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ABSTRACT

Single-Particle Tracking (SPT) in living cells informs the dynamics of target molecules

and enables the investigation of their functions and interactions with other components

in the cell. The quantitative analysis of SPT trajectories from living cells traditionally

relies on the Brownian diffusion model. For molecules with homogenous dynamics or

in well-studied biological systems whose biophysical mobility states are predictable, SPT

analysis is robust and the mobility states of the molecules can be related to their biological

functions in cells. However, for complex or poorly understood biological systems such as

epigenetic modification systems, an objective SPT analysis method that quantify the het-

erogeneous dynamics of target molecules is keenly needed to investigate their functions

and interactions in vivo.

In this Dissertation, I develop a single-molecule tracking analysis framework with

nonparametric Bayesian statistics and anomalous diffusion models to investigate epige-

netic modifications in live bacterial and yeast cells. Chapter II presents a new SPT analysis

method combining nonparametric Bayesian statistics and a supervised recurrent neural

network. The method is named NOnparametric Bayesian Inference for Anomalous dif-

fusion in Single-molecule tracking (NOBIAS). The performance of NOBIAS is validated

with simulated datasets of heterogeneous dynamics, asymmetric diffusion, and a mixture

of anomalous diffusion models. NOBIAS is also applied to experimental datasets from live

cells and identifies anomalous diffusion and asymmetric diffusion in the systems.

DNA methylation in bacterial cells is a marker for specific protein-DNA interactions.

DnmA is a recently characterized DNA methyltransferases (MTase) in Bacillus subtilis,

xvi



responsible for all detectable N6-methyladenosine DNA methylation. In Chapter III, I use

single-molecule tracking and spatial mapping to study of DnmA in live Bacillus subtilis.

The results show that DnmA is regulated by the DNA substrate and correlates with DNA

replication and DNA-RNA hybrid cleavage. This work combines single-molecule imaging

of DnmA and phage predation assays to identify that DnmA is functionally an orphan

MTase regulating gene expression.

Epigenetic modifications in eukaryotes regulate the chromatin structure and the gene

expression level. Histone H3 lysine 9 methylation (H3K9me) is a conserved epigenetic

marker for heterochromatin and gene silencing. Epigenetic modifications rely on writer,

reader, and eraser proteins to establish, maintain and remove modifications. In Chapters

IV and V, I use single-molecule tracking and nonparametric Bayesian statistical analysis to

understand the behaviors of these modifiers in vivo. In Chapter IV, I focus on the H3K9me

reader protein, Swi6, in the fission yeast cell. I present the dynamics of Swi6 following dif-

ferent perturbations including knockouts of related proteins and the engineering of the

Swi6 protein itself. I map Swi6’s distinct mobility states onto their biological roles in liv-

ing cells and show a high-specificity binding mechanism through Swi6 oligomerization.

Chapter V presents the single-molecule dynamics of multiple H3K9memodifiers in fission

yeast. By comparing the dynamics of these modifiers and centering on the two H3K9me

reader proteins Swi6 and Chp2, I propose that chromatin plays an important role to rein-

force interaction and complex assembly on its site rather than just an inserted platform

for interaction.

Through this dissertation, I show a powerful and informative methodology combin-

ing live-cell single-molecule tracking and advanced statistical inference. The dissertation

provides quantitative analysis, detailed statistical models, and their application to epige-

netic modifications in bacterial and yeast cells. This methodology is also applicable to any

system where in vivo single-molecule tracking is feasible.
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CHAPTER I

Introduction

This dissertation expands the analysis of single-molecule trackingwith nonparametric

Bayesian statistics and an anomalous diffusion model and applies single-molecule track-

ing microscopy to investigate epigenetic modifications in live bacterial and yeast cells.

Within this introduction chapter, I include the principles of single-molecule microscopy

and how it can provide the in vivo dynamics of target molecules. I comment on current

single-molecule tracking analysis methods and the Brownian diffusion model. I explain

the principles of nonparametric Bayesian analysis and anomalous diffusion models, and

how they can be applied to trajectory analysis to extract advanced and objective dynam-

ics information. I provide biological background about epigenetics and the two specific

systems I study in this dissertation, DNA methylation in Bacillus subtilis (B. subtilis) and

Histone H3 lysine 9 methylation (H3K9me)in Schizosaccharomyces pombe (S. pombe). Fi-

nally, I summarize the objective of each chapter within the dissertation.

1.1 Single-molecule tracking experiment and analysis

1.1.1 Fluorescence microscopy and single-molecule imaging

The motion and spatial organization of proteins in live cells enable and indicate their

function. A fluorophore is a fluorescent molecule that can emit light upon light excita-

tion. Conventional fluorescence microscopy is limited by the diffraction limit of light as
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emission fluorescence from a single fluorophore is a diffraction-limited spot, and typi-

cally only provides static overlapping snapshots of the target molecule, not the dynam-

ics [1]. Quantitative fluorescencemicroscopy techniques such as Fluorescence Correlation

Spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP), and Fluorescence

Resonance Energy Transfer (FRET) provide robust and quantitative data for investigating

protein properties in vivo and in vitro [2]. With the progress of hardware in microscopes,

fluorophore performance [3–5], ways to label fluorophores [6], and especially new de-

signs of microscopy [7–10], higher spatiotemporal resolution for proteins in live cells is

acquirable. Within these methods, single-molecule tracking in vivo is especially powerful

to reveal dynamic information for the protein of interest.

Single-molecule tracking is achieved by imaging sparse densities of target molecules

to localize one molecule at a time to beat the diffraction limit and avoid overlapping this

cycle (Figure 1.1) [11]. In conventional fluorescence microscopy, the sample is excited by a

laser, and the emission light from the fluorophores in the sample is collected by the camera.

To achieve sparse densities, I use the single-particle tracking Photoactivated Localization

Microscopy (sptPALM) method with an additional activation laser with a connected op-

tical shutter to turn on the activation laser for a short activation time meanwhile turning

off the excitation laser (Figure 1.1). The emission of sparse single-molecule fluorescence

is collected by an Electron Multiplying Charge-Coupled Device (EMCCD) camera to be

converted into digital images and movies.

To localize single molecules, the fluorescence images from collected movies are first

screened in a guessing algorithm that looks for local regions with high intensity that are

potentially a single molecule, then the regions of interest are fitted by a 2D Gaussian to

determine if the candidate is a single molecule. The location of the molecule is acquired as

the fitted peak position of the 2D Gaussian fitting, and the uncertainty of this fit location

is the precision or localization error of the single-molecule position [12]. After this step,

the original fluorescence images series has been turned into very sparse point sets with
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Figure 1.1: (A) imaging sparse single molecules to beat the diffraction limit of bulk flu-

orescence imaging. (B) Fitting single-molecule fluorescence signal to a 2D Gaussian to

precisely localize peak position. (C) Schematic experimental layout of single-molecule

microscopy used in this dissertation, images from Tuson and Biteen [1]
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time and locations of well-fit molecules. Then tracking algorithm connects this 3D set of

points with (𝑥,𝑦, 𝑡) into trajectory datasets based on how close the points are in space

and in time and within the bounds of a preset threshold [12].

The final step of the quantification of the single-molecule dynamics of a targetmolecule

is the analysis of the dynamics within these tracks. Despite the different biochemical func-

tions molecules carry out within the crowded and complicated live cellular environment,

conventionally Single-Particle Tracking (SPT) trajectories are analyzed with the assump-

tion of Brownian motion [13,14]. The diffusion coefficientss(D) is defined by Fick’s law of

diffusion 𝐽 = −𝐷∇𝜙 . Where 𝐽 denotes the diffusion flux, 𝜙 is the concentration. In Brown-

ian motion, the mean squared displacement (MSD) of the track is linearly proportional to

the time lag (𝜏) and𝐷 with the following relation:𝑀𝑆𝐷 = 2𝑛𝐷𝜏 , where n is the dimension-

ality of the trajectories (n = 2 in the two-dimensional experiments described in this thesis).

The simplicity and elegant statistical properties of Brownian motion enable fast and easy-

to-implement analysis of SPT datasets. The oldest but still very powerful approach for SPT

analysis is to analyze each trajectory: a linear regression of the time-averaged𝑀𝑆𝐷 of the

trajectory and 𝜏 is an estimator of D [13] (Figure 1.2). The distribution of D shows the

occupancy of molecules with different diffusion coefficients, which could correspond to

distinct diffusive patterns of the molecules. For example, the target protein could be bound

or unbound in the live cells, and the single-trajectory D histogram would be a two-peak

distribution with a lower D peak for bound molecules and a higher D for unbound ones.

The comparison of the D distribution upon perturbations to the system—for example mu-

tating the molecule or changing its environment— allows us to monitor the change in the

dynamic behavior of the molecule. Because it addresses the issue of correlation between

adjacent steps in the MSD estimator, the covariance-based estimator (CVE) is also widely

applied for trajectories collected in camera systems [15].

Single-trajectoryMSD calculation of diffusion coefficients is straightforward but greatly

constrained by the assumption that oneD value can represent the diffusion of themolecule
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Figure 1.2: 1) Isolated fluorophores are sequentially imaged in a live cell. (2) Each single

molecule is localized in each imaging frame by fitting with a 2D Gaussian to estimate

its peak position, and localizations are linked into single-molecule trajectories. (3) The

MSD for each time lag (𝜏) is calculated; the slope of the MSD vs. 𝜏 curve is proportional to

the average diffusion coefficient of each trajectory. (4-6) Single-molecule displacements at

different 𝜏 are considered together in probability models and fit into a two-state kinetics

model to reveal a slow and a fast mobility state. This figure is from Tuson and Biteen [1].
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within this track. This assumption could be easily violated as the trajectory could be cap-

turing a molecule that undergoes a transition between different functions. For example,

a DNA-binding protein could unbind from DNA during the monitored time window of

a trajectory. Under similar cases, the mobility of the molecule could undergo great tran-

sitions and cannot be captured by one D value. Within the context of live cell imaging,

these trajectories with mobility transitions could provide crucial information about reac-

tion kinetics. The other limitation of the single-trajectory MSD method is that for every

single trajectory once fitted through the MSD linear regression, the uncertainty from the

linear fitting is very hard to further take into consideration for the distribution of all

D. Linear regression typically applies R-squared (𝑅2
) of fitting as the threshold of fitting

quality. Due to the limited track length, the arbitrary 𝑅2
-based threshold leads to loss of

data and biased D value. To overcome these limitations, biophysicists come up with the

ensemble-averaging method [16–18]. Instead of analyzing each trajectory individually,

displacements of all tracks at different 𝜏 are measured and pooled together to be fit for

the probability density distribution of the Brownian motion. These methods are typically

referred to as kinetics model fitting (Figure 1.2). The ensemble averaging methods have

overcome two limitations in the single-trajectories analysis: first, it can fit into multiple

mobility states with additive terms in the probability model without assuming that one

track has only one mobility state; second, it fits all SPT data together with probability

model inference and gives robust uncertainty measurement.

Although kinetics model fitting is powerful and robust, one challenge for it is that the

probability model of displacement has to be predetermined [18]. Specifically, the probabil-

ity distribution of the single-molecule displacement needs prior knowledge of the num-

ber of mobility states, which is often unknown for biomolecules in live cells. To consider

the question statistically, if Brownian motion is assumed, the displacements of single-

molecule tracks from the same mobility state follow a 2D Gaussian distribution with a

mean value of (0,0), and the variance of this 2D Gaussian is 4𝐷𝜏 . The potential hetero-
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geneity within the tracks with an unknown number of mobility states leads to a Gaus-

sian mixture model for the entire displacement distribution. The tracks are temporal data

which allows us to apply time-series and Markov models to solve this Gaussian mixture

model. Considering the statistical features of the SPT dataset, nonparametric Bayes statis-

tics will be a powerful tool to objectively determine the number ofmobility states and infer

the associated parameters.

In addition to these mentioned localization and trajectory based methods, there are

also many other methods to quantify dynamics, such as FCS based methods and mapping

between diffusivity and cellular structure [19–22]. Other experimental efforts, such as

structured illumination modulation and minimal photon fluxes, have also improved the

spatiotemporal resolution of single-molecule tracking experiments [23–27]. Within this

dissertation I focus on the sptPALM approach and analysis, and the analysis principle

could be applied to related SPT experiments.

1.1.2 Nonparametric Bayesian statistics for SPT

In model fitting with frequentist inference, the unknown parameter value is fixed. For

example, in the single-molecule tracking analysis, the single-trajectory MSD linear re-

gression and the ensemble average kinetics model both belong to frequentist inference,

where there are fixed parameters to be estimated. However, the model for the dynamics

of the motion is not certainly known. For example, the number of mobility states and the

diffusion model for each diffusive state are often unknown to us. Bayesian statistics is a

different philosophy that considers parameters as random variables and assigns proba-

bilities to parameters. Bayesian statistics estimate parameters’ distribution given the data

and some prior information about the system. The basis of Bayesian statistics is Bayes

theorem as below:

𝑝 (𝜃 |𝑦) = 𝑝 (𝑦 |𝜃 )𝑝 (𝜃 )
𝑝 (𝑦) (1.1)

Where 𝜃 is the parameter in the model and 𝑦 is observed data. The posterior distribu-
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Figure 1.3: 𝑥𝑡 in the framework is the hidden layer, which denotes the state at the time,

𝑦𝑡 is the emission layer with the observed data. The transition between 𝑥𝑡 is determined

by 𝜋𝑖 , the transition matrix, and the emission layer and hidden layer are connected with

emission parameter 𝜃𝑖 . The illustration is from Johnson, et al. [32]

tion for the parameter 𝑝 (𝜃 |𝑦) is determined based on the data likelihood 𝑝 (𝑦 |𝜃 ) and the

prior information 𝑝 (𝜃 ). The parameter is estimated through sampling from the posterior

distribution based on prior data.

When pooling 2D displacements from all trajectories at different time lags in the ki-

netic model fitting method, the temporal information that some steps are adjacent is lost.

To make full use of the temporal information, the Hidden Markov Models (HMM) can

be applied for heterogeneous single-molecule tracking datasets under the Brownian mo-

tion assumption [28]. HMM is a Bayesian model for time series data with two-layer: the

emission layer and the hidden layer (Figure 1.3). In the scenario of single-molecule track-

ing, the emission layer is the displacement or the observed data, and the hidden layer

is the corresponding Brownian diffusion mobility states. The emission at each step only

depends on that state’s diffusion coefficient, and the transition between hidden states in

time is captured by a transition matrix [29–31].

HMM alone provides a time-series Bayesian approach to estimate the posterior for D

of each state, the transition between states, and the assignment of each single-molecule

displacement their states, however, it still needs a predetermined number of states. To

tackle this problem, the Dirichlet process is introduced as the prior in the HMM to build a

Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM) which can objectively
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determine the number of states in the HMMmodel give the emission dataset [33,34]. In an

HDP-HMMmodel, the number of states in the prior is unbound and to be estimated from

the data, and is flexible to be further learned providing more data. HMM can be sampled

through Gibbs sampler or mean field variational inference through iterative forward and

backward message-sending algorithms [35,36]. For HDP-HMM, a sticky parameter can be

added to prevent over-splitting and fast switching of states, andweak-limit approximation

can be applied to accelerate the algorithm [37].

1.1.3 Anomalous diffusion and neural network classification

Usually, Brownian Motion (BM) is assumed for SPT datasets due to the limitation of

data quality and limited prior knowledge about the biological system. The mathematical

simplicity of Brownian motion enables robust and fast quantification of SPT data [13,14],

however, in living cells, the motion of target molecules is typically under specific func-

tions and affected by the crowding cellular environment. More informative and realistic

motion models should be applied to understand the dynamics of biomolecules in live cells.

Anomalous diffusion models contain more information and capture the living molecules

better than simplified BM [38]. MSD of anomalous diffusion has the following relation

with 𝜏 :

𝑀𝑆𝐷 = 2𝑛𝐷𝜏𝛼 (1.2)

Where different from the linear relation of BM, there is exponent index 0 < 𝛼 < 2.

Anomalous diffusion with 𝛼 < 1 is subdiffusion and diffusion with 𝛼 > 1 is referred to

as superdiffusion (Figure 1.4). BM is a special case of anomalous diffusion with 𝛼 = 1. For

living molecules, the crowded cellular environment or their specific functions in the cell

result in the finding that nearly all molecular motion is anomalous [39–41].

The characterization of anomalous diffusion models from SPT trajectories is a chal-

lenging task. Physicists try to address this challenge with developments of diffusion mod-

els and advances in computer science specifically in neural networks [43–45]. In a 2021
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Figure 1.4: The relation between MSD and the time lag for different diffusion models

is shown in left (normal scale) and right (log-log scale). Different diffusion models are

in different colors: Directed (black), superdiffusion (green), Brownian (blue), subdiffusion

(red), and confined diffusion (purple). This figure is from Manzo et al. [42]

competition for anomalous diffusion classification, ANDI, neural network-based methods

showed excellent performance [46, 47]. This competition result indicates the direction

for the future of anomalous diffusion analysis: the combination of physics and stochas-

tic process theory with exceptional computational power provided by the neural net-

work [46, 47]. The recurrent neural network could not only be applied to classify the

diffusion type given the tracks data but also can potentially provide a regression model to

estimate the anomalous exponent α and to detect the transition step of diffusive models

within one trajectory [45]. The performance of a supervised neural network greatly de-

pends on the training of the network. Simulation of specific anomalous diffusion models

can provide huge training sets. The performance of the trained model on experimental

data greatly depends on the length of each single-molecule trajectory, which can range

from hundreds of steps for the SPT dataset of polymer or material science to only tens

of steps for biosamples and live cell systems. The expertise regarding the biological sys-

tems to predict candidate anomalous diffusion models of the trajectories could narrow the

training set down to increase the neural network performance.

10



1.2 Epigenetic modifications

Gene or DNA sequence encoding protein information is the fundamental basic unit

of an organism, however, the behavior of the living system is not completely determined

through genes. There exist phenotype changes that are independent of the DNA sequence

alteration, and these changes play important roles in the living systems and also could be

inheritable through generations [48]. The regulation of gene expression without altering

DNA sequence is called epigenetics, and it is conserved from prokaryotes to eukaryotes

and in multiple forms including DNA modifications and histone modifications [49, 50].

There are various functions epigenetics modifications play in different organisms, in gen-

eral DNA or histone methylation is a silencing marker while acetylation on the oppo-

site way is an active transcription marker [51]. Specifically in bacterial cell DNA N6-

methyladenosine (m6A) is well known as part of the Restriction-Modification systems

for bacterial phage defense [52], but also m6A is known to participate in Bacterial DNA

replication, repair, and transcription as well [53]. In eukaryotic cells, there are both DNA

modifications and histone modifications. Long DNA is wrapped around histone octamers

to form nucleosomes and further form chromatins, including gene transcription active

euchromatin and silenced heterochromatin. The histone epigenetic modifications are the

key to the regulation of the structure of euchromatin and heterochromatin thus regulating

the structure of the entire genome [54]. All these different epigenetics modifications are

carried out by epigenetics modification proteins, which can come in three types, writer

(like methyltransferase, acetylase), reader, and eraser (demethylase) [55]. The study of

how these modification proteins behave in the living cell would be crucial for us to under-

stand the epigenetic modification mechanism. Conventional studies of epigenetic modifi-

cations are carried out with in vitro biochemical assays, targeting the modified substrates

and phenotypes to understand the role of each modification [56–58]. The advances in

the single-molecule microscopy and the fluorophore labeling methods enable the direct

in vivo observation of epigenetic modification proteins motions. The dynamics of these
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modifiers inform on their function and regulatory mechanism for the corresponding epi-

genetic modifications. In this dissertation, I focus on epigenetic modifications in two dif-

ferent organisms: prokaryote bacteria Bacillus subtilis DNA m6A methylation and the

eukaryote S. pombe H3K9me.

1.2.1 DNA methyltransferase DnmA in Bacillus subtilis

As prokaryotic genomes are not organized in the units of nucleosomes, DNA methy-

lation is the predominant form of epigenetic modifications, which specifically includes

N6-methyladenine (m6A), 5-methylcytosine (m5C), and N4-methylcytosine (m4C) [59].

m5C is well-studied in eukaryotes regarding gene regulation and cell development. Bac-

terial genomes harbor all these 3 types of DNA modifications, and currently, the most

well-studied DNAmethylation system is the restriction-modification (RM) system for the

defense of bacteria against bacteriophage infection [52]. DNA methylation is modified

through DNA methyltransferases (MTase) by adding a methyl group to a nitrogenous

base in a sequence-specific context [60]. The unmethylated DNA sequence is a marker

for the restriction endonuclease to degrade the target ectopic gene [52]. MTases outside

RM systems which don’t have a paired endonuclease are called orphan MTases, and two

well-studied orphanMTases, theDammethylase of Escherichia coli andCcrMmethylase of

Caulobacter crescentus, have been shown to methylate DNA which regulates many phys-

iological processes including the cell cycle, DNA replication, mismatch repair, and epige-

netic gene expression [53, 61]. The development of the single-molecule real-time (SMRT)

sequencing method provides a powerful platform for the detection of methylation sites

[62]. Bioinformatic approaches are then used to identify the gene that encodes themethyl-

transferase. The function and regulatory mechanism of m6A in gram-positive bacteria are

much less studied compared with gram-negatives. SMRT sequencing was used to show

that the newly identified MTase DnmA is responsible for all the detectable m6A methyla-

tion in the genome of Bacillus subtilis, a prototypical gram-positive bacterium [63]. DnmA
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specifically recognizes nonpalindromic 6 base pair sequence 5
′
GACGAG-3

′
and methy-

lates the 5th adenine. DnmA is responsible for all detectable m6A methylation within

Bacillus subtilis. The 5
′
-GACGAG-3

′
m6A methylation has been shown to regulate pro-

moters in Bacillus subtilis PY79 strain, and the absence of this m6A results in increased

binding of ScoC, a transcriptional repressor, to the promoter of several genes including

scpA [63]. Thismechanism indicates thatm6A in B. subtilis could regulate gene expression,

however, other roles of m6A remains unclear. Whether DnmA is part of the RM system

or is an orphan MTase is also unknown. It is shown that 99.7% of the 5th adenine in 5
′
-

GACGAG-3
′
motifs has already been methylated. Considering the active replication of B.

subtilis DNA, how the MTase DnmA cooperates with the DNA replication to maintain

this high methylation level remains unknown. Direct observation of DnmA localization

and dynamics at the single-molecule level within the live cell could provide crucial in vivo

information to understand how DnmA and other MTases works in the live cell. Single-

molecule imaging has been applied to study DNA polymerases and DNA repair proteins

in B. subtilis [64–66], and the multicolor imaging method could help understand the cor-

relation between DnmA and the DNA replication machinery.

1.2.2 H3K9me modification proteins in fission yeast

The chromatins of eukaryotes are divided into euchromatin and heterochromatin based

on the density of nucleosomes. DNA sequences within euchromatin are transcription ac-

tive and genes within heterochromatin are silenced as compact heterochromatin struc-

ture blocks RNA polymerase out. H3K9me is one of the most important conserved epi-

genetics markers for the formation of heterochromatin throughout all eukaryotes from

fungi to mammals [54]. H3K9me is directly related to the regulation of chromatin struc-

ture maintenance and post-transcriptional silencing [48,67]. The successful establishment

and maintenance of H3K9me play a central role in the integrity of the genomic struc-

ture [54]. The dysfunctional H3K9me pathway is shown to cause multiple diseases in-
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cluding cancers and inheritable gene diseases [68]. The H3K9me modification, like all

the epigenetic modifications, is carried out through three types of histone modification

proteins: writer, reader, and eraser proteins. Despite the H3K9me’s importance and the

studies that have already been carried out, the complexity of the system makes it still

challenging for us to completely understand the H3K9me regulatory pathway. Various

experimental tools including genetic functional assays, Chromatin Immunoprecipitation

Sequencing (ChIP-Seq), chromosome conformation capture (3C) sequencing, biochemical

pull down, in vitro calorimetry binding assays, and structure of key proteins, have been

applied to investigate the H3K9me pathway [56, 58, 69, 70]. However, in addition to these

efforts, in vivo information is keenly needed to understand the H3K9me regulation in

living cells.

Schizosaccharomyces pombe or fission yeast is a commonly used model system to un-

derstand epigenetic modifications [71]. As a single-cell eukaryote, the H3K9me regulatory

system of S. pombe is highly conserved. As S. pombe has no detectable DNA methylation,

it is an ideal system to study histone methylation in eukaryote cells. Clr4, as a family

conserved SUV49 SET histone methyltransferase family, is the solely H3K9 MTase in S.

pombe and thus serves as the writer protein [72]. H3K9me reader proteins are the Hete-

rochromatin Protein 1 family (HP1) proteins and there are two HP1 proteins in S. pombe

Swi6 and Chp2 [73]. Swi6 is the more abundant HP1 protein in S. pombe and played an

important role in ensuring chromatin integrity and inheritance. Swi6 in the cells exists

in the form of a dimer, where each monomer consists of a chromodomain (CD), chro-

moshadowdomain (CSD), and a hinge region [74]. CD domain is the H3K9me recognition

domain, and CSD is the dimerization interface and reported to mediate an oligomerization

of Swi6 [75]. The hinge region of Swi6 does not have a fixed structure but its positively

charged and could bind to nuclei acid like DNA or RNA [76]. Previous in vivo and in vitro

fluorescence imaging data has shown HP1𝛼 proteins form foci that could colocalize with

heterochromatin regions in the nucleus [77, 78]. Swi6 is also reported to potentially go

14



through a liquid-liquid phase separation mechanism [79]. Swi6 can bind to Epe1, a puta-

tive H3K9me demethylase eraser and an anti-silencing factor [80,81]. Genetic sequencing

and functional assays both show that Swi6 is necessary for the maintenance of epigenetic

silencing, but how its function is realized in live cells remains barely known.

The other HP1 protein in S. pombe, Chp2, is 100-fold less highly expressed than Swi6

despite the shared structure: both have a CD domain for H3K9me recognition and a CSD

domain as the dimerization interface [82]. Chp2’s primary known function is to recruit

the Snf2/Hdac Repressive Complex (SHREC), which is the fission yeast Nucleosome Re-

modeling and Deacetylase (NuRD) complex equivalent [83, 84]. The NuRD complex in

mammalian cells is one of the remodeler complexes that play an important role in post-

transcriptional silencing, genome integrity, and cell cycle regulation [85]. The SHREC

complex in the S. pombe consists of two modules: the remodeler module which includes

histone remodeler Mit1, and the deacetylase module which includes the H3K14 deacety-

lase Clr3 [83, 86, 87]. Chp2 is considered part of SHREC as well, along with two other

proteins, Clr1 and Clr2, which connect the two modules of SHREC [87]. The structural

information about the SHREC complex and the interaction between Chp2 and Mit1 have

been thoroughly studied [83, 87], however, how these histone-modification proteins in-

teract in vivo is still poorly understood. Clr3 and Epe1 are reported to be competitors for

their pro-silencing and anti-silencing roles, and they are regulated through two different

HP1 proteins Swi6 and Chp2 [88,89]. The relation between these two structurally similar

HP1 proteins and their regulatory roles in H3K9me is not understood at the live cell level

with high spatiotemporal resolution. In the scale of the entire chromatin, how the histone

modification complexes assemble within the crowding chromatin environment and how

multiple components from multiple complexes cooperate or compete with each other re-

mains unknown. Studying the H3K9me-centered histone modification mechanism in vivo

would open up a methodology for other similar complexes regarding epigenetic modi-

fications and understand the role of heterochromatin in these complexes’ assembly and
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function.

1.3 Thesis outline

This thesis aims to expand single-molecule tracking analysis to include nonparamet-

ric, asymmetric, and anomalous diffusion models. Applications of some features of the

new analysis to several biological systems regarding epigenetic modifications demon-

strate how powerful and informative the live-cell single-molecule tracking combined with

statistical inference is.

In Chapter II, I present a new SPT analysis framework NOnparametric Bayesian In-

ference for Anomalous diffusion in Single-molecule tracking (NOBIAS) which combines

nonparametric Bayesian statistics, anomalous diffusion models, and a neural network to

analyze SPT datasets with heterogeneous, asymmetric dynamics and anomalous diffusion.

I explain the statistical model for this framework which consists of a Bayesian module and

a neural network module. Then I validate the performance of the framework with simu-

lated SPT datasets and an experimental SPT dataset.

In Chapter III, I use single-molecule tracking and localization to understand the dy-

namics and spatial pattern of the DNA methyltransferase DnmA in Bacillus subtilis. I

characterize the role of DnmA methylation and its relation with DNA replication with

single-molecule tracking and mapping experiments under different disruptions, including

replication arrest, aberrant DNA-RNA hybrids, and DNA-binding deficient mutants. My

results suggest DnmA is regulated through the DNA methylation and RNA-DNA hybrid

level.

In Chapter IV, I present the nonparametric Bayesian statistical analysis of the single-

molecule dynamic of the HP1 protein Swi6 in the yeast model system Schizosaccharomyces

pombe. Nonparametric Bayesian statistics reveal four biophysical mobility states. Through

the deletion of related epigenetic proteins and the engineering of Swi6, the biochemical

meanings of these four mobility states are determined. In the end, I conclude that a multi-
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valence mechanism through Swi6 oligomerization enables its low-affinity high-specificity

binding to H3K9me.

In Chapter V, I apply single-molecule tracking and the NOBIAS framework to under-

stand the role of heterochromatin in HP1 protein complex assembly. I perform single-

molecule tracking for the two HP1 proteins in S. pombe, Swi6 and Chp2, together with

other proteins that form complexes with them. With NOBIAS dynamics analysis and spa-

tial mapping of these proteins, I conclude that there exists a general mechanism for HP1

protein complex formation: H3K9 methylation enforces interactions and complex assem-

bly at heterochromatin sites and attenuates off-site interactions.

Finally, in Chapter VI, I summarize the conclusions of this dissertation and present

promising future research directions regarding the SPT analysis development and the ap-

plication of SPT to study epigenetics in different organisms and systems beyond those

mentioned in this dissertation.
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CHAPTER II

Analyzing Anomalous Diffusion in Single-Molecule

Tracks with Nonparametric Bayesian Inference

The work presented in this chapter was previously published in

Frontiers in Bioinformatics.

Chen, Z., Geffroy, L., and Biteen, J.S.

NOBIAS: Analyzing anomalous diffusion in single-molecule tracks

with nonparametric Bayesian inference

Frontiers in Bioinformatics, 1: 742073 (2021). DOI: 10.3389/fbinf.2021.742073

In this work, I conceptualized the proposed statistical framework in the project. I imple-

mented the algorithm of the framework into open access software. I validated the frame-

work with my simulated data and experimental data provided by Lauren Geffroy.

2.1 Introduction

The biophysical dynamics of biomolecules reflect the biochemical interactions in the

system, and these dynamics can be quantified within a dataset of single-particle trajec-

tories obtained by tracking individual molecules. The invention of the super-resolution

microscope [7–10, 90] and Single-Particle Tracking (SPT) methods [11, 91–93] have made
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possible investigations of biomolecular dynamics at a high temporal and spatial resolu-

tion both in vitro and in vivo. Moreover, quantitative algorithms can connect the real-

time dynamics from biophysical trajectories to biochemical roles to uncover whether a

molecule interacts with other cellular components [94], freely diffuses [95], is actively

transported [96], or is constrained to a certain region [97].

Conventionally, SPT trajectory datasets have been assumed to be Brownian, such

that the mean squared displacement (MSD), of each track is linearly proportional to the

time lag, τ, and the diffusion coefficient, D, can be calculated from a linear fit to this

curve [13, 14]. This Brownian motion assumption works accurately for freely diffusing

molecules in solution. Despite the accessibility of this method, it has a simplified assump-

tion that the molecule is freely diffusing with a single diffusive state (a single D value)

for each trajectory. In the complicated cellular environment, however, multiple diffusive

states, each characterized by an average D, can exist—for instance due to binding and un-

binding events— and molecules can transition between different states to produce hetero-

geneity evenwithin single trajectories. To reveal these heterogeneous dynamics, probabil-

ity distribution-based methods such as cumulative probability distribution [16, 98], have

been applied. Probability distribution-based models use kinetic modeling with a predeter-

mined number of diffusive states and are fit to histograms of displacements calculated at

different time lags. These probability-based kinetic models pool displacements from the

SPT dataset to estimate the D and weight fraction for each diffusive state in the model.

Probability distribution-based analytical tools [17, 18] have been widely applied to SPT

datasets with extra corrections that consider the experimental microscopy data collec-

tion process. These corrections include localization error [15], confinement [99], motion

blur [100, 101], and out-of-focus effects [102] in the probability model.

For some well-studied biological systems in which the biochemical states of molecules

have been determined through other methods, a fixed-state number analytical tool can be

suitable for quantifying the dynamics and weight for each state [103, 104]. However, SPT
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can also be used as the beginning step to investigate biomolecule dynamics without prior

knowledge of howmany diffusive states there supposed to be [30,105,106]. In these cases,

how to objectively determine the number of diffusive states is a great challenge. More-

over, these models provide a D value for each subpopulation, but they do not assign the

diffusive state to each individual single-molecule step, nor do they quantify the transition

probability between distinct diffusive states within one trajectory. However, these transi-

tion probabilities can reveal important biological meaning such as the presence of critical

biochemical intermediates [106].

Bayesian statistics and Hidden Markov Models (HMM) have been applied to analyze

SPT datasets without assuming a predetermined number of diffusive states and to access

the probabilities of transitioning between distinct states [29–31, 107]. vbSPT, which was

one of the first applications of HMM for SPT analysis [29], uses a maximum-evidence

criterion to select between models with different numbers of diffusive states; within each

model, a fixed-order HMM is used to infer the diffusion coefficient, weight fraction, and

transition probabilities for each state.More recently, nonparametric Bayesianmodels based

on Dirichlet processes were combined with HMM to recover the number of diffusive

states from SPT trajectory datasets, such as in single-molecule analysis by unsupervised

Gibbs (SMAUG) [31] and DSMM [107]. In these models, the motion of the molecule is

approximated to be symmetric and Brownian, which is an oversimplification considering

the crowded environment and various interaction partners for biomolecules in cells.

To move beyond Brownian motion, here we consider a more general random walk

family: anomalous diffusion. In anomalous diffusion, MSD and τ are related by a power

law distribution,𝑀𝑆𝐷 ∼ 𝜏𝛼 , where α is the anomalous diffusion exponent [38]. Brownian

motion is a special case of anomalous diffusion (α=1), and other cases can be further

divided into subdiffusion (α>1) and superdiffusion (α<1). Biomolecules have been reported

to diffuse anomalously in many situations, such as constrained membrane protein motion

[39], the facilitated diffusion of DNA binding protein [108], and active transportation of
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cargoes [40]. Different designs of neural networks effectively classify the diffusion type

of trajectories [43–45, 109], however these analyses typically assume that each track is

dynamically homogeneous and is characterized by a single type of diffusion and a single

D value. It remains a challenge to classify the diffusion type within a trajectory when

considering the possibility of changes in dynamics or diffusion types within a single track.

Here we introduce the NOnparametric Bayesian Inference for Anomalous diffusion in

Single-molecule tracking (NOBIAS) framework to address the assumptions and simplifi-

cations discussed above and provide a more physiologically relevant analysis algorithm

to quantify the dynamics encoded in SPT datasets (Fig. 2.1). In particular, NOBIAS recov-

ers the number of diffusive states and predict the diffusion type for each diffusive state,

even in heterogeneous trajectories. The NOBIAS framework consists of two modules. The

first module uses an Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM)

with multivariate Gaussian emission to recover the number of diffusive states and infer

their corresponding diffusion coefficients and weight fractions. This module also assigns

each single-molecule step a diffusive state label to provide the state label sequence and

the matrix of transition probabilities. In the second module, the original trajectories are

segmented by diffusive state label and a pre-trained Recurrent Neural Network (RNN) is

used to classify these segments and assign the diffusion type (Brownianmotion, Fractional

Brownian motion, Continuous Time RandomWalk, or LévyWalk) for each diffusive state.

We simulated trajectory datasets with mixtures of heterogeneous dynamics and diffusion

types to validate the NOBIAS framework, and we analyzed the SPT dataset from experi-

mental measurements of the SusG outer-membrane protein in living Bacteroides thetaio-

taomicron (B. theta) to access its dynamics and anomalous diffusion behaviors, which are

consistent with its role in starch catabolism in gut microbiome. This framework uses non-

parametric Bayesian statistics and Deep learning to thoroughly analyze a single-molecule

tracking dataset. It provides an objective method to determine the number of diffusive

states in an SPT dataset and accesses the multidirectional dynamics of each state. A fur-
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ther diffusion type classification for each diffusive state is also included in the framework.

The NOBIAS framework overcomes some oversimplified assumptions in SPT analysis and

provides a powerful tool to fully make use of single-molecule tracking data.

2.2 Methods

2.2.1 Hidden Markov model

A HMM infers a system with a discrete-valued sequence of unobservable states that

can be modeled as a Markovian process [28]. The HMM assumes that the observed data

have a hidden discrete-valued state sequence, and at each observed time, the observed

data only depends on its hidden state. In our NOBIAS application of the HMMmodel, the

observed data is the single-molecule displacements and the hidden state is the molecule’s

distinct biophysical diffusive state.

Suppose 𝑧𝑡 is the hidden state of the Markovian chain at time t and 𝑦𝑡 is the observed

data at time t, the HMM follows the following generative process:

𝑧1 ∼ 𝜋 (0) , 𝑧𝑡+1 |𝑧𝑡 ∼ 𝜋 (𝑧𝑡 ) , 𝑦𝑡 |𝑧𝑡 ∼ 𝑓 (𝜃 (𝑧𝑡 )) (2.1)

Here, π refers to the transitionmatrix of a HMMand 𝜋 (𝑧𝑡 ) is the 𝑧𝑡 row of the transition

matrix and is the transition distribution for state 𝑧𝑡 . Given 𝑧𝑡 and the corresponding emis-

sion parameter 𝜃 (𝑧𝑡 ) , 𝑦𝑡 is independently generated from the emission function 𝑓 (𝜃 (𝑧𝑡 )).

