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ABSTRACT 
 

 
 
RNA viruses generate genetically diverse populations during acute infections within human 

hosts. Studying viral population dynamics in natural infections is important for understanding how 

new viral variants arise and spread. However, these dynamics are poorly understood in most viruses. 

In my thesis, I have comprehensively analyzed viral within-host evolution across three unique taxa.  

In the first study, I defined the within-host diversity of influenza B viruses in a household 

cohort in southeastern Michigan. Using an experimentally validated next-generation sequencing 

approach, I found that influenza B viruses accumulate less genetic diversity compared to influenza A 

viruses. Similar to influenza A, I found that influenza B virus faces a stringent transmission 

bottleneck. These results suggest a complex relationship between viral mutation rates, intrahost 

diversity, and global rates of viral evolution. 

In the second study, I investigated the early evolution of the live-attenuated oral polio 

vaccine (OPV) by sequencing samples from vaccine recipients and their close contacts in a field trial 

of polio vaccines. In contrast to endemic viruses, I found that OPV exhibits a significant amount of 

parallel evolution within primary vaccine recipients. I identified 19 sites under positive selection, 

most of which were previously thought to evolve neutrally. Between hosts, a tight transmission 

bottleneck limited the spread of adaptive mutations. These results demonstrate the distinct within-

host dynamics of live-attenuated vaccines, highlight the role of transmission bottlenecks in 

constraining virus evolution, and offer valuable information for interpreting genetic surveillance data 

in the ongoing effort to eradicate polio. 



 xi 

In the third study, I defined the within-host variation of SARS-CoV-2 in hospitalized 

patients and infected healthcare workers during the first months of the pandemic. I sequenced 

known virus mixtures to show how viral load impacts the accuracy of variant identification. In 

contrast to several early reports, I found that intrahost diversity is low over the course of infections. 

I demonstrated that variants arise in parallel across individuals from separate transmission networks, 

which complicates the use of intrahost variants in transmission inference. These findings clarify 

conflicting results from previous work on SARS-CoV-2 variant generation and spread. 

More broadly, these studies demonstrate the challenges of accurately detecting intrahost viral 

variants, illustrate how within-host studies can resolve ambiguities observed in global evolutionary 

dynamics, and provide important context for using intrahost variation in sequence-based 

transmission inference. 
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CHAPTER I 

Introduction 

 

Overview 

 

The rapid evolution of RNA viruses has created many significant public health challenges. 

Influenza viruses regularly undergo antigenic change and escape from population immunity (Petrova 

and Russell, 2018); the diversification of human immunodeficiency virus, hepatitis C virus, and 

enteroviruses impedes the design of effective vaccines (Hedestam et al., 2008; Palmenberg et al., 

2009); genetic reversion of the live polio vaccine thwarts global eradication (Kew and Pallansch, 

2018); SARS-CoV-2 variants with greater transmissibility are actively emerging (Lauring and 

Hodcroft, 2021). Although the phenotypic consequences of virus evolution are often system-

specific, the underlying evolutionary forces of mutation, selection, and drift are shared by all viruses. 

Understanding the fundamental pressures and constraints that RNA viruses face as they evolve 

within their natural hosts is critical for rational disease management, infection prevention, and public 

health measures. 

It has long been recognized that RNA viruses exhibit high levels of genetic diversity as they 

replicate within infected hosts (Moya et al., 2004). Due to the lack of proofreading and repair 

activities of most RNA-dependent RNA polymerases, RNA viruses possess mutation rates that are 

orders of magnitude higher than other organisms. Rapid supply of de novo mutations during each 

round of replication results in the establishment of highly diverse viral populations. The earliest 
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work in this field employed RNA bacteriophages to uncover fundamental principles of RNA virus 

mutation rates and population dynamics. More recently, “next-generation” sequencing (NGS) 

technologies have allowed systematic analysis of viral populations in human hosts (Lauring, 2020). 

Specifically, the high accuracy and throughput of Illumina sequencing has enabled the detection of 

rare within-host variants in primary human-derived samples. The bulk of this work has focused on 

human immunodeficiency virus (HIV) and influenza A virus (IAV), and there has also been 

substantial work on hepatitis C virus (HCV) and arboviruses such as dengue virus. This growing 

body of work has characterized the within-host evolution of multiple viruses and yielded important 

insights into viral evolutionary dynamics. However, there are important gaps that remain in 

understanding how viral intrahost diversity leads to evolutionary change on a global scale.  

A key objective of studies on viral intrahost evolution is to understand the evolutionary 

pressures that act on viruses as they replicate in humans. Although mutations are the raw substrate 

for evolutionary change, the fate of any given mutation or genomic variant depends on the 

combined action of multiple evolutionary forces within infected hosts (Dolan et al., 2016). The 

opposing forces of natural selection and genetic drift are particularly important for understanding 

virus evolution in humans. Selection is a deterministic force that dominates when population sizes 

are large. In general, natural selection will increase the frequency of a variant that has a fitness 

benefit (positive selection) and decrease the frequency of a variant with a fitness defect (negative 

selection). The viral factors that determine fitness are multifactorial, but they often can be distilled to 

functions that enable better replication within a host and evasion of immunity, greater shedding 

from infected hosts, and greater transmission to new hosts. Mutation fitness effects are context 

dependent, such that a mutation may increase one aspect of viral fitness but decrease another. 

Opposite to selection is genetic drift, a stochastic force that causes random fluctuations in mutation 

frequency when population sizes are small. Decreases in population size, such as bottlenecks during 
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transmission, can have drastic effects on the composition of viral populations and their subsequent 

evolution (McCrone and Lauring, 2018; Zwart and Elena, 2015). Detecting, quantifying, and 

comparing these forces across multiple relevant contexts is central to understanding how viruses 

evolve. However, it has been challenging to draw generalizable conclusions about virus evolution 

from many previous studies of intrahost diversity. Studies are often based on haphazardly collected 

specimens, such as convenience samples from a clinical laboratory. There can be systematic errors in 

identifying intrahost variants that obscure true biological diversity. These limitations hinder our 

ability to interpret what the results mean for understanding virus evolution and spread. 

Herein, I will review the important factors in measuring virus intrahost populations by NGS. 

I will outline how these data can provide insight into virus evolution and transmission at the level of 

individual hosts. Lastly, I will introduce current challenges in genomic epidemiology and the 

opportunities that intrahost diversity offer for enhancing transmission inference. 

 

Accurately quantifying virus intrahost diversity 

 

Advent of high-throughput “next-generation” DNA sequencing (NGS) has provided the means to 

study viral intrahost diversity at whole genome scales. Most studies enrich viral genomes from 

clinical samples by RT-PCR, PCR, or hybridization-based methods. Enrichment of viral genomes 

allows the direct quantification of intrahost populations without intermediate passaging in cell 

culture, which can alter the composition of the population and introduce cell culture adaptations 

(McWhite et al., 2016). Strategies for RT-PCR amplification are specific to the genome structure. 

Segmented viruses like influenza virus are often amplified with primers targeted to the ends of 

genome segments. Non-segmented viruses are more difficult to amplify in a single amplicon; most 

studies use tiled amplicons in a sliding window across the viral genome. After enrichment, 
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conventional NGS is then used to sequence the enriched DNA, map to virus reference genomes, 

and identify genetic variants that differ from the consensus sequence of the population. NGS reads 

are short, commonly 150-500 bases, and therefore are unable to comprehensively identify haplotype 

linkage. For RNA viruses, intrahost genetic variants are most often single nucleotide variants 

(iSNV), but intrahost insertions and deletions (indels) can also occur. Indel variants are more 

difficult to reliably detect and have been studied less than iSNV. Massively parallel sequencing 

methods can generate high read depth over a given loci, which allows for more precise estimates of a 

variant’s frequency. Precision is a function of the read depth achieved. At a depth of 100x, precision 

cannot exceed 1% frequency by definition. A common practice is to only include variants that are 

supported by 10 or more reads. Therefore, read depth of 1000x is required to reliably detect variants 

present at 1% frequency. Greater read depth can identify rarer variants, provided that those variants 

were not lost during enrichment, library preparation, and sequencing. 

Measuring intrahost diversity within clinical specimens faces several challenges due to 

multiple sources of error (Grubaugh et al., 2019a; McCrone and Lauring, 2016). These sources of 

error are not always accounted for in the published literature on viral intrahost diversity. Reverse 

transcription, PCR, and next-generation sequencing can introduce errors. Sequencing platforms 

differ in their base error rates; for example, nanopore-based sequencing has a higher base error rate 

compared to current sequencing-by-synthesis methods. Cross-contamination and mixed infections 

can also create the appearance of intrahost diversity (Cudini et al., 2019). Due to the errors 

introduced and propagated through enrichment, library preparation, and sequencing, there is often a 

predominance of errors at 0.5% frequency and below, regardless of read depth.  

There are various genome amplification methods that can reduce error, but most are not 

compatible with whole genome sequencing from clinical specimens. Amplification with primers that 

have unique molecular identifiers can increase accuracy down to about 0.1%, but this is not viable 



 5 

for whole genomes (Jabara et al., 2011). New sophisticated methods of circular sequencing by rolling 

circle reverse transcription are highly accurate but require high RNA input that is not compatible 

with most clinical specimens (Acevedo et al., 2014). A simpler approach to reducing false positive 

variant calls is to perform technical replicates of a given specimen. True population variants should 

be identified in both technical replicates while spurious false positives are unlikely to randomly arise 

in all replicates. Previous experiments have shown that sequencing in duplicate can dramatically 

reduce false positives; however, technical replicates alone do not guarantee that false positives will 

not occur (Grubaugh et al., 2019a; McCrone and Lauring, 2016). 

Specimen viral load has emerged as a key factor in the success of sample sequencing and the 

accuracy of variant calling. With low input genome copies, more effective PCR cycles occur which 

can propagate errors in the reverse transcription, resulting in more false positives. Low viral loads 

can also cause false negative errors for variants at low frequencies due to stochastic loss of variants 

during enrichment, library preparation, and sequencing. These errors are exacerbated in clinical 

specimens, which often harbor fewer viral genome copies compared to cell culture supernatants. 

With low input viral loads, a significant number of false positive variants can occur even in samples 

sequenced in duplicate. 

After sequencing, there are many computational strategies for reducing error in variant 

identification. Multiple software packages for calling variants are available. There is no current 

consensus in the field on which variant caller is most accurate, and any given tool can have 

idiosyncratic error profiles. Studies often differ in the criteria used to identify within-host variants, 

which complicates direct comparisons of viral diversity across studies. Most approaches apply a 

common set of filter criteria, such as total and variant read depth, mapping quality, base quality 

(Phred) score, strand bias, and frequency. Some variant callers use more sophisticated statistical 

models. For example, deepSNV uses sequencing of a clonal plasmid control to model the local error 
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rates across reads (Gerstung et al., 2012). LoFreq uses base quality scores and a Poisson-binomial 

model to test whether sequencing error alone could produce a given iSNV (Wilm et al., 2012). 

Empirical benchmarking experiments are critical for establishing the accuracy of a given 

sequencing workflow. Sequencing of mock communities, where the true variant frequencies are 

known, has been widely used in bacterial 16S ribosomal RNA gene sequencing and metagenomic 

studies (Bowers et al., 2015). However, this approach has only recently been applied to virus 

intrahost sequencing. A few previous studies have benchmarked the sensitivity and specificity of 

different variant callers with experimental data, including influenza A virus, West Nile virus, and 

Zika virus (Grubaugh et al., 2019a; McCrone and Lauring, 2016). Experimental validation of variant 

identification by sequencing mock populations that closely replicate the diversity and viral load of 

corresponding clinical specimens is now the field standard. However, there is no “one size fits all” 

for the overall sequencing and analysis approach. Specific viral RNA enrichment strategies, variant 

callers, and iSNV filter criteria may necessarily differ based on the viral system and the analysis goals. 

In my thesis, I have grounded each analysis of viral intrahost diversity in empirically 

validated methods for detecting intrahost variants. In Chapter II, I relied on previous studies in the 

lab on influenza A virus to inform variant calling for influenza B virus. In Chapters III and IV, I 

performed additional experiments to benchmark and validate the accuracy of our variant calling 

approaches for poliovirus and SARS-CoV-2. These efforts were crucial for robust biological 

interpretation of the results. 

 

Evolutionary inference from within-host data 

 

Accurate characterization of viral populations is merely the starting point for understanding their 

evolutionary dynamics in humans. A major challenge of these studies is making appropriate 
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inferences about evolutionary forces on viruses and making reasonable conclusions about the 

underlying biological significance. Common mistakes in this area are haphazardly collecting samples 

with limited clinical metadata, improperly controlling for sequence errors, and making outsized 

conclusions about identifying exceedingly rare variants.  

 Obtaining samples from a well-defined set of patient samples with relevant metadata is 

crucial for the downstream analysis and biological inference. To observe changes in variant 

frequency over time or shared variation between transmission networks, it is necessary to obtain 

longitudinal samples from a large cohort of individuals. Clinical trials, observational studies, and field 

studies of virus infection and epidemiology are rarely designed with analysis of intrahost variation in 

mind. Therefore, access to samples is usually post-hoc, which fundamentally limits the analysis. 

However, there are notable exceptions in the literature. Household cohorts, which have traditionally 

been used to measure vaccine effectiveness, have been recently used to study viral transmission 

dynamics and estimate transmission bottlenecks (McCrone et al., 2018). Infection challenge studies, 

while not necessarily representative of natural infections, have allowed frequent sampling from the 

same individuals (Leonard et al., 2016). A recent placebo-controlled clinical trial of influenza 

vaccines allowed researchers to isolate the effects of vaccination on IAV intrahost diversity 

(Debbink et al., 2017). Although these studies are difficult to conduct, they are the most powerful 

for capturing various forms of natural selection and genetic drift. 

 Even with access to a rich sample set, it can be difficult to detect positive and negative 

selection within hosts. There are many approaches to detecting natural selection in sequence data, 

but few are suited to the within-host level. The frequency distribution of mutations usually holds 

indirect evidence of purifying selection. In nearly all studies of intrahost diversity, there are more 

variants at lower frequency levels due to negative selection, and fewer mutations survive to reach 

intermediate frequencies. However, this “snapshot” view offers little for biologically useful insights. 
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A common method for identifying selection is calculating the dN/dS ratio, which relates the 

number of nonsynonymous mutations to the number of synonymous mutations, corrected for the 

respective number of sites (Kryazhimskiy and Plotkin, 2008). While synonymous mutations can have 

significant fitness effects, non-synonymous mutations are often deleterious and removed by negative 

selection. Across a gene or at a given codon, a dN/dS ratio of > 1 suggests positive selection, while 

dN/dS ratio of < 1 suggests negative selection. However, dN/dS and related tests are not well 

suited for intrahost datasets. This test cannot assess mutations in noncoding regions, which can be 

sites of significant selection in viruses that depend on RNA secondary structures or other elements 

for critical functions. On the short timescales of single infections, dN/dS ratios can be artificially 

elevated because negative selection has not had sufficient time to act on deleterious mutations. 

Conversely, dN/dS ratios may not be sensitive enough to detect recent positive selection at a locus 

or sites under weakly positive selection. 

A complementary strategy for detecting positive selection is to look for a preponderance of 

mutations in a given genome region or at a specific locus (Gutierrez et al., 2019). The general idea is 

that if a mutation occurs more times than expected by chance alone, then that suggests the mutation 

is favored by natural selection. This phenomenon is often referred to as convergent evolution or 

parallel evolution. Strictly speaking, those terms have distinct but similar definitions. Parallel 

mutation in consensus-level phylogenetic analyses may suggest sites where there is selection for the 

same phenotype, when different evolutionary lineages “converge” on the same genetic solution. This 

approach has been used to identify positive selection at the consensus level in influenza viruses, 

vaccine-derived polioviruses, and has been central to current investigations of SARS-CoV-2 variants 

of concern (VOC) (Escalera-Zamudio et al., 2020; Hodcroft et al., 2021; Stern et al., 2017). 

Detecting the same intrahost variant in multiple infections is suggestive of positive selection. Unlike 

dN/dS, this approach does not have standard statistical framework. The simplest method is to 
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detect intrahost mutations that have known fitness effects, established in previous studies or 

experimental work. Similarly, enrichment of mutations in genome regions with known functions can 

suggest positive selection. For example, enrichment of non-synonymous mutations in antigenic 

regions of the influenza hemagglutinin protein might suggest selection for better viral entry or 

escape from antibody neutralization. There could also be enrichment at the level of a gene that has 

multiple sites experiencing mild positive selection. A more direct assessment of positive selection 

might include identifying mutations that occur independently across a cohort of individuals not 

related by transmission. This is powerful evidence supporting positive selection of a mutation, but it 

can be difficult to use this method for quantifying the degree of fitness advantage that a mutation 

confers. Lastly, appearance of an intrahost variant multiple times in samples that temporally precede 

an increase in the consensus frequency of that variant may suggest the action of positive selection. 

However, it is often difficult to separate this from the influence of genetic drift at the within-host or 

population level. 

 

 

Figure 1.1. Strategies for detecting positive selection with within-host sequencing data. Figure from Lauring 2020, Annual Reviews in 
Microbiology. Within-host data may reveal enrichment of mutations on key epitopes of viral proteins, such as influenza hemagglutinin 
shown here. Some mutations may have known phenotypes from laboratory experiments, such as changes in antigenicity or receptor 
binding. Convergence is the appearance of the same mutation independently across individuals. Comparing the dynamics of 
mutations from the within-host to the global scale can suggest evidence of positive selection. 
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could occur by chance in a given intrahost dataset is highly dependent on the context of the study 

and the viral system. Recent work on influenza A in immunocompromised individuals and avian 

influenza viruses have used permutation tests to assess whether shared mutations in hemagglutinin 

occurred more often than by chance alone (Moncla et al., 2020; Xue et al., 2017). However, these 

statistical tests are not without their limits and may not be generalizable to all study designs.  

Another challenge in interpreting intrahost datasets is evaluating the impact of genetic drift, 

which is commonly underappreciated relative to natural selection. Drift can manifest in two 

important ways in individual infections: stochastic fluctuations in variant frequency during 

replication within a host or spread to different anatomical compartments, and reduction in 

population size during transmission. 

Within hosts, genetic drift influences variant frequency simply due to random sampling 

(Dolan et al., 2016). Therefore, a rise in frequency of a specific variant is not necessarily evidence of 

natural selection. This is an important force to account for in inferences of selection. Genetic drift is 

amplified when population sizes are small. This is usually much smaller than the number of 

individuals in a population, or for viruses, the number of physical or infectious particles within an 

individual host. Genetic drift is thought to play a major role in within-host evolution for many 

viruses (Lequime et al., 2016; McCrone et al., 2018; Nelson et al., 2006). However, the effective 

population size of RNA viruses in acute infections is poorly understood. This remains an important 

area for future innovation. 

Transmission bottlenecks can have profound impacts on the rates of virus evolution and the 

contribution of variants generated within hosts to global evolutionary dynamics (Xue et al., 2018). 

Bottlenecks decrease the genetic diversity, and thus the effective population size, of a population. 

This decrease in the effective population size increases the influence of stochastic effects on variant 

frequency. This can have different effects on viral fitness, depending on the context. Transmission 
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bottlenecks may cause stochastic loss of beneficial mutations, while fixing neutral or even 

deleterious ones (McCrone and Lauring, 2018). Bottlenecks may also benefit viral populations by 

purging defective viral genomes or other deleterious elements. These bottlenecks may undo the 

momentary gains of intrahost mutations that were generated during a given infection by limiting 

their spread to new hosts. Consequently, if mutations do not transmit to new hosts, they will not 

have the opportunity to increase and fix at a global population level. While the transmission 

bottleneck is primarily a force that acts between two individual hosts, it can have large impacts on 

the global rate of viral adaptation by decreasing the likelihood that a mutation arising within a host 

will spread throughout a population. 

The size of the transmission bottleneck for a given virus is an important question. There 

may not be a single value that describes the bottleneck for all transmission events or all 

epidemiological contexts, but it is important to understand what happens most often during viral 

transmission. If a bottleneck is consistently tight, or stringent, this will greatly increase the role of 

genetic drift at the individual-to-individual level. This will decrease the efficiency of selection in the 

population at large. However, if a bottleneck is consistently wide and allows transmission of high 

levels of genetic diversity to a new host, this will permit natural selection to exercise a stronger role. 

The transmission bottleneck has been measured for very few viruses in humans. HIV and HCV are 

thought to experience tight bottlenecks during transmission (Kariuki et al., 2017; Wang et al., 2010). 

The first studies on influenza A virus had conflicting evidence on the bottleneck size, but the most 

recent and robust studies have demonstrated a narrow bottleneck (McCrone et al., 2018; Poon et al., 

2016; Xue and Bloom, 2019a). A similar picture has emerged for SARS-CoV-2, although there are 

conflicting reports (Lythgoe et al., 2021; Popa et al., 2020). These conflicting estimates highlight the 

challenges of intrahost variation at all levels: study design, accuracy of variant identification, and 
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interpretation of shared variants. These questions have been at the center of my thesis, relevant to 

each chapter and viral system we studied. 

In Chapters II and III, I used rigorous statistical methods and longitudinal sampling to 

identify sites under positive selection. I used household-based studies of viral transmission to 

estimate the transmission bottleneck size for influenza B virus and the oral polio vaccine. I used 

these estimates to demonstrate the influence of transmission bottlenecks on the spread of positively 

selected mutations. 

 

Applications to genomic epidemiology 

 

The most common goal of studying viral intrahost variation has been to gain insight into the general 

evolutionary dynamics of viruses. Recently, however, there has been increased attention on potential 

applications in genomic epidemiology and sequence-based transmission inference (Villabona-Arenas 

et al., 2020). Consensus-level genomic epidemiology has been widely used in the past several years 

for tracking the movements of viral lineages through human populations (Grubaugh et al., 2019b). 

Due to the intensive resources and analysis required for genome sequencing, this is usually a 

retrospective exercise. However, outbreaks of Ebola virus in West Africa and Zika virus in South 

and Central America were the first instances of real-time sequencing and epidemiologic inference at 

a large scale (Di Paola et al., 2020; Grubaugh et al., 2017). These tools have broad applications in 

public health and infection prevention. Genome sequencing can help disentangle transmission 

clusters in high-density settings, such as in hospitals between patients and healthcare workers 

(Meredith et al., 2020). They can also monitor the frequency of genomic variants associated with 

important phenotypic changes, like antigenicity or transmissibility. These efforts can help identify 
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risk factors for transmission, define the local epidemiology of circulating viruses, and enhance 

contact tracing. 

The high mutation rate of RNA viruses and the resolution of genomic sequencing allows for 

fine-scale analysis of transmission. Based on sequence similarity and phylogenetic relatedness, 

sequencing can easily rule out transmission linkage of individuals if the genetic distance between two 

genomes is high. Conversely, identical or near-identical genome sequences plus linkage by traditional 

contact tracing is powerful evidence of transmission linkage. However, there is a limit to the 

resolution achieved by genomic epidemiology approaches that are now standard (Villabona-Arenas 

et al., 2020). A cluster of cases may have identical consensus genomes, making it difficult to 

determine the exact order of the chain of transmission. This problem is especially difficult for 

pathogens with lower mutation rates, such as DNA viruses and bacteria (Martin et al., 2018). One 

potential solution that has been explored largely for bacterial genomics is comparing patterns of 

intrahost variation (Worby et al., 2014). The concept in its most basic form is that if intrahost 

genetic variation is shared between transmission pairs but not other individuals, then that might 

suggest transmission linkage between those individuals. The potential utility of shared intrahost 

variants for this purpose has been modeled in generalized statistical frameworks and explored in 

several bacterial pathogens, such as tuberculosis (Maio et al., 2018; Worby et al., 2017). This 

application of intrahost diversity has received even more interest throughout the current SARS-

CoV-2 pandemic, in which the pathogen of interest exhibits extremely low consensus diversity. 

