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Abstract 

 

Simulation and modeling methods covering multiple time and length scales are here 

applied to study crystals and materials with partial crystallinity. The first system investigated is 

the aqueous emulsion of cationic surfactant and fatty alcohol, known as “lamellar gel networks”, 

which contains extended networks of bilayers with in-plane solid-like order (Lβ phase). Fully 

atomistic molecular dynamics (MD) simulations were conducted to study the equilibrium bilayer 

structure. Lateral pressure and temperature scans along reversible pathways were used to avoid 

kinetic bottlenecks and drive phase changes, including formation of the LβI phase with 

interdigitated tails of opposing leaflets enabled at negative lateral pressure. Thermodynamic 

integration, with extrapolations to infinitely slow scans, yielded a negative free energy difference 

between the interdigitated LβI and non-interdigitated Lβ phase, which is consistent with the 

spontaneous formation of Lβ phase under atmospheric pressure in simulation.  

To predict the macroscopic properties of lamellar gel networks in terms of their complex 

rheology and shear-rate inhomogeneities, a relatively simple thixotropic constitutive model was 

proposed. The model has an elasto-plastic stress and a smoothly decreasing modulus near a solid 

boundary, motivated by mesoscopic scale analysis of the effect of confinement and shear flow on 

lamellae orientation near surfaces. The model qualitatively captures the rheology features of the 

lamellar gel, including thixotropic shear-thinning, slow creep under small shear stress and abrupt 

transition to fast yielding at higher stress, as well as a gap-dependent behavior. The introduction 

of the modulus gradient enables the model to predict the unique shear banding phenomenon of 



 xiii 

lamellar gel networks wherein a thin, fast-shearing band exists near the boundary that widens only 

slowly with increased apparent shear rate until a very high rate is reached, while the bulk moves 

as a plug. 

The crystallization process of pharmaceutical cocrystals was also investigated. A coarse-

grained model was developed for the cocrystal of carbamazepine and succinic acid using iterative 

Boltzmann inversion with crystal structural information from atomistic simulation. The coarse-

grained model allowed direct simulation of cocrystal growth in the melt, which is extremely 

challenging with a fully atomistic model. The growth kinetics of three different facets were 

analyzed, and the (1 0 -1) facet exhibited the slowest growth rate, consistent with the crystal 

morphology prediction from attachment energy theory. Well-tempered metadynamics simulations 

were performed to study the molecular orientation during single molecule adsorption at different 

facets, revealing that hydrogen bonding and layer structure were factors that may cause the 

difference in growth rates. 

The utilization of simulation and modeling techniques across various time and length scales 

in our research has resulted in the creation of innovative methods and models that provide valuable 

insights into the intricate behavior of partially crystalline materials. 
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Chapter 1 Introduction  

 

1.1 Introduction  

Modeling and simulation have become increasingly crucial in the field of material science 

over the past few decades due to the development of new simulation methods and advancements 

in computational power. Material science involves many interesting problems that span multiple 

spatial or temporal scales. The microscopic structure and interactions ultimately determine the 

material properties at the macroscopic level, which are of interest for their applications. Well-

established computational approaches have been developed over the years to handle relevant 

phenomena at different length scales, which can be generally categorized into four characteristic 

length levels: atomic (∼10−9 m or a few nanometers), microscopic (∼10−6 m or a few micrometers), 

mesoscopic (∼10−4 m or hundreds of micrometers), and macroscopic (∼10−2 m or centimeters and 

beyond).1 Each of the four length scales mentioned above is typically associated with a 

corresponding timescale, which ranges roughly from femtoseconds to picoseconds, to 

nanoseconds, to milliseconds and beyond, respectively.1 

The smallest scale is the atomic scale, where the interactions of the electrons among the 

atoms are dictated by their quantum mechanical state. Quantum Monte Carlo (QMC)2 and quantum 

chemistry (QC)3 methods can explicitly and accurately describe electrons at the atomic scale, 

although they are computationally demanding and limited to systems containing only a few tens 

of electrons. For larger systems, more efficient methods based on density-functional theory (DFT) 

and local density approximation (LDA) can be employed.4,5 These methods provide sufficiently 
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accurate results for static properties such as bulk crystal properties or point defects, which can be 

modeled reasonably well with a small number of atoms.1  

At the microscopic scale, interactions between atoms and molecules are often modeled 

using classical potentials that capture the effects of bonding and intermolecular forces. Molecular 

dynamics (MD) and Monte Carlo (MC) simulations are two common methods for simulating 

systems containing hundreds and thousands of molecules.6 Molecular dynamics simulation can be 

used to study the dynamic evolution of a system by analyzing the trajectories of atoms and 

molecules, which are determined by numerically solving Newton’s equations of motion. In 

contrast, Monte Carlo methods use equilibrium statistical mechanics to generate states according 

to the appropriate Boltzmann distribution. 

On the larger mesoscopic scale, lattice defects such as dislocations, grain boundaries, and 

other microstructural elements are often the focus of interest.1 The atomic degrees of freedom are 

typically ignored, and large-scale entities are usually modeled with interactions derived from 

phenomenological theories. For example, the development of dislocation dynamics (DD) method 

has been a significant milestone in computational materials science and engineering, as it handles 

the kinetics of dislocations under strain, which is concerned with the mechanical behavior of 

solids.7 

Finally, phenomena on the macroscopic scale are generally governed by constitutive laws 

in continuum fields such as density, velocity, temperature, displacement, and stress fields. The 

constitutive laws are usually formulated to capture the effects of lattice defects and microstructural 

elements on materials properties.1 Finite-element (FE) methods8 are commonly used to model 

materials as an elastic continuum and examine their large-scale properties.9 Another example is 

the use of continuum Navier-Stokes equations in the modeling of fluids. 
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Crystalline systems exhibit unique properties stemming from their microstructure, making 

them useful in a variety of applications. A crystal is a solid material whose constituents form a 

highly ordered microscopic structure. Examples include diamond, ice, and salt, where the 

constituents are atoms, molecules, and ions respectively. A broader definition of partially 

crystalline materials includes systems with partially aligned molecules, such as polymers with 

folded and stacked chains and liquid crystals.10 The microstructure and crystallization process of 

these materials primarily determine their properties, making them essential to the materials’ 

applications and processing. To use modeling and simulations to study crystals and partially 

crystalline materials, appropriate methods must be chosen based on the time and length scale of 

the problem of interest, and there are often additional challenges associated with the limitations of 

the methods.  

In this dissertation, two different systems were investigated: lamellar gel networks 

composed of surfactant bilayers in a liquid crystalline state and pharmaceutical cocrystals. The 

findings and problems solved are presented in the following fashion: 

Chapter 2 describes the use of atomistic MD simulations to determine the equilibrium 

phase structure of the surfactant bilayers in partially crystalline states. Different bilayer phases 

were simulated, and a thermodynamic integration scheme was designed to circumvent the kinetic 

issues associated with bilayer phase change and compute the free energy cost of bilayer 

interdigitation. The result of this study provides insight into the phase behavior of bilayers and 

membranes. 

In Chapter 3, a thixotropic constitutive model was developed to predict the complex 

rheology of lamellar gels. The phenomenological structural kinetic model is complemented by a 

boundary-induced gradient derived from mesoscopic scale analysis of lamellae orientation under 
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shear flow. The model qualitatively captures the rheology features of lamellar gels and predicts 

the unique flow inhomogeneities observed in experiments. 

Chapter 4 discusses a coarse-graining approach for studying the crystallization of 

pharmaceutical cocrystals. The coarse-grained model was developed to overcome the kinetic 

limitation of atomistic simulations. Crystal growth from different facets of carbamazepine and 

succinic acid cocrystal in melt was directly simulated, and surface adsorption was analyzed with 

well-tempered metadynamics simulations.  

Finally, we present a summary of the main results and conclusions of this dissertation in 

Chapter 5. 

 

1.2 Reference  

[1] Lu, G., & Efthimios, K. (2004). An Overview of Multiscale Simulations of Materials.  

https://doi.org/10.48550/arXiv.cond-mat/0401073 

[2] Foulkes, W. M. C., Mitas, L., Needs, R. J., & Rajagopal, G. (2001). Quantum Monte Carlo 

Simulations of Solids. Rev. Mod. Phys., 73, 33. 

https://doi.org/10.1103/RevModPhys.73.33 

[3] Szabo, A., & Ostlund, N. S. (1989). Modern Quantum Chemistry. McGraw-Hill, New York. 

[4] Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Phys. Rev., 136, B864. 

https://doi.org/10.1103/PhysRev.136.B864 

[5] Payne, M. C., Teter, M. T., Allan, D. C., Arias, T. A., & Joannopoulos, G. (1992). Iterative 

Minimization Techniques for ab initial Total-energy Calculations: Molecular Dynamics and 

Conjugate Gradients. Rev. Mod. Phys., 64, 1045. 

https://doi.org/10.1103/RevModPhys.64.1045 

https://doi.org/10.48550/arXiv.cond-mat/0401073
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/PhysRev.136.B864
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[9] Dawson, P. R., & Marin, E. B. (1998). Computational Mechanics for Metal Deformation 

Processes using Polycrystal Plasticity. Adv. Appl. Mech., 34, 77. 
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Chapter 2 Free Energy Cost of Interdigitation of Lamellar Bilayers of Fatty Alcohols with 

Cationic Surfactants from Molecular Dynamics Simulation 

 

This Chapter is based on the previously published article listed below: 

Wang, F., & Larson, R. G. (2021). Free Energy Cost of Interdigitation of Lamellar Bilayers of 

Fatty Alcohols with Cationic Surfactants from Molecular Dynamics Simulations. J. Phys. Chem. 

B, 125, 9, 2389–2397. 

 

2.1 Introduction 

Surfactants that lower the surface tension between oil and water are usually amphiphilic 

organic compounds with hydrophobic tail groups and hydrophilic head groups, which can be either 

ionic or non-ionic. In the bulk aqueous phase, surfactants can aggregate into micelles with the 

aggregate core formed by the hydrophobic tails and the hydrophilic heads in contact with 

surrounding water. Other types of aggregate structure can also be formed such as spherical or 

cylindrical micelles or bilayers, depending on surfactant concentration and its chemical structure. 

Fatty alcohols are also amphiphilic molecules with a polar hydroxyl head associated attached to 

an alkyl chain tail. Long-chain alcohols such as cetyl (C16) and stearyl (C18) alcohols are only weak 

emulsifiers by themselves and adopt various crystalline structures with poor hydration capacity in 

water.1 However, when they are mixed with surfactants in an appropriate ratio in excess water, 

stable emulsion can form, which are widely used in pharmaceutical creams, cosmetic lotions, hair 

care products and as drug delivery carriers with other essential additives such as salt and 
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perfume.2,3 Hair conditioner has been a particularly important product application for these 

emulsions in the hair and skin-care industry due to the enormous market demand for such products 

over the past few decades. The cationic surfactant in the conditioner adheres well to the slightly 

negatively charged wet hair, while the fatty alcohol component helps in lubricating and 

moisturizing the hair surface to provide a smooth feel. 

These pseudo-ternary mixtures contain extended and highly interconnected networks often 

referred as “lamellar gel networks,” which can withstand elastic deformation and have interesting 

rheological properties.4 As a result of the multiphase structure, lamellar gel networks of surfactant 

and fatty alcohol have an opaque creamy appearance and exhibit highly viscous, shear-thinning 

rheology.5,6 The basic units of the networks are highly swollen bilayers self-assembled from 

surfactant and fatty alcohol molecules with regular in-plane spacing, and inter-lamellar regions 

filled with water.7 The swelling of the lamellar stacks by water is caused by steric or electrostatic 

repulsion of the surfactant head groups which produces an osmotic pressure in the hydrophilic 

region of the lamellae.8 The bilayers in lamellar gel networks can form different phases depending 

on their composition and temperature, similar to other bilayer systems such as lipid membranes.9 

At low temperature, the bilayers form a stiff, gel phase known as the Lβ phase, where the C-C 

bonds in the hydrocarbon chains adopt all-trans conformations and the molecules are tightly 

packed in hexagonal order within each leaflet. Upon increase of temperature, gauche 

conformations take over and the bilayer melts into a more fluidic, liquid crystalline Lα phase with 

loosely packed hydrocarbon chains and shortened extension. Several other structures have been 

reported for the gel phase, such as an LβI phase with an interdigitated bilayer and an Lβ′ phase with 

molecules tilted with respect to the bilayer normal.10,11 In the interdigitated gel phase (LβI), the 
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hydrocarbon chains interpenetrate to maximize van der Waals interactions and reduce head group 

crowding at the expense of unfavorable exposure to the surrounding aqueous solution.12 

Despite the wide application of lamellar gel networks, their flow properties and 

microstructures and how these are controlled at the molecular level remain relatively mysterious. 

In particular, whether those bilayers are interdigitated or not, and what controls this property, is as 

yet not well understood. In addition to rheology characterization, small-angle X-ray scattering 

(SAXS) and X-ray diffraction have been used to investigate the structure of lamellar bilayers.13,14 

Other experimental approaches such as Fourier-transform infrared spectroscopy (FTIR), NMR and 

differential scanning calorimetry (DSC) have also been applied to study the phase transitions of 

other systems such as lipid bilayers.15 While these experimental studies have produced valuable 

insight into understanding bilayer structure, the majority of them yield only one-dimensional 

information mostly along the bilayer normal, namely inter-lamellar spacings and thickness of 

bilayers. In contrast, computer simulations have emerged as an attractive technique to obtain 

microscopic three-dimensional structural information of bilayers. The models employed in 

simulations range from fully atomistic models to coarse-grained bead-spring descriptions. With 

calibrated force-field parameters, molecular dynamics (MD) simulations can play an important 

role in investigating bilayer properties and their dependences on the composition and molecular 

structure of the constituents, and their molecular level interactions.9 

Although there are extensive MD simulation studies on lipid bilayers and surfactant 

micelles, there is limited information on mixed surfactant systems and on bilayer interdigitation, 

especially from all-atom simulations. Shigematsu et al. investigated stretched-induced 

interdigitation of a phospholipid/cholesterol bilayer with united-atom MD simulations and 

proposed a free energy model.16 Laner et al. used united-atom models to study methanol-induced 
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interdigitation of glycerol-monopalmitate lipid bilayers and found that while the simulation 

starting structure could affect the final structure formed, no direct transition from LβI to Lβ phase 

was observed.17,18 Kranenburg et al. also simulated alcohol-induced interdigitation of lipid bilayers 

facilitated by using more coarse-grained dissipative particle dynamics (DPD) simulation.19 With 

DPD simulation, Lu and Guo demonstrated the phase behavior of lipid bilayers including an 

interdigitated gel phase.20 In a recent study, Seo et al. revealed how interdigitated acyl chains 

modulated the partitioning of cholesterol in the opposing leaflet and affected the phase behavior 

of an asymmetric lipid membrane with coarse-grained MD simulation.21 For a mixture of cationic 

surfactant and fatty alcohol present in lamellar gel networks, Debnath et al. used united-atom 

simulations to investigate the effect of bilayer composition and water concentration on the phase 

transition on non-interdigitated and interdigitated bilayers in separate publications, leaving some 

confusion as to which one is the equilibrium structure.9,22 In addition, Leonforte et al. were able to 

simulate with an all-atom forcefield the gel-fluid bilayer transition of a similar surfactant/fatty 

alcohol mixture.23 Because of the limited time and length scales accessible with all-atom MD 

simulations, kinetic trapping is oftentimes an issue especially at low temperature, which prevents 

the formation of the equilibrium structure of these bilayer systems in the gel state. Thus, although 

insights are gained from simulations such as these, conclusive evidence determining whether 

interdigitation is thermodynamically favored or not for a given model forcefield, is still lacking.  

Comparing the free energies of the Lβ and LβI phases might determine which of them is 

the equilibrium state, but the lack of a smooth transition route between the two phases has 

prevented us, despite numerous efforts, from calculating the free energy difference with methods 

such as umbrella sampling, where the degree of interdigitation is the reaction coordinate. In this 

paper, we show that lateral pressure as a second parameter besides temperature allows the creation 
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of reversible pathways to connect Lβ and LβI phase. Based on this discovery, we propose a method 

to calculate the free energy cost of bilayer interdigitation using thermodynamic integration.  

 

2.2 Theory 

Let us first consider the bilayer system composed of fatty alcohol and cationic surfactant 

in the Lβ phase at room temperature and atmospheric pressure. As illustrated on the right side of 

Fig. 2-1, when the simulated Lβ phase (lower right corner) was gradually heated at constant 

pressure (1 bar), the bilayer turned into an Lα phase (upper right corner) at high temperature as 

expected. The bilayer in the fluidic Lα phase could be stretched by imposing a negative lateral 

pressure on the system, as shown on the upper half of Figure 1. With the bilayer in the stretched 

state with decreased thickness and increased apparent bilayer area, the spontaneous formation of 

an interdigitated bilayer in LβI phase occurred when the system was cooled back to room 

temperature while maintaining the negative lateral pressure, as shown by the two images on the 

left side of Fig. 2-1. Finally, changing the lateral pressure back to atmospheric pressure led to a 

bilayer at the same starting temperature and pressure as in the lower right-hand corner of Fig. 2-1, 

but in the LβI phase instead of the initial Lβ phase. The above transitions were found to be 

“reversible” in the sense that the states at either end of the transition could be recovered one from 

the other traversing the transition in either direction by varying the system temperature at fixed 

pressure or the lateral pressure at fixed temperature. This contrasts with the lack of a spontaneous, 

direct, transition between the Lβ and LβI phase, both of which remained stable during runs at 

atmospheric pressure and room temperature. We indicate this in Fig. 2-1 by an “X” over this 

transition, showing that both states are metastable at atmospheric conditions, although only one of 
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them is the thermodynamically stable state. However, it is theoretically possible to calculate the 

free energy change along the indirect pathways by thermodynamic integration. 

 

Figure 2-1. Snapshots of different bilayer phases upon changes of temperature or lateral pressure in the x 

and y directions. The pressure in the z direction perpendicular to the bilayer remains at atmospheric 

pressure. Water molecules are hidden. 