In NOBIAS, the observed data, 𝑦𝑡 , is the vector of single-step displacements, Δ𝒙𝒕 , and the

emission function is a zero-mean multivariate Gaussian distribution, and the emission

parameter is the set of diffusion coefficients, 𝑫𝑧𝑡 :

Δ𝒙𝒕 |𝑧𝑡 ∼ 𝑁𝑜𝑟𝑚(0, 4𝑫𝑧𝑡𝜏)
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Figure 2.1: NOBIAS workflow(1) SPT trajectory datasets are processed in the NOBIAS

HDP-HMMmodule: the observed data (the displacements, Δ𝑥 ) are analyzed in the context
of the emission parameters (the diffusion coefficients, 𝐷). The state sequence,𝑧, indicates

the diffusive state corresponding to each step, and the transition matrix, 𝜋 , is estimated

with a Hierarchical Dirichlet process prior using concentration hyperparameters 𝑎 and 𝛾

and the sticky parameter, 𝜅. The HDP-HMM module provides 𝐷 and the weight fraction

for each diffusive state, the 𝜋 for transition probabilities between these states, and a state

label assignment for each SPT step. (2) In the NOBIAS RNN module, trajectory segments

of the same diffusive state are collected and put in a pre-trained RNNwith two long short-

term memory (LSTM) layers to classify the diffusion type for each diffusive state.
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2.2.2 Dirichlet process for Nonparametric Bayesian

In NOBIAS, Dirichlet Process (DP) is used in the prior for the parameters of a mixture

model with an unknown number of components. A random probability measure, 𝐺0, on

a measurable space, Θ, is distributed according to a DP when [33]:

(𝐺0(𝐵1), ...,𝐺0(𝐵𝑛)) |𝛾, 𝐻 ∼ 𝐷𝑖𝑟 ((𝛾𝐻 (𝐵1), ..., 𝛾𝐻 (𝐵𝑘))) (2.2)

Here,Dir is a Dirichlet distribution,H is a basemeasurement,𝛾 is a positive concentra-

tion parameter, and {𝐵𝑖}𝑛𝑖=1
is a finite partition of Θ. In this case, we write𝐺0 ∼ 𝐷𝑃 (𝛾, 𝐻 ).

From this definition follow two properties of DP. First, if𝐺0 ∼ 𝐷𝑃 (𝛾, 𝐻 ), then 𝐺0 is

atomic and can be written as:

𝐺0 =

∞∑︁
𝑖=1

𝛽𝑖𝛿𝜃𝑖 (2.3)

Here, 𝛽𝑖 is a weight and 𝛿𝜃𝑖 is a unit-mass measure at observation𝜃𝑖 |𝐻 ∼ 𝐻 .

Second, based on the conjugacy of the finite Dirichlet distribution, given a set of ob-

servations 𝜃1, .., 𝜃𝑁 where 𝜃𝑖 ∼ 𝐺0, the posterior distribution for a Dirichlet process 𝐺0

is:

𝐺0 |𝜃1, ..., 𝜃𝑁 , 𝐻,𝛾 ∼ 𝐷𝑃 (𝛾 + 𝑁, 𝛾

𝛾 + 𝑁 𝐻 + 1

𝛾 + 𝑁

𝑁∑︁
𝑖=1

𝛿𝜃𝑖 ) (2.4)

A stick-breaking process is used to construct the weight parameter 𝛽𝑖 as follows:

𝛽𝑖 = 𝑣𝑖

𝑖∏
𝑙=1

(1 − 𝑣𝑙 ), 𝑣𝑙 |𝛾 ∼ 𝐵𝑒𝑡𝑎(1, 𝛾), 𝑖 = 1, 2, ...

In this process, the weight 𝛽𝑖 comes from a unit stick according to a weight that is

beta-distributed based on the remaining stick length after the last breaking. The weights

from this construction, which is denoted 𝛽 ∼ 𝐺𝐸𝑀 (𝛾), have been proven [110] to be the

weights 𝛽𝑖 of a Dirichlet process as in Eq2.3.

For each value of 𝜃𝑖 , a random indicator variable 𝑧𝑖 is used to denote that 𝜃𝑖 = 𝜃
′
𝑧𝑖
, and
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then a predictive distribution of 𝑧 can be written as:

𝑝 (𝑧𝑁+1 = 𝑧 |𝑧1, ..., 𝑧𝑁 , 𝛾) =
𝛾

𝛾 + 𝑁 𝛿 (𝑧, 𝐾 + 1) + 1

𝛾 + 𝑁

𝑁∑︁
𝑖=1

𝑁𝑘𝛿 (𝑧, 𝑘)) (2.5)

Where 𝐾 is the current unique number of values of 𝑧 and 𝑁𝑘 is the number of 𝑧𝑖 that

take value 𝑘 . This predictive distribution implies that a new observation takes the value

of a seen observation 𝜃𝑧𝑘 with probability proportional to 𝑁𝑘 or takes a unseen value 𝜃𝐾+1

with probability proportional to concentration parameter 𝛾 . When a seen observation 𝜃𝑧𝑘

is chosen for the new observation, the indicator 𝑧𝑁+1 = 𝑘 , or if unseen value 𝜃𝐾+1 is taken,

the indicator 𝑧𝑁+1 = 𝐾 + 1. This ‘the rich get richer’ property is essential for inferring a

finite generated mixture model. Because the DP posterior nonparametrically converges to

parameters of a mixture model for a finite mixture dataset [111], the DPis an appropriate

prior for the parameters of a mixture model with an unknown number of components.

2.2.3 Hierarchical Dirichlet Process and Sticky Extension

In NOBIAS, the different single-molecule trajectories of multiple molecules under dif-

ferent biological condition and from different cells, so the groups of data are related but

generated independently. Therefore, the DP is extended to a Hierarchical Dirichlet Pro-

cess (HDP) [34]. In the HDP, a first DP, 𝐺0, is the base measure of a new DP, 𝐺 𝑗 :

𝐺 𝑗 ∼ 𝐷𝑃 (𝛼,𝐺0), 𝐺0 ∼ 𝐷𝑃 (𝛾, 𝐻 )

To apply anHDPas prior for an HMM model, an HDP-HMM model is generated ac-

cording to:

𝛽 ∼ 𝐺𝐸𝑀 (𝛾), 𝜋 𝑗 ∼ 𝐷𝑃 (𝛼, 𝛽), 𝜃 ( 𝑗) |𝜆 ∼ 𝐻 (𝜆), 𝑗 = 1, 2, ...

𝑧𝑡 |{𝜋}, 𝑧𝑡−1 ∼ 𝜋𝑧𝑡−1
, 𝑦𝑡 |{𝜃 }, 𝑧𝑡 ∼ 𝐹 (𝜃 (𝑧𝑡 )) 𝑡 = 1, 2, ...,𝑇
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In the NOBIAS parameter setting, the observed data 𝑦𝑡 would be the single-step dis-

placement Δ𝒙𝒕 , the emission parameter 𝜃 would be the diffusion coefficient D, and the

hyperparameter 𝜆 for 𝜃 would be the Normal-inverse-Wishart distribution (NIW) with

four prior hyperparameters {𝜅, 𝜗, 𝜈,Δ} as stated below in the Multivariate Normal Model

section.

A common issue for the HDP-HMMmodel is that if the algorithm artificially divides a

set of observations into an alternating pattern of rapid switching between several differ-

ent states, then this alternating pattern will be reinforced by the DP [37]. This assignment

would result in an artificial over-splitting of one state into multiple substates character-

ized by a high probability of transitions between the substates. Because we would not

expect such rapid transitions back and forth between two distinct but similar dynamical

states in the single-molecule trajectory data studied here, a sticky parameter, 𝜅, is intro-

duced which enforces self-transitions and avoids this over-splitting of states. With this

new hyperparameter, the 𝜋 𝑗 can be sampled as:

𝜋 𝑗 ∼ 𝐷𝑃 (𝛼 + 𝜅,
𝛼𝛽 + 𝜅𝛿 𝑗
𝛼𝜅

), 𝑗 = 1, 2, ... (2.6)

Which add a self-transition bias to the 𝑗𝑡ℎ components of the DP. The effects of 𝜅

on the results are shown in Figure 2.2D: if 𝜅 is too small, the over-splitting of states still

occurs and if 𝜅 is too large, the model will underestimate the number of states.

Different Markov Chain Monte Carlo (MCMC) sampling methods such as Direct As-

signment Sampling, Beam Sampling, and Blocked Sampling have been developed for the

HDP-HMMmodel [34,112,113]. In NOBIAS, we apply the most computationally efficient

Blocked Sampling method [112], which uses a fixed-order truncation with weak-limit ap-

proximation HDP-HMM. In this approach, the DP is L-degree approximated as:

𝛽 ∼ 𝐺𝐸𝑀𝐿 (𝛾) ∼ 𝐷𝑖𝑟 (𝛾/𝐿, ..., 𝛾/𝐿) (2.7)
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𝜋 𝑗 ∼ 𝐷𝑃𝐿 (𝛼 + 𝜅,
𝛼𝛽 + 𝜅𝛿 𝑗
𝛼𝜅

) ∼ 𝐷𝑖𝑟 (𝛼𝛽1, ..., 𝛼𝛽 𝑗 + 𝜅, ..., 𝛼𝛽𝐿) (2.8)

with a truncation level, L, that is larger than the expected total number of mixture

components. Increasing L does not affect the posterior results, but L does affect the run-

ning time (Fig. 2.2C).The Blocked Sampling method algorithm is detailed in [112], which

describes how the state sequence is generated and how the parameters for each state are

sampled.

2.2.4 Multivariate Normal Model

Bayes’ rule states that the posterior distribution is proportional to the product of the

prior probability and the likelihood, i.e., 𝑃 (𝜃 |𝑦) ∼ 𝑃 (𝜃 )𝑃 (𝑦 |𝜃 ). It is crucial to build conju-

gacy in order to elegantly and concisely express the posterior distribution. If we choose an

appropriate prior distribution class for 𝑃 (𝜃 ) given a known sampling distribution 𝑃 (𝑦 |𝜃 ),

then the posterior distribution 𝑃 (𝜃 |𝑦) will have the same distribution class as the prior dis-

tribution. This choice of a prior distribution is called a conjugate prior, and this property

that the posterior and prior distributions are in the same class is called conjugacy.

In NOBIAS HDP-HMM module, we assume 2D Brownian motion trajectories. In this

case, the displacements follow a zero-mean 2D Gaussian and the diffusion coefficients D

determine the variance, Σ, of the 2D Gaussian. Without loss of generality, the mean, 𝜇, is

also included in the model, 𝜃 = {𝜇, Σ}, and the data distribution is written as:

𝑝 (𝑦 |𝜃 ) = 1

2𝜋 |Σ|1/2
𝑒𝑥𝑝 (−1

2
(Δ𝒙 − 𝜇)𝑇 |Σ|−1(Δ𝒙 − 𝜇)) (2.9)

In the 2D case, the observed data, Δ𝒙 , is a 1 × 2 vector of the 2D displacements, 𝜇 is a

1 × 2 vector and Σ is the 2 × 2 covariance matrix

As derived in reference [114], the general conjugate prior model for this multivariate

normal model is the prior for the mean and the variance of the step displacement follow
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Figure 2.2: All evaluations use the simulated 3-state motion blur sparse data with the pa-

rameter settings as in Table 2.66, aside from Figure 2.8Cwhich uses the standard abundant

3-state data. (A) The state label accuracy (red) is largely insensitive to the total number of

steps in the SPT trajectories, while the posterior parameter sample uncertainty improves

with an increase in the amount of data amount. All tracks used for this plot are 10 steps

long. (B) For the same 3-state motion blur sparse dataset, the NOBIAS accuracy is indepen-

dent of the final number of iterations beyond 2000 iterations. Inset: zoom in on iterations

0 – 2000. (C) The running time (blue) increases with the truncation level, L. where the

final number of states (red) is not affected. (D) Tuning the sticky parameter, 𝜅, affects the

HDP-HMM module performance. Red solid line: average final number of states. The red

dashed line indicates the true number of states. Blue line: average state label accuracy

(error bars: standard deviation of accuracy over the 12 chains). All results are averaged

over 12 chains.
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a NIW:

𝑝 (𝜇, Σ) ∼ 𝑁𝐼𝑊 (𝜅, 𝜗, 𝜈,Δ) (2.10)

Specifically, the variance, Σ, follows an inverse-Wishart prior distribution 𝐼𝑊 (𝜈,Δ),

and the mean, 𝜇, has a conditional Normal distribution: 𝑝 (𝜇 |Σ) ∼ 𝑁 (𝜗, Σ/𝜅).

The posterior updates for this normal model with NIW prior follows [114]:

𝑝 (𝜇 (𝑧𝑡 ), Σ(𝑧𝑡 ) |Δ𝒙 (𝑧𝑡 )) ∼ 𝑁𝐼𝑊 (𝜅, 𝜗, 𝜈, Δ̄) (2.11)

Where Δ𝒙 (𝑧𝑡 ) is the entire displacement dataset in state 𝑧𝑡 , and for each state 𝑧𝑡 , we

update these parameters as:

𝜅 = 𝜅 + 𝑁, 𝜅𝜗 = 𝜅𝜗 +
𝑁∑︁
𝑛=1

Δ𝒙𝒏

𝜈 = 𝜈 + 𝑁,𝜈Δ̄ = 𝜈Δ +
𝑁∑︁
𝑛=1

Δ𝒙𝒏Δ𝒙𝒏
𝑇 + 𝜅𝜗𝜗𝑇 − 𝜅𝜗𝜗𝑇

To decrease the running time, we apply the conjugate prior for the Multivariate Nor-

mal Distribution, though a non-conjugate prior is permissible. For further discussion of

choice of prior see [114].

2.2.5 Trajectory Simulation

A state label sequence was firstly simulated with a given transition matrix through a

Markov chain process. Then according the state label and theD of corresponding diffusive

state, the 2D displacement step is generated, and cumulatively summed to get a single

trajectory. Standard trajectory datasets are simulated by generate 2D Gaussian random

variable where mean is 0 and variance is determined by the set diffusion coefficients with

symmetry and no correlation in two directions.

Motion blur trajectory datasets are generated by simulating a state label sequence that
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is 𝑇𝑒𝑥𝑝 times of the desired length with a transition matrix that self-transit enhanced 𝑇𝑒𝑥𝑝

times. Also according to the label of this𝑇𝑒𝑥𝑝 times longer label sequence a true trajectories

with𝑇𝑒𝑥𝑝 timesmore steps can be generated as in the standard dataset case. 2D localization

error is added to the average position of every𝑇𝑒𝑥𝑝 steps in the true trajectory and saved to

create a motion-blur trajectory with desired length. In the motion blur trajectory datasets

used in this study, 𝑇𝑒𝑥𝑝 was set to 10.

2.2.6 Anomalous Diffusion

In the NOBIAS RNNmodule, trajectory segments of the same diffusive state (identified

by the HDP-HMM module) are evaluated to classify the diffusion type for each diffusive

state. In Brownian Motion, the MSD is linearly proportional to the time lag, 𝜏 . In anoma-

lous diffusion, MSD is related to 𝜏 according to a power law [38]:

𝑀𝑆𝐷 ∝ 𝜏𝛼 (2.12)

Here, 𝛼 is the anomalous exponent. When 𝛼 = 1, this relation describes Brownian

motion; when 𝛼 > 1,Equation 2.12 describes superdiffusion; and when 𝛼 < 1, Equation

2.12 describes subdiffusion. The NOBIAS framework includes the three specific types of

anomalous diffusion types that are most common in biology: Fractional Brownian motion

(FBM) [115], Continuous Time Random Walk (CTRW) [116], and Lévy Walk (LW) [117].

FBM is a Gaussian process with correlated increments such that MSD is related to 𝜏

according to: 𝑀𝑆𝐷 = 2𝐷𝐻𝜏
2𝐻

[115, 118]. Here, the Hurst exponent, 𝐻 , is related to 𝛼 in

Equation 2.12 by 𝛼 = 2𝐻 . The 𝐷𝐻 is the generalized coefficients with physical dimension

𝑚2𝑠−2𝐻
. The correlation between two time points for FBM is ⟨𝑥 (𝑡1), 𝑥 (𝑡2)⟩ = 𝐷𝐻 (𝑡2𝐻

1
+𝑡2𝐻

2
−

|𝑡1 − 𝑡2 |2𝐻 ). When this correlation is positive, 𝐻 > 0.5 and the motion is superdiffusive;

when the correlation is negative, 𝐻 < 0.5 and the motion is subdiffusive.

CTRW defines a randomwalk family in which the particle displacement, Δ𝑥 , follows a
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wait at its current position for a random waiting time t that is a stochastic variable [116].

NOBIAS considers the case where t follows a power-law distribution,𝜓 (𝑡) ∝ 𝑡−𝜎 , and the

following displacement is sampled from a zero-mean Gaussian with fixed variance. In this

case, the 𝜎 in CTRW is related to 𝛼 in Equation 12 by 𝛼 = 𝜎 − 1. This CTRW can only be

subdiffusion, i.e., 0 < 𝛼 < 1.

LW is a special case of CTRW in which the waiting time, 𝑡 , still follows power law, but

the displacement is not Gaussian, and is instead determined by the waiting time [117].

The displacement will have a constant speed, 𝑣 = |Δ𝒙 |/𝑡 , and this process can only be

superdiffusive with exponent 1 ≤ 𝛼 ≤ 2.

We simulated these three types of anomalous diffusion with the open-source Python

package from the recent AnDi challenge [46].

2.2.7 Recurrent Neural Network for NOBIAS

All segments 40 steps or greater identified in the HDP-HMM module were further

analyzed by the NOBIAS Recurrent Neural Network (RNN) consisting of two LSTM layers

[119]. We trained this RNN to classify trajectory segments identified to have the same

diffusive state from the HDP-HMM module. We implemented this architecture, which is

based on the design of the RANDI package classification task [43, 45] with the MATLAB

Deep Learning Toolbox. The two LSTM layers have 100 and 50 units, respectively, and

these two LSTM layers are followed by a fullyconnected layer, and the output classification

layer order is given in Figure2.1.

The input to the network is the set of 2D coordinates from the track segments; these co-

ordinates are normalized to have zeromean and unit variance. Despite amuch higher clas-

sification performance when using tracks > 50 steps long to train and validate [45,47,109],

we trained two networks with 20-step tracks and with 40-step tracks, respectively, af-

ter considering the typical segment lengths from real biological trajectories. The training

data of 750,000 trajectories were simulated with the open-source Python package from the
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AnDi challenge [46]. Regression networks with similar 2 LSTM layers architecture were

also trained for FBM and CTRW to estimate the anomalous exponent 𝛼 for the experimen-

tal data. The performance of the classification network with 40-step data is shown in the

confusion matrix which was made with 10000 test trajectories . However, although the

RNNmodule can classify CTRW and LWmotion Figure2.3, because our HDP-HMMmod-

ule assumes Brownian motion, this first module cannot predict the correct state label for

these two diffusion types. We therefore test a mixture of FBM and Brownian Motion (BM)

motion in Figure2.6.

2.2.8 Single-Molecule Tracking in Living Bacteroides thetaiotaomicron Cells

B. theta cells expressing SusG-HaloTag fusions at the native SusG promoterwere grown

as previously described [120]. Briefly, cells were cultured overnight in 0.5% tryptone-

yeast-extract-glucose medium and incubated at 37 °C under anaerobic conditions (85 %

N2, 10 % H2, 5 % CO2) in a Coy chamber. Approximately 24 h before imaging, cells were

diluted into B. thetaminimal medium (MM) [121] containing 0.25% (wt/vol) amylopectin.

On the day of the experiment, cells were diluted into fresh MM and carbohydrate and

grown until reaching OD600nm 0.55 – 0.60 [122].

Before labeling, 900 µL of cells were washed twice by pelleting (6000 G, 2 min) fol-

lowed by resuspension in MM. Cells were then incubated in MM supplemented with 100

nM PA-JF549 dye [4] for 15 min in the dark. Cells were then washed five times in MM,

transferring to a new tube on every step, to remove excess dye [123]. Finally, 100 µL cells

were resuspended in MM containing 0.25% (wt/vol) amylopectin for 30 min in the dark.

1.5 µL labeled cells were pipetted onto a pad of 2% agarose in MM and placed between a

large and a small coverslip. The two coverslips were sealed together with epoxy (Devcon

31345 2 Ton Clear Epoxy, 25 mL) to keep the media anaerobic [120].

Cells were imaged on an Olympus IX71 inverted epifluorescence microscope with

a 1.45 numerical aperture, 100× oil immersion phase-contrast objective (Olympus UP-
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Figure 2.3: Confusion matrix for classification of the diffusion type by the NOBIAS RNN

module. A total of 750,000 40-step tracks of the four diffusion types were used to train the

network, and 10,000 tracks were tested to get the confusion matrix.
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LXAPO100XOPH) and a 3.3× beam expander. Frameswere collected continuously on a 512

× 512 pixel electron-multiplying charge-coupled device camera (Photometrics Evolve 512)

at 50 frames/s. In this microscopy geometry, 1 camera pixel corresponds to 48.5 nm. PA-

JF549 dyes were photo-activated one at a time with a 200 – 400 ms exposure by a 406-nm

laser (Coherent Cube 405-100; 0.1 𝜇𝑊 /𝜇𝑚2
) and imaged with a 561-nm laser (Coherent-

Sapphire 561-50; 1 𝜇𝑊 /𝜇𝑚2
) ) using appropriate filters as previously described [122].

In each movie, each cell was analyzed separately by using an appropriate mask. The

collected frames were processed with SMALL-LABS [12] to detect single molecules frame-

by-frame and localize their position with typically 30 nm uncertainty. Single molecules

were identified as non-overlapping punctuate spots of diameter larger than 7 pixels and

with pixel intensities larger than the 92
nd

percentile intensity of the fame. The punctate

spots were fit to a 2D Gaussian and true single-molecule localizations satisfied the follow-

ing conditions: (1) standard deviation > 1 pixel and (2) fit error ≤ 0.06 pixel. Localizations

in each cell over time were connected into trajectories using a merit value: trajectories

were selected for further analysis based on their highest merit ranking.

2.3 Results

2.3.1 The NOBIAS HDP-HMM module recovers the number of diffusive states

and the associated diffusion parameters

We first validated the NOBIAS HDP-HMM module with simulated single-molecule

tracks, beginning from the most basic case: a mixture of Brownian motion trajectories.

Figure 2.4A-D depicts the results for a mixture of two distinct diffusive states with 𝐷1 =

0.135𝜇𝑚2/𝑠 and 𝐷2 = 1.8𝜇𝑚2/𝑠 Table 2.1. A sequence of state labels (1 or 2) was first

simulated with a given transition matrix (probability of transitioning from state 1 to 2

or from state 2 to 1) through a Markov chain process 2.2. Then, according the state label

and the apparent diffusion coefficient, D, of the corresponding diffusive state, each 2D
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Figure 2.4: Validation of the NOBIAS HDP-HMMmodule with simulated trajectories. (A-

H) The HDP-HMMmodule identifies distinct mobility states (colored clusters). All scatter

plots include at least 500 uncorrelated samples. Each point represents the average appar-

ent single-molecule diffusion coefficient vs. weight fraction in each distinct mobility state

at each iteration of the Bayesian algorithm saved after convergence. The black crosses

indicate the ground truth input for these simulated trajectories. (A-D) Results for two-

state mixture simulated trajectories results: (A) Standard (no motion blur) and abundant

(500 100-step trajectories) simulations, (B) Standard and sparse (2000 10-step trajectories)

simulations, (C) Motion blur and abundant simulations, and (D) Motion blur and sparse

simulations. (E-H) Results for four-state mixture simulated trajectories results: (E) Stan-

dard (no motion blur) and abundant (500 100-step trajectories) simulations, (F) Standard

and sparse (2000 10-step trajectories) simulations, (G) Motion blur and abundant simu-

lations, and (H) Motion blur and sparse simulations. (I) The Normalized Hamming Dis-

tance (NHD) decreases and converges with the number of iterations. All 100 chains use

the same dataset under the settings in panel (E). (J) The final label assignment accuracy

increases with the track length for three- and four-state mixture datasets. The number of

trajectories decreases as the track lengths increase such that the total amount of steps is

30,000 for all track lengths.
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displacement step was generated, and cumulatively summed to get a single trajectory.

Similar state label sequences were simulated to generate other trajectory datasets with 4

diffusive states (Figure 2.4E-G, Table 2.2).

The posterior results of the HDP-HMM module are shown in scatter plots of the in-

ferred 𝐷 and weight fraction from each iteration after the inferred number of states con-

verges. Figure 2.4A shows the result for a dataset of 500 trajectories each with 100 steps.

Here, the black crosses indicate the ground truth diffusion coefficient and weight fraction

for each diffusive state; the posterior samples of the HDP-HMM model for the two states

after convergence are distributed around the true values. Based on the posterior sample

autocorrelation function (ACF) analysis (Figure 2.5), the posterior samples are thinned by

saving every 10 iterations; this setting is the same for all results in this paper and was

chosen by considering the effective sample sizes and the ACF analysis for all the diffusive

states. The number could be updated accordingly depending on the correlation of poste-

rior samples from output. The mean values and standard deviations for the estimation of

𝐷 and weight fractions for the two states are listed in Table 2.1. The estimated number of

unique states for this simulated dataset converges quickly over the course of iterations to

the true number of states and remains mostly stable at that number (Figure 2.8). Next, we

considered the less ideal case that often occurs experimentally: much shorter trajectory

lengths (10 steps) and many fewer total steps (2000 10-step trajectories). We refer to the

2000 10-step trajectories as a sparse dataset and the 500 100-step trajectories are an abun-

dant dataset. Figure 2.4 B shows that the HDP-HMMmodel still successfully converges to

the true number of states (two) for this dataset, and the posterior samples of the diffusive

parameters are still distributed near the true inputs (black crosses).

We further considered the true form of collected microscope experimental data by

including the localization error due to finite photon counts and noise and motion blur

due to the finite image acquisition time (2.2). We refer these datasets ‘Motion blur dataset’

in contrast with the more ideal ‘Standard’ dataset. In the case of motion blur, the sticky
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parameter is increased to avoid oversampling a single diffusive state into multiple state

with similar dynamics. The hyperparameter settings for this sticky HDP-HMMmodel are

listed in Table 2.3. For both the abundant dataset (Figure 2.4C: 500 100-step trajectories)

and the sparse dataset (Figure 2.4D: 2000 10-step trajectories), the true number of states

(two) is recovered with our sticky HDP-HMM model, and despite these added errors, the

estimated parameters deviate only slightly from the true inputs (black crosses).

We extended our simulations of standard andmotion blur Brownianmotion trackmix-

tures to a more complicated 4-state scenarios for abundant (500 100-step trajectories) and

sparse (2000 10-step trajectories) datasets (Figure 2.4E-H). Even with 4 diffusive states,

the performance of the HDP-HMMmodule is still excellent for the standard mixture (Fig-

ure 2.4E-F). For the 4-state mixture simulation that includes localization error and motion

blur, the HDP-HMM still successfully recovers the true number of states, and the parame-

ters for the four distinct states are still estimated well, though the posterior samples have

increased variance and deviation from the true value (Figure 2.4G-H). The statistics of the

posterior samples for estimated parameters of the 4-state simulation result are listed in

Table 2.2, and the transition matrices for all the simulations in Figure 2.4 are shown in

Table 2.1-2.2.

The NOBIAS HDP-HMM module also assigns diffusive state labels to each single-

molecule step within the trajectories dataset; we call this the state sequence for each track.

We quantified the performance of the state sequence assignment relative to the ground

truth simulated state sequence with the Hamming distance: the Hamming distance be-

tween two 1D sequences with equal length is the number of points where the compo-

nents are different [124]. The resulting distances were normalized to the total length to

demonstrate the Normalized Hamming Distance (NHD) convergence over iterations (Fig-

ure 2.4I). The NHD decreases with increasing iteration number and converges to approx-

imately 0.18. This final converged NHD depends on the dataset size, the true transition

matrix, and how separable the diffusive state are from one another.
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Table 2.1: Two-state mixture results for simulations of the standard abundant, standard

sparse, motion blur abundant, motion blur sparse, and a mixture of Brownian and subd-

iffusive fractional Brownian motion models. Diffusion coefficients (in 𝜇𝑚2/𝑠) and weight

fractions (in %) are given for the ground truth inputs and the NOBIAS HDP-HMM mod-

ule outputs for each of the 2 states. These data correspond respectively to the main text

figures as indicated. Errors represent standard deviation.

The true number of diffusive states can be recovered for datasets of both abundant and

sparse tracks, but the HDP-HMMmodule performance depends strongly on the length of

the individual tracks. Using the overall state sequence assignment accuracy (1 - NHD)

as a performance evaluator for datasets with the same total amount of steps (30000), we

found that the assignment accuracy is considerably worse for tracks shorter than 20 steps

and almost linearly increases with the track length till asymptotes for longer tracks (> 20

steps; Figure 2.4J). This trend is shared for a 3-state and 4-state dataset, but the overall

accuracy for 3-state dataset is higher than 4-state one for all the track length.
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Table 2.2: Four-state mixture results for simulations of the standard abundant, standard

sparse, motion blur abundant, motion blur sparse, and amixture of Brownian, subdiffusive

fractional Brownian, and superdiffusive fractional Brownian motion models. Diffusion

coefficients (in 𝜇𝑚2/𝑠) andweight fractions (in %) are given for the ground truth inputs and
the NOBIAS HDP-HMM module outputs for each of the 4 states. These data correspond

respectively to the main text figures as indicated. Errors represent the standard deviation.

Table 2.3: NOBIAS HDP-HMM module hyperparameter settings for the simulations and

experimental data.
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Figure 2.5:ACF analysis for posterior samples of the diffusion coefficient of the four-state

standard abundant simulation described in main text Figure2.4E. Over 20,000 iterations,

the number of states converges to 4 with a 2000 burn-in. The final 10,000 samples are used

for further analysis.
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2.3.2 The NOBIAS RNN module predicts the diffusion type for each diffusive

state

To analyze anomalous diffusion in an SPT dataset, NOBIAS includes a second module:

we built an RNN to classify the type of motion (Brownian motion (BM), Fractional Brow-

nian motion (FBM), Continuous Time RandomWalk (CTRW), or Lévy Walk (LW)) corre-

sponding to the track segments within each diffusive state identified by HDP-HMMmod-

ule. The RNN consists of two LSTM layers, a fullyconnected layer, and data input/output

layer (2.2). Although the HDP-HMM module is based on BM, for some anomalous diffu-

sion types, for example FBM, if the dynamics level for each state is distinct, the HDP-HMM

module still performs well.

We simulated a mixture of BM and FBM with distinct apparent diffusion coefficients

for the two states (𝐷1 = 0.045𝜇𝑚2/𝑠 and 𝐷2 = 0.90𝜇𝑚2/𝑠) to validate the performance of

NOBIAS on mixtures of different diffusion types. Figure 2.6A shows the HDP-HMM pos-

terior results for this 2-state BM-FBM mixture (500 100-step trajectories) where the FBM

state is anomalous subdiffusion with 𝛼 = 0.5 (Eq. 2.12) and with lower diffusion coeffi-

cient. Then, based on the state sequence labels from the HDP-HMMmodule, we generated

track segments for the two diffusive states and put them into the trained NOBIAS RNN

network to predict the diffusion types. NOBIAS RNN successfully predicts the diffusion

types for both states (Figure 2.6B, Table 2.4).

We further simulated a 4-state mixture (500 100-step trajectories) corresponding to

subdiffusive FBM, BM, BM, and superdiffusive FBM (in order of increasing 𝐷). The

HDP-HMM module still successfully recovers the 4 states and make excellent estima-

tions for 𝐷 and weight fraction for each state (Figure 2.6C). The NOBIAS RNN module

also predicts the true diffusion type for the segments from each of the four states (Figure

2.6D, Table 2.4). Note that all track segments are normalized before being put into the

RNN to avoid dynamics information bias in the diffusion type prediction (2.2). One limi-

tation for this RNN classification analysis methodology is that only track segments with
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Table 2.4: NOBIAS RNN module diffusion type classification probabilities for BM,

FBM,CTRW, or LW. These data correspond respectively to Figure 2.6 as indicated.

at least certain length (20 or 40 in our analysis depending on the trained network) could

be classified with high accuracy; it is very challenging to use very short track segments

to identify these modes of diffusion. Therefore, when the overall trajectory length is short

( 10 steps), the network classification module might not be usable. Another limitation of

the HDP-HMM module is that the current implementation is based on BM displacement

distributions, thus it would fail for anomalous diffusion types like LW, which does not

have a similar Gaussian distribution of displacements.

2.3.3 The Performance of NOBIAS on experimental data for the diffusion of

SusG-HaloTag in B. theta cells

After validating the performance of the two NOBIAS modules on simulated data, we

applied this framework to experimental single-molecule trajectories. The SusG amylase

recognizes and binds starch on the surface of B. theta cells to enable starch catabolism

[125]. We measured the motion of 7897 trajectories (minimum length of 6 and average

length of 64) of single SusG molecules in 226 B. theta cells based on imaging photoacti-

vatable fluorescently labeled SusG-HaloTag fusions (2.2).

We analyzed this data with NOBIAS to infer the number of diffusive states and to
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Figure 2.6: (A, C) The HDP-HMMmodule identifies distinct mobility states (colored clus-

ters). Each point represents the average apparent single-molecule diffusion coefficient, 𝐷 ,

vs. weight fraction in each distinct mobility state at each iteration of the Bayesian algo-

rithm saved after convergence. The black crosses indicate the ground truth input for these

simulated trajectories. (A) Two-state mixture comprising a subdiffusive FBM state with

lower D and a BM state with higher D. (B) The NOBIAS-RNN determines the probability

that the diffusion type for each diffusive state in (A) is classified as BM, FBM, CTRW, or

LW. The final probability for each diffusive state is the average of the classification prob-

ability of its track segments weighted by the segment length. The color of each pie chart

indicates the diffusive state corresponding to the color in (A). (C) Four-state mixture com-

prising a subdiffusive FBM state, two BM states, and a superdiffusive FBM state with D in

ascending order. (D) Diffusion type classification probability pie chart for each diffusive

state in (C). The final probability for each diffusive state is the average of the classification

probability of its track segments weighted by the segment length and the color of each

pie chart indicates the diffusive state corresponding to the corresponding color in (C).
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estimate the diffusion coefficient, weight fraction, and type of motion for each state as

was done for the simulated data (Figure 2.4 and 2.6). Additionally, NOBIAS analyzes 2D

trajectories with a 2D Gaussian function and can therefore infer the diffusion coefficients

for the x and y directions separately and estimate the potential correlation between the

two directions. Though the simulations used symmetric tracks in an unbound domain,

the experiments measure motion on the surface of cells with a long axis and a short axis,

which may create an asymmetry in the diffusion.We rotated the cell orientations to orient

the long axis in the x direction without rescaling (Figure 2.7A). We analyzed this rotated

dataset with NOBIAS and found that it converged to a 3-state model, with a very small

(1.8%) fast state fraction (Figure 2.7B). Interestingly, we found that the 𝐷𝑥 and 𝐷𝑦 values

were similar for each of the two slower states (Table 2.5), while they were significantly

different for the fastest state (𝐷𝑥 = 0.68𝜇𝑚2/𝑠𝑣𝑠.𝐷𝑦 = 0.45𝜇𝑚2/𝑠). This asymmetry for the

fast state indicates that it corresponds to free diffusion that is constrained by the cell shape

(and therefore is more constrained in the short-axis y direction), while the symmetry for

the two slower states implies molecules that only diffuse regionally and are not affected

by the cell shape. Compared with previous SPT analysis methods, NOBIAS provides a

two-dimensional analysis of the dynamics of experimental single-molecule trajectories.

We separated the track segments by the state sequence label from the HDP-HMM

module and placed each group into the RNN classification module. The fastest state was

predicted with high probability (80%) to be Brownian motion (Figure 2.7C, Table 2.4), con-

sistentwith the asymmetry between𝐷𝑥 and𝐷𝑦 thatwas attributed to free diffusion (Figure

2.7B). The two slower states were predicted to be either FBM or CTRW. We used a RNN

regression network (2.2) to estimate the anomalous exponent 𝛼 for the track segments

of the two slower states and both were found to be subdiffusion (𝛼1 = 0.38, 𝛼2 = 0.46),

consistent with the symmetry between 𝐷𝑥 and 𝐷𝑦 found (Table 2.5). This finding of sub-

diffusion is also consistent with the role of SusG in starch catabolism: we have previously

found that SusGmotion slows in the presence of its amylopectin substrate, as well as when
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Figure 2.7: (A)Single-molecule trajectories of SusG-HaloTag overlaid on the phase-

contrast image of the corresponding B. theta cells, scale bar: 1 𝜇𝑚. The long axis of the

phase mask for each cell was detected and a rotation transform was applied to all the tra-

jectories in each cell such that the x-axis is the cell long axis for all cells. (B) The NOBIAS

HDP-HMMmodule identifies three diffusive states for SusG (colored clusters). Each point

represents the average apparent single-molecule diffusion coefficient vs. weight fraction

in each distinct mobility state at each iteration of the Bayesian algorithm saved after con-

vergence. The blue and red points clusters average the x- and y- diffusion coefficients as

they are symmetric (Table 2.4); the asymmetric fast state (purple) shows a different 𝐷𝑥
and 𝐷𝑦 . (C) The NOBIAS RNN determines the probability that the diffusion type for each

diffusive state in (B) is classified as BM, FBM,CTRW, or LW. The color of each pie chart

indicates the diffusive state corresponding to the color in (B). The fast state (purple) is pre-

dicted with high probability to be BM; the two slower states (red and blue) are predicted

to be FBM or CTRW.
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it transiently associates other outer-membrane proteins, indicating starch-mediated Sus

complex formation [120].

