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ABSTRACT

Artificial Intelligence (AI) and Machine Learning (ML) algorithms are pushing the boundaries
of art-making but are hard to direct to the user’s intention. They broaden the kinds of artifacts
artists can create and can make the art creation process easier and more accessible. For exam-
ple, prompt-based image generation models provide novel ways to generate images with prompts.
Moreover, as prompt-based image generation does not require manual art-making skills, even non-
experts in visual arts can experience producing images. However, AI models are often not fully
steerable to the user’s intention, due to their limited interface and unpredictable behaviors. In this
dissertation, I expand the use of AI models in human art-making by creating effective, effi-
cient, and iterative steering interactions that mix multiple familiar input modalities. In the
first part of the dissertation, I study users and existing creativity support tools to identify how we
should design steering interactions for AI-powered tools. From these studies, I found that steer-
ability should let users effectively specify what is allowed and not allowed from AI models with
efficient and iterative interactions. Moreover, I identified that artists often convey their intentions
about which art to create with modalities beyond those they use to create the artifact. For example,
in visual art commissions, they often accompany textual notes along with image references.

Based on the first two studies, I introduce the design of AI-powered art-making tools that mix
familiar input modalities into steering interactions. With this approach, I created three AI-powered
art-making tools. I designed the first tool, Artinter, to support human-human communication
around art commissions. This tool shows how mood boards and concept-based interactions can
help in the search and generation of reference artifacts. For example, with Artinter, the user can
define their concept of “gloom” in the mood board and use it as a slider to steer search and gener-
ation functions to draw more references that can convey the user’s artistic intention. TaleBrush is
a human-AI story co-creation system powered by generative language models. It allows users to
steer generative language models with a visual sketching of the protagonist’s fortune. For instance,
if the user wants to generate story sentences where the character gradually experiences worse for-
tunes, the user can visually sketch the fortune arc that goes down. With user sketches, TaleBrush
will generate appropriate story sentences. Finally, PromptPaint is a text-to-image generation tool
that expands steering interactions beyond text prompts by adopting visual interactions that resem-
ble how we use paint mediums (e.g., oil painting). For example, users can flexibly explore the
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prompt space beyond what they can verbally describe by mixing the prompts in the prompt palette.
Through these tools, my research demonstrates how AI-powered art-making tools can be more
usable and useful by mixing familiar input modalities into steering interactions.
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CHAPTER 1

Introduction

Advancing artificial intelligence (AI) and machine learning (ML) technologies are changing cre-
ative art-making1, broadening the types of artifacts we can create and the way we create them.
Moreover, AI models can make art-making easier with automation and augmentation, allowing
users to create beyond their expertise. An example is generative models such as DALL-E2 [330],
Stable Diffusion [343], and Imagen [348]. These have caught significant attention in creativity sup-
port contexts, as they are capable of generating artifacts with minimal human input. For example,
large language models are capable of generating stories or other types of text with few lines of user
prompts [44, 329] and diffusion-based models can generate images [330, 348] or videos [373, 407]
based on the user’s textual prompts. These technologies introduce novel interactions to produce
artifacts, while alleviating the required expertise in art-making.

However, many AI models are not fully steerable and configurable to allow “creation” experi-
ences for users. For example, prompt-based image generation models do not allow users to explore
artifacts, objects, or styles that cannot be described through language (e.g., how could we describe
the mixture of cubist and cyberpunk styles?) or offer fine-grained control of generated results (e.g.,
make this image have a bit rougher texture). Moreover, AI models might struggle to follow the
user’s specifications. For example, adding “rough” to the prompt “oil painting” might not result in
a version of the image that has a rougher texture than the initial image. Due to limited interfaces
and unpredictable AI behaviors, these AI models are not yet fully malleable materials to reflect the
user’s artistic intentions.

In my dissertation, I show that mixing familiar input modalities into steering interac-
tions can enhance the use of AI models for art-making practices by facilitating effectiveness,
efficiency, and iteration. The first part of my dissertation focuses on learning how to design steer-
ability for AI-powered art-making tools. I conducted two studies: 1) studying which interaction
patterns users would expect from intelligent art-making support tools and 2) reviewing existing
art-making creativity support tools (CST) regarding how they are designed. For the first study

1I use the term “art-making” to indicate a broad set of activities for making creative, aesthetic artifacts, from visual
arts to music, stage play, visual designs, etc.
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(Chapter 2), I conducted an interview study with 14 artists about their experience working with
other people, considering other people as already-intelligent agents. I expected that people would
likely propagate their expectations of already-intelligent agents to artificial ones. For the second
study (Chapter 3), I conducted a review of the literature on 111 existing tools, investigating the
intersections of roles, interactions, technologies, and users. Based on these studies, in Chapter 4,
I identify that steerable AI tools should allow users to specify what is allowed and not allowed
from the tool, with iterative and efficient interactions. Moreover, I found that artists often leverage
mixed modalities, even those that are not directly relevant to the artifact mediums, to effectively
and efficiently convey their intentions.

Based on identified design lessons, I designed and implemented three AI-powered art-making
tools that mixed familiar input modalities into effective, efficient, and iterative steering interactions.
Artinter (Chapter 5) is a visual art communication system that facilitates the search and generation
of artifacts with mood-board- and slider-based steering interactions. TaleBrush (Chapter 6) is a
human-AI story co-creation system that facilitates steerability by allowing users to control the
generation by sketching out the fluctuation of the main character’s fortune along the sequence of
the story. PromptPaint (Chapter 7) is a visual image creation system that facilitates the use of
diffusion-based text-to-image models by adding traditional paint-medium-like interactions. With
these systems, I show that we can design iterative, effective, and efficient steering by surfacing
complex vector manipulations into steering interactions that combine input modalities that artists
are familiar with.

1.1 AI-powered Art-making Tools

In this section, I provide background and motivation for steerable AI-powered art-making tools.
First, I give an overview of CSTs, which include computerized art-making tools (Section 1.1.1).
Then, I present an overview of human-AI systems and how AI technologies are impacting the
design and use of CSTs (Section 1.1.2).

1.1.1 Creativity Support Tools and AI-powered CSTs

Creativity support tools have been extending human creativity with computational technolo-
gies [364, 365]. Art-making, or the creation of artifacts that have aesthetic qualities, has been
one of the domains with the active development of CSTs.

While researchers introduced many individual CSTs [119], they also tried to understand their
landscape from various points of view. One example focus is the roles of CSTs. For example,
Shneidermann [364] described that CSTs can support four types of roles: collect, relate, create,
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and donate. Similarly, Frich et al. [119] identified the roles that divide the creative process: from
pre-ideation to idea generation, implementation, evaluation, and iteration. Another approach was
to use metaphorical categories to explain the roles of CSTs [292]: 1) running shoes, for augmenting
the artist’s creation actions, 2) dumbbells, for helping the artist learn, and 3) skis, for new types
of expression. While these efforts identify the range of support that CSTs have provided, they tell
less about how new technologies would expand CSTs in their roles and interactions.

What is possible with CSTs is closely related to available technologies. AI/ML technologies
have introduced new opportunities for the range of support these tools can provide. Among them,
generative algorithms can now even be used to acquire ideas and artifacts that users themselves
might not have been able to produce [68, 326]. As AI-powered CSTs (AI-CSTs) with new capa-
bilities can have characteristics different from those built without AI, researchers have begun to
study the design patterns of AI-CSTs. For example, the Library of Mixed-Initiative Creative In-
terface [84, 379] looked into which roles these autonomous CSTs can automate with which types
of interactions. Another research investigated more specific AI-CSTs deployed in public spaces
and identified design implications for such types [252]. A less common focus is on the model of
computer colleagues, where humans improvise with AI-CSTs in real-time with assumptions on
more autonomous characteristics in AI-CSTs [77]. Recent advances in generative models further
emphasize this aspect of automating generation with minimal human input, such as enabling the
generation of images [330, 348] and videos [373, 407] only with textual prompt input. Although
they introduce new opportunities to support human creation, more automation has the risk of lim-
iting steerability in human art-making processes. For instance, as many small details in artifacts
would be decided by the generative AI models, how can we allow users to take control back in those
details? In my dissertation, I investigate design approaches to facilitate steerability in AI-CSTs.

1.1.2 Human-AI Systems

Automation has been one of the core benefits of AI-powered systems, but at the same time, for
the task domains where human agency is valued, automation should be balanced with how much
agency the user would carry [156, 345, 366, 433]. With generative models, AI-CST designers
often try to achieve this balance with steerability or controllability, where humans are steering the
high-level behaviors of machines while automating small decisions. There have been many tech-
nical control approaches in many mediums, from images [330, 348, 361, 412], to texts [75, 390],
audio [134, 178], symbolic music [256, 277], and videos [373, 407]. Their input modalities also
varied, from categorical codes [62, 223] to numerical values [256, 434], examples [239, 382], and
natural language prompts [187, 330, 348, 373, 407, 424]. However, many steering interactions
are often limited in enabling flexible control, like prompts not capable of exploring undescribable
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concepts. Moreover, many tools have not considered the user’s expectations regarding these steer-
ing interactions. To identify design approaches for steering interactions, I begin with a study of
existing tools and user expectations behind intelligent support.
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CHAPTER 2

Artist Support Networks: Implications for Future
Creativity Support Tools

2.1 Introduction

While art-making is often treated as an individual activity, the reality is artists often benefit from
many relationships in the production of their art. Artists leverage the labor, experience, expertise,
vision, and efficiencies inherent in others [25]. These ‘actors’ fulfill many roles: muse, subcontrac-
tor, co-producer, critic, mentor, etc. Taken together, these individuals represent the artist’s ‘sup-

port network’. The artist and the support network ultimately influence the ‘artifact’ to be created,
forming a broader socio-artifact network—a network composed of interactions between the artist,
actors, and the artifact (and its components). In working with the support network, artists cede
some power over their process and rely on their human partners. Such relationships are certainly
not balanced or uniform in the creation of the artifact. There are extreme variations in the levels of
trust, specialization, and power. Additional high-level values such as authenticity, originality, and
personal aesthetics also shape the process of art-making. My interest in support networks, and the
larger socio-artifact networks, is motivated by the evolution of so-called Creativity Support Tools
(CSTs) [118, 292]. CSTs support an extensive range of tasks, everything from coloring technology
for black and white images to AI-based generative software that creates scenery, text, or music. As
newly introduced CSTs would likely influence the artist’s support network by augmenting and
automating the creation process, having a comprehensive understanding of the support network
would aid the design of these CSTs.

My goal in this chapter is to understand the unique nature of human-human art practice through
a study of artists. Conventional art-making practice is complex and nuanced with a range of dy-
namics in power. In one extreme, an artist may simply subcontract some tasks, such as color
correction or printing a photograph. Here, the artist has “dominant” power–the expectation is
whatever they envision or specify will be produced. In contrast, some forms of support are acts of
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co-creation (e.g., co-authoring a book). These relationships would have a different set of dynam-
ics, with more equal power structures. Disputes would require the artists to come to an agreement
on what to create. In between these extremes, we might have a case where a movie director (one
artist) collaborates with a music composer (another artist). The director may let the composer de-
cide on many details or even the high-level direction of the score. However, even between these
two artists, there are unequal power dynamics. The composer will often have the creative power
of a limited facet (the score) of the completed artifact (the film). These are but a sample of the
relationships that exist in art-making.

To understand the broader spectrum of human-human support, I conducted an interview study
with 14 practicing artists from fields ranging from visual arts to music, creative writing, and game
design (with a mean experience of over 9 years). Through semi-structured interviews, I focused on
the artists’ experience of working with others in their efforts to create art. Though I target broad
artistic domains, I identify common patterns in the roles, dynamics, and success (and failure)
stories across these interviews.

The relationships I observed can be viewed as a type of network centered on the artist. Elements
of this network shape the specific piece of art and are often the targets of software designers (in
both academic and industry). Perceptions of ‘inefficiencies’ lead to the design of software that
automates or augments parts of the network. However, in art-making specifically, a tool solely
focused on improving efficiencies may not be desirable. Based on my model of how human actors
play their roles in the artist’s support network, other aspects, such as power dynamics, ownership,
or trust, need to be considered by designers. I hypothesize that CSTs that follow support patterns
familiar to artists would be more likely to be accepted. Through this lens, I offer several insights
into how a subset of CSTs, those that support human-human collaboration (collaborative CSTs)
and artificial intelligence-powered ones (AI-CSTs), can be better integrated.

This chapter contributes a novel perspective of human-human relationships in artistic contexts.
This expands on past efforts, which were often explicitly grounded on technically-focused col-
laborations. For example, sites of prior work included collaborations between technologists and
artists [267] or systems that support online-collaboration [261, 262, 263, 357]. From a wide spec-
trum of art-making domains, my analysis finds an array of relationship types ranging from sub-

contracting relationships to co-creation to mentorship. Through interviews, I identified specific
mechanisms of how these relationships work—higher-level types of support (i.e., those that im-
pact the art and those that impact the artist or process) and dynamics (i.e., whether the supporting
actor can make artistic decisions). Finally, my analysis reveals patterns that lead to successful re-
lationships. Using this analysis as a lens, I offer several insights regarding the design of steerable
AI-powered art-making tools. Artists often work with supporting actors with iterations—they it-
eratively communicate their intents and gradually co-build the artifacts by passing those between
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the artists and supporting actors. Within iterative work, artists tend to receive two types of support
on the artifact: implementation and ideation. Moreover, artists and supporting actors tend to use
communication means of multiple modalities from verbal specifications to references and sketches.
This chapter is based on the paper “Artist Support Networks: Implications for Future Creativity
Support Tools,” published in DIS2022 [65].

2.2 Background and Related Work

Social environments influence creative actors in numerous ways [8, 9, 18, 110], both indirectly
and directly. Indirect influence can include one artist influencing another stylistically [90], or art
collectors shaping a domain through market forces [191]. Other actors more directly influence
the artist and their creative process. The combination of direct and indirect forms parts of what
Becker calls the “art world” [25]. My goal is to understand those interactions in which an artist
can request support. Thus, I restrict the definition of the artist’s support network to only include
those humans that have an aligned goal or in which the artist interacts intentionally and directly. I
exclude elements that may have influenced the artist but not intentionally (e.g., Mozart’s influence
on artists 200 years later).

2.2.1 Human Support for Art Creation

The idea that art-making is social is not new. Significant research has identified the various so-
cial, psychological, and economic processes in which an artist is embedded [24, 25, 190, 350].
In this broad “art world” [24, 25], there is a range of roles–everything from muse to mentor to
collaborative partners to collectors to critics. Within this broad definition, Becker identified the
“collective” process of art-making by which actors provide support in art-making through “divi-
sion of tasks (or labor)” [24, 25]. In some cases, these actors may reflect specialists to which
the artist allocates work (e.g., a color editor or music producer). However, these agents need not
be “subordinates.” For example, an artist’s support network can include peers (e.g., co-authors,
co-composers, etc.). The division of tasks in this context is often a cooperative allocation. Collec-
tive activities are natural for domains that involve many people in the creation, such as movies or
stage plays [24, 25, 350]. However, even for those forms of art that are traditionally considered
‘solitary’, we can find support networks. For example, a poet may benefit from editors and even
type-setters who can help shape the produced work.

There have been efforts to create finer-grained taxonomies within the HCI community around
human support in art-making. The computational aspect in these taxonomies has often restricted
these studies to technological contexts (i.e., artists working with technologists or technology as
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an intermediary between artists). However, some findings can be generalized to broader contexts.
For example, Mamykina et al. [267] focused on types of provided support in the context of co-
work between artists and technologists. The work identified three types of support: 1) creative
concepts like the core ideas and visions about the art piece; 2) construction, like the execution of
the artifact; and 3) evaluation, inspecting if the creation is done according to the vision. Within
HCI, we also find targeted work on situations in which human collaborations are successful or
can be enhanced. These include settings varying from online collaboration [262, 263, 357] to
the co-work of artists and technologists [267, 445]. Generalizable findings within this research
have identified lessons that lead to successful collaborations (e.g., common vision, knowledge
sharing, systems that facilitate communication, or early planning). Compared to these efforts, I
take a more general approach to understanding an artist’s support network. First, I am interested in
those common features that exist across a broad set of artistic domains. Second, I include support
relationships that are not necessarily cooperative or collaborative. These can include a muse or
mentor or even a commissioning agent. As long as these individuals broadly ‘intend’ to influence
the art or art-making process, and the artist intends to get support from them, I consider them as a
part of the artist’s support network. Notably, I expand beyond artifact-centered relationships. That
is, I also consider relationships that can impact the artist directly but the artifact indirectly. For
example, I include those relationships that shape the artist (e.g., mentorship) rather than the art.

Again, I have selected this area of focus as the individuals or roles involved are possible targets
for CSTs. While this chapter’s interviews are only loosely structured, the probe questions and
analysis were focused on identifying and classifying these types of roles and interaction dynamics.

2.3 Research Method

Rather than focusing on a single type of artist or art-making practice, I explicitly sought to inter-
view across domains–visual arts, music, creative writing, etc. My goal was to identify patterns and
differences both within and between artistic domains. By focusing on a broader set of domains, I
identify the wider range of facets of an artist’s support network. Though I recruited professional
artists for my interviews, I tried to vary seniority levels among participants. My hypothesis was
that different seniority levels interacted with different types of support networks. I utilized an ap-
proach that mixed theoretical [289] and snowball sampling [140]. I strategically invited interview
participants based on the intermediate results, focusing on interviewees who could offer alternative
perspectives (e.g., by varying the domain, experience levels, etc.).
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Domain Experience Current Occupation Examples of Created Artifacts
I1 New Music 24 years Composer Commissioned compositions; Personal

compositions
2 years Harpsichord player Accompaniment for other performers

I2 Classical Music 10 years Composer Music for musicals, plays, and other per-
formances

I3 Metal Music 8 years Composer Metal songs and albums
15 years Guitarist Metal stage performances; Featuring on

songs of other artists
I4 Metal Music 18 years Composer Metal songs and albums

22 years Guitarist Metal stage performances
Screen Printing 4 years T-shirt printer T-shirts for own and other bands

I5 Choral Music +20 years Composer Commissioned compositions for choirs;
Personal projects for performances

Showbiz Music 23 years Music Editor Editing on TV or film music and sound
I6 Video Exhibition 5 years Video/Music Creator Commissioned exhibitions for galleries

Indie Electronic Music 7 years Composer/Performer Electronic music songs and albums;
Electronic music performances

I7 Visual/UX Design 3 years Visual/UX Designer Visual designs for software applications
I8 Visual/3D Design 2 years Visual/3D Designer Visual designs for software applications;

3D modeling work for other artist’s
project

I9 Independent 3 years Animator Independent animations for film festivals
Animation

Visual Design 8 months Visual designs for book covers; Ani-
mated emoticons

I10 Video Art 1 year Fine Artist Arts for exhibitions, including drone
video arts

Exhibition Art
I11 Visual Art 2 years Visual Artist Toreutics (metalworking); Visual arts for

exhibitions; An illustration book
I12 Games Art 3 years Games Artist Graphic assets in games

YouTube 3 years YouTube Creator YouTube videos
I13 Game Design 3 years Game Designer Mechanics and level designs in game

Game Developer Programming and implementation of
game

I14 Creative Writing 12 years Creative Writer Novels; Interactive novels
Indie Pop Music 6 year Composer Indie pop songs and albums

12 years Guitarist/Vocal Indie pop performances

Table 2.1: Background of interviewees.
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2.3.1 Participants

Table 2.1 details the 14 artists who participated in interviews. As some artists worked in multiple
mediums, participated interviewees covered 20 unique domains. These range from music to vi-
sual arts, visual design, exhibition art, game design, and creative writing. All interviewees were
currently active in at least one domain and had one or more years of experience in their ‘primary’
domain (experience across domains ranged from 8 months to 24 years). While I did not pre-filter
interviews based on collaboration experience, all interviewees had worked with others for some
part of their creative workflow.

2.3.2 Interview Protocols and Data Generation

I conducted semi-structured remote interviews (a mix of audio and video calls based on the in-
terviewee’s preference). On average, interviews lasted an hour and ranged between 35 and 100
minutes. Interviewees were paid with a $20 gift card. Interviews were recorded and transcribed
with additional notes taken by the interviewer during the call. Interviews were analyzed using
constructivist grounded theory (detailed below).

While I allowed my interviewees to largely direct their focus, I specifically probed human
relationships as part of the artist’s networks. Specifically, I was interested in the dynamics that
artists have with other people1. I specifically asked about motivations, mechanisms, successes, and
failures from support experiences.

While I primarily focused on situations when the artist was ‘central’, participants were also free
to describe occasions when they fulfilled supportive roles for others (e.g., when they acted as a
sub-contractor). I consider both dynamics important. As I describe below, the notion of centrality
in this network, or of being the ‘main’ artist, relates to power dynamics. One can view the artist
support network as an egocentric social network centered on the main artist (i.e., the “ego” in an
ego-network). In my definition, the main artist carries more decision power and gets the majority
credit for the art piece (often receiving top billing or ‘solo’ credit). To simplify my naming, I
will use actor to refer to those people in the artist’s support network (these are referred to as the
“alters” in an ego-network). In the pair of main artist and actor, the actors most often have less
power, less creative control, and less credit (though in some rarer cases both individuals may have
equal power or credit). I limit actors to those individuals who have some bi-directional interaction
with the main artist. This excludes people who might be an influence on the main artist but are in
a different artistic generation and have never interacted. In this model, it is often the main artist
who ‘activates’ the engagement with the actor. While I use the simplified ‘artist,’ I note that some

1Note that I did not use the phrase ‘support network’ during the interview. I did not want my participants to fixate
on the idea of a social network or only those individuals that met some restricted model of ‘support’.
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individuals did not regard themselves as such, preferring designer, creative, etc.

2.3.3 Analysis Method

I used constructivist grounded theory [137] to analyze the interviews and derive a theoretical
model that can explain the artist’s support network. While traditional approaches of grounded
theory allow little prior knowledge [136], the constructivist version allows researchers to bring in
prior perspectives when making interpretations to construct theories [385]. Adopting construc-
tivist grounded theory, I considered prior work on support provided by actors when conducting
data collection and analysis. I also considered my scope of support network and actors that I dis-
cussed above. While the prior knowledge of CST systems likely influenced the interview analysis,
I did not use taxonomies from that space explicitly. Instead, I focused on those roles and dynam-
ics highlighted by the participants from their existing support networks. For the analysis, I and
another author conducted the theoretical coding. Specifically, we conducted open coding, axial
coding, and selective coding in different stages. Different artist comments were first placed on
cards. We grouped these comments according to each art-making experience that artists had with
actors. Within each experience, the authors collaboratively performed low-level coding. Differ-
ent experiences were compared, and those with similar codes were merged, forming categories of
experiences. These categories resulted in a set of relationship types within an artist’s support net-
work. Relationships that only exist in a single domain have been excluded as we aimed to identify
support patterns general across art domains. Through analysis, we identified patterns of interaction
shared between relationship types (e.g., similarities between subcontractors and featured artists).
From these, we determined higher-level codes about provided support and success conditions. We
conducted this process while continuing our interviews, testing intermediate theories against new
data [289]. We noted patterns of interactions between artists, actors, artifacts, and provided support
for different support relationship types. As I describe in a later section, these interactions could
be modeled as a socio-artifact network (i.e., the people and artifact components) with a ‘support
network’ at its core (the human social network). As such, taking inspirations from social-technical
software network [403], I decided to model these interactions in graphical format (see Figure 2.2).
I derived the specific format based on the analysis.

2.4 Results

The analysis revealed a range of relationships between artists and members of their support net-
work. Within these relationships, I focused on four broad facets: 1) The specific ‘support’ provided
within the relationship (e.g., implementation, ideas, management, etc.); 2) the relationship types
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Figure 2.1: A summary of the support types identified through our study. Artifact-influencing
support directly contributes to artifacts, while artist-influencing support impacts the artist or the
creation process. The arrows on the left indicate possible feedback and controls. Though the
dynamics vary, artifact-influencing support (i.e., implementation and ideation) are influenced by
the artist (self), their collaborators (actors), or tools around artists and the actors. Among the artist-
influencing support, managing impacts creation through the management of actors and tools (a
meta-role), while teaching impacts by artist’s self-improvement.

(i.e., real-world categories, like ‘sub-contractor,’ which are often determined by the artistic com-
munity); 3) the dynamics of the interaction (e.g., power dynamics, ownership, etc.); and 4) the con-
ditions for success. While taxonomized separately, these facets interact in complex ways. Clearly,
any particular relationship can consist of multiple types with a spectrum of provided support and/or
dynamics. For example, one type of relationship (e.g., ‘featuring’2) could provide multiple types
of support (e.g., providing skills and ideas–in this case, lyrics and vocal support).

2.4.1 Support Provided in the Artist’s Support Network

Participants described various supports provided when interacting with other actors. These fall
into two main categories: artifact-influencing support and artist-influencing support. Artifact-

influencing support impacts the art piece itself and include implementations and ideas. An al-
ternative way to view these specific categories is from the artist’s perspective. They are things
that are often limited or exhaustible for the artist when creating an art piece. I contrast these to
artist-influencing support which includes managing and teaching. Artist-influencing support can
be viewed as more ‘meta’ as it influences the properties of the artist (e.g., enhancing their skills
or teaching them new techniques) or impacts the artistic creation process (e.g., managing the rela-
tionship and interaction among subcontractors). Within each of these categories, I observed a few
specific sub-categories based on what form the influence actually took. Actors sometimes provided

2In music, ‘featured’ artists are often those providing vocal or instrumental support to a track created by another
artist. A featured artist may be famous in their own right.
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support in the combination of types (e.g., implementing while also giving some ideas). Figure 2.1
summarizes my high-level categories.

2.4.1.1 Artifact-influencing: Implementation

Artists indicated that when they could not do an implementation task due to a lack of resources,
they would recruit from their support network. Participants mentioned two types of specific imple-

mentation support: expertise and labor.
First, artists leveraged support from others when they lack specific, specialized expertise. When

expertise-wise support was required, often, my participants were involved in interdisciplinary ef-
forts, such as games or videos. For example, when I10 needed to use a drone to take a video of
a drawing on the beach, they drew on help from a specialist who “had more experience working

with a drone”.
Even when an artist themselves possesses the expertise to do something, they might lack the

time or other efficiencies (i.e., a comparative advantage). In this case, the expertise becomes a
substitute to the artist’s own skills. I refer to these relationships as providing labor support. In
many situations, artists wanted other people to do a task if it required a lot of human effort. My in-
terviewees indicated that this happened frequently in industrial settings. I12, a game artist, noted:
“I guess regarding, specifically for collaboration, in the industry, collaboration is absolutely nec-

essary just because, the amount of work, like, there is no way you could get through everything by

yourself.”

2.4.1.2 Artifact-influencing: Ideation

In interviews, ideation was often described as support that was distinct from implementation.
Artists described ideation as providing exposure to novel ideas and generating inspiration. For
instance, I14 described how their close exchange of ideas with others can lead I14 to reach “in-

teresting junctions” and “surprising things”, that I14 “wouldn’t do normally”. Related support
leverages others’ opinions as a type of critic to provide feedback on a specific artifact. For example,
I13, who is working in a game company, used in-company feedback to decide which parts of the
game needed to be improved most quickly, and which projects were worth continuing. The rela-
tion between ideation and implementation would seem analogous to that of supporting designer’s
‘thinking’ and artifact-wise ‘outcome’ from Stolterman and Selvan [384]’s work on designerly
support. While Stolterman and Selvan considered that ‘thinking’ does not contribute to the arti-
fact outcome, I took a different perspective that ‘ideation’ also contributes to the formation of the
artifact.
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2.4.1.3 Artist-influencing: Managing

The managing support category is often centered on organizational help. For example, I13 noted
how the CEO in their game company makes major decisions about who works in which team. The
CEO was not necessarily the main game designer (the central artist in this scenario). However,
they helped organize the artist’s support network to execute the vision. This may be in dividing,
or enabling the division of providing of labor, expertise, and ideation to certain individuals in the
network. Those who provide managing support can also recruit other people or acquire tools,
expanding the artist’s network. For example, I9 mentioned the role of an animation production
studio as follows: “They support me with things that I need. For example, . . . I ask if they can

support me with the creation of the file, then the producer says like ‘oh I can try to find a person

who can work on that in the studio”’.

2.4.1.4 Artist-influencing: Teaching

The second artist-influencing support is teaching. This support was often in the form of educating
the artist on a new technique, tool, or style. As the result, artists may gain expertise, efficiency for
labor, and ideas. Artists described that learning would sometimes happen through demonstration.
For example, I5 recalled learning composing techniques from a mentor, who demonstrated how
various styles could be applied to one theme.

2.4.2 Relationships and Dynamics

Having defined the provided support, I now introduce the cross-cutting relationship types in the
artist’s support network (Figure 2.3). Some of these were the formal names or job titles of the
people that formed these relationships, which were used for crediting purposes. For example, a
‘featuring’ relationship has a specific meaning in the context of music production (another artist
that acts as a guest performer). These names often have a constructed, or even legal, meaning to
different artistic communities (e.g., ‘compilation’ is something different in music and literature).
As such, I highlight the different dynamics that emerged in interviews with artists when reflecting
on relationships.

I attempt to graphically represent each relationship type (Figure 2.2): which types of support
are provided by whom (artist or actor); how much is each individual providing (and in what form–
idea or implementation) towards the artifact; and is the support directed at the artist or artifact.
The pieces of this socio-artifact network were partially inspired by social-technical software net-
work [403]. My models include the artist and the support network (composed of actors) as PEOPLE

nodes. They also include ARTIFACTS to be created. These models indicate support relationships
with the PEOPLE nodes and edges from them. Artists and actors are connected with edges based
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Figure 2.2: I describe socio-artifact networks with relational graphs of PEOPLE and ARTIFACTS.
Artists and actors provide the support that impacts artifacts (ideas and implementation, with blue
edges) or each other (ideas and teaching, with red edges). Actors also can provide ‘managing’
support to the artist and other actors (purple edges). The amount of an idea or implementation
each person provided to the artifact is color-coded in the artifact diagram. The contributions made
by the artist are in light teal for ideas and dark teal for implementation. For contributions from the
actor, I use light yellow for ideas and dark yellow for implementation. The gradient indicates a
‘range’ of values.

on which types of SUPPORT are provided from one to the counterpart (red and purple edges in
Figure 2.2). Red edges stand for providing ideation or teaching to the counterpart. On the other
hand, purple edges indicate managing support. Note that the artist would also provide SUPPORT

to the actor, in order for actors to accomplish SUPPORT that the artist wants.
ARTIFACTS are usually of one type. Though I could conceivably break the artifact into sub-

pieces—as one might do in a socio-technical model—I did not find this kind of modularity in-
formative (e.g., how does one modularize a printed photograph? or music recording?). The only
exception is when multiple ARTIFACTS from multiple artists aggregate to form a meta-artifact, an
idea I return to. ARTIFACT nodes are connected to PEOPLE according to the direct contributions
to the creation of the artifact, which can be ideation or implementation (blue edges in the figure).
The blue edge from actors represents SUPPORT to the artist. The width of edges indicates the
amount of support or contribution made from the tail of the edge to the head. The colored glyphs
inside ARTIFACTS nodes indicate how much of the ideation or implementation was contributed
by the artist or actor. Teal indicates contributions from the artist and yellow indicates those from
the actor. These colors are expressed in a gradient in glyphs to show that there can be a range of
values in contributions. For example, subcontracting may include more or fewer changes to the
artifact based on the kind of subcontract. While I focus on describing relationships between one
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Figure 2.3: Diagram of relationships in support network. Support relationship types are described
as relational graphs between artists, actors, and artifacts. The width of edges indicates the amount
of provided support. The amount of idea- and implementation-wise contributions made by the
artist and the actor to the artifact is denoted with gradient glyphs.

artist and one actor, multi-actor situations can be described with the combination of one-on-one
relationships. While I identified the sense of ownership felt by the artist or the actor, I did not
indicate it in the diagram. Note that the concept of ownership is relevant to other artistic values
such as authenticity [296] and authorship [276].

2.4.2.1 Subcontract

A subcontract is a relationship where the main artist has a ‘target’ artistic idea, but needs imple-

mentation support such as expertise or labor to realize it (Figure 2.3a). Subcontractors are often
specialists (e.g., a film editor), but they need not be. In subcontract interactions, artists convey their
ideas about what to create to actors, and the actors directly implement the requested part of the arti-
fact. From the actor’s (i.e., the subcontractor’s) perspective, they are given a specific and separable
task. For example, I11 described the experience of asking material shops to do a task for toreutic
(metalworking) pieces: “To a certain stage, I do things by myself, then, I bring those and explain

to people there [material shops], things like, ‘I need this, this, and this, so please work on these

processes’.” In the final artifact, only a small portion of the implementation is perceived as coming
from the actor. More critically, they are not perceived as contributing much to the idea/vision of
the artifact. While creative freedom is limited for the actors, sometimes, they provide feedback to
the artist (e.g., technical feasibility). It is particularly true when the actor may have more expertise
than the artist. I11 reflected: “There are cases where I thought the thing would work, but the thing

actually does not work from the engineer’s perspective . . . If they tell me technical conditions like

‘this should be done in this way’, I try to fit into those conditions, or I revise my own plan.” In
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this support relationship, the actors tend to have a weak sense of ownership. For example, I9 did
not feel a sense of ownership when they participated as a subcontractor on a specific project. The
participant reflected on how they had no freedom and could be replaced by anyone with similar
expertise.

2.4.2.2 Featuring

In featuring relationships (Figure 2.3b), the main artist asks the actors (often another artist) to
create their own part within the main artist’s piece. The artist anticipates (and expects) actors
to create elements that artists cannot due to lack of expertise or differences in styles and ideas.
Unlike subcontracts, featuring relationships mean that while the artist leads the overall idea and
implementation of the artifact, actors will be given a small section of the artifact where they can
exert their ideas and implementations. In the cases where the ‘guest artist’ (i.e., the featured actor)
might be more famous than the ‘main artist’, the actor’s power may be significant. In featuring
relationships, the main artist often benefited by dividing labor. While the idea of featuring, or
guest artists, is most common in music, there are analogous relationships in other domains. For
example, I8 shared the experience of working in a web-application company as a graphic designer:
“The overall plan and design are done first, like, UI designers and directors do that first. . . . For

decisions like ‘where to put which graphics’, I do not carry much decision powers. However, in

terms of ‘how to express the graphic in which way’, I could make more decisions.” I note that the
specific name (‘featured’) was rarely used outside of music. Additionally, I found that analogous
relationships tended to provide less freedom to actors in non-music domains. However, a key
distinction of this relationship that was both common across domains and also distinguished it
from sub-contracting was that the actor’s ideas tended to influence and shape the ‘vision’ of the
final artifact. While the actors did not contribute to the whole art piece, they did retain some
ownership, at least for parts they contributed. For example, I12 noted the attachment towards
game artwork on which I12 contributed core ideas and manual efforts, even though that was a
small portion of the final game.

2.4.2.3 Co-creation

Co-creation is a type of support relationship where there is little to no distinction between the
main artist and the actor (Figure 2.3c). Artists involved in co-creation thought of it as a form
of close collaboration. They collaborate for many reasons, including complementing each other’s
expertise, dividing labor, and exchanging different ideas. All team members contribute to the ideas
and implementation of the artifact, to a similar amount. Hence, all members tend to work closely
throughout the whole creation process. This is not to say that team members don’t sub-divide the
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work or focus areas (due to differing levels of expertise, experience, interest, etc.). As artists and
actors work closely, they actively communicate ideas to each other. For example, I14 mentioned the
experience of writing a story on an interactive art that includes 3D modeling of fairytale characters:
“So, it begins with talking with them [3D modelers] about how they’re thinking about the project

. . . And then once you see the model, you kind of see like, how aesthetically they’re thinking about

the creature that we picked . . . Then, you can start to write a story that will fit the aesthetic that’s

present. So it goes back and forth like that. So, one person makes something, one person explains

it, they try to fit and then they adjust them until they come together better.” Artists generally
mentioned that they shared ownership with team members. It was sometimes hard to draw a
specific line that distinguished if a relationship was a subcontract, featuring, or co-creation. For
example, just how much of the artifact’s final vision came from the actor to make ‘featuring’ into
‘co-creation? Though in music, these may be resolved through a legal definition, this is not always
the case. An alternative view is that even though the extremes are obvious, these three types can
be viewed on a spectrum with fuzzy boundaries.

2.4.2.4 Compilation

Compilation is another relationship type without a clear distinction between the main artist and
the actor (Figure 2.3d). Artists also thought of this support relationship as a close collaboration.
In compilation, artists with similar ideas or styles gather together and present their creations in
one meta-artifact, which includes all artists’ artifacts, such as an exhibition or performance. In
this relationship, artists can exchange ideas to agree upon the topic of the meta-artifact or how
to structure it. While each artist work on their own artifact, they can collaboratively contribute
their ideas and implementation efforts to weave individual artifacts into one meta-artifact. On
each individual artifact included in the meta-artifact, the artist would receive idea “contributions”
from the actor while the artist would implement their own artifact. For example, I10 exhibited a
piece with another artist, only collaborating for “figuring out the common theme for the show” or
exchanging ideas, but not for the artwork itself. A meta-artifact, on the other hand, would receive
a similar amount of idea- and implementation-centered contributions from all involved. As each
piece in the meta-artifact is presented under the name of a single artist, the sense of ownership for
their specific piece would be high.

2.4.2.5 Management

In management relationships, the main artist gets managerial support from the actor (Figure 2.3e).
For example, I9, who is an independent animator, got support from a producer to raise funds
and manage necessary human resources. Note that managing in Section 2.4.1.3 is a category
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for a type of support, while management is a type of relationship that include managing as one
type of provided support. As such, actors in management roles might also make idea-focused
contributions. This contribution from the management actor usually made a significant impact on
the artifact. For example, I9 described the experience of working with the animation producer. I9
had “the leading power”, but “had to also consider the producer’s interest, taste, and options”.
The amount of support would decide how much power actors carry. However, the actor would
rarely make direct contributions like implementing the artifact. The significant contribution on
ideas also affected the sense of ownership, the actor taking some portion of it from the main artist.

2.4.2.6 Inspiration/Critique

Support also happens when the main artist seeks inspiration or critique from others (Figure 2.3f).
Inspirations and critiques can happen by the actor giving ideas to the artist. For example, I1 noted
that exchanging ideas with other composers could be helpful as they have ideas on “totally different

directions, from which you can get benefits”. In this support type, main artists can decide whether
to accept provided ideas or not, while actors would have freedom on which ideas to give. For
example, I13 mentioned that when analyzing feedback on developed games, as there are “many

types of users”, I13 tries to identify from which types of users the feedback is helpful. As the actor
does not directly contribute to the artifact and as the artist makes decisions on whether to accept the
actor’s ideas, the actor would have almost no sense of ownership of the main artist’s piece. Unlike
inspiration, critique requires the actor to observe the artist’s artifact, as the actor needs to give
feedback on it. Note that, in these interactions, we only considered cases where the actor intended
to help the main artist (and the artist solicited this advice). This is in contrast to a newspaper critic.
In that situation, the critic is providing unsolicited feedback. Moreover, the target of their advice
is not the artist specifically, but their readers, generally.

