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ABSTRACT

Control design for nonlinear dynamical systems is an essential field of study in a world growing
ever more reliant on autonomous system technologies. In practical applications, it is often desir-
able for the state of the system to converge to some target point or region; however, it is critical

that the system remain safe, i.e., that the system trajectories satisfy a collection of spatiotemporal
constraints over the operational lifetime. While generally difficult for nonlinear systems, guaran-
teeing safety via control design is further complicated under uncertainty introduced by confound-
ing phenomena such as incomplete or inaccurate system information (e.g., unmodelled dynamics),
exogenous disturbances (e.g., wind gusts), measurement noise, or the presence of sovereign agents
whose actions may be unpredictable. Offline tools for policy learning and system verification may
be able to account for some of these effects, but their utility is diminished by the tendency of dy-
namic, real-world environments to change. It is of paramount importance, therefore to investigate
viable options for online safe control. Toward this objective, much attention in recent years has
been paid to CBFs as a tool for state-feedback control that certifies the satisfaction of spatiotem-
poral constraints at all times. This dissertation studies the theory and viability of CBF-based safe
control synthesis for nonlinear systems under various classes of system uncertainty.

First, the problem of encoding future state prediction into CBF-based control for nonlinear,
control-affine, multi-agent systems is studied. A novel class of future-focused CBFs is developed
for autonomous vehicle control under the foundational presumption that vehicles seek to minimize
unnecessary acceleration or braking. Centralized and decentralized control laws are proposed for
multi-agent systems with varying degrees of communicability, and it is shown how satisfaction of
the newly developed CBF conditions via control design guarantees collision avoidance.

Then, the problem of safe control design is studied for a dynamical system subject to an ad-
ditive, parameter-affine perturbation to the system dynamics. Parameter adaptation laws are pro-
posed to learn the unknown parameters within fixed time, i.e., within a finite time independent of
the initial parameter estimates, when a system identifiability condition is met, and to learn the true
perturbation when it is not. It is shown that the proposed adaptation framework may be used to
learn a more generic class of additive, unmodelled dynamics within fixed-time via application to
Koopman operator theory, by which a nonlinear system admits an analogous, infinite-dimensional,
linear representation. A robust, adaptive CBF controller is then proposed to guarantee spatiotem-

xvii



poral constraint adherence under parameter adaptation despite the considered model uncertainty.
Next, control design for probabilistic safety over a finite time interval is studied for a class

of nonlinear, control-affine, stochastic systems, i.e., systems subject to additive Brownian motion
noise. A novel form of risk-aware CBFs is developed, the use of which for control design results in
the satisfaction of a user-specified upper bound on the probability that the system becomes unsafe
within the considered (finite) time interval. Conditions are derived under which the proposed risk-
aware CBF controller reduces conservatism introduced by an existing method.

Finally, the problem of online, certifiably safe control for nonlinear, control-affine systems is
addressed under a collection of arbitrarily many spatiotemporal constraints and input constraints.
An approach to synthesizing one consolidated CBF candidate from the collection of constraints is
proposed, and online parameter adaptation laws are introduced to vary the relative weightings of
the individual constraint functions such that, under certain assumptions, the consolidated CBF is
rendered valid despite limited control authority.

xviii



CHAPTER 1

Introduction

This dissertation addresses open problems in control design for safety-critical systems under vari-
ous classes of model uncertainty through the lens of online parameter adaptation and future safety
forecasting. This chapter serves to introduce the motivation guiding this line of research, to high-
light the problems considered and contributions made herein, to survey the literature and situate
said contributions, and to provide an outline for the remainder of the dissertation.

1.1 Motivation

A safe autonomous system is the gate to a fully autonomous system, and the prevalence of and
desire for autonomy in robotic and aerospace systems has grown rapidly in recent years. From
Autonomous Driver Assistance Systems (ADAS) in vehicles traversing our roadways and autopi-
lots commanding extensive portions of commercial flights, to automated exploratory missions rov-
ing across the dusty red landscape of Mars and Unmanned Aerial Vehicle (UAV) package delivery
direct to our doorsteps, humans have demonstrated an interest in using autonomous systems both
to solve complex problems and to perform tasks that are otherwise repetitive or mundane. Critical,
however, to the deployment of these autonomous systems in real-world scenarios is their ability
to remain safe throughout their operating lifetime. In other words, many autonomous systems are
safety-critical.

The best interpretation of the term safety-critical system is perhaps the literal one; however,
a more precise and commonly accepted definition is a system whose failure may lead to loss of
life, loss of economic value, or damage to the surrounding environment [1]. For a safety-critical
system, the autonomy pipeline may be viewed as consisting of four components, each constituting
an important piece of the autonomy puzzle: sensing, the system must be able to extract information
related to the state of itself and its surrounding environment; perception, the system must be able to
understand and make inferences on the sensed data in order to form a foundation on which to base
its actions; planning, the system must be able to generate a plan to achieve its desired outcome; and
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Figure 1.1: A visualization of the autonomy pipeline.

control, the system must be able to carry out the plan using its available actions. The chart shown
in Figure 1.1 highlights the interconnectedness of these elements of the autonomy pipeline. It is
beyond the scope of any one thesis, however, to develop a complete framework for realizing safe
autonomy; thus, in this dissertation, the primary focus is on safe planning and control predicated on
assumptions regarding the environment and the quality (or lack thereof) of the preceding sensing
and perception systems.

Central to the field of safe control is the notion of set invariance. In recent years, Control
Barrier Functions (CBFs) have emerged as a viable tool for rendering a constraint set forward
invariant. First introduced in [2] and popularized by [3], CBFs belong to a class of model-based
approaches to constrained control design and require that the control input to the system satisfies
an inequality condition. For classes of nonlinear, control-affine dynamical systems it has become
common to include this CBF condition as a linear inequality in an optimization-based control law,
most frequently taking the form of a Quadratic Program (QP). Thus, the CBF may be interpreted
as a means of filtering out control inputs that lead to constraint violations. One drawback that has
been observed with this class of CBF-QP controllers, however, is that while the control solution
is computed pointwise-in-time (and is thus optimal for the present time instance) optimality is not
guaranteed over any operating period. In this sense, CBF control laws have been called myopic:
the evaluation of a present input as acceptable or not is based entirely on the present time and state
and notably does not take any prediction of future system trajectories into account. An example
scenario encountered due to this property is an autonomous vehicle executing an aggressive evasive
maneuver shortly before a colliding with an obstacle when a smooth deviation from the nominal
path would have steered it clear well in advance of any collision. In that sense, not only may this
myopic tendency produce sub-optimal behavior but it may also lead to more dangerous situations.
An advantage offered by CBF-based controllers over some predictive control architectures, (e.g.
Model Predictive Control (MPC)) however, is that they may be computed efficiently and used
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online in real-time even for nonlinear dynamical systems. This motivates the study of future-
focused CBFs for efficient, predictive, QP-based control in this dissertation.

As a model-based approach to constrained control design, CBFs require the availability of an
accurate system model in order to preserve forward invariance of the constraint set. For compli-
cated dynamical systems such a model may be difficult to obtain in practice, but even for simple
systems there may be exogenous disturbances from the environment that perturb the system dy-
namics. Under such circumstances, modifications must be made to the CBF condition in order to
account for the error associated with the uncertainty in the model. For example, under a class of
additive, bounded perturbations to a set of deterministic system dynamics the CBF condition may
include a term which protects against the worst-case disturbance. While this approach guarantees
that constraint satisfaction is achieved, the resulting controller may be over-conservative if the true
perturbation rarely attains this worst-case bound. One way of reducing this conservatism is to
identify the true system model online from data. With the explosion of recent advances in machine
learning, there are many options for performing such a task. In contrast to offline learning methods,
which require collecting large amounts of training data and cannot account for live perturbations,
online learning methods offer a level of real-time adaptivity and responsiveness to unmodeled dis-
turbances that can significantly reduce conservatism in CBF-based control design. And whereas
approaches to online system identification may guarantee convergence asymptotically or exponen-
tially as time tends to infinity, it has been shown that convergence in fixed-time, i.e. within a finite
time independent of the initial condition, offers stronger disturbance rejection properties and thus
may be more suitable for use in CBF-based control. With respect to this dissertation, the preced-
ing discussion motivates the study of Fixed-Time Stable (FxTS) parameter adaptation for system
identification and its application for safe control design.

In reality, however, the sensors used to collect data in pursuit of an accurate system model are
inherently noisy. Even with ideal sensors, imperfections present in real systems and perturbations
to the environment inject a level of randomness into the system dynamics. In many applications,
including robot navigation and autonomous vehicle control, it is reasonable to treat this random
noise as an additive, Brownian motion perturbation and thus to model the dynamical system as
a Stochastic Differential Equation (SDE). In leaving the deterministic modeling regime, how-
ever, it is no longer possible to certify that CBF-based control results in constraint satisfaction with
probability 1. Rather, there is now a non-zero risk of incurring constraint violations associated with
taking actions that in the deterministic regime guarantee constraint satisfaction. In theory, the prob-
ability of constraint violations ought to tend toward 1 as the system operating time tends toward
infinity, i.e., it is impossible to protect indefinitely against disturbances sampled from unbounded
probability distributions over infinite time. Therefore, beginning with [4] and the stochastic barrier
certificate, CBF development in the stochastic setting has leaned heavily on martingale theory for
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both discrete- and continuous-time stochastic processes to bound the probability that a given con-
straint is violated over a finite time interval. While useful in theory, these methods do not consider
the magnitude of the diffusion term in the SDE and therefore have been shown to lead to conserva-
tive behavior in practice. This motivates the study in this dissertation of a new class of risk-aware
CBFs that confer a more accurate bound on the risk that the system incurs constraint violations
over a finite time interval.

To this point, the discussion on CBF-based control design has operated on the assumption that
the CBF is valid, i.e. that the CBF condition is met at all times even under input constraints.
If that is not the case, then the CBF-QP control law will become infeasible and some other safe
control policy must be activated, i.e., the CBF-QP controller is no longer viable. Further, the
prior assertions on CBFs have held only for a single constraint function. Although for a single
candidate CBF there exist guarantees of validity under certain conditions, these results do not
generally extend to control systems seeking to satisfy multiple constraints simultaneously, and is
significantly more difficult in the presence of input constraints. For the viability of implementing
this class of controllers on real systems, this is a major deficiency. Some recent work has sought
to address this open problem by considering only the constraint closest incurring violations at any
given time, but this may introduce undesirable oscillatory behavior or chattering of the control
input, which may lead to the loss of uniqueness of solutions. If, however, it were possible to
consolidate the many constraint functions into one candidate CBF and subsequently verify it as
valid, then existing approaches to CBF-based control could be employed to satisfy all constraints
jointly in perpetuity. This motivates the study of constraint function weight adaptation for the
purpose of certifying a consolidated CBF as valid even under input constraints.

1.2 Problem Statements and Summary of Contributions

This dissertation addresses open problems in CBF-based control design for safety-critical systems
using parameter adaptation and predictions of future safety. In what follows, each sub-problem
considered herein is introduced and a summary of the solution proposed by this dissertation is
provided.

1.2.1 Safe, Predictive Control with Future-Focused CBFs

CBF-based controllers are known to introduce present-focused, myopic behavior at the system
level which may lead to dangerous future situations, loss of a viable control input, or sub-
optimality. To address this problem, Chapter 2 of this dissertation introduces a novel class of
Future-Focused Control Barrier Functions (FF-CBFs) (and a relaxed version thereof) for a form
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of computationally efficient, predictive control for safety-critical systems. The fundamental un-
derlying intuition is that systems seek minimum-effort control laws, e.g., an autonomous vehicle
would seek to minimize unnecessary acceleration and braking, and as such the FF-CBF seeks to
preserve safety of predicted zero-control trajectories over an arbitrarily long future time interval.
It is shown that safety is preserved under FF-CBF-based control with unlimited control authority
and perfect state measurements regardless of whether the predicted zero-control trajectories are
realized, such that it is a suitable policy for a collection of autonomous vehicles seeking to traverse
a busy intersection. The efficacy of the proposed approach is studied in the context of this intersec-
tion crossing problem for (car-like) autonomous vehicles, where it is observed that the new CBFs
decrease the occurrence of intersection deadlocks while preserving favorable safety and control
feasibility properties.

1.2.2 Fixed-Time System Identification for Safe Control

Belonging to a class of model-based approaches to safe control design, CBFs require the avail-
ability of an accurate system model in order to provide guarantees of safety. In the absence of
such a model, many existing works assume that a nominal system model is correct to within some
bounded error and use a robust control law assuming a worst-case effect of the model uncertainty
on system-level safety. This introduces conservatism in the control design, especially so when the
bound on the unknown disturbance grows very large. The work presented in Chapters 3 and 4
address this problem by identifying classes of model uncertainty within fixed-time.

In Chapter 3, two proposed FxTS parameter adaptation laws are introduced for identifying
unknown parameters appearing linearly in a class of unknown, nonlinear, control-affine systems.
More specifically, the parameter adaptation laws guarantee that model uncertainty represented by
an additive, parameter-affine perturbation is learned within fixed-time under the assumption that
the unknown parameters belong to a known polytope and perfect state measurements are available.
As a result, a robust, adaptive control framework is then proposed for safe control design at all
stages of the parameter adaptation process.

Chapter 4 relaxes the perfect measurement requirement from above by investigating the robust-
ness properties of one of the adaptation laws proposed in Chapter 3 to measurement noise and/or
time-varying parameters. New conditions on FxTS are derived to support the accompanying anal-
ysis. Then, a further generalization of the fixed-time system identification problem is studied in the
context of learning a bounded, additive, nonlinear perturbation to the system dynamics and using
a robust, adaptive CBF condition to preserve safety.

5



1.2.3 Risk-Aware Control of Stochastic, Safety-Critical Systems

In practice, random phenomena often perturb even a known system model in the form of, e.g.,
exogenous disturbances. When modelling such randomness by distributions with infinite support,
e.g., Gaussians, Poissons, etc., it is no longer possible to guarantee with 100% certainty that a
system will remain safe within an operating period, i.e., there is a non-zero chance that a random
perturbation will cause the system to exit the safe set. For systems modeled according to a class
of nonlinear, control-affine, SDEs it is therefore necessary to understand how control actions taken
affect the probability of the system becoming unsafe over a finite time interval. While existing
work has studied this problem, the resulting controllers tend to be extremely conservative.

As such, Chapter 5 of this dissertation introduces a novel class of Risk-Aware Control Bar-
rier Functions (RA-CBFs) for the control of nonlinear, control-affine, stochastic, safety-critical
systems with unlimited control authority and derives conditions under which, given perfect state
measurements, the resulting control actions are less conservative than the state-of-the-art. Bounds
are then derived for the probability that the system will become unsafe within a specified finite time
interval under the proposed control law, and an algorithm for further tightening the risk bound is
presented.

1.2.4 Safe Control under Multiple Spatiotemporal and Input Constraints

Two challenging open problems in CBF-based control design are verifying that a CBF candidate
is valid and synthesizing a viable control law in the presence of multiple CBF candidates, which
may represent a collection of spatiotemporal constraints, especially under limited control authority.
Chapter 6 of this dissertation seeks to jointly address both of these problems by introducing the no-
tion of a Consolidated Control Barrier Function (C-CBF), i.e., a function that synthesizes multiple
spatiotemporal constraint functions into one candidate CBF, and by rendering it valid for a class of
nonlinear, control-affine systems via online adaptation of its constituent functions’ weights. Given
that the work of Chapters 3 and 4 address the problem of nonlinear system identification, this work
assumes a perfectly known system model. Cases of unbounded and limited control authority are
considered separately, and it is shown that a class of CBF-QP control laws is guaranteed to be
feasible whenever the underlying adaptation-based optimization problem has a feasible solution.

In the following section, a survey of the literature is conducted in order to place the stated
contributions within a broader context.
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1.3 Literature Review

1.3.1 Safe Control and Motion Planning

1.3.1.1 Safety via Motion Planning

Motion planning and control design for safety-critical systems has become an active field of re-
search in recent years. Significant attention has been paid to the development of motion planning
algorithms belonging to classes of both sampling-based [5, 6, 7] and sample-free [8, 9] approaches.
Many sampling-based methods search over the state and action spaces (e.g., A∗ [10, 11], Rapidly-
exploring Random Tree (RRT) [12, 13]) in order to generate feasible, safe trajectories efficiently
online at the expense of scaling poorly with the state dimension and number of agents in the sys-
tem. A further known disadvantage to these methods is possibly slow convergence to optimality
dependent on the initial guess. Sample-free methods like MPC [14, 15] typically solve an optimal
control problem (or approximation thereof) in pursuit of the same goal. For nonlinear dynamical
systems, however, obtaining even locally optimal solutions may 1) be computationally burden-
some, 2) provide little robustness to disturbances or unmodelled phenomena, or 3) scale poorly,
similar to sampling-based methods. In practice, the use of these methods typically requires either
considering some simplified (i.e., linear) dynamics model and accounting for disturbances via en-
larging unsafe regions, or learning optimal policies offline [16, 17, 18]. Specific to MPC, a further
difficulty is in choosing control parameters, for example in cost function design or look-ahead hori-
zon, that guarantee certain desirable properties in the closed-loop system response. Thus, while
recent advances in numerical methods and available tools (e.g., CasADI [19]) have diminished the
disadvantages of these types of methods, tractability concerns and loss of guarantees due to prob-
lem simplifications often weaken the feasibility of these methods for use in online control, i.e., in
real-time applications.

1.3.1.2 Safety via Feedback Control

Due to these drawbacks, there has been an increased interest in the development of safe state-
feedback control policies, which typically may be computed very efficiently online. Recent ad-
vances along these lines include (i) Reference Governors (RGs) [20, 21], which rectify unsafe
reference signals fed into an existing closed-loop dynamical system, (ii) Control Contraction Met-
rics (CCMs), which imply the existence of a tracking controller capable of contracting the system
trajectories toward any reference [22, 23], (iii) CBFs [3, 24], which filter unsafe nominal control
inputs to ensure that system trajectories evolve within a particular set of states, and (iv) learned
policies (even relating to (i) [25], (ii) [26], or (iii) [27]). Methods from each of the above classes
have achieved favorable results both in theory and practice; however, none is a panacea. RGs

7



have succeeded in providing formal guarantees of safety [28], but preserving these guarantees for
systems with either dynamics or constraints that are nonlinear may require linearization and/or
polyhedral set approximation and thus introduce conservatism in the system’s emergent behavior
[29]. CCMs, though able to guarantee that system trajectories remain within some tube surround-
ing a reference trajectory even under uncertainty [30], typically still require a high-level planner
to generate such a safe reference. CBFs, unlike RGs, are straightforward to use for safe control of
classes of nonlinear systems subject to nonlinear constraints, even under perturbations [31, 32], but
synthesizing a valid CBF, i.e., one for which a derivative condition holds over the system trajec-
tories everywhere within a given set, is akin to synthesizing a valid (control) Lyapunov function.
It is a difficult problem. In fact, in each of the first three classes of methods (RGs, CCMs, and
CBFs) validity is both required to obtain the promised behavior and difficult to verify. Learned
control policies circumvent this challenge to some extent, i.e., the objective is to learn a policy
that meets the criteria for validity (for e.g., a RG [33], CCM [26], or CBF [34]); however, they
frequently require extensive offline training (e.g., from expert demonstration [27], reinforcement
learning [35], etc.) and thus generally both lack guarantees and suffer performance degradation
due to disturbances in real-time.

1.3.1.3 Safe Control with Control Barrier Functions

Despite these challenges, the recent arrival of CBFs has ushered in a new era in constrained, non-
linear control design. First appearing concurrently in [2] for deterministic systems and [4] for
stochastic systems, and popularized as an ingredient to QP-based control by [3], a valid CBF
serves as a formal certificate that system trajectories beginning within some set will evolve within
that set for all future time. In this way, a CBF may be used to certify that a set of safe states is
forward invariant, thereby guaranteeing safety. For classes of continuous-time, nonlinear, control-
affine dynamical systems the class of CBF-QP controllers behaves in a similar fashion to reference
governors in that they filter out nominally unsafe legacy inputs [36, 37, 24]; but CBFs overcome
challenges faced by using reference governors for classes of nonlinear systems with nonlinear state
constraints due to the CBF condition being affine in the control input. From a performance per-
spective, one deficiency in CBF-based control is the tendency to consider safety only in the present,
possibly to the detriment of future liveness. In this sense, they work similarly in practice to artifi-
cial potential fields (APFs) [38, 39], which administer repulsive forces to obstacles and attractive
forces to goal regions by modifying some desired or nominal action only when neglecting to do so
is deemed unsafe. Many works have referred to this emergent behavior as myopic, and the same is
done in this dissertation. Unfortunately, myopic tendencies may cause problems with the existence
of a feasible input [40], convergence to an undesirable equilibrium [41], or sub-optimal behav-
ior. Many authors have sought to improve the pointwise feasibility of the CBF-QP controller by
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e.g., solving a (penalized) optimal control problem via approximate dynamic programming [42],
adapting the class K parameter in the CBF condition [43, 44], or by adding additional feasibil-
ity constraints that further restrict the admissible control space in the QP [45, 46]. Solutions to
avoiding undesirable equilibria include rotating Control Lyapunov Function (CLF) level sets [47],
or using auxiliary control inputs activated when falling toward such equilibria [41, 48]. Ensuring
optimality (in whatever sense) of the trajectories resulting from a CBF-QP controller, however,
is difficult without the use of predictive control. For this reason, various works have investigated
how to incorporate CBF constraints into MPC controllers [49, 50, 51], though as noted previously
for real-time applications these methods may require modifications that invalidate the formal guar-
antees provided by CBF methods. Recent studies have sought to circumvent this limitation with
multi-rate controllers, which synthesize simplified high-level MPC planners with low-level CBF
controllers [52, 53]. While often usable for single-agent systems, the demands of re-planning may
diminish the efficacy of these approaches in the context of multi-agent systems. The work in this
dissertation addresses the problem of computationally efficient, future-focused (i.e., predictive)
control for safety-critical multi-agent systems under both centralized and decentralized control
architectures.

1.3.2 Safety under Uncertainty: Deterministic Setting

1.3.2.1 Robustly Safe Control Design under Model Uncertainty

Model-based tools for constrained, nonlinear control design, of which CBFs are one, rely on the
availability of an accurate system model. In the absence of such a model, the field of robust non-
linear control offers protection against classes of bounded disturbances. Traditional approaches to
robust control include backstepping [54, 55], feedback linearization [56, 57], and sliding mode con-
trol [58, 59], and have been shown to achieve success in such applications as quadrotor waypoint
tracking [54] and bi-pedal robots [59], among others. What these methods typically lack, however,
is any consideration of the notion of safety in the control framework. Recently, various so-called
safety-embedded control techniques have been proposed to address this problem, e.g., the addi-
tion of barrier functions in backstepping control design [60, 61] or by augmenting the closed-loop
system with barrier states [62, 63] and using stabilizing controllers (like pole-placement). Unfor-
tunately, finding acceptable control parameters for these methods may require solving nonlinear
optimization problems (as in [60]) and the inclusion of barrier states may lead to loss of system
controllability [62]. Additional recent work derives a safe sliding mode controller for a generic
class of systems with both matched and unmatched uncertainty [64], but uses CBFs explicitly in
the design of a transient time function (i.e., for control prior to reaching the sliding manifold).
In contrast, various works began investigating the robustness properties of CBFs for deterministic
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systems shortly after their introduction to the literature. First, it was shown in [65] for systems with
(sufficiently small) bounded, additive perturbations to the dynamics that (small) constraint viola-
tions may be incurred; this notion of input-to-state safety was given a more rigorous treatment in
[66, 67], whereas the Robust Control Barrier Function (R-CBF) was introduced in [31] to preserve
constraint set invariance in the presence of a broader class of additive, non-vanishing disturbances.
In the interim, R-CBFs have been used in control design to protect against bounded measurement
noise [68], state estimation error [69], and unknown actions taken by multi-agent systems [70],
among other applications (see e.g., [71, 72, 73, 74]).

A major practical limitation to this class of robust controllers is that they become highly con-
servative as the known (or assumed) disturbance bound grows: predicated on the assumption that
a worst-case perturbation acts on the system at all times, R-CBFs and the aforementioned robust
control techniques require actions that guarantee protection against such a disturbance even when
the true system disturbance may be very small or even assist the closed-loop response. In the con-
text of CBF methods, the authors of [32] introduced the Adaptive Control Barrier Function (aCBF)
to relax this worst-case consideration away from the boundary of the constraint set for a class of
additive, parameter-affine perturbations to the system dynamics. Due to assumptions on the com-
pactness and convexity of the admissible parameter set, it turns out that the aCBF condition is
equivalent to the R-CBF condition on the boundary of the constraint set, and is a relaxation thereof
over the interior. Other proposed approaches to relaxing R-CBFs in this way include tunable CBFs
[67], though it is worth noting that these works adapt the safety condition purely on the basis of
proximity to the barrier of the safe set, and notably not according to updated information regarding
the system model as do techniques in the fields of adaptive and machine learning-based control. For
safety-critical applications, various works in model reference adaptive control adapt parameters in
response to disturbances in real-time to track the trajectories of some nominal reference model
[75, 76], but require that safety is encoded in the planning stage (e.g., via trajectory tubes [77]).
Traditional adaptive controllers refer to safety in the context of preventing transient instability [78],
and as a result the line between adaptive and learning-based approaches to safe control has become
blurred in recent years, with many works using machine learning algorithms such as Bayesian op-
timization [79, 80], Gaussian processes [81, 82], etc. or so-called neuro-adaptive schemes [83, 84]
to recover representations of unmodelled dynamics. For example, in [85], the authors use a neuro-
adaptive scheme for updating the weights of a feedforward Neural Network (NN) modelling the
system disturbance. These methods typically lack guarantees on estimation error bounds, how-
ever, unlike other classes of set-membership methods, e.g., [86] in which the authors proposed a
data-driven set-membership identification algorithm for tightening an admissible set for unknown
parameters and more accurately estimating the system disturbance. These works inspired a variety
in the vein of so-called robust, adaptive CBF control, i.e. methods that both adapt to estimated
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perturbations to the system while remaining robust to estimation error (see e.g., [87, 88, 89, 90]).

1.3.2.2 Reducing Model Uncertainty via Nonlinear System Identification

Owing to the complexity and richness of behavior exhibited by nonlinear systems, e.g., multi-
ple equilibria, finite escape-time, chaos, etc., the field of nonlinear system identification is vast.
Optimization-based methods seek a locally (e.g., nonlinear least-squares regression [91, 92], se-
quential quadratic programming [93, 94], etc.) or globally (e.g., genetic algorithms [95, 96], par-
ticle swarm [97, 98], etc.) optimal parametric representation of the system model. Convergence
to a global optimum is typically very slow, however, and locally optimal solutions may be insuf-
ficiently descriptive for use in control design. Other methods include frequency-domain methods
like Volterra series [99], i.e., the nonlinear analog to the convolutional description of linear systems,
though the number of free parameters tends to be very large, and statistical methods like Markov
chain Monte Carlo [100, 101] and particle filters [102, 103], though these tend to necessitate many
offline simulations of the system of interest. Moreover, the above approaches may struggle if the
choice of candidate models is poorly parameterized [104]; therefore, many works rely on ”black-
box” methods for generating a representation of the system, the most popular class of which is
(deep) learning [105, 106, 107, 108]. As powerful function approximators, deep learning methods
have demonstrated potential for identifying complex dynamical systems like rotorcraft [109, 110],
ocean currents [111, 112], financial markets [113, 114], etc. In practice, however, the identifica-
tion process for all of the above methods is computationally intensive due to some combination
of number of free parameters (e.g., NVIDIA language model uses >8 billion parameters), time to
solve optimization problem, and amount of required data, all of which make these approaches to
nonlinear system identification unfit for online control synthesis.

Unknown linear systems, i.e., systems for which unknown parameters appear linearly in the
system dynamics, are much easier to identify. Classes of batch estimators, like least-squares, and
recursive parameter estimation laws (see e.g., [115, 116, 117]) have both been shown to perform
well even under noisy measurements. For these classes of methods, it is well-known that parameter
estimates are guaranteed to converge to the true parameters (or neighborhood thereof) as either the
number of samples or time tends toward infinity. In recent years, developments in Koopman oper-
ator theory (KOT) have demonstrated that related linear identification schemes may in some cases
be applied to identify unknown nonlinear systems. The semigroup of Koopman operators describes
the evolution of scalar output functions of the nonlinear system of interest, frequently called ob-

servables, in an analogous, infinite-dimensional, and importantly linear (Banach) space. In theory,
the main idea is that knowing the Koopman operator in the space of observables allows for the ex-
act reconstruction of the dynamics of the original nonlinear system. As such, much attention of late
has been paid to data-driven methods for constructing a finite-dimensional matrix representation
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of the infinite-dimensional Koopman operator. Extended dynamic mode decomposition (EDMD),
first introduced in [118], has emerged as a valuable tool for carrying out such an approximation
[119, 120, 121, 122, 123, 124], etc. Intuitively, EDMD computes a finite-dimensional Koop-
man matrix algorithmically by lifting input/output measurements to the space of observables via
user-specified basis functions and then computing the matrix using batched least-squares. While
first introduced for Koopman-based identification specifically for discrete-time dynamical systems,
EDMD has also successfully been used to learn a matrix representation of the Koopman generator1

[122, 123], i.e., the operator describing the evolution of observables for continuous-time systems.
It has been shown by various works (e.g., [125, 126]) that learning the Koopman matrix via EDMD
leads to exact reconstruction of the Koopman operator as the number of samples tends to infinity,
and error bounds have been derived with respect to finite-data [127, 128]; however, these results re-
quire the assumption that data is either independently, identically distributed or ergodic in nature.
In its absence, these methods lack formal guarantees regarding approximation error bounds and
thus may be detrimental to safe control design. As such, while studies have demonstrated the use
of Koopman-based system identification in a variety of control applications including soft robotics
[119, 121], motor control [129], and quadrotors [130], to this point the existing literature has not
used Koopman-based system identification for control of safety-critical systems. Further reviews
of KOT for control may be found in [131, 132].

While EDMD uses least-squares regression to compute an approximation of the Koopman
matrix (or generator), some recent work has investigated the use of recursive parameter estima-
tion schemes for Koopman-based nonlinear system identification [133]. But whereas this and
other works in linear parameter estimation guarantee asymptotic or exponential convergence to the
Koopman matrix, the notions of Finite-Time Stability (FTS) and FxTS are stronger in the sense
that they guarantee convergence to an equilibrium point within a finite time. In addition to faster
rates of convergence, it has been shown by [134] and [135] that systems perturbed by additive, van-
ishing disturbances maintain the FTS and FxTS properties of the equilibrium of the unperturbed
system, and that under additive, bounded disturbances the system trajectories converge to a smaller
neighborhood of the equilibrium than if the original equilibrium were asymptotically or exponen-
tially stable. In addition to the above properties, the finite settling time for a FxTS equilibrium is
uniformly bounded for all initial conditions, which makes it an attractive candidate for study in the
context of system identification for safe control design. This dissertation addresses the problem
of safe control for unknown, nonlinear, control-affine dynamical systems using Fixed-Time (FxT)
parameter adaptation laws to identify 1) a class of additive, parameter-affine perturbations to the
system and 2) a more generic class of additive, bounded, but possibly nonlinear perturbations, i.e.

1The Koopman operator is to the Koopman generator as the state-transition matrix eAt is to the matrix A for
continuous-time linear systems of the form ẋ = Ax.
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to identify classes of additive disturbances to the system within fixed-time.

1.3.3 Safety under Uncertainty: Probabilistic Setting

It is reasonable to question the practical relevance of approaches to system identification predi-
cated on the assumption that available output measurements are noise-free. The value in this line
of work, however, lies in the ability to further analyze such results under conditions related to the
quality of measurements. Many studies consider the effect of parameter estimation schemes un-
der an assumed bounded perturbation (e.g., [115]); however, sensor noise may be more accurately
modeled as a random signal [136]. As such, significant attention has been paid to the use of Gaus-
sian processes (GPs), a tool by which unknown dynamics may be represented as a distribution
over random functions, for learning in safe control via reachability-based methods [137], online
parameter tuning [138], Lyapunov methods [139], and CBFs [140]. The goal is to learn a distri-
butional representation of the unknown system model such that safety may be certified with some
probability p, an objective that theoretically plays well with CBF-based approaches to control de-
sign. As such, a wide variety of work has studied the problem of synthesizing a probabilistically
safe control law using GPs and CBFs [141, 142, 143, 144], etc. The misconception, however, is
that safety may be guaranteed with probability p by learning a GP model of the system dynamics
and using that model for CBF-based control design. Instead, the result is a CBF constraint that is
guaranteed to hold pointwise-in-time with probability p, which does not certify safety with proba-
bility p over any measurable time interval. Methods of this form have been proposed in a number
of works under different names, e.g., probabilistic CBFs [145, 146], chance-constrained CBFs
[147, 148], among others, though to-date in the survey of works no study has derived a relation
between instantaneous safety and safety over some operating time. Similar to chance-constrained
CBF methods are so-called risk-aware controllers. Of late, a particular focus has been using the
notion of Conditional Value-at-Risk, a coherent risk measure, in control design [149, 150]. These
approaches seek to encode that the controller protects against the mean of some specified fraction
of the tail of worst-case outcomes in a given distribution, and have been proposed for planning
[151, 152, 153] in addition to control, though typically lack guarantees of safety over time like
their probabilistic CBF relatives.

Stochastic system theory, in contrast, is specifically amenable to this form of analysis, i.e.,
safety over a finite time interval. Traditional models of SDEs take the form of a difference equation,
necessitated by non-differentiability of the class of additive, random processes (namely, Brownian
motion) perturbing the nominal (ordinary differential equation) system model. Beginning with the
introduction of the stochastic barrier certificate by [4], which formulated an affine condition pred-
icated on the notion of the barrier function as a stochastic martingale, a major focus in control for
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stochastic safety-critical systems in recent years has been barrier function based methods. The no-
tion of the Stochastic Control Barrier Function (S-CBF), the effect of which was shown to bound
the probability of the system becoming unsafe within a specified finite time, was first introduced
by [154]. Several works have advanced S-CBF theory since then, in particular [155] for adapting
the failure probability on the fly and further robustifying the method under measurement noise via
Kalman filtering in [156], and in [157] for constraints with higher relative-degree; however, it has
been shown that the probability of preserving safety decays exponentially with the length of the
time interval and that the conditions are often restrictive in practice [158]. In [159] this problem is
addressed via reciprocal and zeroing CBFs for stochastic systems with claims of safety with prob-
ability one over infinite time intervals, though the required level of conservatism is unclear despite
assumed access to unbounded control authority. Other works address this problem of conservatism
by sampling predicted trajectories of a SDE for use in MPC [160], but lose the theoretical guaran-
tees of probabilistic safety over time in doing so. This dissertation studies the problem of reducing
conservatism in risk-aware control design for stochastic safety-critical systems, i.e., how to design
a state-feedback controller such that the probability that the system becomes unsafe over a finite
time interval is bounded, and bounded less conservatively than in existing methods.

1.3.4 Verification in Safe Control

A challenging remaining problem in online control synthesis for safety-critical systems is the one
concerning verification, i.e., does the specified control law guarantee safety given the system under
consideration, which may be subject to unknown perturbations or actuation limits. Various meth-
ods treat the problem in an offline setting by, for example, computing robustly controlled invariant
sets via linear matrix inequalities [161, 162, 163], sum-of-squares programming [164, 165], etc., or
by generating controllers for which the forward-reachable set remains safe using Hamilton-Jacobi
analysis [166, 167]. In general, computational demands necessitate that these methods are applied
offline. Even if somehow Moore’s law were to persist and advancements in computing power were
able to support the online implementation of such approaches, in practice controlled invariant sets
are typically under-approximated and forward-reachable sets are over-approximated, and thus the
above methods introduce conservatism.

Similar to guarantees of stability and convergence conferred by control Lyapunov functions, re-
sults for CBFs on certified controlled set invariance only hold if the function is shown to be valid,
i.e., if a condition on the rate of change of the CBF over the trajectories of the system dynamics
holds everywhere in the safe set. For systems with unbounded control authority subject to one state
constraint, the authors of [3] show that the CBF-QP control law is guaranteed to preserve safety;
however, generally the certification of candidate CBFs as valid is a challenging problem compli-
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cated by the presence of input constraints. This is addressed for high-order CBFs constructively in
[168] and through parameter adaptation in [169], but the results break down with the addition of
even a second state constraint. This is a problem that has only undergone consideration in the re-
cent past, during which time proposed solutions have mainly skirted the underlying issue either by
assuming that only one constraint is relevant at once [170], or by synthesizing switching functions
to address the most dangerous constraint [171, 172]. These non-smooth approaches may induce
undesirable oscillatory system behavior or violate regularity conditions required for existence and
uniqueness of solutions.