2.4 Discussion

Single-molecule tracking measures dynamics in biological systems at high spatial and

temporal resolution, but how to make the best use of these tracking data for a broad set

of experimental conditions remains an analysis challenge in the field [126, 127]. Here, we

have introduced NOBIAS to quantify single-molecule dynamics and to associate these

biophysical measurements with the underlying biochemical function and biological pro-

cesses. NOBIAS handles complicated live-cell SPT datasets for which: (1) the number of

diffusive states is unknown, (2) mixtures of different diffusive populations may exist, even

within single trajectories, (3) symmetry cannot be assumed between the x and y directions,

and (4) anomalous diffusion is possible. These features are enabled based on applyingNon-

parametric Bayesian statistics [32, 34, 37] to SPT datasets that have the same means but

different variance with a HDP-HMMmodule that has a 2D Gaussian as the emission func-

tion and then by further investigating the anomalous diffusion types in the RNN module

of NOBIAS .

Compared with previous applications of nonparametric Bayesian statistics in this field

[29, 31, 107], the NOBIAS HDP-HMM module is more robust and has high computational

efficiency (Table 2.6). NOBIAS and SMAUG both consider motion blur effects and their es-

timation of D for each state is closer to the ground truth then other methods. As Bayesian

method with similar principle NOBIAS is almost 10 times faster than SMAUG.

This HDP-HMM module also provides a multivariate output to quantify and correlate

dynamics in multiple directions instead of assuming symmetry (Table 2.7). We observed

that for asymmetric simulated trajectories, vbSPT overestimates the true number of states,

and SMAUG can only provide the average D of for each diffusive state while NOBIAS

provides the respective diffusion coefficients in two directions. The high accuracy of step
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Table 2.5: NOBIAS HDP-HMMmodule results for analysis of the experimental measure-

ments of SusG-HT diffusion in the B. theta outer membrane corresponding to main text

Figure 2.7B. The x-axis and y-axis diffusion coefficients (Dx and Dy, respectively) are eval-

uated separately in NOBIAS.

state sequence prediction also enables the classification of anomalous diffusion type in the

NOBIAS RNN module. We also applied SMAUG and vbSPT on the experimental dataset

(Table 2.8): SMAUG ran slow on large datasets and suggested four diffusive state, while

vbSPT suggested the best model to be 10 diffusive state which is hard to explain their

corresponding biological meanings.

A further advantage of NOBIAS lies in its ability to treat sets of relatively short trajec-

tories (10-step trajectories in the simulated data of Figures 2.4 and 2.6 and minimal 6-step

trajectories in the experimental data of Figure 2.7). The recent AnDi (Anomalous Diffu-

sion) Challenge [47] demonstrated that Deep Learning and Neural Network methods are

currently the most powerful tools to study anomalous diffusion [45,109]. However, in this

challenge, the target dataset was an ideal collection of simulated anomalous diffusion tra-

jectories with 100-1000 steps, and only the simple case of one state transition in themiddle

part of a track was considered. There are also probability-based models that consider con-

finement and anomalous diffusion [128] and Bayesian methods that directly predict the

diffusion type [129, 130], but these analyses, like the neural network-based methods, are

used for very long trajectories or assume a single diffusive state in each track. To apply

a deep learning-based diffusion type classifier to realistic simulated trajectories and real

experimental trajectories, NOBIAS segments the raw trajectories into collections of track

segments that belong to the same diffusive state (as identified by the HDP-HMMmodule)

and then predicts the diffusion type of the long segments in the RNNmodule. Since differ-
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Table 2.6: acNOBIAS Comparison of results for analyzing simulated Brownian motion

data with symmetric diffusion coefficient inputs in NOBIAS and three established non-

parametric Bayesian statistics algorithms. The truncation level of NOBIAS, the max state

number of vbSPT, and the starting number of states in SMAUG were all set to 10.

ent biophysical diffusive states correspond to different biochemical functions which will

exhibit different diffusion types due to interactions like confinement, binding, directional

motion, NOBIAS enables a thorough investigation of these biochemical roles by revealing

the diffusion coefficients, the transition probabilities between states, and the anomalous

diffusion behaviors. Ultimately, NOBIAS will enable investigators to extract a complete

information set from SPT data and to understand the role of each tracked molecule, even

in the living cell.

Despite these strengths, NOBIAS has several limitations. Firstly, as an HMM-based

method, NOBIAS is limited by the length of each track. Under the extreme case where

only very short trajectories ( 2-5 steps) are available, theHDP-HMMmodulemay suggest a

number of states and posterior results with extremely high uncertainty; probability-based

models [17] or the histogram-based Bayesian method DPMM [107] should be applied for

these short trajectories. The track length also limits the RNN module, as the trained net-
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Table 2.7: NOBIAS Comparison of results for analyzing simulated Brownian motion data

with asymmetric diffusion coefficient inputs in NOBIAS and three established nonpara-

metric Bayesian statistics algorithms. The truncation level of NOBIAS, the max state num-

ber of vbSPT, and the starting number of states in SMAUG were all set to 10.

Table 2.8: Comparison of results for analyzing experimental data in NOBIAS and two

established nonparametric Bayesian statistics algorithms. The truncation level of NOBIAS,

the max state number of vbSPT, and the starting number of states in SMAUG were all set

to 10.
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work need tracks with at least 20 steps for good classification performance because some

anomalous diffusion types are characterized by memory of previous steps [38]. There-

fore the application of the RNNmodule is limited for short experimental tracks. Secondly,

NOBIAS performs the diffusive state estimation based on apparent diffusion coefficient in

the HDP-HMM module and then carries out the anomalous diffusion classification in the

RNN module. NOBIAS therefore assumes that each biochemical state has a unique aver-

age apparent diffusion coefficient. Although the RNN module can classify the diffusion

types of two different diffusive states with the same diffusion coefficient, the HDP-HMM

module would fail to separate these processes. Furthermore, for some diffusion types like

LW, the trajectory displacements may exhibit different types of dynamics even though

the trajectories are generated from one process. Finally, even for Brownian trajectories, a

single biochemical state might not be represented by a single diffusion coefficient value.

Thus, the actual number of biochemical states may not be equal to the number of diffusive

states. Future development of NOBIAS could use spatial filtering to distinguish between

these similar biochemical states.

NOBIAS provides a pioneering and compatible framework for the analysis of dynam-

ical mixtures that also classifies the anomalous diffusion types. Future development of

NOBIAS could include more types of diffusion and could integrate the anomalous distri-

butions directly into the Bayesian framework for more accurate prediction of the stepwise

state labels and the diffusion types. Furthermore, extra experimental corrections corre-

sponding to the specific microscope setting [18, 100, 102] could also help adapt NOBIAS

more broadly to different types of SPT datasets. Overall, NOBIAS has provided a powerful

framework to analyze of SPT dataset with unknown number of diffusive states and poten-

tial asymmetric diffusion, and to access the anomalous diffusion type for each diffusive

state. The combination of nonparametric Bayesian statistics and Deep learning enables

NOBIAS to fully extract the rich dynamics information from the SPT dataset.
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Figure 2.8
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Figure 2.8: Convergence of the number of diffusive states in the NOBIAS HDP-HMM

module with iteration number. The number of states convergence plots in A-H correspond

to the analysis of simulated tracks in main text Figure 2.4A-H. The number of states con-

vergence plots in I-J correspond to the analysis of simulated tracks in main text Figure

2.6A,C. The number of states convergence plot in K corresponds to the analysis of exper-

imental tracks in main text Figure 2.7B.
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CHAPTER III

Single-Molecule Localization of a DNA

Methyltransferase DnmA on the Bacterial Nucleoid

The work presented in this chapter was previously published in

mBio.

Fernandez, N. L*., Chen, Z.*, Fuller, D. E., van Gijtenbeek, L. A., Nye, T. M.,

Biteen, J. S., and Simmons, L. A.

DNA Methylation and RNA-DNA Hybrids Regulate the Single-Molecule

Localization of a DNA Methyltransferase on the Bacterial Nucleoid.

mbio, e03185-22(2023). DOI: 10.1128/mbio.03185-22

In this work, I participated in the conceptualization of the project and the design of used

biological perturbations. I performed single-molecule imaging experiments and dynamics

analysis. I designed and implemented the normalized heatmap correlation analysis, plot-

ted the analysis of the single-molecule dynamics, and interpreted the comparison between

different datasets. *: equal contribution.
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3.1 Introduction

The restriction modification (RM) systems were one of the first recognized defense

mechanisms that bacteria use to thwart bacteriophage infection [131, 132]. Initial bacte-

riophage studies identified that only phage that have been modified by a host can suc-

cessfully infect the host [132]. This modification was later identified as DNA methyla-

tion from enzymes called DNAmethyltransferases (MTase) (Reviewed in [60,61]). MTases

from RM systems modify DNA by adding a methyl group in a sequence-specific context

to form either N6-methyladenosine (m6A), N4-methylcytosine, or 5-methylcytosine [59].

Genes encoding MTase function are often adjacent to genes encoding restriction endonu-

clease (REase) activity [133]. If a cell encodes an RM system and unmethylated DNA enters

the host cell, for example from a phage, REase will degrade the invading DNA before it

can be replicated [133].

In addition to functioning in RM systems, DNAmethylation regulates other processes

including DNA replication, DNA repair, and transcription [53]. Many gammaproteobac-

teria encode dam, which is referred to as an orphan DNA MTase because it lacks a cog-

nate REase enzyme [53, 61, 134]. In Escherichia coli (E. coli), DNA methylation by Dam

influences the timing of replication and aids in the excision of mismatched bases from

the new DNA strand following replication during methyl-directed mismatch repair [61].

Alphaproteobacteria also encode the conserved orphan MTase ccrM that regulates the

timing of DNA replication and is essential for Caulobacter crescentus growth in rich me-

dia [61].

Epigenetic regulation of gene expression in bacteria results from the interaction be-

tween certain DNA-binding proteins and methylated DNA [135]. Orphan and

RM-associatedMTase enzymes influence gene expression and bacterial behaviors through

DNA methylation, with examples ranging from pili expression in E. coli, eukaryotic cell

adhesion in Campylobacter jejuni, and virulence regulation in Streptococcus pyogenes

[136–138]. Studies have benefited from the use of single-molecule real-time (SMRT) se-
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quencing analysis to characterize the methylome and identify sites of methylation fol-

lowed by predicting the MTase enzymes responsible for the corresponding modifica-

tion [134].

Previously, we used SMRT sequencing to characterize the methylome of the Gram-

positive soil bacterium Bacillus subtilis (B. subtilis) [63]. We identified the DNA MTase

DnmA (M.BsuPY79I), which recognizes the six base-pair, non-palindromic sequence 5
′
-

GACGAG-3
′
and methylates adenine to form m6A [63]. In vitro methylation assays with

DnmA demonstrated substrate specificity: double-stranded DNA (dsDNA) harboring the

methylation site was identified as the optimal substrate, followed by single-stranded DNA

(ssDNA) and single-stranded RNA (ssRNA) [63]. DNA substrate compositions heavily in-

fluence DNA andMTase interactions in vitro for some well characterizedMTases, but how

these in vitro experiments inform in vivo activity is not well understood [139, 140]. The

dnmA gene is flanked by yeeB and yeeC, two genes with putative REase functions, in a

genetic structure suggestive of an operon from a horizontally acquired element. While

deletion of dnmA alters the expression of a subset of genes, the growth rate and restric-

tion of plasmid uptake are unchanged. Therefore, it remains unclear if dnmA-yeeB-yeeC

are functional under stress conditions, such as bacteriophage infection.

In this study, we identify how different substrates influence the in vitro DnmA binding

kinetics and how that affects in vivo DnmA dynamics. We also investigate the conserva-

tion of the gene synteny and architecture between dnmA and its genetic neighbors across

many bacterial species, and we assess the role of dnmA in response to bacteriophage in-

fection. We show that the association of DnmA with DNA in vitro and in vivo is regulated

by prior DNAmethylation and formation of RNA-DNA hybrids. We also show that DnmA

searches the entire nucleoid but localizes more strongly at the replisome position, suggest-

ing that binding site recognition can occur anywhere on the chromosome with preference

for positions near the replisome. Furthermore, we find that dnmA and the flanking genes

yeeB and yeeC do not function as an active RM system and fail to protect B. subtilis from
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phage predation. Our work demonstrates how substrate specificity alters the in vivo lo-

calization of an MTase that arises from a restriction modification relic, causing DnmA to

function as an orphan MTase in the regulation of gene expression in B. subtilis.

3.2 Results

3.2.1 Localization of DnmA-PAmCherry in vivo

Our prior work showed that DnmA is both necessary and sufficient to methylate

dsDNA in vitro and in vivo [63]. Given the role of DnmA in altering gene expression [63], it

is important to understand how DnmA interacts with DNA in vivo. To this end, we gener-

ated a B. subtilis strain in which the wild-type (WT) dnmA allele was replaced with a gene

encoding DnmA fused to a photoactivatable fluorescent protein, PAmCherry, at the C-

terminus (dnmA-PAmCherry). To ensure DnmA-PAmCherry retained methyltransferase

activity in vivo, we measured the activity of a transcriptional reporter that is dependent

on DnmA [63]. We found that reporter activity is the same between WT and DnmA-

PAmCherry, indicating that the C-terminal tag does not interfere with DnmA function.

Further, Western blot analysis demonstrated that the DnmA-PAmCherry fusion is not de-

graded in vivo (Figure 3.1B). Based on photoactivation and tracking of single copies of

DnmA-PAmCherry in living cells (3.4) (Figure 3.2B) [12], we observed the localization

of this protein in its native environment in N = 1766 single-molecule trajectories in n =

275 B. subtilis cells growing exponentially in defined minimal medium. We categorized

the motion of these molecules based on fitting each single-molecule trajectory to a lin-

ear mean-square displacement model for normal diffusion (3.4); the histogram of the log

diffusion coefficients for DnmA-PAmCherry trajectories weighted by the track length is

given in Figure 3.2D. As a positional reference for nascent DNA, we imaged fusions of the

replisome component DnaX to the fluorescent protein mCitrine in a separate fluorescence

channel (Figure 3.2A).
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The overlay of the super-resolution images of DnaX-mCitrine (grayscale) and DnmA-

PAmCherry (jet) shows some spatial overlap for DnmA and DnaX, although the DnmA

positions are more spread out over the region of the cell occupied by the nucleoid (Figure

3.2C). To further quantify their spatial correlation at the population level, we generated

a normalized localization density map of DnmA to determine the localization pattern of

DnmA in 275 WT cells (Figure 3.2F). We also generated a normalized localization den-

sity map of the replisome by analyzing DnaX-mCitrine (Figure 3.2E) [65]. The Pearson

correlation between the two heatmaps is 0.37, showing that DnmA has a positive spatial

correlation with the replisome. Due to the non-palindromic nature of the DnmA recog-

nition site, nascent DNA will be unmethylated post-replication, acting as a substrate for

methylation by DnmA. Thus, our data suggests that binding and methylation of nascent,

unmethylated DNA drive the correlative positioning of DnmA andDnaX, althoughDnmA

does explore much more of the nucleoid region in the cell.

3.2.2 Manipulating Available Substrate in vivo Disrupts DnmA Localization

DNA binding is heavily influenced by substrate, where most N6-DNA MTase en-

zymes tend to have lower binding affinities toward substrates that are not dsDNA in

vitro [139, 140]. We hypothesized that the position of DnmA can be explained by the

availability of unmethylated substrate near the replisome, where unmethylated dsDNA

would be enriched shortly after DNA replication. To test this hypothesis, we first set

out to establish how altering DNA substrate influences DnmA binding in vitro using

electrophoretic mobility shift assays (EMSAs). In addition to unmethylated dsDNA sub-

strate, we utilizedmethylated dsDNA and an RNA-DNAhybrid as candidate substrates for

possible in vivo DNA modifications or perturbations. Methylated dsDNA is the primary

DNA species in B. subtilis grown under standard conditions, while RNA-DNA hybrids are

transiently found throughout the genome from DNA replication and highly transcribed

regions [63,141]. DnmA binds to unmethylated dsDNA with the greatest estimated affin-
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Figure 3.1: (A) Western blot analysis of DnmA-PAmCherry variants. Black arrow points

to DnmA-PAmCherry. (B) Flow cytometry analysis of a GFP transcriptional reporter that

is regulated by DnmA (𝑎𝑚𝑦𝐸 :: 𝑃𝑠𝑐𝑝𝐴−𝐺𝐹𝑃 ) [63]. White bars indicate eitherWTDnmA or

dnmA deletion, while filled bars indicate either WT DnmA, Y465A DnmA, or 6AA DnmA

fused to PAmCherry in an otherwise WT background. Bars represent the mean from six

biological replicates (grey filled circles) and error bars represent standard deviation. As-

terisks indicate statistical significance (p < 0.05) when compared to the WT background

using the Wilcox Test.
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Figure 3.2: (A) Fluorescence image of DnaX-mCitrine. Scale bars = 1𝜇𝑚 for panels A to

C. (B) False-colored single-molecule trajectories of DnmA-PAmCherry in two representa-

tive WT cells overlaid on the phase-contrast image of the B. subtilis cells. (C) Overlay of

single-molecule localizations of DnmA-PAmCherry (jet heatmap) and fluorescence image

of DnaX-mCitrine (grayscale). (D) Normalized histogram showing the distribution of the

log diffusion coefficients of the single-molecule trajectories of DnmA-PAmCherry. Black

line, Gaussian fit to the log diffusion coefficient distribution. The histogram and fit curve

are weighted by track length. catption continues
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Figure 3.2: (E to J) Normalized localization probability density maps of (E) DnaX-

mCitrine, (F) WT DnmA-PAmCherry, (G) + 6-(p-hydroxyphenylazo)-uracil (HPUra)

DnmA-PAmCherry, (H) Δ𝑟𝑛ℎ𝐶 DnmA-PAmCherry, (I) DnmA[6AA*]-PAmCherry, and (J)

DnmA[Y465A]-PAmCherry, all within a normalized cell. Single-molecule localizations are

projected along the long and short axes of the cell, normalized to their relative position,

and resymmetrized along the axes. Colormaps show localization probability. Corr in pan-

els F to J, Pearson’s correlation of that DnmA variant’s localization heatmap with the

DnaX localization heatmap. Each single-molecule data set was acquired from 4 distinct

days from independent cultures.

ity 50% effective concentration (EC50) = 36.8 ± 14.2 nM (mean ± sd) and has much lower

estimated affinities formethylated dsDNA and RNA-DNAhybrids (EC50 = 156.4 ± 76.0 nM

and EC50 = 321.4 ± 16.5 nM, respectively, Figure 3.3A-C,F). Though the range of DnmA

concentrations for the methylated dsDNA and RNA-DNA substrates makes affinity calcu-

lations less accurate, we conclude that DnmAbinds preferentially to unmethylated dsDNA

relative to methylated dsDNA or RNA-DNA hybrids in vitro.

Since DnmA binds to unmethylated dsDNA with the greatest affinity in vitro, we rea-

soned that changing the pool of this substrate in vivo would alter DnmA dynamics and

localization in vivo. We measured DnmA-PAmCherry localization after treating B. subtilis

with the replication inhibitor HPUra which depletes the pool of available unmethylated

dsDNA substrate in the cell [142]. We acquired single-molecule tracking data from N =

1047 trajectories within n = 233 cells. We found that HPUra treatment decreases the av-

erage diffusion coefficient (Figure 3.4A). The decreased affinity for methylated dsDNA in

vitro suggests that the weight fraction of slow-moving DnmAmolecules in HPUra-treated

cells should decrease. However, we observe a slight increase in the weight fraction of

slow-moving molecules in HPUra-treated cells compared to untreated cells with a con-

comitant decrease in the weight fraction of fast-moving molecules (Figure 3.4G, H). We

also found that the DnmA correlation with DnaX decreases from 0.37 to 0.10 in HPUra-

treated cells (Figure 3.2g). These data suggest that HPUra treatment likely does not de-

crease DNA binding throughout the nucleoid but does negatively influence DNA binding
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Figure 3.3: (A to E) EMSAs experiments with DnmA variants and different DNA sub-

strates. Representative gels showing unshifted bands (white arrows), shifted bands (black

arrows), or unannealed ssDNA (asterisks) (top) and quantitation of fraction bound with

increasing concentrations of DnmA (bottom), where points represent the average, error

bars represent standard deviations, and lines aremodeled from four-parameter log-logistic

equations. DnmA variant and DNA substrate are in the top-left corner of the representa-

tive gel. (F) Average ± standard deviation of estimated half maximal concentrations (EC50)

for DNA binding calculated from the binding curves. Points represent individual experi-

ments, and bar fill colors represent the DnmA variant.
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near the replisome. Of note, this marked change in the DnmA-DnaX spatial correlation

is observed in vivo even though 99.7% of DnmA recognition sites are methylated during

exponential growth [63].

Next, we measured DnmA−PAmCherry localization in B. subtilis cells lacking the

RNAase HIII gene rnhC, which is suggested to remove RNA−DNA hybrids in the genome

[141]. We acquired the Δ𝑟𝑛ℎ𝐶 single−molecule tracking data from N = 1348 trajectories

within n = 226 Δ𝑟𝑛ℎ𝐶 B. subtilis cells. Unlike the WT cells, in which DnmA and DnaX

are positively spatially correlated, the localization density map of DnmA in Δ𝑟𝑛ℎ𝐶 cells

has a negative spatial correlation with DnaX (-0.13; Figure 3.2H). Further, more of the

DnmA−PAmCherry molecules move slowly in Δ𝑟𝑛ℎ𝐶 than in WT (50% slow population

forWT compared to 60% for Δ𝑟𝑛ℎ𝐶 , Figure 3.4G). In summary, this mutation has a marked

effect in decreasing the co−localization of DnmA with DnaX, and causes a subtly reduced

average diffusion coefficient, resulting in an increase in the fraction of molecules diffusing

slowly.

3.2.3 TheDNABindingVariantDnmA[6AA*] localizes away from the replisome

and the nucleoid

Our data suggests that DNA binding and methylation explains DnmA−PAmCherry

localization in vivo. To test this hypothesis, we generated variants of DnmA with amino

acid substitutions at key residues involved in DNA binding and catalysis. DnmA is 57%

similar to MmeI, a Type II DNA MTase for which a structure is available [143]. We struc-

turally aligned DnmA with MmeI and identified putative residues important for DnmA

interaction with its cognate sequence. Interestingly, single alanine substitutions in MmeI

or other methyltransferases are often unable to completely abrogate DNA binding in

vitro and can sometimes cause recognition of a different sequence [143–145], likely due

to the high number of contacts between the residues in the DNA binding pocket and

DNA (Figure 3.5). Therefore, we designed a six amino acid alanine substitution vari-
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Figure 3.4: (A) Single-component Gaussian fit to the log diffusion coefficients distribu-

tion. The fit curves are weighted by track length. (B-F) Normalized histogram showing the

distribution of the log diffusion coefficients of the single-molecule trajectories of DnmA-

PAmCherry. Black dashed line: Two-component Gaussian fit to the histogram; blue line:

fit of the slower component; red line: fit of the faster component. 𝐹𝑏𝑜𝑢𝑛𝑑 indicates the

weight fraction for the slower component in each fit. The histograms are weighted by

track length. (G) 2-state and (H) 3-state weight fraction bar plots from Spot-On analy-

sis [18] of the five DnmA single-molecule tracking datasets. In the Spot-On fitting, the

average diffusion coefficient for each component is kept within the confidence interval of

the WT diffusion coefficient to directly compare weight fractions (see 3.4).
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Figure 3.5: Predicted interactions between DnmA and its target sequence

5
′
–GACGAG–3

′
. Residues that are biochemically similar to aligned residues in the

homologous MTase MmeI are in bold face while residues that are identical are in bold

italic face. Residues chosen for alanine substitutions are in blue font color. The grey

shading surrounding 5
′
–CGA–3

′
represent the shared nucleotides between the cognate

recognition sites for DnmA and MmeI.
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ant of DnmA (DnmA[6AA*]) which has substitutions at key residues we predict are in-

volved in 5
′
–GACGAG–3

′
recognition (Figure 3.5). Further, we generated a catalytically

inactive DnmA variant by introducing an alanine at position 465, replacing a tyrosine

needed for stabilizing base−flipping during the methyl transfer reaction (DnmA[Y465A]),

reviewed in [139]). We have previously shown this substitution renders DnmA inactive

in vivo and in vitro [63]. In vitro analysis of unmethylated dsDNA binding by the DnmA

variants showed a decrease in estimated affinity to DNA, with the most severe effect in

DnmA[6AA*] which had a 12−fold greater EC50 (458.3 ± 185.2 nM) compared to WT

DnmAwhile DnmA[Y465A] had a 4−fold greater EC50 (164.2 ± 26.8 nM) (Figure 3.3D−F).

We also introduced the DnmA variants fused to PAmCherry into the cell and checked

for stability and functionality in vivo. The DnmA variants were not degraded in vivo,

demonstrated by intact DnmA−PAmCherry fusions inWestern blot analysis (Figure 3.1A).

Importantly, the variants were unable to complement reporter activity in a Δ𝑑𝑛𝑚𝐴 back-

ground, indicating both DnmA[6AA*] and DnmA[Y465A] are inactive in vivo (Figure

3.1B). Single−molecule tracking data and normalized localization density maps were gen-

erated for these two variants. The diffusion coefficient distributions for the two variants

are lower than those of WT DnmA−PAmCherry (Figure 3.4A). The two variants demon-

strated a decreased ability to bind DNA in vitro, yet in vivo we observed an increase in

the weight fraction of slow−moving molecules (Y465A – 70%, 6AA* − 60%, Figure 3.4G)

compared to WT DnmA (50%, Figure 3.4G). Strikingly, DnmA[6AA*] also has a strong

negative correlation with DnaX (−0.26) while DnmA[Y465A] has a correlation similar to

WT DnmA (0.40 vs 0.37, Figure 3.3I,J). These data suggest DnmA[Y465A] is still able to

scan and search DNA for available substrate but is unable to catalyze methylation because

of its inability to stabilize the flipped base, whereas the DnmA[6AA*] variant is unable to

scan and search DNA, relegating it to positions outside of the nucleoid region. Taken to-

gether, our results indicate that, regardless of substrate or variant, the mobility of DnmA

is slower under these conditions, and that DnmA localization is primarily influenced by
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DNA binding rather than by active methylation.

3.2.4 DnmA is Part of a Conserved Gene Cluster with YeeB and YeeC

Our in vivo single-molecule results suggest that DnmA, in part, co-localizes with the

replisome to fully methylate the B. subtilis chromosome as replication occurs, raising

questions about the function of m6A in B. subtilis. We have previously shown that m6A

regulates the transcription of a subset of genes and that there is no difference in trans-

formation efficiency in cells lacking m6A under the conditions tested [63]. However, we

had not tested a role for m6A in protection from bacteriophage predation. In prior work,

we showed that m6A functions in the Gram-positive pathogen Streptococcus pyogenes

both in the regulation of gene expression and as part of a functioning RM system, sup-

porting the idea that DnmA can play a role in restriction modification as part of the pu-

tative operon consisting of dnmA, yeeB, and yeeC genes [138]. YeeB has a C-terminal

Superfamily II DNA/RNA helicase domain like those found in restriction endonucleases,

while YeeC has a C-terminal T5 orf172-domain, a largely uncharacterized domain that

is predicted to have multiple functions involving DNA binding [146]. In a bioinformatic

survey, Makarova et al. identified YeeB and YeeC homologs as putative anti-phage genes

often found in a type of genomic island termed defense islands, suggesting that the dnmA

operon could be involved in phage defense [147]. The dnmA gene is also adjacent to two

genes involved in DNA mobility (yefB and yefC) and to two putative toxin-antitoxin sys-

tems (yeeD-yezA and yezG-yeeF ), while the whole region from yefB to yeeF is in a lo-

cal GC-minimum compared to the surrounding genome (Figure 3.6A). Together, these

findings suggest dnmA, yeeB, and yeeC were horizontally acquired and could represent a

phage defense island [147, 148].

Given the information above, we asked if the dnmA-yeeB-yeeC gene cluster is con-

served in other microorganisms and adjacent to genes with defense-associated protein

families. We analyzed the genomic neighborhoods surrounding homologs of DnmA (10
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genes upstream and 10 genes downstream) and scored the number of genes with predicted

defense associated protein families (see 3.4). Neighborhoods harboring DnmA had, on av-

erage, 1.8 ± 1.2 genes with defense-associated protein families, while randomly selected

regions of similar size had 0.56 ± 0.67 genes with defense-associated protein families (Fig-

ure 3.6B). The most common protein families adjacent to dnmAwere homologous to yeeB

(ATP-dependent helicase/Superfamily II DNA or RNA helicase protein families) and to

yeeC (T5 orf172-domains containing protein/GIY-YIG nuclease protein families) (Figure

3.6C). In addition, these protein families were found at the 1st and 2nd position down-

stream of dnmA, respectively, indicating that the operon structure in these organisms is

the same as the gene organization found in B. subtilis (Figure 3.6C). The Uncharacterized

Protein Family, which likely represents multiple protein functions, is found throughout

the neighborhood upstream or downstream of dnmA. This family could represent another

member of the dnmA-yeeB-yeeC locus in some bacteria, however these genes are unchar-

acterized, with no known function, making their level of functional conservation unclear.

3.2.5 The DnmA Recognition Motif is Found in Bacteriophage Genomes

The fact that YeeB and YeeC co-occur with DnmA in a conserved cluster and that YeeB

and YeeC have putative anti-phage activities suggests that the dnmA-yeeB-yeeC gene clus-

ter functions as a restriction modification system. One anti-restriction strategy by bacte-

riophage is the avoidance of a given restriction site within their genome, a phenomenon

often observed for Type II RM systems composed of one MTase and one REase [149].

If the dnmA-yeeB-yeeC gene cluster functions as an RM system, then one prediction is

that the DnmA recognition motif would be under-enriched in bacteriophage genome se-

quences.We tested this hypothesis by comparing the observed number of recognitionmo-

tifs to the expected number of recognition motifs in a sample of bacteriophage genomes,

using observed-expected(O/E) ratios of 0.72 and 1.30 as thresholds for under and over-

enrichment, respectively [149]. As a control, we measured the O.E. ratio of the recognition
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Figure 3.6: (A) (Top) Genome architecture of the locus surrounding dnmA in B. subtilis

PY79. (Bottom) Percent GC content of the B. subtilis PY79 genome approximately 15 kb

upstream and downstream of the dnmA locus. The GC content from yefB to yeeF is high-

lighted in pink to emphasize the local minimum. Themean percent GC inside the pink box

is 35.4%, and 43.8% is the mean percent GC of the genome. (B) The proportion of genome

neighborhoods with a given number of defense-associated protein families. Light gray, the

distribution from randomly sampled genomic neighborhoods; dark gray, the distribution

from neighborhoods surrounding DnmA homologs. (C) The relative positions of the top

five most frequent neighboring defense-associated protein families. 0 indicates the posi-

tion of dnmA, positive integers indicate positions downstream (3
′
) of dnmA, and negative

integers indicate positions upstream (5
′
) of dnmA.
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sequence for the Type II 5-methylcytosine MTase BsuMM (5
′
-CTCGAG-3

′
), which is part

of an active Type II RM system found in B. subtilis PY79 [150]. In genomes with at least 5

expected motifs, the BsuMMmotif has a mean O/E ratio of 0.43 (Figure 3.7). Furthermore,

62.2% of the analyzed genomes have an O/E ratio below the threshold of 0.72, indicating

the BsuMM motif is under-enriched in bacteriophage genomes. We repeated the same

analysis with the DnmA recognition motif 5
′
-GACGAG-3

′
and a mock recognition motif

with the same GC content as the DnmA recognition motif (5
′
-CTGCTC-3

′
). In contrast to

the BsuMMmotif, the DnmA and mock DnmAmotifs have O/E ratios of 0.97 and 0.99, re-

spectively. Additionally, they have a lower percentage of genomeswith an O/E ratio below

the 0.72 threshold (DnmA motif 6.0% and mock DnmA motif 2.6%, Figure 3.7). Together,

these data demonstrate that the DnmA motif is naïve to the selective pressure observed

with the BsuMM motif from an active RM system. Thus, if the DnmA-YeeB-YeeC gene

cluster acts to restrict phage infection or amplification, the mechanism must be distinct

from canonical RM systems such as BsuMM-BsuMR (27).

3.2.6 The dnmA-yeeB-yeeC Locus Does Not Influence B. subtilis Susceptibility to

Bacillusphage Nf, Bacillusphage SBS-Φ𝐽 , or Bacillus Virus Φ29

Though the DnmA recognition site in bacteriophage genomes is not under-enriched,

the conservation of both gene arrangement and orientation suggests there is a selective

advantage to maintaining dnmA, yeeB, and yeeC, such as limiting bacteriophage infection.

We created single gene deletions to directly test the hypothesis that lack of yeeB and yeeC

will result in increased susceptibility to phage infection. Phage were chosen based on the

enrichment and total number of DnmA sites within their respective genomes including:

Bacillusphage Nf (0 sites), Bacillus virus Φ29 (3 sites, under-enriched), and Bacillusphage

𝑆𝐵𝑆 − Φ𝐽 (44 sites, no enrichment). In the absence of phage, all strains grew similarly,

indicating single-gene deletions of yeeB and yeeC are not deleterious for growth (Figure

3.8A). Regardless of strain, phage addition at𝑇0 caused clearing of the culture within two
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Figure 3.7: Genomes of bacteriophages from the Herelleviridae, Siphovirdae, Myoviri-

dae, and Podoviridae families were analyzed for the presence of the DnmA motif (5
′
-

GACGAG-3
′
), a mock DnmAmotif (5

′
– CTGCTC – 3

′
), and the active RMMTase BsuMM

(5
′
-CTCGAG-3

′
). Each observed number of motifs was normalized to the expected num-

ber of motifs as determined by the compositional bias method [149]. Points above or be-

low the shaded region were considered over- or under-enriched (see 3.4). The number of

genomes with an O/E ratio below the threshold of 0.72 (x-axis, numbers Below Thresh-

old”) are provided with percentages in parentheses. Each point represents an individual

data point, boxplots represent the interquartile range of the data, and the density plots

represent the distributions of the data values. Data plotted are for genomes containing at

least 5 expected motifs, thus n = 1,598 (CTGCTC), 1,702 (GACGAG), and 579 (CTCGAG).

71



hours (Figure 3.8B-D). Single gene deletions did not alter phage production either, as the

efficiency of plaquing (EOP) was similar between all strains and phages tested (Figure

3.8E-G). Since Δ𝑦𝑒𝑒𝑏 and Δ𝑦𝑒𝑒𝑐 backgrounds had similar susceptibility to phage infection

and EOP, these data indicate that the dnmA-yeeB-yeeC gene cluster is dispensable for

protection against bacteriophage infection under the conditions tested here. Given that

our results show 1) no evidence of under-enrichment of the DnmA site in phage genomes;

2) no difference in phage predation when comparing deletions of dnmA, yeeB, and yeeC

to WT; and 3) no effect of dnmA on DNA uptake during natural transformation [63], we

suggest that the dnmA-yeeB-yeeC cluster does not function as an RM or antiphage system.

Instead, we suggest that DnmA is functionally an orphan MTase from a nonfunctional

relic of an RM system.

3.3 Discussion

Genes encoding RM systems are found in many bacterial species, yet the functional-

ity of most of these systems remains unknown (http://rebase.neb.com/rebase/) [134]. In

B. subtilis, the DNAmethyltransferase DnmAwas previously identified and characterized

as a MTase that controls gene expression [63]. Here, we explore how substrate composi-

tion and key amino acid residues in DnmA influences kinetics and to expand the biological

role of DnmA, we used single-molecule, bioinformatic, and genetic approaches to study

DnmA function and regulation of dynamic movement and localization. Our in vitro and in

vivo analyses of DnmA show that disrupting DNA binding either by manipulating DNA

substrate availability or DNA binding residues influence DnmA-DNA interactions in vitro

and DnmA localization in vivo. We show that DnmA is coincident with two genes with

putative restriction functions, however, our data support the conclusion that DnmA does

not participate as an anti-phage system in B. subtilis.

We characterized the mobility and localization of DnmA in vivo through single -

molecule tracking analyses, one of a handful of studies utilizing this technology to bet-
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Figure 3.8: (A to D) Growth curves of uninfected B. subtilis (A) and cells infected with:

(B) Bacillus phage Nf, (C) Bacillus virus Φ29 , and (D) Bacillus phage 𝑆𝐵𝑆 − ΦJ . B. subtilis
strains are differentiated by color. Cultures were pregrown, and phage addition (MOI of

0.1) occurred at time 0. Growth was monitored by Optical Density (OD) measurements

every 5 min for 3 h. Each point is the mean of 4 to 6 biological replicates, and error bars in-

dicate standard deviation. (E to G) Separately, EOPwasmonitored over the same timescale

after phage addition. Squares represent the mean EOP value, and error bars denotes the

standard deviaton.
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ter understand prokaryotic DNA methylation in vivo [151]. In unperturbed cells, DnmA

is found throughout the center of the cell, likely interacting with the nucleoid and has a

positive correlation with the position of the replisome (Figure 3.2). Negri and colleagues

analyzed the mobility and localization of the DNA MTase M.Csp231I, which functions in

an active RM system [151]. Similar to our findings, M.Csp231I localizes throughout the

nucleoid with a high probability of localizing near the mid and quarter cell positions,

suggesting a common DNA searching mechanism among DNA MTases in bacteria [151].

Single-molecule studies of DNA-binding enzymes in E. coli have suggested that the

slower-moving enzyme molecules are involved in catalytic functions [152]. However, due

to the essential nature of the enzymes, catalytically inactive versions were not studied.

Here, the use of the inactive DnmA variant DnmA[Y465A] allowed us to assess how catal-

ysis influences DNA mobility and localization in vivo. Interestingly, DnmA[Y465A] and

WTDnmA have similar percentages of slow-movingmolecules, indicating that the slower

moving molecules are not necessarily enzymes involved in active catalysis (Figure 3.1).

