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ABSTRACT

Electronic energy transfer and charge transfer processes play crucial roles in many photochem-

ical processes. Computational studies on these processes are challenging subjects in the chem-

istry community. The problem arises from the prohibitive computational costs of the quantum-

mechanically exact methods for these typically large systems. Developing methods that can handle

such large dimensionality is then the key priority.

In Chapter I of this dissertation, the motivation for studying the energy transfer and charge

transfer processes will be laid out. Next, a literature review of current theoretical approaches to

handle these problems will be discussed.

In Chapter II, the quasi-classical mapping Hamiltonian (QC/MH) methods will be laid out with

various mapping schemes. The dynamics of the four types of two-state spin-boson models gener-

ated with QC/MH methods will then be compared to the exact results. By this benchmarking of

accuracy, it will be shown that the modified LSC produced the most accurate simulation results.

One version of modified LSC will be shown to even have the capability to generate accurate simu-

lation results for systems in low temperature. In addition, it will be demonstrated that even with the

same method, the simulation accuracy can differ for different electronic observables. The results

will emphasize the importance to evaluate all elements of electronic density matrix for method

benchmarking.

In Chapter III, the generalized quantum master equation (GQME) with a general choice of

projection operators will be presented, along with a walkthrough of their application procedures.

The assessment of the accuracy of GQME will then be completed with two-state spin-boson

model. It will be shown that the best approach for GQME is to perform population-only reduced-

dimensionality GQME in the observable representation. This combination of approaches will pro-

xii



vide the most cost-efficient and accurate simulation.

In Chapter IV, the application of QC/MH methods and GQME is furtherly demonstrated with

the linear vibronic coupling (LVC) model. We will then discover that the performance of QC/MH

methods on LVC models might not agree with the performance of spin-boson models. This will

suggest that accuracy benchmarking should be performed not just on spin-boson model, but on

LVC model as well. In Chapter V, the energy transfer process in Fenna-Matthews-Olson(FMO)

complex will be studied with the QC/MH and GQME. The simulation results will show that com-

bining QC/MH with GQME allows one to generate accurate simulations even for large and com-

plex systems. This discussion will expand our application of QC/MH and GQME beyond two-state

systems.

In Chapter VI, the various ways to generate the time evolution operators using the GQME,

which can be used along with quantum computing algorithms to propagate the system, will be

discussed. A comparison between different approaches will then be discussed, and we will find

out that the best approach is to directly generate the propagator through GQME.

In Chapter VII, we will present a summary of the discussions. In addition, further directions

for QC/MH and GQME will be presented. This includes applying QC/MH and GQME to wider

range of systems and further development on the reduced-dimensionality Condon approximation

GQME.
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CHAPTER I

Introduction

I.1 Electronic Energy and Charge Transfer Dynamics

Photo-induced electronic energy transfer and charge transfer dynamics play a central role in many

fields, including photochemistry, solar energy, photosynthesis, and photovoltaics.[1] For example,

photosynthesis can be divided into four stages: (1) light absorption and energy transfer via antenna

systems, (2) primary electron transfer in reaction centers, (3) energy stabilization by secondary

processes, and (4) synthesis and export of stable products [2]. In the first stages, the photon absorp-

tion gives rise to an excited state that results in charge separation in the reaction center. Generally

speaking, the antenna system performs an energy transfer process, which migrates the electronic

excited states from one molecule to another. This first step typically ends with an electronically ex-

cited donor in the reaction center. The second stage is where the conversion of electronic excitation

energy to electrical energy takes place. The electronically excited donor transfer charges rapidly to

the electron acceptor nearby. During this process, the excitation energy gets converted to electrical

energy. Therefore the primary reaction happens during this process. In the third stage of photo-

synthesis, positive and negative charges are separated through a series of rapid secondary chemical

reactions. The last stage in the photosynthesis process is to produce stable high-energy molecules.

Electronic energy transfer and charge transfer are two critical steps in the photosynthesis process,

therefore are the center of many studies.[3–7]

Understanding the dynamical processes of excitation energy transfer and charge transfer also
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facilitates and enables the design of photovoltaic materials and devices capable of efficiently cap-

turing and utilizing solar energy.

Photovoltaic technologies generate power by using devices that absorb solar energy and con-

vert it into electrical energy. The increasing demand for energy, the rising price of fuels, and the

growing concerns about the environment all lead to an urgent call for more utilization of renew-

able energy sources.[8] Photovoltaic technologies are among those of interest. Photovoltaic panels

have the advantage of utilizing free natural energy sources with no greenhouse gases produced.[9]

Inorganic solar cells, namely silicon-based devices, have been the leading technology in this field.

Although silicon-based devices can achieve high power conversion efficiency[10], they are typ-

ically expensive and cannot be produced in large sizes. One alternative is organic solar cells.

Single-component organic solar cells typically have low efficiency.[11] Studies have shown that

with two components, efficiency can be improved.[12] The two components are made up of one

electron-donor material and one electron-acceptor material. This technology, along with advance-

ment in the material used, boost the power conversion efficiency of organic solar cells.[13–16] The

charge transfer process between the donor and acceptor interface is an important feature of these

technologies. The process can be described as a photoexcited donor-localized bright excited state

transitioning to a donor-to-accepter interfacial charge-transfer state, then followed by a charge sep-

aration process or a charge recombination process.[17] The charge separation process leads to the

dissociation of electron-hole pair and the charge recombination process leads to dissipating excess

energy as heat. Promoting more charge separation will allow more efficient energy conversion.

Understanding the charge transfer processes is crucial to improve conversion efficiency.

Gaining more understanding and having the ability to simulate the energy transfer and charge

transfer processes can allow more efficient development of solar energy technologies. Perform-

ing accurate simulations can point to new directions of development, meanwhile reducing the

economic cost of traditional research and development. The above processes can typically be de-

scribed by open quantum systems. In the open quantum systems that describe the electronic energy

transfer and charge transfer processes, the system is typically the electronic degrees of freedom
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(DOF), and the bath that is coupled to the system is typically the nuclear degrees of freedom. In

the next section, we will discuss various methods that can be used to simulate these processes.

I.2 Methods for Simulating Electronic Energy and Charge

Transfer Dynamics

To accurately capture quantum effects, it is best to use quantum-mechanical exact methods to

simulate the energy and charge transfer dynamics.

An example of such a quantum-mechanically exact method is the multiconfiguration time-

dependent Hartree (MCTDH) method. MCTDH is a wavepacket-propagation-based exact

method.[18–20] MCTDH is a variant of the multiconfigurational time-dependent self-consistent

field (MC-TDSCF) method.[21] The MCTDH method uses a multiconfigurational wavefunc-

tion ansatz with single-particle wavefunction as time-dependent basis functions. Then the time-

dependent Schrödinger equation is solved by a variational method.[22] Even though MCTDH

scales exponentially with dimension, it is still computationally cheaper than the standard

wavepacket dynamics.[18] This arises from the usage of time-dependent basis functions in

MCTDH, instead of the time-independent wavefunction used in the standard wavepacket dynam-

ics.

Another exact method is the dissipation equation of motion (DEOM).[23] The DEOM approach

is formally exact for models with Gaussian bath, i.e. the linear hybridization noninteracting bath

model. In DEOM, the linear hybridization bath operators are decomposed into dissipation opera-

tors. The dissipation density operators (DDO) can then be defined with the dissipation operators.

The dynamics of DDO can be achieved by applying the Liouville-von Neumann equation. The

typical observable of interest – the reduced system density operator, is the zeroth order DDO. The

DEOM formalism can be constructed with another well-known method, the hierarchical equations

of motion (HEOM).[23–25] The main difference between DEOM and HEOM is that the HEOM

provides no physical meanings on the dynamics variables.[23] It is worth noticing here that the
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decomposition of bath correlation can be prohibitively expensive for systems at close-to-zero tem-

peratures, which limits the usage of DEOM. This low-temperature situation, however, generally

can be handled by MCTDH.

As we see from the two examples of quantum-mechanically exact methods presented above,

these methods typically either have requirements on the specific form of the model or have compu-

tational costs that scale exponentially with the increase of dimensionality. Unfortunately, quantum

systems of chemical interest typically involve the system, bath, and system-bath interactions, re-

sulting in high dimensionality, which makes exact methods impractical. This prompts the many

studies and development of a wide variety of approximate approaches.

Surface hopping provides a practical approach for describing the coupled dynamics in large

condensed phase systems. It is possible to implement surface hopping on the fly with ab initio

electronic structure methods.[26] The fewest switches surface hopping (FSSH) algorithm was pro-

posed aiming to increase the stability of the trajectory-based methods.[27] In this approach, the ini-

tial wavepacket’s density is sampled as classical trajectories. Then the nuclear DOF are propagated

classically, while the electronic DOF are propagated quantum mechanically with the Schrödinger

equation. The probability of switching surface is calculated at each step, and hopping is only

allowed with energy conservation. The FSSH approach was shown to provide an accurate descrip-

tion of the short-time dynamics through the conical intersections.[28] However, FSSH does not

properly account for decoherence.[27, 29, 30] Several new approaches have been proposed aiming

to fix this issue. However, most approaches centering on the decoherence are empirical.[30–34].

Restrictions on the applicability of FSSH also arise from the assumption that the system starts at

a single adiabatic state. The derivation connecting the FSSH and the quantum-classical Liouville

equation provides ways to overcome this.[35]

The mapping Hamiltonian method, proposed by Meyer and Miller[36], uses mapping relations

that follow the same commutation relations as the density matrix and observable dynamics. This

approach is motivated by the use of auxiliary position and momentum operators, which have a

clear classical limit, and was further investigated by Stock and Thoss on the mapping relations
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using the harmonic oscillator model[37]. Different mapping methods have been proposed, includ-

ing the linearized semi-classical (LSC) methods. The LSC methods: the Poisson-bracket mapping

equation (PBME)[38, 39] and the linearized semi-classical method (LSC-IVR)[40, 41], or LSCI

and LSCII respectively, are based on the harmonic oscillator’s creation and annihilation opera-

tor and the wavefunction of singly-excited states, respectively. However, the closure relation is

not guaranteed for every trajectory with the LSC methods. To solve this issue, a modified lin-

earized semi-classical approach was introduced, which expressed the closure relation in the map-

ping relations, ensuring closure relations.[42, 43]. Another mapping scheme, the symmetrical

quasi-classical method (SQC), uses the action-angle variables and filters trajectories by a window,

resulting in accurate descriptions of population dynamics for various system types.[44–49]

The mixed quantum-classical Liouville (MQCL) equation may be obtained from the quan-

tum Liouville equation using a partial Wigner representation, where Wigner transformation is

performed to the classical DOF, and by considering the limit of small mass ratio between the

classical and quantum DOF.[50] It is reported that for an arbitrary quantum subsystem bilinearly

coupled to a harmonic environment, the MQCL reproduces the exact fully quantum-mechanical

dynamics.[51] The MQCL equation has the advantage of being more accurate than some other

semi-classical methods.[52–54] The downside of MQCL is the relatively high computational cost.

Sequential Short-Time Propagation (SSTP) algorithm[55] and the Trotter-Based Surface-Hopping

(TBSH)[56] algorithm can be used to solve the MQCL equations. The two methods are trajectory-

based algorithms that utilized Monte Carlo sampling. Therefore, the computational cost of these

two algorithms can be quite large due to the increasing number of trajectories required for conver-

gence. To minimize the related computational cost, the transition filtering technique was proposed,

aiming to reduce the statistical errors.[55, 57] The observable cutting is another technique, imple-

mented to reduce the number of trajectories required. It restricts the statistical weight of trajectories

when it reaches some certain value.[58]

The quantum-classical path integral (QCPI) method is a rigorous approach that combines the

fully quantum mechanical treatment for the small system and the classical trajectory approach for
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the large system. This is completed by restricting the path sum to the classical trajectories for the

heavy particles and maintaining the quantum path sum for the light particles.[59] The challenge of

this approach arises from the computational cost of the evaluation of real-time path integral expres-

sions. One possible path is developed by exploiting the mechanism of decoherence, which occurs

when a quantum system interacts with its surrounding environment.[60] One recent progress on

QCPI is the small matrix quantum-classical path integral(SMatQCPI), which eliminates the tensor

storage requirements through a small matrix decomposition.[61]

Another approach to simulating electronic energy and charge transfer dynamics is based on

quantum master equations. A quantum master equation typically refers to first-order differential

equations describing the time evolution of a quantum system or observable of interest. For exam-

ple, the Redfield quantum master equation is a Markovian master equation that describes the time

evolution of the reduced density matrix of a system coupled to a bath.[62] The Redfield quantum

master equation can be derived based on second-order perturbation treatment in the system-bath

coupling. Therefore, it is best for models with weak system-bath coupling. The Redfield theory is

closely connected to the Lindblad master equation, and both methods assume Markovianity. Such

a Markovian approximation ignores the effect of memory, meaning that the future of the system

of interest is not affected by the past. One approach that accounts for non-Markovian effects is the

Nakajima-Zwanzig generalized quantum master equation (NZ-GQME). NZ-GQME is based on

using projection superoperators in Liouville space, resulting in the time evolution of the projected

density matrix. By focusing only on the most important part of the system, the NZ-GQME can

reduce the computational cost significantly. The effect of the rest of the system on the projected

density matrix is incorporated into the memory kernel. Shi and Geva proposed a formally exact ap-

proach for generating memory kernels using only projection-free inputs.[63] The accuracy of this

method has been demonstrated with both quantum-mechanically exact and semi-classical inputs

for the spin-boson model.[63, 64] To account for arbitrary initial state and system-bath coupling,

the Zhang-Ka-Geva approach was introduced.[65] Further evidence of the efficacy of the Shi-Geva

GQME approach was shown by generating projection-free inputs using surface hopping[66] and
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Ehrenfest mean field methods[67]. This method requires expressing the Hamiltonian in a system-

bath form. Mulvihill et al. proposed a modified GQME approach that eliminates the restriction

on the form of the Hamiltonian, making it generally applicable.[68, 69] To reduce computational

costs further, a reduced-dimensionality GQME approach was also proposed.[70]

Our focus in this dissertation is to develop general, low-cost quasi-classical methods that are

capable of describing the energy transfer and charge transfer dynamics of open quantum systems

accurately. More specifically, we will center our attention on the quasi-classical mapping Hamil-

tonian (QC/MH) methods and the generalized quantum master equation (GQME).

I.3 Overview of This Dissertation

In this dissertation, we will use bold letters, e.g. A, to represent vector variables and hat on letters,

e.g. B̂, to represent operators in Hilbert space. The rest of this dissertation is organized as fol-

lows. In Chapter II, we first present the general mapping Hamiltonian method. Then the different

quasi-classical approximations of the mapping Hamiltonian methods are presented. Next, we walk

through the application of the linearized semi-classical approximation to the two-level spin-boson

model as a demonstration. The simulation results of the two-level spin-boson model via QC/MH

are then provided and compared to the results from exact methods. In Chapter III, the modified

approach to the generalized quantum master equation with a general form of projection operator is

described. We then walk through the application of GQME to the two-level spin-boson model. The

simulation results of the coherence dynamics of the two-level spin-boson model are then presented

and compared to the exact results generated with the dissipation equation of motion (DEOM). In

Chapter IV, we apply the above-mentioned QC/MH methods and the GQME to a model with con-

ical intersections: the linear vibronic coupling model. We compared the simulation results with

the exact dynamics and emphasized the necessity of benchmarking and evaluating methods over

different types of models. In Chapter V, the QC/MH methods and the GQME are applied to the

Fenna-Matthews-Olson (FMO) complex, a photosynthetic complex with long-lived quantum co-
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herences. Then we report the simulation results and compare those to the dynamics generated via

an exact method. In Chapter VI, the various ways to calculate time evolution propagators, that can

be used in quantum computing algorithms, are discussed and compared. A summary of the dis-

sertation and outlook for future projects with the quasi-classical methods is then given in Chapter

VII.
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CHAPTER II

Quasi-Classical Mapping Hamiltonian Methods

II.1 Introduction

The mapping Hamiltonian method was proposed by Meyer and Miller[36] and later investigations

on the mapping relations using the harmonic oscillator model were done by Stock and Thoss[37].

The mapping relations follow the same commutations relations. This approach is prompted by

the fact that both the density matrix dynamics and the observable dynamics are dictated by com-

mutators. This approach is motivated by the fact that mapping relations can be expressed using

auxiliary position and momentum operators, which have a clearly defined classical limit. With

the quasi-classical approximation, the nuclear coordinates and momenta, as well as the auxiliary

coordinates and momenta associated with the electronic DOFs, are typically treated classically.

The choice of mapping is not unique. The two linearized semi-classical (LSC) methods, orig-

inally named the Poisson-bracket mapping equation (PBME)[38, 39] and the linearized semi-

classical method (LSC-IVR)[40, 41], arise from the creation and annihilation operator of the har-

monic oscillators and the wavefunction of singly-excited states, respectively. The well-known

Ehrenfest mean-field method can be thought of as a QC/MH method with a pre-setted initial value

for the auxiliary position and momentum. For the LSC methods, the closure relation is not guar-

anteed for each trajectory. To address this issue, the modified linearized semi-classical approach

was proposed.[42, 43] The modified LSC explicitly expressed the closure relation in the map-

ping relations, ensuring the closure relations. This approach showed significant improvements
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for the spin-boson model and the Fenna-Matthews-Olson (FMO) complex compared to the LSC

approach.[42, 43] A variation of the mapping scheme that is based on the action-angle variables is

the symmetrical quasi-classical method (SQC). In SQC, the trajectories are filtered by a window.

This results in accurate descriptions of the population dynamics for various types of systems.[44–

49]

The rest of this chapter is organized as follows. The mapping Hamiltonian formalism is pre-

sented in Sec. II.2. Next, we present various mapping schemes and the quasi-classical approxima-

tions in Sec. II.3. In Sec. II.4, we use the two-level spin-boson model to demonstrate the applica-

tion of QC/MH methods. In the next section, we present the simulation results of the dynamics of

the electronic density matrix of the two-level spin-boson model, compared to the dynamics gen-

erated with the dissipation equation of motion (DEOM). Concluding remarks are given in section

II.6.

