
Toward Secure and Safe Autonomous Driving: an
Adversary’s Perspective

by

Yulong Cao

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2023

Doctoral Committee:

Professor Z. Morley Mao, Chair
Associate Professor Kevin Fu
Professor Mingyan Liu
Professor Atul Prakash
Assistant Professor Chaowei Xiao, Arizona State University

Yulong Cao
yulongc@umich.edu

ORCID iD: 0000-0003-3007-2550

© Yulong Cao 2023

mailto:yulongc@umich.edu

To my parents, my grandparents, and my love

ii

ACKNOWLEDGEMENTS

It is the seventh year since I first came to Ann Arbor for my undergrad. This

small, peaceful town has been my second home town now. Looking back from the end

of this road, there are so many people I would like to thank, who are indispensable

for this wonderful journey full of passion, love, and growth.

Foremost, I would like to gratefully thank my advisor, Professor Zhuoqing Morley

Mao for her unconditional trust in me. Her constant support was one of the most

important reasons for my being able to bring this dissertation to its completion. She

has been supporting me in exploring new directions, which are often frustrating due

to the unknown challenges. With her guidance over the years, I have the confidence

to say that I have grown to be a researcher that can conduct independent research.

Besides my advisor, I would like to thank my dissertation committee, Professor

Mingyan Liu, Professor Atul Prakash, Professor Kevin Fu, and Professor Chaowei

Xiao for their insightful suggestions, comments, and support.

I am grateful to my mentors, Professor Chaowei Xiao, Professor Alfred Chen, who

have been patient enough for teaching me, from research to life. I also want to thank

my internship mentors, Yunhan Jia, Yueqiang Cheng, Professor Danfei Xu, Xinshuo

Weng, and Professor Marco Pavone, who have guided and helped me through one and

another amazing journeys. I am also grateful to my collaborators I have fortunately

worked with, Jiachen Sun, Benjamin Cyr, Yimeng Zhou, Won Park, Professor Sara

Rampazzi, Ningfei Wang, Dawei Yang, Jin Fang, Ruigang Yang, Professor Bo Li,

R Spencer Hallyburton, Professor Miroslav Pajic, David Ke Hong, Professor Scott

iii

Mahlke, Professor Anima Anandkumar, S Hrushikesh Bhupathiraju, Pirouz Naghavi,

and Professor Takeshi Sugawara. Without their help, I won’t be able to accomplish

all the projects alone.

This journey would have never been the same without my friends Shengtuo Hu,

Jiachen Sun, Zhiyi Chen, who have been constantly inspiring me and pushing me

through project after project. Also, my lab mates Xiao Zhu, Shichang Xu, Yikai Lin,

Roy Shao, Xumiao Zhang, Qingzhao Zhang have been the indispensable part of this

journey as well.

Finally, I want to thank my father, Xinhua Cao, mother, Yi Li, grandfather,

Weixi Li, and my girlfriend Ji Qiu for being the constant mental support in my life.

Their unconditional love and support helped me bring this adventure to an end. This

dissertation is dedicated to them.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

LIST OF TABLES . xiii

LIST OF APPENDICES . xv

ABSTRACT . xvi

CHAPTER

I. Introduction . 1

1.1 Overview . 3
1.2 Disseration Organization . 5

II. Vulnerability Status of LiDAR-based Perception against the
Sensor Spoofing Attack . 6

2.1 Introduction . 6
2.2 Background . 10

2.2.1 LiDAR-based Perception in AV Systems 10
2.2.2 LiDAR Sensor and Spoofing Attacks 12
2.2.3 Adversarial Machine Learning 13

2.3 Attack Goal and Threat Model 14
2.4 Limitation of Blind sensor spoofing 15

2.4.1 Blind LiDAR Spoofing Experiments 18
2.5 Improved Methodology: Adv-LiDAR 20

2.5.1 Technical Challenges 21
2.5.2 Adv-LiDAR Methodology Overview 22

2.6 Input Perturbation Analysis 24
2.6.1 Spoofing Attack Capability 25

v

2.6.2 Input Perturbation Modeling 26
2.7 Generating Adversarial Examples 30
2.8 Evaluation and Results . 33

2.8.1 Attack Effectiveness 33
2.8.2 Robustness Analysis 34

2.9 Driving Decision Case Study 36
2.10 Discussion . 39

2.10.1 Limitations and Future Work 39
2.10.2 Generality on LiDAR-based AV Perception 40

2.11 Related Work . 40
2.12 Conclusion . 41

III. Vulnerability Status of LiDAR-based Perception against the
Object Reshaping Attack . 43

3.1 Introduction . 43
3.2 Related work . 46
3.3 Generating Adversarial Object Against LiDAR-based Detection 47

3.3.1 Methodology overview 47
3.3.2 Approximate differentiable renderer 48
3.3.3 Differentiable proxy function for feature aggregation 49
3.3.4 Objective functions 51
3.3.5 Blackbox Attack . 53

3.4 Experiments . 53
3.4.1 Experimental setup 54
3.4.2 Vulnerability analysis 54
3.4.3 LiDAR-Adv with different adversarial goals 54
3.4.4 LiDAR-Adv on generating robust physical adversar-

ial objects . 55
3.5 Conclusion . 57

IV. Vulnerability Causality Analysis on Camera-based Perception 59

4.1 Introduction . 59
4.2 Preliminaries . 63

4.2.1 Motivation and Threat Model 63
4.2.2 Models . 64
4.2.3 Dataset . 65

4.3 Remote Adversarial Patch . 65
4.3.1 Notations . 65
4.3.2 Generating RAP . 66
4.3.3 A Special Case: Object Removing Attack 66

4.4 RAP Vulnerability Analysis 68
4.4.1 Micro-benchmark on Receptive Field Size 69
4.4.2 RAP Analysis on Representative Architectures . . . 72

vi

4.5 Object Removing Attack . 74
4.5.1 Digital Experiments 74
4.5.2 Physical Experiments 75

4.6 Related Works . 77
4.7 Discussion and Future Work 79
4.8 Conclusion . 80

V. Secure and Safe Autonomous Driving with Modular Robust-
ness . 81

5.1 Introduction . 81
5.2 Adversarial Attacks on Trajectory Prediction 81
5.3 Related works . 84
5.4 Problem Formulation and Challenges 86
5.5 AdvDO: Adversarial Dynamic Optimization 88

5.5.1 Dynamic Parameters Estimation 89
5.5.2 Adversarial Trajectory Generation 90

5.6 Experiments . 92
5.6.1 Experimental Setting 92
5.6.2 Main Results . 94

5.7 Adversarially Robust Trajectory Prediction 100
5.8 Related Work . 102
5.9 Preliminaries and Formulation 103
5.10 RobustTraj : Robust Trajectory Prediction 105
5.11 Experiments and Results . 109

5.11.1 Experimental setup 109
5.11.2 Main results . 110
5.11.3 Component analysis 111

5.12 Limitations . 114
5.13 Conclusion . 114

VI. Secure and Safe Autonomous Driving with Integrated Ro-
bustness . 116

6.1 Introduction . 116
6.2 The S2AD Approach . 118

6.2.1 Simplified AD Pipeline 118
6.2.2 Anomaly Detection with Point Cloud Prediction . . 119
6.2.3 Fail-safe Detection with Clustering-based Method . 120

6.3 Evaluation . 120
6.3.1 Experiment Setup 120
6.3.2 Results . 121

6.4 Limitations and Future Works 122
6.5 Conclusion . 122

vii

VII. Conclusion and Future Work . 124

7.1 Conclusion . 124
7.2 Future Work . 125

APPENDICES . 127
A.1 Algorithm Details and Experiment Settings 128
B.1 Related works . 130
B.2 Method . 130

B.2.1 Differential dynamic model 130
B.2.2 Reconstruction loss and adversarial loss 132

B.3 Experiments . 133
B.3.1 Attack fidelity analysis 133
B.3.2 Case studies with planners 136
B.3.3 Transferability Analysis 136
B.3.4 Ablation Study . 137

C.1 Method and Implementations 142
C.1.1 Adversarial Attack on Trajectory Prediction 142
C.1.2 Adversarial Training on Generative Models 144
C.1.3 Data Augmentation with Dynamic Model 146
C.1.4 MPC-based Planner 147

C.2 Experiment and Results . 148
C.2.1 More details on Experimental Setup 148
C.2.2 Main Results . 150

BIBLIOGRAPHY . 153

viii

LIST OF FIGURES

Figure

2.1 Overview of the data processing pipeline for LiDAR-based perception
in Baidu Apollo. 10

2.2 Overview of the Adv-LiDAR methodology. 15
2.3 Illustration of LiDAR spoofing attack. The photodiode receives the

laser pulses from the LiDAR and activate the delay component that
triggers the attacker laser to simulate real echo pulses. 16

2.4 The consistent firing sequence of the LiDAR allows an attacker to
choose the angles and distances from which spoofed points appear.
For example, applying the attacker signal, fake dots will appear at
1◦, 3◦, -3◦, and -1◦ angles (0◦ is the center of the LiDAR) 17

2.5 Generating the attacker-perturbed 3D point cloud by synthesizing the
pristine 3D point cloud with the attack trace to spoof a front-near
obstacle 5 meters away from the victim AV. 19

2.6 The point cloud from a real vehicle reflection (left) and from the
spoofing attack (right) in a 64-line HDL-64E LiDAR. The vehicle is
around 7 meters in front of the AV. 20

2.7 Attack capability in perturbing 3D Point Cloud T 26
2.8 Overview of the adversarial example generation process. 29
2.9 Loss surface over transformation parameters θ (rotation) and τx (trans-

lation). Using a small step size (green line) will trap the optimizing
process near a local extreme while choosing a large step size (red line)
will be less effective. 31

2.10 Attack success rate of spoofing a front-near obstacle with different
number of spoofed points. V-opt refers to vanilla optimization which
is directly using the optimizer and S-opt refers to sampling based
optimization. We choose Adam [80] as the optimizer in both cases. . 34

2.11 The robustness of the generated adversarial spoofed 3D point cloud to
variations in 3D point cloudX. We quantify the variation in 3D point
cloud X as the frame indexes difference between the evaluated 3D
point cloud and the 3D point cloud used for generating the adversarial
spoofed 3D point cloud. 36

ix

2.12 Demonstration of the emergency brake attack. Due to the spoofed
obstacle, the victim AV makes a sudden stop decision to drop its
speed from 43 km/h to 0 km/h within a second, which may cause
injuries of passengers or rear-end collisions. 38

2.13 Demonstration of the AV freezing attack. The traffic light is turned
green but the victim AV is not moving due to the spoofed front-near
obstacles. 38

3.1 Overview of LiDAR-Adv . The first row shows that a normal box
will be detected by the LiDAR-based detection system; while the
generated adversarial object with similar size in row 2 cannot be
detected. 45

3.2 Adversarial meshes of different sizes can fool the detectors even with
more LiDAR hits. We generate the object with LiDAR-Adv and
evolution-based method (Evo.). 55

3.3 The adversarial mesh generated by LiDAR-Adv is mis-detected as a
“Pedestrian”. 56

3.4 Results of physical attack. Our 3D-printed robust adversarial object
by LiDAR-Adv is not detected by the LiDAR-based detection system
in a moving car. Row 1 shows the point cloud data collected by Li-
DAR sensor, and Row 2 presents the corresponding images captured
by a dash camera. 57

4.1 Remote adversarial patch (RAP) attack overview. The goal of the
attack is to mislead the model predictions of the target vehicle with
a RAP that is not overlapped with the target vehicle, by leveraging
the large receptive field. In (a) the target vehicle is detected while in
(b) the target vehicle is not detected with the existence of a RAP. . 60

4.2 Methodology overview of the physical object removing attack. . . . 68
4.3 Results of the RAP attack on models with different receptive field

sizes. Receptive field size: HDC-DUC-bigger >HDC-DUC-rf >HDC-
DUC-no. 70

4.4 Effective receptive field (ERF) on Cityscapes (average over 500 im-
ages). Top row: ERF on benign images. Bottom row: ERF on adv
images with RAP at the bottom left corner (zoomed in below). The
patches are optimized with a one-step PGD attack. 73

4.5 Illustration for the miniature scene set up in the physical experiment. 75
4.6 Examples of the generated RAP and printed RAP in the physical

experiment. 76
4.7 Examples of the physical attack experiment where the toy car is

places at different positions in the miniature scene. The toy car
is detected correctly with the initial patch (top) and detected as the
target label “building” with the RAP (below). 77

x

5.1 An example of attack scenarios on trajectory prediction. By driving
along the crafted adversarial history trajectory, the adverial agent
misleads the prediction of the AV systems for both itself and the
other agent. As a consequence, the AV planning based on the wrong
prediction results in a collision. 82

5.2 Adversarial Dynamic Optimization (AdvDO) methodology overview 88
5.3 Qualitative comparison of generated adversarial trajectories. We

demonstrate that the proposed AdvDO generates adversarial trajec-
tories both realist and effective whereas the search-stats could either
generate dynamically infeasible trajectories (sharp turn on the first
row) or changing the behavior dramatically (behavior change from
driving straight to swerving left on the second row). 96

5.4 Visualized results for planner evaluation. Ego vehicle in green, adv
agent in red and other agents in blue. The red cycle represents the
collision or driving off-road consequence. 98

5.5 Transferability heatmap. A: AgentFormer w/ map; B: AgentFormer
w/o map; C: Trajectron++ w/ map; D: Trajectron++ w/o map . . 99

5.6 Overview of RobustTraj preventing Autonomous Vehicle (AV) from
collisions when its trajectory prediction model is under adversarial
attacks. When the trajectory prediction model is under attack, the
AV predicts the wrong future trajectory of the other agent turning
right (yellow vehicle). This results in AV speeding up instead of
slowing down, and eventually colliding into the other vehicle. . . . 101

5.7 Visualizations of the CVAE models trained with clean (a) data, Salt
and pepper noise (b), and adversarial perturbations (c); Quantitative
results of the correlation between the label of the generated images
and conditioned images at different noise levels (d). 106

5.8 Impacts to a MPC-basd downstream planner. (a) is under the benign
case while (b), (c) and (d) are under the adversarial attacks. The
blue car and the red car represent the AV and the adversarial agent
respectively. 112

5.9 Peformance of different attacks in mini-AgentFormer. 112
6.1 Overview of S2AD. 119
A.1 Collected traces from the reproduced sensor attack. The points in

the yellow circle are spoofed by the sensor attack. 128
B.1 Adversarial agent drives in reverse lane in adversarial scenarios gen-

eratated from Strive [117]. 131
B.2 Visualization examples of generated adversarial trajectories fromOpt-

end and search. We only show the adversarial agent’s trajectory in
the attack scenario for clearer visualization. 140

B.3 Speed ablation . 140
B.4 Curvature ablation . 141
C.1 Visual examples of images generated from models trained with dif-

ferent levels of salt and pepper noises. 145

xi

C.2 Visual examples of images generated from models trained with dif-
ferent levels of adversarial noises. 146

C.3 PGD step convergence for attack convergence with Deterministic At-
tack . Attack converges around 20 steps. 149

C.4 PGD step sizes ablation study. We find that except for 1 step PGD
adversarial training, adversarial training with all the other step sizes
achieves similar results. 149

xii

LIST OF TABLES

Table

2.1 DNN model input features. 12
2.2 DNN model output metrics. 12
2.3 Notations adopted in this work. 22
2.4 Robustness analysis results of generated adversarial spoofed 3D point

cloud to variation in spoofed 3D point cloud T ∈ ST. The robustness
is measured by average attack success rates. 36

3.1 Attack success rate of LiDAR-Adv and evolution based method under
different settings. 55

3.2 Attack success rates of LiDAR-Adv at different positions and orien-
tations under both controlled and unseen settings. 57

4.1 Performance of different variations of the HDC-DUC module. “RF
increased” indicates the total size of receptive field increase along a
single dimension compared to the layer before the dilation operation. 69

4.2 IoUs of different categories when the attack patch is at different dis-
tance (∆ pixels) to the target area on DRN-D-50 model. Notice that
the IoU of class pole and person is higher than benign at distance.
This is due to the inaccurate prediction of the benign model and
weaker attack capability when the RAP is at distance. 71

4.3 mIoU of models under benign settings and under RAP attacks. . . . 72
4.4 IoUs of various models 1) under benign condition; 2) RAP-init: with

inital patch; 3) RAP-50: with 50 steps optimized RAP. 73
5.1 Attack evaluation results on general metrics. 94
5.2 Attack evaluation results on planning-aware metrics. 95
5.3 Quantitative comparison of generated adversarial trajectories 96
5.4 Planning results . 97
5.5 Ablation results for Motion and Interaction metrics 99
5.6 ADE and Robust ADE on different defense methods and models. The

1-st and 2-nd lowest errors are colored. 111
5.7 ADE and robust ADE for different methods on mini-AgentFormer.

The lowest error is in bold. 113
6.1 Evaluation results of S2AD on clean dataset and poisoned datasets. 121

xiii

B.1 Similarity between original history trajectory and adversarial trajec-
tory generated from search, Opt-init and Opt-end 134

B.2 Augmentation on AgentFormer. 134
C.1 Ablation study on different regularization loss weights. 148
C.2 Evaluation results of the proposed methods and existing methods

on the search attack proposed by Zhang et al. [190]. mini-AF, AF
and SGAN represent mini-AgentFormer, AgentFormer, and Social-
GAN respectively. DA represents data augmentation with adversarial
examples. 150

C.3 Additional evaluation results of the proposed methods and exist-
ing methods. mini-AF, AF and SGAN represent mini-AgentFormer,
AgentFormer, and Social-GAN respectively. DA represents data aug-
mentation with adversarial examples. 151

xiv

LIST OF APPENDICES

Appendix

A. Vulnerability Status of LiDAR-based Perception against the Sensor
Spoofing Attack . 128

B. AdvDO: Realistic Adversarial Attacks for Trajectory Prediction 130

C. Robust Trajectory Prediction against Adversarial Attacks 142

xv

ABSTRACT

Autonomous vehicles, also known as self-driving cars, are being developed at a

rapid pace due to advances in machine learning. However, the real-world is com-

plex and dynamic, with many different factors that can affect the performance of an

autonomous driving (AD) system. Therefore, it is essential to thoroughly test and

evaluate AD systems to ensure their safety and reliability in the open-world driving

environment. Additionally, due to the high impact of AD systems on road safety, it

is important to build robust AD systems that are resistant to adversaries.

However, fully testing and exploiting AD systems can be challenging due to their

complexity, as they consist of a combination of sensors, systems, and machine learning

models. To address these challenges, my dissertation research focuses on building

secure and safe AD systems through systematic analysis of attackers’ capabilities.

This involves testing AD systems as a whole, using realistic attacks, and discovering

new security problems through proactive analysis.

To achieve this goal, my dissertation starts by formulating realistic attacker capa-

bilities against perception systems. Based on this, new attacks on perception systems

are discovered that have different impacts (e.g., spoofing ghost objects or removing

detected objects). We proposed two frameworks, adv-LiDAR and LiDAR-adv,

that differentiate the LiDAR-based perception systems and generate effective adver-

sarial examples automatically. As the result, we also demonstrated the proposed

attacks can lead to vehicular-level impacts such as emergency braking or collisions.

Next, causality analysis is conducted to expose the fundamental limitations of

the system (e.g., large receptive fields introducing new attack vectors). This provides

insights and guidelines for designing more robust systems in the future. By evaluating

xvi

the adversarial robustness of different semantic segmentation models, we unveil the

fundamental limitations of using large receptive fields. Specifically, we validate our

findings using the remote adversarial patch (RAP) attack, which can mislead the

prediction result of the target object without directly accessing and manipulating

(adding) adversarial perturbation to it.

Finally, solutions are developed to improve the modular and integrated robustness

of the systems. By leveraging adversarial examples, the training dataset for machine

learning models can be augmented to naturally improve modular robustness. We

demonstrated that, with robust trained trajectory prediction models, AD systems

can avoid collisions under adversarial attacks. On the other hand, using insights

from the causality analysis and formulated attacker capabilities, AD systems with

enhanced integrated robustness can be designed.

xvii

CHAPTER I

Introduction

Autonomous vehicles, or self-driving cars, are under rapid development, driven

by recent progress in machine learning. Such advancements have shown competitive

performance in sensing, forecasting, and decision-making and now, some vehicles are

already found on public roads [14, 12, 8]. In AD systems, one fundamental pillar is

perception, which leverages sensors like cameras and LiDARs (Light Detection and

Ranging) to understand the surrounding driving environment. Since such function is

directly related to safety-critical driving decisions such as collision avoidance, multiple

prior research efforts have been made to study the security of camera-based perception

in AD settings. For example, prior work has reported sensor-level attacks such as

camera blinding [111], physical-world camera attacks such as adding stickers to traffic

signs [61, 60], and trojan attacks on the neural networks for AD camera input [95].

However, while there are significant prior works for attacks and mitigation on

perception models, little has been done from a realistic adversary’s perspective nor

on other tasks such as trajectory prediction. For example, lots of works demon-

strate adversarial examples that add small perturbations to the image fooling the

perception model while such threat model is not realistic without compromising the

autonomous driving system. Some other works proposed adversarial patches which

are more realizable localized perturbation and used them to fool the traffic signs de-

1

tection/classification. However, traffic sign information is usually embedded in the

High-definition map (HDMap) on the modern autonomous driving system [3]. To

understand the real threats on AD systems and secure them against attackers, the

challenges are multi-folded. We detail three of them here

• Compound systems. Consisting of sensors, systems, and machine learning

models, several subsystems (e.g., perception system) in the AD system are

compound systems. While each component might be compromised, the final

output of the subsystem is unclear. For example, in the perception system,

machine learning models usually have a certain level of tolerance to sensor

noises. To efficiently attack the perception system requires the attacker to

analyze all the components, which has not been studied before.

• Unclear attacker’s capabilities in the physical world. To understand the

vulnerability status of the AD systems, it is crucial to understand the attacker’s

capability. Autonomous vehicle as a compound system with various components

also means a larger attack surface for the attacker. Finding realistic threat

models and analyzing the attacker’s capability is the key to understanding the

vulnerability status.

• Security being an afterthought. The attack and defense arms race also

appears in the autonomous driving security and safety. However, as many com-

ponents of autonomous driving systems require real-time performance, patching

the system could be more difficult. Therefore, a secure and safe autonomous

driving system is required to be robust to future attacks.

The overall goal of my research is to advance the safety and security of the au-

tonomous driving system, by identifying key vulnerabilities, analyzing potential at-

tacker’s capability, and securing the system against such capability. More specifically,

I 1) analyzed and summarized the attacker’s capability on compromising camera-

2

based perception and LiDAR-based perception; 2) demonstrated the potential attack

impacts given such capabilities; 3) and propose defenses that rule out the attacker’s

capability to defend against both existing and future attacks.

In summary, my dissertation demonstrates that: Systematic analysis of at-

tacker’s capability on sensors, systems, and smart algorithms under au-

tonomous driving settings can (1) Proactively discover new types of secu-

rity vulnerabilities; (2) Systematically analyze the vulnerability status and

the fundamental causes; (3) Provide a solid ground for building effective

and efficient defenses that rule out existing and future attacks.

1.1 Overview

My dissertation validates the thesis in four major parts:

1. Vulnerability status of LiDAR-based perception. We investigate two

types of attacks: LiDAR spoofing attack and object reshaping attack. For the

LiDAR spoofing attack, we measured the capability and limitations of LiDAR

spoofing attack. Based on the spoofing capability, we proposed different attacks

that achieve different attack goals. Requiring a weak spoofing capability, we

proposed using adversarial machine learning to enhance the attack impacts at

the perception system level. We demonstrated that with only less than 60

points, the attacker can spoof a near-front obstacle to the autonomous vehicle

and causes the victim vehicle to freeze or emergency brake. For the object

reshaping attack, we demonstrated that by manipulating the shape of a traffic

cone, we can make it invisible to the autonomous driving system.

2. Vulnerability causality analysis on camera-based perception. We per-

form the first study on measuring the vulnerability status of remote adversarial

patches on semantic segmentation models. We proposed the remote adversarial

3

patch attack, which fools camera-based perception with adversarial patches not

overlapping with the target victim. The remote adversarial patch is considered a

more realistic attack compared to previously proposed adversarial patch attacks

since it does not require the attacker to physically tamper with the victim ob-

ject. We conducted causality analysis and found the vulnerability is introduced

by a large receptive field. We studied the vulnerability status among different

model designs for increasing receptive field sizes. And finally, we conducted an

object removing attack in both digital and physical experiments to demonstrate

the attack impacts.

3. Secure and safe autonomous driving with modular robustness. Tra-

jectory prediction is a crucial aspect of autonomous vehicle navigation, as it

enables the vehicle to anticipate the movements of other vehicles, pedestrians,

and objects in its environment. However, the accuracy and reliability of tra-

jectory prediction can be compromised by adversarial attacks, which seek to

mislead the prediction model and cause the vehicle to make unsafe or incorrect

decisions. In this part, we investigate the adversarial robustness of trajectory

prediction for autonomous vehicles. We first formulate a realistic threat model

where the attacker is able to maneuver a vehicle on the road along a specific

path to fool the autonomous vehicles. We then devise a method, AdvDO, to effi-

ciently and effectively generate adversarial trajectories. With that, we measured

vulnerability status of trajectory prediction models. To improve the modular

robustness, we conduct adversarial training on trajectory prediction models.

We identified three key challenges of conducting adversarial training on trajec-

tory prediction models and proposed corresponding solutions to it. Our study

demonstrated that trajectory prediction models are vulnerable to adversarial

attacks and improving the robustness of them without large clean performance

degradation is feasible.

4

4. Secure and safe autonomous driving with integrated robustness. While

various attacks against the autonomous driving perception systems have been

proposed in recent years, most of them share similar threat models: LiDAR

sensor spoofing, and object reshaping. Instead of building reactive defenses and

getting trapped in the arms race of attacks and defenses, securing the percep-

tion system from the attacker’s capability naturally defends existing and future

attacks. We proposed to build defenses to rule out the attacker’s capability

on LiDAR-based perception and camera-based perception respectively. More

specifically, we propose to identify the characteristics of each attack capability

and defend it. For example, we found that LiDAR sensor spoofing attacks are

usually creating less stable spoofed point cloud compared to the benign point

cloud. Therefore, we propose to detect the inconsistency in a sequence of point

cloud data to detect the LiDAR spoofing attacks. Our study will provide a solid

ground for defending the known attack capabilities and serve as a guideline for

defending against future attacks if new attack capabilities appear.

1.2 Disseration Organization

This dissertation is structured as follow. Chapter II and Chapter III describe two

attacks: sensor spoofing attack, and object reshaping attack, on the LiDAR-based

perception system, with different attacker’s capabilities and attack goals. Chapter

IV presents an analysis of how large receptive field in modern deep neural networks

enables a new attack vector, the remote adversarial patch attack. In Chapter V,

we present a study towards a robust trajectory prediction system, which is another

fundamental component in an AD system. In Chapter VI, we describe a preliminary

study on integrated robustness of the AD system, discussing why we should care

about integrated robustness and how to build integrated robust AD systems. At last,

in Chapter VII, we conclude this dissertation and discuss potential future directions.

5

CHAPTER II

Vulnerability Status of LiDAR-based Perception

against the Sensor Spoofing Attack

2.1 Introduction

Autonomous vehicles, or self-driving cars, are under rapid development, with some

vehicles already found on public roads [14, 12, 8] In AV systems, one fundamental pil-

lar is perception, which leverages sensors like cameras and LiDARs (Light Detection

and Ranging) to understand the surrounding driving environment. Since such func-

tion is directly related to safety-critical driving decisions such as collision avoidance,

multiple prior research efforts have been made to study the security of camera-based

perception in AV settings. For example, prior work has reported sensor-level attacks

such as camera blinding [111], physical-world camera attacks such as adding stickers

to traffic signs [61, 60], and trojan attacks on the neural networks for AV camera

input [95].

Despite the research efforts in camera-based perception, there is no thorough

exploration into the security of LiDAR-based perception in AV settings. LiDARs,

which measure distances to surrounding obstacles using infrared lasers, can provide

360-degree viewing angles and generate 3-dimensional representations of the road

environment instead of just 2-dimensional images for cameras. Thus, they are gener-

6

ally considered as more important sensors than cameras for AV driving safety [10, 6]

and are adopted by nearly all AV makers today [7, 5, 11, 3]. A few recent works

demonstrated the feasibility of injecting spoofed points into the sensor input from

the LiDAR [111, 132]. Since such input also needs to be processed by an object

detection step in the AV perception pipeline, it is largely unclear whether such spoof-

ing can directly lead to semantically-impactful security consequences, e.g., adding

spoofed road obstacles, in the LiDAR-based perception in AV systems.

In this work, we perform the first study to explore the security of LiDAR-based

perception in AV settings. To perform the analysis, we target the LiDAR-based

perception implementation in Baidu Apollo, an open-source AV system that has over

100 partners and has reached a mass production agreement with multiple partners

such as Volvo and Ford [9, 8]. We consider a LiDAR spoofing attack, i.e., injecting

spoofed LiDAR data points by shooting lasers, as our threat model since it has

demonstrated feasibility in previous work [111, 132]. With this threat model, we set

the attack goal as adding spoofed obstacles in close distances to the front of a victim

AV (or front-near obstacles) in order to alter its driving decisions.

In our study, we first reproduce the LiDAR spoofing attack from the work done by

Shin et al. [132] and try to exploit Baidu Apollo’s LiDAR-based perception pipeline,

which leverages machine learning for object detection as with the majority of the

state-of-the-art LiDAR-based AV perception techniques [4]. We enumerate different

spoofing patterns from the previous work, e.g., a spoofed wall, and different spoofing

angles and shapes, but none of them succeed in generating a spoofed road obstacle

after the machine learning step. We find that a potential reason is that the current

spoofing technique can only cover a very narrow spoofing angle, i.e., 8◦ horizontally

in our experiments, which is not enough to generate a point cloud of a road obstacle

near the front of a vehicle. Thus, blindly applying existing spoofing techniques cannot

easily succeed.

7

To achieve the attack goal with existing spoofing techniques, we explore the pos-

sibility of strategically controlling the spoofed points to fool the machine learn-

ing model in the object detection step. While it is known that machine learn-

ing output can be maliciously altered by carefully-crafted perturbations to the in-

put [110, 61, 29, 182, 27], no prior work studied LiDAR-based object detection models

for AV systems. To approach this problem, we formulate the attack task as an opti-

mization problem, which has been shown to be effective in previous machine learning

security studies [28, 41, 165, 157, 36, 158]. Specific to our study, two functions need to

be newly formulated: (1) an input perturbation function that models LiDAR spoofing

capability in changing machine learning model input, and (2) an objective function

that can reflect the attack goal. For the former, since previous work did not perform

detailed measurements for the purpose of such modeling, we experimentally explore

the capability of controlling the spoofed data points, e.g., the number of points and

their positions. Next, we design a set of global spatial transformation functions to

model these observed attack capabilities at the model input level. In this step, both

the quantified attack capabilities and the modeling methodology are useful for future

security studies of LiDAR-related machine learning models.

For the attack goal of adding front-near obstacles, designing a objective function is

also non-trivial since the machine learning model output is post-processed in the per-

ception module of Baidu Apollo before it is converted to a list of perceived obstacles.

To address this, we study the post-processing logic, extract key strategies of trans-

forming model output into perceived obstacles, and formulate it into the objective

function.

With the optimization problem mathematically formulated, we start by directly

solving it using optimization algorithms like previous studies [28]. However, we find

that the average success rate of adding front-near obstacles is only 30%. We find that

this is actually caused by the nature of the problem, which makes it easy for any

8

optimization algorithm to get trapped in local extrema. To solve this problem, we

design an algorithm that combines global sampling and optimization, which is able

to successfully increase the average success rates to around 75%.

As a case study for understanding the impact of the discovered attack input at

the AV driving decision level, we construct two attack scenarios: (1) emergency brake

attack, which may force a moving AV to suddenly brake and thus injure the passengers

or cause rear-end collisions, and (2) AV freezing attack, which may cause an AV

waiting for the red light to be permanently “frozen” in the intersection and block

traffic. Using real-world AV driving data traces released by the Baidu Apollo team,

both attacks successfully trigger the attacker-desired driving decisions in Apollo’s

simulator.

Based on the insights from our security analysis, we propose defense solutions not

only at AV system level, e.g., filtering out LiDAR data points from ground reflection,

but also at sensor and machine learning model levels.

In summary, this work makes the following contributions:

• We perform the first security study of LiDAR-based perception for AV systems.

We find that blindly applying existing LiDAR spoofing techniques cannot easily

succeed in generating semantically-impactful security consequences after the

machine learning-based object detection step. To achieve the attack goal with

existing spoofing techniques, we then explore the possibility of strategically

controlling the spoofed points to fool the machine learning model, and formulate

the attack as an optimization problem.

• To perform analysis for the machine learning model used in LiDAR-based AV

perception, we make two methodology-level contributions. First, we conduct ex-

periments to analyze the LiDAR spoofing attack capability and design a global

spatial transformation based method to model such capability in mathematical

forms. Second, we identify inherent limitations of directly solving our problem

9

Figure 2.1:
Overview of the data processing pipeline for LiDAR-based perception in
Baidu Apollo.

using optimization, and design an algorithm that combines optimization and

global sampling. This is able to increase the attack success rates to around

75%.

