Closed Geodesics and Stability of Negatively
Curved Metrics

by

Karen Aleksandra Butt

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Mathematics)
at The University of Michigan
2023

Doctoral Committee:

Professor Ralf Spatzier, Chair
Assistant Professor Pierre-Louis Blayac
Professor Victoria Booth

Professor Richard Canary

Associate Professor Alexander Wright



Karen Aleksandra Butt
kbutt@umich.edu
ORCID iD: 0000-0002-8691-8837

© Karen Aleksandra Butt 2023
All Rights Reserved



ACKNOWLEDGEMENTS

First and foremost, it is a pleasure to thank my advisor, Ralf Spatzier, for his unparalleled
generosity and support with all matters, both big and small. Of all the things I could have
done better in graduate school, choosing an advisor is certainly not one of them.

I would like to thank my colleagues at the University of Michigan for valuable discussions
about my research, particularly Thang Nguyen and Yuping Ruan. I would also like to thank
Alex Wright for suggesting such an interesting thesis problem, and I thank my doctoral
committee for their work reviewing this thesis. I thank Nicholas Wawrykow for help with
making the figures as well as Bradley Zykoski for figuring out how to make the list of figures.

Over the past year, I am also very lucky to have met many wonderful people in the
dynamical systems community at large. I am particularly grateful to Andrey Gogolev and
Amie Wilkinson for their encouragement and for the interest they showed in my work. I also
thank David Constantine, Vaughn Climenhaga, and Dima Dolgopyat for discussing various
arguments in this thesis with me.

On a more personal note, I would like to thank my friends and classmates at the University
of Michigan for making grad school a fun experience over the years, particularly Carsten
Peterson, Nicholas Wawrykow, Yueqiao Wu, and Bradley Zykoski for their camaraderie
during our sixth and final year. Finally, I thank my husband and the rest of my family,
without whose unwavering support this thesis would certainly not have been possible.

This research was partially supported by the National Science Foundation under Grant
Numbers DMS-2003712 and DMS-1607260.

i



TABLE OF CONTENTS

ACKNOWLEDGEMEN TS . ..o ii
LIST OF FIGURES . ... e v
AB S T R A C T . vi
CHAPTER I: Introduction....... ... ... .. e 1
[.1: Statement of the problem ......... .. .. . 1
[.2: Statements of main results . ...... ... 3
L2.1: FINIBeNesS . ..ot 3
[.2.2: SUITACES . . .o 5
[.2.3: Dimension at least 3, locally symmetric............. .. ... ... ... 5
[.3: Structure of this dissertation............ ... i 7
CHAPTER II: Preliminaries . ......... ... . e 8
I1.1: The marked length spectrum........ ... ... . . ., 8
I1.1.1: Hyperbolic surfaces. ..... ..o 10
I1.2: The geodesic flow on the unit tangent bundle of M .............................. 11
I1.2.1: Hyperbolicity . . ..o e e 12
[1.2.2: Periodic orbits. ... ... 15
I1.3: The Liouville measure and the Liouville current ................................. 18
IT.4: The BCG MaD ..ottt e e e 20
I1.4.1: The Patterson—Sullivan measure............ ..., 21
I1.4.2: The boundary mMap ... .....ouit i i 23
I1.4.3: The barycenter ... ... ..o e 24

il



I1.5: Gromov COMPaCTESS. . ...\t 25

CHAPTER III: Finiteness. ... ... ..ot e 26
II1.1: Proof of finiteness theorem ... ... .. ... . 27
II1.2: Local product structure ......... ... . e 32
IT1.3: Covering lemma . ... ... e 39
[I1.4: Pseudo-isometry estimates .......... ... i 40
IT1.5: Holder estimate ... ... e 43

CHAPTER IV: Volume Estimate ............ ... .. . 52
IV.1: The CroSs-Tatio . ... e e 53
IV.2: The Liouville current ......... ... %)

IV.2.1: Definition of S. ... 57
IV.2.2: Comparing f,.SM and SN ... .. 58
IV.2.3: Comparing SY and AN ... .. 60
IV.2.4: Comparing Ay and FoAnr..oooooo oo 62
IV.3: A controlled orbit equivalence......... ... ... i i 64

CHAPTER V: Estimates for the BCG Map ...................................... 71
V.1: Construction of the BCG map ... 71
V.2: Lower bound for K. ... ..o 75
V.3: Lipschitz constant for JACF (D) .....oouiiniii 81
V.4: Lower bound for [JacF ()| .. ..orunii 85
V.5: Estimates for [[dF,|| ..o 87

CHAPTER VI: Surfaces....... ... e 93
VI.1: The marked length spectra of (M, go) and (M, hg) .....oveeiiiiiiiiiiiii . 94
VI.2: Liouville current. ... ... 95
VI.3: Liouville measure. ... ... ... 98
VI.4: Constructing a distance-preserving map f : (M, go) — (M, ho) ..ovvveeeiiii.. 99

BIBLIOGRAPHY .. 100

v



2

LIST OF FIGURES

The setup for the proofs of Lemmas I11.19, I11.20, and I11.21 . . .
The horospherical configuration for the proof of Proposition I11.13



ABSTRACT

This dissertation explores the extent to which lengths of closed geodesics on a Riemannian
manifold determine the underlying metric. In the setting of closed manifolds of negative
sectional curvature, it is known in certain cases—and conjectured to be true in general—
that in order to determine a Riemannian metric on a given manifold up to isometry, it suffices
to measure the lengths of all closed geodesics (as a function of their free homotopy classes).

This phenomenon is known as marked length spectrum rigidity. It was proved in dimension

2 (independently) by Otal and Croke | : ], in dimension at least 3 if one of the
metrics is locally symmetric by Hamenstadt | ] (also using work of Besson—Courtois—
Gallot | : ]), and in any dimension by Guillarmou—Lefeuvre | |, provided

the metrics are sufficiently close in a suitable C* topology.

Still, even in the cases where rigidity is known to hold, there is more to be understood
about the extent to which the marked length spectrum determines the metric. In this thesis,
we prove quantitative versions of marked length spectrum rigidity in dimension 2, as well
as in higher dimensions when one of the metrics is locally symmetric, thereby refining the
previously known rigidity results of Otal | ] and Hamenstadt | |, respectively.
In each of these settings, we consider pairs of Riemannian manifolds whose marked length
spectra agree—only approximately—on a finite set of closed geodesics. We prove the two
metrics are “approximately isometric”, meaning bi-Lipschitz equivalent with constant close
to 1. We obtain explicit estimates for this Lipschitz constant in terms of the measurement
error and the length of the longest geodesic in the finite set. Our estimates depend only
on concrete geometric information about the given metrics, such as the dimension, sectional

curvature bounds, and injectivity radii.

vi



CHAPTER I

Introduction

I.1: Statement of the problem

In broad terms, this dissertation contributes to the fields of differential geometry and dy-
namical systems, in particular the interplay between the two arising via the geodesic flow.
More specifically, this work is concerned with closed geodesics on Riemannian manifolds (or,
equivalently, periodic orbits of the geodesic flow), namely the extent to which they determine
the underlying metric.

A fundamental question in Riemannian geometry is determining a set of parameters which
describe a metric up to isometry. In negative curvature, a natural candidate is the set of
lengths of closed geodesics, also known as the length spectrum due to its close connection with
the Laplace spectrum. In fact, to what extent the Laplace spectrum determines the metric
is a question which falls into a broad class of inverse spectral problems, famously known by
the tagline “Can one hear the shape of a drum?” | |. It turns out that one cannot
hear the shape of a negatively curved drum: the first examples of isospectral non-isometric
surfaces of constant negative curvature were constructed by Vignéras | |, and Sunada
later provided a method to generate more general counterexamples | ]. As a result, it
is natural to consider lengths of closed geodesics together with the additional information of

their associated free homotopy classes, which leads to the following definition.

Definition I.1. Given a closed, negatively curved Riemannian manifold (M, g), the marked
length spectrum L, is the function on free homotopy classes of closed curves in M which

associates to each class the length of its unique geodesic representative.

Note that any point in the Teichmiiller space of metrics of constant curvature —1 on a
topological surface S is determined by 6 genus(S) —6 Fenchel-Nielsen coordinates; moreover,
it is known that these coordinates are in turn determined by the lengths of finitely many
closed geodesics (as few as 6 genus(S) —5) | : ]. In other words, the marked length

spectrum (in fact, a finite part of it) uniquely determines a hyperbolic surface up to isometry.



In arbitrary dimension and variable negative curvature, on the other hand, this is still an

open question.

Conjecture 1.2 (Conjecture 3.1 in | ). The marked length spectrum of a closed

Riemannian manifold of negative curvature determines the metric up to isometry.

This question was resolved for (variably curved) surfaces independently by Otal and Croke
[ , |. For higher dimensions, this was solved by Hamenstadt in the case where one
of the metrics is locally symmetric | |, using the entropy rigidity theorem of Besson—
Courtois—Gallot | , |. More recently, the conjecture was solved locally, that is,
for two metrics which are sufficiently close in some suitable C* topology, by Guillarmou—
Lefeuvre using techniques from microlocal analysis | .

Still, even in the cases where rigidity does hold, there is more to be understood about to
what extent the marked length spectrum determines the metric. In this thesis, we consider

two natural follow-up questions to Conjecture 1.2.

Question 1.3. What if two metrics have marked length spectra which are not equal but close

i some sense? Is there a sense in which the metrics are close?

Question 1.4. Does the marked length spectrum on a sufficiently large finite set approxi-

mately determine the metric?

Question 1.4 has not been previously considered anywhere in the literature as far as we
know (aside from the case of surfaces of constant curvature). All known proofs of marked
length spectrum rigidity in the variable curvature setting rely on limiting procedures involv-
ing longer and longer closed geodesics. For example, £, determines the topological entropy
of the geodesic flow because the latter is the exponential growth rate of closed geodesics.
However, it is not at all clear what information can be obtained about topological entropy
from knowing £, on a finite set. On a related note, Guillarmou-Knieper-Lefeuvre proved
that in the local setting, it is enough for £, and L, to agree asymptotically in order to
conclude g and gy are isometric | ]. In particular, rigidity holds if £, and L, coincide
outside of a finite set, and Question 1.4 is a natural counterpart to this. Note that, in gen-
eral, we can only hope to gain approximate information from finite data, since in variable
curvature, the space of all possible metrics is infinite-dimensional.

Question 1.3 was previously known for hyperbolic surfaces and in general for pairs of
metrics g and gy on the same manifold M which are sufficiently close in some suitable C*
topology. The first case is due to Thurston [ ]. He showed that if (M, g) and (N, go)
are both surfaces of constant negative curvature, and f : M — N is a fixed homeomorphism,

then the best possible Lipschitz constant for a map ' : M — N in the same homotopy class



ﬁgo (f«)
Lg(v)
of Guillarmou—Knieper—Lefeuvre | |. Their techniques provide explicit estimates (in

as f is precisely sup,cp . The second case is part of the previously mentioned work

a suitable Sobolev norm) for how close the metrics are in terms of the ratio %0, or more
precisely the geodesic stretch; in fact, their results hold more generally for non-positively
curved metrics with Anosov geodesic flow. However, this work requires g and ¢y to be
sufficiently close metrics (in some C* topology) on the same manifold. The results proved in
this thesis do not require the metrics to be close, nor do they require the two metrics to be

on the same manifold, but only on pairs of manifolds with isomorphic fundamental groups.

I1.2: Statements of main results

This thesis provides new answers to Questions 1.3 and I1.4. We reduce Question 1.4 to
Question 1.3 for closed negatively curved manifolds in general (see I1I). Moreover, we answer
Question [.3 in dimension 2 (see 1.2.2), and in higher dimensions when one of the metrics is
locally symmetric (I.2.3). These are two of the main cases where marked length spectrum
rigidity is known—due to Otal and Croke for surfaces [ : |, and Hamenstédt and
Besson—-Courtois—Gallot for higher dimensions | : ].

While it is customary to compare £, and L, for metrics g and gy on the same manifold
M, this also makes sense more generally for manifolds (M, g) and (N, go) with isomorphic
fundamental groups. This is because the set of free homotopy classes of M can be identified
with conjugacy classes in the fundamental group I' of M, and as such we can view £, as a
function on I'. In our setting (negative curvature), a standard result in algebraic topology
states any isomorphism of fundamental groups is induced by a homotopy equivalence; how-
ever, M and N need not be diffeomorphic, as shown by Farrell-Jones | |. Our results

cover this case as well.

1.2.1: Finiteness

Let (M, g) and (N, go) be closed negatively curved Riemannian manifolds with fundamental
group I'. Consider the situation where £, and L, coincide only on a finite set of closed
geodesics. In fact, we can consider the more general situation where £, and L,, are only

multiplicatively close on this set.

Hypothesis 1.5. For L > 0, let I';, := {y € T'|L,(v) < L}. Now let ¢ > 0 small and
suppose
Ly (7)

1—e<
Ly(7)

<1l+¢

forally e I'y.



If L is sufficiently large, we obtain estimates for the ratio £, /L, on all of I' in terms
of € and L. Note that the estimates do not depend on the particular pair of metrics under
consideration; they are uniform for all (M, g) and (N, go) with pinched sectional curvatures

and injectivity radii bounded away from zero.

Theorem 1.6 (Butt, | ] Theorem 1.2). Let (M, g) and (N, go) be closed Riemannian
manifolds of dimension n with sectional curvatures contained in the interval [—A?, —\?]. Let
Ly and Ly, denote their marked length spectra. Let I denote the fundamental group of M
and let iy denote its injectivity radius. Suppose there is a homotopy equivalence f : M — N
and let f, denote the induced map on fundamental groups.

Then there is Ly = Lo(n, T, \,A,in) so that the following holds: Suppose the marked
length spectra L, and Ly, satisfy Hypothesis 1.5 for some € > 0 and L > Loy. Then there
exist constants C' > 0 and 0 < a < 1, depending only onn, I', X\, A, iy, so that

1—(6+CL‘“)§M§1+(6+CL_O‘)

Ly(7)

for all v € T

This theorem says that the lengths of a sufficiently large finite set of closed geodesics
determine the full marked length spectrum approximately, and the approximation improves
as the size of the set of known closed geodesics increases. In other words, Question 1.4
reduces to Question 1.3. In light of this, we now suppose that £, and L, approximately

agree on all of I':

Hypothesis 1.7. There is some small € > 0 so that

Ly, ()
Ly(7)

1-¢e< <l+¢

for all v €T.

We prove (M, g) and (N, go) are bi-Lipschitz equivalent with constant close to 1 in the
case of dimension 2, as well as in higher dimensions when (N, go) is locally symmetric. The
Lipschitz constants depend only on concrete geometric and topological information about M
and N such as the dimension, sectional curvature bounds, and injectivity radii. Moreover,
we prove explicit estimates for the Lipschitz constant in terms of € in the case where (N, go)
is a locally symmetric space of dimension at least 3. We only assume that £, and L, are

close; we do not assume that g and gy are close.



1.2.2: Surfaces

To state our result precisely, let C(2,\, A, vg, D) consist of all closed C*>° Riemannian man-
ifolds of dimension 2 with sectional curvatures contained in the interval [—A?% —\?], volume
bounded below by vy, and diameter bounded above by Dy. We show pairs of such spaces
become more isometric as their marked length spectra get closer to one another, refining the

main result in | .

Theorem 1.8 (Butt, | | Theorem 1.1). Fiz A\, A, vo, Dg > 0. Fiz L > 1. Then
there ezists € = (L, A\, A, vy, Dy) > 0 small enough so that for any pair (M,gq),(M,h) €
C(2,\, A\, vg, Dy) satisfying

D

1—e< =8

VAN

145,

B

there exists an L-Lipschitz diffeomorphism f : (M, g) — (M, h).

1.2.3: Dimension at least 3, locally symmetric

Consider the case where (N, go) is a negatively curved locally symmetric space of dimension
at least 3. We quantify how close g and gq are to being isometric by estimating the derivative
of amap F': M — N in terms of £. This is considerably stronger than Theorem 1.8, since
we are able to determine how the Lipschitz constant depends on €. This refines the rigidity
result in | , Corollary to Theorem A], which corresponds to the case £ = 0 in the
theorem below. As in the previous theorem, we only assume the marked length spectra of
the two metrics are close; we do not assume the metrics themselves are close in any C¥

topology.

Theorem 1.9 (Butt, | ] Theorem 1.2). Let (M, g) be a closed Riemannian manifold of
dimension n > 3 with fundamental group I' and sectional curvatures contained in the interval
[—A%,0). Let (N, go) be a locally symmetric space. Assume there is a homotopy equivalence
f: M — N and let f. denote the induced map on fundamental groups. Then there exists
small enough €y (depending on I') so that whenever € < gy and

1_5<M<1+g

T L) T

for ally €T, there is a C* map F : M — N homotopic to f and constants ¢y(€,n, T, A) < 1,
Cy(é,n, T, A) > 1 such that for all v € TM we have

ciflvlly < [|dF)]lgo < Callvll-



More precisely, there is a constant C = C(n,T,A) so that ¢; = 1 — CEY/3 D gnd Oy =
1+ Cgl/8ntl),

Remark 1.10. The conclusion of Theorem 1.9 can be restated as ||g — F*gol|co < Cet/8HD),
The author thanks Thibault Lefeuvre for this remark.

Remark 1.11. If N is a real, complex or quaternionic hyperbolic space, we can take ¢; =
1 — Ce/* 0+ and Cy = 1 + Ce/4+1D  See Remark V.32.

In | , Theorem A], Hamenstédt proves that two negatively curved manifolds with
the same marked length spectrum have the same volume, provided one of the manifolds
has geodesic flow with C* Anosov splitting, a condition which holds in particular for locally
symmetric spaces. (The Anosov splitting of the geodesic flow on the unit tangent bundle
TN refers to the flow-invariant decomposition of TT'N into the stable, unstable and flow
directions; see the introduction to | 1)

Thus, if M and N satisfy the assumptions of Theorem 1.9 for € = 0, they must have the
same volume. Then, since the marked length spectrum determines the topological entropy
of the geodesic flow, the fact that the two manifolds are isometric follows from the celebrated

Y ]

To prove Theorem 1.9, we start by proving an analogue of | , Theorem A] under

entropy rigidity theorem of Besson—Courtois—Gallot |

the assumption the marked length spectra satisfy equation (I.7), ie, we estimate the ratio
Vol(M)/Vol(N) in terms of €. In order to obtain an explicit estimate, we assume the Anosov
splitting is C'™* instead of C'. (For geodesic flows on manifolds with strictly Z—ll—pinched
negative curvature, the Anosov splitting is C'™* for some o > 0. The splitting is C* by
work of Hirsch-Pugh | ] and C'* by work of Hasselblatt | , Theorem 5, Remark
after Theorem 6].) Unlike in Theorem 1.9, the constants here do not depend on (M, g) in

any way.

Theorem 1.12 (Butt, | | Theorem 1.4). Let (M,g) be a closed negatively curved
Riemannian manifold with fundamental group T'. Let (N, go) be another closed negatively
curved manifold with fundamental group T and assume the geodesic flow on T*N has O
Anosov splitting. Suppose the marked length spectra of M and N satisfy Hypothesis 1.7.
Then there is a constant C' depending only on N such that

(1— C&%)(1 — &)"Vol(M) < Vol(N) < (1 + C2%)(1 + &)"Vol(M).

If, in addition, (N, go) is locally symmetric and € is sufficiently small (depending on n =
dim N ), then « can be replaced with 2 in the above estimates and the constant C depends

only n.



Remark 1.13. If the Anosov splitting of T'N is only C*, then our proof shows the quantities
(1+£Ce%) can be replaced with constants that converge to 1 as € — 0, but we are not able to

determine the explicit dependence of these constants on £; see the statement above Lemma
IV.15.

Remark 1.14. If N is locally symmetric, then Vol(N) < (1+4¢)"Vol(M) follows from Lemma
V.1 and the proof of the main theorem in | ]. (See Remark V.6 for more details.)
However, the lower bound for Vol(N)/Vol(M) in Theorem 1.12 is also crucial for the proof
of Theorem L.9.

Remark 1.15. If dim M = dim N = 2, then our proof of Theorem 1.12 shows
(1 —€)*Vol(M) < Vol(N) < (1 +¢)*Vol(M),

which is the optimal estimate. This result also follows from [ , Theorem 1.1].

1.3: Structure of this dissertation

In Chapter II, we present background on marked length spectrum rigidity. The finiteness
theorem (Theorem 1.6) is then proved in Chapter III. In Chapter IV, we prove the volume
estimate (Theorem 1.12). In Chapter V, we use this volume estimate to prove a quantitative
version of the Besson—Courtois—Gallot entropy rigidity theorem | |, which gives our
main quantitative rigidity result in the case of locally symmetric spaces of dimension at least

3 (Theorem 1.9). Finally, we prove our approximate rigidity result for surfaces (Theorem
[.8) in Chapter VI.



CHAPTER 11

Preliminaries

In this dissertation, we prove quantitative versions of certain marked length spectrum rigidity
results due to Otal | | and Hamenstadt | ]. In this chapter, we present preliminary
material on the marked length spectrum rigidity conjecture | , Conjecture 3.1] as
well as some aspects of Otal and Hamenstadt’s proofs. We begin with background on the

geometry of negatively curved manifolds and the dynamics of their associated geodesic flows.

II.1: The marked length spectrum

Throughout this thesis, (M, g) denotes a closed negatively curved Riemannian manifold; in
other words, M is a compact manifold without boundary and ¢ is a Riemannian metric
of negative sectional curvature. In this setting, there is a well-defined way to measure the
lengths of closed geodesics as a function of their free homotopy classes. This function is
known as the marked length spectrum (Definition 1.1), and its definition makes use of the

following fact.

Lemma I1.1. Let (M,g) be a closed negatively curved Riemannian manifold. Then any

closed curved in M 1is freely homotopic to a unique closed geodesic.

There are two parts to this statement: existence of the geodesic representative as well
as its uniqueness. Existence follows from compactness of M alone, whereas the negative

curvature assumption is used to ensure uniqueness.

Proof of existence. We follow the argument in | , Theorem 12.2.2]. Let ¢ be a closed
curve in M and let d be the infimum of the lengths of all curves freely homotopic to c¢. Either
c is freely homotopic to a point or d > 0. In the latter case, consider a minimizing sequence
of curves ¢, so that l,(c,) — d, where [, is length measured with respect to the Riemannian
metric g. Without loss of generality, we can assume each ¢, : [0,1] — M is piecewise

geodesic, parametrized according to arclength. (To see this, we connect pairs of sufficiently



nearby points on ¢, by length-minimizing geodesics.) Moreover L := sup,, [,(c,) < 0o. As

such,

Aca(t), enlts)) < / e ) dt < Lty — 1),

t1
This shows the ¢, are equicontinuous. Since M is compact, by Arzela—Ascoli there is a
convergent subsequence c¢,, — cyg. Let ¢ be the piecewise geodesic obtained by connecting
sufficiently nearby points on ¢y by locally length-minimizing geodesics. Then [,(c) = d, and
the fact that geodesics are locally length-minimizing implies that ¢ is in fact geodesic at all

of its points, i.e. has no corners. See | , Theorem 12.2.2] for further details. O

Before proving uniqueness, we recall the required background on the geometry of nega-
tively curved manifolds. First, Hadamard’s theorem states that any complete simply con-
nected Riemannian n-manifold of nonpositive sectional curvature is diffeomorphic to an open
ball (see, for instance, | , Theorem 7.3.1]). As such, if M denotes the universal cover
of the compact negatively curved n-manifold (M, g), then M is diffeomorphic to an open
ball of dimension n. Let T’ denote the fundamental group of M. The action of I’ on M by
deck transformations is also an action by isometries when M is endowed with the natural
Riemannian metric g obtained by lifting g. Let v € I" and let vy also denote the corresponding
isometry of M. Then ~ leaves invariant a bi-infinite geodesic 5 : R — M (see, for instance,
[ , Proposition 12.2.6]). These properties do not require the full strength of the Riemann
curvature tensor, and can instead be deduced from more general “thin triangle” conditions,
i.e. CAT(0). See | ).

In addition to the above setup, our proof of uniqueness of the geodesic representative in
Lemma II.1 uses strict convexity of the distance function in negative curvature. Let ¢q, ¢ :
0,1] = M be two distinct geodesics, and let f(t) denote the function t — d,(c(t), ca(t)).
Then for all ¢ € [0, 1], the following inequality holds:

F(t) < tF(0) + (1 — D) F(L). (IL.1.1)

(See [ , Proposition 11.2.2], which proves f(¢) is (not strictly) convex in the case of
CAT(0) spaces. The strict inequality follows as soon as the CAT(0) inequality in | :
Definition II.1.1] can be replaced with a strict inequality, which is the case for Riemannian

manifolds of sectional curvature strictly less than 0.)

Proof of uniqueness. Suppose for the sake of contradiction that there is a free homotopy
¢s(t), where 0 < s,t < 1, between two distinct closed geodesics ¢y(t) and ¢q(t) in M. Since
co(t) and ¢;(t) are both closed curves, we have that ¢5(0) and ¢s(1) coincide for all s. Now let
&5(t) be a lift of this homotopy to the universal cover p : M — M. Since p(é(0)) = p(é(1))

9



for all s, this means ¢5(0) and ¢&(1) differ by some deck transformation v € I'. In particular,
7(co(0)) = co(1), and since ¢y is a closed geodesic, the action of v also takes the tangent
vector ¢,(0) to the tangent vector ¢ (1). This means the concatenation of the curves " (éo(t))
for n € Z is a bi-infinite geodesic in M. The same is true for 4"(¢;(t)). Since 7 acts by
isometries, the distance between these parametrized curves is bounded above by the distance
between co(t) and ¢ (t) in the compact quotient M. This boundedness contradicts the strict
convexity of the distance function in (II.1.1). Therefore, ¢y(t) and ¢;(t) must coincide, which

proves uniqueness. ]
Now that Lemma II.1 is proved, we can formally define the marked length spectrum.

Definition I1.2. Given a closed, negatively curved Riemannian manifold (M, g), the marked
length spectrum L, is the function on free homotopy classes of closed curves in M which

associates to each class the length of its unique geodesic representative.

Remark 11.3. The function £, can also be viewed as a function on conjugacy classes in the
fundamental group of M, since these are identified with free homotopy classes of closed

curves in M.

It is natural to ask to what extent £, determines g. Conjecturally, £, completely deter-

mines g up to isometry.

Conjecture II.4 (Conjecture 3.1 in | ). Let M be a closed manifold and g and go
be two Riemannian metrics of negative sectional curvature on M. Suppose L, = Lg,. Then
g is isometric to go (and the isometry preserves the marking, ie, is homotopic to the identity

map on M ).

Remark I1.5. One can ask the same question if gy is instead a negatively curved metric on
some other manifold N whose fundamental group is isomorphic to that of M (but M and
N are not assumed to be diffeomorphic). In light of Remark I1.3, one can still make sense
of the hypothesis £, = L, in this setting. Then the desired conclusion is that g and g, are
isometric via a diffeomorphism that induces the initial isomorphism between the fundamental

groups of M and N.

