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Abstract

Large amounts of renewable energy resources are being added to the electric power grid in

a push to mitigate the effects of climate change. Due the intermittent and uncertain nature

of these resources, more flexibility is needed to ensure safe operating conditions of the power

grid. A growing body of research has shown that real-time control of flexible electric loads

can provide flexibility to the power grid. For instance, drinking water distribution networks

can be treated as flexible, controllable assets to the power grid by leveraging the power

consumption of water supply pumps and storage capabilities of water tanks. Initial research

has explored optimizing the operation of water distribution networks to support the power

grid; however, the impact of uncertainty on network performance and value has not been

considered.

In this dissertation, an integrated power-water optimization problem is developed sub-

ject to the water and power network constraints and multiple sources of uncertainty. The

operation of water distribution networks is optimized to provide multiple local and system

services—such as voltage and frequency regulation—to power networks. The integrated

optimization of the water distribution network and power network is challenging because

both networks have nonconvex models and experience uncertainty (e.g., water and power

demands). Additionally, changes in network operation need to clearly provide value to both

system operators as well as maintain or improve upon network resilience. The associated ben-

efits and drawbacks of the integrated water-power optimization framework are investigated,

with a particular focus on performance, conservativeness, and computational tractability.

First, state and country-wide estimates of the power and energy capacity of water distri-

bution networks as flexible loads are calculated using publicly available water distribution

network utility information, indicating that water distribution networks can provide a siz-

able flexible resource. Second, stochastic and robust optimization frameworks are developed

to optimally schedule and control the water distribution network to provide power system

services while ensuring the safe operation of the power and water distribution networks given

power and water demand uncertainties. Third, to address challenges surrounding problem

xiv



complexity and scalability, this work develops proofs that the monotonicity properties apply

to the water flow constraints under certain assumptions, uses approximation and relaxation

techniques to reformulate the power-water problem as a convex program, and proposes an

analytically reformulated probabilistic framework that manages uncertainty differently in the

power and water network. Fourth, the flexibility of the water distribution network may be

underutilized if any one power system service is considered. To prevent this, a formulation

is developed where the water network provides multiple services simultaneously. This max-

imizes the overall benefit to the power grid and increases the value proposition to the water

distribution network operator. And fifth, optimal pump operation strategies are evaluated to

ensure that the power and water networks can respond and adapt to natural hazard events

when the water distribution network is providing grid services.

Case studies demonstrate the capability of the water distribution network pumps to pro-

vide services to the power grid. By co-optimizing the power grid and the drinking water

distribution network, improvement in costs, reliability, and resiliency can be realized across

these two critical infrastructure systems. Additionally, leveraging the water distribution net-

work to provide flexibility to the power grid can allow for greater quantities of renewable

energy resources to be incorporated into the grid and reduce carbon emissions.
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Chapter 1.

Introduction

Large amounts of renewable energy sources (e.g., solar photovoltaics and wind power) and

new electric loads (e.g., plug-in electric vehicles) are being added to the electric grid in a

push to mitigate the effects of climate change. Unlike traditional energy generation sources,

renewable energy sources are intermittent and distributed, which causes the net power de-

mand to be more variable and uncertain. Net demand deviations can cause frequency and

voltage deviations outside of safe operating levels in the power transmission and distribution

networks. To prevent unsafe operating conditions, more flexibility is needed in the power

network to compensate for larger and more frequent net demand deviations. Traditional

methods for regulating frequency and voltage in the transmission and distribution networks

will become over-strained and more costly. In the power transmission network, fast-ramping

power plants (e.g., natural gas units) are contracted to provide reserves. More reserves will

need to be scheduled to handle fluctuations. In the power distribution network (PDN),

voltage regulation is traditionally handled by step-voltage regulators, tap-changing trans-

formers, and switched capacitors. With larger and more frequent voltage fluctuations, the

wear-and-tear on voltage control devices increases, shortening the device lifespan and in-

creasing maintenance costs.

Alternatively, research has shown that controlling the operation of flexible loads and stor-

age devices can provide the same power system services as traditional flexibility methods

[1, 15, 66, 68]. Flexible loads are able to shift their power consumption in time without

impacting their quality of service (up to an extent). By shifting when they consume power,

flexible loads can reduce or replace the need for conventional flexible generation sources and

control mechanisms. There is a significant body of research on the control of thermostati-

cally controlled loads (e.g., refrigerators, air conditioners, and water heaters) [57], industrial
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and commercial buildings [78], plug-in electric vehicles [67], and energy storage units [73].

In this dissertation, we leverage the water distribution network (WDN) as a flexible load to

provide multiple services for the power network given network uncertainty. We also work on

identifying the associated benefits and drawbacks of the integrated power-water optimiza-

tion framework. Particularly, we focus on performance, conservativeness, and computational

tractability. This work is situated within a growing research area of co-optimizing coupled

critical infrastructure systems. In the following sections, a brief background and literature

review is presented on integrated optimization of coupled systems and the potential of using

coupled power-water networks as flexible loads.

1.1. Integrated Optimization of Critical Infrastructure

Systems

There is increasing interest in integrated optimization of critical infrastructure systems, such

as water, power, natural gas, and district heating networks [25]. While these critical infras-

tructure systems are traditionally planned and operated independently, these systems are

inherently interconnected and interdependent. For example, in a coupled gas and power

network, the power network requires gas for electricity production in flexible gas-powered

generators and the gas network uses electricity when distributing natural gas to customers

(e.g., for the operation of compressors). Typically, the demands of one network on another

can be shifted either spatially or temporally. For instance, in the coupled gas and power

network, gas can effectively be stored in pipelines for use in later time periods by compress-

ing it, which is known as ‘linepack’. Controlling the operation of multiple networks together

can help relieve the new and growing burdens that these networks are experiencing. Po-

tential benefits of co-optimizing coupled systems include being able to incorporate greater

quantities of renewable energy resources, reducing carbon emissions, reducing operational

and capital costs, and improving system resiliency [1]. We refer the reader to [44, 70] for a

comprehensive review on the motivation, requirements, and best practices when modeling

interdependent systems. Examples of research in this area include work on interconnected

gas-power networks [84, 97, 132], power-district heating-natural gas networks [35, 105, 106],

and islanded energy hubs for power-heat-gas-hydrogen networks [36].

There are four challenges associated with the integrated optimization of multiple critical

infrastructure systems.
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• First, the problem complexity and dimension significantly increases when considering

multiple networks since we need to ensure that all networks are operating safely, i.e., the

network variables are within acceptable ranges. Due to the underlying physics of multi-

energy systems, the network constraints are nonlinear and nonconvex. Consequently,

there is a trade-off in performance between computational tractability and optimality

(or even feasibility) of the solution.

• Second, critical infrastructure systems experience uncertainty. These uncertainties

can propagate through interdependent networks intensifying system vulnerabilities.

Additionally, considering uncertainty in the optimization problem makes solving the

problem more complicated.

• Third, new operational control strategies need to maintain or improve upon network

performance, reliability, and resiliency. Additionally, the value proposition of new

operational strategies needs to be demonstrated.

• Fourth, coordinated operation of multiple systems typically relies on sharing system

data between system operators that are traditionally independent. This can cause

privacy issues as well as a need for additional communication and/or measurement

infrastructures.

In this work, we primarily focus on the first three challenges.

1.2. Background on Coupled Power and Water

Networks

In this dissertation, we focus on coupled power networks and water networks. Water networks

and power networks are critical infrastructure systems that are spatially and temporally

coupled. Water pumps in the WDN are loads in the PDN and are capable of shifting their

power consumption in time by storing water in elevated water storage tanks. Therefore,

the water and power distribution networks are interconnected. Additionally, the water and

power networks are experiencing similar challenges. Water and power system operators are

both dealing with aging infrastructures and increasing consumer demands due to growing

populations [47].

Utilizing the WDN as a flexible load can be beneficial to both networks. From the power

network’s perspective, around 4% of the electricity use in the United States goes to drinking
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and waste water networks and a majority of this electricity (around 90% to 99%) is used

for pumping [28]. Regionally, the energy consumption of water networks can be significantly

larger. For example, in California, 19% of the state’s energy consumption goes to water-

related uses [54]. From the water utility’s perspective, aging infrastructures are reaching the

end of their planned lifespans, which causes systems to become less efficient, have greater

water leakage, and higher maintenance costs [18, 88]. Electricity costs is one of the largest

operating costs (around 80%) for water system operators [38]. By providing additional

services, water utilities could offset this cost and help pay for new equipment investments.

Most large water network utilities are capable of fast operational control (within seconds

or minutes) via already present supervisory control and data acquisition (SCADA) systems

[28, 63]. Below, the water and power networks are described in the context of integrated

optimization.

1.2.1. Power Networks

The purpose of electric power networks is to produce and transport electrical energy to

consumers. To reliably provide power, the supply and demand must always be balanced. As

discussed earlier, increasing levels of renewable energy sources and new loads in the network

can cause more frequent and larger net demand deviations which can have ill effects on the

system frequency and voltage. Flexibility is traditionally provided by flexible generation

units (e.g., natural gas plants). However, real-time control of flexible loads, like WDNs, can

provide flexibility to the power network through demand response or grid services, such as

frequency regulation and voltage support. Using these electricity-consuming water network

assets to reduce the cost and/or increase the reliability of power systems in turn reduces

the cost of water networks (via cheaper electricity) and improves their reliability (via fewer

pumping/treatment outages that results from power outages).

Optimal operation of power networks is a very active research area. We refer the reader

to [77] for a comprehensive review. There is also work on formulating and solving chance-

constrained optimization programs for power networks [26, 94] with control policies used to

approximate optimal real-time control actions [96, 124]. Additionally, there is a growing in

interest in quantifying and enhancing the reliability and resiliency of the power grid (e.g.,

[19, 48, 89]).
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1.2.2. Water Networks

The purpose of water networks is to extract, treat, and distribute safe, reliable drinking

water. In this work, our focus is on public supply1 water distribution networks. Water

distribution networks deliver drinking water to consumers (primarily serving residential,

commercial, and industrial sectors but also delivering treated water to irrigation and ther-

moelectric sectors). Water distribution networks rely on gravity and water pumps to move

water through the network. Most water networks have elevated storage tanks or standpipes

to hedge against demand uncertainty and periods of high demand as well as provide pressure

regulation [109]. System pressure heads must be maintained in order to supply water and

meet emergency fire flow requirements.

Water network pumps (in conjunction with storage tanks) are capable of providing local

and global services to the power network [109, 123]. While rule-based operation is tradition-

ally employed, the water network infrastructure is capable of optimal day-ahead and real-time

control. Water flow modeling is a very established research area, with algorithms such as

the gradient method [102, 103], Newton-Raphson [55], and the (co)content method [22].

There is also research on the optimization of water distribution network operation, where

the objective is typically either minimizing operational costs or improving water quality (or

a combination of both). Solution approaches include linear approximations and relaxations

[11, 32, 37, 49, 108, 128] and genetic algorithms [136]. A literature review of optimal control

methodologies is given in [69, 85]. In [56], resiliency measures in WDNs are assessed.

1.2.3. Literature Review on Coupled Water-Power Optimization

While WDNs are physically capable of providing services to the power network, this research

area is small. Other types of water networks have been studied more extensively as demand

response resources, such as agricultural irrigation pumping [83] and wastewater treatment

plants [88, 123].

Recently, there have been papers that explore the integrated optimization of WDN and

PDN operation. A distributed solution approach is presented for a water-power flow opti-

mization problem in [130]. In [61], relaxations and approximations are applied to a demand

response operation problem for an agricultural irrigation system [61]. Ref. [31] develops of

a framework for WDNs to consume surplus energy based of a signal from the PDN. In [81,

1A public supply is defined as a public or private water network utility that serves a minimum of 25 people
or has at least 15 connections [29].
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82], the authors solve for the electricity-consumption flexibility from multiple WDNs to the

power transmission network. Ref. [134] evaluates the interdependence of the WDN and PDN

after simulating the optimal operations of the water network and power network. In [63],

the authors create an optimization framework to determine the WDN’s possible demand

response participation. In [4], the WDN and PDN are co-optimized to minimize power loss

with an iterative convex program. While there are existing stochastic approaches to optimize

the water network operation [5, 39, 40, 50, 53, 58] and power network operation [60, 90],

there is no work optimizing the coupled WDN-PDN operation subject to uncertainty.

Additionally, there are a few papers that look at the resilience across a coupled power-water

system, e.g., [101, 133, 135]. These works have helped define coupled power-water network

resilience metrics. However, to the best of our knowledge, no other work considers the impact

of optimal WDN control on the resilience of power and water distribution networks.

1.3. Organization of the Dissertation

This dissertation consists of seven main chapters. Chapters 3-5 focus on formulating the in-

tegrated water-power problem as a chance-constrained optimization problem subject to net-

work uncertainty. They explore formulating the chance-constrained optimization problem,

different sources of uncertainty, scenario-based solution approaches, the impact of approx-

imations and relaxations, and ways to reduce network measurements. We chose a chance-

constrained optimization framework because it gives a way to quantify risk and allows for the

constraints to satisfied almost all of the time but occasional violations are acceptable so that

the solution is less conservative. Chapters 6-8 address the limitations and additional con-

siderations arising from Chapters 3-5, such as conservativeness, computational tractability,

maximizing the value added by providing grid services, and maintaining network resiliency

of new operation strategies. The main content of each chapter is described below.

In Chapter 2, we estimate the WDN flexibility potential within the United States. We

characterize the energy and power capacities of Wisconsin municipal water utilities and

extrapolate the data to get a rough measure of the WDN potential within the United States.

We use these calculations to motivate the potential impact of the following work.

In Chapter 3, we present a chance-constrained optimization problem to schedule WDN

pumping subject to WDN and PDN constraints while managing water demand uncertainty.

We selected this framework because it gives a way to quantify risk and allows for the con-

straints to be satisfied for almost all scenarios. We solve for a pump operation schedule and
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parameters in a balancing real-time control policy that updates the pump operation based

on the water demand forecast error. We apply a heuristic scenario-based approach to gain

insight into the performance and evaluate the impact of the PDN constraints and parameters

on WDN operation.

In Chapter 4, we consider power demand uncertainty when formulating a chance-constrained

optimization problem to schedule WDN pumping subject to WDN and PDN constraints. Un-

like Chapter 3, we develop a control policy that determines corrective control actions based

on power demand uncertainty (as opposed to a balancing control policy to match water

demand and supply) to prevent voltage limit violations. We apply convex relaxations and

approximations and use a scenario-based approach that provides performance guarantees for

the convexified problem.

In Chapter 5, we build off the work in Chapters 3 and 4 to formulate and solve the

chance-constrained voltage support problem given both water and power demand uncer-

tainty. We evaluate the relative importance of the water and power control policies, the

impact of the approximations, and the implications of how we define the cost of real-time

control actions on the optimal solution. Additionally, we explore the trade-offs in conserva-

tiveness, computational tractability, and measurement requirements given the formulation

and solution approach.

In Chapter 6, we investigate solution approaches and formulations to improve the com-

putational tractability and performance of the uncertainty-aware voltage support problem.

We do this by proving that the monotonicity properties for dissipative flow networks apply to

the WDN under several assumptions. With the use of monotonicity properties, affine control

policies, and approximations, we reformulate the problem as a computationally tractable ro-

bust counterpart. We evaluate the implications of the monotonicity property assumptions on

the problem. We propose an analytically reformulated probabilistic approach that manages

uncertainty differently in the water and power network. We compare the performance of

the robust and probabilistic approaches in terms of computation time, cost, and empirical

violation probabilities.

In Chapter 7, we present a robust water pumping optimization problem to provide local

and grid level services concurrently to the power grid. By considering multiple grid services

simultaneously, we can fully utilize the flexibility provided to the power grid and generate

additional revenue for the WDN. We formulate a robust water pumping problem to determine

the amount of voltage support and frequency regulation that can be provided subject to

network constraints while managing power demand uncertainty. We evaluate the benefits
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and challenges of providing multiple services together and how these services complement or

compete with each other.

In Chapter 8, we evaluate the impact of optimal control strategies on the operational

resiliency of the WDN. We consider an optimal water pumping problem that minimizes the

electricity costs as well as an optimal water pumping problem that also provides frequency

regulation. The optimal control strategies are compared with a conventional rule-based op-

eration. Through hydraulic simulations, we assess the performance of these control strategies

given a wind-based hazard that causes pump outages.

Note that the mathematical notation is defined separately in every chapter.
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Chapter 2.

Estimating the Flexibility Potential of

Water Distribution Networks

In this chapter, we estimate the flexibility potential of WDNs to determine the viability of

leveraging water distribution networks (WDNs) as flexible assets. The goal of this chapter

is to evaluate the potential impact WDNs could have on the power network which motivates

the work presented in this dissertation.

2.1. Wisconsin’s Water Distribution Network

Flexibility Potential

Because there are no published reports that have estimated the WDN’s flexibility potential

in the United States, we derive our own estimate. We use Wisconsin’s publicly available data

on municipal and investor-owned water utilities to estimate flexibility potential in Wisconsin

and extrapolate the data to give a very rough estimate of flexibility potential in the United

States. The presented calculations show the order of magnitude of the entire nation’s WDN

flexibility potential.

Our data is drawn from Wisconsin’s Public Service Commission; specifically, we use the

Annual Report Data e-portal for the year 20192. Our estimate covers both municipal and

investor-owned water utilities. It should be noted that very few water utilities are private

[23]; for example, there is only one investor-owned water utility in Wisconsin.

We estimate WDN flexibility using the terms ‘power capacity’ and ‘energy capacity’,

22019 is the most recent reporting year where all utilities had filed their reports.
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analogous to a battery. We define power capacity Pcap as the maximum power consumption

of the WDN’s supply pumps, i.e., the difference in power if all the pumps were switched on

or off given a signal. We define energy capacity Ecap as the product of the power capacity

and the duration d. The duration d calculates how long the water demand could be met by

the elevated storage tanks if the pumps were forced off, i.e., the sum of the usable volumes

of the storage tanks divided by the sum of the volumetric water demands. We estimate Pcap

and Ecap for every water network utility in Wisconsin.

It can be challenging to distinguish between water network treatment and distribution

processes when estimating the flexibility potential. This is due to a lack of standardized

terminology in utility reports [88]. How each utility reports their pumps’ primary purpose

(i.e., primary, booster, or standby) and primary destination (i.e., treatment or distribu-

tion) impacts the flexibility potential estimate. Additionally, the treatment and distribution

processes complement each other. Especially in smaller networks, pumps in the treatment

process can also support the distribution process [88]. Consequently, we present two cases

when estimating the potential in order to provide a more comprehensive estimate.

• Case 1: Considers only the electric supply pumps reported in the WDN.

• Case 2: Considers the electric supply pumps reported in the WDN and the electric

primary pumps in the drinking water treatment plant.

In both cases, we only consider pumps with electric motors. We collect the following data

from each utility’s 2019 annual report [93].

• Horsepower of pumps with electric motors. We only consider active pumps (i.e., not

standby pumps) and include pumps whose primary destination is either distribution

(Case 1) or distribution and treatment (Case 2). We use this metric to estimate the

power consumption of the pumps. Therefore, the power capacity Pcap is calculated

from the sum of the pumps’ horsepower. We assume a pump efficiency of 75% which is

the pump efficiency default in EPANET, the U.S. Environmental Protection Agency’s

free WDN modeling and simulation software [102].

• Monthly totals of water entering the distribution system. This is used to calculate the

average hourly water demand, i.e., the sum of the monthly water demands divided by

8760 hours/year.

• Total capacity of the elevated storage tanks, standpipes, and reservoirs that have a

positive elevation difference. The duration d is calculated from the total capacity of
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available storage divided by the average hourly water demand. The energy capacity

Ecap is then calculated as Pcap × d.

We collect data on the population served for each water utility from the Safe Drinking

Water Information System (SDWIS) Federal Reporting database [118], which reports basic

information and water quality violations for every water utility in the United States. With

this data, we classify the Wisconsin water utilities by size3. We report the total power

capacity and energy capacity in Wisconsin for water utilities’ distribution supply pumps

(Case 1) in Table 2.1 and for primary treatment pumps and distribution supply pumps

(Case 2) in Table 2.2.

Table 2.1: Estimated Energy and Power Capacities in Wisconsin’s Water Utilities
(Case 1 - Distribution)

Utility Size Number of Utilities Total Power Capacity Total Energy Capacity
(GW) (GWh)

Very Small 87 0.004 0.308
Small 259 0.029 1.671
Medium 88 0.033 1.359
Large 73 0.089 2.440
Very Large 4 0.049 0.862
Total 511 0.203 6.640

Table 2.2: Estimated Energy and Power Capacities in Wisconsin’s Water Utilities
(Case 2 - Treatment and Distribution)

Utility Size Number of Utilities Total Power Capacity Total Energy Capacity
(GW) (GWh)

Very Small 87 0.004 0.324
Small 259 0.031 1.742
Medium 88 0.037 1.516
Large 73 0.104 2.757
Very Large 4 0.083 1.343
Total 511 0.259 7.682

3Utility size is determined by population served. We follow the definitions used in [88], where very small is
25-500 people, small is 501-3,300 people, medium is 3,301-10,000 people, large is 10,001-100,000 people,
and very large is greater than 100,000 people.
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2.2. Estimating the Water Distribution Network

Flexibility Potential in the U.S.

We then extrapolate this data to the United States, where there are around 51,000 year-

round water utilities [88]. We do not consider the 18,390 non-transient non-community water

systems (e.g., schools and hospitals) and 83,470 transient non-community water systems (e.g.,

campgrounds or gas stations) because they are not open year-round. We calculate the average

power capacities and energy capacities for each utility size classification in Wisconsin. Given

the data on the number of utilities in the U.S. and their size, we extrapolate the Wisconsin

averages to get the total estimated energy and power capacities by utility size in the United

States. Cases 1 and 2 are shown in Tables 2.3 and 2.4, respectively. While these numbers are

approximate, they do indicate that drinking water network pumping is a sizable flexibility

resource. For comparison, California’s energy storage mandate aims for 1.325 GW [91].

Table 2.3: Estimated Energy and Power Capacities for Water Utilities in the U.S.
(Case 1 - Distribution)

Very Small Small Medium Large Very Large Total
Number of Utilities 28,462 13,737 4,936 3,802 419 51,346
Power Capacity (GW) 1.2 1.6 1.8 4.6 5.1 14.3
Energy Capacity (GWh) 100.7 88.6 76.2 127.1 90.3 482.9

Table 2.4: Estimated Energy and Power Capacities for Water Utilities in the U.S.
(Case 2 - Treatment and Distribution)

Very Small Small Medium Large Very Large Total
Number of Utilities 28,462 13,737 4,936 3,802 419 51,346
Power Capacity (GW) 1.3 1.6 2.1 5.4 8.7 19.1
Energy Capacity (GWh) 106.0 92.4 85.0 143.6 140.7 567.7

However, there are five significant limitations to the accuracy of this estimate. First, the

energy intensity and storage capacity of water networks vary significantly by region. For

example, while the waste water and drinking water networks nationally consume around 4%

of the electricity in the U.S., 19% of the electricity consumption in California goes to water

related uses [28, 54]. Second, the actual energy capacity is highly variable upon current water

demand. During peak water demands, the energy capacity would be smaller because the

tanks would be able to supply the network for a shorter amount of time before being depleted
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and vice versa for low demand times. For example, if we consider the average hourly water

demand taken from the reported minimum daily demand (i.e., the reported minimum water

pumped for any one day in 2019 for each utility), the energy capacity for water distribution

network supply pumps in Wisconsin and the United States is 31.5 GWh and 2,733.6 GWh,

respectively. Third, while we calculated the flexibility potential for all WDNs, prioritizing

the use of larger utilities (e.g., large to very large) to provide power system services may

make more sense economically. This is because larger utilities generally have more pumps and

tanks and are therefore able to provide more demand response services. Fourth, this estimate

only captures the temporal flexibility (i.e., the WDN shifting power consumption in time by

storing water in elevated storage tanks) and not the spatial flexibility (i.e., shifting pumping

load between different pumps) in the WDN. And fifth, the volume of a tank that can be used

for operational storage is less than the physical storage capacity of the tank. This is because

tanks are also needed to maintain system pressure as well as provide sufficient amounts of

water for contingency firefighting. The specific volume that can be used can vary based on

state-wide regulatory constraints and utility-specific requirements. For instance, there may

be a required amount of ‘dead storage’ needed to meet minimum pressure requirements for

all consumers [2]. It can be unclear in utility reports whether the tank capacity includes the

volume of stored water designated as dead storage.

2.3. Chapter Conclusion

In this chapter, we estimated the flexibility potential of WDNs in Wisconsin and extrapolated

the data to get a rough estimate of the flexibility potential of WDNs in the United States. We

found that WDNs appear to be a sizable flexibility resource. By considering additional data–

such as the seasonal and daily variation of water demand [20, 64], and the regional variation

in water network energy intensities [117], and regulatory constraints on operation–we can

further improve the reliability of the national water network potential estimate.
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Chapter 3.

Incorporating Water Demand

Uncertainty Sources in a

Chance-Constrained Water

Distribution Network Voltage

Support Problem

This chapter presents a chance-constrained optimization problem to schedule water distribu-

tion network (WDN) pumping subject to water and power distribution network constraints

while managing water demand uncertainty. We utilize a heuristic scenario-based approach to

solve for this preliminary problem. We evaluate the impact of the power distribution network

(PDN) parameters and voltage limits on the solution. This chapter is based on [112].

3.1. Notation

Sets

E Set of pipes in the WDN (indexed by e)

Ik Set of buses directly downstream of bus k in PDN (indexed by k)

J Set of junctions within the set of nodes in the WDN (indexed by j)

K Set of buses in the PDN (indexed by k)

N Set of nodes in the WDN (indexed by j)

P Set of pumps within the set of pipes in the WDN (indexed by e)
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R Set of reservoir nodes within the set of nodes in the WDN (indexed by j)

V Set of valves within the set of pipes in the WDN (indexed by e)

Variables

ce Control policy parameter for pump e (-)

Hj Hydraulic head at node j (m)

Le Head loss in pressure reducing valve e (m)

pe Real power demand of pump e (kW)

Pk Real power flow downstream of bus k (kW)

PL,k Real power consumed at bus k (kW)

qe Reactive power demand of pump e (kVAr)

Qk Reactive power flow downstream of bus k (kVAr)

QL,k Reactive power consumed at bus k (kVAr)

Vk Voltage magnitude at bus k (V2)

xe Volumetric water flow rate in pipe e (CMH)

Random Variables

d̃j Deviation in water demand of consumer j (CMH)

H̃j Deviation in hydraulic head at node j (m)

x̃e Deviation in water flow rate in pipe e (CMH)

Parameters

aje Element in incidence matrix A of nodes × pipes (-)

dj Forecasted water demand of consumer j (CMH)

h̄j Elevation head of node j (m)

hmax
j Maximum pressure head for node j (m)

hmin
j Minimum pressure head for node j (m)

Ĥe Pump e’s shut-off head (m)

ke Resistance coefficient for pipe e (h1.852 ·m−3(1.852)−1)

me Pump coefficient for pump e (h2 ·m−5)

N Number of scenarios (-)

rk Resistance of the line downstream of bus k (Ω)

V min
k Minimum voltage limit at bus k (kV)

V max
k Maximum voltage limit at bus k (kV)

Vset Voltage at feeder head (kV)

xk Reactance of the line downstream of bus k (Ω)
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xmin
e Minimum water flow rate of pump e (CMH)

xmax
e Maximum water flow rate of pump e (CMH)

β Constant in pump power consumption equation (kW/CMH · m)

∆T Length of time period (h)

δ Number of optimization variables (-)

ε User-selected violation level (%)

πe Forecasted energy price for pump e ($/kWh)

ψ User-selected confidence level (%)

µe Ratio between real and reactive power of pump e (-)

ρk Forecasted real power demand of consumers connected to bus k (kW)

ζk Forecasted reactive power demand of consumers connected to bus k (kVAr)

Functions

f(x, d̃) Constraints in chance-constraint with decision variables x and uncertainty d̃

3.2. Chapter Introduction

The objective of this chapter is to develop an approach to schedule water pumping subject to

the constraints of the water and power distribution networks. In contrast to past work that

coordinates optimal WDN operation and PDN operation [32, 62, 74, 82, 130], we consider

network uncertainty. Both networks are subject to uncertainty, for example, from stochastic

water demand, power demand, and equipment outages. Here, we consider only uncertain

water demand and we assume a control policy that allows the pumps to adjust in response

to forecast error by modifying pumping operations. Our approach determines the nominal

schedule of the pumps and the optimal control policy parameters.

The contributions of this chapter are 1) formulation of the optimization problem to oper-

ate the WDN subject to the WDN and PDN constraints, 2) reformulation of the problem

as a chance-constrained optimization problem considering water demand forecast error, 3)

application of a heuristic scenario-based approach to solve the chance-constrained problem,

4) assessment of the impact of PDN constraints on optimal pumping, and 5) investigation

of the approach’s performance.

The remainder of the chapter is organized as follows. Section 3.3 gives the problem de-

scription and assumptions. Section 3.4 formulates the deterministic and chance-constrained

problems and describes the solution approach. Section 3.5 describes our case study and

its results. Finally, Section 3.6 discusses the limitations of our approach and how these
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limitations set the direction for the following chapters.

3.3. Problem Description and Assumptions

In this chapter, we develop an approach to schedule the pumps in a WDN to minimize

pumping costs while ensuring WDN and PDN constraints are satisfied. Fig. 3.1 shows the

topology of a coupled WDN and PDN. The pumps draw power from specific buses in the

PDN. We first develop the deterministic optimization problem in which pumping costs are

minimized subject to the water and power flow equations and inequality constraints limiting

the hydraulic heads, pipe flows, voltages, and apparent power flows. We then reformulate the

problem into a chance-constrained problem assuming uncertain water demand. We assume

that the inequality constraints must hold probabilistically at a specified violation level, which

is a design variable. In order to ensure that water demand is satisfied despite forecast error,

we assume the pumps use an affine control policy to change their operation as a function of

the total water demand forecast error. We optimize the control policy parameters together

with the pump schedule. In this chapter, we do not consider water storage tanks; however,

they could be added to the formulation, increasing the number of constraints and decision

variables since storage tank inflow/outflow can be scheduled and controlled in real time like

pumping.

The problem is solved over a single time period of length ∆T . The WDN is depicted as

a directed graph (N , E) composed of sets of nodes N and edges E . The nodes consist of a

disjoint set of junctions J and reservoirs R, i.e., N = {J ∪ R}. The edges that connect

the nodes are pipes that may have pumps (P ⊂ E) or valves (V ⊂ E); there is at most one

pump or valve on a pipe. We denote a pipe e : g → h where the water flowing in pipe e goes

from sending node g to receiving node h. We assume that the water flow in the pipes does

not change direction within the time period and the flow is indicated by the directed graph.

We also assume that the on/off states of pumps are determined in advance of the scheduling

period, i.e., we do not consider the possibility of turning off the pumps.

We assume the PDN is radial and includes a set of buses K to which consumers and water

pumps are connected. We also assume that the power distribution network is balanced and

pumping actions have no impact on electricity prices, i.e., the WDN is a price taker. Finally,

we assume we have full knowledge of the WDN and the PDN, while in practice they are

usually operated by different entities.
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Figure 3.1: Water (left) and power (right) distribution networks. Dashed lines show
where water pumps are connected in the power distribution network.

3.4. Problem Formulation

In this section, we develop the problem formulation. We first formulate the deterministic

problem. Then, we introduce uncertain water demand and formulate the chance constraints.

Finally, we describe our solution approach using a scenario-based method.

3.4.1. Water Constraints

We use the hydraulic constraints from [10]. We modify the formulation to include pressure

reducing valves and reservoirs as defined in [32].

Nodes, N

The total hydraulic head at node j, denoted Hj, is comprised of the elevation head h̄j and

the pressure head. It is constrained to ensure sufficient water pressure

hmin
j + h̄j ≤ Hj ≤ hmax

j + h̄j ∀ j ∈ N . (3.1)
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Reservoirs are treated as an infinite source of water and, therefore, have a fixed pressure

head. We set the reservoirs’ hydraulic head equal to the elevation head

Hj = h̄j ∀ j ∈ R. (3.2)

For junctions, we denote the forecasted water consumption at junction j as dj. We assume

the water consumption within the time step is constant, non-negative, and there is no storage

at the junction. The flow continuity constraint is∑
e∈E

ajexe = dj ∀ j ∈ J , (3.3)

which ensures that the water consumed at junction j must equal the sum of the volumetric

flow rate xe in the pipes entering and exiting that junction. The parameter aje is an element

in the node-edge incidence matrix A which describes the connections in (N , E). Row j

corresponds to node j ∈ N and column e corresponds to pipe e ∈ E . Within this matrix, 1

or -1 at (j, e) designates that node j is the receiving or sending end of pipe e, respectively.

The remaining entries are 0.

Edges, E

The head loss along a pipe is equal to the head difference between the sending and receiving

node

∑
j∈N

ajeHj =


Ĥe −me (xe)

2 ∀ e ∈ P ,

-Le ∀ e ∈ V ,

-ke (xe)
1.852 ∀ e ∈ E \ (P ∪ V),

(3.4)

where Ĥe and me are pump curve coefficients, and ke is a resistance coefficient. The first

case corresponds to pipes with pumps, the second to pipes with valves, and the third to the

remaining pipes. For pipes with pressure reducing valves, the head loss Le ≥ 0 is a decision

variable. The pipe flow is nonnegative and the pump flow is bounded

xmin
e ≤ xe ≤ xmax

e ∀ e ∈ P . (3.5)
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3.4.2. Power Constraints

The real and reactive power consumed at each bus are

PL,k =

 ρk + pe, pump e connected to bus k

ρk, otherwise
, (3.6)

QL,k =

 ζk + qe, pump e connected to bus k

ζk, otherwise
, (3.7)

∀ k ∈ K, where ρk and ζk are the real and reactive power demand of consumers connected to

bus k, and pe and qe are the real and reactive power demand of pump e. While pumps are

best modeled as motor loads, for simplicity, we assume that the pumps are constant power

loads with a constant ratio of real to reactive power µe. To model the power flows, we use

the branch flow model [7]

∑
n∈Ik+1

Pn = Pk − rk
P 2
k +Q2

k

V 2
k

− PL,k+1, (3.8)

∑
n∈Ik+1

Qn = Qk − xk
P 2
k +Q2

k

V 2
k

−QL,k+1, (3.9)

V 2
k+1 = V 2

k − 2 (rkPk + xkQk) +
(
r2
k + x2

k

) P 2
k +Q2

k

V 2
k

, (3.10)

∀ k ∈ K, where Pk and Qk are the real and reactive power flow downstream of bus k, rk

and xk are the resistance and reactance of the line downstream of bus k, and Vk is the

voltage at bus k. The set Ik+1 consists of all lines downstream of and directly connected to

bus k+ 1. The voltage at the feeder head is regulated to Vset and the remaining voltages are

constrained

V min
k ≤ Vk ≤ V max

k ∀ k ∈ K. (3.11)

We could also bound the apparent power flows but in practice PDNs usually hit their voltage

limits first.
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3.4.3. Objective

Our objective is to minimize the scheduled energy costs of pumping water over all pumps in

the WDN, i.e.,

min
x

∑
e∈P

πepe∆T, (3.12)

where πe is the price of energy for pump e. The decision variable x includes xe, Hj, Le, Pk,

Qk, and Vk. The scheduled power consumption is a function of the flow rate xe and head

gain in the pump, which can be approximated by a quadratic function of xe. For a fixed

speed pump

pe = β
(
Ĥe −me (xe)

2
)
xe ∀ e ∈ P , (3.13)

where β is a constant. This equation is modified from the pump power consumption equation

in [130], which uses variable speed pumps. The objective function is a cubic function of the

flow.

3.4.4. Chance Constraints

We next consider uncertainty in water demand. We define d̃j as the water demand forecast

error at junction j. We minimize the expected energy cost of pumping and since we assume

the forecasts are unbiased, the objective function is equivalent to that in the deterministic

case. The decision variable is expanded to x = {ce, xe, Hj, Le, Pk, Qk, Vk}, where ce is the

control policy parameter of pump e. We assume an affine control policy that compensates

for water demand forecast error by varying the output of supply pumps (i.e., pumps drawing

from reservoirs not in-line booster pumps that increase pressure head)

x̃e = ce
∑
j∈J

d̃j ∀ e ∈ P , (3.14)∑
e∈P

ce = 1, (3.15)

where x̃e is the real-time deviation of water flows in pipes with pumps from the scheduled flow.

In (3.14), the total water demand deviation is multiplied by the control policy parameters to

determine how the pumps should adjust in order to compensate the forecast error. In (3.15),

the control policy parameters sum to one so that the changes in pumping operation fully

compensate the water demand forecast error.
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Using tilde ( ·̃ ) to refer to deviations in variables resulting from the real-time control of

pumps compensating water demand forecast error, we can write the stochastic counterparts

of the deterministic constraints. For example, (3.1) becomes

hmin
j + h̄j ≤ Hj + H̃j ≤ hmax

j + h̄j ∀ j ∈ N .

The stochastic inequality constraints can be written as f(x, d̃) ≤ 0 and transformed into a

chance constraint

P
(
f(x, d̃) ≤ 0

)
≥ 1− ε (3.16)

where the constraints must hold jointly with a probability of 1−ε, where ε is the user-selected

violation level. The resulting problem cannot be directly solved. Possible solution approaches

include i) assuming specific uncertainty distributions, allowing the chance constraints to hold

individually rather than jointly, and reformulating into an equivalent deterministic problem;

ii) distributionally robust optimization; and iii) scenario-based approaches. However, since

our problem includes nonlinear and nonconvex constraints, existing methods for i) and ii)

do not work. Therefore, we resort to iii).

3.4.5. Scenario Approach

We use the scenario approach [17] to solve our chance-constrained optimization problem. For

convex problems, [17] gives a requirement for the number of randomly-selected scenarios N

for which the stochastic constraints must hold to ensure feasibility at the chosen violation

level [17]

N ≥ 2

ε

(
ln

1

ψ
+ δ

)
, (3.17)

where δ is the number of optimization variables and ψ is a user-selected confidence level.