 Little is known about the validity and utility of viral intrahost diversity in genomic 

epidemiology. Its validity depends on a complex integration of the topics discussed in this 

Introduction. In order to make high-quality transmission inferences based on shared intrahost 

variation, there are important criteria that must be met. The quality of the epidemiologic metadata 

must be high, such that there is a known set of possible transmission pairs in the cohort. The 
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sequencing and variant identification must be highly accurate; otherwise, spurious and systematic 

errors could create the appearance of shared variation when there is none. The idiosyncrasies of 

within-host evolution are also important. There must be a sufficient amount of genetic diversity that 

is generated during an acute infection and passed to new hosts through a sufficiently large 

transmission bottleneck (Worby et al., 2017). Lastly, the base rate of parallel mutation in the cohort 

must be sufficiently small. If there is a large amount of parallel mutation and a tight transmission 

bottleneck, then it could be more likely that pairs who are not transmission linked share variants 

compared to actual transmission pairs. Particularly for a pathogen with emerging variants like SARS-

CoV-2, these dynamics could differ by time and evolutionary lineage. In sum, the applications of 

intrahost diversity for genomic epidemiology is not amenable to a “plug-and-chug” approach. The 

success of this endeavor depends entirely on a fundamental understanding of how viruses evolve 

within hosts and the technologies used to measure this evolution. 

In Chapter IV, I investigated SARS-CoV-2 intrahost diversity and its consequences for 

sequence-based transmission inference. I found that in the context of a tight transmission 

bottleneck, the low intrahost diversity and relatively high frequency of parallel mutation in SARS-

CoV-2 intrahost populations creates difficult complications for its application in genomic 

epidemiology. 
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CHAPTER II 

Influenza B Viruses Exhibit Lower Within-Host Diversity Than Influenza A 
Viruses in Human Hosts 

 

Note: This chapter is a modified version of the published article: 

Valesano AL, Fitzsimmons WJ, McCrone JT, Petrie JG, Monto AS, Martin ET, Lauring AS. 2020. “Influenza B viruses 
exhibit lower within-host diversity than influenza A viruses in human hosts.” J Virol 94:e01710-19. 
 
The American Society of Microbiology grants all authors full rights to reuse their articles in dissertations. 
 
 
 
Introduction 

 

Influenza viruses rapidly mutate and evolve through selection, genetic drift, and reassortment (Moya 

et al., 2004). At a global scale, influenza A virus (IAV) and influenza B virus (IBV) evolve under 

strong positive selection driven by pressure for escape from pre-existing population immunity 

(Nelson and Holmes, 2007; Rambaut et al., 2008). Selection of new antigenic variants contributes to 

reduced effectiveness of seasonal influenza vaccines, necessitating annual updates of vaccine strains 

(Yamayoshi and Kawaoka, 2019). IAV and IBV both undergo seasonal antigenic drift and share a 

similar genomic architecture, but their ecology and evolution differ in important ways (Petrova and 

Russell, 2018). While IBV accounts for roughly one-third of influenza’s burden of morbidity and 

mortality (Paul Glezen et al., 2013; Thompson et al., 2003), it circulates only in humans and seals 

and is considered to be a lower pandemic risk than influenza A (IAV) due to its limited animal 

reservoirs. Like IAV, there are co-circulating, antigenically distinct lineages of IBV that are included 
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in the quadrivalent influenza vaccine. Two lineages of IBV diverged in the 1980s, B/Victoria/2/87-

like and B/Yamagata/16/88-like, here referred to as B/Victoria and B/Yamagata, respectively (Rota 

et al., 1990). 

 

IBV evolves more slowly than IAV on a global scale and has a lower rate of antigenic drift, but the 

reasons for this are poorly understood (Petrova and Russell, 2018; Yamashita et al., 1988). Similar 

evolutionary forces are involved in the antigenic evolution of both IAV and IBV, generally 

characterized by non-synonymous substitutions at antigenic sites in the surface hemagglutinin (HA) 

protein (Chen and Holmes, 2008; Shen et al., 2009) and reassortment within and between lineages 

(Dudas et al., 2015; Langat et al., 2017; Vijaykrishna et al., 2015). The IBV polymerase has a lower 

mutation rate relative to IAV (Nobusawa and Sato, 2006). However, it is unclear whether the slower 

global evolution of IBV is driven by its lower mutation rate or other differences in selection at the 

global scale.  

 

All new seasonal influenza variants are ultimately derived from de novo mutations within individual 

hosts (Xue et al., 2018). Therefore, understanding how new variants arise within individuals and 

transmit between them is essential to defining how novel viruses spread in host populations. For 

example, if the relative mutation rate is a major factor underlying the global evolutionary differences 

across IAV and IBV, we might also expect to see differences in their within-host dynamics. We and 

others have used next-generation sequencing to investigate the within- and between-host 

evolutionary dynamics of IAV in humans (Debbink et al., 2017; Dinis et al., 2016; Leonard et al., 

2016; McCrone et al., 2018; Xue and Bloom, 2019a; Xue et al., 2018). We have found that there is 

little accumulation of intrahost variants during acute infections of immunocompetent individuals 

(Leonard et al., 2016; McCrone et al., 2018), and we have not found evidence of changes in intrahost 
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diversity by vaccination status or other proxies for immunological history (Debbink et al., 2017; Han 

et al., 2018; McCrone et al., 2018). The IAV transmission bottleneck is stringent (McCrone et al., 

2018), which generally means that few variants that arise within hosts are able to transmit. Together, 

these studies suggest that positive selection of novel variants is an inefficient process in IAV-

infected hosts, contrasting with its patterns of significant positive selection at the global level (Xue 

and Bloom, 2019b). Despite the importance of intrahost processes to influenza virus evolution, 

these dynamics have not been systematically investigated in IBV. 

 

Here we use next-generation sequencing to define the within-host diversity of IBV populations from 

individuals enrolled in the Household Influenza Vaccine Evaluation (HIVE) study, a community-

based household cohort initiated in 2010. We apply a previously-validated sequencing approach and 

bioinformatic pipeline (Debbink et al., 2017; McCrone and Lauring, 2016; McCrone et al., 2018) to 

identify intrahost single-nucleotide variants (iSNV) arising during infection with B/Victoria and 

B/Yamagata viruses. We find that IBV has significantly lower intrahost diversity than IAV, 

consistent with its lower mutation rate and slower rate of evolution. We analyze shared iSNV across 

15 genetically validated household transmission pairs and find that, like IAV, IBV is also subject to a 

tight genetic bottleneck at transmission. These data provide the first systematic evaluation of the 

genetic architecture of IBV populations during natural human infection and provide insights into the 

comparative epidemiology and evolution of influenza viruses. 

 
Methods 
 
 
Description of the HIVE cohort 
 
The HIVE study is a prospective, community-based household cohort in Southeastern Michigan 

based at the University of Michigan School of Public Health (Monto et al., 2014, 2019; Ohmit et al., 
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2013, 2016; Petrie et al., 2013, 2017). The cohort was initiated in 2010, with enrollment of 

households with children occurring on an annual basis and an active surveillance period lasting from 

October through May. In 2014, active surveillance was expanded to take place year-round. 

Participating adults provided informed consent for themselves and their children, and children ages 

7-17 provided oral assent. Individuals in each household were followed prospectively for acute 

respiratory illness, defined as two or more of the following: cough, fever or feverishness, nasal 

congestion, chills, headache, body aches, or sore throat. Study participants meeting the criteria for 

acute respiratory illness attended a study research clinic at the University of Michigan School of 

Public Health where a combined throat and nasal swab, or a nasal swab only for children less than 

three years old, was collected by the study team. Beginning in the 2014-2015 season, study 

participants with acute respiratory illnesses took an additional nasal swab at home at the time of 

illness onset, collected either by themselves or by a parent. The study was approved by the 

Institutional Review Board of the University of Michigan Medical School. 

 

Viral detection, lineage typing, and viral load quantification 

We processed upper respiratory specimens (combined nasal and throat swab or nasal swab) for 

confirmation of influenza virus infection by reverse transcription polymerase chain reaction (RT-

PCR). We extracted viral RNA with either QIAamp Viral RNA Mini Kits (Qiagen) or PureLink Pro 

96 Viral RNA/DNA Purification kits (Invitrogen) and tested samples using the SuperScript III 

Platinum One-Step Quantitative RT-PCR System with ROX (Invitrogen) and primers and probes 

for universal detection of influenza A and B (CDC protocol, 28 April 2009). Specimens positive for 

influenza virus were tested using subtype/lineage primer and probe sets, which are designed to 

detect influenza A (H3N2), A (H1N1)pdm09, B (Yamagata), and B (Victoria). An RNAseP 
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primer/probe set was run for each specimen to confirm specimen quality and successful RNA 

extraction. 

 

We quantified the viral load in each sample by RT-qPCR using primers specific for the open reading 

frame of segment 8 (NS1/NEP): forward primer 5’-TCCTCAACTCACTCTTCGAGCG-3’, reverse 

primer 5’-CGGTGCTCTTGACCAAATTGG-3’, and probe 5’-(FAM)-

CCAATTCGAGCAGCTGAAACTGCGGTG-(BHQ1)-3’. Each reaction contained 5.4 µL of 

nuclease-free water, 0.5 µL of each primer at 50 µM, 0.1 µL of ROX dye, 0.5 µL SuperScript III 

RT/Platinum Taq enzyme mix, 0.5 µL of 10 µM probe, 12.5 µL of 2x PCR buffer master mix, and 

5 µL of extracted viral RNA. To relate genome copy number to Ct value, we used a standard curve 

based on serial dilutions of a plasmid control, run in duplicate on the same plate.  

 

Amplification, library preparation, and sequencing 

We amplified viral cDNA from all eight genomic segments using the SuperScript III One-Step RT-

PCR Platinum Taq HiFi Kit (Invitrogen). Each reaction contained 5 µL of extracted viral RNA, 12.5 

µL of 2x PCR buffer, 2 µL of primer cocktail, 0.5 µL of enzyme mix, 5 µL of nuclease-free water. 

The primer cocktail was a mixture of B-PBs-UniF, B-PBs-UniR, B-PA-UniF, B-PA-UniR, B-

HANA-UniF, B-HANA-UniR, B-NP-UniF, B-NP-UniR, B-M-Uni3F, B-Mg-Uni3F, B-M-Uni3R, 

B-NS-Uni3F,  and B-NS-Uni3R (sequences and proportions are listed in ref. (Zhou et al., 2014)). 

The thermocycler protocol was: 45 ˚C for 60 min, 55 ˚C for 30 min, 94 ˚C for 2 min, then 5 cycles 

of 94 ˚C for 20 s, 40 ˚C for 30 s, 68 ˚C for 3 min 30 s, then 40 cycles of 94 ˚C for 20 s, 58 ˚C for 30 

s, 68 ˚C for 3 min 30 s, and a final extension of 68 ˚C for 10 min. We confirmed IBV genome 

amplification by gel electrophoresis. We sheared amplified cDNA (100-500 ng) on a Covaris 
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ultrasonicator with the following settings: time 80 sec, duty cycle 10%, intensity 4, cycles per burst 

200. We prepared sequencing libraries with NEBNext Ultra DNA Library Prep kits (NEB) and 

sequenced them on an Illumina NextSeq with 2x150 paired end reads (mid-output run, v2 

chemistry). To increase the specificity of variant identification, samples with a viral load between 103 

and 105 genome copies/µL of transport media were amplified and sequenced in duplicate. Samples 

amplified from B/Victoria and B/Yamagata plasmid clones were included on each sequencing run 

to account for sequencing errors. The plasmids used in the control reactions were generated by 

segment-specific RT-PCR from clinical samples of B/Victoria and B/Yamagata strains from the 

2012-2013 season followed by gel extraction and TOPO-TA cloning (Invitrogen). The sequence of 

each plasmid was determined by Sanger sequencing. We generated the plasmid control amplicons 

included on each Illumina sequencing run using the same multiplex amplification protocol, but with 

cloned plasmid DNA as the template. 

 

Identification of iSNV 

Intrahost single-nucleotide variants (iSNV) were identified using a previously-described analytic 

pipeline (McCrone and Lauring, 2016). We identified iSNV in samples that had an average genome 

coverage greater than 1000x and a viral load greater than 103 genome copies per microliter of 

transport media in the original sample. Sequencing adapters were removed with cutadapt (Martin, 

2011) and reads were aligned to the sequences derived from the B/Victoria and B/Yamagata 

plasmid controls with Bowtie2 (Langmead and Salzberg, 2012). Duplicate reads were marked and 

removed with Picard and samtools (Li et al., 2009). Putative variants were identified with the R 

package deepSNV using data from the clonal plasmid controls of each sequencing run (Gerstung et 

al., 2012). Minority iSNV (<50% frequency) were identified using the following empirically-derived 

criteria: deepSNV p-value <0.01, average mapping quality >30, average Phred score >35, and 
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average read position in the middle 50% (positions 37 and 113 for 150 base pair reads). For samples 

processed in duplicate, we used only variants that were present in both replicates; the frequency of 

the variant in the replicate with greater coverage at that site was used. Lastly, variants with frequency 

<2%, which have a higher false positive rate from RT-PCR and/or sequencing errors, were not 

included in downstream analyses. 

 

In our previous work on IAV, we found that there were multiple sites with mutations that were 

essentially fixed (>0.95) relative to the plasmid control and in which the base in the plasmid control 

was therefore identified as a minority variant in the sample (McCrone et al., 2018). At these sites, 

deepSNV is unable to estimate the base-specific error rate and cannot distinguish true minority 

iSNV; however, we found that we could accurately identify minority variants at these sites at a 

frequency of 2% or above (McCrone et al., 2018). This frequency threshold was incorporated into 

the pipeline for iSNV identification at these sites. Therefore, we identify intrahost variants with 

frequencies between 2-98%. Minority iSNV are the subset of these variants with a frequency 

between 2-50% relative to the sample consensus, which we use as a metric of within-host diversity. 

For each minority iSNV, we identify the majority iSNV present at a frequency of 50-98%. Any sites 

that were monomorphic after applying quality filters were assigned a frequency of 100%. Nucleotide 

diversity (p) was calculated using identified iSNV in each sample using the formula described in 

Zhao and Illingoworth (Zhao and Illingworth, 2019). 

 

Data and code availability 

Raw sequence data, with human content filtered out, are available at the NCBI Sequence Read 

Archive under BioProject accession number PRJNA561158. Code for the variant identification 
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pipeline is available at http://github.com/lauringlab/variant_pipeline. Analysis code is available at 

http://github.com/lauringlab/Host_level_IBV_evolution. 

 

Results 

 

We used high depth-of-coverage sequencing to define the intrahost genetic diversity in IBV-positive 

samples collected from individuals in the HIVE, a prospective, household cohort in southeastern 

Michigan that follows 200-350 households annually (Table 2.1). This cohort provides an opportunity 

to investigate natural infections and transmission events in a community context. Individuals that 

meet symptom-based criteria for an upper respiratory illness during the surveillance period undergo 

collection of nasal and throat swabs for molecular detection of respiratory viruses by RT-PCR. 

Starting in 2014-2015, individuals also provided a sample collected at home prior to subsequent 

collection of a second specimen at the on-site clinic.  

 

Table 2.1. Influenza B viruses over seven seasons in a household cohort. 
 

 2010-2011 2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 2016-2017 
Households 328 213 321 232 340 227 208 
Participants 1441 943 1426 1049 1431 996 890 
Vaccinated n(%)a 934 (65) 554 (59) 942 (66) 722 (69) 992 (69) 681 (68) 611 (69) 
IBV Positive Individualsb 45 7 49 4 44 11 30 
     B/Yamagata 1 3 38 4 34 5 26 
     B/Victoria 37 0 10 0 10 6 4 
IBV Positive Householdsc        
     Two Individuals 10 2 5 0 11 2 4 
     Three Individuals 0 1 1 0 1 0 2 
High Quality NGS Datad 13 2 20 1 32 11 20 

 

a Self-reported or confirmed receipt of vaccine prior to the specified season. 
b RT-PCR confirmed infection. 
c Households in which two individuals were positive within 7 days of each other. In cases of trios, the putative chains could have no 
pair with onset >7 days apart. 
d Samples with >103 genome copies per µl of transport medium, adequate amplification of all 8 genomic segments, and average 
sequencing coverage >103 per nucleotide. 
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Over seven seasons (2010-2011 through 2016-2017) and 8176 person-seasons of observation, we 

identified 111 individuals infected with B/Yamagata and 67 infected with B/Victoria (Table 2.1). 

Several households had clusters of infections of two or three IBV-positive individuals within 7 days 

of each other, suggestive of within-household transmission. Because variant identification is 

sensitive to input viral titer (McCrone and Lauring, 2016), we first measured viral loads of all 

available IBV-positive samples by RT-qPCR (Figure 2.1A). Any samples with a viral load below 103 

copies/µL were not submitted for sequencing. For samples with a viral load in the range of 103-105 

copies/µL, we performed two independent RT-PCR reactions and sequenced replicate libraries on 

separate sequencing runs. We sequenced samples with viral loads above 105 copies/µL of transport 

media in a single replicate. From the available IBV-positive samples, we were able to obtain 

sequence data on 106 samples from 91 individuals, consisting of 35 individuals infected with 

B/Victoria and 56 infected with B/Yamagata (Table 2.1). 

 

We identified intrahost single nucleotide variants (iSNV) using our previously validated 

bioinformatic pipeline. As in our previous work, we report iSNV at frequencies of 2% or above, for 

which we have well-defined sensitivity and specificity (McCrone et al., 2018). We consider sites with 

>98% frequency to be essentially fixed, setting the frequency at those sites to 100% (see Materials 

and Methods). We achieved a mean coverage of 10,000x per sample across most genome segments, 

with generally lower coverage on segments encoding NP and NS (Figure 2.1B). We restricted our 

analysis of iSNV to samples with an average genome coverage of greater than 1000x, which includes 

99 of the original 106 sequenced samples. 
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Figure 2.1. Viral load and sequencing coverage. (A) Boxplot of viral load (genome copies per microliter of swab transport media, y-
axis) by day of sampling relative to symptom onset (x-axis). The boxes display median and 25th and 75th percentiles, with whiskers 
extending to the most extreme point within the range of the median ± 1.5 times the interquartile range. (B) Sequencing coverage is 
plotted with read depth on the y-axis and location within a concatenated influenza B virus genome on the x-axis. The mean coverage 
for each sample was calculated over a sliding window of size 200 and a step size of 100. The data are displayed for all samples at each 
window as a boxplot, showing the median and 25th and 75th percentiles, with whiskers extending to the most extreme point within the 
range of the median ± 1.5 times the interquartile range; all values outside this range are shown as individual points. 
 

Within-host genetic diversity of IBV in natural infections 

All samples exhibited low genetic diversity. The vast majority had no iSNV above the 2% cutoff. Of 

the 99 samples with high-quality NGS data, 70 had no minority iSNV, 17 had one iSNV, 7 had two 

iSNV, and 3 samples had 3 iSNV (median 0, IQR 0-1; Table 2.2). Two outliers had a large number 

of iSNV, with 8 and 20 iSNV. These two samples came from the same individual, with one collected 

at home and the second at the study clinic two days later.  Most of the iSNV in these two samples 

were present at similar frequencies, 3-5% in the home sample and 17-23% in the clinic sample 

(Table 2.3), both of which were sequenced in duplicate on separate Illumina runs. The high number 

of mutations present at similar frequencies is suggestive of a mixed infection with distinct haplotypes 

or strains as opposed to de novo mutations arising on a single genetic background. The iSNV in the 

home-collected sample are all found in the subsequent clinic-collected sample, each with a similar 

change in frequency across the two samples. This further supports the conclusion that these 

mutations are on the same genome in a mixed infection with two distinct strains. 
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Table 2.2. Identified iSNV, excluding samples from one putative mixed infection. 
 

Enrollee Specimen Season Lineage 
Viral 
Loada Gene Nucleotideb 

Amino 
Acidc Frequency Vaccinatedd 

50207 MH15919 16/17 B/Victoria 3.50E+03 M A650G N207S 0.024 IIV4 
331001 MH2671 12/13 B/Victoria 3.20E+05 NA C276T L73F 0.086 LAIV3 
331001 MH2671 12/13 B/Victoria 3.20E+05 PA A2047G K671R 0.474 LAIV3 
330171 MH3227 12/13 B/Victoria 7.00E+06 NA A385C N109T 0.162 IIV3 
330171 MH3227 12/13 B/Victoria 7.00E+06 PA C1982T A649A 0.461 IIV3 
301587 M53957 10/11 B/Victoria 3.30E+04 HA G1603A G522R 0.081 No 
301587 M53957 10/11 B/Victoria 3.30E+04 NA A863C T268T 0.038 No 
301202 M54308 10/11 B/Victoria 4.40E+04 PA C1037T N334N 0.195 No 
50003 MH10403 14/15 B/Victoria 8.20E+04 NS A103C T18T 0.063 No 
50004 MH10404 14/15 B/Victoria 8.20E+04 NP A577G N171S 0.057 No 
50004 MH10404 14/15 B/Victoria 8.20E+04 NA A1457G L466L 0.223 No 
50004 MH10404 14/15 B/Victoria 8.20E+04 PA G1617A V528M 0.497 No 
50424 HS1876 14/15 B/Victoria 1.60E+03 NP G1191A D376N 0.034 IIV4 
50051 HS1909 14/15 B/Victoria 1.90E+03 M G709A E227K 0.343 Yes, Unk 
50004 HS1788 14/15 B/Victoria 8.30E+05 NP A577G N171S 0.054 No 
50004 HS1788 14/15 B/Victoria 8.30E+05 PA G1617A V528M 0.389 No 
50004 HS1788 14/15 B/Victoria 8.30E+05 NA A1457G L466L 0.045 No 
50312 HS2019 15/16 B/Victoria 2.00E+05 NP G987A V308I 0.420 No 
50312 HS2019 15/16 B/Victoria 2.00E+05 PA G1346A E437E 0.467 No 
51123 HS2680 15/16 B/Victoria 3.50E+05 NP G1511A R482R 0.344 No 
320779 MH0776 11/12 B/Yamagata 3.40E+05 NP A735G S223S 0.023 IIV3 
320779 MH0776 11/12 B/Yamagata 3.40E+05 PB2 G661A R211R 0.222 IIV3 
51092 MH10076 14/15 B/Yamagata 1.20E+04 PB1 A223G I66V 0.116 IIV4 
50650 MH16167 16/17 B/Yamagata 5.20E+04 PA T2019C L662L 0.373 IIV4 
50650 MH16167 16/17 B/Yamagata 5.20E+04 PB1 C345T A106A 0.159 IIV4 
331060 MH3065 12/13 B/Yamagata 3.70E+05 PA A1912G K626R 0.051 LAIV3 
331397 MH4247 12/13 B/Yamagata 2.40E+04 PB2 A676G R216R 0.370 IIV3 
330459 MH4289 12/13 B/Yamagata 2.10E+05 HA G1102A A355T 0.024 IIV3 
330460 MH4364 12/13 B/Yamagata 2.10E+05 PB2 G520A V164V 0.032 IIV3 
50006 MH16139 16/17 B/Yamagata 1.20E+05 HA T728C F230S 0.148 No 
331471 MH2216 12/13 B/Yamagata 8.60E+04 PB2 G1936A Q636Q 0.024 No 
331470 MH2246 12/13 B/Yamagata 1.20E+04 PA G1535A A500A 0.029 No 
331470 MH2246 12/13 B/Yamagata 1.20E+04 PB2 A2253G K742R 0.124 No 
331470 MH2246 12/13 B/Yamagata 1.20E+04 PB2 C769T H247H 0.023 No 
331364 MH4166 12/13 B/Yamagata 2.80E+04 HA C746T T236I 0.037 No 
331364 MH4166 12/13 B/Yamagata 2.80E+04 PA G1298A L421L 0.093 No 
UM41536 MH6592 13/14 B/Yamagata 2.00E+04 PB1 G1893A R622R 0.022 No 
51093 HS1747 14/15 B/Yamagata 3.90E+04 PA G1433A L466L 0.087 IIV4 
50419 HS3214 16/17 B/Yamagata 5.40E+05 PB1 C345T A106A 0.046 IIV4 
51121 HS3258 16/17 B/Yamagata 1.10E+04 PB1 A2079G E684E 0.022 No 

 
a Viral load measured by RT-qPCR, expressed in genome copies per microliter of transport medium. 
b Consensus nucleotide followed by position on reference genome and variant nucleotide. 
c Consensus amino acid followed by codon position on reference genome and variant amino acid. 
d Self-reported or confirmed receipt of vaccine prior to the specified season. IIV4, quadrivalent inactivated; LAIV3, trivalent live 
attenuated; IIV3, trivalent inactivated; Unk, vaccine product unknown. 
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Table 2.3. Identified iSNV in one vaccinated individuala with a putative mixed infection. 
 

