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Abstract 

 

 
 

In all organisms, the nervous system allows for the ability to form complex responses to 

the environment leading to intricate behaviors that aid survival and facilitate social 

interactions in a complex ecosystem. Neurons are the presumed functional units that 

allow for such a complex range of behaviors and perceptual phenomena. In the nervous 

system, neurons work in tandem with a full range of complex signaling chemicals known 

as neuromodulators which tune neuron function to fit different behavioral tasks by varying 

temporal firing of the neurons. The aim of this dissertation is to use biophysically-based 

in-silico modeling to study how acetylcholine (ACh), one of the major neuromodulatory 

molecules in the brain, through its effect on cellular firing behavior, can affect brain 

function. As ACh modulates, among others, m-type voltage gated potassium currents 

through muscarinic receptors, neurons change their firing behavior in response to 

extracellular input. These changes are exhibited in both the average neuron firing rate as 

well as differences in phase relationships between coupled neurons. Our modeling results 

focus on elucidating how these cellular-level changes lead to modulation of network 

dynamics that can influence brain network functions. 

First, we investigated the influence of ACh on neuron firing behavior and its 

network-wide implications in the transition between rate and phase coding of information. 

We used direct current input as a proxy for the effects of external stimuli on the network 

and found that for high ACh conditions, increased neural gain causes a dispersion of firing 

rates in response to the different magnitudes of these inputs. Additionally, ACh-induced 

increased neural responsiveness to input allowed neurons to persist in firing to maintain 

a representation in frequency space (rate coding). Alternatively, in low ACh conditions, 

phase coding was promoted through reduced frequency spread, increased neural 

resonance, and augmented propensity for synchronization.  
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Next, we analyzed how ACh-induced changes in firing behavior can contribute to 

the formation and consolidation of memories during non-rapid eye movement (NREM) 

sleep. Combining reduced neuronal network models and analysis of in vivo recordings, 

we tested the hypothesis that ACh-induced neuromodulatory changes during non-rapid 

eye movement (NREM) sleep mediate stabilization of network-wide temporal firing 

patterns, with the temporal order of neuronal firing dependent on their intrinsic mean firing 

rate during wake. We found, in both reduced models and in vivo recordings from mouse 

hippocampus, that the temporal order of firing among neurons during NREM sleep initially 

reflects their relative firing rates during prior wake. We also showed that learning-

dependent reordering of sequential firing in the hippocampus during NREM sleep, 

together with spike timing-dependent plasticity (STDP), reconfigures neuronal firing rates 

across the network, similarly as has been reported in multiple brain circuits across periods 

of sleep.   

 Finally, we investigated changes in electrophysiological activity associated with  

anesthesia and showed that differences in synaptic transmission properties can emulate 

the observed alteration of neural firing patterns observed during states of anesthesia.  We 

then proposed how these effects can be ameliorated by ACh-induced changes to the 

muscarinic receptor-based potassium currents. Specifically, we showed that increasing 

the influence of the muscarinic-mediated ACh effects under simulated anesthesia leads 

to an increase in firing rate and neural interaction measures, showing a population level 

reversal of anesthesia-induced changes in activity. We found that the simulated ACh 

reversal restored neurons’ spiking activity, functional connectivity, as well as other 

measures of pairwise and population interactions.  
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Chapter I 

 Introduction 

 

 

 

1.1 Cellular Basis of Nervous System Function 

 

The brain is the most complex organ in the human body. Modern estimates suggest there 

are roughly 100 billion neurons with 100 trillion connections. This complexity allows for 

the executive control of most of the primary functions in the body as well as the 

emergence of emotion, sensation, memory and, finally, consciousness, leading to 

complex thought underpinning all human culture, creativity and innovation. The cross-

species conservation of spatio-temporal function of the nervous system opens the avenue 

for animal experimental studies to elucidate how structure promotes function in the brain.  

These experimental studies have shed light on the cellular building blocks of the nervous 

systems with the most well studied units being the neuron. The neuron is a voltage 

sensitive cell whose functions can be abstracted to on and off spiking behavior. As 

neurons can connect to other neurons through synapses, this relatively simple behavior 

has complex implications such that elaborate spiking behaviors across neuronal networks 

can be observed [1]. This coordination is widely accepted to underlie all cognitive 

processes. Modern neuroscience employs both experimental, mathematical and 

computational approaches to understand how neural activity phenomena relate to 
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behavior and cognition [2,3]. A natural starting point would be to ask, what modulates the 

properties of neuron firing, and what implications can it have on cognitive phenomena? 

Answers to these questions get even more complicated, as neurons work in tandem with 

a full range of complex signaling chemicals known as neuromodulators which can change 

neural firing and response properties depending, for example on the vigilance state. In 

this thesis, we focus on the neuro-modulatory effects of acetylcholine and aim to 

understand its role in different neurological processes.   

1.1.1 Neurons: Functional Units of the Nervous System 

Neurons are the functional units of the nervous system with activity, upon depolarization, 

that is characterized by fast autonomic changes in membrane voltage potential commonly 

referred to as action potentials or spikes. Neurons vary in morphology but typically consist 

of axons, dendrites and a cell body [4]. When a neuron spikes, it sends a stereotypic 

signal down the axon to the axon terminal. This signal is then relayed from axon terminal 

to the dendrites of the post synaptic neuron through predominantly chemical synapses 

[5]. The amount of synaptic input a post synaptic neuron receives influences its propensity 

to spike as each neuron integrates all of its inputs to determine if it will fire.  

1.1.2 Basic Biophysical Mechanisms Underlie the Function of Individual Neurons 

 

Although the concept of neural transmission was first postulated by Ramon y Cajal after 

his discovery of the neuron in 1889 [6], a wealth of research has since contributed to the 

understanding of the electrochemical properties of neurons in their resting state as well 

as  the dynamical mechanism of spike generation. In the resting state, a potential 

difference is maintained between the inside and outside of the neuron due to properties 
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of its lipid bilayer membrane which restricts the flow of ions into and out of the cell and 

contributes to capacitive properties of the cell. Ions can, however, pass through the 

membrane under certain conditions, specifically the cellular membrane includes voltage-

gated ion channels that are selectively permeable to different types of ions. These ion 

channels can switch between open and closed states with a  probability of occurrence 

that  depends on the membrane potential [7].  In the neuron’s resting state, Na+ and Cl- 

ions are more concentrated in the extracellular space outside of the membrane, whereas 

K+ and organic anions are more concentrated inside the cell. The maintenance of the 

concentration gradients of these ions is facilitated by Na+ -K+ pumps, which balance out 

the passive movement of these ions by transporting them against their electro-chemical 

gradients, i.e., they pump Na+ outside of the cell and K+ inside of the cell with the usage 

of ATP. In an equilibrium state, the potential difference between the inside and the outside 

of the membrane, also known as the resting potential, is around -65mV [7]. 
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Figure I.1 Circuit diagram of a Hodgkin-Huxley model of the neuron. 

Cellular membrane potential is modeled as voltage potential across circuit with currents representing major 

ion flow and voltage sources representing the steady state voltage contribution of each ion concentration 

gradient. The capacitance models the capacitive property of cellular membrane. 
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Action potentials are a transient deviation from resting potential and are considered to 

represent information bits conveyed, integrated and processed in the brain. The 

generation of action potentials requires an input signal to cause membrane voltage to 

exceed a certain threshold value [8]. Once the membrane potential of a neuron reaches 

the threshold, the amplitude and the duration of the resulting voltage change is the same 

independent of the properties of incoming signal. This stems from the nonlinear, voltage 

dependent dynamics of the ion channels. At the resting state, voltage-gated Na+ and K+ 

channels are in a closed state but the transient increase in the membrane potential, called 

depolarization, due to the input signal opens Na+ channels, which results in the influx of 

the Na+ ions down their concentration gradients. If the membrane potential reaches a 

certain voltage, Na+ ion channels open fully allowing a large Na+ influx that depolarizes 

the neuron rapidly, generating an action potential [9,10]. Due to the high membrane 

potential resulting from this influx, Na+ channels block and K+ channels open, leading to 

the outflow of the K+ ions and a sharp decrease of the membrane potential. The return to 

resting potential leads to closing of K+ channels and resetting of Na+ channels to a close 

state marking the end of a unitary neuronal response. 
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Figure I.2 Voltage profile of a Hodgkin-Huxley neuron under external input.  

(Top) Computer simulated time course of neuron membrane potential using Hodgkin Huxley model. Voltage 

profile exhibits a periodic nonlinear response to input that is characterized by an initial slow depolarization 

followed by a sharp spike. (Bottom) Time course of input current. Input profile is modeled as a step function 

impulse. The start and end of the impulse corresponds to the onset and quiescence of voltage spikes. 
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1.1.3 Formal Modeling of Neural Activity  

 

This basic understanding of action potential generation allows for mathematical modeling 

of neuron responses.  A standard way to mathematically model a neuron is to represent 

a patch of the neural membrane as an electrical circuit with capacitance based on the 

capacitive properties of the membrane, resistors for each type of ionic current and voltage 

sources relating to concentration gradients for each ion species (Figure I.1) [11,12]. This 

framework allows for membrane potential to be represented by a system of differential 

equations in a framework first introduced by Hodgkin and Huxley [9].The Hodgkin-Huxley 

equations incorporate the voltage induced conductance changes of ionic currents by 

modelling gating variables specific to each type of ion channel [13].  

 

In the Hodgkin-Huxley model, the neural membrane potential evolves according to: 

                𝑐𝑚
𝑑𝑉𝑖

𝑑𝑡
= 𝐼𝑠𝑦𝑛,𝑖 + 𝐼𝑒𝑥𝑡,𝑖 − 𝑚3 ℎ𝑔𝑁𝑎(𝑉𝑖 − 𝐸𝑁𝑎) − 𝑛4𝑔𝐾(𝑉𝑖 − 𝐸𝐾)                              (I. 1)   

                                                   −𝑔𝐿(𝑉𝑖 − 𝐸𝐿), 

where 𝑔𝑥 is the maximal conductance associated with an ionic current, 𝐸𝑥 is the reversal 

potential for an ionic current,  𝐼𝑒𝑥𝑡,𝑖 is a direct current applied to each neuron and 𝐼𝑠𝑦𝑛,𝑖 

represents the synaptic current to the neuron. The ionic current gating variables h, n, and 

m obey equations of the form  

                                                                   
𝑑𝑥

𝑑𝑡
=

(𝑥∞(𝑉)−𝑥)

𝜏𝑥(𝑉)
                                                             (I.2) 
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where 𝑥∞(𝑉) is the voltage-dependent, steady state activation function for the gating 

variable and 𝜏𝑥(𝑉) is the voltage-dependent time constant. Numerical simulation of the 

Hodgkin-Huxley equations replicates action potential firing in response to direct current 

input as shown in Figure I.2. 

 

1.1.4 Neural Networks  

 

In the brain, neurons do not act in isolation. Each neuron is connected to other neurons 

forming a complex information processing network. About 60 years ago MuCulloch and 

Pitts showed that even a highly simplified, binary model of a neuron is capable of 

executing logical computations when arranged in a connected network [14]. In the brain, 

the connection between neurons occurs at the synapses that bridge the axon terminal 

and dendrite of a presynaptic and post synaptic neuron, respectively. When a presynaptic 

neuron fires, it induces an ionic current in the post synaptic cell that changes its 

membrane potential which can lead to the dynamic firing process. As a neuron can 

receive many (up to 10000) inputs from other cells, it processes these inputs through non-

linear summation. Thus this integration of inputs from a set of presynaptic neurons  by a 

single post synaptic neuron can allow for complex dynamic firing patterns to emerge 

[15,16]. 

 

In very general terms, the structure of neural networks in the nervous system ranges from 

dense locally connected networks to complex long-range connections with specialized 

functionality. In locally connected networks, many different topological archetypes can 

manifest varying with the functional demands. The most basic connectivity architecture is 
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often approximated as randomly connected neurons where neurons connect to each 

other independent of their specific relative locations while varying in density of 

connections as well as range of connectivity. In addition to random networks, another 

common archetype consists of networks that exhibit similarity to the features of small 

world networks [17] or networks that maximize physical clustering (the probability that 

cells connected to a common neuron are also connected to each other) while minimizing 

the mean path length (the average number of connections between each pair of neurons 

in the network).  In other cases specialized networks can be uniquely attributed to certain 

behavioral  and cognitive responses [18].   

 

Synaptic connections between neurons aren’t fixed, however. New external experiences 

and/or intrinsic computations result in formation of new synapses, or 

strengthening/weakening of existing synaptic connections implying functionally dynamic 

relationships between neurons in a network. The process underlying this variation in 

connectivity was captured originally in a framework proposed by Donald Hebb, who 

suggested that when pre and post synaptic neurons are coactive their connectivity 

strength increases such that neurons that “fire together wire together”[19]. Experimental 

work has validated this principle and discovered that both the firing co-activity as well as 

relative timing of pre and post synaptic spikes can determine the direction and magnitude 

of changes in synaptic strength[20,21]. Such changes in neural connectivity, referred to 

as synaptic plasticity, are thought to be the source of the brain’s adaptability as well as 

the key to understanding memory formation [22,23].  
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Functional vs Anatomical Connectivity in the Brain  

Although anatomical connections between neurons provide direct insight into network 

structure, functional connections, based on coactivity of neural groups and brain regions, 

can occur without anatomical evidence of direct connectivity. This  functional  connectivity 

can be inferred on various time scales. For example, when single neural spike resolution 

is available, correlations between the spike times of two neurons can be used to infer 

whether the neurons are functionally connected and in some cases whether this 

connection directional (i.e., causal). When considering functional connectivity across 

larger domains, imaging tools, like FMRI, can detect whether different brain regions are 

functionally connected in specialized cognitive tasks[24].  

1.1.5  Neural Oscillations 

 

Spiking of many individual, interconnected neurons across the brain, organize on the 

network level into complex dynamic patterns across various spatial and temporal scales. 

This spatio-temporal dynamics is thought to underlie cognitive phenomena in in the brain 

as well as its functional pathologies. This dynamics can range from ensembles of neurons 

firing with widely different frequency profiles, to highly synchronous bursts of activity 

across the local network. 

 

One of the important brain activity patterns that is a direct result of synaptic connectivity 

among neurons are neural oscillations or rhythms. Rhythmicity in neural activity has been 

observed as early as the 1920s when Hans Berger introduced the earliest implementation 

of the EEG. This rhythmicity, or neural oscillations, can be observed both at the scalp, by 

EEG measurements, as well as in brain tissue by local field potential (LFP) 
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measurements and was shown to be a result of synchronization, on various timescales, 

in firing within and across neural ensembles [25–27].  Because neural oscillations are a 

measure of coherent variations in neural firing they has provided some of the earliest 

insights into nervous system function. 

 

Neural oscillatory activity is commonly grouped into specific rhythm bands, defined by the 

frequency content of the predominate signal.  For example, EEG frequency content 

changes drastically during the transition between sleep and awake states [28,29]. During 

wake, EEG signals demonstrate high frequency oscillatory behavior characterized as 

beta and gamma waves, with oscillations in the 12-30 Hz and 25-100 Hz range, 

respectively, with specific frequency content varying based on brain region, behavioral 

patterns and cognitive demands [30–32]. Alpha oscillations (8–12 Hz) are most prominent 

around the occipital cortical area when the eyes are closed. Large-amplitude theta 

oscillations (4–10 Hz) dominate the hippocampal-entorhinal system during spatial 

navigation and memory processing. Delta waves (0.5–1.5 Hz), the largest-amplitude 

waves in the neocortex (the cerebral cortex region associated with sight and hearing), are 

present during non-REM sleep. Beta rhythms (13–30 Hz) are present throughout the 

motor system in the absence of movement, while transient beta oscillations (or sleep 

spindles) are present in the thalamocortical system during the early stages of sleep. 

Gamma oscillations (30–120 Hz) are present in nearly all structures and all brain states, 

although they dominate in the aroused, attentive brain. The transient ripple pattern (130–

200 Hz), most prominent in the hippocampus, serves to transfer memories and action 
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plans from the hippocampus to the neocortex. These and other rhythms can temporally 

coexist in the same or in different structures and interact with each other [33,34].  

In addition to their association with different physiological/cognitive states, neural 

oscillations are thought to underlie the integration or binding of spatially distributed neural 

responses corresponding to features of the same object or specific tasks. The act of 

binding is thought to happen through synchronization of neurons through oscillatory firing 

activity incorporating specific groups of neurons [33,35,36]. The dynamic nature of neural 

oscillations allows for temporary coherent oscillatory firing among different groups of 

neurons that can change with the specific object or task. For example, synchronous firing 

in the Beta and Gamma frequency bands has been correlated with the process of feature 

binding [37,38] as well as with the persistent activation of neural responses during 

memory formation and working memory activation [38,39].  

1.1.6 Mechanisms of Neural Synchrony 

 

Although EEG recorded neural oscillations have a longer history of study, invasive 

recording techniques have demonstrated the presence of oscillatory activity at the single 

neuron level [40]. Several theoretical studies have contributed to our understanding of 

how periodic rhythms can result from neuron-neuron interactions. There is a number of 

known mechanisms underlying formation of synchronous oscillatory dynamics in the 

brain, ranging from coherent input into/from various brain modalities, direct excitatory 

coupling, cellular resonance, or interaction between inhibitory and/or inhibitory or 

excitatory cell populations[41,42]. Examples of the latter are the mechanisms underlying 

gamma oscillations. Two key mechanisms which can produce gamma band oscillations, 

for example, are the “interneuronal network gamma” (ING) mechanism and the 
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“pyramidal—interneuronal network gamma” (PING) mechanism [25,43]. In the ING 

mechanism if two mutually inhibitory neurons are coupled they cause mutual suppression 

when firing. This can lead to zero lag synchronization of their firing in the gamma range 

that occurs due to the fact that each neuron preferentially fires after its synaptic inhibition 

wanes.  

 

In the PING mechanism, AMPA-mediated projections of excitatory cells onto inhibitory 

cells provide fast excitation and promote inhibitory firing. These inhibitory cells, in turn, 

provide fast inhibition to the excitatory cells through GABAergic synapses and inhibit 

firing. When the inhibition to the excitatory cells wears off, the excitatory cells fire. The 

excitatory firing results, a short delay later, in inhibitory firing, thus bringing the network 

into an oscillatory rhythm of firing.The generation of neural oscillations from neuron-

neuron interactions remains a current area of study [31,32].  

1.1.7 Synchronization and Plasticity  

 

One primary role of neural oscillations is proposed to be the binding of features and 

consolidation of memory. In the case of consolidation, synchronization enables activity-

dependent modification of synaptic connections [44,45].The combination of 

synchronization and synaptic plasticity, via spike timing dependent plasticity (STDP),  is 

thought to underlie the stabilization of neural assemblies that correspond to integrated 

experiences as the probability of spontaneous synchronization increases for groups of 

neurons that previously engaged in  context dependent synchronous firing [46].  
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Therefore, these changes in synchronization appear to depend on the phase relations of 

the oscillations under different conditions.  The precise timing necessary for potentiation 

is evident in many experimental paradigms and can be observed in experiments that 

show potentiation resulting in cortical slices when an EPSP from a presynaptic neuron 

precedes firing in the postsynaptic neuron within a window of 10ms. This changes to long-

term depression when the firing order is reversed [47].  

 

1.2 Neuromodulation and Nervous System Function  

 

Neuromodulators are chemicals found throughout the nervous system that have complex 

effects on neurons and their synaptic interactions [26]. They generally regulate large 

populations of neurons with nonlinear effects on their response to input as well as the 

steady state characteristics of these neurons [48–50]. The concentration of 

neuromodulators throughout the nervous system is often regulated by neuro-modulatory 

systems, or groups of neurons that project throughout the nervous system and control the 

influence of different neuromodulators. The role and function of different neuromodulatory 

systems are often determined by exploring behavioral and cognitive outcomes by 

perturbing neural pathways involved in the system as well as exploring the effects of 

varying the concentration of the neuromodulator in different regions of the nervous 

system.  

 

Dopaminergic neurons, for example, originate from different regions in the brain including 

the substantia nigra and ventral tegmentum and act on dopamine receptors through 
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dopamine binding [51]. The dropout of dopamine receptors is commonly observed to 

cause problems with motor coordination and is believed to be the mechanistic cause in 

Parkinson’s. Similarly, in animal experiments removing the ventral tegmental dopamine 

systems can lead to starvation even in the presence of food [52–55].  

 

The serotonin system, another major neuro-modulatory system, originates in the dorsal 

raphe nucleus and projects to receptors in the cerebellum as well as other regions 

including the thalamus, striatum, amygdala and hippocampus. The regulation of serotonin 

has been shown to have an important impact on mood and is why SSRI’s (selective 

serotonin reuptake inhibitors) are often used to treat mood disorders such as depression 

[53,56,57]. Adrenergic neurons, neurons that play a role in noradrenaline regulation, 

originate in the Locus coeruleus (LC) and project to different  targets including the 

hypothalamus, hippocampus, amygdala and thalamus among others [58,59]. 

Noradrenaline is released during many cognitive processes associated with increased 

attention including the formation and retrieval of  working and long term memory and well 

as increases in response to sensory input [58].   

 

Another well studied neuro-modulatory system is the cholinergic system which is 

responsible for the regulation of ACh effects. To start, acetylcholine (ACh) is a molecule 

that serves as both a neurotransmitter and neuromodulator and plays a prominent role in 

cognitive functions throughout the brain including in attention and memory. Cholinergic 

neurons, neurons that produce ACh, are found throughout the brain and are highly 

concentrated in the striatum, basal forebrain and brain stem and can project to distal 
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regions of the nervous system [60]. ACh is also known to play a role in the control of 

autonomic functions and has been implicated in homeostatic regulations of metabolism 

and body temperature [61]. Furthermore, the amygdala and hypothalamus receive 

cholinergic projections which can explain the changes in amygdala activity in mood 

disorders and, supporting that, ACh plays a strong role in mood regulation and depression 

[62–64] as well as the consolidation of long term memories [65].  The effects of ACh can 

therefore be implicated in a wide variety of cognitive process due to its distributed effects 

throughout the brain. We primarily focus on acetylcholine in this thesis because we seek 

to understand the cholinergic effects on memory formation as well as the interaction of 

the cholinergic system and inhalation anesthesia. 

 

Mechanistically, ACh is an important regulator of neural excitability [66]. Acetylcholine 

affects neuron function by altering the synaptic input and cell membrane properties 

through both muscarinic and nicotinic acetylcholine receptor activation, the two main 

types of acetylcholine receptors. Within the nicotinic class of receptors there are the N1 

and N2 types, where N1 is primarily found between the neuromuscular junctions while N2 

is found in the brain, autonomic and parasympathetic nervous system. Nicotinic 

acetylcholine receptors are activated by nicotine and, through the act of ACh binding, can 

facilitate the passage of ions into the cellular membrane. In general the purpose of the N-

type ACh receptors is to mediate fast synaptic transmission of nerve impulses[67]. In the 

hippocampus, nicotinic influence on excitatory synaptic transmission has been observed 

in the path from CA3  to the entorhinal cortex [68]. Furthermore, in thalamocortical slice 

preparations of somatosensory cortex [69], activation of nicotinic receptors leads to 
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increased thalamic input response. Nicotinic effects of glutamatergic transmission have 

also been shown at the medial dorsal thalamic input to prefrontal cortex [70].  

 

Muscarinic receptors are the other primary acetylcholine receptor class and are of interest 

to us as they form an important component of the core model we use throughout this 

thesis. Muscarinic receptors are a type of G-protein coupled receptor that is found in the 

brain, the heart and in smooth muscles with 5 subtypes that can be both excitatory and 

inhibitory. The distribution of muscarinic acetylcholine receptors (mAChRs) has been 

shown to vary across cortical layers, cell types, and brain regions [71–73]. ACh modulates 

the excitability, or response to input, of neurons through its interaction with the muscarinic 

receptor system, which activates a G-protein signaling cascade [74]. The Muscarinic 

acetylcholine system serves to mediate a slow metabolic response in target neurons, an 

example of which is the slow m-type repolarizing potassium current, or m-current to 

modulate cellular firing behavior as discussed in chapter 1.3. 

 

1.3  Exploring Effects of M1 ACh Receptor Activation on Neuron 

Excitability and Firing Behavior through Computational Modeling. 

 

ACh modulation of the m-current exerts continuous control of neuronal excitability 

properties. The K+ ion channels influenced by muscarinic M1 receptor activation, and 

their corresponding ionic current, are blocked when ACh is high and are responsible for 

a switch in membrane excitability type [75]. Drawing on the physiological underpinnings 

of cholinergic modulation, a wealth of mathematical and computational research has been 

dedicated to understanding how ACh changes neural spiking behavior [33]. We build 
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upon this research by using a neuron model that accounts for the effects of ACh in the 

Hodgkin-Huxley model formalism through the addition of a separate current IM which 

captures the dynamical effects of the K+ m-current. We will refer to this model throughout 

the text as the Ks model.  In the Ks model, the effects of ACh are simulated by decreasing 

the value of the maximal conductance of the K+ m-current, 𝑔̅𝐾𝑠, such that low values of 

𝑔̅𝐾𝑠 correspond to high ACh tone and high values of 𝑔̅𝐾𝑠 correspond to low ACh tone. 

1.3.1 ACh Facilitates a Transition between Type 1 and Type 2 Excitability Types  

 

The mathematical framing of neural spiking behavior allows for us to capture many of the 

dynamical changes to the neuron as a result of the m-current. Acetylcholine changes the 

response of the neuron to input such that for high and low levels of acetylcholine the 

neuron excitability changes between two archetypes: Type 1 and Type 2, respectively. 

These two excitability types differ in the dynamical mechanism of spike generation [76]. 

Because low levels of ACh allow for an increase in the hyperpolarizing m-current, Type 2 

(low ACh) neurons have increased competition between depolarizing and hyperpolarizing 

currents which must be overcome to initiate a spike, while Type 1 (high ACh) neurons do 

not. This leads to several differences in input response characteristics between the two 

types, including a change in frequency and spike timings response to different current 

inputs.   

 

The ACh-induced change in neuron spike rate can be traced back to the effects of the m-

current which directly affects firing frequency. In terms of spike frequency, response to an 

injected current (f/I or gain function) [77], both excitability types (Type 1 and Type 2) have 

a critical current, Ic, below which no spiking occurs, but are quite different in terms of 
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spiking response around this point. Type 1 (high ACh) neurons will fire at arbitrarily small 

frequencies as the critical value of Ic is reached leading to a continuous frequency-current 

curve, whereas Type 2 (high ACh) neurons have a discontinuous frequency increase from 

quiescence and initiate firing at a higher frequency (Figure I.3 A). Another critical feature 

difference between Type 1 and Type 2 neurons is that Type 2 neurons vary their firing 

rate much less in response to changes in injected current, or have reduced gain[77]. The 

difference in gain between these neuron types leads to larger differences in firing rates 

between cells receiving different inputs in Type 1 (high ACh) networks compared to Type 

2 (low ACh) networks. 

 

A concurrent change in response characteristics that occurs with ACh activation of the 

ion channels associated with the M-current is differential response to brief and weak 

stimuli in terms of spike timing perturbation (i.e. advance or delay). This cellular property 

is quantified by the phase response curve (PRC)[78–82]. The PRC is measured, both 

experimentally and numerically, by driving a neuron to fire at a stable periodic frequency 

and delivering small, brief, and depolarizing perturbations between its spikes, at different 

timings (phases) within the spiking cycle. In response to these perturbations the timing of 

the following spike will be earlier, later, or the same as an unperturbed period (Figure I.3 

D,E). Type 1 and Type 2 neurons display significant differences in PRC shape. A Type 1 

PRC is uniformly positive, meaning that perturbations will always advance the timing of 

the next spike. Type 2 neurons have a biphasic PRC, meaning that depending on the 

timing of the perturbation it will either advance or delay the next spike. The biphasic 

character of the Type 2 PRC allows these neurons to synchronize spike firing due to the 



  

20 
 

ability to either shorten or elongate the period, with zero value of phase response 

becoming a stable fixed point of the dynamics. 

 

In addition to controlling the initial membrane response to input, the ACh-induced 

changes in m-current also regulate spike-frequency adaptation (SFA)  over the time 

course of sustained input [83]. SFA effectively represents a negative feedback on 

neuronal firing and is frequently due to a hyperpolarizing current that builds up as a 

neuron fires action potentials. Here, the m-current acts as an adaptation current and its 

blockade in high ACh conditions causes a significant reduction in SFA (Figure I.3 B&C). 

The effects of SFA and gain modulation are related by the fact the neuronal gain reflects 

the firing rate of a neuron when the m-current has saturated. Here we refer to SFA as the 

short-time scale effect of reducing the frequency of a neuron as it fires, possibly 

terminating a burst of firing. 
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Figure I.3  Modulation of neuronal properties in a model of cholinergic modulation. 

