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ABSTRACT

This dissertation explores the extent to which lengths of closed geodesics on a Riemannian

manifold determine the underlying metric. In the setting of closed manifolds of negative

sectional curvature, it is known in certain cases—and conjectured to be true in general—

that in order to determine a Riemannian metric on a given manifold up to isometry, it suffices

to measure the lengths of all closed geodesics (as a function of their free homotopy classes).

This phenomenon is known as marked length spectrum rigidity. It was proved in dimension

2 (independently) by Otal and Croke [Ota90, Cro90], in dimension at least 3 if one of the

metrics is locally symmetric by Hamenstädt [Ham99] (also using work of Besson–Courtois–

Gallot [BCG95, BCG96]), and in any dimension by Guillarmou–Lefeuvre [GL19], provided

the metrics are sufficiently close in a suitable Ck topology.

Still, even in the cases where rigidity is known to hold, there is more to be understood

about the extent to which the marked length spectrum determines the metric. In this thesis,

we prove quantitative versions of marked length spectrum rigidity in dimension 2, as well

as in higher dimensions when one of the metrics is locally symmetric, thereby refining the

previously known rigidity results of Otal [Ota90] and Hamenstädt [Ham99], respectively.

In each of these settings, we consider pairs of Riemannian manifolds whose marked length

spectra agree—only approximately—on a finite set of closed geodesics. We prove the two

metrics are “approximately isometric”, meaning bi-Lipschitz equivalent with constant close

to 1. We obtain explicit estimates for this Lipschitz constant in terms of the measurement

error and the length of the longest geodesic in the finite set. Our estimates depend only

on concrete geometric information about the given metrics, such as the dimension, sectional

curvature bounds, and injectivity radii.

vi



CHAPTER I

Introduction

I.1: Statement of the problem

In broad terms, this dissertation contributes to the fields of differential geometry and dy-

namical systems, in particular the interplay between the two arising via the geodesic flow.

More specifically, this work is concerned with closed geodesics on Riemannian manifolds (or,

equivalently, periodic orbits of the geodesic flow), namely the extent to which they determine

the underlying metric.

A fundamental question in Riemannian geometry is determining a set of parameters which

describe a metric up to isometry. In negative curvature, a natural candidate is the set of

lengths of closed geodesics, also known as the length spectrum due to its close connection with

the Laplace spectrum. In fact, to what extent the Laplace spectrum determines the metric

is a question which falls into a broad class of inverse spectral problems, famously known by

the tagline “Can one hear the shape of a drum?” [Kac66]. It turns out that one cannot

hear the shape of a negatively curved drum: the first examples of isospectral non-isometric

surfaces of constant negative curvature were constructed by Vignéras [Vig80], and Sunada

later provided a method to generate more general counterexamples [Sun85]. As a result, it

is natural to consider lengths of closed geodesics together with the additional information of

their associated free homotopy classes, which leads to the following definition.

Definition I.1. Given a closed, negatively curved Riemannian manifold (M, g), the marked

length spectrum Lg is the function on free homotopy classes of closed curves in M which

associates to each class the length of its unique geodesic representative.

Note that any point in the Teichmüller space of metrics of constant curvature −1 on a

topological surface S is determined by 6 genus(S)−6 Fenchel–Nielsen coordinates ; moreover,

it is known that these coordinates are in turn determined by the lengths of finitely many

closed geodesics (as few as 6 genus(S)−5) [FM11, Sch93]. In other words, the marked length

spectrum (in fact, a finite part of it) uniquely determines a hyperbolic surface up to isometry.
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In arbitrary dimension and variable negative curvature, on the other hand, this is still an

open question.

Conjecture I.2 (Conjecture 3.1 in [BKB+85]). The marked length spectrum of a closed

Riemannian manifold of negative curvature determines the metric up to isometry.

This question was resolved for (variably curved) surfaces independently by Otal and Croke

[Ota90, Cro90]. For higher dimensions, this was solved by Hamenstädt in the case where one

of the metrics is locally symmetric [Ham99], using the entropy rigidity theorem of Besson–

Courtois–Gallot [BCG95, BCG96]. More recently, the conjecture was solved locally, that is,

for two metrics which are sufficiently close in some suitable Ck topology, by Guillarmou–

Lefeuvre using techniques from microlocal analysis [GL19].

Still, even in the cases where rigidity does hold, there is more to be understood about to

what extent the marked length spectrum determines the metric. In this thesis, we consider

two natural follow-up questions to Conjecture I.2.

Question I.3. What if two metrics have marked length spectra which are not equal but close

in some sense? Is there a sense in which the metrics are close?

Question I.4. Does the marked length spectrum on a sufficiently large finite set approxi-

mately determine the metric?

Question I.4 has not been previously considered anywhere in the literature as far as we

know (aside from the case of surfaces of constant curvature). All known proofs of marked

length spectrum rigidity in the variable curvature setting rely on limiting procedures involv-

ing longer and longer closed geodesics. For example, Lg determines the topological entropy

of the geodesic flow because the latter is the exponential growth rate of closed geodesics.

However, it is not at all clear what information can be obtained about topological entropy

from knowing Lg on a finite set. On a related note, Guillarmou–Knieper–Lefeuvre proved

that in the local setting, it is enough for Lg and Lg0 to agree asymptotically in order to

conclude g and g0 are isometric [GKL22]. In particular, rigidity holds if Lg and Lg0 coincide

outside of a finite set, and Question I.4 is a natural counterpart to this. Note that, in gen-

eral, we can only hope to gain approximate information from finite data, since in variable

curvature, the space of all possible metrics is infinite-dimensional.

Question I.3 was previously known for hyperbolic surfaces and in general for pairs of

metrics g and g0 on the same manifold M which are sufficiently close in some suitable Ck

topology. The first case is due to Thurston [Thu98]. He showed that if (M, g) and (N, g0)

are both surfaces of constant negative curvature, and f : M → N is a fixed homeomorphism,

then the best possible Lipschitz constant for a map F : M → N in the same homotopy class

2



as f is precisely supγ∈Γ
Lg0 (f∗γ)

Lg(γ)
. The second case is part of the previously mentioned work

of Guillarmou–Knieper–Lefeuvre [GKL22]. Their techniques provide explicit estimates (in

a suitable Sobolev norm) for how close the metrics are in terms of the ratio
Lg0
Lg , or more

precisely the geodesic stretch; in fact, their results hold more generally for non-positively

curved metrics with Anosov geodesic flow. However, this work requires g and g0 to be

sufficiently close metrics (in some Ck topology) on the same manifold. The results proved in

this thesis do not require the metrics to be close, nor do they require the two metrics to be

on the same manifold, but only on pairs of manifolds with isomorphic fundamental groups.

I.2: Statements of main results

This thesis provides new answers to Questions I.3 and I.4. We reduce Question I.4 to

Question I.3 for closed negatively curved manifolds in general (see III). Moreover, we answer

Question I.3 in dimension 2 (see I.2.2), and in higher dimensions when one of the metrics is

locally symmetric (I.2.3). These are two of the main cases where marked length spectrum

rigidity is known—due to Otal and Croke for surfaces [Ota90, Cro90], and Hamenstädt and

Besson–Courtois–Gallot for higher dimensions [Ham99, BCG95].

While it is customary to compare Lg and Lg0 for metrics g and g0 on the same manifold

M , this also makes sense more generally for manifolds (M, g) and (N, g0) with isomorphic

fundamental groups. This is because the set of free homotopy classes of M can be identified

with conjugacy classes in the fundamental group Γ of M , and as such we can view Lg as a

function on Γ. In our setting (negative curvature), a standard result in algebraic topology

states any isomorphism of fundamental groups is induced by a homotopy equivalence; how-

ever, M and N need not be diffeomorphic, as shown by Farrell–Jones [FJ89]. Our results

cover this case as well.

I.2.1: Finiteness

Let (M, g) and (N, g0) be closed negatively curved Riemannian manifolds with fundamental

group Γ. Consider the situation where Lg and Lg0 coincide only on a finite set of closed

geodesics. In fact, we can consider the more general situation where Lg and Lg0 are only

multiplicatively close on this set.

Hypothesis I.5. For L > 0, let ΓL := {γ ∈ Γ | Lg(γ) ≤ L}. Now let ε > 0 small and

suppose

1− ε ≤ Lg0(γ)

Lg(γ)
≤ 1 + ε

for all γ ∈ ΓL.

3



If L is sufficiently large, we obtain estimates for the ratio Lg0/Lg on all of Γ in terms

of ε and L. Note that the estimates do not depend on the particular pair of metrics under

consideration; they are uniform for all (M, g) and (N, g0) with pinched sectional curvatures

and injectivity radii bounded away from zero.

Theorem I.6 (Butt, [But22a] Theorem 1.2). Let (M, g) and (N, g0) be closed Riemannian

manifolds of dimension n with sectional curvatures contained in the interval [−Λ2,−λ2]. Let

Lg and Lg0 denote their marked length spectra. Let Γ denote the fundamental group of M

and let iM denote its injectivity radius. Suppose there is a homotopy equivalence f : M → N

and let f∗ denote the induced map on fundamental groups.

Then there is L0 = L0(n,Γ, λ,Λ, iN) so that the following holds: Suppose the marked

length spectra Lg and Lg0 satisfy Hypothesis I.5 for some ε > 0 and L ≥ L0. Then there

exist constants C > 0 and 0 < α < 1, depending only on n, Γ, λ, Λ, iN , so that

1− (ε+ CL−α) ≤ Lg0(f∗γ)

Lg(γ)
≤ 1 + (ε+ CL−α)

for all γ ∈ Γ.

This theorem says that the lengths of a sufficiently large finite set of closed geodesics

determine the full marked length spectrum approximately, and the approximation improves

as the size of the set of known closed geodesics increases. In other words, Question I.4

reduces to Question I.3. In light of this, we now suppose that Lg and Lg0 approximately

agree on all of Γ:

Hypothesis I.7. There is some small ε̃ > 0 so that

1− ε̃ ≤ Lg0(γ)

Lg(γ)
≤ 1 + ε̃

for all γ ∈ Γ.

We prove (M, g) and (N, g0) are bi-Lipschitz equivalent with constant close to 1 in the

case of dimension 2, as well as in higher dimensions when (N, g0) is locally symmetric. The

Lipschitz constants depend only on concrete geometric and topological information about M

and N such as the dimension, sectional curvature bounds, and injectivity radii. Moreover,

we prove explicit estimates for the Lipschitz constant in terms of ε̃ in the case where (N, g0)

is a locally symmetric space of dimension at least 3. We only assume that Lg and Lg0 are

close; we do not assume that g and g0 are close.

4



I.2.2: Surfaces

To state our result precisely, let C(2, λ,Λ, v0, D0) consist of all closed C∞ Riemannian man-

ifolds of dimension 2 with sectional curvatures contained in the interval [−Λ2,−λ2], volume

bounded below by v0, and diameter bounded above by D0. We show pairs of such spaces

become more isometric as their marked length spectra get closer to one another, refining the

main result in [Ota90].

Theorem I.8 (Butt, [But22b] Theorem 1.1). Fix λ, Λ, v0, D0 > 0. Fix L > 1. Then

there exists ε̃ = ε̃(L, λ,Λ, v0, D0) > 0 small enough so that for any pair (M, g), (M,h) ∈
C(2, λ,Λ, v0, D0) satisfying

1− ε̃ ≤ Lg
Lh
≤ 1 + ε̃,

there exists an L-Lipschitz diffeomorphism f : (M, g)→ (M,h).

I.2.3: Dimension at least 3, locally symmetric

Consider the case where (N, g0) is a negatively curved locally symmetric space of dimension

at least 3. We quantify how close g and g0 are to being isometric by estimating the derivative

of a map F : M → N in terms of ε̃. This is considerably stronger than Theorem I.8, since

we are able to determine how the Lipschitz constant depends on ε̃. This refines the rigidity

result in [Ham99, Corollary to Theorem A], which corresponds to the case ε̃ = 0 in the

theorem below. As in the previous theorem, we only assume the marked length spectra of

the two metrics are close; we do not assume the metrics themselves are close in any Ck

topology.

Theorem I.9 (Butt, [But22b] Theorem 1.2). Let (M, g) be a closed Riemannian manifold of

dimension n ≥ 3 with fundamental group Γ and sectional curvatures contained in the interval

[−Λ2, 0). Let (N, g0) be a locally symmetric space. Assume there is a homotopy equivalence

f : M → N and let f∗ denote the induced map on fundamental groups. Then there exists

small enough ε0 (depending on Γ) so that whenever ε̃ ≤ ε0 and

1− ε̃ ≤ Lg0(f∗γ)

Lg(γ)
≤ 1 + ε̃

for all γ ∈ Γ, there is a C2 map F : M → N homotopic to f and constants c1(ε̃, n,Γ,Λ) < 1,

C2(ε̃, n,Γ,Λ) > 1 such that for all v ∈ TM we have

c1‖v‖g ≤ ‖dF (v)‖g0 ≤ C2‖v‖g.

5



More precisely, there is a constant C = C(n,Γ,Λ) so that c1 = 1 − Cε̃1/8(n+1) and C2 =

1 + Cε̃1/8(n+1).

Remark I.10. The conclusion of Theorem I.9 can be restated as ‖g − F ∗g0‖C0 ≤ Cε1/8(n+1).

The author thanks Thibault Lefeuvre for this remark.

Remark I.11. If Ñ is a real, complex or quaternionic hyperbolic space, we can take c1 =

1− Cε1/4(n+1) and C2 = 1 + Cε1/4(n+1). See Remark V.32.

In [Ham99, Theorem A], Hamenstädt proves that two negatively curved manifolds with

the same marked length spectrum have the same volume, provided one of the manifolds

has geodesic flow with C1 Anosov splitting, a condition which holds in particular for locally

symmetric spaces. (The Anosov splitting of the geodesic flow on the unit tangent bundle

T 1N refers to the flow-invariant decomposition of TT 1N into the stable, unstable and flow

directions; see the introduction to [Ham99].)

Thus, if M and N satisfy the assumptions of Theorem I.9 for ε = 0, they must have the

same volume. Then, since the marked length spectrum determines the topological entropy

of the geodesic flow, the fact that the two manifolds are isometric follows from the celebrated

entropy rigidity theorem of Besson–Courtois–Gallot [BCG96, BCG95].

To prove Theorem I.9, we start by proving an analogue of [Ham99, Theorem A] under

the assumption the marked length spectra satisfy equation (I.7), ie, we estimate the ratio

Vol(M)/Vol(N) in terms of ε. In order to obtain an explicit estimate, we assume the Anosov

splitting is C1+α instead of C1. (For geodesic flows on manifolds with strictly 1
4
-pinched

negative curvature, the Anosov splitting is C1+α for some α > 0. The splitting is C1 by

work of Hirsch–Pugh [HP75] and C1+α by work of Hasselblatt [Has94, Theorem 5, Remark

after Theorem 6].) Unlike in Theorem I.9, the constants here do not depend on (M, g) in

any way.

Theorem I.12 (Butt, [But22b] Theorem 1.4). Let (M, g) be a closed negatively curved

Riemannian manifold with fundamental group Γ. Let (N, g0) be another closed negatively

curved manifold with fundamental group Γ and assume the geodesic flow on T 1N has C1+α

Anosov splitting. Suppose the marked length spectra of M and N satisfy Hypothesis I.7.

Then there is a constant C depending only on Ñ such that

(1− Cε̃α)(1− ε̃)nVol(M) ≤ Vol(N) ≤ (1 + Cε̃α)(1 + ε̃)nVol(M).

If, in addition, (N, g0) is locally symmetric and ε̃ is sufficiently small (depending on n =

dimN), then α can be replaced with 2 in the above estimates and the constant C depends

only n.
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Remark I.13. If the Anosov splitting of T 1N is only C1, then our proof shows the quantities

(1±Cε̃α) can be replaced with constants that converge to 1 as ε̃→ 0, but we are not able to

determine the explicit dependence of these constants on ε̃; see the statement above Lemma

IV.15.

Remark I.14. If N is locally symmetric, then Vol(N) ≤ (1 + ε)nVol(M) follows from Lemma

V.1 and the proof of the main theorem in [BCG96]. (See Remark V.6 for more details.)

However, the lower bound for Vol(N)/Vol(M) in Theorem I.12 is also crucial for the proof

of Theorem I.9.

Remark I.15. If dimM = dimN = 2, then our proof of Theorem I.12 shows

(1− ε)2Vol(M) ≤ Vol(N) ≤ (1 + ε)2Vol(M),

which is the optimal estimate. This result also follows from [CD04, Theorem 1.1].

I.3: Structure of this dissertation

In Chapter II, we present background on marked length spectrum rigidity. The finiteness

theorem (Theorem I.6) is then proved in Chapter III. In Chapter IV, we prove the volume

estimate (Theorem I.12). In Chapter V, we use this volume estimate to prove a quantitative

version of the Besson–Courtois–Gallot entropy rigidity theorem [BCG95], which gives our

main quantitative rigidity result in the case of locally symmetric spaces of dimension at least

3 (Theorem I.9). Finally, we prove our approximate rigidity result for surfaces (Theorem

I.8) in Chapter VI.
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CHAPTER II

Preliminaries

In this dissertation, we prove quantitative versions of certain marked length spectrum rigidity

results due to Otal [Ota90] and Hamenstädt [Ham99]. In this chapter, we present preliminary

material on the marked length spectrum rigidity conjecture [BKB+85, Conjecture 3.1] as

well as some aspects of Otal and Hamenstädt’s proofs. We begin with background on the

geometry of negatively curved manifolds and the dynamics of their associated geodesic flows.

II.1: The marked length spectrum

Throughout this thesis, (M, g) denotes a closed negatively curved Riemannian manifold; in

other words, M is a compact manifold without boundary and g is a Riemannian metric

of negative sectional curvature. In this setting, there is a well-defined way to measure the

lengths of closed geodesics as a function of their free homotopy classes. This function is

known as the marked length spectrum (Definition I.1), and its definition makes use of the

following fact.

Lemma II.1. Let (M, g) be a closed negatively curved Riemannian manifold. Then any

closed curved in M is freely homotopic to a unique closed geodesic.

There are two parts to this statement: existence of the geodesic representative as well

as its uniqueness. Existence follows from compactness of M alone, whereas the negative

curvature assumption is used to ensure uniqueness.

Proof of existence. We follow the argument in [dC92, Theorem 12.2.2]. Let c be a closed

curve in M and let d be the infimum of the lengths of all curves freely homotopic to c. Either

c is freely homotopic to a point or d > 0. In the latter case, consider a minimizing sequence

of curves cn so that lg(cn)→ d, where lg is length measured with respect to the Riemannian

metric g. Without loss of generality, we can assume each cn : [0, 1] → M is piecewise

geodesic, parametrized according to arclength. (To see this, we connect pairs of sufficiently
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nearby points on cn by length-minimizing geodesics.) Moreover L := supn lg(cn) < ∞. As

such,

d(cn(t1), cn(t2)) ≤
∫ t2

t1

|c′n(t)| dt ≤ L(t1 − t2).

This shows the cn are equicontinuous. Since M is compact, by Arzela–Ascoli there is a

convergent subsequence cnk → c0. Let c be the piecewise geodesic obtained by connecting

sufficiently nearby points on c0 by locally length-minimizing geodesics. Then lg(c) = d, and

the fact that geodesics are locally length-minimizing implies that c is in fact geodesic at all

of its points, i.e. has no corners. See [dC92, Theorem 12.2.2] for further details.

Before proving uniqueness, we recall the required background on the geometry of nega-

tively curved manifolds. First, Hadamard’s theorem states that any complete simply con-

nected Riemannian n-manifold of nonpositive sectional curvature is diffeomorphic to an open

ball (see, for instance, [dC92, Theorem 7.3.1]). As such, if M̃ denotes the universal cover

of the compact negatively curved n-manifold (M, g), then M̃ is diffeomorphic to an open

ball of dimension n. Let Γ denote the fundamental group of M . The action of Γ on M̃ by

deck transformations is also an action by isometries when M̃ is endowed with the natural

Riemannian metric g̃ obtained by lifting g. Let γ ∈ Γ and let γ also denote the corresponding

isometry of M̃ . Then γ leaves invariant a bi-infinite geodesic γ̃ : R→ M̃ (see, for instance,

[dC92, Proposition 12.2.6]). These properties do not require the full strength of the Riemann

curvature tensor, and can instead be deduced from more general “thin triangle” conditions,

i.e. CAT(0). See [BH13].

In addition to the above setup, our proof of uniqueness of the geodesic representative in

Lemma II.1 uses strict convexity of the distance function in negative curvature. Let c1, c2 :

[0, 1] → M̃ be two distinct geodesics, and let f(t) denote the function t 7→ dg(c1(t), c2(t)).

Then for all t ∈ [0, 1], the following inequality holds:

f(t) < tf(0) + (1− t)f(1). (II.1.1)

(See [BH13, Proposition II.2.2], which proves f(t) is (not strictly) convex in the case of

CAT(0) spaces. The strict inequality follows as soon as the CAT(0) inequality in [BH13,

Definition II.1.1] can be replaced with a strict inequality, which is the case for Riemannian

manifolds of sectional curvature strictly less than 0.)

Proof of uniqueness. Suppose for the sake of contradiction that there is a free homotopy

cs(t), where 0 ≤ s, t ≤ 1, between two distinct closed geodesics c0(t) and c1(t) in M . Since

c0(t) and c1(t) are both closed curves, we have that cs(0) and cs(1) coincide for all s. Now let

c̃s(t) be a lift of this homotopy to the universal cover p : M̃ →M . Since p(c̃s(0)) = p(c̃s(1))
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for all s, this means c̃s(0) and c̃s(1) differ by some deck transformation γ ∈ Γ. In particular,

γ(c0(0)) = c0(1), and since c0 is a closed geodesic, the action of γ also takes the tangent

vector c′0(0) to the tangent vector c′0(1). This means the concatenation of the curves γn(c̃0(t))

for n ∈ Z is a bi-infinite geodesic in M̃ . The same is true for γn(c̃1(t)). Since γ acts by

isometries, the distance between these parametrized curves is bounded above by the distance

between c0(t) and c1(t) in the compact quotient M . This boundedness contradicts the strict

convexity of the distance function in (II.1.1). Therefore, c0(t) and c1(t) must coincide, which

proves uniqueness.

Now that Lemma II.1 is proved, we can formally define the marked length spectrum.

Definition II.2. Given a closed, negatively curved Riemannian manifold (M, g), the marked

length spectrum Lg is the function on free homotopy classes of closed curves in M which

associates to each class the length of its unique geodesic representative.

Remark II.3. The function Lg can also be viewed as a function on conjugacy classes in the

fundamental group of M , since these are identified with free homotopy classes of closed

curves in M .

It is natural to ask to what extent Lg determines g. Conjecturally, Lg completely deter-

mines g up to isometry.

Conjecture II.4 (Conjecture 3.1 in [BKB+85]). Let M be a closed manifold and g and g0

be two Riemannian metrics of negative sectional curvature on M . Suppose Lg = Lg0. Then

g is isometric to g0 (and the isometry preserves the marking, ie, is homotopic to the identity

map on M).

Remark II.5. One can ask the same question if g0 is instead a negatively curved metric on

some other manifold N whose fundamental group is isomorphic to that of M (but M and

N are not assumed to be diffeomorphic). In light of Remark II.3, one can still make sense

of the hypothesis Lg = Lg0 in this setting. Then the desired conclusion is that g and g0 are

isometric via a diffeomorphism that induces the initial isomorphism between the fundamental

groups of M and N .

II.1.1: Hyperbolic surfaces

We begin by discussing marked length spectrum rigidity (Conjecture II.4 above) in a par-

ticular setting, namely when dimM = 2 and g and g0 are both hyperbolic metrics, that is

metrics of constant sectional curvature, say −1. In this case, Conjecture II.4 holds, and in

fact, a stronger statement holds: it suffices to verify Lg = Lg0 on a certain finite set of free
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homotopy classes to guarantee g and g0 are isometric. This finiteness is closely related to

the fact that the Teichmüller space of all possible hyperbolic metrics (up to isotopy) on a

fixed topological surface M has finite dimension (equal to 6 genus(M)− 6). One way to see

that Teichmüller space is (6 genus(M)−6)-dimensional is using Fenchel–Nielsen coordinates

(see, for instance, [FM11, Chapter 10]). To summarize briefly, one can cut a closed surface

up along certain closed geodesics so that each component is a pair of pants (topologically,

a sphere with three punctures). A hyperbolic metric on each pair of pants is determined

by the three “cuff lengths”. There are 3 genus(M) − 3 total cuff lengths in any pants de-

composition of M , but these lengths alone do not suffice to determine the isometry type of

M . (They account for exactly half of the 6 genus(M) − 6 Fenchel–Nielsen coordinates.) In

addition to these cuff lengths, one needs to keep track of “twist parameters”, which dictate

how the pants are glued back together to reconstruct the surface, since twisting a cuff before

gluing it to another of the same length will change the isometry type of M . It turns out

that these twist parameters can be recovered from the lengths of (finitely many) additional

closed geodesics (see [FM11, Theorem 10.7]).

Now one can ask if marked length spectrum rigidity generalizes beyond this setting. The

pants decomposition method above is not at all applicable in variable curvature. Indeed, one

can simply perturb the metric in the interior of a pair of pants without changing any of the

cuff lengths. Nevertheless, affirmative answers to Conjecture II.4 have been obtained in the

case of (variably curved) surfaces by Otal [Ota90] and Croke [Cro90], in higher dimensions

when one of the two metrics is locally symmetric by Hamenstädt [Ham99], and for pairs of

metrics which are nearby (with respect to a suitable Ck topology) by Guillarmou–Lefeuvre

[GL19]. Their proofs all make use of dynamical properties of the geodesic flow, which is the

subject of the next section.

II.2: The geodesic flow on the unit tangent bundle of M

Aside from the fact that Conjecture II.4 has been known for quite some time in the case of

hyperbolic surfaces, some additional intuition for why it should be true comes from consid-

ering the question from the perspective of dynamics. The underlying dynamical system in

this context is the geodesic flow, which we denote by φt. This is a flow on the unit tangent

bundle T 1M of (M, g). The flow φt is defined as follows: Given a unit tangent vector v, first

consider the unique unit speed geodesic c(t) with initial condition c′(0) = v. Now for any

t ∈ R, define φtv to be the unit tangent vector c′(t). A simple but important observation is

that periodic orbits of φt correspond precisely to closed geodesics in M .

In our setting, that is, when (M, g) is closed and negatively curved, the geodesic flow
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is uniformly hyperbolic, more commonly known as Anosov (Definition II.7 below). This

hyperbolicity turns out to reveal a lot of information about the overall orbit structure of

the flow (despite the fact that individual trajectories are highly sensitive to small changes

in initial conditions). For instance, periodic orbits of Anosov flows are dense (Corollary

II.15). In our geometric setting, this means vectors tangent to closed geodesics are dense in

T 1M . At the very least, closed geodesics must be dense in M for marked length spectrum

rigidity to hold; otherwise, one can simply perturb the metric in a neighborhood that does

not intersect any closed geodesics, thereby producing a pair of non-isometric metrics with the

same marked length spectrum. There are also stronger results about approximating certain

trajectories of Anosov flows with periodic ones (some of which are discussed in detail below).

That is to say, from the perspective of hyperbolic dynamics, it is natural to expect periodic

orbits of the geodesic flow to provide significant information about the flow. This is some

naive intuition behind Conjecture II.4.

For what follows it is convenient to fix a notion of distance on the unit tangent bundle

T 1M . We do this using the natural Riemannian metric on T 1M arising from the Riemannian

metric g on M .

Definition II.6. (See also [dC92, Exercise 3.2].) Let v ∈ T 1M and let V,W ∈ Tv(T 1M).

Let α(t) and β(t) be curves in T 1M such that α′(0) = V and β′(0) = W . Let π : T 1M →M

denote the footpoint map. The curve α(t) is a curve π(α(t)) in M together with a (unit)

vector field along that curve, and analogously for β(t). The Sasaki metric gS is the following

inner product on TvT
1M :

gS(V,W ) := g(dπ(V ), dπ(W ))π(v) + g

(
Dα

dt
,
Dβ

dt

)
,

where D
dt

denotes covariant differentiation of a vector field along a curve (see [dC92, Propo-

sition 2.2].)

This Riemannian metric gives rise to a distance function on T 1M which we will denote

by d in the rest of this section.

II.2.1: Hyperbolicity

Definition II.7. (See [FH19, Definition 5.1.1].) A C1 flow φt on a closed connected smooth

manifold X is called Anosov if there is a continuous Dφt-invariant splitting of the tangent

bundle TX = Ec ⊕ Es ⊕ Eu and constants C ≥ 1, λ ∈ (0, 1), µ ≥ 1 so that

• Ec(x) := R d
dt
φt(x) 6= 0 for all x ∈ X,
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• ‖Dφt(v)‖ ≤ Cλt‖v‖ for all v ∈ Es,

• ‖Dφ−t(v)‖ ≤ Cµ−t‖v‖ for all v ∈ Eu.

The subbundles Es and Eu are referred to as the stable and unstable distributions, respec-

tively.

Remark II.8. The Anosov property does not depend on the choice of norm on X. Since X is

assumed to be compact, changing the norm will change the constants in the above definition,

but not the fact that vectors in Es and Eu are exponentially contracted by forward and

backward iteration of the flow, respectively.

When X is the unit tangent bundle T 1M of a closed negatively curved manifold (M, g)

and φt is the associated geodesic flow, then φt is, in fact, Anosov. See, for instance, [KH97,

Section 17.6]. We omit the proof, but in order to provide some insight as to what the stable

and unstable subbundles Es and Eu are, we will describe the (strong) stable and (strong)

unstable foliations W ss,W su ⊂ T 1M . The leaves of these foliations are tangent to the stable

and unstable distributions Es and Eu, respectively. For this we begin by defining the (visual)

boundary at infinity of the universal cover M̃ . See [BH13, Chapter II.8] for further details.

Definition II.9. (See [BH13, Definition II.8.1].) The boundary at infinity of M̃ , denoted

∂M̃ , is the set of asymptotic classes of geodesic rays, where two rays c0, c1 : [0,∞)→ M̃ are

said to be asymptotic (and in the same equivalence class) if the distance dg(c0(t), c1(t)) is

bounded for all t ∈ [0,∞).