II.2 Mapping Hamiltonian Approach

MH methods are based on casting the population and coherence operators, {|j〉〈k|}, onto an iso-

morphic set of operators, {Mjk(q̂, p̂)}:

|j〉〈k| 7→Mjk(q̂, p̂) , (II.1)

with {Mjk(q̂, p̂)} satisfying the same commutation relations as {|j〉〈k|}.[36, 39, 40, 42, 43, 71–

78, 78–86] Here, {q̂, p̂} are a set of auxiliary Cartesian coordinate and momentum operators. The

reason for utilizing mapping operators over the original electronic operators is that {Mjk(q̂, p̂)}

have classical-like analogs and therefore allow QC approximations to be used, unlike with {|j〉〈k|}.

One electronic observable of common interest is the electronic density operator at a later time
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t. This is given by:

σ̂(t) = Trn {ρ̂(t)} =
Ne∑

m,n=1

σmn(t) |m〉〈n| , (II.2)

with σmn(t) = 〈m| σ̂(t) |n〉 = Tr {ρ̂(t) |n〉〈m|}

= Tr
{
e−iĤt/~ρ̂(0)eiĤt/~ |n〉〈m|

}
= Tr

{
ρ̂(0)eiĤt/~. |n〉〈m| e−iĤt/~

}
(II.3)

Here, ρ̂(0) is the nonequilibrium initial state and Ne represents the number of electronic DOF.

σmm(t) corresponds to the population of the n-th electronic state and σmn(t) (where m 6= n)

corresponds to the electronic coherence between the m-th and the n-th electronic states. Note that

eiĤt/~ |n〉〈m| e−iĤt/~ can be considered as the observable |n〉〈m| at time t:

σmn(t) = Tr {ρ̂(0) |n〉〈m| (t)} . (II.4)

Although choices of initial state is not unique, the typical choice is ρ̂(0) = ρ̂n(0) ⊗ |α〉〈α|. We

will use this to demonstrate QC/MH methods in this chapter. With this choice, we can then write

the electronic density matrix elements as:

σmn(t) = Tr
{
ρ̂n(0)⊗ |α〉〈α| eiĤt/~ |n〉〈m| e−iĤt/~

}
≡ CM̂ααM̂nm

(t). (II.5)

As outlined in Refs. 42 and 43, the electronic population operator can also be mapped as the

sum of the identity operator 1̂ and a trace zero term, giving the alternative form

|m〉〈m| 7→ 1

Ne

(1̂ + Q̂m) , (II.6)

where

Q̂m = NeM̂mm −
Ne∑
b=1

M̂bb . (II.7)

in which M̂mm ≡ |m〉 〈m|, and Ne is the number of electronic DOF. Plugging Eq. (II.6) into
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Eq. (II.5) leads to the following alternative expressions for the electronic density matrix elements:

σmm(t) =
1

N2
e

[
Ne + C1̂Q̂m

(t) + CQ̂αQ̂m(t)
]

σmn(t) =
1

Ne

[
C1̂M̂nm

(t) + CQ̂αM̂nm
(t)
]
.

(II.8)

Here M̂nm ≡ |n〉 〈m|, and the correlation function

CAB(t) = Tr
{
ρ̂n(0)A(q̂(0), p̂(0))B(q̂(t), p̂(t))

}
. (II.9)

II.3 Quasi-Classical Approximations

II.3.1 Linearized Semi-Classical Approach

Applying the LSC approximation[87] to a correlation function of the form given in Eq. (II.9) results

in the following QC approximation for CÂB̂(t):

CAWBW (t) =(
1

2π~

)Ne+Nn ∫
dR0

∫
dP0

∫
dq0

∫
dp0[ρ̂n(0)]W (R0,P0)AW (q0,p0)BW (qt,pt) .

(II.10)

Applying the QC approximation to the correlation functions in Eq. (II.5) and (II.8) leads to

two alternative QC/MH approximations for the electronic density matrix elements, detailed in the

following.

The actual choice of mapping variables is not unique and multiple choices of mapping vari-

ables have been proposed and employed.[75–78, 84, 88] In this chapter, we consider two such

choices, which are based on the Stock-Thoss-Meyer-Miller mapping[36, 37] (the reader is referred

to Refs. 69 and 85 for a more detailed discussion of these two choices). The first choice, which we
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refer to as mapping #1, leads to the following QC mapping variables:

[M̂mm]
(I)
W (q,p) =

1

2~
(q2
m + p2

m − ~)

[M̂mn]
(I)
W (q,p) =

1

2~
(qm − ipm)(qn + ipn) .

(II.11)

The second choice, which we refer to as mapping #2, leads to the following QC mapping variables:

[M̂mm]
(II)
W (q,p) = φ(q,p)

(
q2
m + p2

m −
~
2

)
[M̂mn]

(II)
W (q,p) = φ(q,p)(qm − ipm)(qn + ipn) ,

(II.12)

where

φ(q,p) =
2Ne+1

~
exp

[
−1

~

Ne∑
l=1

(
q2
l + p2

l

)]
. (II.13)

We also note that the QC mapping #1 and mapping #2 approximations for Q̂m, Eq. (II.7), are

given by:

[Q̂m]
(I)
W (q,p) = Ne[M̂mm]

(I)
W (q,p)−

Ne∑
b=1

[M̂bb]
(I)
W (q,p) ,

[Q̂m]
(II)
W (q,p) = Ne[M̂mm]

(II)
W (q,p)−

Ne∑
b=1

[M̂bb]
(II)
W (q,p) .

(II.14)

Applying the above-mentioned QC/MH approximations to Eqs. (II.5) or (II.8) yields the five

different LSC-based methods shown in Table II.1 (see Refs. 85 and 42 for a more detailed discus-

sion). The first two methods, LSCI (also referred to as PBME[39]) and LSCII (also referred to

as LSC-IVR[40]) are based on Eq. (II.5). Both LSCI and LSCII use mapping #2 for [M̂αα]W but

differ from each other in the mapping used for [M̂nm]W , with LSCI using mapping #1 and LSCII

using mapping #2.

The third through fifth LSC-based methods are based on Eq. (II.8) and were recently intro-

duced by Saller et al.[42] For the correlation functions C[1̂]W [Q̂m]W
, C[1̂]W [M̂nm]W

, C[Q̂α]W [Q̂m]W
and

C[Q̂α]W [M̂nm]W
[see Eq. (II.8)], all three methods use mapping #2 for [Q̂m]W and [M̂nm]W but dif-
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fer in how they map the unity operator and in the mapping used for [Q̂α]W . The third method,

referred to as mLSC/φ1φ1, maps the unity operator onto 1 and uses mapping #1 for [Q̂α]W . The

fourth method, referred to as mLSC/φ1φ2, maps the unity operator onto 1 and uses mapping #2 for

[Q̂α]W . The fifth method, referred to as mLSC/φ2φ2, maps the unity operator onto 2~φ(q,p) [with

φ(q,p) given in Eq. (II.13)] and uses mapping #2 for [Q̂α]W .

Methods using σ(t) based on Eq. (II.5)

Method C[M̂αα]W [M̂kj ]W
(t)

[M̂αα]W mapping [M̂kj]W mapping

LSCI [M̂αα]
(II)
W (q,p) [M̂kj]

(I)
W (q,p)

LSCII [M̂αα]
(II)
W (q,p) [M̂kj]

(II)
W (q,p)

Methods using σ(t) based on Eq. (II.8)

Method C[Â]W [B̂]W
(t)

[Â]W [B̂]W

[1̂]W mapping [Q̂m]W mapping [Q̂α]W mapping [M̂kj]W mapping

mLSC/φ1φ1 1 [Q̂m]
(I)
W (q,p) [Q̂m]

(II)
W (q,p) [M̂kj]

(II)
W (q,p)

mLSC/φ1φ2 1 [Q̂m]
(II)
W (q,p) [Q̂m]

(II)
W (q,p) [M̂kj]

(II)
W (q,p)

mLSC/φ2φ2 2~φ(q,p) [Q̂m]
(II)
W (q,p) [Q̂m]

(II)
W (q,p) [M̂kj]

(II)
W (q,p)

Table II.1: Summary of the five LSC-based QC/MH methods used in this chapter. [M̂ ]IW is given in
Eq. (II.11), [M̂ ]IIW is given in Eq. (II.12), [Q̂]W is given in Eq. (II.14), φ(q,p) is given in Eq. (II.13),
and the general form of CAWBW (t) is given in Eq. (II.10).

In order to obtain the correlation functions in Eqs. (II.5) and (II.8), the nuclear and electronic

coordinates and momenta at time t, {Rt,Pt,qt,pt}, need to be obtained from the initial state

{R0,P0,q0,p0}. The initial nuclear coordinates and momenta are sampled from the Wigner

transform of the initial nuclear density matrix. The initial electronic coordinates and momenta

are sampled based on the phase-space density φ(q0,p0) (see Table II.1). {Rt,Pt,qt,pt} is ob-

tained from {R0,P0,q0,p0} via classical dynamics as dictated by the symmetrized mapping

Hamiltonian[36, 79]. More specifically, we treat q̂ and p̂ classically by applying Hamilton’s
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equation to derive the equation of motion:

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
. (II.15)

Detailed walkthrough of the application of LSC on the spin-boson model is presented in Sec. II.4.

II.3.1.1 Connection to Ehrenfest Mean Field Method

The mean-field (MF) method can also be cast as a QC/MH-type method[36] by expanding the

electronic wave function at time t in the electronic basis, {|j〉},

|ψ(t)〉 =
Ne∑
j=1

cj(t)|j〉 , (II.16)

and expressing the expansion coefficients in terms of Cartesian coordinates and momenta as fol-

lows

cj =
1√
2

(qj + ipj) . (II.17)

The corresponding electronic density matrix is given by

σ̂(t) = |ψ(t)〉〈ψ(t)| =
Ne∑
j,k=1

cj(t)c
∗
k(t)|j〉〈k| . (II.18)

It can then be shown that the MF method is equivalent to propagating {Rt,Pt,qt,pt} as classical

variables whose dynamics is governed by the QC Hamiltonian.[36] The initial nuclear coordinates

and momenta within the MH method are sampled in the same way as the LSC and SQC methods.

However, unlike the LSC and SQC methods, the initial values of the electronic coordinates and

momenta, {q0,p0} are uniquely determined by cj(0).
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II.3.2 Symmetrical Quasi-Classical (SQC) approach

The symmetrical quasiclassical (SQC) method can also be viewed as an alternative implementa-

tion of the LSC approximation.[44–49] This method is formulated in terms of action-angle (a-a)

variables rather than in terms of Cartesian coordinates and momenta. Each electronic state |j〉 is

associated with a classical harmonic mode whose state is described by an action variable, nj , and

an angle variable, uj .[36, 76] The QC mapping variables for the electronic density matrix elements

in terms of a-a variables are given by

[M̂mm]
(SQC)
W (n,u) = δ(nm − 1)

Ne∏
ξ=1
ξ 6=m

δ(nξ) ,

[M̂mn]
(SQC)
W (n,u) = ei(un−um) δ

(
nm −

1

2

)
δ

(
nn −

1

2

) Ne∏
ξ=1
ξ 6=m,n

δ(nξ) ,

(II.19)

where n = (n1, ..., nNe) and u = (u1, ..., uNe). The SQC method is based on replacing the delta

functions in Eq. (II.19) with pre-limit delta functions. We use two different choices that lead to

square sampling windows and triangular sampling windows.[48]

For the square sampling windows, δ(nj − a) is replaced with h(γ − |nj − a|)/2γ, where

h(x) =

 1 x ≥ 0

0 x < 0
(II.20)

is the Heaviside function. This gives mapping variables for two-state systems of the form

[M̂mm]
(SQC square)
W (n,u) = h(γ − |nm − 1|)h(γ − |nn|) ,

[M̂mn]
(SQC square)
W (n,u) = ei(un−um) h

(
γ −

∣∣∣∣nm − 1

2

∣∣∣∣)h(γ − ∣∣∣∣nn − 1

2

∣∣∣∣) ,
(II.21)

where γ is the window width parameter. The value of the window width parameter, γ, is typically

set to 0.366, as recommended in Ref. 45.
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For triangular sampling windows, the mapping variables for two-state systems are given by

[M̂mm]
(SQC triangle)
W (n,u) = 2h(nm + γ − 1)h(nn + γ)h(2− 2γ − nm − nn) ,

[M̂mn]
(SQC triangle)
W (n,u) = 2ei(un−um)h

(
nm + γ − 1

2

)
h

(
nn + γ − 1

2

)
h(2− 2γ − nm − nn) .

(II.22)

Previous studies[48] showed that using triangular sampling windows gives rise to more accurate

results and better convergence compared to using square sampling windows.

Within SQC, initial nuclear coordinates and momenta are sampled based on [ρ̂n(0)]W (R0,P0)

(the same as in LSC-based methods). In the case of a system with an initial electronic state σ̂(0) =

|α〉〈α|, for square windows, initial sampling of the action variable, nl, is done following uniform

distribution within the intervals  (1− γ, 1 + γ) l = α

(−γ, γ) l 6= α
. (II.23)

For triangle windows, nl is sampled following uniform distribution within the intervals

 (1− γ, 2− γ) l = α

(−γ, 1− γ) l 6= α
, (II.24)

subject to the constraint nm +nn ≤ 2− 2γ. For both square and triangle mapping variables, initial

sampling of the angle variables, {ul}, is done following a uniform distribution within the interval

(0, 2π).

The dynamics of the a-a variables within SQC are done in terms of Cartesian coordinates and

momenta and are identical to that in the LSC-based methods. The relationship between the a-a
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variables and the Cartesian coordinates and momenta are given by

ql =
√

2(nl + γ)~ cos(ul) ,

pl =
√

2(nl + γ)~ sin(ul) .

(II.25)

It should be noted that another implementation of the SQC method, which allows for a

trajectory-dependent definition of γ, was recently shown to be significantly more accurate when

applied to a one-dimensional photodissociation model.[89]

II.4 Spin-Boson Model: Application Walkthrough

In this section, we demonstrate how to apply QC/MH methods, more specifically LSCI, on the

two-level spin-boson model to simulate the time evolution of reduced electronic density matrix:

σ̂(t) = Trn {ρ(t)} . (II.26)

II.4.1 Two-Level Spin-Boson Model

The spin-boson model describes an open system with electronic states coupled to bath containing

harmonic oscillators. The Hamiltonian of a two-level spin-boson model is:

Ĥ = Ĥ0(R̂, P̂) |0〉〈0|+ Ĥ1(R̂, P̂) |1〉〈1|+ V01 |0〉〈1|+ V10 |1〉〈0| , (II.27)

with, Ĥ0(R̂, P̂) = ε+
Nn∑
k=1

P̂ 2
k

2
+

1

2
ω2
kR̂

2
k − ckR̂k

Ĥ1(R̂, P̂) = −ε+
Nn∑
k=1

P̂ 2
k

2
+

1

2
ω2
kR̂

2
k + ckR̂k

V01 = V10 = Γ,

Here we will use Nn to represent the number of nuclear DOF and Ne to represent the number of

electronic DOF. 2ε represents the equilibrium energy bias of the two states. Γ represents the elec-
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tronic coupling between the two states. ωk and ck represent nuclear mode frequency and coupling

coefficient, respectively, and are sampled from an Ohmic spectral density with exponential cutoff:

J(ω) =
π

2
~ξωe−ω/ωc . (II.28)

Here, ξ is the Kondo parameter, which roughly describes the friction, and ωc is the cutoff frequency.

To sample ωk and ck, we consider the folllowing relation when Nn →∞:

J(ω) =
π

2

Nn∑
k=1

c2
k

ωk
δ(ω − ωk) −−−−→

Nn→∞

π

2
~ξωe−ω/ωc , (II.29)

ck =
√
ξ~∆ωωk, ∆ω =

ωc
Nn

(1− e−
ωmax
ωc ), (II.30)

ωk = −ωc ln

(
1− k∆ω

ωc

)
. (II.31)

In this walkthrough, we will set up the initial state of the spin-boson to be:

ρ̂(0) = |0〉〈0| ⊗ ρ̂n(0), (II.32)

ρ̂n(0) =
e−β(ĤD+ĤA)/2

Trn
{
e−β(ĤD+ĤA)/2

} . (II.33)

II.4.2 Applying LSCI to Describe the Observable of Interest

In this demonstration, our observable of interest is the electronic reduced density matrix as in Eq.

II.2. Applying the LSC approximation Eq. II.10 to the correlation function Eq. II.4 results in the

following QC approximation:

σmn(t) =
1

(2π~)Ne+Nn

∫∫∫∫
dR(0)dP(0)dq(0)dp(0)[ρ̂n(0)]W (R(0),P(0))

×[|0〉〈0|]W (q(0),p(0))× [|n〉〈m|]W (q(0),p(0)). (II.34)
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Here, the Wigner transform of ρ̂n(0), [ρ̂n(0)]W (R(0),P(0)) is:

ρn,w(0) =
Nn∏
k=1

2tanh(β~ωk/2) exp

{
−2tanh(β~ωk/2)

~ωk

(
1

2
Pk(0)2 +

1

2
ω2
kRk(0)2

)}
, (II.35)

Applying LSCI as presented in Table II.1 and Eq. II.35 to Eq. II.34

σmn(t) =
1

(2π~)Ne+Nn

∫∫∫∫
dR(0)dP(0)dq(0)dp(0)

×
Nn∏
k=1

2tanh(β~ωk/2) exp

{
−2tanh(β~ωk/2)

~ωk

(
1

2
Pk(0)2 +

1

2
ω2
kRk(0)2

)}
×23

~
e−(q20(0)+q21(0)+p20(0)+p21(0))/~

(
q2

0(0) + p2
0(0)− ~

2

)
× 1

2~
(q2
m(t) + p2

m(t)− ~), if m = n (II.36)

σmn(t) =
1

(2π~)Ne+Nn

∫∫∫∫
dR(0)dP(0)dq(0)dp(0)

×
Nn∏
k=1

2tanh(β~ωk/2) exp

{
−2tanh(β~ωk/2)

~ωk

(
1

2
Pk(0)2 +

1

2
ω2
kRk(0)2

)}
×23

~
e−(q20(0)+q21(0)+p20(0)+p21(0))/~

(
q2

0(0) + p2
0(0)− ~

2

)
× 1

2~
(qn(t)− ipn(t))(qm(t) + ipm(t)). if m 6= n (II.37)

The above expression can be considered as the expectation value of a function

g(R(0),P(0),q(0),p(0);q(t),p(t)), with R(0),P(0),q(0),p(0) following a continuous

Gaussian distribution. The probability density function of Gaussian distribution is:

f(x) =
1

σ
√

2π
e−

1
2

(x−µ
σ

)2 , (II.38)

with σ as the standard deviation and µ as the mean. The expecation value of a function g(x) is:

〈g(x)〉 =

∫
dxg(x)f(x). (II.39)
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To calculate Eq. II.36 and II.37, we sample R(0),P(0),q(0),p(0) from the corresponding Gaus-

sian distribution, and then calculate the integral as the expectation value of the function of random

variables g(R(0),P(0),q(0),p(0);q(t),p(t)). In Table II.2, we show the corresponding mean,

standard deviation, and the function of random variable g(R(0),P(0),q(0),p(0),q(t),p(t)) used

to calculate the observables σmn(t).