 

Here, we consider the Helmholtz free energy of F of the system, which is defined as the 

internal energy U plus the product of temperature T and entropy S. The change of internal energy 

dU equals the change of heat and work done and can be written as TdS – pdV for a reversible 

change. (Here we take the pressure to be isotropic for simplicity, but below we generalize to allow 

for anisotropic pressure, in which lateral pressure in the plane of the bilayer differs from transverse 

pressure perpendicular to it.) The change of free energy dF is equal to – SdT – pdV  in differential 

form. As the system volume changes reversibly with varying pressure in continuous small steps at 

constant temperature, the change of free energy ∆𝐹 can be calculated from the integral of – pdV 

as follows: 
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 𝐹 ≡ 𝑈 − 𝑇𝑆  (2.1) 

 𝑑𝑈 = 𝑇 𝑑𝑆 − 𝑝 𝑑𝑉 = 𝑑(𝑇𝑆) − 𝑆 𝑑𝑇 − 𝑝 𝑑𝑉  (2.2) 

 𝑑𝐹 = 𝑑𝑈 − 𝑑(𝑇𝑆) = −𝑆 𝑑𝑇 − 𝑝 𝑑𝑉  (2.3) 

 
∆𝐹 = − ∫ 𝑝 𝑑𝑉  𝑓𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑇 

 (2.4) 

On the other hand, the average internal energy U and the thermal average of a generalized 

force X corresponding to an external displacement variable x can be expressed in terms of the 

canonical partition function Z and 𝛽 =
1

𝑘𝑇
 to give the differential form of log Z. The Helmholtz 

free energy is also related to the canonical partition function as 𝐹 = −
log 𝑍

𝛽
 . As shown in the 

following derivation, the change of the ratio of free energy to temperature, ∆ (
𝐹

𝑇
), can be written 

as the integral of the internal energy U over the inverse of temperature 𝑑 (
1

𝑇
) plus the integral of a 

generalized force X divided by temperature T over the external variable dx. Statistical 

thermodynamics gives the following two identities: 

 
𝑈 ≡ < 𝐸 > = − 

𝜕 log 𝑍

𝜕𝛽
 

 (2.5) 

 
𝑋 =

1

𝛽
 
𝜕 log 𝑍

𝜕𝑥
 

 (2.6) 

where the derivative with respect to  𝛽 is taken at fixed x, and that with respect to x is at fixed 𝛽. 

All logarithms are natural logs. We can then obtain from these 

 𝑑(log 𝑍) =  − 𝑈 𝑑𝛽 +  𝛽𝑋 𝑑𝑥  (2.7) 

We also have the identity: 

 
𝐹 = −

log 𝑍

𝛽
 

 (2.8) 

which, when combined with the previous equation of 𝑑(log 𝑍), gives 
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 𝑑(𝐹𝛽) = 𝑑(− log 𝑍) =  𝑈 𝑑𝛽 − 𝛽𝑋 𝑑𝑥  (2.9) 

Using the definition of 𝛽 =
1

𝑘𝑇
 ,  

 
𝑑 (

𝐹

𝑇
) =  𝑈 𝑑 (

1

𝑇
) −  

𝑋

𝑇
 𝑑𝑥 

 (2.10) 

which leads to the desired result: 

 
∆ (

𝐹

𝑇
) =  ∫ 𝑈 𝑑 (

1

𝑇
) − ∫

𝑋

𝑇
 𝑑𝑥 

 (2.11) 

The generalized force X in each direction can be calculated from the anisotropic pressures 

time the area on each side of the simulation box while the displacement dx is just the change of 

simulation box dimensions. The total energy and temperature are also recorded during simulations. 

Therefore, the free energy change resulting from varying temperature at constant pressure can be 

evaluated as well. Based on the above thermodynamic principles, the free energy change can be 

calculated for two systems starting in same structure (Lα) at high temperature and atmospheric 

pressure after passing through different reversible pathways taking them into two different 

structures (Lβ and LβI) at the same low temperature and atmospheric pressure. As shown in Fig. 

2-2, since the starting states are exactly the same and the final states are also at the same 

temperature and pressure and the pathways are reversible, the difference in free energy change 

along the two pathways is equal to the free energy difference of their final states, which here are 

the interdigitated (LβI) and non- interdigitated bilayer (Lβ). 
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Figure 2-2. Two thermodynamic pathways from the same starting state: F1, to two different final states, 

namely, F2: the non-interdigitated bilayer formed via the red pathway, and F5: the interdigitated bilayer 

formed via the blue pathway. Both pathways are at 290 K and atmospheric pressure. 

 

The following four equations (Eqs. 2.12 - 2.15) are derived from the above scheme to relate 

the unknown free energies of five different states (F1 to F5) to quantities (C1, W2, C3, and W4) that 

can be calculated from simulation by thermodynamic integration. The anisotropic pressures are 

Px, Py, and Pz and Lx, Ly, and Lz are the simulation box dimensions. After rearrangement, the free 

energy difference between Lβ and LβI state can be expressed in terms of all known variables (Eq. 

2.16).     

𝐹2

𝑇𝐿
−

𝐹1

𝑇𝐻
=  ∆ (

𝐹

𝑇
) =  ∫ 𝑈 𝑑 (

1

𝑇
) − ∫

𝑃𝑥𝐿𝑥𝐿𝑦 𝑑𝐿𝑧 + 𝑃𝑦𝐿𝑥𝐿𝑧 𝑑𝐿𝑦 + 𝑃𝑧𝐿𝑥𝐿𝑦 𝑑𝐿𝑧

𝑇
= 𝐶12 

(2.12) 

𝐹3 − 𝐹1 = ∆𝐹 = − ∫ 𝑃 𝑑𝑉 = ∫ 𝑃𝑥𝐿𝑥𝐿𝑦 𝑑𝐿𝑧 + 𝑃𝑦𝐿𝑥𝐿𝑧 𝑑𝐿𝑦 + 𝑃𝑧𝐿𝑥𝐿𝑦 𝑑𝐿𝑧 = 𝑊13 
(2.13) 

𝐹4

𝑇𝐿
−

𝐹3

𝑇𝐻
=  ∆ (

𝐹

𝑇
) =  ∫ 𝑈 𝑑 (

1

𝑇
) − ∫

𝑃𝑥𝐿𝑥𝐿𝑦 𝑑𝐿𝑧 + 𝑃𝑦𝐿𝑥𝐿𝑧 𝑑𝐿𝑦 + 𝑃𝑧𝐿𝑥𝐿𝑦 𝑑𝐿𝑧

𝑇
= 𝐶34 

(2.14) 
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𝐹5 − 𝐹4 = ∆𝐹 = − ∫ 𝑃 𝑑𝑉 = ∫ 𝑃𝑥𝐿𝑥𝐿𝑦 𝑑𝐿𝑧 + 𝑃𝑦𝐿𝑥𝐿𝑧 𝑑𝐿𝑦 + 𝑃𝑧𝐿𝑥𝐿𝑦 𝑑𝐿𝑧 = 𝑊45 
(2.15) 

𝐹5 − 𝐹2 =  𝑊45 + 𝑇𝐿  [ 𝐶34 − 𝐶12 +
𝑊13

𝑇𝐻
 ] 

(2.16) 

 While Eqs. 2.12 - 2.16 apply for general displacements in three dimensions, we restrict our 

interest to lateral pressure change with semiisotropic pressure coupling in which dLx = dLy, Px = 

Py, and Pz stays at a constant of 1 bar. 

 

2.3 Molecular Dynamics Simulation Methods 

2.3.1 Bilayer composition and simulation details 

All-atom MD simulations were carried out for bilayers consisting of the cationic surfactant 

(CS) behentrimonium methylsulfate (BTMS) and the fatty alcohol (FA) stearyl alcohol (C18) as 

the fatty alcohol (FA) cosurfactant. The simulation system consisted of 46 BTMS, 154 stearyl 

alcohol to match the CS:FA molar ratio in the experimental sample for rheology characterization 

and 12000 water molecules. The simulation system has 77 wt% of water, which is reduced from 

the 93 wt% in the actual industrial application due to the limitation on system size, but the mixed 

surfactant bilayers are still sufficiently hydrated with large enough lamellar spacing that the water 

content is not expected to influence the phase transitions.9 The surfactant and fatty alcohol 

molecules were packed into the bilayer to create the initial configuration, and then equilibrated at 

290 K for at least 40 ns to obtain the gel state structure. The forcefield parameters were adopted 

from L-OPLS with the rigid SPC/E model for water.24-26 For NPT simulations, a time step of 1 fs 

was used. The temperatures of cationic surfactant, fatty alcohol and water were separately 

controlled by the velocity-rescale coupling method with a time constant of 0.1 ps.27 Pressure was 
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controlled by the Parrinello-Rahman semi-isotropic coupling method with a time constant of 2.0 

ps, which allows the lateral pressure in x and y direction and the pressure in z direction to be set 

differently.28 A Verlet neighbor-searching scheme was used and both Coulombic and van der 

Waals interactions were cut off at 1.2 nm. Long range electrostatic interactions were treated using 

the particle-mesh Ewald method with an interpolation order of 4 and 0.12 nm Fourier spacing.29 

Periodic boundary conditions were applied in all three directions. System energy, temperature and 

periodic box dimensions were saved every 10 ps, with results reported here being insensitive to 

this choice. All simulations were performed with GROMACS 2019.30, 31 

2.3.2 Variation of temperature and lateral pressure 

To control the phase transition, a linear temperature ramp from 290 K to 370 K was 

imposed with various heating/cooling rates ranging from 2.0 K/ns to 0.25 K/ns. The actual 

temperature fluctuated somewhat from this linear ramp on short time scales, so that the increase 

was not strictly monotonic. Therefore, the recorded temperatures and the corresponding total 

energies were reordered before integrating the total energy over the inverse of temperature. Since 

pressure could not be changed during a simulation run, separate simulation runs at different lateral 

pressures were performed to approximate a continuously changing pressure using linear 

interpolation. The lateral pressure was varied from 1 bar to -65 bar with an interval of 10 bar, each 

for 20 ns to allow the system to reach equilibrium, and a subsequent 20 ns of sampling to calculate 

average properties.  

2.3.3 Monitoring phase transitions 

To monitor structural change in the bilayer, the carbon-hydrogen order parameter of the 

alkyl chains in the molecules is computed for each carbon along the alkyl chain: 
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𝑆𝐶𝐷 =

1

2
|3 cos2 𝜃 − 1| 

 (2.17) 

where 𝜃 is the angle between the C-H bond vector and the bilayer normal. This order parameter is 

averaged over all the carbons of all alkyl chains and used to identify the phase transition of the 

bilayer, supported by snapshots from the simulation.  

 

 

2.4 Results and Discussion 

2.4.1 Phase transitions 

Bilayers with separate leaflets were built as the initial structure and assembled into a 

bilayer. When the system was equilibrated at 290 K and 1 bar, the bilayer formed a tilted Lβ phase 

shown in the lower right-hand corner of Figure 1 with the alkyl chains hexagonally packed in each 

leaflet shown in Fig. 2-3(a). As the temperature was increased, at above 355 K the bilayer melted 

as expected into an Lα phase with much lower order parameter shown in the upper right-hand 

corner of Fig. 2-1. The packing of alkyl chains in the leaflets also loses the hexagonal order as 

shown in Fig. 2-3(b). The melting temperature from the simulation is reasonably close to the values 

of around 340-350 K reported in previous simulations and differential calorimetry (DSC) 

experimental data of similar systems.9 The Lβ to Lα phase change is reversed upon cooling, 

although at a lower transition temperature due to hysteresis.  
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Figure 2-3. Packing of FA and CS in one leaflet of the bilayer in (a) 𝐿𝛽 phase (hexagonal order), and (b) 

𝐿𝛼 phase (disorder). 

 

To investigate the formation of the interdigitated LβI phase, a negative lateral pressure in 

the x and y directions was applied to stretch the Lα bilayer at 370 K into a thinner state with the 

two leaflets penetrating more into each other as shown in the upper half of Fig. 2-1. The average 

area per molecule in the leaflet increases by 76% from 0.307 nm2 to 0.540 nm2 at -65 bar in Fig. 

2-4. The order parameter SCD also further decreased from 0.15 of the unstretched state to 0.05 of 

the stretched state, which can be seen by comparing the endpoints on Figs. 2-6(a) and 2-6(b). The 

deformation of the bilayer was reversible when the lateral pressure was changed back to 1 bar. 

Successive cooling of the stretched Lα bilayer at negative lateral pressure could lead to the 

spontaneous formation of an ordered, interdigitated LβI phase as shown on the left side of Fig. 2-

1. Afterwards, heating the bilayer in the interdigitated LβI phase under negative lateral pressure 

could bring the bilayer back into the stretched Lα phase. However, a critical lateral pressure 

between -40 and -50 bar was required for sufficient deformation to induce enough interdigitation. 

Otherwise, a less stretched Lα bilayer would turn into the non-interdigitated Lβ phase upon cooling 
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as shown by the comparison in Fig. 2-10 in the Appendix. The surface tension on the bilayer caused 

by the stretching is also plotted in Fig. 2-5, which shows that the critical tension value required for 

the formation of the interdigitated bilayer is around 5 x 10-7 N/m. We note that an equivalent way 

of computing free energy is to control surface tension, rather than lateral pressure. While no pore 

formation was observed during the bilayer stretching presented in this work, the fluidic Lα bilayer 

could be prone to rupture if much higher tension is imposed.  

 

Figure 2-4. Change of average area per CS/FA molecules in each leaflet when the bilayer in the  𝐿𝛼 phase 

is stretched under different negative lateral pressures, in a sequence from right to left from 1 to -65 bar. 
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Figure 2-5. Dependence of surface tension on the bilayer to lateral pressure, varied from right to left from 

1 to -65 bar. 

 

2.4.2 Thermodynamic integration 

With the method proposed, we calculate C12 and C34 during the temperature change at each 

of the two fixed pressures and W13 and W45 during lateral pressure change at the two fixed 

temperatures, according to Eqs. 2.12 - 2.15. W13 and W45 are equal to the PV work done if the 

pressure change is carried out in small steps and the volume change is reversible. In practice, W13 

and W45 were approximated by numerical integration of the PV change and interpolation from a 

series of simulations at 370 K and 290 K with different lateral pressures. The bilayer in the Lα 

phase gradually expanded laterally in the x and y directions and shrank in the z direction when the 

lateral pressure changed from 1 bar to -65 bar with Pz fixed at 1 bar as shown in Fig. 2-16 in the 

Appendix. Since the absolute value of the lateral pressure was much larger than Pz and the system 

was expanding against a negative lateral pressure, the free energy increased during the bilayer 

stretching giving W13 = 3.45 kJ/mol, a positive value. In contrast, W45 corresponds to a lateral 
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pressure change from -65 bar back to 1 bar on the bilayer system in the rigid LβI phase with much 

less volume change, thus giving a negative and much smaller absolute free energy change, W45 = 

-0.40 kJ/mol. 

The calculation of C12 and C34 by numerical integration of the system energy over 

increments of inverse temperature is subjective to uncertainties due to hysteresis between cooling 

and heating. Hysteresis is revealed by a difference in the transition temperature between the high 

temperature Lα phase and either the Lβ or the LβI phase upon heating vs. cooling. To investigate 

the hysteresis effect, both the interdigitated and non-interdigitated systems were heated from 290 

K to 370 K and cooled from 370 K to 290 K at different rates of change of temperature. As shown 

in plots of the order parameter in Fig. 2-6, hysteresis is more significant for cooling especially for 

the interdigitated bilayer and decreases with slower heating or cooling rates. 

 

Figure 2-6. Hysteresis in change of average order parameter SCD (calculated from Eq. 2.17) of the fatty 

alcohol molecules during heating and cooling at two different rates for (a) transition of non-interdigitated 

bilayer system between 𝐿𝛼 and 𝐿𝛽 phases at atmospheric pressure, (b) transition of interdigitated bilayer 

system between stretched 𝐿𝛼 and 𝐿𝛽𝐼 phases at -65 bar lateral pressure. 
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In theory, hysteresis will be eliminated if the rate of temperature change is made infinitely 

small, but it remains finite with any finite simulation time. To extrapolate towards an infinitely 

slow rate, we plot in Fig. 2-7 C12 (corresponding to a phase transition in a non-interdigitated 

bilayer) and C34 (corresponding to a phase transition in an interdigitated bilayer under negative 

lateral pressure) calculated from simulations of heating or cooling at different rates. Ideally, the 

data points from heating and cooling simulations should converge when extrapolated to an 

infinitely slow rate of temperature change. For both systems, the data points from heating and 

cooling do approach each other as the rate of temperature change decreases, and those from heating 

are less sensitive to the change of heating rate and fit better to a linear extrapolation than those 

from cooling. This is not surprising, since melting is faster than crystallization and not as 

susceptible to defect formation. Therefore, data points from the heating simulation should be the 

more reliable data and were therefore used for our free energy calculations. The extrapolated 

values of the constants obtained from the four thermodynamic integrations shown in Fig. 2-2 are 

given in the row of values labeled “LβI vs Lβ” in Table 2-1.  

 

Figure 2-7. Effect of hysteresis on value of (a) C1 for non-interdigitated bilayer, and (b) C3 for interdigitated 

bilayer. 
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To investigate the potential influence of the lateral density distribution of the two 

components, bilayers with more homogenously dispersed cationic surfactant molecules were 

created as shown in Fig. 2-8(b). No significant difference was found in the phase transition 

temperature or in results from thermodynamic integration (Appendix Fig. 2-11). Since a perfectly 

“homogenous” bilayer almost never spontaneously forms by cooling of the Lα phase in the 

simulation, bilayers with randomly dispersed cationic surfactants were used in the simulations in 

the main text. In addition, a smaller simulation system with 36 molecules in each bilayer leaflet 

instead of the 100 of the original system with almost the same CS:FA ratio (8 CS and 28 FA) and 

water content was created to investigate the influence of system size. Heating simulations at 2.0 

K/ns and 0.5 K/ns were performed for both the interdigitated bilayer and the non-interdigitated 

bilayer. The values of C12 and C34 calculated from the smaller system are very close to the ones 

from the original system (Appendix Fig. 2-12), proving that the result is not affected by system 

size. The test with different system size also addresses the concern with non-zero off-diagonal 

pressure tensors, especially the xy stress distortions. At 290 K, the xy stress is around 2 bar for Lβ 

phase at 1 bar lateral pressure and 19 bar for LβI phase at -65 bar lateral pressure, which is caused 

by the box-induced distortion of the hexagonal phase, and this stress vanishes when the bilayer 

turns into an Lα phase at high temperature.  Since non-zero shear stresses will get smaller for 

bigger systems, the fact that both systems give similar results indicates that the bias in pressure 

does not change the main results of the paper. 
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Figure 2-8. Lateral distribution of FA and CS hexagonally packed in one leaflet of the bilayer in 𝐿𝛽 phase: 

(a) with random dispersion of CS, (b) with artificially created more homogenous dispersion of CS. CS 

molecules are highlighted with orange circles. 