Remark II.10. There is a topology on ∂M̃ arising from identifying it with the unit tangent

space T 1
p M̃ for some fixed p ∈ M̃ , and with respect to this topology, ∂M̃ is thus homeomor-

phic to the (n− 1)-dimensional sphere, where n = dimM . Indeed, any v ∈ T 1
p M̃ determines

a geodesic ray c(t) with c′(0) = v. It follows from [BH13, Proposition II.8.2 ] that this

correspondence is a bijection. It follows from [BH13, Proposition II.8.8 ] that the induced

topology on ∂M̃ is independent of the choice of basepoint p.

Remark II.11. In negative curvature, strict convexity of the distance function (see (II.1.1))

implies any two distinct points in ∂M̃ can be joined by a unique geodesic.

Let W s(v) denote the weak stable set of v, that is, W s(v) = ∪t∈RW ss(φtv). These are

all points in T 1M which have the “same infinite future” as v. In other words, these are all

vectors in T 1M whose associated geodesic rays (in the universal cover M̃) are asymptotic to

that of v. Analogously, the weak unstable set of v is all unit tangent vectors whose associated

geodesic rays are asymptotic to −v in backward time. Before describing the (strong) stable

and (strong) unstable manifolds W ss(v) and W su(v) for the geodesic flow on T 1M , we recall

the notions of Busemann functions and horospheres.
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Definition II.12. (See [BH13, Definition 8.17].) Let p ∈ M̃ , ξ ∈ ∂M̃ , and let c(t) be the

unique geodesic ray with c(0) = p and c(∞) = ξ. The function

Bξ,p(q) = lim
t→∞

(d(q, c(t))− t)

is called a Busemann function. Level sets of Busemann functions are called horospheres.

Remark II.13. The zero set of {Bξ,p = 0} can be thought of as a sphere tangent to the

boundary ∂M̃ at ξ which passes through p. Other level sets {Bξ,p = r} are spheres tangent

to the boundary at ξ whose (signed) distance from the zero set {Bξ,p = 0} is equal to r.

The stable and unstable manifolds W ss and W su for the geodesic flow have the following

geometric description (see, for instance, [Bal95, p. 72]). Let v ∈ T 1M̃ . Let p ∈ M̃ be the

footpoint of v and let ξ ∈ ∂M̃ be the forward projection of v ∈ T 1M̃ to the boundary. Let

Bξ,p denote the Busemann function on M̃ and let Hξ,p denote its zero set. Then the lift of

W ss(v) to T 1M̃ is given by

{−gradBξ,p(q) | q ∈ Hξ,p}.

In other words, these are vectors normal to the horosphere Hξ,p which are pointing towards

ξ. If η denotes the projection of −v to the boundary ∂M̃ , then the lift of W su(v) to T 1M̃ is

analogously given by

{gradBη,p(q) | q ∈ Hη,p}.

These are vectors orthogonal to Hη,p and whose negatives point towards η.

Such a family of vectors gives rise to a geodesic variation, and the verification that

the geodesic flow on T 1M is Anosov boils down to considerations about the Jacobi fields

associated to these variations. More precisely, let c(s) denote a curve in the horosphere

Hη,p and let V (s) := gradBη,p(c(s)) be a vector field along this curve. Consider the geodesic

variation f(s, t) = expc(s)(tV (s)), where exp denotes the Riemannian exponential map. Then

J(t) := ∂
∂ s
|s=0f(s, t) is a Jacobi field, and verifying the exponential contraction property in

Definition II.7 amounts to obtaining estimates of the form ‖J(t)‖, ‖J ′(t)‖ ≤ Ce−λt. This

is achieved by comparing with the constant curvature setting (using the Rauch comparison

theorem), where the Jacobi equation can be solved explicitly. As such, one can find constants

C, λ, µ as in Definition II.7 which depend on the sectional curvature bounds of M in an

explicit way (in the case where the norm in Definition II.7 is taken to be the norm arising

from the Sasaki metric defined in Definition II.6). For further details see [Bal95, Proposition

IV.1.13 and Proposition IV.2.15].
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II.2.2: Periodic orbits

Anosov flows are often described as chaotic, since a slight change of initial condition (in the

unstable direction) causes exponential divergence of trajectories. Nevertheless, we have the

following strong result about approximating certain trajectories with periodic ones. See, for

instance, [FH19, Theorem 5.3.10].

Lemma II.14 (Anosov Closing Lemma). There is δ0 > 0 sufficiently small, T sufficiently

large, and a constant C > 0 so that the following holds for all δ ≤ δ0 and all t ≥ T . Suppose

v, φtv ∈ T 1M so that d(v, φtv) < δ. Then either v and φtv are on the same local flow

line or there is w with d(v, w) < Cδ so that w is tangent to a closed geodesic of length

t′ ∈ [t− Cδ, t+ Cδ].

Corollary II.15. When M is closed and negatively curved, periodic orbits of the geodesic

flow φt on T 1M are dense in T 1M .

Proof. First note that φt preserves the Liouville measure µ, which is the measure arising from

the Riemannian volume form on T 1M associated to the Sasaki metric gS from Definition II.6

(see [Bur83], and Section II.3 below). By the Poincaré Recurrence Theorem [KH97, Theorem

4.1.19], µ-almost every v satisfies: for all δ > 0 there exists sufficiently large t = t(v, δ) so

that d(v, φtv) < δ. By the Anosov Closing Lemma, there is w so that d(v, w) < Cδ and the

orbit of w is periodic.

The point w in the conclusion of the lemma has to be chosen carefully, in light of the

fact that φt is chaotic. The mechanism which allows for this is local product structure, which

we define below. Any Anosov flow has local product structure [FH19, Proposition 6.2.2],

but our exposition will focus on our particular geometric setting of geodesic flows. First we

explain the requisite notion of stable and unstable distances in this context. Let v ∈ T 1M

and w ∈ W ss(v). Let p and q denote the footpoints of v and w respectively. Define the stable

distance dss(v, w) to be the horospherical distance h(p, q), i.e., the distance obtained from

restricting the Riemannian metric g on M̃ to a given horosphere. The unstable distance is

defined analogously.

Definition II.16. (See also [FH19, Proposition 6.2.2].) We say the flow φt on T 1M has

local product structure if every point v ∈ T 1M has a neighborhood V which satisfies: for all

ε > 0, there is δ > 0 so that whenever x, y ∈ V with d(x, y) ≤ δ there is a point [x, y] ∈ V
and a time |σ(x, y)| < ε such that

[x, y] = W ss(x) ∩W su(φσ(x,y)y).
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Moreover, there is a constant C0 = C0(δ) so that d(x, y) < δ implies

dss(x, [x, y]), dsu(φ
σ(x,y)[x, y], y) ≤ C0d(x, y),

where dss and dsu denote the distances along the strong stable and strong unstable manifolds,

respectively, and d denotes the distance coming from the Sasaki metric in Definition II.6.

The bracket [x, y] can be thought of as a point with the same infinite future as x and

the same infinite past as y. The proof of [FH19, Proposition 6.2.2] shows that all Anosov

flows satisfy the above local product structure properties. However, for geodesic flows, the

first part of the statement (about the existence of [x, y] and σ(x, y)) can be deduced directly

from the geometric description of W ss and W su in terms of normal fields to horospheres. In

fact, the neighborhoods V in the above definition can be taken to be “very large” subsets of

T 1M .

To see this, let x, y ∈ T 1M and let x̃ and ỹ be lifts to T 1M̃ . Let ξ := π(x̃) and η := π(−ỹ)

denote the forward projections to ∂M̃ . The bracket [x, y] is defined whenever ξ and η are

distinct. If this is indeed the case, then the points η and ξ can be joined by a unique

(bi-infinite) geodesic c(t) (see Remark II.11). Note that c(t) passes through the horosphere

associated to W ss(x) as well as the one associated to W su(y). The bracket [x, y] is simply the

tangent vector to c(t) based at the point at which c(t) intersects the horosphere associated

to W ss(x) (see, for instance, [Cou04]). The number σ(x, y) is the distance between the

horospheres W ss(x) and W su(x). Thus |σ(x, y)| ≤ d(x, y), which shows ε = ε(δ) can be

taken to equal δ in the above definition.

We now explain how to deduce the Anosov Closing Lemma (Lemma II.14) from local

product structure. We will use the fact that for y ∈ W ss(x), the stable distance dss(φ
tx, φty)

is exponentially decaying in t, uniformly in x and y (and exponentially growing in t when

y ∈ W su(x)). This follows from the definition of an Anosov flow (Definition II.7). For the

geodesic flow on a closed manifold M with sectional curvatures bounded above by −a2, we

have the more precise statement

dsi(φ
tx, φty) ≤ e−atdsi(x, y) (II.2.1)

for i = s, u [HIH77, Proposition 4.1].

Proof of Lemma II.14 (Anosov Closing Lemma). We use the approach outlined in [Fra18,

Figure 2] (see also [Bow75, 3.6, 3.8]). Fix δ0 so that d(x, y) < δ0 implies [x, y] is defined (see

Definition II.16). Let C0 be the constant in the second part of Definition II.16. Choose T

large enough such that α := 2C0e
−aT/2 < 1, where a is as in (II.2.1).
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Now let v0 and t ≥ T such that d0 := d(v0, φ
tv0) < δ ≤ δ0. If φtv and v are not on the

same local flow line, let v1 = [v0, φ
tv0]. Let σ0 = σ(v0, φ

tv0) ≤ d0. Let t0 = t + σ0 and note

that v1 = W ss(v0)∩W su(φt0v0). Let d1 := d(φ−t0/2v1, φ
t0/2v1). We proceed to estimate d1 in

terms of d0. By the second part of Definition II.16, we have dss(φ
t0v0, v1) < C0d0 By (II.2.1),

we have dss(φ
t0/2v0, φ

−t/2v1) < e−at0/2C0d0. Similarly, dsu(φ
t0/2v0, φ

t0/2v1) < e−λt0C0d0. The

triangle inequality, together with the fact that d ≤ dsi for i = s, u, gives d(φt0/2v1, φ
−t0/2v1) ≤

2e−λt0C0d0 ≤ αd0, where α < 1 by the choice of T in the first paragraph.

Now let v2 = [φ−t0/2v1, φ
t0/2v1]. Let t1 such that v2 = W ss(φ−t1/2v1)∩W su(φt1/2v1). Then

the above argument shows d2 := d(φ−t1/2v2, φ
t1/2v2) ≤ αd1. Iterating the above procedure,

define a sequence of points vi, times ti and distances di := d(φ−ti−1/2vi, φ
ti−1/2vi). Then by

the same argument as before, di+1 ≤ αdi and |ti+1 − ti| ≤ di. By compactness, the sequence

vi subconverges to some point w. Since di → 0, the orbit of w is periodic. The length of

the orbit of w differs from the length t of the original almost periodic orbit of v0 by at most∑∞
i=0 di ≤ d0α/(1− α) ≤ Cδ, where C = α/(1− α).

As mentioned above, the Anosov Closing Lemma suggests that knowledge of the marked

length spectrum should provide significant information about the underlying geodesic flow.

This intuition can be formalized as follows.

Proposition II.17. Let (M, g) and (N, g0) be a pair of homotopy-equivalent closed negatively

curved manifolds such that their marked length spectra Lg and Lg0 coincide. Let φt and ψt

denote the associated geodesic flows on the unit tangent bundles T 1M and T 1N , respectively.

Then the flows φt and ψt are conjugate, that is, there is a homeomorphism F : T 1M → T 1N

so that

F(φtv) = ψtF(v)

for all v ∈ T 1M .

Proof. Without assuming anything about Lg and Lg0 , that is, whenever (M, g) and (N, g0)

are homotopy-equivalent closed negatively curved manifolds, the associated geodesic flows

are orbit-equivalent. This means there is a homeomorphism F : T 1M → T 1N such that

F(φtv) = ψb(t,v)F(v)

for some function b(t, v) on R×T 1M . See [Gro00]. When the additional condition Lg = Lg0
holds, the Livsic theorem [KH97, Theorem 19.2.1] allows one to upgrade the orbit equivalence

to a conjugacy. See [KH97, Section 2.2].

Remark II.18. The proof of the Livisic theorem, in turn, relies crucially on the Anosov

Closing Lemma. See [KH97, Theorem 19.2.1].
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Proposition II.17 shows a certain dynamical equivalence between the geodesic flows φt

and ψt. Indeed, a conjugacy of flows preserves many dynamically defined invariants and

structures associated to the flows (for instance, the topological entropy and the stable and

unstable manifolds). However, the map F : T 1M → T 1N does not provide any immediate

information about the underlying Riemannian metrics g and g0 on M and N . Showing g

and g0 are isometric entails finding a map from M to N , and it is not clear the conjugacy

F : T 1M → T 1N between unit tangent bundles descends to the base manifolds. (Another

difficulty to note is that the the proof of Proposition II.17 only shows F is Cα, ie, F is not

necessarily differentiable.)

Proving marked length spectrum rigidity (Conjecture II.4) thus requires more sophisti-

cated considerations of the geometry and dynamics of the geodesic flow. In the remainder

of this chapter, we explain some of the further tools used in Otal and Hamenstädt’s partial

solutions to this conjecture. We also discuss Gromov compactness, an additional tool used

to prove our quantitative marked length spectrum rigidity results.

II.3: The Liouville measure and the Liouville current

One key idea in Otal and Hamenstädt’s proofs of marked length spectrum rigidity is that the

conjugacy of geodesic flows given in Proposition II.17 preserves a certain natural geometric

measure on the unit tangent bundle, called the Liouville measure. Note that for the present

discussion we do not require (M, g) to be negatively curved.

The Liouville measure has several equivalent descriptions. One way to define the Liouville

measure is the measure associated to the Riemannian volume from on T 1M induced by the

Sasaki metric gS in Definition II.6. It is straightforward to verify that this measure is locally

the product of the Riemannian volume measure on the base M and Lebesgue measure on the

sphere Sn−1 in the fiber. A less straightforward, though standard, fact is that this measure

is φt-invariant, where φt is the geodesic flow.

To see this, we introduce another description of the Liouville measure, which comes from

a contact structure on the unit tangent bundle. We begin with the tautological 1-form α on

the cotangent bundle T ∗M . The idea behind its construction is that a 1-form on T ∗M is a

way of associating to each v∗ ∈ T ∗M a linear functional on Tv∗(T
∗M), but each element of

T ∗M is already a linear functional on the tangent space of M . Let πT ∗M : T ∗M →M denote

the bundle projection. Then set α(v∗) := v∗ ◦ dπv∗ . It is a standard fact that the 2-form dα

is a symplectic form on T ∗M , that is, (dα)n is a volume form on T ∗M , where n = dimM .

Now a Riemannian metric g on M gives rise to an identification between the tangent

bundle TM and the cotangent bundle T ∗M . Let G : TM → T ∗M be given by v 7→ g(v, ·).
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Let ω denote the pullback G∗α. Since pullback commutes with exterior differentiation, dω

is a symplectic form on TM , that is, (dω)n is non-degenerate on TM .

Lemma II.19. Let ω be the 1-form on TM defined as above. That is, ω = G∗α, where α

is the tautological one-form on T ∗M and G : TM → T ∗M is the identification arising from

the Riemannian metric g on M . Then ω restricted to T 1M is a contact form, that is, the

form ω ∧ (dω)n−1 is non-degenerate.

Proof. Let X be the vector field on T 1M which generates the geodesic flow φt. We claim

ω(X) ≡ 1. To see this, we start by writing

ωv(ξ) := (G∗α)v(ξ)

= αG(v)(dG(ξ)) (definition of pullback)

= G(v) ◦ dπT ∗M(dG(ξ)) (definition of α)

= G(v) ◦ d(πT ∗M ◦G)(ξ) (chain rule)

= g(v, dπTM(ξ)).

Let v ∈ T 1M . Then X(v) = d
dt
|t=0φ

tv. Then dπTM(X) = d
dt
|t=0πTM(φtv) = v. Hence

ωv(X) = g(v, v) = 1 in this case. This, together with the fact that dω is symplectic on TM ,

shows that ω is contact.

This lemma shows that ω ∧ (dω)n−1 is a volume form on T 1M . See [Bur83, 1.E] for

a proof that this volume form coincides with the Sasaki volume form (up to a factor of

(n − 1)!). In other words the Liouville measure is (up to a constant multiple) the measure

arising from ω ∧ (dω)n−1. This latter description of the Liouville measure is more readily

seen to be invariant under the geodesic flow.

Lemma II.20. The Liouville measure is φt-invariant.

Proof. It suffices to check that (φt)∗ω = ω, or that d
dt

(φt)∗ω = 0. This latter expression is

the Lie derivative LXω, where X is, as usual, the vector field generating φt. By Cartan’s

magic formula, we thus have

d

dt
(φt)∗ω = dιXω + ιXdω,

where ιX denotes the operation of contracting a differential form along the vector field X.

The first term dιX is easily seen to be zero in light of the fact that ιX = α(X) ≡ 1 (see
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the proof of Lemma II.19 above). To see that ιXdω = 0, we use that

dω(V,W ) = g

(
dπ(V ),

Dβ

dt

)
− g

(
dπ(W ),

Dα

dt

)
,

where V,W ∈ TvT 1M are tangent to curves α(t) and β(t), respectively, as in Definition II.6.

(See, for instance, [Bur83, Proposition 1.3] for a proof).

Now set V = X, where X is the vector field generating the geodesic flow. Then Dα
dt

= 0

because α is the tangent vector field along a geodesic, so the second term above is 0. The first

term becomes g(dπ(X),∇b′(0)β(0)), where b(t) = π(β(t)). Since X is tangent to geodesic

flow lines in T 1M , we have that dπ(X) = α(0). But α(0) = β(0) = v, so

g

(
dπ(X),

Dβ

dt

)
= g(v,∇b′(0)v) =

1

2

d

dt

∣∣∣
t=0
gb(t)(v, v) = 0,

since g(v, v) = 1 for all v ∈ T 1M .

We now define the Liouville current on the space of geodesics of M̃ .

Definition II.21. The space of geodesics of M̃ , denoted GM̃ , is the quotient of T 1M̃ by the

equivalence relation v ∼ φtv for all t ∈ R.

Remark II.22. When M has negative curvature, the space GM̃ is identified with the space

∂2M̃ of pairs of distinct points in the boundary ∂M̃ .

Since the 2-form dω on T 1M is φt-invariant, it descends to a 2-form on ∂M̃ , where it is

a symplectic form.

Definition II.23. The Liouville current is the measure on GM̃ arising from the volume

form (dω)n−1.

A key step in both Otal and Hamenstädt’s proofs of marked length spectrum rigidity

is showing that the conjugacy in Proposition II.17 preserves the Liouville current. This is

discussed in greater detail in Sections VI.2 and IV.2, respectively.

II.4: The BCG map

Hamenstädt’s proof of marked length spectrum rigidity, in the case where M and N have

dimension at least 3 and one the two metrics, say (N, g0), is locally symmetric, crucially

uses the entropy rigidity theorem of Besson–Courtois–Gallot [BCG95]. In fact, the following

special case of the theorem is sufficient in this setting.
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Theorem II.24. (See [BCG96, Theorem 1.1].) Suppose (N, g0) is negatively curved, lo-

cally symmetric, and of dimension at least 3 and (M, g) is negatively curved and homotopy-

equivalent to N . Suppose the total volumes of M and N agree and the topological entropies

h(g) and h(g0) of their associated geodesic flows are equal as well. Then there is an isometry

F : M → N .

Hamenstädt proves that if Lg = Lg0 then Vol(M, g) = Vol(N, g0), essentially by showing

the conjugacy in Proposition II.17 preserves the Liouville measure described in the previous

section. The conjugacy of geodesic flows immediately implies h(g) = h(g0), from which it

follows that M and N are isometric.

In this section, we explain the construction of the BCG map, that is, the isometry F :

M → N constructed in [BCG96]. This is also the map in the conclusion of Theorem I.9, our

quantitative version of marked length spectrum rigidity in this setting. In Chapter V, we

show that if the volumes and entropies of (M, g) and (N, g0) agree only approximately, then

the BCG map is “almost an isometry”, in the sense that it is bi-Lipschitz with Lipschitz

constants close to 1.

The construction of the BCG map uses three main ingredients:

1. The family of Patterson–Sullivan measures {µp}p∈M̃ on the boundary at infinity ∂M̃

(the boundary at infinity was defined in Definition II.9),

2. A map f : ∂M̃ → ∂Ñ , induced by the assumed identification between the fundamental

groups of M and N ,

3. The barycenter of a measure on the boundary at infinity.

These are combined to obtain a Γ-equivariant map F : M̃ → Ñ as follows. Let M(∂M̃)

denote the space of probability measures on ∂M̃ . The BCG map is the Γ-equivariant map

F : M̃ → Ñ given by

M̃ → M(∂M̃) → M(∂Ñ) → Ñ

p 7→ µp 7→ f ∗µp 7→ bar(f ∗µp).

where bar(f ∗µp) ∈ Ñ denotes the barycenter of the measure f ∗µp.

We now briefly recall what each of these ingredients are. The construction of the BCG

map is more thoroughly explained in the survey article [BCG96]. See also [Fer96].

II.4.1: The Patterson–Sullivan measure

As usual, let Γ denote the fundamental group of the compact negatively curved manifold

(M, g). We construct a family of measures on the boundary ∂M̃ indexed by points p ∈ M̃ .
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This is a standard construction known as the Patterson–Sullivan measure or a conformal

density in the literature. See [Pat, Sul79, Rob03].

The construction of the Patterson–Sullivan measure begins with the Poincaré series for

Γ, which is given by

P (s, x, y) =
∑
γ∈Γ

e−sd(x,γ.y)

for x, y ∈ M̃ and s ∈ R.

Definition II.25. The critical exponent of Γ is the number δΓ such that the Poincaré series

P (s, x, y) converges for s > δΓ and diverges for s < δΓ. By the triangle inequality, it is clear

that δΓ depends only on Γ, and not on x and y.

The following well-known lemma explains how the topological entropy of the geodesic

flow of (M, g) is related to the BCG map. We follow the argument in [Fer96, Lemma 4.1].

Lemma II.26. The critical exponent of Γ is the topological entropy h(g).

Proof. Let A0 denote the closed ball of radius 1/2 centered at p, and for any positive integer

k, let Ak denote the annulus B(p, k + 1/2) \ B(p, k − 1/2). Let Γk = {γ ∈ Γ | γ.p ∈ Ak}.
Then we can write ∑

γ∈Γ

e−s(d(p,γ.p) =
∞∑
k=0

∑
γ∈Γk

e−sd(p,γ.p),

and for each γ ∈ Γk, the quantity d(p, γ.p) is within 1/2 of k. Thus, the above Poincaré

series is proportional to
∑∞

k=0 Ske
−sk, where Sk is the cardinality of Γk. Hence, the critical

exponent equal to lim supk→∞
log(Sk)

k
. Since Γ is cocompact, there are constants c1 and c2,

depending on the diameter, injectivity radius, and sectional curvature bounds of the quotient

M̃/Γ, so that c1vol(Ak) ≤ Sk ≤ c2vol(Ak).

Next, we claim that the exponential growth rate of vol(Ak) is equal to the exponential

growth rate of the volume of a ball of radius k. Indeed,

vol(Ak) = vol(B(p, k + 1/2))

(
1− vol(B(p, k − 1/2))

vol(B(p, k − 1/2))

)
.

The proof in [Man79, p.568] shows that

vol(B(p, k − 1/2))

vol(B(p, k − 1/2))
≥ 1

vol(B(p,A))
,

where A is a constant depending on (M, g), but independent of k. This shows that vol(Ak)

and vol(B(p, k+ 1/2)) have the same exponential growth rate in k. So the critical exponent
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of Γ is the volume growth entropy of (M̃, g). By [Man79, Theorem 2], this is equal to the

topological entropy of the geodesic flow.

We now outline the construction of the Patterson–Sullivan measure, following [Kni97].

Fix x0 ∈ M̃ and let Dx0 denote the Dirac measure at x0. For any s > δΓ and any p ∈ M̃ , let

µsp = µsp,y =

∑
γ∈Γ e

−sd(p,γ.x0)Dγ.x0
P (s, x0, x0)

.

Since |d(p, γ.x0) − d(x0, γ.x0)| ≤ d(p, x0) for all γ, it follows that the total mass of µsp is

bounded between e±sd(p,x0). Thus, we can take a weak limit of µsp as s → δΓ. (For our

purposes, it does not matter whether or not such a weak limit is unique, ie, independent

of the choice of subsequence sk converging to δΓ.) In our setting (Γ cocompact), the series

P (s, x0, x0) diverges for s = δΓ [Kni97, Corollary 5.2], which means the limiting measure µp

is supported on the boundary ∂M̃ . Thus we obtain a family of measures µp on ∂M̃ indexed

by p ∈ M̃ . One can check that this family satisfies the following properties (see, for instance,

[Sul79]):

1. For all p, q ∈ M̃ the Radon–Nikodym derivatives satisfy dµp
dµq

= exp(−δΓ)Bξ,p(q).

2. For all p ∈ M̃ and γ ∈ Γ the pushforward measures satisfy γ∗µp = µγ.p.

II.4.2: The boundary map

In order to compare the marked length spectra Lg and Lg0 for Riemannian manifolds (M, g)

and (N, g0), an identification between the fundamental groups π1(M) and π1(N) is required,

and as such, we always assume that we have one. Since M and N are both K(π, 1) spaces

(their universal covers are contractible by Hadamard’s theorem), it follows that there is a

homotopy equivalence f : M → N , where f induces the starting identification of fundamental

groups.

Let ∂M̃ denote the visual boundary of M̃ and Γ denote the fundamental group of M .

We construct a map f : ∂M̃ → ∂Ñ such that for all γ ∈ Γ and all ξ ∈ ∂M̃ we have

f(γ.ξ) = (f∗γ).f(ξ). To do so, we first lift the homotopy equivalence f : M → N to a Γ-

equivariant map f̃ : M̃ → Ñ . Since M and N are compact, it follows that f̃ is additionally

a quasi-isometry (we explain this argument in detail in Section III.4). Hence f̃ induces a Γ-

equivariant map (homeomoprhism) f between the boundaries ∂M̃ and ∂Ñ (see, for instance,

[BH13, Theorem III.H.3.9].)
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II.4.3: The barycenter

We follow the discussion in [BCG96, Section 3]. Fix y0 ∈ Ñ and let λ be a measure on ∂Ñ .

Consider the function

B(y) =

∫
∂Ñ

Bξ(y, y0)dλ(ξ).

This can be seen as measuring the average distance from y to the boundary. When B uniquely

achieves a minimum at the point y′ ∈ Ñ , we call y′ the barycenter of the measure λ. (Note

that changing y0 changes the function B by a constant, and does not affect the location of

the barycenter.)

To define the BCG map, we want to show the barycenter is defined for the measure

λ = f ∗µp on ∂Ñ . Here, µp is the Patterson–Sullivan measure on ∂M̃ , the boundary map

f : ∂M̃ → ∂Ñ is induced by the assumed homotopy equivalence between M and N , and

finally, Ñ is a negatively curved symmetric space.

Put briefly, to see that B uniquely attains a minimum, one needs to check that B(x)→∞
as x goes to infinity along a geodesic and that B(x) is strictly convex. The details can be

found in [BCG95, Appendix A]. We explain the argument for strict convexity assuming N

is locally symmetric. We start by differentiating under the integral to get

HessB(·) =

∫
∂Ñ

HessBξ,y(·)d(f ∗µp)(ξ).

Since N is locally symmetric, the Hessian of the Busemann function satisfies the formula

(HessBξ)F (p)(·) =
√
−R(vF (p),ξ, ·, vF (p),ξ, ·), (II.4.1)

where R is the Riemann curvature tensor (see [CF03, p. 16]). Let vy,ξ be the unit tangent

vector based at y so that the geodesic with initial vector v has forward boundary point

ξ, ie, vy,ξ is the gradient of Bξ,y. Let θξ denote the angle between vy,ξ and u. Then we

can write u = (cos θξ)vy,ξ + (sin θξ)w for some unit vector w perpendicular to vy,ξ. Since

(HessBξ)F (p)(u) = 〈∇uvy,ξ, u〉, we obtain (HessBξ)y(u) = sin2 θξ(HessBξ)y(w). Using the

fact that the sectional curvatures of Ñ are at most −1, it follows that

(HessBξ)y(u) ≥ sin2 θξ.

Hence, the integrand in the expression for HessB is 0 if and only if θξ = 0, π. This occurs

precisely when ξ = π(±u), where π is the projection of a unit tangent vector to its forward

boundary point in ∂Ñ . From the shadow lemma for Patterson–Sullivan measures (see, for
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instance, [Rob03, Lemma 1.3]), it follows that µp is non-atomic. This means

(f ∗µp)(∂Ñ \ {π(±u)}) = 1 > 0.

Thus (HessBξ)y(u) > 0 for a set of ξ of positive f ∗µp-measure, which shows that B is strictly

convex.

Definition II.27. Given p ∈ M̃ , let µp be the Patterson-Sullivan measure on ∂M̃ . Let

f : ∂M̃ → ∂Ñ as above. Define F (p) = bar(f∗µp), where bar denotes the barycenter map

(see [BCG96] for more details). We call F the BCG map.

II.5: Gromov compactness

In this final section of this chapter, we explain a type of convergence of Riemannian metrics

that is used in the proofs of the main results of this thesis (Theorems I.6, I.8, and I.9),

though it does not appear in the original proofs of marked length spectrum rigidity.

Let C(n,Λ, v0, D0) consist of all closed C∞ Riemannian manifolds of dimension n with

absolute sectional curvatures bounded by Λ2, volume bounded below by v0, and diameter

bounded above by D0. The space C(n,Λ, v0, D0) has the property that any sequence has

a convergent subsequence in the Lipschitz topology; this is often called the Gromov com-

pactness theorem [GKPS99]. In this thesis, we use refinements of Gromov’s theorem due to

Pugh and Greene–Wu [Pug87, GW88].

It follows from [GW88] that any sequence (M, gk) ∈ C(2, λ,Λ, v0, D0) has a subsequence

(M, gkl) converging in the following sense: there is a Riemannian metric g0 on M such that

in local coordinates we have gijkl → gij0 in the C1,α norm, and the limiting gij0 have regularity

C1,α. Moreover, the distance functions dgkl converge uniformly (with respect to the Lipschitz

distance) to dg0 on compact sets; see [GW88, p. 122].