(A) The f/I curve increases its slope as ACh increases (gKs decreases). Blue colors represent the high ACh 

case. The onset of spike frequency adaptation in the Ks model occurs at a high gKs. SFA is quantified here 

by the SFA index, which compares the inter-spike interval between the first two and the last two spikes in 

an induced burst. (B, top) When gKs is low SFA is minimal and ISIs are equivalent throughout the burst. (B, 

bottom) When gKs is high ISIs gradually increase though out the burst. (C) Measured SFA indices for various 

gKs and injected current values show that SFA is only significantly reducing frequency during the burst 

above gKs = 0.25 mS/cm2, below this the effects are negligible. Stars indicate the parameters of the voltage 

traces shown in (B). Dark blue squares indicate parameters that do not elicit spikes and bright yellow 

squares parameters that yield <3 spikes. (D) The PRC is measured by comparing perturbed vs. unperturbed 

periods when neurons fire at a fixed frequency. When the next spike is earlier the phase response is positive 

(blue), when it is delayed it is negative (red). (E) Type 1 neurons have a strictly positive PRC (blue) while 

Type 2 neurons have a biphasic PRC. (F) Transitions in biophysical properties in the Ks model occur over 

different ranges of gKs. Modulation of the f/I slope occurs continuously over the range of gKs. The slope is 

steep for low gKs and gradual for high gKs. The transition between a Type 1 and a Type 2 PRC occurs for 

high gKs, though the PRC shape does change in a continuous manner as gKs changes. SFA has little effect 

for low gKs and only significantly effects the frequency of neurons for high gKs.  
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1.3.2 Interaction of ACh Dependent Excitability and Network Structure 

 

For neural networks, both the intrinsic excitability of the constituent cells as well as the 

network structure of the synaptic connectivity can affect the overall spiking dynamics 

across the network. Differences in neural response can have a cascade of effects when 

expressed in a network as previous work has shown that the strong effects of ACh on 

neuron excitability lead to significant changes in network dynamics which depend highly 

on the network’s connectivity structure.  

 

For example, many neural structures in the brain follow connectivity that exhibit features 

of small world networks [17]. A small-world network is a type of mathematical graph in 

which most nodes are not neighbors of one another (i.e. don’t share direct connection), 

but the neighbors of any given node are likely to be neighbors of each other and most 

nodes can be reached from every other node by a small number steps through existing 

connections. Specifically, a small-world network is defined to be a network where the 

typical distance L between two randomly chosen nodes (the number of steps required) 

grows proportionally to the logarithm of the number of nodes N in the network while the 

global clustering coefficient is not small. To construct small world networks in biological 

context, neurons are arrayed on two dimensional or ring lattices and the varied network 

parameters are the radius of connectivity (r; the distance across the lattice each neuron 

sends local outputs to) and the rewiring probability (P; the probability that a local output 

is exchanged for an output to a random target).  Depending on the value of P, the resulting 

networks have either all local connections (P=0), mostly local with a few random, long 

range connections (P=0.2, typical small world connectivity), or completely random 
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connectivity (P=1).  When networks of Type 1 excitatory neurons (without any inhibitory 

neurons) are coupled, more diversity of spike firing patterns are observed[84]. 

Specifically, in Type 1 excitatory networks, only networks with high connectivity radii and 

random structure (P close to 1) support synchronous firing patterns or network bursting. 

Networks composed of Type 2 neurons, on the other hand, are much less dependent on 

the values of  r and P in the formation of synchronous dynamics. As long as r is greater 

than 2%, networks generate highly synchronized bursting dynamics. Overall, varying 

synaptic weights and neuron depolarization has a similar effect, Type 1 networks exhibit 

more variable firing patterns while Type 2 networks are generally synchronous[85].  

 

Hence, ACh-induced modulation of neural excitability plays an important role in shifting 

between network and cellular mechanisms of pattern formation. When gain is high (the 

f/I curve is steep and ACh is high) variations in synaptic input will drastically modify the 

firing rate of a neuron and interrupt network mechanisms for synchronous firing among 

cells, while a shallow f/I (ACh is low) merely causes slight shifts in an internal driven 

period and supports network promotion of synchrony. Also an important distinction 

between Type 1 and Type 2 neurons that applies to these results is the difference in 

PRCs leading to integrator (Type 1) versus resonator (Type 2) modes of activity [76,86].   

 

Another network connectivity scheme often encountered in the brain [18] and having 

strong dependence on Type 1 and Type 2 cellular dynamics is the lateral inhibition 

network. In general, lateral inhibition networks are formed from two lattices, one for 

excitatory neurons and one for inhibitory neurons where inhibitory neurons send their 
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outputs farther than the excitatory neurons do. When modelling this we take the extreme 

of this condition and have globally connected inhibitory neurons and locally connected 

excitatory neurons. In lateral inhibition networks, firing is usually localized to a small 

region of the network, called a bump.  The most obvious distinction between networks 

with Type 1 versus Type 2 neurons is that Type 1 networks have stationary bump 

dynamics while Type 2 networks have moving bump dynamics [87]. This transition is due 

to SFA, which in the Ks neuron model results from the conductance of the m-current, gKs, 

that is responsible for the Type 1 to Type 2 transition. In this neuron model, the effects of 

SFA occur for lower gKs values than it takes to transition from Type 1 to Type 2 excitability. 

The transition from stationary to moving dynamics occurs because the currents 

responsible for SFA build up in the neurons within the bump of activity, lowering their 

excitability and firing frequency. As the average frequency within the bump decreases, 

inhibition is decreased across the network allowing neurons just outside the bump to 

begin firing, and for the bump to move to another region of the network. 

 

Variations in ACh sensitivity as well as biological heterogeneities in neuronal morphology 

and ion channel expression can lead to networks of mixed populations of Type 1 and 

Type 2 neurons. When modeling excitatory networks containing an equal mix of Type 1 

and Type 2 cells, removal of synapses connecting the populations drastically affects the 

nature of synchronous bursting dynamics [88]. The ability of Type 2 neurons to 

synchronize a mixed population is also seen when these cells are network hubs (i.e. cells 

that have a high number of random, not local outputs). In such networks, synchrony during 

bursting is greatly increased and is more robust to changes in the distributions of 
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connection probability used to generate a network structure than in Type 1 dominated 

networks [89].  

 

This brief summary of effects of Ach on network dynamics lead us to believe that generally 

the changes in neural excitability induced by muscarinic effects of ACh may have 

consequences for how information may be coded in the spiking activity of neural 

networks. The two predominant coding strategies identified in the brain are rate coding 

and phase coding. Rate coding represents information in the firing rates between neurons 

and phase coding represents information in the time differences between neurons 

[25,37,90,91]. High ACh concentration, supports frequency coding via strong modulation 

of firing frequencies depending on the cell input. On the other hand low ACh concentration 

promotes neuronal synchrony and phase coding. 

 

1.3.3 Hypothesized Role of Acetylcholine in Memory Processing 

 

Acetylcholine is released throughout the CNS where it impacts global brain function by 

affecting sleep-wake cycles, attention, and memory formation. One of the functional roles 

of ACh is thought to be the promotion of the retrieval and formation of memories [92,93]. 

The hippocampus, one of the core regions implicated in memory formation, receives 

cholinergic projections from neurons in the medial septum [94] and its neuronal activity is 

modulated by activation of both nicotinic and muscarinic acetylcholine receptors. The 

combined effects of acetylcholine release on glutamatergic inputs and neuron function 

are thought to play important roles in tuning the hippocampal CA1 network for recall and 

the formation of  new memories [66]. Low ACh allows intra-hippocampal synaptic 



  

26 
 

interactions to increase thereby promoting hippocampal output signaling and memory 

retrieval, whereas high ACh concentrations promote processing of inputs from outside 

the hippocampus allowing for the transient formation of memories in CA1 [92]. This 

suggests that ACh governs mechanisms of the active maintenance in working memory 

tasks as well as the mechanism underlying  the regulation of network dynamics important 

in the processing of stimuli memory tasks [95].   

 

Another important mechanism actively participating in memory consolidation, that could 

be mediated by changing ACh concentrations is disinhibition. Recent evidence suggests 

that acetylcholine has the ability to selectively activate inhibitory somatostatin positive 

(SST+) interneurons in the hippocampus[96,97]. This selective sensitivity is mediated by 

both nicotinic and muscarinic receptors expressed preferentially on the neurons[98,99]. 

Acetylcholine release in the hippocampus by medial septal inputs is known to be higher 

during wake vs. NREM sleep (with release increasing again during REM sleep) [100,101]. 

Aton lab tested whether gating of the hippocampal network, and CFM consolidation, are 

affected by manipulations of hippocampal cholinergic input. They that, similarly to the 

results of chemogenetic manipulation of SST+ interneuron activity, chemogenetic 

suppression of medial septal cholinergic neurons after CFC resulted in greater DG 

network activity. On the other hand, Chemogenetic activation of cholinergic inputs 

resulted in suppression of DG network activity[102].  

 

One way to evaluate role of ACh in memory maintenance would be to look at the effects 

of increased acetylcholine on memory consolidation. This effect is in fact observed 
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through experimental impairments to consolidation caused by cholinergic stimulation of 

the medial septum after training in rats as well as when observing the  effects of 

physostigmine (an acetylcholine antagonist) on memory consolidation in humans [103–

105]. One of our aims in this thesis is to investigate a plausible dynamical underpinning 

of the relationships among ACh and the resultant change in network firing patterns and 

the implications for synaptic plasticity and memory consolidation.  

 

1.4 Sleep, ACh and Memory Formation and Consolidation 

 

The extent to which ACh is released throughout the forebrain is a physiological variable 

which is widely divergent between wake, NREM sleep and REM sleep. Understanding 

links between ACh release, network dynamics and role of sleep in memory consolidation 

may allow us to better understand the neuromodulatory effects of ACh on brain function. 

 

1.4.1 Stages of Sleep  

 

Wake and sleep are two distinct behavioral modes observed in nearly all mammals. Each 

state  can be further identified by differences in EEG recorded neural activity with sleep 

being further decomposed into rapid eye movement (REM) sleep and three stages of non-

REM (NREM) sleep [106]. REM sleep is distinguished by rapid eye movements and 

shares EEG activity traits with wake. NREM sleep, on the other hand, ranges from light 

sleep in stage N1 to the deep sleep of N3[107]. Stage N1 only lasts for a few minutes and 

retains the presence of muscle tone and light breathing while demonstrating distinct alpha 

wave EEG signatures. Stage N2 comprises 45% of sleep, during which heart rate and 

body temperature drop and the presence of  K complexes, which are prominent transient 
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Delta wave signatures, can be detected in the EEG[108]. Stage N3 is deep sleep, or slow 

wave sleep, with dominant Delta EEG activity, is associated with a high arousal 

threshold[109–111] and is when the body engages in repair. Activity of the different 

neuromodulatory systems also varies across sleep and wake states. All neuromodulators 

are at high levels during wake states and drop to lower levels in NREM sleep states. 

Norepinephrine, serotonin and dopamine remain low during REM sleep but ACh rises to 

high levels during REM sleep, to levels even higher than observed in the wake state in 

some brain regions[112].  

1.4.2 Role of ACh in Neural Oscillations during Sleep Stages 

 

Sleep has been implicated in promoting synaptic plasticity and memory consolidation 

[113–115]. Additionally, there is a wealth of research that focuses on how ACh influences 

network oscillations and as such modulates synaptic plasticity[116–118]. The differential 

activation of cholinergic neurons across REM and NREM sleep states contributes to the 

differences in neurological activity in these states. For this reason it is plausible that the 

dynamic changes in neurological activity induced by ACh are mechanistically integral to 

the neurological processes that occur during sleep. Hypothetically, the transition to 

oscillatory dynamics between wake and sleep could constitute the change in bias 

between rate coding (useful during initial learning) and phase coding (which may promote 

consolidation). In this thesis we elucidate how the spiking dynamics that are associated 

with Type 1 and Type 2 excitability interact with synaptic plasticity rules to modulate 

synaptic strengths within networks by taking advantage of network oscillatory activity. 

 

1.4.3 Memory Consolidation and NREM Sleep   
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How the brain binds various sensory features of life events into a neural representation 

for memory storage is a long-standing question in neuroscience. Available data suggest 

that initial memory encoding is driven by increases in activity (rate coding) among a 

specific population of neurons, often referred to as “engram neurons”[119–122]. Over 

time, these mnemonic representations are incorporated into more widely distributed 

networks in a process referred to as systems memory consolidation [123–125]. A critical 

unanswered question is how heterogeneous neural populations, distributed across the 

brain over vast synaptic distances, cooperate in the process of long-term memory 

storage. Recent experimental findings show that, specifically during NREM sleep, slow 

oscillations and sharp waves, with ripples associated with them, promote temporal 

segregation between neurons with high intrinsic firing rates during wake and those firing 

less frequently, with the former leading the latter  [53,124,126] . At the same time, slow 

oscillatory patterning of neuronal firing during sleep has been implicated in promoting 

synaptic plasticity and memory storage [114,127–131]. Network oscillations that are 

present in brain circuits during sleep have been implicated in promoting STDP by 

precisely timing the firing between pairs of neurons[128]. 

 

We will show that a NREM sleep-like state associated with low ACh conditions drives 

network dynamics to change the bias between information coding schemes–a transition 

which occurs naturally through the sleep-wake cycle. Through this switch, functional 

network structures associated with engrams may become more stable and robust for 

long-term information storage. 
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1.5 Anesthesia Effects on the Nervous System and Interactions with 

Acetylcholine. 

 

1.5.1 Cellular Mechanisms of Anesthesia 

 

Anesthesia is a pharmacological procedure that is used extensively in the medical 

profession. The goal of anesthesia is typically to suppress the patient’s conscious 

awareness, stress and pain associated with surgery. Several putative mechanisms have 

been proposed as to how anesthetic agents induce loss of awareness or consciousness, 

however the variety of effects of different anesthetic agents within the central nervous 

system make this an active area of study. Experimental studies implicate the brainstem, 

thalamus, and cortex as regions where neuronal activity is heavily modified by general 

anesthesia [132,133]. However, the primary target region likely depends on the type of 

anesthetic [134].  At the single cell level, common inhalational anesthetics facilitate 

inhibitory transmission and suppress excitatory synaptic transmission [135,136]. 

However, the extent of effects on specific synaptic receptors varies across different 

anesthetics (Figure I.4).  

 

Despite such differences in direct effects of different anesthetic agents, an underlying 

implicit hypothesis exists that there is an anesthetic agent-invariant mechanism that 

accounts for their final effect, the loss of awareness or consciousness.  Proposed neural 

correlates of anesthetic action include modulation of neuronal excitability, increased 

network synchrony [137], disrupted brain functional connectivity and deficits in information 

integration [138,139]. Integrated Information Theory is one of the leading theories of 

consciousness providing a general framework for how attention and awareness can be 
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attributed to transfer and processing of information within a system [140]. Supporting this 

view, experimental studies have shown that information theoretic metrics of brain activity 

are reduced during anesthesia associated with suppressed behavioral signs of 

consciousness [141]. 

 

1.5.2 Cholinergic Interactions with Anesthesia 

 

In both humans and rodent model, interventions that raise ACh concentration in the brain 

are associated with a reversal of anesthetic traits or a reduction in anesthetic 

potency[142]. Conversely, lesions of cholinergic neurons in the basal forebrain—the main 

source of acetylcholine for the cortex—reduce anesthetic requirements for commonly 

used drugs such as isoflurane and propofol [143]. 

 

Furthermore, many investigations using pharmacological, electrical, or optogenetic 

stimulation of various brain regions to counter or reverse the unconscious state in humans 

and animals under the continued presence of anesthetic [144–147] have utilized nicotinic 

[148] or muscarinic [149] cholinergic interventions. Recently, reverse dialysis delivery of 

the acetylcholine agonist carbachol was used to successfully reverse the effect of 

sevoflurane in rats in vivo [150]. Similar effects were observed in vitro when bathing 

cortical slices with cholinergic and noradrenergic agonists led to a reversal of slow wave 

oscillations induced by anesthesia [151]. These studies have shown that various 

behavioral expressions of the conscious state can be restored by exogenous cholinergic 

interventions that counter the pharmacological effect of anesthetics. Less investigated, 

however, is the question of whether the brain’s electrophysiological activity, particularly 
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in cortical areas that are chiefly responsible for conscious representations, are also 

restored to pre-anesthetic levels and quality by such interventions.  In other words, how 

do cortical neuronal activity patterns compare before anesthesia, during anesthesia and 

after conscious-like behavior is restored by exogenous stimulation while still in the 

presence of the anesthetic? 
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Figure I.4 Common inhalation anesthetics have similar effects on synaptic receptors.   

Experimental findings show similar effects across inhalation anesthetics on synaptic receptors [152–155]. 

Binding to inhibitory GABAA receptors is commonly potentiated while NMDA receptor activity is commonly 

inhibited with the magnitude of effect varying between anesthetics. Activation of muscarinic acetylcholine 

receptors and AMPA receptors is inhibited by isoflurane and sevoflurane while desflurane has a biphasic 

effect and null effect on muscarinic acetylcholine and AMPA receptors, respectively.  
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1.6 Overview 

 

The goal of this thesis is to understand the role of acetylcholine, through its influence on 

the m-current, on brain states and function. Specifically, we use computational modeling 

to analyze its role in information coding, its effects on memory formation and its influence 

on the states of anesthesia.Our modeling work uses a Hodgkin-Huxley conductance 

based neuron model with the addition of a slow potassium current, the Ks model, to 

simulate cholinergic modulation[76], the details of which are introduced in Chapter 2. This 

biophysical model emulates muscarinic receptor mediated cholinergic effects on neural 

membrane potential by blocking the m-current. As discussed above, ACh modulation of  

the slow m-type potassium conductance, gKs, is responsible for the transition from Type 

1 to Type 2 excitability [84,85,87,89,156].   

 

In Chapter 2, we investigate how ACh mediated transitioning neurons from Type 1 to 

Type 2 excitability impacts the patterns of neural activity that can represent information 

within a network. We argue that this neural excitability transition enables a dynamic switch 

between rate coding and phase coding as levels of ACh release change. To investigate 

our hypothesis, we consider different network structures and external input patterns and 

show that correlations in frequency between pairs of neurons for Type 1 networks and 

correlations in phase locking for Type 2 networks were more similar on repeated 

simulations of the same structural realization of networks when compared to different 

structural realizations. These effects were not observed when reversed the paradigm and 

we measured phase relations in Type 1 networks and frequency responses in Type 2 

networks.  Similar results were observed for fixed network conditions when different input 
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current patterns were tested. Moreover, we found functional mapping between frequency 

representations in Type 1 networks and phase representations in Type 2 networks. These 

results lead us to formulate a hypothesis that ACh mediates coding shift from frequency 

coding (high ACh concentration) to phase coding (low ACh concentration). 

 

In Chapter 3, we use a similar model framework together with spike timing dependent 

plasticity to investigate how ACh mediates network reorganization during sleep 

dependent memory consolidation.  We show that regulation of neuronal excitability, 

mediated via muscarinic ACh pathway, that are analogous to those occurring in NREM 

sleep, drives changes in network-wide oscillatory properties, recreating a number of 

experimentally-observed phenomena. We specifically show that the experimentally 

observed network reorganization, can be mediated by network transition between rate 

coding (during a wake-like state) and phase coding (during a NREM-like state). Namely, 

NREM phase coding drives STDP between neurons which causes dramatic, differential 

changes in the strength of reciprocal connections between highly active vs. sparsely firing 

neuronal populations. These changes lead to differential changes in firing rate in the two 

populations. Together, our results show that the NREM-like state associated with low ACh 

conditions drives network dynamics to change bias between information coding 

schemes–a transition which occurs naturally through the sleep-wake cycle. 

  

In Chapter 4, we model the synaptic induced effects of anesthesia and investigate the 

role of ACh in anesthetic effects as well as the potential for ACh to mitigate effects of 

anesthesia. To do this we simulated an excitatory-inhibitory (E-I) neuron network 
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consisting of the Hodgkin-Huxley Ks model neurons with glutamatergic, GABAergic and 

cholinergic inputs. We model the effects of desflurane, a common inhalation anesthetic, 

by varying the effect of excitatory and inhibitory neurotransmitters in a manner consistent 

with experimentally observed effects of desflurane at the synaptic level. To fit the model 

to experimentally obtained measures of in vivo visual cortex network firing activity at 

different concentrations of desflurane, we applied a differential evolution algorithm to 

optimize parameters modulating the effect of neurotransmitter binding at different 

receptors. Specifically, we quantified the graded, concentration-dependent effect of 

simulated anesthetic on neuronal firing rate distributions, phase coherence, 

monosynaptic spike transmission, network functional connectivity, and information 

theoretic measures of neuronal interactions, and fit these measures to corresponding 

experimentally measured quantities in the rodent visual cortex in vivo. We then used the 

model to simulate the presumed effect of cholinergic activation, without changing 

parameters for the simulated anesthetic-induced synaptic alterations, to see if these 

measures were reversible to near pre-anesthetic levels. Our model results provide insight 

into the mechanisms by which distinct neurotransmitter systems shape network behavior 

under the combined influence of complex pharmacological interventions that may affect 

the state of consciousness. 

 

Finally, in Chapter 5, we revisit our main results to better contextualize the varied effects 

of ACh on neural activity and how ACh impacts different cognitive processes. We further 

assess the limitations of our methodology as well as how these limitations can be 

addressed and the methodology expanded in future research endeavors. 
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Chapter II 

 Acetylcholine Mediates Dynamic Switching 

Between Information Coding Schemes in 

Neuronal Networks 

 

2.1 Introduction 

 
As discussed in Chapter 1, rate coding and phase coding are the two major coding modes 

seen in the brain. For these two modes, network dynamics must either have a wide 

distribution of frequencies for rate coding, or a narrow one to achieve stability in phase 

dynamics for phase coding. Acetylcholine (ACh) is a potent regulator of neural excitability. 

Acting through the muscarinic receptor, ACh reduces the magnitude of the potassium M-

current, a hyperpolarizing current that builds up as neurons fire. The M-current contributes 

to several excitability features of neurons, becoming a major player in facilitating the 

transition between Type 1 and Type 2 excitability. In this chapter, we argue that this 

transition enables a dynamic switch between rate coding and phase coding as levels of 

ACh release change. Specifically, when a network is in a high ACh state variations in 

synaptic inputs will lead to a wider distribution of firing rates across the network and this 

distribution will reflect the network structure or pattern of external input to the network. 

When ACh is low, network frequencies become narrowly distributed and the structure of 

a network or pattern of external inputs will be represented through phase relationships 
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between firing neurons. This work provides insights into how modulation of neuronal 

response properties influences network dynamics and information processing across 

neuromodulatory states. 

 

This work was completed with multiple coauthors. In this study I conducted the network 

simulations and statistical analysis of model results to measure how input and network 

structure is represented through frequency and phase correlations. The article  discribing 

these results was published in Frontiers in Systems Neuroscience [157]. 

 

2.2 Methods 

2.2.1 Model Design and Network Connectivity 

 

Networks were composed 300 excitatory and 75 inhibitory neurons arrayed on two 

interconnected ring lattices. Excitatory neurons were randomly connected to 3% of the 

neurons on each lattice, while inhibitory neurons were connected to 6%. The random 

process used in the generation of a network structure was seeded such that one of 20 

network structures could be reproduced. 

Connections between neurons were defined by a synaptic conductance pulse: 
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𝑔𝑠𝑦𝑛,𝑖𝑗(𝑡) = max (( 𝑒
−(𝑡̃𝑚𝑎𝑥−𝜏𝐷)

𝜏𝑆 − 𝑒
−(𝑡̃𝑚𝑎𝑥−𝜏𝐷)

𝜏𝐹  )

−1

 ( 𝑒
−(𝑡̃𝑗

̃−𝜏𝐷)

𝜏𝑆 − 𝑒
−(𝑡̃𝑗−𝜏𝐷)

𝜏𝐹  ) , 0)                 (II.1)    

 

𝑡̃𝑚𝑎𝑥 =
𝜏𝐷𝜏𝑆−𝜏𝐷𝜏𝐹−𝜏𝑆𝜏𝐹𝑙𝑛(

𝜏𝐹
𝜏𝑆

)

𝜏𝑆−𝜏𝐹
                                    (II.2) 

where 𝑡̃𝑗 is the time of the last spike fired by the presynaptic neuron j, 𝑡̃𝑚𝑎𝑥 is the time 

where the synaptic pulse reaches its maximum, 𝜏𝐷 is a synaptic delay constant set to 0.08 

ms, 𝜏𝑆 is the slow synaptic decay constant set to 3 ms, and 𝜏𝐹 is the fast synaptic decay 

constant set to 0.3 ms. Thus, the synaptic pulse ranges between 0 and 1. The total 

synaptic input to a  neuron i is defined by:  

𝐼𝑠𝑦𝑛,𝑖(𝑡) = 𝑤𝑒 ∑ 𝐴𝑖𝑗𝑔𝑠𝑦𝑛,𝑖𝑗(𝑡)(𝐸𝐸 − 𝑉𝑖)
𝑁𝐸
𝑗=1 + 𝑤𝑖 ∑ 𝐴𝑖𝑗𝑔𝑠𝑦𝑛,𝑖𝑗(𝑡)(𝐸𝐼 − 𝑉𝑖)

𝑁𝐼
𝑗=1  (II.3) 

where 𝑉𝑖 is the membrane potential of neuron I, 𝐸𝐸/𝐼 is the reversal potential of either 

excitatory or inhibitory synapses, 𝐴𝑖𝑗 is 1 if neuron j synapses onto neuron i or 0 

otherwise, and 𝑁𝐸/𝐼 is the number of excitatory or inhibitory neurons. The synaptic 

weight, 𝑤𝑒/𝑖, was set to 0.2 mS/cm2 for all simulations, unless otherwise stated. 

In the Ks neuron model (see also chapter I), the membrane potential evolved according 

to: 

𝑐𝑚

𝑑𝑉𝑖

𝑑𝑡
= 𝐼𝑠𝑦𝑛,𝑖 + 𝐼𝑒𝑥𝑡,𝑖 − 𝑚∞

3 ℎ𝑔̅𝑁𝑎(𝑉𝑖 − 𝐸𝑁𝑎) − 𝑛4 𝑔̅𝐾𝑑𝑖𝑟(𝑉𝑖 − 𝐸𝐾) 

                                        −𝑠𝑔̅𝐾𝑠(𝑉𝑖 − 𝐸𝐾) − 𝑔𝐿(𝑉𝑖 − 𝐸𝐿),   (II.4) 
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where 𝑔̅𝑥 is the maximal conductance associated with an ionic current, 𝐸𝑥 is the 

reversal potential for an ion,  and 𝐼𝑒𝑥𝑡,𝑖 is a random direct current which is unique to each 

neuron and constant during a simulation. The range of 𝐼𝑒𝑥𝑡,𝑖 was set to 2.0 μA/cm2 and 

the mean was set so that all neurons would fire at 10 Hz without any synaptic input. The 

gating variables h,n, and s were of the form  

𝑑𝑥

𝑑𝑡
=

(𝑥∞(𝑉)−𝑥)

𝜏𝑥(𝑉)
,     (II.5) 

where 𝑥∞(𝑉) is the steady state value of the variable and 𝜏𝑥(𝑉) is the time constant. 

𝜏𝑠(𝑉)= 75 ms for all V. When 𝑉𝑖 crossed 0 mV a spike was recorded and synaptic outputs 

were triggered. 𝑔̅𝐾𝑠  is the parameter responsible for the transitions in excitability seen in 

this model and is used as a proxy for the level of acetylcholine (which is inversely 

proportional 𝑔̅𝐾𝑠).  Noise was introduced by randomly inducing spiking in all neurons at a 

low rate. Unless otherwise noted the frequency of noise was set to 1 Hz .All simulations 

were integrated for 7 s at a 0.05 ms time step using a 4th order Runge-Kutta algorithm. 

This neuronal dynamic was taken from [82], for more details see [85].  

2.2.2 Correlation and Network Similarity 

 

The dependence of network firing pattern on network structure, or the pattern of DC 

inputs, was quantified by a network similarity score based on either frequency or phase, 

𝑁𝑆𝐹𝑟𝑒𝑞 or 𝑁𝑆𝑃ℎ𝑎𝑠𝑒. This score was defined by: 

                                               𝑁𝑆𝐹𝑟𝑒𝑞,𝑖 =
<𝑆𝐹𝑟𝑒𝑞,𝑖>−<𝑆𝐹𝑟𝑒𝑞,~𝑖>

2
,                      (II.6) 

or:𝑁𝑆𝑃ℎ𝑎𝑠𝑒,𝑖 =
<𝑆𝑃ℎ𝑎𝑠𝑒,𝑖>−<𝑆𝑃ℎ𝑎𝑠𝑒,~𝑖>

2
                    (II.7) 
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where Sx,i (x = Freq or Phase) is the similarity between all runs on the same realization of 

network structure i (or of DC input pattern i); Sx,~i  is the similarity between the runs on 

network i and all other network realizations (or with DC input pattern i and all other DC 

input patterns). NSx  will be 1 if all runs on the same network (or input pattern) realization 

have identical network similarity while all other network (or input pattern) realizations are 

orthogonal, and it will be 0 if all runs are equally similar regardless of network structure 

(or DC input pattern). NSx will be −1 if all runs on the same network (or DC input pattern) 

realization have orthogonal network similarity but it is identical on runs with different 

realizations.  