 

Based on the proposed method, the free energy difference between LβI and Lβ phases at 

290 K, and atmospheric pressure, was calculated to be 2.4 kJ/mol of surfactant and fatty alcohol. 

The major source of error comes from the extrapolation of C12 and C34 from linear regression, 

where the 95% confidence interval produces an uncertainty of + 0.5 kJ/mol. The positive free 

energy difference indicates that the bilayer with an Lβ structure has the lower free energy and is 

more stable. The result agrees with the spontaneous formation of non-interdigitated bilayer 

observed in simulation.  

2.4.3 Verification with thermodynamic cycles 

To further verify the proposed method, two thermodynamic cycles were constructed, one 

for a non-interdigitated bilayer and the other for an interdigitated bilayer at different negative 

lateral pressures as illustrated in Fig. 2-9. In the previous case, a difference in free energy change 

resulted from the two pathways from the same starting state, since the pathways led to two different 
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final states, namely Lβ and LβI phases. In the two new cycles presented in Fig. 2-9, the same 

starting states transition to the same final states via two different pathways and therefore the 

theoretical difference between the two pathways of each system should be zero.  

 

Figure 2-9. Thermodynamic cycles for (a) non-interdigitated bilayer, and (b) interdigitated bilayer. Solid 

and hollow arrows are different thermodynamic pathways connecting the same starting and final states. 

 

The same method as used above was also used for free energy calculations in heating 

simulations, although the extrapolation of C34 was based on three different heating rates instead of 

four (Appendix Fig. 2-13). The two cycles in Figs. 2-9(a) and 2-9(b) converged with errors of 0.3 

and 0.4 kJ/mol respectively from Table 1, which is within the estimated systematic error. These 

simulations indicate that our method of computing free energy differences between namely LβI 

and Lβ phases using these thermodynamic cycles is valid and has error well below the calculated 

free energy difference. 
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Table 2-1. Calculated values for C12, W13, C34, and W45, each multiplied by temperature or temperature 

ratio used in calculating the free energy difference between the 𝐿𝛽𝐼 and 𝐿𝛽 phases and in the two 

constructed thermodynamic cycles. 

∆𝐹 = 𝑊45 + 𝑇𝐿  [ 𝐶34 − 𝐶12 +
𝑊13

𝑇𝐻
 ]        unit: kJ/mol 

System − 𝐶12 ∗ 𝑇𝐿 𝑊13 ∗ 𝑇𝐿/𝑇𝐻  𝐶34 ∗ 𝑇𝐿 𝑊45 ∆𝐹 

LβI vs Lβ 413.45 2.704 - 413.31 - 0.40 2.44 

Cycle (a) 413.45 0.203 - 413.96 - 0.029 - 0.34 

Cycle (b) 413.31 0.972 - 414.55 - 0.122 - 0.39 

 

2.4.4 Discussion 

The major contribution of the excess free energy difference between the LβI phase and the 

Lβ phase comes from the PV work (W13) during stretching of the bilayer in the Lα phase. This is 

because the free energy change from the Lα to Lβ phase and from the stretched Lα to LβI phase 

under negative lateral pressure almost cancel each other as shown in the first row of numerical 

values in Table 2-1. For the interdigitated bilayer to be the favored structure, the free energy of the 

LβI phase minus that of the Lβ phase should be negative. This would require a smaller positive PV 

work during stretching (W13) of the Lα phase and a larger free energy reduction upon turning the 

Lα phase into the LβI phase on cooling (C34). The contribution of the entropy to the free energy 

difference can also be determined. The difference of internal energy is readily found from the 

simulation to be 3.05 kJ/mol. Using ∆𝐹 =  ∆𝑈 −  𝑇∆𝑆, the entropy difference of the LβI phase 

over that of the Lβ phase is computed to be 2.2 J/(mol K) at 290 K. The higher entropy of the 

interdigitated bilayer might be explained by the various ways the molecules from each leaflet can 

interpenetrate into the other leaflet in the bilayer.  
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2.5 Conclusion and Future Directions 

Using MD simulations of bilayers of fatty alcohol and cationic surfactant, we induced the 

formation of an interdigitated LβI bilayer from a non-interdigitated Lβ phase, by 1) heating the Lβ 

phase into an Lα phase, then 2) stretching the Lα bilayer using negative lateral pressure to induce 

interdigitation, and then 3) cooling to a lower temperature at which the LβI phase formed. By 

thermodynamic integration, the free energy changes of each of these transformations were 

computed, although the third of these free energy changes were found to be more accurately 

determined by heating from the LβI phase rather than the reverse. Both interpolation and 

extrapolation to zero heating rates were used in the free energy calculations to approximate the 

true equilibrium properties and two additional thermodynamic cycles designed to produce zero net 

free energy change were constructed to provide negative control, thus verifying the method. The 

free energy of the LβI phase was found to be 2.4 + 0.5 kJ/mol higher than that of Lβ phase, which 

is consistent with the spontaneous formation of the Lβ phase under atmospheric pressure in 

simulations of cooling from the Lα phase. To further improve the method, performing long 

simulations at different temperatures and using interpolation in between could be an alternative 

way to obtain the energy-temperature curve for thermodynamic integration and could be compared 

with the current approach. Using a different forcefield may also provide a better result although 

the forcefield gives a phase transition temperature of around 350-355 K, which is only 5-10 K 

higher than the experimental one. It would also be worthwhile to apply our method to other bilayer 

systems, especially those that experimentally show interdigitation to gain a better understanding 

of the molecular requirements needed for interdigitation. We also note that there may be other 

solid-solid phase transitions in lamellar geometries for which lateral pressure might be used to 

determine relative phase stability. 
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2.6 Appendix 

Supporting information includes figures showing the non-interdigitated and the 

interdigitated bilayer formed upon cooling at different lateral pressures, a comparison of results 

from the main paper with those from a smaller system and from a system with “homogenously” 

dispersed surfactant with the original system, and the results of thermodynamic integration of two 

thermodynamic cycles. 

 

 

Figure 2-10. Snapshots of (a) non-interdigitated bilayer formed upon cooling at -40 bar lateral pressure, 

and (b) interdigitated bilayer formed upon cooling at -50 bar lateral pressure. 
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Figure 2-11. Comparison between systems with randomly dispersed CS and “homogeneously” dispersed 

CS at 2.0 K/ns heating rate for (a) C12 for the non-interdigitated bilayer, and (b) C34 for the interdigitated 

bilayer. 

 

 

Figure 2-12. Comparison between results from a smaller system and the original system at 2.0 and 0.5 K/ns 

heating rates for (a) C12 for the non-interdigitated bilayer, and (b) C34 for the interdigitated bilayer. 
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Figure 2-13. Extrapolation to calculate C34 for thermodynamic cycle between lateral pressures of (a) 1 bar 

and -20 bar for non-interdigitated bilayer, and (b) -65 bar and -80 bar for interdigitated bilayer. 

 

 

Figure 2-14. U vs (1/T) for heating non-interdigitated bilayer at 1 bar lateral pressure at 0.25 K/ns. 
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Figure 2-15. U vs (1/T) for heating interdigitated bilayer at -65 bar lateral pressure at 0.25 K/ns. 

 

  

Figure 2-16. Change of periodic box dimensions when the bilayer in the  𝐿𝛼 phase is stretched by changing 

lateral pressures from right to left from 1 to -65 bar at 370 K with Pz held at 1 bar. 
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Table 2-2. Calculated values for C12, W13, C34, and W45 used in calculating the free energy difference 

between the 𝐿𝛽𝐼 and 𝐿𝛽 phases and in the two constructed thermodynamic cycles. 

System 𝐶12 (kJ/mol K) 𝑊13 (kJ/mol)  𝐶34 (kJ/mol K) 𝑊45 (kJ/mol) 

LβI vs Lβ - 1.4257 3.45 - 1.4252 - 0.40 

Cycle (a) - 1.4257 0.26 - 1.4274 - 0.029 

Cycle (b) - 1.4252 1.24 - 1.4295 - 0.122 
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Chapter 3 Thixotropic Constitutive Modeling of Shear Banding by Boundary-Induced 

Modulus Gradient in Lamellar Gel Networks 

 

This Chapter is based on the previously published article listed below: 

Wang, F., & Larson, R. G. (2023). Thixotropic Constitutive Modeling of Shear Banding by 

Boundary-Induced Modulus Gradient in Lamellar Gel Networks. J. Rheol., 67, 35. 

 The experiment data referred in this Chapter is from a published article with permission.1 

 

3.1 Introduction 

Thixotropic fluids, characterized by a slow, time-dependent, at least partially reversible, 

reduction in viscosity during flow, often show a yield stress and at least some viscoelasticity.2,3 

Such fluids are very common, and include blood,4 paints,5 adhesives,6 concrete,7 personal care 

products,8,9 waxy crude oils,10 food materials,11-13 and weakly flocculated colloidal suspensions.14-

18 It is a challenging task to develop accurate constitutive equations to describe their complex 

rheology, but these are needed to model their behavior in processing flows, and in the hands of the 

consumer. Measuring and describing their rheological behavior accurately remains an outstanding 

challenge in the field of soft matter. 

While suspensions of weakly associating particles are the most commonly discussed class 

of thixotropic materials, an interesting and important additional class is that of aqueous surfactant 

emulsions known as “lamellar gel networks.” These usually contain an ionic surfactant mixed with 

fatty alcohol as co-surfactant and form emulsions in excess water that contain extended and highly 
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interconnected networks of bilayers which can withstand elastic deformation and have complex 

flow properties.19 These lamellar gels are prepared by mixing surfactant and fatty alcohols in the 

molten state with water at high temperature; upon cooling to room temperature, the mixture 

transforms locally into so-called L bilayers whose alkyl chains are in trans conformation and 

packed hexagonally in the plane of the lamellae.20 Macroscopically, the lamellar layers are 

randomly oriented and interconnected, resulting in a material with the properties of a gel with 

modulus of order 1000 Pa.1 As a result of the multiphase structure, these pseudo-ternary mixtures 

have an opaque creamy appearance and exhibit highly viscous, shear-thinning rheology.20 

Lamellar gels are widely used in pharmaceutical and cosmetic creams and lotions that frequently 

contain other essential additives such as salt and perfume. Recently, Datta et al. conducted a 

comprehensive rheological characterization of lamellar gel networks composed of 

behentrimonium methosulfate (BTMS), cetostearyl alcohol, and water, which is a typical 

formulation for hair conditioner products. As shown in Fig. 3-1, these materials exhibit a highly 

shear-thinning viscosity with unique hysteresis in up- and down-ramps of shear rate as the gel 

“remembers” the maximum shear it had experienced for around 12 hours before it heals and 

recovers its original viscosity.1 The hysteresis and the very slow recovery indicate level of internal 

structure that changes over time scales longer than that of the normal thixotropic response.  
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Figure 3-1. Effect of the highest shear rate, 𝛾̇ℎ𝑖𝑔ℎ𝑒𝑠𝑡, on hysteresis loops for an experimental lamellar gel 

sample (Reproduced from [1], with the permission of AIP Publishing). Note that each hysteresis loop is 

carried out on a separately loaded sample. 

 

Another major feature of these materials is the presence of flow inhomogeneities including 

fracture planes and shear bands revealed by particle image velocimetry (PIV). Under a constant 

shear rate, shear banding develops from an initially linear velocity profile shown in Fig. 3-2(a), 

which transitions into a plug flow with most of the shearing concentrated in a very thin boundary 

layer adjacent to each plate of the rheometer, as shown in Fig. 3-2(b). Other rheological 

characteristics include a “solid-like” weak power-law creep response up to a critical strain 

followed by a fluid-like response, a sluggish power-law stress decay after step-strain experiments, 

and high storage modulus relative to loss modulus over a wide range of frequencies in small 

amplitude oscillatory flow.1 The material shows a nearly elastic response to small deformations 

and thus has similarity to a “soft glassy” material.1 In addition, the rheology was found to be gap-

dependent, displaying some characteristics of solid-like friction.1 
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Figure 3-2. Velocity variation across the gap at different times after startup of steady shearing at (a) 0.001 

s−1, (b) 1 s−1 (Reproduced from [1], with the permission of AIP Publishing). Pixel 0 is at the position of the 

moving bottom plate of the rheometer and Pixel 642 is at the position of the stationary top plate with each 

pixel corresponding to an interval of 0.687 μm. 

 

Many theoretical efforts have been made in the field to predict the rheological behavior of 

thixotropic fluids and their shear banding phenomena.21-24 For example, structure kinetic models 

are a class of phenomenological based model developed to qualitatively capture the key 

rheological behaviors of such materials. In these minimal models, rheological parameters such as 

viscosity are taken to be functions of a structure parameter (usually represented by 𝜆) with unclear 

microstructural basis, but whose behavior under flow is taken to be governed by a 

phenomenological kinetic equation. This equation is in general composed of a break-

down/rejuvenation term caused by flow and a build-up/aging term describing restoration of 

structure towards its rest state. Coussat et al. proposed a rather simple model of this type to study 

the so-called “viscosity bifurcation” in thixotropic, yielding fluids.25 Their model was later 

modified by Jain et al. to analyze the transient dynamics in plane Couette flow including the effect 

of inertia during start-up shear.26 In the model of Wei et al., 𝜆 ranges between 0 and 1 and is 

decomposed into multiple modes to predict the stretched exponential response in transient shear 
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flows.27,28 In all such models, the equation for 𝜆 is supplemented with an expression for the stress 

in terms of 𝜆 and other parameters, one version of which includes isotropic kinematic hardening. 

Besides the phenomenological structural kinetic models, there are also ones developed through 

more physically based argument, an example of which is the well-known soft glassy rheology 

(SGR) model.29,30 

Lamellar gel networks, while displaying some properties consistent with these existing 

models in terms of thixotropy and shear banding, also exhibit distinctive behavior, especially the 

plug-like flow velocity profile (in Fig. 3-2(b)), which is not well described by a conventional shear 

banding model. In lamellar gels, the fast-shearing zone near the stationary plate (which is on the 

right side of Figs. 3-2(a) & 3-2(b)) is more prominent than that along the moving boundary, which 

is the opposite of the behavior found of a structural kinetic model with inertia.26 Moreover, the 

stress that accompanies shear banding increases with apparent shear rate (see Fig. 3-1), while the 

fast-shearing band remains thin. This too is contrary to the predictions from several structural 

kinetic models and the experimental observations of other typical thixotropic fluids for which the 

width of the flowing band increases across the entire gap with increasing imposed shear rate 

according to a lever rule, until a critical shear rate is reached above which the flow becomes 

homogeneous.31,32 These crucial differences from the predictions of established models necessitate 

the development of a new 1D constitutive model with new features that enable it to describe both 

the apparent rheology and the velocity profile of lamellar gel networks properly. Such a model 

could ultimately help improve the modeling of the processing, storage, and consumer experience 

of commercial products. To serve this practical function, however, the model needs to be kept 

simple and general while capturing the distinguishing properties of these complex materials at 

least qualitatively.   
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3.2 Proposed Model 

3.2.1 Strain-dependent elasticity 

At the microstructural level, a lamellar gel is a mesoscopically disordered L smectic (i.e., 

lamellar) phase, with randomized lamellar orientation at the mesoscopic and macroscopic levels. 

The L structure implies that the lamellar layers are soft solids, able to be bent and fused together, 

forming a network typically containing around 90% water.  The closest microstructural physical 

theories for such a material are liquid crystalline theories for nematics and smectics, such as those 

covered in a monograph by de Gennes.33 While the physics of well-ordered nematic and smectic 

liquid crystals are quite well understood, the rheological behavior of orientationally disordered 

liquid crystals is much more challenging to describe.  The only complete nonlinear rheological 

model for such a material is that of Doi and Larson for mesoscopically disordered nematics.34 This 

theory, while successful in describing steady and start-up shearing flows of polymeric nematics, 

is not directly applicable to lamellar gels, because the latter are smectic, rather than nematic, and, 

unlike L smectics for which the lamellar sheets are disordered and two-dimensionally fluid, L 

sheets are two dimensional solids. Thus, prior to yield, a lamellar gel is a soft solid whose 

microstructure consists of anisotropic regions describable by an orientation-dependent modulus, 

which in general is a fourth rank tensor. Although the lamellar in-plane isotropy reduces the 

number of independent components of this tensor, the absence of any measurements of orientation-

dependent modulus on monodomains of a lamellar gel render a description at this level of detail 

useless for present purposes. 

While the above situation suggests pursuit of a purely phenomenological approach, the 

rheological behavior of lamellar gels, reviewed briefly above, is sufficiently different from other 

classes of thixotropic or plastic materials (owing to the anisotropic microstructure), that a novel 
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phenomenological model is required for an even qualitative description.  To ascertain the form the 

phenomenology should take, we can appeal to general principles of anisotropic material response 

to deformation. In particular, an axisymmetric object, whether rod-like or plate-like, whose axis 

of symmetry is defined by a director (i.e., a unit vector) n, responds to flow according to the 

following equation35 

 𝜕

𝜕𝑡
𝒏 = 𝒏 ∙ 𝝎 − 𝜆𝑇(𝒏 ∙ 𝑫 − 𝑫 : 𝒏𝒏𝒏) 

 (3.1) 

Here 𝜆𝑇 is the tumbling alignment parameter (not the thixotropic structure parameter 𝜆), which 

depends on the anisotropy of the rotating object, with a value of 𝜆𝑇 ≈ 1  for a long rod-like object, 

and 𝜆𝑇 ≈ −1  for a thin disk-like one. For the former, the director is driven by flow to align parallel 

to the flow, while for the latter, it is driven to align perpendicular to it, so that the long dimensions 

of the disk align parallel to flow. The response to flow of a disordered material consisting of 

regions with different orientations of n is modified somewhat from the above equation by the 

gradient elastic forces that arise from spatial variations in n. For smectics, these include elastic 

forces that strongly resist flow-induced changes in lamellar thickness.  Despite these limitations, 

as a starting point, we can follow Larson and Doi34 in accounting for spatial variations in n through 

invocation of a “mesoscopic averaging” procedure, which averages the outer product of n times 

Eq. 3.1 (i.e., Larson, Eq. 11-29 35) over regions large compared to the lamellar thickness but small 

compared to the macroscopic sample size.  This produces the equation below, drawn from Larson, 

Eq. 11-33 35. 