We also recall some additional properties of the limit (M, g0) due to Pugh. By [Pug87,

Theorem 1], this limiting metric will have a Lipschitz geodesic flow, and the geodesics them-

selves are of C1,1 regularity. Moreover, the exponential maps converge uniformly on compact

sets [Pug87, Lemma 2].
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CHAPTER III

Finiteness

In this chapter, we prove Theorem I.6 (reproduced below), that is, that short closed geodesics

determine the full marked length spectrum approximately.

Theorem I.6 (Butt, [But22a] Theorem 1.2). Let (M, g) and (N, g0) be closed Riemannian

manifolds of dimension n with sectional curvatures contained in the interval [−Λ2,−λ2]. Let

Lg and Lg0 denote their marked length spectra. Let Γ denote the fundamental group of M

and let iM denote its injectivity radius. Suppose there is a homotopy equivalence f : M → N

and let f∗ denote the induced map on fundamental groups.

Then there is L0 = L0(n,Γ, λ,Λ, iN) so that the following holds: Suppose the marked

length spectra Lg and Lg0 satisfy Hypothesis I.5 for some ε > 0 and L ≥ L0. Then there

exist constants C > 0 and 0 < α < 1, depending only on n, Γ, λ, Λ, iN , so that

1− (ε+ CL−α) ≤ Lg0(f∗γ)

Lg(γ)
≤ 1 + (ε+ CL−α)

for all γ ∈ Γ.

In Section III.1, we start by stating the key dynamical facts used in our proof of Theorem

I.9. Specifically, we use an estimate for the size of a covering of the unit tangent bundle T 1M

by certain small “flow boxes” in addition to a Hölder estimate for a certain orbit equivalence

between the geodesic flows of M and N . We then prove the theorem assuming these two

facts. See the introduction to Section III.1 below for a rough sketch of the argument.

The rest, and vast majority, of this chapter is devoted to proving the above-mentioned

covering lemma and Hölder estimate. The proofs rely on a few well-established consequences

of the hyperbolicity of the geodesic flow. However, the standard results from the theory

of Anosov flows (uniformly hyperbolic flows) are stated very generally and thus contain a

multitude of constants which depend on the given flow in arguably mysterious ways. As

a result, considerable technical difficulties arise in ensuring the constants depend only on

select geometric and topological properties of (M, g) and (N, g0).
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The main components of this analysis are as follows. In Section III.2, we use geometric

arguments involving horospheres to investigate the local product structure of the geodesic

flow, a key mechanism responsible for many of the salient features of hyperbolic dynamical

systems. Indeed, the results of this section are used to prove both the covering lemma and

the Hölder estimate. The covering lemma is then quickly proved in Section III.3. Before

proving the desired Hölder estimate, we show that the homotopy equivalence f : M → N

(via which we are able to compare the marked length spectrum functions Lg and Lg0) can

be taken to be a quasi-isometry with controlled quasi-isometry constants, i.e., depending

only on n, Γ, λ, Λ, iM , iN . This is done in Section III.4. Finally, in Section III.5, we prove

the orbit equivalence of geodesic flows in [Gro00] is Hölder continuous, also with controlled

constants.

III.1: Proof of finiteness theorem

In this section, we will prove Theorem I.9 assuming two key statements: a covering lemma

(Lemma III.1 below) and a Hölder estimate (Proposition III.4 below). These statements are

proved in Sections III.3 and III.5, respectively.

The basic idea is to start by covering the unit tangent bundle T 1M with finitely many

sufficiently small “flow boxes”, that is, sets obtained by flowing local transversals for some

small fixed time interval (0, δ). On the one hand, any periodic orbit of the flow that visits

each of these boxes at most once is short, i.e., has period at most δ times the total number

of boxes. On the other hand, any periodic orbit that is long, i.e., of length more than δ

times the number of boxes, must return to at least one of the boxes more than once before

it closes up. In other words, long periodic orbits contain shorter almost-periodic segments.

By the Anosov closing lemma, these are in turn shadowed by periodic orbits. This allows

us to approximate the lengths of long closed geodesics with sums of lengths of short ones.

We then use a Hölder continuous orbit equivalence F : T 1M → T 1N to argue that similar

approximations hold for the corresponding closed geodesics in N . From this, we are able to

estimate the ratio of Lg(γ)/Lg0(γ) for all long geodesics γ given our assumed estimate holds

for short ones (Hypothesis I.5).

We now introduce the precise statements of the aforementioned covering lemma and

Hölder estimate. Let W si for i = s, u denote the strong stable and strong unstable foliations

for the geodesic flow φt on the unit tangent bundle T 1M . For δ > 0, let

W si
δ (v) = W si(v) ∩B(v, δ),
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where B(v, δ) denotes a ball of radius δ in T 1M with respect to the Sasaki metric. (See

Section III.2 for some background on the stable/unstable foliations and the Sasaki metric.

See also Section II.2.1.)

Let P (v, δ) = ∪v′∈W ss
δ (v)W

su
δ (v′) and let R(v, δ) = ∪t∈(−δ/2,δ/2)φ

tP (v, δ). We will call

R(v, δ) a δ-rectangle. For our proof of Theorem I.9, we use the following estimate for the

number of δ-rectangles needed to cover T 1M .

Lemma III.1. Let iM denote the injectivity radius of M . There is small enough δ0 =

δ0(n, λ,Λ, iM) and a constant C = C(n,Γ, λ,Λ, iM) so that for any δ < δ0, there is a covering

of T 1M by at most C/δ2n+1 δ-rectangles.

Remark III.2. The main difficulty is showing that the constant C does not depend on the

metric g, but only on n, Γ, λ, Λ, diam(M).

Remark III.3. Rectangles of the form R(v, δ) are often used to construct Markov partitions,

e.g. in [Rat73]. However, in Lemma III.1, we are not constructing a partition, meaning we

do not require the rectangles to be measurably disjoint.

Now consider the geodesic flows φt and ψt on T 1M and T 1N , respectively. Recall that a

homeomorphism F : T 1M → T 1N is an orbit equivalence if there is some function (cocycle)

a(t, v) so that

F(φtv) = ψa(t,v)F(v)

for all v ∈ T 1M and for all t ∈ R. Since M and N are homotopy-equivalent compact

negatively curved manifolds, such an F exists by [Gro00]. Our proof of Theorem I.9 relies

on the following estimates for the regularity of F .

Proposition III.4. Suppose (M, g) and (N, g0) are a pair of homotopy-equivalent compact

Riemannian manifolds with sectional curvatures contained in the interval [−Λ2,−λ2]. Let

iM and iN denote their respective injectivity radii. Then there exists an orbit equivalence of

geodesic flows F : T 1M → T 1N which is C1 along orbits and transversally Hölder continu-

ous. More precisely, there is small enough δ0 = δ0(λ,Λ, iM) together with constants C and

A, depending only on n, Γ, λ, Λ, iM , iN , so that the following hold:

1. d(F(v),F(φtv)) ≤ At for all v ∈ T 1M̃ and t ∈ R,

2. d(F(v),F(w)) ≤ Cd(v, w)A
−1λ/Λ for all v, w ∈ T 1M̃ with d(v, w) < δ0.

Remark III.5. It is a standard fact that any orbit equivalence of Anosov flows is C0-close to a

Hölder continuous one; in other words, there are constants C and α, depending on the given

flows, i.e., on the metrics g and g0, so that d(F(v),F(w)) ≤ Cd(v, w)α [FH19, Theorem
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6.4.3]. However, we are claiming the stronger statement that for the orbit equivalence in

[Gro00], there is a uniform choice of C and α for all (M, g) and (N, g0) with pinched sectional

curvatures and injectivity radii bounded away from 0.

To prove Theorem I.9, we start with a covering of T 1M by δ-rectangles (see Lemma

III.1). Let δ0 be as in Proposition III.4, then make δ0 smaller if necessary so that Lemma

III.1 holds as well. This choice of δ0 depends only on n, λ,Λ, iM . Now fix δ ≤ δ0, together

with a covering T 1M = ∪mi=1R(vi, δ). By Lemma III.1, we can take m ≤ Cδ2n+1. Since

δ is now fixed, we use the notation Ri for the rectangle R(vi, δ) and Pi for the transversal

P (vi, δ).

Let v ∈ T 1M . Then v ∈ Pi if and only φtv ∈ Ri for all t ∈ (−δ/2, δ/2). Moreover, if v is

tangent to a closed geodesic of length τ , then for any rectangle Ri, the set

{t ∈ (−δ/2, τ − δ/2)|φtv ∩Ri 6= ∅}

is a (possibly empty) disjoint union of intervals of length δ.

Definition III.6. Fix a covering of T 1M by δ-rectangles R1, . . . , Rm as above. Suppose η

is a closed geodesic of length τ with η′(0) = v. Suppose that for each i, the set

{t ∈ (−δ/2, τ − δ/2)|φtv ∩Ri 6= ∅}

consists of at most a single interval. Then we say η is a short geodesic (with respect to the

covering R1, . . . Rm).

Remark III.7. Let L = L(δ) = Cδ−2n, where C is the constant in the statement of Lemma

III.1. If η is a short geodesic, then lg(η) ≤ mδ ≤ Cδ−2n = L.

Proposition III.8. Let γ be any closed geodesic in M . Then there is k ∈ N (depending on

γ) and short geodesics η1, . . . , ηk+1 so that∣∣∣∣∣lg(γ)−
k+1∑
i=1

lg(ηi)

∣∣∣∣∣ < 2kCδ

for some constant C = C(λ,Λ, iM).

Proof. If γ is already a short geodesic, then k = 0 and η1 = γ. If not, then let i be the

smallest index so that γ crosses through Ri in at least two time intervals. Let v ∈ Pi tangent

to γ and let t1 > 0 be the first time so that φt1v ∈ Pi. By the Anosov Closing Lemma

(Lemma II.14), there is w1 tangent to a closed geodesic γ1 of length t′1 with |t1 − t′1| < Cδ,

29



where C depends only on the sectional curvature bounds λ and Λ and the injectivity radius

iM (see Lemma III.22). Similarly, applying the Anosov Closing Lemma to the orbit segment

{φtv | t ∈ [t1, τ ]} gives w2 tangent to a closed geodesic γ2 of length t′2 with |(τ−t1)−t′2| < Cδ.

This means |lg(γ)− lg(γ1)− lg(γ2)| < 2Cδ.

Iterating the above process, we can “decompose” γ into short geodesics. More precisely,

if γ1 is not a short geodesic, then there is some other rectangle Rj through which γ1 crosses

twice. By the same argument as above, we get |lg(γ1) − lg(γ1,1) − lg(γ1,2)| < 2Cδ for some

γ1,1, γ1,2 ∈ Γ. Continuing in this manner, we get the desired conclusion.

Next, we show that lg0(γ) is still well-approximated by the sum of the g0-lengths of

the same free homotopy classes η1, . . . , ηk+1 that were used to do the approximation with

respect to g. For this, we use the estimates for the regularity of the orbit equivalence

F : T 1M → T 1N in Proposition III.4. Recall that a(t, v) denotes the time-change cocycle,

i.e. F(φtv) = ψa(t,v)F(v).

Lemma III.9. Let γ and η1, . . . , ηk+1 as in Proposition III.8. Then an analogous estimate

holds in (N, g0), namely, ∣∣∣∣∣lg0(γ)−
k+1∑
i=1

lg0(ηi)

∣∣∣∣∣ < 2kCδα,

where C depends only on Γ, λ, Λ, iM , iN , and α is the Hölder exponent in the statement of

Proposition III.4.

Proof. As in the proof of Proposition III.8, let v ∈ T 1M tangent to γ. By the Anosov

closing lemma, there is w1 ∈ T 1M tangent to a closed geodesic γ1 of length t′1 such that

d(v, w1) < Cδ, for some C = C(λ,Λ, iM) (Lemma III.22). Additionally, d(φt1v, φt
′
1w1) < Cδ.

By Proposition III.4, we know d(F(v),F(w1)) < Cδα. Moreover, since F(v) and F(w1)

remain Cδα-close after being flowed by times a(t1, v) and a(t′1, w), respectively, it follows

that |a(t1, v)− a(t′1, w1)| < 2Cδα. (We defer the short proof of this fact to Section III.2; see

Lemma III.12.)

Similarly, the Anosov closing lemma applied to the orbit segment {φtv | t ∈ [t1, l(γ)]} gives

w2 tangent to a closed geodesic γ2 of length t′2. By an analogous argument, |a(lg(γ)− t1, v)−
a(t′2, w2)| < 2Cδα. Since a(t, v) is a cocycle we get |a(lg(γ), v)−a(t′1, w1)−a(t′2, w2)| < 4Cδα.

Using that F is a Γ-equivariant orbit-equivalence, it follows that a(lg(γ), v) = lg0(γ)

whenever v ∈ T 1M is tangent to the closed geodesic γ. So the estimate in the previous

paragraph can be rewritten as |lg0(γ)− lg0(γ2)− lg0(γ2)| < 4Cδα. As such, we can iterate the

process in Proposition III.8 and get an additive error of 4Cδα at each stage.

Proof of Theorem I.9. Recall from Remark III.7 that L = L(δ) = Cδ−2n for some C =
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C(n,Γ, λ,Λ, iM). Since we fixed δ ≤ δ0 = δ0(n, λ,Λ, iM), we see that L ≥ L0 = L(δ0). By

Lemma III.1, this choice of L0 depends only on n, Γ, λ, Λ, iM .

Recall as well that we are assuming

1− ε ≤ Lg(γ)

Lg0(γ)
≤ 1 + ε

for all γ ∈ ΓL := {γ ∈ Γ | lg(γ) ≤ L} (see Hypothesis I.5). We then have

lg(γ) ≤
k+1∑
i=1

lg(γi) + 2kCδ (Proposition III.8)

≤ (1 + ε)
k+1∑
i=1

lg0(γi) + 2kCδ (Hypothesis I.5)

≤ (1 + ε)lg0(γ) + (1 + ε)2k(2C ′δα + Cδ) (Proposition III.9)

≤ (1 + ε)lg0(γ) + kC ′′δα.

Using this, we consider the ratio

lg(γ)

lg0(γ)
≤ (1 + ε) +

kC ′′δα

lg0(γ)

≤ 1 + ε+
kC ′′δα∑k+1

i=1 lg0(γi)− 2kδ
(Proposition III.9)

≤ 1 + ε+
kC ′′δα

2kiN − 2kδ

= 1 + ε+
C ′′δα

2iN − 2δ
.

In the last inequality, we used the fact that lg0(γ) ≥ 2iN for all γ.

Finally, by the definition of L in Remark III.7, we have δ = CL−1/2n, where C is a

constant depending only on n, Γ, a, b, iM . So we can write that the ratio lg(γ)/lg0(γ) is

between 1± (ε+C ′L−α/2n), where α is the Hölder exponent in the statement of Proposition

III.4.

Remark III.10. There is a way to obtain approximate control of the marked length spectrum

from finitely many geodesics by combining Proposition III.4 with the finite Livsic theorem

in [GL21], but our direct method above yields better estimates.

Let a(t, v) denote the time change function for the orbit equivalence F in Proposition

III.4. By the definition of a(t, v) in (IV.3.1), (see also Lemma IV.24), this cocycle is dif-

ferentiable in the t direction. Let a(v) = d
dt
|t=0a(t, v). It follows from (IV.3.1) and Lemma
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III.40 that a(v) is of Cα regularity, where α is the same Hölder exponent as in the state-

ment of Proposition III.4. It follows from Lemma III.34 and the proof of Lemma IV.24 that

‖a(v)‖C0 ≤ A, where A is the constant in Lemma III.34. Hence, ‖a‖Cα ≤ A + C, where C

is the constant in Proposition III.4.

Now let {φtv}0≤t≤lg(γ) be the g-geodesic representative of the free homotopy class γ. Then

lg0(γ) =
∫ lg(γ)

0
a(φtv) dt. Let f(v) = (a(v)− 1)/‖a− 1‖Cα . Then ‖f‖Cα ≤ 1 and Hypothesis

I.5 implies

1

lg(γ)

∣∣∣∣∣
∫ lg(γ)

0

f(φtv) dt

∣∣∣∣∣ ≤ ε

A+ C

for all γ ∈ ΓL. Setting L =
(

ε
C+A

)−1/2
means that f satisfies the hypotheses of Theorem 1.2

in [GL21]. This theorem implies that for all γ ∈ Γ, the ratio Lg/Lg0 is between 1±C ′
(

ε
C+A

)τ
,

where C ′ and τ are constants depending on the given flow. Our direct method above yields

an exponent of α/4n in place of τ .

III.2: Local product structure

We consider the distance d on T 1M induced by the Sasaki metric gS on T 1M , which is

in turn defined in terms of the Riemannian inner product g on M (see Definition II.6).

Throughout the rest of this thesis, we will make use of the following standard facts relating

the Sasaki distance d to the distance dM on M coming from the Riemannian metric g and

the distance dT 1
qM

on Sn−1 ∼= T 1
qM . Let v, w ∈ T 1M be unit tangent vectors with footpoints

p and q respectively. Let v′ ∈ T 1
qM be the vector obtained by parallel transporting v along

the geodesic joining p and q. Then we have

dM(p, q), dT 1
qM

(v′, w) ≤ d(v, w) ≤ dM(p, q) + dT 1
qM

(v′, w). (III.2.1)

For convenience, we will often write d in place of dM when it is clear from context that we

are considering the distance between points as opposed to between unit tangent vectors.

Recall the geodesic flow on the unit tangent bundle of a negatively curved manifold is

Anosov, and thus has local product structure. This means every point v has a neighborhood

V which satisfies: for all ε > 0, there is δ > 0 so that whenever x, y ∈ V with d(x, y) ≤ δ

there is a point [x, y] ∈ V and a time |σ(x, y)| < ε such that

[x, y] = W ss(x) ∩W su(φσ(x,y)y)

[FH19, Proposition 6.2.2]. Moreover, there is a constant C0 = C0(δ) so that d(x, y) < δ
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implies dss(x, [x, y]), dsu(φ
σ(x,y)[x, y], y) ≤ C0d(x, y), where dss and dsu denote the distances

along the strong stable and strong unstable manifolds, respectively.

To describe the stable and unstable distances dss and dsu, we first recall the stable

and unstable manifolds W ss and W su for the geodesic flow have the following geometric

description (see, for instance, [Bal95, p. 72]). Let v ∈ T 1M̃ . Let p ∈ M̃ be the footpoint of v

and let ξ ∈ ∂M̃ be the forward projection of v ∈ T 1M̃ to the boundary. Let Bξ,p denote the

Busemann function on M̃ and let Hξ,p denote its zero set. Then the lift of W ss(v) to T 1M̃ is

given by {−gradBξ,p(q) | q ∈ Hξ,p}. If η denotes the projection of −v to the boundary ∂M̃ ,

then the lift of W su(v) to T 1M̃ is analogously given by {gradBη,p(q) | q ∈ Hη,p}.
Now let v ∈ T 1M and w ∈ W ss(v). Let p and q denote the footpoints of v and w

respectively. Define the stable distance dss(v, w) to be the horospherical distance h(p, q), i.e.,

the distance obtained from restricting the Riemannian metric g on M̃ to a given horosphere.

The unstable distance is defined analogously.

From the above description of W ss and W su in terms of normal fields to horospheres, it

follows that the local product structure for the geodesic flow enjoys stronger properties than

those for a general Anosov flow given in the first paragraph. First, the product structure is

globally defined, meaning the neighborhood V in the first paragraph can be taken to be all

of T 1M̃ (see, for instance, [Cou04]). Second, the bound on the temporal function σ can be

strengthened:

Lemma III.11. If d(v, w) < δ, then |σ(v, w)| < δ. for all δ

Proof. Let p and q denote the footpoints of v and w respectively. Then by (III.2.1), we know

d(p, q) < δ. Let ξ denote the forward boundary point of v and let η denote the backward

boundary point of w. Let p′ ∈ Hξ,p and q′ ∈ Hη,q be points on the geodesic through η and

ξ. Then d(p′, q′) = |σ(v, w)|. Moreover, since the geodesic segment through p′ and q′ is

orthogonal to both Hξ,p and Hη,q, it minimizes the distance between these horospheres. In

other words, |σ(v, w)| = d(p′, q′) ≤ d(p, q) < ε.

This allows us to deduce the following key lemma, which was used in the proof of Propo-

sition III.9.

Lemma III.12. Consider the geodesic flow φt on the universal cover T 1M̃ . Suppose d(v, w) <

δ1 and d(φsv, φtw) < δ2. Then |s− t| < δ1 + δ2.

Proof. Since [φsv, φsw] = [φsv, φtw], we have

φσ(φsv,φsw)φsw = φσ(φsv,φtw)φtw.
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Thus σ(φsv, φsw) + s = σ(φsv, φtw) + t. Rearranging gives

s− t = σ(φsv, φtw)− σ(φsv, φsw) = σ(φsv, φtw)− σ(v, w).

By Lemma III.11, the absolute value of the right hand side is bounded above by δ1 + δ2,

which completes the proof.

Now assume (M, g) has sectional curvatures between −Λ2 and −λ2. We will show the

constant C0 in the definition of local product structure can be taken to depend only on

λ, Λ and diam(M), whereas a priori it depends on the metric g. For our purposes, it

will suffice to show the following proposition, which is formulated using the Sasaki distance

d between vectors in T 1M instead of the stable/unstable distances dss and dsu between

vectors on the same horosphere. In fact, we will show later (Lemma III.37) that the Sasaki

distance d between vectors on the same stable/unstable manifold is comparable to dss and

dsu, respectively.

Proposition III.13. Suppose (M, g) has sectional curvatures between −Λ2 and −λ2. Then

there is small enough δ0 = δ0(λ,Λ, diam(M)) so that the following holds. Let u ∈ T 1
p M̃ . Let

u1 ∈ W ss(u) and u2 ∈ W ss(x) so that d(u1, u2) ≤ diam(T 1M), where d denotes the distance

in the Sasaki metric. Then there exists a constant C0 = C0(λ,Λ, diam(M)) so that whenever

d(u1, u2) < δ0, we have d(u, ui) ≤ C0d(u1, u2) for i = 1, 2.

Remark III.14. In our context, the dependence of the constant C0 on the diameter of M

can be replaced with a dependence on the injectivity radius iM . Indeed, by [Gro82, Section

0.3], the volume of M is bounded above by a constant V0 depending only on n, Γ, and λ. A

standard argument (see, for instance, the proof of Lemma 3.9 in [But22b]) then shows the

diameter is bounded above by D0 = D0(iM , V0,Λ).

Our proof of Proposition III.13 relies on the geometry of horospheres, and we use many of

the methods and results from the paper [HIH77] of the same title. However, we additionally

consider the Sasaki distances between unit tangent vectors in T 1M̃ instead of just distances

between points in M̃ .

Let ξ ∈ ∂M̃ and let B = Bξ be the associated Busemann function. Suppose p ∈ M̃ is

such that B(p) = 0. Let v ∈ T 1
p M̃ perpendicular to gradB(p) and consider the geodesic

γ(s) = expp(sv). Define f(s) = B(γ(s)). This is the distance from γ(s) to the zero set of B.

Moreover, f ′(s) = 〈gradB, γ′〉 = cos θ, where θ is the angle between γ′(s) and gradB(γ(s)).

In particular, f ′(0) = 0.

Lemma III.15. For all s ∈ R we have f(s) ≤ Λ
2
s2 and cos θ(s) = f ′(s) ≤ Λs.
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Proof. We have f ′′(s) = 〈∇γ′gradB, γ′〉 = 〈∇γ′T
gradB, γ′T 〉, where γ′T denotes the component

of γ′ which is tangent to the horosphere through ξ and γ(s). Note ‖γ′T‖ = sin(θ), where as

before, θ is the angle between γ′(s) and gradB(γ(s)).

Thus f ′′(s) = 〈J ′(0), J(0)〉, where J is the stable Jacobi field along the geodesic through

γ(s) and ξ with J(0) = γ′T (s). (See, for instance, [BCG95, p.750–751].) By [Bal95, Propo-

sition IV.2.9 ii)], we have ‖J ′(0)‖ ≤ Λ‖J(0)‖, which shows f ′′(s) ≤ Λ‖J(0)‖2 ≤ Λ. Since

f(0) and f ′(0) are both 0, Taylor’s theorem implies that for any s, there is s̃ ∈ [0, s] so that

f(s) = f ′′(s̃)
2
s2. Thus, f(s) ≤ Λ

2
s2 for all s ≥ 0. Moreover, since f ′(0) = 0, integrating f ′′(s)

shows cos θ = f ′(s) ≤ Λs.

Lemma III.16. Fix S > 0. Then there is a constant c = c(λ, S) such that for all s ∈ [0, S]

we have f(s) ≥ c
2
s2 and cos θ = f ′(s) ≥ cs.

Proof. As in [HIH77, Section 4], we use fλ(s) to denote the analogue of the function f(s), but

defined in the space of constant curvature −λ2. By considering the appropriate comparison

triangles, it follows that f(s) ≥ fλ(s) and f ′(s) ≥ f ′λ(s) [HIH77, Lemma 4.2]. As in the

proof of the previous lemma, we know f ′′λ (s) = 〈J(0), J ′(0)〉, where ‖J(0)‖ = sin θ. Solving

the Jacobi equation explicitly in constant curvature gives f ′′λ (s) = λ sin2 θ. For all s ∈ [0, S],

this is bounded below by λ sin2 θ(S), which is a constant depending only on the value of S

and the space of constant curvature −λ2. In other words, there is a constant c = c(λ, S) so

that f ′′λ (s) ≥ c for all s ∈ [0, S]. As in the proof of the previous lemma, Taylor’s theorem

then implies fλ(s) ≥ c
2
s2, and integrating f ′′λ on the interval [0, s] gives f ′λ(s) ≥ cs.

Remark III.17. From the above proof it is evident that f ′λ(s)/s→ 0 as s→∞, and as such

the only way to get a positive lower bound for cos θ/s is to restrict to a compact interval

[0, S]. This is reasonable for our purposes, since in the end, we will be applying the results of

this section to the compact manifold M as opposed to its universal cover M̃ . In Hypothesis

III.18 below, we explain how we choose S based on diam(M).

For the proofs of the next several lemmas, we will consider the following setup (see Figure

III.2 below). Let u be a unit tangent vector with footpoint p . Let v ∈ T 1
pM perpendicular

to u and let γ(t) = expp(tv). Fix s > 0 and let u1 ∈ W ss(u) be such that such that the

geodesic determined by u1 passes through γ(s). Let p1 denote the footpoint of u1. Let η

denote the geodesic segment joining p and p1 and let α denote the angle this segment makes

with the vector u. Let q be the orthogonal projection of p1 onto the geodesic γ. Consider

the geodesic right triangle with vertices p1, q, γ(s). Let θ denote the angle at γ(s) and let θ1

denote the angle at p1.
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Figure 1: The setup for the proofs of Lemmas III.19, III.20, and III.21

Hypothesis III.18. For our purposes, it is reasonable to assume d(p, p1) ≤ diam(M),

where p, p1 ∈ M̃ . By [HIH77, Theorem 4.6, Proposition 4.7], this forces s ≤ S, where S is a

constant depending only on diam(M) and the lower sectional curvature bound −Λ2. So we

assume s ≤ S from now on.

Lemma III.19. Let u1 ∈ W ss(u) as in Figure III.2, and assume s ≤ S (see Hypothesis

III.18). Then there is a constant C = C(Λ, diam(M)) so that d(u, u1) ≤ Cs. If u2 ∈ W ss(u),

then d(u, u2) ≤ Cs as well.

Proof. Consider the setup in Figure III.2. Let η denote the geodesic joining p and p1 and

let Pη : TpM → Tp1M denote parallel transport along this geodesic. Recall

d(u, u1) ≤ dM(p, p1) + dT 1
p1
M(Pu, u1).

To bound dM(p, p1), we use the triangle inequality together, Lemma III.15, and Hypothesis

III.18:

d(p, p1) ≤ d(p, q) + d(p1, q) ≤ s+ d(p1, γ(s)) ≤ s+ Λs2/2 ≤ (1 + ΛS/2)s.

To bound dT 1
p1
M(Pu, u1), we first find bounds for the angles θ and θ1. We know from

Lemma III.15 that sin(π/2− θ) = cos θ ≤ Λs. Moreover, sin(π/2− θ) ≥ (2/π)(π/2− θ) for

0 ≤ π/2 ≤ θ. Since the interior angles of geodesic triangles in M sum to less than π, we

know θ + θ1 < π/2. Thus, θ1 < π/2− θ ≤ (π/2)Λs.

Now let α denote the angle between u and η′ at the point p. Then α is also the angle

between Pu and η′ at the point p1, since parallel transport is an isometry and η′ is a

geodesic. Since the angle sum of the geodesic triangle with vertices p, p1 and q is less

than π, the angle in Tp1M between η′ and [p1, q] is strictly less than α. Thus if we rotate

η′ towards Pu, we must pass through the tangent vector to [p1, q] along the way. Hence

dTp1M(Pu, u1) < θ1 ≤ (π/2)Λs, which completes the proof of the upper bound for d(u, u1).

The estimate for d(u, u2) follows by an analogous argument.
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Lemma III.20. Again, consider the setup in Figure III.2 and Hypothesis III.18. For all

s ∈ [0, S] we have θ1 ≥ cs for some c = c(λ,Λ, diam(M)).

Proof. Consider the following comparison triangle with vertices p′1, q
′, x in the space of con-

stant curvature −Λ2: suppose there is a right angle at the vertex q′ and the lengths of the

two legs are equal to dM(q, p1) and dM(q, γ(s)). Let θ′ denote the angle at x and let θ′1 denote

the angle at p′1. Since triangles in M are thicker than in the space of constant curvature

−Λ2, we have θ1 ≥ θ′1 and cos(θ′) ≥ cos(θ). Now by [Bea12, Theorem 7.11.3] we have

θ′1 ≥ sin(θ′1) =
cos(θ′)

cosh(Λ d(q, p1))
≥ cos(θ)

cosh(Λ d(γ(s), p1))
.

By Lemma III.16, we can bound the numerator below by cs for some c = c(λ,Λ, diam(M)).

Using Lemma III.15 and Hypothesis III.18, we get d(γ(s), p1) = f(s) ≤ Λs2/s ≤ ΛS2/2. So

the denominator is bounded above by some constant depending only λ,Λ, diam(M), which

completes the proof.

Lemma III.21. Let u ∈ T 1
pM . Let u1 ∈ W ss(u) be such that the footpoints p and p1 of u

and u1 are distance t apart. Then d(u, u1) ≤ (1 + Λ)t.

