
Practical Appropriate Fidelity Optimization for
Large-scale Multidisciplinary Aircraft Design

by

Neil Y. Wu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in the University of Michigan
2023

Doctoral Committee:

Professor Joaquim R. R. A. Martins, Co-Chair
Adjunct Assistant Research Scientist Charles A. Mader, Co-Chair
Professor Bogdan I. Epureanu
Professor Krzysztof J. Fidkowski

Neil Y. Wu

neilwu@umich.edu

ORCID iD: 0000-0001-8856-9661

© Neil Y. Wu 2023

To my parents, who have sacrificed so much to help me realize my dreams.

ii

Acknowledgements

Doctoral research is a long and arduous journey, made possible and rewarding only through the support
of many people along the way.

First and foremost, I am immensely thankful to my parents, Guodong and Xiaoli. From an early age,
they instilled in me a sense of curiosity and wonder at the world. And it is that inquisitive nature that
has led me to completing my PhD. Their love and unwavering support means everything to me. I also
thank my aunt for looking after me, and for her loving support.

I first came to the University of Michigan as an apprehensive master’s student. While I was interested
in academic research, I would not have dreamed of completing a PhD here. I thank my adviser,
Prof. Martins, for making that possible. I first approached him for an AE590 project, and he was happy
to take me on even though I knew virtually nothing about optimization. Subsequently, he offered me
a PhD position, and I am very grateful for this opportunity to perform academic research at such an
esteemed department and university. Prof. Martins has been extremely helpful as an adviser and mentor,
not only academically but more broadly speaking, and I aim to take many of his advices to heart. I also
want to acknowledge his generosity in ensuring a positive student experience, and his work advocating
for Diversity, Equity, and Inclusion (dei) at the department.

I also thank the co-chair of my committee, Dr. Sandy Mader. His guidance has been indispensible
during my PhD, and I’m grateful for all the technical discussions and insightful inquiries. I thank the
other members of my committee, Prof. Krzysztof Fidkowski and Prof. Bogdan Epureanu, for their time
and helpful suggestions.

My PhD would not have been possible without the support of those in the MDO Lab, both past
and present. Together with Dr. Mader, Dr. Gaetan Kenway and Prof. Graeme Kennedy helped build
the foundation of the code base that enabled this research. In addition, Dr. Kenway set up the initial
aerostructural optimization of the xrf1 aircraft, which is greatly acknowledged. I thank Anil Yildirim,
Marco Mangano, Eirikur Jonsson, Sabet Seraj, Nicholas Bons, Alasdair Gray, Alex Coppeans, and Justin
Gray for technical discussions and insights that greatly benefitted this work. I also thank Shamsheer
Chauhan, Saja Kaiyoom, and Xiaosong Du for being great office mates and for putting up with me over
the last few years. To others in the lab: John, Ben, Mads, Sicheng, Yingqian, Gustavo, Ping, Tim, Ney,

iii

Mohamed, Alex,* Bernardo, Galen, Andrew, Hannah, Shugo, Josh, Eytan, thank you for welcoming
me into the lab and the wonderful memories.

I have had a wonderful time at the aerospace engineering department. I thank Ruthie for being a ray of
sunshine in the department, Chris Wentland for being my dissertation writing buddy, members of gsac
for building such a great community, the weekly frisbee group for keeping me at least somewhat active,
and the many friends I made in the department that are too numerous to list. I thank Maria, Shree, and
my friends both in Michigan and back home in Toronto for all their support. To Annabelle, thank you
for believing in me since the start and for supporting me.

I have also had the pleasure of working with a few external researchers. I thank my points of contact at
Airbus: Anne Gazaix, Joel Brezillon, and Tom Gibson for their guidance and technical advice since the
beginning of my PhD. This work was funded primarily by Airbus through the Airbus / Michigan Center
for Aero-Servo-Elasticity of Very Flexible Aircraft, and I thank everyone involved for their support,
especially Prof. Cesnik who led the Center. I thank the developers of snopt, Prof. Philip Gill and
Dr. Elizabeth Wong, for helpful discussions and updates to the optimizer. Their efforts enabled large
portions of this work.

This research was partly supported through computational resources and services provided by Advanced
Research Computing at the University of Michigan, Ann Arbor. This research also made extensive use
of the Texas Advanced Computing Center (tacc) Stampede2 supercomputer via Extreme Science and
Engineering Discovery Environment (xsede).

* He lent me an hdd at a crucial time which allowed me to complete some of my optimizations

iv

Table of Contents
Dedication ii

Acknowledgements iii

List of Figures ix

List of Tables xiii

List of Appendices xv

List of Acronyms xvi

List of Symbols xxi

Abstract xxiv

Chapter

1 Introduction 1

1.1 High-fidelity aircraft design . 2
1.1.1 Numerical optimization . 3
1.1.2 Efficient gradient computation . 4
1.1.3 Multidisciplinary design optimization . 4

1.2 Low and mixed-fidelity mdo . 7
1.3 Improvements in robustness and efficiency . 9

1.3.1 Robustness and optimization convergence 9
1.3.2 Computational cost . 13

1.4 Dissertation objectives . 14
1.5 Dissertation outline . 15

2 Background 16

2.1 Numerical optimization . 16
2.2 Pde-constrained optimization . 20
2.3 Multidisciplinary design optimization . 23

v

2.4 Analysis fidelities and sources of error . 26
2.5 Computational framework . 28

2.5.1 Geometric parameterization . 29
2.5.2 Volume mesh warping . 29
2.5.3 Cfd solver . 30
2.5.4 Csm solver . 30
2.5.5 Aerostructural solver . 31
2.5.6 Optimization framework . 31

2.5.6.1 Selecting an appropriate optimizer 32
2.5.7 Snopt: the optimizer of choice . 33

2.5.7.1 Termination criteria . 34
2.5.7.2 Optimization restarts . 35
2.5.7.3 Hessian update strategy . 36

3 Sensitivity-Based Geometric Parameterization 38

3.1 Introduction to geometric parameterizations . 38
3.2 Motivating analyses . 42

3.2.1 Impact of geometric design variables . 42
3.2.2 Impact of orthogonality . 43

3.3 Generating design variables . 51
3.3.1 Methodology . 51
3.3.2 Reformulating the Optimization . 53

3.3.2.1 Design Variables . 53
3.3.2.2 Nonlinear Gradient and Jacobian 54
3.3.2.3 Linear Jacobian . 55
3.3.2.4 Design variable bounds . 55
3.3.2.5 Alternative Implementation 56

3.3.3 Verification . 57
3.3.4 Generated design variables . 57

3.4 Design variable scaling . 59
3.4.1 Methodology . 59
3.4.2 Impact of mesh density . 60

3.5 Optimization results . 62
3.5.1 Twist and shape . 62
3.5.2 Span . 69

3.6 Summary . 72

vi

4 Adaptive Convergence Error Control 75

4.1 Background . 75
4.2 Adjoint-based convergence error estimation . 78

4.2.1 Derivation . 80
4.2.2 Verification . 82

4.3 Convergence tolerance adaptation algorithm . 83
4.4 Results . 87

4.4.1 Adaptive airfoil optimization . 88
4.4.2 Adaptive wing optimization . 91

4.5 Summary . 93

5 Appropriate Fidelity Mdo Framework 95

5.1 Background . 95
5.1.1 Global and local methods . 96
5.1.2 Multifidelity mdo . 98
5.1.3 Aim of proposed method . 99

5.2 Methodology . 100
5.2.1 Error quantification . 102
5.2.2 Error propagation . 105
5.2.3 Fidelity selection . 109
5.2.4 Switching criteria . 111
5.2.5 Optimization . 113

5.3 Practical considerations . 114
5.3.1 Load balancing . 114
5.3.2 Summary . 117

6 Treatment of Coupled Errors 119

6.1 Background . 119
6.2 Methodology . 122

6.2.1 Coupled error quantification . 123
6.2.2 Coupled error propagation . 125

6.3 Verification . 128
6.4 Incorporation into framework . 131
6.5 Summary . 131

vii

7 Appropriate Fidelity Optimization Results 133

7.1 Demonstration on a standalone wing . 133
7.1.1 Benchmark problem . 133
7.1.2 Results and discussion . 136
7.1.3 Impact of coupled errors . 148

7.2 Demonstration on the xrf1 . 150
7.2.1 Problem description . 150

7.2.1.1 Objective function . 150
7.2.1.2 Cruise and maneuver flight conditions 151
7.2.1.3 Design variables . 152
7.2.1.4 Constraints . 153
7.2.1.5 Available fidelities . 154

7.2.2 Results . 155
7.3 Summary . 163

8 Final Remarks 165

8.1 Conclusions . 165
8.2 Novel contributions . 167
8.3 Recommendations for future work . 168

8.3.1 General . 168
8.3.2 Geometric parameterization . 169
8.3.3 Tolerance adaptation . 170
8.3.4 Appropriate fidelity mdo . 171
8.3.5 Coupled error propagataion . 171

Appendices 172

Bibliography 191

viii

List of Figures

1.1 There are three components to producing impact in computational research [1]. 1
1.2 Conventional design processes, adapted from Martins and Ning [2]. 2
1.3 Optimization-driven design processes, adapted from Martins and Ning [2]. 3
1.4 A more realistic optimization process, where human intervention is needed to modify the

optimization problem. Adapted from Martins and Ning [2]. 12
1.5 Schematic showing typical scope of mdo problems. 13

2.1 The xdsm diagram for a single-discipline optimization using the full-space approach. . . 21
2.2 The xdsm diagram for a single-discipline optimization using the reduced-space approach. 21
2.3 An example xdsm diagram of an aso problem. In this case the process within mach is given,

but the process is similar for other frameworks. 24
2.4 An xdsm diagram of the nlbgs process. 25
2.5 Schematic showing the difference between accuracy and precision. 27
2.6 An xdsm diagram of the mach framework applied to a single-point aerostructural opti-

mization. 28

3.1 The standalone wing considered, together with the ffd box. 42
3.2 Comparison of asos with and without shape variables, showing optimization metrics. The

horizontal lines show the optimization termination criteria, set at 10−6 for both feasibility
and optimality. 44

3.3 Distributions of angles between pairwise geometric design variable gradients for the T+S
case. The 𝑦-axis uses a logarithmic scale, and the vertical line denotes 90°. 46

3.4 Shape variables 6 and 7, which have the smallest gradient angle at just 3.4°. 46
3.5 Distribution of angles between pairwise geometric design variable gradients involving only

twist. The 𝑦-axis uses a logarithmic scale, and the vertical line denotes 90°. 47
3.6 Shape variables 19 and 23, which have a gradient angle of 12°. 47
3.7 Shape variable 19 and twist variable 6, which have a gradient angle of 22°. 47
3.8 Optimization history for some shape variables at the leading and trailing edges. 48
3.9 Optimization history for a pair of orthogonal design variables. 48
3.10 Optimization history for some shape variables at the wing interior. 50

ix

3.11 A contour plot of 𝛿𝑖𝑗. The diagonal entries are 90° by definition, and any nonzero entries
in the off-diagonal indicate design variable pairs that are not orthogonal. 50

3.12 Original design space bounds. 56
3.13 The same bounds in the new design space. 56
3.14 The first eight newly constructed design variables. 58
3.15 Comparison of unscaled and scaled singular values computed from several different grids. 61
3.16 The design variable history for each optimization. The dashed line corresponds to the final

value obtained from the reference optimization without any design variable mapping. . . 65
3.17 The optimization metrics for the T+S case. The thin horizontal black line indicates the

termination criteria of 10−6 for feasibility and optimality. 66
3.18 The approximate Hessian at the final optimization iteration. While a symmetric diverging

colormap is used, the maximum value is adjusted for each plot. Therefore, entries with the
same color do not have the same magnitude across different subplots. 67

3.19 The design variable history for the T+S+S case. 70
3.20 The optimization metrics for the T+S+S case. 71
3.21 The maximum deviation from orthogonality for the reference and √𝜎 optimizations. . . 72
3.22 The approximate Hessian at the final iteration for the T+S+S case. The additional span

variable is visible in the reference optimization at the ninth index, highlighted by the thin
vertical and horizontal lines. 73

4.1 Actual and computed errors for different convergence levels. 83
4.2 Convergence of lift and drag values, without and with correction. 84
4.3 Optimization and solution tolerances for the airfoil problem. 90
4.4 Optimization and solution tolerances for the wing problem. 93
4.5 The effect of 𝑘pr on the relative improvement of the two optimization problems. 94

5.1 An xdsm diagram showing the appropriate fidelity framework applied to a single-point
mdo problem. 103

5.2 Notional diagram showing a discipline analysis involving five fidelities, where fidelities 1–4
are Pareto-optimal and 5 is not. This is for a single scalar output; the relative positions of
the fidelities could be different for other outputs. 104

5.3 Correlation matrix for a two-point aerostructural problem, where all correlations are taken
into account. Blue entries indicate correlations between outputs computed by the same
analysis, and red entries indicate correlation as a result of the coupled mda. 108

5.4 An equality constraint curve within a 2-dimensional design space. The dashed lines represent
the error bound on either side of the constraint, showing the effective feasible region in
between. 112

x

5.5 An example of a multipoint aerostructural analysis executed in parallel, including both
the primal and adjoint stages. The widths of the bars are proportional to the number of
processors used for each solver instance. 115

5.6 Distribution of mda wall times for a 10-point problem. 116
5.7 Distribution of coupled adjoint wall times for a 10-point problem. 117

6.1 An xdsm diagram of the aerostructural mda, solved using nlbgs iterations. 120
6.2 An example of a mesh failure due to negative cell volumes during volume mesh warping. 130

7.1 Geometric design variables are shown in the upper figure. Each red node indicates an ffd
control point, and groups of nodes are manipulated together to form geometric design
variables. Structural design variables are visualized in the lower figure, where each design
variable controls the panel thickness of a distinct region of the wingbox. 134

7.2 Pareto front for aerodynamic fidelities, showing that not all fidelities are optimal. 137
7.3 Pareto front for structural fidelities, showing that not all fidelities are optimal. 137
7.4 Pareto plot of objective errors 𝜖0,ℓ against cost for all 400 possible fidelity combinations,

showing that many are not Pareto-optimal. The corresponding plot for constraint KS0 is
shown on the right. 138

7.5 Sequence of structural panel thicknesses at the end of each sub-optimization, showing the
rapid convergence in the early optimizations. 141

7.6 Sequence of stress failure values at the end of each sub-optimization, where a value of 1.0
indicates the yield limit. 142

7.7 Selected design variables during the course of optimizations. Because we hot-start each
optimization, these lines are continuous. Despite taking more iterations to converge, due to
cheaper, lower-fidelity models, the design variables converged more quickly when measured
using computational cost. 143

7.8 The same figure as figure 7.7, but plotted against computational cost. The use of low-fidelity
models in earlier iterations is obvious. 144

7.9 Selected function outputs during the course of optimizations. The discontinuity is due to
the same design being analyzed by different fidelities. 145

7.10 Normalized distance from the initial to the final optimum 146
7.11 Optimization metrics as reported by snopt over the course of the optimizations. 147
7.12 A sample aerostructural solution of the xrf1 wing-body-horizontal tail configuration. . . 150
7.13 The geometric and structural parameterization for the xrf1 model, showing the component

breakdown of the wingbox and the ffd volume used for shape control. 153
7.14 The sequence of aerodynamic and structural fidelities selected, plotted on a graph. 157
7.15 Normalized distances for the xrf1 case. 158

xi

7.16 Select function outputs for the xrf1 case. 158
7.17 Airfoil profiles and pressure distributions along the wing. 160
7.18 Spanwise lift distributions at three different designs. 160
7.19 Initial, intermediate, and final structural designs for the xrf1 optimization. 161
7.20 Initial, intermediate, and final stress and buckling constraint values for the xrf1 optimization. 162
7.21 Optimization metrics for the xrf1 case. 163

A.1 Output error convergence during primal solution convergence for subsonic cases at 𝛼 = 2°. 173
A.2 Output error convergence during primal solution convergence for subsonic cases at 𝛼 = 0°. 174
A.3 Output error convergence during primal solution convergence for transonic cases at 𝛼 =
1.25°. 174

B.1 A schematic showing the error propagation process. A black-box function 𝑓 receives proba-
bilistic inputs 𝑥𝑖, resulting in a probability distribution on the output 𝑦. The goal is to find
this probability distribution given the distributions on 𝒙. 175

C.1 Possible definitions of reproducibility, taken from [239] and made available under the
Creative Commons Attribution 4.0 International (CC BY 4.0) license. 188

xii

List of Tables

1.1 Optimization convergence achieved for some published adodg cases. 10

2.1 Brief overview of available optimizers in pyOptSparse and their capabilities. 32

3.1 Aso problem for twist design variables (T) and twist and shape design variables (T+S). “(L)”
denotes that the constraint is linear. 43

3.2 Verification of the orthogonality of geometric sensitivities. 57
3.3 Optimization problem statements highlighting the differences in problem size between the

original and new parameterizations. 63
3.4 Summary of optimization results for the T+S problem. 63
3.5 Summary of optimization results for the T+S+S problem. 69

4.1 The airfoil optimization problem. “(L)” denotes that the constraint is linear. 88
4.2 Airfoil optimization results. Note that the reference optimization was performed without

any adaptation, and serves as the reference for the speedup shown in the columns labelled
𝜂. Optimizations marked with an asterisk did not converge successfully. 88

4.3 The effect of adaptively changing the function precision parameter within snopt, without
and with function value correction. Optimizations marked with an asterisk did not converge
successfully. 91

4.4 The wing twist-only optimization problem. 92
4.5 Optimization results for the 3D wing case, tested with a variety of 𝑘pr values. 92

6.1 The errors computed via Monte Carlo on the O2L3 structural fidelity due to the R2 aero-
dynamic fidelity show excellent agreement with the adjoint approach. Since the correct
reference values for the mass errors are zero, absolute errors are shown for those two instead
of relative errors . 129

6.2 The errors computed on the O2L2 structural fidelity due to the E1 aerodynamic fidelity are
larger, since we used a lower-fidelity aerodynamic model. 129

6.3 The errors computed on the E1 aerodynamic fidelity due to the O2L3 structural fidelity. . 130

7.1 Operating conditions for the cruise and maneuver points. 134
7.2 Reference values for the wing-only test case. 135

xiii

7.3 Optimization problem formulation for the aerostructural wing-only problem. 135
7.4 Fidelities available for aerodynamic and structural analyses, together with the number of

dofs and computational cost. 136
7.5 Sequence of fidelities for the aerostructural optimization, showing the fidelity used, the

computational costs, and the number of major iterations taken. The fidelity combination is
represented by four columns corresponding to the four analyses in the two-point aerostruc-
tural problem. The cost is given in proc-hours, and the relative cost is normalized by the
total cost of the multifidelity approach. 139

7.6 Normalization factors on the design variables used to compute distances within the design
space. 146

7.7 The sequence of optimizations taken when considering coupled errors. 149
7.8 The reference values used for the optimization. 151
7.9 Flight conditions for the multipoint optimization. 152
7.10 The aerostructural optimization problem for the xrf1 case. “(L)” denotes that the constraint

is linear. 154
7.11 The different fidelities available for both aerodynamics and structures. 155
7.12 The sequence of fidelities for the aerostructural optimization, showing the fidelity used,

the computational costs, and the number of major iterations taken. Here the fidelity
combination is represented by four pairs of columns, corresponding to the four analysis
points. The cost is given in proc-hours, and the relative cost is normalized by the total cost
of the multifidelity approach. 156

A.1 The cell count of the meshes used. 172
A.2 The three flow conditions examined. 172

C.1 An example of the build and test matrix used for continuous integration of mach. The
versions of other dependencies are given in the corresponding column of table C.2 . . . 184

C.2 Versions of additional dependencies. 184

xiv

List of Appendices

A Cfd Convergence Characterization 172

B Error Propagation Techniques 175

C Best Practices for Research in Scientific Computing 179

xv

List of Acronyms

AD automatic differentiation

ADODG Aerodynamic Design Optimization Discussion Group

AGILE Aircraft 3rd Generation mdo for Innovative Collaboration of Heterogeneous Teams
of Experts

AIAA American Institute of Aeronautics and Astronautics

ALPSO Augmented Lagrangian Particle Swarm Optimizer

ANK approximate Newton–Krylov

API application programming interface

AR aspect ratio

ASO aerodynamic shape optimization

AWS Amazon Web Services

BFGS Broyden–Fletcher–Goldfarb–Shanno

BLI boundary-layer ingestion

CAD computed-aided design

CFD computational fluid dynamics

CGNS Cfd General Notation System

CONMIN CONstrained function MINimization

CPU central processing unit

CRM Common Research Model

xvi

CSM computational structural mechanics

CST Class-Shape function Transformation

DFP Davidon–Fletcher–Powell

DIRECT DIviding RECTangles

DLR German Aerospace Center

DOF degree of freedom

DTU Technical University of Denmark

DVC Data Version Control

ESP Engineer Sketch Pad

FB fuel burn

FEM finite-element method

FFD free-form deformation

FOSM first-order second-moment

FSI fluid-structure interaction

GA genetic algorithm

GBMS gradient-based multistart

GCC GNU Compiler Collection

GMRES generalized minimal residual

HDMR high-dimensional model representation

HF high fidelity

HPC high-performance computing

IDF individual discipline feasible

IEEE Institute of Electrical and Electronics Engineers

IFF if and only if

xvii

IP interior point

IPOPT Interior Point OPTimizer

KKT Karush–Kuhn–Tucker

KS Kreisselmeier–Steinhauser

LE leading edge

LGW landing gross weight

LOC lines of code

MACH Mdo of Aircraft Configurations with High-fidelity

MADELEINE Multidisciplinary ADjoint-based Enablers for LargE-scale Industrial desigN in aEro-
nautics

MAUD modular analysis and unified derivatives

MBSE model-based systems engineering

MDA multidisciplinary analysis

MDF multidisciplinary feasible

MDO multidisciplinary design optimization

MFD Method of Feasible Directions

MPI Message Passing Interface

NASA National Aeronautics and Space Administration

NK Newton–Krylov

NLBGS nonlinear block Gauss–Seidel

NLPQLP NonLinear Programming with Non-Monotone and Distributed Line Search

NSGA2 Non Sorting Genetic Algorithm II

OAD overall aircraft design

OML outer mould line

xviii

OPENMP Open Multi-Processing

OS operating system

PDE partial differential equation

PDF probability distribution function

PETSC Portable, Extensible Toolkit for Scientific Computation

PRNG pseudo-random number generator

PSO particle swarm optimization

PSQP Preconditioned Sequential Quadratic Programming

QOI quantity of interest

RANS Reynolds-averaged Navier–Stokes

RCE Remote Component Environment

RK Runge–Kutta

SA Spalart–Allmaras

SAND simultaneous analysis and design

SLSQP Sequential Least SQuares Programming

SNOPT Sparse Nonlinear OPTimizer

SPD symmetric positive-definite

SQP sequential quadratic programming

SU2 Stanford University Unstructured

SUAVE Stanford University Aerospace Vehicle Environment

SVD singular value decomposition

TACS Toolkit for Analysis of Composite Structures

TE trailing edge

TOGW take-off gross weight

xix

TR trust region

TRL technology readiness level

TRMM trust-region model management

TSFC thrust-specific fuel consumption

UCRM undeflected Common Research Model

UDE unified derivatives equation

UTIAS University of Toronto Institute for Aerospace Studies

V&V verification and validation

VCS version control system

VLM vortex lattice method

WISDEM Wind-Plant Integrated System Design and Engineering Model

XDSM extended design structure matrix

XRF1 eXternal Research Forum 1

xx

List of Symbols

Roman letters

𝐀 Mapping matrix

𝒜 Active set

𝐶𝐷 Coefficient of drag

𝐶𝐿 Coefficient of lift

𝑐𝑇 Thrust-specific fuel consumption

ℰ Set of Equality constraints

ℎ Altitude

𝐈 Identity matrix

ℐ Set of inequality constraints; quantity of interest

𝐉 Jacobian

ℒ Lagrangian function

ℓ Fidelity index

𝑀 Mach number

𝑚 Mass

𝒩 Normal distribution

𝑅 Range

𝑹 Residual

𝑠 Design variable scaling parameter

xxi

𝑡 Thickness

𝒖 State variable

𝑉 Volume

𝑊 Weight

𝒙 Design variables

𝑿𝐴 Aerodynamic surface mesh coordinates

𝒙̂ Mapped design variables

𝑿𝑆 Structural mesh coordinates

Greek letters

𝛥 Difference

𝚺 Covariance matrix

𝝍 Adjoint variables

𝛼 Angle of attack

𝛿 Discipline error

𝜖 System-level error

𝜖mp Machine precision

𝜂 Computational speedup

𝜃 Angle between vectors

𝝀 Lagrange multiplier

𝜇 Mean

𝜉 Parametric coordinate

𝜌 Correlation coefficient

𝜎 Singular value; standard deviation

𝜏 Tolerance

xxii

Subscripts and Superscripts

adj Adjoint

cr Cruise

fea Feasibility

geo Geometric

man Maneuver

opt Optimality

pr Primal

red Reduction

Accents

* Converged quantities

~ Unconverged quantities

^ Mapped quantity; normalized quantity

– Target quantity

xxiii

Abstract

Numerical optimization has been successfully applied to multidisciplinary design optimizations such as
aerostructural wing design. These optimizations consist of over a thousand design variables and con-
straints, and include expensive simulations such as computational fluid dynamics within the optimization
loop. Nevertheless, by using gradient-based optimizers together with efficient gradient computation
techniques, researchers have been able to tackle these challenging large-scale problems.

However, longstanding challenges remain. These optimizations tend to require direct user input, man-
ually tuning various optimization parameters to obtain convergence. The optimizations are slow and
computationally expensive, often using thousands of processors for several days at a time. As aircraft
designers move toward using more expensive, higher-fidelity tools in design, the computational cost
will only increase in the future.

To address these challenges, this dissertation contains three main contributions. First, a novel geometric
parameterization is presented. Based on sensitivity analysis, the parameterization is also able to automati-
cally scale the newly-generated design variables, suitably for gradient-based optimization. This approach
is demonstrated on two aerodynamic shape optimizations, and is shown to perform comparably to the
manual approach requiring trial and error.

Second, an adaptive error control scheme is developed to reduce the computational cost of optimizations.
The function error due to convergence of the solver is estimated using an adjoint-derived approach. The
error is then adapted during optimization, allowing for loose solver convergence at the beginning of the
optimization, thereby reducing computational cost. The approach is demonstrated on two aerodynamic
shape optimizations, showing between 30%–50% cost savings.

Third, an appropriate fidelity optimization framework is developed, suited for gradient-based multidisci-
plinary design optimizations. This framework uses a sequential approach, and begins by quantifying the
errors present in each fidelity at the discipline level. The errors are then propagated to the system-level
objective and constraints. An optimization is started using the lowest fidelity, and these errors are used
to terminate the low-fidelity optimizations at an appropriate time. The errors are also used to select
the next appropriate fidelity, by performing a tradeoff between error reduction and computational cost
increase. A new optimization is then started using the selected fidelity, and the process is repeated until
the high-fidelity optimum is reached.

xxiv

The approach is then demonstrated on two aerostructural optimizations, including the xrf1 aircraft
with over 900 design variables and 900 constraints. The aircraft is analyzed at four flight conditions,
and there are a total of over 300 000 possible fidelity combinations. Through the use of the appropriate
fidelity framework, cost savings of between 44% and 64% were realized.

xxv

1

Chapter 1

Introduction

1.1 Aircraft design 2

1.2 Low and mixed-fidelity mdo 7

1.3 Improvements 9

1.4 Objectives 14

1.5 Outline 15

Optimization problems are ubiquitous in engineering. From
foundational concepts such as least squares and Lagrangian me-
chanics to practical problems of designing complex aerospace
systems, optimization problems arise every step of the way. How-
ever, until recently such optimization problems remained out of
reach, due to a lack of both computational power and advanced
algorithms capable of tackling such problems.

The field of engineering science has always occupied a unique
position in academia, bridging the gap between theory and ap-
plication. While theory is necessary to advance the field, such
developments must be kept relevant to industrial applications.
On top of this, computational research requires a third compo-
nent to demonstrate such applications, and the inclusion of all
three is necessary to produce impact.

Theory

Implementation Application

Impact

Figure 1.1: There are three components to producing
impact in computational research [1].

2

Due to recent advances, optimization methods have been suc-
cessfully applied to a range of engineering problems, particularly
in the field of aerospace engineering. Nevertheless, many chal-
lenges remain. In the following sections, we give an overview of
engineering design optimization, discussing the state of the art
and their shortcomings.

1.1 High-fidelity aircraft design

Historically, engineering design is a manual, iterative process.
Starting from an initial design, the designer uses experience to
decide on changes to improve its performance. This process is
iterated until the design is deemed sufficient. Figure 1.2 shows
such a process.

Manual iteration

Initial
design

Evaluate
performance

Is the design
good?

Change
design

manually

Final design
Yes

No

Figure 1.2: Conventional design processes, adapted
from Martins and Ning [2].

In the last few decades, aircraft design has become increasingly
optimization-driven. This is largely enabled by successful re-
search outcomes in numerical optimization, efficient gradient
computation, and multidisciplinary design optimization (mdo).
While push-button solutions are unlikely in the near term, cer-
tain problems such as airfoil design has become relatively rou-
tine. He et al. [3], for example, were able to perform airfoil [3]: He et al. (2019), Robust aerodynamic shape

optimization—from a circle to an airfoiloptimization robustly starting from a circle. Figure 1.3 shows
the automated process using numerical optimization, where the
design problem is formulated as an optimization problem, and
an optimizer replaces the designer in making design changes.
When using gradient-based optimizers, it is also possible to show
numerically that the solution is indeed optimal for the problem
posed.

3

Optimization

Initial
design

Formulate
optimization

problem

Evaluate
objective and
constraints

Optimality
achieved?

Update
design

variables

Final design

No

Yes

Figure 1.3: Optimization-driven design processes, adapted from Martins and Ning [2].

1.1.1 Numerical optimization

Issac Newton examined the minimal resistance problem in his
Principia [4], where he sought the solid of revolution which [4]: Newton (1687), Philosophiæ Naturalis Principia

Mathematicaminimized fluid drag. This can be considered the first true op-
timization problem to be solved using calculus. Not only is it
still a relevant problem 300 years later, Newton invented an
entirely new branch of mathematics in the process: the calculus
of variations. A decade later, Johann Bernoulli posed the famous
brachistochrone problem, which Newton solved overnight, again
using the calculus of variations to arrive at the solution.

While mathematically interesting, most real-world optimization
problems cannot be solved in infinite-dimensional space. Instead,
problems are often discretized, resulting in a finite number of
design variables. In Soviet Russia, Leonid Kantorovich worked
on linear optimization problems in 1939, in order to optimize
the industrial production of plywood. However, significant ad-
vances in general nonlinear problems did not appear until the
advent of the computer, which provided the necessary compu-
tational power. Quasi-Newton methods came to prominence
following the pioneering work of William Davidon, leading
to the Davidon–Fletcher–Powell (dfp) method. Subsequently,
the Broyden–Fletcher–Goldfarb–Shanno (bfgs) update formula
was developed, which became the backbone of modern quasi-
Newton methods.

4

1.1.2 Efficient gradient computation

Gradient-based optimization algorithms are attractive for their
numerous advantages. They scale well with the number of design
variables, can handle linear and nonlinear constraints directly,
and demonstrate the optimality of the solution. However, the
computation of gradients is not an easy task.

Finite difference methods have been known since the time of
Taylor and Newton. They are simple to implement, but they
suffer from subtractive cancellation [2, Sec. 6.4.2], and their [2]: Martins et al. (2021), Engineering Design Opti-

mizationcosts scale linearly with the number of design variables. More
recently, the complex-step method [5, 6] has been developed. [5]: Squire et al. (1998), Using complex variables to

estimate derivatives of real functions
[6]: Martins et al. (2003), The Complex-Step Derivative
Approximation

It avoids subtractive cancellation errors, and offers an 𝒪(ℎ2)-
acurrate derivative estimate at the same linear cost.1

1: In practice, the cost is often higher than finite dif-
ferences due to the overhead of performing complex
arithmetic.

Given that practical engineering optimization problems can ex-
ceed a thousand design variables, a more efficient method is
needed to accurately compute the derivatives. Originating in the
optimal control community, the adjoint method was later applied
to structural problems [7]. Pironneau [8] first introduced the [7]: Arora et al. (1976), Efficient Optimal Design of

Structures by Generalized Steepest Descent Programming

[8]: Pironneau (1973), On Optimum Profiles in Stokes
Flow

method to fluid dynamics, which was then extended by Jameson
[9] to perform asos using Euler equations. Further develop-

[9]: Jameson (1988), Aerodynamic Design via Control
Theory

ments in numerical methods and the adoption of automatic
differentiation (ad) techniques led to optimizations involving
more complex pdes, such as Reynolds-averaged Navier–Stokes
(rans) equations [10, 11], laminar-turbulence transition pre- [10]: Lyu et al. (2013), Automatic Differentiation Ad-

joint of the Reynolds-Averaged Navier–Stokes Equations
with a Turbulence Model
[11]: Lyu et al. (2014), Aerodynamic Design Optimiza-
tion Studies of a Blended-Wing-Body Aircraft

diction [12], and time-spectral solver for periodic wakes [13].

[12]: Shi et al. (2020), Natural Laminar-Flow Airfoil
Optimization Design Using a Discrete Adjoint Approach

[13]: He et al. (2020), A Time-Spectral Adjoint Ap-
proach for Aerodynamic Shape Optimization Under Pe-
riodic Wakes

Buffet analysis was added by Kenway and Martins [14], and

[14]: Kenway et al. (2017), Buffet-Onset Constraint
Formulation for Aerodynamic Shape Optimization

cavitation constraint by Garg et al. [15]. See [16] for a com-

[15]: Garg et al. (2015), High-fidelity Hydrodynamic
Shape Optimization of a 3-D Hydrofoil

[16]: Kenway et al. (2019), Effective Adjoint Approaches
for Computational Fluid Dynamics

prehensive review of adjoint methods in computational fluid
dynamics (cfd).

1.1.3 Multidisciplinary design optimization

Aerospace systems are inherently multidisciplinary, which man-
ifests itself in two ways. Take wing design for example, which

5

requires consideration of both aerodynamics and structures. First,
the two disciplines are coupled, meaning that they cannot be
analyzed in isolation. The aerodynamic forces on the wing will
result in pressure loads for the wing structure, causing it to de-
flect in response. This displacement will naturally cause the wing
to alter its shape, resulting in a different set of aerodynamic loads.
Therefore, the true aerodynamic and structural performance of
the wing must be computed in a coupled fashion, considering
both disciplines simultaneously. This multidisciplinary analysis
(mda) procedure is discussed in more detail in section 2.3. Sec-
ond, the performance of the wing must take both disciplines
into account. Rather than performing drag minimization, it is
more relevant to consider multidisciplinary metrics such as the
fuel burn, which includes the structural mass. That way, the
tradeoff between drag minimization and weight minimization
can be exploited in a multidisciplinary fashion.

Haftka [17] first considered both aerodynamics and structures in [17]: Haftka (1977), Optimization of Flexible Wing
Structures Subject to Strength and Induced Drag Con-
straints

gradient-based optimization of a fighter aircraft wing. However,
the analysis was not coupled—the structural displacements had
no impact on the aerodynamic coefficients, and the problem
was formulated as weight minimization with an induced drag
constraint.

Fully considering the coupled aerostructural system required
further mathematical and algorithmic developments. For effi-
cient gradient computation of a coupled system, Sobieszczanski–
Sobieski [18] developed the coupled direct method. This was [18]: Sobieszczanski–Sobieski (1990), Sensitivity of

Complex, Internally Coupled Systemssoon followed-up with the coupled adjoint method by Martins,
Alonso, and Reuther [19], which provided the basis for the gra- [19]: Martins et al. (2005), A Coupled-Adjoint Sensi-

tivity Analysis Method for High-Fidelity Aero-Structural
Design

dient computations used in this work. This approach was first
demonstrated in an aerostructural optimization of a supersonic
business jet [20] involving 97 design variables. [20]: Martins et al. (2004), High-Fidelity Aerostructural

Design Optimization of a Supersonic Business Jet

Since then, the optimization problem has been expanded greatly.
Kenway, Kennedy, and Martins [21]

[21]: Kenway et al. (2014), Scalable Parallel Approach
for High-Fidelity Steady-State Aeroelastic Analysis and
Adjoint Derivative Computations

made several algorithmic
and implementation improvements to the coupled adjoint ap-

6

proach to make it scalable, including using ad to compute Jaco-
bians more accurately, improved mesh deformation, and novel
numerical algorithms for the solution of the aerostructural sys-
tem and adjoint. The framework, called Mdo of Aircraft Con-
figurations with High-fidelity (mach), was demonstrated on a
transport aircraft optimization involving 472 design variables,
analyzed over five cruise, two maneuver, and one stability flight
conditions. Similar coupled adjoint capabilities were developed
by others [22]. The coupled adjoint approach, sometimes called [22]: Zhang et al. (2016), High-fidelity aerostructural

optimization with integrated geometry parameterization
and mesh movement

the flexible adjoint by aerodynamicists, has shown significant
benefits compared to the rigid adjoint [23, 24]. [23]: Olivanti et al. (2021), On the Benefits of Engaging

Coupled-Adjoint to Perform High-Fidelity Multipoint
Aircraft Shape Optimization
[24]: Carini et al. (2021), Towards industrial aero-
structural aircraft optimization via coupled-adjoint
derivatives

Within mach, cfd analysis was extended to solving the rans
equations shortly after [25, 26, 27]. Additional technologies were

[25]: Kenway et al. (2014), Aerostructural Optimization
of the Common Research Model Configuration
[26]: Kenway et al. (2015), High-fidelity aerostructural
optimization considering buffet onset
[27]: Brooks et al. (2018), Benchmark Aerostructural
Models for the Study of Transonic Aircraft Wings

analyzed and optimized, such as tow-steered composites [28,
29], morphing trailing edges [30, 31], boundary-layer ingestion

[28]: Brooks et al. (2019), High-fidelity Aerostructural
Optimization of Tow-steered Composite Wings
[29]: Brooks et al. (2020), Aerostructural Trade-offs for
Tow-steered Composite Wings

[30]: Burdette et al. (2018), Design of a Transonic Wing
with an Adaptive Morphing Trailing Edge via Aerostruc-
tural Optimization
[31]: Burdette et al. (2019), Impact of Morphing Trail-
ing Edge on Mission Performance for the Common Re-
search Model

(bli) [32].

[32]: Yildirim et al. (2022), Boundary Layer Ingestion
Benefit for the STARC-ABL Concept

Further developments also occurred on the mathematical side.
Martins and Lambe [33] performed a comprehensive survey

[33]: Martins et al. (2013), Multidisciplinary Design
Optimization: A Survey of Architectures

of mdo architectures, and Tedford and Martins [34] bench-

[34]: Tedford et al. (2010), Benchmarking Multidisci-
plinary Design Optimization Algorithms

marked several architectures on mdo problems. The authors
concluded that while simultaneous analysis and design (sand),
or full-space approaches can be efficient, they are less robust
compared to reduced-space approaches such as multidisciplinary
feasible (mdf). The efficiency of the mdf approach may also im-
prove as the number of state or coupling variables is increased.

Later, Martins and Hwang [35] were able to unify a number

[35]: Martins et al. (2013), Review and Unification of
Methods for Computing Derivatives of Multidisciplinary
Computational Models

of different methods for computing derivatives under a single
mathematical framework called modular analysis and unified
derivatives (maud). The complex-step method, ad, adjoint, and
coupled adjoint methods were all unified into a single equation
called the unified derivatives equation (ude). This was later in-
corporated into the OpenMDAO framework [36] developed [36]: Gray et al. (2019), OpenMDAO: An open-source

framework for multidisciplinary design, analysis, and
optimization

at nasa Glenn Research Center, and has been widely adopted
in academia and industry for mdo. Mphys is a modular multi-

7

physics simulation package built on top of OpenMDAO, pro-
viding unified interfaces for various multiphysics solvers such
that their couplings are handled automatically within OpenM-
DAO. It has been used in a number of applications [37, 38,
39]. [37]: Anibal et al. (2022), Aerodynamic shape optimiza-

tion of an electric aircraft motor surface heat exchanger
with conjugate heat transfer constraint
[38]: Yildirim et al. (2021), Coupled Aeropropulsive
Design Optimization of a Podded Electric Propulsor
[39]: Jacobson et al. (2022), Flutter-Constrained Op-
timization with the Linearized Frequency-Domain Ap-
proach

There have also been major developments in Europe. Compared
to research in North America, the focus has generally been on col-
laborative and distributed mdo architectures, mirroring the exist-
ing academic and industry approaches. Gemseo [40], developed

[40]: Gallard et al. (2018), GEMS: A Python Library for
Automation of Multidisciplinary Design Optimization
Process Generation

at IRT Saint Exupéry, is an mdo framework similar to Open-
MDAO, but with an emphasis on bi-level and distributed mdo
architectures. The Multidisciplinary ADjoint-based Enablers
for LargE-scale Industrial desigN in aEronautics (madeleine)
project [41], funded by the European Union, is a collaboration [41]: Meheut (2021), Multidisciplinary Adjoint-based

Optimizations in the MADELEINE Project: Overview
and Main Results

between 15 partners in order to develop high-fidelity adjoint-
based mdo capabilities and increase the technology readiness
level (trl).

1.2 Low and mixed-fidelity mdo

A large number of lower-fidelity mdo applications have also
been developed, typically targeting the conceptual design stage.
While the fidelity of the models may be lower, they offer reduced
computational costs that enable the consideration of additional
disciplines and load cases.

It is worth pointing out here that the definition of high and low-
fidelity models have changed over the years, and there are no
agreed-upon definitions. A decade or two ago, Euler simulations
were considered as high-fidelity [20, 42]

[20]: Martins et al. (2004), High-Fidelity Aerostruc-
tural Design Optimization of a Supersonic Business Jet
[42]: Kenway et al. (2014), Multipoint High-Fidelity
Aerostructural Optimization of a Transport Aircraft Con-
figuration

, but now rans cfd is
typically considered [43]

[43]: Bravo-Mosquera et al. (2022), Unconventional
aircraft for civil aviation: A review of concepts and design
methodologies

.

Many low-fidelity mdo applications leverage OpenMDAO to
couple a large number of disciplines, including FAST-OAD [44]

[44]: David et al. (2021), From FAST to FAST-OAD:
An open source framework for rapid Overall Aircraft
Design

,
wisdem for wind turbine design, and OpenConcept [45, 46]

[45]: Brelje et al. (2018), Development of a Conceptual
Design Model for Aircraft Electric Propulsion with Effi-
cient Gradients
[46]: Adler et al. (2022), Efficient Aerostructural Wing
Optimization Considering Mission Analysis,

8

which can optionally use OpenAerostruct [47] to perform low- [47]: Jasa et al. (2018), Open-source coupled aerostruc-
tural optimization using Pythonfidelity aerostructural optimizations using vortex lattice method

(vlm) and a structural beam model. Other examples include
Faber [48] developed at the University of Toronto, OpenAD [48]: Chau et al. (2022), Aerodynamic Design Opti-

mization of a Transonic Strut-Braced-Wing Regional
Aircraft

from German Aerospace Center (dlr) [49], and Stanford Uni-

[49]: Wöhler et al. (2020), Preliminary aircraft design
within a multidisciplinary and multifidelity design envi-
ronment

versity Aerospace Vehicle Environment (suave) [50] developed

[50]: MacDonald et al. (2017), SUAVE: An Open-
Source Environment Enabling Multi-Fidelity Vehicle Op-
timization

at the Stanford University.2

2: It is a mixed-fidelity tool that is capable of also
using higher-fidelity analyses when directed.

Proteus [51], a low-fidelity aeroelastic optimization framework

[51]: Werter et al. (2016), A novel dynamic aeroelastic
framework for aeroelastic tailoring and structural opti-
misation

was used to perform optimizations involving hundreds of gust
load cases [52]. There are also a number of mdo tools focused

[52]: Wang et al. (2022), An aeroelastic optimisation
framework for manufacturable variable stiffness compos-
ite wings including critical gust loads

on dynamic aeroelastic effects such as UM/NAST [53]. Due to

[53]: Su et al. (2010), Nonlinear Aeroelasticity of a Very
Flexible Blended-Wing-Body Aircraft

the high cost of predicting flutter, mixed-fidelity optimization
approaches have been developed. Steady-state aerostructural
solutions and performance metrics are computed using high-
fidelity tools, while the flutter constraint itself is computed using
lower-fidelity models [54].

[54]: Jonsson et al. (2022), High-Fidelity Gradient-
Based Wing Structural Optimization Including a Geo-
metrically Nonlinear Flutter Constraint

The agile project [55] is an European Union-funded project

[55]: Ciampa et al. (2020), AGILE Paradigm: The next
generation collaborative MDO for the development of
aeronautical systems

focused on distributed mdo in aircraft design, using tools such
as Remote Component Environment (rce) [56] developed at

[56]: Boden et al. (2021), RCE: An Integration Envi-
ronment for Engineering and Science

dlr to perform optimizations where different disciplines are
analyzed on different high-performance computing (hpc) sys-
tems [57]. Lower-fidelity tools are typically considered, but with [57]: Boden et al. (2019), Distributed Multidisciplinary

Optimization and Collaborative Process Development
Using RCE

many more disciplines incorporated into the mdo problem. For
example, Bussemaker et al. [58] connected mdo with require- [58]: Bussemaker et al. (2022), Collaborative Design

of a Business Jet Family Using the AGILE 4.0 MBSE
Environment

ments engineering and architecture design in the context of
model-based systems engineering (mbse). Within the optimiza-
tion problem itself, disciplines such as onboard systems, high-lift
configuration, and mission were considered. Mandorino et al.
[59] performed optimizations including a more detailed cost [59]: Mandorino et al. (2022), Regional jet retrofitting

design from stakeholders need and system requirements to
MDAO workflow formulation

model, which considered—among other factors—the landing
fees at Frankfurt airport.

See the review by Bravo-Mosquera, Catalano, and Zingg [43] [43]: Bravo-Mosquera et al. (2022), Unconventional
aircraft for civil aviation: A review of concepts and design
methodologies

for a more comprehensive review of mdo frameworks in aircraft
design.

9

1.3 Improvements in robustness and

efficiency

Naturally, the field of mdo has been expanding to tackle more
complex problems. This manifests itself in a few ways. Larger
optimization problems are considered, both in terms of the num-
ber of design variables, and in terms of the number of load cases
and constraints being considered. For example, Brooks, Martins,
and Kennedy [28] performed a large-scale aerostructural opti- [28]: Brooks et al. (2019), High-fidelity Aerostructural

Optimization of Tow-steered Composite Wingsmization of the undeflected Common Research Model (uCRM)
benchmark considering tow-steered composites, which included
over 1500 design variables and 1300 constraints. The fidelity
of the analyses are increased, including some unsteady prob-
lems [60, 61]. The number of disciplines has also been expanded, [60]: He et al. (2019), Aerodynamic Shape Optimiza-

tion with Time Spectral Flutter Adjoint
[61]: Apponsah et al. (2020), Aerodynamic shape opti-
mization for unsteady flows: Some benchmark problems

for example by including thermal effects in aerothermoelastic
optimizations [62, 63].

[62]: Guo et al. (2021), Aero-structural optimization
of supersonic wing under thermal environment using
adjoint-based optimization algorithm
[63]: Halim et al. (2022), Aerothermoelastic Analysis
and Optimization of Stiffened Thin-Walled Structures

However, this effort exposes two fundamental issues with such
approaches. With a more complex optimization problem and
additional nonlinearities, its convergence rate will be further
impeded, leading to suboptimal results. The introduction of
higher-fidelity analyses will further increase the computational
cost of such optimizations, which may not be tractable at early
stages of design. These two points will be expanded in the fol-
lowing sections.

1.3.1 Robustness and optimization convergence

Aerodynamic and aerostructural optimizations are difficult to
converge. To illustrate this further, we compiled some published
aerodynamic shape optimization (aso) problems from the Amer-
ican Institute of Aeronautics and Astronautics (aiaa) Aerody-
namic Design Optimization Discussion Group (adodg) bench-
marks, which are listed in table 1.1. In order to ensure the results

10

Table 1.1: Optimization convergence achieved for some published adodg cases.

Case 𝑛𝑥 𝑛con Major Iterations 𝜏fea 𝜏opt − log10(𝜏opt/𝜏
0
opt) Ref

1 24 — 38 — 4.0 × 10−2 0.4 [64]
2 17 3 160 2.0 × 10−10 6.5 × 10−6 2.1 [65]
3 11 1 40 1.0 × 10−6 1.1 × 10−6 2.4 [64]
3 10 1 37 1.0 × 10−12 2.0 × 10−8 4.0 [65]
4.1 150 2 35 — 1.1 × 10−4 0.8 [64]
4.1 769 753 263 — 7.0 × 10−5 2.0 [66]
5.1 216 753 113 — 2.3 × 10−5 1.3 [14]

are comparable, we only include those that used snopt, a pop-
ular gradient-based optimizer. Properties of the optimization
problem such as the number of design variables 𝑛𝑥, the number
of constraints 𝑛con, achieved feasibility and optimality tolerances
(𝜏fea and 𝜏opt respectively), are listed. These metrics are formally
defined in section 2.5.7.1, but they quantify how far a solution
is from the true mathematical optimum. The last column is the
order of magnitude reduction in optimality compared to the
initial design.

While convergence is well-understood for cfd analyses, the same
is not true for optimizations. There are no established metrics
for determining acceptable levels of convergence for optimiza-
tions. Nevertheless, most of these results are not well-converged,
including some with less than one order reduction in the op-
timality tolerance, despite often taking hundreds of iterations.
This can lead to suboptimal results being presented as optimal,
and multiple local minima appearing when the problem is in
fact unimodal. For example, this effect may have affected the
results presented in [67]. [67]: Masters et al. (2017), Influence of Shape Parame-

terization on a Benchmark Aerodynamic Optimization
ProblemFor example, Reist et al. [68] compared two different gradient-
[68]: Reist et al. (2020), Cross Validation of Aerody-
namic Shape Optimization Methodologies for Aircraft
Wing-Body Optimization

based aso frameworks in order to compare optimal designs.
However, the relative reduction of optimality was only between
1–2 orders of magnitude, which may partially explain the dif-
ferences in the final solutions. Masters et al. [69] compared a [69]: Masters et al. (2017), Geometric Comparison of

Aerofoil Shape Parameterization Methodsnumber of geometric parameterizations for airfoil optimizations
under inviscid flow conditions. They concluded that two dis-
tinct optima existed, but the relative optimality reduction was

11

once again between 1–2 orders of magnitude, which may be
insufficient to distinguish between multiple local minima.

While simply obtaining a superior feasible design may be suffi-
cient in an engineering setting, a deeper level of convergence is
important. Without arriving at the numerical optimum, errors
are introduced in both the design variables and the objective. Wu,
Mader, and Martins [70] presented some aerodynamic optimiza- [70]: Wu et al. (2022), Sensitivity-based Geometric Pa-

rameterization for Aerodynamic Shape Optimizationtions with slow-changing design variables, and premature ter-
mination of the optimization would lead to drastically-different
designs. Brooks, Kenway, and Martins [27] and Brooks, Martins,
and Kennedy [28] also presented aerostructural optimizations [27]: Brooks et al. (2018), Benchmark Aerostructural

Models for the Study of Transonic Aircraft Wings
[28]: Brooks et al. (2019), High-fidelity Aerostructural
Optimization of Tow-steered Composite Wings

for the uCRM, where the objective function is still decreasing
noticeably at the end of the optimization.

There are a number of reasons that can lead to poor optimiza-
tion convergence. The most obvious case is simply setting loose
termination criteria such that the optimization terminates prema-
turely, in order to reduce computational cost. If the optimization
cannot proceed further, then the function values and gradients
are likely inaccurate. The function values can be improved by
allowing the solver to converge more tightly, and discipline-
specific solvers can be effective at converging large nonlinear
systems. The derivatives, on the other hand, can be difficult to
compute accurately. The use of finite differences, simplifications
such as frozen-turbulence, and poor convergence of the adjoint
linear system can all degrade the accuracy significantly.3 Kenway, 3: It is also common to have bugs in the gradient

computations.Kennedy, and Martins [21] also cited the condition number
[21]: Kenway et al. (2014), Scalable Parallel Approach
for High-Fidelity Steady-State Aeroelastic Analysis and
Adjoint Derivative Computations

of the structural Jacobian as the reason for reduced accuracy
compared to aerodynamic results.