 

Spiking dynamics from 20 patterns of external current input or 20 network structures were 

analyzed. Each pattern or network was simulated 50 times. The network activity was 

quantified in two ways. The first was to calculate an average firing rate for neurons in a 

network. To maximize the variance in the data principal component analysis was 

performed on the frequencies for all simulations run at a given 𝑔̅𝐾𝑠 and the frequencies 

were projected onto the 1st principal component for further analysis. The correlation of 

firing rates (in PCA space) between simulations was calculated as the dot product of a 

vector containing frequencies sorted by cell id for each simulation, yielding the value SF. 

All analysis considered only spikes which fired during the last 5 s of the simulation. Phase 

correlations were calculated in a similar manner. As a control, the frequencies/phases 

were scrambled and assigned to random neurons.  
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Whether a network was in a phase coding regime was based on a measure of how stable 

the phase relationships are between neurons in the network. For a pair of neurons i and 

j the phase relationship for a given (the kth) spike fired by neuron i is 𝜙𝑖𝑗
𝑘 = 2𝜋

(𝑡𝑘
𝑖 −𝑡−

𝑗
)

(𝑡+
𝑗

−𝑡−
𝑗

)
, 

where 𝑡𝑘
𝑖  is the time of the kth spike fired by cell i,  𝑡−

𝑗  is the time of the last spike fired by 

neuron j before 𝑡𝑘
𝑖 , and 𝑡+

𝑗
 is the time of the first spike fired by neuron j after 𝑡𝑘

𝑖 . Between 

neurons i and j the phase coherence, or how reliable the phase difference between the 

neurons is across cycles, is: 

𝑟𝑖𝑗 =
1

𝑇
∑ 𝑒𝑖𝜙𝑖𝑗

𝑘
𝑇
𝑘=0 ,     (II.8) 

where T is the number of spikes fired by neuron i that are between a pair of spikes fired 

by neuron j. Note that this measure is not reciprocal (i.e. 𝑟𝑖𝑗 = 𝑟𝑗𝑖 is not always true). The 

pairwise 𝑟𝑖𝑗 values are averaged for all neurons which fire more than 30 spikes in the 

simulation and for presentation the average value of each network was computed. 

Network bursts were identified by binning spike times into 0.05 ms time bins and 

convolving with a gaussian kernel 𝑘(𝑡) = 𝑒
−𝑡2

𝜎2  evaluated between -10 and 10 ms and with 

𝜎2 of 1 ms. 

 

When the convoluted signal was above a threshold of 10% of the neurons in the network 

the network was considered to be in a burst. Each burst was padded with 10 ms before 

and after the threshold crossing to any capture the spikes initiating the burst. To evaluate 

the similarity of two bursts the order of neuron’s firing in a burst window was correlated. 

Example bursts were selected by identifying those bursts with the highest correlation on 
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two different runs on the same network realization. Average pairwise burst correlations 

were compared between two runs on the same network realization and one run on two 

different realizations. 

 

2.3 Results 

 

In a network, the Im  mediated switch between Type 1 to Type 2 excitability together with 

effects of SFA have a profound influence on resulting network dynamics. Using numerical 

modeling we’ve investigated how transitioning neurons from Type 1 to Type 2 excitability 

impact the patterns of neural activity in networks. We  use the conductance-based Ks 

neuron model of cholinergic modulation [158]. The details of this model are included in 

Chapter I and Section 2.2 of this chapter. This biophysical model reproduces the effects 

of ACh blocking Im through activation of the M1 acetylcholine receptor. Throughout this 

thesis it will be referred to as the Ks model, named for the slow potassium conductance,  

𝑔̅𝐾𝑠, responsible for the transition from Type 1 to Type 2. Specifically, low  𝑔̅𝐾𝑠 

corresponds to the high ACh, Type 1 excitability condition.  

 

As we dicussed in Ch 1, when ACh is high, neurons in the network are Type 1, and the 

f/I curve increases continuously from 0 Hz with a steep slope as a function of input 

currents between neurons (Figure I.3A). This will result in a wide distribution of firing 

frequencies across the network when cells are driven by heterogeneous synaptic input or 

external drive. The resulting frequency distribution will be stable through time, due to 

reduced SFA during high ACh conditions (low   𝑔̅𝐾𝑠, Figures I.3B,C). On the other hand, 
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during low ACh conditions (high 𝑔̅𝐾𝑠), when Type 2 excitability dominates, variations in 

input across the network create less variance in neuronal firing rates due to the shallow 

slope of the f/I curve. As the firing rates are more uniform, oscillatory firing paired with the 

increased synchronizability demonstrated by the shape of the PRC (Figures I.3D,E) leads 

to synchronized bursting. The variations in inputs are now reflected by relative phases of 

firings among interacting neurons, rather than by their frequency variations. Through the 

changes in neural excitability controlled by the M-current, the circuit is thus shifted 

between these two, distinct functional regimes: rate coding when ACh is high (low 𝑔̅𝐾𝑠, 

Type 1) and phase coding when ACh is low (high 𝑔̅𝐾𝑠, Type 2; these changes are 

summarized in Figure I.3F). 

 

Much of the previous work on the different dynamics displayed by Type 1 vs. Type 2 

networks indicates that Type 1 networks are more sensitive to variations in network 

structure [84]. Specifically, Type 1 networks have higher variability in neuronal frequency 

and our results suggest that the particular frequency distribution of these networks will be 

highly dependent on a particular physical network realization [87]. Type 2 networks, on 

the other hand, have more uniform firing rate distributions leading to more synchronous 

dynamics, suggesting that the effect of the specific network structure will be seen in the 

phase relationships between neurons. To provide an initial test of this prediction we 

generated a set of unique networks based on the Watts-Strogatz network model [159]. 

The networks were composed of two interconnected ring lattices, one excitatory and one 

inhibitory. Since the Watts-Strogatz model of network generation is based on random 

processes, specific network structures (i.e., sets of inputs and outputs for each neuron) 



  

45 
 

can be reproduced by changing the seed in a random number generator. We generated 

20 network realizations; each network structure was simulated 50 times for a given 𝑔̅𝐾𝑠, 

randomizing voltage and gating variable initial values each time. This allowed us to 

compare firing patterns between the 50 runs on the same network realization with the 950 

runs on the other network realizations. Additionally, to examine the effects of changing 

patterns of inputs, a parallel line of simulations were run on an unchanging network 

structure but with randomized patterns of external applied current (DC) inputs applied 

across the cells in the network. We generated 20 DC patterns and simulated each 50 

times for a given 𝑔̅𝐾𝑠 value and random initial conditions. 

2.3.1 Network Representation of Phase and Frequency Code 

 

We first investigated how the firing patterns changed when network connectivity structure 

is varied. In the absence of variations in external input between neurons, patterns in 

network activity should reflect the specific structure of the network. The aim of these 

simulations is to show that, for each network topology, for high ACh (low 𝑔̅𝐾𝑠) a neuron’s 

firing rate will be more correlated on the 50 runs with the same network realization than 

on the 950 runs with the other network realizations, but that this effect will be reduced as 

ACh falls. In terms of relative phases of firing between neurons, the opposite will occur. 

Namely, when ACh is low (high 𝑔̅𝐾𝑠), the pairwise phase relationships between neurons 

will be more correlated on the same network realization compared to the other realizations 

and that this specificity is reduced as ACh increases.  

 

This effect is apparent when examining raster plots of network activity. Spiking dynamics 

for low 𝑔̅𝐾𝑠 lack temporal organization (Figure II.1A) and neurons have variable firing rates 
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(revealed by density of points on the raster plot). The raster plots show that the firing rate 

pattern is dependent on the network structure for low 𝑔̅𝐾𝑠, with cells exhibiting different 

rates in different networks. For high 𝑔̅𝐾𝑠 firing rates are more uniform as networks enter a 

bursting regime. Here the frequencies of cells across the network are highly similar, but 

the organization of neurons within bursts is more consistent across runs on the same 

network realization and changes for different network realizations. This result is 

summarized on Figure II.1B; for low 𝑔̅𝐾𝑠 networks the frequency correlation of neurons is 

high on the same network structure and very low across structures (Figure II.1B, left). 

When comparing burst structure in high  𝑔̅𝐾𝑠 networks, quantified by neuron order within 

a burst, compared runs on the same network realization have more similar burst structure 

than those on different realizations (Figure II.1B, right).  
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Figure II.1 Example dynamics show rate specificity during high ACh dynamics and high phase 

specificity during low ACh dynamics. 

(A) Raster plots show that high ACh networks have high similarity in firing rates, but low temporal 

organization. Changes in network structure (Net 1 vs. Net 2) alter which neurons are high frequency vs. low 

frequency, but this is stable between simulations on the same network. Low ACh networks have a more 

uniform firing rate but more temporal organization and synchrony. The phase relationships between 

neurons is stable across stimulations, but not across networks. Black rasters indicate the spike time of 

excitatory neurons and red rasters indicate inhibitory spikes. (B) During High ACh conditions the firing rate 

of neurons is highly correlated during simulations run on the same networks and uncorrelated between runs 

on different networks (left). The order of neuron firing during bursts is higher between runs on the same 

network compared with runs on different networks during low ACh conditions (right). Error bars indicate 

s.e.m. 
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2.3.2 Mechanism of Coding Switch  

 

We next proceeded to quantify more carefully the underlying mechanisms of this coding 

switch. We first investigated the modulation of frequency variance and phase locking (as 

measured by mean phase coherence, MPC) with varying ACh as it provides a basis for 

the different coding schemes (Figure II.2). We observed that high ACh networks have 

high frequency variance and low phase locking. As ACh is reduced ( 𝑔̅𝐾𝑠 is increased), 

frequencies become more uniform, and phase locking increases. Figure II.2 (top, black 

curve) shows that when ACh is high (𝑔̅𝐾𝑠 is low) the firing rate distribution is wide as 

measured by coefficient of variation. As ACh is reduced firing rate variance rapidly 

decreases and all neuron firing rates collapse to the mean, which can be seen by 

comparing empirical cumulative distribution functions of firing rate on the same network 

for varying  𝑔̅𝐾𝑠(Figure II.2, bottom). At the same time, the transition to phase locked firing 

happens for networks with low ACh (high 𝑔̅𝐾𝑠) (Figure II.2, top, red curve). This transition 

supports a transition between rate and phase coding regimes. These two effects on the 

character of network dynamics provide a substrate for each coding scheme at each pole 

of cholinergic modulation. High ACh networks are primed for rate coding and low ACh 

networks are primed for phase coding.  

 

We then investigated the effects of differential input on the network dynamics. 

Specifically, we measured the effect on network dynamics, in both regimes (high and low 

ACh), when randomly chosen neurons receive additional input current. We compared 

dynamics of networks with constant structure, where 20 excitatory neurons received an 
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additional offset current 𝐼𝑜𝑓𝑓𝑠𝑒𝑡 (up to 1.95 µA/cm2 ) above the remaining neurons. In 

these simulations, when  𝑔̅𝐾𝑠 = 0.0 mS/cm2 , increasing 𝐼𝑜𝑓𝑓𝑠𝑒𝑡 reliably increased the firing 

rate of the subset of neurons as expected (Figure II.3A). When  𝑔̅𝐾𝑠 = 1.5 mS/cm2 , the 

subset of neurons fired at an increasingly earlier phase as 𝐼𝑜𝑓𝑓𝑠𝑒𝑡 increased (Figures 

II.3B,C). The increase in firing during high ACh conditions and the phase advancement 

in the low ACh conditions are correlated (Figure II.4D) providing a link between the two 

representations. The effect of differential input on frequency and phase form the basis for 

frequency coding when ACh is high and phase coding when ACh is low.  
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Figure II.2 The transition from high frequency variance to high phase locking shows how cholinergic 

modulation can change coding principles.  

(A) High ACh networks have highly varied firing rates as measured by the coefficient of variation. Firing 

rates quickly become more uniform as gKs increases. Conversely, MPC (phase locking) is high for low ACh 

networks. (B) Frequency CDFs for single simulations, each on the same network structure, show that the 

same network display large differences in the variance of firing rates across the network. High ACh networks 

have high variance, which deceases dramatically as ACh is reduced. Error bars indicate s.e.m. 
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To further pursue our hypothesis and measure the extent that networks either rate code 

or phase code information about their structure, we investigated if the correlation in 

frequency (for Type 1, high ACh, low 𝑔̅𝐾𝑠 conditions) or the phase locking (for Type 2, low 

ACh, high 𝑔̅𝐾𝑠conditions) between pairs of neurons would be more similar on repeated 

simulations of the same structural realization of randomly generated networks vs. different 

structural realizations. Similarly, for the dynamical response to external stimulation 

patterns in networks with fixed connectivity, we investigated if the correlation in frequency 

(under Type 1, high ACh, low 𝑔̅𝐾𝑠 conditions) or the phase locking (for Type 2, low ACh, 

high 𝑔̅𝐾𝑠 conditions) between pairs of neurons would be more similar on repeated 

simulations with the same DC input pattern to the network vs. different random 

realizations of DC input.  

 

To measure these functional relationships between neurons, we constructed a similarity 

score based on three measures: pairwise mean phase, pairwise MPC, and frequency. As 

indicated before, MPC is a measure of phase locking between pairs of neurons and 

ranges between 0 for random firing and 1 for perfect phase locking. To compare two 

simulations, we define the phase similarity (𝑆𝑃ℎ𝑎𝑠𝑒) as the correlation in pairwise mean 

phase calculated across all neurons that fired 30 or more spikes in both simulations. 

Similarly, to compare neuron frequencies across simulations, the frequency similarity 

(𝑆𝐹𝑟𝑒𝑞) is defined as the correlation of their frequencies across both simulations. To 

maximize the variance within the data, principal component analysis was performed on 
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the data for each level of  𝑔̅𝐾𝑠, and the data was projected onto the 1st principal 

component for only correlation analysis. Calculation of MPC and coefficient of variation 

were performed on raw data.  
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Figure II.3 Variations in current input between neuron subsets leads to changes in average 

frequency and phase. 

 (A) The difference in average frequency of the two neuron populations shows a positive relationship with 
the difference in current input, labeled as Ioffset, when gKs is 0.0. (B) Raster plot shows phase leading in 
spike times of neuron subset. The raster plot shows spike times for neuron population where 20 neurons 
receive an additional current input of 1.95 μA/cm2. Blue rasters indicate subpopulation with additional 
current while black rasters indicate sub population with baseline current input. Red trace shows convolution 
of spike times with Gaussian function which is used to define the phase reference. The above simulation is 
conducted with a gKs value of 1.5. (C) Phase difference between subpopulation with additional current 
input and subpopulation with baseline current input shows a negative relationship with the current input. 
(D) Comparison of the phase difference and frequency difference for a given current input. Plot shows 

comparison of phase difference for gKs = 1.5 and frequency difference for 𝑔̅𝐾𝑠  = 0.0 for a given current 

offset. 
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2.3.3 Input Representation for Frequency and Phase Code  

 

To account for the effect of an increased bandwidth which results from a wider distribution 

of frequencies (i.e., a frequency pattern with a wider range will be easier to detect than a 

narrow pattern) 𝑁𝑆𝐹𝑟𝑒𝑞 was scaled by the coefficient of variation as such:  

𝑁𝑆𝐹𝑟𝑒𝑞,𝑖 =<  𝐶𝑜𝑣𝐹𝑟𝑒𝑞,𝑖 >
<𝑆𝐹𝑟𝑒𝑞,𝑖>−<𝑆𝐹𝑟𝑒𝑞,~𝑖>

2
. Similarly, to account for low MPC reflecting 

random firing between neurons 𝑁𝑆𝑃ℎ𝑎𝑠𝑒 was scaled by the average MPC of each network 

across all simulations: 𝑁𝑆𝑃ℎ𝑎𝑠𝑒,𝑖 =
<𝑆𝑃ℎ𝑎𝑠𝑒,𝑖>−<𝑆𝑃ℎ𝑎𝑠𝑒,~𝑖>

2
  For simplicity, pairwise phase 

relationships between all excitatory neurons and an arbitrary inhibitory neuron were 

analyzed.  

 

We measured mean frequency similarity score, N𝑆𝐹𝑟𝑒𝑞, for both cases, networks with 

changing DC input patterns (Figures II.4A–C) and changing connectivity structure 

(Figures II.4D–F), and we measured phase similarity score 𝑁𝑆𝑃ℎ𝑎𝑠𝑒, for the two cases 

(Figures II.5A–C and Figures II.5D–F, respectively). The results in both figures are 

compared to scrambled spike trains (blue line).  

 

Rate coding of DC input pattern (Figures II. 4A–C) and network structure (Figures II.4D–

F) was prevalent for high ACh (low 𝑔̅𝐾𝑠) dynamics and reduced for low ACh (high 𝑔̅𝐾𝑠) 

dynamics. As 𝑔̅𝐾𝑠 increased (lower ACh), network frequency similarity scores decreased 

(first and middle columns), but not because of reduced frequency correlations within the 

same input pattern (last column).  
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Figure II.4 High ACh networks show increased rate coding which is diminished in low ACh networks.  

Rate coding, measured by the specificity of neuronal firing rates across simulations with the same pattern 

of inputs across the network vs. different patterns of input, occurs for high ACh networks. This effect is 

decreased in low ACh networks, largely because firing rates become more similar between different 

networks. (A) NSFreq is the network score based on comparing frequency correlations on simulations with 

the same input pattern against simulations with different patterns. (B) NSFreq scales NSFreq by the 

coefficient of variation for frequency. (C) Color plots show the correlation of firing rates between simulations 

for gKs=0.0 and gKs=1.4 mS/cm2 (top and bottom, respectively). Each simulation is sorted along the x and 

y axis by network structure. A similar effect occurs when information is represented through network 

structure. (D–F) NSFreq, NSFreq, and correlation plots for simulations with varying network structure. Gray 

points show the NSFreq for each input pattern or network structure. Gray crosses show NSFreq for 

scrambled data. Error bars indicate s.e.m. 
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Instead neuronal frequencies across other network realizations became more correlated. 

This is evident in the frequency correlations for runs on the same realization of an input 

pattern or network structure compared to runs with other patterns or structures (diagonal 

vs. off-diagonal elements in Figures II.4C,F, respectively). This is expected as all 

frequencies across all network realizations converge due to reduced gain of the f/I curve 

for Type 2 cells. 

 

In low ACh (high 𝑔̅𝐾𝑠) conditions, networks have highly phase locked dynamics and phase 

coding prevails (Figure II.5). Networks presented with the same pattern of inputs (Figures 

II.5A–C) or having the same network structure (Figures II.5D–F) showed higher network 

phase similarity scores as  𝑔̅𝐾𝑠 increased (first and middle columns), and displayed higher 

phase correlations than between different patterns or structures when 𝑔̅𝐾𝑠 is high (low 

ACh) (color plots in Figures II.5C,F). As ACh is reduced (and 𝑔̅𝐾𝑠 is correspondingly 

increased) correlations in firing phase decrease. This effect is apparent in 𝑁𝑆𝑃ℎ𝑎𝑠𝑒 

(Figures II.5A,D) and becomes even more pronounced when phase-locking is taken into 

account (Figures II.5B,E). As opposed to frequency correlations, phase correlations are 

uniformly low for simulations where different patterns were presented (Figure II.5C). This 

effect is due to the low phase locking in high ACh conditions.  

 

Finally, we checked robustness of the obtained results by introducing and varying the 

level of external noise to the networks and also, separately, by changing the strength of 

excitatory coupling, which effectively changes internal excitatory inhibitory balance within 



  

57 
 

the network. Rate coding during high ACh conditions and phase coding for low ACh was 

robust to changes in noise and variations in excitatory coupling. 
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. 

 

Figure II.5 Low ACh networks show increased phase coding.  

Phase coding, measured by the network specificity of mean phase coherence across simulations with the 

same input pattern vs. different patterns, occurs for low ACh networks on all topologies. This effect is 

decreased in high ACh networks, due to the increased frequency variation and decreased phase locking. 

(A) NSPhase is the network score based on phase correlations. (B) NS Phase scales Phase by the mean 

MPC of the simulations. Scaling average MPC accounts for low MPC reflecting essentially random firing. 

(C) Color plots show the correlation of phase values between simulations for 𝑔̅𝐾𝑠 =0.0 and 𝑔̅𝐾𝑠  =1.4 mS/cm2 

(top and bottom, respectively). Each simulation is sorted along the x and y axis by network structure. (D–

F) NSPhase, NSPhase, correlation plots for simulations with varying network structure. Gray points show 

the NSPhase for each input pattern or network structure. Gray crosses show NSPhase for scrambled data. 

Error bars indicate s.e.m. 
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Supplemental Figures II.S1, S2 in the Appendix at the end of this thesis show the effect 

of increasing noise on frequency coding (Figure II.S1) and phase coding (Figure II.S2). 

When information is presented as the pattern of DC input, in high ACh networks frequency 

coding is robust to increasing noise and was uniformly low for low ACh networks. Phase 

coding of inputs is more sensitive to noise at high 𝑔̅𝐾𝑠 , and uniformly low for low  𝑔̅𝐾𝑠 

(Figure II.S2 in the Appendix at the end of this thesis). As excitatory coupling was scanned 

from zero to 0.04 mS/cm2 , frequency coding of inputs initially decreased as coupling was 

increased for all  𝑔̅𝐾𝑠, but for low   𝑔̅𝐾𝑠 networks frequency coding recovered (Figure II.S3 

in the Appendix at the end of this thesis). Low  𝑔̅𝐾𝑠 networks maintained a higher N𝑆𝐹𝑟𝑒𝑞 

as coupling increased compared to high 𝑔̅𝐾𝑠 networks. When representing network 

structure, coupling needed to reach a sufficient level for frequency coding to occur. Phase 

coding, on the other hand, required a minimum coupling strength to emerge (Figure II.S4 

in the Appendix at the end of this thesis), but only emerged for high  𝑔̅𝐾𝑠.  

 

2.4 Discussion  

 
Using the Ks model we have shown that neuromodulation of the M-current can switch 

networks from a rate coding regime when ACh is high ( 𝑔̅𝐾𝑠 is low) to an oscillatory phase 

coding state when ACh is low ( 𝑔̅𝐾𝑠 is high). This neuronal model recreates biophysical 

changes displayed in neurons when the muscarinic system is activated, including gain 

modulation, PRC modulation, and SFA modulation (Figure I.3). As ACh levels are 
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continuously changed, these three properties are inflected over different ranges of the 

maximal conductance of the IM, 𝑔̅𝐾𝑠.  

 

We note that here we focus only on the biophysical effects of a single target of ACh 

modulation, inactivation of slow (M-type) potassium channels. However, ACh has 

numerous effects both at the cellular and network level. Through the nicotinic receptors 

ACh directly depolarizes neurons and the nicotinic signal is faster than the cascade 

required to inactivate M-type potassium channels. Activation of muscarinic receptors also 

inhibits presynaptic release at both excitatory and inhibitory axon terminals reducing the 

effects of recurrent connectivity [92,160]. During high ACh release direct depolarization 

of neurons through nicotinic receptors, reduction in local network inputs, increased gain, 

and reduced SFA could all work together to prime a network to represent an external 

input in the firing rate distribution. Removal of these effects would lead to phasic dynamics 

shaped by the structure of the local network.  

 

It is important to note that all three of IM modulated properties, gain modulation, PRC 

modulation, and SFA modulation, are important for switching from a rate to a phase 

coding regime. For rate coding in high ACh conditions, high gain is beneficial in widening 

the firing rate distribution for a given range of synaptic inputs. Low SFA allows neurons 

to persist in firing to maintain a representation in frequency space and low synchrony 

facilitated by Type 1 PRC, prevents a reduction in frequency variation. For phase coding 

under low ACh conditions, low gain reduces frequency variation in the network, while a 
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Type 2 PRC and high SFA induce increased periodicity and synchronizability for phase 

differences to persist. 

 

Thus, reductions in ACh level provide two dynamical substrates for phase coding: (1) near 

uniformity in firing rates across the network, and (2) the ability of neurons to collectively 

organize into network-wide oscillatory behavior. By directly quantifying the dependence 

of a network firing pattern on a particular network realization for networks of the same 

connection structure and external input pattern we’ve provided strong evidence that Type 

1 networks represent information about internal structure and external inputs through rate 

coding (Figure II.4) while Type 2 networks’ firing patterns provide oscillatory phase coding 

dynamics (Figure II.5).  

 

The fact that the transition from rate coding to phase coding firing patterns occurs over 

the  𝑔̅𝐾𝑠 range when the gain of the neuron (f/I curve) is significantly modulated, points to 

the importance of this property for switching coding regimes. When a network of high gain 

neurons is formed, slight variations in synaptic input will result in higher firing rate 

differences between neurons. This wide, input dependent, firing rate distribution will drive 

the network firing rate distribution and be reproducible for a given set of inputs or a given 

network structure. As gain is reduced, frequency differences between neurons will be 

reduced allowing neuronal properties such as SFA and PRC effects to impact network 

dynamics in a significant way. For example, it is well-known that networks of periodic 

oscillators synchronize easier when the frequency range is reduced and that large 



  

62 
 

variance in frequencies promotes the formation of discrete clusters of synchronization 

[161–163] 

 

Spike initiation dynamics and the adaptation mechanics of neurons have been suggested 

as being substrates for coding through integration or coincidence detection[75,164]. While 

both integrative and coincidence coding can exist with wide firing rate distributions, phase 

coding relies on neurons being close in frequency while high neuronal gain facilitates rate 

coding [165]. The importance of co-modulation of neuronal gain and excitability type in 

transitioning a network from rate to phase coding is an essential result of the present 

work.  

 

Gain modulation improves signal recognition in a variety of brain regions[166–168]. In 

many cases gain modulation is attributed to fluctuations in synaptic inputs and synaptic 

plasticity due to gain modulation being stimulus dependent [169–171]. But changes in 

ACh tone also change the gain response of neurons [72,172,173]. ACh release is 

increased when an animal is performing an attentional task and its release is correlated 

with task performance[174–176].These results point to cholinergic modulation priming 

neuronal networks to respond with an appropriate rate code to a given cue by increasing 

the gain of the neurons. This also indicates that rate coding may be better at facilitating 

representations of sensory information than phase coding.  

 

The Type 2 dynamics of the low ACh state support robust synchronized bursting required 

for oscillations in population activity[84,85,88]. ACh release is important for the generation 
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of the theta rhythm in the hippocampus[92,177,178]. But a temporal analysis of both ACh 

release and theta band power shows that peaks in ACh release lag behind increases in 

theta power [116]. This suggests that ACh release is actually working to disrupt synchrony 

within the theta oscillation. Further evidence for the role ACh release could play in 

reducing synchronous firing is seen in its suppression of sharp wave ripples [92].  

 

Changes in coding modality, in addition to affecting information transfer to downstream 

targets, would have a profound effect on learning through activity dependent synaptic 

plasticity. STDP has a strong frequency dependence, even with random spike trains[179]. 

When spike pairs are presented at a high frequency synapses have net potentiation, but 

have net depression for low frequency. When networks are in the high ACh rate coding 

regime, this would lead to highly activated neurons forming a strongly connected cluster 

within the networks, which would reinforce the specific frequency pattern imposed by an 

external stimulus. During the low ACh phase coding regime the stable phase relationships 

would shape synaptic plasticity. The reduction in mean frequency would lead to a net 

reduction in synaptic weight and the synchronization and resonance properties of neurons 

in the low ACh state preferentially strengthen connections from neurons with high input 

to neurons with low input [128,156]. A complicating factor in interpreting the effects of 

ACh on network coding is that ACh significantly modulates STDP itself, acting as a gate 

on the LTD component, thus reducing the plasticity effects during low ACh 

conditions[180].  
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ACh release is very closely related to the sleep-wake cycle. ACh release is highest during 

wakefulness and rapid eye movement (REM) sleep and lower during non-REM (NREM) 

sleep [181]. When the Ks model simulates these levels of ACh it recreates similar 

changes in spiking dynamics that are seen across these states [87]. Within the context of 

the effects of ACh on network dynamics, we hypothesize that the high ACh waking state 

highlights the variance in magnitudes of external inputs to the given circuit in terms of 

neuronal frequency responses and primes networks to encode these inputs as stable 

patterns in frequency space subsequently storing this representation within synaptic 

weights. Elevated firing frequency and representations in frequency space may be 

important for the rapid encoding of the memory backbone and for transfer of information 

to other brain regions. In NREM sleep, when no external input is present and firing 

frequency distributions across neurons homogenize [182], oscillatory dynamics pairs with 

phase coding to represent stored information as spike time differences between neurons 

which could facilitate consolidation of stored memories from a small group of neurons 

with strong synaptic inputs to the network as a whole [114]. Additionally, ACh effects on 

synaptic plasticity, namely high ACh leads to increases in average synaptic weights and 

low ACh decreases them, support the synaptic homeostasis hypothesis [156,183], but at 

the same time the proposed shift in the coding schemes paints a more complex picture 

of specific roles of sleep cycles. The widening of neuronal firing rate distributions across 

sleep-wake states also indicates that gain modulation by ACh is shaping network activity 

[184,185].  
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The role of ACh level in sleep dependent memory consolidation and synaptic 

homeostasis suggests that changes in coding modality may be optimized for storage of 

information in various encoding/behavioral states. Namely, during waking, high ACh 

conditions lead to enhancing the connections between neurons which receive the most 

input, forming a tightly connected cluster which forms the kernel of a new memory. In the 

sleep that follows, cycles of phase coding NREM distributing this kernel throughout the 

network are paired with cycles of REM reinforcing the distributed memory by re-

enhancing connections to the neurons most active during REM bouts.  