Proof. Let η denote the geodesic joining p and p1. Let Pη : TpM → Tp1M denote parallel

transport along η. Let v0 ∈ T 1
pM be the vector contained in the plane spanned by u and

η′(0) so that 〈u, v0〉 = 0 and 〈η′(0), v0〉 > 0. Let V (s) denote the parallel vector field along

η(s) with initial value V (0) = v0. Let θ(s) be the angle between V (s) and −gradB(η(s)).

Then θ1 = π/2− θ(t) is the angle between u1 and Pηu. We have

sin(π/2− θ) = cos(θ) = 〈V (t),−gradB(η(t))〉 =

∫ t

0

〈V (s),∇V gradB(η(s))〉 ds.

By the same argument as in the proof of Lemma III.15, this integral is bounded above by

Λt. Hence, d(u, u1) ≤ dM(p, p1) + dTp1M(Pηu, u1) ≤ t+ Λt.

Proof of Proposition III.13. Consider the hypersurface formed by taking the exponential im-

age of gradB(p)⊥. For i = 1, 2, let xi denote the point on this hypersurface which is on

the geodesic determined by ui. Let vi ∈ T 1
pM perpendicular to u for i = 1, 2 such that

expp(sivi) = xi, where si = d(p, xi). Let γi(s) = expp(svi).

Now suppose without loss of generality that s1 ≥ s2 and let s = s1. By Lemma III.19,

we have d(u, u1) ≤ Cs for some C = C(Λ, diam(M)). So it suffices to bound d(u1, u2)/s

from below by some constant depending only on the desired parameters. Now let c =

c(λ,Λ, diam(M)) be the constant from the statement of Lemma III.20, and let β such that
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Figure 2: The horospherical configuration for the proof of Proposition III.13

c− 2(1 + Λ)β = c/2. Let s′ = βs. Let q1 and q2 denote the orthogonal projections of p1 and

p2 onto the tangent plane gradB(p)⊥. See Figure III.2 below.

We consider the cases d(q1, q2) ≥ s′ and d(q1, q2) ≤ s′ separately. In the first case, we

obtain d(u1, u2) ≥ dM(p1, p2) ≥ d(q1, q2) ≥ βs1, which shows d(u, u1) ≤ C
β
d(u1, u2).

We now consider the case d(γ1(s), γ2(s)) ≤ s′. The geodesic determined by p1 and q1 in-

tersects the unstable horosphere W su(u) at some point we will call p3. Let u3 = gradBη,p(p3).

As before, let θ1 denote the angle between u1 and the geodesic determined by the points p1

and q1. Then d(u1, u3) ≥ θ1 ≥ cs by Lemma III.20.

We now bound d(u2, u3) from above. Lemma III.21 gives d(u2, u3) ≤ (1 + Λ)d(p2, p3).

By the triangle inequality and Lemma III.15, d(p2, p3) ≤ s′ + Λs2. So if s′ ≤ βs, we obtain

d(u2, u3) ≤ (1 + Λ)(β + Λs)s. We now claim that there is δ0 sufficiently small so whenever

d(u1, u2) < δ0, we also have s is small enough to guarantee Λs ≤ β. To see this, first

note that d(u1, u2) ≥ d(p1, p2) ≥ d(p1, q1). Now consider a comparison right triangle in the

space of constant curvature −λ2 with hypotenuse equal to d(γ(s0), p1) = f(s) and an angle

θ equal to the angle between gradB and γ′ at the point γ(s0). Let x denote the length

of the side opposite to the angle θ. Then, using the fact that triangles in M are thinner

than this comparison triangle, together with [Bea12, Theorem 7.11.2 ii)], Lemma III.16 and

Hypothesis III.18, gives

sinh(d(p1, q1)) ≥ sinh(x) = sin(θ(s)) sinh(f(s)) ≥ sin(θ(S)) sinh(cs2).

So if d(u1, u2) ≤ δ we see that sinh(cs2) ≤ Cδ, where C depends only on λ and S. In

other words, there is small enough δ0 = δ0(λ,Λ, diam(M)) to ensure s is as small as desired,

which in this case means small enough for Λs ≤ β = β(λ,Λ, diam(M)). Thus, we now have

d(u2, u3) ≤ 2(1 + Λ)βs.

Finally, d(u1, u2) ≥ d(u1, u3)− d(u2, u3) ≥ s1(c− 2(1 + Λ)β). By the choice of β, this is
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bounded below by c
2
s. Hence d(u, u1) ≤ Cs1 ≤ 2C

c
d(u1, u2). Reversing the roles of u1 and u2

and repeating the same argument gives the analogous upper bound for d(u, u2).

Proposition III.13 allows us to deduce the following refinement of the Anosov Closing

Lemma, where we can say the constants involved depend only on concrete geometric infor-

mation about (M, g), namely the diameter and the sectional curvature bounds. Note that

now the setting is T 1M as opposed to the universal cover T 1M̃ .

Lemma III.22. There is δ0 = δ0(λ,Λ, diam(M)) sufficiently small so that the following

holds. Suppose v, φtv ∈ T 1M so that d(v, φtv) < δ ≤ δ0. Then either v and φtv are on the

same local flow line or there is w with d(v, w) < Cδ so that w is tangent to a closed geodesic

of length t′ ∈ [t− Cδ, t + Cδ], where C is a constant depending only on the diameter of M

and the sectional curvature bounds λ and Λ.

Proof. Let δ0 be the constant in Proposition III.13. The proof of the usual Anosov Closing

Lemma in [Fra18, Figure 2] (see also [Bow75, 3.6, 3.8]) shows the constant C depends only

on the local product structure constant C0. By Proposition III.13, we know this depends

only on λ,Λ, diam(M).

III.3: Covering lemma

In this section, we prove the following covering lemma, which was one of the key statements

we used in the proof of the main theorem.

Lemma III.1. There is small enough δ0 = δ0(n, λ,Λ, diam(M)) together with a constant

C = C(n,Γ, λ,Λ, diam(M)) so that for any δ < δ0, there is a covering of T 1M by at most

C/δ2n+1 δ-rectangles.

We start with a preliminary lemma.

Lemma III.23. Let B(v, δ) be a ball of radius δ in T 1M with respect to the Sasaki metric.

There is small enough δ0 = δ0(n), depending only on the dimension n, so that for all δ < δ0

we have vol(B(v, δ)) ≥ cδ2n+1 for some constant c = c(n).

Proof. First we claim B(v, δ) ⊃ BM(p, δ/2) × BSn−1(v, δ/2), where BM(p, δ/2) is a ball of

radius δ/2 in M and BSn−1(v, δ/2) is a ball of radius δ/2 in the unit tangent sphere T 1
pM .

This follows immediately from (III.2.1). Since M is negatively curved, Theorem 3.101 ii) in

[GHL90] implies volBM(p, δ/2) ≥ βnδ
n/2n, where βn is the volume of the unit ball in Rn. By

Theorem 3.98 in [GHL90], we have volBSn−1(v, δ/2) = βn−1δn−1

2n−1 (1 − n−1
6(n+1)

δ2 + o(δ4)). Then
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for δ less than some small enough δ0, we can write

BSn−1(v, δ/2) ≥ βn−1δ
n−1

2n−1

(
1− 2

n− 1

6(n+ 1)
δ2

)
≥ cδn+1,

for some c = c(n). The quantity δ0 depends only on the coefficients of the Taylor expansion

of volBSn−1(v, δ/2), which depend only on the geometry of Sn−1. So we can say δ0 depends

only on n. Therefore, the volume of the Sasaki ball B(v, δ) is bounded below by cδ2n+1 for

some other constant c = c(n) depending only on n.

Proof of Lemma III.1. Let δ0 and C as in Proposition III.13. Let c = 1/C and let δ < δ0/2c.

Let v1, . . . , vm be a maximal cδ-separated set in T 1M with respect to the Sasaki metric. We

claim that the balls B(v1, cδ), . . . , B(vm, cδ) cover T 1M . If not, there is some v such that

d(v, vi) ≥ cδ for all i. This contradicts the fact that v1, . . . , vm was chosen to be a maximal

cδ-separated set.

This implies that the rectangles R(v1, δ) . . . R(vm, δ) cover T 1M as well. Indeed, let w ∈
B(v, cδ). Then by Lemma III.11 there is a time σ = σ(v, w) < cδ and a point [v, w] ∈ T 1M

so that [v, w] = W ss(v) ∩W su(φσw). Thus d(v, φσw) ≤ δ0 and Proposition III.13 implies

dss(v, [v, w]), dsu([v, w], φσw) < Ccδ = δ as desired.

Now we estimate m. Since v1, . . . , vm if cδ-separated, it follows that for i 6= j we have

B(vi, c δ/2) ∩B(vj, c δ/2) = ∅. Hence

m inf
i

vol(B(vi, cδ/2)) ≤ vol(T 1M) = vol(Sn−1)vol(M).

By [Gro82, 0.3 Thurston’s Theorem], we have vol(M) is bounded above by a constant de-

pending only on n, Γ and the upper sectional curvature bound −λ2. This, together with

Lemma III.23, gives m ≤ C/δ2n+1 for some constant C = C(n,Γ, λ,Λ, diam(M)).

III.4: Pseudo-isometry estimates

Recall (M, g) and (N, g0) are compact negatively curved manifolds with a given isomorphism

between their fundamental groups. Since M and N are K(π, 1) spaces, there is a homotopy

equivalence M → N inducing this isomorphism; moreover, we can assume it is of C1 reg-

ularity, since every continuous map is homotopic to a differentiable one. Now lift this C1

homotopy equivalence to a map f : M̃ → Ñ , which is equivariant with respect to the actions

of Γ ∼= π1(M) ∼= π1(N) on M̃ and Ñ . It is well-known that f is a pseudo-isometry (see, for

instance, [BP92, Proposition C.1.2]), meaning there exist constants A and B so that for all
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x1, x2 ∈ M̃ we have

A−1dg(x1, x2)−B ≤ dg0(f(x1), f(x2)) ≤ Adg(x1, x2). (III.4.1)

This is a special case of the perhaps more widely used concept of a quasi-isometry, which

is when there is also an additive constant on the righthand side of (III.4.1). In our case,

however, the absence of this additive constant is crucial for our remaining arguments.

In this section, we show the constants A and B depend only on the fundamental group

Γ, the injectivity radius of (M, g) and the sectional curvature bounds for (M, g) and (N, g0)

(Proposition III.24 below).

Proposition III.24. Suppose f : M̃ → Ñ is a Γ-equivariant C1 map as above. Now let

g and g0 be Riemannian metrics on M and N with sectional curvatures contained in the

interval [−Λ2,−λ2], and suppose the injectivity radii of (M, g) and (N, g0) are bounded below

by iM and iN , respectively. Then there are constants A and B depending only n,Γ, a, b, iM

so that (III.4.1) holds for all x1, x2 ∈ M̃ .

We start by finding a uniform Lipschitz bound for f , in other words, proving the second

inequality in the above proposition (Corollary III.27 below). A key tool we use is Gromov

compactness. LetM(D0, v0,Λ) be the space of all Riemannian metrics onM with diameter at

most D0, volume at least v0 and absolute sectional curvatures at most Λ2. This space satisfies

certain pre-compactness properties. We will use a refinement of Gromov’s theorem due to

Greene–Wu [GW88], namely that any sequence (M, gn) ∈ M(D0, v0,Λ) has a subsequence

(M, gnk) converging in the following sense: there is a Riemannian metric g∞ on M such that

in local coordinates we have gijnk → gij∞ in the C1,α norm and the limiting gij∞ have regularity

C1,α, for some 0 < α < 1.

Lemma III.25. Suppose f : M → N is a C1 map. Suppose g and g0 are Riemannian

metrics on M and N with (M, g) ∈ M(D0, v0,Λ) and (N, g0) ∈ M(D′0, v
′
0,Λ

′). Then there

exists a constant A = A(f,D0, D
′
0, v0, v

′
0,Λ,Λ

′) so that

‖df‖g,g0 := sup
v∈TM

‖dfp(v)‖g0
‖v‖g

≤ A.

Proof. If gn → g in the C1,α topology, then, in particular, ‖v‖gn → ‖v‖g∞ uniformly on

compact sets. This means if gn → g and gn0 → g0, then dfgn,gn0 → dfg,g0 .

Now suppose for contradiction that the statement of the lemma is false. This means

there are sequences gn ∈ M(D0, v0,Λ) and gn0 ∈ M(D′0, v
′
0,Λ

′) so that ‖df‖gn,gn0 → ∞.

After passing to convergent subsequences, we have ‖df‖gn,gn0 → ‖df‖g∞,g∞0 for some C1,α
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Riemannian metrics g∞ and g∞0 . Since f is C1 and the unit tangent bundle of M is compact,

the derivative df(v) is uniformly bounded in v. In other words, ‖df‖g∞,g∞0 < ∞, which is a

contradiction. So the statement of the lemma must be true.

Lemma III.26. Suppose that (M, g) has sectional curvatures in the interval [−Λ2,−λ2]

and injectivity radius at least iM . Then there are constants v0 = v0(iM , n) and D0 =

D0(n, λ,Γ, iM) so that (M, g) ∈M(D0, v0,Λ).

Proof. First, the desired absolute sectional curvature bound holds by assumption. Second,

by Gromov’s systolic inequality, we know vol(M, g) ≥ v0, where v0 is a constant depending

only on n and iM [Gro83, 0.1.A].

It now remains to bound the diameter from above. By [Gro82, Section 0.3], the volume

is bounded above by a constant V0 depending only on n, Γ, and λ. Thus it suffices to show

diameter is bounded above by D0 = D0(iM , V0,Λ). To see this, let p and q be such that

diam(M) = d(p, q) and let c(t) be the geodesic joining p and q. Let m be the unique positive

integer such that 2(m − 1)iM ≤ diam(M) ≤ 2miM . Take balls of radius iM centered at

c(0), c(2iM), c(4iM), . . . , c(2(m − 1)iM). Since M is negatively curved, the volume of any

such ball is bounded below by the volume of a ball of radius iM in Rn [GHL90, Theorem

3.101 ii)], which we will denote by v(iM , n). Then mv(r, n) ≤ Vol(M) ≤ V0. This gives an

upper bound for m, therefore

d(p, q) = diam(M) ≤ 2iMm ≤ iM
2V0

v(iM , n)
,

which completes the proof.

Corollary III.27. Let (M, g) and (N, g0) be closed Riemannian manifolds of dimension n

with sectional curvatures in the interval [−Λ2,−λ2], and assume there is an isomorphism

between their fundamental groups. Then there is an A-Lipschitz map f : M → N inducing

this isomorphism, where A depends only on n,Γ, λ,Λ, and the injectivity radii iM and iN .

Given that f is A-Lipschitz, we now show the second estimate in the definition of pseudo-

isometry. We follow the approach of [BP92, Proposition C.12], but we need to check the

constants depend only on the desired parameters n, Γ, λ, Λ and iN .

First, let h : Ñ → M̃ be a C1 homotopy inverse of f . By Corollary III.27, h is also

A-Lipschitz. Now consider the following fundamental domain DM for the action of Γ on M̃

(see [BP92, Proposition C.1.3]). Fix p ∈ M̃ . Let

DM = {x ∈ M̃ | d(x, p) ≤ d(x, γ.p)∀γ ∈ Γ}. (III.4.2)
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Claim III.28. The diameter of DM satisfies diam(DM) ≤ 2 diam(M).

Proof. Let x ∈ M̃ so that d(p, x) > diam(M). This means there is some γ ∈ Γ so that

d(x, γ.p) < d(x, p). In other words, any geodesic in M̃ starting at p stays in DM for a time

of at most diam(M). So if x1, x2 ∈ DM so that d(x1, x2) = diam(DM), then d(x1, x2) ≤
d(x1, p) + d(x2, p) ≤ 2 diam(M), which proves the claim.

Claim III.29. For all x ∈ M̃ , we have d(h ◦ f(x), x) ≤ 2(1 + A2)diam(M).

Proof. Since h and f are both continuous and Γ-equivariant, so is h ◦ f , and thus it suffices

to check the statement for x in a compact fundamental domain DM . Since f and h are

A-Lipschitz, it follows that the function x 7→ d(h ◦ f(x), x) is (1 + A2)-Lipschitz:

|d(h ◦ f(x), x)− d(h ◦ f(y), y)| ≤ d(h ◦ f(x), h ◦ f(y)) + d(x, y) ≤ (1 + A2)d(x, y).

Noting d(x, y) ≤ DM ≤ 2 diam(M) completes the proof.

Proof of Proposition III.24. We can now use the argument in [BP92] verbatim. By the

previous claim, we obtain

d(h(f(x1)), h(f(x2)) ≥ d(x1, x2)− 4(1 + A2)diam(M).

Then, the Lipschitz bounds for f and h give

d(f(x1), f(x2)) ≥ A−1d(h ◦ f(x1), h ◦ f(x2)) ≥ A−1
(
d(x1, x2)− 4(1 + A2)diam(M)

)
,

which completes the proof.

III.5: Hölder estimate

In this section, we show the following, which was one of the main ingredients in the proof of

Theorem I.9.

Proposition III.4. Suppose (M, g) and (N, g0) are a pair of homotopy-equivalent compact

Riemannian manifolds with sectional curvatures contained in the interval [−Λ2,−λ2]. Let

iM and iN denote their respective injectivity radii. Then there exists an orbit equivalence of

geodesic flows F : T 1M → T 1N which is C1 along orbits and transversally Hölder continuous.

More precisely, there is small enough δ0 = δ0(λ,Λ, iM) together with constants C and A,

depending only on n, Γ, λ, Λ, iM , iN , so that the following hold:

1. d(F(v),F(φtv)) ≤ At for all v ∈ T 1M̃ and t ∈ R,
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2. d(F(v),F(w)) ≤ Cd(v, w)A
−1λ/Λ for all v, w ∈ T 1M̃ with d(v, w) < δ0.

We will take F to be the map in [Gro00], whose construction we now recall. The con-

struction starts with a preliminary Γ-equivariant orbit map F0 : T 1M̃ → T 1Ñ which is not

necessarily injective. As in Section III.4, consider a C1 homotopy equivalence M → N ,

which we lift to a Γ-equivariant map f : M̃ → Ñ . By Proposition III.24, there are constants

A and B, depending only on n, λ, Λ, Γ, iM , so that

A−1d(p, q)−B ≤ d(f(p), f(q)) ≤ Ad(p, q). (III.5.1)

Let η be a bi-infinite geodesic in M̃ and let ζ = f(η) be the corresponding geodesic in Ñ ,

where f : ∂2M̃ → ∂2Ñ is obtained from extending the quasi-isometry f to a map ∂M̃ → ∂Ñ .

Let Pζ : Ñ → ζ denote the orthogonal projection. Note this projection is Γ-equivariant,

i.e., γPζ(x) = Pγζ(γx). If (p, v) ∈ T 1M̃ is tangent to η, define F0(p, v) to be the tangent

vector to ζ at the point Pζ ◦ f̃(p). Thus F0 : T 1M̃ → T 1Ñ is a Γ-equivariant map which

sends geodesics to geodesics. As such, we can define a cocycle b(t, v) to be the time which

satisfies

F0(φtv) = ψb(t,v)F0(v). (III.5.2)

Remark III.30. Since f̃ is C1 and the orthogonal projection is smooth in the t-direction, we

have t 7→ b(t, v) is C1.

It is possible for a fiber of the orthogonal projection map to intersect the quasi-geodesic

f̃(η) in more than one point; thus, F0 is not necessarily injective. In order to obtain an

injective orbit equivalence, we follow the method in [Gro00] and average the function b(t, v)

along geodesics. We will repeatedly use the following standard fact about quasi-geodesics

remaining bounded distance away from their corresponding geodesics:

Lemma III.31 (Theorem III.H.1.7 of [BH13]). Let f be the quasi-isometry from Section

III.4. Let c(t) be any geodesic in M̃ and let η be its corresponding geodesic in Ñ obtained

from the boundary map f : ∂M̃ → ∂Ñ . Then there is a constant R, depending only on the

pseudo-isometry constants A and B of f and the upper sectional curvature bound −λ2 for

N , so that d(f(c(t)), Pη(f(c(t))) ≤ R for any t ∈ R.

Lemma III.32. Let

al(t, v) =
1

l

∫ t+l

t

b(s, v) ds.

There is a large enough l so that t 7→ al(t, v) is injective for all v.
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Proof. The fundamental theorem of calculus gives

d

dt
al(t, v) =

b(t+ l, v)− b(t, v)

l
. (III.5.3)

We claim there is a large enough l so that this quantity is always positive. To this end,

suppose b(t + l, v)− b(t, v) = 0. This means F0(φtv) and F0(φt+lv) are in the same fiber of

the normal projection onto the geodesic f(v). Since s 7→ f̃(φsv) is a quasi-geodesic, there is a

constant R, depending only on the quasi-isometry constants A and B of f̃ , so that all points

on f̃(φsv) are of distance at most R from the geodesic ψtF0(v) [BH13, Theorem 3.H.1.7].

Thus two points on the same fiber of the normal projection are at most distance 2R apart,

which gives

A−1l −B ≤ d(f(φtv), f(φt+lv)) ≤ 2R.

Taking l > A(2R +B) guarantees d
ds
al(s, v) is never 0, and hence al(s, v) is injective.

Proposition III.33. For each v ∈ T 1M , let

Fl(v) = ψal(0,v)F0(v)

for al as in Lemma IV.24. Then Fl is an orbit equivalence of geodesic flows.

Proof. Since Fl sends geodesics to geodesics, there exists a cocycle kl(t, v) so that Fl(v) =

ψkl(t,v)Fl(v). We need to check t 7→ kl(t, v) is injective. Note that

al(0, φ
tv) =

1

l

∫ l

0

b(s, φtv) ds

=
1

l

∫ l

0

b(s+ t, v)− b(t, v) ds

= al(t, v)− b(t, v).

This means

Fl(φtv) = ψal(0,φ
tv)F0(φtv)

= ψal(0,φ
tv)+b(t,v)F0(v)

= ψal(t,v)F0(v).

Therefore, Fl(φtv) = ψkl(t,v)Fl(v) = ψal(t,v)F0(v), and hence

d

dt
|t=0kl(t, v) =

d

dt
|t=0al(t, v) =

b(l, v)

l
. (III.5.4)
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The proof of Lemma IV.24 shows the above quantity is positive. So Fl is injective along

geodesics, as desired.

We now proceed to find a Hölder estimate for Fl, which we will denote by F from

now on for simplicity. Most of the work is finding estimates for the map F0 from (III.5.2)

(Proposition III.38).

Lemma III.34. Let b(t, v) as in (III.5.2). Let A,B as in (III.5.1). Then b(t, v) satisfies

At−B′ ≤ b(t, v) ≤ At.

for all t, where B′ is a constant depending only on λ,A,B.

Proof. Recall b(t, v) = d(Pηf(p), Pηf(q)), which is bounded above by d(f(p), f(q)) because

orthogonal projection is a contraction in negative curvature. This quantity is in turn bounded

above by At, using the Lipschitz bound for f in (III.5.1).

Next, let R be the constant in Lemma III.31. Then d(f(p), Pη(f(p)) ≤ R, which implies

b(t, v) ≥ d(f(p), f(q)) − 2R. The desired estimate then follows from the lower bound for

d(f(p), f(q)) in (III.5.1).

Lemma III.35. There is small enough δ0 = δ0(Λ) so that for any δ ≤ δ0 the following

holds. Fix v ∈ T 1M̃ and let x ∈ M̃ be a point such that the orthogonal projection Pv(x) of

x onto the bi-infinite geodesic determined by v is the footpoint of v. Let w ∈ W su(v) and

suppose further that dsu(v, w) < δ. Then there is a constant C = C(n,Γ, λ,Λ, iM) so that

d(Pv(x), Pw(x)) < Cδ.

Proof. Let p and q denote the footpoints of v and w, respectively. Let u ∈ T 1
pM be the

vector tangent to the curve in the horosphere connecting p and q. Let γ(s) = expp(su).

Let s0 be such that γ(s0) intersects the geodesic determined by w. We claim there are

positive constants δ0 = δ0(Λ) and C = C(Λ) so that if d(v, w) ≤ δ ≤ δ0 then s0 ≤ Cδ. By

[HIH77, Proposition 4.7] we know tanh(Λs0) ≤ Cdsu(v, w) ≤ Cδ, where C is some constant

depending only on Λ, which proves the claim.

Now let θ denote the angle between the geodesic segment [x, γ(s0)] and the geodesic

determined by w. We start by showing θ is close to π/2. In the case where x and p coincide,

the above angle θ is the same as the angle θ in Lemma III.15. Thus, cos θ ≤ Λs0.

Otherwise, let t0 = d(x, p) 6= 0. We consider two further cases: d(x, γ(s0)) ≤ δ and

d(x, γ(s0)) ≥ δ. For the proof in the first case, we start by noting that

d(p, Pw(x)) ≤ d(p, γ(s0)) + d(Pw(x), γ(s0))

≤ d(p, q) + d(q, γ(s0) + d(Pw(x), γ(s0)) + d(x, γ(s0).
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Since d(v, w) < δ (by assumption), so is d(p, q). By Lemma III.15, d(q, γ(s0)) ≤ Λs2
0 ≤ Cδ2.

Finally, note d(x, Pw(x)) ≤ d(x, γ(s0)). So applying the hypothesis d(x, γ(s0)) ≤ δ completes

the proof in this case.

Now we consider the case d(x, γ(s0)) ≥ δ. Let v0 ∈ T 1
xM such that expx(t0v0) = p. For

0 < s ≤ s0, let v(s) ∈ Tx0M such that expx(t0v(s)) = γ(s). Then X(s) := d
dt
|t=t0 expx(tv(s))

is a vector field along γ(s). The hypothesis d(x, γ(s0)) ≥ δ allows us to bound

‖X(s)‖
‖X(s0)‖

=
d(x, γ(s))

d(x, γ(s0)
≤ 1 +

s0

d(x, γ(s0))
≤ 1 +

s0

δ
≤ 1 + C, (III.5.5)

where C is a constant depending only on Λ.

We now claim there is a constant C = C(n,Γ, λ,Λ, iM) so that

cos θ =
〈gradBξ(γ(s0)), X(s0)〉

‖X(s0)‖
≤ Cs0. (III.5.6)

Since 〈gradBξ(γ(0)), X(0)〉 = 0, the fundamental theorem of calculus gives

〈gradBξ(γ(s0)), X(s0)〉 =

∫ s0

0

d

ds
〈gradBξ(γ(s)), X(s)〉 ds.

So the desired bound for cos(θ) follows from bounding the integrand from above by C‖X(s0)‖
for all s ∈ [0, s0]. In light of (III.5.5), it suffices to find an upper bound of the form C‖X(s)‖.
To this end, we rewrite integrand using the product rule:

d

ds
〈gradB(γ(s)), X(s)〉 = 〈∇γ′gradB(γ(s)), X(s)〉+ 〈gradB(γ(s)),∇γ′X(s)〉. (III.5.7)

The first term on the righthand side is bounded above by

‖X(s)‖|〈∇gradBγ′(γ(s)), u〉| = ‖X(s)‖HessBξ(γ
′(s), u)

for some unit vector u. Next, using that the Hessian is symmetric bilinear form, together

with Lemma III.15, we have

HessBξ(γ
′(s), u) ≤ 1

4
HessBξ(γ

′(s) + u, γ′(s) + u) ≤ Λ

4
‖γ′(s) + u‖ ≤ Λ

2
.

Now we consider the second term in (III.5.7). First note that ∇γ′X(s) = J ′s(t0), where

Js(t) is the Jacobi field along the geodesic ηs(t) = expx(tv(s)) with initial conditions Js(0) = 0

and J ′s(0) = v(s). In order to bound ‖J ′s(t0)‖, we let e1(t) = η′(t), e2(t), . . . , en(t) be a parallel

orthonormal frame along η(t). Let f1(t), . . . , fn(t) such that Js(t) =
∑n

i=1 fi(t)ei(t). The
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fact that Js satisfies the Jacobi equation means f ′′1 (t) = 0, so f1(t) = 〈v(s), η′(0)〉t and

|f ′1(t)| ≤ ‖v(s)‖ = ‖X(s)‖. Now let J⊥s denote the component of Js which is perpendicular

to ηs. By [Bal95, Proposition IV.2.5], we have

‖(J⊥s )′(t0)‖ ≤ cosh(Λt0)‖(J⊥s )′(0)‖ ≤ cosh(ΛR)‖X(s)‖,

where R is the constant in Lemma III.31. This completes the verification of (III.5.6).

Now let q′ be the orthogonal projection of x onto the geodesic determined by w. We use

our bound for cos θ to show d(p, q′) is small. Consider the geodesic triangle with vertices

x, q′ and γ(s0). The angle at q′ is π/2 by definition of orthogonal projection, and we have

just shown the angle θ at γ(s0) satisfies cos θ ≤ Cs0, where s0 < Cδ. Then by [Bea12,

Theorem 7.11.2 iii)] tanh(d(q′, γ(s0)) ≤ Cδ tanh(d(x, q′)) ≤ Cδ, where C is the constant

in (III.5.6). Thus, for δ0 sufficiently small in terms of C, we see that d(q′, γ(s0) ≤ 2Cδ

whenever δ < δ0. Now recall from the first paragraph that d(p, γ(s0)) = s0 ≤ Cδ. Noting

that d(p, q′) ≤ d(p, γ(s0)) + d(q′, γ(s0)) completes the proof.

Proposition III.36. Let δ0 = δ0(Λ) be as small as in the previous lemma. Suppose

w ∈ W su(v) and dsu(v, w) < δ0. Then there is a constant C = C(n,Γ, λ,Λ, iM) so that

d(F0(v),F0(w)) ≤ Cdsu(v, w)Aλ/Λ, where A is the constant in Proposition III.24. The anal-

ogous statement holds if w ∈ W ss(v) instead.

Proof. Let p and q denote the footpoints of v and w, respectively. By definition, F0(v) =

Pη1(f(p)) and F0(w) = Pη2(f(q)) for the appropriate bi-infinite geodesics η1 and η2 in Ñ .

By the triangle inequality,

d(Pη1(f(p)), Pη2(f(q)) ≤ d(Pη1(f(p)), Pη1(f(q))) + d(Pη1(f(q)), Pη2f(q)). (III.5.8)

We start by estimating the first term. Let dsu(v, w) = δ. Then d(p, q) < δ. By (III.5.1),

we have d(f(p), f(q)) < Aδ. Since orthogonal projection is a contraction in negative curva-

ture, the second term is bounded above by d(f(p), f(q)) ≤ Ad(p, q).