 𝑑

𝑑𝑡
𝑺̅ = 𝝎𝑇 ∙ 𝑺̅ + 𝑺̅ ∙ 𝝎 + 𝜆𝑇 (

2

3
𝑫 + 𝑫 ∙ 𝑺̅ + 𝑺̅ ∙ 𝑫 − 2𝑺̅: 𝑫 (𝑺̅ +

1

3
𝜹)) − 𝜀𝜌𝑣𝑺̅ 

 (3.2) 

where the “mesoscopic” order parameter  𝑺̅ is defined as  
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𝑺̅ ≡ ⟨[𝒏𝒏]⟩ −

1

3
𝜹 

 (3.3) 

with  the unit tensor.  In the above,  is the vorticity tensor and D the rate of strain tensor, these 

being the anti-symmetric and symmetric parts of the velocity gradient tensor, respectively. The 

initial value of the tensor 𝑺̅ is normally taken to be zero in all components, reflecting the lack of 

order at the mesoscale, as it is assumed that the orientation, while locally anisotropic, averages to 

zero over a larger domain. The final term in Eq. 3.2 is due to the elastic director gradient terms 

alluded to above, which drives the mesoscopic orientation tensor 𝑺̅ back towards zero over a time 

scale set by the magnitude of the phenomenological coefficient , which has units of diffusivity. 

The term  𝜌𝑣 is the density of defect lines in the sample, with units of inverse length squared. The 

square root of its inverse is the characteristic “domain size” or the length scale over which the 

orientation is relatively uniform. The form and magnitude of this term in an L phase is likely to 

be drastically different from that in a nematic. The change of 𝑺̅ over strain can be readily derived 

from Eq. 3.2 by taking the tumbling parameter 𝜆𝑇 to be −1 for lamellae similar to oblate particles 

and imposing a simple shear flow where ∇𝒗21 = 𝛾̇ and the other elements of the velocity gradient 

tensor are zero. As shown in Fig. 3-3, the component 𝑺̅22 , representing the degree of alignment of 

the lamellae parallel to the walls of the shearing device, increases rapidly initially and then 

gradually approaches a steady state while 𝑺̅12 first reaches a peak negative (because the tumbling 

parameter 𝜆𝑇 < 0) at a strain around 1.7 and approaches zero eventually as the orientation 

distribution in other directions vanishes, corresponding to complete alignment of the normal vector 

in the shear gradient direction. 
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Figure 3-3. 𝑺̅22 and 𝑺̅12 of the mesoscopic order parameter vs strain under simple shear flow. 

 

Despite the differences between a nematic and an L phase, both phases have a director 

specifying the orientation, and so we can use Eq. 3.2 as a means to gain some insight into the 

response of the lamellar gel to deformation. First, we note that the loading of the gel into a 

rheometer imposes local orientation on what would otherwise be a mesoscopically unoriented gel. 

The imposed orientation is both due to the flatness of the boundaries, which should tend to align 

lamellar layers that resist sharp bends in their orientation, and due to any squeezing flow needed 

to set and fill the rheometer gap.  The orientation due to the boundary condition should produce 

aligned layers, with alignment decaying over a distance set, in part, by the bending modulus of the 

lamellae. For fluid-like L smectics, this modulus is of order 10-7 dyn,35 and is likely much larger 

for much stiffer L smectics. While our lack of knowledge limits our ability to estimate the range 

over which wall-induced order might penetrate, we can say a bit more about the alignment induced 

by the squeezing flow used to set the rheometer gap, since we can use the analytical formula for 

squeezing flow between parallel disks derived for Newtonian fluids.36 While non-Newtonian 
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effects will modify this flow, the overall features are largely set by kinematics, which tells us that 

the highest strains and strain rates in this flow are the shearing strains in the r-z plane, as these 

strains and strain rates are proportional to r/H, where r is the radial position  and H the gap, while 

the other, extensional, strains, have prefactors proportional to z/H, with z the position in the gap. 

Thus, for typical thin rheometer gaps relative to plate radius, the majority of the sample, which is 

near the edge, where 𝑟/𝐻 ≫ 1, is therefore much more highly strained in shear than in extension. 

Hence, starting from a mesoscopically isotropic state in which 𝑺̅ = 𝟎, and allowing a small 

deformation to be imposed, the leading order term on the right side of Eq. 3.2 leads to  

 𝑑

𝑑𝑡
𝑺̅ ≈

2

3
𝜆𝑇𝑫 

 (3.4) 

From this, and the solution to the squeezing-flow problem in Denn,36 we readily find that the shear 

component of the order parameter is given by 

 
𝑺̅𝑟𝑧 ≈

𝜆𝑇𝑟

𝐻0
𝜖 (1 −

2𝑧

𝐻
) 

 (3.5) 

where 𝐻0 is the initial gap thickness, H is the final thickness and z the position in the gap, while 

here  𝜖 ≡
𝐻0

𝐻
− 1 is the strain imposed by the squeezing, where we have taken 𝜖 ≪ 1.  The 

imposition of this strain field will orient the material in the gap and change its effective modulus 

in response to subsequent shearing flow. Since the modulus for an anisotropic material is a fourth 

rank tensor, the best we can do to estimate its effect is to assume that the effective modulus to 

subsequent shearing flow is reduced by the alignment produced by squeezing flow.  By symmetry, 

we can therefore suggest that the effective modulus 𝐺0 after squeezing flow, but before shearing 

flow, is related to the modulus 𝐺0 of a mesoscopically isotropic (unaligned) material at small 𝜖 by  

 
𝐺0(𝑧, 𝜖) ≈  𝐺0 (1 − 𝑺̅𝑟𝑧

2
)   ≈ 𝐺0 [1 − 𝛼 (

𝜆𝑇𝑟

𝐻0
)

2

𝜖2 (1 −
2𝑧

𝐻
)

2

] 
 (3.6) 
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where 𝛼 is a parameter that reflects the dependence of modulus on local alignment, and we take 

𝜖 ≪ 1. Notice that the greatest reduction in modulus, according to Eq. 3.6, is expected to be at the 

surfaces of the rheometer plates (𝑧 = 0, 𝐻) where (1 −
2𝑧

𝐻
)

2

 is largest. 

In addition to this aligning effect of the squeezing flow, the modulus near the wall should 

presumably be reduced even further owing to the wall-alignment mentioned above. If we neglect 

the wall effect, we can use Eq. 3.6 as an initial modulus distribution, which is further affected as 

shear, now in the z- plane in the rheometer, is imposed.  Following analogous reasoning, we 

expect the effective shear modulus to continue to decrease in response to the aligning effect of 

shear, following a formula such as  

𝐺(𝑧, 𝑡)  ≈ 𝐺0(𝑧)[1 − 𝛽𝛾2(𝑧, 𝑡)] for 𝐺(𝑧, 𝑡) > 𝐺𝑚𝑖𝑛; otherwise 𝐺(𝑧, 𝑡) = 𝐺𝑚𝑖𝑛  (3.7) 

where 𝛾(𝑧, 𝑡) is the time and z-dependent strain and we have taken 𝐺0(𝑧) = 𝐺0(𝑧, 𝑅), where R is 

radius at the edge of the sample. Since the quadratic dependence on strain in Eq. 3.7 is limited to 

small strains, to crudely extend it to large strains, we limit the decrease of modulus to some 

minimum value.  

All of the above is obviously very crude, and here we use it only to justify the assumption 

that the effective modulus of the initial sample is likely to be nonuniform and lower near the 

boundaries than in the sample bulk, and that shearing is likely to further enhance this modulus 

reduction, as the lower initial modulus near the wall directs subsequent shear to concentrate there, 

leading to still lower modulus at the wall as shearing continues. Fortunately, in what follows we 

will show that the modulus gradient near the wall dominates the predicted behavior, and that the 

functional form and depth into the sample to which the modulus reduction penetrates does not 

strongly influence the results. We also note that the non-uniform reduction in modulus produced 

by the flow can be reversed over time in the absence of flow by allowing for a non-zero final term 
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in Eq. 3.2, corresponding to a non-zero phenomenological coefficient  (which is not the strain 𝜖).  

This recovery of isotropy provides a mechanism to gradually recover the undeformed properties 

of the material, except for the wall-induced orientation, which presumably remains indefinitely. 

Finally, we note that Eq. 3.2 could be solved numerically without approximation for both 

squeezing flow and subsequent shearing flow, producing a time and spatially dependent 

mesoscopic orientation tensor 𝑺̅ . To use this, however, to predict rheology, would require 

constitutive relationships between this tensor and the anisotropic elastic modulus, the yielding 

condition, and the viscous stresses. While developing such constitutive relationships is too big a 

task to undertake here, a possible future direction is to link Eq. 3.2 with a three-dimensional 

thixotropic elasto-visco-plastic (TEVP) model such as the Frederick-Armstrong kinematic-

hardening model. 37,38 This would likely require introduction of tensor relationships linking 𝑺̅ to 

back-strain and/or back-stress in such models, possibly involving fourth rank tensors.  

3.2.2 A structural kinetics model for thixotropic fluid 

The above presentation tells us that a lamellar gel should have an elastic modulus, can yield 

under flow, with slow recovery thereafter, and that the modulus should vary across the gap, with 

lowest values at the walls. A useable model therefore needs to include these features, and so we 

here develop a phenomenological structural kinetics, or thixotropic, model which can describe 

gradual reduction in shear viscosity and yield stress upon prolonged shearing, and delayed 

recovery of viscosity after step-down of shear rate. Here we consider a common, basic kinetic 

equation (Eq. 3.8) for the thixotropic structure parameter 𝜆 (which is not the alignment parameter 

given earlier). In Eq. 3.8, the break-down term caused by flow is proportional to the shear rate with 

a prefactor 𝐾 and the build-up term for restoration of structure is controlled by another constant 

𝑘𝜆. The range of 𝜆 is set to lie between 0 and 1, representing, respectively, a completely broken-
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down state and a fully structured one.27 To study the shear-banding phenomenon, the velocity 

profile in 1D shear flow between two parallel plates located at boundaries set at y = 0 and y = H 

is examined. Thus, 𝜆 and the flow parameters 𝛾̇ and 𝜎 become dependent on both time t and 

position within the gap y. A diffusive term 𝐷
𝜕2𝜆

𝜕𝑦2 for 𝜆 is introduced, making the model non-local, 

which is necessary to avoid ill-defined sensitivity to starting fluctuations and to smooth the 

velocity profile across adjacent bands.39 

 𝑑𝜆

𝑑𝑡
= −𝐾|𝛾̇|𝜆 + 𝑘𝜆(1 − 𝜆) + 𝐷

𝜕2𝜆

𝜕𝑦2
 

 (3.8) 

The rheological equation (Eq. 3.9) also has a rather simple form in that the shear stress is equal to 

a viscous term plus the yield stress and both the overall viscosity and yield stress have linear 

dependencies on 𝜆. 𝜂𝑛 is the non-thixotropic viscosity characterizing the fully broken-down 

structure at the high-shear limit. 𝜂𝑡ℎ𝑖 is the thixotropic viscosity and 𝜎𝑦0 is the thixotropic yield 

stress. The presence of the sign function in front of the yield stress terms arises because the model 

is a scalar model, and the sign of the yield stress depends on the shear direction. 

 𝜎 = 𝛾̇(𝜂𝑡ℎ𝑖𝜆 + 𝜂𝑛) + 𝑠𝑖𝑔𝑛(𝛾̇) ∗ 𝜎𝑦0𝜆  (3.9) 

These two equations above constitute perhaps the simplest constitutive model for scalar shear 

stress of a thixotropic yield stress fluid in simple shear flow. Given the initial condition of 𝜆 across 

the gap, the time evolution of 𝜆 and the unknown local shear rates and shear stresses from the 

rheological equation can be solved under either an imposed shear rate or a shear stress with two 

assumptions. The first one is that the shear stress is the same at all positions (i.e., there are no 

inertial effects) and the second is that the average of the local shear rate over the gap should equal 

the apparent shear rate. 
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To incorporate strain-dependent elasticity into the model, we here replace the simple yield 

stress with a yield strain term which also helps to address the issue of transient local flow reversal. 

In a transient startup flow at constant overall shear rate, when yielding occurs in the developing 

banded region, flow in this region speeds up, and the unyielded zone begins to flow backwards 

briefly to keep overall shear rate constant at the imposed value.  In the absence of a yield strain, 

the reversing flow instantly reverses the stress in the unyielded region because the yield stress term 

and the viscous contribution both take the same sign as the flow rate, which is impossible when 

stress is required to be uniform, since it is positive in the yielded zone. We believe that this 

represents a pathology caused by the complete lack of elasticity in the constitutive model, so that 

even a very brief reversal of shear rate immediately changes the sign of the stress. The presence of 

a small elastic yield strain allows the unyielded zone to keep a positive stress even as it briefly 

flows backward while unloading elastic strain, making a solution for a time-dependent 

development of banded flow possible.  Inclusion of inertia is another possible “fix” for the brief 

reversing flow that occurs during onset of banding. But without either elasticity or inertia, there is 

no time-dependent solution possible from Eqs. 3.8 & 3.9 for the one-dimensional flow of a band-

forming material. The introduction of elasticity can be either physically motivated (based on the 

soft-solid behavior of an L phase), or considered as a regularization, with elasticity taken to be so 

small that its only significant effect is to avoid a sudden change in sign of stress. As an example 

of physically motivated elasticity, Wei et al. used a kinematic hardening term in their predictions 

of shear banding dynamics.39 To keep our model simple and avoid including features that are either 

nonexistent or not of prime importance in lamellar gel networks, we instead simply replace the 

yield stress term in Eq. 3.9 with an elastic-plastic form (Eqs. 3.10 - 3.12). 

 𝜎 = 𝛾̇(𝜂𝑡ℎ𝑖𝜆 + 𝜂𝑛) + 𝐺𝛾𝑒  (3.10) 
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{

𝜕𝛾𝑒

𝜕𝑡
= 𝛾̇   when |𝛾𝑒| < 𝛾𝑐(pre − yield)        

|𝛾𝑒| = 𝛾𝑐   where 𝛾𝑐 = 𝛾𝑐0𝜆 (post − yield) 

  

 (3.11) 

 

(3.12) 

As proposed by Mujumdar et al. for a colloidal network, 𝛾𝑒 is the elastic strain associated with the 

flowing structure and physically represents the elastic deformation of flocs that form when the 

network microstructure of the fluid breaks down.40 𝛾𝑒 grows when the flow is in positive direction 

until it reaches a maximum value 𝛾𝑒,𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 noted as 𝛾𝑐 which depends on 𝜆 (Eqs. 3.11 & 3.12). 

Note that in the post-yield region, the elasto-plastic stress model reduces to the simple yield stress 

model in unidirectional flow in zero dimensions. This is because 𝐺𝛾𝑒 = 𝐺𝛾𝑐0𝜆 in the elasto-plastic 

model is mathematically the same as 𝑠𝑖𝑔𝑛(𝛾̇) ∗ 𝜎𝑦0𝜆 in the simple plasticity model since they both 

are a constant (either 𝐺𝛾𝑐0 or 𝜎𝑦0) multiplied by 𝜆. The difference is that in 1D flow, since both 

the viscous stress and the yield stress take the same sign as the flow direction, the overall stress in 

the simple plasticity model immediately turns negative when any local flow is reversed. In 

contrast, in the elastic-plastic model, the elastic stress is proportional to elastic strain, whose sign 

remains unchanged for a least a small period of time following local flow reversal. This allows the 

overall stress to remain positive until the strain disappears even when some local flow rates turn 

temporarily negative during the development of bands. For lamellar gel networks, the value of 𝛾𝑐0 

could be relatively large. The lamellar bilayers can withstand elastic deformation until the 

accumulated strain significantly changes their orientation whereon they tend to slide upon each 

other. As shown in Fig. 3-3 and discussed earlier, full alignment is not achieved until large strain, 

and at some point, yielding occurs which cuts off the reversibility of the elastic strain, therefore an 

estimate of 𝛾𝑐0 = 4 was used for the proposed model. 
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3.2.3 Introduction of modulus gradient near the boundary 

To induce the fast-shearing thin boundary layer observed in the PIV experiment, some form 

of perturbation near the boundary either as the initial condition or imposed permanently is required 

in the constitutive model. While a stress-dependent slip term might seem like an obvious choice, 

this does not produce the experimentally observed gap dependence of the apparent shear rate at 

constant stress. Another choice would be using an initial condition in which 𝜆 = 1 defines the 

unsheared state everywhere in the gap except at a “weak point” at one boundary (i.e., 𝜆 < 1 at 𝑦 =

𝐻) to represent some slight apparent slip at this boundary in a rheometer. At low shear rate, this 

slight weakening of the material at the boundary is greatly intensified as overall strain increases. 