Specimena Viral Loadb Gene Nucleotidec Amino Acidd Frequency 
HS1875 2.90E+04 HA G1061A R341K 0.029 
HS1875 2.90E+04 NP G1666A G534D 0.027 
HS1875 2.90E+04 NA G1210A G384D 0.054 
HS1875 2.90E+04 NA A798G S247G 0.052 
HS1875 2.90E+04 NS G1004A V100V 0.045 
HS1875 2.90E+04 PB2 G817A V263V 0.036 
HS1875 2.90E+04 PB2 A1231C I401I 0.032 
HS1875 2.90E+04 PB2 A793G E255E 0.035 
MH10536 3.80E+04 HA G1061A R341K 0.236 
MH10536 3.80E+04 HA C366T C109C 0.213 
MH10536 3.80E+04 M A114G L28L 0.189 
MH10536 3.80E+04 NP G1666A G534D 0.193 
MH10536 3.80E+04 NP G1257A R398R 0.166 
MH10536 3.80E+04 NA G1210A G384D 0.239 
MH10536 3.80E+04 NA C1286T Y409Y 0.218 
MH10536 3.80E+04 NA C1319T C420C 0.217 
MH10536 3.80E+04 NA G1148A R363R 0.225 
MH10536 3.80E+04 NA A798G S247G 0.233 
MH10536 3.80E+04 NA T816C F253L 0.06 
MH10536 3.80E+04 NS G1004A V100V 0.185 
MH10536 3.80E+04 NS G596A V183I 0.190 
MH10536 3.80E+04 NS T469A V140V 0.198 
MH10536 3.80E+04 NS T66C M6T 0.173 
MH10536 3.80E+04 PA G1279A S415N 0.188 
MH10536 3.80E+04 PB1 T1932A S635S 0.214 
MH10536 3.80E+04 PB2 G817A V263V 0.217 
MH10536 3.80E+04 PB2 A1231C I401I 0.218 
MH10536 3.80E+04 PB2 A793G E255E 0.221 

 
a  Enrollee number 50425. HS Indicates home specimen and MH indicates clinic specimen, both from same individual 
b  Viral load measured by RT-qPCR, expressed in genome copies per microliter of transport medium. 
c  Consensus nucleotide followed by position on reference genome and variant nucleotide. 
d  Consensus amino acid followed by codon position on reference genome and variant amino acid. 
 

We examined how within-host diversity changes by day of sampling during IBV infections, as the 

virus population rapidly expands and contracts. As we have previously shown that specimen viral 

load can affect the sensitivity and specificity of variant identification (McCrone and Lauring, 2016), 

we sought to control for this variable in our analysis. Although viral load generally decreased with 

time after symptom onset (Figure 2.1A), we found that within-host diversity as measured by number 

of identified minority iSNV did not vary with viral load (Figure 2.2A; p = 0.2996, adjusted r-squared 

= 0.0009) or with day of infection (Figure 2.2B; p = 0.62, ANOVA). The frequencies of the 

identified iSNV were consistent across replicate libraries from the same samples, indicating that our 

measurements of iSNV frequency are precise (Figure 2.2C). 



 27 

 

Figure 2.2. Intrahost minority SNV by day post-symptom onset and viral load. (A) Number of minority iSNV per sample is plotted 
on the y-axis by day post symptom onset on the x-axis. Data are displayed as boxplots representing the median and 25th and 75th 
percentiles, with whiskers extending to the most extreme point within the range of the median ±1.5 times the interquartile range. The 
raw data points are shown in black overlaid on top of the boxplots; points from mixed infection samples are shown in orange. (B) 
Scatterplot relating the number of minority iSNV per sample on the y-axis to the log10 of viral load, in genome copies per microliter, 
on the x-axis. Data points from the mixed infection are shown in orange. (C) Frequency of minority iSNV in samples sequenced in 
duplicate. Orange dots represent variants identified in samples with viral load of 103 – 104 genome copies per microliter and blue dots 
represent variants in samples with viral load of 104 – 105 genome copies per microliter. 
 

We detected minority iSNV across all eight genome segments (Figure 2.3). The ratio of 

nonsynonymous to synonymous iSNV was 0.74, which given the excess of nonsynonymous sites 

across the genome, suggests significant purifying selection. There was only one minority iSNV 

present in more than one individual; we identified a variant encoding a synonymous mutation in 

PB1 in two individuals from separate households infected with B/Yamagata in the 2016-2017 

season. We did not identify any nonsynonymous minority iSNV in the known antigenic sites of IBV 

hemagglutinin, which suggests that positive selective pressure for variants that escape antibody-

mediated immunity is not particularly strong within hosts. We found that there is no difference in 

the distribution of the number of iSNV per sample between vaccinated and non-vaccinated 

individuals (Figure 2.4A). During the first few seasons of the study, some individuals received 

trivalent vaccines, which contain only one of the two IBV lineages. We therefore repeated this 

analysis, excluding 3 individuals for whom we had no information about specific vaccine product 

and re-classifying 6 individuals who received trivalent vaccines and were infected with a lineage not 
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included in that season’s trivalent formulation as “unvaccinated.” We again found no difference in 

the number of iSNV between groups (MWU test, p = 0.9103). Together, these data indicate that 

vaccine-induced immunity is not a major diversifying force for IBV within hosts in our study 

population. This is consistent with our previous work on IAV in the HIVE as well as a randomized-

controlled trial of vaccine efficacy (FLU-VACS), both of which showed no difference in intrahost 

diversity based on same-season vaccination status (Debbink et al., 2017; McCrone et al., 2018). 

Intrahost diversity was similar between B/Victoria and B/Yamagata virus populations (Figure 2.4B), 

consistent with our previous comparison of subtype A/H3N2 and A/H1N1 viruses (McCrone et 

al., 2018). 

 

Figure 2.3. Intrahost SNV frequency by genome position and mutation type. All minority (<50%) iSNV from 99 samples are 
displayed with their frequency on the y-axis and their position within a concatenated influenza B virus genome on the x-axis. 
Synonymous mutations are shown in orange and nonsynonymous mutations in blue. 
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Figure 2.4. Intrahost SNV by vaccination status and IBV lineage. (A) Numbers of minority iSNV per sample across all 99 samples 
are shown (y-axis) by current-season vaccination status of the host (x-axis). Samples from the mixed infection are shown in orange. 
(B) Numbers of minority iSNV per sample are shown (y-axis) by IBV lineage (x-axis). Samples from the mixed infection are shown in 
orange. (C) Pairwise nucleotide diversity (π, y-axis) by influenza virus type (x-axis), stratified by iSNV frequency cut-off (top). Medians 
are shown as red lines. Data for influenza A virus are from 243 samples described in McCrone et al. 2018. Data on influenza B virus 
are from 97 high-quality samples in the present study. Samples from mixed infections in both studies are excluded. (D) Numbers of 
minority iSNV in 43 of the 99 high-quality samples (y-axis), consisting of B/Yamagata from the 2014/2015 season, B/Victoria from 
the 2015/2016 season, and B/Yamagata from the 2016/2017 season based on alignments to the original references from the 
2012/2013 season vs. season-matched reference genomes (x-axis).  
 

We compared the within-host genetic diversity of IBV to our previously published data on IAV 

from the HIVE cohort (McCrone et al., 2018). Here, IBV exhibits lower within-host diversity 

compared to IAV (Table 2.4; p < 0.001, MWU test). IBV samples had a lower median number of 

minority iSNV (median 0, IQR 0-1) compared to IAV (median 2, IQR 1-3); 71% of IBV samples 

contained no minority iSNV compared to 20% of IAV samples. The difference in within-host 

diversity was robust to relaxation of the iSNV frequency cutoff to 1% and 0.5%. IBV also exhibited 

a lower within-host diversity as measured by nucleotide diversity (p), which takes both the number 
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and the frequency of iSNV into account (Figure 2.4C and Table 2.4). To ensure our results were not 

an artifact of overly stringent quality thresholds, we also identified minority iSNV with less 

conservative read mapping quality (MapQ) and base quality (Phred) scores. We identified the same 

set of minority iSNV with a MapQ cut-off of 20 as with the original cutoff of 30. Similarly, 

reduction of the Phred base-quality cutoff to >25 in addition to a MapQ score cutoff of >20 

resulted in only 20 more minority iSNV, eight of which were found in the individual with a mixed 

infection. The other additional 12 minority iSNV were dispersed across specimens and did not 

significantly change the overall distribution of within-host diversity. We also examined whether our 

results were biased by use of a single B/Yamagata and B/Victoria reference for alignment and 

variant calling, which were both drawn from the 2012-2013 season (see Materials and Methods). We 

realigned sequence data from 43 of the original 99 samples to season-specific reference genomes 

isolated in southeastern Michigan. We found that the overall alignment rate for any given specimen 

was similar between the original reference and the new season-matched reference. Variant 

identification based on the new references and the original quality thresholds resulted in the same 

distribution of within-host diversity, although the identity of some iSNV was different (Figure 

2.4D). 

 

Table 2.4. Within-host diversity of IAV versus IBV. 
 

 Minority iSNV Richness Nucleotide Diversity (p) 

Frequency 
Cutoff IAVa IBVa p-value 

(MWU test) IAVa IBVa p-value 
(MWU test) 

2% 1 (1 - 3, 0.23) 0 (0 - 1, 0.73) < 0.001 1.47e-05 (3.56e-06 -  
3.28e-05, 0.23) 0 (0 - 3.07e-06, 0.73) < 0.001 

1% 2 (1 - 3, 0.20) 0 (0 - 1, 0.56)  < 0.001 1.52e-05 (3.77e-06 - 
3.37e-05, 0.20) 0 (0 - 4.16e-06, 0.56) < 0.001 

0.5% 2 (1 - 4, 0.16) 1 (0 - 2, 0.32) < 0.001 1.61e-05 (3.96e-06 -  
3.46e-05, 0.16) 

1.73e-06 (0 - 6.4e-06, 
0.32) < 0.001 

 

a Median (IQR, proportion at zero) 
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Together, these results indicate that our measurements of within-host diversity are robust to several 

technical aspects of variant identification, which are unlikely to account for the lower observed 

diversity of IBV. Because these data are from the same cohort and were generated using the same 

sequencing approach and analytic pipeline as our previous IAV datasets, the observed differences 

likely reflect true biological differences between IAV and IBV. 

 

Identification of household transmission pairs 

We compared viral diversity across samples from individuals in the same household to investigate 

the genetic bottleneck that influenza B viruses experience during natural transmission. Over the 

seven influenza seasons, thirty-nine households in the HIVE cohort had two or more individuals 

positive for the same IBV lineage within a 7-day interval (Table 2.1). This epidemiologic linkage is 

suggestive of transmission events but does not rule out co-incident community acquired infection 

(McCrone et al., 2018). We identified 16 putative transmission pairs for which we sequenced at least 

one sample from each individual. In one of these pairs, the putative recipient was the individual with 

a mixed infection. The donor did not have evidence of a mixed infection based on number of iSNV, 

which would imply that the recipient may have been infected twice or that the second virus was lost 

from the donor by the time of sampling. This pair was excluded from the between-host analysis, 

leaving 15 putative transmission pairs for which we have high-quality sequencing data on both 

donor and recipient influenza populations. 

 

We used our sequencing data to determine which of these epidemiologically linked household pairs 

were actual IBV transmission pairs. We generated maximum likelihood phylogenetic trees for 

samples from the two IBV lineages using the concatenated coding consensus sequences. 
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Phylogenetic analysis provided genetic evidence that the 15 epidemiologically-linked pairs were 

indeed true transmission pairs, as epidemiologically-linked pairs were found nearest each other in 

each tree (Figure 2.5A and 2.5B; vertical bars with household ID). We also validated these 

transmission pairs by analyzing the genetic distance across viral populations. True transmission pairs 

should have genetically similar populations exhibiting low genetic distance, while individuals with 

coincident community acquisition are more likely to have populations with a higher genetic distance. 

We compared the genetic distance between epidemiologically-linked household pairs and random 

community pairs from the same season and infected with the same IBV lineage, using L1-norm as 

measurement of genetic distance (Figure 2.5C). The distribution of random community pairs 

functions as a null model of genetic distances among locally circulating strains. All of the 15 putative 

transmission pairs fell on the tail of this distribution, below the 5th percentile of the community pair 

L1-norm distribution, indicating that they are true transmission pairs (Figure 2.5C). While the L1-

norm is a function of both the consensus sequence and the iSNV, this signal was predominantly 

driven by consensus differences, as reflected in the phylogenetic analysis. 
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Figure 2.5. Identification of household transmission pairs. Maximum likelihood phylogenetic tree of all B/Victoria (A) and 
B/Yamagata (B) samples from this study. Concatenated consensus coding sequences were aligned with MUSCLE and phylogenetic 
trees constructed with RAxML. Tip labels are denoted as enrollee ID, household ID, season, and lineage, separated by underscores; 
tip labels are color-coded by season. (C) Histogram of genetic distance, as measured by L1-norm, between household pairs and 
random community pairs from the same season and lineage. The bar heights for each group are normalized to the maximum for each 
group for comparison. Community pairs are shown in orange and household pairs shown in blue. The dotted red line indicates the 5th 
percentile of the community pair distribution. 
 

Comparison of viral diversity across transmission pairs 

Transmission bottlenecks restrict the genetic diversity that is passed between hosts. With a loose 

transmission bottleneck, many unique genomes will be passed from donor to recipient. Because this 

will allow two variants at a given site to be transmitted, sites that are polymorphic in the donor are 

more likely to be polymorphic in the recipient. However, in the case of a tight or stringent 

bottleneck, sites that are polymorphic in the donor will likely be either fixed or absent in the 
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recipient. We have previously demonstrated that influenza A experiences a tight transmission 

bottleneck of 1-2 unique genomes (McCrone et al., 2018). Across our 15 IBV transmission pairs, we 

found no sites that were polymorphic in the donor and recipient (Figure 2.6). Intrahost SNV present 

in the donor were either fixed (100%) or absent (0%) in the recipient. These data suggest a stringent 

transmission bottleneck for influenza B, similar to that of influenza A. As there were fewer samples, 

transmission pairs, and iSNV in our IBV dataset, we were unable to obtain a robust and precise 

estimate of bottleneck size. 

 

 

Figure 2.6. Shared diversity across household transmission pairs with influenza B virus. Intrahost SNV for 15 validated transmission 
pairs using samples closest to the time of transmission (inferred based on day of symptom onset). Each iSNV is plotted as a point 
with its frequency in the recipient (y-axis) versus its frequency in the donor (x-axis). 
 

 

Discussion 

 

Here we define the within-host genetic diversity of IBV in natural infections by sequencing 106 

samples collected over 8176 person-seasons of observation in a household cohort. Because the 

HIVE study prospectively identifies individuals with acute respiratory illness regardless of severity, 

these samples capture IBV dynamics in a natural setting, reflective of infections occurring in the 

community. We show that within-host diversity of IBV is remarkably low, with most samples 
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displaying no intrahost variants above our level of detection. We also find that IBV experiences a 

tight transmission bottleneck, limiting the diversity that is passed between hosts. IBV exhibits 

significantly lower within-host diversity compared to IAV. These findings reflect the slower relative 

evolutionary rate of IBV compared to IAV. 

 

Our findings are largely consistent with what has been observed in IAV infections in humans 

(Debbink et al., 2017; Dinis et al., 2016; Leonard et al., 2016; McCrone et al., 2018). We found that 

only a minority of samples contain iSNV, the majority of which encode synonymous changes, 

consistent with a predominance of purifying selection within hosts. If immune-driven selective 

pressures were sufficiently strong to drive positive selection of antigenic variants at the individual 

level, we would expect to see enrichment of variants in antigenic regions. However, variants were no 

more common in the antigenic proteins, hemagglutinin and neuraminidase, and we found no 

intrahost variants in known antigenic regions of hemagglutinin. We also found that the extent of 

within-host diversity did not vary with current-season vaccination status, further suggesting that 

immune selection is not particularly strong within hosts (Debbink et al., 2017; Han et al., 2018; 

McCrone et al., 2018). Our data suggest that selective sweeps occur infrequently at the individual 

level, with selection only evident over a broader scale of time and space (McCrone et al., 2018; 

Nelson et al., 2006). We recognize, however, that it is possible for individual level selective pressure 

to vary in magnitude by age, locale, influenza infection history, or immune status (Lee et al., 2019). 

 

We do find that there are important differences in the within-host evolution of IAV and IBV. IBV 

displays significantly lower within-host diversity compared to IAV. Since measurements of within-

host diversity can vary based on host population, sequencing approach, and variant calling algorithm 

(Grubaugh et al., 2019a), a strength of our study is that our comparison is based on samples from 
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the same cohort with the same sequencing approach and analytic pipeline. In both of our studies, we 

have sequenced swab samples directly without prior culture, accounted for the confounding effect 

of viral load, and used a standardized, empirically-validated analytic pipeline for variant identification 

(McCrone and Lauring, 2016). The only difference in methodology between these two studies is the 

multiplex amplification primers. In both viruses, these primers target the highly conserved ends of 

influenza virus genome segments, making it unlikely that this factor would drastically alter the 

amplification efficiency of within-host variants. Our analytic pipeline includes rigorous quality 

criteria to reduce false positives that can be introduced by amplification and Illumina sequencing. 

Importantly, these empirical quality criteria did not mask diversity actually present in these samples, 

strengthening the conclusion that IBV exhibits lower within-host diversity compared to IAV. 

 

The most likely biological explanation for IBV’s lower within-host diversity is its de novo mutation 

rate, which is thought to be at least two-fold lower than that of IAV (Nobusawa and Sato, 2006). 

Viral mutation rates are critical to the diversification of rapidly evolving viruses within hosts. Under 

a neutral model, the number and frequency of minority variants is dependent on the mutation rate 

and demographics of the population (Xue et al., 2018). In such a model, the expected number of 

variants is highly sensitive to variation in the mutation rate across the range commonly estimated in 

RNA viruses. In light of our results, a more thorough comparison of mutation rates across influenza 

viruses is needed. 

 

Another possible factor underlying IBV’s reduced diversity is the mutational robustness of the IBV 

genome relative to IAV. If IBV were less robust to mutation, stronger negative selection on multiple 

genes in IBV could result in more limited within-host diversity, perhaps located to certain regions of 

the genome. However, we found that the distributions of iSNV across IAV and IBV genomes are 
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relatively similar. Furthermore, we have previously shown that the distribution of mutational fitness 

effects in influenza A/WSN/33/H1N1 matches that of other RNA and ssDNA viruses (Visher et 

al., 2016). Given that viruses across families with vastly different genomic architecture have similar 

mutational robustness, this is unlikely to account for the differences in within-host diversity between 

IAV and IBV. 

 

We find that IBV experiences a stringent genetic bottleneck between hosts. A stringent transmission 

bottleneck places a constraint on the rate of adaptation of viral populations within and between 

individual hosts. Population bottlenecks reduce the effective population size, which increases 

random genetic drift and decreases the efficiency of selection (McCrone and Lauring, 2018). This 

results in a reduced ability of selection to fix beneficial mutations and to remove deleterious ones, 

which can decrease population fitness. However, there are potential evolutionary advantages to 

stringent bottlenecks, including removal of defective interfering particles (Vignuzzi and López, 2019; 

Zwart and Elena, 2015). While we were not able to estimate the size of the transmission bottleneck 

as precisely as IAV, it is likely that the bottleneck size is comparable across the two viruses given the 

similarities in their transmission routes and ecology in the human population. Data from many more 

transmission pairs will be necessary for a more robust estimate.  

 

Together, our results are consistent with the slower rate of global evolution observed in IBV 

lineages compared with both seasonal A/H1N1 and A/H3N2 (Bedford et al., 2015; Chen and 

Holmes, 2008; Langat et al., 2017; Vijaykrishna et al., 2015). We suggest that a lower intrinsic 

mutation rate leads to reduced within-host diversity. With a comparably tight bottleneck, fewer de 

novo variants will rise to a level where they can be transmitted and spread through host populations. 

Combined with a lower incidence of IBV versus IAV, this would result in fewer variants that 
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eventually spread and influence global dynamics. However, further investigation in larger 

populations will be required to evaluate the within-host dynamics of both types of seasonal influenza 

viruses and how they contribute to larger-scale evolutionary patterns. 
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Introduction 

 

Genetic reversion and the associated loss of attenuation in oral poliovirus vaccine (OPV) strains are 

major barriers to achieving global poliovirus eradication (Kew et al., 2005). In areas of low vaccine 

coverage, OPV can evolve into circulating vaccine-derived polioviruses (cVDPV) that cause cases of 

poliomyelitis that are indistinguishable from those caused by wild polioviruses (WPV) (Jenkins et al., 

2010; Kew et al., 2002; Pons-Salort et al., 2016). Of the three OPV serotypes, the Sabin type 2 is 

responsible for most cVDPV outbreaks (Burns et al., 2014; Kew and Pallansch, 2018). Following the 

eradication of wild type 2 polioviruses, the Global Polio Eradication Initiative switched routine 

immunization schedules from trivalent OPV (tOPV, Sabin types 1, 2, and 3) to bivalent OPV (Sabin 

types 1 and 3) to reduce the risk of future cVDPV2 outbreaks. However, monovalent type 2 OPV 

(mOPV2) is still used to combat cVDPV2 outbreaks. While the global replacement of tOPV with 

bOPV has reduced the presence of OPV2 in surveillance samples (Blake et al., 2018), cVDPV2 
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outbreaks remain a major problem. This is partly due to the continued reliance on monovalent Sabin 

type 2 OPV (mOPV2) to control new cVDPV2 outbreaks. Nearly half of the cVDPV2 outbreaks 

observed after the withdrawal of tOPV resulted from a previous mOPV2 intervention response 

(Macklin et al., 2020). 

 

The emergence of cVDPV is a recurrent evolutionary process that exhibits a high degree of parallel, 

or convergent, evolution. Most data on cVDPV come from poliovirus isolates in cases of acute 

flaccid paralysis or environmental surveillance (Burns et al., 2013; Famulare et al., 2016; Shaw et al., 

2018; Stern et al., 2017). A recent study of type 2 cVDPV sequences from multiple outbreaks in five 

countries identified a limited number of sites under positive selection across independent lineages 

(Stern et al., 2017). Three mutations – A481G, U2909C (VP1-I143T), and U398C – were inferred to 

be under the strongest selection pressure and precede subsequent substitutions. The A481G and 

U398C mutations are located in the 5’ noncoding region and are functionally important to RNA 

structures in the internal ribosome entry site (IRES). All three mutations are known molecular 

determinants of attenuation, occur within the first two months after vaccination, and are associated 

with increased virulence in animal models (Famulare et al., 2016; Macadam et al., 1991, 1993; 

Muzychenko et al., 1991; Ren et al., 1991; Stern et al., 2017). For these reasons, they are referred to 

as “gatekeeper” mutations that initiate the process of attenuation loss. Although phylogenetic studies 

have provided important information on the evolutionary trajectories of cVDPV, they are limited in 

their ability to resolve the exact timing of gatekeeper mutations and may lack power to detect natural 

selection due to sampling bias (Geoghegan and Holmes, 2018). Isolates of cVDPV have undergone 

months or years of evolution prior to isolation and lack a definitive link to the time of vaccine 

administration, further limiting our understanding of the early evolution of OPV in humans.  
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Investigating the evolutionary dynamics within individual hosts can complement phylogenetic 

studies of virus evolution (Lauring, 2020). Complex evolutionary processes that take place within the 

span of a single infection cannot be resolved by standard consensus sequencing. Individual 

mutations, most often single nucleotide variants, arise within infected hosts and change in frequency 

according to the forces of natural selection and genetic drift. Studying how viruses evolve at this 

scale can uncover genomic sites under selective pressure, clarify the relative roles of selection and 

drift in viral evolution, and can inform sequence-based diagnostic and surveillance tools (Dolan et 

al., 2016; Holubar et al., 2019). 

