but with
smaller footprints to fit in the spatially constrained indoor motion capture arena.

Training (1.0 Hz) Validation (2.0 Hz) Utilization (Max Sensor Frequency)

Scan-α test 100 & test 101 – –
Scan-β – test 102 & test 103 –

FP-In-A test 105 (2Hz) test 115 test 115
FP-In-B test 107 test 116 test 116
FP-In-C test 110 test 117 test 117
FP-In-D test 112 test 119 test 119
FP-In-E test 114 test 120 test 120

The open-source toolbox gpml-matlab1 was used for training and querying the GPR. A
squared exponential covariance function was used with a Gaussian likelihood. The hyperparameters
(i.e., characteristic length scale, signal and noise standard deviations) for all three Gaussian processes
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were computed separately by minimizing the log marginal likelihood. The gpml-matlab toolbox
implements the methods from [67].

3.4.5 Querying the WMM Magnetic Reference Map

The World Magnetic Model (WMM), built by the British Geological Survey group, models
Earth’s magnetic field [11]. A similar model called the International Geomagnetic Reference Field
(IGRF) gives the same reference field values at M-Air within 0.01µT.

WMM uses observations of Earth’s magnetic field from Earth-orbiting spacecraft and ground
geomagnetic observations to construct a model of the magnetic field and how it will change over
the course of five years. The model is most accurate on the year the new version is released, and
accuracy degrades over five years until the next release is available. WMM2020 was released
in December of 2020. Although our outdoor tests were performed in August 2020, we used
WMM2020 rather than its predecessor, WMM2015. For this chapter, we used WMM to provide a
magnetic reference field value rk,mag that was assumed to be constant at all locations throughout
the workspace since WMM gives the same magnetic field values for positions within 10m of the
outdoor workspace origin. This is why we refer to WMM as our low-resolution source, while the
GPR-based map is our high-resolution source of magnetic field reference vectors rk,mag.

WMM was not used as a source of reference vectors for the indoor analysis since its predictions
were not accurate for the values measured inside. Instead, to emulate the low resolution of WMM,
we queried the GPR at a single location indoors and assumed the magnetic field as constant for all
points in the workspace.

3.5 Results and Discussion

In this section, we first assess the accuracy of the GPR-based magnetic field map by analyzing
its error against a validation set. Since the outdoor dataset did not have a calibrated magnetometer,
this accuracy analysis was only performed on the indoor Robotic Fly Lab data. Next, we present a
novel method of visualizing 3D magnetic fields in Section 3.5.2 to highlight the spatial variation
differences between the indoor and outdoor magnetic fields. This analysis was used to explain the
trends seen in Section 3.5.3, where we demonstrate the value of magnetic field maps on 3DOF
attitude estimation in regions with spatially varying magnetic fields. In Section 3.5.4, we compare
the accuracy of GPR maps trained on the observations from the Scan-α coverage pattern against the
maps trained from the indoor flight profiles. Finally, Section 3.5.5 summarizes how magnetometers
can assist with roll and pitch estimates typically reserved for the accelerometer unit to handle.
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3.5.1 Accuracy of GPR-Based Magnetic Field Map

This section analyzes the accuracy of the GPR when used to map the magnetic field inside the
Robotic Fly Lab. The GPR-based map is capable of accurately estimating the magnetic field even
when extrapolating outside of and interpolating between observed regions.

To analyze the accuracy of the magnetic field map, we created a GPR-based map with obser-
vations from a Scan-α flight test and checked its accuracy against validation data from a Scan-β
test (see Section 3.4.3). Per Section 3.4.4, the GPR for the indoor map was created by taking ∼250
observations from the Scan-α flight test 100 or test 101. Figure 3.7 shows the B̃x, B̃y, and B̃z

estimation error at the ∼490 locations observed in the Scan-β validation flight tests (see Figure 3.6).
The vertical lines in each subplot group the flight into three constant-altitude sections separated by
a few observations during altitude changes. Observations at 0.5m are indexed from 10 to 166, 1.5m
from Indices 169 to 309, and 2.0m from Indices 312 to 468. The segments from Indices 0 to 10
and 468 onward represent the takeoff and landing sequences, respectively. The black dots represent
the GPR estimation error, while the gray fill shows two standard deviations (2σ) of the GPR’s
uncertainty at each location. The red percentage in each constant-altitude section quantifies how
often the error is within the gray uncertainty region. Figure 3.7e,f show estimated and measured
magnetic field values at each location, which were used to compute the errors shown in Figure
3.7a,d, respectively. Here, each red cross is a measurement from the validation set, while the blue
line and shading are the GPR prediction and uncertainty, respectively. Figure 3.7e,f are qualitatively
similar to the other two training/validation pairs.

The GPR for each axis generally had less than 1µT of error over all validation measurements.
The Scan-α training trajectory sampled points at altitudes 0.75m, 1.5m, and 2.25m, while the
Scan-β validation set flew at 0.5m, 1.5m, and 2.0m. As such, the GPR must extrapolate at 0.5m
(Indices 10 to 166) and interpolate at 2.0m (Indices 312 to 468) and directly predicts the results at
an observed altitude of 1.5m (Indices 169 to 309).

Since each GPR’s estimate is a Gaussian distribution, we expected their estimation error to be
within two standard deviations 95% of the time. By analyzing the red percentages in Figure 3.7,
training on test 100 (top row) yielded more reliable error and uncertainty metrics than test 101
(middle row). As such, test 100 was used to train the indoor GPR-based magnetic field map. Once
the accuracy of using GPRs to serve as maps of magnetic field was characterized, the maps were
used to analyze the spatial variation of the magnetic fields in our indoor and outdoor test arenas.
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(a) Training with test 100. Validating with test 102.
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(b) Training with test 100. Validating with test 103.
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(c) Training with test 101. Validating with test 102.
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(d) Training with test 101. Validating with test 103.

0 100 200 300 400 500
-30

-20

-10

0 100 200 300 400 500
-20

-10

0

10

0 100 200 300 400 500
40

50

60

70

(e) Training with test 100. Validating with test 102.
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(f) Training with test 101. Validating with test 103.

Figure 3.7: GPR-based magnetic field map error on ∼490 validation points from Scan-β. In order,
the large segments separated by vertical bars are at altitudes 0.5m, 1.5m, and 2m, respectively. For
Figure 3.7a–d, the red percentage value shows how often the error is within the 2σ uncertainty for
each altitude segment. Data is presented in the world frame.
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3.5.2 Analyzing the Spatial Variation of Magnetic Fields

This section presents a new method to visualize 3D magnetic field maps and compares the mag-
netic field inside the Robotics Fly Lab to that of the outdoor M-Air facility. We show, qualitatively,
that the magnetic field indoors has more spatial variation than outside.

Figure 3.8a shows the GPR prediction of the magnetic field at the outdoor facility for four
different altitudes. Black arrows indicate the horizontal field component, while the color behind
each arrow depicts B̃z at that location. In Figure 3.8a, the +x direction is Geographic North. Figure
3.8b shows the GPR prediction for the indoor lab where Geographic North is approximately in the
−y direction. The outdoor magnetic field map (Figure 3.8a) was generated using 1157 observations
of training data from the five outdoor flight profiles (Table 3.2), while the indoor map (Figure 3.8b)
was generated using the 245 observations from test 100 (a Scan-α trajectory). The indoor map was
qualitatively similar when trained on test 101.
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(a) M-Air magnetic field. North is in the +x direction.
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(b) Fly Lab magnetic field when trained on test 100
(Scan-α). North is approximately in the -y direction.

Figure 3.8: Outdoor (left) and indoor (right) magnetic field at four different altitudes. Black arrows
show the direction of the planar (x− y) component of the magnetic field. The color behind each
arrow shows the strength and direction of the z component of the magnetic field.

At each location, the black arrow gives the local planar heading (or declination) of the magnetic
field, which is equivalent to the direction a compass would point to at that location. To most people,
this is the most familiar part of the magnetic field, and it is used to estimate heading. Parsing just the
black arrows gives users an idea of how the local Magnetic “North” changes throughout a workspace
and how reliable heading estimates might be without any magnetic field mapping or disturbance
rejection. The color behind each arrow gives the strength and direction of B̃z. This component
of the magnetic field is often ignored if the magnetometer is used only for estimating heading.

70



However, Figure 3.8b depicts features in B̃z that would be valuable for position localization, and in
Section 3.5.5, we show how using B̃z can assist with roll and pitch estimates.

This method of visualization allowed us to analyze the relative strength of the B̃x and B̃y and
the absolute strength of B̃z. Unfortunately, these figures show no visual indication of how the
horizontal (B̃x−B̃y) magnitude of the field compares to the vertical component (B̃z). For the indoor
flight space, such comparisons can be made using Figure 3.7e,f. For the 1157 observations in the
outdoor training dataset, the range of measured values for each component of the magnetic field was
B̃x ∈ [15, 24]µT, B̃y ∈ [−7, 2]µT, and B̃z ∈ [48, 54]µT. Finally, there is no visual indication of
the uncertainty of the GPR’s estimate in our figures. However, as in [18, 10], one could use the
transparency of the arrows and colors to indicate regions of lower certainty.

Returning to Figure 3.8a, note that the magnetic field at M-Air generally points towards Geo-
graphic North and into the ground. These characteristics remain fairly constant as a function of
altitude. The total magnetic field strength varied from 51.6µT to 57.6µT for all points in the outdoor
training dataset.

Figure 3.8b shows that the indoor magnetic field at 0.5m was generally westward but pointed
more northwest as altitude increased. Recall that Geographic North is approximately in the −y
direction in this figure. Figure 3.7e,f show that B̃z is the largest component of the magnetic field
indoors as well. The total magnetic field strength varied from 43.9µT to 73.3µT for all points in the
indoor training dataset.

For the indoor magnetic field, B̃z had a larger range of values as altitude increased with both
the smallest and largest values appearing at an altitude of 2.25m. At all altitudes, B̃z had a larger
magnitude on the −y side and a smaller magnitude on the +y side. The −y wall is a movable
divider between the Robot Fly Lab and an adjacent lab space. This divider has reconfigurable panels
that run along a metal track about 3m off the ground. We believe this metallic track and metallic
portions of the panels were responsible for the strengthened z field on the −y side of the indoor
flight lab.

The magnetic field of the indoor workspace had much more spatial variation than the magnetic
field outside. The indoor field also changed noticeably as a function of altitude, a trend that was
recently analyzed in [20]. In the next section, we show how high-resolution GPR-based magnetic
field maps can be used for attitude estimation in regions with spatially varying magnetic fields.

3.5.3 Comparison of Magnetic Field References

This section shows that the high-resolution GPR-based magnetic field map is a better source of
reference magnetic field vectors rk,mag when there is high spatial variation in the magnetic field.
If the magnetic field has low spatial variation, the GPR’s reference vectors yield similar attitude
estimate errors assuming the field is constant everywhere.
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Table 3.4 shows the root-mean-squared error (RMSE) in degrees of the MEKF’s attitude
estimator for all five flight profiles of the outdoor dataset. The “training” flight tests used to create
the GPR-based magnetic field map were different from the “utilization” tests used here to evaluate
attitude estimation error (Table 3.2).

For each flight test, the three table columns correspond to roll, pitch, and yaw RMSE in
degrees. Estimated quaternions were converted to Euler angles using a 3-2-1 (yaw-pitch-roll)
rotation sequence. The first column indicates the source of the magnetic field reference vectors.
The first row labeled “Gyro/Accl Only” excludes magnetometer data; it uses only the gyro and
accelerometer to perform attitude estimation. Yaw RMSE values were omitted here since heading is
not observable with only gyro and accelerometer data. The second row is for WMM, which has such
a low resolution that the reference vector is the same for all locations in the five flight profiles. The
third row queries the GPR-based map at a single location and uses that single reference magnetic
field vector regardless of the vehicle’s actual location. The position (0, 0,−1.5)m was chosen since
all flight profiles were centered around the origin and most had a fixed 1.5m desired altitude. The
exceptions are FP-D and FP-In-D, the inclined circle trajectories. This row can be interpreted as
using the GPR with the same low-resolution WMM offers. Finally, the last row, labeled “GPR”,
queries the GPR-based map at each time step to provide a specific magnetic field reference vector for
each vehicle position to leverage the full interpolation capability of the GPR. We refer to this case as
the “high-resolution” map and the other two, constant, reference vector methods as “low-resolution”
alternatives. The bold value in each column corresponds to the reference vector source that yielded
the lowest roll, pitch, or yaw RMSE.

Table 3.5 shows similar data, but now for the indoor dataset. Again, the “training” flight tests
are different from the “utilization” tests used to evaluate the estimation error per Table 3.3. The
format of Table 3.5 is the same as that described above. WMM’s magnetic reference vector is not
representative of the magnetic field inside the Robot Fly Lab, so WMM was not considered for
indoor analyses.

Table 3.4: RMSE for each outdoor experimental test using different magnetic field reference sources.
The first row excludes magnetometer data. For each test, the three columns show the RMSE for roll,
pitch, and yaw, respectively, in degrees.

RMSE (◦) FP-A FP-B FP-C FP-D FP-E
Roll—Pitch—Yaw test 10 test 11 test 12 test 13 test 14

Gyro/Accl Only 1.6 2.2 – 2.6 2.0 – 10 4.2 – 3.2 2.2 – 7.8 10 –

WMM 1.6 0.7 2.3 2.3 1.5 2.2 3.2 1.4 4.8 2.5 1.4 2.2 1.8 0.7 1.9
GPR (0,0,-1.5)m 1.7 0.4 2.6 2.5 1.7 2.4 3.4 1.6 5.1 2.7 1.6 2.5 1.9 0.4 2.2

GPR 1.7 0.7 2.7 1.7 1.9 4.5 2.2 1.8 5.5 1.3 2.5 3.7 1.8 0.5 4.7
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Table 3.5: RMSE for each indoor experimental test using different magnetic field reference sources.
The first row excludes magnetometer data. For each test, the three columns show the RMSE for roll,
pitch, and yaw, respectively, in degrees.

RMSE (◦) FP-In-A FP-In-B FP-In-C FP-In-D FP-In-E
Roll—Pitch—Yaw test 115 test 116 test 117 test 119 test 120

Gyro/Accl Only 1.1 0.8 – 2.5 1.5 – 10 6.7 – 2.2 1.6 – 1.5 1.3 –

GPR (0, 0, −1.5)m 2.6 4.7 9.0 2.5 3.2 11 2.9 3.6 13 4.9 3.8 11 1.1 0.6 5.0
GPR 0.7 0.2 1.7 1.1 0.9 3.7 1.1 1.7 5.0 0.8 0.9 2.7 1.0 0.4 1.9

For each flight test, the same sensor data were played back to the MEKF with the only difference
being the sensors available or the source of magnetic field reference vectors. The MEKF parameters
were tuned by hand, resulting in reasonable, but not “optimal”, parameter values. The MEKF
parameters were held constant across all indoor and outdoor flight datasets. Because of this, it is
possible to have the overall lower RMSE values in Tables 3.4 and 3.5 if the MEKF is tuned more
specifically for the indoor or outdoor environment or specific flight profiles.