2.4.2.7 Mentorship

Mentorship (Figure 2.3g) is the support relationship type where the main artist seeks skill-, career-,
and creation-wise development from the actor, or the mentor. The support usually happens in the
form of transferring knowledge (teach) or giving feedback and suggestions on directions (ideation).
For this support type, specific dynamics can differ a lot based on how much authority the actor has.
For example, I1 mentioned that in classical music performance, as “there are more standardized

styles and conventions”, mentors would tend to “have the authority” to give feedback to students.
On the other hand, for cases where peer colleagues do a single-time session to teach each other,
due to less authority from peers, the actor’s power on the creation would be much smaller. In this
relationship, the actor can contribute ideas (to a varying degree based on the authority the actor
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has), but not implementation-wise contributions to the artifact. As the powers of the main artist
and the actor largely depend on the extrinsic factors, the sense of ownership would also depend on
it. In some cases, through mentorship, artists shift the ‘bundle’ of people and tools in their network,
which is a type of managing support. For example, I4 learned T-shirt printing by attending a local
workshop on screen printing. This mentorship experience might lead to new people and tools
being integrated into the support network. For example, having learned screen printing, the artist
might want to recruit help to produce multiple versions of the shirt. Unlike a critique interaction,
a mentorship is often long-lasting. However, as with subcontracting/featuring/co-creation, these
relationships may fall on a spectrum.

2.4.3 Frictions and Conditions for Success

Given the various combinations of supports, interviews revealed various frictions and solutions
that made these relationships fail or work. I found that frictions were largely due to two categories
1) having different styles, values, or levels of knowledge, and 2) external factors, such as social
dynamics.

2.4.3.1 Artistic Frictions: Different Artistic Values and Knowledge

Artists often have different artistic styles, expertise, ideas, and perspectives. While an actor’s
diverging perspective can be inspirational, interviewees noted that it also can be the source of
disagreement and blur an artist’s own vision. For example, I7, a visual designer, mentioned the
difficulty in collaborating with another designer: “If we discuss ideas only based on our own design

styles and tastes, the process of giving feedback fundamentally becomes subjective. Furthermore, if

we have some sort of pride in our own designs, it would be harder to exchange opinions.” Similarly,
I11 noted critiques from diverging perspectives can negatively affect a work: “When there are too

many people giving critiques, my direction can change to an unintended way. Like, I assumed

that a certain thing is important, but there can be people who mention other things as important.

So, such things can be a difficult case.” My interviewees suggest a number of approaches for this
friction type.

Trust in Understanding Styles and Values A common theme described by artists to resolve
friction was building trust and understanding of each other’s styles and interests. Styles and values
underlying art pieces are crucial to the artist, as they are closely relevant to one’s originality and
personal aesthetics. Artists often build this shared understanding by having iterative and repeated
co-work experiences. For example, after doing some rounds of collaboration with a friend, I10
“knew that it would be super easy to collaborate”. Sometimes, artists described converging on
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a similar taste or color. This approach was mostly mentioned for support relationships where the
main artist and the actor exchange ideas about the artifact for a extended duration of co-work
(featuring, co-creation, compilation, management).

Trust in Skills and Quality Artists mentioned that having an actor with better skills and more
experience would sometimes positively influence the interaction. In particular, familiarity with the
other artist’s work helped to manage expectations. For example, I5 indicated that when a chorus
gives commission to composers, they prefer those with known skills and experience. That is, they
would not hire someone who does not understand “technical problems”, or would write a piece
that “cannot be sung”. This solution was frequently brought up for relationships where the actors
directly contribute or impact the artist’s artifact (sub-contract, featuring, co-creation).

Communication Most support types benefited from iterative communication. Through effective
communication, artists could define and scope the relationship and reach agreements. For instance,
I7 indicated that when disagreements arise within a team, the team “had an open discussion and

listened to others, to reach the agreement”. However, there could still be difficulties in commu-
nicating the direction of art: the ambiguity of communication means. While ambiguous verbal
languages can be an effective means to convey rough, high-level ideas, with them, people could
also perceive one idea differently. While artists can use jargon to overcome this challenge, they
would not be able to express all ideas. Moreover, jargon is limiting when artists from various
fields work together. For example, I2 noted the difficulty of communicating musical ideas: “When

musicians are talking to each other, ‘Increase half key’, like this, we communicate with musical

languages . . . However, apart from that, we frequently use adjectives to explain things. Like, ‘let’s

go a bit shy’, ‘this part should be raving’, or, ‘let’s go with tight sound’. Then, everyone somehow

has some ambiguous images about these words . . . If collaboration happens with other genres, I

think this problem can be even bigger.”

One approach to overcome the challenges of ambiguous language is to use references or sketch

ideas. For example, I3 mentioned that when recording a guitar track for others, I3 would “record as

many things as possible” to reach the agreement. If it did not work well, I3 and collaborators would
“bring references” and “play as much similar as those [sic]”. For this approach, iteratively using
slightly different versions of references and sketches could help, as such small differences between
those versions would highlight the directions that the artist and the actor can agree upon. However,
these approaches can be difficult when the cost of finding references or creating sketches is highly
significant. I12 described a situation in which the game company asked people to implement many
ideas about the game arts. This led to “so many extra artworks generated but never get used

in the final game”. Furthermore, references can still be perceived ambiguously. For instance,
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I2 mentioned the experience when a movie director shared a video as a reference for composing
background music: “What the person got was more about the combined image of all factors within

the video. . . I would only refer to the music of it, and I would create a music piece based on it. But

when the reference is separated in such a way, it can be perceived in a very different way.”

Concentrating Power A solution to frictions caused by value and style differences is to concen-
trate decision power on one artist. One mechanism is to allow the main artist to explicitly filter
decisions and selectively accept other ideas based on their own criteria. This approach is common
when there is a significant critique or inspiration by a collaborator. For instance, when I13 was
designing a casual game for a broad set of the audience, I13 did not consider feedback from a
hardcore gamer as critical.

Another mechanism for concentrating power is dictating. With this approach, one artist would
give clear specifications and highly constrained authority to actors. For example, I9 mentioned that
when asking others for manual tasks, I9 would hand out “a method sheet”, or “a manual” about
how the task needs to be done. This specific approach would work for tasks that do not require
creativity from actors (subcontract). Based on how much authority each artist has, the level of
control that can be imposed on the support relationship would differ. For example, I1 stated that
in the classical music domain, conductors’ power to performers is “absolute” and they usually
“carry all the power” about the interpretation of the song, and thus have ultimate say on what
each performer does.

A final alternative is to simply relinquish all decision-making power to the actors. This approach
would be most effective when the actor contribute both ideas and implementation on a co-created
artifact (featuring, co-creation). Artists tended to use this approach when they had clearly different
expertise or tasks. Power can be distributed in such a way as to reduce overlap. For example, I6’s
exhibition team had few conflicts as “the separation of the roles is quite clear”. It is important
to recognize that moving power–either to the main artist or to the actors–may often make matters
worse when working with other people.

2.4.3.2 Extrinsic Frictions: Additional Factors

Some frictions emerged from extrinsic factors. I identified three types of non-artistic frictions: 1)
unfair relationship, 2) insufficient resources, and 3) personality. While interviewees mentioned
problems caused by non-artistic factors, they did not mention many solutions for them.

First, unfair relationship can lead to imbalanced work-credit allocation (too much work, too
little credit; too little work, too much credit). For example, I9 reflected that freelance visual de-
signers are vulnerable to unfair contracts, which do not specify “how many rounds of iterations

are allowed” for the requester. In these situations, freelancers would often overwork, as requesters
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might ask for revisions until they are satisfied. Likewise, I12 mentioned that in the game industry,
even though artists do “a lot of things in the company”, only “the tip of the iceberg” would be
released, and artists would not have clear credit for what they did.

Second, lack of resources from actors also causes problems. An actor might not be able to
invest enough resources to help the main artist. For example, I14 mentioned he did not get much
help from his mentor in the educational program as the mentor was “busy” and had “a lot of stuff

going on in his life”.
Third, each artist’s or actor’s personality also can be a source of friction. For instance, I4

mentioned that it was hard to collaborate with a band member who had a different work ethic, who
“does not appear on the concert day” and “does not come to the practice sessions”.

Limited Solutions While interviewees brought up problems caused by non-artistic factors, they
did not describe many solution approaches for them. In many cases, the solution may have just
been to sever the relationship and not work together in the future. In some situations, the required
changes were outside the scope of the support relationship, requiring higher-level changes (teams,
societal, etc.). For example, I9 mentioned that the fair contract for freelancer visual designers
should note that “the price would be different according to the rounds of feedback”. I9, however,
was less optimistic about it due to the entrenched convention of paying artists little. The only
realistic approach that could be done by the artist was to ‘give up’ on certain things. For example,
I12, who works in the game industry, mentioned: “As for my, like, personal value, I do like drawing

stuff from the beginning to the end. But in order to work in the industry, that’s something you cannot

have, or acquire.”

2.5 Discussion

2.5.1 Informing the Design of CSTs

The analysis identified different aspects of artist support networks: types, support provided, dy-
namics, and success conditions of relationships. My interest in these features is specifically mo-
tivated by how they might inform CST design. In some situations, a CST may be designed to
replace, partially or fully, a human actor that was previously part of the support network. In these
situations, it is useful to understand the dynamics and function of these existing relationships. In
other cases, a novel CST may augment or automate some work the artist currently does. Here, it
is valuable to acknowledge the mechanism by which agents come into an artist’s support network
and what makes those relationships work. Finally, though it may not be the goal of a CST designer
to directly map to an existing human actor, there is always the potential that artists will evaluate
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these technologies through an anthropomorphic lens. Thus, human-human interactions in a sup-
port network are highly likely to shape the artist’s perceptions and acceptance of a technological
tool.

To make this more concrete, I first focus on how findings can inform the design of steerable
AI-CSTs. Then, I focus on two CST types: AI-CSTs and collaborative CSTs. The first category of
interest is AI-CSTs, or CSTs powered by AI. As these CSTs can potentially automate some roles
played by actors, the artist might expect these tools to have interaction patterns similar to those
of human actors. The second category, collaborative CSTs, enables the involvement of multiple
individuals in the creative process. The tools directly act on the artist support networks themselves.
Thus, patterns found in support networks can inform how technologies should be designed to have
the highest chance of success when embedded in those networks.

2.5.1.1 Informing Design of Steerable AI-CSTs: Iteration and Multiple Communication
Means

From how artists get support, we could draw some aspects that lead to the design approaches
for steerable AI-CSTs. At a high level, artists and supporting actors tend to steer each other’s
behaviors so that what the counterpart does falls within their expectations. Communication of their
intents and exchange of idea-wise contributions would be the main means to steer the counterpart’s
behaviors. Such steerability would also be expected in the use of AI-CSTs, whose behaviors can
potentially fall out of the user’s expectations as they provide autonomous functions, such as the
generation of artifacts. In addition to the general need for steerability, I could also identify two
specific lessons for designing steering interactions. First, AI-CSTs would need to facilitate iteration
in steering interactions. When people communicate intents and build artifacts out of what they
communicated, they tend to work iteratively, having another round of communication and building
after seeing the intermediate version of the artifacts. It is because single-shot communication and
support are not often enough to satisfy the artist, as their languages and ideas tend to be under-
defined. Users of AI-CSTs would experience similar issues with under-defined languages and
ideas. For example, for those tools that generate a portion of the artifact, the user might input
loose specifications on the artifact to be created if they expect some interesting surprises. Hence,
the design of AI-CSTs should consider facilitating iterative steering interactions. Second, AI-
CSTs can leverage multiple modalities so that users can effectively communicate their intentions.
For example, artists and supporting actors often use multiple communication means, from verbal
descriptions to references and sketches. Each of them has its advantages and disadvantages. For
example, verbal descriptions can be easy to specify, facilitating the iteration, but can be ambiguous.
On the other hand, references and sketches can be effective in conveying concrete meanings, but
they can be costly to collect or create. When used together, these communication means would
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potentially complement each other’s limitations and facilitate communication. In AI-CSTs also,
users would convey their intentions more clearly by using multiple input modalities. In summary,
assuming that users would likely expect dynamics similar to what they have experienced with
already-intelligent agents, people, AI-CSTs would need to be designed with considerations on
iterations and facilitating multiple input modalities. We expand this discussion on iterative steering
and multiple modalities as a design element in Chapter 4.

2.5.1.2 Informing Design of AI-CSTs

Apart from implications for iterative CSTs, the analysis of human-human networks can give ad-
ditional insights on how artificial agents should be designed to replace or supplement human col-
laborators. This is critical, as designing AI tools has led to long debates on how automation and
control should be balanced in human-AI systems [156, 257, 345, 366]. To help designers resolve
these tensions, researchers have proposed various high-level guidelines for developing human-AI
systems [13, 306]. Many of these are inspired by experiments in various forms of automation
(e.g., [156, 345]). While art-making is one of the domains where AI technologies (e.g., generative
algorithms) are expected to add values [44, 66, 128, 139], it is not entirely clear if these guide-
lines apply in the artistic space. Prior analysis of the ‘value of artifacts’ in this space depends on
‘artistic values’ (e.g., authenticity [296], authorship [276], and novelty [272]). This is confirmed
by some of my analyses–and suggests that automation and guidelines that ignore these values will
be problematic.

A few specific efforts have sought to characterize the intersection of human-AI systems and
CSTs. Speculative and theoretical work [77] hypothesized ways in which artists may interact with
AI-CSTs (e.g., as colleagues with which we collaborate over interactive ‘rounds’). This anthropo-
morphization is possibly reflective of how artists do, or should, interact with machines. However,
this presents only one possible approach. Other efforts studied specific interaction techniques of
existing AI-CSTs and found design patterns in controllability [63], and the ‘split’ of the creative
process between human and machine [84, 379]. However, no effort was motivated by user needs
or expectations in art-making.

All this suggests that existing literature and guidelines have limitations to inform the design
of AI-CSTs. For example, existing AI design guidelines emphasize scoping the AI’s capabilities
(e.g., ‘Set the right expectation’ [306] and ‘Make clear what the AI systems can do’ [13]). This
is reasonable, but leaves unstated the implied need that the AI’s capabilities should align with
what specific user populations would expect from them. My analysis of artist support networks
concertizes these expectations. Second, while some guidelines resonate with my findings, they
may not be detailed enough to convey specific advice in art-making. For instance, when describing
good ideation support, we saw that artists hope for novel ideas. However, a good support partner
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knows that ideas that are too distant are distracting. The need for this balance can inform AI-
CST design as the uncertainty inherent in AI systems can be a double-edged sword: proposing
both inspirations or distractions. Existing guidelines do not suggest specific design approaches for
these situations. At best they may hint at providing controls to align user expectations to uncertain
machine behaviors (e.g., ‘Encourage granular feedback’ and ‘Provide global controls’ [13]). In
many cases, these control interfaces use terminology and affordances appropriate for AI and GUI
design. However, this may be undesirable, as it is an open question at which level of details
controls and feedback should be provided for art-making AI tools. Understanding how humans
do communicate or expect to communicate their needs to other humans can help in designing
appropriate interfaces.

I suggest that my findings can help clarify and refine broad design guidelines. To reflect on
what artists expect from AI-CSTs, we can assume that situations in which artists have successfully
found human collaborators may be amenable to replacement or augmentation with CSTs. The
‘sites’ of interaction between artist and actor (i.e., the edges in my graphical model) are potential
locations into which a CST can be ‘spliced.’ That is, these locations have already been indicated
as opportunities for an artist to utilize other actors. Furthermore, the articulation of relationship
dynamics implies a complexity to certain relationships. That is, some interactions (e.g., subcon-
tracting) may be fairly simple and thus more amenable to CST augmentation. We can hypothesize
that where sites of human-human relationships exist and where the dynamics of those relationships
are simpler, it may be easier to add a CST. For example, automatic comic flatting tools (the process
of creating areas for different colors on line art [433]) could be easily accepted by comic artists,
as its interaction with the artists would be a simple subcontract relationship (Figure 2.3a). This
adheres to the model where the high-level artistic vision (e.g., selection of colors, specification of
colors in each cell) is decided, controlled, and implemented by the artist, and the tool implemen-
tations a facet of that vision. In contrast, an AI coloring tool that is broad and imposes its own
style would lead to an unexpected configuration (e.g., a Featuring relationship as Figure 2.3b) that
deviates from the expected subcontract model. Or perhaps worse, the CST would not fit any known
support model.

With a knowledge of artists’ expectations on support patterns, we can give more specific design
guidelines for AI-CSTs. For example, when artists communicate their intentions, the level of
details varies based on relationship types. For instance, they would be less detailed in ‘featuring’
than in ‘subcontract’ relationships, as the artist would not want to limit the actor’s creativity with
concrete directions. Such dynamics might transfer to the artist’s expectations on AI-CSTs, with
more fine-grained controls for “subcontract”-like AI-CSTs.

I emphasize that findings are based on an analysis of what works within human-human support
networks. Thus, we can only speculate on how artists will interact with AI-CSTs—they might
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interact with actors either similarly or differently. I expect my findings to most likely apply to
tasks and domains where the artists already have a strong convention on the creation and support
process. In such domains, the artists are more likely to expect that support dynamics of the tool
mimic their human counterparts. Deviations from this may be tolerated if the benefit of the tool is
high, but we hypothesize some difficulty in incorporating the tool into existing work practice. On
the other hand, if AI-CST designers offer completely novel support, with no basis for comparison,
the tool may be better accepted.

2.5.1.3 Informing Design of Collaborative CSTs

I briefly offer ways in which our understanding of human support networks can inform the design
of collaborative CSTs3. CSTs in this space are already designed to fit within, or enhance artist-
support networks. These CSTs focus on improving the fluency of social interactions for collective
art-making. However, such tools often assume equal power among participants. As described in
findings, and as supported by past work, shared or equal power is not often the case in actual
human-human collaborations. Given this, tools that consider the asymmetries of real artist support
networks are more likely to succeed. CSTs of this type can include pairs of ‘artifact creator’ and
‘feedback giver’ [209, 297]; leader and crowd [210, 263]; or highly specific relationships such as
dancer and choreographer [374].

Understanding artist support networks can also give us insight and inspiration for the design
of collaborative CSTs. For example, consider the artistic frictions found in real networks (Sec-
tion 2.4.3.1). I found that nuanced frictions are caused by gaps in: trust in understanding styles

and values, trust in skills and quality, communication, and concentrating power. In this context,
collaborative CSTs can address the gaps by creating (or being) boundary objects [234, 380, 381],
thus serving as a means of translation between artists and actors. For example, learning about
another person’s artistic styles and values takes a significant amount of time and interaction (e.g.,
when developing a subcontracting relationship). CSTs can accelerate this process. For example,
we might imagine a tool that summarizes an artist’s style or work process by mining their work or
log data and then presenting the information to the other party. Analysis of this type can also help
in situations where collaborating artists and actors might not be aware of all knowledge and skills
required for fluent collaboration. We could imagine a CST that supports a vocalist and composer’s
collaboration by analyzing and describing the performer’s vocal range. In situations where the
artistic languages of the collaborators are different, CSTs can enhance communications by build-
ing spaces for shared ‘models’ to represent what each artist means when they say something. For
example, we might imagine a ‘surface’ where artists can collect instances of what they mean when

3Note that while this category is broad and can extend beyond art (e.g., crowd ideation [369]), I mainly focus on
variants for collaborative art-making
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Figure 2.4: Comparison of taxonomy on types of support.

describing ‘dark’ or ‘light’ concepts. Finally, as collaborative friction can come from implicit
power structures between users, CSTs can facilitate the awareness by making them more explicit.
For example, CSTs can require participating artists to specify their roles and build more explicit
‘contracts’ and workflows. The design of the tool in Chapter 5 is largely based on lessons on col-
laborative CSTs: the tool supports the human-human collaboration of an asymmetric relationship
while facilitating the use of shared boundary objects.

2.5.2 Comparison to Previous Models on Artistic Support

My analysis of artistic support resonates with taxonomies and findings from previous work. While
my novel contribution is mainly on identifying dynamics in different types of relationships, I also
extend the taxonomy of support4 and frictions. I have attempted to achieve more comprehensive-
ness, with wider coverage and finer granularity.

By explicitly articulating the support dimension in the artist support network (Figure 2.4), I
have identified aspects that may not only apply to human supports but to tools as well. My tax-
onomy categorizes types of support into two higher-level groups, artifact-influencing support and
artist-influencing support, which tell us different mechanisms of getting support. On the other
hand, previous work lacked this distinction and represented support as a ‘flat’ structure. Previous
taxonomies also did not cover the full range of artist-influencing support, while I identified both
managing and teaching. This may be due to the different focus: I tried to consider all supports that

4I note that my idea of “support” is sometimes expressed as “roles” or “activities” in some previous work.
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Figure 2.5: Comparison of taxonomy of approaches for successful support relationship.

artists get from other actors that are intended to help. With this scope, I could comprehensively
identify types of support, even those that do not directly contribute to artifacts. Similarly, while the
previous work did not consider commonalities between critique and inspiration, I grouped them
under the higher class of ideation.

For solutions to friction (Figure 2.5), I identified a large set of approaches. In interviews, I ob-
served solutions that were identified in previous taxonomies. Moreover, I also found an additional
category, selectively accepting other ideas within the solution of concentrating power, which was
missing in other taxonomies. Furthermore, my work could find to which relationship types each
solution would work well. This difference would be because I investigated diverse art-making
settings, while prior work focused more on a specific one. Another interesting aspect to note is
that Settle et al. [357] found that stylistic similarity does not necessarily lead to success in support.
On the other hand, my closest category, trust in understanding styles and values, indicates that
understanding and trusting different actors’ styles is more important than having the same style in
artistic production.

I also relate my findings to broad collaboration research within HCI. In the literature on shared
leadership [449, 450], researchers identified four types of leadership behaviors, from giving pos-
itive or negative feedback to directing and promoting social engagement. Some are relevant to
solution approaches from my findings. For example, being directive would be relevant to having

communication and concentrating power. However, other aspects of leadership behaviors would
be more relevant to non-artistic frictions discussed in Section 2.4.3.2. For example, artists giving
adequate feedback and engaging socially with actors would be solutions for non-artistic frictions.
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2.5.3 Limitations and Future Work

I purposefully studied support patterns in a wide range of art creation domains. However, this
approach limits our ability to learn detailed support patterns in a specific art domain. Thus, one
future direction can be to extend my analysis further in one specific domain. This will enable us to
find specific sub-categories that may be of interest and importance within that domain.

Again, due to focus, there may be rarer types of relationships that my taxonomies might not
fully explain. For example, take the case of a writer finishing a book for a deceased author. In
this case, the living writer, like a subcontractor, is expected to follow the style and outline of the
deceased. At the same time, because there is no absolute guidance, like a featuring writer, the
writer is also expected to make some creative decisions that shape the work. Though rare, this type
of relationship is rather unique and does not as cleanly fall into one of my high-level categories.

In my work, I focused on supports that are intended—either by human actors who are willing
to help or by tools that are designed with intended support functions. However, there may be other
types of supports that are not intended, but still influence artists. Receiving inspiration from an
artist who died 200 years ago is one example of such a case. As these types of support might show
different dynamics, investigating them is worth studying in future work.

As mentioned in Section 2.5.1.2, I presented a possible use of my framework in the design of
CSTs. A more formal study of this approach is an important next step. A more formal mapping
of the existing CST design to my framework would also help identify situations where mapping
can be made directly and where it can not. For example, many CSTs are much more focused on
their functions than human actors. Further research would also help us examine whether and how
an artist’s expectations for AI-CSTs relate to their analogous human roles. This type of analysis
would allow us to extend my model to account not only for human actors but CSTs as well.

2.6 Conclusions

In this work, I investigated various types of relationships within the artist’s support network. I
conducted interviews with fourteen artists from a wide range of domains to understand common
types of relationships, their dynamics, the general roles filled by support actors, and the reasons
and problems (the frictions) inherent in these relationships. Additionally, I identified patterns of
how these factors relate to each other in different support relationships. I motivate this investigation
with the design of CSTs, which automate and augment the artist’s support network. I believe that
perceptions and expectations of effective human support are likely to influence the way artists view
the design of CSTs. Based on my interviews, I first identify the artistic need behind considering
iteration and multiple input modalities as core design elements for steerability in AI-CSTs. In
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addition to that, I offer other implications for designs of AI-CSTs and CSTs for collective users.
In Chapter 4, I connect back to findings and discussions from this chapter and introduce design
requirements and lessons for steerable AI-CSTs.
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CHAPTER 3

The Intersection of Users, Roles, Interactions, and
Technologies in Creativity Support Tools

3.1 Introduction

Technological innovation has always led to changes in art-making. Computer-based tools, in par-
ticular, have enabled extended expressions, efficiency, and skills [118]. For instance, Adobe’s
Photoshop provides a set of tools ranging from assorted brushes to context-aware selection tools.
Many features mimic existing physical tools and infrastructure available to artists but some af-
ford new capabilities for which there is no equivalent. As technologies evolve to support new
forms of interactions and information processing, these capabilities have been integrated into
CSTs [119, 364, 365]. For example, many traditional CSTs lack ‘agency.’ However, new ad-
vances in AI and ML have enabled CSTs to become more autonomous, allowing them to do tasks
on behalf of the user. This has naturally led to new forms of interaction. An intelligent paintbrush–
one that does not simply put paint on the material but renders objects in the appropriate style with
simply an outline–does not operate like a standard paintbrush (digital or otherwise). Combinations
of technologies and interactions, can expand the capacity of CSTs to serve a wider set of roles.
For example, with advanced generative algorithms such as GAN [139, 308] or style transfer algo-
rithms [128, 360], CSTs can serve the role of creating a portion of the artifact on behalf of the users.
The combined changes in technologies, interactions, and roles has also led to an expanded range
of supported users [119, 120]. For example, CSTs that autonomously generate artifacts lower the
creation hurdle for users, allowing novices to create artifacts with minimum skills.

This chapter builds on past reviews of CSTs [119, 120, 335]. I specifically seek to provide
a framework for understanding the intersection of technologies, interactions, roles, and users in
shaping art-making CSTs. Investigation in this chapter is ultimately to have a better understanding
of the designs of AI-CSTs. By taking an integrative approach that considers various aspects of
CSTs, I aim to map the design space for CSTs. Mapping this space has a number of benefits.
For example, we can better identify what are effective design approaches for different types of
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CSTs. I can also learn what areas are under-explored, difficult, or not yet technologically viable.
These gaps hint at future research directions: from those that require more attention; to emerging
opportunities and challenges; to those that would be more plausible with technological advances.

In this chapter, I conducted a literature review of 111 publications that introduced novel art-
making CSTs. From the analyzed papers, I identified various facets to model CSTs. These include
a resource-based model for understanding CSTs and their placement in the creation process. Addi-
tionally, I identify dimensions of interaction approaches to better understand the models of interac-
tions between the human and tools. My analysis revealed a broad range of technologies by which
CSTs are implemented. Finally, I connect these taxonomies to user types and usage scenarios.

Through the analysis, my work contributes a comprehensive understanding of the design space
of art-making CSTs while giving hints at future research directions. I identify patterns that are com-
mon within CSTs created by the HCI community. These patterns can inform future CST designers
and allow us to identify under-explored CST types. Specifically, I could identify patterns with
CSTs that are powered by machine learning algorithms. I could find that 1) AI frequently powered
tools that provide idea-wise support, 2) AI-powered CSTs tend to be unpredictable to users, and
3) they frequently add implementation directly to the user’s artifact. To address the potential issue
of unpredictable implementations, previous CST designers adopted control approaches in these
CSTs. Moreover, from the patterns of how tools turned complex steering controls into easy and
efficient interactions, I could learn that such design patterns would also benefit the design of AI-
CSTs that consider many aspects to control. I conclude this chapter with how my findings relate
to the need and design lessons for steerable AI-CSTs. This chapter is based on the paper “The In-
tersection of Users, Roles, Interactions, and Technologies in Creativity Support Tools,” published
at DIS2021 [63].

3.2 Background and Related Work

Tools often play an important role in [25] and are themselves shaped by advancing technolo-
gies [29]. Computing technologies have enabled a broader class of CSTs, and their development
and study have become a fixture in the HCI community [364, 365]. The evolution of these tools in
the research community has been extensively tracked [119, 120]. This work has provided a lens to
study the trajectory of CST research and associated focus areas. I build on this work not only to
map work within the research community but also to identify a design space for art-making CSTs.

While different efforts to taxonomize CSTs with roles have been introduced in Section 1.1.1,
an alternative structure for the study of CSTs focuses on evaluation. For example, Garfield [127]
proposed that CSTs can be evaluated with products’ quality, such as novelty or appropriateness.
Similarly, Carroll et al. [50] and Cherry et al. [59] introduced Creativity Support Index (CSI),
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evaluating CSTs in six criteria: exploration, collaboration, engagement, effort, tool transparency,
and expressiveness. Others have taken a more critical view of CST evaluation, identifying a lack
of clarity in evaluation goals, theoretical grounding, and expert participants [335]. Models of
evaluation are of obvious importance. However, this only represents a facet of determining the
effectiveness and appropriateness of CST development.

It is worth emphasizing that CST research is extremely broad. Not all CSTs focus on art-making
(e.g., those for inventions [135]). Art-making is a relatively unique and complex space for human-
machine interaction. Values such as ownership, authenticity [92, 296], and the end-users intrinsic
motivations (e.g., what is enjoyable?) [199] will shape the effectiveness and acceptability of new
tools. The introduction of CSTs with cutting-edge technologies in the academic community—
including those of AI—will invariably turn into commercial products, making this space even more
complex. Thus, I am interested in understanding how technologies and interactions have shifted
CSTs for art-making. The notion that technologies impact art-making is by no means a new one.
Technological innovation in the arts often has increased production efficiency and enabled diverse
expressions [29].

Computing technologies have brought multifaceted changes to art-making CSTs. One change
is in how CSTs interact with the users. For example, AI or ML has shifted CSTs to be more
autonomous and unpredictable [78, 79, 277]. These advanced technologies and diversified inter-
actions have also driven CSTs into a broader set of roles. For example, CSTs can adopt advanced
recognition algorithms to automatically provide critiques [326, 367]. Generative algorithms allow
CSTs to build artifacts on behalf of users [69, 147, 256, 277, 301, 415]. Art-making CST innova-
tions have enabled new forms of interaction for more diverse users, from novices [211, 256] and
experts [130, 217] to those with disabilities [294]. Taken together, these innovations represent an
opportunity for synthesis.

In this chapter, I build upon past efforts in mapping CSTs. However, I have specifically targeted
art-making CSTs for analysis. Because of this focus, I identify unique categories and features.
This chapter also seeks to better contrast different taxonomic categories for CSTs (i.e., roles, inter-
actions, technologies, and users).

3.3 Literature Review Method

For the analysis, I implemented a sampling strategy and a coding process to identify and analyze
papers for art-making CSTs.
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Table 3.1: Reviewed publications according to sampling approaches.

Source Publications
From Frich et al. [119] [28, 57, 67, 69, 78, 79, 80, 124, 126, 143, 150, 164, 172, 193, 200,

201, 204, 211, 273, 291, 304, 319, 398, 399, 400, 415, 429, 431, 438,
446, 448]

Newly sampled. [7, 17, 19, 55, 61, 87, 115, 122, 130, 131, 141, 151, 160, 169, 171,
184, 194, 196, 197, 217, 218, 219, 220, 224, 225, 237, 245, 248, 253,
254, 294, 311, 317, 320, 355, 356, 361, 367, 368, 383, 393, 397, 421,
423, 426, 428, 432, 441, 444]

Exploratorily found. [1, 21, 31, 51, 94, 95, 113, 116, 117, 121, 147, 155, 165, 186, 189,
230, 236, 243, 247, 256, 264, 277, 281, 301, 315, 326, 362, 388, 392,
422, 435]

3.3.1 Sampling

I first set the criteria that decide which CSTs to sample. While I focus on art-making CSTs, notions
of ‘art’ and ‘art-making’ are the subjects of significant academic and philosophical debate [76]. I
take a fairly broad definition, scoping “art-making” CSTs as systems or tools used as part of the

creative process that result in an artifact with aesthetic qualities. In my definition, artifacts can take
various forms. In music, gaming, creative writing, and film-making, artifacts can be demos and
footage that are stored in digital formats. Artifacts can also be form-changing sculptures, sketches,
and embroidery in domains such as sculpting, painting, and fiber-based art, respectively. In my
model, artifacts can serve as components or instructions for larger creative ‘result.’ For example, a
script (for animation) or dance movement annotations (for a dance piece) are also artifacts. While
this definition is broad, there are CSTs that we exclude. Most often, these tools are unlikely to lead
to the creation of an artistic product. For example, I do not consider tools for business decision
making, crowd tasks (e.g., ‘design a way to remember a person’s name’ [54]), or artifacts that do
not consider aesthetics or artistic values (e.g., practical inventions [135]). Additionally, I limited
the scope of this study to single-user interactions around art-making. Hence, I excluded CSTs that
only supported the collaboration or communication between artists, but did not directly support
art-making (e.g., a system that redistributes responsibility and leadership in web-based art-making
collaborations [263]).

With my criteria, I focused on surveying CSTs from research (specifically HCI). With this ap-
proach, I can investigate novel art-making CSTs that have not yet made their way into commercial
tools. With novel academic tools, I can gain a sense of the reactions (and possibilities) inherent
to technologies that are not yet commercially available. A second, more practical reason is that
research papers are much more explicit in explaining the intended roles, designs, technologies, and
users. With the descriptions in the paper, I could also decide whether the tool is within my criteria.
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To begin the sampling, I leveraged the literature review of CSTs by Frich et al. [119]. I identified
those CST papers that fell within the inclusion criteria for art creation. This initial pass yielded 31
papers.

To expand this set, I identified post-2018 publications (the end year of Frich et al’s survey). I
targeted papers published between September of 2018 and October of 2020. To sample these, I
took an approach similar to Frich et al. I used the author keywords ‘creativity support tool’ or
‘creativity’ to search and sample papers from the ACM Digital Library.1 Unlike Frich et al., I did
not filter papers with download or citation count. It is because bibliometric measures tend to be
relatively small for all newer papers. Among this set, I identified 49 new papers that follow the
criteria.

I also sought to include relevant papers that did not have author keywords of “creativity” or
“creativity support tools.” This was done by exploring publications that cite or are cited by the
sampled papers. I also searched through proceedings of recent HCI conferences. These yielded
additional 31 papers. In total, I considered 111 publications from 2009 to 2020 (Table 3.1).

3.3.2 Coding Process

With a co-author, I analyzed sampled papers iteratively. I focused on 1) the purposed roles of the
tool, 2) the interaction patterns between users and tools, 3) technologies used, and 4) intended
user population. I targeted these factors based on previous work (Section 3.2), as they either drive
changes in CSTs (technologies) or are impacted by those changes (roles, interactions, and users).
The analysis goal was to find patterns in, and between, these factors.

The iterative approach involved multiple joint sessions of discussion and analysis with the co-
author. Each session added up to 10 papers. Papers for each session were randomly sampled from
the papers that had not been reviewed yet. Before each session, I and the co-author independently
read, summarized, and coded sampled publications. Codes were developed over the course of the
sessions. When appropriate, I also leveraged codes from existing work as a starting point.

If a new paper fit under an old code, this was used. Otherwise, I and the co-author inductively
generated codes as we went through the data. Section 3.4 describes which codes were based on
previous work and which were inductively generated. In each session, I and the co-author reviewed
each other’s summaries and codes. For generated codes, we tried to integrate differing codes into
a single scheme. If necessary, codes were revised, removed, added, merged, or split. The updated
coding scheme was used for the next rounds of discussions. Moreover, with the update of the
coding scheme, I and the co-author reviewed past codes and updated them with the new scheme.
After analyzing the whole paper set, we identified additional higher-level structures.

1https://dl.acm.org/
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3.4 Codes

Through coding, I structured taxonomies of roles, interaction approaches, technologies, and users
of CSTs. Some codes were grounded in previous work, while some were inductively found during
the coding process. In this section, I introduce details of each code in taxonomies. All codes are
summarized in Table 3.2.

3.4.1 Roles of CSTs

I identified roles with two different taxonomies. First, resource roles indicate which type of re-
sources, or benefits, each CST offers. These further divide into two types based on whether the
resource was an ‘idea’ or something more tangible and skill-based, like ‘labor’ or ‘expertise’. In
contrast, process roles indicate in which part(s) of the art-making process the CST is intended to
work. At a high-level, process roles include aiding ideation, aiding implementation, and aiding
evaluation. These are grounded on the creative process phases identified by Amabile [8, 9]. My
coding approach is similar to those of a CST’s roles by Frich et al. [119] and the Library of Mixed-
Initiative Creative Interfaces [379]. Based on previous work and the coding process, I further
identified which more specific process roles exist under each high-level role.

3.4.1.1 Resource roles

I identify two types of resource roles: (1) those that help with implementations, and tend to support
artists with expertise or labor efficiency; and (2) those that help with ideas, and target artistic vision
or ideas. A simple example within the implementation category is a tool that helps if an artist
cannot implement an artifact due to the lack of expertise (e.g., they may not be able to sculpt well)
or time (e.g., a complex pointillist piece). In contrast, idea-focused CSTs can offer an inspiring
suggestion or create part of the artifact that the artist could not have brought up by herself. In
my analysis, I did not find examples of CSTs that focused on both roles. This is not to say that a
complex CST could not do both. For example, a full platform for image editing such as Photoshop
might arguably offer both in different parts of the system. However, such scale did not exist in
the academic examples I studied and, arguably, one might divide a monolithic CST like Photoshop
into smaller features/components.

3.4.1.2 Process roles

My analysis identified a more complex set of process roles. Additionally, I found many CSTs with
multiple process role codes.
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Aiding ideation The first high-level process role a CST might have is supporting the user’s
ideation process. Artists or designers tend to seek novel and inspirational ideas before or during
creation. A specific instance of this role is idea generation. For example, Karimi et al. [196]
used sketch generation algorithms to inspire designers when they are doing a visual design task.
A second code, curation, plays a similar role but focuses on suggesting from existing informa-
tion or artifacts. For example, Koch et al. [218] designed an intelligent mood board that curates
contextually appropriate inspiration images for designers.

Aiding implementation The second high-level process role is helping with the implementation
of artifacts. Here, a CST augments or automates certain functions. One specific sub-category is
execution assistance. For example, Dynamic Brushes [186] help artists create procedural visual
arts without programming knowledge. This is achieved by providing a custom interface that lowers
required expertise. A second variant, producing was assigned to situations where artists let CSTs
conduct most of the implementation tasks. In this role, the artists can allow the CSTs to make most
of the creative or implementation decisions. Users who lack the expertise or labor to implement
artifacts by themselves benefit from this category of CST. For example, Frid et al. [121] designed
a music-producing system for video creators who don’t necessarily know anything about compo-
sition. The understanding code was used for CSTs that help the user understand the current state
of their artifact. This role is helpful when the implementation of creations can be complex. For
instance, Progression Maps [51] help interactive narrative designers understand complex narrative
structures through a visualization. This role is different from the other two specific roles in aiding

implementation as it does not directly support the artist’s implementation of the artifact. Rather,
understanding helps with the sensemaking required for implementation.