It has been proposed by several works (e.g., [173, 174]) that one constraint function be syn-
thesized smoothly from the arbitrarily many under consideration by the system. This is done, for
example, in [173] by smoothly approximating the minimum of all CBF candidate functions with
a log-sum of exponentials. The advantage is then that the existing CBF-QP controller could be
used to enforce safety. Thus far, however, the above works have made no attempt to validate their
unified CBF as valid, and therefore it is unknown whether forward invariance is ensured. For
validation, sum-of-squares programming has been used to verify CBFs for a class of polynomial
systems in [175, 176], whereas similar methods were used to achieve this objective with linear
programming in [177]. What remains challenging with those methods, however, is in finding a
suitable CBF if the proposed function fails the verification. In contrast, other solutions propose the
offline learning of valid CBFs [27] or policies directly [178, 179]. What is problematic about these
offline approaches, however, is that any guarantees may be rendered invalid for systems deployed
in dynamic, uncertain, or simply different environments. This dissertation studies the problem of
synthesizing a valid CBF from arbitrarily many constraint functions and certifying it as such via
parameter adaptation online despite the presence of input constraints.

1.4 Outline

In what follows, an outline of the remaining chapters is provided along with a brief overview of
the contributions made therein.

• Chapter 2 introduces future-focused CBFs for predictive control of safety-critical systems.
The results in this chapter are based on the work in [180].

• Chapter 3 presents two FxTS parameter adaptation laws for identification and safe control of
nonlinear, control-affine systems subject to a class of additive, parameter-affine disturbances.
The results in this chapter are based partially on the work in [181, 182].

• Chapter 4 analyzes the robustness of results in Chapter 3 and proposes a Koopman-based
parameter adaptation law for fixed-time identification of a more generic class of additive,
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nonlinear disturbances. The results in this chapter are based partially on the work in [182,
183].

• Chapter 5 introduces risk-aware CBFs for probabilistic safety via control for stochastic sys-
tems. The results in this chapter are based on the work in [184].

• Chapter 6 introduces a consolidated CBF-based adaptive control framework for control of
nonlinear, control-affine systems subject to multiple spatiotemporal and input constraints.
The results in this chapter are based on the work in [185, 186].

To conclude, Chapter 7 summarizes the above contributions and closes with remarks on future
research directions.

1.5 Additional Notation

In the remainder, scalar quantities and functions will be denoted as lower-case variables (e.g. scalar
a ∈ R, function f : R → R), vectors as bold lower-case variables (e.g. v ∈ Rn), and matrices as
bold upper-case variables (e.g. M ∈ Rm×n).
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CHAPTER 2

Future-Focused Control Barrier Functions

In this chapter, the problem of control design for the simultaneous safety of both present and
predicted future state trajectories is considered for a collection of autonomous vehicles described
by a (car-like) dynamic bicycle model. Motivated by the tendency of existing methods for online
safe control design to rectify desired control actions only when deemed to infringe upon present

safety, a class of Future-Focused Control Barrier Functions (FF-CBFs) is introduced to reorient the
notion of safety to account for future constraint violations predicted under a zero-control policy
acting over an arbitrarily large future time interval. Supported by the popularity of minimum-norm
control laws (e.g., [187]), the predicted zero-control policy is founded on the assumption that
vehicles seek to minimize unnecessary acceleration in their control design. Notably, however, it is
shown that safety of the actual system trajectories is preserved under the effect of FF-CBF-based
control even when the predictions on how the future states will evolve do not come true.

After reviewing preliminaries and defining the problem in Section 2.1, an unsignaled au-
tonomous vehicle intersection crossing problem is introduced to motivate the class of FF-CBFs
proposed in Section 2.2. It is shown how, in the case where all vehicles seek to proceed straight
through the intersection, the FF-CBF admits an analytical solution to the minimum predicted fu-
ture inter-vehicle distance and may thus be synthesized in a computationally efficient FF-CBF-
Quadratic Program (QP)-based control law for online predictive control. For the more general
case where vehicles may be turning, an optimization framework is proposed for identifying the
predicted minimum distance. Taking into account that the FF-CBF defines a virtual barrier in the
sense that violations do not imply that a collision has occurred (or is inevitable in the future),
a Relaxed Future-Focused Control Barrier Function (RFF-CBF) is then proposed to permit such
violations away from the physical barrier between vehicles and, in doing so, to ease the feasibil-
ity burden of the proposed QP control law. A set of comparative numerical trials is undertaken
for the unsignaled intersection crossing problem in Section 2.3, in which the success of the pro-
posed FF-CBF and RFF-CBF control laws are contrasted with limitations of an existing method.
A hardware experiment is then used to demonstrate the use of a RFF-CBF controller in a real-time
application. The results of this chapter are based on [180]. The author wishes to acknowledge the
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contributions of co-authors Dr. Mrdjan Jankovic and Abhishek Sharma to the development of the
ensuing work.

2.1 Mathematical Preliminaries

2.1.1 System Model

Under consideration in this chapter is a collection of agents, A, each of whose dynamics is gov-
erned by the following class of nonlinear, control-affine systems

ẋi = fi(xi(t)) + gi(xi(t))ui(t), xi(0) = xi0, (2.1)

where xi ∈ Rn and ui ∈ Ui ⊂ Rm denote the state and control vectors respectively for agent
i ∈ A, and where fi : Rn → Rn and gi : Rn → Rn×m are locally Lipschitz in their arguments and
not necessarily homogeneous across agents. The set Ui denotes the set of admissible control inputs,
often referred to as the input constraint set. It is further assumed that A has cardinality p > 1, i.e.,
that there are p agents in the system. A subset of agents Ac ⊆ A is assumed to be communicating
in that they share information (e.g., control inputs) and thus may use centralized control laws
computed by a common node. The remaining agents An = A \ Ac are non-communicating and
must resort to decentralized control laws.

2.1.2 Set Invariance with Control Barrier Functions (CBFs)

Consider a continuously differentiable constraint function hi : Rn → R, and assume that its zero
super-level set is known to be the set of safe states, denoted by Si. For example, if the function hi
encodes collision avoidance with respect to a given obstacle then the set Si is the set of collision-
free states for that obstacle. The set Si is defined as

Si = {x ∈ Rn | hi(xi) ≥ 0}, (2.2a)

int(Si) = {x ∈ Rn | hi(xi) > 0}, (2.2b)

∂Si = {x ∈ Rn | hi(xi) = 0}. (2.2c)

The notions of safety and forward invariance are used interchangeably throughout this chapter,
and thus the latter is defined as follows.

Definition 2.1 (Forward-Invariant Set). A set Si is forward invariant if the trajectories of (2.1)
evolve within Si at all times, i.e., if xi(0) ∈ Si =⇒ xi(t) ∈ Si. ∀t ≥ 0.
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The following constitutes a necessary and sufficient condition for forward invariance of a set
[188].

Lemma 2.1 (Nagumo’s Theorem). Suppose that there exists ui ∈ Ui such that (2.1) admits a

globally unique solution for each xi(0) ∈ Si, and that ∂hi
∂xi

̸= 0, ∀xi ∈ ∂Si. Then, the set Si is

forward invariant for the controlled system (2.1) if and only if

Lfihi(xi) + Lgihi(xi)ui ≥ 0, ∀xi ∈ ∂Si. (2.3)

The condition (2.3) states that the time-derivative of the function hi over the trajectories of
(2.1) must be non-negative on the boundary of the set Si. With hi then non-decreasing whenever
xi ∈ ∂Si, it will always hold that hi(xi) ≥ 0 and thus the set Si is forward invariant. One way
to render a set forward invariant is to use CBFs in the control design. Before formally introducing
the notion of a CBF, the following definition is required.

Definition 2.2 (Extended Class K∞ Function). A function α : R → R belongs to extended class

K∞ if α(0) = 0 and α is strictly increasing over (−∞,∞).

Definition 2.3 (Control Barrier Function (CBF)). Given a set Si ⊂ Rn defined by (2.2) for a

continuously differentiable function hi : Rn → R, the function hi is a control barrier function
defined on a set Di, where Si ⊆ Di ⊂ Rn, if there exists a Lipschitz continuous extended class K∞

function α such that

sup
ui∈Ui

[
Lfihi(xi) + Lgihi(xi)ui

]
≥ −α(hi(xi)), ∀xi ∈ Di. (2.4)

It is evident that (2.4) reduces to (2.3) when xi ∈ ∂Si, thus if hi(x(0)) ≥ 0 and hi is a CBF
on Di then Si can be rendered forward invariant. Note that the CBF is defined over a larger set
Di to encode asymptotic convergence of the set Si if ever the trajectories of (2.1) were to leave Si.
Due to (2.4) being affine in the control input, many works include CBF conditions (2.4) as linear
constraints in a quadratic program (QP) based control law [3, 189], etc. When agents in the system
are cooperative and communicating, a centralized controller may be deployed as follows

u∗ = argmin
u∈U

1

2
∥u− u0∥2 (2.5a)

s.t. ∀i, j = 1, . . . , p, i ̸= j

ϕi + γiui ≥ 0, (2.5b)

ϕij + γiju ≥ 0, (2.5c)
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where u = [u1, . . . ,up]
⊤ and u0 = [u0

1, . . . ,u
0
p]

⊤ denote concatenations of the input and nominal
input vectors respectively, and

ϕi = Lfihi(xi) + αi(hi(xi)), (2.6a)

ϕij = Lfihij(xi,xj) + Lfjhij(xi,xj) + αij(hij(xi,xj)), (2.6b)

γi = Lgihi(xi), (2.6c)

γij = [Lg1hij(xi,xj) . . . Lgphij(xi,xj)], (2.6d)

where each αi, αij ∈ K∞ such that (2.5b) represents an agent-specific constraint (e.g., speed limit)
and (2.5c) represents an inter-agent constraint (e.g., collision avoidance). Note that γij is a row
vector of all zeros except indices i and j, denoted γij,[i] and γij,[j] respectively. If the agents are
non-communicating, however, then a decentralized control law of the following form may be used:

u∗
i = argmin

ui∈Ui

1

2
∥ui − u0

i ∥2 (2.7a)

s.t. ∀j = 1, . . . , p, i ̸= j

ϕi + γiui ≥ 0, (2.7b)

ϕij + γij,[i]ui ≥ 0, (2.7c)

where (2.7b) and (2.7c) represent agent-specific and inter-agent constraints similar to (2.5b) and
(2.5c). As noted by [190], collision avoidance is guaranteed under the centralized control scheme
(2.5) whenever it is feasible, unlike the decentralized controller (2.7) under which (for a generic
CBF hij) no such guarantee exists even when used uniformly by all agents. In Section 2.3, forms
of (2.5) and (2.7) are used to solve versions of the intersection crossing problem outlined in Section
2.1.3.

2.1.3 Problem Formulation

Let F be an inertial frame with a point s0 denoting its origin. Consider a collection of vehicles
A approaching an unsignaled four-way intersection, where the dynamics of the ith vehicle are

20



modeled as

ẋi = vi (cosψi − sinψi tan βi) , (2.8a)

ẏi = vi (sinψi + cosψi tan βi) , (2.8b)

ψ̇i =
vi
lr
tan βi, (2.8c)

β̇i = ωi, (2.8d)

v̇i = ai, (2.8e)

where xi and yi denote the position of the center of gravity (c.g.) of the vehicle with respect to
s0, ψi is the orientation of the body-fixed frame, Bi, with respect to F , βi is the slip angle1 of
the vehicle c.g. relative to Bi (we assume |βi| < π

2
), and vi is the velocity of the rear wheel with

respect to F . The state of vehicle i is denoted by zi = [xi yi ψi βi vi]
⊤, and the full state is

z = [z1 . . . zp]
⊤. The control input of the ith vehicle is ui = [ωi ai]

⊤, where ai is the linear
acceleration of the rear wheel and ωi the angular velocity of the slip angle, βi, which is related to
the steering angle, δi, via tan βi = lr

lr+lf
tan δi, where lf + lr is the wheelbase with lf (resp. lr) the

distance from the c.g. to the center of the front (resp. rear) wheel. The model, depicted in Figure
2.1, is a dynamic extension of the kinematic bicycle model described in [191, Chapter 2], and is
often used for autonomous vehicles [192].

For safety, consider that each vehicle must 1) obey the road speed limit and drive only in the
forward direction, 2) remain inside the road boundaries, and 3) avoid collisions with all vehicles.
The satisfaction of requirement 2) can be handled via nominal design of ωi, whereas 1) and 3) may
be encoded with the following candidate CBFs:

hs,i(zi) = (vmax − vr,i)(vr,i), (2.9)

h0,ij(zi, zj) = (xi − xj)
2 + (yi − yj)

2 − (2R)2, (2.10)

where vmax denotes the speed limit (in m/s) and R is a safe radius in m. Note that (2.10) is widely
used in the literature to encode collision avoidance [193, 190]. Thus, hs,i and h0,ij define the
following sets at time t:

Ss,i(t) = {zi(t) ∈ R5 : hs,i(zi(t)) ≥ 0},
S0,ij(t) = {(zi(t), zj(t)) ∈ R5×R5 : h0,ij(zi(t), zj(t)) ≥ 0},

1The slip angle is the angle between the velocity vector associated with a point in a frame and the orientation of
the frame.

21



X

Y

(x,y)

v

vr

lf

lr

Figure 2.1: Diagram of bicycle model described in (2.8).

the intersection of which constitutes the safe set for a given vehicle, i.e.

Si(t) = {Ss,i(t) ∩ S0,i(t)}, (2.11)

where S0,i(t) =
N⋂

j=1,j ̸=i
S0,ij(t).

Before the problem under consideration can be formally introduced, it must be pointed out that
the dynamics (2.8) under some predicted control policy ûi may be expressed as

˙̂zi = fi(ẑi(τ)) + gi(ẑi(τ))ûi, ẑi(t0) = zi(t0), (2.12)

where ẑi ∈ Rn denotes the state predicted under the policy ûi, t0 is the beginning of the prediction
interval T (t0) = [t0, t0+τ̄ ] with look-ahead time 0 < τ̄ <∞, and τ ∈ T (t0). At any time instance,
the predicted dynamics (2.12) may be propagated forward in time to determine the predicted state
ẑi(τ) at some future time τ ∈ T (t0). Motivated by the popularity of minimum-norm controllers
(e.g., [187]), in this chapter the predicted control policy ûi is taken to be the zero-control policy,
defined as ûi ≜ [ω̂i âi]

⊤ = [0 0] ⊤.

Assumption 2.1 (Collision-Free Initial Predicted Trajectories). For all vehicles i ∈ A with
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dynamics governed by (2.8), assume that the predicted closed-loop trajectories of (2.12) under the

zero-control policy ûi beginning at t0 = 0 are safe over the interval τ ∈ [0, τ̄ ], i.e. ẑi(τ) ∈ Si(τ)
for all τ ∈ [0, τ̄ ], ∀i ∈ A.

Assumption 2.1 states that no collisions shall occur between vehicles traveling with constant
velocity within a time τ̄ of the initial time instant, i.e. no vehicles are on a collision course at the
outset. The following remark highlights how this may be restrictive, and thus serves as one of the
motivating factors behind the RFF-CBF introduced in Section 2.2.4.

Remark 2.1. The look-ahead time τ̄ directly influences the set of allowable initial conditions, and

vice versa: given τ̄ , the set of allowable initial conditions is restricted to Z0(τ̄) = {z ∈ Rpn :

F (z, τ̄) ≥ 0}, where F : Rpn×R≥0 → R is negative if vehicles are predicted to collide under

ûi and non-negative otherwise. On the other hand, given the set of initial states Z0, the allowable

values of τ̄ are those for which no collisions occur under ûi over the initial time interval [0, τ̄ ].

The problem under consideration in this chapter is now introduced.

Problem 2.1. Consider a set of vehicles (i ∈ A) whose dynamics are described by (2.8). Given

Assumption 2.1, design a control law, u∗
i (t) = [ω∗

i (t) a
∗
i (t)]

⊤, such that, ∀i ∈ A,

1. the closed-loop trajectories of (2.8) remain safe for all time (zi(t) ∈ Si(t), ∀t ≥ 0), and

2. at every time t ≥ 0 the closed-loop trajectories of (2.12) over the interval τ ∈ [t, t + τ̄ ]

remain safe under the zero-control policy ûi, i.e. ẑi(τ) ∈ Si(τ), ∀τ ∈ [t, t + τ̄ ], ∀t ≥ 0

under ûi(τ).

The second element of Problem 2.1 requires that the trajectories of (2.12), i.e., the trajectories
of (2.1) under the zero-control control policy ûi, remain safe for all time. In the following section,
a function that serves as a facet of the proposed solution to Problem 2.1 is introduced: a FF-CBF
suitable for QP-based controllers.

2.2 Future-Focused Control Barrier Functions

Recall the nominal CBF for inter-agent safety given by (2.10), and note that for two agents i and j
it may be rewritten as

h0,ij(zi, zj) = D2
ij(zi, zj)− (2R)2, (2.13)
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where Dij(zi, zj) =
√

(xi − xj)2 + (yi − yj)2 defines the distance between two agents in the XY
plane. Let the differential inter-agent position, ξij , velocity, νij , and acceleration, αij , vectors be

ξij = [ξx,ij, ξy,ij]
⊤ = [xi − xj, yi − yj]

⊤,

νij = [νx,ij, νy,ij]
⊤ = [ẋi − ẋj, ẏi − ẏj]

⊤,

αij = [αx,ij, αy,ij]
⊤ = [ẍi − ẍj, ÿi − ÿj]

⊤,

where the argument t has been omitted for conciseness. In what follows, the subscript ij is also
dropped fromD, ξ, ν, and α. The critical observation is that the inter-agent distance at any arbitrary
time, T , isD(zi(T ), zj(T )) = ∥ξ(T )∥. In what follows, forms of the minimum value for the inter-
agent distance are given for two different cases under the zero-control control policy ûi: in Section
2.2.1, the case where all agents have a zero slip angle (and thus are not turning) is studied, i.e.,
for βi = 0, ∀i ∈ A, and in Section 2.2.2 the case where one or more agents may be turning is
considered, i.e., for when ∃i ∈ A such that βi ̸= 0.

2.2.1 Zero Slip-Angle: No Turning Agents

For the case where βi = 0, ∀i ∈ A, under the zero-control control policy ûi all agents have zero
acceleration in the XY plane (i.e., ẍi = ÿi = ẍj = ÿj = 0). As such, a linear model predicts the
following at time T = t + τ : ξ(t + τ) = ξ(t) + ν(t)τ . Under such circumstances, the predicted
distance at a time of t+ τ is

D
(
ẑi(t+ τ), ẑj(t+ τ)

)
=
√
ξ2x + ξ2y + 2τ(ξxνx + ξyνy) + τ 2(ν2x + ν2y).

As such, the minimum predicted future distance between agents under the zero-control policy may
be defined as

D
(
ẑi(t+ τ ∗), ẑj(t+ τ ∗)

)
= ∥ξ(t) + ν(t)τ ∗∥, (2.14)

where
τ ∗ = argmin

τ∈R
D2
(
ẑi(t+ τ), ẑj(t+ τ)

)
= −ξxνx + ξyνy

ν2x + ν2y
. (2.15)

2.2.2 Non-Zero Slip-Angle: Turning Agents

In this section, the case where ∃i ∈ A such that βi ̸= 0 is addressed. It is worth noting that while
the simulation results presented in Section 2.3 do not use controllers derived using the method
presented in this section, it is provided nevertheless for completeness. In this case, all agents i
with βi ̸= 0 have non-zero acceleration in the XY plane even under the zero-control control policy
ûi (i.e., ẍi ̸= 0, ÿi ̸= 0). Additionally, the linear model used for future state prediction in the
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prior scenario is no longer accurate due to the constant rate of (2.8c) under the zero-control policy.
As such, a nonlinear model is required to predict the minimum inter-agent distance D∗ at time
T = t+ τ :

D∗(ẑi(t+ τ ∗), ẑj(t+ τ ∗)) =

∥∥∥∥ξ(t) + ν(t)τ ∗ + ∫ τ∗

0

α(s)ds

∥∥∥∥ ,
where

αx(s) = vjψ̇j

(
cos
(
ψj(t) + ψ̇js

)
− sin

(
ψj(t) + ψ̇js

)
tan(βj)

)
− viψ̇i

(
cos
(
ψi(t) + ψ̇is

)
− sin

(
ψi(t) + ψ̇is

)
tan(βi)

)
,

αy(s) = viψ̇i

(
sin
(
ψi(t) + ψ̇is

)
+ cos

(
ψi(t) + ψ̇is

)
tan(βi)

)
− vjψ̇j

(
sin
(
ψj(t) + ψ̇js

)
+ cos

(
ψj(t) + ψ̇js

)
tan(βj)

)
,

such that α(s) = [αx(s) αy(s)]
⊤, and

τ ∗ = minM = argmin
τ≥0

D2
(
ẑi(t+ τ), ẑj(t+ τ)

)
. (2.16)

Note that in (2.16) it is specified that τ ∗ is the minimum element of the set M consisting of
minimizers of D2. With D2 being nonlinear in τ due to the non-zero acceleration of vehicles in
the XY plane, numerical tools are used to compute the solutions to (2.16).

2.2.3 FF-CBF for Collision Avoidance

It goes without saying that the true trajectories of (2.1) will often evolve without deploying the pre-
dicted zero-control policy ûi, just as a maximum (or minimum) constant or specific time-varying
predicted control policy would often not be deployed in practice. The zero policy is chosen, how-
ever, due to the resulting mathematical simplicity (no forward integration required in the case of
non-turning vehicles) and the popularity of minimum-norm controllers (e.g., [194, 195]) seeking
the smallest admissible control effort. In the remainder of this chapter, only the methods introduced
in Section 2.2.1 are considered.

The FF-CBF for collision avoidance, the intended effect of which is depicted in Figure 2.2, is
now introduced:

hτ̂,ij(zi, zj) = D2
ij(ẑi(t+ τ̂), ẑj(t+ τ̂))− (2R)2, (2.17)

where
τ̂ = τ̂ ∗K0(τ̂

∗) + (τ̄ − τ̂ ∗)Kτ̄ (τ̂
∗), (2.18)

with τ̄ > 0 representing the length of the look-ahead horizon, Kδ(s) = 1
2
+ 1

2
tanh (k(s− δ)),
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k > 0, and

τ̂ ∗ = −ξxνx + ξyνy
ν2x + ν2y + ε

, (2.19)

where 0 < ε ≪ 1. Using (2.18) alleviates undesirable characteristics of (2.15), namely that τ ∗

may become unbounded. The inclusion of ε makes (2.19) well-defined, and Kδ(t) allows (2.18) to
smoothly approximate τ̂ ∗ between 0 and τ̄ .

It is worth mentioning that the FF-CBF is related to the backup CBFs used for safe control
design in [196, 197] in the following sense: whereas past works have required a backup policy
to actively intervene to preserve safety (e.g., by applying proportional braking, see [190]), this
formulation encodes that present control actions prevent future unsafe scenarios that would occur
if all vehicles employed a zero-control policy. Thus, the FF-CBF seeks to preserve the viability of
the zero-control policy as a safe backup policy.

Theorem 2.1. Consider two agents governed by the dynamics (2.8) whose states are zi and zj .

Suppose that hτ̂,ij is defined by (2.17), with τ̂ given by (2.18). Then, the following hold for all

bounded zi, zj:

1. hτ̂,ij ∈ C1

2. hτ̂,ij ≤ h0,ij whenever τ̂ ≤ 2τ̂ ∗

Proof. For the first part, it must be shown that the derivative of (2.17) is well-defined and continu-
ous. Consider that from (2.14), (2.17), and (2.18)

ḣτ̂,ij(z) = 2ξxνx + 2ξyνy + 2 ˙̂τ(ξxνx + ξyνy)

+ 2τ̂(ν2x + ν2y + ξxαx + ξyαy)

+ 2τ̂ ˙̂τ(ν2x + ν2y) + 2τ̂ 2(νxαx + νyαy).

(2.20)

Since τ̂ is bounded by definition, it follows that hτ̂,ij ∈ C1 when τ̂ ∈ C1. From (2.18), it holds that

˙̂τ = ˙̂τ∗ (K0(τ̂
∗)−Kτ̄ (τ̂

∗)) + τ̂∗(K̇0(τ̂
∗)− K̇τ̄ (τ̂

∗)) + τ̄ K̇τ̄ (τ̂
∗),

where
K̇δ(τ̂

∗) = ˙̂τ ∗
k

2
sech2 (k(τ̂ ∗ − δ))

and from (2.19)

˙̂τ ∗ = −αx(2νxτ
∗ + ξx) + αy(2νyτ

∗ + ξy) + ν2x + ν2y
ν2x + ν2y + ε

since ˙̂τ ∗ and K̇δ(t) are bounded and continuous for bounded arguments, it is true that τ̂ ∈ C1 for
bounded zi, zj . Thus, hτ̂,ij ∈ C1.
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Figure 2.2: Visualization of the effect of the FF-CBF. Whereas h0,12 is evaluated based on the locations of
vehicles 1 and 2 at time t, i.e. (a) and (b), hτ,12 judges safety based on the predicted future locations of the
vehicles at time t + τ , i.e. (c) and (d), allowing the present control to take action to avoid predicted future
danger.

For the second part, observe that hτ̂,ij(z) = h0,ij(z) + 2τ̂(ξxνx + ξyνy) + τ̂ 2(ν2x + ν2y), thus
hτ̂,ij(zi, zj) ≤ h0,ij(zi, zj) whenever

τ̂ ≤ −2
ξxνx + ξyνy
ν2x + ν2y

= 2τ ∗. (2.21)

With ε in the denominator of (2.19), it follows that τ̂ ∗ < τ ∗ whenever τ ∗ > 0 (and τ̂ ∗ = 0

when τ ∗ = 0), thus the inequality in (2.21) holds whenever τ̂ ≤ 2τ̂ ∗. It follows, then, that
hτ̂,ij(z) ≤ h0,ij(z) whenever τ̂ ≤ 2τ̂ ∗.

Remark 2.2. The condition τ̂ ≤ 2τ̂ ∗ may be satisfied ∀τ̂ ∗ ≥ 0 for choices of k ≥ 1 in Kδ(t). Since

k is a shape parameter for the function K, higher values of k lead to smaller approximation error
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eτ = |τ̂ − τ ∗| for τ ∗ ∈ [0, T ].

Since hτ̂,ij ∈ C1, it follows from Definition 2.3 that if there exists a function α ∈ K∞ such that
(2.4) holds then hτ̂,ij is a valid CBF. Under such conditions, the FF-CBF may be synthesized with
any nominal control law using (2.5) for communicating agents or (2.7) for non-communicating
agents. In contrast to when used with a generic CBF, the decentralized control law (2.7) guarantees
collision avoidance under our FF-CBF hτ̂,ij and dynamics (2.8) (as long as it is feasible) provided
that all vehicles deploy (2.7) with hτ̂,ij and are not turning, i.e. ψi = βi = 0. This is because
Lfhτ̂,ij → 0 as2 τ̂ → τ ∗, in which case (2.7c) becomes

Lgihτ̂,ijui + αij(hτ̂,ij) ≥ 0, ∀i ∈ A, (2.22)

which, for any given two agent pair i, j yields

ḣτ̂,ij = Lgihτ̂,ijui + Lgjhτ̂,jiuj ≥ −αij(hτ̂,ij)− αji(hτ̂,ji)

where hτ̂,ij = hτ̂,ji, which satisfies (2.3) and thus prevents collisions. Intuitively, a zero CBF drift
term i.e. Lfhτ̂,ij = 0 is explained by the fact that the FF-CBF hτ̂,ij is already predicting the future
minimum distance between vehicles i and j under zero-control policies, thus in the absence of an
acceleration input the prediction is correct and the minimum distance between vehicles is reached
at time t+ τ̂ .

2.2.4 Relaxed Future-Focused Control Barrier Functions

Note that the zero level set defined by candidate CBF hτ̂,ij represents a virtual barrier. Specifically,
hτ̂,ij(zi, zj) < 0 does not imply that a collision has occurred (h0,ij(zi, zj) < 0), nor does it
suggest that one is unavoidable; rather, hτ̂,ij(zi, zj) < 0 implies that a future collision will occur if
the zero-control control policy, ûk, is applied uniformly by each vehicle k ∈ {i, j}. This motivates
the notion of the RFF-CBF:

Hij(zi, zj) = hτ̂,ij(zi, zj) + α0 (h0,ij(zi, zj)) , (2.23)

where α0 ∈ K∞. The zero super-level set of Hij is then

SH,ij = {(zi, zj) ∈ R2n | Hij(zi, zj) ≥ 0}, (2.24)

2In simulation, it has been observed that Lfhτ̂,ij is on the order of the approximation error eτ = |τ̂ − τ∗| ≈ 10−9

for τ∗ ∈ [0, τ̄ ], which may be accounted for by subtracting ε ≈ 10−9 from the left-hand side of (2.22).
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which defines a relaxed virtual barrier that allows virtual constraint violations away from the phys-
ical barrier, and in that sense enlarges the admissible control space while preserving the collision
avoidance guarantee. This is proved in the following result.

Theorem 2.2. Consider two agents, each of whose dynamics are described by (2.1). Suppose that

Hij is given by (2.23), and that Hij ≥ 0 at t = 0. If there exist control inputs, ui and uj , such that

the following condition holds, for all t ≥ 0,

sup
ui∈Ui
uj∈Uj

[
LfiHij + LfjHij + LgiHijui + LgjHijuj

]
≥ 0,

(2.25)

for all z ∈ ∂SH,ij , then, the physical safe set defined by S0,ij(t) = {(zi, zj) ∈
R2n | h0,ij(zi, zj) ≥ 0} is forward invariant under ui, uj , i.e. there is no collision between

agents i and j.

Proof. In order to show that S0,ij is rendered forward invariant by (2.25), it must be shown that
(2.25) implies that ḣ0,ij ≥ 0 whenever h0,ij = 0. This will be proved by contradiction.

Suppose that Hij, h0,ij = 0, and that (2.25) holds but ḣ0,ij < 0. Note also that by Theorem 2.1
hτ̂,ij ≤ h0,ij . Then, it follows that ḣ0,ij = 2(ξxνx + ξyνy) < 0, which by (2.18) implies that τ̂ > 0.
With τ̂ > 0, it follows that hτ̂,ij < h0,ij = 0. However, it was assumed that Hij, h0,ij = 0, which
means by definition that hτ̂,ij = 0. Thus, a contradiction has been reached. It follows, then, that
(2.25) implies that ḣ0,ij ≥ 0 whenever h0,ij = 0. As such, S0,ij is rendered forward invariant.

As a result of Theorem 2.2, (2.23) may be used to encode safety in the context of a CBF-QP
control scheme (2.5) or (2.7).

In the ensuing simulations section, a comparative study on the efficacy of the nominal (2.13),
future-focused (2.17), and relaxed future-focused (2.23) CBFs is conducted using randomized tri-
als of an automotive intersection crossing problem.

2.3 Case Studies

In this section, the use of FF-CBFs is demonstrated for collections of both communicating and
non-communicating vehicles in the context of simulated and experimental trials of an unsignaled
intersection scenario. Code and a selection of videos are provided on Github3.

3Link to Github repository: github.com/6lackmitchell/ffcbf-control
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2.3.1 Centralized Control: Simulated Trials

In an empirical study on a simulated 4-vehicle unsignaled intersection scenario, it is shown how
using a RFF-CBF to control communicating vehicles in a centralized manner improves intersection
throughput with promising empirical results on safety and QP feasibility. The successes of three
different centralized controllers of the form (2.5) are investigated, namely

u∗
i = [ω∗

i a
∗
i ]

⊤, ∀i = 1, . . . , A, (2.26)

where the turning rate is
ω∗
i = min

(
max(ω0

i ,−ω̄), ω̄
)
, (2.27)

and the accelerations a∗1, . . . , a
∗
p are computed via

[a∗1 . . . a
∗
p]

⊤ = argmin
[a1...ap]

1

2

p∑
i=1

(ai − a0i )
2 (2.28a)

s.t. ∀i, j = 1, . . . , p, j ̸= i

Aai ≤ b, (2.28b)

ϕi + γiai ≥ 0, (2.28c)

ϕij + γij,[i]ai + γij,[j]aj ≥ 0, (2.28d)

where ω0
i and a0i denote the nominal inputs computed using LQR (see Appendix A for a detailed

explanation), (2.28b) encodes input constraints of the form −ā ≤ ai ≤ ā, (2.28c) enforces both the
road speed limit and requires that vehicles do not reverse, and (2.28d) is the collision avoidance
condition, where ϕ and γ are as in (2.6). Specifically, the controllers under examination are (2.26)
with

1. 0-CBF: hij = h0,ij according to (2.13)

2. ff-CBF: hij = hτ̂,ij from (2.17)

3. rff-CBF: hij = Hij via (2.23)

with α0(h0,ij) = k0h0,ij , where k0 = 0.1max(τ̂ −1, ε), ε = 0.001, the look-ahead horizon τ̄ = 5s,
and αij(hij) = 10hij , ω̄ = π/2, and ā = 9.81 for all cases. Note that (2.26) is centralized in the
sense that it is assumed that all states, zi, and nominal control inputs, u0

i , are known.
For each study, N = 1000 trials were performed simulating trajectories of 4 vehicles approach-

ing the intersection from different lanes, all of whose dynamics are described by (2.8), using the
control scheme described by (2.26) and a timestep of ∆t = 0.01s. At the beginning of each trial,
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Table 2.1: Controller Performance – All Proceed Straight

CBF Success Feas. DLock Unsafe Avg. Time
hij = h0,ij 0.653 1 0.347 0 5.67
hij = hτ̂,ij 1 1 0 0 3.45
hij = Hij 1 1 0 0 3.21

the vehicles were assigned to a lane and their initial conditions were randomized via

di = d0 + U(−∆d,∆d),

si = s0 + U(−∆s,∆s),

where di denotes the initial distance of vehicle i from the intersection, si its initial speed, and
U(a, b) a sample from the uniform random distribution between a and b. The above parameters
were chosen to be d0 = 12m, ∆d = 5m, s0 = 6m/s, and ∆s = 3m/s. Further, trials whose
random initial conditions violated Assumption 2.1 were removed from the study. For the speed
limit, vmax = 10m/s was used.

For performance evaluation, the following metrics were considered:

1. Success: Number of Successful Trials
Number of Trials ,

2. Feas.: Number of Trials in which QP is Always Feasible
Number of Trials ,

3. DLock: Number of Trials in which Vehicles become deadlocked
Number of Trials ,

4. Unsafe: Number of Trials Vehicles in which h0,ij<0

Number of Trials ,

where a successful trial is characterized as one where all vehicles exit the intersection at their de-
sired location, a deadlock is characterized as when all vehicles have stopped and remained stopped
for 3 sec, and “Avg. Time” is defined as the average time in which the final vehicle reached the
intersection exit over all successful trials.