 

Thus, ACh modulating the coding regime across behavioral states may facilitate an 

iterative process by the sleep cycle to tune memory consolidation[114]. Thus, we propose 

that ACh is a neuromodulator that is critical for memory consolidation throughout the 

brain. The biophysical changes in neural excitability that IM governs lead to significant 

changes in the spiking and oscillatory processes in the brain. The effects of gain 

modulation in switching between circuit activity that has high or low dependence on 

network structure or external input pattern may be central to ACh’s role in information 

processing at the network level. Additionally, the dynamic nature of ACh release could 

allow for a stable network to coordinate information processing functions across various 

brain states. While ACh has other pathways of neuromodulation, notably through the 

nicotinic receptor which directly depolarizes neurons [186] we show that the muscarinic 

effects of changing ACh levels are sufficient to change coding modes. 
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Chapter III 
 

 

 

Acetylcholine-Gated Current Translates Wake 
Neuronal Firing Rate Information Into a Spike Timing-

Based Code in Non-REM Sleep, Stabilizing Neural 
Network Dynamics During Memory Consolidation 

 

3.1 Introduction   

 

Sleep is critical for memory consolidation, however the exact mechanisms mediating this 

process are unknown. Combining reduced network models and analysis of in vivo 

recordings, we tested the hypothesis that neuro-modulatory changes in acetylcholine 

(ACh) levels during non-rapid eye movement (NREM) sleep mediate stabilization of 

network-wide temporal firing patterns, with order of neuronal firing dependent on their 

intrinsic mean firing rate during wake. To that extent we find, in both reduced models and 

in vivo recordings from mouse hippocampus, that the order of firing among neurons 

during NREM sleep reflects their relative firing rates during prior wake. Our modeling 

results show that this remapping of wake-associated, firing frequency-based 

representations is based on NREM-associated changes in neuronal excitability mediated 

by an ACh-gated potassium current. We also show that learning-dependent reordering of 

sequential firing in the hippocampus during NREM sleep, together with spike timing-
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dependent plasticity (STDP), reconfigures neuronal firing rates across the network. This 

rescaling of firing rates has been reported in multiple brain circuits across periods of sleep. 

Our model results and experimental data both suggest that this effect is amplified in neural 

circuits following learning. Together our data suggest that sleep may bias neural networks 

from firing rate-based towards phase-based information encoding to consolidate 

memories.  

 

I was a primary author on this work which was published and peer reviewed. Experimental 

data/analysis was obtained through a collaboration with the Aton Lab as described in 

Section 3.2, my primary contribution was developing the model including parameter 

selection as well as analysis of the model results. The article describing these results was 

published in PLOS Computational Biology[187].  

 

3.2 Methods 

3.2.1 Experimental Methods  

 

Hippocampal Recordings, Fear Conditioning, and Sleep Deprivation  

All procedures were approved by the University of Michigan Animal Care and Use 

Committee (animal protocol #: 00008333). Male C57BL/6J mice between 2 and 6 months 

were implanted using methods described previously [115,188]. Recording implants 

(described in more detail in[115] consisted of custom built driveable headstages with two 

bundles of stereotrodes implanted in bilateral CA1 and three EMG electrodes to monitor 

nuchal muscle activity. The signals from the stereotrodes were split into local field 

potential (0.5-200 Hz) and spike data (200 Hz-8 kHz).  
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Following post-operative recovery, mice either underwent CFC (placement into a novel 

environmental context, followed 2.5 min later by a 2-s, 0.75 mA foot shock; n = 5 mice), 

Sham conditioning (placement in a novel context without foot shock; Sham; n = 3 mice), 

or CFC followed by 6 h of sleep deprivation by gentle handling (a manipulation known to 

disrupt fear memory consolidation[115,131,189,190] ; SD; n = 5 mice). Spike data from 

individual neurons was discriminated offline using standard methods (consistent 

waveform shape and amplitude on the two stereotrode wires, relative cluster position of 

spike waveforms in principle component space, ISI ≥ 1 ms) [115,124,131,191,192]. Only 

neurons that were stably recorded and reliably discriminated throughout the entire 

baseline and post-conditioning period were included in subsequent analyses of network 

dynamics. 24 h following CFC or Sham conditioning, freezing behavior upon return to the 

conditioning context was measured to evaluate CFM.  

 

Pharmacogenetic Inhibition of Interneurons 

2-3-month-old male Pvalb-IRES-CRE mice were bilaterally injected with either the 

inhibitory receptor hM4Di (rAAV2/Ef1A-DIo-hM4Di-mCherry; UNC Vector Core: Lot 

#AV4,708) or a control mCherry reporter (raav2/Ef1A-DIo-mCherry; UNC Vector Core: 

Lot #AV4375FA) (methods further elaborated in [131]. Using the same implant 

procedures described above, the animals were implanted with stereotrode bundles.  

 

After allowing 4 weeks for viral expression, the animals underwent contextual fear 

conditioning (as described above). Post-shock, mice were either given an i.p. injection of 
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either 0.3 mg/kg clozapine-N-oxide (CNO) dissolved in DMSO (to activate the DREADD) 

or DMSO alone (as a control). 

3.2.2 Computational Modeling  

 

Mixed Excitatory-Inhibitory Conductance-based Neuronal Networks 

Conductance-based neuronal networks containing both excitatory and inhibitory neurons 

were modeled using a modified Hodgkin-Huxley formalism[156,158]. The time-dependent 

voltage 𝑉𝑖 of a single neuron is given by 

𝐶𝑚
𝑑

𝑑𝑡
𝑉𝑖 = −𝐼𝑁𝑎 − 𝐼𝐾 − 𝐼𝐾𝑠

− 𝐼𝑙𝑒𝑎𝑘 + 𝐼𝑒𝑥𝑡 − 𝐼𝑆𝑦𝑛𝑎𝑝𝑡𝑖𝑐 + 𝐼𝑛𝑜𝑖𝑠𝑒       (III.1) 

where 𝐶𝑚 is the membrane capacitance, 𝐼𝑒𝑥𝑡 is the fixed external input (DC) used to elicit 

spiking; 𝐼𝑒𝑥𝑡 ∈ [1.08,1.2] for excitatory cells and 𝐼𝑒𝑥𝑡 ∈ [−0.09, −0.08]   for inhibitory cells; 

𝐼𝑙𝑒𝑎𝑘 = 0.02(𝑉𝑖 + 60) is the leakage current, and 𝐼𝑆𝑦𝑛𝑎𝑝𝑡𝑖𝑐 = (∑ 𝑆𝑗∈𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑜𝑟𝑦 𝑔𝐸−𝑋 𝑖𝑗
) (𝑉𝑖 −

𝑉𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑜𝑟𝑦) + (∑ 𝑆𝑗∈𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟𝑦 𝑔𝐼−𝑋 𝑖𝑗
) (𝑉𝑖 − 𝑉𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟𝑦) ∈ [−0.09, −0.08] is the total summed 

synaptic input received by a neuron from its pre-synaptic partners and 𝑔𝐼−𝑋 and 𝑔𝐸−𝑋 

represent the synaptic conductance for connections from inhibitory and excitatory 

neurons to their post synaptic targets X (values provided below). The synaptic reversal 

potentials are 𝑉𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑜𝑟𝑦 = 0 𝑚𝑉 and 𝑉𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟𝑦 = −75 𝑚𝑉. Here, 𝑆𝑖𝑗 = exp (−
∆𝑡𝑖𝑗

𝑠𝑝𝑘

𝜏𝑠
) −

exp (−
∆𝑡𝑖𝑗

𝑠𝑝𝑘

𝜏𝑓
)   represents the shape of the synaptic current, given the difference in spike 

timing between the post-synaptic neuron 𝑖 and the recently fired pre-synaptic neuron 𝑗, 

∆𝑡𝑖𝑗
𝑠𝑝𝑘

 , with 𝜏𝑓 = 5 𝑚𝑠  and  𝜏𝑠 = 250 𝑚𝑠  or 𝜏𝑠 = 30 𝑚𝑠   for excitatory synaptic currents 

and inhibitory synaptic currents, respectively.  



  

70 
 

 

The ionic currents are 𝐼𝑁𝑎, 𝐼𝐾, 𝑎𝑛𝑑 𝐼𝐾𝑠
, representing sodium (Na), potassium (K), and 

muscarinic slow potassium (Ks), respectively. More specifically: 𝐼𝑁𝐴 = 𝑚∞
3 ℎ𝑔̅𝑁𝑎(𝑉𝑖 − 𝐸𝑁𝑎), 

with  𝑚∞ = (1 + exp (
−𝑉𝑖−30

9.5
))−1 being the activation of the channel and where ℎ, the 

inactivation, is given by the solution to 
𝑑

𝑑𝑡
ℎ = (ℎ∞ − ℎ)/ 𝜏ℎ  , with ℎ∞ = (1 + exp (

𝑉𝑖+53

7
))−1   

and   𝜏ℎ = 0.37 + 2.78 (1 + exp (
𝑉𝑖+40.5

6
))−1  ; 𝐼𝐾 = 𝑔𝐾𝑛4(𝑉𝑖 − 𝑉𝐾) with 

𝑑

𝑑𝑡
𝑛 = (𝑛∞ − 𝑛)/ 𝜏𝑛  

where  𝑛∞ = (1 + exp (
−𝑉𝑖−30

10
))−1and 𝜏𝑛 = 0.37 + 1.85 (1 + exp (

𝑉𝑖+27

15
))−1 ; and 𝐼𝐾𝑠

=

𝑔𝐾𝑠𝑠(𝑉𝑖 − 𝑉𝐾) with  
𝑑

𝑑𝑡
𝑠 = (𝑠∞ − 𝑠)/ 75 where 𝑠∞ = (1 + exp (

−𝑉𝑖−39

5
))−1 ,with the time 

constants being in ms and voltages in mV. The reversal potentials are 𝑉𝑁𝑎 = 55 𝑚𝑉 and 

𝑉𝐾 = −90 𝑚𝑉 and the maximal conductances are 𝑔𝑁𝑎 = 24 
𝑚𝑆

𝑐𝑚2, 𝑔𝐾 = 3.0 
𝑚𝑆

𝑐𝑚2. 

The slow potassium conductance 

                                                 𝑔𝐾𝑠
= {

    0 
𝑚𝑆

𝑐𝑚2       𝑖𝑓 𝐴𝐶ℎ 𝑖𝑠 ℎ𝑖𝑔ℎ 

1.5 
𝑚𝑆

𝑐𝑚2    𝑖𝑓 𝐴𝐶ℎ 𝑖𝑠 𝑙𝑜𝑤
   (III.2) 

controls the level of ACh, e.g. during wakefulness (high ACh) or NREM sleep (low ACh). 

The values thus control the excitability type, where low 𝑔𝐾𝑠
 (high ACh) yields Type 1 

excitability and high 𝑔𝐾𝑠
 (low ACh) yields Type 2 excitability. Type 1 excitability is 

characterized by arbitrarily low firing frequencies, high frequency gain as a function of 

constant input, and a constant advance in the phase response curve whereas Type 2 has 

a threshold in firing frequency onset, a shallow frequency gain function, and a biphasic 

phase response curve  [158].  
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The 𝐼𝑛𝑜𝑖𝑠𝑒 is defined as a short, 1ms step current of an amplitude large enough to elicit 

single spike on a neuron. The timing of the step current is drawn from a Gaussian 

distribution so that noise events are applied with a given mean frequency (as noted on 

Figure III.7). Each simulation was completed using the RK4 integration method with a 

step size of h = 0.05 ms. 

 

Network Properties 

The network used in these studies consists of N=1000 neurons, with 𝑁𝑒 = 800 excitatory 

neurons and 𝑁𝐼 =  200 inhibitory neurons. Connections form a random network with 

different levels of connectivity dependent on the pairwise pre- and post-synaptic neuron 

identity: Inhibitory neurons project to 50% of the inhibitory neurons and 30% to the 

excitatory neurons whereas excitatory neurons project to just 6% of both the inhibitory 

and excitatory neurons, with self-connections being forbidden in all cases. The initial 

synaptic weights are 𝑔𝐼−𝐼 = 0.0013 𝑚𝑆/𝑐𝑚2, 𝑔𝐼−𝐸 = 0.0005 𝑚𝑆/𝑐𝑚2, 𝑔𝐸−𝐼 = 0.00046
𝑚𝑆

𝑐𝑚2
, 

and 𝑔𝐸−𝐸 = 0.00003 
𝑚𝑆

𝑐𝑚2 in Figures III.1 and III.2, but with 𝑔𝐸−𝐸 = 0.00001 𝑚𝑆/𝑐𝑚2 in 

Figures III.1-7. For initial engram formation, reciprocal connections among a random 

subset of 200 excitatory neurons increase their 𝑔𝐸−𝐸 conductances, constituting the 

strength of the memory. The effect of the degree of increase in this synaptic strength, and 

as a function of number of cells affected by this strengthening is investigated in Figure 

III.2 and elsewhere is kept at 10x.  

 

Separately, to investigate oscillatory pattern formation in a network with no reciprocal 

excitatory-to-excitatory connectivity (Figure III.1-g-i and Figure III-2.c) we simulated initial 
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memory formation via changes to the mean external current, Iext, each neuron receives, 

i.e. the external current was modified from  𝐼𝑒𝑥𝑡 ∈ [1.045, 1.1]. to 𝐼𝑒𝑥𝑡 ∈ [1.33, 1.4] with input 

noise of 0.5 hz.    

 

Implementing STDP in the Network 

Neural correlates of memory are thought to emerge due to the strengthening and 

weakening of synaptic strengths in an activity-based manner. Here, we use a symmetric 

learning rule, implemented via spike timing-dependent plasticity (STDP), that uniformly 

increases or decreases synaptic weights based on the time-ordering of pre- and 

postsynaptic pair firings, only in excitatory-to-excitatory connections. If a presynaptic 

neuron fires before its postsynaptic partner, the conductance increases by an amount 

𝑝 exp(−
𝑡𝑝𝑟𝑒

𝑠𝑝𝑘
−𝑡𝑝𝑜𝑠𝑡

𝑠𝑝𝑘

10
)  . Similarly, a weakening of synaptic strength occurs by an amount 

𝑝 exp(−
𝑡𝑝𝑜𝑠𝑡

𝑠𝑝𝑘
−𝑡𝑝𝑟𝑒

𝑠𝑝𝑘

10
)    when a postsynaptic neuron fires before its presynaptic partner. In 

both cases, if the time difference between spike pairs is too great, the change in synaptic 

strength will approach zero. On the other hand, highly coincident spike pairs will have a 

maximal change given by the learning rate . It should be noted that while the 

synaptic weight is prohibited from becoming negative, there is no upper-bound set on the 

synaptic strength, though previous work has shown saturation of synaptic weights given 

sufficient time [128]. 

 

While simulations presented in the main manuscript (Figure III.5) use standard 

asymmetric STDP rules described above, Figures III. S2 and S3 (in the Appendix at the 

end of this thesis) use STDP rules symmetrical around the lead/lag of the spike of the 
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presynaptic neuron, with synaptic strength changes being only positive or negative, 

respectively. 

 

3.2.3 Statistical Analysis  

 

Analysis of Functional Network Structures through AMD and FuNS 

Average Minimal Distance (AMD) [193] was applied to network firing data to determine 

functional connectivity. AMD calculates the mean value of the smallest temporal 

difference between all spikes in one neuron and all spikes in another neuron. Analytical 

calculations of the expected mean and standard deviation of minimal distance is then 

used to rapidly determine the significance of pairwise minimal distance [194]. Specifically, 

the first and second raw moments of minimal distance for each node are calculated: 𝜇1
𝐿 =

𝐿

4
    and 𝜇2

𝐿 =
𝐿

12
  , where L is the temporal length of the interspike interval and we have 

assumed that (looking both forward and backward in time) the maximum temporal 

distance between spikes is 
𝑳

𝟐
. Over the entire recording interval T, the probability of 

observing an inter-spike interval of length L is simply 𝑝(𝐿) =  
𝐿

𝑇
. Then, the first and second 

moments of minimal distance considering the full recording interval are given as  𝜇1 =

𝐿

4𝑇
∑ 𝐿2

𝐿 and  𝜇1 =
𝐿

12𝑇
∑ 𝐿3

𝐿 . Finally, the calculated statistical moments give rise to the 

expected mean and standard deviation,  𝜇 = 𝜇1and  𝜎 = √𝜇2 − 𝜇1
2 , which are used to 

determine the Z-score significance of pairwise connectivity: 𝑍 =
𝐴𝑀𝐷𝑖𝑗−𝜇𝑖

𝜎𝑖
 . Values of 𝑍𝑖𝑗 ≥

2 represent significant functional connections between node pairs. 
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Functional Network Stability (FuNS) tracks global changes in network functional 

connectivity by quantifying similarities in AMD matrices over a recording interval. The 

procedure is as follows: first, a recording interval is split into n partitions of equal temporal 

length. Each partition is subjected to AMD functional connectivity analysis, resulting in n 

functional connectivity matrices, Z.  

 

Similarity between time-adjacent functional networks is determined using the normalized 

dot product after matrix vectorization. FuNS is then determined by taking the mean of 

these cosine similarities over the recording interval:𝐹𝑢𝑁𝑆 =
1

𝑛−1
∑

<𝑍𝑡|𝑍𝑡+1>

‖𝑍𝑡‖𝑍𝑡+1‖
𝑛−1
𝑡=1  . Thus, 

FuNS yield insight into how functional connectivity changes over time.  

 

Spectral Analysis, Spike-Field Coherence, and Phase Relationships 

Histograms of neuronal firing per unit time were used to calculate the network 

characteristic frequency, spike-field coherence, and phase relationships of individual 

neurons to the network signal. First, spike timings were converted into binary spike 

vectors and then summed to give a network spike vector. Then, the spike vector was 

convolved with a Gaussian distribution with zero mean and a standard deviation of ~2 

ms, giving a continuous network signal. The spectral power was measured by taking the 

Fourier transform of the excitatory, non-engram signal (i.e. no neurons with artificially 

strengthened connections were used; Figure III.1). Then, the change in spectral power 

(e.g., in Figure III.2) was calculated by integrating the frequency-domain signals and 

taking the relevant percent difference.  
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Finally, phase relationships of excitatory neuron firing compared to inhibitory local field 

potentials was calculated (please see Figure III.3A). Peaks in the inhibitory signal acted 

as the start and end of a given phase and excitatory spike times were used as place-

markers of phase between an individual neuron and the signal. The phase of spike 

occurrence was normalized to give values between 0 and 1. 

 

Burst Detection 

We analyzed bursts of activity for firing asymmetry between active neurons. First, 

recordings of a given interval of length L were segmented into smaller windows of length 

x (25 ms in CFC, 50 ms in CNO/DMSO, and 100ms in model simulations; with times 

chosen to maximize number of pairwise co-activations occurring) with windows 

overlapping by 12.5 ms to increase the sampling of the interval L and to reduce effects of 

windows onset. Then, the total number of active neurons, in each window is determined 

and used to define a burst-detection threshold: a burst occurs if the activity in a window 

is significantly greater than the mean background activity, averaged over all intervals of 

a given vigilance state. Specifically, if a window 𝒘𝒊 has a corresponding number of active 

neurons 𝒌𝒊, then the set of windows representing bursts over all intervals is given as 

, where  and  are the mean and standard deviation across all 

w. 

 

Firing Asymmetry Calculation 

Next, the pairwise firing asymmetry A is calculated across all detected bursts, where A is 

an  matrix with entries 𝑨𝑚,𝑛 > 0 if the spikes of neuron m occur before the spikes of 
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neuron n on average, and 𝑨𝑚,𝑛 < 0 in the opposite case. The exact value of an entry 𝑨𝑚,𝑛 

is given as the normalized sum of fractional differences between the number of spikes of 

neuron n occurring after and before each spike of neuron m, across all detected bursts 

B:  

𝑨𝑚,𝑛 = (
1

𝐵𝑚,𝑛
) ∑ ∑

(𝑇𝑛>𝑚−𝑇𝑛<𝑚)

(𝑇𝑛>𝑚+𝑇𝑛<𝑚)
    (III.3) 

    

Where 𝑇𝑛>𝑚 represents the number of spikes of neuron n occurring after a given spike of 

neuron m, the inner sum is over the number of spikes of neuron m within a given burst, 

the outer sum is over all bursts, and the normalization factor, 𝐵𝑚,𝑛, is the total number of 

bursts where neurons n and m are coactive.  

 

Relating Firing Asymmetry to Phase Coding of Activation Frequency 

The rows and columns of A are sorted by neuronal firing rate measured within a given 

vigilance state (i.e. wake or NREM). After sorting, firing asymmetry of slow firing rate 

neurons compared to high firing rate neurons will (a) compose the lower triangular matrix 

of A and (b) will be more positive than the upper triangular matrix of A if faster firing 

neurons lead slower firing neurons. We thus compared each pairwise entry of 𝐴𝑚,𝑛 in the 

lower triangular matrix with its reciprocal 𝐴𝑛,𝑚 in the upper triangular, 𝑨̃𝒎,𝒏 = 𝐴𝑚,𝑛 − 𝐴𝑛,𝑚 

. If 𝑨̃𝒎,𝒏 > 𝟎 ,then the faster firing neuron leads the slower firing neuron on average.  

 

We next determined the significance of each 𝑨̃𝒎,𝒏 by randomizing the timing of each 

neuron’s spikes within each burst, 100 times (i.e. bootstrapping). The value of significance 
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is then given by the Z-score, 𝒁(𝑨̃𝒎,𝒏) =
𝑨̃𝒎,𝒏−𝝁(𝑨̃𝒎,𝒏)𝒓𝒂𝒏𝒅𝒐𝒎𝒊𝒛𝒆𝒅

𝝈(𝑨̃𝒎,𝒏)𝒓𝒂𝒏𝒅𝒐𝒎𝒊𝒛𝒆𝒅
 Where 𝝁(𝑨̃𝒎,𝒏)𝒓𝒂𝒏𝒅𝒐𝒎𝒊𝒛𝒆𝒅 and 

𝝈(𝑨̃𝒎,𝒏)𝒓𝒂𝒏𝒅𝒐𝒎𝒊𝒛𝒆𝒅 are the mean and standard deviation of the randomized distributions 

and with 𝒁(𝑨̃𝒎,𝒏) ≥ 𝟐 indicating that neuron m leads neuron n in a significant way (95% 

confidence interval). In all, we obtain a distribution with 
1

2
𝑁(𝑁 − 1) elements, where N is 

number of detected neurons. 

 

Finally, we compare the changes distributions of 𝒁(𝑨̃𝒎,𝒏) for the investigated cases 

(Figure III.4 and Figure III.5). For this comparison we take the top 20% of the pairs that 

fire within the same bursts (as opposed to cells that maybe not active within the same 

bursts). A positive difference at 𝒁(𝑨̃𝒎,𝒏) ≥ 𝟐 indicates an increase in fast firing neurons 

leading slow firing neurons within a burst of activity.  

 

Alternatively, instead of calculating the individual pairwise differences in asymmetry, 𝑨̃𝒎,𝒏, 

a global assessment of asymmetry is achieved by first averaging all the individual 

asymmetry values below the m=n diagonal (i.e. < 𝑨𝒎,𝒏 >, where 𝑚 < 𝑛) and subtracting 

the average value from above the m=n diagonal (i.e. < 𝑨𝒎,𝒏 >,  where 𝑚 > 𝑛). 

Bootstrapping of spike times within bursts can then be used to determine significance of 

this difference, with positive values greater than or equal to a value of 2 indicating a 

significant global increase in fast firing neurons leading slow firing neurons within the 

network (Figure III.4F).  

 

Determining Significance of Firing Asymmetry Distributions 
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The firing asymmetry Z-score distributions were tested against asymmetries across the 

same distribution but calculated using randomized spike times. For each mouse, once 

bursting architecture is determined (i.e. number of bursts given interval), asymmetry was 

calculated using randomized spike timings. Asymmetries were then used to determine 

significance distributions as outline above and this process was repeated and then 

averaged over 25 runs. The averaged Z-score distribution is then compared to the 

standard, real asymmetry Z-score distribution to determine significance, using a two-

sided t-test. 

 

3.3 Results 

3.3.1 Memory Stabilization via Synaptic and Input Heterogeneity after NREM Sleep 

 

We used a highly reduced in silico model network (with generic features) to determine 

whether ACh dependent muscarinic pathway may drive changes  in network dynamics at 

the transition from wake to NREM sleep, in a universal way. We compared the in silico 

results with experimental recordings from hippocampal area CA1 following single-trial 

contextual fear conditioning (CFC) [195,196] – an experimental model system to 

investigate how network activity changes during memory encoding affects subsequent 

network dynamics. We analyzed both in silico and experimental in vivo recordings from 

CA1 to determine how functional network dynamics were affected by de novo memory 

formation.  

 

ACh is known to regulate intrinsic neuronal membrane excitability, primarily through 

regulation of muscarinic receptors - when opened these receptors activate slow, 
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hyperpolarizing potassium current.  These receptors [197] are also present in CA1 [198]. 

In isolation, during wake-like state, high ACh blocks this current in excitatory neurons, 

which increases firing frequency responses to excitatory input (i.e. steepness of the Input-

Frequency curve) and decreases neuronal propensity to synchronize which is mediated 

by the shape of the phase response curves (PRC) (i.e., type 1 excitability) [158,199]. 

 

Consequently, during wake-like state (high ACh, low conductance of m-current, 𝑔𝐾𝑠
), 

neurons behave as integrators to the incoming stimuli, responding to changes in input by 

sharply modulating their firing frequency (steep input-firing frequency (IF) curve). Thus, 

in this regime the neurons respond to the magnitude of their (external or network) input 

by modulating their frequency[128]. On a network level, this results in highly 

heterogenous neuronal firing frequencies and reduced synchronizabilty of neuronal 

spiking.  

 

In contrast, low ACh during NREM sleep-like state allows slow potassium current (m-

current) to play a larger role in membrane excitability, leading to spike frequency 

adaptation, reduced spike frequency response gain (i.e., a flat IF curve), subthreshold 

oscillations at theta band frequency, increased synchronization capacity (i.e., type 2 

excitability) and emergence of slowly moving waves of excitation resembling slow waves 

[87]. In this case, the neurons tend to spike with similar frequency across wider range of 

inputs, and lock to intrinsic or extrinsic oscillatory drive, especially if the oscillatory drive 

occurs at a resonant frequency. This leads to emergence of large-scale slow oscillations, 
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where the magnitude of cell input is coded via relative phase of firing of neurons rather 

than frequency [157]. 

 

To investigate mechanisms involved in sleep-dependent aspects of memory 

consolidation, we simulated a reduced neural network model composed of excitatory 

principal neurons and inhibitory interneurons. For cells in the model, we used a 

conductance-based formalism (see Section 3.2) incorporating a slow-varying potassium 

current which acts as a control parameter for neuronal firing dynamics[158]. Here, 

sleep/wake dynamics are mimicked by switching excitatory neurons from type 2 

membrane excitability (NREM sleep) to type 1 excitability (wake), resulting in neuronal 

excitability change from integrator type response during wake, into resonator type 

response during NREM sleep. Since the muscarinic response of interneurons to ACh is 

complex and heterogeneous [66,200] we set inhibitory interneurons in the model to exhibit 

consistent type 1 dynamics (although permitting type 2 dynamics in interneurons yielded 

similar results).  
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Figure III.1 Type 2 model networks respond to sparse strengthening of excitatiory synapses or 

increasing excitatory input through emergence of low-frequency rhythms and phase-locking.  

SIMULATED DATA: Raster plots (top) and cumulative signal (bottom) generated by inibitory (blue), and 

excitatory (black) neurons in a REM-like (high-ACh) state before (A) and after (B) initial memory storage. 

C)  Fourier transform of the REM-like excitatory network signal before (black) and after initial memory 

storage (red) reveal enhanced beta/gamma oscillations. (D, E) raster plots (top) and cumulative signal 

(bottom) of NREM-like (low-ACh) state before (D) and after (E) initial storage (i.e. 20 fold strengthening of 

recurrent synapses between pairs of 25% of excitatory engram neurons). F) Fourier transform of the NREM-

like excitatory network signal before (black) and after initial memory storage (red) reveal enhanced slow 

oscillations in theta range. (G, H) raster plots (top) and cumulative signal (bottom) of NREM-like (low-ACh) 

state in a network with removed reciprocal excitatory synapses, before (G) and after (H) initial storage (i.e. 

5% increase in the mean external drive, Iext, to excitatory engram neurons). I) Fourier transform of the 

NREM-like excitatory network signal before (black) and after initial memory storage (red) reveal enhanced 

slow oscillations in theta range. On all rasterplots neurons are order as a function of their frequency in 

WAKE-like state. 
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Thus, here the “memory” is represented by a configuration of input patterns (either 

external to the network [applied via external current, 𝐼𝑒𝑥𝑡; see Section 3.2] and/or internal 

ones driven by reciprocal synaptic connectivity), which alter the neurons’ relative 

frequency of firing during wake-like dynamics, or their relative phase relationships during 

NREM-like dynamics of the network. 