I1.1.1: Hyperbolic surfaces

We begin by discussing marked length spectrum rigidity (Conjecture I1.4 above) in a par-
ticular setting, namely when dim M = 2 and ¢ and ¢y are both hyperbolic metrics, that is
metrics of constant sectional curvature, say —1. In this case, Conjecture I1.4 holds, and in

fact, a stronger statement holds: it suffices to verify £, = L, on a certain finite set of free

10



homotopy classes to guarantee g and ¢y are isometric. This finiteness is closely related to
the fact that the Teichmiiller space of all possible hyperbolic metrics (up to isotopy) on a
fixed topological surface M has finite dimension (equal to 6 genus(M) — 6). One way to see
that Teichmiiller space is (6 genus(M ) — 6)-dimensional is using Fenchel-Nielsen coordinates
(see, for instance, | , Chapter 10]). To summarize briefly, one can cut a closed surface
up along certain closed geodesics so that each component is a pair of pants (topologically,
a sphere with three punctures). A hyperbolic metric on each pair of pants is determined
by the three “cuff lengths”. There are 3 genus(M) — 3 total cuff lengths in any pants de-
composition of M, but these lengths alone do not suffice to determine the isometry type of
M. (They account for exactly half of the 6 genus(M) — 6 Fenchel-Nielsen coordinates.) In
addition to these cuff lengths, one needs to keep track of “twist parameters”, which dictate
how the pants are glued back together to reconstruct the surface, since twisting a cuff before
gluing it to another of the same length will change the isometry type of M. It turns out
that these twist parameters can be recovered from the lengths of (finitely many) additional
closed geodesics (see | , Theorem 10.7]).

Now one can ask if marked length spectrum rigidity generalizes beyond this setting. The
pants decomposition method above is not at all applicable in variable curvature. Indeed, one
can simply perturb the metric in the interior of a pair of pants without changing any of the
cuff lengths. Nevertheless, affirmative answers to Conjecture 11.4 have been obtained in the
case of (variably curved) surfaces by Otal | | and Croke | ], in higher dimensions
when one of the two metrics is locally symmetric by Hamenstadt | |, and for pairs of
metrics which are nearby (with respect to a suitable C* topology) by Guillarmou-Lefeuvre
[ |. Their proofs all make use of dynamical properties of the geodesic flow, which is the

subject of the next section.

I1.2: The geodesic flow on the unit tangent bundle of M

Aside from the fact that Conjecture 11.4 has been known for quite some time in the case of
hyperbolic surfaces, some additional intuition for why it should be true comes from consid-
ering the question from the perspective of dynamics. The underlying dynamical system in
this context is the geodesic flow, which we denote by ¢'. This is a flow on the unit tangent
bundle T*M of (M, g). The flow ¢’ is defined as follows: Given a unit tangent vector v, first
consider the unique unit speed geodesic ¢(t) with initial condition ¢/(0) = v. Now for any
t € R, define ¢'v to be the unit tangent vector ¢/(¢). A simple but important observation is
that periodic orbits of ¢' correspond precisely to closed geodesics in M.

In our setting, that is, when (M, g) is closed and negatively curved, the geodesic flow
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is uniformly hyperbolic, more commonly known as Anosov (Definition I1.7 below). This
hyperbolicity turns out to reveal a lot of information about the overall orbit structure of
the flow (despite the fact that individual trajectories are highly sensitive to small changes
in initial conditions). For instance, periodic orbits of Anosov flows are dense (Corollary
I1.15). In our geometric setting, this means vectors tangent to closed geodesics are dense in
TYM. At the very least, closed geodesics must be dense in M for marked length spectrum
rigidity to hold; otherwise, one can simply perturb the metric in a neighborhood that does
not intersect any closed geodesics, thereby producing a pair of non-isometric metrics with the
same marked length spectrum. There are also stronger results about approximating certain
trajectories of Anosov flows with periodic ones (some of which are discussed in detail below).
That is to say, from the perspective of hyperbolic dynamics, it is natural to expect periodic
orbits of the geodesic flow to provide significant information about the flow. This is some
naive intuition behind Conjecture I1.4.

For what follows it is convenient to fix a notion of distance on the unit tangent bundle
T1M. We do this using the natural Riemannian metric on T* M arising from the Riemannian

metric g on M.

Definition I1.6. (See also | , Exercise 3.2].) Let v € T'M and let V,W € T,(T'M).
Let a(t) and (¢) be curves in T*M such that o/(0) =V and 8/(0) = W. Let 7 : T'M — M
denote the footpoint map. The curve «(t) is a curve w(a(t)) in M together with a (unit)
vector field along that curve, and analogously for 3(t). The Sasaki metric g° is the following

inner product on T, T M:

Da DS
9> (VW) = g(dn (V). dx(W))ai) +9 | — —~ ) -
dt * dit
where % denotes covariant differentiation of a vector field along a curve (see [ , Propo-
sition 2.2].)

This Riemannian metric gives rise to a distance function on 7'M which we will denote
by d in the rest of this section.
11.2.1: Hyperbolicity

Definition I1.7. (See [ , Definition 5.1.1].) A C! flow ¢’ on a closed connected smooth
manifold X is called Anosov if there is a continuous D¢'-invariant splitting of the tangent
bundle TX = E°® E* @ E* and constants C' > 1, A € (0,1), 4 > 1 so that

o E°(z) :=RZ¢'(x) #0 forall z € X,
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o [|[D¢'(v)|| < CA|v|| for all v € E*,
e [|[Dopt(v)|| < Cutv]| for all v € E.

The subbundles E° and E* are referred to as the stable and unstable distributions, respec-

tively.

Remark 11.8. The Anosov property does not depend on the choice of norm on X. Since X is
assumed to be compact, changing the norm will change the constants in the above definition,
but not the fact that vectors in £* and E* are exponentially contracted by forward and

backward iteration of the flow, respectively.

When X is the unit tangent bundle 7'M of a closed negatively curved manifold (M, g)
and ¢' is the associated geodesic flow, then ¢' is, in fact, Anosov. See, for instance, | ,
Section 17.6]. We omit the proof, but in order to provide some insight as to what the stable
and unstable subbundles E* and E" are, we will describe the (strong) stable and (strong)
unstable foliations W*, W** C T*M. The leaves of these foliations are tangent to the stable
and unstable distributions F* and E", respectively. For this we begin by defining the (visual)
boundary at infinity of the universal cover M. See | , Chapter I1.8] for further details.

Definition II1.9. (See | , Definition 11.8.1].) The boundary at infinity of M, denoted
oM , is the set of asymptotic classes of geodesic rays, where two rays ¢, ¢; : [0,00) — M are
said to be asymptotic (and in the same equivalence class) if the distance dy(co(t), c1(t)) is
bounded for all ¢ € [0, 00).

Remark 11.10. There is a topology on M arising from identifying it with the unit tangent
space T le for some fixed p € M, and with respect to this topology, M is thus homeomor-
phic to the (n — 1)-dimensional sphere, where n = dim M. Indeed, any v € T) M determines
a geodesic ray c(t) with ¢(0) = v. It follows from | , Proposition 11.8.2 | that this
correspondence is a bijection. It follows from | , Proposition I1.8.8 | that the induced

topology on OM is independent of the choice of basepoint p.

Remark 11.11. In negative curvature, strict convexity of the distance function (see (II.1.1))

implies any two distinct points in M can be joined by a unique geodesic.

Let W*(v) denote the weak stable set of v, that is, W#(v) = UjerW*5(¢'v). These are
all points in 7'M which have the “same infinite future” as v. In other words, these are all
vectors in TP M whose associated geodesic rays (in the universal cover M ) are asymptotic to
that of v. Analogously, the weak unstable set of v is all unit tangent vectors whose associated
geodesic rays are asymptotic to —v in backward time. Before describing the (strong) stable
and (strong) unstable manifolds W#*(v) and W**(v) for the geodesic flow on T' M, we recall

the notions of Busemann functions and horospheres.
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Definition II.12. (See | , Definition 8.17].) Let p € M, ¢ € M, and let ¢(t) be the

unique geodesic ray with ¢(0) = p and ¢(o0) = £. The function

Bey(q) = lim (d(g. (t)) — 1
is called a Busemann function. Level sets of Busemann functions are called horospheres.

Remark 11.13. The zero set of {B¢, = 0} can be thought of as a sphere tangent to the
boundary M at & which passes through p. Other level sets {B¢, = r} are spheres tangent
to the boundary at £ whose (signed) distance from the zero set { B¢, = 0} is equal to 7.

The stable and unstable manifolds W** and W** for the geodesic flow have the following
geometric description (see, for instance, | . p. 72]). Let v € T'M. Let p € M be the
footpoint of v and let & € OM be the forward projection of v € T'M to the boundary. Let
B¢, denote the Busemann function on M and let He, denote its zero set. Then the lift of
W*s(v) to T*M is given by

{—gradBe,(q) |q € Hep}-

In other words, these are vectors normal to the horosphere H¢, which are pointing towards
&. If n denotes the projection of —v to the boundary M, then the lift of W#t(v) to T M is

analogously given by

These are vectors orthogonal to H, , and whose negatives point towards 7.

Such a family of vectors gives rise to a geodesic variation, and the verification that
the geodesic flow on T'M is Anosov boils down to considerations about the Jacobi fields
associated to these variations. More precisely, let ¢(s) denote a curve in the horosphere
H, , and let V(s) := gradB, ,(c(s)) be a vector field along this curve. Consider the geodesic
variation f(s,t) = exp, ) (tV(s)), where exp denotes the Riemannian exponential map. Then
J(t) == % s=0f(s,t) is a Jacobi field, and verifying the exponential contraction property in
Definition 1.7 amounts to obtaining estimates of the form ||J(¢)],[|J'(t)|]] < Ce *. This
is achieved by comparing with the constant curvature setting (using the Rauch comparison
theorem), where the Jacobi equation can be solved explicitly. As such, one can find constants
C, A\, i as in Definition I1.7 which depend on the sectional curvature bounds of M in an
explicit way (in the case where the norm in Definition I1.7 is taken to be the norm arising

from the Sasaki metric defined in Definition I1.6). For further details see | , Proposition
IV.1.13 and Proposition IV.2.15].
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11.2.2: Periodic orbits

Anosov flows are often described as chaotic, since a slight change of initial condition (in the
unstable direction) causes exponential divergence of trajectories. Nevertheless, we have the
following strong result about approximating certain trajectories with periodic ones. See, for

instance, | , Theorem 5.3.10].

Lemma II.14 (Anosov Closing Lemma). There is 6o > 0 sufficiently small, T sufficiently
large, and a constant C' > 0 so that the following holds for all 6 < oy and allt > T. Suppose
v,p'v € T'M so that d(v,¢'v) < §. Then either v and ¢'v are on the same local flow
line or there is w with d(v,w) < C§ so that w is tangent to a closed geodesic of length

teft—Cot+Cd).

Corollary I1.15. When M 1is closed and negatively curved, periodic orbits of the geodesic
flow ¢t on T'M are dense in T*M.

Proof. First note that ¢’ preserves the Liouville measure p, which is the measure arising from
the Riemannian volume form on T M associated to the Sasaki metric ¢° from Definition I1.6
(see | ], and Section I1.3 below). By the Poincaré Recurrence Theorem | , Theorem
4.1.19], p-almost every v satisfies: for all 4 > 0 there exists sufficiently large t = t(v,d) so
that d(v, ¢'v) < 0. By the Anosov Closing Lemma, there is w so that d(v,w) < C§ and the

orbit of w is periodic. O

The point w in the conclusion of the lemma has to be chosen carefully, in light of the
fact that ¢’ is chaotic. The mechanism which allows for this is local product structure, which
we define below. Any Anosov flow has local product structure | , Proposition 6.2.2],
but our exposition will focus on our particular geometric setting of geodesic flows. First we
explain the requisite notion of stable and unstable distances in this context. Let v € T'M
and w € W**(v). Let p and ¢ denote the footpoints of v and w respectively. Define the stable
distance dgss(v, w) to be the horospherical distance h(p, q), i.e., the distance obtained from
restricting the Riemannian metric ¢ on M to a given horosphere. The unstable distance is

defined analogously.

Definition I1.16. (See also | , Proposition 6.2.2].) We say the flow ¢! on 7'M has
local product structure if every point v € T*M has a neighborhood V which satisfies: for all
e > 0, there is § > 0 so that whenever z,y € V with d(z,y) < § there is a point [z,y] € V
and a time |o(z,y)| < e such that

[.Z', y] _ Wss(m) N Wsu((ba(x,y)y).
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Moreover, there is a constant Cy = Cp(9) so that d(z,y) < § implies

ds(, [2,]), dsu (97 [z, 4], y) < Cod(z, ),

where dgs and dg, denote the distances along the strong stable and strong unstable manifolds,

respectively, and d denotes the distance coming from the Sasaki metric in Definition II.6.

The bracket [z,y] can be thought of as a point with the same infinite future as = and
the same infinite past as y. The proof of | , Proposition 6.2.2] shows that all Anosov
flows satisfy the above local product structure properties. However, for geodesic flows, the
first part of the statement (about the existence of [z,y] and o(x,y)) can be deduced directly
from the geometric description of W% and W*" in terms of normal fields to horospheres. In
fact, the neighborhoods V' in the above definition can be taken to be “very large” subsets of
T'M.

To see this, let z,y € T"M and let Z and 7 be lifts to T' M. Let £ := (%) and 1 := 7(—7%)
denote the forward projections to dM. The bracket [z,7] is defined whenever ¢ and 7 are
distinct. If this is indeed the case, then the points 1 and £ can be joined by a unique
(bi-infinite) geodesic ¢(t) (see Remark I1.11). Note that ¢(t) passes through the horosphere
associated to W**(x) as well as the one associated to W*“(y). The bracket [z, y] is simply the
tangent vector to ¢(t) based at the point at which ¢(t) intersects the horosphere associated
to W*(x) (see, for instance, [ ]). The number o(z,y) is the distance between the
horospheres W**(z) and W**(x). Thus |o(z,y)| < d(x,y), which shows € = £(d) can be
taken to equal 0 in the above definition.

We now explain how to deduce the Anosov Closing Lemma (Lemma II.14) from local
product structure. We will use the fact that for y € W5*(x), the stable distance dss(d'z, ¢'y)
is exponentially decaying in ¢, uniformly in z and y (and exponentially growing in ¢ when
y € W9%(x)). This follows from the definition of an Anosov flow (Definition I1.7). For the
geodesic flow on a closed manifold M with sectional curvatures bounded above by —a?, we

have the more precise statement

dsi(¢'z, d'y) < e "dgi(z,y) (I1.2.1)

for i =s,u | , Proposition 4.1].

Proof of Lemma 11.1] (Anosov Closing Lemma). We use the approach outlined in | ,
Figure 2| (see also | , 3.6, 3.8]). Fix dp so that d(z,y) < dy implies [z, y] is defined (see
Definition I1.16). Let Cj be the constant in the second part of Definition 11.16. Choose T’
large enough such that « := 2Cpe~*7/2 < 1, where a is as in (IL.2.1).
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Now let vg and t > T such that dy := d(vg, ¢'vg) < § < 0. If ¢'v and v are not on the
same local flow line, let v; = [vg, ¢'vg]. Let o9 = o (vg, ¢'vg) < do. Let tg =t + 09 and note
that vy = W**(vg) NW*%(¢"vy). Let dy := d(¢~"/?vy, ¢'/?v;). We proceed to estimate d; in
terms of dg. By the second part of Definition I1.16, we have d,s(¢"vg, v1) < Cody By (11.2.1),
we have dg,(¢"/%vg, o72v)) < e740/2Cydy. Similarly, dg,(¢/?vg, ¢'/%v,) < e *0Cody. The
triangle inequality, together with the fact that d < dy; for i = s, u, gives d(¢'/?v;, p~0/?0;) <
2e M Cydy < ady, where a < 1 by the choice of T in the first paragraph.

Now let vy = [¢p~*0/20;, ¢*/20]. Let t; such that vy = W35 (¢~1/20) ) NW**("/20;). Then
the above argument shows ds := d((b_tl/?vQ, #"1/%0;5) < ad,. Tterating the above procedure,
define a sequence of points v;, times ¢; and distances d; := d(¢~"/%v;, ¢*~1/?v;). Then by
the same argument as before, d;;1 < ad; and |t;11 — t;] < d;. By compactness, the sequence
v; subconverges to some point w. Since d; — 0, the orbit of w is periodic. The length of
the orbit of w differs from the length ¢ of the original almost periodic orbit of vy by at most
Yoo di < doa/(1—a) < CY, where C' = a/(1 — a). O

As mentioned above, the Anosov Closing Lemma suggests that knowledge of the marked
length spectrum should provide significant information about the underlying geodesic flow.

This intuition can be formalized as follows.

Proposition I1.17. Let (M, g) and (N, go) be a pair of homotopy-equivalent closed negatively
curved manifolds such that their marked length spectra L, and L, coincide. Let ¢' and 1"
denote the associated geodesic flows on the unit tangent bundles T*M and T' N, respectively.
Then the flows ¢' and ' are conjugate, that is, there is a homeomorphism F : T'M — T'N
so that

F(d'v) = ¢ F(v)
for allv e TTM.

Proof. Without assuming anything about £, and L,,, that is, whenever (M, ¢g) and (NN, go)

are homotopy-equivalent closed negatively curved manifolds, the associated geodesic flows

90>
are orbit-equivalent. This means there is a homeomorphism F : T'M — T'N such that

F(ptv) = P& F(v)

for some function b(¢,v) on R x T'M. See | |. When the additional condition £, = L,
holds, the Livsic theorem | , Theorem 19.2.1] allows one to upgrade the orbit equivalence
to a conjugacy. See [ , Section 2.2]. ]

Remark 11.18. The proof of the Livisic theorem, in turn, relies crucially on the Anosov

Closing Lemma. See | , Theorem 19.2.1].
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Proposition I1.17 shows a certain dynamical equivalence between the geodesic flows ¢
and 9. Indeed, a conjugacy of flows preserves many dynamically defined invariants and
structures associated to the flows (for instance, the topological entropy and the stable and
unstable manifolds). However, the map F : T'M — T'N does not provide any immediate
information about the underlying Riemannian metrics ¢ and go on M and N. Showing g
and gy are isometric entails finding a map from M to N, and it is not clear the conjugacy
F :T'M — T'N between unit tangent bundles descends to the base manifolds. (Another
difficulty to note is that the the proof of Proposition I1.17 only shows F is C'*, ie, F is not
necessarily differentiable.)

Proving marked length spectrum rigidity (Conjecture I1.4) thus requires more sophisti-
cated considerations of the geometry and dynamics of the geodesic flow. In the remainder
of this chapter, we explain some of the further tools used in Otal and Hamenstadt’s partial
solutions to this conjecture. We also discuss Gromov compactness, an additional tool used

to prove our quantitative marked length spectrum rigidity results.

I1.3: The Liouville measure and the Liouville current

One key idea in Otal and Hamenstadt’s proofs of marked length spectrum rigidity is that the
conjugacy of geodesic flows given in Proposition I1.17 preserves a certain natural geometric
measure on the unit tangent bundle, called the Liouville measure. Note that for the present
discussion we do not require (M, g) to be negatively curved.

The Liouville measure has several equivalent descriptions. One way to define the Liouville
measure is the measure associated to the Riemannian volume from on 7% M induced by the
Sasaki metric ¢° in Definition I1.6. It is straightforward to verify that this measure is locally
the product of the Riemannian volume measure on the base M and Lebesgue measure on the
sphere S"~! in the fiber. A less straightforward, though standard, fact is that this measure
is ¢'-invariant, where ¢' is the geodesic flow.

To see this, we introduce another description of the Liouville measure, which comes from
a contact structure on the unit tangent bundle. We begin with the tautological 1-form « on
the cotangent bundle T*M. The idea behind its construction is that a 1-form on T*M is a
way of associating to each v* € T*M a linear functional on T,.(T*M), but each element of
T*M is already a linear functional on the tangent space of M. Let mp«p; : T*M — M denote
the bundle projection. Then set a(v*) := v* o dm,-. It is a standard fact that the 2-form da
is a symplectic form on T*M, that is, (da)™ is a volume form on T*M, where n = dim M.

Now a Riemannian metric g on M gives rise to an identification between the tangent
bundle TM and the cotangent bundle 7*M. Let G : TM — T*M be given by v — g(v, ).
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Let w denote the pullback G*a. Since pullback commutes with exterior differentiation, dw

is a symplectic form on T'M, that is, (dw)™ is non-degenerate on T'M.

Lemma I1.19. Let w be the 1-form on T'M defined as above. That is, w = G*a, where «
1s the tautological one-form on T*M and G : TM — T*M 1is the identification arising from
the Riemannian metric g on M. Then w restricted to T*M is a contact form, that is, the

form w A (dw)™™1 is non-degenerate.

Proof. Let X be the vector field on T'M which generates the geodesic flow ¢'. We claim
w(X) = 1. To see this, we start by writing

wy(€) = (G"a)y(§)

= agw)(dG(§)) (definition of pullback)
= G(v) o drpp (dG(E)) (definition of «)
= G(v) od(mppr 0 G)(§) (chain rule)

= g(v, drru(§)).

Let v € T'M. Then X(v) = 4|,—o¢'v. Then drry(X) = 4|—omra(¢'v) = v. Hence
wy(X) = g(v,v) =1 in this case. This, together with the fact that dw is symplectic on T M,

shows that w is contact. O

This lemma shows that w A (dw)”™! is a volume form on T*M. See | , 1L.E] for
a proof that this volume form coincides with the Sasaki volume form (up to a factor of
(n — 1)!). In other words the Liouville measure is (up to a constant multiple) the measure

n—1

arising from w A (dw)™'. This latter description of the Liouville measure is more readily

seen to be invariant under the geodesic flow.
Lemma I1.20. The Liouville measure is ¢'-invariant.

Proof. Tt suffices to check that (¢')*w = w, or that %(qbt)*w = 0. This latter expression is
the Lie derivative Lxw, where X is, as usual, the vector field generating ¢'. By Cartan’s

magic formula, we thus have

d
%(gbt)*w = dixw + txdw,

where 1y denotes the operation of contracting a differential form along the vector field X.

The first term dix is easily seen to be zero in light of the fact that tx = a(X) =1 (see
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the proof of Lemma I1.19 above). To see that txdw = 0, we use that

da(v.w) =g (ar (). 57 ) = g (arw). 52).

where V, W € T,,T'M are tangent to curves «(t) and ((t), respectively, as in Definition IL.6.
(See, for instance, | , Proposition 1.3] for a proof).

Now set V' = X, where X is the vector field generating the geodesic flow. Then % =0
because « is the tangent vector field along a geodesic, so the second term above is 0. The first
term becomes g(dm(X), Vi (0)3(0)), where b(t) = 7(B3(t)). Since X is tangent to geodesic

flow lines in T* M, we have that dr(X) = «(0). But «(0) = 5(0) = v, so

Dj 1d
g (d”(X% g) =9, Vyou) = 5 t:09b<t>(v,v) =0,

since g(v,v) =1 for all v € T'M. O
We now define the Liouville current on the space of geodesics of M.

Definition I1.21. The space of geodesics of M, denoted GM, is the quotient of T*M by the

equivalence relation v ~ ¢'v for all t € R.

Remark 11.22. When M has negative curvature, the space GM is identified with the space
O2M of pairs of distinct points in the boundary dM.

Since the 2-form dw on T'M is ¢'-invariant, it descends to a 2-form on M, where it is

a symplectic form.

Definition I1.23. The Liouville current is the measure on GM arising from the volume

form (dw)™ 1.

A key step in both Otal and Hamenstadt’s proofs of marked length spectrum rigidity
is showing that the conjugacy in Proposition I1.17 preserves the Liouville current. This is

discussed in greater detail in Sections VI.2 and IV.2, respectively.

I1.4: The BCG map

Hamenstadt’s proof of marked length spectrum rigidity, in the case where M and N have
dimension at least 3 and one the two metrics, say (IV, go), is locally symmetric, crucially
uses the entropy rigidity theorem of Besson—Courtois—Gallot | |. In fact, the following

special case of the theorem is sufficient in this setting.
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Theorem I1.24. (See [ , Theorem 1.1].) Suppose (N, go) is negatively curved, lo-
cally symmetric, and of dimension at least 3 and (M, g) is negatively curved and homotopy-
equivalent to N. Suppose the total volumes of M and N agree and the topological entropies
h(g) and h(go) of their associated geodesic flows are equal as well. Then there is an isometry
F:M— N.

Hamenstédt proves that if £, = £, then Vol(M, g) = Vol(IV, go), essentially by showing
the conjugacy in Proposition II.17 preserves the Liouville measure described in the previous
section. The conjugacy of geodesic flows immediately implies h(g) = h(go), from which it
follows that M and N are isometric.

In this section, we explain the construction of the BC'G map, that is, the isometry F' :
M — N constructed in | ]. This is also the map in the conclusion of Theorem 1.9, our
quantitative version of marked length spectrum rigidity in this setting. In Chapter V, we
show that if the volumes and entropies of (M, g) and (N, go) agree only approximately, then
the BCG map is “almost an isometry”, in the sense that it is bi-Lipschitz with Lipschitz
constants close to 1.

The construction of the BCG map uses three main ingredients:

1. The family of Patterson-Sullivan measures {y,},;; on the boundary at infinity oM
(the boundary at infinity was defined in Definition I1.9),

2. Amap f : IM — AN, induced by the assumed identification between the fundamental
groups of M and N,

3. The barycenter of a measure on the boundary at infinity.

These are combined to obtain a I'-equivariant map F : M — N as follows. Let M(OM)
denote the space of probability measures on M. The BCG map is the T-equivariant map
F: M — N given by

M(OM) — M(ON) — N

M =
p o= = fup = bar(fup).

where bar(f, Lp) € N denotes the barycenter of the measure f, Lp-
We now briefly recall what each of these ingredients are. The construction of the BCG
map is more thoroughly explained in the survey article | |. See also | ].

I1.4.1: The Patterson—Sullivan measure

As usual, let I' denote the fundamental group of the compact negatively curved manifold

(M, g). We construct a family of measures on the boundary OM indexed by points p € M.
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This is a standard construction known as the Patterson—Sullivan measure or a conformal
density in the literature. See [Pat, , ].
The construction of the Patterson—Sullivan measure begins with the Poincaré series for
I', which is given by
P(s,z,y) = Z e—sd(@v-y)

vyel

for z,y € M and s € R.

Definition I1.25. The critical exponent of ' is the number dr such that the Poincaré series
P(s,xz,y) converges for s > or and diverges for s < dr. By the triangle inequality, it is clear

that or depends only on I', and not on x and y.

The following well-known lemma explains how the topological entropy of the geodesic
flow of (M, g) is related to the BCG map. We follow the argument in | , Lemma 4.1].

Lemma I1.26. The critical exponent of ' is the topological entropy h(g).

Proof. Let Ay denote the closed ball of radius 1/2 centered at p, and for any positive integer
k, let Ay denote the annulus B(p,k + 1/2) \ B(p,k — 1/2). Let I'y = {y € I'|y.p € Ax}.

Then we can write -

Z e—s(dpyp) — Z Z e—sd(pn.p)7

ver k=0 7€l
and for each vy € I'y, the quantity d(p,~.p) is within 1/2 of k. Thus, the above Poincaré
series is proportional to >, Sre™**, where Sy is the cardinality of I'y. Hence, the critical
exponent equal to limsupy_, %. Since I' is cocompact, there are constants c¢; and cy,
depending on the diameter, injectivity radius, and sectional curvature bounds of the quotient
M /T, so that ¢;vol(A4;) < S < eyvol(Ay).