Additionally, although we reasoned that disrupting DNA interactions in DnmA, either

by amino acid substitution or manipulating available substrate pools, would result in a

larger population of fast-moving molecules compared to WT DnmA, we instead found

that mobility remains largely unchanged compared to WT DnmA in unperturbed con-

ditions except for upon HPUra treatment. Thus, our results highlight the importance of

targeted amino acid substitutions and other approaches to better explain single molecule

results of catalytic enzymes.

Under high R-loop conditions (Δ𝑟𝑛ℎ𝐶), the localization pattern of DnmA switches

from a concentration near the mid-cell and co-localization with the replisome to DnmA

being negatively correlated with the replisome position (Figure 3.2). Since DnmA binds

RNA-DNA hybrids poorly in vitro (Figure 3.3) and DNA binding is necessary for DNA

methylation [140], our data suggest specific DNA interactions are necessary for proper

DnmA localization and correlation with DnaX. This conclusion is supported by the even
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stronger negative DnaX correlation in DnmA[6AA*], which lacks the ability to recognize

theDnmA recognition sequence in vitro (Figure 3.3).While themechanism forDnmA[6AA*]

repositioning is not clear, protein sequestration and localization are used in bacteria to

regulate enzymatic activity. In C. crescentus, the cell cycle regulating DNA MTase CcrM

is inhibited by polar sequestration [153]. While we do not observe strict polar DnmA lo-

calization under R-loop stress or in DnmA[6AA*], it is tempting to speculate that MTase

repositioning in the cell represents a broadmechanism to negatively regulate DNAmethy-

lation and epigenetic gene expression in bacteria.

Morgan et al. found that B. subtilisDnmA (previously YeeA) is homologous to the Type

IIL MTase-REase protein MmeI, which has MTase and REase domains in a single polypep-

tide [144]. The authors noted that DnmA did not encode a REase motif but was adjacent to

YeeB and YeeC homologs. We expanded on this finding to include DnmA homologs from

various species and found that genomes encoding DnmA likely encode two genes with

helicase and nuclease functions (putative YeeB and YeeC homologs, respectively) within a

20-gene neighborhood, demonstrating that gene synteny and architecture are conserved

(Figure 3.6B). The putative recombinase genes yefB and yefC and the toxin-antitoxin pair

yeeF and yezG, however, are not adjacent to DnmA at a high enough frequency for identi-

fication in our analysis. This result suggests that these genes represent B. subtilis-specific

gene acquisitions. In S. pneumoniae, genes encoding theMTase specificity subunits, which

direct the MTase to a given sequence, are subject to phase-variation through recombina-

tion, resulting in heterogenous methylation patterns in the genome [154]. Thus, it is pos-

sible the adjacent recombinase genes may play a similar role in B. subtilis. In our previous

characterization of DnmA, however, we observed homogenous methylation patterns un-

der standard growth conditions [63]. Additionally, we did not identify any sequence signa-

tures suggestive of site-specific recombination flanking the low-GC region in the genome,

such as inverted or direct repeats. The yeeF gene has an N-terminal LXG domain which

allows for secretion through the Type 7 Secretion System (T7SS) encoded by the distally
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located genes yukEDCB-yueBCD [155]. The C-terminal domain of YeeF encodes nucle-

ase activity that is inactivated by the neighboring antitoxin YezG [156]. Thus, our data

suggests that this region represents a defunct mobile genetic element that is maintained

through a selective benefit of DnmA and/or the antitoxin YezG.

The conservation and putative functions of yeeB and yeeC suggest a conserved func-

tion. We assessed the anti-phage activity of DnmA, YeeB, and YeeC by testing whether

single-deletion mutants had any effect on host survival and/or bacteriophage amplifica-

tion. Despite using bacteriophages with a range of DnmA motifs in their genome, the

single-deletion mutants had no effect on bacteriophage-mediated host killing or produc-

tion ((Figure 3.8), leading us to conclude that DnmA is part of a remnant of a non-functional

RM system. This observation is important because of the pervasive occurrence of MTases

and DNA methylation in the domain Bacteria [134].

DnmA-YeeB-YeeC homologs in the marine microorganism Vibrio crassostreae were

identified in a recent study [157]. Deletion mutations of dnmA and yeeB caused an in-

crease in bacteriophage sensitivity to some subclades of bacteriophage, while having no

effect when other subclades were used [157]. An amino acid alignment of DnmA, YeeB,

and YeeC from B. subtilis and V. crassostreae shows that all three proteins share high se-

quence homology in putative active site domains (Figure 3.9). However, YeeB and YeeC

from B. subtilis are missing several amino acid-long stretches in the C-terminal domain.

Therefore, it is possible that YeeB and YeeC in B. subtilis are missing critical residues nec-

essary for antiphage function. Our data suggest that numerous bacterial MTases detected

in the bacterial methylome also originate from defunct phage defense systems, similar to

dnmA in B. subtilis [134]. These defunct defense systems could have maintained an active

MTase either for epigenetic control or due to the presence of a toxin-antitoxin system that

selects for the acquired region while losing restriction activity.
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Figure 3.9: Identical residues for each alignment are in blue. Amino acids missing in

B. subtilis homologs are highlighted with red boxes. Motifs involved in protein function

are highlightedwith black boxeswith themotif name printer above the box. (A) Alignment

of DnmA amino acid sequences from 298-515 for V. crassostreae and 289-507 for B. subtilis.

Boxes highlight the residues found in the two conserved active sites FGG and NPPY. Dn-

mAVcr is 57% similar to DnmABsu (B) Alignment of amino acid sequences of YeeB ho-

mologs. Boxes highlight conserved motifs found in Domain 1 and Domain 2, respectively,

of superfamily 2 (SF2) helicases. YeeBVcr is 56.76% similar to YeeBBsu. (C) Alignment of

amino acid sequences of YeeC homologs. The black box highlights conserved residues

found in GIY-YIG nuclease family protein/T5orf172-domain containing proteins. YeeCVcr

is 32.96% similar to YeeCBsu.
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3.4 Materials and Methods

3.4.1 Cloning and Strain Construction

The plasmids and strains used in this Chapter are from the Simmons Lab at the Univer-

sity ofMichigan. Please refer to correspondingmanuscript of this chapter for details [158].

3.4.2 Electrophoretic Mobility Shift Assay

Production of m6A in oNLF001 was carried out by Integrated DNA Technologies (IDT)

and was determined to be 98% pure by electrospray ionization mass spectrometry (IDT).

For annealing, solutions of the unmethylated probe (oligos oTMN67/oTMN68), methy-

lated probe (oNLF001/oTMN68), and the RNA-DNAhybrid (oTMN67/oJRR271)weremixed

at a final concentration of 50 nM and incubated at room temperature overnight, covered

from light. Purified ScoC was mixed in a binding reaction consisting of 5X EMSA reaction

buffer (500 mM Tris-HCl pH 8, 1.25 M NaCl, 10% glycerol v/v) and 5 nM (final concen-

tration) annealed oligos. Reactions were incubated for 30 minutes at 25
◦𝐶 . Afterwards, 8

µL of the mixture were loaded onto and resolved via pre-run 6% Native-PAGE which was

performed covered from light and on ice for 60 minutes at 100V in 1X TBE. The samples

were visualized with the LI-COR Odyssey imager. Intensities of the shifted and unshifted

bands were quantified using Fiji image software using the Gels feature [159]. The fraction

bound was calculated by first subtracting the background signal (region of gel with no

band) from the intensity measurement of each band. The intensity of the bound substrate

was divided by the sum of intensities of the bound and unbound substrate, yielding the

fraction bound. Fraction bound data was modeled using the four-parameter log-logistic

function in the drc package for R and the effective concentration for half maximal binding

(EC50) was measured for each replicate [160].
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3.4.3 Flow Cytometry

Strains of interest were struck out on LB agar plates and incubated 16 hours overnight

at 30
◦𝐶 . The next day, 6 isolated colonies were inoculated in 250 µL LB in wells of a 96-well

plate and grown at 37
◦𝐶 in an orbital shaker at 250 RPM until early exponential phase.

Cultures were then moved to microcentrifuge tubes and diluted 1:1 with 200 µL sterile 1X

PBS and single cell fluorescencewasmeasured using anAttuneTMNxTAcoustic Focusing

Cytometer (ThermoFisher Scientific). Fluorescence data was acquired from 200,000 cells

with the following settings: flow rate, 25 µl/min; FSC voltage, 200; SSC voltage, 250; BL1

voltage, 250.

3.4.4 Live-Cell Single-Molecule Imaging

B. subtilis strains expressing DnmA-PAmCherry (PY79 and Δ𝑟𝑛ℎ𝐶 PY79) and DnmA

variants (DnmA[Y465A]-PAmCherry andDnmA-6AA*-PAmCherry)were grown overnight

on LB-agar plates at 37
◦𝐶 . The cells were washed from the plate with filtered S750 mini-

malmedia and inoculated in filtered S750minimalmedia at OD600 0.1, followed by growth

with shaking at 200 RPM at 30
◦𝐶 for 4 h until reaching OD600 0.5 - 0.6 (S750 minimal

media - 1X S750 salts [10X S750 salts: 0.5 M MOPS, pH 7.4, 100 mM Ammonium Sul-

fate, 50 mM Potassium Phosphate Monobasic, filter sterilzed], 1X Metals [100X metals:

0.2 M MgCl2, 70 mM CaCl2, 5 mM MnCl2, 0.1 mM ZnCl2, 100 µg/mL Thiamine HCl, 2

mM HCl, 0.5 mM FeCl3 (added last to prevent precipitation), filter sterilized)], 1% glu-

cose, 0.1% glutamate, 40 µg/mL tryptophan, 40 µg/mL phenylalanine). Experiments in

6-(p-hydroxyphenyIazo)-uracil (HPUra) were done by adding HPUra at a final concen-

tration of 162 µM to the culture immediately before imaging. Coverslips were cleaned via

argon plasma etching (PE-50, Plasma Etch) for 30 minutes and 2% agarose pads were pre-

pared with freshly made, filtered S750 media to reduce background fluorescent signals.

Cells were pipetted onto agarose pads and sandwiched between coverslips for imaging.

Once prepared, the sample was mounted on a wide-field inverted microscope (Olympus
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IX71, Melville, NY) for single-molecule imaging.

Prior to imaging, the cells and background were photobleached with a 561-nm laser

(Sapphire 561-50, Coherent, Bloomfield, CT) for two minutes at a power density of 630

W/cm2. Single DnmA-PAmCherry molecules were photoactivated with 400-ms pulses

of 405-nm laser (Cube 405-100, Coherent, Bloomfield, CT) with a power density of 21.6

W/cm2 at the start of the imaging and after photo-bleaching. Photo-activated DnmA-

PAmCherry molecules were imaged with a 561-nm laser with a power density of 69.2

W/cm2 and appropriate dichroic and long-pass filters. Fluorescence was collected via a

1.40 NA 100× oil-immersion phase-contrast objective and detected with a 512 × 512 pixel

electron multiplying charge-coupled device camera (Photometrics, Acton, MA). Images

were recorded with 40-ms exposure time.

3.4.5 Single-Molecule Detection, Tracking, and Analysis

Phase-contrast images were used to provide a reference mask for single-molecule de-

tection and fitting within cell boundaries. Single-molecule fitting was done via the Single-

Molecule Localization by Local Background Subtraction (SMALL-LABS) algorithm [12].

The fit positions were connected into trajectories using the Hungarian algorithm [65].

The diffusion coefficients for each trajectories is fitted through [100]: 𝑀𝑆𝐷 = 4𝐷𝜏 +

2𝜎2
Where MSD is the squared displacement. 𝜏 is the time lag and 𝜎 is the localization

precision. The normalized heatmaps in Figure 3.2E-J include the positions of all single

molecules in all cells under each condition. First, the cell outlines were determined from

segmentation of the phase contrast images, then the Feret properties of each cell were

calculated (Matlab function bwferet) to determine the long and short axis of each cell. The

single-molecule localizations of DnmA in each cell were projected onto the corresponding

cell’s long and short axes to acquire the relative position of that molecule in the cell. Based

on assuming the cells are symmetric along long and short axes, the 2D relative position

of each single-molecule were symmetrized along the two axes.
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The curve fitting for the histogram of diffusion coefficients in Figure 3.2D and Figure

3.4A depict the single-component Gaussian fitting and the logarithm of single-trajectory

diffusion coefficients are weighted based on track length. Figure 3.4B-F depicts the 2-

component Gaussian fitting of the logarithm of single-trajectory diffusion coefficients in

Figure 3.4A. The Spot-On algorithm was applied to fit the probability density function of

single-molecule displacements to a 2-state model and a 3-state model to get the weight

fraction of each component forWTDnmA [18]. For Spot-On analysis of the other datasets,

the fitted diffusion coefficient range for each state is fixed within the confidence interval

of the corresponding state’s WT DnmA diffusion coefficient value to enable a direct com-

parison of weight fraction of each state between different datasets.

3.4.6 Gene Neighborhood Analysis, Phage Propagation and Infection

The genetic anlysis and phage assays used in this Chapter are from the Simmons Lab

at the University of Michigan. Please refer to corresponding manuscript of this chapter

for details [158].

81



CHAPTER IV

HP1 Oligomerization Compensates for Low-Affinity

H3K9me Recognition and Provides a Tunable

Mechanism for Heterochromatin-Specific Localization

The work presented in this chapter was previously published in

Science Advances.

Biswas, S.*, Chen, Z.*, Karslake, J.D.*, Farhat, A.*, Ames, A., Raiymbek, G.,

Freddolino, P.L., Biteen, J.S. and Ragunathan, K.

HP1 oligomerization compensates for low-affinity H3K9me recognition and provides a

tunable mechanism for heterochromatin-specific localization.

Science Advances, 8(27), eabk0793 (2022). DOI: 10.1126/sciadv.abk0793

In this work, I participated in the conceptualization of the project. I performed the single-

molecule imaging experiments and dynamics analysis together with Saikat Biswas and

Josh Karslake. I designed and implemented the spatial analysis, plotted the analysis of the

single-molecule dynamics, and validated the dynamics detection range. *: equal contribu-

tion.
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4.1 Introduction

Despite having identical genomes, eukaryotic cells can establish distinct phenotypic

states that remain stable and heritable throughout their lifetimes [161]. In the context

of a multicellular organism, the persistence of epigenetic states is vital to establish and

maintain distinct cellular lineages [162]. This process of phenotypic diversification de-

pends, in part, on the posttranslational modifications of DNA packaging proteins called

histones [163,164]. Proteins that can “read, write, and erase” histonemodifications interact

weakly and transiently with their histone substrates. Nevertheless, dynamic, low-affinity

interactions between histone modifiers and their substrates can encode stable memories

of gene expression that can be inherited following DNA replication and cell division [165].

H3K9me is a conserved epigenetic modification that is associated with transcriptional

silencing and heterochromatin formation [54]. Heterochromatin establishment is critical

for chromosome segregation, sister chromatid cohesion, transposon silencing, and main-

taining lineage-specific patterns of gene expression [67]. These diverse cellular functions

associated with heterochromatin are critically dependent on an evolutionarily conserved

HP1 family of proteins that recognize and bind toH3K9me nucleosomes [73]. HP1 proteins

have a distinct architecture that consists of two conserved structural domains: (i) an N-

terminal chromodomain (CD) that recognizes H3K9me nucleosomes and (ii) a C-terminal

chromoshadow domain (CSD) that promotes dimerization (Figure 4.1A) [166]. The HP1

CD domain binds to H3K9me peptides with lowmicromolar affinity (1 to 10 µM) [167,168].

The HP1 CSD domain promotes protein-protein and protein-nucleosome interactions and

oligomerizes to form higher-order, phase-separated HP1-containing chromatin complexes

that exhibit liquid-like properties [79,169,170]. In addition, HP1 proteins are posttransla-

tionally modified, and these modifications affect both nucleosome binding and HP1 pro-

tein–protein interactions [171,172]. A flexible and unstructured hinge region connects the

Swi6 CD and CSD domains. The hinge region binds to nucleic acids without any sequence

specificity [76]. At present, it is unclear how the competing demands of hinge-mediated
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nucleic acid binding, CD-dependent H3K9me recognition, and CSD-mediated oligomer-

ization and nucleosome interactions influence HP1 enrichment at specific locations in the

genome.

In fission yeast Schizosaccharomyces pombe (S. pombe), Histone H3 lysine 9 methyla-

tion (H3K9me) is enriched at sites of constitutive heterochromatin, which includes the

pericentromeric repeat sequences (dg and dh), the telomeres (tlh), and the mating-type

locus (mat) [71]. A conserved SET domain–containing methyltransferase, Clr4, is the sole

enzyme that catalyzes H3K9me in S. pombe [72, 173]. The major S. pombe HP1 homolog,

Swi6, senses the resulting epigenetic landscape and binds to H3K9me chromatin with low

affinity but high specificity [174]. Swi6 is an archetypal member of the HP1 family of pro-

teins [74]. Its ability to simultaneously recognize H3K9me and oligomerize enables linear

spreading across broad segments of the chromosome encompassing several hundred kilo-

bases of DNA [175]. Heterochromatin spreading subsequently leads to the silencing of

genes that are distal from heterochromatin nucleation centers.

Only 2% of nucleosomes in the S. pombe genome are marked with H3K9me [176].

Given the limiting amount of substrate, most Swi6 molecules ( 80 to 90%) are located else-

where in the genome, potentially engaged in promiscuousDNA- and chromatin-dependent

interactions [177, 178]. Under conditions of acute heterochromatin misregulation, these

promiscuous Swi6-chromatin interactions lead to epimutations that alter cellular fitness

[179]. Overexpressing Swi6 enhances epigenetic silencing of a reporter gene at sites of

constitutive heterochromatin [180]. Therefore, Swi6 functions as a dose-sensitive

heterochromatin-associated protein. Altering the fractional occupancy of Swi6 at sites of

H3K9me is likely to have a profound impact on transcriptional silencing, heterochromatin

stability, and epigenetic inheritance.

On the basis of fluorescence recovery after photobleaching (FRAP) measurements, the

turnover rates of Swi6 and other HP1 homologs from sites of heterochromatin range from

a few hundred milliseconds to several seconds [181,182]. Point mutations that impair CD
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binding to H3K9me nucleosomes or CSD-mediated dimerization abolish Swi6 binding to

nucleosomes. Hence, the rapid turnover of HP1 proteins from heterochromatin involves

both (i) CD-dependent binding and unbinding of Swi6 from H3K9me nucleosomes and (ii)

CSD-dependent association or dissociation of Swi6 oligomers. CSD-dependent oligomer-

ization drives the formation of heterochromatin condensates, but we do not understand

whether such interactions inhibit or enhance H3K9me recognition in vivo. In addition,

reconstitution studies show that an increase in the on-rate for DNA binding enhances the

interaction between HP1 proteins and nucleosomes [75]. However, given a genome that is

replete with nucleic acids (DNA and RNA), it is equally likely that the on-rate associated

with nucleic acid binding prevents specific Swi6 binding to H3K9me and could titrate Swi6

away from sites of H3K9me. In essence, we lack a fundamental understanding of the extent

of coupling between CSD-dependent oligomerization, CD-dependent H3K9me recogni-

tion, and hinge-dependent nucleic acid binding in the context of the fission yeast nucleus.

In this study, we use single-particle tracking photoactivated localization microscopy to

measure the in vivo binding dynamics of Swi6 in real time as it samples the fission yeast

nucleus [1, 11]. In vitro binding measurements have thus far served as the gold standard

to measure interactions between chromatin readers and modified histone peptides or re-

combinant nucleosome substrates [73,74,79,82,183–185]. However, these studies are typ-

ically carried out under dilute, noncompetitive solution conditions, which do not reflect

the chromatin environment that Swi6 encounters in the nucleus. Rather, here, we analyze

individual Swi6 molecule trajectories with high spatial and temporal resolution in liv-

ing cells. Our studies determined the precise biochemical attributes of Swi6 that give rise

to distinct mobility states. Our measurements enabled us to engineer precise degrees of

multivalency within Swi6 that entirely circumvent the need for CSD-dependent oligomer-

ization while suppressing the inhibitory effects of nucleic acid binding. We find that the

simultaneous engagement of at least four H3K9me CD domains is both necessary and

sufficient for the heterochromatin-specific targeting of Swi6, while nucleic acid binding
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competes with oligomerization. Overall, our results demonstrate that the evolutionarily

conserved phenomenon of HP1 oligomerization may represent a tunable mechanism that

compensates for weak, low-affinity H3K9me recognition that outcompetes promiscuous

nucleic acid binding.

4.2 Results

4.2.1 The single-molecule dynamics of Swi6 in live S. pombe indicate a hetero-

geneous environment

Because Swi6 molecules within the fission yeast nucleus undergo binding and unbind-

ing events in a complex environment, we used single−molecule tracking to measure their

heterogeneous dynamics. For instance, a Swi6 molecule bound to an H3K9me nucleosome

is, on average, likely to exhibit slower, more confined motion compared to rapidly diffus-

ing proteins. Hence, the biochemical properties of Swi6 will directly influence its mobility

within the fission yeast nucleus. We transformed S. pombe cells with PAmCherry fused to

the N terminus of Swi6 [3]. This fusion protein replaces the WT endogenous Swi6 gene

and serves as the sole source of Swi6 protein in fission yeast cells (Fig. 4.1B). To test the

functionality of PAmCherry−Swi6 in heterochromatin assembly, we used strains where a

ura4+ reporter is inserted within the outermost pericentromeric repeats (otr1R) (39). We

concluded that PAmCherry−Swi6 is functional since cells expressing the fusion protein

exhibit reduced growth on -URA medium consistent with ura4+ silencing (Fig. 4.1B). In

contrast, cells lacking the H3K9 methyltransferase Clr4 (𝑐𝑙𝑟4Δ) exhibit no growth inhi-

bition when plated on −URA−containing medium, consistent with 𝑢𝑟𝑎4+ expression and

the loss of H3K9me-dependent epigenetic silencing (Fig. 4.1B). In addition, chromatin im-

munoprecipitation–quantitative polymerase chain reaction (ChIP-qPCR) measurements

show that H3K9me2 and Swi6 binding to sites of constitutive heterochromatin is pre-

served in cells expressing PAmCherry-Swi6 (fig. 4.2, A and B).
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Figure 4.1: (A) Each Swi6 domain has a distinct biochemical role. CD: H3K9me recog-

nition; H: nucleic acid binding; CSD: protein oligomerization. (B) Top: pamCherry-swi6

expressed from the endogenous swi6+ promoter. Bottom: Silencing assay using a ura4+

reporter inserted at the pericentromeric repeats (otr1R). Caption continues
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Figure 4.1: (C) Single-molecule experiment workflow. PAmCherry-Swi6 molecules are

photoactivated (406 nm, 1.50 to 4.50𝑊 /𝑐𝑚2
, 200 ms), then imaged, and tracked until pho-

tobleaching (561 nm, 71.00𝑊 /𝑐𝑚2
, 25 frames/s). The cycle is repeated 10 to 20 times per

cell. (D) Image of a single photoactivated PAmCherry-Swi6 molecule at three time points.

Yellow circle, molecule position; yellow line, Swi6-PAmCherry trajectory from photoac-

tivation until the current frame; white circle, approximate nucleus position. (E) Repre-
sentative single-molecule trajectories in a live S. pombe cell. Each trajectory is acquired

after a new photoactivation cycle. (F) SMAUG identifies four distinct mobility states, (α,

β, γ, and δ) for PAmCherry-Swi6 in WT cells. Each point is the average single-molecule

diffusion coefficient, D, of Swi6 molecules in that state at a saved iteration of the Bayesian

algorithm after convergence. Dataset: 10,095 steps from 1491 trajectories. (G) Average
probabilities (arrows) of a PAmCherry-Swi6 molecule transitioning between the mobility

states (circles) from (F). Each circle area is proportional to the weight fraction, 𝜋 ; D is in

square micrometers per second. Low-frequency transition probabilities (below 0.04) are

excluded. (H) Ripley’s analysis shows higher autocorrelation for PAmCherry-Swi6 in the

slower (blue and red) states compared to 𝐻 (𝑟 ) ≤ 2 for the faster (green and purple) states.

We used single-molecule microscopy to investigate the dynamics of Swi6 molecules

with high spatial (20 to 40 nm) and temporal (40 ms) resolution. We photoactivated zero to

two PAmCherry-Swi6 fusion proteins per activation with 406-nm light. Next, we imaged

the photoactivated Swi6 molecules with 561-nm laser excitation until photobleaching, ob-

tained a 5- to 15-step trajectory based on localizing molecules at 40-ms intervals, and then

repeated the photoactivation/imaging cycle with another PAmCherry-Swi6 molecule 10

times per cell across several individual cells (Fig. 4.1, C and D). Our experimentally mea-

sured localization accuracy is about 36 nm (fig. 4.2C). We observed both stationary and

fast-moving molecules (Fig. 4.1E). We hypothesized that each type of motion, which we

term a “mobility state,” corresponds to a distinct biochemical property of Swi6 in the cell

(e.g., bound versus unbound) and that molecules can transition between the different mo-

bility states during a single trajectory. Thus, rather than assign a single diffusion coef-

ficient to each single-molecule trajectory, we analyzed our data using single-molecule

analysis by unsupervised Gibbs (SMAUG) sampling algorithm (4.4) [31]. SMAUG esti-

mates the biophysical descriptors of a system by embedding a Gibbs sampler in a Markov

Chain Monte Carlo framework. This nonparametric Bayesian analysis approach deter-
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Figure 4.2: (A). ChIP-qPCR measurements of H3K9me2 levels at sites of heterochromatin

formation (dg pericentromeric repeats, tlh telomere and mat mating type locus) (N = 2),

for Swi6 WT and 𝑐𝑙𝑟4Δ cells. Error bars represent standard deviation. (B). ChIP-qPCR
measurements of PAmCherry-Swi6 levels at sites of heterochromatin formation (dg peri-

centromeric repeats, tlh telomere and mat mating type locus) (N = 2), for Swi6 WT and

𝑐𝑙𝑟4Δ cells. Error bars represent standard deviation. (C). Density histogram of single-

molecule localization fit error from 20 individual measurements and the plotted curve

is the t-distribution fit. (D). A collection of thirty-five single-particle trajectories in live

S. pombe cells. Colors represent different single-particle trajectories that are acquired fol-

lowing sequential photoactivation cycles. Clusters of molecules appear at sites that cor-

respond to constitutive heterochromatin. The heterogeneous tracks correspond to Swi6

molecules that exhibit different mobility states. (E). Randomly simulated trajectories for

the four wild-type Swi6 mobility states. The nucleus is approximated to be a circle with

radius 1.5𝜇𝑚 as indicated by the black dashed circle. Blue, red, green and purple simulated

trajectories correspond to α, β, γ and δ mobility states of wild-type Swi6. (F). Ripley’s H
function plot for experimental trajectories and simulated trajectories of wild-type Swi6.

Blue, red, green, and purple lines correspond to α, β, γ and δ states, respectively. The solid

line corresponds to experimentally acquired trajectories without normalization, and the

dashed lines correspond to simulated trajectories shown in B, (G). Ripley’s 𝐻 (𝑟 ) function
plot for cross-correlation between β, γ and δ state in relation to the α state as indicated

by the red, green, and purple plots, respectively. Simulated trajectories exhibit negligible

cross-correlation values, and therefore the cross-correlation plots shown here do require

any additional normalization.
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mines the most likely number of mobility states and the average diffusion coefficient of

single molecules in each state, the occupancy of each state, and the probability of tran-

sitioning between different mobility states between subsequent 40-ms frames. For each

strain, we sampled over a thousand trajectories of PAmCherry-Swi6 within the nucleus of

S. pombe cells (fig. 4.2D). SMAUG analyzed the 10,000 steps from these trajectories in ag-

gregate. For cells expressing fusions of PAmCherry-Swi6, the algorithm converged to four

mobility states and estimated the diffusion coefficient, D, and the fraction of molecules

in each state, π, for each iteration (each dot in Fig. 4.1F is the assignment from one it-

eration of the SMAUG analysis). We also compared our results from SMAUG to other

single-particle tracking algorithms such as Spot-On and vbSPT (4.4). Our comparisons

with different single-molecule tracking methods reveal that for our single-particle track-

ing datasets, SMAUG and other analysis methods are consistent with respect to the num-

ber of states and the estimated diffusion coefficients (𝐷𝑎𝑣𝑔) for each state.

We refer to the four mobility states as α, β, γ, and δ in order of increasing Davg (Fig.

4.1F). The clusters of points correspond to estimates of D and π for each of the four mo-

bility states, and the spread in the clusters indicates the inferential uncertainty. The slow-

est mobility state comprises 23% of the Swi6 molecules; its average diffusion coefficient

(𝐷𝑎𝑣𝑔𝛼 = 0.007 ± 0.001𝜇𝑚2/𝑠) is close to the localization precision of the microscope, in-

dicating no measurable motion for these molecules (error bars indicate the 95% credible

interval). Given that Swi6 forms discrete foci at sites of constitutive heterochromatin (cen-

tromeres, telomeres, and the mating-type locus), the α mobility state likely corresponds to

Swi6 molecules that are stably bound at these constitutive sites, which are enriched with

H3K9me. The fastest diffusion coefficient that we estimated is 𝐷𝑎𝑣𝑔𝛿 = 0.51 ± 0.03𝜇𝑚2/𝑠 .

We tested the extent to which our experimental temporal resolution affects the estimation

of 𝐷𝑎𝑣𝑔 and found that using a shorter (20-ms) exposure time results in larger localiza-

tion errors due to the limited brightness of PAmCherry, although it does not affect the

weight fraction of molecules in the fast-diffusing δ state. Because of this reduced signal-
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to-noise ratio, 40 ms was chosen as an optimal temporal resolution. Although the 40-ms

time resolution of our measurements is likely to result in uncertainty and potential un-

derestimation of the 𝐷𝑎𝑣𝑔 associated with the fast state (δ state), our measurements are

appropriate to quantify the slower-diffusing α, β, and γ populations.

We also measured how often Swi6 molecules in one mobility state transition to an-

other mobility state. We found that Swi6 molecules are most likely to transition between

adjacent rather than nonadjacent mobility states. The transition probabilities reveal that

a distinct hierarchy of biochemical interactions dictates how Swi6 interacts with H3K9me

sites in the fission yeast genome (Fig. 4.1G). Notably, only molecules in the β intermediate-

mobility state transition with high probability to the slow-mobility α state, which (as

noted above) likely corresponds to Swi6 molecules stably bound at sites of H3K9me.

We used a spatial autocorrelation analysis to measure inhomogeneities in Swi6 dif-

fusion (Fig. 4.1H). The Ripley H function, 𝐻 (𝑟 ), measures deviations from spatial homo-

geneity for a set of points and quantifies the correlation as a function of the search radius,

𝑟 [186]. We calculated 𝐻 (𝑟 ) values for the positions of molecules in each mobility state

from the single-molecule tracking dataset. To eliminate the bias that would come from the

spatial correlation between steps along the same trajectory, we compared the experimen-

tal observations to a null model by randomly simulating confined diffusion trajectories

for each of the four mobility states (4.4). We represented the spatial autocorrelation val-

ues associated with each state to an𝐻 (𝑟 ) function normalized using simulated trajectories

(fig. 4.2, E and F). The real trajectories show substantially higher-magnitude and longer

distance correlations than a realistic simulated dataset. We also observed low autocorre-

lation values for the δ and γ states (purple and green) and high autocorrelation values

for the β and α states (blue and red) (Fig. 4.1F). The cross-correlation between the β, γ,

and δ mobility states and the slow-moving α state further supports our model of spatial

confinement: Molecules in the β state are most likely to be proximal to H3K9me-bound

molecules in the α state (fig. 4.2G). In summary, the combination of transition plots and
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spatial homogeneity maps suggests that the β and γ intermediate-mobility states repre-

sent biochemical intermediates that sequester Swi6 molecules from transitioning between

the H3K9me-bound α state and the fast-diffusing, chromatin-unbound δ state.

4.2.2 The slowest moving Swi6 molecules correspond to foci that are typically

observed at sites of constitutive heterochromatin

Following the baseline characterization of the different mobility states associated with

Swi6 and their relative patterns of spatial confinement, we used fission yeast mutants to

assign individual biochemical properties to each mobility state. As a first approximation,

we hypothesized that the major features likely to affect Swi6 binding within the nucleus

are (i) CD-dependent H3K9me recognition, (ii) hinge-mediated nucleic acid binding, and

(iii) CSD-mediated oligomerization [73].

We deleted the sole S. pombe H3K9 methyltransferase, Clr4, to determine how the

four mobility states associated with Swi6 diffusion respond to the genome-wide loss of

H3K9 di- and trimethylation. The mobility of PAmCherry-Swi6 is substantially different

in (H3K9me0) 𝑐𝑙𝑟4Δ cells compared to 𝑐𝑙𝑟+ cells. Most prominently, most Swi6 molecules

in 𝑐𝑙𝑟4Δ cells move rapidly and show no subnuclear patterns of spatial confinement com-

pared to WT cells. The slow-mobility α state is absent, and the fraction of molecules in

the intermediate-mobility β state decreases twofold (Fig. 4.3A). In contrast, the weight

fractions of the γ and δ states substantially increase in H3K9me0 𝑐𝑙𝑟4Δ cells, suggesting

that these mobility states are exclusively H3K9me independent (Fig. 4.3A). The estimated

transition probabilities between states show that in the absence of the H3K9me-dependent

low-mobility α state, PAmCherry-Swi6 molecules predominantly reside in and transition

between the γ and δ fast-mobility states with only rare transitions to the β state (Fig. 4.3B).

Hence, both the α and β states depend on Swi6 binding to H3K9me nucleosomes, with α

occurring exclusively in clr4+ cells and β representing a mixture of H3K9me-dependent

and H3K9me-independent substates (present in 𝑐𝑙𝑟+ and 𝑐𝑙𝑟4Δ cells).
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Figure 4.3: (A) SMAUG identifies three distinct mobility states for PAmCherry-Swi6 in

H3K9me0 mut (𝑐𝑙𝑟4Δ) cells; the α mobility state is absent. Dataset: 10,432 steps from

2463 trajectories. (B) Average probabilities (arrows) of a PAmCherry-Swi6 molecule in

H3K9me0 mut cells transitioning between the mobility states (circles) from (A). (C)
SMAUG identifies three distinct mobility states for PAmCherry-Swi6

ℎ𝑖𝑛𝑔𝑒
(swi6 KR25A)

molecules; the γ mobility state is absent. Dataset: 12,788 steps from 1210 trajectories. (D)
Average probabilities (arrows) of a PAmCherry-Swi6

ℎ𝑖𝑛𝑔𝑒
molecule transitioning between

the mobility states (circles) from (C). (E) SMAUG identifies three distinct mobility states

for PAmCherry-Swi6 in H3K9me2 mut (mst2 F449Y mutant) cells; the α mobility state is

absent. Dataset: 14,837 steps from 2308 trajectories. H3K9me0 mut clusters from (A) are
provided as a reference (gray circles). (F) Average probabilities (arrows) of a PAmCherry-

Swi6 molecule in H3K9me2 mut cells transitioning between the mobility states (circles)

from (E). Each point in (A), (C), and (E) is the average single-molecule diffusion coeffi-

cient, D, of Swi6 molecules in that state at a saved iteration of the Bayesian algorithm

after convergence; the average and SD of the WT Swi6 clusters (blue α, red β, green γ,

and purple δ, respectively, from Fig. 4.1F) are provided as a reference (crosshairs). Each

circle area in (B), (D), and (E) is proportional to the weight fraction, π; D is in square

micrometers per second; low-frequency transition probabilities below 0.04 are excluded.

A tryptophan to alanine substitution (W104A) within the Swi6 CD attenuates H3K9me

binding approximately 100-fold (Swi6 CD
𝑚𝑢𝑡

) [168,187]. We expressed PAmCherry−Swi6

CD
𝑚𝑢𝑡

in S. pombe cells. Our SMAUG analysis identified three mobility states for PAm-

Cherry − Swi6 CD
𝑚𝑢𝑡

(fig. 4.4A), and the distribution of mobility states also showed de-

pletion of the α state similar to the depletion of the α state of Swi6 in H3K9me0 𝑐𝑙𝑟4Δ cells

(c.f. Fig. 4.3A). A leucine to glutamate substitution (L315E) within the Swi6 CSD disrupts

dimerization and higher-order oligomerization (Swi6 CSD
𝑚𝑢𝑡

).We expressed PAmCherry-

Swi6 CSD
𝑚𝑢𝑡

) in S. pombe cells. Our SMAUG analysis identified three mobility states

for PAmCherry-Swi6 CSD
𝑚𝑢𝑡

(fig. 4.4B). Notably, the low-mobility α state is absent in

PAmCherry-Swi6 CSD cells. We also mutated two residues within the Swi6 CD domain

(R93A K94A), which disrupts CD-CD–dependent Swi6 oligomerization [187], and mea-

sured the mobility states associated with PAmCherry-Swi6 Loop-X. We were unable to

detect substantive changes in the fraction of molecules in the α state upon introducing

alanine substitutions with the ARK loop (fig. 4.4C). This could be because CD-CD inter-

actions have a more subtle effect on Swi6 oligomerization in vivo and play a minor role
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relative to CSD-dependent interactions. It is likely that additional destabilizing mutations

within the CD-CD interface might be needed to further disrupt CD-CD–dependent Swi6

oligomerization in vivo. On the basis of our measurements, we conclude that the low-

mobility α state depends on the H3K9me substrate, on CD-mediated H3K9me recognition,

and on CSD-mediated dimerization.

