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ABSTRACT

This dissertation consists of three independent essays on international economics. First, I

examine how the geographic distribution of innovation determines aggregate productivity.

Second, I study how culture matters for production networks and its aggregate implications.

Lastly, I focus on how the complementarity of suppliers for production matters for the

amplification of negative shocks through production networks.

The first chapter of this dissertation studies the role of spatial knowledge spillovers in

R&D for innovation, and therefore on aggregate productivity. I causally estimate spatial

knowledge spillovers in Research and Development (R&D) and quantify their importance

for R&D policies. Using a new administrative panel on German inventors, I estimate these

spillovers by isolating quasi-exogenous variation from the arrival of East German inventors

across West Germany after the Reunification of Germany in 1990. I then embed the estimated

spillovers into a spatial model of innovation, and use it to quantify the productivity gains

from implementing policies that promote R&D activities. The model predicts that reducing

migration costs for inventors and R&D subsidies lead to substantial productivity gains.

Finally, these productivity gains increase with the degree of spatial knowledge spillovers in

R&D.

The second chapter, co-authored with Gaurav Khanna and Hiroshi Toma, examines how

cultural proximity shapes production networks, and how it affects welfare. We combine a new

dataset of firm-to-firm trade for a large Indian state with information on cultural proximity

between firms derived from India’s caste and religious classifications. We find that larger

cultural proximity between a pair of firms reduces prices and fosters trade at both intensive

and extensive margins. We argue that these results are driven by increasing trust between

firms due to their cultural proximity, which in turn solves contracting frictions. Guided

by these stylized facts, we propose a firm-level production network model, where cultural

proximity influences trade and matching costs. Our counterfactual exercises indicate that

social inclusion policies raise welfare, and reducing contracting frictions increases welfare via

the channel of trade becoming less reliant on cultural proximity.

The third chapter, co-authored with Devaki Ghose and Gaurav Khanna, studies the

aggregate implications of firm-level elasticities of substitution across suppliers. We continue

xii



using this firm-to-firm trade for a large Indian state, and leverage geographic and temporal

variation from the Covid-19 lockdowns in India to estimate these firm-level elasticities of

substitution across suppliers of the same product, and quantify the fall in trade. If suppliers

are complements rather than substitutes in production, this shock can amplify by further

transmitting downstream and upstream through the supply chain. We find that even at this

very granular supplier level, suppliers are highly complementary. We use our elasticities and

simulate the impact of the Covid-19 lockdowns to find that under our estimated elasticities,

the overall fall in output is substantial and widespread, and to show the importance of

targeted policies during economic downturns according to firm size and connectedness.

xiii



Chapter I. Spatial Knowledge Spillovers in R&D

and Aggregate Productivity: Evidence from the

Reunification of Germany

1.1 Introduction

Research and Development (R&D) is crucial for aggregate productivity due to its direct

impact on innovation. At the same time, R&D exhibits substantially higher levels of spatial

concentration than overall economic activity. For example, in 2014 in West Germany, a

worldwide innovation powerhouse (WEF 2018), around 30% of mechanical engineers worked

in the top three cities in this profession. In comparison, only around 18% of workers located

in the three most populated cities. Since Marshall (1890), agglomeration economies—spatial

and inter-temporal knowledge spillovers, labor pooling, and customer-supplier linkages—are

the core explanation for why economic activity concentrates. Nevertheless, the extent, causes

and consequences of spatial knowledge spillovers in R&D—local productivity gains from

the agglomeration of R&D activity—remain elusive. In this paper, I address the following

research questions: (i) is there evidence of spatial knowledge spillovers in R&D? and (ii) are

they quantitatively important for aggregate productivity when implementing R&D policies?

Addressing these questions is crucial to implement policies that promote economic activ-

ity through R&D. Governments around the world implement a variety of policies—reducing

mobility or transportation costs, formation of economic clusters, among others—that lever-

age knowledge spillovers for their effectiveness (Feldman and Kelley 2006). In particular,

policies that promote R&D rely strongly on the spatial knowledge spillovers in this sector

(Trajtenberg 2001). Moreover, implementing these policies can generate general equilibrium

effects due to the internal mobility of agents. Therefore, the design of policies that promote

R&D activities requires both well-identified estimates of spatial knowledge spillovers in R&D,

and a quantitative framework that accounts for these spillovers in general equilibrium. In

this paper, I provide such estimates and framework, and apply them to study policies that

promote R&D activities in Germany.

In this paper, I show that spatial knowledge spillovers in R&D are large and important

1



for aggregate productivity. First, using new data on German inventors, I causally estimate

such spillovers by isolating quasi-exogenous variation from the arrival of East German in-

ventors across West Germany after the Reunification of Germany in 1990. I find that a 10%

increase in the number of inventors in a location leads to average inventor productivity gains

of around 4.09%. Second, I build a quantitative spatial model of innovation that account

for the spatial knowledge spillovers in R&D I estimated in the data. Third, I calibrate the

model and use it to quantify the productivity gains from implementing policies that pro-

mote R&D activities. I find that a 25% reduction of migration costs for inventors increases

aggregate productivity by 5.87%, and that the 25% subsidy for firms’ expenditures in R&D

within the 2020 German R&D Tax Allowance Act would increase aggregate productivity by

4.27%. Finally, the productivity gains from these policies increase with the level of spatial

knowledge spillovers in R&D. I now describe each of these steps in detail.

In the first part of the paper, I estimate the additional productivity that inventors gain

from agglomerating. To perform this task, I leverage a matched administrative data on

German inventors between 1980 and 2014. This data exhibits two features that makes it

suitable for this paper. First, the dataset includes all the patents and their characteristics

that inventors filed over time, so I can calculate the total number of forward citations of

inventor’s filed patents during a given period—inventor productivity—Second, the dataset

tracks how inventors move across locations over time, so I can calculate cluster size as the

number of inventors working in a given technological cluster, where a cluster is a technological

area-location pair. An example of a cluster is mechanical engineering in Munich.

Then, I leverage variation in cluster size and inventor productivity to estimate the spatial

knowledge spillovers in R&D; that is, whether a higher concentration of inventors leads

to more productive inventors due to local knowledge spillovers.1 The analysis compares

inventors that moved to clusters of different sizes, and inventors that did not move but the

number of inventors in the cluster changed. After saturating the model with a large set of

fixed effects, I find that a 10% increase in cluster size is associated with average inventor

productivity gains of around 1.75%. This elasticity is statistically significant at the 1%,

and its significance is robust to different specifications of inventor productivity and time

aggregation.

I then address potential endogeneity concerns that potentially biases when estimating

spatial knowledge spillovers in R&D. For example, unobserved inventor idiosyncratic shocks

could induce upward or downward biases. For example, if novice inventors systematically

sort into large clusters, then spillovers estimates would suffer from downward biases. Also,

1Examples of how these spillovers manifest in the real world are interactions and exchange of ideas between
inventors (Davis and Dingel 2019).
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unobserved cluster shocks could induce upward biases. For example, growth expectations in

a technological cluster could increase both the productivity of inventors in that cluster and

pull inventors into the cluster, and therefore induce an upward bias. Finally, measurement

error could also introduce a downward bias.

To address these concerns, I propose an instrumental variable based on the historical

episode of the Reunification of Germany in 1990. In particular, I leverage this natural ex-

periment to construct a shift-share instrument that induces quasi-exogenous variation in

the size of West German clusters, which I then use to causally estimate spatial knowledge

spillovers in R&D. The “shifts” are leave-out shocks that measure the total number of in-

ventors that moved from each location in East Germany towards any West German cluster,

except to the instrumented cluster. The identification assumption is that these shocks are

as-good-as-randomly assigned (Borusyak, Hull, and Jaravel 2022); that is, the shifts are un-

correlated with unobservables within the instrumented cluster. The strategy of leaving out

the instrumented cluster from the construction of the shifts ensures that the shocks are con-

structed based solely on push factors arising from the East, and not from pull factors coming

from the instrumented cluster. These shocks are then weighted by exposure “shares” that

help predicting the number of inventors that move from each East German location to each

West German cluster. These shares are constructed based on the inverse of the geographic

distance between every location between East and West Germany, and the specialization

of each location in East Germany in each technological area. Under this approach, a 10%

increase in cluster size leads to average inventor productivity gains of around 4.09%. These

spillovers are statistically significant at the 5%, and their significance is robust to different

measurements and functional forms for inventor productivity and time aggregation.

In the second part of the paper, to quantify the importance of these spillovers to imple-

ment R&D policies, I build a quantitative model of innovation. In each location, a represen-

tative firm produces a final good that is consumed locally and is produced by aggregating

intermediate inputs from all locations. Each intermediate input is produced by a single firm

in each location. Firms hire workers that produce the input, and inventors that engage in

R&D. In the model, R&D determines the quality of an input, where firm’s inventors generate

ideas heterogeneous in productivity, which are then implemented into the firm’s blueprint to

produce the input at a given quality.

Then, each firm optimally decides how many workers and inventors to hire subject to

the demand of its input and its quality. When the firm decides how many inventors to hire,

I show that the quality of an input is comprised by the number of ideas a firm’s inventors

generated, and by how productive these ideas are in expectation. For the first part of input

quality, I assume decreasing returns to R&D, so only a subset of firm’s inventors generate
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ideas. This is a valid and necessary assumption since I estimate it in the data, and it is the

congestion force that rules out an equilibrium where all inventors move to a single location.

For the second part of input quality, following the evidence on spatial knowledge spillovers in

R&D and distributional assumptions on the process on how inventors generate ideas, I show

that the expected productivity of firms inventors’ ideas increases with the spatial knowledge

spillovers in R&D in a location.

Finally, I also allow for labor mobility, so workers and inventors choose where to work

according to real wages, amenities, and migration costs. And finally, the model allows

for straightforward aggregation where aggregate productivity is endogenously determined in

general equilibrium. The main prediction of the model is that a location’s productivity is

endogenously determined by three forces. First, locations with better production fundamen-

tals or that hold more inventors are more productive due to spatial knowledge spillovers

in R&D. Second, locations that exhibit higher labor costs are less productive since firms

are less able to hire inventors to innovate. Third, locations with higher market access are

more productive since higher demand from other locations increases firms’ profitability, and

therefore their incentive to invest in R&D. All these forces shape location’s productivity

in general equilibrium. Additionally, the model predicts that a location’s productivity acts

as an agglomeration force for overall economic activity. Since a location’s productivity is

determined by the its number of inventors, then locations with more inventors exhibit larger

shares in locations’ expenditure of intermediate inputs.

In the third part of the paper, I calibrate the model and use it to conduct policy counter-

factuals and quantify the importance of spatial knowledge spillovers in R&D for aggregate

productivity. I now describe how I discipline the model. First, the model generates an ex-

pression that establishes a relationship between inventor productivity and cluster size. This

expression is the model counterpart of the specification I used to causally estimate spatial

knowledge spillovers in R&D in the data. Then, I can directly import the estimated spillovers

into the model. Second, I estimate firm-level decreasing returns to R&D by regressing the

number of firm’s inventors that filed a patent against the number of hired inventors by the

firm. I find an elasticity of 0.65, which confirms the existence of firm-level decreasing returns

to R&D. Third, I calibrate migration costs by targeting overall migration rates and esti-

mating migration cost elasticities for both workers and inventors. Finally, I follow Redding

(2016) and use aggregate data on wages and the number of workers and inventors across

locations to recover unobserved fundamental location productivities and amenities.

After calibrating the model, I conduct counterfactuals to quantify the effect of policies

that promote R&D activities on aggregate productivity, and the importance of spatial knowl-

edge spillovers in R&D for the effectiveness of these policies. First, I simulate a supply-side
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policy of reducing inventor migration costs by 25%. I find that this reduction leads to a

5.87% increase in aggregate productivity. Since the total number of inventors is finite, the

policy exhibits substantial heterogeneous effects across locations. I find that the increase

in aggregate productivity arises from inventors moving from larger towards smaller clusters

in pursue of higher real wages, so the policy reduces the spatial concentration of inventors.

Second, I simulate a demand-side policy of a 25% subsidy for firms’ R&D expenditure from

the 2020 German R&D Tax Allowance Act. I find that this subsidy leads to a 4.27% increase

in aggregate productivity. In contrast the reduction of inventor migration costs, all locations

increase their productivity and the spatial concentration of inventors increases, so larger

clusters exhibit higher productivity gains. Finally, I show that spatial knowledge spillovers

in R&D are important for the effectiveness of these policies to foster aggregate productivity.

Literature. This paper contributes to three literature strands. First, this paper contributes

to the empirical literature on local knowledge spillovers (Griliches 1991; Jaffe, Trajtenberg,

and Henderson 1993; Audretsch and Feldman 1996; Jaffe, Trajtenberg, and Fogarty 2000;

Thompson 2006; Carlino, Chatterjee, and Hunt 2007; Combes et al. 2010; Greenstone, Horn-

beck, and Moretti 2010; Bloom, Schankerman, and Van Reenen 2013; Kerr and Kominers

2015; Kantor and Whalley 2019; Moretti 2021; Gruber, Johnson, and Moretti 2022). This

literature largely focuses on the agglomeration of economic activity, and the positive exter-

nalities arising from it. More recently, Moretti (2021) focused in R&D and estimated spatial

knowledge spillovers for inventors. I contribute to this literature by exploiting a historical

natural experiment to causally estimate spatial knowledge spillovers in R&D.

Second, this paper contributes to the literature on the importance of knowledge spillovers

for innovation. This is a vast literature with contributions from urban economics (Eaton and

Eckstein 1997; Glaeser 1999; Black and Henderson 1999; Kelly and Hageman 1999; Duranton

and Puga 2001; Duranton 2007; Roca and Puga 2017; Duranton and Puga 2019; Davis and

Dingel 2019), trade (Ramondo, Rodŕıguez-Clare, and Saboŕıo-Rodŕıguez 2016; Hallak and

Sivadasan 2013; Atkeson and Burstein 2010; Melitz 2003; Eaton and Kortum 2002; Krugman

1980; Akcigit, Hanley, and Serrano-Velarde 2021), and spatial economics (Desmet and Rossi-

Hansberg 2014; Desmet, Nagy, and Rossi-Hansberg 2018; Nagy et al. 2016; Mestieri, Berkes,

and Gaetani 2021). I contribute to this literature by building a quantitative framework that

explicitly accounts for spatial knowledge spillovers in R&D I estimate in the data.

Third, this paper contributes to the literature on policies that promote productivity and

economic growth. This paper focuses on policies that foster labor mobility and R&D activi-

ties. This literature show that labor mobility matters for productivity and economic growth

both in the data (Borjas and Doran 2012; Burchardi and Hassan 2013; Moser, Voena, and
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Waldinger 2014; Peri, Shih, and Sparber 2015; Bosetti, Cattaneo, and Verdolini 2015; Bahar,

Choudhury, and Rapoport 2020; Burchardi et al. 2020) and in quantitative settings (Mon-

ras 2018; Bryan and Morten 2019; Peters 2022; Arkolakis, Lee, and Peters 2020; Pellegrina

and Sotelo 2021; Prato 2021), and that R&D policies can promote productivity (Goolsbee

1998; Romer 2000; Wilson 2009; Acemoglu et al. 2018; Akcigit, Hanley, and Serrano-Velarde

2021). I contribute to this literature by providing a quantitative framework to quantify the

productivity gains of implementing migration and R&D policies in general equilibrium.

The remainder of this paper is structured as follows. Section 1.2 explains how I estimate

spatial knowledge spillovers in R&D. Section 1.3 describes the model. Section 1.4 maps

the model to the data. Section 1.5 presents the results of the counterfactuals. Section 1.6

concludes.

1.2 Spatial Knowledge Spillovers in R&D

In this section I describe the estimation of spatial knowledge spillovers in R&D. The first part

of this section describes the data, the second part explains the estimation strategy, and the

third part discusses assumptions and results throughout this section. Appendices A.1-A.3

contain additional tables and figures, and details about the data sources.

1.2.1 Data sources

Linked Inventor Biography (INV-BIO). The main dataset in this paper is the INV-BIO

by the Research Data Centre of the German Federal Employment Agency at the Institute

for Employment Research (FDZ-IAB). The INV-BIO is an administrative dataset comprised

by approximately 150, 000 German inventors with high–frequency and detailed information

on their employment spells and patenting activities between 1980 and 2014. The INV-BIO

is comprised by three modules: (i) an inventor-level module that includes data on inventors’

job spells; (ii) an establishment-level module with yearly characteristics of inventors’ estab-

lishments; and (iii) a patent-level module with information on German inventors’ patents.

For more details on each of these modules, see Appendix A.3.

Sample of Integrated Employer-Employee Data (SIEED). The FDZ-IAB’s SIEED is a

1.5% sample of all establishments in Germany between 1975 and 2018. The dataset tracks

establishments’ characteristics over time, and establishments’ employees’ spells over the en-

tire period. I use this complementary dataset to compare the spatial concentration of workers

to inventors, and to construct aggregate variables I later use to estimate the model.
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1.2.2 Construction of variables.

Dimensions. From the INV-BIO modules I construct an unbalanced panel dataset of in-

ventors. An observation in the data is an inventor i working for establishment ω in location

d in technological area a during period t. I focus my analysis on West Germany, which is

comprised by 104 labor markets. A labor market is defined based on commuting patterns

between districts (Kosfeld and Werner 2012), and are the equivalent to US commuting zones.

Finally, to estimate long run estimates of spatial knowledge spillovers in R&D, I stack the

data in three 10-year periods: (i) 1982-1991, (ii) 1992-2001, and (iii) 2002-2011.2

West German technological clusters. I define a technological cluster as a technological

area-location pair. For example, “Mechanical engineering” in “Munich” is a cluster in West

Germany. There are 5 technological areas in the data: (i) Electrical engineering, (ii) Instru-

ments, (iii) Chemistry, (iv) Mechanical Engineering, and (v) Others. Then, locations and

technological areas comprise 104× 5 = 520 (d, a) technological clusters.

Inventor’s cluster. To define an inventor’s cluster at a given period, it is necessary to

determine the inventor’s location and the technological area the inventor works in. First, the

location of an inventor is determined by the location of the inventor’s establishment since

knowledge spillovers arguably happen mostly at the workplace. Additionally, since I consider

establishments and not multi-location firms, the location of the inventor is unique. Second,

an inventor belongs to the technological area for which he filed the highest share of patents

during a given period. For example, if between 1982 and 1991, an inventor filed 80% of his

patents in Chemistry, then he belongs to that technological area.

A data limitation is that inventors do not necessarily file patents every period. This

generates sample selection, since only inventors that filed a patent during a given period

are registered in the data. The main problem arising from this limitation is that it is not

straightforward to assign a cluster to an inventor that did not file a patent during a given

period. To address this problem, if an inventor did not file a patent during a given period,

I assume that an inventor’s cluster did not change since since the last time an inventor filed

a patent. For example, if in 1995 the latest patent an inventor filed was a Chemistry patent

in Dusseldorf in 1993, then I assume that in 1994-1995 the inventor kept working in the

Chemistry/Dusseldorf cluster. This is a safe assumption since establishments rarely change

locations and inventors tend to specialize in technological areas.

2I also consider six 5-year periods to estimate shorter run spatial knowledge spillovers in R&D: (i) 1982-
1986, (ii) 1987-1991, (iii) 1992-1996, (iv) 1997-2001, (v) 2002-2006, and (vi) 2007-2011.
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Inventor productivity and cluster size. To test for spatial knowledge spillovers in R&D, I

construct two main variables. First, I measure inventor productivity Ziω
da,t as the total number

of 5-year forward citations of inventor i’s filled patents during period t by the German Patent

and Trade Mark Office (DPMA, due to its name in German). If an inventor did not file a

patent during period t, then Ziω
da,t = 0. Second, I measure cluster size Rda,t as the number of

inventors working in cluster (d, a) at the end of period t.

Additional variables. I construct four additional variables I use for both the estimation of

spatial knowledge spillovers in R&D in Section 1.2.3 and model calibration in Section 1.4.

First, I measure the distance between every location pair distod as the Euclidean distance

(in miles) between the centroids of every labor market in Germany. The district maps were

downloaded from the Federal Agency for Cartography and Geodesy, and the correspondence

between districts and labor markets is given by Kosfeld andWerner (2012). Second, I measure

the technological composition of every location, TechCompda, by calculating location d’s

share of filed patents in technological area a such that
∑

a TechCompda = 1,∀d. Third, I

measure migration shares during a given period between every location pair
{
ηLod,t, η

R
od,t

}
for

workers and inventors, respectively. Fourth, I measure average wages in a given period for

every location
{
wL

o,t, w
R
o,t

}
for workers and inventors, respectively.

1.2.3 Estimation

OLS estimates To measure spatial knowledge spillovers, I consider the following specifica-

tion between inventor productivity Ziω
da,t and cluster size Rda,t:

log
(
Ziω
da,t

)
= ιd,t + ιa,t + ιda + ιω + ιi + β log (Rda,t) + ϵiωda,t. (1.1)

If there are spatial knowledge spillovers in R&D, then β > 0. I saturate the model with a

large set of fixed effects. ιd,t are location/period fixed effects that account for amenities and

location shocks that drive the overall activity of a location. ιa,t are technological area/period

fixed effects that account for overall technological shocks. ιda are cluster fixed effects that

account for time-invariant cluster productivity, and for the fact that some clusters file more

patents than others in average. ιω are establishment fixed effects that account for inventor

sorting due to time-invariante establishment productivity. ιi are inventor fixed effects that

control for inventor sorting due to time-invariant inventor productivity. In all specifications,

standard errors are clustered at the (d, a) level. The identification assumption is that inventor

unobservables ϵiωda,t are uncorrelated with cluster size Rda,t.

The main measurement challenge is to account for zeros in the dependent variable Ziω
da,t. I
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consider log
(
1 + Ziω

da,t

)
as the dependent variable for the main specifications. Table 1 report

the OLS estimates of Equation (1.1). Columns (1) − (6) show the value of the estimated

spillovers as I progressively include the aforementioned fixed effects. The value of these

estimates remain around 0.12. Column (6) reports the main OLS estimate that includes

inventors fixed effects, which is key to compare a given inventor across periods and clusters.

This estimate indicates that an inventor whose cluster size increased by 10% or moved to a

cluster with 10% more inventors reports productivity gains of 1.75% in average.

Table 1: OLS models

(1) (2) (3) (4) (5) (6)

log (Rda,t) 0.0705 0.111 0.0985 0.109 0.0896 0.175

(0.0256) (0.0170) (0.0166) (0.0385) (0.0358) (0.0660)

ιd,t ✓ ✓ ✓ ✓ ✓
ιa,t ✓ ✓ ✓ ✓
ιda ✓ ✓ ✓
ιω ✓ ✓
ιi ✓
N 177, 301 177, 300 177, 300 177, 294 162, 803 84, 639

R2 0.008 0.053 0.064 0.079 0.246 0.700

Notes: In this Table I report OLS estimates from Equation (1.1). The dependent variable is measured as log
(
1 + Ziω

da,t

)
, and

Ziω
da,t is the number of 5-year forward citations from the DPMA. The table is comprised by 6 columns. Each column corresponds

to a different combination of fixed effects, as pointed out by rows 4−8. Row 2 reports the estimate of β. Row 3 reports standard
errors clustered at the (d, a) level. Rows 9− 10 report the number of observations and the goodness of fit, respectively.

Robustness. Table A2 contains the estimated spillovers under different specifications of

inventor productivity. Since column (6) is the main specification in Table 1 I focus the

robustness discussion around this specification. Panel A shows results when patent citations

arose from the European Patent Office (EPO) and the EU (both the DPMA and EPO),

respectively. Under these specifications, column (6) shows that the elasticities of inventor

productivity to cluster size are 0.173 and 0.245, respectively. These spillovers are comparable

to the ones reported in Table 1. Panel B shows results when I account for zeros by using

the Inverse Hyperbolic Sine (IHS) for inventor citations instead of log (1 + Z). Column (6)

shows that the elasticity of inventor productivity to cluster size is 0.217, which is similar to

the baseline estimate of 0.175. Additionally, when patent citations arose from the EPO and

the EU, elasticities are around 0.21− 0.24.

Finally, results also hold under shorter time horizons. In Table A3, I show the estimated

spillovers when the frequency of the data is 5-year periods, where the first row measures
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inventor productivity as log (1 + Z), and the third row measures it as IHS (x). In both

cases, column (6) shows that the spillovers are around 0.1, so the magnitude of spatial

knowledge spillovers in R&D scale with the frequency of the data. The intuition for these

results is that longer time horizons allow for larger spillovers to manifest in the data.

1.2.4 IV approach

Endogeneity concerns. To causally estimate β from Equation (1.1), the key identification

assumption is that the unobservables ϵiωda,t are uncorrelated to cluster size Rda,t. Nevertheless,

there are at least two endogeneity concerns that could potentially violate this assumption.

First, unobserved time-varying idiosyncratic shocks can bias the estimate of β. For example,

inventors can decide to start working in a given technological area due to unobservable

reasons. If inventors at the beginning of their careers in a given technology, who initially

report low productivity, move to large clusters due to better career prospects, this would

introduce a downward bias on β. On the other side, if inventors at the peak of their careers

in a given technology, who report high productivity, move to large clusters due to even better

career prospects, this would introduce an upward bias on β.

Second, unobserved time-varying cluster-level shocks can introduce an upward bias when

estimating β. For example, a sudden increase in growth expectations for Chemistry in Dus-

seldorf could increase both cluster size due to an inflow of inventors towards that cluster, and

inventor productivity in that cluster, introducing an upward bias on β. Finally, measurement

error could also bias the estimate of β downwards. To address these endogeneity concerns,

I then propose an instrumental variable approach to causally estimate β. In summary, I

leverage quasi-exogenous variation in cluster size arising from the arrival of East German

inventors towards West German clusters during the Reunification of Germany in 1990.

Brief historical background: The Reunification of Germany. During the final phase of

World War II, the Potsdam Agreement was signed between the US, the UK, and the USSR

on August 1st 1945. Part of this agreement was the division of Germany in two main blocs:

(i) the Federal Republic of Germany (FRG, also known as “West Germany”), and (ii) the

German Democratic Republic (GDR, also known as “East Germany”). FRG was based

on liberal economic-social institutions from the West, while GDR was based on socialist

institutions from the ex-Soviet Union.

In 1952, the borders between East and West Germany were well-established. Never-

theless, migration was still allowed between the two blocs. This lasted until 1961, when

migration between these two blocs ceased. Then, in October 3rd 1990, the GDR was dis-

solved and the process to reunify Germany began. During this period, the “Exodus to the
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West” started, where a large number of East Germans migrated to the West. Figure A2 plots

the magnitude of this shock, which was considered to be unexpected and be permanent at

the time. Since inventors from East Germany also moved to the West (Hoisl et al. 2016),

I use the variation arising from the arrival of East German inventors across West German

clusters.

IV estimates. To motivate the design of my instrument, consider an ideal experiment to

causally estimate spatial knowledge spillovers in R&D. In this thought experiment, I would

randomize inventors’ clusters in West Germany, such that productivity gains arising from

changes in cluster size can be estimated. Since it is not possible to obtain such exogenous

variation, I extract quasi-exogenous variation in cluster size from the Reunification of Ger-

many. To do this, I construct a shift-share instrument based on the arrival of East German

inventors across West German clusters. If the variation in cluster size arising from the over-

all arrival of East German inventors is as-good-as-random, then this is sufficient to causally

estimate spatial knowledge spillovers in R&D. First, I use variation in the arrival of inventors

towards West German clusters, so the second stage regression in first differences of Equation

(1.1) is

∆ log
(
Ziω
da,t

)
= ιd,t + ιa,t + β∆ log (Rda,t) + ∆ϵiωda,t. (1.2)

Notice that the fixed effects in Equation (1.2) that prevail after introducing first-differences

are location/period ιd,t and technological area/period ιa,t fixed effects. ιd,t are crucial to

control for the overall arrival of East Germans to West German locations during the Reunifi-

cation. Also, ιa,t accounts for overall technological change that could have happened during

Reunification. Now, the first stage regression is a shift-share instrument:

IVda,t =
∑
o∈E

go,t × so,da, (1.3)

where o ∈ E is location o in East Germany (E), and d is a location in West Germany. The

instrument is constructed as the interaction of two terms: (i) a common set of shocks to

West German clusters go,t (i.e. the “shifts”); and (ii) a set of exposure weights to these

shocks so,da (i.e. the “shares”). The shifts go,t ≡ log
(
∆R−d,−a

o,t

)
are the log of the number of

inventors in o that moved to any West German cluster except the instrumented cluster (d, a)

during period t. Following Borusyak, Hull, and Jaravel (2022), the identification assumption

to estimate β is that the overall arrival of East German inventors in West Germany go,t

excluding the instrumented cluster is as-good-as-random. That is, the shifts are uncorrelated

with inventor unobservables within the instrumented cluster. This is a safe assumption since

the instrumented cluster is being left out to construct each shift, so the shifts are constructed
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based solely on push factors arising from each East German location, and are clean from pull

factors coming from the instrumented cluster.

The shifts are then weighted by exposure shares, which help predicting how many in-

ventors from each East German cluster will move to each West German cluster. The shares

so,da ≡ dist−1
o,d × TechCompo,a are comprised by two terms: (i) dist−1

o,d is the inverse distance

between o and d; and (ii) TechCompo,a is the technological composition of location o. The

construction of these variables is detailed in Section 1.2.2. The intuition of the shares is the

following. First, migration flows decay with distance, so locations closer to each other should

exhibit higher migration shares. This is consistent with Hoisl et al. (2016) who find that

distance was indeed a key predictor for the migration from the East to the West. Second,

the specialization of East German locations towards different technologies predicting which

technological area an East German inventor will work on upon moving to the West. The

shares are then normalized such that
∑

o∈E so,da = 1,∀d, a.
Table 2 contains the IV estimates of spatial knowledge spillovers in R&D. All the estimates

exhibit an F-statistic above 10, which reflects the relevance of the proposed instrument.

Column (1) reports the estimate of the spillovers when I do not consider any fixed effects.

This reports a value of 0.178 which is similar to the OLS estimate from column (6) in Table

(1). It is crucial to include location-period fixed effects to account for the overall arrival

of East Germans to West Germany. In column (2) I show that estimated spillovers after

including these fixed effects are 0.309. Finally, it is also key to include technological area-

period fixed effects to control for technological changes after the Reunification. Column (3)

contains the main empirical result of this paper: an inventor whose cluster size increases

by 10% or moved to a cluster with 10% more inventors becomes 4.09% more productive in

average. This estimate is between 2 and 3 times the OLS estimate of 1.75% from column (6)

in Table (1), which reflects a downward bias when estimating β due to unobservables and

measurement error.
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Table 2: IV models

(1) (2) (3)

∆ log (Rda,t) 0.178 0.309 0.409

(0.0431) (0.101) (0.152)

ιd,t ✓ ✓
ιa,t ✓

KP − F 132.1 34.14 28.23

N 50, 778 50, 776 50, 776

Notes: In this Table I report IV estimates from Equation (1.2), where the instrument is constructed as in Equation (1.3). The

dependent variable is measured as ∆ log
(
1 + Ziω

da,t

)
, and Ziω

da,t is the number of 5-year forward citations from the DPMA. The

table is comprised by 4 columns. Each column corresponds to a different combination of fixed effects, as pointed out by rows
5 − 6. The fourth column reports the OLS estimate from Equation (1.2). Row 3 reports the estimate of β. Row 4 reports
standard errors clustered at the (d, a) level. Rows 7 − 8 report the first stage Kleibergen-Paap F-statistic (KP-F) and the
number of observations, respectively.

Robustness. Table A4 contains the estimated spillovers under different specifications of

inventor productivity. Since column (3) is the main specification in Table 2, I focus the

robustness discussion around this specification. Panel A shows results when patent citations

arose from the EPO and the EU, respectively. Under these specifications, column (3) shows

that the elasticities of inventor productivity to cluster size are 0.209 and 0.343, respectively.

These spillovers are comparable but somewhat lower to the ones reported in Table 2. Panel

B shows results when I account for zeros by using the IHS for inventor citations instead of

log (1 + Z). Column (3) shows that the elasticity of inventor productivity to cluster size is

0.498. Additionally, when patent citations arose from the EPO and the EU, elasticities are

around 0.23− 0.39.

Finally, results also hold under shorter time horizons. In Table A5 I show the estimated

spillovers when the frequency of the data is 5-year periods, where the first row measures

inventor productivity as ∆ log (1 + Z), and the third row measures it as ∆IHS (x). In both

cases, column (3) shows that the spillovers are around 0.09, so the magnitude of spatial

knowledge spillovers in R&D scale with the frequency of the data. The intuition for these

results is that longer time horizons allow for larger spillovers to manifest in the data.

1.2.5 Discussions

Do citations measure productivity? Throughout this paper, I have measured inventor pro-

ductivity as the number of forward citations of all inventor’s filed patents during a given

period. Then, it is reasonable to pose whether number of citations indeed measure produc-

tivity. There is a vast literature that documents a positive relationship between number of
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citations and proxies for productivity, such as patent value (Kogan et al. 2017; Hall, Jaffe,

and Trajtenberg 2001; Harhoff et al. 1999; Trajtenberg 1990).

More recently, Abrams, Akcigit, and Grennan (2013) find preliminary evidence of a in-

verse U-shaped relationship between number of citations and patent value in the data. They

rationalize this finding by distinguishing between productive and strategic patents. For the

former, more citations reflect a higher patent productivity since a citation reflects further

creation of patents. For the latter, patenting an idea maintain incumbent’s monopoly power

such that entry is inhibited, so the number of citations decreases. To check whether German

citations are mostly productive or strategic, I review literature on firm surveys about their

incentives to patent (Blind et al. 2006; Cohen et al. 2002; Pitkethly 2001; Duguet and Kabla

2000; Schalk, Tager, and Brander 1999; Arundel, Paal, and Soete 1995), which is mostly

focused on Europe, particularly Germany. In general, the major motive for German firms to

file patents is the classical incentive to protect their ideas, which goes in line with productive

patenting.

Is it exposure instead of knowledge spillovers? A possible identification threat to estimate

β is that the number of citations reflect higher exposure of an inventor’s ideas, which is

orthogonal to knowledge spillovers. For example, if an inventor moves to a larger cluster,

then his ideas could obtain more exposure to a larger share of inventors, so his patents get

cited more often. This would introduce an upward bias when estimating β. I present two

main arguments against this concern.

First, the patenting market is drastically different from other industries that rely on

citations, such as academia. In academia, citations measure aspects other than productivity

such as reputation, exposure, among others. In the patenting market, citations are required

whenever an invention uses information from another patent. Whenever a citation this

situation does not take place, a patent infringement has taken place, so then the owner

of the non-cited patent can pursue legal means to resolve the issue. This is particularly

relevant for the industrial economy of Germany that reports one of the largest number of

patent litigation cases (Cremers et al. 2017), and exhibits one of the highest cross-country

levels of patent enforcement (Papageorgiadis and Sofka 2020).

Second, assuming that these effects are biasing the estimate of β, Tables A2 and A4

include the OLS and IV estimates where productivity is measured by the number of citations

from the EPO, which is the European patenting institution and completely independent from

the German patenting office. These estimates still provide evidence on the existence of spatial

knowledge spillovers in R&D.
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Comparison to previous estimates. I now compare my estimates with previous literature.

Carlino, Chatterjee, and Hunt (2007) shows that the rate of patenting per capita is around

1.95% higher in a US metropolitan area with 10% higher population density. My baseline

estimate of 4.09% is higher due to three differences. First, I test for knowledge spillovers

in R&D by measuring productivity through number of citations instead of patenting rates.

Second, I estimate long-run spatial knowledge spillovers since I consider 10-year periods. In

contrast, they leverage cross-sectional variation across US metropolitan areas. Third, my

identification relies on a historical natural experiment instead on the inclusion of covariates.

Moretti (2021) is the closest to this paper. His OLS estimate is around 0.067, while my

estimate from Table 1 is 0.175. When running the model in first differences, his IV estimate

is around 0.049, while my estimates from Table 2 is 0.409. Even thought both of these

papers estimate spatial knowledge spillovers in R&D at the inventor level, the differences

in magnitudes arise due to two differences. First, I estimate long-run spillovers (10-year

periods), while Moretti estimates short-run spillovers (1-year periods). Second, my larger

estimates could result from stronger spatial knowledge spillovers in R&D in Germany in

comparison to the US.

1.3 Model

In this section I build a quantitative spatial model of innovation. Appendices A.4-A.5 contain

details about the derivations in the model.

1.3.1 Setup

Geography. There is a discrete set of locations S ≡ {1, 2, . . . , S}, where o ∈ S is the origin

location, and d ∈ S is the destination location. When I take the model to the data, I consider

S to be the 104 labor markets in West Germany.

Firms. There are two types of firms in each location: (i) a final good firm, and (ii) a unit

mass of intermediate input firms. The final good is produced by a representative firm, it

is non-tradable, and it is produced by aggregating intermediate inputs from all locations

with constant elasticity of substitution (CES). Each input is produced by a single firm, it

is tradable across locations, it is produced by firm’s workers, and its quality is determined

through R&D by firm’s inventors. Because the mass of firms is fixed in each location,

firms earn positive profits, which in turn are invested in a national fund and redistributed

proportionally to all agents in the economy.
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Agents. There are two types of agents: (i) workers, and (ii) inventors. Each agent supplies

a unit of labor inelastically, earns income from their wage and redistributed profits, and

consumes the local final good. Finally, both workers and inventors are mobile, so they

optimally decide where to work by maximizing their utility subject to migration costs.

1.3.2 Technology

Final good firms. In each location d, a representative firm produces a final good by aggre-

gating intermediates from all locations. The production function of the final good is

Qd =

(∑
o

∫
ω∈Ωod

Aω
1
σ

o Qω
σ−1
σ

od dω

) σ
σ−1

, (1.4)

where Ωod is the set of intermediate input firms in o selling to d, Qd is the production of the

final good, Qω
od is the quantity of intermediate input ω from o sold to the final good firm in

d, Aω
o is the quality of input ω from o, and σ > 1 is the CES across intermediate inputs.

The final good firm maximizes profits subject to Equation (1.4), which yields the demand

for intermediate inputs

Qω
od = Aω

oP
ω−σ

od P σ−1
d Xd, (1.5)

where P 1−σ
d =

∑
o P

1−σ

od and P 1−σ
od =

∫
ω∈Ωod

Aω
oP

ω1−σ

od dω are CES price indices, andXd = PdQd

is total expenditure on the final good in d.

Intermediate input firms. In each location o, there is a unit mass of firms, where each

produce a unique and tradable intermediate input. The profits of firm ω selling to d is

πω
od = P ω

odQ
ω
od − τodw

L
o L

ω
od, (1.6)

where wL
o are worker wages, Lω

od is labor demand by ω, and τod > 1 are iceberg trade costs.

A unit of labor is required to produce an intermediate input:

Lω
od = Qω

od. (1.7)
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Then, firm ω maximizes total profits subject to Equations (1.5), (1.6), and (1.7):

max
{Pω

od,Q
ω
od,L

ω
od}

πω
o =

∑
d

πω
od (1.8)

s.t.

πω
od = P ω

odQ
ω
od − τodw

L
o L

ω
od,

Lω
od = Qω

od,

Qω
od = Aω

oP
ω−σ

od P σ−1
d Xd.

Then, firms charge a constant markup:

P ω
od = mτodw

L
o ,∀ω ∈ Ωod (1.9)

where m ≡ σ
σ−1

is the CES constant markup over marginal costs. Plugging back Equation

(1.9) in (1.8), firm total profits are

πω
o =

1

σ
Aω

o

∑
d

(
P ω
od

Pd

)1−σ

Xd. (1.10)

From (1.10), we notice that total profits of firm ω increase with market demand from every

location d and the quality of its intermediate input Aω
o . This is because inputs of higher

quality exhibit higher demand from every final good firm.

Quality of intermediate inputs. Each firm ω in every location owns a blueprint that de-

scribes the production process of intermediate input with quality Aω
o . The blueprint is com-

prised by nω
o ideas generated by firm’s inventors, and ideas are heterogeneous in productivity.

Then, the quality of the intermediate input is

Aω
o = Zω

on
ω
o , (1.11)

where Zω
o is the expected productivity of inventors’ ideas. In Appendix A.4.2 I provide two

microfoundations that generate isomorphic expressions for the quality of intermediates up to

a constant. To provide intuition on how the quality of the intermediate input is determined

by the expected productivity of inventors’ ideas, I briefly sketch the first microfoundation

based on necessary tasks. Consider that a firm ω owns a blueprint that contains a continuum

of tasks to produce a unit of its input. The firm hires Rω
o inventors who produce nω

o ≤ Rω
o

ideas to be implemented in its blueprint, and these ideas are heterogeneous in productivity.

Given the assumption that each of these ideas improve the quality of every task within
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the firm’s blueprint, and all tasks are necessary to produce a unit of the firm’s input, then

the expected productivity of the implemented ideas into the blueprint captures the overall

quality of the firm’s input. I also consider decreasing returns to R&D, such that

nω
o = Rωζ

o , (1.12)

where ζ ∈ (0, 1) is the degree of decreasing returns to R&D. This assumption introduces

a local congestion in R&D, which is key to countervail agglomeration forces in R&D, and

therefore avoid the possibility of all inventors concentrating in a single location. In Section

1.4 I estimate ζ and provide empirical evidence that there are indeed firm-level decreasing

returns to R&D in the data. Now, what is left to is model the process for which firm’s

inventors generate ideas, which in turn determine Zω
o .

Productivity of ideas. An inventor i hired by firm ω generates an idea to be implemented

into the firm’s blueprint on how to produce a unit of the firm’s input. Ideas are heterogeneous

in productivity Ziω
o drawn from a probability distribution:

Ziω
o ∼ Frechet

(
α, λ

1
α
o

)
, (1.13)

where α and λ
1
α
o are the shape and scale parameters of the Frechet distribution, respectively.

Appendix A.4.1 describes inventors’ innovation process based on Kortum (1997) that gener-

ates a Frechet distribution for the productivity of inventors’ ideas. Under this framework, λo

is referred as the spillover function since it embeds exogenous economic forces that increase

inventors’ productivity. Guided by the empirical evidence on spatial knowledge spillovers in

R&D in Section 1.2.3, I consider the following functional form:

λ
1
α
o = AoR

γ̃
o , (1.14)

where Ao is a fundamental location productivity, Ro is the number of inventors in o (i.e.

cluster size), and γ̃ ≡ γ
α
are spatial knowledge spillovers in R&D.3 Finally, considering the

probability distribution in Equation (1.13), then the expected productivity of inventors’ ideas

is

Zω
o = ψλ

1
α
o , (1.15)

where ψ > 0 is a constant that arises from the microfoundation for the quality of intermediate

inputs.