Next, we claim that the exponential growth rate of vol(A) is equal to the exponential

growth rate of the volume of a ball of radius k. Indeed,

~_ vol(B(p, k — 1/2)))
vol(B(p, k —1/2)) )~

vol(Ay) = vol(B(p, k + 1/2)) (1

The proof in | , p-568] shows that

vol(B(p, k —1/2)) S 1
vol(B(p, k — 1/2)) — vol(B(p, A))’

where A is a constant depending on (M, g), but independent of k. This shows that vol(Ay)
and vol(B(p, k 4+ 1/2)) have the same exponential growth rate in k. So the critical exponent
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of I' is the volume growth entropy of (M,g). By [ , Theorem 2|, this is equal to the
topological entropy of the geodesic flow. m

We now outline the construction of the Patterson—Sullivan measure, following | ].

Fix 2o € M and let D,, denote the Dirac measure at z,. For any s > dr and any p € M, let

—sd(p,y-70)
Z'yEF e D’Y-930

P(Sa Zo, xO)

s __ .8 _
Hp = Hpy =

Since |d(p,v.x0) — d(wo,7.70)| < d(p,x0) for all 7, it follows that the total mass of p; is

bounded between eEsd®:zo)

Thus, we can take a weak limit of us as s — dr. (For our
purposes, it does not matter whether or not such a weak limit is unique, ie, independent
of the choice of subsequence s, converging to dr.) In our setting (I' cocompact), the series
P(s,xq,x0) diverges for s = dr | , Corollary 5.2], which means the limiting measure 1,
is supported on the boundary M. Thus we obtain a family of measures fp ON OM indexed

by p € M. One can check that this family satisfies the following properties (see, for instance,

[Sul79]):

1. For all p,q € M the Radon-Nikodym derivatives satisfy Z%Z = exp(—dr)Be ,(q).

2. For all p € M and ~ € I the pushforward measures satisfy Vallp = [y p-

11.4.2: The boundary map

In order to compare the marked length spectra £, and Ly, for Riemannian manifolds (M, g)
and (NV, go), an identification between the fundamental groups 71 (M) and (V) is required,
and as such, we always assume that we have one. Since M and N are both K(m,1) spaces
(their universal covers are contractible by Hadamard’s theorem), it follows that there is a
homotopy equivalence f : M — N, where f induces the starting identification of fundamental
groups.

Let M denote the visual boundary of M and I' denote the fundamental group of M.
We construct a map f : M — ON such that for all v € T and all ¢ € M we have
F(v.6) = (f.7).f(€). To do so, we first lift the homotopy equivalence f : M — N to a I'-
equivariant map f : M — N. Since M and N are compact, it follows that f is additionally
a quasi-isometry (we explain this argument in detail in Section I11.4). Hence f induces a I'-
equivariant map (homeomoprhism) f between the boundaries OM and ON (see, for instance,

[ , Theorem II1.H.3.9].)
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11.4.3: The barycenter

We follow the discussion in | , Section 3]. Fix yo € N and let X\ be a measure on ON.

Consider the function

B(y) = /  Be(y, 10)dA(©).

N
This can be seen as measuring the average distance from y to the boundary. When B uniquely
achieves a minimum at the point ¥/ € N, we call ¢ the barycenter of the measure \. (Note
that changing vy, changes the function B by a constant, and does not affect the location of
the barycenter.)

To define the BCG map, we want to show the barycenter is defined for the measure
A = f.u, on ON. Here, {tp is the Patterson-Sullivan measure on M, the boundary map
7 : &M — ON is induced by the assumed homotopy equivalence between M and N, and
finally, N is a negatively curved symmetric space.

Put briefly, to see that B uniquely attains a minimum, one needs to check that B(z) — oo
as x goes to infinity along a geodesic and that B(z) is strictly convex. The details can be
found in | , Appendix A]. We explain the argument for strict convexity assuming N

is locally symmetric. We start by differentiating under the integral to get

HessB() = | HessBe, ()7, (0).

Since N is locally symmetric, the Hessian of the Busemann function satisfies the formula

(Hess Be) rp) (1) = \/ —R(vrm)e 5 vP@) € ), (IL.4.1)

where R is the Riemann curvature tensor (see | , p- 16]). Let v, ¢ be the unit tangent
vector based at y so that the geodesic with initial vector v has forward boundary point
&, ie, vy ¢ is the gradient of B¢,. Let 0 denote the angle between v,¢ and u. Then we
can write u = (cosf¢)vy ¢ + (sinf¢)w for some unit vector w perpendicular to v,¢. Since
(HessBe) pp) (u) = (Vyvye,u), we obtain (HessBg),(u) = sin®0¢(HessB),(w). Using the

fact that the sectional curvatures of N are at most —1, it follows that
(HessBe),(u) > sin® f.

Hence, the integrand in the expression for HessB is 0 if and only if 6 = 0, 7. This occurs
precisely when £ = m(%u), where 7 is the projection of a unit tangent vector to its forward

boundary point in dN. From the shadow lemma for Patterson—Sullivan measures (see, for
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instance, | , Lemma 1.3]), it follows that p, is non-atomic. This means

(furtp) (ON\ {m(£u)}) = 1> 0.

Thus (HessBe),(u) > 0 for a set of £ of positive f,j,-measure, which shows that B is strictly

convex.

Definition I1.27. Given p € M, let tp, be the Patterson-Sullivan measure on OM. Let
f:OM — ON as above. Define F(p) = bar(f.u,), where bar denotes the barycenter map
(see | | for more details). We call F' the BCG map.

I1.5: Gromov compactness

In this final section of this chapter, we explain a type of convergence of Riemannian metrics
that is used in the proofs of the main results of this thesis (Theorems 1.6, 1.8, and 1.9),
though it does not appear in the original proofs of marked length spectrum rigidity.

Let C(n, A, v, Dy) consist of all closed C* Riemannian manifolds of dimension n with
absolute sectional curvatures bounded by A%, volume bounded below by vy, and diameter
bounded above by Dy. The space C(n, A, vg, Do) has the property that any sequence has

a convergent subsequence in the Lipschitz topology; this is often called the Gromov com-

pactness theorem | |. In this thesis, we use refinements of Gromov’s theorem due to
Pugh and Greene-Wu | , .
It follows from | | that any sequence (M, gi) € C(2, A\, A, v, D) has a subsequence

(M, gi,) converging in the following sense: there is a Riemannian metric gy on M such that
in local coordinates we have g,?l — géj in the OV norm, and the limiting géj have regularity
CYe. Moreover, the distance functions alg,cz converge uniformly (with respect to the Lipschitz
distance) to d,, on compact sets; see | , p. 122].

We also recall some additional properties of the limit (M, go) due to Pugh. By | ,
Theorem 1], this limiting metric will have a Lipschitz geodesic flow, and the geodesics them-
selves are of 1! regularity. Moreover, the exponential maps converge uniformly on compact

sets | , Lemma 2.
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CHAPTER 111

Finiteness

In this chapter, we prove Theorem 1.6 (reproduced below), that is, that short closed geodesics

determine the full marked length spectrum approximately.

Theorem 1.6 (Butt, | ] Theorem 1.2). Let (M, g) and (N, go) be closed Riemannian
manifolds of dimension n with sectional curvatures contained in the interval [—A?, —N?]. Let
L, and Ly, denote their marked length spectra. Let I' denote the fundamental group of M
and let ip; denote its injectivity radius. Suppose there is a homotopy equivalence f : M — N
and let f, denote the induced map on fundamental groups.

Then there is Ly = Lo(n,I', A\, A,in) so that the following holds: Suppose the marked
length spectra L, and Ly, satisfy Hypothesis 1.5 for some ¢ > 0 and L > Ly. Then there
exist constants C' >0 and 0 < a < 1, depending only onn, I', X\, A, iy, so that

1—(5+CL’“)§M§1+(€+CL’“)

Ly(7)

for all v €T.

In Section III.1, we start by stating the key dynamical facts used in our proof of Theorem
1.9. Specifically, we use an estimate for the size of a covering of the unit tangent bundle T M
by certain small “flow boxes” in addition to a Holder estimate for a certain orbit equivalence
between the geodesic flows of M and N. We then prove the theorem assuming these two
facts. See the introduction to Section III.1 below for a rough sketch of the argument.

The rest, and vast majority, of this chapter is devoted to proving the above-mentioned
covering lemma and Holder estimate. The proofs rely on a few well-established consequences
of the hyperbolicity of the geodesic flow. However, the standard results from the theory
of Anosov flows (uniformly hyperbolic flows) are stated very generally and thus contain a
multitude of constants which depend on the given flow in arguably mysterious ways. As
a result, considerable technical difficulties arise in ensuring the constants depend only on

select geometric and topological properties of (M, g) and (IV, go).
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The main components of this analysis are as follows. In Section III.2, we use geometric
arguments involving horospheres to investigate the local product structure of the geodesic
flow, a key mechanism responsible for many of the salient features of hyperbolic dynamical
systems. Indeed, the results of this section are used to prove both the covering lemma and
the Holder estimate. The covering lemma is then quickly proved in Section I11.3. Before
proving the desired Holder estimate, we show that the homotopy equivalence f : M — N
(via which we are able to compare the marked length spectrum functions £, and £,,) can
be taken to be a quasi-isometry with controlled quasi-isometry constants, i.e., depending
only on n, I') \, A, ips, ¢y. This is done in Section I11.4. Finally, in Section II1.5, we prove
the orbit equivalence of geodesic flows in | ] is Hélder continuous, also with controlled

constants.

I11.1: Proof of finiteness theorem

In this section, we will prove Theorem 1.9 assuming two key statements: a covering lemma
(Lemma III.1 below) and a Holder estimate (Proposition II1.4 below). These statements are
proved in Sections I11.3 and IIL.5, respectively.

The basic idea is to start by covering the unit tangent bundle 7'M with finitely many
sufficiently small “flow boxes”, that is, sets obtained by flowing local transversals for some
small fixed time interval (0,0). On the one hand, any periodic orbit of the flow that visits
each of these boxes at most once is short, i.e., has period at most ¢ times the total number
of boxes. On the other hand, any periodic orbit that is long, i.e., of length more than ¢
times the number of boxes, must return to at least one of the boxes more than once before
it closes up. In other words, long periodic orbits contain shorter almost-periodic segments.
By the Anosov closing lemma, these are in turn shadowed by periodic orbits. This allows
us to approximate the lengths of long closed geodesics with sums of lengths of short ones.
We then use a Holder continuous orbit equivalence F : T'M — TN to argue that similar
approximations hold for the corresponding closed geodesics in N. From this, we are able to
estimate the ratio of L£,(7y)/Ly, () for all long geodesics v given our assumed estimate holds
for short ones (Hypothesis 1.5).

We now introduce the precise statements of the aforementioned covering lemma and
Holder estimate. Let W for i = s, u denote the strong stable and strong unstable foliations
for the geodesic flow ¢! on the unit tangent bundle T'M. For § > 0, let

Wsi(v) = W (v) N B(v,§),
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where B(v,d) denotes a ball of radius § in 7'M with respect to the Sasaki metric. (See
Section II1.2 for some background on the stable/unstable foliations and the Sasaki metric.
See also Section 11.2.1.)

Let P(v,0) = Uyews: W5 (V') and let R(v,d) = Ue(—s/25/2¢ P(v,6). We will call
R(v,0) a d-rectangle. For our proof of Theorem 1.9, we use the following estimate for the

number of d-rectangles needed to cover T M.

Lemma III.1. Let iy, denote the injectivity radius of M. There is small enough 0y =
do(n, A\, Ayipg) and a constant C' = C(n, ', X\, A, i) so that for any 6 < dy, there is a covering
of T*M by at most C /5"t §-rectangles.

Remark 111.2. The main difficulty is showing that the constant C' does not depend on the
metric g, but only on n, I'; A\, A, diam(M).

Remark 111.3. Rectangles of the form R(v,d) are often used to construct Markov partitions,
e.g. in [ |. However, in Lemma III.1, we are not constructing a partition, meaning we

do not require the rectangles to be measurably disjoint.

Now consider the geodesic flows ¢’ and ¥* on TMM and T* N, respectively. Recall that a
homeomorphism F : T'M — TN is an orbit equivalence if there is some function (cocycle)
a(t,v) so that

F(¢'v) = " F(v)

for all v € T'M and for all t € R. Since M and N are homotopy-equivalent compact
negatively curved manifolds, such an F exists by | |. Our proof of Theorem 1.9 relies

on the following estimates for the regularity of F.

Proposition I11.4. Suppose (M, g) and (N, go) are a pair of homotopy-equivalent compact
Riemannian manifolds with sectional curvatures contained in the interval [—A? —)?]. Let
iy and iy denote their respective injectivity radii. Then there exists an orbit equivalence of
geodesic flows F : T*M — T'N which is C* along orbits and transversally Holder continu-
ous. More precisely, there is small enough 6y = 0o(\, A, ipr) together with constants C' and

A, depending only on n, I'; X\, A, iy, iy, so that the following hold:
1. d(F(v), F(¢'v)) < At for allv e T'M and t € R,
2. d(F(v), F(w)) < Cd(v,w)* M for all v,w € T'M with d(v,w) < &.

Remark 111.5. Tt is a standard fact that any orbit equivalence of Anosov flows is C°-close to a
Holder continuous one; in other words, there are constants C' and «, depending on the given
flows, i.e., on the metrics ¢ and go, so that d(F(v), F(w)) < Cd(v,w)* | , Theorem
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6.4.3]. However, we are claiming the stronger statement that for the orbit equivalence in
[ ], there is a uniform choice of C' and « for all (M, g) and (N, go) with pinched sectional

curvatures and injectivity radii bounded away from O.

To prove Theorem 1.9, we start with a covering of T'M by d-rectangles (see Lemma
II1.1). Let &y be as in Proposition II1.4, then make d, smaller if necessary so that Lemma
ITI.1 holds as well. This choice of dy depends only on n, A\, A,7,,. Now fix § < dg, together
with a covering T*M = U™ R(v;,d). By Lemma IIL.1, we can take m < C4¢*"*!. Since
d is now fixed, we use the notation R; for the rectangle R(v;,d) and P; for the transversal
P(v;,6).

Let v € T*M. Then v € P, if and only ¢'v € R; for all t € (—4/2,6/2). Moreover, if v is

tangent to a closed geodesic of length 7, then for any rectangle R;, the set
{te (=6/2,7—6/2)| ¢'v N R; # 0}

is a (possibly empty) disjoint union of intervals of length 4.

Definition IIL.6. Fix a covering of T'M by d-rectangles Ry, ..., R,, as above. Suppose 1
is a closed geodesic of length 7 with 7/(0) = v. Suppose that for each ¢, the set

{te (=6/2,7—6/2)|¢'v N R; # 0}

consists of at most a single interval. Then we say 7 is a short geodesic (with respect to the

covering Ry, ... R,,).

Remark TI1.7. Let L = L(§) = C6~2", where C is the constant in the statement of Lemma
IIL.1. If 7 is a short geodesic, then [,(n) < md < C§2" = L.

Proposition II1.8. Let v be any closed geodesic in M. Then there is k € N (depending on
) and short geodesics 1y, ..., M1 So that

k+1

ly(7) — Z ly(mi)

=1

< 2kC§

for some constant C = C(\, A, ipr).

Proof. 1f v is already a short geodesic, then £k = 0 and 7, = v. If not, then let ¢ be the
smallest index so that v crosses through R; in at least two time intervals. Let v € P; tangent
to v and let ¢#; > 0 be the first time so that ¢"v € P;. By the Anosov Closing Lemma
(Lemma I1.14), there is w; tangent to a closed geodesic v; of length ¢ with |, — ]| < C9,
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where C' depends only on the sectional curvature bounds A and A and the injectivity radius
iy (see Lemma I11.22). Similarly, applying the Anosov Closing Lemma to the orbit segment
{p'v |t € [t1, 7]} gives wy tangent to a closed geodesic v, of length ¢, with |(7—t1) —t5] < C4.
This means |l,(y) — lg(71) — l;(12)] < 2C6.

Iterating the above process, we can “decompose” v into short geodesics. More precisely,
if 71 is not a short geodesic, then there is some other rectangle R; through which 7, crosses
twice. By the same argument as above, we get |l,(v1) — l;(71.1) — lg(m2)] < 2C0 for some

Y1.1,71,2 € I'. Continuing in this manner, we get the desired conclusion. O]

Next, we show that [, (y) is still well-approximated by the sum of the go-lengths of
the same free homotopy classes ny,...,nk+1 that were used to do the approximation with
respect to ¢g. For this, we use the estimates for the regularity of the orbit equivalence
F : T'M — T'N in Proposition IT1.4. Recall that a(t,v) denotes the time-change cocycle,
ie. F(ptv) = o) F(v).

Lemma I11.9. Let v and 1, ..., 041 as in Proposition II1.8. Then an analogous estimate

holds in (N, go), namely,
k+1

lgo (7) - Z lgo (771)

=1

< 2kC6°,

where C' depends only on I', X\, A, iy, in, and « is the Holder exponent in the statement of
Proposition I11.4.

Proof. As in the proof of Proposition II1.8, let v € T*M tangent to 7. By the Anosov
closing lemma, there is w; € T'M tangent to a closed geodesic v, of length | such that
d(v,w;) < OF, for some C' = C(\, A,4p) (Lemma 111.22). Additionally, d(¢'1v, ¢t1w,) < C6.

By Proposition I11.4, we know d(F(v), F(w;)) < C6“. Moreover, since F(v) and F(w;)
remain C'§%-close after being flowed by times a(t1,v) and a(t},w), respectively, it follows
that |a(ty,v) — a(t), w1)] < 2C6*. (We defer the short proof of this fact to Section II1.2; see
Lemma I11.12.)

Similarly, the Anosov closing lemma applied to the orbit segment {¢'v |t € [t1,1(7)]} gives
wy tangent to a closed geodesic 7 of length t. By an analogous argument, |a(l,(y) —t1,v) —
a(ty, wy)| < 2C6*. Since a(t,v) is a cocycle we get |a(ly(77), v) —a(t, w1) —a(ty, we)| < 4CH*.

Using that F is a I'-equivariant orbit-equivalence, it follows that a(l,(y),v) = Iy (7)
whenever v € T'M is tangent to the closed geodesic 7. So the estimate in the previous
paragraph can be rewritten as |ly, () — g (72) — g (72)| < 4C6%. As such, we can iterate the

process in Proposition II1.8 and get an additive error of 4C'0“ at each stage. m

Proof of Theorem I.9. Recall from Remark II1.7 that L = L(6) = C6?" for some C' =
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C(n,T, X\, A,ipr). Since we fixed § < 99 = do(n, A\, A, ipr), we see that L > Lo = L(&p). By
Lemma III.1, this choice of Ly depends only on n, I'; A\, A, i,,.

Recall as well that we are assuming

Eg(’Y)
toes Ly (7)

forall vy € I'y :={y € I'| {,(y) < L} (see Hypothesis 1.5). We then have

<1l+¢

k1
V) <Y lg(w) + 2kCS (Proposition I11.8)
i=1
k+1
(1+¢ Z lyo (i) + 2kC6 (Hypothesis 1.5)
i=1
< (14 &)l () + (14 )2k(2C"5* 4+ C9) (Proposition I11.9)

< (L+)lg(7) + kC6°.

Using this, we consider the ratio

(1) KO8
<(14¢)+
( ) Lgo (7)

kC" 5
Yo lgo (i) — 2k8
<l+e+ Lﬁéa
= ki — 2k0

1/504

2iy — 20

<l4e+

(Proposition I11.9)

=1l+e+

In the last inequality, we used the fact that [, () > 2iy for all ~.
Finally, by the definition of L in Remark II.7, we have § = CL~'/?" where C is a
constant depending only on n, I', a, b, ip. So we can write that the ratio l;(y)/l,(7) is

between 1+ (g + C’L~%/?"), where « is the Hélder exponent in the statement of Proposition
I11.4. m

Remark 111.10. There is a way to obtain approximate control of the marked length spectrum
from finitely many geodesics by combining Proposition I11.4 with the finite Livsic theorem
in [ |, but our direct method above yields better estimates.

Let a(t,v) denote the time change function for the orbit equivalence F in Proposition
II1.4. By the definition of a(t,v) in (IV.3.1), (see also Lemma IV.24), this cocycle is dif-
ferentiable in the ¢ direction. Let a(v) = 4|,_oa(t,v). It follows from (IV.3.1) and Lemma
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[I1.40 that a(v) is of C'* regularity, where « is the same Holder exponent as in the state-
ment of Proposition II1.4. It follows from Lemma II1.34 and the proof of Lemma IV.24 that
la(v)]|co < A, where A is the constant in Lemma I11.34. Hence, ||a||ce < A + C, where C
is the constant in Proposition I11.4.

Now let {¢'v}o<i<i, (1) be the g-geodesic representative of the free homotopy class . Then
Ly () = é”m a(¢'v)dt. Let f(v) = (a(v) —1)/|la — 1||ce. Then || f]jce < 1 and Hypothesis

[.5 implies
59(7)
| sea
0

for all v € I'p. Setting L = (C_iA)fl/2 means that f satisfies the hypotheses of Theorem 1.2

in [ ]. This theorem implies that for all v € T', the ratio £,/L,, is between 1+£C" (CLJFA)T,

where C’ and 7 are constants depending on the given flow. Our direct method above yields

1

e =

€
A+C

an exponent of a/4n in place of 7.

I11.2: Local product structure

We consider the distance d on T'M induced by the Sasaki metric ¢° on T'M, which is
in turn defined in terms of the Riemannian inner product g on M (see Definition II.6).
Throughout the rest of this thesis, we will make use of the following standard facts relating
the Sasaki distance d to the distance djy; on M coming from the Riemannian metric g and
the distance drypr on S™1 = T/ M. Let v,w € T'M be unit tangent vectors with footpoints
p and ¢ respectively. Let v' € quM be the vector obtained by parallel transporting v along

the geodesic joining p and q. Then we have
dy(p, @), dry (v, w) < d(v,w) < dar(p, ) + drpa (v, w). (I1.2.1)

For convenience, we will often write d in place of d; when it is clear from context that we
are considering the distance between points as opposed to between unit tangent vectors.

Recall the geodesic flow on the unit tangent bundle of a negatively curved manifold is
Anosov, and thus has local product structure. This means every point v has a neighborhood
V' which satisfies: for all € > 0, there is § > 0 so that whenever z,y € V with d(z,y) < ¢
there is a point [z,y] € V and a time |o(z,y)| < € such that

[,y = W* () N W= (¢7)y)

[ , Proposition 6.2.2]. Moreover, there is a constant Cy = Cy(d) so that d(z,y) < §
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implies dys(z, [7,9]), deu(07@Y 2, y],y) < Cod(x,y), where dy, and d, denote the distances
along the strong stable and strong unstable manifolds, respectively.

To describe the stable and unstable distances d,; and d,,, we first recall the stable
and unstable manifolds W and W?*" for the geodesic flow have the following geometric
description (see, for instance, | . p. 72]). Let v € T'M. Let p € M be the footpoint of v
and let £ € M be the forward projection of v € T*M to the boundary. Let B, denote the
Busemann function on M and let Hg, denote its zero set. Then the lift of W**(v) to T'M is
given by {—gradBe,(q)|q € He,}. If 7 denotes the projection of —v to the boundary dM,
then the lift of W*"(v) to T'M is analogously given by {gradB, ,(¢)|q € H,,}.

Now let v € T'M and w € W*(v). Let p and ¢ denote the footpoints of v and w
respectively. Define the stable distance ds(v, w) to be the horospherical distance h(p, q), i.e.,
the distance obtained from restricting the Riemannian metric g on M to a given horosphere.
The unstable distance is defined analogously.

From the above description of W** and W*" in terms of normal fields to horospheres, it
follows that the local product structure for the geodesic flow enjoys stronger properties than
those for a general Anosov flow given in the first paragraph. First, the product structure is
globally defined, meaning the neighborhood V' in the first paragraph can be taken to be all
of T*M (see, for instance, | ]). Second, the bound on the temporal function o can be

strengthened:
Lemma II1.11. If d(v,w) < 0, then |o(v,w)| < 4. for all §

Proof. Let p and ¢ denote the footpoints of v and w respectively. Then by (I11.2.1), we know
d(p,q) < §. Let & denote the forward boundary point of v and let 1 denote the backward
boundary point of w. Let p’ € He, and ¢’ € H, , be points on the geodesic through n and
¢. Then d(p',q') = |o(v,w)|. Moreover, since the geodesic segment through p’ and ¢ is
orthogonal to both H¢, and H, ,, it minimizes the distance between these horospheres. In
other words, |o(v,w)| =d(p’,¢') < d(p,q) < e. O

This allows us to deduce the following key lemma, which was used in the proof of Propo-
sition III.9.

Lemma IT1.12. Consider the geodesic flow ¢' on the universal cover T*M. Suppose d(v,w) <
81 and d(¢%v, ¢'w) < dy. Then |s — t| < 01 + da.

Proof. Since [¢%v, p*w] = [¢p*v, ¢'w], we have

¢a(d)sv,¢sw)¢sw _ ¢U(¢Sv’¢tw)¢tw.
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Thus o(¢*v, p*w) + s = o(¢*v, ¢'w) + t. Rearranging gives

s — 1 = 0(9", ¢'w) — o (6", 6*w) = a(6"v, 6'w) — (v, w).

By Lemma III.11, the absolute value of the right hand side is bounded above by §; + 0s,
which completes the proof. n

Now assume (M, g) has sectional curvatures between —A? and —\?. We will show the
constant Cj in the definition of local product structure can be taken to depend only on
A, A and diam(M), whereas a priori it depends on the metric g. For our purposes, it
will suffice to show the following proposition, which is formulated using the Sasaki distance
d between vectors in T'M instead of the stable/unstable distances dy, and d, between
vectors on the same horosphere. In fact, we will show later (Lemma II1.37) that the Sasaki
distance d between vectors on the same stable/unstable manifold is comparable to dss and

dgy, Tespectively.

Proposition II1.13. Suppose (M, g) has sectional curvatures between —A? and —\2. Then
there is small enough 0y = 0o(A, A, diam(M)) so that the following holds. Let u € Tle. Let
up € W*(u) and uy € W (z) so that d(uy,us) < diam(T* M), where d denotes the distance
in the Sasaki metric. Then there exists a constant Cy = Co(X, A, diam(M)) so that whenever
d(uy,ug) < do, we have d(u,u;) < Cod(uy,us) fori=1,2.

Remark 1I1.14. In our context, the dependence of the constant Cy on the diameter of M
can be replaced with a dependence on the injectivity radius iy,. Indeed, by | , Section
0.3], the volume of M is bounded above by a constant Vj depending only on n, I'; and A. A
standard argument (see, for instance, the proof of Lemma 3.9 in | |) then shows the
diameter is bounded above by Dy = Dq(ins, Vo, A).

Our proof of Proposition II1.13 relies on the geometry of horospheres, and we use many of
the methods and results from the paper | | of the same title. However, we additionally
consider the Sasaki distances between unit tangent vectors in 7 M instead of just distances
between points in M.

Let & € OM and let B = B¢ be the associated Busemann function. Suppose p € M is
such that B(p) = 0. Let v € Tpl]\;[ perpendicular to grad B(p) and consider the geodesic
7(s) = exp,(sv). Define f(s) = B(v(s)). This is the distance from v(s) to the zero set of B.
Moreover, f'(s) = (gradB,~') = cosf, where 6 is the angle between +/(s) and gradB(~(s)).
In particular, f'(0) = 0.

Lemma IIL.15. For all s € R we have f(s) < 45 and cosf(s) = f'(s) < As.
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Proof. We have f"(s) = (V. gradB,v") = (V. grad B, v7), where 77 denotes the component
of 7/ which is tangent to the horosphere through & and v(s). Note ||} = sin(6), where as
before, 6 is the angle between 7/(s) and gradB(7(s)).