Aiding evaluation The third process role was in helping with the evaluation of created artifacts.
Within this role, I identified one specific code, critique. Here, the CST critiques or gives feedback
intended to guide improvements to the artifact. For example, VoiceAssist [355] gives feedback on
voice recordings, so that users can make improvements on room acoustics and background noise.

3.4.1.3 Complementarity of Resource and Process Roles

There are situations where process and resource roles are strongly connected. For example, giving
someone an ‘idea’ often happens within ‘ideation’ (a specific process). While this may be more
common, one can imagine situations where ideas are provided in other points in the artist’s creative
workflow (i.e., process). For example, when evaluating an artifact, the system can also provide
ideas for improvements. Because of this, I treat resource roles and process roles as complementary.
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By splitting role types, I can distinguish between the benefits offered by the CST and where/how

they are offered within the creative workflow.

3.4.2 Interaction Approaches Used by CSTs

My analysis identified the interaction approaches used within CSTs. I found that a single tool
can have multiple interaction behaviors corresponding to multiple functions. While the traditional
types of interactions (e.g., mouse, voice, touch, direct manipulation, etc.) are part of this analysis, I
am more concerned with the properties and intents of the interaction relative to the creative process.

3.4.2.1 Input Directness

I categorize input directness in relation to whether a CST is receiving direct inputs or not. Here,
direct inputs are closely relatable to the artifact or the change that is going to be made in the artifact.
A simple example of a direct input is brush strokes on a digital canvas. Clearly, these directly relate
to what is drawn on the canvas. It is important, however, to note that I distinguish between the idea
of ‘direct manipulation’ and ‘direct input.’ A more subtle example of direct input is when the
input becomes part of the artifact’s final ‘form.’ For example, the recorded audio of a voice-actor
can be recorded when producing a character animation. That voice is used to drive the expression
in the character but is also a final part of the animation (as in Adobe’s Character Animator and
TakeToons [388]). I also consider the observation of the “current state” of the artifact as direct

input. For example, a CST can take the current representation of the artifact as input and provide
a critique of that work. While the art is not being modified by the CST, the input is nonetheless
direct, as the input is the artifact itself. Indirect inputs are those that are more separated from
the artifact. One example is natural language queries given by the user. These queries would be
used to request various functions to the tool (e.g., searching or generating artifacts), but queries
themselves are not artifacts. Another type of indirect input is a manipulation of parameters, like
those for cameras, such as exposure levels. It is more of partial information about how the artifact
should be, but not the representation of the artifact.

3.4.2.2 Predictability of Impact

The second property of interaction is predictability of the CST when it is used. How well can
the user model and anticipate what the tool will do? A predictable CST is one in which the CST
behaves exactly according to the user’s specifications or anticipation. An example of the former
is a brush in virtual canvas, where users are certain that the lines will be created following their
strokes. An example of the latter would be a fabrication tool that receives a blueprint from the
user. While the blueprint may not be a complete specification (e.g., it may not contain scaffolding

39



instructions), the user is nonetheless certain about the tool’s behavior and what the final output will
look like.

CSTs that are unpredictable are those that produce output that is difficult for the end-user to
model. These tools are clearly not ‘random’—the overall function is understood. I can take the
example of the ‘art-critic’ CST that is constantly providing feedback on the art. The end-user
is aware that critiques are being produced but can’t accurately model what they will be. Unpre-

dictable tools rarely require users to give very specific information on how the tool should behave.
In fact, it is this ambiguity that makes them unpredictable. While tools can be unpredictable due
to errors, we coded CSTs according to their intended behaviors. I also recognize that CSTs can
be both predictable or unpredictable. For example, an unpredictable CST can become predictable
given enough experience.

3.4.2.3 Output-Implementing/Influencing

The final aspect of the interaction codes is on the output of the CSTs. I identified differences in
CSTs that support the artist by implementing the whole or a part of the artifact or by influencing
the artist. I coded tools to be implementing if they directly create or generate a part of an artifact.
An example is a generative algorithm that creates the visual design of products [326]. I also coded
tools as implementing if they simulate the final artifact or some part of it. SimuLearn [435] is one
example of this type of CST. The tool generates a simulation of how the 3D fabrication would
change with the application of heat. I coded as influencing those CSTs that impact the artist,
not the artifact. This includes feedback, critique, scaffolds, or analysis. The artist is intended to
react to this information in modifying their behavior, and thereby, the artwork. In some cases,
the CST’s output is both implementing and influencing. This can happen in the cases of mixed-
initiative systems. For example, in a tool that outputs inspirational metaphors for a word [131], the
metaphor can be directly used in the user’s writing or can influence artists to get inspiration and
draw more ideas.

3.4.3 Technologies for CSTs

When considering the technologies used in CSTs, I focused on the aspects that provided core
functionality or interaction support. I inductively identified six types among the sampled papers.

3.4.3.1 Learning algorithms

CSTs based on learning algorithms were those that were trained on data. They include many ML
algorithms, ranging from Hidden Markov Model, neural networks, and Generative Adversarial
Network [139, 308]. One use of these algorithms is to recognize and understand artifacts or user
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inputs. For example, Shtern et al. [367] used ML recognition algorithms to inspect the quality
of music mastering. Learning algorithms were also used for generating artifacts. For example,
McCormack et al. [277] designed a machine improviser that generates music that fits with what a
human musician is playing. Learning algorithms were also used to learn users while they are using
CSTs, so that tools can give adaptive support. For example, Drawing Apprentice [79] learns how
to co-create with the user from user interactions.

3.4.3.2 Non-learning algorithm

CSTs that were not data-driven were classified as non-learning algorithms. This type included
hand-tuned, rule-based algorithms, or optimization algorithms. CSTs in this category often lever-
aged these algorithms for artifact exploration or search given some constraints. For example,
Scout [392] suggests designs with a constraint resolver and a ranking function. Algorithms used in
Scout were designed by researchers to assure the quality of the suggested designs. Non-learning al-

gorithms are also used to manipulate the artifact in a controlled way. For example, DataQuilt [444]
used GrabCut [344] and Canny edge detection [49] to extract specific parts of images. I coded
non-learning algorithms separately from learning algorithms as they are different in how they are
designed. This difference would possibly impact how CSTs with these algorithms would interact
with the users. For example, non-learning algorithms are more often designed to perform deter-
ministically according to the tool designer’s intention. However, learning algorithms are often
trained on data—both small and large—that leads to uncertainty in how the tool behaves.

3.4.3.3 Software UI

CSTs that were principally centered around software UIs often involved designs to improve user
control of the CST. For example, Demystified Dynamic Brushes [237] helped artists understand
the dynamic visual arts by showing relevant numerical parameters. These also helped the editing
of dynamic arts by allowing easier manipulation within the UI.

3.4.3.4 Sensors

Sensors have been used in CSTs to expand the modality of the expressions. Their usage ranged
from photo-sensing to audio-, depth- and gyro-sensing. For example, MoBoogie [150] allows users
to create musical expressions with dancing moves, by sensing them with an accelerometer.

3.4.3.5 Fabricators

Some CSTs use new fabricators or materials (or leverage existing ones). For instance, Expand-
Fab [194] introduces a fabrication process of expanding objects using foam materials.
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3.4.3.6 Robots

Though rare in the samples, some CSTs had mechanical or robotic infrastructure. This enabled the
CSTs to interact in physical spaces. For example, Robovie [193] is a physical robot designed to
give inspiring prompts on garden designs.

3.4.4 Users of CSTs

When classifying CSTs, I also focused on who they were targeted for. I built on the taxonomy
of Frich et al. [119] for expertise and augmented this with codes for the populations that were the
intended audience of the CST (i.e., general use or specific populations such as children or end-users
with certain disabilities).

3.4.4.1 Expertise/Availability of Description

The first set of user codes included four categories corresponding to expertise: novice, expert,
all/both, or unspecified. CSTs for novices enabled creations that are not possible with the user’s
expertise. For example, ChordRipple [172] helps novice composers try radical chords with recom-
mendations. Some CSTs are designed specifically for expert users. For instance, VoiceCuts [217]
allows experts to interact with creative applications through vocal commands. For experts, as they
have their ways of creating, it would be important to design a tool that embeds well into their
practices. CSTs can also be designed to support both types of users, regardless of their expertise.
For example, Joinery [448] supports both novices and experts in the fabrication of laser-cut as-
semblies. For novices, it democratizes the creation, and for experts, it provides rapid prototyping
ability. Lastly, some CSTs did not specify target users. For instance, BodyAvatar [446] focuses
more on describing the novel tool, without explicitly (or implicitly) indicating for whom the tool
is designed.

3.4.4.2 Specific and General Populations

Finally, I considered whether the CSTs were focused on specific or general populations. CSTs
for specific populations often had narrow use-cases in mind (e.g., children). For example, Zarei
et al. [441] designed a tool that helps children create storytelling with embodied avatars. Another
set of specific population CSTs are those built for end-users with some disability. For example,
CreaTable [294] supports people with aphasia to create content with tangible interactions. Those
CSTs that were either explicitly or implicitly for more general populations were labeled as such.
One commonality in specific populations that distinguishes them from general populations is that
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Table 3.2: Definitions, example CSTs (e.g.), counts (#), and percentages (%) of codes in each
taxonomy. Resource roles are types of supportive resources provided by CSTs, and process roles
are about which part of the creation process is supported. Directness is an interaction dimension
of whether the user input is close to the artifact or not, while predictability is about whether the
tool behavior is predictable or not. Output is about how the tool is contributing to the creation of
artifacts. Technologies and users indicate which technologies are used, and who are the intended
user population, respectively.

Taxonomies Codes Definition e.g. # %

R
ol

es

Resource roles Vision The tool supports the user with artistic vision and ideas. [131] 63 56.8
Implementation The tool supports the user with expertise or labor efficiency. [438] 48 43.2

Process roles

Idea Generation The tool suggests novel information or artifacts with computa-
tional generation.

[196] 43 38.7

Curation The tool suggests novel information or artifacts from existing
sources.

[218] 10 9.0

Execution Assistance The tool augments the user’s implementation actions. [186] 81 73.0
Producing The tool automates implementation on behalf of the user. [121] 14 12.6
Understanding The tool helps users understand the current state of creation. [51] 19 17.1
Critique The tool helps users evaluate the created artifact. [355] 10 9.0

In
te

ra
ct

io
ns

Directness
Direct The user input is close to the artifact. [388] 89 80.2
Indirect The user input is distant from the artifact. [423] 82 73.9
No Input The user does not make an input to the tool. [193] 2 1.8

Predictability Predictable The user can predict which output will come out. [247] 60 54.1
Unpredictable The user cannot predict which output will come out. [61] 76 68.5

Output Implementing The tool implements the whole or a part of the artifact. [301] 96 86.5
Influencing The tool influences the user. [355] 39 35.1

Te
ch

no
lo

gi
es

Technologies

Learning Algorithm Algorithms trained on data (e.g., ML algorithms). [277] 45 40.5
Non-learning
Algorithm

Algorithms not trained on data (e.g., rule-based algorithms and
optimization).

[444] 30 27.0

Software UI Software UI that gives easier use and control (e.g., visual program-
ming).

[237] 25 22.5

Sensor Sensors that expand the modality (e.g., depth sensors). [150] 23 20.7
Fabricator Fabricators or materials, or new ways of using them (e.g., XY-

plotter or thermochromic ink).
[194] 11 9.9

Robot Robots in the physical space (e.g., robots that draw sketches). [193] 3 2.7

U
se

rs Users-Expertise

Novice Users who are not fully trained in the art-making domain. [172] 31 27.9
Expert Users who are enough trained in the art-making domain. [217] 30 27.0
Both Tools support both experts and novices. [448] 17 15.3
Not Specified Tools not specifying which user group is supported. [446] 33 29.7

Users-Specific General Populations Users other than specific populations. [95] 105 94.6
Specific Populations Specific targeted users, such as children or users with a disability. [294] 6 5.4

they might require special accommodations—either due to not-yet developed motor or cognitive
abilities or disability.

3.5 Coding and Analysis Results

Not all codes are equally likely among CSTs. Below, I provide the distribution of codes in each tax-
onomy. For taxonomies that allow multiple codes for a tool (process roles, interaction approaches,
and technologies), I present co-occurrence statistics. Finally, I return to the main motivating ques-
tion in how roles, users, technologies, and interactions intersect in the design space of CSTs. I
include coding results in the supplementary material.
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Figure 3.1: Co-occurrences of codes within each taxonomy. The number in each box indicates
the ratio of tools that have the element in the column among all tools with the element in the row.
On the y-axis, numbers in parenthesis indicate the number of CSTs with the code. In a), ‘Idea’
and ‘Execution’ stand for idea generation and execution assistance, respectively. In b), ‘Pred’ and
‘Unpred’ stand for predictable and unpredictable, respectively.

3.5.1 Distribution for Each Taxonomy

Our analysis on the distribution of codes for each taxonomy is presented in Table 3.2. For re-

source roles, I found that there were slightly more idea-offering tools (56.8%) than implemen-

tation-offering ones (43.2%). For process roles, I found that the percentage of tools for serving
execution assistance was the highest (73.0%), followed by idea generation (38.7%). The rest of the
process roles had lower percentages, in the order of understanding (17.1%), producing (12.6%),
critique (9.0%), and curation (9.0%).

For interaction approaches, there were slightly more tools that allow direct inputs (80.2%) than
indirect ones (73.9%). Only two tools did not receive user inputs (1.8%) [7, 193]. With pre-

dictability, there are more unpredictable tools (68.5%) than predictable ones (54.1%). With output

categories, there are over twice more implementing tools (86.5%) than influencing ones (35.1%).
For technologies, learning algorithms were most used (40.5%) whereas fabricators (9.9%) and

robots (2.7%) were least common.
For users, with expertise and the availability of user description, 29.7% of tools did not specify

user group, which was the highest among user groups. Tools for novices (27.9%) and experts

(27.0%) were slightly less common. Fewer supported both experts and novices (both, 15.3%).
Only six were for specific populations (5.4%).

3.5.2 Within-Taxonomy Analysis

Figure 3.1 summarizes the co-occurrence of codes within the CSTs.
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3.5.2.1 Within Process Roles

In process roles, execution assistance co-occurred most frequently with other process roles

(≥ 50%, 3rd column of Figure 3.1a) except for producing. Idea generation also showed rela-
tively high co-occurrences with other process roles (≥ 20%, 1st column of Figure 3.1a). However,
producing was an exception to this pattern, as it co-occurred more with idea generation (57%)
than with execution assistance (29%). This different result in producing is likely due to the incom-
patibility of producing and execution assistance: tools with execution assistance tend to maintain
user control while producing tools create on behalf of the user. For cases where they co-occur,
separate functions supported each role. Additionally, the high co-occurrence of idea generation in
producing tools would be because producing often requires creative decisions.

3.5.2.2 Within Interaction Approaches

I analyzed the co-occurrence in three dimensions of interaction approaches (Figure 3.1b). Within
directness, more than half of tools were direct and indirect at the same time (55.9% of all tools).
Compared to directness, the co-occurrence was relatively low for the dimension of predictability

(22.5% of all tools). This indicates that predictability more clearly characterizes each tool com-
pared to directness. Within the output dimension, while 21.6% of tools both support implementing
and influencing, the rate of influencing tools co-occurring with implementing tools (62%) was
higher than the co-occurrence of the other way around (25%). It is due to the imbalance of fre-
quency within the output dimension. When one tool has both codes in one interaction dimension,
it was often because the tool has multiple functionalities. For example, COCOCO [256] has an
unpredictable function of generating a part of the music and a predictable function of recording
the user’s midi input. I also observed that implementing code co-occurred with all directness and
predictability codes frequently (5th column of Figure 3.1b). Similar to results within the output

dimension, it would also be due to the high number of implementation tools. Another notable pat-
tern was that influencing tools more co-occurred with unpredictability (92%) than predictability

(44%). This result would be because many tools influenced artists with unexpected information
or artifacts, such as critiques or inspirations. While it was rare for influencing tools only to be
predictable, there were cases that the tool does predictable management for the user. For example,
VoiceCuts [217] allowed users to select tools with voice commands in applications like Adobe’s
Photoshop. In this case, VoiceCuts would manage the selection of the tool as the user’s vocal
commands (in a predictable way), while not directly implementing on the artifact.
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3.5.2.3 Within Technologies

Overall, technology types did not co-occur a lot (Figure 3.1c). This is principally because I focused
on the ‘core’ technologies of the CST (often this was singular).

3.5.3 Cross-Taxonomy Analysis

I analyzed how CSTs have been designed by relating different taxonomies. My core research
questions for this analysis are:

• How each role intersects with different interaction approaches and technologies?

• How each user group intersects with different roles, interaction approaches, and technolo-

gies?

Figure 3.2: Percentage of interaction approaches (directness, predictability, and output) and tech-
nologies according to resource roles (items on the y-axis). On the y-axis, numbers in parenthesis
indicate the number of CSTs with the code.

3.5.3.1 Role × Interaction and Technologies

Resource Roles, Interaction Approaches, and Technologies In Figure 3.2, I illustrate how re-

source roles relate to interaction approaches and technologies. For directness (Figure 3.2a), I
found that idea-supporting tools slightly more often adopt direct inputs (82.5%) than indirect ones
(68.3%). For implementation-supporting tools, there were more tools with indirect inputs (81.2%)
than those with direct inputs (77.1%), but the difference was small. I also found that a small num-
ber of tools support idea without receiving any input from the user (n = 2, 3.2%). These tools
function by prompting messages for inspiration without getting any input (e.g., “Tell me about
your past creative experiences.”) [7, 193]. With the predictability (Figure 3.2b), I found that tools
for idea tend to be more unpredictable (96.8% for unpredictable, 36.5% for predictable). Tools
that generate arts to give inspirations to the users are one type of unpredictable tools that support
with idea [69, 78, 79, 147, 197, 224, 304, 319, 399, 415]. Tools for implementations are shown
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to be more predictable (77.1% for predictable, 31.2% for unpredictable). One type of predictable

tools for implementations augments the user’s implementation actions while following the user’s
controls, like how paintbrushes are used on a canvas [67, 184, 186, 204, 368, 400, 444, 446].
Rarely, there were cases where a tool for idea is only designed with predictable approaches. For
example, UnicrePaint [122] allowed a predictable but inspiring and unprecedented way of creating
visual arts, stamping physical objects on a digital screen. There were also cases that the tool offers
implementation-wise benefits only with unpredictable means. For example, in the fabrication of
morphing material, SimuLearn [435] extends the user’s implementation by informing the user of
how the morphing would be done, which is not predictable to the user. With ways of how outputs

are contributing (Figure 3.2c), I found that more tools are supported with implementing than in-

fluencing for both idea-supporting and implementation-supporting tools. This high occurrence of
implementation across resources roles would be due to the prevalence of implementation among
reviewed publications.

I also analyzed how resource roles and technologies relate (Figure 3.2d). For idea-supporting
tools, learning (61.9%) and non-learning algorithms (31.7%) were the top two most used tech-
nologies. On the other hand, the top two technologies used for implementations were UI (37.5%),
and sensors (35.4%). I give specific cases of technology use in each role in the next section, with
process roles.

Figure 3.3: Percentage of interaction approaches (directness, predictability, and output) and tech-
nologies according to process roles (items on the y-axis). On the y-axis, the number of CSTs with
the code is in the parenthesis. On the y axis, “Idea” stands idea generation and “Execution” is for
execution assistance.

Process Roles, Interaction Approaches, and Technologies I analyzed how process roles in-
tersect with interaction approaches and technologies (Figure 3.3). With input directness (Fig-
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ure 3.3a), direct and indirect approaches are almost equally used in idea generation and exe-

cution assistance. For curating tools, all of them are supported with indirect inputs. Curat-
ing tools received natural language-based queries [117, 130, 219, 220], preferences [218], or
partial information [428]. However, indirect inputs were not a necessary condition for cura-

tion, as some also received an artifact as a direct input [219, 426]. On the other hand, pro-

ducing, understanding, and critique were more supported with direct inputs. Among them, all
understanding and critique tools adopted direct inputs, as, by definition, they require artifacts
to be understood [51, 113, 115, 171, 219, 220, 225, 237, 248, 253, 311, 383, 435] or evalu-
ated [80, 94, 95, 230, 326, 355, 367]. Tools that receive no inputs are found only in idea generation

(4.7%), which were robots prompting for inspiration [7, 193].
With predictability (Figure 3.3b), most process roles (excepting execution assistance) are more

supported with unpredictability. Among these, all critique tools were unpredictable, as they give
information that is unexpected by the user to change the user’s behavior. Moreover, while most
curation tools are unpredictable, there was a case of a predictable curation tool. This tool, Color
Builder [368], allowed users to curate colors by arranging color swatches. By positioning color
swatches, the tool would curate intermediate colors between swatches in gradients, which is pre-
dictable interactions to the user. On the other hand, execution assistance was equally supported by
both predictable (61.7%) and unpredictable tools (60.5%).

For the output (Figure 3.3c), similar to resources roles, all process roles except critique

are more enabled with implementation. Among these roles, curation and understanding used
influencing more than others (70.0% and 63.2%, respectively). For curation, the curated ar-
tifact can be either included in the final artifact or used to influence users, like for inspira-
tions [61, 130, 218, 219, 220]. For understanding, tools that influence often support by showing the
analysis [51, 113, 219, 220, 225, 237, 248, 253, 311, 383]. On the other hand, tools that implement

for understanding helped the user create an alternative representation of the artifact. For instance,
Knotation [67] allowed choreographers to document choreographic processes into diagrams so that
they can better understand them. Apart from these roles, all producing tools implemented, as the
definition indicates. One thing to note is that there were cases where the tool is supporting execu-

tion assistance only through influencing. One type of such tool only augments the user’s actions
without directly manipulating artifacts [143, 431]. For example, when drawing with a pen, De-
PENd guided the user’s pen strokes with ferromagnetic forces [431]. I also found critique is more
and all supported with influencing outputs, as it is to change the user’s behavior.

With how process roles are supported by technologies (Figure 3.3d), learning algorithms were
used frequently across different process roles. When I took a more specific look, idea generation

was majorly supported with learning algorithms (58.1%), followed by non-learning algorithms

(32.6%). These algorithms were often used to generate artifacts or information that can inspire

48



users [57, 78, 131, 196, 243, 256, 273, 301, 320, 326, 356, 392]. Also, compared to other roles, idea

generation had the highest percentage of using robots. These robot tools either prompt inspiring
messages to the user [7, 193] or draw inspiring sketches on physical paper [243].

Curation frequently used learning algorithms (60.0%) and software UI (50.0%). Learning

algorithms were often used to collect and curate materials [61, 117, 130, 218, 219, 220, 426,
428], while software UI were used to effectively present curated results [61, 117, 211, 220, 368].
Curating tools did not use sensors, fabricators, and robots.

Execution assistance showed the most distributed use of technologies, but was most supported
by both types of algorithms (30.9% for learning and 32.1% for non-learning). Often, execution

assistance tools that use learning algorithms generated a portion of an artifact [31, 31, 113, 147,
243, 256, 301, 415], like generating and adding a snippet of music upon the tune that the user
have created [256]. However, still, for execution assistance CSTs, the majority of controls were
on the users. Usually, the tool generates a small portion of the artifact, and the user could post-edit
what the tool generated. These were the most frequently appearing type of designs for AI-driven
CSTs that use generative algorithms. Moreover, compared to other process roles, the percentage
of fabrication (13.6%) was highest in execution assistance. ThreadPlotter [155] is one example
of enabling execution assistance with a fabricator, which allows users to create punch needle
embroidery with X-Y plotter.

Producing was mainly powered by generative algorithms from learning (57.1%) and non-

learning algorithms (35.7%). However, with generative algorithms, more tools have been devised
with execution assistance. Different from generative execution assistance CSTs, producing tools
allowed minimum post edits from the user. Instead, there were cases where it allowed continuous
interactions through generation, like improvising music together [277].

Understanding used learning algorithms (42.1%) in the highest percentage, followed by soft-

ware UI (36.8%), non-learning algorithms (26.3%), and sensors (26.3%). For understanding tools
that analyze, algorithms were often used for the analysis [113, 219, 220, 225, 248, 253, 383], UI

for the effective presentation of analysis [51, 113, 220, 237, 253, 311], and sensors to capture the
artifacts [189, 253].

Critique frequently used non-learning algorithms (50.0%) followed by learning ones (40.0%).
Algorithms generated critiques by analyzing artifacts [94, 95, 230, 326, 355, 367, 421, 422, 429].

3.5.3.2 User × Role, Interaction, and Technologies

Users and Roles For resource roles (Figure 3.4a), tools that support both levels of expertise and
those for specific population had more tools that support with implementations than with idea.
Other user groups were supported more by tools for idea. With process roles (Figure 3.4b),
novices were supported with critique in a higher percentage (25.8%) than other groups. With
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Figure 3.4: Percentage of roles according to user groups (items on the y-axis). On the y-axis, the
number of CSTs with the code is in the parenthesis. In b), “Idea” stands for idea generation and
“Execution” stands for execution assistance.

this role, novices frequently got critiques on how they can accomplish more high-quality cre-
ation with extended expertise [80, 94, 95, 367, 421]. However, novices were less supported with
understanding (6.5%), compared to other user groups. I also found that experts are more sup-
ported with the role of idea generation (53.3%) compared to other user groups. This type of
tool often allowed expert users to explore more possible options by generating one or more of
them [131, 196, 197, 243, 254, 304, 315, 326, 362, 392]. For specific population, I found that they
were not supported with curation, understanding, and critique.

Users and Interaction Approaches For users and interaction approaches, I found patterns with
novices and specific populations. For the directness (Figure 3.5a), user groups other than novices

and specific populations were similarly supported by directness and indirectness without large gaps
(≤ 10% difference). On the other hand, novices and specific populations were more supported with
direct inputs. With specific populations, I found that they had one case of receiving no input. It
was a robot that prompts inspiring messages to children when creating titles for a drawing [7].
Even though there was one tool, due to a low number of tools for specific populations (n=6), it
took 16.7%. For predictability (Figure 3.5b), the specific populations were the only group with
more predictable tools, while other user groups were more with unpredictable tools. Those pre-

dictable tools for specific populations were designed to overcome their skill limits from not yet
fully grown motor and cognitive skills (for children) or disability [55, 160, 245, 294, 441]. With
output (Figure 3.5c), all user groups are more tend to be supported by implementing tools than
influencing tools. Among them, novices were most supported with influencing compared to other
user groups (48.4%), which is partly due to the high occurrence of critique tools in this population
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Figure 3.5: How each user group (on the y-axis) is supported with different interaction approaches
(directness, predictability, and output) and technologies. On the y-axis, numbers in parenthesis
indicate the number of CSTs with the code.

(which contribute through influencing).

Users and Technologies On analyzing users and technologies, I found that novices got more
support with non-learning algorithms than other groups. This would be relevant to high support
of critique roles in novices, as critique tools frequently use non-learning algorithms. Moreover,
novices were not supported with fabricators or robots. Compared to other user groups, experts

were more supported with learning algorithms (53.3%), which mainly powered idea generation

tools. On the other hand, tools for specific populations showed the most distinct distribution of
technologies. They used UI (50.0%), sensors (33.3%), and robots (16.7%) in higher percentages
compared to other users.

3.6 Discussion

My analysis reveals interesting patterns in the construction of art-making CSTs from the HCI
community. I first discuss how AI-CSTs have been designed, what can be their design issues, and
how existing AI-CSTs tried to address them. I extend this discussion to identifying what is still
limited with design existing approaches for general CSTs. Then, I hypothesize on possible reasons
certain CST categories are more or less common.
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3.6.1 Design Patterns of AI-CSTs and Their Limitations

With resource roles, idea-offering tools were more unpredictable and more powered by learning

algorithms (see Figures 3.2). Idea-offering tool being unpredictable is expected, as contributing
to artistic vision is more related to introducing inspiring ideas to users, which they could not
have brought up themselves. Learning algorithms have been frequently used for idea-offering
tools as they can find or generate novel ideas and artifacts. With process roles, we found that
all roles except execution assistance tend to have more unpredictable tools than predictable ones.
Moreover, process roles except execution assistance and critique have used learning algorithm

mostly. This result resonates with findings from resource roles, as idea-offering tools tend to be
unpredictable and use learning algorithms. Moreover, many idea-offering CSTs—except those
for critique—tend to support through implementation. Furthermore, within technologies, learning

algorithms were used the most. These findings give us insights into the design of AI-CSTs—
that 1) idea-supporting tools frequently tend to be AI-CSTs, 2) while being unpredictable 3) and
providing implementations at the same time. These insights add an interesting issue with the design
of AI-CSTs, as unpredictable support that contributes to implementation with the mix of ideas can
potentially intervene with the artist’s vision and values within the artifact. This issue would likely
intensify with AI-CSTs that leverage generative algorithms. For example, these AI-CSTs can
potentially add distracting generations to what the artist has been creating.

When looked into generative AI-CSTs in reviewed papers, I could find these generating tools
distribute among two process roles: producing (13 CSTs) and execution assistance (26 CSTs),
with more CSTs in the latter. From this result, I saw that many CST researchers decided not
to delegate all controls to these AI-CSTs. Execution assistance AI-CSTs are designed to allow
a lot of user controls, from the specification on what to generate to post-editing. These design
decisions would have been to defend the user’s agency and sense of ownership while leveraging
generative capabilities. Their design of controls, however, was limited to those that pre-specify
what to generate or edit after the generation, not intervening in the generation process. Such a
control approach would be enough to support gradual human creation when each unit of generation
becomes a part of the created artifacts (e.g., an image asset in a game), only automating a part of
the human creative process. However, such a design can introduce friction when the algorithm’s
result automates multiple steps of human creation without allowing human interventions during the
generation process. In such a case, users would struggle to iterate on what AI has generated. For
example, revising a digital painting generated in an end-to-end fashion would be more challenging
than fixing a piece generated with multiple steps, as the user can intervene between those steps
before the final rendition. Inspired by this issue, in Chapter 7, I introduce the design that allows
users to steer AI generation during the generation process.

With producing tools, we found that some CSTs’ interactions were more similar to those that
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people have with other humans. For example, some CSTs played a character in interactive narra-
tives [164] or a participant chatbot in a radio comedy show [317], which was designed to mimic the
interaction between humans (even though they are not perfect). Another example was a machine
drum improviser that works with human performers [277]. More technical advances would render
these types of human-like CSTs move viable. Hence, preparing for the future, it would be helpful
to learn how interactions should be designed for these AI-CSTs.

3.6.2 Trends in CST Research for Art-making

The HCI community has built certain types of tools more than others. CSTs with execution assis-

tance and implementing were those which were dominant in process roles and output approaches,
respectively. I consider these as an extension of conventional art-making tools (e.g., paintbrushes).
As these conventional tools are more familiar, CST researchers might focus on these design. It may
simply be reasonable to imagine the translation of physical/conventional tools to digital versions.
Another interesting observation in our data is that more tools support idea than implementations.
I also observed that idea generation was the second most frequent role in the process codes. One
possible explanation is that idea CSTs are more broadly applicable.

Regarding the design of interactions, many tools turned complex implementation interactions
into simpler and more efficient ones. I could frequently observe this for tools that receive indi-
rection inputs (41 of them). For example, Joinery [448] simplified complex laser-cut joint making
with high-level parameters. Similarly, BodyAvatar [446] turned 3D modeling (which can require
specific expertise) into simple gestures. This design approach would also likely apply to the de-
sign of future CSTs, including AI-CSTs, which allow users to control many different aspects. In
Chapter 4, I discuss how this design approach would benefit the design of steering interactions for
AI-CSTs.

We could also find that many tools used direct and indirect inputs together. As varying input
modalities serve different purposes, adopting both input approaches would allow various expres-
sions when using CSTs. For AI-CSTs, this combination would be more important, as users would
give high-level steering specifications with indirect input while providing the materials that AI can
work on as direct input. Moreover, users would like to edit the AI results with direct input. Hence,
the design approach of mixing different input approaches would potentially facilitate the use of
AI-CSTs.

Many CST papers did not specify users. Instead, they focused on describing opportunities
introduced by new technologies and interactions. As a research community, I argue that CST re-
searchers should be more deliberate in specifying the intended use. This will become increasingly
important with novel AI technologies. Such tools are known to have significant biases. More spe-
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cific acknowledgment of how a CST will be used and by whom may be vital in identifying and
addressing unintended consequences.

3.6.3 How Roles Are Supported with Interaction Approaches and Technolo-
gies

While design patterns of idea-based, unpredictable, learning tools have been discussed, there are
other patterns in how roles intersect with interaction approaches and technologies. First, I found
that implementation-offering tools were more predictable (see Figures 3.2 and 3.3). Regarding
technologies, implementation-offering tools more used software UI, sensor, and fabricator, which
give better interfacing or means of construction. With process roles, execution assistance is equally
supported with predictable and unpredictable approaches. Moreover, different process roles di-
verged along directness and output. Critique was the most noticeable among them, as critique

CSTs are all designed to be unpredictable, influencing, and receiving direct inputs.
These findings reveal patterns of how CSTs can be designed for different roles with interac-

tion approaches and technologies. In some cases, combining roles, interactions, and technologies

would be inherently restricted. For example, producing less frequently co-occurred with execution

assistance than with other process roles. Even when they co-occurred, they were actually enabled
by separate functions. Moreover, all producing tools were implementing. This pattern is due to the
nature of producing: producing tools do the majority of implementations on behalf of the user.

However, other patterns might have arisen as researchers focused more on one way of build-
ing CSTs. For example, the implementation-supporting tools were more predictable. However,
there were exceptions, like tools extending the user’s implementation with unpredictable simula-
tion [435]. This exception is the evidence that researchers have employed a narrow focus when
designing CSTs, while other approaches are possible. Another example is the use of robots. In
the HCI community, the robot was rarely used to build CSTs (n=3). Moreover, while robots can
enable tools to create physical artifacts, there was only one case a robot was used for implementa-

tion. This is a limited focus of our community—outside of the HCI/computing community, artists
have been devising robots that implement artifacts by themselves or through collaboration with
humans [2, 377]. The HCI researchers would be able to do a similar exploration while pushing
beyond what has been done by other communities.

Some seemingly impossible patterns would be more feasible with technological advances. Un-

derstanding and critique tools using indirect input is one example. Designers of these tools have
assumed that they must have artifacts to be analyzed. However, technological advances are in-
troducing more expressive ways of making indirect inputs [44, 331], and they would increase the
needs and feasibility for indirect inputs to be analyzed. For example, advanced generation models
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can produce content with natural language prompts [44, 331], which should be well-designed to
get the intended results. Hence, CSTs would be able to analyze or give feedback on the user’s
prompts, so that they can be improved to draw desirable results.

3.6.4 Patterns in Supporting Users

Regarding how users get support, I found a few interesting patterns. First, novices were more
supported with critique compared to other user groups. While critique is also valuable to experts

(e.g., artists get feedback from colleagues), the CSTs I surveyed rarely supported experts. This
may be due to the technical feasibility of giving critique that meets the expectation of experts.
When experts receive critique, they would expect not only implementation-wise critiques but also
more subjective feedback. For example, one possible expert CST critique role might be to learn
and predict how people interpret an art pieces. Such critiques would be more difficult for algo-
rithms and machines to generate, as they tend to be subjective. On the other hand, novices would
significantly benefit from critiques that can improve their expertise. These types of critique tools
would be easier to be designed and programmed as they require less subjective decisions. Hence,
one possible future direction would be expanding the user population of critique tools to experts.
At the same time, novices were shown to be less supported with idea generation and understand-

ing. This might be because CST designers assumed that novices might not try novel ideas or build
complex artifacts. We would also be able to expand the range of tools for novices, supporting them
with idea generation and understanding.

Another pattern I found was in specific populations CSTs. The few examples were implemen-

tation-offering, predictable tools. This might be because researchers designed tools that can fill in
the gap of the skill from disability or not yet fully developed motor or cognitive skills (for chil-
dren). However, this pattern also might be due to the low number of tools for this population (n=6).
Hence, I argue that this population requires more attention from CST researchers. It would be ben-
eficial for these populations to have a broader diversity of tools. For instance, devising tools that
can effectively help ideation for people with sensory disability (e.g., mood boards for the visually
impaired) can be a valuable but under-explored topic in CST research. To accelerate research in
this thread, we would be able to learn from accessibility or children-related research in HCI.

3.6.5 Comparison to Previous Work

For some parts of our taxonomy (e.g., process roles and expertise), I build on previous work.
However, with new papers, I modified these by merging, removing, and adding certain categories.
For process roles, my taxonomy expands Frich et al. [119]’s taxonomy on the creative process
(pre-ideation, idea generation, evaluation/critique, implementation, iteration, meta/project). Here,
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I excluded meta/project, a taxonomy on the management, as I focused on a single user’s interaction
with CSTs during the artifact creation itself. Iteration is excluded, as it largely included support
for repeating other processes. For pre-ideation and idea generation, I considered them to broadly
contribute to ideation and combined them within the aiding ideation category. Pre-ideation would
be close to curation in our taxonomy. For the taxonomy of implementation, I tried to identify more
specific implementation approaches, which can potentially have different interaction dynamics.

For my taxonomy of users based on expertise, I also built upon Frich et al. [119]. In addition to
the novice/expert split offered in the earlier classification, I added the code both. In Frich et al., the
code closest to both is “casual” but this did not feel appropriate to CSTs that could support both
types of users. Frich et al. [119]’s casual more implies tools that are “easy to be used by broad
users”. However, I used both, to include cases that support both experts and novices by having a

low threshold and a high ceiling.

3.6.6 Limitations and Future Work

I focused on surveying art-making CSTs from HCI and computing research. My motivation was
to understand how researchers in technological, human-centered fields have been designing CSTs.
However, CSTs can be, and likely are, designed and developed outside of the community. Indepen-
dent artists often devise unique CSTs to realize their artistic vision with new computing technolo-
gies. For such a community, the design patterns in roles, interaction approaches, and technologies
would be significantly different from what we observed. Hence, studying other communities to
investigate the commonalities and differences can be future work.

Our sampling approach introduces another limitation. First, I focused on tools that support the
making of aesthetic artifacts with a single user. To understand the broader design implications
of CSTs, considering other CSTs would be valuable future work. Moreover, as I did not filter
recent papers with citation or download counts, analyzed papers are more biased to recent work
(the number of the published paper is increasing). One relevant future work can be adopting a
sampling approach that balances publication across time and doing temporal analysis.

I coded each CST with the dimension of predictability, but only considering intended behaviors.
The spectrum of predictability can be wider, including unpredictable behaviors like unexpected
errors. I only considered intended behaviors, because many CST publications do not have full
information on errors. Future work can consider this aspect of “acceptability to the user”. Fur-
thermore, a single tool makes scoped outputs, not all imaginable ones. Hence, we would also be
able to consider “possibility by the tool”, whether the CST can make a certain output or not. With
these, researchers would be able to analyze CSTs more comprehensively with the user’s expec-
tation. They would distinguish various tool behaviors, including intended results, known errors,
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unknown errors, surprising but favorable results, desired but impossible behaviors, etc.