Mean and Standard Distribution Used in Sampling

Rk Pk qi pi

Mean 0 0 0 0

Standard √
~

2ωktanh(β~ωk/2)

√
~ωk

2tanh(β~ωk/2)

√
~
2

√
~
2deviation

Corresponding Function of Random Variables g(R(0),P(0),q(0),p(0);q(t),p(t))

σmm(t) as in Eq. II.36 2
~

(
q2

0(0) + p2
0(0)− ~

2

)
1
2~(q2

m(t) + p2
m(t)− ~)

σmn(t) as in Eq. II.37 2
~

(
q2

0(0) + p2
0(0)− ~

2

)
1
2~(qn(t)− ipn(t))(qm(t) + ipm(t))

Table II.2: Summary of the coefficients of the Gaussian sampling and the corresponding function
of random variable for implementing Eq. II.36 and II.37.

II.4.3 Time Propagation Methods

We see that there are time dependent mapping variables p(t) and q(t) in the presented

g(R(0),P(0),q(0),p(0)). As described above, treating all variables classically, we use Hamil-

ton’s equation to derive the equation of motion(EOM) of variables R(t), P(t), q(t), p(t). In

practice, we symmetrize the Hamiltonian to improve numerical stability[36, 79]. By applying the

closure relation
Ne∑
i=1

|i〉〈i| = 1, we can rewrite the Hamiltonian as:

H(R(t),P(t),q(t),p(t)) = H̄(R(t),P(t)) +
Ne∑
j,k=1
k 6=j

Hjk(R(t),P(t))[ |j〉〈k|]W (q(t),p(t))

+
Ne∑
i=1

[
Hii(R(t),P(t))− H̄(R(t),P(t))

]
[ |i〉〈i|]W (q(t),p(t)) .

(II.40)
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with H̄(R(t),P(t)) = 1
Ne

Ne∑
i=1

Hii(R(t),P(t)). It should be noted that the symmetrized form of the

mapping Hamiltonian, Eq. (II.40), is obtained by rewriting Hii(R(t)) as H̄(R(t)) + [Hii(R(t))−

H̄(R(t))], where H̄(R(t)) = 1
Ne

∑Ne
i=1Hii(R(t)), and using the closure relation,

∑Ne
i=1 |i〉〈i| = 1̂.

This is a standardized procedure that was also used in many previous studies[36, 42, 43, 79, 85, 86].

For the two-level spin-boson model, after we map the electronic states as mapping #1 in Table II.1,

the Hamiltonian becomes:

H(t) = H0(R(t),P(t))
1

2~
(q0(t)2 + p0(t)2 − ~) +H1(R(t),P(t))

1

2~
(q1(t)2 + p1(t)2 − ~)

+V01
1

2~
(q0(t)− ip0(t))(q1(t) + ip1(t)) + V10

1

2~
(q1(t)− ip1(t))(q0(t) + ip0(t))

+H̄(R(t),P(t)) (II.41)

with, H0(R(t),P(t)) = ε−
Nn∑
k=1

ckRk(t), H1(R(t),P(t)) = −ε+
Nn∑
k=1

ckRk(t)

H̄(R(t),P(t)) =
Nn∑
k=1

P 2
k (t)

2
+

1

2
ω2
kR

2
k(t), V01 = V10 = Γ

Applying Hamilton’s equation, the resulting EOM are:

q̇0(t) =
1

~

(
ε−

Nn∑
k=1

ckRk(t)

)
p0(t) +

1

~
Γp1(t)

ṗ0(t) = −1

~

(
ε−

Nn∑
k=1

ckRk(t)

)
q0(t)− 1

~
Γq1(t)

q̇1(t) =
1

~

(
−ε+

Nn∑
k=1

ckRk(t)

)
p1(t) +

1

~
Γp0(t)

ṗ1(t) = −1

~

(
−ε+

Nn∑
k=1

ckRk(t)

)
q1(t)− 1

~
Γq0(t)

Ṙk(t) = Pk(t)

Ṗk(t) =
1

2~
ck
(
q0(t)2 + p0(t)2 − q1(t)2 − p1(t)2

)
− ω2

kRk(t) (II.42)

One viable scheme for numerical integration of Eq. II.42 is to propagate q and p using forward

Euler method, and propagate R and P using Verlet.
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The forward euler numerical integration for a differential equation dy(t)
dt

= f(t, y) is:

yn+1 = yn + ∆tf(t, yn) (II.43)

The Verlet integration method is:

x(t+ ∆t) = x(t) + v(t)∆t+
1

2
a(t)∆t2

a(t+ ∆t) = f(x(t+ ∆t))

v(t+ ∆t) = v(t) +
1

2
(a(t) + a(t+ ∆t))∆t, (II.44)

with a(t) = f(x(t)) being acceleration, x(t) being position and v(t) being velocity.

The propagation scheme to propagate from t to t+ ∆t is described as:

# propagate q(t), p(t) to q(t+ 0.5∆t), p(t+ 0.5∆t) using forward Euler

q0(t+ 0.5∆t) = q0(t) + 0.5∆t× q̇0(t)

p0(t+ 0.5∆t) = p0(t) + 0.5∆t× ṗ0(t)

q1(t+ 0.5∆t) = q1(t) + 0.5∆t× q̇1(t)

p1(t+ 0.5∆t) = p1(t) + 0.5∆t× ṗ1(t)

#propagate R(t), P(t) to R(t+ ∆t), P(t+ ∆t) using Verlet

Rk(t+ ∆t) = Rk(t) + Pk(t)×∆t+ 1
2
Ṗk(t)∆t

2

Calculate Ṗk(t+ ∆t) with the new Rk(t+ ∆t)

Pk(t+ ∆t) = Pk(t) + 1
2
(Ṗk(t) + Ṗk(t+ ∆t))∆t

# propagate q(t+ 0.5∆t), p(t+ 0.5∆t) to q(t+ ∆t), p(t+ ∆t) using forward Euler

q0(t+ ∆t) = q0(t+ 0.5∆t) + 0.5∆t× q̇0(t)

p0(t+ ∆t) = p0(t+ 0.5∆t) + 0.5∆t× ṗ0(t)

q1(t+ ∆t) = q1(t+ 0.5∆t) + 0.5∆t× q̇1(t)

p1(t+ ∆t) = p1(t+ 0.5∆t) + 0.5∆t× ṗ1(t)

An alternative way to propagate the electronic DOF is through explicit diagonalization. Similar
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to previously described in Sec. II.3.1.1, we define the corresponding electronic wave function at

time t as:

|ψ(t)〉 = c0(t) |0〉+ c1(t) |1〉 . (II.45)

In Meyer-Miller mapping, the coefficients can be mapped as:

ci(t) =
1√
2

(qk + ipk). (II.46)

In the Schrodinger picture, the coefficients at time t are:

ci(t+ ∆t) = e−iH∆t/~ci(t), (II.47)

with U(t) = e−iH∆t/~ as the propagator. Because H is a hermitian matrix, we can diagonalize H

to be QΛQ−1. With the eigendecomposition, we can express the propagator as:

U(t) = Qe−iΛ∆t/~Q−1. (II.48)

Since the exponential of a diagonal matrix is simply the matrix of the exponential of each diagonal

term, we can then easily calculate the propagator. Plugging in Eq. II.46, we can propagate qk(t)

and pk(t) with U(t):

qk(t+ ∆t) + ipk(t+ ∆t) = Qe−iΛ∆t/~Q−1(qk(t) + ipk(t)). (II.49)

Replacing forward Euler with this explicit diagonalization method can help improve accuracy and

numerical stability.

24



II.4.4 Pseudo Code

In summary, to apply LSCI on a two-level spin-boson model, we first use Gaussian sampling to

gather initial R, P, q and p, and then use explicit diagonalization or forward Euler to propagate

q, p and verlocity Verlet to propagate R, P. The observables of interest are calculated by taking

the average of the function of random variables. The pseudo-code of the algorithm is presented

below.

#system and bath parameters

initialize parameters: gamma, epsilon, c, omega, beta, DOFe, DOFn

#stepsize of propagation, final time, # of trajectories

initialize parameters: dt, t_final, Ntraj

#store the electronic density matrix

initialize sigma as nt*DOFe*DOFe 3D array

for i in range(Ntraj):

#initial sampling

Gaussian sampling DOFn sets of R(0), P(0) according to Table II.2

Gaussian sampling DOFe sets of q(0), p(0) according to Table II.2

#calculate the function of random variable for the observable at t=0

#defined in Table II.2

sigma[0] += g(R(0),P(0),q(0),p(0);q(0),p(0))/Ntraj

for n from 1 to t_final:

#propagate the system one step further

#with explicit diagonalization

propagate q(ndt), p(ndt) to q((n+0.5)dt), p((n+0.5)dt)

#with Verlet

propagate R(ndt), P(ndt) to R((n+1)dt), P((n+1)dt)

#with explicit diagonalization

propagate q((n+0.5)dt), p((n+0.5)dt) to q((n+1)dt), p((n+1)dt)

#calculate the function of random variable for the observable at time t
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sigma[t] += g(R(0),P(0),q(0),p(0);q((n+1)dt),p((n+1)dt))/Ntraj

# as defined in Table II.2

print out observable

II.5 Results for the Spin-Boson Model

In this section, we present results for the two-level spin-boson model described prior (with Hamil-

tonian defined as Eq. II.27) with the four sets of parameters presented in Table II.3. These four sets

of parameters represent both symmetric & asymmetric cases and also high and low temperature

cases.

Table II.3: Spin-boson Model and Simulation Parameters

Model Parameters Numerical Parameters

Model # ε Γ β ξ ωc ωmax Nn ∆t Ntraj

A 0.0 1.0 0.1 0.09 2.5 12.0 400 0.005 3× 106

B 0.0 1.0 5.0 0.09 2.5 12.0 400 0.005 3× 106

C 1.0 1.0 0.25 0.1 1.0 5.0 400 0.005 3× 106

D 1.0 1.0 5.0 0.1 2.0 10.0 400 0.005 3× 106

For spin-boson model, we are interested in the Pauli matrices σ̂x, σ̂y, and σ̂z. These are defined

as:

σ̂x =

0 1

1 0

, σ̂y =

0 −i

i 0

, σ̂z =

1 0

0 −1

. (II.50)

These matrices are electronic observables. For a electronic density operator σ̂, the expectation
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value of any electronic observable Â can be calculated with:

〈
Â
〉

= Tr{σ̂Â} (II.51)

Therefore, for the two-level spin-boson model, the expectation value of the Pauli matrices are

calculated as:

〈σ̂x〉 = σ01 + σ10, 〈σ̂y〉 = iσ01 − iσ10, 〈σ̂z〉 = σ00 − σ11. (II.52)

The simulated dynamics of 〈σ̂x〉, 〈σ̂y〉, 〈σ̂z〉 for the two-level spin-boson model is shown in Fig-

ure II.1. The quantum-mechanically exact results were calculated via the dissipation equation of

motion (DEOM) method of Yan et al[23]. A summary of the accuracy of the QC/MH methods is

shown in Table II.4.

Spin-boson A B C D

Model symmetric/high T symmetric/low T asymmetric/low T asymmetric/low T

QC/MH 〈σx〉 〈σy〉 〈σz〉 〈σx〉 〈σy〉 〈σz〉 〈σx〉 〈σy〉 〈σz〉 〈σx〉 〈σy〉 〈σz〉
LSCI ×

√ √
×

√ √
×

√
× ×

√
×

LSCII ×
√ √

×
√ √

×
√

× ×
√

×
MF ×

√ √
×

√ √
×

√
× × × ×

mLSC/φ1φ1
√ √ √

×
√ √ √ √ √

×
√ √

mLSC/φ1φ2
√ √ √

×
√ √ √ √ √

×
√ √

mLSC/φ2φ2
√ √ √

×
√ √ √ √ √ √ √ √

SQC ×
√ √

×
√ √ √ √ √

×
√ √

Table II.4: Summary of the accuracy of dynamics of the two-level spin-boson model via QC/MH
methods reported in Ref. 85.

√
indicates that the method is accurate and × indicates that the

method is inaccurate. The simulated dynamics with SQC can be found in Ref. [85].

We observed that overall LSCI, LSCII, and Ehrenfest methods are the least accurate methods.

Although these methods can provide well-enough description for 〈σ̂y(t)〉 for all four systems and

〈σ̂z(t)〉 for the high-temperature, symmetric model, this is not the case for 〈σ̂x(t)〉. The modified
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LSC methods: mLSC/φ1φ1, mLSC/φ1φ2, and mLSC/φ2φ2 provides the most accurate description.

It is worth mentioning that for model B, the symmetric low T case, mLSC/φ2φ2 is the best method

among all QC/MH methods in simulating the dynamics of 〈σ̂x(t)〉. As can be conclude from Eq.

II.52, by assessing the expectation value of these Pauli matrices, we are assessing the ability of

these methods to describe the overall density matrix, instead of only assessing the dynamics of the

populations. We also see that even if a method has the capability of describing population dynamics

well, it does not necessarily mean that the method can describe the dynamics of coherences well.

These results point to mLSC/φ1φ1, mLSC/φ1φ2, and mLSC/φ2φ2 as the methods of choice, since

they are more accurate and do not involve choices regarding window shape and width in SQC.

II.6 Concluding Remarks

In this chapter, we discussed various quasi-classical mapping Hamiltonian methods. These include

linearized semi-classical approximation; modified LSC, which preserves the trace of the electronic

density matrix for each trajectory; symmetrical quasi-classical approach, which was formulated

based on the action-angle variables. The SQC approach requires choosing the window shape and

size. In the LSC approach, which utilized two ways of mapping, one corresponds to the creation

and annihilation operators, and the other one corresponds to the singly excited harmonic oscillators.

Because the exact quantum dynamics is restricted to the singly-excited subspace of the oscillator

Hilbert space, if the electronic states are treated fully quantum-mechanically, the two mappings

would lead to the same results. The connection between LSC and MF was also discussed in this

chapter. In simple terms, MF can be done via LSC procedures with no sampling but a fixed value

for the initial auxiliary electronic q and p.

We then demonstrated the application of LSCI to describe the reduced density matrix of a two-

level spin-boson model. Detailed descriptions of the initial sampling process and the numerical

integration process were included. The forward Euler can be used as the most straightforward nu-

merical integration method. A combination of explicit diagonalization for electronic DOF and the
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Verlet method for nuclear DOF will allow more accurate numerical integration. A pseudo-code

for the implementation was also presented. Following this, we presented the resulting dynamics

of applying the QC/MH method to the two-level spin-boson model. We observed that, across the

board, mLSC/φ2φ2 provides the most accurate descriptions of the dynamics. The results empha-

sized the importance of using the overall density matrix to evaluate method accuracy, due to the

inconsistency in the performance of QC/MH methods for different electronic observables.

As we have seen above, most quasi-classical mapping Hamiltonian methods failed to provide

accurate descriptions for 〈σ̂x〉, and LSCI, LSCII, and MF cannot provide good descriptions for

〈σ̂z〉. This prompt for modification of these methods in an attempt to improve accuracy. One

study by Gao and Geva focuses on modifying the constant terms in the mapping formula and

has shown accurate simulation for various charge and energy transfer systems.[90] Using QC/MH

methods to generate projection-free inputs for the generalized quantum master equation can be a

good alternative route.[67–70, 91, 92] We will explore this route in Chapter III
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Figure II.1: Dynamics of two-level spin-boson model simulated with LSC, modified LSC, and
MF. Model parameters are set according to Table II.3. The DEOM results, represented by the
black line, give the exact dynamics. The expectation value of σ̂x, σ̂y and σ̂z is described in Eq.
II.52. The simulated dynamics with SQC for the same four types of two-level spin-boson model
can be found in Ref. [85].
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CHAPTER III

The Modified Generalized Quantum Master

Equation Approach

III.1 Introduction

The Master equation typically refers to first-order differential equations describing the time evo-

lution. The Redfield equation is a Markovian master equation that describes the time evolution of

the reduced density matrix.[62] The Redfield equation is a second-order perturbation treatment in

the system-bath coupling. Therefore, it is best for models with weak system-bath coupling. The

Redfield theory is closely connected to the Lindblad master equation, and both methods assume

Markovian. Markovian approximation ignores the effect of memory, meaning that the future of the

system of interest is not affected by the past.

The Nakajima-Zwanzig generalized quantum master equation (NZ-GQME) arises from the

quantum Liouville equation. The benefit of NZ-GQME is that it accounts for the non-Markovian

effects. The quantum Liouvile equation describes the dynamics of the overall density matrix. The

quantum Liouville equation again scales exponentially with the dimension of the systems. By pro-

jecting the quantum Liouville equation, the NZ-GQME reduces the dimensionality and thereby

reduces the computational costs. The NZ-GQME described the time evolution of the projected

density matrix, and the effect of the rest of the system on the projected density matrix is incorpo-

rated in the memory kernels.

A formally exact formulation for generating the memory kernels with only projection-free in-
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puts was proposed by Shi and Geva.[63] The accuracy of this approach is demonstrated with

quantum-mechanically exact inputs and semi-classical inputs for the spin-boson model.[63, 64]

The Zhang-Ka-Geva approach was introduced to account for arbitrary initial state and system-bath

coupling. This new approach can accommodate a wide range of projection operators.[65] The ca-

pability of Shi-Geva GQME was further demonstrated with projection-free inputs generated using

surface hopping[66] and Ehrenfest mean field methods[67].

The Shi-Geva approach requires expressing the Hamiltonian in a system-bath form. The modi-

fied approach to GQME that was proposed by Mulvihill et al eliminates the restriction on the form

of Hamiltonian, making the GQME more generally applicable.[68] The reduced-dimensionality

GQME was proposed to furtherly reduce the computational costs.[70]

In this chapter, we will focus on the general form of the modified GQME approach that accounts

for a general choice of projection operators. More particularly, we will focus on evaluating the

ability of GQME in describing the dynamics of the coherences of GQME. The rest of this chapter

is organized as follows. We first discuss some preliminary considerations in Sec. III.2. Then the

modified GQME approach with a general choice of projection operator in the Liouville space is

outlined in Sec. III.3. In Sec. III.4, we use the two-level spin-boson model to demonstrate the

application of GQME using QC/MH-generated projection inputs. In the next section, we present

the simulation results of the coherence dynamics of the two-level spin-boson model, compared to

the dynamics generated with the dissipation equation of motion (DEOM). Concluding remarks are

given in section III.6.

