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ABSTRACT

We investigate the relation between boundary data of a compact manifold and its interior geome-
try. A compact Riemannian manifold D with smooth boundary ∂D is boundary rigid if its interior
geometry is uniquely determined by ∂D and distances between points on ∂D. D is a minimal
filling if for any D′ with ∂D′ = ∂D, having larger distances between points on ∂D implies
Vol(D′) ≥ Vol(D).

In this thesis, we generalize D. Burago and S. Ivanov’s work [BI13] on filling volume mini-
mality and boundary rigidity of almost real hyperbolic metrics. We show that regions with metrics
close to a negatively curved symmetric metric are strict minimal fillings and hence boundary rigid.
This includes perturbations of real, complex, quaternionic and Cayley hyperbolic metrics.
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CHAPTER I
Introduction

I.1: Boundary rigidity and filling minimality

Let M = (Mn, g) be a compact Riemannian manifold with boundary ∂M . For example, when
M is the planet Earth, ∂M is its surface. Its boundary distance function, denoted by bdM , is the
restriction of the Riemannian distance dM to ∂M × ∂M . In the above example, the distances
between boundary points must be realized by “digging into the Earth”. For example, the distance
minimizing curve between the north pole and the south pole will pass through the very center part
of the Earth.

Both filling minimality and boundary rigidity focus on the following question:
How much do the distances between boundary points determine the interior geometry?

Apart from its intrinsic interest in geometry, this question has major real-life implications. We
continue with the example of the Earth. Most knowledge of the interior of the Earth comes from
the study of seismic waves. The travel speed of seismic waves at a particular location is related to
several factors like composition of rocks. Understanding travel times of seismic waves can help
us understand such properties of the Earth. Mathematically, we can use a Riemannian metric to
model how fast seismic waves can travel at a particular location. The travel times will then become
“distances” under this particular Riemannian metric. Hence, information regarding the speed of
seismic waves is converted to geometric information. Therefore understanding the above question
is very interesting from this perspective.

We say a Riemannian manifold is boundary rigid if its metric is uniquely determined by its
boundary distance function. More precisely, we have the following definition.

Definition I.1 (Boundary rigidity). A compact Riemannian manifoldM (with boundary) is bound-

ary rigid if every Riemannian manifold M ′ with ∂M ′ = ∂M and bdM ′ = bdM is isometric to M
via a boundary-preserving isometry.

In the previous example, if the Earth, equipped with travel speed data of seismic waves, is
“boundary rigid”, then the travel times of seismic waves determine the travel speed of seismic
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waves at any location in the interior of the Earth.
It is easy to construct manifolds which are not boundary rigid. For example, if there exists

some proper open subset which does not intersect any shortest path connecting boundary points,
then the metric on this open subset does not affect the boundary distance function and hence such
manifolds are not boundary rigid. In particular, “large” spherical caps, i.e. proper open subsets of
a sphere Sn ⊂ Rn+1 bounded by a hyperplane in Rn+1 which properly contain a hemisphere are
not boundary rigid. An example of large spherical cap is the region on the surface of the Earth
which are south of the N◦40 latitude line. In this case, the boundary is the N◦40 latitude line.
Here, the boundary distances are realized by distances along the surface. We observe that flying
from Beijing to New York (both of which are almost located at the boundary) along the N◦40

latitude line takes much less time than flying from Beijing to the south pole and then to New York
(if we assume flying speed are the same). Such manifolds must be avoided if one seeks boundary
rigidity. Therefore it is reasonable to first consider simple manifolds, i.e. manifolds with strictly
convex boundary such that every two points are connected by a unique geodesic segment and
geodesics do not have conjugate points. In particular, we have the following conjecture by Michel.

Conjecture I.2 (Michel, [Mich81]). All simple manifolds are boundary rigid.

Here and below, by region we mean a connected open set with a smooth boundary.
A lot of progress has been made toward boundary rigidity. Pestov and Uhlmann [PU05] proved

the above conjecture in dimension 2. In higher dimensions, regions in Rn (Besikovitch [Besi52];
Gromov [Grom83]), in the open hemisphere Sn+ (Michel [Mich81]) and in rank-1 symmetric spaces
of non-compact type (following the volume entropy rigidity theorem by Besson, Courtois and
Gallot [BCG95]) are known to be boundary rigid. Burago and Ivanov proved boundary rigidity for
almost Euclidean ([BI10]) and almost real hyperbolic ([BI13]) regions. Recently a very general
result by Stefanov, Uhlmann and Vasy in [SUV21, Corollary 1.2] showed that a simple manifold
(M, g) is boundary rigid if it satisfies any of the following conditions:

(1). (M, g) has non-positive sectional curvature;

(2). (M, g) has non-negative sectional curvature;

(3). (M, g) has no focal points.

We refer the readers to Croke [Crok04], Ivanov [Ivan10] and Stefanov-Uhlmann [SU08] for a
survey on boundary rigidity.

Definition I.3 (Filling minimality). A compact Riemannian manifold M with boundary ∂M is a
minimal filling if, for every compact Riemannian manifold M ′ with ∂M ′ = ∂M , the inequality

dM ′(x, y) ≥ dM(x, y) ∀x, y ∈ ∂M

2



implies that
Vol(M ′) ≥ Vol(M).

We say that M is a strict minimal filling if, in addition, the equality

Vol(M ′) = Vol(M)

holds only when M and M ′ are isometric via an isometry which fixes all boundary points.

Remark. The idea of filling Riemannian manifolds was introduced by Gromov in [Grom83]. If
M = (M, g) has a connected boundary with dimension ≥ 2 and is a minimal filling, then by
[Grom83, 2.2A Proposition] Vol(M) is called the filling volume of the boundary (∂M, bdM)

equipped with boundary distance function denoted by FillVol(∂M, bd(M,g)). See [Grom83] for
a detailed discussion.

Similar to boundary rigidity, not all manifolds are minimal fillings. For example, “large spher-
ical caps” fail to be minimal fillings because they have larger volume than the hemisphere with the
same boundary and boundary distance function. In [BI10] and [BI13], Burago and Ivanov made
the following conjecture.

Conjecture I.4 (Burago-Ivanov, [BI10, BI13]). Every simple manifold is a strict minimal filling.

When M is simple, its volume is uniquely determined by its boundary distance function due
to Santaló’s formula [Sant04]. Moreover, if M ′ shares the same boundary distance function with
M , M ′ also has to be simple due to strict triangular inequality and smoothness of bdM .Therefore
boundary rigidity is a direct corollary of filling minimality when the manifold is simple. A similar
argument also works for strong geodesically minimizing (SGM) manifolds (See [Crok91, 1. Pre-
liminaries] for the definition of the SGM condition and [Crok91, Lemma 5.1] for details of this
argument.) which allows non-convex boundaries. In particular, compact regions with a smooth
boundary inside a simply connected negatively curved manifold satisfies the SGM condition.

Unlike boundary rigidity, little is understood about filling minimality. For example, Gromov’s
sphere filling conjecture ([Grom83, page 13]) asks whether a hemisphere of dimension n + 1 is a
minimal filling for its boundary. This is still open with partial results proved by Gromov [Grom83,
page 59] and Bangert-Croke-Ivanov-Katz [BCIK05, Corollary 1.8]. Croke, Dairbekov and Shara-
futdinov proved “local filling minimality” in [CDS00, Proposition 1.2] for simple manifolds with
“limited positive curvature along geodesics”. Local filling minimality here refers to the case when
M ′ and M (See Definition I.3) have the same underlying manifold and very close metrics. Burago
and Ivanov in [BI10] and [BI13] proved strict filling minimality for almost Euclidean and almost
hyperbolic regions (when M is almost Euclidean and almost hyperbolic and M ′ is arbitary).
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The filling minimality problem can be more difficult than the boundary rigidity problem. This
is because having the same boundary distance function provides more information than having a
larger boundary distance function due to [Crok91, Lemma 5.1]. In the case when M is a simple
manifold. we denote by ∂−T

1M the collection of unit vectors on ∂M pointing inside M and
∂+T

1M the collection of unit vectors on ∂M pointing outside M . Since any maximally extended
geodesic in a simple manifoldM intersects the boundary transversely and has finite length, there is
a one-one correspondence between maximally extended geodesics in (M, g) and the corresponding
triples (v, w, l) ∈ ∂−T 1M × ∂+T

1M ×R+ recording their initial vectors, exit vectors and lengths.
Recall that geodesics are length minimizing and do not admit conjugate points when M is simple,
we have the following one-one correspondence.

{(p, q)|p 6= q ∈ ∂M} ↔ Lens(M),

where

Lens(M) :=


(π−(γ̇(0)), π+(γ̇(l)), l)

∈ (T∂M)2 × R+

∣∣∣∣∣∣∣∣∣∣
γ : [0, l]→M a maximally

extended unit speed geodesic;

π± : ∂±T
1M → T∂M

orthogonal projection.

 .

We call Lens(M) the lens data of M . Similar to the boundary rigidity problem, we have the lens

rigidity problem which asks whether lens data can determine the manifold up to an isometry. If
M ′ and a simple manifold M have the same boundary and the same boundary distance function,
[Crok91, Lemma 5.1] implies that Lens(M) and Lens(M ′) are canonically identified. Therefore
proving boundary rigidity in this case is the same as proving lens rigidity. This observation has
been used in many results on boundary rigidity (for example the aforementioned result in [SUV21]
by Stefanov-Uhlmann-Vasy.). Unfortunately, having a larger boundary distance function can mess
up the lens data, especially the part of data recording initial and exit vectors. (In fact, if we neglect
the length part from the lens data, we can still study the corresponding scattering rigidity problem.
See for example [BGJ22] by Bonthonneau, Guillarmou and Jézéquel.) Hence methods using lens
data cannot directly apply in a similar way when working on the filling minimality problem.

I.2: Statements of main results

In this paper, we will generalize Burago and Ivanov’s work in [BI10] and [BI13] to metrics close
to a negatively curved symmetric metric. Notice that negatively curved symmetric metrics come
from rank-1 symmetric spaces of non-compact type, we only need to consider metric perturbations
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of regions in real, complex, quaternionic and Cayley hyperbolic spaces. Let K be one of the
following:

(i). R, the field of real numbers;

(ii). C, the field of complex numbers;

(iii). H, the algebra of all quaternions;

(iv). O, the algebra of all octonions.

We denote by RHn,CHn,HHn,OH2 the real, complex, quaternionic and Cayley hyperbolic
spaces respectively.

In this paper, we prove the following main theorem.

Theorem I.5 ([Ruan22, Theorem 1.5], [BI13, Theorem 1.6]). Let M be a negatively curved sym-

metric space, i.e. M = RHn,CHn,HHn or OH2. For any compact regionD ⊂M (not necessar-

ily simple) with a smooth boundary, there is a Cr-neighborhood (for a suitable r) of the symmetric

metric on D such that, for every metric g from this neighborhood, the Riemannian manifold (D, g)

is a strict minimal filling.

Remark.

(1). The real hyperbolic case was proved in [BI13, Theorem 1.6]. Other cases were proved in
[Ruan22, Theorem 1.5];

(2). The condition on g being sufficiently close to the symmetric metric appears in several state-
ments throughout this paper. This is given by several complicated constraints on g related to the
diameter of the region (with respect to the symmetric metric) and the dimension of the manifold.
In particular we assume that g is negatively curved so that (M, g) satisfies the SGM condition. We
do not track the number of derivatives required for our arguments to work but we will summarize
all constraints on g at the end of this paper.

Since the SGM condition and strict filling minimality imply boundary rigidity as explained
right after Conjecture I.4, we have the following direct corollary of Theorem I.5.

Corollary I.6. Under the same assumption as in Theorem I.5, (D, g) is boundary rigid.

I.3: Plan of the proof

While we employ the same general constructions as in [BI13], various proofs become much more
complicated for general rank-1 symmetric spaces other than the special case of real hyperbolic
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spaces. Therefore we need to improve some technical facts to prove filling minimality and bound-
ary rigidity of almost rank-1 symmetric metrics.

In Chapter II, we introduce the classical models and some basic geometric properties for rank-
1 symmetric spaces. The emphasis is on Section II.2, the introduction of the Cayley hyperbolic
space. This is because there are more technical difficulties in the rest of this paper regarding the
Cayley hyperbolic space, due to the non-associativity of octonionic multiplication.

Chapter III starts with a “projection argument” (Section III.1) and its application in proving
filling minimality of regions in a Euclidean space (Section III.2). In Sections III.3, III.4, we want
to use this “projection argument” to prove Theorem I.5 while leaving the technical constructions
and verifications of necessary properties to Chapter IV. These two sections are essentially the same
as [BI13, Sections 2 and 3]: Let (D, g) be as in Theorem I.5. We can then extend g smoothly to
a metric on KHn which coincides with the symmetric metric on KHn (also denoted by g for
simplicity) outside a compact neighborhood of D.

(1). In Section III.3, we give the proof for Theorem I.5 by assuming Proposition III.4, which
is a key technical result. This proposition claims the existence of the following tools for
us to prove Theorem I.5 using the “projection argument” in Section III.1: two maps and a
notion of Riemannian structure on an open subset of some L∞ space. The first map is a
distance-preserving map Φ : M → L := L∞(S), where M = (KHn, g) and S is a suitable
measure space. (Following the traditions of geometric measure theory, we refer to Lipschitz
maps from manifolds of any dimension to a normed space as surfaces). Later in Section
IV.1, we choose S to be the visual boundary of M with a visual measure and Φ to be the
Busemann function with respect to a fixed point in the interior as in [BI13]. The other map
is a “projection” map Pσ from a suitable neighborhood of Φ(M) ⊂ L to M in the sense
that Pσ ◦ Φ = IdM . We also assume that Pσ precomposing any 1-Lipschitz map f from
a dn-dimensional manifold does not increase volumes. Moreover, we require that Pσ ◦ f
preserves volumes if and only if the image of Pσ ◦ f is contained in Φ(M). If (D′, g′) shares
the same boundary with (D, g) with larger boundary distance function, then we can extend
Φ|∂D to a 1-Lipschitz map Φ′ : (D′, g′) → L. Therefore strict filling minimality of (D, g)

follows from the above properties of Pσ.

(2). In Section III.4, we introduce the aforementioned “Riemannian structure” on a suitable open
neighborhood U of Φ(M) ⊂ L so that we can define dn-dimensional (d = 1, 2, 4, 8 when
K = R,C,H,O respectively) Riemannian volumes on U and Jacobians for maps involving
U . Under this “Riemannian structure”, Φ is volume preserving and any 1-Lipschitz map
from a dn-dimensional manifold to U is volume non-increasing. This construction is given
by introducing a Riemannian metric on U satisfying some natural conditions. With the help
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of this “Riemannian structure”, it remains for us to find a Pσ whose dn-dimensional Jacobian
is smaller than 1 on U \ Φ(M).

In Chapter IV, we construct the aforementioned “embedding” Φ, “projection” Pσ and “Rieman-
nian structure” on an open neighborhood U of Φ(M) ⊂ L. Then it remains for us to verify that
our constructions indeed satisfy the requirements in Proposition III.4. Most of the constructions
can be found in Section IV.1 and most of the verification details are in IV.2-IV.4.

(1). Section IV.1 introduces the construction of Φ, the “Riemannian structure” on U and a “lo-
cally orthogonal projection” P : U →M defined via a barycenter construction. The “projec-
tion” map Pσ will eventually be a small perturbation of this P and therefore we expect P to
be almost volume non-increasing. For any φ in the domain of P , a direct computation decom-
poses the derivative map dφP into two different linear operators A−1

φ : TP (φ)M → TP (φ)M

and Eφ : TφL → TP (φ)M . Then it remains for us to study the Jacobians of the above two
maps.

In the cases of real hyperbolic spaces discussed in [BI13], the operatorAφ = Id. This follows
from the formula for the Hessian of the Busemann functions and sectional curvatures being
constantly−1 (up to scaling). The main technical difficulty in our paper comes from the fact
that other non-compact rank-1 symmetric spaces have sectional curvatures ranging from −4

to −1 (see [BH99]). This leaves Aφ much more complicated even in the model case when
g is symmetric. We resolve this difficulty from the observation that Aφ and Eφ have closely
related matrix expressions under a suitable choice of basis. The main difference of our proof
compared to [BI13] comes from the remaining technical part of the paper.

(2). In Section IV.2, we introduce some notion of “almost rank-1 structure” (depending smoothly
on g) to construct suitable bases convenient for further computations. Then we construct an
operator Âφ to approximate Aφ by using the data from the Hessian of the Busemann func-
tions in symmetric spaces under these bases. (The construction of P mentioned in Section
IV.1 is not unique. In the case of real hyperbolic spaces, a suitable choice of P will lead
to Âφ = Id. See [BI13] for more details.) Moreover, computation shows that Âφ and Eφ
have matrix representations closely related to a positive definite matrix Qφ (see (IV.2.7)).
Hence the study of eigenvalues of Qφ leads to the desired Jacobian and norm estimates. In
particular, we proved that the dn-dimensional Jacobian of Â−1

φ ◦ Eφ is bounded above by 1.
This implies that the dn-dimensional Jacobian of P is bounded above by 1 plus some error
term. In other words, P is almost volume non-increasing.

(3). Section IV.3 is the most technical part of this paper. The main goal of this section is to
provide a detailed estimate on the error terms Aφ − Âφ and 1 − Jac(Â−1

φ ◦ Eφ) so that

7



we can construct Pσ as a perturbation of P which decreases dn-dimensional volumes. A
similar version of the statements and proofs introduced in this section also applies to the real
hyperbolic cases.

(4). Section IV.4 is similar to [BI13, Section 7, a compression trick] which constructs the afore-
mentioned Pσ and verifies the required properties introduced in Section III.3 (see Proposition
III.4).
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CHAPTER II
Rank-1 Symmetric Spaces of Non-compact Type

In this chapter, we review some basic facts about rank-1 symmetric spaces of non-compact type. As
is mentioned in Chapter I, real hyperbolic spaces RHn, complex hyperbolic spaces CHn, quater-
nionic hyperbolic spaces HHn and the Cayley hyperbolic space OH2 are all possible rank-1 sym-
metric spaces. See [Helg78, Table II, page 354].

II.1: Real, complex and quaternionic hyperbolic spaces

Let K = R,C or H, where H = R⊕Ri⊕Rj⊕Rk is the associative, non-commutative R-algebra
of quaternions with the standard multiplication laws i2 = j2 = k2 = −1, ij = −ji = k, jk =

−kj = i, ki = −ik = j. For any element a ∈ K, we denote by a its conjugate. When K = H
and a = x + yi + zj + wk for some x, y, z, w ∈ R, similar to the complex conjugate, we have
a = 2x − a and Re(a) := x = (a + a)/2. In particular, |a| :=

√
aa =

√
aa gives the Euclidean

norm of a.
Denoted byM0 = (KHn, g0) the corresponding symmetric space with a symmetric metric. We

recall following the model for M0 in [BH99, Ch II.10]. Let KPn := (Kn+1 \ {0})/{v ∼ vλ, λ ∈
K \ {0}} and [v] ∈ KPn be the equivalence class of v. Denoted by q a quadratic form on Kn+1

defined as

q(v, w) = v0w0 −
n∑
j=1

vjwj

for any v = (v0, ..., vn) and w = (w0, ..., wn) in Kn+1. One can verify that q satisfies the following
properties.

(1). q(v, v) ∈ R for any v ∈ Kn+1;

(2). q(v, w1λ1 + w2λ2) = q(v, w1)λ1 + q(v, w2)λ2 for any v, w1, w2 ∈ Kn+1 and λ1, λ2 ∈ K;

(3). q(v1λ1 + v2λ2, w) = λ1q(v1, w) + λ2q(v2, w) for any w, v1, v2 ∈ Kn+1 and λ1, λ2 ∈ K.

Let
KHn = {[v] ∈ KPn|v ∈ Kn+1 \ {0}, q(v, v) > 0}.
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For any u ∈ Kn+1 with q(u, u) = 1, the tangent space of KHn at [u] can be identified as {v ∈
Kn+1|q(u, v) = 0}. The symmetric metric is defined as g0(v, w) = −Re(q(v, w)). In particular,
angles with respect to g0 is given by

cos(∠g0(v, w)) = − Re(q(v, w))√
q(v, v)q(w,w)

, ∀v, w ∈ T[u]M0 \ {0}.

For any [u] ∈ M0 with q(u, u) = 1 and any linearly independent v, w ∈ T[u]M0, we have the
following classical result on curvatures in M0.

Proposition II.1 ([BH99, 10.12 Proposition]). Under previous assumptions, for any p ∈ M0 and

any pair of non-zero vectors v, w ∈ TpM0 such that v is not parallel to w, the following holds.