3Technically, γ are spatial knowledge spillovers in R&D. Since γ and α are not separable, I consider γ̃ ≡ γ
α

to denote spatial knowledge spillovers in R&D throughout the paper.
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Research and Development (R&D). Firms ω in every location engages in R&D, who opti-

mally decide how many inventors to hire. The optimal number of inventors arises from the

trade-off between the cost of hiring inventors and higher quality. Then, firm ω maximizes

total profits after R&D expenditure subject to (1.10), (1.14), (1.11), and (1.15):

max
{Rω

o }
πω
o = πω

o − wR
o R

ω
o (1.16)

s.t.

πω
o =

1

σ
Aω

o

∑
d

(
P ω
od

Pd

)1−σ

Xd,

Aω
o = ψAoR

γ̃
oR

ωζ

o .

Then, firms’ demand for inventors is

Rω
o =

(
ζ

σ

ψAoR
γ̃
o

wR
o

∑
d

(
P ω
od

Pd

)1−σ

Xd

) 1
1−ζ

. (1.17)

1.3.3 Location choice

In each location d, there are two types of agents: inventors (n = R), and workers (n = L).

Upon moving to d, agents maximize their utility subject to their budget constraint. Agents

have preferences for consuming local final goods and location amenities. Then, the agents’

indirect utility is

Un
d =

Bn
dw

n
d (1 + π)

Pd

, n = {L,R} , (1.18)

where Bn
d are type-specific location amenities, and π are redistributed profits per-capita.

Then, an agent i of type n working in o moves to d by maximizing its utility:

U i,n
od = max

d∈S

{
Un
d

µn
od

× ϵi
}

, n = {L,R} , (1.19)

where µn
od > 1 are type-specific iceberg migration costs, G (ϵ) = exp (−ϵ−κ) are location

preference shocks, and κ is the spatial labor supply elasticity. Then, using the order-statistic

properties of the Frechet distribution from Equation (1.19), the share of agents of type n

moving from o to d is

ηnod =

(
Un
d

µn
od

)κ
∑

δ

(
Un
δ

µL
oδ

)κ , n = {L,R} . (1.20)
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1.3.4 Aggregate variables

Aggregate productivity. In the model, a location’s productivity is measured as the average

quality of intermediates in a location. Due to firm symmetry and the fixed mass of firms in

each location, from Equations (1.14)-(1.12) and (1.17), location’s productivity is

A1−ζ
o ∝

(
AoR

γ̃
o

)︸ ︷︷ ︸
spillovers

(
wLσ−1

o wR
o

)−ζ

︸ ︷︷ ︸
labor costs

(∑
d

τ 1−σ
od P σ−1

d Xd

)ζ

︸ ︷︷ ︸
market access

. (1.21)

Equation (1.21) is the main expression of the model since it encapsulates the market forces

that determine aggregate productivity in general equilibrium, and what different policies im-

ply for productivity. First, locations that exhibit higher local spillovers are more productive.

On one side, there are some locations that are fundamentally more prone for innovation

than others (Ao). More interestingly, due to spatial knowledge spillovers in R&D, locations

that exhibit higher R&D employment (Ro) are more productive. Second, locations that re-

port higher labor costs
{
wL

o , w
R
o

}
are less productive because higher labor demand increases

overall labor costs, which reduces firm hiring, and therefore pushes R&D incentives down.

These two forces reflect the main trade-off when implementing different R&D policies.

Demand-side R&D policies, such as R&D subsidies, can increase a location’s productivity

since it increases the number of inventors in a location, but i also increases labor costs. In the

end, the net effect on productivity depends on which force prevails in equilibrium (Gruber,

Johnson, and Moretti 2022). On the other side, supply-side policies, such as the reducing

migration costs for inventors, can drastically increase the productivity of a location since it

increases number of inventors and reduce hiring costs. By the same argument, these policies

can also have drastic distributional effects due to inventors reallocation.

Finally, locations with higher market access are more productive. This term arises due to

the tradability of intermediate inputs. Intuitively, higher demand for a firm’s inputs pushes

its to engage in R&D and increase the quality of its input.

Price indices. Given Equations (1.9) and (1.21), price indices are

P 1−σ
od = Ao

(
mτodw

L
o

)1−σ
and P 1−σ

d =
∑
o

Ao

(
mτodw

L
o

)1−σ
. (1.22)

20



Trade shares. Given Equations (1.22), location o’s share in location d’s expenditure is

χod =
Ao

(
τodw

L
o

)1−σ∑
oAo (τodwL

o )
1−σ . (1.23)

Equation (1.23) shows that trade shares depend directly on locations’ productivity Ao; that

is, a higher Ao increases location o’s share in d’s total expenditure. Intuitively, the higher

quality of intermediate inputs from o increases their demand from all other locations, which

in turn increases o’s trade share. Moreover, some of the concentration of economic activity

is explained by agglomeration forces arising from locations’ R&D activity.

Profits per-capita. Firms’ profits are invested in a national fund, and they are then redis-

tributed uniformly across the country’s population. Then, plugging Equation (1.17) back in

firm profits (1.16), yields location’s total profits:

πo =

(
κζm

1−σψ

σ

AoR
γ̃
o

wRζ

o wLσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd

) 1
1−ζ

. (1.24)

Then, profits per-capita are

π =
1

N

∑
o

πo. (1.25)

1.3.5 Equilibrium

Inventors market. From firm’s demand for inventors (1.17), location o’s aggregate demand

for inventors is

wR
o =

ζψm1−σ

σ

AoR
γ̃−(1−ζ)
o

wLσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd. (1.26)

Notice in Equation (1.26) that, if γ̃ is sufficiently high, then the demand for inventors is

upward sloping. That is, if spatial knowledge spillovers in R&D are higher than the decreasing

returns to R&D, then the demand for inventors will exhibit an upward slope. This is a similar

mechanism as in Allen and Donaldson (2020) and Krugman (1979), where a sufficiently strong

productivity spillovers can lead to non-unique equilibria. I later show that the calibration of

the model rules out the possibility of multiple equilibria. Now, given Equation (1.20), the

supply of inventors in each location is

Rd =
∑
o

ηRodRo, (1.27)
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where
{
Ro

}
∀o∈S is the exogenous allocation of inventors across locations.

Workers market. From Equations (1.5), (1.7), and (1.9), the aggregate demand for workers

is

wL
o = m−1

(
Ao

Lo

∑
d

τ−σ
od P

σ−1
d Xd

) 1
σ

. (1.28)

Given Equation (1.20), the equilibrium number of workers and inventors in each location is

Ld =
∑
o

ηLodLo, (1.29)

where
{
Lo

}
∀o∈S is the exogenous allocation of workers across locations.

Equilibrium in goods market. To close the model, in every location, total income equals

total expenditure. Income Yo is comprised by wages earned by workers and inventors:

Yo = (1 + π)
(
wL

o Lo + wR
o Ro

)
. (1.30)

Expenditure Xo is comprised by purchased intermediates from every location d:

Xo =
∑
d

χodXd. (1.31)

In equilibrium, given Equation (1.23), income equals expenditure Xo = Yo,∀o:

wL
o Lo + wR

o Ro =
∑
d

χod

(
wL

dLd + wR
d Rd

)
(1.32)

Government budget. A national government implements a set of subsidies so that are

funded with a uniform labor tax τ . I assume a balanced government budget constant, such

that

τ
∑
o

(
wL

o Lo + wR
o Ro

)
=
∑
o

so
(
wR

o Ro

)
. (1.33)

Definition 1 (Equilibrium). Given iceberg trade costs {τod}∀o,d∈S,S , iceberg migration costs

{µn
od}

n={L,R}
∀o,d∈S,S , location fundamentals {Ao,Bn

o }
n={L,R}
∀o∈S , an equilibrium is a set of wages

{wn
o }

n={L,R}
∀o∈S , prices {Po}∀o∈S , quantities {Lo, Ro, Qo}∀o∈S , and aggregate productivity

{Ao}∀o∈S such that (i) inventor markets clear (Equations (1.26) and (1.27)), (ii) worker

markets clear (Equations (1.28) and (1.29)), (iii) goods market clear (Equation (1.32)), and

(iv) locations’ productivity are determined by (1.21).
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1.3.6 Equilibrium with R&D subsidies

To evaluate the implementation of R&D subsidies, I consider a set of subsidies so that

are funded with a uniform labor tax τ . First, firms’ total profits after R&D is πω
o =

πω
o − (1− so)w

R
o R

ω
o , so the subsidy acts as a positive shock for the demand of inventors

which value. Second, since these subsidies are funded through a uniform labor tax, then

workers and inventors’ income are now wn
o (1 + π − τ). Finally, I assume a balanced govern-

ment budget constant, so government’s income τ
∑

o

(
wL

o Lo + wR
o Ro

)
equals its expenditure∑

o so
(
wR

o Ro

)
.

1.4 Taking the Model to the Data

In this section I describe the calibration strategy of the model. The model is parametrized

by spatial knowledge spillovers in R&D {γ̃}, decreasing returns to R&D {ζ}, type-specific
migration costs {µn

od}
n={L,R}
∀o,d∈S,S , fundamental location productivity {Ao}∀o∈S , type-specific fun-

damental location amenities{Bn
o }

n={L,R}
∀o∈S , trade costs {τod}∀o,d∈S,S , and remaining parameters

{α, κ, σ}. Table 5 at the end of this section summarizes the calibration strategy of the model,

and further details on the parametrization are in Appendix A.6.

Spatial knowledge spillovers in R&D {γ̃}. The reduced-form estimates for spatial knowl-

edge spillovers in R&D in Section 1.2 are mapped to γ̃. Consider Equation (1.15), which

describes how cluster size increases the expected productivity of inventors. Considering

Equation (1.14), the model yields a log-log relationship between inventor productivity and

cluster size:

log
(
Ziω

o

)
= ι+ ιo + γ̃ log (Ro) + ϵiωo , (1.34)

where ι ≡ log (ψ) and ιo ≡ log (Ao). After considering the additional time dimension t

and technological areas a, and first differences, Equation (1.34) is the model counterpart of

Equation (1.2) which was used to estimate spatial knowledge spillovers in R&D β = 0.409.

Notice that, technically, β is the elasticity of inventor 5-year forward citations to cluster size,

while γ̃ is the elasticity of patent/idea productivity or quality to cluster size. Therefore,

the value of γ̃ is such that γ̃ = δβ, where δ is the elasticity of patent/idea productivity or

quality to 5-year forward citations. I follow Lanjouw and Schankerman (2004) and consider

δ = 0.22, such thatγ̃ = δβ = (0.22) (0.409) ≈ 0.09.

Decreasing returns to R&D {ζ}. From Equation (1.12), the relationship between the num-

ber of inventors that file patents and the number of a firm’s hired inventors is log-linear, such
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that log (nω
o ) = ζ log (Rω

o ). When taking this expression to the data, I run the following re-

gression:

log
(
nω
o,t

)
= ι+ ιω + ιo,t + ζ log

(
Rω

o,t

)
+ ϵωo,t, (1.35)

where ιω are firm fixed effects, ιo,t are location/period fixed effects, and ϵωo,t are i.i.d shocks.

Using data on the number of firms’ inventors Rω
o,t and the number of firms’ inventors that

generated an idea nω
o,t, I regress ζ directly from the data. To keep the estimation consistent

with the reduced-form estimates, I consider 10-year periods. Column (3) of Table 3 shows

the main estimate of ζ = 0.65, which confirms the existence of decreasing returns to R&D

in the data.

This estimate is around the upper bound of previously estimated values in the literature

between 0.1 and 0.6 (Kortum 1993). The main reason is that I estimate long run decreasing

returns to R&D since I consider 10-year periods in the estimation. This contrasts with

previous estimates that use yearly or cross-sectional variation. To see this, Table A6 contains

additional estimations of ζ when considering 5-year periods. Indeed, the value of this estimate

goes down to ζ = 0.568, which suggests stronger decreasing returns to R&D in the short

run.

Table 3: Estimation of decreasing returns to R&D

(1) (2) (3)

log
(
Rω

o,t

)
0.718 0.704 0.65

(0.009) (0.0096) (0.0103)

ιo,t ✓ ✓

ιω ✓

N 49, 297 49, 297 25, 010

R2 0.72 0.812 0.904

Notes: In this table I report estimates for decreasing returns to R&D from Equation (1.35). The dependent variable log
(
nω
o,t

)
is the number of firm’s inventors that filed a patent. Each column is an specification with different combinations of fixed effects.
The fixed effects included in each specification are determined by rows 4 − 5. Row 2 contains the estimates for ζ, and row 3
contain standard errors, which are clustered at the o, t level. Rows 6 − 7 contain the number of observations and goodness of
fit in each specification, respectively.

Migration costs {µn
od}. For each agent type n = {L,R}, I parametrize migration costs as

an exponential function of geographic distance between every location pair

µn
od = ρn0dist

ρn1
od exp

(
− ϵnod

κ

)
, where {ρn0} are intercepts that determines the overall level of

internal migration, {ρn1} are the elasticities of migration costs to distance, and ϵnod are i.i.d.
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shocks. To keep the estimation consistent with the reduced-form estimates, I consider 10-

year periods. I calibrate {ρn0} by targeting the 10-year average migration rates for workers

and inventors of 24.99% and 26.38%, respectively. The calibrated values are
{
ρL0 , ρ

R
0

}
=

{1.361, 1.354}. To estimate {ρn1}, the location choice problem of the model yields migration

gravity equations for both workers and inventors:

log
(
ηnod,t

)
= ι+ ιo,t + ιd,t − κρn1 log (distod) + ϵnod,t, n = {L,R} . (1.36)

The gravity equation in (1.36) states that, conditional on origin/time and destination/time

fixed effects {ιo,t, ιd,t}, data on geographic distance between locations, and the spatial la-

bor supply elasticity κ, the migration elasticities to trade costs {ρn1} are identified. Since

migration shares report values of zero, I estimate these elasticities through Poisson Pseudo

Maximum Likelihood (PPML) estimation. From columns (2) and (4) in Table 4, I consider{
ρL1 , ρ

R
1

}
= {0.591, 0.602}. These values are very close to the median value of migration

elasticities estimated by Allen and Donaldson (2020), who also estimate them considering

10-year periods. Intuitively, Table A7 shows that the value of these elasticities go up to{
ρL1 , ρ

R
1

}
= {0.65, 0.651} when considering 5-year periods, which reflect higher barriers to

move in the shorter run.

Table 4: Estimation of migration costs

n = R n = L

OLS PPML OLS PPML

log (distod) −1.001 −1.254 −1.063 −1.277

(0.014) (0.018) (0.020) (0.016)

ρn1 0.472 0.591 0.501 0.602

R2 0.812 · 0.839 ·
N 8, 336 21, 632 18, 381 21, 632

Notes: In this table I report migration cost elasticities from Equation (1.36). Columns 2 − 3 are the regressions for inventors,
where column 2 are OLS estimates, and column 3 are PPML estimates. Columns 4− 5 are the regressions for workers, where
column 4 are OLS estimates, and column 5 are PPML estimates. For OLS estimates, the dependent variable is measured as

log
(
ηnod,t

)
is the log of the share of inventors or workers from o that moved to d during a given period. Row 3 is the estimate

associated to log (distod), where distod is the Euclidean distance in miles from o to d. Row 4 are standard errors two-way
clustered at the o, t and d, t level. Row 5 is the implied migration elasticity from the estimates from row 3 given κ = 2.12. Rows
6− 7 contain the goodness of fit and number of observations in each specification, respectively.

Fundamental location productivity {Ao}∀o∈S . I follow Redding (2016) to recover unob-

served fundamental location productivities {Ao}∀o∈S through model inversion. Given val-
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ues for parameters {σ, γ̃}, trade costs {τod}∀o,d∈S,S , and data on wages and population{
wL

o , w
R
o , Lo, Ro

}
∀o∈S , there is a unique set of values for fundamental location productivi-

ties {Ao}∀o∈S that is consistent with the data. Since the model is static, I use data on wages

and population from 2014 to denote West Germany’ steady-state equilibrium. To recover

these fundamentals, I solve a fixed point algorithm on the system of excess demand functions

implied by Equations (1.32). In Figure 1 I show the spatial distribution of these fundamen-

tals. As expected, to rationalize the presence of production and innovation in less-dense

locations, these locations must report higher fundamental levels of productivity.

Figure 1: Fundamental location productivity

Notes: This figure shows the spatial distribution of fundamental location productivities {Ao} in West Germany. A darker
(lighter) orange color denotes a higher (lower) productivity. All these values are normalized by their corresponding geometric
mean.

Fundamental location amenities {Bn
o }

n={L,R}
∀o∈S . I follow Redding (2016) to recover location

fundamental amenities for both workers and inventors {Bn
o }

n={L,R}
∀o∈S through model inversion.

Given values for parameters {σ, κ, γ̃}, trade costs {τod}∀o,d∈S,S , migration costs {µn
od}

n={L,R}
∀o,d∈S,S ,

fundamental location productivities {Ao}∀o∈S , an initial distribution of workers and inventors

across locations
{
Lo, Ro

}
∀o∈S , and data on wages and population

{
wL

o , w
R
o , Lo, Ro

}
∀o∈S , there

is a unique set of values for fundamental location amenities {Bn
o }

n={L,R}
∀o∈S that is consistent

with the data. Since the model is static, I use data on wages and population from 2014

to denote West Germany’ steady-state equilibrium. The initial distribution
{
Lo, Ro

}
∀o∈S is

from 1980 and they are scaled such that the total number of workers and inventors in West

Germany is the same for 2014. To recover these fundamentals, I solve a fixed point algorithm
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on the system of excess demand functions implied by Equations (1.29) and (1.27).

In Figure 2 I show the spatial distribution of these fundamentals. As reflected by the

spatial distribution of both workers and inventors, locations like Munich, Stuttgart, and

Hamburg reflect the highest levels of amenities. More importantly, inventors exhibit higher

levels of location amenities in the south of West Germany than workers, which reflects their

higher level of spatial concentration in the data.

Fundamental location amenities {Bn
o }

n={L,R}
∀o∈S . I follow Redding (2016) to recover location

fundamental amenities for both workers and inventors {Bn
o }

n={L,R}
∀o∈S through model inversion.

Given values for parameters {σ, κ, γ̃}, trade costs {τod}∀o,d∈S,S , migration costs {µn
od}

n={L,R}
∀o,d∈S,S ,

fundamental location productivities {Ao}∀o∈S , an initial distribution of workers and inventors

across locations
{
Lo, Ro

}
∀o∈S , and data on wages and population

{
wL

o , w
R
o , Lo, Ro

}
∀o∈S , there

is a unique set of values for fundamental location amenities {Bn
o }

n={L,R}
∀o∈S that is consistent

with the data. Since the model is static, I use data on wages and population from 2014

to denote West Germany’ steady-state equilibrium. The initial distribution
{
Lo, Ro

}
∀o∈S is

from 1980 and they are scaled such that the total number of workers and inventors in West

Germany is the same for 2014. To recover these fundamentals, I solve a fixed point algorithm

on the system of excess demand functions implied by Equations (1.29) and (1.27).

In Figure 2 I show the spatial distribution of these fundamentals. As reflected by the

spatial distribution of both workers and inventors, locations like Munich, Stuttgart, and

Hamburg reflect the highest levels of amenities. More importantly, inventors exhibit higher

levels of location amenities in the south of West Germany than workers, which reflects their

higher level of spatial concentration in the data.
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Figure 2: Fundamental location amenities

(a) Workers
{
BL
o

}
(b) Inventors

{
BR
o

}

Notes: This figure shows the spatial distribution of fundamental location amenities
{
BL
o ,BR

o

}
in West Germany. A darker

(lighter) purple color denotes a higher (lower) productivity. All these values are normalized by their corresponding arithmetic
mean.

Trade costs {τod}. I parametrize trade costs as an exponential function of geographic dis-

tance between every location pair τod = ξ0dist
ξ1
od, where ξ0 is an intercept that determines the

overall level of internal trade, and ξ1 is the elasticity of trade costs to distance. Following Ra-

mondo, Rodŕıguez-Clare, and Saboŕıo-Rodŕıguez (2016), I calibrate ξ0 to target a 50% share

of total intra-regional trade. For the elasticity of trade costs to distance, I follow Krebs and

Pflüger (2021) and set ξ1 = 1.56
σ−1

. I use this value instead of the one from Monte, Redding,

and Rossi-Hansberg (2018) since the former is based on internal trade data for Germany.

Remaining parameters {α, κ, σ}. The remaining parameters are the dispersion of produc-

tivity of ideas α, the spatial labor supply elasticity κ, and the elasticity of substitution across

intermediate inputs σ. Regardless of the microfoundation for firms’ R&D, a value of α is

necessary to obtain values for the constant ψ from Equation (1.15). Following the process

for the generation of ideas from Appendix A.4.1, α is the Pareto shape parameter for the

productivity of ideas. I run a parametric fit on the number of 5-year forward citations and set

α = 1.5. This value is similar to previous Pareto parametric fits for the number of forward

citations (Silverberg and Verspagen 2007). For the migration elasticity κ, I follow Peters

(2022) and set κ = 2.12 since it is estimated for the German context. Finally, I follow Broda

and Weinstein (2006) and set σ = 2.5, which is the median elasticity for industrial sectors,

which corresponds to the German context between 1980 and the 2000s.
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Table 5: Summary of calibration

Description Value Identification/Moments

Innovation

γ̃
Spatial knowledge

γ̃ = (0.409) (0.22)
0.409 : IV estimate, Table 2, column 3

spillovers in R&D 0.22 : Lanjouw and Schankerman (2004), Table 2, column 8

ζ Decreasing returns to R&D 0.65 OLS estimate, Table 3, column 3

α Idea productivity dispersion 1.5 Pareto parametric fit

Migration

{
ρR0 , ρL0

}
Migration costs, intercepts

ρR0 = 1.354 26.38% migration rate of inventors

ρL0 = 1.361 24.99% migration rate of workers

{
ρR1 , ρL1

}
Migration costs, elasticities

ρR1 = 1.254
κ

Gravity estimates
ρL1 = 1.277

κ

κ Migration elasticity 2.12 Peters (2022), Table 9

Location fundamentals

Ao Location productivites Recovered, Equation (1.32){
BR
o ,BL

o

}
Location amenities Recovered, Equations (1.27) and (1.29)

Trade

ξ0 Trade costs, intercept 0.17
50% intra-trade shares

(Ramondo, Rodŕıguez-Clare, and Saboŕıo-Rodŕıguez 2016)

ξ1 Trade costs, elasticity 1.56
σ−1

Krebs and Pflüger (2021)

σ Elasticity of substitution 2.5 Broda and Weinstein (2006), Table 5

Notes: This table summarizes the calibration of the model parameters. The first column shows the parameter of interest,
the second column provides a short description, the third column reports the calibrated value, and the fourth column briefly
describes the identification strategy.

1.5 Counterfactuals

In this section, I use the calibrated model to conduct two set of counterfactuals. First, I

quantify the effect of reducing inventor migration costs by 25%. Second, I quantify the effect

of the 2020 German R&D Tax Allowance Act which implemented a 25% subsidy for firms’

R&D expenditure. In each counterfactual, I study the effect of these policies on aggregate

productivity, and explore how these effects depend on spatial knowledge spillovers in R&D.

1.5.1 Reducing inventor migration costs

The model predicts that reducing inventor migration costs µR
od by 25% leads to an increase

of aggregate productivity of 5.87%. This figure is comparable to Bryan and Morten (2019)
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who find that a 30% proportional reduction of both µL
od and µR

od lead to a 7% increase of

aggregate output. Nevertheless, it is surprising that a similar reduction of µR
od can lead to

comparable increases in aggregate productivity or output since inventors comprise a small

share of the population. In that sense, fostering the mobility of the agents behind R&D

could be a cost-effective way to promote economic activity.

Additionally, since the number of inventors in the economy is finite, this policy could

generate heterogeneous effects across locations. In Figure 3 I analyze the productivity gains

of each location, where these gains are measured as

gAo =

(
Apolicy

o − Abaseline
o

Abaseline
o

)
× 100%,

where Apolicy
o is the productivity of location o under the reduction of migration costs for

inventors, and Abaseline
o is productivity of location o at the baseline scenario. The left panel

of the figure shows a map with the location productivity gains of implementing the policy.

The map shows that the policy indeed generates large heterogeneous effects across locations.

At the upper tail of the distribution, there are locations that increase their productivity by

around 14%− 17%. In contrast, at the lower tail, some locations exhibit lower productivity

by around 9%− 11%.

On the right panel of Figure 3, we observe that reducing µR
od exhibits an equalizing effect—

larger clusters at the baseline exhibited decreases in productivity, while smaller clusters

gained productivity—That is, after facilitating the spatial mobility of inventors, they prefer

to move towards smaller clusters. For example, after the policy, a large share of inventors

from Munich and Stuttgart moved to contiguous locations, so they exhibited the largest

productivity gains. Inventors move towards smaller clusters after the policy because they

can earn higher real wages.
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Figure 3: Reduction of inventor migration costs by 25%

(a) Productivity gains, map (b) Productivity gains VS cluster size in logs

Notes: This figure is comprised by two panels. I measure productivity gains as gAo =

(
Apolicy

o −Abaseline
o

Abaseline
o

)
× 100%, where

Apolicy
o is aggregate productivity of location o under the 25% reduction of µR

od, and Abaseline
o is aggregate productivity of

location o at the baseline scenario. On the left panel, I color each location in West Germany according to their value of gAo . On
the right panel, I compare gAo with the number of inventors in each location at the baseline Rbaseline

o .

I now explore how spatial knowledge spillovers in R&D influence the effect of reducing

µR
od on aggregate productivity. In Figure 4, intuitively, we observe that reducing µR

od unam-

biguously increases aggregate productivity. For example, consider the dashed vertical line

for the calibrated value of γ̃ = 0.09. Then, larger reductions of µR
od exhibit larger productiv-

ity gains. More interestingly, the effect of reducing µR
od on aggregate productivity exhibits

complementarity with the value of γ̃. Considering a reduction of 10% (the yellow line),

going from scenario of no spillovers (γ̃ = 0) to doubling the spillovers (γ̃ = 0.09× 2) gen-

erates additional 28pp productivity gains. In contrast, considering a reduction of 25% (the

red line), the same exercise leads to additional 98pp productivity gains. This highlights the

importance of implementing policies that foster both the mobility of inventors and spatial

knowledge spillovers in R&D to promote economic activity.
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Figure 4: Productivity gains VS γ̃, by reduction of µR
od

Notes: This figure shows the relationship between productivity gains gA of reducing µR
od VS spatial knowledge spillovers γ̃. I

measure productivity gains as gA =

(
Apolicy

o −Abaseline
o

Abaseline
o

)
× 100%, where Apolicy

o is aggregate productivity of location o under

the reduction of µR
od, and Abaseline

o is aggregate productivity of location o at the baseline scenario. The horizontal axis exhibits
different values of γ̃, where the vertical dashed line indicates the calibrated value of γ̃ = 0.09. I plot four scenarios ranging from
a reduction of µR

od of 10% (yellow) to a reduction of 25% (red).

1.5.2 2020 German R&D Tax Allowance Act

In this section I evaluate the 2020 German R&D Tax Allowance Act, which introduced a R&D

tax incentive scheme as from January 1st 2020. Under this scheme, firms were entitled to

receive funding for their R&D activities. In particular, this scheme provides a 25% subsidy for

in-house R&D activities regardless of firm characteristics (Deloitte 2020). The model predicts

that implementing an R&D subsidy so = 25% increases aggregate productivity by 4.27%.

In Figure 5 we see that the implications for heterogeneity across locations is drastically

different from the policy of reducing inventor migration costs. First, the left panel shows

that the subsidy increases aggregate productivity everywhere, ranging from 3.5% to 4.5%

gains. Second, the right panel shows that larger clusters are the ones that exhibited larger

productivity gains since they increased even more in size, so the subsidy increased the spatial

concentration of inventors.
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Figure 5: Subsidy for firms’ R&D expenditure by 25%

(a) Productivity gains, map (b) Productivity gains VS cluster size in logs

Notes: This figure is comprised by two panels. I measure productivity gains as gAo =

(
Apolicy

o −Abaseline
o

Abaseline
o

)
× 100%, where

Apolicy
o is aggregate productivity of location o under the R&D subsidy so = 25%, and Abaseline

o is aggregate productivity of
location o at the baseline scenario. On the left panel, I color each location in West Germany according to their value of gAo . On
the right panel, I compare gAo with the number of inventors in each location at the baseline Rbaseline

o .

Now, I now explore how spatial knowledge spillovers in R&D influence the effect of imple-

menting R&D subsidies on aggregate productivity. In Figure 6, intuitively, we observe that

implemeting an R&D subsidy unambiguously increases aggregate productivity. In contrast

with the policy of reducing inventor migration costs, the effect of implementing the subsidy

on aggregate productivity exhibits weaker complementarity with the value of γ̃. Considering

a subsidy of 10% (the yellow line), going from scenario of no spillovers (γ̃ = 0) to doubling the

spillovers (γ̃ = 0.09× 2) generates additional 0.7pp productivity gains. In contrast, consid-

ering a subsidy of 25% (the red line), the same exercise leads to additional 4.7pp productivity

gains.
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Figure 6: Productivity gains VS γ̃, by value of so

Notes: This figure shows the relationship between productivity gains gA of implementing an R&D subsidy so = 25% VS

spatial knowledge spillovers γ̃. I measure productivity gains as gA =

(
Apolicy

o −Abaseline
o

Abaseline
o

)
× 100%, where Apolicy

o is aggre-

gate productivity of location o under the R&D subsidy, and Abaseline
o is aggregate productivity of location o at the baseline

scenario. The horizontal axis exhibits different values of γ̃, where the vertical dashed line indicates the calibrated value of
γ̃ = (0.409) (0.22) = 0.09. I plot four scenarios ranging from so = 10% (yellow) to so = 25% (red).

1.6 Conclusions

In this paper I quantify the importance of spatial knowledge spillovers in R&D for aggregate

productivity. I causally estimate these spillovers by exploiting the historical episode of the

arrival of East German inventors across West Germany after the Reunification of Germany.

I then embed these spillovers into a spatial model of innovation, and use the model to

quantify the importance of these spillovers when implementing policies that promote R&D

activities for aggregate productivity. I show that reducing migration costs for inventors and

subsidies to firms’ R&D activities can substantially increase aggregate productivity, and

spatial knowledge spillovers in R&D is crucial for the effectiveness of these policies.

This paper have abstracted from other different channels that could also contribute ag-

gregate productivity. First, occupational choice between workers and inventors, or firm

selection into R&D through firm heterogeneity could amplify the effect of policies due to

entry of agents into innovation. Second, inter-temporal knowledge spillovers could be intro-

duced in the model to quantify the role of spatial knowledge spillovers in R&D and R&D

policies for long-run growth. Finally, new micro-data on inventors also allows to account for

the importance of firm-level spillovers and the rise of teams. The model is flexible enough
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to easily introduce these mechanisms, I leave these for future research.
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Chapter II. Cultural Proximity and Production

Networks

with Gaurav Khanna and Hiroshi Toma

2.1 Introduction

Non-economic forces, such as culture—, religion, language, values, etc.—drive economic out-

comes. The role of culture on agent behavior has been well documented in entrepreneurship,

loan access, labor markets, marriage, and international trade (Bandyopadhyay, Coughlin,

and Wall 2008; Fisman, Paravisini, and Vig 2017; Goraya 2022; Guiso, Sapienza, and Zin-

gales 2009; Hasanbasri 2019; Macchiavello and Morjaria 2015; Munshi and Rosenzweig 2016;

Rauch 1996; Rauch and Casella 2003; Rauch and Trindade 2002; Schoar, Iyer, and Kumar

2008; Startz 2016; Zhou 1996). At the same time, recent evidence increasingly shows how

inter-firm trade and production networks have important aggregate implications for economic

development and welfare (Antras, Fort, and Tintelnot 2017; Bernard et al. 2009; Bernard,

Moxnes, and Saito 2019; Bernard and Moxnes 2018; Bernard et al. 2022; Dhyne, Kikkawa,

and Magerman 2022; Eaton, Kortum, and Kramarz 2011; Eaton et al. 2016; Huneeus 2018;

Lim 2018; Munshi and Rosenzweig 2016; Oberfield 2018; Taschereau-Dumouchel 2020). De-

spite their parallel importance, the mechanisms by which cultural proximity shapes produc-

tion networks and their aggregate implications remain less understood. Understanding how

and why cultural proximity affects firm linkages and trade, potentially allows policy-makers

to better leverage social inclusion programs and foster economic development. In this pa-

per, we examine how cultural proximity determines connections and trade within production

networks, and quantify the implications of cultural links for welfare and productivity.

We first provide empirical evidence on the role of cultural proximity in inter-firm trade

and the formation of production networks. To do this, we leverage a unique dataset of firm-

to-firm transactions from a large Indian state, along with data on firm owners names and

their cultural proximity derived from India’s caste and religious system. We report three new

stylized facts. First, culturally closer firms report higher sales between them: the higher the

cultural proximity, the higher the trade on the intensive margin. Second, culturally closer
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firms are more likely to ever trade with each other. This means the higher the cultural

proximity, the higher the trade on the extensive margin as well. Third, firms that are

culturally further apart report higher unit prices in their transactions. All these results are

robust to an array of high-dimensional fixed effects, including seller and buyer fixed effects,

origin-by-destination fixed effects (and for specifications with product and time, seller-by-

product, and product-by-month fixed effects).

We then turn to explore the importance of contract enforcement. First, we show sugges-

tive evidence that the effect we find of cultural proximity on trade is driven by differentiated

goods, which often rely on either formal or informal contract enforcement (Nunn 2007; Rauch

1999). Indeed, we find that differentiated goods, are more likely to be produced in and bought

by firms that are located in districts with higher contract enforcement (as proxied by court

delays). We understand these findings as evidence that cultural proximity relates to contract

enforcement and trust (Munshi 2014; Munshi 2019).4

Differentiated goods do not trade in exchanges and are not homogeneous, but are branded

and specific to certain producing firms. In a country with market imperfections as India,

firms can easily renege on their commitments. Suppliers and buyers in differentiated goods

markets are not easily replaceable. In such cases, trade will increase when firms trust and

know each other, that is, when they are culturally close.

We further find that the more varieties a firm sells or buys, the more the trade intensity

is affected by social proximity. We posit that the larger the amount of different varieties a

firm sells or buys, the more firms it has to negotiate with, which increases the contracting

frictions it faces. Then, in order to minimize the contracting frictions they face, firms will

rely more on trading with culturally closer firms they trust.

To analyze whether our results are caused by vertical social hierarchies and discrimination

across cultural groups, we study asymmetric effects in those transactions where one firm is

placed higher than the other based on the caste-based hierarchy, allowing us to test for

preference-based discrimination across the social hierarchy. We do not find much evidence

that hierarchies (and preference-based discrimination) across social groups matter for our

social proximity results. In other tests, we find our results are less likely to be driven by

firms sharing the same language or specialization in the production of certain goods.

Encouraged by these stylized facts, we build a quantitative general equilibrium model

of firm-to-firm trade and cultural proximity. Firms produce goods by combining labor and

intermediate inputs in a CES fashion. Firms sell their goods to a household as final goods

4Munshi (2019) uses survey data to show that Indians trust people from their caste. He also gives
an example on how the Indian diamond industry relies on community networking because of the deficient
contract enforcement.
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and to other firms as intermediates. Firms engage in monopolistic competition, charging a

constant markup on top of their marginal costs. Importantly, we introduce our measure of

cultural proximity as a wedge that affects both trade and matching costs.

The model derives equations that precisely match their empirical counterparts in the

previous section. We use these equations to estimate the key parameters of the model: the

semi-elasticity of the trade cost to cultural proximity and the semi-elasticity of matching cost

to cultural proximity. Our model allows us to estimate both of these parameters externally.

In line with our stylized facts, we find a negative semi-elasticity of both the intensive and

extensive margin of trade to cultural proximity. This implies the closer two firms are in

cultural terms, the lower the trade and matching costs are. Therefore, the higher the cultural

proximity for a pair of firms, the higher the trade is on both the intensive and extensive

margins, and the lower the prices charged.

We use the model and estimated parameters to quantify the implications for welfare and

other aggregate outcomes of implementing different policies. First, we evaluate the effects of

social mixing/inclusion (i.e. firms become culturally the closest possible) and social isolation

policies (i.e. firms become culturally the furthest possible). Second, we study the effects of

a policy that reduces contracting frictions, such that firms rely less on cultural proximity

when trading (i.e. trade and matching costs become less sensitive to cultural proximity). We

find that welfare increases by 1.76 percent under a diversity-friendly social inclusion policy.

In contrast, welfare falls by 1.45 percent when we evaluate the effects of social isolation or

exclusion. Finally, we show that policies that reduce contracting frictions raise welfare by

0.87 percent by reducing the reliance of trade on cultural links.

Figure 7: Probability-weighted sales decomposition of largest cultural groups

(a) Largest Hindu group: Nair (b) Largest non-Hindu group: Muslims

Notes: Figure shows the decomposition across buyers for the largest Hindu and non-Hindu cultural groups measured by
probability-weighted sales. The Nair and Muslims accounted for 4.88 and 11.83 percent of total probability-weighted sales,
respectively.
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The analysis of cultural proximity is especially relevant for developing countries, where

agents face several contracting frictions and, consequently, rely more on non-economic forces

(Boehm and Oberfield 2020; Munshi and Rosenzweig 2016; Munshi 2019). In particular,

India has a society that follows the parameters of a caste system, which also intertwines

with the different religious groups.5 In this case, cultural proximity naturally arises as a

product of the inherent hierarchical structure of the caste system and the different religions.

Related to this, Figure 7 shows an example of how trade between cultural groups occurs,

in a selected subset of our data. We can see that there are cultural groups that are bound

to trade more or less with other cultural groups. We thus ask whether cultural proximity,

measured as the cultural group-based distance between firms, can determine trade.

This paper contributes to two strands of the literature. First, the paper contributes

to the role of cultural proximity on economic outcomes such as trade (Bandyopadhyay,

Coughlin, and Wall 2008; Guiso, Sapienza, and Zingales 2009; Macchiavello and Morjaria

2015; Rauch 1996; Rauch and Casella 2003; Rauch and Trindade 2002; Richman 2006;

Schoar, Iyer, and Kumar 2008; Startz 2016; Zhou 1996), entrepreneurship (Goraya 2022),

finance (Fisman, Paravisini, and Vig 2017), and labor markets (Munshi and Rosenzweig

2016; Hasanbasri 2019). Second, it contributes to work on production networks (Antras,

Fort, and Tintelnot 2017; Bernard et al. 2009; Bernard, Van Beveren, and Vandenbussche

2014; Bernard, Moxnes, and Saito 2019; Bernard and Moxnes 2018; Bernard et al. 2022;

Dhyne, Kikkawa, and Magerman 2022; Eaton, Kortum, and Kramarz 2011; Eaton et al. 2016;

Eaton, Kortum, and Kramarz 2022; Huneeus 2018; Lim 2018; Oberfield 2018; Taschereau-

Dumouchel 2020). We merge these two separate strands of the literature by providing both

evidence and theory on how cultural proximity between firms can shape inter-firm trade, and

what this implies for aggregate welfare. The uniqueness of our data in terms of measuring

firm-to-firm transactions and the cultural group of owners, in combination with substantial

variation across cultural groups, allow us to answer how cultural proximity shapes linkages

and trade across the production network.

The rest of the paper is structured as follows. In Section 2.2 we provide a brief review of

the caste system in India, describe our new datasets and explain how we construct firm-level

trade and cultural proximity variables. In Section 2.3 we report our stylized facts. In Section

2.4 we describe the model. In Section 2.5 we explain how we estimate the key parameters of

the model. In Section 2.6 we analyze counterfactual scenarios. Section 2.7 concludes.

5In this paper, we consider the caste system and the religious groups as a proxy for cultural groups. There
is a large historical legacy for the caste system to be considered as a device for discrimination, which we
consider. Even though there is an active agenda of the government to implement policies that hinder caste-
based discrimination, it is still used by Indians as a way to determine how similar individuals are between
them.
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2.2 Background, data and construction of variables

2.2.1 Caste and Religion in India

India has a society that is heavily influenced by the parameters of a caste system: a hierar-

chical system that has prevailed in the country since around 1,500 BC and that still rules

its economy. According to this classification, people are classified across four possible groups

called Varnas. From the most to the least privileged in hierarchical order, the four Varnas

are Brahmins, Kshatriyas, Vaishyas, and Shudras. The Brahmins have historically enjoyed

the most privileges, and are traditionally comprised of priests and teachers. The Kshatriyas

are next in the hierarchy, usually associated with a lineage of warriors. The Vaishyas are

third and are related to businessmen such as farmers, traders, among others. Finally, the

Shudras are the most discriminated against and are the caste formed to be the labor class.

At the same time, Varnas are comprised by sub-groups called Jatis that were determined

by factors such as occupation, geography, tribes, or language. In that sense, using Jatis as

castes are appropriate for studying economic networks (Munshi 2019), and from here on we

use the notion of Jatis when referring to castes.

We also consider religious groups to define other cultural groups. The caste system is

inherently based on Hindu religion, the predominant religion in India. While there are other

religions in India which do not follow the caste system, they do relate to it: the other non-

Hindu religions work as cultural groups of their own. We leverage information on firm owners

belonging to both caste and religious groups to construct our measure of cultural proximity.

2.2.2 Data

Firm-to-firm trade. We leverage a firm-to-firm trade dataset for a large Indian state pro-

vided by the state’s corresponding tax authority.6 We use daily transactions data from

January 2019 to December 2019, as long as at least one node of the transaction (either ori-

gin or destination) was in the state. This data exists due to the creation of the E-Way bill

system in India on April 2018, where firms register the movements of goods online for tax

purposes. This is a major advantage over traditional datasets collected for tax purposes in

developing countries since the E-Way bill system was created with the purpose of significantly

increasing tax compliance.7

This data is provided by the tax authority of a large Indian state with a diversified

production structure, roughly 50 percent urbanization rates, and high levels of population

6While we use the term ’firm’ in most parts of the paper, these data are actually at the more granular
establishment level.

7For more details about the new E-Way bill system, see https://docs.ewaybillgst.gov.in/
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density. To compare its size in terms of standard firm-to-firm transaction datasets, the

population of this Indian state is roughly three times the population of Belgium, seven times

the population of Costa Rica, and double the population of Chile. In addition, we can

uniquely measure product-specific prices for each transaction, along with the usual measures

of total value traded.

Each transaction reports a unique tax code identifier for both selling and buying firm.

We use these identifiers to merge this data with other firm-level datasets. We also have

information on all the items contained within the transaction, the value of the transaction,

the 6-digit HS code of the traded items, the quantity of each item and the units of the

quantity is measured in. Since the data report both value and quantity of traded items, we

construct unit values for each transaction. Each transaction also reports the pincode (zip

code) location of both selling and buying firms. By law, any person dealing with the supply

of goods and services whose transaction value exceeds 50,000 Rs (700 USD) must generate

E-way bills. Transactions that have values lower than 700 USD can also be registered but it

is not mandatory. There are three types of recorded transactions: (i) within-state trade, (ii)

across-states trade, and (iii) international trade. For the purpose of this paper, we ignore

international trade.