This eventually produces a highly non-homogenous shear-rate profile containing a thin layer over 

which shear rate changes drastically, while the rest of the fluid is left nearly non-flowing with 

negligible shear rate, which is similar to what is seen in the experiment. However, for this model, 

when the apparent shear rate increases, the local shear rate of the fast-shearing band stays the same, 

while its thickness increases, and the steady state shear stress remains unchanged until the shear 

rate is high enough that the band fills the entire gap, which is very different than the behavior of 

lamellar gels explained earlier. Beyond this shear rate, the flow becomes homogenous, and the 

stress starts to increase again, once the apparent shear rate has exceeded that of the fast-shearing 

band. This behavior represents typical shear banding behavior common, for example, in solutions 

of worm-like micelles,41 but fundamentally different from that in lamellar gel networks, where that 

the fast-shearing band remains a thin boundary layer while the stress keeps increasing (albeit sub-

linearly) with increasing shear rate, rather than reaching a plateau. The banding behavior of the 

lamellar gel network therefore is well-described neither by a convention shear-banding model, nor 

by a stress-dependent slip coefficient. 
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Hence, we propose to use a weaker modulus 𝐺 instead of a weaker 𝜆 near the boundary, to 

induce band formation, which is inspired by the anisotropy of microstructure of lamellar gels 

caused by sample loading and rheometer geometry, as discussed in Section 3.2.1 above. Similar 

to the structural parameter 𝜆 which determines the viscosity and maximum elastic strain, the 

modulus G also represents the strength of our material, especially when it is closer to being an 

elastic solid than to a liquid in the unsheared state. While we have outlined a potential 

microstructurally based approach of doing mesoscopic average over the lamellar anisotropy in 

section 3.2.1, we did not derive from this a governing equation for a spatial and time dependent 𝐺 

which can self-adjust over time and different flow conditions. Nevertheless, to see if a non-uniform 

modulus might help explain the unusual rheological behavior of lamellar gels, as a first step, we 

here explore the effects of a simple fixed non-uniform modulus profile with a near-boundary layer 

gradient to allow a smooth transition of G from a wall-influenced value to that of the bulk. As this 

is a crude approximation, and the exact shape of the fixed profile should vary under shear anyway, 

we resort to a simple linear or piecewise linear modulus profile.  An example of a linear profile is 

an increase from 0.002% to 100% of the bulk value 𝐺0 over a distance from 0% to 20% of the gap 

width as shown in Fig. 3-4. However, to control the near-wall gradient independently without 

affecting the boundary layer thickness, we use a segmented linear profile as the standard case with 

smaller gradient near the wall (accounting for a quarter of the wall gradient zone, or 5% of the 

total gap thickness) also shown in Fig. 3-4, which gives us better agreement with the creep test 

under small stress in the experiment. The influence of the shape of the profile and of the minimum 

value of 𝐺 at the boundary will be discussed later. Exponential and logarithmic profiles were also 

considered but found to yield results controlled by the slope of the profile at the wall and so results 
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for these profiles are not shown. We note that both boundaries of the shearing geometry should 

apply a similar gradient in G, but for simplicity we here introduce this profile onto one wall only. 

 

Figure 3-4. Different linear and segmented linear profiles of modulus G across the gap with smallest value 

equal to 0.002% of the bulk modulus G0 at near one wall. 

 

3.2.4 Model parameterization 

Besides the profile of the modulus near the boundary, there are six model parameters to be 

specified including 𝐾, 𝑘𝜆, 𝐷, 𝜂𝑡ℎ𝑖 , 𝜂𝑛, 𝐺0 and 𝛾𝑐0. We set 𝐺0 = 500 Pa taken from the instantaneous 

modulus measured in experiment and 𝛾𝑐0 = 4 explained in section 3.2.2. The viscosities cannot 

be easily derived from experiment due to the huge difference between local shear rates and 

apparent shear rates caused by extreme shear banding. They are therefore tuned together with the 

time constants which control how 𝜆 changes with shear rate so that the constant-stress (creep) 

response is roughly similar to that seen in the experiments. After a preliminary study, we set 𝜂𝑡ℎ𝑖 =

80 Pa ∙ s, 𝜂𝑛 = 0.2 Pa ∙ s, 𝐾 = 0.2, 𝑘𝜆 = 0.01 s−1 and 𝐷 = 10−11 m2/s and retain these values 
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for all the predictions shown here. In the experiments, gaps of 0.1 to 1.0 mm in plate-plate 

instruments were used for some measurements, while other data were obtained in 25 mm diameter 

cone-plate fixtures with 2º cone angle, producing a gap at the sample edge of 0.44 mm.  Our 

simulations are carried out in a plane Couette geometry with uniform gap, and we set the gap to H 

= 1 mm in most cases, for simplicity.  Because of the qualitative character of our modeling, we 

feel that additional efforts to match conditions and parameters of our predictions with experiments 

in more detail than this would be premature.   

 

3.3 Method 

During each time step, MATLAB was used to solve for the time evolution of the local 

variables 𝜆𝑦 and 𝛾𝑒,𝑦 first and then 𝜎𝑦 and 𝛾̇𝑦, after which the time step is advanced. When shear 

stress is imposed, it is the same everywhere, and the local shear rate at each position in the gap can 

be readily solved for. When the apparent shear rate is imposed, both the local shear rate and 

uniform shear stress are unknown and must be solved from a system of linear equations using 

matrices. The time step was chosen to be 0.002 s which is sufficiently small for the results to 

converge. The 1D grid is constructed with tiles of two different sizes such that 90% of the gap is 

made up of tiles of 0.5% of the overall gap width H and the remaining 10% of the gap nearest the 

boundary is better resolved by discretizing at 0.05% intervals of the gap H. For higher spatial 

resolution, the time step needs to be made even smaller due to the diffusion term in Eq. 3.8, 

requiring much longer computation time for minimal gain. A brief discussion on grid resolution 

and convergence of the solution is covered later. 
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3.4 Results 

Here we present a through comparison of the results from the proposed constitutive model 

with the various experimental rheological characterizations published in previous work.1 We start 

with the creep and recovery test during which a constant stress is imposed for a long period of time 

and then removed. The experimental results, shown in Fig. 3-5(a), show a jump in initial strain 

upon application of stress that is roughly proportional to the imposed stress. For relatively small 

stress, the experimental material shows a “quasi-solid” creep response that follows a weak power-

law time-dependence (with exponent 0.25) and partial recovery of strain upon stress removal. In 

response to a larger imposed stress, the material exhibits an apparent “yielding” behavior in that 

after a brief period of weak power-law creep, it abruptly accelerates to a much faster flow 

following a much steeper power-law (with exponent 1.35) at long times. The results from the 

constitutive model qualitatively predict the observed creep under small stress and the subsequent 

partial recovery upon stress removal, as well as the yielding behavior under a larger stress. The 

exponent of the power-law time-dependency under small stress or short times (0.25) is comparable 

to the observed value, while the value at high stress or long times (1.16) is somewhat smaller than 

the observed value (1.35). Depending on the choice of model parameters and the gradient profile 

near the boundary, the shape of the curves and the exact values of the exponents change, as 

discussed later, but continue to agree qualitatively with the experiment. 
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Figure 3-5. Creep in response to stress applied for 1000 s and recovery measured over the next 1000 s from 

(a) experiment (Reproduced from [1], with the permission of AIP Publishing), and (b) constitutive model. 

 

The time evolution of the velocity profile across the gap from the constitutive model also 

agrees qualitatively with the experiment, presenting strong evidence for the validity of the model. 

As shown in Fig. 3-6, shear banding occurs almost immediately after the impose of stress, and 

shear rates in the slow-shearing band slow down with time as indicated by the change of slope in 

the velocity profile, although this happens over a faster time scale in the simulation than in the 

experiment, while the faster-shearing band near the boundary becomes thinner over time (as shown 

by the tilt in the dashed lines in Fig. 3-5 that mark the boundary between fast and slow bands). 
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Figure 3-6. Velocity profiles at different times during creep after the imposition of a constant shear stress 

of 5 Pa from (a) experiment (Reproduced from [1], with the permission of AIP Publishing, each pixel 

corresponding to an interval of 0.687 μm), and (b) the constitutive model, note that V is plotted against (1-

y/H) to match the experiment set up in PIV. The dashed lines show the transition between the “slow” and 

“fast” bands. 

 

Next, under an imposed overall constant shear rate, in the experiment, the shear stress 

decreases over a long period of time as shown in the first 500 s of Fig. 3-7(a). Following a step-

down in the shear rate, the sample shows a sudden drop in the stress followed by a more gradual 

increase in the stress and then a slow decrease over longer period of time toward a plateau value. 

The sudden drop followed by a more gradual increase in stress is the normal response of a 

thixotropic, nearly inelastic fluid, and that feature is captured by the constitutive model shown in 

Fig. 3-7(b).  Missing from the model prediction, however, is the gradual decrease in stress at long 

times after the step-down, as well as the long-time decay of stress before the step-down, as the 

stress drops quickly followed by a slight rebound to steady state before the shear-rate step-down. 

This is expected as our model lacks the additional more complex long-time dynamics of the actual 

material. This could be addressed by including multiple modes of 𝜆 decaying over different time 
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scales, as described in earlier work,23 a complication we avoided in this first modeling attempt, in 

order to maintain the simplicity of the model. 

 

Figure 3-7. Step down shear tests with a sudden drop of shear rate at t = 500 s from (a) experiment 

(Reproduced from [1], with the permission of AIP Publishing), and (b) the constitutive model. 

 

In addition, we find that the velocity profile under constant shear rate from the PIV 

experiment is well predicted by the model. For a small shear rate of 0.001 s-1, the experimental 

results in Fig. 3-2(a) show that shear banding slowly develops over time from an initially linear 

velocity profile. For higher shear rates of 0.01 s-1, or above, the transition into the plug flow 

happens almost immediately, so that the bulk of the material behaves like a solid slab moving with 

a speed somewhat less than that of the rotating plate of the rheometer while the fast shearing occurs 

in thin boundary layers adjacent to the plates, mostly at the stationary plate as shown in Fig. 3-

2(b). All these phenomena are captured by the constitutive model in the results in Fig. 3-8. While 

the fast-shearing banding for lamellar gel is more prominent near the stationary boundary modeled 

by the introduction of the weak modulus layer, the experiment also shows a smaller degree of slip 

at the moving boundary. The different behaviors at the two boundaries are not necessarily caused 

by the motion of one boundary while the other is stationary, but could instead be the result of 
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geometric differences between the cone and plate surfaces, differences in their surface friction, or 

a gravitational effect. To resolve the source of the asymmetry thus will require additional PIV 

experiments.1 In addition, the model reveals that for the shear of 1.0 s-1 in Fig. 3-8(b) there is an 

overshoot of velocity near the upper moving plate, which means that the shear rate in the slower 

shearing band turns slightly negative due to elasticity, before quickly declining to zero as the band 

becomes a plug flow. In the experiments, the velocity on the wall side of boundary layer becomes 

momentarily larger than the plug flow velocity of the bulk due to elastic recoil, as can be seen in 

Fig. 3-2(b) at t = 30 s and PIV data at other shear rates,1 although noise and limited resolution of 

PIV prevent us from drawing a definite conclusion. 

 

Figure 3-8. Velocity profiles at different times during start-up of constant shear rate predicted by the 

constitutive model: (a) 𝛾̇ = 0.001 𝑠−1, and (b) 𝛾̇ = 1.0 𝑠−1. 

 

In the experiments, subjecting the sample to a high shear induces microstructural changes 

leading to reduced viscosity as demonstrated by the hysteresis loops seen upon initially increasing 

and then decreasing the shear rate in shear-rate ramps in Fig. 3-1. In Fig. 3-9(a), an immediate 

repetition of the shear hysteresis test shows essentially no hysteresis and gives a stress vs shear 

rate curve that is almost identical to that for the first decreasing shear-rate ramp in Fig. 3-1. 
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However, as described in ref. [1], given sufficient rest time for about 12 hours, the microstructure 

is partially recovered and hysteresis is again observed, indicating a very slow mode of recovery. 

Since we make no effort to include such a “slow mode” of structure recovery, our model with a 

fixed modulus profile is unable to capture the hysteresis seen in the experiments, and we aim only 

at describing the flow curve after the first pre-shear and before recovery by the “slow mode.” 

However, we will discuss later how the hysteresis and the very slow structure recovery in the 

experiment could be the result of a modulus change near the boundary. Within the restriction in 

this section, the predictions in Fig. 3-9(b) agree reasonably with the measurements in Fig. 3-8(a), 

including the roughly two-orders of magnitude increase in stress over a five-order-of-magnitude 

increase in shear rate.   

 

Figure 3-9. (a) Shear stress response to increasing and decreasing shear rate ramps in experiment 

(Reproduced from [1], with the permission of AIP Publishing), and (b) steady-state shear stress versus 

imposed constant shear rate. 

 

After a step-strain, the shape of the model prediction of modulus decay in Fig. 3-10(b) after 

10 s qualitatively agrees with the simple power-law response seen in the experiment results in Fig. 

3-10(a). Despite the difference in exponent and modulus value, the model still successfully predicts 

the strain softening at strains of 5% and higher, and the prolonged relaxation over several orders 
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of magnitude of time. Further improvement may require more parameter tuning and a distribution 

of thixotropic time scales, since we already noted that there are some very long-time scales missing 

from our model, that are responsible for the hysteresis in the shear up and down ramps. Attempting 

to include such a distribution is worth considering, but would complicate the model, and also invite 

the kind of “data fitting” that we think is not warranted at this stage.  

 

Figure 3-10. Response of the relaxation modulus, G(t), to varying imposed step strains, γ. (a) from 

experiment (Reproduced from [1], with the permission of AIP Publishing), and (b) from the constitutive 

model. 

 

In an oscillatory shear amplitude sweep, the model (Fig. 3-11(c)) predicts a linear region 

for small strain followed by a plunge in the storage modulus which drops below the loss modulus 

for large strain, which is similar to experimental results (Fig. 3-11(a)), although the critical strain 

at which the collapse of stress occurs is a factor of five lower than in the experiment. In the 

frequency sweep test, the storage modulus is found to be higher than the loss modulus until 

reaching a frequency over 5 rad/s, so it deviates from the experimental results as seen by comparing 

Figs. 3-11(b) and 3-11(d). This is not surprising, since the model has only a single thixotropic time 

scale, and frequency-dependent moduli are especially sensitive to the distribution of time scales in 
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the material. An analogous situation is the common use of a single-mode nonlinear model of 

viscoelasticity to model a polymer solution: the start-up of shear can often be qualitatively 

predicted, but oscillatory shearing measurements of G’ and G’’ disagree drastically with such a 

simple model, as is so well known that comparisons of one-mode models with G’ and G’’ data are 

often simply avoided. Despite this obvious limitation of our model having only a single mode, we 

study the oscillatory flow here because the G’ and G’’ response of our model shows a complex 

frequency dependence, rather than just simple Maxwellian behavior typical of single-mode 

models. Again, a distribution of thixotropic time scales could be used to improve the prediction 

but is unwarranted at the present stage of the model development.   

 

Figure 3-11. Results of oscillatory shear tests: (a) amplitude sweep at 1 rad/s from experiment, (b) 

frequency sweep at 1% strain from experiment (Reproduced from [1], with the permission of AIP 

Publishing), (c) amplitude sweep at 1 rad/s from the constitutive model, and (d) frequency sweep at 1% 

strain from the constitutive model. 
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A peculiar feature of these gels is the lack of correspondence between step-shear and 

oscillatory shear results, even when both are carried out at strains small enough to be in the “linear” 

regime, defined by an insensitivity of time- or frequency-dependent modulus to the strain 

amplitude. In the experimental results in Figs. 3-10(a) and 3-11(a), the linear region is reached at 

strains of 1% or less, yet it is clear from Figs. 3-10(a) and 3-11(b) that the time and frequency 

dependencies of the moduli within this linear regime are not related to each other by the Fourier 

transformation expected for linear rheological functions. This can be seen by observing the three-

decade power law in G(t) in Fig. 3-10(a), from 1 to 1000 s, which is not mirrored in a similar 

power law at frequencies 0.001 to 1 s-1 in Fig. 3-11(b). Whatever “power-law” may exist in Fig. 

3-11(b) has an exponent much smaller than 0.25, and no power-law can describe the behavior at 

frequencies near 0.001 s-1. This failure to reach a true linear viscoelastic regime is also seen in the 

model predictions in Figs. 3-10(b) and 3-11(d), and can be attributed to the banded structure 

present in both experiments and simulations. While a “linear” response is evident at low strains in 

oscillatory shearing in both experiments, Fig. 3-11(a), and the model, Fig. 3-11(c), the response is 

not truly linear viscoelastic in the conventional sense, and the behavior near the wall is highly non-

linear, despite the superficial linearity of the oscillatory response. In fact, the response to a 

sinusoidal strain history is not sinusoidal even in the “linear” small-strain regime; the values of G’ 

and G’’ are obtained from the stress amplitude and phase angle using convolution time integrals 

of stress and strain waveforms in both experiment and simulation. The key to this failure of normal 

rules for “linear viscoelasticity” is the inhomogeneous strain field, with the inhomogeneity 

depending on the time- or frequency-dependence of the flow. Thus, there is linearity separately 

for small step strains and for small oscillatory strains, indicating that in each of these the time- and 

position-dependent strain distributions within the sample are proportional to overall strain 
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magnitude, at small strains. However, step shear and oscillatory shearing evidently have different 

time- and spatial distributions of strain within the sample. Thus, their responses are not related to 

each other by the usual linear viscoelastic transformations. This is not surprising, since the 

relationship between G(t) and G*() in the linear regime is based on a uniform strain within the 

material. The situation is somewhat analogous to measuring torque response for a simple 

viscoelastic material in a cone-and-plate versus a plate-and-plate device in the linear limit. The 

torques differ because the stress in the plate-plate device is not uniform, even though the overall 

torque is linear in the strain amplitude. A conversion of the response in one geometry to that in the 

other has to integrate over the nonuniform stress in the plate-plate measurement. The strain 

nonuniformity in the lamellar gel is vastly more complex than in the plate-plate geometry; strain 

varies along the gap and not simply along the radius, and is evidently dependent on frequency and 

time, so a simple conversion from frequency to time domain is not possible. Thus, our model helps 

to resolve this puzzling “linear,” yet nonlinear, feature of the rheology, and is an interesting case 

in which the usual rheological tests of “linearity” fail completely. 

In the experiments, the material exhibits an intermediate response between rheological and 

“tribological” in that the stress differs when the gap is changed, with either the shear rate or the 

plate velocity kept constant with changing gap.1 For example, under a constant shear rate, the 

experimental stress increases with increasing gap (and therefore with increasing plate velocity), as 

shown in Fig. 3-12(a). In the model, the weaker modulus profile is introduced at one wall of the 

geometry, and its width is taken to be independent of the gap width. Thus, for wider gaps, the 

modulus gradient extends over a smaller part of the gap. For the standard case we considered, the 

modulus varies from the bulk value over 20% of the gap, but this percentage decreases when the 

gap becomes larger. From simulations, we obtain in Fig. 3-12(b) a similar dependence on gap as 
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seen in the experiments in Fig. 3-12(a), except for the initial rapid rise of stress which is absent in 

the experiment likely because of lack of rheometer time resolution at short times. The small bumps 

for case of the highest gap thickness of 5 mm are caused by the shrinkage of the fast-shearing 

banding with reduced resolution as the low-modulus layer is reduced to only 4% of the gap width, 

causing the transition to be a bit unsmooth. The simulations also largely lack the long-time slow 

decay seen in the experiments, again likely because of the lack of a structural “slow mode” in the 

simulations. 