3.7 Conclusion

In this chapter, to investigate the design of AI-CSTs, I studied how the HCI community has con-
structed art-making CSTs. For this purpose, I considered the roles, users, interactions, and tech-
nologies of CSTs. My work adds a more design-centered, consolidating perspective to the un-
derstanding of art-making CSTs. I taxonomized and coded 111 publications on art-making CSTs.
Using those codes, I identified design patterns and design space of art-making CSTs. I found that
vision-offering CSTs frequently adopt learning-based AI algorithms while being unpredictable and
contributing to implementations. This pattern can introduce potential friction in using AI-CSTs
from their unpredictability. For the potential issues, having steerability has been considered as a
solution. From the findings, I identify that efficient and multi-modal interactions would facilitate
steering of AI-CSTs.

57



CHAPTER 4

Steerability in AI-powered Art-making Tools

Based on the findings of Chapters 2 and 3, I summarize the design lessons for AI-powered art-
making tools. The core lesson is that we need to design steerability in AI-powered art-making
to facilitate effectiveness, efficiency, and iterative use in interactions. I also found that mixing
familiar input modalities can be an approach to design such a steering interaction. In this chapter,
I describe steerability, why users need it, its requirement, and a potential approach to facilitate it.

4.1 Definition and Need for Steerability

In this dissertation, I define steerability as a user’s ability to communicate and express their artis-

tic intentions to AI-powered art-making tools so that their algorithmic behaviors can align with

the user’s intentions. I draw this concept from the findings of previous chapters, which are closely
relevant to user needs. For example, the artist interviews emphasize that clear and iterative commu-
nication of the artist’s intentions leads to successful relationships with intelligent agents. Similarly,
the design of inputs (e.g., whether they are direct or not and if users can predict outputs with them)
has been considered as core aspects in the design of CST interactions. Steerability has already
been considered important for art-making tools, as art-making is fundamentally the activity of
expressing one’s intentions. However, it becomes more crucial for AI-powered tools due to the
unpredictability of AI models. Ideally, the user should be able to balance the divergence of the AI
models so that the surprises of the AI models would not go beyond the user’s allowed boundary
(Figure 4.1). For such a purpose, steerability needs to be more nuanced and complex to let users
specify where the AI model can diverge and where the model should follow the user’s expectations.

4.2 Requirements of Steerability for AI-CSTs

The basic requirement of steerability is to ensure effectiveness, whether steerability was successful
in conveying the user’s intention to AI models and generating results that align with the user’s
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Figure 4.1: Steering interactions can bring AI results closer to the user’s expectations.

intention. However, from the initial two studies, we identify two additional requirements: 1)
facilitating iteration, and 2) efficient steering.

4.2.1 Facilitating Iterative Steering

One requirement is to facilitate iterative steering. Iterative steering can be composed of multiple
steps: making steering specifications, observing intermediate results from AI models, respecifying,
and repeating the process. It would be similar to how artists often work with other supporting
actors, iteratively creating intermediate versions of artifacts and revising them after communicating
about those intermediate versions. This repetitive communication and revision pattern ultimately
leads to desired results. There are two reasons why steering interactions should support iterations.
First, the language used for steering often tends to be under-constrained, requiring the user to
iterate on it. Such under-constrained languages allow AI models to output “a range of results”
that introduce surprises to the users. However, if the surprises are too misaligned with the user’s
intention, the user would need to iterate to align the result to their intentions. Second, in some
instances, the user does not have a clear idea of what they want, but only realizes it after seeing
intermediate results. If the realized desire does not match what AI models have generated, the user
would need to iterate on steering.

4.2.2 Efficient Steering

Art-making is a complex process with many different aspects to specify (e.g., there can be many
ways to fill in the blank canvas). Even creating one artifact requires skill and effort without in-
volving another agent. While AI-powered tools can potentially automate and simplify many of
the processes, they introduce their own large set of options, making steering specifications com-
plex. While this challenge is universal for both non-AI and AI-powered art-making tools, previous
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Figure 4.2: Dynamics of artist using AI tools

efforts in designing art-making CSTs have alleviated this challenge by adopting interactions that
turn complex specifications into more efficient ones. Adopted strategies include high-level pa-
rameters [448] and sketching interactions [446]. Similar approaches to adopting efficient steering
interactions would also be valuable for AI-powered art-making tools, as users would still have al-
most infinite options for the resulting creation and many complex details would need to be specified
by the user. Note that the efficiency of steering interactions can be evaluated with several criteria,
including time, the number of input interactions, and the cognitive effort that users perceived in
generating the artifact.

4.3 Design Approach: Mixing Familiar Input Modalities

From the initial two studies, I propose a design approach to facilitate iteration, effectiveness, and
efficiency in steering interactions, which mixes familiar input modalities. I identify this interaction
approach by observing how artists communicate with supporting actors. When artists create art by
themselves, they often use the modality of the art. For example, when artists paint, they use a visual
modality, such as a paintbrush, and it is enough to create the visual arts. However, when artists have
others helping them and need to direct their work on the artifact, artists need to provide guidance.
It can take diverse forms, including 1) the combination of the artifact’s modality and the modality
other than the artifact’s (e.g., marking up an image with annotations for visual arts), 2) only using
the artifact’s modality (e.g., a sketch of visual arts), and 3) only using the modality other than the
artifact’s (e.g., only text descriptions for visual arts). Among them, the use of mixed modalities
has benefits, as these can complement each other. For example, verbal communication can be
efficient as it does not require much effort to verbalize but can cause a mismatch in conception due
to ambiguity. In such cases, references and sketches can help convey a concrete rendition, but they
are often difficult to use flexibly. In such cases, using those means together would help artists to
have more efficient and effective communication. Moreover, since each communication round can
be efficient, it would also be easy to iterate.
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In the context of AI-CSTs, using mixed familiar input modalities would have similar benefits,
specifically when the interaction is already familiar to the artist. Even for general CSTs, as shown
in Chapter 3, many tools used direct and indirect inputs together, implying the potential benefits
of mixed inputs. Moreover, with recent AI technologies that can guide generations in the vector
space or learn the multi-modality vector representations, there can be more opportunities in the
design of multi-modal steering interactions. Specifically, AI-powered art-making tools can include
mixed modalities in direct input to the artifact (blue arrow in Figure 4.2), indirect input to the AI
tool (red arrow in Figure 4.2), or both. Adopting “familiar” modalities would facilitate effective
and efficient steering, as users would easily learn how to use such interactions. In the later part of
this dissertation, I introduce three AI-powered art-making tools that adopt steering interactions that
mix familiar input modalities. The first is Artinter, which combines mood boarding and slider in-
teractions to leverage the user’s ambiguous and subjective language concepts as steerable handles
for search and generation in visual art commissions. The second is TaleBrush, which allows effi-
cient and iterative steering of story generation models with visual sketching interaction. The third
tool is PromptPaint, which adopts the interactions of the paint mediums in the use of text-to-image
generation models to facilitate efficient and iterative steering.
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CHAPTER 5

Artinter: Steering Search and Generation with Mood
Board and Slider Interactions in Visual Art

Commission

5.1 Introduction

The commissioning of art pieces allows clients to request unique pieces suitable to their needs
that at the same time retain the creativity, sensibility, and style of the artist [138]. Commissioned
visual arts range from paintings to book and album covers and can be rendered in many different
mediums. Because a commission is often ‘bespoke’, or unique to the client, clients have some
influence over the final piece. That influence can vary from fine-level control of the content (e.g.,
requesting a specific portrait) to more limited input based on color, size, or where the piece will be
exhibited. This does not necessarily mean that a client has absolute control of the final product. In
many commissions, there is a necessary balance between the artist’s agency to create their art and
the client’s needs or wants. Arriving at a mutual understanding is a complex process, as people do
not share a clear mental model of each other’s language, meanings, objectives, requirements, and
skills [65, 96].

To accomplish a shared understanding of the artwork to be commissioned, communication is
imperative [60, 65, 96, 312, 354, 402]. Artists and clients can have different languages due to
subjectivity and expertise gaps. Successful communication often requires the creation of a common
language that shares tacit conceptions, assumptions, and knowledge [96, 312, 402]. For instance,
when the client asks for ‘light’ art, the artist and the client must develop an understanding of what
that means. Is it bright colors? A specific “light” topic? Lighter brush strokes? Does it imply things
that should be included? Or what should be avoided? A shared definition is critical to ensure that
the artist’s enactment of the concept can satisfy the client. Having achieved mutual intelligibility,
artists and clients can ultimately converge on a commissioning ‘contract,’ a specification of the
commissioned artifact. It can be as vague or specific as desired but ultimately defines the bounds of
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Figure 5.1: Design of Artinter. Artinter is a collaborative AI-powered system that supports com-
munication around art commissions. It allows artists and clients to have shared boundary objects
(1) on the mood board. With shared objects, Artinter allows users to have agreement on what they
mean through concept building (2), or defining concepts with artifact instances. The information
elicited from the development of concepts is also used to train Artinter to learn these user-defined
concepts (3). Based on the learned concepts and shared artifacts, Artinter provides two AI-powered
supports in expanding artifact instances (4): search and generation.

a good commission. With this contract in hand, the artist can focus on producing the commissioned
piece in their medium of choice–digital or not.

In this work, we introduce Artinter, a synchronously collaborative AI-powered system. Art-

inter facilitates the use of boundary objects to help artists and clients share language and vi-
sion about the artifact to be created. The system aids this process by supporting collaborative
sketching, art generation, and search. The features of Artinter were motivated through an anal-
ysis of guidelines and questionnaires for commissioning artists. My analysis identified various
types of boundary objects [380, 381] that motivate the core of Artinter’s features. Specifically,
I observed that different materials—language and visual—are used to convey information on the
client’s vision and the artist’s description of their work (e.g., sample reference images, artist’s
vision statements, and client’s goal description). As a commissioning relationship evolved, addi-
tional tools, such as ‘mood boards,’ would be leveraged to organize visual and language boundary
objects [258, 259, 260, 278]. Through my analysis, I found common patterns among commission-
centered boundary objects: 1) methods for describing verbal concepts (Figure 5.1-1-a)–natural
language-based descriptions of artistic concepts, constraints, etc.; and 2) artifact instances (Fig-
ure 5.1-1-b)–concrete examples of imagery. For artifact instances, artists and clients created
sketches [40] or searched for references [354]. In building Artinter, I focus on supporting both
types of boundary objects through a unified interface inspired by mood boards—a space in which
verbal concepts and artifact instances can be created, arranged, and organized to support mutual
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understanding.
Although boundary objects aim to reduce ambiguity, they cannot completely eliminate

it [125, 234, 354]. Sometimes, such flexibility is desirable, as it gives the artist creative flexi-
bility. When not, Artinter allows artists and clients to collaboratively define verbal concepts by
identifying examples (e.g., “rough brush” from impressionist pieces vs. “rough brush” from action
painting works) (Figure 5.1-2). Another challenge is that finding example artifacts can be difficult.
Either the artist or client would need to sketch their idea–a time-consuming process–or search for
examples. Introducing a natural language search engine to the mix adds more ambiguity as artists
and clients must find a way to explain what kind of images they are looking for [219]. To address
the challenge of finding or creating good examples, Artinter leverages existing user-defined con-
cepts on the mood board as steerable handles. As users would have defined concepts and artifacts
that center the communication, Artinter can learn them (Figure 5.1-3) and provide artifact expan-

sion, AI-powered supports to explore more instances with artifacts and concepts within the com-
munication context (Figure 5.1-4). Specifically, Artinter allows 1) guided search of other artists’
works with user-defined concepts (Figure 5.1-4-1) and 2) generation of higher-fidelity sketches by
combining concepts or shared artifacts (Figure 5.1-4-2), with simple slider interactions.

I evaluated Artinter in two studies: (1) synchronous art commission meeting sessions with six
artist-client pairs; and (2) where 20 non-professional participants described a ‘target’ image with
Artinter. From studies, I found that Artinter could help the artist and client users ground their
communication means with mood board interactions while supporting finding references within
their communication contexts with sliders of user-defined concepts. Moreover, I could observe that
steerability from user-defined concepts facilitate iterative search and generation, gradually reaching
instances close to the user’s vision to communicate. Moreover, the generative AI functions helped
users to accelerate creating high-fidelity sketches while lowering the required expertise bars. I also
describe limitations of AI-based systems such as Artinter. These include the high effort to teach
the AI some concepts, the AI not learning in the way the user expected, or users becoming overly
focused on limited aspects of the specification when using generation functions. Based on these
findings, I discuss how we can build future AI tools for art commission communication support
with rapidly advancing AI technologies.

This chapter makes a number of contributions. First, I perform a preliminary analysis and
find design goals for the unique process of art commissions. Based on these findings, I create
Artinter, a novel collaborative AI-powered system that supports ‘contract’ communication during
commissioning. Finally, I conduct two user studies with practicing artists and potential clients.
My studies identify effective use patterns and features, as well as limitations. The results have
implications beyond art commissions to other creative tasks including those with ‘unbalanced’
human-human collaborations. With Artinter as an example, I consider how focusing AI features
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on sub-tasks (e.g., aiding human-human collaboration) can produce better experiences over models
that treat the AI as an ‘artist replacement.’ This chapter shows how steering interactions of mixed
familiar input modalities can be used to align AI-CST behaviors to the user’s contexts and facilitate
iterative steering.

5.2 Background and Related Work

In analyzing related work, I reflect on the need for boundary objects in art-making communication
and two mechanisms for getting them: search and generation.

5.2.1 Artistic Communication Means as Boundary Objects

While art production is often regarded through the myth of the ‘lone creative genius,’ the reality is
quite different. Artists collaborate with many others: clients, gallery owners, agents, collaborators,
etc. [25, 65, 190, 350]. Communication becomes a critical feature for success in these collabo-
rative processes [40, 60, 65, 262, 263, 267, 354]. Communication helps to concretize and share
tacit vision and knowledge with collaborators [96, 402]. Through communication, collaborators
ultimately co-build a shared explorative language framework [312].

References [65, 354] are one key mechanism by which collaborators can concretely show con-
cepts relevant to vision. Sketches are an alternative that allows artists to show their imagined
vision [40, 65]. Various tools enable collaboration. For example, mood boards, which have a root
in personal use (e.g., helping an artist track their own vision), are utilized in collaborative settings.
Mood boards allow for the projection of one’s vision into the collage of reference images and
materials [258, 259, 260, 278]. The materials on the board, individually and collectively, act to
concretize ambiguous or tacit ideas [278] and shape common languages and mutual understand-
ing [259, 278]. Moreover, they can facilitate collaborators to explore more ideas [101].

All these mechanisms–sketches, references, mood boards, etc.–come to act as boundary ob-
jects [234, 380, 381]. That is, they serve as translations between different social worlds, satisfying
the informational requirements for each of them. Boundary objects are effective intermediaries,
reflecting commonalities for the shared understanding while allowing flexible interpretations for
diverse participants. However, boundary objects tend to be unstandardized during the early phases
of construction, causing disagreement in their understanding [234]. Thus, participants usually co-
ordinate the definitions of boundary objects during their use. My view is that these characteristics
of boundary objects coincide with artistic communication means [312, 354]. The design for Art-

inter focuses on facilitating boundary objects in art commission settings. Through the features of
Artinter, we can investigate ways to support communication between artists and clients with these
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varied boundary objects.

5.2.2 Tools for Searching Artifact Instances

The references and sketches that form boundary objects need to be ‘obtained’ in some way–usually
through search or generation. A client can try to find examples they like. This can be from the
artist’s past work or the work of others. Similarly, the artist can use found examples to describe
some idea or probe the fit of an idea to the client’s needs or wants.

Though they may not have been created specifically for the commissioning process, there are
a number of search tools that may be useful. A common query language for these tools is simple
keywords (e.g., Google Images). This approach is effective when the user can explain their needs
or wants in natural language. However, in many cases, knowing the right keywords can be chal-
lenging [220]. Moreover, those right keywords might not map to either the artist’s or the client’s
language. Introducing yet a third language can make search inefficient.

An alternative to text is abstract representations or visualizations that can be used to explore
or move through image ‘spaces.’ For example, Dream Lens helps users explore many generative
designs by visualizing them with various attributes and concepts [275]. It is a powerful approach
in the hands of an expert, who has the skills to use digital tools or knows the ‘language’ of these
tools. However, non-experts may find such tools difficult.

A third approach is to use example artifacts as input for exploration. Tools that support explo-
ration by showing examples similar to user-given artifacts fall into this category [11, 107, 220].
Because users may want to find things that are ‘different’ from the example they provide, some
tools seek to identify more divergent (e.g., serendipitous) examples [218, 219, 233, 341, 362].
These approaches can help find examples in the space ‘around’ an input vision. However, such
tools tend to be personal in nature and do not externalize aspects that the user is looking for.
Hence, these are not necessarily built to communicate concepts in this space.

Concept-driven tools are yet another alternative. These allow the user to explore artistic ideas
by toggling ‘concepts’ as high-level parameters [47, 83, 222, 371]. For instance, by using the
concept of ‘striped textures,’ the user can search for examples with or without striped textures.
Unfortunately, the number of explorable concepts is often small as systems often require many
annotated examples [56, 83, 222, 228, 300, 440]. An alternative is allowing individuals to define
the concept independently with a small number of examples. Interactive machine learning (IML)
tools often support this approach [10, 103, 112]. CueFlik, for example, allowed users to define
complex rules (e.g., “product photos”) to find images [112]. These “few-shot learning”-based
concept definitions became more plausible with powerful neural network representations [47, 146].
In Artinter, I follow this approach to allow users to configure concepts as a mechanism for defining
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complex queries.
I also note the utility and challenges of collaborative search. In the context of a group of

people researching knowledge, such as working on joint projects or homework, previous work
emphasized that sharing awareness, dividing labor without redundancy in efforts, and persistence
in having a shared search session are crucial to facilitate collaborative search [12, 265, 284, 285,
286, 287, 313, 409]. Following these recommendations, Artinter supports collaborative searches of
references with a shared mood board, synchronized user actions, and co-defined query languages.

5.2.3 Tools for Artifact Generation

While in many situations visual examples of ideas can be ‘found,’ sometimes they require ‘cre-
ation.’ This is important when creating is more expedient than finding but also when no example
can be found. In these situations, collaborators resort to sketching or generating examples. Creat-
ing sketches requires skill and effort, which can introduce additional friction to efficient commu-
nication. For example, clients who feel like they cannot draw may resist creating a sketch. There
have been diverse approaches to lower the expertise and skill bars in visual art creation by provid-
ing guidance and structure. However, this comes at the cost of limited flexibility in styles and con-
tent [28, 108, 183, 241, 387, 421, 429]. Recent approaches provide more flexible intelligent gen-
erative functions, such as co-creating drawings with the user [301] or generating images with the
user’s masking specifications [309] and natural language prompts [175, 177, 298, 330, 342, 348].
However, these do not necessarily consider the user’s style, which can be a limitation in the art com-
mission setting. Another set of techniques can generate images based on the styles of images within
the user’s inputs [123, 128, 307, 310]. Artinter utilizes a style transfer algorithm [128, 307, 310]
to allow artists and clients to express artistic ideas with low effort and high fidelity while consider-
ing their styles or preferences. An individual can instantiate a rough idea by applying and mixing
various styles including the artist’s, and explore a space of possible artifacts.

As with collaborative search, there are also tools for collaborative artifact creation. These vary
in sophistication from simpler sharing of artifacts [133, 149, 349], to co-creating on the same
canvas [149], building upon each other’s artifacts [133, 321, 447], and remixing multiple arti-
facts [321, 447]. Artinter builds upon these approaches to allow co-creating and combining styles
of the artwork shared by collaborators.

5.3 The Art Commission Process

To understand the current practice of the art commission I begin by studying the materials
artists currently use. Specifically, I identified two common types of materials–questionnaires and
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Code Q (22) G (27) Examples

Target Specify subject 68.2% 85.2% things to be drawn, story, mood, personality
Specify style 90.9% 55.6% color, material, form

Means
Use text/language 100.0% 100.0% textual inputs in questionnaires, conversation
Use references 45.5% 59.3% photo of subjects to be drawn, or any references that can be relevant
Use sketches N/A 44.4% early sketch before the full development of the art piece

Approaches

Consider the artist’s own
style

31.8% 74.1% choose preferred arts from the artist’s previous works, the client does not
dictate

Language-only descrip-
tions do not help

N/A 7.4% verbal descriptions can be interpreted in diverse ways

Periodic updates N/A 63.0% updating the client after a certain process and getting feedback

Table 5.1: Preliminary analysis results. Q stands for questionnaires and G stands for guidelines.
The number in the parenthesis indicates how many questionnaires and guidelines are analyzed.

guidelines–that can be used to better model the practice. Many artists who accept commissions
use structured questionnaires to obtain information from clients. The second source, guidelines or
training materials, is information content for artists who are starting or developing their commis-
sioning practice. These are often in the form of blogs or social media posts and are most often
found in artist-focused sites and blogs. Taken together, these materials reveal the dynamics of the
art commission process and how artists view the process. Note that their focus is more on artists
and might have limitations in understanding client perspectives. To obtain a large collection of
these, I searched Google for keywords such as: “art commission questionnaire”, “guidelines for
art commissions” and “tips for art commissions.” By excluding search results that are not art com-
mission questionnaires or guidelines, I collected 22 questionnaires and 27 guideline documents.
Their domains ranged from fine arts to sculpting, illustration, and cartoon creation. For question-
naires and guidelines, one of the authors did iterative coding with inductive analysis, and another
author reviewed codes.

5.3.1 Findings

I focus the discussion on codes related to communicating artistic ideas as they have the most
implications for Artinter (summarized in Table 5.1). Most questionnaires and guidelines had some
focus on obtaining a high-level description of the target of the commission. This fell broadly
into two categories: subject (a thing to be drawn) and style (constraints of the art including the
color, material, form, etc.). Specific questions about target range from concrete (e.g., objects to
be drawn) to ambiguous (e.g., the story of the piece, overall mood, or client personality). In many
situations, artists also used this information to determine if the client relationship would work.
Thus, a function of the initial commissioning discussion might be to recognize if a commission
is possible or not. For all cases, targets were communicated through text/language, either with
textual inputs or verbal meetings. I found that some artists additionally use, or request, artifact
instances such as references and sketches. References were usually visual materials that would be
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used as models of a piece (e.g., a photo of a subject), effectively conveying what the client wants.
Guidelines on interacting with clients suggested creating collections of references (e.g., through a
mood board) or developing less costly sketches.

Another point of emphasis in the training materials was finding the balance in keeping an artist’s
own style while allowing clients to choose limited aspects to control. In practice, this was ap-
proached in a number of ways. For example, some artists explicitly ask clients to choose references
from the artists’ collection work. This managed the client’s expectations and constrained them to
things the artist could or would produce. A few guides mentioned that using only verbal descrip-
tions would confuse communication, as they can be interpreted in many different ways. Notably,
the broader idea of ‘management’ manifested in other pieces of advice. For example, advice sites
suggested avoiding clients who would micromanage. The advice also included the management of
expectations by periodically updating the client so that they can track the progress and give feed-
back. Clearly, the need to establish and maintain boundaries on what will not be done (i.e., what’s
‘outside the fence’) is as important as what will be produced and how.

5.3.2 Design Goals

As our core interest was to build a communicative medium between the artist and the client, the
most interesting findings were the use of textual/verbal means and artifact examples as boundary
objects. Based on the analysis and previous work, I identify challenges and design goals to support
the use of boundary objects in art commissions. I would emphasize that art commissioning is
a complex process and there are other aspects to consider than facilitating the use of boundary
objects. As a simple example, the need to periodically update clients on progress. These are outside
the scope of the current prototype, but I discuss them as potential future work in Section 5.7.4.

First, in artistic domains, boundary objects can be highly ambiguous and interpreted in diverse
ways when a single modality is used. My analysis revealed this limitation in verbal descriptions
(e.g., ‘what does it mean when they paint with a rough brush?’) [65, 354]. Artifact instances
would complement verbal descriptions (e.g., ‘here’s an example of what I mean by rough brush’).
However, using instances without text would bring in a similar ambiguity problem [125] (e.g., ‘did
they like the color or brush technique of this piece?’). Hence, textual descriptions and artifact
instances need to be scoped and connected as necessary (D1). I emphasize the as necessary part
of this design goal as the tool does not have to provide a translation dictionary or mental model
mapping more than needed by the artist or client to specify the commission. Overspecification
of boundary objects can narrow the artist’s creative freedom and prevent the client from seeing
pleasant surprises in commission results (if they want them) [65].

My second observation is that while having reference images is great for a commission, finding
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reference images is often costly. For example, the client may not know how to describe what
they’re looking for. In such a case, they will struggle with a search tool that doesn’t map to their
concepts [83, 222, 371] and queries [220]. Similarity-based search tools [11, 107, 220, 362] may
become too disconnected from queries or intents. For example, the client may not want many
images that look the same (e.g., many images with the same color sunset) but rather a set that
describes the boundaries of that concept (e.g., a range of what would acceptably fit in the concept
of the sunset). By observing the interaction patterns between client and artist, one can more readily
identify what it is that they are searching for [65]. Hence, artists and clients will benefit if the
guided reference search conforms to their communication contexts (D2). Such conformity
would also allow artists to scope the searched references to those relevant to their style, helping
them keep their art styles.

Finally, for many commissions, there may not be a perfect reference image. If there is one in
the artist’s style, the client would likely just buy that. Thus, more unique sketches of the proposed
piece may serve as a way of resolving both the meaning of certain language constructs (e.g., ‘let
me draw what I mean by figurative’) or the even bounding the final artifact (e.g., ‘here’s a rough
sketch of what I’ll paint’). Sketches would be a flexible communication means for artists with
the expertise to produce them. Unfortunately, sketches can be costly to create. For example, a
sketch with more detail may require more effort (e.g., textured sketches would take more time than
simple line drawings). Moreover, sketching requires expertise, preventing non-expert clients from
creating one. While creating a sketch close to the artist’s style would facilitate communication, that
would be even more difficult for non-expert clients. To address these issues, sketches should be
created quickly, with details, with low expertise, and within the style relevant to the artist’s
scope (D3).

5.4 Commission Communication with Artinter

Motivated by the design goals, I built Artinter (Figure 5.2). Artinter is designed to support art
commission communication by grounding and expanding the use of boundary objects. Artinter is
composed of two parts, a mood board on the right and a sketch pad on the left. On the mood board,
users can share artifact instances and verbal concepts. Within this space, examples can be grouped,
linked, and labeled collaboratively. The sketch pad allows users to quickly instantiate new ideas. In
the mood board, users can perform concept building (Figure 5.1-2), collaboratively defining verbal
concepts with artifact instances to ground these as agreed communication means (D1). Using
these defined concepts, Artinter also allows users to perform artifact expansion with two functions:
searching references with concepts as handles (D2) or generating sketches by combining concepts
and existing artifacts (D3) (Figure 5.1-4). I designed the search and generation to center around
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Figure 5.2: Artinter interface. Artinter is composed of a sketch pad (a) and a mood board (b). On the
sketch pad, users can do raster image editing, such as brushing, erasing, or lassoing (a-1). Users also can
copy-paste images on the mood board onto the sketch pad. With layers, users can add, remove, reorder,
and hide them (a-3). On the mood board, users can add art images, texts, and color swatches (b-1). Note
that color swatches are considered similar to art images except that they have a single color and the color is
selectable. With art images or color swatches, users can define concepts (b-2). On the sketch pad, the user
can also combine styles of images on the mood board and apply them to one of the layers (a-2, 4, 5, and 6).
The example result of the style mix is presented in a-5. On the mood board, users can collaboratively search
or generate artifact instances with concepts defined by themselves (b-3). They can also know who is online
on the boards (c). The user also can expand a certain panel if they want to focus on working on one (d). The
current image on the sketch pad can be moved to the mood board (e).

the user-defined concepts to align these supports with human communication. To better explain
the features of Artinter, I describe the system with an interaction between Juno, an oil painter, and
Louis, a client. Juno and Louis are artist and client personas derived from my preliminary study
and I use these personas to capture how Artinter would help art commission processes.

5.4.1 Set-up

Louis wants a piece expressing the concept of “isolation” in Juno’s style. While he likes Juno’s
style, he doesn’t yet know how his idea can be represented. Similarly, Juno thinks the theme of
isolation may manifest in her recent winter landscapes that utilize what she thinks of as ‘rough
brushing.’ However, Juno does not necessarily know if Louis’ idea of isolation aligns with hers or
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if Louis will understand her use of certain technical terms. Louis and Juno decided to use Artinter

synchronously in a remote meeting session to get support in arriving at an agreement (or ‘contract’)
on what artifact to create. Note that Artinter focuses on supporting style-specific factors in visual
arts (e.g., colors, textures, patterns, etc.). These are more ambiguous and difficult to communicate
than other factors like forms or subjects.

5.4.2 Concept Building (D1)

Figure 5.3: Building and updating concepts in Artinter. a) A user can create a concept by clicking
the CREATE A CONCEPT button and inputting a textual name for the concept. b) While a user has
selected a concept, the user can relate the concept to other ones by clicking R buttons showing
up on other concepts (left). The user can also ‘unrelate’ already related concepts by clicking U
buttons on concepts connected to the selected concept (right). c) The user can add a selected image
(bottom-right) to a concept that does not have the image by clicking + button (left). It also can be
removed from a concept that already includes the image by clicking - button (right).

Juno and Louis first use Artinter to try and become mutually intelligible about each other’s lan-
guages and scope of interests. It is necessary to remove ambiguity in communication and identify
the boundary of what each other would be interested in. For this, Juno can load examples of her
artwork into Artinter. She organizes works according to her own classifications by moving and
grouping them visually on the mood board. For example, many of Juno’s pieces have a distinctive
brushing technique. She can select images with this rough texture and click CREATE A CONCEPT

button to create a group with the name of “rough brush” (Figure 5.3a). With the creation of the
concept, a box with color will visually encompass images in the concept with its name displayed
on it. The design of this concept-building interaction is partially inspired by card sorting [378],
where people group pieces of information under categories.

After creating the group, Juno realizes that Louis is still unclear about what an alternative to
the “rough brush” style might look like. She starts to think that other concepts can be semantically
related to “rough brush”. She imagines that an antonym, such as the “flat texture” of watercolors
might better clarify the concept for Louis and makes a group for that concept. She also adds
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a few concepts for adjacent oil painting styles (e.g., other brush techniques) that are hypernyms
to the rough brush concept. To indicate the relation between these, Juno can visually connect
concepts. This serves two purposes: (1) it contrasts and highlights a concept’s meaning in relation
to other concepts for the human participants; (2) it further trains Artinter to be more accurate
by contrasting relevant concepts to each other. When Juno selects the concept of “rough brush”,
‘connector buttons’ will appear on other concept groups (Figure 5.3b). When the concepts are not
yet related, an R button shows up, which (r)elates, or connects, them. If they are already related, a
U button shows up, which (u)nrelates, or disconnects, concepts. When two concepts are connected,
they are connected with a line and have the same background color.

Figure 5.4: Pipeline for acquiring vector representation for recognition and search function.

As Juno defines concepts with example references, Artinter learns to recognize patterns, model-
ing the user language. Internally, Artinter creates vector representations for images and concepts. It
uses two types of representations, one for recognition and search, and another for generation func-
tion: search requires a low number of dimensions (for quick search), while generation requires a
high number of dimensions (to model style differences). For the representation for recognition and
search, Artinter takes intermediate layers of the VGG19 encoder [372], which are relevant to style
elements in visual arts [128] (Figure 5.4). Then, Artinter takes the gram matrix of each layer to
flatten and concatenate them. Because this vector tends to be huge (610304 dimensions), Artinter

reduces them to 300 dimensions by training a PCA algorithm. For the artwork dataset used in PCA
training, I used WikiArt dataset [419]. With this representation, Artinter trains a linear classifier
for each concept, with negative examples coming from 20 randomly sampled art images in the
WikiArt dataset [419]. When more than one concept is related, instead of having multiple clas-
sifiers for different concepts, Artinter trains a single classifier with multiple classes. Learning on
multiple concepts would allow Artinter to contrast different concepts and accurately learn them.
Critically, this concept-relating function also impacts the performance of the search. I report on
the performance of this recognition pipeline in Appendix A.1.1 and include specific examples that
can impact Artinter’s performance in Appendix A.2. I return to the details of the sketch generation
vectors below.

As the user adds new images, Artinter labels the examples added on the board based on how it

modeled these concepts. A potential side effect is that we can help users understand how Artinter

learned concepts and if it matches with how users think of those concepts. Using this feature,
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Figure 5.5: Iterative process of updating concepts in Artinter.

Louis clicks on the ‘rough’ concept and observes how Artinter annotates all the images on the
board. Artinter shows a small circle label on each image which indicates that Artinter recognizes
the concept from the image (red boxes in Figure 5.5). Circle size encodes the confidence of the
algorithm that the image relates to the concept. If Artinter does not recognize the concept in an
image, it does not show the circle. Louis can also see labels for each image by selecting an image
and placing a mouse over it. As Louis learns the concept and how Artinter learned them, he can
start to collaborate with Juno on including other adequate examples into the concept. This could
be to broaden or narrow the concept’s scope (based on Juno and Louis’ discussions) but can also
serve to improve erroneous models. With examples added or removed from the concept, Artinter

updates its model of concepts by retraining the classifier. (Figure 5.5) After retraining, Artinter

creates updated labels for images on the board. Such a model update also happens when Louis
and Juno relate or unrelate concepts. If Louis does not understand Juno’s concept well, Artinter’s
labels can help them capture it. For example, at one moment, Juno can see images labeled with
the concept while she does not think so. Juno and Louis chat about how to define the concept
and iterate on the concept based on their decision. Note that each iteration happened within a few
seconds, allowing the interactive use of Artinter

5.4.3 Artifact Expansion

Louis begins to study Juno’s concepts and captures core style elements that comprise Juno’s art-
work. While pondering on how “isolation” could be expressed with Juno’s style elements, Louis
thinks that the artwork to be rendered would need to have characteristics a bit different from Juno’s
style to that point. He likes the idea of the rough brush. However, he thinks isolation is better cap-
tured through a more abstract image, something potentially articulated by an even more extreme
form of rough brushing. Juno is open to this idea. For this, Louis and Juno decide to use artifact
expansion functions—search and generation—to acquire additional artifact instances such as im-
ages and sketches. In Artinter, Louis and Juno can tie this process closely with the communication
context, as they can use shared concepts and artifacts as the means for steering expansion (e.g.,
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generate a piece that has the artist’s concept of a gloomy winter, empty winter landscape while
having rougher brush texture than the artist’s”). Using concepts and artifacts, Louis and Juno
can either extrapolate (e.g., find examples with rougher brushes than what Juno has) or interpolate
(e.g., mixing references from Louis and previous work from Juno) from existing artifacts. Hence,
newly found artifacts would be relevant to Juno’s unique style while expanding to what Louis is
interested in—clearly drawing the boundary of their agreed scope.

5.4.3.1 Search with Concepts (D2)

Figure 5.6: Concept controls for search and generation function.

Juno and Louis decided to collaboratively search for additional references (Figure 5.2b-3). They
first set the query image, which is the start point of the search (the first column in Figure 5.2b-3).
For instance, they can select Juno’s artwork that is considered the most similar to what Louis wants.
They can “search with concepts” as the search interface shows each defined concept as the search
control slider with each end indicating LESS and MORE (Figure 5.6a). This control allows users
to decide how much more or less of the concept needs to be considered in the search, compared
to the query image. For instance, to find references with a flatter texture than Juno’s works, Louis
can set the slider value for “flat” higher. Sliders for related concepts are under the same partitioned
area (e.g., “flat” and “rough brush” in Figure 5.6). For added emphasis, each slider shows color
gradients, which indicates whether the results will be similar or different from the query image.
This visualization is for the estimation of results before actual querying. Yellow indicates that
more similar images will be retrieved, while blue signals that the output will be far different.
With multiple concepts, when one slider value changes, other sliders update color gradients, as
different sets of images will be searched. Louis and Juno can see search results by clicking on the
RUN SEARCH button (top-left of the third column of Figure 5.2b-3). As they find useful search
results, they can add them to the mood board for further discussion (+ button in the third column
of Figure 5.2b-3). Juno and Louis also can search for images similar to the query image or random
ones (top-right of Figure 5.2b-3). Artinter can be designed to allow for additional search interfaces
(e.g., keyword driven).

75



Our concept-based search pipeline is similar to Cai et al. [47]’s approach. While Artinter learns
a concept, it calculates a concept activation vector (CAV) [208], which represents the directional
vector of the concept in the ML representation space. When running a search, Artinter embeds
the query image into the vector representation, and Artinter adds the CAV of each concept with
weights from sliders. From the calculated vector, Artinter retrieves the nearest neighbors from
external datasets (the WikiArt dataset in the current prototype). A technical evaluation of this
search functionality is in the Appendix A.1.2.

5.4.3.2 Generation by Combining Concepts or References (D3)

Figure 5.7: Impact of scale and weight parameters in sketch generation function on a sketch pad.

With new examples from the search, Juno clearly understands what Louis wants. However,
they still don’t know if it will work with her style. Juno can use Artinter’s generation function to
mix her styles with those of found references (Figure 5.2a-2, 4, 5, and 6). This function gives a
quick preview of a piece without full-fledged creation, helping Louis and Juno to more easily agree
upon which direction they will pursue. The recommended way of using generated examples is as
references. However, for digital art these could be used as a part of the final artifact. However, such
inclusion or use can present challenges to the artist with their sense of ownership of the created
art piece. When the final piece is to be physically created (e.g., as an oil painting), the dynamics
around the sense of ownership may be different. I return to these issues in Section 5.7.3.

Artinter allows generation in two modes: the first is on the sketch pad (Figure 5.2a-2, 4, 5, and
6). With the “style-stamp” function, Louis and Juno can first define the “content”–the area of the
sketch pad layer to apply the style mix. They can do this by drawing the area on the sketch pad
(e.g., a small area of the image as shown in Figure 5.2a-4). Alternatively, they can click the ALL

button to choose all areas with the image content in the layer. The selected area will show up in
the first column of the style configuration panel (Figure 5.2a-6). For “styles”, Louis and Juno can
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select images or concepts from the mood board. They can select one or more. If a concept, rather
than an image, is chosen, all images under the concept will be selected. Artinter shows chosen
images in the second column of the style configuration panel (Figure 5.2a-6). For each style and
content, Louis and Juno can control two parameters: the first is weight, how much weight a specific
style will be given when mixing styles. The second is scale, how large or small the style will be
applied to the content. The art image with the chosen scale is shown in the interface to help users
estimate how big the style will be applied. Figure 5.7 shows how these parameters impact the
generation and more cases are included in the Appendix A.3. Louis and Juno also can crop a
part of a style image to use only the part as the style. The process of generating style mix with
style-stamp is not synchronized between users to minimize interference from actions of multiple
users (e.g., avoid two users simultaneously manipulating the same layer). Artinter shows only the
generated results (Figure 5.2a-5) to all users.