Firm owner names. The information about the name of the firm owners comes from two

different sources. The first source is also provided by the tax authority of the Indian state,

which is a set of firm-level characteristics for firms registered within our large Indian state.

Among these variables, we are provided with the name of the owner and/or of representatives

of the firm.

To obtain firm-level characteristics of firms not registered in this state, we scrape the

website IndiaMART,8 the largest e-commerce platform for business-to-business (B2B) trans-

actions in India. The website is comprised of firms of all sizes. By 2019, the website registered

around 5-6 million sellers scattered all around India. Most importantly, this platform pro-

vides the name of the owner of the firm and the unique tax code identifier. Thus, we use the

platform to obtain these variables for out-of-state firms.

Matching owner names to cultural groups. We follow Bhagavatula et al. (2018) to match

owner names to their Jatis (if the owners are of Hindu religion) or to their religion (in case

the owners are not Hindu). Their procedure consists of using scraped data from Indian

matrimonial websites that contain information on names, castes and religion. They train

a sorting algorithm that uses names as inputs and gives a probability distribution across

8https://www.indiamart.com/

41

https://www.indiamart.com/


cultural groups per name as outputs. We match these probability distributions to each owner

name in our dataset. Notice that our notion of cultural group-belonging is probabilistic and

not deterministic. This probabilistic approach is more relevant to our setup since, when firm

owners trade with each other, they do not know each other’s cultural group ex ante. Our

sample finally consists of 452 cultural groups.

Merged dataset. For the analytical part we merge the three previous datasets. We end

up with a sample that contains information from 22,295 unique firms, of which there are

10,559 sellers and 16,980 buyers. In total, the sample comprises approximately 560 thousand

transactions or 97 billion rupees (around 1.4 billion US dollars). We drop any registered

transaction in which the seller and the buyer is the same parent firm. Each firm is linked

to a unique pincode. Finally, we assign a sector to each firm based on the HS codes of

the goods sold. To provide a summary of the heterogeneity of cultural groups present in the

firm-to-firm trade data, we show the distribution of probability-weighted sales and purchases

across cultural groups in Figure 8.

Figure 8: Probability-weighted sales and purchases across cultural groups

(a) Sales (b) Purchases

Notes: Figure shows the decomposition of the probability-weighted sales and purchases across the 452 cultural groups in our
dataset. The size of rectangles reflects the share of sales and purchases.

2.2.3 Construction of variables

Firm-to-firm trade variables. The firm-to-firm dataset provides information at the trans-

action level between any two registered firms. More specifically, we have information on (i)

transaction-level unique identifiers, (ii) seller and buyer unique identifiers, (iii) the 6-digit

HS description of the traded goods in each transaction, (iv) the total value of the transaction

in rupees per type of good involved in each transaction and (v) the number of units sold of

each good in each transaction.
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For every seller/buyer pair we construct total sales, the total number of transactions, and

unit values. For the total sales, we add up all the sales between each given pair of firms in

our sample. We do the same with the total number of transactions. For obtaining the prices,

we calculate the unit values. To do this, we first calculate the total amount sold and the

total units sold of each good at the 6-digit HS level between each given pair of firms in our

sample. Then, we divide the total amount sold by the number of units sold of each good.

Cultural proximity. Consider the set X of cultural groups, where |X | = X = 452 in our

final dataset. Since not all names are deterministically matched to a cultural group, each

firm in our dataset has a discrete probability distribution over the set X of cultural groups.

In particular, every firm ν has a probability distribution ρν = [ρν (1) , . . . , ρν (X)], such

that
∑X

x=1 ρν (x) = 1. In this part, we distinguish between the probability distribution over

cultural groups of the seller and the probability distribution over cultural groups of the buyer.

Define ρν (x) as the probability of seller ν of belonging to cultural group x. Similarly, define

ρω (x) as the probability of buyer ω of belonging to cultural group x. Based on these two

distributions we construct the following measure of cultural proximity: the Bhattacharyya

(1943) coefficient.

The Bhattacharyya (1943) coefficient between seller ν and buyer ω measures the level of

overlapping between two different probability distributions.9 We define it as

BC (ν, ω) =
X∑

x=1

√
ρν (x) ρω (x).

Because 0 ≤ ρν (x) ≤ 1 and 0 ≤ ρω (x) ≤ 1, we have that 0 ≤ BC (ν, ω) ≤ 1. On the

one hand, BC (ν, ω) = 0 means the seller has a completely different probability distribution

from that of the buyer. In our context, this means the seller and the buyer have no chance

of belonging to the same cultural group or that their cultural proximity is the farthest. On

the other hand, BC (ν, ω) = 1 means the seller has exactly the same probability distribution

of the buyer. This implies that the seller has the same probability of belonging to a group

of certain cultural groups than the buyer or that their cultural proximity is the closest

possible.10 In robustness checks, we use the Kullback and Leibler (1951) divergence measure

9Notice the Bhattacharyya coefficient is not the Bhattacharyya distance. The Bhattacharyya distance
is defined as BD (s, b) = − log (BC (s, b)). We prefer the Bhattacharyya coefficient because it is easier to
interpret.

10For our purposes, it is important that the cultural proximity measure we use is symmetric. To see why,
consider an example where, in our dataset, we have a transaction between a seller ν and a buyer ω, from which
we obtain BC (ν, ω). Further assume that in our dataset we record a second transaction in which the roles
of the firms revert (i.e. the buyer becomes the seller and vice versa), so we calculate BC (ω, ν). Regardless
of the roles the firms take in this second transaction, we want their cultural proximity to remain constant, as
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to measure cultural distance (Appendix B.3.1). All our results are qualitatively similar, and

statistically significant when doing so.

2.3 Stylized facts

Fact 1: Cultural proximity fosters trade. We first discuss results related to the intensive

margin of the firm-to-firm trade. Figure 9 shows the residualized scatterplots between the

Bhattacharyya coefficient and two intensive margin measures: total sales between two firms

and total transactions between two firms. The scatterplots show a higher Bhattacharyya

coefficient (buyer and seller are probabilistically more alike in their cultural group) is related

to a higher amount of sales and transactions.

Figure 9: Effect of cultural proximity on trade, intensive margin

(a) Sales (b) # Transactions

Notes: Results residualized of seller fixed effects, buyer fixed effects and log distance. Equally distanced bins formed over the
X axis. Size of bubbles represents number of transactions in each bin. The higher the Bhattacharyya coefficient, the culturally
closer two firms are.

the membership of cultural groups is fixed. This goal is achieved through the means of a symmetric proximity
measure. Our example shows the Bhattacharyya coefficient complies with this symmetry requirement, as
BC (ν, ω) = BC (ω, ν).

44



Table 6: Effect of cultural proximity on trade, intensive and extensive margins

(1) (2) (3) (4) (5) (6)
Dep. Variable Log Sales Log

Transactions
Log Sales Log

Transactions
Trade

Indicator
Trade

Indicator
BC 0.100*** 0.066** 0.129*** 0.076*** 0.0009*** 0.0010***

(0.033) (0.027) (0.034) (0.028) (0.0001) (0.0001)
Log dist. -0.023 -0.065*** 0.0001

(0.015) (0.011) (0.0000)
Obs. 32,678 32,678 32,843 32,843 5,606,627 5,628,290
Adj. R2 0.415 0.359 0.410 0.356 0.617 0.0106
FE Seller, buyer Seller, buyer Seller, buyer,

origin×dest.
Seller, buyer,
origin×dest.

Seller, buyer Seller, buyer,
origin×dest.

Notes: Columns 1, 2, 3 and 4 show the results of estimating Equation (2.1). Columns 5 and 6 show the results of estimating
Equation (2.2). ***, ** and * indicate statistical significance at the 99, 95 and 90 percent level respectively. Origin-destination
fixed effect considers the district of the seller and the buyer. Standard errors two-way clustered at the seller and buyer level.
Standard errors in parentheses. The higher the Bhattacharyya coefficient, the culturally closer two firms are. Number of
observations varies between specifications due to the dropping of observations separated by a fixed effect (Correia, Guimarães,
and Zylkin 2019).

We now proceed to confirm the findings using a gravity equation. For transactions from

firm ν to firm ω in our sample we estimate

ln y (ν, ω) = ιν + ιω + δBC (ν, ω) + η ln dist (ν, ω) + ε (ν, ω) , (2.1)

where y (ν, ω) is either the total sales n (ν, ω) or total transactions t (ν, ω) from seller ν to

buyer ω, BC (ν, ω) is the Bhattacharyya coefficient, dist (ν, ω) is the Euclidean distance

between the pincodes in which the firms are located, ιν and ιω are seller and buyer fixed

effects. Columns 1-4 of Table 6 present the results of the intensive margin estimation, which

confirm the preliminary findings from Figure 9. Columns 1 and 2 show that, on average, there

will be a higher amount of sales and transactions between a pair of firm when these firms

are more alike in cultural terms. Columns 3 and 4 shows that these results remain strong

after including origin-destination fixed effects, which account for geographic distance but

also control for other features that might arise between a pair of locations such as different

terrains, different languages, location-specific cultural ties, historical ties, etc.

Fact 2: Cultural proximity increases the likelihood of ever trading. Next, we estimate the

extensive margin relationship. Given the size of our full dataset, the number of potential

extensive margin links is computationally large. For tractability, we modify our sample.

In the first place, we construct a sample with all possible combinations of in-state buyers

and in-state sellers with cultural group information. Then, we proceed to drop all potential

transactions that include unfeasible sectoral combinations. This means, we drop the combi-
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nations of firms that are involved in productive sectors that never recorded a transaction in

the data. Finally, we drop all unfeasible transactions based on distance. This is to say, we

drop the combinations of firms where the seller is further away than the maximum recorded

distance for the in-state buyer or vice versa.

Figure 10: Effect of cultural proximity on prices

Notes: Results residualized of seller fixed effects and HS code fixed effects. Sectors defined according to 6-digit HS
classification. Equally distanced bins formed over the X axis. Size of bubbles represents number of transactions in each bin.
The higher the Bhattacharyya coefficient, the culturally closer two firms are.

With this sample, we construct a trade indicator variable tr (ν, ω) which is equal to 1 if

there is any kind of trade between firms ν and ω, and 0 otherwise. With this variable we

estimate a gravity-type specification:

tr (ν, ω) = ι+ ιν + ιω + δBC (ν, ω) + η ln dist (ν, ω) + ε (ν, ω, t) . (2.2)

Columns 5-6 of Table 6 present the extensive margin results. We find that the higher the

Bhattacharyya coefficient, the more likely is that two given firms will trade.

Fact 3: Cultural proximity lowers prices. Figure 10 now uses buyer-seller-product groups

and shows the residualized scatterplots between the similarity measures and the unit prices.

We see the higher the Bhattacharyya coefficient between two firms involved in a transaction,

the lower the price that will be charged. To confirm the results, we work with a seller-buyer-

transaction-good version of our dataset and estimate

ln pg (ν, ω, t) = ιν×g + ιg×t + ιω + δBC (ν, ω) + η ln dist (ν, ω) + ϵg (ν, ω) , (2.3)

where pg (ν, ω, t) is the unit value of good g (at the 6-digit HS classification) sold by firm ν

to firm ω in month t, ιν×g is a seller-good fixed effect and ιg×t is a good-month fixed effect.
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We present the results in Table 7, which confirms the previous findings from the Figure: the

closer the cultural proximity, the lower the unit value of the transactions.

Table 7: Effect of cultural proximity on prices

(1) (2) (3) (4) (5) (6)
Dep. Variable Log Prices Log Prices Log Prices Log Prices Log Prices Log Prices
BC -0.069** -0.069** -0.066** -0.045* -0.040* -0.039*

(0.033) (0.033) (0.033) (0.023) (0.023) (0.022)
Log dist. 0.023 0.023 0.028*

(0.016) (0.016) (0.017)
Obs. 230,744 230,744 226,645 235,001 236,617 230,900
Adj. R2 0.932 0.932 0.935 0.933 0.925 0.936
FE Seller×HS,

buyer
Seller×HS,
buyer,
month

Seller×HS,
buyer,

month×HS

Seller×HS,
buyer,

origin×dest.

Seller×HS,
buyer,
month,

origin×dest.

Seller×HS,
buyer,

month×HS,
origin×dest.

Notes: This table shows the results of estimating Equation (2.3). Good g is defined according to 6-digit HS classification. Prices
trimmed by 4-digit HS code at 5 and 95 percent. ***, ** and * indicate statistical significance at the 99, 95 and 90 percent level
respectively. Origin-destination fixed effect considers the district of the seller and the buyer. Standard errors are multi-way
clustered at the seller, 4-digit HS and origin-destination level. Standard errors in parentheses. The higher the Bhattacharyya
coefficient, the culturally closer two firms are. Number of observations varies between specifications due to the dropping of
observations separated by a fixed effect (Correia, Guimarães, and Zylkin 2019).

2.3.1 Differentiated goods and court quality

To better understand the underlying forces driving these empirical patterns, we explore

the importance of contract enforcement, and cultural hierarchies. First, in this section, we

show evidence that suggests that the effect we find of cultural proximity on trade is driven

by differentiated goods, which often rely on either formal or informal contract enforcement

(Nunn 2007). Then, we find that differentiated goods are more likely to be produced in and

bought by firms that are located in districts with higher contract enforcement (as proxied

by court delays). All in all, these analysis points that the stylized facts are likely driven by

the desire of firms to reduce contracting frictions by trading with firms they trust. Here,

cultural proximity arises as a proxy for knowing and trusting the other firm (Munshi 2014;

Munshi 2019).
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Figure 11: Differentiated goods and court quality by district

(a) Origin district (b) Destination district

Notes: Scatter plot at the district level. Equally distanced bins formed over the X axis. Size of bubbles represents number of
observations in each bin. The larger the log-average number of months for cases to reach a decision, the worse the district’s
court. Differentiated goods according to the conservative classification of Rauch (1999). The log-average number of months
for cases to reach a decision comes from Ash et al. (2021), where for each district court in the 2010-2018 dataset we take into
account the average months in between a case’s date of filing and date of decision.

In order to bring in information on the type of product, we first disaggregate our data at

the seller-buyer-transaction-good level. Then, we classify the goods into differentiated goods

and non-differentiated goods based on the classification developed by Rauch (1999).11 We

estimate the following specification:

lnng (ν, ω, t) = ιν×g + ιg×t + ιω + δBC (ν, ω) + ξ
(
BC (ν, ω)× Idiffg

)
+η ln dist (ν, ω) + ϵg (ν, ω) ,

(2.4)

where ng (ν, ω, t) are the sales going from firm ν to firm ω of good g in month t and Idiffg

is an indicator for differentiated goods.12 Table 8 presents the results for the sales. Our

findings suggest that the baseline results of cultural proximity increasing trade are mostly

driven by differentiated goods.

What could be the reason behind differentiated goods driving the cultural proximity

results? At the international trade level Nunn (2007) suggests contract enforcement is related

11According to Rauch (1999) differentiated goods are the goods not traded in organized exchanges or not
reference priced in commercial listings. Differentiated goods have specific characteristics that “differentiate”
(i.e. specialized goods, branded goods) them from other more homogeneous types of goods. Because of their
relative uniqueness in features, these goods are not as easily replaceable as non-differentiated goods and,
as such, rely more on relationship-specific types of trade. This means sellers and buyers must face search
frictions in order to match to a suitable trade partner and will likely not abandon the commercial matches
they have already made.

12We use both the conservative and liberal classifications from Rauch (1999). The conservative classifi-
cation minimizes the number of goods classified as non-differentiated and, thus, has the largest amount of
differentiated goods. The liberal classification maximizes the amount of goods classified as differentiated and
has the largest number of differentiated goods.
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the production of relationship-specific goods. To analyze this, we construct a measure of

court quality at the district level.13 Using data from Ash et al. (2021) we calculate the

log-average number of months for cases to reach a decision in each district court between

2010 and 2018. The larger the log-average number of months for cases to reach a decision,

the worse quality this court has. Figure 11 shows that, in our dataset, districts with worse

court quality sell and buy less differentiated goods, suggesting that differentiated products

are more likely to be traded when contract enforcement is better.

Table 8: Effect of cultural proximity on trade by types of good, intensive margin

(1) (2) (3) (4) (5) (6)
Dep. Variable Log Sales Log Sales Log Sales Log Sales Log Sales Log Sales
BC 0.099*** 0.018 0.039 0.069** -0.019 0.013

(0.031) (0.050) (0.040) (0.027) (0.048) (0.038)
BC × Idiff,cong 0.122** 0.139**

(0.058) (0.059)
BC × Idiff,libg 0.097** 0.095**

(0.047) (0.047)
Obs. 174,352 174,352 174,352 177,584 177,584 177,584
Adj. R2 0.852 0.852 0.852 0.853 0.853 0.853
FE Seller×HS,

buyer,
month×HS

Seller×HS,
buyer,

month×HS

Seller×HS,
buyer,

month×HS

Seller×HS,
buyer,

month×HS,
origin×dest.

Seller×HS,
buyer,

month×HS,
origin×dest.

Seller×HS,
buyer,

month×HS,
origin×dest.

Notes: This table shows the results of estimating Equation (2.4). ***, ** and * indicate statistical significance at the 99, 95 and
90 percent level respectively. Good g is defined according to 6-digit HS classification. Sales trimmed by 4-digit HS code at 5 and
95 percent. Origin-destination fixed effect considers the district of the seller and the buyer. Standard errors two-way clustered
at the seller and 4-digit HS level. Standard errors in parentheses. The higher the Bhattacharyya coefficient, the culturally closer
two firms are. Number of observations varies between specifications due to the dropping of observations separated by a fixed

effect (Correia, Guimarães, and Zylkin 2019). Idiff,cong indicates the good g is a differentiated one according to the conservative

classification of Rauch (1999). Idiff,libg indicates the good g is a differentiated one according to the liberal classification of
Rauch (1999).

Following an argument similar to Munshi (2019) and Nunn (2007), we interpret these

findings as evidence that cultural proximity relates to contract enforcement and trust. Dif-

ferentiated goods do not trade in exchanges and are not homogeneous, but are branded and

specific to certain producing firms. In a country with market imperfections as India, firms

can easily renege on their commitments. For buyers this could be not much of a hassle when

it comes to homogeneous goods, as their suppliers are easily interchangeable. For sellers,

this could be just a small problem as they can easily find other buyers. However, problems

can arise if firms renege on their commitments related to differentiated goods. Suppliers

13See Ash et al. (2021), Boehm and Oberfield (2020), and Rao (2019) for references that analyze the effects
of court quality in India.
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and buyers in differentiated good markets are not easily replaceable. As a result suppliers

of differentiated goods will only sell to buyers that they know and trust, while buyers of dif-

ferentiated goods will do the same when choosing sellers.14 Therefore, in these cases, trade

will increase when firms trust and know each other, that is, when firms are culturally close.

2.3.2 Hierarchies

To investigate the importance of vertical hierarchies and discrimination across cultural

groups, we study whether there are asymmetric effects in transactions in which one firm

is placed higher than the other based on the Varna-based hierarchy. This is one way of test-

ing for preference-based discrimination across the social hierarchy. We generate indicators

based on which is the Varna or religion for which a firm has the highest probability of be-

longing to.15 We do not find evidence that hierarchies (and preference-based discrimination)

across social groups matter for our social proximity results.

We make use of two different indicators: IνHωL
and IνLωH

. The first one indicates that the

seller belongs to a higher hierarchy than the buyer. The second one indicates the buyer is

placed below the seller in the social hierarchy. We include these two indicators by interacting

them with our measure of cultural proximity. Table 9 presents the results for the intensive

and extensive margins. The baseline category is that both firms belong to the same hierarchy.

First place, we find the baseline coefficient is very similar to those of Table 6. Second, we

find there is no additional effect of cultural proximity when firms are placed differently in

the hierarchy. We conclude that strong asymmetric effects caused by vertical discrimination

across cultural groups are unlikely. The effect of cultural proximity is similar, whether or

not the firms trading belong to the same or different hierarchies.

14We can relate our result to that of Rauch (1999), who mentions that search frictions (i.e. having to
look for a trustworthy supplier) are more important to the trade of differentiated goods than to the trade of
non-differentiated goods.

15While the Varna-based hierarchy only relates to the Hindu religion, we also place other religions in this
hierarchy based on their income levels. We do this to prevent losing a large share of the sample in our
estimations.
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Table 9: Effect of cultural proximity on trade by vertical hierarchies, intensive and extensive
margins

(1) (2) (3) (4) (5) (6)
Dep. Variable Log Sales Log

Transactions
Log Sales Log

Transactions
Trade

Indicator
Trade

Indicator
BC 0.099*** 0.068** 0.129*** 0.079*** 0.0010*** 0.0010***

(0.034) (0.028) (0.035) (0.029) (0.0001) (0.0001)
BC × IνHωL

0.023 0.097 0.008 0.072 -0.0002 -0.0003
(0.113) (0.091) (0.116) (0.092) (0.0003) (0.0003)

BC × IνLωH
0.045 -0.076 -0.027 -0.123 -0.0002 -0.0004
(0.128) (0.102) (0.129) (0.103) (0.0002) (0.0002)

Obs. 30,997 30,997 31,119 31,119 5,456,512 5,477,548
Adj. R2 0.418 0.360 0.412 0.357 0.614 0.0107
FE Seller, buyer Seller, buyer Seller, buyer,

origin×dest.
Seller, buyer,
origin×dest.

Seller, buyer Seller, buyer,
origin×dest.

Notes: Columns 1, 2, 3 and 4 show the results of estimating a modified version of Equation (2.1). Columns 5 and 6 show
the results of estimating a modified version of Equation (2.2). ***, ** and * indicate statistical significance at the 99, 95 and
90 percent level respectively. Origin-destination fixed effect considers the district of the seller and the buyer. Standard errors
two-way clustered at the seller and buyer level. Standard errors in parentheses. The higher the Bhattacharyya coefficient,
the culturally closer two firms are. Number of observations varies between specifications due to the dropping of observations
separated by a fixed effect (Correia, Guimarães, and Zylkin 2019). The subindex that accompanies ν denotes the hierarchical
position of the seller, while the subindex that accompanies ω denotes the hierarchical position of the buyer. H denotes a higher
position and L denotes a lower position. The baseline category is when both firms have the same hierarchical position.

2.3.3 Additional specifications

We examine alternative specifications and heterogeneity in responses that shed light on

various other channels in Appendix B.3.

Alternative cultural proximity measure. As an alternative to the Bhattacharyya coeffi-

cient, we perform estimation exercises using a symmetric version of the Kullback and Leibler

(1951) divergence. Tables B3 and B4 show our baseline findings are robust to this alternative

cultural proximity measure.

Language. We test whether the results we find are driven by language similarity. To do so,

we follow the two linguistic distance measures from kone2018internal. Table B5 shows that

language does not affect the cultural proximity results already established.

Goods specialization. Cultural groups in India are, in many cases, defined by the pro-

duction of specific goods (Munshi 2019).16 Therefore, we analyze if the reason behind the

cultural proximity results is cultural groups specializing in the production of certain goods

16We can also understand this as certain cultural groups specializing in certain occupations.
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and, given this, forming special bonds with their specific set of buyers. In Table B6 we do not

find evidence of good specialization driving the results. This means that cultural proximity

matters for all types of goods: for those in which a cultural group specializes and for those

in which a cultural group does not specialize too.

Number of varieties sold and bought. We analyze whether firms that the social proximity

results prevail for firms that sell and buy more varieties goods. To measure this, we count

how many varieties of inputs a firm buys or how many varieties of goods a firm sells. In

Table B7 we find the more varieties a firm sells or buys, the more the intensity of trade is

affected by social proximity. Our interpretation of these findings is that the more varieties

a firm sells or buys, the more contracting frictions it faces, caused by having to negotiate

with either more suppliers or more clients. These firms, in order to minimize their load of

contracting frictions, will rely more on trading with counterparts in which they trust (i.e.

firms that are culturally close).

2.3.4 Discussion of stylized facts

The stylized facts show that a higher cultural proximity between a pair of firms favors trade

in both the intensive and extensive margins, as well as lowers the price of the goods they

trade. We discuss the possible mechanisms that may give rise to these findings.

Contracting frictions. In Section 2.3.1 we argue that contracting frictions could be the

reason that drives the cultural proximity results. India is a country that suffers from severe

lack of contract enforcement. A priori, a buyer may not know if the seller will deliver the

goods under the agreed conditions (delivery, quality, etc.). Likewise, a priori, the seller

may not know if the buyer will pay under the agreed conditions. This means buyers and

sellers incur contracting frictions to find suitable trading schemes or partners (Boehm and

Oberfield 2020). Quantity-wise and matching-wise, this lowers trade as firms must pay a

matching cost. Price-wise, this increases prices as the matching cost is passed down by the

sellers to the aforementioned prices.

In this case, cultural proximity can work as a proxy for information and trust: culturally

close firms may know and/or trust each other, and/or informally enforce contracts with social

and reputational pressures. The higher the cultural proximity, the lower the contracting

frictions. Therefore, there would be more trade and lower prices, which is consistent with

our previous findings. In Section 2.4 we present a simple theoretical framework in which

cultural proximity affects contracting frictions and affects trade and prices. While our model

is agnostic about why cultural proximity bridges the wedges in prices, the above discussion
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suggests that if contracting frictions drive initial trade barriers, then cultural proximity may

reduce such frictions.

Preference-based mechanisms. We argue the results are unlikely to emerge from buyers

having an inherent preference for buying from sellers culturally close to them. We could

model this preference as a demand shifter that is active for those sellers that are close in

cultural terms. While this would certainly increase the quantity traded, it would increase

the price of traded goods, a result that is not consistent with our previous findings.

The stylized facts can arise from having sellers that show a preference for selling to buyers

that are culturally close. It would imply the introduction of a supply shifter that is active

for those buyers that are culturally close to the seller. Yet, this channel is unlikely, as in

the presence of profit maximizing firms, such firms may be competed out of the market.

Discrimination from high-caste cultural groups against low-caste cultural groups may again

reduce trade. Yet, in Section 2.3.2 we find this to be an unlikely driver of our empirical

patterns. That is, we find there is no additional effect of cultural proximity when firms

are placed differently in the hierarchy. As such, we detect no asymmetric effects caused by

vertical discrimination across cultural groups.

2.4 Model

In this section we describe the model environment and define the equilibrium of the model,

and Appendix B.4 contains further details.

2.4.1 Environment

Following Bernard et al. (2022), we build a quantitative firm-level production network model

with heterogeneous firms and endogenous network formation. We modify the original setting

to not only make firms heterogeneous in productivity, but also in their cultural endowments.

We use these cultural endowments to construct a measure of cultural proximity between

firms, which in turn influences trade costs and matching costs.

Firms. There is a continuum of firms in the economy that operate under monopolistic

competition and produce differentiated goods indexed by ω. We consider a roundabout

production economy, so each firm produces by hiring labor from a representative household

and by purchasing intermediate inputs from all the other firms in the economy.

Demand for firms comes from two different sources. First, as mentioned, the output of

each firm is demanded by other firms as intermediate inputs. Second, the output of each
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firm is demanded by a representative household as consumption goods. Firms charge the

same price for its differentiated output to both households and the rest of firms.

Each firm has a technology

y (ω) = καz (ω) l (ω)
αm (ω)1−α , (2.5)

where y (ω) is output, κα ≡ 1
αα(1−α)1−α is a normalization constant, z (ω) is firm-level pro-

ductivity, l (ω) is labor, and m (ω) are intermediate inputs from other firms. In turn, the

intermediate inputs are defined as a CES composite so

m (ω) =

(∫
ν∈Ω(ω)

m (ν, ω)
σ−1
σ dν

) σ
σ−1

,

where m (ν, ω) is quantity of inputs from seller ν to buyer ω, σ > 1 is the elasticity of

substitution across intermediates, and Ω (ω) is the endogenous set of suppliers of buyer ω.

By cost minimization we get

c (ω) =
P (ω)1−α

z (ω)
, (2.6)

where P (ω) ≡
(∫

ν∈Ω(ω)
p (ν, ω)1−σ dν

) 1
1−σ

is a CES price index across prices of intermediates,

and labor is the numeraire good, so w = 1. Profit maximization subject to demand generates

constant markup pricing such that

p (ν, ω) = µc (ν) d (ν, ω) , d (ν, ω) ≥ 1, (2.7)

where d (ν, ω) is a pricing wedge that increases the price that seller ν charges to buyer ω,

and µ ≡ σ
σ−1

is the markup. We will define this wedge in the following paragraphs. We now

derive the demand for intermediates, so

n (ν, ω) = p (ν, ω)1−σ P (ω)σ−1N (ω) , (2.8)

whereN (ω) =
∫
ν∈Ω(ω)

n (ν, ω) dν is the total intermediate purchases by buyer ω and n (ν, ω) ≡
p (ν, ω)m (ν, ω) is the value of purchases from seller ν to buyer ω. From Equation (2.8) we

can obtain the gravity equation as

ln (n (ν, ω)) = ιν + ιω + (1− σ) log (d (ν, ω)) , (2.9)

where ιν and ιω are seller and buyer fixed effects. This gravity equation relates directly to
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Equation (2.1). Lastly, we assume the wedge is a function of different trade costs, including

cultural proximity between firm owners due to ethnicity. Thus, we have

d (ν, ω) = exp (β1dist (ν, ω) + β2BC (ν, ω)) , (2.10)

where the parameters β1 and β2 are trade cost semi-elasticities. The wedge will be larger the

longer the geographic distance and the lower the cultural proximity. From Equation (2.7)

we have that the higher the cultural proximity, the lower the prices, which relates to stylized

Fact 3. Likewise, from Equation (2.9) we have that the higher the cultural proximity, the

higher the intermediate sales, which relates to stylized Fact 1.

Households. There is a representative household that demands goods from firms and inelas-

tically supplies labor to them. To simplify, the representative household exhibits the same

elasticity of substitution across goods σ as from firms. So, the representative household

solves

max
{y(ω)}

(∫
ω∈Ω

y (ω)
σ−1
σ dω

) σ
σ−1

, s.t.

∫
ω∈Ω

P (ω) y (ω) dω ≤ Y,

where P (ω) is the price the household pays for good sold by ω, Ω is the set of firms in the

economy, and Y is total income. This generates the demand for good ω

x (ω) = P (ω)1−σ P σ−1Y, (2.11)

where x (ω) ≡ P (ω) y (ω) is the value of purchases from ω, and P ≡
(∫

ω∈Ω P (ω)1−σ) 1
1−σ is

a CES price index.

2.4.2 Equilibrium given production network

Here, we lay out the equilibrium conditions conditional on the structure of the network.

Conditional on the formation of the network, firms only differ in productivity z, so we now

identify each firm according to its productivity. Based on the price index of all of the goods

acquired by firm z
′
, we get

P
(
z
′
)1−σ

= µ1−σ

∫
P (z)(1−α)(1−σ) zσ−1d

(
z, z

′
)1−σ

l
(
z, z

′
)
dG (z) , (2.12)

where l
(
z, z

′)
is the share of sellers of productivity z that sell to buyers with productivity

z
′
, also called the link function. Now, total sales of firm z is the sum of sales to household
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plus intermediates, so

S (z) =
[
µ1−σP (z)(1−α)(1−σ) zσ−1

]
×[

Y
P 1−σD (z)1−σ +

(
1−α
µ

)(∫ [
d
(
z, z

′)1−σ
P
(
z
′)σ−1

S
(
z
′)]

l
(
z, z

′)
dG
(
z
′))]

,

(2.13)

where D (z) =
∫
ω∈Ω(ν)

d (ν, ω) dω =
∫
d
(
z, z

′)
l
(
z, z

′)
dG
(
z
′)

is the aggregated wedge for

firm of productivity z.

2.4.3 Endogenous network

We endogeneize the formation of the production network by laying out the maximization

problem of firms and how cultural proximity influences it. In particular, we allow for the

cost of sellers and buyers matching to depend on their cultural proximity, which we can then

estimate from the data. Before the formation of the network, firms are characterized by

the tuple λ = (z,ρ), where z is productivity, and ρ is the vector of probabilities of firm λ

belonging to each cultural group. We can then construct a measure of cultural proximity

according to the Bhattacharyya coefficient, such that

BC
(
z, z

′
)
=

√∑
x

ρz (x) ρz′ (x).

Now we describe how firms match. A seller z trades with a buyer z
′
only if it is profitable

for the seller to do. To trade, the seller incurs in a pairwise matching cost F
(
z, z

′)
.17 Then,

the share of seller-buyer pairs
(
z, z

′)
is

l
(
z, z

′
)
=

∫
I
[
ln
(
π
(
z, z

′
))

− ln
(
F
(
z, z

′
))

− ln
(
ϵ
(
z, z

′
))

> 0
]
dH
(
ϵ
(
z, z

′
))

,

(2.14)

where π
(
z, z

′)
are the profits for seller z of selling to buyer z

′
and ϵ is an i.i.d. log-normal

noise variable with mean 0 and standard deviation σln(ϵ). Intuitively, the link function can

be understood as the probability a seller z will match to a seller z
′
. We define the pairwise

matching cost to be related to the cultural distance. Then

F
(
z, z

′
)
= κ+ exp

(
γBC

(
z, z

′
))

, (2.15)

where γ measures the sensitivity of the pairwise matching cost to the cultural distance

17We assume that the matching cost is paid by the seller. For a further discussion on the importance of
whether the seller or the buyer pays the fixed cost, see Huneeus (2018).
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and κ is a scaling constant. From Equations (2.14) and (2.15), we see that the higher the

cultural proximity, the lower the matching cost and the larger the probability of matching.

This relates to stylized Fact 2.

2.5 Estimation and calibration

Here we explain how we estimate the key parameters of the model on cultural endowments,

(intensive) trade costs, and seller matching costs. We also describe how calibrate the re-

maining parameters of the model.

Cultural endowments ρ. For the cultural endowments, we assume each firm ν has a prob-

ability vector ρν = [ρν (1) , . . . , ρν (452)] of belonging to each of the 452 cultural groups we

observe in the data. We further assume the elements of ρν are randomly drawn from a Dirich-

let distribution, such that ρν (1) , . . . , ρν (452) ∼ D (α1, . . . , α452), where α1, . . . , α452 > 0 are

concentration parameters.18 The probability density function for the Dirichlet distribution

is

ρν (1) , . . . , ρν (452) ∼ D (α1, . . . , α452) =
Γ
(∑452

x=1 αx

)∏452
x=1 Γ (αx)

452∏
k=1

ρν (x)
αx−1 ,

such that ρν (x) ∈ [0, 1] ,
∑452

x=1 ρν (x) = 1, where Γ (.) is the gamma function and
Γ(

∑452
x=1 αx)∏452

x=1 Γ(αx)

is a normalization constant. To ensure the theoretical Dirichlet distribution produces draws

that are similar to the probabilities we see in the data, we estimate the vector

α =
[
α1, . . . , α452

]
parameters by maximum likelihood.19 Let ϱ = {ρ1, . . . ,ρN}, where

N is the total number of firms. Then, the log-likelihood function is

ln pr (ϱ|α) = N ln Γ

(
452∑
x=1

αx

)
−N

452∑
x=1

ln Γ (αx) +N
452∑
x=1

(αx − 1)

(
1

N

N∑
ν=1

ln ρν (x)

)
.

(2.16)

Trade costs d. From Equation (2.10) we need an estimate for for {β1, β2}. We obtain

estimates for these two parameters by linking the theoretical gravity equation (2.9) to the

empirical gravity equation results (Column 1 from Table 9). Thus, we obtain {β1, β2} =

{0,−0.03}.20

18For a given x, the higher this parameter, the more disperse the realizations of ρν (x) are across firms ν.
19For this, we use the Matlab toolboxes fastfit and lightspeed by TomMinka. We present the estimated

parameters in Figure B1 in Appendix A.1.
20Even though the wedge also appears in the price equation 2.7 of the model, we do not estimate this

equation to identify β1 and β2. The reason is that the price equation is not an equilibrium equation, while
the gravity equation is. Also, for our simulations we add a constant to the trade cost, such that the minimum
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Matching cost F . From Equation (2.15), we need an estimate for γ. We do this in two

steps. First, using the extensive margin sample we run the following estimation

ln
[
n
(
z, z

′
)]

= ιz + ιz′ + δBC
(
z, z

′
)
+ γ ln

(
dist

(
z, z

′
))

+ ε
(
z, z

′
)
, (2.17)

where we apply the inverse hyperbolic sine transformation to the dependent variable, so

as to not lose the cases in which there is zero trade. With this we recover

̂ln [n (z, z′)] = ι̂z + ι̂z′ + δ̂BC
(
z, z

′
)
+ η̂ ln

(
dist

(
z, z

′
))

,

where the hats denote estimated parameters and ̂ln [n (z, z′)] are the predicted sales. This

variable predicts what would be the sales for a pair of seller and buyer even in the case they

did not actually trade in the data. Second, we combine and rearrange Equations (2.14) and

(2.15), such that

l
(
z, z

′
)
=

∫
1
[
ln
(
ϵ
(
z, z

′
))

< ̂ln [n (z, z′)]− ln (σ)− γBC
(
z, z

′
)]
dH
(
ϵ
(
z, z

′
))

,

(2.18)

where we use the fact that π
(
z, z

′)
=

n
(
z,z

′)
σ

and replace ln
[
n
(
z, z

′)]
by its estimated

counterpart ̂ln [n (z, z′)].21 We estimate this last equation with a probit regression (assuming

ϵ
(
z, z

′)
is log-normally distributed). We find that γ = −0.13.22

Calibrated parameters and SMM. We calibrate the labor cost share α = 0.52, the value

reported for India for 2019 from the Penn World Tables (Feenstra, Inklaar, and Timmer

2015). This value also considers the informal sector, which plays a large role in India. For

the markup we use µ = 1.34, which is the median markup across all Indian sectors reported

by (De Loecker et al. 2016). This markup implies an elasticity of substitution across suppliers

σ = 3.94. Following Bernard et al. (2022) we normalize the total number of workers L = 1,

take the nominal wage as the numeraire so w = 1, and set the total number of firms N = 400.

For the log-productivity distribution, we assume a mean µln(z) = 0. The remaining

parameters are (i) the standard deviation of the log-productivity distribution σln(z) and (ii)

the mean µln(ϵ), (iii) the standard deviation σln(ϵ) of the link function noise distribution

and (iv) the scaling constant for the pairwise matching cost κ. We estimate these four

trade cost is equal to 1. Therefore, in our simulations we have d (ν, ω) = exp (−β2 + β2BC (ν, ω)) .
21For these estimations we ignore the scaling constant κ that appears in Equation (2.15).
22We present the results of the estimation in Table B1 in Appendix A.1. Also, for our simulations we

add a constant to the matching cost, such that the minimum matching cost is equal to κ. Therefore, in our

simulations we have F
(
z, z

′
)
= κ+ exp

(
−γ + γBC

(
z, z

′
))

.
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parameters so as to match targeted moments from the data, using a simulated method of

moments (SMM). We explain this procedure below.

Targeted and untargeted moments. Since the link function noise distribution affects how

firms match between them, to identify the parameters related to this distribution we must

target moments that are related to the extensive margin.

First, we choose to target the mean of the log-normalized number of buyers ln
(

Nb(ν)
N

)
,

where Nb (ν) is the number of buyers a seller ν has; and the mean of the log-normalized

number of sellers ln
(

Ns(ω)
N

)
, where Ns (ω) is the number of sellers a buyer ω has. Because

these two moments are related to magnitude of the matching, they should inform us about

the mean of the link function noise distribution µln(ϵ) and the scaling constant for the pairwise

matching cost κ.

Second, this being mostly a seller-oriented model, to identify the standard deviation

of the link function noise distribution σln(ϵ) we target the variance of the log-normalized

number of buyers ln
(

Nb(ν)
N

)
. Lastly, to identify the standard deviation of the log-productivity

distribution, we must choose a moment that is related to the variance of the intensive margin.

Thus, we target the variance of the log-normalized intermediate sales ln
(

Ñ(ν)
Nb(ν)

)
, where Ñ (ν)

is the total intermediate sales a seller ν makes.

The first untargeted moment we consider is the variance of the log-normalized number

of sellers ln
(

Ns(ω)
N

)
. The second untargeted moment we examine is the variance of the

log-normalized intermediate purchases ln
(

N(ω)
Ns(ω)

)
. The exact definition of the targeted and

untargeted moments, as well as the construction of their empirical counterparts, appears in

Appendix B.2.

Goodness of fit. After our matching procedure, we find the parameters σln(z) = 0.88, µln(ϵ) =

64.30, σln(ϵ) = 10.85 and κ = 14.80. Table B2 in Appendix B.2 shows how the model-based

moments fare against their empirical counterparts. When it comes to the targeted moments,

the model can very closely replicate the empirical ones. For the untargeted moments, the

model gets reasonably close to the data.

2.6 Counterfactuals

We now present the results of various counterfactual exercises. First, we evaluate the effects

of social mixing/inclusion and isolation policies, such that we change the cultural proximity

between firms (in our model terms, changing BC
(
z, z

′)
). Second, we study the effects of a

policy that reduces contracting frictions, such that firms rely less on cultural proximity when

59



trading (in terms of our model, shrinking parameters β2 and γ).

To evaluate each scenario, we measure what happens to various model-based statistics.

Welfare is measured by real wage, W = w
P
. To quantify the impact on aggregate productivity,

we consider a sales-weighted average productivity measure such that Z =
(∑N

ν=1 ϕνz
σ−1
ν

) 1
σ−1

,

where ϕν represents the proportion of the sales of firm ν over the total sales of the economy.

To analyze the impact on the total economic activity, we measure total sales S =
∑N

ν=1 Sν ,

where Sν are the total sales of firm ν. Additionally, we consider the average normalized

intermediate sales mean
[
ln
(
Ñ (ν) /Nb (ν)

)]
, where Ñ (ν) are the total intermediate sales

of seller ν, and the average normalized intermediate purchases mean [ln (N (ω) /Ns (ω))].

For the prices, we compare the changes in the aggregate price index P . Finally, to study

how matching between firms is affected, we present the results for the average normal-

ized number of buyers, mean
[
ln
(

Nb(ν)
N

)]
, and the average normalized number of sellers,

mean
[
ln
(

Ns(ω)
N

)]
.23

2.6.1 Social inclusion and social mixing policies

We analyze the effects of social inclusion or social mixing policies.24 For instance, affirmative

actions programs may help incentivize students from different cultural groups to attend the

same educative institutions. If these students then go on to become owners of the firms in

the future, such policies may increase cultural proximity between these firms, despite the

fact the owners originally belonged to different cultural groups. To analyze the maximum

potential of this policy within our theoretical framework, we propose case Counterfactual

1 (CF1) in which all the firms belong to the same cultural group. This is, we go from the

baseline to BC
(
z, z

′)
= 1 for all z, z

′
, which makes the firms to become the closest possible

in cultural terms. In this scenario, there are no contracting frictions, as firms know and/or

trust each other, and so they pay the minimum trade and matching costs.