For the outdoor dataset in Table 3.4, the high-resolution map (“GPR” row) yields comparable
attitude estimates relative to the low-resolution magnetic field reference sources. The high-resolution
map tended to give lower (but comparable) roll error than the alternatives. Aside from FP-A and
FP-C, the outdoor flight tests had noticeably higher yaw error in the “GPR” row. We believe this
increased yaw error was caused from not calibrating the RM3100 magnetometer before performing
the outdoor flight tests. Since the horizontal component of the magnetic field is much smaller than
B̃z (Section 3.5.2), small errors due to lack of calibration would more easily change the measured
heading of the magnetic field. This poses more of a problem to our yaw estimates than roll and pitch
[41]. We would expect such small calibration errors to have less impact on yaw estimates in a more
equatorial part of the world where the horizontal component of the magnetic field is more dominant.

Table 3.5 shows that when testing indoors, with more spatial variation in the field, the high-
resolution GPR-based map consistently allowed the MEKF to achieve lower errors in roll, pitch,
and yaw estimates. The most significant outlier was observed from test 119 where using the
high-resolution map reduced the error in all the Euler angles by at least one-third. We believe this
was because test 119 was a trial of FP-In-D (inclined circle) and spent more time in regions of
the magnetic field that differed significantly than what was observed at the reference (0, 0,−1.5)m
state (see Figure 3.8b). In fact, similar trends occurred for test 115 and FP-In-A, the level rectangle
that traced the perimeter of the flight space. In such cases, the constant ambient magnetic field
assumption was inconsistent with the magnetometer’s observations as the vehicle flew.

From Table 3.4, we see that when the magnetic field of a workspace had a low spatial variation,
having a higher resolution map did not reduce the attitude estimation error in general, but also did
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not make attitude estimates generally worse. The exception was with yaw estimation: which was
consistently worse when we constantly changed the magnetic reference vector as the vehicle moved.
However, the relatively larger yaw error was likely due to a lack of magnetometer calibration
for the outdoor flights in combination with a small horizontal magnetic field. In contrast, Table
3.5 shows a promising environment where the high resolution of the GPR-based maps can be
utilized to improve vehicle attitude estimation. In short, high-resolution GPR-based magnetic field
maps can significantly improve attitude estimation if there is high spatial variance, but do not
perform noticeably better or worse than the low-resolution alternatives when there is low spatial
field variation.

It is important to note that the outdoor magnetic field map was trained using the flight profiles,
while the indoor map was trained using Scan-α. In the next section, we show that both methods of
training yielded similar accuracy when validating on the flight profiles.

3.5.4 Comparison of GPR-Based Map Training Methods

This section analyzes how the locations of the observations used in the training set affected the
accuracy of the GPR-based map by comparing the accuracy of a GPR trained on Scan-α trajectories
against a GPR trained on indoor flight profiles. We show that training on Scan-α yielded mean
absolute errors of 0.28µT, 0.27µT, 0.48µT, while training on the five indoor flight profiles gave mean
absolute errors of 0.30µT, 0.28µT, and 0.48µT for Bx, By, and Bz, respectively, when validated on
the indoor flight profiles. As such, the outdoor GPR-based map was sufficiently accurate for the
analysis conducted in Section 3.5.3, and the conclusions drawn from Tables 3.4 and 3.5 are sound
despite differences in the GPR training methodologies. Note that these metrics exclude validating
on FP-In-A due to a sensor misalignment during test 105 (FP-In-A training flight).

Figure 3.9 shows the accuracy of the indoor magnetic field map when trained on five indoor
flight profiles (FP-In) and validated on a Scan-β flight. The left plot is the GPR estimation error
when validated on flight test 102, while the right plot shows the GPR estimates (blue line) against
observations from the validation set (red cross). The results were qualitatively similar when
validating on test 103. The blue and gray shaded regions depict two standard deviations of GPR
uncertainty at each sampled location. The black vertical lines partition the figure into sections of
constant altitude (0.5m, 1.5m, and 2m, respectively). We used samples from test 105, test 107,
test 110, test 112, and test 114 as shown in Table 3.3 to train the GPR on the FP-In trajectories.
Figure 3.7 shows similar metrics for the indoor GPR-based map when trained on the lawnmower
coverage pattern Scan-α.
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(a) Training with FP-In flights. Validating with
test 102.
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Figure 3.9: Accuracy of the indoor GPR-based magnetic field map when trained on the five indoor
flight profiles (FP-In flights) and validated on test 102 (Scan-β). The large regions separated by the
black vertical lines show areas of constant desired altitude for the Scan-β trajectory.

Figure 3.9 shows that the error on the 1.5m sweep was much lower than for the other two
altitudes. This is because most of the flight profiles in the FP-In training set were trajectories at
an altitude of 1.5m. As such, the GPR trained on FP-In had a good understanding of the magnetic
field at this altitude, but not at 0.5m and 2.0m, the other Scan-β altitudes. This was expected since
Gaussian processes tend to only provide accurate predictions near data found in their training set.

Above, we showed that when validating on Scan-β, training on Scan-α (Figure 3.7) yielded
better results than training on FP-In trajectories (Figure 3.9). However, the MEKF did not use
data from the Scan-β trajectories, so it was important to analyze the accuracy of the two mapping
methodologies on FP-In flights as well.

Figure 3.10 shows the results of validation with the five FP-In validation flights (test 115,
test 116, etc.; see Table 3.3). The left figure column shows the results when training on Scan-α,
and the right column was trained on the five FP-In training flights. Here, in contrast to other
similar plots, the vertical black lines separate each of the five FP-In validation flights (in order of
FP-In-A to FP-In-E). We can see that when validating on the intended flight profiles, both training
methodologies had a similar error. The exception was the steady-state error of Bx and Bz when
validating on the level rectangle (test 115 of FP-In-A) in Figure 3.10b,d.
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(b) Trained and validated on FP-In flights.
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(c) Trained with test 100. Validated with FP-In
flights.
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(d) Trained and validated on FP-In flights.

Figure 3.10: The accuracy of the indoor GPR-based magnetic field map when validated on the
five indoor flight profiles (FP-In flights). The black vertical lines separate each of the five indoor
flight profiles. The steady-state error in Figure 3.10b was likely caused by a misalignment with the
magnetometer in test 105 (FP-In-A training flight).

Figure 3.10d shows that the steady-state shift for FP-In-A was consistent with the magnetometer
being pitched slightly in the training flight (blue line) relative to the validation flight (red cross).
Although there were no significant crashes during the indoor flight tests, there were some rough
landings that occasionally dislodged some standoffs and screws. It is possible such a harsh landing
misaligned the RM3100 magnetometer relative to the rest of the rigid body. Since we only saved
the data from the successful flights, this misalignment must have happened on an unsuccessful
flight just before test 105 but was fixed before test 107. Note: this hypothesis also explains the
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sinusoidal Bx and Bz error trends on the 1.5m altitude section of Figure 3.9a where the peaks in
errors occurred when the Scan-β trajectory was on the outer rectangular perimeter of the flight space
(i.e., overlapping most with test 105), and the dips occurred when Scan-β passed through the center
region with the data from the flight tests that had a properly aligned magnetometer. Excluding
FP-In-A, training on Scan-α yielded mean absolute errors of 0.28µT, 0.27µT, 0.48µT while training
on the five indoor flight profiles gave mean absolute errors of 0.30µT, 0.28µT, and 0.48µT for Bx,
By, and Bz, respectively.

Note, that the previous paragraph has an erroneous conclusion that was not discovered until
we completed work on Chapter 2. With what we have learned since the work on Chapter 3
(this chapter), we now believe that the steady-state shift in FP-In-A is actually an example of
flight-by-flight variations (Section 2.5.2.2.

Nevertheless, Figure 3.10 shows us that the two training methodologies yielded comparable
results when validating on the FP-In flight profiles. Due to the inaccuracies of test 105 (FP-In-A)
and that querying the GPR was faster when it was trained on fewer data, we used test 100 (Scan-α
trajectory) to train the indoor GPR during the analysis of Section 3.5.3. However, we showed that
training the indoor GPR on the five indoor flight profiles would likely yield similar results to Table
3.5.

This brings us to an important point. If the intended route through an indoor workspace is
known a priori, then it is sufficient to construct a magnetic field map by gathering observations
along the path. This kind of mapping methodology is common with self-driving cars where maps
are only generated along roads the vehicle intends to traverse. However, training magnetic field
maps from coverage patterns such as Scan-α will generally yield more accurate results throughout
the workspace.

In summary, we used the indoor flight space to compare two mapping methodologies and
showed that mapping with the Scan-α coverage pattern yielded a uniformly more accurate map
when validating on Scan-β but had comparable accuracy when validating on the indoor flight
trajectories. Since the outdoor GPR was trained using the five outdoor flight profiles, we can
conclude that our outdoor map is sufficiently accurate near the locations of the five flight profiles.

3.5.5 Magnetometer Correction of Accelerometer Roll/Pitch Errors

This section shows that magnetometers can resolve accelerometer roll/pitch errors observed
during maneuvers. For this analysis, we focused on test 117, a FP-In-C trajectory from the indoor
dataset. Recall that all FP-In-C flights followed a level circle with a radius of 1m, a commanded
tangential velocity of 1.5m/s, and a commanded heading that changed to keep the +x body axis
tangent with the circle. As such, in an ideal flight, the vehicle would experience 2.25m/s2 of
centripetal acceleration along its y axis.
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Figure 3.11a shows the roll, pitch, and yaw estimates along with their respective errors when
using only the gyroscope and accelerometer. A 20s into the flight, the vehicle accelerated from rest
to achieve the 1.5m/s desired tangential velocity. Acceleration was measured primarily in the body
x direction, which causes a transient MEKF pitch error around t = 65s. As the vehicle reached
its maximum speed, the accelerometer measured centripetal acceleration in the body y-direction,
causing a steady-state roll error over most of the flight.

This is a common problem for flight vehicles [91, 92, 93] and other platforms [44, 45, 46, 47]
that use the accelerometers for attitude estimation. Typically, the accelerometer’s measurement is
discarded or de-emphasized when nongravitational accelerations or sensor anomalies are detected.
Here, we circumvented the need to detect nongravitational accelerations by simply allowing the
magnetometer to assist with roll and pitch estimation.

(a) Gyro and accelerometer only. (b) Gyro, accelerometer, and magnetometer with full
GPR.

Figure 3.11: Time series plots for roll, pitch, and yaw estimates of test 117 (fast level circle). Linear
and centripetal accelerations caused pitch and roll errors (respectively) in Figure 3.11a that were
corrected with the magnetometer in Figure 3.11b.

Figure 3.11b is the same flight, but now with the magnetometer. Here, we see that both
the transient pitch error and the steady-state roll error were eliminated, demonstrating that the
information from the magnetometer and the GPR-based map was able to improve roll and pitch
estimates. This is important because, in many applications, the magnetic field is only used to
provide yaw (heading) measurements, while roll and pitch are left to the accelerometer. However,
with sufficient information of the magnetic field, magnetometers can also assist in correcting roll
and pitch estimates.

It is important to qualify when magnetometer adjustment of roll and pitch estimates will be
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beneficial. Table 3.5 shows that for FP-In-C, roll and pitch estimates were improved even with a
constant (low-res) magnetic field reference at all points. This improvement increased when using
the high-resolution, full GPR. FP-In-E showed a similar trend since the magnetometer was able to
offset errors in the attitude estimates caused by the acceleration of maneuvering. However, with
FP-In-A, where the vehicle was hovering for much of the flight, the magnetometer with a low-res
GPR map actually made roll and pitch estimates worse. This is because the indoor flight space had
spatial variation in the magnetic field that was not captured by assuming a constant reference source.
However, with the full GPR, we again see the magnetometer able to improve roll and pitch estimates
past initial accelerometer estimates. Finally, such roll and pitch corrections may not be viable in
equatorial parts of the planet where the horizontal component of the magnetic field is dominant.

3.6 Conclusions and Future Work

This chapter presented methodologies to train, validate, and visualize 3D GPR-based magnetic
field maps and examined their value for indoor attitude estimation. We presented a new visualization
technique to better understand the spatial variation of 3D magnetic fields and discussed its advantages
and drawbacks. Our visualization technique relies on some interpolative tool, such as GPR, to
estimate the magnetic field at locations not found in the training set. Next, we showed that in spaces
with high spatial variation, high-resolution GPR maps can improve attitude estimates, but these
maps did not yield significantly better or worse attitude estimates in spaces with low spatial variation.
Finally, we demonstrated two ways of training GPRs and showed that training a GPR-based map
using coverage flight trajectories such as Scan-α was generally better, though constructing a map
using only observations along flight routes of interest was just as accurate in the vicinity of the flight
route. We also provided an illustrative example of how magnetometers can assist with roll and pitch
estimates in a workspace with high magnetic spatial variation.

In future work, it will be critical to better understand how much spatial variation an environment
needs before it becomes advantageous or necessary to use magnetic field maps of the workspace. We
plan to apply quantitative methods of describing the spatial variation of a workspace and investigate
how workspaces with spatially varying magnetic fields can be used to improve position estimates.
The goal is to perform full 6DOF position and attitude estimation using GPR-based magnetic
field maps [18]. This would require an analysis of multiple indoor spaces as in [41, 20], which is
currently difficult due to our dependence on motion capture cameras to construct our maps. Previous
works have found success with using LiDAR or visual–inertial odometry to construct magnetic field
maps without motion capture [29, 19, 15, 18, 20]. These methods are recommended to facilitate
accurate magnetic field mapping in complex regions where nearby structures offer distinct mapping
information for LiDAR and vision sensors. Furthermore, we aim to investigate how to better address
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the time-varying nature of magnetic fields [10] to more accurately represent the magnetic field near
large moving ferromagnetic structures such as elevators and doors [22, 10, 48].
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CHAPTER 4

Using Magnetic Field Gradients to Understand and Predict Position
Localization Accuracy

4.1 Introduction

This chapter uses a GPR (Gaussian Process Regression)-based magnetic field map to estimate
the location of a UAV (unmanned aerial vehicle) in an indoor workspace. Building upon Chapter 2,
we use a compromise magnetic field map as our fingerprinting map. In general, one would expect a
region with low spatial gradient of a signal to have lower position localization accuracy. Intuitively,
if the signal does not change as the vehicle moves around, it becomes difficult to tell if the vehicle
has moved or not. As such, this chapter analyzes the relationship between gradients in the ambient
magnetic field of the workspace against the position localization accuracy of a particle filter.