• As a case study to understand the impact of the attacks at the AV driving

decision level, we construct two potential attack scenarios: emergency brake

attack, which may hurt the passengers or cause a rear-end collision, and AV

freezing attack, which may block traffic. Using a simulation based evaluation

on real-world AV driving data, both attacks successfully trigger the attacker-

desired driving decisions. Based on the insights, we discuss defense directions

at AV system, sensor, and machine learning model levels.

2.2 Background

2.2.1 LiDAR-based Perception in AV Systems

AVs rely on various sensors to perform real-time positioning (also called localiza-

tion) and environment perception (or simply perception). LiDAR, camera, radar, and

GPS/IMU are major sensors used by various autonomous driving systems. The data

collected from those sensors are transformed and processed before it becomes useful

information for AV systems. Fig. 2.1 shows the data processing pipeline of LiDAR

sensor data in the perception module of Baidu Apollo [3]. As shown, it involves three

main steps as follows:

Step 1: Pre processing. The raw LiDAR sensor input is called 3D point cloud

and we denote it as X. The dimension of X is n × 4, where n denotes the number

10

of data points and each data point is a 4-dimension vector with the 3D coordinates,

wx, wy, and wz, and the intensity of the point. In the pre-processing step, X is

first transformed into an absolute coordinate system. Next, the Region of Interest

(ROI) filter removes unrelated portions of the 3D point cloud data, e.g., those that are

outside of the road, based on HDMap information. Next, a feature generation process

generates a feature matrix x (8 × 512 × 512), which is the input to the subsequent

machine learning model. In this process, the ROI-filtered 3D point cloud within the

range (60 meters by default) is mapped to 512 × 512 cells according to the wx and

wy coordinates. In each cell, the assigned points are used to generate 8 features as

listed in Table 2.1.

Step 2: DNN-based object detection. A Deep Neural Network (DNN) then

takes the feature matrix x as input and produces a set of output metrics for each cell,

e.g., the probability of the cell being a part of an obstacle. These output metrics are

listed in Table 2.2.

Step 3: Post processing. The clustering process only considers cells with

objectness values (one of the output metrics listed in Table 2.2) greater than a given

threshold (0.5 by default). Then, the process constructs candidate object clusters

by building a connected graph using the cells’ output metrics. Candidate object

clusters are then filtered by selecting clusters with average positiveness values (another

output metric) greater than a given threshold (0.1 by default). The box builder

then reconstructs the bounding box including height, width, length of an obstacle

candidate from the 3D point cloud assigned to it. Finally, the tracker integrates

consecutive frames of processed results to generate tracked obstacles, augmented with

additional information such as speed, acceleration, and turning rates, as the output

of the LiDAR-based perception.

With the information of perceived obstacles such as their positions, shapes, and

obstacle types, the Apollo system then uses such information to make driving deci-

11

sions. The perception output is further processed by the prediction module which

predicts the future trajectories of perceived obstacles, and then the planning mod-

ule which plans the future driving routes and makes decisions such as stopping, lane

changing, yielding, etc.

Feature Description
Max height Maximum height of points in the

cell.
Max intensity Intensity of the brightest point in

the cell.
Mean height Mean height of points in the cell.
Mean intensity Mean intensity of points in the

cell.
Count Number of points in the cell.
Direction Angle of the cell’s center with re-

spect to the origin.
Distance Distance between the cell’s center

and the origin.
Non-empty Binary value indicating whether

the cell is empty or occupied.

Table 2.1: DNN model input features.

Metrics Description
Center offset Offset to the predicted center of

the cluster the cell belongs to.
Objectness The probability of a cell belong-

ing to an obstacle.
Positiveness The confidence score of the de-

tection.
Object height The predicted object height.
Class probability The probability of the cell being

a part of a vehicle, pedestrian,
etc.

Table 2.2: DNN model output metrics.

2.2.2 LiDAR Sensor and Spoofing Attacks

12

To understand the principles underlying our security analysis methodology, it is

necessary to understand how the LiDAR sensor generates a point cloud and how it is

possible to alter it in a controlled way using spoofing attacks.

LiDAR sensor. A LiDAR sensor functions by firing laser pulses and capturing

their reflections using photodiodes. Because the speed of light is constant, the time

it takes for the echo pulses to reach the receiving photodiode provides an accurate

measurement of the distance between a LiDAR and a potential obstacle. By firing

the laser pulses at many vertical and horizontal angles, a LiDAR generates a point

cloud used by the AV systems to detect objects.

LiDAR spoofing attack. Sensor spoofing attacks use the same physical channels

as the targeted sensor to manipulate the sensor readings. This strategy makes it very

difficult for the sensor system to recognize such attack, since the attack doesn’t require

any physical contact or tampering with the sensor, and it doesn’t interfere with the

processing and transmission of the digital sensor measurement. These types of attack

could trick the victim sensor to provide seemingly legitimate but actually erroneous

data.

LiDAR has been shown to be vulnerable to laser spoofing attacks in prior work.

Petit et al. demonstrated that a LiDAR spoofing attack can be performed by replaying

the LiDAR laser pulses from a different position to create fake points further than

the location of the spoofer [111]. Shin et al. showed that it is possible to generate a

fake point cloud at different distances, even closer than the spoofer location [132]. In

this paper, we build upon these prior work to study the effect of this attack vector

on the security of AV perception.

2.2.3 Adversarial Machine Learning

Neural networks. A neural network is a function consisting of connected units

called (artificial) neurons that work together to represent a differentiable function that

13

outputs a distribution. A given neural network (e.g., classification) can be defined by

its model architecture and parameters ϕ. An optimizer such as Adam [80] is used to

update the parameters ϕ with respect to the objective function L.

Adversarial examples. Given a machine learning model M , input x and its

corresponding label y, an adversarial attacker aims to generate adversarial examples

x′ so that M(x′) ̸= y (untargeted attack) or M(x′) = y′, where y′ is a target la-

bel (targeted attack). Carlini and Wagner [28] proposed to generate an adversarial

perturbation for a targeted attack by optimizing an objective function as follows:

min ||x− x′||p s.t. M(x′) = y′ and x′ ∈ X,

whereM(x′) = y′ is the target adversarial goal and x′ ∈ X denote that the adversarial

examples should be in a valid set. Further, optimization-based algorithms have been

leveraged to generate adversarial examples on various kinds of machine learning tasks

successfully, such as segmentation [165, 41], human pose estimation [41], object detec-

tion [165], Visual Question Answer system [171], image caption translation [36], etc.

In this paper, we also leverage an optimization-based method to generate adversarial

examples to fool LiDAR-based AV perception.

2.3 Attack Goal and Threat Model

Attack goal. To cause semantically-impactful security consequence in AV set-

tings, we set the attack goal as fooling the LiDAR-based perception into perceiving

fake obstacles in front of a victim AV in order to maliciously alter its driving decisions.

More specifically, in this work, we target front-near fake obstacles, i.e., those that are

in close distances to the front of a victim AV, since they have the highest potential to

trigger immediate erroneous AV driving decisions. In this work, we define front-near

obstacles as those that are around 5 meters to the front of a victim AV.

14

Figure 2.2: Overview of the Adv-LiDAR methodology.

Threat model. To achieve the attack goal above, we consider LiDAR spoofing

attacks as our threat model, which is a demonstrated practical attack vector for

LiDAR sensors [111, 132] as described in §2.2.2. In AV settings, there are several

possible scenarios to perform such attack. First, the attacker can place an attacking

device at the roadside to shoot malicious laser pulses to AVs passing by. Second, the

attacker can drive an attack vehicle in close proximity to the victim AV, e.g., in the

same lane or adjacent lanes. To perform the attack, the attack vehicle is equipped with

an attacking device that shoots laser pulses to the victim AV’s LiDAR. To perform

laser aiming in these scenarios, the attacker can use techniques such as camera-based

object detection and tracking. In AV settings, these attacks are stealthy since the

laser pulses are invisible and laser shooting devices are relatively small in size.

As a first security analysis, we assume that the attacker has white-box access to

the machine learning model and the perception system. We consider this threat model

reasonable since the attacker could obtain white-box access by additional engineering

efforts to reverse engineering the software.

2.4 Limitation of Blind sensor spoofing

To understand the security of LiDAR-based perception under LiDAR spoofing

attacks, we first reproduce the state-of-the-art LiDAR spoofing attack by Shin et

al. [132], and explore the effectiveness of directly applying it to attack the LiDAR-

based perception pipeline in Baidu Apollo [3], an open-source AV system that has

15

Figure 2.3:
Illustration of LiDAR spoofing attack. The photodiode receives the laser
pulses from the LiDAR and activate the delay component that triggers
the attacker laser to simulate real echo pulses.

over 100 partners and has reached mass production agreement with multiple partners

such as Volvo, Ford, and King Long [9, 8].

Spoofing attack description. The attack by Shin et al. [132] consists of three

components: a photodiode, a delay component, and an infrared laser, which are

shown in Fig. 2.3. The photodiode is used to synchronize with the victim LiDAR.

The photodiode triggers the delay component whenever it captures laser pulses fired

from the victim LiDAR. Then the delay component triggers the attack laser after

a certain amount of time to attack the following firing cycles of the victim LiDAR.

Since the firing sequence of laser pulses is consistent, an adversary can choose which

fake points will appear in the point cloud by crafting a pulse waveform to trigger the

attack laser.

Experimental setup. We perform spoofing attack experiments on a VLP-16

PUCK LiDAR System from Velodyne [74]. The VLP-16 uses a vertical array of 16

separate laser diodes to fire laser pulses at different angles. It has a 30 degree vertical

angle range from -15 ◦ to +15 ◦, with 2 ◦ of angular resolution. The VLP-16 rotates

horizontally around a center axis to send pulses in a 360 ◦ horizontal range, with a

varying azimuth resolution between 0.1 ◦ and 0.4 ◦. The laser firing sequence follows

the pattern shown in Figure 2.4. The VLP-16 fires 16 laser pulses in a cycle every

16

Figure 2.4:
The consistent firing sequence of the LiDAR allows an attacker to choose
the angles and distances from which spoofed points appear. For example,
applying the attacker signal, fake dots will appear at 1◦, 3◦, -3◦, and -1◦

angles (0◦ is the center of the LiDAR)

55.296 µs, with a period of 2.304 µs. The receiving time window is about 667 ns.

We chose this sensor because it is compatible with Baidu Apollo and uses the same

design principle as the more advanced HDL-64E LiDARs used in many AVs. The

similar design indicates that the same laser attacks that affect the VLP-16 can be

extended to high-resolution LiDARs like the HDL-64E.

We use the OSRAM SFH 213 FA as our photodiode, with a comparator circuit

similar to the one used by Shin et al. We use a Tektronix AFG3251 function generator

as the delay component with the photodiode circuit as an external trigger. In turn,

the function generator provides the trigger to the laser driver module PCO-7114 that

drives the attack laser diode OSRAM SPL PL90. With the PCO-7114 laser driver,

we were able to fire the laser pulses at the same pulse rate of the VLP-16, 2.304 µs,

compared to 100 µs of the previous work. An optical lens with a diameter of 30mm

and a focal length of 100 mm was used to focus the beam, making it more effective

for ranges farther than 5 meters. We generate the custom pulse waveform using

the Tektronix software ArbExpress [2] to create different shapes and the Velodyne

software VeloView [13] to analyze and extract the point clouds.

Experiment results. The prior work of Shin et al. is able to spoof a maximum

of 10 fake dots in a single horizontal line. With our setup improvements (a faster

17

firing rate and a lens to focus the beam), fake points can be generated at all of the 16

vertical viewing angles and an 8 ◦ horizontal angle at greater than 10 meters away. In

total, around 100 dots can be spoofed by covering these horizontal and vertical angles.

These spoofed dots can also be shaped by modifying the custom pulse waveform used

to fire the attack laser. Noticed that even though around 100 dots can be spoofed,

they are not all spoofed stably. The attacker is able to spoof points at different angles

because the spoofed laser pulses hit a certain area on the victim LiDAR due to the

optical lens focusing. The closer to the center of the area, the stronger and stabler

laser pulses are received by the victim LiDAR. We find that among 60 points at the

center 8-10 vertical lines can be stably spoofed with high intensity.

2.4.1 Blind LiDAR Spoofing Experiments

After reproducing the LiDAR spoofing attack, we then explore whether blindly

applying such attack can directly generate spoofed obstacles in the LiDAR-based

perception in Baidu Apollo. Since our LiDAR spoofing experiments are performed

in indoor environments, we synthesize the on-road attack effect by adding spoofed

LiDAR points to the original 3D point cloud collected by Baidu Apollo team on local

roads at Sunnyvale, CA. The synthesizing process is illustrated in Fig. 2.5. After this

process, we run Apollo’s perception module with the attacker-perturbed 3D point

cloud as input to obtain the object detection output. In this analysis, we explore

three blind attack experiments as follows:

Experiment 1: Directly apply original spoofing attack traces. In this

experiment, we directly replay spoofing attack traces to attack LiDAR-based percep-

tion in Apollo. More specifically, we experiment with attack traces obtained from

two sources: (1) the original spoofing attack traces from Shin et al. [132], and (2)

the attack traces generated from the spoofing attack reproduced by us, which can

inject more dots after our setup improvements. However, we are not able to observe a

18

Figure 2.5:
Generating the attacker-perturbed 3D point cloud by synthesizing the
pristine 3D point cloud with the attack trace to spoof a front-near obstacle
5 meters away from the victim AV.

spoofed obstacle for any of these traces at the output of the LiDAR-based perception

pipeline.

Experiment 2: Apply spoofing attack traces at different angles. To

understand whether successfully spoofing an obstacle depends on the angle of the

spoofed points, in this experiment we inject spoofed points at different locations.

More specifically, we uniformly sample 100 different angles out of 360 degrees around

the victim AV, and inject the spoofing attack traces reproduced by us. However, we

are not able to observe spoofed obstacles for any of these angles.

Experiment 3: Apply spoofing attack traces with different shapes. To

understand whether successfully spoofing an obstacle depends on the pattern of the

spoofed points, in this experiment we inject points with different spoofing patterns.

More specifically, we generate random patterns of spoofed points by randomly setting

distances for each point at different angles. We generate 160 points covering 16 vertical

lines, 10 points for each line with continuous horizontal angles. To trigger immediate

control decision changes in an AV, the spoofed obstacle needs to be close to the victim

AV. Thus, we set the generated distances of the spoofed point to be within 4 to 6

meters to the victim AV. We generate 100 different spoofed patterns in total, but we

are not able to observe spoofed obstacles for any of these patterns.

Summary. In these experiments, we try various blind spoofing attack strategies

directly derived from the state-of-the-art LiDAR spoofing attack, but none of them

succeed in generating spoofed obstacles in the LiDAR-based perception pipeline in

19

Figure 2.6:
The point cloud from a real vehicle reflection (left) and from the spoofing
attack (right) in a 64-line HDL-64E LiDAR. The vehicle is around 7
meters in front of the AV.

Baidu Apollo. There are two potential reasons. First, as described earlier, the current

attack methodology can only cover a very narrow spoofing angle, i.e., 8 ◦ of horizontal

angle even after our setup improvements. Second, the coverage of vertical angles is

limited by the frequency of spoofing laser pulses. Thus, when attacking a LiDAR

with more vertical angles, e.g., a 64-line LiDAR, since a 64-line LiDAR takes similar

time as a 16-line LiDAR in scanning vertical angles, the attacker cannot spoof more

vertical angles than those for a 16-line LiDAR. Thus, the current methodology limits

the number of spoofed points, making it hard to generate enough points to mimic an

important road obstacle.

To illustrate that, as shown in Fig. 2.6, the point cloud for a real vehicle has a much

wider angle and much more points than the attack traces reproduced by us. Thus,

blindly applying the spoofing attack cannot easily fool the machine learning based

object detection process in the LiDAR-based perception pipeline. In the next section,

we explore the possibility of further exploiting machine learning model vulnerabilities

to achieve our attack goal.

2.5 Improved Methodology: Adv-LiDAR

As discussed in §2.4, without considering the machine learning model used in

LiDAR-based perception, blindly applying existing LiDAR spoofing attacks can hardly

20

achieve the attack goal of generating front-near obstacles. Since it is known that ma-

chine learning output can be maliciously altered by carefully-crafted perturbations

to the input [110, 61, 29, 182, 27], we are then motivated to explore the possibility

of strategically controlling the spoofed points to fool the machine learning model in

LiDAR-based perception. In this section, we first describe the technical challenges

after involving adversarial machine learning analysis in this research problem, and

then present our solution methodology overview, called Adv-LiDAR.

2.5.1 Technical Challenges

Even though previous studies have shown promising results in attacking machine

learning models, none of them studied LiDAR-based object detection models, and

their approaches have limited applicability to our analysis goal due to three challenges:

First, attackers have limited capability of perturbing machine learning model in-

puts in our problem. Other than perturbing pixels on an image, perturbing machine

learning inputs under AV settings requires perturbing 3D point cloud raw data by

sensor attack and bypassing the associated pre-processing process. Therefore, such

perturbation capability needs to be quantified and modeled.

Second, optimization-based methods for generating adversarial examples in pre-

vious studies may not be directly suitable for our analysis problem due to the limited

model input perturbation capability. As shown in §2.7, we find that optimization-

based methods are inherently limited due to the nature of our problem, and can only

achieve very low success rate in generating front-near obstacles.

Third, in our problem, successfully changing the machine learning model output

does not directly lead to successes in achieving our attack goal in AV settings. As

detailed later in §2.7, in AV systems such as Baidu Apollo, machine learning model

output is post-processed before it is converted to a list of perceived obstacles. Thus,

an objective function that can effectively reflect our attack goal needs to be newly

21

designed.

2.5.2 Adv-LiDAR Methodology Overview

Notation Description
X 3D point cloud
x Input feature matrix
X ′ Adversarial 3D point cloud
x′ Adversarial input feature matrix
T Spoofed 3D point cloud
t Spoofed input feature matrix
T ′ Adversarial spoofed 3D point cloud
t′ Adversarial spoofed input feature matrix
(wx,wy,wx) 3D Cartesian coordinate
Lθ, Lτ Upper bound of θ, τ during sampling
(u, v) Coordinate of t
(u′, v′) Coordinate of t′

M Machine learning model
I· Model outputs
N(u, v) 4-pixel neighbor at the location (u, v)
S(·) Height Scaling function
A Spoofing attack capability
Φ(·) Mapping function (3D→ 2D)
Q(M, ·) Extraction function
⊕(·) Merge function
M(·) Gaussian mask
(px, py) Center points of the Gaussian mask
f(·) Objective function
Ladv(·) Adversarial loss
H(θ, τ, ϵ) 2D Homography Matrix (θ : rotation, ϵ : scaling ; τ : translation)
Sh Height scaling ratio
ST Set of spoofed 3D point cloud
St Set of spoofed input feature matrix
GT (T, ·) Global spatial transformation function for 3D point cloud
Gt(t, ·) Global spatial transformation function for input feature matrix

Table 2.3: Notations adopted in this work.

In this section, we provide an overview of our solution methodology, which we call

Adv-LiDAR, that addresses the three challenges above. At a high level, to identify

adversarial examples for the machine learning model M , we adopt an optimization-

based approach, which has shown both high efficiency and effectiveness by previous

studies for machine learning models across different domains [28, 41, 160, 158]. To

help explain the formulation of the optimization problem, we summarize the notations

22

in Table 2.3. Specifically, the problem is formulated as follows:

min Ladv(x⊕ t′;M)

s.t. t′ ∈ {Φ(T ′)|T ′ ∈ A} & x = Φ(X)

(2.1)

where X is the pristine 3D point cloud and x represents the corresponding 2D input

feature matrix. Φ(·) is the pre-processing function that mapsX into x (§2.2.1). T ′ and

t′ are the corresponding adversarial spoofed 3D point cloud and adversarial spoofed

input feature matrix. A is a set of spoofed 3D point cloud generated from LiDAR

spoofing attacks. Ladv(·;M) is the adversarial loss designed to achieve the adversarial

goal given the machine learning model M . The constraints are used to guarantee that

the generated adversarial examples t′ satisfy the spoofing attack capability.

Figure 2.2 overviews the analysis tasks needed to solve the optimization problem.

First, we need to conduct an input perturbation analysis that formulates the spoofing

attack capabilities A and merging function ⊕. Second, we need to perform a model

analysis to design an objective function to generate adversarial examples. Third,

as a case study to understand the impact of the attacks at the AV driving decision

level, we further perform a driving decision analysis using the identified adversarial

examples. More details about these tasks are as follows:

Input perturbation analysis. Formulating A and ⊕ is non-trivial. First, previ-

ous work regarding LiDAR spoofing attacks neither provided detailed measurements

on the attacker’s capability in perturbing 3D point cloud nor expressed it in a closed

form expression. Second, point cloud data is pre-processed by several steps as shown

in §2.2.1 before turning into machine learning input, which means the merging func-

tion ⊕ cannot be directly expressed. To address these two challenges, as will be

detailed later in §2.6, we first conduct spoofing attacks on LiDAR to collect a set

of possible spoofed 3D point cloud. Using such spoofed 3D point cloud, we model

the spoofing attack capability A. We further analyze the pre-processing program to

23

obtain the additional constraints to the machine learning input perturbation, or the

spoofed input feature matrix. Based on this analysis, we formulate the spoofed in-

put feature matrix into a differentiable function using global spatial transformations,

which is required for the model analysis.

Objective function design and model analysis. As introduced earlier in §2.5.1,

in LiDAR-based perception in AV systems, the machine learning model output is

post-processed (§ 2.2.1) before turning into a list of perceived obstacles. To find an

effective objective function, we study the post-processing steps to extract key strate-

gies of transforming model output into perceived obstacles, and formulate it into an

objective function that reflects the attack goal. In addition, we find that our optimiza-

tion problem cannot be effectively solved by directly using existing optimization-based

methods. We analyze the loss surface, and find that this inefficiency is caused by the

problem nature. To address this challenge, we improve the methodology by combin-

ing global sampling with optimization. Details about the analysis methodology and

results are in §2.7 and § 2.8.

Driving decision case study. With the results from previous analysis steps,

we can generate adversarial 3D point cloud that can inject spoofed obstacles at the

LiDAR-based perception level. To understand their impact at the AV driving decision

level, we construct and evaluate two attack scenarios as case studies. The evaluation

methodology and results are detailed later in §2.9.

2.6 Input Perturbation Analysis

To generate adversarial examples by solving the above optimization problem in

Equation 4.4, we need to formulate merging function ⊕ and input feature matrix

spoofing capability Φ(A) as a closed form. In this section, we first analyze the spoofing

attack capability (A), and then use it to formulate Φ(A).

24

2.6.1 Spoofing Attack Capability

Based on the attack reproduction experiments in §2.4, the observed attack capa-

bility (A) can be described from two aspects:

Number of spoofed points. As described in §2.4, even though it is possible to

spoof around 100 points after our setup improvement, we find that around 60 points

can be reliably spoofed in our experiments. Thus, we consider 60 as the highest

number of reliable spoofed points. Noticed that, the maximum number of spoofed

points could be increased if the attacker uses more advanced attack equipment. Here,

we choose a set of devices that are more accessible (detailed in §2.4) and end up

with the ability to reliably spoof around 60 points. In addition, considering that an

attacker may use a slower laser or cruder focusing optics, such as in the setup by Shin

et al. [132], we also consider 20 and 40 spoofed points in our analysis.

Location of spoofed points. Given the number of spoofed points, the observed

attack capability in placing these points are described and modeled as follows:

1. Modify the distance of the spoofed point from the LiDAR by changing the delay

of the attack laser signal pulses in small intervals (nanosecond scale). From the

perspective of spoofed 3D point cloud T , this can be modeled as moving the

position of the spoofed points nearer or further on the axis r that connects the

spoofed points and the LiDAR sensor by distance ∆r (Fig. 2.7 (a)).

2. Modify the altitude of a spoofed point within the vertical range of the LiDAR

by changing the delay in intervals of 2.304 µs. From the perspective of spoofed

3D point cloud T , this can be modeled as moving the position of the spoofed

points from vertical line to vertical line to change the height of it by height ∆h

(Fig. 2.7 (b)).

3. Modify the azimuth of a spoofed point within a horizontal viewing angle of 8◦

by changing the delay in intervals of 55.296 µs. By moving the LiDAR spoofer

25

Figure 2.7: Attack capability in perturbing 3D Point Cloud T

to different locations around the LiDAR, it is possible to spoof at any horizontal

angle. From the perspective of spoofed 3D point cloud T , this can be modeled

as rotating the spoofed points with the LiDAR sensor as the pivot point on the

horizontal plane by angle ∆θ (Fig. 2.7 (c)).

Therefore, we model the attack capability A by applying these three modifications

to the given spoofed 3D point cloud T . Here the spoofed 3D point cloud is collected

by reproducing the sensor spoofing attack. The point number of T can be 20, 40 and

60 to represent different attack capabilities as mentioned before. In the next section,

the attack capability A modeled here is used to model the perturbation of the input

feature matrix x.

2.6.2 Input Perturbation Modeling

After analyzing spoofing attack capability A, to formulate x⊕ t′ in Equation 2.1,

We need to have the following steps: (1) formulating the merging function ⊕; (2)

modeling the spoofed input feature matrix spoofing capability Φ(A) based on known

spoofing attack capability A. In this section, we first formulate the merging function

⊕ by analyzing the pre-processing program. Then we model the spoofed input feature

matrix spoofing capability Φ(A) by expressing t′ with spoofed input feature matrix t

in a differentiable function using global spatial transformations. Here, spoofed input

feature matrix t can be attained with a given spoofed 3D point cloud T by t = Φ(T).

Formulating merging function (⊕). To model the merging function ⊕ op-

26

erated on x and t′, which are in the domain of input feature matrix, we need to

first analyze the pre-processing program Φ(·) that transforms the 3D point cloud X

into the input feature matrix x. As described in §2.2.1, the pre-processing process

consists of three sub-processes: coordinate transformation, ROI filtering and input

feature matrix extraction. The first two processes make minor effects on the adversar-

ial spoofed 3D point cloud T ′ generated by the spoofing attack we conducted in §2.6.

The coordinate transformation process has no effect because the adversarial spoofed

3D point cloud T ′ will be transformed along with the 3D point cloud X. As for the

ROI filtering process, it filters out 3D point cloud located outside of the road from a

bird’s-eye view. Therefore, as long as we spoof points on the road, the ROI filtering

process makes no effect on the adversarial spoofed 3D point cloud T ′. The feature

extraction process, as we mentioned in Section 2.2.1, extracts statistical features such

as average height (Iavg h), average intensity (Iavg int), max height (Imax h) and so on.

Because of such pre-processing, the spoofed input feature matrix t′ cannot be

directly added to the input feature matrix x to attain the adversarial input feature

matrix x′. To attain x′, we express such “addition” operation (⊕) as a differentiable

function shown below. Note that in this equation we do not include a few features

in Table 2.1 such as direction and distance since they are either constant or can be

derived directly from the features included in the equation.

x′ = x
⊕

t′ =



Ixcnt + I t
′

cnt

(Ixavg h · Ixcnt + I t
′

avg h · I t
′

cnt)/(I
x
cnt + I t

′
cnt)

max(Ixmax h, I
t′

max h)

(Ixavg int · Ixcnt + I t
′

avg int · I t
′

cnt)/(I
x
cnt + I t

′
cnt)∑

Ixmax int · 1{Ixmax h = max{Ixmax h, I
t′

max h}}


(2.2)

Modeling input feature matrix spoofing capability Φ(A). To model in-

put feature matrix spoofing capability Φ(A), it equals to representing adversarial

27

input feature matrix t′ with known spoofed input feature matrix t. We can use global

spatial transformations including rotation, translation and scaling, under certain con-

straints to represent the input feature matrix spoofing capability. Here the translation

and scaling transformation interprets the attack capability in terms of modifying the

azimuth of 3D point cloud while the rotation transformation interprets the attack

capability in terms of modifying the distance of 3D point cloud from the LiDAR.

Specifically, we apply the global spatial transformation to a set of the spoofed input

feature matrix St to formulate the spoofed input feature matrix spoofing capability

Φ(A) and to represent adversarial spoofed input feature matrix t’. For each spoofed

input feature matrix t ∈ St, it is mapped from a corresponding spoofed 3D point

cloud T such that t = Φ(T).

We use t′(i) to denote values of the i-th position on the spoofed input feature

matrix t′ and 2D coordinate (u
′

(i), v
′

(i)) to denote its location. t′ is transformed from

an arbitrary instance t where t ∈ St by applying a homography matrix H(θ, τ, ϵ).

The location of t(i) can be derived as t′(i) as follows:

(u(i), v(i), 1)
T = H · (u′

(i), v
′

(i), 1)
T ,

w.r.t. H =


ϵ(cos θ − sin θ) τx

ϵ(sin θ cos θ) τy

0 0 1


(2.3)

Notice that here, τx/τy has a fixed ratio tan θ since the translation is performed along

the r axis shown in Fig. 2.7 (1). Since θ is dependent on the spoofed input feature

matrix we provide for performing the transformation, we align the spoofed input

feature matrix in advance to the x axis where θ = 0 and accordingly τy = τx tan θ = 0.

Therefore, we can optimize τx alone. Also, this process is equivalent to scaling so we

remove ϵ.

28

Figure 2.8: Overview of the adversarial example generation process.

We use the differentiable bilinear interpolation [77] to calculate t′(i):

t′(i) =
∑

q∈N (u(i),v(i))

t(q)(1− |u(i) − u(q)|)(1− |v(i) − v(q)|), (2.4)

where N (u(i), v(i)) represents the 4-pixel neighbors (top-left, top-right,bottom-left,

bottom-right) at the location (u(i), v(i)) .

Further, we can observe that the input feature matrix contains the height infor-

mation as shown in Table 2.1. So we also optimize a global scale scalar sh to the

height features when generating adversarial spoofed input feature matrix t′. Define

S(t, sh) as the scaling function that multiplies the features which contain the height

information by sh. Based on this transformation, Equation 2.4 will be changed as

follows. For simplification, we denote the whole transformation progress as Gt. So

Gt(θ, τx, sh; t) represents the transformed adversarial spoofed input feature matrix-

given spoofed input feature matrix t with transformation parameters θ, τx, sh.

t′(i) = Gt(i)(θ, τx, sh; t)

=
∑

q∈N (u(i),v(i))

S(t(q), sh)(1− |u(i) − u(q)|)(1− |v(i) − v(q)|)
(2.5)

29

2.7 Generating Adversarial Examples

After modeling the input perturbation, in this section we design the objective

function with an effective adversarial loss Ladv, and leverage an optimization method

to find the attack transformation parameters that minimize such loss.

Design the adversarial loss Ladv. Unlike previous work that performs the anal-

ysis only at the machine learning model level, there is no obvious objective function

reflecting our attack goal of spoofing front-near obstacles. Yet, creating an effective

objective function has been shown to be essential in generating effective adversarial

examples [28]. In order to design an effective objective function, we analyze the post-

processing step for the machine learning output. As shown in §2.2.1, in the clustering

process, each cell of the model output is filtered by its objectness value. After the

clustering process, candidate object clusters are filtered by their positiveness values.

Upon such observation, we designed the adversarial loss Ladv as follows,

Ladv =
∑

(1−Q(x′, positiveness)Q(x′, objectness))M(px, py)

(2.6)

where Q(x′, ·) is the function to extract the probabilities of · attribute from model M

by feeding in adversarial example x′. M is a standard Gaussian mask with center co-

ordinate (px, py) which is an attack target position chosen by the attacker. We attain

(px, py) by mapping the attack target position in the real world onto the correspond-

ing coordinates of the cell in the input feature matrix using Φ. The adversarial loss is

then the summation over all the cells in the input feature matrix of the weighted value

described above. By minimizing this designed adversarial loss, it equals to increasing

the probability to detect the obstacle of the adversarial spoofed 3D point cloud given

the machine learning model M .

Optimization algorithm and our improvement using sampling. With the

Ladv design above, the optimization problem can be directly solved by using the

30

Figure 2.9:
Loss surface over transformation parameters θ (rotation) and τx (transla-
tion). Using a small step size (green line) will trap the optimizing process
near a local extreme while choosing a large step size (red line) will be less
effective.

Adam optimizer [80] to obtain the transformation parameters θ, τx and scalar sh by

minimizing the following objective function:

f = argminθ,τx,sh

∑
(1−Q(x′, positiveness)Q(x′, objectness))M(px, py)

(2.7)

where t′ can be obtained by Equation 2.5 and x′ = x⊕ t′. In this paper, we call this

direct solution vanilla optimization.

We visualize the loss surface against the transformation parameters in Fig. 2.9.

During the vanilla optimization process, we observe that the loss surface over the

transformation parameters is noisy at a small scale (green line) and quite flat at a

large scale (red line). This leads to the problem of choosing a proper step size for

optimization-based methods. For example, choosing a small step size will trap the

optimizing process near a local minimum while choosing a large step size will be

less effective due to noisy local loss pointing to the wrong direction. Different from

Carlini et al. [28] that directly chose multiple starting points to reduces the trap

of local minima, the optimization process under our setting is easy to get stuck in

bad local minima due to the hard constraints of the perturbations. We propose a

way to use sampling at a larger scale and to optimize at a smaller scale. To initiate

the optimization process at different positions, we first calculate the range of the

31

transformation parameters so that the transformed spoofed 3D point cloud is located

in the target area. Then we uniformly take n samples for rotation and translation

parameters and compose n2 samples to initiate with.