Thus it remains to bound d(Pη1(f(q)), Pη2(f(q))), which we do by applying Lemma III.35.

Since F(v) and F(w) are on the same weak unstable leaf, there is w′ on the orbit of w so that

F(v) and F(w′) are on the same strong unstable leaf. In light of Lemma III.35, it suffices

to find a Hölder estimate for dsu(F(v),F(w′)).

Again, let δ = dsu(v, w) for simplicity. Since the unstable distance exponentially expands

under the geodesic flow, there is some positive time t so that dsu(φ
tv, φtw) = 1. More

precisely, [HIH77, Proposition 4.1] implies Λt ≥ log(1/δ).

Next, note that d(F0(φtv),F0(φtw′)) ≤ d(F0(φtv),F0(φtw)) ≤ 2R + A, where R is as in

48



Lemma III.31 and A is the Lipschitz constant for f . Indeed, since f is A-Lipschitz, we have

d(f(φtv), f(φtw)) ≤ A, and d(f(φtv), Pη1f(φtv)) ≤ R. By [HIH77, Theorem 4.6], we also

have the bound dsu(F0(φtv),F0(φtw′)) ≤ 2
Λ

sinh(Λ(2R + A)/2).

By [HIH77, Proposition 4.1], we have the following estimate for how the unstable distance

gets contracted under the geodesic flow:

dsu(F0(v),F0(w′)) ≤ e−λb(t,v)dsu(ψ
b(t,v)F0(v), ψb(t,v)F0(w′)).

Now recall b(t, v) ≥ A−1t − B′ from Lemma III.34. This, together with the previous para-

graph, gives

dsu(F(v),F(w′)) ≤ e−λ(A−1t−B′) 2

Λ
sinh(Λ(2R + A)/2) = Ce−λA

−1t

for some constant C = C(λ,Λ, A,B). Finally, we use t ≥ log(1/δ)
Λ

to obtain dsu(F0(v),F0(w′)) ≤
CδA

−1λ/Λ for some other constant C = C(λ,A,B). By Lemma III.35, the second term in

(III.5.8) is thus bounded above by CδA
−1λ/Λ for some other constant C = C(λ,Λ, A,B),

which completes the proof.

Lemma III.37. There is small enough δ0, depending only on the curvature bounds λ and

Λ, so that if w ∈ W ss(v) and d(v, w) < δ0, then

c1d(v, w) ≤ dss(v, w) ≤ c2d(v, w),

where c1 and c2 are constants depending only on λ and Λ. The analogous statement holds

for dsu.

Proof. By [HIH77, Theorem 4.6], we have dss(v, w) ≤ Λ
2

sinh(2/Λ d(p, q)). Thus, if d(p, q) is

small enough (depending on Λ), we have h(p, q) ≤ 4
Λ
d(p, q) ≤ 4

Λ
d(v, w).

By Lemma III.21, d(v, w) ≤ (1 + Λ)d(p, q). By the other estimate in [HIH77, Theorem

4.6], there is a constant C, depending only on λ, so that d(p, q) ≤ Ch(p, q) for all p, q with

d(p, q) sufficiently small in terms of λ.

Proposition III.38. There exists small enough δ0, depending only on λ, Λ, diam(M), so

that for any v, w ∈ T 1M̃ satisfying d(v, w) < δ0 we have d(F0(v),F0(w)) ≤ Cd(v, w)A
−1λ/Λ

for some constant C = C(n,Γ, λ,Λ, iM).

Proof. By Lemma III.11, we know that for any v, w ∈ T 1M with d(v, w) = δ, there is a time

σ = σ(v, w) ∈ [−δ, δ] and a point [v, w] ∈ T 1M̃ so that

[v, w] = W ss(v) ∩W su(φσw).
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Let α = A−1λ/Λ be the exponent from Proposition III.36. Applying Proposition III.36,

followed by Lemma III.37 and Proposition III.13, and finally Lemma III.11, we have

d(F0(v),F0([v, w])) ≤ C ′dss(v, [v, w])α ≤ Cd(v, φσw)α ≤ C(2d(v, w))α

for some constants C and C ′ depending only on n,Γ, λ,Λ, iM , diam(M). By a similar argu-

ment,

d(F0([v, w], φσw) ≤ Cd(v, w)α.

Finally, as in the beginning of the proof of Proposition III.36, we have

d(F(w),F(φσw)) ≤ Aδ.

Now, d(F0(v),F0(w)) ≤ Cd(v, w)α follows from the triangle inequality.

Lemma III.39. There is a constant C = C(λ,Λ, t) so that d(φtv, φtw) < Cd(v, w) for all

d(v, w) ≤ δ0, where δ0 depends only on λ, Λ, diam(M).

Proof. As before, consider [v, w] = W ss(v) ∩W su(φσ(v,w)w). The distance between w and

φσ(v,w) remains constant under application of φt, and since v and [v, w] are on the same stable

leaf, their distance contracts under application of φt. Finally, since [v, w] and φσ(v,w)w are

on the same strong unstable leaf, [HIH77, Proposition 4.1], Lemma III.37 and Proposition

III.13 imply

d(φt[v, w], φtφσ(v,w)w) ≤ eΛtdsu([v, w], φσ(v,w)w) ≤ eΛtCd(v, w)

for some constant C depending only on λ, Λ, diam(M).

Lemma III.40. Let C denote the constant in Proposition III.38, and let α = A−1λ/Λ denote

the Hölder exponent. Then there is a constant C1 = C1(C, t) so that

|b(t, v)− b(t, w)| ≤ C1d(v, w)α.

Proof. By Proposition III.38, we have d(F0(v),F0(w)) ≤ Cd(v, w)α and d(F0(φtv),F0(φtw)) ≤
Cd(φtv, φtw)α. Applying Lemma III.39 shows d(F0(φtv),F0(φtw)) ≤ C1d(v, w)α, where C1

depends on C and t. The desired result now follows from Lemma III.12.

Proof of Proposition III.4. We want to find a Hölder estimate for Fl(v) = ψal(0,v)F0(v),

where al(0, v) = 1
l

∫ l
0
b(t, v) dt. By the triangle inequality,

d(Fl(v),Fl(w)) ≤ d(ψal(0,v)F0(v), ψal(0,v)F0(w)) + d(ψal(0,v)F0(w), ψal(0,w)F0(w)).
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To bound the first term, note that for all t ∈ [0, l] we have b(t, v) ≤ At ≤ Al by Lemma

III.34. Hence the average al(0, v) is bounded above by A. By Lemma III.39 and Proposition

III.38, we have

d(ψal(0,v)F0(v), ψal(0,v)F0(w)) ≤ Cd(F0(v),F0(w)) ≤ Cd(v, w)α,

where C depends only on l and the constant from Proposition III.38. As such, C depends

only on n, Γ, λ, Λ, iM . By Lemma III.40, the second term is bounded above by

|al(0, v)− al(0, w)| ≤ 1

l

∫ l

0

|b(t, v)− b(t, w)| dt,≤ Cd(v, w)α,

where C again depends only on n, Γ, λ, Λ, iM .
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CHAPTER IV

Volume Estimate

This chapter is devoted to proving Theorem I.12. We will repeatedly use the following

standard construction, part of which can be found in [BCG96, Section 4]:

Construction IV.1. Let f : M → N be a homotopy equivalence of negatively curved

manifolds. Let ∂M̃ denote the visual boundary of M̃ . We can construct a map f : ∂M̃ → ∂Ñ

such that for all γ ∈ Γ and all ξ ∈ ∂M̃ we have f(γ.ξ) = (f∗γ).f(ξ). Indeed, the homotopy

equivalence f : M → N can be lifted to a Γ-equivariant map f̃ : M̃ → Ñ such that

f̃ is additionally a quasi-isometry (details in [BCG96, Section 4]). Hence f̃ induces a Γ-

equivariant map f between the boundaries ∂M̃ and ∂Ñ .

Now recall the space of geodesics of M̃ is the quotient of T 1M̃ obtained by identifying

any two unit tangent vectors on the same orbit of the geodesic flow. This space can be

identified with the set ∂2M̃ of pairs of distinct points in ∂M̃ by associating the equivalence

class of the unit tangent vector v with the pair (π(v), π(−v)) of its forward and backward

endpoints. Thus, the product f × f gives a map between the spaces of geodesics of M̃ and

Ñ . For notational simplicity, we will write this map as f : ∂2M̃ → ∂2Ñ .

Note the case ε = 0 of Theorem I.12 is Theorem A in [Ham99]. We follow the same overall

approach as in [Ham99], which we now summarize. It follows from arguments in [Ota90]

that the marked length spectrum of M determines the so-called cross-ratio of four points on

the boundary ∂M̃ . We start by generalizing these arguments to analyze how perturbing the

marked length spectrum as in (I.7) affects the cross-ratio (Proposition IV.3).

In [Ham99], Hamenstädt proves the cross-ratio determines the so-called Liouville current,

a measure on ∂2M̃ which can be used to reconstruct the Liouville measure on T 1M . In the

ε = 0 case, that is, equality of the marked length spectra, the geodesic flows on T 1N and

T 1M are conjugate [Ham92], so one can use equality of Liouville currents to obtain equality

of Liouville measures and hence volumes.

In Theorem IV.6, we generalize the arguments in [Ham99] to analyze how perturbing the

cross-ratio – due to perturbing the marked length spectrum – affects the Liouville current.
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However, an estimate of the Liouville currents does not immediately imply a volume estimate

since when ε > 0, the geodesic flows of M and N need not be conjugate. We instead obtain

controlled orbit equivalences between the geodesic flows on T 1M and T 1N by delicately

implementing the construction in [Gro00].

IV.1: The cross-ratio

We now define the cross-ratio associated to any negatively curved Riemannian manifold

(M, g). Let p : M̃ → M be the universal cover of M and let ∂M̃ be the visual boundary of

M̃ . Let π : T 1M̃ → ∂M̃ denote the map which sends v to the forward boundary point of the

geodesic determined by v. Let ∂4M̃ denote pairwise distinct quadruples of points in ∂M̃ .

Definition IV.2. [Ota92, Lemma 2.1] Let a, b, c, d ∈ ∂4M̃ . Let ai, bi, ci, di ∈ M̃ be sequences

converging to a, b, c, d respectively. Define

[a, b, c, d] = lim
i→∞

d(ai, ci) + d(bi, di)− d(ai, di)− d(bi, ci), (IV.1.1)

where d is the Riemannian distance function. By [Ota92, Lemma 2.1], this limit exists and

is independent of the chosen sequences ai, bi, ci, di. We call [· , · , · , ·] the cross-ratio.

Theorem 2.2 in [Ota92] shows the cross-ratio is completely determined by the marked

length spectrum, and the argument is not specific to dimension 2. In this section, we prove

the following result which shows how perturbing the marked length spectrum affects the

cross-ratio.

Proposition IV.3. Let (M, g) and (N, g0) be negatively curved manifolds with ε-close marked

length spectra as in (I.7). Let f : ∂M̃ → ∂Ñ be the map constructed from the homotopy

equivalence f : M → N as in Construction IV.1. We then have

(1− ε)[a, b, c, d] ≤ [f(a), f(b), f(c), f(d)] ≤ (1 + ε)[a, b, c, d].

Over the course of the proof of [Ota92, Theorem 2.2], the following lemma is proved,

giving more precise information about how the marked length spectrum determines the

cross-ratio. We include a careful proof, since the setup will be needed to prove Proposition

IV.3.

Lemma IV.4. Given (a, b, c, d) ∈ ∂4M̃ , there exist sequences ai, bi, ci, di converging to

a, b, c, d, respectively, so that the terms d(ai, ci), d(bi, di), d(ai, di), d(bi, ci) can be approxi-

mated arbitrarily well by lengths of closed geodesics.
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Proof. Since M is negatively curved, the geodesic flow φt on T 1M is Anosov; hence there

exists v ∈ T 1M with dense forward and backward orbit. Let v1, v2 ∈ T 1M̃ vary over

all lifts of v which determine two distinct geodesics in M̃ . Then quadruples of the form

(π(v1), π(−v1), π(−v2), π(v2)) are dense in ∂4M̃ . Since the cross-ratio is continuous [Ota92],

it suffices to check the proposition on this dense set of quadruples.

For i = 1, 2, let T+
i , T

−
i > 0 be large enough such that the expression

d(φT
+
1 v1, φ

−T−2 v2) + d(φT
+
2 v2, φ

−T−1 v1)− d(φT
+
1 v1, φ

−T−1 v1)− d(φT
+
2 v2, φ

−T−2 v2) (IV.1.2)

is arbitrarily close to [π(v1), π(−v1), π(−v2), π(v2)]. In (IV.1.2), expressions of the form

d(v, w) for v, w ∈ T 1M̃ should be understood as the distances in M̃ between their footpoints.

Now fix w ∈ T 1M̃ . Since the geodesic tangent to v1 projects to a geodesic with dense forward

orbit in T 1M , we can make T+
1 larger if necessary so that Dp(φT

+
1 v1) is arbitrarily close to

Dp(w) in T 1M . Hence there is some γ+
1 ∈ Γ such that γ+

1 .w is arbitrarily close to φT
+
1 v1 in

M̃ . By the same argument, there exist γ±i ∈ Γ such that γ±i .w is close to φT
±
i vi for i = 1, 2.

We now use this setup to show terms in (IV.1.2) can be approximated arbitrarily well

by lengths of closed geodesics. Consider the geodesic c in M̃ joining the basepoints of γ−1 .w

and γ+
2 .w. Since the endpoints of c can be made arbitrarily close to π(−v1) and π(v2), the

tangent vectors to c are arbitrarily close to the geodesic (π(−v1), π(v2)). Also, φ−T
−
1 v1 gets

arbitrarily close to the tangent vector to (π(−v1), π(v2)) as T−1 gets larger. So the tangent

vector to c at the footpoint γ−1 .w is arbitrarily close to φ−T
−
1 v1, and hence to γ−1 .w as well.

Similarly, the tangent vector to c at the footpoint of γ+
2 .w is arbitrarily close to the vector

γ+
2 .w.

Now consider the projection p(c) in M . This is a closed curve which is freely homotopic to

γ+
2 ◦ (γ−1 )−1, and is a geodesic away from the basepoint of Dp(w). In the previous paragraph

we showed the two tangent vectors to p(c) at that point are both arbitrarily close to the vector

Dp(w). The Anosov closing lemma then implies p(c) is shadowed by a closed geodesic; see

[Fra18, p. 105] and [KH97, Theorem 6.4.15]. In particular, this closed geodesic is in the same

free homotopy class as p(c). So d(φT
+
1 v1, φ

T−1 v1) is approximately Lg(γ+
2 ◦ (γ−1 )−1). Using an

analogous argument, the other three terms in equation (IV.1.2) can also be approximated

by terms of the form Lg(γ+
i ◦ (γ−j )−1).

Proof of Proposition IV.3. Let (a, b, c, d) ∈ ∂4M̃ . By the previous lemma, there are se-

quences ai, bi, ci, di ∈ M̃ converging to a, b, c, d along with sequences γai , γbi , γci , γdi such

that d(ai, bi) is approximately Lg(γbi ◦ γ−1
ai

) and analogously for the other three terms in

the defining equation for [a, b, c, d]. Let vai , vbi be tangent vectors to the geodesic through

a and b based at ai and bi respectively. Let vci and vdi be defined analogously. Recall
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the γi were chosen such that there is w ∈ T 1M̃ satisfying the condition that the vectors

γai .w, γbi .w, γci .w, γdi .w are arbitrarily close to the vectors vai , vbi , vci , vdi .

By [Gro00], there exists a Γ-equivariant homeomorphism F : T 1M̃ → T 1Ñ , which is an

orbit equivalence of geodesic flows. Moreover, F sends the geodesic through a, b ∈ ∂M̃ to the

geodesic through f(a), f(b) ∈ ∂Ñ . Consider the distance between the footpoints of F(vai)

and F(vbi). Since F is continuous we know F(vai) is close to γai .F(w) and F(vbi) is close to

γbi .F(w). By the Anosov closing lemma, (the projection of) the geodesic through γai .F(w)

and γbi .F(w) can be approximated with a closed geodesic of length Lg(f∗(γbi ◦ γ−1
ai

)). The

same argument can be used to approximate the other three distances in the limit definition

of [f(a), f(b), f(c), f(d)]. The desired result then follows from the assumption 1− ε ≤ Lg0
Lg ≤

1 + ε.

Remark IV.5. This proof does not use that 1 ± ε is close to 1, so this generalizes [Ota92,

Proposition 4.2].

IV.2: The Liouville current

Let ω be the 1-form on T 1M obtained by pulling back the canonical 1-form on T ∗M to TM

via the identification induced by the Riemannian metric and then restricting to T 1M . (See

Section II.3 for more details.) Then ω and dω are both flow-invariant, and ω is a contact

form, meaning ω ∧ (dω)n−1 is a volume form on T 1M . The associated measure on T 1M

is called the Liouville measure. The total Liouville volume of T 1M is the product of the

Riemannian volume of M and the volume of the unit sphere in dimension n − 1; thus the

ratio of the volumes of M and N is the same as the ratio of the Liouville volumes of their

respective unit tangent bundles.

Recall the space of geodesics is the quotient of T 1M̃ by the action of the geodesic flow,

and can also be identified with the set ∂2M̃ of pairs of distinct points in the boundary

(see Construction IV.1). Since dω is flow-invariant, it descends to a 2-form on the space of

geodesics ∂2M̃ . This form is also symplectic, meaning (dω)n−1 is a volume form on ∂2M̃ .

The associated measure is called the Liouville current. In this section, we establish the

following relation between the marked length spectra and the Liouville currents:

Theorem IV.6. Let (M, g) be a closed negatively curved Riemannian manifold of dimension

at least 3 with fundamental group Γ. Let (N, g0) be another closed negatively curved manifold

with fundamental group Γ and assume the geodesic flow on T 1N has Anosov splitting of C1+α

regularity. Suppose that the marked length spectra of M and N are ε-close as in (I.7). Let λM

and λN denote the Liouville currents on ∂2M̃ and ∂2Ñ respectively, and let f : ∂2M̃ → ∂2M̃
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as in Construction IV.1. Then there is a constant C = C(Ñ , g̃0) such that

(1− Cεα)(1− ε)n−1f ∗λ
M ≤ λN ≤ (1 + Cεα)(1 + ε)n−1f ∗λ

M . (IV.2.1)

If, in addition, (N, g0) is locally symmetric and ε is sufficiently small (depending on n =

dimN), then α can be replaced with 2 in the above estimates and the constant C depends

only n.

Remark IV.7. If the Anosov splitting of T 1N is only C1, then our proof shows the quantities

(1±Cεα) can be replaced with constants that converge to 1 as ε→ 0, but we are not able to

determine the explicit dependence of these constants on ε; see the statement above Lemma

IV.15.

The proof of this theorem relies on relating the Liouville current to the cross-ratio, in

order to then apply Proposition IV.3. We begin by explaining the explicit relation between

the Liouville current and the cross-ratio in the case where dim(M) = 2. Let a, b, c, d ∈ ∂M̃
be four distinct points. Since ∂M̃ is a circle, the pair of points (a, b) determines an interval

in the boundary (after fixing an orientation). Let (a, b)× (c, d) ∈ ∂2M̃ denote the geodesics

starting in the interval (a, b) and ending in the interval (c, d). Then

λ((a, b)× (c, d)) =
1

2
[a, b, c, d]. (IV.2.2)

(See [Ota90, Proof of Theorem 2] and [HP97, Theorem 4.4].)

In [Ham99], Hamenstädt relates the Liouville current and the cross-ratio for manifolds of

any dimension. If, in addition, the manifold N is such that TT 1N has C1 Anosov splitting,

then the Liouville current is completely determined by the cross-ratio, and hence by the

marked length spectrum, as is the case for surfaces. Hamenstädt’s argument shows more

specifically that if N satisfies the C1 Anosov splitting condition and M is another manifold

with the same marked length spectrum, and hence cross-ratio, as N , then the Liouville

currents of M and N agree. In particular, this shows Theorem IV.6 when ε = 0.

Before proving Theorem IV.6, we recall notation, terminology and select arguments from

[Ham99]: Hamenstädt constructs measures S and P (to be defined in Constructions IV.9 and

IV.21 respectively) on the space of geodesics, both completely determined by the cross-ratio,

such that

S ≤ λ ≤ P (IV.2.3)

[Ham99, Propositions 3.8 and 3.13 a)]. If the underlying manifold has C1 Anosov splitting,
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which is the case for the locally symmetric space N , the stronger conclusion

S = λ = P (IV.2.4)

holds by [Ham99, Proposition 3.13 b)]. If M is such that its cross-ratio agrees with the

cross-ratio of a locally symmetric space N , then SN = f ∗SM and PN = f ∗PM . Combining

this with (IV.2.3) and (IV.2.4) gives

f ∗λ
M ≤ f ∗PM = λN = f ∗SM ≤ f ∗λ

M , (IV.2.5)

which forces λN = f ∗λ
M . Thus, in order to see the effects of the cross-ratio on the Liouville

current, we need to use the exact constructions of S and P from [Ham99]. We start with

preliminary definitions.

IV.2.1: Definition of S

Definition IV.8. [Ham99, p. 123] Fix η > 0. Let B(r) ⊂ Rn be the ball of radius r centered

at the origin and let φ0(x, y) denote the dot product of x, y ∈ Rn. Let β1, β2 : B(r) → ∂M̃

be continuous embeddings so that

|[β1(x), β1(0), β2(y), β2(0)]− φ0(x, y)| ≤ ηr2 (IV.2.6)

for all x, y ∈ B(r). We say the image β1(B(r))×β2(B(r)) ⊂ ∂M̃×∂M̃ \∆ is a (1+η) quasi-

symplectic r-ball. We let Q(η) denote the collection of all (1 + η)-quasisymplectic r-balls for

arbitrary r.

Fix any distance d on ∂M̃ that induces the visual topology. For Q ∈ Q(η), we let diam(Q)

be the d× d diameter of Q ⊂ ∂2M̃ .

For Q ∈ Q(η), define a quantity δ(Q) as follows. Write Q = A × B, ie, A = β1(B(r)),

B = β2(B(r)). First let δ(A×B; a, b) = supξ∈A,ζ∈B[a, ξ, b, ζ]. Now define

δ(A×B) = inf
a∈A,b∈B

δ(A×B; a, b). (IV.2.7)

(See [Ham99, p. 124] ).

Construction IV.9. [Ham99, p. 124] Let C ⊂ ∂M̃ × ∂M̃ a Borel set and let an−1 denote

the volume of the unit ball in Rn−1. Define

Sη(C) = inf

{
a2
n−1

∞∑
i=1

δ(Qi)
n−1 | Qi ∈ Q(η), diam(Qi) ≤ η, C ⊂ ∪∞i=1Qi

}
.
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Finally, let S(C) = lim supη→0 Sη(C).

This concludes our summary of [Ham99].

Hypothesis IV.10. For the remainder of this section, we assume

1− ε ≤ Lg0(f∗γ)

Lg(γ)
≤ 1 + ε.

(See (I.7) in the statement of Theorem I.9.)

By Proposition IV.3, the cross-ratios of M and N satisfy

(1− ε)[a, b, c, d] ≤ [f(a), f(b), f(c), f(d)] ≤ (1 + ε)[a, b, c, d].

One might hope that this cross-ratio estimate implies SN ≤ (1 + ε)n−1f ∗S
M , since this

would immediately yield λN ≤ (1 + ε)n−1f ∗λ
M by (IV.2.3) and (IV.2.4). However, we are

only able to conclude SNε ≤ (1 + ε)n−1f ∗SM , so (IV.2.4) does not apply (Proposition IV.14).

As such, we proceed to estimate the rate at which SNε converges to λN as ε→ 0 (Proposition

IV.15), and we also show how this estimate can be improved in the case where N is locally

symmetric (Lemma IV.18 and Remark IV.20). The analysis for the measure P is similar,

but the directions of the inequalities are reversed.

IV.2.2: Comparing f ∗SM and SN

Changing the cross-ratio used to define S will change the the set Q(η) and the quantity

δ(Q). We investigate this precisely below.

Lemma IV.11. Let Q ⊂ ∂2M̃ . If Q ∈ Q(η) then f(Q) ∈ Q(η + (1 + η)ε).

Proof. IfQ ∈ Q(η), there are maps βi : B(r)→ ∂M̃ for i = 1, 2 withQ = β1(B(r))×β2(B(r))

such that

|[β1(x), β1(0), β2(y), β2(0)]M − φ0(x, y)| ≤ ηr2. (IV.2.8)

Using the triangle inequality, Proposition IV.3, and (IV.2.8) gives

|[f ◦ β1(x), f ◦ β1(0), f ◦ β2(y), f ◦ β2(0)]N − φ0(x, y)|

≤ ε[β1(x), β1(0), β2(y), β2(0)]M + |[β1(x), β1(0), β2(y), β2(0)]M − φ0(x, y)|

≤ ε[β1(x), β1(0), β2(y), β2(0)]M + ηr2

≤ ε(1 + η)r2 + ηr2,

which shows f(Q) ∈ Q(η + (1 + η)ε).
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Lemma IV.12. For any η > 0, let Q ∈ Q(η). We then have

(1− ε)δM(Q) ≤ δN(f(Q)) ≤ (1 + ε)δM(Q).

Proof. This follows immediately from the definition of δ in Equation IV.2.7 together with

Proposition IV.3.

Corollary IV.13. Let

χCη = {(Ai ×Bi)i∈N |C ⊂ ∪∞i=1Ai ×Bi, diam(Ai ×Bi) ≤ η, Ai ×Bi ∈ Q(η)} .

Then

f
(
χf
−1

(C)
η

)
⊂ χCη+(1+η)ε

for sufficiently small η.

Proof. If (Ai×Bi)i∈N ∈ χf
−1

(C)
η then f(Ai×Bi)i∈N clearly satisfies the first condition in the

definition of χCη+(1+η)ε. To check the second condition, note that since f is continuous, for

any ε > 0 there exists η > 0 so that diam(Ai × Bi) ≤ η implies diam(f(Ai)× f(Bi)) ≤ ε ≤
η + (1 + η)ε. The third condition follows from the previous lemma.

Proposition IV.14. The following inequality of measures holds:

SNε ≤ (1 + ε)n−1f ∗SM .

Proof. For any C ⊂ ∂2Ñ , Corollary IV.13 and Lemma IV.12 give

f ∗SMη (C) = SMη (f
−1

(C))

= inf

{
a2
n−1

∞∑
i=1

δ(Ai ×Bi)
n−1
∣∣∣ (Ai ×Bi)i∈N ∈ χf

−1
(C)

η

}

= inf

{
a2
n−1

∞∑
i=1

δ(Ai ×Bi)
n−1
∣∣∣ (f(Ai)× f(Bi))i∈N ∈ f(χf

−1
(C)

η )

}

≥ inf

{
a2
n−1

∞∑
i=1

δ(Ai ×Bi)
n−1
∣∣∣ (f(Ai)× f(Bi))i∈N ∈ χCε(1+η)+η

}

≥ inf

{
a2
n−1

(1 + ε)n−1

∞∑
i=1

δ(f(Ai)× f(Bi))
n−1
∣∣∣ (f(Ai)× f(Bi))i∈N ∈ χCε(1+η)+η

}
≥ SNε(1+η)+η(C)/(1 + ε)n−1

Taking η → 0 completes the proof.
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IV.2.3: Comparing SNε and λN

If TT 1N has C1 Anosov splitting, then SNε → λN as ε → 0 (see the proof of [Ham99,

Corollary 3.12]). If we assume instead the splitting is C1+α, we obtain a more precise

convergence statement:

Lemma IV.15. Suppose the Anosov splitting of N is of class C1+α. Then there is a constant

C, depending only on Ñ , so that for all ε > 0 (sufficiently small in terms of n) we have

SNε ≥
1

1 + Cεα
λN .

Recall from the proof of [Ham99, Corollary 3.12] that if δ > 0 and χ(δ) is chosen as in

[Ham99, Lemma 3.11] then Sχ ≥ (1+δ)−1λ. (This requires δ to be sufficiently small in terms

of n = dimN .) As such, we prove Lemma IV.15 by explicitly determining the dependence

of χ(δ) on δ. Note it follows from the proof of [Ham99, Lemma 3.11] that χ(δ) is in turn

equal to the quantity κ(δ) from [Ham99, Property 4), p. 130]. We now recall all the relevant

definitions in the statement of [Ham99, Property 4)]:

First we recall the definition of the function φ at the beginning of [Ham99, Section 3].

Let ρ be a symplectic form on Rn ×Rn so that for all x, y ∈ Rn, the submanifolds {x} ×Rn

and Rn × {y} are Lagrangian. For x ∈ Rn, let cx be a curve in Rn such that cx(0) = 0

and cx(1) = x. Similarly define a curve cy. Then define a surface Ψx,y(s, t) = (cx(s), cy(t)).

Let φ(x, y) =
∫

Ψx,y
ρ. By [Ham99, Lemma 3.1], the function φ is well-defined, ie, does not

depend on the choice of curves cx and cy. Note that if ρ0 is the standard symplectic form∑
i dxi ∧ dyi, then the associated function φ0(x, y) is the dot product of x and y in Rn.

Hamenstädt also defines such a function φ associated to the symplectic form dω on

the space of geodesics using special coordinates Ψ : Rn−1 × Rn−1 → ∂M̃ × ∂M̃ \ ∆ to

view dω as a symplectic form on Rn−1 × Rn−1. We recall the construction of Ψ, which

can be found above the statement of [Ham99, Lemma 3.9]: There exists a geodesic flow

invariant connection ∇ on T 1N called the Kanai connection. This connection is flat when

restricted to the leaves of the strong stable and strong unstable foliations W ss and W su,

respectively (see the discussion in [Ham99] for more details). Fix v ∈ T 1M̃ and let Lsu :

TvW
su → W su and Lss : TvW

ss → W ss be exponential maps with respect to the restriction

of this connection to W ss and W su respectively. Let {Xi} and {Yj} be orthonormal bases

for TvW
su and TvW

ss respectively so that dω(Xi, Yj) = δij. For w ∈ W su(v) and z ∈
W ss(v) both sufficiently close to v, define [w, z] to be the unique point in W ss(w) ∩W u(z).