4.2.3 Transient nucleic acid binding leads to an intermediate apparent diffusion

coefficient for Swi6

HP1 proteins have a variable-length hinge region that connects the H3K9me recogni-

tion CD domain and the CSD oligomerization domain [75]. In the case of Swi6, the hinge

region has 25 lysine and arginine residues that modulate the interaction between Swi6 and

nucleic acids (DNA and RNA).We replaced all 25 lysine and arginine residues with alanine

(Swi6
ℎ𝑖𝑛𝑔𝑒

) and imaged the mobility patterns of PAmCherry-𝑆𝑤𝑖6ℎ𝑖𝑛𝑔𝑒 [177]. Neutralizing

the net positive charge within the hinge region results in fewer fast-diffusing molecules

and a substantial increase in the proportion of low-mobility Swi6
ℎ𝑖𝑛𝑔𝑒

molecules relative

to the WT protein. These qualitative observations were consistent with our quantitative

analysis by SMAUG. We detected three mobility states (as opposed to four in the case of

theWT Swi6 protein), a substantial increase in the populations of the H3K9me-dependent

α slow-mobility and β intermediate-mobility states, and a concomitant decrease in the

population of the δ fast-diffusing state (Fig. 4.3C). Notably, the γ intermediate-mobility

state is absent in the case of PAmCherry-Swi6
ℎ𝑖𝑛𝑔𝑒

(Fig. 4.3C). Hence, we infer that the γ

intermediate-mobility state corresponds to Swi6 bound to nucleic acids (DNA or RNA)

via its hinge region. Furthermore, the twofold increase in the weight fraction of the slow

α state suggests that, in the absence of DNA or RNA binding, PAmCherry - 𝑆𝑤𝑖6ℎ𝑖𝑛𝑔𝑒

molecules preferentially interact with H3K9me chromatin. Last, we noticed that the dif-

fusion coefficient of the β mobility state exhibits a twofold increase, suggesting that the

loss of nucleic acid binding additionally destabilizes this intermediate.
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Figure 4.4: (A). Average single-molecule diffusion coefficients and weight fraction esti-

mates for PAmCherry-Swi6 CD
𝑚𝑢𝑡

expressing cells (swi6 W104A, which has a tryptophan

to alanine mutation within the Swi6 chromodomain that disrupts H3K9me recognition

and binding). SMAUG identifies three distinct mobility states, (red β, green γ, and purple

δ, respectively) for PAmCherry-Swi6 in CD
𝑚𝑢𝑡

cells. Each point represents the average

single-molecule diffusion coefficient vs. weight fraction of PAmCherry-Swi6 molecules in

each distinct mobility state at each saved iteration of the Bayesian algorithm after con-

vergence. The dataset contains 10075 steps from 1624 trajectories. The wild-type Swi6

clusters (Figure4.1F) are provided for reference (cross hairs).(B). Average single-molecule

diffusion coefficients and weight fraction estimates for PAmCherry-Swi6 CSD
𝑚𝑢𝑡

express-

ing cells (swi6 L315E, which has a leucine to glutamate mutation within the Swi6 chro-

moshadow that disrupts H3K9me recognition and binding). SMAUG identifies three dis-

tinct mobility states, (red β, green γ, and purple δ, respectively) for PAmCherry-Swi6 in

CSD
𝑚𝑢𝑡

cells. Each point represents the average single-molecule diffusion coefficient vs.

weight fraction of PAmCherry-Swi6molecules in each distinctmobility state at each saved

iteration of the Bayesian algorithm after convergence. The dataset contains 11206 steps

from 1625 trajectories. The wild-type Swi6 clusters (Figure 4.1F) are provided for refer-

ence (cross hairs).(C). Average single-molecule diffusion coefficients and weight fraction

estimates for cells expressing PAmCherry-Swi6-LoopX. SMAUG identifies four distinct

mobility states, (blue α, red β, green γ, and purple δ, respectively) for PAmCherry-Swi6

in Swi6-LoopX cells. Each point represents the average single-molecule diffusion coef-

ficient vs. weight fraction of PAmCherry-Swi6 molecules in each distinct mobility state

at each saved iteration of the Bayesian algorithm after convergence. The dataset contains

12132 steps from 1413 trajectories TheWT clusters (Figure 4.1F) are provided for reference

(cross hairs).(D). Average single-molecule diffusion coefficients and weight fraction esti-

mates for PAmCherry-Swi6molecules expressed in chromodomain deleted clr4 (𝑐𝑙𝑟4Δ𝐶𝐷)
cells. SMAUG identifies three distinct mobility states, (red β, green γ, and purple δ, re-

spectively) for PAmCherry-Swi6 in 𝑐𝑙𝑟4Δ𝐶𝐷 mut cells. Each point represents the average

single-molecule diffusion coefficient vs. weight fraction of PAmCherry-Swi6 molecules in

each distinct mobility state at each saved iteration of the Bayesian algorithm after conver-

gence. The dataset contains 10205 steps from 2551 trajectories. Specifically, the α mobility

state is absent in 𝑐𝑙𝑟4Δ𝐶𝐷 cells. The average and standard deviation of the WT Swi6 clus-

ters (Figure 4.1F) are provided as a reference (cross hairs).(E). Average single-molecule

diffusion coefficients and weight fraction estimates for PAmCherry-Swi6 molecules ex-

pressed in𝑚𝑠𝑡2Δ cells. SMAUG identifies four distinct mobility states, (blue α, red β, green

γ, and purple δ, respectively) for PAmCherry-Swi6 in𝑚𝑠𝑡2Δ cells. Each point represents

the average single-molecule diffusion coefficient vs. weight fraction of PAmCherry-Swi6

molecules in each distinct mobility state at each saved iteration of the Bayesian algorithm

after convergence. The dataset contains 11341 steps from 1619 trajectories. The wild-type

Swi6 mobility states (Figure 4.1F) are provided as a reference (cross hairs).
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Figure 4.4: (F). Average single-molecule diffusion coefficients and weight fraction esti-

mates for PAmCherry-Swi6 molecules expressed in 𝑒𝑝𝑒1Δ cells. SMAUG identifies four

distinct mobility states, (blue α, red β, green γ, and purple δ, respectively) for PAmCherry-

Swi6 in 𝑒𝑝𝑒1Δ cells. Each point represents the average single-molecule diffusion coeffi-

cient vs. weight fraction of PAmCherry-Swi6 molecules in each distinct mobility state at

each saved iteration of the Bayesian algorithm after convergence. The dataset contains

12790 steps from 2095 trajectories. The wild-type Swi6 mobility states (Figure 4.1F) are

provided as a reference (cross hairs).(G). Average single-molecule diffusion coefficients

and weight fraction estimates for PAmCherry-Swi6 molecules in H3K9mespread (𝑚𝑠𝑡2Δ,
𝑒𝑝𝑒1Δ cells. SMAUG identifies four distinct mobility states, (blue α, red β, green γ, and

purple δ, respectively) for PAmCherry-Swi6 in H3K9mespread cells. Each point repre-

sents the average single-molecule diffusion coefficient vs. weight fraction of PAmCherry-

Swi6 molecules in each distinct mobility state at each saved iteration of the Bayesian

algorithm after convergence. The dataset contains 11425 steps from 1287 trajectories.

The wild-type Swi6 diffusion coefficients (Figure 4.1F) are provided as a reference (cross

hairs).(H). Average single-molecule diffusion coefficients and weight fraction estimates

for PAmCherry-Swi6 molecules expressed in chromodomain deleted 𝑐𝑙𝑟4 (𝑐𝑙𝑟4Δ𝐶𝐷) cells.
SMAUG identifies three distinct mobility states, (red β, green γ, and purple δ, respectively)

for PAmCherry-Swi6 in 𝑐𝑙𝑟4Δ𝐶𝐷 mut cells. Each point represents the average single-

molecule diffusion coefficient vs. weight fraction of PAmCherry-Swi6 molecules in each

distinct mobility state at each saved iteration of the Bayesian algorithm after convergence.

The dataset contains 10205 steps from 2551 trajectories. Specifically, the α mobility state

is absent in 𝑐𝑙𝑟4Δ𝐶𝐷 cells. The average and standard deviation of the wild-type Swi6 clus-

ters (Figure4.1F) are provided as a reference (cross hairs).(I). The level of PAmCherry-Swi6

was examined by western blot using an mCherry antibody for Swi6 WT, 𝑐𝑙𝑟4Δ Swi6 WT,

𝑒𝑝𝑒1Δ Swi6 WT,𝑚𝑠𝑡2Δ, H3K9mespread, Swi6 CD
𝑚𝑢𝑡

, Swi6 CSD
𝑚𝑢𝑡

and Swi6-hinge cells

(N= 2). Error bars represent standard deviation.(J). The scatter plot of normalized PAm-

Cherry expression level vs weight fraction of state α. Each color denotes a strain. Error bar

indicates the estimated standard deviation for state fraction. Strains that have no state α

in their SMAUG analysis are scattered with weight fraction zero. The 𝑅2
and p-value note

in text are for the linear regression between expression level and weight fraction.(K). The
scatter plot of normalized PAmCherry expression level vs weight fraction of state β. Each

color denotes a strain. Error bar indicates the estimated standard deviation for state frac-

tion. Strains that have no state corresponding state in their SMAUG analysis are scattered

with weight fraction zero. The 𝑅2
and p-value note in text are for the linear regression

between expression level and weight fraction of the state.(L). The scatter plot of normal-

ized PAmCherry expression level vs weight fraction of state γ. Each color denotes a strain.

Error bar indicates the estimated standard deviation for state fraction. Strains that have

no state corresponding state in their SMAUG analysis are scattered with weight fraction

zero. The 𝑅2
and p-value note in text are for the linear regression between expression level

and weight fraction of the state.(M). The scatter plot of normalized PAmCherry expres-

sion level vs weight fraction of state δ. Each color denotes a strain. Error bar indicates the

estimated standard deviation for state fraction. Strains that have no state corresponding

state in their SMAUG analysis are scattered with weight fraction zero. The 𝑅2
and p-value

note in text are for the linear regression between expression level and weight fraction of

the state.
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On the basis of the assignment of transition probabilities between the mobility states,

we identified two critical features of Swi6 dynamics in the hinge mutant: (i) PAmCherry-

𝑆𝑤𝑖6ℎ𝑖𝑛𝑔𝑒 molecules in the slow-mobility α state transition less often to the remaining

β and δ mobility states, and (ii) the probability of cross-transitions between the fast-

diffusing δ state and the intermediate-mobility β state increases (Fig. 4.3D). Although neg-

ligible in the case of the WT PAmCherry-Swi6 protein, the cross-transitions (δ state to β

state) become prominent in the case of PAmCherry-𝑆𝑤𝑖6ℎ𝑖𝑛𝑔𝑒 mutant. Hence, by eliminat-

ing nucleic acid binding, we observed a substantial increase in H3K9me-dependent and

H3K9me-independent chromatin association. Overall, these measurements strongly sug-

gest that nucleic acid binding interactions compete with H3K9me localization and could

potentially promote Swi6 unbinding from chromatin.

4.2.4 Weak chromatin interactions also result in an intermediate apparent dif-

fusion coefficient for Swi6

Deleting Clr4 reduces but does not fully eliminate the population of the β intermediate-

mobility state (Fig. 4.3A). Therefore, the β state must have both H3K9me-dependent and

H3K9me-independent components. We hypothesized that the β intermediate-mobility

state likely represents the transient sampling of chromatin by Swi6 (H3K9me orH3K9me0)

before stable binding at sites of H3K9me (α state). Swi6 binds to H3K9me3 chromatin

with higher affinity compared to H3K9me1/2. To eliminate the high-affinity Swi6 binding

state and exclusively interrogate transient chromatin interactions, we replaced the H3K9

methyltransferase Clr4 with a mutant methyltransferase (Clr4 F449Y, referred to here as

the Clr4 H3K9me2 mutant) that catalyzes H3K9 mono- and dimethylation (H3K9me1/2)

but is unable to catalyze trimethylation (H3K9me3) due to a mutation within the catalytic

SET domain [176]. We verified the expression of the Clr4 mutant protein in fission yeast

cells using a myc epitope tag.

Following single-particle tracking measurements of Swi6, we found that cells express-
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ing the Clr4 H3K9me2 mutant exhibit only three mobility states (Fig. 4.3E), having lost

the α state. These results are consistent with our expectations and previously published

data where selectively eliminating H3K9me3 interrupts stable Swi6 association at sites of

heterochromatin formation [176]. Notably, we observed a twofold increase in the weight

fraction of molecules residing in the β intermediate-mobility state relative to H3K9me0

cells, suggesting that H3K9me2 is sufficient to drive an increase in the occupancy of the

Swi6 chromatin-bound population (Fig. 4.3E). Mapping the transition probabilities of Swi6

molecules between the remaining three mobility states further supports our conclusions.

We observed an increase in the transition probability between the fast-mobility δ and

γ mobility states, which is negligible or absent in H3K9me0 cells (Fig. 4.3F). Therefore,

H3K9me2 enhances Swi6 chromatin binding but is incapable of driving Swi6 occupancy

to the exclusively H3K9me3-dependent α state. We also tested how Swi6 mobility states

change upon expression of a Clr4 CD–deficient protein, which leads to a substantial re-

duction in H3K9me3 levels and an increase in H3K9me2 levels [176]. The mobility states

of Swi6 measured in cells expressing the Clr4 Δ𝐶𝐷 mutant notably resemble those in

cells expressing Clr4 F449Y, further supporting our observations that H3K9me2 is suffi-

cient to promote an increase in Swi6 chromatin occupancy (β state) (fig. 4.4D). Hence, we

conclude that the β intermediate corresponds to a chromatin sampling state consisting

of weak and unstable interactions between Swi6 and H3K9me or H3K9me0 nucleosomes

and is an on-pathway intermediate to the lowest-mobility α state.

Simultaneously, we also tested how heterochromatin misregulation affects Swi6 dy-

namics. We deleted proteins that are involved in maintaining proper heterochromatin

boundaries: (i) Epe1, a putative H3K9 demethylase that erases H3K9me, and (ii) Mst2,

an H3K14 acetyltransferase that acetylates histones and promotes active transcription

[80, 81, 188]. We deleted either epe1 or mst2 individually in cells expressing PAmCherry-

Swi6 (fig. 4.4, E and F). We observed relatively few changes in the weight fractions of

the different Swi6 mobility states in these individual mutants. However, simultaneously
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deleting both epe1 and mst2 leads to a more marked rearrangement of the Swi6 mobility

states (fig. 4.4G). We refer to this double mutant as an𝐻3𝐾9𝑚𝑒𝑠𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 mutant. Unlike the

H3K9me2 mutant, the fraction of molecules in the β intermediate-mobility state increases

nearly twofold in the𝐻3𝐾9𝑚𝑒𝑠𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 mutant, which also coincides with a near-complete

depletion of Swi6molecules from the unbound δ state (fig. 4.4G). As expected, deleting clr4

in this 𝐻3𝐾9𝑚𝑒𝑠𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 mutant ( 𝐻3𝐾9𝑚𝑒𝑠𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔) 𝐶𝑙𝑟4Δ) collapses the β intermediate-

mobility state from 48 to 14%, similar to what we observed in 𝑒𝑝𝑒1 +𝑚𝑠𝑡2+ 𝐶𝑙𝑟4Δ cells

(Fig. 4.3A and fig. 4.4H). Hence, transient chromatin interactions increase in the case of

𝐻3𝐾9𝑚𝑒𝑠𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 mutants, suggesting that heterochromatin misregulation leads to an in-

crease in the chromatin-bound fraction of Swi6. Through measurements of PAmCherry-

Swi6 expression levels across different mutant backgrounds, we determined that there is

no correlation between protein expression and mobility state occupancy (fig. 4.4, I to M).

4.2.5 Fine-grained kinetic modeling transitions reveal H3K9me binding speci-

ficity in vivo

Our fission yeast mutants enabled us to assign biochemical properties to each of our

experimentallymeasuredmobility states (Fig. 4.5A). The state-to-state transitions inferred

by SMAUG (Fig. 4.1F) estimate the probability with which a molecule of Swi6 assigned

to one state during one 40-ms imaging frame will be assigned to some other state in the

next frame (40ms later). To infer the direct biochemical processes underlying the observed

Swi6 dynamics, we implemented a high–temporal resolution model using a Bayesian syn-

thetic likelihood (BSL) approach (see 4.4 for details) to determine themost consistent set of

fine-scale chemical rate constants [189]. Note that the model we have used is a statistical

inference algorithm, not a generative model: As opposed to being trained using our exper-

imental data to simulate other data, the model infers rate constants that can best describe

the experimental results (as well as our uncertainties regarding those quantities).

We applied the BSL inference algorithm to the WT Swi6 data (shown in Fig. 4.1F) to
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Figure 4.5: (A) Schematic showing the inferred biochemical nature of each state con-

sidered in our fine-grained chemical simulations. (B) Inferred rate constants for cells ex-

pressing WT Swi6, in units of 1/s, for transitions of Swi6 assuming that there are four

biochemical states of Swi6 and that any state can chemically transition to any other. (C)
Inferred rate constants (in units of 1/s) for the same situation as in (B) but assuming that

states can only transition to the adjacent mobility states. (D) Inferred rate constants for

𝑐𝑙𝑟4Δ cells, in units of 1/s, for the Swi6 transitions, assuming a three-state model as in-

ferred by SMAUG. (E) Inferred rate constants, in units of 1/s, assuming five biochemical

states of Swi6 in the WT cells. This model assumes that the β state corresponds to two

chemical states: one with Swi6 bound to fully methylated H3K9me and one with Swi6

bound to unmethylated H3K9me; the latter is assigned parameters based on the 𝑐𝑙𝑟4Δ
simulation shown in (B).
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simulate transition rates between the different mobility states (α, β, γ, and δ). We com-

pared the complete simulated posterior distributions (violin plots in fig.4.6A) to the naïve

transition rates obtained by assuming that the SMAUG transitions were exclusively single

chemical transitions (dashed lines in fig. 4.6A). When we simulate the experiment using

the inferred chemical rate constants from BSL, the simulations agree qualitatively with

the direct analysis of the experimental results, demonstrating that our SMAUG analysis

indeed captures the relevant time scales underlying Swi6 interstate transitions. Formal

model comparison (4.4) indicates that the rates inferred via BSL show a favorable value

of the Bayesian information criterion (Δ𝐵𝐼𝐶 = −5.4 × 10
−3
) relative to the naïve rates.

Hence, a detailed consideration of the chemical kinetics underlying the observed Swi6

transitions yields more quantitatively accurate information. Next, we compared our rate

constant inferences between the models where (i) Swi6 transitions directly between non-

adjacent mobility states (a dense model; Fig.4.5B) and (ii) Swi6 transitions between adja-

cent mobility states (a sparse model; Fig. 4.5C). Since we have full posterior distributions

for our inferences, we switch to the widely applicable information criterion (WAIC) for

these comparisons. We found that the dense model is favored (Δ𝑊𝐴𝐼𝐶 = −3.7×10
4
), indi-

cating that transitions between both adjacent and nonadjacent states are possible within

a single (40-ms) experimental observation. We also confirmed that our algorithm inferred

the absolute quantities of our rate constants, not only relative quantities (4.4).

We next examined the effects of eliminating H3K9me (replicating the scenario ob-

served in 𝑐𝑙𝑟4Δ cells) on interstate transitions. Consistent with the experimental data

from Fig. 4.3B, our simulations revealed that the transition rates between the γ and δ

states do not appreciably change in 𝑐𝑙𝑟4Δ cells relative to WT cells (Fig. 4.5D). However,

the transitions involving the β state are significantly altered in 𝑐𝑙𝑟4Δ cells, with far more

rapid transitions from the β to the γ state, indicating that the β state is less stable (Fig.

4.5D): When we did a separate BSL inference on the 𝑐𝑙𝑟4Δ experiments, the new infer-

ence agreed better with the experiments than the WT inference rates without the α state
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(Δ𝑊𝐴𝐼𝐶 = −8.9 × 10
4
). As previously noted, our single-molecule tracking experiments

led us to infer that the β state consists of H3K9me-dependent and H3K9me-independent

components, with only the H3K9me-independent component present in 𝑐𝑙𝑟4Δ cells.

To deconvolute the two β state components, we performed simulations inWT cells un-

der the assumption that the β state observed in 𝑐𝑙𝑟4Δ cells solely represents the H3K9me0

β state. Denoting the proposed substates of β as 𝛽0 (H3K9me0) and 𝛽𝑚𝑒 (H3K9me1/2/3), we

repeated our BSL inference on the WT Swi6 data using a five-state model of the system.

We constrained parameters involving transitions between the β0 and γ states and the β0

and δ states to match those for the 𝑐𝑙𝑟4Δ cells while using the WT rates for the transi-

tions between the γ and δ states. The resulting rate constants agree substantially better

with the experimental data than did the original four-state model (Δ𝑊𝐴𝐼𝐶 = −4.7 × 10
4

relative to the four-state model) (Fig. 4.5E). On the basis of these results, we conclude that

the β0 state is an unstable intermediate, with high rates of 𝛽0 → 𝛾 transitions (H3K9me0

to nucleic acid binding) and 𝛽0 → 𝛽𝑚𝑒 transitions (H3K9me0 to H3K9me binding). Hence,

despite the relative abundance of H3K9me0 chromatin in S. pombe cells, the fast dissocia-

tion of Swi6 from the 𝛽0 state ensures that Swi6 spends little time bound nonspecifically

to H3K9me0 chromatin.

Last, on the basis of estimates that 1 to 2.5% of the S. pombe genome consists of

H3K9me3 nucleosomes, we found that the preference of Swi6 to bind H3K9me versus

H3K9me0 chromatin (ratio of rate constants between 𝛽0 and 𝛽𝑚𝑒 ) is 94-fold (24). While

our inference regarding the equilibrium constant is sensitive to the proportion of H3K9,

which is trimethylated, the most favorable plausible equilibrium for Swi6 still favors βme

more than 35-fold (fig. 4.6B). Since the low-mobility α state depends on H3K9me recogni-

tion and oligomerization (fig. 4.4, A and B), we propose that CSD oligomerization ampli-

fies the ability of Swi6 to discriminate between H3K9me0 and H3K9me chromatin in the

nucleus. In summary, our analysis using the BSL-based model achieves three important

goals: (i) validates the time resolution we use in our single-molecule imaging study, (ii)
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identifies rate constants for transitions between mobility states with virtually identical

diffusion coefficients (𝛽0 and 𝛽𝑚𝑒3)), and (iii) provides a direct measure of the H3K9me3

recognition specificity in cells.

4.2.6 Increased CD valency compensates the disruption of Swi6 oligomerization

To uncouple H3K9me recognition from CSD-dependent oligomerization, we replaced

the Swi6 CSD oligomerization domain with a glutathione S-transferase (GST) tag (fig.

4.8A) [190]. Overall, the GST fusion construct is expected to maintain Swi6 dimerization

while eliminating higher-order CSD-mediated oligomerization. We refer to this hybrid

protein construct as Swi6
1𝑋𝐶𝐷

-GST since the newly engineered protein has only one in-

tact CD. GST homodimerization of the Swi6
1𝑋𝐶𝐷

-GST results in a complex that precisely

consists of two CDs.We expressed PAmCherry-Swi6
1𝑋𝐶𝐷

-GST in fission yeast cells, which

lack an endogenous copy of Swi6 (𝑠𝑤𝑖6Δ). Following a strong 406-nm activation pulse, we

imaged the ensemble of PAmCherry-Swi6
1𝑋𝐶𝐷

-GSTmolecules in the S. pombe nucleus.We

observed a diffuse distribution of PAmCherry-Swi6
1𝑋𝐶𝐷

-GST proteins within the nucleus

in contrast to WT Swi6, which exhibits prominent clusters (fig. 4.8A). These observations

differ from previous studies of the mammalian HP1 isoform, HP1β, in which case replac-

ing the CSD domain with GST did not affect HP1β localization [183]. However, unlike

Swi6, HP1β exhibits a reduced oligomerization capacity and fails to form condensates in

vitro [183, 191].

Next, we added a second CD domain to the existing PAmCherry-Swi6
1𝑋𝐶𝐷

-GST con-

struct to generate PAmCherry-Swi6
2𝑋𝐶𝐷

-GST. GST homodimerization of the Swi6
2𝑋𝐶𝐷

-

GST results in an engineered Swi6 protein that has a precise twofold increase in CD

valency relative to WT Swi6 or PAmCherry-Swi6
1𝑋𝐶𝐷

-GST (Fig. 4.7A). We used high-

intensity 406-nm illumination to activate the ensemble of PAmCherry-Swi6
2𝑋𝐶𝐷

-GST

molecules and acquired z sections by imaging at 561 nm (Fig. 4.7C). We observed promi-

nent foci of PAmCherry-Swi6
2𝑋𝐶𝐷

-GST molecules that qualitatively resemble WT Swi6
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Figure 4.6: (A). The posterior distributions of the Swi6 transition rate constants for the

four state wild type transitions from four independent Monte Carlo chains (referred to

as A-D). The dashed lines represent the rate constants that would be deduced by trans-

forming the SMAUG transition probabilities directly into rate constants assuming that

each transition represents a single chemical transformation over the experiment.(B). We

calculated the posterior means for the equilibrium constant from β0 to βme given the

proportion of H3K9which is trimethylated based on quantitativemass-spectrometrymea-

surements of total histones ( 1%) and H3K9me3 measurements based on Swi6 IPs ( 2.5%).

We report equilibrium constants under a wide range of potential values for the trimethy-

lation rate to illustrate the sensitivity of our inference to the H3K9me3 fraction. Error bars

indicate the 95% credible intervals for the equilibrium constants.
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Figure 4.7: (A) CSD-mediated oligomerization of Swi6 (left) and GST-mediated dimeriza-

tion of an engineered Swi6
2𝑋𝐶𝐷

-GST mutant with two tandem CDs. (B) Overlaid differ-

ential interference contrast and epifluorescence images (left) and epifluorescence images

alone (right) of PAmCherry-Swi6 simultaneously activated using high-power 405-nm ex-

citation and imaged using 561-nm excitation. The images are a maximum intensity projec-

tion of a Z-stack consisting of 13 images acquired at 250-nm z-axis intervals.(C) Overlaid
differential interference contrast and epifluorescence images (left) and epifluorescence

images alone (right) of PAmCherry-Swi6
2𝑋𝐶𝐷

-GST simultaneously activated using high-

power 405-nm excitation and imaged using 561-nm excitation. The images are amaximum

intensity projection of a Z-stack consisting of 13 images acquired at 250-nm z-axis inter-

vals.
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Figure 4.7: (D) Distribution of the number of photoactivated PAmCherry. ****p =

0.0005, Pearson’s chi-squared test. (E) SMAUG identifies four distinct mobility states for

PAmCherry-Swi6
2𝑋𝐶𝐷

-GST molecules (dots); the average and SD of the WT Swi6 clusters

from Fig. 4.1F in the same four states are provided as a reference (crosshairs). Each point is

the average single-molecule diffusion coefficient, D, of molecules in that state at a saved

iteration of the Bayesian algorithm after convergence. Dataset: 42,382 steps from 5182

trajectories. (F) Average probabilities (arrows) of a PAmCherry-Swi6
2𝑋𝐶𝐷

-GST molecule

transitioning between the mobility states (circles) from (E).

foci in cells (Fig. 4.7B). We measured expression levels of Swi6
1𝑋𝐶𝐷

and Swi6
2𝑋𝐶𝐷

-GST

proteins and found no correlation between their expression levels and mobility state oc-

cupancy (fig. 4.8, B and C). We measured H3K9me2 levels and the binding of our PAm-

Cherry fusion proteins at sites of constitutive heterochromatin (pericentromeric repeats,

mating-type locus, and telomeres) using ChIP-qPCR (fig. 4.8, D and E). H3K9me2 levels

are intact at dg and tel1 in cells expressing PAmCherry-Swi6
2𝑋𝐶𝐷

-GST. H3K9me2 is ab-

sent at the mat locus, consistent with previous studies that have shown that deleting Swi6

sensitizes the mating-type locus to the complete loss of H3K9me (28). Furthermore, using

ChIP-qPCR, we confirmed that PAmCherry-Swi6
2𝑋𝐶𝐷

-GST binds to chromatin at dg and

tel1 in a manner that is similar to that of WT PAmCherry-Swi6 (fig. 4.8E).

Comparing the distribution of foci numbers per cell reveals a skew in the distribution

with a more significant proportion of cells that exhibit three to five foci in the case of

WT Swi6 compared to the 2XCD-GST fusion construct (Fig. 4.7D). To assess the local-

ization and silencing capability of Swi6
2𝑋𝐶𝐷𝑇

-GS in the absence of any protein-mediated

dimerization, we introduced seven mutations within the GST dimer interface to atten-

uate the high-affinity GST dimerization [192] to create PAmCherry-Swi6
2𝑋𝐶𝐷

-GST mu-

tant. The majority of cells exhibit zero or one cluster (71%) compared to the dimerization-

competent GST allele (fig. 4.8, F and I). Hence, GST-mediated dimerization of two tandem

CDs is necessary for H3K9me recognition, and mutations that affect dimerization reduce

CD-mediated localization. In addition, we introduced CD binding mutations (W104A) to

either one (PAmCherry-Swi6
2𝑋𝐶𝐷−𝑚𝑢𝑡1

-GST) or both CDs (PAmCherry-Swi6
2𝑋𝐶𝐷−𝑚𝑢𝑡1/2

)
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in the context of the 2XCD-GST fusion construct. Imaging cells where one CD was mu-

tated resulted in 66% of cells having no clusters, whereas mutating both CDs resulted in

a complete loss of PAmCherry foci (fig. 4.8, G to I). Hence, the second tandem CD par-

tially contributes to PAmCherry-Swi6
2𝑋𝐶𝐷−𝐺𝑆𝑇

localization even when one CD has been

mutated.

Using glutaraldehyde-based cross-linking, we set up reactions where we added in-

creasing amounts of recombinant 3XFLAG epitope–tagged WT Swi6, Swi6 L315E, and

Swi6
2𝑋𝐶𝐷

-GST. We confirmed that the
2𝑋𝐶𝐷

-GST fusion construct fails to form higher-

order oligomers unlike WT Swi6 (fig. 4.8J). Last, we tested whether the expression of the

2XCD-GST fusion construct in cells that lack Swi6 (𝑠𝑤𝑖6Δ) restores epigenetic silencing

using an ade6+ reporter inserted at the pericentromeric repeats (otr1R) where we observe

PAmCherry-Swi6
2𝑋𝐶𝐷

-GST localization. Unlike WT Swi6–expressing cells, which appear

red due to silencing of the ade6+ reporter, PAmCherry-Swi62XCD-GST–expressing cells

exhibit a loss of red pigmentation consistent with the absence of silencing (fig. 4.8K).

Hence, restoring CD-dependent protein localization is insufficient to rescue epigenetic si-

lencing, confirming that additional Swi6 CSD–mediated protein-protein interactions are

required for this process.

Wemapped themobility states associatedwith PAmCherry-Swi6
2𝑋𝐶𝐷

-GST in S. pombe.

Despite the differences in the overall number of foci, the twofold increase in CD valency

completely circumvents the need for higher-order oligomerization: Swi6
2𝑋𝐶𝐷

-GST fully

restores the localization of Swi6 to sites of heterochromatin at levels that rival those ofWT

Swi6 (Fig. 4.7E). We measured a slow-mobility state (α state) population of 20%, similar to

that of the WT Swi6 protein (Fig. 4.1F). Besides, there is a substantial increase in the β in-

termediate sampling state, indicating that PAmCherry-Swi6
2𝑋𝐶𝐷

-GST exhibits increased

chromatin association. We confirmed that the localization of PAmCherry-Swi6
2𝑋𝐶𝐷

-GST

within the genome depends exclusively onH3K9me by deletingClr4 (PAmCherry-Swi6
2𝑋𝐶𝐷

-

GST 𝑐𝑙𝑟4Δ). PAmCherry-Swi6
2𝑋𝐶𝐷

-GST 𝑐𝑙𝑟4Δ cells exhibit a complete loss of the slow-
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Figure 4.8
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Figure 4.8: (A). Schematic representation of an engineered, dimerization competent

Swi6
1𝑋𝐶𝐷

-GST protein (left panel). Overlay of differential interference contrast and epi-

fluorescence image of collection of PAmCherry-Swi6
1𝑋𝐶𝐷

-GST molecules which are si-

multaneously activated using a high 405 nm excitation pulse and imaged using 561 nm

excitation (left panel). Epi-fluorescence image of collection of PAmCherry-Swi6
1𝑋𝐶𝐷

-GST

molecules activated with high 405 nm excitation and imaged with 561 nm (right panel).

The images are a maximum intensity projection of a Z-stack consisting of 13 images ac-

quired at 250 nm z-axis intervals (scale bar 10 µm).(B). The level of PAmCherry-Swi6 was

examined by western blot for Swi6 WT, Swi6
1𝑋𝐶𝐷

-GST and Swi6
2𝑋𝐶𝐷

-GST (N= 2). Error

bars represent standard deviation. (C). The scatter plot of normalized PAmCherry expres-

sion level vs weight fraction for Swi6 WT, Swi6
1𝑋𝐶𝐷

-GST and Swi6
2𝑋𝐶𝐷

-GST. Each color

denotes a strain and each symbol denotes a state. Error bar indicates the estimated stan-

dard deviation for state fraction. Strains that have no state corresponding state in their

SMAUG analysis are scattered with weight fraction 0. The p-value note in text are for the

linear regression between expression level and weight fraction of each state.
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Figure 4.8: (D). ChIP-qPCR measurements of H3K9me2 levels at sites of heterochro-

matin formation (dg pericentromeric repeats, tlh telomere and mat mating type locus)

(N = 2), for Swi6 WT, 𝑐𝑙𝑟4Δ, Swi61𝑋𝐶𝐷
-GST and Swi6

2𝑋𝐶𝐷
-GST cells. Error bars repre-

sent standard deviation. (E). ChIP-qPCRmeasurements of PAmCherry-Swi6 levels at sites

of heterochromatin formation (dg pericentromeric repeats, tlh telomere and mat mating

type locus) (N = 2), for Swi6 WT, 𝑐𝑙𝑟4Δ, Swi61𝑋𝐶𝐷
-GST and Swi6

2𝑋𝐶𝐷
-GST cells. Error

bars represent standard deviation. F. Overlay of differential interference contrast and

epi-fluorescence images of collection of PAmCherry-Swi6
2𝑋𝐶𝐷

-GST-multant molecules

that are simultaneously activated using a high 405 nm excitation power and imaged us-

ing 561 nm excitation (left panel). Epi-fluorescence image of collection of PAmCherry-

Swi6
2𝑋𝐶𝐷

-GST-multant molecules simultaneously activated with high 405 nm excitation

and imaged with 561 nm (right panel). The images are a maximum intensity projection

of a Z-stack consisting of 13 images acquired at 250 nm z-axis intervals (scale bar 10

µm).(G). Overlay of differential interference contrast and epi-fluorescence images of col-

lection of PAmCherry-Swi6
2𝑋𝐶𝐷−𝑚𝑢𝑡1

-GST molecules that are simultaneously activated

using a high 405 nm excitation power and imaged using 561 nm excitation (left panel).

Epi-fluorescence image of collection of PAmCherry-Swi6
2𝑋𝐶𝐷−𝑚𝑢𝑡1

-GST molecules simul-

taneously activated with high 405 nm excitation and imaged with 561 nm (right panel).

The images are a maximum intensity projection of a Z-stack consisting of 13 images ac-

quired at 250 nm z-axis intervals (scale bar 10 µm).(H). Overlay of differential interfer-

ence contrast and epi-fluorescence images of collection of PAmCherry-Swi6
2𝑋𝐶𝐷−𝑚𝑢𝑡1/2

-

GST molecules that are simultaneously activated using a high 405 nm excitation power

and imaged using 561 nm excitation (left panel). Epi-fluorescence image of collection

of PAmCherry-Swi6
2𝑋𝐶𝐷−𝑚𝑢𝑡1/2

-GST molecules simultaneously activated with high 405

nm excitation and imaged with 561 nm (right panel). The images are a maximum in-

tensity projection of a Z-stack consisting of 13 images acquired at 250 nm z-axis in-

tervals (scale bar 10 µm).(I). Distribution of the number of photoactivated PAmCherry

clusters in PAmCherry-Swi6, PAmCherry-Swi6
2𝑋𝐶𝐷

-GST, PAmCherry-Swi6
2𝑋𝐶𝐷−𝐺𝑆𝑇𝑚𝑢𝑡

,

PAmCherry-Swi6
2𝑋𝐶𝐷−𝑚𝑢𝑡1

-GST and PAmCherry-Swi6
2𝑋𝐶𝐷−𝑚𝑢𝑡1/2

-GST expressing cells

(****, p-value= 0.0005, Pearson’s Chi-squared test). Cells expressing wild-type Swi6 ex-

hibit more considerable variance in the number of clusters per cell.(J). Swi61𝑋𝐶𝐷
-GST

and Swi6
2𝑋𝐶𝐷

-GST is primarily a dimer and, unlike WT Swi6, does not show evidence

of further oligomerization. Left: Schematic representation of recombinant FLAG-Swi6

constructs used to observe oligomerization. Right: WT Swi6 (left), Swi6 L315E (middle),

Swi6
1𝑋𝐶𝐷

-GST, and Swi6
2𝑋𝐶𝐷

-GST were crosslinked using 0.01% glutaraldehyde. Non-

crosslinked input controls (1 µM) and crosslinked protein samples (1, 2, 5, 7.5, and 12 µM)

were separated using SDS-PAGE and detected by anti-FLAG western blot.
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Figure 4.8: (K). A color-based assay to detect heterochromatin establishment at the

silent mating type locus (otr1Rp::ade6+). ade6+ silencing results in the appearance of

red colonies. Loss of ade6+ leads to the appearance of white colonies. Colonies repre-

sent ten-fold dilutions of wild-type (swi6+), 𝑠𝑤𝑖6Δ and PAmCherry-Swi6
2𝑋𝐶𝐷

-GST 𝑠𝑤𝑖6Δ
cells. (L). Average single-molecule diffusion coefficients and weight fraction estimates for

PAmCherry-Swi6
2𝑋𝐶𝐷

-GST expressed in H3K9me0 (𝑐𝑙𝑟4Δ) cells. SMAUG identifies three

distinct mobility states, (red β, green γ, and purple δ, respectively) for PAmCherry-Swi6

in Swi6
1𝑋𝐶𝐷

-GST cells. Each point represents the average single-molecule diffusion coef-

ficient vs. weight fraction of PAmCherry-Swi6 molecules in each distinct mobility state

at each saved iteration of the Bayesian algorithm after convergence. The dataset contains

8265 steps from 2817 trajectories. The WT clusters (Figure 4.1F) are provided for refer-

ence (cross hairs).(M). Average single-molecule diffusion coefficients and weight fraction

estimates for cells expressing PAmCherry-Swi6
2𝑋𝐶𝐷−𝐺𝑆𝑇

-LoopX. SMAUG identifies four

distinct mobility states, (blue α, red β, green γ, and purple δ, respectively) for PAmCherry-

Swi6 in Swi6
2𝑋𝐶𝐷−𝐺𝑆𝑇

-LoopX cells. Each point represents the average single-molecule

diffusion coefficient vs. weight fraction of PAmCherry-Swi6 molecules in each distinct

mobility state at each saved iteration of the Bayesian algorithm after convergence. The

dataset contains 22432 steps from 3138 trajectories The WT clusters (Figure 4.1F) are pro-

vided for reference (cross hairs).

mobility α state and a concomitant decrease in the β intermediate-mobility state from

50 to 12% (fig. 4.8L). We also introduced previously characterized Swi6 CD Loop-X mu-

tations to suppress Swi6 CD domain–dependent oligomerization, which could confound

our interpretations [187]. We determined that there are no quantitative differences in the

mobility states associated with PAmCherry-Swi6
2𝑋𝐶𝐷

-GST Loop-X versus PAmCherry-

Swi6
2𝑋𝐶𝐷

-GST constructs without the CD Loop-X mutation (fig. 4.8M). Hence, the recov-

ery of the slow-mobility state in the case of PAmCherry-Swi6
2𝑋𝐶𝐷

-GST depends solely

on CD-dependent H3K9me recognition. Since binding occurs in the context of a chimeric

protein that acts as a dimer and fails to form higher-order oligomers, we concluded that

four CD domains are necessary and sufficient for Swi6 to localize at sites of H3K9me.