(1). If v = wλ for some λ ∈ K \ R, then the sectional curvature KM0(v, w) = −4, which is the

smallest possible sectional curvature;

(2). If q(v, w) ∈ R, then the sectional curvature KM0(v, w) = −1, which is the largest possible

sectional curvature.

As a consequence, we have the following linear algebra result.

Corollary II.2. Let M0 = (KHn, g0), where K = R,C or H and g0 is the symmetric metric

mentioned above. Denoted by d = dimR K. Then there exists unit vector fields ξi,t on M0 and

fiberwise orthogonal linear maps Jt : TM0 → TM0, 1 ≤ i ≤ n and 0 ≤ t ≤ d− 1 such that the

following holds

(1). J0 = Id;

(2). {ξi,t}1≤l≤n,0≤t≤d−1 form an orthonormal basis at every point in M0;

(3). Jt(ξl,0) = ξl,t for any 1 ≤ l ≤ n and 0 ≤ t ≤ d− 1.

(4). For any non-zero vector v ∈ TM0, the sectional curvature of between v and Jt(v) is −4;

(5). For any 1 ≤ l1 6= l2 ≤ n and 0 ≤ t1, t2 ≤ d − 1, the sectional curvature of between ξl1,t1
and ξl2,t2 is −1.

Proof. For any [u] ∈ KHn with u = (u0, ..., un), we have u0 > 0. We define smooth vector
fields ηl on M0 by ηl([u]) = (−ul/u0, 0, ..., 0, 1, 0, ..., 0) for any 1 ≤ l ≤ n, where 1 is in the l-th
component. Denoted by | · | the norm on TM0 induced by the metric g0. Let J1(v) = vi when
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K = C,H, J2(v) = vj and J3(v) = vk when K = H. The fourth property easily follows from
these definitions. We inductively construct ξl,t via a Gram-Schmidt process as follows:

ξ1,0 =η1/|η1| = η1/
√
−q(η1, η1); ξ1,t = Jt(ξ1);

ξl,0 =
ηl +

∑l−1
m=1 ξm,0q(ηl, ξm,0)∣∣∣ηl +

∑l−1
m=1 ξm,0q(ηl, ξm,0)

∣∣∣ ; ξl,t = Jt(ξl), 2 ≤ l ≤ n.

ξl,0 are well-defined because the l-th component of ηl +
∑l−1

m=1 ξm,0q(ηl, ξm,0) is non-zero. Then
q(ξl,0, ξl,0) = −1 for any 1 ≤ l ≤ n. We prove inductively on l that q(ξl,0, ξl0,0) = 0 for any
1 ≤ l0 < l ≤ n. When l = 1 the above holds automatically. Suppose the above holds true for
l ≤ l1 − 1, then when l = l1,

q(ξl,0, ξl0,0) =
q(ηl, ξl0,0) +

∑l−1
m=1 q(ξm,0q(ηl, ξm,0), ξl0,0)∣∣∣ηl +

∑l−1
m=1 ξm,0q(ηl, ξm,0)

∣∣∣
=
q(ηl, ξl0,0) +

∑l−1
m=1 q(ηl, ξm,0)q(ξm,0, ξl0,0)∣∣∣ηl +

∑l−1
m=1 ξm,0q(ηl, ξm,0)

∣∣∣
=
q(ηl, ξl0,0) + q(ηl, ξl0,0)q(ξl0,0, ξl0,0)∣∣∣ηl +

∑l−1
m=1 ξm,0q(ηl, ξm,0)

∣∣∣ =
q(ηl, ξl0,0)− q(ηl, ξl0,0)∣∣∣ηl +
∑l−1

m=1 ξm,0q(ηl, ξm,0)
∣∣∣ = 0.

Hence q(ξl,0, ξl0,0) = 0 for any 1 ≤ l0 < l ≤ n. Since the maps Jt(·) are K-scalar multiplications
on the right, by the second and the third properties of q(·, ·), q(ξl,t, ξl0,t0) = 0 for any 1 ≤ l0 < l ≤
n and any 0 ≤ t, t0 ≤ d− 1. This verifies the second, the third and the fifth properties.

II.2: The Cayley hyperbolic space

The set of octonions O is an 8-dimensional non-associative, non-commutative division algebra
over R. Let 〈·, ·〉 be the Euclidean inner product on O and | · | the induced norm. Then we have the
following properties. (See [SV00, 1. Composition algebra])

(1). |ab| = |a||b| for any a, b ∈ O;

(2). 〈ab, ac〉 = 〈ba, ca〉 = |a|2〈b, c〉 for any a, b, c ∈ O;

(3). 〈ac, bd〉+ 〈ad, bc〉 = 2〈a, b〉〈c, d〉 for any a, b, c, d ∈ O;

(4). a = 2〈a, 1〉 − a for any a ∈ O;

(5). 2〈a, b〉 = 2〈a, b〉 = ab+ ba = ab+ ba for any a, b ∈ O;
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(6). (ba)a = a(ab) = |a|2b for any a, b ∈ O;

(7). a(bc) + b(ac) = (ca)b+ (cb)a = 〈a, b〉c for any a, b, c ∈ O;

(8). (Moufang Identities)

(i). (ab)(ca) = a((bc)a) for any a, b, c ∈ O;

(ii). a(b(ac)) = (a(ba))c for any a, b, c ∈ O;

(iii). b(a(ca)) = ((ba)c)a for any a, b, c ∈ O;

(9). Multiplications involving only two octonions are associative.

Let

I1,2 =

 1 0 0

0 −1 0

0 0 −1


and

J(1, 2,O) = {X ∈ Mat3×3(O) : I1,2X
∗I1,2 = X} .

Any element X can be written in the following form

X(θ, a) =

 θ1 a3 a2

−a3 −θ2 −a1

−a2 −a1 −θ3

 , θj ∈ R, aj ∈ O, j = 1, 2, 3,

where θ = (θ1, θ2, θ3) and x = (x1, x2, x3).

Definition II.3 (“Matrix model”). We define the Cayley hyperbolic space OH2 as

OH2 =
{
X ∈ J(1, 2,O) : X2 = X, tr(X) = 1,X11 > 0

}
.

Proposition II.4. For any trace 1 idempotent X ∈ J(1, 2,O) with X11 6= 0, there exists a unique

vector (θ, a, b) ∈ R+ ×O2 such that

X = sgn(X11)I1,2(θ, b, c)∗(θ, b, c),

where sgn(t) = t/|t| when t 6= 0. The set

J1,0 := {X ∈ J(1, 2,O) : X2 = X, tr(X) = 1,X11 = 0}

is isomorphic to OP1 ∼= S8.
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Proof. Write

X =

 θ1 a3 a2

−a3 −θ2 −a1

−a2 −a1 −θ3

 .

It suffices to show that  θ1 a3 a2

a3 θ2 a1

a2 a1 θ3

 = sgn(θ1)(θ, b, c)∗(θ, b, c) (II.2.1)

for some (θ, b, c) ∈ R×O2. Notice that

X2 =

 θ2
1 − |a3|2 − |a2|2 θ1a3 − θ2a3 − a1a2 θ1a2 − a3a1 − θ3a2

−θ1a3 + θ2a3 + a1a2 θ2
2 − |a3|2 + |a1|2 −a2a3 + θ2a1 + θ3a1

−θ1a2 + a3a1 + θ3a2 −a2a3 + θ2a1 + θ3a1 θ2
3 − |a2|2 + |a1|2

 .

The condition that X2 = X implies that

ajaj+1 = mj+2aj+2, mj ∈ R, j ∈ Z mod 3.

Case 1: If a3 = a2 = 0, then θ2
1 = θ1 implies that θ1 = 1 or 0. When θ1 = 1, trX =

θ2
1 + θ2

2 + θ2
3 + 2|a1|2 = 1 implies θ2 = θ3 = a1 = 0. Hence X = I1,2(1, 0, 0)∗(1, 0, 0). When

θ1 = 0, we have a natural diffeomorphism

J1,0 → {X ∈ Mat2×2(O) : X2 = X, trX = 1,X∗ = X}

by forgetting the first row and the first column, where the latter one is OP1 ∼= S8 by [Baez02, 3.
Octonionic projective geometry].

Case 2: If a3 = 0 and a2 6= 0 (the case when a2 = 0 and a3 6= 0 is similar), then X2 = X

implies the following.

(1). θ2
1 − |a2|2 = θ1 6= 0;

(2). −θ1 + θ3 = −1;

(3). θ2
2 + |a1|2 = −θ2;

(4). θ2
3 − |a2|2 + |a1|2 = −θ3.

Notice that 1 = θ1 − θ3, trX = 1 implies that θ2 = a1 = 0 and that |a2|2 = θ1θ3. Hence we can
choose θ =

√
|θ1|, b = 0 and c = sgn(θ1)a2/θ and (II.2.1) holds.
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Case 3: If a2, a3 both not equal to 0, then

|aj|2 = mj+1mj+2, j = 1, 2, 3 mod 3.

Therefore X2 = X and trX = 1 imply the following.

(1). θ1 − θ2 −m3 = 1;

(2). θ1 − θ3 −m2 = 1;

(3). m1 − θ2 − θ3 = 1;

(4). θ1 − θ2 − θ3 = 1.

Hence mj = θj , where j = 1, 2, 3. Choose θ =
√
|θ1|, b = sgn(θ1)a3/θ and c = sgn(θ1)a2/θ and

(II.2.1) holds. Uniqueness of the vector is trivial.

Remark. It is easy to see that the condition “trX = 1” and the condition “all 2×2 subdeterminants
of X vanish” introduced in [Most73, §19. Spaces of R-rank-1, page 137] are equivalent in this
setting.

Therefore we have the following alternative definition for the Cayley hyperbolic space (also
see [Park08, page 87]).

Definition II.5 (“Vector model”). The Cayley hyperbolic space can be alternatively defined as

OH2 = {(θ, a, b) ∈ R+ ×O2 : θ2 − |a|2 − |b|2 = 1}.

Remark. It follows from simple computations that for any X ∈ OH2, X11 ≥ 1.
The descriptions here coincide with [Most73, §19. Spaces of R-rank 1] in the following way.

For any v = (θ, b, c) ∈ R≥0 × O2, define Xv = I1,2v
∗v ∈ J(1, 2,O). Let J0 = {X ∈ J(1, 2,O) :

X2 = 0,X 6= 0} denotes the collection of all nilpotents. It follows from a similar argument as in
the above proof that all elements in J0 can be written as ±Xv for some v ∈ R≥0 × O2 satisfying
vI1,2v

∗ = 0. Define
J1 = {X ∈ J(1, 2,O) : X2 = X, trX = 1}.

Then for any X ∈ J1, the above proposition implies that either X = Xv for some v ∈ R≥0 × O2

satisfying vI1,2v
∗ = 1 (when X11 ≥ 1) or X = −Xw for some w ∈ R≥0×O2 satisfying wI1,2w

∗ =

−1 (when X11 ≤ 0). (Given the remark of Proposition II.4, one can check that the set J0 ∪ J1 is
naturally identified with the Cayley projective plane OP2 described in [Most73, §19. Spaces of
R-rank 1, page 137].)
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Following the definition in [Most73], a point X ∈ J1 is called an inner point if for any Y ∈
J0 ∪ J1 such that trX ◦Y = 0, there exists some X0 ∈ J0 satisfying trX0 ◦Y = 0, where X ◦Y
is the Jordan multiplication defined as (XY + YX)/2. Otherwise X is an outer point. In [Most73,
§19. Spaces of R-rank 1, page 138], the Cayley hyperbolic space is defined to be the collection of
all inner points in J1. Hence, the equivalence of our model for the Cayley hyperbolic space and
the model in [Most73, §19. Spaces of R-rank 1] boil down to the following proposition.

Proposition II.6. The “matrix model” for OH2 defined in Definition II.3 is the collection of all

inner points in J1.

Proof. For any 0 6= v = (1, a, b), w = (1, c, d) ∈ R≥0 ×O2, we have

trXv ◦ Xw = 1− 2〈a, c〉 − 2〈b, d〉+ |ac|2 + |bd|2 + 2〈ab, cd〉.

When a 6= 0, the first Moufang identity implies that

〈ab, cd〉 = 〈b, a(cd)〉 =
1

|a|2
〈ba, (a(cd))a〉 =

1

|a|2
〈ba, (ac)(da)〉 =

1

|a|2
〈ca, (da)(ba)〉.

Therefore

trXv ◦ Xw =


∣∣∣∣∣1− ca− (da)(ba)

|a|2

∣∣∣∣∣
2

, a 6= 0,

|1− db|2, a = 0.

(II.2.2)

Case 1: When a = b = 0, the quantity in (II.2.2) never equal to 0. The onlyw ∈ R≥0×O2 such
that trXv◦Xw = 0 is in the form of w = (0, c, d) with c, d ∈ O. Let u = (1, d/|(c, d)|,−c/|(c, d)|).
One can verify that Xu ∈ J0 and trXu ◦Xw = 0. Therefore Xv is an inner point. Denote by x0 this
very special inner point, i.e.,

x0 =

 1 0 0

0 0 0

0 0 0

 .

Simple computation shows that for any u ∈ R≥0 × O2, Xu ◦ x0 = 0 implies that u ∈ {0} × O2.
Let [Xu] be the unique element in RXu ∩J1 for those Xu 6∈ J0. Therefore [Xu] is an outer point for
any u ∈ {0} ×O2 \ {0}.

Case 2: When (a, b) 6= 0, without loss of generality we can assume that a 6= 0. If |a|2+|b|2 < 1,
trXv ◦ Xw = 0 implies that |c|2 + |d|2 ≥ 1, following (II.2.2). If c = 0 (or similarly d = 0), it is
easy to find a u = (1, λ, ξd) for some real numbers λ, ξ such that Xu ∈ J0 and trXu ◦ Xw = 0. If
c, d 6= 0, let λ, ξ ∈ R and u = (1, λc, ξd). Then the set of equations with respect to λ and ξ given
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by Xu ∈ J0;

trXu ◦ Xw = 0
⇐⇒

1 = λ2|c|2 + ξ2|d|2;

1 = λ|c|2 + ξ|d|2
(II.2.3)

has real solutions 
λ =

1±
√
|d|2
|c|2 (|c|2 + |d|2 − 1)

|c|2 + |d|2
;

ξ =
1∓

√
|c|2
|d|2 (|c|2 + |d|2 − 1)

|c|2 + |d|2

if and only if |c|2 + |d|2 ≥ 1. Therefore we can conclude that [Xv] is an inner point when vI1,2v
∗ >

0.
On the other hand, we define v̂ = (1, a/(|a|2 + |b|2), b/(|a|2 + |b|2)) for any v = (1, a, b) ∈

R≥0 × O2 such that vI1,2v
∗ < 0, . One can verify that trXv ◦ Xv̂ = 0 and that v̂I1,2v̂

∗ > 0.
Therefore trX ◦Xŵ 6= 0 for any X ∈ J0 by (II.2.3), which implies that [Xv] is an outer point when
vI1,2v

∗ < 0.
Hence we can conclude from the above discussions that X ∈ J1 is an inner point if X11 ≥ 1 and

is an outer point if X11 ≤ 0, which proves that our definition of OH2 coincide with the definition
in [Most73, §19. Spaces of R-rank 1].

We refer to [Most73, §19. Spaces of R-rank 1] and [Baez02] for an overview of related sub-
jects. A very detailed and general theory can be found in [SV63], [SV00] by T. A. Springer and F.
D. Veldkamp for further reference.

Denote by g0 the symmetric metric on OH2 andM = (OH2, g0) such that the distance function
on OH2 is given by

cosh(2d(X,Y)) = 2tr(X ◦Y)− 1, ∀X,Y ∈ OH2

as in [Most73]. We identify Tx0M0 with O2 such that each unit vector v = (a, b) ∈ O2 corresponds
to the initial vector of γv(t) := (cosh(t), a sinh(t), b sinh(t)). We will compute the Riemannian
curvature data at x0 by understanding the geodesic hinge ∠Xx0Y for any X,Y ∈M \{x0}, where
∠Xx0Y consists of two geodesic segments Xx0, Yx0 and the angle ]Xx0Y. A comparison hinge

of ∠Xx0Y in some space form M ′ is a geodesic hinge ∠X′x′0Y
′ in M ′ with the same angle such

that the lengths of geodesic segments Xx0, Yx0 and X′x′0, Y′x′0 are equal respectively.

Proposition II.7. The following hold for the Cayley hyperbolic space.
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(1). For any unit vector v = (a, b) ∈ O2, γv(t) gives a unit speed geodesic starting at x0 with

initial vector v;

(2). The Riemannian metric at x0 is given by the Euclidean inner product on O2. Hence the map

χ : O2 →M such that

χ(a, b) =

(
cosh(|(a, b)|), a

|(a, b)|
sinh(|(a, b)|), b

|(a, b)|
sinh(|(a, b)|)

)
gives the geodesic normal coordinates centered at x0 (hence dχ : O2 → Tx0M0 is the

isometric correspondence from O2 with Euclidean inner product to Tx0M0 mentioned above)

(3). For any v = (a, b) ∈ O2, denote by

Cay(v) =

O · (1, a−1b), a 6= 0;

O · (0, 1), a = 0

the Cayley line containing v. Then for any non-parallel pair of non-zero vectors (a, b), (c, d)

contained in the same Cayley line and any pair of points X ∈ γ(a,b)(R+) and Y ∈ γ(c,d)(R+),

the comparison hinge ∠X′x′0Y
′ of ∠Xx0Y in a space form of constant sectional curvature

−4 satisfies d(X′,Y′) = d(X,Y);

(4). For any a, b ∈ O \ {0}, any pair of points X ∈ γ(a,0)(R+) and Y ∈ γ(0,b)(R+), the compar-

ison hinge ∠X′x′0Y
′ of ∠Xx0Y in a space form of constant sectional curvature −1 satisfies

d(X′,Y′) = d(X,Y).

Proof. (1). This follows easily by direct computations.

(2). Let (a, b), (c, d) be unit vectors in O2. Hence the inner product of these two vectors is given
by

− d

dt

∣∣∣∣
t=0

d(γ(a,b)(t), γ(c,d)(1)) =−
d
dt

∣∣
t=0

(
2trγ(a,b)(t) ◦ γ(c,d)(1)− 1

)
2 sinh(2)

=
2 sinh(1) cosh(1)(〈a, c〉+ 〈b, d〉)

2 sinh(2)
= 〈a, c〉+ 〈b, d〉.

(3). Let a, b, c be unit octonions and θ ∈ [0, π/2). Let v = (cos θ, a sin θ). For any t1, t2 > 0, we
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have

cosh(2d(γbv(t1), γcv(t2)))

=2trγbv(t1) ◦ γcv(t2)− 1

=2 cosh2(t1) cosh2(t2)− 4 cosh(t1) sinh(t1) cosh(t2) sinh(t2)〈bv, cv〉 − 1

+ 2 sinh2(t1) sinh2(t2)(cos4 θ + sin4 θ) + 4 sinh2(t1) sinh2(t2) cos2 θ sin2 θ

=2 cosh2(t1) cosh2(t2) + 2 sinh2(t1) sinh2(t2)− sinh(2t1) sinh(2t1)〈bv, cv〉 − 1

= cosh(2t1) cosh(2t2)− sinh(2t1) sinh(2t1)〈bv, cv〉.

Notice that t1 = d(γbv(t1), E1) and t2 = d(γcv(t2), E1), the above equation coincides with
the law of cosine in a space form with constant sectional curvature −4.

(4). Let a, b be unit octonions and t1, t2 > 0. Write v = (a, 0) and w = (0, b). Then

cosh(2d(γv(t1), γw(t2))) = 2 cosh2(t1) cosh2(t2)− 1,

which implies that
cosh(d(γv(t1), γw(t2))) = cosh(t1) cosh(t2).

The above equation coincides with the law of cosine in a space form with constant sectional
curvature −1.

A direct corollary of the above proposition is the following.

Corollary II.8. For any non-zero v, w ∈ O2 the following hold.

(1). If v, w belong to the same Cayley line and v 6∈ Rw, then the sectional curvature of the

2-dimensional plane spanned by dχ(v), dχ(w) is −4;

(2). If Cay(v) ⊥ Cay(w), then the sectional curvature of the 2-dimensional plane spanned by

dχ(v), dχ(w) is −1.

(3). Recall that from classical results that OH2 = F−20
4 /Spin(9) with Spin(9) the stabilizer of

x0. Since F−20
4 acts by isometries on M = (OH2, g0), identifying Tx0M0 with O2, one can

view Spin(9) as a subgroup of SO(O2) ∼= SO(16). In particular, Spin(9) maps Cayley lines

to Cayley lines and acts transitively on the set of all Cayley lines.