The performance of each controller was examined under two circumstances: 1) each vehicle
seeks to proceed straight through the intersection without turning, and 2) three vehicles seek to
proceed straight without turning and one seeks to make a left turn. The results for the 3 different
controllers are compiled in Tables 2.1 and 2.2 respectively. Although the 0-CBF in a centralized
QP-based control law is known to guarantee safety and QP feasibility under certain conditions
[190], such a controller has no predictive power and is therefore prone to deadlocks. Such a
deadlock is illustrated in Figure 2.3a. The FF-CBF-based controller succeeded as long as it was
feasible, offering a 39% reduction in average time over the 0-CBF in the straight scenario and an
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Table 2.2: Controller Performance – One Left Turn

CBF Success Feas. DLock Unsafe Avg. Time
hij = h0,ij 0.689 1 0.311 0 7.75
hij = hτ̂,ij 0.963 0.963 0 0 5.33
hij = Hij 1 1 0 0 4.91

31% time improvement in the turning scenario, but suffered from QP infeasibilities in the case
of turning vehicles, one example of which is shown in Figure 2.3b. The RFF-CBF controller
enjoyed both the same empirical feasibility and safety as the 0-CBF design and improved the
average success time to a similar extent as the FF-CBF, specifically by 43% and 36% for the
straight and turning scenarios respectively. In addition, the RFF-CBF control scheme achieved
100% feasibility even in the turning scenario, despite the constant velocity prediction model not
taking a change of heading into account. Theoretical guarantees of feasibility, however, are left to
future work. The control and RFF-CBF trajectories for a turning trial are illustrated in Figures 2.4a
and 2.4b respectively, and the associated XY paths are shown in Figure 2.4c. It can be seen from
Figure 2.4a that the control actions smoothly take action in advance of any dangerous scenario,
and from Figure 2.4b that both Hij and h0,ij remain non-negative for all i, j.
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Figure 2.3: Selected XY trajectories for the intersection crossing problem using (a) 0-CBF and
(b) FF-CBF. In (a), the centralized controller has no predictive power and the vehicles deadlock,
whereas in (b) the FF-CBF-QP controller becomes infeasible for the blue vehicle despite a wide
physical margin as the blue vehicle begins to turn left.
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Figure 2.4: Trial 650 in the RFF-CBF controlled intersection study. (a) gives the control trajec-
tories, (b) the RFF-CBF trajectories, and (c) the XY paths taken by the four vehicles. In (b), the
notation (ij) denotes that the function is evaluated for vehicles i and j.
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2.3.2 Decentralized Control: Rover Experiments

The success of the proposed decentralized RFF-CBF-QP controller was further demonstrated on a
collection of AION R1 UGV rovers in an intersection scenario in the lab. Each of the 5 rovers was
modeled as a bicycle according to (2.8) and was asked to proceed straight through the intersection
while obeying a speed limit (encoded via (2.9)) and avoiding collisions with each other (using
RFF-CBF (2.23)). A controller of the form (2.7) was used to compute acceleration ai and angular
rate ωi inputs in order to send velocity vi(tk+1) = vi(tk) + ai∆t and ωi commands to the rovers’
customized on-board PID controllers. The full control loop ran at a frequency of 20 Hz, where the
nominal input u0 was computed using the LQR law outlined in Appendix A, position feedback
was obtained using a Vicon motion capture system, the extended Kalman filter output from the
PX4 firmware running via the on-board Pixhawk was used for state estimation.

Figure 2.5: Five rovers safely traverse a four-way intersection in the laboratory environment using a decen-
tralized rff-CBF-QP control law. The rovers at their initial positions are marked with arrows pointing in the
direction of motion.

As shown in Figure 2.5, the RFF-CBF controller succeeds in driving the vehicles safely through
the intersection without a deadlock. The video footage available at the provided GitHub link shows
that, contrary to behavior expected using traditionally myopic, present-focused CBF-based control,
some rovers accelerated into the intersection in order to avoid predicted future collisions whereas
others braked to await their turn.
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2.4 Conclusion

Improvements to traditionally myopic CBF-based safe control are introduced in the form of novel
FF-CBFs and RFF-CBFs for collision avoidance. It is shown how the use of FF-CBFs for con-
trol design preserves safety of the system trajectories while simultaneously guaranteeing future
predicted safety under an assumed zero-control policy over an arbitrarily large future time inter-
val. With the FF-CBF defining a virtual barrier, the introduction of the RFF-CBF serves to permit
relaxations thereof when away from the physical barrier between vehicles, and, in doing so, to
afford the controller more time to deconflict predicted future collisions. An empirical study on
an intersection crossing problem highlights the advantages of the proposed methods over existing
CBF-based control, and the viability of the approach for real-time applications is demonstrated via
a multi-rover experiment in the laboratory.
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CHAPTER 3

Fixed-Time Parameter Identification for Safe
Control Synthesis

In many dynamical systems, the presence of unknown or uncertain parameters in the system model
(e.g., coefficients of drag for quadrotors) threatens the viability of model-based approaches to sta-
bilizing and/or safe control design. While in some cases offline methods for learning the system
model have been shown to mitigate this issue, online adaptation and control synthesis offers better
robustness to environmental changes. With the above as motivation, this chapter studies the prob-
lem of online parameter identification for a class of nonlinear, control-affine systems subject to an
additive, parameter-affine perturbation to the dynamics and its application to safe control design.

Whereas many works have investigated parameter identification with guarantees of asymptotic
or exponential convergence, i.e., learning the true system parameters as time or the amount of data
tends toward infinity, the notion of a Fixed-Time Stable (FxTS) equilibrium, i.e., one to which the
system trajectories converge within a finite time bounded uniformly for any initial condition, has
been shown to confer better disturbance rejection properties. In addition, system identification in
the limit may be insufficient for control design when a system is subject to spatiotemporal con-
straints, e.g., if a vehicle must visit a target region within a specified time. As such, preliminaries
are reviewed in Section 3.1, and then two FxTS parameter adaptation laws are proposed in Section
3.2 for learning the parametric model uncertainty under consideration within a fixed-time 1) under
the assumption of system identifiability, and 2) when this assumption is removed. In the second
case, conditions are presented under which the true disturbance to the system is learned even when
the true parameters perturbing the system are not identified. In Section 3.3, time-varying bounds on
the parameter estimation error are derived and used to propose a robust, adaptive Control Barrier
Function (CBF) condition that renders a time-varying shrunken safe set forward invariant, thereby
protecting against the worst-case instantaneous parameter estimation error while adapting to how
the parameter estimates are changing with time. A Quadratic Program (QP)-based control law is
then proposed for guaranteed safety throughout the model learning process. In Section 3.4 two
case studies are conducted: in the first, the proposed methods are simulated against a sample of
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similar methods from the literature on a safety- but also time-critical reach-avoid problem; whereas
the second considers a quadrotor seeking to track a trajectory in a constant wind field.

The results in this chapter are based partly on [181] and [182]. The author wishes to acknowl-
edge the contributions of Dr. Ehsan Arabi to the development of this work.

3.1 Preliminaries and Problem Statement

In this section, preliminaries are reviewed on fixed-time stability, set invariance, and parameter
identification. Then, the problem under consideration is formally stated.

3.1.1 Fixed-Time Stability

Consider an autonomous, nonlinear dynamical system of the form

ẋ(t) = f(x(t)), x(t0) = x0, (3.1)

for which it is assumed that a unique solution exists, where x ∈ Rn, f : Rn → Rn is continuous,
and f(0) = 0. The notion of fixed-time stability is essential to the proposed parameter adaptation
laws in this chapter, and thus is reviewed for completeness. First, the notion of Lyapunov stability
is required.

Definition 3.1 (Stability). The origin of (3.1) is stable in the sense of Lyapunov if for every ϵ > 0

there exists δ(ϵ) > 0 such that if ∥x0∥ < δ, then ∥x(t)∥ < ϵ for all t ≥ 0.

In contrast to various other notions of stability (e.g., asymptotic, exponential), the system tra-
jectories converge to a fixed-time stable equilibrium within a finite time, independent of the initial
condition.

Definition 3.2 (Fixed-Time Stability (FxTS)). The origin of (3.1) is fixed-time stable if it is stable

in the sense of Lyapunov and fixed-time convergent, i.e., any solution x(t,x0) of (3.1) reaches the

origin in finite settling-time, T , independent of x0, i.e., x(t,x0) = 0, ∀t ≥ T .

In the following result introduced by [135], sufficient conditions are given for FxTS of the
equilibrium of (3.1).

Theorem 3.1 (Lyapunov Conditions for FxTS). Suppose there exists a continuously differen-

tiable, positive definite, radially unbounded function V : Rn → R such that

V̇ (x) ≤ −aV (x)p − bV (x)q, (3.2)
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holds along the trajectories of (3.1) with a, b > 0, 0 < p < 1 and q > 1. Then, the origin of (3.1)
is FxTS with settling time T (x0) ≤ Tb where

Tb ≤
1

a(1− p)
+

1

b(q − 1)
. (3.3)

3.1.2 Set Invariance

For a given system, safety may be enforced by rendering some set of safe states forward invariant.
The problem under consideration in this chapter concerns safe control design for the following
class of nonlinear, control-affine systems subject to unknown, additive, parameter-affine uncer-
tainty:

ẋ = f(x(t)) + g(x(t))u(t) + ∆(x(t))θ∗,

x(0) = x0,
(3.4)

where x ⊂ Rn denotes the state, u ∈ U ⊂ Rm the control input, and θ∗ ∈ Θ ⊂ Rp a vector
of unknown, static parameters. The availability of perfect state measurements is assumed in this
chapter, and the state is assumed to be bounded. The sets U and Θ are the input constraint and
admissible parameter sets respectively, where both are known and Θ is a polytope. It is assumed
that the drift vector field f : Rn → Rn, control matrix field g : Rn → Rn×m, and regressor ∆ :

Rn → Rn×p are known, continuous, and bounded for bounded inputs, such that for a continuous
control input u : R → U the system (3.4) admits a unique solution. The unknown term in the
system, i.e., d(x) = ∆(x)θ∗, may describe disturbances or unmodelled phenomena that require
estimation. In this chapter, it is assumed that the unknown parameters are static, i.e., that θ̇∗ =

0p×1. As such, the estimated parameter vector is denoted θ̂ so that the parameter estimation error
vector is θ̃ = θ∗ − θ̂ with dynamics given by

˙̃θ = − ˙̂
θ. (3.5)

Consider a continuously differentiable function h : Rn → R whose zero super-level set defines
the set of safe states S for the system (3.4). The safe set is then given by

S = {x ∈ Rn : h(x) ≥ 0} , (3.6a)

∂S = {x ∈ Rn : h(x) = 0} , (3.6b)

int(S) = {x ∈ Rn : h(x) > 0} . (3.6c)

Then, Nagumo’s Theorem [188] provides a necessary and sufficient condition for the forward
invariance of the set (3.6) under the system dynamics (3.4).
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Lemma 3.1 (Nagumo’s Theorem). Suppose that u : R → U is a continuous control input such

that the closed-loop trajectories of (3.4) are uniquely determined in forward time. The set S is

forward invariant for (3.4) if and only if the following holds, for all x ∈ ∂S:

Lfh(x) + Lgh(x)u+ L∆h(x)θ
∗ ≥ 0. (3.7)

Note that (3.7) may be written alternatively as LFh(x) + Lgh(x)u ≥ 0, where LFh(x) =

Lfh(x) + L∆h(x)θ
∗. In this way, LFh(x) captures the complete drift dynamics of the function

h over the trajectories of (3.4). One way to render a set S forward invariant is to use CBFs in the
control design. The following definition is adapted from [3] to fit the class of systems (3.4) under
consideration in this chapter.

Definition 3.3 (Control Barrier Function (CBF)). Given a set S ⊂ Rn defined by (3.6) for a

continuously differentiable function h : Rn → R, the function h is a control barrier function
defined on a set D, where S ⊆ D ⊂ Rn, if there exists an extended class K∞ function α : R → R
such that

sup
u∈U

[
LFh(x) + Lgh(x)u

]
≥ −α(h(x)), ∀x ∈ D. (3.8)

The authors of [198] ensure that the closed-loop trajectories of (3.4) are safe with respect S by
enforcing that a shrunken set, Sr, is forward invariant. Before formally defining Sr the following
assumption is required.

Assumption 3.1 (Non-Increasing Parameter Estimation Error). The supremum norm of the

parameter estimation error is non-increasing, i.e., d
dt
∥θ̃(t)∥∞ ≤ 0, ∀t ≥ 0.

Since Θ is a polytope, it follows from Assumption 3.1 that if θ̂(0) ∈ Θ, then ϑ ≜

supθ1,θ2∈Θ(∥θ1 − θ2∥∞) such that ∥θ̃(t)∥∞ ≤ ϑ, for all t ≥ 0. It is worth noting that Assumption
3.1 may be satisfied via the appropriate design of a parameter adaptation law, a trivial example of
which is ˙̂

θ = 0p×1. Now, let ϑ = ϑ · 1p×1. The shrunken set Sr is then given by

Sr =
{
x ∈ Rn : h(x) ≥ 1

2
ϑ ⊤ Γ−1ϑ

}
(3.9a)

∂Sr =
{
x ∈ Rn : h(x) =

1

2
ϑ ⊤ Γ−1ϑ

}
(3.9b)

int(Sr) =
{
x ∈ Rn : h(x) >

1

2
ϑ ⊤ Γ−1ϑ

}
(3.9c)

where Γ is a constant, positive-definite matrix such that h(x0) ≥ 1
2
ϑ ⊤ Γ−1ϑ. Then, define a new

function
hr(x,ϑ) = h(x)− 1

2
ϑ ⊤ Γ−1ϑ. (3.10)
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According to Definition 3.3, the function (3.10) is a CBF for Sr defined over D if

sup
u∈U

[
LFh(x) + Lgh(x)u

]
≥ −α(hr(x,ϑ)) + ϑ ⊤ Γ−1ϑ̇, (3.11)

holds for all x ∈ D. Note that if ϑ̇ = 0 and ϑ ̸= 0, then (3.11) becomes ḣr ≥ −α(h) + γ, where
γ > 0, which is a Robust Control Barrier Function (R-CBF) condition [31]. This chapter, unlike
what is to come in Chapter 6, does not address the viability of any form of CBF condition. Thus,
it is assumed in the following that the function hr is a valid CBF for the system (3.4) with respect
to the set Sr.

Assumption 3.2 (CBF Viability). For all x ∈ ∂Sr, there exists a control input u ∈ U such that

the following condition holds:

LFhr(x) + Lghr(x)u− ϑ ⊤ Γ−1ϑ̇ ≥ 0. (3.12)

Remark 3.1. Since Sr ⊆ S , it follows that for all x0 ∈ Sr, the satisfaction of (3.11) implies that

x(t) ∈ S for all t ≥ 0.

3.1.3 Parameter Identification

It is worth highlighting that up until this point no assumptions have been made concerning the rank
of the regressor ∆(x). In other words, the unknown parameters θ∗ in the system (3.4) may or may
not be identifiable. The notion of system identifiability is defined formally as follows according to
[199, Def. 4.6].

Definition 3.4 (Identifiability). The system (3.4) is identifiable at (x,u,θ∗) if

f(x) + g(x)u+∆(x)θ = f(x) + g(x)u+∆(x)θ∗ =⇒ θ = θ∗.

The system (3.4) is unidentifiable at (x,u,θ∗) if it is not identifiable.

Without identifiability of (3.4) there may be other vectors θ that satisfy ∆(x)θ = ∆(x)θ∗,
∀x ∈ Rn. This motivates defining the following state- and parameter-dependent set, Ω(x,θ∗),
containing such vectors θ:

Ω(x,θ∗) = {θ ∈ Θ : θ = θ∗ +N (∆(x))}. (3.13)

In the rest of this chapter, Ω is written in place of Ω(x,θ∗) for conciseness. Intuitively, the set Ω
contains the true parameter vector θ∗ as well as all parameter vectors θ that may be expressed as
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a sum of θ∗ and any other vector belonging to the null-space of ∆(x). It is worth noting that if
θ̃ ∈ N (∆(x)), then ∆(x)θ∗ = ∆(x)θ̂, which implies that θ̂ ∈ Ω.

Related to identifiability is the notion of Persistence of Excitation (PE) [200, Def. 2.5.3], a
prerequisite for many parameter estimation laws (see e.g., [117]).

Definition 3.5 (Persistence of Excitation PE). A vector or matrix function, ϕ : [0,∞) → Rp×q,

is persistently excited (PE) if there exist T > 0, ϵ1, ϵ2 > 0, such that

ϵ1I ≤
∫ t+T

t

ϕ(r)ϕT (r)dr ≤ ϵ2I, ∀t ≥ 0.

Remark 3.2. The PE condition is generally difficult to verify in practice for a given vector or

matrix, especially a priori. For the system (3.4), however, the regressor ∆ cannot satisfy the PE

condition if (3.4) is unidentifiable for all (x,u,θ) in (Rn,U ,Θ) [201]. It is worth noting that

if N (∆(x)) is nontrivial for all x ∈ Rn, i.e. ∆(x) is globally rank-deficient, then the system is

globally unidentifiable.

In what follows, an exponentially stable parameter estimation law from the literature [117] is
reviewed for motivation. This requires the following assumption, analogous to system identifiabil-
ity.

Assumption 3.3 (System Identifiability). For all time t ≥ 0 there is a known vector, v(t) ∈ Rq,

and a known, full column rank matrix, M (t) ∈ Rq×p, such that the parameter estimation error

vector, θ̃(t), is a solution to

M (t)θ̃(t) = v(t). (3.14)

This is a common assumption in the literature (see e.g., [116, 117, 115]), but is infrequently
stated so explicitly; perhaps this is because it is natural to wonder why linear regression tools are
not used to determine θ∗. Its utility is in enabling the design of adaptation laws that provide certain
convergence guarantees when (3.14) is perturbed, i.e. when

M (t)θ̃(t) = v(t)− δ(t), (3.15)

for some unknown δ ∈ Rq. For example, in [115] the authors seek to design an adapta-
tion law for a class of systems of the form (3.15), and assume that M(t) satisfies the property
σmin(M(t)) > σ > 0 for all t ≥ 0, which is equivalent to the identifiability condition and analo-
gous to Assumption 3.3 in the disturbance-free case, i.e. when δ(t) ≡ 0, which they treat explicitly.
The authors of [117] further note that Assumption 3.3 can be satisfied when the regressor ∆ of (3.4)
satisfies the PE condition.
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Now, the following result introduces the aforementioned exponentially stable parameter esti-
mation law proposed in [117].

Theorem 3.2 (Exponentially Stable Parameter Estimation). Consider a system (3.4), for which

it is known that Assumption 3.3 holds. Then, under the ensuing adaptation law,

˙̂
θ = Γv, (3.16)

where Γ > 0 is a constant, diagonal gain matrix, the parameter estimation error, θ̃, converges

exponentially to the origin, i.e. θ̃ → 0 exponentially as t→ ∞.

3.1.4 Problem Statement

Whereas exponential stability implies convergence to the origin as time tends toward infinity, fixed-
time stability implies convergence to the origin within a uniformly bounded finite-time, i.e., within
a finite time independent of the initial conditions. In addition, faster rates of convergence tend to
imply better disturbance rejection properties, a desirable characteristic for the design of a parameter
identification law. Such an adaptation law is of even greater utility, furthermore, when used in
conjunction with a safe control law for the purpose of learning unmodelled phenomena in the
system dynamics. As such, the main problem under consideration in this chapter is as follows.

Problem 3.1. Consider a dynamical system of the form (3.4). Design adaptation and control laws,
˙̂
θ = τ(x, θ̂) and u = k(x, θ̂) respectively, such that the following conditions are satisfied:

1. The estimated parameter vector, θ̂, is rendered fixed-time stable to the set Ω given by (3.13),
i.e., θ̂(t) → Ω as t→ T and θ̂(t) ∈ Ω for all t ≥ T , independent of θ̂(0).

2. The system trajectories remain safe for all time, i.e. x(t) ∈ S, ∀t ≥ 0.

The first element of Problem 3.1 is addressed in Section 3.2 for cases both where the transpose
of the system regressor matrix (i.e., ∆(x) ⊤) satisfies the PE condition, amd without this require-
ment. A solution to the second element of Problem 3.1 is introduced in Section 3.3.

3.2 FxTS System Identification

In this section, two FxTS parameter adaptation laws are proposed for learning the unknown,
parameter-affine component of the dynamics of (3.4). The first law requires that the transpose
of the system regressor be persistently excited, whereas the second law handles scenarios in which
that requirement is relaxed.
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3.2.1 Persistently Excited Regressor

The parameter adaptation law proposed in this section relies on a state filtering scheme that requires
the following assumption on ∆.

Assumption 3.4 (Persistent Excitation). The transpose of the regressor matrix in (3.4), ∆ ⊤(x),

satisfies the PE condition.

Note that, as stated previously, the matrix ∆(x) ⊤ cannot satisfy the PE condition if the system
(3.4) is globally unidentifiable.

Remark 3.3. Positive-definiteness of ∆ ⊤ ∆ is sufficient for ∆ ⊤ to satisfy the PE condition.

3.2.1.1 Filtering Scheme

The following filtering scheme forms the basis for the FxTS adaptation law and was inspired by
[117], which used a similar strategy for finite-time parameter estimation for robotic applications.
First, note that the system (3.4) may be rewritten as

ẋ(t) = φ(x,u) + Φ(x)θ∗, (3.17)

where φ(x,u) = f(x) + g(x)u and Φ(x) = ∆(x). Whereas the authors of [117] introduce xf ,
φf , and Φf as first-order filters to x, φ, and Φ, in this chapter the following second-order filters
are used:

k2e ξ̈f + 2keξ̇f + ξf = ξ, (3.18)

for ξ ∈ {x,φ,Φ}, where k > 0 is a design parameter and all initial conditions are zero. This
system is stable, strictly proper, minimum-phase, and critically damped with natural frequency
ωn = 1/ke. This is desirable, as critically damped systems exhibit the smallest settling time
without oscillations [202]. By defining dynamics for an auxiliary and integrated regressor matrix
P and vectorQ as in [117], the following are obtained:

Ṗ = −ℓeP +Φf
⊤Φf , P (0) = 0 (3.19)

Q̇ = −ℓeQ+Φf
⊤(ẋf −φf ), Q(0) = 0, (3.20)

the solutions of which permit

W (t) = P (t)θ̂ −Q(t) = −P (t)θ̃, (3.21)
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where ℓe > 0 is another design parameter.
In the following, the main result of this section is introduced: a parameter adaptation law which

renders the trajectories θ̃(t) of the parameter estimation error FxTS to the set Ω = {θ∗}.

Theorem 3.3. Consider a nonlinear, control-affine system with parametric uncertainty as in (3.4).
If (3.18) filters x, φ, and Φ, and the auxiliary matrix P and vectorsQ, W are defined by (3.19)-
(3.21), then, under the ensuing adaptation law

˙̂
θ = −ΓW

(
W ⊤P−⊤W

)−1
(c1ν

γ1 + c2ν
γ2) , (3.22)

the estimated parameters, θ̂(t), converge to the true parameters, θ∗, in fixed-time, Tθ, i.e., θ̂(t) →
θ∗ as t→ Tθ, where

Tθ ≤ Tb =
1

c1(1− γ1)
+

1

c2(γ2 − 1)
, (3.23)

with ν = 1
2
W ⊤P−⊤Γ−1P−1W , c1 > 0, c2 > 0, 0 < γ1 < 1, γ2 > 1, and Γ ∈ Rp×p being a

constant, positive-definite, gain matrix.

Proof. Consider the Lyapunov function candidate Vθ̃ = 1
2
θ̃ ⊤ Γ−1θ̃ for the system of the

parameter-error dynamics (4.3). Since θ̇∗ = 0, it follows that V̇θ̃ = −θ̃ ⊤ Γ−1 ˙̂θ. Applying (3.22)
yields V̇θ̃ = θ̃

⊤W
(
W ⊤P−⊤W

)−1
(c1ν

γ1 + c2ν
γ2). Then, by substituting (3.21), we obtain

V̇θ̃ = −θ̃ ⊤ P θ̃
(
θ̃ ⊤P ⊤P−⊤P θ̃

)−1(
c1(θ̃

⊤ Γ−1θ̃)γ1 + c2(θ̃
⊤ Γ−1θ̃)γ2

)
,

= −c1V γ1
θ̃

− c2V
γ2
θ̃
, (3.24)

i.e., the FxTS condition from Theorem 3.1. Hence, the origin of (4.3) is FxTS, and the trajectories
θ̃(t) reach the origin within time Tθ, given by (3.23). Consequently, the estimated parameter vector,
θ̂(t), converges to the true parameter vector, θ∗, within a fixed time, Tθ, i.e., θ̂(Tθ) = θ∗.

In theory, the time required to learn the unknown parameters may be made arbitrarily small by
increasing the gains c1, c2; however, in practice the adaptation law (3.22) is implemented discretely
and excessively high gains may destabilize the algorithm. The true system parameters are able to
be learned due to the transpose of the regressor satisfying the PE condition. In what follows, this
requirement is removed and a new adaptation law is proposed to handle this more general case.

3.2.2 Unidentifiable System

In this section, not only is the regressor not required to satisfy the PE condition but the system is
permitted to be globally unidentifiable, i.e., nothing is assumed about the rank of the regressor. In
what follows, the main result of this chapter will be presented: an adaptation law which guarantees
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that the unknown term ∆(x)θ∗ in the system (3.4) is learned within a fixed-time even if the true
system parameters θ∗ cannot be determined.

Before introducing the result, a relaxed version of Assumption 3.3 is required.

Assumption 3.5. For all t ≥ 0 there is a known vector, v(t) ∈ Rn, and a known matrix, M(t) ∈
Rn×p, that jointly satisfy the following properties:

(i) Consistency: the parameter estimation error, θ̃(t), is one solution to (3.14)

(ii) Boundedness: v(t) andM (t) are bounded for bounded x(t)

(iii) Equivalence: the nullspace ofM (t) is equal to the nullspace of ∆(x(t)), i.e N (∆(x(t))) =

N (M (t)).

The first element of Assumption 3.5 specifies that the linear system of equations constructed
using the parameter estimation error vector θ̃ is consistent in the sense that θ̃ is one solution.
The second element is straightforward and requires boundedness of the vector v(t) and M (t) for
bounded x(t). The third element, referred to here as equivalence, requires that the obtained matrix
M (t) shares a null space with the regressor ∆(x(t)), which is self-evident ifM = ∆(x).

Remark 3.4. In contrast to Assumption 3.3 required for the exponentially stable parameter adap-

tation law, it is not required by Assumption 3.5 thatM be full column-rank. Instead, the condition

is that N (M) = N (∆), which relaxes restrictions imposed by previous works [116, 117, 115].

Since it is not immediately obvious whether Assumption 3.5 is reasonable for the class of sys-
tems under consideration, we now introduce two possible measurement schemes, the first for illus-
trative and the second for practical purposes, which lead to its satisfaction.

3.2.2.1 Rate Measurements

For the illustrative scheme, the following assumption is required:

Assumption 3.6. The time derivative of the state, ẋ, is bounded and perfectly measured.

Under Assumption 3.6, we can rewrite the perturbed dynamics (3.4) to obtain a linear system
of equations,

∆(x)︸ ︷︷ ︸
M

θ̃ = ẋ− f(x)− g(x)u−∆(x)θ̂︸ ︷︷ ︸
v

, (3.25)

all of whose terms are either known or measured except θ̃, and to which at least one solution (albeit
not necessarily unique) exists by construction. It is also evident that the second facet of Assumption
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3.5 is satisfied via assumptions on the components of (3.4), and that the third is satisfied due
to M = ∆(x). While exact measurements of ẋ may not be obtainable in practice, it may be
approximated using state measurements and numerical differentiation. This may introduce some
approximation error into (3.25) such that it takes the form (3.15). The effect of this disturbance,
δ(t), is addressed in Chapter 4.

3.2.2.2 State Predictor

A predictor-based technique adapted from [203] is now shown to also yield a linear system of
equations that satisfies Assumption 3.5 under certain conditions. First, consider the following state
predictor:

ż = f(x) + g(x)u+∆(x)θ̂ + ke(x− z) +W ˙̂
θ

z(0) = x(0),
(3.26)

where z ∈ Rn is the predicted state, θ̂ ∈ Rp is the estimated parameter vector, ˙̂
θ is its time

derivative to be defined later, f , g, and ∆ are as in (3.4), ke > 0 is an error gain, andW is a matrix
described by the following dynamics:

Ẇ = −keW +∆(x), W (0) = 0n×p. (3.27)

Then, by defining the observation error as e = x− z, the error dynamics are described by:

ė = ∆(x)θ̃ − kee−W ˙̂
θ. (3.28)

Next, define an auxiliary variable,
ξ = e−Wθ̃, (3.29)

the dynamics of which become
ξ̇ = ė− Ẇ θ̃ −W ˙̃θ, (3.30)

which, by substituting in (3.27) and (3.28), amounts to

ξ̇ = −kee+ keWθ̃ = −keξ, ξ(0) = e(0), (3.31)

a linear system with an exponentially stable equilibrium point at the origin. Then, by using the
initial conditions from (3.26) and (3.27), it follows that ξ(0) = 0 and therefore ξ̇ = 0 for all t ≥ 0,
i.e. ξ(t) = ξ(0) = 0. As such, (3.29) implies that

Wθ̃ = e, (3.32)
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which takes the form (3.14) and satisfies Assumption 3.5 in the following way: the first part is satis-
fied by construction; the second holds since, according to (3.27), W (t) =

∫ t
0
e−ke(t−s)∆(x(s))ds,

and thusW is bounded for bounded ∆(x) (which is bounded for bounded x); and the third part is
satisfied if N (∆(x)) is constant, though this is a sufficient and not a necessary condition.

The following result, an adaptation law which renders θ̂ FxTS to the set (3.13), is one of the
main contributions of this chapter.

Theorem 3.4. Consider a nonlinear, control-affine system of the form (3.4) and suppose that As-

sumption 3.5 holds. If the nullspace of the regressor ∆(x(t)) is constant over the interval [0, T ],

i.e. N (∆(x(t))) = N (∆(x(0))), ∀t ∈ [0, T ], where

T =
µπ

2k2V
√
ab
, (3.33)

with a, b > 0, µ > 2, and

kV =
¯
σ(M )

√
2λmax(Γ), (3.34)

where Γ ∈ Rp×p is a constant, positive-definite, gain matrix and
¯
σ(M) > 0 denotes the smallest

nonzero singular value ofM over the time interval, then under the ensuing adaptation law,

˙̂
θ = ΓM ⊤ v

(
a∥v∥ 2

µ +
b

∥v∥ 2
µ

)
, (3.35)

the estimated parameter vector, θ̂, converges to Ω defined by (3.13) within a fixed time T , i.e.

θ̂(t) → Ω and θ̃(t) → N (∆(x(t)) as t→ Tc(θ̂(0)) ≤ T , ∀θ̂(0) ∈ Rp.

Proof. First, it will be shown that (3.35) is well-defined, and then proved that θ̂ converges to the
set Ω within fixed-time T .

It is obvious by boundedness of v and M that (3.35) is bounded whenever 0 < ∥v∥ < ∞,
so the focus is on what happens when ∥v∥ → 0. Consider that (3.35) can be rewritten as ˙̂

θ =

G1(M ,v) + G2(M ,v), where G1(M ,v) = aΓM ⊤ v∥v∥ 2
µ and G2(M ,v) = bΓM ⊤ v

∥v∥
2
µ

. It

is evident that G1(M ,v) → 0 as ∥v∥ → 0, however, for G2(M ,v) it follows that

∥G2(M ,v)∥2 = b2

∥v∥4/µv
⊤ (MΓ ⊤ ΓM ⊤)v.

Then, definingN =MΓ ⊤ ΓM ⊤, it is obtained that

b2σmin(N )

∥v∥4/µ ∥v∥2 ≤ ∥G2(M ,v)∥2 ≤ b2σmax(N )

∥v∥4/µ ∥v∥2.
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Since 0 ≤ σmin(N ), σmax(N ) <∞, it follows that if µ > 2, then

lim
∥v∥→0

∥G2(M ,v)∥ = 0.

Thus, it is required that µ > 2, which results in G2(M ,v) → 0 as ∥v∥ → 0 and therefore (3.35)
is well-defined.

For the convergence of θ̂ to the set Ω in fixed-time, begin by observing that θ̃, ˙̃θ, and ˙̂
θ may

always be expressed as the following linear combinations:

θ̃ = θ̃R + θ̃N , (3.36)
˙̃θ = ˙̃θR + ˙̃θN , (3.37)
˙̂
θ =

˙̂
θR +

˙̂
θN (3.38)

where θ̃R,
˙̃θR,

˙̂
θR ∈ row(M ) and θ̃N ,

˙̃θN ,
˙̂
θN ∈ N (M). By rank-nullity and the fact that

row(M ) and N (M) are orthogonal complements, such a decomposition always exists [204].
Next, from (3.35) and Assumption 3.5 observe that

˙̂
θ = ΓM ⊤ v

(
a∥v∥ 2

µ +
b

∥v∥ 2
µ

)
,

= ΓM ⊤Mθ̃

(
a∥Mθ̃∥ 2

µ +
b

∥Mθ̃∥ 2
µ

)
.

SinceMθ̃ =M (θ̃R + θ̃N) =Mθ̃R, it follows that

˙̂
θ = ΓM ⊤Mθ̃R

(
a∥Mθ̃R∥

2
µ +

b

∥Mθ̃R∥
2
µ

)
,

=
˙̂
θR.

Then, from (3.38) it is obtained that ˙̂
θN = 0p×1 and by (4.3)

˙̃θR = − ˙̂
θR, θ̃R(0) = θ̃R,0, (3.39)

˙̃θN = 0p×1, θ̃N(0) = θ̃N,0. (3.40)

By Assumption 3.5, it follows that θ̃N(0) ∈ N (∆(x(0))), and by N (∆(x(t))) = N (∆(x(0)))

for all t ∈ [0, T ] it then holds that θ̂ ∈ Ω whenever θ̃R = 0. It is sufficient, therefore, to show that
θ̃R(t) → 0 as t→ Tc(θ̂(0)) ≤ T .
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Consider the Lyapunov function candidate V = 1
2
θ̃TRΓ

−1θ̃R. Its time derivative along the
trajectories of (3.39) is

V̇ = −θ̃TRΓ−1 ˙̂θR

= −θ̃TRM ⊤Mθ̃R

(
a∥Mθ̃R∥

2
µ +

b

∥Mθ̃R∥
2
µ

)
= −a∥Mθ̃R∥2+

2
µ − b∥Mθ̃R∥2−

2
µ

When θ̃R ̸= 0, it follows that ∥Mθ̃R∥ > 0, and therefore

0 <
¯
σ(M)∥θ̃R∥ ≤ ∥Mθ̃R∥ ≤ σmax(M )∥θ̃R∥.

Then, since 1
2
λmin(Γ

−1)θ̃TRθ̃R ≤ V ≤ 1
2
λmax(Γ

−1)θ̃TRθ̃R and λmin(Γ−1) = 1/λmax(Γ), it follows
then from the definition of V that ∥θ̃R∥ ≤

√
2V λmax(Γ) = L(V ). Using this, it is obtained that

V̇ ≤ −a
(
¯
σ(M )L(V )

)2+ 2
µ − b

(
¯
σ(M)L(V )

)2− 2
µ

≤ −c1V 1+ 1
µ − c2V

1− 1
µ (3.41)

which takes the form (3.2), where

c1 = ak
2+ 2

µ

V (3.42)

c2 = bk
2− 2

µ

V , (3.43)

and kV is given by (3.34). Thus, the requirements for FxTS provided in Theorem 3.1 are met
insofar as θ̃R is concerned. Therefore, θ̃R → 0 in fixed-time, i.e. as t → Tc(θ̂(0)) ≤ Tb where Tb
is given by (3.3) and γ1 = 1 + 1

µ
and γ2 = 1 − 1

µ
. With γ1, γ2 in this form, it follows from [205,

Lemma 2] that the settling time function Tc is bounded from above by T given by (3.33). Thus,
we have that θ̂ → Ω within time T , independent of the initial estimates, θ̂(0). This completes the
proof.

The adaptation law (3.35) is usable as long as there exists a way to satisfy Assumption 3.5.
The measurement and prediction schemes outlined in Sections 3.2.2.1 and 3.2.2.2 are two avenues
toward realizing this goal, though there may exist others. While it is not guaranteed that θ̂ → θ∗

unless N (∆(x(t))) = {0} for all t ∈ [0, T ], it is sufficient from a control-oriented perspective to
learn some θ̂ such that ∆(x)θ̂ = ∆(x)θ∗.

Remark 3.5. The bound on settling time given by (3.33) requires knowledge of the minimum
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nonzero singular value of the matrixM . While the exact value may not be known a priori, domain

knowledge can be used to obtain a lower bound over the relevant region of the state space. If

using the predictor-based measurement scheme, a warm-up time, Tw, may be required for
¯
σ(W )

to eclipse such a lower bound. This warm-up time must be added to the convergence time derived

in (3.33).

3.3 Robust, Adaptive CBF-based Control

With knowledge of the parameter estimates converging to Ω in fixed-time (by means of either
(3.22) or (3.35)), expressions are derived for the upper bound on the supremum norm of the pa-
rameter estimation error vector as an explicit function of time.