 

Various approaches have been used to study the molecular epidemiology of poliovirus and to 

monitor OPV stocks for reversion (Neverov and Chumakov, 2010; Sarcey et al., 2017), but few have 

been purposed for measuring viral diversity within naturally infected hosts. Routine surveillance for 

VDPV involves sequencing only the region encoding the capsid protein VP1 (Kilpatrick et al., 

2011). Many approaches for whole genome sequencing rely on amplification of viral isolates in cell 

culture, which may not accurately preserve the diversity present in the original specimen 

(Montmayeur et al., 2017). Other high-throughput sequencing approaches that aim to measure 

within-host diversity have targeted only a specific portion of the poliovirus genome (Sahoo et al., 

2017). While some have sequenced viral genomes or specific genomic regions from asymptomatic 

vaccine recipients (Boot et al., 2007; Dedepsidis et al., 2006; Sanden et al., 2009; Stern et al., 2017), 

we lack a comprehensive characterization of the early evolutionary dynamics of OPV within 

vaccinated individuals and during transmission to their close contacts. 

 

Here we use whole genome, deep sequencing of stool samples from a clinical trial of OPV to 

elucidate the early evolution of polioviruses within and between human hosts. We developed an 
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approach for sequencing OPV genomes directly from primary stool samples and validated its 

accuracy for identification of intrahost single nucleotide variants (iSNV). We applied this approach 

to samples from a recent trial that investigated the effect of tOPV cessation on the transmission of 

type 2 OPV (Taniuchi et al., 2017). The trial included a defined point of introduction of monovalent 

type 2 OPV (mOPV2) and weekly longitudinal sampling of vaccine recipients and their household 

contacts; it therefore represents an opportunity to investigate the early evolutionary dynamics of 

OPV2 in a community setting. We identify several mutations under strong positive selection, most 

of which are located in the capsid proteins and the 5’ noncoding region. By comparing viral diversity 

across household transmission pairs, we find that mOPV2 experiences a narrow transmission 

bottleneck which may limit the spread of mutations that are strongly selected within hosts. These 

results connect the within-host selection of mutations with the dynamics of viral transmission and 

enhance our understanding of cVDPV evolution. 

 

Methods 

 

Clinical trial information and ethics 

The clinical trial, including all aspects of sample collection and viral load measurements, is described 

in full in a prior publication (Taniuchi et al., 2017). The study was done according to the guidelines 

of the Declaration of Helsinki. The protocol for the clinical trial was approved by the Research 

Review Committee (RRC) and Ethical Review Committee (ERC) of the icddr,b and the Institutional 

Review Board of the University of Virginia. It is registered at ClinicalTrials.gov, number 

NCT02477046. 

 

Sample collection and viral load quantification 
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Stool sample collection, nucleic acid extraction, and viral load measurements were performed and 

described in a prior publication (Taniuchi et al., 2017). Briefly, stool samples were collected, placed 

at 4˚C, and delivered to the icddr,b laboratory in Matlab within 6 hours. Samples were then 

aliquoted and stored at -80˚C until shipment on dry ice to the icddr,b laboratories in Dhaka. Total 

nucleic acid (TNA) from approximately 200 grams of stool was extracted with the QIAamp Fast 

DNA Stool mini kit and OPV was detected and quantified by RT-qPCR with serotype specific 

primers. TNA samples were shipped on dry ice to the University of Virginia and stored at -80 ˚C 

until processing for sequencing. 

 

Primer design 

We designed primers to amplify all three serotypes of OPV in overlapping amplicons covering the 

poliovirus genome. We used PrimerDesign-M (Yoon and Leitner, 2015) to determine sites of 

conservation across the three poliovirus types and identify potential primer sequences, allowing for 

ambiguous bases. We selected primers such that the four segments overlapped by at least 500 bp 

and manually curated each primer to have similar melting temperatures. We empirically tested 

various primer candidates for amplification on type 1 and type 2 poliovirus RNA templates. The 

primers used for genome amplification are listed in Table 3.2. 

 

Amplification and sequencing 

We amplified viral cDNA in four amplicons using a two-step RT-PCR protocol. We performed 

reverse transcription using the SuperScript III First-Strand Synthesis System (ThermoFisher). Each 

reaction contained 1.13 µL of 50 ng/µL random hexamers, 0.37 µL oligo-dT, 1.5 µL 10 mM dNTP 

mix, 12 µL of template total nucleic acid from stool, 3 µL of 10x RT Buffer, 6 µL 25 mM MgCl2, 3 

µL 0.1M DTT, 1.5 µL RNase Out, and 1.5 µL of SuperScript III RT enzyme. The mixture of 
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template, primer, and dNTPs was heated at 75˚C for 15 minutes to denature RNA secondary 

structure and placed directly on ice for > 1 minute. The enzyme and buffer mixture were then added 

on ice. The thermocycler protocol was: 25˚C for 10 min, 50˚C for 50 min, 85˚C for 5 min, and hold 

at 4˚C. The four overlapping segments were amplified by PCR with the primers listed in Table S1. 

The PCR reactions were as follows: 10 µL 5x HF Buffer, 1 µL 10 mM dNTP mix, 0.25 µL 100 µM 

forward primer, 0.25 µL 100 µM reverse primer, 33 µL nuclease free water, 0.5 µL of Phusion DNA 

Polymerase (NEB), and 5 µL of template cDNA. The thermocycler protocol was: 98˚C for 30 sec, 

40 cycles of 98˚C for 10 sec, 59.5˚C for 30 sec, 72˚C for 2 min, then 72˚C for 2 min for final 

extension, and hold at 4˚C. The four segments for each sample were pooled in equal volumes (18 µL 

of each segment for a total pooled volume of 72 µL). Pooled amplicons were purified with 

Agencourt AMPure XP magnetic beads, using 1.8X volume of beads (129.6 µL of beads for 72 µL 

pooled PCR product). The sample was eluted into 40 µL of nuclease-free water. The purified PCR 

products were quantitated by Quant-iT PicoGreen dsDNA High Sensitivity Assay. A limited 

number of PCR products were spot-checked by gel electrophoresis. A plasmid control was prepared 

by applying the PCR protocol to a template of OPV2 in a plasmid. The sequence of the plasmid was 

determined by Sanger sequencing and was identical to the OPV2 GenBank reference (AY184220.1). 

One plasmid control was included in each pooled library, beginning at the library preparation stage, 

to account for sequencing errors and batch effects. Samples between 9 x 105 copies/gram and 4.5 x 

107 copies/gram of OPV2 were amplified and sequenced in duplicate to improve the specificity of 

within-host variant identification. Libraries were prepared for Illumina sequencing with the Nextera 

DNA Flex Library Preparation kit according to the manufacturer’s instructions, using Nextera DNA 

CD Indexes (96 samples). Eight pooled libraries were prepared in total and sequenced on an 

Illumina MiSeq (2x250 reads, v2 chemistry). 
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Benchmarking of variant identification 

To determine the sensitivity and specificity of variant identification, we sequenced mock populations 

of a mixture of two viruses using the protocol described above. The viruses used were wild-type 

Mahoney type 1 poliovirus and the type 1 OPV strain, which differ by 66 mutations within the 

amplified regions. The consensus sequences of each viral stock were confirmed by Sanger 

sequencing. Viral RNA was extracted from each stock with the QIAamp Viral RNA Mini Kit 

(Qiagen) and viral RNA were mixed in equal concentrations at 0%, 1%, 2%, 5%, 10%, and 100% 

WT in OPV1. Virus mixtures were diluted to genome copy concentrations of 4.5 x 104 copies/µL, 9 

x 103 copies/µL, 9 x 102 copies/µL, and 9 x 101 copies/µL (copies/gram is related to copies/µL by 

a factor of 103). To simulate the complex mixture of nucleic acid present in our samples, we 

performed the dilutions of viral populations in total nucleic acid extracted from stool from 

deidentified human donors (a gift of Pat Schloss, University of Michigan). The mixtures were then 

amplified by the protocol described in the section above (Amplification and sequencing). A plasmid 

control was generated from the OPV1 plasmid clone in the same way as described in the section 

above (Amplification and sequencing). The pooled library was generated using the Nextera DNA Flex 

Library Preparation Kit and sequenced on an Illumina MiSeq (2x250 reads, v2 chemistry), including 

the OPV1 plasmid control to account for batch effects and errors. To more carefully estimate the 

sensitivity of variant identification at various coverage levels, mapped reads were randomly down 

sampled to approximately 1000x, 500x, and 200x coverage evenly across the genome. Then within-

host variants were identified using an analytic pipeline previously used for influenza viruses 

(McCrone and Lauring, 2016; McCrone et al., 2018), which depends on a clonal plasmid control to 

account for batch effects and local errors in Illumina sequencing. 
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Processing sequence data 

Sequencing adapters were removed with cutadapt (Martin, 2011) and reads were aligned to all three 

OPV reference genomes (AY184220.1, AY184221.1, V01150.1) using bowtie2 (Langmead and 

Salzberg, 2012) with the –very-sensitive option. Duplicate reads were removed with Picard and 

samtools (Li et al., 2009). Consensus bases were identified at sites with 10x coverage or greater. For 

samples sequenced in duplicate, the replicate with the higher coverage at a given site was used to 

assign the consensus base. Each biological sample was assigned to a group based on depth and 

evenness of coverage across the OPV2 reference. Mean coverage was calculated across non-

overlapping 50 bp bins across the genome region amplified by the four amplicon segments. Samples 

were considered variant-quality if they had an average coverage greater than 200x in every bin. 

Samples that had coverage of 10x or greater at every site were considered consensus-quality. We 

aligned the consensus sequences with the OPV2 reference with the MUSCLE algorithm (Edgar, 

2004). For the dN/dS analysis, we used the PAML software version 4.8 (Yang, 2007). For gene-wise 

dN/dS analysis, we calculated a single value for omega across each gene with codeml using model 

M0. To identify sites with evidence of positive selection, we compared the likelihood of models M2 

vs M1 with a chi-squared test and identified sites with omega greater than 1 with the Bayes empirical 

Bayes method. 

 

Identification of within-host variants 

We identified within-host variants in any 50 bp window with greater than 200x mean coverage, even 

if fewer than four segments were successfully amplified and sequenced. Within-host variants on the 

OPV2 genome were identified with the R package deepSNV (Gerstung et al., 2012), using the 

OPV2 plasmid control to account for sequencing errors and strand bias. Minor iSNV (< 50% 

frequency) in the cohort samples were filtered using the following criteria: deepSNV p-value < 0.01, 
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average mapping quality > 20, average Phred score > 35, and average read position in the middle 

75% of the read (positions 31 and 219 for 250 bp pair reads). For samples sequenced in duplicate, 

we only used variants identified in both samples; we assigned frequency using the sample that had 

higher coverage at the site. We only identified iSNV present at a frequency of > 5%. Sites that were 

monomorphic after applying these filter criteria were assigned a frequency of 100%. The analytic 

pipeline was used to determine the position of each base in the coding sequence of the viral 

polyprotein and assign it as synonymous or non-synonymous relative to the sample consensus. 

 

To obtain haplotype information specifically for VP1-143, codon frequency was identified by 

finding all reads that spanned the codon, filtering by MapQ > 20 and Phred score of each base > 20, 

counting the number of reads within each codon, and dividing by the number of reads that passed 

the quality filters. Samples with quality read depth less than 150 were excluded. 

 

Permutation test for parallel mutations 

We quantified the probability that mutations would arise in parallel across a given number of 

individuals by implementing a permutation test. We first assumed that all sites were equally likely to 

mutate. We found the number of mutations that occurred in 83 individuals with variant-quality 

samples relative to the OPV2 reference above a frequency of 5%. We used this distribution to draw 

sites randomly across the genome, accounting for the length of the region amplified in our assay and 

excluding primer binding sites. We then found the number of sites shared by a given number of 

individuals. We ran this permutation 1000 times and calculated the p-value as the number of 

permutations with a number of shared sites equal to or greater than the observed data for a given 

group (e.g. mutations shared by two individuals, etc.). We simulated constraint on the mutability of 

genomic sites by restricting the fraction of sites available to mutate. We chose a fraction available of 
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60% to reflect the known distribution of fitness effects in poliovirus based on experimental data 

(Acevedo et al., 2014). 

 

Estimation of the transmission bottleneck 

Models for estimating the transmission bottleneck were implemented as described in our prior work 

on influenza virus (McCrone et al., 2018). In the presence-absence model, we assessed whether 

donor iSNV are found in the recipient. We assumed perfect detection of transmitted iSNV and that 

the probability of transmission of donor iSNV are determined by the measured frequency at the 

time of sampling. We modeled the probability of transmission as a binomial sampling process, 

depending on the donor iSNV frequency and the bottleneck size (Nb). We used maximum likelihood 

optimization to estimate the bottleneck size distribution, assuming bottlenecks across pairs follow a 

zero-truncated Poisson distribution. In the beta-binomial model, we relaxed the assumption of 

perfect detection of iSNV in the recipient by accounting for false-negative variant calls and 

stochastic loss below our detection threshold. We use our benchmarking data to supply the 

sensitivity of variant identification by frequency and titer, rounding down to the nearest titer 

threshold (e.g. 4.5 x 104 copies/µL, 9 x 103 copies/µL, etc.). We assume sensitivity in each range is 

the same as that of the titer threshold. 

 

Data and code availability 

The raw sequence reads for the Matlab samples and the benchmarking experiment are available on 

the NCBI Sequence Read Archive in BioProject PRJNA637613. Reads aligning to the human 

genome were filtered out by the SRA. The code for the primary analysis of within-host variants is 

publicly available at https://github.com/lauringlab/variant_pipeline. The rest of the code for data 
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analysis and generation of the figures was written in R version 3.5.0 and python2.7 and is publicly 

available on GitHub at https://github.com/lauringlab/Poliovirus_Intrahost. 

 

Quantification and statistical analysis 

We performed various statistical tests on the data, all of which are described in the Results and 

Method Details. Unless otherwise noted, statistical tests were performed in R version 3.5.0. We used 

a multiple linear model to measure the effects of time since vaccination and viral load on specimen 

iSNV richness shown in Figure 3.2B (n = 101 specimens). We used a linear regression model to 

quantify the precision of iSNV frequency measurements across 11 variant-quality specimens 

sequenced in duplicate (Figure 3.7A). We applied a beta regression model (R package “betareg”) 

with a logit link function to the mutation frequency data shown in Figure 3.3A and Figure 3.9B for 

three mutations. For samples with a frequency of 0 or 1, we adjusted their frequency by 10-7 in order 

to apply the beta regression model. For the dN/dS analyses, we used all complete consensus 

genomes from mOPV2 vaccine recipients (n = 157 genomes). For dN/dS calculations, we used 

PAML version 4.8 (Yang, 2007). For codon-specific dN/dS analyses, we used the Bayes empirical 

Bayes method (Yang et al., 2005). The permutation test for parallel mutations and the transmission 

bottleneck analyses are described in the Method Details. 

 

Results 

 

We used high depth of coverage sequencing on the Illumina platform to define the within-host 

diversity of mOPV2 in samples from vaccinated individuals and their household contacts (Taniuchi 

et al., 2017). These samples were collected as part of a cluster-randomized trial of OPV in the rural 

Matlab region, where the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) 
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has conducted demographic and public health research since the 1960s (Alam et al., 2017). The trial 

assessed the impact of tOPV withdrawal on OPV community transmission by randomizing 67 

villages to three different vaccination schedules: tOPV, bOPV followed by one dose of IPV, and 

bOPV followed by two doses of IPV. The trial then implemented a coordinated mOPV2 

vaccination campaign over the course of one week, targeting 40% of children under 5 years of age. 

Shedding of OPV types 1-3 from 800 individuals across the three arms was monitored by 

quantitative RT-PCR of weekly stool samples. Transmission was measured by monitoring stool 

samples in household contacts of mOPV2 recipients. We selected 497 specimens from the 

vaccination campaign period for genome amplification and sequencing, prioritizing those with a 

stool viral load > 106 copies/gram. 

 

Sample sequencing and assessment of genome coverage 

We sequenced 416 samples from 219 mOPV2 recipients and 81 samples from 52 household 

contacts (Figure 3.1A). We amplified poliovirus genomes as overlapping RT-PCR amplicons using 

degenerate primers that recognize all three OPV serotypes (Table 3.2). We performed separate RT-

PCR reactions for each segment and pooled them prior to library preparation (see Materials and 

Methods). Given that low viral titer influences the accuracy of within-host variant identification 

(McCrone and Lauring, 2016), we amplified and sequenced samples with an OPV2 viral load 

between 9 x 105 copies/gram and 4.5 x 107 copies/gram in duplicate. These cutoffs are based on the 

distribution of viral loads across the cohort and our empirically defined viral load cut-offs for 

influenza virus (McCrone et al., 2018). We amplified and sequenced several samples below 9 x 105 

copies/gram that were collected from household contacts. 
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Figure 3.1. Overview of study and sequence data. (A) Schematic of study design and sample processing. The clinical trial had three 
arms with lead-up vaccination as indicated. tOPV = trivalent OPV, bOPV = bivalent OPV, IPV = inactivated polio vaccine. All 
individuals (n=788) then received mOPV2. Stool samples were collected weekly from mOPV2 recipients and household contacts 
(HHC). Only 52 household contacts had detectable shedding of OPV2. Total nucleic acid (TNA) was extracted from stools. 
Poliovirus genomes were amplified from each sample as four overlapping RT-PCR amplicons. For each sample, these amplicons were 
pooled and prepared for sequencing. (B) Line graph of sequencing coverage of four selected samples in three coverage groups. Log10 
of coverage depth on the y-axis and genome position on the x-axis. One variant-quality sample shown in red, one consensus-quality 
sample shown in dark blue, and two partial-genome samples shown in light blue. Amplicons are shown as black bars (top). Dotted 
lines show cutoffs at 200x and 10x used for defining coverage groups. (C) Coverage groups of samples sequenced in this study. Each 
sample is shown as a point with OPV2 copies per gram of stool on the y-axis and week post-vaccination on the x-axis. Pie charts 
above each week indicate proportion of samples with variant-quality data (red), consensus quality data (dark blue), partial genome 
sequence data (light blue), no data (grey). Region in between the dotted lines shows the samples that were sequenced in duplicate. 
 

 

Depth of coverage across the OPV2 genome for a given sample was uneven (Figure 3.1B). The 3’ 

end generally exhibited coverage at least an order of magnitude greater than the 5’ end, which 

contains the highly structured IRES (Lévêque and Semler, 2015). Three hundred twenty-seven 

samples had greater than 10x coverage of at least one of the four amplicons (Figure 3.1C, light blue 

points), and 179 samples had greater than 10x coverage across the whole genome (Figure 3.1C, dark 
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blue points). We identified 111 samples with > 200x coverage (Figure 3.1C, red points), 81 samples 

with > 500x coverage, and 48 samples with > 1000x coverage across the genome, based on averages 

across a 50-bp sliding window. The majority of samples that yielded at least partial OPV2 genome 

coverage were collected in the first two months following vaccination (Figure 3.1C), which is 

consistent with the known shedding duration of Sabin type 2 (Famulare et al., 2018). Most 

individuals were represented by only one sample, although a subset of individuals had multiple 

longitudinal samples with at least partial genome data (Figure 3.7). 

 

Empiric evaluation of variant calling criteria 

We benchmarked the accuracy of our variant calling criteria for iSNV identification by sequencing 

defined mixtures of WPV1 (Mahoney strain) and OPV1 in stool-derived total nucleic acid (TNA) 

with viral genome concentrations ranging from 9 x 104 copies/gram to 4.5 x 107 copies/gram of 

stool. These concentrations were tailored to match those of the sequenced clinical samples. We then 

calculated the sensitivity and specificity of iSNV identification at various thresholds of input 

concentration, sequencing coverage, and iSNV frequency (Table 3.3). At a coverage depth of 200x, 

we reliably identified the expected single nucleotide variants at 5% frequency with 95% sensitivity at 

all genome copy inputs. However, at this coverage level, sensitivity was weaker for low frequency 

variants. We found that the number of false positives was low when the viral load was greater than 

4.5 x 107 genome copies/gram. Specificity declined at viral loads below this cutoff, with a false 

positive rate of ~1% at all coverage levels. While some of these false positives can be filtered with 

various criteria, such as base and mapping quality, performing technical replicates proved to be the 

most effective approach for removing false positive variants. When considering only variants that 

were identified in both sequencing replicates, specificity dramatically improved even at low viral 

loads. Overall, these data validate our approach for poliovirus sequencing and demonstrate high 
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sensitivity and specificity for variants above 5% frequency in the majority of sequenced samples. 

Therefore, we identified iSNV above a frequency threshold of > 5% in 111 samples that had > 200x 

coverage by sliding window across the genome, denoted here as “variant-quality.” For analyses of 

variants at particular genome positions, we included samples with > 200x mean coverage in a 50-bp 

window containing the site of interest. 

 

Signatures of selection 

We characterized within-host diversity in 101 variant-quality samples from mOPV2 recipients. 

Minor iSNV (< 50% frequency) were dispersed across the genome in both the 5’ noncoding region 

and the polyprotein, with greater numbers of variants at lower frequencies (Figure 3.2A). Each 

sample contained a median of 9 minor iSNV (IQR 6-15). There were more minor iSNV per sample 

with greater time since vaccination (Figure 3.2B). This association remained significant even after we 

controlled for the time-varying factor of viral load, which can affect iSNV identification (p < 0.001, 

multiple linear model). Our estimates of minor iSNV frequency were consistent when compared 

between technical replicates of 11 variant-quality samples (adjusted r-squared = 0.763, Figure 3.8A). 

While previous work has shown that the measured frequency of a variant can be affected by 

mutations in the primer binding sites (Grubaugh et al., 2019a), we were unable to distinguish this 

effect from the overall error in our frequency measurements. We identified a greater proportion of 

synonymous iSNV relative to nonsynonymous iSNV (ratio 0.43, Figure 3.2C). However, in the VP1 

capsid subunit, there was an enrichment of nonsynonymous minor iSNV compared to other protein 

coding regions (Figure 3.2D). We calculated the dN/dS ratio with samples from mOPV2 recipients 

that had full consensus sequences across the polyprotein (n = 157). VP1 had the highest dN/dS 

ratio compared to the rest of the protein coding regions (Table 3.4).  
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Figure 3.2. Within-host diversity in 101 variant-quality samples from mOPV2 vaccine recipients. (A) Minor iSNV shown as points, 
with frequency on the y-axis and genome position on the x-axis. Non-coding iSNV are shown in light blue, non-synonymous iSNV in 
yellow, and synonymous iSNV in dark blue. (B) Number of minor iSNV (y-axis) versus log10 of genome copies per gram of stool (x-
axis). Color of each point is shown by the week post-vaccination of sample collection. (C) Histogram of minor iSNV in polyprotein 
by frequency with bin width of 0.05. Non-synonymous iSNV are shown in yellow, and synonymous iSNV in dark blue. (D) 
Histogram of minor iSNV by protein coding region in the polyprotein. Non-synonymous iSNV are shown in yellow, and synonymous 
iSNV in dark blue. 
 