Generating adversarial spoofed 3D point cloud. To further construct the

adversarial 3D point cloud X ′, we need to construct adversarial spoofed 3D point

cloud T ′. Using the transformation parameters θ, τ, ϵ, sh, we can express the cor-

responding adversarial spoofed 3D point cloud T ′ such that t′ = Φ(T ′) with a dual

transformation function GT of Gt. We use Twx , Twy , Twz to denote value of coordinate

(wx,wy,wz) and Ti to denote the value of intensity for all points in spoofed 3D point

cloud T . With transformation parameters θ, τ, ϵ, sh, we can express T ′
wx

, T ′
wy

, T ′
wz

of

the transformed adversarial spoofed 3D point cloud T ′ in Equation 2.8.

T ′
i = Ti

T ′
wx

T ′
wy

T ′
wz

1


=



cos θ − sin θ 0 τx

sin θ cos θ 0 0

0 0 sh 0

0 0 0 1


·



Twx

Twy

Twz

1


(2.8)

Therefore, we can use T ′ = GT (θ, τx, sh;T) represents the transformed adversarial

spoofed 3D point cloud given spoofed 3D point cloud T with transformation param-

eters θ, τx, sh.

Overall adversarial example generation process. Fig. 2.8 provides an overview

of the overall adversarial example generation process. Given 3D point cloud X and

spoofed 3D point cloud T (Fig. 2.8 (a)), we first map them via Φ to get correspond-

ing input feature matrix x and spoofed input feature matrix t. Then we apply the

sampling algorithm to initialize the transformation parameters θ, τx, sh as shown in

Fig. 2.8 (b). After the initialization, we leverage optimizer opt to further optimize

32

the transformation parameters (θ, τx, sh) with respect to the adversarial loss function

Ladv (Fig. 2.8 (c)). With the transformation parameters θ, τx, sh and T , we apply the

dual transformation function GT using the Equation 2.8 to get adversarial spoofed

3D point cloud T ′. At last, to obtain the adversarial 3D point cloud X ′, we append

T ′ to 3D point cloud X (Fig. 2.8 (d)). The entire adversarial example generation

algorithm including the optimization parameters is detailed in Appendix A.

2.8 Evaluation and Results

In this section, we evaluate our adversarial example generation method in terms

of attack effectiveness and robustness.

Experiment Setup. We use the real-world LiDAR sensor data trace released by

Baidu Apollo team with Velodyne HDL-64E S3, which is collected for 30 seconds on

local roads at Sunnyvale, CA. We uniformly sample 300 3D point cloud frames from

this trace in our evaluation. The attack goal is set as spoofing an obstacle that is 2-8

meters to the front of the victim AV. The distance is measured from the front end of

the victim AV to the rear end of the obstacle.

2.8.1 Attack Effectiveness

Fig. 2.10 shows the success rates of generating a spoofed obstacle with different

attack capabilities using the vanilla optimization and our improved optimization with

global sampling (detailed in §2.7). As shown, with our improvement using sampling,

the success rates of spoofing front-near obstacles are increased from 18.9% to 43.3% on

average, which is a 2.65× improvement. This shows that combining global sampling

with optimization is effective in addressing the problem of trapping in local minima

described in §2.7.

Fig. 2.10 also shows that the success rates increase with more spoofed points,

which is expected since the attack capability is increased with more spoofed points.

33

Figure 2.10:
Attack success rate of spoofing a front-near obstacle with different num-
ber of spoofed points. V-opt refers to vanilla optimization which is
directly using the optimizer and S-opt refers to sampling based opti-
mization. We choose Adam [80] as the optimizer in both cases.

In particular, when the attacker can reliably inject 60 spoofed points, which is the

attack capability observed in our experiments (§2.4), the attack success rate is able

to achieve around 75% using our improved optimization method.

In addition, we observe that the spoofed obstacles in all of the successful attacks

are classified as vehicles after the LiDAR-based perception process, even though we

do not specifically aim at spoofing vehicle-type obstacles in our problem formulation.

2.8.2 Robustness Analysis

In this section, we perform analysis to understand the robustness of the generated

adversarial spoofed 3D point cloud T ′ to variations in 3D point cloud X and spoofed

3D point cloud T ∈ ST. Such analysis is meaningful for generating adversarial spoofed

3D point cloud that has high attack success rate in the real world. To launch the

attack in the real world, there are two main variations that affect the results: variation

in spoofed points and variation in positions of the victim AV. 1) The imprecision in

the attack devices contributes to the variation of the spoofed points. The attacker is

able to stably spoof 60 points at a global position as we state in §2.2.2. However, it is

difficult to spoof points with precise positions. It is important to understand whether

34

such imprecision affects the attack success rate. 2) The position of the victim AV

is not controlled by the attacker and might vary from where the attacker collected

the 3D point cloud. It is important to understand whether such difference affects the

attack success rate.

Robustness to variations in point cloud. To measure the robustness to

variations in the 3D point cloud, we first select all the 3D point cloud frames that can

generate successful adversarial spoofed 3D point cloud. For each of them, we apply

its generated adversarial spoofed 3D point cloud to 15 consecutive frames (around

1.5 s) after it and calculate the success rates. Fig. 2.11 shows the analysis results.

In this figure, the x-axis is the index for the 15 consecutive frames, and thus the

larger the frame index is, the larger the variation is to the original 3D point cloud

that generates the adversarial spoofed 3D point cloud. As shown, the robustness

for attacks with more spoofed points is generally higher than that for attacks with

fewer spoofed points, which shows that higher attack capability can increase the

robustness. Particularly, with 60 spoofed points, the success rates are on average

above 75% during the 15 subsequent frames, which demonstrates a high degree of

robustness. This suggests that launching such attack does not necessarily require the

victim AV to appear at the exact position that generates the adversarial example in

order to have high success rates.

Robustness to variations in spoofed 3D point cloud. To evaluate the

robustness to variations in the spoofed 3D point cloud, for a given spoofed 3D point

cloud T ∈ ST, we first generate the corresponding adversarial spoofed 3D point cloud

T ′ with a 3D point cloud X. Next, we generate 5 more spoofed 3D point cloud traces

T1, ..., T5 using our LiDAR spoofing attack experiment setup. Next, we use the same

transformation that generates T ′ from T to generate T ′
1, ..., T

′
5, and then combine each

of them with X to launch the attack. Table 2.4 shows the average success rates with

different attack capabilities. As shown, for all three attack capabilities we are able to

35

Figure 2.11:
The robustness of the generated adversarial spoofed 3D point cloud to
variations in 3D point cloud X. We quantify the variation in 3D point
cloud X as the frame indexes difference between the evaluated 3D point
cloud and the 3D point cloud used for generating the adversarial spoofed
3D point cloud.

Table 2.4:
Robustness analysis results of generated adversarial spoofed 3D point cloud
to variation in spoofed 3D point cloud T ∈ ST. The robustness is measured
by average attack success rates.

Targeted position # Spoofed points
20 40 60

2-8 meters 87% 82% 90%

achieve over 82% success rates. With 60 spoofed points, the success rate is as high as

90%. This suggests that launching such attack does not require the LiDAR spoofing

attack to be precise all the time in order to achieve high success rates.

2.9 Driving Decision Case Study

To understand the impact of our attacks at the driving decision level, in this

section we construct several attack scenarios and evaluate them on Baidu Apollo

using simulation as case studies.

Experiment setup. We perform the case study using the simulation feature

provided by Baidu Apollo, called Sim-control, which is designed to allow users to

observe the AV system behavior at the driving decision level by replaying collected

36

real-world sensor data traces. Sim-control does not consist of a physics engine to

simulate the control of the vehicle. Instead, the AV behaves exactly the same as what

it plans. Although it cannot directly reflect the attack consequences in the physical

world, it can serve for our purpose of understanding the impact of our attacks on AV

driving decisions.

For each attack scenario in the case study, we simulate it in Sim-control using

synthesized continuous frames of successful adversarial 3D point cloud identified in

§ 2.8 as input. The experiments are performed on Baidu Apollo 3.0.

Case study results. We construct and evaluate two attack scenarios in this case

study1:

(1) Emergency brake attack. In this attack, we generate adversarial 3D point

cloud that spoofs a front-near obstacle to a moving victim AV. We find that the

AV makes a stop decision upon this attack. As illustrated in Fig. 2.12, the stop

decision triggered by a spoofed front-near obstacle causes the victim AV to decrease

its speed from 43 km/h to 0 km/h within 1 second. This stop decision will lead

to a hard brake [1], which may hurt the passengers or result in rear-end collisions.

Noticed that, Apollo does implement driving decisions for overtaking. However, for

overtaking, a minimum distance is required based on the relative speed of the obstacle.

Therefore, with our near spoofed obstacle, the victim AV makes stop decisions instead

of overtaking decisions.

(2) AV freezing attack. In this attack, we generate an adversarial 3D point cloud

that spoofs an obstacle in front of an AV victim when it is waiting for the red traffic

light. We simulate this scenario with the data trace at an intersection with traffic

lights. As shown in Fig. 2.13, since the victim AV is static, the attacker can constantly

attack and prevent it from moving even after the traffic signal turns green, which

may be exploited to cause traffic jams. Noticed that, Apollo does implement driving

1Video demos can be found at http://tinyurl.com/advlidar

37

http://tinyurl.com/advlidar

Figure 2.12:
Demonstration of the emergency brake attack. Due to the spoofed ob-
stacle, the victim AV makes a sudden stop decision to drop its speed
from 43 km/h to 0 km/h within a second, which may cause injuries of
passengers or rear-end collisions.

Figure 2.13:
Demonstration of the AV freezing attack. The traffic light is turned
green but the victim AV is not moving due to the spoofed front-near
obstacles.

decisions for deviating static obstacles. However, for deviation or side passing, it

requires a minimum distance (15 meters by default). Therefore, with our near spoofed

obstacle, the victim AV makes stop decisions instead of side passing decisions.

38

2.10 Discussion

In this section, we discuss the limitations and generality of this study. We then

discuss potential defense directions.

2.10.1 Limitations and Future Work

Limitations in the sensor attack. One major limitation is that our current

results cannot directly demonstrate attack performance and practicality in the real

world. For example, performing our attack on a real AV on the road requires dy-

namically aiming an attack device at the LiDAR on a victim car with high precision,

which is difficult to prove the feasibility without road tests in the physical world. In

this work, our goal is to provide new understandings of this research problem. Future

research directions include conducting real world testing. To demonstrate the attack

in the real world, we plan to first conduct the sensor attack with LiDAR on top of a

real vehicle in outdoor settings. In this setting, the sensor attack could be enhanced

by: 1) enlarging the laser spoofing area to solve the aiming problem; 2) adjusting the

delay time so that the attacker could spoof points at different angles without mov-

ing the attack devices. Then we could apply our proposed methodology to conduct

drive-by experiments in different attack scenarios mentioned in §2.9.

Limitations in adversarial example generation. First, we construct adver-

sarial sensor data by using a subset of spoofing attack capability A. Therefore, our

analysis may not fully reveal the full potential of sensor attacks. Second, though we

have performed the driving decision case study, we did not perform a comprehensive

analysis on modules beyond the perception module. That means that the designed

objective function can be further improved to more directly target specific abnormal

AV driving decisions.

39

2.10.2 Generality on LiDAR-based AV Perception

Generality of the methodology. Attacking any LiDAR-based AV perception

system with an adversarial sensor attack can be formulated as three components: (1)

formulating the spoofed 3D point cloud capability A, (2) generating adversarial ex-

amples, and (3) evaluating at the driving decision level. Even though our construction

of these components might be specific to Baidu Apollo, our analysis methodology can

be generalized to other LiDAR-based AV perception systems.

Generality of the results. The formulation of 3D point cloud spoofing capa-

bility A can be generalized as it is independent from AV systems. The success of

the attack may be extended to other LiDAR-based AV perception system due to the

nature of the LiDAR sensor attack. The LiDAR spoofing attack introduces a spoofed

3D point cloud, which was not foreseen in the training process of machine learning

models used in the AV perception system. Therefore, other models are likely to be

also vulnerable to such spoofing patterns.

2.11 Related Work

Vehicle systems security. Numerous previous works explore security problems

in vehicle systems and have uncovered vulnerabilities in in-vehicle networks of modern

automobiles [83, 31, 38], infotainment systems [100], and emerging connected vehicle-

based systems [34, 62, 154]. In comparison, our work focuses on vehicle systems with

the emerging autonomous driving technology and specifically targets the security of

LiDAR-based AV perception, which is an attack surface not presented in traditional

vehicle systems designed for human drivers.

Vehicle-related sensor attacks. The sensors commonly used in traditional

vehicles have been shown to be vulnerable to attacks. Rouf et al. showed that

tire pressure sensors are vulnerable to wireless jamming and spoofing attacks [125].

40

Shoukry et al. attacked the anti-lock braking system of a vehicle by spoofing the

magnetic wheel speed sensor [133]. As AVs become popular, so have attacks against

their perception sensors. Yan et al. used spoofing and jamming attacks to attack

the ultrasonic sensors, radar, and camera on a Tesla Model S [173]. There have

also been two works exploring the vulnerability of LiDAR to spoofing and jamming

attacks [111, 132]. In this work, we build on these prior work to show that LiDAR

spoofing attacks can be used to attack the machine learning models used for LiDAR-

based AV perception and affect the driving decision.

Adversarial example generation. Adversarial examples have been heavily ex-

plored in the image domain [64, 160, 28, 110]. Xie et al. [165] generated adversarial

examples for segmentation and object detection while Cisse et al. [41] for segmen-

tation and human pose estimation. Researchers also apply adversarial examples to

the physical world to fool machine learning models [59, 60, 18]. Compared to these

previous work exploring adversarial examples in the image domain, this work explores

adversarial examples for LiDAR-based perception. An ongoing work [155] studies the

generation of 3D adversarial point clouds. However, such attack focuses on the digital

domain and can not be directly applied to the context of AV systems. In comparison,

our method is motivated to generate adversarial examples based on the capability of

sensor attacks to fool the LiDAR-based perception models in AV systems.

2.12 Conclusion

In this work, we perform the first security study of LiDAR-based perception in

AV systems. We consider LiDAR spoofing attacks as the threat model, and set the

attack goal as spoofing front-near obstacles. We first reproduce the state-of-the-art

LiDAR spoofing attack, and find that blindly applying it is insufficient to achieve

the attack goal due to the machine learning-based object detection process. We thus

perform analysis to fool the machine learning model by formulating the attack task

41

as an optimization problem. We first construct the input perturbation function using

local attack experiments and global spatial transformation-based modeling, and then

construct the objective function by studying the post-processing process. We also

identify the inherent limitations of directly using optimization-based methods and

design a new algorithm that increases the attack success rates by 2.65× on average.

As a case study, we further construct and evaluate two attack scenarios that may

compromise AV safety and mobility. We also discuss defense directions at AV system,

sensor, and machine learning model levels.

42

CHAPTER III

Vulnerability Status of LiDAR-based Perception

against the Object Reshaping Attack

3.1 Introduction

Machine learning, especially deep neural networks (DNNs), have achieved great

successes in various domains, [42, 68, 49, 134]. Several safety-critical applications

such as autonomous vehicles (AV) have also adopted machine learning models and

achieved promising performance. However, recent studies show that machine learning

models are vulnerable to adversarial attacks [64, 25, 158, 160, 157, 137]. In these

attacks, small perturbations are sufficient to cause various well-trained models to

output “adversarial” prediction. In this paper we aim to explore similar vulnerabilities

in today’s autonomous driving systems.

Such adversarial attacks have been largely explored in the image domain. In addi-

tion, to demonstrate such attacks pose a threat in the real world, some studies propose

to generate physical stickers or printable textures that can confuse a classifier to rec-

ognize a stop sign [18, 59]. However, an autonomous driving system is not merely an

image-based classifier. For perception, most autonomous driving detection systems

are equipped with LiDAR (Light Detection And Ranging) or RADAR (Radio Detec-

tion and Ranging) devices which are capable of directly probing the surrounding 3D

43

environment with laser beams. This raises the doubt of whether texture perturbation

in previous work will affect LiDAR-scanned point clouds. In addition, the LiDAR-

based detection system consists of multiple non-differentiable steps, rather than a

single end-to-end network, which largely limits the use of gradient-based end-to-end

attacks. These two key obstacles not only invalidate previous image-based approaches,

but also raise several new challenges when we want to construct an adversarial ob-

ject: 1) LiDAR-based detection system projects 3D shape to a point cloud using

physical LiDAR equipment. The point cloud is then fed into the machine learning

detection system. Therefore, how shape perturbation affects the scanned point cloud

is not clear. 2) The preprocessing of the LiDAR point clouds is non-differentiable,

preventing the naive use of gradient-based optimizers. 3) The perturbation space

is limited due to multiple aspects. First, we need to ensure the perturbed object

can be reconstructed in the real world. Second, a valid LiDAR scan of an object

is a constrained subset of point cloud, making the perturbation space much smaller

compared to perturbing the point cloud without any constraint [155].

In this paper, we propose LiDAR-Adv to address the above issues and generate

adversarial object against real-world LiDAR system as shown in Figure 5.6. We

first simulate a differentiable LiDAR renderer to bridge the perturbations from 3D

objects to LiDAR scans (or point cloud). Then we formulate 3D feature aggregation

with a differentiable proxy function. Finally, we devise different losses to ensure

the smoothness of the generated 3D adversarial objects. To better demonstrate the

flexibility of the proposed attack approach, we evaluate our attacking approach under

two different attacking scenarios: 1) Hiding Object : synthesizing an “adversarial

object” that will not be detected by the detector. 2) Changing Label : synthesizing

an “adversarial object” that is recognized as a specified adversarial target by the

detector. We also compare LiDAR-Adv with the evolution algorithm in the blackbox

setting.

44

To evaluate the real-world impact of LiDAR-Adv , we 3D print out the generated

adversarial objects and test them on the Baidu Apollo autonomous driving platform,

an industry-level system which is not only highly adopted for research purpose but

also actively used in industries. We show that with 3D perception and a production-

level multi-stage detector, we are able to mislead the autonomous driving system to

achieve different adversarial targets.

To summarize, our contributions are as follows: (1) We propose LiDAR-Adv ,

an end-to-end approach to generate physically plausible adversarial objects against

LiDAR-based autonomous driving detection systems. To the best of our knowledge,

this is the first work to exploit adversarial objects for such systems. (2)We exper-

iment on Apollo, an industry-level autonomous driving platform, to illustrate the

effectiveness and robustness of the attacks in practice. We also compare the objects

generated by LiDAR-Adv with evolution algorithm to show that LiDAR-Adv can

provide smoother objects. (3) We conduct physical experiments by 3D-printing the

optimized adversarial object and show that it can consistently mislead the LiDAR

system equipped in a moving car.

Figure 3.1:
Overview of LiDAR-Adv . The first row shows that a normal box will
be detected by the LiDAR-based detection system; while the generated
adversarial object with similar size in row 2 cannot be detected.

45

3.2 Related work

Image-space adversarial attacks Adversarial examples have been heavily explored

in 2D image domains [64, 28, 107, 104, 158]. Various works [59, 85, 18] start to study

robust physical adversarial examples. Evtimov et al. [59] has created printable 2D

stickers to attach to a stop sign and cause a detector to predict wrong labels. Following

this line, there are also works [159, 92] aiming to optimize the 3D shapes to show

that even the surface geometry itself can produce adversarial behaviors.

In this work, we exploit the object surfaces to generate adversarial objects, and

one fundamental challenge that differentiates our work from the previous ones is: the

sensor in a LiDAR-based system directly probes the 3D environment as the input,

bypassing surface textures of the adversarial objects. This means we may only rely

on shape geometry to perform any attacks. On the other hand, compared to prior

works that have shown successes on attacking single models, it is worth noting that

the victim model which we experiment on (Apollo), is not merely an end-to-end deep

learning model but an industry-level autonomous driving platform that consists of

multiple non-differentiable parts.

Adversarial point clouds Xiang et al. [155] show a proof of concept, that models

taking raw 3D point clouds as input [114] can be vulnerable to adversarial point

clouds. However, this approach is only evaluated with a single digital model. It is not

clear that the generated point clouds can form plausible 3D shape surfaces, or it can

be reconstructed through LiDAR scans. While in our approach, though the victim

model takes point clouds as input similarly, these point clouds have to satisfy extra

constraints such as: all points have to be the intersections of the laser beams and

the object surfaces. We address this challenge by proposing a differentiable renderer

which simulates the reconstructed laser beams projecting onto object surfaces. As

we will show later, when the object moves, the point cloud changes in accordance

with the laser hits, and how to enforce the robustness against such LiDAR scans is

46

non-trivial.

3.3 Generating Adversarial Object Against LiDAR-based De-

tection

In this section, we will formulate the problem first and describe the adversarial

goals and challenges. We then describe our whitebox method LiDAR-Adv which aims

to tackle the challenges and fulfill diverse adversarial goals. Finally, we propose an

evolution-based attack method for blackbox settings.

3.3.1 Methodology overview

Given a 3D object S in a scene, as stated in the background, after the scene

is scanned by a LiDAR sensor, a point cloud X is then generated based on S so

that X = render(S, background) For preprocessing, this point cloud X is sliced and

aggregated to generate x, which is a H × W × 8 feature vector, and we call this

aggregation process as Φ: x = Φ(X). Then a machine learning model M maps this

2D feature x ∈ RH×W×8 to O = M(x), where O ∈ RH×W×7 (see Sec. ?? for concrete

output meanings). O is then post-processed by a clustering process Ψ to generate the

confidence yconf and label ylabel of detected obstacles so that (yconf , ylabel) = Ψ(O) An

adversarial attacker aims to manipulate the object S to achieve the adversarial goals.

Here we define two types of adversarial goals: 1) Hiding object : Hide an existing

object S by manipulating S; 2) Changing label : Change the label y of the detected

object S to a specified target y′.

To achieve the above adversarial goals in LiDAR-based detection is non-trivial,

and there are the following challenges: 1) Multiple pre/post-processing stages.

Unlike the adversarial attacks on traditional image-space against machine learning

tasks such as classification and object detection, the LiDAR-based detection here is

47

not a single end-to-end learning model, It consists of the differentiable learning model

M and several non-differentiable parts including preprocessing and post-processing.

Thus, the direct gradient based attacks are not directly applicable. 2) Manipulation

constraints. Instead of directly manipulating the point cloud X as in [155], we

manipulate the 3D shape of S given the limitation of LiDAR. The points in X are

the intersections of laser beams and object surfaces and cannot move freely, so the

perturbations on each point may affect each other. Keeping the shape plausible

and smooth adds additional constraints [159]. 3) Limited Manipulation Space.

Consider the practical size of the object versus the size of the scene that is processed

by LiDAR, the 3D manipulation space is rather small (< 2% in our experiments), as

shown in Fig. 5.6.

Given the above challenges, we design an end-to-end attacking pipeline. In order

to facilitate gradient-based algorithms, we implement an approximated differentiable

renderer R , which simulates the functionality of LiDAR, to intersect a set of pre-

defined rays with the 3D object surface (S) consisting of vertices V and faces W .

The points at the intersections form the raw point cloud X. After preprocessing, the

point cloud is then fed to a preprocessing function Φ to generate the feature map

x = Φ(X). The feature map x is then taken as input for a machine learning model

M to obtain the output metrics O = M(x).

The whole progress can be symbolized as F (S) = M(Φ(R(S))). Note that by

differentiating the renderer R, the whole process F (∗) = M(Φ(R(∗))) is differentiable

w.r.t. S. In this way, we can manipulate S to generate adversarial Sadv via our

designed objective function operating on the final output F (S).

3.3.2 Approximate differentiable renderer

LiDAR simulation The renderer R simulates the physics of a LiDAR sensor that

probes the objects in the scene by casting laser beams. The renderer first takes a

48

mesh S as input, and compute the intersections of a set of predefined ray directions to

the meshes in the scene to generate point cloud X. After depth testing, the distance

along each beam is then captured, representing the surface point of a mesh that it

first encounters, as if a LiDAR system receives a reflection from an object surface.

Knowing ray directions of the beams, the exact positions of the intersection points

can be inferred from the distance, in the form of point clouds X.

Real background from a road scene We render our synthetic object onto a

realistically captured point cloud. First, we obtain the 3D scan of a road scene, using

the LiDAR sensor Riegl VMX-1HA mounted on a car. Then, we obtain the laser beam

directions by computing the normalized vectors from the origin (LiDAR) pointing to

the scanned points. This fixed set of ray directions are then used for rendering our

synthetic objects throughout the paper. Note that we can also manually set ray

directions given sensor specifications, but it will be less real, because it may not

model the noises and fluctuations that occur in a real LiDAR sensor.

Hybrid rendering of synthetic objects onto a realistic background Given

the ray directions reconstructed from the background point cloud, a subset will in-

tersect with the object, forming the point cloud for the object of interest. The cor-

responding background points are then removed since these background points are

occluded by the foreground object. In this way, we obtain a semi-real synthetic point

cloud scene: the background points come from the captured real data; the foreground

points are physically accurate simulated based on the collected real data.

3.3.3 Differentiable proxy function for feature aggregation

As described earlier, in the preprocessing of Apollo, it aggregates the point cloud

into hardcoded 2D features, including count, max height, mean height, intensity

and non-empty. These operations are non-differentiable. In order to apply end-to-

49

end optimizers to for our synthetic object S, we need to flow the gradient through

the feature aggregation step, with the help of our proxy functions.

Given a point cloud X with coordinate (uX , vX , wX), and we hope to count the

number of points falling into the cells of a 3D grid G ∈ RH×W×P . For a point Xi with

location(uXi , vXi , wXi), we increase the count of 8 cells: the centers of these 8 cells

form a cube, and the point Xi is inside this cube. Specifically, we increase the count

of 8 cells using trilinear weights:

G(ui, vi, wi) =
∑
p

(1− d(up, u
Xi)) · (1− d(vp, w

Xi)) · (1− d(wp, w
Xi)), (3.1)

where p ∈ N (uXi , vXi , wXi) are the indices of the 8-pixel neighbors at location

(uXi , vXi , wXi) and d(·, ·) represents the L1 distance. The count feature xcount is the

value Gp = G(ui, vi, wi) computed for each grid i. Note that this feature is no longer

an integer and can have non-zero gradients w.r.t the point coordinates.

We then use this “soft count” feature to further compute “mean height” and “max

height” features. For simplicity, we first define a constant height matrix T ∈ RH,W,P ,

where T (., ., p) = p, p ∈ {1...P}. This matrix stores the height of each cell. Next,

we can formulate the mean height xmean−height and max height xmax−height using

soft count G:

xmean−height = ·
∑

p∈P Gp ◦ Tp∑
p∈P Gp + ϵ

and xmax−height = max
p

sign (G(., ., p)) ◦ T (., ., p)

(3.2)

where ϵ = 1e−7 to prevent zero denominators. Note that the sign function is non-

differentiable, so we approximate the gradient using sign(G) = G during back propa-

gation. The feature intensity has the similar formulation of height so we omit them

here. The feature non-empty is formulated as xnon−empty = sign(G).

We denote the above trilinear approximator as Φ′, in constrast to the original

non-differentiable preprocessing step Φ. A visualization of output of our Φ′(X)count

compared to the original Φ(X)count is shown in Sec. ??. Since our approximation

50

introduces differences in counting, Φ′(X) is not strictly equal to Φ(X), resulting in

different obj values of the final model prediction. We observe that this difference will

raise new challenges to transfer the adversarial object generated based on Φ′ to Φ. To

solve this problem, we reduce the difference between Φ′ and Φ, by replacing the L1

distance d in Eq. 3.1 with d(u1, u2) = 0.5+ 0.5 · tanh(µ · (u1− u2− 1)) where µ = 20.

We name this approximation “tanh approximator” and denote it Φ′′. We observe that

the input difference between Φ′′ and the original Φ is largely reduced compared to

Φ′, allowing for smaller errors of the model predictions and better transferability. To

extend our approximator and further reduce the gap betweer Φ′′ and Φ, we interpolate

the distance: d(u1, u2) = α·(0.5+0.5·tanh(5µ·(u1−u2−1)))+(1−α)·(u1−⌊u2⌋), where

α is a hyper-parameter balancing the accuracy of approximation and the availability

of gradients.

3.3.4 Objective functions

Our objective is to generate a synthetic adversarial object Sadv from an original

object S by perturbing its vertices, such that the LiDAR-based detection model will

make incorrect predictions. We first optimize Sadv against the semi-real simulator

detection model M .

L(Sadv) = Ladv(S
adv,M) + λLr(S

adv;S) (3.3)

The objective function L consists of two losses. Ladv is the adversarial loss to achieve

the target goals while the Lr is the distance loss to keep the properties of the “realistic”

adversarial 3D object Sadv. We optimize the objective function by manipulating the

vertices. The distance loss is defined as follows:

Lr =
∑
vi∈V

∑
q∈N (vi)

∥∆vi −∆vq∥22 + β
∑
vi∈V
∥∆vi∥22, (3.4)

51

where ∆vi = vadv
i − vi represents the displacement between the adversarial vertex

vadv
i and pristine vertex vi. β is the hyperparameter balancing these two losses. The

first losses [159] is a Laplacian loss preserving the smoothness of the perterbation

applied on the adversarial object Sadv. The second part is the L2 distance loss to

limit the magnitude of perturbation.

Objective: hide the inserted adversarial object As introduced in the back-

ground section, the existence of the object highly depends on the “positiveness”

metric. H(∗,M, S) denotes a function extracting ∗ metric from the model M given

an object S. A is the mask of the target object’s bounding box. Our adversarial loss

is represented as follows:

Ladv = H(pos,M, S) ∗ A (3.5)

Objective: changing label In order to change the predicted label of the object, it

needs to increase the logits of the target label and decrease the logits of the ground-

truth label. Moreover, it also needs to preserve the high positiveness. Based on this,

our adversarial loss is written as

Ladv = (−H(cy′ ,M, S) +H((c)y,M, S) · A ∗H(pos,M, S) (3.6)

In order to ensure that adversarial behaviors still exist when the settings are slightly

different, we create robust adversarial objects that can perform successful attacks

within a range of settings, such as different object orientations, different positions

to the LiDAR sensor etc. To achieve such goal, we sample a set of physical trans-

formations to optimize the loss expectation. In reality, we create a victim set D by

rendering the object S at different positions and orientations. Instead of optimizing

an adversarial object S by attacking single position and orientation, we generate an

universal adversarial object S to attack all positions and orientations in the victim

52

set D.

3.3.5 Blackbox Attack

In reality, it is possible that the attackers do not have complete access to the

internal model parameters, i.e., the model is a black box. Therefore, in this subsection,

we also develop an evolution-based approach to perform blackbox attack.

In evolution, a set of individuals represent the solutions in the search space, and

the fitness score defines how good the individuals are. In our case, the individuals are

mesh vertices of our adversarial object, and the fitness score is −L(Sadv). We initialize

m mesh vertices using the benign object S. For each iteration, new population of n

mesh vertices are generated by adding random perturbations, drawn from a Gaussian

distribution N (0, σ), to each mesh vertices in the old population. m mesh vertices

with top fitness scores will remain for the next iteration, while the others will be

replaced. We iterate the process until we find a valid solution or reach a maximum

number of steps.

3.4 Experiments

In this section, we first expose the vulnerability of the LiDAR-based detection

system via the evolution-based blackbox algorithm by achieving the goal of “hiding

object”, because missing obstacles can cause accidents in real life. We then show the

qualitative results and quantitative results of LiDAR-Adv under whitebox settings.

In addition, we also show that LiDAR-Adv can achieve other adversarial goals such as

“changing label”. Moreover, the point clouds are continuously captured in real life, so

attacks in a single static frame may not have much effect in real-world cases. There-

fore, in our experiments, we generate a universal robust adversarial object against

a victim dataset which consists of different orientations and positions. We 3D-print

such universal adversarial object and conduct the real-world drive-by experiments, to

53

show that they indeed can pose a threat on road.

3.4.1 Experimental setup

We conduct the evaluation on the perception module of Baidu Apollo Autonomous

Driving platform (V2.0). We initialize the adversarial object as a resampled 3D

cube-shaped CAD model using MeshLab [40]. For rendering, we implement a fully

differential LiDAR simulator with predefined laser beam ray directions extracted from

a real scene captured by the Velodyne HDL-64E sensor, as stated in § 3.3.2. It has

around 2000 angles in the azimuth angle and around 60 angles in the elevation angle.

We use Adam optimizers [80], and choose λ as 0.003 in Eq. 3.3 using binary search.

For the evolution-based blackbox algorihtm , we choose σ = 0.1, n = 500 and m = 5.

3.4.2 Vulnerability analysis

Here, we first show the existence of the vulnerability using our evolution-based

blackbox attacks, with the goal of “hiding object”. We generate adversarial objects

in different size (50cm and 75cm in edge length). For each object, we select 45

different position and orientation pairs for evaluation, and the results are shown in

Table 3.1. The results indicate that the LiDAR-based detection system is vulnerable.

The visualization of the adversarial object is shown in Figure 3.2(a) and (c).