Table 10 shows how the model statistics change in each counterfactual with respect to the

baseline. In case CF1, we have that firms become the closest in cultural terms, so trade costs

and matching costs go to their minimum possible. Aligned with our empirical facts, with

lower trade costs, total sales increase by 2.76 percent, while the average intermediate sales

and purchases go up by 1.52 percent and 1.15 percent, respectively. With the lower matching

costs the average number of buyers grows by 1.07 percent, and the average number of sellers

goes up by 1.00 percent. Also, because there are lower trade and matching costs, aggregate

23In contrast to the previous sections, in this part we define the aggregate measures discretely. This is due
to the simulations having a discrete number of firms, rather than a continuum.

24See Munshi (2019) for a brief discussion of policies put forward in India to diminish the effects of castes
through education.
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prices fall by 1.73 percent. With this, welfare increases by 1.76 percent. Besides welfare,

another aggregate measure we analyze is average productivity, which falls by 0.13 percent.

Yet, average productivity masks substantial compositional changes, as these results depend

on whether the less productive firms are selling more or less with respect to the baseline case.

We show in Table 11 that, in case CF1, when trade and matching costs decrease, the less

productive firms match more and sell more, which increases their weight in the aggregate

and lowers average productivity.

Table 10: Effect of cultural proximity on aggregate outcomes (counterfactual scenarios)

CF1: Social in-
clusion/mixing

CF2: Social
isolation

CF3: Reducing
contracting
frictions

Welfare 1.76 -1.45 0.87
Ave. productivity -0.13 0.10 -0.06
Total sales 2.76 -2.23 1.37
Ave. normalized intermediate sales 1.52 -1.20 0.76
Ave. normalized intermediate purchases 1.15 -0.94 0.57
Ave. normalized number of buyers 1.07 -0.87 0.53
Ave. normalized number of sellers 1.00 -0.82 0.50
Agg. price index -1.73 1.47 -0.87

Notes: We present the percentage gains or losses with respect to the baseline scenario. CF1 is a case where all the firms belong

to the same cultural group. This is, we go from the baseline to BC
(
z, z

′
)
= 1 for all z, z

′
, which makes the firms to become

the closest possible in cultural terms. In this scenario, there are no contracting frictions, as firms know and/or trust each other,
and so they pay the minimum trade and matching costs. CF2 is a case where each firm belongs to its own cultural group.

Thus, we have a case where BC
(
z, z

′
)

= 0 for all z, z
′
and z ̸= z

′
, which makes the firms the furthest possible in cultural

terms. Under this scenario, firms incur the maximum contracting frictions, for which they pay the maximum trade cost and
the maximum matching cost. CF3 is a scenario where trade and matching costs become less sensitive to cultural proximity. In
this case parameters β2 and γ shrink by 50 percent.

Table 11: Change in sales by productivity quartiles

CF1: Social in-
clusion/mixing

CF2: Social
isolation

CF3: Reducing
contracting
frictions

1st quartile (most productive) 2.73 -2.21 1.35
2nd quartile 2.91 -2.35 1.44
3rd quartile 2.91 -2.31 1.44
4th quartile (least productive) 2.86 -2.32 1.42

Notes: We aggregate the sales of all firms that belong to a productivity quartile and calculate their percentage variation with
respect to the baseline. CF1 is a case where all the firms belong to the same cultural group. This is, we go from the baseline

to BC
(
z, z

′
)
= 1 for all z, z

′
, which makes the firms to become the closest possible in cultural terms. In this scenario, there

are no contracting frictions, as firms know and/or trust each other, and so they pay the minimum trade and matching costs.

CF2 is a case where each firm belongs to its own cultural group. Thus, we have a case where BC
(
z, z

′
)
= 0 for all z, z

′
and

z ̸= z
′
, which makes the firms the furthest possible in cultural terms. Under this scenario, firms incur the maximum contracting

frictions, for which they pay the maximum trade cost and the maximum matching cost. CF3 is a scenario where trade and
matching costs become less sensitive to cultural proximity. In this case parameters β2 and γ shrink by 50 percent.
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2.6.2 Social isolation policies

Since the rise of democracy, efforts have been put in place by the Indian government to

end the influence of the caste system in the modern economy (Iyer, Khanna, and Varshney

2013; Munshi 2019). What would have happened if sociopolitical forces perpetuated the

social stratification of the caste system? To analyze the maximum impact of social isolation

policies we propose case Counterfactual 2 (CF2), where we examine an extreme case in which

each firm belongs to its own cultural group. Thus, we have a case where BC
(
z, z

′)
= 0 for

all z, z
′
and z ̸= z

′
, which makes the firms the furthest possible in cultural terms. Under this

scenario, firms incur the maximum contracting frictions, for which they pay the maximum

trade cost and the maximum matching cost.

When all firms are the furthest in cultural terms, trade costs and matching costs are

the highest. Table 10 presents that in case CF2 total sales fall by 2.23 percent, average

intermediate sales go down by 1.20 percent, average intermediate purchases fall by 0.94

percent and prices increase by 1.47 percent. There are also less matches, which is reflected

by an average number of buyers that falls by 0.87 percentage points, and an average number

of sellers that falls by 0.82 percentage points. As a result, welfare falls by 1.45 percent.

Average productivity increases by 0.10 percent, relative to the baseline. Table 11 shows that

in case CF2, every firm loses in terms of sales. However, the firms that lose the most are

the least productive, which shrinks their weight in the aggregate and, thus, drives average

productivity up.

2.6.3 Reducing contracting frictions

Now we turn to study which would be the effect of reducing contracting frictions. For

instance, related to our discussion of Section 2.3.1, a policy that improves the quality of

courts would reduce the contracting frictions firms face. In terms of our framework, this

means that the trade cost and the matching cost become less sensitive to our measure of

cultural proximity. Thus, in the Counterfactual 3 (CF3) we analyze a case where parameters

β2 and γ shrink by 50 percent. This captures how reducing contracting frictions affect

aggregate outcomes via the channel of trade becoming less reliant on cultural proximity.25

Table 10 shows that after reducing contracting frictions in case CF3 the total sales go up

by 1.37 percent, average intermediate sales increase by 0.76 percent, average intermediate

purchases grow by 0.57 percent and prices fall by 0.87 percent. The number of matches

also increases, with the average number of buyers going up by 0.53 percent and the average

25Reducing contracting frictions may affect aggregate outcomes through other channels as well, such as
more investments in differentiated products, and more trade across longer distances.
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number of sellers rising by 0.50 percent. Thus, welfare increases by 0.87 percent. Average

productivity goes down by 0.06 percent. In Table 11 we show that in case CF3 all firms

gain in terms of sales with respect to the baseline. Nonetheless, it is the lesser productive

firms that gain the most, such that their weight in the aggregate increases. This drives the

average productivity down.

2.7 Conclusions

We shed light on how cultural proximity shapes the formation of production networks and its

implications for welfare. We first provide empirical evidence on the role of cultural proximity

for inter-firm trade and the formation of production networks, by leveraging a new dataset

of firm-to-firm transactions from a large Indian state, along with data on firm owner names

and their cultural proximity derived from India’s caste and religious system.

We report three new stylized facts. First, culturally closer firms report higher sales

between them. That is, the higher the cultural proximity, the higher the trade in the intensive

margin. Second, firms that are culturally closer are more likely to ever trade with each

other. This means the higher the cultural proximity, the higher the trade in the extensive

margin. Third, firms that are culturally further apart report higher unit prices in their

transactions. We show evidence that suggests that the effect we find of cultural proximity

on trade is stronger for differentiated goods, which often rely on either formal or informal

contract enforcement (Nunn 2007; Rauch 1999). Indeed, we find that differentiated goods

are more likely to be produced in and bought by firms that are located in districts with

higher contract enforcement, as proxied by court delays. We understand these results as

evidence that cultural proximity relates to contract enforcement and trust (Munshi 2014;

Munshi 2019).

We build a quantitative general equilibrium model of firm-to-firm trade and cultural

proximity. We introduce our measure of cultural proximity as a wedge that affects trade and

matching costs, and estimate the key parameters of the model: the semi-elasticity of the trade

cost to cultural proximity and the semi-elasticity of matching cost to cultural proximity. We

use the model and estimated parameters to quantify the implications for welfare and other

model-based statistics of implementing different policies. Welfare increases by 1.76 percent

when we evaluate a social inclusion policy, falls by 1.45 percent under social isolation and

increases by 0.87 percent when reducing contracting frictions makes firms less reliant on

cultural proximity.

In contexts like India, cultural and social networks may be used informally to overcome

the lack of formal institutions that uphold contracts. Our paper is among the first to establish
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the consequences of these cultural ties in the context of trade. We closely study how social

relationships influence firm-level decisions and quantify its importance for welfare, both

empirical and quantitatively. Our results have strong implications for policy. Promoting

social inclusion and mixing via diversity-friendly policies can help facilitate matches and

trade, with substantial implications for aggregate output and welfare. Furthermore, investing

in reducing contracting frictions will allow firms to not have to rely on cultural ties, and

so facilitate matches with more productive and low-cost suppliers, once again improving

economic well-being.
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Chapter III. Firm-level Elasticities of Substitution

and Production Networks

with Devaki Ghose and Gaurav Khanna

3.1 Introduction

The ability of firms to substitute inputs across suppliers is critical for the resilience of supply

chains and the transmission of supply shocks. If it is difficult for firms to substitute across

suppliers after an adverse supply shock, the shock will amplify by transmitting further down-

stream through the supply chain. The importance of this mechanism was reflected during

the Covid-19 pandemic, where supply chain disruptions drove dramatic reductions in GDP

worldwide. For instance, India reported a −7.3% growth rate for the 2020/21 financial year,

one of the most significant contractions worldwide and the largest decline in GDP since In-

dia’s independence.26 In this paper, we quantify the importance of firm-level elasticities of

substitution across suppliers of the same intermediate input to explain large fluctuations in

GDP. We provide new estimation strategies and estimates for these elasticities by leveraging

regional variation in supply-side shocks induced by the Indian government’s massive lock-

down policy. We show that this elasticity is key to partly explaining the dramatic decline of

the Indian economy during the Covid-19 pandemic. Using new big data computational tech-

niques, we quantify this decline directly using information on the economy-wide firm-to-firm

network.

We pose two main research questions. First, are suppliers of intermediate inputs within an

product category complements or substitutes? The answer to this question determines how

shocks propagate throughout supply chains. We expect shocks to propagate less across firm

networks if input-suppliers are substitutable. However, if input-suppliers are complements,

the effects of adverse shocks can easily propagate through buyer-supplier networks. Second,

we ask, how does this newly estimated elasticity affect firm-level sales, and ultimately GDP,

by propagating and amplifying shocks through firm-level input-output linkages?

26https://www.economicsobservatory.com/how-has-Covid-19-affected-indias-economy. More
broadly, GDP fell by −3.3% and −2.2% during the 2020/21 financial year for emerging market and
developing countries, respectively.
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Two unique features of our setting allow us to answer these questions credibly. First,

India had a distinct mosaic of lockdown policies, whereby the roughly 600 districts were

classified into three different zones with varying degrees of restrictions. This allows us to

isolate variation in the ability to trade and transport goods over this period. Second, we

obtain new granular and high-frequency administrative data on the universe of establishment-

to-establishment transactions for a region in India, with unique information on unit values

and HS-product classifications. These data, while not used before, allow us to estimate new

elasticities at the firm (rather than industry) level, and across different suppliers of a product

(rather than across products).

We find that inputs within the same HS-4 product category, but across different suppliers

are highly complementary. Our estimated elasticity of substitution across suppliers of the

same product is 0.55. In various specification tests employing different combinations of

fixed effects and different sources of variation, we find that the estimated elasticities lie

within a range of 0.49 to 0.65. Our new elasticities show that even within the same HS-4

product category, inputs across firms are highly complementary. The elasticities are similar

at the HS-6 product level, and even smaller at the HS-8 product level.27 As such, even

at the very micro level, firm-specific negative shocks contribute to GDP fluctuations. In

contrast, Atalay (2017) estimate elasticities at the industry (rather than firm) level. We also

estimate the more aggregate firm-level elasticity of substitution across different industries,

and find complementarity across industries, in line with Atalay (2017) and Boehm, Flaaen,

and Pandalai-Nayar (2019).

As discussed by Taschereau-Dumouchel (2020) and Baqaee and Farhi (2019), the liter-

ature so far provides little guidance about estimates of the firm-level elasticity of substi-

tution between suppliers within product categories, even though it is a crucial parameter

driving the propagation of shocks. While other work estimates elasticities of substitution

across industries (Atalay 2017), across products from different countries (Boehm, Flaaen,

and Pandalai-Nayar 2019), or across intermediate goods (Carvalho et al. 2021; Peter and

Ruane 2022), such estimates do not yet exist for substitution elasticities across suppliers

within the same product category. Estimating elasticities of substitution across different

suppliers has been especially challenging for two reasons. First, it is difficult to find detailed

information on firm-to-firm transactions with product-specific unit values, reported by each

firm. Second, it is challenging to find exogenous sources of variation in firm-level prices

27We use the term“product” and“product category” interchangeably, and define whether we refer to HS-4,
HS-6 or HS-8 codes when relevant. We use the term “industry” to refer to the broad HS Sections.
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(rather than product-level prices) that allows one to credibly estimate these elasticities.

We provide estimates of firm-level elasticities of substitution across suppliers within the

same product by leveraging the nationwide, sudden and unprecedented lockdown imposed

by the Indian government in March 2020. Importantly, these lockdowns were not homoge-

neous: districts were categorized into Green (mild lockdown), Orange (medium lockdown)

and Red (severe lockdown). Since the lockdowns were sudden and unexpected, they were

likely implemented independent of economic fundamentals, and induced strong variation in

transactions between firms across India.28 We use this variation to estimate the firm-level

elasticities of substitution across suppliers.

Yet, Covid-19 was not just a supply shock. Baqaee and Farhi (2020) point out the pan-

demic outbreak was a combination of exogenous shocks to the quantities of factors supplied,

the productivity of producers, and the composition of final demand by consumers across

industries. To estimate the elasticity of substitution across suppliers of inputs, we lever-

age variation in input prices driven by the sudden restrictions in economic activity due to

lockdowns in districts where these suppliers were located. In addition, we leverage variation

in trade costs arising from restrictions in economic activity in districts through which the

goods need to pass through, from the seller to the buyer. While our instruments help derive

the necessary variation, to further isolate supply shocks from other shocks, we control for

an entire array of high-dimensional fixed effects, such as product-by-month (to account for

product-level shocks) and buyer-by-month fixed effects (to account for demand-side shocks).

Given the richness of our product data, we can also include buyer-by-product and seller-by-

product fixed effects. We further control for various other factors, such as firms’ exposure

to foreign shocks transmitted through trade Hummels et al. (2014), and the caseload and

severity of Covid-19 cases. Yet, given the expectations that the shock was likely to be short-

lived, our estimates are relevant for settings with short-lived crises, rather than longer-term

structural changes.

In this spirit, we embed our elasticities in a standard network model à la Baqaee and

Farhi (2019) augmented with firms and find that the quarterly fall in GDP induced by

a negative 25% shock to red-zone firms would be 2.68pp less in a model where firms in

the same HS-4 product/industry are considered substitutes (ϵ = 2) and 0.99pp more when

firms in the same HS-4 product are considered almost Leontief (ϵ = 0.001) compared to the

baseline case (ϵ = 0.55).29 In policy counterfactuals, we show that the fall in GDP is much

28https://www.bbc.com/news/world-asia-india-56561095, https://thewire.in/government/

india-Covid-19-lockdown-failure
29We find that a 25% productivity shock to firms in the red zone reduces GDP by 10.95%. As an empirical

67

https://www.bbc.com/news/world-asia-india-56561095
https://thewire.in/government/india-Covid-19-lockdown-failure
https://thewire.in/government/india-Covid-19-lockdown-failure


larger if the most connected firms are affected compared to the least connected firms or

a random set of firms for a given firm size. The importance of the most connected firms

increases non-linearly with the size of the negative productivity shocks and decreases as firms

become more and more substitutable. Our experiment suggests that for our baseline value of

elasticity of substitution (ϵ = 0.55) and a negative productivity shock of 45% if governments

save the better-connected firms, given the same firm sizes, compared to randomly targeting

firms, the fall in GDP would be about 0.20pp less and 0.31pp less compared to targeting

the least connected firms. Finally, we quantify how important it is to consider a firm’s

indirect connectivity in understanding how shocks to the firm can affect aggregate GDP.

To be precise, a firm’s indirect connections measure not only the number of direct buyers

of a supplier but also the buyers’ buyers and their buyers, and so on. We find that under

our estimated elasticity of (ϵ = 0.55) and a negative productivity shock of 25%, the fall in

GDP would be 2.56pp less if the government were to bail out firms on the basis of total

connectivity as opposed to direct connectivity (counting only the number of direct buyers

of a supplier). We see that as the level of the negative productivity shock increases, the

difference in aggregate GDP between these two sets of experiments rises, emphasizing the

importance of measuring a firm’s indirect connections as well.

This paper has three main sections. First, we present reduced-form evidence on the

impact of adverse supply shocks on key firm-level variables such as unit values (prices)

and the number of transactions (quantities). We leverage the Indian government’s sudden

lockdown measure that affected firm-to-firm trade across districts, depending on whether

firms fall in the Red zone (strict lockdown), Orange zone (moderate lockdown), or Green

zone (mostly no lockdown). We find that the prices of intermediate inputs rose during

the lockdown, especially if either buyers or sellers were located in Orange or Red zones.

In districts where the seller is in a strict lockdown zone (orange or red), transactions fell

dramatically, compared to either the case where the buyer is in a lockdown zone or both are

in green zones.

Second, we modify a standard multi-sector firm-level model of input-output linkages by

augmenting the production function with substitution across suppliers within the same prod-

uct category. We derive analytical expressions that relate the relative values of quantities

purchased of the same product from different suppliers, to the equilibrium relative prices.

That is, within each product category, we quantify how substitutable the different suppliers

are. We find that this elasticity of substitution is close to 0.55 for suppliers of an HS-4

benchmark, the state’s annual GDP fell by 11.3% in 2020/21.
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product, and somewhat smaller for HS-6 and HS-8 products. Thus, following Baqaee and

Farhi (2020), after considering second-order effects, adverse firm-level shocks get amplified in

the aggregate by propagating through firm-to-firm linkages while positive shocks get damp-

ened. We further explore how these elasticities differ by industry (HS Section), and find

that in a handful of industries, suppliers within the same industries are actually substitutes,

whereas in others, they are highly complementary. This shows that we should be mindful

of heterogeneity across industries in understanding how shocks propagate through supply

chains.

Finally, we use the estimated elasticities to analyze how input complementarities at the

firm level affect aggregate economic outcomes, and so, how important these complementar-

ities are in explaining GDP declines during the Covid-19 pandemic. We find that a 25%

productivity shock relegated only to firms in the red zone reduces overall GDP by 10.96%.

This fall would be 2.02pp less in a model where firms in the same product category are substi-

tutes (ϵ = 1.75), and 0.75pp more when firms in the same HS-4 category are almost Leontief

(ϵ = 0.001). Given that the quarterly GDP of this state was close to 32.5 billion USD in

2020, the additional losses due to firm-level complementarities translate into 655 million USD

(about 19 USD per capita per quarter), compared to the case when firms are substitutes.

Next, we investigate whether aggregate GDP losses in the face of large productivity shocks

are less if policy-makers allow large firms (high final sales) or more connected firms (more

direct and indirect linkages) to operate. We show that as the level of complementarity and

the magnitude of the adverse shock increases, it pays more to save the more connected firms.

Much importance, both in policy and academic circles, has been paid to large firms, as Hul-

ten (1978) emphasized the importance of firm sizes in the propagation of shocks through

production networks. We show that in the face of large adverse shocks and high levels of

complementarity across suppliers, the more connected firms are more important than large

firms in shock propagation through the network.

Related work. Our paper connects with two strands of literature. First, we speak to the

literature on shock propagation and amplification through supply chains and production

networks (Barrot and Sauvagnat 2018; Carvalho et al. 2021; Peter and Ruane 2022; Boehm,

Flaaen, and Pandalai-Nayar 2019; Korovkin and Makarin 2020; Ferrari 2022). There are at

least three challenges in this literature. First, most firm-to-firm data either do not contain

product-level (unit) prices from each supplying firm, or lack the required variation in such
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prices to estimate firm-level elasticities of substitution across suppliers.30 Second, and relat-

edly, limited identifying variation in prices at the buyer-supplier level allows existing work to

estimate substitution elasticities across products/industries or across domestic and foreign

industries, but not across suppliers within a product category. In contrast, we provide one of

the first estimates of the elasticity of substitution across suppliers within a product category:

a parameter that is crucial in determining how shocks propagate. Third, the lack of firm-level

elasticities across suppliers has so far constrained our assessment of the importance of nodal

firms, such as the largest or the most connected firms, in the propagation of shocks through

production networks.

We contribute to the literature in each of these dimensions. First, we measure unit prices

and quantities at the seller-buyer-product-transaction level. We derive price changes from

supply and transportation disruptions in lockdown-affected districts and estimate the firm-

level elasticity of substitution between suppliers within a product category. We then quantify

this elasticity’s importance for amplifying firm-specific supply shocks through a roundabout

production network (Baqaee and Farhi 2019). We address previously unanswered questions

on the importance of nodal or large firms in shock amplification. We exploit computational

innovations in big data to compute the second-order effects of productivity shocks using the

entire matrix of production linkages. This innovation helps quantify the non-linear effects

of productivity shocks directly using the network, without relying on approximations using

final sales.31

Our paper is also related to research on trade collapses during adverse shocks (Behrens,

Corcos, and Mion 2013; Giovanni and Levchenko 2009; Bricongne et al. 2012), and shock

transmission through GVCs during Covid, via disruptions to imports/exports or aggregate

production (Bonadio et al. 2021; Baqaee and Farhi 2020; Cakmakli et al. 2021; Demir and

Javorcik 2020; Gerschel, Martinez, and Mejean 2020; Heise et al. 2020; Lafrogne-Roussier,

Martin, and Méjean 2021; Chakrabati, Mahajan, and Tomar 2021). In contrast, we analyze

how domestic transactions were affected during Covid lockdowns in a large developing coun-

30Carvalho et al. (2021) observe a binary measure of whether firms were connected via buyer-supplier
relationships rather than quantities and unit values associated with such transactions. They use a pro-
portionality assumption which precludes estimating the elasticity of substitution across suppliers within a
product category, as a buyer sourcing from two suppliers in the same industry will source the same amount
given the assumption. Although lacking firm-to-firm price data, Dhyne, Kikkawa, and Magerman (2022)
structurally estimate a similar elasticity in the context of imperfect competition models where they restrict
the elasticity to be larger than 1 for mark-ups to be relevant.

31As firm-to-firm data become common (Panigrahi 2021; Demir et al. 2021; Dhyne, Kikkawa, and Mager-
man 2022; Alfaro-Urena, Manelici, and Vasquez 2020), our methods can be used to quantify shock propaga-
tion through large/complex networks.
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try. Our key policy motivation stems from the observation that policymakers worldwide are

interested in quantifying the trade-off between strict lockdowns that prevent the spread of

the virus but affect GDP through complex buyer-seller networks and more lenient measures

that increase production and trade but potentially spread the virus. More importantly, even

beyond the immediate Covid crisis, our estimates of how substitutable suppliers are within a

product category will help policymakers quantify the economy-wide effects of any disruptive

events (e.g., natural disasters or sanctions) on trade and production, that are expected to

be reasonable short lived.32

3.2 Data and Context

Firm-to-firm trade. Our primary data source is daily establishment-level transactions with

distinct information on establishment locations.33 This data is provided by the tax author-

ity of a large Indian state with a diversified production structure, roughly 50% urbanization

rates, and high levels of population density. To compare its size in terms of standard firm-

to-firm transaction datasets, the population of this Indian state is roughly three times the

population of Belgium, seven times the population of Costa Rica, and two times the popu-

lation of Chile.

The data contains daily transactions between all registered establishments in this state

and all registered establishments in India and abroad, from April 2018 to October 2020.

This data is collected by the tax authority’s E-way Bill system to increase compliance for

tax purposes. This is an advantage over standard VAT firm-to-firm datasets with severe

under-reporting, in developing countries. By law, anyone dealing with the supply of goods

and services whose transaction value exceeds Rs 50,000 (700 USD) must generate E-way bills.

Transactions with values lower than 700 USD can also be registered, but it is not mandatory.

The E-way bill is generated before transport (usually via truck, rail, air, or ship), and the

vehicle driver must carry the bill with them, or the entire extent of goods can be confiscated.

Our data is generated from these bills. This implies that our network is likely representative

of relatively larger firms, but the threshold is sufficiently low that we are likely capturing

small firms as well.

Each transaction reports a unique tax code identifier for both the selling and buying

establishments, all the items contained within the transaction, the value of the whole trans-

32We may hesitate to use these elasticities for exercises on long-term structural transformations.
33While we use the term “firm” in most parts of the paper, these data are actually at the more granular

establishment level, and we can identify the parent firms for each establishment as well.

71



action, the value of the items being traded up to 8-digit HS codes,34 quantity of each item,

units, and mode of transportation. Each transaction also reports the ZIP code of the selling

and buying firms, which we use to merge with other district-level data.

Since the data report both value and quantity of traded items, we construct unit values for

each transaction. We also calculate average unit values at the 4-digit HS/month/seller/buyer

level, the number of transactions and total value of the goods transacted. This is the foun-

dation of our firm-to-firm dataset that we use in the analysis.

Lockdowns. On March 25th 2020, India unexpectedly imposed strict lockdown policies na-

tionwide. The designated severity of the lockdown varied by districts, and was implemented

nationwide at the district level, where each district was classified between Red, Orange, and

Green zones according to the severity of Covid cases in each district. Yet, at that time,

there were barely any Covid cases in India, as the entire country averaged about 50 cases a

day (as opposed to about 400,000 cases a day the following year).

34The data partially reports items up to 8-digit HS codes. Until April 2021, in India it was only mandatory
to report 4-digit HS codes of goods traded. See https://economictimes.indiatimes.com/small-biz/gst/
six-digit-hsn-code-in-gst-made-mandatory-from-april-1/articleshow/81780235.cms?from=mdr.
97% of transactions report 4-digit HS codes, 40% report 8-digit HS codes. Given this, our main specifications
are based on 4-digit HS codes.
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Figure 12: India’s lockdown zones in March, 2020

Notes: Map shows the lockdown zones across Indian districts announced on March 25, 2020.

In Figure 12, we map the distribution of lockdowns across India. Districts in the red

zone saw the strictest lockdowns, with rickshaws, taxis and cabs, public transport, and

barbers/spas/salons remaining shut. E-commerce was allowed for essential services. Orange

and green zone districts saw fewer restrictions. Orange zones allowed the operation of taxis

and cab aggregators, as well as the inter-district movement of individuals and vehicles for

permitted activities. In addition to the activities allowed in orange zones, buses were allowed

to operate with up to 50% seating capacity and bus depots with 50% capacity in green

zones.35

Throughout the paper, we use this color scheme as the treatment across Indian districts.

In particular, each firm is located within a district, so treated firms are located within a Red,

Orange, or Green district between March and May 2020.

35https://economictimes.indiatimes.com/news/politics-and-nation/

lockdown-3-0-guidelines-for-red-zone/activities-prohibited/slideshow/75503925.cms On
April 30, one red zone district was reclassified to the green zone, but we maintain the initial classification
as it is likely to be more exogenous.
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Physical and cultural distance. We use different measures of distance which we include

as controls in our empirical results. The measures of geographic distance between districts

calculate the length of the shortest distance between district centers. The measure of lin-

guistic distance between Indian districts is from Kone et al. (2018) who using the commonly

used ethno-linguistic fractionalization (EFL) index (Mira 1964). This index measures the

probability of two randomly chosen individuals from different districts speaking the same

language.

Other controls. We control for different firm and district level time varying variables such

as data on monthly number of cases, deaths, and recoveries from Covid-19 for all India at

the district level from www.Covidindia.org. For each firm, we construct two variables that

measure the firm’s exposure to global demand and supply shocks that vary at the product

and country level, following Hummels et al. (2014). The construction of these exposure

variables are described in detail in online data Appendix C.3.

Summary statistics. We present some key summary statistics from the administrative trade

data in Table C1. Panels A and B report the unique numbers of sellers, buyers, total sales

(in million rupees), and total number of transactions separately in months January-March,

April-June, and July-September, for years 2019 and 2020. The most noticeable pattern from

the data is the large drop in all variables in 2020 in comparison to 2019, particularly during

the April-June period, which coincided with the lockdown policies.

The total value of sales and the number of transactions both fell by almost 60% during

April-June of 2020 compared to 2019. For reference, the fall in the value of sales was only

25% after the strict centralized lockdown was over (July-September) and only 15.6% before

the lockdown (January-March) compared to the corresponding months in 2019.

To further understand the composition of economic activity of the Indian state of our

analysis, in Table C2 we show what types of goods firms within the state sell and buy, and

to which destinations. In out state, firms are mostly in the business of selling vegetables,

plastics, and minerals; and of buying machinery, metals, and vegetables. In terms of the

type of trade, firms in our state mostly sell to firms in other Indian states. This contrasts

with how firms in our state buy intermediates, where the share of purchases that come from

within the state is almost the same as from other Indian states. Finally, international exports

and imports represent a non-negligible but rather small share of both sells and purchases.

Before using the lockdown variation to understand how firm to firm transactions are
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affected, we verify the stringency of these lockdowns in Figure C3 using Google Mobility

Data. The data shows how the number of visitors to (or the time spent in) categorized

places change compared to baseline days. The baseline day is the median value from the

5-week period Jan 3 – Feb 6, 2020.36 As is clear from the graph, until March 2020, there were

essentially no differences in mobility trends across red, orange, or green zones. But starting

in April 2020, we see that there is a substantial reduction in different types of activities (time

spent in retail and recreation, grocery and pharmacy, parks, commuting, and workplaces) in

red zones compared to green zones; with orange zones in between. People in red zones also

spend more time at home compared to people in either orange or green zones. We notice that

starting August 2020, a few months after the centralized lockdown was over, these differences

start to reduce, and by December 2020 these differences, especially in workplace mobility,

becomes small.

3.3 Reduced-Form Evidence

In this section we outline a simple empirical specification to provide evidence showing the

role of lockdown policies on key outcome variables for firm-to-firm trade. We show that the

sudden Covid-19 lockdown policies between March and May 2020 led to a rise in unit values,

and a fall in the monthly number of transactions between firms.37 In subsequent sections,

we exploit this variation to estimate firm-level elasticities of substitution across intermediate

inputs.

3.3.1 Empirical specifications

Our reduced-form specifications employ difference-in-differences where we compare the unit

values and the number of transactions both at seller and seller-buyer level across Red, Orange

and Green districts, before and after the lockdown. In our analysis at the seller level, the

omitted (control) group are sellers located in Green districts and the base month is February

2020, the month before the lockdown enforcement. At the seller-buyer level, the omitted

groups are sellers and buyers located in Green zones and the base month is February 2020.

Seller-level regressions. We estimate the following specification:

36Source: https://support.google.com/covid19-mobility/answer/9824897?hl=en&ref_topic=

9822927
37To see a similar application of this empirical strategy for domestic violence and economic activity in

India, see Ravindran and Shah (2020) and Beyer, Jain, and Sinha (2021).

75

https://support.google.com/covid19-mobility/answer/9824897?hl=en&ref_topic=9822927
https://support.google.com/covid19-mobility/answer/9824897?hl=en&ref_topic=9822927


Ysi,t = ιi,o(s) + ιi,t +
∑
t̸=−1

βtRedo(s) +
∑
t̸=−1

γtOrangeo(s) +Xδ + ϵsi,t, (3.1)

where Ysi,t are either unit values or the log number of transactions for seller s in HS-4

product i in month t, ιi,t are 4-digit HS-by-month fixed effects, ιi,o(s) are product-by-district

fixed effects (i.e. fixed effects based on the district o where seller s resides). We extend the

analysis to the HS-6 and HS-8 level in the appendix. X are controls that include number of

Covid cases, deaths, and recoveries, and exposure to international demand and supply shocks

as discussed in Appendix C.3. We control for the Covid cases and deaths since these are the

variables on which the government based its lockdown decisions (Ravindran and Shah 2020).

The covariates of interest are Redo(s) and Orangeo(s) . The first one is an indicator variable

that equals 1 if seller s located in district o(s) experienced a severe lockdown, 0 otherwise.

The second one equals 1 if seller s located in district o(s) experienced a mid-level lockdown,

0 otherwise. The excluded category are Greeno districts, where mild lockdown was imposed.

The estimates of interest are βt and γt. Our base time category is February 2020 which is

just before lockdowns began. Standard errors are clustered at the seller’s origin district level.

Seller/buyer-level regressions. At the seller-buyer level we estimate the specification:

Ysi,b,t =
∑

(x,z)∈Ω

∑
t̸=−1

βxz
t

(
γxo(s) × γzd(b)

)
+ δo(s) + δd(b) + δi,t + β1 log distod +Xδ + ϵsi,b,t , (3.2)

where Ysi,b,t are unit values or number of transactions in logs between seller s in HS-4 product

i and a buyer b in month t. δo(s) , δd(b) , and δi,t are origin, destination, product-by-month fixed

effects. distod is a vector of cultural and geographic distance variables, and X are controls

that include number of Covid-19 cases, deaths, recoveries and exposures to international

demand and supply shocks. The first term of the right-hand side contains our estimates of

interest. (x, z) ∈ Ω is a duple that contains the color x of seller’s district, and the color z

of buyer’s district. Ω is the set that includes all pairs except (Green,Green), such that this

is the excluded category when estimating Equation (3.2). γxo(s) and γzd(b) are thus dummy

variables that equal 1 when seller s is located in district o located in lockdown zone x, and

when buyer b is located in district d located in lockdown zone z, respectively. The estimates

of interest are βxz
t . Our base time category is February 2020 which is just before lockdowns

began. Standard errors are two-way clustered at the origin and destination district level.
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Figure 13: Seller-level reduced-form event studies

(a) Unit value, 4-digit HS (b) # Transactions, 4-digit HS

(c) Unit value, 8-digit HS (d) # Transactions, 8-digit HS

(e) Unit value, 8-digit HS, strong FEs (f) # Transactions, 8-digit HS, strong FEs

Notes: This figure is comprised of 6 plots. Each plot shows estimates for βt and γt from Equation (3.1). The values of the
estimates are all in comparison to sellers in Green districts in February 2020. The dependent variable on the left side is in log
unit values; on the right side, in log number of transactions. Each row varies by the definition of a product-group, and the fixed
effects included in the regression. In the first row, a product is 4-digit HS codes and fixed effects HS/month and district. In the
second row, a product is an 8-digit HS code and fixed effects HS/month and district. In the third row, a product is an 8-digit
HS code and fixed effects HS/month and district/HS. Standard errors are clustered at the district level. All controls mentioned
in the paper are included. The shaded area are confidence intervals.
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3.3.2 Reduced-Form Facts

In this section we present two facts from the specifications we laid out in the previous section.

Fact 1: Sellers’ unit values disproportionately rose and trade fell in more severe lockdown

zones. The first two panels of Figure 13 plot the coefficients βt and γt from Equation

(3.1), representing changes in log unit values and log number of transactions with respect to

Green districts in February 2020 (the base category). In May 2020, sellers’ unit values in

Red districts rose by 25pp, and in Orange districts rose by around 10pp with respect to the

base category.

At the same time, sellers’ number of transactions in Red districts declined by around

20pp, and in Orange districts declined by around 3pp with respect to the base category.

Additionally, as expected by the severity of the lockdown policies by color, the rise in unit

values, and fall in number of transactions was larger for sellers in Red districts than for

Orange ones. In both figures, we find no evidence of pre-trends, implying that there were

likely no differences in the trends of unit values or number of transactions between red,

orange, and green districts before the lockdown.

The middle two panels of Figure 13 repeats the same exercise with a finer product defini-

tion, using 8-digit HS codes. Results remain virtually the same. In the last row of Figure 13

we include a stronger set of fixed effects (e.g., district-by-product), and results remain the

same.
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Figure 14: Unit Value, Seller-Buyer Level Regressions

Notes: In each plot, the horizontal axis is the month, and the vertical one is the estimate of interest associated with log unit
values as in Equation (3.2) for each month. Regressions include product-by-month, origin district, and destination district fixed
effects. Standard errors are two-way clustered at the origin and destination state level. A product is a 4-digit HS code. All
controls mentioned in the paper are included. The vertical line in January 2020 splits pre and post-lockdown periods. The
baseline category are sellers and buyers located in Green districts on January 2020. The color of the line denotes the color of
the district the seller is located, while the color of the shaded confidence interval denotes the color o the district the buyer is
located.

Fact 2: Equilibrium unit values rose and number of transactions fell in more severe lock-

down zones. We now report the results from our seller/buyer-level specification. In Figures

14 and 15 we report the estimates for βxz
t in Equation (3.2), where the estimates are in com-

parison to cases when both sellers and buyers were located in Green districts in February

2020.

In the first row of Figure 14 we plot the coefficients from regression (3.2) where the seller

is in the red zone, and the buyer is in red, orange, and green zones respectively. Similarly, in

the second row of Figure 14, we plot the coefficients from regression (3.2) where the seller is

in the orange zone, and in the third row, we plot the coefficients from regression (3.2) where

the seller is in the green zone (and the buyer is in red and orange zones respectively).
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Figure 15: Number of Transactions, Seller-Buyer Level Regressions

Notes: In each plot, the horizontal axis is the month, and the vertical one is the estimate of interest associated to log number
of transactions as in Equation (3.2) for each month. Regressions include product-by-month, origin district, and destination
district fixed effects. Standard errors are two-way clustered at the origin and destination state level. A product is a 4-digit HS
code. All controls mentioned in the paper are included. The vertical line in January 2020 splits pre and post-lockdown periods.
The baseline category are sellers and buyers located in Green districts on January 2020. The color of the line denotes the color
of the district the seller is located, while the color of the shaded confidence interval denotes the color o the district the buyer
is located.

There are two main lessons from these figures. First, even after controlling for bilateral

resistance terms, trade costs, and additional covariates, unit values rose and number of

transactions fell with respect to the base category (both buyer and seller in green zones).

The rise in unit values was as much as 45pp, and the fall in transactions as high as 12pp.

Second, these changes seem to be proportional to the severity of the lockdowns for both

sellers and buyers. Once again, there is no evidence of differential pre-trends across zones

leading up to the shock.

Our two facts jointly imply that prices where either seller or buyers were located in red

districts were higher during the lockdown in comparison to districts where the lockdowns

were mild (green zones). This suggests that the lockdown indeed induced variation in prices

that we will later leverage to estimate elasticities of substitution across intermediates.
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3.4 Model

We build a quantitative general equilibrium model of firm-to-firm trade based on Baqaee and

Farhi (2019), where the productive sector is perfectly competitive.38 We adapt the general

nested CES structure to reflect the possibility that suppliers within the same product cate-

gory could be substitutes or complements, derive estimating equations, and use the model

to simulate the effects of negative productivity shocks on GDP. Firms combine inputs in a

CES fashion under three tiers. In the first tier, firms combine labor and aggregated inter-

mediates. In the second tier, aggregated intermediates are a combination of intermediates

by product composites. In the third tier, product composites are constructed by suppliers

of intermediates.

There are N firms producing N goods using the production function

ynj = An

(
wnl (ln)

α−1
α + (1− wnl) (xnj)

α−1
α

) α
α−1

, (3.3)

where ynj is the output produced by firm n in product j, An is the productivity of firm

n, ln is the labor used by firm n, xnj is the composite intermediate input used by firm n

in product category j, α is the elasticity of substitution between labor and the composite

material input and wnl is the intensity of labor in production. The composite material input

in turn consists of inputs from the I different product categories in the economy, and is:

xnj =

(
I∑

i=1

w
1
ζ

i,nj (xi,nj)
ζ−1
ζ

) ζ
ζ−1

, (3.4)

where ζ is the elasticity of substitution between inputs from different product categories,

and wi,nj is the importance of inputs of product category i for buyer b of product j. xi,nj

are intermediate inputs from product i going to firm n producing product j,39 which are in

turns constructed as:

xi,nj =

(
Ni∑

m=1

µ
1
ϵ
mi,njx

ϵ−1
ϵ

mi,nj

) ϵ
ϵ−1

, (3.5)

where xmi,nj are intermediate inputs from firm m of product i sold to firm n producing prod-

38We do not rely on models featuring market power (Edmond, Midrigan, and Xu 2018; Alviarez et al.
2021) since the evidence from the data suggests that the market structure in this Indian state is closer to
perfect competition. The median HHI across 4-digit HS product categories is 0.1041, which implies a low
level of market concentration within a product category.

39We exclude foreign intermediate goods since they are not exposed to Indian Covid-19 lockdown shocks.
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uct j, and µmi,nj is the importance of input from supplier m of product i in the production

of buyer n of product j. We consider a fixed set of firms F and product categories I, where

N = |F | is the total number of firms in the economy, and Ni is the number of firms producing

product i. ϵ is the elasticity of substitution across suppliers within the same product cate-

gory. The above production functions work for reproducible factors. For non-reproducible

factors, in our case labor, the production function is an endowment: Yf = 1.

Product 0 represents the final consumption of the household and is given by

C =

(
N∑
i

w0i (ci)
σ−1
σ

) σ
σ−1

,

where
∑

iwoi = 1 and σ is the elasticity of substitution in consumption.

Model in standard-form. To write the economy in standard form as in Baqaee and Farhi

(2020), we define a new input output matrix Ω̂ which has dimension 2 + N + I, where the

first dimension represents the household’s consumption aggregator, the next dimension cor-

responds to factors, here only labor, the next N dimensions are the N firms that supply

inputs to the CES aggregates and the next I dimensions are the CES aggregates of interme-

diate inputs of these firms that directly go into the firm’s production function. Let us denote

the vector of elasticities by θ̂, where θ̂ = (σ, α, ζ, ϵ).

Formally, a nested-CES economy in standard form is defined by
(
Ω̂, θ̂

)
. What distin-

guishes factors from goods is that factors cannot be produced. The (2 +N + I)×(2 +N + I)

input--output matrix Ω̂ is the matrix whose (i, j) element is equal to the steady-state value

of Ωij =
pjxij

piyi
, which is the expenditure share of the ith firm on inputs from the jth supplier

as share of the total revenue of firm i, where, note that, every supplier is a CES aggregate.