Corollary 3.1. Suppose that the premises of Theorem 3.3 hold. If, in addition, the following

conditions hold

(i) The initial estimated parameter vector lies within the known admissible parameter set, Θ,

i.e. θ̂(0) ∈ Θ,

(ii) The estimated parameter update law, ˙̂
θ, is given by (3.22), where Γ is constant, positive-

definite, and also diagonal,

(iii) γ1 = 1− 1
µ

, γ2 = 1 + 1
µ

for some µ > 1,

then ∀t ∈ [0, Tθ], where Tθ is given by (3.23), the following expression constitutes a monotonically

decreasing upper bound on ∥θ̃(t)∥∞:

∥θ̃(t)∥∞ ≤
√
2λmax(Γ)

(√
c1
c2

tan (A(t))

)µ
≜ η(t), (3.44)

where c1 > 0 and c2 > 0 are the design parameters in Theorem 3.3, and

A(t) = max

{
Ξ−

√
c1c2
µ

t, 0

}
, (3.45)

Ξ = tan−1

(√
c2
c1

(
1

2
η(0)TΓ−1η(0)

) 1
µ

)
(3.46)

with η(t) = η(t) · 1p×1, and ∥θ̃(t)∥∞ = 0, ∀t > Tθ.

Proof. Consider the Lyapunov function candidate V = Vθ̃ = 1
2
θ̃TΓ−1θ̃, the time-derivative of

which is given by (3.24). Then, rearrange terms and use the change of variables x = V
1
µ and
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dx = 1
µ
V

1
µ
−1dV to obtain

t ≤
∫ V

1
µ

V
1
µ

0

µxµ−1dx

−c1xµ−1 − c2xµ+1
=

∫ V
1
µ

V
1
µ

0

µdx

−c1 − c2x2

≤ − µ√
c1c2

(
tan−1

(√
c2
c1
V

1
µ

)
− tan−1

(√
c2
c1
V

1
µ

0

))
.

By rearranging again, the following is obtained

V (t) ≤
(√

c1
c2

tan

(
tan−1

(√
c2
c1
V

1
µ

0

)
−

√
c1c2
µ

t

))µ
,

where, by observing that V0 = 1
2
θ̃(0)TΓ−1θ̃(0) ≤ 1

2
η(0)TΓ−1η(0), it follows that

V (t) ≤
(√

c1
c2

tan

(
Ξ−

√
c1c2
µ

t

))µ
.

Observe that in the limit Ξ → π
2

as ∥η(0)∥ → ∞. With θ̂(0) ∈ Θ, however, it will not occur that
V0 → ∞, and therefore, since the bound (3.23) holds for arbitrarily large V0, it is possible that
Ξ−

√
c1c2
µ
t < 0 for some t < T . To account for this, A(t) is defined by (3.45), which leads to

V (t) ≤
(√

c1
c2

tan (A(t))

)µ
. (3.47)

Now, since Γ diagonal it follows that V = 1
2
(Γ−1

11 θ̃
2
1 + ... + Γ−1

pp θ̃
2
p), and therefore that V ≥

1
2
λ−1
max(Γ)∥θ̃∥2 ≥ 1

2
λ−1
max(Γ)∥θ̃∥2∞. Then, substitute (3.47) in this inequality and rearrange terms

to recover (4.43). Then, for

0 ≤ t ≤ µ√
c1c2

tan−1

(√
c2
c1

(
1

2
η(0)TΓ−1η(0)

) 1
µ

)

we have that (4.43) decreases monotonically to zero. This completes the proof.

For the case where the regressor may not satisfy the PE condition (and thus the system may be
globally unidentifiable), the following introduces an analogous result for a bound on the component
of the parameter estimation error vector belonging to the row-space of the regressor when using
the parameter adaptation law (3.35).

Corollary 3.2. Suppose that the premises of Theorem 3.4 hold. If, in addition, the following

conditions hold
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(i) The initial estimated parameter vector lies within the known admissible parameter set, Θ,

i.e. θ̂(0) ∈ Θ,

(ii) The estimated parameter update law, ˙̂
θ, is given by (3.35), where Γ is constant, positive-

definite, and also diagonal,

(iii) A lower bound on
¯
σ(M (t)) > s > 0, is known, ∀t ≤ T , where T is given by (3.33),

then, ∀t ≤ T , the following expression constitutes a monotonically decreasing upper bound on

∥θ̃R(t)∥∞:

∥θ̃R(t)∥∞ ≤
√
2λmax(Γ)

(√
c1
c2

tan (A(t))

)µ
≜ η(t), (3.48)

where c1 and c2 are defined by (3.42) and (3.43), and

A(t) = max

{
Ξ−

√
c1c2
µ

t, 0

}
, (3.49)

Ξ = tan−1

(√
c2
c1

(
1

2
η(0)TΓ−1η(0)

) 1
µ

)
(3.50)

with η(t) = η(t) · 1p×1, and ∥θ̃R(t)∥∞ = 0, ∀t > T .

Proof. The proof is identical to the proof of Corollary 3.1 with the exception of the following
modifications: condition (iii) must hold, i.e., ∃s > 0 satisfying

¯
σ(M(t)) > s, ∀t ≤ T , so that

lower bounds on c1 and c2 may be determined, and θ̃R is substituted in place of θ̃. Note that
condition (iii) of Corollary 3.1 is satisfied automatically by the form of (3.35).

Remark 3.6. Since it is assumed that θ∗ ∈ Θ at t = 0, as a consequence of (4.43) the set of

admissible parameters can be tightened at time t, i.e. it is known that θ∗ ∈ Λ(t) ⊂ Θ, where

Λ(t) = {λ ∈ Θ : ∥λR − θ̂R∥∞ ≤ η(t)}, for all t ∈ [0, T ], where λ = λR + λN , with λR, θ̂R ∈
row(∆), λN , θ̂N ∈ N (∆), and Λ(t) = {θ̂ +N (∆)} for all t ∈ (T,∞). As a special case, if ∆ is

full column rank, then Λ(t) = {θ̂} for all t ∈ [T,∞).

Knowledge of the parameter estimation error bound as a function of time allows for the synthe-
sis of a robust, adaptive CBF condition for guaranteed forward invariance of the shrunken set Sr
given by (3.9), as proposed in the following result.

Theorem 3.5. Consider a dynamical system belonging to the class of nonlinear, control-affine

systems described by (3.4), and a subset of the safe set, Sr ⊆ S, defined by (3.9). If either of the

following two conditions are met:

52



(i) Both Assumption 3.4 and the premises of Corollary 3.1 hold, and the parameter estimates θ̂

are adapted according to (3.22), with η(t) given by (3.44) and A(t) given by (3.45), or

(ii) Both Assumption 3.5 and the premises of Corollary 3.2 hold, and the parameter estimates θ̂

are adapted according to (3.35), with η(t) given by (3.48) and A(t) given by (3.49),

then, the set Sr is rendered forward invariant if there exists a control input, u, for which the

following condition holds ∀x ∈ Sr, ∀t ≥ 0:

sup
u∈U

[
Lfh(x) + Lgh(x)u

]
≥ −α

(
hr(x,η)

)
+ r(t, θ̂) (3.51)

where r(t, θ̂) = Tr(Γ−1)η(t)η̇(t) + ν(θ̂), and

η̇(t) = −c1
√
λmax(Γ)

2

(√
c1
c2

tan (A(t))

)µ
2
−1

sec2 (A(t)) (3.52)

ν(θ̂) =

p∑
i=1

min
{
CiPΘ(θ̂i − η), CiPΘ(θ̂i + η)

}
(3.53)

where Ci denotes the ith column of L∆h(x) for i ∈ {1, . . . , p} and PΘ : Rp → Θ is the vector

projection operator onto Θ, as defined in [206].

Proof. Recall that Sr is rendered forward invariant if (3.11) holds for all x ∈ Sr. Now, replace
the constant ϑ from (3.10) with the time-varying η(t) (and henceforth omit the argument). With
ḣr =

∂hr
∂x
ẋ+ ∂hr

∂η
η̇ from (3.10), it follows from ∂hr

∂x
= ∂h

∂x
and Γ being diagonal that

∂hr
∂x
ẋ = Lfh(x) + Lgh(x)u+ L∆h(x)θ

∗, (3.54)

∂hr
∂η
η̇ = −η ⊤ Γ−1η̇ = −Tr(Γ−1)ηη̇, (3.55)

where η̇ is obtained via differentiation of η. Note that (3.54) includes the unknown term,
L∆h(x)θ

∗, and thus it must be proved that ν given by (3.53) compensates for this unknown,
and thus that (3.51) implies (3.11).

First, observe that L∆h(x)θ
∗ = L∆h(x)θ̃ + L∆h(x)θ̂ = L∆h(x)θ̃R + L∆h(x)θ̂, where θ̃R

is defined as in (3.36). Note that for a full column-rank regressor, θ̃R = θ̃. Thus, it follows that
(3.51) implies (3.11) if L∆hr(x)θ

∗ ≥ L∆hr(x)θ̃R + L∆hr(x)θ̂. Second, since ∥θ̃R(t)∥∞ = η(t),
let the set of admissible unknown parameters at time t be denoted as Φ(t), where

Φ(t) = Θ ∩ {θ ∈ Rp : ∥θR − θ̂R(t)∥∞ ≤ η(t)}, (3.56)
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where θ = θR + θN , with θR ∈ row(M) and θN ∈ N (M ). By definition, Φ(t) is compact and
convex. As such, consider the following minimization problem:

Jϕ = min
ϕ∈Φ(t)

L∆h(x)ϕ, (3.57)

which is a constrained linear program over a compact domain. It is well known that for this class
of problems there exists a minimizer ϕ∗ corresponding to a minimum value, J∗

ϕ = L∆hr(x)ϕ
∗.

Now, since L∆h(x)ϕ =
∑p

i=1Ciϕi with Ci as the ith column of L∆h(x), we have that
ϕ̄1, . . . , ϕ̄p are the minimizers of the following p constrained linear programs:

min
θ̂i−η≤ϕi≤θ̂i+η

Ciϕi, ∀i ∈ {1, . . . , p}.

Thus, for all Ci ̸= 0 it follows that ϕ̄i = θ̂i−η or ϕ̄i = θ̂i+η, and ϕ̄i can take any value for Ci = 0.
Since it is possible that ϕ̄i /∈ Θ, apply the projection operator to ϕ̄i and write that

ζ∗i = PΘϕ̄i.

By linearity, it holds that

Ciζ
∗
i = min

{
CiPΘ(θ̂i − η), CiPΘ(θ̂i + η)

}
≤ Ciϕi,

for all ϕi ∈ [θ̂i−η, θ̂i+η]. As such, denote ν =
∑p

i=1Ciζ
∗
i , for which it holds that ν ≤ L∆h(x)θ

∗.
Thus, it follows that (3.51) implies (3.11). Then, as long as there exists a control input, u, which
satisfies (3.51), the set Sr defined by (3.9) is forward invariant. This completes the proof.

The use of the projection operator in Theorem 3.5 reduces the conservatism of the approach
without compromising the robustness of the forward invariance condition.

Remark 3.7. The condition (3.51) can easily be extended to CBFs of high relative degree with

respect to the system dynamics by continuing to differentiate h and η.

3.4 Case Studies

In this section, two numerical case studies are considered: the first is a comparative investigation
on how the proposed robust, adaptive controller performs with respect to existing methods, namely
the adaptive safety approach introduced in [32], the data-driven set-membership identification al-
gorithm presented by [198], and the robust, adaptive QP controller proposed by [87]; the second
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considers a 12 degree-of-freedom 3D quadrotor model with unknown drag coefficients in a wind
field.

3.4.1 Comparative Study: Reach-Avoid with 2D Single-Integrator

As a basis for comparison, a 2D single-integrator system subject to parametric uncertainty is con-
sidered. The control objective is to safely reach the origin while avoiding static obstacles separated
by a small gap, as shown in Figure 3.1. As such, this is referred to as the “Shoot the Gap” problem.
Controllers using both adaptation laws proposed in Section 3.2 are simulated, with the former law
(Proposed Method 1) using the state filtering scheme introduced in Section 3.2.1.1 and the latter
(Proposed Method 2) using the rate measurement scheme outlined in Section 3.2.2.1. Table 3.1
provides the legend codes used to refer to the other considered works.

Table 3.1

Controllers from the Literature
Authors Citation Legend Code

Black et al. [189] BLR
Lopez et al. [198] (w/o SMID) LOP
Lopez et al. [198] (w/ SMID) LSM
Taylor et al. [32] TAY
Zhao et al. [87] ZHA

Proposed Method 1 BLA
Proposed Method 2 PRO

Note: [198] presents RaCBF-based control formulations with and without SMID for parameter
estimation. Both are considered here.

3.4.1.1 Dynamics

The system model is

ż =

[
ẋ

ẏ

]
=

[
1 0

0 1

][
ux

uy

]
+∆(z)

[
θ1

θ2

]
, (3.58)

where z = [x y] ⊤ is the state vector comprised of x and y, the lateral and longitudinal position
coordinates with respect to an inertial frame, θ1, θ2 are constant parameters that are unknown
within some bounds, and ∆ is the regressor.

Two instantiations of this problem are investigated: in the first, the regressor is full-rank at all
times; in the second, the regressor is rank-deficient at all times. In the full-rank regressor scenario,
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Figure 3.1: Problem Setup for the Shoot the Gap scenario.

∆ = ∆F , where

∆F (z) = K∆

[
1 + sin2(2πf1x) 0

0 1 + cos2(2πf2y)

]
,

with K∆, f1, f2 > 0. In the rank-deficient regressor scenario, ∆ = ∆D, where

∆D(z) =

[
−ax −2ax

−a
2
x −ax

]
,

and a = 1/2.

3.4.1.2 Controller

To encode the goal-convergence criterion the Control Lyapunov Function (CLF)

V (z) = KV (x
2 + y2),
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Figure 3.2: Evolutions of the states, control inputs, and control barrier functions for the full-rank
regressor “Shoot the Gap” example.
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Figure 3.3: Evolutions of the states, control inputs, and control barrier functions for the rank-
deficient regressor “Shoot the Gap” example.
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is defined, where KV = 1. The safe states are those residing outside of the two ellipses shown in
Figure 3.1, which results in the following CBFs:

hi(z) =
(x− xi)

2

a21
+

(y − yi)
2

a22
− 1, (3.59)

for i ∈ {1, 2}, where x1, x2, y1, y2, a1, and a2 are parameters that define the location, size, and
shape of the ellipses.

The CLF-CBF-QP framework is [65, 3, 189] is selected for control design. To more fairly
compare the proposed approaches with the controllers from the literature, the FxT-CLF condition
was used in all controllers in addition to their individual approaches to stabilization. Because
no meaningful differences between the native and FxT-CLF implementations were found in their
abilities to “shoot the gap”, results for the latter cases are presented. The control framework is
then:

min
u,δ0,δ1,...,δq

1

2
uTQu+ q0δ

2
0 +

q∑
i=1

piδ
2
i (3.60a)

s.t.

−ūj ≤uj ≤ ūj (3.60b)

1 ≤ δi (3.60c)

LfV + LgV u+ ϕV ≤ δ0 − c1V
γ1 − c2V

γ2 (3.60d)

Lfhi + Lghiu+ ϕh ≥ −δihi, (3.60e)

∀i ∈ {1, . . . , q} and ∀j ∈ {1, . . . ,m}, where the arguments of V and hi have been omitted for
conciseness. For this problem u1 = ux and u2 = uy, δ0 is a relaxation parameter (penalized by
q0 > 0) on the performance objective whose inclusion aids the feasibility of the QP, δi allows for
larger negative values of ḣi away from the boundary of the safe set, and pi > 0 penalizes values
of δi. The terms ϕV = ϕV (x,∆(x), θ̂, η) and ϕh = ϕh(x,∆(x), θ̂, η) are left intentionally vague
and are used as placeholders that represent the specific way in which each work from the literature
treats the parametric uncertainty in the system dynamics. To summarize, (3.60b) enforces input
constraints, (3.60c) imposes a lower bound on the relaxation coefficients δi, (3.60d) encodes FxT
convergence to the goal, and safety is guaranteed by (3.60e).

3.4.1.3 Results

The simulated state, control, and CBF trajectories for the case of the full-rank regressor, ∆ = ∆F ,
are shown in Figure 3.2. It is worth noting from Figure 3.2a that the only controllers that suc-
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Figure 3.4: True unknown parameters and their estimates for the Shoot the Gap example with (a)
full-rank regressor and (b) rank-deficient regressor matrix.

cessfully reach the goal while maintaining safety at all times are those that closely estimate the
unknown parameters in the system dynamics, i.e. the BLA, LSM, and PRO approaches. In fact,
it is observed from Figure 3.4a that, in accordance with the proven FxTS properties of the pro-
posed adaptation laws, the parameter estimates, θ̂, converge to their true values within fixed-time
T (resp. Tθ) given by (3.33) (resp. (3.23)). Figure 3.2c further highlights that the proposed tech-
nique accomplishes safe goal-reaching while avoiding the undesirable chattering control behavior
exhibited by the TAY approach [32], as shown in Figure 3.2b.

When a rank-deficient regressor appears in (3.58), i.e. ∆ = ∆D, however, both the BLA
and LSM methods that succeed under a full-rank regressor fail; each requires the inversion of a
non-invertible matrix. As illustrated by Figure 3.3, the proposed controller with adaptation given
by (3.35) succeeds in safely reaching the goal by learning a parameter vector, θ̂, within a fixed
time that satisfies ∆D(x)θ̂ = ∆D(x)θ

∗, as supported by Figure 3.4b. Under these dynamics, the
proposed approach is the only controller that successfully reaches the goal.

In the case of the full-rank regressor, it is evident that the ability of the adaptation law (3.35) to
learn the system uncertainty in fixed-time allowed the controller to succeed in driving the state to
the goal where others did not. Doing so despite a rank-deficient regressor further demonstrates that
it adds value to controllers for the class of systems under consideration, especially when none of
the considered approaches from the literature were capable of succeeding under such conditions.
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3.4.2 Quadrotor Trajectory Tracking

The second study examines a simulated quadrotor in a wind field. Consider a quadrotor whose
objective is to track a Gerono lemniscate (i.e., figure-eight) trajectory while obeying attitude and
altitude constraints despite wind perturbing the nominal system dynamics.

3.4.2.1 Dynamics

For the nominal system model, consider the 6 degree-of-freedom rigid-body dynamic model of the
quadrotor as described in [207]. Denote χ = [x y z u v w ϕ θ ψ p q r] ⊤ as the state, where
x, y, and z are the position coordinates (in m) with respect to an inertial frame, u, v, and w are
the translational velocities (in m/s) with respect to the body-fixed frame, ϕ, θ, and ψ (in rad) are
the roll, pitch, and yaw Euler angles defining a ZYX rotation from the inertial frame to the body-
fixed frame, and p, q, and r are the roll, pitch, and yaw rates (in rad/s) defined with respect to the
body-fixed frame.

Much attention has been given to the effect of wind on the nominal dynamics of a quadrotor
system [208, 209, 210]. Specifically, the phenomena of blade flapping, induced velocity, and
aerodynamic drag have been studied extensively. In this example, the effects of blade flapping
and induced velocity are neglected, with the focus instead on aerodynamic drag. It is assumed
that a constant, known wind field perturbs the quadrotor, whose drag coefficient vector Cd =

[Cx Cy Cz]
⊤ is unknown, where Cx, Cy, and Cz are the components in the principal body-fixed

directions.
The system is then described by:ẋẏ

ż

 =

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ

sθ −sϕcθ −cϕcθ


uv
w


u̇v̇
ẇ

 =

rv − qw

pw − ru

qu− pw

+

−gsθ
gcθsϕ

gcθcϕ

+
1

M

 0

0

−F

+∆a(χ)Cd

ϕ̇θ̇
ψ̇

 =

1 sϕtθ cϕtθ

0 cϕ −sϕ
0 sϕ

cθ
cϕ
cθ


pq
r

 (3.61)

ṗq̇
ṙ

 =


Jy−Jz
Jx

qr
Jz−Jx
Jy

pr
Jx−Jy
Jz

pq

+


1
Jx
τϕ

1
Jy
τθ

1
Jz
τψ


where g is the acceleration due to gravity (in m/sec2), the functions sin, cos, and tan are denoted
s, c, and t for brevity, M is the mass of the quadrotor (in kg), Jx, Jy, and Jz are the principal
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moments of inertia (in kg·m2), F is the thrust of the rotors (in N), and τϕ, τθ, and τψ are rolling,
pitching, and yawing torques (in N·m) respectively due to the rotors. Since (3.61) is affine in both
the control, u = [F τϕ τθ τψ]

⊤, and unknown parameters, Cd, it can be written as

χ̇ = f(χ) + g(χ)u+∆(χ)Cd,

where ∆(χ) = [03×3 ∆a(χ) 06×3]
⊤, with

∆a(χ) = K∆
∥vr∥
M

vr,1 0 0

0 vr,2 0

0 0 vr,3


where K∆ > 0, vr = Rvw − vq is the relative wind-velocity vector in the body-fixed frame,
with vq = [u v w]T the quadrotor velocity vector in the body-fixed frame, vw being the wind
velocity vector in the inertial frame, andR being the rotation matrix from the inertial to the body-
fixed frame. Additionally, vr,1, vr,2, and vr,3 are the principal components of vr such that the term
∆(χ)Cd models the effect of aerodynamic drag acting on the center of mass of the quadrotor.

3.4.2.2 Controller

Define v = [u δ1 δ2]
⊤ ∈ R6 and use the following CBF-QP-based controller [211, 212, 189]:

v∗ = argmin
v

1

2
∥u− unom∥2 + p1δ

2
1 + p2δ

2
2 (3.62a)

s.t.

Av ≤ b (3.62b)

Lfh1(χ) + Lgh1(χ)u ≥ −δ1h1(χ)− r(t, Ĉd) (3.62c)

Lfh2(χ) + Lgh2(χ)u ≥ −δ2h2(χ)− r(t, Ĉd) (3.62d)

where p1, p2 > 0. The cost function (3.62a) seeks to minimize the deviation of u∗ from some
nominal control unom, and to minimize the slack variables δ∗1, δ

∗
2 penalized by p1, p2 > 0; (3.62b)

encodes input constraints on u∗ and enforces that δ∗1, δ
∗
2 ≥

¯
δ > 0; and (3.62c) and (3.62d) enforce

safety according to the following CBFs,

h1(χ) = 1−
(
z − cz
pz

)nz

(3.63)

h2(χ) = cos(ϕ) cos(θ)− cos(α), (3.64)
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where cz = 2.5, pz = 2.5, and nz = 2 are parameters such that h1 defines the safe altitude range,
i.e. between 0 and 5 meters, and h2 restricts the thrust vectoring angle of the quadrotor to be within
α rad of the vertical. In this case, α = π

2
so that the quadrotor could not flip upside-down. The

tracking controller developed for quadrotors by [213] and used for safe quadrotor control in [214]
was selected as a nominal input unom. The adaptation law was (3.35) using the state predictor
scheme from Section 3.2.2.2 (results denoted SP-CW), which is defined here as

˙̂
Cd = ΓW Te

(
a∥e∥ 2

µ +
b

∥e∥ 2
µ

)
,

where e = χ− z, with

ż = f(χ) + g(χ)u+∆(χ)Ĉd + kee+W
˙̂
Cd,

z(0) = χ(0),

and
Ẇ = −keW +∆(χ), W (0) = 0n×p,

where a, b, µ = 5 and ke = 10. For comparison, we additionally studied the case where ˙̂
Cd = 03×1

(results denoted 0-CW). The wind-velocity vector vw was held constant at vr = [10, −8, −5]T ,
which resulted in the regressor being full-rank for all t ≥ 0. To account for the warm-up time
required in the state prediction scheme, we set Tw = 0.1 sec and added it to the theoretical bound
given by (3.33). It is possible that a longer warm-up time could result in a decrease in the minimum
non-zero singular value of the regressor, thereby reducing the upper bound on convergence time,
but this is problem-dependent and can be viewed as a tuning parameter.

3.4.2.3 Results

It may be seen from Figure 3.5 that the estimates of the coefficients of drag converged to their
true values within the fixed-time bound. Figures 3.6 and 3.7 highlight that the controller is able
to safely track the reference trajectory using the adaptation law (3.35) with the state prediction
scheme, whereas poor tracking, albeit safe, is achieved without parameter adaptation. Control
trajectories are provided in Figure 3.8. Note that the quadrotor under the effect of unknown wind
gusts (denoted by SP-WG in the figures) will be considered using new theory presented in Chapter
4.
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Figure 3.5: Principal coefficient of drag estimates for the quadrotor in a 1) constant (CW) and 2) gusty
(WG) wind field under the proposed controller with the state prediction (SP) scheme.
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Figure 3.6: Quadrotor XY trajectories as the controller seeks to track the reference trajectory (RT) in a
wind field.

3.5 Conclusion

In this chapter, two fixed-time stable parameter adaptation laws were introduced for learning the
effect of an additive, parameter-affine perturbation on a class of nonlinear, control-affine dynam-
ical systems. Under a common persistence of excitation condition, the first law was shown to
learn the true system parameters within a fixed-time independent of the initial parameter estimates,
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Figure 3.8: Control inputs for the quadrotor numerical study.

whereas the second law was shown to learn the true system disturbance within a fixed-time even
under global system unidentifiability. In both cases, error bounds were derived on the estimated
disturbance error as functions of time, which allowed for the synthesis of a robust, adaptive control
barrier function condition for preserving safety throughout the model identification process.
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CHAPTER 4

Fixed-Time Identification for Safe Control of
Unknown, Nonlinear Systems

Whereas Chapter 3 treated the problem of fixed-time system identification for safe control design
of a class of nonlinear, control- and parameter-affine systems in the idealized sense, i.e., with the
availability of perfect measurements, the conditions required for the application of such results are
often violated in practical scenarios. For many dynamical systems of practical relevance, system
models are perturbed by unmodelled dynamics, measurement error, or exogenous disturbances. As
such, this chapter explores the problem of fixed-time system identification for safe control design
under such phenomena.

Specifically, Section 4.1 investigates robustness properties of the latter of the parameter adap-
tation laws proposed in Chapter 3 to a class of bounded disturbance that model, e.g., measurement
noise or exogenous perturbations. Under such conditions, it is shown that the proposed parameter
adaptation law converges to a neighborhood of the goal set within a fixed-time. Several technical
lemmas are introduced both to prove this result and to characterize the associated neighborhood and
its domain of attraction. In Section 4.2, the class of systems under consideration is further general-
ized to consider an unknown, additive, nonlinear, yet bounded perturbation to the nominal system
model. Leveraging recent advancements in the field of Koopman operator theory (KOT), by which
a nonlinear system may be modelled via an analogous linear, but notably infinite-dimensional, sys-
tem, the parameter adaptation law from Chapter 3 is used to recursively learn a finite-dimensional
matrix representation of the Koopman generator within a fixed-time. To the best of the author’s
knowledge, this marks the first use of KOT for recursive system identification in fixed-time. Under
certain assumptions, it is shown that this provides exact reconstruction of the unknown, nonlinear
system disturbance. In Section 4.3, robust- and robust, adaptive- Control Barrier Function (CBF)
conditions are proposed for safe control synthesis under the proposed Koopman-based adaptation
law. Simulations are conducted in Section 4.4 first on the 12 dimensional, 6 degree-of-freedom
quadrotor model under an unknown wind gust and then on a double integrator example inspired by
the quadrotor problem.
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The results in this chapter are based partly on [182] and [183].

4.1 Robust Parameter Identification

This section represents a continuation of the work of Chapter 3 in that it investigates the robustness
of the parameter adaptation law (3.35) under additional, bounded perturbations to the system (3.4).

4.1.1 System Model

Consider the following nonlinear, control-, and parameter-affine system subject also to an additive,
bounded disturbance:

ẋ = f(x(t)) + g(x(t))u(t) + ∆(x(t))θ∗ + d(x(t), t), (4.1)

where x ⊂ Rn denotes the state, u ∈ U ⊂ Rm the control input, θ∗ ∈ Θ ⊂ Rp a vector of
unknown, static parameters, and d : Rn×R → D where it is known that ∥d∥∞ ≤ C < ∞,
for all d ∈ D. It is again assumed that the drift vector field f : Rn → Rn, control matrix field
g : Rn → Rn×m, and regressor ∆ : Rn → Rn×p are known, continuous, and bounded for bounded
inputs, such that for a continuous control input u : R → U the system (4.1) admits a unique
solution, and that the unknown parameters are static, i.e., that θ̇∗ = 0p×1. It is worth noting,
however, that the above system (4.1) could also model a system with time-varying parameters
ϕ∗ : R → Φ ⊂ Rp, i.e., if

d(x, t) = ∆(x)ϕ∗(t)−∆(x)θ∗, (4.2)

for some compact set Φ. As such, the estimated parameter vector is again denoted θ̂ so that the
parameter estimation error vector is θ̃ = θ∗ − θ̂ with dynamics given by

˙̃θ = − ˙̂
θ. (4.3)

In Chapter 3 two methods were proposed for the satisfaction of Assumption 3.5, a main com-
ponent of which was consistency, i.e., that the parameter estimation error vector θ̃ is one solution
to a system of equations of the form M (t)θ̃(t) = v(t) for M : R → Rn×p and v : R → Rn. For
the system (4.1) neither the rate measurement scheme from Section 3.2.2.1 nor the state predictor
scheme from Section 3.2.2.2 satisfy Assumption 3.5. Specifically, for rate measurements it follows
that

ẋ− f(x)− g(x)u−∆(x)θ̂︸ ︷︷ ︸
v

= ∆(x)︸ ︷︷ ︸
M

θ̃ + d(x, t)︸ ︷︷ ︸
δ

, (4.4)
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and for the state predictor scheme,

ξ̇ = −kξ + d(t,x), ξ(0) = e(0), (4.5)

which implies that e =Wθ̃+α for all t > 0, where α ∈ Rn is unknown. Observe, however, that
these new relations may be expressed in the form (3.15), provided here for completeness:

M (t)θ̃(t) = v(t)− δ(t), (4.6)

for δ : R → Rn. As such, the following modified version of Assumption 3.5 is introduced.

Assumption 4.1. For all t ≥ 0 there is a known vector, v(t) ∈ Rn, a known matrix,M (t) ∈ Rn×p,

and an unknown vector, δ(t) that jointly satisfy the following properties:

(i) Consistency: the parameter error, θ̃(t), is one solution to (4.6),

(ii) Bounded Perturbation: for δ(t) in (4.6) there exists a known Υ > 0 such that

sup
t∈R

∥δ(t)∥ ≤ Υ,

(iii) Boundedness and Equivalence of Assumption 3.5 hold, i.e., items (ii) and (iii) of Assumption

3.5.

Part (ii) of Assumption 4.1 is reasonable given that it is assumed that the disturbance d in (4.1)
is bounded. Note again that by expressing the parameter estimation error as θ̃ = θ̃R + θ̃N , for
θ̃R ∈ row(M ) and θ̃N ∈ N (M), it may be determined that

˙̃θ = ˙̃θR + ˙̃θN , (4.7)
˙̂
θ =

˙̂
θR +

˙̂
θN (4.8)

where ˙̃θR,
˙̂
θR ∈ row(M) and ˙̃θN ,

˙̂
θN ∈ N (M ). By rank-nullity and the fact that row(M ) and

N (M ) are orthogonal complements, such a decomposition always exists [204].

4.1.2 Technical Lemmas

The following technical Lemmas are requirements for the proof of the main result in this section.

68



Lemma 4.1. Suppose that c1, c2 > 0, c3 ∈ R, γ1 = 1+ 1
µ

, γ2 = 1− 1
µ

, µ > 1, 0 < k < 1, and that

V̄ = 1 and V0 > 1. Consider the following integral,

I ≜
∫ V̄

V0

dV

−c1V γ1 − c2V γ2 + c3V
. (4.9)

Then, the following holds:

(i) if c3 < 2
√
c1c2, then for all V0 > 1

I ≤ µ

c1k1

(π
2
− tan−1 k2

)
, (4.10)

where

k1 =

√
4c1c2 − c23

4c21
(4.11)

k2 =
2c1 − c3√
4c1c2 − c23

. (4.12)

(ii) if c3 ≥ 2
√
c1c2, and 1 ≤ V

1
µ

0 ≤ k
c3−

√
c23−4c1c2

2c1
, then

I ≤ µk

(1− k)
√
c1c2

. (4.13)

Proof. Follows directly by changing the upper integration bound from V̄ = 0 in [215, Lemma 2]
to V̄ = 1 here.

Lemma 4.2. Suppose that x,y ∈ Rn, and define

P (x,y) ≜ xTy

(
a∥x+ y∥ 2

m +
b

∥x+ y∥ 2
m

)
. (4.14)

If a, b > 0, m > 2, and there exists By > 0 such that ∥y∥ ≤ By and ∥x∥ > 2By, then it holds that

P (x,y) ≥ −By

(
a∥x∥1+ 2

m + 2
2
m b∥x∥1− 2

m

)
. (4.15)

Proof. Provided in Appendix B.
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4.1.3 Robust FxTS Parameter Adaptation

The following result derives a robustness property for the Fixed-Time Stable (FxTS) adaptation
law proposed in (3.35), namely that the parameter error converges to a neighborhood of the goal
set within a fixed-time.

Theorem 4.1 (Robust FxTS Parameter Adaptation). Consider a perturbed dynamical system of

the form (4.1). Suppose that Assumption 4.1 holds, and that N (∆(x(t))) = N (∆(x(0))), ∀t ∈
[0, T ]. Then, under the adaptation law (3.35), with λmin(Γ) ≥ 2( Υ

¯
σ(M)

)2, there exist neighborhoods

D0 and D of Ω such that for all θ̂(0) ∈ D0, the trajectories of (3.39) satisfy θ̃R(t) ∈ D0 for all

t ≥ 0, and reach D within a fixed time T , where D = {θ̃R | V (θ̃R) ≤ 1}, and

D0 =


Rp; Υ < Y,{
θ̃R | V (θ̃R) ≤

(
k
α3−

√
α2
3−4α1α2

2α1

)µ}
; Υ ≥ Y,

(4.16)

T ≤


µ

α1k1

(
π
2
− tan−1 k2

)
; Υ < Y,

µk
(1−k)√α1α2

; Υ ≥ Y,
(4.17)

where µ > 2, 0 < k < 1, k1 and k2 are given by (4.11) and (4.12) respectively, and

α1 = 2
−2
µ ak

2+ 2
µ

V , (4.18)

α2 = 2
2
µ bk

2− 2
µ

V , (4.19)

α3 = aΥk
1+ 2

µ

V + 2
2
µ bΥk

1− 2
µ

V , (4.20)

with kV defined as in (3.34), and

Y = 2
k2V

√
ab

ak
1+ 2

µ

V + 2
2
µ bk

1− 2
µ

V

. (4.21)

Proof. Consider the Lyapunov function candidate V = 1
2
θ̃TRΓ

−1θ̃R. Let q = Mθ̃R. Under the
adaptation law (3.35), it follows that

V̇ = −qT (q + δ)
(
a∥q + δ∥ 2

µ +
b

∥q + δ∥ 2
µ

)
,

where a, b > 0 and µ > 2. By definition of the vector inner product, it follows that qTq > |qTδ| as
long as ∥q∥ > ∥δ∥. Thus, when ∥q∥ > ∥δ∥ it holds that qT (q + δ) > 0 and therefore that V̇ < 0.
By Assumption 4.1 and the vector triangle inequality, ∥q+δ∥ > Υ whenever ∥q∥ > 2Υ. As such,
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∥q+ δ∥ > 1
2
∥q∥ for all ∥q∥ > 2Υ. Thus, from Theorem 3.4 it is true that whenever ∥q∥ > 2Υ the

following holds:

V̇ ≤− qTq
(
a

(∥q∥
2

) 2
µ

+ b

(
2

∥q∥

) 2
µ

)
− F (q, δ)

≤− α1V
1+ 1

µ − α2V
1− 1

µ − F (q, δ) < 0,

where α1 and α2 are given by (4.18) and (4.19), and F (q, δ) = qTδ
(
a∥q + δ∥ 2

µ + b∥q + δ∥− 2
µ

)
.