By carefully combining the adjoint method with ad techniques,
it is possible to compute accurate derivatives. For example, Ken-
way et al. [16] demonstrated 11 digits of accuracy in rans cfd [16]: Kenway et al. (2019), Effective Adjoint Approaches

for Computational Fluid Dynamicsusing ADflow. However, even with accurate gradients, optimiza-
tions can be difficult to converge. A large amount of time is often
spent on setup and tuning optimization parameters. In particular,

12

Optimization

Initial
design

Formulate
optimization

problem

Evaluate
objective and
constraints

Optimality
achieved?

Update
design

variables

Is the design
good? Final designTune optimization parameters or

reformulate problem

Yes

No

YesNo

Figure 1.4: A more realistic optimization process, where human intervention is needed to modify the optimization problem. Adapted from Martins and
Ning [2].

design variable scaling can significantly affect the performance
of the optimization [71, 2]. For example, Bons [72] performed [71]: Gill et al. (1981), Practical Optimization

[2]: Martins et al. (2021), Engineering Design Opti-
mization
[72]: Bons (2020), High-fidelity Wing Design Explo-
ration with Gradient-based Optimization

several large-scale aerostructural optimizations, where the scaling
factors on various geometric design variables were hand-tuned,
requiring considerable time. When starting an optimization,
there is no guarantee that it will converge successfully, and the
manual interventions necessary are not only time-consuming,
but require expertise based on past experience. Figure 1.4 shows
a flow chart of this process in a practical setting, which has an
outer loop compared to figure 1.3.

Improvements in two aspects are necessary to enable adoption of
mdo in an industrial setting. First, optimizations need to achieve
a deeper level of convergence than is typically shown. Second,
optimizations need to be robust, converging to the numerical
optimum without requiring manual tuning or relying on past
experience.

13

1.3.2 Computational cost

Traditional aircraft design methods typically progress along two
separate axes, considering the number of disciplines and the level
of fidelity for each discipline. We can show this on a schematic
in figure 1.5. On one hand, single disciplines can be analyzed
with a large number of fidelities, from analytic models all the
way to unsteady simulations requiring thousands of processors.
On the other hand, overall aircraft design (oad) analyzes a large
number of disciplines but typically using low-fidelity models.

panel codes Euler RANS LES

Beam and
panel codes

Overall
Aircraft Design

High-fidelity
aerostructural optimization

Low Fidelity High

Few

Disciplines

Many

Figure 1.5: Schematic showing typical scope of mdo
problems.

The goal of high-fidelity mdo has always been to progress along
both axes at once, introducing high-fidelity models to a large
number of disciplines. However, as mentioned in section 1.1,
such approaches are becoming prohibitively expensive. For exam-
ple, Brooks, Kenway, and Martins [27] performed a large-scale [27]: Brooks et al. (2018), Benchmark Aerostructural

Models for the Study of Transonic Aircraft Wingsaerostructural optimization with over a thousand design variables
and ten flight conditions, which required about 50 000 core h to
complete. With the move towards higher aspect ratio (ar) wing
design, scale-resolving simulations [73] and dynamic aeroelastic [73]: Slotnick et al. (2014), CFD Vision 2030 Study:

A Path to Revolutionary Computational Aerosciencesphenomena need to be considered. Accordingly, the cost is likely
to increase dramatically in the years to come. This is particularly
important as mdo is most effectively employed during the con-
ceptual design phase, where rapid turnaround time is crucial for
the design team.

Multifidelity methods have emerged as a way to tackle this chal-

14

lenge. Low-fidelity models can arise in a number of ways, such
as reduced solver convergence, coarsened grid, and simplified
physics. By leveraging these models, significant cost savings can
be realized.

However, existing multifidelity methods are limited to simplified
optimization problems and cannot be applied directly to the
mdo problems of interest. They cannot account for the mul-
tidisciplinary nature of the problem, scale to a large number
of design variables and fidelities, or directly handle nonlinear
constraints.

1.4 Dissertation objectives

In the previous section, we discussed a few key challenges to
performing large-scale mdo for aircraft design. The objectives of
this dissertation are now listed below.

1. Improve the convergence rate of gradient-based optimiza-
tions and automatically scale design variables, in order
to ensure that optimizations converge more quickly and
robustly to the optimum.

2. Consider solver convergence as a continuously-varying
fidelity, and adaptively control the convergence error dur-
ing gradient-based asos.

3. Incorporate multiple fidelities in a gradient-based opti-
mization framework suitable for large-scale mdo, and
automatically determine the appropriate fidelity to be
used.

4. Demonstrate the appropriate fidelity mdo framework on
an industrially-relevant aircraft design problem.

15

1.5 Dissertation outline

I start with background information in chapter 2, which con-
tains some useful mathematical definitions. An overview of mdo
follows, starting from numerical optimization and building up
the mathematics necessary for multidisciplinary problems. I
then introduce the computational framework—mach—which
is used throughout this work.

In chapter 3, I discuss a fundamental issue with the geometric
parameterization present in mach. I develop a sensitivity-based
parameterization which addresses the shortcomings, and auto-
matically compute appropriate design variable scaling. I then
demonstrate this approach on two aso problems.

Next, I introduce adaptive convergence error control in chap-
ter 4. I derive and verify the adjoint-based convergence error
prediction, and develop an adaptation algorithm to control the
error during optimization. I then demonstrate the approach on
two aso problems.

In chapter 5, I develop the appropriate fidelity mdo framework
where multiple fidelities are used to accelerate convergence of the
optimization. I extend the framework in chapter 6, introducing
an adjoint-based method for capturing coupled errors that arise
in multidisciplinary problems. The approach is demonstrated in
chapter 7 on two aerostructural optimizations.

Finally in chapter 8, I discuss the conclusions and contributions
of this dissertation, and areas of future work.

16

Chapter 2

Background

2.1 Numerical optimization . . . 16

2.2 Pde-constrained optimiza-

tion 20

2.3 mdo 23

2.4 Analysis fidelities and sources

of error 26

2.5 Computational framework . 28

In this chapter, we go over some topics which are foundational
in understanding the rest of the dissertation. We start with nu-
merical optimization, then introduce gradient-based methods
in the context of single and multidisciplinary problems. Finally,
we introduce the computational framework used in this disser-
tation.

2.1 Numerical optimization

We will consider general nonlinear constrained optimization
problems of the form:

minimize 𝑓(𝒙)

with respect to 𝒙

subject to 𝑐𝑖(𝒙) = 0 𝑖 ∈ ℰ

𝑐𝑖(𝒙) ≤ 0 𝑖 ∈ ℐ

𝒙𝑙 ≤ 𝒙 ≤ 𝒙𝑢,

(2.1)

where 𝒙 are the design variables, 𝑓(𝒙) is a scalar objective func-
tion, 𝒄 is a vector of nonlinear constraints, and 𝒙𝑙 and 𝒙𝑢 are
lower and upper bounds for the design variables. We follow the
notations used by Nocedal and Wright [74], combining the set [74]: Nocedal et al. (2006), Numerical Optimization

of equality constraints ℰ and inequality constraints ℐ rather than
considering them separately. When inequality constraints are
present, the concepts of a feasible point and active set are useful
to consider.

17

Definition 2.1.1 A point 𝒙 is deemed to be feasible if it satisfies all
constraints. That is,

𝑐𝑖(𝒙) = 0, ∀𝑖 ∈ ℰ (2.2)

𝑐𝑖(𝒙) ≤ 0, ∀𝑖 ∈ ℐ (2.3)

Definition 2.1.2 The active set 𝒜(𝒙) at any feasible point𝒙 consists
of the equality constraint indices 𝑖 ∈ ℰ, and the inequality constraint
indices for which 𝑐𝑖(𝒙) = 0. That is,

𝒜 = ℰ ∪ {𝑖 ∈ ℐ|𝑐𝑖(𝒙) = 0} (2.4)

We also introduce the concept of the Lagrangian function, which
is useful in many aspects of constrained optimization. For the
sake of simplicity, we do not introduce slack variables, but instead
limit the consideration of inequality constraints to those within
the active set 𝒜 defined in definition 2.1.2.

Definition 2.1.3 The Lagrangian function of equation 2.1 is

ℒ(𝒙, 𝝀) = 𝑓(𝒙) + ∑
𝑖∈ℰ∪ℐ
𝜆𝑖𝑐𝑖(𝒙) (2.5)

where 𝝀 are the Lagrange multipliers for both the equality and
inequality constraints.

In numerical optimization, the optimum of equation 2.1 is given
by the solution of a set of equations collectively known as the
Karush–Kuhn–Tucker (kkt) conditions. They can be derived
by differentiating the Lagrangian and setting the derivatives to
zero. However, there are some nuances regarding the derivation,
therefore we direct readers to references such as [74, 2]. [74]: Nocedal et al. (2006), Numerical Optimization

[2]: Martins et al. (2021), Engineering Design Opti-
mization

Definition 2.1.4 A point 𝒙∗ is a solution of equation 2.1 if it

18

satisfies the following conditions:

∇𝑓(𝒙∗) + ∑
𝑖∈𝒜(𝒙∗)
𝜆𝑖∇𝑐𝑖(𝒙

∗) = 0 (2.6)

𝑐𝑖(𝒙
∗) = 0, ∀𝑖 ∈ ℰ (2.7)

𝑐𝑖(𝒙
∗) ≤ 0, ∀𝑖 ∈ ℐ (2.8)

𝜆∗𝑖 ≥ 0, ∀𝑖 ∈ ℐ (2.9)

𝜆∗𝑖 𝑐𝑖(𝒙
∗) = 0, ∀𝑖 (2.10)

In this work, we will refer to equation 2.6 as the first-order
condition, which is analogous to the condition ∇𝑓 = 0 in the
unconstrained case. Equations 2.7 and 2.8 are simply restating
the constraints, and we refer to those as zeroth-order conditions
due to the lack of gradients.1 Equation 2.9 requires the Lagrange 1: Most texts refer to all the kkt conditions as first-

order conditions, since they are derived by taking the
first derivative of the Lagrangian and setting it to zero.
However, here we emphasize that they are zeroth order
with respect to the objective and constraint functions.

multipliers corresponding to inequality constraints to be nonneg-
ative. Finally, equation 2.10 is referred to as the complimentarity
constraint, and dictates that either the constraint 𝑖 is active, or
𝜆∗𝑖 = 0.

It is important to note here that while necessary, these are not suf-
ficient conditions for 𝒙∗ to be a local minimum. A second-order
condition exists, analogous to requiring the Hessian of the objec-
tive to be symmetric positive-definite (spd) in the unconstrained
case. However, we omit such discussions here as gradient-based
optimizers ensure the satisfaction of this condition through a
combination of line search safeguards and inherent properties
of the approximate Hessian updates. Similarly, equations 2.9
and 2.10 are also satisfied by the design of the optimization
algorithm and typically not considered explicitly.

The Lagrange multipliers 𝝀 introduced in definition 2.1.3 have
physical meaning. At the optimum, the Lagrange multipliers
𝝀∗ provide the sensitivity of the optimum with respect to each
constraint [2, Sec. 5.3.3]: [2]: Martins et al. (2021), Engineering Design Opti-

mization

𝜆∗𝑖 = −
d𝑓
d𝑐𝑖

(2.11)

19

If a Lagrange multiplier is large, a small change in the correspond-
ing constraint will cause a significant change in the optimum.
Conversely, if a Lagrange multiplier is zero, then the constraint
has no effect on the optimum and is therefore inactive by defini-
tion.

Gradient-based optimizers are not guaranteed to converge to
the global optimum, and snopt is no exception. Nevertheless, In reality, very few gradient-free optimizers are

globally-convergent, with the notable exception of DI-
viding RECTangles (direct) [75]. Most gradient-free
optimizers fall under the classification of metaheuris-
tic optimizers, and they suffer from some notable is-
sues [76] such that certain journals are placing new
requirements on publication [77]

a number of studies have investigated the possibility of multi-
modality in the context of aso. Chernukhin and Zingg [78]

[78]: Chernukhin et al. (2013), Multimodality and
Global Optimization in Aerodynamic Design

compared a gradient-based multistart (gbms) algorithm with a
gradient-free approach on a suite of 2D and 3D aso problems,
and concluded that multimodality is rare in most cases, especially
with limited geometric dofs. In such cases, the gbms strategy
was the most efficient at finding the global optimum. Similar
findings were reported by Lyu, Kenway, and Martins [79] on [79]: Lyu et al. (2015), Aerodynamic Shape Optimiza-

tion Investigations of the Common Research Model Wing
Benchmark

the Common Research Model (crm) benchmark problem.

Certain asos do produce multiple local minima [80], and this [80]: Skinner et al. (2018), State-of-the-art in aerody-
namic shape optimisation methodswas extensively investigated by Bons et al. [81], who concluded
[81]: Bons et al. (2019), Multimodality in Aerodynamic
Wing Design Optimizationthat most of the solutions were due to a lack of either physics

in the numerical models or certain constraints. In particular,
Euler solutions proved to be multimodal, but the introduction
of viscous effects removed many of these local minima. This
conclusion supports earlier results by Poole, Allen, and Rendall
[82] who reported a number of local minima when using Euler [82]: Poole et al. (2018), Global Optimization of Wing

Aerodynamic Optimization Case Exhibiting Multimodal-
ity

solutions. It is also well-known that Euler solutions are not
guaranteed to be unique [83, 84], but this does not appear to [83]: Jameson et al. (2012), Further Studies of Airfoils

Supporting Non-Unique Solutions in Transonic Flow
[84]: Destarac et al. (2018), Example of a Pitfall in
Aerodynamic Shape Optimization

be a factor in these results.

Using rans, Reist et al. [68] compared two different parameteri-
[68]: Reist et al. (2020), Cross Validation of Aerody-
namic Shape Optimization Methodologies for Aircraft
Wing-Body Optimization

zations and two different optimizers on the same aso problem.
They used the same cfd solver for consistency, and found minor
differences in the solutions that are likely due to inherent differ-
ences in the underlying geometric parameterization. Streuber
and Zingg [85]

[85]: Streuber et al. (2021), Evaluating the Risk of Local
Optima in Aerodynamic Shape Optimizationperformed a comprehensive study of multimodal-

ity for several aso problems using gbms and a rans solver, and

20

found that the risk of multimodality is low when performing
detailed design with a good initial geometry. For exploratory
studies, the risk of multimodality increases substantially. Mar-
tins [1] instead hypothesizes that the local minima found are [1]: Martins (2022), Aerodynamic Design Optimization:

Challenges and Perspectives“spurious”, and are numerical artifacts rather than true local min-
ima. Bons and Martins [86] further introduced structures into [86]: Bons et al. (2020), Aerostructural Design Explo-

ration of a Wing in Transonic Flowthe analysis, and performed two aerostructural optimizations
starting from different baselines. The authors concluded that the
problem investigated was unimodal, and that the discrepancies
in the structural design variables are due to poor optimization
convergence. Some further discussions on this topic are provided
in appendix C.3.

2.2 Pde-constrained optimization

With a reliable optimizer at our disposal, the logical next step
would be to perform optimizations involving complex simula-
tions such as cfd analyses. A common example would be aso,
where the external shape of an aerodynamic body is modified in
order to improve its performance.

In the general case, we define an analysis as a function with
inputs and outputs, i.e.,

ℐ = 𝑓(𝒙) (2.12)

with the design vector 𝒙 as inputs and the quantity of interest
(qoi) ℐ as the output.

In practice, the function is often implicit in nature, requiring
a complex iterative solver which solves a discrete partial differ-
ential equation (pde) such as a cfd solver. Therefore, it is easier
to discuss the implicit form, where the residual function 𝑹 is
converged by varying the state variables 𝒖 such that

𝑹(𝒖∗, 𝒙) = 0. (2.13)

21

Here the asterisk indicates that the quantity is converged. This is
called the primal system, and is typically a system of nonlinear
equations representing the discretized governing equations.

Once this is done, the function of interest ℐ (also known as a
functional) can be computed as an explicit function:

ℐ = 𝑓(𝒖∗, 𝒙). (2.14)

In an optimization setting, the functionals would naturally be
the objective and constraint functions.

There are two approaches to tackle an optimization involving
functions of this form. The first, called the full-space or one-
shot method, uses the optimizer to simultaneously solve the
optimization problem and equation 2.13, by setting both 𝒙
and 𝒖 as design variables, and letting 𝑹 as a set of nonlinear
equality constraints.2 It is analogous to the sand approach in 2: In some literatures, equation 2.13 is referred to as

the constraints.mdo architectures. The reduced-space method, on the other
hand, only lets the optimizer control the design variables𝒙, while
using an existing pde solver to converge the residual equations
at every iteration of the optimization. It is analogous to the
mdf approach, and an extended design structure matrix (xdsm)
diagram [87]

[87]: Lambe et al. (2012), Extensions to the Design
Structure Matrix for the Description of Multidisciplinary
Design, Analysis, and Optimization Processes

of the process is shown in figure 2.1. The xdsm
diagram is an extension of the design structure matrix commonly
used to depict the process and data flow in mdo.

x∗
0, 2 → 1 :

Optimizer
x , u

f ∗
f , c ,R,

and derivatives

1 :

Residual

Figure 2.1: The xdsm diagram for a single-discipline
optimization using the full-space approach.While attractive in principle, the full-space approach is still

less popular than the reduced-space approach for a number of
reasons [88]

[88]: Hicken et al. (2013), Comparison of Reduced- and
Full-space Algorithms for PDE-constrained Optimization. In the reduced-space approach, solution of the

governing equations is handled by a dedicated solver which may
be better fine-tuned for the task. In addition, it integrates well
with black-box functions, without having to expose internal
states of the solver to the optimizer in order to converge the
residual equations. We consider the reduced-space approach in
this work. Figure 2.2 shows an xdsm diagram of the reduced-
space approach.

x∗
0, 2 → 1 :

Optimizer
x

f ∗
f , c ,

and derivatives

1 :

Discipline

Figure 2.2: The xdsm diagram for a single-discipline
optimization using the reduced-space approach.

22

A variety of root-finding algorithms exist to tackle equation 2.13.
In cfd applications, pseudo-transient continuation techniques
are popular, using either explicit or implicit time integration
schemes such as Runge–Kutta (rk). Newton’s method3

3: Also known as the Newton–Raphson method

is also
popular for its quadratic convergence rate [2, Sec. 3.6]

[2]: Martins et al. (2021), Engineering Design Opti-
mization

, and the
resulting linear systems are often solved using the Krylov sub-
space method, resulting in the Newton–Krylov (nk) method [89]. [89]: Knoll et al. (2004), Jacobian-free Newton–Krylov

methods: a survey of approaches and applicationsHowever, nk only converges in the neighbourhood of the solu-
tion, and is therefore often employed as the terminal phase of a
hybrid convergence strategy involving an appropriate globaliza-
tion method.

While many methods exist for gradient computation, only the
adjoint method scales well with the number of inputs and is effi-
cient for implicit functions that are typically solved iteratively [2,
Sec. 6.7]. A comprehensive of adjoint methods, including its [2]: Martins et al. (2021), Engineering Design Opti-

mizationderivation and solution methods, can be found in [16]. This
[16]: Kenway et al. (2019), Effective Adjoint Approaches
for Computational Fluid Dynamicsapproach involves solving the eponymous adjoint equation

(𝜕𝑹
𝜕𝒖
)
T
𝝍 = (𝜕ℐ
𝜕𝒖
)
T

(2.15)

for the adjoint vector 𝝍.

This system is also known as the dual system, and in contrast to
the primal system above, is a linear system. The adjoint variables
𝝍 are also known as dual variables, again in contrast to the
primal variables 𝒖. This system is typically solved in a matrix-
free fashion using the Krylov method, and the partial derivatives
are formed using ad, called the ADjoint method [90]. However, [90]: Mader et al. (2008), ADjoint: An Approach for

the Rapid Development of Discrete Adjoint Solversfixed-point iterations are also popular [91]. There are important
[91]: Albring et al. (2016), Efficient aerodynamic design
using the discrete adjoint method in SU2mathematical theories governing the primal-dual consistency of

the solution scheme for the two systems [92, 93]. [92]: Peter et al. (2010), Numerical Sensitivity Analysis
for Aerodynamic Optimization: A Survey of Approaches
[93]: Gomes et al. (2022), Pitfalls of Discrete Adjoint
Fixed-Points Based on Algorithmic Differentiation

Once solved, the adjoint vector can then be used to compute

23

the total derivative:

dℐ
d𝒙
= 𝜕ℐ
𝜕𝒙
− 𝝍T𝜕𝑹
𝜕𝒙
. (2.16)

The key benefit of this approach is that the design variables do
not appear in equation 2.15, which is solved once per ℐ. The
overall cost is proportional to the number of functions of interest,
independent of the size of the design variables.

Comment 2.2.1

It is by no means a coincidence that equations 2.6 and 2.16
share the same form. If we take the view of the one-shot
approach, then the residuals 𝑹 are equality constraints of the
optimization problem, with the corresponding Lagrangian as

ℒ = 𝑓(𝒙) + 𝝀T𝑹(𝒖, 𝒙) (2.17)

The corresponding kkt condition would be exactly the same
as equation 2.6, with the adjoint vector 𝝍 as the Lagrange
multipliers. The difference in the sign is due to our defini-
tion of the adjoint vector, so perhaps it is more accurate to
state that the adjoint vector is the negative of the Lagrange
multipliers. There are some who use a different convention,
where the adjoint vector is defined as the negative of what is
defined here [94].

A more realistic xdsm diagram is shown in figure 2.3 for an
aso problem. It contains a number of additional components to
enable necessary tasks such as the volume mesh warping.

2.3 Multidisciplinary design optimization

So far, we have discussed single-disciplinary problems, i.e., prob-
lems that consider a pde solver arising from a single discipline.

24

Initial design

Optimal design
1, 7 → 2 :

Optimizer

FFD

displacements

Aerodynamic

variables

2: Geometry

parametrization

Surface

coordinates

Geometric constraints

& derivatives

3: Volume

mesh warping

Volume

coordinates

4: Aerodynamic

solver
State variables Output quantities

5: Adjoint

solver

Derivatives of

output quantities

Objective, constraints,

and corresponding

derivatives

6: Objective

& constraints

Figure 2.3: An example xdsm diagram of an aso problem. In this case the process within mach is given, but the process is similar for other frameworks.

However, many engineering problems of practical interest in-
volve multiple disciplines that interact with each other. A com-
mon example is the aerostructural system,4 involving aerody- 4: Sometimes it is referred to as fluid-structure inter-

action (fsi).namics and structural mechanics.

While it is possible to consider a multidisciplinary system simply
as a larger pde with an expanded set of residuals, this is often not
done. Maintaining the individual disciplinary structure allows
us to reuse these single-discipline solvers in its entirety, and the
existing preconditioners can also be reused in some cases [21]. [21]: Kenway et al. (2014), Scalable Parallel Approach

for High-Fidelity Steady-State Aeroelastic Analysis and
Adjoint Derivative Computations

We use the term discipline here, but they can be more generally
called components [2, Sec. 13.2.1], for example in the context of [2]: Martins et al. (2021), Engineering Design Opti-

mizationOpenMDAO [36].
[36]: Gray et al. (2019), OpenMDAO: An open-source
framework for multidisciplinary design, analysis, and
optimizationWith the introduction of multiple disciplines, we need to com-

pute both the coupled solution (known as mda) as well as the
coupled derivatives. We will illustrate the problem using a model
with two disciplines. In order to keep the discussion general, we
have opted for a generic description based on past work on mdo
architectures [33]. [33]: Martins et al. (2013), Multidisciplinary Design

Optimization: A Survey of Architectures

First there are the governing equations for each discipline, writ-

25

ten in residual form

𝑹1(𝒙, 𝒖1, 𝒚2) = 0 (2.18)

𝑦1 = 𝒢1(𝒙, 𝒖1) (2.19)

𝑹2(𝒙, 𝒖2, 𝒚1) = 0 (2.20)

𝑦2 = 𝒢2(𝒙, 𝒖2) (2.21)

Here the subscript denotes the discipline a given variable belongs
to, 𝑹𝑖 are the residual equations, 𝒖𝑖 are the state variables, 𝒙 is
the design vector, and 𝒚 are the coupling variables.

These equations are coupled via 𝒚, and require an iterative so-
lution strategy. Two popular approaches are nonlinear block
Gauss–Seidel (nlbgs) (also known as fixed-point iterations),
and coupled Newton [2, Sec.13.2.5]. [2]: Martins et al. (2021), Engineering Design Opti-

mization

In a typical nlbgs iteration, we start with discipline 1, make an
initial guess on the coupling variables 𝑦2, and solve for the states
𝑢1 that would satisfy equation 2.18. Then, the coupling variables
from discipline 1 are computed using equation 2.19, yielding
𝑦1. This is passed along to discipline 2, where the states 𝑢2 are
solved, and the coupling variables 𝑦2 computed. These values
are then passed back to discipline 1, and the entire process is
repeated until the changes in the coupling variables are minimal,
at which point the coupled system is deemed to be converged.
Note that within each iteration, the state variables 𝑢𝑖 which are
solved only satisfy the governing equations for its own discipline,
and not the multidisciplinary system. With each nlbgs iteration,
the converged states will change due to the updated coupling
variables, eventually settling into a converged value. This process
is illustrated in figure 2.4.

y
(0)
1 , y

(0)
2

0, 3 → 1 :

Gauss–Seidel
y2

f1 y1
1 :

Discipline 1
y1

f2 y2
2 :

Discipline 2

Figure 2.4: An xdsm diagram of the nlbgs process.In reality, there is an additional step of mapping the coupling
variables from one discipline to another, but here we incorporate
that step as part of functions 𝒢𝑖 for simplicity. Furthermore, it
is common for each discipline to work with a subset of the over-
all design vector 𝑥. In their review paper, Martins and Lambe

26

[33]
[33]: Martins et al. (2013), Multidisciplinary Design
Optimization: A Survey of Architecturesmade the distinction between local and global design vec-

tors. However, for simplicity we do not make such distinctions
here.

Once the entire system is converged, the functional outputs can
then be computed. These are then combined into system-level
objective and constraints, and passed to the optimizer along with
their gradients.

The sensitivities can be computed using the coupled adjoint
method [19], the multidisciplinary extension of the adjoint [19]: Martins et al. (2005), A Coupled-Adjoint Sensi-

tivity Analysis Method for High-Fidelity Aero-Structural
Design

method above. In essence, equation 2.15 becomes

[[[[

[

𝜕𝑹1
𝜕𝒖1

𝜕𝑹1
𝜕𝒖2

𝜕𝑹2
𝜕𝒖1

𝜕𝑹2
𝜕𝒖2

]]]]

]

T

[
𝝍1
𝝍2
] = [
𝜕ℐ
𝜕𝒖1
𝜕ℐ
𝜕𝒖2
]
T

(2.22)

The corresponding total derivative equation is:

dℐ
d𝒙
= 𝜕ℐ
𝜕𝒙
− [𝝍T1 𝝍

T
2]
[[[[

[

𝜕𝑹1
𝜕𝒙
𝜕𝑹2
𝜕𝒙

]]]]

]

. (2.23)

2.4 Analysis fidelities and sources of error

In an engineering setting, the same analysis can often be per-
formed using several different tools varying in model fidelity.
Some tools are known to be more accurate but more computa-
tionally expensive, while others are cheap but inaccurate. Rela-
tively speaking, higher-fidelity tools have higher accuracy.

We define accuracy as the lack of systematic errors, where preci-
sion is the lack of random errors (often treated as noise). In the
field of uncertainty quantification, those are often referred to
as epistemic and aleatoric uncertainties, respectively. Figure 2.5
shows a schematic of these two effects. The concept of fidelity is

27

usually related to the systematic or epistemic errors due to the
inadequacy of the model, and other sources of error are discussed
in appendix C.2.

low precision, low accuracy low precision, high accuracy

high precision, low accuracy high precision, high accuracy Figure 2.5: Schematic showing the difference between
accuracy and precision.

Compared to the high-fidelity model, low-fidelity models can
contain a number of systematic errors [95] arising from sources [95]: Giselle Fernández-Godino et al. (2019), Issues in

Deciding Whether to Use Multifidelity Surrogatessuch as:

• Model error due to simplified physics
• Numerical error

– Discretization error
– Convergence error

• Simplified geometry or boundary conditions

In contrast to [96], we do not consider surrogate models as low- [96]: Peherstorfer et al. (2018), Survey of Multifidelity
Methods in Uncertainty Propagation, Inference, and Op-
timization

fidelity models, since they typically require a large set of training
data that are expensive to generate, and the cost of training
is often not considered. Instead, we require all fidelities to be
physics-based.

Out of these sources of error, convergence error is often treated
as a continuously-varying error in the field of variable fidelity

28

Initial design FFD points Aerodynamic mesh Structural mesh

1, 11 → 2 :

Optimizer

FFD

displacements

Aerodynamic

& structural variables

2: Geometry

parametrization

Aerodynamic

surface coordinates

Structural

coordinates

Geometric constraints

& derivatives

3: Volume

mesh warping

Aerodynamic

volume coordinates

4, 8 → 5 :

Aerostructural MDA

Structural

displacements

Aerostructural

state variables

Aerostructural

output quantities

5: Volume

mesh warping

Aerodynamic

volume coordinates

6: Aerodynamic

solver
Surface loads

Structural

displacements

7: Structural

solver

9: Adjoint

solver

Derivatives of

aerostructural

output quantities

Objective, constraints,

and corresponding

derivatives

10: Objective

& constraints

Figure 2.6: An xdsm diagram of the mach framework applied to a single-point aerostructural optimization.

optimization. This is explored in chapter 4 where the conver-
gence error is adapted during optimization. The rest of the errors
are typically discrete, and chapters 5 to 7 focus on the develop-
ment of the appropriate fidelity framework for managing these
fidelities during optimization.

2.5 Computational framework

We use the mach framework [21, 42]

[21]: Kenway et al. (2014), Scalable Parallel Approach
for High-Fidelity Steady-State Aeroelastic Analysis and
Adjoint Derivative Computations
[42]: Kenway et al. (2014), Multipoint High-Fidelity
Aerostructural Optimization of a Transport Aircraft Con-
figuration

to perform aerostructural
optimizations. It uses the mdf formulation of the optimization
problem and gradient-based optimizers to perform aerostruc-
tural optimizations. An xdsm diagram of the framework is given
in figure 2.6.

Some of the historical developments and capabilities of mach
have been given already in section 1.1.3. To date, mach has
been applied successfully to a wide range of problems. Asos have
been performed on aircraft [97, 98, 99, 100]

[97]: Secco et al. (2019), RANS-based Aerodynamic
Shape Optimization of a Strut-bracedWing with Overset
Meshes
[98]: Mangano et al. (2021), Multipoint Aerodynamic
Shape Optimization for Subsonic and Supersonic Regimes
[99]: Chauhan et al. (2021), RANS-Based Aerodynamic
Shape Optimization of a Wing Considering Propeller-
Wing Interaction
[100]: Seraj et al. (2022), Predicting the High-Angle-of-
Attack Characteristics of a Delta Wing at Low Speed

and wind turbine
applications [101, 102]

[101]: Dhert et al. (2017), Aerodynamic Shape Op-
timization of Wind Turbine Blades Using a Reynolds-
Averaged Navier–Stokes Model and an Adjoint Method
[102]: Madsen et al. (2019), Multipoint high-fidelity
CFD-based aerodynamic shape optimization of a 10 MW
wind turbine

. Similarly, aerostructural optimizations
have been performed for aircraft [103, 104, 105]

[103]: Bons et al. (2020), High-fidelity Aerostructural
Optimization Studies of the Aerion AS2 Supersonic Busi-
ness Jet
[104]: Brelje et al. (2021), Aerostructural Wing Opti-
mization for a Hydrogen Fuel Cell Aircraft
[105]: Bons et al. (2022), Aerostructural wing optimiza-
tion of a regional jet considering mission fuel burn, wind tur-

29

bines [106], and hydrofoils [107, 108]. Aeropropulsive [109, [106]: Mangano et al. (2022), Towards Passive Aeroelas-
tic Tailoring of LargeWind Turbines Using High-Fidelity
Multidisciplinary Design Optimization

[107]: Liao et al. (2021), 3-D High-Fidelity Hydrostruc-
tural Optimization of Cavitation-Free Composite Lifting
Surfaces
[108]: Liao et al. (2022), RANS-based Optimization of
a T-shaped Hydrofoil Considering Junction Design

110, 32] and conjugate heat transfer [37] applications have also

[109]: Gray et al. (2018), Modeling Boundary Layer
Ingestion Using a Coupled Aeropropulsive Analysis
[110]: Gray et al. (2019), Coupled Aeropropulsive De-
sign Optimization of a Boundary-Layer Ingestion Propul-
sor
[32]: Yildirim et al. (2022), Boundary Layer Ingestion
Benefit for the STARC-ABL Concept

been explored.

We now describe the components of mach in detail.

2.5.1 Geometric parameterization

We use pyGeo [111]5 for geometric parameterization. pyGeo

[111]: Kenway et al. (2010), A CAD-Free Approach to
High-Fidelity Aerostructural Optimization

5: https://github.com/mdolab/pygeo

uses free-form deformation (ffd) volumes to deform both the
aerodynamic surface mesh and the structural mesh. We start
by embedding a cloud of points called a “point set”, which
typically includes the surface mesh coordinates for aerodynamics
or the finite element mesh nodes for structures. These points are
manipulated via geometric operations on the ffd nodes, which
then apply the deformation to the embedded points.

However, instead of allowing each ffd node to move arbitrarily
in 3-dimensional space, we instead group them into intuitive
sets of design variables. These operations can grow to be rather
complicated and include nested geometric operations. Some
examples include twist variables, which are rotations of a slice
of ffd nodes at a spanwise section around a pre-defined rota-
tion axis, and shape variables, which are vertical displacements
of individual ffd nodes. This approach allows for global and
local shape control, and the design variables represent quantities
familiar to designers.

2.5.2 Volume mesh warping

Once the aerodynamic surface mesh is deformed by pyGeo,
the volume mesh must be updated accordingly. Instead of re-
extruding the volume mesh, we deform it in a continuous fashion
to maintain smooth gradients. While this can be done using the
ffd once more—by adding farfield control points and embed-
ding the entire volume mesh [112, Sec. 5]

[112]: Madsen (2020), High-Fidelity CFD-based Shape
Optimization of Wind Turbine Blades—this approach is

https://github.com/mdolab/pygeo

30

inferior at maintaining mesh orthogonality and becomes less
effective with large geometric changes.

Algebraic methods [113], linear elasticity-based methods [114, [113]: Reuther et al. (1996), Aerodynamic Shape Op-
timization of Complex Aircraft Configurations via an
Adjoint Formulation

115], and hybrid methods [111] have all been developed to

[114]: Dwight (2009), Robust Mesh Deformation using
the Linear Elasticity Equations
[115]: Biedron et al. (2009), Recent Enhancements to
the FUN3D Flow Solver for Moving-Mesh Applications

[111]: Kenway et al. (2010), A CAD-Free Approach to
High-Fidelity Aerostructural Optimization

deform the volume mesh smoothly while maintaining mesh
quality. In this work, we use IDWarp [116],6 uses an inverse-

[116]: Secco et al. (2021), Efficient Mesh Generation
and Deformation for Aerodynamic Shape Optimization

6: https://github.com/mdolab/idwarp

distance algorithm based on the work of Luke, Collins, and
Blades [117].

[117]: Luke et al. (2012), A Fast Mesh Deformation
Method Using Explicit Interpolation

2.5.3 Cfd solver

The aerodynamic analysis is performed using ADflow [118],7
[118]: Mader et al. (2020), ADflow: An open-source
computational fluid dynamics solver for aerodynamic and
multidisciplinary optimization

7: https://github.com/mdolab/adflow

a finite-volume cfd solver with an efficient adjoint implemen-
tation suitable for aso [16]. ADflow can solve both the Euler

[16]: Kenway et al. (2019), Effective Adjoint Approaches
for Computational Fluid Dynamics

and rans equations with various turbulence models, and the
Spalart–Allmaras (sa) turbulence model is used for all rans-
based analyses in this work. To solve the governing equations,
we use approximate Newton–Krylov (ank) [119] to globalize the [119]: Yildirim et al. (2019), A Jacobian-free approxi-

mate Newton–Krylov startup strategy for RANS simula-
tions

terminal nk iterations. For Euler simulations, we also compute a
viscous drag correction based on a flat-plate estimate with form
factor corrections [42]. ADflow contains an efficient adjoint [42]: Kenway et al. (2014), Multipoint High-Fidelity

Aerostructural Optimization of a Transport Aircraft Con-
figuration

solver to compute the derivatives necessary for gradient-based
optimization.

2.5.4 Csm solver

The structure is analyzed using the Toolkit for Analysis of Com-
posite Structures (tacs) [120], a finite-element method (fem) [120]: Kennedy et al. (2014), A Parallel Finite-Element

Framework for Large-Scale Gradient-Based Design Op-
timization of High-Performance Structures

solver designed for gradient-based optimizations of thin-walled
structures. In order to tackle the poorly conditioned linear sys-
tems arising from thin shell structures, it uses a parallel direct
factorization method. It also has an efficient adjoint implemen-
tation to facilitate gradient computations.

https://github.com/mdolab/idwarp
https://github.com/mdolab/adflow

31

2.5.5 Aerostructural solver

We use the approach outlined by Kenway, Kennedy, and Martins
[21] to solve the coupled aeroelastic system and compute the [21]: Kenway et al. (2014), Scalable Parallel Approach

for High-Fidelity Steady-State Aeroelastic Analysis and
Adjoint Derivative Computations

coupled adjoint.

First, the two disciplines are coupled via the load and displace-
ment scheme. We use rigid links [121, 20], which can be shown [121]: Brown (1997), Displacement extrapolations for

CFD+CSM aeroelastic analysis
[20]: Martins et al. (2004), High-Fidelity Aerostructural
Design Optimization of a Supersonic Business Jet

to be consistent and conservative. The same volume mesh warp-
ing scheme from section 2.5.2 is used to update the aerodynamic
volume mesh based on structural displacements. The mda is
solved using nlbgs with Aitken acceleration [122]. The coupled [122]: Irons et al. (1969), A version of the Aitken accel-

erator for computer iterationadjoint is solved using the coupled Krylov method, with the
linear algebra package Portable, Extensible Toolkit for Scientific
Computation (petsc). By leveraging the matrix-free ad routines,
the generalized minimal residual (gmres) iterations are very
memory-efficient.

2.5.6 Optimization framework

We use pyOptSparse [123],8 an optimization framework de- [123]: Wu et al. (2020), pyOptSparse: A Python frame-
work for large-scale constrained nonlinear optimization
of sparse systems

8: https://github.com/mdolab/pyoptsparse

signed for constrained nonlinear optimization of large sparse
problems. It provides a unified interface for various gradient-
free and gradient-based optimizers, which are listed in table 2.1
By using an object-oriented approach, the software maintains
independence between the optimization problem formulation
and the implementation of the specific optimizers. The code is
Message Passing Interface (mpi)-wrapped to enable execution
of expensive parallel analyses and gradient evaluations, such as
when using cfd simulations, which can require hundreds of pro-
cessors. Aside from mach, pyOptSparse has been incorporated
in several other design frameworks such as OpenMDAO [36] [36]: Gray et al. (2019), OpenMDAO: An open-source

framework for multidisciplinary design, analysis, and
optimization

and suave [50].

[50]: MacDonald et al. (2017), SUAVE: An Open-
Source Environment Enabling Multi-Fidelity Vehicle Op-
timization

https://github.com/mdolab/pyoptsparse

32

Optimizer Type Gradient Sparsity

alpso [124] pso
conmin [125] mfd ✓
ipopt [126] ip ✓ ✓
nlpqlp [127, 128] sqp ✓
nsga2 [129] ga
ParOpt [130] ip or tr ✓ ✓
psqp sqp ✓
slsqp [131] sqp ✓
snopt [132] sqp ✓ ✓

Table 2.1: Brief overview of available optimizers in
pyOptSparse and their capabilities.

2.5.6.1 Selecting an appropriate optimizer

The well-known No Free Lunch Theorem [133] states that, when [133]: Wolpert et al. (1997), No free lunch theorems for
optimizationconsidering all possible optimization problems, all optimization

algorithms perform equally well on average. However, as pointed
out by Adam et al. [134], this does not imply that the same [134]: Adam et al. (2019), No free lunch theorem: A

reviewis true for a specific subset of optimization problems, where
certain optimizers can be more effective. To date, a large number
of optimizers have been developed, and some are tailored to
specific characteristics of certain classes of problems in order to
be more efficient. For example, ParOpt [130] can take advantage [130]: Chin et al. (2019), A Scalable Framework for

Large-Scale 3D Multimaterial Topology Optimization
with Octree-based Mesh Adaptation

of the sparsity structure in constraint Jacobians that arise from
topology optimization problems.

Due to the difficulties in performing optimizer benchmarks [135], [135]: Beiranvand et al. (2017), Best practices for com-
paring optimization algorithmswe focus on applications to relevant real-world engineering

problems. While it is common [136, 137] to benchmark op- [136]: Mittelmann (year), AMPL-NLP Benchmark
[137]: Gill et al. (2015), On the performance of SQP
methods for nonlinear optimization

timization algorithms against analytical benchmarks such as
CUTEr [138] and CUTEst [139], aerodynamic and aerostruc- [138]: Gould et al. (2004), CUTEr (and SifDec), a

Constrained and Unconstrained Testing Environment,
revisited
[139]: Gould et al. (2014), CUTEst: A Constrained and
Unconstrained Testing Environment with safe threads for
mathematical optimization

tural optimizations—the type of optimizations of interest in
this work—have several defining features. First, they are general
nonlinear programming problems as described by equation 2.1,
exhibiting nonlinearities in both the objective and constraints,
and with no guarantees of convexity. Second, they are expen-
sive functions that dwarf the cost of the optimizer itself.9 Third, 9: This is one reason why analytic benchmarks are

problematic, often the runtime is dominated by the
optimizer cost which in reality would be negligible.

they often have efficient gradients available through the imple-
mentation of the adjoint or coupled-adjoint method. Last, the
functions are often noisy, due to a number of effects which are

33

discussed in more detail in appendix C.2.

To date, a number of studies have investigated the effectiveness
of different optimization algorithms on a variety of engineering
design problems. Zingg, Nemec, and Pulliam [140], Lyu, Xu,
and Martins [141], and Yu et al. [142] investigated the choice [140]: Zingg et al. (2008), A Comparative Evaluation

of Genetic and Gradient-Based Algorithms Applied to
Aerodynamic Optimization
[141]: Lyu et al. (2014), Benchmarking Optimization
Algorithms for Wing Aerodynamic Design Optimization
[142]: Yu et al. (2018), On the Influence of Optimiza-
tion Algorithm and Starting Design on Wing Aerody-
namic Shape Optimization

of optimization algorithm on a suite of aerodynamic optimiza-
tion problems, and concluded that gradient-based optimizers
are significantly more efficient than gradient-free optimizers
when the problem dimension is large. Following that compari-
son, they also benchmarked several popular gradient-based opti-
mizers, and concluded that snopt was the most efficient opti-
mizer. Similar conclusions have been drawn by Wendorff, Botero,
and Alonso [143]

[143]: Wendorff et al. (2016), Comparing Different Off-
the-Shelf Optimizers’ Performance in Conceptual Aircraft
Design

when performing aircraft conceptual design
through suave, and Baker et al. [144]

[144]: Baker et al. (2019), Best Practices forWake Model
and Optimization Algorithm Selection in Wind Farm
Layout Optimization

in the context of wind
farm layout optimization. It has been the optimizer of choice
within mach, leading to several seminal works [79, 42, 27]

[79]: Lyu et al. (2015), Aerodynamic Shape Optimiza-
tion Investigations of the Common Research Model Wing
Benchmark
[42]: Kenway et al. (2014), Multipoint High-Fidelity
Aerostructural Optimization of a Transport Aircraft Con-
figuration
[27]: Brooks et al. (2018), Benchmark Aerostructural
Models for the Study of Transonic Aircraft Wings

. Fur-
thermore, snopt has been extremely popular within the broader
field of aerodynamic and aerostructural optimizations, being
used by frameworks such as Jetstream at University of Toronto
Institute for Aerospace Studies (utias) [145], Stanford Univer- [145]: Hicken et al. (2010), Aerodynamic Optimization

Algorithm with Integrated Geometry Parameterization
and Mesh Movement

sity Unstructured (su2) at Stanford University [67, 146],10 and
[67]: Masters et al. (2017), Influence of Shape Parame-
terization on a Benchmark Aerodynamic Optimization
Problem
[146]: Hoogervorst et al. (2017), Wing aerostructural
optimization using the Individual Discipline Feasible
Architecture
10: su2 does not support snopt out of the box, but
researchers have developed their own couplings to the
optimizer.

EllipSys3D from Technical University of Denmark (dtu) [112].

[112]: Madsen (2020), High-Fidelity CFD-based Shape
Optimization of Wind Turbine Blades

A large number of cases developed by adodg at aiaa 11 have also

11: sites.google.com/view/mcgill-computa

tional-aerogroup/adodg

been produced using snopt as the optimizer [147, 148]. Based

[147]: Bisson et al. (2015), Adjoint-based aerodynamic
optimization of benchmark problems
[148]: Anderson et al. (2015), Aerodynamic shape opti-
mization benchmarks with error control and automatic
parameterization

on these results, we choose to use snopt for all optimizations
presented here, although many optimizer-relevant developments
are not specific to snopt.

2.5.7 Snopt: the optimizer of choice

Snopt [132] is an sequential quadratic programming (sqp)-

[132]: Gill et al. (2005), SNOPT: An SQP Algorithm
for Large-Scale Constrained Optimization

based optimizer designed for large-scale nonlinear constrained
problems in the form given in equation 2.1, and where the
gradients of 𝑓(𝒙) and 𝑐(𝒙) are readily available. In particular,
it is effective when the problem has a certain sparsity structure,

sites.google.com/view/mcgill-computational-aerogroup/adodg
sites.google.com/view/mcgill-computational-aerogroup/adodg

34

and when the number of degrees of freedom at the optimum
is moderate. It uses the active-set method to handle inequality
constraints, an augmented Lagrangian merit function for line
search, and maintains a quasi-Newton approximate Hessian via
the bfgs update. As with most established optimizers, there are
a large number of options available [149]. Here we discuss those [149]: Gill et al. (2007), User’s Guide for SNOPT Ver-

sion 7: Software for Large-Scale Nonlinear Programmingthat are relevant for the rest of the work.

2.5.7.1 Termination criteria

As with typical gradient-based optimizers, snopt uses two dif-
ferent criteria to determine the termination of the optimization,
corresponding to residuals of the kkt conditions given by equa-
tions 2.6 to 2.8. Equations 2.7 and 2.8 are referred to as the
feasibility criteria, and equation 2.6 the optimality criteria.

Definition 2.5.1 For a candidate design 𝒙, its feasibility, also
known as primal infeasibility, is computed as

𝜏fea ≜ max
𝑖

𝑣𝑖(𝒙)
‖𝒙‖2

(2.24)

where 𝑣𝑖(𝒙) is the violation for constraint 𝑖, given as

𝑣𝑖(𝒙) =
{
{
{

|𝑐𝑖(𝒙)|, 𝑖 ∈ ℰ

max {0, 𝑐𝑖(𝒙)} , 𝑖 ∈ ℐ
(2.25)

Definition 2.5.2 For a candidate design 𝒙, its optimality, also
known as dual infeasibility, is computed as

𝜏opt ≜ max
𝑗

Comp𝑗

‖𝝀‖2
(2.26)

where the complimentarity slackness Comp𝑗 is computed as

Comp𝑗 =
{
{
{

𝑑𝑗min {𝑥𝑗 − 𝑙𝑗, 1} if 𝑑𝑗 ≥ 0

−𝑑𝑗min {𝑢𝑗 − 𝑥𝑗, 1} if < 0

35

The quantity 𝑑𝑗 is called the reduced gradient, and is computed as

𝑑𝑗 =
d𝑓(𝒙)
d𝑥𝑗
+ 𝜆𝑗

d𝒄(𝒙)
d𝑥𝑗

It is straightforward to verify that 𝜏fea = 𝜏opt = 0 iff the kkt
conditions equations 2.6 to 2.8 are satisfied. In cases where
the conditions are not satisfied, these tolerances give a measure
of how far away 𝒙 is from the optimal solution 𝒙∗, and are
therefore also referred to as optimization metrics. Compared to
the kkt conditions, some additional scaling factors have been
applied. The zeroth order conditions are scaled by the 𝐿2 norm
of the design vector 𝒙, and the first-order condition is scaled by
both the dimension of the design space as well as the 𝐿2 norm of
the Lagrange multipliers. This results in tolerances that are more
comparable across problems of different dimensions, and where
the magnitudes of either the function values or gradients are
wildly different. Nevertheless, these tolerances are not invariant
to problem scaling, and it is often more meaningful to discuss
relative convergence, as was done in table 1.1.

2.5.7.2 Optimization restarts

Optimizations can be initialized in three ways. In a cold start,
the optimization is initialized with no prior knowledge of the
problem, so all the state variables are initialized to default values,
except for the initial design variables provided by the user. This
is the most common starting strategy taken. In a warm start,
partial state information is provided by the user. This could be
an initial Hessian approximation or a guess for the active set
𝒜. In a hot start, the optimizer is initialized with the full state.
For a deterministic optimizer, this means that we have all the
information to exactly retrace an optimization.

We define optimizer states as variables that completely deter-
mine the state at each optimization iteration. Given the same

36

set of states, a deterministic optimizer will always produce the
same design for the next iteration and follow the same path
within the design space (within machine precision). For an sqp-
based optimizer, these states can include Lagrange multipliers,
the active set, the approximate Hessian, and many more. The
exact make-up depends on the implementation of a particular
optimizer.

As part of the appropriate fidelity work detailed in chapter 5,
the developers of snopt implemented the hot start in addition
to the cold and warm starts already available.

2.5.7.3 Hessian update strategy

Snopt uses the bfgs Hessian update, with either a limited-
memory or full-memory implementation [149]. The default [149]: Gill et al. (2007), User’s Guide for SNOPT Ver-

sion 7: Software for Large-Scale Nonlinear Programmingbehaviour in snopt is to use the full-memory Hessian when
𝑛𝑥 ≤ 75, and the limited-memory Hessian otherwise. In the
limited-memory approach, the approximate Hessian matrix it-
self is not stored. Instead, only the diagonal is stored, along with
the vector pairs in the rank-2 bfgs update. As long as the number
of update vectors (i.e. the number of major iterations) is less
than the dimensionality of the problem,12 memory savings can 12: Since the Hessian is spd, a Cholesky factorization

is used to further reduce the storage requirements of
the full memory Hessian.

be realized [74, Sec. 7.2].

[74]: Nocedal et al. (2006), Numerical OptimizationHowever, in practice the number of vector pairs stored is much
less than 𝑛𝑥, necessitating Hessian resets. In such cases, the vector
pairs (and therefore the accumulated Hessian updates) are all
discarded, leaving only the diagonal of the approximate Hessian.
This will inevitably slow down the optimization since crucial
information is being discarded, but the reduced memory re-
quirement is sometimes important with large problems (say
𝑛𝑥 ∼ 𝒪(106)).

In this work, since the problem size is moderate (𝑛𝑥 ∼ 𝒪(103)),
we use the full memory Hessian in order to have easy access to

37

the approximate Hessian for post-optimization analyses. How-
ever, we still choose to periodically reset the Hessian on problems
involving structural variables, as we have found that to be benefi-
cial when the design space varies significantly between the initial
and final designs.

38

Chapter 3

Sensitivity-Based Geometric Parameterization

3.1 Introduction 38

3.2 Motivating analyses 42

3.3 Generating design variables 51

3.4 Design variable scaling . . . 59

3.5 Results 62

3.6 Summary 72

3.1 Introduction to geometric

parameterizations

There have been considerable advancements in the aso of wings
and aircraft, accelerated by improvements in the analysis and
optimization algorithms. It is now routine to perform optimiza-
tions based on rans equations involving hundreds of geometric
design variables, subject to multiple flight conditions and a large
number of geometric constraints.

To this end, several geometric parameterizations have been de-
veloped and used in asos. While some early efforts directly used
mesh points as design variables, this approach is not practical for
large-scale optimizations due to the large number of dofs, result-
ing in smoothness issues. Instead, Hicks-Henne bump functions
and Class-Shape function Transformation (cst) were developed
for two-dimensional problems [150, 69]

[150]: Castonguay et al. (2007), Effect of Shape Param-
eterization on Aerodynamic Shape Optimization
[69]: Masters et al. (2017), Geometric Comparison of
Aerofoil Shape Parameterization Methods

. For three-dimensional
problems, the most popular approach is to use ffd [151]

[151]: Sederberg et al. (1986), Free-form Deformation
of Solid Geometric Models

. In-
stead of parameterizing the geometry directly, ffd parameter-
izes the geometric deformation, which offers some significant
benefits [152]

[152]: Zhang et al. (2018), A review of parametric
approaches specific to aerodynamic design process

. Several popular aso suites such as su2 [153]

[153]: Economon et al. (2016), SU2: An Open-Source
Suite for Multiphysics Simulation and Design

,
Jetstream [145, 154]

[145]: Hicken et al. (2010), Aerodynamic Optimization
Algorithm with Integrated Geometry Parameterization
and Mesh Movement
[154]: Gagnon et al. (2015), Two-Level Free-Form and
Axial Deformation for Exploratory Aerodynamic Shape
Optimization

, and mach [111]

[111]: Kenway et al. (2010), A CAD-Free Approach to
High-Fidelity Aerostructural Optimization

all use ffd for geometric
parameterization.