The Leontief inverse is ψ = (1 − Ω)−1. Intuitively, the (i, j)th element of ψ (the Leontief

inverse) is a measure of i’s total reliance on j as a supplier. It captures both the direct

and indirect ways through which i uses j in its production. Let us also denote the sales of

producer i as a fraction of GDP by λi, where λi =
piyi∑N
j pjcj

.

The input output covariance operator is given by

CovΩk
(ψ(i), ψ(j)) =

2+N+I∑
l=1

Ωklψliψlj −

(
2+N+I∑
l=1

Ωklψli

)(
2+N+I∑
l=1

Ωklψlj

)
.

This operator measures the covariance between the ith and the jth columns of the Leontief
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inverse using the kth row of the input output matrix as distribution. The second-order

macroeconomic impact of microeconomic shocks in this economy is given by:

d2logY

dlogAjdlogAi

=
dλi

dlogAj

=
∑
k

(θk − 1)λkCovΩ(k)
(Ψ(i),Ψ(j)). (3.6)

For detailed derivation of this, see the Appendix of Baqaee and Farhi (2019). To get an

intuition of how firm-level shocks can propagate through supply chains, consider a specific

example: firm j, located in the red zone, suffers a negative productivity shock, given by

d logAj < 0.

The second order term captures the reallocation effect: In response to a negative shock to

product category j, all products k that are downstream of j may readjust their demand for

all other inputs. Crucially, the impact of such readjustments by any given k on the output of

product i depends on the size of product k as captured by its Domar weight λk, the elasticity

of substitution θk in k’s production function, and the extent to which the supply chains that

connect i and j to k coincide with one another, as given by the covariance term.

3.4.1 Equations to estimate firm-level elasticity of substitution across suppliers

Using the model outlined above, in this section we derive the firm-level elasticity of substi-

tution across suppliers within a product. We introduce a notation change to facilitate the

exposition: a firm n can be either a buyer b ∈ F or a seller s ∈ F . A firm b with product

j ∈ I maximizes profits subject to its technology and to a CES bundle of intermediate inputs:

max
{lbj ,xsi,bj}

pbjybj − wbjlbj −
∑
i

∑
s

psi,bjxsi,bj

subject to (3.3), (3.4), and (3.5). ϵ from Equation (3.5) is the elasticity of substitution across

different suppliers within the same product category. This is the key elasticity we want to

estimate. Note that the results of this estimation procedure holds with any CES production

function with an arbitrary number of nests, as long as the lowest nest consists of suppliers

within the same HS-4 product. Details about the optimization problem are in Appendix

C.4.1. The maximization problem yields the following expression:

log

(
PMsi,bj

PMi,bj

)
= (1− ϵ) log

(
psi,bj
pi,bj

)
+ log (µsi,bj) , (3.7)
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where pi,bj =
(∑

s′

(
p1−ϵ
s′i,bjµs′i,bj

)) 1
1−ϵ is a CES price index, PMsi,bj ≡ psi,bjxsi,bj, and PMi,bj ≡∑

s PMsi,bj, and log (µsi,bj) is the error term. This is our main estimating equation for the

firm-level elasticity of substitution parameter ϵ which we take to the data, as will be described

in detail in Section 3.5.

3.4.2 Equations to estimate firm-level elasticity of substitution across products

In this section, we derive conditions from the model to estimate the firm-level elasticity of

substitution across products, as in some previous work (Atalay 2017; Peter and Ruane 2022;

Boehm, Flaaen, and Pandalai-Nayar 2019). We rewrite the maximization problem of the

firm such that it maximizes

max
{lbj ,xi,bj}

pbjybj − wbjlbj −
∑
i

pi,bjxi,bj

subject to (3.3) , (3.4), and pi,bj =
(∑

s µsi,bjp
1−ϵ
si,bj

) 1
1−ϵ . ζ from Equation (3.4) is the firm-level

elasticity of substitution across products i we estimate. Notice that in this case, we need

values for ϵ and µsi,bj to calculate prices. We consider ϵ = ϵ̂, where ϵ̂ is our estimate, and we

recover µsi,bj. Details on the optimization problem are in Appendix C.4.2. The maximization

problem yields the following expression:

log

(
PMi,bj

PMbj

)
= (1− ζ) log

(
pi,bj
pbj

)
+ log (wi,bj) , (3.8)

where pbj =
(∑

i′

(
p1−ζ
i′,bjwi′,bj

)) 1
1−ζ

is a CES price index, PMi,bj ≡ pi,bjxi,bj, and PMbj ≡∑
i PMi,bj, and log (wi,bj) is the error term. This is our estimating equation for the firm-level

elasticity of substitution ζ which we take to the data, as described in Section 3.5.

3.5 Estimation

In this section, we discuss how we estimate the primary elasticities in our model. The

vector of parameters is θ̂ = (σ, α, ζ, ϵ). We set the elasticity of substitution between different

consumption varieties σ = 4 (Broda and Weinstein 2006), and the elasticity of substitution

between labor and the composite intermediate input α = 0.5 (Baqaee and Farhi 2019). We

now estimate the firm-level elasticity of substitution across suppliers (ϵ) and the firm-level

elasticity of substitution across products (ζ) leveraging variation in the lockdown zones.
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3.5.1 Estimating equations for ϵ and ζ

In order to estimate ϵ from Equation (3.7), the first major challenge we face is that the price

index pi,bj includes the unobserved quantity µsi,bj which denotes the importance of input from

supplier s of product i in the production of buyer b producing product j. This unobserved

quantity could depend on a number of factors such as unobserved input demand shocks or the

buyer’s preference for certain inputs. In order to construct changes in price indices that are

observable, we follow Redding and Weinstein (2020) in assuming that the overall importance

of a product in a buyer’s input use does not change between two consecutive months, even

though the importance of inputs from suppliers within a product category can change.40 We

arrive at the equation below that links the overall expenditure share on a certain supplier s

(as a share of total expenditure on product i) to the corresponding relative prices:

log

(
P̂M si,bj,t

P̂M i,bj,t

)
= ωb,t+ωi,t+ωb,i+ωs,i+(1− ϵ) log

(
p̂si,bj,t̂̃pi,bj,t

)
+log

(
λ̂i,bj,t̂̃s∗i,bj,t)+Xβ+ξsi,bj,t ,

(3.9)

where x̂t =
xt

xt−1
are variables in changes with respect to the previous month. [ωb,t, ωi,t, ωb,i, ωs,i]

is a set of fixed effects, including buyer-by-month, product-by-month, buyer-by-product, and

seller-by-product fixed effects. p̃i,bj,t =
∏

s∈Ω∗
i,bj,t

p

1
N∗
i,bj,t

si,bj,t is a geometric mean of unit values

across common suppliers, where Ω∗
i,bj,t ≡ Ωi,bj,t ∩ Ωi,bj,t−1 is the set of common suppliers

for buyer b that appear in both the current and previous month, and N∗
i,bj,t ≡ Ω∗

i,bj,t is the

number of common suppliers for buyer b in month t. X are controls, including exposure to

foreign demand and supply shocks, the number and severity of Covid cases, and geographic

and cultural distance.

The wide array of high-dimensional fixed effects help control for demand shocks (buyer-

by-month fixed effects), product-level changes in demand or supply (product-by-month fixed

effects), buyer/seller and product-specific time invariant characteristics (buyer/seller-by-

product fixed effects). The remaining variation likely isolates time-varying changes across

sellers within a product category. Yet, as we explain in the next section, we strengthen

this framework by leveraging the mosaic of Covid-19 lockdowns to derive exogenous policy-

40This assumption simply requires that, for instance, a shoemaker’s overall preference for leather in shoe-
manufacturing does not change, although its preference for leather from certain suppliers can change. That
is, demand-shocks may change µsi,bj,t (e.g., the demand for leather from certain suppliers), but the geometric
mean of µsi,bj,t across suppliers within a product is stable between t and t− 1. This enables us to construct
changes in price indices that are not dependent on µsi,bj,t, but are directly observed in the data (details in
Appendix C.4.1).
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induced variation in relative prices.

Our setup has the advantage that we can decompose the change in price buyer b pays

for inputs from seller s between p̃i,bj,t, the change in expenditure share ̂̃s∗i,bj,t and a Feenstra

(1994) correction term λ̂i,bj,t that takes into account the fact that sellers enter and exit in

the data. More details are in Appendix C.4.1. Standard errors are two-way clustered at the

origin and destination state level.

Now, to estimate ζ from Equation (3.8), there are two issues to address. First, notice that

the price index pi,bj is a function of (unobservable) demand shocks µsi,bj,t, and ϵ. Second, the

price index pbj,t is also a function of unobservable product-level demand shocks wi,bj,t, which

makes their computation challenging.

First, we construct price indices as pi,bj,t ≡
(∑

s µsi,bj,tp
1−ϵ̂
si,bj,t

) 1
1−ϵ̂ , where ϵ̂ are estimated

previously, psi,bj,t come directly from the data, and demand shocks µsi,bj,t are constructed

recursively. This recursive construction of demand shocks come from predicting residuals

from Equation (3.9) and setting an initial value for shocks µsi,bj,0 (Appendix C.4.2).

Second, we construct buyer-level price indices pbj,t following Redding and Weinstein

(2020). We assume that the overall importance of the composite intermediates at HS-4

level in the production function does not change between consecutive months. As such, we

can construct this price independent of product-level demand shocks wi,bj,t after controlling

for buyers’ expenditure shares by product. More details about this are in Appendix C.4.2.

We then derive the following expression we take directly to the data:

log

(
P̂M i,bj,t

P̂M bj,t

)
= ωb,t + ωi,t + ωb,i + (1− ζ) log

(
p̂i,bj,t̂̃pbj,t

)
+ log (s̃bj,t) + ξi,bj,t , (3.10)

where [ωb,t, ωi,t, ωb,i] are a set of buyer-by-month, product-by-month, and buyer-by-product

fixed effects, which again account for a wide array of demand, product shocks, and buyer-

product specific charachteristics. p̃bj,t ≡
∏Nbj,t

i=1 p̃
1

Nbj,t

i,bj,t is the geometric mean of unit values

across products that buyer b purchases, and s̃bj,t ≡
∏Nbj,t

i=1 s̃
1

Nbj,t

i,bj,t is the geometric mean of

expenditure shares across products. Detailed derivations are in Appendix C.4.2.

3.5.2 Addressing endogeneity concerns

Despite the wide range of fixed effects, OLS estimates of ϵ may still be biased if additional

unobserved demand-side shocks (changing µsi,bj,t) drive changes in prices and expenditure

shares. The firm-level elasticity of substitution is a function of the slope of the buyer’s input
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demand curve, and hence simultaneous shifts in the demand and supply curves induced by

the Covid-19 shock can also bias our estimates. For example, if Covid-19 induced demand

shocks led to contractions in buyers’ income and at the same time supply-shocks lead to

contractions in the sellers supply, the demand curves will look flatter (estimated ϵ higher)

compared to the unbiased value of ϵ. Additionally, measurement error in input prices, proxied

by unit values, may induce attenuation biases.

Our estimation strategy therefore involves using the sudden demarcations of lockdown

zones that restrict economic activity in certain Indian districts as an instrumental variable

when estimating this equation in two-stage least squares (2SLS). We use the disruptions in

prices caused by sudden lockdowns that made it costlier for sellers in Red and Orange zones

to produce and send their intermediate goods. The idea is that, after controlling for the wide

array of fixed effects, the lockdown zones the buyer is located in, exposure to international

demand and supply shocks, and the number and severity of regional Covid-19 cases, the

remaining variation in prices facing a buyer are driven by supply shocks induced by policy

mandated sudden changes in the seller’s lockdown zones. In addition, since the goods from

the seller to the buyer have to transit through several districts located in different lockdown

zones facing different severity in the movements of trucks and border controls, changes in

the costs of transportation induced by these lockdowns provide another source of exogenous

variation to estimate the firm-level elasticity of substitution.

To formalize the intuition behind our identification strategy, following the standard prac-

tice in the trade literature, we assume that prices can be separated between prices at the

origin and a trade cost. In logs and in changes, this is

log (p̂si,bj,t) = log (τ̂s,b,t) + log (p̂si,t) .

Here we can see the type of variation driving the two types of instruments we use. First,

exogenous shifters to prices at the seller level psi,t, such as economic restrictions induced by

the lockdown zone the seller is located in, help us obtain unbiased estimates of the elasticity

ϵ. Second, exogenous shifters at the seller-buyer level, for example, changes in transportation

costs τs,b,t driven by the lockdown zones of the districts the goods pass through, also induce

the needed variation. We now describe each of these instruments and then implement them

within our estimation strategy.
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Seller-level instruments. We need supply-side shifters to obtain unbiased elasticities of

substitution. In that sense, shocks induced by the Covid-19 lockdown policies that only

impact sellers would provide that variation. In Equation (3.11) below we formalize this

intuition, so

log(p̂si,bj,t) = βRRedo(s)Lockt + βOOrangeo(s)Lockt + ϵνsi,bj,t , (3.11)

where Lockt is a dummy variable that equals 1 for the months from March to May of 2020,

which are the months when the lockdown policies were implemented, 0 otherwise, and Redo(s)
and Orangeo(s) are indicator variables that equal 1 whenever seller s was located in Red or

Orange districts, respectively.

Seller/buyer-level instruments. The transportation of supplies from the location of the

supplier to the buyer implies going through different districts, each of which are affected

by lockdown policies in different ways. Intuitively, a route that contains more Red districts

should increase the cost of transportation in contrast with a route with no Red districts. We

construct instruments that capture that idea. We allow trade cost to change over time such

that we can leverage the Covid-19 lockdown policy. In particular, we assume

τsb,t = traveltimeσsb,t.

After considering this functional form for trade costs into the expression of prices and

log-differencing, we obtain

log(p̂si,bj,t) = σ log( ̂traveltimesb,t).

We leverage the Covid-19 lockdown as an exogenous shifter that only influences travel

time between locations of seller s and buyer b, as reflected in Equation (3.12) below.

log(p̂si,bj,t) = βRRedo(s)d(b)Lockt + βOOrangeo(s)d(b)Lockt + ϵνsi,bj,t. (3.12)

Detailed derivations are in Appendix C.4.1. Redo(s)d(b) and Orangeo(s)d(b) are the share

of districts designated as Red and Orange, respectively, along the route between seller s

and buyer b. We constructed these variables using Dijkstra algorithm for least-cost routes.

Details about the implementation of this algorithm are in Appendix C.3.
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Finally, we also instrument the changes in relative prices in Equation (3.10) to estimate ζ.

We do this because of potential unobservable product-level demand shocks that also induce

an upward bias to estimates of ζ. To construct our instruments, we leverage the seller-level

and seller/buyer-level instruments we used to estimate ϵ and calculate weighted averages

across suppliers to instrument on the change of relative prices for buyers. The intuition is

that buyers that purchased inputs either from a larger share of sellers in Red zones, or from

sellers located in districts where the route is comprised or a larger share of Red zones were

more exposed to Covid-19 lockdowns. More details are in Appendix C.4.2.

Discussion of instruments. The instruments induce buyers of certain types to be more

affected than others based on their production networks. The Local Average Treatment

Effect (LATE) may not represent the Average Treatment Effect (ATE) if buyers in Red,

Orange, and Green zones already traded intensively with sellers in certain lockdown zones,

and there is heterogeneity in responses. For instance, if buyers in Red traded mostly with

sellers in Red, then our instrument may estimate effects on firms induced by having more

Red sellers, and so it would upweight effects on buyers in Red. In Figure C1 we run two sets

of balance check to investigate these patterns. These checks show that, in general, sellers

from Red, Orange, and Green zones had similar interactions with buyers from Red, Orange,

and Green zones.

We also consider whether certain products are sourced intensively from firms located in

certain zones. For instance, if all the rubber supply of firms in this production network

comes from suppliers in Red zones, then buyers of rubber would find it increasingly difficult

to find suppliers. Once again, if there is heterogeneity in responses by product category, our

estimated LATE elasticity would weigh rubber products higher than non-rubber products.

While not a source of bias, it does affect the interpretation of the estimated parameter. In

Figures C3a and C3b, we plot the shares of total purchases of each industry (HS Section)

that are sourced from firms in Red, Orange, and Green zones. With the exception of the

small HS industry 19 (arms and ammunitions), there is no noticeable degree of concentration

of suppliers from any particular zone.

3.5.3 Estimation results: Firm-level elasticities of substitution across suppliers

First, we report OLS estimates in Table 12. The implied elasticities exhibit a robust value

of 0.78 across all the different specifications. In column (1), we include both buyer/month

and HS/month fixed effects. In column (2) we also include buyer/HS and seller/HS fixed
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effects. We obtain a similar elasticity of 0.77. To test whether our estimates vary by product

aggregation, in columns (3) and (4) the estimations are based on 6-digit and 8-digit HS

codes. The elasticities are around 0.75, so the estimates do not significantly change. Since

these elasticities are below 1, these estimates suggest that, at the firm level, suppliers act

as complements rather than substitutes for buyers. This is important for aggregate incomes

since, from Equation (3.6) we can see that, once we take into account second order effects,

an elasticity of substitution less than 1 implies that the aggregate impacts of negative shocks

are amplified.

Table 12: OLS, firm-level elasticity of substitution across suppliers

(1) (2) (3) (4)

log
(

p̂
ˆ̃p

)
0.2171 0.2222 0.2506 0.2441

(0.0133) (0.0147) (0.0324) (0.0352)
R2 0.4177 0.4601 0.4838 0.4958
Obs 2028039 1966591 851483 993583
ϵ 0.7828 0.7777 0.7493 0.7558
HSN digits 4 4 6 8
Buyer/month FE Y Y Y Y
HSN/month FE Y Y Y Y
Buyer/HSN FE Y Y Y
Seller/HSN FE Y Y Y

Notes: OLS estimates from Equation (3.9). The first row reports the estimates associated with changes in relative unit values
in logs. Standard errors are two-way clustered at the origin and destination state level, and are reported in parentheses below
each estimate. The fifth row reports the implied value for ϵ, which is 1 minus the estimate on the first row. The table contains
four columns. Each column correspond to different specifications on how we define a product (4-digit, 6-digit, or 8-digit HS
codes) and of fixed effects, as pointed out by the last five rows of the table. All specifications include the controls mentioned in
the paper.

Nevertheless, as we describe in the previous section, it is possible that OLS estimates

are contaminated by simultaneous demand shocks that happened during Covid-19. In Table

13 we report 2SLS estimates based on our proposed instruments. We find evidence that

inputs across different suppliers of a firm within the same 4-digit HS product category are

highly complementary, ranging from 0.49 − 0.65, depending on the set of fixed effects and

instruments we use. Later we show similar patterns for HS-6 and HS-8 categories. Our pre-

ferred specification is column (3) with an elasticity of 0.55, where we use both the seller and

the seller-buyer level instrument, essentially deriving variation from both sellers’ production

costs and transportation costs. We include buyer/month and HS/month fixed effects that

account for time-varying demand shocks, and also account for entry/exit with the Feenstra

(1994) term. Each specification reports a high Kleibergen-Paap F-statistic, indicating that
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our instruments are statistically relevant. In columns (1) and (2) we use the seller-level and

seller/buyer-level instruments separately. The elasticities are 0.49 and 0.6 respectively, which

also reflect complementarity. Finally, in column (4) we also include buyer/HS and seller/HS

fixed effects, and the elasticity rises to 0.66.

Table 13: 2SLS, firm-level elasticity of substitution across suppliers

(1) (2) (3) (4)

log
(

p̂
ˆ̃p

)
0.5042 0.3945 0.4538 0.3409

(0.2129) (0.0933) (0.1389) (0.1068)
Obs 2854292 2028039 2028039 1966591
K-PF 48.232 133.688 143.413 248.977
ϵ 0.4957 0.6054 0.5461 0.6590
Seller IV Y Y Y
Bilateral IV Y Y Y
Buyer/month FE Y Y Y Y
HSN/month FE Y Y Y Y
Buyer/HSN FE Y
Seller/HSN FE Y

Notes: IV-2SLS estimates from Equation (3.9). The set of common suppliers of buyer b is Ω∗
i,bj,t = Ωi,bj,t ∩Ωi,bj,t−1. That is,

a supplier s of buyer b is considered common if they also traded during the previous month. The first stage uses either bilateral
or seller-level instruments, as pointed out by rows six and seven. Bilateral instruments correspond to Equation (3.12), while
seller-level instruments correspond to Equation (3.11). The first row reports estimates associated with changes in relative unit
values in logs. Standard errors are two-way clustered at the origin and destination state level, and are reported in parentheses
below each estimate. The fourth row reports the Kleibergen-Paap F statistic from the first stage. The fifth row reports the
implied value for ϵ, which is 1 minus the estimate on the first row. A product is a 4-digit HS code and the treatment period is
March-May 2020. The table contains four columns. Each column corresponds to different combinations of instruments and of
fixed effects, as pointed out by the last six rows. All specifications include the controls mentioned in the paper.

The IV estimates for ϵ are smaller than the OLS estimates. As discussed in Section 3.5.2,

the bias is in the expected direction if we expect the Covid-19 shock to also induce negative

demand shocks, thereby biasing up OLS estimates of ϵ. We may expect that our estimated

elasticity be lower for the sub-sample of buyers who did not have more than one supplier to

source inputs from. In Table C3, we restrict our sample to cases when a buyer traded with

at-least two sellers in two consecutive periods. Column (3), our preferred specification, yields

an elasticity of substitution of 0.58, very close to the estimate from our main specification.

To examine differences by the level of aggregation of the product, we rerun our main

specification in Table C4 using HS-6 and HS-8 as product definitions. Finer product clas-

sifications (e.g., HS-8) may imply that there are fewer suppliers one may be able to source

from, and so we may expect a lower elasticity of substitution between suppliers. In columns

(1) and (3) we replicate our main specifications, with elasticities of 0.43 (for HS-6) and 0.06
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(for HS-8) respectively. These numbers reflect even higher degrees of complementarity when

we consider a more granular notion of product. Overall, these patterns suggest that inputs

are highly specific for buying firms.

Elasticity heterogeneity by Industry. We now analyze whether the degree of substitution

across suppliers varies by industry (HS section). The idea is that firms that source from

highly specific intermediate inputs (i.e. processed foods) should report a lower elasticity of

substitution across suppliers than firms that source from more general inputs (e.g. textiles).

In Table C5 and Figure 16 we show the estimates of this elasticity of substitution across

suppliers by twenty one broad industries. We find that the OLS elasticity of substitution

across suppliers by industry lies in the range of 0.7-0.9. Once we instrument for the unit values

with the Covid-19-induced lockdown variation, we find that there is wider heterogeneity

across industries. Indeed, we find that that Processed foods yield an elasticity of 0.19, while

Textiles yield an elasticity of 0.81. Also, while for the majority of the industries we find

evidence for complementarity, there are some industries such as Plastics, Vegetables, and

Handicrafts where suppliers within a HS-4 product are likely substitutes.

Figure 16: Elasticities ϵ by seller’s industry

Notes: The vertical axis is the firm-level elasticity of substitution by the industry of the seller, estimated by OLS. The horizontal
axis is estimated by IV-2SLS. An industry is an HS section. The size of each bubble is determined by total sales in the
corresponding industry. See Table C5 for industry-specific numbers.
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3.5.4 Estimation results: Firm-level elasticities of substitution across products

In Table 14, we report our estimates for the firm-level elasticity of substitution across prod-

ucts. In column (1) we show the OLS estimate of ζ = 0.91, which reflects complementarity

between product categories. Columns (2) and (3) show cases when we define products more

granularly. In this case, the elasticities are around 0.8, which also reflects complementarity

between products.

Table 14: Firm-level elasticity of substitution across products

(1) (2) (3) (4) (5) (6)

log
(

p̂
ˆ̃p

)
0.0842 0.2014 0.1996 0.3136 0.1712 0.1996

(0.0039) (0.0045) (0.0048) (0.1060) (0.0040) (0.0048)
Obs 1292329 794376 766804 1292329 794376 766804
K-PF . . . 27.284 17.950 15.868
ζ 0.9157 0.7985 0.8003 0.6863 0.4368 0.4721
Estimator OLS OLS OLS 2SLS 2SLS 2SLS
HSN digits 4 8 8 4 8 8
HSN/month FE Y Y Y Y Y Y
Buyer/month FE Y Y Y Y Y Y
Buyer/HSN FE Y Y

Notes: IV-2SLS estimates from Equation (3.8). Price indices are constructed by recovering the residuals used in the corre-
sponding specification when estimating ϵ and the corresponding estimate of ϵ. The first three columns are OLS estimates of ζ;
the last three, 2SLS of estimates of ζ using both weighted averages of both bilateral or seller-level instruments across sellers.
Bilateral instruments correspond to Equation (3.12), while seller-level instruments correspond to Equation (3.11). Each col-
umn corresponds to a different combination of fixed effects and definition of product. Columns (1)-(2) and (4)-(5) correspond
to our preferred specification when estimating ϵ and 4-digit and 8-digit HS codes. In columns (3) and (6) we also include
buyer/HS fixed effects. The first row reports the estimates associated with changes in relative unit values in logs. Standard
errors are clustered at the buyer’s district level, and are reported in parentheses below each estimate. The fourth row reports
the Kleibergen-Paap F statistic from the first stage. The fifth row reports the implied value for ϵ, which is 1 minus the estimate
on the first row. The sixth row denotes whether estimators are OLS or 2SLS. The sixth row mentions the definition of product.
The last three rows indicate the combination of fixed effects.

In columns (4)-(6) we report our estimates of ζ under 2SLS estimation after using a

weighted average of instruments across buyers’ sellers as discussed in Section 3.5.2. Our

specification in column (4) reports a value of 0.68, reflecting that simultaneous negative

demand and supply shocks during Covid-19 led to an underestimation of ζ under OLS. This

elasticity is higher than the 2SLS elasticity of substitution across suppliers for the same

product (ϵ = 0.55), reflecting a lower degree of complementarity across products compared

to suppliers.41 In columns (5) and (6), similar values for this elasticity hold when we define

a product as 8-digit HS codes, and after the inclusion of buyer/HS fixed effects. Finally,

41This finding is consistent with the literature in macroeconomics (Houthakker 1955; Bachmann et al.
2022; Lagos 2006).

93



first stage F-stats are high, which reflects the statistical relevance of our weighted averaged

instruments.

Unlike the elasticity of substitution across suppliers within a product category, there

have been previous attempts in the literature to estimate the elasticity of substitution across

products or industries. In particular, other work has estimated a wide range of values for

parameters akin to ζ depending on the aggregation of the industry and on the research

question. Our elasticity is close to Boehm, Flaaen, and Pandalai-Nayar (2019) who estimate

an elasticity across HS-10 products that lies between 0.42− 0.62 for non-Japanese affiliates

and 0.2 for Japanese affiliates. Atalay (2017) finds an estimate of around 0.1 for 30 aggregated

industries using US data.

3.6 Quantification and Counterfactuals

In this section, we use both data from our production network and our newly estimated

elasticities to quantify the role of these elasticities in the propagation of shocks. To do this,

we need to write down the Leontief matrix in standard form. Given the production structure

of our economy, we need four submatrices: (i) firm purchases of 4-digit HS products, (ii) firm

sales of 4-digit HS products, (iii) labor employed by each firm, and (iv) final sales by each

firm. The first two submatrices are directly constructed from the firm-to-firm trade data from

the pre-Covid period of March 2019 to February 2020. Labor employed and final sales by

firms are obtained by merging in firm-level data from Indiamart, which contains information

on firm-level employment and final sales.42 For more details for this, see Appendix C.3.

There are 1293 different HS-4 products. The average firm buys 10 distinct products as

a buyer and sells 5 distinct products as a seller. The most connected buyer and seller buys

and sells to over 500 distinct products. We use this 94,555 by 94,555 input output matrix

consisting of firm-level sales and purchases of these 1293 products at the HS-4 level to

understand how complementarities at the firm-level affect the propagation of shocks through

the firm production networks.

For more details on the derivation of the shock propagation equation and its numerical

implementation, see details in Appendix C.5. While previous work also quantify the effect of

firm-level shocks on aggregate GDP, they mostly rely on changes in firm-level final sales rather

than the direct production network. Using the production network directly, exponentially

increases computational complexity from the order of N to (N+I)×(N+I), where N is the

42https://www.indiamart.com/

94

https://www.indiamart.com/


no of firms, and I is the no of distinct products. As such, we use computational innovations

in big data to implement this procedure.

Note that our quantification exercises in this section are conditional on the products that

firms buys/sells being given at the extensive margin, even though a firm can change its set

of buyers/suppliers, as documented by Khanna, Morales, and Pandalai-Nayar (2022). We

therefore need to empirically assess whether the set of HS-4 products a buyer buys and the

set of HS-4 products that a seller sells, changes between the pre and the post Covid period.

We do this by inspecting whether both sellers and buyers of each product continued to trade

in their corresponding product categories after Covid-19 lockdowns. In Figure C4 we show

the product-level distribution of share of sellers that sold and buyers that purchased goods

of that product during both time periods t and t − 1, where t is a 6-month window before

and after the lockdowns.43 In the figure we see that, for both sellers and buyers, these two

distributions are very similar to each other. The overall stability in Figure C4 shows that the

assumption that the products that firms buy/sell does not change is tenable when analyzing

the impact of negative productivity shocks.

3.6.1 How much does the firm-level elasticity of substitution across suppliers matter?

In this section, we assess the importance of the estimated firm-level elasticity of substitution

across suppliers for the same product by studying how this elasticity determines the impacts

of negative firm-level productivity shocks on aggregate GDP. In this counterfactual, we shock

the productivity of firms located in the red zone by 25%. We find that a 25% productivity

shock to firms in the red zone reduces GDP by 10.96%. As an empirical benchmark, the

state’s annual GDP fell by 11.3% in 2020/21. This fall would be 2.017pp less in a model where

firms in the same HS-4 product/industry are considered substitutes (ϵ = 2), and 0.75pp more

when firms in the same HS-4 product are considered almost Leontief (ϵ = 0.001).

In terms of GDP losses, given that the quarterly GDP of this state was close to 32.5

billion USD in 2020-2021, the additional losses due to firm-level complementarities translate

into 655 million USD, which is about 19 USD per capita per quarter, compared to the case

when firms are substitutes. To put these numbers into perspective, Baqaee and Farhi (2019)

showed that complementarities at the industry level, with an elasticity of substitution 0.001,

amplify the effect of a negative 13% shock in the oil-industry on GDP by around 0.61%.

Note that, the differences in GDP that arise from changing values of firm-level elasticities

43For the pre-Covid period, t is June 2019-October 2019, and t − 1 is June 2018-October 2018. For the
post-Covid period, t is June 2020-October 2020, and t− 1 is June 2019-October 2019.
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of substitution across suppliers, only changes the second order effects on GDP. Then, how

important are these second-order effects that we have estimated? To assess the importance

of these second-order effects, in Figure 17 we simulate different levels of negative productivity

shocks for 4 different values of the elasticity ϵ and plot the second-order percentage point

change in GDP due to these shocks. The top two plots show these differences for high levels

of complementarity between suppliers: 0.001 and our estimated elasticity 0.55, respectively.

The bottom two plots show the additional change in GDP due to the second order for high

levels of substitution across suppliers: 1.25 and 1.75, respectively. Jointly, these plots provide

two main lessons. First, for a given negative productivity shock, the second-order effects

with the degree of complementarity between suppliers. Second, given the same value of ϵ,

the second order effects increase with the magnitude of the productivity shocks. Finally,

as suppliers exhibit higher substitutability, the second-order effects actually dampen the

negative first-order effects, and more so, for higher values of productivity shocks. That is,

unlike the first-order effects which only depend on firm size, complementarities at the firm

level non-linearly amplify the effects of negative productivity shocks. This reflects similar

amplification patterns that Baqaee and Farhi (2019) documented, but at the industry level.
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Figure 17: How important are second-order effects?

Notes: These figures plot the percentage change in productivity to red zone firms on the horizontal axis, and the second-order
change in GDP in percentage points on the vertical axis, when the elasticity of substitution across suppliers within the same
industry are ϵ = 0.001, ϵ = 0.55, ϵ = 1.25, and ϵ = 1.75, respectively.

These graphs illustrate to us the importance of second-order effects that are largely driven

by complementarities at the firm level, especially for large short-lived negative productivity

shocks such as Covid-19. For decades, since Hulten (1978), policy-makers and researchers

have emphasized the importance of firm sizes in the propagation of shocks. In the next

counterfactual, we investigate how important large firms are versus connected firms in the

propagation of shocks.

3.6.2 How important is a firm’s connectivity in its network?

In times of crisis, governments often help small firms stay in business by providing them

with subsidies. Nevertheless, governments have limited funds, and it is often not clear for

them how to allocate their fixed budget among similarly sized firms. In this counterfactual,

we explore the importance of a firm’s connectivity in its network when implementing these

subsidies. We measure the connectivity of a firm by its value within the Leontief inverse
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matrix, which measures firms’ direct and indirect connections to other firms.44 Firm size is

measured by the size of its domar weight.

Since firm sizes and connectivity are highly correlated with a correlation coefficient of

0.75, we vary the firms’ connectivity for a given level of firm size. To implement this, we

choose firms that have Domar weights that are equal in size up to 10 decimal places. The first

set consists of the most connected firms, the second set is a random draw of firms, and the

third set consists of the least connected firms. Since firm sizes are given, the first order effects

are the same irrespective of how connected the firms are. In Figure 18, we therefore only plot

the second order effects on GDP due to different negative productivity shocks under these

three different experiments. In the first scenario, only the most connected firms are affected

by negative productivity shocks (blue line). In the second scenario, a random draw of firms is

affected (green line). Finally, in the third scenario, only the least connected firms are affected

(red line). We perform these experiments under two different elasticities of substitution: an

elasticity of substitution amounting to near perfect complementarity (ϵ = 0.001) in the left

panel and our estimated complementarity (ϵ = 0.55) in the right panel. All these experiments

are conditional on given firm sizes; that is, we vary the connectivity of firms after matching

on firm sizes.

These counterfactuals show that the fall in GDP is much larger if the most connected

firms are affected compared to the least connected firms, or a random set of firms, for a

given firm size. The importance of the most connected firms increases non-linearly with the

size of the negative productivity shocks: as the size of the shock increases, it becomes more

and more important to give attention to the most connected firms. Our experiment suggests

that for our baseline value of elasticity of substitution (ϵ = 0.55) and a negative productivity

shock of 45%, if governments save the better-connected firms, given the same firm sizes,

compared to randomly targeting firms, the fall in GDP would be about .20 percentage point

less, and .31 percentage point less compared to targeting least connected firms.

We notice two patterns. First, as the level of the productivity shock reduces, it becomes

less important to save the most connected firms. While for a low productivity shock of

5%, the differences in GDP are negligible (.001 and .002), for a productivity shock of 25%,

these differences are .05pp and .07 pp compared to saving randomly connected and the

least connected firms. Second, the effects of these non-linearities are more pronounced when

44In particular, the (i, j)th entry of the Leontief is a measure of firm i’s total reliance on j as a supplier.
Summing across all i’s yields a measure of the connectivity of each supplier j or its importance in the firm
network in terms of connectivity.
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suppliers are highly complementary. For near-perfect complementarity (ϵ = 0.001) and a

high negative productivity shock (−45%), the gains from saving the most connected firms

compared to saving randomly targeted and least connected firms are .38pp and .60pp, which

is almost double the gains if instead suppliers were moderately complementary (ϵ = 0.55). If

the goal of policy is to reduce the effects of negative productivity shocks on GDP, for large

productivity shocks and low levels of elasticities of substitution, more effective subsidies

should target firms that are highly connected.

Figure 18: Second order effects on GDP when firms with same size but different levels of
connectivity are affected

(a) ϵ = 0.001 (b) ϵ = 0.55

(c) ϵ = 0.98

Notes: These figures plot the percentage change in productivity on the horizontal axis, and the second order change in GDP in
percentage points on the vertical axis. Sub-figures (a), (b), and (c) plot these effects when the elasticity of substitution across
suppliers within the same industry ϵ = 0.001, ϵ = 0.55, and ϵ = 0.98, respectively.
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3.6.3 How important is measuring a firm’s total connectivity versus direct connectivity?

The existing literature has shown that shocks to a firm’s suppliers affect the buyer firm and

its suppliers (Barrot and Sauvagnat 2018). There is also recent evidence that shocks to a

firm can affect its direct as well as other indirect connections (Carvalho et al. 2021). In

this counterfactual, we quantify how important it is to take into account a firm’s indirect

connectivity in understanding how shocks to the firm can affect aggregate GDP. To be precise,

a firm’s indirect connections measure not only the number of direct buyers of a supplier but

also the buyers’ buyers and their buyers and so on.45

To do this, we conduct two experiments. In the first experiment, the government bails out

the most directly connected 10% firms in the red zone, where direct connectivity is measured

by the number of buyers a supplier directly supplies (red line in Figure 19). In the second

experiment, the government bails the most connected 10\% firms in the red zone, where the

total connectivity of a firm is measured by all its direct and indirect connections (green line

in Figure 19). Note that, unlike the previous counterfactual, we do not fix firm sizes and

vary total connectivity. We are interested in understanding if the government were to bail

out just the most directly connected firms as opposed to bailing out the most connected

firms irrespective of size, how would that affect aggregate GDP. We report the total effect

on the GDP under these two sets of experiments and the baseline results (shock to all red

zone firms).

We find that, under our estimated elasticity of ϵ = 0.55 and a negative productivity

shock of 25%, the fall in GDP would be 2.56pp less if the government were to pick firms on

the basis of total connectivity as opposed to direct connectivity. We see that as the level

of the negative productivity shock increases, the difference in aggregate GDP between these

two sets of experiments rises, emphasizing the importance of measuring a firm’s indirect

connections as well.

45As a reminder, we measure the total connectivity of a firm by its value within the Leontief inverse matrix,
which measures firms’ direct and indirect connections to other firms. In particular, the (i, j)th entry of the
Leontief is a measure of firm i’s total reliance on j as a supplier. Summing across all i’s yields a measure of
the connectivity of each supplier j or its importance in the firm network in terms of connectivity.
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Figure 19: Effects on GDP when the largest versus smallest versus all firms are bailed out

Notes: This figure plots the percentage change in productivity of the red zone firms on the horizontal axis and the percentage
change in GDP on the vertical axis for our estimated value of ϵ = 0.55. The blue line corresponds to the baseline case when
all firms in the red zones are affected. The red line corresponds to the case when the government only bails out the 10% most
directly connected firms. The green line corresponds to the case when the government bails out the 10% most connected firms.

3.7 Conclusions

In this paper, we use highly disaggregated firm-to-firm transaction data from a large Indian

state and provide one of the first estimates of elasticities of substitution across suppliers

within the same product category at the firm level. We provide new estimation strategies

and estimates for these elasticities by leveraging regional variation in supply-side shocks

induced by the Indian government’s massive lockdown policy. We find that suppliers of

inputs are highly complementary even at this very granular level. This elasticity crucially

determines aggregate impacts and the transmission of shocks across the network, but has

previously eluded the literature (Baqaee and Farhi 2019). The combined advantage of having

product-level unit values and quasi-experimental variation in supply-side shocks allows us

to overcome previous challenges in the literature, and credibly estimate this elasticity across

suppliers of a particular product.

Since inputs are complementary, adverse shocks to even a small subset of firms that are

highly linked in the supply chain can negatively affect the aggregate economy by propagating
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through firm networks. When we conservatively shock only the productivity of firms located

in the red zone by 25\%, we find that if suppliers of the same product were substitutes

instead of complements, the fall in aggregate quarterly GDP in the state under study would

be about 870 million USD lower, or about 25 USD per capita lower per quarter. Using

new computational techniques in the field of big data, we can quantify this decline directly

using information on the economy-wide firm-to-firm network without relying on any first-

order approximations. Our methods thus provide new techniques to quantify shocks through

large and complex production networks. Using data on the entire production network in the

state, we measure the full connectivity of firms in the network and show that as the level

of complementarity and the magnitude of the negative productivity shock increase, it pays

more to save the more connected firms, given the same firm size.

Our findings have implications for policymakers worldwide, who often face difficult trade-

offs in crisis regarding which firms to bail out. Given the underlying variation used, these

estimates are relevant for other crises that are expected to remain short-lived, such as natural

disasters, temporary trade wars and sanctions, and supply-chain disruptions.
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Appendices to Chapter I

A.1 Additional figures

Figure A1: West Germany

Notes: This figure shows a map of Germany. West Germany is on the left side of the map (blue), and East Germany is on the
right side of the map (gray). The red line separating West and East Germany is the Iron Curtain, which was lifted on October
1990. The missing area in East Germany is Berlin. The administrative boundaries are labor markets.