III.2 Preliminary Considerations

In what follows, we focus on simulating the dynamics of electronic coherences in molecular sys-

tems whose overall Hamiltonian has the following commonly encountered form:

Ĥ =
Ne∑
j=1

Ĥj|j〉〈j|+
Ne∑
j,k=1
k 6=j

V̂jk|j〉〈k|. (III.1)
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Here, Ĥj = P̂2/2 + Vj

(
R̂
)

is the nuclear Hamiltonian when the system is in the diabatic elec-

tronic state |j〉, with the index j running over the Ne electronic states;
{
V̂jk|j 6= k

}
are cou-

pling terms between electronic states (which can be either nuclear operators or constants); and

R̂ =
(
R̂1, ..., R̂Nn

)
and P̂ =

(
P̂1, ..., P̂Nn

)
are the mass-weighted position and momentum oper-

ators of the Nn � 1 nuclear DOF. Throughout this chapter, boldfaced variables, e.g., A, indicate

vector quantities; a hat over a variable, e.g., B̂, indicates an operator quantity; a double braket, e.g.

|ρ〉〉 and 〈〈ρ|, indicate ket and bra in Liouville space, respectively; and calligraphic font, e.g., L,

indicates a Liouville space superoperator.

We also assume that the initial state of the overall system is of the following single product

form:

|ρ(0)〉〉 = |ρn(0)〉〉 ⊗ |σ(0)〉〉 . (III.2)

Here, |ρ(0)〉〉 is the Liouville space ket that corresponds to the overall system initial density oper-

ator, ρ̂(0); |ρn(0)〉〉 is the Liouville space ket that corresponds to the reduced density operator that

describes the initial state of the nuclear DOF, ρ̂n(0) = Tre{ρ̂(0)}; |σ(0)〉〉 is the Liouville space

ket that corresponds to the reduced density operator that describes the initial state of the electronic

DOF, σ̂(0) = Trn{ρ̂(0)} [Tre{·} and Trn{·} stand for partially tracing over the electronic Hilbert

space and the nuclear Hilbert space, respectively].

Given the overall system Hamiltonian and initial state in Eqs. (III.1) and (III.2), respectively,

the overall system state at a later time t is given by:

|ρ(t)〉〉 = e−iLt/~ |ρn(0)〉〉 ⊗ |σ(0)〉〉 . (III.3)

Here, L(·) = [Ĥ, ·] is the Liouvillian superoperator, with Ĥ the overall Hamiltonian given in Eq.

(III.1). The electronic state at time t is given by

|σ(t)〉〉 =
Ne∑
j,k=1

σjk(t) |jk〉〉 , (III.4)
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where |σ(t)〉〉 and |jk〉〉 are the Liouville space kets that correspond to the reduced electronic

density operator σ̂(t) = Trn{ρ̂(t)} and the electronic operator |j〉〈k|, respectively. The electronic

populations and coherences, whose time evolution underlies decoherence as well as energy, charge,

and coherence transfer dynamics, are given by {σjj(t) = 〈j|σ̂(t)|j〉 ≡ 〈〈jj|σ(t)〉〉} and {σjk(t) =

〈j|σ̂(t)|k〉 = 〈〈kj|σ(t)〉〉} with j 6= k, respectively.

In previous studies, the main focus was simulating the dynamics of the electronic populations

within a GQME approach.[68–70] In this chapter, we focus on simulating the dynamics of the

electronic coherences via the GQME approach.

It should be noted that the distinction between electronic populations, which correspond to

the diagonal elements of the electronic reduced density matrix, and the electronic coherences,

which correspond to the off-diagonal elements of the electronic reduced density matrix, is basis-

dependent. To see this, note that the real and imaginary parts of the coherence {σjk(t)} in terms of

the diabatic basis {|j〉} can be written in terms of the expectation values of the following hermitian

operators:

X̂jk =
1

2
(|j〉〈k|+ |k〉〈j|) ≡

Ne∑
l=1

λl|λl〉〈λl| (III.5)

Ŷjk =
1

2i
(|j〉〈k| − |k〉〈j|) ≡

Ne∑
l=1

κl|κl〉〈κl| , (III.6)

where {λl} and {|λl〉} are the eigenvalues and eigenfunctions of X̂jk, respectively, such that

X̂jk|λl〉 = λl|λl〉, and {κl} and {|κl〉} are the eigenvalues and eigenfunctions of Ŷjk, respectively,

such that Ŷjk|κl〉 = κl|κl〉. Thus, the real and imaginary parts of the off-diagonal matrix element

σjk(t) in terms of the {|j〉} basis can be written in terms of diagonal matrix elements in terms of

the {|λl〉} and {|κl〉} bases:

Re[σjk(t)] = Tre

[
σ̂(t)X̂jk

]
≡

Ne∑
l=1

λl〈λl|σ̂(t)|λl〉 (III.7)

Im[σjk(t)] = Tre

[
σ̂(t)Ŷjk

]
≡

Ne∑
l=1

κl〈κl|σ̂(t)|κl〉 . (III.8)
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This implies that there are two distinctly different ways of calculating {σjk(t)|j 6= k} via the

GQME approach from either the off-diagonal matrix elements in terms of the {|j〉} basis or the

diagonal matrix elements in terms of the {|λl〉} and {|κl〉} bases. One of the goals of this chapter

is to compare and contrast those two approaches.

III.3 The Generalized Quantum Master Equation

The GQME formalism provides a general framework for deriving exact equations of motion for

observables of interest while keeping the information on the projected-out DOF to the minimum

necessary to account for their effect on the observables of interest. Within this formalism, the

dynamics of the projected state, P |ρ(t)〉〉, for any projection superoperator P that satisfies idem-

potence (P2 = P), is given by the Nakajima-Zwanzig equation:[1, 93–95]

d

dt
P ρ̂(t) = − i

~
PLP ρ̂(t)− i

~
PLe−iQLt/~Qρ̂(0)− 1

~2

∫ t

0

dτPLe−iQLτ/~QLP ρ̂(t− τ),

(III.9)

where P is a projection superoperator, Q = I − P is the complementary superoperator (where I

is the identity superoperator), and L = [Ĥ, · ] is the overall system Liouvillian with Ĥ the overall

system Hamiltonian. Previous work focused on the Hilbert space and introduced the reduced-

dimensionality GQME approach with a projection onto any combination of electronic states.[70]

Here, we present the reduced-dimensionality GQME in Liouville space. The motivation for this

choice arises from the existence of the superoperators in Hilbert space. Moving into Liouville

space will make the superoperators operators, i.e. matrices.

In Hilbert space, the projection superoperator is defined as: [70]

P{ · } =
∑
a,b

Tr
{

(|a〉〈b| ⊗ In)† ·
}
|a〉〈b| ⊗ ρ̂n(0), (III.10)

where |a〉 〈b| are selected projections of electronic states, In is the identity operator in nuclear
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space, and ρ̂n(0) is the initial nuclear density matrix, given by ρ̂n(0) = Tre{ρ̂(0)} with Tre the

trace over the electronic degrees of freedom (DOF) and ρ̂(0) the overall initial density matrix. Note

that P is idempotent when Trn
{

ˆρn(0)
}

= 1.

In Liouville space, the projector is written as:

P | · 〉〉 =
∑
ab∈P

|ab⊗ ρn(0)〉〉 〈〈ab⊗ In| · 〉〉. (III.11)

From here on we use the notation ab ∈ P to represent electronic state |ab〉〉 in the projection

subspace, and αβ ∈ Q to represent electronic state |αβ〉〉 in the complement subspace. Similarly,

P is a valid projection operator when Trn {ρn(0)} = 〈〈I†n|ρn(0)〉〉 = 〈〈In|ρn(0)〉〉 = 1. Denoting

the total electronic DOF as Ne in the Hilbert space. Then the electronic DOF in Liouville space

is then N2
e , the projected electronic DOF as N2,P

e and the electronic DOF that is projected out as

N2,Q
e = N2

e − N2,P
e . Note here that if we express the full-dimensionality projector used in the

modified GQME in Ref. 68 as:

Pfull | · 〉〉 = Trn { · } ⊗ ρ̂n =
Ne∑

m=1,n=1

|mn⊗ ρn(0)〉〉 〈〈mn⊗ In| · 〉〉. (III.12)

We can then express the projector in Eq. III.11 as:

P | · 〉〉 =
∑
ab∈P

|ab〉〉 〈〈ab|
Ne∑

m=1,n=1

|mn⊗ ρn(0)〉〉 〈〈mn⊗ In| · 〉〉 = PePfull, (III.13)

with Pe defined as
∑

ab∈P |ab〉〉 〈〈ab|. Pe is a projector following idempotent. The result of the

projection Pe acting on a vector in the same electronic Liouville space is simply a N2,P
e dimension

sub-vector matching the selected |ab〉〉 in Eq. III.11. Similarly, for a matrix Â in the same electronic

Liouville space, PeÂPe results in aN2,P
e ×N2,P

e dimension sub-matrix matching the selected |ab〉〉.

Assuming the initial state of the overall system is a separable state:

|ρ(0)〉〉 = |ρn(0)〉〉 ⊗ |σ(0)〉〉 . (III.14)
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Recall from the previous study on the modified GQME in Ref. 68:

PfullL = Trn {Lρ̂n(0)} ≡ 〈L〉0n . (III.15)

With the projection superoperator expressed as Eq. (III.13) and recalling Pe, P , Q are all idempo-

tent, the GQME in Liouville space can be rewritten as:

d

dt
|σP(t)〉〉 ⊗ |ρn(0)〉〉 = − i

~
〈LP〉0n |σP(t)〉〉 ⊗ |ρn(0)〉〉 − IPQ(t) |σQ(0)〉〉 ⊗ |ρn(0)〉〉

−
∫ t

0

dτKP(τ) |σP(t− τ)〉〉 ⊗ |ρn(0)〉〉 , (III.16)

d

dt
|σP(t)〉〉 = − i

~
〈LP〉0n |σP(t)〉〉 − IPQ(t) |σQ(0)〉〉 −

∫ t

0

dτKP(τ) |σP(t− τ)〉〉 ,

(III.17)

with |σP(t)〉〉 := Pe |σ(t)〉〉 , (III.18)

〈LP〉0n = Pe 〈L〉0n Pe, (III.19)

IPQ(t) :=
i

~
PLe−iQLt/~Q, (III.20)

|σQ(0)〉〉 := |σ(0)〉〉 − Pe |σ(0)〉〉 , (III.21)

KP(τ) :=
1

~2
PLe−iQLτ/~QLP . (III.22)

This is derived by plugging in Eq. (III.13) and ultilizing the fact that:

P |ρ(t)〉〉 = PePfull |ρ(t)〉〉 = Pe |σ(t)〉〉 ⊗ |ρn(0)〉〉 , (III.23)

PLP = PePfullLPfullPe = Pe 〈L〉0n Pe, (III.24)

Q |ρ(0)〉〉 = (Ie ⊗ In − PePfull) |σ(0)〉〉 ⊗ |ρn(0)〉〉 = (|σ(0)〉〉 − Pe |σ(0)〉〉)⊗ |ρn(0)〉〉 .

(III.25)

Ie represent the basis of electronic DOF, and In is the basis of nuclear DOF.

Following our prior discussion regarding the projection operator Pe, we see that |σP(t)〉〉 is

simply aN2,P
e dimension sub-vector of |σ(t)〉〉. |σQ(0)〉〉 is aN2,Q

e dimension sub-vector of |σ(t)〉〉
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corresponding to αβ that is projected out. 〈LP〉0n is a N2,P
e ×N2,P

e dimension sub-matrix of 〈L〉0n.

To calculate the memory kernel KP(τ) and inhomogeneous term IPQ(t), we ultilize the dyson

identity:

e−
i
~QLt = e−

i
~Lt +

i

~

t∫
0

dτe−
i
~L(t−τ)PLe−

i
~QLτ . (III.26)

The memory kernel KP(τ) is then:

KP(τ) = iḞP(τ)− 1

~
FP(τ) 〈LP〉0n + i

∫ τ

0

dτ ′FP(τ − τ ′)KP(τ ′), (III.27)

with FP(τ) = PeF(τ)Pe, (III.28)

ḞP(τ) = PeḞ(τ)Pe, (III.29)

F(τ) =
1

~
PfullLe−

i
~LτPfull, (III.30)

Ḟ(τ) = − 1

~2
PfullLe−

i
~LτLPfull. (III.31)

Ḟ and F are projection-free inputs. In Hilbert space, as previously discussed in Ref. 68:

F(τ) =
1

~
Trn
{
Le−

i
~Lτ ρ̂n(0)

}
, (III.32)

Ḟ(τ) = − 1

~2
Trn
{
Le−

i
~LτLρ̂n(0)

}
. (III.33)

Following our prior discussion regarding the projection operator Pe, FP(τ) and ḞP(τ) are

N2,P
e ×N2,P

e dimension sub-matrix of F(τ) and Ḟ(τ).

The inhomogeneous term IPQ(t) is then:

IPQ(t) = iFPQ(t) + i

∫ t

0

dτFP(t− τ)IPQ(τ), (III.34)

with FPQ(t) = PeF(τ)(Ie − Pe). (III.35)

Here, FPQ(t) is a N2,P
e ×N2,Q

e dimension sub-matrix of F(τ) and Ḟ(τ).
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III.3.1 Full-Dimensionality GQME with Condon Approximation

Here, we briefly present the full-dimensionality GQME with Condon approximation as proposed

in Ref. 68. For systems satisfying the Condon approximation, the memory kernel Eq. III.22 can

be furtherly simplified. In Hilbert space, the kernel of the full-dimensionality GQME with Condon

approximation is:

K(τ) =
1

~2
Trn
{
Lzeroe

−iQLzeroτ/~QLzeroρ̂n(0)
}
, (III.36)

with Lzero(·) =
[∑Ne

i=1 Ĥi |i〉〈i| , ·
]

The corresponding Volterra equation is then:

K(τ) = F1(τ)− 1

~
F2(τ) 〈Lzero〉0n + i

∫ τ

0

dτ ′F2(τ − τ ′)K(τ ′), (III.37)

with, F1(τ) =
1

~2
Trn
{
Lzeroe

− i
~LτLzeroρ̂n(0)

}
, (III.38)

F2(τ) =
1

~
Trn
{
Lzeroe

− i
~Lτ ρ̂n(0)

}
. (III.39)

F1 and F2 are projection-free inputs. Detailed derivation can be found in Ref. 68.

III.3.2 Reduced-Dimensionality GQME in σx Representation for the Spin-

Boson Model

As is discussed in Sec. III.2, for any electronic observable, we can transform GQME into the

corresponding eigenbasis. The definition of populations, i.e. the diagonal terms in the reduced

density operator, and the coherences, i.e. the off-diagonal terms in the reduced density operator

are basis-dependent. In this subsection, we explore this option with the electronic observables σ̂x

for the spin-boson model:

σ̂x =

 0 1

1 0

 . (III.40)
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This choice is prompted by the accuracy of QC/MH methods. As we observed in Table II.1, for the

spin-boson model, 〈σ̂x〉 is the hardest to evaluate among all Pauli matrices. σ̂x has two eigenvalues:

+1 and −1. The corresponding eigenvectors are:

v+
x =

1√
2

 1

1

 , v−x =
1√
2

 1

−1

 . (III.41)

The corresponding basis vectors in the tensor-product space can be arrived at by calculating outer

products. Therefore, in Liouville space, with basis {|++〉〉 , |+−〉〉 , |−+〉〉 , |−−〉〉} the transform

matrices are:

Uσx←σz =
1

2



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


. (III.42)

We can therefore transform any superoperator Aσz or vector vσz in Liouville space by:

Aσx = Uσx←σzAσzU
†
σx←σz , vσx = Uσx←σzvσz . (III.43)

To implement GQME in the σ̂x representation, we utilize the above equations to transform the F ,

Ḟ , 〈L〉0n, |σ〉〉 calculated in the σ̂z representation into the σ̂x representation.

We note that because the transformation is unitary, the inner product is preserved. Therefore

the transformation itself does not introduce any changes in the resulting simulation of the reduced

electronic density matrix. However, for the reduced-dimensionality GQME, transforming into the

observable eigenspace allows us to define different projections Pe. With reduced-dimensionality

GQME, the transformation of representation might introduce change to the resulting simulation of

the reduced electronic density matrix.
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III.4 Spin-Boson Model: Application Walkthrough

In this section, we will use LSCI as the input method to demonstrate how to apply GQME to the

two-level spin-boson model described in Sec. II.4.1. The application of GQME can be described

as three steps: 1) generating the projection-free inputs, 2) calculating the kernel and the inhomo-

geneous term, and 3) numerical integration of the GQME.

First we evaluate the projection-free inputs F , Ḟ ,F1 and F2 with the QC/MH approach. Note

here that the elements of the projection-free inputs defined in Eq. (III.30), Eq. (III.31), Eq. (III.38)

and Eq. (III.39) can be expressed as the following.

Fabcd(τ) =
1

~
Trn
{
|b〉〈a| Le−

i
~Lτ ρ̂n(0) |c〉〈d|

}
=

1

~
Trn
{
ρ̂n(0) |c〉〈d| e

i
~ Ĥτ |b〉〈a| Le−

i
~ Ĥτ
}

=
1

~
Trn
{
ρ̂n(0) |c〉〈d| e

i
~ Ĥτ

[
|b〉〈a| , Ĥ

]
e−

i
~ Ĥτ
}
. (III.44)

Ḟabcd(τ) = − 1

~2
Trn
{
|b〉〈a| Le−

i
~LτLρ̂n(0) |c〉〈d|

}
= − 1

~2
Trn
{
Lρ̂n(0) |c〉〈d| e

i
~ Ĥτ |b〉〈a| Le−

i
~ Ĥ
}

= − 1

~2
Trn
{[
Ĥ, ρ̂n(0) |c〉〈d|

]
e
i
~ Ĥτ

[
|b〉〈a| , Ĥ

]
e−

i
~ Ĥ
}
. (III.45)

F2,abcd(τ) =
1

~
Trn
{
|b〉〈a| Lzeroe

− i
~Lτ ρ̂n(0) |c〉〈d|

}
=

1

~
Trn
{
ρ̂n(0) |c〉〈d| e

i
~ Ĥτ |b〉〈a| Lzeroe

− i
~ Ĥτ
}

=
1

~
Trn
{
ρ̂n(0) |c〉〈d| e

i
~ Ĥτ

[
|b〉〈a| , Ĥzero

]
e−

i
~ Ĥτ
}
. (III.46)

F1,abcd(τ) =
1

~2
Trn
{
|b〉〈a| Lzeroe

− i
~LτLzeroρ̂n(0) |c〉〈d|

}
=

1

~2
Trn
{
Lzeroρ̂n(0) |c〉〈d| e

i
~ Ĥτ |b〉〈a| Lzeroe

− i
~ Ĥτ
}
.