In recent years, computed-aided design (cad) has been directly
incorporated into the optimization process. By directly parame-
terizing the underlying geometry, the final design can be modi-

39

fied and manufactured without additional post-processing steps.
Some popular cad packages used in gradient-based optimiza-
tion include Engineer Sketch Pad (esp) [155] used by Brelje [155]: Haimes et al. (2013), The Engineering Sketch

Pad: A Solid-Modeling, Feature-Based, Web-Enabled
System for Building Parametric Geometry

and Martins [104], and OpenVSP [156] used by Yildirim et al.

[104]: Brelje et al. (2021), Aerostructural Wing Opti-
mization for a Hydrogen Fuel Cell Aircraft

[156]: McDonald et al. (2022), Open Vehicle Sketch
Pad: An Open Source Parametric Geometry and Analysis
Tool for Conceptual Aircraft Design

[32].

[32]: Yildirim et al. (2022), Boundary Layer Ingestion
Benefit for the STARC-ABL Concept

However, optimization performances are degraded significantly
by including complex geometric variables. For example, Lyu,
Kenway, and Martins [79] performed an aso on the crm with

[79]: Lyu et al. (2015), Aerodynamic Shape Optimiza-
tion Investigations of the Common Research Model Wing
Benchmark

720 shape variables, and the initial optimization on a coarser
mesh required over 600 iterations to converge. Even then, the
best optimality achieved was only around 10−4. Similar trends
have also been observed in other works, such as those by Koo
and Zingg [157], Streuber and Zingg [158], and Kedward, Allen, [157]: Koo et al. (2018), Investigation into Aerodynamic

Shape Optimization of Planar and Nonplanar Wings

[158]: Streuber et al. (2021), Dynamic Geometry Con-
trol for Robust Aerodynamic Shape Optimization

and Rendall [159]. This suggests that the scaling of the design

[159]: Kedward et al. (2020), Gradient-Limiting Shape
Control for Efficient Aerodynamic Optimization

variables could be improved or that the design variables them-
selves cause poor conditioning of the optimization problem.

To address this issue, a class of adaptive geometric parameteriza-
tions has emerged. Bons and Martins [86] employed a manual [86]: Bons et al. (2020), Aerostructural Design Explo-

ration of a Wing in Transonic Flowapproach, where a sequence of optimizations is performed using
successively refined ffd control volumes defined a priori. This
way, a significant amount of geometric changes can be achieved
with the smaller design space before switching to the denser ffd
volume for finer geometric adjustments. A class of refinement
approaches has been developed based on the same principle,
fitting into two broad categories. On the one hand, progressive
refinement is based on a sequence of progressively refined geom-
etry parameterizations that are determined a priori [160, 148]. [160]: Masters et al. (2017), Multilevel Subdivision

Parameterization Scheme for Aerodynamic Shape Opti-
mization
[148]: Anderson et al. (2015), Aerodynamic shape opti-
mization benchmarks with error control and automatic
parameterization

On the other hand, adaptive approaches refine the geometric pa-
rameterization during the optimization process [158, 161, 162].

[158]: Streuber et al. (2021), Dynamic Geometry Con-
trol for Robust Aerodynamic Shape Optimization
[161]: Han et al. (2014), An adaptive geometry
parametrization for aerodynamic shape optimization
[162]: Anderson et al. (2015), Adaptive Shape Control
for Aerodynamic Design

By updating the definition of the geometric design variables
during refinement, both computational speedup and superior
optima were obtained compared to the progressive approach.

However, another challenge that remains unsolved is determin-
ing appropriate optimization scaling factors for geometric de-

40

sign variables [2, Tip 4.4]. While design variable scaling is a [2]: Martins et al. (2021), Engineering Design Opti-
mizationgeneral problem in optimization, geometric design variables are

of particular interest because they comprise most of the design
variables in aso. Furthermore, in mdo, such as aerostructural
applications [27, 42], geometric variables affect both disciplines [27]: Brooks et al. (2018), Benchmark Aerostructural

Models for the Study of Transonic Aircraft Wings
[42]: Kenway et al. (2014), Multipoint High-Fidelity
Aerostructural Optimization of a Transport Aircraft Con-
figuration

simultaneously and appear as dense sub-blocks in the constraint
Jacobian. Historically, design variable scaling has been hand-
tuned through trial and error, and the success and performance
of an optimization can be heavily dependent on this process.
Given that typical geometric parameterizations consist of groups
of disparate variables responsible for local and global shape con-
trol, finding suitable scaling for all design variables is a significant
challenge.

This work aims to develop an approach that addresses numerical
issues caused by these geometric design variables from an opti-
mization perspective. We do not attempt to adaptively move or
add geometric design variables but work with the given parame-
terization. In this way, we do not alter the optimization problem
or the design space of interest. Instead, we use singular value
decomposition (svd) to compute design variable mapping and
scaling such that the optimization problem becomes easier to
solve while remaining mathematically identical.

While there are similarities with modal approaches that also use
svd [163, 164, 165, 166], there are some key differences. In the [163]: Ghoman et al. (2012), A POD-based Reduced

Order Design Scheme for Shape Optimization of Air
Vehicles
[164]: Li et al. (2019), Data-based Approach for Fast
Airfoil Analysis and Optimization
[165]: Li et al. (2021), Adjoint-Free Aerodynamic Shape
Optimization of the Common Research Model Wing
[166]: Poole et al. (2022), Efficient aeroelastic wing
optimization through a compact aerofoil decomposition
approach

modal approach, svd is applied to a library of candidate designs.
For airfoil applications, the UIUC airfoil database [167] is often

[167]: Selig (1996), UIUC airfoil data site

used, which is akin to a database of optimal airfoil designs. In
addition, dimension reduction is often applied to reduce the
design space to a handful of design variables. While effective
for a range of applications, the modal approach requires some
a priori knowledge of the design space through the database.
It operates on a modal design space that is a subspace of the
full geometric design space permitted by the ffd approach. As
a result, the optimum found is often inferior to the full-space
optimum but at a reduced cost. On the other hand, the proposed

41

approach does not alter the design space. It should yield the same
solution when using a gradient-based optimizer on a unimodal
problem. Wing aso problems have been shown to be largely
unimodal [142, 3]

[142]: Yu et al. (2018), On the Influence of Optimiza-
tion Algorithm and Starting Design on Wing Aerody-
namic Shape Optimization
[3]: He et al. (2019), Robust aerodynamic shape
optimization—from a circle to an airfoil

Kedward et al. [168] proposed an approach based on svd that [168]: Kedward et al. (2022), Generic Modal Design
Variables for Efficient Aerodynamic Optimizationdoes not rely on a geometry library. The authors were initially

motivated by the introduction of shape gradient constraints.
They used svd to convert those linear constraints into bound
constraints and generate orthogonal design variables in the pro-
cess. In contrast, this work does not require a set of linear in-
equality constraints of a particular form, instead operating on
generic geometry parameterizations independent of the specific
implementation or constraints present.

There are also some notable similarities with the active subspace
method [169, 170]. However, the active subspace method is [169]: Lukaczyk et al. (2014), Active Subspaces for

Shape Optimization
[170]: Grey et al. (2018), Active Subspaces of Airfoil
Shape Parameterizations

concerned with a single scalar output, and the svd is applied
to a covariance matrix computed from its gradients sampled
within the design space. In contrast, the proposed approach is
purely geometric in nature. It is cheap to compute and does not
require a large number of gradient evaluations. Furthermore,
the active subspace method is a form of dimension reduction,
where the geometric approach does not alter the dimensionality
of the optimization problem.

In the following sections, we outline the motivation behind our
approach and explain the methodology itself. We then demon-
strate the approach in an aso problem, showing that the modi-
fied optimization problem results in improved optimizer perfor-
mance.

42

3.2 Motivating analyses

3.2.1 Impact of geometric design variables

To further highlight the issue with geometric design variables,
we perform two asos where we minimize the total drag of a wing
under transonic flight conditions. We perform the two rans-
based optimizations starting from the same baseline design; they
differ only in the number of geometric design variables and con-
straints considered in the optimization problem. In one case,
we consider section twist variables, while additional shape vari-
ables are included in the other. These shape variables are allowed
to move in the vertical direction individually, and are typically
used to alter the sectional airfoil shape. The geometry and ffd
box used are shown in figure 3.1, and the cfd simulations are
performed on a medium-density mesh with 193 536 cells. The
flight condition is at Mach 0.8 and an altitude of 10 000 m. We
use snopt [132] as the optimizer and converge the optimization [132]: Gill et al. (2005), SNOPT: An SQP Algorithm

for Large-Scale Constrained Optimizationtightly by setting both the feasibility and optimality tolerances
to 10−6. We also ensure that the primal and adjoint solutions are
converged tightly, using a relative convergence criteria of 10−14.
The optimization problem is detailed in table 3.1, where T refers
to the twist-only optimization, and T+S is the case with twist
and shape variables.

Figure 3.1: The standalone wing considered, together
with the ffd box.

The optimization performance is shown in figure 3.2. As ex-
pected, case T converged quickly. In particular, once the approx-
imate Hessian became sufficiently accurate, we observed the
rapid convergence trends expected of quasi-Newton optimiza-
tions reminiscent of Newton’s methods. The last four iterations

43

Table 3.1: Aso problem for twist design variables (T) and twist and shape design variables (T+S). “(L)” denotes that the constraint is linear.

Quantity
Function/variable Description T T+S

minimize 𝐶𝐷 Drag coefficient

with respect to 𝑥twist Section twist 7 7
𝑥shape Shape — 96
𝛼 Angle of attack 1 1

Total design variables 8 104

subject to 𝐶𝐿 = 0.5 Lift constraint 1 1
𝑡 ≥ 𝑡0 Thickness constraint — 100
𝑉 ≥ 𝑉0 Volume constraint — 1

𝛥𝑧LE, upper = −𝛥𝑧LE, lower Fixed leading edge constraint (L) — 8
𝛥𝑧TE, upper = −𝛥𝑧TE, lower Fixed trailing edge constraint (L) — 8

Total constraints 1 118

decreased the optimality by about an order of magnitude per
iteration, dropping from 3 × 10−4 to 4 × 10−7.

On the other hand, the T+S case took significantly longer, mir-
roring the results from Lyu, Kenway, and Martins [79]. Although [79]: Lyu et al. (2015), Aerodynamic Shape Optimiza-

tion Investigations of the Common Research Model Wing
Benchmark

it is expected that an optimization with more design variables
will take more iterations, it took over 300 iterations to reach
the same target optimality. Beyond iteration 100, progress is
painfully slow, with a slight improvement in either optimality
or the merit function. The same behaviour was reported by Lee,
Koo, and Zingg [171], where the twist-only optimization con- [171]: Lee et al. (2017), Comparison of B-Spline Sur-

face and Free-Form Deformation Geometry Control for
Aerodynamic Optimization

verged well but more complex problems had only one or two
orders of reduction in optimality.

3.2.2 Impact of orthogonality

Given the stark contrast in performance between the two opti-
mizations, we suspect that part of the issue lies in the geometric
parameterization, where certain geometric design variables are
not orthogonal to other design variables. This means that some
subsets of geometric design variables, while linearly independent,
are similar. Changing them would affect the outputs similarly—
the embedded aerodynamic surface mesh nodes in this case. This

44

10−11

10−8

10−5

10−2

𝜏fea

T T+S

10−7

10−5

10−3

10−1

𝜏opt

0 28 263

Major iterations

1.8

1.9

2.0

2.1

2.2

𝑓merit

Figure 3.2: Comparison of asos with and without
shape variables, showing optimization metrics. The
horizontal lines show the optimization termination
criteria, set at 10−6 for both feasibility and optimality.

would harm the optimization because it leads to poor condition-
ing for the optimization problem.

The earlier work by Lyu, Kenway, and Martins [79] examined [79]: Lyu et al. (2015), Aerodynamic Shape Optimiza-
tion Investigations of the Common Research Model Wing
Benchmark

the effect of changing the number of ffd nodes in both spanwise
and chordwise directions. They found that the addition of nodes
in the spanwise direction had little effect on the convergence
rate of the optimization. However, there is a significant impact
when adding nodes in the chordwise direction. The authors
concluded that “the coupled effects between design variables are
much stronger between variables within an airfoil than between

45

variables in different airfoils”.

To investigate this further, we analyze the T+S optimization prob-
lem performed earlier. We first compute the geometric Jacobian
of surface sensitivities

𝐉geo ≜
d𝑿𝐴
d𝒙geo
, (3.1)

where𝑿𝐴 is the flattened 1-D vector of surface mesh coordinates
corresponding to the surface mesh of the wing used in cfd, and
𝒙geo are the geometric design variables. Each column of this
Jacobian matrix represents the sensitivity of all surface mesh
coordinates with respect to one geometric design variable. We
examine the geometric sensitivity of surface mesh coordinates
because they are the points embedded in the ffd. The volume
mesh coordinates are then deformed by propagating these surface
deformations using an inverse-distance approach, which was
described in section 2.5.

From this, we can compute the angle 𝜃𝑖𝑗 between pairs of Jaco-
bian columns 𝒗𝑖 and 𝒗𝑗 using equation 3.2, and look for pairs
of design variables that result in near parallel or antiparallel
gradients, that is, angles near 0° or 180°.

𝜃𝑖𝑗 = arccos(
𝒗T𝑖 𝒗𝑗
|𝒗𝑖| ⋅ |𝒗𝑗|

) , 𝑖 ≠ 𝑗 (3.2)

where 𝒗𝑖 is the 𝑖-th column of the Jacobian 𝐉.

The distribution of angles is shown in figure 3.3. Although
most design variable pairs are close to being orthogonal, some
design variables are close to being “parallel” to each other, with
the smallest angle at just 3.4°. A further check revealed that
these correspond to two local shape variables that control the
pair of upper and lower ffd nodes at the te of the wing tip,
shown in figure 3.4. The top 18 pairs of non-orthogonal design
variables correspond to upper and lower ffd nodes at the same
planform location along the wing, with the ones most parallel

46

0 20 40 60 80 100

Angles (deg)

100

101

102

103

104

Figure 3.3: Distributions of angles between pairwise
geometric design variable gradients for the T+S case.
The 𝑦-axis uses a logarithmic scale, and the vertical
line denotes 90°.

at the te locations. This is expected, as these design variables
are restricted to move only in the vertical direction. Moving
the upper node would have a similar effect to moving the lower
node, effectively displacing surface nodes near the ffd node in
the vertical direction. These pairs of nodes are also more likely
to be located at the te because, at those locations, more of the
surface mesh nodes are roughly equidistant to both the upper
and lower ffd nodes. As a result, the surface sensitivities from
either node are roughly equal.

Figure 3.4: Shape variables 6 and 7, which have the
smallest gradient angle at just 3.4°.

The distribution of design variable angles is in sharp contrast to
that from the T optimization, shown in figure 3.5. In this case,
the angles are much more concentrated around 90°, with the
smallest angle at 51°.

In aso, we employ a set of leading-edge and trailing-edge con-
straints that precisely link these pairs of design variables at the
leading and trailing edges to prevent those nodes from emu-
lating section twist via shear deformations. These are listed in
table 3.1, effectively eliminating one degree of freedom (dof) in
each pair. Unfortunately, some pairs of design variables in the

47

0 20 40 60 80 100

Angles (deg)

0

1

2

3

4

5

6

Figure 3.5:Distribution of angles between pairwise ge-
ometric design variable gradients involving only twist.
The 𝑦-axis uses a logarithmic scale, and the vertical
line denotes 90°.

wing interior are still rather non-orthogonal. Out of these, the
most non-orthogonal pair is shown in figure 3.6. Lastly, there
are also non-orthogonalities between specific shape and twist
design variables; an example is shown in figure 3.7.

Figure 3.6: Shape variables 19 and 23, which have a
gradient angle of 12°.

Figure 3.7: Shape variable 19 and twist variable 6,
which have a gradient angle of 22°.

We then cross-check these potentially problematic pairs of de-
sign variables against their optimization progress in figure 3.8.
Since these variables are at the leading or trailing edge, the lin-
ear constraint ensures that the pairs have equal and opposite
values because snopt satisfies all linear constraints at each iter-
ation. However, these design variables have noticeably slower
convergence than the rest, which typically arrive close to their
final value within the first 100 iterations. Instead, these are still
changing after 200 iterations, and these variables are likely partly
responsible for the slow overall convergence rate.

On the other hand, figure 3.9 shows the optimization history

48

−0.04

−0.02

0.00

0.02

0.04

shape6

shape7

0 50 100 150 200 250 300

Major iterations

−0.010

−0.005

0.000

0.005

0.010

shape34

shape46

Figure 3.8: Optimization history for some shape vari-
ables at the leading and trailing edges.

for an orthogonal pair of design variables.

0 50 100 150 200 250 300

Major iterations

−2

−1

0

1

2

3
twist4twist0

Figure 3.9: Optimization history for a pair of orthog-
onal design variables.

Although the linear constraints remove some dofs from the
design space, these design variables are still challenging for the
optimization. To illustrate, suppose that we have two variables,
𝑥1 and 𝑥2, that have similar gradients, that is,

𝜕ℐ
𝜕𝑥1
≈ 𝜕ℐ
𝜕𝑥2

for some objective ℐ(𝑥1, 𝑥2). Then, suppose we add a linear con-
straint 𝑥1 +𝑥2 = 0, meaning the two variables must be opposite
of each other. This creates two opposing effects that render the
design space relatively flat. If moving along 𝑥1 decreases the
objective by 𝛿ℐ, the corresponding increase in 𝑥2 required by
the linear constraint would increase the objective by a similar

49

amount. As a result, the sensitivity within the feasible space is
close to zero, and the optimizer will have trouble finding the
optimum. Fundamentally, the issue is caused by the fact that
these design variables are not orthogonal to each other, result-
ing in similar gradients that worsen the optimization problem
conditioning.

Mathematically, we can show this by introducing a variable 𝜉
that is used to parameterize the linear constraint:

𝑥1 = 𝜉, 𝑥2 = −𝜉.

Then, the sensitivity along the constraint becomes

dℐ
d𝜉
= 𝜕ℐ
𝜕𝑥1

d𝑥1
d𝜉
+ 𝜕ℐ
𝜕𝑥2

d𝑥2
d𝜉

= 𝜕ℐ
𝜕𝑥1
− 𝜕ℐ
𝜕𝑥2

≈ 0.

Optimization histories for some design variables that are not
linearly constrained are shown in figure 3.10. Even though no
linear constraints exist, the fact that the gradients are similar
means that the optimizer moves them in either equal or opposite
directions, resulting in slow convergence.

Finally, we revisit the pairwise angles shown in figure 3.3. For
each pair of geometric design variables 𝒙𝑖, 𝒙𝑗, we compute the
deviation from orthogonality as

𝛿𝑖𝑗 = |90° − 𝜃𝑖𝑗| , (3.3)

where 𝜃𝑖𝑗 is computed from equation 3.2.

By definition, 𝛿𝑖𝑗 = 0 iff 𝒙𝑖 and 𝒙𝑗 are orthogonal, while 𝛿𝑖𝑗 =
90° if 𝑖 = 𝑗. We plot 𝛿𝑖𝑗 in figure 3.11. If all the design variables
are orthogonal to each other, this should look like an identity
matrix, with all off-diagonal entries equal to 0°. Unfortunately,

50

−0.10

−0.05

0.00

0.05

shape19

shape23

0 50 100 150 200 250 300

Major iterations

−0.05

0.00
shape61

shape85

Figure 3.10:Optimization history for some shape vari-
ables at the wing interior.

this is not the case, and many pairs of design variables are not
orthogonal to each other.

0

45

90

𝛿𝑖𝑗

Figure 3.11:A contour plot of 𝛿𝑖𝑗. The diagonal entries
are 90° by definition, and any nonzero entries in the
off-diagonal indicate design variable pairs that are not
orthogonal.

51

3.3 Generating design variables

We aim to map the existing geometric design variables 𝒙geo into
alternative variables more suitable for optimization. We do this
through a linear mapping of the form

𝒙̂geo = 𝐀𝒙geo, (3.4)

where 𝒙geo are the original design variables, and 𝒙̂geo the new
design variables. For the remainder of this section, we omit
the subscript “geo” with the implicit understanding that we
are only performing this linear mapping on geometric design
variables. The full optimization problem will likely have other
design variables that remain unchanged. This is expanded further
in 3.3.2

3.3.1 Methodology

This matrix𝐀 is chosen such that the surface sensitivity Jacobian
̂𝐉 in the new design space, computed as

̂𝐉 ≜
d𝑿𝐴
d𝒙̂
, (3.5)

has orthogonal columns. This means that for two distinct design
variables 𝑥𝑖 and 𝑥𝑗, the dot product of the gradients should be
zero:

d𝑿𝐴
d𝒙̂𝑖

Td𝑿𝐴
d𝒙̂𝑗
= 0 ∀𝑖 ≠ 𝑗.

To orthogonalize the design variables, we perform svd on the
geometric Jacobian 𝐉. We can now rewrite the Jacobian as a
multiplication of three matrices,

𝐉 = 𝐔𝚺𝐕T,

where 𝐔 and 𝐕 are the left and right singular vectors, and 𝚺 is
a diagonal matrix of the singular values. By construction, 𝐕 is

52

an orthonormal matrix, and we use its inverse as the mapping
matrix as follows:

𝐀 = 𝐕T. (3.6)

The proposed methodology is a purely geometric approach based
on the geometric sensitivities of embedded points and therefore is
parameterization-independent. We implement and demonstrate
this methodology using ffd, but the same could be done for
other parameterizations as long as the geometric Jacobian 𝐉geo
is available. However, the approach does not fully capture the
nonlinearity present in the optimization problem. For example,
from the perspective of the optimizer, the objective sensitivity
(in this case, the drag coefficient 𝐶𝐷) is given by

d𝐶𝐷
d𝒙
=

d𝐶𝐷
d𝑿𝐴

d𝑿𝐴
d𝒙
,

and simply orthogonalizing the second term will not capture
the effect of the cfd analysis. However, it should still offer some
benefits for the optimization problem, especially since geomet-
ric design variables are often numerous and affect many opti-
mization quantities simultaneously. This is true for multipoint
problems where the same geometry is analyzed at different flight
conditions and for multidisciplinary problems where multiple
disciplines share the same geometry. The proposed approach can
be easily extended to aerostructural problems by considering the
embedded structural points in 𝑿𝐴 when computing the svd.

Because the method is based on a linearization of the geomet-
ric parameterization, it only orthogonalizes the design variables
in the neighborhood of the design point about which svd was
computed. The orthogonalization may be less effective for more
significant geometric design changes because the geometric Ja-
cobian changes with the design variables. As a result, it may be
useful to perform this orthogonalization multiple times during
optimization to capture this nonlinearity better.

53

3.3.2 Reformulating the Optimization

Once the mapping matrix 𝐀 has been computed, the optimiza-
tion problem has to be re-written in these new design variables
𝒙̂geo. This involves mapping four parts of the optimization prob-
lem:

• design variables
• derivatives of objectives and nonlinear constraints
• linear constraints
• design variable bounds

Additionally, since the mapping is done on the geometric design
variables 𝒙̂geo only, care must be taken to use the correct indices
such that the rest of the design variables remain intact. For
example, the full design vector could look like the following:

𝒙 =

𝑥1
⋮
𝑥𝑖
𝑥𝑖+1
⋮
𝑥𝑛

𝒙geo

𝒙other

[[[[[[[[[[[

[

]]]]]]]]]]]

]

}}}
}}}
}
}}}
}}}
}

3.3.2.1 Design Variables

Firstly, the design variable mapping is straightforward since we
already constructed the mapping:

𝒙̂geo = 𝐀𝒙geo (3.7)

𝒙geo = 𝐀
−1𝒙̂geo (3.8)

Due to the use of svd to determine the mapping matrix 𝐀, it is
orthonormal by construction. This means that, conveniently, its
inverse is just its transpose:

𝐀−1 = 𝐀T (3.9)

54

which is handy since we do not have to compute its inverse
separately.

3.3.2.2 Nonlinear Gradient and Jacobian

Next, mapping the derivatives of nonlinear outputs are dis-
cussed.

First, in the case of the objective, we have a single scalar output
𝑓, and its gradient is given by:

d𝑓
d𝒙̂geo
=

d𝑓
d𝒙geo

d𝒙geo
d𝒙̂geo

=
d𝑓
d𝒙geo
𝐀−1

where d𝑓
d𝒙geo

is the original gradient.

For a vector of constraints 𝒄, their sensitivities with respect to
the new design variables are:

d𝒄
d𝒙̂geo
= d𝒄

d𝒙geo

d𝒙geo
d𝒙̂geo

= 𝐉𝐀−1

where 𝐉 is the original nonlinear Jacobian.

Again, care must be taken to map the Jacobian only for the design
variables of interest, i.e. geometric variables. In reality, the full
Jacobian is actually composed of several smaller sub-blocks:

𝐉 = [
𝐉𝑔𝑔 𝟎
𝐉𝑜𝑔 𝐉𝑜𝑜
]

where 𝐉𝑔𝑔 is the Jacobian of geometric constraints with respect to
geometric design variables, 𝐉𝑜𝑔 the Jacobian of other constraints
with respect to geometric design variables, and 𝐉𝑜𝑜 the Jacobian
of other constraints with respect to other design variables. By

55

construction, 𝐉𝑔𝑜, the Jacobian of geometric constraints with
respect to other design variables, is zero. For example, the volume
constraint is not affected by the angle of attack.

In our case, we need to map the geometric sub-blocks 𝐉𝑔𝑔 and
𝐉𝑜𝑔, while leaving the rest untouched. This is done by right-
multiplying those blocks by 𝐀−1.

̂𝐉 = [
̂𝐉𝑔𝑔 𝟎
̂𝐉𝑜𝑔 𝐉𝑜𝑜
] = [
𝐉𝑔𝑔𝐀
−1 𝟎

𝐉𝑜𝑔𝐀−1 𝐉𝑜𝑜
]

3.3.2.3 Linear Jacobian

The linear constraints are handled separately since they are
never evaluated during the optimization process. Instead, the
bounds and the linear Jacobian is passed directly to the optimizer.
snopt [132] handles linear constraints of the form [132]: Gill et al. (2005), SNOPT: An SQP Algorithm

for Large-Scale Constrained Optimization

𝒉𝐿 ≤ 𝐉lin𝒙 ≤ 𝒉𝑈 (3.10)

where 𝐉lin is the linear constraint Jacobian.

Luckily, the linear constraints which involve geometric con-
straints are only related to geometric constraints. In the new
design space, we have:

𝒉𝐿 ≤ 𝐉lin𝐀
−1𝒙̂geo ≤ 𝒉𝑈 (3.11)

3.3.2.4 Design variable bounds

Lastly, the design variable bounds require some modification
to the optimization problem itself. The bounds in the original
space 𝒙 are usually given as

𝒙𝐿 ≤ 𝒙 ≤ 𝒙𝑈. (3.12)

56

However, in the new design space, these bound constraints be-
come linear inequality constraints:

𝒙𝐿,𝑔 ≤ 𝐀
−1𝒙̂geo ≤ 𝒙𝑈,𝑔. (3.13)

Because the matrix 𝐀 is orthonormal, geometrically, the design
space mapping corresponds to a rotation and possibly a reflection.
The original bound constraints form a rectangular feasible space,
but after rotation, the boundary is no longer aligned with the
coordinate axes of the new design space, as shown in figures 3.12
and 3.13. Therefore, they cannot be expressed as design variable
bounds, and must be replaced by explicit linear constraints with
𝐀−1 as the linear Jacobian. We only do this for the geometric
design variables, and the rest of the design variable bounds are
unchanged. While this technically increases the dimension of
the optimization problem by introducing additional constraints,
it should not cause any difficulties for gradient-based optimizers
because the constraints are linear.

−1 1 2 3

−1

1

2

3

𝑥1

𝑥2

Figure 3.12: Original design space bounds.

−1 1 2 3

−1

1

2

3

̂𝑥1

̂𝑥2

Figure 3.13:The same bounds in the new design space.

3.3.2.5 Alternative Implementation

Another way to look at these mappings is by working with the
global design vector 𝒙 and Jacobian 𝐉 instead of partitioning into
sub-blocks. We can construct a global mapping matrix 𝐀̃:

𝐀̃ = [
𝐀 𝟎
𝟎 𝐈
] (3.14)

corresponding to the design variable ordering which we assume
to be

𝒙 = [
𝒙geo
𝒙𝑜
]

Then, we can apply the matrix transformation to the full design

57

variable vectors and Jacobians:

𝒙̂ = 𝐀̃𝒙
̂𝐉 = 𝐉𝐀̃−1

which is the same result as above.

Note that the code implementation uses the former approach for
ease of implementation and better bookkeeping of the various
indices.

3.3.3 Verification

As before, we compute the angles 𝜃𝑖𝑗 between pairs of columns
of ̂𝐉 using equation 3.2, but in the new design space 𝒙̂. Recall
that in the original design space 𝒙, the worst alignment has an
angle of 𝜃𝑖𝑗 = 3.4°. Through the svd, we expect all the gradient
vectors to be orthogonal to each other. Therefore we compute
the maximum deviation from orthogonality, computed as

𝛿max = max
𝑖≠𝑗
𝛿𝑖𝑗, (3.15)

where 𝛿𝑖𝑗 is computed from equation 3.3.
Table 3.2: Verification of the orthogonality of geomet-
ric sensitivities.

𝛿max (deg)

𝒙 86.58
𝒙̂ 2.48 × 10−11

As shown in table 3.2, the linear transformation yields an or-
thogonal Jacobian, up to machine precision. This means that the
matrix 𝛿𝑖𝑗 as computed by equation 3.3 would be an identity
matrix in the new design space, with 90° along the diagonal and
zero elsewhere.

3.3.4 Generated design variables

Finally, we show the first eight design variables in figure 3.14,
sorted by decreasing singular values. These variables are typical of
modal decompositional approaches, where the design variables

58

Figure 3.14: The first eight newly constructed design variables.

corresponding to larger singular values have lower frequency
modes. Some design variables are recognizable; for example, the
third and fifth design variables show root camber deformations.
However, later design variables are less discernable, which is
expected in any decompositional approach. Since the transfor-
mation is linear, we can always map the design variables back
and forth with relative ease, and users can monitor optimization
progress using more physically-intuitive design variables.

59

3.4 Design variable scaling

In gradient-based optimization, design variable scaling is an im-
portant aspect that can significantly impact the performance of
nonlinear optimizers [2, Tip. 4.4]. Variable scaling refers to using [2]: Martins et al. (2021), Engineering Design Opti-

mizationmultipliers 𝑠𝑖 that are applied to each design variable, such that
the optimizer operates in the scaled design space where 𝑥′𝑖 = 𝑠𝑖𝑥𝑖.
This is mathematically equivalent to a diagonal preconditioner
applied to the entire optimization problem. A common strategy
is to scale the design variables so that their bounds are in the
[0, 1] range. Physical intuitions can also be used to deduce, for
example, that the scaling for the angles of attack should be the
same as for the spanwise twist variables on the wing because they
have the same units and roughly the same impact on the flow
solution.

However, there is no general approach to scaling design variables.
Scaling design variables to be within the unit hypercube is not
always reliable, and physical intuition cannot be applied across
disparate design groups, such as shape or sweep, where their
impact on the optimization is complex. Users must rely largely
on trial and error to produce well-behaved optimizations, which
can consume a significant amount of time.

3.4.1 Methodology

When using design variable mapping, neither approach can be
used to scale the design variables as they no longer have bounds
or physical meaning. However, with the additional insight pro-
vided by the svd, we can use that information to automatically
determine the appropriate scaling for these design variables. In
particular, the singular values 𝜎𝑖 corresponding to each geomet-
ric design variable 𝑥𝑖 are a natural choice. For a given unit of
change, the design variables with larger singular values have a
more significant impact on the surface mesh coordinates and
are thus more sensitive. The scaling factors are only applied to

60

geometric design variables where there is sensitivity information.
The remainder of the design variables are left unscaled, and the
same factor is used for all optimizations.

We seek a scaling function 𝑠(𝜎) that gives the appropriate scaling
for each design variable based on its singular value. Logically,
we would like to reduce the sensitivity of more impactful de-
sign variables and vice versa. This would ensure that all design
variables have similar sensitivities and converge equally quickly.
From a numerical optimization perspective, this should also en-
sure a better-conditioned Hessian with similar curvatures along
different axes [71]. [71]: Gill et al. (1981), Practical Optimization

In this work, we try four choices for 𝑠𝑖: 1, 𝜎𝑖, √𝜎𝑖, and 1/𝜎𝑖.
Because a larger scaling value decreases the sensitivity of a design
variable, we expect monotonically increasing choices for 𝑠(𝜎),
such as 𝑠 = 𝜎 or 𝑠 = √𝜎, to perform well.

Together with the design variable mapping, this approach can be
considered mathematically as a preconditioning step for the op-
timization problem. Together with design variable mapping, this
can make the Hessian of the Lagrangian more diagonally domi-
nant, and the diagonal elements may be of similar magnitudes.
In such cases, the initial Hessian approximation from the opti-
mizer can be more accurate, leading to more rapid optimization
convergence.

3.4.2 Impact of mesh density

The singular vectors and singular values change depending on
the mesh density. As the mesh density increases, the geometric
Jacobian 𝐉geo will contain more entries, resulting in larger sin-
gular values. However, the overall trends of the singular values
and singular vectors should be similar across different mesh den-
sities. To study this effect in more detail, we perform the same
svd process on a family of meshes with R2 as the coarsest mesh
and R0 as the finest mesh. We also introduce a mesh E1 with a

61

slightly different te to study the impact of different underlying
surface definition.

The top of figure 3.15 shows the distribution of singular values
𝜎𝑖 for each mesh density. As expected, the finest grid, R0, has
much larger singular values than the rest. The lower figure of
figure 3.15 shows the normalized singular values 𝜎̃, computed
as

𝜎̃𝑖 =
𝜎𝑖
∑𝑗 𝜎𝑗
,

such that ∑𝑖 𝜎̃𝑖 = 1.

0

5

10

15

20

25

𝜎𝑖

R0
R1
R2
E1

0 20 40 60 80 100 120
0.00

0.02

0.04

0.06

0.08

0.10

𝜎̂𝑖

Figure 3.15: Comparison of unscaled and scaled sin-
gular values computed from several different grids.

The distributions across the mesh family remain near-identical,
except for the mesh E1. This is somewhat expected given the
different trailing edge geometry, and the effect is only present
for the first few singular values. Therefore, after the svd, we
normalize all singular values before applying the scaling function
𝑠(𝜎).

62

3.5 Optimization results

We solve two optimization problems: the T+S problem presented
above, and one with an additional span variable which we call
T+S+S. The optimizations involving span have an extra con-
straint such that the projected planform area of the wing must
be greater than or equal to the initial planform area.

We perform five optimizations for each of these optimization
problems to compare the two parameterizations and explore the
different scaling options. We first perform a reference optimiza-
tion using the existing parameterization and four optimizations
using the sensitivity-based parameterization with various design
variable scaling.

For this to be a fair comparison, we converge all cfd primal and
adjoint solutions tightly, using the tolerances 𝜏pr = 𝜏adj = 10

−14.
This way, we ensure that we can reach the target feasibility and
optimality tolerances without the optimizer wasting extra evalu-
ations due to inaccurate function values or gradients. We also set
the snopt feasibility and optimality tolerances to 10−6. The only
difference between these optimizations is the design variable
mapping and scaling, which affects the optimizer’s performance.
This way, we can check first if the four scaling options converge
to the same reference optimum and subsequently analyze their
performance. Table 3.3 lists the different optimization problems,
showing that the new parameterization has the same number
of design variables, and extra linear constraints are in place to
replace the bound constraints in the original design space.

3.5.1 Twist and shape

Table 3.4 shows the outcomes of those optimizations. As ex-
plained above, the mapping does not modify the optimization
problem in any way, and we would expect all the optimizations
to arrive at the same optimum.

63

Table 3.3: Optimization problem statements highlighting the differences in problem size between the original and new parameterizations.

Quantity (T+S) Quantity (T+S+S)
Function/variable Description Original New Original New

minimize 𝐶𝐷 Drag coefficient 1 1 1 1

with respect to 𝑥twist Section twist 7 0 7 0
𝑥shape Shape 96 0 96 0
𝑥span Span — — 1 0
𝑥user User 0 103 0 104
𝛼 Angle of attack 1 1 1 1

Total design variables 104 104 105 105

subject to 𝐶𝐿 = 0.5 Lift constraint 1 1 1 1
𝑡 ≥ 𝑡0 Thickness constraint 100 100 100 100
𝐴 ≥ 𝐴0 Area constraint — — 1 1
𝑉 ≥ 𝑉0 Volume constraint 1 1 1 1

𝛥𝑧LE,upper = −𝛥𝑧LE,lower Fixed leading edge constraint (L) 8 8 8 8
𝛥𝑧TE,upper = −𝛥𝑧TE,lower Fixed trailing edge constraint (L) 8 8 8 8
𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 Design variable bounds (L) 0 103 0 104

Total constraints 118 221 119 223

Table 3.4: Summary of optimization results for the T+S problem.

Scaling Objective (counts) Major itns Feasibility Optimality Time (hr) 𝜂 (%)

Reference 183.188 263 5.0 × 10−11 9.6 × 10−7 2.61 —
𝑠 = 1 183.231 1000 9.1 × 10−9 6.4 × 10−4 9.94 −281
𝑠 = 𝜎 183.188 309 9.7 × 10−12 4.7 × 10−7 3.27 −26
𝑠 = √𝜎 183.188 284 1.5 × 10−11 9.8 × 10−7 2.83 −8
𝑠 = 1/𝜎 183.198 577 6.4 × 10−13 8.3 × 10−7 5.98 −129

However, this was not the case. While most optimizations con-
verged to the same optimum as the reference case without ge-
ometric mapping, the cases with 𝑠 = 1 and 𝑠 = 1/𝜎 did not.
Although feasible, these two optimizations took significantly
more iterations and terminated with worse objective values. In
the case of 𝑠 = 1, the optimization took the maximum allowable
major iterations of 1000 and terminated before reaching the
final optimality tolerance of 10−6. This is somewhat consistent
with our expectations, as those two scaling options did not re-
duce the sensitivity of more impactful design variables. This
highlights the importance of design variable scaling, which can
significantly impact the optimization performance.

The performance of the different optimizations are characterized
by the computational speedup:

64

Definition 3.5.1 The speedup, 𝜂, for an optimization is computed
relative to a reference optimization as

𝜂 = 1 − 𝑐
𝑐ref

(3.16)

where 𝑐 is the computational cost of the optimization, and 𝑐ref is the
cost for the reference optimization.

Out of the three optimizations that converged to the same opti-
mum, design variable mapping did not offer a clear advantage
over the existing parameterization. The best-performing scaling
option, 𝑠 = √𝜎, took 21 more major iterations and 8% longer
wall time to converge. However, it is worth pointing out that
the reference optimization was performed with design variable
scaling tuned through prior experience. Achieving comparable
performance is still advantageous because it reduces the cost
of setup and tuning, which is not included in the comparison
above.

Figure 3.16 shows a few design variables throughout the opti-
mization. Although the shape and twist variables were not used
directly, we can easily apply the inverse mapping to obtain their
values throughout the optimization. These plots clearly show
that the two optimizations with 𝑠 = 1 and 𝑠 = 1/𝜎 did not con-
verge. Their design variable values stayed near the initial design
for much of the optimization, and the final value did not match
the reference optimum. For the remaining three optimizations,
some variables converged more rapidly than the reference, while
others exhibited more oscillations.

The optimization metrics are shown in figure 3.17. In addition
to the previously-mentioned metrics, we also show the merit
function, which is an augmented Lagrangian composed of three
terms: the objective, the constraints weighted by the Lagrange
multipliers, and a quadratic penalty term on the constraint vi-
olation [132]. This metric helps gauge optimization progress, [132]: Gill et al. (2005), SNOPT: An SQP Algorithm

for Large-Scale Constrained Optimizationas it combines the objective value with the constraints. Again,

65

1.5

2.0

2.5

3.0

3.5

4.0

𝛼
reference
𝑠 = 1
𝑠 = 1/𝜎

𝑠 = 𝜎
𝑠 = √𝜎

−0.06

−0.04

−0.02

0.00

0.02

0.04

shape7

0 35773

Wall Time (s)

−1

0

1

2

3

twist1

Figure 3.16: The design variable history for each optimization. The dashed line corresponds to the final value obtained from the reference optimization
without any design variable mapping.

we can see that the two unconverged optimizations were much
slower at reducing the merit function than the others. They also
had large oscillations for feasibility and optimality, indicating
difficulties in obtaining an accurate approximate Hessian.

On the other hand, the optimization with 𝑠 = 𝜎 converged
rapidly at the end of its optimization, reminiscent of the twist-
only case presented earlier. After close to 300 iterations with
relatively little change to optimality, it decreased it from 10−3 to
10−6 in 6 iterations. This rapid convergence rate is an indication

66

10−15

10−12

10−9

10−6

10−3

100

𝜏fea

reference
𝑠 = 1
𝑠 = 1/𝜎

𝑠 = 𝜎
𝑠 = √𝜎

10−7

10−5

10−3

10−1

𝜏opt

0 35773

Wall Time (s)

1.2

1.4

1.6

1.8

2.0

2.2

𝑓merit

Figure 3.17: The optimization metrics for the T+S case. The thin horizontal black line indicates the termination criteria of 10−6 for feasibility and optimality.

that it was able to accumulate a sufficiently-accurate approximate
Hessian to be within the quadratic convergence region, likely
due to a combination of orthogonal design variables and suitable
scaling. Despite taking longer than the reference optimization,
the rapid terminal convergence means that for a tighter termina-
tion criterion, it could conceivably obtain an optimum in fewer
iterations.

Lastly, we extract the approximate Hessian at the final iteration
and show them in figure 3.18. We ensure that the Hessian is

67

reference 𝑠 = 1

𝑠 = 𝜎 𝑠 = √𝜎 𝑠 = 1/𝜎

Negative

Positive

Figure 3.18: The approximate Hessian at the final optimization iteration. While a symmetric diverging colormap is used, the maximum value is adjusted for
each plot. Therefore, entries with the same color do not have the same magnitude across different subplots.

never reset during the optimization, either periodically or when
the optimizer encounters numerical difficulties so that these
plots are representative of the design space as perceived by the
optimizer. In addition, the optimizations presented here took a
large number of major iterations, on the order of several times
the number of design variables. Therefore, they represent a rea-
sonable approximation to the Hessian of the Lagrangian and
give us an indication of the curvature of the design space.

68

In these figures, the horizontal and vertical thin black lines are
used to show different design variable groups. For the reference
optimization, the first row and column correspond to the angle
of attack variable, followed by the seven twist variables. The
remaining entries are the shape variables. For the other optimiza-
tions, the design variable mapping groups all geometric design
variables into a single sub-block, and the only other variable is
𝛼.

The structure of the approximate Hessian is visible in the ref-
erence optimization, with the twist variables having the largest
entries, particularly along the diagonal. Significant coupling
across design variables can also be seen in the structure of the
off-diagonal terms. Many of these off-diagonal entries are pre-
cisely the design variable pairs with near-parallel alignment, not
just between the shape variables but also between twist variables.
This is demonstrated by comparing figures 3.11 and 3.18, where
the design variables with poor alignment match the same off-
diagonal structure of the approximate Hessian very well. This
provides further evidence of the hypothesis in section 3.2.1 that
by orthogonalizing the geometric design variables based purely
on their sensitivity, we can obtain a design space better suited
for gradient-based optimization.

When mapping is applied, the structured pattern in the Hessian
is eliminated, and different scaling options affect the magnitudes
of the entries. For the two optimizations that did not converge,
it is clear that the approximate Hessian was far from accurate.
For the remaining optimizations, the magnitudes of the diagonal
terms are informative.

In the ideal scenario, a well-scaled optimization should have
entries of similar magnitudes along the diagonal, indicating
similar curvatures across design variables. With the scale option
𝑠 = 𝜎, there is an over-emphasis on the later design variables,
whereas 𝑠 = √𝜎 had a more uniform distribution. This could be
why this particular scaling performed the closest to the reference

69

Table 3.5: Summary of optimization results for the T+S+S problem.

Scaling Objective (counts) Major itns Feasibility Optimality Time (hr) 𝜂 (%)

Reference 171.924 373 8.0 × 10−12 9.5 × 10−7 3.75 —
𝑠 = 1 171.934 1000 2.4 × 10−12 3.8 × 10−6 10.30 −176
𝑠 = 𝜎 171.924 353 2.7 × 10−15 7.8 × 10−7 4.05 −8
𝑠 = √𝜎 171.924 314 1.9 × 10−14 8.6 × 10−7 3.49 7
𝑠 = 1/𝜎 171.936 547 1.7 × 10−14 7.0 × 10−7 5.81 −55

optimization.

3.5.2 Span

Similar trends were observed for the optimization involving
twist, shape, and span variables. The optimization results are
summarized in table 3.5.

The design variable histories are shown in figure 3.19, and the
optimization metrics are shown in figure 3.20. As before, the
scalings 𝑠 = 1 and 𝑠 = 1/𝜎 did not converge, and 𝑠 = √𝜎
performed the best, beating the reference optimization by 7%.
Interestingly, both 𝑠 = 𝜎 and 𝑠 = √𝜎 took fewer major itera-
tions to converge than the reference optimization, and the rapid
terminal convergence stage was observed again in figure 3.20.

We know from the earlier analysis that at the initial design, the
reference parameterization has a deviation from orthogonality
of 86.6°, and that after orthogonalization the deviation is zero.
However, it was not clear whether these values would persist
throughout the optimization. Therefore, at each major iteration,
we compute the maximum deviation across all pairs of design
variables:

max
𝑖𝑗
𝛿𝑖𝑗.

These values are plotted for the reference and the √𝜎 optimiza-
tions, and shown in figure 3.21.

Inevitably, the 𝛿𝑖𝑗 worsened for the orthogonal parameterization
over the course of the optimization. Since the parameterization

70

1

2

3

4

5

6

𝛼

reference
𝑠 = 1
𝑠 = 1/𝜎

𝑠 = 𝜎
𝑠 = √𝜎

−0.100

−0.075

−0.050

−0.025

0.000

0.025

shape7

0 37195

Wall Time (s)

−1

0

1

2

3

4

span

Figure 3.19: The design variable history for the T+S+S case.

was computed about the initial point, any nonlinear geometric
deformation will introduce non-orthogonality. However, at the
optimum, the maximum deviation was only 15°, indicating that
for this particular optimization problem, the parameterization
was likely valid throughout and no re-orthogonalization was nec-
essary. Of course, for an optimization with larger deformations,
the same may not be true. On the other hand, the reference pa-
rameterization stayed near constant. This is due to the fact that
this metric is the maximum deviation, taken over all possible de-
sign variable pairs—numbering over 5400. From the histogram

71

10−15

10−12

10−9

10−6

10−3

100

𝜏fea

reference
𝑠 = 1
𝑠 = 1/𝜎

𝑠 = 𝜎
𝑠 = √𝜎

10−7

10−5

10−3

10−1

𝜏opt

0 37195

Wall Time (s)

1.2

1.4

1.6

1.8

2.0

2.2

𝑓merit

Figure 3.20: The optimization metrics for the T+S+S case.

shown in figure 3.3, the culprit was a single pair of design vari-
ables identified in figure 3.4. With small geometric changes in
the region, the amount of deviation was not altered, and the
same value remained throughout the optimization, negatively
impacting the optimization at every iteration.

The final approximate Hessians are shown in figure 3.22, and
once again, the 𝑠 = √𝜎 case had a more uniform distribution
of entries along the diagonal. In retrospect, this outcome makes

72

0 314 373

Major iterations

0.00

15.42

86.58
m
ax 𝑖𝑗
𝛿 𝑖
𝑗

reference

√𝜎

Figure 3.21: The maximum deviation from orthogo-
nality for the reference and √𝜎 optimizations.

sense. When we scale variables by a factor 𝑠,

̂𝑥 = 𝑠𝑥.

This causes the derivatives to be scaled by the same factor 𝑠. Since
the Hessian is the matrix of second derivatives, this causes the
entries of the Hessian to be scaled by 𝑠2. If the aim is to scale
those Hessian entries by 𝜎, then scaling the design variables by
their square root would be the logical choice.

The differences in performance between these four identical
optimizations show the importance of design variable scaling.
Together with the construction of the new design variables, we
demonstrate that despite examining only the geometric prop-
erties of the optimization problem, we can improve the perfor-
mance of the optimization.

3.6 Summary

In this chapter, we showed that the existing geometric design
variables based on intuitive parameters are not orthogonal to
each other. In some cases, a design variable affects the embedded
surface mesh in a similar way to another, which could lead to
issues with the optimizer. To address this, we constructed a new
set of design variables based on an svd of the geometric Jacobian,
such that the Jacobian in the new design space is orthogonal.

73

reference 𝑠 = 1

𝑠 = 𝜎 𝑠 = √𝜎 𝑠 = 1/𝜎

Negative

Positive

Figure 3.22: The approximate Hessian at the final iteration for the T+S+S case. The additional span variable is visible in the reference optimization at the
ninth index, highlighted by the thin vertical and horizontal lines.

At the same time, we use the singular values from the svd to
automatically scale these constructed design variables.

We then perform two sets of asos, first with twist and shape vari-
ables and later including span. For each optimization problem,
we compared the original parameterization against the newly
developed parameterization with various scaling approaches. We
found that with the appropriate design variable scaling, the pro-
posed methodology improved the optimization convergence

74

while converging to the same optimum. Unlike the reference
optimization, we eliminated the long optimization tail and recov-
ered the rapid terminal convergence expected of quasi-Newton
methods. Although the overall computational costs were com-
parable to the reference optimization, the automatic scaling
eliminates the need for manual tuning, which is a significant
advantage over the traditional approach.

In addition, the proposed methodology is not limited to aero-
dynamic optimization problems. It can be easily extended to
aerostructural problems where the same geometric parameteriza-
tion describes both the aerodynamic and structural mesh points.
The automatic scaling approach could also be more effective
when the parameterization lacks an initial physically informed
scaling, such as when using cst parameterizations.

75

Chapter 4

Adaptive Convergence Error Control

4.1 Background 75

4.2 Error estimation 78

4.3 Error adaptation 83

4.4 Results 87

4.5 Summary 93

4.1 Background

In many optimizations, the objective and constraint functions
are computed from an expensive, iterative solution process, as
discussed in section 2.2. One approach to reduce the computa-
tional cost is to only partially converge the solution and adjoint
equations during optimization, via the tolerances defined in
equations 4.2 and 4.3. By loosely converging the solution ini-
tially, and gradually tightening the tolerance as the optimizer
moves towards the optimum, significant cost savings could be
realized. This is conceptually not dissimilar from the nlbgs
algorithm proposed by Kenway, Kennedy, and Martins [21], [21]: Kenway et al. (2014), Scalable Parallel Approach

for High-Fidelity Steady-State Aeroelastic Analysis and
Adjoint Derivative Computations

or the Eisenstat–Walker algorithm [172] for choosing the lin-

[172]: Eisenstat et al. (1996), Choosing the Forcing
Terms in an Inexact Newton Method

ear residual. The convergence level can also be thought of as a
continuously-varying and user-adjustable level of fidelity, in the
context of multifidelity optimization [173]. [173]: Peherstorfer et al. (2018), Multifidelity Monte

Carlo estimation for large-scale uncertainty propagation

However, the solution and gradient accuracy will impact the
optimization convergence. Without careful consideration of the
adaptive approach, it is possible to converge to an incorrect
apparent optimum, or not converge at all. Several papers have
covered the development of inexact sqp algorithms with guaran-
teed convergence [174, 175], where the accuracy requirements of [174]: Heinkenschloss et al. (2001), Analysis of inexact

trust-region SQP algorithms, SIAM Journal on Opti-
mization
[175]: Gu et al. (2017), A new inexact SQP algorithm
for nonlinear systems of mixed equalities and inequalities

the function and gradients are determined by the optimizer, and
the errors are managed in such a way that convergence properties
are retained. While mathematically rigorous, these approaches
require the modification of the optimization algorithm itself,

76

which is not applicable to typical engineering applications where
the solvers and optimizer are treated as independent black boxes
with only input parameters such as convergence tolerances to
adjust.