The second mode of generation happens on the mood board. This mode is for quick style
combination with simpler controls, instead of giving all fine-grained controls. This mode is col-
laborative, with manipulations of controls synchronized between users. This function can be used
in the collaborative search panel (Figure 5.2b-3) by clicking the GENERATE tab on the top of the
second column. The generation controls would show up in the second column (Figure 5.6b). For
simplicity, Louis and Juno can only control weights for concepts, but not other aspects like scale
and cropped areas. The query image serves as the content, and users can also assign a weight for
the query image (Selected Image in Figure 5.6b). When the user clicks the RUN GENERATION

button (which replaces the RUN SEARCH button in Figure 5.2b-3), Artinter generates the image
with the mix of styles in the third column.

A style transfer algorithm, SANet [307], powers the generation. For this, Artinter used vector
representations based on VGG19 [372]. The mix of styles is done by linearly interpolating styles
with weights. The scaling of style is achieved by scaling input images according to the user-defined
ratio and then getting the center crop of each style image with the smallest dimension of all style
images. To “learn” the styles of concepts for the generation function on the mood board, I averaged
all style representations of images in the concept. I chose this approach as I designed generation
to be the function that interpolates. Because I used an existing style transfer algorithm, I did not
technically evaluate it [307].

After collecting boundary objects necessary to specify the art to create, including textual notes,
references, and examples, Juno can start working on her physical canvas.
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5.4.4 Implementation

Artinter is implemented as a web application, using HTML, CSS, and Javascript. I used React
as a front-end framework and Feathers as a back-end framework. Feathers enabled real-time syn-
chronization of user interactions. I had a separate server to handle machine learning calculations,
implemented with Python and Flask. For the CAV model, I modified Tensorflow-based TCAV
codes1. For the style transfer algorithm, I revised SANet code2 implemented in PyTorch.

5.5 Study 1: Support of Design Goals

In this user study, I aimed to learn how Artinter supports clients and artists regarding three design
goals identified in Section 5.3. Specifically, I focus on how the core features of Artinter–concept
building and artifact expansion–achieve these goals in synchronous and iterative communication
settings. To answer this question, I conducted an observational study with a follow-up interview.

5.5.1 Participants

I conducted the study with six artist-client pairs. I recruited artists with commission experience
from Upwork and social media advertisements (two females and four males, ages 19-36, M=27.5,
SD=6.4). They had one to 11 years of experience in visual arts (M=6.5, SD=3.7). Five artists had
more than ten commission experiences, while one had four commissions. Their styles fell into
two main types: abstract art (3) and illustration (3). I recruited clients from our university mailing
list (five female and one male, ages 26-56, M=39.7, SD=12.8). Two of the client participants had
experience with art commissions. I compensated each artist $82 and each client $25. In discussion,
I code sessions as S1 to S6, artists as A1 to A6, and clients as C1 to C6.

5.5.2 Procedure

I designed our study to simulate the initial meeting for commission. I matched artists and clients
based on time availability. If the client did not like the artist’s style, I matched them with an-
other artist. It was to avoid the client not being engaged in the art commission process. I asked
participants to watch a tutorial video and try Artinter individually before the scheduled session to
familiarize themselves with the tool. To minimize the interference of this pre-session access to the
study, they were not allowed to interact with other people with the tool.

1https://github.com/tensorflow/tcav
2https://github.com/GlebBrykin/SANET
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I invited the artist and the client to a remote art commission meeting. I conducted the meeting
on Zoom and recorded it. I first reminded them about the main features of the tool and how they
can use those features. During the session, I first asked the artist to build a board by defining
the core concepts of their art. I guided them by prompting that concepts can 1) distinguish their
artwork from other people’s (i.e., artist’s unique concepts) or 2) characterize differences within
their artwork set (i.e., different concepts within the spectrum of the artist’s style). I also asked the
artist to verbally explain concepts to the client so that they could build shared languages.

After building the mood board, I asked the client and the artist to discuss which artwork the
client wanted the artist to work on. I mentioned that their specific goal is to bring up artwork
specs that can satisfy the client. Constraining the task, I asked them to focus the discussion on the
visual styles. After the client and artist agreed on what to create (constrained to a maximum of 35
minutes), I asked them to do a survey and an interview on how they used the features of Artinter.

5.5.3 Results

Our findings are based on an analysis of the survey results, video recordings, and interview data.
For qualitative data, I did iterative coding with inductive analysis, and a collaborator reviewed
them. I focused on identifying how the functions of Artinter support the three design goals from
Section 5.3. In addition to relating to design goals, I also report diverse usage patterns and potential
limitations of Artinter. Note that when I append count to qualitative findings, that indicate the
number of sessions where the findings were mentioned.

5.5.3.1 Survey Result

For the survey (Figure 5.8), artists and clients were asked different sets of questions about whether
Artinter helped users 1) communicate artistic ideas generally (Q1s, Q2s), 2) have shared languages
(Q3s), 3) search references (Q4s), 4) generate examples (Q5s), and 5) consider the artist’s style
(Q6s, Q7s). The participants’ perception was overall positive. Specifically, overall positive re-
sponses of Q3s, Q4s, and Q5s indicate that most of participants perceived that Artinter supports its
design goals. In the later sections, I present how Artinter could support those design goals. Only
one client participant answered negatively, that they could not effectively test out and communicate
ideas with style mix generation. I expand on this case in Section 5.5.3.6.

5.5.3.2 D1: Concept building

Artinter supports D1 if it can help participants mutually understand the language they are using
in relation to images. The survey result broadly support user perception that this was the case.
Additionally, I present qualitative observations.
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Survey results - artists

Survey results - clients

Q1. With the help of the tool, I could understand what
the client wants.

Q2. With the help of the tool, I am confident about what
I will create for the client.

Q3. The tool that I used helped me share language I
use with the client.

Q4. With the tool, I could effectively search and use
references to communicate ideas with the client.

Q5. With the style mix generation, I could effectively test
out and communicate ideas.

Q6. With the help of the tool, I felt that my style was
respected enough while communicating artistic ideas.

Q7. The tool gave me search and generation support
according to my style and concept.

0% 25% 50% 75%

Strongly disagree Disagree Neutral Agree Strongly agree

Q1. With the help of the tool, I felt that the artist
understood what I want.

Q2. With the help of the tool, I am confident about what
the artist will create.

Q3. The tool helped me understand the language the
artist uses.

Q4. With the tool, I could effectively search and use
references to communicate ideas with the artist.

Q5. With the style mix-generation, I could effectively test
out and communicate ideas.

Q6. With the help of the tool, I could understand and
respect the artist's style while communicating artistic

ideas.

Q7. The tool gave me search and generation support
according to the artist's style and concept.

0% 25% 50% 75%

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 5.8: Study 1 survey results.

Verbal concepts and artifact instances are complemented by each other with concept building

and participants defined concepts flexibly during the session. Participants mentioned that concept
building externalizes concepts with example artifacts while explaining artifacts effectively with
concepts (N=5). For example, C2 mentioned that “the concept of group, the similar pictures to-

gether, is kind of use of a verbal way that translates the picture to a verbal (concept).” While
I prompted artists to build concepts about their artwork, I could also observe that some partici-
pants worked to define/concretize client preferences (N=2). One example from S2 (bottom-left of
Figure 5.9) shows a proactive use of concepts and images by the client. Moreover, participants
grounded their concepts based on the communication contexts, which enabled them to efficiently
convey nuanced and complex concepts efficiently. For example, participants decided on concept
names based on the context of the conversation between the artist and client (N=4). Hence, it was
sometimes hard to estimate the concept’s visual styles only with the names. For example, in Fig-
ure 5.9, the artist and client defined a concept of illumination on a single object. As all images in
the concept had chairs as the main object, they named the concept “chair”, making it difficult to
grasp visual styles only with the name.
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Figure 5.9: Participants defined concepts that can explain the artists’ styles or clients’ preferences.
Participants could also collaboratively search for references with envisioned style-wise character-
istics by adjusting sliders for user-defined concepts (“harsh lines”, “chair”, and “woods”). Artwork
under “harsh lines” are by Jesse Hughes (A2), and those under “chair” and “woods” are provided
by the C2.

5.5.3.3 D2: Artifact Expansion-Search

Given D2, I expected that Artinter would allow users to search references within their communi-
cation contexts (e.g., by leveraging terms they use for communication). This was observed in a
number of ways.

User-defined concepts enabled an iterative steerable search. In search, iteration in concept-
based search control helped participants capture what the counterpart wants within their commu-
nication contexts (N=3). For example, in Figure 5.9, A2 and C2 first searched the image at the top
right. C2 wanted an image with more diverse colors and illuminations on one object but thought
the first image did not have enough colors due to the “harsh lines.” Hence, C2 decreased the value
of “harsh lines” for the next search. At the same time, they increased the value for “chair”, as they
thought the ambient textures of included images would contribute to finding images with illumi-
nation on one object. As a result of the search, they could find the artwork at the bottom-right. By
comparing the color combinations between two search results, A2 was able to better understand
what colors C2 wants. In a case like this, participants could use concepts from their communi-
cation context (e.g., “chair”) seamlessly in the search, guiding its usage. Participants stated that
the search results helped them clearly communicate ideas (N=3). Some even inspired participants
(N=2). A3 referred to this as, “stirring the pot.”

5.5.3.4 D3: Artifact Expansion-Generation

Artinter supports D3 by allowing participants to create high-fidelity sketch images of relevant
styles in a short time and with a low effort. Sketch images generated in such a way would support
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Figure 5.10: Participants iterated on the generation by controlling available parameters and reached
the desired one. Participants built upon intermediate or final generation results by pointing out
preferred characteristics or adding sketches (as in the red circle). Artwork under concepts are by
Danielle Moses (A1), and C1 provided the query image.

communication between users.
Iteratively controlled generation shows the participant’s desired specifications. Participants

indicated that generation could capture the styles in artifacts or concepts, mix them, and apply
them to other images to express their artistic ideas (N=4). In addition, participants mentioned that
they could make more targeted adjustments with controls such as weights, scales, and areas to crop
(N=3). These controls allowed them to find “good in-between of the different things” that “went in

line with what the user was thinking” (A2). Moreover, I could observe that the differences between

the iteratively generated results could show the user’s desired specifications (N=4). For example, in
Figure 5.10, by iterating on the weights of each concept for generation, A1 and C1 could reach the
result close to what they envisioned. By comparing results generated within iterations, participants
could realize how much definite contour and colorfulness the client participant wants. Participants
also mentioned that the generated results could inspire them (N=2).

Generated results served as a “starting point” for further discussion. In all sessions, partici-
pants verbally communicated about generated results or built upon them (e.g., by adding sketches).
They used this approach to explain details not presented in the generated results. The rightmost
image of Figure 5.10 is one example, where A1 sketched on the generated result to convey that A1
will draw outlines to separate areas.

The generation function can increase the efficiency in communicating and exploring ideas. Usu-
ally, coming up with a sketch takes time and effort. Hence, exploring diverse options would be
difficult. As the generation function shrinks the cost of experimenting with ideas to a few clicks,
participants anticipate trying out more ideas and investing more time in stages other than ideation
or communication (N=3). For example, A2 mentioned: “If I was a painter and was doing some-
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thing (a high-fidelity sketch) in this style, I would probably still take a week from there, but getting

to that point without me having to spend five hours, it’s like I’m throwing things with a pencil...

that’s a minute. You can’t really do better than that.”

The generation function lowered the social barrier in expressing preferences on the artist’s

style. In one interesting session (S3), when the generated art that mimics an artist’s style does not
directly belong to the artist, clients could more comfortably show their preferences for the artist’s
styles with the generated artwork. C3 noted: “It’s easier to say to criticize the work of generated

art than saying, ‘Hey A3, the piece number X that is in front of you, that’s terrible. And piece Y is

great!”’

Artists have different perceptions about the generation function “mimicking” the artist’s style.

A3 mentioned that they were somehow ‘scared’ of the generation function, as the algorithm accu-
rately mimicked A3’s style. It could have been relevant to their fear of AI technologies replacing
their occupation. On the other hand, A2 was not as uncomfortable with this process and mentioned
that even human artists mimic each other and get inspiration from others: “Even if you could have

the most unique art style in the world, but you still looked at things and had thoughts about things,

and that influenced what you do in some way.” A2 also perceived the generation function more as
a part of the tool under the user’s control. I further discuss its implication in Section 5.7.3.

5.5.3.5 Diverse usage patterns of Artinter

Participants used Artinter in different ways, showing that their goals and processes can vary.
Clients engaged in the discussion to different degrees. In most cases, the artist took more con-

trol of the tool than the clients, artists suggesting ideas with Artinter, and clients mostly giving
feedback (N=4). However, when clients wanted to realize a specific style, they expressed their
opinions more strongly, even participating in the search or generating artifacts (N=2). For exam-
ple, in Figure 5.9, C2 actively added references that show their preference and expressed their
opinions while choosing search parameters (e.g., adding ‘chair’ in the iteration of the search). C6
thought that Artinter helped with more engagement, allowing “not just communication, but almost

collaboration.”

Artists varied in how frequently they used the search function. If the artist was open to trying
out diverse styles or the client’s desired style that is different from the artist’s, they tend to use
the search function more actively (S2). When the artist did not use the search function (S1), they
said they did so because they already have their well-defined styles. It indicates how much artists
would want to extrapolate from their style varies between cases.
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Figure 5.11: The case of the user’s mental model not aligning with the AI’s result. A5 expected
the generation function to apply uniformly flat coloring as the style image, but the result showed a
bit of a mix of colors in the background and other parts of the image. The image on the Content is
by Rory Lucey (A5).

5.5.3.6 Limitations of Artinter

Generation function on the sketch pad was not collaborative enough. While I strived to implement
collaborative features that would support simultaneous work, these features were still limited. For
example, the sketchpad did not show how the counterpart is using the generation function. For
cases where the client and the artist wanted to discuss how to use the generation on the sketch
pad side, it could be a limitation (S2, whose client’s response to Q6 in the survey of Figure 5.8
was negative). I believe I can alleviate this in future versions of Artinter by sharing the use of
generation on the sketch pad.

User’s mental model of how the generation works might not accord with how it works. A5
mentioned that the generation function did not behave as they had assumed. For example, in Fig-
ure 5.11, A5 wanted the generated result to have uniformly flat coloring in each area of the drawing,
but Artinter rather mixed the colors with gradients. To counter unexpected generation results, A5
wanted demonstrations, explanations, or even more controls to help them better understand and
manipulate the generation function. Additional scaffolding (training, tutorials, streamlined inter-
faces) may address this concern.

An infrequently used feature. In three sessions, participants did not relate concepts together,
which could result in non-optimal use of recognition and search. The participants might have sim-
ply forgotten about the function due to the complexity in learning the tool or might not have found
relating concepts natural. A mixed-initiative approach may help here, such as Artinter suggesting
concept relationships. It would serve both to bootstrap this kind of label and remind users of this
feature.

5.6 Study 2: Usage Patterns

Study 1 identified diverse usage patterns and limitations. Because there were three ‘agents’ at
work–the artist, client, and AI–it was difficult to specifically isolate the human-AI interactions. To
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better understand the interaction dynamics (and limits) of each user with Artinter, I conducted a
second study where I qualitatively examine the use of Artinter compared to that of the baseline
version tool, without concept-building and artifact expansion features.

5.6.1 Participants

From university mailing lists, I recruited 20 participants (eight female, 11 male, and one gender
variant/non-conforming, ages 19-33, M=23.2, SD=4.0). A few participants were the client in
our first study. While I was not specifically seeking to find artists to participate, a number of
participants had experience in visual arts. Nine participants had prior experience with asking for
or commissioning artwork from an artist or designer. This recruitment approach was motivated by
the goal of understanding how users with different backgrounds might utilize Artinter and our AI
features. I compensated participants with a gift card worth $20. I code participants as P1 to P20 in
the later part of this chapter.

5.6.2 Procedure

I conducted an observational study with two conditions: 1) Artinter and 2) Baseline, a version of
sketchpad and mood board without AI features. To focus on studying the dynamics between each
user and AI functions, Study 2 was done as an individual, asynchronous exercise. Specifically, I
gave participants a ‘target’ art piece with the task of creating a mood board that describes/explains
the target to someone else. This partially models a situation where a client might have a strong
vision in mind when commissioning a piece.

I constructed target images synthetically. I chose this approach because participants could easily
explain existing art pieces by stating the name of the art piece or the artist (e.g., “recreate Van
Gogh’s Starry Night”). I synthesized the images with SANet [307] by combining realistic photos
as content and sampled artwork as styles (e.g., a photograph of a street market mixed with the
painted style of a specific artist). For style images, I selected five random artists from the WikiArt
dataset and sampled two works from each artist. It allowed me to generate multiple possible targets.
Sampled art pieces were all 2D paintings in physical mediums, such as oil paintings.

I conducted the study over Zoom. After a brief overview of the study, participants went through
two sessions—Artinter and Baseline conditions—which were randomized in order. For each ses-
sion, participants watched tutorial videos of the tool. Videos were split into each group of functions
(e.g., a video for search functions). After each video, I asked participants to try the functions in-
troduced in the video. I presented the video segments describing AI functions in the first or second
session based on which condition they went with first (i.e., right before they did the Artinter ses-
sion).
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Figure 5.12: Creativity Support Index results. *, **, and *** indicate significant difference with
p < 0.05, p < 0.01, p < 0.005, respectively. The error bar indicates the standard deviation.

Because the system has many features, training took about 40 minutes in total. Once completed,
participants were given the target art piece and asked to build the mood board. I told them that the
mood board should act as a ‘specification’ of the target to an artist. I also mentioned that they could
not use the target art piece on the board or as input to functions (e.g., they were not allowed to use
the target art image as a query for the search feature). In both conditions, participants were allowed
to use Google Search to find an initial set of reference images. Participants had a maximum of 20
minutes to build a mood board. After each condition, I asked participants to complete a Creativity
Support Index survey [59]. The survey attempts to measure how well the tool supports the creative
activity on a scale of 0 to 10. After participants finished both sessions, I conducted a short semi-
structured interview with them. I asked questions about their experience with the tool and how
their strategies varied in two conditions. In total, the study took approximately 100 minutes. These
studies were recorded and transcribed.

5.6.3 Results

5.6.3.1 Creativity Support Index Results

I found that participants perceived Artinter to be more effective in performing tasks than Baseline

(Figure 5.12). Specifically, when tested with Mann-Whitney U test, Artinter was perceived to
be more collaborative (p < 0.05), enjoyable (p < 0.005), explorable (p < 0.005), expressive
(p < 0.05), immersive (p < 0.05), and worth putting effort (p < 0.01).

5.6.3.2 Qualitative Results

I present qualitative analysis results that show specific usage patterns and limitations of Artinter

in our study design. I conducted iterative coding with inductive analysis on video recordings and
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interview data and a collaborator reviewed generated codes. Note that for these results I focus on
reporting those that either expand on insights from the first study or were not previously described.

Concept building-based functions require a steep learning curve and high user efforts. In
many cases, concept-building helped participants define concepts related to the target while con-
veying their perception of concepts to Artinter (N=18). However, how Artinter learns concepts
did not necessarily match all participants’ ways of thinking about them (N=2). There was one
case where the participant did not understand the concept-building mechanism at the beginning
(P2). Artinter considers overlapping visual characteristics of images in a concept group as what
the concept represents. However, P2 understood that Artinter would pick different aspects of each
image and mix them to form a concept. Due to this misunderstanding, P2 had two images with far
different characteristics in a concept, expecting AI to combine the texture of one and the color of
the other as the concept. One participant (P11) also mentioned that the tool did not allow them to
teach as they wanted. P11 noted that some concepts, such as the roughness of textures, are better
specified with the spectrum but not with the discrete categories. Such a disagreement between user
expectations and tool design could lead to friction when using the system.

Moreover, concept building required additional efforts from users. Similarly to what I found
in the first study, the search function performing best with “Related” concepts was one source
of friction. Among 20 participants, only eight participants made connections between concepts
with the “Relate” function. Among those who made connections, only three participants made
connections between meaningfully relevant concepts (e.g., warm colors and cool colors). Others
connected concepts that were not necessarily relevant (e.g., “blurry” and “dull color”, which are
not on the same dimensions). Furthermore, the study design puts more workload on participants
using Artinter. Unlike the first study, which resembles a realistic commission setting where the
users would have the artist’s works as initial inputs, the second study setting does not have initial
inputs, requiring participants to collect examples by themselves. It could introduce friction if the
concepts that the users are to discuss do not exist with any of the user’s initial set of references.
With more efforts and a steeper learning curve to use the system, Artinter could have shown only
a small benefit compared to the baseline condition.

The generation function was useful to mix artifact instances and concepts, extending the abil-
ity to express intents. It was perceived positively, as participants could bring up a new artifact
close to the target by mixing different concepts and images (N=14). Participants also mentioned
that generation allowed them to do more than what they could do in the Baseline tool, as they
could flexibly “create” an image to express the visual characteristics of the target art (N=6). The
participants thought this extended ability helped them accurately describe their artistic intentions.
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Another specific opportunity I also observed in the first study was that the users tend to iterate
on the generation by changing parameters and mixing (N=12). These generation results gradually
reaching towards target arts could be helpful to convey the user’s intentions more clearly. Specifi-
cally, the delta in style changes between iterations could help denote which characteristics the user
wants to express. When using generation, however, some users tend to focus on replicating the
limited aspects (N=3). For instance, users can be inaccurate with the color of generated results
while more closely replicating the texture of the target. It was due to either the lack of time using
the complex tool that the user just learned about or limitations of Artinter in separating style el-
ements as the user wants. For instance, when example images under the concept “red” also have
the attribute of “flat”, the “flat” style can blend in when the participant uses the concept for the
generation.

Participants diverged in how they used generation. Ten participants generated images by mixing
different individual art pieces while five mixed concepts. Interestingly, two participants created
their own “style patch” on the sketch pad and used that as one of the style images used in the
generation. Three participants did not use generated images due to either unsatisfactory results
or lack of time. Among those who generated images, six used a single “final” generated piece to
indicate all aspects of the target image, while eleven others used generated images to denote partial
aspects of the target image (e.g., only for textures).

5.7 Discussion

Artinter is the first prototype to support the commissioning process. From the user studies, I
showed opportunities and limitations in using AI functions to support art commission communi-
cations. Specifically, Artinter adopted mixed input interaction modalities—mood board and slider
interactions, in addition to visual sketching on the sketch pad—to allow users to effectively com-
municate their intentions. I discuss 1) mechanisms to ground concepts for steerability, 2) iteration
as a means to communicate artistic ideas, 3) tensions in learning the artist’s styles, and 4) AI-CSTs
for unbalanced collaborative contexts.

5.7.1 Mechanisms to Ground Concepts

Concept building in the mood board interface is the mechanism to model the user’s language. It
could allow users to form their own steerable handles for search and generation. However, one
challenge in concept building was that users tend to have varying expectations of how AI function
learns boundary objects, sometimes disagreeing with how AI actually learns. I identified two
patterns, one where the user did not yet have a good mental model of how to do concept building,
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and the other due to limitations of the tool in expressing concepts. For example, the user who
assumed that the concept building would mix styles of different grouped images would be the first
case, as they could not understand that a single concept should have art pieces with shared styles.
Limitations to express ordinal or continuous dimensions with Artinter would be the example for
the second case.

On the basis of the type of issues, I propose two different approaches. When users struggle to
understand how AI learns, the tool can better guide users. For example, in addition to providing
examples with which Artinter would learn well, providing failure examples would also help. On
the other hand, when the tool has limited expressiveness in concept grounding, we can design inter-
actions with more flexibility. It would require improvements in both interactions and algorithms.
Flexible prompt-based approaches can be a potential direction. For example, as how we can flex-
ibly prompt language models to serve a wide range of tasks [44, 329, 337], we can allow users
to specify concepts more flexibly with the mixture of visual art examples and natural language
descriptions (e.g., overall brush stroke direction is similar to the first art piece while the level of
roughness is between the first and the second art piece) [123]. However, there can be potential
issues with this approach: while what the user can input would be less limited, the model might
not be able to handle all the prompts. Moreover, with more flexibility in grounding concepts,
the machine’s mechanism can be more opaque to the end-user [337]. Without addressing these
challenges, introducing flexibility would hardly facilitate concept building.

Another challenge in building concepts was that users often do not relate relevant concepts even
when doing so would result in more accurate recognition and search. Mixed-initiative approaches
might potentially facilitate use of this feature. Creating relations between all concepts can be
a simple option. However, this would not result in optimal use, as relating too many concepts
can degrade system performance (see the technical evaluation in the supplementary materials). A
better approach would be to consider user-defined concept names and identify potentially relevant
concepts from them. While such an approach would be possible, it would still have limitations. For
example, in our studies, users sometimes decide on the concept name based on the “communication
context,” but not on visual attributes of the concept (e.g., “chair” for images with lights illuminating
on a single object, as the object tends to be a chair in given examples). In such cases, intelligent
relation-building functions might fail to identify concepts that the user thinks as relevant. Hence,
fully automated concept-relating might have limitations, and users would need to be allowed to
make the final decision by themselves.

As Artinter learns concepts, the user would need to understand how it learned them. I expected
that users would leverage Artinter’s recognition results to understand it. However, in our study,
participants rarely mentioned recognition and instead seemed to rely on search/generation results
(similar to people drawing references to indicate how they understand concepts). This could be
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due to the complexity of the tool or a learning curve issue (e.g., users may not even remember
certain features exist). One relevant future work direction can be running a study on each function
to investigate their specific utility and usability.

5.7.2 Iteration for Artistic Communication

From Study 1 and 2, I could see that results produced from the iterative use of AI functions could
be boundary objects that clearly show the user’s intentions. Here, comparing intermediate results
and recognizing the delta between results were the core mechanism to reveal what participants
want. For such a mechanism, the generation function would be more effective than the search,
as iterative generation would only change limited aspects whereas the search would output far
different results, with which the desired delta is difficult to recognize. However, not all generation
algorithms would be adequate for this purpose. Only generation algorithms that support iterative
and gradual changes would successfully support this purpose. Future work can potentially redesign
Artinter to better leverage this iterative use of AI functions. For instance, I can design the system
to track the iteratively generated artifacts with version controls, with visualized paths that the users
explored.

5.7.3 Tension in Generative AI

Participants in the first study showed a spectrum of reactions about Artinter mimicking the user’s
style—from being fearful to being totally unconcerned. Artists may have recognized that the gen-
erated images are not good enough to serve as the final artwork. However, as generative algorithms
improve, the distribution of reactions is likely to change. For instance, diffusion algorithms caught
attention with the capability to generate high-quality images following text prompts [330, 342, 348]
or even replicating styles and objects in given example images [123]. These technologies started
to raise questions about human roles in art-making practices—whether these are good enough to
replace people. For instance, if algorithms are good enough, why not prompt these algorithms to
get the desired digital arts?

I argue that AI technologies can still extend human capability instead of replacing people. The
key would be fitting high-quality generation results into the human workflow. For instance, in art
commissions, even high-quality results might have aspects that the client or the artist does not like.
If users can decompose these results into smaller elements, they would be able to let AI automate
only a portion of the results while working on other things as they wish. It would allow users to
keep their sense of ownership about the piece as they can work on core aspects by themselves. Ide-
ally, with such support, users should be capable of introducing things that are different from what
these algorithms tend to generate. I believe such an approach to be an interesting and important
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area for future work. Simply expecting artists to accept broad automation—even if the goal is to
help them ‘prototype’ an artistic piece—will likely encounter resistance.

Whether generative artifacts can be leveraged to automate physical art-making is an interesting
question. Certain types of physical art-making can involve AI generation with automation [155].
However, those art modalities where physical human skill is important would likely require more
technological advancements (e.g., in robotics). Hence, technical requirements for automated phys-
ical art generation are high compared to digital art-making. Such developments are not impossible,
but it will become critical to better understand the ‘fit’ of collaborative tools with generative capa-
bilities within these mediums.

5.7.4 AI-CSTs in Unbalanced Collaborative Contexts

A few past research efforts have focused on using AIs in a collaborative art context [389]. How-
ever, these mostly looked into collaborative settings where the user roles were not necessarily
different. My study expands knowledge of collaborative AI-CSTs by investigating settings with
different user roles. First, due to different expertise and languages, Artinter has features that help
users identify common ground about each other’s preferences, styles, and languages while serving
to train the system. With AI functions that do not require art-making skills, we also observed that
the tool could support non-experts to be more engaged in the process. With shared communica-
tion contexts and client’s extended engagement in the process, Artinter could allow users to more
flexibly negotiate and balance the artist’s creative freedom and the client’s control, as mentioned
in Section 5.5.3.5. Moreover, while AI functions can serve as a psychological safety net for non-
experts, such a role was rarely mentioned by artists. One potential reason is the asymmetry in the
expertise. As artists have more expertise than clients, they might have pressure to perform at an
expert level, even with AI functions.

There can be many future work directions to support these unbalanced collaborative contexts.
Within commission settings, I found that artists need to periodically update the client. Hence,
there can be a tool that allow artists and clients to track the commission process after the initial
meeting. For such a tool, an artist would be able to upload their intermediate work, and the client
can check how the uploaded work meets agreed specifications. As clients might not have enough
expertise to inspect and give specific feedback, the tool can have AI features to help with those
(e.g., AI calculating which specifications the uploaded work satisfied). For artists, AI features
could suggest some blueprints on how they can satisfy feedback from clients. With such a tool, we
would also be able to investigate how AI technologies could support the end-to-end art commission
process, not only the initial meeting. In general, we can design collaborative art-making tools with
AI features to facilitate non-expert participation while easing the expert’s difficulties. Another
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interesting future work in unbalanced art-making collaboration would be in the contexts where
people with different expertise work together to create a single artifact (e.g., a movie or a game).

5.8 Conclusion

I present Artinter, a collaborative AI-powered system that supports specifying art commissions
through augmented boundary objects. Artinter helps artists and clients share boundary objects,
verbal concepts, and artifact instances on a mood board and sketch interface. The system helps
users minimize ambiguity in using boundary objects and expand the pool of artifact instances.
To concretize boundary objects, Artinter allows users to ground them by defining verbal concepts
with artifact instances through mood board interactions. To support expanding boundary objects,
Artinter provides two AI-powered supports driven with slider interactions: 1) searching references
with user-defined concepts, and 2) generating high-fidelity sketches by combining artworks or
concepts. From two user studies, I found that mixing multiple input modalities in Artinter can
support pairs of clients and artists in grounding their boundary objects while facilitating searching
and generating references with learned concepts as steering handles. I also found that those learned
concepts helped users iterate on search and generation to collect instances that can better explain
their visions. Moreover, I identify other diverse usage patterns and limitations of Artinter that can
guide the design of future AI tools for art commission communication support. In summary, this
chapter demonstrates how the combination of the mood board and slider interactions can facilitate
the steering of AI functions in visual art communication settings.
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CHAPTER 6

TaleBrush: Steering of Story Generation with Visual
Sketching

6.1 Introduction

Advances in pretrained generative language models, such as Open AI’s GPT-3 [329], have enabled
new kinds of human-AI story co-creation tools [48, 64, 69, 70, 169, 170]. In many of these tools,
the story co-creation process is iterative [48, 69, 70, 148, 410]: first, a writer gives the initial story
sentences, such as “Melissa fought a dragon.” Then, using the writer’s sentence as a prompt, the
AI tool appends story sentences or phrases. For example, the tool can generate: “She used magic
to create a barrier around her.” The writer can modify the story directly, start from scratch, hoping
for better results, or continue the iterative process by adding another sentence.

However, consider a case where the writer has some idea of how the story should unfold. They
would like to build tension for Melissa by giving her some bad luck with the dragon and, only in the
end, boost her fortune. Unfortunately, steering the text generation in this way is hard both from the
algorithmic and interaction perspective. First, most controlled story generation algorithms, which
can be guided with inputs like topical keywords, apply the same control to the whole generated
story. However, as the writer wanted Melissa to experience bad luck first and then end up with
a happy ending, they would need to specify different parameters for different parts of the story.
Such granular sequence control is not yet possible in many controlled story generation algorithms.
Second, even when the generation algorithm allows such granular sequence control, existing inter-
faces (e.g., text inputs or sliders) are not intuitive or useful for controlling or sensemaking in the
generative process. For example, when there is a series of granular controls (e.g., sliders), specify-
ing them can be cumbersome (e.g., inputting multiple numerical control values). Sensemaking, or
understanding what the algorithm will do, or has done, is similarly difficult. To understand if the
generated story follows the given parameters, writers have to compare each generated story part
with each granular parameter. These frictions make iterative co-creation slow and effortful.
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Figure 6.1: TaleBrush uses a line sketching interaction for intuitive control and sensemaking of
story generation with GPT-based language models, closing the gap in the iterative co-creation
process between humans and AI. In our prototype, the protagonist’s ‘fortune’ is controllable. The
writer first decides the protagonist’s name (A1), writes a portion of a story (A2), and then sketches
how the protagonist’s fortune should change in the story (A3, green shaded area). The x position
of the sketched line indicates the chronological position in the story (sentences are the units). The
y position shows how good or bad the protagonist’s fortune should be (higher, better). The width
of the line indicates the possible variance in the fortune of the generated sentences. Given the
line sketch, TaleBrush will generate story sentences (B1, indicated with blue) and visualize the
result on the original sketch (B2, the blue line and dots). The writer can always directly edit the
generated text. They can also iterate by generating new text for the same sketch (B3, clicking on
‘Generating Again’) or revising their sketch and generating new text. Additional options allow
the writer to specify how ‘surprising’ the generation should be (B4) or using the eraser tool (B5)
to erase their sketch. Where the line is erased, TaleBrush generates unconstrained sentences. A
history dropdown (B6) allows the writer to browse previously generated sentences.
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Figure 6.2: Kurt Vonnegut’s sketched line drawing of Cinderella’s fortune over the course of her
story [408].

In this work, I propose that visual sketching interactions can facilitate granular sequence control
and sensemaking in iterative story generation. Sequential properties of stories have frequently been
visually expressed for intuitive understanding or planning [167, 192, 213, 250, 325, 333, 395, 396,
408]. For example, Kurt Vonnegut [408] drew out how a character’s fortune changes in a simple
time-series line drawing (Figure 6.2). This line drawing approach has inspired writers to adopt
visual arcs to plan out their stories [85, 274, 334].

With this visualization as inspiration, I created TaleBrush (Figure 6.1). TaleBrush is focused
on human and AI co-writing short story outlines by allowing writers to steer the generation ac-
cording to the level of fortune the protagonist experiences [85, 333, 408]. Writers can specify the
sequence of a character’s fortune with a simple and expressive interaction (Figure 6.1A3). Using
a single stroke (simple), the writer defines the fortune over the entire protagonist’s ‘time-series’
(expressive). The sentences generated by TaleBrush are reflected back to the user as a line drawn
on top of the original sketch (Figure 6.1B2). The lightweight and intentionally ambiguous nature
of sketching [49, 84] manages the writer’s expectation regarding the fidelity of steering, making
uncertainties and errors in steerability acceptable. To realize this interaction, I implemented a
technical architecture that achieves steerable story generation by training 1) learnable prompts that
guide a language model to serve different story generation tasks [235] and 2) a control module that
steers the language model to generate stories according to the given sketch [223].

I conducted a technical evaluation of TaleBrush and found that my approach can reliably steer
generations that are still novel and tolerably coherent in flow and grammar. From a user study
on 14 participants with varying expertise in story writing, I found that participants could use the
sketching control to iteratively steer the generation to find inspiring stories that align with their
intentions about the protagonist’s fortune. Some participants also used line sketches as a plan
when editing the generated texts. In our discussion section, I lay out the design elements for
interactions that facilitate effective, efficient, and iterative human-AI co-creation. I also reflect on
how visual sketching interactions can be extended to other story-writing attributes and domains
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while supporting reliable steerability even under the uncertainty of machine learning algorithms.
This chapter introduces a way of using visual controls and visualizations to make iterative human-
AI co-creation frictionless. This chapter is based on a published CHI2022 paper, “TaleBrush:
Sketching Stories with Generative Pretrained Language Models” [66].

To summarize, this work contributes: 1) A line sketching interaction for steering and sensemak-
ing of story generation with an abstract graphical representation of sequential attributes. 2) A GPT-
based steerable language model architecture that generates story sentences with the sketching input
on the protagonist’s fortune. 3) TaleBrush, a system that enables human-AI story co-creation with
the protagonist’s fortune arc by combining line sketching interaction with GPT-based steerable
language model. 4) Reflections on efficient steering interaction for iterative human-AI co-creation
and how line sketching interaction can be expanded to other generative contexts.

6.2 Related Work

I review research on four main areas related to TaleBrush: 1) writing support tools, 2) story gener-
ation, 3) visual expressions of stories, and 4) sketching.

6.2.1 Writing Support Tools

Many tools support different aspects of writing. These range from spelling and grammar correc-
tion [231, 318], to thesauruses [130], to crowd-powered editors [32, 295]. As writing tasks and
styles are often domain-specific, tools can be similarly specialized: email message phrasing [46],
help requests in professional contexts [182], mental support [316], affectionate messaging [215],
education [45], and journalism [266]. Of specific interest to us are tools for creative writing tasks.
These run the gamut from suggesting metaphors [131] to helping with song lyrics [415]. Commer-
cial tools such as Dramatica or Plottr are largely human-driven and help the author structure their
plot or narrative [42, 109].

To produce content, some tools connect the author to other humans or support collective story
writing by writing stories with the crowd. These systems can structure creative leadership [210]
and decision-making [212], or even simulate the characters with crowds [173]. Newer tools have
adopted novel machine learning (ML) and natural language processing (NLP) techniques [436].
Among those techniques, ML’s generative functions offer a powerful alternative approach. These
systems append or suggest generated texts to the writer’s text using sophisticated language mod-
els [48, 69, 70, 358, 410]. In theory, these algorithms can act as writing support tools. However,
limited controls and interactions—largely rephrasing prompts and contexts—constrain their appli-
cability. My goal with TaleBrush is to leverage these language models but provide an alternative
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steering strategy using both text and abstract visual representations and interactions.

6.2.2 Machine Story Generation

Story generation is one of the grand challenges in artificial intelligence (AI) with multiple practical
applications. These range from entertainment [340] and education [270, 340] to my target, writing
support [48, 69]. Early approaches included the use of story block templates that could be put
together sequentially [71]. With computational techniques, autonomous story generation became
feasible. One technique is computational planning, where the computer does symbolic planning
to accomplish a given goal [232, 279, 314, 339, 414]. Case-based reasoning techniques enable
story generation by adapting stored stories to new contexts [132, 324, 338, 391, 401]. Alternative
strategies involve character-based simulation, where characters and the world are simulated to
unfold the story with the given facts and underlying beliefs [52, 255].

Advances in ML, largely in language models, have introduced more opportunities in story gen-
eration [15, 16, 153, 174, 185, 242, 244, 271, 394, 413]. Specifically, Transformer-based Lan-
guage Models (LMs) [44, 329, 405] probabilistically sample continuing stories [105] or infilling
sentences [15, 89, 180, 185, 242, 283, 303, 413] based on the given story context. While imperfect
in generating coherent text, they hold promise for improved story generation.