 

Here we focused on pattern consolidation during NREM-like state in response to the 

memory trace being acquired during wake-like state. The predictions stemming from this 

consolidation in the model were closely compared with the in vivo data. To this effect, 

within the model we divided information storage into two phases. In the first, activation of 

subset of engram neurons by external input (during wake) results in rapid strengthening 

of connections between them  a process we refer to as “initial storage” hereafter. This 

process results in strengthened connections between these subset to cells (i.e. network 

heterogeneity), in the second phase, off-line network reorganization and consolidation is 

driven by STDP in a NREM-like state  which we refer to as “NREM dependent 

consolidation/reorganization”.  

 

Critically, the recurrent excitatory connections within CA1 may be relatively few compared 

to other structures (although this is a matter of debate) [201] which could limit the 

usefulness of our reduced model with more generic synaptic connectivity. To verify that 

these findings generalize to a network without substantial recurrent excitatory 

connections, we repeated these experiments in a model network without excitatory-to-

excitatory connections but with modulating external excitatory input, Iext, to the excitatory 
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network neurons. In this scenario, which would mimic learning-associated changes to 

CA1 excitatory input from CA3 alone. 

 

Within this framework, we first investigated how strengthening excitatory synaptic 

connections between a limited subset of neurons, or changes in the external drive 𝐼𝑒𝑥𝑡, 

events analogous to initial learning, affect network activity patterns during subsequent 

NREM sleep (i.e. low ACh/high gKs dynamics). Figure III.1 depicts examples of raster 

plots, simulated LFPs, and their Fourier transforms for three cases: 1. when the network 

dynamics simulates waking state (i.e. high ACh dynamics, Figure III.1A-C), 2.  When 

network dynamics simulates NREM sleep state, with memory encoded via strengthening 

of existing excitatory-to-excitatory connections (i.e. low ACh state, Figure III.1D-F), and 

3. when network dynamics simulates NREM state, with memory encoded via modulation 

of the mean external input to the excitatory cells (Figure III.1G-I). Comparing raster plots 

(top) and simulated local field potentials (LFPs; bottom) for the network when excitatory 

neurons exhibit type 1 (wake; Figure III.1A, B) and type 2 (NREM, Figure III.1D, E) 

dynamics, before vs. after initial storage, reveals the emergence of well-defined slow-

band oscillations (which are evident in periodic firing patterns of both excitatory and 

inhibitory neurons in the network) only in NREM-like state (Figure III.1E) but not wake-

like state (Figure III.1B). In addition the wake-like network state exhibits oscillatory 

response in high beta/low gamma oscillatory range (Figure III.1C). Thus only during 

NREM-like state does the initial storage lead to an increase network-wide low frequency 

spectral power (Figure III.1F), consistent with previous in vivo work  [131,191] The 

neurons on the y-axis of the plots were ordered so that excitatory neurons receiving the 
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highest excitatory drive were placed on the top and the ones receiving the lowest 

excitatory drive were place on the bottom. Please note the order of firing within the 

oscillatory burst, with the neurons receiving larger excitatory input firing first and the 

neurons receiving smaller excitatory input firing relatively later within the same burst.  

 

From a dynamical perspective this phenomenon is easy to explain and is universal across 

biological and physical systems[202]. It is a well-established phenomenon that oscillators 

exhibiting somewhat different natural firing frequency lock with a phase-shift where 

intrinsically faster oscillators lead while slower oscillators lag. Here this natural firing 

frequency is input dependent.   

 

Similar effect is observed when excitatory-to-excitatory connections are missing, and the 

memory is encoded via strengthening the mean external input to the excitatory cells 

(Figure III.1G-I). Here however the mechanism is somewhat different, since 

synchronization cannot be supported via (non-existent) excitatory-to-excitatory 

connections. The external inputs interacting with subthreshold membrane oscillations 

trigger excitatory burst, with the relative phase of spiking of a given cell dependent of the 

magnitude of this input. This burst in turn activates inhibitory burst which resets the 

excitatory cells for the next cycle.  

 

We note that the frequencies obtained for slow oscillations are primarily in theta band, 

whereas the frequencies observed in NREM sleep are usually lower [114]. This is due to 

highly reduced nature of the model, as here the detailed differences in peak frequency 
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between the model and in vivo recordings are due in part to specific cellular resonance 

properties of neurons in the model network [128]. We show in supplementary material 

(Figure III.S1 in the Appendix at the end of this thesis) that this frequency can be 

modulated via, for example, inhibitory network connectivity strength and time constant of 

activation of inhibitory postsynaptic potentials (IPSPs) associated with additional 

membrane currents which this model does not take into account.   

 

The critical component here that drives the observed phenomena is mediated via 

homogenization of spiking frequencies and switch to type II dynamics regulated by 

activation of m-current due to low ACh levels, that in turn results in temporal organization 

of the network burst. Thus while resonant frequencies may vary by circuit, we hypothesize 

that this enhancement of coherent network oscillations (which has been widely reported 

in both human subjects and animal models following learning) [114] could drive STDP-

based information storage in the network. 

 

3.3.2  NREM Hippocampal Network Stabilization In Vivo Predicts Successful Fear 

Memory Consolidation 

 

Next, we investigated how the magnitude of synaptic strength modifications, or the 

magnitude of changes of external drive to excitatory cells, taking place during initial 

learning subsequently affects functional network stability (FuNS) and network oscillations 

during sleep.  
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Figure III.2 Memory-driven changes in network stability. 

Change in functional network stability (FuNS) and spectral theta power in response to strengthening of 

subset of reciprocal excitatory-to-excitatory connections (A) (color scale corresponds to synaptic 

multiplier), (B) different number of cells undergoing initial synaptic strengthening (color scale corresponds 

to fraction of cells that had strengthened incoming synapses), C) change in mean external current, 

Iext,received by excitatory neurons in absence or reciprocal excitatory-to-excitatory connections. In A the 

fraction of network th synapses strengthened was 25%; in B the strengthening multiplier was set to 20. 
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We measured these two quantities as a function of strength of reciprocal excitatory 

connections between engram neurons, the number of connections that are being 

strengthened, and separately, in absence of excitatory-to-excitatory connections, as a 

function of mean external drive, Iext, to excitatory cells. Here, FuNS measures stability of 

functional connectivity between neurons, using the functional network stability metric 

(FuNS; see Section 3.2) [128]. 

 

First, in silico, we simulated networks in NREM-like state (low ACh, high gKs), with 

differential exposure to initial storage (i.e., strengthening reciprocal excitatory 

connections among subset of engram neurons as described above (Figure III.2A), 

increasing the subset of neurons that are exposed to such a strengthening (Figure III.2B), 

or increasing mean external drive, Iext, to the excitatory cells (Figure III.2C). We measured 

change in theta band power and functional network stability (FuNS; see Section 3.2) as 

a function of synaptic strengthening within the subset of engram cells (Figure III.2A) and 

the number of cells undergoing this strengthening (Figure III.2B) or magnitude of mean 

Iext (Figure III.2C). With increasing memory strength as well as the sub-group size, we 

observed rapid increase in both FuNS and oscillatory power in the model network (Figure 

III.2A, B). This suggests that learning in the network directly augmented both network 

oscillations and stabilization of functional connectivity patterns in subsequent NREM 

sleep. While the multiplier magnitude may seem unrealistically large one needs to 

consider the size of the network and sparsity of these connections in the model. With the 

increased size/connectivity the multiplier will not need to be as high to achieve the same 

effect. 
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We have also observed significant increase in both FuNS and oscillatory power in the 

model network, when the mean value of Iext was increased (Figure III.2C). However, the 

mean change in stability was not as pronounced for higher levels of Iext as when 

excitatory-to-excitatory connections were present in the network. That leads us to 

hypothesize that existence of even sparse excitatory-to-excitatory connectivity within CA1 

increases stabilization of the output pattern of excitatory cells. 

 

Next we compared our modeling results with the experimental data. To model effects of 

post-learning sleep deprivation (SD; high ACh, low gKs), excitatory neurons were set to 

type 1 excitability in the presence of an implanted memory. To model interactions 

between learning and subsequent sleep, NREM (low ACh, high gKs) was mimicked by 

setting excitatory neurons to type 2 excitability, in the presence or absence of initial 

connection strengthening (Learning and Sham, respectively). When the initially 

strengthened engram was present in networks with type 2 excitability, the network 

exhibited more stable network dynamics over time (Figure III.3A). Conversely, type 2 

“sham” networks (i.e. without initially strengthened engram) and type 1 networks with 

strengthened engram showed no change in stability.    
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Figure III.3 Functional network stability during NREM after initial exposure predicts future level of 

memory consolidation.  

A) SIMULATED DATA: Model predictions for the change in FuNS in each simulation group: Sham (NREM 

states without learning; n = 5) and SD (Wake states with learning; n = 5) show only marginal changes in 

FuNS whereas CFC (NREM states with learning; n = 5) show a maximal increase in FuNS. All error bars 

represent the standard error of the mean. B) EXPERIMENTAL DATA: FuNS analysis of CA1 recordings 

following CFC or Sham conditioning (Sham conditioned — black [n = 3] , CFC + SD — blue [n = 5], CFC + 

sleep – yellow [n = 5]). Ad lib sleep post conditioning leads to the  greatest increase in FuNS. C) 

EXPERIMENTAL DATA: Change in FuNS for each mouse after CFC predicted its memory performance 24 

h later (% freezing; raw values shown as inset). Line indicates best fit to data with R2 = 0.54.  
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We next tested how these features are affected during sleep-dependent consolidation of 

CFM in vivo. Mice either underwent single-trial CFC (placement into a novel 

environmental context, followed 2.5 min later by a 2-s, 0.75 mA foot shock; n = 5 mice), 

sham conditioning (placement in a novel context without foot shock; Sham; n = 3 mice), 

or CFC followed by 6 h of sleep deprivation (SD; a manipulation known to disrupt fear 

memory consolidation [131,189,190] ; n = 5 mice). We measured changes in FuNS in 

these recordings after each manipulation by quantifying FuNS on a minute-by-minute 

basis over the entire pre- and post-training 24-h intervals and calculating their respective 

difference within each animal. Consistent with previous findings [203], we observed a 

significant increase in FuNS over the 24 h following CFC during NREM sleep (Figure 

III.3B). In contrast, no change in NREM FuNS was seen in Sham mice or following CFC 

(during recovery NREM sleep, which is insufficient for CFM consolidation) in SD mice.  

 

Group differences in NREM FuNS were reflected in the behavior of the mice 24 h post-

training, when context-specific fear memory was assessed (inset Figure III.3C, inset). 

Mice allowed ad lib sleep following CFC showed significantly greater freezing behavior 

when returned to the conditioned context than did Sham or SD mice. Moreover, CFC-

induced changes in NREM-specific FuNS for individual mice predicted context-specific 

freezing during memory assessment 24 h later (Figure III.3C). Thus, successful 

consolidation of a behaviorally-accessible memory trace in vivo is accompanied by 

increased NREM FuNS in the CA1 network. 
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Together, these results led us to hypothesize that oscillatory patterning could promote 

successful STDP-based consolidation of a hippocampal memory trace. We focus on this 

phenomenon in the following sections. 

 

3.3.3 Temporal Organization of Firing in Network Oscillations is a Predictor of 

Sleep-Dependent Firing Rate Reorganization via STDP 

 

A series of recent studies have demonstrated that neuronal firing rates are renormalized 

across a period of sleep, with highly active neurons in a circuit reducing their firing rates, 

and sparsely firing neurons increasing their firing rates [123,124,204] Sleep is essential 

for these firing rate changes, which do not occur across a period of experimental sleep 

deprivation[124]. We hypothesized that this phenomenon results from STDP driven by 

neurons phase-locking their firing to NREM sleep oscillations. Specifically, we predict that 

neurons that are highly active during wake will fire at an earlier phase within an oscillation 

than neurons with sparser firing.  

 

To test this, we first calculated phase of firing of every excitatory neuron with respect to 

inhibitory LFP oscillations in silico (see Figure III.4A and Section 3.2). Figure III.4B 

illustrates the relationship between model neurons’ phase of firing calculated during type 

2 dynamics as a function of the normalized frequency during type 1 dynamics. We 

observed that the fastest firing neurons during waking (type 1) fire earlier in the phase of 

the excitatory network oscillation during NREM sleep (type 2). This suggests that neurons 

take on a phase-based, temporal coding strategy during NREM network oscillations which 

reflects differences in firing rate present during wake.  
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As previously mentioned, this is a universal phenomenon where generalized oscillators 

having faster natural frequency precede those with lower natural frequency when the two 

oscillators are coupled and their phase evolution is locked  [202]. Here, during wake (high 

ACh state) the neurons exhibit type 1 dynamics - characterized by reduced capacity to 

synchronize[205], and relatively larger natural frequency differences (due to steepness of 

the Input current-spiking Frequency (I/F) curve) [157]. This effectively prevents neural 

synchronization with neurons that get higher input firing with higher frequency. Upon the 

switch to NREM like dynamics (low ACh state) the neurons switch to type 2 dynamics, 

which in contrast, is characterized by higher synchronizing capacity and reduced (but still 

present) natural frequency mismatch, due to flattened I-F curve. This dynamical state 

allows neurons to synchronize with the lead/lag pattern determined by the relative 

magnitude of the input individual neurons receive. Thus, as long as relative input patterns 

across wake sleep cycle stay the same the frequency during wake will be mapped onto 

the relative phase during NREM sleep. 

 

To investigate whether this universal phase-locking phenomenon can be observed 

experimentally, we compared in silico and in vivo network dynamics during wake and 

during NREM, for CFC and sham situations. In silico sleep-dependent pattern 

consolidation was modeled through standard spike timing dependent plasticity (STDP) 

[20,126,206]. To that effect, we developed a metric to measure frequency-dependent 

phase-of-firing relationships between pairs of CA1 neurons by quantifying their spike 

timing asymmetry within bursts of activity (for a full description, see Section 3.2). Briefly, 
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in CFC and Sham hippocampal recordings, we first detected network bursts of firing 

across CA1 during NREM sleep. Within these bursts, we calculated the frequency 

dependent firing asymmetry between neurons -i.e., whether, statistically, neurons which 

fire faster during wake also show more advanced (i.e., leading) firing phase during NREM 

sleep. Namely, for each recording, we defined an asymmetry matrix A, an NxN matrix 

whose rows and columns were ordered by the relative firing rate of neurons during wake 

(Figure III.4, see Section 3.2 for details) 
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Figure III.4 Mapping relative firing frequency distributions during wake onto firing phase 

relationships during NREM sleep. 

A) MODEL DATA: Calculation of mean phase of firing relative to oscillatory signal generated by inhibitory 
population; peaks in the inhibitory signal are used as the starting points of the phase calculation. B) MODEL 
DATA: Normalized phase of firing in NREM versus normalized wake frequency of excitatory neurons 
reveals that the neurons firing with the highest frequency align with an earlier phase of the excitatory 
network population whereas slower firing neurons align with later phases. C-F) Analysis of NREM firing 
asymmetry reveals enhanced wake frequency-dependent temporal relationships between neurons after 
learning. C) EXPERIMENTAL DATA: Formation of a pairwise firing asymmetry matrix of CA1 neurons’ 
activity recorded from a representative mouse during post-CFC NREM. Rows and columns have been 
arranged by wake frequency; color denotes pairwise firing asymmetry as defined in the section 3.2. D) 
MODEL DATA: Weighted average of differences in distributions (see inset for a representative example 
scenario; black—baseline, red—post) of pairwise Z-scores for models with type 2 dynamics and learning 
(yellow) and with type 2 dynamics and no learning (black). E) EXPERIMENTAL DATA: Weighted average 
of differences in distributions (see inset in bottom panel for example of representative mouse; black—
baseline, red—post) of pairwise Z-scores for  NREM of CFC mice (top, yellow) and Sham mice (bottom, 
black), compared to differences in distributions calculated on random spike data following CFC (red, top) 
or Sham (blue, bottom) bursting architecture.  F) EXPERIMENTAL DATA: Significance (Z-score) of global 
NREM network asymmetry vs. that of global wake asymmetry calculated for individual CFC (yellow) and 
sham (black) mice. Strong asymmetry is observed in NREM sleep but not in wake. ed dashed lines in (D, 
E) represent the significance cutoff of |Z|>2. Error bars denote SE of repeated simulations (D) or SE across 
all experimental animals (E). p<0.05, ** p<0.001 using two sided test.  
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We determined the significance, 𝑍𝑖𝑗, of asymmetry for every pair, 𝐴𝑖𝑗, via bootstrapping 

and compared the normalized histograms of 𝑍𝑖𝑗 (see representative examples from 

simulated data, Figure III.4D inset) from a network undergoing STPD when: 1) an engram 

was partially strengthened (initial storage - model CFC, Figure III.1D) and 2) when it was 

not (model sham, Figure III.1C). The distributions show stronger skewing towards 

significant (Z > 2) asymmetry pairs after NREM state STDP (with respect to baseline 

dynamics), for CFC-like engram strengthening (Figure III.4D – yellow line) in a sham (no 

engram strengthening) condition (Figure III.4D – black line). 

 

We next compared in silico results to the experimental distributions obtained from wake 

and NREM for CA1 recordings from experimental CFC and Sham groups, and found 

similar results (Figure III.4E). Figure III.4E, shows the experimental differences between 

baseline and post-learning distributions for CFC (Figure III. 4E, top panel) and Sham 

(Figure III. 4E, bottom panel). Significance values for these distributions were calculated 

by comparison with randomized distributions (“shuffled CFC” and “shuffled sham”), where 

the bursting architecture between non-randomized and randomized sets was conserved 

(see Section 3.2). Greater significance occurs for positive Z-values following CFC (Figure 

III.4E; top - yellow line) as compared to sham (Figure III.4E; bottom - black line), indicating 

that there is a shift in asymmetry during fear memory consolidation.  

 

These distributions qualitatively resemble the ones obtained in silico (Figure III.4D) and 

show that consolidation after CFC increases the number of neuron pairs with consistently 
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significantly asymmetric firing patterns (Z > 2) during NREM (Figure III.4E; top - yellow 

line), as compared to sham (Figure III.4E; bottom- black line). This indicates the presence 

of a phase-coding mechanism during NREM sleep, which is sensitive to neuronal and 

network activity changes caused by initial storage in wake.  

 

To ensure that the shift in pairwise Z-score distributions is not a simple reflection of firing 

frequency differences between neuronal pairs in NREM, we measured global asymmetry 

across the network during NREM as a function of firing frequency during wake, for every 

animal separately. To do this we calculated a mean asymmetry score by subtracting the 

mean asymmetry of the upper triangle and lower triangle of the asymmetry matrix (Figure 

III.4C). We then subjected the result to bootstrapping to estimate its significance. We next 

reversed the calculation and repeated the asymmetry calculation now for burst-ordering 

detected during wake, as a function of firing frequency during NREM (i.e., calculation that 

would indicate reverse hypothesis - relationship between phase coding in wake and 

frequency coding in NREM). These results are depicted in Figure III.4F, where we plot 

the significance of NREM asymmetry vs. wake asymmetry. We observe that following 

CFC (but not sham conditioning), all animals have higher significances for NREM 

asymmetry as compared to the reversed wake asymmetry. 

 

Based on this relationship, we hypothesized that due to the resulting firing phase 

relationships in NREM, STDP in this context would cause: 1) excitatory connections from 

high-firing to low-firing neurons to be strengthened, and 2) connections from low-firing to 

high-firing neurons to be weakened.  
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3.3.4 Network Oscillations Promote Temporal Coding During Sleep  

 

We hypothesize that via STDP, network oscillations - which are naturally augmented 

during post-learning NREM sleep - play a crucial role in driving memory consolidation. To 

test this, we next investigated how disruption of network oscillations affects phase-coding 

mechanisms. In our model neural network, following the experimental manipulation [191] 

we first prevented a fraction of inhibitory neurons from firing in the network after initial 

storage (i.e. partial engram strengthening; Figure III.5A-D). We observe that disruption of 

progressively larger fraction of inhibitory neurons decreases the numbered of neurons 

entrained into oscillatory dynamics (Figure III.5A-D).  

 

We next measured the effect that the complete disruption of inhibitory firing (Figure III.5A) 

has on post-learning firing asymmetry (Figure III.5E). Here we measured differences in 

distribution of asymmetry of Z-score values between the cases when inhibition was intact 

(Figure III.5D) and fully disrupted (Figure III.5A). With intact inhibitory neuron activity, the 

model exhibited significant positive firing asymmetry as compared to disrupted inhibition.  

 

We also analyzed the firing asymmetry of CA1 recordings from mice expressing the 

inhibitory DREADD (Designer Receptor Exclusively Activated by Designer Drugs) hM4Di 

in parvalbumin-expressing (PV+) interneurons. These mice were treated with either a 

vehicle (DMSO) or the hM4Di activator clozapine-N-oxide (CNO, to activate hM4Di and 

suppress PV+ interneuron activity) immediately following CFC. Previous work has shown 

that CA1 network oscillations and CFM consolidation are both disrupted by post-CFC 

inhibition of PV+ interneurons [131,191]. We found that disruption of PV+ interneuron 
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activity with CNO reduced firing rate-associated firing phase asymmetries during post-

CFC NREM network bursts relative to DMSO-treated mice, which have normal CA1 

oscillations and CFM consolidation (Figure III.5F, black trace). Similar to what was done 

for CFC vs. Sham data (Figure III.5D), we compared Z-Score distribution to another 

based on randomized spike times within bursts following DMSO vs. CNO architecture 

(Figure III.5F, blue trace); we find that the peaks at positive extreme values of the 

distribution are significant, indicating a greater asymmetry shift in that direction. Thus, for 

both network models in a type 2 regime and the CA1 network during NREM sleep in vivo, 

disruption of interneuron-driven oscillations impairs temporal coding. 
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Figure III.5 Disruption of network oscillations diminishes spike timing relationships between 

neurons.  A, B) MODEL DATA: Simulated raster-plots; A-D) NREM-like network dynamics for the 

progressively larger disruption of inhibitory firing. E) Weighted sum of differences in model asymmetry 

significance distributions after consolidation (unperturbed model in (D) minus model without inhibition in 

(A)). F) EXPERIMENTAL DATA: Difference in experimental asymmetry significance distributions, shown 

as the black trace, for CA1 recordings for mice expressing the inhibitory DREADD hM4Di in PV+ 

interneurons, treated with either DMSO (analogous to the full model network) or CNO (analogous to 

reduced network inhibition); compare to randomized spike times used to estimate significance of these 

values, shown in blue. Error bars denote SEM of repeated simulations (E) or SEM across all experimental 

animals (F). * p < 0.05; ** p < 0.01 using a two-sided t-test.  
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3.3.5 Frequency-Dependent NREM Firing Asymmetry Affects Network 

Reorganization through STDP 

 

We next examined whether firing rate reorganization occurs during NREM sleep via 

STDP in the context of firing asymmetries described in the sections above. First, we 

compared in silico firing rate reorganization between type 2 excitatory networks with and 

without firing in inhibitory neurons, when synaptic strength could evolve over time using 

an STDP-like plasticity rule. We examined the changes in wake neuronal firing 

frequencies after an interval in these two scenarios. In the model with normal inhibitory 

neuron firing, STDP-based synaptic changes in a type 2 (NREM) regime led to a 

simultaneous increase in the firing rates of principal neurons with the lowest baseline 

activity and decrease in the firing rates for the most active neurons (Figure III.6A). We 

color-coded neurons based on their relative change in frequency across sleep (Figure 

III.6A top). As shown in Figure III.6 (bottom), neurons which fire faster (vs. slower) during 

baseline wake-like dynamics (i.e. high ACh, low gKs; type 1 dynamics) also fire earlier (vs. 

later) in the oscillation NREM-like dynamics (i.e. low ACh, high gKs; type 2 dynamics), 

consistent with Figure III.4, and experience a decrease (vs. increase) in firing rate due to 

STDP. Some neurons did not fire during NREM and so did not show a firing frequency 

change due to STDP (black points in Figure III.6A) – this represents selective cell 

recruitment into the memory engram. Here, this initial firing frequency-dependent 

frequency change is driven by changes of overall synaptic input (green) to the said cells 

(Figure III.6B). The cells exhibiting decrease in firing frequency also exhibit overall 
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decrease in their synaptic input, however their output (black) is significantly strengthened 

due to timing of firing asymmetries (Figure III.4B).  Disruption of network oscillations 
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Figure III.6 NREM dependent reorganization differentially affects frequency of firing neurons during 

wake-like dynamics – model prediction and experiment.  

SIMULATED DATA: A) Top: Changes in individual neurons’ firing frequency (normalized to baseline) 

observed during wake-like dynamics recorded across post-learning NREM sleep as a function of 

normalized baseline firing frequency (top). Conditions comparable to Figure 5D. Colors represent baseline 

frequency. Bottom: Snapshot of the corresponding raster plot in NREM sleep at the onset of consolidation. 

Neurons are color-coded based on their baseline frequency during wake like dynamics and the color is 

conserved in the raster plot. Black data points (top) are for neurons which did not fire during NREM sleep. 

Of the neurons that are consistently active, those with initially lower frequency increase their frequency 

whereas neurons with initially higher frequency decrease their frequency. B) Average connection weight 

change for a given neuron vs its frequency change during wake-like dynamics, observed in A. Neurons that 

increase their firing rate do so due to increased synaptic input, at the same time their mean strength of 

output connections decreases. C) Change in firing frequency (normalized to baseline) as a function of 

normalized baseline firing frequency in the absence of inhibition. Conditions comparable to Figure 5A. 

Unlike the full-network condition (with inhibition), firing frequency changes homogenously across baseline 

firing rates. EXPERIMENTAL DATA: C) Best fit lines of the change in log firing rates vs the initial log firing 

rate, comparing baseline recordings (solid lines; composite n = 11) to post recordings (dashed lines) for the 

first 6 hours post CFC for mice expressing the inhibitory DREADD hM4Di in PV+ interneurons, treated with 

either DMSO (Yellow; n = 3; analogous to the full model network) or CNO (Teal; n = 3; analogous to reduced 

network inhibition), and wild type mice with post-CFC SD (Blue; n = 5). D) Slope comparison of change in 

log firing rates for DMSO, CNO, and SD baseline and post-CFC recordings. Analysis of covariation revealed 

statistically significant slope differences between DMSO and CNO (* indicates p < 0.05), and DMSO and 

Baseline (*** indicates p < 0.0001). 
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via inhibitory neuron silencing disrupted the relationship between firing rate changes 

across the type 2 regime and baseline firing rates for principal neurons (Figure III.6C).  

 

We compared these results with data recorded from the hippocampus of mice with and 

without DREADD-mediated disruption of PV+ interneuron activity [131,191]. We 

measured changes in firing frequency across a six-hour time interval at the start of the 

rest phase (i.e., starting at lights on), either at baseline (i.e., the day before CFC) or in the 

hours following CFC. Firing rate changes for each neuron were calculated for mice treated 

with either DMSO or CNO as a function of their baseline firing rate. The resulting best-fit 

lines (Figure III.6D) reveal that while CA1 neurons show a relatively low degree of firing 

rate reorganization across baseline rest, following CFC reorganization is more dramatic. 

The greatest degree of reorganization is seen after CFC in the control (DMSO) condition, 

with less-dramatic firing rate changes seen in mice with disrupted CA1 PV+ interneuron 

activity (CNO) (Figure III.6D, E).  

 

Comparing the slopes of firing rate vs. firing rate change relationships in CA1 for post-

CFC recordings (Figure III.6E), we found significantly weaker reorganization of firing rates 

in CNO-treated mice relative to DMSO-treated mice. This reorganization of firing rates 

across the network is an important prediction of the model, as it suggests a possible 

universal network-level correlate of sleep-based memory consolidation in vivo. 

 

Here we have used a standard asymmetric STDP rule, where synapses are strengthened 

when presynaptic neuronal firing leads firing in the postsynaptic neuron, and are 
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weakened when presynaptic neuronal firing follows firing in the postsynaptic neuron. 

However, in some circumstances STDP rules can vary, leading to coincident firing leading 

to either potentiation or depression, regardless of order of firing [119]. An unanswered 

question is how the network would be altered by state transitions with various STDP 

conditions, thus we tested the effects of NREM sleep with potentiation-only (see Figure 

III.S2 in the Appendix at the end of this thesis) and depression-only (see Figure III.S3 in 

the Appendix at the end of this thesis) STDP rules. For potentiation-only STDP the 

relationship between initial firing rate and firing rate change is reversed - with initially 

faster-firing neurons firing even faster after a period of NREM sleep. With a depression-

only STDP rule, the relationship is similar to that presented in Figure III.5D, although all 

frequency changes are negative across NREM. As neither of these relationships is 

observed experimentally (Figure III.5D), this suggests that asymmetrical STDP rules 

alone can explain firing rate changes across NREM sleep in CA1. 
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Figure III.7 STDP driven NREM-like memory consolidation results in an increased stability of the 

network dynamics across wide range of noise levels in the network.   