To perform this analysis, we create a magnetic field map and find the locations within the map
with the highest and lowest magnetic field gradient. These locations are denoted as r∗max and r∗min
respectively. Given a center point r∗, we define four trajectories (hover, X Stride, Y Stride, and Z
Stride) that fly through the center point. These stationary and single-axis stride trajectories serve as
our “utilization” flights and allow us to contrast the accuracy of our particle filter near a gradient-rich
location r∗max versus a gradient-poor one r∗min .

The contributions of this chapter are as follows. First, we analyze the relationship between
magnetic field gradients and the ability for a particle filter to localize position. We find that the
magnetic field gradient in the x direction of our workspace is much lower than y or z gradients
which results in higher x position localization errors than the other axes. Overall, the particle filter
can estimate position within 0.2m across six of our eight utilization flight profiles. Next, we show
how information about the ambient magnetic field can help determine if a particle filter’s estimation
error is caused by low spatial gradient in the magnetic field, error in the GPR map, or magnetic
ambiguities in nearby areas. We demonstrate this by analyzing the time-series error of our particle
filter through some of our utilization flights. To our knowledge, this is the first time a work has
clearly demonstrated how ambiguities in the magnetic field and errors in mapping the ambient field
can directly affect position estimates. Finally, we propose a new metric based on the magnetic field
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gradient to predict the accuracy of position estimates within the workspace. Our proposed metric
(which we call a gradient localization metric) accounts for both the gradient of the magnetic field
and any errors introduced by the magnetic field map from lessons learned in Chapter 2.

The remainder of this chapter is structured as follows. A summary of related works is presented
next in Section 4.2 followed by an introduction to the mathematical models for our GPR map and
particle filter in Section 4.3. Our workspace, UAV, and experimental procedure is then explained in
Section 4.4. Finally, Section 4.5 presents the results of our gradient-based analysis followed by a
brief discussion (section 4.6) and conclusion with ideas for future work (Section 4.7).

4.2 Related Work

This chapter seeks to compare the magnetic field gradient of an indoor workspace against the
accuracy of a position estimator for an unmanned aerial vehicle. We do this using a two-step process
that starts with an offline magnetic field mapping phase using Gaussian process regression (GPR).
This is followed by a position localization phase with a particle filter. Other similar works refer to
the offline mapping phase as “fingerprinting” and investigate how their fingerprinting map assists
with indoor navigation.

In this chapter, like with other works, we create maps of the ambient magnetic field. However,
fingerprinting has been done with other signals like radio [94], Wi-Fi [95, 96], and visible light
[38]. There are also works that perform simultaneous localization and mapping (SLAM) using
similar reference signals [25, 13, 97, 18, 98]. A more detailed breakdown of the related works in
this field is presented in survey papers that summarize types of mapping and localization techniques
for indoor navigation [99, 35, 100]. Most similar to our technique are those that use the magnetic
field as the reference signal for their localization [13, 15, 29, 20, 18, 19, 101].

The position estimation accuracy of works that localize with the magnetic field range by a couple
orders of magnitude. A direct comparison across all related works is difficult due to differences in
the size of their workspaces and the varying sensors and algorithms used to compute ground-truth
pose estimates.

Recent results from Almeida et al. in [30] give an average of 0.07m of 2D position error
on a ground robot across three different test cases in an 8m×10m room. Their work has a 2D
LIDAR sensor for ground-truth, uses a particle filter to estimate position, and presents estimation
accuracy after their PF has converged (i.e., after the PF first achieves error within 0.1m). Similarly
in 2013 Frassl, Robertson, et al. obtain 2D position estimates of 0.064m for their wheeled robot
and 0.08m for a pedestrian walking through a 6m×10m room in [24]. They use the same room in
a SLAM-based approach and obtain 0.01m to 0.2m of average error for foot-mounted pedestrian
localization on the last 80% of their four test trials [25]. For both works, the authors use Vicon
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motion capture for ground-truth, a particle filter for position estimates, and initialize their PF with
ground-truth position and attitude like in our work.

We suggest Refs. [30, 24, 25] provide the most direct and fair comparisons to our work here
given the size of the respective workspaces and their method of computing position estimation error
throughout the trajectory. This is despite differences in the respective vehicles (i.e., wheeled robots
and pedestrians vs UAV). Finally, we mention [50] by Lee et al. which achieves 0.1m of minimum
mean squared error (MMSE) across four trials using a SLAM-based magnetic field mapping method
on a wheeled robot. Though [50] also tests in rooms of similar size (e.g., 5m×4m), they compute
their position estimation error at ∼10 known ground-truth locations instead of throughout their
trajectories.

In this chapter, we perform magnetic field mapping and position localization on an unmanned
aerial vehicle (UAV), use a particle filter to estimate 3D position, and test within a 4m×3m×2.25m
volume equipped with motion capture cameras for ground truth. Our sensors include an accelerome-
ter, altimeter, and magnetometer. Here, we use the altimeter to demonstrate how another sensing
modality can improve position estimates when the given magnetic field map is erroneous. Our
method is able to estimate the UAV’s position within 0.1m of root mean squared error (RMSE)
for three of our eight flight test cases and within 0.2m for six of the eight flights. In Chapter 4, to
estimate the position of a UAV in our indoor workspace. These position estimates errors in our
magnetic map to investigate the cause of our position estimation errors.

The core focus of this chapter is to relate the gradients of the magnetic field to localization
accuracy. In a workspace with a constant magnetic field in all locations, it would be impossible to
localize position using the magnetic field alone. As such, we see the gradient of the magnetic field
as a source of information and aim to analyze the relationship between the signal’s spatial gradient
and our ability to localize. To our knowledge, there are no other works that quantitatively compare
the spatial gradient of an indoor magnetic field to the accuracy of their position localization. A
closely related set of works, however, utilize gradients of a signal as their fingerprints and obtain
less spatial ambiguities in their maps [51], better motion tracking through a workspace [52], or
better agreement in fingerprints across different devices [53].

Finally, this chapter provides a thorough investigation to the source of position estimation errors
through our flight trajectories. Of particular interest, we discuss how we learned to distinguish
between PF estimation errors due to low spatial gradients (i.e., insufficient magnetic field information
to distinguish nearby locations), errors in the magnetic field map, or ambiguities in the ambient
magnetic field that allow for the same signal to be measured at multiple locations.

In Figure 7 of [72], LeGrand and Thrun show an example of their PF using the magnetic field
to estimate the position of pedestrian motion within a mapped indoor workspace. Their PF is
consistently inaccurate at a particular portion of the circular trajectory, but their analysis does not
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investigate if this is caused by ambient magnetic field (insufficient information to properly localize),
errors in their map, or spatial ambiguities in the field. Our focus on evaluating the accuracy of
our maps (Chapter 2) and the study of the gradient of the field (in this chapter) allows us to better
understand the underlying cause of our PF’s localization error across our flight trajectories.

4.3 Mathematical Preliminaries

This section briefly introduces notation on querying Gaussian-processes-regression-based mag-
netic field maps, how we use the GPR-based map to compute the spatial gradient of the local
magnetic field, and finally how we construct our particle filter to estimate the UAV’s position.

4.3.1 Gaussian Process Regression

Gaussian Process Regression (GPR) is a machine learning tool that can be used to estimate a
signal given a set of noisy measurements. The representation of GPRs used in this dissertation was
learned from [67]. Our magnetic field maps use GPRs to create a 3→ 3 mapping from each 3D
location in the workspace to a 3D magnetic field vector estimate.

A GPR is defined over some input dimension p and an output dimension m which we will
denote as a p → m map. It is common for a GPR to output a single dimension m = 1. Thus,
to construct our 3 → 3 map that estimates the full magnetic field vector at each location in our
workspace, we use three separate GPRs (GPx, GPy, GPz).

In this dissertation, each GPR takes a 3D location r ∈ R3 as input (p = 3) and returns an
estimate of the x, y, or z component of the magnetic field at r 4. Though each GPR outputs an
expected value and variance for its estimate at each location, we most frequently need to refer to
the expected value. Thus, the expected value of GPx will be denoted as m̂x(r) = GPRx(r) and
similarly for the expected value of GPy and GPz respectively. With this, the estimate magnetic
field vector at some location r is

m̂(r) = GPR(r) =

m̂x(r)

m̂y(r)

m̂z(r)

 =

GPRx(r)

GPRy(r)

GPRz(r)

 . (4.1)

This chapter uses the “compromise mapping” technique which computes kernel hyperparameters
over observations from several “training” flight tests but ultimately performs inference by comparing
the target location r to a set of n1 user-selected locations called the “inference set”. For us, the
number of inference points n1 is important due to a constraint in a Python toolbox (GPyTorch

4Note the variable r̂ in Chapter 3 was a reference vector. In this chapter, it represents a 3D position vector.
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[102]) we used. A more formal and detailed introduction to our compromise mapping technique is
given in Section 2.5.4.

4.3.2 Point-wise Gradient Metrics

At each location r ∈ R3 in the workspace, we can compute a point-wise gradient metric along
the three spatial directions of the lab’s ground frame. Let the GPR-based map return a predicted
magnetic field vector m̂ = [m̂x, m̂y, m̂z]

> at each location r as defined in Equation 4.1.
Using a finite difference to approximate the spatial change of the magnetic field as

∂m̂y(r)

∂x
≈ m̂y(r + δx)− m̂y(r)

|δx|
(4.2)

with vectors

δx =

δs0
0

 , δy =

 0

δs

0

 , δz =

 0

0

δs

 (4.3)

as a function of some distance parameter δs, we can compute the following spatial gradient matrix
at each point

∂m̂(r)

∂r
=


∂m̂x(r)
∂x

∂m̂x(r)
∂y

∂m̂x(r)
∂z

∂m̂y(r)

∂x

∂m̂y(r)

∂y

∂m̂y(r)

∂z
∂m̂z(r)
∂x

∂m̂z(r)
∂y

∂m̂z(r)
∂z


=
[
∂m̂(r)
∂x

∂m̂(r)
∂y

∂m̂(r)
∂z

]
.

(4.4)

This chapter is particularly interested in the spatial gradient of the magnetic field. For this, we
isolate the columns of Equation 4.4 to quantify how the magnetic field vector changes with motion
in the x

(
∂m̂(r)
∂x

)
, y
(
∂m̂(r)
∂y

)
, and z

(
∂m̂(r)
∂z

)
directions respectively. Later in this chapter, we show

how the norm of these spatial gradient terms (e.g.,
∣∣∣∂m̂(r)

∂x

∣∣∣) compares to position estimation error.
In addition, it is convenient to define the norm of the magnetic field gradient

|∇m̂(r)| =

√∣∣∣∣∂m̂(r)

∂x

∣∣∣∣2 +

∣∣∣∣∂m̂(r)

∂y

∣∣∣∣2 +

∣∣∣∣∂m̂(r)

∂z

∣∣∣∣2 ∈ R (4.5)

where we slightly abuse the notation of ∇ since we do not define Equation 4.4 as a gradient vector,
but instead as a nine-component matrix.
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4.3.3 Particle Filter

This chapter uses a particle filter (PF) to estimate vehicle position r̂ and velocity v̂. To the
author’s knowledge, even with a given magnetic field map, there are no models that relate an error in
magnetic field readings to an update in position estimate. Such a correction term would be necessary
to implement any variation of the update step in the Kalman Filter. Instead, we rely on evaluating
the credibility of many hypotheses generated from a particle filter that estimates the position and
velocity of the vehicle.

In this chapter, we use ground truth attitude estimates from motion capture to isolate the
relationship between magnetic field gradients and position localization. Indoor attitude estimation
using IMUs in the face of spatially-varying magnetic fields has been demonstrated in other works
[23, 48, 49].

Particle filters keep track of a set of N particles each with a state estimate X̂ i and a weight wi

where i ∈ [1, N ]. The weight of particle wi is a measure of how closely said particle reflects the true
state of the actual flight vehicle. Particle weights are all non-negative and sum to one

∑
iw

i = 1.

Our application requires a six-dimensional state vector X̂k =
[
r̂>k v̂>k

]>
where rk is 3D position

of the vehicle, vk is the 3D velocity, both at timestamp k, and the caret symbolˆdenotes that this is
an estimate of the true stateXk.

There are three main steps to state estimation using a particle filter: the process model, measure-
ment model, and resampling. These steps are summarized visually in Figure 4.1.

4.3.3.1 Process Model

For each particle i, the process model

X̂ i−
k+1 = f

(
X̂ i

k, ũk

)
+ ηi (4.6)

takes the current state estimate X̂ i
k, along with some sensor reading ũk, to integrate each particle

forward in time. During the process model step, each particle is perturbed by a sample from a
zero-mean Gaussian distribution ηi ∼ N (0,Q). Each particle’s weight remains constant through
the process model wi−k+1 = wik where the superscript − denotes a quantity just after the process
model step. This step is performed each time a new sensor measurement ũk is available and ũk is
assumed to be resolved in the world frame.

We use an inertial process model where the input is taken as the accelerometer measurement
(ũk = ãk) resolved in the world frame (via motion capture attitude measurements). With this, the

86



Timestamp: 

(a) Initial state with N = 6 particles (red circles)
in a 2D workspace (colorful background).

Timestamp: 








(b) Process model moves all particles. Each then
gets its own unique noise ηi.
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ି

(c) Measurement model is used to evaluate the cred-
ibility (compute the weight wi) of each particle.

Timestamp: 

(d) Resampling creates N new particles near more
credible hypotheses.

Figure 4.1: Visualization of particle filter with N = 6 particles (red circles) in a 2D workspace with
a spatially varying magnetic fields (colorful background).

inertial process model is

X̂ i
k+1 =

[
r̂ik+1

v̂ik+1

]
=

[
r̂ik + v̂ik+1∆t

v̂ik + ãk∆t

]
+ ηiinertial (4.7)

where we note that the propagation for r̂k+1 depends on v̂k+1 and not v̂k. Additionally, ∆t = 0.005s
based on the update rate of our software, ηi ∼ N (0,Qinertial). The process model is run each time
a new accelerometer measurement becomes available.