Steerability is a key requirement for all these approaches. However, LM models, in particular,
utilize structures that are much harder to inspect and explain. For the algorithms to be useful and
usable, new steering mechanisms are needed [69]. The most basic, and perhaps obvious, steering
approaches are driven by natural language prompts [93] (e.g., “Tell me a happy story”). To better
guide LMs, researchers investigated ways to automatically learn these prompts [235, 238, 251,
363]. Other language-based approaches for steering involve specifying keywords to prime the
generated text [104, 185, 390, 430]. Alternative approaches, like Intent-Guided Authoring (IGA),
provide some degree of steering over output sentences [390]. The author can use a number of
pre-specified tags (e.g., cause or effect) to describe the desired relationship of output to input.
Researchers also introduced algorithms that generate stories while considering the character goals
or abilities [5, 394]. Control codes, such as genre (e.g., is the story fantasy or science fiction?),
can also provide some guidance. Technically, this approach has been enabled by training models
with control codes [154, 206], or manipulating intermediate representation layers of LMs [53, 75].
Researchers have also introduced the approach of first acquiring keywords about the code, and
generating the story based on them [221].

As LMs grow with more parameters, adopting these approaches became more challenging, as
most LM parameters need to be tuned. To overcome this, researchers train smaller models that
guide the large LMs with control codes [223]. While many approaches apply the steering to the
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whole story (e.g., ‘the entire story should be science fiction’), a few approaches demonstrated how
different parameters can be applied to different parts of the story [244, 332, 437]. However, they
did not consider the interaction of the user steering in generation algorithms. Building on this prior
work, I extend both the technical and interaction sides of steerable story generation. I designed
my story generation model to be steerable with real-valued sequence inputs from line sketching
interaction. There has been a relevant thread of work called visual story telling [30, 168, 169, 170,
179, 411], that writes stories about visual scenes (e.g., a photo of a dog running becomes “A dog
was chasing down a rabbit”). In contrast, TaleBrush uses sketches of an abstract attribute of the
story (e.g., the protagonist’s fortune).

6.2.3 Visualizing and Visually Expressing Stories

To allow users to specify sequential attributes of the story and capture how texts are generated
with steering, TaleBrush adopts abstract visual representations. Visual techniques have been
used to show high-level attributes of documents [202] and stories (e.g., [39]). Digital humani-
ties researchers have used visualizations to understand stories–a form of “distant reading” [192].
Through “distant reading”, diverse story components can be visualized. These range from charac-
ter interactions [33, 37, 195, 302, 420], event progression [167, 250, 395, 396], character emotions
and sentiment [22, 33, 82, 161, 293, 333, 351]. As some stories can be non-linear in their telling,
researchers have found ways of representing broader narrative structures [213, 359]. My goal is
not simply to represent the story through the visualization but to allow for manipulation through
that representation. However, not all visualization formats are naturally amenable to direct manip-
ulation (beyond the standard interaction techniques [439]).

With TaleBrush, I focus on visual encodings that can both express high-level changes in the
story’s progression but also be manipulable. Kurt Vonnegut’s story arcs fit these requirements.
The arcs were used by Vonnegut to express canonical story types with diagrams that show how a
protagonist’s fortune changed in the story [408]. For example, in Figure 6.2, Cinderella’s fortune

is expressed with a curve that rises, drastically falls, and then rises again. Writers have since lever-
aged this type of visual expression to plan out story writing [85, 274, 334]. TaleBrush leverages
this approach to allow for drawing a property, such as fortune, over time as a way of guiding the
generative process.

6.2.4 Sketching Interactions

To visually express sequential attributes of stories, TaleBrush uses sketching interaction. Sketching
is a flexible and lightweight way to convey the user’s high-level intentions [99] with its roughness,
uncertainty, and ambiguity [38, 144, 229]. Because of these features, various sketching tools have
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been built to embody these characteristics [144] or act as mechanisms to transform rough ideas into
precise representations (e.g., visual renderings [229]). This interaction style has some similarity to
TaleBrush, but without the direct mapping between objects (e.g., draw a cat to get a photorealistic
cat). In the case of TaleBrush, I created a sketch in the abstract time-series space that will generate
a corresponding story in the ‘concrete’ text space.

While sketching is most often used in a ‘direct’ way (e.g., drawing a sketch), it also has been
used for constructing examples (e.g., for image [100, 176] or 3D model search [216, 305]). More
relevant to my approach are tools for sketching time-series ‘queries’ for finding relevant items in
time-series datasets. These can be used to find everything from fixed patterns [205] to constrained
inputs [166, 346] to free sketches [97, 106, 268, 370, 416, 451]. However, most systems here
assume the existence of matching datasets. In my case, the dataset does not yet exist. Thus, my
approach does not sit cleanly in the regular taxonomy of visualization interaction [157, 439]. With
TaleBrush, I leverage recent work on interactive visualization tools for data generation. However,
these are largely focused on numerical approaches rather than text (e.g., generating a dataset that
matches a sketched histogram [269]).

6.3 Sequence Steering Through Sketching

Though narratives may not be linear, stories are inherently formed in a sequence, progressing from
the story beginning to the ending. Within that sequence, attributes of the story or characters (e.g.,
the protagonist’s fortune) can change. My goal is to allow the user to use these attributes to guide
the generated sequence. Specifically, I seek a lightweight mechanism to quickly specify multiple
temporally-varying attributes. In this work, I consider line sketching interaction as the modality.
There are a number of features of this interaction modality that make the approach appropriate.
First, line sketching in time series visualization can be expressive enough to convey sequence and
attribute information [3, 290]. For example, in Figure 6.2, the sequence can be shown on the x-
axis while expressing the protagonist’s fortune on the y-axis. Second, line sketches are simple. In
Figure 6.2, the protagonist’s fortune is expressed just in a single stroke of a line. Though I could
build a similar time series through sliders, text entry of coordinates into a spreadsheet or clicking
on points, a drawn line in a time-series is lightweight and intuitively understood. This design is
well suited for continuous values (e.g., the fortune level). However, one could imagine ‘sketching’
discrete/categorical values as well by drawing disconnected horizontal lines. By default, a simple
swipe can allow the author to indicate the attribute, for how long it should last, and where in the
story it should exist.

While sequence can be expressed in various ways, I choose to use the familiar linear x position
(with attribute values on the y). Linear positions have been most frequently used to visualize
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Figure 6.3: More than one story attribute can be expressed with a) multiple steering panels or b)
the use of sketching speed.

sequence and it can promote accurate perceptual judgment of time [3, 41]. Rotated (e.g., clock) or
spiral-format temporal representations are also possible [417] but are best suited for representing
cycles or seasonality in temporal data—something uncommon in stories.

In some cases, we may want to express multiple story attributes. For example, the user might
want to specify two characters’ fortunes. In this situation, the multiple time series can either be
sketched within the same x − y space (assuming the scales are the same) or drawn in multiple
spaces (e.g., Figure 6.3a). To draw two attributes (along with time) in a single plot is possible
but requires additional encodings. For example, a connected scatterplot (see [152]) draws the
values for the two attributes on the x and y axes respectively with time encoded using marks on
the lines themselves (e.g., arrows or graduated thickness) that indicates sequence. One could also
imagine using a feature of the sketching interaction (e.g., pressure or the time it takes to draw a
segment) to encode values. For example, in Figure 6.3b, time is displayed on the x-axis, the value
for attribute A on the y-axis and the time used to draw the stroke (or pressure) to encode the B

attribute (visually these can be encoded using stroke size or color). Drawing speed is naturally
combined with stroked lines and allows for a semantic connection between fast-slow drawing
speeds, and high-low attribute values. Additionally, users may have ambiguous perceptions of
speed and time [323]. This might further the idea that the generated story will only roughly follow
the input. Ultimately, this encoding is likely inappropriate. It still limits us to two attributes and
is likely complex and discordant as two similar variables (i.e., attributes A and B) are created and
visualized in two different ways.

A potentially better use of the drawing speed (or pen pressure) is to convey ambiguity and
error-tolerance. In most cases, a generative algorithm will not be able to generate a sentence
that precisely matches the attribute value. This is due to two factors. First, is the randomness
in the generation (i.e., we may not be able to generate a sentence with a character’s fortune at
exactly 0.58). Second, is the inherent noise in any classifier that judges attribute values based on
the text. By using ‘sketchiness,’ we are already conveying some level of ambiguity. However, it
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would be ideal to allow the end-user to be able to indicate how accurately they want the generated
sentence to map to their sketch. To allow this specification, sketch speed or pen pressure may
useful. Both actions have a natural mapping to ‘dropping more ink’ in natural pen interactions.
The size of the sketched line at a particular time indicates the desired bounds–smaller, indicating
more constrained. Notably, the specific semantics of slower motion can be switched. Drawing
slower can be made to produce ‘more ink’ and therefore higher tolerance. Conversely, people
often draw more slowly when they want an ‘accurate’ shape. Thus, a slower draw speed can
semantically map to a more ‘accurate’ (i.e., tighter/thinner) line being drawn.

Though there is a fairly broad design space for sketched input, the combination of interactive
steering, representation effectiveness, and flexibility seem best addressed through simpler repre-
sentations: standard time-series for a single attribute and additional panels for multiple attributes.
However, stroke speed or pressure, represented as line thickness or color, allows us to encode
additional information such as the user’s ambiguous intentions and error-tolerance.

6.4 TaleBrush: Interface

In this section, I motivate our selection of steerable story attributes and explain interactions in
TaleBrush’s interface.

6.4.1 Iterative Co-creation With Line Sketching

TaleBrush is designed to help writers co-create a short storyline with AI through sketching inter-
actions. TaleBrush supports the planning stage of the writing process [111, 142] by giving ideas
that can be novel to writers. I chose to support this specific stage, as writers would likely accept
and benefit from diverging generations. After a story is generated, writers can freely edit it or even
try the generation again to see another story from TaleBrush. TaleBrush can support writers who
would use generated sentences as writing prompts, or even potentially help them overcome writer’s
block. For novice writers, TaleBrush would demonstrate a story writing that would allow them to
easily jump into writing.

In TaleBrush, writers iterate on the story generation to reach the desired state. Through inter-
active steering, the TaleBrush’s goal is to allow writers to reach this state with a small number of
iterations. As introduced in Section 6.3, sketching (green shaded area in Figure 6.1A3 and B2)
allow for simple and expressive steering interaction. TaleBrush visualizes generated stories in the
same abstract visualization (blue line in Figure 6.1B2). Through this, writers can more easily un-
derstand the relation of their input to the generated content. I believe that the intuitiveness of these
natural steering and visualizations will ultimately allow writers to more easily iterate on the story
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generation.
In my initial implementation, TaleBrush specifically focuses on two steerable attributes. The

first is the level of the protagonist’s fortune. This is based on the existing practice of writers
expressing and planning stories based on character or emotional arcs [85, 418] or more generally on
a character’s fortune [408]. TaleBrush is designed to allow the steering of the protagonist’s fortune
in chronological order. Non-linear narratives, such as flashbacks, are not currently supported. The
user can also specify how tightly TaleBrush would follow these given fortune parameters at the
cost of generation time. The second attribute is the level of surprise in the generation, or how
unexpected the generation should be.

6.4.2 Interface

6.4.2.1 Text Editor and Canvas

TaleBrush has a text editor (Figure 6.1A2 and B1) and a canvas for drawing and visualizing the
story arc (Figure 6.1A3 and B2). The text editor has multiple ‘bullet points’, each of which stands
for a single sequence step, most often a sentence. The writer can add their own sequence sentences
or ask TaleBrush to generate them. As with a standard editor, the writer can add new sequence
sentences (simply by hitting enter), or remove them by deleting the bullet point line. TaleBrush

will visualize each bullet point line as a dot in the canvas and sequential dots will be graphically
connected with lines. Thus, there is a correspondence between the bullet point order and the x

position of those sentences in the visualization. Missing sentences (i.e., blank bullet points) are
reflected with a visual gap. The protagonist’s fortune in a given sentence is determined by an ML
recognition algorithm.

6.4.2.2 Generate By Sketching

After the writer sketches a character’s fortune (as described in Section 6.3), TaleBrush generates
text for those sentences for “sketched” sentence slots. For example, the writer can enter one or two
sentences, for which the fortune is calculated and displayed. They can then sketch the rest of the
sequence. TaleBrush also supports ‘infilling’ the story. For example, if the writer enters a sentence
at the start and end of the sentence list, this will appear as a broken line in the visualization. The
writer can sketch how they want the story to behave in this empty part and TaleBrush will create
suitable sentences. The writer can also draw ‘broken’ lines by erasing part of the sketched line.
In this mode, TaleBrush will generate a suitable sentence but without any specific fortune ‘target.’
This allows writers to explore stories even when they do not have a specific idea on what the
character’s fortune should do. Once the sketch is drawn, the writer can perform generation again
with the same parameters by clicking the “Generate Again” button (Figure 6.1B3). They can also
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redraw a line only on a part of the sequence to see other generated sentences on the redrawn part.
In all cases, the writer also can revise generated sentences directly in the text editor.

Sketching Speed for Generation Steering Tightness As the steerable generation has uncer-
tainty in how the steering would apply, with the sketching speed, the writer can control their am-
biguous intentions by setting how closely generated sentences should follow the given sketch. With
slow sketching, TaleBrush tries more generations to find the sentence that better matches the given
fortune parameter. Through iterative prototyping, I found that the fast → less accurate and slow

→ more accurate mappings were easier to understand. The drawn sketch can be perceived as an
‘envelope’ representing the bounds in which the generated sentences would be more likely to fall
(Figure 6.1A3 and B2). We detail how the specific width is determined in Section 6.6. The width
of the sketched line gradually changes visually (i.e., it is not disjoint). This is more appealing
visually. However, the actual envelope is determined using sentence ‘units.’ Subtle vertical lines
indicated where these transitions are, thus allowing the user to vary their drawing speed in each
segment.

Surprise Level Control As I describe below, the used language also allowed users to change
parameters that roughly translated to how ‘surprising’ a sentence would be in the following prior
sentences. For example, with the beginning sentence of “Melissa fought a dragon”, the low surprise
may generate “The dragon was a big, green, scaly beast”, but the high surprise may result in
“Melissa killed a giant robot with a robot dragon”. To experiment with this feature, I added a
“surprise in a separate panel”. This would open up another time series canvas where the writer
could draw the desired level of surprise for each sentence segment (see Figure 6.4).

6.4.2.3 Multi-Story Management

As the writer generates multiple stories, TaleBrush stores each. Users can compare and choose
among them (Figure 6.5). A dropdown menu lists the generated stories, which will be displayed
on the canvas with low opacity. As the writer moves the mouse over the list, the hovered story is
shown in the text box and highlighted on the canvas. The writer can select one of these to ‘roll
back’ to a past generation.

6.4.3 Implementation

The interface for TaleBrush is implemented as a web application, using HTML, CSS, JavaScript,
and React. The language model operations for text generation are implemented in a back-end
server. A Flask-based REST API is used to connect the front– and back–end sub-systems.
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Figure 6.4: TaleBrush allows writers to specify the level of ‘surprise’ for each generated sentence.
A separate canvas can be opened where the writer can sketch a thin green line indicating the desired
level of surprise. Here, we see a fortune arc for Mike (top) starting high, going low, and ending
high. A corresponding surprise sketch (bottom) indicates that the author wanted the first part of
the story to be more controlled but the end should be very surprising.

6.5 TaleBrush: Technical Details

There are two principle technical components to TaleBrush: sentence recognition, which deter-
mines a fortune level given an input sentence; and sentence generation, which creates new sen-
tences. I begin by explaining our annotated training data, and then cover each of recognition and
generation modules.

6.5.1 Collecting Fortune of the Protagonist

I adopted crowdsourcing to create an annotated fortune dataset, as there is no readily available data
of this type. I define the protagonist’s fortune as level of ‘goodness’ or ‘badness’ of the fortune

experienced by the protagonist, as perceived by the readers. This construct is naturally affected
by the character’s status, emotional and physical well-being, or spatial, mental, and emotional
proximity to the character’s goal [85]. While line sketching interaction would require fortune
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Figure 6.5: TaleBrush stores generated stories in a list (A) and allows writers to compare them on
the canvas by visualizing the fortune arcs of all stored stories in low opacity (B). The writer can
hover over stored stories in the list to see their text and story arc visualization.

annotations to be real values, due to the subjectivity in perceiving this concept, directly collecting
real-valued annotations can result in a high variance. As people can make comparisons reliably
on subjective annotations [83, 181], I took the approach similar to previous work’s [83]: turning
crowdsourced comparisons into real-valued annotations.

I collected fortune annotations on a subset of the ROCStories dataset [288]. Items in this dataset
are short five-sentence stories. I randomly sampled 2200 stories, using 2000 for training and 200
as a test set. I assigned three annotators for each story. During data collection, I explicitly spec-
ified the protagonist of the story. Annotators were asked to specify the level of the protagonist’s
fortune for each sentence using a continuous slider (Figure 6.6). While this annotation approach
is mainly designed to collect real-valued annotations, the interface also enables annotators to en-
code comparisons between sentences. Workers were not explicitly asked to compare sentences
between different stories. However, they were asked to annotate using the “calibrating sentences”
as benchmarks. I crafted these calibrating sentences from a three-sentence story to ensure a unique,
single-sentence example for three fortune ‘types’: good, bad, and neutral. Annotators were asked
to label these calibrating sentences at the start of the task and could see them as they worked (see
Figure 6.6).

To ensure high annotation quality, I included one gold standard question with sentences of
obvious good and bad fortunes. I filtered out workers who annotated such questions in opposite
fortune directions. I recruited annotators from Amazon Mechanical Turk, who are in the US and
had 97% acceptance rate with 1000 or more accepted tasks. Each worker was asked to annotate 11
stories including the calibrating story and was paid $2.50 (about $10/hr payment rate).
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Figure 6.6: Interface for annotating the protagonist’s fortune level. The annotator can make com-
parisons between sentences in the given story. Calibration sentences help for making comparisons
between stories.

To learn the reliability of annotations, I analyzed agreements between pairs of annotators. I
measured Spearman’s ρ in ranking five sentences in a story according to the fortune level (i.e.,
with perfect agreement ρ = 1 or −1 with perfect disagreement). The average and median of ρ
values between pairs were 0.54 and 0.7, respectively. Though clearly imperfect, annotators did
display agreement in their annotations.

To turn comparisons into real-valued labels, I used the TrueSkill algorithm [83, 158, 280]. The
algorithm can calculate the real-valued fortune score of each sentence out of all comparisons from
our crowdsourced annotations. While this algorithm is originally designed to infer rankings of
game players out of all individual game results, like who won or lost, I adapted it to get rankings
of fortunes out of all comparison annotations. With this algorithm, sentences frequently annotated
to have a higher fortune than other sentences would have a high fortune ranking. I normalized
this ranking information to have a uniformly distributed dataset on the scale of 0 to 1 and used the
resulting annotations.

6.5.2 Technical Architecture

A high level architecture for the recognition and generation elements of TaleBrush is depicted in
Figure 6.7.
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Figure 6.7: The technical architecture of TaleBrush. To serve recognition and generation, the
prompts of a Base-LM are tuned. These prompts are used interchangeably for a single LM. For
fortune recognition, context, prompt embeddings, and target sentence are given as inputs and the
fortune level is predicted as a real value between 0 and 1. For steerable generation with the fortune
sketch, a modified version of GeDi is used. GeDi is a fine-tuned model that steers the generation
according to real-valued fortune input, or continuous control code. Context and prompt embed-
dings are also used as input. For a sentence to be generated, the y-position of a point in a sketch is
used as a continuous control code. This continuous control code has a value between 0 and 1 and
its input embedding is interpolated with three class codes (bad for 0, neutral for 0.5, and good for
1) before being input into the modified GeDi. Base-LM used GPT-Neo while the modified GeDi
used GPT2-medium.

6.5.2.1 Recognition Module

TaleBrush recognizes the protagonist’s fortune to map sentences in the visualization. To match
the training dataset for the recognition and steerable generation, I trained a recognition model.
Specifically, I use prompting approaches of GPT-based models [44, 329]. For instance, to rec-
ognize the protagonist’s fortune, to the model, we can input the prompt “Estimate fortune:” with
the subject sentence appended to it. However, hand-designing optimal prompts is known to be
challenging [235, 251]. Hence, I used the soft prompt approach [235, 238, 251], which learns
these prompts on the continuous input embedding space. These soft prompts replace “discrete”
natural language prompts. In other words, I can replace “Estimate fortune:” with several learnable
soft prompt embeddings. I took the soft prompt tuning approach [235] instead of fine-tuning the
whole parameters of the LM, as trained soft prompts require less memory (about ×105 less size
than the whole parameters). Fine-tuning multiple whole-parameter models for multiple tasks (e.g.,
generation), would require significantly more computation resources.

I trained the soft prompts to minimize the regression loss on the protagonist’s fortune label of
an estimated sentence. As a language model, I used a GPT-Neo [35], which is a GPT-based auto-
regressive model [44, 329] with 2.7 billion parameters. I included the context sentences previous
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Figure 6.8: How the protagonist’s fortune is recognized in the summary of Cinderella. The visual-
ized recognition results are similar to Vonnegut’s original (Figure 6.2).

to the target sentence in the input data, as they can have critical information. This previous context
includes, at maximum, three sentences. I picked three as it had the smallest loss in the test dataset.
I also included the protagonist’s name in the context. The input and output labels are formatted as
follows:

• Input: [P 1
prev], ..., [P n

prev], (previous context), [P 1
prot], ..., [P n

prot], (protagonist), [P 1
tar], ...,

[P n
tar], (target sentence)

• Label: y ∈ [0, 1]

[P i
r] stands for the placeholder for soft prompt embeddings, with r and i indicating the role and

the index of soft prompts, respectively. For each prompt role, I chose three prompt tokens (n = 3)
which fit with that of initialization prompts I used (‘Previous Context:’ for Pprev, ‘Protagonist:’ for
Pprot, and ‘Sentence:’ for Ptar). With trained prompts, I could recognize the protagonist’s fortune,
as demonstrated on Cinderella in Figure 6.8.

6.5.2.2 Generation Module

The goal is for TaleBrush’s generation to be steerable with a sequence of fortune values. For this,
I modified the approach used in GeDi [223], which uses a fine-tuned smaller model to guide a
bigger language model with a steering input. In order to explain the details of our GeDi variant,
I first describe how generation can be done with LMs. Then, I describe our base LM that serves
story generation tasks and GeDi model that steers stories with the control code.
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Figure 6.9: TaleBrush performs three story generation tasks: a) continuation, b) infill from previ-
ous, and c) infill from next. For different generation tasks, how contexts and prompts are structured
for inputs differs. In Input to GPT-Neo, dark boxes indicate continuous prompts. In Generated,
red text stand for generated sentences.

Generation with Language Model When an auto-regressive LM receives a sequence of to-
kens (x1:T = {x1, . . . , xT}), it calculates the probabilities for the next tokens with a chain rule
(Pθ(x1:T ) =

∏T
t=1 Pθ(xt|x<t)). With this probability, we can sample out the next likely token. By

inputting the sampled token back into the LM, we can also calculate the probability for the token
that comes after the lastly sampled token.

Base Language Model for Story Generation As a base LM for language generation, TaleBrush

uses the same GPT-Neo the recognition module uses. However, different soft prompt embeddings
are trained for the generation tasks. The benefit is that one large pre-trained LM can be utilized for
different tasks just by replacing prompts and contexts according to the task purpose. I trained soft
prompts for story continuation and infilling. For continuation (Figure 6.9a), the previous context
and protagonist are fed into the language model as input and the model generates the continuing
sentences. I appended the character information as models without character information tend
to introduce random characters. I placed the character information right before the text to be
generated, to make it more likely that character information is considered during the continuing
generation. Accordingly, the input data is formulated as the following:

• Continuation: [P 1
prev], ..., [P n

prev], (previous context), [P 1
prot], ..., [P n

prot], (protagonist),
[P 1

cont], ..., [P n
cont]

Similar to recognition prompts, I chose the number of prompts that matches the initializing prompt
(n = 3 with ‘Beginning Story:’ for Pprev, ‘Story Character:’ for Pprot, and ‘Continue Story:’for
Pcont).

For infilling (Figure 6.9b and c), I included both the previous and next contexts and the pro-
tagonist as the model input. I trained two types of prompts for infilling: one for filling after the
previous context, and the other for filling backward from the next context. When running infilling
generation, these two prompts are used in turn, switching from one to the other for every generated
infilling sentence. For infilling from the previous, I placed the previous context right before the
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text to be generated, as the generated text will be appended right next to the previous context. With
a similar rationale, for infilling from next, I placed the next context right before the text to be gen-
erated. I placed protagonist information at the front-most prompt, as infilling tend to digress less
with the protagonist compared to continuation. This likely occurs as the protagonist is mentioned
in both the ‘previous’ and ‘next’ contexts. The input data for infilling was formulated as follows:

• Infilling from the previous: [P 1
prot], ..., [P n

prot], (protagonist), [P 1
next], ..., [P n

next], (next con-
text), [P 1

prev], ..., [P n
prev], (previous context) [P 1

infill], ..., [P n
infill]

• Infilling from the next: [P 1
prot], ..., [P n

prot], (protagonist), [P 1
prev], ..., [P n

prev], (previous con-
text), [P 1

next], ..., [P n
next], (next context) [P 1

infill], ..., [P n
infill]

I chose the number of prompts according to that of the initializing prompt. (n = 3 with ‘Story
Character:’ for Pprot, ‘Beginning Story:’ for Pprev, and ‘Ending Story:’ for Pnext, and n = 4 with
‘Infilled Story:’ for Pinfill).

Steerable Generation with GeDi TaleBrush adopts the GeDi approach. This model guides an
LM model (base LM) with a smaller Class-conditional LM (CC-LM) that is fine-tuned to generate
using a user-specified control code (e.g., generate a happy story with the control code of “good”).
Similar to standard LMs, CC-LM calculates the probability of the next token given a sequence of
tokens. However, it also considers a specific control code (c) given to the CC-LM (Pθ(x1:T |c) =∏T

t=1 Pθ(xt|x<t,c)). With CC-LM’s probabilities for different codes and the Bayes rule, we also
can calculate the probability of each sequence of tokens being classified into a control code:

Pθ(c|x1:t) =
P (c)Pθ(x1:t|c)α/t

Σc′∈{c,c̄}P (c′)Pθ(x1:t|c′)α/t
, (6.1)

where α is a learnable scale parameter and c̄ is codes other than the selected one. This probability
can be combined with that of base LMs, to decide which token would lead to the coherent story
that follows the control code:

Pω(xt|x<t, c) ∝ PLM(xt|x<t)Pθ(c|xt, x<t)
ω (6.2)

Note that ω serves as a parameter that decides how much steering will be done with GeDi (higher →
more steering). GeDi is faster than other steering approaches that directly manipulate weights [75]
or that filter from many generated texts. Thus, it is better suited for interactive applications.

Modified GeDi for Continuous-Value Steering I modified GeDi to steer generation with
continuous-valued control codes. To enable continuous steering between good and bad fortunes, I
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Figure 6.10: An approach to turn continuous control codes into embeddings that can be input to
CC-LM. For three extreme classes (1, 0.5, 0), we use embeddings of the tokens, good, neutral, and
bad, respectively. For other control codes, I interpolated the embeddings of these extreme classes.

interpolated between extreme fortune classes. I first trained CC-LM with three topic classes, each
mapping to extremely bad fortune, neutral fortune, and extremely good fortune. When training
the CC-LM with these three classes, I took the multi-class topic steering approach introduced in
GeDi [223]. With this approach, the given “main” codes are true and false, while three classes
of bad, neutral, and good are given as the secondary codes. When given true, CC-LM trains to
generate texts according to the given secondary code, and with false, CC-LM would not follow the
secondary code. I adopted this multi-class topic steering approach as it has benefit in computation
time, with fewer “main” control codes to be computed to get the probability from Equation 6.1. I
also included the protagonist’s name at the beginning of the input as contexts. A part of training
dataset might look like:

• true good Protagonist: Mark # Mark was happy to pass the exam that he wanted to pass.

• false bad Protagonist: Mark # Mark was happy to pass the exam that he wanted to pass.

For the training data, I used only some of the annotations from my collection: those in the
top, middle, and bottom 10% percentile. That is, I mapped ranges of values to three discrete
classes to assure I have enough training data. To train this CC-LM, I fine-tuned the GPT2-medium
model. After the CC-LM is trained, when an arbitrary value between 0 and 1 is used as a code,
I interpolate embeddings between three discrete classes considering each of them as having 0,
0.5, and 1 (Figure 6.10). Then, I used the interpolated embedding as the input embedding. For
example, when the control code is 0.25 (halfway between the bad and neutral fortunes), I calculated
the weighted sum of the the learned bad and neutral embeddings with the weight of 0.5 each.

While GeDi steers the generation with the protagonist’s fortune, it can potentially make errors,
producing sentences outside of the desired fortune level. To handle these errors, I adopted the
approach of regenerating sentences if they were significantly out of the range of the specified code.
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Specifically, TaleBrush’s recognition module measures the generated sentence’s level of fortune,
and if it disagrees with the steering input value, TaleBrush tries to generate again. I set the threshold
of error for regeneration as 0.2 (i.e., |y− ŷ| > 0.2). TaleBrush tries to regenerate the text 1-2 more
times. Again, this is based on the desired ‘closeness’ of the generated fortune to the writer’s
intent (as expressed by the speed of the writer’s drawn stroke). After the maximum number of
regeneration has been tried, TaleBrush picks the generated sentence that has minimal fortune level
error with the given steering input value. The surprise level control value is used as the temperature
of the softmax function of the base language model. To implement our architecture, I used models
from Huggingface1.

6.6 Technical Evaluation

I conducted technical evaluations on the recognition and generation modules. For recognition, I
measured how accurately a character’s fortune is recognized in a sentence. For the generation
module, I focused on how steerability impacts other qualities of the story. Steerability is known
to have trade-offs with some story qualities like coherence [244]. Ideally, my control approach
would allow the writer to steer the generation without hurting other metrics. I conducted three
evaluations: 1) recognition performance, 2) an automated evaluation on generation, to find the
parameter that can achieve the ‘sweet spot’ between steerability and coherence, and 3) human
evaluation on generation, to show that my approach allows steerability while maintaining other
story qualities.

6.6.1 Fortune Recognition Evaluation

To evaluate the recognition module, I focused on recognition error, the difference between the rec-
ognized fortune value and the gold standard labels. This was done on the 200 annotated examples
reserved for testing. The mean and median errors were 0.179 and 0.159 respectively on a 0 to 1
scale. I considered this result to be reliable. Concepts similar to fortune, such as sentiment, are
usually measured through an ordinal five-level scale. Human raters can easily discern concepts
with this number of levels [375]. If we view the five levels on a 0 to 1 scale, with the assumption
of the uniform interval between levels (which is widely adopted in ML [375, 442]), then the gap
between levels will be 0.25. Our average error (.179) is below this 0.25 gap so most differences
would not be easily discernible.

1https://huggingface.co/
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Figure 6.11: Automated evaluation results on steered story a) continuation and b) infilling. Median
of perplexity and steering difference (between given steering input value and output fortune) are
plotted for the range between 25th and 75th percentile. In the regeneration condition, we measured
the rate of sentences that were regenerated to minimize steering difference. The x-axis is presented
in log-scale.

6.6.2 Automated Generation Evaluation

I conducted the automated evaluation to identify the parameter that balances coherence and steer-
ability. Here, the parameter of interest is ω: how intensely the steering is applied. Past work has
demonstrated that a higher ω value leads to better steerability, but worse coherence [244]. As I
modified the GeDi approach to our context, I reinvestigated how ω impacts coherence and steer-
ability.

For coherence, I calculated perplexity, which is a measure of how well a probability model
predicts to generate a sequence of text tokens [43]. To evaluate the steerability, I measured the
steering difference: the difference between an input fortune value and the estimated fortune level
of the text generated. To estimate the fortune level of generated text, I used our fortune recognition
module. I measured these two metrics with our 200 test data points. For the continuation task, I
considered the first sentence as the initial context and generated four more sentences. For infilling,
I considered the first and the last sentences as the initial context and generated middle three more
sentences. For the steered generation, I gave fortune annotations in our test data as steering input
values and measured perplexity and steering difference, while varying ω value. Recall that I allow
for ‘regenerating’ the text up to two times to improve the generated text’s fit to the desired fortune
(selecting the best of the generated options). I also simulated this regeneration up to two times to
determine the impact of this on our metrics.

With steered continuation (Figure 6.11a), the perplexity tends to increase with the increase of
ω. The increases in median and 25th percentile were relatively stable compared to that of 75th

percentile. The steering difference tended to decrease very slightly with the increase of ω. The
regeneration approach tends to decrease not only the median of steering differences but also the
75th percentile of steering difference by a large amount. Regenerating once (two stories to pick
from) resulted in a 30%-40% increase in generation time, while regenerating twice (three stories)
resulted in a 50%-60% increase. The rate of performing regeneration decreased very slightly with
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the increase of ω.
With infilling, the change of ω did not change perplexity much (Figure 6.11b). This might be

because infilling considers both beginning and end contexts, and would diverge less from the gold
standard sentences. On the other hand, for continuation, as there is no end context to consider, the
generated text can diverge significantly from the gold standard sentences. The steering difference
and regeneration rate did not have a discernible trend with changes to ω. Without regeneration, the
steering difference of infilling was larger than that of continuation. Similar to continuation gener-
ation, the addition of regeneration leads to decreased steering difference. The rate of regeneration
was 40%-50% when regenerated once and 50%-65% when regenerated twice, which was higher
than those of the continuation.

From the results, I find that a small ω value did not hurt steerability much. Moreover, a low
ω value assured low perplexity in continuation tasks. If regenerating once, the steering difference
decrease at a cost of 30%-50% more generation time. Considering the findings, in TaleBrush, I
use ω value of 1 and try regeneration once as a baseline. Recall that I still limit regeneration to at
most twice based on the writer’s input. While additional regeneration may improve the results, the
response time costs may be too high for an interactive application with the current architecture.

6.6.3 Human Evaluation on Generation

In addition to the automated test, I conducted a human evaluation to see if stories generated by
TaleBrush are perceived as coherent, novel, and steered. For steerability, I showed evaluators two
sentences generated with two different fortune levels and asked them to decide in which sentence
the protagonist has a better fortune. Evaluators were not shown the input fortune values. If an
evaluator chose the sentence generated with a higher fortune steering input value, I considered the
answer correct. All fortune values in the human evaluation were randomly sampled. However, in
the steerability study, I excluded steering input values that were too similar (a difference smaller
than 0.25), as such similar steering inputs would be even difficult for humans to differentiate. I de-
cided this threshold as 0.25 as fortune level differences larger than this value would be discernible
to evaluators (i.e., five-level Likert scales are frequently used for sentiment annotation). I addi-
tionally investigated the novelty of generated texts as TaleBrush is designed to aid story ideation.
I showed evaluators two versions of generated stories: one ‘with’ steering (i.e., using the GeDi
model and character fortune values); and the other without steering (only with the prompt-tuned
GPT-Neo model). I asked the evaluators to decide which story was more coherent or novel. For
coherence, I specifically asked: 1) if story flow is coherent (story coherence) and 2) if sentences
are grammatically coherent (grammaticality). While there can be more specific incoherent pat-
terns [145], I chose story coherence and grammaticality as they each can tell us about the global
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Steerability Story Coherence Grammaticality Novelty Steerability Story Coherence Grammaticality Novelty

Figure 6.12: Human technical evaluation results on a) continuing and b) infilling generation. For
steerability, the accuracy (A) in estimating which sentence is generated with a higher steering input
value is reported. For coherence, grammaticality, and novelty, the ratio of evaluators choosing
which condition has better quality is reported (CX for generation without steering, S for quality
being similar, and CO for generation with steering).

and local coherence of the story. Evaluators could choose one of the generated stories with better
coherence or novelty (CX for “without steering” and CO for “with steering” in Figure 6.12), or
decide that they are similar in quality (S in Figure 6.12). Evaluators were not aware of which story
is generated with fortune steering. For each criterion, I evaluated 100 story pairs, 50 for contin-
uation and the other 50 for infilling. When generating these stories, I applied the regeneration
strategy once and used ω = 1. I hired crowd workers as evaluators, as I wanted to know if even
non-experts in story writing perceive TaleBrush’s generations as coherent, steered, and novel. For
each assessment question, I assigned three crowd workers to assure reliable evaluation. I recruited
crowd workers from Amazon Mechanical Turk, who are in the US, with acceptance rates higher
than 97% and more than 1000 tasks accepted. Each worker evaluated one criterion, for eleven pairs
of stories including one gold standard question. I paid them $3, which is over a $10/hr payment
rate.

Figure 6.12 summarizes our results. Evaluators recognized which sentence is generated with
a higher fortune steering input value 88.0% of time for continuation (84.7% for infilling). Sto-
ries generated without fortune steering (CX) were chosen most frequently to have better story
coherence and grammaticality. In continuation, their ratio was below 50% (45.3% and 46.0% for
story coherence and grammaticality, respectively). That is, when using continuation with fortune
steering, in more than half of cases, users would observe stories with similar (S) or better (CO)
story coherence and grammaticality compared to those generated without steering. With infilling
algorithms, similar to continuation, stories generated without steering (CX) showed better story
coherence and grammaticality most frequently, but their frequencies were higher than continuation
(62.7% and 76.7% for story coherence and grammaticality, respectively). One potential reason for
this result might be the fundamental difficulty in generating coherent infilling stories when a given
fortune sequence is not plausible (e.g., drastic fluctuation in fortune). For novelty, with continu-
ation algorithm, different conditions showed similar performances. With the infilling algorithm,
stories generated with steering (CO) are perceived to be more novel more frequently. In summary,
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Table 6.1: Participants of the user study. Their domain of interest and years of experience in story
writing is shown.

Expertise Domain Year Expertise Domain Year
Novice P1-5 N/A N/A Hobbyist P10 Fantasy 2

Hobbyist

P6 Play script 2

Expert

P11 Sci-fi feature films 50
P7 Time travel story 3 P12 Literary/Psychological fiction 15
P8 Sports story 0.5 P13 Fiction, Fantasy 4
P9 Hard SF, Dungeon & Dragon 3 P14 User/Personal/Fictional stories 8

I found that novelty is not hurt with fortune steering. I also found that our steering approach is
reliable enough to steer the generation according to the steering input value, but at some cost to
story coherence and grammaticality. The cost is lower in the continuation algorithm than in in-
filling one. Regardless of the strategy, no generative algorithm can generate perfect coherence or
grammaticality. Thus, it is critical to ensure that the writer can edit the final text.

6.7 User Study

I conducted a user study to gain insights and feedback on the potential, limitations, and future op-
portunities of sketching interactions for iterative human-AI story co-creation. I focused on learning
how our novel sketching input facilitates iterative exploration of story ideas and story co-creation.
As this study seeks to understand how users leveraged our novel interactions, I did not conduct a
formal comparison to existing human-AI story co-creation tools.