Then, using Lemma 4.2 it follows that

F (q, δ) ≥ −Υ
(
a∥q∥1+ 2

µ + 2
2
µ b∥q∥1− 2

µ

)
,

and therefore that

V̇ ≤ −α1V
1+ 1

µ − α2V
1− 1

µ + aΥ∥q∥1+ 2
µ + 2

2
µ bΥ∥q∥1− 2

µ ,

≤ −α1V
1+ 1

µ − α2V
1− 1

µ + β1V
1
2
+ 1

µ + β2V
1
2
− 1

µ ,

where β1 = aΥk
1+ 2

µ

V and β2 = 2
2
µ bΥk

1− 2
µ

V , and which, for all V ≥ 1, obeys

V̇ ≤ −α1V
1+ 1

µ − α2V
1− 1

µ + α3V, (4.22)

where α3 = β1+β2. Now, observe that 1
2
λ−1
max(Γ)∥θ̃∥2 ≤ V ≤ 1

2
λ−1
min(Γ)∥θ̃∥2, and

¯
σ2(M )∥θ̃∥2 ≤

∥q∥2 ≤ σ2
max(M )∥θ̃∥2, and thus

Vmin(θ̃R) =
1

2
g1∥q∥2 ≤ V (θ̃R) ≤

1

2
g2∥q∥2 = Vmax(θ̃R),

where g1 = (λmax(Γ)σ
2
max(M))−1 and g2 = (λmin(Γ)

¯
σ2(M ))−1. Then, since (4.22) holds for all

V ≥ 1 and V̇ < 0 for all ∥q∥ > 2Υ, it follows that V̇ < 0 for all V > 1 if Vmax(θ̃R) ≤ 1 when
∥q∥ = 2Υ. To satisfy this condition, it must hold that λmin(Γ) ≥ 2( Υ

¯
σ(M)

)2.
It is now established that for all ∥q∥ > 2Υ, both V̇ < 0 and (4.22) hold. Thus, it follows from

using Lemma 4.1 in combination with [215, Theorem 1] that for all θ̃R(0) ∈ D0, the trajectories
of (3.39) satisfy θ̃R(t) ∈ D0 for all t ≥ 0, and reach the set D within a fixed time T , where the
terms α1, α2, α3 have been rearranged to rewrite the conditions r < 1, r ≥ 1 from [215, Theorem
1] as Υ < Y,Υ ≥ Y , where Y is given by (4.21). This completes the proof.
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4.2 Koopman-based Fixed-Time System Identification for Safe
Control Design

In this section, an adaptation law of the form (3.35) is proposed for learning an additive, bounded,
nonlinear disturbance to class of nonlinear, control-affine dynamical systems. The underlying ma-
chinery for using linear parameter adaptation techniques to learn a generic, nonlinear disturbance
is a branch of mathematics known as Koopman operator theory, the preliminaries of which are now
reviewed.

4.2.1 Koopman Operator Theory

Consider a nonlinear, autonomous system of the form

ẋ = F (x), x(0) = x0, (4.23)

where F : Rn → Rn is continuous such that (4.23) admits a unique solution for all x0 ∈ Rn, the
value of which at time t is denoted φt(x0), and where F (0) = 0.

Koopman operator theory dictates that a nonlinear system of the form (4.23) has an analogous
and notably linear representation in an infinite-dimensional Hilbert space Q consisting of continu-
ous, real-valued functions q : Rn → R referred to as observables. The continuous-time Koopman
dynamical system analogous to (4.23) is then described by

q̇ = Lq, q ∈ Q, (4.24)

where L denotes the infinitesimal generator of the linear semigroup of Koopman operators U t :

Q → Q, i.e.

Lq = lim
t→0

U tq − q

t
= F · ∇q.

For tractability, however, many works (e.g. [119, 123], among others) derive matrix representations
U ∈ RN×N and L ∈ RN×N of the respective finite-rank operators U t

N = ΠNU t|QN
and LN =

ΠNL|QN
, where ΠN : Q → QN is a projection operator onto the subspace QN ⊂ Q (spanned by

N > n linearly independent basis functions {ψi : Rn → R}Ni=1) and O|QN
denotes the restriction

of the operator O to QN . For additional details on the technical details of Koopman operator
theory, see [131]. In practice U and L are taken to be the respective solutions to

ψT (x)U = (ψ(φt(x)))
T , (4.25)

LTψ(x) =
∂ψ(x)

∂x
F (x), (4.26)
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where ψ(x) = [ψ1(x) . . . ψN(x)]
T ∈ RN and ∂ψ(x)

∂x
∈ RN×n.

If L can be identified directly (as in e.g. [122]), the vector field F may be reconstructed by
solving (4.26) for F (x). When this is not possible, identification of U may be used to reconstruct
F after computing L via

L =
1

Ts
logU , (4.27)

in the case of sampled data, where log denotes the principal matrix logarithm and Ts > 0 is the
sampling interval. Observe that both (4.25) and (4.26) describe linear systems of equations of the
form aTX = b, and thus X (in this case U or L) can be identified using linear identification
techniques such as the parameter identification law (3.35).

4.2.2 Problem Statement

In the remainder of this section, consider the following class of perturbed nonlinear, control-affine
systems

ẋ = f(x(t)) + g(x(t))u(t) + d(x(t)), x(0) = x0, (4.28)

where x ∈ Rn and u ∈ U ⊆ Rm denote the state and control input vectors, the drift vector
field f : Rn → Rn and control matrix field g : Rn → Rn×m are known and continuous, and
d : Rn → Rn is an unknown disturbance known to be continuous and to obey ∥d(x)∥∞ ≤ C <∞
for all x ∈ Rn. Consider also for completeness the following set of safe states,

S = {x ∈ Rn | h(x) ≥ 0}, (4.29a)

∂S = {x ∈ Rn | h(x) = 0}, (4.29b)

Int(S) = {x ∈ Rn | h(x) > 0}, (4.29c)

for a continuously differentiable function h : Rn → R. Having established already in this disser-
tation that the set S is forward invariant (and thus the trajectories of (4.28) safe) if the function h
is a CBF, consider now that for the system (4.28) the CBF condition is

sup
u∈U

[
Lfh(x) + Lgh(x)u+ Ldh(x)

]
≥ −α(h(x)),

where, without identification of d(x), the precise value of Ldh(x) is unknown. By ∥d(x)∥∞ ≤ C,
however, it is known that

−bc ≤ Ldh(x) ≤ bc,

where bc = C
∣∣∣∂h(x)∂x

∣∣∣1n×1. Under such circumstances, a Robust Control Barrier Function (R-CBF)
[216] may be used for safe control design.
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Definition 4.1 (Robust Control Barrier Function). Given a set S ⊆ X ⊂ Rn defined by (4.29)
for a continuously differentiable function h : Rn → R, the function h is a robust control barrier
function for the system (4.28) defined on the set X if there exists a Lipschitz continuous class K∞

function α : R → R such that

sup
u∈U

[Lfh(x) + Lgh(x)u− bc] ≥ −α(h(x)), (4.30)

for all x ∈ X .

Designing a controller to protect against the worst possible disturbance in perpetuity, however,
may lead to prohibitively conservative behavior, especially if C is large. This may be mitigated by
using an estimate of the unknown disturbance d̂(x). Thus, define the vector field estimation error
d̃(x) as

d̃(x) ≜ d(x)− d̂(x).

Now, suppose that an estimate of the Koopman generator matrix L̂ for the system (4.28) is avail-
able, and let the estimated unknown vector field d̂(x) then via (4.26) be the solution to

L̂Tψ(x) =
∂ψ(x)

∂x

(
f(x) + g(x)u+ d̂(x)

)
.

Note that even an arbitrary estimate is sufficient, i.e., L̂ = 0N×N . It is assumed that ∂ψ(x)
∂x

is
full column rank, which may be satisfied by design (e.g. sinusoidal basis functions), and thus
d̂(x) → d(x) as L̂→ L (which can also be satisfied if Û → U ). Define the vectorized Koopman
matrix and generator (µ∗ and λ∗), and their estimates (µ̂ and λ̂), as

µ∗ ≜ [colT1 (U) . . . colTN(U)]T , (4.31)

λ∗ ≜ [colT1 (L) . . . col
T
N(L)]

T , (4.32)

µ̂ ≜ [colT1 (Û) . . . colTN(Û)]T , (4.33)

λ̂ ≜ [colT1 (L̂) . . . col
T
N(L̂)]

T , (4.34)

and observe that for the system (4.28) the relations (4.25) and (4.26) are equivalent to

Ψ(x)µ∗ = (ψ(φt(x)))
T , (4.35)

and
Ψ(x)λ∗ =

∂ψ(x)

∂x

(
f(x) + g(x)u+ d(x)

)
, (4.36)
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respectively, where

Ψ(x) ≜


ψT (x) 0 . . . 0

0 ψT (x) . . . 0
... . . . ...
0 . . . 0 ψT (x)

 ∈ RN×N2

. (4.37)

Let the Koopman matrix and Koopman generator estimation errors respectively be denoted

µ̃ = µ∗ − µ̂,
λ̃ = λ∗ − λ̂,

and observe that Ψ(x)λ̂ = Ψ(x)λ∗ for all λ̃ ∈ N (Ψ(x)).

Problem 4.1. Consider a dynamical system of the form (4.28). Design adaptation and control

laws, ˙̂
λ = η(x,u, λ̂) and u = κ(x, λ̂) respectively, such that

1. the Koopman generator error vector, λ̃, is rendered fixed-time stable to the nullspace of

Ψ(x), i.e. λ̃(t) → N (Ψ(x)) as t → T and λ̃(t) ∈ N (Ψ(x)) for all t ≥ T , independent of

λ̂(0), and

2. the system trajectories remain safe for all time, i.e. x(t) ∈ S, ∀t ≥ 0.

4.2.3 Fixed-Time System Identification

This section introduces the proposed adaptation law ˙̂
λ = η(x,u, λ̂) for the fixed-time identifi-

cation of the Koopman generator vector λ, which allows for the identification of the unknown
vector field d(x) in (4.28) within a fixed-time. Before introducing the main result, the following
assumptions are required.

Assumption 4.2. The projection of the infinite-dimensional Koopman operator U t onto the finite-

rank subspace QN exactly describes the evolution of observables q ∈ Q, i.e. U t
Nq = (ΠNU t)q, for

all q ∈ Q.

Assumption 4.3. There exist scalars s > 0, T > 0 such that σN(Ψ(x(t))) ≥ s for all 0 ≤ t ≤ T ,

where Ψ(x(t)) is given by (4.37).

The satisfaction of Assumption 4.2 depends on the set of basis functions ψ and its cardinality
N , and while generally this is an open problem, recent work has studied the existence of Koopman
invariant subspaces (see e.g. [217]), i.e. subspaces QN ⊂ Q over which Assumption 4.2 holds.

75



The satisfaction of Assumption 4.3, which is needed for the proposed adaptation law and bounds
the minimum non-zero singular value of Ψ, evidently also depends on the choice of basis functions.
Note, however, that Ψ(x(t)) is guaranteed to be full row-rank (which implies that σN(Ψ(x(t))) >

0) provided that ∃i ∈ [N ] such that ψi(x(t)) ̸= 0. This can be guaranteed with an appropriate
choice of bases, e.g. ψ1(x(t)) = 1.

The following is the main result of this section.

Theorem 4.2. Suppose that Assumptions 4.2 and 4.3 hold, where

T =
wπ

4sλmax(Γ)
√
ab
, (4.38)

with a, b > 0, w > 2, and Γ ∈ RN2×N2

a constant, positive-definite gain matrix. Then, under the

ensuing adaptation law

˙̂
λ = ΓΨT (x)ν(x, λ̂)

(
a∥ν(x, λ̂)∥2/w +

b

∥ν(x, λ̂)∥2/w

)
, (4.39)

the Koopman generator error vector λ̃ is rendered FxTS to the nullspace of Ψ(x), i.e. λ̃(t) →
N (Ψ(x(t))) as t→ T and λ̃(t) ∈ N (Ψ(x)) for all t ≥ T , independent of λ̂(0), where

ν(x, λ̂) =
∂ψ(x)

∂x
ẋ−Ψ(x)λ̂. (4.40)

Proof. It is first shown that there exists a time-invariant Koopman generator vector λ(t) = λ∗,
∀t ≥ 0, and then proved that under (4.39) the associated Koopman generator error vector λ̃ is
rendered FxTS to N (Ψ(x)).

First, under Assumption 4.2 it follows that there exists a finite-rank operator LN : QN → QN

such that the nonlinear dynamics of (4.28) may be represented by the following linear system in
the space of observables:

q̇ = LNq, q ∈ Q.

Then, there exists a finite-dimensional matrix representation L ∈ RN×N in a basis {ψi : X →
R}Ni=1 corresponding to the operator LN such that the relation (4.26) holds over the trajectories
of (4.28). Thus, the Koopman generator matrix L admits the (time-invariant) Koopman generator
vector λ∗ defined by (4.32).
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Next, observe that (4.36) over the trajectories of (4.28) may be modified to obtain

Ψ(x)λ∗ −Ψ(x)λ̂ =
∂ψ(x)

∂x
ẋ−Ψ(x)λ̂,

Ψ(x)λ̃ = ν(x, λ̂),

where ν(x, λ̂) is given by (4.40). Thus, the premises of Theorem 3.4 are satisfied with M = Ψ

and v = ν and the adaptation law (4.39) takes the form of (3.35). Then, with Assumption 4.3 it
follows directly from Theorem 3.35 that λ̃ is rendered FxTS to N (Ψ(x)) with settling time given
by (4.38). This completes the proof.

While the above result requires perfect measurements, it is predicated on Theorem 3.35, which
was shown to be robust to bounded perturbations in Section 4.1. In what follows, it is shown how
the parameter adaptation law (4.39) results in learning the exact disturbance d(x) to the system
dynamics (4.28) within fixed-time.

Corollary 4.1. Consider the system (4.28). Suppose that the premises of Theorem 4.2 hold, and

that the estimated Koopman vector λ̂ is adapted according to (4.39). If the estimated disturbance

d̂(x) is taken to be

d̂(x(t)) =
∂ψ(x(t))

∂x

†

Ψ(x(t))λ̂(t)− a(x(t),u(t)), (4.41)

where a(x(t),u(t)) = f(x(t)) + g(x(t))u(t), then, the vector field estimation error d̃(x(t)) is

rendered FxTS to the origin and the estimated disturbance d̂(x(t)) converges to the true distur-

bance d(x(t)) within a fixed-time T given by (4.38), i.e. d̃(x(t)) → 0 and d̂(x(t)) → d(x(t)) as

t→ T independent of d̂(x(0)).

Proof. First, observe from (4.36) that the disturbance d(x(t)) is the solution to

∂ψ(x(t))

∂x
d(x(t)) = Ψ(x(t))λ∗ − ∂ψ(x(t))

∂x
a(x(t),u(t)). (4.42)

Next, it follows from Theorem 4.2 that under (4.39) λ̂(t) → λ∗ as t → T . Then, Ψ(x(t))λ̂(t) →
Ψ(x(t))λ∗ and thus ∂ψ(x(t))

∂x
d̂(x(t)) → ∂ψ(x(t))

∂x
d(x(t)) as t → T when d̂(x(t)) is taken to be the

solution to (4.42). Finally, with ∂ψ(x(t))
∂x

full column rank, the use of its pseudoinverse ∂ψ(x(t))
∂x

†

recovers (4.41) and thus it is true that d̂(x(t)) → d(x(t)) as t→ T .

For the purpose of control design it is important to know how the estimation error signals behave
during the transient period t ≤ T before the unknown vector field d(x) has been learned. In
contrast to least-squares and related regression based approaches to learning the Koopman matrix
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U and/or generator matrix L, the FxTS parameter adaptation law allows for the derivation of
explicit estimation error bounds as a function of time.

Corollary 4.2. Suppose that the premises of Corollary 4.1 hold. If, in addition, the initial estimated

Koopman generator vector is set to zero, i.e. λ̂(0) = 0N2×1, and Γ in (4.39) is constant, positive-

definite, and also diagonal, then ∀t ∈ [0, T ], where T is given by (4.38), the following expression

constitutes a monotonically decreasing upper bound on ∥d̃(x(t))∥∞:

∥d̃(x(t))∥∞ ≤ Λσmax(W (t)) tan
w
2 (A(t)) ≜ ξ(t), (4.43)

where

Λ =
√

2λmax(Γ)
(a
b

)w/4
, (4.44)

and

W (t) =
∂ψ(x(t))

∂x

†

Ψ(x), (4.45)

A(t) = max

{
Ξ−

√
ab

w
t, 0

}
, (4.46)

Ξ = tan−1

(√
b

a

(
1

2
lTΓ−1l

) 1
w

)
, (4.47)

where l = 2C
σmin(W (0))

· 1N2×1, and ∥d̃(x(t))∥∞ = 0, ∀t > T .

Proof. Follows from Corollary 3.2, though provided here for completeness.
Using (4.41) and (4.45) the disturbance vector field error may be expressed as

d̃(x(t)) = d(x(t))− d̂(x(t)),

=W (t)λ̃(t),

and thus ∥d(x(t))∥∞ = ∥W (t)λ̃(t)∥∞ ≤ σmax(W (t))∥λ̃(t)∥∞. Then, from Corollary 3.2, it
follows that ∥λ̃(t)∥∞ ≤ Λ tan

w
2 (A(t)) for all t ≤ T , where Λ, A(t), and T are given by (4.44),

(4.46), (4.38) respectively, and ∥λ̃(t)∥∞ = 0 for all t > T .
Then, to obtain Ξ in (4.47), observe that with λ̂(0) = 0N2×1 and the assumption that

∥d(x)∥∞ ≤ C, ∀x ∈ X , it follows that at t = 0

σmin(W )∥λ̃∥∞ ≤ ∥Wλ̃∥∞ = ∥d̃(x)∥∞ ≤ 2C,
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from which we obtain that
∥λ̃(0)∥∞ ≤ 2C

σmin (W (0))
.

Thus we obtain l = 2C
σmin(W (0))

· 1N2×1, and this completes the proof.

Knowledge of the upper bound on the disturbance estimation error bound (4.43) permits the use
of the robust, adaptive model-based control techniques developed in Chapter 3.

4.3 Robust, Adaptive Control Design

In this section, two approaches are proposed for synthesizing the Koopman-based parameter adap-
tation law with a CBF-based control law for safe control under model uncertainty.

4.3.1 Robust-CBF Approach

In the first approach, R-CBF principles are applied to design a safe controller u = κ(x, λ̂) when
using the Koopman-based adaptation scheme (4.39).

Theorem 4.3. Consider a system of the form (4.28), a safe set S defined by (4.29) for a contin-

uously differentiable function h : Rn → R, and suppose that the premises of Corollary 4.2 hold.

Then, any control input u satisfying

sup
u∈U

[Lfh(x) + Lgh(x)u+ Ld̂h(x)− bc(t)] ≥ −α(h(x)) (4.48)

renders the trajectories of (4.28) safe, where

bc(t) =

∣∣∣∣∂h∂x
∣∣∣∣ ξ(t) · 1n×1, (4.49)

and ξ(t) is given by (4.43).

Proof. Observe that over the trajectories of (4.28)

ḣ = Lfh(x) + Lgh(x)u+ Ldh(x)

= Lfh(x) + Lgh(x)u+
∂h

∂x
d̂(x) +

∂h

∂x
d̃(x)

≥ Lfh(x) + Lgh(x)u+
∂h

∂x
d̂(x)−

∣∣∣∣∂h∂x
∣∣∣∣ ξ(t) · 1n×1.
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By Corollary 4.2 it follows that ∥d̃(x(t))∥∞ ≤ ξ(t) for all t ≥ 0. Therefore, ḣ ≥ −α(h(x))
whenever (4.48) holds, and thus S is rendered forward invariant by any control input satisfying
(4.48).

It is worth noting that as the estimated disturbance d̂(x) converges to the true disturbance d(x)
the robustness term bc(t) will go to zero. So while initially the condition (4.48) may demand large
control inputs to guarantee safety in the face of a the unknown disturbance, as t → T the term
bc(t) → 0 and the standard CBF condition is recovered.

4.3.2 Robust-Adaptive CBF Approach

This approach is analogous to the robust, adaptive CBF approach proposed in (3.51), and is pro-
vided here for completeness. First, define the following robust-adaptive safe set

Sr = {x ∈ Rn : hr(x, ξ) ≥ 0} (4.50)

for the continuously differentiable function

hr(x, ξ) = h(x)− 1

2
ξTΩ−1ξ,

for ξ(t) = ξ(t) ·1n×1 with ξ(t) given by (4.43), and a constant, positive-definite matrix Ω ∈ Rn×n.
The set Sr defined by (4.50) is a subset of the safe set S defined by (4.29), i.e. Sr ⊆ S . In
the following, the robust-adaptive CBF condition that renders the trajectories of (4.28) safe is
formalized.

Theorem 4.4. Consider a system of the form (4.28), a set Sr defined by (4.50) for a continuously

differentiable function hr : Rn → R, and suppose that the premises of Corollary 4.2 hold. Then,

any control input u satisfying

sup
u∈U

[
Lfhr(x) + Lghr(x)u− r

(
d̂(x), ξ

)]
≥ −α(hr(x)) (4.51)

renders the trajectories of (4.28) safe, where

r
(
d̂(x), ξ

)
= Tr(Ω−1)ξ(t)ξ̇(t) + bc(t),
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where ξ(t) is given by (4.43), bc(t) is given by (4.49), and

ξ̇(t) = Λσ̇max(W (t)) tan
w
2 (A(t))

− 1

2
Λσmax(W (t))

√
ab tan

w
2
−1(A(t))sec2(A(t))

(4.52)

Follows directly from Theorem 3.5 by replacing θ̃ with d̃(x).

Remark 4.1. The robust-adaptive CBF condition (4.51) requires the time-derivative of the maxi-

mum singular value of the matrix W (t) given by (4.45), i.e. σ̇max(W (t)). While this may not be

available in closed-form, it may be approximated in practice using finite-difference methods.

Since both the robust (4.48) and robust-adaptive (4.51) CBF conditions ensure safety of the
trajectories of (4.28), either condition may be included as an affine constraint in a Quadratic Pro-
gram (QP)-based control law (eg. [3]):

u∗ = argmin
u∈U

1

2
∥u− u0∥2 (4.53a)

s.t.

Either (4.48) or (4.51), (4.53b)

the objective (4.53a) of which seeks to find a minimally deviating solution u∗ from a nominal,
potentially unsafe input u0 subject to the specified CBF constraint (4.53b).

4.4 Simulations

4.4.1 Quadrotor Trajectory Tracking: 12D Dynamics Model

In this section, an extension of the quadrotor case study undertaken in Chapter 3 is considered.
Specifically, unknown wind gusts are assumed to perturb the system dynamics.

The 6 degree-of-freedom rigid-body dynamic model of the quadrotor as described in [207] is
provided again here for completeness. Denote χ = [x y z u v w ϕ θ ψ p q r] ⊤ as the state,
where x, y, and z are the position coordinates (in m) with respect to an inertial frame, u, v, and w
are the translational velocities (in m/s) with respect to the body-fixed frame, ϕ, θ, and ψ (in rad)
are the roll, pitch, and yaw Euler angles defining a ZYX rotation from the inertial frame to the
body-fixed frame, and p, q, and r are the roll, pitch, and yaw rates (in rad/s) defined with respect
to the body-fixed frame.

The effect of aerodynamic drag on the center of mass of the quadrotor due to wind gusts appears
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in the dynamics as an unknown, additive disturbance

da(t,χ) =

∥v∗r∥
M

v
∗
r,1 0 0

0 v∗r,2 0

0 0 v∗r,3

−∆a(χ)


CxCy
Cz

 ,
where v∗r = R(vw + vG) − vq is the relative-wind velocity vector considering both a constant,
known wind velocity vw and unknown gust velocity vG generated using the model from [218],
with principal components v∗r,1, v

∗
r,2, and v∗r,3, vq = [u v w]T is the quadrotor velocity vector in

the body-fixed frame, and R is the rotation matrix from the inertial to the body-fixed frame. M
is the mass of the quadrotor (in kg), Cx, Cy, and Cz are the coefficients of drag in the principal
body-fixed directions such that the unknown drag coefficient vector is Cd = [Cx Cy Cz]

⊤, and

∆a(χ) =
∥vrc∥
M

vrc,1 0 0

0 vrc,2 0

0 0 vrc,3

 ,
where vrc = Rvw − vq. Thus, ∆a(χ) represents the effect on the dynamics by a constant wind.
The quadrotor dynamical system is then described by:ẋẏ

ż

 =

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ

sθ −sϕcθ −cϕcθ


uv
w


 u̇v̇
ẇ

 =

rv − qw

pw − ru

qu− pw

+

−gsθ
gcθsϕ

gcθcϕ

+
1

M

 0

0

−F

+∆a(χ)Cd + da(t,χ)

ϕ̇θ̇
ψ̇

 =

1 sϕtθ cϕtθ

0 cϕ −sϕ
0 sϕ

cθ
cϕ
cθ


pq
r

 (4.54)

ṗq̇
ṙ

 =


Jy−Jz
Jx

qr
Jz−Jx
Jy

pr
Jx−Jy
Jz

pq

+


1
Jx
τϕ

1
Jy
τθ

1
Jz
τψ


i.e., a system of the form (4.1) where g is the acceleration due to gravity (in m/sec2), the functions
sin, cos, and tan are denoted s, c, and t for brevity, M is the mass of the quadrotor (in kg), Jx, Jy,
and Jz are the principal moments of inertia (in kg·m2), F is the thrust of the rotors (in N), and τϕ,
τθ, and τψ are rolling, pitching, and yawing torques (in N·m) respectively due to the rotors.
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The quadrotor dynamical model (4.54) is simulated using the controller (3.62) and state pre-
dictor scheme (3.26) in the unknown wind field (denoted SP-WG). In the presence of an unknown
disturbance d(t,χ), it is not guaranteed that the estimates of the drag coefficients Ĉd converge to
the set Ω but rather to a neighborhood of this set as specified in Theorem 4.1. Values of Y = 3.65

for (4.21) and Υ = 0.69 were computed from the wind gust model. Thus, Υ < Y , D0 = Rp,
and the fixed-time bound T is given by (4.17) plus the warm-up time Tw = 0.1 sec. In addi-
tion, the choice of λmin(Γ) = 63.16 satisfies the requirement that λmin(Γ) > 2( Υ

¯
σ(M)

)2 = 26.36,
where

¯
σ(M (t)) ≥ 0.19 for all t ≥ Tw. From Figures 3.6 and 3.7, it is seen that the controller

achieves safe, accurate tracking despite the parameter estimates not converging to the true val-
ues. It is believed that this is because the parameter estimates are capturing the effect of the
unknown perturbation in the system dynamics in addition to the parameter-affine disturbance, i.e.
∆a(χ)Ĉd ≈ ∆a(χ)Cd + d(t,χ).

4.4.2 Quadrotor Trajectory Tracking: Double-Integrator Model

In this section, the Koopman-based robust- (4.48) and robust, adaptive CBF (4.51) controllers are
simulated on a quadrotor-inspired trajectory tracking problem.

Let F be an inertial frame with a point s0 denoting its origin. Consider, again, a quadrotor seek-
ing to track a Gerono lemnisicate (i.e. figure-eight) trajectory, this time amidst circular obstacles in
the 2D plane. Quadrotor dynamics are known to be differentially flat, thus as shown to be feasible
in [219] the model is taken to be the following 2D double-integrator subject to an unknown, wind
disturbance: 

ẋ

ẏ

v̇x

v̇y

 =


vx

vy

ax

ay

+


0

0

dx(z)

dy(z)

 , (4.55)

where x and y denote the position coordinates (in m), vx and vy are the velocities (in m/s),
and ax and ay are the accelerations (in m/s2). The full state and control input vectors are
z = [x y vx vy]

T ∈ R4 and u = [ax ay]
T ∈ R2 respectively, and dx : R4 → R and

dy : R4 → R are unknown wind-gust accelerations satisfying the requirements of d in (4.28).
Again, the wind-gust model from [218] is used to obtain spatially varying wind velocities wi(z)
and set di(z) = Cd(wi(z) − vi) for i ∈ {x, y}, where Cd is a drag coefficient, such that
∥dx(z)∥∞, ∥dy(z)∥∞ ≤ C = 10.

Two circular obstacles are considered, each of which occludes the desired quadrotor path. As
such, the safe set is defined as

S = {z ∈ R4 : h1(z) ≥ 0} ∩ {z ∈ R4 : h2(z) ≥ 0},
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where hi(z) = (x − cx,i)
2 + (y − cy,i)

2 − R2 for i ∈ {1, 2}, (cx,i, cy,i) denotes the center of the
ith obstacle, and R is its radius. Since h1, h2 are relative-degree two with respect to (4.55), forms
of the Future-Focused Control Barrier Function (FF-CBF) developed in Chapter 2 are used for a
form of safe, predictive control.

The control laws are the CBF-QP1 (4.53) corresponding to both the robust (4.48) and robust-
adaptive (4.51) CBF conditions, whose results are compared against the following naive (i.e. as-
suming exact identification, d̂ = d) Koopman-based controllers from the literature: 1) a CBF
controller equipped with the data-driven Koopman-based identification scheme proposed in [119]
(denoted DD-KM) 2) the same control law with the data-driven identification scheme proposed by
[122] (denoted DD-KG). In each case, the last 500 measurements were used for computing the
Koopman matrix (or generator). For the robust and robust-adaptive simulations, additive Gaussian
measurement noise was injected into both x and ẋ in order to stress-test the proposed algorithm
under non-ideal conditions. The nominal control law was that introduced for quadrotors in [213]
and modified for the double-integrator dynamics, where the reference trajectory is the Gerono
lemniscate defined by

x∗(t) = 4 sin(0.2πt)

y∗(t) = 4 sin(0.2πt) cos(0.2πt),

which specifies that one figure-eight pattern be completed every 10s. The circular obstacles were
centered on (−2.5, 0) and (2,−1) respectively, each with a radius ofR = 1.5m. For all controllers,
the class K∞ functions were α(h) = h. For the Koopman basis functions, sinusoids of the form
ψi =

√
2 cos(nπz), ψi+1 =

√
2 sin(nπz), for n ∈ {1, 2} and z ∈ {x, y, vx, vy} were selected. The

sampling time was ∆t = 0.001s.
The resulting paths taken by the simulated CBF-controlled vehicles (Koopman-based naive,

robust, and robust-adaptive), as well as the path taken for the nominally controlled vehicle without
disturbance estimation are displayed in Figure 4.1. Here, only the robust and robust-adaptive
CBF controllers that use the proposed fixed-time identification approach preserve safety (as seen
in Figure 4.2). As the data-driven Koopman matrix ([119]) and generator ([122]) approaches are
non-recursive and unable to quantify the identification error, they are neither sufficiently responsive
nor accurate enough to guarantee safety in this example. Figure 4.3 highlights that the disturbance
estimates converge to a neighborhood of the true values within the fixed-time T = 0.12 sec,
computed using (4.38), despite measurement noise and the control inputs are shown in Figure 4.4.
Even when measurement noise is injected into the system, the adaptation-based approach succeeds

1All simulation code and data are available online at https://github.com/6lackmitchell/
nonlinear-fxt-adaptation-control
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Figure 4.1: XY paths under the various CBF-QP control laws in the double-integrator example. Only
the controllers using the proposed Koopman-based fixed-time identification scheme succeed in preserving
safety.

in both reconstructing the unknown disturbance to within a small error and preserving safety. Any
quantification of the error associated with representing the infinite-dimensional Koopman operator
in a finite-dimensional subspace is left to future work.

4.5 Conclusion

A new FxTS condition is derived to analyze the robustness properties of a parameter adaptation
law from Chapter 3 to measurement noise and/or time-varying parameters. It is shown that the
estimated parameters converge to a neighborhood of the goal set within a fixed-time, and this
neighborhood and its domain of attraction are characterized. Then, a related parameter adaptation
law is proposed using Koopman operator theory for linear identification of an unknown, nonlinear
disturbance to a class of nonlinear, control-affine dynamical systems. Under certain conditions,
the Koopman generator is learned within a fixed-time and thus the system disturbance is recov-
ered. Robust- and robust, adaptive- CBF conditions are proposed for safe control synthesis under
parameter adaptation, and a safety-critical quadrotor case study are undertaken to demonstrate
the success of the method in situations where existing Koopman-based identification and control
strategies fail.
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Figure 4.2: Evolutions of h1 and h2 for the various controllers considered in the double-integrator example.

Figure 4.3: The ground truths dx, dy and estimates d̂x, d̂y of the unknown wind gusts. In our scheme,
the estimates converge to the true values within the fixed-time T without noise, and converge to a close
approximation in the presence of measurement noise.
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Figure 4.4: Control inputs for the double-integrator example.

87



CHAPTER 5

Risk-Aware Control Barrier Functions

In contrast to the classes of unknown but notably deterministic systems studied in Chapters 3 and
4, systems modelled according to classes of Stochastic Differential Equations (SDEs) account for
the effect of randomness on the evolution of the system trajectories. Specifically, the class of SDEs
under consideration in this chapter may be modelled as a difference equation, the right-hand side
of which consists of the sum of a drift term (how the system would evolve in the deterministic
regime) and a diffusion term containing a Brownian motion process that injects randomness. In
practical applications, random phenomena may perturb the system dynamics in the form of, e.g.,
measurement noise (via imperfect sensors) or exogenous disturbances (via e.g., wind gusts, un-
controlled agents, etc.), and must be taken into consideration when encoding stability or safety
(in the stochastic sense) via model-based control design. For stochastic safety-critical systems,
however, the notion of safety via set invariance underpinning the results from previous chapters
must be adapted to account for the (non-zero) risk of random events leading to unsafe outcomes.
As demonstrated via an illustrative example in Section 5.1, existing approaches to probabilistically
safe control design for this class of systems may lead to extreme conservatism.

Thus, in Section 5.2, a novel form of Risk-Aware Control Barrier Functions (RA-CBFs) is
introduced for bounding via control design the probability that a class of stochastic, nonlinear,
control-affine systems becomes unsafe within a given (finite) time interval. The proposed formu-
lation leverages an existing result from the stochastic level-crossing literature [220] to derive an
(infinitesimal) generator1 condition, the satisfaction of which via control design results in a user-
specified risk bound on the system becoming unsafe over a time interval. It is then shown how to
further decrease conservatism by tightening the risk bound, which requires recursive application
of the RA-CBF to subsets of the safe set and the use of Bayes’ rule to obtain the total probability
of becoming unsafe. For classes of systems with a control-affine drift term, the RA-CBF condition
is likewise control-affine and is thus amenable to inclusion in a RA-CBF-Quadratic Program (QP)
control law. Under certain conditions related to the magnitude of the diffusion term, it is derived

1The (infinitesimal) generator of a stochastic process is analogous to the Lie derivative for deterministic systems.
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that this RA-CBF-QP controller leads to less conservative outcomes than the state-of-the-art, a
fact that is supported by an empirical study consisting of 400,000 total trials presented in Section
5.3. Application of the proposed approach to a highway merging problem amongst dense traffic
demonstrates the efficacy of RA-CBF-based control in a more realistic scenario.

The results of this chapter are based on [221]. The author wishes to acknowledge the many
contributions of his co-authors Dr. Georgios Fainekos, Dr. Bardh Hoxha, and Dr. Danil Prokhorov
to the development of this research.

5.1 Mathematical Preliminaries

In this section, an overview of the stochastic system model under consideration and some prelim-
inaries related to control for probabilistic set invariance is presented. But first, some additional
notation is reviewed. A bold xt denotes a vector stochastic process at time t. The Gauss error
function is erf(z) = 2√

π

∫ z
0
e−t

2
dt, and erf−1(·) is its inverse.

5.1.1 Stochastic System Model

We consider the following class of nonlinear, control-affine, SDEs,

dxt =
(
f(xt) + g(xt)ut

)
dt+ σ(xt)dwt, x0 ∈ X0, (5.1)

where x ∈ X ⊂ Rn denotes the state, u ∈ U ⊆ Rm the control input, and w ∈ Rq a standard
q-dimensional Wiener process (i.e., Brownian motion) defined over the complete probability space
(Ω,F , P ) for sample space Ω, σ-algebra F over Ω, and probability measure P : F → [0, 1]. In
this chapter, a class of memoryless, state-feedback controllers is considered such that the control
signal is ut = k(xt), with f : X → Rn, g : X → Rn×m, k : X → U , and σ : Rn → Rn×q known,
locally Lipschitz, and bounded on X , which is assumed to be bounded2. With the above regularity
conditions, we thus assume that for all x0 ∈ X0 ⊆ X the process {xt : t ∈ [0,∞)} is a strong
solution to (5.1) (see [222, Ch. 5, Def. 2.1]).

For strong solutions to an SDE of the form (5.1), the (infinitesimal) generator is defined as
follows.

Definition 5.1. [223, Def. 7.3.1] The (infinitesimal) generator A of the stochastic process xt is

2Note that in the more general case it is required for existence and uniqueness of a strong solution to (5.1) that f ,
g, k, and σ satisfy the linear growth condition on X . With X assumed to be bounded, however, this may be replaced
by boundedness of f(x), g(x), k(x), and σ(x).
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defined by

Aϕ(y) = lim
t↓0

E [ϕ(xt) | x0 = y]− ϕ(y)

t
, (5.2)

where ϕ : Rn → R belongs to DA, the set of all functions such that the limit exists for all x ∈ Rn.