Positive selection of gatekeeper mutations 

The dN/dS ratio is an imperfect metric for detecting selection, particularly within hosts, and it is 

unable to identify positive selection of mutations in noncoding regions (Kryazhimskiy and Plotkin, 

2008). While changes in frequency of viral variants can be caused by multiple evolutionary forces, 

observing the same mutation arise in independent viral populations is suggestive of positive 

selection (Dolan et al., 2018; Gutierrez et al., 2019). We therefore analyzed the mutational dynamics 

at three positions that are major attenuating sites – positions 481 and 398 in the 5’ noncoding region 
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and codon 143 of VP1 (nucleotide positions 2908-2910). We used our time-series data to directly 

measure the frequency changes of the gatekeeper mutations in vaccine recipients. All three were 

present in several individuals within the first week of vaccination. A cross-sectional analysis of 

mutation frequency as a function of time demonstrated fixation of A481G within 2-3 weeks and 

U2909C in about 5 weeks, although there was substantial interindividual variability (Figure 3.3A and 

3.3B). While A481G reached consensus in 11 of 14 samples by week 2, U2909C reached consensus 

in only 5 of 22 samples by week 3. VP1-143 most frequently reverted from isoleucine to threonine, 

but several other alternative residues were present (Figure 3.3C). Data from individuals with more 

than one sequenced sample demonstrated a rapid increase in frequency. Although mutation 

frequency occasionally decreased, presumably due to stochastic effects, these mutations increased in 

nearly all individuals (Figure 3.3B and 3.3D). We applied a beta regression model to estimate the 

time to fixation in the population. For mutations A481G, U2909C, and U398C, the model predicts a 

frequency of > 0.5 at weeks 2, 5, and 12, respectively, and > 0.95 by weeks 6, 13, and 46, 

respectively (Figure 3.9B). While we had more data from individuals in the bOPV/IPV study arms, 

each mutation rose in frequency over the same time interval regardless of vaccination history. This 

suggests that the selection for these mutations is not substantially driven by the presence of mucosal 

immunity generated by tOPV (Figure 3.9A). Overall, our time-series data on mOPV2 recipients 

shows rapid fixation of mutations at key attenuating sites in the first several weeks post-vaccination. 
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Figure 3.3. Selection of gatekeeper mutations in vaccine recipients. (A) Frequency of A481G, VP1-143X, and U398C by time from 
vaccination. Each point represents one sample, and boxplots are shown for weeks with five or more data points. Boxplots represent 
the median and 25th and 75th percentiles, with whiskers extending to the most extreme point within the range of the median ± 1.5 
times the interquartile range. (B) Frequency of A481G, VP1-143X, and U398C by time from vaccination. Each point represents one 
sample, with lines connecting samples from the same individual. (C) Barplot showing number of samples with the indicated residues 
present at a frequency of 5% or above at VP1-143. (D) Change in frequency per week of three gatekeeper mutations prior to reaching 
fixation. Boxplots represent the median and 25th and 75th percentiles, with whiskers extending to the most extreme point within the 
range of the median ± 1.5 times the interquartile range. 
 

 

Additional sites with positive selection 

We next identified non-gatekeeper mutations that occurred independently across mOPV2 recipients. 

We restricted our analysis to 83 individuals who received mOPV2 and for whom we had at least one 

variant-quality sample. While most mutations were unique to a given viral population, a large 

number of mutations were present at ≥ 5% frequency in ≥ 2 individuals (Figure 3.4A). We 

performed a permutation test to quantitatively assess whether this distribution could occur due to 

chance alone. We drew random sites across the genome and tallied the number of sites shared across 

multiple individuals (see Methods). We observed more shared mutations than would be expected by 

chance for mutations in ≥ 3 individuals (Figure 3.4A). This result is robust to the assumption that all 
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genome sites can be mutated; reducing the fraction of sites available for mutation did not affect 

statistical significance until the fraction dropped below 50% (Figure 3.10).  

 

 

Figure 3.4. Mutations arising in multiple mOPV2 vaccine recipients. (A) Stacked barplot of the number of mutations identified (y-
axis) by the number of individuals with each mutation (x-axis). Mutations in ≥ 3 individuals were statistically significant by 
permutation test, see text. Colors show the category of each mutation. (B) Structure of type 2 poliovirus capsid pentamer (PDB: 
1EAH) and side view (C). Highlighted residues are color-coded by number of mOPV2 vaccine recipients with non-synonymous 
substitutions at that amino acid site. 
 

 

Excluding the gatekeeper mutations, we found 19 mutations that were present in ≥ 4 individuals 

(Table 3.1). Two mutations, G491A and G619U, were located in the IRES. Five mutations were 

located outside the capsid (P1) in polyprotein regions P2 and P3. The capsid proteins (VP1-4) were 

highly represented (12 of 19 mutations), with four mutations encoding nonsynonymous mutations in 

known antigenic sites. Mutation A2986G encodes a nonsynonymous substitution, VP1-K169E, in 

antigenic region NAg1. Two more mutations in NAg1, G2782A and C2783A, encode 

nonsynonymous changes at VP1-101 (A101T and A101D, respectively). Mutation A1997G, found 

in 8 of 83 individuals, encodes VP3-H77R in antigenic region NAg3b. This mutation was identified 

in a previous phylogenetic study as having intermediate evidence for positive selection across 

cVDPV lineages (Stern et al., 2017). Our host-level data show that this mutation is indeed under 
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strong positive selection. We did not detect U2523C, C2006A, U1376A, and U3320A, which are 

predicted to occur > 2 months after vaccination (Stern et al., 2017). 

 

Table 3.1. Mutations identified in multiple individuals. 
 

Mutationa Individualsb Group Typec Region Fraction of cVDPVd 

A481G 72 Gatekeeper Noncoding 5’ UTR 1 
U2909C 25 Gatekeeper NS VP1 0.75 
A2908G 19 Gatekeeper NS VP1 0.03 
U398C 16 Gatekeeper Noncoding 5’ UTR 0.94 

A2074G 12 Capsid NS VP3 0.01 
A2992G 11 Capsid NS VP1 0.03 
A2986G 10 Antigenic NS VP1 0.01 
G6084U 10 3D S 3D 0.03 
A1997G 8 Antigenic NS VP3 0.05 
U2909A 8 Gatekeeper NS VP1 0.03 
U882C 8 Capsid S VP4 0.02 

G2782A 7 Antigenic NS VP1 0.01 
G491A 7 Noncoding Noncoding 5’ UTR 0.14 
G619U 7 Noncoding Noncoding 5’ UTR 0 
C2609U 6 Capsid NS VP1 0.01 
C2783A 5 Antigenic NS VP1 0 
U4374C 5 2C S 2C 0.55 
A3490G 4 2A NS 2A 0.02 
C2291U 4 Capsid NS VP3 0.01 
C2580U 4 Capsid S VP1 0.1 
G1282A 4 Capsid NS VP2 0 
U1641C 4 Capsid S VP2 0.68 
U5811A 4 3C S 3C 0.14 
U6693A 4 3D S 3D 0.31 

 
a Mutation presented as base in OPV2, position in OPV2 reference genome, and base in samples. 
b Number of individuals with each mutation present at a frequency of 5% or greater. The total number of individuals analyzed is 83. 
c Nonsynonymous (NS) or synonymous (S) mutations relative to the OPV2 reference genome. 
d Fraction of cVDPV genomes with each mutation.  
 

 

We also examined independent capsid mutations at the codon level, such that distinct mutations at 

the same amino acid site were included. We identified 19 amino acid sites at which three or more 

individuals exhibited nonsynonymous substitutions at a frequency of > 5%. Many of these sites 

mapped to the surface of the type 2 capsid (Figure 3.4B). In addition to the amino acid sites 

specified above, this analysis revealed four more antigenic sites with parallel non-synonymous 

substitutions: VP3-58 (T58I and T58A) and VP1-T291A in NAg3a, VP2-N72D in NAg3b, and 

VP1-S222P in NAg2. Although dN/dS analysis is often not sensitive enough to identify positive 



 59 

selection at specific sites over short time scales, amino acid sites VP1-143 and VP1-101 had a 

dN/dS ratio greater than 1 based on analysis of consensus genomes (Pr(w > 1) > 0.95, Bayes 

empirical Bayes method, Table 3.4). Together, our results demonstrate rapid positive selection of 

mutations in the IRES and exposed sites in the OPV2 capsid. 

 

We sought to determine whether mutations selected early in OPV2 evolution persist in genomes of 

neurovirulent cVDPV. We queried alignments of cVDPV from cases of acute flaccid paralysis for 

the presence of the mutations identified here (Table 3.1). As expected, the gatekeeper mutations 

were reliably detected in nearly all cVDPV genomes. Of the other 19 mutations, we found 16 in at 

least 1% of cVDPV genomes queried. We detected some mutations, including G491A, C2580U, and 

U1641C, in at least 10% of cVDPV genomes. While it is unknown how these mutations may 

contribute to the development of cVDPV outbreaks, our data show that mutations that recur in 

divergent cVDPV lineages can be identified very early in OPV2 evolution. 

 

Estimation of the transmission bottleneck 

Transmission bottlenecks influence the rate of adaptation and are important for understanding viral 

evolution in host populations (Elena et al., 2001). The OPV vaccine trial included stool samples 

collected from the household contacts of mOPV2 recipients. Shedding in these individuals allowed 

us to analyze the extent of viral diversity that is transmitted to new hosts. We identified four 

transmission pairs for which we had sequence data from both the donor and recipient collected 

within one week of each other (Table 3.5); sequencing of more putative household pairs was 

thwarted by low viral loads, especially in household contacts. In each case, transmission occurred 

within the first three weeks after vaccination, consistent with the known magnitude and duration of 
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OPV shedding. We obtained variant-quality samples from donor and recipient of one pair; the rest 

had either consensus or partial genomes with regions of variant-quality coverage. 

 

We compared within-host diversity across donors and recipients using only the genomic regions that 

had a depth of coverage sufficient for identification of within-host variants in both samples. There 

were few polymorphic sites shared across hosts in these household pairs (Figure 3.5A). While major 

variants (> 50% frequency) in the donor were usually found in the recipient, most minor variants 

were not found in the recipient, suggestive of a narrow transmission bottleneck. 

 

We applied two models to quantify the effective genetic bottleneck at transmission (Leonard et al., 

2017; McCrone et al., 2018). We use the term “effective” bottleneck to clarify that we are capturing 

mutations that transmit and persist in the population of the recipient host. The presence-absence 

model asks whether a polymorphism in the donor is present or absent in the recipient, assuming 

perfect detection. Here, transmission is modeled as a random sampling process in which the 

probability of transmission is a function of the mutation frequency in the donor and the size of the 

transmission bottleneck. We used maximum likelihood optimization to find the bottleneck size 

distribution that best fit the data, assuming that the bottlenecks follow a zero-truncated Poisson 

distribution. Under the presence-absence model, the mean bottleneck size was 1.98 (lambda = 1.57, 

95% confidence interval 0.43 – 3.63), indicating that most bottlenecks are 2 and 95% of bottlenecks 

are less than 4 (Figure 3.5B). We also applied a beta-binomial model, which incorporates the 

sensitivity of detecting variants in the recipient and allows for time-dependent stochastic loss of 

variants. The beta-binomial model yielded a mean bottleneck size of 2.11 (lambda = 1.74). The 

model fit was not significantly better than the presence-absence model (AIC 42.1 for presence-

absence vs. 39.7 for beta-binomial), indicating that the loss of sensitivity might not be an important 
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factor in these models. We also estimated bottlenecks for each pair individually with both models 

(Table 3.6). The two models produced the same estimates for each pair, although the beta-binomial 

model resulted in slightly larger confidence intervals. These results suggest that few genetically 

distinct OPV2 genomes transmit and persist in new hosts. 

 

Figure 3.5. Shared viral diversity across transmission pairs and transmission bottleneck. (A) iSNV for four pairs of mOPV2 recipients 
and their household contacts. Each iSNV is plotted as a point with its frequency in the recipient (y-axis) versus its frequency in the 
donor (x-axis). (B) Presence-absence bottleneck model fit compared with data. Frequency of donor iSNV on the x-axis and 
probability of transmission on the y-axis. Transmitted iSNV are shown along the top of the plot and non-transmitted iSNV are shown 
along the bottom. The red line shows the probability of transmission as a function of donor frequency given the mean bottleneck 
estimate, with a 95% confidence interval shown by the shaded area. The blue line shows the probability of transmission given a 
bottleneck size of 10 unique genomes. The black points on the graph represent the probability of transmission from the measured 
iSNV using a sliding window of 3% width and a step size of 1.5%. 
 

 

These models assume that minor variants are transmitted independently, but variants can potentially 

be linked within hosts, which could result in an inflated bottleneck estimate. Because we used 

amplicon sequencing with short reads, we are unable to evaluate and exclude mutation linkage across 

the entire genome. However, we were able to evaluate linkage among pairs of intrahost variants that 

were near enough to be spanned by individual reads. These variant pairs were largely independent 

(Figure 3.11). Given these results and the fact that our bottleneck estimate was already low, the 

assumption of independent variant transmission is likely reasonable in this context. 
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A tight transmission bottleneck limits the spread of gatekeeper mutations 

We sought to investigate whether a narrow transmission bottleneck would impact the transmission 

of mutations that are positively selected within vaccine recipients. Based on the estimated bottleneck 

size, we calculated the probability of transmission of each of the three gatekeeper mutations as a 

function of time, using the median frequency from mOPV2 recipients (Figure 3.6A). We then 

calculated the fraction of samples from transmission recipients that had each mutation present, 

regardless of whether we had sequence data from a donor population (Figure 3.6B). The fraction of 

transmission samples with each mutation is consistent with the calculated probability of 

transmission over time given the size of the bottleneck. We identified A481G in most transmission 

samples, consistent with its rapid fixation. However, few samples contained U2909C and no samples 

contained U398C. The majority of transmission events occurred within the first two weeks after the 

vaccination campaign, prior to when most vaccine recipients acquired U2909C and U398C 

(Taniuchi et al., 2017). These data suggest that the three gatekeeper mutations were not preferentially 

transmitted; instead, they suggest that mutations must rise to an appreciable frequency early enough 

within a donor population to be frequently transmitted through a narrow bottleneck. 

 

Figure 3.6. Impact of a tight bottleneck on transmission of gatekeeper mutations. (A) The probability of transmission of each 
gatekeeper mutation calculated from the median frequency over time in the mOPV2 recipients given the estimated bottleneck. The 
shaded areas represent 95% confidence intervals based on the model fit. (B) The fraction of each gatekeeper mutation present above a 
frequency of 5% in samples from household contacts as a function of time since the vaccination campaign. 
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Discussion 

 

We used whole genome deep sequencing to define the within-host evolutionary dynamics of OPV2 

in a clinical trial in Matlab, Bangladesh (Taniuchi et al., 2017). The trial enabled analyses of 

longitudinal samples from a defined and synchronized point of mOPV2 vaccination and household 

transmission in a community with high enteric pathogen burden and vaccine coverage. These results 

provide a rare window into the evolutionary dynamics that occur in the first weeks following 

vaccination. Similar to other RNA viruses, we identified strong purifying selection across the 

poliovirus genome within hosts (McCrone et al., 2018). However, in stark contrast to other viruses, 

we found evidence for strong within-host positive selection at multiple sites. Although high 

population immunity in Bangladesh limited the number of transmission samples available from the 

trial, we were able to quantify the transmission of key reversion mutations and estimate a tight 

bottleneck in this setting. Our findings enhance our knowledge on the within-host and transmission 

dynamics of polioviruses in relation to the development of cVDPV. 

 

We find that positive selection is remarkably strong within vaccine recipients, with a magnitude that 

is seldom found in the within-host evolution of acute RNA viruses. We and others have rarely 

identified strong selection for mutations at the within-host level, even for mutations that should 

have beneficial effects (Debbink et al., 2017; Dinis et al., 2016). The within-host evolution of several 

arboviruses is characterized by purifying selection and a large effect of stochastic genetic drift 

(Lequime et al., 2016; Parameswaran et al., 2012). In household cohort studies of influenza virus 

infection, we have found little evidence for positive selection within the span of a single infection 

(McCrone et al., 2018; Valesano et al., 2020a), and iSNV are rarely observed in more than one 

individual. In contrast, in this cohort we identified 24 mutations that were identified in ≥ 4 
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individuals. Although comparisons to other viruses are complicated by differences in duration of 

infection, genome structure, and other factors, the extent of parallel evolution in OPV at this scale is 

remarkable. Whereas wild polioviruses and other endemic RNA viruses may already exist near local 

fitness peaks, OPV is significantly attenuated and is under intense pressure to climb the fitness 

landscape by accessing available high-impact mutations (Stern et al., 2017). OPV is also unique in 

that each population starts from the same founder genetic sequence, making parallel trajectories 

more likely to occur (Gutierrez et al., 2019). 

 

Outside of the three gatekeeper mutations, we find that there are multiple additional sites under 

selection early in OPV2 evolution that reflect re-adaptation to the human host. There are several 

potential reasons why our study revealed mutations that have not been previously identified in cell 

culture or phylogenetic studies. While cell culture and animal models can be a helpful proxy for 

inferring selective pressures (Geoghegan and Holmes, 2018), they do not always capture the 

direction and magnitude of evolutionary forces in natural hosts. Similarly, phylogenetic studies have 

yielded important insights into the evolution and epidemiology of cVDPV, but may not be able to 

infer selective advantage of mutations with weaker effects due to limitations in sampling or statistical 

power. Whereas, previous phylogenetic work on cVDPV2 found only limited evidence for positive 

selection at VP3-77 and VP1-222, they appear to be strongly selected within hosts (Shaw et al., 2018; 

Stern et al., 2017). Finally, it is important to recognize that phylogenetic studies may differ in the 

fitness effects they reveal due to differences in time and scale. Our results primarily reflect within-

host selection observed through parallel evolution among vaccine recipients sampled longitudinally 

whereas previous phylogenetic analyses are based on shared variation among surveillance samples 

collected from many people over time and linked by sustained transmission. While we found that 16 

of the 19 positively-selected, non-gatekeeper variants recur in cVDPV lineages, they do not routinely 
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fix. Some mutations might be repeatedly selected within hosts and prove to be detrimental between 

them.  

 

The underlying selective pressures and consequences of these mutations are unclear, but their 

locations suggest functional significance. Mutations in the IRES have been shown to affect protein 

translation and replicative capacity (Avanzino et al., 2018). Mutations in the capsid enable adaptation 

to replication at physiologic temperatures, and could provide increased structural stability or 

modulate receptor binding and viral entry (Macadam et al., 1991; Robinson et al., 2014). Although 

some of the capsid sites identified here are recognized by neutralizing antibodies (Patel et al., 1993; 

Shaw et al., 2018), there is little evidence that these mutations lead to antigenic escape, as they do in 

influenza virus or HIV (Hedestam et al., 2008). Even highly diverged cVDPV strains with significant 

antigenic evolution are still neutralized by serum from vaccinated individuals (Shaw et al., 2018), and 

vaccination with OPV is used to control outbreaks of cVDPV (Kew and Pallansch, 2018). Rather 

than antigenic escape, we suggest that these mutations lead to improved within-host replication, and 

therefore greater shedding and transmission. Epidemiologic data suggest that at some unknown 

point in cVDPV evolution, OPV achieves a level of transmissibility that is similar to that of wild 

polioviruses (Famulare et al., 2018; Jenkins et al., 2010; Tebbens et al., 2013). Selection for 

phenotypes related to this increase in transmissibility, like enteric replication and shedding, are likely 

the earliest pressures the virus faces (Bull et al., 2018). Not all capsid antigenic sites may be involved 

in this process. There can be frequent amino acid substitution at many antigenic sites in the OPV2 

capsid, often reverting back to previous replacements, suggesting that some sites are more tolerant 

to mutation and evolve more by genetic drift than selection (Shaw et al., 2018). However, our results 

indicate that a subset of these capsid sites experience positive selection and likely have functional 

effects related to improved replication and transmission within the human host. 
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Our identification of specific sites under positive selection has implications for genetic surveillance 

of VDPV. In VDPV isolates, the time since vaccine administration is estimated by molecular clock 

methods on VP1 sequence data (Jorba et al., 2008). For OPV2, the threshold for calling a strain a 

VDPV – as opposed to OPV-like – is 0.6% divergence, or ³ 6 nucleotide substitutions (Wassilak et 

al., 2011). Prior work has integrated the fixation rates of gatekeeper mutations into molecular clock 

models to refine estimates of the time between VDPV detection and initial vaccination (Famulare et 

al., 2016). By accounting for these rapidly selected mutations, the authors inferred that type 2 

VDPVs are younger than estimated based on neutral evolution alone. Here, we used our longitudinal 

data to determine the fine-scale dynamics of these three gatekeeper mutations and to characterize 

the variability that can manifest at the individual scale. Fixation rate estimates that are grounded in 

direct measurements are relevant for modeling efforts that rely on these parameters. In addition, we 

suggest that molecular clock models of VDPV might benefit from incorporation of the sites 

identified in this work in two ways. First, the rates of selection at these sites could be integrated into 

existing models of time since vaccine dosing for VDPVs. Second, these sites under putative 

selection could be excluded from neutral molecular clocks for VDPV divergence time estimation. 

 

A surprising and important finding is that a tight bottleneck (1-4 distinct genomes) limited the 

transmission of within-host variants to new hosts. It is certainly possible that loss of variants in the 

recipient population could result in an under-estimation of the bottleneck. In this study, we were 

limited by the week-long interval between sample collection, which means that transmission could 

have occurred several days prior to sampling from the household contact. We also used a 

conservative frequency threshold of 5%, which may miss transmission of variants that remain at low 

frequencies across both hosts. However, it is unlikely that variants below 5% would be consistently 
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transmitted while variants from 5-50% are not. Furthermore, the results of the beta-binomial model 

suggest that imperfect detection and stochastic loss did not have a large influence on the bottleneck 

estimate. 

 

In support of the finding of a small bottleneck in this transmission setting, we have no evidence for 

a between-host advantage of the gatekeeper mutations despite strong evidence of within-host 

selection. If genomes with gatekeeper mutations are transmitted preferentially, we would have 

expected to see them present in more household contacts and at higher frequencies than observed 

here. The sample size in this study limits our ability to detect small effects, but the data generally do 

not support substantial preferential transmission in this study population. A narrow, non-selective 

bottleneck can explain the pattern of transmission to household contacts. In this scenario, mutations 

selected within vaccine recipients must rise above a threshold frequency prior to transmission in 

order to transit a narrow bottleneck. This would limit spread of minor iSNV that have not been 

selected quickly enough before finding a new host.  

 

Of course, the gatekeeper mutations eventually fix in nearly all vaccine-derived lineages and can arise 

de novo in each subsequent host (Famulare et al., 2016; Stern et al., 2017). Population immunity and 

differences in fecal-oral exposure between Matlab, which has never experienced a cVDPV outbreak, 

and other settings where cVDPV outbreaks are more common may lead to important selective 

differences not observed here. In contrast to the lack of between-host selective effects in this study, 

late transmission events at the end of the duration of shedding when variant fractions are high, may 

have a larger impact on the spread of positively selected mutations. Transmission later in infections 

when viral load is low and to more distant community contacts was uncommon in this highly 

immune population (Taniuchi et al., 2017). Furthermore, bottlenecks may be larger in populations 
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with lower background immunity and higher fecal-oral exposure where naturally acquired doses are 

likely higher (Famulare et al., 2018), which would allow positive selection among minor variants to 

act. 