In general, the development of any adaptive error control re-
quires two key ingredients. First, an error estimation must be
available for the function value and possibly the gradient, based
on the current solver convergence tolerances. Second, an adap-
tation algorithm will modify the solver tolerances based on the
current accuracy requirements of the optimizer, such that the
solvers are converged to the necessary tolerances but no fur-
ther.

Adjoint-based error estimation is a relatively well-established
field, where the adjoint is used to estimate the discretization
error in cfd simulations [94]. Based on this error estimation, [94]: Fidkowski et al. (2011), Review of output-based

error estimation and mesh adaptation in computational
fluid dynamics

the computational mesh can then be adapted to reduce dis-
cretization error, via either 𝑝 or ℎ-refinement. This approach has
been successfully employed in a number of cfd solvers such as
fun3d [176] and Cart3D [177]. [176]: Biedron et al. (2019), FUN3D Manual: 13.6

[177]: Nemec et al. (2008), Adjoint-Based Adaptive
Mesh Refinement for Complex GeometriesIt is natural to extend this approach to convergence error, which

has been done in the past by Lu and Darmofal [178] and Lozano
and Ruiz Juretschke [179], and which we have independently [178]: Lu et al. (2004), Adaptive Precision Methodology

for Flow Optimization via Discretization and Iteration
Error Control
[179]: Lozano et al. (2009), Adjoint-Based Correction
of Non-Converged CFD Solutions

derived in section 4.2. Lu and Darmofal [178] further attempted

[178]: Lu et al. (2004), Adaptive Precision Methodology
for Flow Optimization via Discretization and Iteration
Error Control

to combine this together with discretization error control, to
adaptively change both the solution tolerance and the mesh
during optimization. While the authors showed some compu-
tational gains of their methodology, the application was fairly
basic and cannot be applied directly to the present problems of
interest. Furthermore, they developed a concurrent primal-dual
solution strategy in order to perform error estimation on-the-
fly, something that is infeasible with the current computational
framework.

To date, Brown and Nadarajah [180, 181]

[180]: Brown et al. (2017), Inexactly constrained discrete
adjoint approach for steepest descent-based optimization
algorithms
[181]: Brown et al. (2021), Effect of inexact adjoint
solutions on the discrete-adjoint approach to gradient-
based optimizationwere the most suc-

cessful at tackling this topic. They developed error estimates and

77

tolerance adaptation based on the convergence of the primal
system,1 and then extended it to the adjoint system in the sub- 1: The authors called the primal system the constraints,

in the context of pde-constrained optimization.sequent paper. These are rigorous mathematical developments
governing the adaptation algorithm such that optimization con-
vergence is guaranteed. However, a number of simplifications
prevented direct adoption of this approach. First, a steepest-
descent algorithm without line search is assumed, in order to
arrive at the guaranteed convergence properties. It is well known
that such optimization algorithms converge linearly, and are
significantly slower than more advanced algorithms such as sqp
that converge superlinearly [74, Sec. 18.7]. Second, an uncon- [74]: Nocedal et al. (2006), Numerical Optimization

strained optimization problem is assumed, again to simplify the
derivation of the adaptation algorithm. However, optimization
problems of engineering relevance typically have a number of
nonlinear constraints. Constraint handling in the context of
multifidelity optimization is a challenging topic, as the use of
low-fidelity models to compute the constraints will modify the
feasible region, and may lead to a different active set 𝒜. This is
also the reason why the error estimation of Brown and Nadarajah
[180, 181] is only focused on the error in the gradient, while [180]: Brown et al. (2017), Inexactly constrained discrete

adjoint approach for steepest descent-based optimization
algorithms
[181]: Brown et al. (2021), Effect of inexact adjoint
solutions on the discrete-adjoint approach to gradient-
based optimization

the error in the function value itself is equally important when
constraints are present. This is perhaps the reason why the au-
thors, as well as Lu and Darmofal [178] demonstrated their

[178]: Lu et al. (2004), Adaptive Precision Methodology
for Flow Optimization via Discretization and Iteration
Error Control

approaches on inverse design problems which did not require
any constraints.

In practice, established optimizers are algorithmically highly
complex. ipopt [126], for example, has over 50 000 lines of [126]: Wächter et al. (2006), On the Implementation

of a Primal-Dual Interior Point Filter Line Search Algo-
rithm for Large-Scale Nonlinear Programming

code (loc). While there are immense values to analyzing al-
gorithmic behaviour and convergence properties, the simplifi-
cations prevent direct adoption of such approaches to larger,
industrially-relevant optimization problems. Therefore, the aim
of this work is to develop an alternative approach, based on a
synthesis of rigorous mathematical analysis and heuristics to
tackle larger problems.

As before, the proposed approach involves two main steps. First,

78

a reliable error estimate needs to be computed, so that we know
how much error there are in the outputs of interest. Second,
an adaptive algorithm needs to be designed to robustly adjust
the convergence tolerance of the solver, such that we still arrive
at the same numerical optimum but using less computational
resources. We now describe the two steps in more detail.

4.2 Adjoint-based convergence error

estimation

In an iterative solution scheme for nonlinear equations, we aim
to drive a set of residual equations 𝑹(𝒖) to zero, where 𝑹 are
the residuals and 𝒖 are the states. In the context of cfd, this is
typically accomplished using Newton-type methods with an ap-
propriate globalization technique [119]. However, even with ef- [119]: Yildirim et al. (2019), A Jacobian-free approxi-

mate Newton–Krylov startup strategy for RANS simula-
tions

ficient solvers, it is rarely necessary to obtain the fully-converged
solution 𝒖∗ such that 𝑹(𝒖∗) = 0.2 Instead, we use the residual 2: Or at least 𝑹(𝒖∗) ≈ 𝜖mp when considering finite

precision arithmetic.norm
‖𝑹(𝒖)‖2 (4.1)

as the metric, and terminate the iterative scheme once a sufficient
reduction has been achieved. In other words, the termination
criterion is a relative tolerance of the form:

‖𝑹(𝒖)‖2
‖𝑹(𝒖0)‖2

≤ 𝜏pr, (4.2)

where 𝒖0 are the initial states,3 and 𝜏pr is the primal convergence 3: Typically freestream states are used to initialize the
flow.tolerance.

We use a relative metric because the𝐿2 norm used here is sensitive
to the number of entries in the vector. For a denser mesh, the
𝐿2 norm will be naturally larger. To compensate for some of this
effect, we use a relative norm measure.

79

Comment 4.2.1

The 𝐿2 norm used here is a convenient and commonly-used
norm, but it suffers from one issue: the norm scales with
the size of the vector. As a result, it is impossible to discuss
“comparative levels of convergence” between solutions on
different mesh densities, since the norm of the residual would
be far higher on a finer mesh. The use of the residual reduction
relative to the initial residual is an attempt at addressing this,
but it may not be the best solution. In reality, we may want
to compute the volume integral in the continuous sense:

∫|𝑹| d𝑉.

Since the residuals are already volume weighted, the discrete
analog would be to apply the 𝐿1 norm:

∑
𝑖
|𝑹𝑖|

and use an absolute convergence tolerance irrespective of the
initial residual. This addresses another issue with the present
approach. The initial freestream residual will be nonzero only
at the boundary cells adjacent to the surface of the wing,
where the no-slip boundary condition is applied. Therefore,
the initial residual is not a true measure of the amount of
violation of the governing equations, in terms of the error on
the state variables, i.e. |𝒖̃ − 𝒖∗|.

For the adjoint, we use petsc to solve the linear system, i.e. equa-
tion 2.15. Similarly to the primal system, we typically prescribe
𝜏adj as the relative residual norm reduction as computed by petsc.
For a linear system of the form 𝐀𝒙 = 𝒃, we define the linear
residual as 𝒓 = 𝒃 −𝐀𝒙, and terminate the linear solver based on
the following criteria from petsc:

‖𝒓‖2
‖𝒃‖2
≤ 𝜏adj, (4.3)

80

where the denominator can be interpreted as the initial residual
vector 𝒓0 if the initial guess is the zero vector.

4.2.1 Derivation

Consider a partially-converged intermediate state 𝒖̃where𝑹(𝒖̃) ≫
𝜖mp, in contrast to the fully-converged solution𝒖∗ where𝑹(𝒖∗) =
0. The states 𝒖̃ can be obtained more quickly than 𝒖∗, but they
do not accurately compute functional outputs such as lift or
drag. However, with the help of the adjoint, we can compute a
linearized error estimate. We first start by writing a Taylor series
expansion of the residual about the partially-converged state:

𝑹(𝒖∗) = 𝑹(𝒖̃) + 𝜕𝑹
𝜕𝒖
|
𝒖̃
(𝒖∗ − 𝒖̃) +… (4.4)

= 0 (4.5)

Similarly, we can expand the function of interest ℐ about the
partially-converged state as

ℐ(𝒖∗) = ℐ(𝒖̃) + 𝜕ℐ
𝜕𝒖
|
𝒖̃
(𝒖∗ − 𝒖̃) +… . (4.6)

We can solve for the term (𝒖∗ − 𝒖̃) by rearranging equation 4.4
and ignoring high-order terms to get

𝒖∗ − 𝒖 = − 𝜕𝑹
𝜕𝒖
|
−1

𝒖̃
𝑹(𝒖̃). (4.7)

This term can then be plugged into equation 4.6 to get

ℐ(𝒖∗) = ℐ(𝒖̃) − 𝜕ℐ
𝜕𝒖
|
𝒖̃

𝜕𝑹
𝜕𝒖
|
−1

𝒖̃
𝑹(𝒖̃). (4.8)

We now define the adjoint vector 𝝍̃ to be the solution of the
linear system

𝜕𝑹
𝜕𝒖
|
T

𝒖̃
𝝍̃ = 𝜕ℐ
𝜕𝒖
|
T

𝒖̃
, (4.9)

81

which is simply the adjoint vector 𝝍 computed at the partially-
converged states 𝒖̃. While the adjoint vector is typically solved
at the converged state, it does not have to be. It is simply a
linearization, and in this case we are linearizing about the states
𝒖̃.

Plugging into equation 4.8, we have

ℐ(𝒖∗) = ℐ(𝒖̃) − 𝝍̃T𝑹(𝒖̃) (4.10)

In other words, the error in a functional output due to poor
convergence is given by the dot product of the residual with the
adjoint vector, computed about the same point:

𝜖ℐ ≜ ℐ(𝒖∗) − ℐ(𝒖̃) (4.11)

= −𝝍̃T𝑹(𝒖̃) (4.12)

This result can be further improved to be third-order accurate
by considering the dual of the above error estimation, i.e., the
error due to poor convergence of the adjoint variables 𝝍. Since
the linear system equation 4.9 may not be fully solved, the
values of 𝝍̃ introduces an additional source of error. Becker and
Rannacher [182] first derived this term as [182]: Becker et al. (2001), An optimal control approach

to a posteriori error estimation in finite element methods

𝑹T𝝍𝒖, (4.13)

where 𝑹𝝍 is the linear residual of equation 4.9. Compared to
equation 4.11, this is now the primal -weighted (adjoint) residual,
which is clearly its dual. Fidkowski and Darmofal [94] showed [94]: Fidkowski et al. (2011), Review of output-based

error estimation and mesh adaptation in computational
fluid dynamics

that by averaging those two error estimates, a more accurate
prediction can be made. In this work we do not consider this
term, but it can certainly be incorporated in the future.

As an additional topic of investigation, it is possible to use the
error estimate to correct for the partially-converged function val-
ues. Instead of using ℐ(𝒖̃) for optimization, we can instead pass
the value ℐ(𝒖̃) − 𝝍̃T𝑹(𝒖̃) to the optimizer. While the gradients

82

would be inconsistent with the function itself, the more accurate
function estimate may be beneficial during line search. This is
investigated in section 4.4.1.

4.2.2 Verification

To verify the error estimation, we stopped an airfoil analysis at
various convergence tolerances. At each level, we converged the
adjoint to a tolerance of 𝜏adj = 10

−12, and computed the error
estimation.

First, we plot the actual errors and the adjoint-based error estima-
tion against the residual norm. The actual errors are computed
using

𝜖actual = | ̃ℐ − ℐ∗|. (4.14)

where the final converged values ̃ℐ are computed with a conver-
gence tolerance of 𝜏pr = 10−15. These are shown in figure 4.1
in log-log scale. Here, we see that for both lift and drag, the
adjoint error estimation is able to accurately capture the function
error.

Naturally, by omitting the higher-order terms, we are using
the adjoint variables to linearly project the current solution
𝒖̃ to 𝒖∗. While accurate for the range of residual reductions
shown in figure 4.1, there is a limit due to the nature of linear
extrapolation. For example, computing the error estimate using
a relative convergence of 10−1 is unlikely to be accurate.

Next, the semi-converged lift and drag values are plotted against
the residual norm in figure 4.2. We also show the error-corrected
values, i.e., ℐ(𝒖̃)− 𝝍̃T𝑹(𝒖̃). Since the error estimation was accu-
rate, the corrected output is much closer to the final converged
value, and does not suffer from significant oscillations as seen
for 𝑐𝑙.

Of course, the rate at which the error decreases as the resid-
ual norm decreases is going to be dependent on the solution

83

10−13

10−10

10−7

10−4

10−1

𝑐𝑑 error

Actual error
Predicted error

10−16 10−14 10−12 10−10 10−8 10−6 10−4

𝑹̂

10−12

10−9

10−6

10−3

100

𝑐𝑙 error

Figure 4.1: Actual and computed errors for different
convergence levels.

algorithm used. For example, explicit time-stepping schemes
will have a drastically different trend than the results depicted,
which were generated using an approximate Newton–Krylov
scheme [119]. Nevertheless, the adjoint-based approach will ac- [119]: Yildirim et al. (2019), A Jacobian-free approxi-

mate Newton–Krylov startup strategy for RANS simula-
tions

count for those factors and produce accurate error estimates.

4.3 Convergence tolerance adaptation

algorithm

From section 4.2, we see that it is possible to estimate the error on
any functional output, at the cost of one adjoint solution each. In
the most straightforward and naive approach, we would compute
the error estimation and monitor it during the convergence
process. Then, once we reach the target error, we stop the primal
solution process. However, this would be prohibitively expensive
as each error estimation requires solving an adjoint—often as
expensive as the entire primal solution itself. Therefore, it would

84

0.00

0.02

0.04

0.06

0.08

𝑐𝑑

Uncorrected value
Corrected value

10−16 10−14 10−12 10−10 10−8 10−6 10−4

𝑹̂

−0.2

−0.1

0.0

0.1

0.2

𝑐𝑙

Figure 4.2: Convergence of lift and drag values, with-
out and with correction.

never be worthwhile to estimate the error when we could simply
let it fully converge.

Lu and Darmofal [178] bypassed this issue by developing a joint [178]: Lu et al. (2004), Adaptive Precision Methodology
for Flow Optimization via Discretization and Iteration
Error Control

primal-dual solution scheme, where the primal states are solved
in conjunction with the adjoint. Unfortunately implementing
such a scheme within ADflow would be infeasible. Instead, we
propose a lagged approach. Given that we need to solve the
adjoint anyhow in order to compute the gradient, we opt to
re-use this adjoint solution for error estimation. This means
that we cannot adaptively terminate the current primal solution,
but instead use the adjoint solution to update the termination
criteria for the next primal solver. That way, the cost of error
estimation is essentially free.

At every major iteration, we retrieve the feasibility 𝜏fea and
optimality 𝜏opt from the optimizer snopt. Recall from sec-
tion 2.5.7.1 that feasibility corresponds to the residual of the
zeroth order kkt conditions, and optimality corresponds to the
first order kkt conditions. While these residuals are scaled in-

85

ternally, we assume that the optimization problem has already
been suitably scaled outside the optimizer. In such cases, we can
take these as absolute tolerances. Then, it is natural to use the
feasibility tolerance as an indicator of the appropriate primal
convergence, and optimality for the adjoint convergence.

In the simplest case, we let the target error ̄𝜖 in computing each of
the constraints equal to the current feasibility tolerance achieved,
multiplied by a factor:

̄𝜖 = 𝑘pr𝜏fea (4.15)

where 𝑘pr is typically less than one—it does not make sense to
have the error of a functional output be larger than the con-
straint violation. A range of values for 𝑘pr were examined in this
work. Obviously, the smaller the value, the tighter the conver-
gence tolerance, so there is a tradeoff between robustness and
performance.

This error on the constraints still needs to be translated into
errors on functionals, which can be done via either analytic
differentiation or complex step. For example, suppose we have a
lift constraint 𝑔(𝒙) = 𝑐𝑙(𝒙) − 0.5. Then, a feasibility tolerance
of 10−2 means we should be computing 𝑔(𝒙) with an error of
10−2, which then translates to an error on the functional 𝑐𝑙 of
10−2. In the case of multiple constraints, each will have a target
error and resulting convergence tolerance. Naturally, the tightest
tolerance is used.

Once we have the error, we then need to determine the residual
norm that would yield such an error. We assume a linear rela-
tionship between the residual norm and the error, and that the
slope is one. See appendix A for some numerical experiments
that justify this choice.

𝜖
̄𝜖
=
‖𝑹‖2
‖𝑹̄‖2

(4.16)

86

Given the current error 𝜖, target error ̄𝜖, and current residual
norm ‖𝑹‖2, we can easily compute the target residual norm
‖𝑹̄‖2 that would yield the target error. From equation 4.16:

𝜖
̄𝜖
=
‖𝑹‖2/‖𝑹0‖2
‖𝑹̄‖2/‖𝑹0‖2

=
𝜏𝑘pr

𝜏𝑘+1pr

𝜏𝑘+1pr =
̄𝜖
𝜖
𝜏𝑘pr (4.17)

where the superscripts 𝑘 and 𝑘 + 1 indicate the major iteration
number.

In other words, if we need to reduce the error by an order of
magnitude, then the residual tolerance should also be reduced by
an order of magnitude. We chose to use this relative measure (i.e.
based on the current value of 𝜏pr) because the linear relationship
between 𝜖 and ‖𝑹‖2 has an undetermined 𝑦-intercept. Instead
of relying on an a priori curve-fit of this linear relationship, we
simply adjust 𝜏pr based on its current value, and the current and
expected errors.

One obvious issue with this approach is that it does not take the
accuracy of the objective function into account. As the objective
value is not part of the kkt system—only the derivatives—there
is no easy way to incorporate it in a mathematically-rigorous
fashion. It is possible to use a similar approach to what is done
in slsqp [131], and take successive objective function decrease [131]: Kraft (1988), A software package for sequential

quadratic programmingas an alternative optimality metric. This is in fact used by Lu
and Darmofal [178]. However, given the tight coupling be- [178]: Lu et al. (2004), Adaptive Precision Methodology

for Flow Optimization via Discretization and Iteration
Error Control

tween the objective and constraints in most cfd applications—
tighter convergence will typically improve the accuracy of both
simultaneously—we have opted not to specifically include the
objective error.

For the adjoint convergence tolerance, we simply set it to 𝜏adj =
𝑘adj𝜏opt, which is mathematically equivalent to the results of

87

Brown and Nadarajah [181]

[181]: Brown et al. (2021), Effect of inexact adjoint
solutions on the discrete-adjoint approach to gradient-
based optimization

in the unconstrained case. In this
work, we use a fixed value of 𝑘adj = 10

−6.

In addition to these, there are some safeguards to ensure benign
convergence behaviour. First, we place upper and lower bounds
on 𝜏pr and 𝜏adj, so that they are never too loose or tight. We also
limit the change in these tolerances across optimization itera-
tions, such that no positive feedback occurs—if an iterate does
not do well, the feasibility may increase, which would induce
a relaxed 𝜏pr that further hinders the optimization. Finally, if
we are close to the final optimum, then both 𝜏pr and 𝜏adj are
set to their lower bound. This ensures that by the end of the
optimization, we are fully converging our solutions in order
to arrive at the same numerical optimum. There are also times
where the optimizer may struggle to find a new point, likely due
to the poor convergence of the solver. We detect those cases, and
set 𝜏pr and 𝜏adj to their lower bound so that snopt may recover.
A pseudocode of the process is detailed in algorithm 1.

Algorithm 1: Adaptive error control
1 while optimization not converged do
2 set design variables and update geometry;
3 solve primal problem to tolerance 𝜏pr;
4 solve adjoint problem to tolerance 𝜏adj;
5 compute 𝜖 using adjoint-based error estimation;
6 if major iteration then
7 compute 𝜏pr and 𝜏adj;
8 set updated values for 𝜏pr and 𝜏adj;

9 compute the next design vector from the optimizer;

4.4 Results

We examine the performance on two optimizations, a 2D airfoil
problem and a 3D wing problem. In both cases, we compare
the adaptive approach with a reference optimization, and use
𝜏pr = 𝜏adj = 10

−12 for all iterations.

88

Table 4.1: The airfoil optimization problem. “(L)” denotes that the constraint is linear.

Function/variable Description Quantity

minimize 𝑐𝑑 Drag coefficient 1

with respect to 𝛼 Angle of attack 1
𝑥shape Shape 20

subject to 𝑐𝑙 = 0.5 Lift constraint 1
𝑉 ≥ 𝑉0 Volume constraint 1
𝑡 ≥ 0.1𝑡0 Thickness constraint 100

𝛥𝑧LE,upper = −𝛥𝑧LE,lower Fixed leading edge (L) 1
𝛥𝑧TE,upper = −𝛥𝑧TE,lower Fixed trailing edge (L) 1

4.4.1 Adaptive airfoil optimization

The first test case is a single-point airfoil drag minimization
problem. The flight condition is at an altitude of 10 000 m and
a Mach number of 0.75. The initial geometry is the RAE2822
airfoil, and the cell count is 18 816.

The design variables are 20 ffd control points, plus the angle
of attack. The lift coefficient is constrained at 0.5. In addition,
there are volume, thickness, and le/te constraints. The full
optimization problem is shown in table 4.1.

A reference optimization was first performed, with a constant
convergence tolerance set to 10−12 for both the primal and ad-
joint systems. In order to investigate the effect of 𝑘pr, as well
as whether function correction was beneficial, eight additional
optimizations were performed at a range of four 𝑘pr values. These
results are shown in table 4.2.

Adaptive Adaptive + Correction

𝑘pr 𝜂 (%) Iters 𝜂 (%) Iters

Reference — 108 — —

1 —* 27 —* 27
10−1 26 139 26 139
10−2 41 109 40 109
10−3 41 106 40 106
10−4 37 108 37 108

Table 4.2: Airfoil optimization results. Note that
the reference optimization was performed without
any adaptation, and serves as the reference for the
speedup shown in the columns labelled 𝜂. Optimiza-
tions marked with an asterisk did not converge suc-
cessfully.

The first thing to note is that both optimizations with 𝑘pr = 1

89

failed to converge. This is somewhat expected, since 𝑘pr directly
affects the primal convergence tolerance, and indicates that the
solution converged too poorly at early stages for the optimizer
to make sufficient progress.

For those that did converge, we see that as 𝑘pr decreased, an
interesting tradeoff develops. On one hand, each iteration is
more expensive as tighter convergence is required. On the other
hand, the number of optimization iterations is decreased as a
result of more accurate function values. Combined, these two
effects result in a relative insensitivity to 𝑘pr in the range of 10−2

to 10−4, where cost savings are all around 40%.

The last observation is that in the cases tested, function correc-
tion was not beneficial. This was somewhat unexpected, as we
had hoped that it would allow us to successfully converge opti-
mizations with a relatively large 𝑘pr, and thereby gain additional
performance benefits. Unfortunately, this did not prove to be
the case, and the behaviour was almost identical to the case with-
out correction. In retrospect, this was perhaps unsurprising, as
the errors are rather small and quickly drop below the function
precision expected by snopt. Nevertheless, it may be helpful to
further investigate why the optimizations with 𝑘pr = 1 failed to
converge.

The feasibility and optimality of the optimizations (without
function correction) are plotted in figure 4.3, together with the
primal and adjoint tolerances via the adaptive algorithm. Firstly,
it is clear that the optimization with 𝑘pr = 1 failed because 𝜏pr

was consistently around its upper bound of 10−6. The adaptive
algorithm attempted to recover at the end, by setting both toler-
ances to their lower bounds. Unfortunately this did not prove
effective. With 𝑘pr = 10

−1, the optimization suffered a similar
setback just before iteration 40, where the line search failed.
However, the recovery this time was effective, and still yielded
about 25% cost savings. The rest of the optimizations had similar
performance when we examine their feasibility and optimality

90

10−12

10−9

10−6

10−3

𝜏fea

𝑘pr = 10
0

𝑘pr = 10
−1

𝑘pr = 10
−2

𝑘pr = 10−3
𝑘pr = 10−4

10−7

10−5

10−3

10−1

𝜏opt

10−12

10−10

10−8

10−6

𝜏pr

0 20 40 60 80 100 120 140

Major iterations

10−12

10−10

10−8

10−6

𝜏adj

Figure 4.3: Optimization and solution tolerances for
the airfoil problem.

tolerances, despite large differences in the primal solution toler-
ance. The effect of 𝑘pr can be clearly seen, where optimizations
with a lower value consistently having lower primal convergence
tolerances.

In a typical optimization, the initial optimizations typically take
the longest time, for two reasons. First, the initial solution is
started from a uniform free-stream, which is a poor initial point.
Subsequent iterations are always restarted from the previous
solution, which offers some speedup. Second, the designs tend
to change drastically during the initial stages of the optimization.

91

Therefore, the restart feature is less efficient early on. Due to
these effects, it is expected that loosely converging the early
solutions will offer the most cost savings. In addition, ADflow
has an efficient implicit solution algorithm. This means that
changing 𝜏pr by an order of magnitude will not perhaps save
too much computation. The adaptive approach could offer even
more benefit when applied to a different solver, perhaps one
that uses explicit time-stepping for globalization of the Newton–
Krylov solver.

As a final investigation, we examine whether setting function
precision within snopt helps with convergence when 𝑘pr is large.
The function precision parameter is used by snopt to determine
the minimum expected improvement during line search, in order
to prevent excessive function evaluations when the expected
improvement is less than the precision of the function. Naturally,
we should set this value to the error computed. This was explored
in a series of optimizations listed in table 4.3.

Adaptive FP Adaptive FP + Correction

𝑘pr 𝜂 (%) Iters 𝜂 (%) Iters

1 —* 27 —* 27
10−1 27.33 139 26.99 139

Table 4.3: The effect of adaptively changing the func-
tion precision parameter within snopt, without and
with function value correction. Optimizations marked
with an asterisk did not converge successfully.

Once again, we did not find any benefits in changing the func-
tion precision, either on its own or in conjunction with the
function correction approach. This is likely due to the fact that
this is a relatively well-behaving optimization problem, where
line searches that result in a step length of less than unity is
rare. In these cases, the function precision does not play a role,
and therefore does not impact the overall optimization perfor-
mance.

4.4.2 Adaptive wing optimization

To further examine the effects of 𝑘pr, we perform a 3D wing
optimization. This is the same twist-only optimization problem

92

Table 4.4: The wing twist-only optimization problem.

Function/variable Description Quantity

minimize 𝐶𝐷 Coefficient of drag

with respect to 𝑥twist Sectional twist 7
𝑥alpha Angle of attack 1

subject to 𝐶𝐿 = 0.5 Lift constraint 1

that was investigated in chapter 3. The full optimization problem
is given in table 4.4.

We perform a reference optimization, together with five adaptive
runs with varying 𝑘pr. We do not correct the function values,
nor do we adjust the function precision, since both were found
to be ineffective in the previous tests. The results are given in
table 4.5. Interestingly, all optimizations converged successfully,
and the case with 𝑘pr = 1 had the most computational gains at
over 50%.

𝑘pr Walltime (s) 𝜂 (%) Iters

Reference 674 — 26

1 320 53 26
10−1 380 44 26
10−2 420 38 26
10−3 444 34 26
10−4 486 28 26

Table 4.5: Optimization results for the 3D wing case,
tested with a variety of 𝑘pr values.

The optimization histories are shown in figure 4.4. As this opti-
mization problem had fewer design variables than the 2D airfoil
case, fewer iterations were taken. All optimizations had fairly
similar trajectory, and the effect of 𝑘pr can be clearly seen in
the third plot. As mentioned before, due to the efficient solver
algorithm, the impact of 𝑘pr on the computational cost is less sig-
nificant than one might expect. The performance of the adaptive
algorithm on both optimization cases are plotted in figure 4.5.

Based on these results, 𝑘pr values between 10−2 and 10−3 offer
good balance between robustness and performance. Of course,
this would be both problem-dependent and solver-dependent,
as the norm and tolerances used here are specific to ADflow.

93

10−10

10−7

10−4

10−1

𝜏fea

𝑘pr = 10
0

𝑘pr = 10−1
𝑘pr = 10

−2

𝑘pr = 10
−3

𝑘pr = 10−4

10−7

10−5

10−3

10−1

𝜏opt

10−12

10−10

10−8

10−6

𝜏pr

0 5 10 15 20 25 30

Major iterations

10−12

10−10

10−8

10−6

𝜏adj

Figure 4.4: Optimization and solution tolerances for
the wing problem.

4.5 Summary

In this work, we have developed an adjoint-based approach to
estimate the functional errors due to poor convergence. We
then developed an adaptive algorithm to control the analysis
convergence tolerance during optimization, in order to reduce
computational costs. We tested this on two aso problems, and
found that in most cases, savings of between 30% and 50% were
observed.

We also investigated two other possible extensions to the ap-

94

10−4 10−3 10−2 10−1 100

𝑘pr

25

30

35

40

45

50

55
Im

pr
ov

em
en

t(
%

)
airfoil
wing

Figure 4.5: The effect of 𝑘pr on the relative improve-
ment of the two optimization problems.

proach. One involved correcting the poorly-converged function
value with the error estimate, but this proved to be ineffective.
Another involved adaptively setting the “function precision” pa-
rameter within snopt, in the hopes of reducing the number of
line search iterations. This also had little effect on the overall
performance. Nevertheless, the approach still yields significant
computational cost savings.

95

Chapter 5

Appropriate Fidelity Mdo Framework

5.1 Background 95

5.2 Methodology 100

5.3 Practical considerations . . 114

5.1 Background

Ever since the pioneering work of Haftka [17]

[17]: Haftka (1977), Optimization of Flexible Wing
Structures Subject to Strength and Induced Drag Con-
straints

on aerostruc-
tural optimization, there have been significant efforts towards
improving modeling capabilities within mdo, where increas-
ingly complex analyses are being integrated into an optimization
framework. However, more complex modeling incurs a drasti-
cally increased computational cost. As we add further analysis
capabilities to aircraft mdo, computational costs will likely be-
come prohibitive if only high-fidelity models are used.

In recent years there has been growing interest in multifidelity
approaches, where different models with varying levels of accu-
racy, or fidelities, are combined within the optimization process
to reduce overall computational time. Low-fidelity models are
cheaper to evaluate but provide less accurate predictions. To-
gether with a model management framework, they form the
basis of a multifidelity optimization framework.1 1: This is in contrast to mixed-fidelity methods, where

different fidelities are used to compute different out-
puts. For example, using cfd for aerodynamics but
panel method for flutter prediction.

In the comprehensive review of multifidelity methods, Peherstor-
fer, Willcox, and Gunzburger [96] distinguished between global [96]: Peherstorfer et al. (2018), Survey of Multifidelity

Methods in Uncertainty Propagation, Inference, and Op-
timization

and local optimization methods for the first time. In global meth-
ods, a search is conducted over the entire feasible domain. In con-
trast, local methods terminate when a local optimum is found.
Typically, global methods do not require gradients, and when
supplied with gradient information, local methods can rapidly

96

converge to a local optimum. We use the same characteriza-
tion below and provide a short review focusing on optimization,
particularly for large-scale problems. We then discuss multifi-
delity methods in the context of multidisciplinary problems and
highlight some shortcomings of existing approaches.

5.1.1 Global and local methods

In global methods, a globally-accurate multifidelity surrogate
model is constructed and used during optimization. These ap-
proaches are based on Bayesian optimization techniques, relying
on the construction of surrogate models. Giselle Fernández-
Godino et al. [95] surveyed 178 papers using multifidelity meth- [95]: Giselle Fernández-Godino et al. (2019), Issues in

Deciding Whether to Use Multifidelity Surrogatesods and found 73% of them use a multifidelity surrogate model.
Unfortunately, surrogate models all suffer from the curse of di-
mensionality [183]. This has been apparent in the multifidelity [183]: Viana et al. (2014), Metamodeling in Multidisci-

plinary Design Optimization: How Far Have We Really
Come?

optimization field, where applications typically have fewer than
20 design variables [184, 185, 186, 187]. This is in direct con- [184]: Leifsson et al. (2010), Multi-fidelity design opti-

mization of transonic airfoils using physics-based surro-
gate modeling and shape-preserving response prediction
[185]: Choi et al. (2008), Multifidelity Design Opti-
mization of Low-Boom Supersonic Jets
[186]: Forrester et al. (2006), Optimization using surro-
gate models and partially converged computational fluid
dynamics simulations
[187]: Nguyen et al. (2013), Multidisciplinary un-
manned combat air vehicle system design using multi-
fidelity model

trast to high-fidelity aerostructural optimizations with upwards
of a thousand design variables [27], which are precisely the type

[27]: Brooks et al. (2018), Benchmark Aerostructural
Models for the Study of Transonic Aircraft Wings

of expensive optimizations that would benefit the most from
multifidelity methods. Furthermore, most surrogate-based op-
timization techniques do not leverage gradients, nor are they
equipped to handle general nonlinear constraints. As such, they
cannot verify the satisfaction of the kkt conditions required
for optimality and cannot be shown to be convergent to the
high-fidelity optimum. Instead, their termination criteria are
commonly based on heuristics.

On the other hand, local methods are only concerned with
finding a local minimum. With the help of gradient-based ap-
proaches, these methods can be very effective when dealing with
many design variables. In this area, the primary method has
been trust-region model management (trmm), which is adapted
from the single-fidelity trust-region sqp method by replacing
the local quadratic model with the low-fidelity model. This was

97

investigated first by Alexandrov et al. [188], who showed that [188]: Alexandrov et al. (2001), Approximation and
Model Management in Aerodynamic Optimization with
Variable-Fidelity Models

if the low-fidelity model is corrected to satisfy the first-order
consistency conditions, this method is provably convergent to
the high-fidelity optimum. These requirements are typically met
through additive and multiplicative corrections, and the size of
the trust region is updated based on the correlation between
high and low-fidelity models.

Since then, there have been several developments based on the
trmm approach. Elham and Tooren [189] adopted a Pareto fil- [189]: Elham et al. (2017), Multi-fidelity wing

aerostructural optimization using a trust region filter-
SQP algorithm

ter rather than a penalty parameter when using an augmented
Lagrangian approach but was unable to obtain the high-fidelity
optimum, and the computation was four times slower than the
single-fidelity approach. March and Willcox [190] combined [190]: March et al. (2012), Provably convergent multifi-

delity optimization algorithm not requiring high-fidelity
derivatives

the trust-region approach with Bayesian calibration to construct
a provably-convergent multifidelity method that does not re-
quire high-fidelity derivatives. However, the number of function
evaluations was still prohibitively high given the lack of gradient
information. Gratton, Sartenaer, and Toint [191] proposed a re- [191]: Gratton et al. (2008), Recursive trust-region

methods for multiscale nonlinear optimizationcursive trmm formulation that allowed for an arbitrary number
of fidelities to be used. This approach is reminiscent of multigrid
methods in the numerical solution of pdes, where the algorithm
switches between coarse and fine grids to accelerate convergence.
This method was further extended by Olivanti et al. [192] to [192]: Olivanti et al. (2019), Comparison of Generic

Multi-Fidelity Approaches for Bound-Constrained Non-
linear Optimization Applied to Adjoint-Based CFD Ap-
plications

include both a gradient-based switching criterion as well as an
asynchronous validation scheme and demonstrated on an aso
problem with 191 design variables, showing a speed-up factor
of 1.3.

Bryson and Rumpfkeil [193] developed an approach based [193]: Bryson et al. (2018), Multifidelity Quasi-Newton
Method for Design Optimizationon trmm that addressed several shortcomings of the original

methodology. Since conventional trmm uses the low-fidelity
model for the local surrogate, no approximate Hessian is kept.
Therefore, high-fidelity evaluations are only used to calibrate the
low-fidelity output to construct the local surrogate. Instead of
discarding those after each step, Bryson et al. maintain the ap-
proximate Hessian, which is used in conjunction with line search

98

to pick the next iterate. Furthermore, the optimization reverts to
using only the high-fidelity model when the trust-region size is
below a threshold to accelerate the optimization convergence at
the final stages. This approach was demonstrated subsequently
on aerostructural optimization problems [194, 195]. [194]: Bryson et al. (2019), Aerostructural Design Op-

timization Using a Multifidelity Quasi-Newton Method
[195]: Thelen et al. (2022), Multi-Fidelity Gradient-
Based Optimization for High-Dimensional Aeroelastic
Configurations

Unfortunately, trmm-based approaches still suffer from some
shortcomings. Combining multiple fidelities is a significant chal-
lenge because the constraint boundary changes based on the
analysis fidelity. As such, most of the results do not include
general nonlinear constraints. Instead, they either include only
design variable bounds or satisfy the constraint (such as the
trim constraint) internally within the solver rather than leaving
it to the optimizer [192]. In other cases, a penalty approach [192]: Olivanti et al. (2019), Comparison of Generic

Multi-Fidelity Approaches for Bound-Constrained Non-
linear Optimization Applied to Adjoint-Based CFD Ap-
plications

is used to combine the objective and constraints into a single
objective function, resulting in an unconstrained optimization
problem [194]. [194]: Bryson et al. (2019), Aerostructural Design Op-

timization Using a Multifidelity Quasi-Newton Method

5.1.2 Multifidelity mdo

Existing work on multifidelity optimization methods applied to
multidisciplinary systems is unfortunately sparse. Several works
mentioned earlier demonstrate their methodology on aerostruc-
tural systems [189, 194] that are inherently multidisciplinary. [189]: Elham et al. (2017), Multi-fidelity wing

aerostructural optimization using a trust region filter-
SQP algorithm
[194]: Bryson et al. (2019), Aerostructural Design Op-
timization Using a Multifidelity Quasi-Newton Method

Still, the low-fidelity aerodynamic model is always coupled with
the low-fidelity structural model, resulting in only two distinct
fidelities for the overall aerostructural system. As a result, there
is no analysis on the tradeoffs of improving the fidelity of either
aerodynamics or structures independently. On the other hand,
Allaire and Willcox [196] proposed a methodology for identify- [196]: Allaire et al. (2014), A mathematical and compu-

tational framework for multifidelity design and analysis
with computer models

ing and improving the discipline fidelity that contributed the
most error in the objective. However, the approach does not
account for the computational cost of each fidelity, nor does it
consider the effect of discipline errors on constraints.

99

A significant difficulty with mdo problems in multifidelity opti-
mization is the lack of hierarchy for model fidelities. For example,
while it is clear that a rans cfd solver has a higher fidelity relative
to an Euler solver, it is not clear whether a rans solver combined
with a coarse structural grid would be a higher fidelity compared
to an Euler solver using a finer structural grid. Due to the nature
of a multidisciplinary problem, many fidelity combinations can
arise, posing a challenge to multifidelity methods. Most existing
methods cannot even account for more than two possible fideli-
ties in total. They may also suffer from poor scaling when many
fidelities are used; for example, they might require a surrogate
model to be trained for each fidelity. In addition, there is an
implicit assumption that all the given fidelities are useful, which
is not true when considering multidisciplinary problems. Few
existing methods can analyze all available fidelities and discard
those that are not useful (e.g. fidelity 5 in figure 5.2).

Furthermore, many multidisciplinary methods do not capture
coupled errors [196, 197], which arise due to multidisciplinary [196]: Allaire et al. (2014), A mathematical and compu-

tational framework for multifidelity design and analysis
with computer models
[197]: Bayoumy et al. (2020), A relative adequacy
framework for multimodel management in multidisci-
plinary design optimization

interactions between low-fidelity models. Capturing such errors
is critical in making informed decisions about model selection.
We focus on effectively identifying and managing fidelity combi-
nations for multidisciplinary systems to tackle this challenge.

5.1.3 Aim of proposed method

We propose a gradient-based multifidelity optimization frame-
work that leverages the existing high-fidelity mdo approach. We
still perform a single gradient-based optimization, but during
the process, we periodically evaluate the adequacy of the current
model and switch to a better fidelity if necessary. Because we
limit the available fidelities to be discipline specific, we first quan-
tify the error in discipline outputs and then propagate them to
multidisciplinary system-level outputs. Based on the errors and
associated computational cost, an algorithm is proposed to select

100

the appropriate fidelity for the current point in the optimiza-
tion. Error-based switching criteria trigger the periodic fidelity
evaluation. A robust hot-start strategy allows the subsequent op-
timization to progress smoothly without losing information. The
proposed methodology, named the appropriate fidelity framework,
can handle large-scale optimizations with hundreds of design
variables and constraints and converge to the same high-fidelity
optimum as the single-fidelity approach. Many fidelities can be
handled, including those that are not necessarily useful, which
are automatically filtered. By leveraging low-fidelity models, we
can realize significant cost savings.

We note that this type of sequential optimization approach has
been employed before, notably by Lyu, Kenway, and Martins
[79] and later adopted by Bons and Martins [86]. Named the [79]: Lyu et al. (2015), Aerodynamic Shape Optimiza-

tion Investigations of the Common Research Model Wing
Benchmark
[86]: Bons et al. (2020), Aerostructural Design Explo-
ration of a Wing in Transonic Flow

“multi-level optimization acceleration technique”, the authors
perform a sequence of optimizations starting from the coarsest
grid and switching to a finer grid at the end of each optimization
to reduce the number of iterations needed on the finest grid.
Similarly, Koziel and Leifsson [198] performed multi-level op- [198]: Koziel et al. (2013), Multi-level CFD-based

airfoil shape optimization with automated low-fidelity
model selection

timization with output space mapping applied to airfoil shape
optimization. While the basic ideas are similar, they are done
in an ad hoc fashion and lack many of the key ingredients that
make the proposed methodology scalable and general to mdo
problems.

The following sections introduce the high-fidelity optimization
approach and some definitions and terminology, followed by
an overview of the appropriate multifidelity framework. Finally,
we demonstrate the framework on a multipoint aerostructural
benchmark problem with over a hundred design variables.

5.2 Methodology

It is typical in engineering applications to have multiple analysis
tools available that can compute the discipline outputs 𝒚 to

101

varying degrees of accuracy. Any discussion of accuracy requires
a “truth” model to act as a reference, provided by detailed simu-
lations or even experimentation. We assume such a model exists
and is known a priori, and can be evaluated as needed to provide
the reference for lower-fidelity models. Without loss of general-
ity, we assume this is provided by a known simulation model,
which we call the high-fidelity model. Then, the high-fidelity
model has zero error by construction.

Given a reference model, we define fidelity to be the accuracy
of a given model for a particular input vector 𝒙 and scalar out-
put 𝑦. The fidelity of a model may vary over the design space
and depend on the output qoi. For example, Euler-based cfd
may be a relatively high-fidelity model for predicting lift, but
it is low fidelity in drag because it ignores skin-friction drag.
Although higher-fidelity models are commonly expected to be
more computationally expensive, it is not always the case. For
example, it has been shown that in some cases, XFOIL [199] is [199]: Drela (1989), XFOIL — An analysis and design

system for low Reynolds number airfoilsboth cheaper and more accurate than rans cfd when analyzing
airfoils for low Reynolds number flows [200] , in which case [200]: Morgado et al. (2016), XFOIL vs CFD per-

formance predictions for high lift low Reynolds number
airfoils

XFOIL should always be used.

In this work, we restrict fidelities to the discipline level, corre-
sponding to a single engineering analysis. The only requirement
for such fidelities is that they have the same inputs and outputs
such that there is no need to perform design variable mapping
between fidelities. In addition, as the framework is based on the
mdf formulation used in a gradient-based setting, all available
fidelities in each discipline must be fully coupled with all fideli-
ties in the other disciplines, and the coupled derivatives must be
available as well.

In a multidisciplinary setting, determining the available fidelities
is a combinatorial problem. Suppose we have three aerodynamic
fidelities and two structural fidelities. In that case, there are a total
of six possible fidelity combinations for each mda. In addition,
the number of possible system-level fidelity combinations grows

102

even more in a multipoint optimization problem, where the
same design is analyzed under multiple operating conditions.
This requires novel techniques to handle many possible fidelities
at the optimization level.

Our proposed framework is based on the single-fidelity mdf
approach. We perform a sequence of such single-fidelity mdo,
starting from the low-fidelity models and gradually improving
the model during optimization until we reach the high-fidelity
optimum. The framework tries to answer two questions: When
is it time to update the fidelity choice? And what fidelity choice
to update to next?

We start by quantifying the errors between the different fidelities
in computing the various outputs. We then perform a single-
fidelity mdo, starting from the lowest fidelity combinations and
monitoring its progress. We stop the optimization when specific
error-based termination criteria are met, then update the fidelity.
This is a two-step process: we first propagate the errors from
discipline outputs to system-level quantities, then construct error
metrics to select the subsequent fidelity. We then continue the
optimization with updated fidelities. This sequence of single-
fidelity optimizations eventually reaches the high-fidelity case,
which is allowed to continue until convergence. Figure 5.1 shows
this process applied to a single-point mdo problem using the
xdsm diagram [87]. In the following sections, we explain each [87]: Lambe et al. (2012), Extensions to the Design

Structure Matrix for the Description of Multidisciplinary
Design, Analysis, and Optimization Processes

of the steps in this process in more detail.

5.2.1 Error quantification

Unlike most existing methods, we do not assume that all avail-
able models are useful. Instead, we perform error quantification
to assess the suitability of all available fidelities. As mentioned
earlier, the fidelity of a given analysis method depends on both
the input 𝒙 and the output 𝒚. In this work, we opted to ne-
glect the effect of the design variables because we are focused

103

0 :

Error Quantification
ϵ1, ϵ2 ϵ1, ϵ2 ϵ1, ϵ2 cℓ

x∗
1, 5 → 2, 8 → 5 :

Optimizer
λ

2 :

MDA

f ∗
3 :

Functions
f , g f , g

τf , τo
4 :

Termination Criteria

6 :

Error Propagation
f ,σf , g ,σg

ℓ
7 :

Fidelity Selection

Figure 5.1: An xdsm diagram showing the appropriate fidelity framework applied to a single-point mdo problem.

on high-dimensional problems where the costs are prohibitive.
Instead, we perform this error quantification process just once
at the initial design point 𝒙0. Although it is possible to do this
quantification every time the fidelity is updated, we found that
unnecessary. In all of our test cases, the errors did not change
sufficiently to cause a different sequence of fidelities to be se-
lected.

We first perform single-discipline evaluations using each avail-
able fidelity at the initial design point and record their outputs.
The disciplines need to be evaluated at each operating point for a
multipoint problem. In this work, we use ℓ ∈ {0, 1, 2…𝑛ℓ − 1}
to denote the fidelity used to compute a given quantity, with
ℓ = 0 as the high-fidelity reference. We then compute the error
for each fidelity ℓ and scalar output 𝑦𝑖 using2 2: By capturing the error only on the scalar outputs

𝑦𝑖, we do not capture other information such as the
location of the error prior to constraint aggregation.

𝛿𝑖,ℓ = |𝑦𝑖,ℓ − 𝑦𝑖,0|. (5.1)

By construction, 𝛿𝑖,0 = 0. We also record the computational cost
𝑐𝑖 for performing each fidelity analysis, measured, for example,
in cpu-seconds.

104

In theory, each model should fall onto the Pareto front of accu-
racy and computational cost—otherwise, it could be replaced by
a cheaper and more accurate model. For example, in figure 5.2
we can see that fidelity 5 is not Pareto-optimal since fidelity
3 is both cheaper and more accurate. There would be no use
for such fidelity in this case, and it is removed. Through this
filtering process, we can identify and remove fidelities that are
non-optimal. The rest of the fidelities form a Pareto front, re-
sulting in a natural ordering. This provides the ordering for ℓ,
where a higher number indicates a decrease in fidelity.

Unlike the field of variable-fidelity optimization, where the fi-
delity can be arbitrarily controlled, we are not concerned with
constructing Pareto-optimal models in this work. We do not
examine whether each physics or numerical model choice is
appropriate. Instead, we take them as provided and assess them
purely on their ability to predict output quantities of interest.
This way, the multifidelity framework is problem-agnostic and
general for arbitrary mdo problems.

4

3

2

1

5

Computational Cost

Er
ro

r

Figure 5.2: Notional diagram showing a discipline
analysis involving five fidelities, where fidelities 1–4
are Pareto-optimal and 5 is not. This is for a single
scalar output; the relative positions of the fidelities
could be different for other outputs.

Because we do this for each scalar output 𝑦𝑖, the outcome may
be different for different outputs. There are two possible ways to
remove non-optimal fidelities. We can either remove a fidelity if
at least one of its scalar outputs is not Pareto-optimal, or if all
outputs are non-optimal. We choose the former in this work, but
both have been implemented as software options. The remaining

105

fidelities now fall onto the Pareto front and can be sorted based
on the cost of constructing a hierarchy of discipline fidelities.

This initially quantified error can either be assumed to be con-
stant throughout or updated at the end of each sub-optimization
so that fidelity selection is performed with the most up-to-date
information. We have not found updating the error to be useful
for the optimization problem demonstrated. Hence, the rest of
the paper assumes that the error is fixed.

5.2.2 Error propagation

After quantifying the discipline errors, we propagate them to
system-level outputs, which consist of the objective and con-
straint functions. This allows us to quantify the impact of each
discipline’s fidelity on the overall system fidelity combination.
Unlike the previous step, this is performed at the end of each sub-
optimization because error propagation depends on the current
function values.

As hinted earlier in the section, the system-level fidelities are
actually fidelity combinations composed of fidelity choices for
each discipline and analysis. For example, a two-point aerostruc-
tural problem would have a fidelity combination consisting of
four choices. We first identify all possible fidelity combinations
from which to select the subsequent fidelity combination. In
this work, they are all the possible combinations where each
discipline’s fidelity is better than or equal to the current fidelity.
This allows for simultaneous fidelity improvements in multiple
disciplines and skipping certain fidelities. For example, we could
skip the medium grid and go directly from the coarse to the fine
grid for cfd.

Once we identify the fidelity combinations, we then propa-
gate their discipline errors to system-level objectives and con-
straints for each of those combinations. To do this, we fol-
low the approach outlined by Allaire and Willcox [196]

[196]: Allaire et al. (2014), A mathematical and compu-
tational framework for multifidelity design and analysis
with computer modelsand

106

model each discipline output 𝑦𝑖 as a normal random variable
̂𝑦𝑖,ℓ ∼𝒩(𝑦𝑖,ℓ, 𝛿2𝑖,ℓ). That is, we model the discipline outputs as

a normal random variable centred on its discipline output and
use its error as the standard deviation. In reality, many of the
errors are non-normal and possibly asymmetric. For example,
the discretization error in cfd is typically biased such that there
is significant skewness to the distribution. This has been demon-
strated at the Drag Prediction Workshop [201], where the drag [201]: Levy et al. (2013), Summary of data from the

fifth AIAA CFD drag prediction workshopcoefficient computed by all participating solvers were system-
atically over-predicted on coarser grids. Of course, if we knew
the actual probability distribution function (pdf), we would
use that directly instead. A normal distribution is a reasonable
approximation in the absence of such information.

After we model the joint probability density function of all the
disciplines’ outputs, we must propagate them to the objective
and constraints. Fortunately, these system-level outputs are typi-
cally composed of simple analytic expressions. For example, a
common objective used in aerostructural optimization is fuel
burn, which is given by

𝑊FB = 𝑚 exp(
𝑅 𝑐𝑇
𝑉(𝐿/𝐷)

), (5.2)

where lift 𝐿, drag 𝐷, and mass 𝑚 are the inputs. The range 𝑅,
cruise speed 𝑉, and thrust-specific fuel consumption (tsfc) 𝑐𝑇
are constants that remain fixed throughout the optimization.

In this sense, discipline outputs become inputs to these analytic
functions that are used to compute the objective and constraints.
These discipline outputs are now modeled as normal random
variables through the error quantification process. As a result,
the system-level outputs, such as fuel burn, also become random
variables. We compute the standard deviation of these system-
level outputs and use that as the error metric representing the
errors introduced by discipline errors. We label system-level
errors as 𝜖𝑗,ℓ to distinguish them from discipline-level errors 𝛿𝑖,ℓ,
and use 𝑗 to index the system-level outputs. In particular, we

107

use 𝑗 = 0 denote the objective, and number the constraints as
𝑗 ∈ {1…𝑛con}.