For example, for the case study presented in Section 3.5, a violation level of ε = 0.05 and

a confidence level of ψ = 10−5 requires N = 4, 621 scenarios. If the violation level is

reduced to ε = 0.02, the number of instances needed is N = 11, 552. Since our problem

is nonconvex, we apply the scenario approach heuristically; the guarantees derived in [17]

no longer apply. Moreover, we test the approach with a varying number of scenarios with

the goal of gaining insight into the performance and drawbacks of the method. In following

chapters, we convexify the integrated power-water problem in order to apply the scenario

approach with performance guarantees (Chapters 5 and 6) and plan to explore applying

scenario-based approaches tailored to nonconvex problems, e.g., [41] (Chapter 7).
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Table 3.1: Pump Parameters

Pump Ĥe (m) me

(
h2m−5

)
xmin
e (CMH) xmax

e (CMH)
1 100.5 0.0004 25 325
2 100.0 0.0001 50 700

3.5. Case Study

3.5.1. Set Up

We use a modified version of the WDN presented in [21]; the topology is shown in Fig. 3.1.

Ref. [130] also uses this network but makes different modifications than we do. Specifically,

we model the pumps in the pumping station as a single pump with equivalent head and flow,

we do not model the booster pump, and we model pressure reducing valves (using the model

from [130]) instead of control valves. The WDN consists of 2 reservoirs, 8 junctions, and 11

pipes with 2 fixed speed pumps and 2 pressure reducing valves. The consumer water demand

and ke ∀ e ∈ E \ (P ∪ V) are from [21]. The nodal elevation, minimum pressure head, and

pressure reducing valve placements are from [130]. Since we do not model the booster pump

nor add a surface tank, we changed the elevations at junctions 4, 5, and 6 (to 0, 20, and 40

m, respectively) and the minimum pressure head at junction 6 (to 10 m). Pump parameters

are shown in Table 3.1. We set β = 6.97 × 10−6 kg/CMH · m. The forecasted total water

demand is 420 cubic meters per hour (CMH).

For the PDN, we use the topology of the IEEE 13-node feeder, shown in Fig. 3.1 [52].

Pumps 1 and 2 are connected to buses 8 and 4, respectively. The load at each bus is set

to the average over the 3 phases. The distributed load along the line from bus 1 to 6 is

placed at bus 1. The line impedance is calculated from the line lengths and the impedance

of the first phase listed in the feeder specification sheet. The switch and transformer are each

replaced with a line that has the same impedance as the other segment on the same lateral.

The shunt admittance and shunt capacitors are neglected. We explore three consumer power

demand levels: 105%, 108%, and 110% of the nominal load at all buses. We set the price of

electricity to πe = $100/MWh ∀ e ∈ P , and the line to neutral voltage at the feeder head to

Vset = 4.16 kV. The voltage limits are V min
k = 0.95 pu and V max

k = 1.05 pu ∀ k ∈ K. The

ratio of real to reactive power consumed by the pumps is µe = 3 ∀ e ∈ P .

We use a Gaussian probability density function to randomly generate water demand fore-

cast error with mean 0 and standard deviation 0.10dj ∀ j ∈ J . The distribution is truncated
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Figure 3.2: Impact of distribution line parameters on pumping costs. (Top left) Pump-
ing cost as a function of pump 1’s flow rate and (Top right) as a percentage
of the nominal line resistance and reactance. (Bottom right) Minimum bus
voltage as a function of the percentage of the nominal line resistance and
reactance.

and scaled using an acceptance/rejection approach [14] such that only points within three

standard deviations of the mean are included. We assume the errors at each junction are

independent. We explore cases with N = 10, 50, 100, and 1000 scenarios. For cases N = 10

and 50 we solved each case 100 times and for cases N = 100 and 1000 we solved each case 10

times, and report the average results. Cases with fewer scenarios exhibit higher variability

in results, requiring a larger number of solution instances to obtain reliable averages. The

solver was unable to find a feasible solution in one instance for the 110% consumer power

demand level and N = 1000 case. We generated another instance so that we could compute

the average across 10 instances, but recognize that, if this occurred in a real system with

real uncertainty scenarios, this could be problematic.

We solve the problem using the optimization package JuMP in Julia with Ipopt [127].

Since the problem is nonconvex and the solver can only guarantee a local minimum, we solve

each problem 40 times using different initial guesses for the decision variables and chose the

solution with the lowest cost.

3.5.2. Impact of Power Network Parameters On Pumping

We first analyzed the impact of PDN line parameters on the deterministic solution. The

objective function is a concave function of the pumps’ flow rates. The top left plot of Fig. 3.2
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shows total pumping costs as a function of pump 1’s flow rate. When the voltage constraints

are not active, pump 1’s optimal flow rate is at point A. As the line impedances increase,

the voltages drop, approaching their lower limits. In the right two plots, we vary the line

resistances rk and reactances xk as a percentage of their nominal values. The total pumping

costs are shown in the top plot and the minimum bus voltages are shown in the bottom plot.

Bus 8 always has the lowest voltage in the network. As the line resistance increases, the

voltage at bus 8 gets closer to its lower limit of 0.95 pu. Once the voltage constraint becomes

active, pump 1 must decrease its power consumption/flow rate to maintain the minimum

bus voltage at 0.95 pu (i.e., move from point A toward point B), which increases pumping

costs. This transition is shown by the light blue shaded area connecting the three plots.

When pump 1 reaches point B, there is a second flow rate, i.e., point C, that yields the same

total pumping cost. The minimum bus voltage increases when pump 1 switches to point C.

The optimal flow rate for pump 1 remains at point C as the impedance continues to increase

until the problem becomes infeasible. Note that when the PDN constraints become active

and pumping is shifted from point A to point C, there is a 60% decrease in pump 1’s flow

rate. Pump 1 reduces its power consumption by 67.44 kW (51.23% power reduction).

All of the reactance curves in Fig. 3.2 exhibit the same behavior. Pump 1 moves from

point A to point B when voltage constraints are active and resistances are increased, and

then to point C when there is an equivalent cost. For higher reactance values, the solution

will switch to point C for smaller resistance values (effectively shifting the curve left).

The effect of the consumer power demand level on the pump flow rates is shown in Fig. 3.3.

The curves show pump 1’s maximum flow rate as a function of pump 2’s flow rate for different

consumer power demand levels. Pump 1’s maximum flow rate is constrained by PDN voltage

constraints. The gray line shows all possible combinations of flow rates that meet the total

forecasted water demand. The line is darkened for flow rates that satisfy the pump flow

rate bounds (3.5). For the deterministic problem, the scheduled flow rates must fall on

this darkened line. When pump 1’s maximum flow rate is above this line there are feasible

solutions; however, they become more limited as consumer power demand increases. For

example, when the consumer power demand level is 115%, pump 1’s maximum flow rate

(red) is below the gray line for all pump 2 flow rates and so there is no feasible solution.
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Figure 3.3: Pump 1’s maximum flow rate as a function of pump 2’s flow rate for
different consumer power demand levels.

3.5.3. Control Policy Parameters

We next solved the chance-constrained optimization problem for each case and consumer

power demand level. The time to solve the problem ranged from less than a second when

N = 10 to around a minute when N = 1000. We report average control policy parameters

for pump 1 in Table 3.2. In this formulation, a pump’s control policy parameter is equivalent

to the percentage of the total real-time water demand deviation that the pump is responsible

for offsetting. As the consumer power demand increases the set of feasible operating points

reduces (as seen in Fig. 3.3), forcing pump 1 to point C. However, at point C pump 1

has more flexibility to respond to water demand forecast error than when it is at point A.

Therefore, its control policy parameter increases to 46%. For N = 1000 we find that, usually,

at least one scenario requires pump 1 to operate at point C and so pump 1’s control policy

parameter is approximately 46%. We see more variation across solution instances as N

and consumer power demand decreases. For N < 1000, pump 1’s average control policy

parameter increases with increasing power demand. We do not observe a clear upwards or

downwards trend in pump 1’s average control policy parameter as N increases.

26



Table 3.2: Pump 1’s Average Control Policy Parameter (%)

Power Demand (%) N = 10 N = 50 N = 100 N = 1000
105 28.9 27.7 25.3 46.2
108 44.9 31.9 37.0 46.2
110 46.2 46.2 46.2 46.1

Table 3.3: Violation Probability (%), Mean µ and Standard Deviation σ

Power Demand N = 10 N = 50 N = 100 N = 1000
(%) µ σ µ σ µ σ µ σ
105 8.40 9.83 3.85 3.81 1.86 1.06 1.32 0.13
108 2.27 6.49 1.47 1.19 1.19 0.36 1.11 0.07
110 1.52 3.55 1.17 0.11 1.20 0.12 1.14 0.13

3.5.4. Feasibility Range

In order to evaluate the solutions obtained for each case and consumer power demand level,

we tested the solutions using 10,000 new sets of randomly generated water demands for

all junctions. Specifically, for each solution instance and set of randomly generated water

demands, we determined if the pumping schedule and real-time pump adjustments computed

from the control policy parameters would lead to water and power flows that satisfy the WDN

and PDN constraints. Table 3.3 shows the average and the sample standard deviation of the

violation probabilities. As expected, the empirical violation probability generally decreases

as N increases. We observe a slight increase in violation probability despite an increase in

scenarios from N = 50 to 100 for the 110% consumer power demand level; however, this is

due the specific scenarios drawn in those cases. Averaging more solution instances would

likely eliminate this issue.

We observe that the heuristically-applied scenario approach is effective solving our problem

and finding schedules and control policy parameters that lead to feasible solutions despite

water demand forecast error. Empirically, we find that only N = 100 scenarios are needed

to consistently achieve violation probabilities less than 5% for all consumer power demand

levels. This is significantly less than the N = 4, 621 scenarios computed with (3.17). Simi-

larly, only N = 1000 scenarios are needed to consistently achieve violation probabilities less

than 2%, as compared to N = 11, 552 scenarios computed with (3.17). We also find that

the violation probability varies with the consumer power demand level, where solutions com-
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puted for higher power demands generally have lower violation probabilities. We note that

our results are not generalizable to other coupled power and water distribution networks;

however, this preliminary investigation shows that our approach is worth testing on realistic

networks. We discuss the scalability of the scenario approach to larger networks and time

horizons in Chapter 6.

3.6. Chapter Conclusion

We explored the performance of a heuristic scenario-based approach on a nonconvex chance-

constrained optimal water pumping problem including water and power network constraints

and water demand forecast error. By including power distribution network constraints in

the problem, we can ensure that water pumping does not exacerbate voltage issues in power

distribution networks. We computed both the optimal pumping schedule and the parameters

of an affine control policy that would be used to modify pumping to respond to water demand

forecast errors in real time. We found that the approach can achieve low chance constraint

violation probabilities with a relatively small number of scenarios. However, we noted several

challenges, namely that finding a solution requires reinitializing the nonlinear solver multiple

times and no guarantee that the solution is the global minimum. Moreover, the approach

confers no probabilistic guarantees when applied to a nonconvex problem. To address this,

the subsequent chapters examine relaxation/approximation techniques when modeling the

water and power networks to make the problem more computationally tractable. We also

use solution approaches that guarantee a user-specified performance.
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Chapter 4.

Incorporating Power Demand

Uncertainty Sources in a

Chance-Constrained Water

Distribution Network Voltage

Support Problem

In this chapter, we take into consideration power demand uncertainty. We improve the water

distribution network (WDN) and power distribution network (PDN) model used and solve

for the chance-constrained voltage support problem. The solution approach uses a scenario-

based approach that provides performance guarantees for convex programs. Approximation

and relaxation techniques are used to convexify the WDN and PDN constraints. This chapter

is based on [114].

4.1. Notation

Sets

E Set of pipes in the WDN (indexed by e)

Ik Set of buses directly downstream of bus k in PDN (indexed by k)

J Set of junctions within the set of nodes in the WDN (indexed by j)

K Set of buses in the PDN (indexed by k)

N Set of nodes in the WDN (indexed by j)
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P Set of pumps within the set of pipes in the WDN (indexed by e)

R Set of reservoir nodes within the set of nodes in the WDN (indexed by j)

S Set of storage tanks within the set of nodes in the WDN (indexed by j)

T Set of time steps in the scheduling problem (indexed by t)

V Set of valves within the set of pipes in the WDN (indexed by e)

Φ Set of phases in the PDN (indexed by φ)

Decision Variables

Ct
e Power control policy row vector for pump e at time t (-)

H t
j Hydraulic head at node j at time t (m)

H t
j,out Tank outlet hydraulic head for tank j at time t (m)

Ĥ t
e Head loss of pipe e at time t (m)

Lte Head loss in pressure reducing valve e at time t (m)

pte,φ Real power demand of pump e at phase φ and time t (kW)

P t
k Real power flow vector (all phases) entering bus k at time t (kW)

P t
L,k,φ Real power consumed at bus k, phase φ at time t (kW)

qte,φ Reactive power demand of pump e at phase φ and time t (kVAr)

Qt
k Reactive power flow vector (all phases) entering bus k at time t (kVAr)

Qt
L,k,φ Reactive power consumed at bus k, phase φ at time t (kVAr)

xte Volumetric flow rate in pipe e : g → h (from node g to h) at time t (CMH)

Y t
k Voltage magnitude squared vector for all phases at bus k at time t (kV2)

Functions

f(x, ρ̃) Constraints in chance-constraint with decision variables x and uncertainty ρ̃

F t(·) Scheduled WDN operation cost at time t given decision variables

Ŷ t
k,φ(·) Voltage magnitude squared at bus k, phase φ, and time t given power demand

Random Variables

s̃t Binary variable indicating voltage limit violation occurrence (-)

ρ̃tk,φ Deviation in real power demand at bus k, phase φ, and time t (kW)

Parameters

aje Element in incidence matrix of nodes × pipes (-)

b1
e, b

0
e Coefficients in upper bound for pipe headloss convex hull for pipe e (h/m2, m)

dtj Forecasted water demand of consumer j at time t (CMH)

f 1
e , f

0
e Convex hull upper bound coefficients for pump e’s power (m, h/m4)

g Power control policy weighting coefficient
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h̄j Elevation head of node j (m)

hmin
j Minimum pressure head for node j (m)

hmax
j Maximum pressure head for node j (m)

ke Resistance coefficient of pipe e (h2/m5)

Mkn Parameter matrix formed from impedances for line kn (Ohms)

M Big-M coefficient (-)

m1
e,m

0
e Pump hydraulic function parameters for pump e (h/m2, m)

N Number of scenarios required (-)

Nkn Parameter matrix formed from impedances for line kn (Ohms)

V min
k Minimum voltage limit at bus k (kV)

V max
k Maximum voltage limit at bus k (kV)

Vset Voltage at feeder head (kV)

xmax
e Maximum flow rate of pump e (CMH)

xmin
e Minimum flow rate of pump e (CMH)

β Constant in pump power consumption equation (kW/CMH · m)

∆T Length of time period (h)

δ Number of decision variables in the optimization problem (-)

γj Cross-sectional area of tank j (m2)

ε User-selected violation level (%)

µe Ratio between real and reactive power of pump e (-)

πte Forecasted energy price at time t for pump e ($/kWh)

ψ User-selected confidence level (%)

ρtk,φ Forecasted real power demand at bus k, phase φ at time t (kW)

ζtk,φ Forecasted reactive power demand at bus k, phase φ at time t (kVAr)

4.2. Chapter Introduction

The goal of this chapter is to develop an approach to schedule WDN operation given WDN

and PDN constraints subject to power demand uncertainty at buses with loads. To ensure

that PDN voltage constraints are satisfied in the presence of uncertainty, we formulate the

problem as a chance-constrained optimization problem and develop a real-time control policy

that adjusts the water supply pumps’ flow rates (and consequently power consumption) from

the scheduled operation as a function of forecast error when voltage violations happen. The

optimization problem determines both the WDN schedule and the control policy parameters.
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In chapter 3, we formulated a chance-constrained water pumping problem considering

water demand uncertainty. In contrast, here, we consider power demand uncertainty, leading

to a substantially different formulation. Moreover, we improve the formulation to include

storage tanks, PDN unbalance, and multiple time periods. Importantly, the control policy in

Chapter 3 and related work [95, 124] ensures supply and demand are balanced, whereas here

the control policy determines corrective control actions that prevent constraint violations.

The contributions of this chapter are the 1) design of a corrective control policy that re-

sponds to voltage constraint violations in real time, 2) formulation of a chance-constrained

optimization problem to choose a pumping schedule and control policy parameters consid-

ering power demand uncertainty, 3) reformulation of the problem into a chance-constrained

convex quadratically constrained program using relaxations and approximations, 4) appli-

cation of the scenario approach to solve the problem, and 5) assessment of the approach’s

performance through case studies.

4.3. Problem Description

We consider a coupled WDN and PDN where the water pumps are loads on the PDN. See

Fig. 4.1 for an example, which will be used in our case studies. In this section, we first

describe how the pumps are scheduled and controlled to satisfy network constraints. Then,

we detail the WDN and PDN models and apply relaxations to make the problem convex.

We introduce uncertainty and develop the control policy used to modify pump operation in

real time. Last, we formulate the chance-constrained optimization problem.

4.3.1. Schedule and Real-time Control of WDN Pumps

We solve for the WDN operational schedule (i.e., pump flow rates and tank levels) over

a scheduling horizon subject to WDN and PDN constraints. We ensure that the network

constraints are satisfied for the WDN’s scheduled operation given forecasted water and power

demands. The scheduling horizon is a set of discrete periods t ∈ T of duration ∆T .

Since the consumer power demand is uncertain, some forecast errors may cause PDN

constraint violations when the WDN is operated as scheduled. To address this, we develop

a control policy that adjusts the water supply pumps given power demand forecast errors.

Not all power demand forecast errors require corrective action by the water pumps. In

those cases, the pumps maintain their schedule. We assume that the WDN operator has
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Figure 4.1: Power (left) and water (right) distribution networks. The dashed lines
show where the supply pumps are connected in the PDN.

full knowledge of the PDN and the WDN operator determines when to use the control

policy based on the realized power demand forecast error at each bus and phase. Although

this assumption may be impractical due to the present lack of communication systems and

information sharing between WDNs and PDNs, this work provides us insights into the best

possible solution without considering these challenges. Section 4.3.6 develops the control

policy and Section 4.4 describes how we jointly optimize the schedule and control policy

parameters.

4.3.2. Power Distribution Network Model

We consider an unbalanced, radial PDN that includes a set of buses K to which consumers

and water pumps are connected. We use the 3-phase, linearized, unbalanced model presented

in [3]; however, other convex formulations could be used, such as [34]. In [3], the authors

neglect the loss terms and assume that the voltage unbalance at each bus is small. Let

Φ = {a, b, c} denote the three phases of the network. The linearized power flow model is [3]

Yt
k = Yt

n −MknP
t
n −NknQ

t
n ∀ k ∈ K, t ∈ T , (4.1)

Pt
k = Pt

L,k +
∑
n∈Ik

Pt
n ∀ k ∈ K, t ∈ T , (4.2)
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Qt
k = Qt

L,k +
∑
n∈Ik

Qt
n ∀ k ∈ K, t ∈ T , (4.3)

where Yt
k := [Y t

k,φ]φ∈Φ is a 3×1 vector of squared voltage magnitudes at bus k. Similarly, Pt
k

and Qt
k are 3×1 vectors of the real and reactive power flow entering bus k. The matrices Mkn

and Nkn are formed from the line impedance matrices. The set Ik contains all buses that

are directly downstream of bus k. The variables Pt
L,k := [P t

L,k,φ]φ∈Φ and Qt
L,k := [Qt

L,k,φ]φ∈Φ

are 3×1 vectors of the power demand at bus k, where the real and reactive power consumed

at each phase is

P t
L,k,φ =

 ρtk,φ + pte,φ, if pump e connected to bus k

ρtk,φ, otherwise
, (4.4)

Qt
L,k,φ =

 ζtk,φ + qte,φ, if pump e connected to bus k

ζtk,φ, otherwise
, (4.5)

∀ k ∈ K, φ ∈ Φ, t ∈ T , where ρtk,φ and ζtk,φ are the forecasted real and reactive net load, i.e.,

actual load minus distributed generation (which we assume is uncontrollable), at bus k and

phase φ. The variables pte,φ and qte,φ are the real and reactive power demands of pump e on

phase φ. We model the pumps as balanced three-phase constant power loads with real-to-

reactive power ratios of µe.

The bus voltages are constrained

(
V min
k

)2 ≤ Y t
k,φ ≤ (V max

k )2 ∀ k ∈ K, φ ∈ Φ, t ∈ T , (4.6)

where V min
k and V max

k are the lower and upper voltage limits at bus k. The voltage at the

feeder head is regulated to Vset. We could also include apparent power flow constraints on

the lines; however, since a voltage limit violation is more likely to occur first, we neglect

them.

4.3.3. Water Distribution Network Model

We consider an urban water distribution network. We assume the pipes’ water flow does

not change direction over the scheduling horizon. This assumption eliminates the need for

binary variables when modeling pipes without pumps or valves. It is frequently used in the

literature, e.g, in [31, 32, 130]. Note that pumps and valves only allow unidirectional water
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flow. As a result, we can represent the WDN as a directed graph (N , E) composed of a set

of nodes N and a set of edges E . Each node can be described as a junction j ∈ J , reservoir

j ∈ R, or elevated storage tank j ∈ S, i.e., N = J ∪ R ∪ S. The edges are pipes that

connect nodes. A pipe may include a pump or a valve, (P ∪ V) ⊆ E . We assume a pump’s

on/off status is determined in advance of the scheduling problem. The WDN is described

by the hydraulic head H t
j at node j and the volumetric flow rate xte through pipe e. Most

urban WDNs are capable of operational control through their SCADA system [28]. We use

the same hydraulic constraints as we did in Chapter 3 with several modifications: we include

water storage tanks, we add time indexing so we can formulate a multiperiod problem, we

approximate the pump characteristic curve with a linear function, and we use the Darcy-

Weisbach method instead of the Hazen-Williams method to model the pipe head loss. The

last two modifications allow us transform the optimization problem into a convex program.

Nodes, N

The hydraulic head H t
j is composed of the pressure head and the elevation h̄j. The node

constraints are

hmin
j + h̄j ≤ H t

j ≤ hmax
j + h̄j ∀ j ∈ N , t ∈ T , (4.7)

H t
j = h̄j ∀ j ∈ R, t ∈ T , (4.8)∑

e∈E

ajex
t
e = dtj ∀ j ∈ J , t ∈ T , (4.9)

H t
j,out = H t−1

j,out +
∆T

γj

∑
e∈E

-ajex
t
e ∀ j ∈ S, t ∈ T , (4.10)

where hmin
j and hmax

j are the minimum and maximum pressure heads at node j, dtj is the water

consumption at junction j, aje is an element in the node-edge incidence matrix describing

the connection of nodes and pipes in the network, and γj is the cross-sectional area of tank j.

In (4.7), the hydraulic head at each node is bounded.

ReservoirsR are treated as an infinite source of water with a fixed pressure head. Therefore

in (4.8), without loss of generality, the hydraulic head is set equal to the elevation head.

For junctions J , (4.9) enforces that the sum of water flow rates entering and exiting a

junction must equal the water consumption dtj at that junction.

For tanks S, we use the same formulation as [31]. We model the hydraulic head going into

and out of the tank, H t
j and H t

j,out, respectively, and assume the inlet of the water tank is
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located at the top of the tank. In (4.10), the hydraulic head at the tank outlet is calculated

from the hydraulic head at the previous time period and the net inflow of the tank. To ensure

that the tanks are not simply depleted at the end of the scheduling horizon, we constrain

the final tank outlet head to be greater than or equal to the initial tank outlet head (i.e.,

H
t=|T |
j,out ≥ H t=0

j,out). Similar to (4.7), the tank outlet head is physically bounded by the height

and elevation of the tank.

Pipes, E

The difference in head between the sending and receiving node, Ĥ t
e = -

∑
j∈N ajeH

t
j , is equal

to the pipe’s head loss

Ĥ t
e =


-
(
m0
e +m1

ex
t
e

)
∀ e ∈ P , (4.11a)

Lte ∀ e ∈ V , (4.11b)

ke
(
xte
)2 ∀ e ∈ E \ (P ∪ V), (4.11c)

∀ t ∈ T , where m0
e and m1

e are pump curve coefficients, and ke is the resistance coefficient.

The first case corresponds to pipes containing a fixed speed pump, the second to pipes

containing a pressure reducing valve, and the third case to pipes without a pump or valve.

For pipes with pressure reducing valves, the head loss Lte ≥ 0 is a decision variable. While

pumps are traditionally modeled with a quadratic pump characteristic curve, we neglect the

quadratic term since its contribution is usually very small compared to the linear term [61].

The power consumption of a pump is a function of the head gain and flow rate. The pumps’

flow rates are bounded and nonnegative

pte,φ = -βĤ t
ex

t
e ∀ e ∈ P , φ ∈ Φ, t ∈ T , (4.12)

xmin
e ≤ xte ≤ xmax

e ∀ e ∈ P , t ∈ T , (4.13)

where xmin
e and xmax

e are pump e’s flow rate limits, and β is a constant. Note that pte,φ is

a quadratic function of the pump’s flow rate. The control policy described in Section 4.3.6

adjusts supply pumps drawing from reservoirs not in-line booster pumps that increase pres-

sure head. To ensure that water supply meets water demand, our control policy formulation

only applies to pumps bringing water into the network.
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4.3.4. Deterministic Problem

The deterministic problem minimizes the pumps’ electricity cost given the forecasted power

demand subject to WDN and PDN constraints

min
x

∑
t∈T

F t(x) (D)

s.t. (4.1)− (4.13),

where the decision variables are x = {xte, H t
j , H

t
j,out, L

t
e,Y

t
k,P

t
k,Q

t
k, p

t
e,φ}. The electricity

consumption cost associated with the pump schedule at time t is

F t(x) :=
∑
e∈P

(
πte∆T

∑
φ∈Φ

pte,φ

)

where πte is the price of electricity at pump e and time t. We assume that the WDN is a

price taker, i.e., the WDN’s power consumption has no impact on electricity prices.

4.3.5. Convex Relaxations

The WDN constraints are nonconvex due to the pipe head loss (4.11c) and the pump power

consumption (4.12). Nonconvex problems are difficult to solve and so we use a convex

relaxation, specifically, we take the convex hull of both quadratic constraints [61]. Equa-

tions (4.11c) and (4.12) become

Ĥ t
e ≥ ke

(
xte
)2 ∀ e ∈ E \ (P ∪ V), t ∈ T , (4.14a)

Ĥ t
e ≤ b0

e + b1
ex

t
e ∀ e ∈ E \ (P ∪ V), t ∈ T , (4.14b)

pte,φ ≥ -βĤ t
ex

t
e ∀ e ∈ P , φ ∈ Φ, t ∈ T , (4.14c)

pte,φ ≤ -β
(
f 0
e + f 1

e x
t
e

)
∀ e ∈ P , φ ∈ Φ, t ∈ T , (4.14d)

where coefficients b0
e and b1

e provide an upper limit on head loss, and coefficients f 0
e and f 1

e

provide an upper limit on pump power consumption. By replacing (4.11c) and (4.12) with

(4.14a)-(4.14d), (D) becomes a convex quadratically constrained program. An advantage of

implementing a convex hull relaxation is that extreme points of the convex hull are often in

the original nonconvex set [61]. Since the cost of pumping is minimized in (D), the convex

hull relaxation of (4.12) will be tight at the optimum whenever we want to reduce the pump
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power consumption, e.g., when there would be minimum voltage limit violations. In [61], the

authors used a quasi-convex hull relaxation for (4.11c) (they did not assume flow direction)

and found the relaxation was tight at the optimum in their case study.

4.3.6. Compensating Power Demand Uncertainty

Next, we consider uncertainty in consumer power demand; we denote ρ̃tk,φ as the change

in power demand from the forecast at bus k and phase φ. We formulate a control policy

to adjust the pumps’ flow rates from the scheduled operation as a function of the demand

forecast errors. Since we do not want to use the control policy for uncertainty realizations

that do not lead to constraint violations, we introduce an auxiliary binary variable s̃t ∈ {0, 1}
that equals 1 when a minimum or maximum voltage limit violation would occur given the

scheduled pump power consumption and the power demand uncertainty realization at time t

s̃t =

 0 if (V min
k )2 ≤ Ŷ t

k,φ(ρ̃t,pt) ≤ (V max
k )2 ∀ k ∈ K, φ ∈ Φ

1 otherwise
(4.15)

where Ŷ t
k,φ(ρ̃t,pt) is the voltage magnitude squared at bus k and phase φ given the power

demand forecast errors ρ̃t := [ρ̃tk,φ]k∈K,φ∈Φ and the scheduled pump power consumption

pt := [pte,φ]e∈P,φ∈Φ. Eqn. (4.15) can be reformulated

Ŷ t
k,φ(ρ̃t,pt)−

(
V min
k

)2 ≥ −Ms̃t ∀ k ∈ K, φ ∈ Φ, (4.16)

(V max
k )2 − Ŷ t

k,φ(ρ̃t,pt) ≥ −Ms̃t ∀ k ∈ K, φ ∈ Φ, (4.17)

∀ t ∈ T , where coefficient M > 0 is sufficiently large to ensure that when the left side

of (4.16) or (4.17) is negative (i.e., a voltage violation occurs), the inequality is satisfied only

when s̃t equals 1.

The control policy changes the pumps’ flow rates from the schedule by

x̃te = s̃tCt
e ρ̃

t ∀ e ∈ P , t ∈ T , (4.18)

where x̃te is a random variable and Ct
e is a decision variable, specifically, a control policy

parameter row vector that relates the power demand forecast error at bus k and phase φ to a

change in pump e’s flow rate. Despite the pump flow rate adjustments, the pumps and tanks

must provide the same amount of water to the network. In our formulation, the tanks are
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not explicitly controlled, but compensate for the deviation between the supply and demand

of water.

4.3.7. Chance-Constrained Optimization Problem

We can write the stochastic counterparts of the deterministic equality constraints (4.1)-

(4.5), (4.8)-(4.11b) and inequality constraints (4.6)-(4.7), (4.13)-(4.14d) using ( ·̃ ) to denote

deviations in variables due to power demand uncertainty. The complete set of stochastic

constraints also includes the control policy constraints (4.16)-(4.18). The decision variables

in the chance-constrained optimization problem are

x1 = {xte, H t
j , H

t
j,out, L

t
e,Y

t
k,P

t
k,Q

t
k, p

t
e,φ,C

t
e}.

Then the stochastic inequality constraints can be written compactly as f(x1, ρ̃) ≤ 0 and

transformed into a chance-constraint

P (f(x1, ρ̃) ≤ 0) ≥ 1− ε, (4.19)

where the constraints must jointly hold for a probability of at least 1 − ε, where ε is a

user-selected violation level. Then, the chance-constrained problem to choose the scheduled

WDN operation and control policy parameters over a planning horizon is

min
x1, J

t

∑
t∈T

F t(x1) + gJ t

s.t. (4.1)− (4.11b), (4.13)− (4.14d), (4.19), (MICP)

||Ct||2F ≤ J t ∀ t ∈ T ,

where gJ t is the flexibility cost at time t and g is a weighting coefficient. The flexibility cost

models the cost associated with adjusting pumps from their schedule in real time (e.g., wear

and tear on WDN components). To prevent control actions that are unnecessarily large, we

minimize the magnitude of all parameters in the control policy. This is achieved by setting

the variable J t equal to the Frobenius norm squared of the control policy parameter matrix

at time t. The resulting problem is a mixed-integer random convex program.
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4.4. Solution Approach

To solve the chance-constrained problem, we use the convex scenario approach [17], which

solves the problem robustly for a set of scenarios. The number of scenarios required for

probabilistic guarantees is a function of the user-selected maximum violation level ε and

confidence level ψ. While there exist scenario approaches tailored to mixed integer random

convex programs, e.g., [16, 41], these methods require significantly more scenarios than the

convex scenario approach in addition to requiring a more computationally intensive mixed-

integer solver. To simplify the formulation, we remove the binary variable s̃t and apply the

control policy to all scenarios, i.e., (4.16)-(4.18) in the chance constraint (4.19) is replaced

with

x̃te = Ct
e ρ̃

t ∀ e ∈ P , t ∈ T .

The simplified formulation, referred to as (CP), is a chance-constrained convex quadratically

constrained program and so the convex scenario approach can be applied. The required

number of scenarios N for user-selected ε and ψ is [17]

N ≥ 2

ε

(
ln

1

ψ
+ δ

)
, (4.20)

where δ is the number of decision variables. In Section 4.5.2, we verify the performance of

(CP) against (MICP).

4.5. Case Study

4.5.1. Set Up

The WDN has 2 fixed speed pumps, 2 reservoirs, 2 pressure reducing valves, 8 junctions,

and 11 pipes. We use the same WDN as Chapter 3 with some modifications. Specifically, we

add a cylindrical storage tank upstream of junction 1, with a diameter of 25 m and a height

of 30 m. The elevations at junction 6 and the reservoir upstream of pump 1 are 10 m, and

the minimum pressure heads at junctions 7 and 8 are 20 m. The pump curve coefficients are

m0
e=1 = 75 m and m1

e=1 = 0.005 h
m2 for pump 1, and m0

e=2 = 90 m and m1
e=2 = 0.001 h

m2 for

pump 2. The pipe parameters from [21] are used to calculate the Darcy-Weisbach resistance

coefficients ke, see [10] for details. We set β equal to 2.322× 10−3 kW/CMH ·m.
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Table 4.1: Case Studies

Case # of Periods Add Capacitive Load? Demand Multipliers
Water Power

A 1 No 1.00 1.50
B 1 Yes 1.00 1.50
C 3 No [1.00,1.00,1.00] [1.50,1.50,1.50]
D 3 No [1.00,0.85,0.65] [1.50,1.45,1.35]

For the PDN, the IEEE 13-bus feeder topology is used. Pumps 1 and 2 are connected to

buses 10 and 4, respectively. The load and line parameters are from [52]. The distributed

load along the line from bus 1 to 6 is placed at bus 1. The minimum and maximum voltage

limits are 0.95 pu and 1.05 pu, respectively. We set the real-to-reactive pump power ratio

to µe = 3, i.e., a 0.949 lagging power factor. For each pump, there are 17 control policy

parameters that correspond to each bus and phase where a load is present. We assume

that all loads are wye-connected and constant power with a 0.9 lagging power factor. We

ignore the voltage regulator and shunt admittance. We assume that the switch is closed and

we do not model the transformer between buses 4 and 5. Also, we set the voltage at the

feeder head equal to 4.16 kV line-to-neutral. The price of electricity is fixed for all periods

at $100/MWh. The weighting coefficient g is set to 1 $ · kW2/CMH2, and we explore how

changing g effects the solution.

We explore four cases, see Table 4.1. The cases vary in number of periods and demand

multipliers, which are used to modify the nominal water and/or power demand uniformly

across all junctions and/or buses. The entries of the demand multiplier vectors corresponds

to different periods. In Cases A, C, and D the PDN operates close to the minimum voltage

limit. In Case B we add capacitive load, specifically, 500 kVAr at k = 3, φ = b and at k = 6,

φ = {a, b, c} and 600 kVAr at k = 10, φ = b, which increases the voltage and makes the

system operate close to the maximum voltage limits.

Table 4.2 lists the number of scenarios needed for the case studies. We use a Gaussian

probability distribution that is truncated 3 standard deviations from the mean to randomly

generate independent power demand forecast error realizations for all buses and phases that

have loads. The forecast error ρ̃tk,φ for bus k, phase φ, and time t has a mean of 0 and

standard deviation of σ × ρtk,φ where σ is a percentage.

We solve the (MICP) and (CP) problems using the JuMP package in Julia with the

GUROBI solver [42]. The optimization problems are solved on a 64-bit Intel i7 dual core
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Table 4.2: Number of Scenarios Needed for Scenario Approach

User-selected Parameters Number of Periods |T |
ε (%) ψ (%) 1 3

10 10−3 2145 6065
5 10−3 4289 12128
3 10−3 7148 20214

Table 4.3: Comparison of MICP and CP solver solutions

Problem Time (s) Total Cost Electricity Cost ($) Flexibility Cost
(MICP) 74488.43 25.805 25.071 0.734
(CP) 0.27 25.805 25.069 0.736

CPU at 3.40 GHz and 16 GB of RAM.

4.5.2. Results

MICP versus CP

First, we explore the effect of removing the binary variables s̃t from our formulation. In the

(CP) formulation, we apply the control policy to every scenario. Table 4.3 shows the results

from (MICP) and (CP) for Case A with N = 100 randomly generated scenarios and σ = 4%.

Since g is 1, the flexibility cost is defined as
∑

t ||Ct||2F . The solutions are essentially identical

but (CP) takes significantly less time. However, there are cases in which we would expect

the formulations to produce different solutions, for example, those in which use of the control

policy when the system does not need it would cause constraint violations. Further, different

ways of representing the cost of flexibility could lead to different solutions from (CP) and

(MICP).

Convex Scenario Approach

Next, we apply the convex scenario approach to (CP) for each of the cases in Table 4.1. The

results are shown in Table 4.4 for each case, σ, and ε. We list the electricity and flexibility

costs separately. As expected, when ε is reduced, the total cost increases. Additionally,

there is less chance of constraint violations when σ is small resulting in smaller control policy

parameters. For example, in Case D with σ = 3% and ε = 10%, it is cheaper to schedule the
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Table 4.4: Scenario Approach Results

Electricity Flexibility Comp. Empirical Violation
Case σ ε Cost Cost Time Probability (%)

(%) (%) ($) (s) General Selected
A 3 10 24.03 0.288 18.39 0.035 0.035

5 24.04 0.287 40.46 0.035 0.035
3 24.23 0.802 54.64 0.015 0.015

4 10 25.67 1.146 15.15 0.119 0.101
5 25.67 1.146 30.04 0.119 0.101
3 25.04 3.000 46.23 0.019 0.019

B 3 10 23.73 0.023 22.94 0.484 0.000
5 23.75 0.058 32.83 0.111 0.000
3 23.75 0.058 68.43 0.091 0.000

4 10 23.95 0.402 16.69 0.290 0.039
5 23.97 0.569 38.28 0.209 0.044
3 24.00 0.935 72.81 0.186 0.030

5 10 24.07 1.257 19.53 0.512 0.321
5 24.32 2.051 36.20 0.340 0.242
3 25.01 4.271 59.70 0.196 0.127

C 3 10 71.75 1.162 654.82 0.123 0.123
5 72.18 1.520 1717.05 0.082 0.082
3 73.04 2.337 3200.44 0.029 0.029

4 10 76.73 3.234 667.88 0.246 0.229
5 76.06 5.301 1525.91 0.139 0.137
3 75.00 9.356 2299.50 0.055 0.055

D 3 10 59.18 0.000 581.89 0.069 0.025
5 59.19 0.000 1820.04 0.004 0.004
3 59.19 0.000 2641.91 0.004 0.004

4 10 59.24 0.002 749.27 0.055 0.047
5 59.33 0.007 1330.84 0.034 0.029
3 59.46 0.321 3021.37 0.010 0.009
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WDN operation to satisfy the PDN constraints for all scenarios than to schedule the WDN

at a cheaper operation point and use the control policy to shift pumping in real time. In

Case D with σ = 3% and ε = 5% or 3%, the flexibility costs round to zero but are non-zero

because a small amount of flexibility is needed to manage the additional scenarios.