Remark. Let p be a fixed point in CHn. Recall that for any unit vector v ∈ T 1
pCHn with re-

spect to the symmetric metric, there exists a linear map J ∈ End(TpCHn) such that the sec-
tional curvature between v and J(v) is −4. The same argument holds true in quaternionic hy-
perbolic spaces but NOT in the Cayley hyperbolic space. This is due to the non-associativity
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of octonionic multiplication. In fact, if such a map J exists, without loss of generality we can
assume that p = x0 and identify the tangent space at x0 with O2 via dχ as in Proposition II.7.
If J(1, 0) = (a, 0) for some unit octonion a ∈ O \ R, then for any unit octonion b and any
θ ∈ [0, π/2), J(cos θ, b sin θ) = a(cos θ, b sin θ). In particular, J(0, 1) = (0, a). Similarly we have
J(b sin θ, cos θ) = a(b sin θ, cos θ) for any unit octonion b and any θ ∈ [0, π/2), which implies
that J(v) = av for any v ∈ O2. Therefore, for any octonions b 6= 0, c, J(b, bc) = (ab, a(bc)) ∈
Cay(b, bc) = Cay(1, c), which implies that (ab)c = a(bc). Notice that if (ab)c = a(bc) for any
b, c ∈ O, then a must be real. This contradicts the assumption that a ∈ O \ R.
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CHAPTER III
Proving Filling Minimality: a Projection Argument

III.1: A toy model

Before we move onto the complicated case of symmetric spaces, we first look at a very special
example.

LetD ⊂M := Rn ⊂ L := RN be a compact region with smooth boundary ∂D in Rn equipped
with the natural Euclidean metric, where n < N and M is a vector subspace of L. Let D′ ⊂ RN

be an embedded n-dimensional smooth Riemannian manifold with boundary ∂D′ = ∂D. Then we
have the following result.

Proposition III.1. Under the above assumptions, the following holds.

(1). bdD′ ≥ bdD;

(2). Vol(D′) ≥ Vol(D).

Proof. Let P : L →M be the orthogonal projection. For any x, y ∈ ∂D = ∂D′ and any rectifiable
curve segment γ : [0, T ]→ D′ connecting x, y, we have

length(γ) ≥ length(P ◦ γ) ≥ dD(x, y) = bdD(x, y).

Taking the infimum on all such γ proves the first assertion. Since P |∂D = Id∂D, we have D ⊂
P (D′). Notice that the n-dimensional Jacobian JacP ≤ 1. We have that P does not increase
n-dimensional volume. Hence the second assertion follows from

Vol(D′) ≥ Vol(P (D′)) ≥ Vol(D).

The general argument presented in this paper is very similar to the proof of the above proposi-
tion, which is essentially the following diagram
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D′

L M

D ⊂M

Φ′

P

Φ

such that

(1). Φ : M → L is an “embedding”, Φ′ : D′ → L is a map such that Φ|∂D = Φ′|∂D′;

(2). P ◦ Φ = Id and P ◦ Φ′ is volume non-increasing;

(3). D ⊂ P ◦ Φ′(D′). When P ◦ Φ′ is continuous, this is a corollary of Φ|∂D = Φ′|∂D′ and
P ◦ Φ = Id.

In this special example, an embedding Φ, a map Φ′, an “ambient space” L are all given in the
assumptions. Also, the construction of a “projection” P and verifications of the required properties
are more straightforward than later constructions in this chapter.

III.2: Proof of filling minimality for compact regions in Euclidean spaces

In this section, we sketch Burago-Ivanov’s proof of filling minimality for compact regions in a
Euclidean space M = Rn with the standard Euclidean metric. Namely

Proposition III.2 (A naive corollary of [BI10, Theorem 1]). Let D ⊂ M := Rn be a compact

region with smooth boundary ∂D in Rn equipped with the natural Euclidean metric. Then D is a

minimal filling.

Remark. In their original paper [BI10], their method was used to prove strict minimal filling for
almost Euclidean regions. See [BI10] for more details.

Proof for Proposition III.2. We want to use the projection argument in the previous section, but
we have additional difficulties:

(Q1). L is not given in the assumptions. Which ambient space L should we use?

(Q2). For an arbitary D′ with ∂D = ∂D′ and bdD′ ≥ bdD, how to construct Φ′ and Φ so that we
can compare D and D′ in L?

(Q3). How to construct P after we construct L, Φ′ and Φ?

(Q4). How to proof that our constructions satisfy the required properties?

21



The answers given by Burago-Ivanov to the above questions are the following: Let S := Sn−1 ⊂
M be the unit sphere equipped with the standard sphercial probability measure ds. Then L is
chosen to be L∞(S, ds). For simplicity, we write L∞(S) if there is no ambiguity of the measure
class. Denoted by 〈·, ·〉 the standard Euclidean inner product on M = Rn. The “embedding” map
Φ : M → L and the map Φ′ : D′ → L are defined as follows.

Φθ(x) := Φ(x)(θ) = −〈x, θ〉; Φ′θ(p) := Φ′(p)(θ) := χN

(
inf
y∈∂D
{dD′(p, y) + Φθ(y)}

)
,

where χN(t) := max{min{t,−N}, N} for some N sufficiently large. It is not hard to verify
that Φ is an isometric embedding of M into L as a metric space, Φ′ is a 1-Lipschitz map and
Φ|∂D = Φ′|∂D′ . Notice that the image of Φ is a n-dimensional vector subspace, we can define P̂
to be the L2(S, ds)-orthogonal projection onto Φ(M) and P = Φ−1 ◦ P̂ . If we fix an orthonormal
basis in M and write x = (x1, ..., xn) to be its coordinates, then

P ◦ Φ′(p) = −
(
n

∫
S

Φ′θ(p)θ1ds(θ), ..., n

∫
S

Φ′θ(p)θnds(θ)

)
, ∀p ∈ D′.

It is easy to see that P ◦Φ = Id and that P ◦Φ′ is continuous (actually even Lipschitz). Therefore
it remains for us to check whether P ◦ Φ′ is volume non-increasing.

By Rademacher’s theorem, for every θ ∈ S, Φ′θ(·) is differentiable almost everywhere in D′.
Hence for almost any p ∈ D′ and any v ∈ TpD

′, a notion of “weak derivative” dpΦ′ : TpD
′ →

TΦ′(p)L ∼= L is a well-defined 1-Lipschitz linear map (see [BI10, Lemma 5.3]). Moreover

dp(P ◦ Φ′)(v) = −
(
n

∫
S

dpΦ
′
θ(v)θ1ds(θ), ..., n

∫
S

dpΦ
′
θ(v)θnds(θ)

)
for almost every p ∈ D′ (see [BI10, Lemma 5.4]). For such p ∈ D′, let v1, ..., vn be an orthonormal
basis in TpD′. For any a1, ..., an ∈ R such that a2

1 + ...+ a2
n = 1, we have

‖a1dpΦ
′(v1) + ...+ andpΦ

′(vn)‖L∞(S) ≤ 1,

which implies that ∥∥(dpΦ
′(v1))2 + ...+ (dpΦ

′(vn))2
∥∥
L∞(S)

≤ 1.

Hence, by Cauchy-Schwarz inequality and the fact that
√
nθj are orthonormal in L2(S, ds), we
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have

n∑
j=1

‖dp(P ◦ Φ′)(vj)‖2
=n

n∑
j=1

n∑
i=1

(∫
S

dpΦ
′
θ(vj)
√
nθids(θ)

)2

≤n
n∑
j=1

[∫
S

dp(Φ
′
θ(vj))

2ds(θ)

]
≤ n. (III.2.1)

We recall the following linear algebra fact.

Lemma III.3. For any m ×m real matrix H = (h1 h2 ... hm), assuming k1, k2, ..., km ≥ 0 are

eigenvalues of HTH , we have

| detH| ≤

√√√√( 1

m

m∑
i=1

ki

)m

=

√√√√( 1

m

m∑
i=1

hTi hi

)m

.

Proof.

| detH| =
√

detHTH =

√√√√ m∏
i=1

ki ≤

√√√√( 1

m

m∑
i=1

ki

)m

=

√√√√( 1

m

m∑
i=1

hTi hi

)m

.

By the above lemma, the Jacobian of dp(P ◦Φ′), denoted by Jac(dp(P ◦Φ′)) or simply Jac(P ◦
Φ′)(p), is bounded above by 1. This proves that P ◦Φ′ is volume non-increasing. Filling minimality
of D then follows from the projection argument in Proposition III.1, the above constructions and
verifications of necessary properties.

Remark. The connections between this proof and the proof for the rank-1 symmetric spaces
(which will be presented in the rest of this paper) can be summarized as follows.

(1). Section III.3 explains how we can use the projection argument mentioned in Section III.1 to
prove Theorem I.5 and subsequently Corollary I.6;

(2). The key step (III.2) in the estimate of Jacobian of P ◦ Φ′ is generalized in Section III.4.
The main idea is to introduce a notion of “Riemannian metric” on an open subset of L such
that the n-dimensional Jacobian of any 1-Lipschitz map Φ′ is bounded above by 1. Some
technical definitions required in our constructions will also be introduced in Section III.4.

(3). In the Euclidean setting, the projection P from L to M can also be defined as follows: For
any φ ∈ S, P (Φ) is the unique critical point of the convex function

Fφ : M → R, Fφ(y) =

∫
S

[
1

2
(Φθ(y))2 − φ(θ)Φθ(y)

]
ds(θ).
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Moreover, if we view S, the unit sphere in M = Rn, as the boundary at infinity for M , then
Φθ(y) are exactly Busemann functions on M and ds is the visual measure for any point on
M . These concepts will be introduced in Section IV.1 when we discuss the constructions for
rank-1 symmetric spaces. As one may expect, some general ideas behind these constructions
will be similar.

III.3: Proof of Theorem I.5 and Corollary I.6

This section is a review of [BI13, Section 2. Proof of the theorems]. The purpose of this section
is to prove Theorem I.5 and Corollary I.6 from Proposition III.4, which is the KHn version of
[BI13, Proposition 2.1]. This proposition asserts that we can “embed” KHn into L∞(∂∞M) =

L∞(Sdn−1) (d = 1, 2, 4, 8 when K = R,C,H,O, respectively) and also “project” an open subset
of L∞(Sdn−1) to KHn with certain properties. The rest of the thesis provides the technical details
of these two maps along with verification of properties.

Let g0 denote the standard metric on KHn such that sectional curvature on KHn lies in the
interval [−4,−1]. LetD ⊂ KHn be a region with smooth boundary. Let g be a Riemannian metric
on D which is Cr-sufficiently close to g0|D for a suitable r. (See the remark after Proposition
IV.34.)

Fix a point x0 ∈ KHn. Let Bx0(R) be the ball of radius R in KHn centered at x0 with respect
to the symmetric Riemannian metric g0. Fix an R > 0 such that D ⊂ Bx0(R/5). By [Horm90,
Theorem 2.3.6] the metric g can be smoothly extended from D to KHn which coincides with g0

outside Bx0(R/2). Moreover, the extension can be constructed in such a way that it converges to
g0 as g converges to g0|D.

We denote the extension by the same letter g and let M = (KHn, g). We also assume in
addition that g is sufficiently close to g0 such that Bx0(R/5) is contained in the ball of radius R/4
centered at x0 with respect to the metric g. Our goal is to prove that for any region D ⊂ Bx0(R/5),
the space (D, g) ⊂M is a minimal filling and is boundary rigid.

Let S = Sdn−1 and L = L∞(S). For any r > 0, let B(r) be the ball of radius r in L centered
at the origin.

The technical results established in the rest of the thesis can be summarized by the following
proposition.

Proposition III.4. If g is sufficiently close to g0, then there exists a distance preserving map Φ :

M → L such that Φ(x0) = 0 ∈ L and a Lipschitz map

Pσ : B(R) ∪ Φ(M)→M
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satisfying the following properties

(1). Pσ ◦ Φ = IdM .

(2). For every dn-dimensional Riemannian manifold N and every 1-Lipschitz map f : N →
B(R), the composition Pσ ◦ f does not increase dn-dimensional volumes.

(3). For any N and f as above, f(N) ⊂ Φ(M) provided the composition Pσ ◦ f : N → M

preserves volumes of all measurable sets.

Proof of Theorem I.5 from Proposition III.4. The proof is the same as the proof of [BI13, Theorem
1.6] from [BI13, Propsition 2.1]. We will present the proof for reader’s convenience.

Let g be sufficiently close to g0 so that the maps Φ and Pσ from Proposition III.4 exist. Let D′

be a smooth compact manifold with boundary ∂D′ = ∂D and g′ be a metric on D′ such that

d(D′,g′)(x, y) ≥ d(D,g)(x, y), ∀x, y ∈ ∂D.

For simplicity we write M ′ = (D′, g′). Notice that (D, g) ⊂M , we have

d(D,g)(x, y) ≥ dM(x.y), ∀x, y ∈ ∂D.

Therefore
dM ′(x, y) ≥ dM(x, y), ∀x, y ∈ ∂D.

Since Φ is distance preserving with respect to M , Φ|∂D is 1-Lipschitz with respect to the metric on
M ′. Therefore we can apply the method in [Ivan09, Proposition 1.6] (or [BI10, Proposition 4.9])
to construct Φ′ : M ′ → L as an extension of Φ|∂D. Here is an explicit formula for Φ′:

Φ′(x)(s) = χR(inf{Φ(y)(s) + dM ′(x, y) : y ∈ ∂D}), ∀x ∈M ′, s ∈ S,

where χR : L → L is a cutoff function given by

χR(φ)(s) = min{R/2,max{−R/2, φ(s)}}.

(Since we assumed that D ⊂ Bx0(R/5) and that for any x ∈ Bx0(R/5), dg(x, x0) < R/4 at the
beginning of this section, the cutoff function does not change anything when x ∈ ∂D. Therefore
Φ|∂D = Φ′|∂D)

Consider a map π = Pσ ◦ Φ′ : M ′ → M . The first assertion in Proposition III.4 implies
that π|∂M ′ = Id∂D, therefore D ⊂ π(M ′). The second assertion of Proposition III.4 implies that
Vol(M ′) ≥ Vol(D, g). Therefore (D, g) is a minimal filling.
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To prove that (D, g) is a strict minimal filling, suppose that Vol(M ′) = Vol(D, g). Then π is
volume-preserving. By the third assertion of Propositon III.4 we have Φ′(M ′) ⊂ Φ(M). Therefore
π = Φ−1 ◦ Φ′. Since Φ′ is 1-Lipschitz and Φ is distance preserving, π is therefore a 1-Lipschitz
volume-preserving map. It follows from [BI10, Lemma 9.1] that π is an isometry. Hence (D, g) is
a strict minimal filling.

Proof of Corollary I.6 from Theorem I.5. The prove is also a KHn version of [BI13, Proof of The-
orem 1.3]. For reader’s convienience we will present the proof here.

Let D and g be as above, and let g′ be a Riemannian metric on D′ such that D′ and D share
the same boundary and g′ induces the same boundary distance function as (D, g). By Theorem I.5
(D, g) is a strict minimal filling. Hence it suffices to show that Vol(D, g) = Vol(D′, g′). Since D
is a region in contained in a large ball in M , it satisfies the SGM condition introduced by C. B.
Croke [Crok91] if g is sufficiently close to g0 (for example, g having negative sectional curvature).
Hence Vol(D, g) = Vol(D′, g′) by [Crok91, Lemma 5.1].

III.4: General setup and computations

Recall that in Proposition III.4 we need existence of an “embedding” Φ : M → L and a “pro-
jection” Pσ : B(R) ∪ Φ(M) → M satisfying certain properties. We will adopt the general setup
introduced in [BI13, Section 3, General computations] in order to help us understand these maps.
For reader’s convenience, we will list their major concepts and results without proof.

Notation III.5. In this section, we assume that (M, g) is a n-dimensional manifold where any two
points are connected by a geodesic realizing the distance. This is always the case when (M, g)

is complete. Let S = Sn−1 and L := L∞(S). We equip S with the standard (Haar) probability
measure ds. In the rest of the paper, we let L2(S) = L2(S, ds).

We denote by T 1M the unit tangent bundle of M and by T 1
xM its fiber over x ∈ M . Let dsx

be the standard probability measure on T 1
xM with respect to the Riemannian metric g. We will use

dsx = dsx,g for simplicity when there is no ambiguity of metric.

Definition III.6 (Special embedding). A map Φ : M → L is a special embedding if there is a
family {Φs}s∈S of real-valued functions on M such that the following holds:

(1). For every x ∈M , the image Φ(x) is a function s→ Φs(x) which belongs to L.

(2). The function (x, s)→ Φs(x) is smooth on M × S.

(3). Every function Φs : M → R is distance-like; that is, |gradΦs| ≡ 1.

(4). For every x ∈M , the map s→ gradΦs(x) is a diffeomorphism between S and T 1
xM .
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Remark. Every special embedding Φ is a distance preserving map. The third assertion in Defi-
nition III.6 implies that Φ is 1-Lipschitz. To prove that it is distance preserving for all x, y ∈ M ,
consider a unit speed geodesic γ connecting x and y. By the fourth assertion in Definition III.6,
there exists some s ∈ S such that gradΦs(x) is the initial velocity vector of γ. Since Φs is distance-
like, its gradient curves are geodesics, which implies that γ is a gradient curve of Φs. Therefore

Φs(y)− Φs(x) = dM(x, y)

and hence ‖Φ(x)− Φ(y)‖L∞ ≥ dM(x, y). Thus Φ is distance-preserving.

Notation III.7. Let αx : T 1
xM → S be the inverse of s→ gradΦs(x) and α : T 1M → S be a map

such that α|T 1
xM

= αx for every x ∈M .
We define a probability measure dµx by the pushforward of the standard probability measure

dsx on T 1
xM to S. In other words,

dµx = (αx)∗dsx.

We denote by λ(x, s) the density of dµx at s ∈ S with respect to ds. The second and the fourth
assertion in Definition III.6 imply that λ : M × S → R is smooth and positive.

Definition III.8 (Scalar product, Riemannian metric and special Riemannian metric). A symmetric
bilinear form G on L is called a scalar product on L if it is L2-compatible (with respect to ds). In
other words, there exists some positive constants c, C such that

c‖u‖2
L2(S) ≤ G(u, u) ≤ C‖u‖2

L2(S), ∀u ∈ L.

A Riemannian metric in an open subset U ⊂ L is a smooth familyG = {Gφ}φ∈U of scalar products
on L. In other words, for any point φ ∈ U , there is a scalar product Gφ defined on TφL = L which
depends smoothly on the base point φ.

Let Φ : M → L be a special embedding and G be a Riemannian metric in an open subset
U ⊂ L comtaining Φ(M). We say that G is special with respect to Φ if the following hold:

(1). For every φ ∈ U , the scalar product Gφ has the form

Gφ(X, Y ) = n

∫
S

X(s)Y (s)dνφ(s), ∀X, Y ∈ L,

where νφ is a probability measure on S.

(2). Every measure νφ has positive density bounded away from zero with respect to ds; these
densities depend smoothly on φ.
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(3). If φ = Φ(x) for an x ∈M , then νφ = µx.

Notation III.9. Let G be a scalar product in L and V be a n-dimensional Euclidean space. Let
T : L → V be a linear map bounded with respect to G. Denote by JacG,WT the Jacobian of T |W ,
whereW ⊂ L is an arbitary n-dimensional subspace. We define Jacobian of T as

JacGT := sup
W⊂L, dim(W)=n

JacG,WT.

Let M be an arbitary n-dimensional Riemannian manifold. For any smooth map F : L → M ,
we denote by dφF : TφL → TF (φ)M the tangent map of F at φ.

For simplicity, we will use TxΦ = Φ∗(TxM) for any x ∈M and Φ : M → L.

Definition III.10 (L2-smooth). Let U ⊂ L be an open subset of L. We say that a map P : U →M

is L2-smooth if it is differentiable with respect to the L∞ structure and its derivative at every point
φ ∈ U can be extended to a bounded linear map from L2 to a fiber of TM which depends smoothly
on φ.

Definition III.11 (Projection). Let Φ : M → U ⊂ L be a smooth isometric immersion with
respect to a Riemannian metric G on U . We say that a map P : U → M is a projection if it is
L2-smooth and satisfies the following two properties.

(1). P ◦ Φ = IdM ;

(2). for every x ∈ M , dΦ(x)P (V ) = 0 for every vector V ∈ L orthogonal (with respect to G) to
TxΦ.

Proposition III.12. [BI13, Proposition 3.13] Let Φ : M → U ⊂ L be a special embedding and

G be a Riemannian metric with respect to Φ. Let P : U → M be a projection in the sense of

Definition III.11. Then for every x ∈M and every V ∈ L orthogonal to TxΦ, we have

dΦ(x)JacGP (V ) = 0.