3.4.3 LiDAR-Adv with different adversarial goals

After showing the vulnerability of the LiDAR-based detection system, here we

focus on whitebox settings to explore what a powerful adversary can do, since “the

design of a system should not require secrecy” [130]. Therefore, we evaluate the

effectiveness of our whitebox attack LiDAR-Adv with the goal of “hidding object”.

We also evaluate the feasibility of LiDAR-Adv to achieve another goal of “changing

label”.

54

(a) 50cm: Evo. (b) LiDAR-Adv (c) 75cm: Evo. (d) LiDAR-Adv

Figure 3.2:
Adversarial meshes of different sizes can fool the detectors even with more
LiDAR hits. We generate the object with LiDAR-Adv and evolution-
based method (Evo.).

Table 3.1:
Attack success rate of LiDAR-Adv and evolution based method under
different settings.

Attacks
Object size

50cm 75cm

LiDAR-Adv 32/45 (71%) 23/45 (51%)
Evolution-based 28/45 (62%) 16/45 (36%)

Hiding object We follow the same settings as in the above sections, and Table 3.1

shows the results. We find that LiDAR-Adv can achieve 71% attack success rate with

size 50cm. The attack success rate is consistently higher than the evolution-based

blackbox attacks. Figure 3.2 (b) and (c) show the visualizations of the adversarial

objects. We visually observe that the adversarial objects generated by LiDAR-Adv

are smoother than that of evolution.

Changing label The result shown in Figure 3.3 indicates that we can successfully

change the label of the object. We also experiment with different initial shapes and

target labels.

3.4.4 LiDAR-Adv on generating robust physical adversarial objects

To ensure the generated LiDAR-Adv preserves adversarial behaviors under various

physical conditions, we optimize the object by sampling a set of physical transforma-

tions such as possible positions and orientations. We show that the generated robust

55

(a) 3D mesh (Benign) (b) Predictions (Benign)

(c) 3D Mesh (Adv.) (d) Predictions (Adv.)

Figure 3.3:
The adversarial mesh generated by LiDAR-Adv is mis-detected as a
“Pedestrian”.

adversarial object is able to achieve the attack goal of hiding object with a high suc-

cess rate in Table 3.2. An interesting phenomenon is that some attack performance

under the unseen settings is even better than that within the controlled environment.

This implies that our adversarial objects are robust enough to generalize to unseen

settings.

Furthermore, we evaluate the generated robust adversarial object in the physical

world by 3D printing the generated object. We collect the point cloud data using

a Velodyne HDL-64E sensor with a real car driving by and evaluate the collected

traces on the LiDAR perceptual module of Baidu Apollo. As shown in Figure 3.4(a),

we find that the adversarial object is not detected around the target position among

56

Table 3.2:
Attack success rates of LiDAR-Adv at different positions and orientations
under both controlled and unseen settings.

Controlled Setting Unseen Setting

Distance (cm) & Orientation (°) Attack
Distance (cm) Orientation (°)
0-50 50-100 0-5 0-10

{0,±50} × {0,±2.5,±5} 41/45 96/100 91/100 10/10 9/10
{0,±50} × {0,±2.5,±5} 43/45 96/100 90/100 8/10 10/10

all 36 different frames. To compare, the box object (in Figure 3.4(b)) is detected in

12 frames among all 18 frames. The number of total frames is different due to the

different vehicle speed.

(a) Adversarial object (b) Benign object

Figure 3.4:
Results of physical attack. Our 3D-printed robust adversarial object by
LiDAR-Adv is not detected by the LiDAR-based detection system in a
moving car. Row 1 shows the point cloud data collected by LiDAR sensor,
and Row 2 presents the corresponding images captured by a dash camera.

3.5 Conclusion

We show that LiDAR-based detection systems for autonomous driving are vulnera-

ble against adversarial attacks. By integrating our proxy differentiable approximator,

we are able to generate robust physical adversarial objects. We show that the adver-

sarial objects are able to attack the Baidu Apollo system at different positions with

various orientations. We also show LiDAR-Adv can generate much smoother object

than evolution based attack algorithm. Our findings raise great concerns about the

security of LiDAR systems in AV, and we hope this work will shed light on potential

57

defense methods.

58

CHAPTER IV

Vulnerability Causality Analysis on Camera-based

Perception

4.1 Introduction

In recent years, deep convolutional neural networks (CNNs) have been pushing

and setting the state-of-the-art on various computer vision tasks including image

recognition [84, 135, 141, 140, 68, 69, 143], semantic segmentation [192, 181, 33],

object detection [119, 116, 93], image captioning [120, 121] and many more.

One important basic concept in deep CNNs is the receptive field of certain units in

the network. Unlike fully connected networks where the value of each neuron depends

on the entire input to the network, a unit in convolutional networks only depends on

a region of the input, and that region in the input is the receptive field for that unit.

From the model efficiency perspective, the concept of the receptive field is natu-

rally more important to location aware tasks such as object detection and semantic

segmentation since such tasks require objects to be represented at multiple scales

in order to recognize small and large instances. Since any units in an input image

outside of the receptive do not affect the value of that unit, it is essential to design

the CNN to ensure that its receptive field covers the entire relevant image region. As

models evolved, from AlexNet [84], to VGG [135], to ResNet [68] and Inception [142],

59

Receptive fieldImage Output

Target
vehicle

Detected

Receptive field Adv outputAdv image

Target
vehicle

Adv patch

Not detected

(a) Benign case

Receptive field Adv outputAdv image

Target
vehicle

RAP

Not detected

(b) Adversarial case

Figure 4.1:
Remote adversarial patch (RAP) attack overview. The goal of the attack
is to mislead the model predictions of the target vehicle with a RAP that
is not overlapped with the target vehicle, by leveraging the large receptive
field. In (a) the target vehicle is detected while in (b) the target vehicle
is not detected with the existence of a RAP.

the receptive fields increased. While a larger receptive field of a later model is a nat-

ural consequence of the increased number of layers and deeper networks, the effective

receptive field of units can only grow linearly with layers limiting the processing of

high-resolution inputs. Therefore, dilated convolution [180] has been proposed which

allows for enlarging the receptive fields while only growing the number of parame-

ters logarithmically; multi-scale methods [191, 33] are invented to capture the image

features at different scales; More recently, attention-based methods are also used for

capturing global context [63, 148, 194] and even replacing the CNN backbones with

the Transformer that embeds with attentions [168].

Apart from the model efficiency perspective, current machine learning models

have been shown vulnerable to evasion attacks, where an adversary adds a small

perturbation to a test example for misleading the models [139, 28]. Although the

design of large receptive field introduces advantages to improve model efficiency, the

security effect of the large receptive field is unexplored. Moreover, prior works [26, 165]

have widely studied the type of adversarial perturbation which manipulate the entire

images. However, it is unrealistic in real-world physical scenarios as it is hard for the

attacker to add perturbation to each object of a given scene.

Therefore, there has been significant prior progress on generating physically pos-

sible adversarial examples by generating adversarial patches and adding the patches

60

solely into the targeted object of the whole image. Taking the complicated tasks such

as segmentation and object detection in the safety-critical application autonomous

driving system as an example, prior works [165, 61] have shown that adding the ad-

versarial patch to the targeted object could arbitrarily mislead the prediction result

(e.g bounding box, segmentation map) of the targeted object. Such patch attacks,

however, require the attacker to access the targeted object to add the perturbations,

which is less realistic in practice.

Compared to other methods for solely generating adversarial patches, the scope of

this paper is beyond only conducting the attack, but more importantly, understanding

the causality of the vulnerability and providing a guideline for future model archi-

tecture designs for more robust models (e.g. blindly increasing receptive field sizes

makes models more vulnerable). Motivated by this, we carefully design experiments

from task, model and dataset perspectives. In particular, we chose the semantic seg-

mentation task where pixel-wise predictions are made and thus enable a fine-grained

analysis of the receptive field size. We chose models with key architecture-level in-

novations (e.g. dilated-convolution, multi-scaling and attention). For dataset, we

chose a dataset with high-resolution images since high-resolution images are not fully

covered by the receptive field sizes. This dataset helps distinguish the robustness of

models with different receptive field sizes. Compared to our work, a concurrent work

IPatch [103], however, only focuses on evaluating the attack without further digging

into the causality of the vulnerability. This focus is also reflected from several choices

made by IPatch. For example, 1) low-resolution image datasets are used; 2) fixed time

for optimizing patches instead of fixed optimization iterations are used. These choices

make different model robustness less distinguishable and even less comparable.

Summary of Contributions:

• We present the first study on model robustness related to receptive field sizes

to adversarial attacks on semantic segmentation. We demonstrate a threat

61

on semantic segmentation models called remote adversarial patch (RAP), due

to the abuse of large receptive fields in various modern models. As shown

in Figure 4.1, unlike previous adversarial attacks that manipulate the entire

input image, the RAP attack only manipulates a localized small area that is

not overlapped with the target attack area. We detailed the methodology for

generating RAP in §4.3.

• We identify that the RAP vulnerability is due to the large receptive field and

the relation between the vulnerability level and the receptive field size in §4.4.1.

We find that the model with a larger receptive field size is more vulnerable to

the RAP attack. Also, we find that the RAP attack is more effective when the

distance between the patch and the target area is smaller.

• We study the robustness of different model designs against RAP. In §4.4.2, we

show that methods increasing receptive make models more vulnerable. Also,

among different multi-scale based methods, standard pyramid pooling module

(PPM) is more vulnerable than atrous spatial pyramid pooling (ASPP). Among

different backbones, transformer-based backbone is more vulnerable than CNN-

based backbone. And overall, attention-based models tend to be more vulner-

able.

• To demonstrate the severity of the discovered threat, we conduct and evaluate

the object removing attack, a special case RAP, which removes the model predic-

tion of the target object (i.e., misleads the model prediction of a target object

to a target class) without accessing and adding perturbation on it . We showed

in §4.5.1 that with the proposed RAP attack, the mIoU of the target area drops

from 40% and even is close to 0 on several state-of-the-art models. We also

extend the success to the physical world and show in §4.5.2 that the attack can

remove the obstacle in the target area without knowing the victim’s position

62

in advance. This could result in severe impacts in safety-critical applications

such as autonomous vehicles. We believe this work will open new directions for

understanding receptive field and designing robust model architecture from the

robustness perspective.

4.2 Preliminaries

This section describes preliminaries such as motivation, threat model, and exper-

iment setups.

4.2.1 Motivation and Threat Model

Existing methods that generate adversarial examples typically require perturbing

the targeted object [18, 157, 60]. Modern models that incorporate contextual infor-

mation with a large receptive field open the possibility for a new attack vector, where

the prediction label of the target object could still be misled without directly access-

ing and adding the perturbation on it. To understand the vulnerability of the model

introduced by the large receptive field, we propose and conduct the RAP attack. We

choose the semantic segmentation task because the pixel level predictions allow us to

better analyze and understand the vulnerability status, and the semantic segmenta-

tion task is a fundamental task that has been widely used in real-world applications.

To study it, we consider the strongest whitebox scenarios to explore what a powerful

adversary can do based on the Kerckhoffs’s principle [112] to better motivate defense

methods. This means that the adversary has access to both the model structure

and weights so that the adversary can compute both outputs and gradients with the

model. While existing research has shown that it is possible to construct adversarial

examples without white-box level access [73], we leave it as future work. With the

goal to demonstrate the consequences of RAP attacks in the physical world, we choose

the adversarial patch [18] threat model, a localized perturbation, which has shown to

63

be more effective in the physical world [35]. More specifically, we consider self-driving

scenarios where the adversarial patch is printed on the road since such application is

safety-critical and can lead to severe consequences once being successfully attacked.

4.2.2 Models

To measure the vulnerability of RAP on different model designs, we focus on

model designs that are used for enlarging the receptive field: dilated convolution,

multi-scale (pyramid pooling), and self-attention. We apply Dilated residual net-

works (DRN) [179, 181] for most evaluations since it is a classic ResNet [68] based

architecture and many previous works on adversarial robustness used it for evalua-

tions [157, 165]. We use HDC-DUC [147] for analyzing the adversarial robustness

of models with different receptive field sizes due to its adjustable dilation number

configurations. We also select DeepLabV3 [33], PSPNet [191] and PSANet [192] as

top-ranking models on semantic segmentation benchmark with different model de-

signs. All the models are trained with a backbone of the 50-layer ResNet backbone

for consistency. Additionally, we try our method on the recent transformer-based

model, SegFormer [168] as well. We divide these models into the following categories:

Dilated convolution-based models. Dilated (astrous) convolution is a type of

convolution that integrates spacing between kernel parameters and increases the field

of view for kernels. Most modern CNN-based models utilize dilated convolution to

increase the receptive field size [179, 181]. All the selected models except SegFormer

utilize this technique.

Multi-scale based models. To extract features at different scales, several se-

mantic segmentation architectures perform Spatial Pyramid Pooling [67, 192] while

Deeplab [33, 32] applies Atrous Spatial Pyramid Pooling (ASPP) where three atrous

convolutions with large atrous rates (6, 12 and 18) process the dilated CNN (DCNN)

output. We select PSPNet and Deeplabv3 to represent this category.

64

Attention-based models. Attention mechanisms have been persistently explored

in computer vision over the years. It has been shown to enable the model to assess the

importance of features at different positions and scales. We select PSANet [192] and

SegFormer [168] to represent this category, where PSANet applies self-attention in

addition to a CNN-based backbone and SegFormer is based on a transformer backbone

that consists of a multi-layer attention mechanism.

4.2.3 Dataset

For attacks in the digital space, we apply Cityscapes [45] in our evaluations. We

show results on the validation set of the dataset, which contains 500 high-resolution

images with a combined 19 categories of segmentation labels. Cityscapes is an out-

door dataset containing instance-level annotations which are designed to be focused

on understanding urban street scenes. Since this dataset is closely related to safety-

critical applications such as autonomous driving, it would raise real-world safety con-

cerns if being attacked. Compared with other datasets such as Pascal VOC [58] and

CamVid [21], Cityscapes is more challenging and realistic due to the relatively high

resolution and diverse scenes.

4.3 Remote Adversarial Patch

In this section, we will first introduce RAP in the digital space. We then show a

special case of RAP attack, object object removing attack, which misleads the model

prediction of a foreground object to a target class. In the end, we demonstrate how

this vulnerability can be exploited in real-world applications.

4.3.1 Notations

Let hθ denote the segmentation model parameterized by θ; x denotes the input

image to hθ with a corresponding ground truth target of y; and L denote an objective

65

function used for train the adversarial patch δ. In the following sections, we will

define L by combining different losses to achieve the corresponding attack goals.

4.3.2 Generating RAP

The goal of the attack is to generate a localized adversarial patch δ with target

prediction y′ which can be used to fool the prediction result of a given non-overlap

target area mt. We can set the loss function for the RAP attack as the objectness

loss Lobj:

L = Lobj(hθ(x), y
′,mt)

:=
∑

i,j∈mt

CE(hθ(x)i,j, y
′
i,j)

where CE is the cross entropy loss function. hθ(x)i,j and y′i,j represent model predic-

tion results and target prediction of coordinate (i,j), respectively.

We use Projected Gradient Descent (PGD) attack [98] to solve the above objective

function.

The update for the iteration k is formulated as:

δk := clip[0,1](δk−1 + γ · sign(∇δk−1
L(hθ(A(δ, x, t)), y

′,mt)) (4.1)

where γ is the step size for each iteration; A(δ, x, t) aims to apply the patch δ to the

image x with a transformation t.

4.3.3 A Special Case: Object Removing Attack

To demonstrate the real-world impact of the RAP attack, we consider the safety-

critical autonomous driving scenarios and the goal of the object removing attack is

to remove an entire object from the segmentation prediction with the RAP. In other

words, it aims to change the model prediction of the target object to the target

66

class. To make the RAP more realist, we target at making the RAP look like a

graffiti printed on the ground. We define tinit as the initial transformation that

transforms the patch to look like printed on the ground. We define δinit as the

initial perturbation that makes the patch look like a graffiti. Then, by bounding the

perturbation |δ−δinit| < ϵ during the optimization process, the generated patch looks

like graffiti and is less suspicious. We also use the total variation (Tv) loss Ltv. Ltv

for ensuring the smooth color transitions of the generated adversarial patches. Tv

loss is formulated to represent the similarity of the neighboring pixels. We use Ltv as

a regularization loss. To summarize, we modify the Equation 4.1 as:

ub = min(1, δinit + ϵ); lb = max(0, δinit − ϵ)

L = Lobj(A(δ, x, tinit)), y
′,mt) + α · Ltv(δ)

δ := clip[lb,ub](δ + γ · sign(∇δL(hθ(A(δ, x, tinit)), y
′,mt)) (4.2)

where ub and lb are the upper bound and lower bound of the patch δ respectively; α

is the scaling factor determined empirically.

Extending to the physical setting In order to further extend the object removing

attack to the real world, there are two additional challenges to overcome: 1) unknown

positions of the patch and the target requiring the patch to be robust to spatial

variations, and 2) color distortions from the camera and printers requiring the patch

to be robust to color space variations.

To address them, as illustrated in Figure 4.2,

Expectation over Transformation (EOT) [18, 60] technique and the non-printability

score (NPS) Lnps [131] is used. To summarize, we update the optimization formula-

67

Transformation
sampler

Target position sampler

Optimization

Objective Loss

TV Loss
NPS Loss

Images with RAP

Update
adv patch

Figure 4.2: Methodology overview of the physical object removing attack.

tion in Equation 4.2 as:

L =Lobj(A(δ, x, t)), y
′,mt) + α · Ltv(δ) + β · Lnps(δ, C)

δ :=clip[lb,ub](δ + γ · sign(∇δL(hθ(A(δ, x, t)), y
′,mt, C)) (4.3)

where α and β are the scaling factors determined empirically for a sample x ∼ X and

a sample transformation t ∼ T .

4.4 RAP Vulnerability Analysis

This section conducts a comprehensive analysis of RAP attacks on various learning-

based segmentation methods including dilated convolution method, the multi-scale

method, and the attention-based method. Starting with fundamental dilated convo-

lution, we change the model’s receptive field size and the distance between RAP and

target objects to understand how and why receptive field size affects the vulnerability

level. Additionally, we evaluate our attack on various models with different designs

to understand which designs are more vulnerable to our attack.

68

Table 4.1:
Performance of different variations of the HDC-DUC module. “RF in-
creased” indicates the total size of receptive field increase along a single
dimension compared to the layer before the dilation operation.

Network RF increased mIOU
HDC-DUC-no 54 62.86
HDC-DUC-rf 116 69.51
HDC-DUC-bigger 256 70.44

4.4.1 Micro-benchmark on Receptive Field Size

To show the vulnerability introduced by large receptive fields, we conduct two

experiments: varying the receptive field size by changing the model architectures and

2) varying the distance between the target area and attack area by changing the patch

position. To demonstrate the generality of the causality, we focus on the fundamental

dilated convolution-based models in these experiments.

Experiment setup. In this experiment, we apply the RAP attack mentioned

in §4.3.2. We select a target area (400 pixels x 400 pixels) with the center at the center

of each image (1024 pixels x 2048 pixels) from the Cityscapes validation dataset. We

add a non-overlapping adversarial patch (50 pixels x 400 pixels) below the target area

with different distances. Here we select this patch shape instead of a square shape

patch to facilitate a better demonstration of how the attack effects are different at

different distances. In the evaluation results, only IoU (Intersection over Union) in

the target area is reported to better demonstrate the consequences of the attack.

Receptive size. In this experiment, we evaluate the RAP attack on the same

architecture with different receptive field sizes. Most models are customized with fixed

receptive field sizes. Blindly changing the configurations to increase receptive sizes will

usually degrade the performance. For example, blindly increasing the dilation factors

on DRN results in gridding effect and dropping performance. Therefore, we choose

69

Figure 4.3:
Results of the RAP attack on models with different receptive field sizes.
Receptive field size: HDC-DUC-bigger >HDC-DUC-rf >HDC-DUC-no.

DUC-HDC as the model architecture for conducting the evaluation. In the original

paper for DUC-HDC, three different dilated configurations (Dilation-no, Dilation-rf,

Dilation-bigger [147]) are provided for different receptive field sizes without intriguing

the gridding effect. Here, we denote these three models as HDC-DUC-no, HDC-DUC-

rf, and HDC-DUC-bigger to distinguish it from the other model architectures. The

increase of RF size and benign mIoU of three models are shown In Table 4.1. Notice

that HDC-DUC-no performed worse while the other two models perform similarly.

We set the distance between RAP and the target area as and then evaluate three

models on various PGD steps to demonstrate the robustness of models with different

receptive sizes with respect to the RAP attacks. Results in Figure 4.3 show that

models with larger receptive fields tend to be more vulnerable to the RAP attack.

Notice that, while HDC-DUC-no performs worse at the benign condition (steps=0),

it is more robust than the other two models with larger receptive field sizes.

70

Table 4.2:
IoUs of different categories when the attack patch is at different distance
(∆ pixels) to the target area on DRN-D-50 model. Notice that the IoU of
class pole and person is higher than benign at distance. This is due to the
inaccurate prediction of the benign model and weaker attack capability
when the RAP is at distance.

mIoU pole traffic light traffic sign person rider

∆=0 27.1 38.0 32.2 48.3 36.3 11.7
∆=50 39.8 44.5 45.1 45.3 52.0 21.7
∆=100 49.8 49.2 44.6 52.6 69.5 31.5
∆=200 55.1 51.2 48.8 58.2 82.7 33.9
Benign 65.1 49.1 52.0 62.7 80.4 54.8

car truck bus train motor bicycle

∆=0 52.2 20.5 23.1 8.4 17.8 9.3
∆=50 66.2 37.7 34.4 31.3 34.5 24.9
∆=100 81.2 43.5 46.8 40.1 43.1 45.2
∆=200 88.6 47.7 49.1 42.3 46.3 57.7
Benign 91.4 59.0 80.8 66.0 51.5 68.8

Distance between the RAP and the target area. In this experiment, we define

the distances between RAP and target area as (∆). We evaluate the RAP attack with

different δ ranging from 0 pixels to 200 pixels on the DRN-D-50 model. We use 100

step PGD as the optimization for RAP. In Table 4.2, we show the IoUs of 11 categories

in the Cityscapes dataset 1. It demonstrates that the attack impacts become weaker

when the distance ∆ is larger. For the extreme case of 200 pixels distance, where the

RAP is near the edge of the receptive field (483), the predictions of the model are

almost unaffected.

To conclude, models with a larger receptive field expose larger attack surfaces

and enable the RAP attack with higher impacts in terms of the RAP attack range

and success rates of perturbing the model predictions. But we also notice that RAP

is less effective when it is away from the target area. This is naturally due to the

convolution-based architecture applying a Gaussian mask on the receptive field where

1Here, we do not consider the background category since the patch is usually overlapping with
at least one category of background.

71

pixels at edge positions contribute less to the final prediction.

4.4.2 RAP Analysis on Representative Architectures

Unlike dilated convolution-based models that need to balance the dilation con-

figurations to have good performance and large receptive field, other techniques like

multi-scale and attention usually extend the receptive field size to the whole image.

In other words, while receptive field size is meaningful for describing the vulnerability

levels of dilated convolution-based models, it is less useful for other models. There-

fore, we select representative models with similar benign performance and analyze

the robustness of the models empirically by conducting RAP attacks on them.

Table 4.3: mIoU of models under benign settings and under RAP attacks.
Model DRN Deeplabv3 PSPNet PSANet SegFormer

Benign 72.34 79.6 77.85 77.58 78.51
RAP-100 60.23 54.68 39.04 43.33 28.04

Experiment setup and results. We evaluate the aforementioned models with

untargeted RAP attacks on the Cityscapes validation dataset. To include the long-

range effect of models, we place the patch (300 pixels x 300 pixels) at the corner of

the image. Since no realistic constraints apply here, we generate the patch without

transformation and Tv loss in this experiment for fully demonstrating the attack

effects. Table 4.3 demonstrates the evaluation results.

We can see that DRN is the most robust one even given its worst benign per-

formance. Additional model designs, such as ASPP in Deeplabv3, PPM in PSPNet

and global attention in PSANet, hurt model robustness at different levels since they

increase the receptive field. Among the multi-scale methods, our results indicate that

PPM (in PSPNet) is more vulnerable than ASPP (in Deeplabv3). Zheng et al. [193]

demonstrated that a model with more information loss tends to be more vulnerable

72

DRN Deeplabv3 PSPNet PSANet SegFormer

B
e
n
ig
n

R
A
P
-1

Figure 4.4:
Effective receptive field (ERF) on Cityscapes (average over 500 images).
Top row: ERF on benign images. Bottom row: ERF on adv images
with RAP at the bottom left corner (zoomed in below). The patches are
optimized with a one-step PGD attack.

Table 4.4:
IoUs of various models 1) under benign condition; 2) RAP-init: with inital
patch; 3) RAP-50: with 50 steps optimized RAP.

Model/attack mIoU pole traffic light traffic sign person rider car truck bus train motor bicycle

DRN 65.19 49.16 52.09 62.78 80.46 54.87 91.468 59.010 80.826 66.054 51.546 68.838
DRN w/ RAP-init 64.45 49.10 52.09 62.78 80.10 54.70 90.44 58.50 80.29 61.11 51.47 68.34
DRN w/ RAP-50 39.01 34.18 29.68 51.60 44.31 41.41 55.92 25.41 64.09 37.03 13.63 31.85
DeepLabv3 71.45 49.03 51.12 66.19 81.89 62.46 92.68 72.54 90.33 86.16 66.10 70.22
DeepLabv3 w/ RAP-init 67.16 48.03 50.91 64.83 75.79 59.34 63.58 68.04 90.28 85.80 64.81 62.74
DeepLabv3 w/ RAP-50 25.64 2.63 37.69 48.84 26.64 29.94 32.46 22.39 26.59 15.63 17.04 22.15
PSPNet 70.47 50.46 52.60 67.62 81.41 60.69 92.57 71.18 87.86 83.02 64.69 69.66
PSPNet w/ RAP-init 67.08 49.68 44.74 66.13 74.07 59.10 86.55 66.88 87.57 82.32 63.26 60.90
PSPNet w/ RAP-50 2.61 2.99 2.86 3.33 3.43 2.69 2.22 2.02 2.65 2.23 1.68 2.55
PSANet 70.02 62.81 69.86 77.53 80.11 58.03 91.47 59.01 80.83 66.05 51.55 68.84
PSANet w/ RAP-init 66.07 47.77 48.71 65.42 80.23 58.24 91.86 59.72 81.62 67.11 56.84 69.26
PSANet w/ RAP-50 0.67 0.88 1.21 1.62 1.29 0.93 0.56 0.07 0.19 0.51 0.00 0.07
SegFormer 69.51 51.70 51.16 65.59 80.48 55.84 92.06 67.41 87.16 83.19 60.02 69.98
SegFormer w/ RAP-init 64.54 50.31 49.91 64.37 75.15 50.61 85.63 61.96 83.11 73.48 53.94 61.49
SegFormer w/ RAP-50 0.83 1.12 3.37 1.50 1.42 0.46 0.64 0. 0. 0. 0. 0.68

to adversarial attacks. This aligns with our findings, since ASPP uses atrous convo-

lution instead of pooling to reduce information loss. Among different backbones, our

results indicate that transformer-based models are more vulnerable than CNN-based

models. Overall, the attention-based methods are more vulnerable to RAP attacks.

This is reasonable since the global attention allows long-range interference which nat-

urally enables RAP attacks. This finding is alarming since attention-based methods

are persistently explored in computer vision over the years [63, 184, 183, 89, 72, 192].

Effective receptive field analysis. Here, to further understand the results, we

use effective field receptive field (ERF) [97] as a toolkit to visualize and interpret

73

why different model designs are affected by the RAP vulnerability at different levels.

In Figure 4.4, we visualize ERFs of the four models we evaluate upon under benign

and adversarial settings. For the adversarial setting, we conduct a one-step RAP

untargeted attack on the pixel at the center of the image. We conduct the attack with

an initial patch to make the visualization more obvious. The ERFs under adversarial

settings visualize how much the RAP is contributing to the prediction of the target

pixel at the center of the image among different models. The more obvious such

patterns are it naturally means the model is more vulnerable to RAP. The results

also align with the experiment results in Table 4.3.

4.5 Object Removing Attack

In this section, we evaluate the object removing attack in both digital settings and

physical settings to demonstrate the severe impacts of the proposed RAP attacks.

4.5.1 Digital Experiments

The goal of the object removing attack is to generate a RAP that removes pre-

diction of target obstacles in the target area (or misleads the prediction of target

obstacles to target label.). In order to achieve this goal, we conduct targeted attack

with target label building or road using the methodology mentioned in §4.3.3. We

evaluate the method by generating the RAP for each image in the Cityscapes vali-

dation dataset with 50 PGD steps with manually selected initial transformation tinit.

For the target mask mt, we select the area in the target area which is labeled as an

obstacle. We evaluate with the IoU of each class on the selected models. For the

hyperparameters, we empirically select eps as 100, step size γ as 10, and α as 0.2 for

the best results. We select three initial patch images including a grey-scale image,

a color image, and a road patch to demonstrate the generality of the initial patch

choices.

74

Camera

Road printed w\ RAP

Background photo

Target
victim

Remote
adversarial
patch (RAP)

Figure 4.5: Illustration for the miniature scene set up in the physical experiment.

In Table 4.4, we demonstrate that the generated RAP greatly reduced the IoU

of each class. DRN and Deeplabv3 are more robust to the object removing attacks

which aligns with the previous results in §4.4.1. We notice that PSPNet is more

robust compared to the PSANet here, which seems to be different from the previous

results. However, we found most remaining correct predictions can be removed if

more PGD attack steps apply. This means that the PSPNet takes more iterations

to reach the full attack capability. More visualized examples could be found in the

supplementary material.

4.5.2 Physical Experiments

In this experiment, the goal is to generate a physical RAP that removes target

obstacles regardless of the position. Due to the high cost and safety concerns of testing

with a real car on the road, we build a miniature scene with a toy car and printed

road and background illustrated in Figure 4.5. We use a DSLR camera with an 85mm

lens at F16 to capture the image to avoid the blurring effect. The captured image is

compressed to 376 pixels x 672 pixels because it is difficult to reproduce the entire

scene like in the Cityscapes dataset. However, the compressed image is at a similar

scale to the cropped image from the Cityscapes dataset. Since semantic segmentation

models are not sensitive to the input image sizes, we consider this a reasonable setup.

We evaluate the attack on the DRN model since it is the most robust model according

75

to the digital experiment results. For the EOT random sampling mentioned in §4.3.3,

Figure 4.6:
Examples of the generated RAP and printed RAP in the physical exper-
iment.

we take photos of the toy car at seven different positions shown in Figure 4.5, where

we use four of them for the training procedure and three for the validation. We

sampling the perspective transformation and translation transformation by adding

noises to the target patch coordinates. We empirically use 20 pixels for the perspective

transformation and 50 pixels for the translation transformation. We choose α and

β empirically with 0.8 and 0.9 for the best results. For each patch generation, we

conduct a total of 100 steps, where each step consists of 100 iterations mentioned in

Equation 4.3. We show the generated RAP and the photo of printed RAP on the road

in Figure 4.6. We use a Hewlett-Packard Color LaserJet M855 printer to print the

patch. We evaluate the attack results by placing the car at 3 different positions. In

Figure 4.7, we demonstrate that the printed RAP is able to remove the target objects

entirely except for one position where the toy car is further away on the side. This

can be due to the limited receptive field size and also validate the results mentioned

earlier in §4.4.1.

76

Position 1 Position 2 Position 3

In
it

p
a
tc
h

B
u
il
d
in
g

car road building traffic sign

Figure 4.7:
Examples of the physical attack experiment where the toy car is places
at different positions in the miniature scene. The toy car is detected
correctly with the initial patch (top) and detected as the target label
“building” with the RAP (below).

4.6 Related Works

Receptive field Receptive fields are defined portions of space or spatial construct

containing units that provide input to a set of units within a corresponding layer [97].

The receptive field is originally defined by the filter size of a layer within a convolution

neural network. Since the receptive field is used as an indication of the extent of the

scope of input data a neuron or unit within a layer can be exposed to, the effective

receptive field can also be extended to other architectures beyond CNN.

Semantic segmentation Semantic Segmentation has received long lasting atten-

tion in the computer vision community. Recent advances in deep learning also show

that deep convolutional networks can achieve much better results than traditional

methods. Yu et al. [181] proposed using dilated convolutions to build high resolu-

tion feature maps for semantic segmentation. They can improve the performance

77

significantly compared to upsampling approaches. Most of the recent state-of-the-

art approaches are based on dilated convolutions and residual networks. Therefore,

in this work, we choose dilated residual networks (DRN) as our target models for

evaluating the proposed attack.

Adversarial example and Adversarial Patch Given a machine learning model

M , input x and its corresponding label y, an adversarial attacker aims to gener-

ate adversarial examples x′ so that M(x′) ̸= y (untargeted attack) or M(x′) = y′,

where y′ is a target label (targeted attack). [28] proposed to generate an adversarial

perturbation for a targeted attack by optimizing an objective function as follows:

min (||x− x′||p + λ · Loss(M(x′), y′)) s.t. x′ ∈ X,

where M(x′) = y′ is the target adversarial goal and x′ ∈ X denote that the adversar-

ial examples should be in a valid set. Further, optimization-based algorithms have

been leveraged to generate adversarial examples on various kinds of machine learning

tasks successfully, such as segmentation [165, 41], human pose estimation [41], object

detection [165], Visual Question Answer system [171], image caption translation [36],

etc.