We note that it is uncommon to only use a low-cost accelerometer for the process model.
Additionally, our multirotor UAV is subject to high vibrations from the propellers which make
it difficult to extract just the portion of the measured acceleration responsible for the change in
linear velocity. Since this chapter focuses on the relationship between magnetic field gradients
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and position localization, we are alright with having poor dead reckoning as it forces the PF to
estimate position using the magnetic field. We acknowledge our position estimates would likely be
better with a higher-fidelity process model, some vibration damping on our vehicle, or even a better
accelerometer, but we leave such analyses for future work.

4.3.3.2 Measurement Model

The measurement model is used to update the weight wi of each particle to evaluate how credibly
it reflects the true state Xk. We use one measurement model for the magnetic field and another
model for each particle’s altitude.

The magnetometer measurement model wi+k = hmag
(
r̂i−k , ỹk, w

i−
k

)
updates the weight of each

particle by comparing the actual magnetometer measurement ỹk to that of the predicted magnetic
field m̂i

k = GPR(r̂i−k ) for a particle i at position r̂i−k .

wi+k = hmag
(
r̂ik, ỹk, w

i
k

)
= wi−k pmag(ỹ

i
k|r̂ik)

pmag(m̃
i
k|r̂ik) ∝ exp

{
−1

2

(
∆mi

k

)>
R−1
mag

(
∆mi

k

)} (4.8)

where ∆mi
k = (m̂i

k − ỹk) is the primary indicator of each particle’s credibility with this measure-
ment model andRmag.

The altimeter measurement model

wi+k = halt
(
r̂ik, z̃k, w

i
k

)
= wi−k palt(z̃k|r̂ik)

palt(z̃k|r̂ik) ∝ exp

{
−1

2

(−zr̂ik − z̃k)2

σ2
alt

}
zr̂

i
k =

[
0 0 1

]
r̂ik

(4.9)

uses the altimeter’s measurement z̃k and the scalar, z-component of the particle’s position estimate

zr̂
i
k (negated in Equation 4.9 because of the North-East-Down frame). Finally, σ2

alt.
Both hmag and halt are used to update weights whenever a new measurement from the respective

sensor is available. Depending on their sampling frequencies, there will be iterations where neither,
one, or both measurement models are used at a particular timestamp k.

Lastly, since both measurement models depend only on position, the true velocity is not directly

observable. However, since velocity influences the position of the vehicle through the process model
f(), it is possible the particle filter can make sense of the vehicle’s motion with the magnetic field
and altimeter alone.
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4.3.3.3 Resampling

Resampling creates N new particles based on the states and weights from the current set of
particles. The main idea is stop propagating particles that are not accurately reflecting the true
state of the flight vehicle (i.e., have low weight wi) and instead consider new hypotheses that are
close to the most credible particles. We use “low-variance resampling” [103], sometimes called
“systematic resampling” [104], which selects N new particles by drawing a single random number.
New samples are drawn the effective number of particles

Neff =
1∑N

i=1(wik)
2

(4.10)

drops below the threshold Neff < 0.75N at which point all weights are reset to wik = 1/N . The
newly resampled particles have their states perturbed by zero-mean Gaussian noise with covariance
Presample.

Given the spatial boundaries of the workspace, we can enforce some constraints on the position
of each particle. When creating our magnetic field maps, we design flight trajectories that use
the “training” boundaries that span ±2m in x, ±1.5m in y, and [-2.25, -0.5]m in z. Similarly,
the “utilization” flight trajectories use boundaries ±1.75m, ±1.25m, and [-2, -0.75]m which are
set 0.25m inwards from the training boundaries. Finally, we define the “constraint” boundaries
as ±2.25m, ±1.75m, and [-2.5, 0]m set 0.25m outward from the training boundaries; except the
upper-bound z term which is the ground floor.

Sometimes, primarily due to the unobservability of velocity, the particle filter’s velocity estimate
will cause all the particles to drift off outside the physical bounds of the workspace. To remedy
this, we enforce the constraint boundaries in two ways. If a particle violates any of the constraint
boundaries, its weight is set to zero to prevent it from contributing to our state estimate or being a
candidate for resampling. This, inevitably, reduces Neff and can accelerate the need for a resampling
step.

In the edge case where all particles violate some constraint boundary in the same timestamp,
we can no longer maintain the invariant weight property

∑N
i=1 wi = 1. Here, we must create new

particles inside the boundaries without losing too much of the state history each particle encodes.
To achieve this, we modify the position of all particles, but only along the axes in which they violate
a constraint. In this case, the particle’s respective position component is moved by δc = 0.25m
inward from the constraint boundary. Additionally, since constraint violations are often due to
unbounded velocity estimation errors, we set the particle’s respective velocity term to zero. Finally,
all weights are reset to wi = 1/N since we have effectively created a new set of particles. Tables
4.1 and 4.2 illustrate an example of this edge case for N = 3.
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Table 4.1: Example of N = 3 particles all having violated a spatial constraint. Bolded values violate
a constraint.

xr
i

yr
i

zr
i

xv
i

yv
i

zv
i wi

3.2 1.1 -2.1 0.75 0.12 0.13 0.15
1.7 1.9 -2.2 0.1 0.3 0.12 0.8
1.8 2.1 -2.7 0.2 0.5 -0.2 0.05

Table 4.2: N = 3 particles from Table 4.1 moved within constraint bounds. Bolded values are
modified states.

xr
i

yr
i

zr
i

xv
i

yv
i

zv
i wi

2 1.1 -2.1 0 0.12 0.13 0.33
1.7 1.5 -2.2 0.1 0 0.12 0.33
1.8 1.5 -2.25 0.2 0 0 0.33

4.3.3.4 State Estimate

The estimated position r̂k given by the particle filter at timestep k is simply the weighted sum
of all N particles

r̂k = E[r̂ik] =
N∑
i=1

r̂ikw
i
k (4.11)

and similarly for the velocity estimate v̂k = E[v̂ik].

4.3.4 Magnetometer Calibration

This chapter uses the same two-step calibration process described in Section 2.3.2 . It is based
on the model and iterative least-squares solver from [68] with the two-step calibration algorithm
from [69].

Ultimately, we seek to solve for the set of parameters θ = [θa, θb, θc, θx0 , θy0 , θz0 , θρ, θλ, θφ]>

with bias terms (θx0 , θy0 , θz0), scaling factors (θa, θb, θc), and non-orthogonality terms (θρ, θλ, θφ).
We gather magnetometer calibration data outdoors, just south of the University of Michigan’s

outdoor netted drone facility M-air. This location is far enough away from any buildings that the
magnetic field strength is constant over a few meters and should be accurately reflected by the
World Magnetic Model (WMM). The ambient magnetic field reference term used in our calibration
is BR = 53.1351µT as taken from a WMM online calculator for M-Air’s location (42.294431◦N,
83.710442◦W, and 270m above sea level) on the date of our flight experiments (September 1st,
2022).
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(a) Main components of our flight vehicle Q1. (b) The Robot Fly Lab in the Ford Motor Company
Robotics Building at the University of Michigan.

Figure 4.2: Q1: The flight vehicle used for experiments in this chapter.

4.4 Experimental Procedure

All flight tests for this chapter were conducted in the Robot Fly Lab in the Ford Motor Company
Robotics Building at the University of Michigan as shown in Figure 4.2. The workspace has eight
Optitrack motion capture cameras that provide ground-truth position and attitude data at 120Hz.
The workable volume of the workspace is 4m × 3m × 2.25m in x, y, and z respectively. We use
the ground-truth attitude data from motion capture to rotate all magnetic field observations into the
world frame. This allows us to better isolate the relationship between magnetic field gradients and
position localization.

Finally, we use a specific naming convention for flight tests that allows the reader to associate
our results with the relevant publicly-accessible data. Each flight test is denoted as “tY XX” where
Y refers to the flight test series and XX is the two-digit ID of the flight test in that series. As such, all
the data used in this chapter is from the t6 series of data gathered on September 1st, 2022 meaning
all flight tests will be identified as “t6 XX”. More information is available in Appendix A.

4.4.1 Boundaries of Working Volume

Given the dimensions of our workable volume, we define a set of boundaries. Notice from
Figure 4.2 that our world frame is a North-East-Down frame. The training boundaries range from
±2m, ±1.5m, and [-2.25, -0.5]m for x, y, and z respectively.
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The utilization boundaries span±1.75m,±1.25m, and [-2.0, -0.75]m for x, y, and z respectively.
The utilization boundaries are set 0.25m inward from each extremum of the training boundaries
to ensure that our GPR never has to extrapolate when queried for the particle filter’s measurement
model (Equation 4.8). Early in our work, we incorrectly thought that respecting these utilization
boundaries would prevent some of the noise we investigated in 2.5.2.2.

Finally, the constraint boundaries range from ±2.25m, ±1.75m, and [-2.5, 0]m for x, y, and
z respectively. Since dead reckoning with our process model (Equation 4.7) is actually quite bad,
these constraints help reject particles that are outside of the physical boundaries of our workspace.

4.4.2 Flight Profiles

The flight trajectories for this chapter are split into training and utilization flights. Unlike
Chapter 3, we do not have a separate set of flight tests to validate the magnetic field maps. Instead,
the utilization tests are each checked against the GPR map to ensure the training/utilization pair of
flights are “consistent” in their magnetic field measurements.

Magnetic field observations from a flight are “consistent” with the GPR-based map if the flight’s
validation error is within two standard deviations (2σ) of the map’s uncertainty bounds 96% of the
time or more. This consistency check must pass for each of the three GPRx, GPRy, and GPRz

maps respectively. The concept of a consistency check was introduced in Section 2.5.6 to prevent
the flight-by-flight variations from corrupting our analysis of magnetic field gradients and position
localization. In Appendix B, we show the percentage of times each GPR captures its prediction
error within 2σ for all eight utilization flights.

4.4.2.1 Training Trajectories

Training trajectories provide observations used to train the hyperparameters of our 3 → 3

magnetic field map and create the “compromise map” as explained in Section 2.5.3. As one might
expect, the training flights span the training boundaries defined in the previous section (Section
4.4.1).

All training trajectories are based around single-altitude lawnmower trajectory shown in Figure
4.3. Here, the drone is commanded to stride 4m in the x direction, translate 0.25m in y, then cover
the span in the x direction again. This continues until the 4m × 3m planar region is covered at
which point the drone changes altitude and repeats the planar trajectory.

Each of the three training trajectories repeat this planar lawnmower pattern across different sets
of altitudes. The first of these training flight trajectories gathers data at the lower altitudes {0.5m,
0.75m, 1.0m, 1.25m}, the second observes the higher altitudes {1.5m, 1.75m, 2.0m, 2.25m}, while
the third trajectory (Scan-γ) gathers observations at altitudes {0.5m, 1.375m, and 2.25m}. Scan-γ
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Figure 4.3: Single-altitude lawnmower pattern used in all training trajectories.

is similar to the trajectories we used in Chapter 3 while the other two are designed to give a uniform
3D grid of observations with 0.25m separation.

4.4.2.2 Utilization Trajectories

The utilization flights have commanded positions 0.25m inward from any extrema of the training
boundaries that respect the utilization boundaries (Section 4.4.1).

All utilization trajectories are defined with respect to some center point r∗. Given a center point,
we either hover at the given point or define x, y, or z single-axis strides through the center point.
This gives four trajectories (hover, X Stride, Y Stride, and Z Stride) per center point r∗. Each
utilization trajectory spends 120 seconds hovering or striding along its designated axis.

The goal of the utilization flights is to test our central hypothesis: how does the gradient of
the magnetic field effect our ability to estimate the position of the UAV? As such, we define a
center point at the location within our utilization boundaries with the highest magnetic field gradient
norm (r∗max) and the location with the lowest gradient norm (r∗min). This gives us a total of eight
utilization trajectories with two center points and four trajectories for each center point.

Given a GPR-based magnetic field map, we compute the spatial gradients (as in Equation 4.4)
at 5400 locations (30 × 30 × 6 for x, y, and z respectively) within the utilization boundaries. With
this, the point with the largest magnetic field gradient norm is r∗max = (-1.75, -1.25, -2.0)m while
the lowest gradient norm is at r∗min = (-0.66, 1.25, -0.75)m.
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(a) Isometric view (b) x− y (top-down) view

Figure 4.4: The eight utilization trajectories. r∗min in blue and r∗max in red. Utilization boundaries
are 0.25m inward from training boundaries.

Figure 4.4 shows an isometric and top-down (X-Y) view of our eight utilization trajectories
with respect to the lawnmower training trajectories. Here, r∗max is in red with its X, Y, and Z strides
passing through it. Similarly, r∗min and its trajectories are shown in blue. The thin black lines are
the training locations. Note how the eight utilization trajectories respect the utilization boundaries
and are always set 0.25m inward from the edges defined by the lawnmower training locations.

The hover trajectories allow us to study how magnetic field gradients influence position localiza-
tion when the vehicle is effectively stationary. This allows us to test the baseline hypothesis and
see if flying in locations with higher magnetic field gradients leads to higher position localization
accuracy.

4.4.3 Data Collection

Our flight vehicle “Q1” is equipped with a RM3100 magnetometer that is sampled at 200Hz, a
MPU9250 IMU (gyroscope, accelerometer, and magnetometer) sampled at 200Hz, and a VL53L1X
laser-based altimeter sampled at 4Hz. This dissertation made no use of the magnetometer on the
MPU9250 relying solely on the RM3100 for all magnetic field measurements. For our use, the
VL53L1X is useful given we fly indoors (little ambient infrared light from the sun) and at low
altitudes.

Additionally, the Optitrack motion capture system provides ground truth position and attitude of
our vehicle at 120Hz. Ground truth attitude data is used to rotate all sensor measurements into a
common world frame while ground truth position is used for training our GPR maps and evaluating
the accuracy of the particle filter’s position estimates. The particle filter is only given the UAV’s
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initial ground-truth position to sample a prior distribution of particles.
Table 4.3 lists all the t6-series flights used in this chapter. Observations from seven flights are

used to train the magnetic field map (via our compromise map technique). Here, we fly two trials of
each training trajectory (Section 4.4.2.1) to train the map. A single r∗max flight is included in the
training data to make the utilization flight t6 08 consistent with the resultant map (i.e., both t6 08
and t6 16 were inconsistent with the compromise map, so observations from t6 16 were added to
the map training process to resolve this issue).

The remaining eight flight trials in Table 4.3 are the r∗min and r∗max trajectories used to test the
accuracy of our particle filter. We also check that each utilization flight is consistent with the GPR
map (Appendix B). Recall that a validation flight is “consistent” with a given GPR-based map if the
flight’s validation error is within two standard deviations (2σ) of the map’s uncertainty bounds 96%
of the time or more. This must hold true for each GPR (GPRx, GPRy, and GPRz) respectively to
pass the consistency check.