The generator is the stochastic analog to the Lie derivative for deterministic systems in that it
characterizes the derivative of ϕ over the trajectories of (5.1) in expectation. By [223, Thm. 7.3.3],
for a twice continuously differentiable function ϕ with compact support, i.e., ϕ ∈ C2

0(R
n) ⊂ DA,

the generator A of xt is described by

Aϕ(x) = Lfϕ(x) + Lgϕ(x)k(x) +
1

2
Tr
(
σ(x) ⊤ ∂2ϕ

∂x2
σ(x)

)
. (5.3)

For notational convenience, in the remainder we use Γϕ(x,u) ≜ Aϕ(x) by substituting in u =

k(x) to (5.3).

5.1.2 Controlled Probabilistic Set Invariance

Consider a set of states S ⊂ X defined by a twice continuously differentiable, positive semi-
definite function B : Rn → R:

S = {x ∈ X : 0 ≤ B(x) < 1}, (5.4)

and assume that for some known γ ∈ [0, 1],

B(x) ≤ γ, ∀x ∈ X0, (5.5)

which amounts to a worst-case bound on the initial condition. As in previous chapters, it is assumed
here that the set S represents a set of safe states, and thus it is desirable to render S forward

invariant. For completeness, recall that in the deterministic setting the set S is said to be forward
invariant if x0 ∈ S =⇒ xt ∈ S , ∀t ≥ 0. In the stochastic setting, however, there may be failure
cases in which xt exits S, i.e., the system becomes unsafe. We therefore consider the stopped
process, x̃t, and the notion of probabilistic forward invariance, adapted from [224].

Definition 5.2 (Stopped Process, [225]). Suppose that τ > 0 is the first time of exit of xt from the

open set S. The stopped process x̃t is

x̃t =

xt; t < τ,

xτ ; t ≥ τ.
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Definition 5.3 (Probabilistic Forward-Invariant Set). Let 0 < p ≤ 1, and consider the stopped

process over a time interval of length T > 0, i.e., {x̃t : t ∈ [0, T ]}, with respect to the set S
defined by (5.4). The set S ⊂ X ⊂ Rn is a probabilistic forward-invariant set with probability p
for system (5.1) over the interval [0, T ] if P (x̃t ∈ S,∀t ∈ [0, T ]) ≥ p.

Thus, the trajectories of (5.1) are safe with probability p over the time interval [0, T ] if S is a
probabilistic forward-invariant set with probability p over [0, T ]. Alternatively, the probability of
the system becoming unsafe over the specified time interval, i.e., ρ ≜ P (∃t ∈ [0, T ] : x̃t /∈ S), is
bounded according to ρ ≤ 1− p. In the remainder, ρ is referred to as the “system risk”.

One approach to bounding the system risk of (5.1) is to use Stochastic Control Barrier Functions
(S-CBFs) in the control design [154, 155].

Definition 5.4 (Stochastic Control Barrier Function (S-CBF)). Consider a set S ⊂ X ⊂ Rn

defined by (5.4) for a twice continuously differentiable, positive semi-definite function B satisfying

(5.5). The function B is a stochastic control barrier function defined on the set S if there exist

α, β ≥ 0 such that for the system (5.1) the generator ΓB(x,u) satisfies the following condition,

for all x ∈ S,
inf
u∈U

ΓB(x,u) ≤ −αB(x) + β. (5.6)

A valid S-CBF guarantees that the system risk is bounded from above, as shown in the following
[154, Prop. 1].

Theorem 5.1 (Bounded System Risk with S-CBFs). Consider a stochastic system of the form

(5.1), a set of safe states S implicitly defined by a twice continuously differentiable, positive semi-

definite function B as in (5.4), and the time interval [0, T ] for T > 0. Let the probability that the

stopped process {x̃t : t ∈ [0, T ]} exits S be denoted ρS-CBF ≜ P (∃t ∈ [0, T ] : x̃t /∈ S | x̃(0) ∈
X0). If B is a S-CBF for (5.1) over the set S, then

ρS-CBF ≤


1− (1− γ) e−βT ; α > 0 and α ≤ β,(
γ + (eβT − 1)β

α

)
e−βT ; α > 0 and α > β,

γ + βT ; α = 0.

(5.7)

Remark 5.1. A S-CBF controller can certify that at best a fraction of 1 − γ of the trajectories

will be safe over a time interval for any choice of α, β, T ≥ 0. Note that, due to the martingale

origins of S-CBFs, the strength of the process noise (σ(x)) in (5.1) does not appear in (5.7). It was

initially hypothesized that this may be a source of conservatism in S-CBF-based control design,

and thus serves to motivate the problem formalized in Section 5.1.3.
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With the generator ΓB(x,u) being affine in the control u, S-CBFs are suitable for use in a
version of the following Control Barrier Function (CBF)-QP control law:

u∗ = argmin
u∈U

1

2
∥u− u0∥2 (5.8a)

s.t.

Au+ b ≤ 0, (5.8b)

where u0 is the desired input, and (5.8b) in this case represents the S-CBF condition (5.6), with
b ∈ R, A ∈ R1×m. In the remainder, (5.8) is used to compare emergent behaviors of systems under
S-CBF constraints versus those using our proposed risk-aware CBF.

5.1.3 Problem Formulation

Based on Remark 5.1, it was hypothesized that S-CBFs may introduce unnecessary conservatism
into risk-aware control design. An illustrative example is used to show that this is indeed true, and
thereby motivates the problem.

Example 5.1 (Mobile Robot Reach-Avoid). Consider a mobile robot seeking to achieve the fol-

lowing objective: visit a circular region of radius Rg > 0 centered on sg = (xg, yg), defined with

respect to the origin s0 = (0, 0) of an inertial frame I, while avoiding an unsafe region defined as

the area outside a circle of radius Rc centered on s0. The goal specification may be thought of as

visiting a point of interest, while the constraint may model, e.g., limited communication range. The

following parameters are used: sg = (2, 2), Rc = 1, and Rg = 0.25, such that the goal and safe

sets do not intersect (see Figure 5.1). Assume that the robot may be modeled as a 2D stochastic

single-integrator,

dzt =

[
1 0

0 1

][
vx

vy

]
dt+

[
σx 0

0 σy

]
dwt, (5.9)

where z = [x y] ⊤ denotes the robot’s position (in m) with respect to s0, the control u = [vx vy]
⊤

consists of velocities along x and y axes (in m/s), and σx, σy ∈ R dictate the strength of noise

introduced by the Wiener process w ∈ R2.

As seen from Figure 5.1, completing the reach task is impossible to accomplish safely. It re-
mains to be seen, however, the degree to which the S-CBF-based controller approaches the bound-
ary of the safe set in pursuit of reaching the goal. As such, the controller (5.8) is simulated with a
nominal input of u0 = −k[(x − xg) (y − yg)]

⊤ with k = 2. The input constraints were taken to
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Figure 5.1: Problem setup for the mobile robot goal-seeking problem subject to limited radio communica-
tion.

be |vx, vy| ≤ vmax = 10, and (5.8b) is the S-CBF condition (5.6), with

B(z) =
x2 + y2

R2
c

.

The initial state z0 = [1/
√
2, 0] ⊤ was fixed such that B(z0) = 0.5 = γ, and a time horizon

of T = 1 sec was used at a time-step of ∆t = 0.001 sec. A numerical study consisting of
N = 100, 000 individual trials of Example 5.1 was conducted with σx, σy = 0.3vmax · ∆t, i.e., a
strength of 30% of the maximum control input. Different values of α, β ≥ 0 were selected in order
to achieve system risk bounds of 0.505 and 0.990 as computed by (5.7) (and shown in Table 5.1).

The results (also shown in Table 5.1) confirmed the stated hypothesis: the theory supporting
the derivation of the S-CBF constraint may yield a theoretical system risk bound that significantly
overestimates the actual fraction of unsafe outcomes. Despite bounded failure rates of 0.505 and
0.990, the S-CBF-QP controller (5.8) preserved safety in 100% of the 200, 000 total trials (0 fail-
ures) over both cases during the T = 1 sec intervals. It is clear from this example that the S-CBF
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system risk bounds may not, and certainly here do not, provide any meaningful guidelines.

Table 5.1: Stochastic CBF Trials N = 100, 000

Theoretical ρ Measured ρ α β γ T
0.505 0 0.1 0.01 0.50 1.0
0.990 0 10.0 4.0 0.50 1.0

As such, the design of a stochastic control framework is addressed to bound the system risk over
a finite time interval while bridging the gap between results derived in theory and those observed
in practice.

Problem 5.1. Consider the stochastic dynamical system of the form (5.1) and an associated safe

set S defined by a twice continuously differentiable, positive semi-definite function B satisfying

(5.5). Design a feedback controller ut = k(xt) such that under certain conditions ρ ≜ P (∃t ∈
[0, T ] : x̃t /∈ S) < ρS-CBF , where ρS-CBF is given by (5.7). Further, identify the conditions under

which this relation holds.

5.2 Risk-Aware Control Barrier Functions

In this section, a novel class of RA-CBFs is proposed as a solution to Problem 5.1. First, the
following Lemma, a main ingredient in the derivation of the RA-CBF, is required.

Lemma 5.1 (Level Crossing for Wiener Process). Suppose that w : R≥0 → R is a standard

Wiener process, and T > 0 and a > 0 are constants. Then, the probability that wt < a, for all

t ∈ [0, T ] is given by

P

(
sup

0≤t≤T
w(t) < a

)
= erf

(
a√
2T

)
. (5.10)

Proof. The proof follows directly from [220, Section 3].

In what follows, the integral of the drift term of (5.1) is denoted by

IL(t) ≜
∫ t

0

(
LfB(x̃s) + LgB(x̃s)us

)
ds, (5.11)

which may be included as an integrator state in an augmented system of dimension n + 1. Now,
the formal definition of a RA-CBF is introduced.
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Definition 5.5 (Risk-Aware Control Barrier Function (RA-CBF)). Consider a set S ⊂ X ⊂ Rn

defined by (5.4) for a twice continuously differentiable, positive semi-definite function B satisfying

(5.5). The functionB is a risk-aware control barrier function on the set S if there exists a Lipschitz

continuous function α ∈ K∞ such that for the system (5.1) the following holds for all x ∈ S,

inf
u∈U

[
LfB(x) + LgB(x)u

]
≤ α

(
h(IL(t))

)
, (5.12)

where

h(IL(t)) = 1− γ − (
√
2ηT )erf−1(1− ρd)− IL(t), (5.13)

with IL(t) given by (5.11), ρd ∈
[
1− erf

(
1−γ√
2ηT

)
, 1
]

a design parameter, and

η = sup
x∈S

∥LσB(x)∥ . (5.14)

In the following theorem, it is proved that RA-CBFs bound the risk that a system of the form
(5.1) becomes unsafe over a finite time interval.

Theorem 5.2 (Bounded System Risk with RA-CBFs). Let T > 0, and denote the system risk as

ρ ≜ P (∃t ∈ [0, T ] : x̃t /∈ S | x̃0 ∈ X0). If B is a RA-CBF on the set S, then,

ρ ≤ ρd, (5.15)

where ρd ∈
[
1− erf

(
1−γ√
2ηT

)
, 1
]

is a design parameter with η given by (5.14).

Proof. Let τ > 0 be the first time of exit of xt from the open set S. With {xt : t ∈ [0,∞)} a
strong solution to (5.1), it follows from Itô’s Formula [223, Theorem 4.2.1] that ∀t < τ ,

dB(x̃t) =
(
LfB(x̃t) + LgB(x̃t)u

)
dt+ LσB(x̃t)dwt,

which leads to the integral equation B(x̃t) = B(x̃0) + IL(t) + IS(t), where IL(t) is a Lebesgue
integral defined by (5.11) and IS(t) is a stochastic integral defined by

IS(t) =

∫ t

0

LσB(x̃s)dws. (5.16)

While (5.11) can be evaluated deterministically, the stochastic integral (5.16) is an Itô integral
[223, Def. 3.1.6] and thus induces a distribution on B(x̃t) based on

IS(t) ∼ N
(
0, E

[(∫ t

0

LσB(x̃s)dws

)2
])

.
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With w ∈ Rq a standard Wiener process, it follows from the q-dimensional version of the Itô
isometry [226, Lemma 18] (an extension of the 1-dimensional Itô isometry [223, Lemma 3.1.5])
that

E

[(∫ t

0

LσB(x̃s)dws

)2
]
=

∫ t

0

∥LσB(x̃s)∥2 ds,

and thus that B(x̃t) ∼ N (µB(t), σ
2
B(t)), where µB(t) = B(x̃0) + IL(t) and σ2

B(t) =∫ t
0
∥LσB(x̃s)∥2 ds. As such, the probability that ∃t ∈ [0, T ] such that x̃t /∈ S , i.e., the system

risk ρ, may be expressed as

ρ = 1− P

(
sup

0≤t≤T
B(x̃t) < 1 | B(x̃0) ≤ γ

)
.

Now, define B̄(x̃t) = B(x̃0) + IL(t) + ĪS(t) for ĪS(t) ∼ N (0,
∫ t
0
η2ds) such that B̄(x̃t) ∼

N (B(x̃0) + IL(t),
∫ t
0
η2ds). Since by (5.14) it holds that

∫ t
0
η2ds ≥ σ2

B(t), for all t ≥ 0, it then
follows that

ρ ≤ ρ̄ ≜ 1− P

(
sup

0≤t≤T
B̄(x̃t) < 1 | B(x̃0) ≤ γ

)
. (5.17)

However, we observe that
∫ t
0
η2ds = η2t, and thus by Gaussian linearity ĪS(t) = η

√
tw(t), where

w(t) is the 1-dimensional standard Wiener process, which implies that B̄(xt) = B0 + IL(t) +

η
√
tw(t). Therefore,

ρ̄ = 1− P

(
sup

0≤t≤T
w(t) <

1− γ − IL(t)

η
√
t

| B0 ≤ γ

)
,

≤ 1− P

(
sup

0≤t≤T
w(t) <

1− γ − ĪL

η
√
T

| B0 ≤ γ

)
, (5.18)

where ĪL = sup0≤t≤T IL(t). Thus, from (5.17), (5.18), and Lemma 5.1 we have

ρ ≤ ρ̄ ≤ 1− erf

(
1− γ − ĪL√

2ηT

)
. (5.19)

Now, in order for (5.19) to be true it must hold that ĪL ≤ 1− γ− (
√
2ηT )erf−1(1− ρ̄), a sufficient

condition for which is that IL(t) ≤ 1− γ − (
√
2ηT )erf−1(1− ρ̄), ∀t ∈ [0, T ]. Then, define a set

SI = {IL ∈ R | h(IL) ≥ 0}, where h(IL) = 1− γ − (
√
2ηT )erf−1(1− ρ̄)− IL, and observe that

if h is a valid CBF for the set SI , i.e., if there exists α ∈ K∞ such that, ∀IL ∈ SI and ∀t ∈ [0, T ],
(5.12) holds then the set S is probabilistically forward invariant with probability p = 1−ρ ≥ 1− ρ̄.
Thus, from (5.19) it follows that since IL(0) = 0 by definition, ρ̄0 ≤ 1− erf

(
1−γ√
2ηT

)
where ρ̄0 is ρ̄

at t = 0. Therefore, for h(IL) ≥ 0 it must hold that ρd ∈ [ρ̄0, 1]. This completes the proof.
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Remark 5.2. Under an RA-CBF controller, the upper bound ρ on the system risk is a function only

of the initial condition γ, the length of the time interval T , and the maximum effect of the stochastic

noise on B over the set S, i.e., η. The function h measures how closely the controller has taken the

system to the tolerable risk threshold ρ via actions integrated to form IL(t).

Conditions are now introduced under which the bound on the system risk guaranteed by Theo-
rem 5.2 is strictly less than the bound guaranteed under the S-CBF control framework.

Theorem 5.3 (Conditions for Tighter System Risk Bounds). Let the premises of Theorem 5.1 hold,

and let ρd be as defined in Theorem 5.2. If B is a risk-aware control barrier function, then

min
ρd∈R

ρd < ρS-CBF (5.20)

whenever

η <
1− γ√

2T erf−1(1− γ)
, (5.21)

where η is given by (5.14) and R = [1− erf
(

1−γ√
2ηT

)
, 1].

Proof. The proof follows immediately from the property observed in Remark 5.1, i.e., that
ρS-CBF ≥ γ, ∀α, β, T ≥ 0. Then, from Theorem 5.2, minρd∈R ρd < ρS-CBF whenever
1− erf

(
1−γ√
2ηT

)
< γ. By rearranging terms, we recover (5.21).

This result provides guidelines as to when a RA-CBF-based controller would predict lower
levels of risk than a S-CBF-based controller, or vice versa. In the robot motion problem from
Section 5.1.3, with dynamics (5.9) and barrier function B(z) = x2+y2

R2
c

we have η ≈ 0.009. As
such, min ρd ≥ ρS-CBF over the T = 1 sec time interval would have required either γ < 1e-15
given σx, σy or σx, σy ≈ 50vmax ·∆t given γ = 0.5, both of which are unrealistic for the problem.

When η given by (5.14) is large, however, the allowable risk specifications using a RA-CBF
controller (based on min ρd) may not be acceptable. In this case, it may be more useful to design
the controller to remain inside a smaller sub-level set Sµ = {x ∈ Rn : 0 ≤ B(x) < µ ≤ 1}, or to
derive a total risk of the system becoming unsafe by cascading sets Sµ1 , . . . , Sµk , as shown in the
following result.

Theorem 5.4. Suppose that the premises of Theorem 5.2 hold. Consider an increasing sequence

µ0, . . . , µk such that γ = µ0 < µ1 < . . . < µk = 1 with sub-level sets Sµi = {x ∈ Rn : 0 ≤
B(x) < µi} ⊆ S, ∀i ∈ {1, . . . , k}, each of which has ηi defined by (5.14) over Sµi . If B is a

RA-CBF on each set Sµi , then ρ ≤ ρd, where ρd is a design parameter bounded by

k∏
i=1

(
1− erf

(
µi − µi−1√

2Tηi

))
≤ ρd ≤ 1. (5.22)
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Proof. First, observe that by Definition 5.5 the function B is a RA-CBF on the set Sµi if
(5.12) holds for all x ∈ Sµi , where the 1 − γ term in (5.13) is replaced by µi − γ. Let
ρµi ≜ P

(
∃t ∈ [0, T ] : x̃t /∈ Sµi | x̃0 ∈ Sµi \ Sµi−1

)
. Then, with B a RA-CBF on Sµi , it follows

from Theorem 5.2 that
ρµi ≤ 1− erf

(
µi − µi−1√

2Tηi

)
, (5.23)

where ηµi is defined by (5.14) over the set Sµi . By (5.5) and Bayes’ rule, we then obtain that
ρ ≤∏k

i=1 ρµi and thus by (5.23) we recover (5.22).

The bound in (5.23) is particularly useful when η1 < . . . < ηk, as this is the best reduction in
the conservatism in using η over all S. The number of partitions k is a design choice, and should
be adjusted according to the desired system risk and each ηi. For control design, the RA-CBF
condition (5.12) must be satisfied on each Sµi with a choice of ρdi ≥ ρµi .

5.3 Numerical Case Studies

In this section, we the efficacy of the proposed RA-CBF controller is highlighted in solving two
illustrative examples: the robot problem from Section 5.1.3, and a highway merging problem.

5.3.1 Single-Integrator Robot

The problem setup is identical to that in Example 5.1, with the robot’s dynamics given by (5.9)
and its controller of the form (5.8) with RA-CBF condition (5.12) substituted for (5.8b) The results
were a striking departure from the S-CBF based controller. When an upper bound on system risk
was set to 0.505 to match the S-CBF trial, a fraction of 0.458 of the trials violated the safety con-
dition, as shown in Table 5.2. When the RA-CBF controller was used at a maximum system risk

Table 5.2: Risk-Aware CBF Trials N = 100, 000

Predicted ρ Measured ρ γ η
0.010 10−4 0.50 0.006
0.505 0.458 0.50 0.006

of ρ = 0.01, however, not only did the measured ρ satisfy this bound (1e-4), but the system trajec-
tories took more aggressive actions toward the boundary of the safe set than the S-CBF controller
even when its risk level was set to ρS-CBF = 0.505, as shown in Figure 5.2.
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Figure 5.2: Maximum barrier function values (max0≤t≤T B(zt)) over each trial for RA-CBF (resp. S-
CBF) with system risk bounded by ρ ≤ 0.01 (resp. ρS-CBF ≤ 0.505).

5.3.2 Highway Merging

Let I be an inertial frame with an origin point s0. Consider a collection of automobiles A, a subset
of which travel on a two-lane highway near an on-ramp (i.e., AH ⊂ A), and the remainder of which
seek to merge onto the highway via the on-ramp (i.e., AM ⊂ A). Suppose that the dynamics of
vehicle i ∈ A obey a stochastic bicycle model of the form (5.1) whose drift component is described
by [191, Ch. 2] and used to model cars in [180]. The system model for the ith vehicle is provided
for completeness:

dzit =
(
f(zit) + g(zit)u

i
t

)
dt+ σ(zit)dw

i, (5.24)

for which the state vector is zi = [xi yi ψi βi vi] ⊤ and where

f(zit) =


vi
(
cos(ψi)− sin(ψi) tan(βi)

)
vi
(
sin(ψi) + cos(ψi) tan(βi)

)
vi

lr
tan(βi)

0

0

 ,

and

g(zit) =

[
03×2 03×3

02×3 I2×2

]
,
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where (omitting the vehicle identifier) x and y denote the position (in m) of the center of gravity
(c.g.) of the vehicle with respect to s0, ψ is the orientation (in rad) of its body-fixed frame, B, with
respect to I, β is the slip angle3 (in rad) of the c.g. of the vehicle relative to B (with |β| < π

2
),

and v is the velocity of the rear wheel with respect to I. The control input is u = [ω a] ⊤, where
ω is the angular velocity (in rad/s) of β and a is the acceleration of the rear wheel (in m/s2). The
front and rear wheelbases are lf and lr. See Figure 2.1 for a model diagram. The stochastic term
is σ(zit) = σ ⊤ I5×5 with σ = [0 0 0 σa σω]

⊤. The vector w ∈ R5 is the 5D standard Wiener
process.

Figure 5.3: Snapshots at t = 0.0s (a) and t = 4.0s (with t = 2.0s translucent) (b) of one trial from the
empirical study on the RA-CBF-QP controller in the highway merging scenario. Traffic flows left to right,
the ego vehicle is a blue X, and highway vehicles are red circles.

A set of 1000 trials of a T = 4s highway merging scenario was simulated with 11 vehicles,
where AM = {0} was the ego vehicle and AH = {1, . . . , 10}. Highway vehicles i ∈ AH were
initialized 15m apart in the x direction, and distributed evenly between lanes 1 (y = 0) and 2
(y = 3). Their initial velocities were distributed according to vi,0 ∼ U [29, 31]. The ego vehi-
cle was initialized 98.75m down the on-ramp with an initial velocity ve,0 ∼ U [24, 26] such that
(deterministically) under its nominal acceleration policy it would collide directly with vehicle 2.
The noise components were σa = Adrag∆t and σω = σa

ω̄
ā

, where ω̄ = π
16

(rad/s) and ā = 2.0

(m/s2) define the input constraints ai ∈ [−ā, ā] and ωi ∈ [−ω̄, ω̄], and Adrag = 0.1 + 5v̄ + 0.25v̄2,
with v̄ = 35 (m/s), such that the noise at one standard deviation represents the acceleration due
to aerodynamic drag [227] traveling at 35m/s. The ego vehicle was controlled using (5.8) with
11 RA-CBF constraints corresponding to the occupied sub-level set Sµi , where it was chosen
that µi = i/5 for i ∈ {1, . . . , 5}. The 10 ego collision avoidance constraints were encoded via
Bei(z

e, zi) = e−hei(z
e,zi), where hei(ze, zi) is the relaxed future-focused CBF (rff-CBF) (intro-

duced for collision avoidance in Chapter 2) with γ(h0) = 0.1h0. The road constraints were en-

3β is related to the steering angle δ via tanβ = lr
lr+lf

tan δ, where lf + lr is the wheelbase with lf (resp. lr) the
distance from the c.g. to the center of the front (resp. rear) wheel.
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Figure 5.4: Ego vehicle control inputs from both the highlighted trial in Figure 5.3 (subscript H) and
remaining trials (subscript R).

Figure 5.5: RA-CBF trajectories over 1000 highway merging trials.

coded with a rff-CBF of the form Br(z
e) = e−hr(z

e) for hr(ze) = hr,0(z
e, 0) + hr,0(z

e, 1), where

hr,0(z
e, τ) = −

(
xe tan(θ) +

wl
2 cos(θ)

− (ye + ẏeτ − yl)

)2
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with θ the road angle with respect to the x-axis, wl the width of a lane, and yl the lane center. For all
RA-CBFs, the corresponding ηi values were determined numerically by simulating 1000 trials and
taking ηi = maxx∈Sµi

∥LσB(x)∥ over all trials and all time. The resulting ηi values are provided
in Table 5.3. For the on-ramp, the angle of attack was θ = 3◦ (θ = 0◦ for highway lanes). The ego
nominal controlu0 was the LQR law detailed in Appendix A based on the desired lane and velocity
(vd = 30m/s). For naturalistic driving behavior, the intelligent driver model (IDM)[228] was used

Table 5.3: ηi values derived empirically

CBF η1 η2 η3 η4 η5
Road 0.012 0.025 0.035 0.046 0.067

Collision 0.018 0.031 0.049 0.063 0.076

to compute acceleration inputs ai of the highway vehicles i ∈ AH . For varying driver aggression,
we randomized the vehicles’ desired time gaps in the IDM according to τ ∼ U [0.25, 0.75]. Their
steering inputs ωi were computed using LQR based on the desired heading (ψd = 0).

Based on ηi from Table 5.3, a simulation length of T = 4 sec, known γ for all B(z0), the min-
imum specifiable risks associated with leaving each sub-level set Sµi for road safety and collision
avoidance are provided in Table 5.4. The ρd,i values provided in Table 5.5 were selected such that

Table 5.4: ρi values for sub-level sets Sµi

CBF ρ1 ρ2 ρ3 ρ4 ρ5
Road 8.58e-4 0.046 0.153 0.277 0.456

Collision 0.026 0.107 0.308 0.427 0.511

the probability of remaining safe with respect to the road is 0.99999, the probability of remaining
safe with respect to all 10 highway vehicles combined is 0.991, and thus the total probability of
safety is p ≥ 0.99, which yields ρ ≤ 0.01.

Table 5.5: Specified risk bounds ρd,i for sub-level sets Sµi

CBF ρd,1 ρd,2 ρd,3 ρd,4 ρd,5
Road 0.001 0.1 0.25 0.5 0.6

Collision 0.05 0.15 0.4 0.5 0.6
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Over 1000 simulated trials, the RA-CBF based controller safely merged 1000 times, satisfying
the risk bound of ρ ≤ 0.01. Figure 5.3 highlights one of these safe merges in which the ego vehicle
merges behind vehicle 2, where the applied control inputs are shown in Figure 5.4. In this study, it
was observed that in all 1000 trials the ego vehicle merged behind vehicle 2. In another study, in
which a risk of ρ ≤ 0.12 was specified, it was observed that the ego vehicle safely merged in 914
of the 1000 trials (p = 0.914). Interestingly, of these 914 safe trials, the ego vehicle merged behind
vehicle 2 at a rate of 0.749 and merged ahead of it the remaining 0.251 fraction of safe trials, an
indicator of the willingness of the ego vehicle in the second study to take on additional risk.

5.4 Conclusion

In this chapter, a new class of risk-aware control barrier functions was proposed for probabilisti-
cally safe control design of stochastic, nonlinear, control-affine systems over a finite time interval.
A motivating example showed the extreme conservatism exhibited by an existing state-of-the-art
approach, and, as such, conditions were derived under which RA-CBF-based control design con-
fers a tighter bound on the probability of incurring safety violations. An empirical study of over
400,000 trials validated these theoretical novelties in simulation. Then, an algorithm for further
decreasing conservatism was proposed in the form of a recursive application of the RA-CBF to sub-
sets of the safe set, and its efficacy was demonstrated on an autonomous vehicle highway merging
problem required to satisfy a safety specification of 99.1%.
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CHAPTER 6

Consolidated Control Barrier Functions: Synthesis
and Online Verification via Adaptation

In the preceding chapters, the advancements to the theory of Control Barrier Function (CBF)-based
safe control design have all required a foundational (and often strong) assumption, namely that the
CBF candidate (or candidates) is, in fact, valid. Proving that this assumption holds in practice
is challenging, particularly so for systems facing multiple spatiotemporal and input constraints,
a problem that is especially relevant in practical applications, for example involving autonomous
vehicles and mobile robots. The prevailing intuition behind the results presented in this chapter
is the following: given a set of arbitrarily many spatiotemporal constraint functions, their relative
weightings (i.e., how strongly each function affects the space of admissible control inputs) ought
to vary as the system moves through the state space, and ought to vary, specifically, in a way that
permits simultaneous spatiotemporal and input constraint satisfaction in perpetuity. In this chapter,
therefore, the problem of valid CBF synthesis is undertaken online via parameter adaptation for a
class of control-affine, nonlinear systems subject to multiple spatiotemporal and input constraints.

In pursuit of this objective, after reviewing preliminaries in Section 6.1, the notion of a
Consolidated Control Barrier Function (C-CBF) candidate is formalized in Section 6.2. It is shown
that the C-CBF candidate admits a zero super-level set that under-approximates the intersection of
all spatiotemporal constraint sets (i.e., the complete constraint set) and, consequently, that the sys-
tem trajectories evolve within the complete constraint set if the C-CBF is proven to be valid. For
verification of validity, two parameter adaptation laws are introduced respectively for the cases
of unbounded and limited control authority: the first is taken to be the solution to a Quadratic
Program (QP) enforcing that the C-CBF dynamics are always controllable, i.e. that the C-CBF
singularity is avoided; the second evolves according to new dynamical system, the state of which
tracks the solution to a time-varying optimization problem via a predictor-corrector interior point
method. The C-CBF is rendered valid whenever a solution to the adaptation-based optimization
problems exist, and as such is synthesized in a C-CBF-QP control law, the viability of which is
discussed in Section 6.3. Demonstrations of the proposed adaptive C-CBF-QP control law are
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conducted in Section 6.4 for both single- and multi-agent scenarios, with which it is shown that
the method is capable of satisfying constraint functions of arbitrary relative degree.

The results of this chapter are based partly on [185] and [186].

6.1 Preliminaries and Problem Formulation

In this section, preliminaries on time-varying convex optimization and constrained control using
CBFs are reviewed, and then the problem under consideration is introduced.

Before proceeding, the following supplementary notation is required. Given a positive-definite
matrix M ∈ Rn×n and scalar a > 0, the relation M ⪰ aI implies that all eigenvalues of M
are greater than or equal to a, where I denotes the identity matrix of appropriate dimension. A
function ϕ : R×R → R belongs to class-LL (i.e., ϕ ∈ LL) if for each fixed r (resp. s), the
function ϕ(r, s) is decreasing with respect to s (resp. r) and is such that ϕ(r, s) → 0 for s → ∞
(resp. r → ∞). Given a multivariate function V : R×Rn denoted by V (t,x), let ∇tV (t,x)

denote the derivative of V with respect to t ∈ R, ∇ttV (t,x) its second derivative, ∇xV (t,x) the
row vector of derivatives (i.e., gradient) of V with respect to x ∈ Rn, and ∇xxV (t,x) its Hessian
matrix.

6.1.1 Predictor-Corrector Interior Point Method

Consider a time-varying, possibly non-convex optimization problem, a local solution trajectory to
which takes the form

y∗(t) = argmin
y∈Rp

J(t,y), s.t. ci(t,y) ≤ 0, ∀i ∈ [q], (6.1)

where J : R×Rp → R is a (uniformly strongly convex) objective function, the collection of q ≥ 0

(not necessarily convex) inequality constraints is ci : R×Rp → R for i ∈ [q], and where all of
J and ci are twice continuously differentiable in y and piecewise continuously differentiable in t.
Denote the feasible region of (6.1) as Y(t) = {y ∈ Rp : ci(t,y) ≤ 0,∀i ∈ [q]}, and further assume
that the feasible region has an interior point at all times, i.e., that Int(Y(t)) ̸= ∅, ∀t ≥ 0. Though
J is assumed to be uniformly strongly convex, without convexity of the inequality constraints it is
not guaranteed that (6.1) is the global solution trajectory; nevertheless, barrier function methods
may be employed to approximate a local solution (6.1) (see e.g., [229, Sec. 9.4]). Consider such
an approximate solution ŷ∗(t), constructed using Frisch’s logarithmic barrier functions:

ŷ∗(t) = argmin
y∈Rp

Ψ(t,y) ≜ J(t,y)− 1

s

q∑
i=1

log(−ci(t,y)), (6.2)
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where s > 0 is a barrier design parameter. In the limit, as s → ∞, the function
−1
s
log(−ci(t,y)) → I−(ci(t,y)), where I− : R → {0,∞} is defined such that I−(u) = 0 for

u ≤ 0 and I−(u) = ∞ for u > 0. In addition to facilitating this non-smooth function approx-
imation, the barrier parameter may also convexify the augmented objective function Ψ. Though
log(−ci) may be non-convex, it is assumed (similar to e.g., [230]) that for sufficiently large s the
function Ψ is strongly, uniformly convex, stated formally as follows.

Assumption 6.1 (Convexity). For all y ∈ Int(Y(t)), ∀t ≥ 0, there exist s, a > 0 such that

∇yyΨ(t,y) ≜ ∇yyJ(t,y)−
1

s

q∑
i=1

∇yy log(−ci(t,y)) ⪰ aI.

In practice, for strongly uniformly convex J the above may be satisfied by using sufficiently
large s, which may be determined either online or iteratively offline. It follows then that ∇yyΨ

exists and is bounded, which permits the review of a version of [231, Lemma 2] relating the
approximate (locally) optimal trajectory ŷ∗(t) given by (6.2) to the solution of a continuous-time
dynamical system.

Lemma 6.1 (Strictly Feasible Convergence to Approximate Solution). Let ŷ∗(t) be defined by

(6.2) and z(t) be the solution to the following ordinary differential equation,

ż = −∇−1
zzΨ(t, z)

[
P∇zΨ(t, z) +∇ztΨ(z, t)

]
,

z(0) = z0 ∈ Y(0),
(6.3)

where P ∈ Rp×p is a positive-definite gain matrix satisfying P ⪰ bI for some b > 0, and

Ψ : R×Rp is defined as in (6.2) and known to satisfy Assumption 6.1. Then, z(t) ∈ Y(t) for all

t ≥ 0 and

∥z(t)− ŷ∗(t)∥ ≤ Ce−bt,

where 0 ≤ C ≜ 1
a
∥∇zΨ(z(0), 0)∥ <∞.

The above result implies that the solution z(t) to (6.3) approaches the approximate optimal
trajectory ŷ∗(t) asymptotically while remaining in the feasible region Y(t) at all times. Intuitively,
the dynamics of (6.3) consist of a prediction term

żp = −∇−1
zzΨ(t, z)∇ztΨ(z, t),

and a Newton-like correction term

żc = −∇−1
zzΨ(t, z)P∇zΨ(t, z),
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which together ensure that z(t) ∈ Int(Y(t)) at all times (hence predictor-corrector interior point
method). The findings of Lemma 6.1 are required in the proof of one of the main results on
parameter adaptation for constrained control design presented in Section 6.2, the premises of which
will now be reviewed.

6.1.2 Constrained Control Design

The remainder of this chapter considers a class of nonlinear, control-affine dynamical systems of
the form

ẋ = f(x(t)) + g(x(t))u(t), x(0) = x0 (6.4)

where t ∈ T = [t0,∞) represents time, x ∈ Rn and u ∈ U ⊂ Rm are the state and control input
vectors, with U the input constraint set, and where f : Rn → Rn and g : Rn → Rn×m are known
and locally Lipschitz. It is assumed that the control input u : T → U yields a unique solution to
(6.4) for all t ∈ T .