Adversarial patches were first proposed by Brown et al. [22] which are physically

realizable localized adversarial examples. Though the adversarial patch attack is orig-

inally proposed on image classification task, it is further extended to object detectors

and other tasks [87, 94]. Unlike the remote adversarial patch proposed in this work,

most of the previous work require adversarial patch to be overlapped with the target.

Though Liu et al. [94] demonstrated the attack without overlapping the patch and

the target, they were exploiting the region proposal module in the object detectors,

which is not generally used among all the networks.

78

Non-overlapping adversarial patch We are aware of a few previous works have

demonstrated non-overlapping adversarial patches [54, 57, 56, 55]. However, they

focus on misleading object detectors. Object detectors often incorporate task-specific

techniques for predicting bounding boxes (e.g. region proposal, NMS, etc.), making

it challenging to understand the causality of the attacks and provide a guideline for

future model architecture designs towards a more robust model. For example, as

mentioned above, DPatch exploited the region proposals to saturate the proposals for

removing the detection of other objects other than reducing the objectness of them.

Therefore, in order to understand the vulnerability status and cause of it on general

vision tasks, also as the main goal of this paper, we chose semantic segmentation

models for conducting the analysis.

4.7 Discussion and Future Work

There are numerous designs proposed in the semantic segmentation task over the

past few years. Besides the methods evaluated in this paper, categories like recurrent

neural network based models [145], generative models [96] and other models [183, 184,

178] are not fully evaluated in this work. Also, though we empirically demonstrated

in §4.4.1, the reason that attention-based models are more vulnerable to the proposed

RAP attack can be due to the global attention introduced in the network, how the

global attention design introduces new vulnerabilities is not thoroughly analyzed in

this work. However, unlike dilated convolution, attention-based methods increased

the receptive field size by introducing more parameters. There is possibility to increase

the robustness of the model through these parameters where it is more difficult when

only dilated convolution is used for the purpose. We leave these as future directions

to this work.

There is considerable variation in the physical world that the attacker will have

to deal with. Since the designed RAP attack required the patch to be printed on the

79

road, besides different view angles and target positions, the printed patch could be

partially blocked by the target. Also, the camera models can also affect the attack

results.

Defending against these adversarial examples has proven difficult. Many defenses

fall prey to the so-called “gradient masking” or “gradient obfuscating” problem [19].

Some defenses against adversarial patches are also proposed recently [37], leveraging

the feature of localized perturbation in the adversarial patch attack. However, most

defenses are focused on the image classification task and usually introduce a large

overhead which is less applicable in the real world applications.

4.8 Conclusion

In this work, we show that segmentation models employing contextual information

with a large receptive field increase the attack surface and enable the proposed RAP

attack. Since the RAP attack does not require physical access to the target victim, it

is easier for the attacker to conduct in the real world and has a larger impact once the

attacker succeeds. This can cause major issues when deep models are deployed in real-

world applications like self-driving cars. We validate such vulnerabilities on various

architectures with different designs. In addition, we conduct a comprehensive analysis

of the vulnerability status among different architectures. To further demonstrate the

feasibility of the attack, we conduct the RAP attack in physical experiments with

a miniature scene. We believe this work highlights the need for studying defense

algorithms that are robust to the RAP attacks but also accurate.

80

CHAPTER V

Secure and Safe Autonomous Driving with

Modular Robustness

5.1 Introduction

Apart from the perception system, trajectory forecasting is an integral part of

modern autonomous vehicle (AV) systems. It allows an AV system to anticipate

the future behaviors of other nearby road users and plan its actions accordingly. Re-

cent data-driven methods have shown remarkable performances on motion forecasting

benchmarks [17, 75, 126, 185, 122, 123, 82]. While many prior works have study the

robustness of perception systems, few existing work have considered the robustness

of these trajectory prediction models, especially when they are subject to deliberate

adversarial attacks. In this chapter, we will first describe a framework for generating

efficient and effective adversarial examples called adversarial dynamic optimization

(AdvDO). Then, we will introduce an adversarial training framework, RobustTraj,

for improving trajectory prediction model robustness.

5.2 Adversarial Attacks on Trajectory Prediction

A typical adversarial attack framework consists of a threat model, i.e., a function

that generates “realistic” adversarial samples, adversarial optimization objectives,

81

Without attack Under attack

AV Planning

Predicted trajectory

Ground truthAdv historyHistory

AV AV

AV Ego agent

Adv agent

Other agent

Figure 5.1:
An example of attack scenarios on trajectory prediction. By driving along
the crafted adversarial history trajectory, the adverial agent misleads the
prediction of the AV systems for both itself and the other agent. As a
consequence, the AV planning based on the wrong prediction results in a
collision.

and ways to systematically determine the influence of the attacks. However, a few

key technical challenges remain in devising such a framework for attacking trajectory

prediction models.

First, the threat model must synthesize adversarial trajectory samples that are

1) feasible subject to the physical constraints of the real vehicle (i.e. dynamically

feasible), and 2) close to the nominal trajectories. The latter is especially important

as a large alteration to the trajectory history conflates whether the change in future

predictions is due to the vunerability of the prediction model or more fundamental

changes to the meaning of the history. To this front, we propose an attack method

that uses a carefully designed differentiable dynamic model to generate adversarial

trajectories that are both effective and realistic. Furthermore, through a gradient-

based optimization process, we can generate adversarial trajectories efficiently and

customize the adversarial optimization objectives to create different safety-critical

scenarios.

Second, not all trajectory prediction models react to attacks the same way. Fea-

82

tures that are beneficial in benign settings may make a model more vulnerable to

adversarial attacks. We consider two essential properties of modern prediction mod-

els: (1) motion property, which captures the influence of past agent states over future

states; and (2) social property, which captures how the state of each agent affects

others. Existing prediction models have proposed various architectures to explicitly

models these properties either in silo [126] or jointly [185]. Specifically, we design an

attack framework that accounts for the above properties. We show that our novel at-

tack framework can exploit these design choices. As illustrated in Figure 5.1, by only

manipulating the history trajectory of the adversarial agent, we are able to mislead

the predicted future trajectory for the adversarial agent (i.e. incorrect prediction for

left turning future trajectory of red car in Figure 5.1-right). Furthermore, we are

able to mislead the prediction for other agent’s behavior (i.e. turning right to turning

left for the yellow car in Figure 5.1-right). During the evaluation, we could evaluate

these two goals respectively. It helps us fine-grained diagnose vulnerability of different

models.

Finally, existing prediction metrics such as average distance error (ADE) and final

distance error (FDE) only measure errors of average cases and are thus too coarse

for evaluating the effectiveness of adversarial attacks. They also ignore the influence

of prediction errors in downstream planning and control pipelines in an AV stack.

To this end, we incorporate various metrics with semantic meanings such as off-

road rates, miss rates and planning-aware metrics [76] to systematically quantify the

effectiveness of the attacks on prediction. We also conduct end-to-end attack on a

prediction-planning pipeline by simulating the driving behavior of an AV in a close-

loop manner. We demonstrate that the proposed attack can lead to both emergency

brake and various of collisions of the AV.

We benchmark the adversarial robustness of state-of-the-art trajectory prediction

models [185, 126] on the nuScenes dataset [23]. We show that our attack can increase

83

prediction error by 50% and 37% on general metrics and planning-aware metrics,

respectively. We also show that adversarial trajectories are realistic both quantita-

tively and qualitatively. Furthermore, we demonstrate that the proposed attack can

lead to severe consequences in simulation. Finally, we explore the mitigation meth-

ods with adversarial training using the proposed adversarial dynamic optimization

method (AdvDO). We find that the model trained with the dynamic optimization

increase the adversarial robustness by 54%.

5.3 Related works

Trajectory Prediction. Modern trajectory prediction models are usually deep

neural networks that take state histories of agents as input and generate their plausible

future trajectories. Accurately forecasting multiagent behaviors requires modeling

two key properties: (1) motion property, which captures the influence of past agent

states over future states; (2) social property, which captures how the state of each

agent affects others. Most prior works model the two properties separately [75, 126,

51, 138, 82]. For example, a representative method Trajactron++ [126] summarizes

temporal and inter-agent features using a time-sequence model and a graph network,

respectively. But modeling these two properties in silo ignores dependencies across

time and agents. A recent work Agentformer [185] introduced a joint model that

allows an agent’s state at one time to directly affect another agent’s state at a future

time via a transformer model.

At the same time, although these design choices for modeling motion and social

properties may be beneficial in benign cases, they might affect a model’s performance

in unexpected ways when under adversarial attacks. Hence we select these two rep-

resentative models [126, 185] for empirical evaluation.

Adversarial Traffic Scenarios Generation. Adversarial traffic scenario genera-

tion is to synthesize traffic scenarios that could potentially pose safety risks[52, 81,

84

53, 16, 117]. Most prior approaches fall into two categories. The first aims to cap-

ture traffic scenarios distributions from real driving logs using generative models and

sample adversarial cases from the distribution. For example, STRIVE [117] learns

a latent generative model of traffic scenarios and then searches for latent codes that

map to risky cases, such as imminent collisions. However, these latent codes may

not correspond to real traffic scenarios. As shown in the supplementary materials,

the method generates scenarios that are unlikely in the real world (e.g. driving on

the wrong side of the road). Note that this is a fundamental limitation of generative

methods, because almost all existing datasets only include safe scenarios, and it is

hard to generate cases that are rare or non-existent in the data.

Our method falls into the second category, which is to generate adversarial cases

by perturbing real traffic scenarios. The challenge is to design a suitable threat

model such that the altered scenarios remain realistic. AdvSim [146] plants adver-

sarial agents that are optimized to jeopardize the ego vehicles by causing collisions,

uncomfortable driving, etc. Although AdvSim enforces the dynamic feasibility of the

synthesized trajectories, it uses black-box optimization which is slow and unreliable.

Our work is most similar to a very recent work [189]. However, as we will show

empirically, [189] fails to generate dynamically feasible adversarial trajectories. This

is because its threat model simply uses dataset statistics (e.g. speed, acceleration,

heading, etc.) as the dynamic parameters, which are too coarse to be used for gener-

ating realistic trajectories. For example, the maximum acceleration in the NuScenes

dataset is over 20m/s2 where the maximum acceleration for a top-tier sports car is

only around 10m/s2. In contrast, our method leverages a carefully-designed differen-

tiable dynamic model to estimate trajectory-wise dynamic parameters. This allows

our threat model to synthesize realistic and dynamically-feasible adversarial trajec-

tories.

Adversarial Robustness. Deep learning models are shown to be generally vulner-

85

able to adversarial attacks [30, 47, 28, 158, 174, 165, 70, 71, 156, 149, 66, 162]. There

is a large body of literature on improving their adversarial robustness [105, 127, 99,

176, 170, 20, 109, 102, 186, 188, 98, 64, 153, 129]. In the AV context, many works

examine on the adversarial robustness of the perception task [164], while analyzing

the adversarial robustness of trajectory forecaster [189] is rarely explored. In this

work, we focus on studying the adversarial robustness in the trajectory prediction

task by considering its unique properties including motion and social interaction.

5.4 Problem Formulation and Challenges

In this section, we introduce the trajectory prediction task and then describe the

threat model and assumptions for the attack and challenges.

Trajectory Prediction Formulation. In this work, we focus on the trajectory

prediction task. The goal is to model the future trajectory distribution of N agents

conditioned on their history states and other environment context such as maps. More

specifically, a trajectory prediction model takes a sequence of observed state for each

agent at a fixed time interval ∆t, and outputs the predicted future trajectory for each

agent. For observed time steps t ≤ 0, we denote states of N agents at time step t as

Xt = (xt
1, . . . , x

t
i, . . . , x

t
N), where x

t
i is the state of agent i at time step t, which includes

the position and the context information. We denote the history of all agents over H

observed time steps as X =
(
X−H+1, . . . ,X0

)
. Similarly, we denote future trajectories

of allN agents over T future time steps asY =
(
Y1, . . . ,YT

)
, whereYt = (yt1, . . . , y

t
N)

denotes the states of N agents at a future time step t (t > 0). We denote the ground

truth and the predicted future trajectories as Y and Ŷ, respectively. A trajectory

prediction model P aims to minimize the difference between Ŷ = P(X) and Y. In

an AV stack, trajectory prediction is executed repeatedly at a fixed time interval,

usually the same as ∆t. We denote Lp as the number of trajectory prediction being

executed in several past consecutive time frames. Therefore, the histories at time

86

frame (−Lp < t ≤ 0) are X(t) =
(
X−H−t+1, . . . ,X−t

)
, and similarly for Y and Ŷ.

Adversarial Attack Formulation. In this work, we focus on the setting where

an adversary vehicle (adv agent) attacks the prediction module of an ego vehicle

by driving along an adversarial trajectory Xadv(·). The trajectory prediction model

predicts the future trajectories of both the adv agent and other agents. The attack

goal is to mislead the predictions at each time step and subsequently make the AV

plan execute unsafe driving behaviors. As illustrated in Figure 5.1, by driving along

a carefully crafted adversarial (history) trajectory, the trajectory prediction model

predicts wrong future trajectories for both the adv agent and the other agent. The

mistakes can in term lead to severe consequences such as collisions. In this work, we

focus on the white-box threat model, where the adversary has access to both model

parameters, history trajectories and future trajectories of all agents, to explore what a

powerful adversary can do based on the Kerckhoffs’s principle [130] to better motivate

defense methods.

Challenges. The challenges of devising effective adversarial attacks against predic-

tion modules are two-fold: (1) Generating realistic adversarial trajectory. In

AV systems, history trajectories are generated by upstream tracking pipelines and

are usually sparsely queried due to computational constraints. On the other hand,

dynamic parameters like accelerations and curvatures are high order derivatives of

position and are usually estimated by numerical differentiation requiring calculating

difference between positions within a small-time interval. Therefore, it is difficult

to estimate correct dynamic parameters from such sparsely sampled positions in the

history trajectory. Without the correct dynamic parameters, it is impossible to deter-

mine whether a trajectory is realistic or not, let alone generate new trajectories. (2)

Evaluating the implications of adversarial attacks. Most existing evaluation

metrics for trajectory prediction assume benign settings and are inadequate to demon-

strate the implications for AV systems under attacks. For example, a large Average

87

Past Trajectory

{x,y}0 {x,y}3 {x,y}9…

Past Trajectory

{x,y}0 {x,y}3 {x,y}9…

Past Trajectory

{x,y}0 {x,y}3 {x,y}9…

Stage I: Dynamic Parameters Estimation

Differentiable
dynamic model

Control Actions

u0 u1 u9…

History Trajectory

{x,y,v,θ}0 … {x,y,v,θ}1 {x,y,v,θ}9

Stage II: Adversarial Trajectory Generation

Differentiable
dynamic model

Adv History Trajectory

{x,y,v,θ}0 … {x,y,v,θ}1 {x,y,v,θ}9

Initialize Initialize

Initialize

Trajectory
(continuous)

Perceived
History Trajectories

(2Hz)

Predicted
TrajectoriesControl Actions Dynamic Model Trajectory Prediction

Model

u

t

Adv Control Actions

u0 u1 u9…

u

t

Figure 5.2: Adversarial Dynamic Optimization (AdvDO) methodology overview

Distance Error (ADE) in prediction does not directly entail concrete consequences

such as collision. Therefore, we need a new evaluation pipeline to systematically de-

termine the consequences of adversarial attacks against prediction modules to further

raise the awareness of general audiences on the risk that AV systems might face.

5.5 AdvDO: Adversarial Dynamic Optimization

To address the two challenges listed above, we propose Adversarial Dynamic

Optimization (AdvDO). As shown in Figure 5.2, given trajectory histories, AdvDO

first estimates their dynamic parameters via a differentiable dynamic model. Then

we use the estimated dynamic parameters to generate a realistic adversarial history

trajectory given a benign trajectory by solving an adversarial optimization problem.

Specifically, AdvDO consists of two stages: (1) dynamic parameters estimation, and

(2) adversarial trajectory generation. In the first stage, we aim to estimate correct

dynamic parameters by reconstructing a realistic dense trajectory from a sampled

trajectory from the dataset. To reconstruct the dense trajectory, we leverage a dif-

ferentiable dynamic model through optimization of control actions. When we get

the estimated correct dynamic parameters of the trajectory, it could be used for the

second stage. In the second stage, we aim to generate an adversarial trajectory that

88

misleads future trajectory predictions given constraints. To achieve such goal, we

carefully design the adversarial loss function with several regularization losses for the

constraints. Then, we also extend the method to attacking consecutive predictions.

5.5.1 Dynamic Parameters Estimation

Differentiable dynamic model. A dynamic model computes the next state st+1 =

{pt+1, θt+1, vt+1} given current state st = {pt, θt, vt} and control actions ut = {at, κt}.

Here, p, θ, v, a, κ represent position, heading, speed, acceleration and curvature cor-

respondingly. We adopt the kinematic bicycle model as the dynamic model which is

commonly used [146]. We calculate the next state with a differential method, e.g.,

vt+1 = vt+at ·∆t where ∆t denotes the time difference between two time steps. Given

a sequence of control actions u = (u0, . . . , ut) and the initial state s0, we denote the

dynamic model as a differentiable function Φ such that it can calculate a sequence

of future states s = (s0, . . . , st) = Φ(s0, u; ∆t). Noticed that the dynamic model

also provides a reverse function Φ−1 that calculate a sequence of dynamic parameters

{θ, v, a, κ} = Φ−1(p; ∆t) given a trajectory p = (p0, . . . , pt). This discrete system

can approximate the linear system in the real world when using a sufficiently small

enough ∆t. It can be also demonstrated that the dynamic model approximates better

using a smaller ∆t.

Optimization-based trajectory reconstruction. To accurately estimate the dy-

namic parameters {θ, v, a, κ} given a trajectory p, a small time difference ∆t or a

large sampling rates f = 1/∆t is required. However, the sampling rate of the tra-

jectory in the trajectory prediction task is decided by the AV stack, and is often

small (e.g. 2Hz for nuScenes [23]) limited by the computation performance of the

hardware. Therefore, directly estimating the dynamic parameters from the sampled

trajectory is not accurate, making it difficult to determine whether the adversarial

history Xadv generated by perturbing the history trajectory provided by the AV sys-

89

tem is realistic or not. To resolve this challenge, we propose to reconstruct a densely

trajectory first and then estimate a more accurate dynamic parameter from the re-

constructed dense trajectory. To reconstruct a densely sampled history trajectory

Di =
(
D−H·f+1

i , . . . ,D0
i

)
from a given history trajectory Xi with additional sam-

pling rates f , we need to find a realistic trajectory Di that passes through positions

in Xi. We try to find it through solving an optimization problem. In order to ef-

ficiently find a realistic trajectory, we wish to optimize over the control actions in

stead of the positions in Di. To start with, we initialize Di with a simple linear in-

terpolation of Xi, i.e. D
−t·f+j
i = (1− j/f) ·X−t + j/f ·X−t+1. We then calculate the

dynamic parameters for all steps {θ, v, a, κ} = Φ−1(Di; ∆t). Now, we can represent

the reconstructed densely sampled trajectory Di with Φ(s0, u; ∆t), where u = {a, κ}.

To further reconstruct a realistic trajectory, we optimize over the control actions u

with a carefully designed reconstruction loss function Lrecon. The reconstruction loss

function consists of two terms. We first include a MSE (Mean Square Error) loss to

enforce the reconstructed trajectory passing through the given history trajectory Xi.

We also include ldyn, a regularization loss based on a soft clipping function to bound

the dynamic parameters in a predefined range based on vehicle dynamics [146]. To

summarize, by solving the optimization problem of:

min
u
Lrecon(u; s

0,Φ) = MSE(Di,Xi) + ldyn(θ, v, a, κ)

,we reconstruct a densely sampled, dynamically feasible trajectoryD*i passing through

the given history trajectory for the adversarial agent.

5.5.2 Adversarial Trajectory Generation

Attacking a single-step prediction. To generate realistic adversarial trajectories,

we first initialize the dynamic parameters of the adversarial agent with estimation

90

from the previous stage, noted as D*orig. Similarly to the optimization in the trajec-

tory reconstruction process, we optimize the control actions u to generate the optimal

adversarial trajectories. Our adversarial optimization objective consists of four terms.

The detailed formulation for each term is in the supplementary materials. The first

term lobj represents the attack goal. As motion and social properties are essential

and unique for trajectory prediction models. Thus, our lobj has accounted for them

when designed. The second term lcol is a commonsense objective that encourages the

generated trajectories to follow some commonsense traffic rules. In this work we only

consider collision avoidance [138]. The third term lbh is a regularization loss based on

a soft clipping function, given a clipping range of (−ϵ, ϵ). It bounds the adversarial

trajectories to be close to the original history trajectory Xorig. We also include ldyn

to bound the dynamic parameters. The full adversarial loss is defined as:

Ladv = lobj(Y, Ŷ) + α ·
∑
i

lcol(Dadv,X) + β · lbh(Dadv,D*orig) + γldyn(Dadv)

,where α and β are weighting factors. We then use the projected gradient descent

(PGD) method [99] to find the adversarial control actions uadv bounded by constraints

(ulb, uub) attained from vehicle dynamics.

Attacking consecutive predictions. To attack Lp consecutive frames of predic-

tions, we aim to generate the adversarial trajectory of length H + Lp that uniformly

misleads the prediction at each time frames. To achieve this goal, we can easily

extend the formulation for attacking single-step predictions to attack a sequence of

predictions, which is useful for attacking a sequential decision maker such as an AV

planning module. Concretely, to generate the adversarial trajectories for Lp consec-

utive steps of predictions formulated in§ 5.4, we aggregate the adversarial losses over

these frames. The objective for attacking a length of H + Lp trajectory is:

91

∑
t∈[−Lp,...0]

Ladv(X(t),Dadv(t),Y(t))

, where X(t),Dadv(t),Y(t) are the corresponding X,Dadv,Y at time frame t.

5.6 Experiments

Our experiments seek to answer the following questions: (1) Are the current

mainstream trajectory prediction systems robust against our attacks?;(2) Are our

attacks more realistic compared to other methods?; (3) How do our attacks affect an

AV prediction-planning system?; (4) Does features designed to model motion and/or

social properties affect a model’s adversarial robustness?; and (5) Could we mitigate

our attack via adversarial training?

5.6.1 Experimental Setting

Models. We evaluate two state-of-the-art trajectory prediction models: Agent-

Former and Trajectron++. As explained before, we select AgentFormer and Tra-

jectron++ for their representative features in modeling motion and social aspects

in prediction. AgentFormer proposed a transformer-based social interaction model

which allows an agent’s state at one time to directly affect another agent’s state at

a future time. And Trajectron++ incorporates agent dynamics. Since semantic map

is an optional information for these models, we prepare two versions for each model

with map and without map.

Datasets. We follow the settings in [185, 126] and use nuScenes dataset [23], a large-

scale motion prediction dataset focusing on urban driving settings. We select history

trajectory length (H = 4) and future trajectory length (T = 12) following the official

recommendation. We report results on all 150 validation scenes.

Baselines. We select the search-based attack proposed by Zhang et al. [189] as

92

the baseline, named search. As we mentioned earlier in § 5.8, the original method

made two mistakes: (1) incorrect estimated bound values for dynamic parameters

and (2) incorrect choices of bounded dynamic parameters for generating realistic

adversarial trajectories. We correct such mistakes by (1) using a set of real-world

dynamic bound values [146]. and (2) bounding the curvature variable instead of

heading derivatives since curvature is linear related to steering angle. We denote this

attack method as search* . For our methods, we evaluate two variations: (1) Opt-init ,

where the initial dynamics (i.e dynamics at (t = −H) time step) D−H·S+1
adv are fixed

and (2) Opt-end , where the current dynamics (t = 0) D0
adv are fixed. While Opt-end

is not applicable for sequential attacks, we include Opt-end for understanding the

attack with strict bounds, since the current position often plays an important role in

trajectory prediction.

Metrics. We evaluate the attack with four metrics in the nuscenes prediction chal-

lenges: ADE/FDE, Miss Rates (MR), Off Road Rates (ORR) [23] and their corre-

spondence with planning-awareness version: PI-ADE/PI-FDE, PI-MR, PI-ORR [76]

where metric values are weighted by the sensitivity to AV planning. In addition, to

compare which attack method generates the most realistic adversarial trajectories,

we calculate the violation rates (VR) of the curvature bound, where VR is the ratio

of the number of adversarial trajectories violating dynamics constraints over the total

number of generated adversarial trajectories.

Implementation details. For the trajectory reconstruction, we use the Adam op-

timizer and set the step number of optimization to 5. For the PGD-based attack,

we set the step number to 30 for both AdvDO and baselines. We empirically choose

β = 0.1 and α = 0.3 for best results.

93

5.6.2 Main Results

Trajectory prediction under attacks. First, we compare the effectiveness of the

attack methods on prediction performances. As shown in Table 5.1, our proposed

attack (Opt-init) causes the highest prediction errors across all model variants and

metrics. Opt-init overperforms Opt-end by a large margin, which shows that the

dynamics of the current frame play an important role in trajectory prediction systems.

Note that search proposed by Zhang et al. has a significant violation rates (VR)

over 10%. It further validates our previous claim that search generates unrealistic

trajectories.

Table 5.1: Attack evaluation results on general metrics.

Model Attack ADE FDE MR ORR Violations

None 1.83 3.81 28.2% 4.7% 0%
search 2.34 4.78 34.3% 6.6% 10%
search* 1.88 3.89 29.2% 4.8% 0%
Opt-end 2.23 4.54 34.5% 6.3% 0%

Agentformer w/ map

Opt-init 3.39 5.75 44.0% 10.4% 0%

None 2.20 4.82 35.0% 7.3% 0%
search 2.66 5.53 40.3% 8.9% 9%
search* 2.20 4.94 35.1% 7.4% 0%
Opt-end 2.54 5.54 39.3% 8.8% 0%

Agentformer w/o map

Opt-init 3.81 6.01 49.8% 13.3% 0%

None 1.88 4.10 35.1% 7.9% 0%
search 2.53 5.03 44.4% 9.4% 12%
search* 1.93 4.26 36.3% 8.3% 0%
Opt-end 2.48 5.57 47.5% 11.3% 0%

Trajectron++ w/ map

Opt-init 3.20 8.56 57.2% 15.9% 0%

None 2.10 5.00 41.1% 9.6% 0%
search 2.76 8.02 50.5% 16.1% 14%
search* 2.17 5.25 42.2% 10.0% 0%
Opt-end 2.49 7.54 49.5% 14.2% 0%

Trajectron++ w/o map

Opt-init 3.58 9.36 76.8% 17.8% 0%

To further demonstrate the impact of the attacks on downstream pipelines like

planning, here we report prediction performance using planning-aware metrics pro-

94

posed by Ivanovic et al. [76]. As described above, these metrics consider how the

predictions accuracy of surrounding agents behaviors impact the ego’s ability to plan

its future motion. Specifically, the metrics are computed from the partial derivative

of the planning cost over the predictions to estimate the sensitivity of the ego vehi-

cle’s further planning. Furthermore, by aggregating weighted prediction metrics (e.g.,

ADE, FDE, MR, ORR) with such sensitivity measurement, we could report planning

awareness metrics including (PI-ADE/FDE, PI-MR, PI-ORR) quantitatively. As

shown in Table 5.2, results are consistent with the previous results.

Table 5.2: Attack evaluation results on planning-aware metrics.

Model Attack PI-ADE PI-FDE PI-MR PI-ORR VR

None 1.38 2.76 20.5% 22.8% 0%
search 1.62 3.32 25.7% 25.2% 13%
search* 1.39 2.79 21.4% 23.0% 0%
Opt-end 1.57 3.11 23.7% 24.8% 0%

Agentformer w/ map

Opt-init 2.05 3.81 32.9% 29.0% 0%

None 1.46 3.76 26.8% 30.3% 0%
search 1.63 4.12 28.9% 34.2% 11%
search* 1.49 3.74 27.5% 31.1% 0%
Opt-end 1.63 4.11 28.2% 39.3% 0%

Agentformer w/o map

Opt-init 2.24 5.91 34.3% 41.3% 0%

None 1.42 2.81 26.5% 25.6% 0%
search 1.68 3.38 29.2% 28.3% 14%
search* 1.43 2.83 26.7% 27.7% 0%
Opt-end 1.65 3.14 27.2% 28.1% 0%

Trajectron++ w/ map

Opt-init 2.11 3.85 37.8% 32.7% 0%

None 1.76 3.20 30.9% 44.0% 0%
search 2.02 3.96 35.0% 49.6% 19%
search* 1.77 3.25 31.0% 46.8% 0%
Opt-end 1.95 3.55 31.6% 46.3% 0%

Trajectron++ w/o map

Opt-init 2.46 4.26 41.2% 53.7% 0%

Attack fidelity analysis. Here, we aim to demonstrate the fidelity of the gener-

ated adversarial trajectories qualitatively and quantitatively. We show our analysis

on AgentFormer with map as a case study. In Figure 5.3, we visualize the adver-

95

Benign Search Opt-init

Adv past Adv futureBenign futureBenign past

Dynamically
infeasible

Behavior change

Drive straight

Cut left

Scenario 1

Scenario 2

Figure 5.3:
Qualitative comparison of generated adversarial trajectories. We demon-
strate that the proposed AdvDO generates adversarial trajectories both
realist and effective whereas the search-stats could either generate dynam-
ically infeasible trajectories (sharp turn on the first row) or changing the
behavior dramatically (behavior change from driving straight to swerving
left on the second row).

Table 5.3: Quantitative comparison of generated adversarial trajectories

Method search Opt-end Opt-init
∆Sensitivity 2.33 1.12 1.34

sarial trajectories generated by search and Opt-end methods. We demonstrate that

our method (Opt-end) can generate effective attack without changing the semantic

meaning of the driving behaviors. In contrast, search either generates unrealistic

trajectories or changes the driving behaviors dramatically. For example, the middle

row shows that the adversarial trajectory generated by search takes a near 90-degree

sharp turn within a small distance range, which is dynamically feasible, whereas by

our method (right image in the first row) generates smooth and realistic adversar-

ial trajectories. In addition, we conduct a human study and demonstrate that only

4.4(±2.6)% of the generated adversarial trajectories are considered rule-violating.

96

More examples of generated adversarial trajectories and details of the human study

can be found in Appendix B.

To further quantify the attack fidelity, we propose to use the sensitivity metric

in [76] to measure the degree of behavior alteration caused by the adversarial attacks.

The metric is to measure the influence of an agent’s behavior over other agents’ future

trajectories. We calculate the difference of aggregated sensitivity of non-adv agents

between the benign and adversarial settings. Detailed formulation is in Appendix B.

We demonstrate that our proposed attacks (Opt-init, Opt-end) cause smaller sensi-

tivity changes. This corroborates our qualitative analysis that our method generates

more realistic attacks at the behavior level.

Table 5.4: Planning results

Planner
Open-loop Closed-loop
Rule-based MPC Rule-based MPC

Collisions 26/150 10/150 12/150 7/150
Off road – 43/150 – 23/150

Case studies with planners. To explicitly demonstrate the consequences of our at-

tacks to the AV stack, we evaluate the adversarial robustness of a prediction-planning

pipeline in an end-to-end manner. We select a subset of validation scenes and evalu-

ate two planning algorithms, rule-based [117] and MPC-based [24], in in two rollout

settings, open-loop and closed-loop. Detailed description for the planners can be

found in Appendix B. In the open-loop setting, an ego vehicle generates and follows

a 6-second plan without replanning. The closed-loop setting is to replan every 0.5

seconds. We replay the other actors’ trajectories in both cases. For the closed-loop

scenario, we conduct the sequential attack using Lp = 6. As demonstrated in Ta-

ble 5.4, our attacks causes the ego to collide with other vehicles and/or leave drivable

regions. We visualize a few representative cases in Figure 5.4. Figure 5.4(a) shows

the attack leads to a side collision. Figure 5.4(b) shows the attack misleads the pre-

97

diction and forces the AV to stop and leads to a rear-end collision. Note that no

attack can lead the rule-based planner to leave drivable regions because it is designed

to keep the ego vehicle in the middle of the lane. At the same time, we observed

that attacking the rule-based planner results in more collisions since it cannot dodge

head-on collisions.

(a) Side collision (b) Rear-end collision (c) Driving off-road

Figure 5.4:
Visualized results for planner evaluation. Ego vehicle in green, adv agent
in red and other agents in blue. The red cycle represents the collision or
driving off-road consequence.

Motion and social modeling. As mentioned in § 5.3, trajectory prediction model

aims to learn (1) the motion dynamics of each agent and (2) social interactions be-

tween agents. Here we conduct more in-depth attack analysis with respect to these

two properties. For the motion property, we introduce a Motion metric that measures

the changes of predicted future trajectory of the adversarial agent as a result of the

attack. For the social property, we hope to evaluate the influence of the attack on the

predictions of non-adv agents. Thus, we use a metric named Interaction to measure

the average prediction changes among all non-adv agents. As shown in Table 5.5,

the motion property is more prone to attack than the interaction property. This is

because perturbing the adv agent’s history directly impacts its future, while non-adv

agents are affected only through the interaction model. We observed that our attack

leads to larger Motion error for AgentFormer than for Trajectron++. A possible

98

explanation is that AgentFormer enables direct interactions between past and future

trajectories across all agents, making it more vunerable to attacks.