Last, we inferred transition probabilities between the different mobility states in the

case of PAmCherry-Swi6
2𝑋𝐶𝐷

-GST (Fig. 4.7F). Notably, we observed that molecules rarely

exchange between the H3K9me-dependent α and β states, unlike what we detect in the

case of the oligomerization-competent, WT Swi6 protein. The forward and reverse tran-
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sition probabilities between the α and β states decrease approximately fourfold, sug-

gesting that the PAmCherry-Swi6
2𝑋𝐶𝐷

-GST protein is less dynamic with regard to its

chromatin-associated states. Thus, although engineered multivalent CD domains are suf-

ficient to achieve target search in vivo, PAmCherry-Swi6
2𝑋𝐶𝐷

-GST molecules are less dy-

namic and exhibit fewer binding and unbinding transitions from chromatin. To under-

stand the molecular basis for the enhanced binding of the Swi6
2𝑋𝐶𝐷

-GST fusion construct,

we performed nucleosome binding assays. Using H3K9me0 and H3K9me3 nucleosomes,

we measured the apparent binding affinity and binding specificity for recombinant WT

Swi6, Swi6 CSD
𝑚𝑢𝑡

, Swi6
1𝑋𝐶𝐷

-GST, and Swi6
2𝑋𝐶𝐷

-GST. Although Swi6
2𝑋𝐶𝐷

-GST binds

with similar affinity to H3K9me3 nucleosomes as WT Swi6, the fusion protein exhibits a

twofold increase in H3K9me3 nucleosome binding specificity (fig. 4.9).

4.2.7 Oligomerization directly competes with nucleic acid binding to promote

Swi6 localization at sites of heterochromatin formation

Since an engineered multivalent CD–containing construct (Swi6
2𝑋𝐶𝐷

-GST) is less dy-

namic, we hypothesized that the association and dissociation of Swi6 oligomers regu-

late H3K9me-dependent binding and turnover from heterochromatin. We tested our hy-

pothesis by achieving oligomerization-dependent Swi6 localization that is independent of

H3K9me recognition. We made strains that express combinations of WT Swi6 and a Swi6

CD
𝑚𝑢𝑡

protein that has an inactive CD domain but retains an intact CSD oligomerization

domain (Fig. 4.10A). We coexpressed mNeonGreen-Swi6 protein in cells that also express

PAmCherry-Swi6 CD
𝑚𝑢𝑡

. Since mNeonGreen and PAmCherry emissions are spectrally

distinct, we used our photoactivation approach to image single PAmCherry-Swi6 CD
𝑚𝑢𝑡

molecules (red channel) after verifying the presence of discrete mNeonGreen-Swi6 foci

at sites of constitutive heterochromatin (green channel). We previously showed that the

lack of CD-mediated H3K9me recognition eliminates the low-mobility α state (fig. 4.4A).

In contrast, our SMAUG analysis of strains coexpressing WT Swi6 and Swi6 CD
𝑚𝑢𝑡

re-
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Figure 4.9: Quantification of two gel shift experiments using H3K9 (black circle) and

H3K9me3 (pink rectangle) to determine𝐾1/2 and specificity (𝐾1/2 H3K9/𝐾1/2 H3K9me3) for

(A) Swi6 WT, (B) Swi6 CSD𝑚𝑢𝑡 , (C) Swi61𝑥𝐶𝐷
-GST and (D) Swi62𝑥𝐶𝐷

-GST. A schematic of

recombinant protein construct is included above each binding curve. Summary table of ap-

parent 𝐾1/2 and binding specificity for H3K9me3 mononucleosomes relative to H3K9me0

mononucleosomes for the different Swi6 and GST fusion proteins.
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vealed that 5% of PAmCherry-Swi6 CD
𝑚𝑢𝑡

proteins now reside in the slow-mobility α

state (Fig. 4.10B). Therefore, CSD-mediated oligomerization alone can drive Swi6 local-

ization independently of H3K9me recognition. We cannot eliminate the possibility of het-

erodimers consisting of WT and Swi6 CD
𝑚𝑢𝑡

proteins from our measurements. However,

it is unlikely that heterodimers consisting of a single, functional CD domain will con-

tribute significantly to the observed localization patterns since at least four CD domains

are required for H3K9me binding (Fig. 4.7E). Consistent with the fraction being small,

PAmCherry foci are not visible in our epifluorescence data where we imaged an ensem-

ble of PAmCherry-Swi6 CD
𝑚𝑢𝑡

molecules, althoughmNeonGreen-Swi6 foci are intact (fig.

4.11A).

To confirm that the recovery of the α slow-mobility state is due to CSD-dependent

Swi6 interactions, we coexpressed a Swi6 CSD mutant (PAmCherry-Swi6 CSD
𝑚𝑢𝑡

), which

is unable to oligomerize but has an intact CD domain, togetherwith theWTmNeonGreen-

Swi6 protein. The coexpression of WT Swi6 protein fails to restore any measurable occu-

pancy of PAmCherry-Swi6 CSD
𝑚𝑢𝑡

protein in the low-mobility α state (Fig. 4.10C). Sup-

pressing nucleic acid binding results in increased occupancy of Swi6 molecules in the α

and β states (Fig. 4.3C). We hypothesized that eliminating nucleic acid binding might en-

hance oligomerization-mediated recruitment of PAmCherry-Swi6 CD
𝑚𝑢𝑡

. Therefore, we

coexpressed PAmCherry-Swi6
ℎ𝑖𝑛𝑔𝑒

CD
𝑚𝑢𝑡

proteins in cells that also express mNeonGreen-

Swi6. Notably, we observed a substantial increase in the occupancy of PAmCherry-Swi6
ℎ𝑖𝑛𝑔𝑒

CD
𝑚𝑢𝑡

molecules in the α mobility state (approximately 20%) (Fig. 4.10D). PAmCherry foci

could be easily visualized in our epifluorescence data where we simultaneously imaged an

ensemble of PAmCherry-Swi6
ℎ𝑖𝑛𝑔𝑒

CD
𝑚𝑢𝑡

molecules and mNeonGreen-Swi6 (fig. 4.11B).

Therefore, our results reveal that nucleic acid binding and Swi6 oligomerization are in

direct competition. Disrupting nucleic acid binding promotes a CD-independent mode of

Swi6 binding at sites of H3K9me with the CSD domain having a causal role in driving

interactions between the differently labeled Swi6 molecules.
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We performed a biochemical assay to directly measure the competition between nu-

cleic acid binding, oligomerization, andH3K9me recognition using recombinant Swi6 pro-

teins and multivalent H3K9me chromatin derived from fission yeast cell extracts as sub-

strates. We incubated recombinant WT 3XFLAG Swi6 or 3XFLAG Swi6 L315E protein

with fission yeast cell extracts. We then pulled down Swi6-bound chromatin in the WT

and mutant protein context (Fig. 4.10E). In the absence of DNA, both WT Swi6 and Swi6

L315E pull down a similar amount of H3K9me chromatin as detected using an H3K9me3-

specific antibody (Fig. 4.10F). Our pull-downs of H3K9me chromatin using recombinant

Swi6 proteins are specific since extracts prepared using 𝑐𝑙𝑟4Δ cells failed to recover any

chromatin. We added an exogenous 1.6-kb DNA fragment and observed that the amount

of H3K9me chromatin that we recovered substantially decreased in the case of Swi6 L315E

(CSD
𝑚𝑢𝑡

) but remains unchanged in the case of WT Swi6 (Fig. 4.10G). Hence, our obser-

vations suggest that CSD-dependent interactions that promote Swi6 oligomerization can

indeed resist the effects of promiscuous nucleic acid binding.

4.3 Discussion

Our results reveal the molecular basis for how Swi6 identifies sites of H3K9me within

the complex and crowded chromatin landscape of the S. pombe nucleus. Despite only 2%

of chromatin being marked with H3K9me, Swi6 readily discriminates between modified

H3K9me chromatin and unmodified H3K9me0 chromatin; we found that Swi6 binds in

vivo to H3K9me nucleosomes with 94-fold specificity. Our numbers most closely resem-

ble in vitro measurements of Swi6 binding to H3K9me3 peptides as opposed to nucleo-

somes [74]. Hence, modified H3K9me histone tails are the primary specificity determi-

nants of Swi6 binding in the nucleus. The reduced specificity observed in in vitro studies

is likely due to nucleic acid binding, which leads to Swi6-nucleosome interactions that

are independent of the histone tails being modified [185]. In contrast, our in vivo studies

reveal that nucleic acids, given their large excess in a native chromatin context, promote
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Figure 4.10
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Figure 4.10: (A) PAmCherry-Swi6 CD
𝑚𝑢𝑡

and mNeonGreen-Swi6 (WT) proteins are co-

expressed; mobility states are measured using single-molecule tracking of PAmCherry-

Swi6 CD
𝑚𝑢𝑡

. (B) SMAUG identifies four distinct mobility states for PAmCherry-Swi6

CD
𝑚𝑢𝑡

(swi6 W104A) in cells coexpressing mNeonGreen-Swi6. Dataset: 13,194 steps from

1900 trajectories. (C) SMAUG identifies three distinct mobility states for PAmCherry-

Swi6 CSD
𝑚𝑢𝑡

(swi6 L315E) in cells coexpressing mNeonGreen-Swi6; the α mobility state

is absent. Dataset: 3200 steps from 1270 trajectories. (D) SMAUG identifies three distinct

mobility states for PAmCherry- Swi6
ℎ𝑖𝑛𝑔𝑒

CD
𝑚𝑢𝑡

(swi6 KR25AW104A) in cells coexpressing

mNeonGreen-Swi6; the γ mobility state is absent. Dataset: 15,462 steps from 3250 trajec-

tories. Each point in (B) to (D) is the average single-molecule diffusion coefficient, D, of

Swi6 molecules in that state at a saved iteration of the Bayesian algorithm after conver-

gence; the average and SD of the WT Swi6 clusters (blue α, red β, green γ, and purple δ,

respectively, from Fig. 4.1F) are provided as a reference (crosshairs). (E) Schematic of the

competition between Swi6 oligomerization and nucleic acid binding with 3XFLAG-Swi6

or 3XFLAG-Swi6 L315. (F) FLAG IP assay to detect histone H3 and histone H3K9me3

bound to 3XFLAG-Swi6 or 3XFLAG-Swi6 L315E using an H3K9me3 antibody in extracts

from WT (clr4+) or H3K9me0 (𝑐𝑙𝑟4Δ) cells. (G) Mean intensity of H3K9me3 histones de-

tected upon addition of DNA relative to no DNA. Error bars: SD (N = 5, ***P = 0.009,

Wilcoxon rank sum test).

Swi6 unbinding by directly competing with oligomerization. Swi6 dimers are incapable

of staying bound at sites of H3K9me, which, in turn, places a unique emphasis on the

coordination between oligomerization and H3K9me recognition (Fig. 4.12). We propose

that Swi6 oligomerization stabilizes higher-order molecular configurations consisting of

at least four CDs to promote cooperative and multivalent H3K9me recognition and bind-

ing.

Unlike earlier FRAP measurements, our model-independent superresolution assess-

ment of Swi6 diffusion identifies four distinct mobility states [178,181,182]. Using fission

yeast mutants, we have validated the biochemical attributes associated with each mobil-

ity state. Note that in our mutants, the chromatin environment and sequence composition

of Swi6 significantly change. Hence, our assignments of mobility states are based on the

order of magnitude of the D value only, and the specific value of D for the same assigned

state might differ between different strains; for example, 𝐷𝑎𝑣𝑔𝛿𝑊𝑇 = 0.51𝜇𝑚2/𝑠 is lower

than 𝐷𝑎𝑣𝑔𝛿𝐻3𝐾9𝑚𝑒2 = 0.67𝜇𝑚2/𝑠 . Therefore, in our comparisons between SMAUG results
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Figure 4.11: (A). Live cell imaging of PAmCherry-Swi6CD
𝑚𝑢𝑡

and mNeongreen-Swi6

WT. The three images correspond to PAmCherry-Swi6CD
𝑚𝑢𝑡

(561 nm excitation after

406 nm activation), mNeongreen-Swi6 WT (514 nm excitation), and overlay of the emis-

sion channels with DIC image.(B). Live cell imaging of Swi6
ℎ𝑖𝑛𝑔𝑒

CD
𝑚𝑢𝑡

mNeongreen-Swi6

WT. Three images correspond to 561 nm excitation after 406 nm activation, 514 nm exci-

tation, and overlay of the two emission channels with DIC image. mNeonGreen-Swi6 and

PAmCherry- Swi6 form co-localized foci in green and red emission channels with DIC

image, respectively. (C). Average single-molecule diffusion coefficients and weight frac-

tion estimates for PAmCherry-Swi6 molecules expressed in 𝑐ℎ𝑝2Δ cells. SMAUG iden-

tifies four distinct mobility states, (blue α, red β, green γ, and purple δ, respectively) for

PAmCherry-Swi6 in 𝑐ℎ𝑝2Δ cells. Each point represents the average single-molecule diffu-

sion coefficient vs. weight fraction of PAmCherry-Swi6 molecules in each distinct mobil-

ity state at each saved iteration of the Bayesian algorithm after convergence. The dataset

contains 27033 steps from 2665 trajectories. The average and standard deviation of the

wild-type Swi6 clusters (Figure 4.1F) are provided as a reference (cross hairs).
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of different strains, we focus on the depletion or emergence of a mobility state and on the

change of weight fraction for each mobility state, not on subtle differences in D for the

state in different mutants.

The primary drivers of Swi6 mobility are nucleic acid binding and weak and strong

H3K9me-dependent interactions. The transition probabilities reveal how each mobility

state functions to sequester or titrate Swi6 molecules, suggesting that altering their rel-

ative occupancy ultimately affects the H3K9me-bound population of the protein. Most

prominently, we find that nucleic acid binding titrates Swi6 away from sites of H3K9me,

while neutralizing nucleic acid binding promotes stable interactions at sites of H3K9me (α

state), and it also increases the overall chromatin-bound population of the protein (β state).

We propose that a significant function of Swi6 oligomerization is to counterbalance in-

hibitory and titratable molecular interactions that would otherwise wholly suppress Swi6

localization in cells.

Our studies highlight how the high-resolution tracking of the in vivo dynamics of sin-

gle molecules in cells can fully recapitulate all the biochemical features of proteins despite

their heterogeneous dynamics in a native chromatin context. Our studies represent a vi-

tal step toward the ultimate goal of in vivo biochemistry, where the on and off rates of

proteins and their substrates can be reliably and directly measured in their cellular envi-

ronment. Last, we used our inferred transition rates, combined with known biochemical

parameters, to infer the precise chemical rate constants governing the behavior of Swi6.

The main caveats of these inferred rate constants are that they cannot capture spatial

effects, and they model binding reactions as pseudo first order. While modeling spatial ef-

fects will require further study, we can infer true binding rate constants from our inferred

pseudo first-order rates by assuming that Swi6 is the limiting reagent of its binding re-

actions. Furthermore, the unbinding reactions are truly first order, and thus, our inferred

rates for these reactions are true rate constants.

Preserving the same degree of nucleic acid binding but preventing oligomerization
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(Swi6
1𝑋𝐶𝐷

-GST) disrupts Swi6 localization at sites of H3K9me (fig. 4.8A). Simply adding

a second CD restores H3K9me-specific localization. Although multivalency represents a

longstanding principle for how HP1 proteins bind to chromatin, our results suggest well-

defined stoichiometric configurations that enable stable and selective H3K9me binding.

Our engineered constructs reveal that four tandem CDs are both necessary and sufficient

for effective H3K9me-dependent localization in cells. Although recombinant Swi6 purified

from Escherichia coli is predominantly a dimer ( 83%) in vitro, about 10% of Swi6 molecules

form tetramers [74]. On the basis of our results, we hypothesize that oligomerization and

subsequent phase separation might increase the local concentration of Swi6 molecules

to shift their equilibrium distribution from dimers to tetramers. In this manner, the abil-

ity of HP1 proteins to form condensates could be vital to coordinate oligomerization and

H3K9me recognition, as shown in our studies. The underlying mechanisms that promote

Swi6 oligomerization in our experiments remain unclear since the Swi6 Loop-X mutant

exhibits virtually identical mobility states relative toWT Swi6. It is possible that the Loop-

X mutation has a subtle effect in vivo, and additional residues are needed to fully disrupt

the CD-CD oligomerization interface. An alternativemodel that is also consistent with our

data is that chromatin offers a multivalent surface not only for CD-H3K9me interactions

but also for CSD-nucleosome interactions, leading to additional modes of Swi6 oligomer-

ization [79]. We cannot differentiate between oligomers being stabilized before H3K9me

binding and oligomers being stabilized after binding to sites of H3K9me. A model where

Swi6 dimers “probe” chromatin before oligomerizing would be entirely consistent with

our data. We would expect that such probing would lead to likely encounters between

additional Swi6 molecules at sites enriched with H3K9me.

In the case of Swi6 and its mammalian homolog, HP1α, oligomerization is essen-

tial to promote the formation of chromatin condensates that exhibit liquid-like proper-

ties [79,169,193]. Our results suggest that the presence of low-affinity CD domains could

be one reason why some classes of HP1 proteins are proficient in oligomerization. The
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ability of specific HP1 isoforms to oligomerize promotes the multivalent recognition of

H3K9me nucleosomes since the dimeric state of a protein such as Swi6 is insufficient

for stable heterochromatin binding. Our findings raise the question of why high-affinity

CD domains are not more prevalent among HP1 proteins since this could represent the

most straightforward solution to the localization question. It is noteworthy that an en-

gineered version of Swi6 with two CDs and no oligomerization exhibits reduced binding

and unbinding transitions to other intermediate states from the H3K9me-dependent low-

mobility α state (Fig. 4.7F). Therefore, our engineered protein constructs, once engaged at

sites of H3K9me, exhibit little to no protein turnover.

On the basis of our observations, we speculate that protein recruitment that is ex-

clusively dependent on high-affinity CD binding lacks tunability. The lack of exchange

and protein turnover from chromatin would also impede subsequent downstream, CD-

dependent binding events. Most notably, in S. pombe, the H3K9 methyltransferase (Clr4)

and the second HP1 protein (Chp2) both have CD domains that recognize and bind to

H3K9me and are essential for epigenetic silencing [87, 194]. Deleting Chp2 leads to a de-

crease in the fraction of the fast-moving Swi6 molecules and a concomitant increase in

the fraction of molecules in chromatin sampling β state (fig. 4.11C). Instead, we propose

that weak oligomerization and protein turnover ensure a time-sharing approach that pro-

vides opportunities for regulatory inputs either via protein-protein interactions or post-

translational modifications. The formation of heterochromatin condensates, in addition

to serving as mechanisms that promote epigenetic silencing through physical changes to

the genome, could be fundamentally involved in shifting the equilibrium states of Swi6

oligomerization to promote efficient and highly selective H3K9me target recognition in

living cells [169, 170].
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Figure 4.12: Although CDs have the requisite specificity to localize at sites of H3K9me,

nucleic acid binding titrates proteins away from sites of heterochromatin formation.

Oligomerization stabilizes higher-order configurations of the Swi6 CD domain to ensure

rapid and efficient localization of Swi6 at sites of heterochromatin formation and outcom-

petes nucleic acid binding.

4.4 Materials and Methods

4.4.1 Plasmids and Strains

The plasmids and strains used in this Chapter are from the Ragunathan Lab at the

University of Michigan. Please refer to corresponding manuscript of this chapter for de-

tails [106].

4.4.2 S. pombe live-cell imaging

Yeast strains containing a copy of PAmCherry-Swi6 or PAmCherry-Swi6 mutants un-

der the control of the native Swi6 promoter were grown in standard complete YES media

(US Biological, catalog no. Y2060) containing the full complement of yeast amino acids

and incubated overnight at 32
◦𝐶 . The seed culture was diluted and incubated at 25

◦𝐶

with shaking to reach an optical density at 600 nm (𝑂𝐷600) of 0.5. To maintain cells in an

exponential phase and eliminate extranuclear vacuole formation, the culture was main-

tained at 𝑂𝐷600 0.5 for 2 days, with dilutions performed at 12-hour time intervals. To

prepare agarose pads for imaging, cells were pipetted onto a pad of 2% agarose prepared

in YES media, with 0.1 mM N-propyl gallate (Sigma-Aldrich, catalog no. P-3130) and 1%

gelatin (Millipore, catalog no. 04055) as additives to reduce phototoxicity during imag-
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ing. S. pombe cells were imaged at room temperature (RT) with a 100× 1.40 numerical

aperture (NA) oil-immersion objective in an Olympus IX-71 inverted microscope. First,

the fluorescent background was decreased by exposure to 488-nm light (Coherent Sap-

phire, 200𝑊 /𝑐𝑚2
for 20 to 40 s). A 406-nm laser (Coherent Cube, 405-100; 102𝑊 /𝑐𝑚2

)

was used for photoactivation (200-ms activation time), and a 561-nm laser (Coherent Sap-

phire, 561-50; 163𝑊 /𝑐𝑚2
) was used for imaging. Images were acquired at 40-ms exposure

time per frame. The fluorescence emission was filtered with Semrock LL02-561-12.5 filter

and Chroma ZT488/561rpc 488/561 dichroic to eliminate the 561-nm excitation source and

imaged using a 512 × 512 pixel Photometrics Evolve EMCCD camera.

For the epifluorescence images in Fig. 4.7 and fig. 4.8, a 405-nm light-emitting diode

(LED) light source (Lumencor SpectraX) at 25 mW/nm (100% power) was used to pho-

toactivate cells, and a 561-nm LED was used to image them subsequently. Images were

collected with 100-ms exposure time per frame with a 100× 1.45 NA oil-immersion objec-

tive using a Photometrics Prime95B sCMOS camera.

4.4.3 Single-molecule trajectory analysis with SMAUG algorithm

Recorded Swi6-PAmCherry single-molecule positionswere detected and localizedwith

two-dimensional Gaussian fitting with home-built MATLAB software as previously de-

scribed and connected into trajectories using the Hungarian algorithm [17, 195]. These

single-molecule trajectory datasets were analyzed by a nonparametric Bayesian frame-

work to reveal heterogeneous dynamics [31]. This SMAUG algorithm uses nonparametric

Bayesian statistics and Gibbs sampling to identify the number of distinct mobility states, n,

in the single-molecule tracking dataset in an iterative manner. It also infers the parameter

such as weight fraction, 𝜋𝑖 , and effective diffusion coefficient, 𝐷𝑖 , for each mobility state

(i = . . . ,n), assuming a Brownian motion model. To ensure that even rare events would

be captured, we collected more than 10,000 steps in our single-molecule tracking dataset

for each measured strain, and we ran the algorithm over >10,000 iterations to achieve a
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thoroughly mixed state space. The state number and associated parameters were updated

in each iteration of the SMAUG algorithm and saved after convergence. The final estima-

tion (e.g., Fig. 4.1F) shows the data after convergence for iterations with the most frequent

state number. Each mobility state, i, is assigned a distinct color, and for each saved itera-

tion, the value of Di is plotted against the value of πi. The distributions of estimates over

the iterations give the uncertainty in the determination of 𝐷𝑖 . Furthermore, the transition

probabilities (e.g., Fig. 4.1G) give the average probability of transitioning between states

from one step to the next in any given trajectory. For static molecules from imaging fixed

S. pombe cells, SMAUG converges to a single state with 𝐷𝑎𝑣𝑔 = 0.007 ± 0.001𝜇𝑚2/𝑠 . The

average localization error for single-molecule localizations in this fixed-cell imaging is

32.6 nm.

4.4.4 Clustering analysis for the Swi6 distributions

The spatial pattern (i.e., dispersed, clustered, or homogeneously distributed and at

what scale) of each mobility state was investigated using Ripley’s K function [186]

𝐾 (𝑟 ) = 𝜆−1

𝑛∑︁
𝑖=1

∑︁
𝑖≠ 𝑗

𝐼 (𝑟𝑖 𝑗 < 𝑟 )
𝑛

(4.1)

where 𝑟 is the search radius, 𝑛 is the number of points in the set, 𝜆 is the point density,

and 𝑟𝑖 𝑗 is the distance between the ith and jth point. 𝐼 (𝑥) is an indicator function (1 when

true and 0 when false). For convenience, we further normalized K(r) to attain Ripley’s H

function

𝐻 (𝑟 ) = (𝐾 (𝑟 )
𝜋

)
1/2

− 𝑟 (4.2)

where𝐻 (𝑟 ) = 0 for a random distribution,𝐻 (𝑟 ) > 0 for a clustered distribution pattern,

and 𝐻 (𝑟 ) < 0 for a dispersed pattern. The maximum of 𝐻 (𝑟 ) approximately indicates the

cluster size [196]. The cross-correlation between different states was studied with the

same method. In all analysis, the nucleus was approximated as a circle to determine the
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area and perform edge correction [197]. We calculated 𝐻 (𝑟 ) for each cell, and then we

consolidated data from different cells into an overall 𝐻 (𝑟 ) from the average across all

cells weighted by the point density.

To eliminate effects from the intrinsic spatial correlation between steps that come

from the same trajectories, we simulated diffusion trajectories with similar confined area

size, average track length, and overall density as experimental trajectories by drawing

step lengths from the step size distribution of the corresponding experiment steps. These

trajectories are random in the initial position and step direction. We calculated a four-

state 𝐻 (𝑟 ) distribution for trajectories simulated corresponding to the Swi6 dataset (fig.

4.2C). To eliminate the contribution of the in-track autocorrelation of steps in 𝐻 (𝑟 ), we

subtracted 𝐻 (𝑟 ) of the randomly simulated trajectories from 𝐻 (𝑟 ) of the experimental

data for each mobility state. The same 𝐻 (𝑟 ) simulation and subtraction were carried out

for all Ripley autocorrelation analyses.

4.4.5 Fine-grained chemical rate constant inference

The ine-grained chemical rate constant inference and strains used in this Chapter

are from the freddolino Lab at the University of Michigan. Please refer to corresponding

manuscript of this chapter for details [106].

4.4.6 in vitro Biochemisty assays

The Nucleosome electrophoretic mobility shift assays, Glutaraldehyde protein cross-

linking oligomerization assay, Biochemical measurements of the competition between

Swi6 oligomerization, nucleic acid binding, and H3K9me recognition and Chromatin im-

munoprecipitation are from the Ragunathan Lab at the University of Michigan. Please

refer to corresponding manuscript of this chapter for details [106].
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4.4.7 Comparison between SMAUG and other single particle tracking analysis

tools

We analyzed our datasets with SMAUG as well as with two broadly used single-

molecule tracking analysis tools: Spot-On and vbSPT [18, 29]. Spot-On is a probability-

based kinetic modeling framework which is known to correct for multiple biases and for

its user-friendly interface. Spot-On can estimate the diffusion coefficients and weight frac-

tion for each state in the context of a model with a pre-determined number of diffusive

states. However, the probability of transitioning between states cannot be acquired from

this probability-based kinetic model fitting and presetting the number of states might in-

troduce extra bias.

Like SMAUG, vbSPT analyzes single-molecule trajectory data within a variational

Bayesian framework that can also identify the diffusive state number and estimate the

diffusion coefficients, weight fractions, and transition probabilities. The major difference

between SMAUG and vbSPT is that SMAUG uses a Dirichlet process-based nonparamet-

ric Bayesian framework to decide the most probable states number, while vbSPT fits the

model under different state number and then uses a max-evidence criterion to select the

number of states. A detailed comparison of the performance of SMAUG and vbSPT has

been done previously [31]; in this case, SMAUG outperformed vbSPT in its ability to accu-

rately estimate the parameters for a simulated dataset of trajectories containing a mixture

of four diffusion coefficients.We analyzed our single-molecule trajectories of PAmCherry-

Swi6 (Figure 4.1) with the three analysis methods. The nonparametric SMAUG algorithm

converged to uncover four diffusive states (Figure 4.1F-G). We found that vbSPT also se-

lected a 4-state model by its max-evidence criterion. Since Spot-On only includes a 2- or

3-state model, we fit our data to a 3-state model in this comparison. The three methods

yield very similar results for the order of magnitude and the weight fractions of the slow,

intermediate, and fast diffusive states, though there are some differences in the identifi-

cation of each population.
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For example, the two fastest terms in the vbSPT results have similar D values to the

single fastest term in the SMAUG result, but the total occupancy of the two vbSPT fast

terms (π = 0.28) is similar to the weight fraction of the fastest term in SMAUG (π = 0.27).

Considering the large standard deviation for the fast term diffusion coefficient in vbSPT,

vbSPT appears to have oversampled the fast term to produce two terms. In addition, both

Spot-On and SMAUG estimate a very slow (D < 0.01 𝜇𝑚2/𝑠) state which is missing in

the vbSPT results. Overall, this comparison of the PAmCherry-Swi6 results for different

analysis methods leads to similar conclusions about the advantages of using the SMAUG

algorithm [31] (1) Unlike Spot-on which need a predetermined number of states, SMAUG

can objectively determine the number of diffusive states using nonparametric Bayesian

statistics; and (2) SMAUG performs better than vbSPT in terms of fully resolving amixture

of diffusive states and their associated parameters (Table 4.1). Results for analysis of our

set of single-molecule trajectories of PAmCherry- Swi6 in S. pombe (Figure 4.1) with the

three different analysis methods.
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Table 4.1: *Spot-On was fixed to 3 states due to limitations in the original code
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Table 4.2: All SMAUG results for used S. pombe strains
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CHAPTER V

H3K9 methylation Enhances HP1-associated

Epigenetic Silencing Complex Assembly and

Suppresses Off-Chromatin Binding

The work presented in this chapter is in submission

Chen, Z., Seman, M., Farhat, A., Fyodorova, Y., Biswas, S., Levashkevich, A.,

Freddolino, P.L., Biteen, J.S. and Ragunathan, K.

H3K9 methylation enhances HP1-associated epigenetic silencing complex assembly and

suppresses off-chromatin binding.

bioRxiv, 2023.03.08.531771. DOI: 10.1101/2023.03.08.531771

In this work, I conceptualized the proposed mechanism in the project and designed

the needed experiments and strains. I performed single-molecule imaging experiments

and dynamics analysis. I designed and implemented the single-molecule dynamics and

spatial analysis. I plotted the single-molecule dynamics analysis, reconstructed localiza-

tion images, and estimated the kinetics rate of target proteins.
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5.1 Introduction

Genetically identical cells can exhibit different phenotypic characteristics due to the

covalent modification of DNA packaging proteins called histones [161]. One modification,

Histone H3 lysine 9 methylation (H3K9me), is enriched within non-transcribed regions

of the genome, called heterochromatin [89]. Heterochromatin is important for maintain-

ing the integrity of the genome, silencing repetitive DNA sequences, and maintaining cell

identity [54]. The function of epigenetic modifications like H3K9 methylation relies on

the actions of specific proteins called histone modifiers. These include "writer" proteins

that addmodifications to histones, "reader" proteins that recognize and bind to these mod-

ifications, and "eraser" proteins that remove these modifications [161]. Histone modifiers

often form large multi-protein complexes with other accessory factors to regulate chro-

matin structure, genome organization, and transcription [54, 57].

H3K9methylation acts as a binding platform for the recruitment of a conserved family

of proteins called HP1 [89]. HP1 proteins play multiple roles in forming heterochromatin

[168,198]. This includes the recruitment of histone modifiers that catalyze H3K9 methyla-

tion deposition and spreading across large chromosomal regions, chromatin compaction

through oligomerization, and epigenetic inheritance after DNA replication [73]. HP1 pro-

teins recognize H3K9 methylation through a conserved domain called the chromodomain

(CD) and interacts with its binding partners through a second protein domain called the

chromoshadow domain (CSD) [168,198]. Our current understanding is that H3K9 methy-

lated chromatin simply acts as a scaffold that recruits HP1 and its partner proteins to

silence transcription [199].

In the model organism Schizosaccharomyces pombe (S. pombe), H3K9 methylation is

enriched at the pericentromeric repeats, telomeres, and themating type locus. The protein

Clr4 is responsible for adding methyl groups to H3K9me, to create a binding site for HP1

proteins [200]. TwoHP1 orthologs bind toH3K9me in S. pombe, Swi6, and Chp2 [201–203].

Despite their structural similarity and shared evolutionary origin, Swi6 and Chp2 are ex-
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pressed at very different levels in the cell and have distinct roles in heterochromatin for-

mation [87]. Swi6 is expressed at levels that are at least 100 times higher than Chp2 in

cells [194]. In vitro studies of Swi6 and Chp2 capture key biochemical features associ-

ated with oligomerization and their interaction with mononucleosomes and oligonucleo-

somes [73, 82, 194]. Such studies have shown that Swi6 and Chp2 have similar tendencies

to form dimers and oligomers [166], but Swi6 binds more strongly to nucleosomes (ap-

proximately 3-fold higher) compared to Chp2 [171]. However, it is unclear how these

significant differences in expression levels and binding affinities between Swi6 and Chp2

extend to how both proteins interact with H3K9me in living cells.

Deletions of Swi6 and Chp2 have additive effects on epigenetic silencing. These ob-

servations suggest that Swi6 and Chp2 have distinct roles in establishing heterochro-

matin [82, 194]. The two HP1 proteins preferentially interact with different binding part-

ners. Epe1 is a putative H3K9 demethylase that opposes H3K9 methylation [81] and inter-

acts with Swi6 both in vitro and in vivo [58, 80]. On the other hand, the SHREC complex

in S. pombe, which consists of two major chromatin modifying enzymes - Clr3, a his-

tone deacetylase, and Mit1, a chromatin remodeler – preferentially forms complexes with

Chp2 [81, 83, 86, 204]. Mit1 interacts with Chp2 both in vitro and in vivo. It is still unclear

how Swi6 and Chp2 specifically and selectively recruit their respective binding partners

to sites of heterochromatin formation. One possibility is that Swi6 and Chp2 first form

a complex with their partner proteins (Epe1, Mit1, or Clr3) off-chromatin, then search

the genome, and ultimately bind at sites that are enriched for H3K9 methylation. Cells

lacking Clr4 and H3K9 methylation exhibit a significant loss in HP1-mediated protein in-

teractions, suggesting that chromatin may play a causal role in enabling protein-protein

interactions in living cells [171]. Hence, an alternative model is that HP1 proteins form

complexes with their binding partners at sites of heterochromatin formation rather than

off-chromatin.

Immunoprecipitation followed bymass spectrometry (IP-MS) is useful to detect protein-
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protein interactions. Yet, the types of interactions they detect can vary depending on fac-

tors such as lysis conditions, salt concentrations, and protein abundance. As a result, these

assays may not fully represent the range of interactions that occur between proteins in

living cells. Detecting protein-protein interactions after lysing cells also removes proteins

from their native, complex, and crowded chromatin environment. This leads to chromatin

associated factors exhibiting divergent properties in vitro versus how they behave in cells.

For example, in the case of Swi6, nucleosome binding in vivo is inhibited, not enhanced,

by interactions with nucleic acids, unlike in vitro binding assays. This is because the large

excess of DNA in the cell can displace Swi6 from its binding site and promote protein

turnover at sites of heterochromatin formation [106]. Attempts to bridge the gap between

in vitro and in vivo studies such as FRET and two color imaging measurements rely on

protein-protein interactions that are infrequent and transient given the dynamic proper-

ties of chromatin binding proteins. Additionally, FRET poses critical methodological chal-

lenges due to its limited working distance (< 0 nm) and the rare chances of spontaneous

interactions between labeled molecules [205].