The regularity of the function [·, ·] is the same as that of the Anosov splitting. Define

Ψ(x1 . . . , xn−1, y1, . . . , yn−1) = [Lsu(
∑

i xiXi), L
ss(
∑

j yjYj)]. Let ρ be the symplectic form
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on Rn−1 × Rn−1 given by ρ(x, y) = dω(dΨx, dΨy), which is continuous when Ψ is C1. Use

this form ρ to define a function φ as above. Recall φ0 was defined similarly, but in place of

the symplectic form ρ, the standard symplectic form ρ0 was used. Then the function φ has

the following property:

Lemma IV.16. [Ham99, Property 4, p. 130] Suppose the Anosov splitting of N is C1. Then

for any δ > 0 there is κ(δ) so that whenever ‖x‖, ‖y‖ < κ(δ) we have

|φ(x, y)− φ0(x, y)|
‖x‖‖y‖

< δ.

We now show how κ(δ) depends on δ in the case where the Anosov splitting is C1+α.

Lemma IV.17. Suppose the Anosov splitting of N is C1+α. Then there is a constant

C = C(Ñ) so that κ(δ) =
(
δ
C

)1/α
in the above lemma.

Proof. Fix x, y ∈ Rn−1 and consider the parametrized surface Ψx,y(s, t) = (sx, ty). Then,

definitionally, we have

φ(x, y)− φ0(x, y)

‖x‖‖y‖
=

1

‖x‖‖y‖

∫
Ψx,y

ρ− ρ0.

Write ρ − ρ0 =
∑

ij aijdxi ∧ dyj. Since Ψ is C1+α, the aij are Cα. Moreover, aij(0, 0) = 0

[Ham99, Property 1), p. 128]. Thus |aij(sx, ty)| ≤ C‖(sx, ty)‖α ≤ C‖(x, y)‖α for some

constant C depending on Ñ .

We now have

|φ(x, y)− φ0(x, y)|
‖x‖‖y‖

=

∣∣∣∣ 1

‖x‖‖y‖

∫ 1

0

∫ 1

0

(ρ− ρ0)

(
∂Ψ

∂s
,
∂Ψ

∂t

)
dsdt

∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

∫ 1

0

n∑
i,j=1

aij(sx, ty)dxi ∧ dyj
(

x

‖x‖
,
y

‖y‖

)
dsdt

∣∣∣∣∣
≤ C‖(x, y)‖α

∫ 1

0

∫ 1

0

n∑
i,j=1

dxi ∧ dyj
(

x

‖x‖
,
y

‖y‖

)
dsdt

≤ n2C‖(x, y)‖α.

If ‖x‖, ‖y‖ < κ, we get |φ(x, y) − φ0(x, y)| ≤ Cκα‖x‖‖y‖ for some constant C = C(Ñ). So

we can take κ(δ) = (δ/C)1/α for some other C = C(Ñ) and the conclusion of Lemma IV.16

will hold.

Next we show how to improve the value of κ(δ) when N is a locally symmetric space.
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Lemma IV.18. If N is a locally symmetric space, and δ is sufficiently small (depending on

n) then we can take κ(δ) = Cδ1/2 for some constant C depending only on the dimension of

N .

Proof. Let g(x, y) = φ(x, y)−φ0(x, y). Since N is locally symmetric, the stable and unstable

foliations are real-analytic, and so is g. We now compute the first nonzero term of the power

series expansion of g centered at (0, 0).

Since φ(0, 0) = φ0(0, 0) = 0, we get g(0, 0) = 0 . Now fix y and let gy(x) denote the

function x 7→ g(x, y). Let gx(y) be defined analogously. We know g0(x) = 0 for all x and

g0(y) = 0 for all y [Ham99, Property 1)]. Hence the k-th derivative Dkg0(x) = 0 for all x

and Dkg0(y) = 0 for all y.

Additionally, the function gx(y) satisfies Dgx(0) = 0 [Ham99, Property 3)]. Analogously

we have Dgy(0) = 0. This, together with the previous paragraph, means if α and β are

both n-dimensional multi-indices, then we have ∂α

∂xα
∂β

∂yβ
g(0, 0) = 0 whenever |α| = 0, 1 or

|β| = 0, 1. Hence the first nonzero term of the power series expansion of g centered at (0, 0)

is of the form
∑

i,j,k,l aijklxixjyjyl. This means there is a constant C depending only on Ñ

such that
|φ(x, y)− φ0(x, y)|

‖x‖‖y‖
≤ 1

‖x‖‖y‖
C‖x‖2‖y‖2

so long as ‖x‖, ‖y‖ are small enough for the power series expansion of g centered at the origin

to converge at (x, y). Set κ(δ) = (δ/C)1/2. Then for small enough δ (depending on Ñ), we

obtain |φ(x, y)− φ0(x, y)| ≤ δ‖x‖‖y‖ whenever ‖x‖, ‖y‖ ≤ κ, as desired.

IV.2.4: Comparing λN and f ∗λM

Proposition IV.19. Let λM and λN denote the Liouville currents on ∂2M̃ and ∂2Ñ respec-

tively. There is a constant C = C(Ñ) so that

λN ≤ (1 + ε)n−1(1 + Cεα)f ∗λ
M .

Proof. Combining Proposition IV.14 together with [Ham99, Proposition 3.8] (see also (IV.2.3)),

we obtain

SNε ≤ (1 + ε)n−1f ∗SM ≤ (1 + ε)n−1f ∗λ
M .

Lemma IV.15 together with the proof of [Ham99, Corollary 3.12] gives

SNε ≥ (1 + Cεα)−1λN

for some C depending only on Ñ , which completes the proof.
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Remark IV.20. If Ñ is a symmetric space, Lemma IV.18 shows we can take α = 2 in

the statement of the above proposition. Additionally, since there are only finitely many

negatively curved symmetric spaces of a given dimension, we can say C depends only on

n = dim Ñ .

To complete the proof of Theorem IV.6, we need a lower estimate for λN analogous to

the upper estimate in Proposition IV.19. We obtain this by mimicking the above analysis

for the measure P instead of S, see (IV.2.3). We first recall the construction of P :

Construction IV.21. [Ham99, Proposition 3.13] Let η > 0 and U be an open subset of

∂2M̃ . Define

Pη(U) = sup

{
a2
n−1

∞∑
i=1

δ(Qi)
n−1 | Qi ∈ Q(η), diam(Qi) ≤ η,Qi ⊂ U, Qi ∩Qj = ∅

}
.

Let P(U) = lim infη→0Pη(U). For C ⊂ ∂2M̃ a Borel set, define P(C) = inf{P (U) |U ⊃ C}.

Proposition IV.22. Let λM and λN denote the Liouville currents on ∂2M̃ and ∂2Ñ respec-

tively. There is a constant C = C(Ñ) so that

λN ≥ (1− ε)n−1(1− Cεα)f ∗λM .

If Ñ is a symmetric space, we can take α = 2, and the constant C depends only on n = dim Ñ .

Proof. Let

χUη = {(Qi)i∈N |Qi ∩Qj = ∅, Qi ⊂ U, diam(Qi) ≤ η, Qi ∈ Q(η)} .

Then f(χUη ) ⊂ χ
f(U)
(1+η)ε+η by Corollary IV.13. Using Lemma IV.12 gives

f ∗PMη (U) = PMη (f
−1

(U))

= sup

{
a2
n−1

∞∑
i=1

δ(Qi)
n−1
∣∣∣ (Qi)i∈N ∈ χf

−1
(U)

η

}

≤ sup

{
a2
n−1

(1− ε)n−1

∞∑
i=1

δ(f(Qi))
n−1
∣∣∣ (f(Qi))i∈N ∈ f(χf

−1
(U)

η )

}

≤ sup

{
a2
n−1

(1− ε)n−1

∞∑
i=1

δ(f(Qi))
n−1
∣∣∣ (Qj)j∈N ∈ χU(1+η)ε+η

}
≤ P(1+η)ε+η

N (U)/(1− ε)n−1.
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Taking η → 0 gives

(1− ε)n−1f ∗PM(U) ≤ PNε (U).

This, together with [Ham99, Proposition 3.13 a)] (see also (IV.2.3)), gives

(1− ε)n−1f ∗λ
M(U) ≤ (1− ε)n−1f ∗PM(U) ≤ PNε (U).

It follows from Lemma IV.17 together with the proof of [Ham99, Proposition 3.13 b)] that

PNε ≤ (1− Cεα)−1λN

for some constant C depending only on Ñ .

Hence λN(U) ≥ (1 − ε)n−1(1 − Cεα)f ∗PM(U) for any open set U ⊂ ∂2M̃ . To obtain

this inequality for any Borel set A ⊂ ∂2M̃ we take the infimum over all open sets U ⊃ A.

Finally, noting that PM ≥ λM (see (IV.2.3)) completes proof.

Proof of Theorem IV.6. The first part of the statement follows immediately from Proposi-

tions IV.19 and IV.22. The refinement of the statement in the case where Ñ is a symmetric

space follows from Remark IV.20.

IV.3: A controlled orbit equivalence

In this section, we will use the estimate for the ratio f ∗λ
M/λN of the Liouville currents in

Theorem IV.6 to compare Vol(M) and Vol(N). Note the Riemannian volumes of M and N

are determined by the Liouville volumes of T 1M and T 1N . To obtain the Liouville measure

from the Liouville current, we integrate the Liouville current in the geodesic flow direction.

Let φt denote the geodesic flow of M and let ψt denote the geodesic flow of N . If the marked

length spectra of M and N are equal, then the flows φt and ψt are conjugate [Ham92], ie,

there is a homeomorphism F : T 1M → T 1N such that

F(φtv) = ψtF(v)

for all t ∈ R, v ∈ T 1M . If, in addition to this, M and N have the same Liouville current,

then T 1M and T 1N have the same Liouville measure, so Vol(M) = Vol(N).

If the lengths of closed geodesics of M and N are instead ε-close as in (I.7), the geodesic

flows may not be conjugate. However, so long as M and N are negatively curved and

have isomorphic fundamental groups, their geodesic flows are orbit-equivalent [Gro00]. This
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means there exists a function a(t, v) such that

F(φtv) = ψa(t,v)F(v)

for all t ∈ R, v ∈ T 1M .

In this section, we will use the assumption of approximately equal lengths (I.7) to show

the time change a(t, v) is close to t on sets of large measure, thereby allowing us to show the

total Liouville measures of T 1M and T 1N are close.

We begin by recalling the setup from [Gro00]. The construction starts with a preliminary

Γ-equivariant orbit map F0 : T 1M̃ → T 1Ñ which is not necessarily injective. Recall there is

a homotopy equivalence f : M → N by assumption. We can assume f is C1 by using that

every continuous map is homotopic to a differentiable map; see [BP92, p. 86] and [MW97].

Let f̃ : M̃ → Ñ be a lift of f .

Let η be a bi-infinite geodesic in M̃ and let ζ = f(η) be the corresponding geodesic

in Ñ , where f : ∂2M̃ → ∂2Ñ is obtained from extending the quasi-isometry f̃ to a map

∂M̃ → ∂Ñ ; see Construction IV.1. Let Pζ : Ñ → ζ denote the orthogonal projection.

Note this projection is Γ-equivariant, ie, γPζ(x) = Pγζ(γx). If (p, v) ∈ T 1M̃ is tangent to

η, then we can define F0(p, v) to be the tangent vector to ζ at the point Pζ ◦ f̃(p). Thus

F0 : T 1M̃ → T 1Ñ is a Γ-equivariant map which sends geodesics to geodesics. As such, we

can define a cocycle b(t, v) to be the time which satisfies

F0(φtv) = ψb(t,v)F0(v).

Remark IV.23. Since f̃ is C1 and the orthogonal projection is smooth in the t-direction, we

have t 7→ b(t, v) is C1.

It is possible for a fiber of the orthogonal projection map to intersect the quasi-geodesic

f̃(η) in more than one point; thus, F0 is not necessarily injective. In order to obtain an

injective orbit equivalence, we follow the method in [Gro00] and average the function b(t, v)

along geodesics. We include a proof below, since the setup will be used throughout this

section.

Lemma IV.24. Let

al(t, v) =
1

l

∫ t+l

t

b(s, v) ds.

There is a large enough l so that t 7→ al(t, v) is injective for all v.
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Proof. The fundamental theorem of calculus gives

d

dt
al(t, v) =

b(t+ l, v)− b(t, v)

l
. (IV.3.1)

We claim there is a large enough l so that this quantity is always positive. To this end,

suppose b(t + l, v)− b(t, v) = 0. This means F0(φtv) and F0(φt+lv) are in the same fiber of

the normal projection onto the geodesic f(v). Since s 7→ f̃(φsv) is a quasi-geodesic, there is a

constant R, depending only on the quasi-isometry constants A and B of f̃ , so that all points

on f̃(φsv) are of distance at most R from the geodesic ψtF0(v) [BH13, Theorem 3.H.1.7].

Thus two points on the same fiber of the normal projection are at most distance 2R apart,

which gives

A−1l −B ≤ d(f(φtv), f(φt+lv)) ≤ 2R.

Taking l > A(2R +B) guarantees d
ds
al(s, v) is never 0, and hence al(s, v) is injective.

Proposition IV.25. For each v ∈ T 1M , let

Fl(v) = ψal(0,v)F0(v)

for al as in Lemma IV.24. Then Fl is an orbit equivalence of geodesic flows.

Proof. Since Fl sends geodesics to geodesics, there exists a cocycle kl(t, v) so that Fl(v) =

ψkl(t,v)Fl(v). We need to check t 7→ kl(t, v) is injective. Note that

al(0, φ
tv) =

1

l

∫ l

0

b(s, φtv) ds

=
1

l

∫ l

0

b(s+ t, v)− b(t, v) ds

= al(t, v)− b(t, v).

This means

Fl(φtv) = ψal(0,φ
tv)F0(φtv)

= ψal(0,φ
tv)+b(t,v)F0(v)

= ψal(t,v)F0(v).

Therefore, Fl(φtv) = ψkl(t,v)Fl(v) = ψal(t,v)F0(v), and hence

d

dt
|t=0kl(t, v) =

d

dt
|t=0al(t, v) =

b(l, v)

l
. (IV.3.2)
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The proof of Lemma IV.24 shows the above quantity is positive. So Fl is injective along

geodesics, as desired.

Now we will use the assumption 1 − ε ≤ Lg0
Lg ≤ 1 + ε (Hypothesis IV.10) to say more

about this orbit equivalence.

Lemma IV.26. Let v ∈ T 1M be tangent to the axis of γ and let τ = l(γ). Then

1− ε ≤ b(τ, v)

τ
≤ 1 + ε.

Proof. By definition, b(τ, v) is the distance from F0(v) to F0(γv) = f(γ)F0(v). In addition,

if v is on the axis of γ, then F(v) is on the axis of f(γ), which means b(τ, v) is equal to the

translation length of f(γ). The hypothesis 1− ε ≤ Lg0
Lg ≤ 1 + ε implies the translation length

of f(γ) is between (1− ε)τ and (1 + ε)τ , which completes the proof.

Lemma IV.27. There is a number L with 1 + ε ≤ L ≤ 1 − ε such that for almost every

v ∈ T 1M̃ , we have
b(t, v)

t
→ L

as t→∞.

Proof. Let β(v) = d
dt
|t=0 b(t, v) (see Remark IV.23). Then the fundamental theorem of

calculus implies

b(T, v) =

∫ T

0

β(φtv) dt.

Indeed, ∫ T

0

β(φtv) dt =

∫ T

0

d

ds
|s=0 b(s, φ

tv) dt

=

∫ T

0

d

ds
|s=0 [b(s+ t, v)− b(t, v)] dt (cocycle condition)

=

∫ T

0

d

ds
|s=0 b(s+ t, v) dt

= b(T, v)− b(0, v).

The ergodic theorem then implies

lim
T→∞

b(T, v)

T
=

∫
T 1M

β(v)dµ(v)

for µ-almost every v, where µ is normalized Liouville measure on T 1M . The integral of β on
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the right-hand side can be approximated by averaging β along closed geodesics (see [Sig72]).

Lemma IV.26 then implies the value of this integral is between 1− ε and 1 + ε.

Now we will explicitly relate the Liouville current λ on ∂2M̃ and the Liouville measure

µ on T 1M̃ . (This is a special case of a more general correspondence between geodesic-

flow-invariant measures on T 1M̃ and finite measures on ∂2M̃ due to Kaimanovich [Kai90,

Theorem 2.1].)

Let X denote the vector field on T 1M which generates the geodesic flow. For every

v ∈ T 1M , we can choose local coordinates (t, x1, . . . , xm) near v so that ∂/∂t = X. Then

(0, x1, . . . , xm) defines a local smooth hypersurface K0 ⊂ T 1M which is transverse to X. Let

K = π(K0) ⊂ ∂2M̃ . Then
∫
K0

(dω)n−1 = λ(K).

For T > 0 define

KT = {φtv | v ∈ K0, t ∈ [0, T ]}. (IV.3.3)

If T is sufficiently small, then with respect to our choice of local coordinates, we have

KT = {(t, x1, . . . , xm) | 0 ≤ t ≤ T} and ω = dt. We thus obtain

µ(KT ) =

∫
KT

ω ∧ (dω)n−1 = T

∫
K0

(dω)n−1 = Tλ(K). (IV.3.4)

Lemma IV.28. Suppose

f ∗λ
M ≥ C ′λN (IV.3.5)

for some constant C ′. For T > 0 (sufficiently small as above) and K0 ⊂ T 1M a local

transversal to the geodesic flow, define KT as in (IV.3.3) above. For all δ > 0, there is a

large enough l (depending on KT and δ) so that

µN(Fl(KT )) ≥ C ′(1− ε− δ)(1− δ)µM(KT ).

Proof. For almost every v ∈ KT , Lemma IV.27 gives liml→∞
b(l,v)
l

= L, where 1 − ε ≤ L ≤
1 + ε. By Egorov’s theorem, there is a large subset of vectors v (meaning of measure at least

(1 − δ)λM(KT )) for which b(l,v)
l
→ L uniformly in v. In fact, this subset can be taken to

be of the form ET := KT ∩ π−1(E) for some E ⊂ K ⊂ ∂2M̃ . To see this, we compare the

convergence of b(l,v)
l

with that of b(l,φtv)
l

for t ∈ [0, T ]. The cocycle condition implies

b(l, φtv)− b(l, v)

l
=
b(t, φlv)− b(t, v)

l
.

The numerator of the right hand side is bounded on the compact set [0, T ]×T 1M independent

of l, so the left hand side goes to zero uniformly in v as l→∞.
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Thus we can choose large enough l (depending on δ) so that L− δ ≤ b(l,v)
l
≤ L+ δ for all

v ∈ ET . Using Lemma IV.27 and (IV.3.2) we get

1− ε− δ ≤ d

dt
|t=0 kl(t, v) ≤ 1 + ε+ δ

for all v ∈ ET . The cocycle condition implies∫ t

0

d

dt
|t=0kl(t, φ

sv) ds =

∫ t

0

d

dt
|t=0kl(s+ t, v) ds = kl(t, v)− kl(0, v).

This, together with the previous inequalities, gives

1− ε− δ ≤ kl(t, v)/t ≤ 1 + ε+ δ.

This means

Fl(ET ) = {ψkl(t,v)Fl(v) | v ∈ E0, t ∈ [0, T ]} ⊃ {ψsFl(v) | v ∈ E0, s ∈ [0, (1− ε− δ)T ]}.
(IV.3.6)

The Liouville measure of the rightmost set is (1− ε− δ)TλN(f(E)) by (IV.3.4). Moreover,

TλM(E) = µM(ET ) ≥ (1− δ)µM(KT ) = (1− δ)TλM(K)

shows λM(E) ≥ (1− δ)λM(K). Then we have

µN(Fl(KT )) ≥ µN(Fl(ET ))

≥ (1− ε− δ)TλN(f(E)) (equation IV.3.6)

≥ (1− ε− δ)TC ′λM(E) (equation IV.3.5)

≥ (1− ε− δ)TC ′(1− δ)λM(K)

= C ′(1− ε− δ)(1− δ)µM(KT ),

which is the desired result.

Now we are ready to prove the main theorem of this section, which relates the volumes

of M and N .

Proof of Theorem I.12. Let δ > 0. Choose finitely many disjoint sets of the form Ki
T i ⊂ T 1M
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(as defined in (IV.3.3)) so that

k∑
i=1

µ(Ki
T i) ≥ µ(T 1M)− δ.

Now choose large enough l (depending on δ) so that the conclusion of Lemma IV.28 holds

for K1
T 1 , . . . , Kk

Tk
simultaneously. By Theorem IV.6, the hypothesis of Lemma IV.28 holds

with C ′ = (1− Cεα)(1− ε)n−1. We then have

µN(T 1N) ≥ Σiµ
N(Fl(Ki

Ti
))

≥ C ′(1− ε− δ)(1− δ)Σiµ
M(Ki

Ti
)

≥ C ′(1− ε− δ)(1− δ)(µM(T 1M)− δ).

Taking δ → 0 implies Vol(N) ≥ (1 − Cεα)(1 − ε)n−1Vol(M). Switching the roles of M and

N in all the arguments in this section gives the estimate in the other direction.
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CHAPTER V

Estimates for the BCG Map

If Lg = Lg0 , then it follows from [Ham99, Theorem A] that Vol(M, g) = Vol(N, g0). Since

Lg determines the topological entropy of the geodesic flow, the entropy rigidity theorem of

Besson-Courtois-Gallot [BCG96] states there is an isometry F : M → N .

In the case where 1 − ε ≤ Lg0
Lg ≤ 1 + ε (Hypothesis IV.10), Theorem I.12 states the

volumes of M and N satisfy (1 − Cε2)(1 − ε)n ≤ Vol(N)
Vol(M)

≤ (1 + Cε2)(1 + ε)n, where C is a

constant depending only on n. Moreover, the entropies are related as follows.

Lemma V.1. Let h denote the topological entropy of the geodesic flow. Then with the above

marked length spectrum assumptions we have

1

1 + ε
h(g) ≤ h(g0) ≤ 1

1− ε
h(g). (V.0.1)

Proof. This follows from the following description of the topological entropy in terms of

periodic orbits due to Margulis [Mar69]:

h(g) = lim
t→∞

1

t
logPg(t), (V.0.2)

where Pg(t) = #{γ | lg(γ) ≤ t}.

We use the results of Theorem I.12 and Lemma V.1 to modify the proof in [BCG96] that

there is an isometry F : M → N . More specifically, we use the same construction for the

map F as in [BCG96] and show the matrix of dFp with respect to suitable orthonormal bases

is close to the identity matrix.

V.1: Construction of the BCG map

From now on, we will assume N is a locally symmetric space. This means Ñ is either a real,

complex or quaternionic hyperbolic space or the Cayley hyperbolic space of real dimension

16; let d = 1, 2, 4 or 8 respectively.
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We now normalize the metric g0 so the sectional curvatures are all −1 in the case d = 1

and contained in the interval [−4,−1] otherwise. Since dimN ≥ 3, Mostow rigidity implies

(N, g0) is determined up to isometry by its fundamental group Γ [Mos73]. Thus, from now

on, any constants arising from the geometry of N , such as the diameter and the injectivity

radius, can be thought of as depending only on Γ. We also rescale the metric g by the same

factor as g0 in order to preserve the assumed marked length spectrum ratio in (I.7) as well as

the established volume and entropy ratios. From now on, we will also assume the sectional

curvatures of (M, g) are in the interval [−Λ2,−0) for some constant Λ. Such a constant

always exists since M is assumed to be compact; however some of our estimates will depend

on its particular value.

We first recall the construction of the map F : M → N in [BCG96]. We then summarize

the proof that F is an isometry in the case of equal entropies and volumes, before explaining

how to modify it for approximately equal entropies and volumes.

Given p ∈ M , let µp be the Patterson-Sullivan measure on ∂M̃ . Let f : ∂M̃ → ∂Ñ as

before (see Construction IV.1). Define F (p) = bar(f∗µp), where bar denotes the barycenter

map (see [BCG96] for more details). We call F the BCG map. By the definition of the

barycenter, the BCG map has the implicit description∫
∂Ñ

dBF (p),ξ(·)d(f ∗µp)(ξ) = 0, (V.1.1)

where ξ ∈ ∂Ñ and BF (p),ξ is the Busemann function on (Ñ , g0). By the implicit function

theorem, the BCG map F is C1 (actually, C2 since Busemann functions on M̃ are C2 [Bal95,

Proposition IV.3.2]), and its derivative dFp satisfies∫
∂Ñ

HessBN
F (p),ξ(dFp(v), u) d(f ∗µp)(ξ) = h(g)

∫
∂Ñ

dBN
F (p),ξ(u)dBM

p,f
−1

(ξ)
(v)d(f ∗µp)(ξ)

(V.1.2)

for all v ∈ TpM and u ∈ TF (p)N [BCG96, (5.2)]. In light of this, it is natural to define the

following quadratic forms H and K:

〈KF (p)u, u〉 :=

∫
∂Ñ

(HessBF (p),ξ)(u) d(f ∗µp)(ξ), (V.1.3)

〈HF (p)u, u〉 :=

∫
∂Ñ

(dBF (p),ξ(u))2 d(f ∗µp)(ξ), (V.1.4)

where 〈·, ·〉 denotes the Riemannian inner product coming from g0 [BCG96, p. 636].

Without any assumptions about the volumes or entropies, the following three inequalities

hold; see [Rua22] for the Cayley case.
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Lemma V.2. [BCG96, Lemma 5.4]

|JacF (p)| ≤ hn(g)

nn/2
det(H)1/2

det(K)
.

Lemma V.3. [BCG95, Lemma B3] Let n ≥ 3 and let H and K be the n×n positive definite

symmetric matrices coming from the operators in (V.1.3) and (V.1.4), respectively. Then

detH

det(K)2
≤ (n− 1)

2n(n−1)
n+d−2

(n+ d− 2)2n

det(H)
n−d
n+d−2

det(I −H)
2(n−1)
n+d−2

,

with equality if and only if H = 1
n
I.

Lemma V.4. [BCG95, Lemma B4] Let H be an n × n positive definite symmetric matrix

with trace 1, where n ≥ 3. Let 1 < α ≤ n− 1. Then

detH

det(I −H)α
≤
(

nα

n(n− 1)α

)n
.

Moreover, equality holds if and only if H = 1
n
I.

Combining the above three inequalities (setting α = 2(n−1)
n−d ) together with the fact that

h(g0) = n+ d− 2, we obtain:

Lemma V.5. [BCG96, Proposition 5.2 i)]

|JacF (p)| ≤
(
h(g)

h(g0)

)n
.

As in the proof of [BCG96, Theorem 5.1], the above lemma relates the volumes of M

and N as follows:

Vol(N, g0) ≤
∫
M

|F ∗dVol| =
∫
M

|(JacF )dVol| ≤
(
h(g)

h(g0)

)n
Vol(M, g). (V.1.5)

Remark V.6. This, together with Lemma V.1, improves one of the inequalities in Theorem

I.12 in the special case where N is a locally symmetric space.

With this setup in mind, the argument in [BCG96] showing that F is an isometry consists

of the following components:

1. If the volumes and entropies are equal, then the inequalities in (V.1.5) are all equalities,

which gives equality in Lemma V.5.
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2. Thus, equality also holds in Lemmas V.2 and V.3, from which it follows that H = 1
n
I

and K = n+d−2
n

I = h(g0)
n
I. See [BCG96, p. 639].

3. With H and K as above, the end of the proof of Proposition 5.2 ii) in [BCG96] shows

that dFp =
(
h(g0)
h(g)

)
I, which means F is an isometry in the case where the entropies

are equal. This concludes the proof of Theorem 1 in [BCG96].

Assuming instead that 1 − ε ≤ Lg0
Lg ≤ 1 + ε, the equalities of volumes and entropies are

replaced with the conclusions of Theorem I.12 and Lemma V.1 respectively. Proceeding as

in the above outline, we can instead obtain estimates for ‖dFp‖ in terms of ε:

1. We show equality almost holds in (V.1.5); that is, we find a lower bound for JacF (p)

of the form β(h(g)/h(g0))n for suitable β (Proposition V.27).

2. This implies the eigenvalues of H are all close to 1/n and the eigenvalues of K are all

close to h(g0)/n (Proposition V.31).

3. With H and K as above, we mimic the proof of [BCG96, Proposition 5.2 ii)] to obtain

bounds for ‖dFp‖, which completes the proof of Theorem I.9 (Proposition V.35).

The main difficulty is step (1), where we cannot simply mimic the arguments in [BCG96].

Indeed, with the above assumptions about the entropies (Lemma V.1) and the volumes

(Theorem I.12), the inequalities in (V.1.5) become

(1− Cε2)(1− ε)n 1

(1 + ε)n

(
h(g)

h(g0)

)n
Vol(M) ≤

∫
M

|JacF | ≤
(
h(g)

h(g0)

)n
Vol(M),

which does not give a lower bound for the integrand. In order to obtain a lower bound for

|JacF |, we use the above lower bound for its integral together with a Lipschitz bound for

the function p 7→ |JacF (p)| (Proposition V.25). The fact that this function is Lipschitz is

immediate from the fact that F is C2; however, it is not clear a priori how the Lipschitz

bound depends on (M, g). Assuming 1 − ε ≤ Lg0
Lg ≤ 1 + ε holds (Hypothesis IV.10) for

ε sufficiently small (depending on n and Γ), we will show there is a Lipschitz bound for

JacF (p) depending only on the dimension n, the fundamental group Γ and the lower bound

−Λ2 for the sectional curvatures of M .
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V.2: Lower bound for K

Recall the BCG map F is defined implicitly (see ( V.1.1)), and its derivative dFp satisfies

the following equation

〈KdFp(v), u〉 = h(g)

∫
∂Ñ

dBN
F (p),ξ(u)dBM

p,f
−1
ξ
(v)d(f ∗µp)(ξ).

(See (V.1.2) and (V.1.3).) In order to use this equation to find a Lipschitz bound for JacF (p),

we start by bounding the quadratic form K away from zero (Proposition V.17). Recall

〈KF (p)u, u〉 :=

∫
∂Ñ

(HessBξ)F (p)(u) d(f ∗µp)(ξ). (V.2.1)

Note that K depends not only on the symmetric space (N, g0), but also on (M, g), since µp

is the Patterson-Sullivan measure on ∂M̃ defined with respect to the metric g. We start by

recalling that K is positive-definite for any given (negatively curved) metric g on M (see

[BCG96, Definition 3.2]). We include a detailed proof as we will refer to the arguments later.