Proposition III.13. [BI13, Lemma 3.14, Lemma 3.15] Let N be a dn-dimensional Riemannian

manifold (with volume form dvolN ) and f : N → L be a 1-Lipschitz map. Suppose that G

is a special Riemannian metric in an open subset U ⊂ L with respect to a special embedding

Φ : M → L and f(N) ⊂ U . Assume P : U → M is an L2-smooth map. Then we have the

following inequalities

(1). f does not increase n-dimensional volume. In other words,

VolG(f) :=

∫
N

dvolf∗G ≤ Vol(N),
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where dvolf∗G denotes the volume form on N with repect to the Riemannian metric f ∗G.

(2).

Vol(P ◦ f) :=

∫
N

(P ◦ f)∗dvolM ≤
∫
N

JacGP (f(x))dvolN(x).
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CHAPTER IV
Technical Constructions and the Proof of Proposition III.4

IV.1: The construction in KHn

Recall in Subsection III.3 we proved Theorem I.5 and Corollary I.6 assuming Proposition III.4,
which asserts the existence of an “embedding” map Φ and a “projection” map Pσ. In this sec-
tion, we will present the main construction behind these aforementioned maps. We will adopt the
same construction as in [BI13, Section 4, The construction] for KHn with a metric g close to the
symmetric metric.

To simplify exposition, we do not track the dependence on g and its derivatives in our proof.
We say that a dependence on g is smooth if for every integer k > 0 there exists an r > 0 such that
this dependence is k-times differentiable with respect to the Cr-norm on a neighborhood of g0 in
the space of metrics.

Notation IV.1. LetBx0(r) the ball of radius r in KHn centered at x0 with respect to the symmetric
metric g0, where x0 ∈ KHn is a fixed point. Recall that in Section III.3 we assumed that D ⊂
Bx0(R/5) with metric g smoothly exteneded to the whole KHn (also denoted as g). Moreover, g
is Cr close to g0 and g ≡ g0 outside Bx0(R/2). Let M = (KHn, g) and M0 = (KHn, g0). Notice
that M0 and M share the same underlying manifold, we denote by dg0 , dg the distance functions
on M0 and M respectively.

Let OM be the set of geodesic rays in M . In other words

OM := {γ : [0,∞)→M |dM(γ(t1), γ(t2)) = |t1 − t2|} .

Two geodesic rays γ1, γ2 are equivalent if limt→∞ d(γ1(t), γ2(t)) < ∞. In a Euclidean space,
geodesics are straight lines and two geodesic rays are equivalent if and only if they are parallel.
The boundary at infinity for M , denoted as ∂∞M , is defined to be the equivalence classes of
geodesic rays. One can check that for Euclidean spaces, the boundary at infinity can be canonically
identified with the unit sphere centered at an arbitary point. More generally, for non-positively
curved manifolds of dimension m, the boundary at infinity is homeomorphic to the sphere of

30



dimension m− 1. If γ ∈ OM is in the equivalence class of s ∈ ∂∞M , then we say s is the positive
infinity endpoint of γ, denoted by γ(∞) = s.

Since g and g0 coincide outside a compact set, boundaries at infinity for both M and M0 are
canonically identified. Let S = Sdn−1 = ∂∞M be the boundary at infinity and L := L∞(S) as
in Section III.3, where d = dimR K. For every s ∈ S, we denote by Φs : M → R the Busemann
function of a geodesic ray starting at x0 towards s ∈ S. To be more precise, if we let γ(t) be the
unit speed geodesic such that γ(0) = x0 and γ(∞) = s, we have

Φs(x) = lim
t→∞

dg(x, γ(t))− t, x ∈M, s ∈ S.

We define the “embedding map” Φ : M → L such that

Φ(x)(s) = Φs(x), x ∈M, s ∈ S.

Lemma IV.2. The map Φ defined above depends smoothly on x, s and g. If g is sufficiently close

to g0, then Φ is a special embedding in the sense of Definition III.6.

We recall some notations introduced in the Subsection III.4 before we give a proof for the
above lemma.

Notation IV.3. Let dsx,g be the standard probability measure on T 1
xM with respect to the Rie-

mannian metric g. Let αx,g : T 1
xM → S be the inverse of s → gradΦs(x) and αg : T 1M → S

satisfying αg|T 1
xM

= αx,g for every x ∈M . For any v ∈ T 1M , denoted by v(t) ∈ T 1M the image
of v after applying the geodesic flow for time t. Then for any v ∈ T 1M we have αg(v) = v(−∞),
the negative infinity endpoint of the geodesic with initial vector v.

We define a probability measure µx,g, known as the visual measure at x on M , by the pushfor-
ward of the standard probability measure on T 1

xM to S. In other words,

µx,g = (αx,g)∗dsx,g.

We denote by λg(x, s) the density of µx,g at s ∈ S with respect to the Haar measure ds =

(αx0,g0)∗dsx0,g0 . Lemma IV.2 and Definition III.6 imply that λg : M × S → R is smooth and
positive. For simplicity we will use dsx, αx, α, µx and λ(x, s) instead of dsx,g, αx,g, αg, µx,g and
λg(x, s) when there is no ambiguity on the choice of the metric g.

Proof of Lemma IV.2. Let Hs,c be the horosphere in M0 at s ∈ S such that

(1). Hs,c is tangent to Bx0(c) with c > R > 0;

(2). Any geodesic ray starting at Hs,c towards s does not intersect the interior of Bx0(c).
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Since g and g0 coincide on KHn \ Bx0(R/2), horospheres of M contained in KHn \ Bx0(R/2)

coincide with those of M0. Therefore,

Φs(x) = dg(x,Hs,c1)− dg(x0, Hs,c2)− c1 + c2, x ∈M, s ∈ S, c1, c2 � 1. (IV.1.1)

The first and the third conditions in Definition III.6 follow immediately from the definition of
Busemann functions. To verify the second and the fourth conditions we first recall that in the proof
of Corollary I.6 we assumed that g has negative sectional curvature. Notice that αg0 is smooth, for
any v ∈ T 1M , smoothness of the map αg(v) = αg(v(−T )) follows from choosing arbitarily large
T > 0 and the smoothness of αg0 . (This is because αg(v(−T )) = αg0(v(−T )) = when T � 1.)
This verifies the fourth condition in Definition III.6 and also gives a smooth diffeomorphism from
T 1M to M × S by identifying v ∈ TxM with (x, αg(v)). Denoted by β : T 1M0 → R a smooth
map such that β(v) = c for any v orthogonal to Hv(−∞),c. The same map is also defined on those
points in T 1M where g = g0. For sufficiently large T > 0, by (IV.1.1) we have

Φs(x) = −β(α−1
x,g(s)(−T )) + β(α−1

x0,g
(s)(−T )), x ∈M, s ∈ S.

Since all maps involved in the above formula are smooth, we have Φs(x) : M ×S → R is smooth.
This verifies the second assertion in Definition III.6.

Lemma IV.4. If g = g0, then

λ(x, s) = e−δ(M0)Φs(x) = e−(dn+d−2)Φs(x), ∀x ∈M, s ∈ S,

where δ(M0) is the volume growth entropy of any compact quotient of M0 defined as

δ(M0) = limr→∞
ln (Vol({x ∈M0|dM0(x, x0) < r}))

r
.

Proof. The proof can be found in [BCG95].

Remark. For more general g, we can assume that g and g0 are sufficiently close such that

1

2
e−(dn+d−2)Φs(x) ≤ λ(x, s) ≤ 2e−(dn+d−2)Φs(x), ∀x ∈ Bx0(R0), s ∈ S, (IV.1.2)

for some choice of positive real number R0 > 0 to be determined. This will be useful in later
computations when we choose a specific R0 depending only on R and n to help verifying some
properties in our construction.

Let B(R) be the ball of radius R centered at 0 in L (with respect to L∞-norm). We define a
projection as the following.
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Definition IV.5. Let U be a neighborhood of Φ(M)∪B(R) in L. For any φ ∈ U , we define a map
Ωφ,g : M → T ∗M as

Ωφ,g(x) =

∫
S

e(dn+d)[Φs(x)−φ(s)]dΦs(x)dµx,g(s). (IV.1.3)

Let P : U →M be such that Ωφ,g(P (φ)) = 0.

We first prove that it is well-defined, which is the KHn version of [BI13, Lemma 4.4]. For
reader’s convenience, we provide a slightly different proof.

Lemma IV.6. If g is sufficiently close to g0, then there exists a smooth map P satisfying Definition

IV.5 such that

(1). P (Φ(x)) = x for all x ∈M ;

(2). There exists some constant R1 = R1(n,R) depending only on n and R such that for any

φ ∈ B(R), P (φ) ∈ Bx0(R1) and dg(P (φ), x0) ≤ R1.

Hence as a direct corollary of the second assertion, Φ(P (φ)) ∈ B(R1) for any φ ∈ B(R).

Proof. If φ = Φ(x), then we define P (φ) = x and it satisfies the requirements in Definition IV.5.
In the rest of the proof we extend P to a neighborhood of Φ(M) containing B(R).

Consider a map E : L → L2(S) given by

E(φ) = e−(dn+d)φ(s).

Let φ ∈ L and ψ = E(φ). Then the equation Ωφ,g(x) = 0 takes the form∫
S

ψ(s)e(dn+d)Φs(x)dΦs(x)dµx(s) = 0.

Notice that when φ = Φ(x), spherical symmetry implies that∫
S

E ◦ Φs(x)e(dn+d)Φs(x)dΦs(x)dµx(s) = 0.

Hence the equation Ωφ,g(x) = 0 is equivalent to the following∫
S

(ψ(s)− E ◦ Φs(x)) e(dn+d)Φs(x)dΦs(x)dµx(s) = 0,

which is equivalent to∫
S

(ψ(s)− E ◦ Φs(x)) e2(dn+d)Φs(x)dx(E ◦ Φ)(s)dµx(s) = 0.
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Define E : M × L2(S)→ T ∗M as

E(x, ψ) =

∫
S

(ψ(s)− E ◦ Φs(x)) e2(dn+d)Φs(x)dx(E ◦ Φ)(s)dµx(s).

By the Implicit Function Theorem applied to E(x, ψ) = 0, there exists a smooth map P̃ : Ũ →M

defined on a neighborhood Ũ of E(Φ(M)) such that E(P̃ (ψ), ψ) = 0. Therefore we can extend P
to E−1(Ũ) by setting P = P̃ ◦ E.

It remains for us to extend P to B(R). Let

ωg(x) = e(dn+d)Φs(x)λg(x, s)dΦs(x) ∈ T ∗xM

and hence
Ωφ,g(x) =

∫
S

E(φ(s))ωg(x)ds.

When g = g0, Lemma IV.4 implies that ωg = d
(
e2Φs/2

)
. A classic result from [BCG95] (to

be more precise, the first assertion of Lemma IV.11) implies that

∇ωg0 > e2Φsg0.

Hence
∇Ωφ,g0 ≥

∫
S

E(φ(s))e2Φsg0ds > 0.

For general g close to g0, we denote the induced quadratic form of ∇ωg and ∇Ωφ,g by the same
notations. Similar to the remark for Lemma IV.4, we can assume that g is sufficiently close to g0

in the sense that

∇ωg ≥
1

2
e2Φsg, ∀x ∈ Bx0(R̃0) (IV.1.4)

for some choice of R̃0 = R̃0(n,R) > 2R > 0 which will be determined in later part of this proof.
Notice that Bx0(r) is convex in M when r > 2R. Then

∇Ωφ,g|x ≥
1

2

∫
S

E(φ(s))e2Φs(x)g|xds > 0, ∀x ∈ Bx0(R̃0).

Therefore for any unit speed geodesic segment γ inBx0(R̃0), the function Ωφ,g(γ̇(t)) has derivative
equal to ∇Ωφ,g(γ̇, γ̇) and hence is strictly increasing, which implies that Ωφ,g = 0 has at most one
solution in Bx0(R̃0) ⊂ M . Moreover, since ∇Ωφ,g is non-degenerate, we can apply the Implicit
Function Theorem to Ωφ,g = 0, which proves that we can extend x = P (φ) smoothly if the
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equation∇Ωφ,g = 0 has a solution for any φ ∈ B(R).
To prove the existence of such a solution, we first claim that infx 6∈Bx0 (r)

∫
S
e2Φs(x)ds→∞ as r

tends to infinity (independent of the choice of g). Define

Shadowg(N, p) = {s ∈ S| Imγs,p ∩N 6= ∅}, N ⊂M, p ∈M t S,

where γs,p denotes the geodesic ray (with respect to g) starting at p towards s. Since in Lemma
IV.2 we assumed that g is negatively curved, for any r > R/2 and any x ∈ KHn \ Bx0(R/2), we
have Shadowg(Bx0(r), x) = Shadowg0(Bx0(r), x). Define

Dx = Shadowg0(Bx0(2R), x) \ Shadowg0(Bx0(R), x) ⊂ S, ∀x ∈M t S.

Notice that for any r > R > 0 and any s ∈ S, the set

Shadowg0(Bx0(r), s) := lim
x→s

Shadowg0(Bx0(r), x)

has a fixed positive area only depending on r and n with respect to the Haar measure ds on S.
Moreover, the area of Shadowg0(Bx0(r), x) only depends on dg0(x, x0) for any x ∈ M t S.
Hence in particular Area(Ds, ds) equal to some positive constant I(n,R) > 0 for any s ∈ S

and there exists a continuous non-negative function A : R≥0 → R≥0 such that Area(Dx, ds) =

A(dg0(x, x0))→ I(n,R) as dg0(x, x0)→∞. Notice that Φs(x) ≥ dg(x, x0)− 2diamg(Bx0(2R))

for any s ∈ Shadowg0(Bx0(2R), x) and any x ∈ M . Without loss of generality we can assume
that g is sufficiently close to g0 such that diamg(Bx0(2R)) < 5R. Then we have∫

S

e2Φs(x)ds ≥ A(dg0(x, x0))e2(dg(x,x0)−10R) ≥ A(dg0(x, x0))e2(dg0 (x,x0)−12R), ∀x ∈M,

which proves that infx 6∈Bx0 (r)

∫
S
e2Φs(x)ds→∞ as r tends to infinity. Therefore

inf
x 6∈Bx0 (r)

∫
S

E(φ(s))e2Φs(x)ds ≥ e−(dn+d)R inf
x 6∈Bx0 (r)

∫
S

e2Φs(x)ds ≥ Â(n,R, r)→∞

as r tends to infinity, where Â(n,R, ·) is a positive continuous function defined on R≥0 depending
on n and R. Hence there exists some constant r0 = r0(n,R) > 0 such that

∇Ωφ,g ≥ r0g, ∀x ∈ Bx0(R̃0)

for R̃0 > 0 as in (IV.1.4). Let Xφ,g be the dual of Ωφ,g with respect to the metric g and define a
function F = |Xφ,g|2g = g(Xφ,g,Xφ,g) on M . Notice that φ ∈ B(R) implies F(x0) ≤ e2(dn+d)R and
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that

√
F(γ(t)) ≥

∣∣∣∣g(Xφ,g, γ̇(t))

‖γ̇(t)‖g

∣∣∣∣ = |Ωφ,g(γ̇(t))| ≥
∫ t

0

∇Ωφ,g(γ̇(τ), γ̇(τ))dτ − |Ωφ,g(γ̇(0))|,

where γ is any unit speed geodesic segment in M . Choose R1(n,R) = 2e2(dn+d)R/r0 > 0 and g
sufficiently close to g0 such that R̃0 = R1 + 1, we have

F(x) > F(x0), ∀x ∈ Bx0(R̃0) \Bx0(R1).

Hence F|Bx0 (R̃0) achieves minimum at some point xmin ∈ Bx0(R1). In particular

0 =Xφ,gF(xmin) = 2g
(
∇Xφ,gXφ,g,Xφ,g

)
= 2 (∇Ωφ,g) (Xφ,g,Xφ,g) ≥ 2r0g(Xφ,g,Xφ,g),

which implies that Xφ,g(xmin) = 0. Hence P is well-defined and smooth.

Before we state Lemma IV.8, we first introduce some notations.

Notation IV.7. For any x ∈ Bx0(R̃0) and s ∈ S, we define a linear operator Ax,s : TxM → TxM

by

Ax,s(ξ) = e−(dn+d)Φs(x)λ(x, s)−1∇ξ[e
(dn+d)Φs(x)λ(x, s)gradΦs(x)], (IV.1.5)

where∇ξ denotes the Levi-Civita derivative along ξ.
Recall that in the previous proof, we set

ωg(x) = e(dn+d)Φs(x)λ(x, s)dΦs(x) ∈ T ∗xM.

Hence for any g sufficiently close to g0 in the sense of (IV.1.4) and 0 6= ξ ∈ TxM , we have

〈Ax,s(ξ), ξ〉 = e−(dn+d)Φs(x)λ(x, s)−1(∇ωg)(ξ, ξ) > 0. (IV.1.6)

Let φ ∈ L and x = P (φ). Denoted by ρφ a function on S such that

ρφ(s) = e(dn+d)[Φs(x)−φ(s)] (IV.1.7)

Let ρφ be the same function normalized with respect to the measure µx. In other words,

ρφ =
ρφ∫

S
ρφdµx

. (IV.1.8)

36



Assuming x = P (φ) ∈ Bx0(R̃0), we define a linear operator Aφ : TxM → TxM by

Aφ =

∫
S

ρφ(s)Ax,sdµx(s), (IV.1.9)

which is invertible due to (IV.1.6).

Lemma IV.8. Let φ ∈ U and x = P (φ). Then differentiating P yields

dφP = A−1
φ ◦ Eφ,

for any φ such that x ∈ Bx0(R̃0). The linear map Eφ : L → TxM is given by

Eφ(X(s)) = (dn+ d)

∫
S

X(s)ρφ(s)gradΦs(x)dµx(s) (IV.1.10)

for any X(s) ∈ TφL = L.

Proof. By Definition IV.5, We have

Ωφ,g(P (φ)) = 0, ∀φ ∈ U .

Let x = P (φ). For any X ∈ TφL = L, ξ = dφP (X) ∈ TxM and any vector field η̃ on M , we
differentiate the above equation evaluated at η̃ and obtain∫

S

Dφ(ρφ(s))(X)〈gradΦs(x), η̃〉dµx(s) + ξ [Ωφ,g(P (φ))(η̃)] = 0.

Notice that
ξ [Ωφ,g(P (φ))(η̃)] = ξ〈Xφ,g, η̃〉 = 〈∇ξXφ,g, η̃〉+ 〈Xφ,g,∇ξη̃〉,

where Xφ,g is the dual of Ωφ,g with respect to g as in the proof of Lemma IV.6 and hence vanish at
P (φ). By arbitariness of η̃, we have∫

S

Dφ(ρφ(s))(X)gradΦs(x)dµx(s) +∇ξXφ,g = 0, (IV.1.11)

By (IV.1.7), (IV.1.8) and (IV.1.10), the first term in (IV.1.11) takes the form∫
S

Dφ(ρφ(s))(X)gradΦs(x)dµx(s)

=− (dn+ d)

∫
S

X(s)ρφ(s)gradΦs(x)dµx(s) = −
(∫

S

ρφ(s)dµx(s)

)
Eφ(X).
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A direct computation yields

∇ξXφ,g =

∫
S

e−(dn+d)φ(s)∇ξ

[
e(dn+d)Φs(x)λ(x, s)gradΦs(x)

]
ds

=

∫
S

ρφ(s)e−(dn+d)Φs(x)∇ξ

[
e(dn+d)Φs(x)λ(x, s)gradΦs(x)

]
ds

=

∫
S

ρφ(s)e−(dn+d)Φs(x)λ(x, s)−1∇ξ

[
e(dn+d)Φs(x)λ(x, s)gradΦs(x)

]
dµx(s)

=

∫
S

ρφ(s)Ax,s(ξ)dµx(s) =

(∫
S

ρφ(s)dµx(s)

)
Aφ(ξ),

where the last two equalities follows from our notations in (IV.1.5) and (IV.1.9).
Summarizing the above, (IV.1.11) implies that

Aφ(ξ) = Eφ(X).

Therefore,
dφP (X) = ξ = A−1

φ ◦ Eφ(X).

By the arbitariness of X , we have

dφP = A−1
φ ◦ Eφ.

Definition IV.9. Let G be a Riemannian metric on P−1(Bx0(R̃0)), We require that for any φ ∈
P−1(Bx0(R̃0)), the scalar product Gφ on TφL = L is defined by

Gφ(X, Y ) = nd

∫
S

X(s)Y (s)ρφ(s)dµx(s), ∀X, Y ∈ L, (IV.1.12)

where x = P (φ).

