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ABSTRACT

Access to electronic health records creates an opportunity to build stochastic models that support
healthcare providers’ decisions to prevent chronic diseases. As the patient’s health conditions vary,
decision-makers must apply optimal medical policies that learn from patients’ health behaviors and
consider their needs. In this dissertation, we present new models that address the following key
challenges: (1) understanding how the patient demographics influence the disease progression, (2)
developing sequential decision-making models under uncertainty that pursue the best health out-
comes for individual patients, and (3) developing sequential decision-making models with limited
resources to prevent chronic diseases for a population.

We propose operations research methods to develop policies to prevent cardiovascular diseases.
We applied our models to longitudinal data for cardiovascular diseases in a large cohort of pa-
tients seen in the national Veterans Affairs health system. The contributions of this work include:
(1) Developing an EM algorithm to model patient’s health progression, (2) creating a simulation
framework to test and analyze different treatment guidelines, (3) developing a sequential decision-
making model to define cholesterol monitoring policies that maximize societal benefits, and (4)
developing an algorithm for identifying and selecting high-risk patients into adherence-improving
interventions. Finally, our modeling framework establishes the analytical and theoretical foun-
dation to build stochastic models that address multiple healthcare opportunities for improvement.
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CHAPTER 1

Introduction

Over the last couple of decades, electronic health records (EHRs) have emerged as a standard for
tracking important medical data for patients seen in health systems. As a result, health systems
are gathering large amounts of longitudinal data that can be used to create a deeper understanding
of how patients’ health conditions change over time. Additionally, EHRs help illustrate the differ-
ences between disease progression and medication effects across patients. This resource creates
opportunities for health systems to extend beyond just the patients’ current health status by pre-
dicting the long-term impact of healthcare policies over a patient’s lifetime and developing new
policies to prevent the patients’ disease progression. These policies are particularly relevant for
chronic diseases and other permanent conditions that patients may live with for many years.

This dissertation focuses on cardiovascular disease (CVD) prevention as an important example
of how longitudinal EHR data can improve care. We chose CVD prevention because it is a common
condition requiring multiple decisions over time. Moreover, it is one of the leading causes of death
worldwide [6]. In 2021, cardiovascular diseases caused 33% of all deaths, and 48% of the US
population is living with some form of CVD, including hypertension. Two of the most common
causes of death related to CVD are strokes and coronary heart disease (CHD). It is estimated that
managing CVD costs $351.2 billion annually to Medicare in the United States [7].

In this context, physicians monitor and treat patients based on recommended policies created
based on clinical trials and clinical judgment [1, 8], which are usually one-size-fits-all as they do
not consider the patient’s sex, race, and age. Furthermore, information on historic health-related
factors is not used. The availability of longitudinal information makes it possible to model the
uncertainty in risk factors generated by the differences in patients’ health behavior. Therefore,
there is a need to build stochastic models that can include this uncertainty and help define optimal
policies to improve patients’ health. Within this framework, this dissertation seeks to develop
policies by addressing the following key challenges:

1. Understanding how the patient demographics influence the disease progression.
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2. Developing sequential decision-making models under uncertainty that pursue the best health
outcomes for individual patients.

3. Developing sequential decision-making models with limited resources to prevent chronic
diseases for a population.

Figure 1.1: Overview of dissertation chapters.

Decision-making models:Disease progression:

EHR

Chapter 2:
Patients’ health 

progression
Chapter 3:

Cholesterol monitoring 
policy

Chapter 2:
Simulation environment

Chapter 4:
Intervention prioritization 

model

Chapter 4:
Medication adherence 

forecasting

In Figure 1.1, we present an overview of the components to answer these key challenges and
how the dissertation is organized. In Chapter 2, we present a methodology to fit the patient’s health
progression using an Expectation Maximization (EM) algorithm [9]. Additionally, we develop a
Monte-Carlo simulation model to test and analyze different treatment guidelines. These treatment
guidelines define which blood pressure and cholesterol-lowering medications are prescribed to
lower the risk of heart attack and strokes. These guidelines are applied sequentially over time based
on monitoring the patient’s risk factors. Finally, they vary depending on the type and value of risk
factor-associated thresholds used for starting medication. In Chapter 3, we provide a sequential
decision-making model to define cholesterol monitoring policies that maximize societal benefits.
In Chapter 4, we develop a dynamic logistic regression model (DLR) to predict the patient’s future
medication adherence. We also present a binary integer programming model (BIP) to decide which
patients to prioritize for adherence-improving interventions. Finally, we conclude with remarks
and future work in Chapter 5. We now proceed to describe each chapter and its contributions
briefly.

2



1.1 Chapter 2 Summary: Using longitudinal health records to
simulate the impact of national treatment guidelines for
cardiovascular disease

Health history is gathered irregularly for many chronic diseases and conditions. For cardiovascular
diseases, physicians typically measure healthy patients’ risk factors, such as cholesterol and blood
pressure ranging from every 1 to 6 years. In Chapter 2, we develop an EM algorithm that fits
unevenly sparse data to estimate transition probabilities for a discrete-time finite state Markov
chain. Furthermore, we use the Markov chain to create a discrete-time Monte-Carlo simulation
model to test multiple treatment guidelines for CVD prevention. We use our model to estimate
treatment benefits in terms of CVD risk reduction and treatment harms due to side effects, based
on when and how much medication the patients are exposed to over time. The main contributions
of Chapter 2 are as follows:

• We develop an EM algorithm that can fit patients’ sparse medical data to Markov chains.
These Markov chains are then used to simulate the patient’s disease progression.

• We show that, to decrease the error between the Markov chains versus the patient’s real
disease progression, it is necessary to consider patients’ demographics, in particular, sex,
age, and race. Additionally, EM algorithms are an effective tool for characterizing stochastic
processes from longitudinal observational data.

• We develop a Monte-Carlo simulation model to easily test multiple treatment guidelines
for cholesterol and blood pressure. Additionally, the simulation model facilitates testing
guidelines that follow patients for long periods of time.

• To parameterize our model, we use a longitudinal dataset for cholesterol and blood pressure
in a cohort of 10,000 randomly sampled patients seen in the national Veterans Affairs health
system.

• We are able to conclude that among published guidelines, those focusing on reducing CVD
risk can reduce treatment without significantly increasing the risk of severe health outcomes.

• This work is published in the 2021 Winter Simulation Conference Proceedings [10].
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1.2 Chapter 3 Summary: Cholesterol monitoring policies for
cardiovascular disease prevention

To prevent cardiovascular diseases, physicians focus on monitoring their risk factors and prescrib-
ing the necessary medication. The optimal monitoring policy depends on the patient’s risk factors
and demographics. Monitoring too frequently may be unnecessary and costly; on the other hand,
monitoring the patient infrequently means the patient may forgo needed treatment and experience
adverse events related to the disease. In Chapter 3, we propose a finite horizon and finite-state
Markov decision process (MDP) to define monitoring policies. We study policies for whether or
when to assess the need for cholesterol-lowering medications. Additionally, we investigate the role
of the patient’s demographics in optimal monitoring policies. We use longitudinal data from the
Veteran Affairs health system to analyze the differences in policies between men and women and
white and black patients. The main contributions of Chapter 3 are as follows:

• We develop a framework to prevent CVD that accounts for patients’ demographics.

• We develop an MDP model that includes societal costs and rewards, such as appoint-
ment costs, treatment costs, costs associated with cardiovascular diseases, and the patient’s
willingness-to-pay for being healthy. Moreover, the model estimates the total costs and re-
wards during the patient’s lifetime.

• We show that MDP-based policies increase benefits by $28.5 billion compared to the current
American College of Cardiology policies. The MDP-based policy decreases the number of
unnecessary appointments, starts treatment sooner, and decreases the number of CVD events.
Moreover, the changes depend on age, gender, and race, suggesting that a one-size-fits-all
guideline may not be ideal.

• This work is published in Health Care Management Science [9].

1.3 Chapter 4 Summary: Prediction of long-term medication
adherence and its potential benefits for intervention

Long-term adherence to medication helps prevent chronic diseases. However, after the first year
of prescription, only 50% of the patients will eventually continue taking their medication [11].
In recent years several adherence-improving interventions have become available to help mitigate
adherence decay [12]. Nevertheless, in many contexts, providing all patients with interventions is
not feasible due to the high cost of such programs [12]. In Chapter 4, we propose a new approach
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to optimize the selection of patients to assign interventions subject to a budget constraint. We
present a model that employs a dynamic logistic regression model that uses patients’ claim data,
medical health factors, demographics, and monitoring frequencies to predict the risk of future non-
adherence. Additionally, we present a binary integer program that utilizes the adherence forecast
and selects which patients should be included in adherence-improving interventions. The main
contributions of Chapter 4 are as follows:

• We develop a dynamic forecasting model that helps identify when patients will stop adhering
to medications. Identifying at-risk patients and those patients that would most benefit from
adherence support helps facilitate clinical interventions.

• Solving the Binary integer program (BIP) model is NP-hard in general, but we prove that
prioritizing patients with the highest marginal avoid CVD risk between two epochs is optimal
under certain conditions.

• We show that applying the BIP policy reduces 22.9% the number of cardiovascular events
in the population. Moreover, combining the DLR model and the BIP policy, this percentage
increases to 36.5%.

1.4 Concluding remarks

This research develops operations research methods that use electronic health records to define
chronic disease prevention policies. Thanks to these models, healthcare providers can rely on ad-
ditional tools to understand disease progression, identify high-risk patients, and manage chronic
diseases accurately across demographic subgroups. While the models were created and motivated
by the need to manage CVD, the analytical and theoretical foundation established in this disserta-
tion may be applicable to guide monitoring and resource allocation decisions faced by a variety of
other chronic conditions. Chapter 5 summarizes the contributions and presents opportunities for
future research.
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CHAPTER 2

Using Longitudinal Health Records to Simulate the
Impact of National Treatment Guidelines for

Cardiovascular Disease

2.1 Introduction

The EHRs availability provides an opportunity to understand patients’ disease progression, hence
creating the possibility to build simulation models that support healthcare providers’ decisions.
In particular, simulation-based approaches are useful as an additional tool (besides randomized
clinical trials) to guide screening and treatment decisions. They are especially valuable in guiding
chronic disease management, given the long time frame over which guidelines are applied. In
some cases, traditional long-term randomized control trials (RCTs) may not be possible at all. The
conduct of long-term RCTs are often hindered by their cost, “lost-to-follow-up” and “treatment
/protocol contamination” [13]. Simulation-based approaches can hence be used to explore a range
of possible interventions, using the RCT-derived average treatment effects for causal estimates
while also assessing the effects over the population’s lifetime [14].

Most clinical trials have a short duration for cardiovascular diseases (CVD), and patients en-
rolled in trials could differ from those seen in any health system. Therefore, physicians and pol-
icymakers may benefit from using simulation models (created using clinical trial data and EHR
data) to compare and contrast healthcare policies. More specifically, treatment guidelines, before
applying them to patients they see in their practices.

The objective of this chapter is threefold. First, we develop an Expectation Maximization (EM)
algorithm to model disease progression in patients. Second, we provide a case study of the de-
velopment of a simulation model from longitudinal EHR data in the context of CVD prevention.
Third, we use the model to evaluate the impact of drug treatment guidelines for prevention of CVD.
More specifically, for each of the guidelines we consider, we evaluate the trade-off between two
important considerations: 1) CVD risk reduction caused by treatment and 2) treatment burden from
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the perspective of the number of medications patients are exposed to over time. The former is a
measure of the benefits of treatment, and the latter is a surrogate measure of the harm of medication
(e.g., cost, side effects). We use a discrete-time Monte-Carlo simulation model using longitudi-
nal EHR data from the Veteran Affairs (VA) health system to evaluate the most well-known U.S.
treatment guidelines.

The rest of this chapter is organized as follows: Section 2.2 provides background on CVD and a
brief review of some of the most related prior studies. In Section 2.3, we describe our model inputs
and assumptions. In Section 2.4, we describe our EM algorithm and present the simulation model.
In Section 2.5, we apply our model to a longitudinal database of the Veteran Affairs department
and present the results. Finally, in Section 2.6, we discuss the results and propose the next steps.

2.2 Background on cardiovascular disease and relevant litera-
ture

CVD is responsible for roughly a third of all deaths in the U.S. population per year. It is espe-
cially prevalent in patients between 40 and 80 years old [6]. To prevent deaths and CVD events,
physicians treat patients with medications to lower cholesterol and blood pressure, two of the most
well-known and controllable risk factors for CVD. For our study’s purpose, we will focus on CVD
prevention, acknowledging that medications are essential to reduce the risk of a CVD event.

In the United States, multiple guidelines exist to treat high cholesterol and high blood pressure,
yet there are open questions about which guideline is “best”. The two most often used guidelines
are those developed by the American College of Cardiology (ACC) [1, 8] and the Joint National
Committee (JNC) [15]. These guidelines prescribe treatment decisions that depend on health risk
factors, which affect the relative benefits of treatment for patients [16, 17]. The ACC guidelines
focus on reducing overall 10-year risk, while the JNC guidelines focus on reducing blood pressure.
These variations lead to differences in whether and when patients start the treatment and their risk
of having a CVD event. The specific CVD events we consider in this study include heart attacks
and strokes.

Physicians usually rely on the estimates of the CVD event risk to prescribe treatments. There are
multiple studies on estimating the CVD event risk. The most widely used risk assessment guideline
is given by the American College of Cardiology/American Heart Association (ACC/AHA) [18].
Their study used a Cox proportional hazards model to estimate the 10-year risk of heart disease
or stroke using patients’ information such as age, gender, race, smoking habits, cholesterol, blood
pressure, and treatment. Another study by [19] recalibrated the ACC calculator using the observa-
tion data in the Veterans’ Affairs system, which provides more accurate estimates of risk for the
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population considered.
Risk factors such as blood pressure and cholesterol for CVD can have highly stochastic be-

haviors and may be sparsely collected. Sparse and missing data are common in real-world data
sources, from poverty measurements to marketing strategies for new products. The two most
common approaches for dealing with missing data in this context are imputation and maximum
likelihood methods. Previous models assume that risk factors such as cholesterol and blood pres-
sure follow a stochastic process. Past studies have assumed a Markovian behavior for these risk
factors while calculating the transition probabilities by estimating the frequency that a transition
appears in the data [20, 21, 22, 23]. Usually, the models assume that the data are enough to fit
these frequencies correctly [24]. Other approaches include statistics techniques to estimate the
transition probabilities, such as Poisson regressions with linear-mixed-effects for blood pressure
[25] and generalized linear regression models for CVD risk [26]. Additionally, depending on the
application, the Markov chains vary depending on demographics and the patient’s health state
[20, 27, 28, 23]. Our study considers the effects of gender, race, and age on the Markov chains.

Because data about risk factors are collected sporadically according to the pattern of pa-
tients’ visits, data-augmentation techniques show excellent results when fitting these sparse data
to Markov chains [29]. Data-augmentation techniques refer to applying iterative optimization
algorithms where non-unobserved data are introduced to the data set to estimate the stochastic be-
haviors [29]. Within these techniques, EM algorithms [30] and maximum likelihood estimation
methods [24] are commonly used. We believe EM algorithms benefit from the structure of longitu-
dinal patient data, as it is a data-augmentation method that learns from the observations to impute
a possible value to complete the patient’s health behavior [30]. Furthermore, EM algorithms have
been applied to CVD by estimating clusters of patients with hypertension [31], estimating the
probability of CVD mortality [32], and estimating CVD events [33]. Additionally, they have been
applied in many healthcare settings, for example, mental health [24], patient flow in a hospital
[34], prostate cancer active surveillance [35], and emergency medical services [36], among other
applications. We extend the scope of applications by applying EM algorithms presented in the
literature [24] to estimate cholesterol and blood pressure stochastic processes from EHRs.

CVD have been studied extensively in the literature, focusing on risk factor estimation, survival
models, and cost-effectiveness of disease prevention and treatment. For example, [37] estimated a
time series model to predict high-risk cholesterol levels. [38] estimated the incidence, survival, and
lifetime risk of stroke in a Rotterdam population. [39] and [40] presented the cost-effective analysis
for treatment in CVD prevention. As a variant to previous studies, we propose a framework that
feeds from sparse longitudinal data to simulate the patient’s behavior through their lifetime.
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2.3 Input and assumptions for the simulation model

In this section, we describe the U.S. Department of Veterans Affairs database that we used to
develop and test our simulation model. Then, we discuss the assumptions that we made when
estimating model parameters. Finally, we explain how we estimated the stochastic behaviors that
served as input to our simulation model.

2.3.1 Data set description

Our simulation model was developed from a longitudinal dataset for cholesterol and blood pres-
sure in a cohort of 10,000 randomly sampled patients seen in the national Veterans Affairs health
system. VA-trained analysts randomly sampled, validated, and prepared an anonymized dataset
[19] that was used as input to our model. Patients were eligible to be included in the cohort if they
had at least two outpatient visits with a cholesterol and blood pressure screening. The data follows
the patients from 2003 until 2018, with information on demographics, treatments, and health fac-
tors. More precisely, the dataset has information on the patients’ race, gender, age, smoking habits,
prescription dates, the type of treatment, and the number of pills for treatments. The data includes
laboratory measurements such as low-density lipoprotein (LDL) cholesterol, total cholesterol, and
systolic blood pressure (SBP). It is worth noting that blood pressure is measured more frequently
than cholesterol because of the ease of measurement in a clinical setting. Thus patterns of data
availability can vary.

Since our study focuses on CVD prevention, we excluded patients with a CVD event or diabetes
(a major risk factor for CVD) prior to their earliest EHR data entry. These patients will have very
different needs and treatment patterns than those who are candidates for primary prevention, our
study’s focus. The ACC guidelines recommend treating patients differently depending on the age
group, which are divided into children and teenagers (younger than 20 years old), young adults (20
to 39 years old), adults (40 to 80 years old), and older adults (older than 80 years old). Because of
the nature of our data set, it mainly consists of the adult age group. Therefore, we only selected
patients between the ages of 40 to 80. Finally, we considered patients with at least two cholesterol
tests, given our focus on estimating a stochastic model from longitudinal data. After pruning the
original data set based on the exclusion criteria, 6658 patients remained.

2.3.2 Definitions and assumptions

We assume the physician does not have access to observations between appointments. The physi-
cian also acknowledges any CVD event, even if it happens between appointments and patients exit
the CVD prevention process. According to the guidelines, each of the risk factors, LDL, SBP, and
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Total Cholesterol, are divided between different levels, as shown in Table 2.1 [1, 2].

Table 2.1: Risk factors levels. The discrete sets of published clinically relevant cholesterol ranges
used to define cholesterol states [1] and systolic blood pressure ranges used to define blood pressure
states [2].

Risk factor and level
Cholesterol LDL (mg/dL) Total cholesterol (mg/dL) Systolic blood pressure (mm Hg)

Low (L): < 70 Normal (N): < 200 Normal (N): < 120
Normal (N): ≥ 70 and < 100 Borderline High (B): ≥ 200 and < 240 Elevated (E): ≥ 120 and < 130

Acceptable (A): ≥ 100 and < 130 High (H): ≥ 240 Hypertension I (H1): ≥ 130 and < 140
Borderline High (B): ≥ 130 and < 160 Hypertension II (H2): ≥ 140 and < 180

High (H): ≥ 160 and < 190 Hypertensive Crisis (HC): ≥ 180
Severe (S): ≥ 190

For both cholesterol and blood pressure, physicians may prescribe a variety of medications. For
cholesterol, we focus on statins, which are by far the most common medication used to treat high
cholesterol. Statins are divided into two intensities: low and high. Between these two groups,
physicians consider which intensity of statins is the best depending on the patient’s 10-year risk
of having a CVD event (most patients will receive the low (nominal) dose). The 10-year risk is
estimated based on LDL, SBP, patient age, sex, race, and currently prescribed treatment using
the ACC risk model. For blood pressure, we will focus on the five primary types of medica-
tions: Angiotensin-receptor blockers (ARBs), Angiotensin-converting enzyme (ACE) inhibitors,
Thyazides, Calcium Channel Blockers, and Beta-Blockers. For cholesterol and SBP, we assume
risk reduction factors are consistent with normal adherence to medications, as observed in clinical
trials.

We tested the ACC guideline for cholesterol-lowering medications, which we present in Figure
2.1. Prior studies have proposal risk thresholds ranging from 5% to 7.5% [41]. A lower threshold
means that patients will begin treatment sooner, while a higher threshold will defer treatment.

Figure 2.1: The ACC guideline for cholesterol treatment. The treatment is defined depending on
the patient’s current 10-year CVD risk (R) and the current cholesterol level.
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For blood pressure medications, we focus on the JNC8 guideline [15] (which we refer to as
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simply the JNC guideline) and the ACC guideline [1]. The main difference between these two is
that the ACC guideline suggests that the 10-year risk should be measured first before prescribing
treatment. In contrast, the JNC guideline bases blood pressure treatments based on the patient’s
blood pressure level. In Figure 2.2 we present both guidelines.