Table 5.5: Ablation results for Motion and Interaction metrics
Model Scenarios ADE FDE MR ORR Model ADE FDE MR ORR

AgentFormer Motion 8.12 12.35 57.3% 18.6% Trajectron++ 8.75 13.27 59.6% 16.6%
Interaction 2.03 4.21 30.3% 5.1% 1.98 4.68 43.0% 8.71%

Transferability analysis. Here we evaluate whether the adversarial examples gen-

erated by considering one model can be transferred to attack another model. We

report transfer rate (more details in the Appendix B). Results are shown in Fig-

ure 5.5. Cell (i, j) shows the normalized transfer rate value of adversarial examples

generated against model j and evaluate on model i. We demonstrate that the gen-

erated adversarial trajectories are highly transferable (transfer rates ≥ 77%) when

sharing the same backbone network. In addition, the generated adversarial trajecto-

ries can transfer among different backbones as well. These results show the feasibility

for black-box attacks against unseen models in the real-world.

(a) ADE (b) FDE (c) Miss Rate (d) Off Road Rate

Figure 5.5:
Transferability heatmap. A: AgentFormer w/ map; B: AgentFormer
w/o map; C: Trajectron++ w/ map; D: Trajectron++ w/o map

Mitigation. To mitigate the consequences of the attacks, we use the standard miti-

gation method, adversarial training [99], which has been shown as the most effective

defense. As shown in Table C in the Appendix B, we find that the adversarial trained

model using the search attack is much worse than the adversarial trained model using

our Opt-init attack. This can be due to unrealistic adversarial trajectories generated

99

by the search, which also emphasizes that generating realistic trajectory is essential

to success of improving adversarial robustness.

5.7 Adversarially Robust Trajectory Prediction

Adversarial robustness for machine learning is a widely-studied area, but most

works focus on classification tasks [78, 91, 108, 106, 128, 152, 166, 163, 167, 169, 175,

187]. Among the proposed techniques, adversarial training [98] remains the most

effective and widely used method to defend classifiers against adversarial attacks.

The general strategy of adversarial training is to solve a min-max game by generating

adversarial examples for a model at each training step and then optimizing the model

to make correct predictions for these samples. However, directly applying adversarial

training to trajectory prediction presents a number of critical technical challenges.

First, most trajectory prediction methods employ probabilistic generative models

to cope with the uncertainty in motion forecasting [75, 126, 185, 122, 123, 82]. As

we will show in this paper, the stochastic components of these models (e.g., posterior

sampling in VAEs) can obfuscate the gradients that guide the adversarial generation,

making näıve adversarial training methods ineffective. Second, adversarial training on

trajectory prediction task aims to model joint data distribution of future trajectories

and adversarial past trajectories. However, the co-evolution of the adversarial sample

distribution and the prediction model during the training process makes the joint

distribution hard to model and often destabilizes the adversarial training. Finally,

prior work [187] shows that adversarial training often leads to degraded performance

on clean (unperturbed) data, while retaining good performance in benign cases is

crucial due to the critical role of trajectory prediction for AVs. Hence, an effective

adversarial training method must carefully balance the benign and the adversarial

performance of a model.

Our approach. We propose an adversarial training framework for trajectory pre-

100

Without attack

AV Planning

Predicted trajectory

Ground truth

History

AV

AV Ego agent

Adv agent

Other agent

Under attack

Adv history

Under attack w/ RobustTraj

AV AV

Adv history

Collision Safe

Figure 5.6:
Overview of RobustTraj preventing Autonomous Vehicle (AV) from col-
lisions when its trajectory prediction model is under adversarial attacks.
When the trajectory prediction model is under attack, the AV predicts the
wrong future trajectory of the other agent turning right (yellow vehicle).
This results in AV speeding up instead of slowing down, and eventually
colliding into the other vehicle.

dictions named RobustTraj , by addressing the aforementioned challenges. First, to

address the issue of an obfuscated gradient in adversarial generation due to stochastic

components, we devise a deterministic attack that creates a deterministic gradient

path within a probabilistic model to generate adversarial samples. Second, to address

the challenge of an unstable training process due to shift in adversarial distributions,

we introduce a hybrid objective that interleaves the adversarial training and learn-

ing from clean data to anchor the model output on stable clean data distribution.

Finally, to achieve balanced performances on both adversarial and clean data, we in-

troduce a domain-specific data augmentation technique for trajectory prediction via

a dynamic model. This data augmentation technique generates diverse, realistic, and

dynamically-feasible samples for training and achieves a better performance trade-off

on clean and adversarial data.

We empirically show that RobustTraj can effectively defend two different types of

probabilistic trajectory prediction models [185, 82] against adversarial attacks, while

incurring minimal performance degradation on clean data. For instance, RobustTraj

can increase the adversarial performance of AgentFormer [185], a state-of-the-art

101

trajectory prediction model, by 46% at the cost of 3% performance drop on clean

data. To further show impacts of our method on the AD stack, we plug our robust

trajectory prediction model into a planner and demonstrate that our model reduces

serious accidents rates (e.g., collisions and off-road driving) under attacks by 100%,

compared to the standard non-robust model trained using only clean data.

5.8 Related Work

Adversarial attacks and defenses on trajectory prediction. A recent work

began to study the adversarial robustness of trajectory prediction models [190]. Zhang

et al. [190] demonstrated that perturbing agents’ observed trajectory can adversarially

impact the prediction accuracy of a DNN-based trajectory forecasting model. To

mitigate the issue, Zhang et al. [190] proposed several defense methods such as data

augmentation and trajectory smoothing. However, these methods are less effective

when facing adaptive attacks [19]. In our work, we propose to use adversarial training

which provides the general adversarial robustness that can resist adaptive attacks.

Adversarial scenario generation. A few recent studies work on generating ad-

versarial traffic scenarios such that the autonomous driving systems fail to make safe

driving decisions [146, 117]. However, generating realistic traffic scenarios is chal-

lenging and the generated adversarial scenarios can be unrealistic and violate traffic

rules by directly optimizing the latent vectors of the traffic model Rempe et al. [118].

In this work, we consider defending against realistic adversarial scenarios grounded

on the scenarios from a dataset. Wang et al. [146] perturb the raw input data to

mislead the full stack AV system. However, in this work, our primary goal is to

study and improve the robustness of trajectory prediction models. To obtain salient

and unambiguous insights, we minimize the conflating factors in our analysis without

considering the perception model.

Adversarial training. A variety of adversarial training methods have been proposed

102

to defend DNN-based models against adversarial attacks [98, 163, 78, 91, 108, 106, 128,

152, 166, 163, 167, 169, 175, 187]. The most common strategy is to design a min-max

game with the inner maximization process and outer minimization process. The inner

maximization process generates adversarial examples that maximize an adversarial

objective (e.g., make wrong prediction). The outer minimization process then updates

the model parameters to minimize the error on the adversarial examples. Several

recent works also propose to mix clean data and adversarial examples for improving

robustness [88, 144] and performance on clean data [166]. Although there exists

a large body of literature in studying adversarial robustness for machine learning,

most focus on the problem of discriminative model (e.g., object recognition), leaving

other problem domains (e.g., conditional generative models) largely unexplored. In

this work, we develop a novel adversarial training method for trajectory prediction

models, where most state-of-the-art trajectory prediction models are generative and

probabilistic, by addressing a number of critical technical challenges.

5.9 Preliminaries and Formulation

Probabilistic trajectory prediction models. In this work, we focus on defend-

ing generative, probabilistic trajectory prediction models, as they have demonstrated

superior performance in modeling uncertainty in predicting future motions [75, 126,

185, 122, 123, 82]. We consider the two most popular types of generative models:

conditional variational encoders (CVAEs) and conditional GANs (cGANs), both can

be viewed as latent variable models. We define latent variables Z = {z1, ..., zi, ..., zN}

where zi represents the latent variable of the agent i. CVAE formulates the generative

problem as: pθ(Y|X) =
∫
pθ(Y|X,Z) · pθ(Z|X)dZ, where pθ(Z|X) is a conditional

Gaussian prior (N (pµθ (Z|X), pσθ (Z|X))) with mean pµθ (Z|X) and standard deviation

pσθ (Z|X); pθ(Y|X,Z) is a conditional likelihood model. The model is usually trained

103

through optimizing a negative evidence lower objective [185]:

Ltotal = Lelbo + Ldiversity

= −Eqϕ(Z|Y,X)[log pθ(Y|Z,X)] + KL(qϕ(Z|Y,X) ∥ pθ(Z|X)) + min
k
∥ Ŷ(k) −Y ∥2 ,

(5.1)

where qϕ(Z|Y,X) is an approximate posterior parameterized by ϕ, pθ(Z|X) is a

conditional Gaussian prior parameterized by θ, and pθ(Y|Z,X) is a conditional like-

lihood modeling future trajectory Y via the latent codes Z and past trajectory X.

Additionally, Ldiversity = mink ∥ Ŷ(k) − Y ∥2 is a diversity loss, which encourages

the network to produce diverse samples. Given each past trajectory X, the model

generates K sets of latent codes {Z(1), · · · ,Z(k), · · · ,Z(K)} from the conditional Gaus-

sian prior N (pµθ (Z|X), pσθ (Z|X)), where Z(k) = {zk1 , · · · , zkn} , resulting in K future

trajectories Ŷ(k).

Similarly, in a conditional Generative Adversarial Net (cGAN)-based model (e.g.,

Social-GAN [17]), it uses a loss function as follows:

Ltotal = Lgan + Ldiversity

= EY∼pdata [logDθ(Y|X)] + EZ∼pZ [log(1−Dθ(Gϕ(Y|X,Z)))] + min
k
∥ Ŷ(k) −Y ∥2 ,

(5.2)

where G represents the generator and D represents the discriminator. Ŷ(k) =

G(Y|X,Z(k)) is one of the predicted trajectories in which Z(k) is randomly sampled

from N (0, 1). During the training, Lgan is maximized to train D and Ltotal is mini-

mized to train G.

Näıve adversarial training. Adversarial training formulates a min-max game

with an inner maximization process that optimizes the perturbation δ to generate

adversarial examples for misleading the model at each training iteration, and an outer

minimization process that optimizes the model parameters to make correct predictions

104

for these examples. We follow the standard adversarial training formulation [98]:

min
θ,ϕ

max
δ∈S

Ltotal(X+ δ,Y). (5.3)

5.10 RobustTraj : Robust Trajectory Prediction

As stated earlier, applying adversarial training for trajectory prediction presents

three critical challenges: (1) gradient obfuscation due to model stochasticity, (2)

unstable learning due to changing adversarial distribution, and (3) performance loss

in the benign situation. In this section, we describe each challenge in more detail and

present the corresponding solutions in our RobustTraj method.

Improve adversarial generation with Deterministic Attack . Since trajec-

tory prediction is inherently uncertain and there is no single correct answer, proba-

bilistic generative models are usually used to cope with the stochastic nature of the

trajectory prediction task. Such stochasticity will obfuscate the gradients that are

used to generate effective adversarial examples in the inner maximization process of

adversarial training. The näıve attack mentioned in section 5.9 is a straightforward

way to achieve this goal. However, this optimization involves a stochastic sampling

process Z(k) ∼ N (pµθ (Z|X), pσθ (Z|X)). Such a stochastic process will obfuscate the

gradients for finding the optimal adversarial perturbation δ, making the outer min-

imization (robust training) less effective. In order to sidestep such stochasticity, we

propose the deterministic attack that creates a deterministic gradient path within the

model to generate the adversarial perturbation. Ẑ. Specifically, we use a deterministic

latent code by replacing the sampling process Z(k) ∼ N (pµθ (Z|X), pσθ (Z|X)), with the

maximum-likelihood sample (here, i.e Ẑ = pµθ (Z|X)). The objective for generating

105

(a) Clean (b) Salt and pepper (c) Adv noise (d) Correlation

Figure 5.7:
Visualizations of the CVAE models trained with clean (a) data, Salt and
pepper noise (b), and adversarial perturbations (c); Quantitative results of
the correlation between the label of the generated images and conditioned
images at different noise levels (d).

the adversarial perturbation is thus:

δ = argmax
δ∈S

Ladv(X+δ,Y) = argmax
δ∈S

∥ pθ(Y|Ẑ,X+ δ)−Y ∥2 , where Ẑ = pµθ (Z|X+δ).

(5.4)

We empirically show that gradients from this deterministic gradient path can effec-

tively guide the generation of adversarial examples. We name our attack as Deter-

ministic Attack .

Stabilize adversarial training with bounded noise and hybrid objective.

During the adversarial training process, the distribution of the perturbed input X+δ

coevolves with the training process as δ is calculated via an inner maximization

process at each training iteration. Although δ is bounded by the adversarial set Sϵ
p,

the resulting latent condition variable C = f(X+δ) can be arbitrarily noisy since the

Lipschitz constant of neural network layers (f) is not bounded during training (See

Lemma 1. in Appendix C). Since C = f(X+ δ) is noisy, it is a less informative signal

compared to the deterministic signal X. Thus, modeling pθ(Y|X + δ,Z) becomes

substantially harder. In an extreme case thatC = f(X+δ) is super noisy and contains

no information, the training process can degenerate to model pθ(Y|Z), resulting in

the undesirable worse performance on the clean data.

To further validate the above hypothesis that it is hard to model pθ(Y|X+ δ,Z)

with a changing data distribution of X+δ, we conduct an additional experiment. For

106

simplicity, we use MNIST [48] as the dataset. As shown in Fig. 5.7, we divide each

digit image into four quadrants. We take the top-left quadrant as the condition X

and the remaining quadrants as the output Y. We train a CVAE (pθ(Y|X + δ,Z))

to model Y by using clean data (X) or noisy data (X + δ), where δ represents salt

and pepper noise [151] or adversarial noise [98], resulting in Fig. 5.7 (a), (b), (c)

respectively. The top-left region of each image in the first row is the conditional

variables X. The rest of rows are the generated images with different Z. Each

column in the same row uses the same Z. We observe that the model trained on

clean data successfully captures the conditional distribution (i.e., the generated image

highly depends on X) while the model trained with adversarial noise degenerates and

ignores the condition (i.e., each row generates images of the same digit). This result

shows that the conditional generative model fails to learn from X. To provide a

quantitative analysis, we measure the correlation between the label of the generated

images and the label of their conditioned image quadrants, resulting in Fig 5.7 (d).

More details on how to calculate the correlation are in the Appendix C. We observe

that the correlation drops as the noise level increases for both adversarial nose and

salt and pepper noise. Adversarial noise is more effective to degenerate the conditional

generative model. Therefore, we conclude that (1) the noises in the conditional data

lead to degenerated conditional generative model (i.e., from CVAE to VAE); (2) the

level of degeneration depends on the noise levels.

Based on the analysis result, to better learn a robust trajectory prediction model,

we need to bound |f(X+ δ)− f(X)| to reduce the noise level. Hence, we propose the

following regularization loss Lreg:

Lreg = d(f(X+ δ), f(X)), (5.5)

where d is a distance function (e.g., we use L2 norm as the distance metric).

107

In addition, because the clean data has a fixed distribution, simultaneously learn-

ing from the clean data during the adversarial training process anchors the conditional

distribution on a stable clean data distribution. Specifically, we propose the following

hybrid objective:

Lclean(X,Y) = Ltotal(X,Y), (5.6)

where Ltotal could be the loss in Eq. 5.1 for CVAE-based model or Eq. 5.2 for cGAN-

based model.

Protect benign performance using data augmentation. Adversarial train-

ing often leads to performance degradation on clean data [187]. However, trajectory

prediction is a critical component for safety-critical AD systems and its performance

degradation can result in severe consequences (e.g., collisions). Thus, it is important

to balance the model performance on the clean and adversarial data when designing

adversarial training algorithms.

To further improve the performance on clean and adversarial data, we need to

address the overfitting problem of the min-max adversarial training [124]. Data aug-

mentation is shown to be effective in addressing the problem in the image classification

domain [115]. However, data augmentation in trajectory prediction is rarely studied

and non-trivial. To design an effective augmentation algorithm, Rebuffi et al. [115]

argues that the most important criterion is that the augmented data should be realis-

tic and diverse. Thus, we design a dynamic-model based data augmentation strategy

A shown in the Appendix C. By using the augmentation, we can generate diverse,

realistic multi-agent trajectories for each scene and construct Daug.

RobustTraj . In summary, our adversarial training strategy for trajectory pre-

108

diction models is formulated as follows:

δ =argmax
δ∈S

Ladv(X+ δ,Y), where{X,Y} ∈ D ∪ Daug

θ, ϕ =argmin
θ, ϕ

Ltotal(X+ δ,Y) + Lclean(X,Y) + β · Lreg(X, X+ δ),

(5.7)

where D, Daug are the training data and augmented data; Ladv is adversarial loss to

generate effective adversarial examples in Eq. 5.4; Ltotal is the loss in Eq. 5.1 or Eq. 5.2

to train a robust model against adversarial examples; Lreg and Lclean are loss shown

in Eq. 5.5 and Eq. 5.6 to provide a stable signal for training. β is a hyper-parameter

for adjusting the regularization.

5.11 Experiments and Results

5.11.1 Experimental setup

Dataset and models. We follow the setting in prior work [185, 126] and use the

nuScenes dataset [23] for evaluation. For the trajectory prediction models, we select

the representative conditional generative models based on CVAE (AgentFormer [185])

and cGAN (Social-GAN [17]). AgentFormer is a state-of-the-art model based on

CVAE and Social-GAN is a classic model based on cGAN. We report the final results

for all three models: AgentFormer (AF), mini-AgentFormer (mini-AF) and Social-

GAN. More details are shown in the Appendix C.

Training details and hyperparameter choices. For the adversarial training,

we choose a 2-step Projected Gradient Descent (PGD) attack for the inner maxi-

mization and choose β = 0.1. We train 50 epochs and 100 epochs for AgentFormer

and Social-GAN respectively. For other hyperparameters during training, we follow

the original settings for AgentFormer and Social-GAN. The details for choosing these

hyperparameters can be found in the Appendix C. All experiments are done on the

NVIDIA V100 GPU [39]. We consider various baselines, including näıve adversarial

109

training (näıve AT) and four defenses proposed by Zhang et al. [190]: data augmenta-

tion with adversarial examples (DA), train-time smoothing, test-time smoothing, DA

+ train-time smoothing and detection + test-time smoothing.

Attack and evaluation metrics. For the adversarial attack, we choose a 20-

step PGD attack (an ablation study on step convergence can be found in the Ap-

pendix C). Without loss of generality, we use L∞ as the attack threat model so that

S = {δ| ∥ δ ∥∞≤ ϵ}. We select ϵ = {0.5, 1.0}-meter, where the 1-meter deviation

is the maximum change for a standard car without shifting to another lane [190].

We use four standard evaluation metrics for the nuscenes prediction challenge [23]:

average displacement error (ADE), final displacement error (FDE), off road rates

(ORR), and miss rate (MR). We evaluate the model’s performance on both clean and

adversarial data. For convenience, we use ADE, FDE, ORR, MR to represent the

performance on the clean data and Robust ADE, Robust FDE, Robust ORR, Robust

MR to represent the performance under attacks. We compute these metrics with the

best of five predicted trajectory samples, i.e., K = 5.

5.11.2 Main results

Here, we present our main results of RobustTraj . We compare it with the baselines

including model trained with clean data (Clean) and näıve adversarial training (Näıve

AT), and existing defense methods for trajectory prediction [190]. The results have

been shown in Table 5.6.

We observe that our method achieves the best robustness and maintains good

clean performance for most cases. For instance, with ϵ = 0.5 attack on AgentFormer

model, our method is able to reduce 46% prediction errors (5.09−2.73
5.09

) under the attack

at a cost of 2.6% (1.91−1.86
1.86

) clean performance degradation on ADE, compared to the

model trained with clean data at ϵ = 0.5. Compared to the existing methods, our

method also significantly outperforms in terms of the robustness. For instance, with

110

Table 5.6:
ADE and Robust ADE on different defense methods and models. The 1-st
and 2-nd lowest errors are colored.

Model mini-AF AF SGAN

Method
ADE Robust ADE ADE Robust ADE ADE Robust ADE

0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0

Clean 2.05 2.05 6.86 11.53 1.86 1.86 5.09 8.57 4.80 4.80 10.52 20.15

Näıve AT [98] 2.75 2.78 5.44 9.20 2.52 2.56 3.81 6.81 6.43 6.55 8.34 14.63
DA [190] 2.31 2.32 5.54 9.32 2.10 2.08 4.35 7.22 5.41 5.40 8.85 17.25
Train-time Smoothing [190] 3.14 3.07 5.67 9.31 2.11 2.13 4.19 6.79 5.50 5.47 8.74 16.51
Test-time Smoothing [190] 2.97 3.07 4.96 8.50 2.40 2.41 4.43 7.44 6.16 6.17 9.05 17.42
DA + Train-time Smoothing [190] 2.41 2.39 5.48 9.00 2.17 2.13 4.14 6.62 5.63 5.61 8.60 16.14
Detection + Test Smoothing [190] 2.31 2.28 5.91 9.85 2.08 2.03 4.45 7.59 5.35 5.37 9.28 17.39
RobustTraj 2.14 2.11 3.69 3.82 1.91 1.95 2.73 2.86 4.95 5.07 5.20 6.94

ϵ = 1.0 attack on AgentFormer model, our method achieves 45% better robustness

with 9% better clean performance on ADE compared to the best results from existing

methods [190].

Impacts to downstream planners. To further study the downstream impact

of our robust trajectory model in the AD stack, we plug it into a planner. We select

a MPC-based planner and evaluate the collision rates under the attack. To perform

the attack on a closed-loop planner, we conduct attacks on a sequence of frames

with the expectation over transformation (EOT) [61] method. We follow the setting

from Zhang et al. [190] and choose ϵ = 1. We choose AgentFormer model since it has

the most competitive performance. As a result, we observe that, while AgentFormer

model trained on clean data leads to 10 collision cases under attack, the robust trained

model with the proposed RobustTraj is able to avoid all the collisions. As shown in

Fig. C.2, we demonstrate that the proposed RobustTraj is able to avoid the collisions

(Fig. C.2 (d)) while the DA + Train-time Smoothing method proposed by Zhang

et al. [190] is not (Fig. C.2 (c)).

5.11.3 Component analysis

In this section, we analyze the effectiveness of the three components. We use the

mini-AgentFormer model since it has competitive performance and is lightweight for

111

(a) Benign case (b) Adv Attack (c) w/ defense [190] (d) w/ defense (ours)

Figure 5.8:
Impacts to a MPC-basd downstream planner. (a) is under the benign case
while (b), (c) and (d) are under the adversarial attacks. The blue car and
the red car represent the AV and the adversarial agent respectively.

Figure 5.9: Peformance of different attacks in mini-AgentFormer.

a fast adversarial training process.

Effectiveness of the Deterministic Attack . To demonstrate the importance

of the Deterministic Attack , we compare it with competitive alternatives, Latent

Attack and Context Attack , which also construct the deterministic path. However,

they only attack a partial model as opposed to our end-to-end full model attack.

More details about these attacks are in the Appendix C. We evaluate their attack

effectiveness by attacking a normally trained trajectory prediction model (without

robust training). In Fig. 5.9, we demonstrate that Deterministic Attack is the most

effective attack among all. Additionally, we embed them into the whole adversarial

training pipeline and evaluate the adversarial robustness. The results are shown in

Table 5.7. We observe that the model trained with the Deterministic Attack achieves

112

Table 5.7:
ADE and robust ADE for different methods on mini-AgentFormer. The
lowest error is in bold.

Method ADE Robust ADE
0.5 1.0 0.5 1.0

Clean 2.05 2.05 6.86 11.53

Latent Attack 2.55 2.70 4.10 4.71
Context Attack 2.47 2.59 3.94 4.78
Deterministic Attack 2.61 2.55 3.88 4.35

Deterministic Attack
+ Lreg 2.29 2.31 3.76 4.28
+ Lclean + Lreg 2.23 2.19 3.71 3.83
+ Lclean + Lreg + Aug 2.14 2.11 3.69 3.82

the best robustness in terms of ADE. More results with other metrics and the other

ϵ are in the Appendix C.

Effect of additional loss functions. We evaluate the performance of the models

trained with additional loss terms: Lclean and Lreg. In Table 5.7, we can see that the

regularization term Lreg improves robustness of the models and achieves better clean

performance. It shows that the regularization of the introduced noises on conditional

variables help the model to stabilize the training procedure. By adding the clean

loss Lclean, we observe that both the robustness and clean performance are improved

further, which means the benign data indeed anchors the model output on clean data

distribution and provides a stable signal for the better robust training for generative

models.

Effect of domain-specific augmentation. To demonstrate the effectiveness of

the domain-specific augmentation, We also combine it with all of the above compo-

nents to validate its effect. The results are shown in Table 5.7. We observe that it

achieves a better performance on clean and adversarial data.

113

5.12 Limitations

In this work, we identified the challenges of applying adversarial training on tra-

jectory prediction models based on probabilistic generative models since they could

cope with the natural uncertainty of motion forecasting. Though the probabilistic

generative model is the main-stream architecture for the trajectory prediction task,

there are other architectures (e.g., LSTM [17, 172], flow-based method [122, 123] and

RL-based method [50]) for generating multi-modal predictions. Additionally, we only

study the adversarial set with the threat model of L∞ perturbation on trajectories

instead of other types of threat models (e.g., optimization on the latent space [118],

perturbation on raw sensor data [146]). Moreover, the primary goal of this paper is to

study and improve the robustness of trajectory prediction models. To obtain salient

and unambiguous insights, we minimize the conflating factors in our analysis without

considering the perception model in our pipeline. We leave these as future work for

building robust trajectory prediction models.

5.13 Conclusion

In this paper, we study the adversarial robustness of trajectory prediction systems.

In the first part, we present an attack framework to generate realistic adversarial tra-

jectories via a carefully-designed differentiable dynamic model. We have shown that

prediction models are generally vulnerable and certain model designs (e.g, modeling

motion and social properties simultaneously) beneficial in benign settings may make

a model more vulnerable to adversarial attacks. In addition, both motion (predicted

future trajectory of adversarial agent) and social (predicted future trajectory of other

agents) properties could be exploited by only manipulating the adversarial agent’s

history trajectories. We also show that prediction errors influence the downstream

planning and control pipeline, leading to severe consequences such as collision.

114

In the second part, we aim to study how to train robust generative trajectory

prediction models against adversarial attacks. To achieve this goal, we first identify

three key challenges in designing an adversarial training framework to train robust

trajectory prediction models. To address them, we propose an adversarial training

framework with three main components, including (1) a deterministic attack for the

inner maximization process of the adversarial training, (2) additional regularization

terms for stable outer minimization of adversarial training, and (3) a domain-specific

augmentation strategy to achieve a better performance trade-off on clean and adver-

sarial data. To show the generality of our method, we apply our approach to two

trajectory prediction models, including (1) a CVAE-based model, AgentFormer, and

(2) a cGAN-based model, Social-GAN. Our extensive experiments show our method

could significantly improve the robustness with a slight performance degradation on

the clean data, compared to the existing techniques and dramatically reduce the se-

vere collision rates when plugged into the AD stack with a planner. We hope our

work can shed light on developing robust trajectory prediction systems for AD.

115

CHAPTER VI

Secure and Safe Autonomous Driving with

Integrated Robustness

6.1 Introduction

Detecting the presence of surrounding agents and predicting their future behavior

is a necessary capability for AD systems. In particular, there has been a significant

interest in object detection and trajectory forecasting within the autonomous driving

community, with many major organizations incorporating state-of-the-art perception

and behavior prediction algorithms within their vehicle software stack. As a result,

it is important to accurately evaluate the performance of detection and forecast-

ing systems before their deployment. To date, accuracy-based metrics such as IoU,

ADE/FDE, and NLL are commonly used to evaluate the performance of object de-

tection and trajectory forecasting algorithms in autonomous driving systems. These

metrics compare the predictions made by a model with ground truth data and pro-

duce a value that indicates how similar the two are. For example, IoU compares the

overlap between a predicted bounding box and a ground truth bounding box, while

ADE and FDE measure the distance between a predicted trajectory and a ground

truth trajectory.

While accuracy-based metrics can be useful for comparing the performance of

116

different models and for identifying areas for improvement, they may not always be

sufficient for evaluating the performance of a system in a real-world setting. This is

because accuracy-based metrics do not take into account other important factors such

as safety, reliability, and robustness. For example, even if a model has high accuracy

in terms of ADE and FDE, it may still produce unsafe or unreliable predictions if

it fails to consider other important factors such as road conditions, weather, and

traffic rules. Therefore, it is important to consider a wide range of metrics when

evaluating the performance of object detection and trajectory forecasting algorithms

in autonomous driving systems. This may include not only accuracy-based metrics,

but also safety-related metrics such as collision rate, reliability metrics such as the

frequency of system failures, and robustness metrics such as the ability of the system

to handle unusual or unexpected situations.

Despite the evaluation metrics, evaluating the integrated performance of the sys-

tem is also important due to the compounding error of the AD system pipeline. This is

because the various components of an autonomous driving system are typically inter-

connected and rely on each other to function properly. As a result, the performance of

one component can have a cascading effect on the performance of other components,

leading to a compounding of errors. For example, if the object detection algorithm

produces inaccurate detections, this can lead to errors in the trajectory forecasting

algorithm, which in turn can result in unsafe or unreliable control decisions made by

the control system. Therefore, it is important to evaluate the integrated performance

of the entire autonomous driving system to ensure that it is operating safely and

reliably. This may involve testing the system in a variety of different scenarios and

environments to ensure that it can handle a wide range of conditions.

Guided by this intuition, we propose a simplified AD framework for testing the in-

tegrated robustness of each component, Secure and SafeAutonomousDriving system

(S2AD). S2AD consists of four main components for a simplified AD functionality:

117

a perception system, a tracking system, a prediction system, and a planning system.

Enabled by open-sourced models and systems, it follows a modular design where it al-

lows the users to test their models/systems. Different from adversarial training-based

methods for improving modular robustness, we proposed a system-level approach to

detect attacks and protect the AD system from such attacks. In summary, this work

makes the following contributions:

• We propose a simplified AD framework for testing the integrated robustness

of each component, with a modular design that extends to different mod-

els/systems.

• We propose S2AD incorporating an anomaly detection system to detect Li-

DAR spoofing attacks and a fail-safe object detector to defend against object-

removing attacks.

• We demonstrate the improvement of the system by augmenting it with simple

components tailored for the realistic attack threat models, not only under the

attack but also in normal driving scenarios.

6.2 The S2AD Approach

In this section, we will first present the simplified AD pipeline design. Then,

we will demonstrate the anomaly detection and fail-safe object detection system for

defending against sensor spoofing attacks and object removing attacks.

6.2.1 Simplified AD Pipeline

To measure the integrated robustness of an AD system, we build a simplified AD

pipeline that drives based on sensor data. The goal of the framework is to provide

a framework for evaluating the integrated robustness of different models/systems.

Therefore, the framework has two key requirements: being extensible to different

118

Figure 6.1: Overview of S2AD.

models/systems and being simple to adapt to different systems. To achieve these

goals, we build the simplified AD pipeline with existing benchmarks on different AD

tasks such as perception, tracking, and prediction, as shown in Figure 6.1. More

specifically, we leverage MMCV [44] for inferring different perception models; we

use 3DMOT [150] for tracking the detected bounding boxes; we leverage different

open-sourced trajectory prediction models [185, 126] for prediction road agents future

trajectory; we implement a simple sampling-based planner for planning ego vehicles

future path.

6.2.2 Anomaly Detection with Point Cloud Prediction

To detect the sensor spoofing attacks, we propose an anomaly detection framework

by forecasting the point cloud data for the incoming frame. Compared to the existing

defense that leverages anomaly detection at the detected object level, forecasting

point cloud and detecting anomalies at the point cloud level is beneficial in two folds.

First, forecasting at a lower level (i.e., point cloud instead of detected object) makes

adaptive attacks more challenging, or even impossible to conduct due to the limited

precision of LiDAR sensor spoofing attacks. Second, forecasting point cloud does

not require detected objects to start with, which limited the usage of the anomaly

detector. It requires an object detector for the target classes to detect sensor spoofing

119

attacks. This might be not extensible for different perception systems (e.g., occupancy

networks). To forecast the point cloud, we leverage a model-free neural scene flow

estimation network [90].

6.2.3 Fail-safe Detection with Clustering-based Method

While deep learning models are powerful in terms of predicting useful semantic

information such as bounding boxes and object categories, they are less explainable

and vulnerable to adversarial attacks. On the other hand, traditional methods such

as clustering-based methods are more robust to adversarial perturbations and inter-

pretable, at the cost of limited predicted semantic information. Hence, we propose

to use the clustering-based method as a fail-safe mechanism to avoid false negatives

of the object detectors. Leveraging the clustering-based method, we are able to build

a safe drivable space where no obstacles are on the road. By combining such infor-

mation with the output of the prediction system, the planner is able to make driving

decisions safer and more robust against adversarial attacks.

6.3 Evaluation

In this section, we will present the experimental setup of the evaluation of S2AD

and the results.