Remark. There are a number of different inner products mentioned in the latter half of this paper.
In order to avoid cumbersome notations we denote by 〈·, ·〉 the inner product of a Euclidean space
or a tangent space for a particular Riemannian manifold. The distinction between different settings
will be indicated via different notations of Riemannian manifolds/metrics or verbal descriptions.
We also denote by 〈·, ·〉Gφ the above mentioned scalar product Gφ. The norm induced by Gφ is
denoted by ‖ · ‖Gφ .

Lemma IV.10. Let P be the map defined in Definition IV.5. Then we have the following.

(1). G is a special metric with respect to Φ.

(2). P is a projection with respect to G and Φ in the sense of Definition III.11.
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Proof. (1). The first two requirements of Definition III.8 follow immediately. For any φ = Φ(x),
we have

ρφ(s) = e(dn+d)(Φs(x)−Φs(x)) ≡ 1.

Therefore
Xφ,g(x) =

∫
S

gradΦs(x)dµx(s) =

∫
T 1
xM

vdsx(v) = 0,

which is equivalent to Ωφ,g(x) = 0 and therefore P (φ) = x. Hence P ◦ Φ = IdM . Mean-
while, the scalar product Gφ on TφL = L is defined by

Gφ(X, Y ) = nd

∫
S

X(s)Y (s)dµx(s).

Direct computations imply that it satisfies the third requirement of Definition III.8.

(2). The fact that P is L2-smooth in the sense of Definition III.10 follows from Lemma IV.6
and Lemma IV.8. Since we proved the first requirement of Definition III.11 in our previous
assertion, it remains to verify the second requirement, that is, for every x ∈M , dΦ(x)P (V ) =

0 for every vector V ∈ L orthogonal (with respect toG) to TxΦ. Let φ = Φ(x) for simplicity.
By Lemma IV.8, it suffices to show that Eφ(X) = 0 for any X ∈ TφL perpendicular to TxΦ
with respect to Gφ.

Let v ∈ TxM be an arbitary vector in TxM . We have

〈Eφ(X), v〉 =

〈
(dn+ d)

∫
S

X(s)gradΦs(x)dµx(s), v

〉
=(dn+ d)

∫
S

X(s)〈gradΦs(x), v〉dµx(s)

=(dn+ d)

∫
S

X(s)dxΦ(v)(s)dµx(s)

=
(dn+ d)

dn
· dn

∫
S

X(s)dxΦ(v)(s)dµx(s) =
(n+ 1)

n
Gφ(X, dxΦ(v)) = 0.

By arbitariness of v ∈ TxM , we have Eφ(X) = 0. Hence dφP (X) = 0.

IV.2: Approximating dφP

IV.2.1: The construction of Âφ when K 6= O

Recall that in Section IV.1 we wrote the derivative map dφP as a composition of two operators
A−1
φ and Eφ for any φ ∈ B(R). A direct application of the above facts gives the following lemma

on the operator Aφ when g = g0.
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Lemma IV.11. Let Φ be as in the previous section. If g = g0, then we have the following:

(1). We can compute the Hessian of e2Φs(x)/2:

Hessg0

1

2
e2Φs(x) = e2Φs(x)

[
g0 +

d−1∑
t=0

(dΦs ◦ Jt,g0)2

]
.

The maps Jt,g0 : TM → TM come from the complex structure and quaternionic structure

on M . In other words, J0,g0 = Id, J1,g0(v) = vi when K = C or H, J2,g0(v) = vj and

J3,g0(v) = vk when K = H.

(2). The operator Ax,s defined in (IV.1.5) has the following explicit formula:

Ax,s(ξ) = ξ +
d−1∑
t=0

〈ξ,Jt,g0gradΦs(x)〉Jt,g0gradΦs(x), ∀ξ ∈ TxM. (IV.2.1)

Proof. (1). This can be found in [BCG95, page 751].

(2). By Lemma IV.4, we have

λ(x, s) = e−(dn+d−2)Φs(x), ∀x ∈M, s ∈ S,

when g = g0. Therefore, we can further simplify (IV.1.5) to the following.

Ax,s(ξ) =e−(dn+d)Φs(x)λ(x, s)−1∇ξ[e
(dn+d)Φs(x)λ(x, s)gradΦs(x)]

=e−2Φs(x)∇ξ[e
2Φs(x)gradΦs(x)] = e−2Φs(x)∇ξgrad

(
1

2
e2Φs(x)

)
.

Hence for any vector η ∈ TxM , we have

〈Ax,s(ξ), η〉 =
1

2

〈
e−2Φs(x)∇ξgrad(e2Φs(x)), η

〉
=

1

2
e−2Φs(x)

〈
∇ξgrad(e2Φs(x)), η

〉
=

1

2
e−2Φs(x)Hessg0e

2Φs(x)(ξ, η)

= 〈ξ, η〉+
d−1∑
t=0

〈ξ,Jt,g0gradΦs(x)〉〈η,Jt,g0gradΦs(x)〉

=

〈
ξ +

d−1∑
t=0

〈ξ,Jt,g0gradΦs(x)〉Jt,g0gradΦs(x), η

〉
.

40



Therefore,

Ax,s(ξ) = ξ +
d−1∑
t=0

〈ξ,Jt,g0gradΦs(x)〉Jt,g0gradΦs(x), ∀ξ ∈ TxM.

The above result relies on the almost complex structure (almost quaternionic structure resp.) on
TM when g = g0 and the explicit formulae for density functions λg(x, s). In order to understand
the more general case when g is sufficiently close to g0, similarly we construct an almost complex
structure (almost quaternionic structure resp.) which preserves the Riemannian metric g.

Notation IV.12. Let V,W be any real vector spaces with bases v = {v1, v2, ..., vm} and w =

{w1, w2, ..., wl}, respectively. Let T : V → W be a linear map. We denote by w[T ]v the matrix of
T under bases v and w. In other words, if

T (vi) =
l∑

j=1

ajiwj, 1 ≤ i ≤ m,

then

w[T ]v = (aij)1≤i≤m, 1≤j≤l.

We start with a collection of vector fields {ξ̃l,t,g0|1 ≤ l ≤ n, 0 ≤ t ≤ d − 1} such that for any
x ∈ KHn, {ξ̃l,t,g0(x)|1 ≤ l ≤ n, 0 ≤ l ≤ d − 1} is an orthonormal basis for TxKHn under the
standard complex hyperbolic metric g0. In other words, we have the following

〈ξ̃l1,t1,g0(x), ξ̃l2,t2,g0(x)〉g0 = δl1l2δt1t2 ,

where 1 ≤ l1, l2 ≤ n and 0 ≤ t1, t2 ≤ d − 1. By Corollary II.2, we can further assume that these
vector fields satisfy the following equations.

Jt,g0 ξ̃l,0,g0 = ξ̃l,t,g0 , 1 ≤ l ≤ n and 0 ≤ t ≤ d− 1.

We can therefore apply a Gram-Schmidt process to obtain a new collection of vector fields
{ξ̃l,t,g|1 ≤ l ≤ n, 0 ≤ t ≤ d− 1} such that for any x ∈ M = (KHn, g), {ξ̃l,t,g(x)|1 ≤ l ≤ n, 0 ≤
t ≤ d− 1} is an orthonormal basis for TxM under g. In other words, we have(

ξ̃1,0,g, ..., ξ̃1,d−1,g, ..., ξ̃n,0,g, ..., ξ̃n,d−1,g

)
=
(
ξ̃1,0,g0 , ..., ξ̃1,d−1,g0 , ..., ξ̃n,0,g0 , ..., ξ̃n,d−1,g0

)
· Ng,

where Ng is a dn× dn upper triangular matrix recording the Gram-Schmidt process, and

〈ξ̃l1,t1,g(x), ξ̃l2,t2,g(x)〉 = δl1l2δt1t2 ,
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where 1 ≤ l1, l2 ≤ n and 0 ≤ t1, t2 ≤ d− 1.
We denote by Ξ̃g the ordered basis {ξ̃1,0,g, ..., ξ̃1,d−1,g, ..., ξ̃n,0,g, ..., ξ̃n,d−1,g} and for simplicity

Ξ̃ when there is no ambiguity of the metric. We construct an almost complex structure or almost
quaternionic structure Jt,g on TM such that

Ξ̃g
[Jt,g]Ξ̃g = Ξ̃g0

[Jt,g0 ]Ξ̃g0
, ∀0 ≤ t ≤ d− 1.

It is clear that Jt,g preserves g. Moreover, we have the following lemma.

Lemma IV.13. If ‖g − g0‖Cr ≤ ε � 1, then ‖Jg − Jg0‖Cr ≤ K0(n, r)‖g − g0‖Cr for some

constant K0(n, r) depending only on n and r.

We define a new operator Âx,s : TxM → TxM as follows

Âx,s(ξ) = ξ +
d−1∑
t=0

〈ξ,Jt,ggradΦs(x)〉Jt,ggradΦs(x), ∀ξ ∈ TxM. (IV.2.2)

One should expect that Âx,s is close to Ax,s if g is close to g0 since Âx,s and Ax,s on M (when the
metric is g) are close to their counterparts on M0 (when the metric is g0) and Âx,s = Ax,s when
g = g0. If x = P (φ), we have a corresponding Âφ : TxM → TxM defined as

Âφ =

∫
S

ρφ(s)Âx,sdµx(s). (IV.2.3)

Âφ is close to Aφ when g is close to g0. In particular, Âφ = Aφ when g = g0.

IV.2.2: The construction of Âφ when K = O and n = 2

Since O is not associative, the models for real, complex and quaternionic hyperbolic spaces do
not work for the Cayley hyperbolic space. In particular, the remark after Corollary II.8 suggests
that we cannot find any fiberwise linear map J : TM0 → TM0 such that for any v ∈ TM0,
the sectional curvature KM0(v,J (v)) = −4. Such J maps exist for complex and quaternionic
hyperbolic spaces and was used in the constructions when K 6= O (see Subsection IV.2.1). Hence
we need a different way to construct Âφ in the Cayley hyperbolic setting.

Recall that in Proposition II.7 we define the Cayley line of a vector 0 6= v = (a, b) ∈ O2 as

Cay(v) =

O · (1, a−1b), a 6= 0;

O · (0, 1), a = 0.
.

Let F−20
4 = KAN be the Iwasawa decomposition of F−20

4 . Denoted by vl,t = (δ1tet, δ2tet) with
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l = 1, 2, δlm the Kronecker delta, 0 ≤ t ≤ 7 and {et}0≤t≤7 the standard orthonormal basis for O.
Then we can construct AN -invariant vector fields ξ̃l,t,g0 such that

ξ̃l,t,g0(x0) = Ψ(vl,t) l = 1, 2 and 0 ≤ t ≤ 7,

where Ψ is the same as dχ in Proposition II.7. Define Ψx,g0 : O2 → TxM0 such that

Ψx,g0(vl,t) = ξ̃l,t,g0(x), l = 1, 2 and 0 ≤ t ≤ 7.

Denoted by
Cayg0(ξ) = Ψx,g0

(
Cay(Ψ−1

x,g0
(ξ))

)
, 0 6= ξ ∈ TxM0

the Cayley line containing ξ. Then following the fact that the Cayley hyperbolic space is Rieman-
nian symmetric, the same arguments in Corollary II.8 can be applied to all points in M0. Namely,

Corollary IV.14. For any x ∈M0 and any non-zero ξ, ξ′ ∈ TxM0.

(1). If ξ, ξ′ belong to the same Cayley line and ξ 6∈ Rξ′, then the sectional curvatureKM0(ξ, ξ′) =

−4;

(2). If Cayg0(ξ) ⊥ Cayg0(ξ′), then the sectional curvature KM0(ξ, ξ′) = −1.

Therefore we have following the Cayley hyperbolic version of Lemma IV.11.

Lemma IV.15. Let Φ be as in the previous section and KHn = OH2. If g = g0, then we have the

following:

(1). We can compute the Hessian of e2Φs(x)/2:

Hessg0

1

2
e2Φs(x) = e2Φs(x)

[
g0 + g0

(
πCayg0 (ξ)(·), πCayg0 (ξ)(·)

)]
.

(2). The operator Ax,s defined in (IV.1.5) has the following explicit formula:

Ax,s(ξ) = ξ + πCayg0 (gradΦs(x))(ξ), ∀ξ ∈ TxM, (IV.2.4)

where πCayg0 (ξ) denotes the orthogonal projection onto Cayg0(ξ).

Proof. (1). See [CF03, page 36] and [Eber96, page 47].

(2). Same as Lemma IV.11.
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As in the statement of the above lemma, we heavily used the concept of Cayley lines similar to
the way we used almost complex and almost quaternionic structure in complex and quaternionic
hyperbolic spaces. Therefore, similar to the previous subsection, the construction of the operator
Âφ approximating Aφ relies on a notion of Cayley lines for M .

We first apply a Gram-Schmidt process to {ξ̃l,t,g0} with respect to the perturbed metric g and
obtain {ξ̃l,t,g} as a collection of orthonormal vector fields on M which gives an orthonormal basis
at every point in M . Define Ψx,g : O2 → TxM such that

Ψx,g(vl,t) = ξ̃l,t,g(x) l = 1, 2 and 0 ≤ t ≤ 7.

For any x ∈M and ξ ∈ TxM , we define the Cayley line containing ξ by

Cayg(ξ) = Ψx,g

(
Cay(Ψ−1

x,g(ξ))
)

0 6= ξ ∈ TxM.

Then we can mimic the case when g = g0 and define a new operator Âx,s : TxM → TxM such
that

Âx,s(ξ) = ξ + πCayg(gradΦs(x))(ξ), ∀ξ ∈ TxM, (IV.2.5)

where πCayg(gradΦs(x)) refers to the orthogonal projection onto Cayg(gradΦs(x)). For any φ ∈
P−1(B(R)) and x = P (φ), we have a corresponding Âφ : TxM → TxM defined as

Âφ =

∫
S

ρφ(s)Âx,sdµx(s). (IV.2.6)

In the case when g = g0, Âφ = Aφ and they are close when g is close to g0 similar to the complex
and quaternionic hyperbolic cases.

IV.2.3: Eφ and Jacobian inequalities

Notation IV.16. For any φ ∈ B(R) fixed, we let x = P (φ). For simplicity we write ξl,t,g = ξ̃l,t,g(x)

for all 1 ≤ l ≤ n and 0 ≤ t ≤ d− 1. Denoted by Ξ short for Ξ̃(x). Since Jt,g preserves g, Jt,gΞ is
also an (ordered) orthonormal basis of TxM .

We define the following vectors in TφL = L:

Xl,t,g(s) = 〈gradΦs(x), ξl,t,g〉 = dΦs(ξl,t,g), 1 ≤ l ≤ n and 0 ≤ t ≤ d− 1.

They are linearly independent due to Ξ being a basis and the second requirement of G being a
special Riemannian metric (see Definition III.8 and Definition IV.9). Let Vφ := span{Xl,t,g|1 ≤
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l ≤ n, 0 ≤ t ≤ d− 1}. We write

Zφ := {X1,0,g, ..., X1,d−1,g, ..., Xn,0,g, ..., Xn,d−1,g} = dΦ(Ξ),

which is a(n) (ordered) basis for Vφ. Define Kx,g ⊂ SO(TxM) such that

Kx,g = {Ψx,g ◦ T ◦Ψ−1
x,g|T ∈ Spin(9) ⊂ SO(O2) = SO(16)},

where the inclusion of Spin(9) ⊂ SO(16) is given by the third assertion in Corollary II.8.

We are now ready to take a closer look at Âφ and Eφ. Write

Jt = Ξ[Id]Jt,gΞ, ∀1 ≤ t ≤ d− 1

and
Q̂φ = Ξ[n(Âφ − Id)]Ξ.

Then we have the following

Lemma IV.17. (1). When K 6= O, we have the following formula for Âφ defined in (IV.2.3):

Ξ[Âφ]Ξ = Id +
1

n
Q̂φ = Id +

1

dn

d−1∑
t=0

JtQφJ
−1
t ,

where Qφ = (Qml,φ)1≤m,l≤n is a dn× dn real symmetric matrix such that

Qml,φ =


〈Xm,0,g, Xl,0,g〉Gφ ... 〈Xm,0,g, Xl,d−1,g〉Gφ

... . . . ...

〈Xm,d−1,g, Xl,0,g〉Gφ ... 〈Xm,d−1,g, Xl,d−1,g〉Gφ

 (IV.2.7)

for any 1 ≤ m, l ≤ n;

(2). When K = O and n = 2, for any 0 6= ξ ∈ TxM , the normalized inner product 〈Âφ(ξ), ξ〉/‖ξ‖2

is constant along Cayg(ξ). Equivalently, for any O ∈ Kx,g, the matrix OT Q̂φO has the form

OT Q̂φO =

(
λId L

LT ηId

)
∈ Mat16×16(R),

where λ, η ∈ R≥0 and every block in the above matrix has size 8× 8.

(3). When K = O and n = 2, for any 0 6= ξ ∈ TxM , there exist orthogonal linear maps
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It,ξ ∈ SO(Cayg(ξ)), t = 0, 1, ..., 7, such that I0,ξ = Id and

Q̂φ|Cayg(ξ) =
1

8

7∑
t=0

It,ξQφ|Cayg(ξ)I
−1
t,ξ .

Equivalently, for any O ∈ Kx,g, write

OT Q̂φO =

(
Q̂11,O,φ Q̂12,O,φ

Q̂21,O,φ Q̂22,O,φ

)
and OTQφO =

(
Q11,O,φ Q12,O,φ

Q21,O,φ Q22,O,φ

)
,

where every block in the above matrix has size 8 × 8. Then there exist It,O,φ ∈ SO(8),

0 ≤ t ≤ 7, such that I0,O,φ = Id and

Q̂11,O,φ =
1

8

7∑
t=0

It,O,φQ11,O,φI
−1
t,O,φ.

Proof. (1). Since Ξ is an orthonormal basis for TxM , it suffices to calculate elements of the form

〈Âφ(ξ), η〉, ξ, η ∈ Ξ.

Notice that

〈Âφ(ξl1,t1,g), ξl2,t2,g〉 =

〈∫
S

ρφ(s)Âx,s(ξl1,t1,g)dµx(s), ξl2,t2,g

〉
=

∫
S

ρφ(s)〈ξl1,t1,g, ξl2,t2,g〉dµx(s)

+
d−1∑
t=0

∫
S

ρφ(s)〈ξl1,t1,g,Jt,ggradΦs(x)〉〈ξl2,t2,g,Jt,ggradΦs(x)〉dµx(s)

=

∫
S

ρφ(s)〈ξl1,t1,g, ξl2,t2,g〉dµx(s)

+
d−1∑
t=0

∫
S

ρφ(s)〈Jt,gξl1,t1,g, gradΦs(x)〉〈Jt,gξl2,t2,g, gradΦs(x)〉dµx(s)

=δl1l2δt1t2 +
1

dn

d−1∑
t=0

〈dΦ(Jt,gξl1,t1,g), dΦ(Jt,gξl2,t2,g)〉Gφ .

Therefore the first assertion follows.
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(2). Recall the definition of Âφ in (IV.2.5) and (IV.2.6), it suffices to show that

〈ξ, πCayg(η)(ξ)〉/‖ξ‖2 (IV.2.8)

is constant along Cayg(ξ) for any choice of ξ, η ∈ TxM . By applying Kx,g actions we can
assume without loss of generality that ξ = Ψx,g(1, 0) and η = Ψx,g(b cos θ, ba sin θ), where
θ ∈ R and a, b are unit octonions. Then for any unit octonion c and any ξc = Ψx,g(c, 0), we
have

πCayg(η)(ξc) = Ψx,g(c cos2 θ, ca sin θ cos θ).

Hence

〈ξc, πCayg(η))(ξc)〉 = 〈(c, 0), (c cos2 θ, ca sin θ cos θ)〉 = cos2 θ,

which proves that (IV.2.8) is constant along Cayg(ξ).