Thus f”(s) = (J'(0), J(0)), where J is the stable Jacobi field along the geodesic through
v(s) and & with J(0) = v/(s). (See, for instance, | , p.750-751].) By | , Propo-
sition 1V.2.9 ii)], we have ||J(0)]] < A||J(0)]], which shows f”(s) < A|lJ(0)||* < A. Since
f(0) and f’(0) are both 0, Taylor’s theorem implies that for any s, there is § € [0, s| so that
f(s) = @32. Thus, f(s) < £s* for all s > 0. Moreover, since f'(0) = 0, integrating f”(s)
shows cosf = f'(s) < As. O

Lemma II1.16. Fiz S > 0. Then there is a constant ¢ = c¢(\, S) such that for all s € [0, S]
we have f(s) > £s* and cosf = f'(s) > cs.

Proof. Asin | , Section 4], we use fy(s) to denote the analogue of the function f(s), but
defined in the space of constant curvature —\2. By considering the appropriate comparison
triangles, it follows that f(s) > fa(s) and f'(s) > fi(s) [ , Lemma 4.2]. As in the
proof of the previous lemma, we know f{(s) = (J(0), J'(0)), where ||J(0)|| = sinf. Solving
the Jacobi equation explicitly in constant curvature gives f7(s) = Asin®#. For all s € [0, 5],
this is bounded below by Asin?#(.S), which is a constant depending only on the value of S
and the space of constant curvature —\2. In other words, there is a constant ¢ = ¢(), S) so
that f{(s) > c for all s € [0,S]. As in the proof of the previous lemma, Taylor’s theorem
then implies fy(s) > £s*, and integrating f} on the interval [0, s] gives fi(s) > cs. O

Remark 111.17. From the above proof it is evident that f{(s)/s — 0 as s — oo, and as such
the only way to get a positive lower bound for cosf/s is to restrict to a compact interval
[0, S]. This is reasonable for our purposes, since in the end, we will be applying the results of
this section to the compact manifold M as opposed to its universal cover M. In Hypothesis

I11.18 below, we explain how we choose S based on diam(M).

For the proofs of the next several lemmas, we will consider the following setup (see Figure
II1.2 below). Let u be a unit tangent vector with footpoint p . Let v € T, le perpendicular
to u and let y(t) = exp,(tv). Fix s > 0 and let u; € W**(u) be such that such that the
geodesic determined by u; passes through ~(s). Let p; denote the footpoint of u;. Let n
denote the geodesic segment joining p and p; and let a denote the angle this segment makes
with the vector u. Let ¢ be the orthogonal projection of p; onto the geodesic v. Consider
the geodesic right triangle with vertices py, ¢, 7(s). Let 6 denote the angle at v(s) and let 6,
denote the angle at p;.
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Figure 1: The setup for the proofs of Lemmas I11.19, I11.20, and TI1.21

Hypothesis II1.18. For our purposes, it is reasonable to assume d(p,p1) < diam(M),
where p,p; € M. By / , Theorem 4.6, Proposition 4.7], this forces s < S, where S is a
constant depending only on diam(M) and the lower sectional curvature bound —A*. So we

assume s < S from now on.

Lemma II1.19. Let uy € W*(u) as in Figure II11.2, and assume s < S (see Hypothesis
I11.18). Then there is a constant C = C(A, diam(M)) so that d(u,uy) < Cs. Ifus € W*(u),
then d(u,us) < Cs as well.

Proof. Consider the setup in Figure I11.2. Let 1 denote the geodesic joining p and p; and
let P, : T,M — T, M denote parallel transport along this geodesic. Recall

d(u7u1) S dM(p7p1) + dTpllM(Pu7u1)-

To bound dy(p, p1), we use the triangle inequality together, Lemma II1.15, and Hypothesis
IT1.18:

d(p,p1) < d(p,q) + d(p1,q) < s+ d(p1,7(s)) < s+ As?/2 < (1+ AS/2)s.

To bound dTp11 v (Pu,uy), we first find bounds for the angles # and ¢,. We know from
Lemma IIL.15 that sin(w/2 — 6) = cos§ < As. Moreover, sin(7/2 — ) > (2/m)(7/2 — ) for
0 < 7/2 < 6. Since the interior angles of geodesic triangles in M sum to less than 7, we
know 0 4+ 6, < w/2. Thus, ; < 7/2 —0 < (7/2)As.

Now let o denote the angle between u and 1’ at the point p. Then « is also the angle
between Pu and 7’ at the point p;, since parallel transport is an isometry and 7’ is a
geodesic. Since the angle sum of the geodesic triangle with vertices p, p; and ¢ is less
than 7, the angle in 7, M between 1’ and [py, q] is strictly less than . Thus if we rotate
n' towards Pu, we must pass through the tangent vector to [p1,q| along the way. Hence
dr, m(Pu,up) < 6 < (m/2)As, which completes the proof of the upper bound for d(u,u;).

The estimate for d(u, uy) follows by an analogous argument. O

36



Lemma II1.20. Again, consider the setup in Figure II1.2 and Hypothesis II1.18. For all
s € [0, S] we have 0, > cs for some ¢ = c¢(A, A, diam(M)).

Proof. Consider the following comparison triangle with vertices p}, ¢,z in the space of con-
stant curvature —A2: suppose there is a right angle at the vertex ¢’ and the lengths of the
two legs are equal to dys(q, p1) and das(g,v(s)). Let 6 denote the angle at o and let 6] denote
the angle at p}. Since triangles in M are thicker than in the space of constant curvature
—A?, we have 6; > 6} and cos(6) > cos(f). Now by | , Theorem 7.11.3] we have

cos(0') S cos(0)

0 2 5m(0) = R dg. o) = cosh(Ad(r(s).p1))

By Lemma II1.16, we can bound the numerator below by cs for some ¢ = ¢(\, A, diam(M)).
Using Lemma I11.15 and Hypothesis IT1.18, we get d((s),p1) = f(s) < As*/s < AS?/2. So
the denominator is bounded above by some constant depending only A, A, diam(M), which

completes the proof. O

Lemma III.21. Let u € Tle. Let uy € W#(u) be such that the footpoints p and py of u
and uy are distance t apart. Then d(u,u;) < (1 + A)t.

Proof. Let n denote the geodesic joining p and p;. Let P, : T,M — T, M denote parallel
transport along 1. Let vy € Tle be the vector contained in the plane spanned by u and
7'(0) so that (u,vy) = 0 and (1/(0),ve) > 0. Let V(s) denote the parallel vector field along
n(s) with initial value V(0) = vy. Let 0(s) be the angle between V(s) and —grad B(n(s)).
Then 0, = 7/2 — 6(t) is the angle between u; and P,u. We have

sin(m/2 — 0) = cos(0) = (V (t), —gradB(n(t))) = /Ot(V(s), VygradB(n(s))) ds.

By the same argument as in the proof of Lemma III.15, this integral is bounded above by
At. Hence, d(u,u1) < dy(p,p1) + dr, m(Pyu,up) <t 4+ At O

Proof of Proposition II1.13. Consider the hypersurface formed by taking the exponential im-
age of gradB(p)*t. For i = 1,2, let z; denote the point on this hypersurface which is on
the geodesic determined by wu;. Let v; € Tle perpendicular to u for ¢ = 1,2 such that
exp,,(siv;) = r;, where s; = d(p, x;). Let v;(s) = exp,(sv;).

Now suppose without loss of generality that s; > s, and let s = s;. By Lemma III.19,
we have d(u,u;) < Cs for some C' = C(A,diam(M)). So it suffices to bound d(uy,us)/s
from below by some constant depending only on the desired parameters. Now let ¢ =
c¢(\, A, diam(M)) be the constant from the statement of Lemma I11.20, and let 8 such that
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Figure 2: The horospherical configuration for the proof of Proposition I11.13

c—2(1+A)B=c/2. Let s’ = s. Let ¢; and g, denote the orthogonal projections of p; and
p2 onto the tangent plane grad B(p)*. See Figure I11.2 below.

We consider the cases d(q1,q2) > ¢ and d(q1,q2) < s’ separately. In the first case, we
obtain d(uy,us) > da(p1, p2) > d(q1,q2) > Bs1, which shows d(u,u;) < %d(ul,m).

We now consider the case d(71(s),72(s)) < §’. The geodesic determined by p; and ¢; in-
tersects the unstable horosphere W**(u) at some point we will call p;. Let us = gradB, ,(ps).
As before, let #; denote the angle between u; and the geodesic determined by the points p;
and ¢;. Then d(uq,u3) > 67 > ¢s by Lemma I11.20.

We now bound d(us,usz) from above. Lemma II1.21 gives d(uq,u3) < (1 + A)d(p2,p3).
By the triangle inequality and Lemma II1.15, d(ps, p3) < s’ + As?. So if s’ < Bs, we obtain
d(ug,us) < (1 4+ A)(B + As)s. We now claim that there is 0y sufficiently small so whenever
d(uy,uz) < g, we also have s is small enough to guarantee As < . To see this, first
note that d(uy,us) > d(p1,p2) > d(p1,q1). Now consider a comparison right triangle in the
space of constant curvature —\? with hypotenuse equal to d(7(s),p1) = f(s) and an angle
0 equal to the angle between gradB and 4" at the point 7(sg). Let x denote the length
of the side opposite to the angle #. Then, using the fact that triangles in M are thinner
than this comparison triangle, together with | , Theorem 7.11.2 ii)|, Lemma II1.16 and
Hypothesis III1.18, gives

sinh(d(py,q1)) > sinh(z) = sin(0(s)) sinh(f(s)) > sin(#(S)) sinh(es?).

So if d(ui,us) < 0 we see that sinh(cs?) < C6, where C' depends only on A and S. In
other words, there is small enough §y = d¢(A, A, diam(M)) to ensure s is as small as desired,
which in this case means small enough for As < g = B(\, A, diam(M)). Thus, we now have
d(ug,uz) < 2(1+ A)ps.

Finally, d(u1,us) > d(uy,us) — d(ug, us) > s1(c —2(1 4+ A)B). By the choice of 3, this is
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bounded below by §s. Hence d(u,u;) < Cs; < %d(ul, us). Reversing the roles of u; and ugy

and repeating the same argument gives the analogous upper bound for d(u, us). O]

Proposition I11.13 allows us to deduce the following refinement of the Anosov Closing
Lemma, where we can say the constants involved depend only on concrete geometric infor-
mation about (M, g), namely the diameter and the sectional curvature bounds. Note that

now the setting is 7'M as opposed to the universal cover T M.

Lemma II1.22. There is 09 = do(\, A, diam(M)) sufficiently small so that the following
holds. Suppose v, ¢'v € T*M so that d(v,¢'v) < § < §y. Then either v and ¢'v are on the
same local flow line or there is w with d(v,w) < Cd so that w is tangent to a closed geodesic
of length t' € [t — Co,t + C6], where C is a constant depending only on the diameter of M

and the sectional curvature bounds A and A.

Proof. Let &y be the constant in Proposition II1.13. The proof of the usual Anosov Closing
Lemma in | , Figure 2] (see also [ , 3.6, 3.8]) shows the constant C' depends only
on the local product structure constant Cy. By Proposition II1.13, we know this depends
only on A\, A, diam(M). O

I11.3: Covering lemma

In this section, we prove the following covering lemma, which was one of the key statements

we used in the proof of the main theorem.

Lemma II1.1. There is small enough dg = do(n, A\, A, diam(M)) together with a constant
C = C(n,T,\,A,diam(M)) so that for any § < dy, there is a covering of T'M by at most
C/§?" 1 §-rectangles.

We start with a preliminary lemma.

Lemma II1.23. Let B(v,d) be a ball of radius § in T M with respect to the Sasaki metric.
There is small enough 09 = do(n), depending only on the dimension n, so that for all § < &g

we have vol(B(v,8)) > cd*" 1 for some constant ¢ = c(n).

Proof. First we claim B(v,0) D By(p,0/2) X Bgn-1(v,d/2), where By(p,d/2) is a ball of
radius /2 in M and Bgn-1(v,6/2) is a ball of radius §/2 in the unit tangent sphere 7, M.
This follows immediately from (III.2.1). Since M is negatively curved, Theorem 3.101 ii) in
[ ] implies volBys(p, §/2) > (,0™ /2", where (3, is the volume of the unit ball in R". By

Theorem 3.98 in | |, we have volBgn-1(v,0/2) = '3"5,15?_1 (1-— 681;11)62 + 0(6*)). Then
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for ¢ less than some small enough dy, we can write

Bn—lfsnil n—1 2
Bgn-1(v,6/2) > (1 —2———6% | > co""!
S 1(U7 / ) - on—1 6(n—|—1) = C )
for some ¢ = ¢(n). The quantity d, depends only on the coefficients of the Taylor expansion
of volBgn-1(v,8/2), which depend only on the geometry of S"~!. So we can say dy depends
only on n. Therefore, the volume of the Sasaki ball B(v,d) is bounded below by c¢§***! for

some other constant ¢ = ¢(n) depending only on n. ]

Proof of Lemma III.1. Let §y and C' as in Proposition II1.13. Let ¢ = 1/C and let § < do/2c.

Let vq,. .., v, be a maximal cd-separated set in 7'M with respect to the Sasaki metric. We
claim that the balls B(vy,cd), ..., B(vy,cd) cover T*M. If not, there is some v such that
d(v,v;) > ¢d for all i. This contradicts the fact that vq,..., v, was chosen to be a mazimal

co-separated set.

This implies that the rectangles R(vy,d) ... R(vy,,d) cover T'M as well. Indeed, let w €
B(v,cd). Then by Lemma III.11 there is a time o0 = (v, w) < ¢d and a point [v, w] € T*M
so that [v,w] = W*(v) N W (¢w). Thus d(v, p"w) < dp and Proposition II1.13 implies
dss(v, [v,w]), dsy([v, w], p7w) < Cecd = § as desired.

Now we estimate m. Since vy, ...,v,, if ci-separated, it follows that for i # j we have
B(v;,¢d/2) N B(vj,cd/2) = 0. Hence

m inf vol(B(v;, ¢6/2)) < vol(T*M) = vol(S™*)vol(M).
By | , 0.3 Thurston’s Theorem|, we have vol(M) is bounded above by a constant de-
pending only on n, I" and the upper sectional curvature bound —A2. This, together with
Lemma I11.23, gives m < C//§*" ! for some constant C' = C(n, T, \, A, diam(M)). O

I11.4: Pseudo-isometry estimates

Recall (M, g) and (N, go) are compact negatively curved manifolds with a given isomorphism
between their fundamental groups. Since M and N are K (m, 1) spaces, there is a homotopy
equivalence M — N inducing this isomorphism; moreover, we can assume it is of C! reg-
ularity, since every continuous map is homotopic to a differentiable one. Now lift this C*
homotopy equivalence to a map f : M — N, which is equivariant with respect to the actions
of D = (M) = 7(N) on M and N. It is well-known that f is a pseudo-isometry (see, for

instance, | , Proposition C.1.2]), meaning there exist constants A and B so that for all
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T1,xo € M we have
Aildg(l’l, iL'Q) — B S dg()(f(l'l), f(l'Q)) S Adg(LCl,.I'Q). (11141)

This is a special case of the perhaps more widely used concept of a quasi-isometry, which
is when there is also an additive constant on the righthand side of (I11.4.1). In our case,
however, the absence of this additive constant is crucial for our remaining arguments.

In this section, we show the constants A and B depend only on the fundamental group
I, the injectivity radius of (M, g) and the sectional curvature bounds for (M, g) and (N, go)
(Proposition 111.24 below).

Proposition I11.24. Suppose f : M — N is a I-equivariant C* map as above. Now let
g and gy be Riemannian metrics on M and N with sectional curvatures contained in the
interval [—A%, —)?], and suppose the injectivity radii of (M, g) and (N, go) are bounded below
by iy and iy, respectively. Then there are constants A and B depending only n,T",a, b,y
so that (II1.4.1) holds for all xy, x4 € M.

We start by finding a uniform Lipschitz bound for f, in other words, proving the second
inequality in the above proposition (Corollary II1.27 below). A key tool we use is Gromov
compactness. Let M(Dy, vo, A) be the space of all Riemannian metrics on M with diameter at
most Dy, volume at least vy and absolute sectional curvatures at most A2. This space satisfies
certain pre-compactness properties. We will use a refinement of Gromov’s theorem due to
Greene-Wu | ], namely that any sequence (M, g,,) € M(Dy,vo, A) has a subsequence
(M, g,,) converging in the following sense: there is a Riemannian metric go, on M such that
in local coordinates we have g7 — g¥ in the C*** norm and the limiting g%/ have regularity

O for some 0 < a < 1.

Lemma IIL.25. Suppose f : M — N is a C' map. Suppose g and gy are Riemannian
metrics on M and N with (M, g) € M(Dq,vo,A) and (N, go) € M(D{, v, A'). Then there
ezists a constant A = A(f, Dy, D{, vo, vy, A, \") so that

s sup 1O
verm [0l
Proof. If ¢" — g in the C"* topology, then, in particular, |[v||,, — ||v|l,. uniformly on
compact sets. This means if g, — g and g5 — go, then dfyn gn — dfy g,
Now suppose for contradiction that the statement of the lemma is false. This means
there are sequences g" € M(Dyg, v, A) and g§ € M(Dg, v, A') so that ||df||gn gn — o0

After passing to convergent subsequences, we have ||df||gngn — ||df][go g for some C'

41



Riemannian metrics ¢> and g5°. Since f is C' and the unit tangent bundle of M is compact,
the derivative df (v) is uniformly bounded in v. In other words, ||df||ge geo < 00, which is a

contradiction. So the statement of the lemma must be true. O

Lemma II1.26. Suppose that (M,g) has sectional curvatures in the interval [—A?, —)\?]
and injectivity radius at least ip.  Then there are constants vg = vo(iy,n) and Dy =
Do(n, N\, Tyipg) so that (M, g) € M(Dy,vg, A).

Proof. First, the desired absolute sectional curvature bound holds by assumption. Second,
by Gromov’s systolic inequality, we know vol(M, g) > vy, where vg is a constant depending
only on n and iy, | , 0.1.A].

It now remains to bound the diameter from above. By | , Section 0.3], the volume
is bounded above by a constant 1y depending only on n, I', and A. Thus it suffices to show
diameter is bounded above by Dy = Dq(ipr, Vo, A). To see this, let p and ¢ be such that
diam(M) = d(p, q) and let ¢(t) be the geodesic joining p and ¢. Let m be the unique positive
integer such that 2(m — 1)iy, < diam(M) < 2miy. Take balls of radius iy, centered at
c(0), ¢(2ipr), c(ding), ..., c(2(m — 1)ipg). Since M is negatively curved, the volume of any
such ball is bounded below by the volume of a ball of radius iy, in R™ | , Theorem
3.101 ii)], which we will denote by v(ipr,n). Then mv(r,n) < Vol(M) < V,. This gives an

upper bound for m, therefore

2Vo

p— 1 < ) < )
d(p,q) = diam(M) < 2iym < ZM_U@M,”)’

which completes the proof. O]

Corollary III.27. Let (M,g) and (N, go) be closed Riemannian manifolds of dimension n
with sectional curvatures in the interval [—A*, —N?], and assume there is an isomorphism
between their fundamental groups. Then there is an A-Lipschitz map f : M — N inducing

this isomorphism, where A depends only on n, U, X\, A, and the injectivity radii ip; and iy .

Given that f is A-Lipschitz, we now show the second estimate in the definition of pseudo-
isometry. We follow the approach of | , Proposition C.12], but we need to check the
constants depend only on the desired parameters n, I', A, A and iy.

First, let h : N — M be a C' homotopy inverse of f. By Corollary II1.27, h is also
A-Lipschitz. Now consider the following fundamental domain Dy, for the action of I' on M
(see | , Proposition C.1.3]). Fix p € M. Let

Dy = {xz € M|d(z,p) < d(x,7v.p) ¥y € T'}. (111.4.2)
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Claim II1.28. The diameter of Dy satisfies diam(Dy;) < 2diam(M).

Proof. Let € M so that d(p,z) > diam(M). This means there is some v € I’ so that
d(z,~.p) < d(z,p). In other words, any geodesic in M starting at p stays in Dy for a time
of at most diam(M). So if xy,x9 € Dy so that d(xy,x2) = diam(Dyy), then d(xq,x2) <
d(x1,p) + d(xg,p) < 2diam (M), which proves the claim. ]

Claim II1.29. For all x € M, we have d(h o f(z),z) < 2(1 + A®)diam(M).

Proof. Since h and f are both continuous and I'-equivariant, so is h o f, and thus it suffices
to check the statement for x in a compact fundamental domain Dj;. Since f and h are
A-Lipschitz, it follows that the function x — d(ho f(z),x) is (1 + A?)-Lipschitz:

ld(ho f(x),2) —d(ho f(y),y)] < d(ho f(x),ho f(y))+d(z,y) < (1+ A%)d(z,y).

Noting d(z,y) < Dy < 2diam(M) completes the proof. O

Proof of Proposition I111.24. We can now use the argument in | | verbatim. By the
previous claim, we obtain

d(h(f(21)), h(f(w2)) > d(w1,22) — 4(1 + A?)diam(M).
Then, the Lipschitz bounds for f and h give

d(f(z1), f(z2)) > A7 d(ho f(z1),ho f(z2)) > A7 (d(z1, 2) — 4(1 + A®)diam(M)),

which completes the proof. O]

I11.5: Holder estimate

In this section, we show the following, which was one of the main ingredients in the proof of
Theorem 1.9.

Proposition 111.4. Suppose (M, g) and (N, go) are a pair of homotopy-equivalent compact
Riemannian manifolds with sectional curvatures contained in the interval [—A% —\?]. Let
1y and i denote their respective injectivity radii. Then there exists an orbit equivalence of
geodesic flows F : T*M — TN which is C! along orbits and transversally Holder continuous.
More precisely, there is small enough 6y = do(A, A, ips) together with constants C' and A,
depending only on n, I'; A\, A, iy, iy, so that the following hold:

1. d(F(v), F(¢'v)) < At for all v € T'M and t € R,
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2. d(F(v), F(w)) < Cd(v,w)* M for all v,w € T'M with d(v, w) < d.

We will take F to be the map in | |, whose construction we now recall. The con-
struction starts with a preliminary I-equivariant orbit map Fy : T*M — T'N which is not
necessarily injective. As in Section II1.4, consider a C' homotopy equivalence M — N,
which we lift to a [-equivariant map f : M — N. By Proposition II1.24, there are constants
A and B, depending only on n, A\, A, I, i, so that

A7Yd(p,q) — B < d(f(p), f(q)) < Ad(p, ). (II1.5.1)

Let n be a bi-infinite geodesic in M and let ¢ = f(n) be the corresponding geodesic in N,
where f : 82M — 92N is obtained from extending the quasi-isometry f to a map OM — ON.
Let P : N — ¢ denote the orthogonal projection. Note this projection is [-equivariant,
ie., YP:(x) = Py(yz). If (p,v) € T'M is tangent to 7, define Fy(p,v) to be the tangent
vector to ¢ at the point P o f(p). Thus Fy : T'M — T'N is a T-equivariant map which
sends geodesics to geodesics. As such, we can define a cocycle b(t,v) to be the time which

satisfies
Fololv) = P& Fy(v). (111.5.2)

Remark 111.30. Since f is C! and the orthogonal projection is smooth in the ¢-direction, we
have t — b(t,v) is C*.

It is possible for a fiber of the orthogonal projection map to intersect the quasi-geodesic
f (n) in more than one point; thus, Fy is not necessarily injective. In order to obtain an
injective orbit equivalence, we follow the method in | | and average the function b(t, v)
along geodesics. We will repeatedly use the following standard fact about quasi-geodesics

remaining bounded distance away from their corresponding geodesics:

Lemma II1.31 (Theorem III.H.1.7 of | ). Let f be the quasi-isometry from Section
II1.4. Let c(t) be any geodesic in M and let n be its corresponding geodesic in N obtained
from the boundary map f : OM — ON. Then there is a constant R, depending only on the

pseudo-isometry constants A and B of f and the upper sectional curvature bound —\? for
N, so that d(f(c(t)), P,(f(c(t))) < R for any t € R.

Lemma II1.32. Let
1 t+4-1
a(t,v) = 7/ b(s,v)ds.
t

There is a large enough l so that t — a,(t,v) is injective for all v.
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Proof. The fundamental theorem of calculus gives

d bt +1,0) — bt
Calt,v) = (t+ ’”; (L), (11.5.3)

We claim there is a large enough [ so that this quantity is always positive. To this end,
suppose b(t + 1, v) — b(t,v) = 0. This means Fy(¢'v) and Fy(¢'v) are in the same fiber of
the normal projection onto the geodesic f(v). Since s — f(¢*v) is a quasi-geodesic, there is a
constant R, depending only on the quasi-isometry constants A and B of f , so that all points
on f(¢*v) are of distance at most R from the geodesic 1" Fo(v) | , Theorem 3.H.1.7].
Thus two points on the same fiber of the normal projection are at most distance 2R apart,
which gives
A7N = B < d(f(6'), f(¢")) < 2R.

Taking [ > A(2R + B) guarantees %al(s, v) is never 0, and hence a;(s,v) is injective. ]

Proposition II1.33. For each v € T M, let
Fi(v) = O Fy(v)

for a; as in Lemma IV.24. Then F; is an orbit equivalence of geodesic flows.

Proof. Since F; sends geodesics to geodesics, there exists a cocycle ki (¢,v) so that Fi(v) =
YRt F(v). We need to check t +— k;(t,v) is injective. Note that

I
a;(0, p'v) = %/0 b(s, p'v) ds

- %/lb(s—f—t,v) — b(t,v)ds
= a(t,v) — b(t,v).

This means

Fi(¢v) = @9 Fy(gtv)
= (02" +b(E0) ()
= ) F (v).

Therefore, Fy(¢tv) = ¢*t0) Fi(v) = %@ Fy(v), and hence

b(l,v)
T

d d
£|t:0kl(tav) = —lizoai(t,v) = (II1.5.4)

Cdt
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The proof of Lemma IV.24 shows the above quantity is positive. So F; is injective along

geodesics, as desired. O]

We now proceed to find a Holder estimate for F;, which we will denote by F from
now on for simplicity. Most of the work is finding estimates for the map Fy from (II1.5.2)
(Proposition I11.38).

Lemma I11.34. Let b(t,v) as in (111.5.2). Let A, B as in (II1.5.1). Then b(t,v) satisfies
At — B' < b(t,v) < At.

for all t, where B' is a constant depending only on X\, A, B.
Proof. Recall b(t,v) = d(P,f(p), P,f(¢q)), which is bounded above by d(f(p), f(¢q)) because

orthogonal projection is a contraction in negative curvature. This quantity is in turn bounded
above by At, using the Lipschitz bound for f in (II1.5.1).

Next, let R be the constant in Lemma II1.31. Then d(f(p), P,(f(p)) < R, which implies
b(t,v) > d(f(p), f(¢)) — 2R. The desired estimate then follows from the lower bound for
A(f(p), £(g)) in (IL5.1). a

Lemma II1.35. There is small enough dg = do(A) so that for any § < &y the following
holds. Fiz v € T*M and let x € M be a point such that the orthogonal projection P,(z) of
x onto the bi-infinite geodesic determined by v is the footpoint of v. Let w € W*“(v) and
suppose further that dg,(v,w) < 6. Then there is a constant C = C(n,T', X\, A iy) so that
d(P,(z), Py(x)) < C6.