Figure 2.2: Blood pressure treatment guidelines. Both guidelines suggest that a blood pressure of
Hypertension 1 (H1) should be the first threshold to assess if the patient needs medication. JNC
increases the threshold for older patients since blood pressure tends to increase naturally with age.
On the other hand, ACC guidelines use the estimate of the 10-year risk, which is also affected by
the patient’s age and other risk factors.
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To model the stochastic behavior of blood pressure and cholesterol, as previous literature has
done, we assume that they are independent and satisfy a Markov assumption [42]. We validate
this assumption in Section 2.5. The ACC guidelines suggest that patients on either cholesterol-
lowering or blood pressure-lowering treatment should go to the doctor every 3 to 12 months. For
this reason, we assume that patients will have at least one appointment per year.

2.3.3 Estimation of Markov Chain Parameters for Blood Pressure and
Cholesterol

In parametrizing our models, the time between data collection may vary due to different factors,
such as health state, demographics, and undergoing treatment. Yeh et al. (2010) study these
types of problems and compare different methodologies to estimate probabilities for ignorable
intermittent missing data [24]. After testing various methods, they recommend using Sherlaw-
Johnson et al. (1995) EM algorithm to calculate these probabilities [30].

We redefined the model presented by Sherlaw-Johnson et al. (1995) and followed the
same structure to estimate the patient’s cholesterol and blood pressure behavior. We define as
PCh(age, τ) as the cholesterol transition probability matrix for age and treatment τ , and we define
PBP(age) as the blood pressure transition probability matrix for age and treatment τ . As the choles-
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terol and blood pressure stochastic behavior may vary by age, we run the algorithm for different
age ranges with a size of 5 years. We define the age range, denoted by z, based on the number of
data points available.

Figure 2.3: EM algorithm data imputation. Based on the available observational data, the EM al-
gorithm predicts possible values for each risk factor for each time period and estimates the Markov
chain which minimizes the error between steps

As shown in Figure 2.3, the algorithm uses the observational data to estimate a Markov chain.
To apply the algorithm, we first define Ouvw(τ) as the number of observed transitions from LDL
level u to LDL level v in w periods when on treatment τ in the age range of z years. For simplicity,
let the age range go from 1 to z. For the E-step, we define P

(k)
Ch (τ) as the matrix in the k − th

iteration of the algorithm. Now define Pijl,uvw as the probability that a transition between LDL
levels i and j occurs in l epochs, where the patient was observed to be in LDL level u at epoch
w − l and then observed in LDL level v at epoch w and can be estimated as follows.

Pijl,uvw =
P l
Chui(τ)PChij(τ)P

w−l−1
Chjv (τ)

Pw
Chuv(τ)

(2.1)

Now define Sij(P
(k)
Ch (τ)) as the expected number of transitions from LDL level i to LDL level

j occurring if there is complete data in the k − th iteration, which can be estimated as follows.

Sij(P
(k)
Ch (τ)) =

∑
u∈Ch

∑
v∈Ch

z∑
w=1

Ouvw(τ)
w−1∑
l=0

Pijl,uvw (2.2)

For the M step of the algorithm, P (k+1)
Ch (τ) is computed as follows.
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P
(k+1)
Ch (τ) =

Sij(P
(k)
Ch (τ))∑z

w=1 Siw(P
(k)
Ch (τ))

(2.3)

Notice that we need to apply this algorithm for each type of treatment. The algorithm stops when
the P

(k)
Ch (τ) converges, i.e. for a small ϵ, |P (k+1)

Chij (τ) − P
(k)
Chij(τ)| < ϵ for all i, j ∈ Ch. Then for

all age in the age range, P (k)
Ch (age, τ) = P

(k)
Ch (τ). Finally, we also apply the same algorithm to

estimate PBP(age).
There are two main parameters to implement the EM algorithm: 1) the initial transition proba-

bility matrix and 2) the stopping criteria. Common approaches use observed data to estimate the
initial transition probabilities, but these approaches may result in probabilities equal to 0 due to
data sparsity. For this reason, we followed the recommendation of [30] to start with a uniform
distribution. We also follow the authors’ recommendation for the stopping criteria by defining
an error of 10−4 for the absolute difference between the same term in matrices from successive
iterations.

We validate the resulting Markov chains from the EM algorithm by applying a likelihood ratio
test [43]. To estimate the likelihood ratio test, let us first define nij(age, τ) as the number of
observed data points where patients go from cholesterol level i to cholesterol level j, on treatment
τ in the selected age range. Let p̂ij(age, τ) denote the observed ratio of data points between
cholesterol levels i and j. Then p̂ij(age, τ) =

nij(age,τ)∑
j nij(age,τ)

. Now let us define LEM(age, τ) as the
likelihood function after using the EM algorithm and LData(age, τ) as the likelihood function of
the data. Then we can estimate each likelihood function as:

LEM(age, τ) =
∏
i,j

PCHi,j(age, τ)
nij(age,τ) (2.4)

LData(age, τ) =
∏
i,j

p̂i,j(age, τ)
nij(age,τ) (2.5)

Then we can apply a Chi-square test to the following value:

−2ln
( LEM(age, τ)

LData(age, τ)

)
∼ χ2

m(m−1),

where m is the number of cases where nij(age, τ) > 0.

2.3.4 Estimation of the probability of having a CVD event

For the probability of having a CVD event, the ASCVD model uses the CVD 10-year risk. Given
the VA population used for this study, we use a modified risk calculator designed for this population
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[19]. The modified calculator, which we refer to as VA-ASCVD, estimates the risk using the
patient’s demographics, age, race, gender, LDL, total cholesterol, blood pressure, treatments, and
smoking habits. Additionally, we include risk reduction factors when patients are on treatment to
estimate risk reduction resulting from treatment. Marrero (2021) presents risk reduction factors
depending on the statin intensity when controlling cholesterol [17]. Also, Karmali (2017) presents
risk reduction factors depending on blood pressure medication and the 10-year CVD risk [16].
Finally, we estimate the dying probability for other causes with the CDC tables of life years [3].

2.4 Simulation model

Given inputs and assumptions, we now present the simulation model and the scenarios and perfor-
mance measures we used to validate the model.

2.4.1 Modelling patient flow

The guidelines suggest surveilling patients over 40 years old, prone to increase the chance of CVD.
Figure 2.4 presents the simulation flow for each patient, divided into two main time frames: events
during an appointment with the physician and events between appointments.

Figure 2.4: Simulation flow. The simulation model focuses on preventing CVD events. We simu-
lated the health factors during and between appointments, assuming that on every epoch the patient
has a probability of having a CVD event.
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At annual appointments, the physician first gathers the patient’s health information. This health
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information consists of LDL cholesterol, total cholesterol, and SBP and assesses the current treat-
ment plan. After gathering the patient’s health information, the physician estimates the patient’s
10-year risk of having a CVD event. Finally, the physician suggests prescribing treatments if
necessary.

The patient follows the current treatment between appointments, and the risk factors will evolve
following the stochastic behaviors. As we assess the patient every year, the patient may suffer
a CVD event or die from other natural causes between appointments. If the latter occurs, the
simulation ends. If the patient has a CVD event, we simulate the remaining years until the patient
dies or turns 80, assuming that physicians will immediately prescribe treatments. If the patient
is healthy, the simulation ends when the patient turns 80 years old. We assume that the current
treatment will continue throughout the patient’s life.

2.4.2 Treatment scenarios

As mentioned in the previous section, physicians may follow different guidelines to treat high
cholesterol and blood pressure. For this work, we focus on the ACC guidelines for cholesterol. We
will test the effects of using a 10-year risk threshold of 5% or 7.5% to start low-intensity statins.
For blood pressure treatment, we will test the JNC guidelines and the ACC guidelines. Thus, we
considered the following scenarios:

– Scenario 1 - (Base Case) ACC (7.5%): ACC guideline for cholesterol with a (7.5%) threshold
and the ACC guideline for blood pressure.

– Scenario 2 - ACC (5%): ACC guideline for cholesterol with a (5%) threshold and the ACC
guideline for blood pressure.

– Scenario 3 - ACC (7.5%)/JNC: ACC guideline for cholesterol with a (7.5%) threshold and
the JNC guideline for blood pressure.

– Scenario 4 - No treatment: No treatment for cholesterol or blood pressure.

Our reference (base case) scenario is scenario 1. Scenario 2 is used to test different cholesterol
guidelines against the reference scenario, and scenario 3 is used to test the effects of varying blood
pressure guidelines against the reference scenario. Additionally, scenario 4 assumes no treatment
as an additional reference scenario when the patients are not on treatment to prevent a CVD event.

2.4.3 Evaluation of scenarios

We focused on two different metrics to compare the scenarios. First, we estimated the percentage
of patients with treatment per epoch. This metric helps determine if a guideline suggests a high
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treatment burden. Moreover, this metric also helps estimate the probability that a patient starts
sooner or later treatment.

We also estimated the average 10-year risk. We propose this metric to compare the efficacy of
different scenarios. Therefore, we can comment on whether increasing the percentage of patients
with treatment is beneficial or not (i.e., the 10-year risk lowers).

2.5 Results

In this section, we present the initial model parameterization, model validation, and then describe
our main results. The entire analysis was performed in R (version 3.6.2), with the following spec-
ifications: Windows Server 2012, Intel Xeon 2.40 GHz with 40 GB Ram. We simulated patients
who start at 40 years old with normal cholesterol and blood pressure levels and no treatment. We
decided a half-width of 1% was acceptable in this context. We conducted ad hoc experiments using
scenario 1 to determine a suitable sample size of 3,000 patients for our numerical experiments.

2.5.1 Verification and validation

We validate the simulation result by comparing it with the published estimate of the death rate
by natural causes and the CVD event rate. We also perform a likelihood ratio test to evaluate the
Markov chain assumption.

2.5.1.1 Transition probability matrices

We divided the data set into different groups, depending on sex and race, because these factors
are important predictors of 10-year risk [19]. In our data, 69.1% of the patients were white males,
20.4% of them were black males, 6.7% as white females, and 3.8% of them were black females.
Due to an insufficient number of female patient samples, we cannot get significant estimates from
the numerical experiment. We present the results for male patients, as women were not sufficiently
represented in our data set at all ages we considered. Additionally, we acknowledge that after
applying our exclusion criteria to raw data, the data for other races is insufficient to conduct nu-
merical experiments. Finally, we only had access to the patient’s race, therefore, we were not able
to study the ethnicity effect on health behavior.

We divided male patients into two different groups, black males and white males because race
is an important factor for 10-year risk prediction [19]. Between these groups, we divided the data
depending on the treatment plan and age range of the patients to estimate the stochastic behaviors.
We estimated the discrete-time Markov chains for each of these patient groups. We divided the
data between training and test sets to validate the model. Randomly, we chose 2/3 of the data set as
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training data and 1/3 as test data. Finally, as mentioned in Section 2.4. we used a likelihood ratio
test to validate the Markov chains and show the results in Table 2.2.

Table 2.2: EM algorithm validation. For each patient group we compare the observations with the
estimated Markov chain and estimate the p-value of the likelihood ratio test. We define the null
hypothesis as the Markov chain fits the data behavior. If the p-value is lower to 0.05 (in bold) the
null hypothesis is rejected

P-Value
Patient Group Age Range No Low intensity High intensity
(% of Total) Medication Statins Statins
Black male 40 0.241 0.847 0.080
(20.4%) 45 0.890 0.997 0.019

50 1.000 0.830 0.000
55 0.980 1.000 0.031
60 0.355 0.744 0.158
65 0.989 0.982 0.001
70 1.000 0.662 0.534
75 1.000 0.221 0.003

White male 40 1.000 1.000 0.997
(69.1%) 45 1.000 1.000 0.183

50 0.999 0.998 0.703
55 0.747 0.871 0.601
60 0.228 0.188 0.969
65 0.491 0.128 0.145
70 0.962 0.116 0.021
75 0.841 0.156 0.408

The likelihood ratio test does not reject the null hypothesis for the patient groups with more data,
such as white males. Otherwise, the test rejects the null hypothesis when less data are available.
Moreover, in rare cases, such as younger people (ages 40 to 60) with high-intensity statins, the
test also tends to reject the null hypothesis. Nonetheless, as shown in the model’s output, the 10-
year risk for younger patients is not high enough to receive high-intensity statins. Therefore we
can safely trust the EM algorithm outputs. We apply the same test for blood pressure, with the
difference that we do not divide the data by treatments. The test did not reject any cases because
we counted with more blood pressure information.

A straightforward question arises about how much data are needed so that the EM algorithm
correctly fits the behavior. In Figure 2.5, we analyzed how the fitting of cholesterol is affected
according to the data available. The results showcase that the algorithm performance worsens for
patients with medication at a higher rate than for patients without medication. This result is likely
explained by the smaller number of samples for treated patients in a dataset like ours. Therefore,
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we recommend that when gathering data, it is important to look at all patient types and not just the
total number of patients to determine the viability of the dataset for estimating a model.

Figure 2.5: EM algorithm performance. We ran the EM algorithm while varying the amount of
data available for male patients. We estimated the percentage of cases where the algorithm fitted
correctly. We notice that the amount of time the cholesterol behavior was fitted correctly when the
patient has medication decreases drastically with fewer data.
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Finally, we tested the assumption that cholesterol and blood pressure are independent. We
estimated the correlation between LDL, SBP, cholesterol-lowering medication, and blood pressure-
lowering medication. We used Pearson’s correlation and applied it to the population data. While
statins have been shown to have a minor effect on blood pressure levels [44], based on our data, the
correlation between LDL and SBP is 0.022±0.008. We also estimated the correlation between SBP
and cholesterol-lowering medication, where we tested whether the SBP changes when the patient
has different medication intensity levels. For this test, the correlation was−0.0025±0.008. We did
the same analysis between LDL and blood pressure-lowering medication, where we tested if the
LDL changes whether the patient is with or without medication. This correlation was −0.1452 ±
0.007. Notice that these correlations are close to zero; therefore, we believe our assumption is
reasonable.

2.5.1.2 Simulation model

To validate the number of deaths by natural causes, we compared our results with the CDC tables
[3]. Moreover, to validate the number of CVD events, we compared our results with the 2020
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American Heart Association report [4]. We looked at the values at the age range of 75 to 80
using the base case reference scenario for both cases. We present the results in Table 2.3. We got
consistent results when validating for the other age ranges.

Table 2.3: Simulation validation. Simulation results versus the CDC life tables [3] and the Ameri-
can Heart Association report [4].

Measurement-patient group Simulation (Mean value ± SD) American population data
Death rate

White male 48.7% ± 1.7% 48.92%
Black male 60.5 % ± 1.5 % 60.28%

Cardiovascular Events
White male 22.4% ± 1.49% 25.1%
Black male 22.4% ± 1.5% 25.1%

The statistical estimate of the death rate based on the simulation model is very close to the
CDC tables. In particular, there is no statistical difference for male patients. On the other hand,
the CVD event rate’s statistical estimate is similar but lower compared to the AHA. This result
is expected given patients in the VA population have excess to continuous care versus the overall
U.S. population the CDC estimates are based on.

2.5.2 Comparison of scenarios

We present results for a population that follows the same proportion of the VA population of white
males (77.2%) and black males (22.8%). We simulated each of the four scenarios referenced
above, and we estimated the percentage of patients with cholesterol-lowering treatment, blood
pressure-lowering treatment, and 10-year risk as a function of the patient’s age.

In Figure 2.6a we notice that at the age of 50, all the guidelines suggest that more than 50% of
the patients should be on cholesterol-lowering medications. Nonetheless, the ACC(5%) guideline
increases patients’ percentage on medications after 55 by 14%. Finally, after 60 years old, all three
guidelines are close to 100% of patients on treatment. It is worth noticing that the JNC guideline
increases cholesterol treatment from ages 40 and 50 by 2.5 % on average. This may be because
the ACC blood pressure guidelines are affected by the 10-year risk, which changes depending on
whether the patient is on treatment for blood pressure or not. While at the age of 50 onward, the
difference is not statistically significant.

Similarly, in Figure 2.6b, different cholesterol guidelines do not affect the number of blood
pressure-lowering medications. The JNC guideline tends to start medication much sooner. For
example, at age 43, more than 80% of the patients are predicted to be on treatment. On the other
hand, the ACC blood pressure guideline reaches 80%, five years later. This result shows a much
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higher treatment burden if the JNC guidelines are used; however, according to Figure 2.7 there is
no statistical difference in 10-year risk among the three scenarios.

Figure 2.6: Scenario comparison. Percentage of patients on treatment: Recall that patients start
treatment when they have a CVD event, for this reason, there can be patients with treatment in the
No-Treatment Scenario.
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Figure 2.7: 10-year risk comparison. As patients begin treatment, the scenarios with treatment
begin to differ from the no treatment scenario. Where at the age of 50, the risk is reduced by 3%
on average and after the age of 80, the risk is reduced by 9% on average.
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2.6 Conclusions and future work

Health systems have improved the tracking of patients’ medical data over time to the point where
there is ample longitudinal data suitable for simulating health status changes over many years.
Still, data may be missing or sparsely populated, which raises questions on how to build validated
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simulation models. These simulation models can be excellent resources for physicians and policy-
makers to compare and contrast alternative healthcare policies. This article presents a simulation
model for patients treated to prevent CVD using a longitudinal data set from the U.S. Veterans
Affairs health system. We tested different treatment guidelines for cholesterol and blood pres-
sure to compare the risk reduction of heart attacks and strokes and treatment burden based on the
proportion of patients in specific subgroups who were on medication at certain ages.

Our simulation model used the EM algorithm to estimate Markov chains for cholesterol and
blood pressure, the most important controllable risk factors for CVD prevention. We simulated pa-
tients within two groups: Black men and white men. The EM algorithm outputs non-stationary
discrete-time Markov chains that vary by gender, race, treatment, and age. We validated the
Markov chains by applying likelihood ratio tests for two demographic groups: White male pa-
tients and black male patients. EM algorithms help fit cholesterol and blood pressure behaviors
when using longitudinal data gathered unevenly. Also, we found that with a lack of sufficient
information, the EM algorithms have a less accurate performance when fitting Markov chains to
cholesterol behaviors. Fortunately, this case only happens for young patients with high-intensity
statins, which rarely occurs as the 10-year risk for younger patients usually is low. We believe these
algorithms will help estimate patients’ risk factors for other healthcare applications, as healthcare
data are only gathered when the patients go to healthcare providers.

We tested the ACC guidelines for cholesterol and blood pressure and the JNC guideline for
blood pressure. For cholesterol, additionally, we studied the effects of reducing the threshold when
patients start treatment. Our results suggest that lowering the risk threshold from 7.5% to 5% does
not benefit patients based on risk reduction alone; however, it results in a higher proportion of
patients being treated and exposing them to the burden of medication. On the other hand, the JNC
guideline also recommends treatment earlier in life as it focuses on reducing the patient’s blood
pressure. Thus, our results suggest that ACC guidelines that focus on risk reduction also reduce
the number of patients with treatment without negatively affecting their health.

As with all studies, ours has some limitations. First, we assume that patients and physicians
adhere to standard expectations regarding the frequency of routine physical exams to collect data
on risk measures. However, in reality, there may be deviations from these “best practices”. Nev-
ertheless, this seems to be the most reasonable standard upon which to estimate the harms and
benefits of treatment resulting from the recommended guidelines. Finally, our study is based on
a specific population, U.S. Veterans, which may not generalize to the entire U.S. population. As
the following steps, we want to study other population groups, such as white women and black
women.

Despite the limitations, we believe our study demonstrates a productive use of longitudinal
EHR data. We were able to show that using EM algorithms is a suitable approach to deal with
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sparse data when building simulation models based on non-stationary Markov chains. Our work
focuses on CVD, but there are numerous chronic diseases like cancer, Alzheimer’s, and diabetes,
where similar approaches could be applied. Lastly, our Markov chain models can be extended to
higher-dimensional stochastic processes with more risk factors and correlations across risk factors
for more in-depth investigations of CVD and other chronic diseases.
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CHAPTER 3

Cholesterol Monitoring Policies for Cardiovascular
Disease Prevention

3.1 Introduction

In Chapter 2, we develop models to understand disease progression and create a controlled sim-
ulation environment to test policies. Therefore, the natural next step is to study how to develop
policies that help prevent diseases. In particular, to prevent cardiovascular diseases (CVDs), physi-
cians treat patients with cholesterol and blood pressure-lowering medications to manage two of
the main risk factors for CVD. This is done based on the American College of Cardiology (ACC)
guidelines for cholesterol [1] and for high blood pressure in adults [8]. However, the guidelines do
not define how frequently physicians should monitor the evolution of the risk factors, let alone how
monitoring should change concerning age, gender, and race, all of which are established predictors
of CVD outcomes [19].

Current monitoring guidelines are not personalized. The availability of longitudinal information
makes it possible to build stochastic models that describe uncertainty in risk factors to optimize in-
dividualized patient monitoring guidelines based on societal benefits, which comprise the benefits
perceived by the patients and healthcare insurance providers. For CVD, the societal benefits are
estimated by the reward for increased quality-adjusted lifespan and direct and indirect costs, such
as the cost of appointments, testing, treatment, and the cost of having a CVD event [45].