(3). The computations in the first assertion imply that the operator on TxM defined by

ξ →
∫
S

ρφ(s)πgradΦs(x)(ξ)dµx(s)

has matrix expression exactly equal to Qφ/16 under the basis Ξ, where πgradΦs(x) is the
orthogonal projection onto RgradΦs(x). It suffices to show that for any 0 6= ξ, η ∈ TxM ,
there exists some It,ξ,φ ∈ SO(Cayg(ξ)) with 0 ≤ t ≤ 7 such that

〈ξ′, πCayg(η)(ξ
′)〉 =

7∑
t=0

〈It,ξ,φ(ξ′), πη(It,ξ,φ(ξ′))〉, ∀ξ′ ∈ Cayg(ξ). (IV.2.9)

By applying Kx,g actions we can assume without loss of generality that ξ = Ψx,g(1, 0) and
η = Ψx,g(b cos θ, ba sin θ), where a, b are unit octonions. Let e0 = 1, e1, ..., e7 be the standard
orthonormal basis for O. Then

{Ψx,g(etb cos θ, (etb)a sin θ) : 0 ≤ t ≤ 7}

is an orthonormal basis for Cayg(η). Hence

〈ξ′, πCayg(η)(ξ
′)〉 =

7∑
t=0

〈ξ′, πΨx,g(etb cos θ,(etb)a sin θ)ξ
′〉,∀ξ′ ∈ Cayg(ξ).
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Notice that any ξ′ has the form Ψx,g(c, 0) for some unit octonion c and

〈ξ′, πΨx,g(etb cos θ,(etb)a sin θ)ξ
′〉

=〈Ψx,g(c, 0),Ψx,g(etb cos θ, (etb)a sin θ)〉2

=〈c, etb cos θ〉2

=〈etc, b cos θ〉2 = 〈Ψx,g(etc, 0), η〉2 = 〈Ψx,g(etΨ
−1
x,g(ξ

′)), πη(Ψx,g(etΨ
−1
x,g(ξ

′)))〉, 0 ≤ t ≤ 7.

Choose It,ξ(·) = Ψx,g(etΨ
−1
x,g(·)) and (IV.2.9) follows.

Remark. A similar version of the second and the third assertions also hold for real, complex
and quaternionic hyperbolic spaces. In particular, we can choose the orthogonal maps It,ξ in the
third assertion to be restrictions of Jt,g onto K-lines when K 6= O. It is not hard to verify that
the first assertion implies the counterparts for the second and third assertion in the complex and
quaternionic case. However, due to the remark of Corollary II.8, there is no obvious way to find
Jt,g due to non-associativity of octonionic multiplication, making the Cayley hyperbolic case more
complicated.

In order to understand Eφ : TφL → TxM , recall that Vφ = spanZφ. We first claim that

Eφ|V⊥φ = 0,

where V⊥φ denotes the orthogonal complement in TφL = L with respect to Gφ. This is because for
any X ∈ V⊥φ and any ξl,t,g ∈ Ξ,

〈Eφ(X), ξl,t,g〉 =(dn+ d)

∫
S

ρφ(s)X(s)〈gradΦs(x), ξl,t,g〉dµx(s)

=(dn+ d)

∫
S

ρφ(s)X(s)Xl,t,g(s)dµx(s) =
n+ 1

n
〈X,Xl,t,g〉Gφ = 0.

Therefore
Eφ|V⊥φ = 0

since Ξ is a basis for TxM .
Now it suffices to understand Eφ|Vφ . Let Wφ be an ordered orthonormal basis for Vφ. We have

the following result.

Lemma IV.18.

Ξ[Eφ|Vφ ]Zφ =
n+ 1

n
Qφ

and

Ξ[Eφ|Vφ ]Wφ
=
n+ 1

n
Wφ

[Id]TZφ ,
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where Wφ
[Id]TZφ denotes the transpose of Wφ

[Id]Zφ .

Proof. Applying a change of basis, we have

Ξ[Eφ|Vφ ]Wφ
= Ξ[Eφ|Vφ ]Zφ · Zφ [Id]Wφ

.

Since Ξ is orthonormal in TxM , Ξ[Eφ|V ]Zφ has its entries in the form of 〈Eφ(X), ξ〉, whereX ∈ Zφ
and ξ ∈ Ξ. Notice that

〈Eφ(Xl1,t1,g), ξl2,t2,g〉 =(dn+ d)

∫
S

ρφ(s)Xl1,t1,g(s)〈gradΦs(x), ξl2,t2,g〉dµx(s)

=(dn+ d)

∫
S

ρφ(s)Xl1,t1,g(s)Xl2,t2,g(s)dµx(s) =
n+ 1

n
〈Xl1,t1,g, Xl2,t2,g〉Gφ .

Therefore by (IV.2.7)

Ξ[Eφ|Vφ ]Zφ =
n+ 1

n
Qφ.

Since Wφ is orthonormal in Vφ, we have

Qφ =

 〈Xm,0,g, Xl,0,g〉Gφ ... 〈Xm,0,g, Xl,d−1,g〉Gφ
... ... ...

〈Xm,d−1,g, Xl,0,g〉Gφ ... 〈Xm,d−1,g, Xl,d−1,g〉Gφ


1≤m,l≤n

= Wφ
[Id]TZφ · Wφ

[Id]Zφ .

Therefore

Ξ[Eφ|Vφ ]Wφ
= Ξ[Eφ|Vφ ]Zφ · Zφ [Id]Wφ

=
n+ 1

n
Wφ

[Id]TZφ · Wφ
[Id]Zφ · Zφ [Id]Wφ

=
n+ 1

n
Wφ

[Id]TZφ · Wφ
[Id]Wφ

=
n+ 1

n
Wφ

[Id]TZφ .

Remark. For simplicity we write Uφ = Wφ
[Id]Zφ and hence Qφ = UT

φ Uφ.

Notation IV.19. For any m ∈ Z+ and any matrix H ∈ Matm×m(R), we define its norm by

‖H‖ =

(
sup

v 6=0,v∈Matm×1(R)=Rm

vTHTHv

vTv

) 1
2

= sup
‖v‖=1

‖Hv‖.

where ‖v‖ =
√
vTv denotes the Euclidean norm of a real vector v ∈ Matm×1(R). In particular, H

is ‖H‖-Lipschitz, regarded as an endomorphism on a finite dimensional Euclidean space (with a
prescibed orthonormal basis).

Before estimating determinants, we first recall a linear algebra fact from [BCG95, B.2 Lemme].

49



Lemma IV.20 (Besson-Courtois-Gallot, [BCG95]). The determinant function is log-concave on

positive semi-definite matrices with real entries. As a corollary, let A1, A2, ..., An be real positive

definite m×m matrices such that det(A1) = det(A2) = ... = det(An) = c > 0. Then

det

(
1

n

n∑
j=1

Aj

)
≥ c

with equality holds only when A1 = A2 = ... = An.

Proof. We will prove this lemma by induction on n. Clearly the lemma holds when n = 1. If the
case n − 1 holds true, replacing Ai by A−1/2

1 AiA
−1/2
1 for 1 ≤ i ≤ n, WLOG we can assume that

A1 = Id and hence c = 1. Let

B =
1

n− 1

n∑
j=2

Aj.

The conclusion in the case n − 1 implies that detB ≥ 1 and detB = 1 only when A2 = A3 =

... = An. Let λ1, ..., λm > 0 be eigenvalues of B. We have

det

(
1

n

n∑
j=1

Aj

)

= det

(
1

n
Id +

n− 1

n
B

)
=

m∏
j=1

(
1

n
+
n− 1

n
λj

)

=
m∑
j=0

( 1

n

)m−j (
n− 1

n

)j ∑
1≤i1<i2<...<ij≤m

λi1λi2 ...λij


≥

m∑
j=0

( 1

n

)m−j (
n− 1

n

)j (
m

j

)( n∏
i=1

λi

)(m−1
j−1 )/(mj )


=

m∑
j=0

[(
1

n

)m−j (
n− 1

n

)j (
m

j

)
(detB)

j
m

]
≥

m∑
j=0

(
1

n

)m−j (
n− 1

n

)j (
m

j

)
= 1,

in which the first inequality is due to the inequality between arithmetic mean and geometric mean.
Equality holds only when detB = 1 and all λi are the same. Therefore B = Id and hence
Id = A1 = A2 = ... = An = B. This proves the inductive step and the lemma follows from
induction on n.
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Lemma IV.21. (1).

det

(
Id +

1

n
Q̂φ

)
≥ det

(
Id +

1

n
UT
φ Uφ

)
;

(2). The trace of Q̂φ and UT
φ Uφ are both equal to dn. Moreover, let 0 ≤ η1 ≤ ... ≤ ηdn be

eigenvalues of Q̂φ and 0 ≤ λ1 ≤ ... ≤ λdn be eigenvalues of UT
φ Uφ, then

λ1 ≤ η1 ≤ 1 ≤ ηdn ≤ λdn ≤ dn. (IV.2.10)

(3).

det

(
Id +

1

n
UT
φ Uφ

)
≥
(
n+ 1

n

)dn
det(UT

φ Uφ)
1

n+1

and

det(UT
φ Uφ) ≤ Id.

Equality in both inequalities holds if and only if UT
φ Uφ = Id.

(4). ‖Uφ‖, ‖UT
φ ‖ ≤

√
dn.

Proof. (1). When K 6= O, this follows from Lemma IV.20 and the first assertion in Lemma
IV.17. It remains to prove for the Cayley hyperbolic case. Let ξ be a unit eigenvector of
Âφ having the largest eigenvalue denoted by ηmax. Since the second assertion in Lemma
IV.17 implies that 〈ξ, Âφ(ξ)〉/‖ξ‖2 is constant on Cayg(ξ), all non-zero vectors in Cayg(ξ)
are eigenvalues of Âφ with eigenvalue ηmax. Let Cayg(ξ′) be the orthogonal complement
of Cayg(ξ). Since Âφ is self-adjoint, Cayg(ξ′) is an invariant subspace of Âφ and non-zero
vectors in this subspace are all eigenvectors of Âφ for some common eigenvalue ηmin due to
the second assertion in Lemma IV.17. Therefore there exists some O ∈ Kx,g ⊂ SO(TxM)

such that

OT

(
Id +

1

n
Q̂φ

)
O =

(
ηmaxId 0

0 ηminId

)
,

where every block in the above matrix has size 8 × 8. The assertion then follows from
Lemma IV.20, the third assertion in Lemma IV.17 and the fact that for any positive semi-

definite matrix

(
A B

BT C

)
with A,B,C ∈ Matm×m(R), we have

det

(
A B

BT C

)
≤ det(A) det(C).
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(2). Notice that

tr(UT
φ Uφ) =

n∑
l=1

d−1∑
t=0

〈Xl,t,g, Xl,t,g〉Gφ

=
n∑
l=1

d−1∑
t=0

dn

∫
S

ρφ(s)〈gradΦs, ξl,t,g〉2dµx(s)

=dn

∫
S

ρφ(s)〈gradΦs, gradΦs〉2dµx(s) = dn

∫
S

ρφ(s)dµx(s) = dn.

Therefore the trace of Q̂φ and UT
φ Uφ are both equal to dn, which follows from Lemma

IV.17. The fact that λ1 ≤ η1 ≤ ηdn ≤ λdn follows directly from Lemma IV.17 and two
linear algebra facts listed below:

(a). Let A be a positive semi-definite matrix and Oj be orthogonal matrices with 1 ≤ j ≤
m. Denoted by kmax, kmin the largest and the smallest eigenvalues of A. Let lmax,
lmin be the largest and the smallest eigenvalues of

(∑m
j=1 OjAO

T
j

)
/m. Then kmin ≤

lmin ≤ lmax ≤ kmax. (This is used when K = R, C, H or O.)

(b). Let

(
A B

BT C

)
be a positive semi-definite matrix with A,B,C ∈ Matm×m(R). Let

kmax, kmin be the largest and the smallest eigenvalues of

(
A B

BT C

)
respectively. De-

noted by lmax, lmin the largest and the smallest eigenvalues of

(
A 0

0 C

)
respectively.

Then kmin ≤ lmin ≤ lmax ≤ kmax. (This is used when K = O.)

(3). Following the notation in the second assertion, we have

dn∑
t=1

λt = dn. (IV.2.11)
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Therefore by Lemma IV.20

det

(
Id +

1

n
UT
φ Uφ

)
=

dn∏
l=1

(
1 +

1

n
λl

)

=
dn∏
l=1

n+ 1

n
· n · 1 + λl

n+ 1

≥
(
n+ 1

n

)dn dn∏
l=1

(1n · λl)
1

n+1

=

(
n+ 1

n

)dn( dn∏
l=1

λl

) 1
n+1

=

(
n+ 1

n

)dn
det(UT

φ Uφ)
1

n+1 .

The inequality det(UT
φ Uφ) ≤ Id follows directly by applying the arithmetic mean-geometric

mean inequality to (IV.2.11). Equal signs in both inequalities are achieved if and only if all
λl = 1. In other words, UT

φ Uφ = Id.

(4). By (IV.2.11), ‖UT
φ Uφ‖ ≤ dn. Hence ‖(UT

φ Uφ)
1
2‖ ≤

√
dn. Since Uφ = K(UT

φ Uφ)
1
2 for some

K ∈ O(dn). Therefore, by the fact that any element in O(dn) has norm 1, ‖Uφ‖, ‖UT
φ ‖ ≤√

dn.

Corollary IV.22. The maps Eφ and Â−1
φ ◦ Eφ : TφL → TxM is (n + 1)

√
d/n-Lipschitz and the

latter one is volume non-increasing. In particular, when g = g0, P is (n+ 1)
√
d/n-Lipschitz and

volume non-increasing and the first two assertion in Proposition III.4 holds when g = g0.

Proof. Since Id + 1
n
Q̂φ ≥ Id, by Lemma IV.17 Â−1

φ is 1-Lipschitz. It follows from Lemma
IV.18 and the second assertion in Lemma IV.21 that Eφ is (n + 1)

√
d/n-Lipschitz. Hence their

composition Â−1
φ ◦ Eφ : TφL → TxM is (n+ 1)

√
d/n-Lipschitz.

It remains to show that

JacG(Â−1
φ ◦ Eφ) =

∣∣∣det Â−1
φ

∣∣∣ JGEφ ≤ 1.

Since Eφ|V⊥φ = 0, we have Eφ = Eφ|Vφ ◦ PVφ , where PVφ : L → Vφ is the orthogonal projection
onto Vφ. Hence

JacGEφ = JacG,VφEφ · JacGPVφ .

We claim that JacGPVφ = 1. This is because on the one hand, JacG,VφPVφ = det IdVφ = 1.
On the other hand, for any arbitary dn-dimensional subspace W ⊂ L with an orthonormal basis
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{X̃1, X̃2, ..., X̃dn}, we have the following

JacG,WPVφ =JacG(PVφ|W) ≤

(
1

dn

dn∑
i=1

‖PVφ(X̃i)‖2
Gφ

) dn
2

≤

(
1

dn

dn∑
i=1

‖X̃i‖2
Gφ

) dn
2

=
√

1dn = 1.

(IV.2.12)

The second inequality sign follows from the fact that PVφ is 1-Lipschitz and the first inequality
sign follows from Lemma III.3. Therefore

JacGEφ = JacG,VφEφ =

∣∣∣∣det
n+ 1

n
UT
φ

∣∣∣∣ =

(
n+ 1

n

)dn
(detUT

φ Uφ)
1
2 .

On the other hand

| det Â−1
φ | =

∣∣∣det Ξ[Âφ]Ξ

∣∣∣−1

= det

(
Id +

1

n
Q̂φ

)−1

.

Hence by the first assertion in Lemma IV.21,

JacG(Â−1
φ ◦ Eφ) =

(
n+1
n

)dn
(detUT

φ Uφ)
1
2

det
(

Id + 1
n
Q̂φ

)
≤
(
n+1
n

)dn
(detUT

φ Uφ)
1
2(

n+1
n

)dn
(detUT

φ Uφ)
1

n+1

= (detUT
φ Uφ)

1
2
− 1
n+1 ≤ 1

1
2
− 1
n+1 = 1. (IV.2.13)

In particular, when g = g0, Aφ = Âφ. Hence the above result implies that JacGP ≤ 1.

IV.3: Estimating the correction factor

In the previous section, we introduced an operator Âφ for any φ ∈ P−1(Bx0(R1)) which has an
explicit formula and coincides with Aφ when g = g0. We will first estimate the difference of these
two operators.

Notation IV.23. Denoted by ε = ε(g, r) the Cr-norm of g − g0.
Let x = P (φ). Define

φt(s) = Φs(x)− 1

dn+ d
ln
(
1− t+ te(dn+d)(Φs(x)−φ(s))

)
.

Then
e(dn+d)(Φs(x)−φt(s)) = 1− t+ tρφ(s) = 1 + t(ρφ(s)− 1).
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Lemma IV.24. For any φ ∈ B(R), we have the following facts

(1). P (φt) = P (φ) = x for any φt in the domain of P ;

(2). Aφ0 = Âφ0 = n+1
n

Id;

(3). d
dt

∣∣
t=0

detAφt = d
dt

∣∣
t=0

det Âφt = 0.

Proof. (1). Let x = P (φ). Notice that

Ωφt,g(x) =

∫
S

e(dn+d)(Φs(x)−φt(s))dΦs(x)dµx(s)

=

∫
S

(1− t+ tρφ(s))dΦs(x)dµx(s) =

∫
S

tρφ(s)dΦs(x)dµx(s) = tΩφ,g(x) = 0.

Hence P (φt) = P (φ) = x by Definition IV.5. In particular,

ρφt(s) = 1− t+ tρφ(s) = 1 + t(ρφ(s)− 1).

(2). Since φ0 = Φs(x), we have ρφ0 ≡ 1, which implies that UT
φ0
Uφ0 = Id given the formula

(IV.2.7). Therefore Lemma IV.17 and Lemma IV.21 imply that Âφ0 = n+1
n

Id. Since Lemma
IV.18 suggests thatEφ0|Vφ0

is surjective and dxΦ(Ξ) = Zφ0 by their definition in the previous
section (equal in an order preserving way), it suffices to show that

Id =
n

n+ 1
Eφ0 ◦ dxΦ,

given that Id = dφ0P ◦ dxΦ = A−1
φ0
◦ Eφ0 ◦ dxΦ from Definition III.11, Lemma IV.10 and

Lemma IV.8.

By Lemma IV.18 we have

Ξ[Eφ0 ]Zφ0
=
n+ 1

n
UT
φ0
Uφ0 =

n+ 1

n
Id.

Therefore n
n+1

Eφ0(Zφ0) = Ξ (equal in an order-preserving way) and

n

n+ 1
Eφ0 ◦ dxΦ(Ξ) =

n

n+ 1
Eφ0(Zφ0) = Ξ

(equal in an order preserving way), which implies that

Id =
n

n+ 1
Eφ0 ◦ dxΦ.
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(3). Let ψ be an arbitary element in B(R). We assume that Q̂ψ has eigenvalues 0 ≤ η1 ≤ η2 ≤
... ≤ ηdn. Lemma IV.21 shows that

dn∑
s=1

ηs = dn.

Hence

det Âψ = det

(
Id +

1

n
Q̂ψ

)
=

dn∏
t=1

(
1 +

1

n
ηt

)
≤

[
1

dn

dn∑
t=1

(
1 +

1

n
ηt

)]dn
=

(
n+ 1

n

)dn
.

Lemma IV.21 implies that the equality holds when UT
ψUψ = Id. In particular

det Âφ0 =

(
n+ 1

n

)dn
.

Therefore
d

dt

∣∣∣∣
t=0

det Âφt = 0.

Notice that dφtP = A−1
φt
◦ Eφt . We have

detAφt =
JacGEφt

JacGP (φt)
.

Lemma IV.18 and the third assertion in Lemma IV.21 imply that JacGEφt attains maximum
at t = 0. On the other hand, for any ξ ∈ TxM ,〈

d

dt

∣∣∣∣
t=0

φt(s), 〈gradΦs(x), ξ〉
〉
GΦ(x)

=
−dn
dn+ d

∫
S

(ρφ(s)− 1)〈gradΦs(x), ξ〉dµx(s)

=
−dn
dn+ d

[
Ωφ,g(x)(ξ)− ΩΦs(x),g(x)(ξ)

]
=
−dn
dn+ d

[
Ωφ,g(P (φ))(ξ)− ΩΦs(x),g(P (Φs(x)))(ξ)

]
= 0,

where the last three equal signs follow from Definition IV.5 and the first assertion in Lemma
IV.6. Therefore d

dt

∣∣
t=0

φt(s) ∈ TΦs(x)L is perpendicular to TxΦ = Φ∗(TxM). By Proposi-
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tion III.12 and Lemma IV.10, t = 0 is a critical point for JacGP (φt). Hence

d

dt

∣∣∣∣
t=0

detAφt = 0.

Proposition IV.25. There exist positive constants r and C0 = C0(n,R) such that for any g suffi-

ciently close to g0 (without loss of generality, assume ε < 1) and every φ ∈ B(R) one has

‖Aφ − Âφ‖ ≤ C0ε‖φ− Φ(P (φ))‖L2(S)

and

| detAφ − det Âφ| ≤ C0ε‖φ− Φ(P (φ))‖2
L2(S).

Proof. Let

b(t) =

∫
S

ρφt(s)dµx(s).