Proof. Let p and ¢ denote the footpoints of v and w, respectively. Let u € Tle be the
vector tangent to the curve in the horosphere connecting p and q. Let v(s) = exp,(su).
Let so be such that 7(sg) intersects the geodesic determined by w. We claim there are
positive constants 0y = do(A) and C' = C(A) so that if d(v,w) < § < §y then sp < C§. By
[ , Proposition 4.7] we know tanh(Asgy) < Cdg,(v,w) < C6, where C' is some constant
depending only on A, which proves the claim.

Now let 6 denote the angle between the geodesic segment [x,v(so)] and the geodesic
determined by w. We start by showing 6 is close to 7/2. In the case where x and p coincide,
the above angle # is the same as the angle 6 in Lemma II1.15. Thus, cos < Asg.

Otherwise, let ty = d(z,p) # 0. We consider two further cases: d(z,7v(so)) < ¢ and
d(x,7v(sg)) > 6. For the proof in the first case, we start by noting that

d(p, P(x)) < d(

d(p,7(s0)) + d(Pu(z),7(s0))
d(p,

q) + d(q,7(s0) + d(Po(x),7(s0)) + d(z, v(s0)-

IN
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Since d(v,w) < ¢ (by assumption), so is d(p,q). By Lemma II1.15, d(q,v(so)) < As3 < C§2.
Finally, note d(z, P,(z)) < d(x,v(so)). So applying the hypothesis d(z,v(sy)) < ¢ completes
the proof in this case.

Now we consider the case d(z,v(sg)) > 0. Let vy € T} M such that exp,(tyvg) = p. For
0 < s < s, let v(s) € T,,, M such that exp,(tov(s)) = v(s). Then X (s) := L|,_;, exp,(tv(s))
is a vector field along v(s). The hypothesis d(z,~(s¢)) > ¢ allows us to bound

X _ dlwa(s) o 50 g %0 <1+C, (I11.5.5)

IX(so)l  d(@,v(s0) = dl@,7(s0))

where C' is a constant depending only on A.

We now claim there is a constant C' = C'(n, ', \, A, i57) so that

{grad Be(v(s0)), X (0))
X (s0)

cosf = < C'sy. (II1.5.6)

Since (gradBe(v(0)), X (0)) = 0, the fundamental theorem of calculus gives

d

(grad Be(y(s0)), X (s0)) = / " faradBe((s)), X (5))ds.

So the desired bound for cos(#) follows from bounding the integrand from above by C'|| X (so)||
for all s € [0, sp]. In light of (II1.5.5), it suffices to find an upper bound of the form C|| X (s)]|.

To this end, we rewrite integrand using the product rule:

%(gradB(v(S)),X(S» = (VygradB(y(s)), X(s)) + (gradB(7(s)), V4 X(s)).  (IIL.5.7)

The first term on the righthand side is bounded above by
X (s)[[{VegradBy (v(s)), u)| = || X (s)[[Hess Be(v'(s), u)

for some unit vector u. Next, using that the Hessian is symmetric bilinear form, together

with Lemma III.15, we have

A
< =
!

N | >

1
Hoss Be(y/(s), ) < JHessBe(/(5) +,7/(5) +w) < /() + ] <

Now we consider the second term in (II1.5.7). First note that V., X (s) = J.(to), where
Js(t) is the Jacobi field along the geodesic 1;(t) = exp, (tv(s)) with initial conditions Js(0) = 0
and J.(0) = v(s). In order to bound ||.J.(to)||, we let e1(t) = 1'(t), ea(t), .. ., en(t) be a parallel
orthonormal frame along 7(t). Let fi(t),..., fu(t) such that Jy(t) = >"1, fi(t)e;(t). The

47



fact that J, satisfies the Jacobi equation means f]'(t) = 0, so fi(t) = (v(s),n'(0))t and
1)) < Jlo(s)]] = |X(s)||. Now let J+ denote the component of J, which is perpendicular
to ns. By | , Proposition IV.2.5], we have

1(73) (to) I < cosh(Ato) [ () (0)]] < cosh(AR)[[ X (s)]],

where R is the constant in Lemma II1.31. This completes the verification of (II1.5.6).

Now let ¢’ be the orthogonal projection of z onto the geodesic determined by w. We use
our bound for cos# to show d(p,q’) is small. Consider the geodesic triangle with vertices
x, ¢" and 7y(sg). The angle at ¢’ is 7/2 by definition of orthogonal projection, and we have
just shown the angle 0 at ~y(sq) satisfies cosf < C'sg, where sy < Cd. Then by | ,
Theorem 7.11.2 iii)] tanh(d(q’,y(so)) < Cdtanh(d(z,q")) < C6, where C is the constant
in (I11.5.6). Thus, for §, sufficiently small in terms of C, we see that d(¢,~(so) < 2C¢
whenever § < §;. Now recall from the first paragraph that d(p,(so)) = so < C9. Noting
that d(p,q") < d(p,v(s0)) + d(¢’,v(s0)) completes the proof. O

Proposition II1.36. Let &g = do(A) be as small as in the previous lemma. Suppose
w € W*(v) and dg,(v,w) < 0. Then there is a constant C = C(n,I', A\, A, ip) so that
d(Fo(v), Fo(w)) < Cdgy(v,w)* ™, where A is the constant in Proposition II1.24. The anal-

ogous statement holds if w € W**(v) instead.

Proof. Let p and g denote the footpoints of v and w, respectively. By definition, Fy(v) =
P, (f(p)) and Fo(w) = P,,(f(q)) for the appropriate bi-infinite geodesics 7; and 7, in N.
By the triangle inequality,

d( Py, (f(p), P (f(q)) < d(By, (f(p)), Py (f())) + d(Py, (f(a)), P f(4))- (IL5.8)

We start by estimating the first term. Let dg, (v, w) = 6. Then d(p,q) < 6. By (II1.5.1),
we have d(f(p), f(q)) < Ad. Since orthogonal projection is a contraction in negative curva-
ture, the second term is bounded above by d(f(p), f(q)) < Ad(p,q).

Thus it remains to bound d(P,, (f(q)), Py, (f(¢))), which we do by applying Lemma III.35.
Since F(v) and F(w) are on the same weak unstable leaf, there is w’ on the orbit of w so that
F(v) and F(w') are on the same strong unstable leaf. In light of Lemma II1.35, it suffices
to find a Holder estimate for dg,(F(v), F(w')).

Again, let § = dg, (v, w) for simplicity. Since the unstable distance exponentially expands
under the geodesic flow, there is some positive time ¢ so that dg,(¢'v,¢'w) = 1. More
precisely, | , Proposition 4.1] implies At > log(1/§).

Next, note that d(Fo(¢'v), Fo(o'w')) < d(Fo(d'v), Fo(d'w)) < 2R+ A, where R is as in
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Lemma II1.31 and A is the Lipschitz constant for f. Indeed, since f is A-Lipschitz, we have

d(f(¢'), f(¢'w)) < A, and d(f(¢'v), P, f(¢'v)) < R. By | , Theorem 4.6], we also
have the bound dg, (Fo(¢'v), Fo(¢'w')) < 2 sinh(A(2R + A)/2).
By | , Proposition 4.1], we have the following estimate for how the unstable distance

gets contracted under the geodesic flow:
dyu(Fo(v), Fo(w')) < 00 d,, (700 Fo(v), ") Fo(w')).

Now recall b(t,v) > A=t — B’ from Lemma I11.34. This, together with the previous para-
graph, gives
_ N2 _
du(F(v), F(w')) < e AAT5 )K sinh(A(2R + A)/2) = Ce Mt

for some constant C' = C'(\, A, A, B). Finally, we use t > M to obtain dg, (Fo(v), Fo(w')) <
C64 M2 for some other constant C' = C(A A, B). By Lemma II1.35, the second term in
(IIL.5.8) is thus bounded above by C34 A for some other constant C' = C(\, A, A, B),
which completes the proof. O

Lemma II1.37. There is small enough 0y, depending only on the curvature bounds \ and
A, so that if w € W**(v) and d(v,w) < g, then

crd(v,w) < dgs(v,w) < cad(v, w),

where ¢1 and co are constants depending only on X and A. The analogous statement holds
for dg,.

Proof. By | , Theorem 4.6], we have dy(v,w) < 2 sinh(2/Ad(p, q)). Thus, if d(p, q) is
small enough (depending on A), we have h(p,q) < %d(p, q) < %d(v,w).
By Lemma II1.21, d(v,w) < (1 + A)d(p,q). By the other estimate in | , Theorem

4.6], there is a constant C', depending only on A, so that d(p,q) < Ch(p,q) for all p,q with
d(p, q) sufficiently small in terms of A. ]

Proposition II1.38. There exists small enough &y, depending only on A, A, diam(M), so
that for any v,w € T'M satisfying d(v,w) < & we have d(Fo(v), Fo(w)) < Cd(v,w)A_l’\/A
for some constant C'= C'(n, ', \, A,ip).

Proof. By Lemma III.11, we know that for any v, w € T'M with d(v,w) = ¢, there is a time
o = o(v,w) € [-§,6] and a point [v,w] € T*M so that

[v,w] = W*(v) N W (p7w).
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Let « = A7'A/A be the exponent from Proposition I11.36. Applying Proposition III.36,
followed by Lemma II1.37 and Proposition I11.13, and finally Lemma III.11, we have

d(Fo(v), Fo([v,w])) < C'dgs(v, [v, w])* < Cd(v, ¢7w)* < C(2d(v, w))"

for some constants C' and C” depending only on n,I'; A\, A, i), diam(M). By a similar argu-

ment,

d(Fo([v, w], ¢?w) < Cd(v,w)".

Finally, as in the beginning of the proof of Proposition I11.36, we have
d(F(w), F(¢w)) < Aé.

Now, d(Fy(v), Fo(w)) < Cd(v,w)* follows from the triangle inequality. ]

Lemma I11.39. There is a constant C' = C(\, A, t) so that d(¢'v, ¢'w) < Cd(v,w) for all
d(v,w) < 9y, where &y depends only on A, A, diam(M).

Proof. As before, consider [v,w] = W*(v) N W**(¢7®w). The distance between w and
#°) remains constant under application of ¢!, and since v and [v, w] are on the same stable
leaf, their distance contracts under application of ¢!. Finally, since [v,w] and ¢ w are
on the same strong unstable leaf, | , Proposition 4.1], Lemma II1.37 and Proposition
II1.13 imply

d(¢'[v, w), (btqba(”’w)w) < eAtdsu([’u, w, (b"(”’“’)w) < eAtC’d(v,w)

for some constant C' depending only on A, A, diam(M). O
Lemma II1.40. Let C denote the constant in Proposition I11.38, and let o = A7 XN/ denote
the Hélder exponent. Then there is a constant Cy = C1(C,t) so that

b(t,v) — b(t,w)| < Crd(v,w)".

Proof. By Proposition I11.38, we have d(Fy(v), Fo(w)) < Cd(v, w)® and d(Fo(¢'v), Fo(d'w)) <
Cd(¢'v, p'w)™. Applying Lemma I11.39 shows d(Fy(¢™v), Fo(p'w)) < Cid(v,w)®, where Cy

depends on C' and t. The desired result now follows from Lemma II1.12. O

Proof of Proposition III.4. We want to find a Holder estimate for Fj(v) = ¢ Fy(v),
where ¢;(0,v) = 1 fol b(t,v)dt. By the triangle inequality,

d(Fi(v), Fi(w)) < d(w™ ) Fo(v), OV Fy(w)) + d(@ OV Fo(w), O Fo(w)).
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To bound the first term, note that for all ¢ € [0, 1] we have b(t,v) < At < Al by Lemma
I11.34. Hence the average a,(0,v) is bounded above by A. By Lemma I11.39 and Proposition
I11.38, we have

d(¢az(0,v)f0(v)7¢al(0ﬂ’)]:0<w)) < Cd(Fo(v), Fo(w)) < Cd(v,w)?,

where C' depends only on [ and the constant from Proposition I11.38. As such, C' depends
only on n, I'; A\, A, iy;. By Lemma II1.40, the second term is bounded above by

l
\al(O,'z)) - al(ovw)| < %/ |b(t7 U) - b<t7 U))’ dt, < Cd(”a w)a,
0

where C' again depends only on n, I', A\, A, iy;. O
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CHAPTER IV

Volume Estimate

This chapter is devoted to proving Theorem 1.12. We will repeatedly use the following

standard construction, part of which can be found in | , Section 4]:

Construction IV.1. Let f : M — N be a homotopy equivalence of negatively curved
manifolds. Let M denote the visual boundary of M. We can construct a map f : M — ON
such that for all v € T and all £ € M we have F(7.6) = (fov).f(€). Indeed, the homotopy
equivalence f : M — N can be lifted to a ['-equivariant map f : M — N such that
f is additionally a quasi-isometry (details in [ , Section 4]). Hence f induces a I'-
equivariant map f between the boundaries M and ON.

Now recall the space of geodesics of M is the quotient of T2M obtained by identifying
any two unit tangent vectors on the same orbit of the geodesic flow. This space can be
identified with the set 92M of pairs of distinct points in M by associating the equivalence
class of the unit tangent vector v with the pair (7(v),7(—v)) of its forward and backward
endpoints. Thus, the product f x f gives a map between the spaces of geodesics of M and

N. For notational simplicity, we will write this map as f : 92M — 92N.

Note the case ¢ = 0 of Theorem 1.12 is Theorem A in | |. We follow the same overall
approach as in | ], which we now summarize. It follows from arguments in | ]
that the marked length spectrum of M determines the so-called cross-ratio of four points on
the boundary dM. We start by generalizing these arguments to analyze how perturbing the
marked length spectrum as in (1.7) affects the cross-ratio (Proposition IV.3).

In | |, Hamenstadt proves the cross-ratio determines the so-called Liouville current,
a measure on 92)M which can be used to reconstruct the Liouville measure on T*M. In the
e = 0 case, that is, equality of the marked length spectra, the geodesic flows on T'N and
T'M are conjugate | |, so one can use equality of Liouville currents to obtain equality
of Liouville measures and hence volumes.

In Theorem IV.6, we generalize the arguments in | | to analyze how perturbing the

cross-ratio — due to perturbing the marked length spectrum — affects the Liouville current.
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However, an estimate of the Liouville currents does not immediately imply a volume estimate
since when € > 0, the geodesic flows of M and N need not be conjugate. We instead obtain
controlled orbit equivalences between the geodesic flows on 7'M and T'N by delicately

implementing the construction in [ .

IV.1: The cross-ratio

We now define the cross-ratio associated to any negatively curved Riemannian manifold
(M,g). Let p: M — M be the universal cover of M and let M be the visual boundary of
M. Let 7 : T*M — OM denote the map which sends v to the forward boundary point of the
geodesic determined by v. Let 8*M denote pairwise distinct quadruples of points in M.

Definition IV.2. | , Lemma 2.1] Let a, b, ¢, d € O*M. Let a;, b, ¢;, d; € M be sequences
converging to a, b, ¢, d respectively. Define
[a, b, C, d] = hrn d(ai, CZ'> -+ d(bz, dl) — d(&i, dl) — d(bl, Ci), (IVll)
1—00
where d is the Riemannian distance function. By | , Lemma 2.1], this limit exists and

is independent of the chosen sequences a;, b;, ¢;,d;. We call |-, - -] the cross-ratio.

Theorem 2.2 in | | shows the cross-ratio is completely determined by the marked
length spectrum, and the argument is not specific to dimension 2. In this section, we prove
the following result which shows how perturbing the marked length spectrum affects the

cross-ratio.

Proposition IV.3. Let (M, g) and (N, go) be negatively curved manifolds with e-close marked
length spectra as in (1.7). Let f : OM — ON be the map constructed from the homotopy
equivalence f : M — N as in Construction IV.1. We then have

(1 =e)lab,c.d] < [f(a), f(b), f(e), f(d)] < (1 +¢)la,b,c,d].

Over the course of the proof of | , Theorem 2.2], the following lemma is proved,
giving more precise information about how the marked length spectrum determines the

cross-ratio. We include a careful proof, since the setup will be needed to prove Proposition

IV.3.

Lemma IV.4. Given (a,b,c,d) € O*M, there exist sequences a;, by, ci,d; converging to
a,b,c,d, respectively, so that the terms d(a;, c;),d(b;,d;),d(a;, d;),d(b;,c;) can be approxi-

mated arbitrarily well by lengths of closed geodesics.
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Proof. Since M is negatively curved, the geodesic flow ¢! on T'M is Anosov; hence there
exists v € T'M with dense forward and backward orbit. Let vi,vos € T*M vary over
all lifts of v which determine two distinct geodesics in M. Then quadruples of the form
(m(v1), 7(—v1), T(—13), 7(v2)) are dense in @* M. Since the cross-ratio is continuous | ],
it suffices to check the proposition on this dense set of quadruples.

For i = 1,2, let T;",T;” > 0 be large enough such that the expression
d(¢Tl+Ul, ¢ ) + d(ﬁbT;U% o~ vy) — d(¢T1+U17 ¢ vy) — d(¢T2+U2a ¢ 2 wy)  (IV.1.2)

is arbitrarily close to [m(v1),m(—v1),m(—vs), m(v2)]. In (IV.1.2), expressions of the form
d(v, w) for v,w € T*M should be understood as the distances in M between their footpoints.
Now fix w € T* M. Since the geodesic tangent to v; projects to a geodesic with dense forward
orbit in 7'M, we can make T, larger if necessary so that Dp((}ﬁT1+ v1) is arbitrarily close to
Dp(w) in T*M. Hence there is some ;" € I" such that ~;.w is arbitrarily close to ¢T1+ vy in
M. By the same argument, there exist %i € I' such that %i.w is close to quiivi forv=1,2.

We now use this setup to show terms in (IV.1.2) can be approximated arbitrarily well
by lengths of closed geodesics. Consider the geodesic ¢ in M joining the basepoints of Vi W
and 7y, .w. Since the endpoints of ¢ can be made arbitrarily close to 7(—v;) and 7(v;), the
tangent vectors to ¢ are arbitrarily close to the geodesic (7(—wvy),m(v2)). Also, =11 vy gets
arbitrarily close to the tangent vector to (m(—wv1),m(ve)) as T} gets larger. So the tangent
vector to ¢ at the footpoint 77 .w is arbitrarily close to =71 vy, and hence to v; .w as well.
Similarly, the tangent vector to ¢ at the footpoint of v .w is arbitrarily close to the vector
Yy w.

Now consider the projection p(c) in M. This is a closed curve which is freely homotopic to
75 o (7)1, and is a geodesic away from the basepoint of Dp(w). In the previous paragraph
we showed the two tangent vectors to p(c) at that point are both arbitrarily close to the vector
Dp(w). The Anosov closing lemma then implies p(c) is shadowed by a closed geodesic; see
[ , p. 105] and | , Theorem 6.4.15]. In particular, this closed geodesic is in the same
free homotopy class as p(c). So d(¢™ vy, ¢™% vy) is approximately £,(7; o (y7)™!). Using an
analogous argument, the other three terms in equation (IV.1.2) can also be approximated
by terms of the form L,(y;" o (v;)7). O

Proof of Proposition IV.3. Let (a,b,c,d) € O*M. By the previous lemma, there are se-
quences a;,b;,c;,d; € M converging to a,b,c,d along with sequences 7a,, V,;, Ve;» Vd; Such
that d(a;,b;) is approximately L4(y, © 7,,') and analogously for the other three terms in
the defining equation for [a,b, ¢, d]. Let v,,, vy, be tangent vectors to the geodesic through

a and b based at a; and b; respectively. Let v, and v, be defined analogously. Recall
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the ; were chosen such that there is w € T'M satisfying the condition that the vectors
Va; W, Yo, W, Ve, W, Va,-w are arbitrarily close to the vectors v,,, v, Ve, , Vq, -

By | ], there exists a -equivariant homeomorphism F : T'M — TN, which is an
orbit equivalence of geodesic flows. Moreover, F sends the geodesic through a, b € dM to the
geodesic through f(a), f(b) € ON. Consider the distance between the footpoints of JF(v,,)
and F(vp,). Since F is continuous we know F(v,,) is close to v,,.F(w) and F(vy,) is close to
Y, -F (w). By the Anosov closing lemma, (the projection of) the geodesic through ~,,.F(w)
and 7,.F(w) can be approximated with a closed geodesic of length Ly(f.(7, ©7;"')). The
same argument can be used to approximate the other three distances in the limit definition

of [f(a), f(b), f(c), f(d)]. The desired result then follows from the assumption 1 —¢ < Lﬁ—g; <

1+e. O

Remark TV.5. This proof does not use that 1 4 ¢ is close to 1, so this generalizes | ,
Proposition 4.2].

IV.2: The Liouville current

Let w be the 1-form on 7'M obtained by pulling back the canonical 1-form on T*M to T'M
via the identification induced by the Riemannian metric and then restricting to T'M. (See
Section II.3 for more details.) Then w and dw are both flow-invariant, and w is a contact
form, meaning w A (dw)™™! is a volume form on T'M. The associated measure on T'M
is called the Liouville measure. The total Liouville volume of T*M is the product of the
Riemannian volume of M and the volume of the unit sphere in dimension n — 1; thus the
ratio of the volumes of M and N is the same as the ratio of the Liouville volumes of their
respective unit tangent bundles.

Recall the space of geodesics is the quotient of MM by the action of the geodesic flow,
and can also be identified with the set 92M of pairs of distinct points in the boundary
(see Construction IV.1). Since dw is flow-invariant, it descends to a 2-form on the space of
geodesics 9*M. This form is also symplectic, meaning (dw)™ ! is a volume form on §2M.
The associated measure is called the Liouville current. In this section, we establish the

following relation between the marked length spectra and the Liouville currents:

Theorem IV.6. Let (M, g) be a closed negatively curved Riemannian manifold of dimension
at least 3 with fundamental group T'. Let (N, go) be another closed negatively curved manifold
with fundamental group T and assume the geodesic flow on T*N has Anosov splitting of C1+¢
reqularity. Suppose that the marked length spectra of M and N are e-close as in (1.7). Let \M
and NN denote the Liowville currents on M and 92N respectively, and let f : 9*M — 92M
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as in Construction IV.1. Then there is a constant C' = C(N, o) such that
(1—Ce*)(1—e)" T f M < AN < (1 +Ce™) (1 +e)" L fAM. (IV.2.1)

If, in addition, (N, go) is locally symmetric and ¢ is sufficiently small (depending on n =
dim N ), then « can be replaced with 2 in the above estimates and the constant C depends

only n.

Remark IV.7. If the Anosov splitting of T* N is only C!, then our proof shows the quantities
(1+Ce®) can be replaced with constants that converge to 1 as ¢ — 0, but we are not able to

determine the explicit dependence of these constants on ¢; see the statement above Lemma

IV.15.

The proof of this theorem relies on relating the Liouville current to the cross-ratio, in
order to then apply Proposition IV.3. We begin by explaining the explicit relation between
the Liouville current and the cross-ratio in the case where dim(M) = 2. Let a,b,¢,d € oM
be four distinct points. Since dM is a circle, the pair of points (a,b) determines an interval
in the boundary (after fixing an orientation). Let (a,b) X (¢,d) € 92M denote the geodesics

starting in the interval (a,b) and ending in the interval (¢, d). Then

1
A(a,b) x (¢,d)) = é[a, b, c,d]. (IV.2.2)
(See [ , Proof of Theorem 2] and | , Theorem 4.4].)
In [ |, Hamenstéadt relates the Liouville current and the cross-ratio for manifolds of

any dimension. If, in addition, the manifold N is such that TT'N has C' Anosov splitting,
then the Liouville current is completely determined by the cross-ratio, and hence by the
marked length spectrum, as is the case for surfaces. Hamenstadt’s argument shows more
specifically that if NV satisfies the C' Anosov splitting condition and M is another manifold
with the same marked length spectrum, and hence cross-ratio, as N, then the Liouville
currents of M and N agree. In particular, this shows Theorem IV.6 when ¢ = 0.
Before proving Theorem IV.6, we recall notation, terminology and select arguments from
[ |: Hamenstadt constructs measures S and P (to be defined in Constructions IV.9 and
IV.21 respectively) on the space of geodesics, both completely determined by the cross-ratio,
such that
S<ALP (IV.2.3)

[ , Propositions 3.8 and 3.13 a)]. If the underlying manifold has C'' Anosov splitting,
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which is the case for the locally symmetric space N, the stronger conclusion
S=\=7P (IV.2.4)

holds by | , Proposition 3.13 b)]. If M is such that its cross-ratio agrees with the
cross-ratio of a locally symmetric space N, then SV = f.8™ and PN = f,PM. Combining
this with (IV.2.3) and (IV.2.4) gives

FM < TFPM = AN = T8 < FAM, (IV.2.5)

which forces AN = f_AM. Thus, in order to see the effects of the cross-ratio on the Liouville
current, we need to use the exact constructions of S and P from | ]. We start with

preliminary definitions.

IV.2.1: Definition of S

Definition IV.8. | , p. 123] Fixn > 0. Let B(r) C R™ be the ball of radius r centered
at the origin and let ¢o(x,y) denote the dot product of z,y € R™. Let Sy, 5y : B(r) — OM

be continuous embeddings so that

|[B1(2), B1(0), Ba(y), B2(0)] — do(w, y)| < (IV.2.6)

for all z,y € B(r). We say the image 3,(B(r)) x B2(B(r)) € OM x M\ Ais a (141n) quasi-
symplectic r-ball. We let Q(n) denote the collection of all (1 + n)-quasisymplectic r-balls for

arbitrary 7.

Fix any distance d on M that induces the visual topology. For Q € Q(n), we let diam(Q)
be the d x d diameter of Q C §%M.

For @Q € Q(n), define a quantity §(Q) as follows. Write Q = A x B, ie, A = p1(B(r)),
B = B5(B(r)). First let 6(A x B;a,b) = supgc 4 cepla, §,0,¢]. Now define

(A x B) = ae}éxnbfeB d(A x B;a,b). (IV.2.7)
(See [ , p- 124]).
Construction IV.9. | . p. 124] Let C € OM x OM a Borel set and let a,_; denote

the volume of the unit ball in R”!. Define
S,(C) mf{ a’_ 12(5 )1 Qi€ Qn), diam(@i)gn,CCU(’olQl}.
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Finally, let S(C) = limsup,_,, S,(C).
This concludes our summary of | ].

Hypothesis IV.10. For the remainder of this section, we assume

Lo (f+7)

1—e<
ﬁg(’Y)

<l+e.

(See (1.7) in the statement of Theorem 1.9.)

By Proposition 1V.3, the cross-ratios of M and N satisfy

(1 —¢)la,b, e, d] < [f(a), f(b), f(c), F(d)] < (1 +¢€)[a, b, e, d].
One might hope that this cross-ratio estimate implies SV < (1 4 &)" ' f,SM, since this
would immediately yield AN < (1 + )" ' f,AM by (IV.2.3) and (IV.2.4). However, we are
only able to conclude SN < (14¢)" ' f,SM, so (IV.2.4) does not apply (Proposition IV.14).
As such, we proceed to estimate the rate at which S converges to AV as ¢ — 0 (Proposition
IV.15), and we also show how this estimate can be improved in the case where N is locally

symmetric (Lemma IV.18 and Remark IV.20). The analysis for the measure P is similar,

but the directions of the inequalities are reversed.

IV.2.2: Comparing f,8™ and SV

Changing the cross-ratio used to define & will change the the set Q(n) and the quantity
0(Q). We investigate this precisely below.

Lemma IV.11. Let Q C 9*°M. If Q € Q(n) then f(Q) € Q(n+ (1+n)e).