6.3.1 Experiment Setup

Dataset. We evaluate the system on nuScenes [23] dataset. To evaluate the robust-

ness of the proposed components, we build poisoned datasets based on two attacks:

LiDAR sensor spoofing attacks and object reshaping attacks. For the LiDAR sensor

spoofing attacks, we follow the way You et al. [177] did but extend the near front

position to three positions in front of the ego vehicle. We name this as the spoofing

dataset. For the object reshaping attacks, we consider a stronger attack than the

120

Perception AP Collision (%) L2 human

Clean dataset

Simplified AV 78.6 1.7 3.72
+ Fail-safe detection - 0.2 3.69

Spoofing dataset

Simplified AV 48.3 2.1 4.15
+ Fail-safe detection - 0.4 4.12

Removing dataset

Simplified AV - 13.6 5.29
+ Fail-safe detection - 0.3 3.82

Table 6.1: Evaluation results of S2AD on clean dataset and poisoned datasets.

existing proposed MSF-adv where the attacker’s goal is to create an additional in-

visible object on the road. Instead, we randomly remove three obstacles at the near

front positions (4-8m) from the perception system outputs. And we name this as the

removing dataset.

Models. We evaluate a set of state-of-the-art models: pointpillars [86] for the per-

ception system, MOT for the tracking system, AgentFormer for the prediction system.

6.3.2 Results

As shown in Table 6.1, we evaluate the simplified AD and the proposed S2AD on

three datasets with three different metrics including AP (Average precision) for the

perception system, collision rate and L2 distance to ground truth planning trajectory

for the planning system. We demonstrated that with the additional fail-safe detection

component, S2AD is able to reduce the collision rates, especially under the removing

poisoned dataset. By choosing 0.78 as the threshold, the anomaly detection achieves

93%precision with 0% recall on the spoofing dataset.

121

6.4 Limitations and Future Works

In this work, we propose to evaluate the integrated robustness of AD systems by

prototyping a simplified AD pipeline. In addition, to enhance the integrated robust-

ness, we propose to add two components: a fail-safe detector and an anomaly detector.

We have demonstrated the improved robustness of the proposed framework in terms

of different evaluation metrics. However, this work serves more as a preliminary study

in this direction and can be further improved from two perspectives.

First, in terms of the breadth of the system, we didn’t prototype all the compo-

nents on a modern autonomous vehicle (e.g., localization system, multi-sensor fusion,

etc.). The system can be further extended with additional components to evaluate its

integrated robustness once those components are compromised. Also, in this work, we

only consider one dataset for simplicity, other datasets or even closed-loop simulations

are also possible.

Second, in terms of the depth of the system, though the proposed additional

components mitigate the attack impacts, the system can be designed to be more

integrated. Recent works on integrated AD stacks have shown a promising future for

building safer and more robust AD systems.

In terms of the anomaly detection system, Xiao et al. have also demonstrated

advancements in robustness against adversarial attacks, using not only temporal con-

sistency check but also spatial consistency check [161]. The idea of spatial consistency

check could be further applied to the anomaly detection module.

6.5 Conclusion

In this work, we propose to evaluate the integrated robustness of autonomous driv-

ing systems. To do so, we prototype and implement an extensible and lightweight

autonomous driving pipeline. To improve the robustness of the autonomous driving

122

system, we propose to add two key components: a fail-safe detector for building safe

drivable space and an anomaly detector for detecting spoofing attacks. As the result,

we demonstrated that with the integrated mindset, simple components can effec-

tively improve the robustness of the autonomous driving system against adversarial

attacks.

123

CHAPTER VII

Conclusion and Future Work

7.1 Conclusion

Testing autonomous driving systems are difficult, due to the nature of rick se-

mantics in the real world. To ensure safety and security, an effective tool for stress

testing such systems is in emergent demand. In this dissertation, we illustrated that

adversarial methods can provide an efficient yet effective proxy to stress test the

system, expose the design limitations and provide insights for improving robustness.

More specifically, we propose a foundational framework, based on realistic adversar-

ial attacks, for measuring the vulnerability status, unveiling the limitation of the

system/model architecture designs, and improving the robustness of the system in

return.

This foundational framework starts with building realistic adversarial attacks by

formulating feasible threat models, or attacker capabilities. With the threat models

of adversaries conducting sensor spoofing attacks or placing physical objects on the

road, we propose Adv-LiDAR and LiDAR-Adv respectively, which achieve different

attack goals (i.e., spoofing an additional obstacle or creating an invisible obstacle

on the road). By formulating the attacker capabilities and differentiating the AD

components, we can automatically generate effective adversarial examples that fail

the AD system.

124

Beyond generating attacks, this framework can also be used for causality analysis.

With the RAP attack, we evaluate the robustness of different model architectures

for the semantic segmentation task. By associating the robustness with the model

architectures, we discover the correlation between the adversarial robustness and the

receptive field sizes. Just like good test cases revealing the design limitations of a

system, examples generated from adversarial attacks can uncover the vulnerability

causalities as well [136, 65].

The last part of this dissertation provides guidelines for improving robustness

toward secure and safe AD systems, from modular and integrated perspectives. We

first demonstrated how adversarial training is a good fit for improving the modular

robustness of the trajectory prediction models. Then we show how to adapt the

adversarial training to this task by addressing key challenges discovered by conducting

adversarial attacks on them. For the integrated robustness, we aim to show that

modular robustness is sometimes insufficient for safe AD and system-level designs

can easily improve the integrated robustness while improving the modular robustness

is infeasible.

7.2 Future Work

Following my dissertation research, there is still a lot more to be explored in the

future.

• Automating the extraction of attack capabilities. In our works, most

attack capabilities require domain knowledge and manual efforts to formulate.

Though adversarial examples can be generated automatically once the attack

capabilities are formulated, those attack capabilities are usually restricted. It

would be more efficient if such attack capabilities can be automatically extracted

given a system or with a few examples.

125

• Integrated robustness with integrated AD system. In the last chapter,

we presented S2AD where simple modifications improve the robustness of the

system greatly. To further extend the success, designing AD systems where

each component is more integrated can provide better-integrated robustness.

For example, propagating the uncertainty along each module could aid the

planning system to better judge which information to rely upon instead of

blindly relying on the information received from the upstream modules.

126

APPENDICES

127

APPENDIX A

Vulnerability Status of LiDAR-based Perception

against the Sensor Spoofing Attack

A.1 Algorithm Details and Experiment Settings

Algorithm 16 shows the detailed algorithm to generate adversarial examples. In

our experiment, we select Adam [80] as our optimizer opt with learning rate 1e −

4. opt(ladv; θ, τx, sh) means updating the parameters θ, τx, sh) with respect to Loss

function ladv. We select TensorFlow [15] as backbone. Lt is set as 12.5 while Lθ is set

as the angle that generates 2-meter distance from the target position.

Figure A.1:
Collected traces from the reproduced sensor attack. The points in the
yellow circle are spoofed by the sensor attack.

128

1

input: Target model: M ;
3D point cloud X ;
3D spoofed 3D point cloud T ;
Optimizer opt;
Max iteration N ;

output: 3D adversarial 3D point cloud X ′;

2 Initialization: θ ← 0, τx ← 0, sh ← 1, lmin = +inf, x = Φ(X), t = Φ(T);
/* Initiate parameters by sampling around the transformation

parameters Targetθ, Targetτx that transforms t to the target

position (px, py) of the attack */

3 for iτx ← −Lt to Lt do
4 for iθ ← −Lθ to Lθ do

/* Initialize parameter . */;
5 θ ← Targetθ + iθ, τx ← Targetτx + τxi;
6 for iter ← 1 to N do

/* Calculate adversarial loss */;
7 ladv ← Equation 2.7.;

/* Update the parameters θ, τx, sh based on optimizer opt
and loss ladv */

8 ;
9 θ, τx, sh ← opt(ladv; θ, τx, sh)

10 if lmin < ladv then

11 θfinal, τ finalx , sfinalh ← θ, τx, sh
12 end

13 end

14 end

15 T ′ ← GT (θ
final, tfinalx , sfinalh ;T);

16 X ′ ← X + T ′;
Return: T ′

129

APPENDIX B

AdvDO: Realistic Adversarial Attacks for

Trajectory Prediction

B.1 Related works

Adversarial Traffic Scenarios Generation In Strive [117], adversarial scenar-

ios generated from the traffic model is not always realistic due to the limited training

data which does not cover dangerous scenarios such as collisions. In Figure B.1,

we demonstrated from one example generated in Strive, where the adversarial agent

drives in reverse lane and violates the traffic rule, in order to collide into the AV.

B.2 Method

In this section, we describe implementation and formulation details for the pro-

posed method.

B.2.1 Differential dynamic model

The differential dynamic model Φ is devised for deriving dynamic parameters

{p, v, θ} from control actions u = {a, κ} and deriving control actions from trajectories

130

Reverse
lane

Figure B.1:
Adversarial agent drives in reverse lane in adversarial scenarios gener-
atated from Strive [117].

p = (px, py). Specifically, we use a kinematic bicycle model as the dynamic model [43].

Detailed formulation is as below:

Φ : vt+1 = at ·∆t+ vt

dθt = vt · κt

θt+1 = dθt ·∆t+ θt

pt+1
x = vt · cos θt ·∆t+ pt

pt+1
y = vt · sin θt ·∆t+ pt

Φ−1 : vt = ∥pt+1 − pt∥/∆t

θt = arctan ptx/p
t
y

at = (vt+1 − vt)/∆t

κt = dθt/vt

131

For the physical constraints for dynamically feasibility, we follow the standard

values used in [146].

B.2.2 Reconstruction loss and adversarial loss

Here, we describe losses for reconstruction and generating adversarial trajectory

in details:

ldyn(θ, v, a, κ) =
∑

x=θ,v,a,κ

(x− xlb)/(xub − xlb)− Sigmoid ((x− xlb)/(xub − xlb)) + 0.5

, where xub, xlb represent the hard-coded upper bound and lower bound correspond-

ingly for the dynamic parameter x.

lcol(Dadv,X) =
1

n− 1

n−1∑
i ̸=adv

1

∥Dadv −Xi∥+ 1

, where n is the number of agent in the current prediction time frame.

lbh(Dadv,D*orig, ϵ) = ∥Dadv −D*orig∥/ϵ− Sigmoid (∥Dadv −D*orig∥/ϵ) + 0.5

, where ϵ is the tolerance for position deviation, which we empirically set to half lane

width (1 meter).

lobj =
1

T

∑
t=1...T

∥ Yt − Ŷt ∥2

, where Ŷt is the predicted future trajectory at time t given the adversarial trajectory

and Yt is the corresponding ground truth. This loss aims to mislead the prediction by

maximizing the difference between the predicted future trajectory and ground truth.

132

B.3 Experiments

In this section, we describe implementation and formulation details for the exper-

iments.

B.3.1 Attack fidelity analysis

In this analysis, we aim to demonstrate the generated adversarial trajectory is

realistic from both perspectives of: (1) dynamically feasibility and (2) similar be-

havior as the original history trajectory. For the first perspective, we demonstrate

the results quantitatively with the Violation Rates (VR) metric described below.

For the second perspective, since it is a common challenge to measure the behav-

ior change quantitatively, we propose to approximate the degree of behavior change

with the Aggregated sensitivity metric described below. We also visually examine

generated adversarial trajectories in Figure B.2.

Violation rates. Since the violation rates metric is only suitable for the search

method and on the curvature κ parameter, we represent the VR as:

V R =
#total adv trajectories

#adv trajectories violating curvature constraints

.

Aggregated sensitivity. To approximate the behavior change quantitatively, we

leverage the sensitivity concept proposed by Ivanovic et al. [76]. SensitivityPI(Yi,Yego)

of an agent’s trajectory to the ego agent represents how much the agent’s trajectoryYi

will affect the ego planning Yego. Therefore, we can present how much the adversar-

ial trajectory Xadv will affect other agents’ planning Xi as the aggregated sensitivity

of the adversarial agent’s trajectory to all the other agents in the scene. With a

133

Table B.1:
Similarity between original history trajectory and adversarial trajectory
generated from search, Opt-init and Opt-end .

Attack method DTW↓ FD↓ PCM↓ Area↓ CL↓

search 0.3558 0.2490 0.0676 0.8892 0.0003
Opt-init 0.2303 0.1429 0.0209 0.5928 0.0002
Opt-end 0.1891 0.0564 0.0210 0.3045 0.0001

Table B.2: Augmentation on AgentFormer.

ADE FDE

Benign 1.83 3.81
+ aug 1.69 3.57

normalization over agents nearby, we attain the aggregated sensitivity:

ΣSensitivity(Xadv,X) =
1

m

m∑
i,∥Xadv−Xi∥<ρ

PI(Xadv,Xi)

, where m represents the total number of agents nearby filtered by the distance

threshold ρ, which is empirically set to 5 meters. Therefore, we attain the metric for

measuring behavior change as:

∆Sensitivity = ΣSensitivity(Xadv,X)− ΣSensitivity(Xorig,X)

Other metrics. To measure the behavior change quantitatively, we also include

evaluation results with other metrics proposed by Jekel et al. for comparing the sim-

ilarity between trajectories [79], including Dynamic Time Warping (DTW), Fréchet

Distance (FD), Partial Curve Mapping (PCM), Area and Curve Length (CL). In Ta-

ble B.1 we demonstrate that the proposed methods have lowest error for all similarity

metrics. The results are also consistent with the result on ∆sensitivity metric.

Visualization and human study. We randomly sample examples from 150 scenes

in nuScene validation data, where the adversarial trajectory generated from search

134

that have a curvature violation or a large ∆Sensitivity value. In Figure B.2, we show

that the adversarial trajectory generated from search have either behavior change or

unrealistic steering rates. We also notice that, the Opt-end can also generate adver-

sarial trajectory that has large turning rates but dynamically feasible. Even though

the predicted results are worse under search attack when the curvature constraint

if not bounded, Opt-end achieves higher prediction errors in average scenarios. To

further show that the generated trajectories obey traffic rules, we conduct a study

where adversarial trajectories are illustrated with map information (e.g. lane seg-

ments, road, crosswalk etc.). We select five human subjects with driver license and

show our generated trajectories to them. Out of the 50 trajectories evaluated, only

2.2(±1.3) are considered rule-violating. We conclude that the adversarial trajectory

generated by our methods are more realistic in both perspectives of dynamical feasi-

bility and behavior changing.

AdvDO as Augmentation. Noticed that AdvDO also provides an opportunity for

generating realistic trajectories as additional data. We replace the adversarial objec-

tive with other objectives (e.g. increasing left/right/forward/backward deviations)

and generate additional data. More specifically, the objective function consists of two

components: Ldyn = Ld + γLcol , where Ld is the deviation objective loss, Lcol is the

collision regularization loss, and γ is a weight factor to balance the objectives. In each

scene, we randomly pick a deviation objective loss Ld from the set {moving forward,

backward, left, right} for each agent. More specifically, the deviation objective loss

Ld is formulated as

Ld = (X−Xaug) d̄,

where Xaug represents the generated trajectories by perturbing the trajectories in the

dataset and d̄ represents the unit vectors for the target deviation directions in the

set of {moving forward, backward, left, right}. In Table B.2, we demonstrate that

the augmented data improves the clean performance by 9% on ADE. This further

135

validates that the high fidelity of the generated trajectories with the proposed method.

B.3.2 Case studies with planners

Planner. In this work, to demonstrate the explicit consequences of the adversarial

trajectory, we implement two planners (including path planning and motion plan-

ning). The first one is a rule-based planner as implemented by Rempe et al. [117].

However, we notice that this planner is enforcing path planning along the center of

lane lines which leads to insufficient path sampling through the simulations. There-

fore, though the planner naturally avoids driving off road, it is also lack of flexibility to

dodge incoming traffic. To better represent planners equipped on AV, we implement

a simple yet effective planner that uses conformal lattice [101] for sampling paths

and model predictive control (MPC) [24] for motion planning. We call this planner

MPC-based planner.

Planning strategy. In this work, we consider both an open-loop and a closed-loop

planning strategy. Though for the closed-loop planning we have to replay the ground

truth trajectories of other agents, we do notice reduced collisions and driving off road

consequences and consider the closed-loop planning fashion meaningful.

B.3.3 Transferability Analysis

In this section, we aim to analyze the transferability of adversarial trajectories gen-

erated on a source model to a unseen target model. We measure the transferability by

devising the transfer rate metric. High transfer rates indicate that the feasibility of

transfer attack, which is a more realistic black-box attack, in the real-world scenario.

Transfer rate is defined as the success degree of adversarial trajectories on target

model over the success degree of them on source model. The success degree is mea-

sured by the average percentage of increased error (on metrics ADE/FDE/MR/ORR)

with transfer attack on the target models over the increased error with white-box at-

136

tack on the source models.

B.3.4 Ablation Study

We explore the attack results in different traffic scenarios with different speeds cur-

vatures. We calculate the aggregated speed and curvature for each agent in the entire

scene to represent the speed and curvature for that scene. Similarly, we calculate the

aggregated Miss Rates to evaluate performance.

Attack effectiveness with different speeds As shown in Figure B.3, the higher

speed traffic show higher Miss Rates. It is reasonable since position deviations are

larger in high speed traffics. We also notice that the attack results are consistent to

results in Table 1&2 in the main paper, which means different attack methods are

not restricted due to the speed constraints.

Attack effectiveness with different curvatures In Figure B.4, we notice that ad-

versarial trajectories are more effective in small curvature traffics. This is reasonable

since small curvature traffics allow more flexible adversarial trajectory generations.

We find that Opt-end performs better than Opt-init in small curvature traffic. This

could be due to low curvature traffic being less sensitive to current positions.

137

GT & Benign Prediction Opt-end search

History traj

GT future traj

Predicted traj

Adv predicted traj

Adv traj

Adv agent

Benign agent

138

GT & Benign Prediction Opt-end search

History traj

GT future traj

Predicted traj

Adv predicted traj

Adv traj

Adv agent

Benign agent

139

GT & Benign Prediction Opt-end search

History traj

GT future traj

Predicted traj

Adv predicted traj

Adv traj

Adv agent

Benign agent

Figure B.2:
Visualization examples of generated adversarial trajectories from Opt-
end and search. We only show the adversarial agent’s trajectory in the
attack scenario for clearer visualization.

Figure B.3: Speed ablation

140

Figure B.4: Curvature ablation

141

APPENDIX C

Robust Trajectory Prediction against Adversarial

Attacks

C.1 Method and Implementations

C.1.1 Adversarial Attack on Trajectory Prediction

Latent Attack and Context Attack . Noticed that, besides Deterministic

Attack introduced in the main paper, there are also two other less intuitive attacks.

Since the prediction Ŷ is dependent on posterior distribution qϕ(Z|X,Y) and condi-

tional variable f(X), we can construct attacks based on that. Latent attack aims to

increase the error of estimating qϕ(Z|X,Y), which is formulated as:

δ = argmax
δ

KL(qϕ(Z|Y,X) ∥ qϕ(Z|Y,X+ δ)). (C.1)

Context attack aims to increase the error of encoding the conditional variable f(Z),

which is formulated as:

δ = argmax
δ

d(f(X), f(X+ δ)), (C.2)

142

where d is a distance function (e.g., L2 norm). However, latent attack and context

attack are effective due to two reasons. First, they are exploiting the vulnerability

of a partial model. For example, latent attack only exploits the posterior estimation

qϕ(Z|X,Y) and context attack only exploits the conditional encoder f(X). Second,

these attacks aim for a different goal. For the latent attack and context attack, the

objectives are set for finding adversarial perturbations that maximize the difference

of generated posterior distribution/context given X and X+ δ, due to lacking ground

truth for intermediate latent variables. However, for the sample attack, the objective

is directly set for maximizing the prediction errors from the ground truth (future

trajectories), which is more effective.

Adversarial attack on consecutive frames. In order to fool a planner in a

closed-loop manner to make consistent wrong decisions, we need to conduct adversar-

ial attacks on consecutive frames. To attack Lp consecutive frames of predictions, we

aim to generate the adversarial trajectory of length H + Lp that uniformly misleads

the prediction at each time frame. To achieve this goal, we can easily extend the

formulation for attacking single-step predictions to attack a sequence of predictions,

which is useful for attacking a sequence of decision made by AV planning module.

Concretely, to generate the adversarial trajectories for Lp consecutive steps of pre-

dictions, we aggregate the adversarial losses over these frames. The objective for

attacking a length of H + Lp trajectory is:

∑
t∈[−Lp,...0]

Ladv(Xadv(t),Y(t)), (C.3)

where Xadv(t),Y(t) are the corresponding X+ δ,Y at time frame t.

143

C.1.2 Adversarial Training on Generative Models

Challenges. One challenge that hinders the adversarial training process is the

noisy conditional data distribution disturbing the training process. One hypothesis

we mentioned in the main paper is, the context encoding can magnify the bounded

perturbation δ on history trajectory X to an unbounded perturbation on the condi-

tional variable C = f(X+ δ), during the training process.

Lemma C.1. For a neural network f which is not bounded on Lipschitz constant

during the training procedure, given any constant η and an input X, there exists a

pair (δ, f), that satisfies

∥ f(X+ δ)− f(X) ∥≥ η.

Lemma C.1 can be easily derived by the definition of Lipshitz constant. Lipshitz

constant L is defined as

L := sup
∥ f(X+ δ)− f(X) ∥

∥ δ ∥
.

If L is not bounded, ∥f(X+δ)−f(X)∥
∥δ∥ is not bounded and so is ∥ f(X + δ) − f(X) ∥

given a bounded δ. This means that, a bounded perturbation δ can potentially be

magnified to be noisier on encoded conditional variable C = f(X+ δ).

Analysis. In order to provide a quantitative analysis of the degeneration degree

from conditional generative model to generative model (e.g., CVAE to VAE) with

respect to the noise level, we propose a method to estimate the correlation between

the degeneration and the noise level. Specifically, we trained a classifier with a 2-

layer CNN achieving 99% accuracy on MNIST dataset. Then, given a conditional

variable (the upper left quarter of an image of digit y), we generate images with

the conditional generative models and use the classifier to calculate the confidence of

the generated images labeled as digit y. We calculate the average confidence of 10

144

p = 0 p = 0.1 p = 0.2 p = 0.3 p = 0.4

p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9

Figure C.1:
Visual examples of images generated from models trained with different
levels of salt and pepper noises.

generated images on all 10,000 images in the MNIST test data set. The lower the

score means the weaker the correlation between the generated images with the given

conditions, or the stronger correlation between the degeneration and the noise level.

We also provide visualization examples of generated images from models trained using

data with different level of noises in Figure C.1 and Figure C.2. We can see that, with

the noise level increases, the generated images are less dependent on the conditional

variable (i.e., not being the same digit). In the extreme case of high level noise, for

example when p = 0.9, the model generates images solely depends on the random

prior value it samples and generates the similar images for each row. We can also

see that, the adversarial noises are more effective compared to the salt and pepper

noise. With a small amount of noise (i.e., ϵ = 0.1), it can degenerate the conditional

generative model to a generative model (i.e., CVAE to VAE here).

145

ϵ = 0 ϵ = 0.01 ϵ = 0.03 ϵ = 0.05 ϵ = 0.1

Figure C.2:
Visual examples of images generated from models trained with different
levels of adversarial noises.

C.1.3 Data Augmentation with Dynamic Model

For the data augmentation strategy A, we use a kinematic bicycle model [113] as

our dynamic model to generate realistic trajectories that can be driven in the real

world. Representing the behavior of actors as kinematic bicycle model trajectories

allows for physical feasibility and fine-grained behavior control. To generate realistic

trajectories, we first parameterize the trajectory S = {st}T0 as a sequence of kinematic

bicycle model states st = {pt, κt, at}, where p represents the position, κ represents

the trajectory curvature, and a represents the acceleration. Then, trajectories can

be generated by controlling the change of curvature κ̇t and the acceleration at over

time, and using the kinematic bicycle model to update corresponding other states for

each timestamp. To generate diverse trajectories, we set the objectives as biasing the

trajectories to a given direction (e.g. forward, backward, left and right), while not

colliding with other agents. To that end, we optimize a carefully-designed objective

function Ldyn over the control actions, i.e. κ̇t and at for each agents. More specifically,

the objective function consists of two components: Ldyn = Ld + γLcol , where Ld is

the deviation objective loss, Lcol is the collision regularization loss, and γ is a weight

factor to balance the objectives. In each scene, we randomly pick a deviation objective

loss Ld from the set {moving forward, backward, left, right} for each agent. More

146

specifically, the deviation objective loss Ld is formulated as

Ld = (X−Xaug) d̄,

where Xaug represents the generated trajectories by perturbing the trajectories in the

dataset and d̄ represents the unit vectors for the target deviation directions in the

set of {moving forward, backward, left, right}. And the collision regularization loss

Lcol is formulated as

Lcol(Xaug,X) =
1

n− 1

n−1∑
i ̸=aug

1

∥Xaug −Xi∥+ 1
,

We also clip the maximum deviation of the positions so that the trajectories are

constrained to be in the lane.

C.1.4 MPC-based Planner

Planner. In this work, to demonstrate the explicit consequences of the adversar-

ial trajectory, we implement a simple yet effective planner that uses conformal lat-

tice [101] for sampling paths and model predictive control (MPC) [24] for motion

planning. We call this planner MPC-based planner.

Planning strategy. In this work, we consider a closed-loop planning strategy.

Though for the closed-loop planning we have to replay the ground truth trajecto-

ries of other agents, we do notice reduced collisions and driving off-road consequences

compared to open-loop planning and consider the closed-loop planning fashion mean-

ingful.

147

C.2 Experiment and Results

C.2.1 More details on Experimental Setup

Models. Since the adversarial training process is computationally heavy, we use a

lightweight version of the AgentFormer in the analysis and ablation studies, namely

mini-AgentFormer. In mini-AgentFormer, we (1) remove the map context and (2)

reduce the transformer layer from two layers to a single layer. We report the final

results for all three models: AgentFormer (AF), mini-AgentFormer (mini-AF) and

Social-GAN.

Evaluating impacts to downstream planners. To demonstrate the impacts to

downstream planners, we generate adversarial examples for consecutive frames on

traffic scenarios in nuScenes dataset. With the MPC-based planner plugged in, we

can demonstrate the consequences of the adversarial attacks on trajectory prediction

models. We use the prediction results of AgentFormer trained with different methods

due to its best performance among the three models. As we mentioned in the main

paper, we show 10 cases where the AV collides with other vehicles under attack. We

visualize 3 scenarios in the demo video of the supplementary material.

Hyperparameter choices. To select the hyperparameter β, we conduct adversar-

ial training with different β for controlling the regularization. The results are shown

in Table C.1. We find that β = 0.1 achieves a good trade-off between robustness and

clean performance. Therefore, we use β = 0.1 for the experiments in the rest of the

paper.

β 0.01 0.1 0.5 1 10

ADE 2.19 2.29 2.37 2.39 2.57
Robust ADE 3.91 3.76 3.80 3.78 3.79

Table C.1: Ablation study on different regularization loss weights.

148

To select the PGD attack step for evaluation, we conduct ablation experiments

to show the convergence of different PGD steps. As shown in Figure C.3, the attack

converges at 20 steps. Thus, we select the 20-step PDG attack for the experiments

in this paper

Figure C.3:
PGD step convergence for
attack convergence with
Deterministic Attack . At-
tack converges around 20
steps.

Figure C.4:
PGD step sizes ablation
study. We find that ex-
cept for 1 step PGD ad-
versarial training, adver-
sarial training with all the
other step sizes achieves
similar results.

To select the PGD attack steps of adversarial training, we conduct experiments

on adversarially training the model with different PGD steps. Since we are using

PGD attack with adaptive step sizes [46], attacks with any PGD steps are able to

fully utilize the attack capability controlled by ϵ. In Figure C.4, we show that except

for the 1-step PGD attack, all other steps show the similar robustness and clean

performance.

Evaluation with existing attack [190]. We also evaluate the robust trained

model with the existing search attack [190]. The results are shown in the Table C.2.

We show that the existing attack increased less prediction error (e.g., 78% less for

ϵ = 1.0 on AgentFormer trained with clean data) due to the additional constraints

149

of the attack. We demonstrate that the proposed RobustTraj achieves both best

robustness and least clean performance degradation, compared to the baselines.

Table C.2:
Evaluation results of the proposed methods and existing methods on the
search attack proposed by Zhang et al. [190]. mini-AF, AF and SGAN
represent mini-AgentFormer, AgentFormer, and Social-GAN respectively.
DA represents data augmentation with adversarial examples.

Model Method ADE Robust ADE FDE Robust FDE
0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0

mini-AF

Clean 2.05 2.05 3.24 4.61 4.41 4.41 6.19 8.02
Näıve AT 2.75 2.78 3.38 4.46 5.92 5.89 6.97 8.17
DA + Train-time Smoothing 2.41 2.39 3.28 4.04 5.05 5.09 6.36 8.33
Detection + Test Smoothing 2.31 2.28 3.26 4.41 4.96 4.91 6.41 8.27
RobustTraj 2.14 2.11 2.50 2.51 4.36 4.35 5.07 5.11

AF

Clean 1.86 1.86 2.62 3.34 3.89 3.89 5.22 6.72
Näıve AT 2.52 2.56 2.86 3.52 5.18 5.32 5.68 6.75
DA + Train-time Smoothing 2.17 2.13 2.72 3.44 4.59 4.51 5.38 6.17
Detection + Test Smoothing 2.08 2.03 2.58 3.29 4.43 4.26 5.49 6.22
RobustTraj 1.91 1.95 2.14 2.21 4.02 4.01 4.31 4.31

SocialGAN

Clean 4.80 4.80 6.45 8.08 5.52 5.52 7.78 11.12
Näıve AT 6.43 6.55 6.99 8.66 7.60 7.53 8.98 10.54
DA + Train-time Smoothing 5.63 5.61 6.42 8.01 6.44 6.41 8.34 9.88
Detection + Test Smoothing 5.35 5.37 6.34 8.72 6.12 6.07 7.77 10.21
RobustTraj 4.95 5.07 5.01 5.49 5.72 5.73 6.68 6.40

C.2.2 Main Results

We evaluate our methods and existing methods with four metrics in Table C.3.

We observe that the results are consistent where the proposed RobustTraj achieves

the best results compared to the baselines and existing methods [190].

In the demo video, we visualized scenarios where adversarial attacks on trajectory

prediction models lead to collisions on both model trained on clean data and model

trained with an existing defense [190], while model trained with RobustTraj is able

to avoid the collisions.

150

Table C.3:
Additional evaluation results of the proposed methods and existing meth-
ods. mini-AF, AF and SGAN represent mini-AgentFormer, AgentFormer,
and Social-GAN respectively. DA represents data augmentation with ad-
versarial examples.

Model Method ADE Robust ADE FDE Robust FDE
0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0

mini-AF

Clean 2.05 2.05 6.86 11.53 4.41 4.41 13.08 20.15

Näıve AT 2.75 2.78 5.44 9.20 5.92 5.89 10.13 15.78
DA 2.31 2.32 5.54 9.32 5.01 4.92 10.09 15.77
Train-time Smoothing 3.14 3.07 5.67 9.31 6.77 6.61 10.51 17.48
Test-time Smoothing 2.97 3.07 4.96 8.50 6.49 6.31 9.25 14.13
DA + Train-time Smoothing 2.41 2.39 5.48 9.00 5.05 5.09 10.23 16.87
Detection + Test Smoothing 2.31 2.28 5.91 9.85 4.96 4.91 11.49 17.57
RobustTraj 2.14 2.11 3.69 3.82 4.36 4.35 7.10 7.59

AF

Clean 1.86 1.86 5.09 8.57 3.89 3.89 9.42 14.41

Näıve AT 2.52 2.56 3.81 6.81 5.18 5.32 7.11 10.76
DA 2.10 2.08 4.35 7.22 4.33 4.38 8.08 12.15
Train-time Smoothing 2.11 2.13 4.19 6.79 4.40 4.46 8.01 11.13
Test-time Smoothing 2.40 2.41 4.43 7.44 5.02 4.99 8.23 12.47
DA + Train-time Smoothing 2.17 2.13 4.14 6.62 4.59 4.51 7.85 11.00
Detection + Test Smoothing 2.08 2.03 4.45 7.59 4.43 4.26 8.01 12.74
RobustTraj 1.91 1.95 2.73 2.86 4.02 4.01 5.22 5.48

SGAN

Clean 4.80 4.80 10.52 20.15 5.52 5.52 15.60 24.79

Näıve AT 6.43 6.55 8.34 14.63 7.60 7.53 13.71 17.93
DA 5.41 5.40 8.85 17.25 6.16 6.21 13.33 20.83
Train-time Smoothing 5.50 5.47 8.74 16.51 6.27 6.31 14.03 19.48
Test-time Smoothing 6.16 6.17 9.05 17.42 7.14 7.07 13.52 21.81
DA + Train-time Smoothing 5.63 5.61 8.60 16.14 6.44 6.41 13.82 19.08
Detection + Test Smoothing 5.35 5.37 9.28 17.39 6.12 6.07 13.36 21.59
RobustTraj 4.95 5.07 5.20 6.94 5.72 5.73 8.97 8.89

151

Model Method MR Robust MR ORR Robust ORR
0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0

mini-AF

Clean 0.33 0.33 0.77 0.93 0.08 0.08 0.28 0.45

Näıve AT 0.45 0.45 0.60 0.70 0.11 0.10 0.22 0.34
DA 0.37 0.38 0.61 0.72 0.09 0.09 0.22 0.35
Train-time Smoothing 0.50 0.50 0.66 0.79 0.12 0.12 0.22 0.38
Test-time Smoothing 0.48 0.50 0.56 0.65 0.11 0.11 0.20 0.32
DA + Train-time Smoothing 0.39 0.40 0.65 0.77 0.09 0.09 0.22 0.37
Detection + Test-time Smoothing 0.37 0.38 0.69 0.81 0.09 0.09 0.25 0.41
RobustTraj 0.34 0.36 0.54 0.54 0.08 0.08 0.10 0.11

AF

Clean 0.29 0.29 0.66 0.88 0.04 0.04 0.16 0.30

Näıve AT 0.39 0.38 0.51 0.69 0.06 0.06 0.13 0.22
DA 0.32 0.32 0.56 0.74 0.05 0.05 0.14 0.26
Train-time Smoothing 0.33 0.33 0.56 0.71 0.05 0.05 0.13 0.25
Test-time Smoothing 0.37 0.37 0.58 0.77 0.05 0.05 0.14 0.26
DA + Train-time Smoothing 0.33 0.33 0.54 0.70 0.05 0.05 0.13 0.24
Detection + Test-time Smoothing 0.32 0.33 0.59 0.76 0.04 0.05 0.14 0.27
RobustTraj 0.29 0.31 0.46 0.51 0.04 0.04 0.05 0.07

SocialGAN

Clean 0.40 0.40 0.85 0.99 0.14 0.14 0.52 0.60

Näıve AT 0.53 0.53 0.63 0.77 0.19 0.19 0.39 0.44
DA 0.44 0.44 0.72 0.85 0.16 0.16 0.44 0.51
Train-time Smoothing 0.45 0.45 0.67 0.82 0.16 0.16 0.42 0.50
Test-time Smoothing 0.51 0.51 0.74 0.85 0.19 0.19 0.45 0.52
DA + Train-time Smoothing 0.47 0.46 0.66 0.81 0.17 0.17 0.41 0.49
Detection + Test-time Smoothing 0.45 0.44 0.74 0.89 0.16 0.16 0.46 0.53
RobustTraj 0.41 0.42 0.60 0.62 0.15 0.15 0.24 0.29

152

BIBLIOGRAPHY

153

BIBLIOGRAPHY

[1] (2005), HARD BRAKE HARD ACCELERATION, http://

tracknet.accountsupport.com/wp-content/uploads/Verizon/

Hard-Brake-Hard-Acceleration.pdf.