Black dots – dynamics of the network prior STDP driven NREM-like memory consolidation. Blue dots - 

network dynamics post STDP driven NREM-like memory consolidation. 
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Finally, we set out to quantify effects of sleep-dependent consolidation. As mentioned 

before, the “memory” is represented by a configuration of input patterns (external to the 

network (𝐼𝑒𝑥𝑡, see Section 3.2) and/or internal ones driven by synaptic connectivity, which 

exemplify themselves via relative frequency of firing during wake-like dynamics, or 

relative phase relationships during NREM-like dynamics of the network. FuNS measures 

the robustness of the of the functional network connectivity which is exemplified via 

stability (over time) of the locking of the firing patterns between the neurons.  Thus, sleep-

dependent consolidation of the memory should result in an increased FuNS as compared 

to the unconsolidated dynamics. We investigated FuNS for consolidated and 

unconsolidated network dynamics for different frequency of noise fed into the network 

(Figure III.7). The stability of the consolidated (post-learning; Figure III.7 blue dots) 

dynamics is significantly higher than that of unconsolidated one (pre-learning; Figure III.7 

black dots) except for the highest levels of noise when both cases are unstable. 

 

3.4 Discussion 

 

Sleep is vital for successful memory consolidation across organisms and different types 

of memories (e.g., those mediated by network activity in hippocampus vs. sensory 

cortex[207]). Similarly, recent experimental advances have shown that oscillatory 

dynamics in neural circuits–associated with sleep play a vital role in memory 

consolidation[191,192,208]. In the hippocampus, CFM consolidation relies on ad lib sleep 

in the hours immediately following CFC[110,209]. Consolidation of CFM is associated 



  

107 
 

with enhanced delta- (0.5–4 Hz), theta- (4–12Hz), and ripple-frequency (150–200 Hz) 

hippocampal network oscillations in the hours following learning [191]. 

 

Here, we observe that, during NREM sleep, representation coding undergoes functional 

remapping from a frequency-based coding of information predominant during wake (and 

particularly, during learning) to a timing-based representation predominant during sleep. 

Further, we argue that temporal organization of neuronal firing by network oscillations 

expressed during NREM sleep promotes feed-forward synaptic plasticity (i.e., STDP) 

from highly active neurons to less active ones. This process in turn promotes recruitment 

of additional neurons into the engram–the “systems consolidation” underlying long-term 

memory storage. 

 

Our reduced model demonstrates that changing ACh level during wake and NREM sleep 

can play here a key role as it mediates changes in neuronal excitability, leading to highly 

heterogenous in frequency, asynchronous network-wide spiking during wake, and 

homogenized in frequency, temporally locked network-wide spiking during NREM sleep. 

Specifically, we show that the initial encoding of memories in a network (e.g. in the CA1 

network during CFC) augments low frequency network oscillations (Figures III.1 and III.2). 

The augmentation of these oscillations occurs in a NREM sleep-like, low-ACh, type 2 

network state. In this state, neurons are less responsive to input (i.e. the input-frequency 

curve flattens [128]), and they exhibit higher propensity to synchronize to periodic input 

(i.e., network oscillations). This locking to network oscillations leads to more stable firing 

relationships between neurons. This may occur via strengthening of excitatory-to-
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excitatory connections in the network, or if they are not available via increased external 

input from other modalities (e.g. CA3 in hippocampus). We observe this increase in 

functional network stability (i.e. increase in FuNS) both in our hippocampal network model 

after introduction of either, a synaptically-encoded memory or via increasing external 

input (Figure III.2), and in the mouse hippocampus in vivo following single-trial CFC 

(Figure III.3). 

 

Our previous and current data show that sleep-associated FuNS changes in CA1 

following CFC is a salient feature of network-wide dynamics that accompanies successful 

memory consolidation (Figures III.3–III.6) [115,124,191,209]. We find that increased 

FuNS is associated with stronger low-frequency oscillatory patterning of the network, and 

predicts which experimental conditions will support, disrupt, or rescue fear memory 

consolidation (Figure III.3C). This increased stability, in turn, mediates mapping between 

firing rates during wake and relative phase-of-firing during NREM sleep (Figure III.4A and 

III.4B)–such that firing of neurons with higher baseline firing frequency leads those with 

lower baseline firing frequency. We showed that this frequency-vs. timing relationship is 

also detected in experimental data recorded from CA1 during NREM sleep (Figures III.4C, 

III.4E and III.4F). Moreover, when network oscillations are abolished by blocking inhibitory 

neuron activity (Figure III.5) the frequency/timing relationship is disrupted, indicating that 

oscillations do play central role in this process. 

 

We hypothesize that this mechanism allows for recruitment of diversely firing populations 

of neurons (with their firing frequencies distributed over 3 orders of magnitude) into the 
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engram during sleep mediated memory consolidation, which is thought to be critical to 

the network operations underlying hippocampal function [123,210]. Homogenization of 

firing frequencies during sleep together with increased synchronization propensity and 

universal organization of the network bursts where intrinsically high firing frequency 

neurons lead the slow firing frequency ones, allows STDP-like mechanisms to recruit the 

low firing cells into the engram by linking them with the high frequency ones. 

 

High-density electrophysiological recordings confirm that the most pronounced effect of 

sleep, and especially NREM sleep, on cortical firing rates is a narrowing of the firing rate 

distribution [123,204]. Other experimental findings found similar mean firing frequency 

dependent temporal ordering; Fernandez-Ruiz et al. [127] reported that the average rank 

order of a neuron’s within-ripple sequence was negatively correlated with that neuron’s 

baseline firing rate calculated from the entire sleep—wake session. More generally it was 

found that spiking during the NREM slow oscillation reveals an intrinsic temporal 

separation between high and low firing rate units, such that neurons with higher firing 

rates tend to spike before those with lower firing rates at the DOWN->UP transition [211]. 

 

Finally, when synaptic strength in the model is allowed to evolve through STDP, we 

observe this reorganization of firing rates across NREM sleep—with sparsely firing 

neurons increasing heir firing rate substantially, and highly active neurons decreasing 

their firing rate. These results are also observed in CA1 during sleep-dependent CFM 

consolidation (Figure III.6). We again observed a disruption of these effects when the 

oscillatory network activity is reduced via manipulations of interneurons. Similar sleep-
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associated firing rate changes have been reported in neurons recorded from various 

neural circuits[123,124,182]. Moreover, this network reorganization results in increased 

network stability indicating increased robustness of the memory trace (Figure III.7) in 

terms of their temporal representation. This last result agrees with number experimental 

studies that found that neurons having widely different intrinsic firing frequencies act 

differentially within the activated engram and possibly play different coding roles. It was 

reported that such a activation sequence is composed of fast-firing subset of pyramidal 

neurons having low spatial specificity and limited activation change across sleep-

experience-sleep cycle, and a slow-firing, highly plastic subset that elevated their 

association with ripples, and showed increased bursting and temporal coactivation during 

postexperience sleep [212,213]. Cognitively, these high activity principal cells were 

shown to form a core of each memory, with low activity cells joining as co-motives across 

the behavioral events [210]. 

 

Taken together, our results suggest a universal mesoscopic network mechanism 

underlying what is commonly referred to as systems memory consolidation. They also 

provide support for that while the brain may be biased towards firing rate based code 

during waking experience, the increased bias towards firing phase-based information 

coding in the context of network oscillations in sleep could play an instructive role for 

memory storage. This mechanism would mitigate the aforementioned limitations of rate 

based coding in the brain [114]. At the same time, it is clear that the two coding schemes 

are able to co-exist depending on the specific spatio-temporal attributes of the cognitive 

tasks. 
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 We also note limitations of the presented model. Here specifically, we do not consider 

 sequential activation of place cells as animal traverses through different locations in an 

environment. These would naturally impose sequential activation also in the waking 

activity pattern. We have however shown previously that such sequences can be also 

represented and stored during low ACh states [128]. 

 

Our model also does not take into account the emergence of theta band oscillation 

observed during REM sleep–a high ACh state. We hypothesize that the mechanism 

generating these oscillations is different, resembling higher frequency PING-like [214] 

mechanism, with these oscillations playing very different cognitive role. It was found 

experimentally that during REM, unlike NREM, the firing frequencies become even more 

heterogenous [182] which could be caused by increased steepness of the I-F curve. 

 

This, being highly reduced, model does not take into account a number of known network, 

cellular and molecular pathways. Here we focus on highlighting only one possible role of 

changing ACh levels to explain experimental data in a highly generic network. Because 

of this the frequencies of slow oscillations obtained in NREM are generally higher than 

those observed experimentally [114]. We show in Figure III.S1 that the specific frequency 

of the slow oscillations can be manipulated by changing connectivity properties in the 

model. While this is a clear limitation, we don’t believe that this shift in observed slow 
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oscillation frequencies bears effect on the results shown here. 

 

Finally, ACh is not the exclusive player in terms of the changes in neuromodulation at the 

transitions between wake and NREM sleep [215]. Adenosine for example, can directly 

regulate ACh release via A1 receptors targeting cholinergic centers, but also regulate the 

potassium current via G-protein inwardly rectifying potassium (GIRK) channels 

augmenting the described cholinergic effect. Adenosine agonists are known to decrease 

wakefulness and increase sleep, tend to increase deeper stages of SWS, and increase 

slow wave activity or delta power. Conversely, adenosine receptor antagonists increase 

wakefulness and decrease sleep [216]. It was shown in in vitro conditions, that adenosine 

enhance slow oscillations of single neurons in the absence of other modulatory input 

[216,217]. Understanding more closely the interactions, and differential roles of the two 

mechanisms would be a focus of another study. 

 

Although the present study is focused here on computational model results to predict data 

from the CA1 network during CFM consolidation and highlight the role ACh can play in 

this process, we believe that the mechanisms outlined here may be universally true. For 

example, sleep, and sleep-associated network oscillations, are required for consolidation 

of experience-dependent sensory plasticity in the visual cortex[115,192,218], and 

disruption of other hippocampal oscillations during sleep disrupts consolidation of other 

forms of memory [127]. Moreover, similar frequency-dependent changes in neuronal firing 

rates are also observed across periods of sleep in the visual cortex [124] and frontal 

cortex[123]. Based on these and other recent data linking network oscillations in sleep to 
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many forms of memory consolidation, this suggests a unifying principle for sleep effects 

on cognitive function, and one that could reconcile discrepant findings on how sleep 

affects synaptic strength [207]. It also provides an expanded and possibly alternative 

explanation of the role of sleep in memory management than what is often proposed 

[183]. Here we show that NREM sleep facilitates both increases and decreases in 

neuronal firing rates in the context of network reorganization, while at the same time 

recruiting heterogeneous neuronal populations during systems memory consolidation. 

 

While the form of learning modeled here is not reliant on sequential neuronal activation 

during memory encoding, one possibility is that a similar mechanism may be associated 

with consolidation of memories for events during which neurons are sequentially activated 

[219–221]. Future studies will be needed to examine how temporal patterning of neuronal 

during post-learning NREM sleep relates to previously-studied “replay” of firing 

sequences reported in structures like the hippocampus during sleep following sequential 

spatial tasks. One possibility is that sequential replay presents a special case of NREM-

dependent patterning of firing based on prior wake firing rates, as described here. 

 

 

 

 

 

 

  



  

114 
 

Chapter IV 

 Modeling Cortical Synaptic Effects of 

Anesthesia and Their Cholinergic Reversal 

 

4.1 Introduction 

 

General anesthetics work through a variety of molecular mechanisms while resulting in 

the common end point of sedation and loss of consciousness. Generally, the 

administration of common inhalation anesthetics induces decreases in synaptic excitation 

while promoting synaptic inhibition. Animal studies have shown that, during anesthesia, 

exogenously induced increases in acetylcholine-mediated effects in the brain can elicit 

wakeful-like behavior despite the continued presence of the anesthetic. Less investigated, 

however, is the question of whether the brain’s electrophysiological activity is also 

restored to pre-anesthetic levels and quality by such interventions.  Here we apply a 

computational model of a network composed of excitatory and inhibitory neurons to 

simulate the network effects of changes in synaptic inhibition and excitation due to 

anesthesia and its reversal by muscarinic receptor-mediated cholinergic effects.  We use 

a differential evolution algorithm to fit model parameters to match measures of spiking 

activity, neuronal connectivity, and network dynamics recorded in the visual cortex of 

rodents during anesthesia with desflurane in vivo. We find that facilitating muscarinic 

receptor effects of acetylcholine on top of anesthetic-induced synaptic changes predicts 
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reversal of the neurons’ spiking activity, functional connectivity, as well as pairwise and 

population interactions. Thus, our model results predict a possible neuronal mechanism 

for the induced reversal of the effects of anesthesia on post synaptic potentials, consistent 

with experimental behavioral observations.  

 

I was the primary author on the article describing these results that was published in 

PLOS Computational Biology[222]. Experimental data was collected in previous work in 

the Hudetz Lab. 

 

4.2 Methods 

4.2.1  Experimental Data   

 

Experimental results were based on the analysis of data collected in  previous studies; 

for an in depth description refer to the original study [223].  Briefly, rats were surgically 

implanted with a multishank, 64 contact microelectrode array in the visual cortex (V1).  

After a post-surgery recovery period, they were placed in a cylindrical anesthesia 

chamber for administration of inhalation anesthetic. Desflurane was applied in the 

sequence of 8, 6, 4, 2, and 0% inhaled concentrations for 45 to 50 min at each level. 

Neural activity was recorded during the duration of the experiment and subsequently 

processed to extract multiunit spiking information. For this study, we analyzed unit spiking 

activity collected during the 0, 2, 4 and 6% desflurane exposure sessions and chose not 

to model 8% due to the confounding mechanism leading to the burst 

suppression phenomena normally present at this level of anesthesia[224,225]. 
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4.2.2  Model Formation and Network Design 

 

Neuron Modeling  

The computational neuron model was based on the standard Hodgkin–Huxley modeling 

paradigm with parameters chosen to better account for the firing characteristics of cortical 

pyramidal neurons as established in previous studies [156,226,227]. In summary the 

neurons were modeled with coupled differential equations to account for nonlinear 

changes in voltage as a response to both tonic input and non-periodic input from 

connected neurons. A visual reference for the voltage response can be seen in Figure 

IV.1. For the remainder of the section a description of the model will be given for 

completeness including the parameters used in the model and structure of the governing 

equations. 

 

Excitatory and inhibitory neurons are modeled using the Hodgkin-Huxley formalism  [9] 

with parameters selected based on a model that emulated properties of both cortical 

pyramidal neurons and inhibitory interneurons [228,229]. The neuron model contained 

sodium, delayed rectifier potassium, slow M-Type potassium and leak currents as 

described in the following equations: 

 

𝑑𝑉

𝑑𝑡
=  −𝑔𝑁𝑎𝑚∞

3 ℎ(𝑉 − 𝐸𝑁𝑎) − 𝑔𝐾𝑑𝑛4(𝑉 − 𝐸𝑘) 

−𝑔𝐾𝑠𝑧(𝑉 − 𝐸𝑘) − 𝑔𝐿(𝑉 − 𝐸𝐿) + 𝐼𝑛𝑜𝑖𝑠𝑒 − 𝐼𝑠𝑦𝑛 +  𝐼𝐷𝐶  (IV. 1) 

𝑑𝑋

𝑑𝑡
=  

𝑋∞(𝑉)−𝑋

𝜏𝑋(𝑉)
 𝑓𝑜𝑟 𝑥 = {ℎ, 𝑛, 𝑧}  (IV. 2) 

𝑚∞(𝑉) =
1

1+𝑒
(

−𝑉−30
9.5 )

 (IV. 3) 
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ℎ∞(𝑉) =
1

1 + 𝑒
(

𝑉+53
7.0

)
 (IV. 4) 

𝑛∞(𝑉) =
1

1 + 𝑒
(−

𝑉+30
10

)
 (IV. 5) 

𝑧∞(𝑉) =
1

1 + 𝑒
(−

𝑉+39
5.0

)
 (IV. 6) 

𝜏ℎ(𝑉) = 0.37 +
2.78

1 + 𝑒
(

𝑉+40.5
5.0

)
 (IV. 7) 

𝜏𝑛(𝑉) = 0.37 +
1.85

1 + 𝑒
(

𝑉+27
15

)
 (IV. 8) 

𝜏𝑧(𝑉) = 75 (IV. 9) 

 

In the above, V is the membrane voltage while m, n, h and z represent the unitless gating 

variables of the ionic current conductances.  Isyn is the synaptic current input to the cell 

from other neurons in the network and has units of 𝜇𝐴/𝑐𝑚2. Inoise is a noise input consisting 

of randomly occurring brief current pulses with average frequency of 0.1 Hz, a duration 

of 2 ms and strength of 4 𝜇𝐴/𝑐𝑚2. This noise input was sufficiently strong to generate an 

action potential in the absence of any other inputs. IDC is a biasing constant current input 

of -0.77 𝜇𝐴/𝑐𝑚2. ENa, EK and EL are the reversal potentials for sodium, potassium, and 

leak currents, respectively, set to ENa = 55 mV, EK = −90 mV, EL = −60 mV.  

 

This neuron model, with the slow M-type K+ current, was developed to model the 

muscarinic-receptor effects of acetylcholine in cortical pyramidal neurons [158]. The 
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properties of this neuron model when gKs = 0 mS/cm2 describe a neuron under high levels 

of acetylcholine while gKs = 1.5 mS/cm2 represents a low acetylcholine state.  
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Figure IV.1 Network structure is populated by lognormal distributed random connection strengths  

A) Synaptic strengths in model networks varied according to a lognormal distribution with a minority of 

connections being mediated by strong synaptic strengths, while weak synaptic strengths constitute majority 

of connections B) Simulated network consists of 200 inhibitory and 800 excitatory cells connected randomly 

with 10% probability. Connection color reflects the log of synaptic strength. C, D) Postsynaptic potential 

time courses in response to synaptic currents mediated by different receptors. Excitatory currents are 

modeled with both AMPA and NMDA mediated currents.  Bottom panel shows timing of presynaptic spikes, 

for simplicity both inhibitory and excitatory presynaptic neurons are shown with the same spike times. 
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Network Design 

 

We constructed E-I networks with 800 excitatory and 200 inhibitory neurons (Figure 

IV.1B). Neurons were connected randomly with 10% probability. Synaptic strengths 

followed a log normal distribution, as suggested to occur in cortical networks (Figure 

IV.1A) [230] .The distribution was defined by parameters 𝜇 = −20.0, 𝜃 = 9.4, and 

characterized by the equation:  

        

                                                    𝑃𝐷𝐹𝐿𝑜𝑔(𝑋) =   
1

𝑥𝜃√2𝜋
 ( 𝑒

−
(ln 𝑥−𝑢)2

2𝜃2  )                                     (IV. 10 ) 

 

𝜇 and 𝜃 are defined such that they are the mean and standard deviation of the logarithm 

of x if the logarithm of x was normally distributed. This connectivity distribution was chosen 

such that ~0.2% of excitatory connections would elicit an action potential in a post-

synaptic cell in the absence of other inputs for our parameter values representing the 

wake state. The value of 0.2% was determined by experimental data in which cross 

correlogram analysis showed a 0.2%  “strong” connection probability among a local 

population of neurons [139].  

 

Synaptic currents mediated by AMPA, NMDA and GABAA receptors were included in the 

network such that excitatory synaptic currents were given by   𝐼𝑒𝑥𝑐 = 𝐼𝐴𝑀𝑃𝐴 + 𝐼𝑁𝑀𝐷𝐴 and 

inhibitory synaptic currents by 𝐼𝑖𝑛ℎ = 𝐼𝐺𝐴𝐵𝐴. All synaptic currents were modeled with a 

double exponential function of the form  
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𝐼𝑋 = 𝑃𝑥  𝐵𝑥 𝑉0.5 𝑔log  (  𝑒
−

𝑡−𝑡𝑠𝑝𝑖𝑘𝑒

𝜏𝑋𝑠 −  𝑒
−

𝑡−𝑡𝑠𝑝𝑖𝑘𝑒

𝜏𝑋𝑓  ) ( 𝑉 − 𝐸x ) (IV. 11) 

where X indicates the receptor type (AMPA, NMDA or GABAA), tspike is the time of the 

presynaptic spike and glog is the synaptic conductance drawn from the lognormal 

distribution.  

 

Reversal potential 𝐸𝑥 was set at −75 mV for inhibitory synapses and 0 mV for excitatory 

synapses. The term go will be used to refer to  𝐵𝑥 𝑉0.5 𝑔log .Time constants 𝜏Xs and 𝜏Xf 

governed the fast rise and slow decay of the synaptic current and were set as follows:   

𝑡AMPAf = 𝑡NMDAf = 𝑡GABAAf = 0.2 𝑚𝑠 (IV. 12) 

𝑡AMPAs = 3.0 𝑚𝑠 , 𝑡NMDAs =  200.0 𝑚𝑠,   𝑡GABAAs = 5.5 𝑚𝑠 (IV. 13) 

The NMDA synaptic conductance was additionally gated by the post-synaptic voltage 

[231,232] described by the additional pre-factor 𝐵𝑥: 

𝐵AMPA = 𝐵GABAA
= 1 (IV. 14) 

𝐵NMDA(𝑉) =
1

1 + 𝑒−
𝑉+10
3.57

(IV. 15) 

 

Fig IV.1C, D illustrates time courses of the synaptic currents. Additionally, to account for 

event-to-event variability, a variability pre-factor  𝑉0.5, randomly chosen uniformly from 

[0.5, 1], modulated the synaptic current induced by each pre-synaptic spike.  Finally, the 

scaling factors 𝑃x simulated anesthetic effects on synaptic conductances. Values of 𝑃x for 

each receptor type were optimized to fit multiple measures of network dynamics for each 
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level of anesthesia. Values are listed in Tables IV.1 and IV.2 that show average parameter 

values for optimizations performed on ten different network realizations, and the specific 

parameter values used for the presented analysis of results, respectively.  

4.2.3 Measures and Metrics  

 

We used several different measures to quantify the changes between network states and 

dynamics under different levels of anesthesia observed in the experimental data and 

simulated in the neural network models. 

 

Integration and Complexity 

 

We computed the information theoretic measures  Complexity C(X) and Integration I(X)  

to quantify changes in the entropy of the network [233]. I(X) is a generalization of mutual 

information that measures the amount of total entropy of a system that is accounted for 

by the interactions among its elements. I(X) is zero when system elements are statistically 

independent [233]. C(X) measures the total entropy loss due to interaction of system 

elements, or, equivalently, the difference between the sum of the entropies of the 

individual elements and the entropy of the entire system.  C(X) is low for systems with 

independent elements or with highly synchronous elements.  

 

To compute these measures, the total spiking activity from an experimental recording or 

a network simulation was partitioned into patterns by binning spike trains into 1 ms time 

bins and constructing vectors for each time bin containing a 1 at the neuron index if the 
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neuron spiked within that time bin and a 0 if there was no spike (columns in Figure IV.2). 

The set X of unique vectors, representing patterns of spiking activity within a bin, that 

occurred across the data set were identified. Additionally, discretized spike vectors 𝑋𝑖, 𝑖 =

1, … , 𝑁, were constructed for each cell (rows in Figure IV.2).   

 

To compute integration and complexity only a subset of neurons were considered. 60 

neurons were selected at random from both the experimental data and the simulation. 

I(X) and C(X) were computed by taking 3 random intervals of 6s, computing the 

measure on each set of intervals, and then averaging the measure outcomes across 

the three sets. 

 

Integration was computed as  

𝐼(𝑋) = ∑ 𝐻(𝑋𝑖)

𝑁

𝑖=1

− 𝐻(𝑋) (IV. 16) 

 

where 𝐻(𝑋𝑖) = − ∑ 𝑝𝑘𝑙𝑜𝑔𝑝𝑘𝑘  is the entropy based on the probability of a spike occurring 

in the 𝑖𝑡ℎ cell, and  𝐻(𝑋) = − ∑ 𝑝𝑗𝑙𝑜𝑔𝑝𝑗𝑗  is the entropy based on the probability of 

occurrence of a spike pattern vector. 

Complexity was computed as  

𝐶(𝑋) = 𝐻(𝑋) − ∑ 𝐻(𝑋𝑖|𝑋 − 𝑋𝑖)

𝑁

𝑖=1

(IV. 17) 
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Here, 𝐻(𝑋𝑖) is the entropy of the spike train belonging to neuron i while 𝐻(𝑋) is the entropy 

of the set of spike vector for the entire interval.  𝐻(𝑋𝑖|𝑋 − 𝑋𝑖) is the conditional entropy 

where 𝑋𝑖 is the new spike vectors neglecting the ith unit and is conditioned on the spike 

train of the ith unit. The metric is discussed greater detail in original study [233]. 
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Figure IV.2 Binned spike patterns for complexity and integration measures.   

To compute entropy metrics complexity (C(X)) and integration (I(X)), spike trains were binned in 1 ms bins. 

H(X) in equation (16)/(17) is computed according to unique patterns associated with column vectors (red 

vectors) while  H(Xi ) is the entropy associated with a single neuron spike train (blue vector).   
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Mean Phase Coherence 

 

We computed mean phase coherence to quantify the average phase relation between 

spike times of pairs of neurons in experimental recordings and network simulation. The 

pairwise mean phase coherence is given by  

                                       𝜎𝑖,𝑗 =    | 
1

𝑁
 ∑ (exp (𝑖2𝜋

𝑡𝑗,𝑘 − 𝑡𝑖,𝑘

𝑡𝑖,𝑘+1 − 𝑡𝑖,𝑘
 ))

𝑛

𝑘=1

   |                                     (IV. 18) 

  

where 𝑡𝑗,𝑘 is the time of the 𝑘𝑡ℎ spike of the 𝑗𝑡ℎ neuron and 𝑡𝑖,𝑘, 𝑡𝑖+1,𝑘 are times of 

successive spikes of the 𝑖𝑡ℎ neuron. Network mean phase coherence is the average of 

𝜎𝑖,𝑗 over all pairs of neurons. 

 

For two neurons 𝑖 and 𝑗, the mean phase coherence is 1 when the spike times of neuron 

𝑗 always occur at the same relative phase in the cycle defined by two subsequent spikes 

of neuron 𝑖. Conversely, pairwise mean phase coherence is zero when spikes of neuron 

𝑗 occur at random phases of the neuron 𝑖 spike cycle for the entire set of neurons 𝑖 spike 

times, due to averaging of phases. 

 

Functional Connectivity Probability and Strength 
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Functional connectivity probability and strength were determined through cross 

correlogram analysis on spike trains [234] between pairs of neurons with minimum 

average spike rate of 1 Hz. Since experimental recordings contained on average ~60 

eligible units, these measures for the simulated networks were computed based on spike 

trains of 60 eligible neurons. For each pair of cells, spike trains were segmented into 40 

ms intervals centered on each spike of the designated “reference” cell of the pair and 

discretized into 1.3 ms bins. Cross-correlations of discretized segments between the 

“reference” and “comparison” cell for every “reference” cell spike were summed to form 

cross correlograms (Figure IV.3).  

 

Significance of correlations was determined by comparison to a constructed “jittered” 

dataset. The jittered data set was formed by randomly “jittering” spike times of the 

“comparison” cell by [–5, 5] ms and then computing the cross correlogram. This was 

repeated  100 times for the jittered data set. The global confidence band for excitatory 

(inhibitory) connectivity was computed by taking the 97% confidence interval associated 

with the global peak (trough) of the jittered data set. A significant connection was 

determined when the standardized peak (trough) of the original cross correlogram was 

greater (less) than 2 times the 97% confidence interval when measured from the mean 

(blue/red) [139,234,235]. The standardized peak was formed by dividing the peak 

amplitude by jittered mean and standard deviations of the cross correlogram.  

 

Excitatory connectivity strength was determined by taking the difference in the peak 

height within 0 and 5.2 ms (first four bins) and the jittered mean and dividing it by the 
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jittered standard deviation. The inhibitory strength was computed in a similar manner by 

looking at the trough of the cross correlogram within 0 and 5.2 ms. 
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Figure IV.3 Cross Correlogram computes coincident spike relations by summing relative spike 

times of reference and comparison neurons.  

 A-D)  Cross correlograms between example pairs of “reference” and “comparison” cells, centered at spike 

times of the “reference” cell, from the experimental recordings (left column) and simulated networks (right 

column). Significance bands were computed from a jittered data set of “comparison” cell spike times (gray 

line = mean of jittered data set, red line = excitatory significance, blue line = inhibitory significance, see 

text). A-B) Example cross correlograms showing significant excitatory connections between cell pairs. C, 

D) Example cross correlograms showing significant inhibitory connections between cell pairs.  
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Excitatory connectivity strength was determined by taking the difference in the peak 

height withing 0 and 5.2 ms (first four bins) and the jittered mean and dividing it by the 

jittered standard deviation. The inhibitory strength was computed in a similar manner by 

looking at the trough of the cross correlogram within 0 and 5.2 ms.  

4.2.4 Parameter Optimization  

 

Network model parameters were optimized using an evolutionary algorithm to fit 

measures of network frequency, mean phase coherence, integration and complexity 

computed from the experimental unit spiking data collected during the 0%, 2%,4% and 

6% desflurane exposure sessions. The optimized parameters were the synaptic 

conductance scaling parameters 𝑃𝐴𝑀𝑃𝐴, 𝑃𝑁𝑀𝐷𝐴, 𝑃𝐺𝐴𝐵𝐴  (A series) and, additionally to those, 

the maximal conductance of the M-type K+ current 𝑔𝐾𝑠 (B series).  The algorithm is similar 

to typical differential evolution procedures[236,237]. Briefly, from a population of 30 

agents (parameter sets), at each generation the 10 agents with highest cost function 

values were replaced with 10 new parameter sets constructed by an evolutionary 

algorithm described below (Figure IV.4A). The stopping criteria was 100 generations 

without change in the lowest cost function (L(X)) value across the population of 30 agents. 