The solver computation times are reported in Table 4.4. As the number of periods in-

creases, there is a significant increase in time and memory. We attempted a scheduling

problem with 6 periods; however, for violation levels smaller than ε = 10%, we had memory

storage errors. This problem could partially be addressed with more efficient coding and/or

using methods to speed up the solver.

Table 4.4 also includes the empirical violation probabilities. For each case, σ, and ε, we

test the optimal schedule and control policy parameters on 100,000 independent randomly

generated scenarios and report the percent of scenarios for which there is at least one con-

straint violation. We compute the empirical violation probabilities two ways: general refers

to the violation probability computed for the case in which the control policy is applied to

all scenarios and selected refers to the violation probability computed for the case in which

the control policy is applied only when needed (i.e., there is a voltage constraint violation).

Therefore, the general violation probabilities correspond to the problem actually solved with

the convex scenario approach, whereas the selected violation probabilities correspond to the

more realistic case. Note that the general violation probability is always greater than or equal

to its corresponding selected violation probability since applying the control policy when it

is not needed can result in a constraint violation. Also note that all empirical violation

probabilities are significantly less than the user-selected violation level, which is typical for

problems solved with the scenario approach [125]. If we had chosen a more atypical prob-

ability distribution from which to draw scenarios, we would have achieved less conservative

results.

Next, we investigate how the location of the forecast error impacts the control policy

parameters. Fig. 4.2 shows the relative magnitude of the negative and positive control

policy parameters associated with each bus and phase in Case A. We show the positive

and negative control policy parameters separately since they serve different purposes. A

negative control policy parameter reduces a pump’s flow rate and power consumption given

an increase in load. Therefore, the negative control policy parameters serve to correct voltage

limit violations and the positive control policy parameters serve to balance water supply and

demand. The magnitudes of the negative control policy parameters show which buses/phases

are most likely to cause voltage limit violations, and the magnitudes of the positive control
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Figure 4.2: 3-phase PDN voltage profile for the optimal scheduled WDN operation
in Case A (σ = 4%, ε = 3%). The marker size at each bus and phase is
scaled according to the magnitude of the pump’s control policy parame-
ters, where the top plot shows the magnitude of the negative control policy
parameters and the bottom plot shows the magnitude of the positive con-
trol policy parameters. The magnitudes of the negative/positive control
policy parameters show which buses and phases are most/least likely to
cause voltage limit violations.

policy parameters show which buses/phases are least likely to cause voltage limit violations.

The PDN is close to the minimum voltage limit on phase c and we observe that the negative

control policy parameters are largest on phase c. In Case B (not shown), phase b is close to

the maximum voltage limit and phase a is close to the minimum voltage limit. The negative

control policy parameters are largest on phase b, followed by those on phase a.

Fig. 4.3 shows how considering uncertainty affects the optimal pump and tank schedule,

specifically, it shows the optimal decisions from the scenario approach versus the deter-

ministic approach for Cases C and D. The scenario approach decisions vary more over the

scheduling horizon since they are co-optimized with the control policy parameters. The edges

of the light and dark blue bands show the largest and average pump and tank adjustments

from the scenario approach’s schedule made by the control policy in the presence of a voltage

violation (in computing the largest/average we exclude adjustments that violate constraints).
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Figure 4.3: Pump and tank schedules for the scenario approach versus the determin-
istic approach for (a) Case C, σ = 4%, ε = 3%, and (b) Case D, σ = 4%,
ε = 3%. The edges of light/dark blue bands show the largest/average pump
and tank adjustments from the scenario approach’s schedule made by the
control policy.
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Figure 4.4: Change in pump flow rates for Case A (σ = 4%, ε = 3%) and Case B (σ = 5%,
ε = 3%) for scenarios in the test set requiring the control policy.

In this case, the bands extend downward from the scheduled operation since the bus voltages

are near the minimum voltage limit and the control policy is working to raise the voltage

levels by decreasing pumping. For Case D, the bands are smaller since the pump and tank

schedule is more conservative and less real-time control is required. Specifically, pumping is

shifted to periods 2 and 3 when there is less power demand.

Fig. 4.4 shows the pump adjustments made by the control policy in the presence of a

voltage violation for Cases A and B. For each scenario, we indicate whether the network con-

straints were satisfied after implementing the pump adjustment. The scenarios for Case A

are in the lower right quadrant because the network experiences minimum voltage limit

violations. Consequently, the pump power consumption is reduced in order to raise the

voltage levels. The scenarios for Case B are in the upper right quadrant because the net-

work experiences maximum voltage limit violations and pump power consumption needs to

increase.

Fig. 4.5 shows how the control policy corrects voltage deviations. For Cases A and B, we

compare the voltage profile associated with a power demand scenario before and after the

control policy adjusts the pump operation. The voltage profile associated with the schedule

is outside of the voltage limits. Once the pumps are adjusted, the voltage profile is within

the voltage limits. The insets zoom in on the critical voltages.
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Figure 4.5: PDN voltage profile for a power demand scenario before (Scheduled) and
after (Corrected) use of the control policy. Top: Case A (σ = 4%, ε = 3%).
Bottom: Case B (σ = 5%, ε = 3%).
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Figure 4.6: Comparison of scheduled electricity cost and flexibility as the weighting
coefficient g varies, for Case C, σ = 4%, ε = 10%.

The coefficient g determines the relative cost of the schedule versus the cost of the real-

time control actions. Fig. 4.6 shows how the scheduled electricity cost and flexibility change

as we vary g. The best choice of g would be a function of the real cost to WDN operators

of changing pump schedules, and is a topic discussed further in Chapter 5.

Finally, we evaluate our WDN relaxations and PDN approximations. We find that, in our

case study, the pump power consumption relaxation is tight for cases close to the minimum

voltage limit, i.e., Cases A, C, and D. In Case B, the pump power consumption is increased

above the convex hull’s lower bound in order to fix the over-voltages. Additionally, the pipe

head loss relaxation is not tight; however, we are able to recover the actual heads from the

pump flow rates. In [107], the authors prove uniqueness of the water flow equations for several

network configurations. Given the pump flow rates, the authors recover the head values by

solving a convex energy minimization problem. While their proof does not extend to meshed

networks that contain valves, our case study solutions appear unique and optimal when we

test many solver initialization points. Additionally, the heads found in the relaxed problem

are always less than or equal to the recovered heads. Since we are primarily concerned with

head lower limits, we can be certain that the recovered heads are feasible. Lastly, we find

that the voltage difference between the linearized unbalanced power flow and the ac power

flow is minimal, e.g., for Case B, σ = 5%, ε = 3%, the largest difference is 0.34%.
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4.6. Chapter Conclusion

In this chapter, we formulated a chance-constrained water pumping problem subject to

WDN and PDN constraints, and including power demand uncertainty. We utilized corrective

control to adjust the pumps’ flow rates to respond to PDN demand uncertainty in real

time. We applied the convex scenario approach and found that we were able to successfully

schedule and control the pumps to respond to voltage violations in the PDN. A drawback to

this approach is the time needed to solve this problem when scaling to larger networks and

longer optimization horizons. Improving the scalability of this approach is discussed further

in Chapter 7. In Chapter 5, we will consider multiple sources of uncertainty.
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Chapter 5.

Incorporating Multiple Uncertainty

Sources in a Chance-Constrained

Water Distribution Network Voltage

Support Problem

In the chapter, we take into consideration both the water demand uncertainty and power

demand uncertainty in the chance-constrained voltage support problem. We evaluate imple-

menting balancing water and corrective power control policies and their relative importance

on the optimal solution. Additionally, we explore the impact of the flexibility cost defini-

tions and approximations on the water distribution network (WDN) and power distribu-

tion network (PDN) constraints as well as the trade-offs in conservativeness, computational

tractability, and measurement requirements given the formulation and solution approach.

This chapter is based on [111].

5.1. Notation

Sets

E Set of pipes in the WDN (indexed by e)

Ik Set of buses directly downstream of bus k in PDN (indexed by k)

J Set of junctions within the set of nodes in the WDN (indexed by j)

K Set of buses in the PDN (indexed by k)

L Set of lines in the PDN (indexed by l)
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N Set of nodes in the WDN (indexed by j)

P Set of pumps within the set of pipes in the WDN (indexed by e)

R Set of reservoir nodes within the set of nodes in the WDN (indexed by j)

S Set of storage tanks within the set of nodes in the WDN (indexed by j)

T Set of time steps in the scheduling problem (indexed by t)

V Set of valves within the set of pipes in the WDN (indexed by e)

Φ Set of phases in the PDN (indexed by φ)

Decision Variables

ctw,e Water control policy parameter for pump/tank e at time t (-)

Ct
p,e Power control policy parameter row vector for pump e at time t (-)

Gt
w Component in water flexibility cost function

Gt
p Component in power flexibility cost function

H t
j Hydraulic head at node j at time t (m)

H t
j,out Tank outlet hydraulic head for tank j at time t (m)

Ĥ t
e Head loss of pipe e at time t (m)

Lte Head loss in pressure reducing valve e at time t (m)

pte,φ Real power demand of pump e at phase φ and time t (kW)

P t
k Real power flow vector (all phases) entering bus k at time t (kW)

P t
L,k,φ Real power consumed at bus k, phase φ at time t (kW)

qte,φ Reactive power demand of pump e at phase φ and time t (kVAr)

Qt
k Reactive power flow vector (all phases) entering bus k at time t (kVAr)

Qt
L,k,φ Reactive power consumed at bus k, phase φ at time t (kVAr)

Rt
dn,w Max. water control action decrease from scheduled pump power (kW)

Rt
up,w Max. water control action increase from scheduled pump power (kW)

Rt
dn,p Max. power control action decrease from scheduled pump power (kW)

Rt
up,p Max. power control action increase from scheduled pump power (kW)

V t
k,φ Voltage magnitude at bus k, phase φ at time t (kV)

W t
dn,w Max. water control action decrease from scheduled flow rate (CMH)

W t
up,w Max. water control action increase from scheduled flow rate (CMH)

W t
dn,p Max. power control action decrease from scheduled flow rate at time t (CMH)

W t
up,p Max. power control action increase from scheduled flow rate at time t (CMH)

xte Volumetric flow rate in pipe e : g → h (from node g to h) at time t (CMH)

Y t
k Voltage magnitude squared vector for all phases at bus k at time t (kV2)
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θtk,φ Voltage angle at bus k, phase φ at time t (rad)

Functions and Constraint Sets

p̂e(x
t
e) Pump power consumption of pump e given flow rate xte

F t(·) Cost of the scheduled WDN operation at time t given decision variables

ν1(·) PDN inequality constraints

ν2(·) WDN inequality constraints

ue(x
t
e) Pump e’s hydraulic function

z1(·) PDN equality constraints

z2(·) WDN equality constraints

Random Variables

d̃tj Deviation in water demand at junction j and time t (CMH)

ρ̃tk,φ Deviation in real power demand at bus k and phase φ, at time t (kW)

Parameters

aje Element in incidence matrix of nodes × pipes (-)

b1
e, b

0
e Coefficients in upper bound for pipe headloss convex hull for pipe e (h/m2, m)

dtj Forecasted water demand of consumer j at time t (CMH)

f 1
e , f

0
e Convex hull upper bound coefficients for pump e’s power (m, h/m4)

gtw Water control policy weighting coefficient

gtp Power control policy weighting coefficient

h̄j Elevation head of node j (m)

hmin
j Minimum pressure head for node j (m)

hmax
j Maximum pressure head for node j (m)

ke Resistance coefficient of pipe e (h2/m5)

Mkn Parameter matrix formed from impedances of line kn (Ohms)

m1
e,m

0
e Pump hydraulic function parameters for pump e (h/m2, m)

n Pipe head loss function exponent (-)

N Number of scenarios required (-)

Nkn Parameter matrix formed from impedances of line kn (Ohms)

Smax
l,φ Maximum apparent power flow for line l and phase φ (MVA)

V min
k Minimum voltage limit at bus k (kV)

V max
k Maximum voltage limit at bus k (kV)

xmax
e Maximum flow rate of pump e (CMH)

xmin
e Minimum flow rate of pump e (CMH)
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βφ Constant in pump power consumption equation for phase φ (kW/CMH · m)

∆T Length of time period (h)

δ Number of decision variables in the optimization problem (-)

γj Cross-sectional area of tank j (m2)

ε User-selected violation level (%)

πte Forecasted energy price at time t for pump e ($/kWh)

ψ User-selected confidence level (%)

ρtk,φ Forecasted real power demand at bus k, phase φ, and time t (kW)

ζtk,φ Forecasted reactive power demand at bus k, phase φ, and time t (kVAr)

5.2. Chapter Introduction

We formulate an optimization problem to schedule pumping and tank levels subject to both

WDN and PDN constraints and considering uncertainty in both nodal net power demands

and the water demands. There are two challenges to solving this problem. First, the networks

include nonlinear and nonconvex constraints. The second challenge is how to handle the

uncertainty. We address the former by using convex approximations and relaxations, and

provide a discussion on how they impact the solution. We address the latter by developing

affine real-time control policies to respond to water and power demand forecast errors and

formulating the problem as a chance-constrained optimization problem that jointly solves for

the WDN schedule and control policies’ parameters. Since these are critical infrastructure

networks, we care more about feasibility than minimizing costs, and chance constraints allow

us to achieve constraint satisfaction at high probability levels. However, we also acknowledge

that a chance-constrained programming formulation has certain limitations, and highlight

these within the chapter.

In Chapter 3, we only considered water demand uncertainty while, in Chapter 4, we only

considered power demand uncertainty. In this chapter, we consider both, allowing us to

formulate the complete problem and gain substantive additional insights into the solutions

of real-world problems. Chapter 3 developed a first version of a balancing control policy

that adjusts pump flow rates in real time to compensate water demand forecast error; in

this chapter, we extend the balancing control policy to include actions from tanks. Also,

in Chapter 3, we formulated the problem as a nonconvex program and applied a heuristic

scenario-based approach to solve it, whereas in this chapter we use convex approximations

and relaxations so that we can obtain probabilistic guarantees on the solution generated by
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the scenario approach [17], though the guarantees apply to the approximate/relaxed problem.

Chapter 4 developed a first version of a corrective control policy that adjusts pump flow rates

in real time to respond to voltage violations; in this chapter, we extend it to improve the

computational tractability of our solution approach.

The contributions of this chapter are 1) the formulation of an optimal multi-period WDN

operation and control problem subject to WDN and PDN constraints and considering un-

certainty in both water and power demand; 2) the development of real-time control policies

that adjust pump flow rates in response to water and power demand forecast error; 3) the

reformulation of the problem into a convex deterministic problem via convex approxima-

tions, convex relaxations, and application of the scenario approach; and 4) case studies on

a coupled WDN-PDN with pumps, tanks, PDN unbalance, and significant water and power

demand uncertainty. Within the case studies, we explore the impact of the approximations

and relaxations, an approach to improve computational tractability, and trade-offs in the

way we define the cost of real-time control actions. By including both the balancing and

corrective control policies, we are able to analyze their relative importance and impact on

the optimal solution.

5.3. Problem Description

Our goal is to minimize WDN electricity costs over a scheduling horizon by choosing supply

pump flow rates and tank net outflows together with the parameters of real-time control

policies enabling response to water and power demand forecast errors. First, ignoring un-

certainty, we can formulate the deterministic optimization problem as

min
x

∑
t∈T

F t(x) (D1)

s.t. z1(x, ξ) = 0, v1(x, ξ) ≤ 0,

z2(x, ξ) = 0, v2(x, ξ) ≤ 0,

where x are the decision variables including supply pump flow rates and tank net outflows

(defined later), and ξ are the network parameters including the forecasted water and power
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demands (also defined later). The cost in discrete time period t ∈ T of duration ∆T is

F t(x) :=
∑
e∈P

(
πte∆T

∑
φ∈Φ

(
pte,φ
))

∀ t ∈ T , (5.1)

where πte is the actual or forecasted price of electricity for pump e ∈ P and pte,φ is the

power consumption of pump e on PDN phase φ ∈ Φ = {a, b, c}. Functions z1(x, ξ) and

v1(x, ξ) are the PDN’s equality and inequality constraints, and z2(x, ξ) and v2(x, ξ) are the

WDN’s equality and inequality constraints. In general, the problem is nonconvex due to

nonlinear and nonconvex WDN and PDN constraints. The formulation assumes the WDN

has full knowledge of the PDN. While this may be unrealistic, it is still valuable to solve

this problem as it gives us insight into the optimal solution achievable without considering

limitations on measurements, communication systems, and information sharing by the PDN.

In this section, we first explain the PDN model that defines z1(x, ξ) and v1(x, ξ) and then

the WDN model that defines z2(x, ξ) and v2(x, ξ). Then, we describe a number of convex

approximations and relaxations we use, resulting in a convex deterministic problem. Finally,

we describe how we incorporate uncertainty, define the cost of flexibility, and formulate our

chance-constrained optimization problem.

5.3.1. Power Distribution Network Model

The consumers and pumps are connected to a PDN through a set of buses k ∈ K. The PDN

equality constraints z1(x, ξ) include the three-phase unbalanced AC power flow equations

f t
(
P t

L(pt),Qt
L(qt),V t,θt, ξt

)
= 0 ∀ t ∈ T , (5.2)

where P t
L := [P t

L,k,φ]k∈K,φ∈Φ and Qt
L := [Qt

L,k,φ]k∈K,φ∈Φ are vectors of the real and reactive

power loads at each bus and phase; V t := [V t
k,φ]k∈K,φ∈Φ and θt := [θtk,φ]k∈K,φ∈Φ are vectors

of the voltage magnitudes and angles at each bus and phase; and pt := [pte,φ]e∈P,φ∈Φ and

qt := [qte,φ]e∈P,φ∈Φ are vectors of the real and reactive pump power consumption for each

pump and phase. The load at each bus and phase is

P t
L,k,φ =

 ρtk,φ + pte,φ, if pump e connected to bus k

ρtk,φ, otherwise
, (5.3)
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Qt
L,k,φ =

 ζtk,φ + qte,φ, if pump e connected to bus k

ζtk,φ, otherwise
, (5.4)

∀ k ∈ K, φ ∈ Φ, t ∈ T , where ρtk,φ and ζtk,φ are network parameters, specifically, the forecasted

real and reactive net load, i.e., actual load minus distributed generation, e.g., from solar

photovoltaics, at each bus, phase, and time period. The PDN equality constraints also

include

θt0,a = 0◦, θt0,b = −120◦, θt0,c = 120◦ ∀ t ∈ T , (5.5)

V t
0,a = V t

0,b = V t
0,c = 1 pu ∀ t ∈ T , (5.6)

which specify that the substation (i.e., bus 0, without loss of generality) has a fixed and

balanced voltage.

The PDN inequality constraints v1(x, ξ) ≤ 0 include limits on the bus voltages’ magnitudes

V min
k ≤ V t

k,φ ≤ V max
k ∀ k ∈ K, φ ∈ Φ, t ∈ T , (5.7)

where V min
k and V max

k are the lower and upper voltage magnitude limits at bus k. They can

also include limits on the apparent power flows along lines l ∈ L

(
P t
l,φ

)2
+
(
Qt
l,φ

)2 ≤
(
Smax
l,φ

)2 ∀ l ∈ L, φ ∈ Φ, t ∈ T , (5.8)

where Smax
l,φ is the apparent power flow limit for line l and phase φ.

We do not model existing voltage regulating equipment (i.e., tap changing transformers,

switched capacitors, etc.) as it would introduce binary variables, making the problem much

harder to solve. Moreover, this allows us to explore the impact of WDN actions alone on

PDN voltage levels. Future work will explore how best to model this equipment in our

formulation and how this equipment and WDNs can work together to regulate voltages in

the most cost-effective manner.

5.3.2. Water Distribution Network Model

We assume supply pump on/off statuses are determined in advance of the scheduling horizon.

We also assume pipe water flows do not change direction during the scheduling horizon.

These assumptions are commonly used in the literature, e.g., by [31, 32, 81, 130], to eliminate
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the need for binary variables. Consequently, we can formulate the WDN as a directed

graph (N , E) composed of a set of nodes N and a set of edges E . Nodes can be categorized

as junctions j ∈ J , reservoirs j ∈ R, or elevated storage tanks j ∈ S, i.e., N = J ∪R ∪ S.

The main distinction between tanks and reservoirs is that tanks allow bidirectional flow

whereas reservoirs model the water supply source (i.e., treatment plant clearwells). Water is

pumped into elevated storage tanks (e.g., during periods of low demand) so that the tanks

can release pressurized water using gravity at a later time period (e.g., during periods of high

demand). Edges are pipes connecting the nodes; they can contain a supply pump e ∈ P
or a pressure reducing valve e ∈ V , i.e., (P ∪ V) ⊆ N . The WDN can be described by its

hydraulic head H t
j at node j and the volumetric flow rate xte through pipe e. Fig. 5.1 shows

the relationships between elevation, hydraulic head, flow rate, demand, and head loss along

two pipe segments.

Figure 5.1: WDN visualization including elevation and hydraulic head with respect
to an elevation reference, flow rate, and head loss. Example equations of
conservation of hydraulic head (5.15) and conservation of water (5.11) are
included.
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Nodes, N

The hydraulic head H t
j at node j is composed of the elevation h̄j and the pressure head. The

WDN nodal constraints are

hmin
j + h̄j ≤ H t

j ≤ hmax
j + h̄j ∀ j ∈ N , t ∈ T , (5.9)

H t
j = h̄j ∀ j ∈ R, t ∈ T , (5.10)∑

e∈E

ajex
t
e = dtj ∀ j ∈ J , t ∈ T , (5.11)

H t
j,out = H t−1

j,out +
∆T

γj

∑
e∈E

ajex
t
e ∀ j ∈ S, t ∈ T , (5.12)

hmin
j + h̄j ≤ H t

j,out ≤ hmax
j + h̄j ∀ j ∈ S, t ∈ T , (5.13)

where hmin
j and hmax

j are the lower and upper pressure head limits at node j. For tanks,

these are set to the minimum and maximum tank levels. Parameter dtj is the forecasted

water demand at junction j, γj is the cross-sectional area of tank j, and aje ∈ {0, 1, -1}
is an element in the node-edge incidence matrix which describes the connection of edges

and nodes in the network. In (5.9), the hydraulic head at each node is limited. We treat

reservoirs R as infinite sources with fixed pressure heads. Consequently in (5.10), we set

the hydraulic head equal to elevation without loss of generality. For junctions J , we ensure

that the conservation of water is satisfied. Therefore, in (5.11), the sum of water entering

and exiting a junction must equal the consumer water demand dtj. We model tanks S with

separate inflow and outflow pipes, where the inlet is at the top of the tank and the outlet is

at the bottom [122]. The inlet is treated as a junction, where its head H t
j is computed the

same way as any junction (i.e., the upstream hydraulic head minus the head loss through

the connecting pipe, described below). The outlet tank hydraulic head H t
j,out is a function of

the previous period’s outlet tank hydraulic head and the tank net inflow, as shown in (5.12).

Equation (5.13) limits the outlet head by the physical volume of the tank. Since we do not

want to simply deplete the tank over the scheduling horizon, we constrain the final outlet

tank hydraulic head to be greater than or equal to the initial outlet tank hydraulic head

H
t=|T |
j,out ≥ H t=0

j,out. (5.14)
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Edges, E

We denote the frictional head loss along pipe e as Ĥ t
e = -

∑
j∈N ajeH

t
j . The head loss equation

for each pipe is dependent on whether it contains a pump or valve

Ĥ t
e =


ue(x

t
e) ∀ e ∈ P , (5.15a)

Lte ∀ e ∈ V , (5.15b)

ke ·
(
xte
)n ∀ e ∈ E \ (P ∪ V), (5.15c)

∀ t ∈ T . The first case corresponds to pipes containing fixed speed pumps, where pump e’s

hydraulic function ue is dependent on its flow rate xte. It is usually approximated with a

quadratic function. The second case corresponds to pumps containing pressure reducing

valves, where the valve head loss Lte ≥ 0 is a decision variable. The third case corresponds

to pipes without a pump or valve, where ke is the resistance coefficient for pipe e and n is

the exponent.

Additionally, the pump flow rates are limited

xmin
e ≤ xte ≤ xmax

e ∀ e ∈ P , t ∈ T , (5.16)

where xmin
e > 0 and xmax

e are the lower and upper flow rate limits for pump e. The power

consumption of pump e is a function of its head gain -Ĥ t
e and flow rate

pte,φ = -βφĤ
t
ex

t
e ∀ e ∈ P , φ ∈ Φ, t ∈ T , (5.17)

where βφ is a constant with units of kW/CMH · m that both converts Ĥ t
ex

t
e to units of power

and assigns a portion of the pump power consumption to each phase φ, e.g., one third to

each phase if the load is balanced.

The WDN equality constraints are collected to form z2(x, ξ) = 0 and the inequality con-

straints are collected to form v2(x, ξ) ≤ 0. The water decision variables are x := [xte]e∈E,t∈T ,

H := [H t
j ]j∈N ,t∈T , Hout := [H t

j,out]j∈S,t∈T , and L := [Lte]e∈V,t∈T .

5.3.3. Deterministic Problem: Nonconvex Formulation

Using the constraints defined in the previous subsections, the full deterministic problem is

min
x1

∑
t∈T

F t(x1) (D2)
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s.t. (5.2)− (5.8),

(5.9)− (5.17),

where the decision variables are x1 = {x,H ,Hout,L, PL,QL,V ,θ,p, q}. The problem is

nonconvex.

5.3.4. Approximations and Relaxations

Since nonconvex problems can be difficult to solve, we use convex approximations and relax-

ations to convexify our formulation. For the PDN, we use a linearized 3-phase unbalanced

power flow model for radial networks; however, our approach can easily be extended to other

convex PDN formulations, such as [34, 100], where [100] approximates system losses. The

formulation we use neglects the losses and assumes that the voltage unbalance at each bus

is small [3]

Y t
k = Y t

n −MknP
t
n −NknQ

t
n ∀ k ∈ K, t ∈ T , (5.18)

P t
k = Pt

L,k +
∑
n∈Ik

P t
n ∀ k ∈ K, t ∈ T , (5.19)

Qt
k = Qt

L,k +
∑
n∈Ik

Qt
n ∀ k ∈ K, t ∈ T , (5.20)

where Y t
k ∈ R3×1 contains the three-phase voltage magnitudes squared at bus k and time t,

i.e., Y t
k,φ = (V t

k,φ)2; P t
k ∈ R3×1 and Qt

k ∈ R3×1 contain the three-phase real and reactive

power flows entering bus k at time t; and parameter matrices Mkn and Nkn are formed from

the line impedances. The set Ik contains all buses that are connected directly downstream

of bus k.

For the WDN, the head loss in pipes without pumps or valves (5.15c), the pump hydraulic

function (5.15a), and the pump power consumption (5.17) are nonconvex. Head loss is

usually modeled with the Darcy-Weisbach or Hazen-Williams formulas; see [10] for details.

Both are nonconvex. Using the approach from [61], we relax the Darcy-Weisbach formula,

in which n = 2, by replacing (5.15c) with its convex hull

Ĥ t
e ≥ ke ·

(
xte
)2 ∀ e ∈ E \ (P ∪ V), t ∈ T , (5.21a)

Ĥ t
e ≤ b0

e + b1
ex

t
e ∀ e ∈ E \ (P ∪ V), t ∈ T , (5.21b)
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Figure 5.2: Convex hull for the pump power consumption (left) and pipe head loss
(right).

where b0
e and b1

e are parameters that provide the upper bound for the convex hull. In Fig. 5.2

(right), we illustrate the convex hull of the pipe head loss.

As mentioned, the pump hydraulic function (5.15a) is usually approximated with a quadratic

function; however, the coefficient in front of the quadratic term is usually small and nega-

tive [10]. Therefore, like [61], we neglect the quadratic term since its contribution is small

compared to the linear term and approximate the pump hydraulic function as

Ĥ t
e = -

(
m0
e +m1

ex
t
e

)
∀ e ∈ P , t ∈ T . (5.22)

where m0
e and m1

e are parameters.

The pump power consumption is a quadratic function of the flow rate xte. Since it is

included in the linearized power flow equations, it makes them nonconvex. Again, using the

approach from [61], we replace (5.17) with its convex hull

pte,φ ≥ -βφĤ
t
ex

t
e ∀ e ∈ P , φ ∈ Φ, t ∈ T , (5.23a)

pte,φ ≤ -βφ ·
(
f 0
e + f 1

e x
t
e

)
∀ e ∈ P , φ ∈ Φ, t ∈ T , (5.23b)

where f 0
e and f 1

e are parameters that provide the upper bound for the convex hull. In Fig. 5.2

(left), we illustrate the convex hull for the pump power consumption. When pumping costs

are minimized subject to the pump power consumption convex hull, the solution will lie on

the lower edge of the hull, i.e., the original constraint.

62



5.3.5. Deterministic Problem: Convex Formulation

Assuming the PDN experiences voltage problems before apparent power flows violate line

limits, which is often the case in radial distribution networks, we neglect the line flow lim-

its (5.8). Then, using the relaxations and approximations from Section 5.3.4, we can formu-

late the deterministic problem as a convex program

min
x2

∑
t∈T

F t(x2) (D3)

s.t. (5.3)− (5.4), (5.7), (5.9)− (5.14),

(5.15b), (5.16), (5.18)− (5.23b)

where the decision variables are x2 = {x,H ,Hout,L, P ,Q,Y ,p, q}.

5.3.6. Incorporating Uncertainty

Next, we consider water and power demand uncertainty. We denote the water demand

forecast error at junction j as d̃tj and the power demand forecast error at bus k, phase φ

as ρ̃tk,φ. We develop control policies to adjust the supply pump flow rates and the tank net

outflows from their scheduled operation in real time to balance the mismatch in water supply

and demand resulting from water demand forecast error and to correct voltage constraint

deviations resulting from power demand forecast error. Note that we do not apply control

policies to booster pumps that increase pressure head.

The balancing control policy adjusts pumping and tank levels to compensate for water

demand forecast error. We also refer to it as the water control policy. We assume the pumps

receive a measurement of the total water demand forecast error and change their flow rates

from their schedule by x̃tw,e as a function of the total error
∑

j∈J d̃
t
j

x̃tw,e = ctw,e
∑
j∈J

d̃tj ∀ e ∈ P , t ∈ T , (5.24)

where x̃tw,e is a random variable and ctw,e is a scalar water control policy parameter associated

with pump e and a decision variable in our optimization problem. The tanks are passive and

adjust their net outflow by∑
e∈E

-ajex̃
t
w,e = ctw,j

∑
i∈J

d̃ti ∀ j ∈ S, t ∈ T (5.25)
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to compensate any water demand and supply mismatch, where ctw,j is a scalar water control

policy parameter associated with tank j and a decision variable in our optimization problem.

Note that on the right side of the equation we use subscript i rather than j to sum over

the water demand forecast errors at all junctions since subscript j is used elsewhere in the

equation. To ensure the water supply equals the water demand we set∑
e∈P

ctw,e +
∑
j∈S

ctw,j = 1 ∀ t ∈ T . (5.26)

Our preliminary work in Chapter 3 introduced a first version of this control policy, but it

did not consider storage tanks or multiple time periods.

The corrective control policy adjusts pumping and tank levels to compensate power de-

mand forecast error when there is a voltage constraint violation. We also refer to it as the

power control policy. We assume that pumps receive notice of voltage constraint violations

along with measurements of the power demand forecast error for each bus and phase of the

PDN. When violations occur, they change their flow rates from their schedule by x̃tp,e as a

function of the error vector ρ̃t := [ρ̃tk,φ]k∈K,φ∈Φ

x̃tp,e = Ct
p,eρ̃

t ∀ e ∈ P , t ∈ T , (5.27)

where x̃tp,e is a random variable and Ct
p,e is a power control policy parameter row vector that

relates the power demand deviations at load bus k and phase φ to a change in pump e’s

flow rate. The latter is a decision variable in our optimization problem. Note that (5.27)

does not explicitly control tank levels (recall that tanks do not consume power so they have

no direct impact on voltages); however, tanks still compensate for deviations between water

supply and demand.

Our preliminary work in Chapter 4 introduced (5.27) and found that solving for power

control policy parameters corresponding to every load bus and phase was computationally

cumbersome. Therefore, in Section 5.4.4, we explore the impact of aggregating forecast er-

rors over phases/buses, which reduces the number of decision variables and therefore the size

of the optimization problem. Chapter 4 also explored use of the power control policy for all

power demand forecast errors versus only when needed to correct a voltage constraint vio-

lation. While always applying the power control policy would result in unnecessary control

actions, it would also eliminate the need for real-time notice of voltage constraint violations.

Moreover, modeling the usage/non-usage of the power control policy in the optimization for-
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mulation requires introduction of binary variables, which significantly increases computation

time. It is also possible to formulate the optimization problem assuming the power control

policy is used for all power demand forecast errors, but only apply it when needed. How-

ever, this may result in a sub-optimal policy. In this chapter, we formulate the optimization

problem assuming the power control policy is used for all power demand forecast errors and

also apply it in this way.

For notational simplicity, we define the water control policy parameter column vector,

which includes all pump and tank control policy parameters, as ctw := 〈[ctw,e]e∈P , [ctw,j]j∈S〉,
where we use angle brackets to vertically stack column vectors. We also define the power

control policy matrix Ct
p = [Ct

p,e]e∈P , which includes all pumps. Note that the control policy

parameters may vary over the scheduling horizon. Both control policies contribute to the

total change in pump flow rate

x̃te = x̃tw,e + x̃tp,e ∀ e ∈ P , t ∈ T . (5.28)

5.3.7. Flexibility Costs

Using pumps to respond to forecast errors in real time would incur some cost, i.e., more

frequent changes in output, larger changes in output, and/or faster changes in output would

lead to more wear and tear on WDN components, such as pumps and valves. We refer to

this cost as a flexibility cost. However, it is not clear how best to formulate that cost and

so we explore several options. We define the objective function of the chance-constrained

optimization problem as
∑

t∈T
(
F t(x2) + gtwG

t
w + gtpG

t
p

)
, where gtwG

t
w and gtpG

t
p are flexibility

cost functions associated with the water and power control policies, respectively, and gtw

and gtp are weighting coefficients. The dimensions of gtw and gtp are chosen such that the

terms gtwG
t
w and gtpG

t
p are scalars. Three options for defining the flexibility cost follow.

Option 1

The flexibility costs are a function of the squared norms of the water and power control

policy parameters:

Gt
w,1 := ||ctw||22, (5.29)

Gt
p,1 := ||Ct

p||2F. (5.30)
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Specifically, we use the squared Euclidean norm of the water control policy parameter vector

and the squared Frobenius norm of the power control policy parameter matrix. There-

fore, Gt
w,1 and Gt

p,1 are scalars. Option 1 penalizes all parameters within the control policy

to prevent excessive control actions. For the water control policy, this formulation spreads

the control actions amongst the pumps/tanks rather than using only a small subset of

pumps/tanks to compensate water demand deviations. For the power control policy, the

system is underdetermined, i.e., different choices of power control parameters can achieve

the same control action given the same power demand forecast error. This formulation

chooses the set of parameters that minimizes their squared norm.

Option 2

The flexibility costs are a function of the range of pump flow rate adjustments

Gt
w,2 := 〈W t

up,w,W
t
dn,w〉, (5.31)

Gt
p,2 := 〈W t

up,p,W
t
dn,p〉, (5.32)

where column vectors W t
up,w,W

t
dn,w ∈ R|P∪S|×1

+ define the flexibility band around the sched-

uled flow rate for water control policy actions and W t
up,p,W

t
dn,p ∈ R|P|×1

+ define the flexibility

band for power control policy actions. Specifically, W t
up,w,W

t
dn,w,W

t
up,p, and W t

dn,p are deci-

sion variables related to the control policies through the following element-wise inequalities

-W t
dn,w ≤ ctw

∑
j∈J

d̃tj ≤W t
up,w ∀ t ∈ T , (5.33)

-W t
dn,p ≤ Ct

pρ̃
t ≤W t

up,p ∀ t ∈ T . (5.34)

In contrast to Option 1, Option 2 considers the largest flow rate changes over all of the

scenarios instead of penalizing the control policy parameters, which may be more reasonable

if pump wear-and-tear is related to the magnitude of fast changes in flow rate.

Option 3

The flexibility costs are a function of the range of pump power deviations, which is similar

to specifying reserve capacities in electric power systems,

Gt
w,3 := 〈Rt

up,w,R
t
dn,w〉, (5.35)
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Gt
p,3 := 〈Rt

up,p,R
t
dn,p〉, (5.36)

where column vectors Rt
up,w,R

t
dn,w ∈ R|P|×1

+ define the flexibility band around the scheduled

pump power consumption due to water control policy actions and Rt
up,p,R

t
dn,p ∈ R|P|×1

+ de-

fine the flexibility band for power control policy actions. While we could specify these values

per phase, we make the realistic assumption that pumps are balanced three-phase motors

and power deviations are identical in each phase. Therefore, Rt
up,w,R

t
dn,w,R

t
up,p, and Rt

dn,p

are identical for each phase, and so we do not specify the phase. Since the pump power con-

sumption curve (5.17) is monotonically increasing, the largest pump power deviations occur

with the largest flow rate adjustments. Therefore, decision variables Rt
up,w,R

t
dn,w,R

t
up,p, and

Rt
dn,p are directly related to W t

up,w,W
t
dn,w,W

t
up,p, and W t

dn,p, i.e.,

Rt
dn,w,e = pte − p̂e(xte −W t

dn,w,e) ∀ e ∈ P , t ∈ T , (5.37)

Rt
dn,p,e = pte − p̂te(xte −W t

dn,p,e) ∀ e ∈ P , t ∈ T , (5.38)

Rt
up,w,e = p̂te(x

t
e +W t

up,w,e)− pte ∀ e ∈ P , t ∈ T , (5.39)

Rt
up,p,e = p̂te(x

t
e +W t

up,p,e)− pte ∀ e ∈ P , t ∈ T , (5.40)

where the function p̂e(x
t
e) returns the power consumption of pump e for the flow rate xte.

Again, since pte and power deviations are identical in each phase, we do not specify the

phase. In contrast to Option 2, there is a nonlinear mapping between the pump adjustments

and the flexibility cost, and so using this cost option makes the problem more difficult to

solve. Specifically, Option 3 requires (5.33)-(5.34) and (5.37)-(5.40); however, the latter are

nonconvex. We replace them with their convex hulls as in Section 5.3.2; however, Rt
dn,p

and Rt
dn,w will be inexact, leading to a reduced downwards flexibility band.