The primary goals of this chapter are as follows:

1. Propose and validate stochastic models that learn from EHRs to define a cholesterol moni-
toring policy by maximizing the expected societal benefits.

2. Study how patients’ gender and race influence the optimal Markov decision process (MDP)-
based monitoring policy and compare this policy to current guidelines.
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To achieve these goals, we first describe the existing guidelines. First and foremost, current
guidelines recommend prescribing medications to patients depending on the patient’s 10-year risk
of having a CVD event (heart attack or stroke). The patient’s CVD risk is estimated using a pub-
lished risk model with factors including blood pressure (BP), cholesterol low-density lipoproteins
(LDL, also known as “bad cholesterol”), current treatment, and patient demographics [46]. The
patient’s 10-year risk is categorized as low-risk if the value is below 5%, borderline-risk between
5% to 7.5%, intermediate-risk between 7.5% to 20%, and high-risk over 20% [1]. In the case of
managing cholesterol, prescribing statins is often the next course of action if diet and exercise
alone are insufficient.

Statins are a once-a-day pill that patients take indefinitely, assuming they can tolerate the side
effects [1]. They are generally considered safe for most people, but they can have some minor
side effects and come at a cost to the patient and/or health system. Physicians may also prescribe
one of several medications for blood pressure, often starting with Angiotensin-converting enzyme
(ACE) inhibitors or Angiotensin II Receptor Blockers (ARBs). The physician decides the type
of treatment, cholesterol and/or blood pressure, based on the 10-year risk of CVD events and
the current cholesterol and blood pressure levels. Nevertheless, the patient’s health behavior is
stochastic. According to observational data, the time between each appointment varies from a
couple of months to years, implying that the physicians should consider this randomness in their
monitoring decisions. Regular monitoring is important, but frequent vs. infrequent monitoring
has pros and cons. Monitoring very frequently may be unnecessary and costly for certain patients;
on the other hand, monitoring infrequently means the patient may forgo needed treatment and
experience adverse events related to the disease.

From the physician’s point of view, each appointment is an opportunity to collect observational
data. During an appointment, physicians often gather the patient’s current and past available infor-
mation in the EHR. With this information, the physician can estimate the 10-year risk and prescribe
treatment to lower CVD risk if necessary. Finally, physicians recommend when to have patients
have follow-up tests and appointments for continued monitoring of risk factors.

In the United States, the ACC guidelines recommend monitoring cholesterol every 4 to 6 years
if the patient is healthy and every 1 to 2 years if the patient is 75 years old or older and is healthy.
For patients on treatment, the guideline suggests monitoring cholesterol every 3 to 12 months so
that physicians check the medication efficacy and change the treatment if needed [1]. This policy
is one-size-fits-all, as it does not consider the patient’s demographics. For blood pressure, the ACC
guidelines recommend annual measurements if the patient is healthy, every 3 to 6 months if the
patient has an elevated BP, and every 1 to 3 months for patients on treatment [8]. In contrast to
cholesterol monitoring, which requires a blood test, measuring blood pressure is done regularly as
part of standard clinical practice. For this reason, we focus on cholesterol monitoring policies as
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the primary decision of importance to CVD prevention. For blood pressure, we will assume the
physicians will follow the monitoring and treatment guidelines, where a patient with high blood
pressure or high risk will receive blood pressure-lowering treatment [8].

Our approach to studying optimal cholesterol monitoring policies considers cost and benefits
from a societal perspective. Each year that the patient is healthy, there is a reward for the addi-
tional life-year gained, which we convert to a monetary measure using a willingness-to-pay (WTP)
estimate that is common to public health studies. We also consider costs to societal stakeholders,
including the patient, the physician, and third-party payers, including health insurers and health
organizations [47]. Collectively, these considerations reflect the societal perspective when deter-
mining optimal monitoring policies.

To test our MDP model, we used longitudinal data for cholesterol and blood pressure in a co-
hort of 10,000 randomly selected patients seen in the Veteran Affairs (VA) system. All patients
had at least two outpatient visits to clinics. The data follow the patients from 2003 until 2018.
The data are divided into three primary data sets: Demographics, treatments, and health factors.
For demographics, we have information on the patient’s race, gender, age, and smoking habits.
For treatments, we have the prescription date, the type of treatment, and the number of pills. Fi-
nally, for health factors, we count the measurements for total cholesterol, high-density lipoproteins
cholesterol (HDL), low-density lipoproteins cholesterol (LDL), systolic blood pressure (SBP), and
diastolic blood pressure (DBP).

The rest of the chapter is organized as follows. In Section 3.2, we present the literature review
related to our problem and highlight the differences between our approach and the ones presented
in the literature. In Section 3.3, we propose a finite horizon and finite-state MDP model, which adds
new factors such as cholesterol, blood pressure, age, and the 10-year risk of having a major CVD
event (heart attack or stroke). Also, we use the EM algorithm presented in Section 2.4 to estimate
the cholesterol LDL and systolic blood pressure probability distributions from observational data.
In Section 3.4, we present our case study with longitudinal data in a large cohort of patients seen
in the national Veterans Affairs health system. We test our cholesterol model using the data in our
case study and discuss how the model is applied. Finally, we compare our model versus current
cholesterol monitoring guidelines and summarize our main conclusions.

3.2 Literature review

The most relevant research related to our work falls into the following fields: (1) dynamic moni-
toring prevention and treatment models; (2) parameter estimation using sparse longitudinal data;
and (3) cholesterol monitoring policies to prevent CVD. This section highlights papers related to
our work and briefly describes how our proposed methodology differs.
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Literature in dynamic monitoring is divided into prevention and treatment. Within the area of
prevention, the literature focuses on monitoring policies after a disease has occurred or an interven-
tion has been done to prevent the disease [48, 49, 50, 42]. Among the most common applications,
some models define monitoring policies to prevent deaths after diagnosed cancer. The literature
focuses on maximizing QALYs by applying different methodologies such as MDPs and partially
observable MDPs (POMDPs). Models have also been created for patients who need constant
surveillance, such as mental health care, liver cancer, HIV, and diabetes [51, 52, 42, 53]. These
models then focus on identifying when the surveillance should take place.

For treatment, the literature has applied MDPs to define the optimal treatment policies for
chronic diseases. Some of these applications focus on cancer and organ transplant, among oth-
ers [54, 55, 56, 57, 58]. In particular, for CVD, the literature has focused on blood pressure and
cholesterol-lowering medications [59, 25, 60, 61]. Depending on the patient’s health state, the
models select the type of medication to prescribe, assuming patients adhere to medications and
regularly attend appointments (e.g., fixed annual visits). Nonetheless, the current cholesterol mon-
itoring guidelines suggest measuring cholesterol every 4 to 6 years when the patient is assumed
healthy. Therefore, our work focuses on defining a precise monitoring policy, assuming that physi-
cians follow current treatment guidelines. Our model helps prevent CVD by defining this policy
while dynamically monitoring the patient’s health. Monitoring these diseases adds a layer of com-
plexity by modeling disease progression outside of surveillance. A correct prevention policy helps
physicians treat patients accordingly.

The literature acknowledges the importance of using personalized medicine over one-size-fits-
all policies when dealing with healthcare prevention. As new technologies are available, such as
wearable monitors, telemedicine, and electronic pill counts, it is possible to have complete elec-
tronic health records (EHRs). EHRs make it viable to define policies that better understand the
patient’s health behavior [62, 63]. On the other hand, personalized policies help ensure health
equity within minority groups [64], patient-specific modeling, and bring better-individualized out-
comes [65]. Therefore, Therefore, the literature suggests balancing the individual and societal
risk factors [66], which we include in our model by incorporating patients’ age, gender, race, and
societal rewards.

Finally, to estimate cholesterol monitoring frequencies, the US guidelines suggest testing
healthy patients every 4 to 6 years [1]. Nonetheless, countries like the United Kingdom, Aus-
tralia, and New Zealand, have different policies. Some even recommend testing healthy patients
every year [67]. Most of these policies propose various recommendations depending on whether
the patient is on treatments. Nonetheless, some studies suggest that a detailed monitoring policy
may reduce the risk of having a CVD event by having a better knowledge of the patient [68] [69].
Given these conflicting expert opinions, there is a need to understand better optimal monitoring
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policies using data-driven models.
In summary, our research differs from previous studies for three reasons. First, we propose an

MDP model to define cholesterol monitoring policies by optimizing societal rewards and consid-
ering the effects of gender and race. Second, less frequent surveillance is needed to prevent CVDs
than other diseases; therefore, our models consider long periods when the patient is not measured.
We model the effects of events between two cholesterol tests. Third, we apply EM algorithms to
estimate the transition probabilities due to the long periods between tests. This study is the first
to consider these three aspects to the best of our knowledge. We show that these algorithms can
fit well-validated Markov chains for cholesterol and blood pressure using non-uniformly collected
data observations in EHRs. Considering each of these improvements, we believe that we will im-
prove the current ACC cholesterol monitoring guidelines, having precise guidelines for gender and
race.

3.3 Model Formulation and Validation

In this section, we will present our decision model to estimate a cholesterol monitoring policy that
maximizes societal benefits. We divide this model into two parts: the MDP for optimizing choles-
terol monitoring policies and the simulation model to test and validate our model. To estimate
the transition probabilities, we use the EM algorithms presented in Section 2.4. To evaluate the
patients, we model the patient’s risk factors between appointments. In Figure 3.1, we present the
flow of a particular appointment. We start by stating definitions and mathematical notation (see
Table 3.1) that we will use throughout this section.

3.3.1 Definitions and model assumptions

In this section, we introduce the model’s concepts and main assumptions. Since we are focused
on preventing CVD, we focus on healthy patients with no evidence of previous chronic diseases in
their medical records. Therefore, we define H := {N,C,D} as the set of the possible living states
of the patient where N represents that the patient is in normal health conditions, C represents that
the patient had a CVD event, and D represents that the patient died for any unrelated CVD causes,
also known as all other causes of mortality [1]. We assume the model stops as soon as the patient’s
living state is C or D. Similar to prior literature, a patient with no previous CVD events will have
either a CHD event or a stroke. However, both are assumed not to happen simultaneously in the
same time period [47]. As the model stops when the patient suffers a CVD event for the first time,
we do not consider the effects of previous CVD events on the likelihood of a CHD event or stroke.
Additionally, we estimate the probability of a CVD event and death based on age. Finally, the
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Figure 3.1: CVD prevention flowchart. During a particular appointment, the physician gathers
information ((A) boxes). Based on this information, the physician defines the treatment [1] ((B)
boxes) and considers when the patient should come back ((C) box). This process will continue
until the patient reaches a certain age, dies, or has a CVD event. Our research question will focus
on optimizing the green process
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proportion of CVD events that are strokes will also change based on age.
During an appointment, the physician gathers the patient’s medical information and prescribes

medication if necessary. The physician also considers when the next cholesterol testing should
take place. We assume the physician does not have access to observations between appointments.
The first risk factor collected is the LDL cholesterol level. Therefore, when the patient arrives, the
physician is assumed to know the relevant factors that define the patient’s health (living) state and
cholesterol level (i.e., we assume the test was completed prior to the arrival for an appointment).
We define Ch := {Low, Normal, Acceptable, Borderline High, High, Severe} as the different
cholesterol LDL levels, as shown in Table 2.1 [1].

Also, the physician gathers the patient’s blood pressure. Similar to LDL, we divide the blood
pressure into established clinical groups [8]. We define B := {Normal, Elevated, Hypertension I,
Hypertension II, Hypertensive Crisis} as the different blood pressure levels, which are shown in
Table 2.1.

We focus on optimizing monitoring policies and thus the time between appointments, and we
assume the physician prescribes the treatment following recommended guidelines at the scheduled
appointments. Treatment decisions are assumed to be based on the patient’s 10-year risk of hav-
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Table 3.1: List of notation for MDP model part 1.

Notation Description
E Set of patient’s appointments index by t, where E := {1, ..., T}.
H Set of possible living states of the patient index by ht in appointment t.
Ch Set of cholesterol LDL levels index by θt in appointment t.
BP Set of blood pressure levels index by γt in appointment t.
A Set of decisions index by a.
τt Treatment prescribed to the patient in appointment t.

aget Age of the patient in appointment t.
st State of the patient in appointment t defined as st = (θt, γt, ht, τt, aget).

PCh(aget, τt) Transition probability matrix for cholesterol levels at age aget
and treatment τt after appointment t.

pCht(θt+1|st, a) Probability that in appointment t+ 1, the patient has LDL θt+1 when
decision a is taken.

P
(k)
Ch (τ) Matrix that represents the k − th iteration of the EM algorithm

at treatment τ .
PBP(aget) Transition probability matrix for blood pressure levels at age aget.

pBPt(γt+1|st, a) Probability that in appointment t+ 1, the patient
has BP γt+1 when decision a is taken.

PHh(st) Probability that in an interval the living state is h given state st.
pHt(ht+1|st, a) Probability that in appointment t+ 1, the patient is in living state ht+1 when

decision a is taken.
rt(st, a) Rewards when the patient is in state st and decision a is taken

in appointment t.
vt(st) Optimal value function at appointment t and state st.
cAPP Cost of going to an appointment.
cτt Cost of a month in treatment τt.
cCHD1 Cost of first year of a CHD event.
cCHD2 Cost of subsequent years after CHD event.
cST1 Cost of first year of a stroke event.
cST2 Cost of subsequent years after stroke event.
WTP Benefit of being healthy per year.

WTP(a) Benefit received for a periods.
LY(age) Expected remaining life years at age.
δCHD CHD event QALY decrement per year.
δST Stroke event QALY decrement per year.
δτt QALY decrement per year on treatment τt.

ing CVD per the recommended treatment plan from the ACC Guideline on the Management of
Blood Cholesterol [1], shown in Figure 3.1. Between any two appointments, the patient’s choles-
terol and blood pressure change depending on the treatments and how long is the time between
appointments, which determines the number of transitions in the Markov chain.
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Table 3.2: List of notation for MDP model part 2

Notation Description
ηCHD Life years decrement rate when patient suffers a CHD.
ηST Life years decrement rate when patient suffers a stroke.
β Discount factor.

dCHD(age) Probability a patient suffers a CHD event given
that a patient had a CVD event at a determined age.

dST(age) Probability a patient suffers a stroke given
that a patient had a CVD event at a determined age.

We focus on statins because they are the most common medication to treat high cholesterol.
Statins are commonly divided into two intensities: low and high [17]. Between these two groups,
physicians consider which statin dose is the best depending on the patient’s 10-year risk of having a
CVD event. This 10-year risk is estimated based on LDL, SBP, patient age, sex, race, and currently
prescribed treatment. For BP, we assume that the physician will prescribe medication also based on
the ACC guidelines [8]. The physician will prescribe BP-lowering medications when the patient
has an H1 or higher BP level. We do not consider different BP-lowering medications because as
soon as the patient starts medications, their blood pressure tends to decrease [25]. For cholesterol
and BP, we assume that the patient will adhere perfectly to the medications. Finally, we assume
that patients comply with the physician’s recommendation on when the next cholesterol test should
occur.

To model the stochastic process for LDL, we assume that it satisfies a Markov assumption,
similar to previously motivated studies. As treatment and patient age affect the LDL behavior,
we estimated the conditional probability based on these factors. Moreover, we assumed that the
cholesterol treatment does not affect the patient’s SBP due to the lack of correlation observed in
prior studies [42].

Given that the current ACC guidelines recommend that the maximum time between cholesterol
tests is 6 years, for our model, the possible decisions are between 3 to 72 months, with intervals
of 3 months representing the shortest time between appointments. We also assume that the patient
follows the physician’s recommendation to get a cholesterol test prior to their appointment. While
such adherence is not perfect in practice, making this assumption leads to an easier to interpret the
model results by focusing on the most likely and intended expectation.

Finally, our model focuses on maximizing the total societal benefits of the monitoring policy.
We consider the costs of treatment, going to an appointment, and having a CVD event and rewards
for each life year, considering the decrements when the patient is on treatment or has CVD. We
will explain these benefits and costs in detail in the next section.
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3.3.2 Markov decision process model formulation

We model our problem with a finite state and finite time MDP. We present each of the components
that belong to these type of models.

Epochs: Let E := {1, ..., T} be the set of decision epochs for possible appointments with
cholesterol tests. Each epoch is indexed by t.

States: During each appointment t ∈ E, the physician gathers the LDL level θt ∈ Ch, the
SBP level γt ∈ B, the living state of a patient ht ∈ H, the age of the patient aget, and defines
the treatment τt based on the ACC guideline presented in Figure 3.1. To simplify, we define st as
the overall health state of the patient in appointment t, which includes the previous information.
Hence, st := (θt, γt, ht, τt, aget).

Decisions: Because the physician will recommend when to check cholesterol next, we define
A as the set of decisions where A := {1, ...,m}. If a ∈ A, then the patient is advised to come
back in a months. Notice that the physician takes action at the end of the appointment, and st

represents the patient’s state after measuring blood pressure, cholesterol, and the prescription of
any new treatment.

Transition probabilities: Between appointments, the patient’s LDL and blood pressure vary.
Furthermore, a patient may suffer from CVDs or die of other causes. Therefore, first, we define
PChij(aget, τt) as the probability that if the patient has a LDL state i and is following treatment τt at
appointment t, then on the next period the patient will have LDL state j. Since, the physician learns
the patient’s new LDL level during appointments, we define pCht(θt+1 = j|st, a) as the probability
that the patient will have an LDL state of j in appointment t + 1, if the patient is in state st and
the physician recommends to monitor cholesterol in a periods. If we assume that θt = i, then we
estimate the probability that in the appointment t+ 1 the patient has LDL state j as follows.

pCht(θt+1 = j|st, a) =
∑
k1∈Ch

∑
k2∈Ch

· · ·
∑

ka−1∈Ch

(
PChik1

(aget, τt)PChk1k2
(aget + 1, τt) . . .

PChka−1j
(aget + a− 1, τt)

) (3.1)

Equation 3.1 reflects the Markovian assumption about LDL. Similarly, we define PBPij(aget) as
the probability that if the patient has a blood pressure state i and is aget years old in appointment
t, then on the next period the patient will be in blood pressure state j . Also, we define pBPt(γt+1 =

j|st, a) as the probability that if the patient is in state st and the physician recommends to monitor
cholesterol in a periods, then the patient will have a blood pressure state of j in appointment t+1.
Assuming that γt = i, we estimate the probability that in appointment t+1 the patient has a blood
pressure state j as follows.
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pBPt(γt+1 = j|st, a) =
∑
k1∈BP

∑
k2∈BP

· · ·
∑

ka−1∈BP

(
PBPik1

(aget)PBPk1k2
(aget + 1) . . .

PBPka−1j
(aget + a− 1)

) (3.2)

Between appointments, the patient may suffer a CVD event or die because of other causes. We
define pHh(st) as the probability that if the patient is in state st, the patient is at living state h at
period t. Therefore, as shown in Equation 3.3, we can estimate the probability that the patient is
healthy at the next appointment. This probability is defined as pHt(ht+1 = N |st, a) which is the
probability that in appointment t + 1 the patient is healthy, given that the patient was at state st at
period t, and the physician recommended to test cholesterol again in a periods.

pHt(ht+1 = N |st, a) =
a∏

l=1

∑
j∈Ch

∑
k∈BP

pCht(j|st, l)pBPt(k|st, l)PHN (θl = j, γl = k, τt, aget+ l) (3.3)

We consider that a patient reaches the next appointment with a normal health condition state,
only if the patient does not suffer a CVD event or dies between appointments. Therefore, in
Equation 3.3,

∑
j∈Ch

∑
k∈BP pCht(j|st, l)pBPt(k|st, l)PHN (θl = j, γl = k, τt, aget + l) represents

the expected probability that the patient has a normal living state in period t + l. Notice that
PHN (θl = j, γl = k, τt, aget+ l) depends on how the patient’s cholesterol and blood pressure levels
change between two appointments. Because the patient goes through a period of time between
each appointment, then Equation 3.3 also represents that the patient is healthy in all periods.