The stopping criteria was chosen as it supports a finite run time in stochastic search 

and has been used in similar implementations[238,239]. 

 

The initial population of 30 parameter sets representing the 0% anesthetic state was 

chosen from the 256 parameter sets generated by assigning parameter values from the 

following sets: 𝑃𝐴𝑀𝑃𝐴, 𝑃𝑁𝑀𝐷𝐴 ∈ {0.5, 1.0, 1.5, 2.0} , 𝑃𝐺𝐴𝐵𝐴 ∈ {2.5, 5.0, 7.5, 10.5}  and 𝑔𝐾𝑠 ∈

{0.3, 0.7, 1.1, 1.5} 𝑚𝑆/𝑐𝑚2.  We initially searched for boundary parameters that achieved 
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balanced network dynamics and followed this by the above parameter scan within those 

bounds. The parameter scan was then followed by our algorithmic fitting procedure. 

Model networks with fixed connectivity structure and synaptic strength 𝑔0 values were 

simulated with each parameter set for 20 s and frequency, mean phase coherence, 

integration, and complexity measures were computed based on spiking activity excluding 

the initial 1s, to avoid initial transients . The cost or loss function, 𝐿(𝑋), based on these 

measures, 𝑥 = frequency, MPC, I(X) and C(X), compared values computed from 

simulations, 𝑥𝑠𝑖𝑚, and experimental data, 𝑥𝑒𝑥𝑝, at 0% anesthetic state as follows: 

                                           𝐿(𝑋) = ∑ 𝑚𝑥𝑥 ,  

                                             𝑚𝑥 = (
𝑥𝑒𝑥𝑝−𝑥𝑠𝑖𝑚

𝑥𝑒𝑥𝑝
)

2

                                                        (IV. 19)  

                                        

Here, the 20 lowest cost parameter sets were kept and each parameter value was 

randomly varied uniformly by 10% of its value to avoid duplicate values. The final 10 

parameter sets were then constructed using the differential evolution algorithm.  

 

Similar to typical differential evolution procedures [236,237] we set a cross over 

probability CR = 0.8 and a differential weight DW that was randomly varied between [0,2]. 

From the subpopulation of 20 parameter sets, 10 randomly chosen sets, 𝑎𝑘  (𝑘 =

1, … ,10),  formed the basis for 10 newly created sets, 𝑒𝑘 (𝑘 = 1, … ,10).  For each set 𝑎𝑘, 

3 different sets 𝑏𝑘, 𝑐𝑘 and 𝑑𝑘 were chosen that were different from 𝑎𝑘 and each other. 

Then, for each element 𝑖 = 1, … ,4  in the set, a random number 𝜌𝑖 from the uniform 

distribution [0,1] was chosen. If 𝜌𝑖 was less than CR, a new parameter value 𝑒𝑖
𝑘 was 

generated as 𝑒𝑖
𝑘 = 𝑏𝑖

𝑘 + 𝐷𝑊(𝑐𝑖
𝑘 − 𝑑𝑖

𝑘); otherwise  𝑒𝑖
𝑘 = 𝑎𝑖

𝑘.  
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This was done for each element in the new agent and was repeated until 10 new agents 

were created. After this was done the 10 new agents were simulated and then the 30 total 

parameters were evaluated for their cost. The 10 with the highest cost (worse fit) were 

then rejected and the process was repeated. 

 

We performed 2 parameter optimizations, A-Series and B-Series, to parse out potentially 

different effects of anesthetic modulation on synaptic conductances only (A series) and 

of combined modulation on synaptic conductances and cholinergic effects (B series) 

(Figure IV.4 B,C). In both scenarios, populations A1/B1 were the result of optimizing 

𝑃𝐴𝑀𝑃𝐴, 𝑃𝑁𝑀𝐷𝐴, 𝑃𝐺𝐴𝐵𝐴, 𝑔𝐾𝑠 to the experimental 0% anesthetic case. In the A-series, 

𝑃𝑁𝑀𝐷𝐴, 𝑃𝐺𝐴𝐵𝐴 were optimized while in the B-series, 𝑃𝑁𝑀𝐷𝐴, 𝑃𝐺𝐴𝐵𝐴, 𝑔𝐾𝑠 were optimized to the 

2%, 4% and 6% anesthetic cases. Optimizations for the 6% anesthetic case, A4/B4, were 

initiated from parameter values constrained by experimental reports of 20% average 

decrease in NMDA-mediated synaptic signaling and 40% increase in GABA-ergic 

synaptic signaling under desflurane [155,240]. These initial values were randomly varied 

uniformly by +/- 5% to generate variability in the event of parameter convergence. In the 

optimizations for the 2% and 4% anesthetic cases, A2/B2 and A3/B3, respectively, the 

initial population for A2/B2 was A1/B1, and the initial population for A3/B3 was A4/B4.  
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Figure IV.4 Parameter search fine-tuned through Differential Evolution algorithm 

A) Evolutionary algorithm procedure, differential evolution, was used to optimize model parameters. For 

each generation, 10 agents (parameter sets) with the highest cost function from the population of 30, were 

chosen for replacement. Algorithm was repeated until stopping criteria of 100 generations without change 

in lowest cost function value across the population was met. B,C) Lowest cost function values across the 

parameter set populations at each generation for the A-series (B) and B-series (C) parameter optimizations. 

Population A1/B1, A2/B2, A3/B3 and A4/B4 were optimized to experimental data from the 0%, 2% ,4% and 

6% anesthetic cases, respectively. The optimizations for A1 and B1 were identical. In the A-series (A2-A4), 

PNDMA, PGABA, were optimized and in the B-Series (B2-B4), PNDMA, PGABA, gKs were varied. 
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. 

 

 

 

Simulation of ACh Reversal 

To validate robustness of the parameter optimization, we ran our optimization for 10 

network realizations, keeping the network structure fixed for all anesthetic levels. The 

average and error (SEM) for the optimized parameters across these 10 networks is shown 

in Table IV.1. Table IV.2 lists the parameter values with the lowest cost function for one 

of these optimization runs that we used in our model analysis.Simulated cholinergic 

reversal (AR1-AR4/BR1-BR4) was modeled by decreasing the value of gKs from the 

values in A4/B4 to 0.4 mS/cm2 such that there were 4 values in the reversal series. 

    

 

Statisical Analysis 

The effects of desflurane and ACh-modulated M-current were tested using RM-ANOVA 

with the level of intervention as fixed factor on each of the metric for both experimental 

data and the simulation results. When the effect of the treatment was significant, the 

individual effects were further examined using individual paired t-tests with Bonferroni 

correction at α = 0.0167 for testing the anesthesia effect (four levels) and α = 0.0125 for 

testing the reversal effect (five levels). To compare trends, additional tests with linear 

regression were done on the expermental data as well as the A-series/B-series and the 

cholinergic reversal results, at α= 0.05. Statistical analyses were conducted in Excel. 
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Functional Connectivity Analysis 

Functional connectivity was determined via cross-correlogram analysis where the 

connectivity strength (significance) was determined by comparing the peak within 0 to 5 

ms lag of the cross-correlogram to the jittered mean and standard deviation of the cross 

correlogram. Mean was formed from mean of 100 jittered correlograms and the 

standard deviation from the jittered means [234,235]. The connectivity strength was 

recorded for each pair wise connection and then used to determine the cosine similarity 

between the two simulations by computing the dot product of the pairwise connectivity 

strengths for different anesthesia levels. This was converted to a Z-Score by comparing 

average cosine similarity between two anesthesia levels (10 network average) to the 

cosine similarity between two anesthesia levels created in the same manner from 

jittered time-series (jittered time lag peak compared to jittered mean and standard 

deviation).  
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Table IV.1 Parameter optimization for simulated anesthetic concentrations when performed on 10 

different network realizations.  

A/B-series describe optimal values determined by the differential evolution algorithm fitting network 

connectivity parameters obtained when repeating the optimization for 10 total networks.  Optimization 

includes A-Series, when ACh effects are assumed constant and B-Series, when ACh effects are allowed 

to change with anesthetic concentration. The scaling factors Px scale the effects of synaptic conductances 

mediated by the x receptor (x = NMDA, GABA and AMPA). A1-A4/B1-B4 denote optimal parameter sets fit 

to experimental recordings at varying anesthetic concentrations (0%, 2%, 4%, 6% desflurane, respectively). 

PAMPA is only fit for the 0% anesthetic case A1/B1. Error displayed is SEM. 

 

 

 

 

 

Table IV.2 Parameter values for simulated anesthetic concentrations and cholinergic reversal 

results. 

Parameters from initial fit used to simulate anesthetic effects and cholinergic reversal. A/B-series describe 

optimal values of initial fit determined by the differential evolution algorithm for network connectivity 

parameters obtained when ACh effects are assumed constant (i.e., gKs is constant; A-Series) and when 

ACh effects are allowed to change with anesthetic concentration (B-Series).  Px denotes scaled changes in 

synaptic conductance’s mediated by the x receptor (x = NMDA, GABA and AMPA) as described in Table 

1. A/B-Series Reversal (AR/BR series) represent simulated anesthetic reversal, obtained by increasing ACh 

effects (decreasing gKs from A4/B4 levels) while keeping all other parameters constant. 
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4.2.5  Simulations  

 

Custom C++ code was developed for numerical simulations which was run on the Great 

Lakes High Performance Cluster. For the evolutionary algorithm each model simulation 

was run for 20s. The stopping criteria was met when the lowest minimum cost remained 

unchanged for 100 generations. To check the robustness of the current parameter set, 

10 additional generations were run with model simulations of 80s and an increased 

crossover probability (CR=0.9). We detected no change in the minimum cost parameter 

set.  For the results shown in Figures IV.5-7 each simulation was simulated for 150000 

ms or 150 s. The length of this runtime was necessary to result in enough spike times to 

calculate metrics based on cross correlograms. Results in Figures IV.7 and IV.8 are for 

10 simulation runs in which network connectivity was randomized across runs but 

maintained for the different simulated anesthetic levels. In this way, each of the 10 

simulation runs corresponds to a unique simulated experiment. On each run the voltage 

and gating variables were subject to random initial conditions independent of the network 

seed. On initialization V was uniformly varied between [-72,-32] mV, n between [0.2,0.6],  

z between [0.2,0.3] and h between [0.2, 0.6] while m was initialized at 0 for all runs. The 

equations were integrated using the 4th order Runge Kutta method.  

 

4.3 Results 

4.3.1  Modeling Anesthetic Induced Synaptic Changes via Genetic Algorithm Parameter 

Search 

 

We constructed a reduced, biophysical, neuron network model to investigate how 

synaptic-level changes, mediated by the anesthetic desflurane, affect network-level 
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dynamics compared to data measured in the visual cortex in vivo, and, separately, 

howcholinergic neuromodulatory changes at the cellular level may reverse these 

anesthetic effects. The network consisted of excitatory and inhibitory neurons interacting 

via synapses mediated by excitatory AMPA and NMDA receptors and inhibitory GABAA 

receptors (see section 4.2; FigureIV.1).  Acetylcholine (ACh) neuromodulation of the 

excitability of excitatory cells was simulated as amus-carinic receptor-mediated variation 

in the conductance of the slow, hyperpolarizing current. 

 

We used an evolutionary algorithm (see section 4.2, Figure IV.4) to identify optimal 

synaptic connectivity parameter sets (Table IV.1/Table IV.2) that most closely match 

multiple quantitative measures of network activity recorded under different desflurane 

concentrations. This allowed us to objectively find two sets of parameter modifications 

that fit model results to the experimental data. Namely, in one set of optimized 

parameters, we allowed the algorithm to optimize the inhibitory GABAA connectivity 

strength and excitatory NMDA connectivity strength while keeping AMPA connectivity 

strength constant as simulated anesthetic concentration was increased (Table IV.1/Table 

IV.2, A-Series). In the second set, in addition to varying the above parameters, we allowed 

cholinergic effects to vary with simulated anesthetic concentration (Table IV.1/Table IV.2, 

B-Series). The optimization cost function was based on fitting measures of network 

frequency, mean phase coherence, and information theoretic measures of integration and 

complexity, and the parameter sets were validated using measures of synaptic 

connection probability and strength, as well as network functional connectivity (see 

section 4.2, Figure IV.10). Optimizations were conducted separately for each anesthetic 
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level, i.e., parameter values A1/B1 were optimized to data recorded for 0% desflurane 

concentration, A2/B2 for 2% desflurane, A3/B3 for 4% desflurane and A4/B4 for 6% 

desflurane. 

 

In each optimization run we kept the network structure fixed. Particularly, when optimizing 

across the A-series/B-series we maintained a single network to guarantee that the cost 

or loss function monotonically decreased across generations. To check for robustness, 

we optimized parameters for 10 independent network realizations. For each network 

optimization, the initial pool of parameters seeding the search was kept the same. Table 

IV.1 reports mean and standard error of obtained parameter values of the 10 optimization 

runs. Table IV.2, on the other hand, represents the best fit optimized parameter set that 

was subsequently used to identify anesthetic effects on the dynamics of the network. 

 

With synaptic connectivity parameters fixed at their levels corresponding to 6% desflurane 

concentration, we then simulated the reversal of the anesthetic effects by increasing AÇh 

effects as mediated by the muscarinic receptor dependent M-type K+ current (specifically, 

decreasing its conductance gKs; Table IV.2, AR/BR-Series).  

 

The synaptic connectivity parameter values determined by the evolutionary algorithm 

mirrored experimentally identified effects of desflurane on excitatory and inhibitory 

synaptic currents [139,155,241](See section 4.2, Figure IV.4). Specifically, in the A-series 

parameters, there was a decrease in the effects of NMDA receptor-mediated current while 

there was an increase in the effect of GABA-mediated current in response to increases 
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in anesthesia (Tables IV.1/Table IV.2). A similar trend was obtained in the B-Series with 

the added result that decreasing effects of acetylcholine (increasing gKs) correlated to the 

effects of increased anesthesia except for the change from B3 to B4. Interestingly, the 

optimization predicted that, in the B-Series, to offset the decrease in neuronal excitability 

due to decreasing ACh level (i.e., increased gKs) with anesthetic concentration, the 

increase in GABAA synaptic efficacy was smaller than that obtained in the A-Series, and 

similarly, the NMDA synaptic efficacy was systematically higher as compared to the A-

Series.  

 

Figure IV.5 shows example raster plots comparing experimental spike timing data 

collected under the varying desflurane concentrations with model results for the optimized 

A- and B-Series parameter sets, as well as the simulated ACh-induced reversal of 

anesthetic effects.  The model raster plots show similar qualitative trends for increasing 

simulated anesthetic concentration as the experimental data, specifically spiking patterns 

change from asynchronous with higher spiking frequencies at simulated 0% desflurane 

concentration (A1/B1) to a lower frequency, more synchronized firing pattern for 

simulated 6% desflurane concentration (A4/B4). Furthermore, the simulated ACh reversal 

(AR1/BR1 – AR4/BR4) reverses those trends. 

 

In the following sections, we analyze how specific characteristics and measures of 

network dynamics, including frequency distributions and profiles, mean phase coherence, 

information theoretic measures, and excitatory/inhibitory connectivity probability, 

computed for the experimental data for progressively increased desflurane levels are 
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reproduced in the optimized model networks. These measures were then computed for 

simulated increasing levels of cholinergic modulation to analyze the recovery of network 

dynamics during ACh-induced reversal of anesthetic effects. 
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Figure IV.5 Changes in anesthesia level lead to transitions from high frequency asynchronous to 

low frequency synchronous spiking patterns  

A) Raster plots of experimentally recorded neuronal activity in response to changes in desflurane levels. 

For higher concentrations of desflurane (6%), oscillatory synchronous network activity can be seen in 

spiking dynamics. For lower levels of anesthetic, oscillations are not apparent and asynchronous activity 

dominates. B) Raster plots for simulated anesthetic effects in optimized model networks for constant gKs (A 

series) and the simulated ACh-induced reversal of anesthetic effects (A series reversal). C) Raster plots for 

simulated anesthetic effects in optimized networks with changing gKs (B-series) and its reversal (B series 

reversal). In both B) and C), simulated anesthetic reversal shows reinstatement of asynchronous from 

synchronous spiking patterns. Simulation results based on best fit parameters (lowest cost optimization 

when averaged across anesthesia levels). 
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4.3.2  Anesthetic Effects on Network Dynamics and their Predicted ACh-Induced 

Reversal  

 

Spike Frequency Decreases in Response to Anesthesia and Recovers in Response 

to Decreased M-Current. 

 

We first characterized the changes in the mean neuronal spike frequency as well as the 

shape of the neuronal spike frequency distributions as a function of anesthetic level in the 

optimized model networks (Figure IV.6 and Figure IV.7A). We observed that the neurons 

generally fired less, in both experimental data and the simulations, as a function of 

anesthetic concentration. Also, the spread of neuronal firing frequencies decreased 

significantly with increased anesthetic level, with the loss of the right skew observed in 

the wake cases (0%, A1 and B1). Spike frequency decreased as a function of desflurane 

levels for both parameter series, (A and B series, without and with ACh changes, 

respectively), with a similar frequency drop, irrespective of the implemented ACh changes 

that affect neuronal excitability in the B series. In predicted ACh-induced reversal, the 

rightward skew in frequency distributions was recovered, and the B series showed 

stronger recovery in mean spike frequency as compared to the A series. This is because, 

as mentioned above, accounting for cholinergic changes on neuronal excitability under 

desflurane anesthesia predicts that synaptic changes are less severe. Namely, in the B 

series, GABAA synaptic strength was not as high, and NMDA synaptic was not as low 

compared to the A series.In  the experimental data, anesthesia reduced excitatory firing 

frequency in a dose dependent manner (p<0.05, correlation test). This was likewise 

observed in both A- and B-series simulations (rE = -0.97, rA = 0.-95,rB=-0.99, PE <0.0001, 
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PA <0.0001, PB<0.0001). Moreover, firing frequency in the awake state showed a 

significant difference between all subsequent anesthesia states (p<0.0167,Bonfer- roni) 

for the experiment as well as for the A- and B-series. Likewise, when comparing firing 

rates in all of the subsequent reversal states to the highest anesthesia state (e.g. A4 to 

AR1-AR4) a significant difference was found (p<0.0125, Bonferroni). As anticipated, the 

reversal simulation had positive firing rate correlations for both A- and B- series 

(rAR=0.89,rBR = 0.93, PAR <0.0001, PBR<0.0001). 
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Figure IV.6 Firing rate distributions for different levels of anesthetic concentration.  

A) Changes in experimentally recorded firing rate distributions under increasing desflurane concentration 

(0, 2, 4, and 6%) show increased right skewness for the awake state in comparison to anesthetic states. 

The bins were normalized by the total number of spikes relative to the awake case (0%). B) and C) Firing 

rate distributions in optimized networks for A (B) and B (C) series parameter sets. Simulated networks show 

similar trends in frequency distributions when compared to experiment. The predicted ACh-induced reversal 

shows reinstatement of the right skew. The bins were normalized by the total number of spikes relative to 

the awake case A1/B1. Upper/Lower bound show histogram standard error. Results based on lowest cost 

fit parameters. 
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Neurons Phase Lock for Increasing Anesthesia and Decohere with Decreased M-

Current. 

 

In both experimental and simulated results, the common feature was an increase in 

network synchronization as a function of increased desflurane levels. Mean phase 

coherence (MPC) measures the consistency of the relative phase that neurons fire with 

respect to each other thus taking into account non-zero time lag synchrony. Anesthesia 

increased MPC (Figure IV.7B) in the data and both simulation series (rE = 0.64, rA = 0.81, 

rB = 0.71, PE = 0.0052, PA <0.0001, PB <0.0001). Moreover, MPC in the awake state 

showed a significant difference between all subsequent anesthesia states (p<0.0167, 

Bonferroni) for the data as well as for the A- and B-series (Figure  IV.7B). 

 

The anesthetic reversal with increased levels of ACh (i.e. decreased gKs) led to decreases 

in MPC. The reversal data for experiment and simulation showed an overall positive trend 

(rAR=0.50, rBR = -0.52, PAR = 0.0003, PBR = 0.0001); however, a significant difference 

between the means of individual levels was only present between the highest reversal 

state and the deepest level of anesthesia for the B-series (B4 and BR4, P<0.0125, 

Bonferroni) and between the two highest states and the deepest anesthesia for the A-

series (A4 and AR4/AR3, P <0.0125, Bonferroni).   

 

Information Theoretic Metrics Decrease in Response to Anesthesia and Increase 

with Smaller M-Current. 
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We computed the information theoretic measures network integration (I(X)) and 

complexity (C(X)) for both experimental data and simulated network activity. Integration 

I(X) is a generalization of mutual information that measures the amount of total entropy 

of a system that is accounted for by the interactions among its elements. Integration  is 

zero when system elements are statistically independent [233]. Complexity , on the other 

hand, measures the total entropy loss due to interaction of system elements, or, 

equivalently, the difference between the sum of the entropies of the individual elements 

and the entropy of the entire system.  Complexity  is low for systems with independent 

elements or with highly synchronous elements. 

 

Integration and complexity displayed similar changes in both the experiment and 

simulation with increasing anesthetic concentration (Figures IV.7C and IV.7D). Both 

displayed negative trends for simulated anesthesia and positive trends for reversal. For 

the experiment a statistical difference was only found between 0% and 6% for the 

complexity (P<0.0167, Bonferroni) while no significant difference was found for 

experimental integration. For the simulation, the B-series complexity showed significant 

changes between B1 and B4, the A-series additionally had differences between A1 and 

all levels of anesthesia complexity (P<0.0167, Bonferroni). Complexity showed significant 

negative correlation with level of anesthesia for both A and B series as well as the 

experiment (re = -0.73, rA = -0.96, rB = -0.75, PE <0.0002, PA<0.0001, PB<0.0001). The 

reversal simulation complexity displayed a positive linear trend for both AR and BR-series 

(rAR = 0.76, rBR = 0.62, PAR <0.0001, PBR <0.0001) with significant differences between 

A4 and all reversal states for the A-series and between B4 and all reversal states with the 
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exception of BR1 for the B-series (P<0.0125, Bonferroni). Consistent correlations were 

seen for integration (rE = -0.55, rA = -0.82, rB = -0.76, PE = 0.0165, PA <0.0001, PB 

<0.0001) and its reversal (rAR = 0.47, rBR = 0.76, PAR = 0.0006, PBR <0.0001). For the 

integration simulation, a signifi- cant difference was seen between the awake case and 

all anesthetic states in the A series and between the wake and highest anesthetic state 

for the B-series (P<0.0167, Bonferroni). For the reversal, significant differences were 

seen between B4 and all reversal states for th B-series and between A4 and all reversal 

states with the exception of AR1 for the A-series (P<0.0125, Bonferroni). 

 

A difference in trends between the A and B series simulations is indicated by the signifi- 

cantly more precipitous drop in the measures for the A-series with increasing anesthetic 

level. This could be due to the differences in network connectivity parameters (i.e., NMDA 

and GABAA synaptic strengths) obtained for the two series. Specifically, lower NMDA 

synaptic efficacy and higher GABA synaptic efficacy leads to effective disconnection of 

the neurons in the A-series networks, resulting in lower integration and complexity 

measures. 
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Figure IV.7 Characterization of anesthetic effects on network dynamics and their simulated ACh 

reversal.  

Measures of network dynamics computed from experimental data and optimized model networks as a 

function of anesthetic concentration and simulated reversal level: A) Average spike rate B). Mean Phase 

coherence C) Complexity C(X) D) Integration I(X). A1-AR4/B1-BR4 (x-axis) denote simulated anesthetic 

concentration levels and reversal states obtained in optimized networks with corresponding parameters 

listed in Table 2. Black line denotes simulations with A-series parameter sets (gKs constant) and pink line 

denotes simulations with B-series parameter sets (changing gKs).  Blue line (with corresponding axis labels 

on the top) denotes measures computed from experimental spiking data at different desflurane 

concentrations. All calculations were made for 6s intervals and then averaged over 5 intervals. Error bars 

are +/-SEM based on 10 network realizations. Results from lowest cost fit parameters. 

 

 

 

 

 

 



  

150 
 

 

  

 

Simulated M-current mediated reversal acted to increase both these measures (Fig 4C 

and 4D; AR/BR series). In the B-series reversal, both measures recovered to values 

greater than the simulated waking values A1/B1. This was presumably due to the higher 

NMDA and lower GABAA synaptic efficacies that lead to significantly stronger excitatory 

interactions between the neurons in the B-series simulations, increasing integration and 

complexity. 

 

Connectivity Strength Decreases in Response to Anesthesia and Increases with M-

Current mediated Reversal. 

 

We estimated network excitatory and inhibitory synaptic strengths, as well as network 

excitatory and inhibitory connection probabilities,  in the optimized networks and 

compared them directly to these same measures computed from the experimental data. 

These excitatory and inhibitory network connectivity measures were computed using 

cross correlogram analysis as described in the section 4.2 (Figure IV.3) and based on 

previous works [139,234,235].  

 

The optimized networks displayed similar decreases in the strength of excitatory network 

connectivity with increased levels of anesthetic as observed in the experimental data 

(Figure IV.8A). When testing for statistical significance via a correlation test we found that 

anesthesia reduced excitatory strength. The excitatory strength had a significant negative 

correlation with anesthesia treatment (rE = -0.79, rA = -0.81, rB = -0.77, PE <0.0001, 



  

151 
 

PA<0.0001, PB <0.0001). The wake state showed a significant difference between all 

subsequent anesthesia states (P<0.0167, Bonferroni) for the experiment as well as for 

the A- and B-series. Excitatory strength in the reversal simulation had positive correlations 

for the A- and B-series (rAR = 0.43, rBR = 0.46, PAR = 0.0018, PBR = 0.0008). For the 

reversal, the A-series only showed differences between A4 and AR2 whereas the B-

series showed differences across all reversal states (P<0.0125, Bonferroni). Both the A-

series and B-series results followed similar trajectories, with the A series results reporting 

somewhat smaller excitatory connectivity strength values. This can be due to the fact that 

the evolutionary algorithm returned significantly lower NMDA efficacy for the A-series, 

compared to the B-series. On the other hand, excitatory network connectivity probability 

is very similar for both parameter series as the structural connectivitiy density of excitatory 

synapses is the same in all model networks (see  section 4.2).  
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Figure IV. 8. Characterization of anesthetic effects on network connectivity and their simulated 

ACh reversal.  

Measures of network connectivity computed from experimental data and optimized model networks as a 

function of anesthetic concentration and simulated reversal level: A) network excitatory connectivity 

strength, B) network inhibitory connectivity strength, C) network excitatory connectivity probability, D) 

network inhibitory connectivity probability. A1-AR4/B1-BR4 (x-axis) denote simulated anesthetic 

concentration levels and reversal states obtained in optimized networks with corresponding parameters 

listed in Table 2. Blue line (with corresponding axis labels on the top) denotes measures computed from 

experimental data, black (pink) line denotes measures computed from A-series (B-series) network 

simulations. In these measures, the presence of a significant connection was determined through cross 

correlogram analysis as described in section 4.2. Error bars of +/-SEM based on 10 network realizations 

for best fit optimization. 
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We found a significant correlation in excitatory probability in the A-series and B-series but 

not in the experiment. A significant difference was found between all subsequent 

anesthesia states and the wake state (A1/ B1) for A- and B-series simulations (P<0.0167, 

Bonferroni). The experiment, A-series and B-series had negative correlations but only the 

A- and B-series demonstrated a significant correlation (rA = -0.87, rB = -0.55, PA <0.0001, 

PB = 0.0053). Differences were found between all reversal states and A4/B4 except 

between B4 and BR1 (P<0.0125, Bonferroni). The reversal simulation had positive 

correlations for both A- and B-series (rAR = 0.54, rBR = 0.59, PAR <0.0001, PBR <0.0001). 

 

 

The experimental data, as well as simulation results for both the A and B series networks, 

showed decreases in inhibitory network connectivity strength and probability as a function 

of anesthetic concentration. Inhibitory strength showed negative correlations with 

increasing anesthetic but with a significant correlation only for the B-series (rB = -0.54, PB 

=0.0003). 

 

There was only a significant difference between the awake state B1 and B4 (P<0.0167, 

Bonferroni). The reversal simulation had significant correlations for both A- and B-series 

(rAR = 0.50, rBR = 0.61, PAR = 0.0002, PBR <0.0001). A significant difference was seen 

between A1 and all reversal states in the A-series and between B1 and B3, B4 for the B-

series (P<0.0167, Bonferroni). This seems a counterintuitive result since GABAA synaptic 

efficacies increase with desflurane level, and were explicitly modeled as such in our 
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networks. However, this result may be a consequence of decreases in excitatory network 

synaptic strength and connectivity probability. Namely, inhibitory cells receive less 

excitatory drive, subsequently firing fewer spikes and, thus, limiting their effect on 

postsynaptic targets. Inhibitory probability had significant negative correlations for the 

simulation A-series and B-series as well as the experiment (rE = -0.49, rA = -0.82, rB = -

0.71, PE = 0.021, PA<0.0001, PB <0.0001). Only the simulation showed significant 

differences between the mean of the wake state and the subsequent anesthetic states. 