 

It is likely that newly developed live-attenuated polio vaccines will face the same underlying selection 

pressures as mOPV2. Our results suggest that once a beneficial mutation occurs on a highly 

attenuated OPV background, there is strong selection to drive it to fixation. Strategies that decrease 

the fitness benefit of any single mutation, like modifications to IRES domain V and codon 

deoptimization, may be effective at sufficiently prolonging the time to reversion (Konopka-Anstadt 

et al., 2020; Yeh et al., 2020). However, modest decreases in mutation rate by introduction of high-

fidelity RNA-dependent RNA polymerase modifications might have lesser impact, as the mutation 

rate is still orders of magnitude higher than in other organisms (Sanjuán et al., 2010). In the setting 

of a virus starting from low fitness with a high mutation rate, whether a mutation achieves fixation 

or not may be more dependent on size of the fitness benefit rather than the waiting time for de novo 

generation of the mutation. This effect is illustrated by one next generation OPV2 (nOPV2) design, 

which prevents A481G by modification of IRES domain V. In individuals receiving this nOPV2, 

VP1-143 and U398C still readily revert despite a high-fidelity 3Dpol (Yeh et al., 2020). High-fidelity 

polymerase modifications themselves may not be stable, as seen by the reversion and compensation 

of a type 1 poliovirus fidelity mutant due to a fitness defect in cell culture (Fitzsimmons et al., 2018). 

Our results also suggest that there are mutations other than the three gatekeepers that increase 

fitness and contribute to reversion. Monitoring the genetic changes of new vaccine designs in 

sufficiently large cohorts will be important for evaluation of the genetic stability at these additional 

sites. 
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Supplemental Figures and Tables 

 

Table 3.2. Genome amplification primers used in this study. 

 
Name Sequence 

PanSabin_Seg1_Fwd 5’-CCCGYAACTTAGAMGCA-3’ 

PanSabin_Seg1_Rev 5’-CTGACACAAAMCCMAGSATG-3’ 

PanSabin_Seg2_Fwd 5’-TCTGCCCRGTKGATTAYCTC-3’ 

PanSabin_Seg2_Rev 5’-TCAGTRAATTTYTTCAACCAACT-3’ 

PanSabin_Seg3_Fwd 5’-GTMAATGATCACAACCC-3’ 

PanSabin_Seg3_Rev 5’-GTTGGAAAGTTGTACATTAG-3’ 

PanSabin_Seg4_Fwd 5’-TGTCCTTTAGTGTGTGG-3’ 
PanSabin_Seg4_Rev 5’-CCCAATCCAATTCGACTG-3’ 

 

Table 3.3. Validation of within-host variant identification by sequencing mock populations. 
 

(1) replicate, 4.5 x 104 copies/µLa     (2) replicates, 9 x 103 copies/µLa 

 
Coverage Frequency Sensitivity Specificity FPb Sensitivity Specificity FPb 

200x 10% 1 1 0 1 1 0 
5% 1 1 0 0.94 1 0 
2% 0.6 1 0 0.49 1 0 
1% 0.17 1 0 0.06 1 0 

500x 10% 1 1 0 1 1 0 
5% 1 1 0 1 1 0 
2% 0.91 1 0 0.74 1 0 
1% 0.54 1 0 0.4 1 0 

1000x 10% 1 0.9999 1 1 1 0 
5% 1 1 0 1 1 0 
2% 1 1 0 0.97 0.9999 1 
1% 0.91 1 0 0.69 1 0 

 
 
(2) replicates, 9 x 102 copies/µLa     (1) replicate, 9 x 102 copies/µLa 

 
 

Coverage Frequency Sensitivity Specificity FPb Sensitivity Specificity FPb 

200x 10% 0.89 1 0 1 0.9995 7 
5% 0.83 1 0 0.80 0.9994 9 
2% 0.4 1 0 0.46 0.9990 14 
1% 0 1 0 0.31 0.9997 4 

500x 10% 0.97 1 0 1 0.9991 13 
5% 0.97 1 0 0.97 0.9985 21 
2% 0.49 1 0 0.51 0.9984 23 
1% 0.03 1 0 0.51 0.9992 12 

1000x 10% 1 1 0 1 0.9987 19 
5% 1 1 0 0.97 0.9974 37 
2% 0.63 1 0 0.91 0.9985 22 
1% 0.03 0.9999 2 0.03 0.9989 16 

 
a Copies/µL is 1000-fold lower than copies/gram of stool. 
b Number of identified false positives. 
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Table 3.4. Gene-wise estimates of dN/dS ratio. 
 
 

Gene Omega (dN/dS) 

VP4 0.26326 

VP2 0.05951 

VP3 0.44309 

VP1 1.20709 

2A 0.25478 

2B 0.00010 

2C 0.05137 

3A 0.09244 

3B 0.00010 

3C 0.10622 

3D 0.04747 

 
 
 
Table 3.5. Samples from transmission pairs used in bottleneck analysis. 
 

Donor IDa Recipient IDa Donor Vaccination 
Dateb 

Donor Sample 
Datec 

Recipient Sample 
Dated 

Time Difference 
(days) 

115 10115 2016-01-26 2016-02-02 2016-02-01 1 
171 10171 2016-01-25 2016-01-31 2016-01-31 0 
702 20702 2016-01-25 2016-02-08 2016-02-08 0 
927 10927 2016-01-28 2016-02-24 2016-02-17 7 

 
a Anonymous IDs per individual. 
b Date of mOPV2 administration in trial vaccination campaign.  
c Date of sample collection from mOPV2 recipient used in the bottleneck analysis. 
b Date of sample collection from the household contact used in the bottleneck analysis. For each recipient, this is the first longitudinal 
sample positive for OPV2 by RT-PCR. 
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Table 3.6. Transmission bottleneck estimates for two models. 
 

Pair ID Presence-absence model estimatea Beta-binomial model estimatea 

115 1 (1 – 2) 1 (1 – 3) 

171 2 (2 – 4) 2 (2 – 7) 

702 2 (2 – 2) 2 (2 – 3) 

927 2 (2 – 5) 2 (2 – 4) 
 
a 95% confidence interval shown in parentheses. 
 
 
 

 
 
Figure 3.7. Sequencing coverage. (A) Overlapping bar chart of the number of individuals (y-axis) by the number of samples 
sequenced from a given individual (x-axis). Colors represent the genome coverage groups shown in Figure 1. (B) Composition of the 
partial genome samples. Number of samples (y-axis) by the percent of the genome covered above a 10x threshold (x-axis). 
 
 

 
Figure 3.8. Minority SNV. (A) Concordance of iSNV frequency measurements across 11 samples sequenced in duplicate. Frequency 
of iSNV in replicate 2 (y-axis) is shown by the frequency of an iSNV in replicate 1 (x-axis), with colors showing iSNV on amplicon(s) 
with or without mutations in primer binding sites. (B) Histogram of minor iSNV in the capsid region by antigenic status, excluding 
VP1-143. Nonsynonymous iSNV are shown in yellow, and synonymous iSNV in dark blue. 
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Figure 3.9. Gatekeeper mutations. (A) Frequency of A481G, VP1-143X, and U398C by time from vaccination across arms of the 
vaccine trial. Samples from IPV arms are shown on the top, and samples from tOPV arms are shown on the bottom. Each point 
represents one sample, and boxplots are shown for weeks with five or more data points. Boxplots represent the median and 25th and 
75th percentiles, with whiskers extending to the most extreme point within the range of the median ± 1.5 times the interquartile range. 
(B) Frequency of A481G, VP1-143X, and U398C by time from vaccination across with the beta regression model fits for each 
mutation (red lines). The underlying data are the same as in Figure 3A. Each point represents one sample, and boxplots are shown for 
weeks with five or more data points. Boxplots represent the median and 25th and 75th percentiles, with whiskers extending to the most 
extreme point within the range of the median ± 1.5 times the interquartile range. 
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Figure 3.10. Permutation tests.. In A - D, the dotted red line is the observed number of mutations shared across a given number of 
individuals, and the bars show the results of 1000 random permutations. Results are shown for mutations shared across two 
individuals (A), three individuals (B), four individuals (C), and greater than four individuals (D). P-values are designated as the 
proportion of random permutations equal or greater than the observed number of shared mutations. In E, the p-values for each 
group are shown as a function of the genome fraction available for mutations. The horizontal dotted line represents a = 0.05. 
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Figure 3.11. Linkage of mutations. (A) The frequency of 20 minor variants present in the donor for pair 702 (top). The table values 
show the number of sequence reads overlapping each pair of minor variants. (B) Bar chart showing the fraction of minor variant 1 
found linked to minor variant 2 in overlapping sequence reads. The 18 pairs of minor variants are shown here by their genome 
position. 
  

A

B

0.00

0.25

0.50

0.75

1.00

15
10

 a
nd

 1
59

3

15
10

 a
nd

 1
64

1

15
93

 a
nd

 1
64

1

20
06

 a
nd

 2
11

5

31
84

 a
nd

 3
35

2

33
52

 a
nd

 3
57

9

39
6 

an
d 

48
1

41
43

 a
nd

 4
20

7

46
65

 a
nd

 4
69

2

46
65

 a
nd

 4
70

7

46
65

 a
nd

 4
71

6

46
92

 a
nd

 4
70

7

46
92

 a
nd

 4
71

6

47
07

 a
nd

 4
71

6

47
07

 a
nd

 4
94

8

47
16

 a
nd

 4
94

8

49
48

 a
nd

 5
13

5

88
8 

an
d 

10
35

Pair

Fr
ac

tio
n 

of
 V

ar
ia

nt
 1

 L
in

ke
d 

w
ith

 V
ar

ia
nt

 2

!
!"#$%&$'()!*+!,-'*#!./#-/'01!+*&'2!-'!2*'*#!*+!3/-#!456!/0!07$!89!3*1-0-*'1!:-10$2;!
"<*1-0-*'1!*+!89!,-'*#!./#-/'01!+*&'2!-'!2*'*#!*+!3/-#!456;!=/>:$!./:&$1!/#$!07$!0*0/:!'&,>$#!*+!#$/21!*.$#:/33-'?!>*07!
3*1-0-*'1;!
!

!"#$%#&'(!" 5;546! 5;8@A! 5;868! 5;8@6! 5;8A6! 5;5B8! 5;C56! 5;594! 5;5BB! 5;8D9! 5;5DC! 5;88D! 5;859! 5;86D! 5;5AB! 5;856! 5;8@! 5;86A!
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

)*+,-,*&#" @9D! CB8! BBB! 85@A! 8A85! 8A9@! 8DC8! 655D! 688A! @8BC! @@A6! @A49! C8C@! C654! CDDA! CD96! C454! C48D!
@9D! 6C68! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF!
CB8! 8CA4! 6D@D! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF!
BBB! 5! 5! 8B5C! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF!
85@A! 5! 5! B89! 6@D9! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF!
8A85! 5! 5! 5! 5! @899! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF!
8A9@! 5! 5! 5! 5! 65@6! @D68! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF!
8DC8! 5! 5! 5! 5! 8CC4! 69DB! @9@8! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF!
655D! 5! 5! 5! 5! 5! 5! 5! C@B@! EF! EF! EF! EF! EF! EF! EF! EF! EF! EF!
688A! 5! 5! 5! 5! 5! 5! 5! 6868! CAAA! EF! EF! EF! EF! EF! EF! EF! EF! EF!
@8BC! 5! 5! 5! 5! 5! 5! 5! 5! 5! 8AB5! EF! EF! EF! EF! EF! EF! EF! EF!
@@A6! 5! 5! 5! 5! 5! 5! 5! 5! 5! C@9! DAD@! EF! EF! EF! EF! EF! EF! EF!
@A49! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! D@4! 9@6@! EF! EF! EF! EF! EF! EF!
C8C@! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 499D! EF! EF! EF! EF! EF!
C654! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! AC6@! B649! EF! EF! EF! EF!
CDDA! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 4BD5! EF! EF! EF!
CD96! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 4@5B! B88B! EF! EF!
C454! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! D95B! 4A49! B@D8! EF!
C48D! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! 5! DC5A! 45B9! 4DDC! B@6D!



 76 

 

 

 

CHAPTER IV 

Temporal Dynamics of SARS-CoV-2 Mutation Accumulation Within and 
Across Infected Hosts 

 

Note: This chapter is a modified version of the published article: 

Valesano AL, Rumfelt KE, Dimcheff DE, Blair CN, Fitzsimmons WJ, Petrie JG, Martin ET, Lauring AS. 2021. 
“Temporal dynamics of SARS-CoV-2 mutation accumulation within and across infected hosts.” PLoS Pathog 
17(4):e1009499. 
 
PLOS grants all authors full rights to reuse their articles in dissertations. 
 
 
 
Introduction 

 

Over the course of the SARS-CoV-2 pandemic, whole genome sequencing has been widely used to 

characterize patterns of broad geographic spread, transmission in local clusters, and the spread of 

specific viral variants (Fauver et al., 2020; Geoghegan et al., 2020; Meredith et al., 2020; Miller et al., 

2020; Munnink et al., 2020; Sekizuka et al., 2020). Early reports demonstrated that SARS-CoV-2 

exhibits genetic diversity within infected hosts, but this has been less studied than consensus-level 

genomic diversity (Shen et al., 2020). Intrahost diversity is an important complement to consensus 

sequencing. Patterns of viral intrahost diversity throughout individual infections can suggest the 

relative importance of natural selection and stochastic genetic drift (Lauring, 2020). Shared intrahost 

variants between individuals can reveal loci under convergent evolution and enable measurement of 

the transmission bottleneck, a critical determining factor in the spread of new genetic variants 

(Gutierrez et al., 2019; Lythgoe et al., 2020a). Studies of SARS-CoV-2 intrahost diversity may shed 
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light on selective pressures applied at the individual level, such as antivirals and antibody-based 

therapeutics. While a clear understanding of within-host evolution can inform how SARS-CoV-2 

spreads on broader scales, there have been relatively few comprehensive studies of intrahost 

dynamics (Lythgoe et al., 2020a; Popa et al., 2020; Tonkin-Hill et al., 2020). 

 

Sequencing of intrahost populations can also potentially be applied to genomic epidemiology 

(Villabona-Arenas et al., 2020). A common goal in sequencing specimens from case clusters is to 

infer transmission linkage, which can guide future public health and infection control interventions. 

However, the relatively low substitution rate and genetic diversity of SARS-CoV-2 present 

challenges to inference of individual transmission pairs (Sikkema et al., 2020; Villabona-Arenas et al., 

2020). In the pandemic setting, there is a non-negligible chance that two individuals who are 

epidemiologically unrelated could be infected with nearly identical viral genomes. Viruses from a 

single local outbreak may have few differentiating substitutions, limiting the ability of sequencing to 

resolve exact transmission chains. Identification of shared intrahost variants between individuals has 

been explored in other pathogens to overcome this obstacle (Maio et al., 2018; Martin et al., 2018; 

Skums et al., 2018; Worby et al., 2014, 2017). However, use of this approach for SARS-CoV-2 will 

depend on a solid understanding of the forces that shape the generation and spread of genetic 

variants. 

 

There are several unresolved questions that will dictate the utility of intrahost diversity for genomic 

epidemiology. First, there must be sufficient intrahost diversity generated during acute infection 

prior to a transmission event. How much intrahost diversity is accumulated over time from infection 

onset is currently unknown. Second, the population bottleneck during transmission must be 

sufficiently wide to allow minor variants to be transmitted to recipient hosts (McCrone and Lauring, 
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2018; Zwart and Elena, 2015). Third, de novo generation of the same minor variants across multiple 

infections must be sufficiently rare. Independent generation of shared minor variants by recurrent 

positive selection or genetic drift in unlinked hosts could confound transmission inference (Worby 

et al., 2017). Finally, measurements of intrahost diversity must be accurate and account for several 

potential sources of error (Grubaugh et al., 2019a; McCrone and Lauring, 2016). Although previous 

studies have described within-host variation of SARS-CoV-2 (James et al., 2020; Lythgoe et al., 

2020a; Moreno et al., 2020; Popa et al., 2020; Shen et al., 2020; Tonkin-Hill et al., 2020; Wang et al., 

2020b), few have addressed the sources of systematic errors and batch effects in variant 

identification. To assess the utility of SARS-CoV-2 intrahost diversity for transmission inference, we 

need a clearer understanding of its temporal variation throughout infection and the extent of 

convergent evolution across individuals. Addressing these questions will also be valuable for 

understanding SARS-CoV-2 evolution. 

 

Here, we sequenced SARS-CoV-2 genomes from 325 residual upper respiratory samples from 

hospitalized patients and employees at the University of Michigan. To validate our sequencing 

approach, we sequenced defined mixtures of two synthetic RNA controls and found that low input 

viral load decreases the specificity of variant calling. We find that observed intrahost diversity does 

not vary significantly by day since symptom onset. Intrahost variants can be shared between 

individuals that are unlikely to be related by transmission, suggesting that variants can arise by 

parallel evolution. These results inform our understanding of SARS-CoV-2 diversification in human 

hosts and highlight important considerations for sequence-based inference in the virus’s genomic 

epidemiology. 

 

Methods 
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We collected clinical metadata and residual diagnostic specimens positive for SARS-CoV-2 from 

hospitalized patients enrolled in the CDC HAIVEN (Hospitalized Adult Influenza Vaccine 

Effectiveness Network) study and infected employees enrolled in the HARVI (hospital associated 

respiratory virus infection) study. These studies and the use of residual specimens were approved by 

the University of Michigan Institutional Review Board.  

 

Date of illness onset for hospitalized patients was collected individually via medical chart abstraction 

from physician notes. Michigan Medicine employees with any suspected COVID-19 symptoms were 

asked to call a COVID-19 healthcare worker hotline before reporting to work. Date of symptom 

onset, a list of symptoms, close contacts, travel history, and work location and description were 

recorded. After testing, employee clusters were determined by illness onset date, positive test status, 

and work location.  

 

Genome amplification and sequencing 

Residual samples from nasopharyngeal swabs and sputum specimens were centrifuged at 1200 x g. 

and 200 microliters were aliquoted. RNA was extracted with the Invitrogen PureLink Pro 96 Viral 

RNA/DNA Purification Kit and eluted in volumes of 100 microliters. Complementary DNA was 

reverse transcribed with SuperScript IV (ThermoFisher). The SARS-CoV-2 genome was amplified in 

two multiplex PCR reactions using the ARTIC Network V3 primer sets. Sequencing libraries were 

prepared with the NEBNext Ultra II kit and pooled in equal volumes after barcoding. The pooled 

sequencing library was gel extracted to remove adapter dimers. Libraries were sequenced on an 

Illumina MiSeq at the University of Michigan Microbiome Core facility (v2 chemistry, 2x250 cycles). 

To validate this approach, we used two synthetic RNA controls that differ by seven single nucleotide 



 80 

mutations, Wuhan-Hu-1 and EPI_ISL_418227 (Twist Bioscience, San Francisco, CA). We mixed 

the two RNAs at various copy numbers (105, 104, 103, 102 genome copies/µL) and frequencies (0%, 

0.25%, 0.5%, 1%, 2%, 5%, 10%, and 100%). We amplified and sequenced each RNA mixture as 

described above. We defined true positive iSNV as mutations at the seven sites that differ between 

the two synthetic RNA controls (C241U, C335U, C2416U, C3037U, C14408U, A23403G, 

G25563U). We defined false positives as any iSNV other than the seven true-positive mutations. 

 

Viral load measurements 

We measured SARS-CoV-2 genome copy concentration for each sample by qPCR using conditions 

outlined in the CDC 2019-Novel Coronavirus EUA protocol 

(https://www.fda.gov/media/134922/download). The nucleocapsid gene was amplified using the 

CDC N1 primer and probe set as follows: 2019-nCoV_N1 Forward Primer 

GACCCCAAAATCAGCGAAAT; 2019-nCoV_N1 Reverse Primer 

TCTGGTTACTGCCAGTTGAATCTG; 2019-nCoV_N1 Probe 

ACCCCGCATTACGTTTGGTGGACC. Probe sequences were FAM labeled with Iowa Black 

quencher (Integrated DNA Technologies, Coralville, IA). Reactions were performed using TaqPath 

1-step RT-qPCR master mix (Thermofisher, Waltham, MA) with 500 nM of each primer and 250 

nM of each probe in a total reaction volume of 20 µl. Cycling conditions were as follows: 2 min at 

25 °C, 15 min at 50 °C, 2 min at 95 °C, and 45 cycles of 3 seconds at 95 °C, 30 seconds at 55 °C. 

Samples were run on an Applied Biosystems 7500 FAST real-time PCR system. Cycle threshold (Ct) 

was designated uniformly across PCR runs. 

Standard curves based on serial dilutions of a plasmid containing the nucleocapsid sequence were 

used to determine copy number for each plate of samples. Copy number is expressed in genome 

copies per microliter of extracted viral RNA. 
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Analysis of sequence reads 

We aligned reads to the MN908947.3 reference genome with BWA-MEM version 0.7.15 (Li, 2013). 

We removed sequencing adaptors and trimmed ARTIC primer sequences with iVar 1.2.1 (Grubaugh 

et al., 2019a). We determined the consensus sequences with iVar 1.2.1, taking the most common 

base as the consensus (>50% frequency). We placed an N at positions along the MN908947.3 

reference with fewer than 10 reads. We manually inspected insertions and deletions by visualizing 

alignments with IGV (version 2.8.0) (Robinson et al., 2011). We identified intrahost single 

nucleotide variants relative to the MN908947.3 reference genome with iVar 1.2.1 using the following 

parameters: sample with viral load ³ 103 copies/µL; sample with consensus genome length of ³ 

29000; sample with ³ 80% of genome sites above 200x coverage; iSNV frequency of 2 - 50%; read 

depth of ³ 100 at iSNV sites; ³ 10 reads with average Phred score of > 35 supporting a given iSNV; 

iVar p-value of < 0.0001. All samples on which we called variants had > 50,000 mapped reads. We 

accounted for strand bias by performing a two-sided Fisher's exact test for hypothesis that the 

forward/reverse strand counts supporting the variant base are derived from the same distribution as 

the consensus base. We then applied a Bonferroni multiple test correction and excluded variants 

with an adjusted p-value < 0.05. We used a multiple linear model to evaluate the correlation of 

sample iSNV richness to day post symptom onset and viral load (base 10 log). To generate a 

phylogenetic tree, we aligned consensus genomes with MUSCLE 3.8.31 and masked positions that 

are known to commonly exhibit homoplasies or sequencing errors (2020a). We generated a 

maximum likelihood phylogeny with IQ-TREE, using a GTR model and 1000 ultrafast bootstrap 

replicates (Edgar, 2004; Nguyen et al., 2015). Evolutionary lineages (Pango lineages) were assigned 

with PANGOLIN (Rambaut et al., 2020). 
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Data and code availability 

Raw sequence reads are available as FASTQ files from the Sequence Read Archive at accession 

number PRJNA682212, with human-mapping reads removed. Analysis code is available at 

https://github.com/lauringlab/SARSCov2_Intrahost. Consensus genome sequences are publicly 

available at the GitHub link and on GISAID. 

 

Results 

 

We retrieved respiratory specimens collected through diagnostic testing from March – May 2020. 