As the probability of dying from other causes is neither related to the patient’s cholesterol level
nor the blood pressure level, we estimate the probability of dying in a periods as follows.

pHt(ht+1 = D|st, a) = 1−
a∏

l=1

(
1− PHD(aget + l)

)
(3.4)

Finally, in Equation 3.5, we present the probability that the patient has a CVD event.

pHt(ht+1 = C|st, a) = 1− pHt(ht+1 = N |st, a)− pHt(ht+1 = D|st, a) (3.5)

Rewards: At each appointment, the physician’s decision may result in costs during and after the
appointment. First, depending on the treatment, there is a cost per period when the patient takes
a particular treatment, defined as cτt . Also, when going to an appointment, the patient and the
insurer are assumed to incur a cost cAPP, including a cholesterol test, time spent in the appointment
and traveling, and the appointment cost. Finally, depending on the patient’s age, the patient has a
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probability of having a CVD event, which also incurs a cost cCVD(aget), paid by the health insurer.
We consider two types of CVD events: stroke and heart attack. For each of these events,

we estimate the cost of the first year of having a CVD event (cS1 and cCHD1 respectively), which
consists of hospitalization, interventions, and treatments, and the cost of subsequent years (cS2and
cCHD2). Also, we include the willingness-to-pay (WTP) per year that the patient is healthy. We
define WTP(a) as the benefits received from a societal perspective, per patient, for a periods. If the
patient had a CVD event, we multiply the WTP by a decrement δ per year. Finally, depending on
the age of the patient, we estimate the average expected years of life LY(aget) and multiply it by
a decrement rate given the type of CVD event ηCHD or ηST. In Equations 3.6 and 3.7 we estimate
the cost of having a CHD event cCHD(aget) or a stroke cST(aget) respectively, given that the CVD
event was diagnosed at age aget.

cCHD(aget) = cCHD1 + cCHD2(LY(aget)ηCHD − 1)(1− δCHD)− WTP(LY(aget)ηCHD)(1− δCHD) (3.6)

cST(aget) = cST1 + cST2(LY(aget)ηST − 1)(1− δST)− WTP(LY(aget)ηST)(1− δST) (3.7)

The patient may suffer either a CHD event or a stroke. We define as dCHD(age) as the probability,
at a given age, that a patient suffers a CHD event given that the patient suffered a CVD event, and
dST(age), at a given age, as the probability that a patient suffers a stroke given that the patient
suffered a CVD event. It is worth noting that the probability that a healthy patient has a CHD event
is pHt(ht+1 = C|st, a)dCHD(aget) and a stroke is pHt(ht+1 = C|st, a)dST(aget), where dCHD(aget)+
dST(aget) = 1. Therefore, cCVD(aget) = cCHD(aget)dCHD(aget) + cST(aget)dSt(aget).

Between two appointments, we consider the cost of going to the 2nd appointment, the cost
of the treatment, and the cost of having a CVD event. Therefore, in Equation 3.8 we estimate
rt(st, ht = N, a), defined as the rewards when the patient is on state st, the patient is healthy, and
the physician recommends to monitor cholesterol in a periods of time. We also consider a utility
decrement over the benefits received if the patient is on treatment τt, defined as δτt . The complete
reward function can be written as follows.
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rt(st, ht = N, a) = −cAPP +
a−1∑
l=0

pHt(N |st, l)
(
WTP(1)(1− δτt)− cτt

−
∑
j∈Ch

∑
k∈BP

pCht(j|st, l)pBPt(k|st, l)PHC (aget + l, j, k)cCVD(aget + l + 1)
)
(3.8)

Bellman equations: We define the optimal value function vt(st) as the maximum expected
benefits the patient receives from appointment t in state st until appointment T or until the patient
suffers any CVD event (death or disease). We construct the Bellman equations, for all st and t ∈ E,
associated with this model, as follows.

Vt(st) = maxa∈A

{
rt(st, a)

+ β
∑
j∈Ch

∑
k∈BP

∑
h∈H

(
pCht(j|st, a)pBPt(k|st, a)pHt(h|st, a)Vt+1(st+1)

)}
,∀t < T, st

(3.9)

As we mentioned before, the physician knows the patient’s health state and cholesterol level when
the appointment starts. Also, the physician recommends treatment τt, following the treatment plan
before deciding when the next cholesterol test should occur. In Equation 3.10, we present the
boundary conditions of the model, depending on whether the process ends because the patient
has a CVD event, the patient gets to the final epoch T being healthy, or the patient dies from
other causes. If the patient is healthy at the last appointment, no more decisions are taken, and
the expected benefits for subsequent years represent the immediate reward. If the patient dies from
other causes, no additional costs or benefits are considered. If the patient had a CVD event between
appointments t − 1 and t, then ht = C. As shown in Equation 3.8, the cost associated with the
CVD event is considered during t − 1, as this equation represents the cost between appointment
t − 1 and appointment t. Additionally, as shown in Equations 3.6 and 3.7, the CVD event’s cost
considers the future costs and benefits until the patient dies. Therefore, the immediate rewards will
be 0 for appointment t.

Vt(st) =

0 if ht ∈ {C,D}

WTP(LY(ageT ))(1− δτT ) if ht = N and t = T
,∀t, st (3.10)
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3.3.3 Estimation of the probability of having a CVD event

For the probability of having a CVD event, the medical literature typically recommends using the
CVD 10-year risk. Nevertheless, as this estimation is for 10 years, we assume that we can divide
the probability equally through each year, following a linear behavior [60]. We then estimate the
CVD 10 year-risk based on the patient’s demographics, age, race, gender, LDL, total cholesterol,
blood pressure, treatments, and smoking habits. As we deal with VA data, we use the calculator
presented by Sussman, et al. (2017) [19]. Let PHC (st) be that probability that the patient has a
CVD event given state st. Also, let a be the number of months between epoch t− 1 and t. Finally,
let p10(st) be the 10-year risk given state st. Therefore, we estimate the probability of having a
CVD in a number of months as:

pHC (st) = 1− (1− p10(st))
a

120 (3.11)

It is worth noting that the estimation presented in Equation 3.11 assumes a linear increase in
the risk of the patient from time 0 to 10 years. This approximation may underestimate or over-
estimate the real risk depending on the patient’s risk factors; however, the estimate is reasonable
in the aggregate and a very common assumption in public health modeling. Finally, we estimate
the probability of dying from other causes with the CDC tables of life years, depending on the
patient’s age [3].

3.4 Results

In this section, we present the results of our case study based on the VA health system. We present
the results of our model parameter estimation and validation of the input data and the model. We
estimate the optimal cholesterol monitoring policy by applying the finite state and finite time MDP
to the VA database. We test our model for patients between the ages of 40 and 80. Finally, we
compare the policy obtained from our MDP model to the ACC guidelines and actual decisions
made by physicians in practice at the VA. To test our model for different demographic groups, we
estimate the transition probabilities, run the MDP model, and analyze the results separately for
each group.

We define the minimum length between two decision epochs to be three months, as this is
the minimum suggested time period between two cholesterol blood tests [1]. Additionally, we
assume that we monitor the patient for a maximum of 40 years from age 40 to 80. If we monitor
the patient’s cholesterol every three months, the maximum number of appointments will be 160.
As mentioned in the assumptions, in each epoch, the patient has 6 possible cholesterol levels, 5
possible blood pressure levels, 3 living states, and 3 different treatments, for a maximum of 43, 200
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states. We use the backward induction algorithm to solve this problem [70].

3.4.1 Case study

We tested our model with the VA longitudinal data introduced in Chapter 2. We include in our
study patients with statins or blood pressure medication. The data follow the patients from 2003
until 2018, and Table 3.3 shows an overview of the population studied.

Table 3.3: Baseline characteristics of the population. We divide the variables into categorical
(demographics) and numeric variables (risk factors). We estimate the mean value and standard
deviation for the risk factors and count the number of patients in each demographic variable. We
then performed a univariate test for each variable to test if there is a difference between patients
with and without CVD events and we provide the resulting p-values

Mean (± SD) or No.(%)
Characteristic Patients without CVD Events Patients with CVD events P
n 9675 325
Gender

male 8751 (90.4) 318(97.8) <0.001
Female 924 ( 9.6) 7 ( 2.2) <0.001

Race
White 7254 (75.0) 266 (81.8) 0.006
Black 1806 (18.7) 50 (15.4) 0.154
Other 354 ( 3.7) 6 ( 1.8) 0.115

Smoker 1951 (20.2) 72 (22.2) 0.419
Diabetes 2458 (25.4) 123 (37.8) <0.001
Blood Pressure

sbp 129.30 (9.40) 132.32 (10.46) <0.001
dbp 76.59 (6.62) 74.43 (7.16) <0.001
Months between visits 4.49 (3.31) 4.12 (2.92) 0.045

Cholesterol
HDL 47.11 (13.21) 44.88 (13.56) 0.003
LDL 108.73 (26.01) 100.36 (26.23) <0.001
Months between visits 10.46 (6.52) 9.66 (5.81) 0.032

We structured the data in three primary data sets: demographics, treatments, and health factors.
For demographics, we have information on the patient’s race, gender, age, and smoking habits. For
treatments, we have the prescription date, the type of treatment, and the number of pills. Finally,
we count the measurements for cholesterol and blood pressure. As cholesterol and blood pressure
are measured on different frequencies, we structured the data by date and health factor measured.
It is worth noting that blood pressure is measured more frequently than cholesterol because of the
ease of measurement in a clinical setting that was noted previously.
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As exclusion criteria, we do not consider patients with a prior CVD event or diabetes be-
cause our model focuses on prevention. Since diabetes is a major risk factor for CVD, patients
in this group typically follow different treatment policies. The ACC guidelines recommend treat-
ing patients differently depending on the age group, which are divided into children and teenagers
(younger than 20 years old), young adults (20 to 39 years old), adults (40 to 70 years old), and
older adults (older than 70 years old). Additionally, for prevention, the ACC guideline recom-
mends focusing on adults’ and young adults’ age groups because older adults usually need more
customized care (often by a cardiologist). Our data set mainly consists of the adult age group.

3.4.1.1 Model Parameters

We gathered some of the model parameters for the reward function of our MDP from the literature.
We divide these parameters into two groups: costs and benefits and disutilities. We show their
values and sources in Table 3.4.

Table 3.4: Reward function parameters and sources used in the model. All the values shown in this
table are adjusted for inflation to 2020 USD [5]

Parameter Type Parameter Value Source
Costs and Benefits

Going to an appointment (cAPP) $142 [47]
A month of Low intensity statin (cL) $8 [71]
A month of High intensity statin (cH) $16 [72]
First year CHD event (cCHD1) $68, 677 [73]
Subsequent years after CHD event (cCHD2) $4, 588 [73]
First year stroke event (cST1) $22, 645 [73]
Subsequent years after stroke event (cSt2) $7, 240 [73]
Benefit of being healthy per year (WTP) $100, 000 [74]
Expected remaining Life years (LY(age)) CDC LY tables [3]
Discount factor 0.97 [47]

Disutilities
CHD event QALY decrement per year (δCHD) 0.07 [42]
Stroke event QALY decrement per year (δST) 0.21 [42]
Statins decrement (δτ ) 0.003 [42]
Life years decrement due to CHD (ηCHD) 0.625 [47]
Life years decrement due to stroke (ηST) 0.435 [47]

The cost of going to an appointment (cAPP) is estimated considering the cost of traveling and
waiting, the price of a general physician visit, and the cost of a cholesterol laboratory test. In
the United States, the patient’s traveling time to an appointment is around 25 minutes, and the
time waiting and spent in the appointment is about 42 minutes [47]. Using the Bureau of Labor
Statistics’ average hourly wage in the United States of $24.98, the cost of traveling and waiting is
around $32.06 [75]. As the physician orders a cholesterol test on each appointment, we add $35

for this test [47]. Finally, we set $75 as the visit cost with a general practitioner [47].
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We consider two categories of statin treatment, low and high intensity. For the costs of treat-
ments, we consider the Statin Atorvastatin 40mg for the price of the Low-intensity statin (cL), and
we use the Statin Rosuvastatin 20mg for the cost of the High-intensity statin (cH). For each of
these, we check the Good Rx website and choose the average of the lowest prices.

When a CVD event happens, there are costs associated with the initial hospitalization, interven-
tion, and subsequent cholesterol test and treatments. We consider the costs of two CVD events,
CHD and strokes, for our analysis. Based on O’Sullivan et al. (2011) and estimating the values for
2019, the cost of the first year with CHD is approximately $68, 677, and the first year after a stroke
is $22, 645. For subsequent years, accounting for medications, follow-ups, and control screenings,
the cost with CHD is $4, 588, and the cost with a stroke is $7, 240.

For the benefits, we use a willingness-to-pay for a QALY of $100, 000 as our baseline, as is
common in literature [74]. We also vary this to investigate the sensitivity of our results to WTP.
We consider the CDC life year tables for the expected life years given that the patient is healthy [3].
Finally, we use 0.07 for the QALY decrement if the patient has a CHD event, 0.21 if the patient
has a stroke, and 0.003 when the patient is on statins [76]. Finally, we estimate the probability
of having a CHD event (dCHD(age)) and the probability of having a stroke (dST(age)) using the
American Heart Association CHD statistics and the American Heart Association stroke statistics
[77].

3.4.2 Model validation

We validated the MDP model by comparing the percentage of patients with a CVD event and the
expected life years versus the current available CDC life tables. With respect to the validation of
the transition probability matrices, we follow the same process as shown in Section 2.5.

3.4.2.1 Transition probability matrices

Compared to Chapter 2, for this model, we include the white women population. In Table 3.5, we
present the EM algorithm validation for the new patient group.

3.4.2.2 Markov decision process model validation

We validated the MDP model by comparing the expected life years versus the American popula-
tion’s CDC reports. We ran our model for each of the three patient groups mentioned in the last
section, using a sample of 1/3 of the VA population in each group. We have as a null hypothesis
that the model’s life-years are equal to the American population. Table 3.6 presents the model
results compared to the CDC life tables.
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Table 3.5: EM algorithm validation for white female patients. For white female patients, we com-
pare the observations with the estimated Markov chain and estimate the p-value of the likelihood
ratio test. We define the null hypothesis as the Markov chain fits the data behavior. If the p-value
is lower to 0.05 (in bold) the null hypothesis is rejected

P-Value
Patient Group Age Range No Low intensity High intensity
(% of Total) Medication Statins Statins
White female 40 0.894 0.597 0.239
(6.7%) 45 1.000 0.987 0.827

50 1.000 1.000 0.618
55 1.000 0.974 0.253
60 0.995 0.669 1.000
65 1.000 0.954 1.000
70 1.000 0.864 0.615
75 0.589 0.246 0.000

Table 3.6: Simulation validation. The validation shows that our model increases the average life
years for black males and is not statistically different for the other two groups.

Patient Group Model’s Avg life years CDC life years p-value
White male 77.3± 0.71 76.4 0.205
Black male 74.5± 0.72 71.9 ≤ 0.05
White female 80.9± 0.61 81.2 0.623
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As we estimate our data with the VA population, we expected the life years to be higher than
the average American population, as they tend to have better access to healthcare [78]. It is worth
noting that the highest difference between our model and the CDC life tables is for black males.
One of the possible reasons this happens is the regular access to healthcare for the VA population,
which are more likely to have a combination of public and private health insurance due to Medicare,
VA health care, and a second career after retirement. This access to healthcare is not uniformly
true for the general population that is the basis of the CDC statistics. For example, it is estimated
that 13.3 % of non-veterans do not have access to healthcare [78]. A second possible reason is that
our model does not attempt to directly consider racial disparities that cause lower life expectancy
for black males compared to white males in the CDC life tables.

We estimate the optimal policy for three demographic groups: white male, black male, and
white female. As we focus on prevention, we analyze the policy only for healthy patients, as CVD
and Death are absorbing states. As age affects the policy, estimating the 10-year risk will give us
more insights into the policy. In Figure 3.2 we present the optimal policy by age range, treatment,
and 10-year risk for the white male group. We divided the 10-year risk into low, borderline,
intermediate, and high.

For younger white male patients who are not on preventive treatment, age 45 to 55, the MDP
policy falls into the range of the current ACC guidelines. It differs for white male patients be-
tween 40 and 45, where the policy recommends that cholesterol tests be taken on average every
30 months, lower than what the ACC guidelines recommend. The model recommends more time
between appointments for a white male patient on treatment between 40 to 55 than ACC guidelines
(3 to 12 months).

The patient’s age dramatically affects the MDP policy due to the natural risk associated with
age. When a white male patient not on preventive medication gets older, the time between tests
decreases below what the ACC guidelines suggest. On the other hand, for those white male pa-
tients on treatment, the time between tests varies depending on age and CVD risks. For example,
for patients 55 years old and older, the time between appointments decreases when the risk in-
creases. Also, the model suggests a higher time between appointments for white male patients on
statins between 60 to 70 years old than the current ACC guidelines. This behavior is explained
by the natural risk increase when the patients get older. Nonetheless, at age 75, the time between
appointments decreases, similar to the current ACC guidelines. Finally, the policy recommends
monitoring white male patients with high-intensity statins. If the patient’s risk decreases, then it
is possible that the physician also decreases the statin intensity level. As the patient gets older,
the 10-year risk tends to increase. Nonetheless, the policy must account for the benefits of hav-
ing additional appointments and treatment. Additionally, when the patient ages, the percentage of
strokes increases compared to CHD events. On average, strokes have a lower average cost than
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CHD. Therefore, as the model maximizes the overall societal rewards, the resulting policy is not
monotone as the patient ages.

We analyzed the policy for white males, divided by age ranges, cholesterol level, blood pressure
level, and treatment. We noticed that the policy does not change significantly with respect to
cholesterol levels and blood pressure levels when they are varied independently. On the other
hand, when both risk factors change, the effect is seen in the 10-year risk and the policy changes
as well. The results are shown in the Appendix in Figure A.1.

Figure 3.2: White male optimal policy by 10-year risk. The optimal policy varies depending on
the patient’s age, treatment, and 10-year risk. The color represents the time between appointments,
where lighter is less time between appointments and darker is more time between appointments.
The optimal policy ranges from 3 months to 72 months between appointments. As we are following
the ACC cholesterol treatment guideline, there are spaces in white that represent unreachable states
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Similar to previous results, the MDP policy for black males is affected by the patient’s age, the
10-year risk, and the treatment. In Figure 3.3, we present the optimal policy. This policy suggests
that black male patients should have a shorter time between cholesterol tests than white male
patients, where none of the cases exceed 40 months between visits. Similarly, the recommended
time between visits decreases for black male patients 55 years old and older.

Finally, the policy for white female patients suggests having more time between cholesterol
tests for patients who have not started preventive treatment than for white male patients, as shown
in Figure 3.4. For those patients on treatment, the MDP policy recommends less time between ap-
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Figure 3.3: Black male optimal policy by 10-year risk. The optimal policy varies depending on
the patient’s age, treatment, and 10-year risk. The color represents the time between appointments,
where lighter is less time between appointments and darker is more time between appointments.
The optimal policy ranges from 3 months to 72 months between appointments. As we are following
the ACC cholesterol treatment guideline, there are spaces in white that represent unreachable states
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pointments for this demographic group than for white males but more time between appointments
than for black males. These results are consistent with the lower 10-year risk that women have
according to the VA risk models [19]. Nonetheless, this policy also shows that gender is essential
for cholesterol testing policies.

3.4.3 Comparison of MDP policies to ACC guidelines and VA practice

We compare our MDP-based policy versus three other types of recommended policies used in
practice. First, we divide the ACC guideline into two cases. (1) The minimum values for the range
recommended by the ACC guideline (ACC Min), testing every four years when the patient is not
on treatment and three months when the patient is on treatment; (2) The maximum values for the
range recommended by the ACC guideline (ACC Max), testing every six years when the patient
is not on treatment, and testing every year when the patient is on treatment. The third policy we
tested is an empirical estimate of the current VA practice based on observational data (VA Data).
We use the data set to estimate the mean frequency of cholesterol tests by age group, cholesterol
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Figure 3.4: White female optimal policy by 10-year risk. The optimal policy varies depending on
the patient’s age, treatment, and 10-year risk. The color represents the time between appointments,
where lighter is less time between appointments and darker is more time between appointments.
The optimal policy ranges from 3 months to 72 months between appointments. As we are following
the ACC cholesterol treatment guideline, there are spaces in white that represent unreachable states
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level, blood pressure level, and treatment.
We compare the policies by evaluating them using the MDP model and compare the patients’

total expected discounted rewards, total expected discounted costs, and the probability of having a
CVD event. Additionally, we evaluate these policies assuming that patients start without a previ-
ous CVD event and cholesterol-lowering treatment. Finally, we evaluate the policies for patients
beginning at the age of 40 who are not on treatment.

Figure 3.5 shows that, on average, the MDP policy slightly increases total expected rewards
compared to other policies. Nonetheless, when we analyze the costs, we notice that the MDP
policy decreases all patient groups’ costs. Additionally, the patient’s percentage of CVD events
is also smaller when applying the MDP policy. For each group, the percentage of CVD events is
lower than 30%. Our model shows improvements, as for the American population, the percentage
of death caused by CVD events is 33%. Besides the benefits of the MDP policy, we are feeding
our model with VA data, which, as mentioned before, are more likely to have access to healthcare
[78].