 

Figure 3-12. Shear stress curves for different gaps at constant shear rate of 10 s-1: (a) from experiment 

(Reproduced from [1], with the permission of AIP Publishing), and (b) from the constitutive model. 

 

In summary, the proposed thixotropic constitutive model with a linear modulus gradient 

near the boundary captures qualitatively a surprising number of the rheological properties observed 

in the experiments as well as the time evolution of the velocity profiles across the gap. There are 

discrepancies in the magnitude of stress and in the time scales for rheological changes compared 

in some tests, which could likely be improved by a more extensive parameter optimization, but 

our goal here is not to fit the model exactly with the experiment material. Our constitutive model 

is too simple and crude to make quantitatively realistic predictions, or for them to be meaningful 
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if they were achieved.  Improved agreement, if needed for modeling flows of a particular gel, could 

be produced empirically by using multiple thixotropic time scales. A more rigorous approach 

would require a more microscopic model of the lamellar structure of the gel, and the effect of the 

hard boundaries on this structure.  Nevertheless, we believe that we have demonstrated that the 

introduction of a modulus gradient near the boundary is a key element in describing the unique 

properties of lamellar gel networks. 

 

3.5 Discussion 

Among the variety of rheological tests, we focus our discussion here on the response to 

imposition of a constant shear stress, which is imposed across the entire gap even in banded flow, 

and therefore is in some sense the “simplest” test. Given the importance of the modulus gradient 

to the rheological properties predicted by our model, and the arbitrariness of our choice of a 

segmented linear near-wall modulus profile, we examined the sensitivity to this profile of the 

model predictions. The details are given in the Appendix, and it was found that the modulus 

gradient within the vicinity of the wall determines the exponent of the approximate power-law 

time dependence of the strain on time while the overall thickness of the weak modulus layer has 

little effect as shown in Fig. 3-15 in the Appendix, because both the bulk and the portions of the 

modulus-gradient region farthest from the wall quickly stop flowing and most flow is concentrated 

in a boundary layer that is initially less than 5% of the gap width and shrinks further with time. 

The minimum modulus at the wall is also important that its product with the elastic strain limit 𝛾𝑐 

needs to be sufficiently small compared to the imposed stress to trigger continuous creep and 

partial, rather than complete, recovery; see Fig. 3-16 in the Appendix. 
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If we further investigate the behavior close to the boundary for the standard case under a 

moderate stress of 5 Pa shown in Fig. 3-13, we see that initially the elastic strain 𝛾𝑒 accumulates 

rapidly within 0.1% of the boundary where the shearing is concentrated (as shown by blue, red, 

and yellow lines in Fig. 3-13(a)). At the same time, the local value of 𝜆 decreases to 0.81 in Fig. 

3-13(c) due to shear which therefore reduces the threshold 𝛾𝑐 = 𝛾𝑐0𝜆 from 4 to around 3.25. Here, 

all the strain build-up is elastic (i.e., reversible) and is directly governed by the local shear rate. 

Once 𝛾𝑐 for yield near the boundary is reached at around t = 40 s, while the total strain keeps 

increasing for y within 0.1% H as shown (by the blue, red, and yellow lines) in Fig. 3-13(b), the 

elastic strain build-up in Fig. 3-13(a) significantly slows down and levels off eventually. This is 

because the additional elastic strain increase is now controlled by the gradual rebound of the 

threshold 𝛾𝑐 from 3.25 to a new threshold of around 3.7 due to the slight recovery in 𝜆 near the 

wall to around 0.92 in Fig. 3-13(c) as the shearing slows down (again shown by blue, red, and 

yellow lines) in Fig. 3-13(d). In comparison, 𝛾𝑒 away from the boundary (cyan and green curves 

in Fig. 3-13(a)) stops increasing at a value below 𝛾𝑐 because the local shear rate approaches zero 

(shown by cyan and green curves in Fig. 3-13(d)). Thus, the fast-shearing region near the wall 

thins with time, as can be inferred from Fig. 3-13(d) where the stoppage of local shear rate occurs 

at progressively later times at points closer to the wall from y = 2% H to y = 0.5% H and causes 

the local elastic strain at these points levels off in Fig. 3-13(a). Eventually, the thinning of the fast-

shearing band ceases, as the local shearing continues for points close to the wall (blue, red, and 

yellow lines) in Fig. 3-13(d). As a result, the fast-shearing band is concentrated in a very thin layer, 

whose ultimate thickness according to Fig. 3-13(d) is between 0.1% and 0.5% H, and by further 

examination is found to be around 0.4% H. Within this thin zone, the strain continues increasing 

with time, but its elastic portion has reached its threshold (blue, red, and yellow curves in Figs. 3-
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13(a) and 3-13(b)). This progressive concentration of shearing within an ever-thinner zone is an 

important characteristic of the lamellar gel that we both observed experimentally and captured 

within our model. 

 

Figure 3-13. Time and local variation of (a) elastic strain 𝛾𝑒, (b) total strain 𝛾, (c) 𝜆, and (d) shear rates 

during creep with constant stress of 5 Pa imposed for 1000 s and thereafter removed. 

 

The modulus profile near the boundary also influences the recovery in Fig. 3-13 by 

controlling how much local elastic strain has accumulated at each position, which depends on 

position except for the upper three lines in Fig. 3-13(a). Even very close to the wall, where the 

accumulated strain is insensitive to position (as shown by the upper three lines in Fig. 3-13(a), the 
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modulus is position-dependent, and this controls how fast the subsequent the recovery occurs. The 

change of total strain in Fig. 3-13(b) also shows that most of the shearing occurs at the boundary, 

which has the lowest modulus and any strain beyond the elastic strain limit becomes unrecoverable 

after stress removal. 

It should be noted that most of the shearing occurs within a few tiles of the 1D grid right 

at the boundary, which brings into doubt whether the system is sufficiently resolved spatially. In 

fact, Fig. 3-14(a) shows that in creep under a stress of 10 Pa, the upturn in strain after the power-

law time region can be pushed to later times if a smaller tile size is used. Initially, we attributed 

this sensitivity to the finite resolution of the method and assumed that it would disappear when the 

tiles become infinitely small. In this case, the hypothesis could not be verified due to the limitation 

on time steps from the diffusion term in the model, since a smaller time step is required for a 

smaller tile size. However, we found previously that at small stress, by using a constant 𝜆 = 1 and 

dropping the diffusion term to access much smaller tile size without reducing the time step, the 

curves converge onto one with the upturn remaining. Hence, this upturn is indeed a feature of the 

model rather than an artifact of inadequate spatial resolution. Such an upturn was also actually 

observed in the experiment after a very long time as shown in Fig. 3-14(b). When the boundary 

layer is spatially resolved, its thickness depends on the modulus profile near the wall. As the 

modulus increases from the minimal value as one moves further away from the wall, the shearing 

stops once 𝐺 ∙ 𝛾𝑐 ≥ 𝜎 and that is where the boundary layer ends. 
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Figure 3-14. (a) Predicted creep response under stress of 10 Pa with decreasing tile size near the boundary 

from both the standard constitutive model, and (b) Experimental creep data showing upturn at very long 

times (Reproduced from [1], with the permission of AIP Publishing). 

 

Finally, we return to the constant-shear-rate test and examine the potential of our model to 

be able to predict hysteresis as seen in the experiment. While the non-uniform modulus profile we 

used is fixed, in reality it is more likely to further evolve under imposed shear. It is a reasonable 

assumption that the weak modulus layer near the boundary will be further weakened under 

increasing shear especially since the shearing is concentrated in the boundary layer, and the 

structural rebuild corresponding to modulus recovery with reducing shear rate occurs at a slower 

time scale than the thixotropic viscosity. As a result, the modulus near the boundary will be 

weakened during the shear-rate ramp-up scan but likely recovers too slowly during the shear-rate 

ramp-down scan to avoid hysteresis. Therefore, in Fig. 3-17 in the Appendix, we plot an additional 

curve derived by using a “stronger” modulus boundary layer with larger Gmin at the boundary 

meant to represent the material before it has experienced very high shear rates during the ramp-up 

scan. Significant hysteresis can be observed at low shear rates, which qualitatively resembles the 

experimental results in Fig. 3-1. By adding thixotropic time scales to our model, we could capture 
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such behavior less artificially, but as noted before, attempting to make the model more 

comprehensive is premature, in our view. 

Our model thus seems to be a promising starting point towards explaining and modeling 

the flow and rheology of lamellar gel networks summarized in Table 3-1, and represents a new 

category of constitutive equations, one in which, along with 1) a yield stress, 2) thixotropy, and 3) 

elasticity, also contains 4) a modulus gradient. The most unsatisfying part of the model is the ad 

hoc imposition of a modulus gradient, rather than allowing one to emerge from the model itself.  

Thus, a more satisfying model would include the non-local physics of spatial variations in 

modulus, resulting from the underlying structure, the boundary condition against the solid, and the 

flow induced by rheometer loading and subsequent shear.  We note here that we have not 

accounted for any effect of shear on the modulus, and simply assumed that only the flow produced 

by loading into the rheometer can have any effect on the modulus. Obviously, this is a serious 

limitation of the model. The more physical model presented in Section 3.2.1 provides a starting 

point towards a more realistic model. 

 

Table 3-1. Dynamic rheological signatures of lamellar gels and their manifestations (or lack thereof) in the 

proposed model. 

Behavior of lamellar gel networks Model prediction 

1.  Shear thinning with increasing shear rate  See Fig. 3-9(b) (apparent shear stress increases less than a 

factor of 102 when shear rate increases by 105) 

2. Thixotropy See Fig. 3-7(b) for quick stress rebound after shear step-down  

3. Gradual decrease of viscosity over very 

long time under constant shear rate 

Not captured by the current model as the stress quickly reaches 

steady state in Figs. 3-7(b) and 3-12(b) (could be addressed by 

introducing multiple modes of 𝜆 or stretched exponential) 

4. Pronounced hysteresis in up- and down- 

ramps of shear rate 

Not captured by the current model (could be addressed if 

modulus variation under shear is allowed as discussed)  

5. Shear banding develops into plug-like 

flow with very thin fast-shearing band 

under constant shear rate 

See Figs. 3-8(a) and 3-8(b) 
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6. Weak power law creep under small stress 

and partial strain recovery upon stress 

removal 

See blue curve in Fig. 3-5(b) 

7. Creep followed by yielding above See yellow curve in Fig. 3-5(b) 

8. Slow power-law stress relaxation after 

step strain 

See Fig. 3-10(b) with a nearly linear viscoelastic regime up to 

1% strain, similar to the experiment 

9. Linear regime up to a critical strain 

beyond which G’ drops below G’’ in 

amplitude sweep of oscillatory shear test 

See comparison of Figs. 3-11(a) and 3-11(c) 

10. G’ is much higher than G’’ in frequency 

sweep of oscillatory shear test 

Only true in a small range of frequency in Fig. 3-11(d), 

presumably due to the limitation of simple one-mode model 

11. Gap-dependent behavior  See comparison in Fig. 3-12 where larger gap leads to higher 

stress under the same shear rate 

 

3.6 Conclusion 

In summary, we have proposed a constitutive model that successfully predicts the shear 

banding phenomenon in lamellar gel networks during creep and shear flow by imposing a 

boundary-induced modulus gradient. The model also captures some important features of the 

material, such as a thixotropic shear-thinning behavior, creep under constant shear stress and 

partial recovery of strain upon stress removal, the drop of storage modulus below loss modulus at 

large amplitude in oscillatory tests, and the gap-dependent rheology. The creep behavior is 

sensitive mostly to the modulus magnitude and its gradient nearest the boundary, which controls 

the thin boundary layer where most of the shearing is concentrated. We also show as a proof of 

concept that hysteresis can be predicted if the non-uniform modulus profile is allowed to vary 

under shear instead of being fixed. The physical origin of the boundary-induced modulus gradient 

could be related to the lamellar microstructure, which likely aligns preferentially parallel to the 

wall, near the wall, producing a low modulus there, and becomes disorganized further from the 

wall, resulting in a much higher modulus in the bulk. We discussed how a more rigorous, 

microstructurally based approach might be taken to derive the variation of the modulus profile by 
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doing a mesoscopic average over the lamellar anisotropy. Improvements in the model will likely 

also require addition of multiple thixotropic time scales to account for multiple time and spatial 

scales of the structures likely present in this very complex material. Such improvements could also 

help address the long-time decay in shear stress and hysteresis which are currently missing from 

the model predictions. 

 

3.7 Appendix 

Supplemental information includes figures showing the detailed results from varying the 

weak modulus layer profile and minimum modulus at the boundary referred in the discussion 

section. 

We compared the results from two other modulus profiles to results obtained from our 

standard case, which is the segmented profile shown in Fig. 3-4 (orange). The first alternative we 

checked is just the simple linear profile (blue) where the overall thickness of the near-wall zone is 

the same but has a larger near-wall gradient. In the second, the segmented linear profile is similar 

to the one we used before, but the overall thickness is reduced by steepening the gradient outside 

of the zone closest to the wall, also shown in Fig. 3-4 (yellow). In the first case, by increasing the 

near-wall gradient and thus increasing the average near-wall modulus, the extent of creep 

decreases so that the power-law exponent of the time-dependence under small stress is lower and 

yielding under large stress is suppressed as shown by comparing Fig. 3-15(a) and 3-5(b). On the 

other hand, if the overall thickness of the weak modulus layer decreases to 10% instead of 20% of 

the total gap while the near-wall gradient remains the same, there is no significant change in 

response under both small and large stress, as is observed by comparing Fig. 3-15(b) and 3-5(b).  
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Figure 3-15. Creep, recovery and yielding behavior under a constant stress imposed for 1000 s and 

thereafter removed for a modulus profile with (a) increased near-wall gradient as depicted by the blue 

dotted linear profile in Figure 4, and (b) reduced overall thickness of reduced-modulus layer, relative to 

the standard case, as depicted by the yellow long-dash profile in Fig. 3-4. 

 

Because of this sensitivity to the modulus nearest to the wall, the minimal modulus at the 

boundary strongly affects both the creep and recovery behavior. Fig. 3-16 presents the results for 

the simple linear modulus profile extending over 20% of the gap H but with different minimum 

values at the boundary. A minimum 𝐺 of 1 Pa, equal to 0.2% of 𝐺0 in the bulk, is high enough to 

support the imposed stress without exceeding the elastic strain limit 𝛾𝑐, and so the flow eventually 

stops, and the strain is completely recovered after the stress is removed as shown in Fig. 3-16. 

Therefore, to trigger continuous creep and obtain non-recoverable creep, the product of the 

minimum modulus and the elastic strain limit 𝛾𝑐  needs to be sufficiently small compared to the 

imposed stress. 
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Figure 3-16. Creep, recovery and yielding behavior with constant stress of 0.25 Pa imposed for 1000 s and 

removed afterwards for different values of the minimum modulus G at the boundary. 

 

Here, we demonstrate the potential of our model to be able to predict hysteresis as seen in 

the constant-shear-rate experiment. Although the non-uniform modulus profile we used is fixed, 

in reality the weak modulus layer near the boundary will be further weakened during the shear-

rate ramp-up scan especially since the shearing is concentrated in the boundary layer, and the 

structural rebuild corresponding to modulus recovery with reducing shear rate occurs at a much 

slower time scale than the thixotropic viscosity, leading to hysteresis during the shear-rate ramp-

down scan. The exact evolution in modulus profile will be very complex, likely involves reduction 

of both the minimum value at the boundary and the near-wall gradient, as well as a potential 

expansion of the weak modulus layer (thickness increase) into the bulk, which can only be derived 

from the more physical model presented in Section 3.2.1. Therefore, we just used larger Gmin at 

the boundary as a proof of concept to represent a simple case of a “stronger” modulus boundary 
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layer. In Fig. 3-17, an additional curve was derived by using the “stronger” modulus boundary 

layer meant to represent the material before it has experienced very high shear rates during the 

ramp-up scan. Significant hysteresis can be observed at low shear rates, which qualitatively 

resembles the experimental results in Fig. 3-1.  

 

Figure 3-17. Stress vs shear rate curve with two different minimum moduli in the weak-modulus layer. 
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Chapter 4 Coarse-grained Modeling of Pharmaceutical Cocrystal Growth from Melt with 

Iterative Boltzmann Inversion  

 

This Chapter is based on an EFRI project funded by NSF and has not been submitted for 

publication yet. We are grateful for advice from Taraknath Mandal in the work presented in this 

chapter. 

 

4.1 Introduction 

The crystallization of organic molecules is of great importance in various applications, 

particularly in the pharmaceutical industry as it plays a crucial role in the synthesis process of 

active pharmaceutical ingredients (APIs) as well as their in vivo release mechanism. 

Unfortunately, many APIs have poor solubility and slow dissolution kinetics, leading to reduced 

bioavailability, which makes them unsuitable as drug candidates. To address this issue, co-

crystallization has emerged as an effective crystal engineering tool for modifying the crystal 

structure and properties to solve drug formulation and manufacturing problems without changing 

the molecular structure of APIs.1  

Pharmaceutical cocrystals are solids of neutral crystalline single phase composed of API 

and another pharmaceutically acceptable conformer other than solvate or simple salts, generally in 

a stoichiometric ratio. Although various methods for cocrystal formation have been reported, such 

as solvent evaporation, solution crystallization, slurry conversion, and melt crystallization, little 

consistency has been found in the application of different preparation methods.1 Recently, our 
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collaborators have developed a novel gas-assisted desublimation process that produces single 

crystal and cocrystal of APIs with reduced particle size.2 The solvent-free process has the potential 

to enable high-throughput, continuous manufacturing, and personalized dosage simultaneously. 

To further develop these new drug processing methods and enhance the bioavailability of APIs, a 

better understanding of the nature of co-crystallization of organic molecules and polymorph 

selection is necessary and of great interest to the pharmaceutical industry. 