=
1

~2
Trn
{[
Ĥzero, ρ̂n(0) |c〉〈d|

]
e
i
~ Ĥτ

[
|b〉〈a| , Ĥzero

]
e−

i
~ Ĥτ
}
. (III.47)
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Appling the LSC approximation to the correlation functions results in:

Trn
{
Â |c〉〈d| e

i
~ Ĥτ |b〉〈a| B̂e−

i
~ Ĥτ
}

≈
(

1

2π~

)Ne+Nn ∫
dR0

∫
dP0

∫
dq0

∫
dp0[Âρ̂n(0)]W (R0,P0)BW (Rτ ,Pτ )

×Tr{e
i
~ Ĥτ |b〉〈a| e−

i
~ Ĥτ |c〉〈d|}. (III.48)

where Â and B̂ are all nuclear operators and Tr{e i~ Ĥτ |b〉〈a| e− i
~ Ĥ |c〉〈d|} is the ab-th element of

the electronic density matrix with initial electronic state set as |c〉〈d| . Here, the wigner transform

of Ĥiρ̂n(0) can be derived with the following equations:

[
Ĥiρ̂n(0)

]
W

(R0,P0) = Hi,W (R0,P0)ei~T̂ /2ρn,W (R0,P0),

with T̂ =
∑
µ

[(←−−
∂

∂Rµ

)(−−→
∂

∂Pµ

)
−

(←−−
∂

∂Pµ

)(−−→
∂

∂Rµ

)]
. (III.49)

Once we have calculated the projection-free inputs, the next step is to calculate the kernel and

the inhomogeneous term in Eq. (III.27) and Eq. (III.34). The kernel and the inhomogeneous terms

can be calculated through an iterative algorithm. We first perform the numerical integration based

on the trapezoidal rule and calculate the kernel and inhomogeneous term from t = 0 to t = t.

Then we repeat this numerical integration with the newly generated kernel and inhomogeneous

term until the deviation between two iterations falls in our pre-determined threshold. The typical

choice of threshold is 10−10 to 10−13. More detail on this algorithm can be found in Ref. 68.

Once we complete the calculation on the kernel and the inhomogeneous, we can then use them

to integrate GQME to acquire the dynamics of the electronic density matrix as described in Eq.

(III.17). There are multiple ways to perform numerical integration. We will lay out the general

steps in the fourth-order Runge–Kutta methods here. For a differential equation in the form of
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dy
dt

= f(y, t) with stepsize set as h, propagting yn to yn+1 is done by:

yn+1 = yn +
1

6
h(k1 + 2k2 + 2k3 + k4), (III.50)

k1 = f(yn, tn), (III.51)

k2 = f(yn +
1

2
hk1, tn +

1

2
h), (III.52)

k3 = f(yn +
1

2
hk2, tn +

1

2
h), (III.53)

k4 = f(yn + hk3, tn + h). (III.54)

III.5 Results with Spin-Boson Model

The simulation results with GQME on the populations of the spin-boson model are extensively

discussed in Ref. 68–70, 91, 92. Therefore, In this section, we will show tests of the capabil-

ity of GQME, both the full-dimensionality and the reduced-dimensionality versions, in describing

electronic coherences, demonstrated with the two-level spin-boson model. Here, we will use the

above-mentioned QC/MH methods to generate input for different versions of GQME. Detailed

evaluations of the QC/MH methods applying to multiple models, including the spin-boson model,

have been presented in Ref. 85. The summary of QC/MH methods results of simulating coher-

ences can be found in Table II.4. It has been shown in the previous section that most QC/MH

methods have limited ability to provide precise descriptions of electronic coherences. Building

off of these previous findings, we adopt the same two-level spin-boson model as in Sec. II.4.1

and same parameters as summarized in Table II.3. The results reported were obtained with a time

step of ∆t = 0.005 and by averaging over Ntraj = 3 × 106 trajectories for each initial state and

model. The quantum-mechanically exact results were calculated via the dissipation equation of

motion (DEOM) method.[23] The convergence of GQME with memory time was determined with

the algorithm described in Ref. 70 with the threshold set as 5× 10−3.
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III.5.1 Results with the Full-Dimensionality GQME

The simulation results for the spin-boson model with full-dimensionality GQME are shown in

Fig. III.1. A summary of the figure is presented in Table III.1. Note that, as discussed in Ref. 68,

because the two-level spin-boson model follows the Condon approximation, we apply the Condon

version of the GQME here. The results obtained using the full-dimensionality GQME with the non-

Condon method and the reduced-dimensionality GQME will be presented in the next subsection

Spin-boson A B C D

Model symmetric/high T symmetric/low T asymmetric/high T asymmetric/low T

Input Methods 〈σ̂x〉 〈σ̂y〉 〈σ̂x〉 〈σ̂y〉 〈σ̂x〉 〈σ̂y〉 〈σ̂x〉 〈σ̂y〉
LSCI

√
–

√ √ √
–

√ √

LSCII
√

–
√ √ √

–
√

–

MF
√

–
√

–
√

–
√ √

mLSC/φ1φ1 × –
√ √

– –
√ √

mLSC/φ1φ2 × – ×
√

– – × –

mLSC/φ2φ2
√

– –
√

– – – –

Table III.1: Summary of full-dimensionality Condon GQME results.
√

indicates that full-
dimensionality GQME with QC/MH-generated input provides improved simulation results com-
pared to QC/MH methods themselves. × indicates that full-dimensionality GQME with QC/MH-
generated input provides worse simulation results compared to QC/MH methods themselves. –
indicates no significant improvement of simulation by applying full-dimensionality GQME.

It is worth noting here that we are mainly focusing on the observable σ̂x(t) because most of

the input methods themselves are capable to generate sufficiently accurate dynamics of σ̂y(t). We

see that using MF, LSCI, LSCII, and mLSC/φ2φ2 as input methods for the full-dimensionality

GQME can lead to accurate simulation results for coherences, even in the cases where the input

methods themselves cannot generate accurate results. We also see that full-dimensionality GQME

with MF, LSCI, LSCII, and mLSC/φ2φ2 as inputs generate more accurate results even when those

input methods themselves are generating accurate enough simulations. For using mLSC/φ1φ1 and

mLSC/φ1φ2 as input methods, full-dimensionality GQME seems to either provide equivalently
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non-accurate results or slightly worse results.

III.5.2 Results with Reduced-Dimensionality GQMEs in the σ̂z representa-

tion

Here we present the PFIs F(τ) and Ḟ(τ) for model D in Figs. III.2 and III.3, respectively, gen-

erated with LSCII. As illustrated in Eqs. (III.30) and (III.31), for different choices of projection

operators, we simply apply the corresponding sub-matrix of the PFIs. Therefore, this set of PFIs

is used consistently across different versions of projection. Here, model D is the same as model

1 in Ref. 70. We note that the choice of projection operator does not affect the PFIs F(τ) and

Ḟ(τ). Therefore what we present here should be the same as those presented in Ref. 70, and this

is confirmed by comparison.

Our choice of projection operators are:

1. One coherence reduced-dimensionality GQME

P | · 〉〉 =
∑

ab∈{01}

|ab⊗ ρn(0)〉〉 〈〈ab⊗ In| · 〉〉. (III.55)

2. One coherence + one population reduced-dimensionality GQME

P | · 〉〉 =
∑

ab∈{00,01}

|ab⊗ ρn(0)〉〉 〈〈ab⊗ In| · 〉〉. (III.56)

3. One coherence + full population reduced-dimensionality GQME

P | · 〉〉 =
∑

ab∈{00,01,11}

|ab⊗ ρn(0)〉〉 〈〈ab⊗ In| · 〉〉. (III.57)

The rationale behind these choices is based on the observable of interest here. Since we are

evaluating the capability of the GQMEs to describe coherence dynamics, making projections onto

subspaces that contain one or more coherences are natural choices.

45



In Figs. III.4 and III.5, we show the memory kernel of different reduced-dimensionality GQMEs

for model D, generated using LSCII as the input method. Here, we note that because of the

difference in the dimensionality of different choices of projection operators, the dimensionality of

kernel elements varies.

Here, we note that since we chose the initial state to be ρ̂n(0)⊗|0〉〈0|, following Eq. (III.17), we

see that the only projection with a non-vanishing IPQ(t) |σQ(0)〉〉 is the one coherence projection

shown in Eq. (III.55). Therefore, in Fig. III.6, we present the inhomogenous term I(t) for model D,

with one coherence reduced-dimensionality GQME, generated using LSCII as the input method.

The simulation results for 〈σ̂x(t)〉 and 〈σ̂y(t)〉 with reduced-dimensionality GQME is shown in

Fig. III.7 and Fig. III.8, and a summary of the figure is presented in Table III.2.

We observe that although most input methods can simulate 〈σ̂y(t)〉 quite accurately, using

reduced-dimensionality GQME can still improve the result. For 〈σ̂x(t)〉, we observed reduced-

dimensionality GQME with projection onto subspace containing only one coherence state or only

one coherence state and one population state do not provide good improvement compared to the

input methods. But projecting onto a subspace of one coherence state and all the population states

can provide good improvement and even accurate results. This might stem from the discovery

made in Ref. 70 that a trace equal to 1 is only preserved when all population elements are included

in the projection.

III.5.3 Results with Reduced-Dimensionality GQME in the σ̂x representa-

tion

As we discussed in Sec. III.3.2, we transformed the PFIsF(τ) and Ḟ(τ) acquired in the above sec-

tion to the σ̂x representation, then perform the reduced-dimensionality GQME. In the eigenspace

of σ̂x, the observable σ̂x is given by:

σ++ − σ−− (III.58)
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Spin-boson Selection of ab A: high T B: low T C: high T D: low T

Model in P presented symmetric symmetric asymmetric asymmetric

Input Methods as in Eq. III.11 〈σ̂x〉 〈σ̂y〉 〈σ̂x〉 〈σ̂y〉 〈σ̂x〉 〈σ̂y〉 〈σ̂x〉 〈σ̂y〉

LSCI

{01}
√

– × / – – – /

{00, 01}
√

– / / / – / /

{00, 01, 11}
√

– – /
√

–
√ √

LSCII

{01} – – – – – – – –

{00, 01} / – / – / – / –

{00, 01, 11}
√

–
√

–
√

–
√

–

mLSC/φ1φ1

{01} – – / / – – – /

{00, 01} / – / / – – × /

{00, 01, 11}
√

– /
√

– –
√

/

Table III.2: Summary of reduced-dimensionality GQME in σ̂z representation results.
√

indicates
that reduced-dimensionality GQME with QC/MH-generated input provide improved simulation re-
sults comparing to QC/MH methods themselves. × indicates that reduced-dimensionality GQME
with QC/MH-generated input provide worse simulation results comparing to QC/MH methods
themselves. – indicates no significant improvement of simluation by reduced-dimensionality
GQME. / indicates an improvement, but not at the same level of exact result.
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The initial state of the spin-boson model Eq. (II.32) in the σ̂x representation is:

ρ̂(0) = ρ̂n(0)⊗
Ne∑
i,j=1

1

2
|i〉〈j| (III.59)

The transformation into the σ̂x representation will allow us to then choose the projector to contain

only diagonal electronic states (i.e. population-only as in Ref. 70).

Our choice of projection operators are:

1. Population-only reduced-dimensionality GQME

P | · 〉〉 =
∑

ab∈{++,−−}

|ab⊗ ρn(0)〉〉 〈〈ab⊗ In| · 〉〉. (III.60)

2. Scalar reduced-dimensionality GQME

P | · 〉〉 =
∑

ab∈{++}

|ab⊗ ρn(0)〉〉 〈〈ab⊗ In| · 〉〉, (III.61)

P | · 〉〉 =
∑

ab∈{−−}

|ab⊗ ρn(0)〉〉 〈〈ab⊗ In| · 〉〉. (III.62)

In Figs. III.9 and III.10, we show the memory kernel of different reduced-dimensionality

GQMEs for model D, generated using LSCII as the input method. Here, we note that because

of the difference in the dimensionality of different choices of projection operators, the dimension-

ality of kernel elements varies.

In the σ̂x representation, due to the initial density matrix in Eq. (III.60), all terms in I(t)

contribute to the GQME. Therefore, in Fig. III.11 and Fig. III.12, we present the inhomogeneous

term I(t) for model D, with the three choices of projection operator, generated using LSCII as the

input method.

The simulation results for 〈σ̂x(t)〉 with reduced-dimensionality GQME is shown in Fig. III.13,

and a summary of the figure is presented in Table III.3.

We observe that the scalar GQME in σ̂x representation does not bring significant improvement
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Spin-Boson Selection of ab A: high
T

B: low T C: high
T

D: low T

Model in P presented symmetric symmetric asymmetricasymmetric

Input Methods as in Eq. III.11 〈σx〉 〈σx〉 〈σx〉 〈σx〉

LSCI

{++} / – – /

{−−} / / / /

{++,−−}
√ √ √

/

LSCII

{++} / / / /

{−−} / / / /

{++,−−}
√ √ √ √

mLSC/φ1φ1

{++} / – – –

{−−} /
√

– –

{++,−−} /
√

– –

Table III.3: Summary of reduced-dimensionality GQME in σ̂x representation results.
√

indicates
that reduced-dimensionality GQME with QC/MH-generated input provides improved simulation
results compared to QC/MH methods themselves. × indicates that reduced-dimensionality GQME
with QC/MH-generated input provides worse simulation results compared to QC/MH methods
themselves. – indicates no significant improvement of simulation by reduced-dimensionality
GQME. / indicates an improvement, but not at the same level as the exact result.

compared to the QC/MH methods. This might stem from the discovery made in Ref. 70 that a trace

equal to 1 is only preserved when all population elements are included in the projection. However,

by applying the population-only projection, we can then acquire fairly accurate descriptions of σ̂x

for all four systems via GQME. The results generated in σ̂z representation with one coherence +

full population GQME are comparable to the results here. But in the σ̂z representation, we need

at least three electronic states to generate accurate results, in contrast to the two electronic states

required here. This difference in dimensionality suggests that simulating the coherences of the

spin-boson model can be performed more efficiently in the σ̂x representation.
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III.5.4 Convergence Memory Time

The convergence memory times determined by the algorithm described in Ref. 70 are summarized

in Table III.4 and Table III.5. The convergence threshold needed by the algorithm is determined

by approximately 1% of the scale of the dynamics. Therefore, we employ 0.001 as the threshold

for model A and 0.005 for other models.

Convergence memory time for full-electronic states non-Condon GQME:

Spin-boson A: high T B: low T C: high T D: low T

Model symmetric symmetric asymmetric asymmetric

Input Methods tmem tmem tmem tmem

LSCI 19.43 16.25 18.61 17.97

LSCII 19.10 14.95 14.85 17.29

MF 18.59 11.36 9.13 14.19

mLSC/φ1φ1 19.37 13.46 18.82 17.62

mLSC/φ1φ2 19.43 18.17 18.71 18.06

mLSC/φ2φ2 19.33 17.24 18.77 18.15

Table III.4: Summary of convergence memory time for the above mentioned system and full-
dimensionality non-Condon GQME.

With the same threshold, we see that the time needed for convergence is generally the largest

for the reduced-dimensionality GQMEs in the σ̂z representation. Interestingly, the reduced-

dimensionality GQMEs in the σ̂x representation requires less time to converge compared to the full

GQME. This is consistent with the trend observed for population observables that were reported

in Ref. 70. We also note here that since we are applying a smaller threshold in this manuscript,

the memory times are typically longer compare to what was reported in Ref. 70. For the reduced-

dimensionality GQMEs, we find that it is easier for the GQME in σ̂x representation to converge

compared to that in σ̂z representation. We also see that GQME with projection containing all the

populations converge faster. This can be explained by the intrinsic constraint between the popula-

tions, which requires them to sum up to one, resulting in more stability in the dynamics.
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Convergence memory time for reduced-dimentionality GQME in σ̂z representation:

Spin-boson Selection of ab A: high T B: low T C: high T D: low T

Model in P presented symmetric symmetric asymmetric asymmetric

Input Methods as in Eq. III.11 tmem tmem tmem tmem

LSCI

{01} 18.91 18.61 19.39 19.53

{00, 01} 19.28 19.80 19.59 19.77

{00, 01, 11} 18.38 19.49 8.05 17.24

full 19.02 16.07 5.83 10.98

LSCII

{01} 19.18 19.37 19.42 19.61

{00, 01} 19.39 19.69 19.53 19.75

{00, 01, 11} 19.15 19.43 7.99 18.90

full 19.11 11.92 2.37 6.87

mLSC/φ1φ1

{01} 15.74 18.64 19.42 19.54

{00, 01} 19.14 19.73 19.55 19.76

{00, 01, 11} 19.01 19.68 8.45 17.18

full 19.13 12.09 2.68 13.97
Convergence memory time for reduced-dimentionality GQME in σ̂x representation:

Spin-boson Selection of ab A: high T B: low T C: high T D: low T

Model in P presented symmetric symmetric asymmetric asymmetric

Input Methods as in Eq. III.11 tmem tmem tmem tmem

LSCI

{++} 17.32 15.43 16.15 19.64

{−−} 16.71 10.73 11.25 19.04

{++,−−} 16.78 3.39 18.61 18.97

LSCII

{++} 14.44 17.71 14.77 19.49

{−−} 14.60 10.01 13.67 19.30

{++,−−} 13.32 3.44 18.66 18.94

mLSC/φ1φ1

{++} 16.89 17.44 16.20 19.58

{−−} 17.30 10.06 13.68 19.15

{++,−−} 14.80 3.35 18.68 18.93

Table III.5: Summary of convergence memory time for the above mentioned system and versions
of GQME.
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III.6 Concluding Remarks

In this chapter, we presented the modified approach to the generalized quantum master equation

with a general form of projection operator. We have shown that the projection operator can be

chosen to contain only a subset of electronic states. The derivation of the GQME in the Liouville

space was presented. The path to generate the projection-free inputs with the quasi-classical map-

ping Hamiltonian approach was also discussed. Then we presented the general steps to perform

GQME, which include 1) generating the projection-free inputs, 2) generating the kernels and the

inhomogeneous terms via an iterative algorithm, and 3) propagating the GQME to acquire the elec-

tronic density matrices. We then reported the simulation results for the coherences of the two-level

spin-boson model, acquired with various versions of GQME, with the projection-free inputs gener-

ated with the QC/MH methods. By comparing results generated with all variations of GQME, we

found performing the reduced-dimensionality GQME in the σ̂z representation, with the projection

operator chosen to be population-only, can provide accurate descriptions of the real term of coher-

ences and also requires the least dimension, i.e. computational resource. We also observed that the

reduced-dimensionality GQME in the σ̂x generally requires a smaller memory time compared to

that in the σ̂z representation.