As shown before, our policy monitors untreated patients more frequently than ACC Min and
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Figure 3.5: Policies evaluation. We present the rewards, appointment costs, CVD costs, and treat-
ment costs, discounted until the patient’s first appointment. For the CVD event graph, we present
the probability that, at some point, the patient has a CVD event. On the x-axis, we have each of
the patient’s groups. On the y-axis, we present the average value per patient

$1,000,000

$1,500,000

$2,000,000

$2,500,000

Black male White female White male
Patient group

A
vg

 r
ew

ar
ds

 p
er

 p
at

ie
nt

Rewards

$0

$2,000

$4,000

$6,000

Black male White female White male
Patient group

A
vg

 A
pp

oi
nt

m
en

ts
 c

os
ts

 p
er

 p
at

ie
nt

Appointments Costs

$0

$100

$200

$300

$400

$500

Black male White female White male
Patient group

A
vg

 C
V

D
 C

os
ts

 p
er

 p
at

ie
nt

CVD Costs

$5,000

$10,000

$15,000

Black male White female White male
Patient group

A
vg

 T
re

at
m

en
t C

os
ts

 p
er

 p
at

ie
nt

Treatment Costs

0.0

0.1

0.2

0.3

Black male White female White male
Patient group

P
ro

b 
of

 h
av

in
g 

a 
C

V
D

 e
ve

nt

Policy ACC Max MDP model ACC Min VA Data

CVD event

44



less frequently than ACC Max for patients on statins. This behavior affects the costs of the appoint-
ments. Also, for all groups, the MDP policy decreases total costs. Finally, the policy recommends
more frequent monitoring when the patient is not on medication, prescribing low-intensity statins
as quickly as needed. This outcome reduces the time that the patient is on high-intensity statins,
hence reducing the overall treatment cost.

For white men, the MDP policy increases the total discounted rewards on average $2, 514

(0.12%) per patient, compared to the ACC Max policy, which is the second-best policy. Addi-
tionally, compared to ACC Max, our policy will decrease the total discounted costs on average
$609.14 (5.05%). These discounted rewards and costs are measured, on average, over 37 years.
We observed similar results for the other patient groups, where we compared the results versus the
following best policy, ACC Max. For black men, the MDP policy increases the total discounted re-
wards on average $5, 822 (0.29%) and decreases the total discounted costs by $1, 600 (9.56%), on
average, over 35 years. For white women, the MDP policy increases the total discounted rewards
on average $2, 265 (0.10%) and decreases the total discounted costs by $479 (5.47%), on average,
over 41 years.

The latest Veteran Affairs census has approximately 8 million white male patients over the age
of 40, 1.2 million black male patients over the age of 40, and 0.6 million white female patients
over the age of 40 [78]. The estimated changes due to the MDP policy suggest the potential for
increasing the VA population’s societal rewards by approximately $28.5 billion. Furthermore, the
societal costs will decrease by around $7.1 billion.

Other countries suggest a once-a-year cholesterol testing policy if the patient is healthy [67].
We analyzed this policy for healthy patients and used a three-month testing policy when patients
are on treatment. In Table 3.7, we show the results for white male patients and add the standard
deviation for each metric. The one-year policy has fewer rewards as the appointment costs in-
crease. Nonetheless, this policy has a smaller probability of having a CVD event. Additionally, the
standard deviation for each of these measurements is small compared to the mean.

Table 3.7: Policies costs and rewards comparison part 1. We compare the results for white male
patients using each of the policies. Additionally, we add the one-year policy that other countries
suggest. Part 1

Measurement value - Mean (± SD)
Measurement MDP ACC Min ACC Max VA Data
Rewards ($ in K) 2159.1 (0.408) 2151.1 (0.404) 2156.6 (0.405) 2152.5 (0.403)
Appointments costs 713.9 (0.32) 3625.4 (1.92) 1074.7 (0.52) 2881.2 (75.9)
Treatment costs 10606 (60.8) 10820 (60.8) 10860 (60.5) 10931 (60.2)
CVD costs 125.84 (0.07) 129.59 (0.07) 146.98 (0.08) 140.60 (0.08)
CVD event 0.252 (0.00) 0.254 (0.00) 0.259 (0.00) 0.256 (0.00)
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Table 3.8: Policies costs and rewards comparison part 2. We compare the results for white male
patients using each of the policies. Additionally, we add the one-year policy that other countries
suggest. Part 2

Measurement value - Mean (± SD)
Measurement MDP One year
Rewards ($ in K) 2159.1 (0.408) 2146.3 (0.398)
Appointments costs 713.9 (0.32) 5878.1 (2.93)
Treatment costs 10606 (60.8) 10812 (60.28)
CVD costs 125.84 (0.07) 130.09 (0.07)
CVD event 0.252 (0.00) 0.251 (0.00)

3.4.4 Sensitivity analysis

In practice, the healthcare providers, physicians, and patients may evaluate each cost and the WTP
differently. For this reason, we tested how the costs and WTP affect the policy of the white male
population by varying each of them and the other ones held constant. For the costs, we analyzed
how the total expected discounted rewards, the average number of appointments, and the proba-
bility of a CVD event behave in extreme values. Additionally, we analyzed how different WTP
values affect the monitoring policy.

We analyzed the effects of the costs of appointments, CVD events, and treatments between 0
(lower bound) and 10 (upper bound) times the initial case study value. We present the results in
Table 3.9. In general, decreasing either of the costs increases the total expected discounted re-
wards, and increasing the costs decrease the total expected discounted rewards. Nonetheless, there
are additional charges in the policy when these costs change. When the cost of an appointment
decreases, the policy suggests more appointments throughout the patient’s lifetime. Increasing the
appointment cost decreases the number of appointments, increasing the probability of having a
CVD event. This change decreases the rewards by approximately $6, 000 compared to the case
study.

When the cost of a CVD event decreases, it does not affect the number of appointments. On
the other hand, when this cost increases, the number of appointments increases, decreasing the
probability of having a CVD event. Increasing this cost decreases the total expected discounted
rewards by $16, 500.

Finally, decreasing the treatment cost increases the number of appointments compared to the
case study. Likewise, increasing the cost also increases the number of appointments. This behavior
suggests that increasing the number of appointments helps prevent the patient from starting high-
intensity statins.

For the WTP, our policy is robust with changes of WTP unless a value of $10, 000 or less is
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Table 3.9: Cost sensitivity analysis. For each cost we evaluate the total expect discounted rewards,
the expected number of appointments, and the probability of having a CVD event. We show the
results for a lower bound of a cost of 0 and an upper bound of a cost of 10 times the initial case
study value.

Measurement value - Mean (± SD)
Cost Measurement Lower bound Case study Upper bound
Appointment Rewards ($ in K) 2169.3 (0.35) 2168.6 (0.36) 2162.7 (0.35)

Appointments 11.8 (0.01) 7.2 (0.003) 7.1 (0.003)
CVD probability 0.250 (0.00) 0.254 (0.00) 0.254 (0.00)

CVD event Rewards ($ in K) 2170.4 (0.34) 2168.6 (0.36) 2152.1 (0.48)
Appointments 7.2 (0.003) 7.2 (0.003) 8.8 (0.004)
CVD probability 0.254 (0.00) 0.254 (0.00) 0.252 (0.00)

Treatment Rewards ($ in K) 2169.3 (0.36) 2168.6 (0.35) 2163.0 (0.35)
Appointments 8.1 (0.004) 7.2 (0.003) 7.5 (0.004)
CVD probability 0.253 (0.00) 0.254 (0.00) 0.255 (0.00)

used. When the WTP is decreased to $10, 000, the policy focuses on minimizing costs, increasing
the time between appointments for patients without medication, and decreasing the time between
appointments for patients with high-intensity statins. The latest behavior results from lowering the
statin intensity as soon the risk decreases, as the cost of a patient in high-intensity statins is double
that of low-intensity statins. We show these results for White male patients in Figure 3.6.

Figure 3.6: Sensitivity analysis of the policy by varying the WTP value per year. We present in the
boxplots the median and each of the quartiles

30

40

50

60

70

45 50 55 60
Patient's age (years)

P
ol

ic
y 

(M
on

th
s 

be
tw

ee
n 

ap
po

in
tm

en
ts

)

WTP
0
10
50
100
150

No medication

30

40

50

60

70

50 60 70
Patient's age (years)

P
ol

ic
y 

(M
on

th
s 

be
tw

ee
n 

ap
po

in
tm

en
ts

)

WTP
0
10
50
100
150

Low intensity statins

20

40

60

67.5 70.0 72.5
Patient's age (years)

P
ol

ic
y 

(M
on

th
s 

be
tw

ee
n 

ap
po

in
tm

en
ts

)

WTP
0
10
50
100
150

High intensity statins

Also, patients may not comply with the physician’s recommendation on when the next choles-
terol test should occur. There are multiple reasons why this behavior happens, such as access
to healthcare, misconceptions over their health, and additional costs [79]. Access to healthcare
and additional costs limit the patient’s mobility to appointments, delaying their next visit. Also,
due to misconceptions about their health, patients overestimate their conditions and may decide to
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postpone the appointment. Nonetheless, it is possible to estimate the delay if we have access to
this data and the physician’s actual recommendation. Therefore, we need to incorporate this new
stochastic behavior to Equations 3.1 to 3.4.

We analyzed our policy’s robustness when adding a stochastic delay to the patient’s arrival for
the next cholesterol test. We estimate the expected discounted rewards for different delay rates.
We simulated exponential distributions with different rates for the time delay while using the MDP
resulting policy. Each exponential distribution tested had an average number of delayed quarters,
ranging from 0 (100% compliance) to 20 quarters. We first tested the scenarios where all patients
followed the same distribution, which we present in Figure 3.7. Also, we tested scenarios where
the patients had different distributions. We assume that patients with treatment have a shorter delay
than patients without treatment, as these patients are monitored more frequently. In the Appendix,
we present the additional scenarios where patients with treatment have a shorter average delay than
those without treatment. We present these results in Figure A.2.

Figure 3.7: Sensitivity analysis of the rewards when adding a time delay to the patient’s arrival at
the next appointment. We present on the x-axis the average number of delayed quarters, where 0
represents 100% compliance from the patient. We show the rewards and the confidence interval.
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As expected, increasing the average time delay decreases the total expected rewards. Notice
that the rewards are not statistically different after 5 quarters of a year. Moreover, compared to a
scenario without delay, the total expected discounted rewards only decrease on average by $1, 500.
This result shows that the model’s policy is robust to changes in patient compliance with physi-
cian recommendations. Additionally, we saw similar results when testing different average delays
depending on whether the patient is on treatment.
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3.5 Discussion

Our framework proposed and validated multiple statistical models that learn from EHRs. First,
we used an EM algorithm to fit the cholesterol and blood pressure behaviors. We believe these
algorithms will help estimate patients’ risk factors for other healthcare applications, as healthcare
data are only gathered when the patients go to healthcare providers.

After estimating each patient group’s risk factor probability distributions, we presented a finite-
time and finite-state MDP that considers cholesterol LDL, systolic blood pressure, age, and pa-
tient’s treatment. We showed that the monitoring policy must consider the ASCVD 10-year risk,
the patient’s age, and the treatment to maximize the benefits. The policy varied between 3 months
to 6 years, recommending decreasing the time between appointments when the risk, age, or treat-
ment intensity increases. Finally, we evaluated our policy and compared it with current guidelines.

We also studied how the patient demographics affect the MDP policy. We showed that race and
gender influence the optimal frequency of monitoring cholesterol. For example, the model suggests
that black males benefit from more frequent surveillance than white males. On the other hand, for
white females, the MDP model recommended less frequent monitoring, compared to white males,
to lower the CVD event risk when they are not on treatment. On treatment, the model recommends
more frequent surveillance for white female patients compared to white male patients but less than
black male patients. When the model recommends less frequent surveillance, the patient’s health
is not negatively affected. For these particular cases, the model decreases appointment costs and
treatment costs without reducing the patients’ QALYs or increasing the associated CVD costs.

The nature of these results is a response to the increased 10-year CVD risks that male patients
have over female patients and the increased risk that black patients have over white patients. Stud-
ies suggest that differences in risk among patients are associated with access to healthcare and
racial inequalities [64]. Unfortunately, the difficulty in measuring the patients’ risk factors may
delay treatment to the patients, hence increasing their CVD risk [80]. Learning from the avail-
able data, the model maximizes rewards by scheduling appointments when needed, optimizing the
patient’s treatment intake, and reducing the risk of having a CVD event.

We presented the model’s recommended policy by race, gender, and treatment. The time be-
tween cholesterol tests for black male patients is, on average, 34 months without treatment and 20
months with treatment. For white male patients, the time between tests was 43 months without
treatment and 46 months on treatment. Finally, the time between tests for white female patients
was 55 months without treatment and 34 months with treatment.

Compared to a one-size-fits-all policy, such as the ACC guidelines [1] and one-year monitoring
policies applied in other countries [67], our model suggests that considering patients’ demograph-
ics could increase the societal rewards by approximately $28.5 billion for the VA health system.
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This increase was associated with an MDP policy that decreased unnecessary appointments and
set appointments when the probability of starting treatment increases. Starting low-intensity statins
sooner reduces the probability of taking high-intensity statins, hence reducing the overall treatment
cost. Furthermore, our policy varies depending on the patient’s age, sex, and race, which the current
guidelines do not consider. Our policy reduces the probability of having a CVD event, resulting in
a reduction of approximately $7.1 billion for the VA health system.

Like all model-based studies, ours has some limitations. First, our MDP model does not cap-
ture all the realities of treatment in practice, and thus the benefits of using an MDP-based policy
for different demographic groups is subject to error; nevertheless, we tried to consider the most
important clinical factors in creating our models. Furthermore, we acknowledge that our model is
based on the VA population, which predominantly comprises white male patients. Other healthcare
systems may have a diverse population and different dataset attributes, such as length of follow-up,
risk factors history, and when to prescribe medications [81, 82, 83]. These differences need a thor-
ough analysis of whether the proposed methods to estimate transition probabilities are sufficient.
Additionally, we recognize that underlying causes affect each demographic group’s risk of CVD.
Unfortunately, we did not have access to this data, which was not feasible to gather. Nevertheless,
our results suggest that patients’ demographics and other social variables may be key risk factors
for healthcare, helping motivate the importance of thoroughly collecting such data in the future.
One-size-fits-all policies may be associated with higher costs and lower quality-adjusted lifespan.
Additionally, the MDP model structure serves as a prototype to help physicians and public health
experts improve cholesterol control. Applying the model to other races and including ethnicity will
help physicians understand the strategies needed to prevent CVD events. Finally, this model could
be adapted to other chronic diseases that require monitoring to make medical treatment decisions
(e.g., blood sugar control for diabetes).

3.6 Conclusions

When dealing with cardiovascular diseases, one of the critical decisions is how often a patient gets
a cholesterol test. Measuring too frequently may be inconvenient and costly; on the other hand,
measuring too infrequently mean the patient may forgo needed treatment and experience adverse
events related to the disease. The American College of Cardiology recommends that healthy pa-
tients take cholesterol tests every 4 to 6 years, and patients receiving cholesterol treatment should
take cholesterol tests every 3 to 12 months. Our study shows that MDP-based policies can increase
rewards and decrease costs; moreover, the changes depend on age, gender, and race, suggesting
that a one-size-fits-all policy may not be ideal.

Future work might consider adding the probability distributions of how the patient responds to
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recommendations. Patients do not always follow physicians’ recommendations, so future enhance-
ments may be worth considering. The first one is adherence to medications, where studies suggest
that the frequency of appointments may increase adherence. This behavior affects the estimation of
the 10-year risk, increasing it if the adherence is low. Second, the patient will not necessarily return
to an appointment as the physician recommends. Therefore the time between appointments could
also be considered stochastic. Our research provides a starting point to investigate some of these
questions further. For our case study, we validate that the stochastic behaviors follow the Markov
assumption and are independent between them. However, we acknowledge that this may not be
true for other healthcare applications. Therefore, we recommend studying other fitting approaches
that better align with the available data. Also, we follow the treatment guidelines suggested by the
American College of Cardiology to treat high cholesterol and high blood pressure. In practice, the
physician has the final say in applying these guidelines according to the patient’s health history.
Therefore, in future work, we will consider the impact of relaxing the assumption toward using
different treatment guidelines. Finally, our approach to building a model for CVD using longitudi-
nal EHR data and other data sources could find application in other diseases that involve periodic
monitoring of risk factors.
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CHAPTER 4

Prediction of Long-Term Medication Adherence and
Its Potential Benefits for Intervention

4.1 Introduction

Correct long-term use of medications is one of the primary methods to prevent chronic diseases
effectively [11]. In Chapters 2 and 3, we focus on policies to prevent cardiovascular diseases
(CVD) within the population, assuming that patients comply with physicians’ recommendations.
However, studies have shown that many patients will eventually stop taking medications at the
end of the first year of prescription, increasing the risk of developing diseases or experiencing
adverse outcomes [11]. The lack of medication adherence has been attributed to several factors,
including patients’ misconceptions over their health, the cost of medication, and the complexity
of treatment when multiple medications are involved [79]. Healthcare providers use interventions
to mitigate decays in adherence, where clinical trials have tested these interventions in various
settings by varying cost, patient involvement, and healthcare provider involvement [12]. These
interventions are divided into different categories: patient education, medication management,
clinical pharmacist education, cognitive behavioral training, reminders, and financial incentives
[84], [85].

Interventions within the categories of patient education, clinical pharmacist education, and cog-
nitive behavioral training show the best results, where the percentage of patients that adhere in-
creases to almost 90% [12]. Nonetheless, these interventions require significant time from the
healthcare providers, including training. Moreover, they also need time commitments from pa-
tients. Therefore, not all patients have the opportunity to participate. On the other hand, interven-
tions, such as reminders via text messages, phone calls, and brochures, are less expensive, and most
patients are included. Unfortunately, the success of these interventions is low [12] unless they are
applied alongside patient education and follow-up to identify and address barriers [86]. Neverthe-
less, reminders via electronic pill counts are successful, where the percentage of patients adhering
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increases to almost 90%. Similar to previous interventions, these tend to be costly, as these meth-
ods use electronic pill bottles that track when patients are opening the boxes, taking medication,
refilling, and giving alerts when missing doses. Additionally, to increase effectiveness, electronic
pill count methods need additional support from clinicians [12].

In general, effective interventions have a limited capacity. A limited budget restricts health-
care providers regarding how many patients they can recommend for interventions to offset non-
adhering behavior [12]. Additionally, these interventions are most effective from a population
perspective if they can be allocated to patients at the greatest risk of non-adherence [87], [88]. A
variety of factors could potentially help predict future adherence, such as demographic informa-
tion, clinical information, and prior adherence [89]. However, it is unclear how to predict long-term
adherence and how to update predictions as new information about the patients is obtained over
time. Moreover, patient adherence varies over time and dynamically changes depending on the
patient’s health behavior [90]. Therefore, the primary goals of this chapter are as follows:

1. Propose and validate dynamic prediction models that use claims data to identify when pa-
tients will stop adhering to medications.

2. Understand how the dynamic prediction improves the selection of patients that should be
included in adherence-improving interventions subject to budget constraints.

To accomplish these goals, we present a forecasting model using dynamic logistic regression

(DLR) to predict whether patients will experience persistent periods of non-adherence to help
providers decide which patients in their panel should be recommended for adherence-improving
interventions. We apply DLR in the context of primary prevention of CVD and compare the
performance to previously proposed methods. We use CVD as an example because it is one of the
leading causes of death in the United States [6], however, our approach can be easily extended to
other contexts. We focus on patients’ adherence to statins given their widespread use and because
past studies have shown that half of the population who start statins will stop adhering by the
end of the first year of prescription, and only 35% of the patients will adhere by the end of the
second year [11]. Additionally, we develop a binary integer programming (BIP) model that uses
adherence predictions to select which patients should be assigned to an intervention subject to
a budget constraint at each epoch. We apply our model to longitudinal data for a large cohort of
patients seen in the national Veterans Affairs health system who initiate statin treatment for primary
prevention of CVD [91]. We evaluate a prediction horizon of 1 to 5 years because we focus on long-
term adherence, and statins are effective if they are regularly taken for an extended period [92].
Additionally, we create a simulation model to test recommendations from the DLR to optimize the
selection of patients for interventions subject to a budget constraint. We validate the simulation
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model by comparing the number of CVD events without adherence-improving interventions versus
the current number of CVD events in the studied population. This framework has the objective of
helping providers decide which patients to recommend for adherence-improving interventions,
acknowledging their budget constraints.

The rest of the chapter is organized as follows. In Section 4.2, we present the literature review
related to adherence forecasting and patient selection models under limited resources and highlight
the differences between our approach and the ones presented in the literature. In Section 4.3, we
present our modeling framework consisting of the DLR model, the BIP model, and the simulation
environment where we test our approach. In Section 4.4, similar to previous chapters, we apply this
framework to a case study based on patients seen in the national Veterans Affairs health system.
We compare our model versus current selection rules for adherence interventions. Finally, we
discuss our results and summarize our main conclusions.

4.2 Literature Review

The most relevant research related to our work falls into the following fields: (1) adherence predic-
tion models; (2) DLR models for healthcare; and (3) optimization models for resource allocation.
This section highlights papers related to our work and briefly describes how our proposed method-
ology differs.

Prior literature proposes classifying patients’ adherence based on pharmacy claims data using
the initial fill and subsequent refill dates together with the pill count to estimate the percentage
days covered (PDC). Two approaches that use PDC are commonly applied: binary classification

or classification based on the adherence trajectory. Binary classification assigns the patient to be
adherent or not adherent using multivariate logistic regression [93] or logistic regression with lag
[94] to predict if the patient’s adherence will drop below a predefined threshold. The trajectory
method classifies the patient according to predefined trajectories based on how quickly the patient
goes below a predefined adherence threshold using group-based trajectory models [90] or logistic
group-based trajectory models [95]. Unfortunately, these papers classify patients in predefined
trajectories, which may exclude patients with different adherence behaviors. We propose to apply
a DLR model, which can construct an individual adherence trajectory for each patient that learns
from past medical records and sequentially updates predictions over time as new information is
obtained.