Proof. 1f Q € Q(n), there are maps f3; : B(r) — M fori = 1,2 with Q = S1(B(r))x S2(B(r))
such that
[B1(2), B1(0), B2(y), B2(0)]ar — (. y)| < . (IV.2.8)

Using the triangle inequality, Proposition IV.3, and (IV.2.8) gives

|[f o Bi(w), foB1(0), f o Ba(y), f o Ba(0)]w — bolw,y)|
< e[fi(z), B1(0), B2(y), B2(0)]ar + [[B1(), B1(0), B2(y), B2(0)] s — do(x, )]
Sé‘[ﬁl(ﬂf)aﬁ( ) B ( ), B2(0)]as + 1
<e(l+n)r’
which shows f(Q) € Q(n + (1 + n)e). O
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Lemma IV.12. For anyn >0, let Q € Q(n). We then have

(1-2)6"(Q) < 6™(f(Q)) < (1+2)5"(Q).
Proof. This follows immediately from the definition of § in Equation 1V.2.7 together with
Proposition 1V.3. O

Corollary 1V.13. Let
X%‘ = {(Al X Bi)ieN ’ Cc U;.ilAz X Bi, dlam(Az X Bz) < n, Az X Bl S Q(’I])} .
Then
700" ) € oo
for sufficiently small n.

., B
Proof. 1f (A; X B;)ien € X?J; © then f(A; X B;)ien clearly satisfies the first condition in the

definition of XnCJr(l ) To check the second condition, note that since f is continuous, for

any € > 0 there exists > 0 so that diam(A4; x B;) < n implies diam(f(4;) x f(B;)) < e <
1+ (1 + n)e. The third condition follows from the previous lemma. O

Proposition IV.14. The following inequality of measures holds:
SN < (14 tf.SM

Proof. For any C C 82N, Corollary IV.13 and Lemma IV.12 give

— —1

(@)

a_ Z(S<Ai X B))" 1| (A; X Bj)ien € Xg;l(m}

az_y Y O(Ai x B)" M| (F(Ai) x F(B:))ien € Xsc(1+n)+n}

(
e { S04 x B | (F(4) x F(B)ien € ?<x5”<0>>}
{"——1 25(?(14@) x F(B))" M| (f(A;) x f(B)))ien € X§1+n)+n}

Taking 7 — 0 completes the proof. O
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IV.2.3: Comparing S and \V

If TT*N has C' Anosov splitting, then S¥ — AV as e — 0 (see the proof of | ,
Corollary 3.12]). If we assume instead the splitting is C'*® we obtain a more precise

convergence statement:

Lemma IV.15. Suppose the Anosov splitting of N is of class C1*®. Then there is a constant
C, depending only on N, so that for all e > 0 (sufficiently small in terms of n) we have

1
SN > —— AN,
£ T 14 Ce>
Recall from the proof of | , Corollary 3.12] that if 6 > 0 and x(d) is chosen as in

[ , Lemma 3.11] then S, > (146)~'A. (This requires d to be sufficiently small in terms
of n = dim N.) As such, we prove Lemma IV.15 by explicitly determining the dependence

of x(6) on §. Note it follows from the proof of | , Lemma 3.11] that x(¢) is in turn
equal to the quantity x(J) from | , Property 4), p. 130]. We now recall all the relevant
definitions in the statement of | , Property 4)]:

First we recall the definition of the function ¢ at the beginning of [ , Section 3.

Let p be a symplectic form on R™ x R™ so that for all z,y € R™, the submanifolds {x} x R"
and R" x {y} are Lagrangian. For z € R", let ¢, be a curve in R" such that ¢,(0) = 0
and ¢;(1) = z. Similarly define a curve c,. Then define a surface ¥, ,(s,t) = (c,(s), ¢y(t)).
Let ¢(z,y) f\p P By | , Lemma 3.1], the function ¢ is well-defined, ie, does not
depend on the ch01ce of curves ¢, and ¢,. Note that if py is the standard symplectic form
> dz; A dy;, then the associated function ¢g(z,y) is the dot product of z and y in R™.
Hamenstadt also defines such a function ¢ associated to the symplectic form dw on
the space of geodesics using special coordinates U : R* ' x R — M x OM \ A to
view dw as a symplectic form on R"~! x R*""!. We recall the construction of ¥, which
can be found above the statement of | , Lemma 3.9]: There exists a geodesic flow
invariant connection V on T'N called the Kanai connection. This connection is flat when
restricted to the leaves of the strong stable and strong unstable foliations W** and W**,
respectively (see the discussion in | | for more details). Fix v € T'M and let L** :
T, W — W and L** : T,W?*® — W*° be exponential maps with respect to the restriction
of this connection to W** and W** respectively. Let {X;} and {Y;} be orthonormal bases
for T, W*" and T,W*® respectively so that dw(X;,Y;) = 0;;. For w € W*(v) and z €
W=*(v) both sufficiently close to v, define [w, 2] to be the unique point in W**(w) N W*"(z).
The regularity of the function [-,-] is the same as that of the Anosov splitting. Define
V(1 Tty Y-y Ynm1) = [L7(2 :X0), L°(32; y;Y5)]. Let p be the symplectic form
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on R"! x R"! given by p(z,y) = dw(d¥x,d¥y), which is continuous when ¥ is C'. Use
this form p to define a function ¢ as above. Recall ¢y was defined similarly, but in place of
the symplectic form p, the standard symplectic form py was used. Then the function ¢ has

the following property:

Lemma IV.16. [ , Property 4, p. 130] Suppose the Anosov splitting of N is C*. Then
for any 6 > 0 there is k(J) so that whenever ||x||, ||y|| < k() we have

|¢($,y) B ¢0<I7y)| <.
1|1y

We now show how #(d) depends on ¢ in the case where the Anosov splitting is C1*.

Lemma IV.17. Suppose the Anosov splitting of N is CY1*®. Then there is a constant
C = C(N) so that k(8) = (%)Ua in the above lemma.

Proof. Fix z,y € R"! and consider the parametrized surface U, ,(s,t) = (sz,ty). Then,

definitionally, we have

¢(x,y) B ¢0($,y) — 1
[yl lzl[lyll e,

P — Po-

Write p — pg = Zij aijdx; A dy;. Since U is C', the a;; are C*. Moreover, a;;(0,0) = 0
[ , Property 1), p. 128]. Thus |a;(sz,ty)] < Cl/(sz,ty)||* < C||(z,y)||* for some
constant C' depending on N.

We now have

|6(z,y) = ¢o(z, y)|
[yl

ov 8\11)
p—po) | — dsdt'
IIxIHIyII// ’ (3 Lot

a;;(sx, ty)dz; A dy; (ﬁ ﬁ) dsdt
3,7=1

o z Y
< Cl(z,y)]| //del/\d%(W W) dsdt

i,j=1

< n*C|(z, y)lI*:

If ||z||, ||y < &, we get |p(z,y) — do(x,y)| < Cr®||z||||y|| for some constant C' = C'(N). So
we can take r(0) = (6/C)/* for some other C' = C'(N) and the conclusion of Lemma IV.16
will hold. O

Next we show how to improve the value of x(J) when N is a locally symmetric space.
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Lemma IV.18. If N is a locally symmetric space, and 0 is sufficiently small (depending on
n) then we can take r(0) = C6Y2 for some constant C' depending only on the dimension of

N.

Proof. Let g(x,y) = ¢(x,y) — ¢o(z,y). Since N is locally symmetric, the stable and unstable
foliations are real-analytic, and so is g. We now compute the first nonzero term of the power
series expansion of ¢ centered at (0,0).

Since ¢(0,0) = ¢0(0,0) = 0, we get g(0,0) = 0. Now fix y and let g,(z) denote the
function x — g(z,y). Let g.(y) be defined analogously. We know go(x) = 0 for all z and

go(y) = 0 for all y | , Property 1)]. Hence the k-th derivative D*gy(x) = 0 for all x
and DFgo(y) = 0 for all y.
Additionally, the function g,(y) satisfies Dg,(0) =0 | , Property 3)]. Analogously

we have Dg,(0) = 0. This, together with the previous paragraph, means if a and 3 are
o 29(0,0) = 0 whenever |a] = 0,1 or

|| = 0,1. Hence the first nonzero term of the power series expansion of g centered at (0, 0)

both n-dimensional multi-indices, then we have

is of the form ), kg @ijki®i®5y;y- This means there is a constant C depending only on N
such that

|¢(x7?ﬂ) — ¢o(,y)| < 1 C«quznyHQ

||yl [l [[[ly]l

so long as ||z||, ||y|| are small enough for the power series expansion of g centered at the origin
to converge at (z,%). Set x(5) = (6/C)"2. Then for small enough & (depending on N), we
obtain |¢(x,y) — ¢o(x,y)| < o||x||||y|| whenever ||z|], ||y]] < &, as desired. O

IV.2.4: Comparing Ay and f Ay

Proposition IV.19. Let \M and AN denote the Liouville currents on 8*M and 9*N respec-
tively. There is a constant C = C(N) so that

M < (14e)" M1+ Ce™) f M.

Proof. Combining Proposition IV.14 together with | , Proposition 3.8] (see also (IV.2.3)),

we obtain
SN <A+ L.SM <1+ AN

Lemma IV.15 together with the proof of | , Corollary 3.12] gives
SN > (14 Ce™)™ AN
for some C' depending only on N, which completes the proof. O
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Remark IV.20. If N is a symmetric space, Lemma IV.18 shows we can take a = 2 in
the statement of the above proposition. Additionally, since there are only finitely many
negatively curved symmetric spaces of a given dimension, we can say C depends only on
n=dimN.

To complete the proof of Theorem IV.6, we need a lower estimate for Ay analogous to
the upper estimate in Proposition IV.19. We obtain this by mimicking the above analysis
for the measure P instead of S, see (IV.2.3). We first recall the construction of P:

Construction IV.21. | , Proposition 3.13] Let 7 > 0 and U be an open subset of
9*>M. Define

Py(U) = sup {ai_l D 6(Q)" 1 Qi € Qn), diam(Q:) < n,Q; C U, QiNQ; = @} :
=1

Let P(U) = liminf, o P,(U). For C C *M a Borel set, define P(C) = inf{ P(U) |U > C}.

Proposition IV.22. Let \M and AN denote the Liouville currents on 9*M and 9N respec-
tively. There is a constant C = C(N) so that

Av > (1—e)" (1= Ce™) f

If N is a symmetric space, we can take o = 2, and the constant C' depends only onn = dim N.

Proof. Let

Xy ={(Q)ien |QiNQ; =0, Q; C U, diam(Q;) <n, Q; € Q(n)}.

Then f(xY) C X(?l(:{;)e 4y Dy Corollary IV.13. Using Lemma IV.12 gives
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Taking n — 0 gives
(1 —e)"HfPY(U) < PY(U).

This, together with [ , Proposition 3.13 a)] (see also (IV.2.3)), gives
(L= f A (U) < (1 =) ' LPY(U) < PX(U).
It follows from Lemma IV.17 together with the proof of | , Proposition 3.13 b)] that
PN < (1—Ce™) AN

for some constant C' depending only on N.

Hence AN(U) > (1 —&)" (1 — Ce®) f,PM(U) for any open set U C M. To obtain
this inequality for any Borel set A C 92M we take the infimum over all open sets U D A.
Finally, noting that P* > A (see (IV.2.3)) completes proof. O

Proof of Theorem IV.6. The first part of the statement follows immediately from Proposi-
tions IV.19 and IV.22. The refinement of the statement in the case where N is a symmetric

space follows from Remark IV.20. n

IV.3: A controlled orbit equivalence

In this section, we will use the estimate for the ratio f,AM /AN of the Liouville currents in
Theorem IV.6 to compare Vol(M) and Vol(N). Note the Riemannian volumes of M and N
are determined by the Liouville volumes of 7'M and T'N. To obtain the Liouville measure
from the Liouville current, we integrate the Liouville current in the geodesic flow direction.
Let ¢! denote the geodesic flow of M and let )¢ denote the geodesic flow of N. If the marked
length spectra of M and N are equal, then the flows ¢' and ¢ are conjugate | |, ie,
there is a homeomorphism F : T*M — T'N such that

F(¢'v) = ¢'F(v)

for all t € R,v € T'M. If, in addition to this, M and N have the same Liouville current,
then T'M and T'N have the same Liouville measure, so Vol(M) = Vol(N).

If the lengths of closed geodesics of M and N are instead e-close as in (I.7), the geodesic
flows may not be conjugate. However, so long as M and N are negatively curved and

have isomorphic fundamental groups, their geodesic flows are orbit-equivalent | |. This
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means there exists a function a(¢,v) such that
F(¢'v) = " F(v)

forallt € R,v € T'M.

In this section, we will use the assumption of approximately equal lengths (I1.7) to show
the time change a(t,v) is close to ¢ on sets of large measure, thereby allowing us to show the
total Liouville measures of 7'M and T'N are close.

We begin by recalling the setup from | |. The construction starts with a preliminary
I-equivariant orbit map Fo : 7'M — TN which is not necessarily injective. Recall there is
a homotopy equivalence f : M — N by assumption. We can assume f is C! by using that
every continuous map is homotopic to a differentiable map; see [ , p- 86] and | ].
Let f: M — N be a lift of f.

Let n be a bi-infinite geodesic in M and let ¢ = T(n) be the corresponding geodesic
in N, where f : M — 92N is obtained from extending the quasi-isometry f to a map
OM — ON; see Construction IV.1. Let P N — ¢ denote the orthogonal projection.
Note this projection is I'-equivariant, ie, vP(x) = Pyc(yx). If (p,v) € T'M is tangent to
n, then we can define Fy(p,v) to be the tangent vector to ¢ at the point P o f(p) Thus
Fo: T'M — TN is a I'-equivariant map which sends geodesics to geodesics. As such, we

can define a cocycle b(t,v) to be the time which satisfies
Fo(¢'v) = ") Fy(v),
Remark TV.23. Since f is C! and the orthogonal projection is smooth in the t-direction, we

have t — b(t,v) is O

It is possible for a fiber of the orthogonal projection map to intersect the quasi-geodesic
f (n) in more than one point; thus, Fy is not necessarily injective. In order to obtain an
injective orbit equivalence, we follow the method in | | and average the function b(t,v)
along geodesics. We include a proof below, since the setup will be used throughout this

section.

Lemma IV.24. Let

1 t+1
ay(t,v) = 7/ b(s,v)ds.
t

There is a large enough | so that t — a,(t,v) is injective for all v.
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Proof. The fundamental theorem of calculus gives

d _ b(t+1v) = b(t,v)
Eal(t’ v) = l . (IV.3.1)

We claim there is a large enough [ so that this quantity is always positive. To this end,
suppose b(t + 1, v) — b(t,v) = 0. This means Fy(¢'v) and Fy(¢'v) are in the same fiber of
the normal projection onto the geodesic f(v). Since s — f(¢*v) is a quasi-geodesic, there is a
constant R, depending only on the quasi-isometry constants A and B of f , so that all points
on f(¢*v) are of distance at most R from the geodesic 1" Fo(v) | , Theorem 3.H.1.7].
Thus two points on the same fiber of the normal projection are at most distance 2R apart,
which gives
A7N = B < d(f(6'), f(¢")) < 2R.

Taking [ > A(2R + B) guarantees %al(s, v) is never 0, and hence a;(s,v) is injective. ]

Proposition IV.25. For each v € T*M, let
Fi(v) = O Fy(v)

for a; as in Lemma IV.24. Then F; is an orbit equivalence of geodesic flows.

Proof. Since F; sends geodesics to geodesics, there exists a cocycle ki (¢,v) so that Fi(v) =
YRt F(v). We need to check t +— k;(t,v) is injective. Note that

I
a;(0, p'v) = %/0 b(s, p'v) ds

- %/lb(s—f—t,v) — b(t,v)ds
= a(t,v) — b(t,v).

This means

Fi(¢v) = @9 Fy(gtv)
= (02" +b(E0) ()
= ) F (v).

Therefore, Fy(¢tv) = ¢*t0) Fi(v) = %@ Fy(v), and hence

b(l,v)
T

d d
£|t:0kl(tav) = —lizoai(t,v) = (IV.3.2)

Cdt
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The proof of Lemma IV.24 shows the above quantity is positive. So F; is injective along

geodesics, as desired. O]

Now we will use the assumption 1 — ¢ < i—g; < 1+ ¢ (Hypothesis IV.10) to say more

about this orbit equivalence.
Lemma IV.26. Let v € T*M be tangent to the axis of v and let 7 = 1(7). Then

b(r,v)

T

1—e<

<1l+e.

Proof. By definition, b(7,v) is the distance from Fy(v) to Fo(yv) = f(7)Fo(v). In addition,
if v is on the axis of y, then F(v) is on the axis of f(7), which means b(r,v) is equal to the
translation length of 7(7) The hypothesis 1 —e < %? < 1+ ¢ implies the translation length
of f(7) is between (1 — ¢)7 and (1 + ¢)7, which completes the proof. O

Lemma IV.27. There is a number L with 1 +¢ < L < 1 — ¢ such that for almost every

veT'M, we have
b(t, v)

t

— L

ast — o0.

Proof. Let B(v) = 4|,_ob(t,v) (see Remark IV.23). Then the fundamental theorem of

calculus implies
T
b(T,v) = / B(6'v) dt.
0

Indeed,
T T d
/ B(o'v) dt = / — |40 b(s, ¢'v) dt
0 o ds

T d
= —|s=0 [b(s +t,v) — b(t,v)|dt cocycle condition
d
o ds
Td
= —|s=0 b t,v)dt
/o dsl ob(s+t,v)

= b(T,v) — b(0,v).

The ergodic theorem then implies

im 25— [ s)du()

T—00 T T M

for p-almost every v, where p is normalized Liouville measure on T'M. The integral of 5 on

67



the right-hand side can be approximated by averaging /3 along closed geodesics (see | D).
Lemma IV.26 then implies the value of this integral is between 1 — ¢ and 1 + €. m

Now we will explicitly relate the Liouville current A on §2M and the Liouville measure
won THM. (This is a special case of a more general correspondence between geodesic-
flow-invariant measures on 7'M and finite measures on M due to Kaimanovich | ,
Theorem 2.1].)

Let X denote the vector field on T'M which generates the geodesic flow. For every
v € T*M, we can choose local coordinates (t,zy,...,,,) near v so that /0t = X. Then
(0,21, ...,2,) defines a local smooth hypersurface Ky C T M which is transverse to X. Let
K = 7(Ko) C 9*M. Then [, (dw)"' = MK).

For T' > 0 define

Kr = {¢'v|v e Ky, t €0,T]}. (IV.3.3)

If T is sufficiently small, then with respect to our choice of local coordinates, we have
Kr={(t,z1,...,2,) |0 <t <T} and w = dt. We thus obtain

w(Kr) = /K WA (dw)" ' =T /K (dw)"™t = TA(K). (IV.3.4)

Lemma IV.28. Suppose
FAM > AN (IV.3.5)

for some constant C'. For T > 0 (sufficiently small as above) and Ky C T'M a local
transversal to the geodesic flow, define K as in (IV.3.3) above. For all § > 0, there is a
large enough | (depending on Kt and §) so that

p (Fi(Kr)) 2 C'(1 =& = 0)(1 = d)p™ (Kr).

Proof. For almost every v € Ky, Lemma IV.27 gives lim;_, b(lT’U) =L, where 1 —e < L <

1+e. By Egorov’s theorem, there is a large subset of vectors v (meaning of measure at least

(1 — §)AM(Kr)) for which @ — L uniformly in v. In fact, this subset can be taken to

be of the form Er := Ky N7 Y(E) for some E C K C 9*M. To see this, we compare the

convergence of @ with that of w for t € [0, T]. The cocycle condition implies

b(l, ¢'v) — b(l,v)  b(t,d'v) — b(t,v)

[ l

The numerator of the right hand side is bounded on the compact set [0, 7] x T* M independent

of [, so the left hand side goes to zero uniformly in v as [ — oo.
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Thus we can choose large enough [ (depending on §) ) < L+ for all

v € Ep. Using Lemma IV.27 and (IV.3.2) we get
d
1—5—(5§ %’tzokl(t’v) < 1"—5"‘5

for all v € Ep. The cocycle condition implies

/ okt ds = / k(s 1,0) ds = Fy(t,0) = B(0,v).
This, together with the previous inequalities, gives
l—e—0<k(tv)/t<1l+e+0.
This means

Fi(Br) = {F I F(v) v € By, t €[0,T]} D {¢*Fi(v) |v € By, s € 0,(1 —e —6)T]}.
(IV.3.6)
The Liouville measure of the rightmost set is (1 — ¢ — §)TAN(f(E)) by (IV.3.4). Moreover,
TANE) = p™(Br) > (1= 0)u™ (Kr) = (1= §)TAY(K)

shows AM(E) > (1 — §)AM(K). Then we have

PN (Fi(Kr)) > p (Fi(Er))
> (1—e—-6TAV(f(E)) (equation 1V.3.6)
>(1—e—086)TC'\(E) (equation 1V.3.5)
>(1—e-0)TC'(1 - HI(K)

=C'(1—e—0)(1—8)pM(Kr),

which is the desired result. O

Now we are ready to prove the main theorem of this section, which relates the volumes
of M and N.

Proof of Theorem 1.12. Let § > 0. Choose finitely many disjoint sets of the form K¢, c T'M
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(as defined in (IV.3.3)) so that

k
S (k) = p(T'AM) = 6.

=1

Now choose large enough [ (depending on §) so that the conclusion of Lemma IV.28 holds
for K1.,... ,Kéﬁk simultaneously. By Theorem IV.6, the hypothesis of Lemma IV.28 holds
with C" = (1 — Ce*)(1 — )"~ . We then have

PN (TIN) > Zip™ (Fi(KT))
> C'(1 -2 = 8)(1 = )T (KF,)
>C'(1—e—0)(1—0)(u™(T*M) —9).

Taking 6 — 0 implies Vol(N) > (1 — Ce®)(1 — &)""*Vol(M). Switching the roles of M and

N in all the arguments in this section gives the estimate in the other direction. O
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CHAPTER V
Estimates for the BCG Map

If £, = Ly, then it follows from | , Theorem A] that Vol(M, g) = Vol(N, go). Since
L, determines the topological entropy of the geodesic flow, the entropy rigidity theorem of
Besson-Courtois-Gallot | | states there is an isometry F': M — N.

In the case where 1 — ¢ < Eﬂ—ggo < 1+ ¢ (Hypothesis IV.10), Theorem 1.12 states the
volumes of M and N satisfy (1 — Ce?)(1 — )" < \\;211((]\]\?) < (14 Ce*)(1+¢)", where C'is a
constant depending only on n. Moreover, the entropies are related as follows.

Lemma V.1. Let h denote the topological entropy of the geodesic flow. Then with the above

marked length spectrum assumptions we have

1 1

h(g) < h <
1+e (9) < (90)_1_5

h(g). (V.0.1)

Proof. This follows from the following description of the topological entropy in terms of

periodic orbits due to Margulis | |:

1
h(g) = lim —log P,(t), (V.0.2)

t—oo ¢
where Py(t) = #{v|{,(y) <t} O
We use the results of Theorem 1.12 and Lemma V.1 to modify the proof in | ] that

there is an isometry F' : M — N. More specifically, we use the same construction for the
map F asin | | and show the matrix of dF), with respect to suitable orthonormal bases

is close to the identity matrix.

V.1: Construction of the BCG map

From now on, we will assume N is a locally symmetric space. This means N is either a real,
complex or quaternionic hyperbolic space or the Cayley hyperbolic space of real dimension

16; let d = 1,2, 4 or 8 respectively.
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We now normalize the metric gy so the sectional curvatures are all —1 in the case d =1
and contained in the interval [—4, —1] otherwise. Since dim N > 3, Mostow rigidity implies
(N, go) is determined up to isometry by its fundamental group I' | |. Thus, from now
on, any constants arising from the geometry of /N, such as the diameter and the injectivity
radius, can be thought of as depending only on I'. We also rescale the metric g by the same
factor as go in order to preserve the assumed marked length spectrum ratio in (1.7) as well as
the established volume and entropy ratios. From now on, we will also assume the sectional
curvatures of (M, g) are in the interval [—A? —0) for some constant A. Such a constant
always exists since M is assumed to be compact; however some of our estimates will depend
on its particular value.

We first recall the construction of the map F': M — N in | ]. We then summarize
the proof that F'is an isometry in the case of equal entropies and volumes, before explaining
how to modify it for approximately equal entropies and volumes.

Given p € M, let p, be the Patterson-Sullivan measure on OM. Let f : OM — ON as
before (see Construction IV.1). Define F(p) = bar(f.p,), where bar denotes the barycenter
map (see | | for more details). We call F' the BCG map. By the definition of the
barycenter, the BCG map has the implicit description

| dBridFaa)(€) = (V.L1)

where £ € ON and Brp),e is the Busemann function on (N, go). By the implicit function
theorem, the BCG map F' is C* (actually, C? since Busemann functions on M are C? | ,
Proposition 1V.3.2]), and its derivative dF), satisfies

|| Bes By (R0 AT €)= ho) [ B (B (0d(Fuin)(©

oN
(V.1.2)
for all v € T,M and u € TppN | , (5.2)]. In light of this, it is natural to define the
following quadratic forms H and K:
(Krgyuu = | (HessBrg) o)) d(T.py) ) (v13)
(Hrgyu) = [ (@Brg ) d(F.) ) (V.14)
where (-, -) denotes the Riemannian inner product coming from go | , p. 636].

Without any assumptions about the volumes or entropies, the following three inequalities

hold; see [ ] for the Cayley case.
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Lemma V.2. [ , Lemma 5.4/

h'(g) det(H)"?

F < .
JacF(p)] < n™2  det(K)

Lemma V.3. [ , Lemma B3] Let n > 3 and let H and K be the n x n positive definite

symmelric matrices coming from the operators in (V.1.3) and (V.1.4), respectively. Then
2n(n=1) _n—d_
det H (n — 1)tz det(H)n+i-z

< 2(n—1) 7
det(K)2 - (TL +d— 2)2n det(] _ H) nid,g

with equality if and only if H = %I.

Lemma V4. | , Lemma B4] Let H be an n x n positive definite symmetric matriz
with trace 1, where n > 3. Let 1 < a <n —1. Then

det H < n® "
det(I — H)® — \n(n—1)>) ~
Moreover, equality holds if and only if H = %I.
Combining the above three inequalities (setting o = %) together with the fact that
h(go) = n+ d — 2, we obtain:

Lemma V.5. [ , Proposition 5.2 i)]
h(g) >”
JacF(p)| < ( )
= G
As in the proof of | , Theorem 5.1], the above lemma relates the volumes of M

and N as follows:

Vol(NV, go) < /M]F*dVOH :/M\(JacF)dVol\ < (:((ggo)))n\/ol(]\/[,g). (V.1.5)

Remark V.6. This, together with Lemma V.1, improves one of the inequalities in Theorem

[.12 in the special case where N is a locally symmetric space.

With this setup in mind, the argument in | | showing that F'is an isometry consists

of the following components:

1. If the volumes and entropies are equal, then the inequalities in (V.1.5) are all equalities,

which gives equality in Lemma V.5.
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2. Thus, equality also holds in Lemmas V.2 and V.3, from which it follows that H = %I

and K = "4=2] = Mool 1 Gee | , p. 639].
3. With H and K as above, the end of the proof of Proposition 5.2 ii) in | | shows
that dF, = <f;f(~‘f;))) I, which means F' is an isometry in the case where the entropies

are equal. This concludes the proof of Theorem 1 in | ]

Assuming instead that 1 — e < %0 < 1+ ¢, the equalities of volumes and entropies are
replaced with the conclusions of Theorem 1.12 and Lemma V.1 respectively. Proceeding as

in the above outline, we can instead obtain estimates for ||dF,| in terms of e:

1. We show equality almost holds in (V.1.5); that is, we find a lower bound for JacF(p)
of the form S(h(g)/h(go))" for suitable 5 (Proposition V.27).