When gathering flight data, if a utilization flight failed the consistency check, we flew another
repetition of the same trajectory to see if the flight-by-flight variation of the new trial would be
more agreeable with the given map. Many repetitions of the r∗max hover trajectory were inconsistent
with the map, so we instead added observations from t6 16 to the map rather than flying additional
repetitions.

4.4.4 Creating and Querying the GPR Magnetic Field Map

In this chapter, we create what we call a “compromise map” which was first introduced in
Section 2.5.3. This method allows us to train the hyperparameters of our GPR-based map on n2

observations from multiple flight tests. Then, to keep inference time low, we create an “intermediate
map”, query this intermediate map at n1 user-selected locations which are then used as the inference
set for the final, compromise map.

We use gpml-matlab1 to optimize the hyperparameters of our squared exponential kernels,
to create the visualizations of our magnetic field maps (Figures 4.5 and 4.6 introduced later), and to
validate each utilization flight to enforce our consistency check (Figure B.1).

Our particle filter is built upon the particles 5 open-source Python library. The origi-
nal version of this code was not setup for robotics-based navigation so we, locally, made many
modifications to accommodate our application.

Running a Python-based particle filter with a Matlab-based GPR map proved to be cumbersome.
As such, we also use GPyTorch [102] as the backbone of our GPR-based map used in the particle

5particles was created by Nicolas Chopin and Omiros Papaspiliopoulos https://
particles-sequential-monte-carlo-in-python.readthedocs.io/en/latest accessed
on January 2022

95

https://particles-sequential-monte-carlo-in-python.readthedocs.io/en/latest
https://particles-sequential-monte-carlo-in-python.readthedocs.io/en/latest


Table 4.3: List of flights used for training and validation/utilization. All magnetic field observations
were downsampled to 2Hz for training. Number of observations each training flight contributes to
the map is listed.

Flight Flight Training [2 Hz] Validation [200 Hz]
Number Description (# Observations) & Utilization [200 Hz]

t6 00 Lower Four Alts. 571 –
t6 04 Lower Four Alts. 573 –
t6 01 Upper Four Alts. 580 –
t6 05 Upper Four Alts. 573 –
t6 03 Scan-γ 442 –
t6 06 Scan-γ 441 –
t6 16 r∗max Hover 305 –

t6 09 r∗min Hover – X
t6 08 r∗max Hover – X

t6 18 r∗min X Stride – X
t6 17 r∗max X Stride – X

t6 13 r∗min Y Stride – X
t6 19 r∗max Y Stride – X

t6 15 r∗min Z Stride – X
t6 14 r∗max Z Stride – X

filter’s measurement model (Equation 4.8). The hyperparameters computed by gpml-matlab
are ported to GPyTorch and both use the same n1 inference points. The two toolboxes have
comparable magnetic field estimation error when validating over our utilization flights if we use no
more than n1 = 511 inference points in GPyTorch.

For n1 ≥ 512, GPyTorch uses a different set of mathematical operations to interpolate using
Gaussian process regression. For reasons we have not been able to identify or solve, the predictions
given by GPyTorch are significantly worse with n1 ≥ 512. As such, we use at most n1 = 511

inference points when constructing our compromise map.
The n1 = 511 user-selected locations for this analysis are chosen as follows. Points are

distributed evenly through the ±2m x axis span, ±1.5m y axis span, and [-2.25, -0.5]m z axis
span of the working volume (i.e., the training boundaries). A target location for the compromise
map is selected every 0.5m, 0.5m, and 0.25m for x, y, and z axes respectively. In total this gives
504 locations within the working volume. The remaining seven points are evenly spaced from the
ground to an altitude of 0.5m so the compromise map has some observations during the takeoff and
landing sequence (which, for all our flights, are above the origin).
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Figure 4.5: Magnetic field map of indoor flight space. Black arrows show the direction of the planar
(X − Y ) component of the magnetic field. The color behind each arrow shows the strength and
direction of the Z component of the magnetic field.

4.5 Results

This section starts with visualizations of the magnetic field map in the flight lab and visualizations
of the spatial gradient norms

∣∣∣∂B̃(r)
∂x

∣∣∣ , ∣∣∣∂B̃(r)
∂y

∣∣∣ , ∣∣∣∂B̃(r)
∂z

∣∣∣ and |∇m̂(r)|. This is done to contextualize
the r∗min, and r∗max locations chosen for the utilization flight trajectories introduced in Section 4.4.2.
Next, Section 4.5.2 compares the accuracy of PF position localization against the gradient of the
magnetic field. Finally, in Section 4.5.3, we present a gradient localization metric meant to predict
the accuracy of position localization using the gradient of the magnetic field.

4.5.1 Magnetic Field Map and Gradients

This section presents a visualization of the compromise magnetic field map and its gradients to
demonstrate how the locations r∗min and r∗max were selected for the utilization trajectories.

The indoor magnetic field map is shown in Figure 4.5 at altitudes 0.75m, 1.5m, and 2.0m. Note
that r∗min is at z = -0.75m and r∗max is at z =-2.0m (Figure 4.4). This visualization tool is the same
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(j) |∇m̂(r)| at 0.75m altitude.
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(k) |∇m̂(r)| at 1.5m altitude.
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(l) |∇m̂(r)| at 2.0m altitude.

Figure 4.6: Magnetic field gradient in the flight workspace.
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as that introduced in Chapter 3 where the black arrows show the direction of the x− y component
of the magnetic field while the color behind each arrows depicts the magnitude and direction of
the z component of the field. Even though the data for this chapter was collected a year after the
analysis of Chapter 3, the map from Chapter 3 is qualitatively similar to that of this chapter for the
common altitudes depicted.

Figure 4.6 shows the norm of the x, y, z, and magnitude of the magnetic field gradient at the
same altitudes from Figure 4.5. We compute the magnetic field gradient at 900 locations per altitude
using the finite difference method from Equations 4.2 and 4.3 with δs = 0.05m. The four rows
in Figure 4.6 depict

∣∣∣∂m̂(r)
∂x

∣∣∣, ∣∣∣∂m̂(r)
∂y

∣∣∣, ∣∣∣∂m̂(r)
∂z

∣∣∣, and |∇m̂(r)| respectively (from Equations 4.4 and
4.5).

By comparing the first three rows of Figure 4.6, we see that the magnetic field changes the least
when moving in the x direction (Figures 4.6a - 4.6c) and has much higher spatial gradients when
moving in the y and z directions (Figures 4.6d - 4.6i). These trends can be seen qualitatively by the
arrow direction and z component colors in Figure 4.5.

The locations r∗min and r∗max are the locations of the minimum and maximum norm of the spatial
gradient (Figures 4.6j-4.6l) within the limits of the utilization bounds of ±1.75m for x, ±1.25m
for y, and [-2.0, -0.75]m for z. Together, these rules give r∗min = (-0.66, 1.25, -0.75)m and r∗max =
(-1.75, -1.25, -2.00)m with a |∇m̂(r)| value of 5.61µT/m and 21.88µT/m respectively.

4.5.2 Magnetic Field Gradient Impact on Position Localization

This section analyses how the accuracy of our particle filter (Section 4.3.3) relates to the gradient
of the magnetic field in our workspace. We begin by presenting the RMSE of the particle filter (PF)
against the eight utilization trajectories, continue by analyzing why it is difficult to draw conclusions
by looking only at the RMSE across the whole flight, then present the particle filter’s accuracy at
select timestamps of each utilization flight that isolate each flight trajectory’s intended behavior.

Table 4.4 shows the RMSE of the particle filter (in meters) for all eight utilization flights and
across the two measurement models presented in Section 4.3.3.2. The table is a bit dense with
information, so we take a moment to describe its organization.

The three major columns (separated by double vertical bars) give the ID of each utilization
flight, the particle filter RMSE using just the magnetometer measurement model, and finally the
PF RMSE with both magnetometer and altimeter measurement models. Within the two numerical
major columns, each minor column gives the norm, x, y, and z RMSE values of the particle filter
respectively. Here, we isolate the norm RMSE with a single vertical bar since it is used most often
in the rest of this chapter.

The table is split into four major rows that present RMSE for Hover, X Stride, Y Stride, and Z
Stride trajectories respectively. The minor rows within a major row distinguish trajectories at r∗min
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Table 4.4: Full-flight RMSE (takeoff and landing included). Each RMSE value is the mean of 20
repetitions of the particle filter per flight test. Bolded values indicate lower norm RMSE between
r∗min and r∗max while underlines indicate lower norm RMSE across the two measurement models.

RMSE (m) Inertial: Inertial:
Norm—X—Y—Z Mag Mag + Alt

(t6 09) r∗min: Hover 0.07 0.03 0.06 0.01 0.07 0.03 0.06 0.01
(t6 08) r∗max: Hover 0.15 0.15 0.03 0.03 0.09 0.09 0.02 0.02

(t6 18) r∗min: X Stride 0.11 0.07 0.08 0.03 0.10 0.06 0.07 0.03
(t6 17) r∗max: X Stride 0.40 0.39 0.02 0.11 0.22 0.22 0.02 0.05

(t6 13) r∗min: Y Stride 0.15 0.14 0.05 0.02 0.14 0.13 0.05 0.02
(t6 19) r∗max: Y Stride 0.09 0.09 0.02 0.03 0.09 0.08 0.02 0.02

(t6 15) r∗min: Z Stride 0.53 0.48 0.10 0.19 0.52 0.50 0.13 0.05
(t6 14) r∗max: Z Stride 0.08 0.07 0.04 0.02 0.08 0.07 0.04 0.02

(location with the lowest magnetic field gradient in the workspace) versus r∗max (highest magnetic
field gradient).

Additionally, bold values indicate lower norm RMSE for either r∗min or r∗max within a major
row. Since a higher magnetic field gradient should make position localization easier, we expect
trajectories around r∗max will have lower RMSE than those around r∗min. Similarly, underlined values
indicate which measurement model yields a lower norm RMSE for each of the eight utilization
flights. Note that if both measurement models have the same RMSE (to the hundredths place),
neither will be underlined. Here, we expect the additional information from the altimeter to
improve the particle filter’s performance and reduce RMSE. Finally, (though not indicated with any
typographical emphasis), we expect X position error to be higher than Y or Z since gradients in the
X direction are much smaller (Figure 4.6).

In short, bold compares norm RMSE between r∗min and r∗max within a major row, and underlined
compares norm RMSE across the two measurement models.

Note that for each of the eight utilization flights, we ran 20 repetitions of the particle filter since
we draw samples from random distributions in our process model (Equation 4.7) and resampling
steps.

From Table 4.4, the only expectation that is met is that x RMSE values tend to be higher than y or
z RMSE. When comparing r∗max against r∗min, both Hover and X Stride trajectories have noticeably
lower RMSE at r∗min than at their higher gradient counterparts. Further, there is a nearly-even split
in cases where the altimeter measurement model outperforms the magnetometer-only model while it
seems to have no improvement in the other cases. Finally, we note that t6 15 on both measurement
models and t6 17 with just the magnetometer have significantly higher norm RMSE values than any
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(a) t6 08 (r∗max Hover) full flight.
(b) t6 08 (r∗max Hover) zoom on stationary hover
section.

Figure 4.7: t6 08 particle filter results. Takeoff and landing sequence have large, and inconsistent,
error profiles.

other cases on the table. We turn our investigation to these outliers to better understand the lack of
trends in Table 4.4.

4.5.2.1 Accounting for Takeoff and Landing

Figure 4.7 shows the time-series results of one repetition of the particle filter on t6 08 (r∗max
Hover). Even though t6 08 is not an outlier in Table 4.4, the time-series plot shows clear issues
during the takeoff and landing sequences of this flight trajectory. In fact, the particle filter’s norm
RMSE during just the hover portion of t6 08 is 0.04m on average which is much lower than the
0.15m norm RMSE from Table 4.4.

Each of the particle filter’s 20 repetitions had slightly different error profiles during the takeoff
and landing portions of t6 08, but all consistently gave 0.04m norm RMSE during the 120s of
hovering. This issue of varying error profiles during takeoff and landing holds true for many of the
other utilization trajectories. For this, we propose computing particle filter accuracy only during
the main 120s portion of each utilization flight. The particle filter’s performance on this region of

interest will be presented in a table after we discuss one additional adjustment.
In Appendix B, we show that t6 18 and t6 15 became inconsistent with the compromise GPR

map during the last∼15% of their respective flights. t6 15 has more severe GPR inconsistencies and
the consequence of that on the particle filter’s ability to localize is shown in Figure 4.8a. Here, we
see a regular pattern of error from t =15s to t =130s (after takeoff and before GPR inconsistency)
and a clear degradation of localization accuracy after 130s. Note that the particle filter’s accuracy
starts to degrade before the landing sequence begins at 140s and gets significantly worse during
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(a) t6 15. Accuracy diverges (130s) before landing
sequence (139s).

(b) t6 18. Accuracy diverges (126s) before landing
sequence (137s).

Figure 4.8: Tests t6 15 and t6 18 have slightly shorter regions of interest due to sudden mapping
inconsistencies (Figure B.1).

landing. The accuracy degradation at 130s (out of a 149.59s total flight time) lines up with the GPR
inconsistency in Figure B.1g in Appendix B. Figure 4.8a shows similar behavior just before the
landing sequence in test18, but with less severe degradation in position localization accuracy.

For this, we propose a slightly different truncation scheme for t6 18 and t6 15 where the takeoff
sequence is removed from the start, and the last 15% of these flights are removed to avoid the GPR
inconsistency segments. The remaining six utilization flights will, instead, truncate the takeoff and
landing sequences only.

Table 4.5 lists the indices (and equivalent timestamps) for each flight’s region of interest.
Note that the main flight time, indicated by the difference between upper tub and lower-bound tlb
timestamps, is (tub − tlb) ≥120s for all flights except t6 18 and t6 15. Finally, note that all 20
repetitions for each of the eight utilization flights still simulate the entire flight profile (from t =0s
to the last timestep) meaning any errors in position estimation during takeoff are still propagated
throughout the flight. The proposed truncations are only for values we report in the following tables
and plots.

4.5.2.2 Particle Filter Accuracy

Table 4.6 shows the particle filter’s performance for each flight computed only within the
respective region of interest. Similar to Table 4.4, bolded values indicate lower norm RMSE between
r∗min and r∗max while underlined entries have lower norm RMSE between the two measurement
models.