Since the functions of interest are analytic and relatively simple,
we use the Monte Carlo method to perform the error propaga-
tion. We use an adaptive, parallel implementation, where batches
of samples are drawn from the joint probability distribution of
the discipline outputs 𝒚, and the resulting mean and standard
deviation are monitored. We terminate the Monte Carlo pro-
cess when the mean and standard deviation changes are smaller
than a prescribed absolute or relative tolerance. In this work,
we use batches of 10 000 samples and tolerances of 10−3, which
results in around 106 samples on average. For a more detailed
description of the techniques used in error propagation, see
appendix B.

Once we have the errors for objective and constraints for each
fidelity combination, we can again apply a Pareto filter to remove
certain fidelity combinations, as we did with discipline outputs.
As before, we can filter out a fidelity combination if it is non-
optimal for a single output, or all outputs. In this case we choose
the latter option, in order to reduce the number of possible
fidelity combinations under consideration.

In reality, these discipline outputs are often correlated and not
independent. This is manifested in two ways. First, outputs com-
puted by the same analysis can be correlated, which we call
intradisciplinary errors. For example, because lift and drag are
both functionals computed from the same converged states, a
cfd simulation with a significant error in the lift is also more
likely to have a more substantial error in drag. Second, outputs
computed from different discipline analyses but coupled via mda
would be correlated as well, leading to interdisciplinary errors.3 3: Also known as coupled errors. We will use the two

interchangeably.Taking the aerostructural example, if a cfd simulation had a sig-
nificant error in the lift, the converged aeroelastic solution would
have a different shape. Consequently, the stress distributions on
the wing structures would be wrong.

108

To highlight this further, consider a two-point aerostructural
problem with the following discipline outputs:4 4: This is the same problem that is considered later

on in section 7.1

• Lift 𝐿cr and drag 𝐷cr at cruise
• Lift 𝐿man at maneuver
• Aggregated stress constraints 𝐾𝑆1,2,3,man at maneuver

We show the structure of the discipline outputs computed at
the cruise and maneuver points in figure 5.3, where the differ-
ent types of correlations are colour-coded. The diagonal entries
in green are self-correlations and are unity by definition. The
correlations between outputs computed by the same analysis are
shown in blue, and the correlations resulting from the coupled
mda are shown in red.

𝐿cr

𝐿cr

𝐷cr

𝐷cr

𝑚cr

𝑚cr

𝐿man

𝐿man

KS0,man

KS0,man

KS1,man

KS1,man

KS2,man

KS2,man

Figure 5.3: Correlation matrix for a two-point
aerostructural problem, where all correlations are taken
into account. Blue entries indicate correlations be-
tween outputs computed by the same analysis, and red
entries indicate correlation as a result of the coupled
mda.

To capture the first effect, we extend the probability distribution
to a multivariate normal distribution with correlations between
specific output quantities. For a given fidelity ℓ, the multivariate
normal distribution used is

̂𝒚 ∼𝒩(𝒚, 𝚺), (5.3)

109

where the covariance matrix 𝚺 is given by

𝚺𝑖,𝑗 = 𝜌𝑖,𝑗𝛿𝑖𝛿𝑗. (5.4)

By definition, 𝜌𝑖,𝑖 = 1.0 since each output is perfectly correlated
with itself. For outputs computed from the same analysis, we use
a fixed value of 0.9 for 𝜌𝑖,𝑗 throughout this work. We selected a
high correlation coefficient because these outputs are computed
from the same set of converged state variables. However, we
do not attempt to estimate this quantity since doing so would
require many function evaluations that could instead be spent
on optimization.

The treatment of the second type of coupling errors is discussed
in more detail in chapter 6.

5.2.3 Fidelity selection

Finally, we construct a single scalar error metric for each fidelity,
combining the objective and constraint errors and the cost of
evaluating the model. Unlike common criteria used in Bayesian
optimization, this metric is not used to select the next sampling
point, only the fidelity of the next sub-optimization.

For a given fidelity ℓ, we first combine the error contributions
from the objective and constraints with

𝜖ℓ = 𝜖0,ℓ +
𝑛con

∑
𝑗=1
|𝜆𝑗|𝜖𝑗,ℓ, (5.5)

where 𝜆𝑗 are the Lagrange multipliers associated with constraint
𝑗, that are accessed directly from the optimizer.

As mentioned in section 2.1, the Lagrange multipliers carry
physical significance. Note the similarity in form between equa-
tions 2.5 and 5.5. In this case, they provide a natural scaling

110

factor when combined with the objective, such that more influ-
ential constraints have their errors weighed more heavily, and
inactive constraints are automatically ignored. This is similar to
the approach by Chen and Fidkowski [202] in combining errors [202]: Chen et al. (2019), Discretization Error Control

for Constrained Aerodynamic Shape Optimizationin the objective and constraints when performing output-based
mesh adaptation. We take the absolute value of the Lagrange
multipliers because for equality constraints, the sign indicates
whether a shift in the constraint causes a positive or negative
change in the optimum. However, a change in either direction
should be considered equally, and the scaling factors used to
sum the errors should be nonnegative.

Lastly, we compute the error reduction 𝜖redℓ relative to the current
fidelity, given by

𝜖redℓ = 𝜖current − 𝜖ℓ. (5.6)

This gives us a measure of how much error we expect to reduce
if we switch to each of the possible fidelity combinations. We
also normalize 𝜖redℓ by the cost 𝑐ℓ of each fidelity, to give us the
normalized error reduction

̂𝜖redℓ =
𝜖redℓ
𝑐ℓ
. (5.7)

The fidelity that has the highest normalized error reduction is
chosen as the next fidelity combination ℓnext for optimization:

ℓnext = argmax
ℓ
̂𝜖redℓ . (5.8)

By construction, the high-fidelity combination yields zero ex-
pected error reduction. This ensures that the algorithm will
always eventually select the high-fidelity combination, which
will be the final optimization.

Once the subsequent fidelity is chosen, a new optimization is
performed, after which the fidelity is selected again. This process
is repeated until we arrive at the high-fidelity optimum.

111

5.2.4 Switching criteria

In addition to selecting the next fidelity to use, we also need to
determine when to switch to the updated fidelity. This is accom-
plished using optimization tolerances to terminate the current
optimization problem and trigger an update to the fidelity se-
lected. Because we use gradient-based optimizers, the proposed
criteria are based on the kkt conditions, which are the necessary
conditions for the solution of a nonlinear optimization prob-
lem. The implementation of these conditions typically involves
feasibility and optimality tolerances.

It is not necessary to fully converge each sub-optimization since
the lower-fidelity optima may not be close to the high-fidelity
optimum. Instead, we wish to terminate each sub-optimization
at an appropriate point depending on the level of fidelity used—
typically earlier for a lower-fidelity model. Therefore, instead of
using a fixed tolerance for all sub-optimizations, we developed
switching criteria that use the available error estimates of each
system-level output (objective and constraints). This allows us
to achieve a similar level of convergence for each fidelity relative
to the accuracy of the analyses.

The first is an adaptation of the feasibility tolerance based on
constraint violation 𝑣𝑖(𝑥), defined as

𝑣𝑖(𝑥) = max {0, 𝑔𝑖(𝑥) − 𝑔𝑈,𝑖, 𝑔𝐿,𝑖 − 𝑔𝑖(𝑥)} , (5.9)

where 𝑔𝑖(𝑥) are the constraints, and 𝑔𝑈,𝑖 and 𝑔𝐿,𝑖 are the upper
and lower bounds for each constraint.

For each constraint, we require the violation to be less than a
factor 𝜏fea of the error in predicting that constraint. Recall that
we denote the error in the output 𝑖 for the current fidelity ℓ as
𝜖𝑖,ℓ, which is computed from Monte Carlo error propagation.
We place error bounds along each constraint curve, representing
the uncertainty in computing these constraints due to the low-
fidelity model. Figure 5.4 shows this graphically for an equality

112

constraint. In the case of an inequality constraint, only the single
dashed line within the infeasible region would be present. If every
constraint lies within the prescribed error bound, then we have
met the feasibility criterion. Mathematically, we formulate the
feasibility criteria as

max
𝑖
{
𝑣𝑖(𝑥)
𝜖𝑖,ℓ
} ≤ 𝜏fea. (5.10)

𝑐(𝒙) = −𝜖

𝑐(𝒙) = 𝜖

𝑐(𝒙) = 0

𝑥1

𝑥2

Figure 5.4: An equality constraint curve within a 2-
dimensional design space. The dashed lines represent
the error bound on either side of the constraint, show-
ing the effective feasible region in between.

The second criterion is an optimality condition, typically based
on the objective and constraint gradients. It would be straight-
forward to apply the same approach as before to the optimality
criterion. However, since it is a first-order condition, error esti-
mates of the gradients are needed for each fidelity. Unfortunately,
estimating these errors is costly, as it requires adjoint solutions
for every output and every existing fidelity. Instead, we replace
the optimality condition with a sufficient decrease condition.
We monitor the objective decrease between successive major it-
erations during optimization. We satisfy the optimality criterion
when the decrease in the objective 𝛥𝑓, scaled by the error in
the objective, is below a prescribed optimality tolerance 𝜏opt.
Mathematically, this criterion is

𝛥𝑓
𝜖0,ℓ
≤ 𝜏opt. (5.11)

113

While the values of 𝜏fea and 𝜏opt would affect the timing of each
sub-optimization and alter their terminations, we have not found
them to cause a large impact on the overall performance of the
approach for the aerostructural optimization demonstrated here.
Therefore, in this work we use 𝜏opt = 𝜏fea = 10

−2, but these
values may need to be tuned for other optimization problems.
These switching criteria are applied to every optimization except
the final, high-fidelity optimization. In that case, the errors are
zero by definition, and the error-based criteria would never be
met. Instead, we must revert to using the termination criteria
within the optimizer, as done for the single-fidelity optimizations.
This ensures that for the final optimization, the optimum found
is computed using the high-fidelity model and with a tight
convergence tolerance. For a unimodal problem, this would
guarantee convergence to the same high-fidelity optimum.

5.2.5 Optimization

In the context of the multifidelity framework developed, effi-
ciently restarting an optimization is crucial to the overall perfor-
mance. See section 2.5.7.2 for a description of different restart
strategies. As we switch the fidelity from one to another, we must
do so without impeding the progress of subsequent optimiza-
tions. By transferring these state variables from a lower-fidelity
optimization to a higher one, we use the lower-fidelity model
to learn about the optimization problem and provide better
estimates for these state variables. We no longer simply use low-
fidelity models to obtain a better initial guess for the subsequent
optimization. Instead, we are using these models to learn about
the overall characteristics of the optimization problem so that
fewer iterations are required at the latter stages when more ex-
pensive fidelities are used. For example, the approximate Hessian
provides curvature information with respect to the augmented
Lagrangian. If the low-fidelity model is sufficiently similar to
the high-fidelity model, the approximate Hessian can be used

114

to speed up the more expensive optimizations.

Recall from section 2.5.7.2 that there are three restart strate-
gies available in snopt. For this work, we use the hot start,
where the full state within the optimizer is stored at the end of
each sub-optimization and loaded into snopt at the start of the
next sub-optimization. However, because the fidelity is updated
in between optimizations, a discontinuity is introduced in the
function values, which may cause optimization difficulties. In
particular, if the function value is higher under the updated
fidelity, the optimizer may have trouble finding a feasible step
during line search and may quit immediately after. To address
this, we perform an additional function evaluation at the design
where the optimization was paused. This updates the function
value to that of the new fidelity but preserves other state variables
that we want to re-use from the previous optimization.

5.3 Practical considerations

We discuss a few practical considerations in the context of multi-
fidelity optimizations. These considerations are important when
studying industrially-relevant problems, and guide the design of
the appropriate fidelity framework.

5.3.1 Load balancing

A fundamental issue with all multifidelity optimizations is load
balancing. The type of mdo problems that benefit most from
multifidelity methods are those with expensive function evalua-
tions. In practice, this typically means a nonlinear solver executed
in parallel within an hpc environment. In multipoint problems,
each analysis point typically executes an independent copy of
the solver, such that all points are parallelized further to reduce
wall time. Figure 5.5 is a schematic showing such a processor
layout.

115

c1 c2 c3 c4 c5 b1 b2 m1 m2 m3
0

100

200

300

400

500

600

Ti
m

e
(s

)
MDA
lift
drag
moment

separation
failure
buckling

Figure 5.5: An example of a multipoint aerostructural
analysis executed in parallel, including both the primal
and adjoint stages. The widths of the bars are propor-
tional to the number of processors used for each solver
instance.

In such cases, each fidelity will likely require a different paral-
lelization, and therefore a different processor arrangement. It
is impractical to design a multifidelity algorithm that switches
between multiple fidelities in an ad hoc fashion, or at a high
frequency. This is due to the design of existing hpc architectures
that require compute jobs to be requested for a fixed wall time
and processor count. While elastic computing is available on
certain cloud platforms such as Amazon Web Services (aws),
they have not been made available on traditional clusters that use
job schedulers such as Slurm [203]. Therefore, the only way to [203]: Yoo et al. (2003), Slurm: Simple linux utility for

resource managementperform multifidelity optimization with such approaches would

116

be to request the largest number of processors necessary, thereby
achieving low processor utilization when running low-fidelity
models.

Furthermore, the wall time of each function evaluation can have
large variance. Figures 5.6 and 5.7 show the distribution of wall
times for the mda and the coupled adjoint, respectively, during
an aerostructural optimization. Each thin vertical line is a single
function evaluation, and the large spread means synchronous
methods will exhibit even lower parallel utilization.

c1 c2 c3 c4 c5 b1 b2 m1 m2 m3
0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
(s

)

Figure 5.6: Distribution of mda wall times for a 10-
point problem.

Due to these considerations, the proposed appropriate fidelity
framework does not switch between fidelities rapidly, nor does
it execute multiple fidelities simultaneously in an ad hoc fashion.
Instead, a strict sequence of fidelities is generated, each from the
previous sub-optimization. Therefore, each sub-optimization

117

c1 c2 c3 c4 c5 b1 b2 m1 m2 m3
0

100

200

300

400

500

600
Ti

m
e

(s
)

Figure 5.7: Distribution of coupled adjoint wall times
for a 10-point problem.

can be executed with a fixed number of processors to maximize
cluster utilization.

5.3.2 Summary

A key focus of the appropriate fidelity framework is the quantifi-
cation of model discrepancy and how it impacts the optimization
problem under consideration. The reason for quantifying errors
at a discipline level, then propagating them to the system level
is that there could be so many possible fidelity combinations
that performing an mda for each would be prohibitively expen-
sive. For example, in the aerostructural test case used in this
work, there are 400 combinations for a simple two-point formu-
lation with five aerodynamic and four structural fidelities. An

118

optimization involving 5 flight conditions would have required
205 ≈ 3.2 × 106 MDAs. Instead, we only determine the dis-
cipline errors and cheaply propagate them to the system-level
outputs. The Monte Carlo evaluations take seconds to com-
plete, compared with the computational time of several hours
for an expensive mda to converge. This approach also provides a
well-defined method for selecting the next fidelity in a multidis-
ciplinary context, based on expected error reduction.

119

Chapter 6

Treatment of Coupled Errors

6.1 Background 119

6.2 Methodology 122

6.3 Verification 128

6.4 Implementation 131

6.5 Summary 131

Recall that the first step in the appropriate fidelity mdo frame-
work from chapter 5 is error quantification. In this step, single-
disciplinary analyses are performed at the same design point for
each fidelity, in order to determine the errors in predicting the
disciplinary outputs such as lift and stress. These errors are then
modelled as uncertain variables to be propagated to system-level
outputs, as discussed in section 5.2.2.

However, two types of couplings exist within these outputs. The
first type, intradisciplinary errors, are discussed in section 5.2.2.
This chapter is concerned with computing the second type,
which are coupled errors, also known as interdisciplinary errors
(c.f. intradisciplinary errors from section 5.2.2). As an example,
in the aerostructural case, the aerodynamic fidelity has an impact
on the error of the stress predictions, which are purely structural.
A low-fidelity aerodynamic model would produce an incorrect
lift distribution on the wing, which translates to an incorrect
loading on the wingbox, which leads to errors in the stress. It
is essential to capture these errors so that the fidelity selection
algorithm is not misled.

6.1 Background

Similar topics have been investigated in the field of uncertainty
quantification, which is concerned with propagating input uncertainties—
analogous to errors—through an analysis. The analysis could be

120

explicit, e.g. given by equation 2.12, or implicit and given by
the residual form equation 2.13.

However, in this case the inputs 𝒙 are no longer deterministic.
Instead, they are described by a pdf 𝑝(𝒙), and the goal is to
compute the resulting probability distribution on the outputs ℐ
which are no longer deterministic.

There are numerous proposed methods for solving this class
of problems, such as sensitivity-based approaches (e.g. first-
order second-moment (fosm)), sampling-based approaches (e.g.
Monte Carlo), and other techniques such as polynomial chaos.
A brief overview of some simple methods is presented in ap-
pendix B.

More recently, there has been some work in extending this prob-
lem to the case of coupled, multidisciplinary analyses. As before,
we introduce uncertainty in the input parameters 𝒙, and seek the
resulting probability distribution for outputs ℐ1 and ℐ2. Due
to the coupling between the disciplines, this is a challenging
problem to tackle. Figure 6.1 shows an example mda for an
aerostructural system.

1, 4 → 2 :

Cruise MDA
displacement

force
2 :

Aerodynamics
force L,D

displacement
3 :

Structures
KSi

Figure 6.1: An xdsm diagram of the aerostructural
mda, solved using nlbgs iterations.

This is an area of active development, and so far the proposed
methods are all computationally expensive. First, the naive ap-
proach would be to perform system-level Monte Carlo simu-
lations, analogous to the mdf architecture in mdo. However,
this would be prohibitively expensive as it requires each Monte
Carlo sample at each iteration to converge the mda. Ghoreishi
and Allaire [204] proposed using adaptive Gibbs sampling to-

[204]: Ghoreishi et al. (2017), Adaptive Uncertainty
Propagation for Coupled Multidisciplinary Systemsgether with importance resampling, in an individual discipline

feasible (idf) fashion without needing to converge each mda.
However, the cost is still relatively high, on the order of hun-
dreds to millions of single-disciplinary analyses depending on the
acceptable error tolerance. Next, there are several proposed meth-
ods based on constructing a surrogate model to approximate the
coupling between the various disciplines. Friedman et al. [205] [205]: Friedman et al. (2018), Efficient Decoupling of

Multiphysics Systems for Uncertainty Propagationconstructed a high-dimensional model representation (hdmr)

121

surrogate model for each coupling variable, and used it to predict
the effect of coupling on the output probability distribution.
Similarly, Chaudhuri, Lam, and Willcox [206] constructed Krig- [206]: Chaudhuri et al. (2018), Multifidelity Uncer-

tainty Propagation via Adaptive Surrogates in Coupled
Multidisciplinary Systems

ing surrogates, and used an alternate adaptive sampling strategy
to ensure convergence while reducing the number of samples.
As before, the cost of this approach is prohibitive as it requires
thousands of samples to construct an accurate surrogate model.
Furthermore, as it requires one surrogate model for each cou-
pling variable, this approach does not scale well when there are
large numbers of coupling variables present, which is the case
with tightly-coupled engineering applications. For example, with
the aerostructural mdo problems used in this work, the coupling
variables are mesh-dependent and can be up to several hundred
thousand.

Direct decompositional approaches also exist, which aim to
perform analyses at the discipline level without requiring mdas.
Du and Chen [207] proposed an approach similar to idf, where [207]: Du et al. (2002), Efficient Uncertainty Analysis

Methods for Multidisciplinary Robust Designthe uncertainty propagation is performed at the discipline level.
However, a system-level sub-optimization is necessary to ensure
compatibility between the various disciplines.

One important distinction between these problems in uncer-
tainty quantification, and our problem concerning coupled er-
rors, is that the uncertainties in our case do not arise from input
parameters 𝒙. Instead, the uncertainties are the direct result
of using a low-fidelity disciplinary analysis model. Previously,
we had represented this by modelling the discipline outputs, ℐ
as normally-distributed variables, with the standard deviation
equal to its error relative to the high-fidelity value. This does not
capture the effect of coupling between the different disciplines.
In order to do so, we need to model the coupling variables 𝑦𝑖 as
random variables as well, and determine the effect of this addi-
tional uncertainty on the discipline outputs ℐ. This is a problem
that has not been studied in the literature, but shares many simi-
larities with those highlighted earlier where the uncertainties are
introduced via input parameters. Due to the multidisciplinary

122

coupling, the input uncertainties will cause the coupling vari-
ables 𝑦𝑖 to become nondeterministic also, and the pdf of these
coupling variables will also need to be converged as part of the
mda process in order to obtain the resultant pdf on the outputs
ℐ.

6.2 Methodology

We seek a method for estimating these coupling errors which is
relatively cheap to compute, and scalable to a large number of
coupling variables commonly found in aerostructural problems.
As we only rely on these error values for selecting the appro-
priate fidelity, we do not need accurate estimations, and would
rather spend the vast majority of the computational power on
optimization instead.

We propose to use the fosm method to estimate the coupled
errors, leveraging on the existing adjoint capabilities to compute
sensitivities cheaply. Furthermore, we do not consider the fully
coupled multidisciplinary system, but instead perform only a
single forward pass. This is analogous to performing a single
nlbgs iteration without any feedback when converging the mda.
The motivation for this is two-fold. First, the mathematics in-
volved in converging the fully coupled aerostructural system
considering coupled errors would be a substantial development,
particularly given that prior works are prohibitively expensive. It
is not yet clear whether an approach exists that does not involve
expensive queries to the single or multi-disciplinary analyses.
Furthermore, decoupled approaches have been studied in the
context of mda convergence in the literature, and were shown
to be effective [208]. By analyzing the feed-forward system, we [208]: Baptista et al. (2018), Optimal Approximations

of Coupling in Multidisciplinary Modelsstill consider a significant portion of the coupling, similar to
how a single nlbgs iteration can still yield solutions close to the
converged mda state. However, by decoupling the disciplines,
the cost is greatly reduced, and a straightforward application of

123

the adjoint method allows us to compute the errors at the cost
of a single adjoint solution. Since we only require these coupled
errors for determining the appropriate fidelities, this approach
strikes a good balance between cost and accuracy.

First a quick review of fosm theory for error propagation. Re-
call that for an output ℐ with the input vector 𝑥 is normally
distributed, i.e. 𝒙 ∼ 𝒩(𝜇𝑥, 𝜎2𝑥), the fosm method gives the
estimated variance of the output 𝒇 as

𝜎2ℐ ≈ ∑
𝑖
(𝜕ℐ
𝜕𝑥𝑖
)
2
𝜎2𝑥𝑖. (6.1)

See appendix B for an in-depth overview.

We apply this to the single-discipline scenario, taking the cou-
pling variables as the independent variables with an associated
uncertainty. To compute the coupled errors, we need to obtain
both the derivative and the error of the coupling variables.

Correspondingly, the process is broken down into two steps.
First, we quantify the errors on the coupling variables for each
discipline and analysis fidelity, in addition to the discipline out-
puts that were quantified previously. Then, we propagate the
errors introduced by the coupling variables into the other dis-
cipline in a feed-forward fashion, to determine the coupling
errors caused by the low-fidelity analysis of another discipline.
This process is explained in detail in the next sections. As before,
this process is done just once prior to the start of any optimiza-
tion, and the errors are assumed to be fixed throughout the
optimization.

6.2.1 Coupled error quantification

Here we want to quantify the error in the coupling variables,
i.e. the difference between the coupling variables 𝑦𝑖 of different
disciplines after converging the discipline governing equations.
For aerodynamics, this would be the differences in the surface

124

pressure distribution between each fidelity and the high-fidelity
analyses. However, in many cases the coupling variables have
varying dimensions dependent on the chosen fidelity. For exam-
ple, if the aerodynamic mesh discretizations are used as different
fidelities, then the number of coupling variables (i.e. the num-
ber of surface cells) will change between the different fidelities.
This greatly complicates the quantification process, but luckily
a mechanism is already in place to deal with this—the transfer
scheme used to map coupling variables from one fidelity to an-
other is already built to handle variable problem dimensions.
Therefore, we opt to quantify the coupling errors after mapping
them to the other discipline, in this case using rigid links [21] as [21]: Kenway et al. (2014), Scalable Parallel Approach

for High-Fidelity Steady-State Aeroelastic Analysis and
Adjoint Derivative Computations

the load and displacement transfer scheme, which are based on
earlier works by Martins, Alonso, and Reuther [19] and Brown
[121]. This ensures that, no matter which aerodynamic mesh is [19]: Martins et al. (2005), A Coupled-Adjoint Sensi-

tivity Analysis Method for High-Fidelity Aero-Structural
Design
[121]: Brown (1997), Displacement extrapolations for
CFD+CSM aeroelastic analysis

used, the resultant load is applied to the same structural mesh,
and is therefore dimensionally constant.

The overall process is as follows. We perform aerodynamic anal-
yses for each fidelity as before, but in addition to recording the
functional outputs (such as lift and drag) we also obtain the
resulting pressure distributions 𝒑. These are converted to struc-
tural loads 𝒇 via the load and displacement transfer scheme,
and the loads are recorded. The errors can then be computed
by finding the difference between the loads generated by the
low and high-fidelity aerodynamic analyses. Note that this needs
to be done for each combination of structural and aerodynamic
fidelities, since we need to consider the combined fidelities used
for each mda. The error 𝜖𝒇 on the forces for a given structural
fidelity ℓ𝑆 and aerodynamic fidelity ℓ𝐴 is computed as

𝜖𝒇(ℓ𝑆, ℓ𝐴) = |𝒇ℓ𝑆(𝒑ℓ𝐴) − 𝒇ℓ𝑆(𝒑0)|, (6.2)

where 𝒇ℓ𝑆(𝑝ℓ𝐴) is the force on the structural fidelity ℓ𝑆 computed
from the surface pressure 𝒑 of the aerodynamic fidelity ℓ𝐴 after
performing the load transfer. Because we map the coupling vari-
ables to the same structural fidelity, the dimensions are consistent

125

and a simple subtraction is sufficient. Recall that we denote the
highest fidelity as ℓ = 0.

Similarly, for the other direction, we perform structural analyses
for the various structural fidelities, then map the structural nodal
displacements 𝑿𝑆 to a fixed aerodynamic mesh to obtain the
aerodynamic surface node displacements 𝑿𝐴. The differences
in the aerodynamic surface node displacements due to different
structural fidelities are then recorded, for each combination of
aerodynamic and structural fidelity used. This is taken as the
error on the aerodynamic surface node displacements.

𝜖𝑿𝐴(ℓ𝑆, ℓ𝐴) = |𝑿
ℓ𝐴
𝐴 (𝑿
ℓ𝑆
𝑆) − 𝑿

ℓ𝐴
𝐴 (𝑿
0
𝑆)|, (6.3)

where 𝑿ℓ𝐴𝐴 (𝑿
ℓ𝑆
𝑆) are the aerodynamic surface nodes 𝑿𝐴 on the

aerodynamic fidelity ℓ𝐴, computed from the structural node
displacements 𝑿𝑆 on the structural fidelity ℓ𝑆.

In practice, these errors are never written to disk but instead
stored in memory. The overall computational cost of this step is
relatively low, since the single-disciplinary analyses were already
necessary for quantifying the errors on the discipline outputs.
The only additional cost is in performing load and displacement
transfer for each combination of aerodynamic and structural
fidelity, and in both directions.

6.2.2 Coupled error propagation

Because we had already performed the load and displacement
transfer earlier when quantifying the errors, coupled error prop-
agation is a self-contained process within a single discipline.

Let us first look at the structural side, where a qoi ℐ now has
uncertainty due to uncertainties in the coupling variables 𝑓𝑖,
which are the structural loads. The resulting variance on ℐ can

126

be computed following equation 6.1 as

𝜖2ℐ ≈ ∑
𝑖
(dℐ
d𝑓𝑖
)
2
𝜖2𝑓𝑖. (6.4)

Previously we had quantified the error 𝜖𝑓𝑖, so it remains to com-
pute the sensitivity of ℐ with respect to the forces. We use the
adjoint approach to compute the sensitivities efficiently. Starting
from equation 2.16, we write the total sensitivity equation with
the forces as the design variables:

dℐ
d𝒇
= 𝜕ℐ
𝜕𝒇
− 𝝍T𝑆
𝜕𝑹𝑆
𝜕𝒇
, (6.5)

where 𝑹𝑆 is the structural residual, and 𝝍𝑆 is the structural ad-
joint vector for output ℐ, computed via the solution of 2.15.

Note that this linear system has the well-known property of being
independent of the design variables 𝒇. Therefore only one linear
solution is needed for each output ℐ. Given that typically the
outputs ℐ are not explicitly dependent on the coupling variables
𝒇, equation 6.5 can be further simplified to

dℐ
d𝒇
= −𝝍T𝑆
𝜕𝑹𝑆
𝜕𝒇
. (6.6)

Luckily for the structural analysis, the residual is actually lin-
ear in 𝒇.1 The residual Jacobian is in fact the negative identity 1: This is only true for a linear structural model, which

is the case for this work but not in general.matrix:

𝑹𝑆 = 𝐊𝒖𝑆 − 𝒇
𝜕𝑹𝑆
𝜕𝒇
= −𝐈.

Equation 6.6 simplifies to

dℐ
d𝒇
= 𝝍𝑆, (6.7)

127

and equation 6.4 becomes

𝜖2ℐ ≈ (𝝍𝑆 ⊙ 𝝍𝑆)
T ⋅ (𝜖𝒇 ⊙ 𝜖𝒇). (6.8)

Here ⊙ denotes the Hadamard product, or element-wise multi-
plication. In terms of the implementation, we simply solve the
structural adjoint𝝍𝑆 for each output ℐ, then perform parallel dot
product with the errors on the forces following equation 6.8.

The equations are largely the same for aerodynamics. First, we
write out the equation for obtaining the variance following the
fosm method:

𝜖2ℐ ≈ ∑
𝑖
(dℐ
d𝑿𝐴𝑖
)
2
𝜖2𝑿𝐴𝑖
. (6.9)

We then expand the total derivative term using the adjoint equa-
tions:

dℐ
d𝑿𝐴
= 𝜕ℐ
𝜕𝑿𝐴
− 𝝍T𝐴
𝜕𝑹𝐴
𝜕𝑿𝐴

(6.10)

= −𝝍T𝐴
𝜕𝑹𝐴
𝜕𝑿𝐴
, (6.11)

where 𝝍𝐴 is the aerodynamic adjoint vector for output ℐ.

But unlike before, the residual Jacobian cannot be simplified
further since the aerodynamic residuals are not linear with respect
to the coupling variables. Nevertheless, we do not form the
residual Jacobian explicitly, since it can be prohibitively expensive
to compute and store in memory. Instead, we use matrix-free
techniques to do this without explicitly computing or storing the
Jacobian matrix. By using the existing ad code within ADflow,
we can seed the reverse-mode ad routines with the corresponding
vector—in this case the adjoint vector—and obtain the matrix-
vector product in a single reverse pass. This process is also done
in parallel, so each processor only has the portion of the matrix-
vector product 𝝍T𝐴 𝜕𝑹𝐴/𝜕𝑿𝐴 local to itself.

The cost of this step is an additional single-disciplinary adjoint
solution for each discipline and fidelity available, as the extra

128

linear algebra computations are negligible in comparison. Com-
pared with methods in the literature that require hundreds or
thousands of single-disciplinary analyses for each fidelity, the
added cost of only a single adjoint solution is a significant im-
provement.

6.3 Verification

We perform verification tests to ensure that the implementation
is numerically correct, by comparing the computed errors using
the proposed method against brute-force Monte Carlo simula-
tions. We draw independent samples of the coupling variables
according to their normal distributions, and perform single-
discipline analyses for each sample. The computed discipline
outputs are then recorded, and the resulting standard deviation
is compared against the outcome of the proposed adjoint-based
method. Note that this verification process is numerically con-
sistent with the forward-pass approach, since we are performing
Monte Carlo simulations over single-disciplinary analyses. As
such, the Monte Carlo results account for the multidisciplinary
coupling in the same way—as a single forward pass, rather than
the fully-coupled approach. For all verification tests, a total of
104 samples are used.

First we examine the structural discipline, in this case the errors
on the O2L3 structural fidelity caused by the R2 aerodynamic
fidelity.2 As shown in table 6.1, we have excellent agreement 2: The structural fidelities are named O#L#, where the

first number denotes the order of the elements, and
the second number denotes the mesh level. Similarly,
the aerodynamic fidelities begin with either R for rans
or E for Euler, followed by a number denoting the
mesh level. The mesh level is always finer for smaller
numbers, with 0 typically denoting the finest mesh
available.

between the two approaches, with relative errors at less than
0.5%. This is expected, as the structural analysis is linear so
the linearization used by the fosm approach should work very
well.

In particular, we note that analytically, the errors on the mass
estimations should be exactly zero since those values only depend
on the design variables, and not on the coupling variables at

129

Adjoint Monte Carlo Relative error (%)

𝑚cr 0.0000 1.80 × 10−12 0.00
𝑚man 2.80 × 10−11 1.80 × 10−12 2.80 × 10−11

KS0 0.0313 0.0313 0.01
KS1 0.0340 0.0340 0.20
KS2 0.0357 0.0355 0.50

Table 6.1: The errors computed via Monte Carlo on
the O2L3 structural fidelity due to the R2 aerodynamic
fidelity show excellent agreement with the adjoint ap-
proach. Since the correct reference values for the mass
errors are zero, absolute errors are shown for those two
instead of relative errors

all. Because of this, the term 𝜕ℐ𝜕𝑢 on the right hand side of equa-
tion 2.15 is a vector of zeros, so the adjoint vector and therefore
the resulting errors are zero as well. The small values obtained
for the maneuver mass are due to finite precision arithmetic
and the poor conditioning of the structural system, and can be
considered to be numerically zero. Because the mathematical
relations between the various quantities are automatically cap-
tured in the adjoint approach, no special treatment is required
for this case.

Next we perform the same verification, but on a lower-fidelity
aerodynamic model to show that we indeed obtain larger errors
on the structural outputs as a result. We use the O2L2 structural
fidelity, together with the E1 aerodynamic fidelity. As seen in
table 6.2, we do indeed obtain larger errors. The differences
between the Monte Carlo simulations and the adjoint approach
are also larger at between 1% and 4%, but still in very good
agreement.

Adjoint Monte Carlo Relative error (%)

𝑚cr 0.0000 1.80 × 10−12 0.00
𝑚man 5.10 × 10−11 1.80 × 10−12 5.10 × 10−11

KS0 0.0454 0.0459 1.09
KS1 0.0483 0.0488 1.01
KS2 0.0541 0.0519 4.24

Table 6.2:The errors computed on the O2L2 structural
fidelity due to the E1 aerodynamic fidelity are larger,
since we used a lower-fidelity aerodynamic model.

Finally, we examine the same process on the aerodynamic side.
We look at the error on the E1 aerodynamic fidelity, caused
by the O2L3 structural fidelity. Here, we do not expect sim-
ilar levels of agreement since the aerodynamic analysis is no
longer linear. Since we linearize the residuals about the analysis
point, the residual Jacobian 𝜕𝑹/𝜕𝑿𝐴 will not be able to cap-
ture any nonlinear effects due to the coupling variables. As a

130

result, we observe errors of up to 67% for the cruise outputs, as
listed in table 6.3. We still believe these are acceptable, since a
rough order-of-magnitude estimate would likely be sufficient
for fidelity selection. Furthermore, we used a fixed number of
samples for the Monte Carlo simulations and did not monitor
the convergence, so it is possible that the reference values are
under-converged.

Adjoint Monte Carlo Relative error (%)

𝐿cr 7293 4367 67
𝐷cr 387 303 27
𝐿man 36 061 205 044 —

Table 6.3: The errors computed on the E1 aerody-
namic fidelity due to the O2L3 structural fidelity.

However, for the maneuver case we encountered another dif-
ficulty during the verification process. A large portion of the
Monte Carlo simulations actually failed to converge due to mesh
warping failures, due to the randomly-generated samples which
are not always physically valid.3

3: Realistically, the errors in the displacements are
not in fact independent, and an approach similar to
section 5.2.2 (with an assumed correlation coefficient
𝜌 used to compute a covariance matrix) can be used
to reduce the chance of mesh warping failure.

These random surface mesh
displacements can cause the volume mesh to collapse onto itself
or even invert certain cells to create negative cell volumes, caus-
ing the analysis to fail. Figure 6.2 shows an example of a failed
mesh during volume mesh warping. This issue did not show up
for the cruise case as the errors were smaller in magnitude. It
is worth noting here that since the adjoint approach requires a
single adjoint solution at the design point, it is guaranteed to
converge if the primal solution converged, and therefore does
not suffer from this problem.

Figure 6.2: An example of a mesh failure due to nega-
tive cell volumes during volume mesh warping.

In practice, the errors are not uncorrelated as assumed. If the
displacement was under-predicted at one surface node, it is likely

131

that the same is true for the surrounding nodes. Therefore, a
more realistic approach would be to assume a large correlation
coefficient for the covariances of the coupling variables, as done
in section 5.2.2. This would improve both the error propagation,
and increase the robustness of the Monte Carlo simulations.

6.4 Incorporation into framework

The coupled errors are computed prior to any optimization,
and saved to disk. They are then used just prior to the error
propagation step (discussed in section 5.2.2, not the coupled
error propagation step mentioned in section 6.2.2), where they
are added to the single-disciplinary error values quantified earlier.
In essence, we have:

𝛿𝑖,ℓ = |𝑦𝑖,ℓ − 𝑦𝑖,0| + 𝜖𝑖,coupled. (6.12)

In this way, the errors are now dependent not only on the fidelity
of each discipline, but the fidelity of the other disciplines as
well. The combined values are then passed through the error
propagation step, either using Monte Carlo or fosm methods,
to obtain the error values on the system-level objective and
constraints. Those error values are then used to guide the fidelity
selection process.

6.5 Summary

In this chapter, we developed a methodology to effectively cap-
ture coupled errors for an aerostructural system, and imple-
mented it within mach. The proposed method is based on fosm,
where the sensitivities are provided using the adjoint method.
By using a feed-forward approach, we could effectively decouple
the disciplines while accounting for some coupled interactions,

132

leading to a much more cost-effective method. The method
was implemented in an efficient manner, taking advantage of
existing ad routines which were able to assemble and compute
Jacobian-vector products in a matrix-free manner, and was veri-
fied against brute-force Monte Carlo simulations. The effect of
coupled errors is further analyzed in section 7.1.3, demonstrat-
ing the importance of capturing such errors in multidisciplinary
systems.

133

Chapter 7

Appropriate Fidelity Optimization Results

7.1 Wing results 133

7.2 xrf1 results 150

7.3 Summary 163

In this chapter, we demonstrate the appropriate fidelity mdo
framework on two sets of aerostructural optimizations. The first
is the standalone wing from chapter 3 and chapter 4, but with
an added structural model. While it is not a large-scale problem,
we show that the framework is able to handle fidelities arising
from not just discretization, but simplified physics. We also
present results to illustrate the impact of considering coupled
errors in a multidisciplinary system. The second optimization
involves the xrf1 aircraft configuration, and is a four-point
aerostructural problem consisting of over 900 design variables
and 900 constraints. In both cases, significant computational
savings were obtained compared to the reference high-fidelity
optimization.

7.1 Demonstration on a standalone wing

7.1.1 Benchmark problem

We use a multifidelity wing optimization problem as the bench-
mark. It is a two-point aerostructural optimization, where the
aerodynamics and structure are analyzed using various fidelities
during optimization. The geometry consists of a single swept
wing with an embedded wingbox, shown in figure 7.1. This is
the same outer mould line (oml) as the problems exampled in
chapters 3 and 4, but extended to include a structural wingbox

134

model. The wingbox is made of 2024 aluminum; the material
properties are listed in table 7.2.

Figure 7.1: Geometric design variables are shown in
the upper figure. Each red node indicates an ffd
control point, and groups of nodes are manipulated
together to form geometric design variables. Struc-
tural design variables are visualized in the lower figure,
where each design variable controls the panel thickness
of a distinct region of the wingbox.

We use the cruise flight condition to compute the wing’s per-
formance and the 2.5 g maneuver flight condition to size the
structure. These flight conditions are listed in table 7.1. The de-
sign variables consist of two angles of attack, one for each flight
condition and seven sectional twist variables that simultaneously
warp the cfd and computational structural mechanics (csm)
meshes. However, the root twist is not a design variable because
we have separate angles of attack for trimming the aircraft. There
are also 108 panel thickness variables for the different wingbox
components. These geometric and structural design variables are
shown in figure 7.1.

Table 7.1: Operating conditions for the cruise and
maneuver points.

Cruise Maneuver

Altitude (m) 10 000 5000
Mach number 0.8 0.75
Load factor 𝑛𝑖 1.0 2.5

The objective of the optimization is to minimize the fuel burn
𝑊FB given by equation 5.2. The drag𝐷 and lift 𝐿 are computed
from the cruise point, and the flow speed is computed from the
cruise Mach number and altitude. The range 𝑅 and tsfc are
given as constants, and the mass 𝑚 is computed from

𝑚 = 2 × 𝑚struct + 𝑚extra, (7.1)

135

where 𝑚struct is the structural mass of the wingbox as computed
by csm, and 𝑚extra is a constant value meant to emulate the
fuselage and other mass not accounted for in the structural
model. All the relevant constants are listed in table 7.2.

Table 7.2: Reference values for the wing-only test case.

Description Values

Range 104 km
Thrust-specific
fuel consumption 0.53 lb/(lbf h)
Extra mass 4 × 104 kg

Material density 2780 kg/m3

Young’s modulus 73.1 GPa
Yield stress 324 MPa
Poisson’s ratio 0.33

There are also several constraints in this problem. We constrain
the lift and weight for both the cruise and maneuver flight con-
ditions, taking the load condition into account. We also have
manufacturing constraints for the panel thickness variables, such
that the difference in thickness between adjacent panels is less
than 2.5 mm. These are sparse linear constraints that can be satis-
fied easily by the optimizer. Of course, yield stress constraints are
enforced at the maneuver flight condition, using the von Mises
failure criterion and a safety factor of 1.5. These constraints
are aggregated using the Kreisselmeier–Steinhauser (ks) func-
tion [209], ultimately resulting in three constraints: one each [209]: Kreisselmeier et al. (1979), Systematic Control

Design by Optimizing a Vector Performance Indexfor the ribs and spars, upper skin and stringers, and lower skin
and stringers. The entire optimization problem formulation is
summarized in table 7.3.

Function/variable Description Quantity

minimize 𝑊FB Fuel burn 1

with respect to 𝑥twist Section twist 7
𝑥alpha Angle of attack 2
𝑥struct Panel thickness 108

Total design variables 117

subject to 𝐿 = 𝑛𝑖𝑊 Lift constraint 2
|𝑥struct,𝑖 − 𝑥struct,𝑖+1| ≤ 2.5mm Adjacency constraint 72

KS𝑖 ≤ 1.0 Yield stress 3
Total constraints 77

Table 7.3: Optimization problem formulation for the
aerostructural wing-only problem.

There are several fidelities available for the aerodynamic and
structural disciplines. For aerodynamics, we use both rans with
the sa turbulence model and Euler solutions with a skin-friction
correction. In addition, there are different discretizations avail-
able: three meshes for rans and two for Euler, for a total of
five fidelities. For structures, there are two discretizations and
two finite-element solution orders possible for a total of four
fidelities. In total, there are 20 possible aerostructural fidelity

136

combinations for each operating point, giving a total of 400
choices. This shows that even for a small mdo problem, the num-
ber of possible fidelity combinations grows quickly. A rigorous
and scalable fidelity management framework is needed to handle
this increasing complexity.

Table 7.4: Fidelities available for aerodynamic and
structural analyses, together with the number of dofs
and computational cost.

Fidelity dof Cost (proc-hours)

Cruise Maneuver

E1 14 560 0.0172 0.0009
E0 116 480 0.1926 0.0659
R2 24 192 0.0286 0.0234
R1 193 536 0.2290 0.2451
R0 1 548 288 3.3748 3.6901

O2L0 179 628 0.0058 0.0061
O3L0 725 484 0.0596 0.0653
O2L1 44 076 0.0006 0.0006
O3L1 179 628 0.0062 0.0062

The available fidelities are listed in table 7.4. For aerodynamic
fidelities, E represents Euler simulations and R represents rans.
For structural fidelities, the O and the following number repre-
sent the structural finite-element analysis order. In both cases,
the final number represents the mesh level, where increasing
numbers correspond to coarser meshes.

7.1.2 Results and discussion

We perform two optimizations: the first uses the appropriate fi-
delity approach, and the second uses only the high-fidelity model.
Note that the appropriate fidelity optimization presented here
does not account for the coupled errors in the manner described
in chapter 6. That optimization is presented in section 7.1.3,
together with further analysis.

First, we examine the multifidelity results. The process begins
with the initial error quantification phase, where we perform
single-discipline evaluations to determine the errors in com-
puting discipline outputs. For each of these outputs, we can
generate a scatter plot of cost against error for each output and
each fidelity shown in figures 7.2 and 7.3.

We make several observations here. First, not all available fideli-
ties are useful fidelities. For example, the fine Euler fidelity E0 is
not Pareto-optimal for computing any aerodynamic quantities
and is dominated by R2, the coarse rans solution. Second, the
Pareto-optimality of a fidelity depends on the qoi. For struc-
tures, the fidelity O3L1 is not Pareto-optimal for the ks stress
constraints but is optimal for computing the structural mass.
In the current framework, we still filter out such fidelities as

137

0 10000

Cost (core-hr)

0

25000

50000

75000

100000

125000

150000
𝐿 c

r
Er

ro
r

0 10000

Cost (core-hr)

0

10000

20000

30000

40000

𝐷
cr

Er
ro

r

0 10000

Cost (core-hr)

0

50000

100000

150000

200000

250000

𝐿 m
an

Er
ro

r

R0R1R2

E1

E0

Figure 7.2: Pareto front for aerodynamic fidelities, showing that not all fidelities are optimal.

0.0

0.2

0.4

0.6

0.8

𝑚
cr

Er
ro

r

0.0

0.1

0.2

0.3

0.4

𝐾
𝑆 0
,m

an
Er

ro
r

O3L2

O2L2

O3L3

O2L3

0 100 200 300

Cost (core-hr)

0.0

0.1

0.2

0.3

𝐾
𝑆 1
,m

an
Er

ro
r

0 100 200 300

Cost (core-hr)

0.0

0.1

0.2

0.3

𝐾
𝑆 2
,m

an
Er

ro
r

Figure 7.3: Pareto front for structural fidelities, show-
ing that not all fidelities are optimal.

we require each potential fidelity to be Pareto-optimal for all
outputs for which it is responsible. Lastly, the scatter plots could
be different if analyzed at another design point, resulting in the
removal of different fidelities. We do not consider such effects
in this work.

After filtering out these non-optimal fidelities, we perform a
single-fidelity optimization using the lowest fidelity available.
Once terminated via the criteria from section 5.2.4, we propagate
the discipline errors to system-level objectives and constraints.

138

Figure 7.4 shows the Pareto plot of cost against error, analogous
to figures 7.2 and 7.3 but for system outputs. Each point cor-
responds to a fidelity combination, and the error is computed
through Monte Carlo simulations. After applying another Pareto
filter, we compute the composite metric ̂𝜖redℓ . Finally, we select
the subsequent fidelity based on this metric.

101 102 103 104 105

101

102

103

104

105

O
bj

ec
tiv

e
Er

ro
r

101 102 103 104 105

Cost (core-hr)

10−2

10−1

100

𝐾
𝑆 0

Er
ro

r

Figure 7.4: Pareto plot of objective errors 𝜖0,ℓ against
cost for all 400 possible fidelity combinations, showing
that many are not Pareto-optimal. The corresponding
plot for constraint KS0 is shown on the right.

A new optimization is then performed, hot-started from the
previous one. This process continues until we reach the final,
high-fidelity optimization, which is allowed to continue to com-
pletion. Table 7.5 lists the sequence of fidelities taken, along
with the computational costs. For comparison, we perform a
reference optimization starting from the same initial design but
using only the high-fidelity models. Overall, the multifidelity ap-
proach offered a speedup of 59% compared to the single-fidelity
approach, while effectively finding the same numerical opti-
mum. The difference in the objective between the two designs

139

Table 7.5: Sequence of fidelities for the aerostructural optimization, showing the fidelity used, the computational costs, and the number of major iterations
taken. The fidelity combination is represented by four columns corresponding to the four analyses in the two-point aerostructural problem. The cost is
given in proc-hours, and the relative cost is normalized by the total cost of the multifidelity approach.

Cruise Maneuver

Number Aero Struct Aero Struct Cost % Cost Iterations

1 E1 O2L1 E1 O2L1 0.95 0.1 80
2 R2 O2L1 E1 O2L0 12.72 0.7 43
3 R2 O2L1 R2 O2L0 0.53 0.0 16
4 R1 O2L1 R2 O2L0 0.53 0.0 14
5 R1 O2L1 R2 O3L0 1.22 0.1 33
6 R1 O2L1 R1 O3L0 32.03 1.8 35
7 R0 O3L1 R1 O3L0 275.01 15.4 15
8 R0 O3L1 R0 O3L0 643.70 36.0 16
9 R0 O3L0 R0 O3L0 821.08 45.9 26

Total 1787.79 100.0 278

High-fidelity R0 O3L0 R0 O3L0 4379.05 244.9 116

is 2 × 10−3 kg, for a relative difference of 4 × 10−8.

A total of nine sub-optimizations were taken, each one hot-
started from the previous optimization. As expected, the early,
low-fidelity optimizations took many iterations to build up a
more accurate approximate Hessian. In contrast, the later opti-
mizations converged in far fewer iterations. As a result, although
the number of major iterations was twice as much as the single-
fidelity optimization, the overall computational cost was far
lower. This also demonstrated the robustness of the hot-start
approach that enabled us to perform nine sub-optimizations
without losing progress in between.

Looking at the sequence of fidelities chosen, we see that the
algorithm preferred to improve the cruise aerodynamics fidelity
more than the maneuver analysis. This preference makes sense
because both lift and drag values are needed from the cruise
point, but only lift is needed for maneuver. Because the error in
the lift is typically higher than the error in the drag for a given
fidelity, it was more important to improve the cruise aerody-
namic fidelity. This is commonly done in single, high-fidelity
optimizations, where the maneuver aerodynamics is often an-
alyzed using a lower-fidelity model, such as by using a coarser

140

grid [210]. Furthermore, structural fidelity is more important for [210]: Brooks et al. (2017), High-fidelity Multipoint
Aerostructural Optimization of a High Aspect Ratio Tow-
steered Composite Wing

the maneuver point than cruise because it computes all the stress
constraints. Naturally, the fidelity selection algorithm improves
the maneuver structural fidelity more quickly than the cruise
counterpart.

However, some of the selections could be improved, particu-
larly for the cruise structural fidelity. The algorithm waited until
the final optimization to switch to the high-fidelity structural
model for the cruise analysis. This is because the only output
directly computed by the cruise structural solver is the struc-
tural mass. The mass is computed accurately for all structural
fidelities because it is a simple linear computation. This results
in an insignificant contribution in the objective error from the
mass computation. These two effects, combined with the rela-
tive insensitivity of the fuel burn objective with respect to the
structural mass [42], result in the selection algorithm favouring [42]: Kenway et al. (2014), Multipoint High-Fidelity

Aerostructural Optimization of a Transport Aircraft Con-
figuration

lower-fidelity models for the cruise structural analysis. The error
introduced by using a low-fidelity structural model is more than
just an inaccurate mass computation. A lower-fidelity structural
model would yield inaccurate structural displacements because
of the coupled aerostructural analysis. This would result in an
inaccurate aeroelastic flying shape and, therefore, inaccurate lift
and drag computations. This coupled effect corresponds to the
red entries in the correlation matrix shown in figure 5.3, which
are not accounted for here. See section 7.1.3 for the subsequent
optimization which included these errors.

Now, we examine the optimizations in more detail. First, we plot
the intermediate designs at the end of each sub-optimization to
show the sequence of optimizations. Figure 7.5 shows the struc-
tural panel thicknesses at the end of each sub-optimization. The
initial design of uniform thickness is also shown. Similarly, fig-
ure 7.6 shows the corresponding structural failure when analyzed
with the same fidelity as used in optimization, where a value
of 1.0 indicates the yield limit. Despite the loose convergence
tolerance of earlier optimizations, their final stress distributions

141

Figure 7.5: Sequence of structural panel thicknesses at the end of each sub-optimization, showing the rapid convergence in the early optimizations.

are still quite close to being optimal, with significant regions of
the wingbox close to the yield limit. Since the vast majority of
the design variables are these structural thicknesses, their rapid
convergence is a good indication of the proposed methodology’s
effectiveness.