It was shown that the GQME is a powerful method that can utilize different QC/MH methods

to generate accurate results and expanding the application of GQME to a wider range of sys-

tems seems promising. Systems with conical intersections, for example, are one type of system

of interest. The linearized vibronic model that we will discuss in the next chapter can be con-

sidered a benchmark for systems with conical intersections. Applying GQME to systems with a

higher dimension would also be interesting, especially when we are equipped with the reduced-

dimensionality GQME to ease the computational cost.

One future direction of the development of GQME is to expand the reduced-dimensionality ap-

proach to GQME with Condon approximation. The Condon approximation significantly reduced

the terms to be calculated for the projection-free inputs, minimizing the computational cost and po-

tential numerical errors. For now, development on the reduced-dimensionality GQME focuses on
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the non-Condon GQME. Developing a reduced-dimensionality GQME with the Condon approxi-

mation can then further reduce the computational cost. This can be beneficial to large systems that

follow Condon approximations.
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Figure III.1: Coherence dynamics of two-level spin-boson model. Model parameters are set
according to Table II.3. Dash lines represent results generated directly with input methods, solid
lines represent results generated with GQME. The DEOM results, represented by the black line,
give the exact dynamics.
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Figure III.2: Matrix elements of PFIs F , described in Eq. III.30, for model D in Table II.3, with
LSCII chosen as input method. The real part of the elements are presented in pink lines and the
imaginary parts are presented in blue lines.
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Figure III.3: Matrix elements of PFIs Ḟ , described in Eq. III.31, for model D in Table II.3, with
LSCII chosen as input method. The real part of the elements are presented in pink lines and the
imaginary parts are presented in blue lines.
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Figure III.4: Real part of matrix elements of the memory kernelKof different choice of projection
operators, for model D in Table II.3, with LSCII chosen as input method.
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Figure III.5: Imaginary part of matrix elements of the memory kernel Kof different choice of
projection operators, for model D in Table II.3, with LSCII chosen as input method.
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Figure III.6: Inhomogeneous term I for P chosen to include only electronic state |0〉 〈1|, for
model D in Table II.3, with LSCII chosen as input method.
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Figure III.7: 〈σ̂x〉 dynamics of two-level spin-boson model. Model parameters are set according to
Table II.3. Dashlines represent results generated directly with input methods, solid lines represent
results generated with reduced-dimensionality GQME in σ̂z representation. The DEOM results,
represented by the black line, give the exact dynamics.
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Figure III.8: 〈σ̂y〉 dynamics of two-level spin-boson model. Model parameters are set according to
Table II.3. Dashlines represent results generated directly with input methods, solid lines represent
results generated with reduced-dimensionality GQME in σ̂z representation. The DEOM results,
represented by the black line, give the exact dynamics.
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Figure III.9: Real part of matrix elements of the memory kernelKof different choice of projection
operators, for model D in Table II.3, with LSCII chosen as the input method.
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Figure III.10: Imaginary part of matrix elements of the memory kernel K of different choice of
projection operators, for model D in Table II.3, with LSCII chosen as input method.
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Figure III.11: Real part of the inhomogeneous term I for P chosen to include only electronic state
|0〉 〈1|, for model D in Table II.3, with LSCII chosen as input method.

Figure III.12: Imaginary part of the inhomogeneous term I forP chosen to include only electronic
state |0〉 〈1|, for model D in Table II.3, with LSCII chosen as input method.
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Figure III.13: Coherence dynamics of two-level spin-boson model. Model parameters are set
according to Table II.3. Dash lines represent results generated directly with input methods, solid
lines represent results generated with reduced-dimensionality GQME in σ̂z representation. The
DEOM results, represented by the black line, give the exact dynamics.
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CHAPTER IV

Simulating The Linear Vibronic Coupling (LVC)

Model

IV.1 Introduction

Conical intersections (CIs) are believed to play a central role in many photochemical processes.[28,

96–106] Being able to calculate the rates of electronic transitions through CIs in a reliable and fea-

sible manner is therefore key for understanding such processes and developing rational design

principles towards controlling them. An exact fully quantum-mechanical simulation of the dynam-

ics of electronic transitions through CIs is limited to relatively low-dimensional molecular systems

and/or simple model Hamiltonians.[36, 107–109] Thus, developing approximate methods for sim-

ulating the dynamics of electronic transitions through CIs in complex molecular systems is highly

desirable.

A wide variety of approximate methods that can be used for simulating nonadiabatic dynam-

ics in systems with CIs have been proposed, including the Ehrenfest (mean-field) method,[110]

surface hopping methods,[27, 29, 33, 111–119] the mixed quantum-classical Liouville (MQCL)

method,[38, 56, 120–125] and mapping Hamiltonian (MH) approaches.[36–38, 40, 42–49, 78–

84, 126] These approximate methods reduce the computational cost by describing the dynamics

of the nuclear degrees of freedom (DOF), and sometimes also of the electronic DOF, in terms of

classical-like trajectories.

Approximate methods based on combining the MH approach with quasi-classical (QC) ap-
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proximations have recently emerged as a promising approach towards modeling nonadiabatic dy-

namics in complex molecular systems.[43, 85] Several variations of those QC/MH methods have

been found to be accurate for a variety of benchmark models, including the spin-boson model, a

Frenkel bi-exciton model, Tully models, and a model for the Fenna-Matthews-Olson (FMO) light-

harvesting complex.[43] Importantly, none of those models include CIs. Our goal in this paper

is to extend the range of applications of QC/MH methods to systems with CIs. We do so in the

context of the linear vibronic coupling (LVC) model Hamiltonian.[98, 127] The choice of the LVC

model Hamiltonian as a benchmark for testing the ability of QC/MH methods to describe the dy-

namics of electronic transitions through CIs is motivated by the fact that it has been reported to

provide a rather accurate description of CI photophysics in many polyatomic molecules and the

ability to calculate quantum-mechanically exact electronic transition rates for it. The analysis was

performed on LVC Hamiltonians parameterized for three polyatomic systems: fulvene, the 2,6-

bis(methylene) adamanyl (BMA) radical cation, and the 2-methylene-6-isopropylidene adamantyl

(MIA) radical cation. The choice of these systems was motivated by the availability of ab-initio

parameter sets and the fact that these systems were used in the past as benchmarks for equilib-

rium Fermi’s golden rule (EQ-FGR) , nonequilibrium Fermi’s golden rule (NE-FGR) and LSC

approximations with EQ-FGR and NE-FGR [100, 128]. It should also be noted that these systems

represent the inverted region (fulvene), normal region (BMA) and in the vicinity of the transition

point between those two regions (MIA).

The rest of the paper is organized as follows. The LVC model and choice of initial state are

described in Sec. IV.2. The results of obtained by applying the QC/MH methods described in

chapter II to the aforementioned molecular systems described by the LVC Hamiltonian and the

discussion of the results are presented in Sec. IV.3. The results obtained by using QC/MH methods

to generate projection-free inputs for GQME and discussion of the results are presented Sec. IV.4.

Concluding remarks are given in Sec. IV.5.
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IV.2 The Linear Vibronic Coupling (LVC) Model

The LVC model Hamiltonian is given by[98, 127]

Ĥ = Ĥ1|1〉〈1|+ Ĥ2|2〉〈2|+ V12(R̂)|1〉〈2|+ V21(R̂)|2〉〈1| , (IV.1)

where

Ĥj =
P̂2

2
+ Vjj(R̂) ,

Vjj(R̂) = ∆j +
Nn∑
i=1

1

2
ω2
i R̂

2
i + d

(j)
i R̂i ,

V12(R̂) = V21(R̂) =
Nn∑
i=1

ciR̂i .

(IV.2)

Ĥj represents the nuclear Hamiltonian when the system is in the electronic state |j〉 (j = 1, 2),

V12(R̂) = V21(R̂) are the coupling terms between the two electronic states, and Nn is the number

of nuclear DOF. Boldfaced variables, e.g., A, indicate vector quantities and a hat over a variable,

e.g., B̂, indicates an operator quantity.

Within the LVC Hamiltonian, Eq. (IV.1), the nuclear DOF are given in terms of their mass-

weighted coordinates, R̂ = (R̂1, . . . , R̂Nn), and momenta, P̂ = (P̂1, . . . , P̂Nn). Importantly, the

diabatic potential energy surfaces (PESs), Vj(R̂) =
∑Nn

i=1

[
1
2
ω2
i R̂

2
i + d

(j)
i R̂i

]
, are assumed har-

monic and identical, except for a shift in equilibrium energy and geometry. The electronic cou-

pling terms, V12(R̂) = V21(R̂), are assumed linear in the nuclear coordinates. The fact that the

electronic coupling terms are explicitly R̂-dependent (i.e., in the non-Condon regime) is what

makes it possible for the LVC Hamiltonian to account for CIs.

We also note for future reference that the reaction free energy and reorganization energy for the
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LVC model are given by:

∆E =∆1 −∆2 −
Nn∑
i=1

(
d

(1)
i

)2

−
(
d

(2)
i

)2

2ω2
i

,

Er =
Nn∑
i=1

(
d

(1)
i − d

(2)
i

)2

2ω2
i

.

(IV.3)

Er > |∆E| and Er < |∆E| correspond to the Marcus normal and inverted regions, respectively.

In what follows, we assume that the initial state of the overall system is given by

ρ̂(0) = ρ̂n(0)⊗ σ̂(0) , (IV.4)

where ρ̂n(0) and σ̂(0) are the reduced density operators that describe the initial states of the

nuclear DOF and electronic DOF, respectively. The initial electronic state, σ̂(0), is assumed

to be given by |1〉〈1| or |2〉〈2|. The initial nuclear state, ρ̂n(0), is assumed to be given by

ρ̂n(0) = e−βĤ2

/
Tr
{
e−βĤ2

}
if σ̂(0) = |1〉〈1| or ρ̂n(0) = e−βĤ1

/
Tr
{
e−βĤ1

}
if σ̂(0) = |2〉〈2|.

Here, β = 1/kBT where T is the absolute temperature and kB is the Boltzmann constant. It

should be noted that this choice corresponds to a nonequilibrium initial state since the nuclear

DOF are in equilibrium with respect to one electronic state while the electronic DOF are described

by the other state.

The electronic density operator at a later time t is given by

σ̂(t) = σ11(t)|1〉〈1|+ σ22(t)|2〉〈2|+ σ12(t)|1〉〈2|+ σ21(t)|2〉〈1| , (IV.5)

where

σjk(t) = Tr
{
ρ̂n(0)|α〉〈α|eiĤt/~|k〉〈j|e−iĤt/~

}
. (IV.6)

Here, ρ̂n(0)|α〉〈α| is the aforementioned nonequilibrium initial state. σjj(t) corresponds to the

population of the j-th electronic state and σjk(t) (where j 6= k) corresponds to the electronic

coherence between the j-th and the k-th electronic states. It should be noted that the coherence,
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σ10(t), is relatively small (∼ 10−3) for the systems under consideration in this paper. As a result,

getting converged results for the coherence would have required a significantly larger number of

trajectories, which we felt was not justified, given that population transfer dynamics is often the

main quantity of interest for systems with CIs. In what follows, we will focus on the population

dynamics, i.e. on the dynamics of σ11(t) and σ22(t).

As outlined in Refs. 42 and 43, the electronic population operator can also be mapped as the

sum of the identity operator 1̂ and a trace zero term, giving the alternative form

|a〉〈a| 7→ 1

Ne

(1̂ + Q̂a) , (IV.7)

where

Q̂a = NeM̂aa −
Ne∑
b=1

M̂bb . (IV.8)

in which M̂aa ≡ |a〉 〈a|, and Ne is the number of electronic DOF. Plugging Eq. (IV.7) into

Eq. (IV.6) leads to the following alternative expressions for the electronic density matrix elements:

σλλ(t) =
1

N2
e

[
Ne + C1̂Q̂λ

(t) + CQ̂αQ̂λ(t)
]

σλζ(t) =
1

Ne

[
C1̂M̂ζλ

(t) + CQ̂αM̂ζλ
(t)
]
.

(IV.9)

Here M̂ζλ ≡ |ζ〉 〈λ|. The indices λ and ζ will be used consistently throughout this paper to indicate

indices that are different (λ 6= ζ). This should be contrasted to all other indices, e.g., j and k, which

can be equal unless explicitly stated otherwise.

IV.3 Results with Quasi-Classical Mapping Hamiltonian Meth-

ods

In this section, we report the results of calculations performed on the LVC model for three

sets of parameters that correspond to the following three gas-phase molecules: fulvene, the 2,6-
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bis(methylene) adamantyl (BMA) radical cation, and the 2-methylene-6-isopropylidene adamantyl

(MIA) radical cation. Those parameters were adopted from Ref. 100, where they were obtained

from electronic structure calculations and the Köppel diabatization scheme.[129–131] Several key

model parameters for the three molecules are shown in Table IV.1. It should be noted that fulvene

corresponds to the Marcus inverted region (|∆E| > Er), while BMA and MIA correspond to the

Marcus normal region (|∆E| < Er).

fulvene BMA MIA
# modes 30 78 96
|∆E| (a.u.) 0.0989 0.0004 0.0250
Er (a.u.) 0.0887 0.0297 0.0274

Table IV.1: Number of nuclear modes, absolute value of the reaction free energy, |∆E|, and reor-
ganization energy, Er, for fulvene, BMA, and MIA (adopted from Ref. 100).

We compare results obtained by applying the above-mentioned seven QC/MH methods (LSCI,

LSCII, mLSC/φ1φ1, mLSC/φ1φ2, mLSC/φ2φ2, SQC, and MF) with quantum-mechanically exact

results obtained via ML-MCTDH.[108, 132] Previously reported results for the same models via

NE-FGR[128] are also included for comparison. The results shown for all methods, except for

LSCI, were obtained by averaging over 106 trajectories. LSCI results were obtained by averaging

over 5 × 107 trajectories. It should be noted that the number of trajectories needed for achieving

convergence in the systems under consideration is somewhat larger than that needed for achieving

convergence in previously considered models.[42, 69, 85] In the case of BMA and MIA, we be-

lieve that this is caused by the smaller overall change in the population over the time scale under

consideration, which requires a smaller absolute error in order to reach the same tolerance with

respect to the relative error. In the case of fulvene, we believe that this is caused by the highly

nonequilibrium nature of the initial state. This results in stepwise population relaxation, which im-

plies that much of the population relaxation happens before the system is able to reach equilibrium

on the donor PES.

We also note that the MCTDH results reported below are somewhat different from previously

reported results obtained via the variational multi-configurational Gaussian (vMCG) wave packet

71



method[100] (not shown). While the origin of this discrepancy is difficult to ascertain, we speculate

that they may reflect an insufficiently large Gaussian basis set used to obtain the vMCG results.

IV.3.1 Fulvene molecule

The results for fulvene are shown in Fig. IV.1. In this case, σ̂(0) = |2〉〈2| and ρ̂n(0) =

e−βĤ1

/
Tr
{
e−βĤ1

}
(the electronic states are as labeled in Ref. 100).

We first note that while NE-FGR follows a similar trend to that of MCTDH, there are significant

quantitative deviations between the two, with NE-FGR overestimating the electronic transition

rate. This suggests a breakdown of the weak electronic coupling approximation underlying NE-

FGR and the necessity of a post-FGR method for quantitatively predicting electronic transition

rates for this molecule.

MF, which is arguably the simplest such post-FGR method, is seen to reproduce the MCTDH

electronic transition rate rather well at short times, but to significantly underestimate the electronic

transition rate at longer times. LSCII is seen to follow a similar behavior to MF, and is in fact

slightly worse than MF at longer times. LSCI, on the other hand, is seen to reproduce the MCTDH

result rather well throughout the entire time range.

Among the modified LSC methods, mLSC/φ1φ1 and mLSC/φ1φ2 are seen to reproduce the

MCTDH result rather well throughout the entire time range, with mLSC/φ1φ1 performing slightly

better than mLSC/φ1φ2. At the same time, mLSC/φ2φ2 is seen to not only significantly overesti-

mate the electronic transition rate beyond very short times, but to also predict a negative electronic

population at longer times, which is clearly non-physical.

Finally, SQC, with either square or triangular sampling windows, is seen to reproduce the

MCTDH result rather well throughout the entire time range and is in fact very close to the best

performing modified LSC method, mLSC/φ1φ1.
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Figure IV.1: Comparison of donor population dynamics for the gas-phase fulvene molecule via
different methods at T=0. The MCTDH results, represented by a black line, give the exact dynam-
ics for fulvene with the LVC model.

IV.3.2 2,6-bis(methylene) adamantyl (BMA) radical cation

The results for BMA are shown in Fig. IV.2. In this case, σ̂(0) = |1〉〈1| and ρ̂n(0) =

e−βĤ2

/
Tr
{
e−βĤ2

}
(the electronic states are as labeled in Ref. 100).

For BMA, NE-FGR reproduces the MCTDH result rather well, implying that the weak elec-

tronic coupling approximation underlying NE-FGR is valid and, given its relative simplicity, may

in fact be the method of choice for this molecule.

At the same time, MF is seen to deviate significantly from the MCTDH result and to actually

overestimate the electronic transition rate. LSCII is seen to follow a similar behavior to MF and

is in fact somewhat worse than MF at longer times. In contrast, and similarly to fulvene, LSCI is

seen to reproduce the MCTDH result rather well throughout the entire time range.