Single-molecule microscopy of target protein-photoactivatable fluorescent protein fu-

sions is a powerful tool to study protein dynamics in vivo [206, 207]. Live-cell imaging

can access the interaction of histone modifiers with their chromatin substrates [106, 208,

209]. When combined with critical advances in statistical inference methods for analyzing

high spatiotemporal resolution imaging data (Bayesian statistics applied to single-particle

tracking) [31, 210], we can map the biophysical mobility states of proteins (as measured

by their diffusion coefficients) to their biochemical properties in living cells [106]. Fur-

thermore, analyzing the probabilities of transitioning between or dissociating from each

detected mobility state can provide estimates of the biochemical properties for protein-

protein and protein-chromatin interactions in cells [189].

Here, we use single-molecule tracking photoactivated localizationmicroscopy to study

the dynamics and interactions of the HP1 proteins—Swi6 and Chp2—and the proteins they
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form complexeswith—Epe1,Mit1, and Clr3. Our goal here is to determinewhether themo-

bility states of proteins can be used to infer how they form complexes within the context

of native chromatin. Based on a combination of single particle trackingmeasurements and

mathematical modeling, we propose a mechanism for how H3K9 methylation not just en-

courages specific complex formation between HP1 proteins and their interactors but also

suppresses the propensity of heterochromatin-associated proteins to form off-chromatin

complexes. As opposed to an inert platform or scaffold to direct HP1 binding, our study re-

brands chromatin as an active participant in enhancing HP1 mediated complex formation

in living cells.

5.2 Results

5.2.1 S. pombe HP1 orthologs, Swi6 and Chp2 exhibit distinct, non-overlapping

biophysical states in living cells

We previously used single-molecule tracking to identify biophysical diffusive states

that map to distinct biochemical properties of proteins in living cells [106]. We measured

the in vivo dynamics of Swi6, one of twoHP1 proteins in fission yeast.We have determined

that Swi6 has four distinct mobility states each of which maps to a specific biochemical

property in cells [106]. Here, we measured the mobility states of the second conserved

HP1 protein, Chp2. We labeled the N-terminus of the endogenous copy of Chp2 with

PAmCherry (PAmCherry-Chp2) but were unable to observe an appreciable number of

photoactivation events for single particle tracking likely due to its low expression level.

Instead, we inserted a second copy of an N-terminally labeled PAmCherry-Chp2 under the

regulation of a thiamine-repressible promoter, nmt1, nmt41 and nmt81 (Figure 5.1A, B).We

first ensured that nmt81-dependent expression of PAmCherry-Chp2 complements 𝑐ℎ𝑝2Δ

cells by measuring the silencing of a ura4+ reporter inserted at the mat locus (Kint2). If

ura4+ is silenced, cells grow on 5-fluoroorotic acid (EMMC+FOA) containing media and
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Figure 5.1
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Figure 5.1: A: Design of the PAmCherry-Chp2 construct: PAmCherry is fused to the N-

terminus of Chp2 and expressed from ectopically using a series of inducible promoters-

nmt1, nmt41, or nmt81. B: Schematic representation of Chp2 domains. CD: chromod-

omain (H3K9me recognition); H: hinge (nucleic acid binding); CSD: chromoshadow do-

main (dimerization interface). C: Silencing assay using an ura4+ reporter inserted at the

mat locus (Kint2:ura4). 10-fold serial dilutions of cells expressing Chp2 from different nmt

promoter variants were plated on EMMC, EMMC+FOA and EMM-URA plates. D-E: NO-

BIAS identifies two distinct mobility states for PAmCherry-Chp2
𝑛𝑚𝑡81

. Each colored point

is the average single-molecule diffusion coefficient of PAmCherry-Chp2 molecules in that

state sampled from the posterior distribution of NOBIAS inference at a saved iteration af-

ter convergence inWT cells (D) and 𝑐𝑙𝑟4Δ cells (E). Grey points are the previously reported

PAmCherry-Swi6 single-molecule dynamics [106]. F-G: NOBIAS identifies multiple mo-

bility states for PAmCherry-Chp2
𝑛𝑚𝑡41

(medium expression, F) and PAmCherry-Chp2
𝑛𝑚𝑡1

(high expression, G). Each colored point is the average single-molecule diffusion coeffi-

cient sampled from the posterior distribution for PAmCherry-Chp2 at the indicated ex-

pression level. Colored line crosses represent the data from PAmCherry-Chp2
𝑛𝑚𝑡81

(low

expression; data in D).

fail to grow on media lacking uracil (EMM-URA). We noted that nmt81-PAmCherry-Chp2

is functional and successfully restores ura4+ silencing in 𝑐ℎ𝑝2Δ cells (Figure 5.1C).

Next, we tracked individual PAmCherry-Chp2 molecules expressed from the nmt81

promoter in S. pombe. PAmCherry-Chp2 was briefly photoactivated with 405-nm laser

light and imaged with 561-nm laser excitation light. We repeated this measurement until

all PAmCherry-Chp2 molecules that can be activated were photobleached (see Methods).

The activation-excitation-imaging cycle was repeated approximately 10 – 20 times for

each cell, and the single molecules were localized and tracked in the recorded fluorescence

movies with the SMALL-LABS algorithm [12]. We model the motion of Chp2 molecules

inside the S. pombe nucleus as a diffusive process and thus can assign diffusion coefficients

to quantify the different mobility states associated with Chp2. We define a mobility state

as a subpopulation of molecules with a distinct diffusion coefficient (D). In contrast to

the four mobility states that we observed in the case of PAmCherry-Swi6 (a mixture of

stationary and mobile molecules), nearly all PAmCherry-Chp2 proteins in S. pombe are

stationary (Figure 5.2B). Hence, our live cell imaging data reveals a substantially different

binding configuration between Swi6 and Chp2.
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Figure 5.2
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Figure 5.2: 1A The expression level of PAmCherry-Chp2
𝑛𝑚𝑡1/𝑛𝑚𝑡41/𝑛𝑚𝑡81

is quantified

by western blot using an mCherry antibody. The cross-reactivity of the mCherry an-

tibody can specifically detect PAmCherry protein fusions. 1B Single-molecule step size

map for PAmCherry-Chp2
𝑛𝑚𝑡81

. Dashed lines: approximate S. pombe cell outlines; solid

circles: approximate nucleus borders. 1C: NOBIAS identifies distinct mobility states for

PAmCherry-Chp2
𝑛𝑚𝑡81

in 𝑠𝑤𝑖6Δ cells. Each colored point is the average single-molecule

diffusion coefficient of molecules in that state sampled from the posterior distribution

of NOBIAS inference at a saved iteration after convergence. The colored crosses show

the data for PAmCherry-Chp2
𝑛𝑚𝑡81

in WT cells (Figure 5.1D). 1D: Two-color imaging of

cells with Swi6-GFP expressed from the endogenous promoter and PAmCherry-Chp2
𝑛𝑚𝑡1

.

Green colorbar: Swi6-GFP intensities; Red colorbar: reconstructed PAmCherry-Chp2 den-

sity map. Both color channels are normalized to the maximum pixel intensity. E: Posterior

distribution of diffusion coefficients of single-molecule trajectory datasets inferred from

DPSP analysis(2). Vertical dashed line: Lower bound of detectable diffusion coefficients

given the experimental localization error. 1F-1G: Weight fractions of each mobility state

for PAmCherry-Chp2
𝑛𝑚𝑡81

single-molecule trajectories inferred from Spot-On analysis(3)

with a two-state model (F) and a three-state model (G).

To investigate any potential heterogeneity in the dynamics within the observed static

molecules, we applied NOBIAS, a nonparametric Bayesian framework that can objectively

determine the number of mobility states giving rise to a single-molecule tracking dataset

[210].We identified twomobility states associatedwith PAmCherry-Chp2: over 92% of the

Chp2 molecules are in the low mobility state with an average diffusion coefficient,𝐷𝛼,𝐶ℎ𝑝2

= 0.007 𝜇𝑚2/𝑠 (Figure 5.1D) and around 7.5% of Chp2 molecules in a fast mobility state

with 𝐷𝛿,𝐶ℎ𝑝2 = 0.13 𝜇𝑚2/𝑠 . NOBIAS analysis also provides the probability of a molecule

transitioning between two mobility states within its trajectory: Chp2 molecules in the

fast mobility 𝛿 state are much more likely to transition to the slower state compared with

the reverse transition (Figure 5.3A). These weight fractions and transition probabilities

indicate that Chp2 molecules predominantly occupy the slow 𝛼 mobility state and only a

very small proportion of Chp2molecules occupy the fast 𝛿 state. This slow Chp2motion is

very different from the motion of the second S. pombe HP1 protein, Swi6: similar Bayesian

analysis using the SMAUG package found that Swi6 molecules are distributed across 4

distinct mobility states [106].

To determine if the dominant slow mobility state of Chp2 corresponds to H3K9me-
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bound Chp2, we deleted Clr4, the only H3K9 methyltransferase in S. pombe [72,173]. In a

𝑐𝑙𝑟4Δ background, the slowest PAmCherry-Chp2 mobility state is completely absent (Fig-

ure 5.1E). PAmCherry-Chp2 molecules in 𝑐𝑙𝑟4Δ cells switch over to the fast mobility state

consistent with Chp2 proteins moving around the nucleus in an unconstrained manner

(weight fraction= 56%, 𝐷 𝑓 𝑎𝑠𝑡 = 0.36 𝜇𝑚2/𝑠). In addition, we observed a new mobility state

that we did not previously detect in clr4+ cells (weight fraction=44%, 𝐷𝑖𝑛𝑡 = 0.03 𝜇𝑚2/𝑠).

The new mobility state most closely matches the chromatin sampling (𝛽 state) that we

previously observed in the case of Swi6. Therefore, without H3K9 methylation, Chp2 ex-

hibits a substantial degree of binding to unmethylated chromatin. In contrast, only 10% of

Swi6 molecules are in a chromatin sampling configuration with >60% of Swi6 molecules

exhibiting fast, unconstrained diffusion in 𝑐𝑙𝑟4Δ cells.

The overarching goal of our studies is to measure the biochemical properties of pro-

teins and how they form complexes in the context of living cells. The appearance of a new

mobility state in 𝑐𝑙𝑟4Δ cells led us to hypothesize that Chp2 protein molecules that disso-

ciate from H3K9me engage in a substantial degree of promiscuous off-target interactions.

Unlike an in vitro experiment, we cannot change concentrations of proteins incremen-

tally to determine binding affinities and specificities between proteins and their cognate

ligands. Instead, we used two additional nmt promoter variants (nmt41 and nmt1) to alter

the overall Chp2 levels in wild-type cells. We used western blots to quantify the differ-

ences in expression across the three promoters. The difference between Chp2 expression

driven by nmt41 and nmt81 is approximately 50-fold (Figure 5.2A). In contrast, the ex-

pression level of Chp2 is at over 1000 fold higher when expressed from an nmt1 promoter

compared to nmt81-driven expression (Figure 5.2A). Hence, the promoter variants give us

a substantial dynamic range in terms of Chp2 concentration to assess whether the mobil-

ity states we observed are in any way limited by substrate availability (H3K9 methylated

nucleosomes in clr4+ cells).

The dynamics of the medium expressed (50 fold higher) PAmCherry-Chp2
𝑛𝑚𝑡41

are
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slightly increased compared to low expression nmt81 driven PAmCherry-Chp2. The slow

diffusive state in the low expressing PAmCherry-Chp2
𝑛𝑚𝑡81

cells splits into two states in

the medium expression PAmCherry-Chp2
𝑛𝑚𝑡41

cells with 𝐷𝑠𝑙𝑜𝑤1 =0.005 𝜇𝑚
2/𝑠 and 𝐷𝑠𝑙𝑜𝑤2

=0.010 𝜇𝑚2/𝑠 (Figure 5.1F). In contrast, in the highly expressed PAmCherry-Chp2
𝑛𝑚𝑡1

(over 1000 fold compared to nmt81), we observe that only 15% of Chp2 is in the slow diffu-

sive state; the remaining Chp2 molecules are in intermediate and fast states (Figure 5.1G).

The new state we observed in the case of the high expression PAmCherry-Chp2 cells is

comparable to Chp2 dynamics in a 𝑐𝑙𝑟4Δ background- where Chp2 has no substrate. In

this background, Chp2 molecules adopt a new mobility state that most closely resembles

the chromatin sampling 𝛽 state we observed previously in our Swi6 single particle mea-

surements. Our ura4+ reporter based silencing assays revealed that PAmCherry-Chp2 ex-

pressed from an nmt41 promoter (PAmCherry-Chp2
𝑛𝑚𝑡41

) preserves ura4+ reporter gene

silencing whereas PAmCherry-Chp2 expressed from the high expression nmt1 promoter

(PAmCherry-Chp2
𝑛𝑚𝑡1

) disrupts silencing (Figure 5.1C) [194]. This is possibly because

Chp2 outcompetes other chromodomain containing proteins for a limiting amount of

H3K9me substrate. Hence, maintaining the equilibrium of Chp2 in a low diffusion state

(H3K9me dependent) preserves its heterochromatin-associated silencing functionality.

Swi6 and Chp2 both have a chromodomain that is responsible for H3K9me binding

specificity (Figure 5.1B). We asked to what extent Swi6 competes with Chp2 to bind to

H3K9 methylated nucleosomes. We imaged PAmCherry-Chp2 in cells lacking the major

HP1 protein, Swi6 (𝑠𝑤𝑖6Δ). Like inWT cells, themajority of Chp2molecules in 𝑠𝑤𝑖6Δ cells

exhibit slow mobility. However, unlike WT cells, the slow population is split into two dis-

tinct slow mobility states with 𝐷𝑠𝑙𝑜𝑤1 =0.005 𝜇𝑚
2/𝑠 and 𝐷𝑠𝑙𝑜𝑤2 =0.010 𝜇𝑚

2/𝑠 , with only a

very small portion in the fast state (Figure 5.2C). Similar to WT cells, the fast Chp2 state is

very unstable: there is a high probability of transitioning from the fast state to one of the

faster slow states (Figure 5.4A). The appearance of a split new mobility state is likely be-

cause deleting Swi6 disrupts epigenetic silencing or because Swi6 makes unknown contri-
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butions to stabilizing Chp2 binding, although our results cannot distinguish between these

two possibilities. Because nonparametric Bayesian approaches are known to have the po-

tential for over-splitting [37], we validated the the existence of the two slower states of

Chp2
𝑛𝑚𝑡81

in 𝑠𝑤𝑖6Δ cells and in PAmCherry-Chp2
𝑛𝑚𝑡41

cells by analyzing all of our Chp2

datasets using two other different single molecule tracking methods: Dirichlet process

mixture models for single-particle tracking (DPSP) [107] and Spot-On [18]. Both analysis

methods capture a similar increase in dynamics and significant heterogeneity in the low

mobility state tracks as NOBIAS (Figure 5.2).

Unlike the split in the mobility in Chp2 in 𝑠𝑤𝑖6Δ cells, we observed a change in the

weight fraction ofmolecules in the chromatin sampling 𝛽 state upon imaging PAmCherry-

Swi6 in 𝑐ℎ𝑝2Δ cells [106]. Hence, the deletions of the individual HP1 proteins have very

different impacts on protein dynamics. At the extreme limit, the nmt1 promoter-driven ex-

pression of PAmCherry-Chp2 leads to the complete displacement of Swi6 from sites of het-

erochromatin formation. As expected, we observed labeled mNeongreen-Swi6 molecules

uniformly distributed across the nucleus upon PAmCherry-Chp2
𝑛𝑚𝑡1

overexpression (Fig-

ure 5.2D).

5.2.2 Chp2 dissociates faster from the H3K9me site in vivo than in vitro

The preponderance of the stationaryH3K9me-binding state for PAmCherry-Chp2
𝑛𝑚𝑡81

implies that our high-resolution single particle tracking measurements may overestimate

Chp2 dissociation rates due to photobleaching. This parameter is crucial to determine

Chp2 binding kinetics in vivo and determine the extent to which such measurements

correlate with in vitro assays. We estimated the dissociation rate using two approaches:

1) single-molecule tracking followed by a Bayesian synthetic likelihood (BSL) simula-

tion [189]. This simulation-based approach has the benefit of not being affected by ex-

perimental time-resolution limits. 2) single-molecule time-lapse imaging at different time

intervals to ensure that photobleaching did not lead to an overestimation of the dissocia-
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Figure 5.3: 2A: Inferred transition probabilities between the two mobility states of

PAmCherry-Chp2
𝑛𝑚𝑡81

from single-molecule tracking (Figure 5.1D). Diffusion coefficient,

D, in units of 𝜇𝑚2/𝑠 and weight fraction, π, are indicated. Arrow widths are proportional

to transition probability. 2B: Fine-grained chemical kinetic simulation with Bayesian Syn-

thetic Likelihood algorithm. The reaction on/off rate is proposed and simulated at a 0.4-

ms time interval to calculate the likelihood based on transition probabilities from A at the

40-ms experimental imaging time interval. 2C: Inferred rate constants for PAmCherry-

Chp2
𝑛𝑚𝑡81

. 2D: Schematic for single-molecule time-lapse imaging. The time-lapse period,

𝜏𝑇𝐿 , is the sum of the 200-ms integration time and the time delay. Five different time delays

were used to access: 𝜏𝑇𝐿 = 200, 500, 800, 1000, and 1200 ms. 2E: Dwell time distributions

for PAmCherry-Chp2
𝑛𝑚𝑡81

. The distributions are shown with fits to an exponential decay.

Insert: linear fit (red dashed line) of 𝑘𝑑𝑖𝑠𝑠𝑎𝑝𝑝𝜏𝑇𝐿 vs. 𝜏𝑇𝐿 , from which the dissociation rate

constant, 𝑘𝑑𝑖𝑠𝑠 , and the photobleaching rate constant, 𝑘𝑏𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔, are obtained. Errors bars

are the standard deviation of the exponential decay fitting.
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tion rate [211].

To infer the rate constants of transitions based on the NOBIAS transition matrices,

we used a BSL algorithm, which has previously been applied to assess Swi6 dynam-

ics [106, 189]. At each step, we simulated the experimental outcome of the transitions

with 0.4 ms time steps 2000 times for a set of rate constants (Figure 5.3B). BSL meth-

ods infer the most justifiable distribution of rate constants to estimate the value and un-

certainty of the reaction rate. We applied the BSL method to analyze the output of the

single-molecule tracking analysis and estimated that 𝑘𝑑𝑖𝑠𝑠 = 0.479±0.005𝑠−1
(Figure 5.3C).

We also experimentally determined Chp2 residence times and dissociation rates using

single-molecule time-lapse imaging (5.4). Based on single-molecule time-lapse imaging

at five different time intervals (Figure 5.3D), we calculated a Chp2-H3K9me disassocia-

tion rate of 𝑘𝑑𝑖𝑠𝑠 = 0.260 ± 0.018𝑠−1
and an average dwell time of 3.85 s (Figure 5.3E). In

contrast, time-lapse imaging of Swi6 gives 𝑘𝑑𝑖𝑠𝑠 = 0.454 ± 0.051𝑠−1
and and an average

dwell time of 2.20 s (Figure 5.4C). Both experimental approaches (single-molecule track-

ing and single-molecule photobleaching) measured a dissociation rate more than 10-fold

faster in vivo compared to previous in vitro measurements of Chp2 binding to H3K9me

9.6± 0.60× 10
−3𝑠−1

for me2 and 1.5± 0.27× 10
−2𝑠−1

for me3) [194]. Furthermore, compar-

ing the results for Chp2 to previously reported Swi6 dissociation results using the same

BSL analysis of single-molecule tracking data(Biswas et al., 2022), we find that the Chp2

dissociation rate (0.479𝑠−1
) is lower than that of Swi6 (1.27𝑠−1

). The in vivo time-lapse

measurement of Chp2 and Swi6 disassociation rates reveal that Chp2 remains bound to

H3K9me for a longer time than Swi6 in vivo suggesting that in fact, Chp2 binds to H3K9me

chromatin with higher affinity. Deleting Swi6 did not affect the residence time and dissoci-

ation rate of PAmCherry-Chp2
𝑛𝑚𝑡81

in 𝑠𝑤𝑖6Δcells which revealed a 𝑘𝑑𝑖𝑠𝑠 = 0.269±0.031𝑠−1

and and an average dwell time of 3.72 s (Figure 5.4D). The similarity in disassociation rates

between PAmCherry-Chp2
𝑛𝑚𝑡81

and PAmCherry-Chp2
𝑛𝑚𝑡81

in 𝑠𝑤𝑖6Δ cells indicates that

although deleting Swi6 perturbs Chp2 dynamics, it does not affect the intrinsic affinity
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between Chp2 and H3K9me chromatin.

5.2.3 The anti-silencing factor Epe1 co-localizes with its HP1 binding partner

primarily at sites of H3K9methylation and exhibits limited off-chromatin

dynamics

Having established the baseline dynamics of twomajor HP1 proteins in S. pombe-Swi6

and Chp2, we sought to determine how HP1 proteins interact with accessory factors to

facilitate heterochromatin assembly. The putative H3K9me demethylase Epe1 is a major

determinant of heterochromatin stability [80, 81, 88, 212]. Epe1 directly binds to Swi6 and

this interaction is essential for Epe1 recruitment to sites of H3K9 methylation. Deleting

Epe1 leads to both unregulated H3K9 methylation spreading and increased epigenetic in-

heritance [58,81].We labeled Epe1 at the C-terminuswith PAmCherry (Epe1-PAmCherry-

). To confirm if Epe1 molecules successfully localize at heterochromatin sites, we labeled

Swi6withmNeonGreen (mNeonGreen-Swi6) in cells and imaged the emission in the green

channel (488-nm excitation) alongside Epe1-PAmCherry in the red channel (561-nm exci-

tation). Overlaying mNeonGreen images with Epe1-PAmCherry super-resolution images

indicates that Epe1 foci form at the periphery of Swi6-heterochromatin foci (Figure 5.5A).

To identify themobility states associatedwith Epe1, we tracked single Epe1-PAmCherry

molecules and inferred the number of mobility states, the diffusion coefficients, and the

weight fraction for each Epe1 state. Since the interaction between Epe1 and Swi6 is di-

rect, we expected to observe four mobility states similar to what we previously observed

with Swi6. In contrast, we found that Epe1 has only two mobility states and that the pre-

dominant slower state (weight fraction, 𝜋𝑠𝑙𝑜𝑤 94%, 𝐷𝑠𝑙𝑜𝑤,𝐸𝑝𝑒1 = 0.008 𝜇𝑚2/𝑠) (Figure 5.5B).

Only 6% of Epe1 are assigned to a faster state with 𝐷 𝑓 𝑎𝑠𝑡,𝐸𝑝𝑒1 = 0.22 𝜇𝑚2/𝑠 . The transi-

tion probabilities indicate that transitioning from the fast state to the slow state is much

more favored than the reverse transition (21% to 0.8%) (Figure 5.5F). These results suggest

that in the presence of H3K9me, Epe1 preferentially remains in the H3K9me bound state
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Figure 5.4: 2A-B Transition probabilities between the three mobility states of

PAmCherry-Chp2
𝑛𝑚𝑡41

(A) and PAmCherry-Chp2
𝑛𝑚𝑡81

in 𝑠𝑤𝑖6Δ cells (B) from NOBIAS.

Diffusion coefficient, D, in units of 𝜇𝑚2/𝑠 and weight fraction, π, are indicated. The arrow
widths are proportional to the transition probabilities. 2C-D: Dwell time distributions for

PAmCherry-Swi6 expressed under endogenous promoter (C) and PAmCherry-Chp2
𝑛𝑚𝑡81

(D) in 𝑠𝑤𝑖6Δ cells. The distributions are shown with fits to an exponential decay. Insert:

linear fit (red dashed line) of 𝑘𝑑𝑖𝑠𝑠𝑎𝑝𝑝𝜏𝑇𝐿 versus 𝜏𝑇𝐿 , from which the dissociation rate con-

stant 𝑘𝑑𝑖𝑠𝑠 and the photobleaching rate constant 𝑘𝑏𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔 are obtained. Errors bars are the

standard deviation of the exponential decay fitting.
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Figure 5.5: 3A: Two-color imaging of cells expressing mNeongreen-Swi6 and Epe1-

PAmCherry. Swi6 and Epe1 are expressed from their endogenous promoters. Green col-

orbar: Swi6-mNeonGreen intensities; Red colorbar: reconstructed Epe1-PAmCherry den-

sity map. Both color channels are normalized to the maximum pixel intensity. 3B-3D:

NOBIAS identifies distinct mobility states for Epe1-PAmCherry. Each colored point is the

average single-molecule diffusion coefficient of PAmCherry-Chp2
𝑛𝑚𝑡81

molecules in that

state sampled from the posterior distribution of NOBIAS inference at a saved iteration

after convergence in WT cells (B), 𝑐𝑙𝑟4Δ cells (C), and 𝑠𝑤𝑖6Δcells (D). Grey points are

the previously reported PAmCherry-Swi6 single-molecule dynamics [106]. 3E: Dwell time

distributions for Epe1-PAmCherry expressed under its endogenous promoter. The distri-

butions are shown with fits to an exponential decay. Insert: linear fit (red dashed line)

of 𝑘𝑑𝑖𝑠𝑠𝑎𝑝𝑝𝜏𝑇𝐿 versus 𝜏𝑇𝐿 , from which the dissociation rate constant, 𝑘𝑑𝑖𝑠𝑠 , and the photo-

bleaching rate constant 𝑘𝑏𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔 are obtained. Errors bars are from standard deviation

of exponential decay fitting. 3F: Top: Transition probabilities between the two mobility

states of Epe1-PAmCherry from (B) NOBIAS analysis. Diffusion coefficient, D, in units

of 𝜇𝑚2/𝑠 and weight fraction, π, are indicated. Bottom: Inferred rate constants for Epe1-

PAmCherry from the fine-grained chemical kinetic simulation.

presumably through its direct interaction with Swi6.

We were surprised to note that Epe1 and Swi6 exhibit a significant mismatch in mo-

bility states except for the fact that they localize as expected at sites of heterochromatin

formation. To determine the role that H3K9 methylation might play in promoting com-

plex formation, we performed Epe1-PAmCherry single particle tracking measurements in

𝑐𝑙𝑟4Δ cells. As expected, we noticed that the previously observed Epe1 foci in wild-type

cells disappear and Epe1-PAmCherrymolecules in 𝑐𝑙𝑟4Δ cells exhibit a diffuse distribution

throughout the nucleus (Figure 5.6C). Also, we observed a complete loss of the slowest

state given that neither Swi6 nor Epe1 can localize to sites of heterochromatin in the ab-

sence of their cognate H3K9 methylation ligand (Figure 5.5C). Remarkably, we observed

that Epe1 now exhibits three mobility states, and the diffusion coefficients of these states

perfectly align with those of Swi6 (Figure 5.5C). Swi6, in the absence of H3K9 methyla-

tion, also exhibits three mobility states since the slowest state that depends on H3K9me

binding is absent [106]. Hence, our results suggest that Epe1 and Swi6 indeed can also di-

rectly interact with each other to form off-chromatin complexes. However, the presence of

H3K9me chromatin significantly shifts the equilibrium towards a chromatin-bound state:
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Figure 5.6: 3A-B Transition probabilities between themobility states of Epe1-PAmCherry

in 𝑠𝑤𝑖6Δ cells (A) and in 𝑐𝑙𝑟4Δ cells (B) from NOBIAS. The arrow widths are propor-

tional to the transition probabilities. 3C: Reconstructed single-molecule fits density map

for Epe1-PAmCherry in 𝑐𝑙𝑟4Δ cells. Dashed lines: approximate S. pombe cell outlines; solid

circles: approximate nucleus borders.
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in the clr4+ case where H3K9me is present, the transition out of the fast state is 26 times

higher than the transition into the fast state (Figure 5.5F) whereas this ratio decreases to

1.9 in 𝑐𝑙𝑟4Δ cells (Figure 5.6B).

To validate that the recruitment of Epe1 to sites of H3K9 methylation (i.e., the slow

state) is dependent on Swi6, we performed single particle tracking measurements of Epe1-

PAmCherry in a 𝑠𝑤𝑖6Δ background. As expected, we observed a complete loss of the slow

state and the appearance of a newmobility state with a diffusion coefficient 3 times higher

than the slowest state that we measured in WT cells. In addition, the weight fraction for

the faster state, πfast, increases from 6% in the WT background to over 50% in 𝑠𝑤𝑖6Δ

(Figure 5.5D).

Finally, we performed time-lapse imaging to measure the Epe1 dissociation rate. We

estimated that Epe1 dissociates from sites of heterochromatin formation at a rate that

is 𝑘𝑑𝑖𝑠𝑠 = 0.288 ± 0.044𝑠−1
according to single-molecule time-lapse imaging with four

timefour-time intervals (Figure 5.5E). Consistently, BSL analysis of the single-molecule

tracking transition matrix gave 𝑘𝑑𝑖𝑠𝑠 = 0.236 ± 0.003𝑠−1
(Figure 5.5F) or a dwell time of

4.24s. These data suggest that Epe1 remains bound to heterochromatin for dwell times

that are much longer than that of Swi6 despite Swi6 and Epe1 directly interacting with

each other to form a complex. This suggests H3K9me or multivalency arising from Swi6

oligomerization might promote the stable association of Epe1 at sites of heterochromatin

formation.

5.2.4 Histone remodelerMit1 andhistone deacetylaseClr3 assemble into SHREC

complex only at heterochromatin

Given our observation that Epe1 and Swi6 preferentially form complexes at sites of

H3K9 methylation and not off-chromatin, we wanted to determine the extent to which

the principle of H3K9me-directed complex assembly might be generalizable to other HP1

protein complexes. The SHREC complex consists of a histone remodeler Mit1 and histone
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deacetylase (HDAC) Clr3 (Figure 5.7A) [83, 86]. Unlike Epe1, which critically depends on

Swi6 for its recruitment to heterochromatin, proteins that are part of the SHREC com-

plex preferentially form complexes with Chp2 [83, 87]. The C-terminus of Chp2 forms a

complex with the N-terminus of Mit1 and their interactions have been characterized us-

ing X-ray crystallography [83]. This is further supported by studies of Swi6 purification

followed by mass spectrometry in 𝑐ℎ𝑝2Δ cells which reveals a precipitous loss of Mit1

from heterochromatin [171]. The recruitment of Clr3 is more complex and depends both

on HP1-dependent and HP1-independent interactions [80, 83, 87].

We previously determined that Chp2 exhibits two distinct mobility states and hence

we extended our studies to identify the mobility states associated with its primary inter-

acting partners - Mit1 and Clr3. We fused PAmCherry to the N-terminus of Mit1 and Clr3

and expressed the two fusion proteins using a thiamine-repressible nmt81 promoter. We

determined that PAmCherry-Mit1
𝑛𝑚𝑡81

preserved epigenetic silencing at the mat locus by

using a ura4+ based silencing assay (Figure 5.8A). As previously described, the establish-

ment of ura4+ silencing leads to growth in FOA (EMMC+FOA) containing media and the

lack of growth inmedia without uracil (EMM-URA). Our single-molecule tracking data for

PAmCherry-Mit1
𝑛𝑚𝑡81

and PAmCherry-Clr3
𝑛𝑚𝑡81

reveals that both proteins exhibit three

mobility states (Figure 5.7B,D,E). The diffusion coefficients for Mit1 and Clr3 only match

each other for the slowest states (𝐷𝑠𝑙𝑜𝑤 = 0.005 𝜇𝑚2/𝑠) with comparable weight fractions.

There are 28% of slow-state single-molecule steps for Mit1 and 25% for Clr3. Notably, the

𝐷𝑠𝑙𝑜𝑤 values for these two proteins are again at levels similar to what we have observed

in the case of other heterochromatin-associated factors (𝐷𝑠𝑙𝑜𝑤 of Swi6, Chp2, and Epe1).

Reconstructed single-molecule fits density heatmap of Mit1 show that their high-density

hotspots also exhibit spatial patterns that are similar to Chp2, Swi6, and Epe1 while Clr3

has a more widely dispersed pattern (Figure 5.8C).

We analyzed transition probabilities and calculated spatial autocorrelations for Mit1

and Clr3 based on our single molecule tracking data. We noticed that Clr3 has a higher
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Figure 5.7: 4A: Schematic of H3K9 methylated nucleosomes interacting with HP1 pro-

teins and forming HP1 sub complexes. Swi6 binds to Epe1, and Chp2 interacts with

the SHREC complex through Mit1. 4B: NOBIAS identifies three distinct mobility states

for PAmCherry-Mit1
𝑛𝑚𝑡81

and PAmCherry-Clr3
𝑛𝑚𝑡81

. Each point is the average single-

molecule diffusion coefficient of PAmCherry-Mit1
𝑛𝑚𝑡81

molecules (colored points) or

PAmCherry-Clr3
𝑛𝑚𝑡81

molecules (grey points) in that state sampled from the posterior

distribution of NOBIAS inference at a saved iteration after convergence. 4C: The interme-

diate state of Mit1
𝑛𝑚𝑡81

(solid line) has a higher Ripley’s H(r) than the intermediate state of

Clr3
𝑛𝑚𝑡81

(dashed line). Each autocorrelation plot is normalized with randomly simulated

trajectories from the same state (5.4). 4D-E Transition probabilities between the three mo-

bility states of PAmCherry-Mit1
𝑛𝑚𝑡81

(D) and PAmCherry-Clr3
𝑛𝑚𝑡81

(E) fromNOBIAS. The

arrow widths are proportional to the transition probabilities. Diffusion coefficient, D, in

units of 𝜇𝑚2/𝑠 and weight fraction, π, are indicated.

transition probability from the fast state to the intermediate state compared with Mit1

(Figure 5.7D,E). Spatial autocorrelation analysis is useful especially when combined with

the state label NOBIAS provides for each step. We used Ripley’s H function to determine

the potential spatial overlap between Mit1 and Clr3 for different mobility states [186]. A

higher H(r) value indicates a higher clustering level at searching radius r, and Mit1 has a

higher H function value than Clr3 in the intermediate state at all searching radii (Figure

5.7C). In contrast, there is little difference between the H functions for the slowest states

of Mit1 and Clr3, indicating that the clustering level of Mit1 and Clr3 slow state is sim-

ilar (Figure 5.8B). In summary, the spatial auto-correlation analysis and single-molecule

dynamic measurements for Mit1 and Clr3 suggest that the SHREC complex components

preferentially co-localize on chromatin and is unlikely to form off-chromatin complexes

in live S. pombe cells.

Whether Chp2 andMit1 recruit the HDACmodule Clr3, to sites of H3K9me or the two

SHREC complex components are recruited to the H3K9me site independently remains an

open question [83,87]. To test between these possibilities we deleted Clr1, a protein in the

SHREC complex that is thought to link the remodeling and HDAC modules. We observed

an increase in the fast state weight fraction and a decrease in the bound state weight

fraction for Mit1 (Figure 5.8D), which further confirmed that Mit1’s bound state depends
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Figure 5.8: 4A: Silencing assay using a ura4+ reporter inserted at the mat locus

(Kint2:ura4). 10-fold serial dilution of cells were plated on EMMC, EMMC+FOA and EMM-

URA plates to determine if PAmCherry-Mit1
𝑛𝑚𝑡81

expression can establish heterochro-

matin in𝑚𝑖𝑡1Δ cells.4B: The slow state of Mit1 (solid line) has similar Ripley’s H(r) value

as the slow state of Clr3 (dashed line) in WT cells, indicating that both proteins are clus-

tered in slow states. Each autocorrelation plot is normalized with randomly simulated

trajectories from the same state (5.4).4C: Reconstructed single-molecule fits density map

for PAmCherry-Mit1
𝑛𝑚𝑡81

(top) and PAmCherry-Clr3
𝑛𝑚𝑡81

(bottom) in WT cells. Dashed

lines: approximate S. pombe cell outlines; solid circles: approximate nucleus borders. 4D-F:

NOBIAS identifies distinct mobility states for PAmCherry-Mit1
𝑛𝑚𝑡81

in 𝑐𝑙𝑟1Δ cells (D), and

in 𝑐𝑙𝑟3Δ cells (E). NOBIAS also identifies distinct mobility states for PAmCherry-Clr3
𝑛𝑚𝑡81

in𝑚𝑖𝑡1Δ cells (F). Each colored point is the average single-molecule diffusion coefficient

of molecules in that state sampled from the posterior distribution of NOBIAS inference at

a saved iteration after convergence. The colored crosses show the data from PAmCherry-

Mit1
𝑛𝑚𝑡81

or PAmCherry-Clr3
𝑛𝑚𝑡81

molecules in WT cells (Figure 5.7B).

on heterochromatin as Clr1 also interacts with Chp2 [87]. We also acquired and analyzed

single-molecule tracking data for PAmCherry-Mit1 in 𝑐𝑙𝑟3Δ cells, in which the number

of diffusive states remains to be 3, and there is little change in the corresponding D and

weight fraction for each state (Figure 5.8E), which means the binding of the remodeler

module (Mit1) does not depend on the HDAC module (Clr3). In contrast, we found that

the slow state of PAmCherry-Clr3 in𝑚𝑖𝑡1Δ cells has a decreased weight fraction and an

increase in the diffusion coefficient associated with the slow state (𝐷𝑠𝑙𝑜𝑤 changes from

0.005 𝜇𝑚2/𝑠 to 0.010 𝜇𝑚2/𝑠) (Figure 5.8F). These results suggest that Clr3 binding might

depend on the successful binding and recruitment of Mit1. Alternatively, the deletion of

Mit1 could have a larger effect on heterochromatin stability but our imaging experiments

cannot distinguish between these two possibilities.

5.2.5 SHREC complex dynamics is affected by H3K9 methylation

To test whether the slowest mobility state corresponding to Mit1 and Clr3 depends

on H3K9 methylation, we performed single-molecule tracking measurements in 𝑐𝑙𝑟4Δ

cells. In 𝑐𝑙𝑟4Δcells, Mit1 and Clr3 exhibit a substantial increase in the fastest mobility

state (17.7% to 37.8% for Mit1 and 20.0% to 46.0% for Clr3) with a concomitant decrease in
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the slowest mobility state (28.4% to 10.7% for Mit1 25.5% to 13.0% for Clr3) (Figure 5.9A-

B). However, unlike what we observed in the case of the two HP1 proteins—Swi6 and

Chp2—or Epe1, the slowest mobility state is not fully eliminated for either PAmCherry-

Mit1 or PAmCherry-Clr3 in 𝑐𝑙𝑟4Δ cells. These results suggest that other mechanisms in

addition to H3K9 methylation are responsible for the slow mobility state of Mit1 and

Clr3 (although more than half of its -bound state is determined by H3K9 methylation).