Lemma V.7. There is κg > 0 so that 〈KF (p)u, u〉 ≥ κg for all p ∈ M̃ , u ∈ T 1
F (p)Ñ .

Proof. First we examine the integrand in (V.2.1). Fix p ∈ M̃ and u ∈ T 1
F (p)Ñ and consider

(HessBξ)F (p)(u). Let vF (p),ξ be the unit tangent vector based at F (p) so that the geodesic

with initial vector v has forward boundary point ξ, ie, vF (p),ξ is the gradient of Bξ,F (p). Let

θξ denote the angle between vF (p),ξ and u. Then we can write u = (cos θξ)vF (p),ξ + (sin θξ)w

for some unit vector w perpendicular to vF (p),ξ. Since (HessBξ)F (p)(u) = 〈∇uvF (p),ξ, u〉,
we obtain (HessBξ)F (p)(u) = sin2 θξ(HessBξ)F (p)(w). Let R denote the curvature tensor of

(Ñ , g̃0). Using the formula

(HessBξ)F (p)(·) =
√
−R(vF (p),ξ, ·, vF (p),ξ, ·) (V.2.2)

(see [CF03, p. 16]), together with the fact the sectional curvatures of Ñ are at most −1, it

follows that

(HessBξ)F (p)(u) ≥ sin2 θξ.

Hence, the integrand in the definition of KF (p) is 0 if and only if θξ = 0, π. This occurs

precisely when ξ = π(±u), where π is the projection of a unit tangent vector to its forward

boundary point in ∂Ñ . Since µp is non-atomic, we have (f ∗µp)(∂Ñ \{π(±u)}) = 1 > 0. Thus

(HessBξ)F (p)(u) > 0 for a set of ξ of positive f ∗µp-measure, which means KF (p)(u, u) > 0 for

all (F (p), u) ∈ T 1Ñ .

75



Moreover, there is κ > 0 so that 〈KF (p)u, u〉 ≥ κ for all p ∈ M̃ and u ∈ T 1
F (p)Ñ . To

see this, first note 〈KγF (p)γu, γu〉 = 〈KF (p)u, u〉 for all γ ∈ Γ, since the action of Γ is by

isometries. Thus it suffices to bound 〈KF (p)u, u〉from below as (F (p), u) ∈ T 1Ñ varies over

a compact fundamental domain for T 1N . This follows from the fact that 〈KF (p)u, u〉 varies

continuously with respect to (F (p), u) ∈ T 1Ñ .

While K is positive-definite for any given negatively curved metric g on M , it is not clear

from the above analysis that there is a lower bound which is uniform in g. To this end, we

establish a type of compactness of the space of all metrics g on M with sectional curvatures

in the interval [−Λ2, 0) and marked length spectrum satisfying 1 − ε ≤ Lg/Lg0 ≤ 1 + ε

(Corollary V.10). We start with some preliminary lemmas.

Lemma V.8. The injectivity radii of (M, g) and (N, g0) satisfy

(1− ε)inj(M, g) ≤ inj(N, g0) ≤ (1 + ε)inj(M, g).

Proof. This follows from the fact that in negative curvature, the injectivity radius is half

the length of the shortest closed geodesic [Pet06, p.178] together with the marked length

spectrum assumption.

Indeed, let γ be the shortest closed geodesic in (M, g) and let γ0 be the shortest closed

geodesic in (N, g0). Then the marked length spectrum assumption gives

2(1 + ε)inj(M, g) = (1 + ε)Lg(γ) ≥ Lg0(f∗γ) ≥ Lg0(γ0) = 2 inj(N, g0).

An analogous argument gives the other estimate.

Lemma V.9. There is an upper bound for diam(M) depending only on ε, the dimension n,

and the fundamental group Γ.

Proof. Let p and q be such that diam(M) = d(p, q) and let c(t) be the geodesic joining p and

q. Let r be the injectivity radius of (M, g). Let m be the unique positive integer such that

2(m−1)r ≤ diam(M) ≤ 2mr. Take balls of radius r centered at c(0), c(2r), c(4r), . . . , c(2(m−
1)r). Since M is negatively curved, the volume of any such ball is bounded below by the

volume of a ball of radius r in Rn [GHL90, Theorem 3.101 ii)], which we will denote by

v(r, n).

Then mv(r, n) ≤ Vol(M) ≤ CVol(N), for some C = C(ε, n) (see Theorem I.12). This

gives an upper bound for m, therefore

d(p, q) = diam(M) ≤ 2rm ≤ r
2CVol(N)

v(r, n)
.
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Combining with the previous lemma gives

diam(M) ≤ inj(N)

1− ε
(1 + ε)n

2CVol(N)

v(inj(N), n)
.

Finally, since N is locally symmetric, it follows from Mostow Rigidity that inj(N) and Vol(N)

depend only on Γ.

Corollary V.10. Fix (N, g0) a rank 1 locally symmetric space of dimension at least 3, and

let M be another manifold with the same fundamental group as N . Fix ε,Λ > 0. Let {gn}n∈N
be a sequence of Riemannian metrics on M with sectional curvatures in the interval [−Λ2, 0)

and marked length spectra satisfying 1−ε ≤ Lg0/Lg ≤ 1+ε. Then there is a C1,α Riemannian

metric g∞ on M and a subsequence {gnk}k∈N so that the distance functions dgk converge to

dg∞ uniformly on compact sets.

Proof. LetM =M(M,D0, v0,Λ) be the space of all Riemannian metrics onM with diameter

bounded above by D0, volume bounded below by v0, and absolute sectional curvatures

bounded above by Λ2. Then, by [GW88, Theorem 1], the space of all such metrics is pre-

compact in the following sense: every sequence in M has a subsequence which converges in

the Lipschitz topology to a limiting metric g∞ whose coordinate functions gij∞ are of C1,α

regularity for some 0 < α < 1 (see [GW88] for more details). Moreover, the associated

distance functions converge uniformly on compact sets [GW88, p. 122].

Thus, it suffices to show any gn as in the statement of the Corollary is contained in

M(M,D0, v0,Λ). First, by Lemma V.9, these metrics all satisfy diam(M, g) ≤ D0 for some

D0 = D0(n, ε,Γ). Second, we know Volg(M) ≥ (h(g)/h(g0))nVolg0(N) ≥ (1 − ε)nVolg0(N)

by [BCG96, Theorem 5.1 i)] and Lemma V.1. Finally, the desired sectional curvature bound

holds by assumption. This completes the proof.

Remark V.11. The metric space (M, g∞) is CAT(0) as it is a suitable limit of such spaces;

see [BH13, Theorem II.3.9].

Lemma V.12. Suppose gn is a sequence of Riemannian metrics on M (as in the statement

of Corollary V.10) so that the distance functions dgn converge uniformly to dg∞ on compact

sets for some C1,α Riemannian metric g∞. Lift the gn and g∞ to metrics on M̃ . Then for

any A > 1 there is sufficiently large k so that for all n ≥ k we have

A−1 dg∞(p, q) ≤ dgn(p, q) ≤ Adg∞(p, q)

for all p, q ∈ M̃ . In other words, for sufficiently large n, the distance dgn on M̃ is A-bi-

Lipschitz equivalent to dg∞.
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Proof. Let D ⊂ M̃ be a fundamental domain for M . Since dgn → dg∞ uniformly on M (with

respect to the Lipschitz topology defined in [GW88]), given any constant A > 1, there is

large enough k so that k ≥ n implies

A−1 dg∞(p, q) ≤ dgn(p, q) ≤ Adg∞(p, q)

for all p, q ∈ D. We can extend these inequalities to all p, q ∈ M̃ as follows. Consider the

g∞-geodesic from p to q in M̃ , and let p = p1, . . . , pl = q be points on this geodesic such that

each g∞-geodesic segment joining pi to pi+1 is contained in a single fundamental domain of

the form γD for some γ ∈ Γ. By the triangle inequality,

dgn(p, q) ≤
l−1∑
i=1

dgn(pi, pi+1) ≤ A

l−1∑
i=1

dg∞(pi, pi+1) = Adg∞(p, q).

An analogous argument gives the estimate in the other direction.

Recall the CAT(0) boundary (visual boundary) ∂M̃ of (M, g) is defined as asymptotic

classes of geodesic rays [BH13, Definition II.8.1]. If p ∈ M̃ is fixed, then for any ξ ∈ ∂M̃ ,

there is a unique geodesic ray connecting x and ξ [BH13, Proposition II.8.2]. Thus, there

is a natural identification between ∂M̃ and the unit tangent space T 1
pM . In light of this,

we can can make sense of the visual boundaries with respect to all our metrics gn and g∞

simultaneously, and we will denote this boundary by ∂M̃ .

Lemma V.13. As above, let gn be a sequence of Riemannian metrics so that the distance

functions dgn converge uniformly on compact sets to the distance function of some limiting

C1,α metric g∞. Fix p ∈ M̃ and let ξ ∈ ∂M̃ . For x ∈ M̃ let bn(x) := Bgn
ξ (p, x) be

the associated Busemann function with respect to the gn metric, and let b∞(x) be defined

analogously. Then there is a subsequence bnk converging to b∞ uniformly on compact sets.

Proof. Since bn is a Busemann function, we have dgn(bn(x), bn(y)) ≤ dgn(x, y). For any

A > 1, there is large enough k so that dgn(x, y) ≤ Adg∞(x, y) for all n ≥ k. So the bn form

an equicontinuous family and thus converge uniformly on compact sets to some function b

(after passing to a subsequence).

We claim b is in fact the Busemann function b∞(x) on M̃ with respect to the distance

induced by g∞. Since (M, g∞) is a CAT(0) space, we use the characterization of Busemann

functions in [Bal95, Proposition IV.3.1]. First, b∞(p) = 0 since this holds for all bn by

assumption. Second, we claim b∞ is convex. To see this, fix (q, w) ∈ T 1M̃ . Let expnq denote
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the exponential map with respect to the metric gn. Since each bn is convex, we have

bn(expnq (tw)) ≤ (1− t)bn(q) + tbn(expnq (w))

for all t ∈ [0, 1]. By [Pug87, Lemma 2], we have expnq (tw) → exp∞q (tw) for all t ∈ [0, 1].

Since the bn converge uniformly on compact sets, taking n→∞ gives

b∞(exp∞q (tw)) ≤ (1− t)b∞(q) + tbn(exp∞q (w))

for each n and all t ∈ [0, 1], which shows convexity. Third, |bn(p) − bn(q)| ≤ dgn(p, q) for

all n; taking n→∞ shows b∞ has Lipschitz constant 1. Finally, we need to verify that for

any q ∈ M̃ , there is q1 ∈ M̃ with b∞(q)− b∞(q1) = 1. For any n, we know there is qn1 with

b∞(q) − bn(qn1 ) = 1, and we can choose qn1 to also satisfy dgn(q, qn1 ) = 1. By Lemma V.12,

the qn1 are all contained in a bounded set for sufficiently large n, and hence we can pass to

a convergent subsequence. The limit of this subsequence is the desired q1.

We now consider the Patterson–Sullivan measures µgnp on ∂M̃ . For any negatively curved

metric g on M , define P g
t = {γ ∈ Γ | dg(x, γx) ≤ t} and let

δ(g) = lim sup
t→∞

log(#P g
t )

t
.

Then δ(g) is independent of the choice of x (in the definition of P g
t ), and δ(g) = h(g), the

critical exponent of µgp. (See [Qui06, Lemma 4.5].)

Now suppose we have a sequence of metrics gn converging to a CAT(0) metric g∞ of C1,α

regularity, as in the conclusion of Corollary V.10. Define δ(g∞) as above.

Lemma V.14. If dgn → dg∞ on compact sets, then δ(gn)→ δ(g∞) <∞.

Proof. Fix A > 1. By Lemma V.12, there is large enough k so that for any n ≥ k the

distances dgn and dg∞ are A-bi-Lipschitz equivalent on all of M̃ . Then P gn
t ⊂ P g∞

At which

implies δ(gn) ≤ Aδ(g∞). Analogously, δ(g∞) ≤ Aδ(gn). Thus,

|δ(g∞)− δ(gn)| ≤ max(A− 1, 1− A−1)δ(gn).

Since gn satisfies 1 − ε ≤ Lg0
Lgn
≤ 1 + ε, Lemma V.1 shows δ(gn) = h(gn) ≤ (1 − ε)−1h(g0)

for all n, where h(g0) is the topological entropy of the geodesic flow of the symmetric space

(N, g0). Thus |δ(g∞)− δ(gn)| → 0 as n→∞.

Fix p ∈ M̃ and consider the sequence {µgnp } of probability measures on ∂M̃ . By the

Banach–Aologlu theorem, this sequence must have a weakly convergent subsequence {µgnkp },
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ie, there exists a probability measure νp such that for any continuous function φ on ∂M̃ we

have ∫
∂M̃

φ(ξ) d(µ
gnk
p )(ξ)→

∫
∂M̃

φ(ξ) d(νp)(ξ).

Lemma V.15. Suppose dgn → dg∞ on compact sets. Consider any family of measures

{νp}p∈M̃ on ∂M̃ obtained by the above limiting procedure. Then the family {νp}p∈M̃ satisfies

the following properties.

1. For all p, q ∈ M̃ the Radon–Nikodym derivatives satisfy dνp
dνq

= exp(−δ(g∞)Bξ
g∞(p, q)).

2. For all p ∈ M̃ and γ ∈ Γ the pushforward measures satisfy γ∗νp = νγ.p.

Proof. To show 1), fix p and q and take a subsequence {gn} so that both µgnp → νp and

µgnq → νq as n→∞. For any continuous function φ on ∂M̃ we then have∫
∂M̃

φ(ξ) d(νq)(ξ) = lim
n→∞

∫
∂M̃

φ(ξ) d(µgnq )(ξ)

= lim
n→∞

∫
∂M̃

φ(ξ) exp(−δ(gn)Bn
ξ (p, q)) d(µgnp )(ξ)

=

∫
∂M̃

φ(ξ) exp(−δ(g∞)B∞ξ (p, q)) d(νp)(ξ).

In the last equality, we use Lemmas V.13 and V.14. By an analogous argument, we also see

γ∗νp = νγp for all γ ∈ Γ.

Corollary V.16. (See [Rob03, Lemma 1.3].) Let ν as in the previous lemma. Let x ∈ M̃
and let ξ ∈ ∂M̃ . Let cx,ξ be the unique g∞-geodesic through x and ξ. Let

Ox(y,R) = {ξ ∈ ∂M̃ | cx,ξ ∩B(y,R) 6= ∅}.

Then

νx(Ox(γ.x,R)) ≤ exp(−h(g)(dg∞(x, γ.x)− 2R)).

Proof. By the previous lemma, one can use the proof of [Rob03, Lemma 1.3] verbatim.

Proposition V.17. There is κ > 0, depending only on n, ε, Γ, Λ, so that for all p ∈ M̃
and all u ∈ T 1

F (p)Ñ , we have 〈KF (p)u, u〉 ≥ κ.

Proof. By Lemma V.7, for any fixed metric g, there is κg > 0 so that 〈KF (p)u, u〉 ≥ κg

for all p ∈ M̃ , u ∈ T 1
F (p)Ñ . Now let M as in the proof of Corollary V.10 and suppose for

contradiction there is a sequence {gn} ∈ M so that κgn → 0. This means there are pn ∈M ,

together with un ∈ T 1
F (pn)N , so that 〈KF (pn)un, un〉 → 0. By compactness of T 1N , we can
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assume pn → p for some p ∈ M and also un → u for some u ∈ T 1
F (pÑ (after passing to a

subsequence). Thus, (HessBξ)F (pn)(un) → (HessBξ)F (p)(u) uniformly in ξ. After passing to

a further subsequence, we can assume µgnp → µg∞p (using Corollary V.10 and Lemma V.15).

Thus, as n→∞, we have

κgn = 〈KF (pn)un, un〉 =

∫
∂M̃

(HessBξ)F (pn)(un) exp(−h(gn)Bξ(pn, p)(.f ∗µ
gn
p )

→
∫
∂M̃

(HessBξ)F (p)(u)(.f ∗νp).

Since we assumed κgn → 0, the above limit is zero. However, the same argument as in the

proof of Lemma V.7 shows this expression is positive. Indeed, the only fact used about g was

that the Patterson–Sullivan measure µgp of the complement of two points in the boundary is

positive. This still holds for νp by Corollary V.16. Thus, we have arrived at a contradiction,

and we conclude that κg is bounded away from 0 uniformly for g in M.

V.3: Lipschitz constant for JacF (p)

To find such a Lipschitz constant, we start by finding a preliminary Lipschitz estimate for

F . This uses the lower bound κ for K established in Proposition V.17. While the fact that

F is Lipschitz follows from the fact that F is C2, it is not clear a priori which properties of

(M, g) this Lipschitz constant depends on. In the end, this Lipschitz constant will turn out

to be close to 1 in a way that depends only on ε, n,Γ,Λ by Theorem I.9.

Lemma V.18. Let F be the BCG map. Then ‖dFp‖ ≤ h(g)
κ

for all p ∈ M̃ .

Proof. Using (V.1.2), we get the following inequality by applying Cauchy–Schwarz (see

[BCG96, (5.3)]) together with the fact that ‖dB(w)‖ ≤ ‖w‖ for any Busemann function:

〈KF (p)dFpv, u〉 ≤ h(g)‖v‖‖u‖.

Now let ‖v‖ = 1 and let u = dFp(v). Then the above inequality and Proposition V.17 give

κ‖dFpv‖2 ≤ 〈KF (p)dFp(v), dFp(v)〉 ≤ h(g)‖dFp(v)‖.

Thus

‖dFp(v)‖ ≤ h(g)

κ
,

which completes the proof.
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Let p, q ∈ M̃ and let c(t) be unit speed the geodesic joining p and q such that c(0) = p.

Let Pc(t) denote parallel transport along the curve c(t). For i = 1, 2, let ui ∈ T 1
F (p)Ñ and let

Ui(t) = PF (c(t))ui.

We begin by finding a bound for the derivative of the function t 7→ 〈KF (c(t))U1(t), U2(t)〉
for 0 ≤ t ≤ T0. This bound will depend only on ε, n, Γ,Λ and T0.

Lemma V.19. Let Kξ
F (p)(u1, u2) = (HessBξ)F (p)(u1, u2). Let Ui(t) = PF (c(t))ui as above.

Then the function t 7→ Kξ
F (c(t))(U1(t), U2(t)) has derivative bounded by a constant depending

only on ε, n, Γ, Λ.

Proof. Let X = d
dt
|t=0F (c(t)). Then it suffices to find a uniform bound for ‖X(Kξ(U1, U2))‖

on Ñ . Since the Ui are parallel along X, we have X(Kξ(U1, U2)) = ∇Kξ(U1, U2, X) (see

[dC92, Definition 4.5.7]). So ‖X(Kξ(U1, U2))‖ ≤ ‖∇Kξ‖‖U1‖‖U2‖‖X‖. Since ‖X‖ ≤ h(g)/κ

by the previous lemma and ‖U1‖ = ‖U2‖ = 1, it remains to control ‖∇Kξ‖. We claim this

quantity is uniformly bounded on Ñ .

First note that if a is an isometry fixing ξ, then

Kξ
x(v, w) = Kξ

a(x)(a∗v, a∗w).

Now fix x0 ∈ Ñ and let e1, · · · en ∈ Tx0Ñ orthonormal frame. For any other x ∈ Ñ , there

exists an isometry a taking x to x0 fixing ξ (since Ñ is a symmetric space). As such, we can

extend the ei to vector fields Ei on all of Ñ . Then the quantity

∇Kξ(Ei, Ej, Ek) = Ek(K
ξ(Ei, Ej))−Kξ(∇EkEi, Ej)−Kξ(∇EkEi, Ej)

is invariant by isometries a fixing ξ, and is thus constant on Ñ . This shows the desired claim

that ‖∇Kξ‖ is uniformly bounded on Ñ . The bound depends only on the symmetric space

Ñ and hence only on the dimension n.

Lemma V.20. Consider the function

t 7→ 〈KF (c(t))U1(t), U2(t)〉

for 0 ≤ t ≤ T0. Its derivative is bounded by a constant depending only on ε, n,Γ,Λ, T0.

Proof. Note that f ∗µc(t)(ξ) = exp
[
−h(g)BM

f
−1

(ξ)
(p, c(t))

]
f ∗µp(ξ). Then

〈KF (c(t))U1(t), U2(t)〉 =

∫
∂Ñ

Kξ(U1(t), U2(t)) exp
[
−h(g)BM

f
−1

(ξ)
(p, c(t))

]
f ∗µp(ξ).
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The first term in the integrand is bounded above as a consequence of (V.2.2), and this

bound depends only on the dimension n. By the previous lemma, the derivative of this

function is bounded by a constant depending only on n, ε,Γ,Λ. Since |B
f
−1

(ξ)
(p, c(t))| ≤

d(p, c(t) ≤ T0, the second term is bounded by a constant depending only on n, ε, T0. The same

is true of its derivative, since Busemann functions have gradient 1. Hence the derivative of

〈KF (c(t))U1(t), U2(t)〉 is bounded by a constant depending only on the desired parameters.

Corollary V.21. The function t 7→ detKF (c(t)) on the interval 0 ≤ t ≤ T0 is L1-Lipschitz

for some L1 = L1(ε, n,Γ,Λ, T0).

Proof. By Lemma V.20, the entries of the matrix KF (c(t)) (with respect to a g0-orthonormal

basis) vary in a Lipschitz way. Using (V.2.2), we see that for u1 and u2 unit vectors, the

expression HessBN
F (p),ξ(u1, u2) is uniformly bounded above by some constant depending only

on (Ñ , g̃0). Since the entries of the matrix KF (c(t)) are Lipschitz and bounded, it follows the

determinant of this matrix is Lipschitz.

Recall (V.1.2) implies

〈KF (p)dFp(v), u〉 = h(g)

∫
∂M̃

dBN
F (p),f(ξ)

(u)dBM
p,ξ(v)dµp(ξ).

This formula, together with the Lipschitz bound for p 7→ detKF (p) established in Corollary

V.21, will allow us to find a Lipschitz bound for p 7→ det(dFp) = JacF(p).

Lemma V.22. Let p, q and c(t) be as above. Then the function

t 7→ dBM
c(t),ξ(Pc(t)v)

is Λ/2-Lipschitz for all v ∈ T 1
p M̃ .

Proof. We have

d

dt
|t=0dBc(t),ξ(Pc(t)v) = HessBp,ξ(c

′(0), v) = HessBp,ξ(c
′(0)T , vT ),

where c′(0)T and vT are the components of c′(0) and v in the direction tangent to the

horosphere through p and ξ. Using that HessBp,ξ is bilinear and positive definite on gradB⊥p,ξ,

we obtain

4HessBp,ξ(c
′(0)T , vT ) ≤ HessBp,ξ(c

′(0)T + vT , c′(0)T + vT ).

Let v′ = c′(0)T + vT and note ‖v′‖ ≤ 2. Let β(s) be a curve in the horosphere such

that β′(0) = v′. Consider the geodesic variation j(s, t) = expβ(s)(tgradBβ(s),ξ) and let J(t) =
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d
ds
|s=0j(s, t) be the associated Jacobi field. Then J(0) = v′ and J ′(0) = ∇v′gradBp,ξ. This

means

HessBp,ξ(c
′(0)T + vT , c′(0)T + vT ) = 〈J ′(0), J(0)〉.

Let χ = 1
2

√
λ2 + Λ2. According to [BK84, 4.2],

〈J ′(0), J(0)〉 ≤ 〈J ′(0) + χJ(0), J(0)〉 ≤ |J(0)|(χ− λ).

Since |J(0)| = |v′| ≤ 2, we get 4 d
dt
|t=0dBc(t),ξ(Pc(t)v) ≤ 〈J ′(0), J(0)〉 ≤ 2Λ.

Lemma V.23. The function t 7→ dBN
F (c(t)),ξ(PF (c(t))u) is (h(g)

κ
+ 1)-Lipschitz for all u ∈

T 1
F (p)Ñ .

Proof. We repeat the same proof as in the previous lemma, but replacing λ2 and Λ2 with 1

and 4, respectively. In this case, χ− λ < 1. This gives

d

dt
|t=0 dB

N
F (c(t)),ξ(PF (c(t))u) = HessBN

F (p),ξ(dFp(c
′(0)), u) < |dFp(c′(0)) + u|.

Since c′(0) has norm 1, the Lipschitz bound from Lemma V.18 gives |dFp(c′(0))+u| ≤ h(g)
κ

+1,

which completes the proof.

Lemma V.24. The function t 7→ detKF (c(t))JacF (c(t)) on the interval 0 ≤ t ≤ T0 is L2-

Lipschitz, where L2 depends only on ε, n,Γ,Λ, T0.

Proof. Consider the function

t 7→ h(g)

∫
∂M̃

dBN
F (c(t)),f(ξ)(PF (c(t))u)dBM

c(t),ξ(Pc(t)v)e−h(g)Bξ(p,c(t))dµp(ξ).

The first two terms in the integrand are bounded by 1 in absolute value. The third term

is bounded above by a constant depending only on ε, n, T0 as in the proof of Lemma V.20

and h(g) ≤ (1 + ε)h(g0) by Lemma V.1. Moreover, the three terms in the integrand are

each Lipschitz – the first two by Lemmas V.23 and V.22, respectively, and the last one as in

the proof of Lemma V.20. Since the entries of the matrix KF (c(t))(dFc(t)) are bounded and

Lipschitz, the determinant of this matrix is also Lipschitz.

Proposition V.25. The function p 7→ |JacF (p)| is L-Lipschitz, where the constant L de-

pends only on ε, n,Γ,Λ.

Proof. Since KF (p) is a symmetric matrix, it has an orthonormal basis of eigenvectors ui.

Moreover, 〈KF (p)ui, ui〉 ≥ κ〈ui, ui〉 by Proposition V.17. It follows that detKF (p) ≥ κn.

84



Using this, we obtain

κn|JacF (p)− JacF (q)| ≤ | detKF (p)JacF (p)− detKF (p)JacF (q)|

≤ L2d(p, q) + |JacF (q)|| detKF (p) − detKF (q)| (Lemma V.24)

≤ L2d(p, q) + (1 + ε)nL1d(p, q),

where the last inequality follows from Corollary V.21 and Lemmas V.5 and V.1. Moreover,

Corollary V.21 and Lemma V.24 imply L1 and L2 depend only on ε, n,Γ,Λ. Proposition

V.17 states κ depends only on ε, n,Γ.

Let cε := (1 − Cε2)(1 − ε)n be the constant from Theorem I.12 satisfying cεVol(M) ≤
Vol(N). (Recall C depends only on n since N is locally symmetric.) Let c(n) denote the

volume of the unit ball in Rn. Choose ε0 small enough so that

1− cε0/(1 + ε0)n

ε
1/(n+1)
0

c−1
ε0

(1 + ε0)n ≤ c(n)inj(N, g0)n

Vol(N)
.

This is possible since the first term on the lefthand side approaches 0 as ε0 → 0, while the

other two approach 1. Indeed, the numerator of the first term can be written as 2nε0 +O(ε2
0).

The righthand side depends only on n and Γ, so the choice of ε0 depends only on n and Γ.

Hypothesis V.26. From now on, we assume ε ≤ ε0. (The reason for this will become

apparent in the proof of the next proposition, see (V.4.1).) Then for L as in Proposition

V.25, we have L(ε, n,Γ,Λ) ≤ L(ε0, n,Γ,Λ) for all ε ≤ ε0. From now on, we will use

L = L(n,Γ,Λ) to denote L(ε0, n,Γ,Λ).

V.4: Lower bound for |JacF (p)|

Now that we have a Lipschitz bound for JacF (p), we can use the fact that (M, g) and

(N, g0) have approximately equal volumes (Theorem I.12) and approximately equal entropies

(Lemma V.1) to show equality almost holds in the inequality JacF (p) ≤ (h(g)/h(g0))n

(Lemma V.5).

Proposition V.27. There is a constant β < 1, depending only on ε, n,Γ,Λ, such that

β

(
h(g)

h(g0)

)n
≤ |JacF (p)|

for all p ∈ M̃ . In particular, there is a constant C = C(n,Γ,Λ) so that β = 1− Cε1/(n+1) +

O(ε2/(n+1)).
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We need two preliminary lemmas. Let ν denote the measure on M coming from the

Riemannian volume.

Lemma V.28. Let φ : M → R be a ν-measurable function such that φ ≥ 0. Suppose the

integral of φ satisfies 0 ≤
∫
M
φ ≤ δ. Let B = {x ∈ M |φ > ω} where ω is some constant.

Then ν(B) ≤ δ/ω.

Proof. Note that ω ν(B) ≤
∫
B
φ ≤

∫
X
φ ≤ δ, which gives the desired bound.

Lemma V.29. Let iM denote the injectivity radius of M and let c(n) denote the volume of

the unit ball in Rn. Fix δ < c(n)(iM)n. Let B ⊂ M be an open set with ν(B) < δ. Then

there is r = r(δ) such that for any p ∈ B there is q ∈ M \ B with d(p, q) ≤ r. Moreover,

r ≤ c(n)−1/nδ1/n.

Proof. Let p ∈ B. Let q ∈ M \ B be the point such that d(p, q) = minx∈M\B d(p, x). Let

r = d(p, q). Then the open ball B(p, r) is contained in the set B. We consider the cases

r ≤ iM and r > iM separately:

In the case r ≤ iM , we can apply Theorem 3.101 ii) in [GHL90] to obtain the inequality

VolB(p, r) ≥ c(n)rn, where c(n) is the volume of the unit ball in Rn. Since B(p, r) ⊂ B, this

gives rn ≤ δ
c(n)

.

In the case r > iM , we do not have the above volume estimate for the ball B(p, r).

However, B(p, iM) ⊂ B(p, r) ⊂ B so the same argument as in the first case gives a bound

(iM)n ≤ δ
c(n)

. This is a contradiction for small enough δ, so we must be in the first case.

Remark V.30. We have iM ≥ i0 where i0 is a constant depending only on Γ (and on ε0 =

ε0(Γ)). Indeed, Lemma V.8 gives iM ≥ 1
1+ε0

iN , and iN depends only on Γ by Mostow rigidity

and our choice of normalization for the metric g0.

Proof of Proposition V.27. Let cε := (1 − Cε2)(1 − ε)n be the constant from Theorem I.12

satisfying cεVol(M) ≤ Vol(N). (Recall C depends only on n since N is locally symmetric.)