Consider one of c ≥ 1 (possibly time-varying) twice continuously differentiable constraint
functions hi : T × Rn → R, which may encode a safety, performance, and/or specification based
constraint, and let the set of states over which this particular constraint is satisfied at a given time
be

Si(t) = {x ∈ Rn | hi(t,x) ≥ 0}. (6.5)

The set of all constraint functions is denoted as

H = {h1, · · · , hc}, (6.6)

such that the focus of this chapter is synthesizing a control law that confines the state within the
intersection of all individual constraint sets, hereafter referred to as the complete constraint set:

S(t) =
c⋂
i=1

Si(t). (6.7)

It is assumed that the complete constraint set possesses an interior point, i.e., Int(S(t)) ̸= ∅, ∀t ∈
T , and thus the goal is to design a controller that renders a subset D(t) ⊆ S(t) forward invariant

with respect to the system (6.4), i.e., to ensure that x(0) ∈ D(0) ⊆ S(0) =⇒ x(t) ∈ D(t) ⊆
S(t), ∀t ∈ T . Of note is that the functions hi are required to be twice continuously differentiable,
a stricter (though often reasonable) condition than the more typical continuous differentiability
requirement, for reasons pertaining to the proposed parameter adaptation law in Section 6.2.

For the remainder of this section, preliminaries specific to the case of one constraint function
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(c = 1) will be reviewed. Under such circumstances, one approach to controlled set invariance is
to use CBFs in the control design. In what follows, the notion of a time-varying CBF inspired by
[232, 173] is presented, and it is then shown to enforce forward invariance via control design.

Definition 6.1. Given a time-varying set Si(t), t ∈ T , defined by (6.5) for a twice continuously

differentiable function hi : T ×Rn → R, the function hi is a control barrier function (CBF) for the

system (6.4) with respect to Si(t) if there exists a locally Lipschitz continuous extended class-K∞

function α such that, for all x ∈ Si(t), t ∈ T ,

sup
u∈U

ḣi(t,x,u) ≥ −α
(
hi(t,x)

)
. (6.8)

Equation (6.8) is referred to as the CBF condition. Note that if the function hi has relative-
degree1 r > 1 with respect to the system (6.4) then the control input u has no effect on (6.8). In
many cases this deficiency can be resolved by deriving high-order CBFs (see e.g., [168, 233] for
details), though this may require careful parameter design [40]. One of the methods proposed in
Section 6.2, however, requires no assumptions about the relative-degree of the constraint functions
under consideration, a fact that is highlighted in a numerical case study in Section 6.4. For a
particular constraint function hi, the set of control actions satisfying its CBF condition (6.8) is
referred to as its CBF control set, and is denoted by

Uhi(t, α) =
{
u ∈ U : (6.9)

ḣi(t,x(t),u) + α
(
hi(t,x(t))

)
≥ 0
}
,

noting that Uhi is parameterized by the set of functions α ∈ K∞. In the following result inspired
by [173], it is shown that controls belonging to the CBF control set Uhi render the constraint set
Si(t) forward invariant.

Theorem 6.1. If hi is a control barrier function for the system (6.4) with respect to the set Si(t)
defined by (6.5), then x(0) ∈ Si(0) =⇒ x(t) ∈ Si(t) for all t ∈ T , i.e., Si(t) is forward

invariant.

Proof. Consider an absolutely continuous function η : T → R and locally Lipschitz function
γ ∈ K∞. By [171, Lem. 2] it is true that if η̇(t) ≥ −γ(η(t)) for every t ∈ T and η(0) ≥ 0, then
η(t) ≥ 0 for all t ∈ T . With assumed unique solutions to (6.4) and taking η(t) = hi(t,x(t)) and
γ = α, it follows that hi(t,x(t)) ≥ 0 for all t ∈ T and thus Si(t) is forward invariant.

1A function p : R+ ×Rn → R is said to be of relative-degree r with respect to the dynamics (6.4) if r is the
number of times p must be differentiated before one of the control inputs u appear explicitly.
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Note that hi being a CBF implies that there exists α ∈ K∞ such that the CBF control set is
non-empty for all time, i.e., Uhi(t, α) ̸= ∅, ∀t ∈ T . Under such circumstances, for the class
of control-affine systems described by (6.4) the CBF condition (6.8) may be included as a linear
constraint in the following QP-based control law (see e.g., [180, 3]):

u∗(t) = argmin
u∈U

1

2
∥u− u0(t,x)∥2 (6.10a)

s.t.
∂hi
∂t

+
∂hi
∂x

f(x) +
∂hi
∂x

g(x)u ≥ −α
(
hi(t,x)

)
, (6.10b)

where (6.10a) seeks to produce a control solution u∗ ∈ U that deviates minimally from some
desired input u0 : T × Rn → Rm, and (6.10b) encodes the CBF condition (6.8). For systems
without input constraints (i.e., U = Rm), other works (e.g., [234]) highlight that the constraint
function hi is a CBF if there exists a function α ∈ K∞ satisfying

∂hi
∂x

g(x) = 0 =⇒
∂hi
∂t

+
∂hi
∂x

f(x) + α(hi(t,x)) > 0

(6.11)

for all x(t) ∈ Si(t), t ∈ T . For systems with bounded inputs (i.e., U ̸= Rm), the analogous
requirement is that

sup
u∈U

∂hi
∂x

g(x)u =δ =⇒

∂hi
∂t

+
∂hi
∂x

f(x) + α(hi(t,x)) > −δ
(6.12)

for all x(t) ∈ Si(t), t ∈ T , δ ≥ 0. Here, δ serves to define the strongest drift to the CBF dynamics
which the controller can overcome to satisfy the CBF condition (6.8). It is worth highlighting
that both cases (6.11) and (6.12) are equivalent to the condition that the CBF control set Uhi is
never empty. While for systems with unlimited control authority it may be straightforward for
certain constraints to show that Uhi ̸= ∅ (see e.g., the collision avoidance constraint between two
vehicles in [190]), this is generally much more difficult under multiple constraints. Verifying that
(6.12) is true a priori for a given constraint function, moreover, is challenging even under a single
constraint. Unless (6.11) or (6.12) are proven to hold for their respective systems, the constraint
function hi is only a candidate CBF for (6.4) with respect to Si(t), and thus may or may not
render Si(t) forward invariant. Recent works have addressed the problem of synthesizing a valid

CBF via offline analysis [176], by construction [168], inclusion of additional constraints in the
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QP controller [46], or through online adaptation [169]. The scopes of these solutions, however,
are limited to only one time-invariant constraint function (c = 1) and therefore do not extend
to situations in which the state must remain within a complete constraint set of the form (6.7)
comprised of multiple, time-varying constituent constraint functions.

6.1.3 Problem Statements

The main open problem in constrained control design under multiple state constraints is in cer-
tifying that all constraints will satisfied jointly in perpetuity. This chapter bridges this gap by 1)
synthesizing one C-CBF candidate from the collection of constraint functions and then 2) certify-
ing the C-CBF candidate as valid via online parameter adaptation.

Problem 6.1. Consider a collection of c ≥ 1 twice continuously differentiable constraint functions

hi : T × Rn → R corresponding to constraint sets Si(t) given by (6.5). Design a new constraint

function H : T ×Rc
+×Rn → R with constituent constraint function weightsw = (w1, · · · , wc) ∈

Rc
+ such that the set

D(t,w) = {x ∈ Rn | H(t,w,x) ≥ 0} (6.13)

satisfies D(t,w) ⊆ S(t) for the complete constraint set given by (6.7), ∀t ∈ T .

This new constraint function H is referred to as a C-CBF candidate, the zero super-level set
D(t,w) of which is to be rendered forward invariant. Consolidating many separate constraint
functions hi into one function H means that each weight wi affects the relative importance of
hi in H (and by extension the set D). It also permits, however, the use of existing CBF results
for certifiable constrained control design. Notably, the class of QP-based controllers (6.10) may be
used with the new functionH to render D forward invariant and thus to ensure that the state remains
within the complete constraint set S. Proving that H is a valid C-CBF, however, may be difficult
when using static constituent function weights w, i.e., weights chosen a priori with ẇ ≡ 0c×1.
Thus, the design of a weight adaptation law ẇ = ω(t,w,x,u) for ω : T × Rc

+×Rn×U → Rc is
investigated to vary the weights w online and, in doing so, render the C-CBF candidate H valid.
With w then dependent on time t, in the remainder the dependence of D on the weights w is
omitted for conciseness. To render the C-CBF candidate H valid is to ensure that

sup
u∈U

Ḣ(t,w, ẇ,x,u) ≥ −α
(
H(t,w,x)

)
, (6.14)

holds for all x(t) ∈ D(t), ∀t ∈ T . Notice that the above is to the C-CBF candidate H as (6.8)
is to a CBF candidate hi. Thus, (6.14) is referred to as the C-CBF condition. While it has been
established that the CBF condition (6.8) is affine in the control input u for the class of systems
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described by (6.4), the C-CBF condition (6.14) is only affine in u if the adaptation law ẇ is affine
in (or independent of) u, i.e., if ẇ takes the form

ẇ = ω(t,w,x,u) ≜ µ(t,w,x) + ν(t,w,x)u, (6.15)

for some functions µ : T × Rc
+×Rn → Rc and ν : T × Rc

+×Rn → Rc×m. With ẇ taking
this form, the C-CBF condition (6.14) may be included directly as a linear constraint in a QP-
based control law of the form (6.10). As such, the second problem under consideration is formally
introduced.

Problem 6.2. Given a function α ∈ K∞, a C-CBF candidate H , and its corresponding CBF

control set

UH(t, α) =
{
u ∈ U : (6.16)

Ḣ(t,w, ẇ,x,u) + α
(
H(t,w,x)

)
≥ 0
}
,

design a control-affine weight adaptation law of the form (6.15) such that UH(t, α) ̸= ∅ for all

t ∈ T , i.e., such that

sup
u∈U

(
∂H

∂x
g(x) +

∂H

∂w
ν(t,w,x)

)
u = δ =⇒ (6.17)

∂H

∂t
+
∂H

∂x
f(x) +

∂H

∂w
µ(t,w,x) + α

(
H(t,w,x)

)
> −δ,

for all x(t) ∈ D(t), ∀t ∈ T , δ ≥ 0.

Notice that (6.17) constitutes a sufficient condition for the satisfaction of the C-CBF condition
(6.14), and therefore ensures that the CBF control set UH(t, α) is never empty.

6.2 Consolidated Control Barrier Functions

In this section, a solution is introduced to Problem 6.1 in the form of a C-CBF candidate that
smoothly synthesizes multiple constraint functions into one whose zero super-level set under-
approximates the complete constraint set. Then, two solutions to Problem 6.2 are proposed in
the form of parameter adaptation laws for adapting the weights of the C-CBF’s constituent func-
tions such that the C-CBF is rendered valid, i.e., so that the condition (6.14) is viable in perpetuity,
for 1) the class of systems described by (6.4) with unbounded control authority, and 2) the same
class of systems subject to input constraints.
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6.2.1 Consolidated CBFs

Given the set of constraint functions H (6.6) with cardinality c ≥ 1, the form of the C-CBF
candidate H : T × Rc

+ ×Rn → R is

H(t,w,x) = 1−
c∑
i=1

ϕ
(
hi(t,x), wi

)
, (6.18)

where ϕ : R+×R+ → R+ belongs to class-LL, is twice continuously differentiable, and satisfies
ϕ(r, 0) = ϕ(0, s) = ϕ(0, 0) = 1. Note that the specified domain considers only positive values
for wi and hi, a reasonable choice since it encodes that x(t) /∈ D(t) if some hi(t,x(t)) ≤ 0

with wi ≥ 0 or if some wi ≤ 0 with hi(t,x(t)) ≥ 0. Both the decaying exponential function
ϕ(r, s) = e−rs and the class of reciprocal functions of the form ϕ(r, s) = v/(rs + v), v > 0, for
example, satisfy the above requirements over the admissible domain. It is straightforward to see,
therefore, that the function ϕ encodes that the zero super-level set of H is a subset of the complete
constraint set S(t), i.e.,

D(t) = {x ∈ Rn | H(t,w(t),x) ≥ 0} ⊂ S(t), ∀t ∈ T ,

provided that w ∈ Rc
+. Note that the weights behave as a shape parameter for the function ϕ,

and are neither used to construct a weighted average nor required to sum to any specific amount.
Instead, observe that larger weights w allow D(t) to more closely approach S(t), as for a given
state it follows that ϕ(hi(t,x), wli) < ϕ(hi(t,x), w

s
i ) for wli > wsi > 0. This means that a higher

weight wi confers smaller relative importance of its associated constraint function hi to the C-CBF
candidate H . For example, in Figure 6.1 the effect of two different weights on the level sets of two
obstacle avoidance constraint functions is depicted. In this case, obstacle two has smaller relative
importance (i.e., w2 > w1) and thus the system takes actions toward obstacle two until it reaches a
region where the level set values decrease very quickly to zero, at which point it makes an evasive
maneuver. Thus, the system effectively ignores obstacle two until it must take action to avoid it.

Thus, H defined by (6.18) solves Problem 6.1 and is referred to as a C-CBF candidate. Given
an arbitrary weight vector w, however, it may not be true that H is a valid CBF for (6.4) with
respect to the set D(t). Without adapting the weights as the system moves through the state space
the C-CBF condition (6.17) may be violated.

In the next two sections, solutions to Problem 6.2 are proposed for the system (6.4) first under
unbounded control authority and then when subject to input constraints.
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Figure 6.1: A contrived example of a system seeking to reach a target location (green star) while adapting
weights w in the presence of two elliptical obstacles of identical size and shape whose constraint functions
h1 and h2 define exclusion sets O1(t) = Rn \S1(t) and O2(t) = Rn \S2(t). Here, the system gives greater
relative importance to obstacle one (i.e., w1 < w2) and therefore the function H views obstacle one as
having a shallow level curve topography (depicted as level curves l1 < l2 < l3 < l4 spaced further apart
with smaller gradient magnitude ∇xϕ1), whereas it sees obstacle two as having steep gradients (level curves
close together, with larger ∇xϕ2) near the obstacle. This allows the state to more closely approach obstacle
two before deciding to take evasive action.

6.2.2 Validation under Unbounded Control Authority

In this subsection, it is assumed that the input constraint set is unbounded, i.e. that U = Rm. In
this case, it follows that a sufficient condition for the viability of the C-CBF condition (6.14) is that

∂H

∂x
g(x(t)) ̸= 0, ∀x(t) ∈ D(t) ⊂ S(t), ∀t ∈ T . (6.19)
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Thus, the weight adaptation law in this subsection seeks to ensure that the above condition holds.
For this to be possible, some component of the C-CBF dynamics must be controllable, i.e., at least
one constraint function must have relative-degree r = 1 with respect to the system (6.4).

Assumption 6.2 (Controllability). The matrix of controlled candidate CBF dynamics is not all

zero, i.e.

Lg ≜


Lgh1

...

Lghc

 ̸= 0c×m. (6.20)

Now, the main result of this subsection, an adaptation law that solves Problem 6.2 for the case
of U = Rm and thus renders H a valid C-CBF for the set D(t), for all t ∈ T , may be presented.

Theorem 6.2. Consider c ≥ 1 twice continuously differentiable constraint functions hi defining

sets Si(t) as in (6.5), ∀i ∈ [c], and the associated C-CBF candidate given by (6.18) with constituent

weights w. Suppose that Assumption 6.2 holds, that the input constraint set for the system (6.4) is

U = Rm, and that there exists a feasible solution to the following problem for all time,

v∗(t,w,x) = argmin
v∈Rc

1

2
(v−v0(t,w,x)) ⊤P (v − v0(t,w,x)), (6.21a)

s.t.

vi + αw(wi − wmin) ≥ 0, ∀i ∈ [c], (6.21b)

vi + αw(wmax − wi) ≥ 0, ∀i ∈ [c], (6.21c)

pTQṗ+ pT Q̇p+ αp(hp) ≥ 0, (6.21d)

where P ∈ Rc×c is a positive-definite gain matrix, αw, αp ∈ K∞, v0 : T ×Rc
+×Rn is the desired

adaptation ẇ, wmin > 0 is the lower bound on any element of w, and

p =

[
∂ϕ

∂h1
. . .

∂ϕ

∂hc

]T
, (6.22)

Q = I − (NNT )T −NNT − (NNT )TNNT (6.23)

with hp = 1
2
pTQp− ε, ε > 0, and

N = [n1 . . . nr], (6.24)

such that {n1, . . . ,nr} constitutes a basis for the null space of LTg , i.e. N (LTg ) =

span{n1, . . . ,nr}, where Lg is given by (6.20). If w(0) is such that ∂H
∂x
g(x) ̸= 01×m at t = 0,
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then, under the ensuing adaptation law,

ω(t,w,x) = v∗(t,w,x), (6.25)

the C-CBF candidate H given by (6.18) is rendered valid for the system (6.4) with respect to the

set D(t), i.e., the condition (6.17) is viable for all x(t) ∈ D(t) and δ ≥ 0, for all t ≥ 0.

Proof. First, given (6.18), we have that

Ḣ = −
c∑
i=1

(
∂ϕ

∂hi
ḣi +

∂ϕ

∂wi
ẇi

)
= −

(
pT ḣ+ qT ẇ

)
= −

(
pT (Lt +Lf +Lgu) + q

T ẇ
)

where p is given by (6.22), Lg by (6.20), Lt = [∂h1
∂t

. . . ∂hc
∂t

] ⊤, Lf = [Lfh1 . . . Lfhc]
⊤, and

q = [ ∂ϕ
∂w1

. . . ∂ϕ
∂wc

] ⊤. With U = RM , it follows that as long as (6.19) holds it is possible to choose
u such that (6.14) holds. It will now be shown that ẇ = ω(t,w,x) given by (6.25) guarantees that
(6.19) is true and thus that H is a valid C-CBF for D(t), for all t ∈ T .

Since ∂H
∂x
g(x) = −pTLg, the problem of showing that (6.19) holds is equivalent to proving

that p /∈ N (Lg
⊤) = span{n1, . . . ,nr}. Since the vector p can be expressed as a sum of vectors

perpendicular to and parallel to N (LTg ) (respectively p⊥ and p∥), it follows that p /∈ N (LTg ) as
long as ∥p⊥∥ > 0, where p⊥ =

(
I −NNT

)
p by vector projection, and N is given by (6.24).

Thus, a sufficient condition for p /∈ N (LTg ) is that

1

2
∥(I −NNT )p∥2 = 1

2
pTQp > ε (6.26)

for some ε > 0, where Q is given by (6.23). Then, by defining a function hp = 1
2
pTQp − ε, it

follows from (6.8) that when (6.26) is true at t = 0, it is true ∀t ≥ 0 as long as (6.21d) holds. The
conditions (6.21b) and (6.21c) ensure that w ∈ Rc

+ and that w is bounded respectively.
Therefore, gains w adapted according to the law (6.25) are guaranteed to result in ∂H

∂x
g(x) ̸=

01×m. Thus, H is a valid C-CBF for the set D(t), for all t ∈ T . This completes the proof.

Remark 6.1. With Q depending on basis vectors spanning N (LTg ), it is not immediately obvious

under what conditions Q̇ is continuous (or even well-defined). Prior results show that if the rank

of N (LTg ) is constant then Q̇ varies continuously, ∀x ∈ Bϵ(x) [235], but analytical derivations

of Q̇ are not available. For the simulations and experiments presented in this chapter using this

method, it was observed that the rank of N (LTg ) was indeed constant, and thus Q̇ was approxi-

mated numerically using finite-difference methods.
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6.2.3 Validation under Limited Control Authority

In this subsection, it is assumed that the input constraint set is of the form

U = {u ∈ Rm | −umax ≤ u ≤ umax}, (6.27)

where the inequalities are interpreted element-wise and umax = (ū1, · · · , ūm) with 0 < ūj < ∞
for j ∈ [m]. Thus, the set U is a polytope symmetric about the origin.

Consider that in addition to the C-CBF weights w being used to enforce the condition (6.14),
it may be desirable to choose weights that are optimal with respect to some objective function
J : T ×Rc×Rn → R. As such, a predictor-corrector interior point method is proposed for weight
adaptation to track the following optimal solution trajectory:

w∗(t) = argmin
w∈Rc

J(t,w,x), s.t. w ∈ W(t), (6.28)

where J is strongly uniformly convex with respect to w, twice continuously differentiable in both
w and x, and piecewise continuously differentiable in t. The feasible region is defined by

W(t) = {w ∈ Rc | bj(t,w,x) ≤ 0,∀j ∈ [2c+ 1]} , (6.29)

where the first c constraint functions bj : T × Rc×Rn → R enforce that each wj remains above
the user-specified minimum threshold wmin > 0 to ensure that w(t) ∈ Rc

+, ∀t ∈ T , i.e.,

bj(t,w,x) = wmin − wj, ∀j ∈ [c], (6.30)

the second c constraint functions bj : T × Rc×Rn → R enforce that each wj remains below a
user-specified maximum threshold wmax <∞ to ensure that w(t) is well-defined, i.e.,

bj+c(t,w,x) = wj − wmax, ∀j ∈ [c], (6.31)

and the final constraint function b2c+1 : T × Rc×Rn → R enforces that the C-CBF condition
(6.17) is satisfied, i.e., namely that

β(t,w,x) ≜− ∂H

∂t
− ∂H

∂x
f(x)− ∂H

∂w
ẇ (6.32)

− α(H(t,w,x))− sup
u∈U

[
∂H

∂x
g(x)u

]
≤ 0.

For the moment, consider that b2c+1 = β. Note that the optimal solution trajectory (6.28) is of the
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form (6.1), and thus consider the approximate optimal solution trajectory

ŵ∗(t) = argmin
w∈Rc

Φ(t,w,x), (6.33)

where Φ is analogous to Ψ in (6.2) and is defined by

Φ(t,w,x) ≜ J(t,w,x)− 1

s

2c+1∑
j=1

log
(
− bj(t,w,x)

)
, (6.34)

for barrier parameter s > 0. It is taken that Assumption 6.1 holds for Φ i.e., that there exists s > 0

rendering Φ strongly uniformly convex with respect to w. As stated previously, this is reasonable
in practice given a sufficiently large choice of s. It is therefore proposed to adapt the weights w
according to a control-affine dynamical system of the form (6.3):

ẇ = µ(t,w,x) + ν(t,w,x)u, (6.35)

where µ : T × Rc×Rn → Rc and ν : T × Rc×Rn → Rc×m are defined by

µ(t,w,x) = −∇−1
wwΦ

(
P∇wΦ +∇wxΦf(x) +∇wtΦ

)
, (6.36)

ν(t,w,x) = −∇−1
wwΦ∇wxΦg(x), (6.37)

for which P ∈ Rc×c is a positive-definite gain matrix. Note that ẇ given by (6.35) is affine in
u as required in the statement of Problem 6.2, but, however, that because ẇ appears explicitly
in (6.32) (and therefore in (6.34)) the adaptation law given by (6.35) with b2c+1 = β requires
solving a partial differential equation (PDE). Rather than attempt to solve this (possibly intractable)
PDE, the algebraic loop is broken by introducing µf (t) and νf (t) as filtered versions of µ(t) ≜

µ(t,w(t),x(t)) and ν(t) ≜ ν(t,w(t),x(t)). It is assumed that these filtered variables track their
unfiltered counterparts sufficiently closely, as stated in the following.

Assumption 6.3 (Quality Filtering). There exist bounded, positive constants ηµ and ην , i.e., 0 <

ηµ, ην <∞, such that the following relations hold:

min
t∈T

[
∂H

∂w

(
µf (t)− µ(t)

)]
≥ −ηµ, (6.38)

which implies that the deviation between the effect of the filtered signal µf and true signal µ on
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the C-CBF dynamics is bounded by ηµ, and

min
t∈T

[
sup
u∈U

(
∂H

∂x
g(x(t)) +

∂H

∂w
νf (t)

)
u (6.39)

− sup
u∈U

(
∂H

∂x
g(x(t)) +

∂H

∂w
ν(t))

)
u

]
≥ −ην ,

which similarly implies that the deviation (considering the worst possible control input) between

the effect of the filtered signal νf and true signal ν on the C-CBF dynamics is bounded by ην .

The above implicitly define worst-case error bounds ηµ and ην on how the filtered signals µf

and νf affect Ḣ versus the true signals µ and ν, and thus the inequality in (6.32) may be satisfied
by using µf , νf , ηµ, and ην instead of µ and ν. In practice, (6.38) and (6.39) may be satisfied via
appropriate filter design. The final constraint function is thus defined as

b2c+1(t,w,x) = δ(t,w,x)− |q(t,w,x)| ⊤ umax, (6.40)

which is directly (6.32) with the filter variables (and error bounds), specifically

δ(t,w,x) = ηµ + ην−
∂H

∂t
− ∂H

∂x
f(x)

− ∂H

∂w
µf (t)− α(H),

(6.41)

and
q(t,w,x) ≜ LTg ph(w,x) + ν

f (t)Tpw(w,x), (6.42)

with the C-CBF control matrix Lg (omitting the dependence on x) defined by

Lg =

[
∂h1
∂x

· · · ∂hc
∂x

]T
g(x) ∈ Rc×m, (6.43)

and the functions ph : Rc×Rn → Rc and pw : Rc×Rn → Rc given by

ph(w,x) =

[
∂ϕ(w1,x)

∂h1
· · · ∂ϕ(wc,x)

∂hc

]
⊤, (6.44)

pw(w,x) =

[
∂ϕ(w1,x)

∂w1

· · · ∂ϕ(wc,x)
∂wc

]
⊤ . (6.45)

These modifications allow for the inclusion of b2c+1 directly as a function constraining the optimal
solution trajectory given by (6.28) without needing to solve a complicated PDE.

Now, the main result of this subsection.
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Theorem 6.3. Consider c ≥ 1 twice continuously differentiable constraint functions hi defining

sets Si(t) as in (6.5), ∀i ∈ [c], and the associated C-CBF candidate given by (6.18) with constituent

weights w. Suppose that Assumption 6.3 holds, and that Int(W(t)) ̸= ∅ for all t ≥ 0 with

w(0) ∈ Int(W(0)). Then, under the adaptation law (6.35), the C-CBF candidate H given by

(6.18) is rendered valid, i.e., the condition (6.17) is satisfied for all x(t) ∈ D(t) and δ ≥ 0, for all

t ≥ 0.

Proof. First, an expression for Ḣ will be derived, and then it will be shown that when ẇ is given
by (6.35) there always exists a control input u ∈ U such that supu∈U Ḣ(t,w, ẇ,x,u) ≥ −α(H).

First, observe that according to (6.18) the C-CBF candidate time-derivative Ḣ takes the follow-
ing form:

Ḣ = −
c∑
i=1

(
∂ϕ

∂hi
ḣi +

∂ϕ

∂wi
ẇi

)
= −

(
pTh ḣ+ pTwẇ

)
= −

(
pTh (Lt +Lf +Lgu) + pTw(µ+ νu)

)
,

where µ = µ(t,w,x) and ν = ν(t,w,x) are given by (6.36) and (6.37) respectively, Lg by
(6.43), ph and pw by (6.44) and (6.45), and where (omitting the dependence on x and w)

Lt =

[
∂h1
∂t

· · · ∂hc
∂t

]T
∈ Rc,

Lf =

[
∂h1
∂x

· · · ∂h1
∂x

]T
f(x) ∈ Rc .

Given α ∈ K∞, it follows that Ḣ + α(H) = a+ bTu, with a = α(H)− pTh (Lt +Lf )− pTwµ and
b = −(LTg ph + ν

Tpw). Observe that given (6.4), the adaptation law (6.35) may be expressed as

ẇ = −∇−1
wwΦ (P∇wΦ +∇wxΦẋ+∇wtΦ) ,

which, for Φ defined by (6.34) defines a dynamical system of the form (6.3). With Φ strongly,
uniformly convex, Int(W(t)) ̸= ∅ for all t ≥ 0, and w(0) ∈ Int(W(0)), it follows from Lemma
6.1 that the solution remains within the feasible set for all time, i.e., w(t) ∈ W(t), ∀t ≥ 0, which
implies that bj(t,w(t),x(t)) ≤ 0 for all j ∈ [2c+ 1], t ≥ 0. While constraints j ∈ [c] encode that
each wj > wmin > 0 and constraints j + c for j ∈ [c] encode that each wj < wmax < ∞, it may
be seen by substituting (6.41) and (6.42) into (6.40) that the final constraint function b2c+1 encodes
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that

∂H

∂t
+
∂H

∂x
f(x) +

∂H

∂w
µf − ηµ + α(H) +

∣∣∣∣∂H∂x g(x) + ∂H

∂w
νf
∣∣∣∣umax − ην ≥ 0.

Then, by observing from the input constraint set (6.27) that∣∣∣∣∂H∂x g(x) + ∂H

∂w
νf
∣∣∣∣umax = sup

u∈U

(
∂H

∂x
g(x) +

∂H

∂w
νf
)
u

and taking by (6.38) and (6.39) from Assumption 6.3, it follows that that b2c+1 ≤ 0 implies that

Ḣ =
∂H

∂t
+
∂H

∂x
f(x) +

∂H

∂w
µ(t,w,x) + α(H) + sup

u∈U

[(
∂H

∂x
g(x) +

∂H

∂w
ν(t,w,x)

)
u

]
,

=
∂H

∂t
+
∂H

∂x
f(x) +

∂H

∂w
ẇ + sup

u∈U

∂H

∂x
g(x)u ≥ −α(H),

and therefore there always exists a control input u ∈ U such that the C-CBF condition (6.14) is
viable. Thus, the adaptation law (6.35) renders the C-CBF candidate valid. This completes the
proof.

Remark 6.2. The above result is predicated on the following assumptions holding. First, the

convexity condition imposed on Φ as outlined in Assumption 6.1: this may require monitoring

the eigenvalues of ∇wwΦ online and increasing s if necessary, but in the numerical experiments

conducted this has been unproblematic. Second, and most challenging, the filter design for µ(t)

and ν(t) must be sufficiently accurate as detailed in Assumption 6.3. The robustness margins ηµ
and ην may be difficult to determine a priori without knowledge of how the system will evolve over

time. In the numerical experiments, a trial and error process with first-order low-pass filters was

used to determined that ηµ, ην ≤ 0.05 typically worked well for the case studies undertaken. The

third and final set of assumptions involves the feasible region W , namely that Int(W(t)) ̸= ∅
and that w(0) ∈ W(0). Ensuring that the initial weights belong to the feasible set is fairly

straightforward: choose a set of weights and, if they do not belong to the feasible set, adapt them

using only the correction term of the adaptation law ẇ0 = −∇−1
wwΦP∇wΦ untilw0 ∈ Int(W(0)).

Ensuring that Int(W(t)) ̸= ∅ for all t ∈ T is currently an open problem, and thus must be assumed

to be true. What the result in Theorem 6.3 does imply, however, is that if the feasible region has

an interior point then the adaptation law (6.35) will find it. If no interior feasible point exists,

then use various relaxation strategies on the constraint functions bj , j ∈ [2c] (which excludes the

constraint function encoding the C-CBF condition) may be used in order to consider an enlarged

feasible region and ensure that the adaptation law is well-defined. The discussion in [231, Section

III.C] contains more details on this strategy.
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Remark 6.3. Notably absent from the set of requisite assumptions is any condition on the relative-

degree of the state constraint functions hi. For the proposed method it is actually acceptable for

the C-CBF control matrix Lg to consist only of zeros because the parameter adaptation law ẇ

contributes to the viability of the C-CBF condition (6.14) via the term ∂H
∂w
ν(t,w,x)u. In this case,

the adaptation of the weights would be fully responsible for ensuring that (6.14) holds. This does

not come without tradeoffs, however, since it may be more difficult to satisfy the assumption on the

initial condition that w(0) ∈ W(0) (which may restrict the set of allowable initial states) or to

ensure that Int(W(t)) ̸= ∅.

6.3 Control Synthesis with C-CBFs

In this section, a controller based on the proposed consolidated control barrier function is proposed
and its present limitations are discussed.

6.3.1 C-CBF-QP Control Design

Previously, the CBF-QP control law given by (6.10) was reviewed and it was suggested that the
C-CBF could be directly inserted into such a framework for certified constrained control design.
The C-CBF-QP controller can be described by

u∗(t) = argmin
u∈Rm

Ju(t,x,u), s.t. u ∈ UH(t, α), (6.46)

where the objective function Ju : T × Rn×Rm → R is given by

Ju(t,x,u) =
1

2
∥u− u0(t,x)∥2,

and the feasible region UH is the C-CBF control set given by (6.16), defined more concisely here
as

UH(t, α) = {u ∈ Rm | dk(t,w,x,u) ≤ 0,∀k ∈ [2m+ 1]}

for input constraint functions

dk(t,w,x,u) = ūk − uk, ∀k ∈ [m], (6.47)

dk+m(t,w,x,u) = uk − ūk, ∀k ∈ [m], (6.48)
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and the C-CBF constraint function

d2m+1(t,w,x,u) = −α(H)− ∂H

∂t
− ∂H

∂x
f(x)− ∂H

∂w
ẇ − ∂H

∂x
g(x)u.

The following results highlights how this proposed controller results in complete satisfaction of all
constraint functions belonging to H when ẇ is given by (6.35).

Theorem 6.4. Consider the set of c ≥ 1 constraint functions H given by (6.6) and the complete

constraint set S(t) given by (6.7). Assume that either

(i) the premises of Theorem 6.2 hold, and ẇ is given by (6.25), or

(ii) the premises of Theorem 6.3 hold, and ẇ is given by (6.35).

Then, under the control law (6.46) the state remains inside the complete constraint set and thus all

constraints encoded via functions h ∈ H are satisfied for all time, i.e., x(t) ∈ S(t), ∀t ∈ T under

control policy u∗(t) given by (6.46).

Proof. First, under the premises of Theorem 6.2 the input constraint set is U = Rm. It was shown
that when the adaptation law is given by (6.25), the controllable component of the C-CBF dynamics
is never zero, i.e., ∂H

∂x
g(x) ̸= 01×m, and therefore that the C-CBF constraint set is never empty, i.e.

UH(t, α) ̸= ∅, ∀t ∈ T .
Alternatively, from Theorem 6.3 and its requisite assumptions it follows that when ẇ is given

by (6.35) then the C-CBF control set is non-empty at all times, i.e., UH(t, α) ̸= ∅, ∀t ∈ T .
Thus, both cases imply that the optimization problem (6.46) is feasible at all times, from which

it follows that u∗(t) ∈ UH(t, α), ∀t ∈ T . Thus, the function H is a valid CBF with respect to the
set D(t) for the system (6.4). It then follows from Theorem 6.1 that x(t) ∈ D(t), ∀t ∈ T . Since
the set D(t) is a subset of the complete constraint set S(t) at all times, i.e., D(t) ⊂ S(t), ∀t ∈ T ,
then x(t) ∈ S(t) and therefore h(t,x(t)) ≥ 0, ∀h ∈ H, for all t ∈ T .

6.3.2 Discussion

From the above result, it is evident that the motivation behind the parameter adaptation laws in-
troduced in Section 6.2 is to enable the feasibility of the QP controller described by (6.46). In
this sense, the feasibility problem has been transferred from one optimization problem (the con-
trol law (6.46)) to another ((6.28), the basis for the adaptation law (6.35)) without providing any
formal feasibility guarantees. There is some precedent for this type of approach, e.g., in [46] the
authors augment the QP-control law with an additional constraint encoding feasibility under input
constraints and (at some point) assume feasibility of this new problem.
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Considering henceforth only the predictor-corrector interior point adaptation law (6.35), it is
assumed that the foundational optimization problem for the adaptation satisfies Slater’s condition,
i.e., that the feasible region contains an interior point. Without this assumption, analyzing the
stability properties of the interconnected dynamical system

ξ̇ =

[
ẋ

ẇ

]
=

[
f(x)

µ(t,w,x)

]
+

[
g(x)

ν(t,w,x)

]
u∗,

is a difficult task. This is a limitation to the proposed method, although there is potential in this
line of research in that interior point methods similar to that used to derive the adaptation law
(6.35) from optimization problem (6.28) may be used to introduce a new dynamical system u̇ =

υ(t,w,x,u) for the input u to systems (6.4) and (6.35), as outlined in what follows.
Given that the objective function Ju for (6.46) is twice continuously differentiable and strongly,

uniformly convex in u and that the constraint functions dk, k ∈ [2m + 1] are convex (because
they are affine) in u, log-barriers may again be used to introduce the approximate optimal control
trajectory as

û∗(t) = argmin
u∈Rm

Ω(t,w,x,u), (6.49)

where

Ω(t,w,x,u) ≜ Ju(t,x,u)−
1

s

2m+1∑
k=1

log
(
− dk(t,w,x,u)

)
, (6.50)

for barrier parameter s > 0. Assume (as for Ψ in (6.2), Φ in (6.33)) that Assumption 6.1 holds
for Ω, i.e., that there exists s > 0 that renders Ω strongly, uniformly convex in u, and consider the
following dynamical system

u̇ = υ(t,w,x,u) ≜ −∇−1
uuΩ

(
B∇uΩ +∇uwΩẇ +∇uxΩẋ+∇utΩ

)
,

u(0) ∈ UH(0, α),
(6.51)

withB ∈ Rm×m a positive-definite gain matrix affecting the strength of the correction term, ẇ the
adaptation law given by (6.35), and ẋ the state dynamics given by (6.4). In this case, the control
law could then be given as the solution u(t) to the system (6.51), i.e.,

u(t) = φt(u(0)), (6.52)

where φt is the flow map of (6.51) such that t 7→ φt(u(0)) solves (6.51) for initial condition u(0).
The motivation for using interior point methods to introduce the dynamical system (6.51) is that
it enables the expression of the state x, weight w, and control u dynamics as one interconnected
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dynamical system with no external inputs:

χ̇ = F (t,χ) =

 ẋẇ
u̇

 =

 f(x) + g(x)u

µ(t,w,x) + ν(t,w,x)u

υ(t,w,x,u)

 (6.53)

where χ = (x,w,u) ∈ Rn+c+m is the state, and for which a block diagram is provided in Figure
6.2. Though this is not the first time that a continuous-time interior point method has been used
in place of a CBF-QP control law (see e.g., [236]), any work which uses such an approach for
joint adaptation and control laws for constrained control design is unknown to the author. This
permits the use of available tools like Barbalat’s lemma [237, Lem. 8.2] for stability analysis of
time-varying systems, and the hope is to investigate the properties of this system in the future.