We discuss the trade-offs associated with these options in Section 5.4.5.

5.3.8. Chance-constrained Optimization

To formulate the full chance-constrained optimization problem, we first write the stochas-

tic counterparts of the deterministic equality constraints (5.3)-(5.4), (5.10)-(5.12), (5.15b),

(5.18)-(5.20), (5.22) and inequality constraints (5.7), (5.9), (5.13)-(5.14), (5.16), (5.21a)-

(5.21b), (5.23a)-(5.23b) replacing ρtk,φ with ρtk,φ+ ρ̃tk,φ and dtj with dtj + d̃tj. For flexibility cost

Option 1, the full set of stochastic constraints comprise these constraints along with (5.24),

(5.25), (5.27), and (5.28). Options 2 and 3 require additional constraints defined in the
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previous subsection. Eliminating the stochastic equality constraints through substitutions

into the stochastic inequality constraints, the stochastic inequality constraints can be put

into the form f(x2, cw,Cp, d̃, ρ̃) ≤ 0 and then transformed into a chance constraint

P
(
f(x2, cw,Cp, d̃, ρ̃) ≤ 0

)
≥ 1− ε, (5.41)

where the constraints should be satisfied jointly for a probability level of at least 1−ε, where ε

is the violation level. WDN constraints within the chance constraint are the hydraulic head

limits and pump flow rate limits. Because tanks are passive, tanks act to maintain water

balance when pump flow rate limits are encountered. PDN constraints within the chance

constraint correspond to the voltage limits. Therefore, the chance constraint limits the

probability of a hydraulic head, pump flow rate, or voltage violation. Finally, we can write

the chance-constrained optimization problem. For example, for flexibility cost Option 1, the

problem is

min
x2, cw,Cp

∑
t∈T

(
F t(x2) + gtwJ

t
w + gtpJ

t
p

)
s.t. (5.3)− (5.4), (5.7), (5.9)− (5.14),

(5.15b), (5.16), (5.18)− (5.23b),

(5.26), (5.41), (CCO)

Gt
w,1 ≤ J tw ∀ t ∈ T ,

Gt
p,1 ≤ J tp ∀ t ∈ T ,

where slack variables J tw and J tp are upper bounds on the flexibility costs. Since these

variables are minimized, the optimal solution will be to set them equal to Gt
w and Gt

p.

We solve this problem using the scenario approach for convex problems [17] for a number

of reasons. First, the uncertainty impacts the constraints in complex ways and it is not

clear how to analytically reformulate the constraints using known uncertainty distributions.

Second, we are unlikely to know the uncertainty distributions in practice and the scenario

approach does not require this information. Third, the scenario approach gives us a way to

enforce the constraints jointly, rather than individually as is typical with approaches that

rely on analytical formulation. A drawback of the scenario approach is that it requires a

significant amount of data. Additionally, it is often very conservative in practice [125], leading

to empirical violation probabilities much lower than the user-selected violation level ε and,
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Figure 5.3: Coupled power (left) and water (right) distribution network. The dashed
lines show where the water supply pumps are connected to the PDN. The
water tank is passive. We show the single-phase equivalent PDN but we
used a three-phase unbalanced network model. The pumps are modeled
as balanced three-phase loads.

subsequently, higher costs. Specifically, in the approach, the constraints are enforced for a

large set of uncertainty realizations resulting in a large convex deterministic optimization

problem. The number N of scenarios required for probabilistic reliability guarantees is

determined based on a user-selected violation level ε and confidence level ψ [17]

N ≥ 2

ε

(
ln

1

ψ
+ δ

)
, (5.42)

where δ is the number of decision variables in the optimization problem. In our case, the

probabilistic guarantees apply to the convex (approximate and relaxed) problem, not the

nonconvex problem. While there are some related approaches and results for nonconvex

problems, they do not appear to apply directly to the form of our nonconvex problem.

5.4. Case Studies

In our case studies, we use the coupled WDN and PDN shown in Fig. 5.3, which we also

used in Chapter 4. We first describe the set up and then present and interpret the results.

Additionally, we explore the impact of the convex relaxations on the WDN constraints, an
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approach to reduce the dimension of our power control policy parameters, and the choice of

the flexibility cost formulation.

5.4.1. Set Up

The WDN was originally presented in [21]; it is based on an actual WDN. We have modified

it to include a cylindrical storage tank (25−m diameter, 30−m height, 30−m elevation),

removed the booster pump, and converted the resistance coefficients from Hazen-Williams

coefficients to Darcy-Weisbach coefficients. We changed the elevations at junction 6 and the

reservoir upstream of pump 1 to 10 m and the minimum pressure heads at junctions 7 and 8

to 20 m. The pump hydraulic function coefficients are m0
e=1 = 75 m and m1

e=1 = 0.005 h
m2

for pump 1 and m0
e=2 = 90 m and m1

e=2 = 0.001 h
m2 for pump 2. We set βφ = 2.322 ×

10−3 kW/CMH ·m ∀φ ∈ Φ.

The unbalanced three-phase PDN uses the IEEE 13-bus feeder topology, where the real

power load and line parameters are from [52]. We assume that all loads are wye-connected

and constant power. Consumer loads have a 0.9 lagging power factor and pumps have a real-

to-reactive power ratio of 3 (i.e., a 0.949 lagging power factor). The distributed load between

buses 1 and 6 is placed at bus 1. The minimum and maximum voltage limits are 0.95 pu

and 1.05 pu. We set the voltage at the feeder head equal to 4.16 kV line-to-neutral. We

assume the switch is closed and ignore the voltage regulator, shunt admittances, and the

transformer between buses 4 and 5. Since we have no voltage regulator, we add capacitive

loads (i.e., reactive power injections) to increase the system voltages: 100 kVAr at bus 8,

phase c and 200 kVAr at bus 10, all phases. For the base case power control policy, each

pump has 17 control policy parameters corresponding to the number of buses and phases

that have a load present.

We set the price of electricity to $100/MWh for all pumps and time periods in the schedul-

ing horizon. We set the flexibility cost weighting coefficients gtw and gtp to 1 or 1, where the

latter is a row vector of ones and the units are selected to ensure that the flexibility costs

are in $ (specifically, the units of gtw, gtp are [$], [$ · kW2/CMH2] for Option 1; [$/CMH]

for Option 2; and [$/kW] for Option 3). We conduct a sensitivity analysis to study the

impact of varying gtw and gtp in Section 5.4.5. Unless otherwise stated, we use flexibility cost

Option 1 to generate our results; however, Section 5.4.5 compares all options. We set the

chance constraint confidence level ψ = 10−4 and vary ε.

To generate water and power demand forecast error scenarios, we draw samples from
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Table 5.1: Case Studies

Case Number of Periods Demand Multipliers Required Scenarios
Water Power

A 1 1.00 1.50 4,369
B 3 [1.00,1.00,1.00] [1.50,1.50,1.50] 13,107
C 3 [1.00,0.85,0.65] [1.50,1.45,1.35] 13,107

Gaussian probability distributions that are truncated at three standard deviations from the

mean. For water demand forecast errors d̃tj, we use a mean of 0 and a standard deviation

of 0.10d̃tj. For power demand forecast errors, we use a mean of 0 and a standard deviation

of 0.04ρtk,φ. We do not model correlations in water and power demand forecast error, corre-

lations across time, or correlations across space. While we would not expect actual forecast

errors to be Gaussian and uncorrelated, these simplistic assumptions allow us to demonstrate

how the approach works. Importantly, the approach works for forecast errors following any

distribution and with any correlations; if sufficient amounts of real data were available, we

could use it directly within our formulation.

We solve the problem with the JuMP package in Julia using using the Gurobi solver [42].

We use a 64-bit Intel i7 dual core CPU at 3.40 GHz and 16 GB RAM.

To evaluate the reliability of our solutions, we use the Monte Carlo method to test whether

all WDN and PDN constraints are satisfied for each of the 100,000 randomly-generated un-

certainty realizations. We draw these realizations from the same water and power demand

forecast error probability distributions as we used to generate the scenarios needed to refor-

mulate the chance-constrained optimization problem. We use the realizations to compute

the real-time control actions. The empirical violation probability is defined as the percentage

of realizations for which at least one constraint is not satisfied.

5.4.2. Illustrative Results

We conduct three case studies described in Table 5.1. The water and power demand multipli-

ers are used to modify the nominal water and power demands uniformly across all junctions

in the WDN and all buses in the PDN. When expressed as a vector, each entry corresponds

to one time period. We also report the number of forecast error scenarios required by the

scenario approach when ε = 5%.

Fig. 5.4 shows the pump/tank scheduled flow rates corresponding to the chance-constrained

problem (CCO) presented in Section 5.3.8 versus the convex deterministic problem (D3) pre-
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Figure 5.4: Pump and tank schedules for Case B, ε = 5% (left) and Case C, ε = 5%
(right). Dark and light blue shading show the flexibility bands around the
scheduled flow rate associated with the water and power control policy, re-
spectively. The schedule obtained from solving the deterministic problem
is also shown.
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sented in Section 5.3.5 for Case B, ε = 5% (left) and Case C, ε = 5% (right). Case B has

constant high water and power demand whereas Case C has decreasing water and power

demand. The figure also shows the flow rate flexibility bands associated with the water and

power control policies, which can be calculated using (5.33) and (5.34), respectively. The

flexibility bands are set to the largest pump flow adjustments and tank net outflow devia-

tions obtained by applying the control policies to the forecast error scenarios used to solve

(CCO). The empirical violation probabilities are 0.13% for Case B and 0.16% for Case C,

both much smaller than ε.

We observe that the pump and tank schedules obtained from (CCO) vary more from period

to period than those obtained from (D3). This is necessary to ensure that the forecast error

scenarios do not lead to violations of the PDN constraints. Pump 1 is more efficient (and

thus less expensive) than pump 2. However, pump 1 is located at bus 9, which is closer to its

minimum voltage limit than bus 4 (where pump 2 is located). In order to satisfy the voltage

constraints corresponding to the scenarios in Case B, pump 1’s scheduled flow rate is lower

than that obtained from solving the deterministic problem while pump 2’s scheduled flow

rate is higher than that obtained from solving the deterministic problem. This results in a

more expensive operating point.

In Case C, pump 1’s and the tank’s schedules vary more from period to period than in

Case B. Specifically, in Case C, when the power demand is highest (period 1), pumping is

reduced and the tank is used to meet a significant portion of the water demand in order

to satisfy the voltage constraints corresponding to the scenarios. Later, when demands are

lower, extra pumping is used to refill the tank. In each period the system is operating far from

the PDN constraints; in the first period, this is because of the reduction in pumping, and in

subsequent periods, this is because of the reduction in water and power demand. Therefore,

the power control policy parameters and associated flexibility bands are extremely small. In

contrast, in Case B, there is less opportunity for pump load shifting and tank usage due to

the high constant demands. Further, the optimal schedule results in an operating point much

closer to the PDN constraints, requiring much larger power control policy parameters and

resulting in much larger flexibility bands. In both cases, we find that the flexibility bands

associated with the water control policy remain approximately constant. This is expected

since the water control policy is balancing water supply and demand.

Fig. 5.5 displays the pump flow rate adjustments from the schedule for Case A, ε = 3%.

They are obtained by applying the water control policy, power control policy, and both

control policies to the 100,000 water and power demand forecast error realizations used to
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Figure 5.5: Feasible and infeasible pump flow rate adjustments given water and power
demand uncertainty for Case A, ε = 3%.
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calculate the empirical violation probabilities. We differentiate between actions that i) satisfy

WDN and PDN constraints, ii) satisfy WDN constraints but violate PDN constraints, iii)

satisfy PDN constraints but violate WDN constraints, and iv) violate both WDN and PDN

constraints. The overall empirical violation probability is 0.11%, which is much smaller than

the ε we have selected. Of the set of realizations that violate any constraints, only 7.27%

violate both WDN and PDN constraints. From the figure, we can also see that pump 1’s

adjustments are usually larger than pump 2’s. This is because its power control policy

parameters are larger (also visible in Fig. 5.4). Pump 1 has a more direct impact on PDN

constraint satisfaction since it is located at bus 9, which is closer to its minimum voltage

limit than bus 4 (where pump 2 is located). To visualize this, in Fig. 5.6 we plot the relative

magnitude of each pump’s negative power control policy parameters per bus and per phase on

the PDN’s three-phase voltage profile. The significant voltage unbalance is due to uneven,

heavy loading. The power control policy generally contains both negative and positive

parameters. Given an increase in power demand, a negative parameter reduces the pump’s

flow rate and power consumption to respond to a minimum voltage limit violation, while a

positive parameter increases the pump’s flow rate to maintain the water supply. Therefore,

by only showing the magnitude of the negative parameters, we can see the buses and phases

where an increase in load is most likely to cause voltage limit violations, and which pump

needs to reduce its power consumption more. We observe that pump 1’s negative parameters

always have a larger magnitude (and therefore a larger pump flow rate adjustment) than

pump 2’s negative parameters. Additionally, the control policy parameters associated with

phase c are the largest since the voltages are close to the minimum voltage limit on phase c.

Next, we investigate how the water control policy parameters differ when we include only

water demand uncertainty versus both water and power demand uncertainty. Fig. 5.7 shows

the water control policy parameters for Case A, ε = 3%. With only water demand uncer-

tainty, pump 1’s scheduled flow rate is higher than that of pump 2 and pump 1 contributes

more to balancing water demand forecast error. However, with both water and power de-

mand uncertainty, the solution becomes more conservative, i.e., pump 1 reduces its flow rate

and its contribution to water balancing. In our case studies, we find that power demand

forecast error has a larger impact on the optimal schedules; however, it may have a larger or

smaller impact than water demand forecast error on real-time pump adjustments, as shown

in Fig. 5.4.
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Figure 5.6: Three-phase PDN voltage profile for the schedule in Case A, ε = 3%. The
square markers at each bus and phase are scaled according to the magni-
tude of the power control policy parameters. The dark squares represent
pump 1’s control policy parameters. The overlaying light squares corre-
spond to pump 2’s control policy parameters.

Figure 5.7: Water control policy pump and tank contribution given (i) only water
demand uncertainty and (ii) water and power demand uncertainty for Case
A, ε = 3%.
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5.4.3. Impact of Convex Approximations and Relaxations

In this section, we first analyze the impact of i) the convex hull relaxation of the pipe head

loss equation, ii) the approximate (linearized) pump hydraulic function, and iii) the convex

hull relaxation of the pump power consumption curve. Considering only water demand

uncertainty, we solve two variants of (CCO). The first replaces the pipe head loss convex

hull (5.21a)-(5.21b) with the original nonconvex head loss constraint (5.15c) where n = 2.

The second replaces the linearized pump hydraulic function (5.22) with a quadratic one,

where the quadratic coefficients for pump 1 and 2 are -1.0941 × 10−4 h
m2 and -1 × 10−5 h

m2 ,

respectively. We solve both variants with the scenario approach using the same number of

scenarios as needed for the convex formulation. However, since neither variant is convex, the

scenario approach solution no longer comes with probabilistic guarantees.

Table 5.2 shows the scheduled pump flow rates and the hydraulic heads for Case A, ε = 5%

for (CCO) and both variants. (CCO) finds the same scheduled pump flow rates as the variant

using the quadratic pipe head loss equation. However, the hydraulic heads obtained using

the quadratic pipe head loss equation are all greater than or equal to the heads found in

(CCO) since the actual head loss is the lower bound of the convex hull’s feasible region,

shown in Fig. 5.2. Since we are primarily concerned with minimum hydraulic head limits,

use of the convex hull ensures that the solution does not violate those limits. While the

hydraulic heads found using the convex hull of the pipe head loss are not exact, in our case

studies we found that we can recover the exact hydraulic heads; however, this may not always

be possible. In [107], the authors prove uniqueness of the water flow equations for radial

networks and certain meshed networks, e.g., WDNs that have meshed network sections that

do not contain pumps or valves, and meshed network sections with pumps that are not in

cycles. They recovered the hydraulic heads by solving a convex energy minimization problem

given the pump flow rates. While their proof does not extend to meshed networks containing

pressure reducing valves, like ours, the solutions to our case studies appear unique and we

are able to recover the heads corresponding to the quadratic pipe head loss equation in

Table 5.2.
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The linear pump hydraulic function overestimates the head gain and power consumption

of the pumps. As a result, (CCO) overestimates hydraulic heads at junctions downstream

of pumps. Components such as storage tanks and pressure reducing valves act as buffers,

helping to correct the downstream hydraulic heads. For example, the outlet tank head is

dependent on the tank water level; even if there is a difference in the inlet hydraulic head

between (CCO) and the variant with the quadratic pump hydraulic function, the outlet head

is identical for both formulations. We find that the formulations produce similar scheduled

pump flow rates and slightly different hydraulic heads (see Table 5.2). As expected, the inlet

tank head obtained using the quadratic pump hydraulic function is lower than that obtained

from (CCO). The outlet tank heads are identical. Additionally, the hydraulic heads for

junctions 2-5 are smaller when we use the quadractic pump hydraulic function since (CCO)

overestimates pump 2’s head gain.

The convex hull relaxation of the pump power consumption curve (5.23a)-(5.23b) does

not impact the solution. This is because, when minimizing the WDN’s electricity cost, the

solution will lie on the lower bound of the convex hull, i.e., the original constraint (5.17).

Lastly, we used the Monte Carlo method to evaluate the performance of the solutions of

(CCO) within both the convexified network constraints and the original, nonconvex network

constraints. Table 5.3 shows the empirical violation probabilities for each case and viola-

tion level. The nonconvex constraints are violated much more frequently than the convex

constraints. All scenarios that violate the convex constraints also violate the nonconvex

constraints. The additional violations of the nonconvex constraints are all voltage limit vi-

olations, indicating that the WDN approximations and relaxations are reasonable for this

test system. We summarize the statistics of the additional voltage violations in the last two

columns of the table, which show the minimum and average of the set of voltages below the

minimum voltage limit corresponding to scenarios that violate the nonconvex constraints,

but not the convex constraints. The minimum is just below the 0.95 pu minimum voltage

limit indicating that the convex PDN model slightly overestimates the minimum voltages,

as also shown in Fig. 5.8. We find that the difference between the actual voltage and the

voltage calculated using the convex model (again, considering only the voltages that vio-

late the nonconvex constraints, but not the convex constraints) is always less than or equal

to 0.33%. Therefore, a simple way to cope with this issue would be to heuristically adjust

the minimum voltage limit in the convex formulation to 0.955 pu. Alternatively, one could

use a more accurate convex PDN power flow model, e.g., one that includes loss approxi-

mations. For example, using the linearized, unbalanced three-phase power flow formulation
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Table 5.3: Empirical Violation Probabilities for Convex and Nonconvex Constraints

Case ε Probability (%) Voltage Violations (pu)
(%) Convex Nonconvex Minimum Average

A 5 0.11 10.98 0.94717 0.94937
3 0.11 10.98 0.94717 0.94940

B 5 0.12 35.16 0.94693 0.94935
3 0.10 34.29 0.94697 0.94937

C 5 0.13 5.41 0.94732 0.94943
3 0.05 4.23 0.94724 0.94944

Figure 5.8: Comparison of the three-phase PDN voltage profile corresponding to the
approximate, convex power flow model and the original, nonconvex power
flow model for a scenario in Case A, ε = 5%.

with approximated losses from [100] instead of the lossless formulation from [3] on Case A,

ε = 5%, and with the power demand multiplier reduced from 1.500 to 1.465, we find that

the empirical nonconvex violation probability decreases from 5.354% to 0.210%. Note that

we reduced the multiplier because Case A was tuned to represent extreme conditions and so

the problem was infeasible with the power flow formulation with approximated losses.

These observations call attention to the fact that our approach gives us no insight into or

way to manage the magnitude or duration of constraint violations. This is a drawback of

the type of chance constraint we are using. In future work, we plan to explore alternative

formulations that allow us to model and control constraint violations in a way that better

matches the application-specific needs of the system, e.g., allowing deviations but assigning

a cost related to the magnitude of the deviation, or allowing deviations for a limited time

duration.
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Figure 5.9: Grouping of buses associated with power control policy parameters for
simplification 1 (S1) and simplification 2 (S2).

5.4.4. Simplifying the Power Control Policy

In this section, we investigate the impact of reducing the number of power control policy

parameters to improve the computational tractability of our approach. The power control

policy (5.27) uses a separate control policy parameter for each bus and phase with a load

present, resulting in up to 3|K| power control policy parameters. We refer to this as the

base case. Here, we explore associating control policy parameters with groups of buses

e.g., all buses on a lateral. To compute the control action, the control policy parameter is

multiplied by the sum of power demand forecast errors in that group. With fewer control

policy parameters, we need fewer scenarios since the number of scenarios is a function of the

number of decision variables; this improves the computational tractability of the approach.

Further, this approach requires fewer measurements and simpler communication systems,

which would reduce the implementation costs. We consider two simplifications, referred to

as simplification 1 (S1) and simplification 2 (S2). Fig. 5.9 shows the groups of buses, referred

to as zones, used for S1 and S2. We do not group phases. For example, in S2 there are two

zones but six control policy parameters, one for each phase in each zone. We solve the base

case and cases corresponding to both simplifications for Case A using flexibility cost Option 2
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Table 5.4: Power Control Policy Simplification Results

Zones Parameters ε Scenarios Solver Energy Flexibility Violation
per Pump (%) Time (s) Cost ($) Cost Probability (%)

Base 9 17 10 2,145 18.48 25.304 142.211 0.131
Case 5 4,289 29.95 25.304 145.581 0.116

3 7,148 68.89 25.304 154.412 0.080
S1 4 9 10 1,825 7.49 25.304 155.925 0.135

5 3,649 16.50 25.304 156.346 0.098
3 6,081 29.83 25.304 158.751 0.056

S2 2 6 10 1,705 4.32 25.304 160.558 0.081
5 3,409 14.47 25.304 162.684 0.066
3 5,681 20.71 25.304 163.400 0.064

and considering only power demand uncertainty. We choose flexibility cost Option 2 instead

of Option 1 so that the flexibility costs are comparable across the cases. Flexibility cost

Option 1 uses the Frobenius norm of the power control policy parameter matrix, which is a

different size in each case, meaning the costs are not comparable across cases.

Table 5.4 shows the results including the number of power control policy parameters per

pump and the number of scenarios for different values of ε. The table also reports the

solver time, the energy cost associated with the schedule, the flexibility cost associated with

the power demand control policy, and the empirical violation probability. As expected,

the solver time generally decreases with fewer zones, meaning fewer decision variables and

fewer scenarios. We expect the reduction in solver time would be more important in larger

networks and/or for problems with longer scheduling horizons. Investigating other methods

to improve the computational tractability of our approach is discussed in Chapters 6 and 7.

In this case study, we find that S1 and S2 generally have lower empirical violation probabil-

ities and higher objective costs than the base case. The base case has more degrees of freedom

than S1 or S2 and so it is less conservative and lower cost. The control policy parameters

associated with the simplifications cause coarser, larger, and more costly adjustments, which

are more likely to be feasible against unseen scenarios. All cases have empirical violation

probabilities much lower than ε, demonstrating that the scenario approach is conservative,

which is typical [125]. Further, all approaches produce the same schedule and energy costs.

The base case has the lowest flexibility cost (i.e., it makes the smallest pump/tank adjust-

ments to respond to power demand forecast errors) while satisfying the desired violation

level ε, and therefore it exhibits the best cost/performance trade-off.
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Table 5.5: Flexibility Cost Comparison

Solver Energy Scheduled Flow Flexibility Violation
Option Simplification Time Cost Rate (CMH) Cost Probability

(s) ($) Pump 1 Pump 2 Water Power (%)
1 Base Case 38.04 25.64 77.55 342.34 0.34 1.19 0.109

S1 17.95 24.82 160.01 259.99 0.33 1.24 0.044
2 Base Case 52.52 25.28 113.62 306.38 130.20 177.00 0.216

S1 32.75 25.26 115.64 304.36 143.35 177.00 0.175
3 Base Case 252.28 25.31 110.95 309.06 0 76.54 0.117

S1 73.29 25.31 110.95 309.06 0 82.32 0.096

5.4.5. Comparison of Flexibility Cost Formulations

In this section, we explore the advantages and disadvantages of the three flexibility cost

formulations presented in Section 5.3.7. We evaluate each flexibility cost formulation using

Case A, ε = 5% and present the results in Table 5.5 for both the base case and simplifica-

tion S1. We report the solver time, energy costs associated with the schedule, the scheduled

flow rates, the flexibility costs associated with the water control policy and the power control

policy, and the empirical violation probabilities, which are all much lower than ε.

Option 1 has the smallest solver time, but it is difficult to interpret the flexibility costs

and determine the weighting coefficients gtw and gtp such that the flexibility costs can be fairly

compared against the energy costs. Further, as mentioned above, the flexibility costs are not

comparable across simplifications. In Table 5.5, we observe that the water flexibility cost

is approximately 1/3, which implies that the three pumps/tanks were used approximately

equally to compensate water demand forecast error, which is a direct result of the flexibility

cost formulation.

In Fig. 5.10, we show how the choice of water and power flexibility cost weighting coeffi-

cients impact the scheduled energy cost, Gt
w,1, and Gt

p,1 for Case A, ε = 5%. Comparing the

left and right plots, we see that as gtp increases, the scheduled energy cost increases and Gt
p,1

decreases. This trade-off is intuitive: as power flexibility becomes more expensive relative to

the scheduled energy cost, Gt
p,1 is reduced but the schedule becomes more expensive. The

water flexibility cost weighting coefficient gtw has a negligible impact on the scheduled energy

cost and Gt
p,1, and a small impact on Gt

w,1 in Option 1. There are several reasons for this.

The first is that the magnitude of Gt
w,1 is small relative to the other costs in the objective

function. The second is that the water flexibility cost has a limited range given the nature

of the water control policy and Option 1. Since the water control policy splits the response
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Figure 5.10: Sensitivity analysis showing how the scheduled energy cost, Gtw,1, and
Gtp,1 change when varying the weighting coefficients gtw [$] and gtp
[$·kW2/CMH2] for Case A, ε = 5%, and flexibility cost Option 1.

between 2 pumps and 1 tank, the feasible range of Gt
w,1 is [1

3
, 1], where Gt

w,1 = 1
3

when the

split is equal. Changes in Gt
w,1 depend upon the magnitude of gtw relative to gtp, e.g., Gt

w,1 is

large when gtp is large relative to gtw. This sensitivity analysis highlights that the weighting

coefficients would need to be tuned for the system of interest.

Option 2 provides more intuition on the flexibility costs, which are based on the largest

pump flow rate adjustment required to address the scenarios needed for the scenario ap-

proach. For example, in Table 5.5, we can see that the power control policy produces larger

maximum flow rate deviations than the water control policy, for both the base case and S1.

Similar to Option 1, it is difficult to determine weighting coefficients that allows us to fairly

compare flexibility costs to energy costs.

Option 3 uses the largest increase and decrease in pump power consumption from the

scheduled consumption to define the flexibility costs. An advantage of this approach is

that the flexibility cost and the energy cost are both a function of pump power consumption.

However, there are two disadvantages to this approach. First, Option 3 has the largest solver

time. Second, Rt
dn,p and Rt

dn,w will be inexact when using convex hulls, leading to a reduced

downwards flexibility band. Unlike the other flexibility cost options, Option 3 does not

include tank flexibility costs since only pumps consume power. Therefore, the water control

policy relies solely on the tank to balance water demand, and the water flexibility cost is 0,

as shown in Table 5.5. By not including tank flexibility costs, there is no way to specify

additional opportunity costs. However, tanks may be best equipped to respond to water

demand forecast error since their purpose is to hedge against water demand variability [122].

Based on these results, it is not clear which flexibility cost option is best; however, Option 2

seems to exhibit good trade-offs between tractability and interpretability. Also, in contrast
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to Option 3, it gives us a way to include the flexibility cost of the tanks.

5.5. Chapter Conclusion

In this chapter, we formulated a chance-constrained water pumping problem subject to water

and power distribution network constraints given water and power demand uncertainty. We

developed power and water control policies that can be used in real time to respond to forecast

errors. Control policy parameters are included as decision variables in the chance-constrained

optimization problem. We reformulated the problem using convex approximations and re-

laxations and solved it with the scenario approach. Case studies explored solution patterns,

which were found to be conservative (i.e., highly reliable at a high cost), in addition to the

impact of the approximations and relaxations, an approach to simplify the power control

policy, and the impact of different flexibility cost formulations.

We found that temporal and spatial shifting of WDN pumping load can be used support

the PDN. We also found that convex approximations and relaxations used for the WDN

were reasonable in that scenarios that violated the nonconvex constraints also violated the

convexified constraints. However, the convex PDN model overestimated the smallest volt-

ages leading to a large difference in the empirical violation probabilities corresponding to the

convex constraints and the nonconvex constraints. Fortunately, this is easy to fix (heuristi-

cally) by slightly increasing the minimum voltage limit. Further, we found that the approach

is computationally heavy and does not currently scale to large networks or problems with

long planning horizons. We proposed one way to simplify the power control policy, which

reduces required measurements and also improves computational tractability, but results in

more conservative solutions.

85



Chapter 6.

Tractable Uncertainty-Aware

Methods for Leveraging Water

Pumping Flexibility for Power

Networks

In this chapter, we explore solution approaches and formulations to control the pump power

consumption in water distribution networks (WDNs) in a computationally tractable way

that can be scaled to large networks and problems with long time horizons. To do so, we

leverage monotonicity properties to reformulate the problem as a computationally tractable

affinely adjustable robust counterpart. Building upon robust and chance-constrained re-

formulation approaches, we develop an analytically reformulated probabilistic problem that

manages uncertainty differently in the water and power network. We find that our proposed

probabilistic approach is computationally tractable and is less conservative than the robust

approach, indicating that our formulation would be scalable to larger networks. This chapter

is based on [115] and [110].

6.1. Notation

Sets

E Set of pipes in the WDN (indexed by ij)

Ik Set of buses directly downstream of bus k in PDN (indexed by k)

J Set of junctions within the set of nodes in the WDN (indexed by j)
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K Set of buses in the PDN (indexed by k)

N Set of nodes in the WDN (indexed by j)

P Set of pumps within the set of pipes in the WDN (indexed by ij)

Pk Set of pumps connected to bus k (indexed by ij)

R Set of reservoir nodes within the set of nodes in the WDN (indexed by j)

S Set of storage tanks within the set of nodes in the WDN (indexed by j)

T Set of time steps in the scheduling problem (indexed by t)

U Uncertainty set (indexed by ρ)

Φ Set of phases in the PDN (indexed by φ)

Decision Variables

Ct
e Control policy parameter row vector for pump e at time t (-)

H t
j Hydraulic head at node j and time t (m)

H̃ t
j Auxiliary head variable for tank j at time t (m)

`tj Water level of tank j at time t (m)

pte Real-time single-phase real power demand of pump e at time t (kW)

ptnom,e Scheduled single-phase real power demand of pump e at time t (kW)

P t
k Real power flow vector (all phases) entering bus k at time t (kW)

Qt
k Reactive power flow vector (all phases) entering bus k at time t (kVAr)

Rt
dn,e Max. three-phase pump power decrease from the scheduled pump power

consumption due to voltage support services for pump e and time t (kW)

Rt
up,e Max. three-phase pump power increase from the scheduled pump power

consumption due to voltage support services for pump e and time t (kW)

xtij Volumetric flow rate of water through pipe ij at time t (CMH)

x Operational variables

y Adjustable variables

Y t
k Three-phase voltage magnitude squared at bus k and time t (kV)

αtj Connection status binary of tank j at time t (0,1)

βtj Filling binary of tank j at time t (0,1)

Functions

be(·) Pump power consumption function

F (·) Cost function

fij(·) Head loss function for edge ij

f−1(·) Inverse cumulative distribution function
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gj(·) Tank head function of tank j

Y t
k,φ(·) Voltage magnitude squared function at bus k, phase φ, and time t

Constraint Sets

W1(·) Power flow constraint set

W2(·) Voltage support constraint set

W3(·) Water flow constraint set

Ŵ1(·) Robust reformulation of power flow constraint set

Ŵ2(·) Robust reformulation of voltage support constraint set

Ŵ3(·) Robust reformulation of water flow constraint set

Wp(·) Power flow and voltage support constraint set

Ww(·) Water flow constraint set

Γscheduled(·) Deterministic WDN constraints given the scheduled pump power

Γextreme(·) Deterministic WDN constraints given the max. or min. pump power

Random Variables, ω

∆ρtk,φ ∈∆ρt Deviation in real power demand at bus k, phase φ, and time t (kW)

ρtk Real-time three-phase real power demand at bus k and time t (kW)

ζtk Real-time three-phase reactive power demand at bus k and time t (kVAr)

Parameters

dtj Forecasted water demand of consumer j at time t (CMH)

ĥj Elevation head of node j (m)

Hmin,j Minimum pressure head for node j (m)

Hmax,j Maximum pressure head for node j (m)

h1
ij, h

0
ij Pump power parameters for pump ij (h/m, kW)

kij Resistance coefficient of pipe ij (h2/m5)

`min,j Minimum water level in tank j (m)

`max,j Maximum water level in tank j (m)

M Large number in big-M method

Mkn Line parameter matrix formed from impedances for line kn (Ohms)

m1
ij,m

0
ij Quadratic pump hydraulic function parameters for pump ij

m3
ij,m

2
ij Linear pump hydraulic function parameters for pump ij

Nkn Line parameter matrices formed from impedances for line kn (Ohms)

Vmin Minimum bus voltage magnitude limit (kV)

Vmax Maximum bus voltage magnitude limit (kV)
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xmin,ij Minimum flow rate of pump ij (CMH)

xmax,ij Maximum flow rate of pump ij (CMH)

∆T Duration of time period (h)

γj Cross-sectional area of tank j (m2)

εp User-selected violation level in power flow component (%)

εw User-selected violation level in water flow component (%)

ηe Ratio between real and reactive power of pump e (-)

πte Forecasted energy price at time t for pump e at time t ($/kWh)

πtvs,e Voltage support capacity cost for pump e at time t ($/kWh)

µ Mean of power demand forecast error (kW)

Σ Covariance of power demand forecast error (kW2)

ρ̂tk Forecasted three-phase real power demand at bus k and time t (kW)

σ Parameter to scale power demand forecast error (-)

6.2. Chapter Introduction

In this chapter, we consider optimizing water pumping to provide voltage support under

power demand uncertainty. Specifically, we schedule and control supply pump power to en-

sure that bus voltages in the power distribution network (PDN) remain within their safe op-

erating limits. In Chapter 5, we formulated a chance-constrained power-water optimization

problem considering water and power demand uncertainty and solved it using the scenario

approach [17]. One drawback of the scenario approach is that it requires a large amount of

data and does not scale well to larger problems. In this chapter, we formulate the problem

as an Adjustable Robust Optimization (ARO) problem and develop a solution approach to

make the problem tractable by leveraging the monotonicity properties.

Monotonicity properties allow us to replace the semi-infinite water network constraints

with two sets of deterministic network constraints representing the extreme operating sce-

narios. By doing so, we provide feasibility guarantees for the entire range of operating

scenarios between the two extreme cases. To do this, we leverage the monotonicity prop-

erties of dissipative flow networks developed in [126]. This work was extended in [76] for

transient gas network modeling and applied in an uncertainty management framework for an

integrated gas-power problem in [98]. These papers focus on applying monotonicity proper-

ties to gas networks specifically. In this chapter, we show how the monotonicity properties of

dissipative flow networks apply to WDNs and identify the water tank formulation assump-
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tions required for monotonicity and the impact these assumptions have on the solution space.

Using these properties, along with affine control policies and constraint approximations, we

reformulated the problem as an Affinely Adjustable Robust Counterpart (AARC) that is

much more scalable than our chance-constrained approach solved via the scenario approach.

However, a drawback is that the robust problem tends to be excessively conservative.

To address this, we also propose a computationally tractable and less conservative proba-

bilistic approach. Our approach combines a chance-constrained formulation to manage the

uncertainty in the power distribution network and a probabilistically robust formulation to

manage the impact of the PDN’s uncertainty on the WDN. The formulation ensures that

the real-time control actions satisfy the network constraints at a user-specified probability

level. To achieve computational tractability, we assume uncertainty distributions are known

and build upon the robust approach to analytically reformulate the probabilistic power and

water constraints, resulting in a fast-to-solve deterministic problem. This enables applica-

tion to large networks. The approach is much less conservative than robust approaches, but

may perform poorly if assumed uncertainty distributions are inaccurate. We compare the

performance (e.g., the computational time, cost, and empirical violation probabilities) of our

approach with the robust approach and evaluate how practical these approaches would be

when scaling the integrated PDN-WDN formulation to larger networks.

The contributions of this chapter are 1) formulating an ARO problem to schedule and con-

trol water pumping subject to PDN and WDN constraints and power demand uncertainty;

2) deriving water tank operation assumptions to ensure monotonicity properties hold for the

WDN; 3) tractably reformulating the AARC using monotonicity properties, convex approx-

imations, and affine control policies; 4) development of a tractable probabilistic formulation

of the voltage support problem under power demand uncertainty subject to probabilistically

robust WDN constraints and chance-constrained PDN constraints; and 5) exploration of the

performance and computational trade-offs between the robust and probabilistic optimization

methods in case studies.

The remainder of the chapter is organized as follows. Section 6.3 provides an overview of

the robust optimization framework and network modeling. Sections 6.4 and 6.5 present the

monotonicity properties and water flow approximations to get a tractable robust problem.

The deterministic problem is presented in Section 6.6 as a point of comparison and we

examine at the robust performance in a case study in Section 6.7. In Section 6.8, we propose

a new probabilistic approach. We solve the robust and probabilistic approaches for a case

study in Section 6.9 and compare their performances. Lastly, we provide concluding remarks
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in Section 6.10.

6.3. Adjustable Robust Voltage Support Problem

We first present a robust formulation of the water pumping problem to provide voltage

support. Our goal is to robustly optimize the water pump power consumption subject to

the PDN and WDN constraints and power demand uncertainty. Specifically, we seek to

determine the scheduled pump power consumption and the parameters of a control policy

that determines the real-time pump power consumption adjustments so that the PDN voltage

limit constraints are never violated over the scheduling horizon. This formulation can also

be interpreted as an optimal power flow problem with water pumps acting as distributed

energy resources where the WDN constraints further limit the feasible operation of the water

pumps.