In healthcare, DLR has been used to forecast high blood pressure in children [96], surgical
errors [97], and blood pressure in adults[98]. For trajectory methods, the literature suggests that
adherence follows an autocorrelation pattern [90]. Therefore, DLR is a great candidate as this
model constructs the trajectory by dynamically estimating adherence using previous estimations
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and including the autocorrelation effect. The literature also uses different machine learning ap-
proaches to model adherence for multiple periods, such as temporal deep learning for five years
into the future [99] and random forests for the next two weeks [100]. Similarly, our model can pre-
dict how patient adherence will evolve, giving healthcare providers additional information beyond
a classification method. Furthermore, our DLR model’s dynamic nature can fit each patient’s initial
adherence trajectory and improves prediction accuracy when new information is available. Finally,
the DLR model can also estimate the relationship between key factors and adherence behavior,
which black box models struggle with and is needed to understand why patients stop adhering
[101].

To develop these models, we use key factors comprising demographics, historical clinical infor-
mation, and historical adherence information. For predicting adherence to statins, most of the prior
literature considers covariates such as demographic characteristics, medical risk factors, and health
provider-related factors [102], [103]. We included the adherence history as a covariate, improving
upon previous studies that suggest including only the last measurement of adherence [104]. Also,
DLR models usually forecast short-term risk, i.e., days [105], [106]. For example, a recent study
forecasts blood pressure on the time scale of days [98] for CVD. In contrast, we forecast adher-
ence to statins five years into the future because cholesterol tends to follow closely within 1 to 6
years for patients with an increased likelihood of having a CVD event [1]. We also include random
effects in our model to acknowledge different adherence patterns among patient groups.

Regarding resource allocation, the literature focuses on two types of problems: immediate
scheduling of patients, for example, ICUs and surgery [107] [108] [109] [110] [111], and resource
allocation for long-term scheduling, such as screenings, follow-ups, and transplants [57] [112]
[113]. Depending on the application, the literature presents different methods to solve this prob-
lem, such as linear programming models [114], dynamic programming [115] [116], and simulation
[117]. Regarding long-term resource allocation for multiple patients and resource constraints, mul-
tiple models used dynamic approaches such as reinforcement learning [118], multi-armed bandits
[21], restless multi-armed bandits [119]. Most of these models allocate resources for one patient
per epoch, differing from our problem, where the physician allocates resources for multiple pa-
tients during the same year. Other papers, which allocate resources for multiple patients, assumed a
homogeneous population [52], [120]. Regarding allocating resources for multiple patients in a het-
erogeneous population, studies have assumed perfect compliance to physician recommendations
[121] [122] [123] [124]. In our approach, we consider resource allocation for multiple patients in a
heterogeneous population with limited resources and imperfect compliance. We model compliance
as adherence to medication and the success of interventions, as adherence-improving interventions
are not perfect; for some patients, these interventions may not work [101]. Therefore, we consider
the probability of the intervention not working as part of the decision.
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Finally, studies that define resource allocation models have focused on different aspects of
adherence-improving interventions. Studies have assumed cost-effectiveness approaches to define
when a patient should be selected for intervention [125]. Other approaches defined the optimal
coinsurance rates that maximize the population’s welfare and select patients that should receive
better reductions [28]. Studies have also focused on defining the optimal incentive rate for financial
incentive interventions [126] [127]. Related to intervention capacity, studies estimated the mini-
mum capacity needed to satisfy the required adherence level in the population [128] and developed
techniques for patient care within the pharmacy to serve the maximum amount of patients[129].
Our work focuses on fixed-capacity interventions such as patient education, clinical pharmacist ed-
ucation, and reminders. Therefore, we assume that the intervention capacity and the intervention
effect on the patient are known. We propose a binary integer programming (BIP) model in which
we select multiple patients in a heterogeneous population per epoch. Given the dynamic aspect of
our problem, we propose an adaptive heuristic that combines the BIP and DLR models and updates
the selection policy in each epoch depending on the patients’ health behavior.

In summary, our work differs from previous studies in three main ways. First, we propose
a DLR model to predict the patient’s adherence trajectory to identify when they stop adhering,
thus avoiding the need to assign patients to predefined trajectories. Second, our DLR model is
updated every time new information is gathered from the patient. Third, we propose an adaptive
heuristic to select patients for adherence-improving interventions that combine the BIP model
with the DLR model. This heuristic selects multiple patients in a heterogeneous population and
updates itself when new information is collected. We show that this adaptive heuristic reduces the
number of CVD events in a population by helping identify which patients benefit the most from
the interventions.

4.3 Methods

This section describes our implementation of the DLR method for predicting patients’ adherence
and the BIP model for assigning patients to intervention. We present definitions and assumptions,
describe the dynamic forecasting model with random effects, and present alternative patient selec-
tion rules for adherence-improving interventions. Further, we present a simulation model to test
the forecast results. Table 4.1 presents the notation used throughout this chapter, where vectors are
highlighted in bold.
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Table 4.1: List of notation for the forecasting model.

Notation Description
I Set of patients indexed by i where I ≡ {1, ..., n}.
E Set of epochs indexed by t where E ≡ {1, ..., T}.
wit Binary response variable that represents if patient i adheres or not at quarter t.
xikt Covariate k, for patient i in quarter t.
ui Random effect associated with patient i.
yit Probability that wit is equal to 1 given the covariates.
ŷit Estimation of yit.
βt Vector of coefficients at time t associated to variables.
β̂t Estimation of βt.
Σβt Correlation matrix at quarter t for the coefficients βt.
q Probability of success of an intervention.
r Adherence effect on risk reduction.

Pitτ Probability that patient i does not adhere for τ epochs until the end of the planning
horizon if intervened in epoch t.

c The number of available interventions at each epoch.
Sit Binary variable where if Sit = 1 then patient i is selected for intervention in epoch t.

4.3.1 Dynamic logistic regression

Let I be the set of patients indexed by i where I ≡ {1, ..., n} and n is the total number of patients.
Also, let E be the set of epochs to forecast indexed by t where E ≡ {1, ..., T} and T is the
total number of epochs. We define our epochs in quarters of the year, as the American College
of Cardiology suggests that patients on statins take cholesterol tests every 3 to 12 months [1].
Additionally, statin medication is usually prescribed for 90 days at a time. We aim to predict
whether patient i adheres at quarter t; therefore, we let wit denote the binary response variable that
represents if patient i adheres or not at quarter t. We also define xikt as the value of covariate k

for patient i at quarter t. Finally, we assume we have prior data from the date of the first refill,
denoted as quarter 1, until quarter t−1. We use this data to predict adherence for quarter t onward.
We begin by predicting adherence for quarter t using a logistic regression model and then use this
result as an input for the DLR model to forecast quarters t+1 onward. Then this process continues
recursively until the final quarter T as shown in Figure 4.1. More data becomes available when
patients return to an appointment or refill medication. Therefore, for a quarter t + τ , if more data
is available, we rerun the DLR model using data from quarters 1 to t + τ and predict for quarters
t+ τ + 1 to T .

As our goal is to estimate the probability that wit = 1, we define yit as the probability that wit

is equal to 1 given the covariates. Let us define xi·· as the vector containing the covariates history
associated with patient i. Then, we estimate the probability wit is equal to 1 as yit = P (wit =
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Figure 4.1: DLR flowchart. The DLR model initializes by using a logistic regression model to
predict the patient adherence for quarter t. Then, the DLR model employs a recursive process
using Newton’s method to estimate the covariance matrix and the covariates for quarters t+1 to T .
With the resulting covariance matrices and covariates, we predict the patient’s adherence behavior
from quarters t to T .

Initialize logistic 
regression:

Logistic regression 
model for quarter 𝑡𝑡

Extract patients 
data from quarter 

1 to 𝑡𝑡 − 1

Dynamic logistic regression iterations:

Newton’s method step 1:
Estimate covariance 

matrix

Newton’s method step 2:
Estimate covariates

Predict patients’ 
adherence

𝑡𝑡 = 𝑡𝑡 + 1
Last 

prediction 
quarter T?

Outcome:

Adherence predictions 
from quarters 𝑡𝑡 to 𝑇𝑇.

No

Yes

1|xi··,βt), which is estimated by a logistic regression model, where wit = 1 represents that the
patient does not adhere and wit = 0 otherwise. Notice that, for quarter t, xi·· contains data from
the first quarter to quarter t−1. As each patient may behave differently, we define ui as the random
effect associated with patient i. Therefore we estimate ŷit as:

ŷit = P (wit = 1|xi··,βt) =
exp(ui + βtxi··)

1 + exp(ui + βtxi··)
. (4.1)

We use the data until quarter t − 1 to forecast the adherence in t by estimating the coefficients
βt. The logistic regression model only predicts one quarter at a time. Therefore, we use the DLR
model that starts from the standard logistic regression to iteratively generate predictions of the
remainder of the time horizon T .

Using the estimates of the coefficients β̂t, we can forecast adherence for time t+1 by estimating
βt+1. In the literature, there are several proposed approaches to estimate β̂t+1 [106]. In our case,
we update the coefficients dynamically by defining the posterior distribution of βt, after observing
the probability of non-adherence for each patient in quarter t (defined as vector y·t) as follows:

p(βt|y·t) = p(y·t|βt)p(βt|y·t−1). (4.2)
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Given the amount of data for each patient, we assume that the right-hand side of the equation
is approximated by a normal distribution [105], where βt+1|y·t ∼ N(β̂t, Σ̂βt

). The vector β̂t is
the estimation of the coefficients at the end of period t, and Σ̂βt

is the estimation of the associated
covariance matrix. The exact estimation of these values is difficult, but using Newton’s method,
we can approximate β̂t+1 [105]:

β̂t+1 = β̂t − Σ̂−1
βt+1

(w·t − ŷ·t)x··t, (4.3)

where the covariance matrices are updated as follows:

Σ̂t+1 = Σ̂t

−1
+ ŷ·t(1− ŷ·t)x··tx

T
··t. (4.4)

Having estimated β̂t+1, then we can estimate ŷit+1 using the updated logistic regression model.
This process continues recursively until the last prediction quarter T as shown in Figure 4.1.

4.3.2 Patient selection model

We formulate a BIP model to select patients for adherence-improving interventions. The model’s
objective is to maximize the total CVD risk reduced in the population. Given a limited interven-
tion capacity per epoch, the objective is achieved by deciding which patients to intervene in each
epoch. Therefore, in this model, we assume that: (1) the patient receives intervention at most once
over the planning horizon; if the intervention does not work, the patient is not selected again for
an intervention, (2) the CVD risk is reduced if the patient is selected for intervention and the inter-
vention works, and (3) the probability that the intervention works (q) and the adherence effect on
relative risk reduction (r) are the same for all patients, where r ∈ [0, 1].

The risk reduction per patient is estimated in terms of the initial 10-year risk for a CVD event
(CVDi). If a patient adheres, the new 10-year CVD risk will be CVDi × (1 − r) by the end of
1 epoch into the intervention. The DLR model outputs the probability ŷit, that patient i does not
adhere in epoch t. As there is a natural risk reduction for patients that adhere, assigning patients
to interventions, who would otherwise have adhered, does not provide any additional reduction in
risk. To estimate how much the CVD risk is reduced for multiple periods due to the intervention,
we define ait as the total risk reduction throughout the planning horizon for patient i if selected for
intervention in epoch t. For example, if patient i does not adhere, we let q = 1. If that patient is
selected to receive an intervention at epoch t, the risk after the intervention is (1− r)T−t+1CVDi

and ait = CVDi − (1 − r)T−t+1CVDi. Nonetheless, as there is a probability that the patient
adheres in any epoch τ ≥ t, estimated as (1− ŷiτ ), we incorporate this probability into estimating
ait. For example, let t = T − 2 and q = 1, then aiT−1 = CVDi − (1 − ŷiT−1)(1 − ŷiT )CVDi −
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ŷiT−1(1− ŷiT )(1− r)CVDi − (1− ŷiT−1)ŷiT (1− r)CVDi − ŷiT−1ŷiT (1− r)2CVDi. We define
Pitτ as the probability that patient i does not adhere for τ epochs until the end of the planning
horizon if intervened in epoch t. The total expected risk reduced for patient i is estimated as:

ait = CVDi − q

T−t+1∑
τ=0

Pitτ (1− r)τCVDi. (4.5)

Finally, we define Sit as a binary variable where Sit = 1, if patient i is selected for intervention
in epoch t and Sit = 0 otherwise. Because the patient is only selected once for an intervention,
we need to add the constraint

∑
t∈E Sit ≤ 1. Given this constraint, the expected risk reduction

for patient i will be
∑

t∈E aitSit. As ait represents the expected CVD risk reduced, it provides an
estimate of the reduction of the probability of having a CVD event in the next ten years. Therefore,∑

t∈E aitSit also represents the decreased number of expected CVD events for patient i over the
planning horizon T . We can now formulate the problem as a BIP model to maximize the expected
total reduction of CVD events in the population, as follows:

maximize
∑
t∈E

∑
i∈I

aitSit (4.6)

subject to ∑
i∈I

Sit ≤ c ∀t ∈ E, (4.7)∑
t∈E

Sit ≤ 1 ∀i ∈ I, (4.8)

Sit ∈ {0, 1} ∀i ∈ I, ∀t ∈ E. (4.9)

The constraint in Equation 4.7 is associated with the intervention capacity per epoch, and Equation
4.8 enforces that patients are selected once. Recall that ait is estimated using the intervention and
non-adherence probability. This BIP is a special case of the multiple knapsack problem, where
finding the optimal solution is, in general, NP-hard [130]. However, we show the instances we are
concerned with are easy to solve,

We want to understand the additional reduction of CVD events when selecting a patient in epoch
t versus waiting. Having estimated this difference, we want to define a policy that selects patients
based on marginal risk reduction between epochs. Therefore, in Proposition 4.3.1, we show that
ait decreases in time and how to estimate ait and ait−1.

Proposition 4.3.1. For patient i, ai1 ≥ ai2 ≥ · · · ≥ aiT . Furthermore, ait−1 − ait =

rŷi(t−1)(CVDi − ait).
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Proof. : We prove this proposition by estimating the difference between ait−1 and ait. Then we
show that ait−1 − ait ≥ 0 for all t ≤ T . For the complete proof, refer to Appendix A.2.

We use Proposition 4.3.1 to prove Theorem 4.3.1, which shows that the optimal policy from the
BIP model is obtained by ranking patients in each epoch t by ait − ait+1. This result means that
patients with the highest marginal risk reduction of CVD events between epoch t and t+ 1 should
be prioritized first.

Theorem 4.3.1. Let z be the optimal value of the BIP presented in Equations 6 to 9. If cT < n,

then,

z =
c∑

i=1

ai1 +
2c∑

i=c+1

ai2 + · · ·+
Tc∑

i=(T−1)c+1

aiT .

If n ≤ cT , then let γ be a positive integer such that (γ − 1)c ≤ n ≤ γc. Then,

z =
c∑

i=1

ai1 +
2c∑

i=c+1

ai2 + · · ·+
n∑

i=(γ−1)c+1

caiγ.

Where patients are sorted as follows: For any particular epoch t < T , patient i is prioritized

over patient j if ait − ait+1 ≥ ajt − ajt+1. For epoch t = T , patient i is prioritized over patient j

if aiT ≥ ajT .

Proof. : We prove the theorem by induction. We define a Markov decision process (MDP) model
that represents the BIP formulation. For each epoch t, we use the MDP model to prove that the
optimal value is reached when the patients are sorted by ait − ait+1 for all epochs t to T − 1. For
epoch T , the patients are sorted by aiT . For the complete proof, refer to Appendix A.3.

The result of Theorem 4.3.1 yields an easy-to-apply policy based on ranking and selecting the
patients from highest to lowest total CVD event reduction at each epoch. We will refer to this
solution as the BIP policy. It is important to note that this policy implies the decision-maker makes
decisions at epoch 1, assuming no changes in the relative ordering of patients at each future epoch.
This may or may not be true depending on observations over the course of the time horizon. In
the next section, we propose an adaptive heuristic motivated by the BIP policy that uses the DLR
model of Section 4.3.1. Additionally, we introduce alternative patient-intervention assignment
decision rules with which we will compare our adaptive heuristic.

4.3.3 Patient-intervention decision rules

In this section, we propose two rules motivated by the BIP policy and the DLR model and compare
their results versus a standard rule used in practice. (1) The standard rule represents a plausible
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approach used by healthcare providers in which they prioritize patients with higher risk first. (2)
The first rule that we propose is to prioritize patients using the BIP policy without DLR (BIP Rule),
as discussed in the previous section. (3) The second rule we propose is prioritizing using the BIP
policy and updating the adherence probabilities using the DLR model (BIP-DLR rule). For each
of these rules, we assume that in each epoch, we have access to CVDit, define as the CVD risk for
patient i in epoch t as seen in the data.

We first start describing how the standard rule operates. From the pool of patients, we only
consider patients for selection if their PDC is lower than 80% at a given epoch and they are not on
intervention. Because there is a finite capacity for the intervention, we sort patients by CVD risk.
After each intervention, we update each patient’s adherence depending on: (1) if the patient was
intervened or not, (2) the intervention worked, and (3) the pharmacy claims data between epochs.
We present the rule in Algorithm 1.

Algorithm 1 Standard Rule
1: procedure ASSIGNMENT

2: Patients← Patients information: adherence and CVD risk
3: for t=1 to T do
4: Patients = Sort(Patients)← Sort non-adherent patients by CVD risk (decreasing)
5: int = 0
6: for i=1 to P do
7: if int < c then
8: Sit = 1
9: int = int+ 1

10: else
11: Sit = 0
12: end if
13: end for
14: Patients = Update(Patients, t, S..)← Update patients adherence and risk
15: end for
16: end procedure

For the first proposed rule, the BIP rule, we run the logistic regression once to estimate the
adherence for future epochs 1 to T without applying the updating of the DLR model. This re-
gression, without the updating, outputs the probabilities that will be used in the BIP formula-
tion. Therefore we choose the patients with the highest ait − ait+1 for each epoch t, estimated as
rŷi(t−1)(CVDi−ait), as shown in Proposition 1. Notice that we use CVDi1, as we only have access
to the current CVD risk when we run the BIP model. Also, ŷit represents the output probabilities
from the standard regression model based on historical data. We present this rule in Algorithm 2.

Finally, the BIP-DLR rule consists of an adaptive heuristic that runs the DLR model to update
adherence probabilities at each epoch and then applies the policy obtained from Theorem 1. In

62



Algorithm 2 BIP Rule
1: procedure ASSIGNMENT

2: Patients← Patients information: adherence and CVD risk
3: Prediction = LR(Patients, t)← Logistic regression model output using historical data
4: A = {ait} ← Estimate ait for all patients and for all 1 ≤ t ≤ T
5: Patients = Update(Patients, A)← Update the patients information with A
6: for t=1 to T do
7: Patients = Sort(Patients)← Sort patients by ait − ait+1(decreasing)
8: int = 0
9: for i=1 to P do

10: if int < c then
11: Sit = 1
12: int = int+ 1
13: else
14: Sit = 0
15: end if
16: end for
17: Patients = Update(Patients, t, S..)← Update patients adherence and risk
18: end for
19: end procedure

this algorithm, we re-estimate ait after updating the adherence probabilities with the DLR model
at each epoch. Notice that at each step t we only need to update the coefficients from epoch t to T .
We present the rule in Algorithm 3.

We next introduce the simulation model used to test the three intervention rules.
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Algorithm 3 BIP-DLR Rule
1: procedure ASSIGNMENT

2: Patients← Patients information: adherence and CVD risk
3: for t=1 to T do
4: Prediction = DLR(Patients, t)← DLR output using data until t-1
5: At = {aiτ} ← Estimate aiτ for all patients and for all t ≤ τ ≤ T
6: Patients = Update(Patients, At)← Update the patients information with At

7: Patients = Sort(Patients)← Sort patients by ait − ait+1 (decreasing)
8: int = 0
9: for i=1 to P do

10: if int < c then
11: Sit = 1
12: int = int+ 1
13: else
14: Sit = 0
15: end if
16: end for
17: Patients = Update(Patients, t, S..)← Update patients adherence and risk
18: end for
19: end procedure

4.3.4 Simulation model

We developed a simulation model to assess the potential benefits of using the BIP-DLR rule to
assign a limited number of patients to an adherence-improving intervention based on a hypothetical
budget constraint. To initialize the simulation, we define year t as a clinical decision maker’s
decision point. We divided the data into two sets, before t (the past) and t onward (the future).
The data set before year t is used to initialize a logistic regression model. We update the DLR
model to predict future adherence at each future time period. We compare alternative resource
allocation algorithms (described in the previous section) to assign limited interventions to patients
using factors that include future predicted adherence. We continue with the assumptions presented
regarding how the intervention works for this model. Nevertheless, we relax the assumption that
the patient is only selected once for the intervention. For the simulation model, we assume that
patients not selected for intervention or if previous interventions did not work will be available to
be selected again for future periods with the same success probability q. This relaxation is given
such that patients have future opportunities to be included in an intervention again. On the other
hand, patients with a successful intervention will not be selected again, as they are assumed to
adhere to medications. We continue this iterative process until the last simulated epoch T . This
relaxation is included within the three rules presented in the previous section, where the pool of
patients to select from includes patients that have not been selected for intervention or whose

64



previous interventions did not work. We present the simulation flowchart in Figure 4.2.