We sequenced samples from two groups: inpatients who were part of an observational study of 

COVID-19 in hospitalized individuals (n = 190), and symptomatic employees who presented to 

occupational health services (n = 135). All employees were diagnosed and treated in outpatient 

settings, except for one who was admitted as an inpatient. Basic demographic information is 

described in a separate work (Dimcheff et al., 2021). Genome copy number determined by qPCR of 

the nucleocapsid gene was highly variable and decreased by day from symptom onset (p < 0.001, 

linear model, Figure 4.1A). We obtained 212 complete genomes (Figure 4.1B), mostly from samples 

with higher viral loads (Figure 4.1B). Consensus genomes had a median of 7 substitutions relative to 

the Wuhan-Hu-1/2019 reference sequence (range 4 – 12). Phylogenetic analysis of whole consensus 

genomes identified 10 unique evolutionary lineages in our cohort (lineages determined by the 

PANGOLIN system, see Methods; Figure 4.1C). Most sequenced genomes fell in lineage B.1. We 

evaluated whether any employees were part of an epidemiologically linked cluster based on illness 

onset date, positive test status, and work location. We found that some employees were part of 

epidemiologically linked clusters (Figure 4.1C). The genomes from clusters 2, 10, 19, 20, and one 

pair in cluster 29 had £ 1 consensus difference, while the rest had 2 – 7 differences. Many employees 
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in different clusters also had identical or nearly identical consensus genomes, which reflects the low 

genetic diversity of SARS-CoV-2 at this stage of the pandemic. We have no information on 

epidemiologic linkage for the remaining sequenced individuals. It is highly unlikely that there are 

direct transmission pairs in our dataset, but we cannot conclusively rule out coincident transmission 

linkage. Therefore, this population largely reflects a cross-section of infected individuals who are 

epidemiologically unlinked. 
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Figure 4.1. Viral shedding and overview of genome sequencing data. (A) Viral load by day of infection in hospitalized patients (teal) 
and employees (violet). Viral load, measured by qPCR of the N gene in units of genome copies per microliter of extracted RNA, is on 
the y-axis and day post symptom onset is on the x-axis. (B) Genome completeness by viral load in hospitalized patients (teal) and 
employees (violet). Viral load as shown in (A) is on the x-axis and the fraction of the genome covered above 10x read depth is shown 
on the y-axis. (C) Maximum-likelihood phylogenetic tree. Tips represent complete consensus genomes from hospitalized patients 
(teal) and employees (violet). The axis shows divergence from the root (Wuhan-Hu-1/2019). The second genome displayed as 
“reference” is Wuhan/WH01/2019. Heatmaps show PANGOLIN evolutionary linage (left) and epidemiologic cluster (right). 
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Benchmarking accuracy of variant identification 

Identification of viral within-host variants can be prone to errors (Grubaugh et al., 2019a; McCrone 

and Lauring, 2016). Therefore, we performed a mixing study to evaluate the accuracy of our pipeline 

for identifying intrahost single nucleotide variants (iSNV). We mixed two synthetic RNA controls 

that differ by seven single nucleotide substitutions at defined frequencies and input concentrations 

(Figure 4.2A). These mixtures were sequenced using the same approach as the clinical samples. We 

identified true iSNV at the expected frequencies at ³ 103 copies/µL (Figure 4.2B). There was greater 

variance in the observed variant frequencies at 102 copies/µL compared to higher input 

concentrations. We obtained high sensitivity for iSNV at ³ 2% frequency and ³ 103 copies/µL with 

sufficient genome coverage. Many false positive iSNV remained at ³ 2% frequency and 102 

copies/µL despite multiple quality filters (Figure 4.6). However, false positive iSNV per sample 

drastically decreased with input concentrations ³ 103 copies/µL. Three false positive iSNV were 

identified in multiple samples above 104 copies/µL: A3350U, G6669A, and U13248A. Mutation 

U13914G recurred in multiple samples at input concentrations of 103 copies/µL and below. We 

suspect that they represent low-frequency variants present in the synthetic RNA controls, as has 

been observed in other studies with synthetic controls from the same manufacturer (Lythgoe et al., 

2020a). Excluding these recurrent sites, there were few false positive iSNV per sample with input 

concentrations above 103 copies/µL (Figure 4.2C). Together, these data indicate that sufficient input 

viral load is a critical factor for accurate identification of iSNV. 
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Figure 4.2. Assessing accuracy of intrahost variant detection by sequencing defined viral mixtures. (A) Schematic of the experiment. 
Wuhan-Hu-1 (reference) and EPI_ISL_418227 (variant) RNA were mixed at the given frequencies and viral loads (units of genome 
copies per microliter, representing the resulting mixture). Mixtures of RNA were amplified and sequenced in the same fashion as the 
clinical specimens. Reference and variant genomes differ by seven single nucleotide substitutions. (B) Observed frequency by 
expected frequency. Observed frequency of the true positive intrahost single nucleotide variants (iSNV) is on the y-axis and expected 
iSNV frequency is on the x-axis. Synthetic RNA copy number in units of genome copies per microliter of RNA is shown above each 
facet. Values above the points indicate the number of variants detected in that group (maximum of seven per group). (C) False 
positive iSNV. Number of false positive iSNV per sample is shown on the y-axis (base 10 log scale) and viral load as shown in (B) is 
on the x-axis, excluding iSNV at positions 3350, 6669, 13248, and 13419. Each point represents a unique sample and the boxplots 
represent the median and 25th and 75th percentiles, with whiskers extending to the most extreme point within the range of the median 
± 1.5 times the interquartile range. 
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Low within-host diversity of SARS-CoV-2 

Based on our benchmarking experiment, we identified iSNV in 178 specimens with viral loads ³103 

copies/µL (Figure 4.3A). We excluded position 11083, which is near a natural poly-U site and prone 

to sequencing errors (2020b), as well as the four sites with recurrent false positives (nucleotide 

positions 3350, 6669, 13248, and 13914). Most specimens exhibited fewer than ten minor iSNV 

(median 1, IQR 0 – 2, Figure 4.3B). There were four outlier specimens with greater than 15 iSNV. In 

these samples, iSNV were dispersed throughout the genome at various frequencies, so it is difficult 

to determine whether they represent mixed infections (Tonkin-Hill et al., 2020). The locations of 

these samples on sequencing plates were not suggestive of cross-contamination. There was no 

difference in minor iSNV richness between hospitalized patients and employees treated as 

outpatients (p = 0.25, Mann-Whitney U test, Figure 4.7). We identified more minor iSNV encoding 

non-synonymous changes than synonymous ones across most open reading frames (Figure 4.3C) 

and identified more iSNV at lower frequencies (Figure 4.3D), which together is suggestive of mild 

within-host purifying selection. Sample iSNV richness decreased with higher viral loads by about 1 

iSNV per 10-fold increase in viral load (p = 0.01, multiple linear model, Figure 4.8). Sample iSNV 

richness did not correlate with day from symptom onset (p = 0.79, multiple linear model, Figure 

4.3E). This result was robust to exclusion of the four outlier samples and exclusion of viral load 

from the model. These results show that within-host diversity is low and remains that way over the 

duration of most SARS-CoV-2 infections. 
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Figure 4.3. SARS-CoV-2 intrahost single nucleotide variant diversity. (A) Sequencing coverage for clinical samples. The number of 
clinical samples (y-axis) is shown by the fraction of the genome above a given read depth threshold (x-axis). The different lines show 
the data evaluated with six read depth thresholds. (B) Histogram of the number of specimens (y-axis) by the number of minor iSNV 
per sample (x-axis), n = 178. (C) Number of minor iSNV by frequency with a bin width of 0.05. Non-synonymous iSNV are shown in 
orange and synonymous iSNV are shown in violet. (D) Number of minor iSNV by coding region. Non-synonymous iSNV are shown 
in orange and synonymous iSNV are shown in violet. (E) Scatterplot of the number of minor iSNV per sample (y-axis) by the day 
post symptom onset (x-axis). Hospitalized patients are shown in teal and employees shown in violet. The four samples with > 15 
iSNV shown in (B) are excluded from the plot for visualization. 
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Variants shared across individuals 

Next, we investigated patterns of shared intrahost diversity between individuals. Most iSNV were 

unique to a single individual. However, 18 iSNV were present in multiple specimens (Figure 4.4A). 

None of these mutations were located at sites known to commonly produce errors or homoplasies 

(van Dorp et al., 2020, 2020b). Two iSNV were present in three individuals (G12331A and 

A11782G, both synonymous changes in ORF1a). There was no clear phylogenetic clustering of 

genomes exhibiting these shared iSNV (Figure 4.9), and G12331A was shared between samples 

from different viral lineages (13 substitutions). These two mutations were first detected in our 

samples in late March 2020 (Figure 4.4B). None reached > 1% frequency per week in consensus 

sequences submitted to GISAID through mid-November 2020. These results suggest that iSNV that 

arise convergently across viral lineages are not necessarily predictive of subsequent global spread of 

those mutations. 

 

 

Figure 4.4. Shared iSNV across samples and their frequency in global consensus genomes. (A) Shared iSNV across samples, with the 
number of samples sharing the iSNV (y-axis) by the genome position (x-axis). Colors indicate the iSNV coding change relative to the 
reference. (B) The frequency (y-axis) of three iSNV shared by three or more samples over time (x-axis). The consensus genomes are 
from GISAID, as available on 2020-11-11. The vertical dotted lines represent the earliest time we detected each iSNV in our samples. 
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iSNV across all unique pairs of specimens used for variant calling (n = 15753, Figure 4.5). Because 

most iSNV were unique to an individual, most pairs did not share iSNV and only 0.14% of pairs 

shared one iSNV. Many pairs with shared iSNV were sequenced in separate batches, which reduces 

the likelihood that shared iSNV are due to cross-contamination. No employee pairs in the same 

epidemiologic cluster shared iSNV, which are the only pairs in our dataset who are likely part of the 

same transmission network. The rest of the pairs of individuals are most likely not directly linked by 

transmission and probably share iSNV by chance. We identified nine unique pairs with shared iSNV 

between genomes that were near-identical (0 – 1 consensus differences), three of which were 

collected within one week of each other. We also identified shared iSNV between 13 pairs separated 

by ³ 2 consensus substitutions (Figure 4.5A and 4.5B) and 15 pairs with collection dates 7 – 28 days 

apart (Figure 4.5B). Due to differences in viral lineage and time of collection, these are very unlikely 

to be transmission pairs. Together, these data indicate that iSNV can arise convergently between 

individuals who are unlikely to be related by transmission. 
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Figure 4.5. Pairwise comparisons of shared iSNV. Each unique pair is shown as a single point, with employee-employee pairs in 
violet (left), patient-employee pairs in orange (middle), and patient-patient pairs in purple (right). The number of iSNV shared by each 
pair is shown on the y-axis with the number of consensus differences between the pair of genomes on the x-axis. Pairs of samples 
collected within seven days of each other are displayed in (A), and pairs of samples collected greater than seven days apart are shown 
in (B). 
 

Discussion 

 

Accurate characterization of SARS-CoV-2 intrahost diversity is important for understanding the 

spread of new genetic variants and its potential use in transmission inference. In this study, we 

sequenced upper respiratory specimens from a cohort of hospitalized COVID-19 patients and 

infected employees. We found that intrahost diversity is low and its distribution does not vary by 

time since symptom onset. We identified iSNV shared across viral genomes separated by time and 

disparate evolutionary lineages, indicating that iSNV can arise convergently. Because variants may be 

shared through parallel mutation rather than transmission, caution is warranted in the use of shared 

iSNV alone for inferring transmission chains. Intrahost variants shared across multiple individuals 

did not precede an increase in frequency in global consensus genomes, which suggests that 

identifying convergent iSNV may have limited utility in tracking broader SARS-CoV-2 evolution. 

 

Specimen viral load is important when measuring intrahost diversity. We and others have shown 

that samples with low viral loads are prone to false positive iSNV and lower sensitivity (Grubaugh et 

al., 2019a; McCrone and Lauring, 2016; Valesano et al., 2020b). A strength of our study is that we 

experimentally validated the accuracy of our variant calling by sequencing defined populations. 

Based on these results, we excluded samples with low viral load from subsequent analyses. Future 

studies of SARS-CoV-2 intrahost diversity should report and account for specimen viral loads to 

avoid this common source of error. We did not benchmark our sequencing approach for detecting 

insertions and deletions (indels) and therefore did not report these for the clinical specimens. 
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Intrahost indels could conceivably provide useful information about within-host evolution, but 

accurate detection is also subject to similar issues of sample quality and viral load. 

 

The low level of intrahost diversity that we found here is consistent with a recent preprint by 

Lythgoe et al. (Lythgoe et al., 2020a). The fact that our work and the study by Lythgoe et al. were 

performed with different geographical areas, sequencing approaches (ARTIC Network amplicons vs. 

veSEQ metagenomic sequencing), and analysis methods lends credence to the results. Lythgoe et al. 

reported more shared variation than seen here, but this is most likely due to sequencing a greater 

number of samples among individuals within known epidemiologic clusters. We and Lythgoe et al. 

measure a lower level of intrahost diversity at the 2% frequency threshold compared to a recent 

study in Austria (Popa et al., 2020). The reasons for this are not clear, but it is likely due to 

differences in sample viral loads and variant calling methods. We did not find a difference in 

intrahost diversity between hospitalized COVID-19 patients and those treated as outpatients, which 

suggests that viral diversity may not be a reliable marker for disease severity.  

 

Measuring viral diversity over the course of infection is relevant for understanding how variants are 

transmitted to new hosts. Only genetic variants present at the time of a transmission event will have 

the opportunity to spread. Because SARS-CoV-2 usually transmits just before or several days after 

symptom onset (He et al., 2020; Rhee et al.), it is important to define viral diversity in this window. 

Our cross-sectional analysis of diversity by time since symptom onset indicates that diversity does 

not significantly increase over the course of infection. A significant fraction of samples may not 

exhibit any iSNV at the time of transmission, which could limit the utility of iSNV for linking 

transmission pairs. Only a large bottleneck would lead to onward spread of most iSNV present 

during early infection. However, it is important to recognize that although the absolute level of 
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diversity may not change over time, different variants may arise or go extinct during a given 

infection. This phenomenon was observed in a recent study by Tonkin-Hill et al. (Tonkin-Hill et al., 

2020). Serial samples from individuals could address this issue with higher resolution. Low diversity 

within hosts also shapes our expectations for emergence of resistance to drugs and monoclonal 

antibodies. With such limited substrate for selection to act upon, the short window of time between 

treatment and transmission could limit the spread of a variant selected within a host. Even during 

prolonged infections in immunocompromised hosts, there is only limited evidence of resistance to 

various COVID-19 therapeutics (Baang et al., 2021; Buckland et al., 2020; Kemp et al., 2020). 

 

Parallel evolution is a critical factor to consider in the interpretation of shared intrahost variation 

(Worby et al., 2017). Even if iSNV identification were perfectly specific, iSNV can arise in parallel 

due to biological processes such as natural selection and genetic drift. A key finding of this work is 

that iSNV can arise in genomes that are unrelated by local transmission, specifically those across 

large time intervals and lineages. Shared iSNV between individuals with identical genomes collected 

the same week may also have arisen in parallel. These pairs are most likely not epidemiologically 

linked, but we are unable to rule out coincident local transmission in the community. Because iSNV 

can arise in parallel in genomes that are not linked by transmission, caution is needed when relying 

entirely on shared iSNV for transmission inference (Tonkin-Hill et al., 2020; Villabona-Arenas et al., 

2020). 

 

We also found that identifying iSNV across multiple individuals did not precede an increase of those 

mutations in frequency in global consensus genomes. It is unclear whether these mutations arose 

due to positive selection, chance, or mutational “hotspots” (Tonkin-Hill et al., 2020). It is possible 

that these mutations were lost due to purifying selection within hosts or during transmission 
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(Lauring, 2020; Xue et al., 2018). These results suggest that iSNV may have lower utility for tracking 

broader SARS-CoV-2 evolution, but larger sample sizes in more geographic areas are necessary to 

evaluate this. 

 

One of the most important variables for transmission inferences is the size of the transmission 

bottleneck (Worby et al., 2017). If parallel evolution of iSNV occurs regularly and the transmission 

bottleneck is very small, that would increase the likelihood that shared iSNV are due to convergence 

rather than transmission. However, if the bottleneck is large, then iSNV may become more valuable 

for detecting transmission networks when consensus genomes are limited. There are currently 

conflicting results on the SARS-CoV-2 bottleneck size. Popa et al. estimated a bottleneck size of 

greater than 1000 unique genomes (Popa et al., 2020). In contrast, Lythgoe et al. estimated a 

bottleneck size range from 1 – 8 unique genomes based on 14 household pairs (Lythgoe et al., 

2020a). Lythgoe et al. in particular used extensive controls and validation for preventing 

contamination and identifying sequencing errors. Other studies both in humans and in domestic cats 

have estimated small bottlenecks (Braun et al., 2020; Wang et al., 2020a). It is difficult to interpret 

these contrasting results because each study used different sequencing and analysis methodologies. 

In recent work on influenza A virus, a study of methodological differences was key for resolving 

different conclusions about the bottleneck size (Xue and Bloom, 2019a). One factor that has not yet 

been clearly defined is how the time interval between donor-recipient pairs affects SARS-CoV-2 

bottleneck estimates. We expect that further work will clarify the reasons behind these conflicting 

estimates. 

 

Because of the high incidence and low mutation rate of SARS-CoV-2, genomic epidemiology is 

necessarily constrained in its ability to determine exact transmission chains in an outbreak. Using 
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minor genetic variation to increase the resolution of genomic epidemiology requires attention to the 

underlying processes of within-host viral evolution and awareness of possible confounders. Unified 

statistical frameworks that incorporate sequences, metadata, and epidemiological models are likely 

the most robust approaches for integrating intrahost variants, but these models also must account 

for parallel evolution (Maio et al., 2018; Skums et al., 2018; Worby et al., 2017). As others have 

recently suggested (Tonkin-Hill et al., 2020), we caution against assigning transmission pairs solely 

by virtue of shared iSNV in the absence of clear epidemiologic information. 

 

Acknowledgements 

 

We thank the University of Michigan Clinical Microbiology Laboratory and the University of 

Michigan Central Biorepository for their assistance in providing samples. We thank Christina 

Cartaciano and the University of Michigan Microbiome Core for their assistance in sequencing. We 

thank Emily Stoneman from Michigan Medicine Occupational Health Services for assistance with 

employee data. This work was supported by a University of Michigan COVID-19 Response 

Innovation Grant (to ASL), K01AI141579 (to JGP) and CDC U01 IP000974 (to ETM). 

  



 96 

Supplemental Figures 

 

Figure 4.6. True and false positive iSNV in RNA mixture validation experiment. Each iSNV is shown as a point, with the frequency 
on the y-axis and genome position on the x-axis. True positive iSNV are shown in violet and false positive iSNV are shown in orange. 
All iSNV displayed have a frequency of 2% or greater. Viral loads are shown above each facet, in units of genome copies per 
microliter of RNA. 
 

 
 
Figure 4.7. Number of minor iSNV per sample across groups. Hospitalized patients are shown by teal points and employees shown 
by violet points. Boxplots for each group represent the median and 25th and 75th percentiles, with whiskers extending to the most 
extreme point within the range of the median ± 1.5 times the interquartile range. 
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Figure 4.8. Number of minor iSNV per sample by genome copies. Hospitalized patients are shown by teal points and employees 
shown by violet points. 
 
 

 

 
 

Figure 4.9. Maximum likelihood phylogenetic tree. Tips represent complete consensus genomes from hospitalized patients (teal) and 
employees (violet). The x-axis shows divergence from the root (Wuhan-Hu-1/2019). Heatmaps show samples that contain each 
mutation as an iSNV. 
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CHAPTER V 

Discussion 
 
 

Although it has been known for decades that RNA viruses establish genetically diverse 

populations, only recently has technology enabled comprehensive, genome-scale measurement of 

viral populations within human hosts. Such studies have revealed important aspects of viral 

evolution, transmission, and epidemiology that would not be revealed by consensus sequences. 

However, there are still challenges for accurate characterization of these populations and the level of 

biological inference that can be extracted from the results. In my thesis, I have applied careful 

methods for variant identification with rigorous benchmarking and validation. These experiments 

laid the primary foundation for making evolutionary inferences from the results. Each chapter 

demonstrates the value of moving beyond convenience samples and sequencing specimens from 

observational and clinical studies. In Chapter II, I used samples from a longitudinal household 

cohort to determine that influenza B virus accumulates less intrahost diversity than influenza A 

viruses. Combined with the measurement of a narrow transmission bottleneck, this points to a 

relationship between the mutation rate of a virus and its intrahost diversity. In Chapter III, I used a 

similar household-based field trial to identify mutations that are involved in the early reversion of 

the oral polio vaccine and to understand how mutations spread to new hosts. These data generated 

new hypotheses about the molecular basis of OPV reversion, informed poliovirus genetic 

surveillance, and suggested strategies for novel vaccine designs. In Chapter IV, I quantified the 
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intrahost diversity of SARS-CoV-2 and the extent of parallel mutation among unrelated individuals. 

Contrary to several high-profile reports, I found little intrahost diversity over acute infections. My 

findings changed our expectations of how frequent of antiviral resistance will arise and how much 

minor variants contribute to global dynamics. Finally, I integrated what we have learned about viral 

within-host dynamics to assess its utility for enhancing genomic epidemiology and transmission 

reconstruction. 

 

Challenges of interpreting shared variants  

 

A common feature across viruses is that most intrahost variants are unique to a specific 

population. This is not surprising given the random nature of errors in genome replication. 

However, there is usually some fraction of variants that is shared by two or more individuals in a 

study population. The biological interpretation of these shared variants is central to evolutionary 

inferences. There are several reasons that minor variants may be shared: random or systematic 

sequencing error, chance (e.g. genetic drift), selection, or direct transmission (Figure 5.1A). 

Distinguishing these causes is not trivial and has been a major point of conflict in previous studies. 

 Prior to sequencing, proper study design is essential for interpretation of shared variants, 

especially for evaluating direct transmission. In order to assess whether variants are shared due to 

direct transmission, there must be documentation of exposure or epidemiologic link. In Chapter IV, 

we had epidemiologic data for no individuals except a few employee infection clusters, which limited 

our ability to compare diversity across transmission pairs. In Chapter II and III, we employed 

household-based cohorts. Household studies have long been used to estimate secondary attack rates 

and assess vaccine effectiveness (Petrie et al., 2013; Tsang et al., 2016). In the HIVE study, we 

identified putative transmission pairs by identifying households with multiple individuals who tested 
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positive by RT-qPCR within one week of each other. We applied the sequence data to assess 

whether the genetic distance between the viruses was consistent with direct transmission. In all 

cases, household pairs had viruses with low genetic distance. However, we did identify identical 

viruses in people from different households, illustrating that sequence data alone is insufficient to 

assess transmission linkage. In the polio vaccine trial, we took advantage of RT-qPCR monitoring of 

household contacts in the weeks following vaccination of one household individual. Because the 

original field trial included household and community transmission as a primary endpoint, we were 

able to compare variants across transmission pairs with high confidence. One drawback of these 

cohorts was a relatively small number of transmission pairs. In the OPV trial, high population 

immunity enabled the study to occur safely and ethically but limited the extent of transmission. In 

the HIVE study, the number of pairs depended on the severity of a given influenza season, and 

some study households had a positive influenza case. Different study designs may have better 

enrichment for transmission pairs. Case-ascertainment studies identify index cases in clinic settings 

and then enroll the appropriate household contacts (Iyengar et al., 2015). 

 

 

Individual A Individual B

A B

Shared iSNV

Potential Cause Methods

Direct transmission Study design, epidemiologic data

Variant calling error Sequence replicates, readjust 
criteria/thresholds

Chance Permutation tests, experimental 
correlates

Selection Permutation tests, epitope enrichment, 
convergence, experimental correlates

Within-host Between-host

Early 
transmission

Late 
transmission

Infection initiation: 
low diversity

Bottleneck:
stringent for 

influenza, OPV,
SARS-CoV-2

Duration: influenza/SARS-CoV-2 ~5 days, poliovirus ~5 weeks

Selection: strong for OPV, weak for influenza/SARS-CoV-2
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Figure 5.1. Summary of findings. (A) Depiction of iSNV shared between two individuals. The potential causes for shared iSNV and 
ways to investigate them are shown in the table. (B) Summary of findings. Each virus had relatively limited intrahost diversity. 
Selection was strong for OPV and weaker for influenza virus and SARS-CoV-2. All three viruses have stringent transmission 
bottlenecks. If transmission occurs later, iSNV may be more likely to pass through the narrow bottleneck. 
 

 In addition to study design, accurate identification of minor variants is critical for 

interpreting shared variants. My approach to limit sequence errors in each chapter was tailored to 

each specific context and viral system. Common to each study were experiments sequencing known 

viral mixtures to estimate the sensitivity and specificity of variant calling. We attempted to recreate 

the conditions and characteristics of the clinical specimens to strengthen the inference from actual 

samples. In Chapter III, I mixed two viruses passaged in cell culture and diluted in human stool-

derived nucleic acids to simulate the template-rich environment in stool extracts. In Chapter IV, I 

mixed two synthetic RNA with known sequence. Across the three viruses studied, there was a 

consistent decrease in sensitivity for variants at lower frequencies. Although we could detect some 

variants below 1-2% frequency, the sensitivity was poor. To minimize the effect of low sensitivity 

and specificity on our results, we used fairly conservative frequency thresholds of 2-5% in each 

study. In future work, inclusion of defined mixtures and negative controls on each sequencing batch 

could help account for bias from sequencing run-specific artifacts and differences in read depth. 