Figure A2: The Exodus to the West

Notes: This figure shows the yearly number of East Germans migrating to West Germany. The dashed red line denotes 1990,
the date of the Reunification of Germany.
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A.2 Additional tables

Table A1: Top 10 West german cities, 2014

Size Size
Panel A: Electrical engineering Panel D: Mechanical engineering
Stuttgart 15.096 Stuttgart 15.865
Munchen 13.776 Munchen 8.140
Regensburg 5.941 Boblingen 5.858
Nurnberg 4.533 Frankfurt 3.577
Erlangen 4.049 Ravensburg 3.318
Karlsruhe 4.005 Erlangen 3.197
Boblingen 2.772 Karlsruhe 3.093
Reutlingen 2.728 Wolsfburg 2.592
Soest 2.552 Dusseldorf 2.540
Frankfurt am Main 2.200 Heilbronn 2.471

Panel B: Instruments Panel E: Workers
Stuttgart 13.584 Hamburg 6.482
Munchen 8.732 Munchen 5.541
Heidenheim 6.506 Frankfurt 5.369
Erlangen 5.764 Stuttgart 5.070
Boblingen 4.965 Dusseldorf 4.560
Frankfurt 4.109 Koln 3.640
Rottweil 4.052 Essen 3.333
Freiburg 3.424 Hannover 2.541
Regensburg 2.968 Nurnberg 1.932

Bremen 1.895
Panel C: Chemistry
Dusseldorf 11.011
Stuttgart 10.734
Hamburg 7.202
Munchen 6.301
Frankfurt 5.609
Altotting 2.908
Essen 2.700
Koln 2.423
Reutlingen 2.423
Erlangen 2.285

Notes: This table is comprised by five panels. Panels A-D reports the share of inventors working on their corresponding
technological area that lives in a given city. Panel E reports the share of workers that lives in a given city. In each panel, I only
report the top 10 cities.
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Table A2: OLS models, robustness

Panel A: log (1 + Z)
(1) (2) (3) (4) (5) (6)

EPO 0.117 0.143 0.224 0.184 0.0859 0.173

(0.0186) (0.0173) (0.0135) (0.0319) (0.0349) (0.0679)

EU 0.142 0.193 0.255 0.203 0.103 0.245

(0.0208) (0.0162) (0.0178) (0.0461) (0.0463) (0.0864)

Panel B: IHS (Z)
(1) (2) (3) (4) (5) (6)

DPMA 0.0847 0.135 0.118 0.130 0.108 0.217

(0.0326) (0.0209) (0.0205) (0.0475) (0.0440) (0.0798)

EPO 0.140 0.171 0.266 0.223 0.102 0.214

(0.0219) (0.0204) (0.0160) (0.0389) (0.0431) (0.0810)

EU 0.142 0.193 0.255 0.203 0.103 0.245

(0.0208) (0.0162) (0.0178) (0.0461) (0.0463) (0.0864)

ιd,t ✓ ✓ ✓ ✓ ✓
ιa,t ✓ ✓ ✓ ✓
ιda ✓ ✓ ✓
ιω ✓ ✓
ιi ✓
N 177, 301 177, 300 177, 300 177, 294 162, 803 84, 639

Notes: In this table I report OLS estimates from Equation (1.1). The table is comprised by two panels. In Panel A, the

dependent variable is measured as log
(
1 + Ziω

da,t

)
, where Ziω

da,t is the number of 5-year forward citations. In Panel B, the

dependent variable is measured as IHS
(
Ziω
da,t

)
, where IHS (·) is the inverse hyperbolic sine function. Each panel contains a

main set of rows denoted by “DPMA”, “EPO”, and “EU”, which indicate the institution that generated the forward citations.
The table is comprised by 6 columns. Rows 3, 5, 9, 11, 13 report the estimate of β, and rows 4, 6, 10, 12, 14 report standard errors
clustered at the (d, a) level. Each column corresponds to a different combination of fixed effects, as pointed out by rows 15−19.
Row 20 report the number of observations.
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Table A3: OLS models, 5-year periods

(1) (2) (3) (4) (5) (6)

log (1 + Z) 0.0291 0.0472 0.0449 0.0707 0.0664 0.0907

(0.0096) (0.007) (0.0073) (0.0146) (0.0135) (0.0215)

IHS (Z) 0.0368 0.060 0.0568 0.0902 0.0850 0.116

(0.0124) (0.0089) (0.0094) (0.0187) (0.0171) (0.0273)

ιd,t ✓ ✓ ✓ ✓ ✓
ιa,t ✓ ✓ ✓ ✓
ιda ✓ ✓ ✓
ιω ✓ ✓
ιi ✓
N 177, 301 177, 300 177, 300 177, 294 162, 803 84, 639

Notes: In this table I report OLS estimates from Equation (1.1). Rows 2− 3 report the estimated value of β and its standard

errors in parentheses when the dependent variable is measured as log
(
1 + Ziω

da,t

)
, where Ziω

da,t is the number of 5-year forward

citations from the DPMA. Rows 4−5 report the estimated value of β and its standard errors in parentheses when the dependent

variable is measured as IHS
(
Ziω
da,t

)
, where IHS (·) is the inverse hyperbolic sine function. The table is comprised by 6 columns.

Each column corresponds to a different combination of fixed effects, as pointed out by rows 6 − 10. Standard errors clustered
at the (d, a) level. Row 11 reports the number of observations.
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Table A4: IV models, robustness

Panel A: ∆ log (1 + Z)
(1) (2) (3)

EPO 0.164 0.139 0.209

(0.0422) (0.0723) (0.117)

EU 0.210 0.270 0.343

(0.0436) (0.0907) (0.143)

Panel B: ∆IHS (Z)
(1) (2) (3)

DPMA 0.215 0.380 0.498

(0.0514) (0.122) (0.184)

EPO 0.182 0.144 0.237

(0.0494) (0.0849) (0.140)

EU 0.235 0.304 0.393

(0.0588) (0.104) (0.168)

ιd,t ✓ ✓
ιa,t ✓

KP − F 132.1 34.14 28.23

N 50, 778 50, 776 50, 776

Notes: In this table I report IV estimates from Equation (1.2). The table is comprised by two panels. In Panel A, the dependent

variable is measured as ∆ log
(
1 + Ziω

da,t

)
, where Ziω

da,t is the number of 5-year forward citations. In Panel B, the dependent

variable is measured as ∆IHS
(
Ziω
da,t

)
, where IHS (·) is the inverse hyperbolic sine function. Each panel contains a main set

of rows denoted by “DPMA”, “EPO”, and “EU”, which indicate the institution that generated the forward citations. The table
is comprised by 3 columns. Rows 3, 5, 9, 11, 13 report the estimate of β, and rows 4, 6, 10, 12, 14 report standard errors clustered
at the (d, a) level. Each column corresponds to a different combination of fixed effects, as pointed out by rows 15− 16. Row 19
shows the first stage Kleibergen-Paap F-statistic (KP-F), and row 20 reports the number of observations.
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Table A5: IV models, 5-year periods

(1) (2) (3)

∆ log (1 + Z) 0.0367 0.0865 0.0849

(0.0232) (0.0331) (0.0428)

∆IHS (Z) 0.0464 0.109 0.104

(0.0295) (0.0420) (0.0543)

ιd,t ✓ ✓
ιa,t ✓

KP − F 85.96 26.64 38.15

N 100, 234 100, 228 100, 228

Notes: In this table I report IV estimates from Equation (1.2). Rows 2 − 3 report the estimated value of β and its standard

errors in parentheses when the dependent variable is measured as ∆ log
(
1 + Ziω

da,t

)
, where Ziω

da,t is the number of 5-year

forward citations from the DPMA. Rows 4− 5 report the estimated value of β and its standard errors in parentheses when the

dependent variable is measured as ∆IHS
(
Ziω
da,t

)
, where IHS (·) is the inverse hyperbolic sine function. The table is comprised

by 3 columns. Each column corresponds to a different combination of fixed effects, as pointed out by rows 6−7. Standard errors
clustered at the (d, a) level. Row 8 shows the first stage Kleibergen-Paap F-statistic (KP-F), and row 9 reports the number of
observations.

Table A6: Estimation of decreasing returns to R&D, 5-year periods

(1) (2) (3)

log
(
Rω

o,t

)
0.661 0.644 0.568

(0.008) (0.0081) (0.0098)

ιo,t ✓ ✓

ιω ✓

N 95, 699 95, 699 68, 381

R2 0.683 0.744 0.854

Notes: In this table I report estimates for decreasing returns to R&D from Equation (1.35). The dependent variable log
(
nω
o,t

)
is the number of firm’s inventors that filed a patent. Time are 5-year periods. Each column is an specification with different
combinations of fixed effects. The fixed effects included in each specification are determined by rows 4 − 5. Row 2 contains
the estimates for ζ, and row 3 contain standard errors, which are clustered at the o, t level. Rows 6− 7 contain the number of
observations and goodness of fit in each specification, respectively.
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Table A7: Estimation of migration costs, 5-year periods

n = R n = L

OLS PPML OLS PPML

log (distod) −1.020 −1.381 −1.505 −1.380

(0.010) (0.017) (0.025) (0.015)

ρn1 0.481 0.651 0.709 0.650

R2 0.826 · 0.835 ·
N 17, 283 54, 080 43, 835 54, 080

Notes: In this table I report migration cost elasticities from Equation (1.36) under 5-year periods. Columns 2 − 3 are the
regressions for inventors, where column 2 are OLS estimates, and column 3 are PPML estimates. Columns 4 − 5 are the
regressions for workers, where column 4 are OLS estimates, and column 5 are PPML estimates. For OLS estimates, the

dependent variable is measured as log
(
ηnod,t

)
is the log of the share of inventors or workers from o that moved to d during a

given period, where I consider 5-year periods. Row 3 is the estimate associated to log (distod), where distod is the Euclidean
distance in miles from o to d. Row 4 are standard errors two-way clustered at the o, t and d, t level. Row 5 is the implied
migration elasticity from the estimates from row 3 given κ = 2.12. Rows 6 − 7 contain the goodness of fit and number of
observations in each specification, respectively.

A.3 Linked inventor biography data (INV-BIO)

The INV-BIO is comprised by approximately 150, 000 inventors in Germany with high–

frequency information on their employment spells and patenting activities between 1980 and

2014. All inventors recorded in the INV-BIO data filed at least one patent with the European

Patent Office (EPO) between 1999 and 2011 and were disambiguated using a combination

of record linkage and machine learning methods.46 The INV-BIO dataset is comprised by

three modules: (i) inventor module, (ii) establishment module, and (iii) patent module. I

now describe details of each module.

A.3.1 Module on inventors.

The module on inventors is reported at the employment spell level. I now explain how I

collapse the data at the inventor and period level. For a given inventor and year, consider

the set of the inventor’s spells. Then, for a given spell, the data contains information on the

establishment an inventor works for, inventor’s daily wage, 1-digit occupation code, whether

inventor’s job is part time, and the inventor’s residence location. Since it is possible that an

inventor reports multiple jobs within a year, an inventor’s job is the one with the longest

tenure. Whenever a tie happens, an inventor’s job is the one with the highest daily wage.

If a tie still remains, an inventor’s job is chosen randomly. Part-time jobs are excluded.

46For more details, see Dorner et al. (2018)

121



Finally, when collapsing the data at the inventor and period level, the last year within a

period defines inventor characteristics.

A.3.2 Module on establishments.

The module on establishments is reported at the establishment and year level. I now explain

how I collapse the data at the establishment and period level. The data contains a 1-digit

2008 time-consistent NACE code, the year an establishment is registered in the German ad-

ministrative records for the first time, the year an establishment stops being registered in the

German administrative records, and establishment location. Then, a panel of establishments

is constructed based on the years the establishments were first and last registered. If the first

year an establishment is registered in the data is before 1980, data on that establishment

begins on 1980. If the last year an establishment is registered in the data is after 2014, data

on that establishment ends on 2014. It is possible that an establishment is not registered in

a given year because of lack of patenting activity by its inventors. Whenever that happens,

an establishment is considered to still exists during those years, such that their industry

and location are the same from the previous year. Finally, when collapsing the data at the

inventor and period level, the last year within a period defines establishment characteristics.

A.3.3 Module on patents.

The module on patents is reported at the patent and inventor level. I now explain how I

collapse the data at the inventor and period level. The data contains patent characteristics

such as the date when the patent was filed for the first time, 2-10 forward year citations from

the German Patent and Trade Mark Office (DPMA), the European Patent Office (EPO),

and the United States Patent and Trademark Office (US); the mean distance between the

inventors that filed the patent, 1-digit technological area, and originality and generality

indices. For each patent, the earliest filing date determines the year when the patent was

generated. Then, the data is collapsed at the inventor and year, such that the data reports

the number of forward citations and number of filed patents during a given year. Finally,

when collapsing at the inventor and period, the number of forward citations and number of

filed patents are added up.

A.4 Microfoundations

In this section I provide details on the microfoundations of the model.
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A.4.1 Generation of ideas

Consider an inventor i working for firm ω in location o. Consider Ziω,j
o to be the productivity

of an idea j that inventor i generated. As in Kortum (1997), innovation is the process where

an inventor generates To ideas and selects the one with the highest productivity, such that

Ziω
o = max

j=1,...,To

Ziω,j
o .

Then, the conditional probability distribution of inventor i’s best idea is

G (z | To) = Pr
{
Ziω,j

o ≤ z | To
}
,

= Pr
{
Ziω,1

o ≤ z, . . . , Ziω,To
o ≤ z | To

}
,

= Pr
{
Ziω,1

o ≤ z
}
× · · · × Pr

{
Ziω,To

o ≤ z
}
,

= F (z)× · · · × F (z)︸ ︷︷ ︸
To times

,

= F (z)To ,

where F (z) is the cumulative probability that an idea drawn by inventor i is below produc-

tivity z. Since To is the discrete number of ideas drawn by and inventor, I assume that To

follows a Poisson distribution, such that Pr {To = n} = λn
o exp(−λo)

n!
, where n is the number

of drawn ideas, and λo is the expected number of drawn ideas. Additionally, I assume that

ideas are drawn from a Pareto distribution, such that F (z) = 1 − z−α, where α > 1 is a

shape parameter. Then, the unconditional distribution of the productivity of inventor i’s

best idea is

G (z) = Pr
{
Ziω

o ≤ z
}
,

=
∞∑
n=0

[
λno exp (−λo)

n!

]
[F (z)n] ,

= exp (−λo)

[
∞∑
n=0

(λoF (z))n

n!

]
,

= exp (−λo) exp (λoF (z)) ,

= exp (−λo (1− F (z))) ,

= exp
(
−λo

(
1−

(
1− z−α

)))
,

= exp
(
−λoz−α

)
.

That is, Ziω
o is drawn from a Frechet distribution with shape parameter α and scale λ

1
α
o .
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A.4.2 Microfoundations: quality of intermediate inputs

Microfoundation 1: necessary tasks. Consider that a unit of the intermediate input ω is

produced at a level of quality determined by a blueprint. The firm that produces its unique

input ω owns the blueprint. A blueprint is defined as a continuum of tasks T ≡ [0, 1] that

are necessary to produce the input at a given quality. Then, the quality of the unit of an

intermediate input is

Aω
o = exp

(∫
T
log (Aω,τ

o ) dτ

)
,

where Aω,τ
o is the quality of task τ ∈ T within ω’s blueprint. The firm hires a mass of

inventors Rω
o who generate nω

o ≤ Rω
o ideas that determine the quality of each task within the

ω’s blueprint. Ideas are heterogeneous in productivity and each idea improves the quality of

all tasks within the blueprint, such that the quality of each task is

Aω,τ
o = zτnω

o ,

where zτ is the productivity of each idea generated by firms’ inventors. Plugging this into

the expression for Aω
o yields

Aω
o = exp

(∫
T
log (Aω,τ

o ) dt

)
,

= exp

(∫
T
log (zτnω

o ) dt

)
,

= exp

(∫
T
[log (zτ ) + log (nω

o )] dt

)
,

= exp

(∫
T
log (zτ ) dτ +

∫
T
log (nω

o ) dt

)
,

= exp

(∫
T
log (zτ ) dτ

)
exp

(∫
T
log (nω

o ) dt

)
,

= exp

(∫
T
log (zτ ) dτ

)
exp

(
log (nω

o )

∫
T
dt

)
,

= exp

(∫
T
log (zτ ) dτ

)
exp (log (nω

o )) ,

= exp

(∫
T
log (zτ ) dτ

)
nω
o .
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Since zτ are draws from a Frechet distribution as in Equation (1.13), then log (zτ ) are draws

from a Gumbel distribution with location parameter log
(
λ

1
α
o

)
and scale parameter 1

α
. Then,

Aω
o = exp

(∫
T
log (zτ ) dτ

)
nω
o ,

= exp

(∫ ∞

0

log (z) dGo (z)

)
nω
o ,

= exp

(
log
(
λ

1
α
o

)
+
γ

α

)
nω
o ,

= exp
(
log
(
λ

1
α
o

))
exp

(
γ

α

)
nω
o ,

= ψλ
1
α
o n

ω
o .

where ψ ≡ exp
(
γ
α

)
is a constant, and γ is Euler’s constant.

Microfoundation 2: linear innovation. Consider that a unit of the intermediate input ω is

produced at a level of quality determined by a blueprint. The firm that produces its unique

input ω owns the blueprint. A blueprint is defined as a the average quality of all the ideas

generated by firms’ inventors. Consider a firm ω that hires a mass of inventors Rω
o . The

task of each inventor is to come up with an idea that will be incorporated into the firm’s

blueprint. Inventors show up for work, they form an arbitrary line, the first inventor receives

the blueprint, implements his idea into the blueprint and passes it over to the next inventor,

and so on. At the end of the line, nω
o ≤ Rω

o ideas have been implemented into the blueprint

since some inventors are not able to generate an idea due decreasing returns to R&D (e.g.

duplication effects). Ideas are heterogeneous in productivity since they are drawn from a

Frechet distribution as in (1.13). Then, the quality of intermediate input ω is

Aω
o =

∫ nω
o

o

zidi,

= nω
o

∫ ∞

o

zdG (z) ,

= nω
o

[
Γ

(
1− 1

α

)
λ

1
α
o

]
,

= ψλ
1
α
o n

ω
o ,

where ψ ≡ Γ
(
1− 1

α

)
is a constant, and Γ (·) is the Gamma function.
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A.5 Derivations

Final good firms. In each location d, a representative firm produces a final good by aggre-

gating intermediates from all locations. The production function of the final good is

Qd =

(∑
o

∫
ω∈Ωod

Aω
1
σ

o Qω
σ−1
σ

od dω

) σ
σ−1

, (A1)

where Ωod is the set of intermediate input firms in o selling to d, Qd is the production of the

final good, Qω
od is the quantity of intermediate input ω, Aω

o is input quality, and σ > 1 is the

CES across intermediate inputs. The final good producer maximizes profits:

max
{Qω

od}
PdQd −

∑
o

∫
ω∈Ωod

P ω
odQ

ω
ods.t.

Qd =

(∑
o

∫
ω∈Ωod

Aω
1
σ

o Qω
σ−1
σ

od dω

) σ
σ−1

.

The first order condition of buying an intermediate input ω from o is

[Qω
od] :Pd

(
σ

σ − 1

)
(. . .d)

σ
σ−1

−1Aω
1
σ

o

(
σ − 1

σ

)
Qω

σ−1
σ −1

od = P ω
od,

P ω
od = Pd (. . .d)

σ−σ+1
σ−1 Aω

1
σ

o Qω
σ−1−σ

σ

od ,

= Pd (. . .d)
1

σ−1 Aω
1
σ

o Qω− 1
σ

od ,

where (. . .d) is a composite of terms in d. Now, consider the first order condition of buying

an intermediate input ω from o′:

P ω
od = Pd (. . .d)

1
σ−1 Aω

1
σ

o Qω− 1
σ

o′d .

126



Divide both order conditions:

P ω
od

P ω
o′d

=
Pd (. . .d)

1
σ−1 Aω

1
σ

o Qω− 1
σ

od

Pd (. . .d)
1

σ−1 Aω
1
σ

o Qω− 1
σ

o′d

,

=
Aω

1
σ

o Qω− 1
σ

od

Aω
1
σ

o′ Q
ω− 1

σ

o′d

,

=
Aω

1
σ

o Qω
1
σ

o′d

Aω
1
σ

o′ Q
ω

1
σ

od

,

P ωσ−1

od

P ωσ−1

o′d

=
Aω

σ−1
σ

o Qω
σ−1
σ

o′d

Aω
σ−1
σ

o′ Qω
σ−1
σ

od

,

Qω
σ−1
σ

o′d =
Aω

σ−1
σ

o′ Qω
σ−1
σ

od

Aω
σ−1
σ

o

P ωσ−1

od

P ωσ−1

o′d

.

Plug this expression in the production function of the final good producer:

Qd =

(∑
o′

∫
ω∈Ωo′d

Aω
1
σ

o′ Q
ω

σ−1
σ

o′d dω

) σ
σ−1

,

=

(∑
o′

∫
ω∈Ωo′d

Aω
1
σ

o′
Aω

σ−1
σ

o′ Qω
σ−1
σ

od

Aω
σ−1
σ

o

P ωσ−1

od

P ωσ−1

o′d

dω

) σ
σ−1

,

=

(
Qω

σ−1
σ

od

Aω
σ−1
σ

o

P ωσ−1

od

∑
o′

∫
ω∈Ωo′d

Aω
1
σ

o′ A
ω

σ−1
σ

o′ P ω1−σ

o′d dω

) σ
σ−1

,

=

(
Qω

σ−1
σ

od

Aω
σ−1
σ

o

P ωσ−1

od

∑
o′

∫
ω∈Ωo′d

Aω
o′P

ω1−σ

o′d dω

) σ
σ−1

,

=

(
Qω

σ−1
σ

od

Aω
σ−1
σ

o

P ωσ−1

od

∑
o′

P 1−σ
od,t

) σ
σ−1

,

=

(
Qω

σ−1
σ

od

Aω
σ−1
σ

o

P ωσ−1

od P 1−σ
d,t

) σ
σ−1

,
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where P 1−σ
d,t =

(∑
o P

1−σ
od,t

)
, and P 1−σ

od,t =
(∫

ω∈Ωod,t
Aω

oP
ω1−σ

od dω
)
are CES price indices. Then,

rearrange this expression to obtain the demand of intermediate inputs from o:

Qd =

(
Qω

σ−1
σ

od

Aω
σ−1
σ

o

P ωσ−1

od P 1−σ
d,t

) σ
σ−1

,

=
Qω

od

Aω
o

P ωσ

od P
−σ
d,t ,

Qω
od = Aω

oP
ω−σ

od P σ
d Qd,

= Aω
oP

ω−σ

od P σ−1
d (PdQd) ,

= Aω
oP

ω−σ

od P σ−1
d Xd,

where Xd = PdQd is total expenditure of the final good in d.

Intermediate input firms. The intermediate input firm in o maximizes profits by selling its

inputs to all locations subject to the demand from every location and its cost structure:

max
{Pω

od,Q
ω
od,L

ω
od}

πω
o =

∑
d

πω
od,

s.t.

πω
od = P ω

odQ
ω
od − τodw

L
o L

ω
od,

Lω
od = Qω

od,

Qω
od = Aω

oP
ω−σ

od P σ−1
d Xd.
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Introduce the constraints into the profit function:

πω
o =

∑
d

πω
od,

=
∑
d

(
P ω
odQ

ω
od − τodw

L
o L

ω
od

)
,

=
∑
d

(
P ω
odQ

ω
od − τodw

L
oQ

ω
od

)
,

=
∑
d

(
P ω
odA

ω
oP

ω−σ

od P σ−1
d Xd

)
−
∑
d

(
τodw

L
oA

ω
oP

ω−σ

od P σ−1
d Xd

)
,

=
∑
d

(
Aω

oP
ω1−σ

od P σ−1
d Xd

)
−
∑
d

(
τodw

L
oA

ω
oP

ω−σ

od P σ−1
d Xd

)
.

The first order condition is

[P ω
od] : (1− σ)Aω

oP
ω−σ

od P σ−1
d Xd − (−σ) τodwL

oA
ω
oP

ω−σ−1

od P σ−1
d Xd = 0,

0 = (1− σ)P ω−σ

od + στodw
L
o P

ω−σ−1

od ,

(σ − 1) = στodw
L
o P

ω−1

od ,

P ω
od =

(
σ

σ − 1

)
τodw

L
o ,

= mτodw
L
o ,

where m ≡ σ
σ−1

is the CES constant markup over marginal costs.
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Total profits. Introducing the markup pricing Equation (1.9) in the profit function (1.8)

yields

πω
o =

∑
d

πω
od,

=
∑
d

P ω
odQ

ω
od − τodw

L
o L

ω
od,

=
∑
d

P ω
odQ

ω
od − τodw

L
oQ

ω
od,

=
∑
d

(
P ω
od − τodw

L
o

)
Qω

od,

=
∑
d

(
mτodw

L
o − τodw

L
o

)
Qω

od,

=
∑
d

(m− 1) τodw
L
oQ

ω
od,

=
∑
d

(m− 1) τodw
L
oA

ω
oP

ω−σ

od P σ−1
d Xd,

=
∑
d

(m− 1) τodw
L
oA

ω
o

(
mτodw

L
o

)−σ
P σ−1
d Xd,

=
∑
d

(m− 1)m−1
(
mτodw

L
o

)
Aω

o

(
mτodw

L
o

)−σ
P σ−1
d Xd,

= Aω
o

∑
d

(m− 1)m−1
(
mτodw

L
o

)1−σ
P σ−1
d Xd,

=

(
m− 1

m

)
Aω

o

∑
d

(P ω
od)

1−σ P σ−1
d Xd,

=

(
σ

σ−1
− 1

σ
σ−1

)
Aω

o

∑
d

(
P ω
od

Pd

)1−σ

Xd,

=

(
1

σ−1
σ

σ−1

)
Aω

o

∑
d

(
P ω
od

Pd

)1−σ

Xd,

=
1

σ
Aω

o

∑
d

(
P ω
od

Pd

)1−σ

Xd.

130



Research and Development (R&D). Firm ω maximizes total profits after R&D expenditure

subject to its profits before R&D and the quality of its intermediate:

max
{Rω

o }
πωo = πωo − wR

o R
ω
o

s.t.

πωo =
1

σ
Aω

o

∑
d

(
Pω
od

Pd

)1−σ

Xd,

Aω
o = ψAoR

γ̃
oR

ωζ

o .

Rewrite profits:

πω
o = πω

o − wR
o R

ω
o ,

=
1

σ
Aω

o

∑
d

(
P ω
od

Pd

)1−σ

Xd − wR
o R

ω
o ,

=
1

σ

(
ψAoR

γ̃
o

)
nω
o

∑
d

(
P ω
od

Pd

)1−σ

Xd − wR
o R

ω
o ,

=
1

σ

(
ψAoR

γ̃
o

)
Rωζ

o

∑
d

(
P ω
od

Pd

)1−σ

Xd − wR
o R

ω
o .

The first order condition is

[Rω
o ] :w

R
o =

ζ

σ

(
ψAoR

γ̃
o

)
Rωζ−1

o

∑
d

(
P ω
od

Pd

)1−σ

Xd,

Rω1−ζ

o =
ζ

σ

ψAoR
γ̃
o

wR
o

∑
d

(
P ω
od

Pd

)1−σ

Xd,

Rω
o =

(
ζ

σ

ψAoR
γ̃
o

wR
o

∑
d

(
P ω
od

Pd

)1−σ

Xd

) 1
1−ζ

.

The number of implemented ideas is

nω
o = Rωζ

o ,

=

(
ζ

σ

ψAoR
γ̃
o

wR
o

∑
d

(
P ω
od

Pd

)1−σ

Xd

) ζ
1−ζ

.
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The quality of the intermediate is

Aω
o = ψAoR

γ̃
on

ω
o ,

= ψAoR
γ̃
o

(
ζ

σ

ψAoR
γ̃
o

wR
o

∑
d

(
P ω
od

Pd

)1−σ

Xd

) ζ
1−ζ

,

=

(
ζ

σ

ψAoR
γ̃
o

wR
o

(
ψAoR

γ̃
o

) 1−ζ
ζ
∑
d

(
P ω
od

Pd

)1−σ

Xd

) ζ
1−ζ

,

=

 ζ

σ

(
ψAoR

γ̃
o

)1+ 1−ζ
ζ

wR
o

∑
d

(
P ω
od

Pd

)1−σ

Xd


ζ

1−ζ

,

=

 ζ

σ

(
ψAoR

γ̃
o

) ζ+1−ζ
ζ

wR
o

∑
d

(
P ω
od

Pd

)1−σ

Xd


ζ

1−ζ

,

=

 ζ

σ

(
ψAoR

γ̃
o

) 1
ζ

wR
o

∑
d

(
P ω
od

Pd

)1−σ

Xd


ζ

1−ζ

,

=

 ζ

σ

(
ψAoR

γ̃
o

) 1
ζ

wR
o

∑
d

(
mτodw

L
o

Pd

)1−σ

Xd


ζ

1−ζ

,

=

ζm1−σ

σ

(
ψAoR

γ̃
o

) 1
ζ

wR
o w

Lσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd


ζ

1−ζ

.
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Then, total profits after R&D is

πω
o =

1

σ
Aω

o

∑
d

(
P ω
od

Pd

)1−σ

Xd − wR
o R

ω
o ,

=
1

σ

 ζ

σ

(
ψAoR

γ̃
o

) 1
ζ

wR
o

∑
d

(
P ω
od

Pd

)1−σ

Xd


ζ

1−ζ ∑
d

(
P ω
od

Pd

)1−σ

Xd

− wR
o

(
ζ

σ

ψAoR
γ̃
o

wR
o

∑
d

(
P ω
od

Pd

)1−σ

Xd

) 1
1−ζ

,

=
1

σ

(
ζ

σ
wR−1

o

) ζ
1−ζ (

ψAoR
γ̃
o

) 1
1−ζ

(∑
d

(
P ω
od

Pd

)1−σ

Xd

)1+ ζ
1−ζ

− wR
o

(
ψAoR

γ̃
o

wR
o

) 1
1−ζ

(
ζ

σ

∑
d

(
P ω
od

Pd

)1−σ

Xd

) 1
1−ζ

,

=
1

σ

(
ζ

σ

) ζ
1−ζ (

wR
o

) ζ
ζ−1
(
ψAoR

γ̃
o

) 1
1−ζ

(∑
d

(
P ω
od

Pd

)1−σ

Xd

) 1
1−ζ

− wR
o

(
wR

o

)− 1
1−ζ
(
ψAoR

γ̃
o

) 1
1−ζ

(
ζ

σ

∑
d

(
P ω
od

Pd

)1−σ

Xd

) 1
1−ζ

,

=
ζ

ζ
1−ζ

σ1+ ζ
1−ζ

(
wR

o

) ζ
ζ−1
(
ψAoR

γ̃
o

) 1
1−ζ

(∑
d

(
P ω
od

Pd

)1−σ

Xd

) 1
1−ζ

−
(
ζ

σ

) 1
1−ζ (

wR
o

)1− 1
1−ζ
(
ψAoR

γ̃
o

) 1
1−ζ

(∑
d

(
P ω
od

Pd

)1−σ

Xd

) 1
1−ζ

,

=
ζ

ζ
1−ζ

σ
1

1−ζ

(
wR

o

) ζ
ζ−1
(
ψAoR

γ̃
o

) 1
1−ζ

(∑
d

(
P ω
od

Pd

)1−σ

Xd

) 1
1−ζ

− ζ
1

1−ζ

σ
1

1−ζ

(
wR

o

) ζ
ζ−1
(
ψAoR

γ̃
o

) 1
1−ζ

(∑
d

(
P ω
od

Pd

)1−σ

Xd

) 1
1−ζ

,

=
(
ζ

ζ
1−ζ − ζ

1
1−ζ

) (
wR

o

) ζ
ζ−1
(
ψAoR

γ̃
o

) 1
1−ζ

(
1

σ

∑
d

(
P ω
od

Pd

)1−σ

Xd

) 1
1−ζ

,

= κ
1

1−ζ

ζ

(
wR−ζ

o ψAoR
γ̃
o

1

σ

∑
d

(
P ω
od

Pd

)1−σ

Xd

) 1
1−ζ

,

=

(
κζm

1−σ

σ

ψAoR
γ̃
o

wRζ

o wLσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd

) 1
1−ζ

.
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where κζ ≡ (1− ζ)1−ζ ζζ is a normalization constant. The normalization constant is

ζ
ζ

1−ζ − ζ
1

1−ζ = ζ
ζ

1−ζ − ζ
1

1−ζ ,

= ζ
1

1−ζ

[
ζ

ζ
1−ζ

− 1
1−ζ − 1

]
,

= ζ
1

1−ζ

[
ζ

ζ−1
1−ζ − 1

]
,

= ζ
1

1−ζ

[
ζ−

1−ζ
1−ζ − 1

]
,

= ζ
1

1−ζ

[
1

ζ
− 1

]
,

= ζ
1

1−ζ

[
1− ζ

ζ

]
,

= ζ
1

1−ζ
−1 (1− ζ) ,

= ζ
1−1+ζ
1−ζ (1− ζ) ,

= (1− ζ) ζ
ζ

1−ζ ,

=
[
(1− ζ) ζ

ζ
1−ζ

] 1−ζ
1−ζ

,

=
[
(1− ζ)1−ζ ζζ

] 1
1−ζ

,

= κ
1

1−ζ

ζ .

R&D with subsidies. Firm’s demand for inventors is

Rω
o =

(
ζ

σ

ψAoR
γ̃
o

(1− so)wR
o

∑
d

(
P ω
od

Pd

)1−σ

Xd

) 1
1−ζ

.

The number of ideas is

nω
o =

(
ζ

σ

ψAoR
γ̃
o

(1− so)wR
o

∑
d

(
P ω
od

Pd

)1−σ

Xd

) ζ
1−ζ

.

Intermediate’s quality is

Aω
o =

ζm1−σ

σ

(
ψAoR

γ̃
o

) 1
ζ

(1− so)wR
o w

Lσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd


ζ

1−ζ

.
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Firms’ profits are

πω
o =

(
κζm

1−σ

σ

ψAoR
γ̃
o

(1− so)
ζ wRζ

o wLσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd

) 1
1−ζ

.

Preferences. In each location d, agents are of two types: inventors (n = R), or workers

(n = L). Each agent has preferences over the local final good and location amenities:

max
{Qn

d}
Un
d = Bn

dQ
n
d s.t.

wn
d (1 + π) = PdQ

n
d ,

where Bn
d are type-specific location amenities, Qn

d is the quantity demanded by agent of type

n, wn
d is the agent’s wage, and π are redistributed profits. Since the agent’s preferences are

linear, utility is maximized at

Un
d = Bn

dQ
n
d ,

= Bn
d

(
wn

d (1 + π)

Pd

)
,

=
Bn
dw

n
d (1 + π)

Pd

.

Location choice. An agent i of type n = {L,R} living in o moves to d by maximizing its

ex ante indirect utility:

U i,n
od = max

d∈S

{
Un
d

µn
od

× ϵi
}
,

where µn
od ≥ 1 are type-specific iceberg migration costs, G (ϵ) = exp (−ϵ−κ) are location

preference shocks, and κ is the spatial labor supply elasticity. Following the properties of

the Frechet distribution, the share of agents of type n moving from o to d is

ηnod =

(
Un
d

µn
od

)κ
∑

δ

(
Un
δ

µL
oδ

)κ ,
such that

∑
d η

n
od = 1, ∀o ∈ S.

Aggregate productivity. I define aggregate productivity as the average quality of interme-

diates in a location. Since firms are symmetric and the mass of firms in each location is
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fixed, then from Equations (1.14)-(1.15), location’s productivity is

Ao =

∫
ω∈Ωo

Aω
o dω,

=

∫
ω∈Ωo

ζm1−σ

σ

(
ψAoR

γ̃
o

) 1
ζ

wR
o w

Lσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd


ζ

1−ζ

dω,

=

ζm1−σ

σ

(
ψAoR

γ̃
o

) 1
ζ

wR
o w

Lσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd


ζ

1−ζ ∫
ω∈Ωo

dω,

=

ζm1−σ

σ

(
ψAoR

γ̃
o

) 1
ζ

wR
o w

Lσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd


ζ

1−ζ

,

=

(ζm1−σ

σ

)ζ (
ψAoR

γ̃
o

) (
wLσ−1

o wR
o

)−ζ
(∑

d

τ 1−σ
od P σ−1

d Xd

)ζ
 1

1−ζ

.

With R&D subsidies, a the productivity of a location is

Ao =

(ζm1−σ

σ

)ζ (
ψAoR

γ̃
o

) (
(1− so)w

Lσ−1

o wR
o

)−ζ
(∑

d

τ 1−σ
od P σ−1

d Xd

)ζ
 1

1−ζ

.

Then, aggregate productivity is

A =
1

S

∑
o

Ao,

where S ≡ |S| is the number of locations in the economy.

Price indices. Given Equation (1.9), the price index of firms in o selling to d is

P 1−σ
od =

∫
ω∈Ωod

Aω
oP

ω1−σ

od dω,

=

∫
ω∈Ωod

Aω
o

(
mτodw

L
o

)1−σ
dω,

=

∫
ω∈Ωod

Aω
o dω

(
mτodw

L
o

)1−σ
,

=

∫
ω∈Ωo

Aω
o dω

(
mτodw

L
o

)1−σ
,

= Ao

(
mτodw

L
o

)1−σ
.
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Then, the price index in d is

P 1−σ
d =

∑
o

P 1−σ
od ,

=
∑
o

Ao

(
mτodw

L
o

)1−σ
.

Trade shares. From (1.5), trade flows from o to d are

Qω
od = Aω

oP
ω−σ

od P σ−1
d Xd,

P ω
odQ

ω
od = Aω

oP
ω1−σ

od P σ−1
d Xd,

Xω
od = Aω

oP
ω1−σ

od P σ−1
d Xd,∫

ω∈Ωod

Xω
oddω =

∫
ω∈Ωod

Aω
oP

ω1−σ

od P σ−1
d Xddω,

Xod =

(∫
ω∈Ωod

Aω
oP

ω1−σ

od dω

)
P σ−1
d Xd,

= P 1−σ
od P σ−1

d Xd,

where P 1−σ
od =

∫
ω∈Ωod

Aω
oP

ω1−σ

od dω. Then, the share of intermediate inputs from o in location

d’s expenditure χod is

χod ≡
Xod

Xd

,

=
P 1−σ
od P σ−1

d Xd

Xd

,

= P 1−σ
od P σ−1

d ,

=
P 1−σ
od

P 1−σ
d

.

Considering Equations (1.22), then trade shares are

χod =
P 1−σ
od

P 1−σ
d

,

=
Ao

(
mτodw

L
o

)1−σ∑
oAo (mτodwL

o )
1−σ ,

=
Ao

(
τodw

L
o

)1−σ∑
oAo (τodwL

o )
1−σ .

Profits per-capita. Location’s profits are
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πo =

∫
ω∈Ωo

πω
o dω,

=

∫
ω∈Ωo

(
κζm

1−σ

σ

ψAoR
γ̃
o

wRζ

o wLσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd

) 1
1−ζ

dω,

=

(
κζm

1−σ

σ

ψAoR
γ̃
o

wRζ

o wLσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd

) 1
1−ζ ∫

ω∈Ωo

dω,

=

(
κζm

1−σψ

σ

AoR
γ̃
o

wRζ

o wLσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd

) 1
1−ζ

.

With R&D subsidies, these are

πo =

(
κζm

1−σψ

σ

AoR
γ̃
o

(1− so)
ζ wRζ

o wLσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd

) 1
1−ζ

.

Then, profits per-capita are

π =
1

N

∑
o

πo,

where N = L+R is total population.
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Workers market. From (1.5), (1.7), and (1.9), the demand for workers is

Lo =
∑
d

∫
ω∈Ωod

Lω
oddω,

=
∑
d

∫
ω∈Ωod

Qω
oddω,

=
∑
d

∫
ω∈Ωod

(
Aω

oP
ω−σ

od P σ−1
d Xd

)
dω,

=
∑
d

∫
ω∈Ωod

(
Aω

o

(
mτodw

L
o

)−σ
P σ−1
d Xd

)
dω,

=
∑
d

(
mτodw

L
o

)−σ
P σ−1
d Xd

∫
ω∈Ωod

Aω
o dω,

=
∑
d

(
mτodw

L
o

)−σ
P σ−1
d Xd

∫
ω∈Ωo

Aω
o dω,

=
∑
d

(
mτodw

L
o

)−σ
P σ−1
d XdAo,

= Ao

(
mwL

o

)−σ
∑
d

τ−σ
od P

σ−1
d Xd,

wLσ

o =
Ao

Lo

m−σ
∑
d

τ−σ
od P

σ−1
d Xd,

wL
o = m−1

(
Ao

Lo

∑
d

τ−σ
od P

σ−1
d Xd

) 1
σ

.
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Inventors market. From firm’s demand for inventors (1.17), location’s demand for inventors

is

Rω
o =

(
ζm1−σ

σ

ψAoR
γ̃
o

wR
o w

Lσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd

) 1
1−ζ

,

∫
ω∈Ωo

Rω
o dω =

∫
ω∈Ωo

(
ζm1−σ

σ

ψAoR
γ̃
o

wR
o w

Lσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd

) 1
1−ζ

dω,

Ro =

(
ζm1−σ

σ

ψAoR
γ̃
o

wR
o w

Lσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd

) 1
1−ζ ∫

ω∈Ωo

dω,

= R
γ̃

1−ζ
o

(
ζm1−σ

σ

ψAo

wR
o w

Lσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd

) 1
1−ζ

,

R
1− γ̃

1−ζ
o =

(
ζψm1−σ

σ

Ao

wR
o w

Lσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd

) 1
1−ζ

,

R
(1−ζ)−γ̃

1−ζ
o =

(
ζψm1−σ

σ

Ao

wR
o w

Lσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd

) 1
1−ζ

,

R(1−ζ)−γ̃
o =

ζψm1−σ

σ

Ao

wR
o w

Lσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd,

wR
o =

ζψm1−σ

σ

AoR
γ̃−(1−ζ)
o

wLσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd.

With R&D subsidies, this is

wR
o =

ζψm1−σ

σ

AoR
γ̃−(1−ζ)
o

(1− so)wLσ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd.
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A.6 Taking the Model to the Data

Spatial knowledge spillovers in R&D {γ̃}. From Equation (1.13), inventor productivity

can be written as

E
{
Ziω

o

}
= ψλ

1
α
o ,

= ψAoR
γ̃
o ,

Ziω
o = ψAoR

γ̃
o exp

(
ϵiωo
)
,

log
(
Ziω

o

)
= log

(
ψAoR

γ̃
o exp

(
ϵiωo
))
,

= log (ψ) + log (Ao) + log
(
Rγ̃

o

)
+ log

(
exp

(
ϵiωo
))
,

= log (ψ) + log (Ao) + γ̃ log (Ro) + ϵiωo ,

= ι+ ιo + γ̃ log (Ro) + ϵiωo ,

where ι ≡ log (ψ) and ι ≡ log (Ao). After considering the additional time dimension t

and technological areas a, and first differences, Equation (1.34) is the model counterpart of

Equation (1.2) which is used to estimate spatial knowledge spillovers in R&D β = 0.409.

Migration costs {µn
od}. Migration costs are parametrized by data on geographic distance

between every location pair o, d ∈ S,S, intercepts
{
ρL0 , ρ

R
0

}
, and elasticities of migration

costs to distance
{
ρL1 , ρ

R
1

}
. The intercepts are calibrated by targeting the overall migration

rate for workers and inventors. To estimate the migration cost elasticities, consider the share
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of inventors in Equation (1.20), such that

ηnod =

(
Un
d

µn
od

)κ
∑

δ

(
Un
δ

µR
oδ

)κ ,
log (ηnod) = log


(

Un
d

µn
od

)κ
∑

δ

(
Un
δ,t

µn
oδ

)κ
 ,

= log

((
Un
d

µn
od

)κ)
− log

(∑
δ

(
Un
δ

µn
oδ

)κ
)
,

= κ log

(
Un
d

µn
od

)
− log

(∑
δ

(
Un
δ

µn
oδ

)κ
)
,

= −κ log (µn
od)− log

(∑
δ

(
UR
δ

µn
oδ

)κ
)

︸ ︷︷ ︸
=ιo

+κ log (Un
d )︸ ︷︷ ︸

=ιd

,

= ιo + ιd − κ log (µn
od) ,

= ιo + ιd − κ log

(
ρn0dist

ρn1
od exp

(
−ϵ

n
od

κ

))
,

= ιo + ιd −κ log (ρn0 )︸ ︷︷ ︸
ι

−κ log
(
dist

ρn1
od

)
− κ log

(
exp

(
−ϵ

n
od

κ

))
,

= ι+ ιo + ιd − κρn1 log (distod) + ϵnod.