Figure 4.2: Simulation flow. The model simulates how the patient’s adherence and CVD risk
behave depending on whether or not the patient is assigned to an intervention.
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After selecting patients for intervention and updating the adherence if the intervention is suc-
cessful, the epoch is updated to t+1. We divide the EHR and claims data up to t+1 and after t+1,
with the difference that we do not include patients that had a successful intervention. We simulate
a 5-year time horizon, where each year is considered an epoch. At each iteration, time advances
by one year, where we update the patients’ risk using the EHR data if the patient is not on an in-
tervention or update the risk using the risk reduction parameter if the patient is on an intervention
and the intervention worked. To test the effectiveness of the intervention rules, we estimate the
reduction in the number of CVD events after the simulated intervention horizon. To estimate the
number of events, we calculate the absolute 10-year CVD risk for each patient after the simulation
and the number of CVD events after ten years. We compare the model’s results versus when no
adherence-improving intervention exists.
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4.4 Results

This section presents the case study, the results of the DLR model, the patient-intervention decision
rules, and the simulation model. We initialize the DLR model by estimating a standard logistic
regression model on a training set to calibrate our model, then estimate the prediction for the
studied time horizon, and finally simulate the patients’ CVD risk with and without the prediction.

4.4.1 Case study

We used a longitudinal data set of randomly selected patients seen in the national Veterans Affairs
(VA) health system between 2003 and 2018. The data set was based on a cohort of 10,000 patients
sampled from the national VA population. We included patients with at least one year on statins,
without diabetes, and without any previously diagnosed heart disease or related conditions. Using
these selection criteria yielded 3753 patients with data between 2003 to 2018, between the ages of
40 to 80 years old.

Covariates included demographics, medical health factors, blood pressure and cholesterol lev-
els, and observation dates. Within demographics, we consider sex, race, smoking habits, and age.
The smoking status was assumed to be constant throughout the study, as we only had access to
the patient’s smoking status at the beginning of the study. We considered low-density lipoprotein
cholesterol (LDL), total cholesterol, and systolic blood pressure (SBP) as medical health factors.
We considered the number and dates of cholesterol tests and blood pressure tests. Finally, we used
pharmacy claims data (start date, pill quantity, and refill dates) to compute the PDC, estimated as
the percentage of the number of days with medication over the total number of days between refills
quarterly [11]. We estimated the PDC quarterly as the American College of Cardiology suggests
that patients on treatment be seen at least every three months[1]. Using a common assumption in
the literature, we defined a patient as adherent in a given quarter if their PDC was greater than or
equal to 80%; otherwise, they were considered non-adherent [11].

We present an overview of the study population in Table 4.2. Most of the population is com-
prised of white male patients (70% of the population), followed by black men (20%), then white
women (6.5%), and finally, black women (2%). Within the data, other races represent less than 1%
of the data points and are not differentiated. For this reason, we focused on the four patient groups
mentioned before. The sex, race, and smoking habits data represent the number of patients with
each characteristic. For age, PDC over the time horizon, blood pressure, and cholesterol, we esti-
mated the mean and standard deviation of the population for adherent and non-adherent patients.
Finally, the number of cholesterol and blood pressure tests represents the average per patient of
the number of tests they take throughout the study period of 5 years. In summary, Table 4.2 shows
that non-adherent patients tend to be younger, have fewer cholesterol and blood pressure tests, and
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Table 4.2: Baseline characteristics of the population. We divide the patients based on their lifetime
adherence behavior.

Mean (± SD) or No.(%)
Characteristic Non-adherent patients Adherent patients P
n 1569 2095
Sex 0.001

Male 1430 (91.1%) 1973(94.2%)
Female 139 (8.9%) 122 (5.8%)

Race <0.001
White 1196 (76.2%) 1842 (87.9%)
Black 373 (23.8%) 253 (12.1%)

Smoking Habits 0.026
Smoker 372 (23.7%) 431 (20.6%)
Non-smoker 1197 (76.3%) 1664 (79.4%)

Age 59.22 (11.76) 63.84 (11.05) <0.001
Percentage Days Cover 63% (15%) 90% (5%) 0.79
Blood Pressure

SBP 129.90 (9.71) 128.99 (8.72) 0.003
Number of tests 34.03 (33.54) 42.40 (47.16) <0.001

Cholesterol
LDL 123.06 (28.76) 103.54 (23.60) <0.001
Total Cholesterol 199.09 (33.13) 177.08 (29.92) <0.001
Number of tests 10.99 (7.11) 14.22 (7.25) <0.001
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have higher LDL and total cholesterol.

4.4.2 Logistic regression initialization and covariates

The initial logistic regression at the start of the time horizon comprises three types of covariates:
random effects, categorical covariates, and numerical covariates. The random effects are repre-
sented within the intercept term, which is significant regarding the probability that a patient does
not adhere to medication. This denoted intrinsic behaviors regarding each patient, which are not
evaluated by any other variables. Regarding past adherence, the study includes patients with at least
one year on medication. Therefore, there is always enough history to predict future adherence.

Table 4.3: Coefficients for the logistic regression for historical data. We also present the variance
inflation factors (VIF) to test for multicollinearity.

Covariate Estimate Std. Error P-value VIF
Intercept 3.449 0.545 <0.001*
Sex -0.285 0.195 0.144 1.04
Race -0.324 0.121 0.013* 1.03
Smoking habits 0.062 0.100 0.541 1.06
Age 4.22× 10−3 3.91× 10−3 0.280 1.24
Blood Pressure

SBP 7.69× 10−5 2.77× 10−3 0.978 1.03
Number of tests 0.105 0.033 0.001* 1.06

Cholesterol
LDL 5.55× 10−3 2.42× 10−3 0.022* 4.22
Total Cholesterol 1.37× 10−3 2.05× 10−3 0.51 4.29
Number of tests -0.093 0.071 0.191 1.14

Percentage days cover
1st Quarter -0.755 0.136 <0.001* 2.71
2nd Quarter -0.707 0.149 <0.001* 3.06
3rd Quarter -0.190 0.149 0.204 3.11
4th Quarter -0.420 0.152 0.006* 3.09
5th Quarter -0.296 0.151 0.049* 3.02
6th Quarter -0.091 0.148 0.541 2.94
7th Quarter -0.221 0.146 0.130 2.78
8th Quarter -0.033 0.133 0.807 2.30

Table 4.3 presents the coefficients of the logistic regression model. Additionally, we calculated
the variance inflation factors (VIF) to test for multicollinearity. We noticed that cholesterol LDL
and total cholesterol have a VIF greater than 4, and the PDC also has larger VIF values, between 2.3
and 3.1. We further estimated the correlation between the coefficients (see Figure A.3 in Appendix
A.4). The high VIF values for LDL and total cholesterol are due to the high correlation (0.87)
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between these covariates. This correlation is explained as the total cholesterol is estimated from
LDL via Friedewald’s equation [131]. On the other hand, the high correlation between the different
quarters of PDC shows an autocorrelation behavior for adherence, between 0.57 and 0.74. Notably,
the correlation decreases with respect to time between PDC estimates, indicating that the value of
PDC history decreases over time. We can look at these results by studying which covariates are
significant to forecasting future adherence.

Regarding the categorical variables, Table 4.3 shows race is the only variable that affects the
probability of not adhering. From our analysis, we note that black patients are associated with
lower adherence to statins which has been observed in other studies as well [78] [68] [69].

Other statistically significant numerical covariates (based on a p-value threshold of 0.05) are
the number of blood pressure tests from the beginning of the study until the current refill date, the
LDL, and past percentage days covered (PDC) were significant variables related to not adhering
to medication. There is a positive correlation between a higher LDL with non-adhering behavior.
On the other hand, when patients take more blood pressure tests, they are more likely to stop
adhering. Previous studies suggest this may be related to patients taking less medication when
their test results show that their health has improved [11]. Finally, we noticed that the patient’s
PDC behavior from the last year and a half dramatically affects the probability of not adhering,
whereas, at a high previous PDC, the probability of not adhering to medication decreases. It is
worth noting that prior PDC behavior from more than a year and a half affects less the current
adherence. This result suggests that a moving time window with a year and a half of prior history
is sufficient to predict the likelihood that a patient will stop adhering.

4.4.3 Dynamic logistic regression

After estimating the initial logistic regression covariates, we run the DLR model to forecast the
probability that patients do not adhere over the next five years. We needed sufficient data to include
the patients’ random effects in the model. From the data set, which comprises data between 2003
to 2018, we assigned observational data from 2009 and before to be the training set. Therefore, the
testing set consisted of data from 2010 onwards, so we have sufficient data for the 5-year rolling
time horizon. We define a patient as not adhering if, at least for two quarters within a particular
year, the patient does not adhere. Additionally, we test the DLR model using different values for
the adherence threshold. We test the model using the base case threshold of 80% for adherence and
estimate the AUC, as shown in Figure 4.3. We perform sensitivity analysis with respect to this base
case, as shown in Appendix A.4 Figure A.4. We performed a 3-fold cross-validation to validate the
results, dividing the patients into three groups and estimating the average AUC. We present these
results as the healthcare provider may use a different threshold based on the evaluated panel [11].
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Figure 4.3: ROC and AUC curves. We present the ROC and AUC for each of the five forecasting
years for an adherence threshold of 0.8
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For the first year, the average AUC ranges from 79% to 84%, depending on the threshold chosen.
The AUC decreases when forecasting for more years into the future, whereas, for the fifth year, the
AUC ranges from 71% to 74%.

We also measured how many patients the model forecasts correctly. We assume the decision-
maker desires the logistic regression threshold that maximizes the model’s accuracy. Therefore,
we estimated the percentage of true positives, true negatives, false positives, and false negatives
for the population, as shown in Figure 4.4.

The model correctly forecasts 75% of the patients for the first year and decreases to 70% for the
fifth year. This result shows that the model accuracy decreases when forecasting more years into
the future.

As the forecast model is intended to help healthcare providers decide which patients to include
in an intervention, we focus on the percentage of false negatives. False negatives represent the
portion of patients who stop adhering but for whom the model forecasts that they will adhere.
Therefore, these are patients not considered for intervention. The percentage of false negatives
ranges between 11% for one year to 17% for five years.

4.4.4 Simulation results

We simulated the panel of patients consisting of 3753 patients from the VA population present in
the case study. We apply each patient-intervention decision rule, assuming published estimates for
adherence-improving interventions as shown in Table 4.4. As the available capacity may change
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Figure 4.4: Forecast performance measurements by forecast year. For each forecast year, we
present the false negative, false positive, true negative, and true positive percentages. In summary,
the accuracy decreases when forecasting a later year.
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depending on the intervention, we analyze how our model performs depending on different values.

Table 4.4: Parameters estimates for the simulation model. The success of an intervention depends
on the type of intervention provided to the patients. We present the range of each parameter when
using the most common interventions.

Notation Description Value Reference
q Probability of success of the intervention 70% to 90% [12]
r Adherence effect on risk reduction 7% to 12% [19]

Additionally, we analyze the scenarios where the intervention capacity is between 15% to 75%
of the population per year. We assume that the average capacity of 35% of the population can be
allocated and a probability of 80% that the intervention works. We validate the model by com-
paring the simulation output risk without intervention, i.e., when the capacity of the intervention
is 0. As there is no intervention, we update the patients based on available data. Therefore, the
confidence intervals are 0, as no stochastic behavior is added to the model. The VA population
average risk is 17%, while the simulation output is 17.5%± 0%, hence validating the model. This
represents that 17,500 patients, in a population of 100,000, will have a CVD event in the next ten
years if there is no adherence-improving intervention.

We simulate the three patient-intervention decision rules, standard rule, BIP rule, and BIP-
DLR rule. Additionally, we add an upper bound to the BIP-DLR rule (BIP-DLR-UB), in which
we assume the probability that the intervention works is 1. This scenario represents the best-
case scenario so that we can analyze the effectiveness of the BIP-DLR algorithm. Additionally,
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we performed a sensitivity analysis, changing the capacity of the intervention, the probability of
success, and the risk reduction. We present the sensitivity analysis in Figure 4.5.

Figure 4.5: Sensitivity analysis. We studied how the intervention capacity, the probability that
intervention works, and CVD risk reduction for patients in intervention affect each of the selection
rules. We estimate the number of CVD events reduction in a population of 100,000 patients.

When using the base case parameters, we see that the standard rule reduces the number of
CVD events by 5610± 8.2 in a population of 100,000 patients compared to not having adherence-
improving interventions. Applying the BIP rule further reduces the number of CVD events by
1190 ± 28.86 compared to the standard rule. Finally, when adding the DLR model, the BIP-
DLR rule further reduces the number of CVD events by approximately 700 more, for a total of
1890± 12.63 CVD events compared to the standard rule. This result shows that the BIP-DLR rule
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can reduce the number of CVD events by 36.5% compared to the standard rule.
Analyzing how the intervention capacity affects the rules, we notice that when it increases, the

difference increase furthermore between the three rules. This result shows that selecting patients
by the marginal difference in risk has better performance than selecting by the patient’s current
CVD risk. Additionally, updating the adherence probabilities with the DLR model improves the
results furthermore. With respect to the probability that the intervention succeeds, we notice that
when it is closer to 1, there is no difference between using or not using the DLR model. This result
is explained given that when the probability increases, the need to look into further periods in the
future diminishes and it is only necessary to look into the marginal difference in risk between the
current and next epoch. Finally, we see that the rate of risk reduction does not affect the difference
between the rules.

As mentioned in Section 4.3, Theorem 4.3.1 proposes an algorithm for estimating the BIP
optimal solution. Nevertheless, as shown in Figure 4.5, the difference between the BIP-DLR rule
and the upper bound is less than the reduction that the rule already offers. This result acknowledges
that using the BIP and DLR models together offers excellent results.

4.5 Discussion

We developed a DLR model that forecasts adherence for multiple years into the future. Our model
determined the probability that the patient would stop adhering. Compared to the prior literature
discussed in Section 4.2, our approach further relaxed the assumption that adherence follows a spe-
cific behavior from a pool of defined trajectories. We incorporated random effects into our model,
including patients’ healthcare background, lifestyle, and access to healthcare, which is novel in the
adherence forecasting literature. We also included the adherence history as a covariate, improving
from previous studies that suggest including only the last measurement of adherence [104]. We
found that including a year and a half of past adherence behavior, between 4 to 6 measurements,
has a low prediction error, and including more history does not significantly improve the accuracy.
Therefore, healthcare systems only need to store a year and a half of data to use this forecasting
approach, reducing the computing time and data requirements.

We tested the DLR model with longitudinal data for cholesterol and blood pressure of a cohort
of 10,000 randomly selected patients seen in the Veteran Affairs health system. The AUC ranged
from 79% to 84% for the first year, depending on the PDC threshold chosen. Then, the AUC
range decreased year by year until getting from 71% to 74% for the fifth year, depending on the
PDC threshold chosen. Our model false positive measure tends to remain constant when predicting
different years into the future. Therefore, the error of choosing patients for intervention when they
do not need it is always relatively low, increasing the chances that patients that benefit the most
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from the interventions are chosen first.
We developed a BIP model that selects patients from a heterogeneous population for interven-

tions. Additionally, we estimated the marginal risk reduced when selecting a patient for inter-
vention versus waiting for the next intervention cycle. We proved that the BIP optimal policy is
equivalent to sorting patients by the marginal risk reduced and selecting patients from highest to
lowest until the intervention capacity is depleted. Thus, the BIP has a simple polynomial time
solution for this special case of the multiple knapsack problem.

We simulated the application of DLR within the BIP when deciding which patients to include
in an increase-adherence intervention. Applying the adaptive heuristic that includes the BIP and
DLR models reduces the number of CVD events by 36.5% compared to a base case rule of sorting
patients by their current risk. This result shows that adaptive approaches successfully capture
adherence dynamics that fluctuate over time.

We understand that our model has some limitations, mainly on the population we are using.
The VA data set corresponds to patients with better access to healthcare, tend to have more fre-
quent follow-ups, and have higher adherence to medication [78]. Additionally, the VA population
primarily corresponds to white and black male patients; unfortunately, we cannot access informa-
tion about other races or ethnicities. Nevertheless, our model shows that the forecast has similar
outcomes to other demographic groups. Therefore, a population with less access to healthcare
will benefit from a more significant risk reduction, as the intervention will improve health benefits.
Additionally, we understand that using PDC to estimate adherence implies the assumption that pa-
tients take all the refilled medication. We also assume adherence patterns are similar for the various
types of statins. Most authors agree that questionnaires, constant surveillance, and electronic pill
counts are the most effective to measure adherence [132] [133]. However, gathering information
for these methods is costly [134], and usually, healthcare providers have access to medication refill
dates. Finally, we apply a BIP model that estimates the expected risk reduced, which may hide the
variability behind the adherence behavior and the intervention success. Nonetheless, dynamically
updating the BIP helps capture this variability and gives healthcare providers a starting point to
improve the selection of patients for adherence-improving interventions.

4.6 Conclusions

After the first year on medication, only 50% of the patients will adhere, increasing the risk of car-
diovascular diseases. This adherence behavior changes over time, and healthcare providers must
identify when patients will stop adhering to prevent further complications. Different adherence-
improving interventions exist, where the most efficient ones have a limited capacity. Therefore,
healthcare providers need to choose patients for intervention to mitigate future low adherence. Our
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study shows that using DLR models with random effects can potentially alert healthcare providers
to which patients will stop adhering. Additionally, the forecast supports decisions associated with
which patients should be included in increase-adherence interventions. We propose an adaptive
heuristic that combines a BIP model with the DLR model to select patients. We prove that to
minimize the number of CVD events in the population, healthcare providers need to select pa-
tients with the highest marginal risk reduced. Thanks to our adaptive heuristic, physicians’ time
and intervention-associated resources are better utilized relative to the patients’ future adherence
behaviors. Therefore, patients will receive timely support, increasing medication effectiveness and
improving overall health.

Future work might consider improving the patient selection model by defining a dynamic
stochastic model that includes the DLR prediction and the patients’ health stochastic behavior.
Our adaptive heuristic provides a starting point to investigate some of these approaches and fur-
ther decrease the number of CVD events in the population. Additionally, we understand that our
studied population has certain characteristics that differ from the general population. We propose
to analyze the model’s accuracy with a different population mix as a natural next step. Finally, our
model assumes that the probability of the intervention working and the adherence effect on risk
reduction is the same for all patients. The surveyed studies on adherence interventions analyze
the overall effects of successful interventions on patients. Therefore, we recommend updating the
patient selection model with studies that analyze the differences between patients regarding inter-
vention success. Testing the model with data that has constant adherence follow-up or electronic
pill count may increase the forecast accuracy. Finally, our approach could find applications in
multiple diseases that rely on adherence to medication for long periods.
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CHAPTER 5

Conclusion and Future Work

Access to electronic health records has created opportunities to understand how patients’ health
conditions change over time by analyzing the disease progression and developing strategies to pre-
vent them. This research created operations research methods to (1) monitor and identify patients
at high risk of suffering cardiovascular disease (CVD) events and (2) prevent adverse events by
prioritizing patients for adherence-improving interventions. The research in this dissertation estab-
lishes the analytical and theoretical foundation for building stochastic models that help understand
disease progression and prevent cardiovascular diseases.

In Chapter 2, we developed an EM algorithm that is able to use sparse longitudinal data and
correctly fit cholesterol and blood pressure behaviors into Markov chains. Additionally, we de-
veloped a discrete-time Monte-Carlo simulation framework used to test policies throughout our
research. We tested the simulation framework by comparing multiple treatment guidelines for
cholesterol and blood pressure-lowering medications. We concluded that guidelines focusing on
reducing CVD risk could also reduce treatment overuse without increasing the potential risk of
having a disease.

In Chapter 3, we presented a finite-time and finite-state MDP model to recommend to patients
when to take their next cholesterol test. This model’s objective is to maximize the societal rewards,
which include the costs of appointments, costs of treatment, cost of cardiovascular events, and the
patient’s willingness-to-pay to be healthy. The resulting MDP-based policies suggest that including
the patient’s age, sex, and race improves the societal rewards by $28.5 billion for the VA system
compared to existing one-size-fits-all policies.

Finally, In Chapter 4, we developed a dynamic logistic regression model which estimates the
probability that a patient will stop adhering in multiple periods. We proposed a binary integer
programming (BIP) that selects patients for intervention with the purpose of maximizing the total
reduction of the number of CVD events. Given that solving the BIP model to optimality is NP-hard,
we provided an algorithm that uses the dynamic logistic regression (DLR) probabilities to reduce
the CVD events. Our approach results in approximately 1,900 fewer heart attacks and strokes, in
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a population of 100,000 patients seen in the Veteran Affairs health system, compared to current
prioritization rules.