Notice that

Aφt − Âφt =
1

b(t)

∫
S

ρφt(s)(Ax,s − Âx,s)dµx(s)

=
1

b(t)

∫
S

(Ax,s − Âx,s)dµx(s) +
t

b(t)

∫
S

(ρφ(s)− 1)(Ax,s − Âx,s)dµx(s)

=
t

b(t)

∫
S

(ρφ(s)− 1)(Ax,s − Âx,s)dµx(s). (IV.3.1)

The last equality follows from the first two assertions in Lemma IV.24 and the fact that

1

b(t)

∫
S

(Ax,s − Âx,s)dµx(s) =
1

b(t)

∫
S

ρφ0
(Ax,s − Âx,s)dµx(s) =

1

b(t)
(Aφ0 − Âφ0) = 0.

Since φ ∈ B(R), Lemma IV.6 implies Φ(x) = Φ(P (φ)) ∈ B(R1). Hence

c−1
0 ≤ ρφ(s) = e(dn+d)(Φs(x)−φ(s)) ≤ c0 (IV.3.2)

and
‖ρφ − 1‖L2(S) =

∥∥e(dn+d)(Φs(x)−φ(s)) − 1
∥∥
L2(S)

≤ c0‖Φs(x)− φ(s)‖L2(S),

where
c0 = c0(n,R) = e(dn+d)(R+R1)(dn+ d).

Since x ∈ Bx0(R1), Ax,s and Âx,s depend smoothly on g and they coincide when g = g0, we have

‖Ax,s − Âx,s‖L2(S) ≤ c1ε
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for some c1 = c1(n,R). Therefore by the Cauchy-Schwarz inequality, (IV.3.1) implies

‖Aφt − Âφt‖ =
t

b(t)

∥∥∥∥∫
S

(ρφ(s)− 1)(Ax,s − Âx,s)dµx(s)
∥∥∥∥

≤ t

b(t)
‖ρφ − 1‖L2(S,dµx) · ‖Ax,s − Âx,s‖L2(S,dµx).

Choose R0 = 1 +R1 in (IV.1.2) and Lemma IV.6 implies that

1

2
e−(dn+d−2)R1 ≤ |λ(x, s)| ≤ 2e(dn+d−2)R1 (IV.3.3)

for any φ ∈ B(R) and x = P (φ) ∈ Bx0(R1). Hence by (IV.3.2) and (IV.3.3) we have

t

b(t)
‖ρφ − 1‖L2(S,dµx)‖Ax,s − Âx,s‖L2(S,dµx)

≤ 2e(dn+d−2)R1
t

b(t)
‖(ρφ − 1)‖L2(S)‖Ax,s − Âx,s‖L2(S)

≤ 2te(dn+d−2)R1c0‖(ρφ − 1)‖L2(S)‖Ax,s − Âx,s‖L2(S)

≤ 2te(dn+d−2)R1c2
0c1ε‖Φs(x)− φ(s)‖L2(S).

Summarizing up, we have

‖Aφt − Âφt‖ ≤ 2te(dn+d−2)R1c2
0c1ε‖Φs(x)− φ(s)‖L2(S).

In particular, when t = 1, we have

‖Aφ − Âφ‖ ≤ 2e(dn+d−2)R1c2
0c1ε‖Φs(x)− φ(s)‖L2(S) (IV.3.4)

In order to estimate the difference in determinants, we first introduce a linear algebra lemma.

Lemma IV.26. LetH1, H2 be n×n trace-free matrices such that ‖H1‖, ‖H2‖ ≤ R. Then we have

|det(Id +H1 +H2)− det(Id +H1)| ≤ K(n,R)‖H2‖(‖H1‖+ ‖H2‖),

for some K(n,R) > 0.

Proof of Lemma IV.26. Let H1 = (aij)1≤i,j≤n and H2 = (bij)1≤i,j≤n. Then we have

|aij| ≤ ‖H1‖ ≤ R and |bij| ≤ ‖H2‖ ≤ R, 1 ≤ i, j ≤ n.

Direct computation shows that |det(Id +H1 +H2)− det(Id +H1)| can be written as the sum of
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at most 3n monomials in aij and bkl with coefficients ±1. These monomials have degree at least
2 due to trace-free assumptions and always have positive degrees with respect to some bkl. More
precisely,

|det(Id +H1 +H2)− det(Id +H1)|

=

∣∣∣∣∣∑
σ∈Sn

(−1)sgn(σ)

[
n∏
i=1

(
δiσ(i) + aiσ(i) + biσ(i)

)
−

n∏
i=1

(
δiσ(i) + aiσ(i)

)]∣∣∣∣∣
=

∣∣∣∣∣∣
∑

σ∈Sn,Fix(σ)c⊂Ω⊂Sn,|Ω|≥2 if σ=Id

(−1)sgn(σ)

(∏
i∈Ω

(
aiσ(i) + biσ(i)

)
−
∏
i∈Ω

aiσ(i)

)∣∣∣∣∣∣
≤

∑
σ∈Sn,Fix(σ)c⊂Ω⊂Sn,|Ω|≥2 if σ=Id

∣∣∣∣∣∏
i∈Ω

(
aiσ(i) + biσ(i)

)
−
∏
i∈Ω

aiσ(i)

∣∣∣∣∣
≤

∑
σ∈Sn,Fix(σ)c⊂Ω⊂Sn,|Ω|≥2 if σ=Id

(2|Ω| − 1)‖H2‖(‖H1‖+ ‖H2‖)|Ω|−1

≤
∑

σ∈Sn,Fix(σ)c⊂Ω⊂Sn

(2n − 1)(2R + 1)n−2‖H2‖(‖H1‖+ ‖H2‖)

≤|Sn|2n(2n − 1)(2R + 1)n−2‖H2‖(‖H1‖+ ‖H2‖),

where Sn is the group of symmetry over {1, 2, 3, ..., n}. Choose K(n,R) = |Sn|2n(2n − 1)(2R +

1)n−2 and the lemma follows.

Back to the proof of Proposition IV.25, notice that Lemma IV.21 implies that

tr

(
Âψ −

n+ 1

n
Id

)
= 0,

for any ψ ∈ B(R).
Lemma IV.24 and the above fact suggest that

0 =tr
d

dt

∣∣∣∣
t=0

(
Aφt −

n+ 1

n
Id

)
=tr

d

dt

∣∣∣∣
t=0

(
Âφt −

n+ 1

n
Id

)
+ tr

1

b(0)

∫
S

(ρφ(s)− 1)(Ax,s − Âx,s)dµx(s)

=tr
1

b(0)

∫
S

(ρφ(s)− 1)(Ax,s − Âx,s)dµx(s).

Let
H1 = Âφ −

n+ 1

n
Id

59



and

H2 = Aφ − Âφ = Aφ − Âφ −
1

b(1)
(Aφ0 − Âφ0) =

1

b(1)

∫
S

(ρφ(s)− 1)(Ax,s − Âx,s)dµx(s).

In order to estimate ‖H1‖, we first recall its matrix under the orthonormal basis Ξ ⊂ TxM .

Ξ[H1]Ξ =
1

n

(
Q̂φ − Id

)
.

The second assertion of Lemma IV.21 implies that

‖H1‖ ≤
∥∥∥∥ 1

n
(UT

φ Uφ − Id)

∥∥∥∥
Hence it suffices to consider components in 1

dn
(UT

φ Uφ − Id). Notice that

1

dn

(
〈Xl1,t1,g, Xl2,t2,g〉Gφ − δl1l2δt1t2

)
=

∫
S

(ρφ(s)− 1)Xl1,t1,g(s)Xl2,t2,g(s)dµx(s)

=
1∫

S
ρφ(s)dµx(s)

∫
S

(ρφ(s)− 1)Xl1,t1,g(s)Xl2,t2,g(s)dµx(s)

−
∫
S
(ρφ(s)− 1)dµx(s)∫
S
ρφ(s)dµx(s)

∫
S

Xl1,t1,g(s)Xl2,t2,g(s)dµx(s).

Therefore (IV.3.2) and (IV.3.3) imply that∣∣∣∣ 1

dn

(
〈Xl1,t1,g, Xl2,t2,g〉Gφ − δl1l2δt1t2

)∣∣∣∣
≤
∣∣∣∣ 1∫
S
ρφ(s)dµx(s)

∫
S

(ρφ(s)− 1)Xl1,t1,g(s)Xl2,t2,g(s)dµx(s)

∣∣∣∣
+

∣∣∣∣
∫
S
(ρφ(s)− 1)dµx(s)∫
S
ρφ(s)dµx(s)

∫
S

Xl1,t1,g(s)Xl2,t2,g(s)dµx(s)

∣∣∣∣
≤ c0

∣∣∣∣∫
S

(ρφ(s)− 1)Xl1,t1,g(s)Xl2,t2,g(s)dµx(s)

∣∣∣∣
+ c0

∣∣∣∣(∫
S

(ρφ(s)− 1)dµx(s)

)∫
S

Xl1,t1,g(s)Xl2,t2,g(s)dµx(s)

∣∣∣∣
≤ 2c0‖(ρφ − 1)‖L1(S,dµx) ≤ 4c0e

(dn+d−2)R1‖(ρφ − 1)‖L1(S) ≤ 4c0e
(dn+d−2)R1‖(ρφ − 1)‖L2(S)
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for any 1 ≤ l1, l2 ≤ n and 0 ≤ t1, t2 ≤ d− 1. Hence by (IV.3.2) we have

‖H1‖ ≤
∥∥∥∥ 1

n
(UT

φ Uφ − Id)

∥∥∥∥
≤ dn sup

1≤l1,l2≤n,0≤t1,t2≤d−1

∣∣∣∣ 1n (〈Xl1,t1,g, Xl2,t2,g〉Gφ − δl1l2δt1t2
)∣∣∣∣

≤ 4d2nc0e
(dn+d−2)R1‖(ρφ − 1)‖L2(S) ≤ 4d2nc2

0e
(dn+d−2)R1‖Φs(x)− φ(s)‖L2(S)

Recall that (IV.3.4) implies

‖H2‖ ≤ 2e(dn+d−2)R1c2
0c1ε‖Φs(x)− φ(s)‖L2(S).

Choose R3 = R3(n,R) = (R +R1)R2 and

R2 = R2(n,R) =
(
2e(dn+d−2)R1c2

0c1 + 4d2nc2
0e

(dn+d−2)R1
)
.

Hence ‖H1‖+ ‖H2‖ ≤ min{R3, R2‖Φs(x)− φ(s)‖L2(S)} by the assumption of φ ∈ B(R), ε < 1

and Lemma IV.6. It follows from Lemma IV.26 that

‖ detAφ − det Âφ‖ ≤ K1(n,R3)‖H2‖(‖H1‖+ ‖H2‖).

Hence

‖ detAφ − det Âφ‖
ε‖Φs(x)− φ(s)‖2

L2(S)

≤ K1(n,R3)(R2 + 1)2.

Based on the above inequality and (IV.3.4), we can choose C0(n,R) satisfying

C0(n,R) > max{K1(n,R3)(R2 + 1)2, 2e(dn+d−2)R1c2
0c1}.

Then we have
‖Aφ − Âφ‖ ≤ C0ε‖φ− Φ(P (φ))‖L2(S)

and

| detAφ − det Âφ| ≤ C0ε‖φ− Φ(P (φ))‖2
L2(S).

Corollary IV.27. Let φ ∈ B(R). If g is Cr sufficiently close to g0, then Aφ is invertible. Moreover,

we have ∥∥∥A−1
φ − Â

−1
φ

∥∥∥ ≤ C̃0ε‖φ− Φ(P (φ))‖L2(S)
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and ∣∣∣detA−1
φ − det Â−1

φ

∣∣∣ ≤ C̃0ε‖φ− Φ(P (φ))‖2
L2(S),

for some constant C̃0 = C̃0(n,R) > 0.

Proof. When φ ∈ B(R), Lemma IV.6 implies Φ(P (φ)) ∈ B(R1). Since Lemma IV.17 implies
that Id ≤ Âφ ≤ (d+ 1)Id, we have

1 ≤ det Âφ ≤ (d+ 1)dn.

Therefore, when ε(g, r) ≤ min{1/[2C0(R + R1)], 1/[2C0(R + R1)2]}, by the norm estimate and
the determinant estimate in Proposition IV.25 we have

1

2
Id ≤ Aφ ≤

2d+ 3

2
Id

and
1

2
≤ detAφ det Âφ ≤ (d+ 1)dn

[
(d+ 1)dn +

1

2

]
,

which imply that∥∥∥A−1
φ − Â

−1
φ

∥∥∥ ≤∥∥A−1
φ

∥∥∥∥∥Aφ − Âφ∥∥∥∥∥∥Â−1
φ

∥∥∥ ≤ 2C0ε‖φ− Φ(P (φ))‖L2(S)

and that ∣∣∣detA−1
φ − det Â−1

φ

∣∣∣ ≤ 2C0ε‖φ− Φ(P (φ))‖2
L2(S).

The corollary follows from choosing C̃0 = 2C0.

We need one further estimate on the Jacobian of Â−1
φ ◦ Eφ.

Proposition IV.28. For any φ ∈ B(R) (assuming x = P (φ)), any dn-dimensional subspace

W ⊂ L and any X ∈ W such that 〈X,X〉Gφ = 1, we have

det(Â−1
φ )JacG,WEφ ≤ 1− C1‖X − dΦ ◦ Â−1

φ ◦ Eφ(X)‖2
L2(S)

for some C1 = C1(n,R).

Proof. First, we proof the case whenW = Vφ = spanZφ, where Vφ, Zφ are defined in the previous
chapter.

Special case: W = Vφ.
Since the left hand side of the inequality can be written in terms of eigenvalues of UT

φ Uφ, our
main idea is to estimate ‖X − dΦ ◦ Â−1

φ ◦ Eφ(X)‖2
L2(S) by eigenvalues of UT

φ Uφ.
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Recall that in Lemma IV.17 and Lemma IV.18 we have

Ξ[Âφ]Ξ = Id +
1

n
Q̂φ

and

Ξ[Eφ|Vφ ]Wφ
=
n+ 1

n
UT
φ ,

we can conclude that

Ξ[Â−1
φ ◦ Eφ|Vφ ]Wφ

=
n+ 1

n

(
Id +

1

n
Q̂φ

)−1

UT
φ . (IV.3.5)

Let φ0 := Φ(P (φ)). We define a map iφ : Tφ0L → TφL such that, if we identify both tangent
spaces as L, iφ(Y ) = Y for all Y ∈ L = Tφ0L. In particular, iφ(Zφ0) = Zφ. Notice that
dΦ(Ξ) = Zφ0 , (IV.3.5) implies that

Zφ [iφ ◦ dΦ ◦ Â−1
φ ◦ Eφ|Vφ ]Wφ

=
n+ 1

n

(
Id +

1

n
Q̂φ

)−1

UT
φ .

Hence

Wφ
[iφ ◦ dΦ ◦ Â−1

φ ◦ Eφ|Vφ ]Wφ

=
n+ 1

n
Wφ

[Id]Zφ

(
Id +

1

n
Q̂φ

)−1

UT
φ =

n+ 1

n
Uφ

(
Id +

1

n
Q̂φ

)−1

UT
φ .

Therefore

Wφ
[Id|Vφ − iφ ◦ dΦ ◦ Â−1

φ ◦ Eφ|Vφ ]Wφ
= Id− n+ 1

n
Uφ

(
Id +

1

n
Q̂φ

)−1

UT
φ .

For simplicity, let

G(Uφ) = Id− n+ 1

n

(
Id +

1

n
Q̂φ

)−1

UT
φ Uφ ∈ Matdn×dn(R)

and hence

Wφ
[Id− iφ ◦ dΦ ◦ Â−1

φ ◦ Eφ|Vφ ]Wφ
= UφG(Uφ)U−1

φ . (IV.3.6)

Assume that Q̂φ has eigenvalues 0 ≤ η1 ≤ η2 ≤ ... ≤ ηdn and UT
φ Uφ has eigenvalues 0 ≤ λ1 ≤
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λ2 ≤ ... ≤ λdn. Lemma IV.21 shows that

dn∑
t=1

λt =
dn∑
t=1

ηt = dn

and

λ1 ≤ η1 ≤ 1 ≤ ηdn ≤ λdn ≤ dn.

Therefore

‖G(Uφ)‖ =

∥∥∥∥∥Id− n+ 1

n

(
Id +

1

n
Q̂φ

)−1

UT
φ Uφ

∥∥∥∥∥
≤

∥∥∥∥∥Id− n+ 1

n

(
Id +

1

n
Q̂φ

)−1
∥∥∥∥∥+

∥∥∥∥∥n+ 1

n

(
Id +

1

n
Q̂φ

)−1

(UT
φ Uφ − Id)

∥∥∥∥∥
≤

∥∥∥∥∥Id− n+ 1

n

(
Id +

1

n
Q̂φ

)−1
∥∥∥∥∥+

n+ 1

n
‖(UT

φ Uφ − Id)‖

≤n+ 1

n

(
1

1 + 1
n
η1

− 1

1 + 1
n
ηdn

+ λdn − λ1

)
≤n+ 1

n

(
1

1 + 1
n
λ1

− 1

1 + 1
n
λdn

+ λdn − λ1

)
≤
(
n+ 1

n

)2

(λdn − λ1), (IV.3.7)

where the third inequality follows from the fact that if a symmetric matrix has non-positive and
non-negative eigenvalues, then its norm is controlled by the difference between its largest and
smallest eigenvalues. In order to estimate

∥∥UφG(Uφ)U−1
φ

∥∥, we need the following result.

Lemma IV.29. For any φ ∈ B(R) (assuming x = P (φ)), there exists a positive constant C2 =

C2(n,R) > 0 such that

λ1 ≥ C2,

where 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λdn are eigenvalues of UT
φ Uφ.

Proof of Lemma IV.29. Let v ∈ Rdn be an arbitary unit vector in an Euclidean space. Define

c2(n) =
Area({w ∈ Sdn−1 : 〈w, v〉Rdn ≥ 1/2}, ds)

Area(Sdn−1, ds)
> 0,

where 〈·, ·〉Rdn denotes the standard Euclidean inner product. c2 is independent of the choice of
v due to spherical symmetry. For any unit vector v = (a1,0, ..., a1,d−1, ..., an,0, ..., an,d−1)T ∈
Matdn×1(R) = Rdn, we construct a vector (see Subsection IV.2.1 and IV.2.2 for definitions of
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ξl,t,g and Xl,t,g.)

ξv =
n∑
l=1

d−1∑
t=0

al,tξl,t,g ∈ TxM.

Then (IV.2.7) implies that

vTUT
φ Uφv =dn

∫
S

ρφ(s)

(
n∑
l=1

d−1∑
t=0

al,tXl,t,g(s)

)2

dµx(s)

=dn

∫
S

ρφ(s)〈gradΦs(x), ξv〉2dµx(s)

=dn

∫
T 1
xM

ρφ(α−1
g (s))〈ξ, ξv〉2dsx(ξ)

≥dn
∫
{w∈T 1

xM :〈ξ,ξv〉≥1/2}
ρφ(α−1

g (s))〈ξ, ξv〉2dsx(ξ)

≥dn
4

∫
{w∈T 1

xM :〈w,v〉≥1/2}
ρφ(α−1

g (s))dsx(ξ). (IV.3.8)

Since (IV.3.2) implies that

c−2
0 ≤ ρφ ≤ c2

0. (IV.3.9)

Therefore we have

dn

4

∫
{ξ∈T 1

xM :〈ξ,ξv〉≥1/2}
ρφ(α−1(s))dsx(ξ) ≥

dn

4
c2(n)c−2

0 .

As a consequence of (IV.3.8), we have

vTUT
φ Uφv ≥

dn

4
c2(n)c−2

0 ,

which implies that

‖UT
φ Uφ‖ ≥

dn

4
c2(n)c−2

0 .

In particular, let C2 = C2(n,R) = dn
4
c2(n)c−2

0 , we have λ1 ≥ C2.
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Going back to the proof of Proposition IV.28, Lemma IV.29, (IV.2.10) and (IV.3.7) imply that∥∥∥ Wφ
[Id− iφ ◦ dΦ ◦ Â−1

φ ◦ Eφ|Vφ ]Wφ

∥∥∥ =
∥∥UφG(Uφ)U−1

φ

∥∥ ≤‖Uφ‖ ‖G(Uφ)‖ ‖U−1
φ ‖

≤λ1/2
dn ·

(
n+ 1

n

)2

(λdn − λ1) · λ−1/2
1

≤
√
dn ·

(
n+ 1

n

)2

C
−1/2
2 (λdn − λ1),

which implies that

‖X − dΦ ◦ Â−1
φ ◦ Eφ(X)‖Gφ ≤

√
dn ·

(
n+ 1

n

)2

C
−1/2
2 (λdn − λ1).