This migration gravity equation states that, conditional on data on migration shares {ηnod},
geographic distances {distod}, the migration elasticity {κ}, and the inclusion of origin and

destination fixed effects {ιo, ιd}, then migration cost elasticities {ρn1} are identified in the

data.

Fundamental location productivity {Ao}. Unobserved fundamental location productivities

are recovered through model inversion. Given parameters {σ, γ̃}, trade costs {τod}∀o,d∈S,S ,
and data on wages and population

{
wL

o , w
R
o , Lo, Ro

}
∀o∈S , there is a unique set of values

for fundamental location productivities {Ao}∀o∈S that is consistent with the data. Given

equilibrium in goods market (1.32), trade shares (1.23), and aggregate productivity (1.21), I
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construct the following system of excess demand functions:

Do (A) ≡ wL
o Lo + wR

o Ro −
∑
d

χod

(
wL

dLd + wR
d Rd

)
,

= wL
o Lo + wR

o Ro −
∑
d

Ao

(
τodw

L
o

)1−σ∑
oAo (τodwL

o )
1−σ

(
wL

dLd + wR
d Rd

)
,

where Ao is a function of location fundamentals Ao. It can be shown that this excess demand

functions are (i) continuous, (ii) homogeneous of degree zero, (iii)
∑

o Do (A) = 0, and (iv)
∂Do(A)
∂Al

> 0, ∀o, l ∈ S,S, l ̸= o and ∂Do(A)
∂Ao

< 0,∀o ∈ S. Given this properties, up to a

normalization, there exists a unique vector A∗ such that Do (A∗) = 0,∀o ∈ S. I use data on

wages and population
{
wL

o , w
R
o , Lo, Ro

}
∀o∈S for year 2014.

Fundamental location amenities {Bn
o }. Unobserved fundamental location amenities are

recovered through model inversion. Given parameters {σ, κ, γ̃}, trade costs {τod}∀o,d∈S,S ,
migration costs {µn

od}
n={L,R}
∀o,d∈S,S , fundamental location productivities {Ao}∀o∈S , and data on

wages and population
{
wL

o , w
R
o , Lo, Ro

}
∀o∈S , there is a unique set of values for fundamental

location amenities {Bn
o }

n={L,R}
∀o∈S that is consistent with the data. Given labor supply functions

(1.27) and (1.29), migration shares (1.20), and indirect utility functions (1.18), I construct

the following system of excess demand functions:

DR
d

(
BR
)
= Rd −

∑
o

ηRodRo,

= Rd −
∑
o


(

UR
d

µR
od

)κ
∑

δ

(
UR
δ

µR
oδ

)κ
Ro,

= Rd −
∑
o


(

BR
d wR

d

µR
odPd

)κ
∑

δ

(
BR
δ wR

δ

µR
oδPδ

)κ
Ro.

The same procedure can be applied for workers:

DL
d

(
BL
)
= Ld −

∑
o


(

BL
d wL

d

µL
odPd

)κ
∑

δ

(
BL
δ wL

δ

µL
oδPδ

)κ
Lo.

Prices {Pd}∀d∈S are constructed given Equations (1.22) and (1.21). It can be shown that

these excess demand functions are (i) continuous, (ii) homogeneous of degree zero, (iii)∑
o Dn

d (Bn) = 0, and (iv)
∂Dn

d (B
n)

∂Bn
l

> 0,∀d, l ∈ S,S, l ̸= o and
∂Dn

d (B
n)

∂Bn
d

< 0,∀d ∈ S. Given
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this properties, up to a normalization, there exists a unique vector Bn∗
such that Dn

d

(
Bn∗)

=

0,∀d ∈ S, n = {L,R}. I use data on wages and population
{
wL

o , w
R
o , Lo, Ro

}
∀o∈S for year

2014.

A.7 Solution algorithms

In this section I describe the algorithm that solves the model. The supra-script (i) denotes

a variable as an “input”, and the supra-script (o) denotes a variable as an “output”.

A.7.1 Equilibrium

Given the exogenous distribution of workers and inventors across locations
{
Lo, Ro

}
∀o∈S , lo-

cation fundamentals
{
Ao,BL

o ,BR
o

}
∀o∈S , migration costs {µn

od}
n={L,R}
∀o,d∈S,S , trade costs {τod}∀o,d∈S,S ,

and parameters, the model is solved following these steps:

1. Guess
{
wL(i)

o , wR(i)

o , A
(i)
o

}
∀o∈S

and π(i):

(a) Bilateral price indices {Pod}∀o,d∈S,S :

P 1−σ
od = A(i)

o

(
mτodw

L(i)

o

)1−σ

(b) Price indices {Pd}∀d∈S :

Pd =

(∑
o

P 1−σ
od

) 1
1−σ

(c) Migration shares {ηnod}
n={L,R}
∀o,d∈S,S :

ηnod =

(
Bn
dw

n(i)

d

µn
odPd

)κ

∑
δ

(
Bn
δ w

n(i)

δ

µn
oδPδ

)κ

(d) Number of workers and inventors {Ld, Rd}∀d∈S :

Ld =
∑
o

ηLodLo,

Rd =
∑
o

ηRodRo

(e) Income {Yo}∀o∈S :
Yo =

(
1 + π(i)

) (
wL(i)

o Lo + wR(i)

o Ro

)
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(f) Expenditure equals income:

Xo = Yo

(g) Location profits {πo}∀o∈S :

πo =

(
κζm

1−σψ

σ

AoR
γ̃
o

wR(i)ζ

o wL(i)σ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd

) 1
1−ζ

(h) Profits per-capita π(o):

π(o) =
1

N

∑
o

πo,

where N = L+R is total population

(i) New worker wages
{
wL(o)

o

}
∀o∈S

:

wL(o)

o = m−1

(
A

(i)
o

Lo

∑
d

τ−σ
od P

σ−1
d Xd

) 1
σ

(j) New inventor wages
{
wR(o)

o

}
∀o∈S

:

wR(o)

o =
ζm1−σ

σ

ψAoR
γ̃−(1−ζ)
o

wL(i)σ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd

(k) Normalize wages such that wL(o)

1 = 1

(l) New location productivity
{
A

(o)
o

}
∀o∈S

:

A(o)
o =

(ζm1−σ

σ

)ζ (
ψAoR

γ̃
o

) (
wL(i)σ−1

o wR(i)

o

)−ζ
(∑

d

τ 1−σ
od P σ−1

d Xd

)ζ
 1

1−ζ

(m) Update wR(i)

o = wR(o)

o , wL(i)

o = wL(o)

o , A
(i)
o = A

(o)
o and π(i) = π(o)

(n) Iterate until convergence is achieved

A.7.2 Equilibrium with R&D subsidies

Given the exogenous distribution of workers and inventors across locations
{
Lo, Ro

}
∀o∈S , lo-

cation fundamentals
{
Ao,BL

o ,BR
o

}
∀o∈S , migration costs {µn

od}
n={L,R}
∀o,d∈S,S , trade costs {τod}∀o,d∈S,S ,

R&D subsidies {so}∀o∈S , and parameters, the model is solved following these steps:
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1. Guess
{
wL(i)

o , wR(i)

o , A
(i)
o

}
∀o∈S

and
{
π(i), τ (i)

}
:

(a) Bilateral price indices {Pod}∀o,d∈S,S :

P 1−σ
od = A(i)

o

(
mτodw

L(i)

o

)1−σ

(b) Price indices {Pd}∀d∈S :

Pd =

(∑
o

P 1−σ
od

) 1
1−σ

(c) Migration shares {ηnod}
n={L,R}
∀o,d∈S,S :

ηnod =

(
Bn
dw

n(i)

d

µn
odPd

)κ

∑
δ

(
Bn
δ w

n(i)

δ

µn
oδPδ

)κ

(d) Number of workers and inventors {Ld, Rd}∀d∈S :

Ld =
∑
o

ηLodLo,

Rd =
∑
o

ηRodRo

(e) Income {Yo}∀o∈S :

Yo =
(
1 + π(i) + τ (i)

) (
wL(i)

o Lo + wR(i)

o Ro

)
(f) Expenditure equals income:

Xo = Yo

(g) Location profits {πo}∀o∈S :

πo =

(
κζm

1−σψ

σ

AoR
γ̃
o

(1− so)
ζ wR(i)ζ

o wL(i)σ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd

) 1
1−ζ

(h) Profits per-capita π(o):

π(o) =
1

N

∑
o

πo,

where N = L+R is total population
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(i) New value of tax rate τ (o):

τ (o) =

∑
o so

(
wR(i)

o Ro

)
∑

o

(
wL(i)

o Lo + wR(i)

o Ro

)
(j) New worker wages

{
wL(o)

o

}
∀o∈S

:

wL(o)

o = m−1

(
A

(i)
o

Lo

∑
d

τ−σ
od P

σ−1
d Xd

) 1
σ

(k) New inventor wages
{
wR(o)

o

}
∀o∈S

:

wR(o)

o =
ζm1−σ

σ

ψAoR
γ̃−(1−ζ)
o

(1− so)wL(i)σ−1

o

∑
d

τ 1−σ
od P σ−1

d Xd

(l) Normalize wages such that wL(o)

1 = 1

(m) New location productivity
{
A

(o)
o

}
∀o∈S

:

A(o)
o =

(ζm1−σ

σ

)ζ (
ψAoR

γ̃
o

) (
(1− so)w

L(i)σ−1

o wR(i)

o

)−ζ
(∑

d

τ 1−σ
od P σ−1

d Xd

)ζ
 1

1−ζ

(n) Update wR(i)

o = wR(o)

o , wL(i)

o = wL(o)

o , A
(i)
o = A

(o)
o , π(i) = π(o), and τ (o) = τ (i)

(o) Iterate until convergence is achieved
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Appendices to Chapter II

B.1 Additional figures and tables

Figure B1: Histogram of estimated concentration parameters for Dirichlet distribution

Notes: Estimated concentration parameters for a Dirichlet distribution according to the maximum likelihood estimation from
Equation (2.16).
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Table B1: Estimation for matching cost

(1) (2)
1st Stage 2nd Stage

Dep. Variable Sales
(Hyperbolic

Inverse
Sine)

Trade
Indicator

BC 0.013*** 0.131***
(0.001) (0.008)

̂ihs [n (z, z′)] 8.340***
(0.024)

Obs. 5,606,627 5,606,627
Adj. R2 0.595 -

Pseudo R2 - 0.453
FE Seller, buyer -

Notes: Column 1 shows the results of estimating Equation (2.17). Column 2 shows the results of estimating Equation (2.18).

We winsorize ̂lnn
(
z, z′) at 1 percent and 99 percent. Sample only contains in-state firms. ***, ** and * indicate statistical

significance at the 99, 95 and 90 percent level respectively. Standard errors clustered at the seller and buyer level in Column 1.
Standard errors in parentheses. The higher the Bhattacharyya coefficient, the culturally closer two firms are.
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B.2 Targeted and untargeted moments

B.2.1 Normalized number of buyers and sellers

Data. In our dataset, for each firm i, we calculate the number firms it sold to and the

number of firms it bought from. Then, to normalize this measure, we divide this number by

the total number of firms in our sample. Thus, for a specific firm i, we can understand this

measure as the share of firms this specific firm i is connected to, both as a buyer and a seller.

Model. For this part we start with the link function matrix, where each element l
(
z, z

′)
represents the pairwise probability that seller z will match with buyer z

′
. For each seller z,

we take the average l
(
z, z

′)
across all the possible buyers. This represents the proportion of

firms that seller z will match to with respect to the total number of firms. We multiply this

number by the total number of firms N to obtain the number of buyers for each seller z. We

follow a similar procedure to calculate the number of sellers each buyer z
′
has.

B.2.2 Normalized intermediate sales and purchases

Data. In our dataset, for each firm i, we calculate the total sales to other firms and the

total purchases from other firms. In the case of the sellers, we normalize this measure by

dividing the total sales of firm i by the total number of buyers this firm has. We follow a

similar procedure with the buyers to calculate the normalized intermediate purchases.

Model. We use the intermediate sales matrix, where each element n
(
z, z

′)
represents the

total sales of intermediate goods from seller z to buyer z
′
. We sum all the sales for each seller

z and divide this number by the number of buyers it has. Thus, we obtain the normalized

intermediate sales for a given seller. For the normalized intermediate purchases we follow a

similar procedure with the buyers.
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Table B2: Targeted and untargeted moments

Targeted Moments
Data Model

mean [ln (Nb (ν) /N )] -9.24 -9.48
var [ln (Nb (ν) /N )] 0.98 0.89

var
[
ln
(
Ñ (ν) /Nb (ν)

)]
2.82 2.82

mean [ln (Ns (ω) /N )] -9.39 -9.14
Untargeted Moments

Data Model
var [ln (Ns (ω) /N )] 0.60 0.16
var [ln (N (ω) /Ns (ω))] 2.73 0.56

Notes: The targeted moments are the mean of the log-normalized number of buyers mean [ln (Nb (ν) /N )], the vari-
ance of the log-normalized number of buyers var [ln (Nb (ν) /N )] and the variance of the log-normalized intermediate sales

var
[
ln

(
Ñ (ν) /Nb (ν)

)]
, where Ñ (ν) are the total intermediate sales of seller ν. The untargeted moments are the mean of the

log-normalized number of sellers mean [ln (Ns (ω) /N )], the variance of the log-normalized number of sellers var [ln (Ns (ω) /N )]
and the variance of the log-normalized intermediate purchases var [ln (N (ω) /Ns (ω))].
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B.3 Additional specifications

B.3.1 Kullback-Leibler divergence

In this section we present an alternative measure of cultural proximity to that of the Bhat-

tacharyya coefficient. Define the standard discrete distribution-based Kullback and Leibler

(1951) divergence as

KL (ν∥ω) =
X∑

x=1

ρν (x) log

(
ρν (x)

ρω (x)

)
.

We have that KL (ν∥ω) ≥ 0, where KL (ν∥ω) = 0 when sellers and buyers have exactly

equal probability distributions, while it will be higher the more different the two probability

distributions are.47 Intuitively, we can see this measure as the expected difference between

two probability distributions. However, this proximity measure is not symmetric; that is,

KL (ν∥ω) ̸= KL (ω∥ν). Consider our previous example where we record a transaction

between a seller ν and a buyer with distribution ω, from which we calculate KL (ν∥ω).
If, in a second transaction, the roles of the firms revert, then the Kullback-Leibler divergence

would be KL (ω∥ν), implying the cultural proximity between the two firms has changed,

when it should not change. To convert this measure into a symmetric one, we define

KLsym (ν∥ω) = KL (ν∥ω) +KL (ω∥ν) = KLsym (ω∥ν) .

Notice this similarity measure needs ρν (x) > 0 and ρω (x) > 0 for all x. However, it is

possible that the probability of a firm belonging to a certain cultural group is zero. In those

cases we replace that probability of zero for a probability ε → 0+ such that KLsym is well-

defined. Tables B3 and B4 show the regression results for the intensive margin, unit prices

and extensive margin, respectively. In this case, the higher the Kullback-Leibler divergence,

the more culturally different the buyer from the seller. The results confirm the findings from

the main text.

47This interpretation diverts from the standard use the Kullback-Leibler has in information theory, where
a higher divergence means a higher information loss.
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Table B3: Effect of cultural proximity on trade, intensive and extensive margins, Kullback-
Leibler

(1) (2) (3) (4) (5) (6)
Dep. Variable Log Sales Log

Transactions
Log Sales Log

Transactions
Trade

Indicator
Trade

Indicator
KLsym -0.004*** -0.003** -0.005*** -0.003** -0.00004*** -0.00004***

(0.001) (0.001) (0.002) (0.001) (0.00000) (0.00000)
Log dist. -0.023 -0.065*** 0.00007

(0.015) (0.011) (0.00005)
Obs. 32,678 32,678 32,843 32,843 5,606,627 5,628,290
Adj. R2 0.415 0.359 0.410 0.356 0.617 0.0106
FE Seller, buyer Seller, buyer Seller, buyer,

origin×dest.
Seller, buyer,
origin×dest.

Seller, buyer Seller, buyer,
origin×dest.

Notes: Columns 1, 2, 3 and 4 show the results of estimating a modified version of Equation (2.1). Columns 5 and 6 show
the results of estimating a modified version of Equation (2.2). ***, ** and * indicate statistical significance at the 99, 95 and
90 percent level respectively. Origin-destination fixed effect considers the district of the seller and the buyer. Standard errors
two-way clustered at the seller and buyer level. Standard errors in parentheses. A higher Kullback-Leibler divergence means
two firms are socially farther away. Number of observations varies between specifications due to the dropping of observations
separated by a fixed effect (Correia, Guimarães, and Zylkin 2019).

Table B4: Effect of cultural proximity on prices, Kullback-Leibler

(1) (2) (3) (4) (5) (6)
Dep. Variable Log Prices Log Prices Log Prices Log Prices Log Prices Log Prices
KLsym 0.003** 0.003** 0.003** 0.002* 0.002** 0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Log dist. 0.023 0.023 0.028*

(0.016) (0.016) (0.017)
Obs. 230,744 230,744 226,645 235,001 236,617 230,900
Adj. R2 0.932 0.932 0.935 0.933 0.925 0.936
FE Seller×HS,

buyer
Seller×HS,
buyer,
month

Seller×HS,
buyer,

month×HS

Seller×HS,
buyer,

origin×dest.

Seller×HS,
buyer,
month,

origin×dest.

Seller×HS,
buyer,

month×HS,
origin×dest.

Notes: This table shows the results of estimating a modified version of Equation (2.3). Good g is defined according to 6-digit HS
classification. Prices trimmed by 4-digit HS code at 5 and 95 percent. ***, ** and * indicate statistical significance at the 99,
95 and 90 percent level respectively. Origin-destination fixed effect considers the district of the seller and the buyer. Standard
errors are multi-way clustered at the seller, 4-digit HS and origin-destination level. Standard errors in parentheses. A higher
Kullback-Leibler divergence means two firms are socially farther away. Number of observations varies between specifications
due to the dropping of observations separated by a fixed effect (Correia, Guimarães, and Zylkin 2019).
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B.3.2 Language

In this section we check if the results we find are driven by language similarity. To do so, we

follow the two language similarity measures from kone2018internal. Define ϑl
i as the share

of people with mother tongue l in district i. Then, the common language measure between

districts i and j is

commlangij =
∑
l

ϑl
iϑ

l
j.

We can also define a language overlap measure, defined as

overlangij =
∑
l

min
{
ϑl
i, ϑ

l
j

}
.

In both cases, the larger the measures, the less likely it should be for people in these

districts to face communication barriers. Table B5 presents the results of the intensive margin

regression after considering the language measures. We find that none of the measures is

statistically significant. This suggests that the cultural proximity result is not driven by

firms sharing the same language.

Table B5: Effect of cultural proximity and language on trade, intensive margin

(1) (2) (3) (4)
Dep. Variable Log Sales Log

Transactions
Log Sales Log

Transactions
BC 0.108*** 0.068** 0.108*** 0.068**

(0.033) (0.028) (0.033) (0.028)
commlang -0.322 -0.126

(0.389) (0.305)
overlang -0.419 -0.061

(0.406) (0.324)
Log dist. -0.025* -0.065*** -0.029* -0.065***

(0.015) (0.012) (0.016) (0.013)
Obs. 30,703 30,703 30,703 30,703
Adj. R2 0.409 0.357 0.409 0.357
FE Seller, buyer Seller, buyer Seller, buyer Seller, buyer

Notes: This table shows the results of estimating a modified version of Equation (2.1). ***, ** and * indicate statistical
significance at the 99, 95 and 90 percent level respectively. Standard errors two-way clustered at the seller and buyer level.
Standard errors in parentheses. A higher Kullback-Leibler divergence means two firms are socially farther away.
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B.3.3 Goods specialization

The cultural groups in India are, in many cases, defined by the production of specific goods

(Munshi 2019).48 In this section we study if the reason behind the cultural proximity results

is actually cultural groups specializing in the production of certain goods and, given this,

forming special bonds with their specific set of buyers.

First, we assign each firm to a unique cultural group. We do this by assigning each firm to

the cultural group for which it has the highest probability of belonging to. In second place,

we see which is the most important 4-digit HS code in terms of sales and purchases for each

cultural group. We then match each firm to which is the good its cultural group specializes

in selling and buying. Working with a version of our dataset at the seller-buyer-good level

we run the regression

lnng (ν, ω, t) = ιν×g+ιg×t+ιω+δBC (ν, ω)+ξ
(
BC (ν, ω)× Ispecg

)
+η ln dist (ν, ω)+ϵg (ν, ω) ,

(B1)

where Ispecg indicates if the good being traded is one in which either the cultural group of

the selling firm specializes in selling or the cultural group of the buying firm specializes in

buying. Table B6 presents the results for the sales.

First, if the cultural proximity results were only driven by cultural groups producing

specific specialized goods, then we would expect the term on cultural proximity to be close

to zero, and on the interactions to be statistically different from zero. However, we find

that cultural proximity matters for all types of goods: for those in which a cultural group

specializes and for those in which a cultural group does not specialize too.

Second, in Column 2 we find that the coefficient on the interaction term is positive and

statistically significant. Nevertheless, we lose this statistical significance after controlling for

additional variables in Column 4. This could point to cultural proximity mattering more for

those goods in which cultural groups specialize in buying, but the result is not conclusive

enough.

48We can also understand this as certain cultural groups specializing in certain occupations.

155



Table B6: Effect of cultural proximity on trade by good specialization, intensive margin

(1) (2) (3) (4)
Dep. Variable Log Sales Log Sales Log Sales Log Sales
BC 0.072*** 0.071*** 0.064*** 0.064***

(0.026) (0.025) (0.023) (0.023)
BC × Ispec,sellerg -0.016 0.135

(0.160) (0.304)
BC × Ispec,buyerg 0.152*** 0.185

(0.008) (0.118)
Obs. 226,039 226,039 229,719 229,719
Adj. R2 0.853 0.853 0.854 0.854
FE Seller×HS,

buyer,
month×HS

Seller×HS,
buyer,

month×HS

Seller×HS,
buyer,

month×HS,
origin×dest.

Seller×HS,
buyer,

month×HS,
origin×dest.

Notes: This table shows the results of estimating Equation (B1). ***, ** and * indicate statistical significance at the 99, 95 and
90 percent level respectively. Good g is defined according to 6-digit HS classification. Sales trimmed by 4-digit HS code at 5 and
95 percent. Origin-destination fixed effect considers the district of the seller and the buyer. Standard errors two-way clustered
at the seller and 4-digit HS level. Standard errors in parentheses. The higher the Bhattacharyya coefficient, the culturally closer
two firms are. Number of observations varies between specifications due to the dropping of observations separated by a fixed

effect (Correia, Guimarães, and Zylkin 2019). Ispec,sellerg indicates the good g is the good in which the seller’s cultural group

specializes in selling. Ispec,buyerg indicates the good g is the good in which the buyer’s cultural group specializes in buying.
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B.3.4 Number of varieties sold and bought

In this part we analyze whether firms that the cultural proximity results prevail for firms

that sell and buy more varieties of goods. To measure this, we count how many 4-digit HS

codes a firm buys or sells. Table B7 presents the results for the intensive margin, following a

modified version of Equation 2.1. In our specifications varietiessoldν and varietiesboughtν refer

to the number of varieties sold and bought by the seller, while varietiessoldω and varietiesboughtω

refer to the number of varieties sold and bought by the buyer.

The results point to the effects of cultural proximity on trade being stronger when firms

buy and sell more varieties. Our interpretation of these findings is that firms that buy and

sell more varieties of goods have to face more contracting frictions, caused by having to

negotiate more contracts. Then, these firms, in order to minimize their load of contracting

frictions, will rely more on trading with counterparts in which they trust. Moreover, this

explanation based on trust is compatible with the results related to differentiated goods from

Section 2.3.1. In both cases we posit that the intensity of trade is driven by trust between

firms, a coping mechanism to market imperfections in India.
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Table B7: Effect of cultural proximity on trade by number of varieties, intensive margin

(1) (2) (3) (4)
Dep. Variable Log Sales Log Sales Log Sales Log Sales
BC 0.111*** 0.090** 0.107*** 0.097**

(0.040) (0.040) (0.035) (0.039)
BC × varietiessoldν 0.089

(0.126)
BC × varietiesboughtν 0.121

(0.084)
BC × varietiessoldω 0.112**

(0.051)
BC × varietiesboughtω 0.068

(0.043)
Obs. 32,843 32,843 32,843 32,843
Adj. R2 0.410 0.410 0.410 0.410
FE Seller,

buyer,
origin×dest.

Seller,
buyer,

origin×dest.

Seller,
buyer,

origin×dest.

Seller,
buyer,

origin×dest.

(5) (6) (7) (8)
Dep. Variable Log Trans-

actions
Log Trans-
actions

Log Trans-
actions

Log Trans-
actions

BC 0.056* 0.030 0.056* 0.042
(0.032) (0.032) (0.029) (0.032)

BC × varietiessoldν 0.095
(0.105)

BC × varietiesboughtν 0.141**
(0.067)

BC × varietiessoldω 0.104**
(0.042)

BC × varietiesboughtω 0.071**
(0.036)

Obs. 32,843 32,843 32,843 32,843
Adj. R2 0.356 0.357 0.357 0.357
FE Seller,

buyer,
origin×dest.

Seller,
buyer,

origin×dest.

Seller,
buyer,

origin×dest.

Seller,
buyer,

origin×dest.

Notes: This table shows the results of estimating a modified version of Equation (2.1). ***, ** and * indicate statistical
significance at the 99, 95 and 90 percent level respectively. Origin-destination fixed effect considers the district of the seller
and the buyer. Standard errors two-way clustered at the seller and buyer level. Standard errors in parentheses. The higher the

Bhattacharyya coefficient, the culturally closer two firms are. varietiessoldν and varietiesboughtν refer to the number of different

HS codes at the 4-digit level sold and bought by the seller divided by 100, respectively. varietiessoldω and varietiesboughtω refer
to the number of different HS codes at the 4-digit level sold and bought by the buyer divided by 100, respectively.
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B.4 Model derivations

In this section we include details about the derivations of the theoretical model.

Firms A unique variety ω is produced by a single firm which minimizes its unit cost of

production subject to its production technology, so

min
{m(ν,ω)}

∫
ν∈Ω(ω)

m (ν, ω) p (ν, ω) dν + wl (ω) ,s.t.

y (ω) = καz (ω) l (ω)
αm (ω)1−α ,

m (ω) =

(∫
ν∈Ω(ω)

m (ν, ω)
σ−1
σ dν

) σ
σ−1

,

y (ω) = 1.

Merge the first and third constraints, such that

y (ω) = καz (ω) l (ω)
αm (ω)1−α ,

1 = καz (ω) l (ω)
αm (ω)1−α ,

l (ω)α =
1

καz (ω)m (ω)1−α ,

= κ−1
α z (ω)−1m (ω)α−1 ,

l (ω) = κ
− 1

α
α z (ω)−

1
α m (ω)

α−1
α .

Rewrite the minimization problem, such that

min
{m(ν,ω)}

∫
ν∈Ω(ω)

m (ν, ω) p (ν, ω) dν + wl (ω) ,∫
ν∈Ω(ω)

m (ν, ω) p (ν, ω) dν + κ
− 1

α
α wz (ω)−

1
α m (ω)

α−1
α ,∫

ν∈Ω(ω)

m (ν, ω) p (ν, ω) dν + κ
− 1

α
α wz (ω)−

1
α

(∫
ν∈Ω(ω)

m (ν, ω)
σ−1
σ dν

) σ
σ−1

α−1
α

.
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The first order condition with respect to m (ν, ω) is

0 = p (ν, ω) + κ
− 1

α
α wz (ω)−

1
α

(
σ

σ − 1

α− 1

α

)
(. . . )

σ
σ−1

α−1
α

−1

(
σ − 1

σ

)
m (ν, ω)

σ−1
σ

−1 ,

p (ν, ω) = κ
− 1

α
α

(
1− α

α

)
wz (ω)−

1
α (. . . )

σ
σ−1

α−1
α

−1m (ν, ω)−
1
σ ,

m (ν, ω)
1
σ =

κ
− 1

α
α

(
1−α
α

)
wz (ω)−

1
α (. . . )

σ
σ−1

α−1
α

−1

p (ν, ω)
,

m (ν, ω) =
κ
− σ

α
α

(
1−α
α

)σ
wσz (ω)−

σ
α (. . . )σ(

σ
σ−1

α−1
α

−1)

p (ν, ω)σ
.

Now, the first order condition with respect to m (ν, ω) is

m (ν, ω) =
κ
− σ

α
α

(
1−α
α

)σ
wσz (ω)−

σ
α (. . . )σ(

σ
σ−1

α−1
α

−1)

p (ν ′, ω)σ
.

We divide both first order conditions, such that

m (ν, ω)

m (ν ′, ω)
=

κ
− σ

α
α ( 1−α

α )
σ
wσz(ω)−

σ
α (... )

σ( σ
σ−1

α−1
α −1)

p(ν,ω)σ

κ
− σ

α
α ( 1−α

α )
σ
wσz(ω)−

σ
α (... )

σ( σ
σ−1

α−1
α −1)

p(ν′,ω)σ

,

=

z(ω)−
σ
α

p(ν,ω)σ

z(ω)−
σ
α

p(ν′,ω)σ

,

=
p (ν ′, ω)σ

p (ν, ω)σ
,

m (ν ′, ω) =
p (ν, ω)σm (ν, ω)

p (ν ′, ω)σ
.
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We plug this expression back into the expression for the composite of intermediates, so

m (ω) =

(∫
ν′∈Ω(ω)

m (ν ′, ω)
σ−1
σ dν

) σ
σ−1

,

=

(∫
ν′∈Ω(ω)

(
p (ν, ω)σm (ν, ω)

p (ν ′, ω)σ

)σ−1
σ

dν

) σ
σ−1

,

= p (ν, ω)σm (ν, ω)

(∫
ν′∈Ω(ω)

p (ν ′, ω)
1−σ

dν

) σ
σ−1

︸ ︷︷ ︸
=(P (ω)1−σ)

σ
σ−1

,

= p (ν, ω)σm (ν, ω)
(
P (ω)1−σ) σ

σ−1 ,

= p (ν, ω)σm (ν, ω)P (ω)−σ ,

= m (ω) p (ν, ω)−σ P (ω)σ ,

p (ν, ω)m (ν, ω) = m (ω) p (ν, ω)1−σ P (ω)σ ,

n (ν, ω) = P (ω)m (ω) p (ν, ω)1−σ P (ω)σ−1 ,

= N (ω) p (ν, ω)1−σ P (ω)σ−1 ,

which is the demand of firm ω from variety ν, where P (ω)1−σ =
∫
ν∈Ω(ω)

p (ν, ω)1−σ dν is the

price index faced by firm ω, n (ν, ω) = p (ν, ω)m (ν, ω) is the expenditure of ω on variety ν,

and N (ω) = P (ω)m (ω) is the total expenditure of firm ω.

The expression for unit cost of production is

c (ω) =
wαP (ω)1−α

z (ω)
,

=
P (ω)1−α

z (ω)
,

where wages w = 1 is the numeraire price.

Now, firms engage in monopolistic competition since they produce a unique variety. In

particular, firm ν maximizes profits by selling its good to buyers ω subject to the demand

for its intermediate, so

max
{p(ν,ω)}

∫
ω∈Ω(ν)

(p (ν, ω)− d (ν, ω) c (ν))m (ν, ω) , s.t.

m (ν, ω) = m (ω) p (ν, ω)−σ P (ω)σ ,

where d (ν, ω) is the iceberg cost of firm ν selling to ω. Rewrite the profit function π (ν, ω),
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such that

π (ν, ω) = (p (ν, ω)− d (ν, ω) c (ν))m (ν, ω) ,

= p (ν, ω)m (ν, ω)− d (ν, ω) c (ν)m (ν, ω) ,

= p (ν, ω)m (ω) p (ν, ω)−σ P (ω)σ − d (ν, ω) c (ν)m (ω) p (ν, ω)−σ P (ω)σ ,

= m (ω) p (ν, ω)1−σ P (ω)σ − d (ν, ω) c (ν)m (ω) p (ν, ω)−σ P (ω)σ .

The first order condition is

[p (ν, ω)] : (1− σ)m (ω) p (ν, ω)−σ P (ω)σ

− (−σ) d (ν, ω) c (ν)m (ω) p (ν, ω)−σ−1 P (ω)σ = 0,

(σ − 1)m (ω) p (ν, ω)−σ P (ω)σ = σd (ν, ω) c (ν)m (ω) p (ν, ω)−σ−1 P (ω)σ ,

(σ − 1) = σd (ν, ω) c (ν) p (ν, ω)−1 ,

p (ν, ω) =

(
σ

σ − 1

)
c (ν) d (ν, ω) ,

= µc (ν) d (ν, ω) ,

where µ = σ
σ−1

is the markup.
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Households A representative household maximizes its utility subject to its budget con-

straint, so

max
{y(ω)}

(∫
ω∈Ω

y (ω)
σ−1
σ dω

) σ
σ−1

, s.t.

∫
ω∈Ω

P (ω) y (ω) dω ≤ Y.

The first order condition with respect to firm ω is

[y (ω)] :

(
σ

σ − 1

)
(. . . )

σ
σ−1

−1

(
σ − 1

σ

)
y (ω)

σ−1
σ

−1 = λP (ω) ,

λP (ω) = (. . . )
σ

σ−1
−1 y (ω)−

1
σ ,

where λ is the Lagrangian multiplier of the budget constraint, and (. . . ) is an aggregate term

we do not write down since it will cancel out during the derivation. Now, the first order

condition with respect to another firm ω′ is

λP (ω′) = (. . . )
σ

σ−1
−1 y (ω′)

− 1
σ .

We then divide both first order conditions, such that

λP (ω)

λP (ω′)
=

(. . . )
σ

σ−1
−1 y (ω)−

1
σ

(. . . )
σ

σ−1
−1 y (ω′)−

1
σ

,

P (ω)

P (ω′)
=
y (ω)−

1
σ

y (ω′)−
1
σ

,

=
y (ω′)

1
σ

y (ω)
1
σ

,

y (ω′)
1
σ = y (ω)

1
σ
P (ω)

P (ω′)
,

y (ω′) = y (ω)

(
P (ω)

P (ω′)

)σ

.
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We plug this demand back in the budget constraint, which holds with equality, so

Y =

∫
ω′∈Ω

P (ω′) y (ω′) dω,

=

∫
ω′∈Ω

P (ω′)

[
y (ω)

(
P (ω)

P (ω′)

)σ]
dω,

= y (ω)P (ω)σ
∫
ω′∈Ω

P (ω′)
1−σ

dω︸ ︷︷ ︸
=P 1−σ

,

= y (ω)P (ω)σ P 1−σ,

= (P (ω) y (ω))P (ω)σ−1 P 1−σ,

= x (ω)P (ω)σ−1 P 1−σ,

x (ω) = P (ω)1−σ P σ−1Y,

which is the demand function for the unique variety of firm ω, where

P 1−σ =
∫
ω∈Ω P (ω)1−σ dω is the CES aggregate price index, and x (ω) = P (ω) y (ω) is the

expenditure on variety ω.
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Gravity of intermediates By plugging the pricing equation in the demand of firm ω for

intermediates from firm ν, we derive the firm-level gravity equation

n (ν, ω) = p (ν, ω)1−σ P (ω)σ−1N (ω) ,

= (µc (ν) d (ν, ω))1−σ P (ω)σ−1N (ω) ,

= µ1−σd (ν, ω)1−σ c (ν)1−σ P (ω)σ−1N (ω) ,

log (n (ν, ω)) = log
(
µ1−σd (ν, ω)1−σ c (ν)1−σ P (ω)σ−1N (ω)

)
,

= log
(
µ1−σ

)
+ log

(
c (ν)1−σ)+ log

(
P (ω)σ−1N (ω)

)
+ log

(
d (ν, ω)1−σ) ,

= ι+ ιν + ιω + (1− σ) log (d (ν, ω)) ,

where ι is an intercept, ιν are seller fixed effects, and ιω are buyer fixed effects.
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Recursive expression for prices. Consider the expression for the CES price index, so

P (ω)1−σ =

∫
ν∈Ω(ω)

p (ν, ω)1−σ dν,

P (z′)
1−σ

=

∫
p (z, z′)

1−σ
l (z, z′) dG (z) ,

=

∫ ((
σ

σ − 1

)
c (z) d (z, z′)

)1−σ

l (z, z′) dG (z) ,

= µ1−σ

∫
(c (z) d (z, z′))

1−σ
dG (z) ,

= µ1−σ

∫ (
P (z)1−α

z
d (z, z′)

)1−σ

l (z, z′) dG (z) ,

= µ1−σ

∫ (
P (z)1−α

z
d (z, z′)

)1−σ

l (z, z′) dG (z) ,

= µ1−σ

∫
P (z)(1−α)(1−σ) zσ−1d (z, z′)

1−σ
l (z, z′) dG (z) .

That is, the price index for firms of productivity z′ can be expressed as a function of all

other price indexes of firms z. This forms a system of equations we can solve.
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Total sales. Consider the expression for total sales (i.e. sales to the household and firms),

so

S (ν) = x (ν) +

∫
ω∈Ω(ν)

n (ν, ω) dω,

S (z) = x (z) +

∫
n (z, z′) l (z, z′) dG (z′) ,

= P (z)1−σ P σ−1Y

+

∫ [(
σ

σ − 1

)1−σ

d (z, z′)
1−σ

c (z)1−σ P (z′)
σ−1

N (z′)

]
l (z, z′) dG (z′) ,

= P (z)1−σ P σ−1Y

+

∫ ( σ

σ − 1

)1−σ

d (z, z′)
1−σ

[
P (z)1−α

z

]1−σ

P (z′)
σ−1

N (z′)

 l (z, z′) dG (z′) ,

= P (z)1−σ P σ−1Y

+

( σ

σ − 1

)1−σ
(
P (z)1−α

z

)1−σ
∫ [d (z, z′)1−σ

P (z′)
σ−1

N (z′)
]
l (z, z′) dG (z′) ,

=
P (z)1−σ Y

P 1−σ

+
[
µ1−σP (z)(1−α)(1−σ) zσ−1

] ∫ [
d (z, z′)

1−σ
P (z′)

σ−1
N (z′)

]
l (z, z′) dG (z′) ,

=

[(
σ

σ−1

)
c (z)D (z)

]1−σ
Y

P 1−σ

+
[
µ1−σP (z)(1−α)(1−σ) zσ−1

] ∫ [
d (z, z′)

1−σ
P (z′)

σ−1

(
(1− α)S (z′)

µ

)]
l (z, z′) dG (z′) ,

=
(
µ1−σP (z)(1−α)(1−σ) zσ−1D (z)1−σ

) Y

P 1−σ

+
[
µ1−σP (z)(1−α)(1−σ) zσ−1

] [1− α

µ

] ∫ [
d (z, z′)

1−σ
P (z′)

σ−1
S (z′)

]
l (z, z′) dG (z′) ,

=
[
µ1−σP (ν)(1−α)(1−σ) zσ−1

]
[

Y

P 1−σ
D (z)1−σ +

(
1− α

µ

)(∫ [
d (z, z′)

1−σ
P (z′)

σ−1
S (z′)

]
l (z, z′) dG (z′)

)]
,

where we use the fact that N (z′) = (1−α)S(z′)
µ

. Given prices P (z), this forms a system of

equations for sales we can solve.
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Appendices to Chapter III

C.1 Additional tables

Table C1: Summary statistics

Panel A: 2019
Jan-March April-June July-September

Number of sellers 135,849 131,996 133,897
Number of buyers 193,660 188,708 189,219
Total sales (mln. rupees) 962,688 908,361 1,036,831
Number of transactions 7,772,883 7,808,325 7,934,706

Panel B: 2020
Jan-March April-June July-September

Number of sellers 113,121 69,171 86,696
Number of buyers 164,153 114,353 135,056
Total sales (mln. rupees) 811,755 369,645 775,478
Number of transactions 7,362,508 3,201,081 4,782,336

Notes: This table is comprised of two panels. Panel A contains information about the number of sellers, buyers, transactions,
and total sales for periods January-March, April-June, July-September for year 2019. Panel B is the same as Panel A, but for
2020.
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Table C2: Distribution of economic activity by industry and type of transaction

HS section Sales share Purchase share
Animals 1.5034 .7723
Vegetables 15.2982 11.2945
Fats 2.2934 2.6251
Processed foods 4.2172 5.5548
Minerals 13.1241 10.2353
Chemicals 9.8288 9.0791
Plastics 13.1516 9.1410
Leather .1618 .1677
Wood 2.5110 1.2130
Wood derivatives 1.0783 1.3598
Textiles 3.6342 6.4576
Clothing 1.3428 .9107
Handicrafts 1.0190 1.9337
Jewelry 1.7005 1.4980
Metal 10.4473 12.1969
Machinery 10.9909 13.5771
Transport equipment 4.7124 8.4147
Surgical instrum. 1.4478 1.6478
Arms and ammo .0057 .0095
Miscellaneous 1.2263 1.4936
Art .3043 .4166

Type of transaction
Within-state 72.6822 52.2224
Inter-state 23.2183 44.5151
Foreign 4.0994 3.2623

Notes: The table is comprised of an upper panel and a lower panel. In the upper panel we show the share of sales and purchases
from/to our Indian state of analysis by industry (HS Section). In the lower panel we show the share of sales to and purchases
from our Indian state, by whether the buyer or seller is within the state, in another state of India, or abroad. Statistics were
calculated using data for all 2019.
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Table C3: 2SLS, firm-level elasticity of substitution across (at least two) suppliers

(1) (2) (3) (4)

log
(

p̂
ˆ̃p

)
0.2383 0.3381 0.4121 0.3688

(0.1206) (0.0627) (0.1236) (0.1146)
Obs 851120 599918 599918 544819
K-PF 58.989 97.958 233.084 527.534
ϵ 0.7616 0.6618 0.5878 0.6311
Seller IV Y Y Y
Bilateral IV Y Y Y
Buyer/month FE Y Y Y Y
HSN/month FE Y Y Y Y
Buyer/HSN FE Y
Seller/HSN FE Y

Notes: IV-2SLS estimates from Equation (3.9). The set of common suppliers of buyer b is Ω∗
i,bj,t = Ωi,bj,t ∩ Ωi,bj,t−1. That

is, a supplier s of buyer b is considered common if they also traded during the previous month. We only consider the cases
when a buyer traded with at least two common suppliers in a given period. The first stage uses either bilateral or seller-level
instruments, as pointed out by rows six and seven. Bilateral instruments correspond to Equation (3.12), while seller-level
instruments correspond to Equation (3.11). The first row reports the estimates associated with changes in relative unit values
in logs. Standard errors are two-way clustered at the origin and destination state level, and are reported in parentheses below
each estimate. The fourth row reports the Kleibergen-Paap F statistic from the first stage. The fifth row reports the implied
value for \epsilon, which is 1 minus the estimate on the first row. A product category is a 4-digit HS codes and the treatment
period is March-May 2020. The table contains four columns. Each column corresponds to different combinations of instruments
and of fixed effects, as pointed out by the last six rows. All specifications include the controls mentioned in the paper.