In this chapter, we do not consider water demand uncertainty. In Chapter 5, we simul-

taneously solved for two separate control policies to adjust pumping as a function of both

water and power demand uncertainty. However, the tanks are already designed to hedge

against water demand uncertainty [122] and we found that the range of tank flow rate ad-

justments remains approximately constant over time. Therefore, it is reasonable to assume

that a portion of the tank is reserved for responding to water demand uncertainty consid-

ered in close-to-real-time operational planning problems (similar to how portions of tanks

are reserved for emergency fire flow scenarios).

We first formulate the ARO problem as

min
x

F (x,y(ρ,x)) (ARO)

s.t. ∀ρ ∈ U ,∃y,

W1(x,y(ρ,x),ρ),

W2(x,y(ρ,x),ρ),

W3(x,y(ρ,x),ρ).

The ARO is a multi-stage robust optimization problem containing random variable ρ in

the uncertainty set U , the operational (‘here-and-now’) variable x which is feasible for all

uncertainty realizations within the uncertainty set U , and the adjustable (‘wait-and-see’)

variable y(ρ,x) which can be decided given a specific uncertainty realization [8]. In our
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problem, the uncertainty ρ is the power demand at every bus and phase, the operational

variable x includes the scheduled pump power consumption, and the adjustable variable

y(ρ,x) includes the pump power consumption adjustment which is a function of the power

demand forecast error. The constraint sets W1(·) and W3(·) contain the quasi-steady state

PDN and WDN constraints (i.e., steady state operation for every time step of duration ∆T

within the scheduling horizon T ). Function W2(·) links the WDN and PDN; specifically, it

contains the real-time pump adjustments which impact both the power flow and water flow.

The cost function F (·) includes the cost of the pump schedule and real-time adjustments.

ARO is less conservative than classic robust optimization problems because decisions can

be updated in real-time [8]. Unlike a chance-constrained optimization problem in which the

constraints must be satisfied at a specified probability, ARO constraints must be satisfied

for all uncertainty realizations within the uncertainty set.

We next model the PDN W1(·) and the pump adjustments W2(·) which ensure that the

minimum and maximum voltage limits are satisfied. Then, we present the basic form of

the AARC. In the next section, we derive the WDN constraints W3(·) that limit the pump

power consumption and present the full AARC.

6.3.1. Power Distribution Network Modeling

We first defineW1(·). We consider an unbalanced, radial PDN that includes a set of buses K
and phases Φ to which the uncontrollable net loads (i.e., actual load minus distributed gen-

eration) and the controllable pumps are connected. To facilitate the derivation of the robust

counterpart, we use a linearized power flow model, specifically, the three-phase unbalanced

power flow model from [3, 34] also referred to as Lin3DistFlow. It should be noted that

other linear three-phase unbalanced power flow models could be used, e.g., [9, 100]. Em-

pirically, Lin3DistFlow and its variants perform very well. For example, [121] found that

the voltage magnitude accuracy of Lin3DistFlow consistently outperformed a second order

cone relaxation in a case study of 500 existing Belgium feeders. It is also possible that more

accurate nonlinear three-phase unbalanced power flow models could be used; however, this

would complicate our formulation and, since our focus is on the WDN, we leave this to future

work. The power flow equations are [3]

P t
k = ρtk +

∑
e∈Pk

pte +
∑
n∈Ik

P t
n ∀ k ∈ K, t ∈ T , (6.1)
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Qt
k = ζtk +

∑
e∈Pk

ηep
t
e +

∑
n∈Ik

Qt
n ∀ k ∈ K, t ∈ T , (6.2)

Y t
k = Y t

n −MknP
t
n −NknQ

t
n, ∀ k ∈ K, t ∈ T , (6.3)

where (6.1) and (6.2) represent the active and reactive power balance at each node k and

(6.3) represents the voltage drop across the line. The parameter Y t
k is the three-phase

voltage magnitude squared at bus k and time t, P t
k and Qt

k are the three-phase real and

reactive power flows entering bus k, Mkn and Nkn are the parameter matrices for line kn,

ρtk and ζtk are the three-phase real and reactive uncontrollable power demand at bus k (load

minus distributed generation), pte is the three-phase power consumption of pump e (where

the pumps are modeled as balanced three-phase constant power loads with constant power

factor), and Ik is the set of buses directly downstream bus k.The set Pk contains all pumps

that are connected to bus k. The pump power consumption pte is zero if there are no pumps

connected to bus k. The parameter ηe is the real-to-reactive power consumption ratio of

pump e. Additionally, we want to ensure that the voltages at each bus k and phase φ are

within their safe operating limits, i.e.,

(Vmin)2 ≤ Y t
k,φ ≤ (Vmax)2 ∀ k ∈ K, φ ∈ Φ, t ∈ T , (6.4)

where parameters Vmin and Vmax are the lower and upper voltage magnitude limits.

6.3.2. Real-Time Pump Adjustments Responding to Uncertainty

We next define W2(·). The source of uncertainty is the real-time uncontrollable power

demand vector ρt := ρ̂t + ∆ρt, which is composed of the forecasted power demand ρ̄t (a

known parameter) and the uncertain but bounded forecast error ∆ρt := [∆ρtk,φ]k∈K,φ∈Φ. We

assume that water supply pumps in the WDN are adjusted according to a decision rule

that is a function of ∆ρt. Specifically, we define an affine pump power control policy and

solve for the policy parameters as ‘here and now’ decisions. Using an affine policy allows

us to represent the response of the system without needing to resolve the problem for each

uncertainty realization. This makes it easier for water utilities to implement the control

policy in real time. However, the use of an affine policy also restricts the feasible space,

meaning that our solutions may be conservative. The control policy allows us to write

the adjustable power variables (e.g., voltage magnitude squared) as affine functions of the
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random variables. The real-time single-phase pump power consumption is

pte = ptnom,e +Ct
e∆ρ

t ∀ e ∈ P , t ∈ T , (6.5)

where ptnom,e is the scheduled single-phase power consumption of pump e at time t, Ct
e is a

control policy parameter row vector that determines the single-phase adjustment of pump e

at time t as a function of ∆ρt, and P is the set of pumps. To implement this, the water

system operator needs real-time data on the power demand forecast error at each bus and

phase. While this may be unrealistic at the present time, this formulation and results point

to the value of real-time pump adjustments; future work will explore whether this value

outweighs the costs of the infrastructure needed to support it. Note that the pump power’s

phase is not specified since we assume the pumps are balanced loads and so pte is the same

in each phase.

We additionally assume that the cost of the real-time pump adjustments is a function of

the adjustment range and define Rup and Rdn as the largest increase and decrease in pump

power, i.e.,

-Rt
dn,e ≤ 3Ct

e∆ρ
t ≤ Rt

up,e ∀ e ∈ P , t ∈ T , (6.6a)

Rt
up,e, R

t
dn,e ≥ 0 ∀ e ∈ P , t ∈ T , (6.6b)

where we multiply the single-phase pump power adjustment by three to get the total three-

phase power demand.

6.3.3. Basic Form of the AARC

The objective function minimizes the cost of the scheduled pump power and the cost asso-

ciated with adjusting the pump power in real time (e.g., the wear-and-tear on the pumps

from more frequent and larger magnitude real-time pump adjustments). It is unclear how to

best represent the real-time pump power cost; Chapter 5 explored several options. However,

if pump wear-and-tear is affected by the magnitude of the pump adjustments, then it is

reasonable to incorporate the real-time voltage support capacity into the cost function. The

cost, which is now only a function of the operational variables, can be written as

F (x) =
∑
t∈T

∑
e∈P

3πtep
t
nom,e + πtvs,e(R

t
up,e +Rt

dn,e), (6.7)
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where πte is the cost of electricity for the pump e at time t and πtvs,e is the cost associated

with the voltage support capacity at time t. The operational decision variables in the PDN

constraints include pnom, C, Rdn, and Rup. The adjustable decision variables in the PDN

constraints include the voltage magnitude squared Y and are linear in the random variables

∆ρ and so we can tractably reformulateW1(·), i.e., the power flow equations and constraints

(6.1)-(6.4), and W2(·), i.e., the affine control policy and associated constraints (6.5)-(6.6b),

given the uncertainty set U . We use explicit maximization [65] to derive the robust counter-

part of W1(·) and W2(·). Assuming we can also obtain the robust counterpart of the WDN

constraints W3(·), we can write the basic form of the AARC as

min
x

(6.7) (AARC)

s.t. Ŵ1(x),

Ŵ2(x),

Ŵ3(x),

where constraint sets Ŵ1(x), Ŵ2(x) represent the robust reformulation of (6.1)-(6.6b) and

Ŵ3(x) is the robust reformulation of the WDN constraints, which we derive in the next

section.

6.4. Incorporating WDN Constraints

We need to ensure that the WDN constraints are satisfied for any real-time pump power

consumption determined by the affine control policy (6.5). As a result, the flow rates,

hydraulic heads, and tank levels are adjustable variables. In this section, we present the

WDN constraints that are included in the ARO, show how the monotonicity properties in

[126] apply to the WDN which allows us to tractably reformulate the WDN constraints, and

describe the tank formulation assumptions required to ensure monotonicity.

6.4.1. Water Distribution Network Modeling

The WDN can be represented as a connected directed graph (N , E), where N is the set

of nodes and E is the set of edges. Set N is composed of disjoint subsets of junctions J ,

reservoirs R, and elevated storage tanks S, i.e., N = J ∪R∪S. The edges are bi-directional

pipes that connect the nodes in the network, e.g., ij ∈ E is a pipe connecting node i to
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node j. The water flow through a pipe may be positive or negative, where the sign indicates

the direction that the water is moving. A pipe may contain at most one supply pump,

i.e., P ⊆ E . A pump is restricted to a non-negative water flow rate since pumps can only

pump in one direction. The WDN at time t can be characterized by the hydraulic heads

H t := [H t
j ]∀j∈N at all nodes (which is equal to the sum of elevation and pressure head) and

the volumetric flow rates xt := [xtij]∀ij∈E through all pipes going from node i to node j.

WDNs are dissipative flow networks [126] and are governed by the following quasi-steady

state equations ∑
i:ij∈E

xtij + dtj = 0 ∀ j ∈ N , t ∈ T , (6.8)

xtij = −xtji ∀ ij ∈ E , t ∈ T , (6.9)

H t
i −H t

j = fij(x
t
ij) ∀ ij ∈ E , t ∈ T , (6.10)

where dtj is the injection of water at node j and time t, where positive values indicate

an injection into the network and negative values indicate a withdrawal from the network.

Customer water demands at junctions are assumed to be known and non-positive. In (6.8),

the conservation of water at each node is enforced. Since the flow along pipes can be bi-

directional, (6.9) enforces skew symmetry along pipe ij at time t. The head loss equation

(6.10) describes the relationship between hydraulic head at nodes and flow rate over a pipe

or pump connecting them. The head loss function fij(·) is continuous and increasing with

respect to flow rate xtij. The pipe head loss function is commonly modeled using the Darcy-

Weisbach formulation [10]

fij(x
t
ij) = kij|xtij|xtij ∀ ij ∈ E \ P , t ∈ T ,

where parameter kij is the resistance coefficient of pipe ij. The pump head is typically

modeled as a quadratic function

fij(x
t
ij) = -(m0

ij −m1
ij(x

t
ij)

2) ∀ ij ∈ P , t ∈ T ,

where m0
ij and m1

ij are the head loss parameters of pump ij. Additional constraints needed

to model the WDN are given next by component type.
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Junctions

The hydraulic head, which is composed of the elevation head and the pressure head, is

bounded at all nodes

Hmin,j ≤ H t
j ≤ Hmax,j ∀ j ∈ N , t ∈ T , (6.11)

where Hmin,j and Hmax,j are the minimum and maximum heads.

Tanks

Tanks are connected to a single node in the WDN, where we separately model the tank’s

inflow and outflow from the node (see Fig. 6.1). The tank inlet is typically located at the

top of the tank. The tank constraints are

`
t=|T |
j ≥ `t=0

j ∀ j ∈ S, (6.12a)

`tj = `t−1
j +

∆T

γj

∑
i:ij∈E

xtij ∀ j ∈ S, t ∈ T , (6.12b)

`min,j ≤ `tj ≤ `max,j ∀ j ∈ S, t ∈ T , (6.12c)

gj(x
t, `tj) ≤ 0 ∀ j ∈ S, t ∈ T , (6.12d)

where `tj is the water level (including elevation) at tank j and time t and γj is the cross-

sectional area of tank j. In (6.12a), we ensure that the tanks are not depleted over the

scheduling horizon by setting the final tank level to be greater than or equal to the initial

tank level. The water level `tj is defined in (6.12b) and bounded in (6.12c) to reflect the

physical volume of the tank. Function gj(·) in (6.12d) contains tank head constraints that

depend upon our tank formulation which we will describe in more detail in Section 6.4.2.

The tank head determines whether the tank is storing or supplying water to the network.

When the tank in Fig. 6.1 has no valves or pumps, it stores water if the tank head is greater

than the head associated with the maximum tank level and supplies water if the tank head

is equal to the head associated with the tank level. In order for WDN monotonicity to hold,

we need to make certain assumptions about tank equipment and operation, which will be

discussed in Section 6.4.2.
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Figure 6.1: Water storage tank diagram.

Reservoirs

Reservoirs are modeled as infinite sources and the head is fixed

H t
j = ĥj ∀ j ∈ R, t ∈ T , (6.13)

where ĥj is the elevation at reservoir j.

Pipes and Pumps

Pipes without pumps can have positive or negative flows. Pumps have bounded unidirec-

tional flows, i.e.,

0 ≤ xmin,ij ≤ xtij ≤ xmax,ij ∀ ij ∈ P , t ∈ T , (6.14)

We consider fixed speed supply pumps whose on/off status is unchanged throughout the

scheduling horizon. The single-phase pump power consumption is

pte = be(x
t
ij) ∀ e = ij ∈ P , t ∈ T , (6.15)

where function be(·) calculates the power consumed by pump e and assigns a third of the

total pump power consumption to each phase. For fixed speed pumps, this function is

traditionally modeled as a cubic [31, 81], quadratic [61], or linear function [13, 63, 108] of

flow rate or head gain. Here, we assume a linear function of flow rate

pte = h0
ij + h1

ijx
t
ij ∀ e = ij ∈ P , t ∈ T ,
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where h0
ij and h1

ij are parameters.

Including these WDN constraints within the problem results in a semi-infinite program

since (6.8)-(6.15) represent infinitely many constraints and adjustable variables xtij, `
t
j, and

H t
j associated with every possible realization of the power demand forecast error in the

uncertainty set. However, we can leverage monotonicity properties to tractably reformulate

the WDN constraints.

6.4.2. Monotonicity of WDNs

Next, we establish that the hydraulic heads H t and tank levels `t are monotonic functions

of the reservoir water injection and controllable pump power consumption. This allows us

to replace the semi-infinite water flow equations with two sets of deterministic constraints

that consider only the minimum and maximum water injections.

In order to formulate the equivalent deterministic water constraints, we must first prove

the uniqueness of the water flow solution given the water injections. If there exists a unique

solution, we can write the adjustable variables as functions of the injections and evaluate

the relationship between the water injections and the adjustable variables. Next, we need to

prove that the adjustable variables are monotonic functions of the water injections (which

vary based on the uncertain power demand in the PDN). We build our analysis on the

monotonicity proofs for dissipative flow networks in [76, 126]; however, there are several key

differences. The WDN requires additional formulation assumptions to ensure monotonicity

because of the additional adjustable variables in the WDN (i.e., the tank levels) and the

external constraints on tank head. For example, we must ensure that the tank level is

a monotonic function of the reservoir water injections since the tank level is a bounded

adjustable variable.

Network Assumptions

We need to make the following three assumptions for the monotonicity properties to apply

to the WDN.

• Assumption 1: The head loss function fij(x
t
ij)∀ ij ∈ E and pump power consumption

are increasing in flow rate. This assumption is in [126]. In the WDN, this assump-

tion holds for head loss in pipes and pumps whose on/off status (potentially time-

varying) is determined before the scheduling horizon. The pipe head loss function

is commonly modeled using the experimental Hazen-Williams equation or theoretical
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Darcy-Weisbach equation, and in both equations, the head loss is increasing with flow

rate. We assume the pump power consumption is increasing in flow rate, which follows

general power characteristic curves [88].

• Assumption 2: If dj
t,(1) ≤ dj

t,(2) ∀ j ∈ R and dj
t,(1) = dj

t,(2) ∀ j ∈ J , then dj
t,(1) ≥ dj

t,(2)

∀ j ∈ S. Given an increase in reservoir water injections, we need to assume all tank

injections decrease. This assumption is always true for a single tank network since

water injections must sum to zero. However, for this to be true in a multiple tank case,

we need an additional constraint that limits tank injection adjustments to all be in the

same direction. This limits the possible feasible WDN solutions.

• Assumption 3: The tank head is not strictly dependent on the tank level. If the tank

head is strictly dependent on the tank level, an increase in reservoir water injection

would cause an increase in tank level and, consequently, tank head. As a result, the

junction heads surrounding the tank may not be monotonically decreasing. We next

consider two tank formulations that satisfy this assumption and derive the associated

head constraints (6.12d). In both formulations, the tank water injections become

decision variables.

Tank Formulation 1. We assume that a valve is connected to the tank’s outlet pipe

so that we can control the outlet flow rate/head, similar to [108, 122]. In this set up,

the tank heads must satisfy additional inequality constraints if the tank is storing or

supplying water. The constraints included in (6.12d) in this formulation are

-Mαtj ≤ dtj ≤Mαtj ∀ j ∈ S, t ∈ T , (6.16a)

-Mβtj ≤ dtj ≤M(1− βtj) ∀ j ∈ S, t ∈ T , (6.16b)

-M(1− αtj) ≤ H̃ t
j −H t

j ≤M(1− αtj) ∀ j ∈ S, t ∈ T , (6.16c)

`max,j −M(1− βtj) ≤ H̃ t
j ≤ `tj +Mβtj ∀ j ∈ S, t ∈ T , (6.16d)

αtj, β
t
j ∈ {0, 1} ∀ j ∈ S, t ∈ T , (6.16e)

where M > 0 is a large number, αtj is a binary variable that determines whether tank

j is connected, and βtj is a binary variable that determines whether tank j is filling.

Constraint (6.16a) sets the tank water injection to zero if the tank is not connected.

In (6.16b), the tank is filling or emptying given a positive or negative tank injection.

In (6.16c), H̃ t
j is an auxiliary head variable. If the tank is connected, then the head
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at the tank node is equal to H̃ t
j ; otherwise the constraint holds trivially. In (6.16d), if

tank j is emptying, then H t
j ≤ `tj. If tank j is filling, then H t

j ≥ `max,j.

Tank Formulation 2. The tank level has no impact on the tank head, similar to [59,

61]. For this assumption to be feasible, the tank’s inlet and outlet pipes need a booster

pump and a valve, respectively. This formulation provides the most flexibility in the

water flow solution. No additional head constraints are needed in (6.12d). A drawback

to this formulation is that the tank is no longer passive and the booster pump consumes

energy.

In Fig. 6.2, we demonstrate the feasible water flow solutions for tank formulations 1 and 2

using the coupled PDN-WDN presented in Section 6.7. For combinations of pump and tank

injections, we check if there exists a water flow solution given the mixed-integer nonconvex

water flow constraints. Tank formulation 1 is less flexible than tank formulation 2 because the

head and water level of the tanks limit when the tank can store or supply water. Additionally,

Fig. 6.2 also shows the feasible solutions that satisfy monotonicity (i.e., the addition of

Assumption 2 since Assumptions 1 and 3 are already met). For this case study, we found that

the feasible range of pump flow rates is the same regardless of the monotonicity constraint;

however, the feasible combinations of tank injections are significantly limited. However, tank

injection combinations that are not feasible under monotonicity are cases in which the tanks

are counteracting each other, and so may correspond to more expensive (i.e., suboptimal)

operating points. In our case study, we use tank formulation 2 since the WDN has more

flexibility and can provide more voltage support. Our current formulation does not consider

the power consumption of the tank’s booster pump which we plan to model in future work.

Existence and Uniqueness

Existence and uniqueness of WDNs has been proven many times in the literature. Given

the water injections at all nodes, if the water flow equations (6.8)-(6.10) are feasible and the

head loss equation is monotonically increasing in flow, then there exists a unique solution to

the water flow equations [107, 116].

Monotonicity of Head with Water Injections

We use the Aquarius Theorem from [126] to show monotonicity of the junction heads given

reservoir water injections. The Aquarius Theorem is summarized for comprehensiveness:
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Figure 6.2: The feasible water flow solutions for tank formulation 1 (Left) and tank
formulation 2 (Right) are shown in blue with an overlaid orange area in-
dicating the feasible water flow solutions when enforcing monotonicity.

Aquarius Theorem [126]: Consider two sets of flow rates x(1) and x(2) that satisfy (6.8)

for injection vectors d(1) and d(2). Let B ⊂ N . If d
(1)
i ≥ d

(2)
i ∀ i ∈ B, then for every

i ∈ B, there exists a nonintersecting path i1, ..., iK , where i1 ∈ N \ B and iK = i such that

x
(1)
ikik+1

≤ x
(2)
ikik+1

∀ k = 1, ..., K − 1.

The Aquarius Theorem states that given an ordered water injection, there is a path of

ordered water flows. Therefore, we can make the following statement:

Proposition 1. Consider the solutions (x(1),H(1)) and (x(2),H(2)) satisfying the conser-

vation of water equation (6.8) and the head loss equation (6.10) for water injection vectors

d(1) and d(2). If di
(1) ≤ di

(2) for all i ∈ R, then H
(1)
j ≥ H

(2)
j for every node j ∈ N \ R.

Proof. We define sets B = {S ∪ J } and N \ B = R. Given Assumption 2, we know that

dj
(1) ≥ dj

(2) ∀ j ∈ S since di
(1) ≤ di

(2) ∀ i ∈ R. Using the Aquarius Theorem, we know there

is a nonintersecting path between every node in B to a node in R that has an ordered flow

rate since di
(1) ≥ di

(2) for all i ∈ B (i.e., di
(1) ≥ di

(2) for all i ∈ S and di
(1) = di

(2) for all

i ∈ J ). We calculate the cumulative head loss along the nonintersecting path i1, ...iK−1

defined in the Aquarius Theorem from j ∈ R to i ∈ B, i.e.,

Hj −Hi =
K−1∑
k=1

fikik+1
(xikik+1

) ∀ i ∈ B,∃ j ∈ R.

We know that H
(1)
j = H

(2)
j for all j ∈ R since reservoirs are treated as infinite sources

with fixed pressure heads. Since di
(1) ≥ di

(2), through the Aquarius Theorem, we know that
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x
(1)
ikik+1

≤ x
(2)
ikik+1

∀ k = 1, .., K − 1 along the path and

H
(1)
i = H

(1)
j −

K−1∑
k=1

fikik+1
(x

(1)
ikik+1

) ≥

H
(2)
j −

K−1∑
k=1

fikik+1
(x

(2)
ikik+1

) = H
(2)
i .

Therefore, if di
(1) ≤ di

(2) for all i ∈ R then H
(1)
j ≥ H

(2)
j for every node j ∈ N \R. Conversely,

if di
(1) ≥ di

(2) for all i ∈ R then H
(1)
j ≤ H

(2)
j for every node j ∈ N \ R.

This implies that the maximum head occurs at the minimum reservoir water injection.

Conversely, the minimum head occurs at the maximum reservoir water injection.

Monotonicity of Tank Level with Water Injections

Proposition 2. Consider the solutions (x(1),H(1)) and (x(2),H(2)) satisfying the conser-

vation of water equation (6.8) and the head loss equation (6.10) for water injection vectors

d(1) and d(2). If di
(1) ≥ di

(2) for all i ∈ R, then `
(1)
j ≥ `

(2)
j for every tank j ∈ S.

Proof. An increase in reservoir injection causes a decrease in tank injection (Assumption 2).

Since the tank level increases given a decreasing tank injection (6.12b), we know that the

tank level increases with increasing reservoir injection.

We are able to extend the monotonicity properties in Propositions 1 and 2 to the pump

power consumption since we are considering supply pumps that are directly downstream of

reservoirs. For these pumps, an increase in the reservoir water injection is directly related

to an increase in water flow through the pump. Since the power consumption increases

with flow (Assumption 1), we know that the power consumption increases with increasing

reservoir injection.

Therefore W3(·) in the ARO can be replaced with the two extreme sets of pump power

consumption and the scheduled pump power consumption

Γscheduled(pnom), (6.17a)

Γextreme(p), (6.17b)

Γextreme(p), (6.17c)
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where Γscheduled(·) is the set of WDN equations (6.8)-(6.15) for the scheduled operation and

Γextreme(·) is the set of WDN equations (6.8)-(6.11), (6.12b)-(6.15) for the extreme cases.

We use an overbar and underbar to denote the sets of WDN variables for the maximum

and minimum extreme cases, e.g., H and H . The maximum and minimum pump power

consumptions are defined by the scheduled pump power consumption, Rup, and Rdn,

pte = ptnom,e + (1/3)Rt
up,e ∀ e ∈ P , t ∈ T , (6.18a)

pte = ptnom,e − (1/3)Rt
dn,e ∀ e ∈ P , t ∈ T , . (6.18b)

Since the pumps are balanced three-phase loads, we divide the magnitude of the largest pump

power adjustments by three to get the single-phase pump power consumption. Additionally,

we enforce Assumption 2 in the extreme cases by including

d
t

j ≤ dtnom,j ∀ j ∈ S, t ∈ T , (6.19a)

dtj ≥ dtnom,j ∀ j ∈ S, t ∈ T , (6.19b)

in (6.17b) and (6.17c), respectively, where dtnom,j is the scheduled reservoir water injection

and d
t

j, d
t
j corresponds to the water injections in the extreme scenarios.

6.4.3. Full AARC

Finally, we replace the general expression of the robust reformulation of the WDN constraints

ω3(x) with three sets of deterministic constraints to obtain the full AARC

min
x

(6.7) (AARC)

s.t. Ŵ1(x),

Ŵ1(x),

(6.17), (6.18),

where x = {pnom,p,p,Rup,Rdn,C,H , `,x,H , `,x,H , `,x}.
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6.5. WDN Approximations

Additionally, we approximate the pipe and pump head loss equations (6.10) to make the

water constraints convex. Importantly, these approximations are not necessary to guarantee

robustness; the monotonicity properties used in Section 6.4 guarantee robustness for the

nonconvex WDN constraints. We replace the nonconvex head loss function fij(x
t
ij) for pipes

with a quasi-convex hull of the Darcy-Weisbach formulation4 so we can model pipes with

bi-directional flow [61]

H t
i −H t

j ≤ (2
√

2− 2)kijxmax,ijx
t
ij + (3− 2

√
2)kijx

2
max,ij,

H t
i −H t

j ≥ (2
√

2− 2)kij|xmin,ij|xtij − (3− 2
√

2)kijx
2
min,ij,

H t
i −H t

j ≥ 2kijxmax,ijx
t
ij − kijx2

max,ij,

H t
i −H t

j ≤ 2kij|xmin,ij|xtij + kijx
2
min,ij,

(6.20)

∀ ij ∈ E \ P , t ∈ T . Parameters xmin,ij and xmax,ij are the lower and upper limits on pipe

ij’s flow rate. We under-approximate the pump head gain as a linear function

H t
i −H t

j = m3
ijx

t
ij +m2

ij ∀ ij ∈ P , t ∈ T , (6.21)

where m3
ij and m2

ij are parameters. Therefore, the convexified (AARC) replaces (6.10) in

(6.17) with (6.20)-(6.21). While the robust approach in Section 6.4.3 and the proposed

probabilistic approach in Section 6.8 do not require convex WDN constraints, we utilize the

approximations to improve computation time. Additionally, the scenario-based probabilis-

tic approach developed in Chapter 5 requires convex constraints in order for the scenario

approach to be applicable. Chapter 5 and [61] investigated the impact of the WDN approx-

imations used and found that they were reasonable. For example, Chapter 5 empirically

observed that the solutions of an approximated formulation using the linearized pump head-

flow function (6.21) satisfied the original, nonconvex water constraints.

4The formulation in [61] is formulated specifically for the Darcy-Weisbach headloss formula. This can be
generalized to also apply to the Hazen-Williams headloss formula. In Appendix A, we generalized the
relaxation to work for all commonly used head loss formulas.
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6.6. Deterministic Problem

To provide a point of comparison for the uncertainty-aware methods, this section describes

the decoupled, convex, deterministic problem. We present the formulation in which the

WDN solves for the pump schedule with no knowledge of the PDN and the power demand

uncertainty. We use the deterministic problem – a formulation in which the PDN is not

explicitly considered – as a way to evaluate and compare the solutions and performance of

the uncertainty-aware approaches presented in Sections 6.3 and 6.8. Specifically, we evaluate

the reduction in violation probabilities and the impact of the PDN on the water pumping.

The deterministic, decoupled water pumping formulation is

minimize
x

∑
t∈T

∑
e∈P

3πtep
t
e (D)

subject to (6.8)− (6.9), (6.11)− (6.15), (6.20)− (6.21),

where x := {pte ∈ p, H t
j ∈H , `tj ∈ `, xtij ∈ x}. The pump power decision variable pte is equiv-

alent to the scheduled pump power ptnom,e since there are no real-time pump adjustments.

6.7. Robust Case Study

In our case study, we use a coupled PDN and WDN shown in Fig. 6.3. We first describe the

case study set up and then present our case study results for the robust problem.

6.7.1. Set Up

The WDN is a test network (NET1) included with EPANET, a free WDN modeling and

simulation software program developed by the U.S. Environmental Protection Agency [87].

We pull the network data from the EPANET input file and make the following modifications.

We added an additional tank (tank 2) in order to evaluate a case study that requires the tank

injection monotonicity constraints (6.19). We reduced the volume of the first tank so that

the total water storage capacity remains the same. The updated tank data is γj = 94.53 m2,

`0
j = 327.06 m, `min,j = 319.56 m, and `max,j = 334.56 m for tank 1 and γj = 94.54 m2,

`0
j = 339.02 m, `min,j = 331.52 m, and `max,j = 346.52 m for tank 2. The minimum head

limit at each junction is equal to the elevation plus a minimum pressure head of 20 m. The

pump performance coefficients are h1
ij = 1.09 kW/CMH, h0

ij = -22.88 kW, m1
ij = -9.08 ×
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Figure 6.3: Coupled PDN (left) and WDN (right). The blue dashed line indicates
where the water supply pump is connected to the PDN.

10-2 m/CMH, and m0
ij = 103.73 m with a minimum and maximum flow rate of xmin,ij =

25 CMH and xmax,ij = 390 CMH, respectively.

For the three-phase unbalanced PDN, we use the IEEE 13-bus feeder topology [52] with

the same modifications and assumptions as Chapter 5. The pump is connected to bus 10. We

set ηe to 3. The minimum and maximum voltage limits are 0.95 pu and 1.05 pu, respectively.

The nominal power demands at each bus and phase are multiplied by 1.5 so that the PDN is

heavily loaded and the voltages are close to their minimum voltage limit. The power demand

forecast error is uncertain but bounded between [-σρ̄tk,φ, σρ̄
t
k,φ] at each bus and phase with a

load present, where σ indicates a percentage of the forecasted load. We set πte = $100/MWh

and πtvs,e = $10/MWh. We solve the problem with the JuMP package in Julia using the

SCIP [33] and Gurobi [42] solvers.

6.7.2. Results

We first evaluate the robust solutions for a single time period while varying the size of

the uncertainty set (i.e., by varying σ). In Table 6.1, we present the objective cost, the

scheduled pump power consumption, and the full range of real-time pump power adjustments

Rt = Rt
up + Rt

dn for the robust voltage support problem with convex WDN constraints.

For all cases in Table 6.1, the scheduled pump power consumption is constant because the

tank injections must be non-positive (6.12a) and the scheduled pump power consumption

is minimized (i.e., the scheduled tank injection is zero). When σ = 2%, the PDN does not
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Table 6.1: Single-Period Results

σ (%) Objective Cost ($) Sched. Pump Power (kW) Rt (kW)
2 67.16 671.61 0
3 68.79 671.61 162.90
4 71.87 671.61 470.58
5 74.94 671.61 778.20

experience voltage limit violations for any realization of uncertain power demand. Therefore,

the control policy is zero and the water pumps do not adjust their operation in real time.

As the power demand uncertainty increases, a non-zero control policy is needed to handle

some of the uncertainty realizations. Consequently, the objective cost and Rt increase.

We check the robustness of the solutions in Table 6.1 with the original, nonconvex WDN

constraints and the linearized PDN constraints. We randomly generated 1,000 uniformly

distributed power demand forecast error scenarios within the uncertainty set. Given the

scheduled pump power consumption and the parameters of the pump power control policy, we

calculated the real-time pump power adjustments and verified that the power flow equations

and the nonconvex water flow equations are satisfied. We found that the solutions are feasible

in the robust nonconvex problem for all uncertainty scenarios tested.

Next, we solve the robust voltage support problem for a 24-hour period. In Fig. 6.4, we

compare the solution of the robust problem to that of a deterministic problem that uses only

the forecasted demands. We observe that the robust schedule (6.17a) varies less than the

deterministic schedule. This is because the robust solution needs to be feasible for the entire

range of pump power adjustments around the schedule, i.e., -Rt
dn,e and +Rt

up,e. The range of

pump power adjustments results in robust bounds around the WDN’s adjustable variables

(e.g., the pump flow rates and the tank levels). We illustrate the range of bounds for the

extreme cases (6.17b)-(6.17c) in Fig. 6.4 with a blue shaded area.

The robust bounds of the tanks in Fig. 6.4 demonstrate the propagation of uncertainty

over multiple time periods. In our formulation, the water level in the tank is a function

of the tank level in the previous time period. As a result, the tank’s robust bounds are

dependent on the uncertainty from previous time periods. As expected, the tank bounds

increase over time due to propagation of uncertainty across time periods. We were unable

to robustly solve the 24-hour problem for larger uncertainty levels (e.g. σ = 5%), indicating

that the solution becomes increasingly conservative as the uncertainty accumulates over the

scheduling horizon until the robust problem becomes infeasible. There are methods to deal
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Figure 6.4: Pump flow rates and tank levels in the multi-period convex robust problem
(σ = 4%) for the robust schedule (solid blue lines) and the deterministic
schedule based on forecasted demands (red dotted lines). The bounds on
the robust pump flow rate and tank levels are shown with blue shading
around the schedule. The black dashed lines are the minimum and maxi-
mum pump flow rates and tank levels.

with uncertainty propagation, such as compensating for recently observed forecast error [45],

but we leave this to future work.

Next, we verify the computational tractability of the robust voltage support problem by

comparing the solver time of the robust problem with that of the chance-constrained voltage

support formulation solved via the scenario approach in Chapter 4. The results in Chapter 4

are generated using a comparably sized WDN. When solving the voltage support problem

for three time periods, the robust problem’s solver time was less than a second whereas

the chance-constrained problem’s solver time was 10-50 minutes. For a scheduling horizon

of 24 hours, we were unable to solve the chance-constrained problem due to memory issues

whereas solving the robust problem takes less than 2 seconds. This comparison demonstrates

the computational tractability of our proposed formulation.
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6.8. Probabilistic Problem Formulation

To reduce the conservativeness of the solution while maintaining computational tractability,

we propose an uncertainty-aware optimization framework that contains chance-constrained

power constraints and probabilistically robust water constraints. Specifically, the chance-

constrained power constraints guarantee feasibility of the PDN operation under power de-

mand uncertainty with a high probability. The probabilistically robust water constraints

guarantee feasibility of the real-time voltage support control policy on WDN operation with

a high probability. Using probabilistic constraints is a reasonable approach since there are

other components in the PDN that can provide voltage support. Additionally, small devia-

tions outside of system limits for short periods of time may be acceptable.

We derive an analytical reformulation of the integrated PDN-WDN problem utilizing the

monotonicity properties discussed in Section 6.4.2 and assuming knowledge of the uncer-

tainty distribution. We rewrite the joint chance constraints as individual chance constraints.

Unlike joint chance constraints, individual chance constraints do not significantly increase

the computational complexity. Additionally, individual chance constraints are effective at

reducing the joint violation probability and are less conservative than explicitly formulated

joint chance constraints [43]. Furthermore, there is added flexibility in identifying active

constraints and tuning constraint violation levels individually. We evaluate the empirical

joint and individual reliability in the case study in Section 6.9.

Our new probabilistic approach builds on the robust reformulation (AARC) and existing

approaches for chance-constraints. The benefits and disadvantages of these methods are

explored in the case study in Section 6.9. The proposed probabilistic optimization problem

is of the form

minimize
x

(6.7) (6.22a)

subject to Wp(x,∆ρ), (6.22b)

Ww(x,∆ρ), (6.22c)

where the constraint sets Wp(x,∆ρ) and Ww(x,∆ρ) contain the quasi-steady state power

flow (including the voltage support constraints) and water flow constraints, respectively.

These sets of constraints are functions of the decision variables x ∈ Rd and the random

variables ∆ρ ∈ Rn (which in this case is the power demand forecast error).
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6.8.1. Power Distribution Network Constraints, Wp(x,∆ρ)

With the use of the affine control policy and Lin3DistFlow, the power constraints are linear.

To analytically reformulate the power constraints, the voltage limit constraints are separated

to form 2× |K| × |Φ| × |T | individual chance constraints

P
[
Y t
k,φ(x,∆ρ) ≤ V 2

max

]
≥ 1− εp ∀ k ∈ K, φ ∈ Φ, t ∈ T , (6.23)

P
[
V 2

min ≤ Y t
k,φ(x,∆ρ)

]
≥ 1− εp ∀ k ∈ K, φ ∈ Φ, t ∈ T . (6.24)

The function Y t
k,φ(x,∆ρ) returns the voltage magnitude squared at bus k, phase φ, and time t

which is an affine function of the power demand forecast errors ∆ρ, the scheduled pump

power pnom, and the control policy parameters Ct
e ∈ C at time t. The chance constraints

ensure that each voltage limit is satisfied for a user-specified probability level 1−εp, where εp

is the individual violation level. It should be noted that the individual violation level can be

different for each individual chance constraint. We analytically reformulate the power chance-

constraints assuming that the power demand forecast error follows a normal distribution

with a known mean µ ∈ Rn and covariance Σ ∈ Rn×n. Ref. [99] found that a reformulation

based on a normal distribution is reasonable (i.e., provides good trade-offs between cost

and security) in systems with a large number of uncertain variables, e.g., uncertain power

demands. The individual chance constraints can be equivalently written in the following

deterministic form [12, 99]

P[a(x)+b(x)∆ρ ≤ c] ≥ 1− ε (6.25)

⇔ a(x) ≤ c− b(x)µ− f−1(1− ε)‖b(x)Σ1/2‖2,

where a(x) ∈ R and b(x) ∈ R1×n are affine functions of the decision variables, c ∈ R is a

constant, and f−1(·) is either the inverse cumulative distribution function or a probability

inequality [99]. Since we assume a normal distribution, f−1(·) is the inverse cumulative

distribution function of the standard normal distribution.