The A-series showed a significant difference between A1 and A3 and A4 while the B-

series only showed a difference between B1 and B4 (P<0.0167, Bonferonni). The reversal 

simulation had positive correlations for both A- and B-series (rAR = 0.67, rBR = 0.57, PAR 

<0.0001, PBR <0.0001). The reversal simulations showed significant differences between 

the deepest state of anesthesia and all of the reversal states. This means that there was 

a significant difference between A1 and AR2-AR4 for the AR series and B1 and BR2-BR4 

for the BR-series (P<0.0125, Bonferonni). Additionally, we observed that the strength of 

network inhibitory connectivity in the A-series networks was generally stronger than in the 

B-series networks. This observation agrees with the fact that the GABAA conductance is 

higher in the A-series parameters than in the B-series. Counterintuitively, network 

inhibitory connectivity probability was lower and more variable in the A-series networks 

com-pared to the B-series networks. 

 

Effects of ACh-induced Anesthetic Reversal on Network Functional Connectivity  
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The results discussed above report trends observed for measures of average network 

activity, such as frequency, mean phase coherence, integration and complexity, as well 

as network connectivity strength and probability. And while M-current mediated reversal 

reinstated these network-level measures, the measures do not account for recovery of 

functional connectivity in the network which would contribute to information processing. 

In this section, we investigate how M-current mediated reversal affects the relative 

frequency profile of individual neurons with respect to other neurons in the network and 

also look at effects of reversal on the cellular- level functional connectivity. These 

measures specifically assess whether the internal dynamic structure of network activity is 

reinstated during the ACh reversal.To accomplish this, we first compared the firing rate 

of each neuron (or unit) in the experimental data and in the optimized networks at each 

level of anesthetic concentration to its firing rate in the waking state (Figure IV.9 and 

Figure IV.S1 in the Appendix at the end of this thesis). In the figure panels, the x-axis 

represents firing frequency of individual cells for different anesthetic levels and the y-axis 

represents the firing frequency for the same cells in the non-anesthetic (0% or A1/B1) 

conditions. In this figure each plot shows neurons from 10 different optimizations on a 

single network structure (neurons from 10 different parameters all on same network). 

Each dot shows the firing rate of a neuron in the 0% on the y axis and the comparison 

anesthetic level on the x axis. For the experimental data, mutliple units can be potentially 

detected on a single electrode. This led to potential ambiguity in neurons assigned across 

different anesthetic levels. To address this issue, neuron identity was based on firing rate 

in the 0% case. Namely, for units recorded on each electrode, the fastest firing units for 

0% anesthesia were given the same ID as the fastest firing units in the 6% case. The 
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results showing an overall linear relationship (Figure IV.9 and Figure IV.S1) indicates 

preservation of relative frequency ordering between the neurons. Deflection of the slope 

of the linear relationship towards vertical indicates the decrease in absolute firing 

frequency observed for different anesthetic levels. 

 

We observed that, generally, in both experiments and simulation results the relative 

frequency of the neurons was preserved, i.e. neurons that fired at higher frequencies as 

compared to other cells in non-anesthetic conditions retained higher firing frequencies at 

the different anesthetic levels, albeit absolute frequencies decreased. Conversely, 

neurons that maintained lower firing frequencies (relative to other cells) in the non-

anesthetic state continued firing at lower relative frequencies in the anesthetic conditions. 

Qualitatively similar results were observed for A-series networks (Figure IV.9) and B-

series networks (Figure IV.S1 in the Appendix at the end of this thesis). 

 

Importantly, during the simulated ACh-induced reversal (AR-series in Figure IV.9C; BR-

series in Figure IV.S1 in the Appendix at the end of this thesis), the relative relationship 

between firing frequencies of neurons remained the same, with individual cell frequencies 

increasing back towards their non-anesthetic values  as evidenced by the slope of the 

linear relationship for higher reversal states tending towards one. This result suggests 

that individual cells return to roughly the same firing rates during ACh-induced reversal 

as they exhibited in the simulated waking state. The relationship between firing 

frequencies had a signficant linear relationship in the simulation (Figure IV.9B and Figure 

IV.9C) with all relationships displaying significant positive correlation (P<0.0001). The 
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experimental relationship (Figure IV.9A) also had a positive significant relationship (R0,2% 

= 0.51, R0,4% = 0.46, R0,6% = 0.52, P0,2% = 0.0124, P0,4% = 0.0271, P0,6% = 0.0092). 

 

Further, to explore detailed changes in cellular-level functional connectivity in the 

optimized networks, we created functional adjacency matrices from the estimated 

pairwise excitatory connectivity strengths at all simulated anesthetic and reversal 

conditions, measured via identification of the peak/trough of the spiking cross correlogram 

as described in thesection 4.2. We then calculated the cosine similarities between the 

created functional adjacency matrices obtained for each anesthetic and reversal level 

(Figure IV.10). A cosine similarity of 1 indicates that the functional adjacency matrices are 

identical, whereas cosine similarity of zero indicates that they are uncorrelated. We then 

calculated the Z-score of the cosine similarity matrix by comparing the cosine similarity 

for simulated spike trains with the cosine similarity of connectivity computed from jittered 

spike trains as described in the Methods. Having a high Z-score indicates how the 

functional connectivity differs from random. The analysis was performed on experimental 

data as well as A-series and B-series fits, on all measured excitatory connections. 

Supplementary Figure IV.S3 shows example of functional connectivity observed for an 

individual experiment, simulation and its reversal.  
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Figure IV.9 Effects of anesthetic concentration and simulated ACh-induced reversal on relative 

profiles of neuronal firing frequency.  

Each panel depicts the firing frequency of each neuron in a given anesthetic/reversal state (x-axis) 

compared to its firing frequency in the non-anesthetic condition (0% desflurane or A1) (y-axis)  A) Units 

recorded in the experimental data; B,C) Neurons in A series optimized networks and reversal.  
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We observed that the functional network similarity matrices, for experimental data as well 

as model results, became less correlated with each other with increasing anesthetic levels 

(Figure IV.1). At the same time, for the model data, M-current mediated reversal resulted 

in a significant increase in the correlation between the baseline non-anesthetic adjacency 

matrix (A1 or B1) and the fully reversed functional adjacency matrix (AR4 and BR4). The 

experimental data had similar behavior with increased similarity between the 0% and 2% 

anesthesia states when compared to the similarity between 0% and 4%, 6%. The 

interesting feature of the experimental data is that 6% and 4% had increased similarity 

when compared to each other than with other anesthetic states (Figure IV.10). This was 

not seen in the simulation. 

 

In summary, our model results showed that multiple measures of network connectivity 

(Figures IV.8 and 10)  increased with ACh-induced simulated reversal suggesting that 

increases in cellular excitability, mediated by muscarinic effects of ACh, can reinstate 

network dynamics dictated by synaptic connectivity.  
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Figure IV.10 Effects of anesthetic concentration and ACh-induced reversal on the similarity between 

cellular functional connectivity.    

Cosine similarity Z-Score was computed for every pairwise functional connection between neurons. A) 
Experimental functional connectivity was computed between the highest firing neuron for each electrode 
with similarity computed across different levels of anesthesia. B,C) Functional network similarity computed 
for simulated anesthesia and reversal. Z-Scores were computed comparing the Network similarity to mean 
and standard deviation of similarities for distributions randomly jittered +/- 5 milliseconds. Each is averaged 
over ten runs. 
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4.4 Discussion 

 

The goal of this investigation was to simulate the multisynaptic effects of an anesthetic 

and the modulating effect of muscarinic ACh receptor activation in a neuronal network 

model. To do this, we applied a computational model of a network of excitatory and 

inhibitory neurons and used a differential evolution algorithm to fit model parameters to 

match measures of spiking activity, neuronal connectivity, and network dynamics 

recorded in the visual cortex of rodents during anesthesia with desflurane in vivo. 

 

We first examined if excitatory and inhibitory synaptic changes typically produced by the 

inhalational anesthetic desflurane led to neural network behavior similar to experimentally 

observed neuron activity as characterized by various measures including population firing 

rate, phase coherence, monosynaptic spike transmission, and the information theoretic 

measures integration and complexity. Second, we investigated if an exogenously induced 

increase in the level of ACh acting on muscarinic receptors and the M-current could 

reverse the effect of the anesthetic as suggested by prior behavioral experiments. 

 

Simulation of the Anesthetic Effect  

 

We simulated the effect of anesthetic desflurane on the neuronal network by reducing the 

response of excitatory synapses and facilitating that of inhibitory synapses. General 

anesthetics commonly potentiate GABAergic synaptic receptor transmission through 
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modification of inhibitory post synaptic potential (IPSP) amplitude and duration, as well 

as through inhibition of glutamatergic receptor excitatory post synaptic potential (EPSP) 

amplitude and duration. The relative strength of these effects depends on the class of 

anesthetic[135,153]. Desflurane inhibits binding at NMDA receptors while potentiating 

postsynaptic inhibition at GABAA receptors. Some anesthetics, but not desflurane, also 

suppress AMPA receptors. The effect of anesthetics on nicotinic and muscarinic 

receptors is more diverse. Some anesthetics also modify the activity of cholinergic 

neurons projecting to the cortex [150]. Regarding its electrophysiological effects, 

desflurane has been shown to decrease average spike rate, excitatory and inhibitory 

monosynaptic transmission, and population measures of neuronal interactions in the 

cortex [139,242]. These changes in neuronal activity observed in vivo have not been 

directly linked to the corresponding synaptic effects observed in vitro. 

 

In our study we found that potentiation of inhibitory GABAergic and inhibition of excitatory 

glutamatergic NMDA synaptic receptors do indeed lead to graded decreases in 

population activity and increases in synchronization, as quantified by firing rate and mean 

phase coherence, as well as measured decreases in integration and complexity. 

Additionally, we were able to recover changes in functional network connectivity which 

matched changes seen in literature [243,244]. The simulation results were robust; 

although only a few of the measures (frequency, MPC, I(X) and C(X)) were used for 

optimization of model parameters via the differential evolution algorithm, the results held 

for a wide range of non-fitted measures within limits that produced physiologically 

reasonable spiking behavior. The correlation test, when giving significance for the 
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experiment and the simulation, gave the same sign of correlation for each metric. 

Specifically, this validates that our model correctly accounts for the same trends observed 

in the experiment in response to anesthesia. Moreover, the parameter fits obtained for 

increasing levels of anesthetic matched in their relative magnitudes to the reported 

anesthetic induced changes in synaptic efficacy. 

 

Understanding the Mechanism of Anesthesia through Computational Modeling 

 

The cellular mechanism of anesthetic action with respect to loss of awareness has been 

a subject of intense investigation. Computational models are actively used to make 

progress in this area of research. Because differing classes of anesthetics elicit different 

effects on synaptic receptor subtypes, many modeling approaches aim to determine how 

nuanced changes in receptor binding and synaptic activity lead to changes in neural or 

electroencephalographic activity. For example, in mean field models, GABAergic and 

glutamatergic synaptic changes are attributed to a single parameter that maps to different 

concentrations of general anesthesia [245]. Other modelling approaches seek to 

understand the mechanism of specific anesthetic agents; for example, the effects of 

propofol have been studied through the modeling of both GABAA and GABAB 

amplitude/duration and the effects on cortical synchrony and EEG rhythms [151,246]. 

Enflurane and isoflurane are other commonly modeled anesthetics where the roles of 

both glutamatergic receptor binding and GABAergic effects are taken into 

consideration[246–248] . Anesthetic action effected through post synaptic potential (PSP) 

changes, from a modelling perspective, is a relativity robust explanation supported by its 

effectiveness across modelling paradigms. These include “mean field” models as well as 
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networks of “integrate and fire”, “Izhikevich “and “HH” neurons, which all show reduced 

activity and changes to population synchrony when modeling anesthetic effects on 

synaptic receptors [247,249,250]. 

 

Our study is distinguished from former computational models of anesthetic effects by the 

independent consideration of the effects on NMDAR and GABAR through PSP changes, 

as well as of cholinergic influence through changes in the muscarinic M-current. We also 

used a more biologically realistic log-normal distribution for synaptic weights[230]. 

Because we had access to experimental spike data, we were able to directly fit our model 

to empirical data at graded levels of anesthesia and then test our hypothesis regarding 

cholinergic anesthesia reversal. 

 

Anesthetic Effects on Spike Synchrony 

 

A common brain signature of general anesthesia is the loss of global functional 

connectivity between specialized regions of the cortex while local populations show 

increases in neural synchrony [243,251,252]. Cellular and network mechanisms leading 

to neural synchrony have been studied extensively in the field of computational 

neuroscience [253–255]. A set of possible network wide mechanisms are the PING 

(pyramidal interneuron network gamma) class of mechanisms, where stable, 

synchronous activity patterns emerge when inhibition periodically shuts down excitation 

in the network [214,226,256–258]. The propensity of neural network synchrony can also 
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depend on intrinsic cellular excitability properties, an example being changes from Type 

1 to Type 2 membrane excitability. Type 1 and Type 2 neural excitability describe the 

well-characterized differences in spike generation dynamics that can generally occur 

between different types of neurons, and can occur in the same neuron under different 

pharmacological conditions, such as changing ACh levels. Type 2 dynamics originate 

from increased competition between depolarizing and hyperpolarizing currents as 

compared to Type 1 [158]. These differences exemplify themselves in the onset and 

steepness of firing frequency-input (i-f) curves and the shape of phase response curves 

(PRCs) which in turn determine synchronization of the networks. Neurons exhibiting Type 

1 excitability respond more rapidly with higher firing frequency changes to changing 

stimulus magnitude as compared to Type 2 cells, and also decreased propensity to 

synchronize stemming from the shape of their PRC curves [85,157,259]. 

 

Thus, as also discussed below, ACh can play a double edged role in affecting network 

synchrony via the muscarinic receptor system. On one hand, decreasing levels of ACh 

during increased anesthesia levels can promote synchrony, as it has been shown that 

activation of the K+ M-current mediates the transition from Type 1 to Type 2 membrane 

excitability [76], while on the other hand, the increase of ACh-mediated effects during 

reversal can offset the decreasing synaptic efficacies with higher cellular responses 

(increasing steepness of i-f curve). In our modelling results simulated anesthetic effects 

and M-current mediated reversal, we show that we can evoke transitions between high 

frequency asynchronous population behavior and low frequency synchronous activity via 

both mechanisms: by potentiation of IPSPs and inhibition of EPSPs, and ACh-mediated 
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modulation of cell excitability. For higher levels of anesthesia, while both the simulations 

and the experimental data showed increasing MPC, simulated networks exhibited a larger 

increase. This could be due to the fact that our model only represents local network 

interactions, without incorporating the existence of external inputs that could additionally 

desynchronize network activity leading to decreased MPC. For example, in the visual 

cortex, there are non-local network inputs possibly preventing a high level of 

synchronization in the locally recorded network activity and reflected in lower MPC values 

in the experimental data. However, overall, our model results demonstrate that it is 

possible for the population synchronization observed in response to anesthesia to 

develop in response to changes in PSP alone or to concurrently active cellular 

mechanisms. 

 

Predicting Anesthesia Reversal by ACh 

 

Prior experimental studies demonstrated that the behavioral expression of the anesthetic 

state can be reversed by stimulating the cholinergic system of the brain by various means 

in vivo and in vitro in both humans and animals[148,150,260,261]. To date, no modelling 

study has attempted to simulate the reversal of neuronal effects of anesthesia by 

modulating the interaction between cholinergic and other synaptic effects. In this work we 

demonstrated that ACh limited to act only via blocking the muscarinic slow potassium M-

current can reverse the general anesthetic effect on spiking dynamics and population 

activity, via mechanisms described above. Specifically, we showed that decreasing the 

influence of the M-current under simulated anesthesia leads to an increase in firing rate 

and neural interaction measures, showing a population wide reversal of anesthesia-
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induced synaptic changes. This finding suggests a possible cellular mechanism for the 

induced reversal of anesthesia effects on PSPs consistent with experimental 

studies[144,262]. 

 

The role of muscarinic ACh receptors in affecting the state of the animal depends largely 

on the type of general anesthetic used. Desflurane exerts a nonlinear effect on muscarinic 

ACh receptor activation in a concentration-dependent manner [138]. We also showed that 

the addition of decreasing acetylcholine influence via the muscarinic pathway during 

anesthesia (B series) leads to similar reversal endpoints to those with altering NMDA and 

GABA synaptic changes alone (A series). The choice to model changes in anesthetic 

ACh influence (B series) in addition to synaptic changes alone (A series) was made to 

generalize the effects of common inhalational anesthestics which can affect both the 

cholinergic as well as the glutamatergic and GABAergic pathways (Figure I.4). By 

considering solely the effect of changes on IPSPs via GABAR and EPSPs through NMDAR 

we show that not only can changes in population activity (firing rate, synchronization and 

entropy), be accomplished without changes in cholinergic influence but that increasing 

cholinergic influence alone can reverse these effects. This demonstrates that cortical 

cholinergic presence has the potential to mitigate the general effects of inhalational 

anesthesia. In many cases, however, such as for the effects of desflurane, inhalational 

anesthesia can affect muscarinic and nicotinic ACh receptor binding and for this reason 

we decided to model the cooperative effects from changes in synaptic EPSP/IPSP and 

cellular excitability changes via the M-current. In the case of cholinergic reversal, 
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however, this confounded the role of ACh, as the changes in ACh due to anesthesia could 

be argued to be trivially reversed in the reversal states. 

 

In this study, we used measures of synaptic functional connectivity, computed from 

average pairwise correlations of neuron spiking, to quantify changes in overall network 

behavior in both anesthesia and reversal conditions. We showed that the cosine similarity 

in the functional connectivity matrix increased for the full reversal state when compared 

to the high anesthetic state. This means that specific neuron to neuron functional 

connectivity was highly correlated between the awake and reversal states but not the 

anesthesia states. This suggests that the functional topology of a network can be 

reversed through a different receptor pathway than is used to achieve the state of 

anesthesia. Likewise, the population measures of integration and complexity were 

increased by the cholinergic decrease in M-current. In fact, prior experimental studies 

showed that muscarinic receptor activation could reverse isoflurane-induced changes in 

electroencephalogram cross entropy a quantity related to brain functional complexity 

presumed to be associated with the conscious state [262,263]. 

 

In the past, anesthesia reversal has been achieved by a variety of drugs and methods of 

administration in experimental studies. For example, microinjection of nicotine into the 

thalamus led to the recovery of the righting reflex in rodents anesthetized by sevoflurane 

[148], and a similar reversal from isoflurane was observed in response to microinjection 

of histamine into the basal forebrain [264]. Unlike general anesthesia, however, the 
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mechanisms for induced reversal may be specific to the type of anesthetic agent used. 

An example of this can be seen when comparing the effects of the GABAA antagonist, 

gabazine, on the effects of propofol as well as ketamine [265]. The application of gabazine 

led to wake-like responses when rats were sedated with propofol, which acts through 

potentiation of GABAA receptors, but gabazine was ineffective when used during 

administration of ketamine, which has been known to act through modulation of NMDA 

receptors. These previous studies suggest that the phenomena of induced reversal can 

be demonstrated in controlled rodent studies, but a similar effect has been suggested in 

human studies [266]. Another example is the clinical case where a patient’s use of Ritalin, 

a central nervous system stimulant, led to complications achieving sedation under the 

standard general anesthetic dose [267]. In rodents, Ritalin was found to cause emergence 

from sedation induced by isoflurane [268]. 

 

Our results predicting cholinergic recovery of neuronal population dynamics, inter-

neuronal functional connectivity and complexity lends support to the evidence that the 

brain state altered by anesthesia is at least partially reversible. In clinical use, the effects 

of anesthesia can linger after the drug is no longer administered [269]. For this reason, 

there are both translational and phenomenological motivations to investigate induced 

recovery from anesthesia. Our study gives insight into the synaptic and network 

mechanisms by which central nervous system changes caused by anesthesia can be 

mitigated by the administration of a functional agonist. 
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Chapter V 

Conclusion 

 

5.1 Summary 

 

In this dissertation, we investigated the impact of ACh on memory formation and 

anesthetic action by modelling cholinergic influence on neuronal excitability and 

population activity in neuronal networks. In Chapter II we explored how changes in ACh 

tone, through changes of neuronal excitability, can alter the ability for the network to 

encode rate and phase information. We found that in high ACh conditions, high gain is 

beneficial in widening the firing rate distribution for a given range of synaptic inputs. Low 

SFA allows neurons to persist in firing to maintain a representation in frequency space 

and low synchrony facilitated by Type 1 PRC, prevents a reduction in frequency variation. 

For phase coding under low ACh conditions, low gain reduces frequency variation in the 

network, while a Type 2 PRC induces increased synchronizability for phase locking to 

persist. Thus, reductions in ACh level provide two dynamical substrates for phase coding: 

(1) near uniformity in firing rates across the network, and (2) the ability of neurons to 

collectively organize into network-wide synchronous behavior.  

 

This theoretical work was applied to memory formation and anesthetic action (Chapters 

III and IV). In Chapter III we explored how cholinergic influence affects learning through 
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phase remapping of neuronal frequencies during the transition from waking to NREM 

sleep states. In this work, we implemented a neuronal network with spike time dependent 

plasticity and showed that remapping of wake-associated, firing frequency-based 

representations is based on NREM-associated changes in neuronal excitability mediated 

by the ACh-gated slow potassium current (m-current). We also showed that learning-

dependent reordering of sequential firing in the hippocampus during NREM sleep, 

together with spike timing-dependent plasticity (STDP), reconfigures neuronal firing rates 

across the network. This rescaling of firing rates has been reported in multiple brain 

circuits across periods of sleep. 

 

Our reduced model demonstrates that changing ACh levels during wake and NREM sleep 

can play a key role in memory consolidation.  We found that increased functional network 

stability (FuNS) is associated with stronger low-frequency oscillatory patterning of the 

network and predicts the degree of fear memory consolidation. This increased stability, 

in turn, allows for structural network reorganization which facilitates recruitment of new 

cells into memory representations. Namely, when synaptic strength in the model is 

allowed to evolve through STDP, we observed this reorganization of firing rates across 

NREM sleep—with sparsely firing neurons increasing their firing rate substantially, and 

highly active neurons decreasing their firing rate. These results are also observed in CA1 

during sleep-dependent CFM consolidation. We again observed a disruption of these 

effects when the oscillatory network activity was reduced via manipulations of 

interneurons.  
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In Chapter IV we investigated the role of cholinergic influence on the function and reversal 

of the anesthetic mechanism of action. In our neural network models, we used a 

differential evolution algorithm to fit synaptic parameters to match network dynamics 

recorded in vivo in the visual cortex of rodents during anesthesia with desflurane. We 

found that potentiation of inhibitory GABAergic and inhibition of excitatory glutamatergic 

NMDA synaptic signaling does indeed lead to graded decreases in population activity and 

increases in synchronization, as quantified by firing rate and mean phase coherence, as 

well as decreases in network integration and complexity measures.  Additionally, we were 

able to recover changes in functional network connectivity which matched changes seen 

in literature [243,244]. 

 

Additionally, we showed that decreasing the influence of the m-current, mimicking 

increased cholinergic tone, under simulated anesthesia leads to an increase in firing rate 

and neural interaction measures, showing a population wide reversal of anesthesia-

induced synaptic changes. This finding suggests a possible cellular mechanism for the 

induced reversal of anesthesia effects on PSPs consistent with experimental studies 

[144,149]. We also found that considering muscarinic receptor effects of acetylcholine in 

addition to anesthetic-induced synaptic changes predicts reversal of the neurons’ spiking 

activity, functional connectivity, as well as pairwise and population interactions. 

 

Taken together, our results suggest that acetylcholine, by affecting neuronal properties, 

can play a critical role as a universal mesoscopic network mechanism capable of 

regulating network dynamics across cognitive states and underlying what is commonly 

referred to as systems memory consolidation.  
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5.2 Future Directions 

 

Our modelling work was primarily conducted using simplified neuronal models. This was 

apropos for our theoretical work but could use augmentation in applied studies. In the 

future, more comprehensive models that take into account cortical architecture, 

thalamocortical interactions and a broader array of cellular mechanisms will help to fully 

understand the complex roles of cholinergic modulation in producing observed neuronal 

network and behavioral effects under learning conditions and under anesthesia.  For our 

model of memory consolidation, while the form of learning modeled here is not reliant on 

sequential neuronal activation during memory encoding, one possibility is that a similar 

mechanism may be associated with consolidation of memories for events during which 

neurons are sequentially activated [58– 60]. Future studies will be needed to examine 

how temporal patterning of neuronal activity during post-learning NREM sleep relates to 

previously studied “replay” of firing sequences reported in structures like the hippocampus 

during sleep following sequential spatial tasks. One possibility is that sequential replay 

presents a special case of NREM-dependent patterning of firing based on prior wake firing 

rates.  

Finally, I note that while we investigated  cholinergic influences on neural network 

dynamics, the direct causal role of the ACh-induced dynamic network changes on 

memory consolidation remains uncertain.  To show causality, future experiments would 

need to directly link a disruption of the cholinergic signaling with learning deficits. 



  

174 
 

 

 

 

Appendix 

 

 

 



  

175 
 

 
Supplementary Figure II.S1 Network frequency similarity scores for increasing noise with external 

input patterns (A&B) and on different networks (C&D). Low 𝑔̅𝐾𝑠 networks rate code better than high 

𝑔̅𝐾𝑠 networks over all noise levels (A) NSFreq and  (B) 𝑁𝑆̃𝐹𝑟𝑒𝑞 are shown for input patterns. (C) NSFreq and 

(D) 𝑁𝑆̃𝐹𝑟𝑒𝑞  for varying network structure. 
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Supplementary Figure II.S2 Network phase similarity scores for increasing noise for external input 

patterns (A&B) and different network structures (C&D). High 𝑔̅𝐾𝑠 networks phase code better than low  

𝑔̅𝐾𝑠 networks, but phase coding overall is highly noise dependent. (A) NSPhase and (B) 𝑁𝑆̃𝑃ℎ𝑎𝑠𝑒 for input 

pattens. (A) NSPhase and (B)  𝑁𝑆̃𝑃ℎ𝑎𝑠𝑒 for for network structures.  
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Supplementary Figure II.S3. Network frequency similarity scores for increasing excitatory 

coupling with external inputs (A&B) and network structures (C&D). Low 𝑔̅𝐾𝑠 networks rate code 

better than high 𝑔̅𝐾𝑠 networks with increasing performance as coupling increases. (A) NSFreq and (B) 

NS̃Freq for input patterns. (C) NSFreq and (D) NS̃Freq for network structures. 
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Supplementary Figure II.S4. Network phase similarity scores for increasing excitatory coupling 

with varying inputs (A&B) and network structures (C&D). High 𝑔̅𝐾𝑠 networks phase code better than 

high 𝑔̅𝐾𝑠 networks once coupling reaches a sufficient level and decreases for vary strong coupling. (A) 

NSPhase and (B) 𝑁𝑆̃𝑃ℎ𝑎𝑠𝑒 for input patterns. (C) NSPhase and (D) 𝑁𝑆̃𝑃ℎ𝑎𝑠𝑒 for network structures. 
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Supplementary Figure III.S1 Frequency dependence on Time constant and Synaptic Strength. 

The peak frequency of slow oscillations during NREM sleep like state, can be regulated via strength of 

inhibitory connectivity to excitatory cells (A) as well as time constants regulating decay of inhibitory 

postsynaptic currents (B). The specific frequency of slow oscillations during NREM sleep like state does 

not affect the observed dynamic and structural network reorganization. 
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Supplementary Figure III.S2. Effects of all-potentiating STDP Frequency dependence on Time 

constant and Synaptic Strength. 

Left: change of spiking frequencies as a function of the initial spiking frequency of the cell. 

Right: relationship between change of neuronal input (green) and output (black) and spiking 

frequency change.  
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. 

 

  

Supplementary Figure III.S3. Effects of all-depressing STDP 

Left: Change of spiking frequencies as a function of the initial spiking frequency of the cell. Right: 

Relationship between change of neuronal input (green) and output (black) and spiking frequency change.  
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Supplementary Figure IV.S1 B-Series Firing Rate Reversal 

Effects of anesthetic concentration and simulated ACh-induced reversal on relative profiles of neuronal 

firing frequency. Each panel depicts the firing frequency of each neuron in a given anesthetic/reversal 

state (x-axis) compared to its firing frequency in the non-anesthetic condition (B1) (y-axis)  A,B) Neurons 

in B series optimized networks and reversal. 
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Supplementary Figure IV.S2. Error cost analysis for the lowest cost fit.  

For each generation, 10 agents (parameter sets) with the highest cost function from the population of 30, 
were chosen for replacement. Algorithm was repeated until stopping criteria of 100 generations without 
change in lowest cost function value across the population was met and performed on single network.  
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Supplementary Figure IV.S3. Functional Connectivity for Experiment and Simulated Anesthesia and 
Reversal   
A) Example of experimental functional connectivity for 0%-6% anesthesia. Strong overlap can be seen in 
the significant connection found between 0% and 2% however similar connections are seen at all anesthetic 
levels B) Example A-Series functional connectivity. Higher connectivity is seen for A1 and decreases with 
increasing simulated anesthesia. Common connections between all anesthetic states can be observed. C) 
Example of AR Series functional connectivity. Low connectivity is seen for AR1 and increases with gKs 
reversal. Common connections between all anesthetic states can be observed. Single network/experiment 
shown in each case. 
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