6.7.1 Participants

I recruited 14 participants (7 female and 7 male) by word-of-mouth and through online advertise-
ments on social media and communities of universities. Participants completed a pre-survey on
their background before the study. My participants had a range of expertise: novices, hobbyists,
and experts. I classified participants who do not write stories occasionally as novices. Others
were classified as either hobbyists or experts, and experts considered themselves as story-writing
professionals. Participants were fluent in using English. I detailed participants in Table 6.1.

6.7.2 Procedure

I conducted a remote study with Zoom2. Participants were first given an overview of the study
(15 min), then went through a tutorial on the tool (15 min). Participants could access TaleBrush

directly through a URL we shared. In the tutorial, I explained that better fortune was represented

2https://zoom.us/
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Figure 6.13: P2’s work: a) Edit of a generated story. Bolded, red, and blue text indicates initial
context input, removed parts, and added texts, respectively. b) Line sketch and fortune arc of the
generated story before editing. c) Fortune arc of the edited story.

with higher points on the y-axis. However, I allowed participants to use the tool to specifically learn
how the mapping worked as there are no explicit axis labels. After the tutorial, I asked participants
to use TaleBrush in two tasks. First, they were given a specific story beginning and were asked
to generate a continuing story with TaleBrush until they found one that appealed as a draft story.
After participants picked this draft story, they were asked to edit the text directly without additional
generation (20 min). This task allowed us to observe how participants drew fortune arcs and which
of the generated elements they retained or modified. For the second task, I asked participants to
freely use the tool, bringing in their own story from the very beginning (20 min). I did not restrict
how and when they used generation. Whereas the first task roughly corresponded to one ‘turn’
(machine then human), the second allowed us to observe an iterative co-creation process. In both
tasks, I asked participants to share the screen of the interface. I also asked participants to think
aloud while using TaleBrush to learn their rationales and reactions in using the tool. Lastly, I
conducted a short interview, asking the experience of using TaleBrush, such as how they used the
line sketching, how they incorporated stories generated by the tool, and how they would adopt
TaleBrush to their practice (20 min). The whole session was video-recorded.

6.7.3 Results

I qualitatively analyzed screen recordings, think-aloud statements, and interviews. I analyzed data
by iterative coding with inductive analysis, and coded results were reviewed with two other authors.
Note that unless explicitly stated, results are about the participants across all expertise levels.

6.7.3.1 Use of Line Sketches

Line sketching facilitates iterative co-creation with intuitive steering. Overall, participants
indicated that line sketching was a simple and expressive way to specify the protagonist’s fortune.
As critically, they understood how to use sketching to steer text generation. Participants also
thought that fortune was an effective attribute to steer the overall story flow. During the study,
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writers experimented and iterated on multiple line sketches. Some tried generation on a sub-
part of the story to only change that part. Others tried generation in the middle of editing the
story. For example, P6 repetitively tried generation to find infilling sentences that would go along
well with the ending sentence previously generated from TaleBrush. During the process, P6 also
edited generated sentences and used them as the context for the next generation. Participants also
mentioned that sketching allowed them to specify the arc without the pressure of being precise. For
example, P6 mentioned: “If I should have input each number, I might have been more reluctant to

complete the story. Because they are specifying more detailed values. So, I think drawing would

be more helpful in generating the stories.”

Surprise control and steerability in small changes could be improved. A few participants
used the surprise control, but the perceived effectiveness diverged between participants. Addi-
tionally, when participants used sketching for small and detailed fortune changes, they felt that
their control was not reflected well on the generation. The feature of specifying steering fidelity
with sketching speed might have been one approach to solve this problem, but it was not effective
enough in some cases. Participants speculated that the feeling of lack of steering might be due to
disagreement between their perception of fortune and the fortune level calculated by TaleBrush.
The current generation approach of replacing the whole sentence may have also exacerbated this
problem, as the user expected a slight change in the text when they are making small changes in
the sketch. While the new sentence may be at the appropriate fortune level, the content may have
been too radically different from the sentence at that time point.

Line sketching facilitated the planning of writing to some participants. Within the iterative
co-creation process, the line sketch could also influence participants to edit the story to follow the
sketched fortune arc. For example, in Figure 6.13, P2 edited generated text to follow the line sketch
that P2 drew in most sentences (from b to c). Because the current story was constantly compared to
the drawn sketch, the participant would try to adjust the story so that it was more aligned with the
sketch. Participants also mentioned that the sketch served as a plan or a guideline. For example, P7
mentioned: “As I draw graphs, it is intuitive, I could easily see how I would compose the storyline

and how I should structure it.” However, some participants who deeply focused on the story itself
did not consider the sketch when editing the text.

6.7.3.2 Use of Generated Texts

Generated texts are used as ideation materials. From the automatically generated stories, par-
ticipants adopted characters, settings, short expressions, sentences, events, or even the overall story
flow. For example, in Figure 6.13a, P2 liked the event described in the third sentence and edited the
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story to go along with the sentence. Novice participants mentioned that generated texts lowered
the barrier on starting writing, as they would have more frustration if they start from a blank paper.

Incoherent generations are targets for revision. Unsurprisingly, participants frequently revised
incoherent parts. For example, the sixth sentence of Figure 6.13a was taken off because mentioning
flip-flops was perceived as a drastic context change. Participants also added more details to the
story to make it more reasonable and concrete. For example, in Figure 6.13a, P2 added details on
the ‘pool’ in the second sentence that it is a new swimming pool on the way to the protagonist’s
home. Participants also added new sentences to make the story flow natural. For instance, in
Figure 6.13a, P2 added the last sentence to make the ending more natural. Interestingly, the editing
pattern of novices, hobbyists, and experts did not differ much, potentially due to the novelty of the
tool’s functionality to participants.

Incoherent generations serve as the reason to exert creativity for some participants. While
incoherent or ambiguous story elements require participants to revise sentences, some participants
appreciated this as a ‘prompt’ to apply their own creativity and revise the text. For example,
P1 mentioned: “If, there is nothing like that [incoherence], I would not do something creative.

However, with something that needs to be fixed, and if you kind of get that they need to be revised,

I feel like I can exert my creativity... So I don’t think these are downsides.” Moreover, some
‘incoherence’ was perceived as novel elements to participants. This ‘bug’ thus becomes a ‘feature’
in the context of ideation support.

6.7.3.3 Potential of TaleBrush in practice and suggestions for improvements.

Potential for quick and iterative ideation. Experts and hobbyists mentioned that they would
use TaleBrush to quickly iterate through diverse ideas. Collected ideas can be used in the ideation
stage or to overcome writer’s block. This benefit would be maximized in settings where the writer
should bring up multiple stories, such as tabletop role-playing games.

Supporting more attributes, longer texts, and various types of writings. Participants men-
tioned that they would like to see steerability for more story attributes, such as other characters’
fortunes, settings, or genres. They reasoned that more steering would likely lead to a more desired
text that they would adopt to theirs. Some participants indicated that the visualization and steering
granularity might need to change if TaleBrush expands to generate longer texts, as users would
want to give paragraph-level or chapter-level specifications. Experts noted that TaleBrush needs to
be adapted to each usage context. For example, P11, a screenwriter, stated that the tool should be
able to express character emotions or states only with observational statements, as those need to be
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shown, not told, in screen writings. Finally, participants mentioned the potential of using sketching
to steer generation of texts other than stories, such as steering tone in speech or editorials.

Addressing bias. Potential bias in the story generation and steering was brought up as an issue.
For example, P5 perceived that the algorithm generates stories that are more likely written in
western culture. P10 mentioned that the steered generation did not align with what they expected
when the protagonist is an anti-hero, signaling potential bias. An important starting point would
be in ensuring a more diverse training set, as is broader testing.

6.8 Discussion

From TaleBrush, I reflect on lessons learned for steerability design and iterative human-AI co-
creation.

6.8.1 Sketching to Address The Gulf of Iterative Human-AI Co-Creation

The use of sketching as interactive steering inputs addresses challenges in the gulf of execution
and evaluation [299] between the user and the generative AI systems. A key feature is reducing
the friction in the iterative co-creation process. First, the steering interaction of TaleBrush is
designed to be expressive and easy. These are often conflicting goals: simple interfaces have
limited expressiveness and expressive interfaces are not simple. However, this balance is clearly
needed for closing the gulf of execution but is missing in many existing interactive approaches to
co-creation. Second, to minimize the gulf of evaluation, sensemaking of generated results should
be facilitated. Users should be able to more easily understand how the given steering inputs relate
to what the AI generated. This is often missed in ‘explainable’ AI approaches. The explanation
does not map to either the user’s intent or how they interface with the software.

6.8.2 Generalizing Line Sketching-based Steering

Beyond story generation, line sketching can potentially be adopted for other applications that gen-
erate content with sequence attributes. This is particularly true in domains where we can opera-
tionalize and encode features of the content as drawings. For example, poetry [36] and lyrics [415]
can be visualized based on moods or rhythms. One indicator of whether the line sketching ap-
proach is appropriate for a generative context is if time-series style visualizations already exist in
that medium. For example, in audio, we can visualize (and partially steer) changes in volume over
time. This can be extended to support more powerful types of guidance. For example, a composer
could steer rhythmic density or melodic contour [4] of generated outputs. Similarly, a sketch line
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could be used with a text-to-speech generator for flexible micro expression control (e.g., pace or
aggressiveness) [352].

6.8.3 Disagreement Between Human and AI

In experiments, I found situations in which the steered generation do not satisfy a user’s expecta-
tion, and the generated text’s fortune level might not accord with the given steering inputs. This
can be due to algorithmic error, either from the steered generation or recognition. However, I found
that in some cases this was a result of an implausible request (e.g., drastic fluctuation of fortune).
Dramatic fluctuations are not often observed in real text and the generative algorithms may not
be able to generate suitable text. To address this, we might limit how much the sketch can move
between time steps (e.g., a smoothing). Alternatively, we can leverage the ambiguity and unde-
termined nature of sketching [144, 229] to communicate uncertainty in steering. In TaleBrush, as
the user sketches, it shows a wide range where the generated output would likely fall. While these
design elements manage user expectations on the tightness of steering, the user study found that
users would want more sensitive steering when they iterate over generations with small changes
in parameters. The sketch-speed approach is one way to allow users to encode how ‘tightly’ they
want the story to fit. However, it may be worth considering alternative approaches in the future
(e.g., explicitly selecting different ‘pen’ widths or experimenting with things like pen pressure).

As the user study revealed, the writer’s perception of the protagonist’s fortune can also be
misaligned with how the tool recognizes it. Adapting the machine’s fortune scale to the user’s
perception can be a way to solve this. For example, we can allow users to revise the machine
recognition results based on their perception of the text (e.g., by moving the line the machine
drew). This can be fed back to the underlying classifier to learn the user’s scale of fortune. To
enable such interactions with low user effort, it should be technically possible to adjust models
with few data instances from the user. Recent language model tuning approaches, including soft
prompt tuning [235, 251], may support this approach. In some situations, the user’s expectation
may be mismatched due to the potential bias in the model or training data. For example, the study
participants mentioned the model seemed to show biased behaviors, such as generating stories
more likely written in western cultures, which might be due to skewed distribution in the variety of
stories [27]. To alleviate this problem, we can try pretraining big language models with balanced
data [27] or having a steerable module that tries to control these biases [207, 246].

6.8.4 Further Support in Story Co-creation

Story attributes other than the protagonist’s fortune (e.g., conflict, settings) can also steer the story
flow. To decide which attribute to support, the writer’s specific needs should be understood first.
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Based on the identified attribute, visual steering inputs can be designed to assure expressive and
simple steering for the attribute. For example, if writers want textual keywords to be used as a
steering input [430], placing keywords along the story sequence axis can be one design option.
Alternatively, if a writer wants to convey condensed information about character interaction, dia-
gramming a character network graph can be a steering option [14]. For example, one could imagine
drawing multiple instances of a network diagram to guide the AI by which characters in a story
should interact and how. Alternative sketched representations are worth studying both for text gen-
eration [282] and beyond. To support these, the dataset and algorithmic pipeline would need to be
expanded based on the attribute to be steered.

For specific story domains, such as screenwriting, generation can be extended to adopt the
“show, not tell” approach. For such extensions, the dataset would need to be constructed with
screen scripts while the algorithms would also need to consider the latent fortune states throughout
the story.

TaleBrush can potentially be extended to support the authoring of high-fidelity, longer text. To
provide such support, the tool would need to consider writers in the translation stage [111, 142],
where ideas and plans are transformed into detailed text. Hence, generative tools should be able
to follow the writer’s specifications. The annotation approach would also need to be reconsidered,
such as annotating the fortune of the character after summarizing the long text with crowdsourc-
ing [406] or algorithms [26]. Moreover, the steering and sensemaking should be re-designed for
longer text. For example, a tool might allow the writer to first sketch an outline and then a detailed
story [104]. A more complete tool might enable a long-term study of how co-creation impacts
writing.

6.8.5 Limitation and Future Work

In this chapter, I qualitatively investigated how writers would use TaleBrush and sketching inter-
actions. Future work can investigate how proposed interactions impact the story writing compared
to writers’ current practices or when steered generation is used without sketching interactions.
Moreover, I did not look into how each function impacts story writing separately. For example,
how would the control of surprise impact the writing experience alone? To answer such questions,
more controlled user experiments would be needed.

While my annotation approach produced usable data, I identified ways it could be improved
in the future. While collecting comparison information with the slider interface, I saw that how
calibrating sentences were annotated would impact the annotation results. For example, if one
calibrating sentence has been annotated with maximum fortune and the annotator later realizes
that one of the task sentences has higher fortune, the annotator would either not annotate accurate
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comparison information or need to re-annotate the calibrating sentence. One possible approach is
to modify the interface so that sliders can be extended without having maximum or minimum ends.

Finally, while the training data specified which character’s fortune should be steered, the trained
model frequently coupled multiple characters’ fortunes. For example, in the story about Bob and
Alice, it is hard to make Bob have a good fortune and Alice have a bad one. Explicit steering of
multiple characters’ fortune can be one future work direction to handle this limitation.

6.9 Conclusion

I introduce TaleBrush, a human-AI story co-creation tool that allows writers to sketch out textual
stories by visually steering the protagonist’s fortune. The visual sketch is used as an input to the
GPT-based story generation model and the model generates stories according to the specified pro-
tagonist’s fortune. To help make sense of the generated story, the protagonist’s fortune is visualized
using the same abstract representation as the drawn sketch. From a technical evaluation and a user
study, I found TaleBrush has reliable steerability, while its sketching interaction facilitates partici-
pants to iterate on generation to collect novel ideas that align with their intentions. With the recent
advances in generative ML algorithms, I hope TaleBrush opens up new ways to provide friction-
less steering. Connecting back to the design approach in Chapter 4, this chapter shows how we
can facilitate effective and efficient expression with iteration in steering interactions by adopting
an alternative, but familiar input modality of visual sketching.

123



CHAPTER 7

PromptPaint: Steering of Text-to-Image Generation
Through Paint Medium-like Interactions

7.1 Introduction

Text-to-image (T2I) models that generate high-quality images from textual prompts are rapidly ad-
vancing with diffusion-based techniques [298, 330, 343, 348], inducing a lot of excitement about
democratizing the creation of visual images. Input interactions of textual prompts allow users of
algorithms to specify their intentions regarding which image to generate while minimizing the
required level of skills (e.g., drawing). These simplistic interactions and high-quality renditions,
along with accessible tools (e.g., Dream Studio1, Gradio demos2, demos in Google Colab Note-
books3), allowed a large set of the public without visual art expertise to generate visual images.

Despite the excitement, to use these models to support human creation, there are limitations in
how they function. One problem is that people often create visual images with a procedure, while
these models do generation in an end-to-end fashion. For example, people often follow specific
workflows to create visual images [88, 98, 433]. For example, in digital comics, artists draw the
piece in order of sketching, flatting, shadowing, and adding backgrounds and special effects [433].
Creation procedures can involve intermediate decisions between steps. Unlike existing practices,
images generated only with the user’s initial prompts would limit what the user can do during the
artifact generation. Another problem is that natural language prompts are not enough to express
all of what users would want—sometimes their targets can be ambiguous (e.g., targeting a style
with elements of both Impressionism and Arte Nouveau). Natural language prompts would also be
inadequate when the user needs to iterate on the generated images with a certain degree of changes
(e.g., ”a bit less angular shape”).

With these limitations, researchers and practitioners recently introduced technical approaches

1https://beta.dreamstudio.ai/
2https://gradio.app/
3https://colab.research.google.com/
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Figure 7.1: PromptPaint allows flexible steering of diffusion-based text-to-image generation by
combining prompt-based generation with paint medium-like interactions (e.g., oil painting, water-
color). After the user defines their prompts of interest (b), the tool allows users to mix prompts like
how we mix colors of paint mediums by 1) interpolating them on the prompt palette (c, prompt
mixing) or 2) adding extrapolating attributes (d, directional prompt). Moreover, PromptPaint al-
lows gradual shaping of the artifact by allowing 1) changing of prompts during generation (c-1,
g, prompt switching) and 2) spatial selection of area to generate image content (f, prompt stencil).
PromptPaint also allows detailed specification of generation with configuration widgets (e) along
with other image editing functions like moving image content, brushing, erasing, lassoing, and
layer edits (a, h).

to enable gradual editing of visual content. An approach is to in-paint and out-paint, adding or
revising visual elements on the existing image [20, 298, 347]. Another set of research investigated
image-to-image approaches, which allow users to give an initial image to build up on the genera-
tion [20]. The researchers also investigated technical approaches to mix prompts [240, 249] or edit
images based on natural language prompts [72, 159, 203, 404]. While technical approaches and
corresponding demos exist, there have been few considerations on how the interactions should be
modeled to facilitate gradual creation experiences with more controls in the user’s hand.

In this work, I explore approaches for users to interact with T2I models that enable the gradual
building of artifacts while allowing flexible exploration in possible art space. I suggest the idea
of considering interactions with T2I models as how we interact with paint mediums (e.g., phys-
ical ones such as oil paint or watercolor). First, we are familiar with the interactions with paint

125



mediums, as even novices in visual arts have some experience learning to play with them [98].
Second, users can manipulate paint mediums to enable various expressive renditions. For instance,
we can mix them to get colors beyond what we have in color tubes and apply different colors to
different parts of a canvas to create a unique image. By bringing such interactions into T2I models,
I expect to enable more gradual and explorative creation even with AI generations. With these
high-level ideas, I implement PromptPaint, a tool that turns prompt interactions into familiar inter-
actions with colors of paint mediums. With such interactions, PromptPaint 1) turns prompts into
flexible materials that can even target verbally indescribable concepts with prompt mixing, similar
to how we mix paint medium colors, and 2) modularizes image generation by allowing users to
apply varying prompts to different parts of the canvas (prompt stencil) and different parts of the
generation process (prompt switching), similar to how we apply different colors onto the canvas.

From the user study, I found that different ways to steer T2I generation could allow users to
generate images that align well with their intentions through iterations. However, I also identi-
fied design trade-offs of 1) focused iteration and curation and 2) manual editing and automation.
Furthermore, the high complexity and randomness of AI models could result in a misalignment
between AI behaviors and user expectations. Lastly, while users had some sense of ownership of
the resulting artifacts with their contribution to high-level ideas, I found that the user’s expertise
and the result being aligned with the user’s expectations can impact their sense of ownership. From
the findings, I discuss insights on adopting paint-medium interactions in designing future versions
of generative tools.

7.2 Background and Related Work

7.2.1 Painting-From Physical to Digital

As PromptPaint is inspired by the interactions with paint mediums, I first describe the character-
istics of the painting that PromptPaint borrows from. Painting is one of the means of rendering
visual images by applying paint medium onto a canvas [98]. This “personal causation” [81], or
the change in the world by an individual, is an intrinsic satisfaction that can come from doing a
painting. Painting enables us to express ideas and emotions not describable in other mediums,
such as poets or music [98]. Moreover, painting often involves continuous judgments during the
process[98]. When people can routinize the creation of a specific set of artifacts, people would
structure such judgments as a workflow [88, 433]. These characteristics hint at the limitations
of existing T2I models, while showing the potential benefits of leveraging painting interactions.
First, not all visual ideas would be describable with natural language prompts, and paint-medium-
like interactions can potentially alleviate such limitations in natural language prompts. Second, as
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painting interactions often involve gradual judgments (and potentially iterations), those can guide
us on how to design gradual and iterative interactions with T2I models. Third, paintings-like inter-
actions would likely lead to “personal causation” and intrinsic satisfaction. The idea of applying
painting interactions in T2I models also resonates with enabling direct manipulation in intelli-
gent interfaces, by balancing it with automation [366]. With such benefits, I ground the design of
PromptPaint on how we interact with paint mediums.

There has been a line of work for tools to support painting and drawing. Although often imple-
mented for digital painting, some tools guided novice users with visual guidance, without directly
intervening in user drawings [183, 421]. Other types of tools tried to augment the novice user’s
skills by adding corrections to the drawn result [108, 241, 387, 429]. There have also been tools
such as Color Builder, which allows users to flexibly explore color options with color mixing
interactions [368]. Although the tools mentioned above are designed more to support “existing
drawing/painting practices,” there have also been tools that enabled users to generate novel types
of artifacts with computationally enhanced brushes [28, 186, 356]. PromptPaint builds upon ex-
isting tools by bringing diffusion-based T2I models closer to interactions that people would have
with paint mediums.

7.2.2 AI Image Generation

Although I focus on diffusion-based T2I models, there has been a history of approaches that gener-
ate images with neural networks. One of the first approaches that caught researchers’ attention was
style transfer algorithms, which can transfer the visual style of an image to another image [129].
This technique was enabled by decoupling content and style representations from convolutional
neural networks (CNN) [226] and combining those representations from different images. These
algorithms advanced to allow multiple [91] to arbitrary [360] sets of images as a style input but
had limitations in that they focused on transferring styles and could not generate images from
scratch. Another set of approaches that can generate images is generative adversarial networks
(GAN) [139]. GANs train a generator model to fool a discriminator model that classifies whether
or not the generated result is fake. GANs also use CNNs for the generator and the discriminator
and could generate images from scratch. Researchers further research these models to condition
the generation to specific classes [62]. The most recent approach is diffusion models, which learn
to recover images from noisy images [162]. These models were capable of generating high-quality
images compared to other approaches. With these models, researchers also devised approaches to
guide their generation, with classes [86, 163].

Parallel to the aforementioned approaches, researchers also trained representations that combine
text and images. One of the most noticed representations was CLIP [327], and this shared repre-
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sentation enabled natural language-based guidance for image generation approaches [73, 227].
Among them, diffusion-based T2I models have attracted a lot of attention with their flexibility to
follow input prompts and high quality [298, 330, 348]. However, these have limitations in that gen-
eration occurs end-to-end. Hence, imbuing more human intentions into the generated results can be
challenging. To address such a problem, researchers investigated various approaches, from seeding
an initial image that would be transformed [20] to combining two different prompts to realize them
in the image at the same time [249], generating an image of one prompt while having the overall
form of another prompt [240], editing or expanding images with visual masking [20, 298, 347],
and allowing editing of images with natural language prompts [72, 159, 203, 404]. Although these
introduced technical approaches to gradually and iteratively shape images, there is not yet a good
model of how users could interact with diffusion-based T2I models. In this work, I investigate
interaction approaches for T2I models with an analogy to how we use paint mediums.

7.2.3 Interaction with AI Generation

There have been numerous approaches to interacting with AI generations in various domains. An
aspect to consider was how to steer the behaviors of these generative models. Less flexible options
would be to use rigid categories as input [62, 223]. The limitation of this approach is that since
there are a limited number of options that the user can choose, the space to explore is limited.
An alternative option would be to receive specific examples as input, which are often used for
algorithms such as image style transfer algorithms [307, 360]. Although technically flexible in
receiving “any examples,” interaction-wise, iterating on steering can be challenging, as searching
for another example with a slight difference can be difficult. To support more flexible steering
iteration, slider-based controls have been devised for domains including image [74, 310], and mu-
sic [256] generation. Such control interfaces allowed users to flexibly iterate their input within a de-
fined spectrum of space. Researchers extended the continuous space of controls to interfaces with
more flexible control, such as explorable gallaries [443] or visual sketches [66]. With advances
in language models [44] and contrastive learning between text and other mediums [327, 425],
natural language prompts also became another means to steer AI generation. For example, with
the ability of language models to support a wide range of tasks, researchers introduced tools to
help users manage prompts [386, 427]. Prompt-based generation extended to other mediums than
texts, such as images [330, 348], UI design [214], codes [58], 3D models [188, 322] and even
videos [373, 407]. The prompt-based generation has a comparative benefit over other approaches
in that it does not limit input made by the user (apart from whether the model can reliably handle
those). However, at the same time, prompting can be challenging, since 1) there could be too many
options to explore, and 2) some concepts are difficult to verbalize due to ambiguity and vagueness
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(e.g., “a bit less vivid color”). In this work, inspired by the interactions we do with paint mediums,
I extend existing interaction approaches for generative models to the mixture of prompting and
visual interactions.

Another aspect to consider in interaction design for generative models is how the generation
processes and results are embedded into the human art creation process. For language generation,
generation occurs in token-to-token fashion [405]. The generated results can be easily repurposed
as a partial material that can be used during the user creation process. However, for other types of
medium (e.g., images, audio, or videos), advanced models were often designed to generate artifacts
that tend to be the final version. In such cases, designing a tool that allows users to adopt generated
results during the human creation process would be more challenging. In diffusion-based T2I
model contexts, researchers and practitioners investigated ways to repurpose generation results as
a modularized unit in the human creation process. As introduced in Section 7.2.2 in-painting, out-
painting, image-to-image, and prompt-based editing generations would be specific examples. In
this work, in addition to repurposing the generated results as a modularized unit in human creation,
I also investigate the modularization of generation process by allowing user interaction during the
process.

7.3 Interacting with Generative Models Like Paint Medium

In this work, I extend the ways of interacting with generative models by using the analogy of
interactions with paint mediums (Figures 7.2 and 7.4). The extensions focus on two different
aspects. The first is allowing users to go beyond discrete semantics (e.g., categories, prompts) for
specifying generation and explore spaces in-between semantics in the vector space. With the paint-
medium analogy, we connect this manipulation to color-mixing interactions. The second aspect is
allowing users to gradually generate artifacts, similar to how we gradually apply colors when we
are painting. In the following sections, for each aspect, we explain detailed connections between
the steering of generative models and paint-medium interactions.

7.3.1 Mixing Colors: Exploring Vector Spaces

Input modalities of categories, examples, and prompts are intuitive interfaces to specify the seman-
tics of artifacts to be generated, as they are in a comprehensible format for human users. When
used in generative models such as language models [66, 223], style transfer algorithms [360],
GANs [6, 198], or diffusion models [330, 348], they are first transformed into a vector representa-
tion to guide the generation of those models. This indicates that these discrete semantics can have
limitations, as vector representations in-between discrete semantics would be hard to reach only
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Figure 7.2: Mapping interactions of exploring vector spaces to interactions of mixing paint col-
ors. Each of the discrete semantics (which would be categories, prompts, or examples and are
represented as black squares in Vector) can map to discrete colors in paints (tubes in Paint). Then,
the user can explore vector semantics between discrete semantics (black dots in Vector) in a way
similar to how they would explore colors by mixing (brushes in Paint).

with these interfaces. However, there may be cases where users would want to further explore such
semantics. For example, when using prompts, if the user wants to explore concepts that are diffi-
cult to be verbally described, they might want to explore those in-between vector representations.
Such needs would also arise when the user wants to do fine-grained control in certain aspects, like
adjusting the roughness of texture in image rendition. Technically, previous work has shown that
such manipulation is doable with interpolation of discrete semantics [66, 328] or extrapolation by
identifying directional vectors for manipulating concepts [310, 353]. However, not many previous
efforts have tried to turn such manipulation into accessible interactions, specifically for the case
when the user is capable of flexibly using different discrete semantics, like prompts.

To facilitate the exploration of in-between vector representations, we introduce the idea of inter-
acting with discrete semantics in a similar way to how we mix paint medium colors. When we are
using colors to paint a canvas, those different colors come into our hands in the form of tubes, each
having one discrete color. However, when applying them to the canvas, we do not limit ourselves
to those discrete colors. We go beyond the given colors by putting them on the palette and mixing
them. Similarly to the color mixing interaction that occurs in the color palette, we introduce the
interaction of mixing different discrete semantics on semantic palette. Analogically, each discrete
semantic of categories, examples, or prompts would map to a discrete color for the paint mediums
(Figure 7.2). The first specific approach to mixing discrete semantics is to interpolating them, by
mixing two or more different discrete semantics on the semantic palette and exploring the space
between them (top row of Figure 7.2). For example, to render an image that is the chimera of a
cat and a dog with T2I models, the user would be able to interpolate the semantics of a cat and
a dog. It would be similar to spreading colors to mix them and seeing the gradient of colors in
between when we are mixing colors. The interaction of interpolating semantics, hence, can be
visually represented in interactions similar to those in the color palette. The second approach is
to extrapolating them, adding a directional semantic to the semantic that the user is considering to
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Figure 7.3: Using palette interaction for semantic mix has benefit in that the interpolation and the
extrapolation can be represented in the same interface.

do a fine-grained control of it (bottom row of Figure 7.2). For example, with T2I models, the user
can render an image of a dog with a certain level of fluffiness by adding the semantics of fluffiness
to the semantics of a dog. In the use of paint mediums, it would match the interaction of adding a
small amount of a different color to steer the characteristics of the color that we are dealing with
(e.g., making the color darker by adding a bit of black pigment). Hence, the extrapolation of se-
mantics also can be visually represented by adding a color pigment. Note that these interactions
would be adoptable for those generative techniques that can turn user-interfaceable discrete input
modalities into the vector space and that can perform generation reliably on the arbitrary vector
space of the representations.

Note that there can be other interactions to mix discrete semantics than color palette interac-
tions. For example, we can mix the prompts with the slider widgets. Compared to such interac-
tions, palette interactions can represent the mix of discrete semantics with two visual signals, their
positions, and colors, on the palette. With color representation, specifically, both interpolation and
extrapolation can be shown in a single interface. That is, as in Figure 7.3, the palette interface
can represent the interpolation with the selection of a point in the mixed-color gradient and show
the extrapolation by adding the color to the selected interpolated point. On the other hand, with
slider-like interactions, only weights for interpolation and extrapolation would be represented, not
the final mix of semantics.

7.3.2 Applying Colors onto Canvas: Gradual Generation

Generation algorithms often generate artifacts without allowing user interventions. It can render
the experience of using generative models far from “creation,” where the user shapes and steers the
artifact with their intentions. Here, I explain the potential interactions that can allow users to have
more interventions in the generation process. Again, I take the analogy from how we interact with

131



Vector Paint

Interpolating

Extrapolating

Paint

Multiple strokes on the same area

Drawing an image part-by-part

Interactions within generation

Generate an artifact part-by-partGeneration
Modularization

Dog Cat

Dog

Flu�y

Dog+cat
chimera

Flu�er
dog

Figure 7.4: Mapping interactions of generation modularization to interactions of gradually painting
an artifact. Within-generation interventions would correspond to multiple strokes applied on the
same canvas area, and generating the artifact part-by-part would map to drawing the image part-
by-part.

paint mediums, focusing on how we apply them to the canvas. When we apply colors to the canvas,
we do not simply use the same paint for the whole area. Instead, we gradually build the artifact with
multiple paint strokes, sometimes overlapping them. While such a painting process would require
far more effort and expertise from the user compared to using generation models, we can similarly
modularize our creation into some units when using generative models (e.g., each stroke for visual
arts or words/sentences for writing). This modularization allows us to repetitively intervene in the
creation process, facilitating the steering of the generation. With generative models, there could
be two ways of modularization. The first approach is to allow interactions within the generation
process (red arrows in Figure 7.4), such as changing the guiding prompt during generation. In paint
mediums, it would be similar to applying different paint strokes in the same area to decide the final
rendition. This specific approach would only apply to those techniques that follow modularized
procedures so that the user can intervene. The diffusion-based T2I model can be an example. As I
will demonstrate in the later sections, in diffusion-based T2I models, those prompts that are used
in the earlier stage decide the overall form of the image rendition while those in the later part
decide the details. For example, using “a banana on the ground” first and then switching it to “a
futuristic car” would result in a futuristic car in the shape of a banana. The second approach is
to enable partial generation instead of generating all content with one generation so that the user
can gradually build the artifact (blue arrows in Figure 7.4). Analogically, it would match how
people draw an image part by part. Note that this interaction can be easier to implement for some
generative models that generate part by part. For example, causal large language models generate
texts token-by-token, which can be a part of the final artifact. For other models not necessarily
designed to generate in part, there are also cases where researchers and engineers figured out that
the model is capable of partial generation. In-painting and out-painting of diffusion-based T2I
model can be examples [20, 298, 347]. For example, with T2I models, the user can first generate
the overall background (e.g., the ocean scene) and specific objects later (e.g., boats).
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7.4 PromptPaint: Interface

Based on the design approach introduced in Section 7.3, I design and implement PromptPaint, an
image creation tool powered by a diffusion-based T2I model (Figure 7.1). This tool allows users
to flexibly shape image generation with 1) exploration and fine-grained control of prompt space
with prompt mixing and directional prompt, and 2) gradual building of visual images with prompt

switching and prompt stencil. In this section, I introduce the interactions in PromptPaint.

7.4.1 Canvas and Basic Editing Functions

PromptPaint has a canvas where the user can create digital raster images (Figure 7.1h). It accompa-
nies raster image editing functions that can also be found in other raster image editing applications,
such as moving the position of the canvas, moving/rotating images inside the canvas, brushing,
erasing, and lassoing (from left to right of Figure 7.1a, except the right two). Furthermore, the
user of the tool can add more than one layer to the canvas, change its ordering, hide them, or even
delete some (Figure 7.1h).

7.4.2 T2I Generation Functions

With diffusion-based T2I functions, the user can generate images on the canvas. The user first
specifies and selects the prompts to guide the generation (prompt mixing and directional prompt).
The user can then start to run the generation by specifying the area to put the generation results
(prompt stencil). When running the generation, the user can also change the guiding prompts
during the generation (prompt switching). We first explain how the user can specify each prompt
and then describe each function. We give technical details in the later section.

7.4.2.1 Prompt List

To generate images, the user can add a list of prompts in the Prompt List widget (Figure 7.1b).
The user can add a new prompt with the + button. Each added prompt has its own color and text
prompt, which can be edited by the user. To change the color, the user can hold down the colored
circle for a while to reveal the color picker. The user can edit the textual prompt with the text box.
The user can also delete the prompt with the X button.

7.4.2.2 Prompt Mixing

Each prompt is rendered as a color circle in the Prompt Palette widget (Figure 7.1c). The user
can position these prompts as they wish with dragging interactions. The user can also mix these
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Figure 7.5: Interactions to mix and detach prompts in Prompt Palette.

Figure 7.6: Example results of prompt mixing.

prompts, allowing users to flexibly explore the vector space between the specified “discrete”
prompts. The user can perform prompt mixing by directly manipulating the prompt color cir-
cles, with an interaction similar to how we mix colors with paint mediums. For example, as in
Figure 7.5, the user can touch one of the prompts on another to mix two prompts. Moreover, if
the user wants to add another third prompt to the mix, they can touch the mixed gradient with the
third prompt. While the current version of PromptPaint allows a maximum of three prompts to
be mixed, future versions could be designed to allow the mixing of more or infinite numbers of
prompts. If the user wants to detach a prompt from the mix, they can move the prompt to detach
to touch any of the other prompts within the mix. For a generation input, the user can select one
of the prompts or a point from a gradient of prompt colors. The selected point will be rendered as
a circle (Figure 7.1c-2). For selected points, the prompts that are included in the selected mix will
be highlighted in green on the Prompt List interface (Figure 7.1). The selection within the gradient
would mix different prompts through interpolation and can be used to guide the diffusion model’s
generation. Figure 7.6 shows examples of mixing two different prompts with prompt mixing.

7.4.2.3 Directional Prompt

In some cases, the user might want to add more attributes to the generated results (e.g., adding
more complexity in the interior design), similar to how we change color by adding other colors
(e.g., making red darker by adding more black). PromptPaint supports such an interaction with di-
rectional prompts, which extrapolates the prompts to introduce additional attributes (Figure 7.1d).
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Figure 7.7: Example results of directional prompts. The center result is the result without a direc-
tional prompt and the left and the right are results of applying directional prompts. The rightmost
and leftmost results applied the full vector difference between the two end prompts.

Figure 7.8: With a prompt stencil, the user can specify the area of generation (dark grey). When
the user completes brushing the area, the tool starts generating a part of the image while showing
the process to the user.

The user can add a new directional prompt with the + button, and for each of them, they can set
two ends with prompts, which decide the direction of the attribute to add. Each end also has its
own color, which the user can specify. After setting two ends, the user can move the position
of the slider to decide the intensity of the attribute to add. For example, in Figure 7.1d, if the
user wants to add a slight amount of the “matte” attribute, they can move the slider to the side of
“matte.” As the user moves the slider to one end in the directional prompt, the background color
of the Prompt Palette gradually changes to the unique color of the end. When there are multiple
directional prompts, this color changes to a mix of colors from the ends, with weights according to
the slider values. Figure 7.7 is an example of adding other attributes with directional prompts.

7.4.2.4 Prompt Stencil

After setting the prompt to use, the user can gradually build the visual images with a prompt
stencil or by specifying the generation area. The interaction is simple. While DRAW is selected
(Figure 7.1e), the user can specify the area to generate on the canvas with brushing interaction
(Figure 7.8). As the user completes brushing, PromptPaint starts to generate an image, with inter-
mediate generation results shown to the user in real time. The progress bar in Figure 7.1g shows
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Figure 7.9: When applying prompt stencil upon the existing image, PromptPaint considers those
existing images for generation. For the area where the stencil is overlapping with the existing im-
age, PromptPaint generates a new image that is similar to the existing image based on the overcoat
value (higher, less similar).

Figure 7.10: Example results of overcoating generation. In this figure, the image is generated again
from the far left image with varying overcoat values (more right, higher overcoat values). Images
generated with higher overcoat values tend to be less similar to the original image.

how much of the generation is done. Note that the user can adjust the intensity of the guidance and
the number of intermediate steps with the sliders GUIDE SCALE and STEPS in Figure 7.1e. The
user can repeat this process to fill in other canvas areas.

When the canvas already has images on the canvas layer, PromptPaint considers those already
existing content to generate new content. For example, if the user has already generated the ocean
scene and tries to place a boat on it, PromptPaint generates the boat considering the ocean scene
(Figure 7.9). As in the green area of Figure 7.9A2, there can be cases where the user’s new stencil
would overlap with the already generated images. In such a case, based on the OVERCOAT value
(Figure 7.1e), PromptPaint tries to generate a new image that is similar to the already generated
images (the higher the overcoat value, the less similar). Figure 7.10 shows the cases of generating
an image again with the same prompt with varying overcoat levels.
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Figure 7.11: Example results of prompt switching. Except for the first column which did not
change the prompt during the generation (i.e., used the same prompt throughout the whole gener-
ation), each column switched the guiding prompt at a different point of the generation process.