6.8.2. Water Distribution Network Constraints, Ww(x,∆ρ)

For the water constraints (6.22c), we build on a probabilistically robust method presented

in [72] to make the probabilistically robust method applicable and tractable for our formu-

lation. In [72], the authors determine an uncertainty set and solve for the probabilistically

111



robust constraints in two sequential steps. Our formulation concurrently solves these two

steps, which allows us to incorporate the probabilistically robust water constraints into an

optimization framework that manages power constraints in a different way. In [72], the

uncertainty set is determined via a scenario-based approach, where the number of samples

generated depends on the number of uncertainty sources and a user-specified violation level.

Since our problem considers many sources of uncertainty (i.e., every bus and phase over

the entire scheduling horizon), this approach would be very conservative for our formula-

tion. It should also be noted that scenario-based approaches are generally conservative in

practice [125]. However, our approach may have more requirements on our formulation (for

example, distribution assumptions) than the method in [72].

To tractably reformulate the water constraints, we analytically solve for a bounded set D
given the uncertainty ∆ρ. We ensure that D encloses a user-specified probability density.

The water constraints are then solved robustly, i.e., (6.17), given set D. Since the robust

reformulation of the water constraints relies on the extreme pump powers, we solve for a

range of extreme pump powers, i.e., ptnom,e − Rt
e and ptnom,e + R

t

e that need to be feasible in

(6.17b) and (6.17c). In other words, we ensure that the probability density of the real-time

pump adjustments within [R,R] is at least 1− εw, i.e.,

P
[
Ct
e∆ρ

t ≤ R
t

e

]
≥ 1− εw ∀ e ∈ P , t ∈ T , (6.26)

P
[
-Rt

e ≤ Ct
e∆ρ

t
]
≥ 1− εw ∀ e ∈ P , t ∈ T , (6.27)

where εw is the individual violation level. Therefore, the uncertainty set D is the hyper-

rectangle of the voltage support capacities, i.e., D := ×|P|e=1 ×
|T |
t=1 [Rt

e, R
t

e] where × is the

Cartesian product. Given the robust water constraints (6.17) are satisfied, the water flow

constraints are feasible for pump power set points inside [pnom − R,pnom + R]. Equa-

tions (6.26) and (6.27) can be reformulated as deterministic constraints using the format

presented in (6.25).

6.8.3. Full Probabilistic Problem

The deterministic reformulation of the probabilistically robust water distribution network

constraints and the analytical reformulation of the voltage limit chance constraints are com-
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bined into a single optimization formulation

minimize
x

(6.7) (P)

subject to Wp(x) ≤ 0,

Ww(x) ≤ 0,

(6.17),

where Wp(x) ≤ 0 represents the analytical reformulation (6.25) of the probabilistic voltage

limit constraints (6.23)-(6.24) and Ww(x) ≤ 0 represents the analytical reformulation of

the probabilistically robust voltage support capacity constraints (6.26)-(6.27). The decision

variable x contains pnom, R, R, C, H , H , H , `, `, `, x, x, and x.

The benefits and trade-offs of the probabilistic and robust approach are then explored for

a case study in Section 6.9.

6.9. Probabilistic Case Study

In our case study, we consider the coupled PDN and WDN depicted in Fig. 6.5. We first

describe the case study and then present the results.

6.9.1. Set Up

We use the coupled PDN and WDN from [115]. The WDN is based on an example net-

work provided in EPANET, an open-source hydraulic modeling and simulation software

program [87]. For the PDN, we use the IEEE 13-bus topology [52]. All modifications and

parameter values are provided in [115] except the following change to the water and power

demands. In order to make the case study more realistic, the nominal water demand at each

junction is multiplied by a time-varying constant. Similarly, the nominal power demand at

each bus and phase is multiplied by a time-varying constant. The dashed blue curve and the

solid red curve in the top plot of Fig. 6.6 depict the water and power demand multipliers

over a twelve-hour scheduling horizon where each time period has a duration ∆T of one

hour. Additionally, we pulled electricity prices πt for the Midcontinent Independent System

Operator (MISO) for July 21st, 2021, 7:00-18:00 from [75]. These electricity prices are shown

in the bottom plot of Fig. 6.6. We set πvs = 5 $/MWh. The minimum and maximum voltage

limits are 0.95 pu and 1.05 pu, respectively.
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Figure 6.5: Topology of the case study’s coupled three-phase unbalanced PDN (left)
and WDN (right). The blue dashed line indicates where the three-phase
balanced water supply pump is located in the PDN.

We consider two different types of uncertainty distributions – a normal distribution and

a student t-distribution. In the probabilistic approach (P) presented in Section 6.8, we

assume that the distribution of the power demand forecast error is normal, which may not

be realistic. To observe how this approach performs when the actual distribution is not

well known, we fit a multivariate normal distribution to 500 randomly drawn samples from

the actual distribution, which is either a multivariate normal distribution or multivariate t-

distribution. Student t-distributions have heavier tails than a normal distribution, leading to

more extreme power demand forecast errors. It should be noted that we can also reformulate

the chance-constraints assuming that the distribution is a t-distribution [99]. However, a

focus of this case study is evaluating the performance when the underlying uncertainty is

different than what we assume.

For the multivariate t-distribution, we set the degrees of freedom equal to 3, the correlation

coefficients to 0.2, and scale the distribution such that the standard deviation is equal to

αρ̂tk,φ where α is a percentage and ρ̂tk,φ is the forecasted power demand. Additionally, we

truncate the t-distribution at ten times the standard deviation. For the multivariate normal

distribution, we generate samples from a load forecast error model that consists of a zero-

mean normally distributed global error (with standard deviation σ0ρ̂
t
k,φ) and a zero-mean

normally distributed nodal error (with standard deviation σnodeρ̂
t
k,φ), similar to [51]. The
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Figure 6.6: Time-varying water and power demand multipliers (top) and electricity
price (bottom) over the scheduling horizon.

Table 6.2: Case Studies

Case Actual Distribution Parameters

A t-distribution α = 8%

B t-distribution α = 1.5%

C normal distribution σ0 = 1.01%, σnode = 3.98%

normal distribution is truncated at three standard deviations from the mean. We consider

three cases, which are described in Table 6.2.

The estimated multivariate normal distribution used in the probabilistic approach (P)

is fitted using maximum likelihood estimation from 500 randomly generated samples drawn

from the actual distribution. We compare our solution to the adjustable robust approach (R),

where the power demand is uncertain but bounded. The bounds are set to the maxi-

mum values of 2,000 samples randomly generated from the actual distribution, i.e., ∆ρtk,φ ∈
[−∆ρtmax,k,φ,∆ρ

t
max,k,φ] for all k ∈ K, φ ∈ Φ, and t ∈ T where ∆ρtmax,k,φ = maxi∈U2000 |∆ρtk,φ,i|

and U2000 is the set of 2,000 randomly drawn samples.

To evaluate the solution performance of each approach, we use the Monte Carlo method

to determine the empirical violation probabilities given the actual distribution and the fitted

normal distribution. We calculate the empirical violation probability under both distribu-

tions so that we can evaluate the performance given the actual and expected distribution.
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We generate 50,000 power demand forecast error scenarios for the twelve-hour scheduling

horizon and determine the corresponding real-time pump power adjustments from the pump

schedule. We determine the joint empirical violation probability by determining whether

there exists a water and/or power network violation for any scenario in the scenario set.

For simplicity, we set all individual violation levels for the voltage limits constraints εp to

be the same and all individual violation levels for the voltage support capacity constraints εw

to be the same. The problems are solved with the Gurobi solver [42] using the JuMP package

in Julia on a computer with a 64-bit Intel i7 dual core CPU at 3.40 GHz and 16 GB RAM.

6.9.2. Results

We solve the robust (R), probabilistic (P), and deterministic (D) formulations from Sec-

tions 6.4.3, 6.8.3, and 6.6, respectively. Table 6.3 displays the solver time, the total cost (6.7)

and the cost of the pump schedule (i.e., the first term in (6.7)) as percent increases from

the deterministic cost (which has the same total and pump schedule cost), and the average

three-phase up and down voltage support capacity over the twelve-hour scheduling horizon

for the probabilistic and robust approaches as we vary the user-selected individual violation

levels and the uncertainty distribution. As the individual violation levels decrease and the

uncertainty distribution’s standard deviation increases, the pump operation shifts to a more

expensive operating point and larger real-time control actions are needed to respond to the

uncertainty realizations. As a result, the costs and the voltage support capacity increase. In

Table 6.3, Case A has the largest forecast error standard deviation and costs while Case B

has the smallest forecast error standard deviation and costs. It should be noted that the

real-time up and down voltage support capacities for the probabilistic approach are not equal

because the fitted normal distribution is not necessarily zero mean.

116



T
a
b

le
6
.3

:
P

ro
b

a
b

il
is

ti
c

a
n

d
R

o
b

u
st

R
e
su

lt
s

C
as

e
P

ro
b
le

m
ε p

ε w
S
ol

ve
r

T
im

e
T

ot
al

C
os

t
S
ch

ed
u
le

d
C

os
t

A
ve

ra
ge
R

A
ve

ra
ge
R

T
y
p

e
(%

)
(%

)
(s

)
(%

In
cr

ea
se

)
(%

In
cr

ea
se

)
(k

W
)

(k
W

)

A
(P

)
1
×

10
-2

1
×

10
-2

1.
36

11
.5

3
4.

90
18

4.
90

18
3.

37

(P
)

5
×

10
-3

1
×

10
-3

1.
46

15
.4

0
7.

63
21

6.
77

21
5.

13

(P
)

3
×

10
-3

1
×

10
-4

1.
44

18
.8

8
8.

78
28

1.
59

27
9.

60

(R
)

–
–

—
—

—
—

—
—

—
—

—
—

—
In

fe
as

ib
le

—
—

—
—

—
—

—
—

—
—

—

B
(P

)
1
×

10
-5

1
×

10
-5

0.
49

0
0

0
0

(R
)

–
–

0.
40

2.
86

1.
54

36
.8

0
36

.8
0

C
(P

)
1
×

10
0

1
×

10
0

0.
48

0
0

0
0

(P
)

1
×

10
-3

1
×

10
-3

0.
94

0.
49

0.
49

0
0

(P
)

1
×

10
-9

1
×

10
-9

1.
21

6.
30

3.
78

69
.9

8
69

.6
9

(R
)

–
–

0.
49

26
.8

6
12

.2
1

40
7.

31
40

7.
31

(P
):

P
ro

b
ab

il
is

ti
c

ap
p
ro

ac
h

(R
):

R
ob

u
st

ap
p
ro

ac
h

117



Figure 6.7: Example probability density functions of the actual distributions (solid
lines) for bus 8, phase c, and t = 1 compared with the estimated normal dis-
tribution (dashed lines) fitted using maximum likelihood estimation with
500 samples. The actual distributions are Case A (left) and Case C (right).

The robust solution requires a more expensive pump schedule and larger real-time voltage

support capacity than the probabilistic solution. This is because the robust solution has to

be feasible for all uncertainty realizations whereas the probabilistic solution needs to feasible

for a certain probability density of the uncertainty realizations. For example, in Case C, the

total robust cost is a 26.86% increase from the deterministic cost whereas the probabilistic

case (εp, εw = 1× 10-9%) is a 6.30% increase from the deterministic cost. In many cases, the

probabilistic formulation provides a solution whereas the robust formulation is infeasible.

This illustrates the additional flexibility of a probabilistic solution versus a robust solution.

However, the difference between the probabilistic and robust approaches intensifies when

the fitted distribution is not representative of the actual distribution. This is illustrated

in Fig. 6.7, which shows an example of the probability density functions for the actual

distribution and its corresponding fitted normal distribution for Cases A and C. In Cases A

and B, the actual distributions have heavier tails than the fitted distributions. In these

cases, the probability of drawing a value from the fitted distribution that is near the robust

bounds (which are formed from the actual distribution) is negligible. This indicates that

the probabilistic approach using the fitted normal distribution may perform poorly if the

assumed uncertainty distribution is inaccurate.

The solver times for the probabilistic and robust solutions are shown in Table 6.3. The

probabilistic and robust solver times are comparable. We find that the probabilistic approach
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would reasonably scale to larger networks since the probabilistic approach in the case stud-

ies solve in less than two seconds. For comparison, the scenario-based chance constrained

formulation was unable to solve for a comparable PDN-WDN system due to memory issues.

Fig. 6.8 illustrates how the uncertainty impacts the pump schedule for Case A (εp =

3 × 10-3% and εw = 1 × 10-4%) and Case C (εp, εw = 1 × 10-9%). We compare the proba-

bilistic schedule (solid blue line), the deterministic schedule (dotted red line), and the robust

schedule (dashed green line). The probabilistic and robust schedules vary less between time

periods compared to the deterministic schedule and are more centered within the pump

power limits. This is because the uncertainty-aware approaches need to respond to the un-

certain power demand forecast error to ensure that the voltages remain within their limits.

The range of real-time voltage support adjustments around the schedule are depicted with

the blue and green bands for the probabilistic and robust solutions, respectively. In Case A,

the robust problem is infeasible and the pump in the probabilistic solution almost uses its

full pumping range to provide real-time voltage support. In Case C, the standard deviation

of the forecast error is smaller so the probabilistic problem does not need as much voltage

support capacity. Here, the robust solution is also feasible. As expected, the robust so-

lution’s real-time voltage support capacity is much larger than the probabilistic solution’s

voltage support capacity.

Next, we verify that the empirical violation probabilities of the individual chance con-

straints are below the user-selected violation levels, εp and εw when the samples are generated

from the fitted, multivariate normal distribution. In general, we found that many empiri-

cal violation probabilities are well below the user-specified violation level. To demonstrate

this, let’s consider the voltage constraints in Case A (εp = 5 × 10-3% and εw = 1 × 10-3%).

The empirical voltage violation probabilities range from 0% to 4 × 10-3%, with a mean of

8.8 × 10-5% and standard deviation of 4.9 × 10-4%. This indicates that many individual

chance constraints are never active. We found that the violations only occurred on phase c

at the end of the network (buses 6-12), where a majority of all violations (around 47%)

occurred at bus 8.
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Figure 6.8: Comparison of pump power schedules for the probabilistic (solid blue line),
deterministic (dotted red lines), and robust (dashed green lines) solutions
for (top) Case A (εp = 3× 10-3% and εw = 1× 10-4%) and (bottom) Case C
( εp = 1 × 10-9% and εw = 1 × 10-9%). The blue and green bands indicate
the range of real-time voltage support adjustments of the pump around
the probabilistic and robust schedule, respectively. The black dashed lines
indicate the pump power limits.
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Table 6.4 evaluates the joint empirical violation probabilities. The joint water, joint power,

and overall joint empirical violation probabilities are displayed for both the fitted and actual

distributions. We observe that Cases B and C both have probabilistic solutions that have

the same empirical violation probabilities as the robust solution, despite having lower costs.

As expected, the empirical violation probability decreases as the violation level decreases.

Additionally, the actual distribution generally had worse empirical violation probabilities

than the fitted distribution when the fitted distribution was not representative of the actual

distribution’s probability distribution (e.g., Case A). However, we observe that by decreasing

the individual violation levels εw and εp, we are able to improve the joint empirical violation

probability of the actual distribution, despite the distribution being different than we expect.

We also compare the empirical violation probabilities of the probabilistic approach with the

deterministic approach. The joint power and overall joint empirical violations are generally

much higher in the deterministic approach since the WDN and PDN operation is completely

decoupled. This illustrates the benefits of coupled operation to the power network and the

coupled power-water system as a whole. As expected, the WDN does not experience any

constraint violations in the deterministic case. In the probabilistic case, water constraint

violations can occur since WDN operation is impacted by the uncertainty in the PDN. This

can be seen in the joint water violation probabilities for Case A in Table 6.4. However, the

empirical violation probabilities can be tuned by the individual constraint violation levels

to provide a certain amount of reliability to each network. A benefit of individual chance

constraints over joint chance constraints is that there is more flexibility in identifying and

tuning important individual constraints for system security [43].

6.10. Chapter Conclusion

In this chapter, we formulated an ARO problem that controls water pumping in the WDN

to provide voltage support to the PDN given power demand uncertainty. We apply the

monotonicity properties from [126] to the WDN and identify the tank operation assump-

tions needed to ensure monotonicity. We found that the assumptions needed to enforce

monotonicity may significantly restrict the feasible water flow solutions. Using these prop-

erties, along with affine control policies and constraint approximations, we reformulated

the problem as a tractable AARC. In our case study, we demonstrated the robustness and

computational tractability of our approach. As an alternative formulation, we proposed a

computationally tractable analytical reformulation of a probabilistic water pumping problem
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to provide voltage support to the PDN. The problem is subject to the probabilistically robust

WDN constraints and chance-constrained PDN constraints and manages power demand un-

certainty. We compared this approach with the ARO method to evaluate the computational

and solution performance. We found that the probabilistic approach is significantly less

conservative than the robust approach and that it is able to find solutions when the robust

approach is infeasible. By adjusting individual violation levels, we can target network con-

straints that are important for system reliability. A drawback to the probabilistic approach

is that we assume the uncertainty distribution is known, and so the probabilistic approach

may perform poorly if the distribution is inaccurate. The probabilistic approach has a com-

parable computational performance to the robust approach. Therefore, this approach can

be applied to large networks.
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Chapter 7.

Coordination of Multiple Services

This chapter presents a robust water pumping optimization problem to provide multiple

grid services concurrently. We reformulate the problem into a deterministic, convex, and

sequential optimization problem that employs analytical robust reformulations. We evaluate

the benefits and challenges of providing multiple services together. This chapter is based

on [113].

7.1. Notation

Sets

E Set of pipes in the WDN (indexed by ij)

Ik Set of buses directly downstream of bus k in PDN (indexed by k)

J Set of junctions within the set of nodes in the WDN (indexed by j)

K Set of buses in the PDN (indexed by k)

N Set of nodes in the WDN (indexed by j)

P Set of pumps within the set of pipes in the WDN (indexed by ij)

R Set of reservoir nodes within the set of nodes in the WDN (indexed by j)

S Set of storage tanks within the set of nodes in the WDN (indexed by j)

T Set of time steps in the scheduling problem (indexed by t)

U Uncertainty set (indexed by ω)

Φ Set of phases in the PDN (indexed by φ)

Decision Variables

Ct
vs,e VS control policy parameter row vector for pump e at time t (-)

Ct
fr,up,e Up FR control policy parameter for pump e at time t (-)
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Ct
fr,dn,e Down FR control policy parameter for pump e at time t (-)

F t
dn,e Auxiliary decision variable to replace Ct

fr,dn,eR
t
fr,dn (kW)

F t
up,e Auxiliary decision variable to replace Ct

fr,up,eR
t
fr,up (kW)

H t
j Hydraulic head at node j and time t (m)

`tj Water level of tank j at time t (m)

pte Real-time single-phase real power demand of pump e at time t (kW)

ptnom,e Scheduled single-phase real power demand of pump e at time t (kW)

P t
k Real power flow vector (all phases) entering bus k at time t (kW)

pt
e

Minimum single-phase power consumption at pump e and time t (kW)

pte Maximum single-phase power consumption at pump e and time t (kW)

Qt
k Reactive power flow vector (all phases) entering bus k at time t (kVAr)

Rt
fr,dn Single-phase down frequency regulation capacity at time t (kW)

Rt
fr,up Single-phase up frequency regulation capacity at time t (kW)

Rt
vs,dn,e Max. single-phase pump power decrease from the schedule due to

voltage support services for pump e and time t (kW)

Rt
vs,up,e Max. single-phase pump power increase from the schedule due to

voltage support services for pump e and time t (kW)

xtij Volumetric flow rate of water through pipe ij at time t (CMH)

x Operational variables

Y t
k Three-phase voltage magnitude squared at bus k and time t (kV)

Y t
min Min. Y t

k across all buses and phases at time t (kV2)

y Adjustable variables

Functions

F (·) Cost function

∆ptvs,e(·) Real time voltage support adjustment function at pump e and time t

∆ptfr,e(·) Real time frequency regulation adjustment function at pump e and time t

Yt
k,φ Voltage magnitude squared at bus k, phase φ, and time t

Constraint Sets

Ψ1(·) Voltage support constraint set

Ψ2(·) Frequency regulation constraint set

Ψ3(·) Power flow constraint set

Ψ4(·) Water flow constraint set

Ψ̂vs(·) Robust reformulation of power flow constraints in VS problem
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Ψ̂fr(·) Robust reformulation of power flow constraints in FR problem

Γscheduled(·) Deterministic WDN constraints given the scheduled pump power

Γextreme(·) Deterministic WDN constraints given the max. or min. pump power

Random Variables, ω

s̃tdn ∈ [0, 1] Down frequency regulation signal at time t (-)

s̃tup ∈ [−1, 0] Up frequency regulation signal at time t (-)

∆ρtk,φ ∈∆ρt Deviation in real power demand at bus k and phase φ, at time t (kW)

ρtk Real-time three-phase real power demand at bus k and time t (kW)

ζtk Real-time three-phase reactive power demand at bus k and time t (kVAr)

Parameters

dtj Forecasted water demand of consumer j at time t (CMH)

h̄j Elevation head of node j (m)

Hmin
j Minimum pressure head for node j (m)

H
min

j Maximum pressure head for node j (m)

h1
ij, h

0
ij Pump power parameters for pump ij ( kW/CMH, kW)

kij Resistance coefficient of pipe ij (h2/m5)

`j Minimum water level in tank j (m)

`j Maximum water level in tank j (m)

Mkn Line parameter matrix formed from impedances for line kn (Ohms)

m1
ij,m

0
ij Pump hydraulic function parameters for pump ij (m/CMH, m)

Nkn Line parameter matrix formed from impedances for line kn (Ohms)

V k Minimum 3-phase voltage magnitude limit at bus k (kV)

V k Maximum 3-phase voltage magnitude limit at bus k (kV)

xij Minimum flow rate of pump ij (CMH)

xij Maximum flow rate of pump ij (CMH)

∆T Duration of time period (h)

γj Cross-sectional area of tank j (m2)

νj Recovered water deficit in tank j from previous scheduling horizon (m3)

ηe Ratio between real and reactive power of pump e (-)

πte Forecasted energy price at for pump e at time t ($/kWh)

πtvs,e Voltage support capacity cost for pump e at time t ($/kWh)

πtvs,up,e Up frequency regulation prices for pump e at time t ($/kWh)

πtvs,dn,e Down frequency regulation prices for pump e at time t ($/kWh)
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πtvs,up,e Up frequency regulation prices for pump e at time t ($/kWh)

ρtk Forecasted three-phase real power demand at bus k and time t (kW)

σ Parameter to scale power demand forecast error (-)

7.2. Chapter Introduction

The WDN can provide several local and grid level services to the power grid. However, for

any one service, the flexibility in the WDN may be underutilized. To improve utilization, the

WDN can be operated to simultaneously provide local and grid-level services, which provides

more overall benefit to the power system and also can increase the value proposition to the

WDN operator. The goal of this chapter is to use WDNs to provide multiple simultaneous

grid services. In particular, we focus on providing voltage support to the power distribution

network and frequency regulation to the bulk transmission system. In order to provide robust

guarantees on the safe operation of the PDN and WDN, we need to account for network

demand uncertainty.

To do this, we formulate a robust water pumping problem to simultaneously provide volt-

age support and frequency regulation subject to power and water distribution network con-

straints in the presence of power demand uncertainty. We first develop the full optimization

problem where the scheduled WDN operation, voltage support, and frequency regulation are

co-optimized. The formulation is nonconvex and mixed-integer, and so we reformulate the

problem into multiple sub-problems and solve the problems sequentially. We then evaluate

the performance trade-offs of the co-optimized and sequential problems.

The contributions of this chapter are the 1) formulation of a robust optimization prob-

lem to simultaneously solve for the pump schedule, voltage support control actions, and

frequency regulation capacity subject to WDN and PDN constraints while managing uncer-

tainty in power demand and the frequency regulation signal, 2) tractable reformulation of

the problem into a robust, mixed-integer convex sequential problem, 3) evaluation of the

challenges associated with providing voltage support and frequency regulation together, and

4) demonstration of the performance of the proposed solution approach through a case study.

7.3. Problem Description

Our goal is to optimize the WDN’s operation and capacity allocated to grid services subject

to PDN and WDN constraints while managing power demand uncertainty over the schedul-
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ing horizon T . Specifically, the operation of the supply pumps in the WDN should not

violate WDN or PDN constraints. We co-optimize the WDN’s scheduled operation and the

capacities reserved for voltage support and asymmetric up and down frequency regulation.

There are several sources of uncertainty in this problem. The power demand at each bus,

phase, and time period t ∈ T is uncertain but bounded. We define the power demand at

time t as the sum of the known, forecasted demand and the uncertain power demand forecast

error vector ∆ρt, which includes the error at all buses and phases. Additionally, in order

to provide frequency regulation, the WDN pumps need to adjust their power consumption

based on uncertain up and down frequency regulation signals s̃tup ∈ [−1, 0] and s̃tdn ∈ [0, 1],

respectively. The frequency regulation signals are scaled by the up and down frequency

regulation capacities, which are decision variables, to obtain the required change in power.

We define the uncertainty as ω, i.e., ω = [∆ρt, s̃tup, s̃
t
dn]t∈T ∈ U where U is the uncertainty

set.

We formulate the problem as an adjustable robust optimization problem [8] where x

contains the operational variables and y contains the adjustable variables that are dependent

on the uncertainty ω, specifically,

min
x

F (x,y(ω,x)) (Co-optimized)

s.t. ∀ω ∈ U ,∃y,

Ψ1(x,y(ω,x),ω),

Ψ2(x,y(ω,x),ω),

Ψ3(x,y(ω,x),ω),

Ψ4(x,y(ω,x),ω).

The cost function F (·) includes the costs of scheduled pump operation and real-time ad-

justments to provide voltage support and frequency regulation. The constraint sets Ψ1(·)
and Ψ2(·) include the voltage support and frequency regulation capacities and control ac-

tions, respectively. The constraint sets Ψ3(·) and Ψ4(·) are the quasi-steady state PDN and

WDN constraints for every time step t ∈ T of duration ∆T .

In our problem, the operational variable x includes the WDN schedule (in particular, the

scheduled pump power consumption), the pump power capacity needed to provide voltage

support, and the up and down frequency regulation capacity. Additionally, we solve for

the affine control policy parameters used for voltage support and frequency regulation real-
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time adjustments. While an affine control policy restricts the feasible space of y(ω,x), a

computationally tractable problem can be formulated and the real-time implementation of

the control policy is simple for water utilities. The adjustable variables y are dependent

on the control policy adjustments, e.g., the real-time pump power consumption and the bus

voltages. We can define the real-time single-phase pump power consumption in terms of its

schedule and real-time voltage support and frequency regulation adjustments

pte = ptnom,e + ∆ptvs,e(ω
t) + ∆ptfr,e(ω

t), (7.1)

∀ω ∈ U , e ∈ P , t ∈ T , where P is the set of pumps in the WDN, ∆ptvs,e is the real-time

voltage support adjustment based on the power demand forecast error, and ∆ptfr,e is the

real-time frequency regulation adjustments based on the up and down frequency regulation

signals from the bulk transmission system. We assume that the pumps are balanced three-

phase loads and therefore we do not specify the phase of the pump power consumption;

the power consumed in each phase is equal. These real-time voltage support and frequency

regulation control policies are described in Sections 7.3.1 and 7.3.2. We next model the

voltage support Ψ1(·), frequency regulation Ψ2(·), PDN Ψ3(·), and WDN Ψ4(·) constraints.

The constraints are semi-infinite, since they must hold true for all uncertainty realizations.

However, we discuss how to tractably reformulate the constraints in Sections 7.3.4 and 7.4.

7.3.1. Voltage Support, Ψ1(·)

We first consider the set of constraints that make up Ψ1(·). In order to ensure that volt-

ages in the PDN are within safe operating conditions for all power demand uncertainty, we

formulate a control policy to adjust the pump power setpoints in response to the real-time

power demand forecast error realizations, leveraging the approach in Chapter 5. The voltage

support pump power adjustment in (7.1) can then be written as

∆ptvs,e = Ct
vs,e∆ρ

t ∀ e ∈ P , t ∈ T , (7.2)

where decision variable Ct
vs,e is the voltage support control policy parameter row vector for

pump e. The control policy relates the power demand forecast error at each bus and phase

to a change in pump e’s power consumption. We can define the range of up and down pump
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power adjustments needed for voltage support by bounding the control policy

-Rt
vs,dn,e ≤ Ct

vs,e∆ρ
t ≤ Rt

vs,up,e ∀ e ∈ P , t ∈ T , (7.3a)

Rt
vs,up,e, R

t
vs,dn,e ≥ 0 ∀ e ∈ P , t ∈ T , (7.3b)

where Rt
vs,dn,e and Rt

vs,up,e are the largest decrease and increase in single-phase pump power

consumption due to voltage support services.

7.3.2. Frequency Regulation, Ψ2(·)

We next define the set of frequency regulation constraints that make up Ψ2(·). We con-

sider both up and down frequency regulation services. Using generator sign convention,

up frequency regulation corresponds to a decrease in pump power consumption and down

frequency regulation corresponds to an increase in pump power consumption. We solve for

the amount of capacity that the WDN can provide at each time period as well as the par-

ticipation of each pump in response to the up and down frequency regulation signals. The

frequency regulation pump power adjustment in (7.1) can be written as

∆ptfr,e=C
t
fr,up,eR

t
fr,ups̃

t
up + Ct

fr,dn,eR
t
fr,dns̃

t
dn ∀ e ∈ P , t ∈ T , (7.4)

where decision variables Rt
fr,up and Rt

fr,dn are the up and down single-phase frequency regula-

tion capacities at time t. Decision variables Ct
fr,up,e and Ct

fr,dn,e are the up and down control

policy parameters of pump e at time t. The frequency regulation capacities are non-negative

and the frequency regulation control policy parameters must sum to one to ensure that the

requested power adjustment is being fully met by the pumps, i.e.,

Rt
fr,up, R

t
fr,dn ≥ 0 ∀ t ∈ T , (7.5)∑

e∈P

Ct
fr,up,e = 1 ∀ t ∈ T , (7.6)∑

e∈P

Ct
fr,dn,e = 1 ∀ t ∈ T . (7.7)

To remove the bilinear terms in the control policy, we can replace the frequency regulation

control policy parameters and capacity terms in (7.4)-(7.7) with

F t
up,e := Ct

fr,up,eR
t
fr,up ∀ e ∈ P , t ∈ T , (7.8)
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F t
dn,e := Ct

fr,dn,eR
t
fr,dn ∀ e ∈ P , t ∈ T , (7.9)

F t
up,e, F

t
dn,e ≥ 0 ∀ e ∈ P , t ∈ T , (7.10)

where F t
up,e and F t

dn,e are decision variables in Ψ2(·). Then we can recover the up and down

frequency regulation capacities and control policy parameters a posteriori, e.g., the recovered

down frequency regulation variables are

Rt
fr,dn :=

∑
e∈P

F t
dn,e ∀ t ∈ T , (7.11)

Ct
fr,dn,e :=

F t
dn,e∑

e∈P F
t
dn,e

∀ e ∈ P , t ∈ T . (7.12)

7.3.3. Power Distribution Network Modeling, Ψ3(·)

Next, we define Ψ3(·), the power distribution network model. We consider a radial power

distribution network that contains uncontrollable net loads (i.e., actual loads minus dis-

tributed generation) and controllable pumping loads that are connected to a set of buses K
and phases Φ = {a, b, c}. We must ensure a feasible power flow where the minimum and

maximum voltage limit constraints are satisfied, i.e.,

V 2
k ≤ Y t

k ≤ V
2

k ∀ k ∈ K, t ∈ T , (7.13)

where Y t
k is the three-phase voltage magnitude squared at bus k and time t. The voltage

magnitude squared is calculated from the linearized, three-phase unbalanced power flow

equations, which are commonly referred to as Lin3DistFlow [3]

Y t
k = Y t

n −MknP
t
n −NknQ

t
n ∀ k ∈ K, t ∈ T , (7.14)

P t
k = ρtk + pte +

∑
n∈Ik

P t
n ∀ k ∈ K, t ∈ T , (7.15)

Qt
k = ζtk + ηep

t
e +

∑
n∈Ik

Qt
n ∀ k ∈ K, t ∈ T , (7.16)

where P t
k and Qt

k are the real and reactive three-phase power flows entering bus k at time t,

Mkn and Nkn are 3 × 3 parameter matrices formed from the line impedance matrices,

and Ik is the set of buses directly downstream of bus k. The three-phase real and reactive

uncontrollable power demand at bus k and time t is denoted ρtk and ζtk, respectively. The

131



variable pte is the three-phase pump power consumption vector of pump e at time t. In (7.15)

and (7.16), the pump power consumption is zero if there are no pumps present at bus k.

We model the pumps as three-phase balanced loads, with a constant power factor (i.e., ηe

is the real-to-reactive power ratio of pump e). We note that other three-phase unbalanced

linearized power flow formulations could be used, e.g., [9].

7.3.4. Water Distribution Network Modeling, Ψ4(·)

Last, we define Ψ4(·), the water distribution network model. The WDN can be represented

as a directed graph composed of a set of nodes N and a set of edges E . The nodes are made

up of disjoint sets of junctions J , elevated storage tanks S, and reservoirs R. The edges, or

pipes, are bidirectional and connect nodes in the network, e.g., ij ∈ E is a pipe going from

node i to node j. A pipe may contain a supply pump, i.e., P ⊆ E . A WDN’s water flow can

be described by the hydraulic head H t
j for each node j ∈ N and the volumetric flow rate xtij

of water through each pipe ij ∈ E . We do not explicitly consider water demand uncertainty.

In Chapter 5, we found it reasonable to assume that a portion of the tank volume is reserved

to hedge against water demand uncertainty. To ensure safe operation, the hydraulic heads

(which are composed of the elevation and pressure head) must be between the minimum and

maximum head limits, i.e.,

Hj ≤ H t
j ≤ Hj ∀ j ∈ N , t ∈ T . (7.17)

Additionally, the tank water levels `tj and supply pump flow rates are bounded

`j ≤ `tj ≤ `j ∀ j ∈ S, t ∈ T , (7.18)

0 ≤ xij ≤ xtij ≤ xij ∀ ij ∈ P , t ∈ T , (7.19)

where `j and `j are the minimum and maximum tank levels of tank j, and xij and xij are

the minimum and maximum flow rates of pump ij ∈ P . The hydraulic heads and flow rates

are governed by the water flow equations∑
i:ij∈E

xtij = −dtj ∀ j ∈ N , t ∈ T , (7.20)

xtij = −xtji ∀ ij ∈ E , t ∈ T , (7.21)

H t
j −H t

i = kijx
t
ij|xtij| ∀ ij ∈ E \ P , t ∈ T , (7.22)
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H t
i −H t

j = m1
ijx

t
ij +m0

ij ∀ ij ∈ P , t ∈ T , (7.23)

H t
j = hj ∀ j ∈ R, t ∈ T , (7.24)

`tj = `t−1
j +

∆T

γj

∑
i:ij∈E

xtij ∀ j ∈ S, t ∈ T , (7.25)

where dtj is the water injection at node j and time t, kij is the resistance coefficient of

pipe ij, m1
ij and m0

ij are head loss parameters of pump ij, γj is the cross-sectional area

of tank j, and h̄j is the elevation of node j. Conservation of water is ensured by (7.20)

and (7.21) specifies skew symmetry of water flow through the pipes. In (7.22)-(7.23), the

head loss and head gain as a function of flow rate is defined for pipes and pumps that are

operating, respectively. The pipe head loss function is modeled using the Darcy-Weisbach

formulation [10]. When a pump is on, the pump head gain of a fixed speed pump is generally

modeled in the literature with either a linear or quadratic function of the flow rate through

the pump. Here, we use a linear form. When the pump is off, the pump behaves like a closed

valve and the pump head gain is arbitrary. To formulate this, we can introduce a binary

pump status variable and use the big-M method to formulate this equation. Reservoirs are

modeled as infinite sources of water with a fixed head, which is specified in (7.24). In (7.25),

the water level of tank j is calculated based on the tank level in the previous time period

and the net flow of water into and out of the tank.

The single-phase pump power consumption is generally modeled as a linear, quadratic, or

cubic function of the flow rate through the pump. Here, we model it with a linear function

pte = h1
ijx

t
ij + h0

ij ∀ e = ij ∈ P , t ∈ T , (7.26)

where h1
ij and h0

ij are parameters. The water distribution network constraints are semi-

infinite since the constraints must hold for all realizations of uncertainty (which enters the

WDN constraints in the real-time pump power consumption equation (7.26)).

We tractably reformulate the semi-infinite WDN constraints into three sets of deterministic

constraints using the monotonicity properties of dissipative flow networks [76]. In order to

apply the monotonicity properties to the WDN, several assumptions must be made (see

Chapter 6). We assume that the tank head is not strictly dependent on the tank level

(i.e., there is either a booster pump and/or valve connected to the tank inlet and outlet

pipe), the head loss functions are increasing in flow rate, and that an increase in reservoir

water injections cause the deviation in tank water injections to be non-positive for all tanks
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(i.e., the tanks do not also increase their water injection). We also assume that the pump

statuses do not change in real-time (i.e., the real-time on/off pump statuses are the same

as the schedule) to minimize pump wear-and-tear and ensure monotonicity. The robustness

proof and implications of these assumptions are further discussed in Chapter 6. With these

assumptions, we can prove that the hydraulic heads at all nodes, the tank levels, and pump

flows are monotonic functions of the reservoir water injections (which vary based on the

voltage support and frequency regulation control actions). The WDN constraints can then

be reformulated as the schedule and extreme cases of the pump power consumption

Γscheduled(pnom) ≤ 0, (7.27a)

Γextreme(p) ≤ 0, (7.27b)

Γextreme(p) ≤ 0, (7.27c)

where Γscheduled(pnom), Γextreme(p), and Γextreme(p) are the sets of deterministic WDN con-

straints (7.17)-(7.26) given the scheduled, minimum, and maximum power consumption

pte = ptnom,e +Rt
vs,up,e +Rt

fr,dn,e ∀ e ∈ P , t ∈ T , (7.28)

pt
e

= ptnom,e −Rt
vs,dn,e −Rt

fr,up,e ∀ e ∈ P , t ∈ T , (7.29)

where the pumps are balanced three-phase loads.