73



Among the modified LSC methods, only mLSC/φ1φ1 is seen to reproduce the MCTDH result

rather well throughout the entire time range, while mLSC/φ1φ2 and mLSC/φ2φ2 are seen to signif-

icantly overestimate the MCTDH electronic transition rate. In fact, the quality of the mLSC/φ1φ1

result is seen to be comparable to that of LSCI, while that of the mLSC/φ1φ2 and mLSC/φ2φ2 is

comparable to that of LSCII.

Finally, the SQC result for BMA is seen to be of comparable quality to that of MF and is

therefore relatively inaccurate. Furthermore, significant deviations are observed between SQC

results obtained with square or triangular sampling windows.

Figure IV.2: Comparison of donor population dynamics for the gas-phase BMA radical cation
via different methods at T=0. The MCTDH results, represented by a black line, give the exact
dynamics for BMA with the LVC model.
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IV.3.3 2-methylene-6-isopropylidene adamantyl (MIA) radical cation

The results for BMA are shown in Fig. IV.3. In this case, σ̂(0) = |1〉〈1| and ρ̂n(0) =

e−βĤ2

/
Tr
{
e−βĤ2

}
(the electronic states are as labeled in Ref. 100).

NE-FGR is seen to somewhat overestimate the electronic transition rate in MIA, which suggests

a breakdown of the weak electronic coupling approximation, although to a lesser extent than in the

case of fulvene.

Interestingly, the MF result is in excellent agreement with the MCTDH result for this molecule,

which stands in sharp contrast to the poor performance of MF in fulvene and BMA. Also in con-

trast to fulvene and BMA, LSCI and LSCII yield rather similar results in this case, which are in

reasonable agreement with MCTDH, but clearly not as accurate as MF.

Among the modified LSC methods, mLSC/φ1φ1, and mLSC/φ1φ2 are seen to reproduce the

MCTDH result rather well throughout the entire time range under consideration, with mLSC/φ1φ2

yielding similar accuracy to MF and being somewhat more accurate than mLSC/φ1φ1. At the

same time, and similarly to fulvene and BMA, mLSC/φ2φ2 is seen to significantly overestimate

the electronic transition rate, with the deviation increasing with increasing time.

Finally, while the SQC results are seen to agree reasonably well with the MCTDH result, us-

ing triangular sampling windows clearly yields a more accurate transition rate compared to using

square windows. Furthermore, the quality of the results obtained via SQC with triangular sampling

windows is seen to be comparable to that of MF and mLSC/φ1φ2.

For the sake of comparing the performance of the different methods over the three systems

they were applied to, we classify them as accurate (
√

) and inaccurate (×) based on their ability

to reproduce the MCTDH results over the time range under consideration. A summary of the

performance of the different methods based on this classification is give in Table IV.2. It should be

noted that classifying the methods as accurate and inaccurate is somewhat subjective and obviously

cannot account for more nuanced behavior (e.g., methods that are accurate at short time but whose
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Figure IV.3: Comparison of donor population dynamics for the gas-phase MIA radical cation
via different methods at T=0. The MCTDH results, represented by a black line, give the exact
dynamics for MIA with the LVC model.

accuracy deteriorate at longer times). However, given the large number of methods, we believe

that it serves as a useful organizational tool to guide the following discussion.

Based on the aforementioned classification of methods as accurate and inaccurate, they can be

grouped into three categories: (1) methods which are consistently accurate for all three molecules;

(2) methods which are consistently inaccurate for all molecules; and (3) methods with inconsistent

accuracy, which are accurate for some molecules but inaccurate for others.

mLSC/φ1φ1 and LSCI fall into the first category (accurate for all three molecules). The fact

that mLSC/φ1φ1 is seen to be somewhat more accurate and LSCI has been previously observed

to be significantly less accurate than mLSC/φ1φ1 for other benchmark models[43, 85] points to

mLSC/φ1φ1 as the method of choice.

mLSC/φ2φ2 is the only method that falls into the second category (inaccurate for all three
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Method LSCI LSCII mLSC/φ1φ1 mLSC/φ1φ2 mLSC/φ2φ2

fulvene
√

×
√ √

×
BMA

√
×

√
× ×

MIA
√ √ √ √

×

Method SQC square SQC triangle MF NE-FGR

fulvene
√ √

× ×
BMA × × ×

√

MIA ×
√ √

×

Table IV.2: Summary of results.
√

implies that the method is accurate and × implies that the
method is inaccurate.

molecules). The poor performance of mLSC/φ2φ2 is particularly surprising in light of its previ-

ously reported ability to produce accurate results for the spin-boson and Tully models.[85] This

observation underscores the limitations of those popular benchmark models and the need for ex-

tending the testing of approximate methods to other benchmark models, such as the LVC model

considered here. It should also be noted that unlike mLSC/φ1φ1 and mLSC/φ1φ2, the derivation of

mLSC/φ2φ2 is somewhat ad-hoc.

The remaining methods fall into the third category. Within this category, one can distinguish

between two sub-categories: (3A) methods that are accurate for two out of the three molecules and

(3B) methods that are accurate for one out of the three molecules.

Two methods fall into category (3A), namely mLSC/φ1φ2 and SQC with triangular windows.

Both methods are seen to only be inaccurate in the case of BMA, which is also the only molecule

for which NE-FGR is seen to be accurate. This correlation between weak electronic coupling and

inaccuracy of mapping methods has been previously pointed out in the context of SQC.[49] The

problem has been traced back to inefficient transfer of classical trajectories from one sampling

window to another when the electronic coupling is weak. Switching from SQC with square sam-
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pling windows to SQC with triangular sampling windows was proposed in Ref. 49 as a remedy for

this problem. Interestingly, the poor performance of SQC with either square or triangular windows

seem to suggest that this remedy is not sufficient in the case of BMA. The fact that unlike SQC,

mLSC/φ1φ1 and LSCI are seen to be accurate for BMA can be traced back to the lack of a window

function at time t in both, which guarantees that contributions from all trajectories are accounted

for (as opposed to only accounting for contributions from trajectories that manage to transfer from

one sampling window to another).

Finally, category (3B) includes the MF and SQC with square sampling windows methods. The

only system for which MF is accurate is MIA, which can be attributed to the fact that MIA is

the system with the smallest barrier and largest number of nuclear modes. As a result, the MF

approximation is expected to be more valid. The failure of SQC with square sampling windows to

reproduce the MCTDH result in BMA can be traced back to the weak electronic coupling in this

system (see discussion above). The behavior of SQC with square sampling windows in the case

of MIA is more subtle. On the one hand, the actual transition rate constant, as measured by the

slope of the population as a function of time, is comparable to the exact one. On the other hand,

there appears to be a delay in establishing rate kinetics within SQC with square sampling windows,

which can be traced back to the gap between sampling windows in action space. More specifically,

there is lag time between the time a trajectory leaves one sampling window and time it reaches

another.

IV.4 Results with Generalized Quantum Master Equation

As we observed, several QC/MH methods cannot describe the dynamics of these LVC models

well. The natural next step is to use these QC/MH methods to generate projection-free inputs for

the generalized quantum master equation described in Chapter III. Because the LVC models do not

satisfy the Condon approximation, we applied the non-Condon GQME here. Initial testing is done

with full-projection GQME, i.e. choosing the projection operator to contain all electronic states.
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Figure IV.4: The donor population dynamics of BMA simulated with MF and GQME. The green
line shows the exact results by MCTDH. The purple line shows the results generated by the input
methods, i.e. MF. The Light-blue line shows the full-dimensionality non-Condon GQME results
generated with MF as input methods and 149.94 fs as memory time.

The input method is selected to be Ehrenfest mean field. Here we choose the stepsize to be 0.024

fs, i.e. 1 a.u., and the number of trajectories to be 5× 106.

Preliminary testing results of the GQME on the LVC models are shown in Figure IV.4 and

Figure IV.5, for BMA and MIA, respectively. We observe that for BMA, the GQME using MF-

generated projection-free inputs produces results slightly worse than those generated with MF. For

MIA, we see a straight upward-trending curve after t = 100 fs. This behavior can be explained by

inspecting the memory kernels of MIA presented in Figure IV.6. Not only do the kernels elements

not diminish over time, but they start to increase after t = 100 fs. The memory kernels of BMA are

presented in Figure IV.7. We see that the memory kernels of both BMA and MIA still persist for

a longer time. A persisting kernel means that the systems do not forget. This might be caused by
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Figure IV.5: The donor population dynamics of MIA simulated with MF and GQME. The green
line shows the exact results by MCTDH. The purple line shows the results generated by the input
methods, i.e. MF. The Light-blue line shows the full-dimensionality non-Condon GQME results
generated with MF as input methods and 72.5 fs as memory time. The orange line shows the full-
dimensionality non-Condon GQME results generated with MF as input methods and 149.94 fs as
memory time.

80



Figure IV.6: The memory kernel elements of MIA generated with MF projection-free inputs. The
horizontal axis represents time, with the unit of fs. The orange line shows the imaginary parts and
the purple line shows the real parts.
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Figure IV.7: The memory kernel elements of BMA generated with MF projection-free inputs. The
horizontal axis represents time, with the unit of fs. The orange line shows the imaginary parts and
the purple line shows the real parts.
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the necessity to use the non-Condon GQME. Compared to the Condon GQME, the non-Condon

GQME requires the calculation of significantly more terms. This might introduce more numerical

errors and leads to the strange behaviors of the kernels and the population dynamics.

IV.5 Concluding Remarks

Our main goal in this chapter was to extend the testing of QC/MH methods to systems with CIs.

One reason for doing so is the central role CIs play in many photochemical processes of practical

interest. Another reason is the need to extend the testing of those methods beyond the popular spin-

boson and Tully benchmark models. Indeed, using the LVC model as a benchmark demonstrates

the importance of going beyond the spin-boson and Tully models. More specifically, application

of QC/MH methods to the LVC model was found to shed new light on the ability of those methods

to yield accurate results. On the one hand, methods like SQC and mLSC/φ2φ2 were found to be

significantly less accurate in LVC than they were in the spin-boson and Tully models. On the other

hand, a method like mLSC/φ1φ1 was seen to emerge as the method of choice due to its reasonable

accuracy for all benchmark models.

It should be noted that the analysis presented in this chapter was performed on systems with

relatively high vibrational frequencies at zero temperature, which corresponds to the most chal-

lenging test for a QC method due to the pronounced quantum nature of the system under those

conditions. On the one hand, it is encouraging to see that at least some QC/MH methods are ac-

curate under those extreme conditions. On the other hand, one expects the accuracy of the other

methods to improve with increasing temperatures.

We then explored the option of using QC/MH methods to calculate the memory kernel of the

generalized quantum master equation (GQME). Preliminary assessments of GQME on LVC mod-

els done with MF-generated projection-free inputs show that the memory kernels do not decay over

time. This results in strange behavior in the population dynamics. The cause of this might be with

the non-Condon GQME. The non-Condon GQME requires significantly more terms to be gener-
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ated, which might introduce additional numerical errors. Therefore one future direction of better

describing the population dynamics of LVC models is to apply the reduced-dimensionality GQME.

The reduced-dimensionality GQME can limit the terms applied and can potentially decrease the

numerical errors introduced. Another direction is to apply the non-Condon GQME to various non-

Condon systems. This will allow us to further understand the capability of the non-Condon GQME

and gain a better understanding of the non-vanishing kernels.
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CHAPTER V

Simulating The Fenna-Matthews-Olson (FMO)

Complex

V.1 Introduction

Photosynthesis is a process that converts light energy to chemical energy and can be divided into

four phases: light absorption and energy delivery by antenna systems, primary electron transfer in

reaction centers, energy stabilization by secondary processes, and synthesis and export of stable

products.[2] During the first phase of photosynthesis, photons are absorbed, leading to an excited

state that causes charge separation in the reaction center. The antenna system typically transfers the

excitation energy from one molecule to another, resulting in an excited donor in the reaction center.

In the second phase, the electronic excitation energy is converted to chemical energy as the excited

donor rapidly transfers charges to a nearby electron acceptor, which is where the primary reaction

takes place. The excitation energy is thus transformed into chemical energy during this process.

The process of electronic energy transfer and charge transfer are crucial steps in photosynthesis

and are therefore the focus of numerous studies.[3–7] Understanding the dynamical processes of

excitation energy transfer and electron transfer of photosynthetic light-harvesting systems can pro-

vide insights into the development of new technologies for energy production, such as biofuels,

that can reduce the reliance on fossil fuels and mitigate climate change.

The discovery of long-lasting quantum coherence in certain photosynthetic systems has gener-

ated interest in the potential impact of quantum effects on their remarkable efficiency.[133] The
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Fenna-Matthews-Olson (FMO) complex is a model system for studying the fundamental princi-

ples of energy transfer in photosynthesis. The FMO complex is also one of the first photosynthetic

systems observed to have long-lived coherences.[134–137] Because of the availability of exact

results, one model Hamiltonian of the FMO complex is considered to be a benchmark for approx-

imate methods. In this chapter, we will focus on using the FMO complex as the benchmark to

assess the ability of quasi-classical mapping Hamiltonian methods and generalized quantum mas-

ter equation on simulating the energy transfer process for photosynthetic light-harvesting models.

The rest of this chapter is organized as follows. We outline the model Hamiltonian of the FMO

complex in Sec. V.2. In Sec. V.3, the simulation results of the energy transfer via linearized semi-

classical methods and the generalized quantum master equation are presented, compared to those

generated with the hierarchical equations of motion (HEOM) method. Concluding remarks are

given in section V.4.

V.2 Fenna-Matthews-Olson(FMO) Complex

The Fenna-Matthews-Oslon (FMO) complex is a trimer made of identical subunits. Each subunit

contains seven bacteriochlorophyll (BChl) molecules. Here, we follow the same convention as

shown in Ref. 138 to label the seven BChls. This then results in seven localized singly excited

states. Studies have shown that the two primary pathways for energy transfer is[139]: 1) with

BChl1 excited and then the energy transfer into BChl2 then to BChl3, after BChl3 is populated,

excitation energy equilibrate between BChl3 and BChl4. 2) Wtih BChl6 excited and then the

energy transfer into BChl5, BChl7 and BChl4 adn then to BChl3. A graph showing these two

pathways is presented in Fig. V.1
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Figure V.1: Demonstration of the two primary pathways of FMO complex, adopted from Ref. 91
for demonstration purposes.

In this study, we test the following Hamiltonian for FMO complex[139, 140]:

Ĥ =
Ne∑
i=1

Ĥi(R̂, P̂) |i〉〈i|+
Ne∑
j,k=1
j 6=k

V̂jk(R̂) |j〉〈k| , (V.1)

Ĥi = εi +
Nn∑
m=1

Ne∑
i=1

P̂ 2
m,i

2
+ Vi(R̂), (V.2)

Vi(R̂) =
Nn∑
m=1

1

2
ω2
m

(
R̂m,i −

cm
ω2
m

)2

+
Ne∑
l=1
l 6=i

Nn∑
m=1

1

2
ω2
mR̂

2
m,l, (V.3)

V̂jk = Γjk. (V.4)

Here, Ne = 7 is the electronic DOF, Nn = 200 is the nuclear DOF per BChl molecules. There-

fore, the overall nuclear DOF is then NN = Nn × Ne = 1400. {c1, ..., cNn} and {ω1, ..., ωNn}

are the mass-weighted coupling coefficients and frequencies for the nuclear normal modes, respec-

tively; {R̂1,1, . . . , R̂Ne,Nn} and {P̂1,1, . . . , P̂Ne,Nn} are the mass-weighted position and momentum

operators of the nuclear DOF, respectively; εi is the energy of the electronic state |i〉 at the equi-
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librium geometry; and Γjk are the electronic coupling coefficients. The energy transfer processes

are initiated at the excited electronic state 1 or 6, with the nuclear density operator corresponding

to thermal equilibrium at the ground electronic state:

ρ̂(0) = |1〉〈1| ⊗ ρ̂n(0), or ρ̂(0) = |6〉〈6| ⊗ ρ̂n(0), (V.5)

with ρ̂n(0) =

exp

[
−β

Nn∑
m=1

Ne∑
i=1

P̂ 2
m,i

2
+ 1

2
ω2
mR̂

2
m,i

]
Tr

{
exp

[
−β

Nn∑
m=1

Ne∑
i=1

P̂ 2
m,i

2
+ 1

2
ω2
mR̂

2
m,i

]} . (V.6)

Here, β = 1/kBT is the inverse temperature, T is the absolute temperature, kB is the Boltzmann

constant. The electronic energy and coupling εi and Γjk are given by:[139, 140]



12410 −87.7 5.5 −5.9 6.7 −13.7 −9.9

−87.7 12530 30.8 8.2 0.7 11.8 4.3

5.5 30.8 12210 −53.5 −2.2 −9.6 6.0

−5.9 8.2 −53.5 12320 −70.7 −17.0 −63.3

6.7 0.7 −2.2 −70.7 12480 81.1 −1.3

−13.7 11.8 −9.6 −17.0 81.1 12630 39.7

−9.9 4.3 6.0 −63.3 −1.3 39.7 12440



,

(V.7)

with cm−1 as the unit. The spectral density of the nuclear modes are set up to be the Debye spectral

density:

J(ω) =
π

2

Nn∑
k=1

c2
k

ωk
δ(ω − ωk) −−−−→

Nn→∞

2λωcω

ω2
c + ω2

, (V.8)

ck = ωk

√
2λ

Nn

, ωk = ωc tan

{
π

2Nn

(
k − 1

2

)}
, (V.9)

with ωc being the cutoff frequency and λ = 35cm−1 being the reorganization energy.[139–141]

Here we present the parameters we tested in Table V.1, adapted from Ref. 139 and Ref. 91.
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Table V.1: Fenna-Matthews-Olson (FMO) Model and Simulation Parameters

Model Parameters Numerical Parameters
Model # T(K) ωc(cm−1) ∆t(fs) Ntraj

1 300 31.98 0.10 2.5× 105

V.3 Results with Quasi-Classical Mapping Hamiltonian Meth-

ods and Generalized Quantum Master Equation

Because the Hamiltonian we are using here follows the Condon approximation, naturally, we

choose to apply the GQME with the Condon approximation presented in Sec. III.3.1. Previous

studies on the FMO model focused on using the Ehrenfest mean field method to generate the

projection-free input [91], here we will apply the two versions of the linearized semi-classical

approach, LSCI, and LSCII, to generate the projection-free inputs F1 and F2. The overall pro-

cedure is similar to that outlined in Sec. III.4. For model 1 in Table. V.1, the simulation results

of GQME with Condon approximation and projection-free inputs generated with LSCI/LSCII are

shown in Fig. V.2. From the dynamics, we observe that the GQME significantly improves the

LSCI and LSCII dynamics, for both choices of the initial state ( |1〉〈1| or |6〉〈6|). The exceptions

are with state 3 for LSCII-generated projection-free inputs. We observe from the right panel that

using LSCII as the input method does not improve the dynamics of state 3 regardless of the initial

states. Inspection on the top-left penal also shows that GQME with LSCI as input methods does

not improve the description of state 1 with the electronic initial state set as |1〉〈1|. The convergence

memory time is also reported in Fig. V.2. The convergence threshold is set up to be 1% of the scale

of the dynamics.