Using this theorem together with the bound h(g)
h(g0)

≤ 1 + ε from Lemma V.1, we get

cε
1

(1 + ε)n

(
h(g)

h(g0)

)n
Vol(M) ≤ cεVol(M) ≤ Vol(N).

Combining with (V.1.5) gives

cε
1

(1 + ε)n

(
h(g)

h(g0)

)n
Vol(M) ≤

∫
M

|(JacF )| dVol ≤
(
h(g)

h(g0)

)n
Vol(M).
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Next, we apply Lemma V.28 to φ(p) = (h(g)/h(g0))n − |JacF (p)| ≥ 0. In this case, we

indeed have 0 ≤
∫
M
φ ≤ δ with δ = (1 − cε/(1 + ε)n) (h(g)/h(g0))n Vol(M). Let α < 1 and

write

Mα =

{
|JacF (p)| ≥ α

(
h(g)

h(g0)

)n}
.

Then Mα = {φ ≤ (1− α)(h(g)/h(g0))n}. So Lemma V.28 gives

ν (M \Mα) ≤ 1− cε/(1 + ε)n

1− α
Vol(M).

Let 1− α = ε1/(n+1). Let ε0 = ε0(n,Γ) as in Hypothesis V.26. Then

ν(M \Mα) ≤ c(n)(inj(M, g))n, (V.4.1)

so the hypotheses of Lemma V.29 are satisfied. The lemma gives r(ε) = c(n)ν(M \Mα)1/n

so that for all p ∈ M \Mα there is q ∈ Mα satisfying d(p, q) < r(ε). Applying Proposition

V.25 with T0 = r(ε0), we then have

α

(
h(g)

h(g0)

)n
≤ |JacF (q)| ≤ Lr(ε) + |JacF (p)|

for some L = L(n,Γ,Λ). Rearranging and applying the entropy estimate in Lemma V.1

gives (
α− (1− ε)−nLr(ε)

)( h(g)

h(g0)

)n
≤ Jac|F (p)|.

Let β = α − (1 − ε)−nLr(ε). Using α = 1 − ε1/(n+1) gives µ(M \Mα) ≤ Cε1−1/(n+1) +

O(ε2−1/(n+1)) and r(ε) ≤ Cε1/(n+1) + O(ε2/(n+1)), where the constants C depend only on n,

Γ, Λ. So β = 1− Cε1/(n+1) +O(ε2/(n+1)) for some C = C(n,Γ,Λ).

V.5: Estimates for ‖dFp‖

Recall HF (p) and KF (p) are symmetric bilinear forms on TF (p)Ñ (see (V.1.3) and (V.1.4)).

We will use the lower bound we just established for JacF (p) in Proposition V.27 to show H

and K are close to scalar matrices. This will then allow us to mimic the proof of [BCG96,

Proposition 5.2 ii)] to find bounds for the derivative of the BCG map that are close to 1.

Proposition V.31. Let F : M̃ → Ñ be the BCG map and assume there is a constant β < 1
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as in the conclusion of Proposition V.27 so that the Jacobian of F satisfies

β

(
h(g)

h(g0)

)n
≤ |JacF (p)|

for all p ∈ M̃ . Let HF (p) and KF (p) be the symmetric bilinear forms on TF (p)Ñ defined in

(V.1.3) and (V.1.4). Then there are constants a, a′ < 1 and A,A′ > 1, depending only on β

and n, such that

a
1

n
〈v, v〉 ≤ 〈HF (p)v, v〉 ≤ A

1

n
〈v, v〉,

a′
h(g0)

n
〈v, v〉 ≤ 〈KF (p)v, v〉 ≤ A′

h(g0)

n
〈v, v〉

for all p ∈ M and all v ∈ TF (p)Ñ . In particular, there is a constant C = C(n,Γ,Λ) so that

a = 1 − Cε1/2(n+1) + O(ε1/(n+1)), A = 1 + Cε1/2(n+1) + O(ε1/2(n+1)), a′ = 1 − Cε1/4(n+1) +

O(ε1/2(n+1)), A′ = 1− Cε1/4(n+1) +O(ε1/2(n+1)) .

Remark V.32. If Ñ is not Cayley hyperbolic space, we can take a = a′ and A′ = A. This is

explained right after the proof of the proposition.

The lower bound on JacF (p) can be thought of as equality almost holding in Lemma V.5.

This lower bound, together with the inequalities in Lemmas V.2 and V.3, implies equality

almost holds in Lemma V.4, that is,

β
2(n+d−2)
n−d

(
nα−1

(n− 1)α

)n
≤ detH

det(I −H)α
≤
(

nα−1

(n− 1)α

)n
, (V.5.1)

where α = 2(n−1)
n−d .

In order to prove Proposition V.31, we will first show that since β is close to 1, the matrix

H is almost 1
n
I.

Lemma V.33. Let H be a symmetric positive definite n× n matrix with trace 1 for n ≥ 3.

Let 1 < α ≤ n− 1 and let m =
(

nα−1

(n−1)α

)n
. Suppose

detH

det(I −H)α
≥ β′m,

where β′ = β
2(n+d−2)
n−d and β is as in Proposition V.27. (Note 0 < β′ < 1.) Let λi denote the

eigenvalues of H. Then there are constants a < 1 and A > 1, depending on β and n, such

that

a
1

n
≤ λi ≤ A

1

n
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for i = 1, . . . , n. In particular, there is a constant C = C(n,Γ,Λ) so that a = 1− Cε1/4n +

O(ε1/2n), A = 1 + Cε1/4n +O(ε1/2n).

Proof. It follows from [BCG95, Proposition B.5] (see [Rua22] for the Cayley case), Lemma

V.2 and Proposition V.27 that there is a constant B(n) > 0 so that

n∑
i=1

(
λi −

1

n

)2

≤ 1− β′

B
.

Write δ =
√

(1− β′)/B. Then |λi − 1/n| < δ implies we can take a = 1 − nδ, A =

1 + nδ. Recall β = 1 − Cε1/(n+1) + O(ε2/(n+1)) and β′ = βp for some p(n, d) > 1. Then

β′ = 1 − C ′ε1/(n+1) + O(ε2/(n+1)), where C ′ is a possibly different constant still depending

only on n,Γ,Λ. Thus there is a constant C = C(n,Γ,Λ) so that δ = Cε1/2(n+1) +O(ε1/(n+1)).

So we can take a = 1−Cε1/2(n+1) +O(ε1/(n+1)) and A = 1 +Cε1/2(n+1) +O(ε1/(n+1)), where

C is another constant depending on the same parameters.

Next, we need an analogue of Lemma V.33 for the arithmetic-geometric mean inequality.

Lemma V.34. Let L be a symmetric positive-definite n× n matrix with b ≤ trace(L) ≤ b′

for positive constants b, b′ depending only on ε, n,Γ,Λ. Suppose

detL ≥ α

(
1

n
traceL

)n
for some 0 < α < 1. Let µ1, . . . , µn denote the eigenvalues of L. Then there are constants

a′ < 1 and A′ > 1 such that

a′
trace(L)

n
≤ µi ≤ A′

trace(L)

n

for i = 1, . . . , n. In particular, there is a constant C = C(n,Γ,Λ) so that a′ = 1−C
√

1− α,

A′ = 1 + C
√

1− α.

Proof. We will use the approach of the proof of [BCG95, Proposition B5]. Let φ(µ1, . . . , µn) =

log(µ1 · . . . · µn). Since φ is concave, there is a constant B > 0 so that the inequality

log(µ1 · . . . · µn) ≤ log

(
trace(L)

n

)n
−B

n∑
i=1

(
µi −

trace(L)

n

)2

holds on the set of all µi ≥ 0 satisfying µ1 + · · · + µn = trace(L). The constant B depends

only on the function φ. In other words, it does not depend on any topological or geometric

properties of the manifolds M and N other than the number n = dimM = dimN .
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Since L is positive definite, we know 0 < µi < trace(L) for all i. So there exists T =

T (ε, n,Γ,Λ) such that B
∑n

i=1

(
µi − trace(L)

n

)2

≤ T . Following the same steps as in the proof

of [BCG95, Proposition B.5], we then obtain

n∑
i=1

(
µi −

trace(L)

n

)2

≤ 1− α
B 1−e−T

T

.

Let δ2 = (1 − α)/(B 1−e−T
T

). Then we can write δ = C
√

1− α for some C = C(n,Γ,Λ).

Using the boundedness assumption b ≤ trace(L) ≤ b′, we conclude a′ = 1 − C
√

1− α,

A′ = 1 + C
√

1− α for some C = C(n,Γ,Λ).

Proof of Proposition V.31. First, note that detK ≥ an/2(h(g0)/n)n follows from [BCG95,

Proposition B5] and Lemma V.33. So equality almost holds in the arithmetic-geometric mean

inequality. By Lemma V.34, the eigenvalues of K are between a′h(g0)/n and A′h(g0)/n,

where a′ = 1 − C
√

1− an/2 and A′ = 1 + C
√

1− an/2. In terms of ε, we have a′ = 1 −
Cε1/4(n+1) +O(ε1/2(n+1)) and A′ = 1− Cε1/4(n+1) +O(ε1/2(n+1)).

Proof of Remark V.32. When N is a real, complex or quaternionic hyperbolic space, we can

write

K = I −H −
d−1∑
k=1

JkHJk, (V.5.2)

for d = 1, 2, 4, respectively. Here, J1, . . . Jd−1 are the orthogonal endomorphisms at each point

defining the complex or quaternionic structure. They are parallel and satisfy J2
i = −Id; see

[BCG96, p. 638]. Now recall that Lemma V.33 gives

a
1

n
〈v, v〉 ≤ 〈Hv, v〉 ≤ A

1

n
〈v, v〉

for all v. To prove the corresponding statement forK, first note 〈JkHJku, u〉 = 〈−HJku, Jku〉.
Since 〈Jku, Jku〉 = 〈u, u〉, we have

a
1

n
〈u, u〉 ≤ 〈HJku, Jku〉 ≤ A

1

n
〈u, u〉.
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We can use equation (V.5.2) to write

〈Ku, u〉 = 〈u, u〉 − 〈Hu, u〉+
d−1∑
k=1

〈HJku, Jku〉

≤ (1− a 1

n
+ A

d− 1

n
)〈u, u〉

=

(
n+ d− 2

n
+ nδ

1

n
+ nδ

d− 1

n

)
〈u, u〉 (using a = 1− nδ, A = 1 + nδ)

≤ A
n+ d− 2

n
〈u, u〉.

By a similar argument, 〈Ku, u〉 ≥ an+d−2
n
〈u, u〉.

Proposition V.35. Let F denote the BCG map, and suppose H and K satisfy the conclusion

of Proposition V.31. Then there are constants c1 = c1(ε, n,Γ,Λ) < 1, C2 = C2(ε, n,Γ,Λ) > 1

such that for all v ∈ TM we have

c1‖v‖g ≤ ‖dF (v)‖g0 ≤ C2‖v‖g. (V.5.3)

Moreover, there is a constant C = C(n,Γ,Λ) so that c1 = 1− Cε1/8(n+1) + O(ε1/4(n+1)) and

c2 = 1 + Cε1/8(n+1) +O(ε1/4(n+1)).

Proof. We closely follow the proof of [BCG96, Proposition 5.2 ii)]. First note it suffices to

prove the claim for v a unit vector. Using the definitions of H and K together with the

Cauchy-Schwarz inequality, we obtain

〈KdFpv, u〉 ≤ h(g)〈Hu, u〉1/2
(∫

X(∞)

(dBp,ξ(v))2dµp(ξ)

)1/2

.

(See [BCG96, (5.3)].) Using the upper bound for H in Proposition V.31, the above inequality

implies

〈KdFpv, u〉 ≤
√
A
h(g)√
n
‖u‖

(∫
X(∞)

(dBp,ξ(v))2dµp(ξ)

)1/2

.

Now let u = dFp(v)/‖dFp(v)‖. Using the lower bound for K in Proposition V.31 gives

‖dFp‖ ≤
√
A

a′
h(g)

h(g0)

√
n

(∫
X(∞)

(dBp,ξ(v))2dµp(ξ)

)1/2

.

Now let L = dFp◦dF T
p and let vi be an orthonormal basis for TpM̃ . Then, since ‖dBp,ξ(v)‖ ≤
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‖v‖ = 1, we get

trace(L) =
n∑
i=1

〈Lvi, vi〉 = 〈dFp(vi), dFp(vi)〉 ≤

(√
A

a′
h(g)

h(g0)

)2

n.

Combining this with Proposition V.27 and the arithmetic-geometric mean inequality gives

β2

(
h(g)

h(g0)

)2n

≤ |JacF (p)|2 = detL ≤
(

1

n
traceL

)n
≤

(√
A

a′
h(g)

h(g0)

)2n

. (V.5.4)

Hence the hypotheses of Lemma V.34 hold with α = β2(a′)2n/An. Using the expressions for

β, a′, A in Propositions V.27 and V.31, we can write α = 1 − Cε1/4(n+1) + O(ε1/2(n+1)) for

some C = C(n,Γ,Λ). Lemma V.34 thus implies

a1
1

n
traceL〈v, v〉 ≤ 〈Lv, v〉 = 〈dFpv, dFpv〉 ≤ A2

1

n
traceL〈v, v〉,

where a1 = 1−Cε1/8(n+1) +O(ε1/4(n+1)) and A2 = 1+Cε1/8(n+1) +O(ε1/4(n+1)). Using (V.5.4)

gives

a1β
2/n

(
h(g)

h(g0)

)2

≤ 〈dFpv, dFpv〉
〈v, v〉

≤ A2

(√
A

a

h(g)

h(g0)

)2

.

Hence, there is a constant C = C(n,Γ,Λ) so that the lower bound can be written as 1 −
Cε1/8(n+1) +O(ε1/4(n+1)) and the upper bound as 1 + Cε1/8(n+1) +O(ε1/4(n+1)).
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CHAPTER VI

Surfaces

In this chapter, we prove a generalization of Otal’s marked length spectrum rigidity result

for negatively curved surfaces [Ota90]. We show that pairs of negatively curved metrics on

a surface become more isometric as the ratio of their marked length spectrum functions gets

closer to 1. Aside from some background on the Liouville measure and Liouville current

from Chapter IV, this section does not rely on earlier parts of this paper.

Let C(2, λ,Λ, v0, D0) consist of all closed C∞ Riemannian manifolds of dimension 2 with

sectional curvatures contained in the interval [−Λ2,−λ2], volume bounded below by v0, and

diameter bounded above by D0. In this section we will prove the following theorem about

surfaces whose marked length spectra are close:

Theorem I.8. Fix λ,Λ, v0, D0 > 0. Fix L > 1. Then there exists ε = ε(L, λ,Λ, v0, D0) > 0

small enough so that for any pair (M, g), (M,h) ∈ C(2, λ,Λ, v0, D0) satisfying

1− ε ≤ Lg
Lh
≤ 1 + ε, (VI.0.1)

there exists an L-Lipschitz diffeomorphism f : (M, g)→ (M,h).

The space C(2, λ,Λ, v0, D0) has the property that any sequence has a convergent sub-

sequence in the Lipschitz topology; this is often called the Gromov compactness theorem

[GKPS99]. In this paper, we use refinements of Gromov’s theorem due to Pugh and Greene–

Wu [Pug87, GW88].

It follows from [GW88] that any sequence (M, gn) ∈ C(2, λ,Λ, v0, D0) has a subsequence

(M, gnk) converging in the following sense: there is a Riemannian metric g0 on M such

that in local coordinates we have gijnk → gij0 in the C1,α norm, and the limiting gij0 have

regularity C1,α. Additionally, the distance functions dgnk converge uniformly (with respect

to the Lipschitz distance) to dg0 on compact sets; see [GW88, p. 122]. In particular, this

implies the following (see also Lemma V.12):
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Lemma VI.1. Given any A > 1, there is a sufficiently large k so that for all p, q ∈ M we

have A−1 dg0(p, q) ≤ dgnk (p, q) ≤ Adg0(p, q).

We will use Gromov compactness to prove Theorem I.8 by contradiction. Indeed, suppose

the statement is false. Then for every ε > 0, there are (M, gε), (M,hε) ∈ C(2, λ,Λ, v0, D0) so

that there is no L-Lipschitz map f : (M, gε)→ (M,hε). By [GW88], there is a subsequence

εn → 0 so that (M, gεn) → (M, g0) and (M,hεn) → (M,h0) in the sense described above.

From now on we will relabel gεn as gn and hεn as hn. To prove the main theorem, it suffices

to prove the following statement:

Proposition VI.2. Let (M, g0) and (M,h0) be the Greene–Wu limits of the counterexamples

above. Then there is a map f : M → M such that for all p, q ∈ M we have dg0(p, q) =

dh0(f(p), f(q)).

Proof of Theorem I.8. Fix L > 1 and suppose the theorem is false. Let (M, gn), (M,hn)

be the convergent sequences of counter-examples defined above. Since (M, gn) → (M, g0),

Lemma VI.1 gives large enough n so that
√
L
−1
dg0(p, q) ≤ dgn(p, q) ≤

√
Ldg0(p, q) for all

p, q ∈M , and similarly for dhn . Then Proposition VI.2 gives

dgn(p, q) ≤
√
Ldh0(f(p), f(q)) ≤ Ldhn(f(p), f(q)).

So f : (M, gn)→ (M,hn) is an L-Lipschitz map, which is a contradiction.

VI.1: The marked length spectra of (M, g0) and (M,h0)

To prove Proposition VI.2, we will first show (M, g0) and (M,h0) have the same marked

length spectrum. Then we will construct an isometry f : (M, g0) → (M,h0). We use the

same main steps as in [Ota90]; however, since g0 and h0 are only of C1,α regularity, there

are additional technicalities that arise when verifying the requisite properties of the Liouville

measure and Liouville current in this context.

We first recall some additional properties of the limit (M, g0). By a theorem of Pugh

[Pug87, Theorem 1], this limiting metric will have a Lipschitz geodesic flow, and the geodesics

themselves are of C1,1 regularity. Moreover, the exponential maps converge uniformly on

compact sets [Pug87, Lemma 2], which is equivalent to the following:

Lemma VI.3. Let φn and φ0 denote the geodesic flows on (T 1M, gn) and (T 1M, g0) re-

spectively. Fix T > 0 and let K ⊂ T 1M compact. Then φtnv → φt0v uniformly for

(t, v) ∈ [0, T ]×K.
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In addition, the space (M, g0) is CAT(−λ2) because it is a suitable limit of such spaces;

see [BH13, Theorem II.3.9]. Thus, even though the curvature tensor is not defined for the

C1,α metric g0, this limiting space still exhibits many key properties of negatively curved

manifolds. One such property, heavily used in Otal’s proof of marked length spectrum

rigidity [Ota90], is the fact that the angle sum of a non-degenerate geodesic triangle is strictly

less than π [dC92, Lemma 12.3.1 ii)]. This still holds for CAT(−λ2) spaces, essentially by

definition [BH13, Proposition II.1.7 4].

Moreover, we can define the marked length spectrum of (M, g0) the same way as for

negatively curved manifolds. The fact that there exists a geodesic representative for each

homotopy class is a general application of the Arzelà-Ascoli theorem; see [BH13, Proposition

I.3.16]. The proof that this geodesic representative is unique in the negatively curved case

immediately generalizes to the CAT(−λ2) case; see [dC92, Lemma 12.3.3].

We will now show (M, g0) and (M,h0) have the same marked length spectrum. We start

with a preliminary lemma.

Lemma VI.4. Let 〈γ〉 be a free homotopy class. Let γ0 and γn denote the geodesic repre-

sentatives with respect to g0 and gn respectively. Write γ0(t) = φt0v0 and γn(t) = φtnvn. Then

for all 0 ≤ t ≤ lg0(γ0), we have φtnvn → φt0v0 in T 1M as n→∞.

Proof. Let T = lg0(γ0). By Lemma VI.3, choose n large enough so that d(φtnv0, φ
t
0v0) < ε for

all t ∈ [0, T ]. In particular, φTnv0 is close to φT0 v0 = v0. The Anosov closing lemma applied

to the geodesic flow on (T 1M, gn) gives φtnv0 is shadowed by a closed orbit. By construction,

this closed orbit is close to γ0 and is also homotopic to it, which completes the proof.

Proposition VI.5. The Riemannian surfaces (M, g0) and (M,h0) have the same marked

length spectrum.

Proof. The previous lemma, together with Lemma VI.1, implies lgn(γn)→ lg0(γ0) as n→∞.

Let γ̃n be the geodesic representatives of 〈γ〉 with respect to the hn metrics. Then we also

have lhn(γ̃n)→ lh0(γ̃0) as n→∞. Since Lgn/Lhn → 1, we obtain lg0(γ0)/lh0(γ̃0) = 1, which

completes the proof.

VI.2: Liouville current

Now that we have two surfaces with the same marked length spectrum, we will follow the

method of [Ota90] to show they are isometric. Two key tools used in Otal’s proof are the

Liouville current and the Liouville measure (both defined at the beginning of Section IV.2).

In this section and the next, we will construct analogous measures for the limit (M, g0) and

show they still satisfy the properties required for Otal’s proof.
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Recall the Liouville current is a Γ-invariant measure on the space of geodesics of M̃ ;

see Section IV.2. Recall as well the following relation between the cross-ratio and Liouville

current for surfaces. Let a, b, c, d ∈ ∂M̃ be four distinct points. Since ∂M̃ is a circle, the

pair of points (a, b) determines an interval in the boundary (after fixing an orientation). Let

(a, b) × (c, d) ∈ ∂2M̃ denote the geodesics starting in the interval (a, b) and ending in the

interval (c, d). Then

λ((a, b)× (c, d)) =
1

2
[a, b, c, d]. (VI.2.1)

(See (IV.2.2), also [Ota90, Proof of Theorem 2] and [HP97, Theorem 4.4].)

We can use the above equation to define the Liouville current λ0 on (M, g0). Let λn

denote the Liouville current with respect to the smooth metric gn. It is then clear from

Lemma IV.3 that λn(A)→ λ0(A) for any Borel set A ⊂ ∂2M̃ .

We now recall a key property of the Liouville current used in Otal’s proof. We begin by

defining coordinates on the space of geodesics: Fix v ∈ T 1M and T > 0, and let t 7→ η(t) be

the geodesic segment of length T with η′(0) = v. Let GTv denote the (bi-infinite) geodesics

which intersect the geodesic segment η transversally. Let b : [0, T ] × (0, π) → T 1M be the

map defined by sending (t, θ) to the unit tangent vector with footpoint η(t) obtained by

rotating η′(t) by angle θ. We can then identify each vector b(t, θ) with a unique geodesic in

GTv (see [Ota90, p. 155]).

When g is a smooth Riemannian metric on M , the Liouville current with respect to the

above coordinates is of the form 1
2

sin θ dθ dt. The same proof works for the measure λ0

defined in terms of the C1,α Riemannian metric g0. To see this, we begin by describing the

space TvT
1M . If ξ ∈ TvTM , then ξ is tangent to a curve β(t) ∈ TM , which is in turn a vector

field along a curve b(t) ∈ M . Let ∇ be the Levi-Civita connection for the metric g0 and let

κv(ξ) := ∇b′(t)β(0) denote the connector map, which is of Cα regularity. Let πTM : TM →M

be the natural projection; then dπ(ξ) = b′(0). The map TvTM → TpM ⊕ TpM given by

ξ 7→ (dπ(ξ), κv(ξ)) is an isomorphism [Bur83, 1.D].

Now for v ∈ T 1M and ξ1, ξ2 ∈ TvT 1M , define the Cα 2-form

τv(ξ1, ξ2) = 〈dπTMξ2, κvξ1〉 − 〈dπTMξ1, κvξ2〉.

In the case of a smooth Riemannian metric, the above formula is the coordinate expression

for the symplectic form dω defined at the beginning of Section IV.2 [Bur83, 1.D]. Since the

gnij and their derivatives converge to those of g0, this means τ is the limit of the dωn for the

metrics gn. Since each dωn is invariant under the geodesic flow φn, Lemma VI.3 implies τ

is invariant under the geodesic flow g0. Therefore, we can think of τ as a Cα 2-form on the

space of geodesics, which in turn gives rise to a measure.
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Lemma VI.6. Let b : [0, T ]× (0, π)→ T 1M as above. Then b∗τ = sin θ dθ dt.

Proof. Fix (t, θ) and let u = b(t, θ). Let β1(t) denote the coordinate curve t 7→ b(t, θ). This

gives a parallel vector field along η making fixed angle θ with η′. Thus if ξ1 is the vector

tangent to β1 at u, we get κvξ1 = 0 and dπξ1 = η′(t). This latter vector is obtained by

rotating u by angle θ, which we will denote by θ · u.

Next, let β2(θ) denote the coordinate curve θ 7→ b(t, θ). This is a curve in the fiber over

η(t), which means dπ(ξ2) = 0. This curve traces out a circle in the unit tangent space, and

its tangent vector is thus perpendicular to the circle. This means κv(ξ2) = (π/2) · u.

Hence

τb(t,θ)(ξ2, ξ1) = 〈π/2 · u, θ · u〉 − 〈0, 0〉 = sin θ,

as claimed.

We now claim the measure on the space of geodesics coming from the symplectic form
1
2
τ is equal to the Liouville current. Indeed, this follows from [Ota90, Theorem 2]. To show

this theorem is still true for (M, g0), it suffices to verify the geodesic flow φ0 satisfies the

Anosov closing lemma (see the proof of Proposition IV.4).

Lemma VI.7. The Anosov closing lemma holds for the g0-geodesic flow, ie, given δ > 0,

there exist T0 > 0, δ0 > 0 with the following property: for any v so that d(φtv, v) < δ0

for t ≥ T0, there exists w tangent to a periodic orbit of length t0 where |t − t0| < δ and

d(φsv, φsw) < δ for s ∈ [0,min(t, t0)].

Proof. We can choose T0 and δ0 so that the conclusion of Anosov closing lemma holds for

all gn with n sufficiently large. Indeed, this follows from the fact that the stable/unstable

distributions of the gn geodesic flows converge uniformly on compact sets to those of the g0

geodesic flow as n→∞; see Lemma V.13 and [Fra18, p. 105].

Now take v and t ≥ T0 so that dg0(φ
t
0v, v) < δ0/2. Choose n large enough such that

φtnv is within δ0/2 of φt0v. Applying the Anosov closing lemma to gn gives w and t0 with

|t− t0| < δ, φt0n w = w and d(φsnv, φ
s
nw) for s ∈ [0,min(t, t0)]. By Lemma VI.4, this gn-closed

orbit is δ-close to a g0-closed orbit, which completes the proof.

Since (M, g0) and (M,h0) are CAT(−λ2) spaces, we can define a correspondence of

geodesics φ : (∂2M̃, g0) → (∂2M̃, h0) as in Construction IV.1. The following fact is still

true in this context; see [Ota90, p. 156].

Proposition VI.8. Let Gv ⊂ ∂2M̃ be a coordinate chart with coordinates (t, θ) and let

φ(Gv) = Gφ(v) have coordinates (t, θ′). Then φ takes the measure sin θ dθ dt to sin θ′ dθ′ dt′.
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VI.3: Liouville measure

Let µn denote the Liouville measure on T 1M with respect to the metric gn on M . Let gSn

denote the associated Sasaki metric on T 1M . Then µn is a constant multiple of the measure

arising from the Riemannian volume form of gSn . In local coordinates, the measure µn can be

written in terms of the gijn and their first derivatives. Since gijn → gij0 in the C1,α norm, we

see the measures µn converge to a measure µ0, which is the Riemannian volume associated

to the Cα Sasaki metric gS0 . Hence, the measure µ0 can be written locally as the product

dm × dθ, where dm is the Riemannian volume on M coming from g0, and dθ is Lebesgue

measure on the circle T 1
pM .

We now recall the average change in angle function Θ′ : [0, π] → [0, π] from [Ota90,

Section 2]. First Otal considers the function θ′ : T 1M × [0, π]→ R defined as follows. Given

a unit tangent vector v and an angle θ, let θ · v denote the vector obtained by rotating v by

θ. Consider lifts of the geodesics determined by v and θ ·v passing through the same point in

M̃ . The correspondence of geodesics φ (see above Proposition VI.8 and Construction IV.1)

takes intersecting geodesics to intersecting geodesics (since dimM = 2). Let θ′(θ, v) denote

the angle between the image geodesics in (M̃, h0) at their point of intersection. Finally, let

Θ′(θ) =
∫
T 1M

θ′(θ, v)dµ0(v).

The function Θ′ satisfies symmetry and subadditivity properties [Ota90, Proposition 6].

Indeed, the proof of [Ota90, Proposition 6] uses the above local product structure of the

Liouville measure along with the fact that in negative curvature, the angle sum of a non-

degenerate geodesic triangle is strictly less than π. As mentioned before, this latter fact

holds for CAT(−λ2) spaces as well [BH13, Proposition II.1.7.4].

To deduce the third key property of Θ′ (see [Ota90, Proposition 7] for the exact state-

ment), we require the following fact about µ0, which holds by [Sig72] in the original smooth

case. Since φ0 is a geodesic flow on a CAT(–1) space, it satisfies a sufficiently strong speci-

fication property such that the proof of [Sig72] works verbatim in this context; see [CLT20,

Theorem 3.2, Lemma 4.5].

Proposition VI.9. Let f : T 1M → R be a continuous function. Let ε > 0. Then there is a

closed geodesic γ0 so that ∣∣∣∣∫
T 1M

f dµ0 −
1

lg0(γ0)

∫
γ0

f dt

∣∣∣∣ < ε.
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VI.4: Constructing a distance-preserving map f : (M, g0)→ (M,h0)

Using Propositions VI.8 and VI.9, the proof of [Ota90, Proposition 7] shows the hypotheses

of [Ota90, Lemma 8] are satisfied. Thus, the function Θ′ defined at the beginning of Section

VI.3 is the identity. From this, it follows that φ takes triples of geodesics intersecting in

a single point to triples of geodesics intersecting in a single point; see the proof of [Ota90,

Theorem 1]. We then define f : (M, g0)→ (M,h0) exactly as in [Ota90]: given p ∈ M̃ , take

any two geodesics through p. Then their images under φ must also intersect in a single point,

which we call f̃(p). Then f̃ is distance-preserving and Γ-equivariant by the same argument

as in [Ota90].

This proves Proposition VI.2, and hence Theorem I.8 is proved.
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négative. Annals of Mathematics, 131(1):151–162, 1990.
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