While experimental investigations can provide a phenomenological understanding of 

crystallization, the detailed nucleation and growth mechanism at the atomistic level is challenging 

to study using experiments alone. However, modern molecular simulation approaches have 

become increasingly useful in studying crystal growth.3 The main challenge with molecular 

simulations is that nucleation and crystal growth are generally rare events that require very long 

timescales beyond the range accessible with ordinary atomistic simulations. To overcome this 

problem, rare-event sampling methods such as umbrella sampling,4 metadynamics,5 and forward 

flux sampling6 have been developed as useful techniques to investigate crystallization 

mechanisms. The principle of these constrained simulation methods is to apply a biased potential 

to the system to either drive it along a predetermined reaction coordinate of appropriate collective 

variables or to prevent it from repeating previously explored trajectories and force it to explore 

higher energy states to overcome the kinetic barriers.7 Therefore, the efficacy of these methods 

heavily relies on the accuracy of the choice of collective variables, which should properly describe 

the occurrence of the rare events of interest. 

To date, advanced simulation methods have mostly been used to investigate the 

crystallization of relatively simple organic molecules. For example, the nucleation and growth 

kinetics of urea crystal from both aqueous solution and melt have been thoroughly studied with 
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atomistic molecular dynamics (MD) simulation, and the selective effect of additional growth 

inhibitors was revealed by evaluating the free energy of adsorption using well-tempered 

metadynamics simulations.8-12 However, organic drug molecules often have larger sizes and more 

complex crystal structures, where even biased simulation methods could be inefficient due to the 

large number of degrees of freedom of the molecules in the unit cell. Santiso et al. developed a 

general set of order parameters that can differentiate between melt and different crystal 

polymorphs and combined them with the String Method in Collective Variables (SMCV) to 

investigate the crystallization of relatively complex organic molecules.13,14 SMCV has emerged as 

a useful method to determine the minimal free energy pathway of rare events described by complex 

collective variables.15 The nucleation energy barrier between two polymorphs of sulfamarezine in 

different solvents was computed, and found to qualitatively agree with the experimental results.16 

However, the detailed growth kinetics are difficult to obtain from their method, and investigating 

pharmaceutical cocrystals would further complicate the issue in terms of selecting appropriate 

order parameters as effective collective variables that could drive the transition between states of 

mixtures of two different types of organic molecules. As a result, there is very limited contribution 

for cocrystal growth from molecular simulations compared to extensive experimental 

investigations. While Anuar et al. simulated a pre-built cocrystal of carbamazepine and succinic 

acid, only a morphology prediction was made using the classic attachment energy theory.17 

Another approach focused on understanding the crystallization and growth kinetics of simple 

model systems, such as hard spheres or spherical particles with simple interaction potentials.18 

However, while these sphere-based simple models are often used for colloidal and polymer 

systems, their lack of molecular detail in describing complex drug molecules prevents them from 

appropriately representing the real pharmaceutical systems. In general, it is extremely challenging 
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to directly simulate the crystallization kinetics of pharmaceutical cocrystals with molecular 

simulations.  

Coarse-graining is an approach that combines some of the advantages of atomistic 

simulation and sphere-based simple models. It offers extended time and length scales, making it 

less susceptible to kinetic trapping in simulation, while retaining the molecular details to a certain 

degree that are relevant to the real system. There have been coarse-grained (CG) models well-

developed for various biomolecules including lipids, proteins, DNA and polymers.19 For example, 

the widely used MARTINI forcefield uses a roughly four-to-one mapping of non-hydrogen atoms 

per coarse-grained bead and has different bead types for various functional groups, which differ in 

charge and hydrophobicity.20 However, the interactions between the CG beads in MARTINI are 

described with relatively simple Lennard-Jones potentials that are parameterized for the fluid 

phase. Therefore, the use of MARTINI forcefield for simulating the solid phase of materials, 

especially drug molecules, has been very limited because it could not accurately reproduce the 

correct crystal structures. In an attempt to overcome this limitation, Mandal et al. reported a 

systematic coarse-graining scheme based on iterative Boltzmann inversion (IBI) to study 

crystallization and predict potential polymorphs of small organic molecules.7 They developed 

coarse-grained models for several pharmaceutically relevant molecules and were able to simulate 

the growth of a crystalline slab from the melt. Given that the IBI scheme can be generalized to 

other crystal systems and the solvent-free environment matches with the experiment condition of 

our collaborators, we adopted the method of Mandal et al. and developed coarse-grained potentials 

for the cocrystal of carbamazepine (CBZ) and succinic acid (SA), a system of significant 

pharmaceutical interest with non-trivial complexity that was produced via the gas-assisted 

desublimation process.  
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In the rest of this chapter, we describe the methodology of our coarse-grained model for 

CBZ-SA cocrystal and prior investigations with atomic simulations. We then report the growth 

kinetics of different cocrystal facets obtained by direct simulation and analyze single molecule 

adsorption on the crystal surface using well-tempered metadynamics. The chapter concludes with 

a summary of our findings and future directions. 

 

4.2 Method 

4.2.1 Atomistic simulation 

Fully atomistic simulations of the cocrystal of carbamazepine and succinic acid were 

conducted to provide structural information for deriving the coarse-grained model. The chemical 

structures of the two molecules are shown in Figs. 4-1(a) and 4-1(b) respectively. The cocrystal 

structure was obtained from the Cambridge Crystallographic Data Centre (CCDC) with the 

reference code of XOBCIB. The CBZ-SA cocrystal has a 2:1 stoichiometric ratio and a monoclinic 

lattice with cell parameters of 𝑎 = 1.7730 nm, 𝑏 = 0.5217 nm, 𝑐 = 2.0753 nm, 𝛽 = 103.35°, 

𝛼 = 𝛾 = 90°, as shown in Figure 4-1(c). The initial structures of the cocrystal in simulations were 

built by replicating the unit cell along the three principal directions. A system comprising 512 

carbamazepine and 256 succinic acid molecules with X, Y, and Z dimensions of 7.111, 6.523, and 

4.155 nm respectively was used to develop coarse-grained potentials, with interaction parameters 

from the OPLS-AA force field to model the two molecules.21 The Verlet scheme was used for 

neighbor searching,22 with a cutoff distance of 1.4 nm, while the Particle-Mesh-Ewald (PME) 

method was used to calculate long-range electrostatic interactions,23 and periodic boundary 

conditions were enforced along all three directions. Prior to the regular molecular dynamics 
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simulations, the system underwent energy minimization using the conjugate gradient method and 

a short 1 ns NVT simulation at 290 K, followed by 10 ns of equilibrium simulation in the NPT 

ensemble at the same reference temperature and a reference pressure of 1 bar. The 20 ns production 

runs for data collection used Nose-Hoover temperature coupling and anisotropic Parinello-

Rahman pressure coupling methods. The LINCS constraint24 was applied on all bonds containing 

hydrogen atoms, and a time step of 1 fs was used. All simulations were conducted using the 

GROMACS 2019.6 simulation package.25 

 

Figure 4-1. Chemical structure of (a) carbamazepine, and (b) succinic acid. (c) The lattice structure of 

CBZ-SA cocrystal view along each of three directions. Note that Y axis is not parallel to side c due to the 

monoclinic lattice. The unit cell of CBZ-SA cocrystal contains four carbamazepine and two succinic acid 

molecules with hydrogen bonding represented by red dashed lines. 

 

4.2.2 Molecular structure of coarse-grained models 

Carbamazepine is a non-planar molecule consisting of three aromatic rings, each aligned 

in different planes, and the middle azepine ring is connected to an amide side group that lies in a 



 91 

fourth plane as shown in Fig. 4-2(a). Initially, coarse-graining was attempted using a three-bead 

model for carbamazepine, as illustrated in Fig. 4-2(b), with two CG beads of the same type 

representing the benzene ring and half of the azepine ring while a third bead of a different type 

represented the amide group. Succinic acid was modeled as a symmetric two-bead molecule, 

resulting in three CG bead types for the entire cocrystal. While this simple coarse-grained model 

could maintain a pre-built cocrystal structure, it was unable to simulate the formation of new 

crystal layers from the melt mixture of the two components over an existing cocrystal surface as a 

seed. The simplicity and the additional symmetry from the CG model were the source of the 

problem, as the three-bead carbamazepine is always planar and the two-bead succinic acid is 

basically a rod, which deviates from the atomistic structure of the two molecules and does not have 

the complexity to capture the driving force for cocrystal growth.  

Instead, a four-bead carbamazepine model was used, as shown in Fig. 4-2(c), with the 

azepine ring represented by bead “Z”, the two benzene rings represented by two beads of the same 

type “B”, and the amide group represented by a third type of bead “A”. The CG beads were 

connected by pseudo bonds, and their positions were obtained from the centers of mass (COMs) 

of the corresponding atomistic structures. We also note that in the atomistic model, the 

carbamazepine is asymmetric with respect to the middle azepine ring due to the orientation of the 

amide group relative to each of the two benzene rings. This results in the two different 

conformations of carbamazepine molecules which form pairs in the crystalline state, but each 

molecule can convert from one conformation into one another in the melted state. Therefore, the 

distances between the COMs of the amide group and each of the two benzene rings are slightly 

different, but they are treated as the same in the coarse-grained model since the amide group is 

simplified into a sphere, so that the average bond length is used. While the individual aromatic 
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ring orientations are lost due to the spherical nature of the CG beads, they are no longer co-planar 

as is the case in the less realistic three-bead model of carbamazepine. Similar, a second bead type 

“E” was added to the succinic acid model to represent the ethylene group, and the two carboxylic 

acid groups were represented each by a bead type “C”. As a result, the CG models for CBZ-SA 

cocrystal have 5 different bead types (A, B, Z, C, E). 

 

Figure 4-2. Different models for carbamazepine and succinic acid: (a) all-atom model, (b) initial coarse-

graining attempt of three-bead carbamazepine and two-bead succinic acid, and (c) coarse-grained model 

of four-bead carbamazepine and three-bead succinic acid. 

 

4.2.3  Development of the coarse-grained parameters 

The behavior of the coarse-grained beads is determined by bonded potentials for 

intramolecular interactions and non-bonded potentials for intermolecular interactions. 

Specifically, the potential for the pseudo bonds between the beads is defined using a harmonic 

function, as shown below in Eq. 4.1: 

 
𝑉𝑏𝑜𝑛𝑑 =

1

2
 𝐾𝑏(𝑟 − 𝑟0)2 

 (4.1) 
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where Kb represents the force constant and r0 represents the equilibrium bond length. These values 

were chosen to ensure that the coarse-grained bond-length distributions matched closely the 

corresponding atomistic results.  

The development of non-bonded interaction potentials is a crucial and challenging aspect 

of our crystallization simulation. Coarse-graining removes molecular details that are essential to 

the formation of specific crystal structures, and therefore simulations with coarse-grained force 

fields may not lead to the correct crystal form, as discussed earlier in the case of MARTINI. To 

compensate for the lost molecular structural information, we utilized the Iterative Boltzmann 

Inversion (IBI) method with known crystal structural information as input to generate relatively 

long-range non-bonded potentials. The method was first developed by Reith et al.26 and has been 

widely used to derive coarse-grained potentials for various systems,27-30 including single crystals 

of organic molecules in recent work.7 In our work, we extended the application of the IBI method 

to the co-crystallization of two pharmaceutical components. To generate the initial guess for the 

coarse-grained potentials, we used the radial distribution functions (RDFs) between the non-

bonded units mapped from atomistic simulations as the target observables of the IBI scheme by 

Eq. 4.2: 

 𝑉𝑖𝑛𝑖 = −𝛼𝑘𝑏𝑇 𝑙𝑜𝑔 (𝑔𝑎𝑎)  (4.2) 

where gaa is the RDF for the center of mass of the portions of the molecule represented by each of 

the CG beads from all-atom simulations (including 𝑔𝑎𝑎,𝐴−𝐴, 𝑔𝑎𝑎,𝐴−𝐵, etc.). kb and T are the 

Boltzmann constant and system temperature, respectively. 𝛼 is a scaling factor that is typically set 

in the range of 0.1 to 0.25 to adjust the magnitude of the potential and prevent abrupt changes in 

the potential during the iteration steps later. The non-bonded interaction potential between two 

beads was generated for each pair of CG beads, including two beads of the same type as well as 
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two beads of different types, using the corresponding gaa from all-atom simulations. The coarse-

grained potentials obtained from the initial guess were then used to run coarse-grained simulations, 

which were iteratively improved based on Eq. 4.3: 

 
𝑉𝑖+1 = 𝑉𝑖 − 𝛼𝑘𝑏𝑇 𝑙𝑜𝑔 (

𝑔𝑎𝑎

𝑔𝑐𝑔,𝑖
) 

 (4.3) 

where Vi+1 represents the updated potential after the (i+1)th iteration based on the potential Vi from 

the previous round of iteration and the RDF gcg,i is extracted from the corresponding coarse-grained 

simulation. The ultimate goal is to reproduce the RDFs obtained from the atomistic simulations 

when running coarse-grained simulations, as shown in Fig. 4-3. 

  

Figure 4-3. Comparison of the atomistic RDF between two type “A” beads with the corresponding coarse-

grained RDF. The full set of RDFs are included in the Appendix.  

 

The coarse-grained model for CBZ-SA cocrystal with five bead types requires a total of 15 

pairwise nonbonded interaction potentials. After three iterations, the non-bonded potentials 

converged and were truncated at 1.75 nm using a cubic spline interpolation method. The truncation 

is required for the relatively long-range potentials to stabilize a pre-formed cocrystal, and the cutoff 
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distance was chosen so that the system can remain condensed even when the molecules are in the 

molten state. The final set of comparisons between atomistic and coarse-grained RDFs are 

included in the Appendix. Unlike a simple Lenard-Jones (LJ) potential, the non-bonded potentials 

derived from the complex multi-peak RDFs could not be fitted to any simple analytical function. 

Therefore, they were tabulated and their values between tabulation points were interpolated using 

a cubic spline function. All coarse-grained simulations performed in this work used stochastic 

dynamics, hence the motion of the coarse-grained particles was governed by the Langevin 

equation. The temperature and pressure coupling methods were the same as the ones used in 

atomistic simulations described in Section 4.2.1. 

 

4.3 Results and Discussion 

4.3.1 Investigation with all-atom model 

In addition to the simulations used to develop the coarse-grained models, further all-atom 

simulations were conducted to gain insight into the crystallization process of CBZ-SA cocrystal 

and, the simpler case, single crystal of carbamazepine. A CBZ-SA cocrystal system consisting of 

32 unit cells periodic in three dimensions was constructed and heated from 290 K at a rate of 5 

K/ns. The simulation setup is described in Section 4.2.1. The melting occurred at approximately 

640 K, which is significantly higher than the experimental value of 462 K. However, this is not 

surprising due to the relatively fast heating rate in the simulation and the lack of any defect in the 

initial configuration of the system. In contrast, a cocrystal slab with the same number of molecules 

but with the (0 0 2) facet exposed exhibited a more reasonable melting point of around 455 K in 

simulation. A block of disordered molecules in the melted state was placed on a pre-built cocrystal 

slab, but no crystal growth was observed at different temperatures during the 40 ns simulation 
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runs, as expected given the challenges with directly simulating crystallization with atomistic 

models discussed earlier. The stability of different facet was also investigated, and it was found 

that the surface molecules of (1 0 -1) remained in the ordered state at temperatures below 400 K, 

while those of the (0 1 0) and (0 0 2) facets became disordered. 

Inspired by classical crystal growth theory and the step nucleation and layer completion 

process, we sought to investigate the crystallization of a single disordered surface layer and the 

attachment of a single molecule to an existing crystal surface. To simplify the problem, we focused 

on a single crystal of carbamazepine, rather than the more complex CBZ-SA cocrystal. A single 

carbamazepine molecule near the crystal surface was simulated to investigate the preferred site 

and effect of molecule orientation and conformation on surface adsorption. The results showed 

that the carbamazepine molecule bounced around between different crystalline sites at the crystal 

surface, and no consistent trend or favored site could be concluded. There are two types of 

crystalline sites corresponding to carbamazepine with different amide conformation. The 

adsorption was semi-stable at times, but the molecule could also be trapped when its conformation 

did not match the crystalline site it temporarily sat on. Additionally, the evolution of a disordered 

carbamazepine layer at the crystal surface was simulated, but defects observed in the prior study 

of single molecule adsorption (molecules sitting on the wrong site) and kinetic trapping prevented 

the formation of a new ordered layer even after extended simulation runs. Therefore, coarse-

graining methods are necessary to achieve direct crystal growth of small organic molecules in 

molecular simulations. 

4.3.2 Cocrystal growth from coarse-grained model 

The structure of CBZ-SA cocrystal obtained from coarse-grained simulations was 

examined first. The change in lattice parameters was less than 1%, and all the radial distribution 
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functions matched the corresponding atomistic results in the Appendix. The carbamazepine and 

succinic acid molecules in the cocrystal form remained stable during 40 ns long simulations. In 

theory, different crystal facets have different growth rates, which determine the crystal 

morphology as slower growing facets will have larger surface area. While primitive morphology 

prediction can be made using BFDH and attachment energy theories,31,32 the coarse-grained model 

enabled direct observation of the growth of different crystal facets in simulation. Since nucleation 

events are typically associated with high energy barriers, the time and length scales required to 

simulate the formation of a large enough crystal with well-defined shape and facets could be 

prohibitive even with our coarse-grained model. Therefore, crystalline slabs with different facets 

exposed to the melt were used as seeds, a common practice to investigate crystal growth 

mechanisms in simulations. We focused on the (0 1 0), (0 0 2), and (1 0 -1) facets since they were 

predicted to have different attachment energy, with the (1 0 -1) facet having the slowest growth. 

Fig. 4-4 shows that, for all three facets, the molten molecules reoriented themselves to fit the 

cocrystal structure, and the cocrystal slab steadily grew into the melt, which were not achieved in 

atomistic simulations. As discussed earlier, the shape and multiple bead types of the coarse-grained 

model captured some of the anisotropy of the interaction of the molecules with their neighbors, 

and the faster dynamics in coarse-grained simulation enabled growth of the pre-assembled crystal 

slab. To confirm the robustness of the cocrystal growth, several simulations with different numbers 

of molecules and cross-sectional areas were carried out at different temperatures. In all cases 

except one, which will be discussed shortly, a steady growth of CBZ-SA cocrystal was observed. 
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Figure 4-4. Snapshots of the simulation box at 0 ns (left) and 20ns (right) for the growth of (a) (0 1 0), (b) 

(0 0 2), and (c) (1 0 -1) facets at 390 K. 