142

Figure 7.6: Sequence of stress failure values at the end of each sub-optimization, where a value of 1.0 indicates the yield limit.

Next, we plot some design variables over the optimization his-
tory in figure 7.7, comparing the progress made by the single and
multifidelity approach. We have selected design variables plotted
against major iterations throughout the optimization on the
left. As expected, the single-fidelity approach took significantly
fewer major iterations to arrive at the optimum. However, this

143

0

2

4

6

8

𝛼cr

−2

0

2

4

𝑡𝑤𝑖𝑠𝑡1

2

4

6

8

10

𝛼man

0 50 100 150 200 250 300

Major iterations

0.000

0.005

0.010

0.015

0.020

𝑠𝑡𝑟𝑢𝑐𝑡41

Figure 7.7: Selected design variables during the course of optimizations. Because we hot-start each optimization, these lines are continuous. Despite taking
more iterations to converge, due to cheaper, lower-fidelity models, the design variables converged more quickly when measured using computational cost.

is misleading because the earlier iterations in the multifidelity
approach are significantly cheaper. When adjusted for the com-
putational cost, the multifidelity approach is much quicker, as
shown in figure 7.8. The earlier, cheaper optimizations required
far fewer resources. By the time we start the last few expensive
optimizations, the designs are so close to the optimum that only
a few iterations are needed.

Similarly, we plot the optimization history for a few representa-

144

0

2

4

6

8

𝛼cr

High-fidelity
Multifidelity

−2

0

2

4

𝑡𝑤𝑖𝑠𝑡1

2

4

6

8

10

𝛼man

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Cost (core-hr)

0.000

0.005

0.010

0.015

0.020

𝑠𝑡𝑟𝑢𝑐𝑡41

Figure 7.8: The same figure as figure 7.7, but plotted against computational cost. The use of low-fidelity models in earlier iterations is obvious.

tive outputs in figure 7.9. Unlike design variables, these outputs
are not continuous across optimizations since the same design
analyzed using different fidelities will yield different outputs.
Nevertheless, the outputs still converge relatively quickly when
plotted against computational cost.

Figure 7.10 shows the normalized distance traversed by the
two optimizations, which provides a good idea of the progress
made throughout the optimizations. Because the design variables
vector𝒙 is composed of entries of varying magnitudes, the design

145

150000

200000

250000

300000

𝐿cr

High-fidelity
Multifidelity

1000

2000

3000

4000

5000

𝑚cr

0.0

0.5

1.0

1.5

𝐾𝑆2,man

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Cost (core-hr)

300000

400000

500000

600000

𝐿man

Figure 7.9: Selected function outputs during the course of optimizations. The discontinuity is due to the same design being analyzed by different fidelities.

variables are first scaled element-wise following the scaling factors
in table 7.6. These scaled design variables 𝒙̂ are then used to
compute a scalar distance metric at each optimization iteration,
using

𝑑(𝒙̂𝑖) =
‖𝒙̂𝑖 − 𝒙̂final‖2
‖𝒙̂initial − 𝒙̂final‖2

. (7.2)

This distance metric is normalized such that the initial design
vector 𝒙0 is one unit distance away from the final high-fidelity
optimum. Throughout the optimizations, the design gradually

146

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Cost (core-hr)

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
ize

d
di

sta
nc

e
High-fidelity
Multifidelity

Figure 7.10: Normalized distance from the initial to the final optimum

converges to the final optimum.

Table 7.6: Normalization factors on the design vari-
ables used to compute distances within the design
space.

Design variable Scaling

𝛼 0.1°
Twist 0.1°
Thickness 0.0001 m

From figure 7.10, the multifidelity approach uses the low-fidelity
optimizations at the beginning to make significant progress to-
wards the final optimum while using minimal computational
resources. The first five optimizations cost less than 1% in total
but obtained a design that is 70% of the distance to the final
optimum. However, it is worth noting that not all the optimiza-
tions took the design closer to the optimum. For example, the
third optimization took the design further away. This is not
unexpected since there is no guarantee that the distance will
reduce monotonically throughout. Due to the nature of sqp,
the optimization will typically follow the constraint boundary
once a feasible point is found. This may result in a circuitous
path within the design space. Ultimately, as we improve the
fidelities used and tighten the termination criteria, we see the
optimization rapidly converging to the final optimum.

Lastly, we plot the merit function, the feasibility, and the optimal-
ity tolerances for the optimization in figure 7.11, as computed
by snopt. The merit function is defined as the augmented La-
grangian plus a quadratic penalty term for constraint violations

147

10−6

10−4

10−2

100

𝜏opt

High-fidelity
Multifidelity

10−7

10−5

10−3

10−1

101

𝜏fea

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Cost (core-hr)

54

56

58

60

62

64

66

𝑓merit

Figure 7.11: Optimization metrics as reported by
snopt over the course of the optimizations.

and is used during line search to find an appropriate step length.
The feasibility and optimality tolerances are used as termination
criteria and are good metrics for judging the progress of the op-
timization. Because of the efficient hot start, later optimizations
in the multifidelity approach can quickly reduce the feasibil-
ity and optimality compared with the single-fidelity approach

148

that also used the most expensive high-fidelity model. Further-
more, the feasibility and optimality plots show that the earlier
optimizations were not fully converged. Instead, the error-based
switching criteria terminated each optimization at an appropriate
time without over-converging on the lower-fidelity models.

Overall, we see that the multifidelity approach uses more itera-
tions compared to the single-fidelity approach, but the majority
of those iterations were spent on the low-fidelity models. This
allowed the optimizer to “learn” the optimization problem by
building up the approximate Hessian while moving closer to the
final optimum. The final few optimizations using higher-fidelity
models took fewer iterations and offered significant computa-
tional savings. Ultimately, a 59% cost reduction is achieved while
obtaining the same numerical optimum.

7.1.3 Impact of coupled errors

In this section, we go over an optimization that incorporates
coupled errors based on the approach in chapter 6. We com-
pare against the previous results reported in section 7.1.2, both
with the multifidelity approach and the single high-fidelity opti-
mization. We use the same optimization problem and available
fidelities, the only difference is in the addition of coupled errors
in the fidelity selection algorithm.

First, we perform error quantification for all disciplines. This
involves a total of (5 + 4) × 2 = 18 analyses and the same
number of adjoint solutions, with a total cost of 8.02 core h and
20.92 core h, respectively. Relative to the cost of the high-fidelity
optimization, the increased cost of quantifying coupled errors
is only 0.477 %, and the total cost of error quantification is
0.6609 %, which is a negligible fraction since it only needs to
be done once for a given optimization problem.

Next, we perform multifidelity mdo accounting for these cou-
pled errors. Table 7.7 shows the result of the optimization.

149

Cruise Maneuver

Number Aero Struct Aero Struct Cost % Cost

1 E1 O2L3 E1 O2L3 8.55 0.5
2 R2 O2L3 E1 O2L3 5.34 0.3
3 R2 O2L3 R2 O2L2 27.29 1.7
4 R1 O3L3 R2 O2L2 34.77 2.2
5 R1 O3L3 R2 O3L2 101.61 6.4
6 R1 O3L2 R1 O3L2 52.33 3.3
7 R0 O3L2 R1 O3L2 170.23 10.7
8 R0 O3L2 R0 O3L2 1197.23 75.0

Total 1597.36 100.0

Table 7.7: The sequence of optimizations taken when
considering coupled errors.

The first thing to note is that, the multifidelity optimization
considering coupled errors was 10% faster compared to the
multifidelity optimization without. When compared to the high-
fidelity reference optimization, the case considering coupled
errors took 64% less time, compared to 59% without.

But the results are more illuminating after a closer look. Instead
of requiring a sequence of nine optimizations, the framework
has instead taken just eight, which largely accounts for the sav-
ings in computational time. This was accomplished primarily
by increasing the structural fidelity of the cruise point, switch-
ing to the high-fidelity model O3L2 at the sixth optimization
rather than all the way at the end. This has effectively allowed
us to skip the eighth optimization in the previous optimization,
saving computational time in the process. In contrast, in the opti-
mization without coupled errors, the fidelity selection algorithm
was hesitant to improve the cruise structural fidelity because
its error contribution was only in computing the mass, which
was accurate even for the low-fidelity models. That observation
was the primary motivation behind this work, and now that
the coupled errors are captured, the fidelity selection algorithm
without any modification was able to automatically select a more
appropriate sequence of fidelities. This result clearly highlights
the need for incorporating coupled errors into the multifidelity
mdo framework, and showed that despite not fully accounting
for the two-way coupling between the disciplines, enough cross-
discipline interactions were accounted for to elicit the desired

150

behaviour. Not only is there a reduction in computational cost,
but it was done by selecting more appropriate fidelities for this
particular optimization problem, and in a completely automated
fashion.

7.2 Demonstration on the xrf1

7.2.1 Problem description

We perform aerostructural optimization of the xrf1 model [211], [211]: Pattinson et al. (2013), High Fidelity Simulation
of Wing Loads with an Active Winglet Control Surfacewhich is an aircraft research model developed by Airbus that

contains both an aerodynamic and structural model. In this
work, the wing-body-horizontal tail configuration is used.1 Fig- 1: The oml is provided by Airbus, but the internal

structural layout of the wingbox was constructed by
Gaetan Kenway at the University of Michigan.

ure 7.12 shows a sample aerostructural solution of the config-
uration, where the aeroelastic deflection of the wingtip due to
the aerodynamic loads can be seen.

Figure 7.12: A sample aerostructural solution of the
xrf1 wing-body-horizontal tail configuration.

7.2.1.1 Objective function

The objective function used for the optimization is to minimize
the fuel burn at the cruise point. The fuel burn is computed
based on a rearranged form of the Bréguet range equation:2

2: which may be more aptly named Devillers–Coffin
equation [212].

151

𝑊TOGW = 𝑊LGW exp(
𝑅 𝑐𝑇
𝑉 (𝐿/𝐷)

) (7.3)

𝑊FB = 𝑊TOGW −𝑊LGW, (7.4)

where𝑊TOGW is the take-off gross weight (togw),𝑊FB is the
fuel burn (fb),𝑊LGW is the landing gross weight (lgw), 𝑅 is
the mission range, 𝑐𝑇 is the tsfc, 𝑉 is the cruise speed, and 𝐿/𝐷
is the lift-to-drag ratio. The landing weight is computed using
the following formula:

𝑊LGW = 1.25 ×𝑊 + Area Weight + Fixed Weight + Payload + Reserve Fuel Weight, (7.5)

where𝑊 is the weight computed by the structural finite-element
model. The factor of 1.25 used here accounts for additional
weight associated with fasteners and other components not
modeled in the idealized structural wingbox model. The “Area
Weight” refers to the additional mass associated with the le and
te, and the necessary actuation equipment. The relevant values
are listed in table 7.8.

Table 7.8: The reference values used for the optimiza-
tion.

Parameter Value

Area Weight 6000 kg
Fixed Weight 90 595 kg
Payload 23 950 kg
Reserve Fuel Weight 8000 kg
Range 8000 nm
tsfc 15.57 g/k𝒩/s

7.2.1.2 Cruise and maneuver flight conditions

There are in total one cruise point and three maneuver points.
The cruise point is used to compute the objective, while the
maneuver points are used to compute the structural constraints
at higher loads. The three maneuver points include symmetric
2.5 g pull-up and −1.0 g push-over maneuvers, as well as a gust
case analyzed in steady-state cruise. The purpose of the gust
case is to simulate a sudden load during cruise, such that the
structure did not have time to respond. Therefore, it cannot rely
on passive load alleviation to shift the spanwise loading inboard.
This load case is simulated at 1 g and an elevated Mach number
and altitude, and an increased safety factor is applied, similar to
the approach by Brooks, Kenway, and Martins [27]

[27]: Brooks et al. (2018), Benchmark Aerostructural
Models for the Study of Transonic Aircraft Wings.

152

Contrary to most optimizations, we do not fix the cruise altitude
but set it as a design variable ℎ. The full set of flight conditions
are listed in table 7.9.

Number Mach Altitude Fuel fraction Load factor

1 0.83 ℎ 0.50 1.0

1 0.78 16 000 ft 1.0 2.5
2 0.78 22 000 ft 1.0 −1.0
3 0.84 27 000 ft 1.0 1.0

Table 7.9: Flight conditions for the multipoint opti-
mization.

7.2.1.3 Design variables

There are over 900 design variables for this optimization problem.
First are the geometric design variables, which directly impact
both the aerodynamic and structural analyses. Those include
local shape variables that modify the sectional airfoil shape at
each spanwise station, sectional twist for the wing, and tail rota-
tion angles for each flight condition to trim the aircraft. Wing
planform variables such as span or sweep are not considered in
this work.

Next, there are aerodynamic design variables. For this optimiza-
tion, they are the individual angles of attack for the different
flight conditions, and the altitude ℎ.

Lastly are the structural design variables. We use a smeared
stiffness approach to model the wingbox [213], where the effects [213]: Kennedy et al. (2014), High Aspect Ratio Wing

Design: Optimal Aerostructural Tradeoffs for the Next
Generation of Materials

of the stiffeners are accounted for by changing the material
properties of the panel rather than being explicitly modelled. As
a result, instead of a single panel thickness variable for each patch
of the wingbox, we have three more: stiffener pitch, thickness,
and height. However, we do not allow each panel to control
these variables independently. For example, we keep a single
stiffener pitch variable for each of the skins, ribs, and spars. The
full breakdown of the structural design variables are shown in
table 7.10. In this work, we model the wingbox using 7000
series aluminum alloy with a yield stress of 420 MPa.

153

Figure 7.13 shows the geometric and structural design variables
on the xrf1 model.

Figure 7.13: The geometric and structural parameteri-
zation for the xrf1 model, showing the component
breakdown of the wingbox and the ffd volume used
for shape control.

7.2.1.4 Constraints

There are also many constraints present in the optimization
problem. First are the aerodynamic constraints, consisting of
lift and moment constraints for each flight condition. We also
enforce a separation constraint for the three maneuver cases, as
the optimizer has a tendency to exploit the problem by stalling
the wing in order to reduce the wing loading.

Next are the geometric constraints. We impose limits on the
le radii and te thickness on the wing, such that their values
cannot go below their initial values. We also impose a fuel vol-
ume constraint, and linear leading and trailing-edge constraints
to prevent the shape design variables from emulating a twist
deformation.

Finally, there are structural constraints on the wingbox. These in-
clude yield and buckling constraints computed on the maneuver
flight conditions, and aggregated using the ks function [209]. [209]: Kreisselmeier et al. (1979), Systematic Control

Design by Optimizing a Vector Performance IndexWe also add linear adjacency constraints to prevent significant
differences in the structural design between adjacent compo-
nents. The full optimization problem is given in table 7.10.

154

Table 7.10: The aerostructural optimization problem for the xrf1 case. “(L)” denotes that the constraint is linear.

Function/variable Description Quantity

minimize 𝑊FB Fuel burn 1

with respect to 𝑥twist Wing twist 9
𝑥shape ffd control points 216
𝛼𝑖 Angle of attack for each flight condition 4
ℎ Cruise altitude 1
𝑥𝜂𝑖 Tail rotation angle for each flight condition 4
𝑥panel thick Panel thickness for skins/spars/ribs 273
𝑥skin pitch Stiffener pitch for skins 2
𝑥spar pitch Stiffener pitch for LE/TE/mid spar 3
𝑥rib pitch Stiffener pitch for ribs 1
𝑥stiff height Stiffener height for skins 116
𝑥spar height Stiffener height for LE/TE/mid spar 3
𝑥rib height Stiffener height for ribs 1
𝑥stiff thick Stiffener thickness for skins/spars/ribs 273
Total 906

subject to 𝐿 = 𝑛𝑖𝑊 Lift constraint 4
𝐶𝑀𝑦 = 0 Trim constraint 4
𝐴sep ≤ 4%𝐴ref Amount of separation at maneuver 3

𝑡LE/𝑡LEInit
≥ 1 Leading edge radius 20

𝑡TE/𝑡TEInit
≥ 1 Trailing edge thickness 20

𝑉wing > 𝑉fuel Minimum fuel volume 1
𝛥𝑧TE,upper = −𝛥𝑧TE,lower Fixed trailing edge (L) 8
𝛥𝑧LE,upper = −𝛥𝑧LE,lower Fixed leading edge (L) 8
KSbuckling ≤ 1 2.5 g buckling 3

KSyield ≤ 1 2.5 g yield stress 4
KSbuckling ≤ 1 1.0 g gust buckling 3

KSyield ≤ 1 1.0 g gust yield stress 4
KSbuckling ≤ 1 −1.0 g buckling 3

|𝑥panel thick𝑖
− 𝑥panel thick𝑖+1

| ≤ 0.5mm Skin thickness adjacency (L) 217
|𝑥stiff thick𝑖 − 𝑥stiff thick𝑖+1| ≤ 0.5mm Stiffener thickness adjacency (L) 217
|𝑥stiff height𝑖

− 𝑥stiff height𝑖+1
| ≤ 0.5mm Stiffener height adjacency (L) 217

|𝑥stiff thick − 𝑥panel thick| ≤ 2.5mm Maximum stiffener-skin difference (L) 186
Total 922

7.2.1.5 Available fidelities

There are a number of fidelities available for the multifidelity
approach. For aerodynamics, there are four different rans grids
available, which we label L3, L2.5, L2, and L1.5. For structures,
there are a total of six grids of varying solution order and mesh
level. These fidelities are listed in table 7.11.

In total, there are 24 different fidelity combinations for each

155

mda. With four different flight conditions, the number of total
possible combinations is (4×6)4 = 331 776, although the actual
number is slightly lower due to the initial Pareto filter applied
to the discipline outputs.

Table 7.11: The different fidelities available for both
aerodynamics and structures.

Fidelity # of dof

L3 113 604
L2.5 282 408
L2 908 832
L1.5 2 259 264

O2L3 6254
O2L2 21 937
O3L3 26 300
O2L1 85 814
O3L2 90 336
O3L1 348 470

7.2.2 Results

We perform two aerostructural optimizations. The reference opti-
mization uses just the high-fidelity model, while the multifidelity
optimization will use a number of different fidelities sequentially.
Since the two approaches solve the same optimization problem,
we should obtain the same optimum.

Table 7.12 shows a summary of the two optimizations. Out
of the 331 776 possible fidelity combinations, the appropriate
fidelity framework selected a sequence of eight. Compared to the
single-fidelity optimization, the multifidelity approach obtained
a computational speedup of 44%. Although it took more major
iterations in total, the earlier iterations were substantially cheaper
since they were computed using lower-fidelity models. The final
sub-optimization used close to 90% of the total cost of the
appropriate fidelity optimization, but it took only 335 iterations
instead of 513 for the reference optimization.

It is important to note here that the load balance efficiency of
the two results are comparable to each other. The load balance
efficiency is defined as the “real” computational cost (in core h)
divided by the total computational cost. This factor represents
the ability to balance the computational load in multipoint
problems, and can be viewed as the average of the ratios of the
coloured rectangles to the total rectangular area in figure 5.5. The
efficiency was 74% for the multifidelity results, and 76% for the
high-fidelity results. Therefore, the appropriate fidelity results did
not outperform the high-fidelity optimization simply by having
an improved load balancing. The speedup obtained is due to the
use of the low-fidelity models to accelerate convergence.

156

Table 7.12: The sequence of fidelities for the aerostructural optimization, showing the fidelity used, the computational costs, and the number of major
iterations taken. Here the fidelity combination is represented by four pairs of columns, corresponding to the four analysis points. The cost is given in
proc-hours, and the relative cost is normalized by the total cost of the multifidelity approach.

Cruise Maneuver 1 Maneuver 2 Maneuver 3

Aero Struct Aero Struct Aero Struct Aero Struct Cost % Cost # Iter

1 L3 O2L1 L3 O2L2 L3 O2L2 L3 O2L2 936 1.4 162
2 L2.5 O2L1 L3 O2L0 L3 O2L2 L3 O2L2 1146 1.7 133
3 L2 O2L0 L3 O2L0 L3 O2L2 L3 O2L1 273 0.4 15
4 L2 O3L0 L2.5 O3L0 L3 O2L2 L3 O2L1 699 1.0 39
5 L1.5 O3L0 L2.5 O3L0 L3 O2L0 L3 O3L0 2024 3.0 49
6 L1.5 O3L0 L2 O3L0 L2.5 O2L0 L2 O3L0 661 1.0 7
7 L1.5 O3L0 L1.5 O3L0 L2.5 O2L0 L2 O3L0 977 1.5 206
8 L1.5 O3L0 L1.5 O3L0 L1.5 O3L0 L1.5 O3L0 59 968 89.9 335

Total 66 683 100.0 946

hf L1.5 O3L0 L1.5 O3L0 L1.5 O3L0 L1.5 O3L0 118 313 177.4 513

To show the fidelities in a more intuitive fashion, we take the
information from table 7.12 and plot it in figure 7.14. Upon
closer examination, the fidelity choices are quite intuitive. The
fidelity selection algorithm preferred improving the structural
fidelity of the 2.5 g maneuver point first, as that was the most
structurally constrained analysis. The other structural fidelities
are improved at a later stage, corresponding to their diminishing
impact on the overall optimization. The −1.0 g point which was
least constrained, only switched to the high-fidelity structural
model at the last sub-optimization. On the other hand, although
the cruise structural fidelity was only responsible for computing
the structural mass, it also introduces errors into the aerodynamic
outputs due to the multidisciplinary coupling. As a result, it was
also improved rapidly.

In terms of the aerodynamic fidelities, naturally the cruise aero-
dynamic fidelity was improved first, since it is responsible for
computing the objective function. The maneuver analyses, on
the other hand, stayed on low-fidelity models for longer since
only a few aerodynamic constraints are computed, and the aero-
dynamic fidelities are very expensive relative to the structural
fidelities. These trends are not dissimilar to what was observed
in section 7.1 for the wing-only case.

157

L3

L2.5

L2

L1.5

Aerodynamics

cruise
2.5g
-1g
gust

1 2 3 4 5 6 7 8

Sub-optimizations

O2L2

O2L1

O2L0

O3L0

Structures

Figure 7.14: The sequence of aerodynamic and structural fidelities selected, plotted on a graph.

Since both optimizations solve the same problem, if the design
space is unimodal then we expect both approaches to obtain
the same numerical optimum. While there are subtle differences
in the final designs, they are expected given the level of con-
vergence for the optimizations. In terms of the objective, the
difference between the fuel burn of the two optimal designs is
0.0066 kg, for a relative difference of 6.97 × 10−8. Figure 7.15
shows the progress of the optimization, measured in terms of
the normalized distance as computed using equation 7.2.

We see that at the initial sub-optimizations, the design actually
moved further away from the optimum. This is partially due to
the fact that over half of the design variables are structural design
variables, leading to an over-emphasis of their changes when
applying the 𝐿2 norm. These structural design variables did not
converge initially because the aerodynamic loads from cfd were
computed using low-fidelity models, leading to inaccurate stress
computations. This caused the wingbox to be significantly under-
sized. However, while there are no guarantees of monotonic
convergence, the framework recovered quickly, and converged

158

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Cost (core-hr) ×108

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
N

or
m

al
ize

d
di

sta
nc

e
High-fidelity
Multifidelity

Figure 7.15: Normalized distances for the xrf1 case.

18

20

22

24

26

(𝐿/𝐷)cr

Multifidelity

0.0 0.5 1.0 1.5 2.0 2.5

Cost (core-hr) ×108

8000

9000

10000

11000

12000

𝑚cr

Figure 7.16: Select function outputs for the xrf1 case.

rapidly without any issues.

Next we examine the intermediate solutions in more detail. Fig-
ure 7.16 shows the two key performance metrics—the 𝐿/𝐷 ratio

159

at cruise and the structural mass—during the appropriate fidelity
optimization. These values are computed by the respective fi-
delity, leading to discontinuities between sub-optimizations as
the same design is analyzed on a different fidelity.3 Therefore, 3: The discontinuities for the structural mass are im-

perceptible, due to the accuracy of all fem models in
computing the mass.

these do not represent true values of those intermediate designs,
but rather what is observed by the optimizer. For the lift-to-drag
ratio, incremental improvements in the aerodynamic efficiency
can be seen within each sub-optimization. For the structures, the
initial under-sizing of the wingbox is noticeable, but recovery is
swift as the fidelities are updated.

Figure 7.17 shows three airfoil profiles at three different spanwise
stations along the wing. At the tip, the effect of the aerostructural
system is evident, which caused the different tip deflections.
At the root and mid-span sections, the design labelled “Opt
6” is virtually indistinguishable from the optimum, both in
terms of the airfoil shape and the 𝐶𝑝 distribution. However, it
took less than 10% of the total computational cost to arrive
at this intermediate design. This highlights the efficacy of the
appropriate fidelity approach.

Figure 7.18 shows the normalized lift distributions for the 2.5 g
load condition at three solutions during the optimization. At
this high-lift maneuver case, the optimizer was able to shift
more load inboard compared to the elliptical lift distribution,
via aeroelastic tailoring. This reduces the root bending moment
and therefore the stresses on the wingbox, resulting in a more
efficient wing design. The ability of the optimizer to exploit
passive load alleviation has been noted before [42, 27]. [42]: Kenway et al. (2014), Multipoint High-Fidelity

Aerostructural Optimization of a Transport Aircraft Con-
figuration
[27]: Brooks et al. (2018), Benchmark Aerostructural
Models for the Study of Transonic Aircraft Wings

The lower figure also shows the twist distribution of the wing
under the 2.5 g load. Compared to the initial design, the outer
sections of the wing are negatively twisted, resulting in reduced
lift compared to the inboard section. As before, the 6th interme-
diate optimum is quite close to the final design.

Next we look at the structural design in more detail. Figure 7.19
shows the initial, intermediate, and final structural solutions in

160

Figure 7.17: Airfoil profiles and pressure distributions along the wing.

0

1Normalized Lift
Elliptical

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Span

10

0

Twist

Initial Opt 6 Optimum

Figure 7.18: Spanwise lift distributions at three different designs.

161

Figure 7.19: Initial, intermediate, and final structural designs for the xrf1 optimization.

terms of the mass-equivalent structural thicknesses. These struc-
tural design variables converge relatively quickly, and there are
little discernable differences between the two final solutions.

Figure 7.20 shows the stress and buckling constraint values for
the 2.5 g load case. The stresses are normalized such that a value
of 1.0 corresponds to the yield limit. We see that the initial
design was infeasible, as there are large stresses near the tip of
the mid-spar. However, by the end of the first optimization,
these stress concentrations have been removed and the design
has become nearly feasible. For buckling, as expected the most
buckling-prone regions are on the upper skin, where the com-
pressive loading is the highest under the pull-up maneuver. The
buckling constraint violation near the mid-spar is also evident,
which has been removed by the end of the first optimization.
However, regardless of the analysis fidelity, the optimizer con-
verges the stress and buckling distributions quickly, and little
change is observed after the second sub-optimization. This is
despite having loose convergence tolerances for these low-fidelity
optimizations.

162

Figure 7.20: Initial, intermediate, and final stress and buckling constraint values for the xrf1 optimization.

Finally, figure 7.21 shows the optimization metrics for the two
xrf1 optimizations presented here. While the rate of conver-
gence between the reference optimization and the final multi-
fidelity optimization are similar, the starting values are much
lower thanks to the earlier optimizations.

163

10−5

10−4

10−3

10−2

10−1

100

𝜏opt

High-fidelity
Multifidelity

10−9

10−7

10−5

10−3

10−1

𝜏fea

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Cost (core-hr) ×108

0.2

0.4

0.6

0.8

1.0

1.2

𝑓merit

Figure 7.21: Optimization metrics for the xrf1 case.

7.3 Summary

In this chapter, we presented two aerostructural applications
of the appropriate fidelity mdo framework. The first problem
was a basic aircraft wing design problem with over 100 design

164

variables. The second problem was applied to the xrf1, which is
a large-scale aircraft design problem involving over 900 design
variables and 900 constraints, and the aircraft was analyzed at
four different operating conditions.

We obtained cost savings of between 64% and 44%, respectively,
when compared against the reference high-fidelity optimization.
Both multifidelity optimizations also converged to the same
numerical optimum. In both cases, the sequence of fidelities
chosen were intuitive, making a tradeoff between computational
cost and the reduction in the predicted error of each fidelity.

We showed that the framework is able to handle low-fidelity
models arising from simplified physics, rather than just coarse
discretization. We also showed that the coupled errors are im-
portant in informing the fidelity selection algorithm in picking
appropriate fidelities. We demonstrated good scalability regard-
ing the number of fidelity combinations that can be seen in
practical problems. The xrf1 optimization had 331 776 possible
fidelity combinations, which were filtered and down-selected to
just eight sub-optimizations. The appropriate fidelity framework
has shown to be efficient and reliable in tackling large-scale mdo
problems.

165

Chapter 8

Final Remarks

8.1 Conclusions 165

8.2 Contributions 167

8.3 Future work 168

8.1 Conclusions

This dissertation addressed several long-standing issues when
applying mdo to large-scale problems. In chapter 2, I introduced
the predominant approach to tackling such problems, using a
combination of a gradient-based optimizer with efficient adjoint
and coupled-adjoint computations in an mdf architecture.While
such an approach is capable of finding the optimum, they suffer
from high computational cost and insufficient robustness, often
requiring the engineer to fine tune a number of parameters
through trial and error.

In chapter 3, I identified the non-orthogonality between geomet-
ric design variables as a source of poor optimization convergence.
Using svd, I generated a set of design variables which are orthog-
onal to each other. Together with an automatic scaling approach,
I was able to obtain a superlinear convergence rate indicative of a
well-scaled problem. The approach was tested on two asos, and
in one case the computational cost was reduced by 7%. Even
with the modest performance, this result is still important as
the reference optimization used a set of hand-tuned scaling pa-
rameters. Therefore, a comparable performance using automatic
design variable scaling will greatly cut down the cost of having
multiple optimization attempts. The approach is also general
and applicable to other geometric parameterizations.

In chapter 4, I examined the use of convergence tolerance as
a variable-fidelity model to reduce computational cost. I de-

166

rived the adjoint-based error estimation, and verified the theory
and implementation through numerical experiments. I then
developed an adaptive error control algorithm to adjust the con-
vergence of the primal and adjoint systems during optimization,
while ensuring convergence to the numerical optimum. The ap-
proach was demonstrated on two aso problems, and cost savings
of 30%–50%.

In chapter 5, I provided an overview of existing multifidelity
methods for optimization. Unfortunately, few approaches are
scalable to the problems of interest, containing hundreds of
design variables and constraints. None of the methods are able
to consider multidisciplinary problems, where inherent tradeoffs
occur in the model fidelity at a discipline level.When considering
multipoint problems, the number of possible fidelities grows
exponentially, leading to millions of combinations that must
be handled efficiently. I then developed the appropriate fidelity
mdo framework to address these challenges. The framework
uses a sequential approach, starting from the lowest fidelity
and updating the fidelity between sub-optimizations. Before
any optimization, it first quantifies the errors on each output
at a discipline level, and propagates them to the system-level
objective and constraints. These errors are used in two ways: to
terminate low-fidelity optimizations earlier, and to select the
next appropriate fidelity.

In chapter 6, I extended the appropriate fidelity mdo framework
to capture coupled errors between coupled analyses. Coupled
errors arise when errors from one discipline is propagated to
another through an mda. For example, errors in the cfd analysis
will cause an error on the pressure distribution, which then in-
duces an error on the resultant stress distribution. As a result, the
aerodynamic fidelity can introduce errors on structural outputs
even if the structural fidelity is at its highest level. I developed an
adjoint-based method to estimate such errors considering only
feed-forward coupling, which is efficient and scalable to a large
number of coupling variables. The method is verified against

167

brute-force Monte Carlo propagation, and is shown to be both
accurate and efficient.

In chapter 7, I finally demonstrated the appropriate fidelity mdo
framework on two aerostructural optimizations. For the stan-
dalone wing case, computational savings of 64% was obtained
relative to the high-fidelity reference optimization. I also ex-
amined the effect of capturing coupled errors, and found that
only 59% cost savings were realized when the coupled errors
are not considered. In addition, the sequence of fidelities that
were automatically chosen by the fidelity selection algorithm
were less intuitive, given the lack of information on the cou-
pling. Next, I applied the framework to a large-scale aircraft
design problem including over 900 design variables and 900
constraints. There were a total of 331 766 possible fidelities, and
44% savings were obtained, demonstrating its scalability and
applicability to large-scale mdo problems.

8.2 Novel contributions

In this dissertation, I have made the following contributions:

I developed a sensitivity-based geometric parameterization and au-
tomatic design variable scaling. Aso problems often exhibit slow
convergence. Rather than manually tune optimization param-
eters through trial and error, I developed a method which au-
tomatically generates design variables and scales them suitably
for optimization. The method is comparable to the traditional
approach, with 7% cost savings in one instance, and does not
require any trial and error with multiple optimizations.

I developed a tolerance adaptation scheme suitable for gradient-based
optimization. I developed an adjoint-based error estimation and
convergence adaptation algorithm suitable for gradient-based
optimization. The method does not require modification of the
existing optimization algorithm, and can be directly applied

168

to general constrained optimization problems. I demonstrated
the method on two aso problems, with cost savings between
30%–50%.

I developed an appropriate fidelity mdo framework suitable for
large-scale problems. The multifidelity framework represents the
first instance of an approach that is able to tackle large-scale mdo
problems, accounting for the different sources of error arising
from the discipline fidelities, and effectively handling the large
number of possible fidelities.

I efficiently estimated coupled errors in aerostructural systems. The
errors arise from errors in the coupling variables, which may be
high-dimensional. I developed an adjoint-based methodology
to estimate the coupled errors, independent of the number of
coupling variables.

I demonstrated the framework on large-scale problems. I demon-
strated the framework on two aerostructural optimizations, in-
cluding one which had over 900 design variables and 900 con-
straints. For the two cases shown, I obtain cost savings of be-
tween 44% and 64% compared to the reference high-fidelity
optimization. This represented the first known case of a multifi-
delity optimization algorithm being succesfully applied to such
large-scale multidisciplinary and multipoint problems. I also
demonstrate the effectiveness of the automatic fidelity selection
algorithm, which selected a logical sequence of fidelities with-
out user input and only based on a thorough analysis of errors
present in the available fidelities.

8.3 Recommendations for future work

8.3.1 General

Improve aerostructural primal and adjoint solution accuracy

The existing primal and adjoint solutions are limited due to

169

several factors [21], which has prevented deeper optimization [21]: Kenway et al. (2014), Scalable Parallel Approach
for High-Fidelity Steady-State Aeroelastic Analysis and
Adjoint Derivative Computations

convergences for aerostructural problems. This was something
also pointed out by Bons [72], and causes aerostructural op- [72]: Bons (2020), High-fidelity Wing Design Explo-

ration with Gradient-based Optimizationtimizations to achieve only around three orders of magnitude
reduction in the optimality before the optimizer exits. Improve-
ments in this area will likely require a thorough analysis of the
numerical stability of algorithms used, and possibly employing
higher-precision linear algebra packages for solving the extremely
stiff structural linear system.

Synthesize the three key developments The three develop-
ments presented in this dissertation—geometric parameteriza-
tion, tolerance adaptation, and appropriate fidelity mdo—were
all presented in isolation. It would be great to explore applica-
tions that took advantage of all three, examine the performance
of such approaches and explore potential synergies. For example,
the geometric parameterization may accelerate the final sub-
optimization in the appropriate fidelity framework beyond what
may be obtained in the high-fidelity case.

8.3.2 Geometric parameterization

Extension to aerostructural problems The method itself is not
limited to aerodynamic problems. The straightforward approach
would be to simply combine all pointsets into one collection,
and perform svd on that collection. Further investigation is
needed to determine whether such an approach is necessary or
sufficient for aerostructural problems.

Consider dimension reduction methods As with other svd-
based approaches, either using a geometry database or active
subspaces, it is natural to consider the approach for dimension
reduction. It is straightforward to limit ourselves to the top 𝑥
number of mode shapes when performing optimization, but
design variable bounds and directly design variable constraints

170

must be handled correctly to retain a well-posed optimization
problem. A natural investigation would be to determine the
tradeoff between the efficiency afforded by a reduced optimiza-
tion problem, and the inferiority of the objective when certain
dofs are eliminated.

8.3.3 Tolerance adaptation

Extension to larger problems While the theory extends easily
to problems containing multiple flight conditions or constraints,
demonstrating the methodology on such a problem would be
interesting. In particular, load balancing becomes an issue if
the solvers are executed in parallel, which would require novel
methods to be developed to address such scenario.

Further algorithmic development The algorithm does not cur-
rently account for the error in the objective. To address this, we
can take the approach from the appropriate fidelity framework,
and consider the error in the Lagrangian rather than in individ-
ual constraints. Furthermore, the primal and adjoint errors are
in fact coupled, and it may be more effective to couple their
tolerances together.

Extension to multidisciplinary problems It is natural to ex-
tend the convergence error prediction to multidisciplinary sys-
tems, via the coupled adjoint variables. Similarly, the mda and
coupled adjoint tolerances can be adapted during optimization.
However, in a hierarchical approach, the individual solver tol-
erances also need to be adapted, and managing all the possible
tolerances in a unified fashion can be challenging.

171

8.3.4 Appropriate fidelity mdo

Improved scalability The current approach, while demonstra-
bly scalable to over 300 000 fidelities, can still struggle against
larger problems. One bottleneck is the Pareto filtering, where the
current implementation operates at 𝒪(𝑛2). Even with the fosm
method, it can still be prohibitive when considering billions of
fidelities.

8.3.5 Coupled error propagataion

Consider covariance of coupling variables The covariances of
the coupling variables are not currently considered. Similarly to
the single-discipline coupled errors, a correlation matrix can be
assumed a priori which will likely provide more realistic error
distributions than treating them as independent variables.

Fully-coupled methodology While the feed-forward approach
is effective, a fully-coupled approach can be significantly more
accurate. However, the existence of the mda makes the system
a Markov chain, and the high dimensionality poses a challenge
for existing methods.

172

Appendix A

Cfd Convergence Characterization

We perform several airfoil analyses on the NACA0012 airfoil in
order to characterize how the outputs converges as the primal
solution converges. We first generated a family of three meshes,
with the cell counts given in table A.1.

Level Cell count

L0 350 208
L1 87 552
L2 21 888

Table A.1: The cell count of the meshes used.

We ran the NACA0012 airfoil at three different flow conditions,
listed in table A.2.

Mach number Angle of attack

1 0.8 1.25°
2 0.4 2°
3 0.4 0°

Table A.2: The three flow conditions examined.

The 𝛼 = 0° case captures how the lift converges for a symmetric
airfoil and symmetric flowfield where the lift is expected to be
0 at the first and last iteration. The plots of error in the output
relative to the converged value for each test case is shown in
figures A.1 to A.3.

The convergence of the error in lift and drag as the primal solu-
tion converges shows that while that while there are some oscilla-
tions, the trend is generally linear on a log-log plot. Futhermore,
the slopes of the curve is roughly one, as indicated by an 𝑦 = 𝑥
dashed line. Over the course of convergence, if the residual norm
drops an order of magnitude, so does the output error. In effect,

173

10−13 10−11 10−9 10−7 10−5 10−3 10−1

𝑹̂

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

Error

L2
L1
L0

𝑐𝑙
𝑐𝑑
𝑦 = 𝑥

Figure A.1: Output error convergence during primal
solution convergence for subsonic cases at 𝛼 = 2°.

𝛥𝜖 ≈ 𝛥||𝑹||2. The linear relationship between residual norm
and error also indicates that the linearized error estimate with
the adjoint should provide accurate and useful error estimates.
This result guides our adaptation strategy.

174

10−13 10−11 10−9 10−7 10−5 10−3 10−1

𝑹̂

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Error

L2
L1
L0

𝑐𝑙
𝑐𝑑
𝑦 = 𝑥

Figure A.2: Output error convergence during primal
solution convergence for subsonic cases at 𝛼 = 0°.

10−13 10−11 10−9 10−7 10−5 10−3 10−1

𝑹̂

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

Error

L2
L1
L0

𝑐𝑙
𝑐𝑑
𝑦 = 𝑥

Figure A.3: Output error convergence during primal
solution convergence for transonic cases at 𝛼 = 1.25°.

175

Appendix B

Error Propagation Techniques

The goal of error propagation is to propagate probability distri-
butions of input parameters to output parameters. To be more
precise, we start with a function

𝑦 = 𝑓(𝒙) (B.1)

where 𝒙 ∈ ℝ𝑛𝑥, 𝑛𝑥 is the number of inputs, and 𝑦 is a scalar
output quantity. Suppose first that each 𝑥𝑖 is independent, and
prescribed with a pdf 𝑔𝑖(𝑥). The goal is to find the resulting pdf
on 𝑦. A schematic of this process is shown in figure B.1.

𝑓(𝑥1, 𝑥2, 𝑥3)

𝑥1
𝑥2
𝑥3

𝑦1
𝑦2

Figure B.1:A schematic showing the error propagation
process. A black-box function 𝑓 receives probabilistic
inputs 𝑥𝑖, resulting in a probability distribution on
the output 𝑦. The goal is to find this probability dis-
tribution given the distributions on 𝒙.

In practice, the components of the input 𝒙 are often correlated,
with a covariance matrix 𝛴.

B.1 Monte Carlo methods

The most obvious approach would be to draw independent
samples 𝒙𝑗 according to 𝑔𝑖(𝒙) for each 𝑥𝑖, and compute the
𝑦𝑗 = 𝑓(𝒙𝑗). We use 𝑖 to denote each component of the input
vector 𝒙, and 𝑗 to denote each sample through the Monte Carlo
process. After sufficient samples (say 𝑛𝑠 samples) have been col-
lected, we can then compute the various statistical moments
such as mean and variance on the population 𝑦𝑗. Naturally,

176

sampling-based methods can easily deal with non-Gaussian dis-
tributions or correlated inputs, by simply sampling from the
desired distribution.

It is well known that Monte Carlo methods converge indepen-
dently of 𝑛𝑥, and therefore commonly used for problems with
large dimensions [214]. The method is also applicable to any [214]: Yao et al. (2011), Review of uncertainty-

based multidisciplinary design optimization methods for
aerospace vehicles

general probability distribution, and easily extended to the case
where 𝑥𝑖 are correlated by sampling from the joint probability
distribution 𝑔(𝒙). We also require no knowledge of 𝑓 itself,
simply treating it as a black-box function which is repeatedly
evaluated. However, the convergence rate of Monte Carlo is pro-
portional to 1/√𝑛𝑠, and a large number of samples is typically
needed [214]. The choice of 𝑛𝑠 has significant impact on the [214]: Yao et al. (2011), Review of uncertainty-

based multidisciplinary design optimization methods for
aerospace vehicles

quality of the output, and it is difficult to determine a priori the
number of samples required [215]. In recent years, the field of [215]: (2008), Evaluation of measurement data - Sup-

plement 1 to the “Guide to the expression of uncertainty
in measurement” – Propagation of distributions using a
Monte Carlo method

importance sampling has been developed to address some of these
concerns, by intelligently selecting the sampling points to reduce
the error on the statistical outputs while using significantly fewer
samples.

B.1.1 Adaptive parallel implementation

In this work we use an adaptive approach, where an initial
𝑛𝑠,0 = 10

4 samples are used first, and the statistics on 𝑦 are
computed. Then, batches of 𝑛𝑠,1 = 10

3 samples are added and
the cumulative statistics are computed. If the values of mean
or variance changed by less than either an absolute or relative
tolerance of 10−3, then we deem the Monte Carlo sampling con-
verged. Otherwise, additional batches of 𝑛𝑠,1 samples are added
until convergence. In order to improve efficiency, the sampling
is vectorized such that a batch of 𝑛𝑠,1 samples requires a single
function call.

177

B.2 Fosm method

Fosm methods are a special case of Taylor series-based methods,
where the function 𝑓(𝒙) is approximated by its Taylor series. By
representing 𝑓 as a polynomial, analytic solutions can be used to
compute the various moments on 𝑦. In the simplest case, we use
the first-order Taylor series expansion to compute the first and
second moments of 𝑦 from those of 𝒙, hence the name fosm. In
this case, both the inputs 𝑥𝑖 and the output 𝑦 is assumed to be
Gaussian, so we only need to work with the first two statistical
moments. Let 𝒙0 be the mean of 𝒙, and 𝜎2𝑥𝑖 the variance of each
𝑥𝑖. The Taylor series expansion about the mean is

𝑓(𝒙) ≈ 𝑓(𝒙0) +
𝑛𝑥
∑
𝑖=1
(
𝜕𝑓
𝜕𝑥𝑖
)
𝒙0
(𝑥𝑖 − 𝑥𝑖,0) (B.2)

which results in the following mean and variance values for 𝑦:

𝜇𝑦 = 𝑓(𝒙0) (B.3)

𝜎2𝑦 =
𝑛𝑥
∑
𝑖=1
(
𝜕𝑓
𝜕𝑥𝑖
)
2

𝒙0
𝜎2𝑥𝑖 (B.4)

This approach can be extended in several ways. In the case where
the inputs are correlated, the variance can be corrected by incor-
porating the covariance [214, 216]: [214]: Yao et al. (2011), Review of uncertainty-

based multidisciplinary design optimization methods for
aerospace vehicles
[216]: Seiler (1987), Error Propagation for Large Errors𝜎2𝑦 =

𝑛𝑥
∑
𝑖=1

𝑛𝑥
∑
𝑗=1
(
𝜕𝑓
𝜕𝑥𝑖
)
𝒙0
(
𝜕𝑓
𝜕𝑥𝑗
)
𝒙0

cov(𝑥𝑖, 𝑥𝑗)

=
𝑛𝑥
∑
𝑖=1
(
𝜕𝑓
𝜕𝑥𝑖
)
2

𝒙0
𝜎2𝑥𝑖 + 2

𝑛𝑥−1

∑
𝑖=1

𝑛𝑥
∑
𝑗=𝑖+1
(
𝜕𝑓
𝜕𝑥𝑖
)
𝒙0
(
𝜕𝑓
𝜕𝑥𝑗
)
𝒙0

cov(𝑥𝑖, 𝑥𝑗)

(B.5)
where cov(𝑥𝑖, 𝑥𝑗) is the covariance between the various compo-
nents of 𝒙. It is also possible to extend the method to higher-
order Taylor approximations, which would also require higher
moments of 𝑥𝑖. A derivation of second and third-order expres-
sions without accounting for correlations is presented in [217]

[217]: Martins et al. (2011), Generalized expressions
of second and third order for the evaluation of standard
measurement uncertainty

.

178

Unfortunately, the expressions quickly grow in complexity and
become intractable, especially when the inputs are correlated.

Compared with the Monte Carlo method, the fosm method has
some advantages. In its simplest form, it requires just a single
function and gradient evaluation. If Hessians and higher-order
derivatives are available, they also only need to be evaluated
at a single point. However, the Taylor series expansion is only
valid in a local neighbourhood of the function, and therefore
the accuracy of this method deteriorates when the errors become
large. If the inputs do not follow a Gaussian distribution, then
it is difficult to incorporate higher-order statistical moments.
Lastly, sometimes it may be difficult or expensive to compute
higher-order derivatives of 𝑓.

B.2.1 Implementation

In this work, we use equation B.5 which accounts for the co-
variance of the inputs. The complex-step method [6] is used to [6]: Martins et al. (2003), The Complex-Step Derivative

Approximationcompute the first-order derivatives, with a step size of 10−40.

Note that these derivatives are constant across different fidelities—
only the covariance changes. Therefore, in order to improve
efficiency, we only compute these derivatives once and cache
them.

179

Appendix C

Best Practices for Research in Scientific

Computing

As shown in figure 1.1, implementation, i.e. software develop-
ment, is one of three pillars of computational research. As such,
proper software development practices should be adhered to.
Unfortunately, in research this is often neglected. Too often,
students write spaghetti code to meet deadlines, and the code
is simply discarded when they graduate. Coupled with a gen-
erally poor background in computer science [218], and it is [218]: Hannay et al. (2009), How do scientists develop

and use scientific software?a surefire recipe for disaster. Johanson and Hasselbring [219]
[219]: Johanson et al. (2018), Software Engineering for
Computational Science: Past, Present, Futurehighlights many of the systemic challenges facing computational

research.

Luckily, these issues are well understood, and we can look to ex-
isting research and industry practices for guidance. For example,
Wilson et al. [220] wrote an excellent reference containing some [220]: Wilson et al. (2014), Best Practices for Scientific

Computingbroad recommendations, and the authors later supplemented
it with a subsequent paper which is aptly named [221]. In this [221]: Wilson et al. (2017), Good enough practices in

scientific computingsection, I will briefly discuss some recommendations and lessons
learned during the course of my dissertation. Some examples of
projects that have focused on this aspect include [222], and the [222]: Galbraith et al. (2015), A Verification Driven

Process for Rapid Development of CFD Softwarehpcmp create Program [223, 224], and FUN3D [225].
[223]: Kendall et al. (2021), The HPCMP CREATE™
Program management Model-Part I
[224]: Bergeron et al. (2021), The HPCMP CREATE™
Management Model – Part II, DevOps Principles and
Practices in HPCMP CREATE™
[225]: Zhang et al. (2022), Component-Based Develop-
ment of CFD Software FUN3D

180

C.1 Code development and maintenance

While many of the topics covered here are related to the concept
of “DevOps”, it is a loosely-defined term [226, 227]. Instead, [226]: Leite et al. (2019), A Survey of DevOps Concepts

and Challenges
[227]: Jabbari et al. (2016), What is DevOps? A System-
atic Mapping Study on Definitions and Practices

we will focus on some specific aspects of code development and
maintenance.

C.1.1 Version control and workflow

It should go without saying that a modern version control system
(vcs) such as Git is imperative in the software development cycle.
However, in practice this is often not done properly. For example,
developers should never directly commit to the main branch.
Instead, a development branch should be used, which allows
code changes to occur in parallel and without disruption to
others. It also allows for the possibility of collaboration with
others. Once ready, a pull request is used to merge the code,
subject to review and passage of tests. This process is sometimes
called GitHub flow.1 1: https://docs.github.com/en/get-started

/quickstart/github-flow

One key aspect of this process is the adoption of the code re-
view process. This not only improves code quality by having
additional reviewers check the code, but also facilitates broader
understanding of the code. In the context of scientific com-
puting, collaborators—often other PhD students—can use this
opportunity to learn about the code. This knowledge transfer is
particularly important as many codes live well past the duration
of doctoral studies for the students.

C.1.2 Testing, testing, testing

Software verification and validation (v&v) is a well-discussed
topic. In general, verification refers to whether a software is imple-
mented correctly, while validation refers to the appropriateness
of the computer software in modeling a real-world process [228]

[228]: Oberkampf et al. (2010), Verification and Vali-
dation in Scientific Computing

.

https://docs.github.com/en/get-started/quickstart/github-flow
https://docs.github.com/en/get-started/quickstart/github-flow

181

Here we focus on software verification, which is achieved pri-
marily through testing.

As scientific software is commonly hierarchical, the accompa-
nying tests should reflect the same structure. Broadly speaking,
there are two types of software tests [228]. At the basic level, unit [228]: Oberkampf et al. (2010), Verification and Vali-

dation in Scientific Computingtests are used to verify the implementation of single functions. A
common example given is the Sutherland’s viscosity law given
by Kleb and Wood [229], or Roe’s flux to check that upwinding [229]: Kleb et al. (2006), Computational Simulations

and the Scientific Methodis used correctly for supersonic inputs. The key aspects of unit
testing are:

• The code being tested is simple and singular in function
• The inputs and expected outputs can be verified easily,

typically consisting of analytic values

Regression tests, on the other hand, are used to compare code
outputs to that from a previous version of the code [228]. As [228]: Oberkampf et al. (2010), Verification and Vali-

dation in Scientific Computinga result, failing a regression test does not necessarily indicate the
presence of a bug, merely that the output has changed over time. It
is equally likely that the reference values, trained from an earlier
version, were wrong. Regression tests are commonly used on
larger pieces of code, which due to more complex interactions,
cannot have simple analytic test cases. They can also be used on
the entire code, for example tracking the drag value of a wing.

Since code outputs are subject to various sources of numerical
noise (further discussed in appendix C.2), comparisons with
reference values must be made using tolerances. A common
approach is to employ both an absolute tolerance 𝜏abs and relative
tolerance 𝜏rel, such that a value 𝑣 is approximately equal to the
reference value 𝑣ref if

|𝑣 − 𝑣ref| <= 𝜏abs + 𝜏rel × |𝑣ref|. (C.1)

By using both tolerances, this works well no matter if the refer-
ence value is very large or near zero. Typically, we use the same

182

value for both 𝜏abs and 𝜏rel. Note that this expression is not sym-
metric about 𝑣 and 𝑣ref, since the relative tolerance is treated
relative to the reference value.