Figure 6.2: Block diagram for the χ̇ dynamics described by (6.53).

6.4 Case Studies

For code and simulation videos, visit the linked Github repository2.

6.4.1 Single-Agent Studies

In this section, two examples are considered to highlight the use of the C-CBF-QP controller
introduced by (6.46) with the adaptation law (6.35): an illustrative one-dimensional problem, and

2Github repo: https://github.com/6lackmitchell/CCBF-Control
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a reach-avoid scenario inspired by mobile robots by which the method is compared to several
baseline controllers.

6.4.1.1 One-Dimensional Nonlinear System

Consider the following nonlinear, control-affine dynamical system:

ẋ = x(ekx
2 − 1) + (4− x2)u, x(0) = 0, (6.54)

where x ∈ R denotes the state, u ∈ U ⊂ R the control input, and where k = ln(2)/p2 with
p = 1.5616. It may be seen that the uncontrolled system has a unique (unstable) equilibrium at
x = 0, and that there are two distinct control singularities at x = 2 and x = −2 respectively in the
sense that the control u has no effect on the dynamics at these points. The control objective is to
track a known trajectory

x∗(t) = 4 sin(2π
t

5
+ θ),

where considered separately are the cases θ = 0 and θ = π (i.e., the sinusoid evolving in both
positive and negative directions) subject to the state constraints x ≤ 2 and x ≥ −2, which may be
encoded via constraint functions

h1(x) = 2− x,

h2(x) = x+ 2.

It is evident that perfect tracking of the desired state would result in violations of both of the above
constraint functions as the signal x∗(t) oscillates. The input constraint set is U = [−1, 1], which
creates two infinite potential wells in the following sense: if it occurs that 2 > x > p1 = p (resp.
−2 < x < p2 = −p) then x will escape to ∞ (resp. −∞) and violate h1 (resp. h2) in doing so. In
short, though the state constraints are x ≤ 2 and x ≥ −2, due to the input constraint set U these
constraints are guaranteed to be violated if either x > p or x < −p regardless of the control applied
thereafter. The proposed C-CBF controller has the ability to protect against these types of potential
wells via online parameter adaptation, and it is now shown how it manages to continuously satisfy
both constraints h1 and h2 simultaneously despite seeking to track an unsafe nominal trajectory.

The tracking problem was simulated using three different iterations of the C-CBF-QP controller
(6.46) with a proportional control law tracking the desired trajectory x∗(t) as a nominal input. The
controllers differed in their tracking aggressiveness as encoded via the following class-K functions
appearing in the C-CBF condition: α(H) = γ ·H3 with γ = 0.01, 0.1, 1.0. This made for a total
of six trials: three controllers tested each on two separate desired trajectories. In all six scenarios
the initial weights were w(0) = (2.38, 2.38). For the C-CBF H (6.18) was used with decaying
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Figure 6.3: Evolution of the (a) state x and (b) control u for the 1-D trajectory tracking problem
using the C-CBF controller with 3 different class K∞ functions of the form α(H) = γ ·H3 for the
given γ values.
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exponentials, i.e., ϕ(r, s) = e−rs. For the adaptation law (6.35), wmin = 0.01, wmax = 50.0, and
P = 100I were used.

The evolution of the state in each trial is shown in Figure 6.3a, from which it may be seen that
not only are the position constraints satisfied at all times despite the unsafe reference path but also
every iteration of the C-CBF controller succeeds in preventing the system from entering one of
the infinite potential wells. As can reasonably be expected, the controllers equipped with more
aggressive parameters γ approached the boundary of the potential wells more closely. It is evident
from Figure 6.3b that the proposed controller modifies the nominally unsafe inputs in advance
of any danger. Note that while no guarantees of Lipschitz continuous control inputs or weights
are provided, the approach produced both inputs and weights that varied smoothly, as seen also
in Figure 6.4a. It is worth highlighting the symmetry of the adaptation for identical controllers
tracking an inverted reference trajectory, which makes sense given the symmetry of the dynamics
about the equilibrium point and the identical initial conditions. Figure 6.4b verifies that the C-CBF
H remained non-negative at all times and that the C-CBF condition remained viable at all times
under the input constraints thanks to the proposed adaptation law (6.35).

6.4.1.2 Mobile Robot Reach-Avoid Scenario

In the second numerical case study, under consideration is a (car-like) mobile robot with bicycle
dynamics seeking to reach a target location within a prescribed time in the presence of static
obstacles, a speed limit, and steering constraints.

Let s0 be a local origin in an inertial frame I, and suppose that the robot dynamics may be
described by the following dynamic extension of the non-holonomic bicycle model studied in
Chapter 2 and described by [191, Ch. 2], provided here for completeness:

ẋ = v (cosψ − sinψ tan β) , (6.55a)

ẏ = v (sinψ + cosψ tan β) , (6.55b)

ψ̇ =
v

lr
tan β, (6.55c)

β̇ = ω, (6.55d)

v̇ = a, (6.55e)

where x and y denote the position (in m) of the center of gravity (c.g.) of the robot with respect to
s0, ψ is the orientation (in rad) of its body-fixed frame, B, with respect to I, β is the slip angle3 (in
rad) of the c.g. of the vehicle relative to B (with |β| < π

2
), and v is the velocity of the rear wheel

3β is related to the steering angle δ via tanβ = lr
lr+lf

tan δ, where lf + lr is the wheelbase with lf (resp. lr) the
distance from the c.g. to the center of the front (resp. rear) wheel.
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with respect to I. The state is denoted z = [x y ψ β v]T , and the control input is u = [ω a]T ,
where ω is the angular velocity (in rad/s) of β and a is the acceleration of the rear wheel (in m/s2).
The objective of the robot is to reach a neighborhood of the goal location (xg, yg) = (2, 2) from
initial condition z0 = [0, 0, arctan

(
(yg − y)/(xg − x)

)
0.5, 0.0]T while obeying the following

8 constraints: avoid five circular obstacles, obey the speed limit of S = 2m/s, obey the slip angle
limit B = π/3, and reach the goal set within T = 5sec. The constraint functions encoding
avoidance of the ith circular obstacle are given by

hi(t, z) = (x− cx,i)
2 + (y − cy,i)

2 −R2
i , ∀i ∈ [5],

for radius Ri > 0 and center point (cx,i, cy,i). The speed and slip angle constraints are

h6(t, z) = S2 − v2,

h7(t, z) = B2 − β2,

and the time-specification is defined by

h8(t, z) = R2
g +R2

i

(
1− t

T

)2

− (x− xg)
2 − (y − yg)

2,

for the goal set centered at (xg, yg) with radiusRg = 0.1m and shrinking radiusRi = 4m. Note that
with the exception of constraint functions h6 and h7, all other constraint functions have relative-
degree two with respect to the dynamics (6.55), which means that the C-CBF control matrix Lg
has six rows consisting only of zeros. If these functions were used as CBF candidates directly,
their control terms would be zero at all times, i.e., Lghi = 0 for i ∈ {1, 2, 3, 4, 5, 8}, ∀t ≥ 0. The
C-CBF is then of the form (6.18), where again use exponentials ϕ(r, s) = e−rs with initial weights
w(0) = 1.0 · 18×1. We use the function α(H) = H .

For comparison against existing works, the following were simulated: a HO-CBF-QP controller
(with guaranteed input constraint satisfaction for a single CBF) proposed by [168], and an exponen-
tial (E-) CBF-QP controller (a subset of the class of HO-CBF controllers from [238]) introduced
in [40], both of which require reformulating constraint functions hi for i ∈ {1, 2, 3, 4, 5, 8} as
high-order CBFs. Each class of controller was simulated over a time interval of T = [0, 5] sec
at a timestep of ∆t = 0.01 sec and under four different class-K∞ functions with varying levels
of conservatism, from most (e.g., HO-CBF-1) to least conservative (e.g., HO-CBF-4). The result-
ing paths and controls applied by the simulated bicycle robots are shown in Figures 6.5 and 6.6
respectively. Although the HO-CBF-QP controller proposed by [168] guarantees constraint adher-
ence under input constraints for one constraint function, under multiple constraint functions the
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Figure 6.5: XY paths for bicycle robots seeking to reach the goal set (dotted green circle) within a pre-
scribed time in the presence of static obstacles (black circles), a speed limit, and a slip angle constraint.
Gray dashed lines indicate the reach constraint set at various times. All 6 HO- and E-CBF QP controllers
become infeasible (though one E-CBF comes very close to the goal), while our adaptive C-CBF controller
guarantees sufficient control authority for the feasibility of (6.46) under input constraints and thus reaches
the goal.

QP controller becomes infeasible in all four simulated trials (doing so, in fact, almost immediately
for the most conservative HO-CBF-1 case) and therefore does not reach the goal. The E-CBF-QP
controller has no guaranteed input constraint satisfaction and consequently takes more aggressive
control actions. Notice, however, that the performance is highly sensitive to the choice of E-CBF
gains: too conservative (E-CBF-1) and the QP quickly becomes infeasible; too aggressive (E-
CBF-4) and the QP becomes infeasible when it no longer has sufficient control authority to avoid
a collision with the first obstacle. It is clear that for this example both trial and error and expert
knowledge are required to tune the E-CBF-QP controller to solve the problem.

For the C-CBF controller, however, the assumption that the feasible region W(t) has an interior
point at all times holds, and thus the proposed adaptation law finds a weighting of the constraint
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Figure 6.6: Control trajectories for the bicycle robot reach-avoid problem.

functions that allows the robot to safely reach the goal within the prescribed time. Figure 6.7
shows that all constraints were satisfied, and that feasibility of the C-CBF condition is preserved
despite six of the eight constraints having relative-degree two with respect to the system dynamics
(and thus contributing nothing to the ∂H

∂x
g(x) term in the C-CBF dynamics). Smoothly weighting

the various constraint functions, as highlighted in Figure 6.8, allows the controller to take smooth
control actions without sudden switching or oscillatory behavior, and thus the C-CBF controlled
vehicle reaches the goal while satisfying every constraint throughout the duration of the maneuver.

6.4.2 Multi-Agent Studies

Two studies are considered in this subsection. The first is a multi-agent reach-avoid problem in
which 3 non-communicating bicycle robots seek to reach target locations by navigating through
a narrow corridor amongst non-responsive agents. In the second, a hardware experiment is con-
ducted in the laboratory environment in which a ground rover seeks to reach a goal location in the
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presence of two non-communicating rovers. In all of the studies in this subsection, the adaptation
law (6.25) is used to enforce the C-CBF condition.

6.4.2.1 Warehouse Goal-Seeking

Consider a collection of 3 non-communicative (i.e., do not share information regarding goals,
control inputs, etc.), but responsive (i.e., seek to preserve safety) robots (i ∈ Ar) in a warehouse
environment seeking to traverse a narrow corridor intersected by a passageway occupied with 6
non-responsive (i.e., may not seek to preserve safety) agents (i ∈ Anr). The non-responsive agents
may be e.g. humans walking or some other dynamic obstacles. The dynamics model for all agents
was taken to be the dynamic bicycle model (6.55).

The challenges of this scenario relate to preserving safety despite multiple non-communicative
and non-responsive agents present in a constrained environment. A robot is safe if it 1) obeys the
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speed restriction, 2) remains inside the corridor area, and 3) avoids collisions with all other robots.
Speed is addressed with the following candidate CBF:

hv(zi) = sM − vi, (6.56)

where sM > 0, while for corridor safety and collision avoidance we used forms of the relaxed
future-focused CBF introduced in Chapter 2 for roadway intersections, namely

hc(zi) = (mL(xi + ẋi) + bL − (yi + ẏi))(mR(xi + ẋi) + bR − (yi + ẏi)) (6.57)

hr(zi, zj) = D(zi, zj, t+ τ̂)2 + ϵD(zi, zj, t)
2 − (1 + ϵ)(2R)2, (6.58)

where (6.57) prevents collisions with the corridor walls (defined as lines in the xy-plane via
mL, bL,mR, bR ∈ R), and (6.58) prevents inter-robot collisions and is defined ∀i ∈ An \ An,n,
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control problem.

∀j ∈ An, where ϵ > 0, D(zi, zj, ta) is the Euclidean distance between agents i and j at arbitrary
time ta, and τ̂ denotes the time in the interval [0, T ] at which the minimum inter-agent distance
will occur under constant velocity future trajectories. As such, (6.56), (6.57), and (6.58) define the
sets

Sv,i = {zi ∈ Rn | hv(zi) ≥ 0},
Sc,i = {zi ∈ Rn | hc(zi) ≥ 0},

Sr,i =
A⋂

j=1,j ̸=i

{z ∈ RN | hr(zi, zj) ≥ 0},
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Figure 6.10: Gains w for the C-CBF controllers in the warehouse study. Robot 1 denoted with solid lines,
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the intersection of which constitutes the safe set for agents i, i.e. Si(t) = Sv,i ∩ Sc,i ∩ Sr,i.
The robots i ∈ Ar are controlled using a C-CBF-QP controller of the form (6.46) with con-

stituent functions hc, hs, hr, an Linear-Quadratic Regulator (LQR) based nominal control input
(see Appendix A), and initial gainsw(0) = 110×1. The non-responsive agents used a similar LQR
controller to move through the passageway in pairs of two, with the first two pairs passing through
the intersection without stopping and the last pair stopping at the intersection before proceeding.

As shown in Figure 6.9, the non-communicative robots traverse both the narrow corridor and
the busy intersection to reach their goal locations safely. The trajectories of the gains w for each
warehouse robot are shown in Figure 6.10, while their control inputs are depicted in Figure 6.11.
The CBF time histories for the constituent and consolidated functions are highlighted in Figures
6.12 and 6.13 respectively, and show that the C-CBF controllers maintained safety at all times.

6.4.2.2 Laboratory Experiment

For experimental validation of our approach, an AION R1 UGV ground rover was used as an ego
vehicle in the laboratory setting. It was required to reach a goal location in the presence of two
non-responsive rovers: one static and one dynamic. The rovers were modelled as bicycles using
(6.55), and sent angular rate ωi and velocity vi (numerically integrated based on the controller’s
acceleration output) commands to the rovers’ on-board PID controllers. The ego rover used the
proposed C-CBF-QP controller (6.46) with constituent candidate CBFs (6.56) (with sM = 1 m/s)
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Figure 6.11: Warehouse robot controls: accel. (a) and slip angle rate (ω).

and the Relaxed Future-Focused Control Barrier Function (RFF-CBF) defined in (6.58) for colli-
sion avoidance. The nominal input to the C-CBF controller was the LQR law from the warehouse
robot example, as was the controller used by the dynamic non-responsive rover. A Vicon motion
capture system was used for position feedback, and the state estimation was performed by extended
Kalman filter via the on-board PX4.

For the setup, the static rover was placed directly between the ego rover and its goal, while
the dynamic rover was stationary until suddenly moving across the ego’s path as it approached its
target. As highlighted in Figure 6.14, the ego rover first headed away from the static rover and then
decelerated and swerved to avoid a collision with the second rover before correcting course and
reaching its goal. Videos and code for both this experiment and the prior simulations are available
on Github4.

4Link to Github repo: github.com/6lackmitchell/CCBF-Control
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Figure 6.14: A rover avoids a static and dynamic rover using our proposed C-CBF controller en route to a
target in the laboratory setting.

6.5 Conclusion

In this chapter, a class of consolidated control barrier function candidates was proposed for control
design of a class of nonlinear, control-affine systems under multiple spatiotemporal and input con-
straints. It was shown that the C-CBF candidate could be rendered valid online in the case of un-
bounded control authority by adapting the weights of its constituent constraint functions according
to a QP-based adaptation law. Then, using interior point methods from the theory of continuous-
time optimization, a second weight adaptation law was proposed for the case of limited control
authority in the form of an auxiliary dynamical system, the solution of which is guaranteed to lie
within the feasible region of the underlying optimization problem whenever it contains an inte-
rior point. Single- and multi-agent case studies in both simulation and hardware experimentation
demonstrated the efficacy of the methods for online control design under multiple spatiotemporal
constraints.
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CHAPTER 7

Conclusion

7.1 Conclusions

This dissertation advances the viability of Control Barrier Function (CBF)-based control synthesis
for safety-critical systems in complex and uncertain environments.

First, in Chapter 2 a safe, efficient, predictive control framework was proposed for autonomous
vehicles to address a deficiency in existing CBF-based approaches, namely that their influence
leads to myopically present-focused behavior. Classes of Future-Focused Control Barrier Func-
tions (FF-CBFs) and Relaxed Future-Focused Control Barrier Functions (RFF-CBFs) were intro-
duced to encode that present control accounts take future safety predicted under a zero-control
policy into account, and their use on an unsignaled intersection crossing problem was shown to
significantly reduce the frequency of deadlocks. In the context of decentralized multi-agent con-
trol design, the FF-CBF was shown to preserve safety under perfect state measurements in the
presence of unknown actions taken by non-communicating vehicles without requiring additional
robustness measures.

Chapter 3 studied the problem of fixed-time system identification for the purpose of reducing
conservatism in safe control design under bounded, parametric model uncertainty. As a solution,
it proposed two parameter adaptation laws for identifying the unknown perturbation to the system
dynamics within a fixed-time when perfect rate and/or state measurements are available. An ex-
pression for the time-varying, monotonically decreasing parameter estimation error bound was de-
rived, and a new, robust, adaptive CBF condition was introduced for preserving safety. In Chapter
4, an adaptation law from Chapter 3 was proven to be robust to an additive, bounded perturbation
to the system dynamics; namely, it was shown that the parameter estimates would converge to a
characterized neighborhood of the true values within a fixed-time despite the effect of bounded
measurement noise or additional non-parametric disturbances. Emphasizing its versatility, a form
of that same law was then proposed for learning a more general class of, bounded, nonlinear per-
turbations to the system dynamics via a novel form of Koopman operator theory (KOT)-based
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fixed-time system identification for safe control design under the assumption that the choice of
basis functions is sufficiently descriptive.

In pursuit of a comprehensive control framework for safety under uncertainty and having al-
ready studied various classes of model uncertainty in the deterministic setting, Chapter 5 consid-
ered the problem of risk-aware control for a class of nonlinear, control-affine, stochastic systems.
Thus, the uncertainty under consideration was represented by an additive, Brownian motion pro-
cess and thus modelled the effect of random perturbations to the system, though notably it was
assumed that the state was measured exactly at all times. The main contribution was a novel class
of Risk-Aware Control Barrier Functions (RA-CBFs), the use of which for control design results
in a bound on the system becoming unsafe over a specified (finite) time interval. It was shown
that the proposed approach reduces conservatism under explicitly defined conditions relating to
the strength of the process noise when compared to the existing state-of-the-art, and a recursive
approach was further introduced to reduce the upper bound on the system risk. The method was
verified in simulation with a large-scale empirical study on a reach-avoid problem and in the con-
text of autonomous vehicle merging onto a highway amongst dense traffic. Finally, Chapter 6
addressed a common oversight in CBF-based control design by introducing adaptation-based ap-
proaches to synthesizing a valid Consolidated Control Barrier Function (C-CBF) that serves to
ensure that multiple spatiotemporal constraints are satisfied jointly at all times under both un-
bounded and limited control authority. Having studied system identification in Chapters 3 and 4, it
was assumed in this case that the system model was known. Applications of the proposed methods
are shown for both single- and multi-agent systems in simulation and laboratory experiments.

In summary, this dissertation is a step toward a full-stack framework for safe, online control syn-
thesis in dynamic, unknown environments. Through future state prediction, future risk assessment,
adaptation for system identification, and adaptation for verification, it is the hope of the author that
the work in this dissertation is of interest and value to researchers and engineers searching for safe
control solutions.

7.2 Future Work

7.2.1 System Identification with Koopman Operator Theory

In recent years, advancements to the field of KOT have ushered in a new era of data-driven non-
linear system identification for control. Many recent works have used a newly popular extended
dynamic mode decomposition approach to learning a dynamical system model online via batch es-
timation [119, 122]. As shown in the comparative study in Chapter 4, however, analytical bounds
on the system identification error may not be available, which may inhibit the viability of this class
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of methods for safe control synthesis. Instead, the work in Chapter 4 of this dissertation proposed
a form of recursive system identification, though not without its limitations.

Since KOT dictates that for a class of nonlinear dynamical systems there exists an analogous
linear but importantly infinite-dimensional Koopman dynamical system, one of the main open
problems in this field is in quantifying the error associated with projecting the infinite-dimensional
Koopman operator onto a finite-dimensional subspace. Some recent work has sought to address
this problem by deriving bounds on the operator projection error, e.g., for ergodic trajectories [128]
or under finite data (though, notably, suffering from the curse of dimensionality as pointed out in
[127]), but no existing methods exist for bounding this error in the continuous-time domain. In fact,
in this dissertation it was assumed that there exists a finite-dimensional matrix representation of the
infinite-dimensional Koopman operator that exactly captures the dynamics in the lifted space, i.e.,
that a Koopman-invariant subspace was captured with the chosen basis functions. In the future,
the author hopes to remove this assumption by making what follows the subject of future study:
1) the problem of quantifying the finite-dimensional projection error in the context of recursive
identification schemes, and 2) determining a priori a choice of basis functions associated with a
Koopman invariant subspace, i.e., a finite-dimensional space over which the infinite-dimensional
Koopman operator is captured exactly. In doing so, the loop on a robust framework for system
identification for safe control could be considered closed.

7.2.2 Online Predictive Control for Safety-Critical Systems

Existing methods to CBF-based online, safe, predictive control, including the class of FF-CBFs
introduced in Chapter 2 and the later development of the more general predictive CBFs by [239],
seek to encode that state trajectories predicted over some future time interval remain within some
set of states predicted to be safe. Approaches to dealing with scenarios in which the predicted
trajectories become unsafe typically fall into two categories: 1) relaxing the constraint while the
predicted safety violation is far enough in the future, or 2) switching to a backup control law
[240, 197] to steer the system back to safety. And whereas existing results on CBFs indicate that
the safe set can be reached from outside asymptotically [3] or in finite-time [241], the problem of
certifying that the set of states predicted to remain safe will be reached from outside before the

system trajectories leave the actual safe set is not well-studied.
This problem is relevant as well in risk-aware control for stochastic, safety-critical systems. In

the class of RA-CBFs proposed in Chapter 5, the risk of becoming unsafe over a finite time interval
was bounded via control design. In the context of FF-CBFs for predictive control, however, the
system trajectories may exit the safe set without incurring actual safety violations, e.g., colliding
with an obstacle. The probability of becoming unsafe in reality then becomes the probability that
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the system trajectories leave the predicted safe set and that they do not recover to the predicted
safe set before leaving the present safe set. Thus, the author is interested in pursuing extensions
of risk-aware control design to predictive control frameworks while removing the assumption that
perfect measurements are available via the consideration of stochastic estimators (e.g., extended
Kalman filter) in order to simultaneously derive tighter bounds on the risk of the system becoming
unsafe, reduce conservatism in the control design, and account for the imperfections associated
with real-world sensing capabilities.

In addition, the class of stochastic uncertainty under consideration in Chapter 5 takes a very
specific form: in effect an additive, Brownian motion perturbation with known covariance. In
crowded, multi-agent environments, it may be more beneficial for each individual agent to con-
sider some alternate probability distribution over the set of actions available to the remaining
agents. Though this may require the use of learning-based tools like Gaussian processes, Bayesian
optimization, kernel density estimation, etc. to infer the underlying distribution, doing so would
provide a more accurate assessment of the risk associated with taking an action both in the present
moment and over some future time interval. It is the objective of the author to study the effect
of these learning-based methods for modeling system uncertainty in the context of risk-aware and
predictive control.

7.2.3 Viability of CBF-based Control Laws

As discussed in Chapter 6, finding a viability domain for a CBF-based controller is a difficult prob-
lem. In particular, for the class of CBF-Quadratic Program (QP) control laws used throughout this
dissertation guarantees of viability may require extensive offline analysis using, e.g., verification
tools [176, 177], sampling methods [242], reachability analysis [243], etc. Methods proposed in
recent years offering guarantees of feasibility for this class of QP-based control laws (e.g., [49, 46])
may more appropriately be sorted into a class of feasibility enhancing approaches due to the ten-
dency to assume the existence of a feasible input at some level deeper than the standard QP, the
work in Chapter 6 of this dissertation included. But whereas many other works use optimization
explicitly for control, it is the belief of the author that implicit optimization via dynamical systems
introduced by, e.g., interior point methods for continuous-time optimization, represent an inter-
esting future avenue toward bridging the gap between online control synthesis and offline system
verification.

Of particular interest are methods for synthesizing Lyapunov functions for time-varying sys-
tems. Considering that, as discussed in Section 6.3.2, a class of nonlinear, control-affine systems
under the effect of the proposed C-CBF control law may be reformulated into a time-varying, au-
tonomous system, there is an opportunity to investigate stability properties of the full system either
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through 1) offline analysis, e.g. stability theorems like Barbalat’s lemma, or via 2) online gain
adaptation, though this may be more challenging given that the underlying system of interest is
subject to spatiotemporal constraints. In addition, it may be possible to either learn a Lyapunov
function for the full adaptively controlled dynamical system [244], or to certify the system for the
specific choice of gains as unstable and to adjust the gains in an iterative process [245]. In effect,
the author is interested in removing the possibly prohibitive assumption that the optimization prob-
lems laying the foundation for parameter adaptation in this line of work are always feasible, and a
system-level verification or analysis would make this possible.
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APPENDIX A

Linear Quadratic Regulator-based Control Law

For each vehicle, we assume that a desired state trajectory, q∗i (t) = [x∗i y
∗
i ẋ∗i ẏ

∗
i ]

⊤, is avail-
able. Then, we define the modified state vector and tracking error as ζi(t) = [xi yi ẋi ẏi]

⊤, and
ζ̃i(t) = ζi(t)−q∗i (t) respectively. We then compute the optimal LQR gain, K, for a planar double
integrator model and compute µ = [ax,i ay,i]

⊤ = −Kζ̃i. Then, we map ax,i, ay,i to ω0
i , a0i via[

ω0
i

a0i

]
= S−1

[
ax,i + ẏiψ̇i

ay,i − ẋiψ̇i

]
,

where

S =

[
−vi sin(ψi) sec2(βi) cos(ψi)− sin(ψi) tan(βi)

vi cos(ψi) sec
2(βi) sin(ψi) + cos(ψi) tan(βi)

]
,

the inverse of which exists as long as vi ̸= 0. Therefore, if |vi| < ϵ, where 0 < ϵ ≪ 1, we assign
ω0
i = 0 and a0i =

√
a2x,i + a2y,i.
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APPENDIX B

Proof of Lemma 4.2

Proof. First, observe that xTy = ∥x∥∥y∥ cos(θxy) and ∥x + y∥2 = ∥x∥2 + ∥y∥2 +

2∥x∥∥y∥ cos(θxy), where θxy is the angle between vectors x and y, and rewrite (4.14) as
P (x,y) = P1(x, y, z) + P2(x, y, z), where x = ∥x∥, y = ∥y∥, z = cos(θxy), and

P1(x, y, z) = axyz
(
x2 + y2 + 2xyz

) 1
m ,

P2(x, y, z) =
bxyz

(x2 + y2 + 2xyz)
1
m

.

It is then true that for fixed x and y,

P (x,y) ≥ min
z
P1(x, y, z) + min

z
P2(x, y, z).

As such, proceed by solving for minz P1(x, y, z) and minz P2(x, y, z), and (omitting arguments
when appropriate for conciseness). Observe that x, y ≥ 0, which means that for all z ≥ 0 it is true
that P1, P2 ≥ 0. Additionally, by the AM-GM inequality1 it is true that x2 + y2 + 2xyz > 0 for all
z ∈ (−1, 0] and x2 + y2 + 2xyz ≥ 0 for z = −1, thus it is obvious that there exists z ∈ [−1, 0]

such that P1, P2 < 0. As such, focus is placed on the case where z ∈ [−1, 0]. It follows that

∂P1

∂z
= axy

(
x2 + y2 + 2xyz

) 1
m +

2a

m
x2y2z

(
x2 + y2 + 2xyz

) 1
m
−1
.

Setting ∂P1

∂z
= 0, the candidate minimizer is z∗1 = − x2+y2

2xy(1+ 1
m
)
. Since

∂2P1

∂z2
=

4a

m
x2y2

(
x2 + y2 + 2xyz

) 1
m
−1

+

(
1

m
− 1

)
4a

m
x3y3z

(
x2 + y2 + 2xyz

) 1
m
−2

with a > 0, m > 2, it follows that ∂
2P1

∂z2
> 0 for all x, y > 0 and z ∈ (−1, 0]. Therefore, by second

order sufficient conditions for optimality z∗1 is the unique minimizer for P1 over z ∈ (−1, 0]. It
1The arithmetic mean-geometric mean inequality states that x+ y ≥ 2

√
xy, for x, y > 0.
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also follows from the AM-GM inequality that z∗1 ≤ − m
m+1

and thus from m > 2 that z∗1 ≤ −2
3
.

Then, consider in addition that ∥x+ y∥2 ≥ x2 if and only if cos(θxy) ≥ − y
2x

. Since x > 2y ≥ 0 it
is true that − y

2x
≥ −1

4
> z∗1 , and thus x2 + y2 + 2xyz∗1 < x2. As such,

min
z∈[−1,1]

P1(x, y, z) = axyz∗1
(
x2 + y2 + 2xyz∗1

) 2
m ≥ −aByx

1+ 2
m . (B.1)

Now the case of P2. By

∂P2

∂z
=

bxy

(x2 + y2 + 2xyz)
1
m

− 2bx2y2z

m (x2 + y2 + 2xyz)1+
1
m

,

and second order sufficient conditions for optimality, it follows that z∗2 = − x2+y2

2xy(1− 1
m
)

is the unique
minimizer of P2 for fixed x, y. Now, by the AM-GM inequality andm > 2 it follows that z∗2 < −1.
Since ∂P2

∂z
> 0 for all z ≤ 0, it follows that z∗2 = −1 is the minimizer of P2 over the domain

z ∈ [−1, 1]. With z∗2 = −1 and x > 2y, it is then true that ∥x+ y∥ ≥ 1
2
x. As such,

min
z∈[−1,1]

P2(x, y, z) = − bxy

(x2 + y2 − 2xy)
1
m

≥ −2
2
m bByx

1− 2
m . (B.2)

Thus, by P (x,y) ≥ minz P1(x, y, z) + minz P2(x, y, z) it follows that (4.15) is obtained from
(B.1), (B.2), x = ∥x∥, and y = ∥y∥. This completes the proof.
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[81] Armin Lederer, Alejandro J Ordóñez Conejo, Korbinian A Maier, Wenxin Xiao, Jonas Um-
lauft, and Sandra Hirche. Gaussian process-based real-time learning for safety critical ap-
plications. In International Conference on Machine Learning, pages 6055–6064. PMLR,
2021.

[82] Alexander H Chang, Christian M Hubicki, Jeffrey J Aguilar, Daniel I Goldman, Aaron D
Ames, and Patricio A Vela. Learning terrain dynamics: A gaussian process modeling and
optimal control adaptation framework applied to robotic jumping. IEEE Transactions on
Control Systems Technology, 29(4):1581–1596, 2020.

[83] Kai Zhao, Yongduan Song, and Zhixi Shen. Neuroadaptive fault-tolerant control of non-
linear systems under output constraints and actuation faults. IEEE transactions on neural
networks and learning systems, 29(2):286–298, 2016.

[84] Isura Ranatunga, Sven Cremer, Frank L Lewis, and Dan O Popa. Neuroadaptive control for
safe robots in human environments: A case study. In 2015 IEEE International Conference
on Automation Science and Engineering (CASE), pages 322–327. IEEE, 2015.

153



[85] Vahid Azimi and Patricio A. Vela. Robust adaptive quadratic programming and safety per-
formance of nonlinear systems with unstructured uncertainties. In 2018 IEEE Conference
on Decision and Control (CDC), pages 5536–5543, 2018.

[86] Brett T. Lopez, Jean-Jacques E. Slotine, and Jonathan P. How. Robust adaptive control
barrier functions: An adaptive and data-driven approach to safety. IEEE Control Systems
Letters, 5(3):1031–1036, 2021.

[87] Pan Zhao, Yanbing Mao, Chuyuan Tao, Naira Hovakimyan, and Xiaofeng Wang. Adaptive
robust quadratic programs using control lyapunov and barrier functions. In 2020 59th IEEE
Conference on Decision and Control (CDC), pages 3353–3358, 2020.

[88] Max H. Cohen and Calin Belta. High order robust adaptive control barrier functions and
exponentially stabilizing adaptive control lyapunov functions. In 2022 American Control
Conference (ACC), pages 2233–2238, 2022.

[89] Yujie Wang and Xiangru Xu. Observer-based control barrier functions for safety critical
systems. In 2022 American Control Conference (ACC), pages 709–714, 2022.

[90] Anil Alan, Tamas G. Molnar, Ersin Daş, Aaron D. Ames, and Gábor Orosz. Disturbance
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[122] Stefan Klus, Feliks Nüske, Sebastian Peitz, Jan-Hendrik Niemann, Cecilia Clementi, and
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[123] Zlatko Drmač, Igor Mezić, and Ryan Mohr. Identification of nonlinear systems using the in-
finitesimal generator of the koopman semigroup—a numerical implementation of the mau-
roy–goncalves method. Mathematics, 9(17):2075, Aug 2021.

156



[124] Alexandre Mauroy and Jorge Goncalves. Koopman-based lifting techniques for nonlinear
systems identification. IEEE Transactions on Automatic Control, 65(6):2550–2565, 2020.
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[129] Milan Korda and Igor Mezić. Linear predictors for nonlinear dynamical systems: Koopman
operator meets model predictive control. Automatica, 93:149–160, 2018.

[130] Carl Folkestad and Joel W Burdick. Koopman nmpc: Koopman-based learning and nonlin-
ear model predictive control of control-affine systems. In 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 7350–7356. IEEE, 2021.

[131] Alexandre Mauroy, Y Susuki, and I Mezić. Koopman operator in systems and control.
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operator-based model predictive control with recursive online update. In 2021 European
Control Conference (ECC), pages 1543–1549, 2021.

[134] Sanjay P Bhat and Dennis S Bernstein. Finite-time stability of continuous autonomous
systems. SICON, 38(3):751–766, 2000.

[135] Andrey Polyakov. Nonlinear feedback design for fixed-time stabilization of linear control
systems. IEEE Transactions on Automatic Control, 57(8):2106, 2012.

[136] Edward E Rigdon. Demonstrating the effects of unmodeled random measurement error.
Structural Equation Modeling: A Multidisciplinary Journal, 1(4):375–380, 1994.

[137] Sandeep Gorantla, Jeel Chatrola, Jay Bhagiya, Adnane Saoud, and Pushpak Jagtap. Funnel-
based reachability control of unknown nonlinear systems using gaussian processes. arXiv
preprint arXiv:2209.14015, 2022.

[138] Felix Berkenkamp and Angela P Schoellig. Safe and robust learning control with gaussian
processes. In 2015 European Control Conference (ECC), pages 2496–2501. IEEE, 2015.

157



[139] Armin Lederer, Jonas Umlauft, and Sandra Hirche. Uniform error bounds for gaussian pro-
cess regression with application to safe control. In H. Wallach, H. Larochelle, A. Beygelz-
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