In the Ripley’s H cluster analysis, for all steps of Mit1 and Clr3 in WT cells and 𝑐𝑙𝑟4Δ

cells, we notice a substantial decrease in H(r) value for both proteins in the absence of

Clr4, consistent with reduced clustering. (Figure 5.9C). Reconstructed localization maps

of PAmCherry-Mit1 and PAmCherry-Clr3 in 𝑐𝑙𝑟4Δ cells also show an overall unclustered

spatial pattern for both proteins (Figure 5.9D).

Next, we tested the extent to which the slow mobility state of Mit1 and Clr3 depends

on the two HP1 proteins- Swi6 and Chp2. We acquired single-molecule tracking data of

PAmCherry-Mit1 in 𝑐ℎ𝑝2Δ, 𝑠𝑤𝑖6Δ, and 𝑐ℎ𝑝2Δ𝑠𝑤𝑖6Δ cells. We analyzed the Mit1 single

particle trajectories associated with each dataset and inferred the number of diffusive

states and associated D andW values (Figure 5.9E-F, 5.10A). We notice that Mit1 in 𝑐ℎ𝑝2Δ

cells exhibits a substantial decrease in the bound state weight fraction compared to WT

cells, but this decrease is less than what we observed in the case of 𝑐𝑙𝑟4Δ cells. In con-

trast, we observed a similar weight fraction for all 3 diffusive states of Mit1 in 𝑠𝑤𝑖6Δ cells

compared to Mit1 in WT cells. These results suggest and indeed confirm that Chp2 is the

primary HP1 protein interacting with Mit1. In the absence of Chp2, Swi6 can play a com-

pensatory role highlighting the potential for cross-talk and shared binding sites between

the two proteins. Indeed, we observed that Mit1 dynamics in 𝑐ℎ𝑝2Δ𝑠𝑤𝑖6Δ produced an

additive effect resulting in a further decreased bound state weight fraction compared with

only 𝑐ℎ𝑝2Δ cells.

For the HDAC Clr3, we acquired single-molecule tracking data for PAmCherry-Clr3

in 𝑐ℎ𝑝2Δ and 𝑠𝑤𝑖6Δ cells. In the analysis of Clr3 in 𝑐ℎ𝑝2Δ cells (Figure 5.10B), we no-
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Figure 5.9: 5A-B: NOBIAS identifies three distinct mobility states for PAmCherry-

Mit1
𝑛𝑚𝑡81

(A) and PAmCherry-Clr3
𝑛𝑚𝑡81

(B) in 𝑐𝑙𝑟4Δ cells. Each colored point is the av-

erage single-molecule diffusion coefficient of molecules in that state sampled from the

posterior distribution of NOBIAS inference at a saved iteration after convergence. The

colored crosses show the data for PAmCherry-Mit1
𝑛𝑚𝑡81

and PAmCherry-Clr3
𝑛𝑚𝑡81

(Fig-

ure 5.7B).5C: Ripley’s H analysis for steps from all states for Mit1
𝑛𝑚𝑡81

and Clr3
𝑛𝑚𝑡81

in

WT cells and 𝑐𝑙𝑟4Δ cells. The Mit1
𝑛𝑚𝑡81

and Clr3
𝑛𝑚𝑡81

(dashed blue and orange line) in

𝑐𝑙𝑟4Δ cells has lower Ripley’s H(r) value than Mit1
𝑛𝑚𝑡81

and Clr3
𝑛𝑚𝑡81

(solid blue and or-

ange line) in WT cells. 5D: Reconstructed single-molecule density map for PAmCherry-

Mit1
𝑛𝑚𝑡81

(top) and PAmCherry-Clr3
𝑛𝑚𝑡81

(bottom) in 𝑐𝑙𝑟4Δ cells. Dashed lines: approx-

imate S. pombe cell outlines; solid circles: approximate nucleus borders. 5E-F: NOBIAS

identifies three distinct mobility states for PAmCherry-Mit1
𝑛𝑚𝑡81

in 𝑐ℎ𝑝2Δ cells (E) and

𝑐ℎ𝑝2Δ𝑠𝑤𝑖6Δ cells (F). Each colored point is the average single-molecule diffusion co-

efficient of molecules in that state sampled from the posterior distribution of NOBIAS

inference at a saved iteration after convergence. The colored crosses show the data for

PAmCherry-Mit1
𝑛𝑚𝑡81

in WT cells (Figure 5.7B).

ticed the same decrease in the bound state as for Mit1 in 𝑐ℎ𝑝2Δ cells, which supports

the hypothesis of Chp2-mediated HDAC recruitment. Interestingly, in 𝑠𝑤𝑖6Δ cells (Fig-

ure 5.10C), we observe not only a decreased weight fraction for the Clr3 bound state, but

also an increased 𝐷𝑠𝑙𝑜𝑤 from 0.005 𝜇𝑚2/𝑠 to 0.010 𝜇𝑚2/𝑠 . Our data shows that the stable

nucleosome-bound state of the HDAC component Clr3, requires H3K9me, Chp2, andMit1.

We thus infer that the two modules of the SHREC complex only co-localize in presence

of H3K9me and HP1 proteins at heterochromatin sites, given the substantial differences

in recruitment behavior between the remodeler component and the HDAC component of

the SHREC complex.

5.3 Discussion

Wehave used single-particle tracking approaches to investigate howheterochromatin-

associated factors form complexes in living fission yeast cells. Our observations of the

properties of heterochromatin-associated proteins in cells deviate in important and sub-

stantive ways from in vitro studies. Previous studies have shown that Swi6 binds to nu-

cleosomes with a 3-fold higher affinity than Chp2 [82]. In contrast, our data based on
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Figure 5.10: NOBIAS identifies distinct mobility states for PAmCherry-Mit1
𝑛𝑚𝑡81

in

𝑠𝑤𝑖6Δ cells (A). NOBIAS also identifies distinct mobility states for PAmCherry-Clr3
𝑛𝑚𝑡81

in 𝑐ℎ𝑝2Δ cells (B) and in 𝑠𝑤𝑖6Δ cells (C). Each colored point is the average single-molecule

diffusion coefficient of molecules in that state sampled from the posterior distribution of

NOBIAS inference at a saved iteration after convergence. The colored crosses show the

data from PAmCherry-Mit1
𝑛𝑚𝑡81

or PAmCherry-Clr3
𝑛𝑚𝑡81

molecules in WT cells (Figure

5.7B).
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1) the weight fractions of molecules in the H3K9 methylation-dependent slow mobility

state, 2) the transition rates of molecules between the free and bound states, and 3) time-

lapse imaging to measure koff demonstrates that the majority of Chp2 molecules are in

the H3K9 methylation-bound state and Chp2 binds with higher affinity to H3K9me chro-

matin. By varying Chp2 protein expression levels, we also reveal how Chp2 binds with

exquisite specificity to H3K9me chromatin when expressed in limiting (and physiologi-

cally relevant) amounts. Hence, despite the twoHP1 proteins having very similar domains,

their different amino acid compositions, especially within the nucleic acid binding hinge

domain, likely leads to different biochemical interactions in cells. These results might ex-

plain why Chp2 is not easily displaced by Swi6 despite the levels of Chp2 protein being

100-fold lower than that of Swi6 in cells.

In our earlier work, we noted that deleting Chp2 had little effect on the overall dynam-

ics of Swi6 with a slight increase in the chromatin binding (𝛽 state) [106]. We concluded

that this limited dependence was likely because H3K9me is not substrate-limiting in cells.

Yet, deleting Swi6 led to increased dynamics and the emergence of a new diffusive state for

Chp2. The increased dynamics and the new Chp2-associated mobility state might appear

either because 1) Swi6 oligomerization may stabilize Chp2 binding at sites of heterochro-

matin formation. This would also explain the differences between H3K9me binding we

observed in the in vitro and in vivo data for Swi6 relative to Chp2; or because 2) Swi6 is

not directly involved in Chp2-H3K9me binding, but the loss of Swi6 results in an overall

reduction in heterochromatin stability, making Chp2 less bound.

The binding properties of the two HP1 proteins- Swi6 and Chp2, serve as an impor-

tant point of departure for our measurements on heterochromatin complex assembly in

living cells. Epe1, a major anti-silencing factor that interacts with Swi6, exhibits only

two mobility states suggesting that Epe1 interacts with Swi6 exclusively at sites of H3K9

methylation. These studies are consistent with our earlier observations showing that the

addition of an H3K9 methylated peptide to in vitro binding assays dramatically increased
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Figure 5.11: Left to right: The sequence specific recruitment of Clr4 promotes H3K9

methylation deposition at sites of heterochromatin; HP1 proteins Swi6 and Chp2 recog-

nize H3K9me with millisecond scale kinetics; H3K9me enhances Swi6 and Chp2 depen-

dent protein complex assembly at sites of heterochromatin. The increased likelihood of

complex formation at sites of H3K9me attenuates other possible off-chromatin interac-

tions in the case of Swi6 and Chp2 binding partners (Epe1, Mit1 and Clr3).

the extent of binding between Epe1 and Swi6 [212]. Swi6 IP-MS studies also show that

Epe1 interacts with Swi6 in clr4+ but not 𝑐𝑙𝑟4Δ or H3K9R mutants [212]. Indeed, our stud-

ies precisely define that it is in fact the presence of H3K9methylation itself that attenuates

other non-productive Epe1-Swi6 interaction states. Deleting Clr4 leads to Epe1 exhibit-

ing three mobility states, the diffusion coefficients of which perfectly align with that of

Swi6 in 𝑐𝑙𝑟4Δ cells. Hence, Swi6 and Epe1 likely form off-chromatin complexes and bind

directly to each other. However, the presence of H3K9 methylation dramatically shifts the

equilibrium populations toward a chromatin-bound state.

We tested whether the principle of H3K9 methylation enhancing complex formation

could be extended to other proteins such as the chromatin remodeler, Mit1, and the his-
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tone deacetylase, Clr3, both of which form complexes with the second HP1 protein, Chp2.

Unlike Chp2, which has only two mobility states, Mit1 and Clr3 exhibit three mobility

states. Both Mit1 and Clr3 exhibit mobility states with different diffusion coefficients and

spatial autocorrelation functions except for the slow state which we attribute to an H3K9

methylation bound fraction. These results suggest that Mit1 and Clr3, which are compo-

nents of the SHREC complex, co-localize only at sites of H3K9 methylation. Our results

are consistent with recent structural work on SHREC complex proteins highlighting the

special role that Chp2 has in recruiting Mit1 to heterochromatin [83, 204]. These results

suggest alternative modes of SHREC complex component recruitment which eventually

lead to the co-localization of the remodeler and deacetylase modules, binding as indepen-

dent components. For example, Mit1 can be recruited via HP1-dependent interactions,

CD domain-dependent nucleic acid interactions like DNA binding proteins at the telom-

eres [86,213]. Clr3, the HDACmodule, interacts with Clr2 which has an MBD domain that

binds to nucleic acids and also directly interacts with DNA binding proteins such as Atf1

and Pcr1 [83]. Hence, the availability of different binding partners that associate with the

SHREC complex could lead to a low mobility state of Mit1 and Clr3 even in the absence

of H3K9 methylation.

Chromatin is largely thought to be merely a scaffold that recruits histone-binding pro-

teins to particular locations in the genome [214]. Our single-molecule imaging measure-

ments of heterochromatin proteins and their binding partners reveal a vital role for H3K9

methylation as an enhancer of complex formation in living cells. Although the proteins

whose properties we measured directly bind to each other and form pairwise interactions

in vitro, we observed little off-heterochromatin co-localization when H3K9 methylation

is present. Our results reveal the dramatic shift in the equilibrium binding states induced

by the presence of H3K9 methylation. Our results have important implications for the

reconstitution and structural biology of heterochromatin-associated factors. Specifically,

our results emphasize the need to explicitly include H3K9 methylated chromatin sub-
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strates when describing models of how heterochromatin-associated factors form com-

plexes both in vitro and in cells given its role in enhancing complex formation. Although

the mechanisms of such enhancement are not well understood, it is likely due to protein

conformational changes that are triggered by nucleosome binding and H3K9 methylation

that switches heterochromatin associated proteins from a low-affinity to a high affinity

interaction state [212].

5.4 Methods and Materials

5.4.1 Plasmids and Strains

The plasmids and strains used in this Chapter are from the Ragunathan Lab at the

Brandeis University. Please refer to corresponding manuscript of this chapter for details.

5.4.2 Funcational assay and western gels

The Funcational assay and western gels used in this Chapter are from the Ragunathan

Lab at Brandeis University. Please refer to corresponding manuscript of this chapter for

details.

5.4.3 S. pombe live-cell imaging

Yeast strains were grown in standard complete YES media (US Biological, catalog no.

Y2060) containing the full complement of yeast amino acids and incubated overnight at

32
◦𝐶 . For PAmCherry-Epe1 strains and Epe1 mutants under the control of the native Epe1

promoter, the seed culture was diluted and incubated at 25
◦𝐶 with shaking to reach an op-

tical density at 600 nm (𝑂𝐷600) of 0.5. For strains with the nmt1, nmt41, or nmt81 promoter,

the seed culture was diluted into EMMC media (FORMEDIUM, cat. PMD0402) containing

the full complement of yeast amino acids and incubated at 25
◦𝐶 with shaking to reach an

optical density at 600 nm (𝑂𝐷600) of 0.5. To maintain cells in an exponential phase and
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eliminate extranuclear vacuole formation, the culture was maintained at 𝑂𝐷600 0.5 for 2

days, with dilutions performed at 12-hour time intervals(24 hour time interval for EMM

media culture. Cells were pipetted onto a pad of 2% agarose prepared in EMM media and

each agarose pad sample was imaged for less than 1 hour. S. pombe cells were imaged at

room temperature with a 100× 1.40 numerical aperture (NA) oil-immersion objective in an

Olympus IX-71 inverted microscope. First, the fluorescent background was decreased by

exposure to 488-nm light (Coherent Sapphire, 377𝑊 /𝑐𝑚2
for 20 to 40 s). A 406-nm laser

(Coherent Cube, 405-100; 1-5𝑊 /𝑐𝑚2
) was used for photoactivation (200-ms activation

time), and a 561-nm laser (Coherent Sapphire, 561-50; 70.7𝑊 /𝑐𝑚2
) was used for imag-

ing. Images were acquired at 40-ms exposure time per frame. The fluorescence emission

was filtered to eliminate the 561-nm excitation source and imaged using a 512 × 512-pixel

Photometrics Evolve EMCCD camera.

5.4.4 Single-molecule trajectory analysis

Recorded PAmCherry single-molecule positionswere localized and trackedwith SMALL-

LABS software [12]. A mask of the nucleus of each cell was determined based on auto-

florescence outside the nucleus in the 488nm bleaching step. Only the signal within the

nucleus mask was analyzed. Single-molecule trajectory datasets were analyzed by a non-

parametric Bayesian framework NOBIAS to infer the number of mobility states, the pa-

rameter for each state, and the transition between states [210]. More than 1000 trajectories

for each SPT dataset are put in the framework for robust analysis and to eliminate rare

events. Reported parameters for each state are the posterior mean after the number of mo-

bility states stabilize, and reported uncertainty is the standard deviation from the posterior

distribution. Some datasets were also analyzed with two publicly available SPT analysis

software DPSP [107] and Spot-On [18]. In DPSP analysis the chosen range of diffusion

coefficients was 10
−3

- 10 𝜇𝑚2/𝑠 . In Spot-On analysis, the number of components is set to

2 and 3 separately.
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5.4.5 Fine-grained chemical rate constant inference

The ine-grained chemical rate constant inference and strains used in this Chapter

are from the freddolino Lab at the University of Michigan. Please refer to corresponding

manuscript of this chapter for details [106].

5.4.6 Clustering analysis for the Swi6 distributions

The spatial pattern of each mobility state was investigated using the Ripley’s K func-

tion [186]

𝐾 (𝑟 ) = 𝜆−1

𝑛∑︁
𝑖=1

∑︁
𝑖≠ 𝑗

𝐼 (𝑟𝑖 𝑗 < 𝑟 )
𝑛

(5.1)

where 𝑟 is the search radius, 𝑛 is the number of points in the set, 𝜆 is the point density,

and 𝑟𝑖 𝑗 is the distance between the ith and jth point. 𝐼 (𝑥) is an indicator function (1 when

true and 0 when false). For convenience, we further normalized K(r) to attain Ripley’s H

function

𝐻 (𝑟 ) = (𝐾 (𝑟 )
𝜋

)
1/2

− 𝑟 (5.2)

where𝐻 (𝑟 ) = 0 for a random distribution,𝐻 (𝑟 ) > 0 for a clustered distribution pattern,

and 𝐻 (𝑟 ) < 0 for a dispersed pattern. In the analysis, the nucleus was approximated as a

circle to determine the area and perform edge correction [197]. We calculated 𝐻 (𝑟 ) for

each cell, then we calculated an overall 𝐻 (𝑟 ) from the average of all cells weighted by the

fits density.

To eliminate effects from the spatial correlation between single-molecule steps from

the same trajectories, we simulated diffusion trajectories with similar confined area size,

average track length, and overall density as experimental trajectories by drawing step

lengths from the step size distribution of the corresponding experiment steps. This nor-

malization is reported in previous work [106].
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5.4.7 Reconstructed single-molecule heatmap

For each cell, the nucleus and cell outlines were obtained from the fluorescence image

of the nucleus and the phase-contrast image of the cell; these outlines were then approx-

imated by a circle and a rectangle with circular caps, respectively. Every frame was ana-

lyzed by SMALL-LABS to identify single molecules, and the position and frame number of

each single molecule was saved. To generate the reconstructed single-molecule heatmap

for the cell, the pixel intensities after subtraction of the fitted offset in the appropriate

diffraction-limited region about each single molecule were summed and the sum of all

well-fit molecules was globally normalized.

5.4.8 Single-molecule time-lapse imaging

Wemodel the binding of Chp2 andH3K9me or Swi6 to Epe1 as a direct two-component

association/disassociation reaction:

𝐴𝐵 ↔ 𝐴 + 𝐵

The measured residence time of each PAmCherry-Chp2 or PAmCherry-Epe1 molecule is

estimated from the lifetime of the stationary fluorescence signal. 𝑘𝑎𝑝𝑝𝑑𝑖𝑠𝑠 is acquired by fit-

ting the probability distribution function, P, of the measured residence times, τmeasured,

to a single exponential decay function:

𝑃 = 𝑒𝑥𝑝 (−𝑘𝑑𝑖𝑠𝑠𝑎𝑝𝑝𝜏𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

.

The measured apparent disassociation rate, 𝑘𝑎𝑝𝑝𝑑𝑖𝑠𝑠 , consists of the true disassocia-

tion rate, 𝑘𝑑𝑖𝑠𝑠 , and the photobleaching rate of the PAmCherry label, 𝑘𝑏𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔; we sepa-

rated these contributions by collecting data at multiple delay times to measure the pho-
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tobleaching rate. For static molecules, we introduced a dark period with each time in-

terval that we kept the integration time, 𝜏𝑖𝑛𝑡 , the same and introduced different lengths

of dark delay times, 𝜏𝑑𝑒𝑙𝑎𝑦 . In this way, the contribution of photobleaching was kept the

same for different total time intervals, 𝜏𝑇𝐿 = 𝜏𝑖𝑛𝑡 + 𝜏𝑑𝑒𝑙𝑎𝑦 . We measured the residence time

𝜏𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = (𝑛 − 1)𝜏𝑇𝐿 by counting the total number of sequential frames, n, in which the

molecule was detected. Finally, the true disassociation rate, 𝑘𝑑𝑖𝑠𝑠 , was estimated from a

linear regression of the two-term relationship [211]:

𝑘𝑑𝑖𝑠𝑠𝑎𝑝𝑝𝜏𝑇𝐿 = 𝜏𝑇𝐿𝑘𝑑𝑖𝑠𝑠 + 𝜏𝑖𝑛𝑡𝑘𝑏𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔

This linear regression also took the uncertainty of each data point from the exponential

fitting into consideration and gives the final fitted slope 𝑘𝑑𝑖𝑠𝑠 and its uncertainty.
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CHAPTER VI

Conclusions

6.1 Introduction

Single-molecule tracking (SPT) is a high spatiotemporal resolution experimental tool

to investigate themotion of targetmolecules in living systems, and nonparametric Bayesian

statistics-based analysis objectively determines the number of components within the het-

erogeneous dynamics. Together, these advances in experimental and computational ap-

proaches make in vivo understanding of dynamics in living biological systems possible. In

this dissertation, the epigenetic modification systems in prokaryotes and eukaryotes sys-

tems were further understood by the SPT experiment of epigenetic modification proteins

and the nonparametric Bayesian statistical analysis of the SPT datasets. In this final chap-

ter, I will summarize the conclusions from the previous chapters in the dissertation and

discuss promising future directions for applying SPT to study epigenetic modifications.

6.2 Nonparametric Bayesian statistics and anomalous diffusion for

SPT

In Chapter II, I developed the Bayesian SPT analysis framework called NOBIAS which

combined nonparametric Bayesian and machine learning classification of anomalous dif-

fusion. Given a single-molecule trajectories dataset, NOBIAS first uses an HDP-HMM
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framework to objectively determine the number of mobility states in the SPT datasets,

then estimates the parameters associated with each state such as weight fraction, diffu-

sion coefficients, and the transition matrix between states. Each single-molecule step is

assigned its diffusive state label, and track segments with the same state label are classi-

fied into anomalous diffusion models with a pre-trained recurrent neural network. Sim-

ulated SPT datasets with different data qualities are applied to evaluate the performance

of NOBIAS in different potential scenarios. Then NOBIAS was also applied to an experi-

mental dataset to find the potential subdiffusion of SusG membrane protein in the human

gut microbiome Bacteroides thetaiotaomicron. Compared with other earlier nonparamet-

ric methods which also can infer the number of mobility states from the dataset itself, for

example, vbSPT and SMAUG [29,31], NOBIAS shows higher computational efficiency and

stability for validating simulated datasets with ground truth. On top of that, NOBIAS also

enables additional features for considering asymmetric Brownian motion and anomalous

diffusion model classification.

Despite the strengths, NOBIAS is also limited by how it is designed as well. First, NO-

BIAS treats single-molecule steps as the basic unit of analysis and relies on assigning state

labels for each step and counting transitions within the track. For very short trajectories

with lengths of 2-4 steps, NOBIAS does not perform well. As a great complement, Hecker

et. al. develop single-trajectory-based Bayesian frameworks DPSP and state array which

are designed to deal with short tracks [107]. For the performance of both modules of NO-

BIAS, the longer trajectories provide better stability, yet the RNN module has a much

higher requirement of track segment length as the trained neural network only stably

predicts diffusion type with at least 20 steps [45]. For live cell imaging to acquire such

long tracks is challenging due to z-axis detection depth and photobleaching, this limita-

tion makes the RNN module less applicable for many datasets. Lastly, the design of the

HDP-HMM module is based on the Gaussian emission function, which means two diffu-

sive states with similar apparent diffusion coefficients would be assigned into one state
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with great possibility, which could lead to confusion in the RNN classification module.

A promising future direction to further improve the SPT dataset analysis is to combine

the single-molecule localization and tracking part together with the trajectory analysis

part together to provide more information for the statistical learning of tracking analysis.

Almost all current SPT trajectories analysis take the fitted and tracked trajectories as input

directly instead of analyzing the raw fluorescence movie. The trajectories input is favored

for its low dimension and high computational efficiency. With the improvement of com-

putational resources in scientific research, especially the usage of the graphical processing

unit (GPU) for image processing, it is promising to use the high-dimension raw fluores-

cence images for diffusion and dynamics analysis directly. Previous work has applied the

Bayesian framework or neural network method for single-molecule localization. I have

preliminarily started the motion analysis directly from fluorescence images in collabora-

tion with Prof. Jonathan Terhorst. In the new model, we still apply a Bayesian framework

with Markov Chain Monte Carlo (MCMC) approaches, but now instead of the 1D state of

step transition we monitor, we directly observe the transition between 2D images. Based

on fluorescence intensity distribution in each image, the previous image, and the current

4D transition matrix, the probability of localization in each frame is determined. In this

model, the localization probability 2D matrix will inform the position of the molecules

in each frame, and the 4D transition matrix that projects the previous frame to the next

frame contains information about the motion properties. By putting different prior on

the transition matrix this model can be adapted into any motion type with Markovian

property, for example, directed motion, Brownian motion, and confined Brownian mo-

tion. For anomalous diffusion though, as these diffusion models contain memories from

previous frames and do not follow Markovian property, a higher dimensional transition

matrix could be needed to capture them, but the computational complexity could expo-

nentially increase. A further statistical model based on the anomalous diffusion model

with proper approximation could reduce the complexity and make this movie-based SPT
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method applicable to anomalous diffusion.

6.3 DNAmethylation andRNA-DNAhybrid regulateDNAmethyl-

transferase localization

In Chapter III, I performed single-molecule tracking and localization for DNAmethyl-

transferase DnmA in Bacillus subtilis, in WT cells and mutants including DNA replication

arresting RNA-DNA hybrid cleavage disability, and two DnmA binding mutants. The two

color imaging of DnmA and the replisome component DnaX suggest unmethylated DNA

drive DnmA positively colocalizes with nucleoid and replisome, but also explore other

regions of the cells. The decrease of correlation between DnmA and DnaX under treat-

ment of DNA replication inhibitor further validates that colocalization is driven by newly

replicated unmethylated DNA. The negative correlation between DnmA and DnaX un-

der increased RNA-DNA hybrid and DnmA sequence recognition mutant 6AA* suggest

that DNA interactions are necessary for proper DnmA localization and correlation with

DnaX. The dynamics analysis only shows a subtle decrease in dynamics under these dis-

turbances compared with WT DnmA, suggesting that DnmA dynamics only partially re-

flect its functional status. These single-molecule results together with other biochemical

and bioinformatics assays conclude that DnmA is part of a remnant of a nonfunctional

restriction-modification system.

Bacillus subtilis has been widely studied as a model gram-positive bacteria. DnmA

is the only DNA methyltransferase in B. subtilis, and the single-molecule tracking and

localization experiments of DnmA inform us greatly about how the nucleic acid com-

ponents in the live cell could change important modification processes. RnhB and RnhC

are two RNase H proteins in B. subtilis that are responsible for the cleavage of DNA-

RNA hybrids such as R-loops, complementary RNA-DNA, ribopatches, and Okazaki frag-

ments [138, 215]. As was shown in Chapter III, Δ𝑟𝑛ℎ𝐶 will increase the R-loop and sig-
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nificantly affect the stability of the genome. To understand the role RnhB and RnhC play

in the cleavage of different RNA-DNA hybrid, in vivo dynamics and localization infor-

mation of these two RNase H would help provide crucial information that in vitro assay

may neglect. How the RNA-DNA hybrid cleavage is carried out together with other mod-

ifications such as DNA replication, repair, and RNA transcription should be investigated

through a comparison of single-molecule dynamics and localizations after disturbance in

these processes. The development in multi-color imaging and correlation analysis in mul-

tiple fluorescence channels could provide a more powerful imaging tool to understand

RNA-DNA hybrid cleavage in Bacillus subtilis.

6.4 Oligomerization ofHP1protein provides a tunable heterochro-

matin localization mechanism

In Chapter IV, I investigated the single-molecule dynamics of an HP1 protein Swi6 in

the yeastmodel system Schizosaccharomyces pombe.With the previously invented Bayesian

SPT analysis framework SMAUG, the Swi6 in vivo dynamics display 4 mobility states.

With the design of mutant strains for comparison, these 4 biophysical mobility states

are mapped into their biochemical meanings with the following correspondences: a high

mobility state close to free motion in cells (𝛿), a nucleic acid-binding state (𝛾 ), a chromatin-

sampling state that involves weak binding to H3K9me0 and H3K9me3 nucleosomes (𝛽),

and a stable H3K9me3-dependent bound state (𝛼). Swi6 recognizes the H3K9me substrate

with low binding affinity but high specificity, with the SMAUG analysis of Swi6 dynamics

under different oligomerization states, it is demonstrated that Swi6 uses its oligomeriza-

tion through the CSD domain to multivalently increase the concentration of its H3K9me

recognition CD domain. Loss of oligomerization results in a deficiency in the H3K9me

binding state of Swi6, and engineered 2×CD on top of the loss of oligomerization can

recover the Swi6 H3K9me3 binding state. In the application of the SMAUG framework,
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the transition between states and the assignment of mobility state labels at the single-step

level is acquired in addition to the diffusion coefficients andweight fractions for each state.

The transition rate between states are further input to the BSL model for the extraction

of the transition chemical rate, and the assigning of state label enable the mapping of mo-

bility states to their cellular spatial distribution. The single-molecule spatial localization

maps of Swi6 mobility states are analyzed through Ripley’s K clustering method to reveal

that the clustering level for these four states decreases with the increase of dynamics,

which further validates their biochemical meanings.

Swi6’s nucleic acid binding state represents the hinge region’s nucleic acid binding

affinity, validated by the Swi6
ℎ𝑖𝑛𝑔𝑒

mutant. Further, single-molecule tracking experiments

and FLAG IP assay demonstrate that the nucleic acid binding state is directly complete

with oligomerization. Consequence of nucleic acid binding promotes release from the

H3K9me while oligomerization promotes H3K9me binding and heterochromatin forma-

tion. The competition and balance between oligomerization and nucleic acid binding es-

tablish a tunable heterochromatin localization mechanism for Swi6’s H3K9me binding.

The formation of heterochromatin could be involved in the equilibrium state of Swi6’s

oligomerization to promote its H3K9me binding. Besides the biological interpretation and

insights that are further understood regarding Swi6’s H3K9me recognition mechanism,

this chapter displays that the methodology combining in vivo SPT and nonparametric

Bayesian statistics could put a step further to the goal of live cell quantitative biochem-

istry. The methodology can be adapted for similar microbe and mammalian cell systems

to study various systems and proteins of interest.

In the future, further engineering of Swi6 could inform us even more regarding the

H3K9me epigenetic modification systems in S. pombe. HP1𝛼 proteins are reported to form

biocondensates by liquid-liquid phase separation in vitro and in vivo [79, 169, 170]. How-

ever, full physical characterization and how the potential phase separation enables HP1

protein’s regulatory function remains unknown. An allele of HP1𝛼 Swi6—swi6-sm1 dis-
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plays disruption of the condensation-like domain of Swi6 with normal CD-H3K9me bind-

ing and CSD dimerization [216]. Single-molecule tracking of Swi6-sm1 could reveal the

dynamics changes in this allele and could further characterize the potential biological

condensation mechanism for HP1 proteins. In addition to Swi6-sm1, a point mutation

at 278 threonine to Lysine (T278K) shows complete loss of epigenetic maintenance even

when epe1 is deleted, while Tyrosine (T278Y) or Phenylalanine (T278F) shows enhanced

maintenance. It has been shown that Swi6-Epe1 interaction is completely disrupted under

these T278 mutants. The in vivo dynamics of these mutants together with other in vitro

biochemistry assays could further reveal how Swi6 and Epe1 enable the establishment

and maintenance of epigenetic memory.

6.5 H3K9 methylation reinforces heterochromatin-specific com-

plex assembly

In Chapter V, I present amechanismwhere histonemodification protein complexes as-

sembly at heterochromatin site regulated by H3K9me and two HP1 proteins in S. pombe.

Following Chapter IV, I further use single-molecule tracking and a new Bayesian SPT

analysis framework NOBIAS to characterize the other HP1 protein Chp2 in vivo. Chp2

displays a very static dynamics pattern with more than 93% of steps assigned to a bound

state and a static spatial pattern with clear foci within the nucleus. The single-molecule

time-lapse imaging of Chp2 and Bayesian synthetic likelihood simulation based on SPT

transition from NOBIAS together quantify the dissociation rate of Chp2 in vivo is faster

than reported in vitro rate, yet Chp2’s H3K9me bound is more stable than Swi6. The dis-

tinct expression level andH3K9me binding affinity for Swi6 and Chp2 reveal a competitive

and cooperative relationship between these two HP1 proteins.

HP1 proteins recognize H3K9mes and recruit other proteins to heterochromatin. Epe1

is a putative demethylase and anti-silencing factor which prevent the spreading of het-
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erochromatin [80, 81]. Epe1 is shown to bind to Swi6 in vitro, and I have shown with

single-molecule tracking of Epe1 that more than 92% of Epe1 is in static mobility and

colocalize with Swi6 and heterochromatin region. With the disruption of H3K9me and

Swi6, we demonstrate that H3K9me attenuates off-heterochromatin Swi6-Epe1 interac-

tions that only H3K9me bound Swi6 recruits and binds to Epe1 in the live cell. The other

HP1 protein Chp2 is known to recruit the SHREC complex which consists of histone re-

modeler Mit1 and H3K14 deacetylase Clr3 [83, 86]. The single-molecule imaging of Mit1

and Clr3 under different H3K9me and HP1 proteins disruption shows that SHREC com-

plex only assembly at the heterochromatin site, and H3K9me is necessary for Chp2 to

associate with SHREC complex. Using the Epe1-Swi6 and SHREC-Chp2 interaction as

two examples, I propose a general mechanism for HP1 protein complexes, where hete-

rochromatin is a necessary substrate and location for these protein complexes’ assembly.

Despite in vitro assays and structural biology evidence have demonstrated how these pro-

teins can pairwise interact and assemble into complexes without the presence of histone

or heterochromatin, in vivo data show that H3K9 methylation reinforces heterochromatin

specific HP1 protein complex assembly and attenuates promiscuous protein interactions

outside.

In the future, multiple directions within this chapter should be further explored. The

first is to examine if this heterochromatin-mediated complex assembly mechanism ex-

tends to more HP1 protein complexes. Chp2’s major role in S. pombe is to interact with

the SHREC complex, yet Swi6 has much broader functions and various proteins are bound

to Swi6, for example, CHD family chromatin remodeler Hrp3, meiotic cohesin protec-

tion protein Sgo1, histone chaperone FACT complex component Spt16 [87, 216]. Single-

molecule dynamics of these proteins in vivo and under disruption of H3K9me and Swi6

could reveal the role H3K9me and heterochromatin plays in their assembly. The other

promising follow-up of this project is to look more into the SHREC complex. Data in

Chapter V supports the model where the SHREC complex is recruited to Chp2 through
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Chp2-Mit1-Clr1-Clr2/Clr3 order. However, it is also shown that the bound state of Mit1

and Clr3 decreases but remains with the deletion of Chp2 or the entire H3K9me. Mit1

and Clr3 have other pathways to be recruited to chromatin and retain a bound state [83].

Preliminary data has shown that double deletion of Clr4 and an H3K4 methyltransferase

Set1 will result in the complete loss of the Mit1 bound state. This result indicates that Mit1

could have an H3K4 methylation-related function and recruitment pathway. Besides, the

role of Clr1 and Clr2 plays in the recruitment and assembly in vivo remains unclear. Clr1

is also known to bind to Chp2 and structurally connects Mit1 and Clr3 in the complex,

and Clr2 can bind to nuclei acid and potentially has sequence-specific recognition of DNA

which could recruit Clr3 to target DNA sequence [204]. Advances in multicolor imaging

could further help the understanding of the SHREC complex. The further study of Mit1

and Clr3 recruitment mechanisms could be widely applied to other proteins that have

multiple recruitment pathways to the chromatin site.

6.6 Overarching Conclusions

In this dissertation, I have further extended single-molecule tracking into nonpara-

metric, asymmetric, and anomalous diffusion to understand the heterogeneous dynamics

of target molecules in living systems. The advantage of nonparametric Bayesian statis-

tics analysis for in vivo SPT datasets is that it can objectively determine the number of

mobility states for the biomolecule of interest. Under the assumption that each distinct

mobility state corresponds to a different biochemical function, this dissertation presents a

methodology that quantifies in vivo biochemistry by combinding in vivo SPT and nonpara-

metric Bayesian statistics analysis. For complicated systems like the fission yeast epige-

netic modification systems, previous SPT analysis methods could very easily overlook the

potential biochemical meanings of the intermediate states. Nonparametric methods like

SMAUG and NOBIAS enable a much more decisive comparison between the dynamics of

target proteins under different conditions by monitoring the disappearance or emergence
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of a biochemical state rather than being limited to only an overall increase or decrease

in dynamics. The diffusivity of proteins is set as a benchmark in live cells to compare

the function and existing form of the same proteins and also between different proteins.

The single-step level diffusive state label assignment also opens up the road to linking

dynamics with the spatial distribution and would be promising if combined with two-

color imaging. The transition matrix from the Bayesian analysis could also be used to

infer the chemical rate as reported in Chapters IV and V. This methodology only requires

trajectories as input and is widely applicable to other biological systems and other experi-

mental setups, not limited to microbes and sptPALM. However, this methodology also has

limitations. The first limitation comes from the assumption that distinct mobility states

corresponding to different biochemical functions could be false for some molecules. How-

ever, within our resolution, two states with the same mobility could carry out different

biochemical functions, and proteins engaged in a single biochemical function could have

a widely distributed mobility. The second limitation comes along with the discretely in-

ferred the number of themobility state. In this discretized interpretation, a two-state result

would be completely different from a three-state one, but the dynamics between the two

datasets could be similar. In other words, the difference between 2.49 versus 2.51 could

be exaggerated to 2 versus 3 in this approach. More often in these cases, the framework

itself will not be consistent under multiple parallel runs. Knowledge and experiences with

Bayesian statistics are strongly recommended to prevent overinterpretation of the results.
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