Table C4: Robustness: 2SLS, firm-level elasticity of substitution across suppliers

(1) (2) (3) (4)

log
(

p̂
ˆ̃p

)
0.5687 0.5476 0.9371 0.8063

(0.2086) (0.1818) (0.3856) (0.3305)
Obs 879997 851483 1026381 993583
K-PF 37.629 121.309 42.335 87.990
ϵ 0.4312 0.4523 0.0628 0.1936
HSN digits 6 6 8 8
Seller IV Y Y Y Y
Bilateral IV Y Y Y Y
Buyer/month FE Y Y Y Y
HSN/month FE Y Y Y Y
Buyer/HSN FE Y Y
Seller/HSN FE Y Y

Notes: IV-2SLS estimates from Equation (3.9). The set of common suppliers of buyer b is Ω∗
i,bj,t = Ωi,bj,t ∩ Ωi,bj,t−1. That

is, a supplier s of buyer b is considered common if they also traded during the previous month. In all specifications, the first
stage uses both bilateral and seller-level instruments as pointed in rows seven and eight. Bilateral instruments correspond to
Equation (3.12), while seller-level instruments correspond to Equation (3.11). The first row reports the estimates associated
with changes in relative unit values in logs. Standard errors are two-way clustered at the origin and destination state level, and
are reported in parentheses below each estimate. The fourth row reports the Kleibergen-Paap F statistic from the first stage.
The fifth row reports the implied value for ϵ, which is 1 minus the estimate on the first row. A product category is either 6-digit
or 8-digit HS codes as pointed out by the sixth row, and the treatment period is March-May 2020. The table contains four
columns. Each column corresponds to different combinations of HS codes and of fixed effects, as pointed out by the last five
rows. All specifications include the controls mentioned in the paper.
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Table C5: Firm-level elasticities of substitution across suppliers, by HS section

Section Name OLS elast. 2SLS elast.
1 Animals . .
2 Vegetables .8082675 .
3 Fats .825045 .3875365
4 Processed foods .7458998 1.141
5 Minerals .8220726 .5755809
6 Chemicals . .
7 Plastics .8097205 .
8 Leather . .
9 Wood .8905362 .
10 Wood derivatives .8832779 .8700905
11 Textiles .8635682 1.636
12 Clothing .8435352 .3459941
13 Handcrafts .778517 .
14 Jewelry . .
15 Metal .8466598 1.165
16 Machinery .6709916 .
17 Transport equipment .5481665 .216569
18 Surgical instruments .6465395 .
19 Arms and ammo . .
20 Miscellaneous . .
21 Art .7354167 .7348618

Notes: Each row corresponds to an industry, which is defined as a HS section. The second column contains the name of the
industry. The third and fourth columns report the estimated elasticities by OLS and 2SLS as in Equation (3.9). Both OLS and
2SLS estimators include HS/time, buyer/time, buyer/HS, and seller/HS fixed effects. Standard errors are two-way clustered at
both origin and destination states. All specifications include the controls mentioned in the paper. Elasticities were not reported
if there was low statistical power or a weak first stage.
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C.2 Additional figures

Figure C1: Distribution of links and sales across lockdown zones

(a) Sellers in Red (b) Sellers in Orange (c) Sellers in Green

(d) Buyers in Red (e) Buyers in Orange (f) Buyers in Green

Figure C2: % of sales/purchases, by color of destination districts

(a) Sales (b) Purchases
Notes: This figure is comprised by two set of panels. The first six figures are the first panel, and the last two figures are the
second panel. First we explain the first panel. In the three upper figures, each panel plots the distribution of the share of buyers
located in Red, Orange, or Green districts. Each figure corresponds to sellers located in their corresponding color district. In
the middle three figures, each figure plots the distribution of the share of sellers located in Red, Orange, or Green districts.
Each figure corresponds to buyers located in their corresponding color district. The time period is April 2018 - February 2020.
In the lower panel, on the left panel, for each HS section (horizontal axis), we plot the share of total sales of firms located in
our large Indian state by color of selling districts. In the lower right panel, for each HS section (horizontal axis), we plot the
share of total purchases of firms located in our large Indian state by color of buying districts. The time period for this data is
the full 2019 year.
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Figure C3: Google mobility trends by lockdown zone

(a) Retail and recreation (b) Grocery and pharmacy (c) Parks

(d) Transit stations (e) Workplaces (f) Residential

Notes: These plots are based on Google Mobility Trends data, which shows how visits and length of stay at different places
change compared to a baseline. The baseline is the median value, for the corresponding day of the week, during January 3rd
- February 6th 2020. The raw data is at the daily frequency for each district in India. We collapse this data at the weekly
frequency, and at the zone level. Each panel corresponds to mobility in different places.

Figure C4: Change in Product Category Links, Before/After Lockdowns

(a) Sellers (b) Buyers

Notes: The figure is comprised by two sets of density plots. On the left we study sellers; on the right, buyers. In that figure we
plot the distribution of the share of sellers that sold goods from a given product category in both periods t and t−1, where these
periods are one year apart. Product categories are 4-digit HS codes. The green density are periods before Covid-19 lockdowns,
where t is between June 2019 and October 2019, and t− 1 is between June 2018 and October 2018. The red density are periods
after Covid-10 lockdowns, where t is between June 2020 and October 2020, and t− 1 is between June 2019 and October 2019.
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C.3 Data

Exposure variables. We have two exposure variables: EDsi,t and IMsi,t. The first one

denotes the exposure of firm s selling product i to global demand shocks in month t. The

second one denotes the exposure of firm s selling product i to global supply shocks in month

t. First, we construct these exposures by country, such that

EDsi,x,t =

(
Ysi,x,0∑
x′ Ysi,x′,0

)
Xi,x,t

IMsi,m,t =

(
Ysi,m,0∑
m′ Ysi,m′,0

)
Mi,m,t,

where Ysi,x,0 is the value of goods of seller s of product i shipped to country x in the beginning

of the sample, Ysi,m,0 is the value of goods of seller s of product i shipped from country m in

the beginning of the sample, Xi,x,t is the value of export demand from country x for product i

in month t, excluding demand for Indian products, andMi,m,t is the value of import demand

to country x for product i in month t, excluding demand for Indian products. We then do

a weighted sum of these measures across countries, such that

EDsi,t =
∑
x

(
Ys,x,0∑
x′ Ys,x′,0

)
EDsi,x,t

IMsi,t =
∑
m

(
Ys,m,0∑
m′ Ys,m′,0

)
EDsi,m,t

Labor and sales. Our firm-to-firm dataset lacks data on number of employees and final

sales. Then, the objective is to predict values for number of employees and final sales for

all buyers and sellers of the dataset. We do this by obtaining data on number of employees

and total sales from an external dataset for a subset of our firms, run an OLS regression of

both labor and final sales on observable variables in our firm-to-firm dataset, store the OLS

estimates, and use them to predict labor and final sales for all firms.

We scraped data on number of employees and total sales from the website IndiaMART,

India’s largest B2B digital platform. We scraped around 300,000-400,000 firm profiles, and

then sent them to the tax authority to be matched with our firm-to-firm trade dataset. The

matching procedure yielded 50,720 unique firms.

Each firm reports its number of employees and annual turnover (sales), both reported in

brackets. The reported brackets for sales are: up to 50 Lakh, 50 Lakh-1 Crore, 1-2 Crore,

2-5 Crore, 5-10 Crore, 10-25 Crore, 25-50 Crore, 50-100 Crore, 100-500 Crore 500-1,000

Crore, 1,000-5,000 Crore, 5,000-10,000 Crore, more than 10,000 Crore. First, we convert

174



each reported number into rupees, since sales in the trade dataset is reported in rupees.49

Then, for each firm we assign the median value of its corresponding sales bracket. For the

last bracket, we consider the upper bound to be 100,000 Crore. The reported brackets for

labor are: up to 10 employees, 11-25, 26-50, 51-100, 101-500, 501-1000, 1001-2000, 2001-5000,

more than 5000 employees. For each firm we assign the median value of its corresponding

labor bracket. For the last bracket, we consider the upper bound to be 50,000 employees.

We then run the following OLS regressions:

log (laborn) = α0 + α1 log (salesn) + α2 log (distancen) + ϵli

log (finaln) = β0 + β1 log (salesn) + β2 log (distancen) + ϵfi ,

where salesn are total sales of intermediates of firm n and distancen is the average distance in

kilometers of all firms’ registered transactions, laborn is the number of employees constructed

as previously explained, and finaln is final sales. We constructed final sales by subtracting

total intermediate sales from total sales, where we construct the former directly from our firm-

to-firm dataset. In the vast majority of cases, this difference was positive, which reassures

that IndiaMART indeed reports total sales. Whenever the differences were negative, we

input a value of 0, which implies that all firm’s sales are of intermediates.

We obtain the following estimated elasticities: (α̂0, α̂1, α̂2) = (−2.1138, 0.2502, 0.2853),

and (β̂0, β̂1, β̂2) = (9.8848, 0.3665, 0.4227). They are estimated under robust standard errors,

and are all significant at the 1% confidence level. We then use these estimates to predict

labor and final sales to all firms in our dataset.

Dijkstra algorithm. We now list the steps of a Dijkstra algorithm we used to construct our

the seller/buyer-level instruments. We obtained a set of shapefiles of district administrative

boundaries for India according to India’s 2011 census. We reprojected the shapefiles into

an Asian/South Equidistance Conic projection, which is the projection that best preserves

the distance measurements. Once shapefiles are reprojected, the objective is to construct a

transportation network between Indian districts.

First, we obtain the centroid of each district in India. Then , we construct a network

structure according to the set of centroids. There are many ways to construct a network, so

we need to take a stance on how to form the connections between centroids. For each centroid,

we generate connections to the k closest centroids according to Euclidean distances.50 We

49100,000 rupees = 1 Lakh; and 10,000,000 rupees = 1 Crore.
50Consider the set of nodes Φ, where K ≡ |Φ| is the number of nodes. The number of connections per

node k could range from 0 up to K, where each represent extreme cases of network formation. k = 0 is a
network without connections, so it is not possible to run a Dijkstra algorithm since it is not possible to go
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follow Fajgelbaum and Schaal 2020 and consider k = 8 such that we consider the main

cardinal directions (i.e. north, south, east, west, north-east, south-east, north-west, south-

west).

We now run the Dijkstra algorithm. For all district pairs, the algorithm provides us with

the list of all districts that comprise the route between the district pair, and the distance of

each leg that comprise the route. Using the name of the districts, we use the lockdown data

to assign a lockdown color to each district along the route, and obtain our seller/buyer-level

instruments. Our first instrument is the share of districts in a route that are Red, Orange,

or Green. When calculating these shares, we rule out the zone where the buyer resides so

we don’t consider demand-side shocks in our instrument. Using the distance of each leg, our

second instrument is the share of meters of the route that are Red, Orange, or Green. We

consider a leg to be of color x = {Red,Orange,Green} whenever the origin district was of

color x. In this case we also ignore the color of the district where the buyer resides.

C.4 Derivations

C.4.1 Estimation of firm-level elasticities of substitution across suppliers

In this section we describe the steps to derive the firm-level elasticity of substitution across

suppliers for the same product. First, we describe the model and the equations we take to

the data. Second, explain how we construct price indices we need to estimate this elasticity.

Third, we describe how we deal with the entry/exit of suppliers for the estimation. Finally,

we explain how we construct the seller-level and seller/buyer-level instruments we use to

causally estimate our elasticity.

Expression to estimate firm-level elasticities of substitution across suppliers. A firm b

selling product j ∈ F maximizes profits subject to its technology and to a CES bundle of

from one node to another. k = K is a fully-connected network, where all nodes are connected with each
other. Running a Dijkstra algorithm on this scenario is trivial since the shortest distance between any pair
of nodes is their connection itself. Therefore, a feasible number of connections per node must be k ∈ (0,K).
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intermediate inputs:

max pbjybj − wbjlbj −
∑
i

∑
s

psi,bjxsi,bj

s.t.

ybj = Ab

(
wbl (lbj)

α−1
α + (1− wbl) (xbj)

α−1
α

) α
α−1

,

xbj =

(∑
i

w
1
ζ

i,bjx
ζ−1
ζ

i,bj

) ζ
ζ−1

,

xi,bj =

(∑
s

µ
1
ϵ
si,bjx

ϵ−1
ϵ

si,bj

) ϵ
ϵ−1

.

The first order condition with respect to xsi,bj is

[xsi,bj] :pbj

(
α

α− 1

)
ybj (. . .bj)

−1 (1− wbl)

(
α− 1

α

)
x

α−1
α

−1

bj(
ζ

ζ − 1

)
xbj (. . .bj)

−1wi,j

(
ζ

ζ − 1

)
x

ζ−1
ζ

−1

i,bj(
ϵ

ϵ− 1

)
xi,bj (. . .i,bj)

−1 µ
1
ϵ
si,bj

(
ϵ− 1

ϵ

)
x

ϵ−1
ϵ

−1

si,bj = psi,bj,

=pbjybj (. . .bj)
−1 (1− wbl)x

α−1
α

bj

(. . .bj)
−1wi,jx

ζ−1
ζ

i,bj

(. . .i,bj)
−1 µ

1
ϵ
si,bjx

− 1
ϵ

si,bj = psi,bj,

where (. . . ) are components that we do not write in detail since they cancel out eventually.

Now, consider the first order conditions with respect to xsi,bj and xs′i,bj and divide them,
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such that

µ
1
ϵ
si,bjx

−1
ϵ

si,bj

µ
1
ϵ

s′i,bjx
− 1

ϵ

s′i,bj

=
psi,bj
ps′i,bj

,

x
−1
ϵ

si,bjp
−1
ϵ

si,bj

x
− 1

ϵ

s′i,bjp
−1
ϵ

s′i,bj

=
p
1− 1

ϵ
si,bjµ

− 1
ϵ

si,bj

p
1− 1

ϵ

s′i,bjµ
− 1

ϵ

s′i,bj

,

(xsi,bjpsi,bj)
− 1

ϵ

(
p

ϵ−1
ϵ

s′i,bjµ
− 1

ϵ

s′i,bj

)
= p

ϵ−1
ϵ

si,bjµ
− 1

ϵ
si,bj (xs′i,bjpsi,bj)

− 1
ϵ ,

(xsi,bjpsi,bj)
(
p1−ϵ
s′i,bjµs′i,bj

)
= p1−ϵ

si,bjµsi,bj (xs′i,bjpsi,bj) ,

(PMsi,bj)
(
p1−ϵ
s′i,bjµs′i,bj

)
= p1−ϵ

si,bjµsi,bj (PMs′i,bj) ,

(PMsi,bj)
∑
s′

(
p1−ϵ
s′i,bjµs′i,bj

)
= p1−ϵ

si,bjµsi,bj

∑
s′

(PMs′i,bj) ,

(PMsi,bj) p
1−ϵ
i,bj = p1−ϵ

si,bjµsi,bjPMi,bj,

PMsi,bj

PMi,bj

=

(
psi,bj
pi,bj

µ
1

1−ϵ

si,bj

)1−ϵ

,

log

(
PMsi,bj

PMi,bj

)
= (1− ϵ) log

(
psi,bj
pi,bj

)
+ log (µsi,bj) ,

where PMsi,bj ≡ psi,bjxsi,bj, p
1−ϵ
i,bj ≡

∑
s′ p

1−ϵ
s′i,bjµs′i,bj, and PMi,bj ≡

∑
s′ PMs′i,bj.

Constructing price indices. In this section we derive the expressions that allows us to

construct price indexes based on observable data. First, go back to the previous derivation,

where

(PMsi,bj) p
1−ϵ
i,bj = p1−ϵ

si,bjµsi,bjPMi,bj.

In the data we observe the production network over time, so we introduce a time dimen-

sion such that

(PMsi,bj,t) p
1−ϵ
i,bj,t = p1−ϵ

si,bj,tµsi,bj,tPMi,bj,t,

where t is a month. We can now express this equation in changes, such that(
P̂M si,bj,t

)
p̂1−ϵ
i,bj,t = p̂1−ϵ

si,bj,tµ̂si,bj,tP̂M i,bj,t,

where x̂t ≡ xt

xt−1
. Our objective is for p̂i,bj,t not to depend on µ̂si,bj,t, which are not observable.

To do this, we rely on Redding and Weinstein (2020). The key assumption is that the overall

importance of a product category in a buyer’s input use is time-invariant. Concretely, the

geometric mean of µsi,bj,t across common sellers is constant. From the maximization problem
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of the firm, we obtain the following expression for the CES price index at the buyer level:

pi,bj,t =

 ∑
s∈Ωi,bj,t

µsi,bj,tp
1−ϵ
si,bj,t

 1
1−ϵ

,

where Ωi,bj,t is the set of all sellers that provided to buyer b in time t. We apply Shephard’s

Lemma to this CES price function, which in turn yields an expression for expenditure share:

ssi,bj,t =
µsi,bj,tp

1−ϵ
si,bj,t

p1−ϵ
i,bj,t

,

where ssi,bj,t ≡ PMsi,bj,t∑
s∈Ωi,bj,t

PMsi,bj,t
. We can then rewrite this expression such that

pi,bj,t = psi,bj,t

(
µsi,bj,t

ssi,bj,t

) 1
1−ϵ

,∀s ∈ Ωi,bj,t.

This expression in changes is

p̂i,bj,t = p̂si,bj,t

(
µ̂si,bj,t

ŝsi,bj,t

) 1
1−ϵ

.

Now, common suppliers for a buyer b in time t is the set of suppliers Ω∗
i,bj,t that sold to

buyer b in the current and previous period (i.e. Ω∗
i,bj,t ≡ Ωi,bj,t ∩ Ωi,bj,t−1), where N

∗
i,bj,t ≡∣∣Ω∗

i,bj,t

∣∣ is the number of common sellers for buyer b in time t. We now apply a geometric

mean to this expression, such that

p̂
N∗

i,bj,t

i,bj,t =

N∗
i,bj,t∏
s=1

{
p̂si,bj,t

(
µ̂si,bj,t

ŝsi,bj,t

) 1
1−ϵ

}
,

p̂
N∗

i,bj,t

i,bj,t =

N∗
i,bj,t∏
s=1

p̂si,bj,t

N∗
i,bj,t∏
s=1

µ̂
1

1−ϵ

si,bj,t

N∗
i,bj,t∏
s=1

ŝ
1

ϵ−1

si,bj,t,

p̂i,bj,t =

N∗
i,bj,t∏
s=1

p̂

1
N∗
i,bj,t

si,bj,t

N∗
i,bj,t∏
s=1

µ̂

1
N∗
i,bj,t

si,bj,t

 1
1−ϵ N∗

i,bj,t∏
s=1

(
ŝ

1
N∗
i,bj,t

si,bj,t

) 1
ϵ−1

,

p̂i,bj,t = ̂̃pi,bj,t̂̃s 1
ϵ−1

i,bj,t

N∗
i,bj,t∏
s=1

µ̂

1
N∗
i,bj,t

si,bj,t

 1
1−ϵ

.
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We now formally state the assumption we require to move forward, which is

µ̃i,bj,t =

N∗
i,bj,t∏
s=1

µ

1
N∗
i,bj,t

si,bj,t =

N∗
i,bj,t∏
s=1

µ

1
N∗
i,bj,t

si,bj,t−1 = µ̃i,bj,t−1.

Then, the last term of our expression is

N∗
i,bj,t∏
s=1

µ̂

1
N∗
i,bj,t

si,bj,t =

N∗
i,bj,t∏
s=1

(
µsi,bj,t

µsi,bj,t−1

) 1
N∗
i,bj,t

,

=

∏N∗
i,bj,t

s=1 µ

1
N∗
i,bj,t

si,bj,t∏N∗
i,bj,t

s=1 µ

1
N∗
i,bj,t

si,bj,t−1

,

=
µ̃i,bj,t

µ̃i,bj,t−1

,

= 1.

So our final expression boils down to

p̂1−ϵ
i,bj,t =

̂̃p1−ϵ

i,bj,t̂̃si,bj,t ,
where p̃i,bj,t ≡

∏
s p

1
N∗
i,bj,t

si,bj,t is a geometric mean of unit values across common suppliers, and

s̃i,bj,t ≡
∏

s s

1
N∗
i,bj,t

si,bj,t is a geometric mean of expenditure shares across common suppliers. Notice

that we have reached to our objective, since now ̂̃pi,bj,t is independent of µsi,bj,t. Finally, the

expression we take to the data is(
P̂M si,bj,t

)
p̂1−ϵ
i,bj,t = p̂1−ϵ

si,bj,tµ̂si,bj,tP̂M i,bj,t,(
P̂M si,bj,t

) ̂̃p1−ϵ

i,bj,t
̂̃s−1

i,bj,t = p̂1−ϵ
si,bj,tµ̂si,bj,tP̂M i,bj,t,

P̂M si,bj,t

P̂M i,bj,t

=

(
p̂si,bj,t̂̃pi,bj,t

)1−ϵ (̂̃si,bj,tµ̂si,bj,t

)
,

log

(
P̂M si,bj,t

P̂M i,bj,t

)
= (1− ϵ) log

(
p̂si,bj,t̂̃pi,bj,t

)
+ log

(̂̃si,bj,tµ̂si,bj,t

)
,

log

(
P̂M si,bj,t

P̂M i,bj,t

)
= (1− ϵ) log

(
p̂si,bj,t̂̃pi,bj,t

)
+ log

(̂̃si,bj,t)+ log (µ̂si,bj,t) .
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Addressing entry/exit of suppliers. In this section we explain how we address the fact that

seller and buyer matches do not happen in every period (i.e. entry and exit of sellers). The

concern is that not taking into account the fact that sellers and buyers do not trade in every

period could induce a bias in the estimation of ϵ. We address this by including a correction

term by Feenstra (1994) in our regressions. First, notice we can write down the expenditure

share as

ssi,bj,t ≡ λi,bj,ts
∗
si,bj,t,

where λi,bj,t is the Feenstra correction term, and s∗si,bj,t is the expenditure share with respect

to total expenditure on common suppliers. Notice that these terms are constructed as

ssi,bj,t ≡
PMsi,bj,t∑

s∈Ωi,bj,t
PMsi,bj,t

,

λi,bj,t ≡

∑
s∈Ω∗

i,bj,t
PMsi,bj,t∑

s∈Ωi,bj,t
PMsi,bj,t

,

s∗si,bj,t ≡
PMsi,bj,t∑

s∈Ω∗
i,bj,t

PMsi,bj,t

.

In changes, the expression for expenditure shares is

ŝsi,bj,t = λ̂i,bj,tŝ
∗
si,bj,t.

Then, the geometric mean for expenditure shares is

̂̃si,bj,t = N∗
i,bj,t∏
s=1

ŝ

1
N∗
i,bj,t

si,bj,t ,

=

N∗
i,bj,t∏
s=1

(
λ̂i,bj,tŝ

∗
si,bj,t

) 1
N∗
i,bj,t ,

= λ̂i,bj,t

N∗
i,bj,t∏
s=1

(
ŝ∗si,bj,t

) 1
N∗
i,bj,t ,

λ̂i,bj,t̂̃s∗i,bj,t.
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So the final expression we take to the data is

log

(
P̂M si,bj,t

P̂M i,bj,t

)
= (1− ϵ) log

(
p̂si,bj,t̂̃pi,bj,t

)
+ log

(̂̃si,bj,t)+ log (µ̂si,bj,t) ,

= (1− ϵ) log

(
p̂si,bj,t̂̃pi,bj,t

)
+ log

(
λ̂i,bj,t̂̃s∗i,bj,t)+ log (µ̂si,bj,t) ,

= (1− ϵ) log

(
p̂si,bj,t̂̃pi,bj,t

)
+ log

(
λ̂i,bj,t

)
+ log

(̂̃s∗i,bj,t)+ log (µ̂si,bj,t) .

Addressing endogeneity concerns. The equation from the previous section is what we take

to the data. Nevertheless, there are further endogeneity issues that would contaminate our

estimates for ϵ. In particular, Covid lockdowns could have also induced changes in demand,

which in turn would bias our estimates. For example, if Covid shocks also induce negative

demand shocks, our estimates would then be biased upwards. In this section we derive

our instruments. First, we consider non-arbitrage in shipping, so prices at the origin and

destination between sellers and suppliers are related as

psi,bj,t = psi,tτsb,t,

where psi,t is the marginal cost (MC) of production of good i for seller s in month t, τsb,t is

the iceberg cost of transporting the good from seller s to buyer b in month t. Now, we can

then express this in changes, such that

p̂si,bj,t = p̂si,tτ̂sb,t.

In logarithms, we have

log (p̂si,bj,t) = log (p̂si,t) + log (τ̂sb,t) .

These two components of price imply two instruments. First, our seller-level instrument

that uses variation in MC at the seller-product level due to lockdown measures at the seller’s

district. To isolate variation in marginal costs driven by seller’s lockdown zone, we interact

the lockdown dummy (Lockt) which takes the value 1 between March and May with dummy

variables Redos and Orangeos that equal 1 whenever seller s was located in a district o that

was either Red or Orange during the lockdown. Then, our excluded instruments are

log(p̂si,t) = βRRedo(s)Lockt + βOOrangeo(s)Lockt + ϵνsi,bj,t.
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Now we explain how we construct the instrument at the seller/buyer level. We have to

take a stance about the functional form of the trade cost τsb,t. We assume that trade costs

are proportional to the travel time of the transportation of intermediate inputs, such that

τsb,t = TravelT imeσsb,t.

If we express this in changes, we get

τ̂sb,t = ̂TravelT ime
σ

sb,t.

We exploit variation from the Covid-19 lockdown, which induced exogenous variation

in the travel time between location pairs of sellers and buyers. Given this, we assume the

following difference-in-differences setup for travel time:

̂TravelT imesb,t = exp
(
γRRedo(s)d(b)Lockt + γOOrangeo(s)d(b)Lockt + νsi,bj,t

)
,

where Redo(s)d(b) and Orangeo(s)d(b) are the share of number of districts or of distance desig-

nated as Red and Orange, respectively, along the route between seller s and buyer b. We

constructed these variables using Dijkstra algorithms. Further details about this are in Ap-

pendix C.3. Combining the expression for changes in travel time due to the lockdown and

trade costs, we get the following expression for our seller/buyer level excluded instruments

log(τ̂sb,t) = βRRedo(s)d(b)Lockt + βOOrangeo(s)d(b)Lockt + νsi,bj,t.

C.4.2 Estimation of firm-level elasticities of substitution across products

In this section we describe the steps to derive the firm-level elasticity of substitution across

products. First, we describe the model and the equations we take to the data. Second,

we describe how we construct price indices we need to estimate this elasticity. Finally, we

describe the instrument we use to causally estimate our elasticity.
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Expressions to estimate firm-level elasticities of substitution across products. We rewrite

the initial maximization problem, so

max pbjybj − wbjlbj −
∑
i

pi,bjxi,bj

s.t.

ybj = Ab

(
wbl (lbj)

α−1
α + (1− wbl) (xbj)

α−1
α

) α
α−1

,
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I∑
i

w
1
ζ

i,bjx
ζ−1
ζ

i,bj

) ζ
ζ−1

,

pi,bj =

(∑
s

µsi,bjp
1−ϵ
si,bj

) 1
1−ϵ

.

The first order condition with respect to xi,bj is

[xi,bj] :pbj

(
α

α− 1

)
ybj (. . .bj)

−1 (1− wbl)

(
α− 1

α

)
x
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−1
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ζ

ζ − 1

)
xbj (. . .bj)

−1w
1
ζ

i,bj

(
ζ

ζ − 1

)
x

ζ−1
ζ

−1

i,bj = pi,bj, pi,bj

= pbjybj (. . .bj)
−1 (1− wbl)x

α−1
α

bj

(. . .bj)
−1w

1
ζ

i,bjx
−1
ζ

i,bj,

where (. . . ) are components that we do not write explicitly since they eventually cancel out.

Now, consider the same first order conditions with respect to xi′,bj and divide them, such
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that

pbjybj (. . .bj)
−1 (1− wbl)x

α−1
α

bj (. . .bj)
−1w

1
ζ

i,bjx
−1
ζ

i,bj

pbjybj (. . .bj)
−1 (1− wbl)x

α−1
α

bj (. . .bj)
−1w

1
ζ

i′ ,bj
x

−1
ζ

i′ ,bj

=
pi,bj
pi′ ,bj

,

w
1
ζ

i,bjx
−1
ζ

i,bj

w
1
ζ

i′ ,bj
x

−1
ζ

i′ ,bj

=
pi,bj
pi′ ,bj

,

w
1
ζ

i,bjx
−1
ζ

i,bjp
− 1

ζ

i,bj

w
1
ζ

i′ ,bj
x

−1
ζ

i′ ,bj
p
− 1

ζ

i′ ,bj

=
pi,bjp

− 1
ζ

i,bj

pi′ ,bjp
− 1

ζ

i′ ,bj

,

w
1
ζ

i,bj (xi,bjpi,bj)
− 1

ζ

w
1
ζ

i′ ,bj

(
xi′ ,bjpi′ ,bj

)− 1
ζ

=
p

ζ−1
ζ

i,bj

p
ζ−1
ζ

i′ ,bj

,

 w
1
ζ

i,bj (xi,bjpi,bj)
− 1

ζ

w
1
ζ

i′ ,bj

(
xi′ ,bjpi′ ,bj

)− 1
ζ

−ζ

=

p
ζ−1
ζ

i,bj

p
ζ−1
ζ

i′ ,bj


−ζ

,

wi′ ,bj (xi,bjpi,bj)

wi,bj

(
xi′ ,bjpi′ ,bj

) =
p1−ζ
i,bj

p1−ζ

i
′
,bj

,

PMi,bj

(
wi′ ,bjp

1−ζ

i′ ,bj

)
= PMi′ ,bj

(
wi,bjp

1−ζ
i,bj

)
,∑

i′

PMi,bj

(
wi′ ,bjp

1−ζ

i′ ,bj

)
=
∑
i′

PMi′ ,bj

(
wi,bjp

1−ζ
i,bj

)
,

PMi,bj

∑
i′

wi′ ,bjp
1−ζ

i′ ,bj
= wi,bjp

1−ζ
i,bj

∑
i′

PMi′ ,bj,

PMi,bjp
1−ζ
bj = wi,bjp

1−ζ
i,bj PMbj,

PMi,bj

PMbj

=
wi,bjp

1−ζ
i,bj

p1−ζ
bj

,

PMi,bj

PMbj

=

(
w

1
1−ζ

i,bj

pi,bj
pbj

)1−ζ

,

log

(
PMi,bj

PMbj

)
= (1− ζ) log

(
pi,bj
pbj

)
+ log (wi,bj) ,

where PMbj ≡
∑

i PMi,bj, and pbj =
(∑

iwi,bjp
1−ζ
i,bj

) 1
1−ζ

. As we did for the estimation of

the elasticity of substitution across suppliers, we introduce a time dimension, apply Shep-

hard’s lemma to this CES price function, and also assume that the overall importance of the
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composite intermediates is time-invariant, so

si,bj,t =
wi,bj,tp

1−ζ
i,bj,t

p1−ζ
bj,t

,

pbj,t = pi,bj,t

(
wi,bj,t

si,bj,t

) 1
1−ζ

,

p̂bj,t = p̂i,bj,t

(
ŵi,bj,t

ŝi,bj,t

) 1
1−ζ

,

p̂
Nbj,t

bj,t =

Nbj,t∏
i=1

p̂i,bj,t

(
ŵi,bj,t

ŝi,bj,t

) 1
1−ζ

,

p̂
Nbj,t

bj,t =

Nbj,t∏
i=1

p̂i,bj,t

Nbj,t∏
i=1

ŵ
1

1−ζ

i,bj,t

Nbj,t∏
i=1

ŝ
1

ζ−1

i,bj,t,

p̂bj,t =

Nbj,t∏
i=1

p̂
1

Nbj,t

i,bj,t

Nbj,t∏
i=1

ŵ
1

Nbj,t

i,bj,t

 1
1−ζ
Nbj,t∏

i=1

ŝ
1

Nbj,t

i,bj,t

 1
ζ−1

,

p̂bj,t = ̂̃pbj,t ̂̃w 1
1−ζ

bj,t
̂̃s 1

ζ−1

bj,t ,

p̂bj,t = ̂̃pbj,t̂̃s 1
ζ−1

bj,t ,

p̂bj,t =
̂̃pbj,t̂̃s 1
1−ζ

bj,t

,

where p̃bj,t ≡
∏Nbj,t

i=1 p̃
1

Nbj,t

i,bj,t is the geometric mean of unit values across product categories that

buyer b sources from, and s̃bj,t ≡
∏Nbj,t

i=1 s̃
1

Nbj,t

i,bj,t is the geometric mean of expenditure shares

across products. Now, if we also introduce a time dimension into our estimating equation,
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express it in changes, and consider our expression for unit values, we have

PMi,bj,tp
1−ζ
bj,t = wi,bj,tp

1−ζ
i,bj,tPMbj,t,

P̂M i,bj,tp̂
1−ζ
bj,t = ŵi,bj,tp̂

1−ζ
i,bj,tP̂M bj,t,

log

(
P̂M i,bj,t

P̂M bj,t

)
= (1− ζ) log

(
p̂i,bj,t
p̂bj,t

)
+ log (ŵi,bj,t) ,

log

(
P̂M i,bj,t

P̂M bj,t

)
= (1− ζ) log

 p̂i,bj,t̂̃pbj,t̂̃s 1
1−ζ
bj,t

+ log (ŵi,bj,t) ,

log

(
P̂M i,bj,t

P̂M bj,t

)
= (1− ζ) log

(
p̂i,bj,t̂̃pbj,t

)
+ log

(̂̃sbj,t)+ log (ŵi,bj,t) .

Constructing price indices. To estimate ζ, we need values for pi,bj,t, which are not directly

observed in the data since pi,bj,t ≡
(∑

s µsi,bj,tp
1−ϵ
si,bj,t

) 1
1−ϵ , which is a function of ϵ and µsi,bj,t.

For ϵ, we consider ϵ = ϵ̂, where ϵ̂ is our estimated elasticity. For µsi,bj,t, we use the fact that

the residuals when estimating ϵ are a function of these shocks. Recall that

log

(
P̂M si,bj,t

P̂M i,bj,t

)
= (1− ϵ) log

(
p̂si,bj,t̂̃pi,bj,t

)
+Xβ + ϕsi,bj,t,

where ϕsi,bj,t = log (µ̂si,bj,t) = log
(

µsi,bj,t

µsi,bj,t−1

)
= log (µsi,bj,t) − log (µsi,bj,t−1) are the residuals

of this estimating equation. By assumption, log (µsi,bj,t) are i.i.d and normally distributed

shocks with mean µ and variance σ2, so the mean and variance of log (µsi,bj,t)− log (µsi,bj,t−1)

is 0 and 2σ2, respectively. We now construct pi,bj,t by the following steps:

1. Run the 2SLS regression to obtain the estimate ϵ̂;

2. Recover predicted values for the error term ϕ̂si,bj,t;

3. Calculate the empirical mean and variance of ϕ̂si,bj,t :
{
µ̂ϕ, σ̂

2
ϕ

}
;

4. Recover the values for mean and variance of log (µsi,bj,t), such that: (i) µ = µ̂ϕ and

σ2 =
σ̂2
ϕ

2
;

5. Make a random draw for log (µsi,bj,0), which is drawn from a normal distribution with

mean µ̂ϕ and variance
σ̂2
ϕ

2
;
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6. For a given µsi,bj,0, recover µsi,bj,t according to the following law of motion:

log

(
µsi,bj,t

µsi,bj,t−1

)
= ϕ̂si,bj,t,

µsi,bj,t

µsi,bj,t−1

= exp
(
ϕ̂si,bj,t

)
,

µsi,bj,t = exp (ϕsi,bj,t)µsi,bj,t−1;

7. We then construct unit values by

pi,bj,t ≡

(∑
s

µsi,bj,tp
1−ϵ̂
si,bj,t

) 1
1−ϵ̂

.

Constructing instruments. To obtain an exogenous shifter of relative unit values, which

we use to obtain an unbiased estimate of ζ, we rely on the instruments we use to estimate ϵ.

Consider the set of instruments Zsi,bj,t. Then, we consider the new set of instruments:

Wi,bj,t = Zsi,bj,t =
1

Ni,bj,t

∑
s

Zsi,bj,t.

For intuition, consider the instrument that varies across both the color zone of the seller

and the buyer (i.e. the share of districts of color red in the route between the location of

the seller and of the buyer). Then, the new instrument is the simple average of these shares

across sellers. Intuitively, the higher the shares of red-colored locations within the routes,

the higher the shock on prices

C.5 Simulations using quantitative model

C.5.1 Deriving expression for shock propagation through GDP

In this section, we discuss details of the simulation using the quantitative model. In order to

do that, we first recall the different notations used in the paper. N is the number of firms,

I is the number of product categories. λk is the Domar weight of firm or sector k. θk is

the elasticity of substitution corresponding to the kth reproducible sector. Ωli is the (l, i)th

element of the (N + I + 2) input output matrix Ω. It therefore measures the direct reliance

of l on i as a supplier. ψli corresponds to the (l, i)th element of the (N + I + 2) Leontief

inverse, and captures the direct and indirect reliance of l on i as a supplier. The aggregate

change in GDP (∆logy) in response to changes in productivity of firm j (δlogAj) up to a
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second order is given by the following:

logy =
N∑
j=1

∂logy

∂logAj

(∆logAj)

+
1

2

N∑
i=1

N∑
j=1,i ̸=j

∂2logy

∂logAi∂logAj

(∆logAi)(∆logAj) +
1

2

N∑
i=1

∂2logy

∂logA2
i

(∆logAi)
2. (C1)

Following Baqaee and Farhi (2019), after replacing second order terms:

=
N∑
j=1

λj(∆logAj) +
1

2

N∑
i=1

N∑
j=1,i ̸=j

(
N∑
k=0

(θk − 1)λkCovΩ(k)(ψ(i), ψ(j))

)
(∆logAi) (∆logAj)

+
1

2

N∑
i=1

(
N∑
k=0

(θk − 1)λkV arΩ(k)ψ(i)

)
(∆logAi)

2

=
N∑
j=1

λj(∆logAj) +
1

2

N∑
i=1

N∑
j=1,i ̸=j

(
N∑
k=0

(θk − 1)λk

((
N+F∑
l=1

Ωklψliψlj

)))
(∆logAi) (∆logAj)

+
1

2

N∑
i=1

(
N∑
k=0

(θk − 1)λk

((
N+F∑
l=1

Ωklψliψli

)
−

(
N+F∑
l=1

Ωklψli

)(
N+F∑
l=1

Ωklψli

)))
(∆logAi)

2

=
N∑
j=1

λj(∆logAj) +
1

2
B +

1

2
C.

We will now write down the expressions for B and C in matrix form in order to evaluate

the second order effects. × denotes matrix multiplication and · denotes element by element

matrix operations.

Quantifying B. To quantify B, the term that mainly captures the second order effects on

GDP that operates through changes in firm i’s Domar weight in response to productivity

shocks to firm j, where j ∈ N, j ̸= i, we introduce the following intermediate matrices which

we will define below: M , N , Covar1, Covar21, Covar22, and Covar2. Jm,n denotes a matrix
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of ones of size m by n.

M = ψ · (∆logA)T ,

N = J(N+I+2,N+I+2) ·

(
J(N+I+2,1) ×

(
ψ · (∆logA)T

))
−
(
ψ · (∆logA)T

)
,

Covar1 = Ω× (M ·N),

Covar21 = Ω×M,

Covar22 = Ω×N,

Covar2 = Covar21 · Covar22,

B =
(
(θ − 1) · λ

)
×
(
Covar1− Covar2

)
.

Quantifying C. The term C, mainly captures the second order effects on GDP that operates

through changes in firm i’s Domar weight in response to productivity shocks to firm i itself.

C =

((
(θ − 1) · λ

)
×
(
Ω× (ψ · ψ)− (Ω× ψ) · (Ω× ψ)

))
×

(
∆logA ·∆logA

)
.

Matrix form. We can rewrite Equation (C1) as:

∆logy = λ×∆logA+ .5
(
(θ − 1) · λ

)
×
(
Covar1− Covar2

)
+

.5

((
(θ − 1) · λ

)
×
(
Ω× (ψ · ψ)− (Ω× ψ) · (Ω× ψ)

))
×

(
∆logA ·∆logA

)
(C2)

C.5.2 Numerical implementation in Python

Numerically implementing this exercise is challenging due to the sheer size of the firm-to-firm

trade network. We have data on 93260 firms across 1293 product categories. This generates

a 94,555 by 94,555 input output matrix. The elements inside the input-output matrix are

very small as the fraction of a product’s output going to a single firm is very small and each

product category in turn sources from a large number suppliers. Therefore, and to keep the

calculations as precise as possible, we had to use float64 variable types with these matrices,

which resulted in matrices larger than most servers’ memories. For instance, the Leontief

inverse matrix alone took more than 66GB of storage/memory size. A lot of the calculation’s

steps required performing matrix multiplication operations on these large matrices. Matrix

multiplication is one of the most demanding operations in terms of computing resources in

the world of computer science. We break down this computation via a number of state-of-the-
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art big data computing techniques, thus achieving scalability when applying our techniques

to arbitrarily large input output matrices. As detailed firm-to-firm transactions data are

becoming more widely available, these techniques will advance the literature quantifying the

propagation of shocks through firm networks.

First, we are able to fit datasets larger than RAM using Dask which provides multi-

core and distributed and parallel execution on larger-than-memory datasets.51 We use Dask

distributed capabilities to add parallelism to the calculations in computing second order

effects which require few matrix multiplication operations on large 94,555 by 94,555 matrices.

Second, we use a computer powered with multiple GPUs. GPUs are essential for the

numerous matrix multiplications this process involves. To demonstrate this in numbers,

computing 10 columns of Leontief inverse matrix (only 0.000001%) takes about 4 days on a

powerful server with multiple CPUs, 500GB of RAM and 16 cores. Computing the entire

Leontief inverse on a server powered with 4 GPUs took about 1 hour. The part of our work of

computing the second order effect, which involves 3 operations of large matrix multiplication

would not be practical using CPUs only.

Third, we use the properties of sparse matrices to define matrix multiplications that can

ignore large contiguous chunks of zeros, a typical feature of input output matrices.

Fourth, we developed a custom matrix multiplication function to overcome the limitation

of the relatively small memory size of GPUs. The custom matrix multiplication function

splits the matrix into chunks of full columns (typically in the order of few 1000’s of columns),

and multiplies the sparse input output matrix by each chunk and then concatenates all result

chunks to formulate the final result.

51https://tutorial.dask.org/00_overview.html
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