7.3.5. Providing Both Voltage Support and Frequency Regulation

When treating the WDN as a flexible load, we must ensure that the tanks are not simply

depleted over the scheduling horizon. This issue is magnified when we include asymmetric

frequency regulation services. We address this by specifying a total volume of water that

must be in the storage tanks at the end of the scheduling horizon∑
j∈S

γj`
t=|T |
j = v̂ +

∑
j∈S

γj`
t=0
j , (7.30)

where v̂ is the water deficit from the previous scheduling horizon that must be recovered.

We include (7.30) in (7.27a). Alternatively, if we wished to correct the tank levels in each

time period, we could incorporate a random variable that compensates for the previous time

period’s water deviation from the scheduled operation, but we leave this to future work.

A challenge with providing both voltage support and frequency regulation simultaneously
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is to ensure that the frequency regulation services are not creating voltage issues within the

PDN. The goal of voltage support is to provide the smallest pump power adjustments to

ensure that the bus voltages are within their limits. Therefore, any additional pump ad-

justment in the opposite direction of the voltage support adjustments will counteract the

voltage support control action and either require more voltage support capacity or cause

voltage limit violations. To address this, we consider asymmetric frequency regulation ser-

vices and require indicator functions to ensure up or down frequency regulation are only

provided if it does not cancel out the voltage support control action. This can be done by

checking whether there are maximum or minimum voltage limit violations given the sched-

uled pump operation and power demand uncertainty. For example, if a PDN is experiencing

voltages that violate the minimum voltage limit, the voltage support control policy would

reduce the pump power consumption which would then increase the voltages. In this case,

no down frequency regulation services (increase pump power consumption) can be provided

without requiring a larger voltage support capacity to counteract it. However, up frequency

regulation (decrease pump power consumption) can still be provided. If there are no voltage

limit violations given the scheduled pump operation and power demand uncertainty, both

up and down frequency regulation can be provided. In Section 7.4, we tractably reformulate

the problem as a robust, mixed-integer convex sequential problem.

7.4. Sequential Reformulation

The formulation presented in Section 7.3 is a mixed-integer adjustable robust optimization

problem due to the presence of the indicator functions and binary pump status variables.

While there are some related approaches and results to tractably reformulate mixed-integer

robust problems, they do not appear to directly apply to our problem. Instead, we solve this

problem sequentially as three sub-problems. We first solve the robust voltage support and

pump scheduling problem. Next, we identify whether the WDN is capable of providing up

and/or down frequency regulation at each time period by solving for the worst-case voltages

(i.e., minimum and maximum voltages) given the pump schedule and power demand forecast

error. Last, we solve the appropriate robust frequency regulation problem.

By separating (Co-optimized) into three sub-problems, we are able to eliminate the

indicator functions needed to identify the direction(s) of frequency regulation that the WDN

can provide and allows us to solve computationally tractable robust reformulations. Each

sub-problem is described in the subsections below. It should be noted that the solution of the
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sequential problem will be a feasible solution of the (Co-optimized) problem; however, it

may not be the optimal solution. The separate optimization problems no longer experience

a trade-off between the cost of the WDN schedule and the profit of providing frequency

regulation. In Section 7.5.2, we explore this trade-off by comparing the solutions of the

sequential problem with special cases of (Co-optimized) problem, specifically, those in

which we know in advance the type of frequency regulation that can be provided. This

allows us to neglect the indicator functions so we can tractably reformulate (Co-optimized).

Further investigation of how to tractably reformulate the adjustable robust optimization

problem while ensuring that the voltage support and frequency regulation do not cancel

each other out is a subject for future research.

7.4.1. Step 1: Voltage Support Problem

In the first sub-problem, we solve the scheduled pump power consumption and voltage sup-

port control policy parameters while satisfying WDN and PDN constraints and managing

power demand uncertainty. The decision variables are the scheduled pump power consump-

tion ptnom,e, the voltage support control policy parameters Ct
vs,e, and the voltage support

capacities Rt
vs,up,e and Rt

vs,dn,e for all pumps e ∈ P and all time periods t ∈ T . The opti-

mization problem can be written as

min
x

∑
t∈T

∑
e∈P

3πtep
t
nom,e + 3πtvs,e

(
Rt

vs,up,e +Rt
vs,dn,e

)
s.t. (7.27), Ψ̂vs(x) ≤ 0, (Seq-VS)

pte = ptnom,e +Rt
vs,up,e ∀ e ∈ P , t ∈ T ,

pt
e

= ptnom,e −Rt
vs,dn,e ∀ e ∈ P , t ∈ T ,

where πte and πtvs,e are the costs of electricity and voltage support capacity. We can substitute

the power flow constraints (7.14)-(7.16), the voltage support control policy constraints (7.2)-

(7.3b), and the coupling constraint between the pump load and power demand forecast error

(i.e., pte = ptnom,e + ∆ptvs,e(∆ρ
t)) into (7.13). Since the resulting inequalities are linear in

the decision variables and uncertainty, we can use explicit maximization [65] to robustly

reformulate the problem. We denote the robust reformulation of the power constraints as

Ψ̂vs(x).

In (7.27), we approximate the pipe head loss constraints using a quasi-convex hull proposed

in [61]. While this approximation is not necessary to reformulate the semi-infinite water
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constraints as deterministic sets of constraints, it does make the formulation mixed-integer

convex.

7.4.2. Step 2: Frequency Regulation Preprocessing

Before solving the frequency regulation problem, we need to identify the direction(s) of

frequency regulation the WDN can provide. We robustly solve for the worst-case minimum

and maximum voltages within the PDN at each time period given the pump schedule and all

power demand forecast error uncertainty realizations. For example, to solve for the minimum

voltage over all buses and phases at time t, the robust problem is

max
Y t

min

Y t
min (Seq-Vmin)

s.t. Y t
min ≤ Yt

k,φ(ptnom,∆ρ
t) ∀∆ρ ∈ U .

where Yt
k,φ(ptnom,∆ρ

t) is the voltage magnitude squared at bus k and phase φ which is

an affine function of the power demand forecast errors ∆ρt and the scheduled three-phase

pump power consumption vector ptnom. The robust problem can be reformulated as the de-

terministic robust counterpart and solved for the worst-case minimum and maximum voltage

magnitudes. At each time period, there are four possible cases: i) if the voltage limits are

satisfied, then the WDN can provide both up and down frequency regulation; ii) if the min-

imum and maximum voltage limits are violated, then the WDN cannot provide frequency

regulation; iii) if only the maximum voltage limits are violated, then the WDN can only

provide down frequency regulation; and iv) if only the minimum voltage limits are violated,

then the WDN can only provide up frequency regulation.

7.4.3. Step 3: Frequency Regulation

In the third and final sub-problem, we solve for the up and down frequency regulation capac-

ities subject to the WDN and PDN constraints while managing power demand forecast error

and frequency regulation signals. If the WDN cannot provide either up or down frequency

regulation, we force the respective up or down frequency regulation capacity to zero. We

solve for F t
fr,up,e and F t

fr,dn,e and recover the frequency regulation capacity and control policy
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Figure 7.1: Coupled power (left) and water (right) distribution networks. Pumps 1
and 2 are connected to buses 10 and 5, respectively.

parameters a posteriori. The robust frequency regulation optimization problem is then

max
x

∑
t∈T

∑
e∈P

πtfr,up,eF
t
fr,up,e + πtfr,dn,eF

t
fr,dn,e (Seq-FR)

s.t. (7.27b)− (7.29),

Ψ̂fr(x) ≤ 0

where πtfr,up,e and πtfr,dn,e are the prices associated with providing up and down frequency

regulation, Ψ̂fr(x) is the robust reformulation of the power flow constraints (7.13)-(7.16), the

frequency regulation control policy constraints (7.4), (7.8)-(7.10), and the coupling constraint

between the pump load and real-time uncertainty (7.1).

7.5. Case Study

In our case study, we consider a coupled PDN-WDN system, shown in Fig. 7.1. We first

describe the set up of the case study and then present the results of the sequential problem.

Additionally, we explore the value of co-optimizing the WDN schedule and the frequency

regulation capacity.
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7.5.1. Set Up

The WDN is an example network (NET3) included in the EPANET software, a WDN

simulator [87]. The network parameters are from the EPANET input file with several mod-

ifications. The pump parameters are h1
ij = [0.12, 0.08] kW/CMH, h0

ij = [53.22, 8.42] kW,

m1
ij = [-1.09x10-2, -1.35x10-2] m/CMH, and m0

ij = [60.96, 31.70] m with a minimum and

maximum flow rate of xij = [0, 0] CMH and xij = [2700, 905] CMH for pumps 1 and 2,

respectively. The minimum head at each node is the sum of the elevation and a minimum

pressure head of 15 m.

For the PDN, we use the IEEE-13 bus topology [52] with the same modifications and

assumptions as Chapter 5. Pumps 1 and 2 are connected to buses 10 and 5, respectively.

The voltage is constrained to 0.95–1.05 pu. We multiply the power demand loads by 1.4

in order to have a heavily loaded network that is close to the minimum voltage limit. The

power demand forecast error at each bus, phase, and time period is unknown but bounded

by a percentage of the forecasted load ρ̄tk,φ, i.e., [−σρ̄tk,φ, σρ̄tk,φ] where σ is a user-specified

percentage. We select different σ values to change the size of the uncertainty set.

We consider a 12-hour scheduling horizon. We set v̂ = 10 m3, πtvs,e = 0.025 $/kWh, and

πtfr,e = 0.025 $/kWh. The electricity prices are from the Midcontinent Independent System

Operator (MISO) on July 21st, 2021 [75]. We solve the mixed-integer convex sequential

problem using the Gurobi solver [42] and the JuMP package in Julia.

7.5.2. Results

We first solve the sequential problem where σ = 7.5%. In Fig. 7.2, the scheduled pump

power consumption, the range of voltage support capacity and frequency regulation capac-

ity around the schedule are depicted for each pump. In this case, we see that the voltage

support capacity is nonzero. This indicates that, given the pump schedule and the power

demand uncertainty set, voltage limit violations would occur without real-time voltage sup-

port control actions. In this case, the preprocessing sub-problem found that the PDN would

violate the minimum voltage limit without the voltage support control actions. The voltage

support control policy is responsible for taking the smallest pump power control action to

reduce pumping so that the voltages are within the safe operating range. Any increase in

pump power consumption would counteract the voltage support control policy. As a result,

the WDN can only provide up frequency regulation capacity.

Table 7.1 evaluates the robust sequential solutions as we vary the size of the uncertainty
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Figure 7.2: Three-phase pump power consumption in the sequential problem (σ =
7.5%). The solid black lines indicates the schedule, blue and green bands
indicate the range of pump power adjustments allocated for voltage sup-
port and frequency regulation.

set (i.e., by varying σ). We present the average range of three-phase voltage support pump

power adjustments (i.e., Rt
vs =

∑
e∈P 3 · (Rt

vs,up,e +Rt
vs,dn,e)) and the average three-phase up

and down frequency regulation capacity over the scheduling horizon. For σ = 3.5–4.5%,

there are no power demand uncertainty realizations that cause voltage limit violations (i.e.,

the voltage support control policy parameters and Rvs are zero). As a result, the WDN

can provide both up and down frequency regulation capacity. We observe that the WDN

is generally able to provide more up capacity (consume less power) than down capacity

(consume more power) since the network is closer to the minimum voltage limit. As σ

increases, the worst-case voltages given the scheduled pump power consumption and power

demand uncertainty set are closer to or at the minimum voltage limit, reducing the amount

of down frequency regulation that the WDN can provide. For σ = 5.5–8.0%, there are

now minimum voltage limit violations and the voltage support control policy has non-zero

parameters. Because of this, the WDN can only provide up frequency regulation. As σ

increases, the frequency regulation capacity decreases since an increased amount of capacity
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Table 7.1: Average Three-Phase Results over 12-hour Scheduling Horizon

σ (%) Rvs (kW) Rfr,up (kW) Rfr,dn (kW)
3.5 0 355.4 128.5
4.5 0 401.5 65.7
5.5 53.4 465.8 0
6.5 340.6 465.8 0
7.5 627.7 341.7 0
8.0 771.3 269.9 0

is needed for voltage support and larger power demand uncertainty realizations cause the

PDN to be closer to voltage limit violations. For σ values larger than 8.0%, the WDN is

unable to provide voltage support fully and so the problem is infeasible.

One drawback with the sequential problem formulation is that the optimization problem

no longer considers the trade-off between the pump scheduling cost and frequency regulation

profit since they are now two separate optimization problems. In Fig. 7.2, the WDN operates

pump 2 at its maximum setpoint. Pump 1 is used to provide the remaining water demand

since it is more expensive than pump 2. In a sequential problem, the WDN cannot evaluate

the cost/profit trade-offs of operating at a slightly more expensive schedule and providing

more frequency regulation.

We next investigate the affect that the WDN schedule has on the frequency regulation

capacity. We do this by comparing the solutions of the sequential problem with a special

case of the co-optimized problem where the type of frequency regulation that the WDN

can provide is known. Under this assumption, the sequential problem can be tractably

reformulated into a deterministic, mixed-integer convex program. We focus on the specific

case where the power demand uncertainty does not cause voltage violations in the PDN. In

this case, the WDN does not provide voltage support (i.e., zero voltage support control policy

parameters). We compare the solutions of the sequential problem and three co-optimized

problems with differing up and down frequency regulation prices.

Table 7.2 reports the average three-phase up and down frequency regulation capacity

over the scheduling horizon. Since the WDN can provide both up and down frequency

regulation when σ = 4.5%, we can observe the trade-off between minimizing the cost of

the pumping schedule and the profit from allocating frequency regulation capacity. In the

first co-optimized case, the WDN provides more frequency regulation capacity than in the

sequential case. As we decrease the frequency regulation prices πfr,up and πfr,dn, the co-

optimized problem prioritizes minimizing the scheduled pumping operation cost over the
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Table 7.2: Comparison of Sequential and Co-optimized Solutions (σ = 4.5%)

Case πfr,up πfr,dn Rfr,up Rfr,dn

($/kWh) ($/kWh) (kW) (kW)
Sequential 0.025 0.025 401.5 65.7
Co-optimized-1 0.025 0.025 465.8 116.9
Co-optimized-2 0.005 0.005 452.6 116.9
Co-optimized-3 0.001 0.001 401.5 65.7

profit from frequency regulation. In the third co-optimized case, the schedule and frequency

regulation capacity are the same as in the sequential case. While not illustrated in this

example, we have also found that if the profit from up and down frequency regulation are

different, the co-optimized problem may shift the scheduled pumping operation to a more

expensive operating point to provide larger levels of the more profitable type of frequency

regulation. When the WDN can only provide up or down frequency regulation, we can

expect to see the co-optimized problem shifting the pump operation away from the least

expensive operating point to realize higher profits from frequency regulation services. Last,

we discuss the impact of the WDN approximations on our solution. While it is not required

in the analytical reformulation of the semi-infinite robust water flow constraints, we employ

approximations (i.e., quasi-convex hull relaxation of the pipe head loss equation (7.22) and

an affine approximation of the pump performance curves (7.26)) to make the WDN mixed-

integer convex. Ref. [61] empirically observed that the quasi-convex hull relaxation was exact

when minimizing the pump power consumption. However, our formulation also maximizes a

feasible range of pump power consumption and may cause the hydraulic heads to be inexact.

We compared the scheduled pump power consumption of our solution using the approximated

model with the original nonlinear pump curves. We found that the maximum relative error

for pumps 1 and 2 was 8% and 15%, respectively. This motivates future work to evaluate

and improve the accuracy of the approximated model.

7.6. Chapter Conclusion

In this chapter, we formulated a robust water pumping problem subject to WDN and PDN

constraints that provides voltage support and frequency regulation concurrently. We separate

the problem into three sub-problems and solve for the solution to the robust reformulation

sequentially. In a case study, we demonstrated the ability of the WDN to provide multiple
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services at the same time. One drawback we found was that the sequential formulation no

longer considers the trade-offs between the cost of the pump schedule and the profits from

frequency regulation services. However, the sequential solution will always be feasible within

the co-optimized formulation. Future research includes exploring approaches to solve the

co-optimized robust optimization problem with mixed integer adjustable variables in order

to incorporate a binary voltage support control policy that is only implemented when needed

and indicator functions to determine the type of frequency regulation to apply.
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Chapter 8.

Assessing the Resilience of an Optimal

Water Pumping Control Strategy to

Provide Frequency Regulation

In this chapter, we evaluate the performance of optimal water pumping strategies against

traditional rule-based controls. We investigate the ability of the WDN to respond to a

hazard event when the supply pumps are optimally scheduled and controlled to provide grid

services. We consider optimal water pumping problems that minimize the electricity costs

of water pumping and can also provide frequency regulation. We assess the water network’s

performance during a wind-based hazard under different control strategies with a hydraulic

simulator, EPANET.

8.1. Notation

Sets

E Set of pipes in the WDN (indexed by ij)

J Set of junctions within the set of nodes in the WDN (indexed by j)

K Set of buses in the PDN (indexed by k)

L Set of lines in the PDN (indexed by `)

N Set of nodes in the WDN (indexed by j)

P Set of pumps within the set of pipes in the WDN (indexed by ij)

R Set of reservoirs within the set of nodes in the WDN (indexed by j)

S Set of storage tanks within the set of nodes in the WDN (indexed by j)
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T Set of time steps in the scheduling problem (indexed by t)

Variables

F t
ij Frequency regulation capacity of pump ij at time t (kW)

H t
j Hydraulic head at node j at time t (m)

H t
j,E Hydraulic head at node j at time t under extreme operation (m)

H t
j,N Hydraulic head at node j at time t under normal operation (m)

ptij Single-phase real power demand of pump ij at time t (kW)

ptij,down Maximum single-phase real power demand of pump ij at time t (kW)

ptij,up Minimum single-phase real power demand of pump ij at time t (kW)

P t
E Network performance metric for extreme operating case

P t
N Network performance metric for normal operating case

R Network resilience metric (-)

Rtank Final tank water availability resilience metric (-)

Rpressure Pressure met resilience metric (-)

Rline Active lines resilience metric (-)

Rload Connected loads resilience metric (-)

wtij Normalized speed of pump ij at time t (-)

xtij Volumetric flow rate of water through pipe ij at time t (CMH)

x Decision variables

ztij Binary on/off status of pump ij at time t (0,1)

αt`,E Active line status of line ` at time t in extreme operating scenario (0,1)

αt`,N Active line status of line ` at time t in normal operating scenario (0,1)

βtk,E Connection status of bus k at time t in extreme operating scenario (0,1)

βtk,N Connection status of bus k at time t in normal operating scenario (0,1)

Functions

Pf (·) Probability of failure

Φ(·) Cumulative distribution function

µ(·) Mean of lognormal distribution

σ(·) Standard deviation of lognormal distribution

η(·) Pump efficiency function

sgn(·) Sign function

Constraint Sets

Wscheduled(·) WDN constraints given the scheduled pump power consumption
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Wextreme(·) WDN constraints given the max. or min. pump power consumption

Parameters

Ac Conductor area (m2)

b1
ij, b

0
ij Coefficients in head gain function for pump ij

cij Exponent in head gain function of pump ij

cij,2, cij,1, cij,0 Parameters in power consumption approximation of pump ij

dtj Forecasted water demand of consumer j at time t (CMH)

dc Conductor diameter (m)

f tij,0, f
t
ij,1 Pipe ij’s head loss approximation parameters at time t

f tij,2, f
t
ij,3, f

t
ij,4 Parameters in head gain approximation of pump ij

ĥj Elevation head of node j (m)

h Height of pole (m)

Hj Minimum pressure head for node j (m)

Hj Maximum pressure head for node j (m)

kij Resistance coefficient of pipe ij

Lc Span length between poles (m)

M Large number (-)

N Number of scenarios (-)

n Pipe head loss exponent (-)

nc Number of conductors (-)

Vt Three-second gust wind speed (m/s)

wij Minimum normalized speed of pump ij (-)

wij Maximum normalized speed of pump ij (-)

xij Minimum flow rate of pump ij (CMH)

xij Maximum flow rate of pump ij (CMH)

y Modified age of the utility pole (years)

θ Angle between wind direction and conductors (degrees)

∆T Duration of time period (h)

κ Pump power consumption parameter

γj Cross-sectional area of tank j (m2)

πtij Energy price at time t for pump ij at time t ($/kWh)

πtfr Price of frequency regulation capacity at time t ($/kWh)
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8.2. Chapter Introduction

In the previous chapters, we proposed leveraging the drinking water distribution network

(WDN) to provide services to the power grid. However, we need to ensure that new water

pumping control strategies do not negatively impact network performance, reliability, or re-

siliency. In this chapter, we evaluate the operational resiliency of the WDN to hazard events

when the WDN operation is optimized to minimize pump electricity costs and provide fre-

quency regulation to the bulk transmission system. Specifically, metrics are used to quantify

the resiliency of the distribution networks after a wind event that causes power outages. The

optimal pump control strategies are compared with conventional rule-based water system op-

eration. We explore ways to incorporate resilience metrics into the optimal water pumping

and grid services provision problem to improve upon or maintain current levels of resilience.

We also evaluate the feasibility and impact of water network approximation and relaxation

techniques within a hydraulic simulation. The contributions of this chapter are 1) assessing

three operational water pumping strategies within a hydraulic simulator, 2) simulating a

wind-based hazard event and investigating the water network’s operational resiliency in a

case study, and 3) highlighting the importance of considering resilience metrics in optimal

coupled power-water problems.

The rest of this chapter is organized as follows: Section 8.3 provides an overview of our

approach and the considered pump control strategies. In Section 8.4, we present the hazard

modeling and simulation methods as well as discuss how we quantify and compare the

operational resilience of the power and water network under different control strategies and

hazard intensities. The optimal pumping problems are fully described in Section 8.5. Last,

we present the results of a case study in Section 8.6 and provide concluding remarks in

Section 8.7.

8.3. Problem Description

We consider a coupled power and water distribution network that is experiencing a wind

event that may damage the utility poles in the power distribution network (PDN). Power

outages in the PDN cause water pumping stations to shut down which can lead to reduced

water pressures and water shortages in the WDN. However, power outages do not typically

cause long-term damage on the WDN [30]. We compare how the WDN’s performance given a

hazard event can be impacted by different supply pump operational strategies. We consider
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three different strategies – a conventional rule-based operation, an optimal pump schedule

that minimizes pump electricity costs, and an optimal pump schedule that minimizes pump

electricity costs and maximizes the profit of providing frequency regulation. We consider

the frequency regulation service because we are able to explore the trade-offs of the WDN

operating costs and the amount of frequency regulation capacity provided while considering

the network performance and wind hazard intensities. To evaluate the operational resilience

of the WDN’s operation to a wind-based hazard, we simulate large wind events and eval-

uate the power network’s (and correspondingly the water network’s) vulnerability to the

considered hazard under different operational schemes.

8.3.1. Problem Approach

Below is a general outline of our approach to evaluate the operational resiliency of the WDN

under different optimal operational strategies and power outage cases.

1. Planned Day-Ahead Operation: We first solve for the planned pump operation given

the forecasted power and water demands over the scheduling horizon. We consider three

different operational strategies – a rule-based operation, an optimal pump schedule that

minimizes pumping costs, and an optimal pump schedule that minimizes pumping costs

and maximizes profit from providing frequency regulation. These control strategies

are outlined in Section 8.3.2 and the optimal pumping formulations are presented in

Section 8.5.

2. Wind Event Simulations: To consider the performance of the networks under a range

of scenarios, we next generate N outage scenarios from the probabilistic utility pole

fragility curves given the three-second gust wind speeds for each time period within

the scheduling horizon. The steps to generate the N outage scenarios are described

in Section 8.4.1. Given the utility pole outages, we determine the corresponding PDN

line/bus outages and WDN pump outages (i.e., time of failure and duration of pump

outage). For each scenario, we also consider the wind event start time and utility pole

repair time to be uncertain.

3. Pump Outages and Restoration Operation: In this work, we are focused on how dif-

ferent control strategies set up a WDN to respond to extreme events. For all control

strategies, we chose that the water network reverts to rule-based control when the WDN

experiences an outage. Given this, the only aspect that changes between simulations is
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what strategy is used before the outage occurs. While we could also update the optimal

water pumping problem given a partial outage, we do not have information on how

the water system operators would make changes to the rule-based operation during an

outage event. Because of this, we use a rule-based control during the contingency and

restoration phase to make the results between each control strategy comparable.

4. Evaluate Network Operation and Resilience: For each scenario, we run a hydraulic anal-

ysis given the pump outages and restorations with the EPANET hydraulic simulator

[102] in the the Python package WNTR [55]. We then compute the resilience metrics

for each scenario as well as the average results over the set the scenarios. We discuss

the hydraulic simulator in Section 8.4.2 and the resilience metrics in Section 8.4.3.

8.3.2. WDN Operational Control Strategies

In this work, we consider the performance of the WDN under different operational strategies.

Below are the three strategies that we consider.

Rule-Based Control (Rule)

In this strategy, we consider the rule-based controls that are traditionally used by water

system operators. In our case study, we use the control rules that are included in the

EPANET input file (INP) of our test network. Control rules in EPANET can adjust the

status and setting of pumps and valves based on simulation time triggers (e.g., turn pump 2

off at 5:00 am) or network conditions (e.g., turn on pump 1 if the tank pressure goes below

five meters).

Optimal Water Flow Control (OWF)

We optimize the water pump operation subject to the water flow constraints while minimizing

water pump electricity costs. We formulate this problem as an iterative mixed-integer linear

program, which is described in Section 8.5.2.

Optimal Water Flow Control + Frequency Regulation (OWF+FR)

In this strategy, we optimize the water pump operation to provide frequency regulation

subject to the water flow constraints. We minimize the operational costs, i.e., the electricity

costs of pump power consumption minus the profit associated with providing frequency
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regulation. We solve for the pump schedule and frequency regulation capacity over a 24-

hour scheduling horizon. In real-time, we adjust the pump speed to respond to the frequency

regulation signal using the affinity laws [102, 104]. The OWF+FR formulation and the

frequency regulation signal adjustments are described in Section 8.5.3.

8.4. Hazard Event Modeling and Simulation

In this section, we first describe modeling wind hazard events and the subsequent damage

states of the wooden utility poles in the PDN. We then describe the hydraulic simulator and

the metrics used to evaluate the resiliency of the power network.

8.4.1. Hazard Simulation and Outage States

We consider a multi-time period wind event that can damage wooden utility poles in the

PDN. The damage status of the wooden utility poles determines the outage status of the

lines and buses within the power distribution network as well as the power outage status

of pumps in the WDN. We consider N scenarios, or replications, of a wind hazard event in

order to consider the performance of the networks under a range of damage state outcomes.

Below are the steps used to generate the damage state of the PDN given a wind event.

1. Simulate wind speeds, overlaid over the PDN feeder. Similar to [48], we assume time-

varying, deterministic wind speeds that are uniform over the entire PDN. It should be

noted that we could also simulate the wind fields with spatial resolution; for instance,

[46, 129] map a maximum wind speed value and wind decay model within a wind field

model to calculate storm radius, wind distribution, maximum three-second gust wind

speeds, and duration of wind speeds above 20 m/s. For each scenario, the start time

of the event is randomly generated from a uniform distribution. We do this in order to

consider the impact of the hazards occurring at different times during the simulation

period.

2. Generate fragility curves. For each scenario, we determine the damage state of the

wooden utility poles in the PDN using fragility curves. A fragility curve is a proba-

bilistic analysis of a specific network component’s reliability under extreme conditions.

For example, a wooden utility pole in the PDN can have a probability of failure from

zero (unaffected) to one (critical, 100% chance of failure) given the wind speed in-

tensity. We use the fragility curves of wooden utility poles for strong wind events
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developed in [27]. In [27], the probability of failure during wind events is estimated

given information on the poles (class, age, and height), conductors (number, diameter,

orientation, and span length), and wind (speed and direction). The fragility curve is

modeled as a lognormal cumulative distribution function (CDF)

Pf (Vt,y, θ, Ac, h) =

Φ

(
ln(2.23694× Vt)− µ(y, θ, Ac, h)

σ(y, θ, Ac, h)

)
, (8.1)

where Pf is the probability of failure, Vt is the three-second gust wind speed at time

step t (m/s), y is the modified age of the pole (years), θ is the angle between wind

direction and conductors (degrees), Ac is the conductor area (m2), h is the height

of pole (m), µ(·) and σ(·) return the parameters of the lognormal distribution, and

Φ(·) is the cumulative distribution function of the standard normal distribution. The

conductor area and modified pole age are expressed as

Ac =nc × dc × Lc, (8.2)

y = max(age, 25), (8.3)

where nc is the number of conductors, dc is the conductor diameter (m), and Lc is

the span length between poles (i.e., length of conductor) (m). Estimations of µ and σ

are determined with second-degree multivariable polynomials which are functions of θ,

Ac, y, and h. The fragility parameter values in the polynomials–which are fitted using

a generalized linear model given 20,000 training points–are provided in lookup tables

for µ and σ for different pole classes [27]. It should be noted that the fragility curve

in [27] may not depict the full damage impact of wind events on the PDN, since it

does not consider downed lines from vegetation. This can be accounted for by using a

different shifted fragility curve model in this framework.

3. Create N multi-time period scenarios given fragility curves, where each scenario in-

cludes the damage states for all utility poles over the scheduling horizon. Given the

span length Lc and the distance between buses in the PDN, we determine the number

of wooden utility poles between connected buses. For each wooden utility pole, we

determine if a utility pole is damaged during the wind hazard event for all scenar-

ios N . Whether a pole fails within a scenario is determined by randomly generating a

151



uniformly distributed number rt ∈ (0, 1) for all time steps t during the hazard event.

If Pf (Vt, y, θ, Ac, h) > rt, then the pole fails. We randomly generate a utility pole re-

pair time from a Gaussian distribution to determine how long the utility pole remains

damaged.

4. Given the PDN damage states in the N scenarios, determine what distribution lines

and WDN pumps are experiencing outages. This can be determined by solving for

which buses are experiencing outages due to damaged utility poles. The pump and

line outage information is needed for running the hydraulic analysis (Section 8.4.2) and

solving for the power and water network resiliency metrics (Section 8.4.3).

8.4.2. Hydraulic Simulation

We simulate the WDN operation using the WNTR (Water Network Tool for Resilience)

package in Python [55]. WNTR includes EPANET’s hydraulic simulator [87] as well as the

ability to include stochastic simulations of disruptive events, outages, and recovery/repair

actions. Since we are considering cases where there may be low pressure levels and unmet

water demands, we use pressure-driven demand water flow analysis (as opposed to demand-

driven water flow analysis, which is only reasonable under normal operating conditions).

Within WNTR, we run hydraulic simulations over all N scenarios, where we can include

information on pump power outages and restorations as well as pump control strategies.

8.4.3. Evaluating Operational Resilience

Ensuring the resilience of the power and water distribution networks to disruptive events

is critical. When discussing resiliency and reliability, we consider the network’s ability to

anticipate, absorb, adapt to, and recover from disruptive events. Operational resiliency, in

particular, is related to supply and demand availability, effectiveness of corrective actions,

and the operational status and capability of assets [48]. While there are many existing

metrics used to define resilience, we use the concept of resilience metrics to quantify the

network performance over the response and recovery to a hazard event [86, 89]. Resilience

metrics can examine different performance factors, such as loss of load and water pressure

violations. The overall estimated network resilience R is defined as the ratio between the

network performance surrounding a hazard event and the network performance under normal
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operation over the scheduling horizon

R =

∑
t∈T P

t
E∑

t∈T P
t
N

, (8.4)

where P t
E and P t

N are the time-varying performance curves for the extreme and normal

operating cases and T is the operational horizon. Note that the value of R is between zero

and one, where one indicates that the network performance is unaffected by the hazard event.

Below, we describe the power and water network factors that we consider.

Power Distribution Network

Similar to [89], we consider the number of active lines and connected loads in the extreme

operating scenarios compared to the normal operating case for the PDN performance curves,

i.e.,

Rline =

∑
t∈T
∑

`∈L α
t
`,E∑

t∈T
∑

`∈L α
t
`,N

, (8.5)

Rload =

∑
t∈T
∑

k∈K β
t
k,E∑

t∈T
∑

k∈K β
t
k,N

, (8.6)

where αt`,E ∈ {0, 1} and αt`,N ∈ {0, 1} are the active line statuses of line ` at time t for

the extreme and normal operating case and L is the set of lines in the PDN. The variables

βtk,E ∈ {0, 1} and βtN,k ∈ {0, 1} are the connected load statuses of bus k at time t for the

extreme and normal operating case, where K is the set of buses in the PDN. It should be

noted that resilience metrics based on similar performance indicators could be used given the

particular objectives of the resilience analysis. The PDN resilience metrics help quantify the

intensity of the wind events. Given the wooden utility pole damage statuses, we calculate

the PDN resilience metrics for each scenario.

Water Distribution Network

For the WDN, we quantify resilience in terms of the water service availability Rwsa (i.e.,

the ratio of delivered water to expected water demand), pressure met Rpressure (i.e., demand

junctions where the hydraulic head is above the minimum head limit Hj), and the available
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capacity of the tank Rtank (i.e., cumulative tank levels at the end of the scheduling horizon)

Rpressure =

∑
t∈T
∑

j∈J I(H t
j,E ≥ Hj)∑

t∈T
∑

j∈J I(H t
j,N ≥ Hj)

, (8.7)

Rtank =

∑
j∈S H

t=|T |
j,E∑

j∈S H
t=|T |
j,N

, (8.8)

where H t
j,E and H t

j,N are the hydraulic heads at junction or tank j at time t for the extreme

and normal operating case, J is the set of junctions in the WDN, S is the set of water

storage tanks in the WDN, and I is an indicator function (i.e., I(A) returns one if A is true

otherwise it returns zero).

8.5. Optimal Coupled Power-Water Frameworks

In this section, we summarize the network constraints and the problem formulation for the

optimal water pumping formulations. The problem is solved over a set of time periods T of

duration ∆T .

8.5.1. Modeling Water Flow Constraints

The WDN can be represented as a directed graph with a set of nodes N and edges E
connecting the nodes. Each node can be classified as either a junction J , reservoir R, or

storage tank S. The edges are either pumps P or pipes (i.e., E \ P). We can characterize

the water flow at time t by the volumetric flow rate xtij through pipe ij (i.e., from node i to

node j) for all ij ∈ E and the hydraulic head H t
j at node j for all j ∈ N . We consider pumps

with variable speed drives. Below, we outline the water flow constraints by component.

Nodes. The conservation of water throughout the WDN must be satisfied∑
i:ij∈E

xtij + dtj = 0 ∀ j ∈ N , t ∈ T , (8.9)

where dtj is the water injection at node j and time t. The consumer water demands at

junctions are non-positive values and the reservoir water supplies are non-negative values.

During low pressure situations, fully meeting the consumer demand may be infeasible. In

the hydraulic analysis, we use a pressure dependent demand simulation, where the water

demand provided may be reduced if a demand junction is below the required pressure levels.
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Additionally, the hydraulic head (elevation plus pressure head) at junctions must be within

safe operating limits

Hj ≤ H t
j ≤ Hj ∀ j ∈ J , t ∈ T , (8.10)

where Hj and Hj are the minimum and maximum head limits at junction j.

Pipes. The frictional head loss along a pipe is commonly modeled with the empirical Hazen-

Williams or theoretical Darcy-Weisbach head loss formulas of the form

H t
i −H t

j = sgn(xtij) · kij · |xtij|n ∀ ij ∈ E \ P , t ∈ T ,

where kij is the pipe resistance coefficient of pipe ij, n is the pipe head loss exponent, and

function sgn(x) returns the sign of x. The Hazen-Williams and Darcy-Weisbach head loss

formulas are both nonconvex. In this chapter, we use the Hazen-Williams formula in order

to be consistent with the head loss formula used within the WNTR simulator [55].

To reformulate the problem as an iterative mixed-integer linear program, we use a first-

order Taylor series approximation around a flow rate to model the head loss along a pipe ij ∈
E at time t

H t
i −H t

j = f tij,0 + f tij,1 · xtij ∀ ij ∈ E \ P , t ∈ T (8.11)

where f tij,0 and f tij,1 are parameters. During each iteration, f tij,0 and f tij,1 are updated given

the flow rate from the previous iteration. This is described in Algorithm 1.

Pumps. We consider variable speed supply pumps. We denote wtij as the normalized speed

setting of pump ij ∈ P at time t and ztij ∈ {0, 1} indicates whether pump ij ∈ P is on at

time t. The pump flow rate and pump speed are enforced to operate within a certain range

when the pump is on

xij · ztij ≤ xtij ≤ xij · wtij ∀ ij ∈ P , t ∈ T , (8.12)

wij · ztij ≤ wtij ≤ wij · ztij ∀ ij ∈ P , t ∈ T , (8.13)

ztij ∈ {0, 1} ∀ ij ∈ P , t ∈ T , (8.14)

where wij and wij are the minimum and maximum normalized pump speeds. The parameters

xij ≥ 0 and xij are the minimum and maximum pump flow rates when the pump is on and

operating at the normalized pump speed. The maximum pump flow rate in (8.12) scales with
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the pump speed, following the affinity laws. The affinity laws approximate how changes in

pump speeds (i.e. pump speed w1 to pump speed w2) impact the pump characteristics [71]

x1

x2

=
w1

w2

,
Ĥ1

Ĥ2

=

(
w1

w2

)2

,
p1

p2

=

(
w1

w2

)3

, (8.15)

where x, Ĥ, and p represents the flow rate, head gain, and pump power, respectively. The

subscripts ‘1’ and ‘2’ are used to denote two different operating points. The big-M method

is used to formulate the on and off characteristics of the pump performance curve. When

the pump is off, the flow rate and speed are zero; when the pump is on, the head gain across

the pump can be modeled with the power law [24, 102].

gtij +M · (1− ztij) ≤ H t
j −H t

i ≤ gtij +M · (1− ztij), (8.16)

gtij = (wtij)
2
(
b0
ij + b1

ij · (xtij/wtij)cij
)
, (8.17)

∀ ij ∈ P , t ∈ T , where M is a large number, gtij is the pump head gain when pump ij is

on and b0
ij, b

1
ij, and cij are the pump curve parameters of pump ij. When the pump is off,

there is no flow through the pump and the head gain is arbitrary. We define the pump curve

using the single-point curves in EPANET and WNTR. In this case, cij = 2 and the head

gain simplifies to

gtij = b0
ij · (wtij)2 − b1

ij · (xtij)2 ∀ ij ∈ P , t ∈ T . (8.18)

To aid in our reformulation of an iterative mixed-integer linear problem (MILP), we use a

first-order Taylor series approximation around an initial flow rate of the pump head gain

(8.18), similar to (8.11). We replace (8.18) with

gtij = f tij,2 + f tij,3w
t
ij + f tij,4x

t
ij ∀ ij ∈ P , t ∈ T , (8.19)

where f tij,2, f tij,3 and f tij,4 are parameters that are updated every iteration; this is further

described in Section 8.5.2.