2. This implies the eigenvalues of H are all close to 1/n and the eigenvalues of K are all
close to h(go)/n (Proposition V.31).

3. With H and K as above, we mimic the proof of | , Proposition 5.2 ii)| to obtain
bounds for ||dF,||, which completes the proof of Theorem 1.9 (Proposition V.35).

The main difficulty is step (1), where we cannot simply mimic the arguments in | ].
Indeed, with the above assumptions about the entropies (Lemma V.1) and the volumes
(Theorem 1.12), the inequalities in (V.1.5) become

(1—Ce)(1—2) (1+15)n (:((50))> Vol(M) < /M JacF| < (:((ggo))) Vol(M),

which does not give a lower bound for the integrand. In order to obtain a lower bound for
|JacF|, we use the above lower bound for its integral together with a Lipschitz bound for
the function p — |JacF(p)| (Proposition V.25). The fact that this function is Lipschitz is
immediate from the fact that F' is C?; however, it is not clear a priori how the Lipschitz

bound depends on (M, g). Assuming 1 — ¢ < L0 < 1 4 ¢ holds (Hypothesis 1V.10) for

‘CQ
e sufficiently small (depending on n and I'), we will show there is a Lipschitz bound for
JacF'(p) depending only on the dimension n, the fundamental group I" and the lower bound

— A2 for the sectional curvatures of M.
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V.2: Lower bound for K

Recall the BCG map F is defined implicitly (see ( V.1.1)), and its derivative dF, satisfies

the following equation

(KaF(0).0) = hla) | dB) (aBY o ()T ) ).

(See (V.1.2) and (V.1.3).) In order to use this equation to find a Lipschitz bound for JacF(p),
we start by bounding the quadratic form K away from zero (Proposition V.17). Recall

(Krgyuu) o= [ (HessBe) i () d(F.sn) ©), (v.21)

Note that K depends not only on the symmetric space (N, go), but also on (M, g), since p,
is the Patterson-Sullivan measure on M defined with respect to the metric g. We start by
recalling that K is positive-definite for any given (negatively curved) metric g on M (see

[ , Definition 3.2]). We include a detailed proof as we will refer to the arguments later.
Lemma V.7. There is kg > 0 so that (Kpgyu,u) > kg for all p € M, ue T}(p)N.

Proof. First we examine the integrand in (V.2.1). Fix p € M and u € T}(p)N and consider
(HessBe) ppy(u). Let vpp) ¢ be the unit tangent vector based at F(p) so that the geodesic
with initial vector v has forward boundary point &, ie, vp@) ¢ is the gradient of Bg p(. Let
0¢ denote the angle between vp(y) ¢ and u. Then we can write u = (cos 0¢)vr) e + (sinf¢)w
for some unit vector w perpendicular to vpg)e. Since (HessBe)ppy(u) = (VuVpp)e, ),
we obtain (HessBe)p(y)(u) = sin® 0 (HessBe) g (w). Let R denote the curvature tensor of
(N, §o). Using the formula

(HessBe) rp) () = \/ —R(vrm)e 5 vPp) € ) (V.2.2)

(see [ . p. 16]), together with the fact the sectional curvatures of N are at most —1, it
follows that
(HessBe) pp) (u) > sin® 0.

Hence, the integrand in the definition of Kp,) is 0 if and only if §; = 0,7. This occurs
precisely when £ = m(zu), where 7 is the projection of a unit tangent vector to its forward
boundary point in dN. Since j,, is non-atomic, we have (f,u,)(ON\ {r(£u)}) = 1 > 0. Thus
(HessBe) pp)(u) > 0 for a set of € of positive f,u,-measure, which means Kp,)(u,u) > 0 for
all (F(p),u) € T'N.
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Moreover, there is k > 0 so that (Kppu,u) > « for all p € M and u € T}(p)N. To
see this, first note (K, pp)yu, yu) = (Krpyu,u) for all v € I', since the action of I' is by
isometries. Thus it suffices to bound (K p(,u,u)from below as (F(p),u) € T*N varies over
a compact fundamental domain for 7' N. This follows from the fact that (Kp(,u,u) varies

continuously with respect to (F(p),u) € T*N. O

While K is positive-definite for any given negatively curved metric g on M, it is not clear
from the above analysis that there is a lower bound which is uniform in ¢g. To this end, we
establish a type of compactness of the space of all metrics g on M with sectional curvatures
in the interval [-A? 0) and marked length spectrum satisfying 1 — ¢ < £,/L,, < 1+ ¢

(Corollary V.10). We start with some preliminary lemmas.

Lemma V.8. The injectivity radii of (M, g) and (N, go) satisfy
(1 —e)inj(M, g) < inj(N, go) < (1 +¢€)inj(M, g).

Proof. This follows from the fact that in negative curvature, the injectivity radius is half
the length of the shortest closed geodesic | , p-178] together with the marked length
spectrum assumption.

Indeed, let v be the shortest closed geodesic in (M, g) and let vy be the shortest closed

geodesic in (N, gp). Then the marked length spectrum assumption gives

2(1+¢)inj(M, g) = (1 +)Ly(7) > Ly (fe7) = Lyy(70) = 21nj(N, go)-

An analogous argument gives the other estimate. O

Lemma V.9. There is an upper bound for diam(M) depending only on €, the dimension n,

and the fundamental group T.

Proof. Let p and ¢ be such that diam(M) = d(p, ¢) and let ¢(t) be the geodesic joining p and
q. Let r be the injectivity radius of (M, g). Let m be the unique positive integer such that
2(m—1)r < diam(M) < 2mr. Take balls of radius r centered at ¢(0), ¢(2r), c(4r), ..., c(2(m—
1)r). Since M is negatively curved, the volume of any such ball is bounded below by the
volume of a ball of radius r in R" | , Theorem 3.101 ii)], which we will denote by
v(r,n).

Then muv(r,n) < Vol(M) < CVol(N), for some C' = C(e,n) (see Theorem 1.12). This

gives an upper bound for m, therefore

2CVol(N)

=di M) <2rm <
d(p,q) = diam(M) < 2rm <r ol n)
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Combining with the previous lemma gives

inj(V)
1—-¢

_ 2CVol(N)

diam(M) < v(inj(N), n)’

(1+¢)

Finally, since N is locally symmetric, it follows from Mostow Rigidity that inj(/N) and Vol(N)
depend only on I'. O

Corollary V.10. Fiz (N, go) a rank 1 locally symmetric space of dimension at least 3, and
let M be another manifold with the same fundamental group as N. Fixe, A > 0. Let {gn }nen
be a sequence of Riemannian metrics on M with sectional curvatures in the interval [—A?,0)
and marked length spectra satisfying 1—e < Ly, /L, < 1+¢. Then there is a C* Riemannian
metric goo on M and a subsequence {gn, ren so that the distance functions dg, converge to

d

9ee Uniformly on compact sets.

Proof. Let M = M(M, Dy, vo, A) be the space of all Riemannian metrics on M with diameter
bounded above by Dy, volume bounded below by vy, and absolute sectional curvatures
bounded above by A%. Then, by | , Theorem 1], the space of all such metrics is pre-
compact in the following sense: every sequence in M has a subsequence which converges in
the Lipschitz topology to a limiting metric g,, whose coordinate functions g% are of O
regularity for some 0 < a < 1 (see | | for more details). Moreover, the associated
distance functions converge uniformly on compact sets | , p- 122].

Thus, it suffices to show any g, as in the statement of the Corollary is contained in
M(M, Dy, vg, A). First, by Lemma V.9, these metrics all satisfy diam(M, g) < Dy for some
Dy = Dy(n,e,I"). Second, we know Vol (M) > (h(g)/h(go))"Voly, (N) > (1 —¢)"Voly, (N)
by | , Theorem 5.1 i)] and Lemma V.1. Finally, the desired sectional curvature bound

holds by assumption. This completes the proof. O

Remark V.11. The metric space (M, g) is CAT(0) as it is a suitable limit of such spaces;
see [ , Theorem 11.3.9].

Lemma V.12. Suppose g, is a sequence of Riemannian metrics on M (as in the statement
of Corollary V.10) so that the distance functions d,, converge uniformly to d,_ on compact
sets for some C* Riemannian metric goo. Lift the g, and go to metrics on M. Then for

any A > 1 there is sufficiently large k so that for all n > k we have

AN, (p.q) < dg, (p,q) < Ady_(p,q)

for all p,q € M. In other words, for sufficiently large n, the distance dg, on M is A-bi-

Lipschitz equivalent to dg__ .
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Proof. Let D C M be a fundamental domain for M. Since dg, — dg, . uniformly on M (with
respect to the Lipschitz topology defined in | ]), given any constant A > 1, there is
large enough £ so that £ > n implies

AN, (p.q) < dg,(p,q) < Ady(p,q)

for all p,¢g € D. We can extend these inequalities to all p,q € M as follows. Consider the
goo-geodesic from p to ¢ in M, and let p = pu, ..., p = ¢ be points on this geodesic such that
each g..-geodesic segment joining p; to p;11 is contained in a single fundamental domain of

the form vD for some v € I'. By the triangle inequality,

-1

-1
dy, (p,q) <D dg, (pispiv1) < A dy (piypiv1) = Adg.(p, q)-
=1

i=1
An analogous argument gives the estimate in the other direction. O]

Recall the CAT(0) boundary (visual boundary) M of (M, g) is defined as asymptotic
classes of geodesic rays | , Definition I1.8.1]. If p € M is fixed, then for any & € dM,
there is a unique geodesic ray connecting x and & | , Proposition 11.8.2]. Thus, there
is a natural identification between M and the unit tangent space T le . In light of this,
we can can make sense of the visual boundaries with respect to all our metrics g, and g..

simultaneously, and we will denote this boundary by OM.

Lemma V.13. As above, let g, be a sequence of Riemannian metrics so that the distance
functions d,, converge uniformly on compact sets to the distance function of some limiting
CY metric goo. Fiz p € M and let € € OM. For x € M let b*(z) := B (p,x) be
the associated Busemann function with respect to the g, metric, and let b>(x) be defined

analogously. Then there is a subsequence b™ converging to b uniformly on compact sets.

Proof. Since b" is a Busemann function, we have dg, (b"(z),0"(y)) < d,,(z,y). For any
A > 1, there is large enough k so that dy, (x,y) < Ad, _(z,y) for all n > k. So the " form
an equicontinuous family and thus converge uniformly on compact sets to some function b
(after passing to a subsequence).

We claim b is in fact the Busemann function b®(z) on M with respect to the distance
induced by goo. Since (M, g) is a CAT(0) space, we use the characterization of Busemann
functions in [ , Proposition 1V.3.1]. First, b>(p) = 0 since this holds for all v" by

assumption. Second, we claim b> is convex. To see this, fix (¢, w) € T M. Let exp, denote
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the exponential map with respect to the metric g,. Since each 0" is convex, we have
b" (expy (tw)) < (1 —1)b"(q) + 0" (expg (w))

for all t € [0,1]. By | , Lemma 2], we have expy(tw) — exp°(tw) for all ¢ € [0,1].

Since the b™ converge uniformly on compact sets, taking n — oo gives
b (expy” (tw)) < (1 — )b (q) + 10" (exp,®(w))

for each n and all ¢t € [0, 1], which shows convexity. Third, |b"(p) — b"(¢)| < d,, (p,q) for
all n; taking n — oo shows 0> has Lipschitz constant 1. Finally, we need to verify that for
any ¢ € M, there is ¢; € M with b®(¢) — b®(¢1) = 1. For any n, we know there is ¢ with
b>*(q) — b*(q7") = 1, and we can choose ¢} to also satisty d,, (¢,q¢") = 1. By Lemma V.12,
the ¢7 are all contained in a bounded set for sufficiently large n, and hence we can pass to

a convergent subsequence. The limit of this subsequence is the desired ¢;. O

We now consider the Patterson—Sullivan measures p" on M. For any negatively curved
metric g on M, define P/ = {v € I'| dy(x,yz) <t} and let
1 P’
§(g) = limsup log(# 1)
t—00
Then §(g) is independent of the choice of x (in the definition of PY), and §(g) = h(g), the
critical exponent of ug. (See [ , Lemma 4.5].)
Now suppose we have a sequence of metrics g, converging to a CAT(0) metric g, of C'1

regularity, as in the conclusion of Corollary V.10. Define §(g-,) as above.
Lemma V.14. Ifd, — d,_ on compact sets, then 6(g,) — 0(goo) < 00.

Proof. Fix A > 1. By Lemma V.12, there is large enough k so that for any n > k the
distances d,, and d,_ are A-bi-Lipschitz equivalent on all of M. Then P/ C P9 which
implies 0(g,) < Ad(goo). Analogously, 6(gs) < Ad(g,). Thus,

’5(900) - 5(gn)| < maX(A - 1’ 1- A_1)5(gn).

Since g,, satisfies 1 —¢ < % < 1+ ¢, Lemma V.1 shows 6(g,) = h(gn) < (1 — &) h(go)
for all n, where h(gp) is the topological entropy of the geodesic flow of the symmetric space

(N, go). Thus |0(geo) — 6(gn)| = 0 as n — oo. O

Fix p € M and consider the sequence {/Lg"} of probability measures on M. By the

Banach—Aologlu theorem, this sequence must have a weakly convergent subsequence { ,uf,"’“ J
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ie, there exists a probability measure v, such that for any continuous function ¢ on OM we

have

o(&) d(pp™ ) (&) = [ 6(&) d(wp)(€).

OM oM
Lemma V.15. Suppose d,, — d,. on compact sets. Consider any family of measures
{Vp}peir on OM obtained by the above limiting procedure. Then the family {v,}, i satisfies

the following properties.
~ . . . . dvp
1. For all p,q € M the Radon—Nikodym derivatives satisfy T = exp(—é(gm)ng (p,q)).
2. For allp € M and v € T the pushforward measures satisfy VilVp = Voyp.

Proof. To show 1), fix p and ¢ and take a subsequence {g,} so that both uf* — v, and

pi» — v, as n — oo. For any continuous function ¢ on 9M we then have

= lim [ $(&)exp(—0(ga)BE(p, ) d(u") (€)

= [ #(&) exp(—0(9e0) B (P, @) d(1) (§).

In the last equality, we use Lemmas V.13 and V.14. By an analogous argument, we also see

VeVp = Uy for all v € T O

Corollary V.16. (See [ , Lemma 1.3].) Let v as in the previous lemma. Let © € M
and let € € OM. Let Cpe be the unique goo-geodesic through x and §. Let

Ou(y, R) = {£ € OM | coe N By, R) # 0}.

Then
V2 (Oz(7.7, R)) < exp(—h(g)(dg.. (z,7.2) — 2R)).

Proof. By the previous lemma, one can use the proof of | , Lemma 1.3] verbatim. [

Proposition V.17. There is k > 0, depending only on n, , T, A, so that for all p € M
and all u € T}(p)]v, we have (Kpgpyu,u) > K.

Proof. By Lemma V.7, for any fixed metric g, there is x, > 0 so that (Kppyu,u) > Ky
for all p € M, u € T}(p)]\?. Now let M as in the proof of Corollary V.10 and suppose for
contradiction there is a sequence {g,,} € M so that s, — 0. This means there are p, € M,
together with u,, € T}(pn)N, so that (Kp(p,)tn, un) — 0. By compactness of T'N, we can
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assume p, — p for some p € M and also u,, — wu for some u € T}(p]v (after passing to a
subsequence). Thus, (HessB¢)p(,,)(u,) — (HessB®) g, (u) uniformly in €. After passing to
a further subsequence, we can assume p9" — pf= (using Corollary V.10 and Lemma V.15).

Thus, as n — 0o, we have

Fgn = (Kp(p,)tn, tn) = / (Hess B*) p(p) (tn) exp(—12(gn) Be(pn, p) (Fpi")

oM

— | (Hesng)F(p)(u)G*yp).
oN

Since we assumed k4, — 0, the above limit is zero. However, the same argument as in the
proof of Lemma V.7 shows this expression is positive. Indeed, the only fact used about g was
that the Patterson—Sullivan measure pf of the complement of two points in the boundary is
positive. This still holds for v, by Corollary V.16. Thus, we have arrived at a contradiction,

and we conclude that x4 is bounded away from 0 uniformly for g in M. ]

V.3: Lipschitz constant for JacF(p)

To find such a Lipschitz constant, we start by finding a preliminary Lipschitz estimate for
F'. This uses the lower bound « for K established in Proposition V.17. While the fact that
F is Lipschitz follows from the fact that F is C?, it is not clear a priori which properties of
(M, g) this Lipschitz constant depends on. In the end, this Lipschitz constant will turn out
to be close to 1 in a way that depends only on ¢,n,I', A by Theorem 1.9.

Lemma V.18. Let F' be the BCG map. Then ||dF,| < @ for allp e M.

Proof. Using (V.1.2), we get the following inequality by applying Cauchy—Schwarz (see
[ , (5.3)]) together with the fact that ||[dB(w)| < |Jw]|| for any Busemann function:

(Kp@)dEpv, u) < h(g)|v]l]lull-
Now let ||v|| =1 and let u = dF},(v). Then the above inequality and Proposition V.17 give
KldEv|* < (KpgdFp(v), dF,(v)) < h(g)[|dF, ()]l

Thus

which completes the proof. O
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Let p,q € M and let ¢(t) be unit speed the geodesic joining p and ¢ such that ¢(0) = p.
Let P, denote parallel transport along the curve c(t). For i = 1,2, let u; € TFl,(p)N and let
Ui(t) = Prc(e))Wi-

We begin by finding a bound for the derivative of the function t — (Kp ) Ui(t), Ua(t))
for 0 <t < Ty. This bound will depend only on &, n, I'; A and Tj,.

Lemma V.19. Let Kf;v(p)(Ul,UQ) = (HessB¢) p(p)(u1,u2). Let Ui(t) = Prw)ui as above.
Then the function t — Kfv(c(t))(Ul (t), Us(t)) has derivative bounded by a constant depending

only on e, n, I', A.

Proof. Let X = 4|,-oF(c(t)). Then it suffices to find a uniform bound for || X (K*(Uy, Us))|
on N. Since the U; are parallel along X, we have X(K&(Uy,Uy)) = VKS(Uy, Uy, X) (see
(€92, Definition 4.5.7]). So [ X (KU, Ua))[| < [VES[ U [|U2[[[|X]]. Since [ X|| < h(g)/x
by the previous lemma and |U;|| = ||Us|| = 1, it remains to control ||[VK¢|. We claim this
quantity is uniformly bounded on N.

First note that if a is an isometry fixing &, then
K(v,w) = Kf(z)(a*v,a*w).

Now fix zg € N and let €1, ep € TJCON orthonormal frame. For any other x € N , there
exists an isometry a taking x to o fixing & (since N is a symmetric space). As such, we can
extend the e; to vector fields E; on all of N. Then the quantity

VKS(E;, Ej, E,) = EL(K*(E;, E))) — KS(Vg Ei, E;) — K$(Vg, E;, E;)

is invariant by isometries a fixing &, and is thus constant on N. This shows the desired claim
that ||[VK¢| is uniformly bounded on N. The bound depends only on the symmetric space

N and hence only on the dimension n. O]

Lemma V.20. Consider the function
t = (Kpeen Ui (), Ua(1))

for 0 <t <Ty. Its derivative is bounded by a constant depending only on ,n,I', A, Ty.

Proof. Note that f, e (£) = exp [—h(g)B%[_1 (p, c(t))} Fotip(€). Then

()

(KreopUs(0),0a(0)) = | KEW(2),Ua(1)) exp [~h(o) B2 (0 e(0)] Furnn(€):

oN
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The first term in the integrand is bounded above as a consequence of (V.2.2), and this
bound depends only on the dimension n. By the previous lemma, the derivative of this
function is bounded by a constant depending only on n,e,I", A. Since |B?—1(§) (p,c(t))] <
d(p, c(t) < Tp, the second term is bounded by a constant depending only on n, €, Ty. The same
is true of its derivative, since Busemann functions have gradient 1. Hence the derivative of

(Kp(ew)Ui(t), Us(t)) is bounded by a constant depending only on the desired parameters. [

Corollary V.21. The function t — det Kp ) on the interval 0 <t < Ty is Ly-Lipschitz
for some Ly = Li(e,n, ', A, T).

Proof. By Lemma V.20, the entries of the matrix Kp(y)) (with respect to a go-orthonormal
basis) vary in a Lipschitz way. Using (V.2.2), we see that for u; and wuy unit vectors, the

expression HessB}V(p)’g(ul, ug) is uniformly bounded above by some constant depending only

on (N, go). Since the entries of the matrix Kp () are Lipschitz and bounded, it follows the

determinant of this matrix is Lipschitz. O

Recall (V.1.2) implies

(KrpdF0).w) = h(g) [ dBY, 50 (0B ©)

This formula, together with the Lipschitz bound for p — det Kp(,) established in Corollary
V.21, will allow us to find a Lipschitz bound for p — det(dF},) = JacF(p).

Lemma V.22. Let p,q and c(t) be as above. Then the function

t— dBé\(/é)’g(Pc(t)U)

is A/2-Lipschitz for all v € T, M.

Proof. We have
d / / T T
7 l=0dBe() e(Peyv) = HessByg(c'(0), v) = HessB,(c'(0)7, v7),

where /(0)7 and v? are the components of ¢/(0) and v in the direction tangent to the
horosphere through p and . Using that HessB,, ¢ is bilinear and positive definite on gradBpfg,
we obtain

4Hess B, ¢(c'(0)7,v7) < HessB, ¢(¢'(0)" + o™, (0)" +vT).

Let v/ = (0)T + vT and note |[¢/|| < 2. Let 3(s) be a curve in the horosphere such
that '(0) = v". Consider the geodesic variation j(s,t) = expg,) (terad Bp(s)¢) and let J(t) =
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4| _0j(s,t) be the associated Jacobi field. Then J(0) = v' and J'(0) = V,gradB,,. This
means

HessB, (< (0)" + ", (0)" +o7) = (J'(0), J(0)).

Let x = VA% + A2, According to | , 4.2,

(J°(0), J(0)) < (J'(0) + xJ(0), J(0)) < [J(0)|(x — A).

Since |J(0)] = |v'] < 2, we get 4% |,—od B ¢(Pupyv) < (J'(0), J(0)) < 2A. O
Lemma V.23. The function t — dB}V(C(t))jg(PF(C(t))u) is (@ + 1)-Lipschitz for all u €
Th) N

Proof. We repeat the same proof as in the previous lemma, but replacing A and A? with 1

and 4, respectively. In this case, x — A < 1. This gives

E‘t:(} ABP (1)) ¢ (Preeyu) = Hess B, (dF,(¢(0)),u) < |dF,(c'(0)) + ul.

Since ¢/(0) has norm 1, the Lipschitz bound from Lemma V.18 gives |dF,(¢/(0))+u| < @4—1,
which completes the proof. O

Lemma V.24. The function t — det Kp@)JacF (c(t)) on the interval 0 < t < Tp is Lo-
Lipschitz, where Lo depends only on £,n, T, A, Tp.

Proof. Consider the function

t = h(g) /8 MdBN o) (Pret )dBC(t (P(t)v)e*h@Bs<pvc<t>>dup(g).

The first two terms in the integrand are bounded by 1 in absolute value. The third term
is bounded above by a constant depending only on €,n, Ty as in the proof of Lemma V.20
and h(g) < (1 + €)h(go) by Lemma V.1. Moreover, the three terms in the integrand are
each Lipschitz — the first two by Lemmas V.23 and V.22, respectively, and the last one as in
the proof of Lemma V.20. Since the entries of the matrix Kp () (dFey)) are bounded and

Lipschitz, the determinant of this matrix is also Lipschitz. O

Proposition V.25. The function p — |JacF(p)| is L-Lipschitz, where the constant L de-
pends only on e,n,I", A.

Proof. Since Kp(,) is a symmetric matrix, it has an orthonormal basis of eigenvectors wu;.
Moreover, (Kp@p)ui,w;) > k(u;,u;) by Proposition V.17. It follows that det Kpp) > w".
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Using this, we obtain

k"|JacF (p) — JacF (q)| < |det Kp)JacF(p) — det KpgyJacF (q)|
< Lod(p,q) + |JacF(q)|| det Kp(py — det Kpigy|  (Lemma V.24)
< Lyd(p,q) + (1 + )" Lad(p, q),

where the last inequality follows from Corollary V.21 and Lemmas V.5 and V.1. Moreover,
Corollary V.21 and Lemma V.24 imply L; and Ly depend only on €,n,I"; A. Proposition
V.17 states k depends only on ,n,I". O

Let c. := (1 — Ce?)(1 — &)" be the constant from Theorem I1.12 satisfying c.Vol(M) <
Vol(N). (Recall C' depends only on n since N is locally symmetric.) Let ¢(n) denote the
volume of the unit ball in R". Choose ¢y small enough so that

L—c/(+e)"

. c(n)inj(N, go)™
1/t ) oy (L4 80)" < :
0

Vol(N)

This is possible since the first term on the lefthand side approaches 0 as ¢ — 0, while the
other two approach 1. Indeed, the numerator of the first term can be written as 2ney+O(&3).

The righthand side depends only on n and I', so the choice of ¢y depends only on n and I'.

Hypothesis V.26. From now on, we assume ¢ < &y. (The reason for this will become
apparent in the proof of the next proposition, see (V.4.1).) Then for L as in Proposition
V.25, we have L(e,n,I'yA) < L(go,n,I';A) for all ¢ < gy. From now on, we will use
L= L(n,I',A) to denote L(gg,n, ', A).

V.4: Lower bound for |JacF(p)|

Now that we have a Lipschitz bound for JacF(p), we can use the fact that (M, g) and
(N, go) have approximately equal volumes (Theorem 1.12) and approximately equal entropies
(Lemma V.1) to show equality almost holds in the inequality JacF(p) < (h(g)/h(g0))"
(Lemma V.5).

Proposition V.27. There is a constant B < 1, depending only on €,n,T', A, such that

5 () < ek (o)

for all p € M. In particular, there is a constant C' = C(n,I,A) so that f =1 — Ce'/(+D) ¢
0(52/(n+1)).
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We need two preliminary lemmas. Let v denote the measure on M coming from the

Riemannian volume.

Lemma V.28. Let ¢ : M — R be a v-measurable function such that ¢ > 0. Suppose the
integral of ¢ satisfies 0 < [, ¢ < 8. Let B ={x € M|¢ > w} where w is some constant.
Then v(B) < 0/w.

Proof. Note that wv(B) < [, ¢ < [ ¢ < d, which gives the desired bound. m

Lemma V.29. Let i), denote the injectivity radius of M and let ¢(n) denote the volume of
the unit ball in R™. Fiz 6 < c¢(n)(ip)". Let B C M be an open set with v(B) < 0. Then
there is v = r(0) such that for any p € B there is ¢ € M \ B with d(p,q) < r. Moreover,
r < c(n)~Ynel/m,

Proof. Let p € B. Let ¢ € M \ B be the point such that d(p,q) = mingernpd(p, z). Let
r = d(p,q). Then the open ball B(p,r) is contained in the set B. We consider the cases
r < iy and r > iy separately:

In the case r < iy, we can apply Theorem 3.101 ii) in | | to obtain the inequality

VolB(p,r) > ¢(n)r™, where ¢(n) is the volume of the unit ball in R". Since B(p,r) C B, this

s
e(n)”
In the case r > iy, we do not have the above volume estimate for the ball B(p,r).

gives r’" <

However, B(p,iy) C B(p,r) C B so the same argument as in the first case gives a bound

(ip)™ < ﬁ. This is a contradiction for small enough 9§, so we must be in the first case. [

Remark V.30. We have i), > iy where ij is a constant depending only on I' (and on gy =
go(I')). Indeed, Lemma V.8 gives ipy > Tleoz ~, and iy depends only on I" by Mostow rigidity
and our choice of normalization for the metric gq.