Recall our three expectations with the data in this table. First, trajectories at r∗max should have
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Table 4.5: Region of interest for each utilization flight indicated by discrete timestamp k and
continuous timestamp t (in seconds). Lower bound is defined as end of takeoff sequence while
upper bound is either start of landing sequence, or start of GPR inconsistency (t6 18 and t6 15).

Test # klb kub tlb (s) tub (s)

(t6 09) r∗min: Hover 3556 27600 17.78 138
(t6 08) r∗max: Hover 3525 27530 17.625 137.65

(t6 18) r∗min: X Stride 2480 25127 12.4 125.635
(t6 17) r∗max: X Stride 2555 27437 12.775 137.185

(t6 13) r∗min: Y Stride 2475 27588 12.375 137.94
(t6 19) r∗max: Y Stride 2443 27545 12.215 137.725

(t6 15) r∗min: Z Stride 2505 25972 12.525 129.86
(t6 14) r∗max: Z Stride 3763 29054 18.815 145.27

Table 4.6: Truncated Position RMSE. Each value here is the mean of 20 repetitions of the particle
filter per flight test. Bolded values indicate lower norm RMSE between r∗min and r∗max while
underlines indicate lower norm RMSE across the two measurement models. Compare to Table 4.4.

RMSE (m) Inertial: Inertial:
Norm—X—Y—Z Mag Mag + Alt

(t6 9) r∗min: Hover 0.07 0.03 0.07 0.01 0.07 0.03 0.07 0.01
(t6 8) r∗max: Hover 0.04 0.03 0.01 0.01 0.04 0.03 0.01 0.01

(t6 18) r∗min: X Stride 0.10 0.07 0.07 0.02 0.10 0.07 0.07 0.02
(t6 17) r∗max: X Stride 0.42 0.40 0.02 0.12 0.22 0.22 0.01 0.05

(t6 13) r∗min: Y Stride 0.16 0.15 0.06 0.02 0.15 0.14 0.05 0.02
(t6 19) r∗max: Y Stride 0.09 0.08 0.02 0.03 0.08 0.07 0.02 0.02

(t6 15) r∗min: Z Stride 0.17 0.16 0.06 0.03 0.26 0.25 0.05 0.03
(t6 14) r∗max: Z Stride 0.08 0.07 0.04 0.01 0.08 0.07 0.04 0.01
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lower PF error (i.e., should be bolded) since it should be easier to detect a change in position if
there is a higher magnetic field gradient. Second, we expect entries on the right-most column to
have lower RMSE (i.e., should be underlined) since adding altimeter information should improve
the state estimate. Note that if both measurement models have the same RMSE (to the hundredths
place), neither will be underlined. Finally, x RMSE values should be larger than y or z since the
spatial gradient in the x direction is much smaller (Figure 4.6).

Table 4.4 shows that our first hypothesis holds true for three of the four trajectory types. However,
for X Stride, we see lower error at the location with lower gradient. The reason for this is depicted in
Figure 4.9 which shows the time-series position estimate of a single t6 17 (r∗max X Stride) repetition.
Figure 4.9a uses just the magnetometer while Figure 4.9b adds in the altimeter.

In Figure 4.9a, we see cyclical errors in both x and z position estimates which occurred for
all 20 repetitions of t6 17 when using only the magnetometer. In essence, when using only the
magnetic field to evaluate the credibility of each particle (Equation 4.8), the PF consistently, and
erroneously, believes the drone is changing altitude at the +x side of the trajectory. However, when
we add in the altimeter (Figure 4.9b), the PF’s estimate aligns more closely with the ground-truth
data. Although not depicted here, as the gain σ2

alt decreases, the x and z PF estimates get closer
to their respective ground-truth values in Figure 4.9b. Essentially, as the altimeter is given higher
credibility than the magnetometer, the z estimate improves which, in turn, prevents the x position
estimate from diverging. Though it is clear that adding the altimeter helps in this case, we will
continue to explain why the magnetometer-only estimates (Figure 4.9a) have these errors.

The cyclical position estimation errors in Figure 4.9a occur because of inaccuracies in the GPR
map. Figure 4.9c plots the GPR map’s error GPR(rk) − ỹk across all 200Hz measurements of
flight t6 17 (r∗max X Stride). Here, we see cyclical mapping errors with GPRx and GPRy that
temporally align with the x and z position errors in Figure 4.9a.

It is important to note two things about the magnetic field measurement model from Equation
4.8. First, it gives higher weight (more credibility) to particles that minimize |∆mi

k| = |m̂i
k − ỹk|.

Second, ∆mi
k is dependent on the GPR’s understanding of the ambient magnetic field since

m̂i
k = GPR(r̂ik). In essence, when using only the magnetometer measurement model, our particle

filter aims to find particles whose positions r̂ik give a GPR estimate m̂i
k(r̂

i
k) that most closely agrees

with the actual measurement ỹk.
For this, it is helpful to define two metrics

∆mPF
k = GPR(r̂k)− ỹk = ∆m̂k

∆mGT
k = GPR(rk)− ỹk

(4.12)

where ∆mPF
k is associated with the GPR’s prediction at the particle filter’s position estimate (r̂k)
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(a) t6 17: Only magnetometer. t =25s - 40s high-
lighted.

(b) t6 17: Magnetometer and altimeter. σ2
alt = d =

0.005m2.

(c) t6 17: GPR error. Poor PF estimates occur during
higher x and y RMSE. t =25s - 40s highlighted.

Figure 4.9: Erroneous x and z position estimates (4.9a) are casued by GPR error (4.9c). Adding an
altimeter (4.9b) reduces the likelihood of our PF choosing the erroneous, alternate path.
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(a) Target region of t6 17 with erroneous PF esti-
mate.

(b) ∆mGT
k and ∆mPF

k at target region.

Figure 4.10: t6 17 from timestamps t =25s - 40s. Poor PF estimates occur when x and y GPRs
have higher RMSE.

while ∆mGT
k uses the GPR’s prediction at the ground-truth location (rk). Note that this “new”

∆mPF
k is identical to the term ∆m̂k defined earlier with Equation 4.8. The re-definition helps to

disambiguate the following analysis.
Figure 4.10 shows a zoomed-in segment t = 25s - 40s of t6 17 (the same timestamps highlighted

by vertical bars in Figures 4.9a and 4.9c). On the left, Figure 4.10a shows the ground truth position
(rk) in red and particle-filter-estimated position (r̂k) in blue for t6 17 (r∗max X Stride). Similarly,
Figure 4.10b shows |∆mGT

k | in red and |∆mPF
k | in blue for each respective location given in Figure

4.10a. The numeric values within each subplot gives the x, y, z and norm RMSE across the plotted
datapoints.

Figure 4.10b shows us that |∆mPF
k | < |∆mGT

k | for the segments where the PF’s estimate
diverges from the ground truth position. Said another way, the particle filter has founcd a path (r̂k)
within the workspace that minimizes |∆mi

k| better than the true trajectory (rk). This explains why
all 20 repetitions of the particle filter show this same cyclical error on the +x side of t6 17.

Note, however, that this alternate path requires a change in altitude. This is why adding
in the altimeter measurement model (Figure 4.9b) improved performance for both the x and z
components of the particle filter’s estimate. Evidently, there are no other nearby alternative paths
where |∆mPF

k | < |∆mGT
k | at a height of z = −2m. Decreasing |∆mGT

k | by improving map
accuracy (which in our case is caused by noise from the UAV) might improve PF estimates without
the altimeter.

This analysis is only possible because we make, validate, and leverage our magnetic field maps.
To our knowledge, this is the first time a work has clearly demonstrated how ambiguities in the
magnetic field (and errors in mapping the magnetic field) can directly affect position estimates
and distinguish such errors from low gradients in the ambient field. The closest we have seen
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is in Figure 7 of Ref. [72] where they show similar divergences with a circular trajectory and
attribute the periodic errors to a “bimodality” in the PF estimate. Their PF temporarily gives similar
credibility to two different trajectories simultaneously, but the net estimate (r̂k = E[r̂ik]) is far from
the ground truth. However, in our case, the PF simply prefers an alternate path over the truth since
|∆mPF

k | < |∆mGT
k | along this erroneous trajectory.

In summary, Table 4.6 allows us to analyze our three hypotheses. First, r∗max trajectories
typically have lower error than their r∗min counterparts. The one exception to this, t6 17, is because
an alternate viable path near the r∗max X Stride trajectory and GPR errors that make this alternate
path more credible via Equation 4.8.

Second, adding the altimeter measurement model either has no effect on accuracy (in four cases),
improves accuracy (in three cases) or makes position estimation accuracy worse (t6 15). For test
t6 15, adding the altimeter makes x RMSE significantly worse than using just the magnetic field
measurement model. We believe that the VL53L1X low-cost altimeter has some timing issues that
produces an irregular time delay from the ground-truth altitude as shown in Figure 4.11. Here, the
zero-order hold of 4Hz the altimeter measurements (black dots) are shown along with the ground
truth altitude (red line). Comparing the delay between a red, ground-truth datapoint and the nearest
temporal point of the altimeter leads to inconsistent delays. Near t = 32s the delay is about 200ms
and decreases to 10ms near t = 39s. The irregularity in the time delay made it difficult to account
for this anomaly in pre-processing and ultimately effects our position estimates for the t6 15 (r∗min Z
Stride) trajectory more than the constant-altitude flights. We believe increasing the sensor sampling
rate from 4Hz (which we use in this chapter) to something higher might improve the situation.
However, since the focus of this chapter is on the relationship between magnetic field gradients and
position localization, we leave such altimeter-based investigations for future work.

Finally, Table 4.6 appears to confirm our hypothesis that the smaller magnetic field gradient in
the x direction makes our x RMSE metrics larger than y or z RMSE. Note that t6 09 (r∗min Hover)
is the one exception to this trend. We see from Figures 4.6a and 4.6d that

∣∣∣∂m̂(r)
∂x

∣∣∣ and
∣∣∣∂m̂(r)

∂y

∣∣∣
values at r∗min = [-0.66, 1.25, -0.75]m are comparable at 2.30µT /m and 2.67µT /m respectively. We
expect this is the reason x position error is not necessarily higher than y error since t6 09 hovers at
this location for its entire flight. All other trajectories that move through r∗min will regularly visit
locations where

∣∣∣∂m̂(r)
∂y

∣∣∣ > ∣∣∣∂m̂(r)
∂x

∣∣∣.
In the following section, we further analyze our first hypothesis (relationship between magnetic

field gradient and position localization accuracy) by introducing a new metric.

4.5.3 Gradient Localization Metric as a Localizability Metric

In this section, we introduce a metric that might indicate the accuracy of position localization
given only a magnetic field map of the area. The idea is to enable users to first survey their
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Figure 4.11: The low-cost VL53L1X altimeter has inconsistent timing delays when sampled at 4Hz.
The delay near t = 32s is 200ms but decreases to 10ms near t = 39s.

workspace and conclude if it is worthwhile to add magnetometers to their sensor fusion method
based on how much spatial variation is present in their workspace.

Our newly proposed quantity is called the gradient localization metric (GLM) defined as a ratio
of two terms. The numerator or “signal”

signalk = |∇m̂(rk)| δs (4.13)

is computed at timestamp k, |∇m̂(r)| is defined in Equation 4.5, and δs is the distance parameter
from Equation 4.3. The goal is to have our numerator to be related to the magnetic field gradient,
but for it to have units of µT. Here, we use δs = 0.05m.

The gradient term is normalized by a “noise” term taken as the magnitude of the GPR error at
the location rk

noisek = |∆mGT
k | (4.14)

where ∆mGT
k is defined in Equation 4.12. In essence, since our gradient terms are based on our

GPR, we felt it important to account for any inaccuracies the GPR map introduces. Note that ∆mGT
k

will include magnetometer sensor noise and any UAV-induced magnetic noise (Section 2.5.2.2).
Combining these two gives us a unitless, scalar quantity

GLMk =
E[signalk−4:k]

E[noisek−4:k]
. (4.15)

Our noise term (i.e., GPR error) is inconsistently close to zero at some timestamps (see Figure B.1
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(a) Hover trajectories. (b) X Stride trajectories.

(c) Y Stride trajectories. (d) Z Stride trajectories.

Figure 4.12: Particle filter error against our GLM. One point is plotted for each discrete timestamp
of one repetition of the particle filter’s estimate for a utilization flight. Generally, particle filter error
decreases as GLM increases. The histograms help depict overlap between blue and red datapoints.

in Appendix B) which causes some GLMk values to be arbitrarily large in a way that is not useful
for our use here. As such, we use a moving average filter with window size 5 for both signal and
noise terms to smooth out these spurious occurrences. Note, this window size is the same used in
our pre-processing step of our map-generation procedure (Section 2.4.3).

Now, to understand the relationship between GLM and our ability to localize, we compare the
PF’s position estimation error to the GLM at each timestamp of a flight. As before, we only study
the behavior of our PF in the region of interest (Table 4.5). In addition, it is difficult to conduct
this analysis with the altimeter since it will, to some degree, make our PF estimate independent of∣∣∣∂m̂(r)

∂z

∣∣∣ in a way that is difficult to quantify. As such, this section uses only the magnetometer and
entirely excludes the altimeter. Finally, to do this concisely, we isolate our study to one of the 20
repetitions of our PF per flight, but the results are similar across the 20 reps (for the target region of
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interest).
The result is shown in Figure 4.12 where the eight utilization flights are split into pairs for Hover,

X Stride, Y Stride, and Z Stride trajectories respectively. In each subplot, the PF error and GLMk

for the corresponding r∗min trajectory is shown in blue, while the r∗max points are in red. Many of the
points overlap and we struggled to find an appropriate transparency value to adequately represent
this. As such, we include a histogram of the GLM for each pair to help the reader visualize how
much overlap exists between the datasets. We hand-selected which dataset (red or blue) appeared in
front to keep the visualization as “intuitive” as possible (i.e., the reader will likely be able to infer
the trends of the occluded points with the given ordering and the histograms).

For the most part, the results of Figure 4.12 show a promising trend that higher GLM values
correspond to lower PF error. Most of the r∗max trajectories (red) have a max error near 0.2m.
Additionally, their max errors are typically lower than their r∗min counterparts. The exception here is
t6 17 (r∗max X Stride) with red dots in Figure 4.12b which is the flight discussed earlier that had an
“alternate viable path” that confuses the particle filter when only the magnetometer is used (Figure
4.10).

It is difficult to visually compare the density of red or blue points in any particular region of
these plots. The embedded histograms help to some extent, but visually combining information
from both types of plots is non-trivial. Additionally, the histograms can only give insight on the
horizontal spread of the points and tell nothing about the distribution along the vertical (PF error)
axis. The RMSE values in Table 4.6 give a sense of the average PF error for each of the eight
utilization flights. Note, however, that the data in Table 4.6 is aggregated over 20 repetitions for
each utilization flight, while Figure 4.12 depicts only one of the 20 repetitions.