In the following sections, we discuss how future work can extend our analysis and modeling
frameworks.

5.1 Achieving health equity

The Center for Medicare and Medicaid Services in the U.S. estimates that healthcare spending
represents 18.3% of the GDP and will continue to be the same until 2030 [135]. Health equity has
yet to be achieved as access to healthcare in the U.S. differs vastly across groups. Since healthcare
spending cannot be further increased, new ways must be considered to increase equity. We proceed
to describe two potential research directions: 1) data-driven models to understand patient compli-
ance for underrepresented populations and 2) equitable models for distributing limited resources.

According to the CDC, health equity is reached when “every person has the opportunity to at-
tain their full health potential, and no one is disadvantaged from achieving this potential because
of social position or other socially determined circumstances” [136]. Therefore, increasing health
equity means better health outcomes from equitable access to prevention, treatment, and interven-
tions.

When building mathematical frameworks to improve patient outcomes, health equity requires
precise model performance, fair resource allocation, and aiming toward better health outcomes
throughout patients’ lifetimes [12]. Precise model performance is obtained when models correctly
fit the patients’ health behavior, even for underrepresented subgroups within the population. Fair
resource allocation represents that resources are distributed based on patients’ needs. Aiming
toward better outcomes means that all patients achieve their health potential while accounting for
socially and demographic diverse patient populations. Increasing equity and reducing disparities
is more challenging when you must account for resource allocation over time and under conditions
of uncertainty, which is typical for chronic diseases.

Medical decision-making models need to pay more attention to the importance of equity and
diversity in measuring success and intervening to improve patient outcomes. In Chapters 2 and 4,
we focused on improving the models’ performance by analyzing how to fit the patient’s disease
progression. Additionally, in Chapters 3 and 4, we started looking into resource allocation with our
patient selection model for adherence-improving interventions. We consider these contributions as
foundations to work towards health equity in this field.
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5.1.1 Data-driven models for patient compliance

High-risk patients do not comply with physicians’ recommendations for different reasons, such as
misconceptions about their health, access to healthcare, and side effects. Besides treatment adher-
ence, patients might not comply with other physicians’ recommendations, which directly affects
the gathering of health data, such as appointment dates, laboratory tests, and screenings. These
patients assume they are healthy, mistrust their physicians, or it is enough for them not to spend
additional resources such as time, money, and inconvenience. These socioeconomic variables,
among others, are unmeasurable or unavailable due to patients’ privacy. Unfortunately, having
these patients means fewer data, increasing the prediction complexity and affecting underrepre-
sented populations even more. In Chapter 2, we introduced the EM algorithm that can handle
non-autocorrelated data. Nonetheless, when data has a time series behavior, we need new data-
augmentation techniques and forecasting models [29].

There has been increased research on techniques to estimate future trajectories for time series
with sparse data. For a short prediction horizon, ARIMA with Kalman smoothing models has
high accuracy [137]. Nonetheless, when the prediction horizon increases, the accuracies decrease
rapidly. For healthcare applications, it is uncommon to report and handle missing data in practice.
Nonetheless, methods such as ARIMA, mixed effects, and generalized linear models have been
used to forecast future health behavior from sparse data [138]. Due to their low accuracy, other
methods, such as probabilistic principal components analysis, show excellent results when dealing
with data missing at random [139]. Still, the accuracy decreases when the missing data happens
for continuous multiple periods, which is common when patients stop adhering to physicians’
recommendations. Therefore, there is a need to develop time series forecasting techniques that
have high accuracy for long time horizons and feed from sparse data with continuous data missing.
Finally, when new data is gathered, models can learn to dynamically increase the accuracy of
the prediction to guide decision-making, as shown in Chapter 4. Nevertheless, dynamic logistic
relations accuracy decreases when the historical data is insufficient. Deep learning techniques
show excellent results when applied to blood glucose. Unfortunately, their accuracy decreases
when exogenous and endogenous variables, such as socioeconomic factors, are included [140].

Future research may focus on unsupervised and supervised machine learning models, which can
handle the discussed complexities. In particular, hierarchical models may offer the opportunity to
complete information on underrepresented groups by estimating a joint probability distribution that
captures the overall behavior of the population [141]. For healthcare, researchers use hierarchical
models to understand diseases by classifying patients based on conditions, estimating the proba-
bility of future disease severity, and estimating the disease progression [142]. These models have
been used for cardiovascular diseases to predict hypertension for different patient groups divided
by sex and age [143]. Additionally, a time-varying approach has been used to understand how each
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CVD event increases the death probability [144]. Therefore, future work could explore how these
models could be used for subgroup analysis when there is limited data for some subgroups.

5.1.2 Sequential equity decisions under limited resources

Different equity objectives may counteract each other. Focusing on improving the overall patients’
health may result in assigning more resources to younger and healthier patients to prevent chronic
disease. As a result, this may draw resources away from older patients at risk of serious adverse
outcomes of chronic diseases. This example is one of many that illustrates the difficulty of achiev-
ing health equity and the complex tradeoffs that must be considered. Therefore, it is necessary
to correctly define equity metrics and analyze their effects on the population. After defining these
metrics, the challenge is to decide when to assign resources to each patient, acknowledging that the
models must represent time-varying systems (disease progression and resource availability) under
uncertainty. Additionally, it is important to include how patients respond to recommendations, as
mentioned before, considered strategic decision-makers aiming toward their benefits. Future re-
search may focus on the definition of equity metrics to represent different stakeholder needs and
expectations with consideration of underserved and at-risk populations. Equity metrics tend to be
non-linear, as they change depending on the patient background, the interactions within the popu-
lation, and other reasons. These components add complexity to optimization models, which may
be handled by developing sequential decision-making models with multiple criteria. These models
will contribute by expanding the literature on multi-objective, multi-agent, and equitable sequen-
tial decision-making under limited resources. The outcomes of these models will assist healthcare
providers in making equitable decisions that will benefit all subgroups within the population.

5.2 Prioritization models under uncertainty and with limited
resources

In addition to addressing health equity, another key extension to the work presented in this dis-
sertation is to add the patient’s health behavior to the allocation models. This may be done by
developing a finite-state and finite-time Markov decision process (MDP) model to include two new
components: (1) the stochastic behaviors that are associated with the patients’ disease progression
and (2) the stochastic behaviors associated to the patients’ compliance to physicians recommenda-
tions (i.e. adherence to medication), as follows:

Epochs: Let E := {1, ..., T} be the set of epochs such that t ∈ E represents the instant in time
when patients are selected for interventions.
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States: Define sit such that if sit = 1 then patient i was selected for intervention before t, and
0 otherwise. Define St as the vector that contains this information. Define Rit as the CVD risk of
patient i at the start of epoch t and Rt as the vector containing these CVD risks. Finally, define Ait

such that if Ait = 1, then patient i adheres to medication at the start of epoch t, and 0 otherwise.
Then At is the vector that contains the patients’ adherence information.

Decisions: Define Dt as the set of feasible decisions to make in epoch t. If dt ∈ Dt, then dt is a
vector of size n where dit = 1 if patient i is selected for intervention in epoch t and 0 otherwise.
Additionally, if sit = 1, then dit = 0 such that

∑
i dit ≤ c ∀ i, t.

Transition Probabilities: We define pRi
(ri|Rit, Ait, sit, dit) as the probability that in epoch

t + 1 patient i has risk ri given that in epoch t, the patient had risk Rit, they adhere or not to
medications, was selected or not for intervention before epoch t, and the decision dit. We also
define pAi

(ai|Ait, sit, dit), where if ai = 1, as the probability that in epoch t+1 patient i adheres to
medication given the current adherence behavior if the patient was selected or not for intervention
before starting epoch t, and the decision dit, and ai = 0 otherwise. Notice that if sit = 1 then
pAi

(1|Ait, sit, dit) = 1. Finally, we define pIi(si|sit, dit), where if si = 1, as the probability that the
intervention works for patient i if the patient was selected or not for intervention before starting
epoch t, and the decision dit, and si = 0 otherwise. Notice that if sit = 1, then pIi(1|sit, dit) = 1.

As every single patient evolves independently, we can assume that the stochastic behaviors are
independent of each other. We define pt(St+1,Rt+1,At+1|St,Rt,At,dt) as the transition probabil-
ities given by the patients selected for intervention, and estimated this value as follows:

pt(St+1,Rt+1,At+1|St,Rt,At,dt) =
∏
i

(
pRi

(ri|Rit, ai, si, dit)

pAi
(ai|Ait, si, dit)pIi(si|sit, dit)

)
.

(5.1)

Immediate rewards: The model objective is to minimize the number of CVD events by the end
of the planning horizon. Therefore we assume that for all epochs t < T , the immediate rewards
will be 0 and for

∑
i RiT for epoch T .

Given the components of the MDP, define Vt(St,Rt,At) as the total expected CVD events at
the end of the planning horizon depending on the selection rule from t to T , where the Bellman’s
equations are as follows:

Vt(St,Rt,At) = mindt∈Dt

{ ∑
A∈St+1

∑
R∈Rt+1

∑
A∈At

pt(S,R,A|St,Rt,At,dt)

Vt+1(S,R,A)
}
∀t ∈ E− {T},

(5.2)
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where the boundary conditions are VT

(
ST ,RT ,AT

)
=

∑
i RiT .

This MDP model suffers the curse of dimensionality, as when the number of patients increases,
the number of feasible states and decisions also increases exponentially. However, one may study
this problem as a restless multi-armed bandit model that considers resource restriction. Given
that physicians may prioritize multiple patients in each period, one may focus on a particular
bandit model called combinatorial multi-armed bandit (CMAB), where the literature has studied
different algorithms to reach a nearly optimal result [145] [146] [147]. Most of these algorithms
suggest ranking methods [148] [122]. Nevertheless, these algorithms assume that pulled arms
(patient prioritized) always show results (Interventions always work), and not pulled arms will
not change between epochs (non-restless bandits). Therefore there are opportunities to develop
algorithms that include the patient’s adherence to recommendations. Future research may also
focus on understanding how heuristics perform for different patient groups within the population
in terms of health equity. Also, depending on the definition of equity, develop heuristics that builds
towards improving equity between each patient group.

5.3 Concluding remarks

This dissertation applies operations research methods and develops policies to answer the follow-
ing key challenges:

1. Understanding how the patient demographics influence the disease progression.

2. Developing sequential decision-making models under uncertainty that pursue the best health
outcomes for individual patients.

3. Developing sequential decision-making models with limited resources to prevent chronic
diseases for a population.

Our findings highlight important insights into identifying high-risk patients and preventing
CVD. This research contributes to the operations research body of knowledge by developing fore-
casting models using sparse longitudinal data and proposing new approaches to model stochas-
tic healthcare systems to improve medical treatment decisions and the allocation of adherence-
improving interventions. While much work remains to be done, we hope this dissertation es-
tablishes the analytical and theoretical foundation for building stochastic models that assist in
addressing future healthcare challenges.
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A.1 Chapter 3: Additional graphs

Figure A.1: White male optimal policy. The optimal policy varies depending on the patient’s age,
cholesterol levels, and blood pressure levels. The color represents the time between appointments
where lighter is less time between appointments and darker is more time between appointments.
The optimal policy ranges from 3 months to 72 months between appointments. The spaces in white
represent invalid cases, e.g. where patients should be in a specific type of treatment base on the
patient’s 10-year risk. For example a 70-year old white male patient should be on statin treatment,
therefore there is no optimal policy for patients without treatment
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Figure A.2: Sensitivity analysis of the rewards when adding a time delay to the patient’s arrival at
the next appointment. We present on the x-axis the average number of delayed quarters, where 0
represents 100% compliance from the patient. We show the rewards and the confidence interval.
We present the scenarios where patients with treatments have a shorter delay than those with treat-
ment.
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A.2 Chapter 4: Proof for Proposition 1

For any epoch t, Pit0 = (1− ŷit)(1− ŷit+1) · · · (1− ŷiT ) and Pi(t−1)0 = (1− ŷit−1)(1− ŷit) · · · (1−
ŷiT ). Then, Pi(t−1)0 = (1 − ŷit−1)Pit0. For any τ > 0 and τ < T − t + 2, Pi(t−1)τ = Pitτ (1 −
ŷit−1) + ŷit−1Pit(τ−1), as Pitτ (1 − ŷit−1) represents the probability that in τ epochs the patient is
non-adherent between t and T − t + 2 and is adherent en t − 1, and ŷit−1Pit(τ−1) represents the
patient is non-adherent in τ − 1 epochs between t and T − t + 2 and is non-adherent en t − 1.
Finally, Pi(t−1)(T−t+2) = ŷit−1Pit(T−t+1). Then the difference between ait−1 and ait is estimated as:

ait−1 − ait = CVDi − q
T−t+2∑
τ=0

Pit−1τ (1− r)τCVDi − CV Di + q

T−t+1∑
τ=0

Pitτ (1− r)τCVDi

= q
T−t+1∑
τ=0

Pitτ (1− r)τCV Di − q
T−t+2∑
τ=0

Pit−1τ (1− r)τCVDi

= qCV Di

( T−t+1∑
τ=0

Pitτ (1− r)τ −
T−t+2∑
τ=0

Pit−1τ (1− r)τ
)

= qCV Di

(
Pit0 − (1− ŷit−1)Pit0 − ŷit−1Pit(T−t+1)(1− r)T−t+2

+
T−t+1∑
τ=1

Pitτ (1− r)τ − (Pitτ (1− ŷit−1) + ŷit−1Pit(τ−1))(1− r)τ
)

= qCV Di

(
ŷit−1Pit0 − ŷit−1Pit(T−t+1)(1− r)T−t+2

+
T−t+1∑
τ=1

Pitτ ŷit−1(1− r)τ − ŷit−1Pit(τ−1)(1− r)τ
)
.

By reorganizing the terms, the difference is estimated as:
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ait−1 − ait = qCV Di

(
ŷit−1Pit0 − ŷit−1Pit0(1− r) + ŷit−1Pit1(1− r)− ŷit−1Pit1(1− r)2

+ · · ·+ ŷit−1Pit(T−t+1)(1− r)T−t+1 − ŷit−1Pit(T−t+1)(1− r)T−t+2
)

= qCV Di

(
ŷit−1Pit0(1− (1− r)) + ŷit−1Pit1(1− r)(1− (1− r))

+ · · ·+ ŷit−1Pit(T−t+1)(1− r)T−t+1(1− (1− r))
)

= qCV Di

T−t+1∑
τ=0

rŷit−1Pitτ (1− r)τ

= rŷit−1q
T−t+1∑
τ=0

Pitτ (1− r)τCV Di

= rŷit−1(CVDi − ait).

Therefore, since rŷit−1(CVDi − ait) ≥ 0, it follows that ai1 ≥ ai2 ≥ · · · ≥ aiT . □

A.3 Chapter 4: Proof for Theorem 1

Define a Markov decision process (MDP) model with the following components:

• Epochs: Instant in time when patients are selected for interventions.

• States: Define sit such that if sit = 1 then patient i was selected for intervention before t,
and 0 otherwise. Define X0

t as the set of patients who are available for interventions in epoch
t, then if sit = 0, then i ∈ X0

t . Define X1
t as the set of patients who are not available for

interventions at the start of epoch t, then if sit = 1, then i ∈ X1
t .

• Decisions: Define Dt as the set of feasible decisions to make in epoch t. If dt ∈ Dt, then dt

is a vector of size n where dit = 1 if patient i is selected for intervention in epoch t and 0

otherwise. Additionally, if i ∈ X1
t , then dit = 0 such that

∑
i dit ≤ c ∀ i, t.

• Transitions: If in t, i ∈ X0
t and dit = 1, then i ∈ X1

t+1 and i /∈ X0
t+1. Otherwise, patient i will

remain in X0
t until the next epoch. Then we define W0 and W1 as the functions that represents

the sets in t+ 1, such that X0
t+1 = W0(X0

t ,dt) and X1
t+1 = W1(X1

t ,dt).

• Immediate rewards: The immediate rewards of taking decision dt in epoch t are estimated
as

∑
i∈X0t

aitdit.
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Given the components of the MDP, define Vt(X0
t ,X

1
t ) as the total maximal risk reduction from

epoch t to epoch T , where the Bellman’s equations are as follows:

Vt

(
X0
t ,X

1
t

)
= max

dt∈Dt

{∑
i∈X0t

aitdit + Vt+1

(
W0(X0

t ,dt),W
1(X1

t ,dt))
}
∀(X0

t ,X
1
t

)
, ∀t ∈ E− {T},

where the boundary conditions are VT

(
X0
T ,X

1
T

)
= maxdT∈DT

{∑
i∈X0T

aiTdiT

}
for all (X0

t ,X
1
t

)
.

This MDP is equivalent to the BIP in Equations 4.6 to 4.9, where the constraints are represented
in the decision set. Therefore, the MDP’s optimal value and policy are the same optimal value and
solution of the BIP model.

Now we prove the theorem by induction. For epoch T , without loss of generality, the patients
in X0

T can be organized such that for all i and j where i ≤ j we have that aiT ≥ ajT . Then, the
policy that maximizes the rewards is to choose the first c patients that belong to X0

T , i.e., the first c
patients with the highest values of aiT .

For t = T − 1, define d∗T as the optimal policy for epoch T and d∗T−1 as the optimal policy for
epoch T − 1. Given the construction of DT and DT−1 we know that if d∗iT−1 = 1 then d∗iT = 0

and if d∗iT = 1 then d∗iT−1 = 0. Let n0T−1 = |X0
T−1|, then, without loss of generality, assume that

patients 1 to n0T−1 belong to X0
T−1 and patients n0T−1 + 1 to n belong to X1

T−1 and are organized
such that if i, j ∈ X0

T−1 and i < j, then ŷit(CVDi − aiT ) ≥ ŷjt(CVDj − ajT ).
Let d′

T−1 be such that d′1T−1 = d′2T−1 = · · · = d′cT−1 = 1 and d′(c+1)(T−1) = · · · = d′nT−1 = 0.
Also, let V ′

T−1

(
X0
T−1,X

1
T−1

)
be the expected maximum total risk reduced from epoch T − 1 when

taking decision d′T−1, then:

V ′
T−1

(
X0
t ,X

1
t

)
=

c∑
i=1

aiT−1 + VT

(
W0(X0

T−1,d
′
T−1),W

1(X1
T ,d

′
T−1)).

Let d′′
T−1 such that for a particular j ≤ c, d′′jT−1 = 0, d′′(c+1)T−1 = 1, and for all i ̸= j, c + 1,

d′′iT−1 = d′iT−1. Also, let V ′′
T−1

(
X0
T−1,X

1
T−1

)
be the expected maximum total risk reduced from

epoch T − 1 when taking decision d′′T−1, then:

V ′′
T−1

(
X0
T−1,X

1
T−1

)
=

j−1∑
i=1

aiT−1 +
c+1∑

i=j+1

aiT−1 + VT

(
W0(X0

T−1,d
′′
T−1),W

1(X1
T ,d

′′
T−1)).

Let δ = V ′
T−1

(
X0
T−1,X

1
T−1

)
− V ′′

T−1

(
X0
T−1,X

1
T−1

)
, then:
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δ = V ′
T−1

(
X0
T−1,X

1
T−1

)
− V ′′

T−1

(
X0
T−1,X

1
T−1

)
= ajT−1 − ac+1T−1 + VT

(
W0(X0

T−1,d
′
T−1),W

1(X1
T ,d

′
T−1))− VT

(
W0(X0

T−1,d
′′
T−1),W

1(X1
T ,d

′′
T−1))

= ajT−1 − ac+1T−1 +
2c∑

i=c+1

aiT − ajT −
2c∑

i=c+2

aiT

= ajT−1 − ac+1T−1 + ac+1T − ajT .

Using Proposition 4.3.1, given that for all i, aiT−1 − aiT = ŷit(CVDi − aiT ), then δ =

ŷjt(CVDj − ajT )− ŷc+1t(CVDc+1− ac+1T ). The patients were sorted such that if j < c+1, then
δ ≥ 0 and V ′

T−1

(
X0
T−1,X

1
T−1

)
≥ V ′′

T−1

(
X0
T−1,X

1
T−1

)
. Therefore d′T−1 is the policy that maximizes

the total risk reduced from T − 1 to T . Repeating the steps for t = 1 to T − 2, we have that:

V1

(
X0
1) =

c∑
i=1

ai1 +
2c∑

i=c+1

ai2 + · · ·+
Tc∑

i=(T−1)c+1

aiT .

If n ≤ cT then define γ where (γ − 1)c ≤ n ≤ γc. Then,

V1

(
X0
1) =

c∑
i=1

ai1 +
2c∑

i=c+1

ai2 + · · ·+
n∑

i=(γ−1)c+1

caiγ. □

A.4 Chapter4: Additional graphs
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Figure A.3: Correlation matrix for the logistic regression. We present the correlation between each
of the variables used for the DLR model.
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Figure A.4: ROC and AUC curves. ROC and AUC for each of the 5 forecasting years for adherence
thresholds of 0.6 to 0.9.
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