Naturally, the choice of test tolerances is a crucial aspect. Too re-
strictive, and tests become flaky, failing for spurious reasons
which can add overhead during software development. Too
loose, and the tests become less useful as true bugs may be
masked by the numerical noise, leading to test passage. Some
of these challenges are discussed further in appendix C.2 and
appendix C.3.

Once tests are in place, the test coverage can be computed as the
percentage of loc that are tested. Practically speaking, only unit
tests should be included in this count, as regression tests do not
indicate the code is bug-free. The coverage is also merely an upper
bound, since not every executed loc is tested. Nevertheless, it
gives good indication of how many loc is definitely not being
tested.

During the course of software development, it is also common
to manually perform more complex software verification tasks.
For example, when solving pdes numerically, the achieved order
of convergence can be compared to theoretical results. This can
be done more rigorously using the method of manufactured
solutions, commonly used in verification of high-order cfd
methods [230]. [230]: Wang et al. (2013), High-order CFD methods:

current status and perspective

While tests can be written after the fact, as done in the v&v stage
of software development, it is often more effective to write tests
during, or even before any “real” code is written. This approach,
called test-driven development, can be a more effective way to
develop software [231]. [231]: Nanthaamornphong et al. (2015), Test-Driven

Development in scientific software: A survey

183

C.1.3 Static code analysis and formatting

In addition to unit and regression tests, others tests can be per-
formed by dedicated tools. In contrast to dynamic analysis (i.e.
at runtime), static analysis tools comb through the source code
to look for potential errors. Often called linters, these tools are es-
pecially important for languages such as Python that do not have
an explicit compilation step, where many errors can be caught.
We use two popular Python linters, flake82 and pylint.3 2: https://flake8.pycqa.org

3: https://pylint.org/

Code formatting can be a contentious topic, as different devel-
opers have their own preferences. However, developers should
not spend time arguing over stylistic changes. A software project
should have—from its inception—an established convention
for code style. For example, PEP 84 is a popular choice for many 4: https://peps.python.org/pep-0008/

Python projects. To simplify matters and to avoid spending time
manually adjusting the formatting, automatic code formatters
should be used. We use black5 for Python, ClangFormat6 for 5: https://black.readthedocs.io

6: https://clang.llvm.org/docs/ClangForma

t.html
C/C++, and fprettify7 for Fortran. Many linters are also capa-

7: https://github.com/pseewald/fprettifyble of raising warnings when names do not follow a particular
naming convention.

C.1.4 Continuous integration

Tests are fairly useless if not executed often. While it is useful to
have these tests available for developers, their utility is only fully
realized when employed in an automated testing framework.
Continuous integration is typically done via automated testing
at a high frequency. We run the full test suite on every pull
request to a repository, including the following tests:

• Unit and regression tests, both in serial and parallel
• Linters
• Code formatters
• Coverage testing, to ensure code changes and additions

have associated tests

https://flake8.pycqa.org
https://pylint.org/
https://peps.python.org/pep-0008/
https://black.readthedocs.io
https://clang.llvm.org/docs/ClangFormat.html
https://clang.llvm.org/docs/ClangFormat.html
https://github.com/pseewald/fprettify

184

Table C.1: An example of the build and test matrix used for continuous integration of mach. The versions of other dependencies are given in the
corresponding column of table C.2

1 2 3 4 5 6

os Centos 7 Ubuntu 22.04 Ubuntu 22.04 Ubuntu 20.04 Ubuntu 20.04 Ubuntu 18.04
compilers Intel 2018 GCC 11.2.0 GCC 11.2.0 GCC 9.3.0 GCC 9.3.0 GCC 7.4.0
mpi Intel 19.0.7 OpenMPI 4.0.5 OpenMPI 3.1.6 OpenMPI 4.0.5 OpenMPI 3.1.6 Intel 19.0.7
other stable latest stable latest stable stable

• Ad tests, to ensure the automatically differentiated code
is consistent with the source code.8 8: We track ad code in the repository such that the

ad tool is not needed for end users to compile the
packageIn addition, the entire code base of mach, consisting of about 20

packages, is tightly integrated. Testing each package in isolation
may not catch bugs downstream. Therefore, we also test the
entire codebase nightly on dedicated hardware. These include the
unit and regression tests above, and several larger regression tests
that perform aerodynamic and aerostructural optimizations.

On top of this, we support multiple versions of dependencies,
such as different mpi implementations and compilers. The com-
binatorial nature of dependency management can quickly grow
to be intractable. Therefore, we limit ourselves to a handful of
relevant combinations that may be found on our local worksta-
tions or hpc systems. Table C.1 illustrates the complexity of this
task.

The definition of the “stable” and “latest” versions of other de-
pendencies are given in table C.2.

stable latest

Python 3.8.9 3.9.6
NumPy 1.19.2 1.21.5
SciPy 1.5.4 1.7.3
cgns 4.2.0 4.3.0
petsc 3.14.6 3.15.5
snopt 7.7.1 7.7.7
OpenMDAO 3.18.0 3.20.0

Table C.2: Versions of additional dependencies.

It is easy to see that without careful consideration, the number
of combinations can quickly grow out of hand. We use Docker
containers to facilitate dependency management, and to improve
reproducibility (further discussed in appendix C.3). Each of
the images listed in table C.1 are built in Docker, using jinja-
templated Dockerfiles. The same containers are then published
online, and can be used directly by end-users on either a local
workstation, or converted to Singularity containers [232] for use

[232]: Kurtzer et al. (2017), Singularity: Scientific con-
tainers for mobility of compute

on hpc systems.

185

C.1.5 Documentation

Knowledge only exists if it is written down. Without adequate
documentation, software cannot attract users, and ongoing de-
velopment becomes increasingly difficult until it falls into ob-
solescence. However, documentation is a catch-all term that
encompasses different things with different goals in mind, cater-
ing to both users and developers. Here, we roughly follow the
classification system from Divio,9 which is broadly split into the 9: https://documentation.divio.com/

following sections.

Tutorials is an introductory guide, similar to a Quick Start doc-
ument that guides through a basic use case.

How-to guides describe how to accomplish specific tasks, as-
suming the reader is familiar with the basic concepts al-
ready.

Reference guides cover the code base comprehensively. Typi-
cally this involves application programming interface (api)
documentation in the form of parsed docstrings.

Explanation provides the bigger picture, often in the form of
a theory guide or developer’s guide. They can describe
fundamental concepts, the software architecture, and why
things are set up a certain way. These texts may not be
necessary to use the code, but give a deeper understanding
for advanced users or collaborators. They’re also a great
way for developers to document the code in a holistic way.

Documentation is one of the hardest aspects of software to
do well, since there are no metrics or tests to enforce, apart
from tools such as pydocstyle.10 But if done poorly, and those 10: http://www.pydocstyle.org/

responsible for the code move away from the project, then the
chances of resurrecting the code and keeping it relevant are
slim.

https://documentation.divio.com/
http://www.pydocstyle.org/

186

C.2 Sources of numerical errors

In scientific computing, numerical errors can come from a num-
ber of sources [233]. As discussed in section 2.4, this includes [233]: Kennedy et al. (2001), Bayesian Calibration of

Computer Modelsboth precision and accuracy. In the context of scientific com-
puting, precision refers to the random noise in outputs when
executing the program multiple times—either sequentially, or
on multiple computer systems. In contrast, accuracy refers to
the systematic error between the outputs and the expected or
true numerical output.

The first and most obvious source of error is the use of floating
point arithmetic, which allows digital representation of floating
point numbers up to machine precision 𝜖mp. Typical double
precision variables are stored using 64 bits, leading to 𝜖mp ∼
10−16. However, in many cases, this can lead to significant losses
of accuracy much beyond 𝜖mp. For example, if a linear system
has a condition number of 109—not uncommon in fem with
shell elements [21]—then the solution may be accurate to only [21]: Kenway et al. (2014), Scalable Parallel Approach

for High-Fidelity Steady-State Aeroelastic Analysis and
Adjoint Derivative Computations

107 at most. Certain iterative algorithms may also lead to rapid
loss of accuracy, such as the well-known classical Gram-Schmidt
algorithm [234]. However, ieee-compliant arithmetic should [234]: Trefethen et al. (1997), Numerical Linear Alge-

branot cause any loss of precision, meaning every invocation of the
program should still return byte-identical output.

Next are the compiler optimizations. In many cases, the com-
piler is able to speed up the code significantly if it is allowed
to be non-compliant when dealing with floating point arith-
metic. Some of these optimizations include unrolling loops or
taking advantage of newer vectorization instruction sets, which
introduce parallelism at the cost of precision and accuracy. The
amount of noise introduced here depends largely on the specific
code, but it can add up significantly.11 For example, for gcc 11: https://simonbyrne.github.io/notes/f

astmath/the compiler option -Ofast will introduce a number of unsafe
operations, and Corden and Kreitzer [235] discuss many similar [235]: Corden et al. (2009), Consistency of floating-

point results using the intel compiler or why doesn’t my
application always give the same answer

issues for Intel compilers.

https://simonbyrne.github.io/notes/fastmath/
https://simonbyrne.github.io/notes/fastmath/

187

Further errors are introduced using higher-level parallelism,
such as mpi for distributed-memory or Open Multi-Processing
(OpenMP) for shared memory parallelism. This will often in-
troduce noise when running the same program with different
numbers of processors or threads, even considering simple opera-
tions such as reductions [236, 237]. In more complex programs, [236]: Balaji et al. (2013), On the Reproducibility of

MPI Reduction Operations
[237]: Collange et al. (2015), Numerical reproducibil-
ity for the parallel reduction on multi- and many-core
architectures

domain decomposition is often required, using tools such as
metis [238]. In such cases, changing the number of proces-

[238]: Karypis et al. (1998), A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs

sors will fundamentally alter the resultant linear and nonlinear
systems to be solved, further introducing errors.

Next is the stochasticity introduced into the code as part of
the numerical algorithm, often in the form of pseudo-random
number generator (prng). Many algorithms that are central
to computational science, such as Monte Carlo or stochastic
optimizers rely on random numbers. Of course, the results can be
made deterministic by fixing the seed, but this is not commonly
done.

Finally, there are some factors that may be outside the control of
the end user. For example, the operating system (os), compiler
version, and versions of all dependencies may change over time,
or from one hpc system to another. Any change in the entire
software stack may result in differences in software outputs,
and the root cause is difficult if not impossible to track down.
Since scientific computing software are highly complex, small
changes can propagate and cause bigger changes downstream.
For example, a small change in a single floating point variable
can cause the program to go down a different path due to a
conditional statement.

There are two main ways to address this issue. The first is by man-
aging and controlling the amount of error introduced through-
out the code, such that the final error remains acceptable to the
level required for engineering applications. For example, while
noise may be present in the model, leading the optimizer to trace
a different path in the design space, the final optimum should

188

still agree reasonably well for a unimodal problem if the various
tolerances are sufficiently small. This is oftentimes achievable
for aso, but as model complexity increases, the problem may
become too difficult to tackle. It is also generally difficult to
control the computational environment beyond a certain time
frame, making reproducibility difficult after a long period of
time.

The second approach is to attempt to make the entire simulation
and optimization environment reproducible. While this approach
does not address the fundamental issue with not knowing how
much error was introduced into the solution, the output will at
least become deterministic, even across systems. This approach is
discussed in the next section, and of course both approaches can
be combined to improve the overall behaviour of the program.

C.3 Reproducibility

There are many definitions of reproducibility. Here we borrow
from [239]

[239]: Ezer et al. (2019), Data science for the scientific
life cycle

, and consider it as an independent recreation using
the same dataset and tools. Figure C.1 shows the full matrix of
possible combinations.

Figure C.1: Possible definitions of reproducibility,
taken from [239] and made available under the Cre-
ative Commons Attribution 4.0 International (CC BY
4.0) license.

While there is strong motivation and desire for reproducible
science [240], this is difficult to accomplish in practice. In the [240]: Munafò et al. (2017), A manifesto for repro-

ducible sciencecontext of computational research, many factors impede such
attempts, which are discussed by Ivie and Thain [241]. [241]: Ivie et al. (2018), Reproducibility in Scientific

Computing

Here, I discuss some practical strategies to improve the current
state of computational research.12 This is achieved by keeping 12: Some of these are aspirational, and have not yet

been put to use in this dissertation.track of the following components:

• Computational environment
• Workflow
• Inputs and outputs

189

To reproduce the computational environment, we use a con-
tainer to isolate it from the host system. These containers can
then be archived and reused at a later date to regenerate the same
dataset. Many container technologies exist, such as Docker [242] [242]: Merkel et al. (2014), Docker: Lightweight linux

containers for consistent development and deploymentand Singularity [232]. Singularly has the advantage of being com-
[232]: Kurtzer et al. (2017), Singularity: Scientific con-
tainers for mobility of computepatible with many hpc systems, offering a seamless computing

experience. Now, this does require the generation and mainte-
nance of containers as a deployment step, but this is often not too
difficult since there are benefits to using containers for software
testing, particularly different combinations of dependencies and
build tools as discussed in appendix C.1.4.

For workflow and data, several frameworks have been developed
to address precisely this need, such as Data Version Control
(dvc) [243], ReproZip [244], DataLad [245], and signac [246]. [243]: Kuprieiev et al. (2022), DVC: Data Version

Control - Git for Data & Models

[244]: Rampin et al. (2016), ReproZip: The Repro-
ducibility Packer

[245]: Halchenko et al. (2021), DataLad: Distributed
system for joint management of code, data, and their
relationship

[246]: Adorf et al. (2018), Simple data and workflow
management with the signac framework

However, in addition to this, a long-term archival system is
needed to preserve all the data necessary, including the containers.
Many journals are now starting to require both data and software
to be made publicly-available when publishing papers. This goes
beyond open sourcing the respective software and is a good first
step towards true reproducible computational science.

C.3.1 RepoState: a package to facilitate

reproducible computational research in

Python

While a production-ready image can be used to generate compu-
tational result for a paper, the same cannot be done in the midst
of active development. Therefore, to facilitate reproducibility—
particularly on hpc environments, the package RepoState was
developed. The original author was Gaetan Kenway, but I have
since modified and updated a significant portion of the code.

In contrast to many other approaches that attempt to generate
metadata regarding the computing environment, RepoState ac-
complishes this by directly inspecting the Python package that

190

is imported. This is a key distinction from methods that query
the package manager, for example parsing the output of pip
list. Since Python allows for in-place installations—in fact the
preferred methods for many developers—the version from pip

may not match the version of the code which is executed. On
top of this, the version specifier may not be sufficient for actively-
developed code, which can have either a commit which is not
versioned, or even uncommitted changes. Therefore, RepoState
will inspect each imported package and check if it belongs in a git
repository. If so, it will also record the current git commit, and
a patch file if any uncommitted changes are present. Crucially,
this step also includes the runscript itself if it is tracked by git.
This provides an easy way to identify changes in the runscript
between subsequent executions.

In addition to this information for each imported Python pack-
age, additional metadata is recorded. These include the current
system time, the list of loaded modules in the compute environ-
ment, and the list of environment variables.13 The full output 13: For many hpc systems, the environment variables

from the mpi implementation will contain useful in-
formation such as the number of processors requested,
and even the command executed.

of pip freeze is also saved, in order to track the versions of
secondary dependencies. All the metadata generated should be
stored along with the outputs, and archived appropriately.

Now, say it is a year later and we wish to reproduce the same
results. The stored metadata can now be read back by RepoState.
For each git-tracked package, it is then able to roll back to
the precise version of the code used, applying any patches as
necessary. The same is also done for the runscript itself. The user
can then compile and install any code as necessary, and rerun
the script to regenerate the output.

191

Bibliography
[1] J. R. R. A. Martins. “Aerodynamic Design Optimization: Challenges and Perspectives”. In:

Computers & Fluids 239 (May 2022), p. 105391. doi: 10.1016/j.compfluid.2022.105391
(cited on pages 1, 20).

[2] J. R. R. A. Martins and A. Ning. Engineering Design Optimization. Cambridge, UK: Cambridge
University Press, 2021 (cited on pages 2–4, 12, 17, 18, 22, 24, 25, 40, 59).

[3] X. He, J. Li, C. A. Mader, A. Yildirim, and J. R. R. A. Martins. “Robust aerodynamic shape
optimization—from a circle to an airfoil”. In: Aerospace Science and Technology 87 (Apr. 2019),
pp. 48–61. doi: 10.1016/j.ast.2019.01.051 (cited on pages 2, 41).

[4] I. Newton. Philosophiæ Naturalis Principia Mathematica. Londini: Jussu Societatis Regiæ ac
Typis Josephi Streater. Prostat apud plures Bibliopolas, 1687 (cited on page 3).

[5] W. Squire and G. Trapp. “Using complex variables to estimate derivatives of real functions”.
In: SIAM Review 40.1 (1998), pp. 110–112. doi: 10.1137/S003614459631241X (cited on
page 4).

[6] J. R. R. A. Martins, P. Sturdza, and J. J. Alonso. “The Complex-Step Derivative Approximation”.
In: ACM Transactions on Mathematical Software 29.3 (Sept. 2003), pp. 245–262. doi: 10.
1145/838250.838251 (cited on pages 4, 178).

[7] J. S. Arora and E. J. Haug. “Efficient Optimal Design of Structures by Generalized Steepest
Descent Programming”. In: International Journal for Numerical Methods in Engineering 10
(1976), pp. 747–766 (cited on page 4).

[8] O. Pironneau. “On Optimum Profiles in Stokes Flow”. In: Journal of Fluid Mechanics 59.01
(1973), pp. 117–128. doi: 10.1017/S002211207300145X (cited on page 4).

[9] A. Jameson. “Aerodynamic Design via Control Theory”. In: Journal of Scientific Computing 3.3
(Sept. 1988), pp. 233–260. doi: 10.1007/BF01061285 (cited on page 4).

[10] Z. Lyu, G. K. Kenway, C. Paige, and J. R. R. A. Martins. “Automatic Differentiation Adjoint
of the Reynolds-Averaged Navier–Stokes Equations with a Turbulence Model”. In: 21st AIAA
Computational Fluid Dynamics Conference. San Diego, CA, July 2013. doi: 10.2514/6.2013-
2581 (cited on page 4).

[11] Z. Lyu and J. R. R. A. Martins. “Aerodynamic Design Optimization Studies of a Blended-
Wing-Body Aircraft”. In: Journal of Aircraft 51.5 (Sept. 2014), pp. 1604–1617. doi: 10.2514/
1.C032491 (cited on page 4).

https://doi.org/10.1016/j.compfluid.2022.105391
https://doi.org/10.1016/j.ast.2019.01.051
https://doi.org/10.1137/S003614459631241X
https://doi.org/10.1145/838250.838251
https://doi.org/10.1145/838250.838251
https://doi.org/10.1017/S002211207300145X
https://doi.org/10.1007/BF01061285
https://doi.org/10.2514/6.2013-2581
https://doi.org/10.2514/6.2013-2581
https://doi.org/10.2514/1.C032491
https://doi.org/10.2514/1.C032491

192

[12] Y. Shi, C. A. Mader, S. He, G. L. O. Halila, and J. R. R. A. Martins. “Natural Laminar-Flow
Airfoil Optimization Design Using a Discrete Adjoint Approach”. In: AIAA Journal 58.11 (Nov.
2020), pp. 4702–4722. doi: 10.2514/1.J058944 (cited on page 4).

[13] P. He, A. J. Luder, C. A. Mader, K. J. Maki, and J. R. R. A. Martins. “A Time-Spectral Adjoint
Approach for Aerodynamic Shape Optimization Under Periodic Wakes”. In: AIAA SciTech
Forum. AIAA. Orlando, FL, Jan. 2020. doi: 10.2514/6.2020-2114 (cited on page 4).

[14] G. K. W. Kenway and J. R. R. A. Martins. “Buffet-Onset Constraint Formulation for Aero-
dynamic Shape Optimization”. In: AIAA Journal 55.6 (June 2017), pp. 1930–1947. doi:
10.2514/1.J055172 (cited on pages 4, 10).

[15] N. Garg, G. K. W. Kenway, Z. Lyu, J. R. R. A. Martins, and Y. L. Young. “High-fidelity
Hydrodynamic Shape Optimization of a 3-D Hydrofoil”. In: Journal of Ship Research 59.4 (Dec.
2015), pp. 209–226. doi: 10.5957/JOSR.59.4.150046 (cited on page 4).

[16] G. K. W. Kenway, C. A. Mader, P. He, and J. R. R. A. Martins. “Effective Adjoint Approaches for
Computational Fluid Dynamics”. In: Progress in Aerospace Sciences 110 (Oct. 2019), p. 100542.
doi: 10.1016/j.paerosci.2019.05.002 (cited on pages 4, 11, 22, 30).

[17] R. T. Haftka. “Optimization of Flexible Wing Structures Subject to Strength and Induced Drag
Constraints”. In: AIAA Journal 15.8 (1977), pp. 1101–1106. doi: 10.2514/3.7400 (cited on
pages 5, 95).

[18] J. Sobieszczanski–Sobieski. “Sensitivity of Complex, Internally Coupled Systems”. In: AIAA
Journal 28.1 (1990), pp. 153–160. doi: 10.2514/3.10366 (cited on page 5).

[19] J. R. R. A. Martins, J. J. Alonso, and J. J. Reuther. “A Coupled-Adjoint Sensitivity Analysis
Method for High-Fidelity Aero-Structural Design”. In: Optimization and Engineering 6.1 (Mar.
2005), pp. 33–62. doi: 10.1023/B:OPTE.0000048536.47956.62 (cited on pages 5, 26,
124).

[20] J. R. R. A. Martins, J. J. Alonso, and J. J. Reuther. “High-Fidelity Aerostructural Design
Optimization of a Supersonic Business Jet”. In: Journal of Aircraft 41.3 (May 2004), pp. 523–
530. doi: 10.2514/1.11478 (cited on pages 5, 7, 31).

[21] G. K. W. Kenway, G. J. Kennedy, and J. R. R. A. Martins. “Scalable Parallel Approach for
High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations”. In:
AIAA Journal 52.5 (May 2014), pp. 935–951. doi: 10.2514/1.J052255 (cited on pages 5,
11, 24, 28, 31, 75, 124, 169, 186).

[22] Z. J. Zhang, S. Khosravi, and D. W. Zingg. “High-fidelity aerostructural optimization with
integrated geometry parameterization and mesh movement”. In: Structural and Multidisciplinary
Optimization 55.4 (Aug. 2016), pp. 1217–1235. doi: 10.1007/s00158-016-1562-7 (cited
on page 6).

[23] R. Olivanti and J. Brézillon. “On the Benefits of Engaging Coupled-Adjoint to Perform High-
Fidelity Multipoint Aircraft Shape Optimization”. In: AIAA AVIATION 2021 FORUM. Ameri-

https://doi.org/10.2514/1.J058944
https://doi.org/10.2514/6.2020-2114
https://doi.org/10.2514/1.J055172
https://doi.org/10.5957/JOSR.59.4.150046
https://doi.org/10.1016/j.paerosci.2019.05.002
https://doi.org/10.2514/3.7400
https://doi.org/10.2514/3.10366
https://doi.org/10.1023/B:OPTE.0000048536.47956.62
https://doi.org/10.2514/1.11478
https://doi.org/10.2514/1.J052255
https://doi.org/10.1007/s00158-016-1562-7

193

can Institute of Aeronautics and Astronautics, July 2021, p. 3072. doi: 10.2514/6.2021-3072
(cited on page 6).

[24] M. Carini, C. Blondeau, N. Fabbiane, M. Meheut, M. Abu-Zurayk, J. M. Feldwisch, C. Ilic,
and A. Merle. “Towards industrial aero-structural aircraft optimization via coupled-adjoint
derivatives”. In: AIAA AVIATION 2021 FORUM. American Institute of Aeronautics and
Astronautics, July 2021, p. 3074. doi: 10.2514/6.2021-3074 (cited on page 6).

[25] G. K. W. Kenway, G. J. Kennedy, and J. R. R. A. Martins. “Aerostructural Optimization of the
Common Research Model Configuration”. In: 15th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference. AIAA 2014-3274. Atlanta, GA, June 2014. doi: 10.2514/6.2014-
3274 (cited on page 6).

[26] G. W. K. Kenway and J. R. R. A. Martins. “High-fidelity aerostructural optimization con-
sidering buffet onset”. In: Proceedings of the 16th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference. Dallas, TX, June 2015. doi: 10.2514/6.2015-2790 (cited on
page 6).

[27] T. R. Brooks, G. K. W. Kenway, and J. R. R. A. Martins. “Benchmark Aerostructural Models
for the Study of Transonic Aircraft Wings”. In: AIAA Journal 56.7 (July 2018), pp. 2840–2855.
doi: 10.2514/1.J056603 (cited on pages 6, 11, 13, 33, 40, 96, 151, 159).

[28] T. R. Brooks, J. R. R. A. Martins, and G. J. Kennedy. “High-fidelity Aerostructural Optimization
of Tow-steered Composite Wings”. In: Journal of Fluids and Structures 88 (July 2019), pp. 122–
147. doi: 10.1016/j.jfluidstructs.2019.04.005 (cited on pages 6, 9, 11).

[29] T. R. Brooks, J. R. R. A. Martins, and G. J. Kennedy. “Aerostructural Trade-offs for Tow-steered
Composite Wings”. In: Journal of Aircraft 57.5 (Sept. 2020), pp. 787–799. doi: 10.2514/1.
C035699 (cited on page 6).

[30] D. A. Burdette and J. R. R. A. Martins. “Design of aTransonic Wing with an Adaptive Morphing
Trailing Edge via Aerostructural Optimization”. In: Aerospace Science and Technology 81 (Oct.
2018), pp. 192–203. doi: 10.1016/j.ast.2018.08.004 (cited on page 6).

[31] D. A. Burdette and J. R. R. A. Martins. “Impact of Morphing Trailing Edge on Mission
Performance for the Common Research Model”. In: Journal of Aircraft 56.1 (Jan. 2019),
pp. 369–384. doi: 10.2514/1.C034967 (cited on page 6).

[32] A. Yildirim, J. S. Gray, C. A. Mader, and J. R. R. A. Martins. “Boundary Layer Ingestion Benefit
for the STARC-ABL Concept”. In: Journal of Aircraft 59.4 (July 2022), pp. 896–911. doi:
10.2514/1.C036103 (cited on pages 6, 29, 39).

[33] J. R. R. A. Martins and A. B. Lambe. “Multidisciplinary Design Optimization: A Survey of
Architectures”. In: AIAA Journal 51.9 (Sept. 2013), pp. 2049–2075. doi: 10.2514/1.J051895
(cited on pages 6, 24–26).

https://doi.org/10.2514/6.2021-3072
https://doi.org/10.2514/6.2021-3074
https://doi.org/10.2514/6.2014-3274
https://doi.org/10.2514/6.2014-3274
https://doi.org/10.2514/6.2015-2790
https://doi.org/10.2514/1.J056603
https://doi.org/10.1016/j.jfluidstructs.2019.04.005
https://doi.org/10.2514/1.C035699
https://doi.org/10.2514/1.C035699
https://doi.org/10.1016/j.ast.2018.08.004
https://doi.org/10.2514/1.C034967
https://doi.org/10.2514/1.C036103
https://doi.org/10.2514/1.J051895

194

[34] N. P. Tedford and J. R. R. A. Martins. “Benchmarking Multidisciplinary Design Optimization
Algorithms”. In: Optimization and Engineering 11.1 (Feb. 2010), pp. 159–183. doi: 10.1007/
s11081-009-9082-6 (cited on page 6).

[35] J. R. R. A. Martins and J. T. Hwang. “Review and Unification of Methods for Computing
Derivatives of Multidisciplinary Computational Models”. In: AIAA Journal 51.11 (Nov. 2013),
pp. 2582–2599. doi: 10.2514/1.J052184 (cited on page 6).

[36] J. S. Gray, J. T. Hwang, J. R. R. A. Martins, K. T. Moore, and B. A. Naylor. “OpenMDAO: An
open-source framework for multidisciplinary design, analysis, and optimization”. In: Structural
and Multidisciplinary Optimization 59.4 (Apr. 2019), pp. 1075–1104. doi: 10.1007/s00158-
019-02211-z (cited on pages 6, 24, 31).

[37] J. Anibal, C. A. Mader, and J. R. R. A. Martins. “Aerodynamic shape optimization of an
electric aircraft motor surface heat exchanger with conjugate heat transfer constraint”. In:
International Journal of Heat and Mass Transfer 189 (June 2022), p. 122689. doi: 10.1016/j.
ijheatmasstransfer.2022.122689 (cited on pages 7, 29).

[38] A. Yildirim, J. S. Gray, C. A. Mader, and J. R. R. A. Martins. “Coupled Aeropropulsive Design
Optimization of a Podded Electric Propulsor”. In: AIAA Aviation Forum. Aug. 2021. doi:
10.2514/6.2021-3032 (cited on page 7).

[39] K. E. Jacobson and B. K. Stanford. “Flutter-Constrained Optimization with the Linearized
Frequency-Domain Approach”. In: AIAA Science and Technology Forum and Exposition, AIAA
SciTech Forum 2022. 2022. doi: 10.2514/6.2022-2242 (cited on page 7).

[40] F. Gallard, R. Lafage, C. Vanaret, B. Pauwels, D. Guénot, P.-.-J. Barjhoux, V. Gachelin, and
A. Gazaix. “GEMS: A Python Library for Automation of Multidisciplinary Design Optimiza-
tion Process Generation”. In: 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference. June 2018. doi: 10.2514/6.2018-0657 (cited on page 7).

[41] M. Meheut. “Multidisciplinary Adjoint-based Optimizations in the MADELEINE Project:
Overview and Main Results”. In: AIAA AVIATION 2021 FORUM. American Institute of
Aeronautics and Astronautics, July 2021, p. 3052. doi: 10.2514/6.2021-3052 (cited on
page 7).

[42] G. K. W. Kenway and J. R. R. A. Martins. “Multipoint High-Fidelity Aerostructural Optimiza-
tion of aTransport Aircraft Configuration”. In: Journal of Aircraft 51.1 (Jan. 2014), pp. 144–160.
doi: 10.2514/1.C032150 (cited on pages 7, 28, 30, 33, 40, 140, 159).

[43] P. D. Bravo-Mosquera, F. M. Catalano, and D. W. Zingg. “Unconventional aircraft for civil
aviation: A review of concepts and design methodologies”. In: Progress in Aerospace Sciences 131
(May 2022), p. 100813. doi: 10.1016/j.paerosci.2022.100813 (cited on pages 7, 8).

[44] C. David, S. Delbecq, S. Defoort, P. Schmollgruber, E. Benard, and V. Pommier-Budinger.
“From FAST to FAST-OAD: An open source framework for rapid Overall Aircraft Design”. In:
IOP Conference Series: Materials Science and Engineering. Vol. 1024. 1. IOP Publishing. 2021,
p. 012062 (cited on page 7).

https://doi.org/10.1007/s11081-009-9082-6
https://doi.org/10.1007/s11081-009-9082-6
https://doi.org/10.2514/1.J052184
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1016/j.ijheatmasstransfer.2022.122689
https://doi.org/10.1016/j.ijheatmasstransfer.2022.122689
https://doi.org/10.2514/6.2021-3032
https://doi.org/10.2514/6.2022-2242
https://doi.org/10.2514/6.2018-0657
https://doi.org/10.2514/6.2021-3052
https://doi.org/10.2514/1.C032150
https://doi.org/10.1016/j.paerosci.2022.100813

195

[45] B. J. Brelje and J. R. R. A. Martins. “Development of a Conceptual Design Model for Aircraft
Electric Propulsion with Efficient Gradients”. In: Proceedings of the AIAA/IEEE Electric Aircraft
Technologies Symposium. Cincinnati, OH, July 2018. doi: 10.2514/6.2018-4979 (cited on
page 7).

[46] E. J. Adler and J. R. R. A. Martins. “Efficient Aerostructural Wing Optimization Considering
Mission Analysis”. In: Journal of Aircraft (Dec. 2022). doi: 10.2514/1.c037096 (cited on
page 7).

[47] J. P. Jasa, J.T. Hwang, and J. R. R. A. Martins. “Open-source coupled aerostructural optimization
using Python”. In: Structural and Multidisciplinary Optimization 57.4 (Apr. 2018), pp. 1815–
1827. doi: 10.1007/s00158-018-1912-8 (cited on page 8).

[48] T. Chau and D. W. Zingg. “Aerodynamic Design Optimization of a Transonic Strut-Braced-
Wing Regional Aircraft”. In: Journal of Aircraft 59.1 (Jan. 2022), pp. 253–271. doi: 10.2514/
1.c036389 (cited on page 8).

[49] S. Wöhler, G. Atanasov, D. Silberhorn, B. Fröhler, andT. Zill. “Preliminary aircraft design within
a multidisciplinary and multifidelity design environment”. In: Aerospace Europe Conference 2020.
2020 (cited on page 8).

[50] T. MacDonald, M. Clarke, E. M. Botero, J. M. Vegh, and J. J. Alonso. “SUAVE: An Open-
Source Environment Enabling Multi-Fidelity Vehicle Optimization”. In: 18th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference. 2017. doi: 10.2514/6.2017-4437
(cited on pages 8, 31).

[51] N. P. Werter and R. De Breuker. “A novel dynamic aeroelastic framework for aeroelastic
tailoring and structural optimisation”. In: Composite Structures 158 (2016), pp. 369–386. doi:
10.1016/j.compstruct.2016.09.044 (cited on page 8).

[52] Z. Wang, D. Peeters, and R. De Breuker. “An aeroelastic optimisation framework for manu-
facturable variable stiffness composite wings including critical gust loads”. In: Structural and
Multidisciplinary Optimization 65.10 (Sept. 2022), pp. 1–20. doi: 10.1007/s00158-022-
03375-x (cited on page 8).

[53] W. Su and C. E. S. Cesnik. “Nonlinear Aeroelasticity of a Very Flexible Blended-Wing-Body
Aircraft”. In: Journal of Aircraft 47.5 (2010), pp. 1539–1553. doi: 10.2514/1.47317 (cited
on page 8).

[54] E. Jonsson, C. Riso, B. B. Monteiro, A. C. Gray, J. R. R. A. Martins, and C. E. S. Cesnik. “High-
Fidelity Gradient-Based Wing Structural Optimization Including a Geometrically Nonlinear
Flutter Constraint”. In: AIAA SciTech Forum. Jan. 2022. doi: 10.2514/6.2022-2092 (cited
on page 8).

[55] P. D. Ciampa and B. Nagel. “AGILE Paradigm: The next generation collaborative MDO for
the development of aeronautical systems”. In: Progress in Aerospace Sciences 119 (Nov. 2020),
p. 100643. doi: 10.1016/j.paerosci.2020.100643 (cited on page 8).

https://doi.org/10.2514/6.2018-4979
https://doi.org/10.2514/1.c037096
https://doi.org/10.1007/s00158-018-1912-8
https://doi.org/10.2514/1.c036389
https://doi.org/10.2514/1.c036389
https://doi.org/10.2514/6.2017-4437
https://doi.org/10.1016/j.compstruct.2016.09.044
https://doi.org/10.1007/s00158-022-03375-x
https://doi.org/10.1007/s00158-022-03375-x
https://doi.org/10.2514/1.47317
https://doi.org/10.2514/6.2022-2092
https://doi.org/10.1016/j.paerosci.2020.100643

196

[56] B. Boden, J. Flink, N. Först, R. Mischke, K. Schaffert, A. Weinert, A. Wohlan, and A. Schreiber.
“RCE: An Integration Environment for Engineering and Science”. In: SoftwareX 15 (July 2021),
p. 100759. doi: 10.1016/j.softx.2021.100759 (cited on page 8).

[57] B. Boden, J. Flink, R. Mischke, K. Schaffert, A.Weinert, A.Wohlan, C. Ilic,T.Wunderlich, C. M.
Liersch, S. Goertz, P. D. Ciampa, and E. Moerland. “Distributed Multidisciplinary Optimization
and Collaborative Process Development Using RCE”. In: AIAA Aviation 2019 Forum. American
Institute of Aeronautics and Astronautics, June 2019, p. 2989. doi: 10.2514/6.2019-2989
(cited on page 8).

[58] J. H. Bussemaker, P. D. Ciampa, J. Singh, M. Fioriti, C. Cabaleiro De La Hoz, Z. Wang,
D. Peeters, P. Hansmann, P. Della Vecchia, and M. Mandorino. “Collaborative Design of
a Business Jet Family Using the AGILE 4.0 MBSE Environment”. In: AIAA AVIATION
2022 Forum. American Institute of Aeronautics and Astronautics, June 2022, p. 3934. doi:
10.2514/6.2022-3934 (cited on page 8).

[59] M. Mandorino, P. D. Vecchia, F. Nicolosi, S. Corcione, V. Trifari, G. Cerino, M. Fioriti, C.
Cabaleiro, and T. Lefebvre. “Regional jet retrofitting design from stakeholders need and system
requirements to MDAO workflow formulation”. In: 33rd Congress of the International Council
of the Aeronautical Sciences. Sept. 5, 2022. doi: 10.5281/zenodo.7071016 (cited on page 8).

[60] S. He, E. Jonsson, C. A. Mader, and J. R. R. A. Martins. “Aerodynamic Shape Optimization
with Time Spectral Flutter Adjoint”. In: 2019 AIAA/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference. San Diego, CA: American Institute of Aeronautics and
Astronautics, Jan. 2019. doi: 10.2514/6.2019-0697 (cited on page 9).

[61] K. P. Apponsah and D. W. Zingg. “Aerodynamic shape optimization for unsteady flows: Some
benchmark problems”. In: Proceedings of the AIAA Scitech 2020 Forum. 2020. doi: 10.2514/6.
2020-0541 (cited on page 9).

[62] J. Guo, Y. Li, M. Xu, X. An, and G. Li. “Aero-structural optimization of supersonic wing
under thermal environment using adjoint-based optimization algorithm”. In: Structural and
Multidisciplinary Optimization 64.1 (Mar. 2021), pp. 281–301. doi: 10.1007/s00158-021-
02888-1 (cited on page 9).

[63] L. J. Halim, S. Sahu, G. Kennedy, and M. J. Smith. “Aerothermoelastic Analysis and Optimiza-
tion of Stiffened Thin-Walled Structures”. In: AIAA SCITECH 2022 Forum. American Institute
of Aeronautics and Astronautics, Jan. 2022, p. 1612. doi: 10.2514/6.2022-1612 (cited on
page 9).

[64] K. Telidetzki, L. Osusky, and D. W. Zingg. “Application of Jetstream to a Suite of Aerodynamic
Shape Optimization Problems”. In: 52nd Aerospace Sciences Meeting. Feb. 2014. doi: 10.2514/
6.2014-0571 (cited on page 10).

[65] C. Lee, D. Koo, K. Telidetzki, H. Buckley, H. Gagnon, and D. W. Zingg. “Aerodynamic
Shape Optimization of Benchmark Problems Using Jetstream”. In: Proceedings of the 53rd AIAA

https://doi.org/10.1016/j.softx.2021.100759
https://doi.org/10.2514/6.2019-2989
https://doi.org/10.2514/6.2022-3934
https://doi.org/10.5281/zenodo.7071016
https://doi.org/10.2514/6.2019-0697
https://doi.org/10.2514/6.2020-0541
https://doi.org/10.2514/6.2020-0541
https://doi.org/10.1007/s00158-021-02888-1
https://doi.org/10.1007/s00158-021-02888-1
https://doi.org/10.2514/6.2022-1612
https://doi.org/10.2514/6.2014-0571
https://doi.org/10.2514/6.2014-0571

197

Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics (AIAA), Jan.
2015. doi: 10.2514/6.2015-0262 (cited on page 10).

[66] G. K. W. Kenway and J. R. R. A. Martins. “Multipoint Aerodynamic Shape Optimization
Investigations of the Common Research Model Wing”. In: AIAA Journal 54.1 (Jan. 2016),
pp. 113–128. doi: 10.2514/1.J054154 (cited on page 10).

[67] D. A. Masters, D. J. Poole, N. J. Taylor, T. C. S. Rendall, and C. B. Allen. “Influence of Shape
Parameterization on a Benchmark Aerodynamic Optimization Problem”. In: Journal of Aircraft
54.6 (Nov. 2017), pp. 2242–2256. doi: 10.2514/1.c034006 (cited on pages 10, 33).

[68] T. A. Reist, D. Koo, D. W. Zingg, P. Bochud, P. Castonguay, and D. Leblond. “Cross Validation
of Aerodynamic Shape Optimization Methodologies for Aircraft Wing-Body Optimization”.
In: AIAA Journal (Feb. 2020). doi: 10.2514/1.J059091 (cited on pages 10, 19).

[69] D. A. Masters, N. J. Taylor, T. C. S. Rendall, C. B. Allen, and D. J. Poole. “Geometric
Comparison of Aerofoil Shape Parameterization Methods”. In: AIAA Journal 55.5 (May 2017),
pp. 1575–1589. doi: 10.2514/1.j054943 (cited on pages 10, 38).

[70] N. Wu, C. Mader, and J. R. R. A. Martins. “Sensitivity-based Geometric Parameterization
for Aerodynamic Shape Optimization”. In: AIAA AVIATION 2022 Forum. June 2022. doi:
10.2514/6.2022-3931 (cited on page 11).

[71] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, 1981 (cited
on pages 12, 60).

[72] N. P. Bons. “High-fidelity Wing Design Exploration with Gradient-based Optimization”. PhD
thesis. Ann Arbor, MI: University of Michigan, May 2020 (cited on pages 12, 169).

[73] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and D. Mavriplis.
CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences. Tech. rep. CR–
2014-218178. NASA, Mar. 2014 (cited on page 13).

[74] J. Nocedal and S. J. Wright. Numerical Optimization. 2nd ed. Berlin: Springer, 2006 (cited on
pages 16, 17, 36, 77).

[75] D. Jones, C. Perttunen, and B. Stuckman. “Lipschitzian optimization without the Lipschitz
constant”. In: Journal of Optimization Theory and Application 79.1 (Oct. 1993), pp. 157–181.
doi: 10.1007/BF00941892 (cited on page 19).

[76] C. Aranha, C. L. Camacho Villalón, F. Campelo, M. Dorigo, R. Ruiz, M. Sevaux, K. Sörensen,
and T. Stützle. “Metaphor-based metaheuristics, a call for action: The elephant in the room”. In:
Swarm Intelligence 16.1 (Nov. 2021), pp. 1–6. doi: 10.1007/s11721-021-00202-9 (cited
on page 19).

[77] R. T. Haftka. “Requirements for papers focusing on new or improved global optimization
algorithms”. In: Structural and Multidisciplinary Optimization 54.1 (2016), pp. 1–1. doi:
10.1007/s00158-016-1491-5 (cited on page 19).

https://doi.org/10.2514/6.2015-0262
https://doi.org/10.2514/1.J054154
https://doi.org/10.2514/1.c034006
https://doi.org/10.2514/1.J059091
https://doi.org/10.2514/1.j054943
https://doi.org/10.2514/6.2022-3931
https://doi.org/10.1007/BF00941892
https://doi.org/10.1007/s11721-021-00202-9
https://doi.org/10.1007/s00158-016-1491-5

198

[78] O. Chernukhin and D. W. Zingg. “Multimodality and Global Optimization in Aerodynamic
Design”. In: AIAA Journal 51.6 (June 2013), pp. 1342–1354. doi: 10.2514/1.j051835
(cited on page 19).

[79] Z. Lyu, G. K. W. Kenway, and J. R. R. A. Martins. “Aerodynamic Shape Optimization Inves-
tigations of the Common Research Model Wing Benchmark”. In: AIAA Journal 53.4 (Apr.
2015), pp. 968–985. doi: 10.2514/1.J053318 (cited on pages 19, 33, 39, 43, 44, 100).

[80] S. Skinner and H. Zare–Behtash. “State-of-the-art in aerodynamic shape optimisation methods”.
In: Applied Soft Computing 62 (Jan. 2018), pp. 933–962. doi: 10.1016/j.asoc.2017.09.030
(cited on page 19).

[81] N. P. Bons, X. He, C. A. Mader, and J. R. R. A. Martins. “Multimodality in Aerodynamic
Wing Design Optimization”. In: AIAA Journal 57.3 (Mar. 2019), pp. 1004–1018. doi: 10.
2514/1.J057294 (cited on page 19).

[82] D. J. Poole, C. B. Allen, and T. C. S. Rendall. “Global Optimization of Wing Aerodynamic Op-
timization Case Exhibiting Multimodality”. In: Journal of Aircraft 55.4 (July 2018), pp. 1576–
1591. doi: 10.2514/1.c034718 (cited on page 19).

[83] A. Jameson, J. C. Vassberg, and K. Ou. “Further Studies of Airfoils Supporting Non-Unique
Solutions in Transonic Flow”. In: AIAA Journal 50.12 (Dec. 2012), pp. 2865–2881. doi:
10.2514/1.j051713 (cited on page 19).

[84] D. Destarac, G. Carrier, G. R. Anderson, S. Nadarajah, D. J. Poole, J. C. Vassberg, and D. W.
Zingg. “Example of a Pitfall in Aerodynamic Shape Optimization”. In: AIAA Journal 56.4
(2018), pp. 1532–1540. doi: 10.2514/1.J056128 (cited on page 19).

[85] G. M. Streuber and D. W. Zingg. “Evaluating the Risk of Local Optima in Aerodynamic Shape
Optimization”. In: AIAA Journal 59.1 (Jan. 2021), pp. 75–87. doi: 10.2514/1.j059826
(cited on page 19).

[86] N. P. Bons and J. R. R. A. Martins. “Aerostructural Design Exploration of a Wing in Transonic
Flow”. In: Aerospace 7.8 (Aug. 2020), p. 118. doi: 10.3390/aerospace7080118 (cited on
pages 20, 39, 100).

[87] A. B. Lambe and J. R. R. A. Martins. “Extensions to the Design Structure Matrix for the
Description of Multidisciplinary Design, Analysis, and Optimization Processes”. In: Structural
and Multidisciplinary Optimization 46.2 (Aug. 2012), pp. 273–284. doi: 10.1007/s00158-
012-0763-y (cited on pages 21, 102).

[88] J. Hicken and J. Alonso. “Comparison of Reduced- and Full-space Algorithms for PDE-
constrained Optimization”. In: 51st AIAA Aerospace Sciences Meeting including the New Horizons
Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, Jan. 2013,
p. 1043. doi: 10.2514/6.2013-1043 (cited on page 21).

https://doi.org/10.2514/1.j051835
https://doi.org/10.2514/1.J053318
https://doi.org/10.1016/j.asoc.2017.09.030
https://doi.org/10.2514/1.J057294
https://doi.org/10.2514/1.J057294
https://doi.org/10.2514/1.c034718
https://doi.org/10.2514/1.j051713
https://doi.org/10.2514/1.J056128
https://doi.org/10.2514/1.j059826
https://doi.org/10.3390/aerospace7080118
https://doi.org/10.1007/s00158-012-0763-y
https://doi.org/10.1007/s00158-012-0763-y
https://doi.org/10.2514/6.2013-1043

199

[89] D. A. Knoll and D. E. Keyes. “Jacobian-free Newton–Krylov methods: a survey of approaches
and applications”. In: Journal of Computational Physics 193.2 (2004), pp. 357–397. doi: 10.
1016/j.jcp.2003.08.010 (cited on page 22).

[90] C. A. Mader, J. R. R. A. Martins, J. J. Alonso, and E. van der Weide. “ADjoint: An Approach
for the Rapid Development of Discrete Adjoint Solvers”. In: AIAA Journal 46.4 (Apr. 2008),
pp. 863–873. doi: 10.2514/1.29123 (cited on page 22).

[91] T. A. Albring, M. Sagebaum, and N. R. Gauger. “Efficient aerodynamic design using the discrete
adjoint method in SU2”. In: 17th AIAA/ISSMO multidisciplinary analysis and optimization
conference. 2016, p. 3518. doi: 10.2514/6.2016-3518 (cited on page 22).

[92] J. E. V. Peter and R. P. Dwight. “Numerical Sensitivity Analysis for Aerodynamic Optimization:
A Survey of Approaches”. In: Computers and Fluids 39.3 (Mar. 2010), pp. 373–391. doi:
10.1016/j.compfluid.2009.09.013 (cited on page 22).

[93] P. Gomes and R. Palacios. “Pitfalls of Discrete Adjoint Fixed-Points Based on Algorithmic
Differentiation”. In: AIAA Journal 60.2 (Feb. 2022), pp. 1251–1256. doi: 10 . 2514 / 1 .
j060735 (cited on page 22).

[94] K. J. Fidkowski and D. L. Darmofal. “Review of output-based error estimation and mesh
adaptation in computational fluid dynamics”. In: AIAA Journal 49.4 (2011), pp. 673–694. doi:
10.2514/1.J050073 (cited on pages 23, 76, 81).

[95] M. Giselle Fernández-Godino, C. Park, N. H. Kim, and R. T. Haftka. “Issues in Deciding
Whether to Use Multifidelity Surrogates”. In: AIAA Journal 57.5 (May 2019), pp. 2039–2054.
doi: 10.2514/1.j057750 (cited on pages 27, 96).

[96] B. Peherstorfer, K. Willcox, and M. Gunzburger. “Survey of Multifidelity Methods in Uncer-
tainty Propagation, Inference, and Optimization”. In: SIAM Review 60.3 (Jan. 2018), pp. 550–
591. doi: 10.1137/16M1082469 (cited on pages 27, 95).

[97] N. R. Secco and J. R. R. A. Martins. “RANS-based Aerodynamic Shape Optimization of a
Strut-braced Wing with Overset Meshes”. In: Journal of Aircraft 56.1 (Jan. 2019), pp. 217–227.
doi: 10.2514/1.C034934 (cited on page 28).

[98] M. Mangano and J. R. R. A. Martins. “Multipoint Aerodynamic Shape Optimization for
Subsonic and Supersonic Regimes”. In: Journal of Aircraft 58.3 (May 2021), pp. 650–662. doi:
10.2514/1.C036216 (cited on page 28).

[99] S. Chauhan and J. R. R. A. Martins. “RANS-Based Aerodynamic Shape Optimization of a Wing
Considering Propeller-Wing Interaction”. In: Journal of Aircraft 58.3 (May 2021), pp. 497–513.
doi: 10.2514/1.C035991 (cited on page 28).

[100] S. Seraj and J. R. R. A. Martins. “Predicting the High-Angle-of-Attack Characteristics of a
Delta Wing at Low Speed”. In: Journal of Aircraft 59.4 (July 2022), pp. 1071–1081. doi:
10.2514/1.C036618 (cited on page 28).

https://doi.org/10.1016/j.jcp.2003.08.010
https://doi.org/10.1016/j.jcp.2003.08.010
https://doi.org/10.2514/1.29123
https://doi.org/10.2514/6.2016-3518
https://doi.org/10.1016/j.compfluid.2009.09.013
https://doi.org/10.2514/1.j060735
https://doi.org/10.2514/1.j060735
https://doi.org/10.2514/1.J050073
https://doi.org/10.2514/1.j057750
https://doi.org/10.1137/16M1082469
https://doi.org/10.2514/1.C034934
https://doi.org/10.2514/1.C036216
https://doi.org/10.2514/1.C035991
https://doi.org/10.2514/1.C036618

200

[101] T. Dhert, T. Ashuri, and J. R. R. A. Martins. “Aerodynamic Shape Optimization of Wind
Turbine Blades Using a Reynolds-Averaged Navier–Stokes Model and an Adjoint Method”. In:
Wind Energy 20.5 (May 2017), pp. 909–926. doi: 10.1002/we.2070 (cited on page 28).

[102] M. H. A. Madsen, F. Zahle, N. N. Sørensen, and J. R. R. A. Martins. “Multipoint high-fidelity
CFD-based aerodynamic shape optimization of a 10 MW wind turbine”. In: Wind Energy
Sciences 4 (Apr. 2019), pp. 163–192. doi: 10.5194/wes-4-163-2019 (cited on page 28).

[103] N. P. Bons, J. R. R. A. Martins, C. A. Mader, M. McMullen, and M. Suen. “High-fidelity
Aerostructural Optimization Studies of the Aerion AS2 Supersonic Business Jet”. In: Proceedings
of the AIAA Aviation Forum. June 2020. doi: 10.2514/6.2020-3182 (cited on page 28).

[104] B. J. Brelje and J. R. R. A. Martins. “Aerostructural Wing Optimization for a Hydrogen Fuel Cell
Aircraft”. In: Proceedings of the AIAA SciTech Forum. Jan. 2021. doi: 10.2514/6.2021-1132
(cited on pages 28, 39).

[105] N. Bons, J. R. R. A. Martins, F. Odaguil, and A. P. C. Cuco. “Aerostructural wing optimization
of a regional jet considering mission fuel burn”. In: ASME Open Journal of Engineering 1 (Oct.
2022), p. 011046. doi: 10.1115/1.4055630 (cited on page 28).