The single-phase pump power consumption is dependent on the head gain and the flow

rate across the pump

ptij = κ · 1/η(xtij) · (H t
j −H t

i ) · xtij ∀ ij ∈ P , t ∈ T , (8.20)
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where κ is a parameter and η(xtij) is the pump efficiency function. The pump efficiency –

which is dependent on the pump flow rate and speed – can be modeled as a quadratic or cubic

polynomial [119]. We assume that the pumps are balanced three-phase loads with constant

power factors. We approximate the pump power consumption as a linear function around

the optimal operating point (specified in the EPANET INP file) at the nominal speed,

ptij = cij,0 + cij,1 · wtij + cij,2 · xtij ∀ ij ∈ P , t ∈ T , (8.21)

where parameters cij,0, cij,1 and cij,2 are determined from the first order Taylor series ap-

proximation around the normalized pump speed and the desired operating point (where the

efficiency is at its peak).

Tanks. Tanks are modeled the same as the EPANET constraints

H
t=|T |
j ≥ H t=0

j , (8.22a)

H t
j = H t−1

j − ∆T

γj
dtj ∀ t ∈ T , (8.22b)

Hj ≤ H t
j ≤ Hj ∀ t ∈ T , (8.22c)

∀ j ∈ S, where H t
j is equivalent to the elevation and water level of tank j at time t and γj is

the cross-sectional area of tank j. In (8.22a), we ensure that the final tank levels are greater

than or equal to the initial tank levels. Since the water demands follow a daily pattern,

this constraint helps enforce that the tank is not depleted over the scheduling horizon. The

tank heads are updated in (8.22b) given the previous time period’s head and the tank water

injection in the current period. The tank head (and level) are bounded in (8.22c).

Reservoirs. We model the reservoirs as infinite sources with a fixed hydraulic head ĥj, i.e.,

H t
j = ĥj ∀ j ∈ R, t ∈ T . (8.23)

8.5.2. Optimal Water Flow Pumping Control (OWF)

We first present the OWF control strategy, where the WDN system operator minimizes the

electricity costs of pumping subject to the water flow constraints and the water demand

forecasts. We formulate the problem as an iterative MILP. The description of the algorithm

is presented in Algorithm 1, where the convex optimization problem solved during each
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iteration is

min
x

∑
t∈T

∑
ij∈P

3πtijp
t
ij∆T (OWF)

s.t. (8.9)− (8.14), (8.16), (8.19), (8.21)− (8.23).

where the parameter πtij is the cost of electricity at pump ij and time t. The decision

variable x includes the pump power consumptions ptij ∀ ij ∈ P , pump statuses ztij ∀ ij ∈ P ,

pump speeds wtij ∀ ij ∈ P , flow rates xtij ∀ ij ∈ E , and hydraulic heads H t
j ∀ j ∈ N for all

time periods t ∈ T . During each iteration k, we update 〈f〉k := 〈[f tij,0, f tij,1, f tij,2, f tij,3, f tij,4]〉k
given the flow rates and pump speed from the previous iteration. We define the error as the

difference between the flow rates and pump speeds between each consecutive iteration. We

stop iterating when the error is below a certain threshold or we reach a maximum number

of iterations.

Algorithm 1 Iterative OWF MILP Algorithm

Input: WDN topology, initial tank conditions H t=0
j ∀ j ∈ S, and forecasted electricity

prices πtij ∀ ij ∈ P , t ∈ T and water demands dtj ∀ j ∈ J , t ∈ T
Output: Pump power consumption ptij, status ztij, and speed wtij ∀ ij ∈ P , t ∈ T

1: Set k ← 0, tolerance = 0.01, maxIter = 100, error = 100
2: Initialize 〈f〉k, and 〈x,w〉k in (8.11) and (8.19)
3: while error ≥ tolerance OR k ≤maxIter do
4: k ← k + 1
5: Solve (OWF)k using 〈f〉k−1 to obtain 〈x〉k := 〈xtij ∀ ij ∈ E , t ∈ T 〉k and 〈w〉k :=

〈wtij ∀ ij ∈ P , t ∈ T 〉k
6: Calculate 〈f〉k given 〈x,w〉k
7: Calculate error := ||〈x,w〉k − 〈x,w〉k−1||2
8: end while

The WDN operator sets pump status ztij := 〈ztij〉k and speed wtij := 〈wtij〉k.

8.5.3. Optimal Water Pumping Control + Frequency Regulation

(OWF+FR)

We next present the (OWF+FR) control strategy, where the WDN system operator mini-

mizes the costs associated with pump electricity consumption and with providing frequency

regulation subject to the water flow constraints. To provide frequency regulation in real

time, the pumps adjust their power consumption as a function of the frequency regulation
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signal, i.e., s̃ ∈ [−1, 1], which is scaled by the frequency regulation capacity. We assume a

generator sign convention where up frequency regulation (or a positive signal) corresponds

to a decrease in pump power consumption and down frequency regulation corresponds to an

increase in pump power consumption.

In our formulation, we solve for the scheduled pump operation as well as the available

frequency regulation capacity to adjust the pump power consumption given a frequency reg-

ulation signal. We assume that the WDN needs to be capable of providing the offered fre-

quency regulation capacity over the entire hour time step t which is consistent with CAISO

day-ahead market requirements for energy storage. This also allows us to use the same

timescale as the quasi-steady state water flow constraints in our optimization problem. Ad-

ditionally, we assume that there is an offsetting mechanism so that the frequency regulation

signal is ‘energy neutral’ over the contracted period. We consider the maximum pump power

consumption ptij,down and minimum pump power consumption ptij,up if the full down and up

frequency regulation were used

ptij,down = ptij + F t
ij ∀ ij ∈ P , t ∈ T , (8.24)

ptij,up = ptij − F t
ij ∀ ij ∈ P , t ∈ T , (8.25)

F t
ij ≥ 0 ∀ ij ∈ P , t ∈ T , (8.26)

where F t
ij is the maximum symmetric up and down frequency regulation capacity that

pump ij can provide at time t. The total frequency regulation capacity at time t is the

cumulative capacity for all pumps at time t, i.e., F t =
∑

ij∈P F
t
ij.

The OWF+FR problem is also solved in the same iterative method as (OWF), where the

optimization problem solved is

min
x

∑
t∈T

∑
ij∈P

3πtijp
t
ij∆T − πtfrF t

ij∆T (OWF+FR)

s.t. Wscheduled(p),

WFR(pdown),

WFR(pup),

(8.24)− (8.26)

where πtfr is the price associated with offering frequency regulation. The scheduled water

flow constraint set Wscheduled(·) contains (8.9)-(8.14), (8.16), (8.19), and (8.21)-(8.23). The
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Figure 8.1: Topology of the coupled power distribution network (Left) and water dis-
tribution network (Right). Blue nodes in the power distribution network
are used to indicate where the pumps are connected.

frequency regulation up and down water flow constraint sets WFR(·) contains (8.9)-(8.14),

(8.16), (8.19),(8.21), and (8.22b)-(8.23). The decision variable x includes the water flow

variables associated with the schedule and frequency regulation capacity for all time periods.

Once we have determined the scheduled pump power consumption, scheduled pump speed,

and frequency regulation capacities for each pump, the real-time frequency regulation pump

power adjustment is determined by affinity laws (8.15) given the frequency regulation signal s̃

ŵij = wtij,nom ·
(

1 +
F t
ij s̃

ptij,nom

)1/3

∀ ij ∈ P , t ∈ T (8.27)

where ŵij is the real-time pump speed. The scheduled pump speed wtij,nom, scheduled pump

power consumption ptij,nom, and frequency regulation capacity F t
ij are given for each time

period of ∆T . The real-time pump speed is updated with changes in the frequency regulation

signal on a faster time scale (i.e., every two seconds). This relationship applies for when the

pump is on and providing frequency regulation.

8.6. Case Study

We consider a case study with a coupled PDN and WDN. The topology of the water and

power networks are shown in Fig. 8.1. We consider a 24-hour scheduling horizon.
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8.6.1. Set Up

In our case study, we consider a coupled PDN and WDN. The WDN is an example network

(NET3) included in the EPANET software, which is also used in Chapter 7. NET3 has two

reservoirs, three storage tanks, two supply pumps, and around 90 junctions. The minimum

pressure head at junctions is set to 20 psi (approximately 14 m). The maximum pump

flow (for pumps that are on) is (b0
ij/b

1
ij)

1/cij CMH (same as the definition in WNTR). The

pump curves are determined using EPANET’s single point curve definition given the desired

flow rate and head at nominal speed provided in the EPANET INP file. The minimum and

maximum normalized pump speeds are 0.7 and 1.3, respectively. We do not consider changes

in efficiency curves given speed adjustments since the pump speed remains within ±33% of

the normalized speed [71, 104]. The peak wire-to-water efficiency of both pumps is 75%.

We use the IEEE 34-node test feeder for the PDN. We assume that all of the utility poles

are the same within the PDN, i.e., 50-year old class five poles. Class five poles were selected

since distribution systems in the United States generally have class four and five poles [131].

We assume a span length of 46 meters (151 feet), Ac = 2 m2, and height of 12.2 meters. The

pumps are connected to buses 844 and 814.

For the wind-based hazard, we assume the three-second gust wind speed is spatially uni-

form (yet with temporal variations) over the feeder. The wind event duration is five hours.

The nominal gust wind speed during the hazard event is shown in Fig. 8.2. To consider

different storm intensities, we use a multiplier to scale the three-second wind gust speed up,

e.g., when we report results for a 175% wind speed intensity, the wind speeds in Fig. 8.2 are

multiplied by 1.75. The wind direction is north-northeast (i.e., 30 degrees from due east).

The fragility curves developed in [27] map a wooden utility pole’s probability of failure to the

three-second gust wind speed. In our case study, we assume that the poles and conductors

are uniform throughout the PDN (e.g., all poles are 50 year old class 5 poles). As a result,

the ‘steepness’ of the fragility curve is only dependent on θ, the angle between the conductors

and the wind direction. In Fig. 8.3, we can observe that as θ increases to 90 degrees (i.e.,

wind is perpendicular to the conductors), the probability of failure is higher at smaller wind

speeds.

There can be multiple pole outages that impact the outage of a line in the PDN. The

time to repair for each pole is randomly generated from a Gaussian distribution with a mean

of five hours and standard deviation of 2.5 hours [86]. It is assumed that no repairs are

made during the storm for safety purposes. Therefore, the random time to repair starts

at the end of the wind event. We do not consider queuing of repairs given the number of
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Figure 8.2: (a) Electricity prices over scheduling horizon and (b) Nominal three-second
wind gust speed during the hazard event.

Figure 8.3: Probability of wooden utility pole failure as a function of the three-second
gust wind speed. Fragility curves are depicted given the pole parameters
used in the case study for varying θ values.
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available repair crews since the focus of our work is comparing the performance of rule-based

and optimal water network operation under the same set of scenarios. The wind event is

randomly generated from a uniform distribution U[t=10,t=15] since we want to consider

the impact of when the event occurs and want to ensure that the full wind event concludes

during the scheduling horizon. We consider 50 scenarios.

For the rule-based control strategy, we use the pre-existing controls in NET3’s input file.

For the optimal control strategies, we convert the controls to be rules and add a second

condition so that the rules are not used under normal condition (i.e., before any pump

outages occur). This is done by rewriting the controls as rules with an additional simulation

time condition. We use a hydraulic time step and reporting time step of two seconds. With

the optimal control strategies, we set the pump speed using a time series pattern and set the

pump status using simulation time condition rules. We use the EPANET simulator within

the WNTR package since the EPANET simulator can adjust the speed in variable speed

pumps. For the frequency regulation signal within the real-time simulation, we use PJM’s

RegD signal from January 1, 2020 [92]. We set the frequency regulation price to $0.20/kWh.

The electricity price is shown in Fig. 8.2.

8.6.2. Results

Power Distribution Network Resilience

We first consider the impact of the wind hazard on the PDN. In Fig. 8.4, we plot the

active line and connected load performance curves of the PDN over each scenario while

varying the three-second wind gust speed intensity. The average performances over all the

scenarios is shown with bold black lines. The PDN performance curves can be used to better

understand the implications of storm intensity. We calculate the resilience metrics of the

active distribution lines Rlines and connected loads Rload–using the definitions in (8.5) and

(8.6)–in Table 8.1. As expected, we can observe that the loss in loads and lines increases as

the wind speed intensity increases.

Comparison of Water Network Operation Strategies under Normal Operation

We next compared the operation of the control strategies under normal operation. Figure 8.5

depicts the tank levels and pump power consumption for each control strategy. For all control

strategies, WNTR was able to find a feasible solution that met the required hydraulic head

limits and did not deplete the final tank level. The pump power consumption between the
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Figure 8.4: Power distribution network performance indicator functions for the per-
centage of distribution lines online (Left) and percentage of loads connected
(Right) for varying wind speed intensities (each row). The solid black line
is the average performance over the 50 scenarios.
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Table 8.1: Power Distribution Network Resilience Metrics

Wind Speed (%) Rload (%) Rlines (%)
100 99.58 99.64
125 93.38 92.06
150 79.49 75.80
175 63.83 58.33

Table 8.2: Operational Costs

Control Strategy Electricity Costs ($)
(Rule) 10,217
(OWF) 6,665

control strategies ends up varying significantly. In the rule-based control, we see pump 1

switching on and off frequently given the water level of tank 1. The rule-based operation

ensures that tank 1’s water storage is between 40% and 60% of the total tank capacity. In

the optimal control strategies, the pump varies its speed away from the normalized pump

speed in order to realize lower costs and/or provide frequency regulation. In the OWF+FR

solution, we can observe very frequent pump power changes due to pump speed adjustments

as the pumps responds to the historical frequency regulation signal.

Table 8.2 reports the electricity costs, frequency regulation profit, and total costs for the

rule-based and OWF control strategy. We can observe that the total costs of the optimal

control strategy is less expensive than the rule-based control strategy. For instance, the

cost of the OWF solution is a 35% decrease from the rule-based cost. This is because the

optimal water pumping strategies minimize the electricity cost associated with pump and,

in the OWF+FR problem, maximizes the profits associated with frequency regulation. It

should be noted that the OWF+FR iterative solution approach had issues converging to

the desired tolerance within the specified number of iterations. The OWF+FR results are

taken from the maximum iteration number. When comparing costs, we would expect the

water system operation to not want to provide frequency regulation if the cost of adjusting

pump operation is more than the profit of providing frequency regulation. However, we

found that the cost of the OWF+FR solution was more expensive than the OWF solution.

This is likely due to the OWF+FR formulation having issues converging. Additionally, a

number of different approximations and relaxations of the pipe head loss and pump head

gain equations were tested and some resulted in the tanks being fully depleted by the end of

the scheduling horizon under normal operation or WNTR was unable to find a water flow
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Figure 8.5: (Left) Tank water levels–as percentage of total tank volume–and (Right)
pump power consumption in the (Top) Rule-based, (Middle) OWF, and
(Bottom) OWF+FR control strategies under normal operating conditions.

166



Figure 8.6: Pump power consumption in the OWF+FR problem. The blue solid line is
the expected pump power consumption given the frequency regulation sig-
nal. The orange dashed line is actual pump power consumption simulated
in WNTR.

solution. This motivates future work to evaluate the accuracy and convergence of different

water flow models.

Figure 8.6 illustrates the WDN’s ability to follow the frequency regulation signal with

the OWF+FR control strategy. Given the frequency regulation capacity, we used the affin-

ity laws (8.15) to adjust the pump speed given the historical signal, the scheduled pump

speed, and the scheduled pump power consumption. Overall, the WDN is able to follow

the frequency signal. In certain cases, we can observe over- and under-estimations of the

amount of pump adjustments needed to follow the signal. This is likely due to the linear

pump power consumption approximation. To address this, we can improve the water flow

approximations in the OWF+FR problem. Alternatively, we could use real-time feedback

of the pump power consumption to adjust the pump speed instead of using the affinity laws

(e.g., with a proportional-integral controller).

Comparison of Water Network Operation Strategies under Extreme Operation

We next consider the performance of the rule-based, OWF, and OWF+FR control strategies

when the WDN is experiencing pump outages due to a wind hazard. Table 8.3 presents the

resilience of the rule-based, OWF, and OWF+FR control strategies for varying wind speed

intensities. We calculate resilience metrics using (8.4), (8.7)-(8.8) for the junctions that meet
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Table 8.3: Water Distribution Network Resilience Metrics

Wind Rpressure (%) Rtank (%)
Speed Rule OWF OWF+FR Rule OWF OWF+FR
100 100.00 100.00 100.00 100.00 100.00 100.00
125 100.00 100.00 100.00 91.14 91.95 91.74
150 99.98 99.88 99.98 39.74 41.96 40.99
175 99.95 99.86 99.92 17.61 16.19 17.13

the minimum water pressure requirement Rpressure and the available water capacity in the

tank at the end of the scheduling horizon Rtank (as compared to the normal operation case).

As expected, the resilience of the WDN decreases as the wind hazard intensity increases.

Within the WNTR simulation, all cases run found that the expected water demand is always

met. As a result, we did not include the water service availability resilience metric in the

table. For longer outages, we expect that the water service availability would decrease under

the pressure driven demand simulation in WNTR. Generally, we found that the tank capacity

and the water pressure violations were comparable between control strategies. One thing to

note is that the controls in the rule-based strategy keeps the tank levels within a smaller

range of possible tank levels. For instance, in the rule-based operation, pump 1 is turned on

whenever tank 1’s water level goes below 40% and is turned off whenever tank 1’s water level

goes above 60% of it total available capacity. Alternatively, the optimal pumping problems

do not place further limits on the tank levels throughout the scheduling horizon. Since the

optimal pumping strategies choose less expensive operating points, there is a chance that

the operational set points may end up being more risky for the WDN. To address this,

we can incorporate more constraints within the optimal pumping problem to help improve

the resiliency of the operation. For example, we could strictly limit the normal tank level

operation to be within a restricted range of values or penalize deviations outside of a certain

range of tank levels. Additionally, in the case where the water system operator is aware of

an upcoming hazard event, pre-filling tank constraints can be incorporated into the optimal

pumping problem. Additional methods to add constraints to ensure resiliency is left to future

work.

Fig. 8.7 compares the tank levels for the rule-based and optimal control strategies at

175% wind speed intensity over fifty scenarios. In all cases, we can observe that the tanks

are depleted when there is a pump outage (generally starting around hour 10-15). This is

because the tanks provide more water to meet demand when the pumps cannot. For short

periods, tanks can be used to hedge against outages and water demand uncertainty. Overall,
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Figure 8.7: Time-varying tank levels (as a percentage of available tank volume) simu-
lated in WNTR with a 175% wind intensity for a) the rule-based control,
b) OWF, and c) OWF+FR control strategies. The blue lines are the tank
levels for each scenario. The solid black lines are the average tank levels
over all scenarios.
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the operation via the rule-based and optimal control strategies are similar.

8.7. Chapter Conclusion

In this chapter, we compared the performance and operational resiliency of the water net-

work to a wind-based event under different control strategies. The wind event caused power

outages in the PDN which then caused pump outages in the WDN. We found that the per-

formance of the rule-based control strategy and the optimal pumping strategy to be similar,

except the cost of the optimal strategy is significantly less expensive. When simulating the

wind-based hazards, we found that the optimal strategy performed slightly worse since it

needed to draw more water from the tanks than the rule-based control. This is due to the

fact that the rule-based control strategy had stricter tank limits than what was included in

the optimal water flow problem. However, we can incorporate constraints that can improve

the system resiliency (e.g., tank limits throughout the scheduling horizon or tank pre-filling

requirements before a big storm).
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Chapter 9.

Conclusion

During the transition to low carbon energy systems, leveraging flexible loads is increasingly

important. In this dissertation, we optimized and controlled supply pumps in the drinking

water distribution network (WDN) to support the power network subject to the power and

water network constraints and sources of uncertainty. In this chapter, we summarize the

dissertation’s main findings, discuss the current barriers to implemention, and highlight

potential directions for future research.

9.1. Summary of Key Results

The research in Chapters 2-8 demonstrated the potential of using water pumps in the WDN

as flexible loads, developed computational tractable optimization frameworks for the inte-

grated power-water network problem, and evaluated the network performance and value

proposition under this framework.

Chapter 2 provides a rough estimate of the flexibility potential of drinking water distri-

bution networks in the United States. We characterize the flexibility potential in terms of

energy capacity and power capacity, similar to a battery. Through municipal water utility

reports from Wisconsin, we estimate the power and energy capacity in Wisconsin and ex-

trapolate the measure to the United States by pulling nationwide statistics on water utilities.

From this estimate, we found that WDNs in the United States appear to have a sizeable

flexibility potential. This work provides motivation for the rest of the dissertation.

Chapter 3 formulates a chance-constrained water pumping optimization problem subject

to water and power constraints while managing water demand uncertainty. We reformulated

this problem by heuristically applying a scenario-based approach. The chance constraint
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helps ensure that the voltages in the power distribution network are within a safe operating

range. While using the pumps in the water network seems promising, the formulation did

not provide any probabilistic guarantees and we needed to solve the problem multiple times

with different warm starts.

Chapter 4 proposes a chance-constrained optimization framework that considered the

power demand uncertainty. We employed convex relaxations and approximation techniques

to reformulate the problem using the scenario approach for convex problems. We were able

to successfully adjust the pumps to respond to voltage violations in the PDN. Here, we were

able to provide probabilistic guarantees on the convex problem. A challenge that we observed

with the scenario approach is scaling to large networks and long optimization horizons.

Chapter 5 formulates a chance-constrained optimization problem subject to both power

and water demand uncertainty. We developed corrective and balancing control policies to

adjust the real-time pump set points given the uncertainty realizations. We evaluated the

impact of the approximations and relaxations in our case study and found that the approx-

imations for the WDN were reasonable and the PDN ‘Lin3DistFlow’ model overestimated

the voltage magnitudes, leading to small voltage deviations. We considered an approach to

simplify the power control policy. Overall, we found the solution approach to be conservative

and memory intensive.

Chapter 6 proves that the monotonicity properties apply to the WDN and identified the

necessary assumptions on tank operation. We proposed a robust formulation that controls

water pumping in the WDN to provide voltage support to the PDN given power demand

uncertainty. Using the monotonicity properties, we can reformulate the robust problem into

a tractable affinely adjustable robust counterpart. As an alternative formulation that is less

conservative, we proposed a probabilistic water pumping problem to provide voltage support

to the PDN given power demand uncertainty. The problem is subject to a chance-constrained

power flow model given power demand uncertainty and a probabilistically robust water flow

model given the impact of the power demand uncertainty on the real-time pump power

adjustments (i.e., via the voltage support control policy). When comparing the probabilistic

approach to the robust approach, we found that the probabilistic approach is significantly less

conservative than the robust approach and has a comparable computational performance.

The results in the case study indicated that the probabilistic approach can be applied to

large networks.

Chapter 7 develops a robust water pumping problem subject to WDN and PDN con-

straints that provides multiple grid services. We considered providing voltage support and
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frequency regulation concurrently. In this formulation, we ensured that providing multiple

services simultaneously do not counteract each other (e.g., responding to a minimum voltage

limit violation in the power distribution network and providing down frequency regulation).

The resulting problem is a mixed-integer nonconvex problem. We reformulated the problem

as three sequential sub-problems that are convex. Results indicate that the WDN is capable

of provide multiple services at the same time.

Chapter 8 evaluates the performance of optimal control policies within a water distribu-

tion network that is experiencing power outages due to a wind-based hazard. We compared

the optimal pumping problem that minimizes electricity costs and provides frequency reg-

ulation with a traditional rule-based control strategy. We analyzed the control strategies

in a hydraulic simulator for 50 pump outage scenarios. The scenarios are generated from

the probabilistic fragility curves of wooden utility poles in the power distribution network.

Overall, we found that the optimal control strategy was significantly less expensive. We

observed that the resilience metrics for the rule-based and optimal control strategies were

comparable. The rule-based control strategy had stricter tank limits than what was included

in the optimal water flow problem. The optimal control strategies seek to minimize costs

and do not explicitly consider network reliability and resiliency. However, we can incorpo-

rate constraints into the optimal pumping problems which can further ensure the system

resiliency.

9.2. Synthesis of Approaches

Multiple formulation and solution approaches are developed and assessed for leveraging WDN

pumps as flexible loads. In this section, we discuss some of the chapters’ key modeling

differences as well as compare the performance of the solution approaches.

We first discuss the assumptions and approximations used when modeling the WDN’s

water flow constraints. The water flow constraints are nonconvex due to the head difference

equations over the pipes and pumps as well as the pump power consumption equation.

• Bidirectional water flow in pipes: WDNs, with the exception of rural networks, are

usually mesh networks. Because of this, the direction of water flowing along a pipe

can change direction over time. The direction of the water flow is an input in the pipe

head loss equations. In Chapters 3-5, we assume that the water flow direction is fixed

and known in advance. This allows us to reformulate the now quadratic constraint

as a convex hull where the lower bound of the pipe head loss equation is exact. In
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Chapters 6-8, we do not make this assumption. Given this, we can either reformulate

the pipe head loss equation as a quasi-convex hull (i.e., Chapters 6-7) or linearize

the head loss equation with a first-order Taylor series approximation and solve the

linearized problem iteratively (i.e., Chapter 8). Using a formulation that allows bi-

directional flow in pipes is more realistic; future work will consider the impact of head

loss approximations on the pump scheduling operation.

• Tank Formulation: In this dissertation, we consider multiple tank formulations. In

Chapters 4-5, we consider a separate inlet and outlet pipe. In Chapters 6-7, we make

physical and operational tank assumptions in order to apply the monotonicity proper-

ties. Specifically, the physical tank assumptions require that there is a pump and/or

valve connected to the tank. This assumption is most likely to hold in the case that

the tank is located at ground level (i.e., it is not elevated). The implication of these

assumptions are further detailed in Chapter 6. In Chapter 8, we use the same tank

formulation as EPANET, where there is one inlet/outlet pipe located at the bottom

of the tank. All three tank assumptions are used in the literature; however, the most

typical tank configuration appears to be the EPANET formulation.

• Fixed Speed and Variable Speed Pumps: In this work, we consider both fixed speed and

variable speed pumps. Variable speed pumps are pumps that have a variable frequency

drive. Variable speed pumps can be operated more efficiently and consume less energy

than fixed speed pumps [120]. As a result, variable speed pumps have proven to be

beneficial in water and waste water applications and are likely to be used more in

future water systems [79].

Second, we discuss the performance of solution approaches proposed in Chapters 3-7.

Chapters 3-5 employ scenario-based approaches to solve the chance-constrained optimiza-

tion problem. Overall, we found this approach to be excessively conservative and memory-

intensive. However, scenario generation and reduction techniques could reduce the conserva-

tiveness and memory requirements. Chapters 6-7 employ the monotonicity properties which

allows us to the tractably reformulate the water flow constraints subject to uncertainty

without relying on the scenario approach. Within this work, we found that the probabilistic

approach in Chapter 6 was significantly less costly than a robust approach while still main-

taining its computational tractability. Lastly, the findings in this dissertation focuses on the

power network’s interaction with the drinking water distribution network; however, related

174



systems such as agricultural irrigation, wastewater treatment, and district heating can adopt

and modify the proposed formulations and solution approaches.

9.3. Barriers to Implementation

In this dissertation, we demonstrate the feasibility and potential of using the WDN as a

flexible load to provide services to the power grid. However, there are several challenges and

obstacles that need to be considered. These are detailed below:

• Communication and Control Infrastructure: In [28], the authors report that most large

water utilities have SCADA systems, which can allow WDNs to have fast, operational

control of the pumps and valves within the network. However, real-time operational

control is significantly more challenging for utilities that do not have SCADA sys-

tems. Historically, there has been governmental funding sources for the installation

of SCADA systems or other energy efficiency measures, e.g., the Environmental Pro-

tection Agency’s Drinking Water State Revolving Fund [80]. Additionally, when co-

ordinating the operation between two traditionally independently operated systems,

the communication and measurement needs between the networks need to be assessed.

Several approaches, such as a distributed formulation, can help reduce these commu-

nication needs.

• Regulatory and Water Quality Constraints: The operation of the water network needs

to meet regulatory constraints on the active control of tank storage and water quality.

First, tanks are important for providing equalizing pressure support as well as contin-

gency water for fire fighting needs. As a result, the amount of water in the tanks that

can be used for normal operational control (i.e., operational storage) is less than the

physical tank volume. The operational limits on the tank level vary by state. For exam-

ple, in the state of Washington, the minimum equalizing storage capacity is a function

of the peak hourly demand and information on the water sources, the minimum fire

suppression and standby capacity is determined by the fire flow rate and duration set

by the fire authority and the typical water consumed by a household in the network,

and the operational storage should be large enough to prevent excessive cycling of the

pumps [2]. Second, treated water entering the drinking water distribution network con-

tains a minimal residual disinfectant concentration (e.g., chlorine) to prevent bacterial

regrowth [6]. The disinfectant ages, or decays, the longer the water remains in the
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distribution network. Storing more water in tanks can reduce water turnover which

can lead to disinfection byproduct formation and biological regrowth [6]. EPANET

models the water quality in a distribution network; however, it may not be reflective

of the chlorine residual throughout the WDN in some cases [6, 102].

• Scaling to Large Networks: Chapter 6 in this dissertation focuses on reducing the

computational tractability of the optimal pumping problem. However, it remains to

be seen how well the approach scales to actual very large networks. Additional solu-

tion approaches may be needed to maintain computational tractability for very large

networks, e.g., by decoupling the problem by WDN pressure zones.

Additionally, water and power utilities tend to be risk-adverse and hesitant to change. There-

fore, it is important to provide clear benefits to both network operators (e.g., financial in-

centives) and provide a high-level of certainty that new operational strategies maintain or

improve upon network reliability and resiliency.

9.4. Future Research

In this dissertation, we have demonstrated how the water distribution networks can be

optimized and controlled to provide grid services, examined the impact of uncertainty on the

optimal pumping problem, and evaluated the trade-offs of performance and computational

tractability. This work has motivated several areas of future research. Below, we outline

these research topics.

• Analyzing the performance of convex approximations and relaxations in the coupled

power-water problem: In this dissertation, we considered several relaxation and approx-

imation techniques. Additionally, a large number of approximations and relaxations

have been proposed in the literature. We would like to gain a better understanding of

these approaches’ feasibility and optimality.

• Developing solution algorithms to reduce information sharing: Traditionally, the water

network and power network are independently operated. Posing the coupled power-

water problem as a centralized optimization problem could cause privacy and informa-

tion sharing concerns. We could consider solution approaches that minimize informa-

tion sharing, for example, by considering a distributed optimization approach.
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• Coordination of multiple flexible resources in the coupled WDN-PDN: In this disserta-

tion, we considered the WDN’s flexibility from the water system operator’s perspective.

We could also consider how to optimize the WDN with other flexible resources in the

PDN, such as energy storage or distribution energy resources. This would bring in

additional sources of uncertainty into the problem and increase complexity. However,

considering how to coordinate the WDN as a part of a larger array of flexible assets is

critical for understanding how they complement and compete with each other.
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Appendix A.

General Convex Relaxation for Head

Loss Formulas

In general, the frictional head loss equations for pipes are nonconvex. In [61], the authors

present a quasi-convex hull relaxation for the Darcy-Weisbach head loss formula5. Here, we

generalize the relaxation so that it also applies to the Hazen-Williams head loss formula. We

drop the time superscript t for simplicity. We consider the generic frictional head loss model

for a pipe ij

ĥ(xij) = kij · xij · |xij|n−1, (A.1)

where the function ĥ(xij) returns the head loss along pipe ij, i.e., Hi − Hj. In the Darcy-

Weisbach head loss formula, n is 2 and k is dependent on the pipe’s length and diameter

as well as the Reynolds number. In the empirically derived Hazen-Williams formula, n is

1.852 and k is a function of the pipe’s length, diameter, and roughness coefficient. We

create a convex relaxation, similar to [61], in terms of n, k, and the minimum and maximum

volumetric flow rates through the pipe. We denote the feasible range of pipe flow rates as

(xij, xij) where xij < 0 and xij > 0 are the minimum and maximum flow rates6. Fig. A.1

illustrates the convex relaxation given a set of linear inequalities.

For each pipe, the head loss relaxation is a set of four linear inequalities. The linear

functions are tangent to the head loss function at xij, xij, x1, and x2, where x1 and x2

5It should be noted that the second and fourth linear inequalities in the quasi-convex hull equations (8) in
[61] have errors in the signs. This can be confirmed when plotting the quasi-convex hull.

6If the minimum and maximum flow rates are the same sign, then we can form the convex hull, e.g., see
[61, 111]. Instead, in this work, we consider the case where the volumetric flow rate through the pipe
can be bidirectional.
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Figure A.1: Convex relaxation (shaded blue area) of a generic pipe head loss formula
(black line). The quasi-convex hull is made from a set of linear functions
(A.2)-(A.5), shown with blue lines.

are flow rate values on the head loss curve where its tangent intersects with xij and xij,

respectively. The tangent line of ĥ(xij) evaluated at flow rate xa is

fxa(xij) = ĥ′(xa) · (xij − xa) + ĥ(xa)

for xa 6= 0. Accordingly, we want to solve for

ĥ(xij) ≥ fxij(xij), (A.2)

ĥ(xij) ≤ fxij(xij), (A.3)

ĥ(xij) ≤ fx1(xij) where x1 satisfies fx1(xij) = ĥ(xij), (A.4)

ĥ(xij) ≥ fx2(xij) where x2 satisfies fx2(xij) = ĥ(xij). (A.5)

For ease of notation, let’s assume xij = −xij. Note that this can also be written for the case

where xij 6= −x. Given that xij = −xij, x1 = −x2, and xij > 0, the resulting inequalities

simplify to

ĥ(xij) ≥ n · kij · x(n−1)
ij · xij + (1− n) · kij · xnij, (A.6)
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ĥ(xij) ≤ n · kij · x(n−1)
ij · xij + (n− 1) · kij · xnij, (A.7)

ĥ(xij) ≤ n · kij · x(n−1)
1 · xij + (n− 1) · kij · xn1 , (A.8)

ĥ(xij) ≥ n · kij · x(n−1)
2 · xij + (1− n) · kij · xn1 , (A.9)

where x1 (and correspondingly x2) can be solved for with the nonlinear equation

(n− 1) · xn1 + (n · xij) · x(n−1)
1 − xnij = 0, (A.10)

We can solve for x1 and x2 in advance (e.g., with a nonlinear solver like ‘fsolve’ in Matlab or

‘nlsolve’ in Julia) before including (A.6)-(A.9) into a optimal water flow problem. It is worth

noting that x1 and x2 are not dependent on the resistance coefficient kij, therefore only one

value needs to be found for each unique minimum and maximum flow rate magnitude.

Last, we can validate that we get the same relaxation as [61] when we set n = 2 (i.e.,

we consider the Darcy-Weisbach head loss formula). Equation (A.10) is then a quadratic

polynomial which we can solve using the quadratic equation (e.g., x1 = (1−
√

2)xij). When

plugging x1, x2, and n into (A.6)-(A.9), we get

ĥ(xij) ≥ 2kijxijxij − kijx2
ij, (A.11)

ĥ(xij) ≤ 2kijxijxij + kijx
2
ij, (A.12)

ĥ(xij) ≤ (2− 2
√

2) · kijxijxij + (3− 2
√

2) · kijx2
ij, (A.13)

ĥ(xij) ≥ (2− 2
√

2) · kijxijxij − (3− 2
√

2) · kijx2
ij, (A.14)

which is the same result7 as [61] when xij = −xij .

7Accounting for the sign error typos in the manuscript of [61]
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[73] O. Mégel, J. L. Mathieu, and G. Andersson. “Scheduling distributed energy storage
units to provide multiple services under forecast error”. In: International Journal of
Electrical Power & Energy Systems 72 (2015), pp. 48–57.

[74] R. Menke, E. Abraham, P. Parpas, and I. Stoianov. “Demonstrating demand response
from water distribution system through pump scheduling”. In: Applied Energy 170
(2016), pp. 377–387.

[75] MISO Actual Energy Price. http://www.energyonline.com/Data/Default.aspx.
Accessed: 2022-02-25.

[76] S. Misra, M. Vuffray, and A. Zlotnik. “Monotonicity properties of physical network
flows and application to robust optimal allocation”. In: Proceedings of the IEEE 108.9
(2020), pp. 1558–1579.

[77] D. K. Molzahn and I. A. Hiskens. “A survey of relaxations and approximations of
the power flow equations”. In: Foundations and Trends in Electric Energy Systems
(2019).

[78] N. Motegi, M. A. Piette, D. S. Watson, S. Kiliccote, and P. Xu. Introduction to com-
mercial building control strategies and techniques for demand response–appendices.
Tech. rep. Lawrence Berkeley National Lab (LBNL), Berkeley, CA (United States),
2007.

[79] New York State Energy Research and Development Authority (NYSERDA). Water
and Wastewater Energy Management: Best Practices Handbook. Tech. rep. 2010.

186

http://www.energyonline.com/Data/Default.aspx


[80] Office of Water. Strategies for Saving Energy at Public Water Systems. Tech. rep.
EPA 816-F-13-004. U.S. Environmental Protection Agency, 2015.

[81] K. Oikonomou and M. Parvania. “Optimal coordination of water distribution energy
flexibility with power systems operation”. In: IEEE Transactions on Smart Grid 10.1
(2019), pp. 1101–1110.

[82] K. Oikonomou, M. Parvania, and R. Khatami. “Optimal demand response scheduling
for water distribution systems”. In: IEEE Transactions on Industrial Electronics 14.11
(2018), pp. 5112–5122.

[83] D. Olsen, A. Aghajanzadeh, and A. McKane. Opportunities for automated demand
response in California agricultural irrigation. Tech. rep. LBNL-1003786. Lawrence
Berkeley National Laboratory, 2015.

[84] C. Ordoudis, S. Delikaraoglou, J. Kazempour, and P. Pinson. “Market-based coordi-
nation of integrated electricity and natural gas systems under uncertain supply”. In:
European Journal of Operational Research 287.3 (2020), pp. 1105–1119.

[85] L. E. Ormsbee and K. E. Lansey. “Optimal control of water supply system pumping
systems”. In: Journal of Water Resources Planning and Management 120.2 (1994),
pp. 237–252.
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