 

To monitor the number of molecules in crystalline state, we followed a previously used 

definition for the degree of crystallinity in single crystal by analyzing the major component 

carbamazepine only.7 The degree of crystallinity (𝜏𝑖) of the ith carbamazepine molecule is given 

by Eq. 4.4: 

𝜏𝑖(𝑡) =
1

𝑛𝑖(𝑡)
∑ 𝑒𝑥𝑝 

𝑛𝑖(𝑡)

𝑗=1

(−
(𝜃𝑖𝑗(𝑡) − 𝜃0)

2

2𝜎2
) + 𝑒𝑥𝑝 (−

(𝜃𝑖𝑗(𝑡) − 𝜃1)
2

2𝜎2
) 

 (4.4) 

where ni(t) is the number of nearest neighbors of the ith molecules within a cut-off distance of 0.8 

nm. 𝜃𝑖𝑗 is the angle between the ‘‘internal vector’’ of the ith molecule and that of its jth neighbor. 

The internal vector of carbamazepine is defined to be the vector extending from the center of bead 

“Z” to bead “A”. In the CBZ-SA cocrystal, the internal vectors of neighboring molecules form an 

angle of either 𝜃0 = 5° or 𝜃1 = 45°. The standard deviation 𝜎 was taken to be 15°. Through the 

analysis of trajectories from simulations of a perfect cocrystal and fully melted molecules, we have 

determined that the average value of 𝜏 equals 1.0 for the cocrystal system (𝜏𝑐𝑟𝑦) and 0.55 for the 
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fully melted state (𝜏𝑚𝑒𝑙𝑡). With this information, the percentage of molecules in cocrystal state is 

defined by Eq. 4.5: 

 𝐶𝑟𝑦𝑠𝑡𝑎𝑙 % =
𝜏 − 𝜏𝑚𝑒𝑙𝑡

𝜏𝑐𝑟𝑦 − 𝜏𝑚𝑒𝑙𝑡
  (4.5) 

and its time evolution is used to characterize the grow rates of different crystal facets. 

The cocrystal growth simulations of (0 1 0), (0 0 2), and (1 0 -1) facets presented here all 

began with an equivalent number of crystalline molecules in the seed cocrystal and three times 

more melted molecules, and all three systems possess a comparable cross-sectional area in the 

growth direction between 45 to 50 nm2 with an aspect ratio close to 1. The simulations were 

conducted at 390 K and 440 K to prevent nucleation away from the surface, which may occur in 

the melt at lower temperatures and could disrupt crystal growth over the facet, while higher 

temperatures that could cause the cocrystal slab to melt were also avoided. The change of the 

percentage of crystalline molecules in the system is plotted in Fig. 4-5, which starts at around 25% 

because of the 1:3 crystal to melt ratio. Although there is not a significant difference between the 

growth rates of the (0 1 0) and (0 0 2) facet, it is evident that the (1 0 -1) facet has the slowest 

growth rate at 390 K, and it failed to grow at all at 440 K. Additionally, for the (0 1 0) and (0 0 2) 

facets, the number of carbamazepine molecules that transition into the crystalline state increases 

nearly linearly until completion. Conversely, the curve for the (1 0 -1) facet in Figure 4-5(a) 

exhibits multiple points with abrupt decreases in slope, indicating that each new layer at the surface 

requires a short time to become fully ordered, potentially associated with a higher energy barrier 

for the formation of each layer. 
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Figure 4-5. Typical time dependence of percentage carbamazepine molecules in the crystalline state for 

the three different facets at (a) 390 K, and (b) 440 K.  

 

The average growth rates per unit surface area during the first 4 ns of simulation are 

summarized in Table 4-1. The slowest growth of (1 0 -1) facet qualitatively agrees with the 

prediction from attachment energy calculations17 and the cocrystal morphology observed in 

experiments,33 where the (1 0 -1) facet is anticipated to have the lowest attachment energy with 

the largest surface area. This observation also corresponds to the stability of the (1 0 -1) facet that 

we identified in atomistic simulations, indicating that it is energetically favored to be the exposed 

surface. The cessation of growth of the (1 0 -1) may be attributed to the more vigorous thermal 

motion at higher temperature, which hinders the molecules from becoming fully ordered at the 

surface, and the slower growing (1 0 -1) could be more susceptible to such effect. The temperature 

dependance of the growth rates over different facets is complicated since a higher temperature 

reduces the driving force for crystallization but at the same time helps the system to overcome the 

energy barrier more easily.7 Therefore, additional simulations are necessary for further analysis. 
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Table 4-1. The average growth rate of the three facets during the first 4.0 ns of simulation, in units of 

molecules/ns-nm2. 

 (0 1 0) (0 0 2) (1 0 -1) 

390 K 8.7 8.9 5.3 

440 K 8.0 7.3 0 

 

4.3.3 Analysis with metadynamics 

To investigate the reason for the much slower growth of (1 0 -1) facet, we conducted well-

tempered metadynamics (WT-MD) simulations34 to study the adsorption of a single molecule on 

each of the three facets, which is a crucial step for the formation of new crystal layers. 

Metadynamics is a widely used method for studying rare events by adding bias potentials to the 

simulations to generate the free energy surface (FES) as a function of two collective variables 

(CVs). In this case, the first CV (referred as CV1) is the distance between the center of mass of 

the molecule and the crystal surface. The second CV (CV2) is defined as the relative angle between 

an orientation vector of the molecule and the vector normal to the crystal surface as illustrated in 

Fig. 4-6. A harmonic potential constraint was applied to the crystalline slab to keep the surface 

structure ordered, and a wall potential at a maximum distance of 3 nm was used to prevent the 

molecule from crossing the periodic boundary. The WT-MD simulations were performed using 

the PLUMED35 software in conjunction with the GROMACS simulation package. The goal of 

using these CVs is to determine the favored orientation of the molecule adsorbed at the surface 

and whether that orientation aligns with the molecular orientation in bulk crystal. The assumption 

is that if those are different, an orientation change is required for the adsorbed molecule to turn 

into the crystalline state, which could lead to a slower growth rate of a given facet. 
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Figure 4-6. Definition of the internal vector for (a) carbamazepine and (b) succinic acid. (c) A schematic 

diagram of well-tempered metadynamics simulation of single-molecule adsorption. The first CV is the 

distance between the surface of interest and the internal vector of the molecule, and the second CV is the 

angle between the internal vector and a vector perpendicular to the surface of interest. 

 

We first examined the orientation of carbamazepine molecules in the cocrystal. Figs. 4-

7(a) - 4-7(c) depict the structure of three crystal slabs, each with a different facet exposed at the 

top surface. The orientation vector of carbamazepine is defined as the vector connecting the center 

of mass of the three CG beads representing the aromatic rings to the fourth amide CG bead to 

highlight the effect of hydrogen bonding. The orientation of carbamazepine molecules in each 

crystal slab is labeled in Figs. 4-7(a) - 4-7(c), and the distribution of the angle between the 

orientation vector and the upward-pointing perpendicular vector is plotted as histograms in Figs. 

4-7(d) - 4-7(f). In all three cases, two preferred orientations exist for carbamazepine in the 

cocrystal. The first has the orientation vector pointing upwards with an angle less than 
𝜋

2
 (labeled 

as the white arrows), and the second has the vector pointing downward with an angle greater than 
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𝜋

2
 (labeled as the black arrows). The mean values summed over the two peaks in Figs. 4-7(d) - 4-

7(f) add up approximately to  𝜋 since there are equal numbers of carbamazepine molecules taking 

opposite orientations in the cocrystal, as shown in Figs. 4-7(a) - 4-7(c). The distributions are not 

symmetric about 𝜋/2 because the binning was not centered about this value.  

 

Figure 4-7. The crystal structure near the surface for (a) (0 1 0), (b) (0 0 2), and (c) (1 0 -1) facets. The 

internal vector of carbamazepine molecules is labeled with white and black arrows. The distribution of the 

relative angle of the internal vector is plotted with the mean value of the peaks for (d) (0 1 0), (e) (0 0 2), 

and (f) (1 0 -1) facets. The gray number corresponds to the white arrows and the black number corresponds 

to the black arrows.  

 

Next, we introduced a single carbamazepine molecule, positioned 0.7 nm away from the 

center of the surface, to perform WT-MD simulations to map the free energy surface (FES) of its 

two collective variables. The FES diagrams for the three facets are shown in Fig. 4-8, with black 

and gray dotted lines overlaid to represent each of the two preferred orientation angles in the 

crystalline state for each facet as a comparison. For the (0 1 0) and (0 0 2) facets, the minimum of 
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the FES is located near the surface at an angle greater than 
𝜋

2
 crossed by the black reference lines, 

indicating that the adsorbed carbamazepine molecule does indeed prefer to take an orientation 

similar to its form in the crystalline state, with the amide group facing downward toward the 

surface. In contrast, the preferred orientation angle of adsorption on the (1 0 -1) facet is less than 

𝜋

2
, meaning the amide group is facing upward, and there is a small degree of deviation between the 

minimum of the FES and the white reference line in Fig. 4-8(c). The lack of hydrogen bonding 

between the amide group and the (1 0 -1) facet could be the reason for the slight misalignment of 

the adsorbed carbamazepine, which would hinder the formation of a new ordered layer at the 

surface and lead to a slower growth rate. 

 

Figure 4-8. FES obtained from well-tempered metadynamics simulations for the adsorption of 

carbamazepine on (a) (0 1 0), (b) (0 0 2), and (c) (1 0 -1) facets. The unit for the free energy is kJ/mol. The 

white and black dashed lines correspond to the mean values of the preferred angle of carbamazepine 

molecules in crystalline state in gray and black in Figs. 4-7(d) - 4-7(f), respectively. 

 

The adsorption of a single succinic acid molecule was also investigated, with the 

orientation vector defined as the vector connecting the center CG bead to the center of mass of the 

two carboxylic acid CG beads as illustrated in Fig. 4-6(b). The relative angle distribution in the 

cocrystal and the FES from WT-MD simulations for the three facets are shown in Fig. 4-9. For the 

(0 1 0) facet, there are two reference angles and the minimum of the FES slightly deviates from 
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the white reference line. The minimum of the FES also does not correlate well with the reference 

angle for the (0 0 2) facet. While the adsorbed succinic acid molecule may indeed prefer to take a 

different orientation, it could also be that the orientation vector used is not suitable to describe the 

succinic acid molecule with two carboxylic acid groups. There are multiple degrees of freedom 

for succinic acid and the relative angle chosen as the collective variable does not account for its 

orientation with respect to the polar axis which lies in the horizontal plane. Nevertheless, the FES 

of (1 0 -1) facet in Fig. 4-9(f) is still significantly different from the other two, without deep energy 

minimum of a preferred angle near the surface, indicating that succinic acid is less likely to have 

a stable configuration for adsorption. This is also supported by the surface structure of (1 0 -1) 

facet in Fig. 4-7(c), where the crystal growth involves separate layers of carbamazepine and 

succinic acid, and the next new layer forming over the existing surface is expected to be composed 

of carbamazepine, not succinic acid. The absence of the other component in these single 

component layers may hamper their crystallization process, as observed in the cocrystal growth 

simulations of the (1 0 -1) facet. 
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Figure 4-9. FES obtained from the well-tempered metadynamics simulation for the adsorption of succinic 

acid on (d) (0 1 0), (e) (0 0 2), and (f) (1 0 -1) facets. The unit for the free energy is kJ/mol. The dashed 

lines correspond to the mean values of the preferred angle of succinic acid molecules in crystalline state in 

(a)-(c), respectively. 

 

The use of well-tempered metadynamics simulations to study the adsorption of single 

molecule on crystal surface has shed light on the different growth kinetics of various facets of the 

CBZ-SA cocrystal. However, these simulations have their limitations in fully understanding the 

crystallization mechanism as the actual process involves the interaction of multiple molecules near 

the surface. The results are also highly dependent on the surface layer structure and the choice of 

collective variables, thus further investigations are necessary to fully realize the potential of these 

biased simulations methods. 
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4.4 Conclusion and Future Directions 

We have developed a coarse-grained model for the carbamazepine and succinic acid 

cocrystal consisted of five coarse-grained bead types. The non-bonded potential was generated 

using the iterative Boltzmann inversion method, which was based on the radial distribution 

function of the cocrystal structure obtained from atomistic simulation. The model allows for the 

direct simulation of pharmaceutical cocrystal growth from melt, and the growth kinetics of three 

crystal facets were investigated. Our findings show that the (1 0 -1) facet has the slowest growth 

rate, which is in line with the prediction from attachment energy calculations and crystal 

morphology observed in experiments. Well-tempered metadynamics simulations were performed 

to further explore the correlation between the molecular orientation of a single molecule adsorbed 

at the surface and the facet growth rate. The results indicate that the favored orientation of the 

carbamazepine molecule adsorbed at the surface of (0 1 0) and (0 0 2) facets matches its 

configuration in the crystalline state, while there is a small misalignment in the case of the (1 0 -

1) facet, which might be caused by the lack of hydrogen bonding due to the orientation of the 

amide group. The adsorption of a single succinic molecule was also investigated, where no deep 

minimum on the free energy surface was found for the (1 0 -1) facet since the new crystal layer is 

expected to be consisting of carbamazepine molecules only. 

Although we were able to simulate cocrystal growth using our coarse-grained model, we 

acknowledge its major limitations. Specifically, this method requires prior knowledge of the 

crystal structure, and the forcefield derived from a specific polymorph is unlikely to properly 

simulate the same molecules in other crystalline states. For instance, a different set of non-bonded 

interaction potentials is required to simulate the single crystal of carbamazepine compared to the 

cocrystal with succinic acid. One potential solution is use of a multi-state IBI scheme, which 
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utilizes structural information from multiple physical states to generate the coarse-grained 

potential.36 This approach has shown success in relatively simple systems with different density 

states and could be useful for different yet similar polymorphs of pharmaceutical crystals. Another 

avenue to validate our coarse-grained model is to employ an atomistic forcefield for the 

metadynamics simulations, allowing for comparison of results between atomistic and coarse-

grained. Furthermore, optimizing the choice of collective variables is also a worthwhile direction 

to pursue. 

 

4.5 Appendix 

The full list of comparison of RDFs between different bead types from atomistic and 

coarse-grained simulations is included below (a total of 15 pairs). 
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Chapter 5 Conclusion 

 

We have demonstrated the utility of simulation and modeling methods across multiple time 

and length scales in investigating partially crystalline materials. Specifically, we used fully 

atomistic molecular dynamics simulation and constitutive modeling with mesoscopic scale 

analysis to study lamellar gel networks, as well as coarse-grained simulations to investigate 

pharmaceutical cocrystal growth.  

Atomistic molecular dynamics simulations were conducted to investigate whether an 

interdigitated LβI phase is the equilibrium state of surfactant bilayers in lamellar gel networks. 

Lateral pressure and temperature scans along reversible pathways were used to drive reversible 

phase changes, including the formation of the LβI phase with interdigitated tails of opposing 

leaflets at negative lateral pressure. Using lateral pressure helps avoid kinetic bottlenecks that often 

occur when temperature alone is used as the control variable. Thermodynamic integration, with 

extrapolations to infinitely slow scans, revealed a positive free energy difference between the 

interdigitated LβI and non-interdigitated Lβ phase which favors the latter, allowing for a 

quantitative evaluation of the stability of different bilayer phases. 

To address similar kinetic limitations encountered in molecular simulations studying 

pharmaceutical cocrystal growth, we took a different approach. A coarse-grained model was 

developed for the cocrystal of carbamazepine and succinic acid, using the iterative Boltzmann 

inversion method based on the radial distribution function of the cocrystal structure obtained from 

atomistic simulation. The coarse-grained model enables direct simulation of cocrystal growth from 
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melt. We found that the (1 0 -1) facet has the slowest growth rate, which agrees with the prediction 

from attachment energy calculations and the crystal morphology observed in experiment. 

Furthermore, well-tempered metadynamics simulations were performed to study the molecular 

orientation of a single molecule adsorbed at the surface of different facet, which provided some 

insight into the reason for the slow growth rate. While we acknowledge the limitations of our 

coarse-grained approach for cocrystals, as it requires prior knowledge of the crystal structure and 

cannot simulate the same molecules in other crystalline state, we suggest some future directions. 

One approach could be to use a multi-state IBI scheme, which would leverage structural 

information from multiple physical states to generate the interaction potentials and could be 

valuable for simulating different polymorphs of pharmaceutical crystals that share similarities in 

structure. Another way to validate our coarse-grained model is to employ an atomistic forcefield 

for metadynamics simulations, allowing for comparison of results between atomistic and coarse-

grained simulations to identify the missing interactions from the coarse-grained model and their 

influence. Furthermore, optimizing the choice of collective variables is also a worthwhile direction 

to pursue. 

In addition to microscopic scale molecular simulations, we proposed a constitutive model 

to investigate the macroscopic scale rheological properties of lamellar gels. The thixotropic model 

incorporates a boundary-induced gradient, which allows successful prediction of the complex 

rheology and the unique shear banding phenomenon of the material. The physical origin of the 

boundary-induced modulus gradient was discussed in relation to the lamellar microstructure under 

shear, and a more rigorous, microstructurally based approach to derive the variation of the modulus 

profile was suggested by doing a mesoscopic average over the lamellar anisotropy. Moving 

forward, it may be valuable to establish constitutive relationships between the tensor of 
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mesoscopic average order parameter and the anisotropic elastic modulus, yielding condition, and 

viscous stresses. This could be achieved by linking the tensor change with a three-dimensional 

thixotropic elasto-visco-plastic model, which will likely require accounting for back-strain and/or 

back-stress and involving fourth rank tensors. Additionally, the inclusion of multiple thixotropic 

time scales may be necessary to capture the various time and spatial scales of the structures present 

in lamellar gel networks.  

In conclusion, our studies on partially crystalline materials using simulation and modeling 

methods of multiple time and length scales have led to the development of novel techniques and 

models that provide new insights into the behavior of these complex systems. Our findings are not 

only relevant to the specific materials and processes studied, but they can also be applied to other 

similar systems and have the potential to contribute to the advancement of the field of modeling 

partially crystalline materials. 