Proof of Proposition V.27. Let c. := (1 — Ce?)(1 — €)™ be the constant from Theorem 1.12
satisfying c.Vol(M) < Vol(N). (Recall C' depends only on n since N is locally symmetric.)
Using this theorem together with the bound % <1+ ¢ from Lemma V.1, we get

1 h(g) \"
c\E<1 ey (h(go)) Vol(M) < ¢.Vol(M) < Vol(N).

Combining with (V.1.5) gives

1 ( h(g)

“+or \hlg)

)nVol(M) < /M \(JacF)| d Vol < (;L((ggo)))n\/ol(M).
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Next, we apply Lemma V.28 to ¢(p) = (h(g)/h(g0))" — [JacF(p)| > 0. In this case, we
indeed have 0 < [}, ¢ < & with § = (1 —c./(1+¢)") (h(g)/h(go))" Vol(M). Let v < 1 and

write M, = {|JacF(p)| za <:((50)))n} .

Then M, ={¢ < (1 —a)(h(g)/h(g0))"}. So Lemma V.28 gives

A+ i),

1- €
v(M\ M,) < Cl
Let 1 —a =/ Let gy = g9(n,I") as in Hypothesis V.26. Then

v(M\ Ma) < c(n)(inj(M, g))", (V.4.1)

so the hypotheses of Lemma V.29 are satisfied. The lemma gives 7(g) = c(n)v(M \ M,)"/"
so that for all p € M \ M, there is q € M, satisfying d(p,q) < r(¢). Applying Proposition
V.25 with Ty = r(gg), we then have

h n

o (D) < eF @] < Lr(e) + [acF ()
h(go)

for some L = L(n,[';A). Rearranging and applying the entropy estimate in Lemma V.1

gives
. h(g) )"
a—(1—e)"Lr(e < Jac|F'(p)|.
(@ @=20re) (12 ) < gaclF(p)
Let B =a— (1 —¢&)™Lr(e). Using a = 1 — e+ gives u(M \ M,) < Cel=V/m+) 4
O(e27Y™+D) and r(e) < Ce/D) 4 O(e¥™+D) | where the constants C' depend only on n,
[, A. So B =1—Ce/*) 1 0¥ ) for some C = C(n,T, A). O

V.5: Estimates for ||dF}||

Recall Hp(,) and Kpg, are symmetric bilinear forms on Tp(p)N (see (V.1.3) and (V.1.4)).
We will use the lower bound we just established for JacF(p) in Proposition V.27 to show H
and K are close to scalar matrices. This will then allow us to mimic the proof of |

Proposition 5.2 ii)] to find bounds for the derivative of the BCG map that are close to 1.

?

Proposition V.31. Let F': M — N be the BCG map and assume there is a constant f < 1
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as in the conclusion of Proposition V.27 so that the Jacobian of F satisfies

5 (%) < JacF(p)

for allp € M. Let Hpyy and Kpgy be the symmetric bilinear forms on Tg, N defined in

(V.1.83) and (V.1.4). Then there are constants a,a’ <1 and A, A" > 1, depending only on (3

and n, such that

al(v,w < (Hppyv,v) < Al(v,w,
n n

/h(go) <U,1)> S <KF(p)U,U> S A/h(g())
n n

for allp € M and all v € TF(p)N. In particular, there is a constant C' = C(n,T',A) so that
a=1-— 081/2 (n+1) + O( 1/( n+1)) A=1+ 081/2(n+1) + 0(51/2(n+1))’ a =1 — 051/4(n+1) +
O( 1/2(n+1) ) Al =1— 081/4(n+1) 4 O( 1/2( n+1)) )

Remark V.32. If N is not Cayley hyperbolic space, we can take a = a’ and A’ = A. This is
explained right after the proof of the proposition.

The lower bound on JacF(p) can be thought of as equality almost holding in Lemma V.5.
This lower bound, together with the inequalities in Lemmas V.2 and V.3, implies equality

almost holds in Lemma V.4, that is,

2(n+d—2) no—l n det H no—1 n
n— _— << | V.51
B ((n—m) S q—my = ((n—l)&) ’ (V-5.1)
2(n—1)

n—d
In order to prove Proposition V.31, we will first show that since 5 is close to 1, the matrix
H is almost %] .

where o« =

Lemma V.33. Let H be a symmetric positive definite n X n matrix with trace 1 forn > 3.
Letl<a<n—1andlet m= <ﬁ> . Suppose

2(n+d—2)

where ' = [~ »=4  and B is as in Proposition V.27. (Note 0 < 8’ < 1.) Let \; denote the
eigenvalues of H. Then there are constants a < 1 and A > 1, depending on [ and n, such
that

<M< A

3I>—‘
S|
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fori=1,...,n. In particular, there is a constant C = C(n,T,A) so that a = 1 — Ce'/*™ 4
O(Y?), A =1+ Ce'/4n 1 O(Y/?m).

Proof. Tt follows from | , Proposition B.5] (see | | for the Cayley case), Lemma
V.2 and Proposition V.27 that there is a constant B(n) > 0 so that

- 1\> 1-p4
> (v3) =5

=1

Write 6 = /(1 —f')/B. Then |[\; — 1/n| < ¢ implies we can take a = 1 —nd, A =
14+ nd. Recall B =1 — Ce/+D) 4+ O(e2/*+V)) and B = 3P for some p(n,d) > 1. Then
B =1— e/ 1 O H)) where €’ is a possibly different constant still depending
only on n, T, A. Thus there is a constant C' = C(n,T', A) so that § = Ce'/2("+1) 1 O(/(n+1)),
So we can take a = 1 — Ce/2("t) 1 O(eV/("+D) and A = 1+ Cel/2+D) 4 O(e¥/ D) where

C is another constant depending on the same parameters. O
Next, we need an analogue of Lemma V.33 for the arithmetic-geometric mean inequality.

Lemma V.34. Let L be a symmetric positive-definite n X n matriz with b < trace(L) <V

for positive constants b, b’ depending only on e,n,T", A. Suppose

1 n
det L > « (—traceL)

n

for some 0 < a < 1. Let pq, ..., 1, denote the eigenvalues of L. Then there are constants
a <1 and A" > 1 such that

,trace(L) trace(L)
CI/ — —

<p <A

fori=1,...,n. In particular, there is a constant C = C(n,['; A) so that ' =1—C/1 — «,
A=14+CV1-—a.

Proof. We will use the approach of the proof of | , Proposition B5|. Let ¢(uq, ..., pn) =
log(py « ...« ). Since ¢ is concave, there is a constant B > 0 so that the inequality
trace(L)\" = trace(L) >
log(ji - - . - 1) < log [ 22420 P S
0g(1 . fin) < Og( - ) 2(# -

holds on the set of all u; > 0 satisfying p; + - - - + p, = trace(L). The constant B depends

only on the function ¢. In other words, it does not depend on any topological or geometric
properties of the manifolds M and N other than the number n = dim M = dim N.
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Since L is positive definite, we know 0 < p; < trace(L) for all i. So there exists T =
2
T(e,n,I',A) such that BY " , (,ui - %) < T'. Following the same steps as in the proof

of | , Proposition B.5], we then obtain

= trace(L) > < l—«
Z MZ_T —Bl—e—T'

i=1

Let 0% = (1 — a)/(B#). Then we can write § = Cv/1 — « for some C = C(n,I',A).
Using the boundedness assumption b < trace(L) < b, we conclude o/ = 1 — Cv/1 — a,
A'=1+Cv1—a for some C = C(n,I',A). O

Proof of Proposition V.31. First, note that det K > a™?(h(go)/n)" follows from | :
Proposition B5] and Lemma V.33. So equality almost holds in the arithmetic-geometric mean
inequality. By Lemma V.34, the eigenvalues of K are between a’h(go)/n and A'h(go)/n,
where @/ = 1 —CvV1—a"? and A’ = 1 + CV1—a*2. In terms of ¢, we have o/ = 1 —
061/4(n+1) + 0(81/2(n+1)) and A’ =1 — 051/4(n+1) + 0(51/2(n+1))' 0

Proof of Remark V.32. When N is a real, complex or quaternionic hyperbolic space, we can

write
d—1

K=I1-H<=Y JHJ, (V.5.2)

k=1

ford = 1, 2,4, respectively. Here, Ji, ... J;_1 are the orthogonal endomorphisms at each point
defining the complex or quaternionic structure. They are parallel and satisfy J? = —Id; see
[ , p- 638]. Now recall that Lemma V.33 gives

1 1
- < < A=
an<v,v> < (Hv,v) < An<v,v>

for all v. To prove the corresponding statement for K, first note (Ji H Jyu, u) = (—H Jyu, Jyu).

Since (Jyu, Jyu) = (u,u), we have

1 1
aﬁ<u,u) < (H Jyu, Jyu) < Aﬁ(u,u)
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We can use equation (V.5.2) to write

U

-1

(Ku,u) = (u,u) — (Hu,u) + » (HJgu, Jyu)

k=1
1 d—1
<(1-a-
<( a— +A— )(u, w)
d—2 1 d—1
:<L+n5—+n(5 )(u,u) (using a = 1 —nd, A =1+ nd)
n n n
d—2
§AL<u,u>.
n
By a similar argument, (Ku,u) > a”4=2(u, u). O

Proposition V.35. Let F' denote the BCG map, and suppose H and K satisfy the conclusion
of Proposition V.31. Then there are constants ¢; = c¢1(e,n, I, A) < 1, Cy = Cy(e,n, T, A) > 1
such that for all v € TM we have

clvlly < ldF@)lg < Callvllg- (V.5.3)

Moreover, there is a constant C = C(n,T,A) so that ¢; = 1 — Cet/8+D) 1 O(e /4 +1)) gnd
cy = 1+ Cel/8ntl) 1 O(el/4nt),

Proof. We closely follow the proof of | , Proposition 5.2 ii)]. First note it suffices to
prove the claim for v a unit vector. Using the definitions of H and K together with the

Cauchy-Schwarz inequality, we obtain

1/2
(KdF,v,u) < h(g)(Hu,u)l/2 (/X (dBp’E(v))Qd,up(f)) )

(c0)
(See | , (5.3)].) Using the upper bound for H in Proposition V.31, the above inequality
implies

h(g)

1/2
(K 0,0) < VAR ) ( / B dup(f)) |

Now let u = dF,(v)/||dF,(v)||. Using the lower bound for K in Proposition V.31 gives

VA h(g)

1/2
i < S ([ @B Pdnge))

Now let L = dF,odF,| and let v; be an orthonormal basis for T, M. Then, since ||dB,¢(v)| <
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|v|| = 1, we get

. VA h(g)\
trace(L) = Y _(Lv;,v;) = (dF,(v;), dF,(v;)) < ( 7 (go)> n

=1

Combining this with Proposition V.27 and the arithmetic-geometric mean inequality gives

2 M " ac 2 =de lmce ' \/Zh(g) !
B <h(go)) < |JacF(p)|” =det L < (nt L) < ( 7 h(gg)> . (V.5.4)

Hence the hypotheses of Lemma V.34 hold with o = 3%(a’)?"/A™. Using the expressions for
B,a', A in Propositions V.27 and V.31, we can write a = 1 — Ce'/4+D) 1 O(g!/2(v+1) for
some C' = C(n,I',A). Lemma V.34 thus implies

1 1
a;—traceL(v,v) < (Lv,v) = (dF,v,dF,v) < Ay—traceL(v,v),
n n

where a; = 1—Ce'/80 ) 1L O (/4 +1)) and Ay = 1+ Ce/80+D) L O(e1/4(+1)) | Using (V.5.4)

gives

i ( h(g) )2 _ {dEw.dE) _ <\/Z h@)) |

h(go) (v, v) a h(go)
Hence, there is a constant C' = C(n, ', A) so that the lower bound can be written as 1 —
Cel/8n+) 1 O(e!/4+1)) and the upper bound as 1 4+ Ce'/8+D) 1 O(g!/4n+1)), O
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CHAPTER VI

Surfaces

In this chapter, we prove a generalization of Otal’s marked length spectrum rigidity result
for negatively curved surfaces | |. We show that pairs of negatively curved metrics on
a surface become more isometric as the ratio of their marked length spectrum functions gets
closer to 1. Aside from some background on the Liouville measure and Liouville current
from Chapter IV, this section does not rely on earlier parts of this paper.

Let C(2,\, A, vg, Dg) consist of all closed C* Riemannian manifolds of dimension 2 with
sectional curvatures contained in the interval [—A?, —\?], volume bounded below by vy, and
diameter bounded above by Dy. In this section we will prove the following theorem about

surfaces whose marked length spectra are close:

Theorem 1.8. Fiz A\, A, vy, Dy > 0. Fiz L > 1. Then there exists ¢ = (L, A\, A, vy, Dg) > 0
small enough so that for any pair (M, g), (M, h) € C(2, X, A, vy, Dy) satisfying

1—5§ﬁ§1+5, (VI.0.1)
Ly

there exists an L-Lipschitz diffeomorphism f: (M, g) — (M, h).

The space C(2, A\, A, vy, Dy) has the property that any sequence has a convergent sub-
sequence in the Lipschitz topology; this is often called the Gromov compactness theorem
[ ]. In this paper, we use refinements of Gromov’s theorem due to Pugh and Greene—
Wu | : ].

It follows from [ ] that any sequence (M, g,) € C(2, A\, A, v, D) has a subsequence
(M, gp,) converging in the following sense: there is a Riemannian metric gy on M such
that in local coordinates we have gﬁfk — géj in the CY® norm, and the limiting géj have
regularity C1®. Additionally, the distance functions dg,, converge uniformly (with respect
to the Lipschitz distance) to dg, on compact sets; see | , p- 122]. In particular, this

implies the following (see also Lemma V.12):
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Lemma VI.1. Given any A > 1, there is a sufficiently large k so that for all p,q € M we
have A~ dgy(p,q) < dgnk (p,q) < Ady,(p,q)-

We will use Gromov compactness to prove Theorem 1.8 by contradiction. Indeed, suppose
the statement is false. Then for every e > 0, there are (M, g.), (M, h.) € C(2,\, A, vy, Dy) so
that there is no L-Lipschitz map f : (M, g.) — (M, h.). By | ], there is a subsequence
e, — 0 so that (M,g.,) = (M,go) and (M, h.,) — (M, hg) in the sense described above.
From now on we will relabel ¢g. as g, and h.,_ as h,. To prove the main theorem, it suffices

to prove the following statement:

Proposition V1.2. Let (M, go) and (M, ho) be the Greene—Wu limits of the counterexamples
above. Then there is a map f : M — M such that for all p,q € M we have dg(p,q) =

dho(f(p>7 f(q))

Proof of Theorem 1.8. Fix L > 1 and suppose the theorem is false. Let (M, g,), (M, h,)
be the convergent sequences of counter-examples defined above. Since (M, g,) — (M, go),
Lemma VI.1 gives large enough n so that \/Z_1 dg(p,q) < dg,(p,q) < \/falg0 (p,q) for all
p,q € M, and similarly for dj,. Then Proposition VI.2 gives

dy, (p,q) < VLdu(f(p), f(q)) < Ldy,(f(p), f(q)).

So f:(M,g,) — (M, h,) is an L-Lipschitz map, which is a contradiction. H

VI.1: The marked length spectra of (M, gy) and (M, hy)

To prove Proposition V1.2, we will first show (M, go) and (M, hy) have the same marked
length spectrum. Then we will construct an isometry f : (M, gy) — (M, hy). We use the
same main steps as in | ]; however, since go and hg are only of C® regularity, there
are additional technicalities that arise when verifying the requisite properties of the Liouville
measure and Liouville current in this context.

We first recall some additional properties of the limit (M, go). By a theorem of Pugh
[ , Theorem 1], this limiting metric will have a Lipschitz geodesic flow, and the geodesics
themselves are of C%! regularity. Moreover, the exponential maps converge uniformly on

compact sets | , Lemma 2], which is equivalent to the following:

Lemma VI1.3. Let ¢, and ¢o denote the geodesic flows on (T'M, g,) and (T*M, go) re-
spectively. Fir T > 0 and let K C T'M compact. Then ¢tv — ¢hv uniformly for
(t,v) € [0,T] x K.
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In addition, the space (M, go) is CAT(—M?) because it is a suitable limit of such spaces;
see | , Theorem I1.3.9]. Thus, even though the curvature tensor is not defined for the
O metric g, this limiting space still exhibits many key properties of negatively curved

manifolds. One such property, heavily used in Otal’s proof of marked length spectrum

rigidity | |, is the fact that the angle sum of a non-degenerate geodesic triangle is strictly
less than 7 | , Lemma 12.3.1 ii)]. This still holds for CAT(—)?) spaces, essentially by
definition | , Proposition I1.1.7 4].

Moreover, we can define the marked length spectrum of (M, gg) the same way as for
negatively curved manifolds. The fact that there exists a geodesic representative for each
homotopy class is a general application of the Arzela-Ascoli theorem; see | , Proposition
1.3.16]. The proof that this geodesic representative is unique in the negatively curved case
immediately generalizes to the CAT(—\?) case; see | , Lemma 12.3.3].

We will now show (M, go) and (M, hg) have the same marked length spectrum. We start

with a preliminary lemma.

Lemma VI1.4. Let () be a free homotopy class. Let vy and v, denote the geodesic repre-
sentatives with respect to go and g, respectively. Write vo(t) = ¢bvo and v, (t) = ¢t v,. Then
for all 0 <t <, (70), we have ¢tv, — dhvg in T*M as n — oo.

Proof. Let T = 1y, (7). By Lemma VI.3, choose n large enough so that d(¢f,vo, phuvo) < € for
all t € [0,T]. In particular, ¢ vy is close to ¢ vg = vy. The Anosov closing lemma applied
to the geodesic flow on (T*M, g,,) gives ¢! vy is shadowed by a closed orbit. By construction,

this closed orbit is close to 7 and is also homotopic to it, which completes the proof. O

Proposition V1.5. The Riemannian surfaces (M, go) and (M, hy) have the same marked

length spectrum.

Proof. The previous lemma, together with Lemma VI.1, implies {y, (7,) — {4, (70) as n — oo.
Let 4, be the geodesic representatives of () with respect to the h,, metrics. Then we also
have Iy, (1) = lhy(50) as n — oo. Since Ly, /Ly, — 1, we obtain 1, (7o) /I, (50) = 1, which
completes the proof. O

V1.2: Liouville current

Now that we have two surfaces with the same marked length spectrum, we will follow the
method of [ | to show they are isometric. Two key tools used in Otal’s proof are the
Liouville current and the Liouville measure (both defined at the beginning of Section IV.2).
In this section and the next, we will construct analogous measures for the limit (M, go) and

show they still satisfy the properties required for Otal’s proof.
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Recall the Liouville current is a I-invariant measure on the space of geodesics of M;
see Section IV.2. Recall as well the following relation between the cross-ratio and Liouville
current for surfaces. Let a,b,c,d € OM be four distinct points. Since M is a circle, the
pair of points (a, b) determines an interval in the boundary (after fixing an orientation). Let
(a,b) x (¢,d) € 9*M denote the geodesics starting in the interval (a,b) and ending in the
interval (¢, d). Then

M(a,b) x (¢, d)) = %[a, b,cd. (VL.2.1)

(See (IV.2.2), also | , Proof of Theorem 2] and | , Theorem 4.4].)

We can use the above equation to define the Liouville current \g on (M, go). Let A,
denote the Liouville current with respect to the smooth metric g,. It is then clear from
Lemma IV.3 that \,(A) — A\o(A) for any Borel set A C 9*>M.

We now recall a key property of the Liouville current used in Otal’s proof. We begin by
defining coordinates on the space of geodesics: Fix v € T*M and T > 0, and let ¢t — n(t) be
the geodesic segment of length T with 7/(0) = v. Let GI denote the (bi-infinite) geodesics
which intersect the geodesic segment 7 transversally. Let b : [0, 7] x (0,7) — T'M be the
map defined by sending (¢,6) to the unit tangent vector with footpoint 7(¢) obtained by
rotating 7/(t) by angle . We can then identify each vector b(¢,0) with a unique geodesic in
GT (see | , p- 155]).

When g is a smooth Riemannian metric on M, the Liouville current with respect to the
above coordinates is of the form %sinede dt. The same proof works for the measure )\,
defined in terms of the C** Riemannian metric go. To see this, we begin by describing the
space T,T'M. If ¢ € T,TM, then £ is tangent to a curve 8(t) € T M, which is in turn a vector
field along a curve b(t) € M. Let V be the Levi-Civita connection for the metric gy and let
ko(§) == Vi) B(0) denote the connector map, which is of C* regularity. Let wpp : TM — M
be the natural projection; then dn(§) = ¥'(0). The map T,7M — T,M & T,M given by
& (dm(€), kyp(§)) is an isomorphism | , 1.D].

Now for v € T*M and &, & € T,T M, define the C* 2-form

To(§1, &) = (dmrnéa, ob1) — (dmraé, o).

In the case of a smooth Riemannian metric, the above formula is the coordinate expression
for the symplectic form dw defined at the beginning of Section IV.2 | , 1.D]. Since the
gi; and their derivatives converge to those of go, this means 7 is the limit of the dw™ for the
metrics g,. Since each dw" is invariant under the geodesic flow ¢,,, Lemma VI.3 implies 7
is invariant under the geodesic flow gy. Therefore, we can think of 7 as a C'* 2-form on the

space of geodesics, which in turn gives rise to a measure.
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Lemma VI.6. Let b: [0,T] x (0,7) — T'M as above. Then b*T = sinf df dt.

Proof. Fix (t,60) and let u = b(t,0). Let B1(t) denote the coordinate curve ¢t — b(t,6). This
gives a parallel vector field along n making fixed angle # with n’. Thus if & is the vector
tangent to f; at u, we get k,§ = 0 and dm&; = n/(t). This latter vector is obtained by
rotating u by angle 6, which we will denote by @ - w.

Next, let £5(6) denote the coordinate curve 6 — b(¢,0). This is a curve in the fiber over
n(t), which means dn(§2) = 0. This curve traces out a circle in the unit tangent space, and
its tangent vector is thus perpendicular to the circle. This means k, (&) = (7/2) - w.

Hence

Tot0)(§2,61) = (7/2-u, 0 - u) — (0,0) = sin6,
as claimed. O

We now claim the measure on the space of geodesics coming from the symplectic form
%T is equal to the Liouville current. Indeed, this follows from | , Theorem 2|. To show
this theorem is still true for (M, go), it suffices to verify the geodesic flow ¢, satisfies the

Anosov closing lemma (see the proof of Proposition IV .4).

Lemma VI1.7. The Anosov closing lemma holds for the gg-geodesic flow, ie, given 6 > 0,
there exist Ty > 0, dg > 0 with the following property: for any v so that d(¢'v,v) < &
for t > Tq, there exists w tangent to a periodic orbit of length ty where |t — to] < § and
d(¢*v, p*w) < 6 for s € [0, min(¢,t)].

Proof. We can choose Tj and 9y so that the conclusion of Anosov closing lemma holds for
all g, with n sufficiently large. Indeed, this follows from the fact that the stable/unstable
distributions of the g, geodesic flows converge uniformly on compact sets to those of the gq
geodesic flow as n — 0o; see Lemma V.13 and | , p- 105].

Now take v and t > Tj so that dg(¢hv,v) < dp/2. Choose n large enough such that
¢t is within dy/2 of ¢hv. Applying the Anosov closing lemma to g, gives w and ¢, with
[t —to] < 0, ¢w = w and d(¢5v, pSw) for s € [0, min(¢,ty)]. By Lemma VI.4, this g,-closed

orbit is d-close to a gp-closed orbit, which completes the proof. O

Since (M, go) and (M, hy) are CAT(—M?) spaces, we can define a correspondence of
geodesics ¢ : (8°M, gy) — (9*M, he) as in Construction IV.1. The following fact is still

true in this context; see | , p- 156].

Proposition VL.8. Let G, C 9*M be a coordinate chart with coordinates (t,0) and let
?(Gy) = Gy have coordinates (t,0"). Then ¢ takes the measure sindf dt to sin @' df’ dt'.
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V1.3: Liouville measure

Let p,, denote the Liouville measure on 7'M with respect to the metric g, on M. Let g7
denote the associated Sasaki metric on T'M. Then p, is a constant multiple of the measure
arising from the Riemannian volume form of g°. In local coordinates, the measure y,, can be
written in terms of the g% and their first derivatives. Since ¢¥ — g7/ in the C® norm, we
see the measures p, converge to a measure iy, which is the Riemannian volume associated
to the C® Sasaki metric g5. Hence, the measure p can be written locally as the product
dm x df, where dm is the Riemannian volume on M coming from gy, and df is Lebesgue
measure on the circle T’ le .

We now recall the average change in angle function ©" : [0,7] — [0, 7] from | :
Section 2]. First Otal considers the function 6" : T*M x [0, 7] — R defined as follows. Given
a unit tangent vector v and an angle 0, let 8 - v denote the vector obtained by rotating v by
. Consider lifts of the geodesics determined by v and 6- v passing through the same point in
M. The correspondence of geodesics ¢ (see above Proposition VI.8 and Construction IV.1)
takes intersecting geodesics to intersecting geodesics (since dim M = 2). Let 6'(0,v) denote
the angle between the image geodesics in (M , ho) at their point of intersection. Finally, let
©'(0) = [1,, 0 (0,v)dpo(v).

The function ©' satisfies symmetry and subadditivity properties | , Proposition 6].
Indeed, the proof of | , Proposition 6] uses the above local product structure of the
Liouville measure along with the fact that in negative curvature, the angle sum of a non-

degenerate geodesic triangle is strictly less than 7. As mentioned before, this latter fact

holds for CAT(—\?) spaces as well | , Proposition I1.1.7.4].
To deduce the third key property of © (see | , Proposition 7] for the exact state-
ment), we require the following fact about g, which holds by | | in the original smooth

case. Since ¢g is a geodesic flow on a CAT(-1) space, it satisfies a sufficiently strong speci-
fication property such that the proof of | | works verbatim in this context; see | ,
Theorem 3.2, Lemma 4.5].

Proposition VI.9. Let f : T'M — R be a continuous function. Let ¢ > 0. Then there is a

closed geodesic 7y so that

1
fdug — /fdt‘<5.
TM ZQO (70) Y0
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VI.4: Constructing a distance-preserving map f : (M, go) — (M, hy)

Using Propositions VI.8 and VI.9, the proof of | , Proposition 7] shows the hypotheses
of | , Lemma 8] are satisfied. Thus, the function ©' defined at the beginning of Section
V1.3 is the identity. From this, it follows that ¢ takes triples of geodesics intersecting in
a single point to triples of geodesics intersecting in a single point; see the proof of | ,
Theorem 1]. We then define f : (M, go) — (M, ho) exactly as in | |: given p € M, take
any two geodesics through p. Then their images under ¢ must also intersect in a single point,
which we call f (p). Then f is distance-preserving and I'-equivariant by the same argument
as in [ ].

This proves Proposition VI.2, and hence Theorem 1.8 is proved.
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