Notice that ‖ · ‖Gφ = ‖ · ‖L2(S,dnρφdµx) = ‖ · ‖L2(S,dnρφλ(x,s)ds), it follows from (IV.3.3) and (IV.3.9)
that √

dn

2
c−2

0 e−(dn+d−2)R1‖ · ‖L2(S) ≤ ‖ · ‖Gφ ≤
√

2dnc2
0e

(dn+d−2)R1‖ · ‖L2(S). (IV.3.10)

Write c3 = c3(n,R) =
√

2(dn)−1c2
0e

(dn+d−2)R1 ·
√
dn ·

(
n+1
n

)2
C
−1/2
2 . Therefore

‖X − dΦ ◦ Â−1
φ ◦ Eφ(X)‖L2(S) ≤ c3(λdn − λ1). (IV.3.11)

Following (IV.2.13) and Lemma IV.29, we have

det(Â−1
φ )JacG,VEφ ≤(detUT

φ Uφ)
1
2
− 1
n+1

=

(
λ1λdn

dn−1∏
t=2

λt

) 1
2
− 1
n+1

=

[(
λ1 + λdn

2

)2 dn−1∏
t=2

λt −
1

4
(λ1 − λdn)2

dn−1∏
t=2

λt

] 1
2
− 1
n+1

≤

(∑dn
t=1 λt
dn

)dn

− 1

4
(λ1 − λdn)2λdn−2

1

 1
2
− 1
n+1

≤
[
1− 1

4
Cdn−2

2 (λ1 − λdn)2

] 1
2
− 1
n+1

≤ 1−
(

1

2
− 1

n+ 1

)
1

4
Cdn−2

2 (λ1 − λdn)2

Choose
C ′1 = C ′1(n,R) =

(
1

2
− 1

n+ 1

)
1

4
Cdn−2

2 c−2
3 .
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Then it follows from (IV.3.11) that

det(Â−1
φ )JacG,VEφ ≤1−

(
1

2
− 1

n+ 1

)
1

4
Cdn−2

2 (λ1 − λdn)2

≤1− C ′1c2
3(λ1 − λdn)2 ≤ 1− C ′1‖X − dΦ ◦ Â−1

φ ◦ Eφ(X)‖2
L2(S). (IV.3.12)

Now we return to the general case whenW is an arbitary dn-dimensional subspace of L. For
any X ∈ W , we write X = X‖+X⊥, where X⊥ ∈ V⊥φ and X‖ ∈ Vφ. We first make the following
claim.

Lemma IV.30. Let PVφ : TφL = L → Vφ be the orthogonal projection onto Vφ. Then there exists

some constant C3 = C3(n) > 0 such that

JacG,WPVφ = JacG
(
PVφ
∣∣
W

)
≤ 1− C3‖X⊥‖2

Gφ
.

Proof of Lemma IV.30. We follow the same idea as in Corollary IV.22 and (IV.2.12). Choose an
othonormal basis {X̃1 = X, X̃2, ..., X̃dn} inW . Then (IV.2.12) implies that

JacG,WPVφ

=JacG
(
PVφ |W

)
≤

(
1

dn

dn∑
t=1

‖PVφ(X̃t)‖2
Gφ

) dn
2

≤

(
1−
‖X⊥‖2

Gφ

dn

) dn
2

≤ 1− 1

2

(
1− 1

dn

) dn
2
−1

‖X⊥‖2
Gφ
.

The last inequality follows from the Mean Value Theorem and the fact that ‖X⊥‖Gφ ≤ 1. Choose

C3(n) = 1
2

(
1− 1

dn

) dn
2
−1 and the lemma follows.
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Going back to the proof of Proposition IV.28, (IV.3.10) and (IV.3.12) imply that

det(Â−1
φ )JacG,WEφ = det(Â−1

φ )JacG
(
Eφ|Vφ ◦ PVφ

)
= det(Â−1

φ )JacG,VφEφ · JacG
(
PVφ
∣∣
W

)
≤ det(Â−1

φ )JacG,VφEφ

(
1− C3‖X⊥‖2

Gφ

)
≤ det(Â−1

φ )JacG,VφEφ

(
1− dn

2
c−2

0 e−(dn+d−2)R1C3‖X⊥‖2
L2(S)

)
≤

(
1− C ′1

‖X‖‖2
Gφ

∥∥∥X‖ − dΦ ◦ Â−1
φ ◦ Eφ(X‖)

∥∥∥2

L2(S)

)(
1− c4‖X⊥‖2

L2(S)

)
≤
(

1− C ′1
∥∥∥X‖ − dΦ ◦ Â−1

φ ◦ Eφ(X‖)
∥∥∥2

L2(S)

)(
1− c4‖X⊥‖2

L2(S)

)
=

(
1− C ′1

∥∥∥X‖ − dΦ ◦ Â−1
φ ◦ Eφ(X)

∥∥∥2

L2(S)

)(
1− c4‖X⊥‖2

L2(S)

)
≤1− 1

2

(
C ′1

∥∥∥X‖ − dΦ ◦ Â−1
φ ◦ Eφ(X)

∥∥∥2

L2(S)
+ c4‖X⊥‖2

L2(S)

)
,

where c4 = c4(n,R) = dn
2
c−2

0 e−(dn+d−2)R1C3 and the last inequality follows from the fact that
(1− 2a)(1− 2b) ≤ 1− a− b provided 0 ≤ 1− 2a, 1− 2b ≤ 1. Take

C1 = C1(n,R) =
1

2
min

{
1

2
C ′1,

1

2
c4

}
,

we can summarize that

det(Â−1
φ )JacG,WEφ ≤1− 1

2

(
C ′1

∥∥∥X‖ − dΦ ◦ Â−1
φ ◦ Eφ(X)

∥∥∥2

L2(S)
+ c4‖X⊥‖2

L2(S)

)
≤1− 2C1

(∥∥∥X‖ − dΦ ◦ Â−1
φ ◦ Eφ(X)

∥∥∥2

L2(S)
+ ‖X⊥‖2

L2(S)

)
≤1− C1

∥∥∥X⊥ +X‖ − dΦ ◦ Â−1
φ ◦ Eφ(X)

∥∥∥2

L2(S)

=1− C1

∥∥∥X − dΦ ◦ Â−1
φ ◦ Eφ(X)

∥∥∥2

L2(S)
.

IV.4: A compression trick

This subsection is a review of [BI13, Section 7, A compression trick] in the more general case of
KHn. Recall in Proposition III.4, we need a ”projection” map Pσ. In the previous two sections, we
constructed a projection map P , but whether it is area non-increasing is not clear. In this subsection,
we will give our construction of Pσ as a small perturbation of P . Notice that the second assertion in
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Definition III.11 suggests that P is a locally “orthogonal” projection in the sense that dφP vanish
on the orthogonal complement of Im(dP (φ)Φ). Therefore Pσ constructed as a small perturbation of
P can be viewed as a ”almost locally orthogonal” projection.

Notation IV.31. We define a “height” map h(φ) : B(R)→ R+ as follows.

h(φ) = ‖φ− Φ(P (φ))‖L2(S).

Similar to [BI13], we construct a map Fc : B(R)→M × R+ by

Fc(φ) = (P (φ), ch(φ)).

Since h is smooth on B(R) \ Φ(M), so is Fc. We continue with the notation that ε = ε(g, r) as in
Section IV.3.

Lemma IV.32. There exist positive constants C5 = C5(n,R), C6 = C6(n,R) > 0 such that for

any 0 ≤ c ≤ C5 and any φ ∈ B(R) \ Φ(M)

JacGFc ≤ 1 + C6εh
2(φ)

provided ε� 1.

Proof. Let W ⊂ TφL = L be any dn-dimensional subspace. Denoted by {X̃1, X̃2, ..., X̃dn} an
orthonormal basis in W and {ω1, ω2, ..., ωdn} an orthonormal basis in TxM , where x = P (φ).
Without loss of generality, we can assume that

(1). dφh(X̃l) = 0 for any l ≥ 2;

(2). dφP |W has upper triangular matrix (asl)1≤s,l≤dn with non-negative diagonal under the above
choices of bases.

Then

JacGFc|W =
√
a2

11 + t2
dn∏
l=2

all, (IV.4.1)

where
t = dφ(ch(X̃1)) =

c

2h(φ)
dφ(h2)(X̃1).

Therefore

|t| ≤ c‖X̃1 − dΦ ◦ dφP (X̃1)‖L2(S). (IV.4.2)
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The first assertion in Corollary IV.27 suggests that

‖A−1
φ − Â

−1
φ ‖ ≤ C̃0ε‖φ− Φ(P (φ))‖L2(S).

Therefore ‖A−1
φ ‖ ≤ 2 provided ε ≤ [C̃0(R+R1)]−1 (which is actually weaker than ε ≤ min{[2C0(R+

R1)]−1, [2C0(R + R1)2]−1} mentioned in the proof of Corollary IV.27). Conbined with Corollary
IV.22, we have P is 2(dn+ d)/

√
dn-Lipschitz. In particular,

0 ≤ aii ≤
2(dn+ d)√

dn
. (IV.4.3)

By (IV.1.2) and (IV.3.10) we have

‖X̃1 − dΦ ◦ dφP (X̃1)‖L2(S)

=‖X̃1 − a11dΦ(ω1)‖L2(S)

≤‖X̃1‖L2(S) + a11‖dΦ(ω1)‖L2(S)

≤‖X̃1‖L2(S) +
2(dn+ d)√

dn
‖dΦ(ω1)‖L2(S)

≤
√

2(dn)−1c2
0e

(dn+d−2)R1‖X̃1‖Gφ +
2(dn+ d)√

dn

√
2e(dn+d−2)R1‖dΦ(ω1)‖L2(S,dµx)

=
√

2(dn)−1c2
0e

(dn+d−2)R1‖X̃1‖Gφ +
2(dn+ d)

dn

√
2e(dn+d−2)R1‖dΦ(ω1)‖GΦ(x)

=
√

2(dn)−1c2
0e

(dn+d−2)R1‖X̃1‖Gφ +
2(n+ 1)

n

√
2e(dn+d−2)R1‖ω1‖

=
√

2(dn)−1c2
0e

(dn+d−2)R1 +
2(n+ 1)

n

√
2e(dn+d−2)R1 =: c5(n,R) = c5. (IV.4.4)

Without loss of generality, assume that

C5 = C5(n,R) ≤ max

{
c−1

5

[
2(dn+ d)/

√
dn
]−dn

, 1

}
.

It follows from (IV.4.2) and the assumption of 0 ≤ c ≤ C5 that

|t| ≤
[
2(dn+ d)/

√
dn
]−dn

.

We consider two different cases.
Case 1. Assume that a11 <

[
2(dn+ d)/

√
dn
]−dn

. Then

√
a2

11 + t2 ≤
√

2

[
2(dn+ d)√

dn

]−dn
.
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It follows from (IV.4.1) and (IV.4.3) that

JacGFc|W =
√
a2

11 + t2
dn∏
l=2

all

≤
√

2

[
2(dn+ d)√

dn

]−dn dn∏
l=2

all ≤
√

2

[
2(dn+ d)√

dn

]−dn [
2(dn+ d)√

dn

]dn−1

=

√
2dn

2(dn+ d)
< 1.

Case 2. Assume that a11 ≥
[
2(dn+ d)/

√
dn
]−dn

. Then

√
a2

11 + t2 ≤ a11 +
t2

2a11

and

JacGFc|W =
√
a2

11 + t2
dn∏
l=2

all ≤
(
a11 +

t2

2a11

) dn∏
l=2

all

=JacG,WP +
t2

2a11

dn∏
l=2

all

≤JacG,WP +
t2

2
[

2(dn+d)√
dn

]−dn [2(dn+ d)√
dn

]dn−1

=JacG,WP +
1

2

[
2(dn+ d)√

dn

]2dn−1

t2. (IV.4.5)
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Lemma IV.21, Corollary IV.27 and Proposition IV.28 imply that

JacG,WP = det(A−1
φ )JacG,WEφ

≤
(

det(Â−1
φ ) + C̃0ε‖φ− Φ(P (φ))‖2

L2(S)

)
JacG,WEφ

= det(Â−1
φ )JacG,WEφ + C̃0εh

2(φ)JacG,WEφ

≤ det(Â−1
φ )JacG,WEφ + C̃0εh

2(φ)JacGEφ

= det(Â−1
φ )JacG,WEφ + C̃0εh

2(φ)

∣∣∣∣det

(
n+ 1

n
UT
φ

)∣∣∣∣
= det(Â−1

φ )JacG,WEφ + C̃0εh
2(φ) det

[
n+ 1

n

(
UT
φ Uφ

) 1
2

]
≤ det(Â−1

φ )JacG,WEφ +

(
n+ 1

n

)dn
C̃0εh

2(φ)

≤1− C1‖X̃1 − dΦ ◦ Â−1
φ ◦ Eφ(X̃1)‖2

L2(S) +

(
n+ 1

n

)dn
C̃0εh

2(φ).

It follows from (IV.4.5) that

JacGFc|W

≤1− C1‖X̃1 − dΦ ◦ Â−1
φ ◦ Eφ(X̃1)‖2

L2(S) +

(
n+ 1

n

)dn
C̃0εh

2(φ) +
t2

2

[
2(dn+ d)√

dn

]2dn−1

.

(IV.4.6)

Corollary IV.22, Corollary IV.27, (IV.3.3) and (IV.4.2) imply that

|t| ≤c‖X̃1 − dΦ ◦ dφP (X̃1)‖L2(S)

≤c
∥∥∥X̃1 − dΦ ◦ Â−1

φ ◦ Eφ(X̃1)
∥∥∥
L2(S)

+ c
∥∥∥dΦ ◦

(
A−1
φ − Â

−1
φ

)
◦ Eφ(X̃1)

∥∥∥
L2(S)

≤c
∥∥∥X̃1 − dΦ ◦ Â−1

φ ◦ Eφ(X̃1)
∥∥∥
L2(S)

+ c
√

2e(dn+d−2)R1

∥∥∥dΦ ◦
(
A−1
φ − Â

−1
φ

)
◦ Eφ(X̃1)

∥∥∥
L2(S,dµx)

=c
∥∥∥X̃1 − dΦ ◦ Â−1

φ ◦ Eφ(X̃1)
∥∥∥
L2(S)

+ c

√
2

dn
e(dn+d−2)R1

∥∥∥dΦ ◦
(
A−1
φ − Â

−1
φ

)
◦ Eφ(X̃1)

∥∥∥
GΦ(x)

≤c
∥∥∥X̃1 − dΦ ◦ Â−1

φ ◦ Eφ(X̃1)
∥∥∥
L2(S)

+ c

√
2

dn
e(dn+d−2)R1 ‖dΦ‖

∥∥∥(A−1
φ − Â

−1
φ

)∥∥∥ ‖Eφ‖ ∥∥∥X̃1

∥∥∥
Gφ

≤c
(∥∥∥X̃1 − dΦ ◦ Â−1

φ ◦ Eφ(X̃1)
∥∥∥
L2(S)

+
(n+ 1)

n

√
2e(dn+d−2)R1C̃0ε‖φ− Φ(P (φ))‖L2(S)

)
=c

(∥∥∥X̃1 − dΦ ◦ Â−1
φ ◦ Eφ(X̃1)

∥∥∥
L2(S)

+
(n+ 1)

n

√
2e(dn+d−2)R1C̃0εh(φ)

)
.

72



Since C5 ≤ 1 by definition, therefore c < 1 and

t2 ≤ 2c2
∥∥∥X̃1 − dΦ ◦ Â−1

φ ◦ Eφ(X̃1)
∥∥∥2

L2(S)
+ c6εh

2(φ), (IV.4.7)

where

c6 = c6(n,R) = 2

(
(n+ 1)

n

√
2e(dn+d−2)R1C̃0

)2

,

and ε < 1 by our assumption. Let

C6 = C6(n,R) =
1

2

[
2(dn+ d)√

dn

]2dn−1

c6 +

(
n+ 1

n

)dn
C̃0.

(IV.4.6) and (IV.4.7) can be summarized as

JacGFc|W ≤1−

{
C1 −

[
2(dn+ d)√

dn

]2dn−1

c2

}
‖X̃1 − dΦ ◦ Â−1

φ ◦ Eφ(X̃1)‖2
L2(S) + C6εh

2(φ).

Choose C5 in Lemma IV.32 such that

C5 = min

{
C

1
2
1

[
2(dn+ d)√

dn

] 1−2dn
2

, c5

[
2(dn+ d)√

dn

]−dn
, 1

}
.

Then
JacGFc|W ≤ 1 + C6εh

2(φ)

and the lemma follows.

We follow the idea in [BI13] to construct a ”homothety” At : M →M by

At(p) = expx0
(t exp−1

x0
(p)), ∀p ∈M,

and a map Qσ : M × R+ →M by

Qσ(p, h) = A1+σh2(p), ∀p ∈M.

Lemma IV.33. If d(p, x0) ≤ 4σ−1/2, assuming g sufficiently close to g0 such that (M, g) has

strictly negative sectional curvature, then the dn-dimensional Jacobian ofQσ at (p, h) is no greater

than (1 + σh2)−1.

Proof. The proof can be found in [BI13, Lemma 7.2].

Now we define Pσ(φ) = Qσ(P (φ), σh(φ)) = Qσ(Fσ(φ)) on B(R). By definition Pσ is smooth.
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Proposition IV.34. For every R > 0, there exists a σ > 0, c > 0 and ε0 > 0 such that the

dn-dimensional Jacobian J(φ) := JacGPσ(φ) with respect to G at any point φ ∈ B(R) satisfies

J(φ) ≤ 1− ch2(φ)

provided ε(g, r) ≤ ε0.

Proof. Choose σ such that σ < C5(n,R) in Lemma IV.32 and (4σ)−1/2 > R1(n,R) in Lemma
IV.6.

For any φ ∈ Φ(M), h(φ) = 0, Hence we have Jac dφPσ = Jac dφP = 1, following the
equality conditions in Lemma IV.21 and Corollary IV.22.

For any φ ∈ B(R) \ Φ(M), Lemma IV.32 and Lemma IV.33 implies

J(φ) ≤ JacQσ · JacGFσ ≤
1 + C6ε(g, r)h

2(φ)

1 + σ3h2(φ)
.

Choose σ = 3
√

3C6ε0 and ε0 such that

(1). ε0 is smaller than all upper bounds for ε(g, r) mentioned prior to this proposition;

(2). 3C6ε0h
2(φ) ≤ 3C6ε0(R +R1)2 ≤ 1;

(3). σ < C5;

(4). (4σ)−1/2 ≥ R1.

Let c = C6(n,R)ε0 = σ3/3, Hence

J(φ) ≤ 1 + C6ε(g, r)h
2(φ)

1 + σ3h2(φ)
≤

1 + σ3

3
h2(φ)

1 + σ3h2(φ)
≤ 1− ch2(φ).

Now we are in position to complete the proof of Proposition III.4.

Proof of Proposition III.4. Let ε0 and σ be as in Proposition IV.34. Assume that ε(g, r) < ε0.
Consider the map Pσ : B(R) → M constructed above. Proposition III.13 and the inequality in
Proposition IV.34 suggests that Pσ ◦ f does not increase volume for any Riemannian manifold
N and any 1-Lipschitz map f : N → B(R). In the case of equality, Pσ has Jacobian equal to 1

for almost all points in f(N). Therefore by continuity and the above proposition, h(φ) = 0 for
all φ ∈ f(N), hence f(N) ⊂ Φ(M). Therefore the map Pσ possesses all properties claimed in
Proposition III.4.

Remark. In the proof of Proposition IV.34, we mentioned three additional conditions on g. Here
is a summary of all conditions posed on g before Proposition IV.34.
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(1). dg(x, x0) ≤ R/4 for any x ∈ Bx0(R/5), introduced at the begining of Section III.3;

(2). g has negative sectional curvature, introduced in the proof of Corollary I.6;

(3). (IV.1.2) with R0 > R1, introduced in the remark of Lemma IV.4 and (IV.3.3);

(4). (IV.1.4) with R̃0 > R1, introduced in Lemma IV.6;

(5). diamg(Bx0(2R)) < 5R, introduced in Lemma IV.6;

(6). ε = ε(g, r) should be small enough such that we can apply the Gram-Schmidt process men-
tioned in Section IV.2;

(7). ε = ε(g, r) should be small enough such that ‖Âx,s−Ax,s‖L2(S) ≤ c1ε for some c1 = c1(n,R)

and any x ∈ Bx0(R1), introduced in the proof of Proposition IV.25;

(8). ε = ε(g, r) = ‖g − g0‖Cr < min{[2C0(R + R1)]−1, [2C0(R + R1)2]−1, 1}, introduced in
Corollary IV.27 and Lemma IV.32.

Therefore Theorem I.5 and Corollary I.6 hold for any g with ε small enough such that g satisfies
all 11 conditions. In particular, there exists some g 6= g0 such that (D, g) is a strict minimal filling
and boundary rigid.
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