An important variable in these experiments was the input viral load. We and others have 

shown that low viral loads can dramatically decrease variant sensitivity and specificity for influenza 

virus and flaviviruses (Grubaugh et al., 2019a; McCrone and Lauring, 2016). Accounting for the 

variable viral loads and RNA quality in clinical specimens is crucial to avoid over-estimating the 

accuracy of a sequencing workflow. In my thesis, I extended this principle to polioviruses and 

SARS-CoV-2. The optimal cutoff for specimen viral load differs by the virus and sequencing 

approach, but other studies have suggested using a cutoff of 1000 genome copies of input RNA. 

The empirical cutoffs that I used in each chapter are all above this suggested threshold. 
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The wide variety of strategies for template enrichment, sequencing method, and 

bioinformatic analysis precludes simple adoption of the same variant calling criteria in every study. 

While it is impossible to obtain perfect sensitivity and specificity, estimates of these metrics across 

ranges of viral load, read depth, and technical replicates can generate expectations for the degree of 

shared variation due to sequence errors. 

 Estimation of transmission bottlenecks particularly depends on careful and accurate 

identification of shared minor variants. There are two notable cases when sequencing accuracy and 

interpretation of shared variation was a major fulcrum point for the overall conclusions. The first 

study to estimate the IAV transmission bottleneck in humans reported values of about 200 unique 

genomes passed between individuals (Poon et al., 2016). However, other studies estimated 

bottleneck sizes of 1-2 unique genomes (McCrone et al., 2018). In the first study, there was a large 

extent of shared variation between individuals, including individuals from different households. 

Between household pairs, variants at intermediate frequencies were rarely shared, while variants at 

low frequencies were shared. A careful re-analysis of the raw sequence reads revealed that paired end 

reads were improperly assigned to samples from different individuals, creating the appearance of 

greater shared variation than actually present (Xue and Bloom, 2019a). Bottleneck analysis with 

properly demultiplexed reads was consistent with other estimates of 1-2 unique genomes. Although 

this is an extreme example of how sequence errors can affect downstream results, it highlights the 

critical role that rigorous benchmarking and validation play in intrahost studies. 

 There have also been conflicting results between findings for SARS-CoV-2. Two high-

profile preprints posted early in the pandemic found a large degree of shared variation and wide 

transmission bottlenecks. The first study reported as many as 400 intrahost variants per sample and 

bottleneck sizes of about 1000 unique genomes across transmission pairs in twelve households in 

Austria (Popa et al., 2020). The second study inferred the presence of wide transmission bottlenecks 
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by virtue of extensive shared variation among samples in two geographic regions in the United 

Kingdom (Lythgoe et al., 2020b). However, later studies of household pairs as well as mammalian 

animal models suggested low intrahost diversity and narrow transmission bottlenecks of 1 – 10 

unique genomes (Braun et al., 2021; Wang et al., 2020b). In late 2020, the preprint from groups in 

the United Kingdom was revised to use more conservative variant calling methods which resulted in 

opposite conclusions: low per-sample diversity of 0 – 5 minor variants and tight transmission 

bottlenecks across direct household pairs (Lythgoe et al., 2021). A recent re-analysis of the data from 

the household pairs in Austria revealed a strong dependence of the transmission bottleneck 

estimates on the frequency threshold used (Martin and Koelle, 2021). The most parsimonious 

explanation for these results is the presence of low-frequency variants across transmission pairs that 

resulted from errors in sequencing, due to variation in viral load or some other factor related to 

variant identification. Chapter IV of my thesis is consistent with the later findings of low intrahost 

diversity and narrow transmission bottlenecks. These cases demonstrate the difficulty of accurate 

intrahost variant detection and the kinds of controls that are required to avoid spurious conclusions. 

 Although the first studies on RNA virus transmission bottlenecks have provided important 

insights, there are many biological questions that remain. Transmission bottlenecks are not static 

values and probably exist as distributions that vary across different biological contexts. Transmission 

bottlenecks for a given virus may vary by transmission route, immune profile of the donor and 

recipient, and viral subtype. Understanding the molecular genetics of viral transmission in different 

populations could help uncover settings in which novel variants are more likely to emerge. 

Identification of these populations would have implications for infection prevention, genetic 

surveillance, and selection of influenza vaccine strains. Experiments in ferret models indicate that 

the soft palate may be an important anatomical site of influenza virus adaptation (Lakdawala et al., 

2015). Further research in humans might explore the evolution of influenza viruses and SARS-CoV-
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2 in the upper vs. lower respiratory tract and its relationship to the diversity of the transmitted 

population. Transmission dynamics may also differ by droplet vs. aerosol transmission, across 

gradients of ambient temperature and humidity, or in the setting of mixed infections. Future work 

should also evaluate the impact of host immune status on transmission bottlenecks. For example, 

vaccination of the donor or recipient host might constrain the replication of antigenic variants and 

decrease the effective transmission bottleneck size. More sophisticated methods of assessing 

immune function, such as mutational scanning in the presence of polyclonal sera or B cell receptor 

profiling, might offer mechanistic insight into how individual-level immunity shapes transmission 

dynamics. Various virus subtypes or lineages may also differ in their transmission dynamics. 

Influenza A subtype H3N2 evolves more quickly on a global scale compared to pdmH1N1 and 

influenza B viruses, but it is unclear whether new H3N2 variants emerge more easily on the within-

host level or on larger population scales (Bedford et al., 2015; Morris et al., 2020). There is 

significant evidence that SARS-CoV-2 lineage B.1.1.7 is more transmissible than ancestral variants 

and sheds more viral particles on average (Volz et al., 2021). This is an important opportunity to 

evaluate the transmission bottleneck for two viral lineages that are phenotypically distinct but are 

otherwise similar. Lastly, it is unclear how the transmission bottleneck size, a population genetic 

measurement, relates to infectious dose, a functional measurement. These values are not necessarily 

correlated but are often conflated in the literature (Popa et al., 2020). For example, a virus may have 

a large infectious dose and few genetically distinct particles that establish the new infection. To parse 

out these distinctions would require technically difficult experiments in animal models and may be 

less valuable than defining transmission dynamics in humans. 

Transmission bottlenecks are often assumed to act neutrally. Because bottlenecks involve a 

reduction of the effective population size, there will always be an increase in the strength of genetic 

drift in this process. However, it is possible that transmission bottlenecks between humans may also 
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exert selective pressure. There is evidence for positive and purifying selection of genetic variants in 

studies of HIV and models of influenza virus (Carlson et al., 2014; Lakdawala et al., 2015). How and 

under what circumstances transmission bottlenecks act selectively are open questions. Distinguishing 

a neutral from selective bottleneck will probably be challenging and require analysis of many pairs. A 

simple approach might be to design a permutation test to identify sites or mutations that are 

overrepresented in recipients, accounting for their frequency in the donor. Minor variants that are 

selected during transmission might be observed more often in recipients than expected given their 

frequency and the bottleneck distribution. Other population genetic models have also been recently 

developed to address similar questions (Ghafari et al., 2020; Lumby et al., 2018). If evidence arises 

for selective bottlenecks during transmission between human hosts, it will be interesting to compare 

the relative importance of within and between-host selection on emergence of new variants in 

populations. Simple models suggest that a 1% selective advantage compared to wildtype virus has a 

much more powerful effect within hosts than between them (Bedford and Malik, 2016). However, a 

recent modeling study suggests that selection at the initial point of infection in a new host better 

explains the relatively frequent emergence of influenza virus antigenic variants despite weak within-

host selection (Morris et al., 2020). I expect that further work combining human observational 

studies, genetic and epidemiologic models, and experimental systems will help untangle these 

complex dynamics. 

 

Detecting natural selection with within-host sequencing data  

 

In addition to understanding transmission dynamics, intrahost genetic diversity can also be 

leveraged to identify natural selection acting within hosts. Observing “real-world” evolution within 

hosts provides context for laboratory experiments that cannot always capture the direction and 
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magnitude of selective pressures in humans. However, the time scale of intrahost studies is short by 

definition, which can obfuscate negative selection that has not yet had sufficient time to act. This 

creates barriers for standard evolutionary analyses such as dN/dS (Crandall et al., 1999), though 

similar approaches have been recently used to link within-host evolution and global evolutionary 

patterns (Xue and Bloom, 2020).  

A preponderance of shared intrahost variation may suggest the presence of positive selection 

pressure. However, whether shared variation indicates selection or some other process depends on 

the size of the study population. In large datasets, it is conceivable that many variants shared across 

individuals could occur simply due to chance. On the other hand, detecting the same intrahost 

variant in a study consisting of only a handful of individuals suggests some degree of parallel 

selection, as was seen in a recent study of IAV in four immunocompromised individuals (Xue et al., 

2017). It is not obvious how to determine which variants are biologically relevant and worthy of 

further investigation. My thesis demonstrates that there are no universally applicable criteria, but 

there are several potential strategies depending on the evolutionary context and study design. 

The simplest method is to link variants enriched in human populations with previous 

experimental data, but there are limited data on fitness effects of single nucleotide mutations in 

RNA viruses. Massively multiplex assessments of variant effects are becoming more tractable for 

phenotypes like replication speed, neutralization by monoclonal and polyclonal antibodies, and drug 

resistance (Dingens et al., 2019; Doud et al., 2018; Lee et al., 2018). However, these data are 

laborious to generate, and their interpretation may be confounded by epistasis on varying genetic 

backgrounds. 

 In the absence of prior experimental data, we must rely on computational and statistical 

methods for determining which variants are influenced by positive selection. The primary method I 

used in my thesis was to compare the number of times a variant appeared in a study cohort to a null 
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distribution. In Chapter II, there was only one iSNV shared across one individual, and it encoded a 

synonymous amino acid change. While synonymous variation can have fitness effects, it is more 

likely that this variant appeared twice merely by chance. Conversely, in Chapter III, I identified 

hundreds of shared mutations across the 83 people analyzed. There was a clear gradient in the 

strength of selection. Mutation A481G was found in nearly all individuals, followed by U2909C and 

U398C, all of which have known replication advantages. However, there were also many 

synonymous variants shared by only two people. To estimate a count cutoff for variants that could 

be shared due to chance alone, I performed permutation tests based on the observed level of 

intrahost diversity and the size of the study population. This analysis suggested that variants shared 

between two people could easily occur by chance, but variants shared by 3-4 or more people may 

have arisen due to positive selection pressure. Some of the mutations above this cutoff have weak 

associations with OPV genetic reversions in other phylogenetic studies, such as the non-

synonymous capsid mutation A1997G (Famulare et al., 2016; Stern et al., 2017). Other mutations 

were found in many individuals but otherwise have no supporting experimental data. For example, 

G6084U is a synonymous variant in the 3D RdRP gene that is not present in any known RNA 

secondary structures. However, this variant is found in 3% of circulating VDPV genomes, making it 

conceivable that it has some fitness benefit.  

Better models may help determine which mutations most likely have positive fitness effects. 

Factors like position in RNA secondary structures or type of amino acid change may suggest 

underlying biological mechanisms for an enriched mutation. More complicated permutation tests 

could also assess whether there is a pairwise association between two enriched mutations, indicative 

of an epistatic interaction. However, statistical tests of parallel mutation in phylogenetic analyses and 

permutation tests at the within-host level are ultimately limited in their statistical power and rely 

heavily on sampling density. With a smaller dataset, we might only have been able to reliably detect 
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the gatekeeper mutations in multiple people. Permutation tests also depend on the degree of 

intrahost diversity in each sample. If there are few or no variants per sample, such as in influenza 

viruses or SARS-CoV-2, shared variants may reach statistical significance in permutation tests even if 

they are unlikely to be under positive selection. 

 Longitudinal samples can strengthen inference of positive selection on intrahost variants 

(Illingworth et al., 2020). If a mutation consistently rises in frequency within individuals, this is 

powerful evidence of selection. I observed this effect for A481G and U2909C within hosts that had 

2 – 3 successfully sequenced samples. However, these mutations confer massive fitness benefits and 

equally strong selective sweeps are unlikely to occur during acute infections of endemic RNA viruses 

(Stern et al., 2017). For mutations with smaller fitness benefits, it becomes difficult to distinguish 

whether a rise in variant frequency is due to selection or genetic drift. This is an important limitation 

of the studies in my thesis. One aspect of future work will be to integrate estimates of effective 

population size in inferences of natural selection. For influenza viruses, effective population size 

may differ by host immune status. A study of influenza A virus in immunocompetent hosts 

estimated small population sizes and a dominant effect of genetic drift (McCrone et al., 2020). A 

recent study of influenza B virus in an immunocompromised host suggested larger population sizes 

(Lumby et al., 2020). These disparate estimates may be due to differences in methodology or acute 

vs. chronic infection. 

Identification of genetic variants within hosts can provide grounds for subsequent 

experimental work. Specifically, investigation of the mutations in discussed Chapter III may shed 

light on the molecular mechanisms of OPV phenotypic reversion. I found six mutations that arose 

in > 10% of vaccine recipients, four of which encode non-synonymous substitutions in the capsid. 

These mutations likely confer a fitness benefit, but it might not be strong enough to be detected in 

phylogenetic analyses on limited cVDPV genomes (Famulare et al., 2016; Stern et al., 2017). An 
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initial experiment could compare the change in replicative capacity in cell culture or organoid models 

with the level of enrichment in the human cohort. If these mutations enable faster within-host 

replication, we expect them to show intermediate fitness in cell culture compared to the gatekeeper 

mutations. Similar experiments could also assess epistatic interactions between these mutations and 

the gatekeepers. Mouse models could be used to quantify shedding and infectivity relative to 

ancestral OPV2 and the gatekeeper mutations. However, in the current phase of global polio 

eradication, wet lab experiments with type 2 poliovirus can only be performed in a small number of 

closely monitored laboratories. Nevertheless, my findings in Chapter III provide new avenues for 

investigators who are designing novel OPV2 vaccines (Konopka-Anstadt et al., 2020; Yeh et al., 

2020). 

More broadly, it will be beneficial to pair descriptive within-host analyses with “wet-lab” 

experiments in various viral systems. These joint approaches could clarify how often antiviral 

resistance or antibody escape occurs within acute infections for viruses like influenza and SARS-

CoV-2. For example, sequencing approaches that use unique molecular identifiers (UMI) could be 

used to accurately identify intrahost variants down to very low frequencies (0.1%) in specific genome 

areas of interest, such as antigenic epitopes on influenza virus HA/NA or the SARS-CoV-2 spike 

protein. If this was applied across a large cohort, there might be more statistical power for 

permutation tests to identify sites that are recurrently mutated within-hosts. Then these mutations 

could be assayed for escape from antibody neutralization by patient sera or shedding duration in 

animal models. Mutations identified in viral polymerases could be evaluated for effects on 

replication speed or mutation rate. Even if these low-frequency mutations do not spread onwards 

due to transmission bottlenecks or other constraints, they could still identify sites that experience 

selection at the within-host level. This kind of data could inform genomic surveillance of respiratory 

viruses and inform the design of yearly influenza vaccines. 
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Impact of infection duration on variant spread  

 

So far, I have discussed considerations for accurately detecting intrahost variants and their 

downstream effects on measuring transmission bottlenecks and inferring within-host natural 

selection. However, to understand how within-host dynamics translate into global-scale evolutionary 

patterns, we need to consider these processes in the context of infection kinetics. Narrow bottleneck 

estimates suggest a model where beneficial variants can only be transmitted if they arise early enough 

during an acute infection to reach intermediate or high frequencies before a transmission event 

occurs (Figure 5.1B). If they arise too late, they will not be present at sufficient frequency to be 

reliably transmitted. This model suggests that infections with longer duration could enable more 

viral evolutionary change and play a larger role in global population dynamics. 

 Chapter III of my thesis illustrates this concept in detail. In primary OPV2 recipients, there 

was strong selective pressure to drive the gatekeeper mutations to fixation in most people within 

several weeks after vaccination. Poliovirus generally sheds from susceptible hosts for 4-6 weeks, 

providing ample time for natural selection to act at the within-host level (Famulare et al., 2018). 

However, most household transmission events occurred within 1 – 2 weeks after vaccination, before 

mutations U2909C and U398C had reached high frequencies (Taniuchi et al., 2017). Therefore, the 

gatekeeper mutations were transmitted to household contacts in a time-dependent manner: only 

A481G was consistently identified in household contacts, while U2909C was more likely to be 

detected three or more weeks after vaccination. There is also some evidence for a similar dynamic in 

influenza virus, which can shed longer in young children (Han et al., 2021). 

 These dynamics can also help us form expectations for how often SARS-CoV-2 variants will 

emerge at the individual level. To evaluate the risk of within-host variants spreading to new hosts, 
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we must consider the interval of infectious viral shedding. It is important to remember that this 

interval is different than the duration of detecting viral RNA by RT-qPCR. For SARS-CoV-2, 

infected individuals often transmit before developing symptoms, and then are infectious for about 

five days thereafter (He et al., 2020). In Chapter IV, I showed that intrahost diversity remains low 

over the first several days after symptom onset. Although we detected genetic variants in individuals 

who were three weeks into their infections, variants present at this time are unlikely to transmit. 

Within the span of plausible transmissibility, there were very few mutations present at levels that 

would survive a narrow bottleneck. A recent study highlights how viral kinetics provides important 

context for interpreting within-host variation. In this study, investigators used unique molecular 

identifiers to measure diversity in the spike protein at high resolution from SARS-CoV-2 clinical 

specimens (Ko et al., 2021). They detected a cluster of mutations in the spike protein receptor 

binding domain in one individual. This mutation cluster was detected at low frequency on illness day 

11, with a transient increase to 25% on illness day 15 before ultimately being lost from the 

population. While this study suggests that antigenic variants can arise within hosts after 

seroconversion, these mutations did not arise until several days after the standard window of 

transmission. Even variants at a frequency of 25% are not guaranteed to transmit through narrow 

bottlenecks (Braun et al., 2021; Lythgoe et al., 2021; Martin and Koelle, 2021).  

 The conflict between selection, infectious shedding duration, and transmission bottlenecks 

results in inefficient spread of variants from any single individual. However, when the number of 

infections is large, even rare events can happen. For most of the SARS-CoV-2 pandemic, there have 

been few instances of viral variants arising that have a measurable fitness advantage (Lauring and 

Hodcroft, 2021; Volz et al., 2021). As more infections have occurred over time, the global 

population of SARS-CoV-2 viruses has had more opportunities to generate novel combinations of 

variants within hosts in the timeframe of potential transmission. Therefore, the recent emergence of 
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variants of concern (VOC, i.e. B.1.1.7, B.1.351, and P.1) probably involved a convergence of rare 

events. 

A related dynamic is at play in the emergence of cVDPV. Compared to the number of OPV 

doses administered every year, the number of cVDPV emergence events is actually rather small 

(Famulare et al., 2018). There are probably both epidemiologic and evolutionary factors that 

constrain cVDPV emergence. A narrow transmission bottleneck in OPV could introduce 

heterogeneity into the spread of gatekeeper mutations in populations. At a population scale, this 

would effectively reduce the number of OPV viruses that acquire all three gatekeeper mutations and 

other mutations that are involved in its phenotypic reversion. However, it is unknown to what 

degree these evolutionary dynamics influence cVDPV emergence compared to epidemiologic 

variables, such as availability of susceptible host networks (Famulare et al., 2020). Recent modeling 

studies suggest that the structure of community social networks and population immunity may play a 

larger role than viral evolution in cVDPV emergence (Wong et al., 2020). My work in Chapter III 

provides key insights into the evolutionary dynamics of OPV that could be integrated into such 

models of cVDPV emergence that combine viral genetics and host epidemiology. 

Infections in immunocompromised hosts are the most extreme cases of prolonged shedding, 

but it is not clear how often they lead to subsequent outbreaks. Infections of SARS-CoV-2 in 

immunocompromised hosts have been noted in case reports to shed infectious particles for months 

(Avanzato et al., 2020; Baang et al., 2021; Choi et al., 2020; Kemp et al., 2020). Some, but not all, of 

these cases have exhibited within-host evolution at genomic loci implicated in VOC B.1.1.7. It is 

therefore a reasonable suggestion that the origins of B.1.1.7, have some association with an 

immunocompromised host(s). This will necessarily remain a point of reasonable speculation. 

However, other RNA viruses like norovirus and poliovirus also establish long-term infections in 

immunocompromised hosts, and there is no evidence yet that they shed transmissible particles and 
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contribute to viral epidemics or emergence of new strains (Bok et al., 2016; Dunn et al., 2015). 

Therefore, it is presently unclear how much infections in immunocompromised hosts contribute to 

global viral evolution. It is important to define the clinical characteristics of immunocompromised 

hosts that associate with prolonged infectious shedding, the phenotypic changes in viruses during 

long-term infections, and the extent to which these infections contribute to epidemics in 

immunocompetent populations. 

 

Implications for sequence-based transmission inference  

 

My thesis has implications for the feasibility of using within-host variants to enhance current 

efforts of sequence-based transmission inference and network reconstruction. There is enthusiasm 

for this approach in the SARS-CoV-2 literature, but many studies do not consider how within-host 

evolutionary dynamics impact these analyses (Lau et al., 2020; Sapoval et al., 2020). Chapter IV 

displays multiple obstacles for the productive use of intrahost variants for making transmission 

inferences. First, I showed that detecting viral variants is highly error prone. If studies fail to account 

for these sources of error, it could generate many false positive transmission links. Second, I showed 

that most infections exhibit little genetic variation during the interval of highest transmissibility, and 

those variants that are present have generally very low frequencies. Third, I showed that the same 

genetic variants can arise in parallel across unrelated hosts which could also cause false positive 

transmission links. Lastly, I discussed these findings in the context of a narrow transmission 

bottleneck. If the bottleneck is small, then it is conceivably more likely for variants to be shared by 

individuals not linked by transmission than direct transmission pairs (Martin and Koelle, 2021; 

Worby et al., 2017). 
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Therefore, in my view it is not advisable to compare intrahost variants by hand to assign 

transmission linkages without strong epidemiologic evidence (Tonkin-Hill et al., 2020). However, 

there are comprehensive statistical frameworks that have shown intrahost variation to sometimes be 

of use, even when limited by tight bottlenecks (Maio et al., 2018). However, these models have not 

fully accounted for parallel evolution. An important focus of future work will be to quantitatively 

estimate the rate of parallel evolution of variants in similar genetic backgrounds and compare that to 

the likelihood of direct minor variant transmission. Over time, as SARS-CoV-2 lineages continue to 

diversify, it may become more difficult to obtain large enough datasets with genetically similar 

viruses to accomplish robust estimates. However, greater consensus diversity in circulating viruses 

will also make it easier to separate unrelated case clusters based on genetic distance. Recent work has 

also suggested that there are mutational “hotspots” in the SARS-CoV-2 genome (Tonkin-Hill et al., 

2020). High-throughput mutational profiling methods could help determine whether these sites are 

more tolerant to mutations than other sites, and therefore more likely to arise within hosts in 

parallel. 

Given the enthusiasm around using advanced genetic technologies for “precision 

epidemiology,” it is important to be aware of common pitfalls and areas where technology can have 

larger impact. I suggest that the potential gains of using intrahost variation in transmission inference 

are outweighed by the logistical and biological obstacles. In many scenarios, it is not necessary or 

feasible to establish exactly “who infected whom.” Consensus genome sequencing, while relatively 

coarse, can still provide important insights into broad patterns of viral transmission. Intrahost 

sequencing has more value when applied on a limited basis, focused on well-designed observational 

studies with rich clinical metadata, clearly defined viral kinetics, and simpler contact networks. These 

studies are the most likely to reveal the subtleties of viral evolutionary dynamics across different 

populations. 
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