7.4.2.5 Prompt Switching

PromptPaint allows users to interact with the generation pipeline even during generation, with
prompt switching. With prompt switching, the user can change the prompt that guides the genera-
tion by changing either 1) the selection of the prompt in the Prompt Palette or 2) the slider values
for directional prompts. With the change of prompts, as in Figure 7.11, prompts used in the earlier
stage of the generation tend to decide the overall form and color, while those used in the later stage
decide details. Hence, this technique can maintain the visual form of the generation with iterations.
However, as in the second row of Figure 7.11, sometimes the generation result does not change
much even with early prompt switching.

As the user can change the prompts during the generation, PromptPaint allows users to control
the generation process. First, PromptPaint visualizes the prompts used in previous generations as
paths in the Prompt Palette interface as in Figure 7.1c1. Note that the used directional prompts
decide the colors of dots. This visualization of past paths helps users understand what they have
tried, so that they can iterate more easily on different combinations of prompts. Furthermore, they
can stop and restart the generation (the button in Figure 7.1g changes to either STOP or START).
When the user has stopped generation, they can also roll back the generation to a certain step. It is
possible either by selecting the past point in the progress bar in Figure 7.1g or undoing by hitting
CTRL Z. If the user wants to switch to past versions of generations, they can click one of the dots on
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Figure 7.12: The pipeline of diffusion-based text-to-image models. The technical manipulation
of PromptPaint happens in the green dot, either by manipulating vector-embedded prompts or
intermediate latent.

the past paths. PromptPaint highlights the dot for the current generation step with a green border.
When restarting the generation, the user can also set the number of steps that will be processed
with a single “round,” which is a single firing of generation. It is specifiable with SINGLE STROKE

in Figure 7.1e. PromptPaint also allows users to change the area of generation during generation.
When the user wants to exclude a certain area of generation from the current generation, they can
use ERASE in Figure 7.1e. If they want to rerun the generation only on a certain part of the current
generation, they can use REVISE in Figure 7.1e and specify the area.

7.5 PromptPaint: Technical Details

In this section, I describe how I technically enabled interactions of PromptPaint. First, I give an
overview of diffusion-based T2I generation models. Then, I explain the technical approaches for
each function and the implementation details.

7.5.1 Background: Diffusion-based Text-to-Image Generation Models

We focus on describing a high-level concept of how diffusion-based T2I models work in inference
time (i.e., during generation). Diffusion-based text-to-image generation models [330, 343, 348]
are composed of three parts (Figure 7.12): 1) text encoder that turns text prompts into vectors
used to guide diffusion, 2) denoiser and scheduler, which gradually process image generation by
reducing noise in the latent vectors of the image, and 3) decoder, which turns latent vectors into a
higher resolution output image. Often the geometry of the latent representation corresponds to the
output image, whereas the output image tends to have higher dimensions. Note that details of the
architecture can vary between specific models, and we give more implementation details in a later
section.

In the following sections, we introduce the technical approaches of PromptPaint. Note that

138



all technical manipulations occur in the green dot of Figure 7.12, either by manipulating vector-
encoded text prompts (prompt mixing, directional prompts, prompt switching) or latent from the
denoiser and scheduler (prompt stencil).

7.5.2 Prompt Vector Manipulations

Prompt mixing and directional prompt manipulate the prompts in the vector space embedded by
the text encoder. Prompt mixing simply interpolates different prompt vectors with weights [330]
from the user’s Prompt Palette:

vpm =
N∑

wpivpi (7.1)

In the above equation, vpm , wpi , and vpi represent the interpolated vector, the weight of each
prompt, and the embedded vector of each prompt. On the other hand, the directional prompt
first calculates the directional vector of two different concepts as follows:

vdj = vdj1 − vdj2 (7.2)

where vdj indicates the directional vector and vdj1 and vdj2 stand for the embedding of the text of
the prompts at both ends. Then, with weights on the directional vectors of the slider interfaces,
PromptPaint calculates the final input of the prompt vector as follows:

vf = vpm +
M∑

wdjvdj (7.3)

Then vf is used as input to the denoiser model to guide the denoising process. Users can change
vf during generation to accumulate and use different prompts for different parts of the generation
process, which is how prompt switching is technically done.

7.5.3 Latent Manipulation

Prompt stencil and overcoated generation require manipulation in latent representations before
being processed by the denoiser. Specifically, PromptPaint manipulates latent representations con-
sidering different areas with or without stencils or existing image content. This approach is similar
to image-to-image diffusion in previous work [20]. For the area that is stenciled but does not have
any image content (Figure 7.10A1), no extra latent manipulation is performed. However, for the
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stenciled area with image content (Figure 7.10A2), latent representation is manipulated as follows:

lm,k(x, y) =

ν(lI(x, y), k), if k < (1− o/100) ∗K.

lk(x, y), if k >= (1− o/100) ∗K.
(7.4)

As in the above equation, when the diffusion step (k) is smaller than the threshold (1−o/100)∗
K (where o is the overcoat ratio and K is the number of all diffusion steps), lm,k(x, y) (the la-
tent representation after manipulation at the position of (x, y) and the step of k) is replaced by
ν(lI(x, y), k) (where lI is the latent representation of the existing image and ν(l, k) is a function
that adds noise to the latent representation to the amount adequate to step k). Otherwise, the la-
tent representation would not be manipulated and PromptPaint would use the reconstructed latent
representation from the scheduler algorithm. For unstenciled areas, the area of Figure 7.10B is
considered to have a white background. Then, the area of Figure 7.10B and C would be replaced
as follows:

lm,k(x, y) = ν(lI(x, y), k) (7.5)

Therefore, these unstenciled areas are replaced by the latent representation of existing images with
noise added for each step.

7.5.4 Implementation

I implemented PromptPaint as a web application using HTML, CSS, JavaScript, and React. For de-
ploying a diffusion-based T2I model, I implemented a WebSocket-based Flask server, as Prompt-

Paint needs to show intermediate generation results in real-time. For the diffusion model, I used
Stable Diffusion [343], which uses UNet for the denoiser and the variational autoencoder de-
coder for the decoder. Specifically, for the UNet and the variational autoencoder models, I used
runwayml/stable-diffusion-v1-54. For the text encoder, I used the openai/clip-
vit-large-patch14 checkpoint5 of CLIP [327].

To allow users to observe the intermediate generation process of diffusion models, PromptPaint

decodes conditioned latent for every step. It puts more computational load on the pipeline, hence
I optimized the use of diffusion models with half-precision models.

4https://huggingface.co/runwayml/stable-diffusion-v1-5
5https://huggingface.co/openai/clip-vit-large-patch14
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Table 7.1: Participants in the user study. Their expertise in visual arts and the domain of interest
are shown. We also show their experience using T2I models.

Visual art Year Domain T2I Visual art Year Domain T2I
P1 Hobbyist 5 Vector arts Yes P5 Novice N/A N/A No
P2 Hobbyist 10 Paintings, cartoons, graphic arts No P6 Novice N/A N/A Yes
P3 Hobbyist 20 Sketches, paintings No P7 Hobbyist 3 Sketches No
P4 Hobbyist 30 Simple drawings, paintings Yes P8 Novice N/A N/A No

7.6 User Study

I conducted a user study to understand how PromptPaint extends the use of diffusion-based T2I
models by adopting the interactions that we have with paint mediums. Specifically, I focus on how
interactions of PromptPaint could affect the user’s experience in the exploration and steering of
T2I generations to “create” visual artifacts. Therefore, I conducted an observational study with
qualitative analysis.

7.6.1 Participants

I recruited eight participants (five female and three male, ages 22-51, M=28, SD=9.53) through
university mailing lists. I asked participants to do a prescreening survey, checking if they can
participate, as the study requires participants to see and hear. The prescreening survey also asked
about the experience of participants in the visual arts. I recruited hobbyists or novices, as experts
would be less likely to use automated generation tools in their practice (i.e., they have the expertise
to create visual arts by themselves). Three of the participants had experience using T2I models.
Table 7.1 shows the details of the participants. I gave each participant an Amazon gift card worth
$20.

7.6.2 Procedure

I conducted an in-person lab study. I first asked participants to complete a pre-survey, which asks
about their previous experience in visual arts (e.g., specific domains they have experienced, if
they have) and using T2I models. The pre-survey also asks for demographic information. Then I
showed the participants a video with an overview of the study (5 minutes). As we asked participants
to think aloud during the study, this video instructed participants about the concept and an example
of think-aloud. The overview video also lets participants know the basic functions of PromptPaint,
which are raster image editing functions other than image generation (e.g., brushing, erasing).
After instructing those functions, the video explained to participants how to generate images with
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Figure 7.13: The histogram of how participants answered the creativity support index questions.
The high score indicates that the participant perceived that PromptPaint supports the criteria.

a single prompt. After the first video, I asked the participants to try the functions in PromptPaint.
The participants then went through four rounds of task sessions for four functions: prompt mixing,
directional prompt, prompt switching, and prompt stencil. The participants went through sessions
in the order of prompt mixing, directional prompt, prompt switching, and prompt stencil, since
the latter functions require knowledge of the previous ones. For each task session, participants
went through four steps: 1) watching an instruction video, 2) trying out the function as a tutorial,
3) conducting a task of creating visual artifacts as they want, while doing think-aloud, and 4)
completing a post-task survey. Each instruction video took 1-2 minutes. Each tutorial took about
5 minutes. During the task, I asked the participants to actively try the function that they have just
learned within 10 minutes. Post-task surveys asked participants if the function they had just tried
facilitated 1) exploration of good surprises or 2) control of image generation. After all functions,
participants were asked to complete an exit survey, asking questions about the general usage of the
tool. This survey asked questions in the creativity support index [59], except those that questioned
whether the tool helped collaboration. The post-survey also asked about the participant’s sense
of ownership and contribution, and if they felt they were collaborating with the system. After the
post-survey, we conducted a short interview with the participants. In the interview, we asked about
their strategies for using PromptPaint, how they felt about the ownership of the artifacts, and their
impression of the four functions of the tool. The entire study took no more than 100 minutes.

7.6.3 Result

I report on the results of surveys, observations of the task with think-aloud and interviews.

7.6.3.1 Survey results

Figure 7.13 shows the responses of participants to the creativity support indexes. Participants
were generally positive about PromptPaint, perceiving that it facilitated enjoyment, exploration,
expressiveness, and immersion, while the results were worth their effort. However, there was one
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Figure 7.14: The histogram of how participants answered the question about the sense of own-
ership, contribution, and collaboration. The higher the scores, the participant felt that they have
more ownership than PromptPaint, they contributed more than AI, and they collaborated with AI
functions.
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Figure 7.15: Comparison of four different functions on if they helped with 1) controlling or 2)
exploring generation. mix, dir, swit, and sten stand for prompt mixing, directional prompt,
prompt switching, and stencil, respectively.

participant who responded neutrally or negatively to these questions. It was the case where the
participant had slightly more concrete expectations of what to create. Moreover, for immersion,
there was one participant who answered negatively about the immersive aspect of the tool.

Figure 7.14 shows how participants felt ownership of the generated images, how much contri-
bution they made (compared to AI), and whether they felt that they collaborated with PromptPaint

in creating the artifact. Interestingly, participants felt that AI contributed more, but many still an-
swered that they have some ownership of the generated artifact. At the same time, the participants
tend to answer that they collaborated with PromptPaint at some level.

Figure 7.15 shows the participants’ perceptions on how each function supported 1) the control of
generation and 2) the exploration of interesting and good surprises. Overall, participants perceived
all functions positively. While it is difficult to learn significant differences between functions due
to the small size of the data, participants tend to perceive that the prompt stencil helped the most
with controlling and exploring generation, while switching prompts helped the least.
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Figure 7.16: Prompt mixing from P5. By mixing semantically close prompts, the user can control
the generation to explore the image space in between.

Figure 7.17: Prompt mixing from P1. For semantically far prompts, the mixing prompts linearly
in the vector space sometimes did not result in a linear impact on the generated images.

7.6.3.2 Qualitative Results

For qualitative results, I analyzed think-aloud, screen recording, and interviews by iterative coding
with inductive analysis. I present findings on four functions, trade-offs in designs, the complexity
of AI, and ownership issues.

7.6.3.3 Four functions

Prompt Mixing As seen in Figure 7.16, prompt mixing helped control generation, often allowing
participants to explore the image space that is difficult to describe verbally (N=7). Some partic-
ipants mentioned that visualizing the prompts and their intermediate spaces helped them flexibly
explore and manipulate the prompt semantics (N=2). One interesting thing that one of our partic-
ipants (P1) discovered was that when two prompts are semantically far, mixing concepts does not
change the image linearly, but more in drastic “steps” between. For example, in Figure 7.17, P1
tried to mix two prompts, “Colorful 8k photograph of a man’s face” and “Satellite image in North
America.” Here, at a certain boundary, a small increase of weights on one image could drastically
change the image, indicating that the mix of weights did not impact the result linearly. One partici-
pant (P5) mentioned that they would like to mix more than three prompts, which was not supported
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Figure 7.18: Directional prompt from P6.

Figure 7.19: Prompt switching from P2.

in the current version of the tool.

Directional Prompt A directional prompt could help participants add attributes that do not exist
within the original prompt they have tried (N=6, Figure 7.18). P3 also mentioned that the function
helped to explore and perform fine-grained controls between two opposite concepts: “I think the

strength of this is like you can see how opposed things are, and how it is seen in between ...

Basically this function allows you to explores something that is in between. Sometimes it’s very

difficult to like imagine things, and this would have been very helpful in that.” One of the challenges
in using directional prompts was deciding on two opposite sides of the prompts (N=5). Sometimes,
they struggle to bring up prompts that have semantically opposite meanings. In such cases, the
participants expected that PromptPaint could have recommended the options for opposite prompts
after the user inputs one prompt. In other cases, the way the participants interpret the prompts did
not align with PromptPaint’s. We explain this further in Section 7.6.3.5.

Prompt Switching The participants thought that the switch of prompts can generate interesting
mixes of prompts from what they observed from the examples shown in the tutorial and their ses-
sions (N=6). P2, who created the image in Figure 7.19, mentioned: “I think the strength of that

is making something completely ridiculous and fun and changing an aspect of something to match

something else.” However, prompt switching was the most difficult to use (N=5). Some partici-
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Figure 7.20: Prompt stencil from P2.

pants were unable to create a satisfactory image. It was due to difficulty in deciding when to switch
prompts because it was hard to guess the result only by seeing intermediate generation results (i.e.,
noisy images during the diffusion process). The interface showing all previous generations (in
the prompt palette in Figure 7.1c) could help users understand the previous generations they have
tried (N=3) and iterate on the prompt switching. However, it was easy to clutter the interface with
multiple rounds of iteration.

Prompt Stencil Participants mentioned that the prompt stencil allowed users to perform fine-
grained controls with localized image generation (N=7). As in Figure 7.20, participants could
gradually create the image by adding and changing visual elements in the scene. Participants could
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also adjust the overcoat level to generate partial images that are more or less similar to the existing
ones. However, the prompt stencil also had limitations. For example, as in cases of “a mystical
elf druid” in Figure 7.20 newly generated parts could be incomplete from the user’s perspective.
Furthermore, as in the case of “a face of a happy woman” of Figure 7.20, generated images could
be mismatched with the existing ones. In some cases, the style of the newly generated images did
not match the existing ones.

7.6.3.4 Design Trade-offs

Participants mentioned two potential trade-offs in the design of T2I generation tools. The first
was the design trade-off between focusing on one image versus curating many results (N=2). I
designed PromptPaint to allow users to iterate on a single canvas, giving users the experience
closer to “gradually creating an image.” However, due to stochasticity in the diffusion model (e.g.,
randomness from different seeds), participants found that seeing multiple results would be helpful
in some cases. Furthermore, I designed PromptPaint to allow users to have more controls and
interventions. For example, the tool allows users to have a high degree of freedom to change the
prompts during generation. Although such designs open up new interactions in using diffusion-
based T2I tools, some users found such designs too manual (N=2). Participants mentioned that the
balance between automation and manual interventions would help.

7.6.3.5 High Complexity and Randomness of AI

Participants mentioned that the high complexity and randomness of AI behaviors were limitations
of PromptPaint (N=7). Such complexity and randomness could make the generation result mis-
aligned from the user’s intention. Dissatisfaction tends to be more intense when the user has a more
concrete picture of what they want to see from the generation results. For example, P7 thought that
prompt stencils often failed to generate image parts with consistent perspectives and showed the
greatest dissatisfaction with the prompt stencil. To facilitate generative AI even with such barriers,
participants adopted some strategies. First, they tried to understand how AI works in simple set-
tings (e.g., using a single prompt) and then applied more complex functions (e.g., prompt mixing)
based on their understanding (N=2). Some users tried to understand how the model “interpret”
prompts by using functions that interpolate or extrapolate the semantics of the prompts (N=2). For
example, P1 interpolated the prompts of an apple and a pear to learn how the machine interprets the
main attributes of each fruit. As participants also struggled to find prompts that work effectively
for their intentions, they also actively used explanations and examples given during the tutorial
(N=5).
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7.6.3.6 Ownership and Contributions

Participants felt some ownership of the resulting visual images (N = 8), with degrees varying
between participants. They mentioned that they contributed high-level ideas about the created
artifact, while AI contributed low-level ideas and implementations. P1 mentioned that they felt
like they became like “Steve Jobs” and AI would be “an Apple employee,” and P2 thought that
using PromptPaint felt like doing an art commission with more control power. A participant (P5)
felt less ownership of the resulting piece because they were a novice in visual arts. P5 mentioned:
“I think AI contributes more than me and it’s because I’m a novice. I did not paint at all, and I

don’t use any drawing software as well. So I think all the beautiful images are created by AI instead

of me. I just specify the position, and it’s just parameters.” Some participants also mentioned that
they felt more ownership in the resulting artifacts if they align with what they expected (N=2).
One participant mentioned the potential issues in the legal ownership of the generated artifacts,
showing concerns about the copyright.

7.7 Discussion

Based on the suggested design of generative tools and the findings of PromptPaint, I discuss 1) the
generalizability of paint-medium-like interactions in generative tools, 2) in-generation interactions
for T2I models, 3) design trade-offs in generative tools, and 4) ownership issues.

7.7.1 Generalizing Paint-Medium-Like Interactions for Generative Tools

In PromptPaint, paint-medium-like interactions could facilitate effective, efficient, and iterative
steering of T2I models. We can apply the idea of paint-medium-like interactions beyond Prompt-

Paint. First, for the interaction of mixing colors, discrete colors can expand beyond prompts to
other inputs, such as examples. Although interactions for color mixing would generally apply
across different modalities, modularized generation specifications would need to be revised for
each content modality. For example, for the generation of 3d models [188, 322], users would need
to be able to select parts of 3d spaces to iterate. Similarly, for content that has sequential axes,
such as text, video, or music, the generation specification would need to consider the sequential
dimension [66]. In the interface, they can be instantiated in “sketches of different colors along
the sequential axis.” Specifically, for videos, which have both spatial and sequential dimensions,
interactions for modularized specifications would likely be more complex than for other mediums.
Still, the design pattern of applying different semantics (analogically, colors) to different parts of
the artifact would generally hold across modalities.

148



For in-generation interventions, in PromptPaint, the prompts used in the earlier stage decided
the overall form and colors, while the later ones decided on details. While I discuss how we can
expand in-generation interventions in T2I models in the next section, here I talk about how we
can apply in-generation interventions in other modalities. From the case of diffusion-based T2I
models, we could observe that the earlier part of the gradual generation process decides “high-
level characteristics,” while the later stage decides “details.” For other mediums also, models can
be designed to gradually generate content in similar patterns. In such cases, training these models
to follow human-understandable hierarchical structures would facilitate users to intervene during
the generation process. For example, music generation algorithms can generate in the order of
song structures, bars with chords, notes in each bar, and then embellishments such as legato or
staccato.

7.7.2 In-generation Interaction for T2I models

A novel interaction in PromptPaint is that this tool allows users to interact with generative mod-
els during the generation process by changing the prompts. With diffusion models that gradually
turn noisy images into clear ones, earlier prompts formed the overall composition, while the later
prompts decided on details. While participants found this function interesting, they were also con-
fused when adjusting their prompts during the generation. They struggle to find the right moment
to change the prompt. For example, if diffusion models already processed many steps, changing
the prompts did not significantly alter the outcome result. Seeing and interpreting intermediate
representations might help to overcome such limitations. For example, if the intermediate noise-
added image already has quite a concrete object, it might indicate that changing the prompt might
not be effective. However, many users are unfamiliar with such noise-added images and do not
know how to interpret them. Therefore, users would need to learn to interpret noisy images, which
puts a greater load on the use of the tool fluently.

Making intermediate results more understandable to human users would be one approach to
facilitate in-generation interactions for diffusion-based T2I models. As diffusion models do not
necessarily need to generate an image from noise [23], we might be able to train diffusion models to
follow other generation processes. For example, diffusion models that gradually concretize images
from more pixelated ones would be more understandable to the users, allowing them to grasp what
the model might generate from the current intermediate step. Moreover, such representations can
allow users to edit the intermediate results. For example, with pixelated intermediate images, if the
user is generating a human face and spots a “blonde” color in the area of hair, they would be able
to change the color of the hair by changing the region to other colors. With such an interaction, the
user would be able to flexibly steer AI generation.
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7.7.3 Design Trade-Offs in Generative Tools

From the user study, I found design trade-offs for generative tools. First, while “creation tools”
often assume a single artifact to be created (e.g., a single canvas for image editors), due to the
complexity and randomness in generative models, generative tools would require some levels of
“curation” of multiple results. Providing both features would allow users to have steering experi-
ences while addressing some issues with the randomness of algorithms. For example, a generative
tool can have multiple rounds of interactions that first receive user specifications, generate a set
of candidates, allow users to select one of them, and then iterate. For effective curation, it would
be valuable to learn the user’s preferences during the interactions and provide options that would
better align with the modeled user preferences. The second trade-off in design is the balance
between automation and manual controls. For such a trade-off, having “low threshold and high
ceilings” [336] would be helpful. That is, simple and automated interactions can be a “low thresh-
old” way to steer the generation, while more manual steering interactions can be a “high ceiling”
option.

7.7.4 Ownership of Generated Artifacts

From the user study, I found that the users had some sense of ownership of the artifacts generated,
as they contributed high-level ideas. However, at the same time, as PromptPaint contributed ideas
and implementations of lower levels, they felt less ownership than creating artifacts themselves.
For generative creation tools to secure the user’s sense of ownership regarding the final artifacts, it
would be important to understand which aspects of artifact creation the user thinks are important.
For example, for users who do not put a lot of value on manual labor, automating some parts of the
artifact creation would not hurt the user’s sense of ownership much. On the other hand, if the user
values the skills and efforts involved in the creation of artifacts, then automation would hurt the
sense of ownership. Hence, the tool would need to understand the user’s values and allow users
to select from which part they would like to get assistance from generative AI. While I designed
PromptPaint to add user interactions to already generative AI models, to build practical tools, we
need to embed generative functions into existing workflows so that we can preserve user values in
their workflow.

Another issue of ownership is more legal, such as not hurting copyrights when using the tool.
As existing diffusion models have been shown to copy content from the training dataset [376], it
would be crucial to carefully curate the training dataset so that the generative models do not dam-
age the legal ownership during their use. Although researchers have started to exclude images if
the original owners do not want their images in the dataset6, it is still opt-out. Moreover, there

6https://haveibeentrained.com/
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could be some trade-offs between preserving legal ownership and having a large-scale dataset. Po-
tentially, data augmentation can be a way to transform training datasets to balance the preservation
of ownership and the scale of the data.

7.8 Conclusion

In this chapter, I demonstrate intuitive and iterative steering interactions for T2I generative mod-
els. I introduce the design approach of interacting with generative models in a way similar to
how we interact with paint mediums. This design approach allows users to explore the semantic
vector space in a way similar to how we mix colors and gradually build the artifact with different
semantics in a way similar to how we apply colors to varying parts of the painting process and
the canvas. The motivation is to make end-to-end usage of generation models more flexible and
gradual with iterative steering. I apply the design approach in diffusion-based T2I models and
introduce PromptPaint. PromptPaint adopts four steering approaches, prompt mixing, directional
prompts, prompt switching, and prompt stencil. From the user study with PromptPaint, I identify
how people use the suggested interactions and potential insights on how we should design and
build future generative tools. This chapter links back to the design approach for steering interac-
tion, as PromptPaint adopts paint-medium-like interactions to facilitate steerability in the use of
T2I models.
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CHAPTER 8

Reflections

In this section, I reflect on how the three systems, Artinter, TaleBrush, and PromptPaint, extend
art-making experiences, either by broadening the way we create art or alleviating pain points in
art-making. I also discuss how I applied the design approaches learned in Chapters 2 and 3 to three
tools. Finally, I present potential future directions not yet addressed in my dissertation.

8.1 Designing Steering Interactions for AI-powered Art-
making Tools

My first tool, Artinter, focused primarily on alleviating challenges in visual art commission by
adding multi-modal steerable interactions based on the user’s communication contexts. First, with
the mood board interaction to facilitate collaborative communications, Artinter learns the concepts
of users. Second, users can use sliders of user-defined concepts to search and generate more
references. Note that slider interactions are easy to understand and use, even for novice users.
Moreover, with concepts that AI learned, users do not have to retreat from their own mental models
to use search and generation functions, which leads to efficient use of those functions. Sliders were
used iteratively, allowing users to effectively communicate their ideas.

TaleBrush introduces a novel approach to the generation of story text by combining visual
sketching inputs with textual inputs. With this design, TaleBrush facilitates effective, efficient, and
iterative expressions of the user’s intention. Sketching is what story writers already adopt to plan
out their stories with the fluctuation of the character’s fortune. It also alleviates the cumbersome
specification of a series of inputs for story dynamics, as users can specify multiple fortune input
values with a single stroke. Iteration in generation becomes easy, as the user can redraw the part
of the sketch for the part they want to see newly generated texts.

PromptPaint provides a novel way of manipulating guiding prompts for image generation by
combining it with interactions of paint mediums. It allows users to mix prompts in different ways
and modularize generations so that they can gradually build the visual artifact. With expanded
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interactions, PromptPaint allows users to steer image generation that would be difficult with nat-
ural language prompts alone. These interactions can be more efficient than text prompts and also
facilitate iteration by allowing users to make fine-grained edits to the guiding prompts.

Technically, all these tools translates steering input interactions into the manipulation of vectors
in semantic space, then generated artifacts based on the manipulated vectors. For example, for
Artinter, images on the mood board are first transformed into vector embeddings, then concepts
are learned on the vector space with concept-building interactions. Then, search and generation
functions are steered with slider interactions, which modify vectors with concept vectors. For
TaleBrush, it translates the interpolation of vectors for discrete fortune control codes into sketching
interactions, where the y-position of the sketch maps to the level of interpolation. PromptPaint,
similarly, first transforms user prompts into vectors and then allows users to manipulate them with
various paint-medium-like interactions.

In summary, the three systems introduce new ways to broaden art-making expressions and
alleviate pain points with effective, efficient, and iterative steering interactions that mix familiar
input modalities.

8.1.1 Reflection: Applying Design Approaches to Other Domains

When designing the steerability of AI-CSTs, the designer would need to consider the unique char-
acteristics of each domain. First, to facilitate iteration, the AI-CST designer would need to design
AI output that aligns with the intermediate representation that users are familiar with. Comprehen-
sible intermediate representations would allow users to easily iterate on the creation, as they can
flexibly intervene within the AI generation. For example, for visual art generation models, it would
be favorable if users could easily understand and edit the intermediate AI results. PromptPaint’s
prompt switching function has limitations with this perspective, as its intermediate generation re-
sults are noise-added images, which are difficult to understand and uneditable by the users.

Second, for input interactions, the AI-CST designer should consider which aspect would be
controlled by the user. That is, the artist might want to control those aspects that would define the
uniqueness of each artifact to explore the possible artifact space. For example, TaleBrush allowed
users to steer story generation with the dynamics of the character’s fortune, as it is one defining
factor of each story. Moreover, for the design of intuitive expressions, the AI-CST designers
would want to adopt the existing familiar interactions that the artists already follow. For example,
TaleBrush adopted visual sketching interactions, since there have already been existing practices
of sketching the character’s fortune when planning the story. In summary, considering specific art-
making contexts would facilitate the design of steering interactions for AI-CSTs that are familiar
to users and effective in their practices.
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8.2 Future Directions

I suggest future directions that extend steerable AI-powered art-making tools.

8.2.1 Steering for More Complex Mediums

One future direction is to extend effective, efficient, and iterative steering interactions to tools
for more complex creation. For example, video generation algorithms [373, 407] are emerging,
but we are not sure how we should interact with these models to create the artifact that we want.
These models started to provide prompting as one way to interact, but with the high complexity of
videos, prompting alone is unlikely to ever be enough. A user would like to control the placement
of objects in the scene, their animation along the temporal dimension, the audio played along
the video, and many other aspects. Therefore, allowing users to make specifications according to
their intentions can easily become complex. It would be important to design steering interactions
while considering the design lessons extracted in Chapter 4. Transforming complex specifications
into efficient interactions would relieve the burden of interacting with these models. Facilitating
iteration would also alleviate the complexity of creating these artifacts, as users would be able to
make specifications gradually. As video itself is multi-modal, multi-modal inputs would likely
facilitate the use of video generation. However, which modalities should be used and how they can
be combined in a video generation tool remain a question.

8.2.2 Leveraging Artificial Intelligence Further in AI-CST

While I focused on facilitating steering interactions, there may be more research opportunities
to make use of AI technologies. One is to allow these AI tools to learn what the user wants
and adapt their behaviors. With such an approach, AI outputs can be better aligned with the
user’s expectations, making steering more effective and efficient. In this dissertation, Artinter

adopted this approach to some extent by learning the user language and allowing them to use it
as a steerable handle for the search and generation function. There may be more to this approach,
such as adapting the AI output as the user shows preferences for some of the intermediate outputs.

Moreover, in my dissertation, tools were designed for settings where users allowed for some
interesting surprises from AI output. Even Artinter, which is for visual art communication set-
tings, users were open to inspiration while using the tool, as communication usually occurs along
with some ideation. Future work can investigate those settings where the user would have more
concrete expectations about what they want. It would be similar to subcontract-like relationships
in human-human support relationships in Chapter2. With these tools, stronger steering would be
required, with narrower specifications and less divergence. Designing such tools would allow users
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to leverage AI technologies in various settings.

8.2.3 Steerable AI for New Types of Artifacts

While the tools I designed broadened the way of producing artifacts, they did not necessarily extend
the type of artifacts that we can create. Historically, technological advances have contributed to
the development of novel artifacts. For instance, photographs and movies could not have been
art forms without the technological advances that enabled their creation. One question with AI
technologies is what kind of novel artifact can we create with them. Current AI technologies focus
on reproducing existing artifact types by using them as training data, and hence have been more
bounded to existing artifact types in terms of output. How can we combine AI technologies to allow
artists to create things that have never existed before? How can tool designers build steerable tools
that can support such creations for a broader set of users? How should we train AI/ML pipelines
to create those novel artifacts in high quality with steerable handles? All these questions will open
up novel approaches to the use of AI technologies for new art-making.

8.3 Conclusion

In this dissertation, I investigate ways to use AI models to build usable and useful tools for art-
making by adding steering interactions. AI/ML technologies introduce novel opportunities to
broaden our art-making practices while alleviating challenges in them. However, they are not
yet malleable and shapable enough for users to express their artistic intentions. I strive to combine
steering interactions with these models so that AI/ML models can be flexible art-making materi-
als. First, I study user needs and current designs of art-making tools to extract design approaches
for steerable AI-powered art-making tools. For the study in Chapter 2, I identified what users
would expect from intelligent types of support by interviewing artists about how they work to-
gether with already-intelligent agents, other people. In the study of Chapter 3, I reviewed previous
efforts in designing art-making tools and found their design patterns that intersect used technolo-
gies, supporting roles, interactions, and intended users. Based on these, in Chapter 4, I propose the
design approach of mixing familiar input modalities for effective, efficient, and iterative steering
of AI-powered art-making tools. I demonstrated the design approach with three tools. The first is
Artinter, which facilitates the communication of visual art commissions by combining mood board
and slider interactions when using adaptive search and generation functions. The second is Tale-

Brush, which adopts visual sketching interactions to steer the behavior of story generation models
in the context of story co-creation of humans and AI. The third is PromptPaint, which extends
prompt-based image generation by allowing users to manipulate guiding prompts with interactions
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similar to what they would do with paint mediums. Through these prototype systems, I demon-
strate the effectiveness of our guidelines for building steerable AI-powered art-making tools. I
hope researchers and tool designers can use the learned lessons for designing a broader set of new
art-making tools.

156



APPENDIX A

Appendix for Chapter 4

A.1 Technical Evaluation

I technically evaluated Artinter in two ways: 1) how accurately the ML system recognizes artistic
concepts with a small number of training data instances and 2) if Artinter’s concept-based search
aligns with how human users perceive these concepts.

A.1.1 Evaluation of Concept Recognition

To evaluate how Artinter recognizes concepts, I conducted a simulated study. In the study, I ran
Artinter’s concept learning pipeline to train different artists’ styles as concepts. Hence, I considered
each artist as a concept and their works as artifacts. I specifically used artists in the WikiArt
dataset [419]. The focus was to identify the performance impact of the number of examples entered
and the number of related concepts chosen.

First, among artists who have more than 50 artworks, I randomly sample 50 artists. For each
artist, I sampled 35 art images as training data and 15 others as test data. With this sampled dataset
of 50 artists, for each number of concepts trained (one to three), I randomly took 50 combinations
of concept groups. For example, with two concepts related, I had 50 combinations of two artists.
For each concept group, from each artist’s training dataset, I sampled artworks to use as training
data. I varied the total number of training artworks from 2 to 30. When multiple related concepts
are trained, I sampled an equal number of artworks from each concept, so that the sum of them
can be the total number of works to be provided. For example, if eight images were to be provided
for two related concepts, I picked four from each concept. For each number of artworks used for
training, I sampled training artworks 5 times, and for each sampled training artwork, I ran training
five times, using a linear classifier. Then, I evaluated each classifier against the test dataset for each
concept group. Only when one concept is trained, I used 35 images randomly sampled from the
whole dataset as negative class samples. Among them, 20 were used as training data and 15 were
used as test data.

157



A.1.1.1 Results

Figure A.1: Accuracy of recognizing concepts with the varying number of artifact instances and
trained concepts. Shaded areas indicate the range of one standard deviation in accuracy.

Figure A.1 shows the result. As might be expected, accuracy increased with the addition of
more data. I also found that training with two related concepts had higher accuracy than having
one concept. Having three related concepts showed a similar performance to training a single
concept, but only when the number of provided images is low. With two related concepts and at
least 10 data points, Artinter showed recognition accuracy of 80%. This might be a reasonable
performance, considering the small number of examples provided and that the art styles can be
ambiguous and subjective [125]. Moreover, our evaluation approach trains on random artists’
styles, where one artist’s visual style might vary a lot, possibly giving some penalties to the results.

A.1.2 Evaluation of Search with Concepts

I evaluated search functionality to see if the human perception of concepts aligned with search
results. In this analysis, I first trained a concept on an artist’s artworks and performed a search
with the trained concepts. With the query image and the top-ranked searched image, I asked crowd
workers which image shared more style-wise characteristics with the images used to train the
concept. If their perception of concepts aligns well with Artinter, they would find that the searched
image is closer to the training images. I also asked their reasoning behind the answer. To search
images that were likely to have the concept, I queried for the vector that added twice of CAV to
the vector embedding of the query image. For images, I only used Abstract/Expressionism arts.
Other artworks tend to have objects, which can confuse people when they answer our task (i.e., they
would focus on content rather than style). Moreover, I assumed that users would likely have a more
similar set of art in mind when they define concepts for the search function. To simulate this, I first
randomly sampled a piece from an artist, and then, from the same artist, we additionally sampled
pieces that are the most similar to the already sampled one. I also choose query images as those
near the center of the vector representation space of the artwork dataset. This is because search
results are less likely to reflect the concept if query images are at the edge of vector representation.
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For example, it would be difficult to search for an image that is darker than an already extremely
dark query image.

I conducted the experiment when one or two related concepts are trained. Similar to the evalu-
ation of concept recognition, I first sampled 50 artists, and for each number of concepts, I sampled
50 combinations of concept groups. With one concept, I sampled six images to train the concept.
For negative classes, I randomly sampled 20 artworks from the whole artwork dataset. With two
related concepts, I sampled three images for each concept. I picked these numbers as they would
be reasonably small for users to provide while assuring a fair performance of the classifier. For
each concept group, I simulated the search once, resulting in 50 search results for each number of
trained concepts. For each search query result, I asked the question to five crowd workers. In the
two related concepts condition, I only showed training images from the concept that is used for the
search. Workers were recruited from Amazon Mechanical Turk, who are in the US, have 99% of
acceptance rate, and have been accepted for more than 1000 tasks. They were paid $0.25 for each
task (about $10/hr payment rate).

A.1.2.1 Results

With one concept, the accuracy in estimating searched images was 64.0%, and with two related
concepts, the accuracy was 77.2%. As implied by previous work [125], I found that there can be
ambiguity in making the decision, as people sometimes focus on different style-wise elements (e.g.,
colors vs. patterns). It also means that some workers could see less similar style aspects between
the searched image and example images. This signals that the concept-based search can provide
“serendipitous” images, which can support inspiration [34, 102, 114]. Considering ambiguity,
serendipity, and the small number of data instances used in training, the search performance can be
at a usable level, specifically when two concepts are trained. However, as mentioned in the main
studies, best practice was not often achieved for contextualization.

A.2 Examples: Impact of Relating Concepts

Figure A.2 shows cases of how relating concepts can impact the recognition and search results. In
the example cases, I could observe that Artinter more accurately recognizes concepts and draws
more relevant search results when concepts are related to each other. Specifically, for Figure A.2a,
relating concepts facilitated Artinter to more accurately recognize and search for blue. In Fig-
ure A.2b, only with relating concepts, Artinter could search for examples that are more relevant to
each concept. Figure A.2b, however, also shows limitations of training concepts with few exam-
ples. With concept-relating, searching for clarity leads to results with less of red colors, potentially

159



Figure A.2: Two cases of how relating relevant concepts impact the performance of recognition
and search, for blue-red and rough-clarity concepts. For recognition, if there is a circle in the
image, it means that Artinter recognizes the concept from the image. Bigger the circle is, more
confident Artinter in recognizing the concept. For the search, I added the CAV of each concept
to the vector representation of the query image and drew the nearest neighbors from the WikiArt
dataset.

as Artinter learned that clarity is somewhat relevant to having green colors.

A.3 Examples: Impact of Weights and Scale in Generation

In Figure A.3, I demonstrate two cases generating images with varying weights and scales. As
in demonstrations, while the user can control weights and scales separately, the result would be
decided with the combination of these parameters.
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Figure A.3: Two cases of how varying weights and scales impacts generation. The scale of “small”
has the half of the size presented in “Content,” “Style 1,” and “Style2.”
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