There are two problematic aspects of our GLM in regard to predicting the PF localization
accuracy. First, and probably most importantly, our PF error is a function of our low-cost sensor
set, selected process and measurement models, and our particle filter’s gains. Our analysis does
not enable us to disentangle how much of our results are a function of our implementation (which
may have, inadvertently, been overfit to this particular analysis). Similarly, we do not know if there
are more clear trends between GLM and PF error that appear with better dead-reckoning (using
just a low-cost accelerometer for a process model is uncommon and typically not expected to give
good results) or higher-quality sensors. Finally, the gains in our particle filter were hand-tuned and
held constant across all eight utilization flights. Since we cannot claim our gains are optimal in any
regard, it is possible there are some gains that will yield a clearer trend. It’s also important to note
that our results inherit any problems from our inability to completely remove magnetic-field noise
from our UAV (Figure B.1 in Appendix B).

Second, Figure 4.12 shows that there are no clear minima or maxima at any given GLM value
across our utilization flights. The large error values in the red dots of Figure 4.12b are due to the
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alternate viable path on t6 17 (Figure 4.10). Similarly, the thread of high-error points in the blue
dots of Figure 4.12d are due to the GPR map’s inconsistencies towards the end of t6 15 (Figure
4.8a). A good localization metric should give some bound on error from above or below, but it
seems ours cannot do that with the data presented (keeping in mind the caveats listed in the previous
paragraph). In short, these low-GLM-high-error cases make it difficult to draw a conclusion when
juxtaposed to t6 09 (r∗min Hover) and t6 18 (r∗min X Stride) that also have low GLM but have much
lower max PF error (low-GLM-low-error cases).

We take a moment to discuss t6 13 (r∗min Y Stride) with blue dots in Figure 4.12c since its
error profile seems insensitive to GLM. The main anomaly here is the presence of points at 0.21m
PF error across a wide range of GLM values. To analyze further, it is best to discuss with the
plots in Figure 4.13. Figure 4.13a shows the full t6 13 flight data (in red) along with one of the 20
repetitions of the PF (in blue). Figure 4.13b highlights three Y Stride periods to show that the x
estimation error correlates well with particular segments of the flight trajectory. Here, we also see
that there is some y estimation error at the +y side of the trajectory.

The reason we see a PF error of 0.21m for many GLM values in Figure 4.12c is because the
high x Position error in 4.13b (e.g., t=20s to t=25s) is maintained across many y positions. This
means the PF error remains around 0.2m while the magnetic field gradient changes as a function of
y position (Figure 4.6j).

Unlike t6 17 (Figure 4.10), the reason for the t6 13’s x position error is not due to the same type

of alternate viable path. Figure 4.13c shows that |∆mGT
k | and |∆mPF

k | have comparable values
when the PF’s x position error is high. We think the higher x position estimation accuracy here is
because the x spatial gradient (

∣∣∣∂m̂(r)
∂x

∣∣∣) is very low along portions of the r∗min Y Stride trajectory;

effectively the horizontal line at x = -0.66 in Figure 4.6a. On this horizontal line,
∣∣∣∂m̂(r)

∂x

∣∣∣ ranges
from 0.85µT/m on the -y (left) extreme to 2.31µT/m on the +y (right) side. This correlates well
with Figure 4.13b where the highest x position error is on the -y portion of the trajectory (with low∣∣∣∂m̂(r)

∂x

∣∣∣) and the lowest x error is on the +y side.
In short, the PF is better able to resolve the x position of the drone when in a region with higher∣∣∣∂m̂(r)
∂x

∣∣∣. However, the y position error on the +y portion of the trajectory is best explained as an
alternate viable path (Figure 4.13c at t=26s) since |mPF

k | is clearly lower than |∆mGT
k |.

Ultimately, we see that that increasing GLM generally decreases the mean and variance of the
PF’s error. Though this is well-supported by our data, it is not that surprising since it matches our
intuition on the relationship between spatial gradient and position localization accuracy. And since
our metric fails to quantitatively bound (from above or below) the amount of error we should expect
at various GLM values, our results mostly serve to confirm our intuition. Figure 4.12 does show
that higher GLM correlates well with low PF error, but the histograms show that GLM values >5
are uncommon for our workspace. Thus, we do not feel there are enough datapoints with GLM
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(a) t6 13: Full time series (only magnetometer).
(b) t6 13: Zoomed to t=[15, 45]s.

(c) t6 13: Comparable ∆mGT
k and ∆mPF

k dur-
ing high X position error.

Figure 4.13: t6 13 (r∗min Y Stride) position estimation errors caused both by low
∣∣∣∂m̂(r)

∂x

∣∣∣ and by
errors in GPR map. In Figure 4.13c, the max of all outliers larger than 1µT are 1.90µT , 1.76µT ,
2.61µT , and 2.69µT for X, Y, Z, and norm errors respectively (across either GT or PF datasets).

>5 to make any solid conclusions. In future work, we may artificially increase the magnetic field
gradient in our workspace by adding permanent magnets near desired trajectories to increase the
number of high-GLM points.

One notable thing is that our lower-gradient-higher-error hypothesis seems well supported on
both a macro level (x RMSE values are generally higher than y or z RMSE in Table 4.6) and
a micro level (higher x position error during lower

∣∣∣∂m̂(r)
∂x

∣∣∣ in Figure 4.13b). There is certainly
promise in what we have uncovered, but improvements are needed if we want a useful and predictive
localizability metric.

4.5.3.1 How Averaging can Remove GLM trends

Our initial attempt at constructing a GLM involved averaged over the entire flight by way of the
following equation
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Figure 4.14: PF accuracy against GLMavg metric. PF accuracy computed over region of interest
(Table 4.5).

GLMavg =
1

nv

nv∑
i=1

(
signali
noisei

)
(4.16)

where nv is the number of individual datapoints in the utilization flight. We thought this averaging
was a good way to capture the various gradient values seen by the non-stationary trajectories.

Figure 4.14 shows a scatter plot of all 20 repetitions of the PF for each of the eight utilization
flights. The horizontal axis is our GLMavg metric averaged over 2Hz downsampled observations
from each respective utilization flight and vertical axis is the norm RMSE of the PF (which itself is
an averaged metric of the PF’s performance). Each of the 20 repetitions are plotted as a circle for
the respective utilization flight and an × is redundantly plotted over the repetition with the lowest

norm RMSE. Figure 4.14 uses only the magnetometer for position estimation. The legend lists each
utilization flight in their order of appearance in the plot (i.e., in increasing order of GLMavg).

The PF norm error values depicted here are computed over the “region of interest” as defined in
Table 4.5 (i.e., they exclude takeoff and landing sequences as explained in Section 4.5.2.2). Thus,
for each utilization flight, the average of the 20 circles in Figure 4.14 is the same as the norm RMSE
quantities listed in Table 4.6.

From Figure 4.14, we see that the four r∗min trajectories all have lower GLMavg values than the
four r∗max flights. As we expect, r∗min Hover and r∗max Hover have the lowest and highest GLMavg of
the eight utilization flights since they both loiter at the locations with lowest and highest gradients.

Figure 4.14 shows that our particle filter can estimate position within 0.2m for seven of the eight
utilization flights (within each respective region of interest from Table 4.5). The primary issue with
this visual representation is that it seems to imply that PF localization accuracy is fairly insensitive
to our GLMavg metric. From Figure 4.14 we see very low PF RMSE at both ends of our GLMavg

span (for the two hover trajectories) while the values in the center are not necessarily decreasing as
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GLMavg increases. For this, GLMavg does not achieve its intended goal of serving as a localizability
metric to predict how accurately one could estimate position given just a magnetic field map of a
workspace. We think there are two reasons worth considering here.

First, which is the focus of this section, is to emphasize issues caused by averaging GLM and PF
RMSE over an entire flight. Though this may be appropriate for our stationary (hover) trajectories,
it can blur together small-timescale trends like in Figure 4.13b where we showed that x position
error is higher when

∣∣∣∂m̂(r)
∂x

∣∣∣ is lower. Also note that both our GLM (Equation 4.15) and GLMavg

(Equation 4.16) metrics aggregate all three magnetic gradients (for δx, δy, and δz) into a single
metric. Similarly, the norm PF error we report combines the three PF error metrics (x, y, and z).
The net effect could simply be that we have removed too much spatial (x, y, z PF error), directional
(x, y, z components of mag gradient), and temporal (averaging over the flight) information in the
GLMavg plot for there to be a discernible trend.

Additionally, averaging over an entire flight effectively gives us fewer points to compare against.
In Figure 4.12, a single PF repetition gave 20,000+ points for each utilization flight. With the
averaging approach in Figure 4.14, each utilization gives at most 20 points (since we report 20 reps
of the PF’s performance for each utilization flight), but most repetitions are redundant. This leads to
our next consideration.

It is possible that there is a trend in the GLMavg plot of Figure 4.14, but it could be quite
noisy (like those in Figure 4.12). If this were the case, eight averaged utilization flights might not
provide enough information to recover the overall trend. Imagine picking eight red points from
Figure 4.12b that can represent the trend we see there. This idea could be tested by performing
more flights at various GLMavg values throughout the workspace. If there is a noisy trend in the
GLMavg metric, one obscuring factor could be our flight-by-flight variations (Section 2.5.2.2) which
we could investigate with more iterations of the same eight utilization flights. In addition, some
outdoor flights (which should have lower GLMavg) would be informative to investigate how the
trend extends to values of GLMavg < 1. Alternatively, simulating a UAV moving through an
artificial magnetic field with particular GLMavg values could improve our understanding and allow
for specific GLMavg values.

4.6 Discussion

This chapter investigated methods to use magnetic field maps for indoor state estimation.
The primary analysis was done with post-processing to support benchmarking and statistical
characterization of results.

Ideally, we want design tools that allow us to bound the accuracy of our position estimates
prior to conducting flight tests. The proposed gradient localization metric (GLM) can characterize
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position estimation accuracy given only the ambient magnetic field of a workspace. Additionally,
our spatial gradient analysis can be used in conjunction with additional sensing modalities that
might be supplemented with magnetic field data. For example, given knowledge of how small∣∣∣∂m̂(r)

∂x

∣∣∣ is relative to
∣∣∣∂m̂(r)

∂z

∣∣∣, in future work one might mount the VL53L1X time of flight sensor in
the x direction rather than in z.

In follow-on work, it would be useful to employ real-time analysis on whether the PF should
trust or discredit magnetometer measurements. From Table 4.6, we see that adding the altimeter
improves PF performance on t6 17 (r∗max X Stride) but degrades performance on t6 15 (r∗min Z
Stride). Having a real-time indicative metric that flagged the altimeter as the more credible source
on t6 17 and the magnetometer as the more reliable measurement for t6 15 would help the PF get
the best out of both sensing modalities. Related works in this topic [44, 45, 46, 47, 48] propose
adjusting the covariance terms of each sensing modality (e.g.,Rmag and σ2

alt) in real time, showing
such adjustments can yield better attitude estimates than using fixed covariance parameters.

Testing such a method for our PF would require alternative sensing modalities for x and y
position estimates. This could be achieved by adding a camera or LIDAR sensor to give more
spatial information in x, y, and z. More simply, one could add VL53L1X laser range finders to
measure the distance to nearby walls in the x and y directions. In essence, developing a real-time
indicative metric that trades between different sensing modalities would require UAV upgrades
beyond the scope of this work.

In this chapter, we rely on ground-truth attitude estimates to rotate sensor measurements into a
common world frame. This allows us to better investigate the relationship between magnetic field
gradients and position estimation without needing to account for errors in an attitude estimator. In
future work, we would like to either construct a full pose state estimator (building on our attitude
estimation work from Chapter 3) or study how using fewer output dimensions on our GPR map
(i.e., 3→ 2 and 3→ 1 maps) effect our overall position estimates. Such maps would reduce our
PF’s reliance on ground-truth or alternative attitude estimates but are likely to create more spatial
ambiguities in the magnetic field and produce more viable path options.

In closing, we present preliminary results on using a 3 → 1 map for 3D position estimates
in Table 4.7. Such a map would need no knowledge of the UAV’s attitude to be used but clearly
has higher errors than when using a 3→ 3 map (Table 4.6). Further work is required to evaluate
whether higher RMSE terms are due exclusively to the presence of alternative viable paths or if
other factors are involved.
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Table 4.7: Truncated position RMSE for 3→ 1 map (rotationally invariant). Preliminary results as
motivation for future work.

RMSE (m) Inertial: Inertial:
Norm—X—Y—Z Mag Mag + Alt

(t6 09) r∗min: Hover 0.78 0.33 0.41 0.57 0.28 0.27 0.06 0.01
(t6 08) r∗max: Hover 2.56 2.54 0.28 0.15 3.19 3.17 0.34 0.06

(t6 18) r∗min: X Stride 1.32 0.68 0.52 1.00 0.56 0.55 0.11 0.02
(t6 17) r∗max: X Stride 0.96 0.85 0.19 0.41 1.34 1.32 0.17 0.05

(t6 13) r∗min: Y Stride 1.51 1.38 0.22 0.59 0.96 0.96 0.09 0.03
(t6 19) r∗max: Y Stride 1.06 1.04 0.14 0.13 1.27 1.26 0.14 0.05

(t6 15) r∗min: Z Stride 0.55 0.42 0.25 0.26 0.84 0.80 0.25 0.12
(t6 14) r∗max: Z Stride 1.30 1.25 0.16 0.32 0.97 0.95 0.13 0.12

4.7 Conclusions and Future Work

This chapter analyzed the relationship between the gradient of the ambient magnetic field
and the accuracy of position localization. We showed that the magnetic field gradient in the x
direction is much lower than y or z directions in our workspace which corresponds to lower x
position estimation accuracy. This relationship (lower gradient, higher position estimation error) is
demonstrated in complete flight tests (Table 4.6) and for particular time intervals within a single
flight (Figure 4.13). Overall, we find our particle filter (PF) can estimate the position of our UAV
within 0.2m norm RMSE for seven of our eight utilization trajectories (Table 4.6). Note that we
achieve accuracy within 0.2m for six of the eight trajectories when including takeoff and landing
sequences (Table 4.4).

Next, we showed how spatial ambiguities in the ambient magnetic field allow for multiple
plausible hypotheses of the UAV’s position when using only magnetic field for navigation. These
ambiguities, combined with small errors in the magnetic field map, create errors in the particle
filter’s position estimates. In addition, we are able to use our map to determine if the PF’s errors are
due to low magnetic field gradient or errors in the map (Figure 4.13).