[106] M. Mangano, S. He, Y. Liao, D.-G. Caprace, and J. R. R. A. Martins. “Towards Passive
Aeroelastic Tailoring of Large Wind Turbines Using High-Fidelity Multidisciplinary Design
Optimization”. In: AIAA SciTech Forum. Jan. 2022. doi: 10.2514/6.2022-1289 (cited on
page 29).

[107] Y. Liao, J. R. R. A. Martins, and Y. L. Young. “3-D High-Fidelity Hydrostructural Optimization
of Cavitation-Free Composite Lifting Surfaces”. In: Composite Structures 268 (July 2021),
p. 113937. doi: 10.1016/j.compstruct.2021.113937 (cited on page 29).

[108] Y. Liao, A. Yildirim, J. R. R. A. Martins, and Y. L. Young. “RANS-based Optimization of a
T-shaped Hydrofoil Considering Junction Design”. In: Ocean Engineering 262 (Oct. 2022),
p. 112051. doi: 10.1016/j.oceaneng.2022.112051 (cited on page 29).

[109] J. S. Gray, C. A. Mader, G. K. W. Kenway, and J. R. R. A. Martins. “Modeling Boundary Layer
Ingestion Using a Coupled Aeropropulsive Analysis”. In: Journal of Aircraft 55.3 (May 2018),
pp. 1191–1199. doi: 10.2514/1.C034601 (cited on page 29).

[110] J. S. Gray and J. R. R. A. Martins. “Coupled Aeropropulsive Design Optimization of a Boundary-
Layer Ingestion Propulsor”. In: The Aeronautical Journal 123.1259 (Jan. 2019), pp. 121–137.
doi: 10.1017/aer.2018.120 (cited on page 29).

[111] G. K. Kenway, G. J. Kennedy, and J. R. R. A. Martins. “A CAD-Free Approach to High-Fidelity
Aerostructural Optimization”. In: Proceedings of the 13th AIAA/ISSMO Multidisciplinary Analysis
Optimization Conference. AIAA 2010-9231. Fort Worth, TX, Sept. 2010. doi: 10.2514/6.
2010-9231 (cited on pages 29, 30, 38).

[112] M. H. A. Madsen. “High-Fidelity CFD-based Shape Optimization of Wind Turbine Blades”.
PhD thesis. Technical University of Denmark, 2020 (cited on pages 29, 33).

https://doi.org/10.1002/we.2070
https://doi.org/10.5194/wes-4-163-2019
https://doi.org/10.2514/6.2020-3182
https://doi.org/10.2514/6.2021-1132
https://doi.org/10.1115/1.4055630
https://doi.org/10.2514/6.2022-1289
https://doi.org/10.1016/j.compstruct.2021.113937
https://doi.org/10.1016/j.oceaneng.2022.112051
https://doi.org/10.2514/1.C034601
https://doi.org/10.1017/aer.2018.120
https://doi.org/10.2514/6.2010-9231
https://doi.org/10.2514/6.2010-9231

201

[113] J. Reuther, A. Jameson, J. Farmer, L. Martinelli, and D. Saunders. “Aerodynamic Shape Opti-
mization of Complex Aircraft Configurations via an Adjoint Formulation”. In: Proceedings of
the 34th AIAA Aerospace Sciences Meeting and Exhibit. AIAA 1996-0094. Reno, Nevada, Jan.
1996 (cited on page 30).

[114] R. P. Dwight. “Robust Mesh Deformation using the Linear Elasticity Equations”. In: Computa-
tional Fluid Dynamics 2006. Springer Berlin Heidelberg, 2009, pp. 401–406. doi: 10.1007/
978-3-540-92779-2_62 (cited on page 30).

[115] R. Biedron and J. Thomas. “Recent Enhancements to the FUN3D Flow Solver for Moving-
Mesh Applications”. In: 47th AIAA Aerospace Sciences Meeting including The New Horizons
Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, Jan. 2009,
p. 1360. doi: 10.2514/6.2009-1360 (cited on page 30).

[116] N. Secco, G. K. W. Kenway, P. He, C. A. Mader, and J. R. R. A. Martins. “Efficient Mesh
Generation and Deformation for Aerodynamic Shape Optimization”. In: AIAA Journal 59.4
(Apr. 2021), pp. 1151–1168. doi: 10.2514/1.J059491 (cited on page 30).

[117] E. Luke, E. Collins, and E. Blades. “A Fast Mesh Deformation Method Using Explicit Interpo-
lation”. In: Journal of Computational Physics 231.2 (Jan. 2012), pp. 586–601. doi: 10.1016/j.
jcp.2011.09.021 (cited on page 30).

[118] C. A. Mader, G. K. W. Kenway, A. Yildirim, and J. R. R. A. Martins. “ADflow: An open-source
computational fluid dynamics solver for aerodynamic and multidisciplinary optimization”. In:
Journal of Aerospace Information Systems 17.9 (Sept. 2020), pp. 508–527. doi: 10.2514/1.
I010796 (cited on page 30).

[119] A. Yildirim, G. K. W. Kenway, C. A. Mader, and J. R. R. A. Martins. “A Jacobian-free approxi-
mate Newton–Krylov startup strategy for RANS simulations”. In: Journal of Computational
Physics 397 (Nov. 2019), p. 108741. doi: 10.1016/j.jcp.2019.06.018 (cited on pages 30,
78, 83).

[120] G. J. Kennedy and J. R. R. A. Martins. “A Parallel Finite-Element Framework for Large-Scale
Gradient-Based Design Optimization of High-Performance Structures”. In: Finite Elements in
Analysis and Design 87 (Sept. 2014), pp. 56–73. doi: 10.1016/j.finel.2014.04.011 (cited
on page 30).

[121] S. Brown. “Displacement extrapolations for CFD+CSM aeroelastic analysis”. In: 38th Structures,
Structural Dynamics, and Materials Conference. Structures, Structural Dynamics, and Materials
and Co-located Conferences. American Institute of Aeronautics and Astronautics, Apr. 1997.
doi: 10.2514/6.1997-1090 (cited on pages 31, 124).

[122] B. M. Irons and R. C. Tuck. “A version of the Aitken accelerator for computer iteration”.
In: International Journal for Numerical Methods in Engineering 1.3 (1969), pp. 275–277. doi:
10.1002/nme.1620010306 (cited on page 31).

[123] N. Wu, G. Kenway, C. A. Mader, J. Jasa, and J. R. R. A. Martins. “pyOptSparse: A Python
framework for large-scale constrained nonlinear optimization of sparse systems”. In: Journal

https://doi.org/10.1007/978-3-540-92779-2_62
https://doi.org/10.1007/978-3-540-92779-2_62
https://doi.org/10.2514/6.2009-1360
https://doi.org/10.2514/1.J059491
https://doi.org/10.1016/j.jcp.2011.09.021
https://doi.org/10.1016/j.jcp.2011.09.021
https://doi.org/10.2514/1.I010796
https://doi.org/10.2514/1.I010796
https://doi.org/10.1016/j.jcp.2019.06.018
https://doi.org/10.1016/j.finel.2014.04.011
https://doi.org/10.2514/6.1997-1090
https://doi.org/10.1002/nme.1620010306

202

of Open Source Software 5.54 (Oct. 2020), p. 2564. doi: 10.21105/joss.02564 (cited on
page 31).

[124] P. Jansen and R. Perez. “Constrained structural design optimization via a parallel augmented
Lagrangian particle swarm optimization approach”. In: Computers & Structures 89.13-14 (2011),
pp. 1352–1366. doi: 10.1016/j.compstruc.2011.03.011 (cited on page 32).

[125] G. N. Vanderplaats. CONMIN: A Fortran program for constrained function minimization: User’s
manual. Tech. rep. 1973 (cited on page 32).

[126] A. Wächter and L. T. Biegler. “On the Implementation of a Primal-Dual Interior Point Filter
Line Search Algorithm for Large-Scale Nonlinear Programming”. In: Mathematical Programming
106.1 (2006), pp. 25–57 (cited on pages 32, 77).

[127] Y.-H. Dai and K. Schittkowski. “A sequential quadratic programming algorithm with non-
monotone line search”. In: Pacific Journal of Optimization 4 (2008), pp. 335–358 (cited on
page 32).

[128] K. Schittkowski. “A robust implementation of a sequential quadratic programming algorithm
with successive error restoration”. In: Optimization Letters 5.2 (June 2010), pp. 283–296. doi:
10.1007/s11590-010-0207-9 (cited on page 32).

[129] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. “A fast and elitist multiobjective genetic
algorithm: NSGA-II”. In: IEEE Transactions on Evolutionary Computation 6.2 (2002), pp. 182–
197. doi: 10.1109/4235.996017 (cited on page 32).

[130] T. W. Chin, M. L. Leader, and G. J. Kennedy. “A Scalable Framework for Large-Scale 3D
Multimaterial Topology Optimization with Octree-based Mesh Adaptation”. In: Advances in
Engineering Software 135 (Sept. 1, 2019). doi: 10.1016/j.advengsoft.2019.05.004 (cited
on page 32).

[131] D. Kraft. A software package for sequential quadratic programming. DFVLR-FB 88-28. Koln,
Germany: DLR German Aerospace Center–Institute for Flight Mechanics, 1988 (cited on
pages 32, 86).

[132] P. E. Gill, W. Murray, and M. A. Saunders. “SNOPT: An SQP Algorithm for Large-Scale
Constrained Optimization”. In: SIAM Review 47.1 (2005), pp. 99–131. doi: 10.1137/
S0036144504446096 (cited on pages 32, 33, 42, 55, 64).

[133] D. Wolpert and W. Macready. “No free lunch theorems for optimization”. In: IEEE Transactions
on Evolutionary Computation 1.1 (Apr. 1997), pp. 67–82. doi: 10.1109/4235.585893 (cited
on page 32).

[134] S. P. Adam, S.-A. N. Alexandropoulos, P. M. Pardalos, and M. N. Vrahatis. “No free lunch
theorem: A review”. In: Approximation and optimization (2019), pp. 57–82 (cited on page 32).

https://doi.org/10.21105/joss.02564
https://doi.org/10.1016/j.compstruc.2011.03.011
https://doi.org/10.1007/s11590-010-0207-9
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/j.advengsoft.2019.05.004
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1109/4235.585893

203

[135] V. Beiranvand, W. Hare, and Y. Lucet. “Best practices for comparing optimization algorithms”.
In: Optimization and Engineering (Sept. 2017). doi: 10.1007/s11081-017-9366-1 (cited
on page 32).

[136] H. D. Mittelmann. AMPL-NLP Benchmark. url: http://plato.asu.edu/ftp/ampl-
nlp.html (visited on 11/01/2022) (cited on page 32).

[137] P. E. Gill, M. A. Saunders, and E. Wong. “On the performance of SQP methods for nonlinear
optimization”. In: Modeling and Optimization: Theory and Applications. Ed. by B. Defourny
and T. Terlaky. Vol. 147. New York, NY: Springer, 2015, pp. 95–123. doi: 10.1007/978-3-
319-23699-5_5 (cited on page 32).

[138] N. I. M. Gould, D. Orban, and P. L. Toint. CUTEr (and SifDec), a Constrained and Uncon-
strained Testing Environment, revisited. CERFACS Technical Report TR/PA/01/04. 2004 (cited
on page 32).

[139] N. I. M. Gould, D. Orban, and P. L.Toint. “CUTEst: A Constrained and UnconstrainedTesting
Environment with safe threads for mathematical optimization”. In: Computational Optimization
and Applications 60.3 (Aug. 2014), pp. 545–557. doi: 10.1007/s10589-014-9687-3 (cited
on page 32).

[140] D. W. Zingg, M. Nemec, and T. H. Pulliam. “A Comparative Evaluation of Genetic and
Gradient-Based Algorithms Applied to Aerodynamic Optimization”. In: European Journal of
Computational Mechanics 17.1–2 (Jan. 2008), pp. 103–126. doi: 10.3166/remn.17.103-126
(cited on page 33).

[141] Z. Lyu, Z. Xu, and J. R. R. A. Martins. “Benchmarking Optimization Algorithms for Wing
Aerodynamic Design Optimization”. In: Proceedings of the 8th International Conference on
Computational Fluid Dynamics. ICCFD8-2014-0203. Chengdu, Sichuan, China, July 2014
(cited on page 33).

[142] Y. Yu, Z. Lyu, Z. Xu, and J. R. R. A. Martins. “On the Influence of Optimization Algorithm
and Starting Design on Wing Aerodynamic Shape Optimization”. In: Aerospace Science and
Technology 75 (Apr. 2018), pp. 183–199. doi: 10.1016/j.ast.2018.01.016 (cited on
pages 33, 41).

[143] A. Wendorff, E. Botero, and J. J. Alonso. “Comparing Different Off-the-Shelf Optimizers’
Performance in Conceptual Aircraft Design”. In: 17th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference. American Institute of Aeronautics and Astronautics, June 2016,
p. 3362. doi: 10.2514/6.2016-3362 (cited on page 33).

[144] N. F. Baker, A. P. Stanley, J. J. Thomas, A. Ning, and K. Dykes. “Best Practices for Wake Model
and Optimization Algorithm Selection in Wind Farm Layout Optimization”. In: AIAA Scitech
2019 Forum. American Institute of Aeronautics and Astronautics, Jan. 2019, p. 0540. doi:
10.2514/6.2019-0540 (cited on page 33).

https://doi.org/10.1007/s11081-017-9366-1
http://plato.asu.edu/ftp/ampl-nlp.html
http://plato.asu.edu/ftp/ampl-nlp.html
https://doi.org/10.1007/978-3-319-23699-5_5
https://doi.org/10.1007/978-3-319-23699-5_5
https://doi.org/10.1007/s10589-014-9687-3
https://doi.org/10.3166/remn.17.103-126
https://doi.org/10.1016/j.ast.2018.01.016
https://doi.org/10.2514/6.2016-3362
https://doi.org/10.2514/6.2019-0540

204

[145] J. E. Hicken and D. W. Zingg. “Aerodynamic Optimization Algorithm with Integrated Geom-
etry Parameterization and Mesh Movement”. In: AIAA Journal 48.2 (Feb. 2010), pp. 400–413.
doi: 10.2514/1.44033 (cited on pages 33, 38).

[146] J. E. Hoogervorst and A. Elham. “Wing aerostructural optimization using the Individual
Discipline Feasible Architecture”. In: Aerospace Science and Technology 65 (June 2017), pp. 90–
99. doi: 10.1016/j.ast.2017.02.012 (cited on page 33).

[147] F. Bisson and Nadarajah. “Adjoint-based aerodynamic optimization of benchmark problems”.
In: 53nd Aerospace Sciences Meeting. 2015. doi: 10.2514/6.2015-1948 (cited on page 33).

[148] G. R. Anderson, M. Nemec, and M. J. Aftosmis. “Aerodynamic shape optimization benchmarks
with error control and automatic parameterization”. In: 53rd AIAA Aerospace Sciences Meeting.
2015, p. 1719. doi: 10.2514/6.2015-1719 (cited on pages 33, 39).

[149] P. E. Gill, W. Murray, and M. A. Saunders. User’s Guide for SNOPT Version 7: Software for Large-
Scale Nonlinear Programming. Technical Report. Systems Optimization Laboratory. Stanford
University, California, 94305-4023, 2007 (cited on pages 34, 36).

[150] P. Castonguay and S. K. Nadarajah. “Effect of Shape Parameterization on Aerodynamic Shape
Optimization”. In: 45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, Jan. 2007.
doi: 10.2514/6.2007-59 (cited on page 38).

[151] T. W. Sederberg and S. R. Parry. “Free-form Deformation of Solid Geometric Models”. In:
SIGGRAPH Comput. Graph. 20.4 (Aug. 1986), pp. 151–160. doi: 10.1145/15886.15903
(cited on page 38).

[152] T.-t. Zhang, Z.-g. Wang, W. Huang, and L. Yan. “A review of parametric approaches specific
to aerodynamic design process”. In: Acta Astronautica 145 (Apr. 2018), pp. 319–331. doi:
10.1016/j.actaastro.2018.02.011 (cited on page 38).

[153] T. D. Economon, F. Palacios, S. R. Copeland, T. W. Lukaczyk, and J. J. Alonso. “SU2: An
Open-Source Suite for Multiphysics Simulation and Design”. In: AIAA Journal 54.3 (Mar.
2016), pp. 828–846. doi: 10.2514/1.j053813 (cited on page 38).

[154] H. Gagnon and D. W. Zingg. “Two-Level Free-Form and Axial Deformation for Exploratory
Aerodynamic Shape Optimization”. In: AIAA Journal 53.7 (2015), pp. 2015–2026. doi: 10.
2514/1.J053575 (cited on page 38).

[155] R. Haimes and J. Dannenhoffer. “The Engineering Sketch Pad: A Solid-Modeling, Feature-
Based, Web-Enabled System for Building Parametric Geometry”. In: 21st AIAA Computational
Fluid Dynamics Conference. Fluid Dynamics and Co-located Conferences. American Institute
of Aeronautics and Astronautics, June 2013. doi: 10.2514/6.2013-3073 (cited on page 39).

[156] R. A. McDonald and J. R. Gloudemans. “Open Vehicle Sketch Pad: An Open Source Parametric
Geometry and Analysis Tool for Conceptual Aircraft Design”. In: AIAA SCITECH 2022 Forum.
American Institute of Aeronautics and Astronautics, Jan. 2022. doi: 10.2514/6.2022-0004
(cited on page 39).

https://doi.org/10.2514/1.44033
https://doi.org/10.1016/j.ast.2017.02.012
https://doi.org/10.2514/6.2015-1948
https://doi.org/10.2514/6.2015-1719
https://doi.org/10.2514/6.2007-59
https://doi.org/10.1145/15886.15903
https://doi.org/10.1016/j.actaastro.2018.02.011
https://doi.org/10.2514/1.j053813
https://doi.org/10.2514/1.J053575
https://doi.org/10.2514/1.J053575
https://doi.org/10.2514/6.2013-3073
https://doi.org/10.2514/6.2022-0004

205

[157] D. Koo and D. W. Zingg. “Investigation into Aerodynamic Shape Optimization of Planar and
Nonplanar Wings”. In: AIAA Journal 56 (Aug. 2018), pp. 250–263. doi: 10.2514/1.j055978
(cited on page 39).

[158] G. M. Streuber and D. W. Zingg. “Dynamic Geometry Control for Robust Aerodynamic Shape
Optimization”. In: AIAA AVIATION 2021 Forum. July 2021. doi: 10.2514/6.2021-3031
(cited on page 39).

[159] L. J. Kedward, C. B. Allen, and T. C. S. Rendall. “Gradient-Limiting Shape Control for
Efficient Aerodynamic Optimization”. In: AIAA Journal 58.9 (Sept. 2020), pp. 3748–3764.
doi: 10.2514/1.j058977 (cited on page 39).

[160] D. A. Masters, N. J. Taylor, T. C. S. Rendall, and C. B. Allen. “Multilevel Subdivision Parame-
terization Scheme for Aerodynamic Shape Optimization”. In: AIAA Journal 55.10 (Oct. 2017),
pp. 3288–3303. doi: 10.2514/1.j055785 (cited on page 39).

[161] X. Han and D. W. Zingg. “An adaptive geometry parametrization for aerodynamic shape
optimization”. In: Optimization and Engineering 15.1 (2014), pp. 69–91 (cited on page 39).

[162] G. R. Anderson and M. J. Aftosmis. “Adaptive Shape Control for Aerodynamic Design”. In:
56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2015,
p. 0398. doi: 10.2514/6.2015-0398 (cited on page 39).

[163] S. Ghoman, Z. Wang, P. Chen, and R. Kapania. “A POD-based Reduced Order Design Scheme
for Shape Optimization of Air Vehicles”. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Struc-
tural Dynamics and Materials Conference. American Institute of Aeronautics and Astronautics,
Apr. 2012. doi: 10.2514/6.2012-1808 (cited on page 40).

[164] J. Li, M. A. Bouhlel, and J. R. R. A. Martins. “Data-based Approach for Fast Airfoil Analysis and
Optimization”. In: AIAA Journal 57.2 (Feb. 2019), pp. 581–596. doi: 10.2514/1.J057129
(cited on page 40).

[165] J. Li and M. Zhang. “Adjoint-Free Aerodynamic Shape Optimization of the Common Research
Model Wing”. In: AIAA Journal 59.6 (June 2021), pp. 1990–2000. doi: 10.2514/1.j059921
(cited on page 40).

[166] D. J. Poole, C. B. Allen, and T. Rendall. “Efficient aeroelastic wing optimization through a
compact aerofoil decomposition approach”. In: Structural and Multidisciplinary Optimization
65.3 (Feb. 2022), pp. 1–19. doi: 10.1007/s00158-022-03174-4 (cited on page 40).

[167] M. S. Selig. UIUC airfoil data site. Department of Aeronautical and Astronautical Engineering
University of Illinois at Urbana-Champaign, 1996 (cited on page 40).

[168] L. J. Kedward, C. B. Allen, D. J. Poole, and T. C. S. Rendall. “Generic Modal Design Variables
for Efficient Aerodynamic Optimization”. In: AIAA Journal (Nov. 2022), pp. 1–17. doi:
10.2514/1.j061727 (cited on page 41).

https://doi.org/10.2514/1.j055978
https://doi.org/10.2514/6.2021-3031
https://doi.org/10.2514/1.j058977
https://doi.org/10.2514/1.j055785
https://doi.org/10.2514/6.2015-0398
https://doi.org/10.2514/6.2012-1808
https://doi.org/10.2514/1.J057129
https://doi.org/10.2514/1.j059921
https://doi.org/10.1007/s00158-022-03174-4
https://doi.org/10.2514/1.j061727

206

[169] T. W. Lukaczyk, P. Constantine, F. Palacios, and J. J. Alonso. “Active Subspaces for Shape
Optimization”. In: 10th AIAA Multidisciplinary Design Optimization Conference. American
Institute of Aeronautics and Astronautics, Jan. 2014. doi: 10.2514/6.2014-1171 (cited on
page 41).

[170] Z. J. Grey and P. G. Constantine. “Active Subspaces of Airfoil Shape Parameterizations”. In:
AIAA Journal 56.5 (May 2018), pp. 2003–2017. doi: 10.2514/1.j056054 (cited on page 41).

[171] C. Lee, D. Koo, and D. W. Zingg. “Comparison of B-Spline Surface and Free-Form Deformation
Geometry Control for Aerodynamic Optimization”. In: AIAA Journal 55.1 (2017), pp. 228–
240. doi: 10.2514/1.J055102 (cited on page 43).

[172] S. C. Eisenstat and H. F. Walker. “Choosing the Forcing Terms in an Inexact Newton Method”.
In: SIAM Journal on Scientific Computing 17.1 (Jan. 1996), pp. 16–32. doi: 10.1137/0917003
(cited on page 75).

[173] B. Peherstorfer, P. S. Beran, and K. E. Willcox. “Multifidelity Monte Carlo estimation for
large-scale uncertainty propagation”. In: 2018 AIAA Non-Deterministic Approaches Conference.
American Institute of Aeronautics and Astronautics, Jan. 2018. doi: 10.2514/6.2018-1660
(cited on page 75).

[174] M. Heinkenschloss and L. N. Vicente. “Analysis of inexact trust-region SQP algorithms, SIAM
Journal on Optimization”. In: SIAM Journal on Optimization 12 (2001), pp. 283–302 (cited
on page 75).

[175] C. Gu, D. Zhu, and Y. Pei. “A new inexact SQP algorithm for nonlinear systems of mixed
equalities and inequalities”. In: Numerical Algorithms 78.4 (Sept. 2017), pp. 1233–1253. doi:
10.1007/s11075-017-0421-y (cited on page 75).

[176] R. T. Biedron, J.-R. Carlson, J. M. Derlaga, P. A. Gnoffo, D. P. Hammond, W. T. Jones, B. Kleb,
E. M. Lee-Rausch, E. J. Nielsen, M. A. Park, et al. FUN3D Manual: 13.6. Tech. rep. 2019
(cited on page 76).

[177] M. Nemec, M. Aftosmis, and M. Wintzer. “Adjoint-Based Adaptive Mesh Refinement for
Complex Geometries”. In: 46th AIAA Aerospace Sciences Meeting and Exhibit. American Institute
of Aeronautics and Astronautics, Jan. 2008, p. 725. doi: 10.2514/6.2008-725 (cited on
page 76).

[178] J. Lu and D. Darmofal. “Adaptive Precision Methodology for Flow Optimization via Dis-
cretization and Iteration Error Control”. In: 42nd AIAA Aerospace Sciences Meeting and Exhibit.
American Institute of Aeronautics and Astronautics, Jan. 2004, p. 1096. doi: 10.2514/6.2004-
1096 (cited on pages 76, 77, 84, 86).

[179] C. Lozano and I. Ruiz Juretschke. “Adjoint-Based Correction of Non-Converged CFD Solu-
tions”. In: 19th AIAA Computational Fluid Dynamics. American Institute of Aeronautics and
Astronautics, June 2009. doi: 10.2514/6.2009-4144 (cited on page 76).

https://doi.org/10.2514/6.2014-1171
https://doi.org/10.2514/1.j056054
https://doi.org/10.2514/1.J055102
https://doi.org/10.1137/0917003
https://doi.org/10.2514/6.2018-1660
https://doi.org/10.1007/s11075-017-0421-y
https://doi.org/10.2514/6.2008-725
https://doi.org/10.2514/6.2004-1096
https://doi.org/10.2514/6.2004-1096
https://doi.org/10.2514/6.2009-4144

207

[180] D. A. Brown and S. Nadarajah. “Inexactly constrained discrete adjoint approach for steepest
descent-based optimization algorithms”. In: Numerical Algorithms 78.3 (Sept. 2017), pp. 983–
1000. doi: 10.1007/s11075-017-0409-7 (cited on pages 76, 77).

[181] D. A. Brown and S. Nadarajah. “Effect of inexact adjoint solutions on the discrete-adjoint
approach to gradient-based optimization”. In: Optimization and Engineering 23.3 (Sept. 2021),
pp. 1643–1676. doi: 10.1007/s11081-021-09681-5 (cited on pages 76, 77, 87).

[182] R. Becker and R. Rannacher. “An optimal control approach to a posteriori error estimation
in finite element methods”. In: Acta Numerica 10 (May 2001), pp. 1–102. doi: 10.1017/
s0962492901000010 (cited on page 81).

[183] F. A. C. Viana, T. W. Simpson, V. Balabanov, and V. Toropov. “Metamodeling in Multidisci-
plinary Design Optimization: How Far Have We Really Come?” In: AIAA Journal 52.4 (Apr.
2014), pp. 670–690. doi: 10.2514/1.J052375 (cited on page 96).

[184] L. Leifsson and S. Koziel. “Multi-fidelity design optimization of transonic airfoils using physics-
based surrogate modeling and shape-preserving response prediction”. In: Journal of Compu-
tational Science 1.2 (2010), pp. 98–106. doi: 10.1016/j.jocs.2010.03.007 (cited on
page 96).

[185] S. Choi, J. J. Alonso, I. M. Kroo, and M. Wintzer. “Multifidelity Design Optimization of
Low-Boom Supersonic Jets”. In: Journal of Aircraft 45.1 (2008), pp. 106–118 (cited on page 96).

[186] A. I. Forrester, N. W. Bressloff, and A. J. Keane. “Optimization using surrogate models and
partially converged computational fluid dynamics simulations”. In: Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences 462 (2006), pp. 2177–2204. doi:
10.1098/rspa.2006.1679 (cited on page 96).

[187] N.-V. Nguyen, S.-M. Choi, W.-S. Kim, J.-W. Lee, S. Kim, D. Neufeld, and Y.-H. Byun.
“Multidisciplinary unmanned combat air vehicle system design using multi-fidelity model”. In:
Aerospace Science and Technology 26.1 (2013), pp. 200–210. doi: 10.1016/j.ast.2012.04.
004 (cited on page 96).

[188] N. M. Alexandrov, R. M. Lewis, C. R. Gumbert, L. L. Green, and P. A. Newman. “Approxima-
tion and Model Management in Aerodynamic Optimization with Variable-Fidelity Models”.
In: Journal of Aircraft 38.6 (2001), pp. 1093–1101 (cited on page 97).

[189] A. Elham and M. J. van Tooren. “Multi-fidelity wing aerostructural optimization using a trust
region filter-SQP algorithm”. In: Structural and Multidisciplinary Optimization 55 (2017),
pp. 1773–1786. doi: 10.1007/s00158-016-1613-0 (cited on pages 97, 98).

[190] A. March and K. Willcox. “Provably convergent multifidelity optimization algorithm not
requiring high-fidelity derivatives”. In: AIAA journal 50.5 (2012), pp. 1079–1089. doi: 10.
2514/1.J051125 (cited on page 97).

https://doi.org/10.1007/s11075-017-0409-7
https://doi.org/10.1007/s11081-021-09681-5
https://doi.org/10.1017/s0962492901000010
https://doi.org/10.1017/s0962492901000010
https://doi.org/10.2514/1.J052375
https://doi.org/10.1016/j.jocs.2010.03.007
https://doi.org/10.1098/rspa.2006.1679
https://doi.org/10.1016/j.ast.2012.04.004
https://doi.org/10.1016/j.ast.2012.04.004
https://doi.org/10.1007/s00158-016-1613-0
https://doi.org/10.2514/1.J051125
https://doi.org/10.2514/1.J051125

208

[191] S. Gratton, A. Sartenaer, and P. L. Toint. “Recursive trust-region methods for multiscale
nonlinear optimization”. In: SIAM Journal on Optimization 19.1 (2008), pp. 414–444. doi:
10.1137/050623012 (cited on page 97).

[192] R. Olivanti, F. Gallard, J. Brézillon, and N. Gourdain. “Comparison of Generic Multi-Fidelity
Approaches for Bound-Constrained Nonlinear Optimization Applied to Adjoint-Based CFD
Applications”. In: AIAA Aviation 2019 Forum. 2019. doi: 10.2514/6.2019-3102 (cited on
pages 97, 98).

[193] D. E. Bryson and M. P. Rumpfkeil. “Multifidelity Quasi-Newton Method for Design Opti-
mization”. In: AIAA Journal 56.10 (2018), pp. 4074–4086. doi: 10.2514/1.J056840 (cited
on page 97).

[194] D. E. Bryson and M. P. Rumpfkeil. “Aerostructural Design Optimization Using a Multifidelity
Quasi-Newton Method”. In: Journal of Aircraft 56.5 (2019), pp. 2019–2031. doi: 10.2514/1.
C035152 (cited on page 98).

[195] A. S. Thelen, D. E. Bryson, B. K. Stanford, and P. S. Beran. “Multi-Fidelity Gradient-Based
Optimization for High-Dimensional Aeroelastic Configurations”. In: Algorithms 15.4 (Apr.
2022), p. 131. doi: 10.3390/a15040131 (cited on page 98).

[196] D. Allaire and K. Willcox. “A mathematical and computational framework for multifidelity de-
sign and analysis with computer models”. In: International Journal for Uncertainty Quantification
4.1 (2014), pp. 1–20. doi: 10.1615/Int.J.UncertaintyQuantification.2013004121
(cited on pages 98, 99, 105).

[197] A. H. Bayoumy and M. Kokkolaras. “A relative adequacy framework for multimodel manage-
ment in multidisciplinary design optimization”. In: Structural and Multidisciplinary Optimization
62.4 (July 2020), pp. 1701–1720. doi: 10.1007/s00158-020-02591-7 (cited on page 99).

[198] S. Koziel and L. Leifsson. “Multi-level CFD-based airfoil shape optimization with automated
low-fidelity model selection”. In: Procedia Computer Science 18 (2013), pp. 889–898. doi:
10.1016/j.procs.2013.05.254 (cited on page 100).

[199] M. Drela. “XFOIL — An analysis and design system for low Reynolds number airfoils”. In:
Low Reynolds number aerodynamics. Notre Dame,Germany, Federal Republic of, May 1989
(cited on page 101).

[200] J. Morgado, R. Vizinho, M. Silvestre, and J. Páscoa. “XFOIL vs CFD performance predictions
for high lift low Reynolds number airfoils”. In: Aerospace Science and Technology 52 (2016),
pp. 207–214. doi: 10.1016/j.ast.2016.02.031 (cited on page 101).

[201] D. Levy, K. Laflin, J. Vassberg, E. Tinoco, M. Mani, B. Rider, O. Brodersen, S. Crippa, C.
Rumsey, R. Wahls, J. Morrison, D. Mavriplis, and M. Murayama. “Summary of data from the
fifth AIAA CFD drag prediction workshop”. In: 51st AIAA Aerospace Sciences Meeting including
the New Horizons Forum and Aerospace Exposition. 2013. doi: 10.2514/6.2013-46 (cited on
page 106).

https://doi.org/10.1137/050623012
https://doi.org/10.2514/6.2019-3102
https://doi.org/10.2514/1.J056840
https://doi.org/10.2514/1.C035152
https://doi.org/10.2514/1.C035152
https://doi.org/10.3390/a15040131
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2013004121
https://doi.org/10.1007/s00158-020-02591-7
https://doi.org/10.1016/j.procs.2013.05.254
https://doi.org/10.1016/j.ast.2016.02.031
https://doi.org/10.2514/6.2013-46

209

[202] G. Chen and K. J. Fidkowski. “Discretization Error Control for Constrained Aerodynamic
Shape Optimization”. In: Journal of Computational Physics 387 (2019), pp. 163–185. doi:
10.1016/j.jcp.2019.02.038 (cited on page 110).

[203] A. B. Yoo, M. A. Jette, and M. Grondona. “Slurm: Simple linux utility for resource management”.
In: Workshop on job scheduling strategies for parallel processing. Springer. 2003, pp. 44–60 (cited
on page 115).

[204] S. F. Ghoreishi and D. L. Allaire. “Adaptive Uncertainty Propagation for Coupled Multidis-
ciplinary Systems”. In: AIAA Journal 55.11 (Nov. 2017), pp. 3940–3950. doi: 10.2514/1.
j055893 (cited on page 120).

[205] S. Friedman, B. Isaac, S. F. Ghoreishi, and D. L. Allaire. “Efficient Decoupling of Multiphysics
Systems for Uncertainty Propagation”. In: 2018 AIAA Non-Deterministic Approaches Conference.
American Institute of Aeronautics and Astronautics, Jan. 2018, p. 1661. doi: 10.2514/6.2018-
1661 (cited on page 120).

[206] A. Chaudhuri, R. Lam, and K. Willcox. “Multifidelity Uncertainty Propagation via Adaptive
Surrogates in Coupled Multidisciplinary Systems”. In: AIAA Journal 56.1 (Jan. 2018), pp. 235–
249. doi: 10.2514/1.j055678 (cited on page 121).

[207] X. Du and W. Chen. “Efficient Uncertainty Analysis Methods for Multidisciplinary Robust
Design”. In: AIAA Journal 40.3 (Mar. 2002), pp. 545–552. doi: 10.2514/2.1681 (cited on
page 121).

[208] R. Baptista, Y. Marzouk, K. Willcox, and B. Peherstorfer. “Optimal Approximations of Coupling
in Multidisciplinary Models”. In: AIAA Journal 56.6 (June 2018), pp. 2412–2428. doi: 10.
2514/1.j056888 (cited on page 122).

[209] G. Kreisselmeier and R. Steinhauser. “Systematic Control Design by Optimizing a Vector
Performance Index”. In: International Federation of Active Controls Symposium on Computer-Aided
Design of Control Systems, Zurich, Switzerland. 1979. doi: 10.1016/S1474-6670(17)65584-8
(cited on pages 135, 153).

[210] T. R. Brooks, G. J. Kennedy, and J. R. R. A. Martins. “High-fidelity Multipoint Aerostructural
Optimization of a High Aspect Ratio Tow-steered Composite Wing”. In: Proceedings of the 58th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech
Forum. Grapevine, TX, Jan. 2017. doi: 10.2514/6.2017-1350 (cited on page 140).

[211] J. Pattinson and M. Herring. “High Fidelity Simulation of Wing Loads with an Active Winglet
Control Surface”. In: IFASD 2013, International Forum on Aeroelasticity and Structrual Dynamics,
24-26 June 2013, Bristol. Bristol, UK: Royal Aeronautical Society, June 2013 (cited on page 150).

[212] M. Cavcar. “Bréguet Range Equation?” In: Journal of Aircraft 43.5 (2006), pp. 1542–1544.
doi: 10.2514/1.17696 (cited on page 150).

[213] G. J. Kennedy, G. K. W. Kenway, and J. R. R. A. Martins. “High Aspect Ratio Wing Design:
Optimal Aerostructural Tradeoffs for the Next Generation of Materials”. In: Proceedings of the

https://doi.org/10.1016/j.jcp.2019.02.038
https://doi.org/10.2514/1.j055893
https://doi.org/10.2514/1.j055893
https://doi.org/10.2514/6.2018-1661
https://doi.org/10.2514/6.2018-1661
https://doi.org/10.2514/1.j055678
https://doi.org/10.2514/2.1681
https://doi.org/10.2514/1.j056888
https://doi.org/10.2514/1.j056888
https://doi.org/10.1016/S1474-6670(17)65584-8
https://doi.org/10.2514/6.2017-1350
https://doi.org/10.2514/1.17696

210

AIAA Science and Technology Forum and Exposition (SciTech). National Harbor, MD, Jan. 2014.
doi: 10.2514/6.2014-0596 (cited on page 152).

[214] W. Yao, X. Chen, W. Luo, M. van Tooren, and J. Guo. “Review of uncertainty-based mul-
tidisciplinary design optimization methods for aerospace vehicles”. In: Progress in Aerospace
Sciences 47.6 (Aug. 2011), pp. 450–479. doi: 10.1016/j.paerosci.2011.05.001 (cited
on pages 176, 177).

[215] Evaluation of measurement data - Supplement 1 to the “Guide to the expression of uncertainty
in measurement” – Propagation of distributions using a Monte Carlo method. JCGM 101:2008.
Sèvres, France: Joint Committee for Guides in Metrology, 2008 (cited on page 176).

[216] F. A. Seiler. “Error Propagation for Large Errors”. In: Risk Analysis 7.4 (Dec. 1987), pp. 509–518.
doi: 10.1111/j.1539-6924.1987.tb00487.x (cited on page 177).

[217] M. A. F. Martins, R. Requião, and R. A. Kalid. “Generalized expressions of second and third
order for the evaluation of standard measurement uncertainty”. In: Measurement 44.9 (Nov.
2011), pp. 1526–1530. doi: 10.1016/j.measurement.2011.06.008 (cited on page 177).

[218] J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl, and G. Wilson. “How do
scientists develop and use scientific software?” In: 2009 ICSE Workshop on Software Engineering
for Computational Science and Engineering. Ieee. IEEE, May 2009, pp. 1–8. doi: 10.1109/
secse.2009.5069155 (cited on page 179).

[219] A. Johanson and W. Hasselbring. “Software Engineering for Computational Science: Past,
Present, Future”. In: Computing in Science & Engineering 20.2 (2018), pp. 1–1. doi:
10.1109/mcse.2018.108162940 (cited on page 179).

[220] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. C. Hong, M. Davis, R. T. Guy, S. H. D.
Haddock, K. D. Huff, I. M. Mitchell, M. D. Plumbley, B. Waugh, E. P. White, and P. Wilson.
“Best Practices for Scientific Computing”. In: PLoS Biology 12.1 (2014), e1001745. doi:
10.1371/journal.pbio.1001745 (cited on page 179).

[221] G. Wilson, J. Bryan, K. Cranston, J. Kitzes, L. Nederbragt, and T. K. Teal. “Good enough
practices in scientific computing”. In: PLOS Computational Biology 13.6 (June 2017), e1005510.
doi: 10.1371/journal.pcbi.1005510 (cited on page 179).

[222] M. C. Galbraith, S. Allmaras, and D. L. Darmofal. “A Verification Driven Process for Rapid
Development of CFD Software”. In: 53rd AIAA Aerospace Sciences Meeting. American Institute
of Aeronautics and Astronautics, Jan. 2015, p. 0818. doi: 10.2514/6.2015-0818 (cited on
page 179).

[223] R. P. Kendall, N. S. Hariharan, R. L. Meakin, K. Bergeron, and D. A. Post. “The HPCMP
CREATE™ Program management Model-Part I”. In: AIAA Scitech 2021 Forum. American
Institute of Aeronautics and Astronautics, Jan. 2021, p. 0232. doi: 10.2514/6.2021-0232
(cited on page 179).

https://doi.org/10.2514/6.2014-0596
https://doi.org/10.1016/j.paerosci.2011.05.001
https://doi.org/10.1111/j.1539-6924.1987.tb00487.x
https://doi.org/10.1016/j.measurement.2011.06.008
https://doi.org/10.1109/secse.2009.5069155
https://doi.org/10.1109/secse.2009.5069155
https://doi.org/10.1109/mcse.2018.108162940
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.2514/6.2015-0818
https://doi.org/10.2514/6.2021-0232

211

[224] K. Bergeron, R. P. Kendall, N. S. Hariharan, R. L. Meakin, and D. A. Post. “The HPCMP
CREATE™ Management Model – Part II, DevOps Principles and Practices in HPCMP CRE-
ATE™”. In: AIAA Scitech 2021 Forum. American Institute of Aeronautics and Astronautics, Jan.
2021, p. 0233. doi: 10.2514/6.2021-0233 (cited on page 179).

[225] X. Zhang, W. T. Jones, S. L. Wood, and M. A. Park. “Component-Based Development of CFD
Software FUN3D”. In: AIAA SCITECH 2022 Forum. American Institute of Aeronautics and
Astronautics, Jan. 2022, p. 0253. doi: 10.2514/6.2022-0253 (cited on page 179).

[226] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles. “A Survey of DevOps Concepts and
Challenges”. In: ACM Comput. Surv. 52.6 (Nov. 2019). doi: 10.1145/3359981 (cited on
page 180).

[227] R. Jabbari, N. bin Ali, K. Petersen, and B. Tanveer. “What is DevOps? A Systematic Mapping
Study on Definitions and Practices”. In: Proceedings of the Scientific Workshop Proceedings of
XP2016. XP ’16 Workshops. New York, NY, USA: Association for Computing Machinery,
2016. doi: 10.1145/2962695.2962707 (cited on page 180).

[228] W. L. Oberkampf and C. J. Roy. Verification and Validation in Scientific Computing. Cambridge
University Press, Oct. 2010 (cited on pages 180, 181).

[229] B. Kleb and B. Wood. “Computational Simulations and the Scientific Method”. In: Journal
of Aerospace Computing, Information, and Communication 3.6 (June 2006), pp. 244–250. doi:
10.2514/1.12949 (cited on page 181).

[230] Z. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, H. Deconinck, R. Hartmann,
K. Hillewaert, H. Huynh, N. Kroll, G. May, P.-O. Persson, B. van Leer, and M. Visbal. “High-
order CFD methods: current status and perspective”. In: International Journal for Numerical
Methods in Fluids 72.8 (2013), pp. 811–845. doi: 10.1002/fld.3767 (cited on page 182).

[231] A. Nanthaamornphong and J. C. Carver. “Test-Driven Development in scientific software: A
survey”. In: Software Quality Journal 25.2 (Sept. 2015), pp. 343–372. doi: 10.1007/s11219-
015-9292-4 (cited on page 182).

[232] G. M. Kurtzer, V. Sochat, and M. W. Bauer. “Singularity: Scientific containers for mobility
of compute”. In: PLOS ONE 12.5 (May 2017), pp. 1–20. doi: 10.1371/journal.pone.
0177459 (cited on pages 184, 189).

[233] M. Kennedy and A. O’Hagan. “Bayesian Calibration of Computer Models”. In: J.R. Statist. Soc.
B 63.3 (2001), pp. 425–464 (cited on page 186).

[234] L. N. Trefethen and D. Bau III. Numerical Linear Algebra. SIAM: Society for Industrial and
Applied Mathematics, 1997 (cited on page 186).

[235] M. J. Corden and D. Kreitzer. “Consistency of floating-point results using the intel compiler or
why doesn’t my application always give the same answer”. In: Intel Corp., Software Solutions
Group, Santa Clara, CA, USA, Tech. Rep (2009) (cited on page 186).

https://doi.org/10.2514/6.2021-0233
https://doi.org/10.2514/6.2022-0253
https://doi.org/10.1145/3359981
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.2514/1.12949
https://doi.org/10.1002/fld.3767
https://doi.org/10.1007/s11219-015-9292-4
https://doi.org/10.1007/s11219-015-9292-4
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459

212

[236] P. Balaji and D. Kimpe. “On the Reproducibility of MPI Reduction Operations”. In: 2013
IEEE 10th International Conference on High Performance Computing and Communications &
2013 IEEE International Conference on Embedded and Ubiquitous Computing. IEEE. IEEE, Nov.
2013, pp. 407–414. doi: 10.1109/hpcc.and.euc.2013.65 (cited on page 187).

[237] C. Collange, D. Defour, S. Graillat, and R. Iakymchuk. “Numerical reproducibility for the
parallel reduction on multi- and many-core architectures”. In: Parallel Computing 49 (Nov.
2015), pp. 83–97. doi: 10.1016/j.parco.2015.09.001 (cited on page 187).

[238] G. Karypis and V. Kumar. “A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs”. In: SIAM Journal on Scientific Computing 20.1 (Jan. 1998), pp. 359–392.
doi: 10.1137/s1064827595287997 (cited on page 187).

[239] D. Ezer and K. Whitaker. “Data science for the scientific life cycle”. In: eLife 8 (Mar. 2019).
doi: 10.7554/elife.43979 (cited on page 188).

[240] M. R. Munafò, B. A. Nosek, D. V. M. Bishop, K. S. Button, C. D. Chambers, N. Percie
du Sert, U. Simonsohn, E.-J. Wagenmakers, J. J. Ware, and J. P. A. Ioannidis. “A manifesto for
reproducible science”. In: Nature Human Behaviour 1.1 (Jan. 2017), pp. 1–9. doi: 10.1038/
s41562-016-0021 (cited on page 188).

[241] P. Ivie and D. Thain. “Reproducibility in Scientific Computing”. In: ACM Computing Surveys
51.3 (July 2018), pp. 1–36. doi: 10.1145/3186266 (cited on page 188).

[242] D. Merkel et al. “Docker: Lightweight linux containers for consistent development and deploy-
ment”. In: Linux j 239.2 (2014), p. 2 (cited on page 189).

[243] R. Kuprieiev, skshetry, D. Petrov, P. Redzyński, P. Rowlands, C. da Costa-Luis, A. Schepanovski,
I. Shcheklein, Gao, B. Taskaya, D. de la Iglesia Castro, J. Orpinel, F. Santos, R. Lamy, A. Sharma,
D. Berenbaum, daniele, Zhanibek, D. Hodovic, N. Kodenko, A. Grigorev, Earl, N. Dash, G.
Vyshnya, maykulkarni, M. Hora, Vera, and S. Mangal. DVC: Data Version Control - Git for Data
& Models. Version 2.38.1. Dec. 2022. doi: 10.5281/zenodo.7440136 (cited on page 189).

[244] R. Rampin, F. Chirigati, D. Shasha, J. Freire, and V. Steeves. “ReproZip: The Reproducibility
Packer”. In: The Journal of Open Source Software 1.8 (Dec. 2016), p. 107. doi: 10.21105/
joss.00107 (cited on page 189).

[245] Y. Halchenko, K. Meyer, B. Poldrack, D. Solanky, A. Wagner, J. Gors, D. MacFarlane, D.
Pustina, V. Sochat, S. Ghosh, C. Mönch, C. Markiewicz, L. Waite, I. Shlyakhter, A. de la Vega,
S. Hayashi, C. Häusler, J.-B. Poline, T. Kadelka, K. Skytén, D. Jarecka, D. Kennedy, T. Strauss,
M. Cieslak, P. Vavra, H.-I. Ioanas, R. Schneider, M. Pflüger, J. Haxby, S. Eickhoff, and M. Hanke.
“DataLad: Distributed system for joint management of code, data, and their relationship”. In:
Journal of Open Source Software 6.63 (July 2021), p. 3262. doi: 10.21105/joss.03262 (cited
on page 189).

[246] C. S. Adorf, P. M. Dodd, V. Ramasubramani, and S. C. Glotzer. “Simple data and workflow
management with the signac framework”. In: Computational Materials Science 146 (Apr. 2018),
pp. 220–229. doi: 10.1016/j.commatsci.2018.01.035 (cited on page 189).

https://doi.org/10.1109/hpcc.and.euc.2013.65
https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1137/s1064827595287997
https://doi.org/10.7554/elife.43979
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1145/3186266
https://doi.org/10.5281/zenodo.7440136
https://doi.org/10.21105/joss.00107
https://doi.org/10.21105/joss.00107
https://doi.org/10.21105/joss.03262
https://doi.org/10.1016/j.commatsci.2018.01.035

	Practical Appropriate Fidelity Optimization for Large-scale Multidisciplinary Aircraft Design
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	List of Acronyms
	List of Symbols
	Abstract
	1 Introduction
	1.1 High-fidelity aircraft design
	1.1.1 Numerical optimization
	1.1.2 Efficient gradient computation
	1.1.3 Multidisciplinary design optimization

	1.2 Low and mixed-fidelity MDO
	1.3 Improvements in robustness and efficiency
	1.3.1 Robustness and optimization convergence
	1.3.2 Computational cost

	1.4 Dissertation objectives
	1.5 Dissertation outline

	2 Background
	2.1 Numerical optimization
	2.2 PDE-constrained optimization
	2.3 Multidisciplinary design optimization
	2.4 Analysis fidelities and sources of error
	2.5 Computational framework
	2.5.1 Geometric parameterization
	2.5.2 Volume mesh warping
	2.5.3 CFD solver
	2.5.4 CSM solver
	2.5.5 Aerostructural solver
	2.5.6 Optimization framework
	2.5.7 SNOPT: the optimizer of choice

	3 Sensitivity-Based Geometric Parameterization
	3.1 Introduction to geometric parameterizations
	3.2 Motivating analyses
	3.2.1 Impact of geometric design variables
	3.2.2 Impact of orthogonality

	3.3 Generating design variables
	3.3.1 Methodology
	3.3.2 Reformulating the Optimization
	3.3.3 Verification
	3.3.4 Generated design variables

	3.4 Design variable scaling
	3.4.1 Methodology
	3.4.2 Impact of mesh density

	3.5 Optimization results
	3.5.1 Twist and shape
	3.5.2 Span

	3.6 Summary

	4 Adaptive Convergence Error Control
	4.1 Background
	4.2 Adjoint-based convergence error estimation
	4.2.1 Derivation
	4.2.2 Verification

	4.3 Convergence tolerance adaptation algorithm
	4.4 Results
	4.4.1 Adaptive airfoil optimization
	4.4.2 Adaptive wing optimization

	4.5 Summary

	5 Appropriate Fidelity MDO Framework
	5.1 Background
	5.1.1 Global and local methods
	5.1.2 Multifidelity MDO
	5.1.3 Aim of proposed method

	5.2 Methodology
	5.2.1 Error quantification
	5.2.2 Error propagation
	5.2.3 Fidelity selection
	5.2.4 Switching criteria
	5.2.5 Optimization

	5.3 Practical considerations
	5.3.1 Load balancing
	5.3.2 Summary

	6 Treatment of Coupled Errors
	6.1 Background
	6.2 Methodology
	6.2.1 Coupled error quantification
	6.2.2 Coupled error propagation

	6.3 Verification
	6.4 Incorporation into framework
	6.5 Summary

	7 Appropriate Fidelity Optimization Results
	7.1 Demonstration on a standalone wing
	7.1.1 Benchmark problem
	7.1.2 Results and discussion
	7.1.3 Impact of coupled errors

	7.2 Demonstration on the XRF1
	7.2.1 Problem description
	7.2.2 Results

	7.3 Summary

	8 Final Remarks
	8.1 Conclusions
	8.2 Novel contributions
	8.3 Recommendations for future work
	8.3.1 General
	8.3.2 Geometric parameterization
	8.3.3 Tolerance adaptation
	8.3.4 Appropriate fidelity MDO
	8.3.5 Coupled error propagataion

	Appendices
	A CFD Convergence Characterization
	B Error Propagation Techniques
	B.1 Monte Carlo methods
	B.1.1 Adaptive parallel implementation

	B.2 FOSM method
	B.2.1 Implementation

	C Best Practices for Research in Scientific Computing
	C.1 Code development and maintenance
	C.1.1 Version control and workflow
	C.1.2 Testing, testing, testing
	C.1.3 Static code analysis and formatting
	C.1.4 Continuous integration
	C.1.5 Documentation

	C.2 Sources of numerical errors
	C.3 Reproducibility
	C.3.1 RepoState: a package to facilitate reproducible computational research in Python

	Bibliography