We note here that in LSC methods, the trajectories required to achieve convergence are signif-

icantly large. As reported in Ref. [91], 35000 trajectories are enough for convergence for GQME

with Ehrenfest-generated projection-free inputs. For GQME with LSC-generated projection-free

inputs, we observed that even for the model 1, the model with high temperature and low cutoff

frequencies, 250000 is required for convergence. This arises from the additional sampling on the
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Figure V.2: The population dynamics of the FMO model 1 with parameters set as in Tabel V.1.
Solid lines show the exact results by the hierarchical equation of motion (HEOM) reported in Ref.
139. Dashed lines show the results generated by the input methods, i.e. LSCI and LSCII, for
the left and right column, respectively. Dotted-dashed lines on the left and right column show
the GQME results generated with LSCI and LSCII as input methods, respectively. The top row
of dynamics corresponds to the electronic initial state set as |1〉〈1|. The bottom row of dynamics
corresponds to the electronic initial state set as |6〉〈6|. The convergenced memory time is reported
on the graph.
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electronic DOF that is required for the LSC methods. For FMO specifically, because there are

seven electronics states involved, the convergence differences between Ehrenfest and LSC become

more significant.

V.4 Concluding Remarks

In this chapter, we extend the application of QC/MH methods and the GQME to the FMO complex.

Investigating the results, we found that GQME is capable of providing accurate descriptions by

using LSCI and LSCII to generate projection-free inputs. We also observed a significantly large

number of trajectories that are required for convergence. In fact, for the low temperature high

ωc model, i.e. model 1 in Ref. [91], we found that the LSCI requires an unfeasible number of

trajectories to converge.

This prompts one of the future directions for the development of QC/MH methods to improve

the convergence speed to limit the required computational costs. Another direction to reduce the

computational cost is to apply the reduced-dimensionality GQME to the FMO model. Particularly,

the development of the reduced-dimensionality GQME under the Condon approximation. As we

previously discussed, the non-Condon GQME requires significantly more terms to be calculated in

order to generate projection-free inputs. Since the FMO model follows the Condon approximation,

it is natural to consider applying the Condon approximation to the reduced-dimensionality GQME.
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CHAPTER VI

Methods for Calculating the Propagator for a

Quantum Open System Governed by the GQME

VI.1 Introduction

Quantum computers have the potential to solve problems much faster than classical computers,

and even provide solutions that are impossible by classical computing. However, simulating open

quantum system dynamics on a quantum computer presents a significant challenge, as the time evo-

lution operator of a quantum open system is non-unitary, while quantum gates are unitary. How-

ever, a quantum algorithm based on the Sz.-Nagy unitary dilation theorem has been developed to

convert non-unitary operators into unitary operators in an extended Hilbert space. This algorithm

has been successfully applied to simulate a Markovian two-level model [142] and a non-Markovian

two-level model [143]. The same algorithm was also extended to Lindblad-type quantum master

equations (QMEs) and was used to simulate the dynamics of the Fenna-Matthews-Olson com-

plex [144]. Although this quantum algorithm has been effective in simulating open quantum sys-

tems described by the operator sum representation or Lindblad-type QMEs, there are limitations

to these approaches. The Lindblad QME has restrictive approximations, including Markovianity

and the ensemble of Lindbladian trajectories method involves user selection of system-bath pa-

rameters, limiting its applicability. While the operator sum representation of open quantum system

dynamics is general, it requires knowledge of the Kraus operators.

An alternative route is to utilize a pre-established time evolution superoperator as input for the
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quantum computing algorithm. Then apply the Sz.-Nagy unitary dilation theorem to convert the

non-unitary time evolution superoperator into a unitary superoperator in an extended Hilbert space.

With the dilated and now unitary time evolution superoperator and the system’s initial state, we

can then evolve the dynamics of any open quantum system on quantum computers. In this chapter,

we present various methods that can be used to generate the time evolution superoperator for the

reduced density matrix.

The rest of this chapter is organized as follows. The method to acquire the time evolution

superoperators via the transfer tensor method and directly through the generalized quantum master

equation are described in Sec. VI.2 and Sec. VI.3, respectively. In the next section, we present

the comparison of the time evolution superoperators using these methods. Concluding remarks are

given in section III.6.

VI.2 Generating the Propagator Through The Transfer Tensor

Method

The transfer tensor method (TTM) provides a way to calculate the propagator G(t) for electronic

density matrix:

σ̂(t) = G(t)σ̂(0) . (VI.1)

In the transfer tensor method, the dynamics can be calculated with: [145]

σ̂(tn+1) =
n∑

m=0

Tn+1,mσ̂(tm), (VI.2)

Tn = Gn −
n−1∑
m=1

Tn−mGm. (VI.3)

Tn is the transfer tensor, which measures the correlation between the system at time t and the

system at previous times. In TTM, we assume time-tranlational invariant. This means that Tn−m
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only depends on the length of the time interval, instead of the initial or final time. Recall that the

generalized quantum master equation discussed in Chapter III:

d

dt
σ̂(t) = − i

~
〈L〉0nσ̂(t)−

∫ t

0

dτ K(τ)σ̂(t− τ) . (VI.4)

Comparing the GQME to Eq. VI.2, we can then find connections between transfer tensors and

the memory kernels in GQME. Then with Eq. VI.3, we can use the resulting transfer tensors to

generate the propagator G(t).

To make the connection, we apply numerical integration methods to GQME. The most straight-

forward choice is the forward and backward Euler methods. With forward Euler, the electronic

density matrix propagated by one step can be expressed as:

σ̂(tn+1) = σ̂(tn)−∆t

(
i

~
〈L〉0nσ̂(tn) +

n−1∑
i=0

∆t K(tn, ti)σ̂(ti)

)
, (VI.5)

Tn+1,i =


−∆t2K(tn, ti), i 6= n

I − i
~〈L〉

0
n∆t. i = n

(VI.6)

with ∆t represent the step size, I is an identity matrix.

With backward Euler, the electronic density matrix propagated by one step can be expressed as:

σ̂(tn+1) = σ̂(tn)−∆t

(
i

~
〈L〉0nσ̂(tn+1) +

n∑
i=0

∆t K(tn+1, ti)σ̂(ti)

)
, (VI.7)

Tn+1,i =


−∆t2

(
I + i

~〈L〉
0
n∆t

)−1K(tn+1, ti), i 6= n(
I + i

~〈L〉
0
n∆t

)−1
(I −∆t2K(tn+1, ti)) , i = n

(VI.8)

Another choice of numerical integration scheme is the trapezoidal method. With the trapezoidal
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method, the electronic density matrix propagated by one step can be expressed as:

σ̂(tn+1) = σ̂(tn)− 1

2
∆t

(
i

~
〈L〉0nσ̂(tn) +

n−1∑
i=0

∆t K(tn, ti)σ̂(ti)

)

−1

2
∆t

(
i

~
〈L〉0nσ̂(tn+1) +

n∑
i=0

∆t K(tn+1, ti)σ̂(ti)

)
, (VI.9)

Tn+1,i =


−
(
I + i

2~〈L〉
0
n∆t

)−1 1
2
∆t2 (K(tn, ti) +K(tn+1, ti)) , i 6= n(

I + i
2~〈L〉

0
n∆t

)−1 [I − i
2~〈L〉

0
n∆t− 1

2
∆t2K(tn+1, ti)

]
. i = n

(VI.10)
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Figure VI.1: Comparison of different numerical methods on simulating the population dynamics
for model D of the two-level spin-boson model described in Sec. II.4. The vertical axis represents
the electronic observable σ̂z, and the horizontal axis represents the time with Γ−1 as the unit. Here
we use LSCI to generate the projection-free inputs. The results with the three numerical methods
are presented and compared to the results generated by directly solving the GQME.
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Figure VI.2: Comparison of different numerical methods on simulating the population dynamics
for model D of the two-level spin-boson model described in Sec. II.4. The vertical axis represents
the electronic observable σ̂z, and the horizontal axis represents the time with Γ−1 as the unit. Here
we use LSCII to generate the projection-free inputs. The results with the three numerical methods
are presented and compared to the results generated by directly solving the GQME.

The comparison of these methods is presented in Fig. VI.1 and VI.2. From the comparison,

we observe that only the trapezoidal method can replicate the GQME method well. We note here

that, both the backward Euler and the trapezoidal method require calculating the matrix inverse.

Calculating matrix inverse can be hazardous and is typically expensive. Therefore, although the

trapezoidal method can provide an accurate description, alternative routes to the propagator are

still desired.
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VI.3 Generating the Propagator Directly Through The Gener-

alized Quantum Master Equations

In this section, we will introduce the direct way to calculate the propagator G with GQME. For

the sake of concreteness, we will focus on molecular systems with an overall Hamiltonian of the

following commonly encountered form:

Ĥ =
Ne∑
j=1

Ĥj|j〉〈j|+
Ne∑
j,k=1
k 6=j

V̂jk|j〉〈k| (VI.11)

and an overall system initial state of the following commonly used single-product form:

ρ̂(0) = ρ̂n(0)⊗ σ̂(0) . (VI.12)

The system and bath in this case correspond to the electronic and nuclear DOF, respectively. In

Eqs. (VI.11) and (VI.12), Ĥj = P̂2/2 + Vj

(
R̂
)

is the nuclear Hamiltonian when the system is

in the diabatic electronic state |j〉, with the index j running over the Ne electronic states; R̂ =(
R̂1, ..., R̂Nn

)
and P̂ =

(
P̂1, ..., P̂Nn

)
are the mass-weighted position and momentum operators

of the Nn � 1 nuclear DOF, respectively;
{
V̂jk|j 6= k

}
are the coupling terms between electronic

states (which can be either nuclear operators or constants); and ρ̂n(0) and σ̂(0) are the reduced

density operators that describe the initial states of the nuclear (bath) and electronic (system) DOF,

respectively. Throughout this section, boldfaced variables, e.g., A, indicate vector quantities; a hat

over a variable, e.g., B̂, indicates an operator quantity; and calligraphic font, e.g., L, indicates a

superoperator.

Using projection operator techniques, one can then derive the following formally exact EOM,

or GQME, for the reduced electronic density operator, σ̂(t) [68, 70, 91, 92]:

d

dt
σ̂(t) = − i

~
〈L〉0nσ̂(t)−

∫ t

0

dτ K(τ)σ̂(t− τ) . (VI.13)
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The open quantum system dynamics of the reduced electronic density matrix described by this

GQME are generated by the two terms on the R.H.S. of Eq. (VI.13). The first term is given in

terms of the projected overall system Liouvillian 〈L〉0n ≡ Trn {ρ̂n(0)L} (where L(·) = [Ĥ, ·] is

the overall system Liouvillian and Trn{·} is the trace over the nuclear (bath) Hilbert space), which

is represented by a N2
e × N2

e time-independent matrix. The second term is given in terms of the

memory kernel K(τ), which is represented by a N2
e × N2

e time-dependent matrix. Further details

about the GQME approach are provided in Chapter. III. From Eq. (VI.13), we can obtain a GQME

for the system’s time evolution superoperator, G(t), which is defined by:

σ̂(t) = G(t)σ̂(0) . (VI.14)

Substituting Eq. (VI.14) into Eq. (VI.13) and noting that the GQME should be satisfied for an

arbitrary choice of σ̂(0), it is straightforward to show that G(t) satisfies the same GQME as σ̂(t):

d

dt
G(t) = − i

~
〈L〉0nG(t)−

∫ t

0

dτ K(τ)G(t− τ) . (VI.15)

Thus, given the projected Liouvillian and memory kernels [〈L〉0n and K(τ), respectively], G(t) can

be obtained by solving Eq. (VI.15). The propagator, G(t), can then be dilated to a unitary form

which can be implemented on a quantum computer. The demonstration of this approach combined

with an exact method is reported in Ref. [146].

VI.4 Concluding Remarks

In this chapter, we discussed multiple ways to generate the propagator for the reduced density ma-

trix. These propagators can then be used as an input for the quantum computers to generate the

dynamics for a longer time. The approaches we discussed all arise from the generalized quantum

master equation. The generalized quantum master equation is a general method and does not pre-

sume approximations. This makes GQME a valuable method in developing a quantum computing
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algorithm to describe the dynamics of open quantum systems.

We explored two routes to generate the propagator. The first route is through connecting to the

transfer tensor method, and the second route is directly through GQME. Among all the choices

to generate the propagator, directly through GQME seems to be the most straightforward one.

Even though connecting TTM to GQME seems to be a detour in acquiring the propagator, this

connection provides insights into the similarities between the two methods. Because GQME is

reported to generate accurate results for various types of open quantum systems, this connection

can lead to a new direction of development of TTM to improve accuracy.
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CHAPTER VII

Conclusion

VII.1 Summary

The simulation of the electronic energy transfer and charge transfer dynamics is a topic of consid-

erable interest. The studies in this area can further the development of many fields, including pho-

tochemistry, solar energy, photosynthesis, and photovoltaics. These processes are often described

by open quantum systems. The theoretical studies on open quantum systems can be challenging

due to the large dimensionality, as quantum-mechanically exact methods scale exponentially with

dimension. Methods that apply classical approximations are then of great interest since the approx-

imations can help reduce computational costs. An alternative route to minimize the computational

costs is to reduce the dimension by focusing on the reduced dynamics.

In Chapter II, we described the quasi-classical mapping Hamiltonian methods (QC/MH), which

applied the classical approximations to reduce the computational costs. The mapping Hamiltonian

approach maps the electronic operators to auxiliary position and momentum operators that satisfy

the same commutation relations. This mapping allows one to take the classical limit by applying

Hamilton’s equation. Several mapping schemes were introduced in this chapter along with one

demonstration of the application of the LSCI approach to the two-level spin-boson model. We

found that several QC/MH methods, including modified LSC and SQC, are capable of providing

accurate descriptions for the dynamics of some electronic observables. Most methods, however,

failed to generate accurate dynamics for the two-level spin-boson model. This prompts the alter-
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native route of using the QC/MH methods to generate projection-free inputs for the generalized

quantum master equations.

In Chapter III, the modified approach to the generalized quantum master equation with a gen-

eral choice of projection operator is outlined. In this chapter, the GQME formalism is presented

in the Liouville space, to facilitate the understanding of the effect of the projection operators of

choice. In this chapter, we focused on evaluating the capability of GQME by observing the co-

herence dynamics of the two-level spin-boson model, as the population dynamics were previously

extensively studied.[68–70]. We found that in addition to modified GQME’s well-known capabil-

ity to describe the population dynamics, it can also generate accurate descriptions of the coherence

dynamics, when using projection-free inputs generated using the QC/MH methods, even when the

QC/MH methods failed to generate accurate descriptions themselves.

The capability of QC/MH methods and GQME in describing the two-level spin-boson model

leads to the interest in applying these methods to a wider range of models. In Chapter IV, the ap-

plication of these two methods to the linear vibronic coupling (LVC) model is then presented. The

significance of the LVC model is that it is one of the simplest models containing conical intersec-

tion, as conical intersection plays a central role in many photochemical processes. By comparing

different QC/MH methods’ ability to describe the LVC model, we found an inconsistency of per-

formance, which means that even if a method performs well for the two-level spin-boson model,

it might not perform well for the LVC model. This further suggested the necessity of benchmark-

ing method accuracy with the LVC model. Since the LVC model no longer satisfies the Condon

approximation, we explored the application of non-Condon GQME to the LVC model and found

that the LVC model has long-lasting memory. This arguably leads to inaccurate simulation results

from GQME. Another possible reason for the inaccurate results might arise from the large number

of terms in the projection-free inputs required for the non-Condon GQME. This may lead to the

accumulation of numerical errors.

The Fenna-Matthews-Olson (FMO) complex is the center of many studies, as it is one of the first

photosynthetic systems observed to have long-lived coherences. In Chapter V, the energy transfer
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process for an FMO model was simulated with linearized semi-classical methods and generalized

quantum master equation. The results showed that GQME is capable of describing the energy

transfer in FMO when using LSC methods to generate projection-free inputs.

Quantum computers have the potential to allow faster computation than classical computers.

Developing a quantum computing algorithm for the study of energy and charge transfer process

is then of natural interest. The problem arises from the non-unitary nature of the time evolution

operators in open systems. One route to work around this is to invoke the Sz.-Nagy unitary dilation

theorem to convert non-unitary operators into unitary operators in an extended Hilbert space. In

Chapter VI, various methods to generate the time evolution operators were discussed and com-

pared. We found that GQME has the capability to directly generate time evolution operators that

can be used to propagate a reduced system on quantum computers.

VII.2 Future Directions

This dissertation outlined an introduction, exploration, and application of the QC/MH methods

and the GQME. The application of these methods to various systems was also presented. Future

directions include using these methods to study other systems of interest. Cavity-modified charge

transfer, for example, is one of the processes of interest. It described the charge transfer process

when the molecular electronic and vibrational degrees of freedom are coupled to the electromag-

netic field modes of a cavity. The quantum heat engine and heat pump are also one type of systems

of interest. The engine is composed of an oscillating external field-driven. Open quantum systems

driven by time-dependent fields are an important topic for nonequilibrium thermodynamics as well

as spectroscopy.

Further development of the QC/MH and GQME is another direction. The reduced-

dimensionality GQME that was presented is completed without applying Condon approximations.

It is interesting to develop reduced-dimensionality GQME with the Condon approximation due

to the fact that lots of systems of interest satisfy this approximation. It is also an important sub-
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ject as we observed that the non-Condon GQME requires a significalty large number of terms to

be calculated, which can result in increasing computational costs and accumulation of numerical

errors.
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[127] H. Köppel, W. Domcke, L. S. Cederbaum, Multimode Molecular Dynamics Beyond the
Born-Oppenheimer Approximation (John Wiley & Sons, Ltd, 2007), pp. 59–246.

[128] X. Sun, E. Geva, J. Chem. Phys. 145, 064109 (2016).
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