Finally, we propose two “localizability” metrics meant to predict how accurately one can
estimate position given just information about the ambient magnetic field. We show that our
metrics have promise but require more development and analysis to be useful in predicting position
estimation accuracy.

In the future, we would like to test our methods in different locations. A goal would be to find
indoor spaces with GLM > 5 (Figure 4.12) and others with GLMavg < 1 (Figure 4.14) that allow
us to further investigate our localizability metrics. In addition, we want to reduce the amount of
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high-frequency noise and the flight-by-flight variations (Figure B.1 in Appendix B) that may be
obscuring trends in our localizability metrics.

This analysis would lend itself well to simulation. Though the opening of this dissertation
asserted there are not best practices on how to simulate indoor magnetic fields, we at least have
upper and lower bounds on how much spatial variation to simulate. Simulation can be used to further
study our localizability metrics at arbitrary GLM values and also disentangle our analysis from the
flight-by-flight variations that create errors in our GPR map. In simulation, we can begin with a
perfect map and a magnetically quiet drone, then isolate how gradients in the ambient magnetic
field relate to position localization accuracy.
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CHAPTER 5

Conclusion and Future Work

This dissertation has developed and analyzed methods to extract and utilize information about
the magnetic fields measured by low-cost magnetometers. A primary goal was to show how
magnetometer information can be leveraged to improve indoor navigation.

To accomplish this, we developed methods of creating accurate indoor magnetic field maps and
demonstrated their value by estimating the position and attitude of a UAV. Our techniques were
designed with practical implementation in mind and were experimentally validated on a UAV with
real sensor data. We hope our approach, methods, and insights are valuable to those looking to
implement our techniques.

Before our work, there was not a clear connection between two paradigms of utilizing indoor
magnetic field measurements. Those wishing to estimate attitude indoors saw Earth’s magnetic
field as the true signal and distortions caused by materials in buildings as a nuisance. Meanwhile,
those aiming to estimate position relied on the spatial variation in the magnetic field to track motion
and distinguish one location from another. In this dissertation, we showed how local magnetic
field maps are the bridge between these two paradigms that allow position estimation techniques
to leverage the spatial variation in the field and simultaneously provide reference vectors for an
attitude estimator.

In our work, magnetic field measurements serve as an information supplement not a full
replacement for other indoor navigation sensing systems. We have shown how magnetometer data
can be processed to map an indoor environment and in turn contribute navigation information. The
sections below summarize our primary conclusions and present ideas for future work.

5.1 Dissertation Conclusions

Chapter 2 showed how to use GPR (Gaussian process regression) to map the magnetic distortions
of indoor environments. Using a UAV made gathering observations faster and more consistent but
resulted in undesired magnetic disturbances. We showed how to reduce UAV disturbances and how
to teach the GPR-based map about these disturbances to improve indoor pose estimation accuracy.
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Chapter 3 showed how to estimate 3DOF attitude of a UAV using GPR-based magnetic field
maps and a multiplicative extended Kalman filter (MEKF). Here, we found that magnetic field maps
can improve attitude estimation by a factor of two in regions of high magnetic field spatial variation.
However, in environments with lower spatial variation in the magnetic field, our GPR-based maps
were not required since a constant-field assumption is more appropriate.

Finally, in Chapter 4, we used a particle filter to estimate the 3D position of a UAV using an
accelerometer, altimeter, and magnetometer. Using ground-truth attitude estimates to isolate the
accuracy of position estimation, we were able to localize the UAV’s position within 0.2m for six
of our eight test cases. For reference, these tests were done within a 4m×3m×2.25m test arena.
Additionally, we showed there is a correlation between the magnetic field gradient and the accuracy
of our position estimates. Essentially, the gradient of the magnetic field can serve as an indicator of
how accurately position estimates could be in a mapped region.

5.2 Future Work

Below are recommendations for future work motivated by this dissertation.

5.2.1 Investigation of UAV-Induced Magnetic Biases

As presented Section 2.5.2.2, our UAV injects time-varying magnetic biases into the measured
magnetic field. Recall that we reduced the impact of these biases by distancing our magnetometer
from the electronics and ultimately presented our compromise map as a way to incorporate the
flight-by-flight variations into the map directly.

However, it would be useful to understand which components are the dominant actors in these
time-varying biases. One way to investigate this is to constrain the UAV in a way that allows the
motor and propellers to spin without the UAV moving. Next, one could measure the magnetic field
near particular electronics (motors, electronic speed controllers, microcontroller, etc...) when the
UAV is powered off and when it is operating at different throttles.

One complicating factor is that the time-varying biases we show in Section 2.5.2.2 did not
appear to correlate with certain throttle settings or particular portions of the UAV’s trajectory. For
this, it might be worth investigating the voltage regulation on the BeagleBone Blue: specifically on
its output 3.3V line the RM3100 uses as a reference voltage for its output measurements.

5.2.2 Simulated Magnetic Fields

This dissertation relied entirely on actual magnetometer measurements of two different environ-
ments. Though this offered insight on what we can expect from indoor and outdoor magnetic fields,
it brought along a set of problems primarily caused by magnetic noise from our UAV.
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Our goal with Chapters 3 and 4 was not to claim we have the best attitude or position estimators,
but instead to analyze trends on how spatial variation of the magnetic field changes our resultant pose
estimates. Throughout these two chapters, our investigations were impacted by the UAV-induced
noise or lack of data in regions with specific amounts of spatial variation.

Simulations offer promise to investigate both. Here, we could study how discrepancies such
as sensor noise, UAV-induced noise, or unmapped, mobile ferromagnetic objects effect our pose
estimates. Additionally, we can simulate ambient magnetic fields with specific magnetic field
gradients that allow us to understand how spatial variation relates to the value of maps for attitude
estimation (Chapter 3) and our ability to estimate position (Chapter 4).

5.2.3 Full 6DOF pose estimation using indoor magnetic field maps.

Our work always focused on estimating three degrees of freedom at a time and used motion
capture for the other degrees of freedom. In the future, we would like to implement full 6DOF pose
estimation and take steps towards having it run in real-time on our UAV. Testing pose estimation
accuracy with different output dimensions m (for a p→ m map) is a good way to incrementally
reduce the impact of ground-truth attitude on position estimates. Additionally, we would like to
revisit 3DOF attitude estimation (Chapter 3) with our new mapping and calibration tools to see if
our estimates can be made better by simply improving the magnetic field map.

5.2.4 Sensor fusion with other sensing modalities

The central goal of this dissertation is to demonstrate how to extract value out of the ambient
magnetic field to improve position and attitude estimates. However, we do not intend to express that
IMUs and magnetic field maps alone should be used for navigation. In the future, we would like
to fuse IMU data with magnetic field maps and other sensing modality information (e.g., vision,
LIDAR, Wi-Fi fingerprinting).

For this, it would be valuable to have real-time heuristics/metrics that indicate which sensing
modality is most reliable at any given location and time. This way, the state estimator can ignore
certain sensing modalities if their measurements become less useful (i.e., camera if lighting changes
significantly or magnetometer if near an elevator). For the magnetic field, some of this burden can
be shared by the magnetic map itself (return high uncertainty of the predicted magnetic field in
areas where the magnetic field tends to change regularly).

5.2.5 Alternating Current (AC) Magnetic Field Mapping and Localization.

Our work has focused entirely on the direct current (DC) magnetic field measured by a RM3100
magnetometer. However, by performing a frequency analysis on our measurements, it is possible to
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create spatial maps of the magnetic fields at higher frequencies. Some works [39] do this using a
UAV and show that the spatial variation in the DC magnetic field is not the same as higher-frequency
modes of the magnetic field. As such, it might be possible to leverage both the DC and AC fields in
conjunction for position localization. Effectively, we could get additional information from the same
sensor if it is sampled sufficiently fast. For example, power grids typically run at 50 or 60Hz. If the
sampling rate of the onboard magnetometer was sufficiently high to measure these AC magnetic
noise sources, the location and orientation of power grid signals could be used for pose estimation.

5.2.6 Robust utilization of magnetic field maps

This dissertation focused entirely on time-invariant magnetic field mapping, however there are
many mobile objects that can distort the measured field. There are three main sources that create
the DC magnetic field inside buildings. Earth and the non-moving structural components in the
building will change slowly over time or not at all. The third component deals with the motion of
doors, elevators, and some furniture. It is important to consider the impact of such mobile objects in
a workspace and how the map can either update its estimates based on the state of some objects
(e.g., elevator gives its real-time position to the magnetic field map allowing the map to update its
estimates near the elevator) or simply return a higher uncertainty near regularly moving objects.

Additionally, it is important to consider that most users will not want to (or be able to) calibrate
their magnetometers in the same way as those who created a building’s magnetic field map. As
such, it is important to consider how indoor navigation with magnetic fields can be done when
magnetometers may output different measurements given the same signal.

In addition, some phone cases and accessories may further distort the measured magnetic field.
For example, some cell phone cases contain a permanent magnet to attach the phone to metallic
objects and take group pictures with ease. Such phone cases would clearly present a challenge to
localizing within a magnetic field map, especially if the attached permanent magnet is saturating
the onboard magnetometer. There are many works like [28] on crowdsourcing indoor magnetic
field maps that are thinking about this sort of problem and developing methods to deal with the
discrepancies across several magnetic sensors.

Finally, it is important to consider how to store and share magnetic field maps of rooms and
buildings. The compromise map method we present here could be promising since the hyperpa-
rameters can be shared along with the fixed set of n1 user-selected locations in the room/building
of interest. Here, it might be prudent to learn lessons on how to store and share maps from spatial
mapping works that use cameras and LiDAR.
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APPENDIX A

Flight Test Name Reference

The, rather obtuse, naming convention for flight tests in this dissertation is meant to serve the
reader in associating our results with the relevant data in our dataset. Recall that each flight test is
denoted as “tY XX” where Y refers to the flight test series and XX is the two-digit ID of the flight
test in that series. The Table A.1 associates each series numbers Y used in this dissertation with
their respective directories in our dataset.

Note, Chapter 3 was completed and published in Ref. [23] before we created this global naming
convention for our flight tests. The version of Chapter 3 presented in this dissertation is largely
identical to Ref. [23] and thus does not have the same numbering system. Nonetheless, we include
their flight data as series t7, t8, and t9 in this table for reference.

Table A.1: Data used in this dissertation.

Test Dataset Use In
Series (tY) Directory This Dissertation

t1 20220617 batteryAndMagTesting S2 = 2cm
t2 20220622 batteryAndMagPartTwo S2 = 4cm
t3 20220627 verifyingSufficientMagDist S2 = 6cm
t4 20220707 8cm magAndBatt S2 = 8cm
t5 20220503 maggieAndEstibonFlights ‘noisy’ versus ‘quiet’ PID controller gains
t6 20220901 researchData Intermediate and compromise maps. Consistency metric.
t7 20200817 night flight Outdoor attitude estimation flights for Chapter 3.
t8 20210318 flight test Outdoor attitude estimation flights for Chapter 3.
t9 20210423 mag cali Magnetometer calibration data used for t8 flight series in Chapter 3.
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APPENDIX B

GPR Map Consistency with Utilization Flights

This section shows the GPR map’s error for all eight utilization flights. The plots here depict the
difference between the actual measured magnetic field ỹk and the GPR’s predicted magnetic field
GPR(rk) at the ground-truth UAV position rk for some timestamp k.

Figure B.1 depicts the maps’ accuracy for all 200Hz of magnetometer measurements from each
utilization flight. In each plot, the black dots are |ỹk − GPR(rk)| for all timestamps k, the gray
shading is two standard deviations (2σ) of each respective GPR’s uncertainty, the red percentages
are the fraction of times error falls within the 2σ uncertainty, and the blue text is the RMSE for each
GPR.

Here, we see that all utilization flights are consistent with the GPR map because each X, Y,
and Z GPR captures its error within two standard deviations of its uncertainty at least 96% of the
time respectively. t6 15 (r∗min Z Stride) is an exception and fails the consistency check (see red
percentages).

As shown in Figure B.1g, t6 15 (r∗min Z Stride) has a sudden increase in X, Y, and Z GPR error
starting around t =130s. Nothing of note occurred at this moment in t6 15 so we believe this is
simply another case of a change in the drone-induced magnetic noise discussed in Section 2.5.2.2.
t6 18 (Figure B.1c) has a similar shift in the Z-component of its magnetic field around t =125s.

In Section 4.5.2.1, we truncate t6 15 and t6 18 before their landing sequences because of a
sudden change in the bias of the measured or predicted magnetic field. The justification for this can
be seen in Figures B.1g and B.1c. As mentioned in Section 2.5.6, applying the consistency check
across an entire flight can be misleading and it can be useful to isolate the analysis to particular
portions. The truncation for t6 15 and t6 18 were chosen based on the approximate timestamps
where each respective GPRz failed to capture 96% of its error within two standard deviations of its
uncertainty.

When gathering the flight data for Chapter 4, we checked to ensure each utilization flight was
consistent with the compromise map. In fact, t6 16 (r∗max Hover) was added to the training set
specifically to make t6 08 (another r∗max Hover) consistent with our map. For t6 15, we noticed
the change in the magnetic field measurement at the end of the flight, but since GPRz captured the
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error 95% of the time, we chose not to fly the trajectory again thinking it was close enough to our
96% threshold. We did not notice the change in measured magnetic field on t6 18 during flight time
since it passed the consistency criterion for all three GPRs.
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{2.61, 2.75, 2.71}µT.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

G
P

R
 E

rr
or

 (
uT

)

X: 0.198uT

0 50 100 150
Time (s)

0

0.2

0.4

0.6

0.8

1

Norm RMSE: 0.410uT
Y: 0.236uT

0 50 100 150
0

0.2

0.4

0.6

0.8

1
Z: 0.270uT

(g) t6 15 (r∗min Z Stride). Max of outliers:
{2.56, 2.35, 2.30}µT.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

G
P

R
 E

rr
or

 (
uT

)

X: 0.123uT

0 50 100 150
Time (s)

0

0.2

0.4

0.6

0.8

1

Norm RMSE: 0.303uT
Y: 0.198uT

0 50 100 150
0

0.2

0.4

0.6

0.8

1
Z: 0.194uT

(h) t6 14 (r∗max Z Stride). Max of outliers:
{2.45, 2.52, 2.58}µT.

Figure B.1: Accuracy of the GPR map against the eight utilization flights. Limiting the vertical axis
to 1µT maximum hides many outliers. The max error of these outliers is listed as { GPRx, GPRy,
GPRz } in the caption of each subplot.
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