[2] (2016), ArbExpress, https://www.tek.com/signal-generator/

afg2021-software-0.

[3] (2017), Baidu Apollo, http://apollo.auto.

[4] (2017), KITTI Vision Benchmark: 3D Object Detection, http://www.cvlibs.
net/datasets/kitti/eval_object.php?obj_benchmark=3d, accessed: 2021-
08-17.

[5] (2017), What it Was Like to Ride in GM’s New Self-Driving
Cruise Car, https://www.recode.net/2017/11/29/16712572/

general-motors-gm-new-self-driving-autonomous-cruise-car-future.

[6] (2017), An Introduction to LIDAR: The Key Self-
Driving Car Sensor, https://news.voyage.auto/

an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff.

[7] (2017), Google’s Waymo Invests in LIDAR Technology, Cuts
Costs by 90 Percent, https://arstechnica.com/cars/2017/01/

googles-waymo-invests-in-lidar-technology-cuts-costs-by-90-percent/.

[8] (2018), Baidu starts mass production of autonomous buses, https://

www.dw.com/en/baidu-starts-mass-production-of-autonomous-buses/

a-44525629.

[9] (2018), Baidu hits the gas on autonomous vehicles with
Volvo and Ford deals, https://techcrunch.com/2018/11/01/

baidu-volvo-ford-autonomous-driving/.

[10] (2018), What Is LIDAR, Why Do Self-Driving Cars Need It,
And Can It See Nerf Bullets?, https://www.wired.com/story/

lidar-self-driving-cars-luminar-video/.

[11] (2018), Volvo Finds the LIDAR it Needs to Build Self-Driving Cars, https:
//www.wired.com/story/volvo-self-driving-lidar-luminar/.

154

http://tracknet.accountsupport.com/wp-content/uploads/Verizon/Hard-Brake-Hard-Acceleration.pdf
http://tracknet.accountsupport.com/wp-content/uploads/Verizon/Hard-Brake-Hard-Acceleration.pdf
http://tracknet.accountsupport.com/wp-content/uploads/Verizon/Hard-Brake-Hard-Acceleration.pdf
https://www.tek.com/signal-generator/afg2021-software-0
https://www.tek.com/signal-generator/afg2021-software-0
http://apollo.auto
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
https://www.recode.net/2017/11/29/16712572/general-motors-gm-new-self-driving-autonomous-cruise-car-future
https://www.recode.net/2017/11/29/16712572/general-motors-gm-new-self-driving-autonomous-cruise-car-future
https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff
https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff
https://arstechnica.com/cars/2017/01/googles-waymo-invests-in-lidar-technology-cuts-costs-by-90-percent/
https://arstechnica.com/cars/2017/01/googles-waymo-invests-in-lidar-technology-cuts-costs-by-90-percent/
https://www.dw.com/en/baidu-starts-mass-production-of-autonomous-buses/a-44525629
https://www.dw.com/en/baidu-starts-mass-production-of-autonomous-buses/a-44525629
https://www.dw.com/en/baidu-starts-mass-production-of-autonomous-buses/a-44525629
https://techcrunch.com/2018/11/01/baidu-volvo-ford-autonomous-driving/
https://techcrunch.com/2018/11/01/baidu-volvo-ford-autonomous-driving/
https://www.wired.com/story/lidar-self-driving-cars-luminar-video/
https://www.wired.com/story/lidar-self-driving-cars-luminar-video/
https://www.wired.com/story/volvo-self-driving-lidar-luminar/
https://www.wired.com/story/volvo-self-driving-lidar-luminar/

[12] (2018), You can take a ride in a self-driving Lyft dur-
ing CES, https://www.theverge.com/2018/1/2/16841090/

lyft-aptiv-self-driving-car-ces-2018.

[13] (2018), VeloView, https://www.paraview.org/VeloView/.

[14] (2018), Waymo’s autonomous cars have driven 8 million miles on
public roads, https://www.theverge.com/2018/7/20/17595968/

waymo-self-driving-cars-8-million-miles-testing.

[15] Abadi, M., et al. (2016), Tensorflow: a system for large-scale machine learning.,
in OSDI, vol. 16, pp. 265–283.

[16] Abeysirigoonawardena, Y., F. Shkurti, and G. Dudek (2019), Generating adver-
sarial driving scenarios in high-fidelity simulators, in 2019 International Con-
ference on Robotics and Automation (ICRA), pp. 8271–8277, IEEE.

[17] Alahi, A., K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese
(2016), Social lstm: Human trajectory prediction in crowded spaces, in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pp. 961–971.

[18] Athalye, A., and I. Sutskever (2018), Synthesizing Robust Adversarial Exam-
ples, in International Conference on Machine Learning (ICML).

[19] Athalye, A., N. Carlini, and D. Wagner (2018), Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples, arXiv
preprint arXiv:1802.00420.

[20] Bafna, M., J. Murtagh, and N. Vyas (2018), Thwarting adversarial examples:
An l 0-robustsparse fourier transform, arXiv preprint arXiv:1812.05013.

[21] Brostow, G. J., J. Shotton, J. Fauqueur, and R. Cipolla (2008), Segmentation
and recognition using structure from motion point clouds, in ECCV (1), pp.
44–57.

[22] Brown, T. B., D. Mané, A. Roy, M. Abadi, and J. Gilmer (2017), Adversarial
patch, arXiv preprint arXiv:1712.09665.

[23] Caesar, H., et al. (2020), nuscenes: A multimodal dataset for autonomous driv-
ing, in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11,621–11,631.

[24] Camacho, E. F., and C. B. Alba (2013), Model predictive control, Springer
science & business media.

[25] Carlini, N., and D. Wagner (2017), Towards evaluating the robustness of neural
networks, in IEEE Symposium on Security and Privacy, 2017.

155

https://www.theverge.com/2018/1/2/16841090/lyft-aptiv-self-driving-car-ces-2018
https://www.theverge.com/2018/1/2/16841090/lyft-aptiv-self-driving-car-ces-2018
https://www.paraview.org/VeloView/
https://www.theverge.com/2018/7/20/17595968/waymo-self-driving-cars-8-million-miles-testing
https://www.theverge.com/2018/7/20/17595968/waymo-self-driving-cars-8-million-miles-testing

[26] Carlini, N., and D. Wagner (2017), Adversarial Examples are not Easily De-
tected: Bypassing Ten Detection Methods, in Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security, pp. 3–14, ACM.

[27] Carlini, N., and D. Wagner (2018), Audio Adversarial Examples: Targeted
Attacks on Speech-to-text, in Deep Learning and Security Workshop (DLS).

[28] Carlini, N., and D. A. Wagner (2017), Towards Evaluating the Robustness of
Neural Networks, in 2017 IEEE Symposium on Security and Privacy, SP 2017,
San Jose, CA, USA, May 22-26, 2017, pp. 39–57, doi:10.1109/SP.2017.49.

[29] Carlini, N., P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields, D. Wagner,
and W. Zhou (2016), Hidden Voice Commands, in USENIX Security Sympo-
sium, pp. 513–530.

[30] Carlini, N., A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras,
I. Goodfellow, A. Madry, and A. Kurakin (2019), On evaluating adversarial
robustness, arXiv preprint arXiv:1902.06705.

[31] Checkoway, S., et al. (2011), Comprehensive Experimental Analyses of Au-
tomotive Attack Surfaces, in Proceedings of the 20th USENIX Conference on
Security, SEC’11.

[32] Chen, L.-C., G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille (2017),
Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs, IEEE transactions on pattern analysis
and machine intelligence, 40 (4), 834–848.

[33] Chen, L.-C., Y. Zhu, G. Papandreou, F. Schroff, and H. Adam (2018), Encoder-
decoder with atrous separable convolution for semantic image segmentation, in
ECCV.

[34] Chen, Q. A., Y. Yin, Y. Feng, Z. M. Mao, and H. X. L. Liu (2018), Exposing
Congestion Attack on Emerging Connected Vehicle based Traffic Signal Control,
in Proceedings of the 25th Annual Network and Distributed System Security
Symposium, NDSS ’18.

[35] Chen, S.-T., C. Cornelius, J. Martin, and D. H. P. Chau (2018), Shapeshifter:
Robust physical adversarial attack on faster r-cnn object detector, in Joint
European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 52–68, Springer.

[36] Cheng, M., J. Yi, H. Zhang, P.-Y. Chen, and C.-J. Hsieh (2018), Seq2sick:
Evaluating the robustness of sequence-to-sequence models with adversarial ex-
amples, arXiv preprint arXiv:1803.01128.

[37] Chiang, P.-y., R. Ni, A. Abdelkader, C. Zhu, C. Studor, and T. Goldstein
(2019), Certified defenses for adversarial patches, in International Conference
on Learning Representations.

156

[38] Cho, K.-T., and K. G. Shin (2016), Error handling of in-vehicle networks makes
them vulnerable, in Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS’16.

[39] Choquette, J., W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky (2021),
Nvidia a100 tensor core gpu: Performance and innovation, IEEE Micro, 41 (2),
29–35, doi:10.1109/MM.2021.3061394.

[40] Cignoni, P., M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia (2008), Meshlab: an open-source mesh processing tool., in Euro-
graphics Italian chapter conference, vol. 2008, pp. 129–136.

[41] Cisse, M., Y. Adi, N. Neverova, and J. Keshet (2017), Houdini: Fooling deep
structured prediction models, arXiv preprint arXiv:1707.05373.

[42] Collobert, R., and J. Weston (2008), A unified architecture for natural language
processing: Deep neural networks with multitask learning, in Proceedings of the
25th international conference on Machine learning, pp. 160–167, ACM.

[43] Condrea, O., A. Chiru, R. Chiriac, and S. Vlase (2017), Mathematical model
for studying cyclist kinematics in vehicle-bicycle frontal collisions, IOP Con-
ference Series: Materials Science and Engineering, 252, 012,003, doi:10.1088/
1757-899x/252/1/012003.

[44] Contributors, M. (2018), MMCV: OpenMMLab computer vision foundation,
https://github.com/open-mmlab/mmcv.

[45] Cordts, M., M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele (2016), The cityscapes dataset for semantic
urban scene understanding, in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 3213–3223.

[46] Croce, F., and M. Hein (2020), Reliable evaluation of adversarial robustness
with an ensemble of diverse parameter-free attacks, in International Conference
on Machine Learning, pp. 2206–2216, PMLR.

[47] Demontis, A., M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea, C. Nita-
Rotaru, and F. Roli (2019), Why do adversarial attacks transfer? explaining
transferability of evasion and poisoning attacks, in 28th USENIX Security Sym-
posium (USENIX Security 19), pp. 321–338, USENIX Association, Santa Clara,
CA.

[48] Deng, L. (2012), The mnist database of handwritten digit images for machine
learning research, IEEE Signal Processing Magazine, 29 (6), 141–142.

[49] Deng, L., et al. (2013), Recent advances in deep learning for speech research at
microsoft., in ICASSP, vol. 26, p. 64.

157

https://github.com/open-mmlab/mmcv

[50] Deo, N., and M. M. Trivedi (2020), Trajectory forecasts in unknown environ-
ments conditioned on grid-based plans, arXiv preprint arXiv:2001.00735.

[51] Deo, N., E. Wolff, and O. Beijbom (2021), Multimodal trajectory prediction
conditioned on lane-graph traversals, in 5th Annual Conference on Robot Learn-
ing.

[52] Ding, W., B. Chen, M. Xu, and D. Zhao (2020), Learning to collide: An adap-
tive safety-critical scenarios generating method, in 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 2243–2250,
IEEE.

[53] Ding, W., B. Chen, B. Li, K. J. Eun, and D. Zhao (2021), Multimodal safety-
critical scenarios generation for decision-making algorithms evaluation, IEEE
Robotics and Automation Letters, 6 (2), 1551–1558.

[54] el al., L. (2019), On physical adversarial patches for object detection, arXiv
preprint arXiv:1906.11897.

[55] et al., A. (2019), Attacking optical flow, in ICCV.

[56] et al., H. (2019), Adversarial signboard against object detector., in BMVC.

[57] et al., S. (2020), Role of spatial context in adversarial robustness for object
detection, in CVPR Workshops.

[58] Everingham, M., L. Van Gool, C. Williams, J. Winn, and A. Zisserman (2010),
The pascal visual object classes (voc) challenge, International Journal of Com-
puter Vision, 88, 303–338, doi:10.1007/s11263-009-0275-4.

[59] Evtimov, I., K. Eykholt, E. Fernandes, T. Kohno, B. Li, A. Prakash, A. Rah-
mati, and D. Song (2017), Robust physical-world attacks on deep learning mod-
els, arXiv preprint arXiv:1707.08945, 1.

[60] Eykholt, K., I. Evtimov, E. Fernandes, B. Li, A. Rahmati, F. Tramer,
A. Prakash, T. Kohno, and D. Song (2018), Physical Adversarial Examples for
Object Detectors, in USENIX Workshop on Offensive Technologies (WOOT).

[61] Eykholt, K., I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song (2018), Robust Physical-World Attacks on Deep Learn-
ing Visual Classification, in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[62] Feng, Y., S. Huang, Q. A. Chen, H. X. Liu, and Z. M. Mao (2018), Vulnera-
bility of Traffic Control System Under Cyber-Attacks Using Falsified Data, in
Transportation Research Board 2018 Annual Meeting (TRB).

[63] Fu, J., J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu (2019), Dual attention
network for scene segmentation, in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3146–3154.

158

[64] Goodfellow, I. J., J. Shlens, and C. Szegedy (2014), Explaining and harnessing
adversarial examples, arXiv preprint arXiv:1412.6572.

[65] Hallyburton, R. S., Y. Liu, Y. Cao, Z. M. Mao, and M. Pajic (2022), Security
analysis of Camera-LiDAR fusion against Black-Box attacks on autonomous
vehicles, in 31st USENIX Security Symposium (USENIX Security 22), pp. 1903–
1920, USENIX Association, Boston, MA.

[66] Hamdi, A., S. Rojas, A. Thabet, and B. Ghanem (2020), AdvPC: Transfer-
able Adversarial Perturbations on 3D Point Clouds, in European Conference on
Computer Vision, pp. 241–257.

[67] He, K., X. Zhang, S. Ren, and J. Sun (2015), Spatial pyramid pooling in deep
convolutional networks for visual recognition, IEEE transactions on pattern
analysis and machine intelligence, 37 (9), 1904–1916.

[68] He, K., X. Zhang, S. Ren, and J. Sun (2016), Deep residual learning for im-
age recognition, in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770–778.

[69] Huang, G., Z. Liu, L. Van Der Maaten, and K. Q. Weinberger (2017), Densely
connected convolutional networks., in CVPR, vol. 1, p. 3.

[70] Huang, L., C. Gao, Y. Zhou, C. Xie, A. Yuille, C. Zou, and N. Liu (2019),
Universal physical camouflage attacks on object detectors.

[71] Huang, L., C. Gao, Y. Zhou, C. Xie, A. L. Yuille, C. Zou, and N. Liu (2020),
Universal physical camouflage attacks on object detectors, in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
720–729.

[72] Huang, Z., X. Wang, L. Huang, C. Huang, Y. Wei, and W. Liu (2019), Cc-
net: Criss-cross attention for semantic segmentation, in Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 603–612.

[73] Ilyas, A., L. Engstrom, A. Athalye, and J. Lin (2018), Black-box adversarial
attacks with limited queries and information, arXiv preprint arXiv:1804.08598.

[74] Inc., V. L. (2018), VLP-16 User Manual.

[75] Ivanovic, B., and M. Pavone (2019), The trajectron: Probabilistic multi-agent
trajectory modeling with dynamic spatiotemporal graphs, in Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 2375–2384.

[76] Ivanovic, B., and M. Pavone (2021), Injecting planning-awareness into predic-
tion and detection evaluation, CoRR, abs/2110.03270.

[77] Jaderberg, M., K. Simonyan, A. Zisserman, et al. (2015), Spatial transformer
networks, in Advances in neural information processing systems, pp. 2017–2025.

159

[78] Jeddi, A., M. J. Shafiee, and A. Wong (2020), A simple fine-tuning is all you
need: Towards robust deep learning via adversarial fine-tuning, arXiv preprint
arXiv:2012.13628.

[79] Jekel, C. F., G. Venter, M. P. Venter, N. Stander, and R. T. Haftka (2019),
Similarity measures for identifying material parameters from hysteresis loops
using inverse analysis, International Journal of Material Forming, doi:10.1007/
s12289-018-1421-8.

[80] Kingma, D. P., and J. Ba (2014), Adam: A method for stochastic optimization,
arXiv preprint arXiv:1412.6980.

[81] Koren, M., and M. J. Kochenderfer (2019), Efficient autonomy validation in
simulation with adaptive stress testing, in 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), pp. 4178–4183, IEEE.

[82] Kosaraju, V., A. Sadeghian, R. Mart́ın-Mart́ın, I. Reid, H. Rezatofighi, and
S. Savarese (2019), Social-bigat: Multimodal trajectory forecasting using
bicycle-gan and graph attention networks, Advances in Neural Information Pro-
cessing Systems, 32.

[83] Koscher, K., et al. (2010), Experimental Security Analysis of a Modern Auto-
mobile, in Proceedings of the 2010 IEEE Symposium on Security and Privacy,
SP’10.

[84] Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012), Imagenet classification
with deep convolutional neural networks, in Advances in neural information
processing systems, pp. 1097–1105.

[85] Kurakin, A., I. Goodfellow, and S. Bengio (2016), Adversarial examples in the
physical world, arXiv preprint arXiv:1607.02533.

[86] Lang, A. H., S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom (2019),
Pointpillars: Fast Encoders for Object Detection from Point Clouds, in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 12,697–12,705.

[87] Lee, M., and Z. Kolter (2019), On physical adversarial patches for object de-
tection, arXiv preprint arXiv:1906.11897.

[88] Lee, S., H. Lee, and S. Yoon (2020), Adversarial vertex mixup: Toward better
adversarially robust generalization, in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 272–281.

[89] Li, X., Z. Zhong, J. Wu, Y. Yang, Z. Lin, and H. Liu (2019), Expectation-
maximization attention networks for semantic segmentation, in Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 9167–9176.

160

[90] Li, X., J. Kaesemodel Pontes, and S. Lucey (2021), Neural scene flow prior,
Advances in Neural Information Processing Systems, 34.

[91] Liu, D., R. Yu, and H. Su (2019), Extending adversarial attacks and defenses
to deep 3d point cloud classifiers, in 2019 IEEE International Conference on
Image Processing (ICIP), pp. 2279–2283, IEEE.

[92] Liu, H.-T. D., M. Tao, C.-L. Li, D. Nowrouzezahrai, and A. Jacobson (2018),
Adversarial geometry and lighting using a differentiable renderer, CoRR,
abs/1808.02651.

[93] Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg
(2016), Ssd: Single shot multibox detector, in European conference on computer
vision, pp. 21–37, Springer.

[94] Liu, X., H. Yang, Z. Liu, L. Song, H. Li, and Y. Chen (2018), Dpatch: An
adversarial patch attack on object detectors, arXiv preprint arXiv:1806.02299.

[95] Liu, Y., S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang (2018),
Trojaning Attack on Neural Networks, in Annual Network and Distributed Sys-
tem Security Symposium (NDSS).

[96] Luc, P., C. Couprie, S. Chintala, and J. Verbeek (2016), Semantic segmentation
using adversarial networks, arXiv preprint arXiv:1611.08408.

[97] Luo, W., Y. Li, R. Urtasun, and R. Zemel (2016), Understanding the effective
receptive field in deep convolutional neural networks, in Proceedings of the 30th
International Conference on Neural Information Processing Systems, pp. 4905–
4913.

[98] Madry, A., A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu (2017), To-
wards deep learning models resistant to adversarial attacks, arXiv preprint
arXiv:1706.06083.

[99] Madry, A., A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu (2018), Towards
deep learning models resistant to adversarial attacks, in International Confer-
ence on Learning Representations.

[100] Mazloom, S., M. Rezaeirad, A. Hunter, and D. McCoy (2016), A Security Anal-
ysis of an In-Vehicle Infotainment and App Platform, in Usenix Workshop on
Offensive Technologies (WOOT).

[101] McNaughton, M., C. Urmson, J. M. Dolan, and J.-W. Lee (2011), Motion
planning for autonomous driving with a conformal spatiotemporal lattice, in
2011 IEEE International Conference on Robotics and Automation, pp. 4889–
4895, IEEE.

161

[102] Meng, D., and H. Chen (2017), Magnet: a two-pronged defense against ad-
versarial examples, in Proceedings of the 2017 ACM SIGSAC conference on
computer and communications security, pp. 135–147.

[103] Mirsky, Y. (2021), Ipatch: A remote adversarial patch, arXiv preprint
arXiv:2105.00113.

[104] Moosavi-Dezfooli, S.-M., A. Fawzi, and P. Frossard (2016), Deepfool: a simple
and accurate method to fool deep neural networks, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2574–2582.

[105] Noack, A., I. Ahern, D. Dou, and B. Li (2021), An empirical study on the rela-
tion between network interpretability and adversarial robustness, SN Computer
Science, 2 (1), 1–13.

[106] Papernot, N., and P. McDaniel (2017), Extending defensive distillation, arXiv
preprint arXiv:1705.05264.

[107] Papernot, N., P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami
(2016), The limitations of deep learning in adversarial settings, in Security and
Privacy (EuroS&P), 2016 IEEE European Symposium on, pp. 372–387, IEEE.

[108] Papernot, N., P. McDaniel, X. Wu, S. Jha, and A. Swami (2016), Distillation
as a defense to adversarial perturbations against deep neural networks, in 2016
IEEE symposium on security and privacy (SP), pp. 582–597, IEEE.

[109] Papernot, N., P. McDaniel, X. Wu, S. Jha, and A. Swami (2016), Distillation as
a defense to adversarial perturbations against deep neural networks, in Security
and Privacy (SP), 2016 IEEE Symposium on, pp. 582–597, IEEE.

[110] Papernot, N., P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami
(2017), Practical Black-Box Attacks Against Machine Learning, in ACM on
Asia Conference on Computer and Communications Security.

[111] Petit, J., B. Stottelaar, M. Feiri, and F. Kargl (2015), Remote Attacks on
Automated Vehicles Sensors: Experiments on Camera and LiDAR, in Black
Hat Europe.

[112] Petitcolas, F. A. P. (2011), Kerckhoffs’ Principle, pp. 675–675, Springer US,
Boston, MA, doi:10.1007/978-1-4419-5906-5 487.

[113] Polack, P., F. Altché, B. d’Andréa Novel, and A. de La Fortelle (2017), The
kinematic bicycle model: A consistent model for planning feasible trajectories
for autonomous vehicles?, in 2017 IEEE Intelligent Vehicles Symposium (IV),
pp. 812–818, doi:10.1109/IVS.2017.7995816.

[114] Qi, C. R., H. Su, K. Mo, and L. J. Guibas (2017), Pointnet: Deep learning on
point sets for 3d classification and segmentation, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 652–660.

162

[115] Rebuffi, S.-A., S. Gowal, D. A. Calian, F. Stimberg, O. Wiles, and T. Mann
(2021), Fixing data augmentation to improve adversarial robustness, arXiv
preprint arXiv:2103.01946.

[116] Redmon, J., and A. Farhadi (2017), Yolo9000: Better, faster, stronger, in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7263–7271.

[117] Rempe, D., J. Philion, L. J. Guibas, S. Fidler, and O. Litany (2021), Gen-
erating useful accident-prone driving scenarios via a learned traffic prior, in
arXiv:2112.05077.

[118] Rempe, D., J. Philion, L. J. Guibas, S. Fidler, and O. Litany (2022), Generating
useful accident-prone driving scenarios via a learned traffic prior, in Conference
on Computer Vision and Pattern Recognition (CVPR).

[119] Ren, S., K. He, R. Girshick, and J. Sun (2015), Faster r-cnn: Towards real-
time object detection with region proposal networks, in Advances in neural
information processing systems, pp. 91–99.

[120] Ren, Z., X. Wang, N. Zhang, X. Lv, and L.-J. Li (2017), Deep reinforcement
learning-based image captioning with embedding reward, in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 290–298.

[121] Rennie, S. J., E. Marcheret, Y. Mroueh, J. Ross, and V. Goel (2017), Self-critical
sequence training for image captioning, in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 7008–7024.

[122] Rhinehart, N., K. M. Kitani, and P. Vernaza (2018), R2p2: A reparameterized
pushforward policy for diverse, precise generative path forecasting, in Proceed-
ings of the European Conference on Computer Vision (ECCV), pp. 772–788.

[123] Rhinehart, N., R. McAllister, K. Kitani, and S. Levine (2019), Precog: Predic-
tion conditioned on goals in visual multi-agent settings, in Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 2821–2830.

[124] Rice, L., E. Wong, and Z. Kolter (2020), Overfitting in adversarially robust
deep learning, in International Conference on Machine Learning, pp. 8093–
8104, PMLR.

[125] Rouf, I., R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser,
W. Trappe, and I. Seskar (2010), Security and privacy vulnerabilities of in-car
wireless networks: A tire pressure monitoring system case study, in Proceedings
of the 19th USENIX Conference on Security, USENIX Security’10, pp. 21–21,
USENIX Association, Berkeley, CA, USA.

[126] Salzmann, T., B. Ivanovic, P. Chakravarty, and M. Pavone (2020), Trajec-
tron++: Dynamically-feasible trajectory forecasting with heterogeneous data,
in European Conference on Computer Vision, pp. 683–700, Springer.

163

[127] Sarkar, A., A. Sarkar, S. Gali, and V. N Balasubramanian (2021), Adversarial
robustness without adversarial training: A teacher-guided curriculum learning
approach, Advances in Neural Information Processing Systems, 34.

[128] Shafahi, A., M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis,
G. Taylor, and T. Goldstein (2019), Adversarial training for free!, arXiv preprint
arXiv:1904.12843.

[129] Shafahi, A., M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis,
G. Taylor, and T. Goldstein (2019), Adversarial training for free!, arXiv preprint
arXiv:1904.12843.

[130] Shannon, C. E. (1949), Communication theory of secrecy systems, Bell Labs
Technical Journal, 28 (4), 656–715.

[131] Sharif, M., S. Bhagavatula, L. Bauer, and M. K. Reiter (2016), Accessorize to a
crime: Real and stealthy attacks on state-of-the-art face recognition, in Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1528–1540, ACM.

[132] Shin, H., D. Kim, Y. Kwon, and Y. Kim (2017), Illusion and Dazzle: Adver-
sarial Optical Channel Exploits Against Lidars for Automotive Applications,
in International Conference on Cryptographic Hardware and Embedded Systems
(CHES).

[133] Shoukry, Y., P. Martin, P. Tabuada, and M. Srivastava (2013), Non-invasive
spoofing attacks for anti-lock braking systems, in Cryptographic Hardware and
Embedded Systems - CHES 2013, edited by G. Bertoni and J.-S. Coron, pp.
55–72, Springer Berlin Heidelberg, Berlin, Heidelberg.

[134] Silver, D., et al. (2016), Mastering the game of go with deep neural networks
and tree search, nature, 529 (7587), 484.

[135] Simonyan, K., and A. Zisserman (2014), Very deep convolutional networks for
large-scale image recognition, arXiv preprint arXiv:1409.1556.

[136] Sun, J., Y. Cao, Q. A. Chen, and Z. M. Mao (2020), Towards Robust LiDAR-
based Perception in Autonomous Driving: General Black-box Adversarial
Sensor Attack and Countermeasures, in 29th USENIX Security Symposium
(USENIX Security 20), pp. 877–894.

[137] Sun, M., J. Tang, H. Li, B. Li, C. Xiao, Y. Chen, and D. Song (2018), Data
poisoning attack against unsupervised node embedding methods, arXiv preprint
arXiv:1810.12881.

[138] Suo, S., S. Regalado, S. Casas, and R. Urtasun (2021), Trafficsim: Learning
to simulate realistic multi-agent behaviors, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10,400–10,409.

164

[139] Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus (2013), Intriguing properties of neural networks, arXiv preprint
arXiv:1312.6199.

[140] Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich (2015), Going deeper with convolutions, in
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1–9.

[141] Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna (2016), Rethink-
ing the inception architecture for computer vision, in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2818–2826.

[142] Szegedy, C., S. Ioffe, V. Vanhoucke, and A. Alemi (2017), Inception-v4,
inception-resnet and the impact of residual connections on learning, in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 31.

[143] Tan, M., and Q. Le (2019), Efficientnet: Rethinking model scaling for convolu-
tional neural networks, in International Conference on Machine Learning, pp.
6105–6114, PMLR.

[144] Tu, J., T. Wang, J. Wang, S. Manivasagam, M. Ren, and R. Urtasun
(2021), Adversarial attacks on multi-agent communication, in Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 7768–7777.

[145] Visin, F., M. Ciccone, A. Romero, K. Kastner, K. Cho, Y. Bengio, M. Mat-
teucci, and A. Courville (2016), Reseg: A recurrent neural network-based model
for semantic segmentation, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 41–48.

[146] Wang, J., A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren, and
R. Urtasun (2021), Advsim: Generating safety-critical scenarios for self-driving
vehicles, in CVPR, pp. 9909–9918.

[147] Wang, P., P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. Cottrell
(2017), Understanding convolution for semantic segmentation, arXiv preprint
arXiv:1702.08502.

[148] Wang, X., R. Girshick, A. Gupta, and K. He (2018), Non-local neural net-
works, in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 7794–7803.

[149] Wen, Y., J. Lin, K. Chen, and K. Jia (2019), Geometry-aware generation of
adversarial and cooperative point clouds.

[150] Weng, X., J. Wang, D. Held, and K. Kitani (2020), 3D Multi-Object Tracking:
A Baseline and New Evaluation Metrics, IROS.

165

[151] Wikipedia contributors (2022), Salt-and-pepper noise — Wikipedia, the free
encyclopedia, [Online; accessed 16-June-2022].

[152] Wong, E., L. Rice, and J. Z. Kolter (2020), Fast is better than free: Revisiting
adversarial training, arXiv preprint arXiv:2001.03994.

[153] Wong, E., L. Rice, and J. Z. Kolter (2020), Fast is better than free: Revisiting
adversarial training, arXiv preprint arXiv:2001.03994.

[154] Wong, W., S. Huang, Y. Feng, Q. A. Chen, Z. M. Mao, and H. X. Liu
(2019), Trajectory-Based Hierarchical Defense Model to Detect Cyber-Attacks
on Transportation Infrastructure, in Transportation Research Board 2019 An-
nual Meeting (TRB).

[155] Xiang, C., C. R. Qi, and B. Li (2018), Generating 3d adversarial point clouds,
arXiv preprint arXiv:1809.07016.

[156] Xiang, C., C. R. Qi, and B. Li (2019), Generating 3D Adversarial Point Clouds,
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9136–9144.

[157] Xiao, C., R. Deng, B. Li, F. Yu, D. Song, et al. (2018), Characterizing adver-
sarial examples based on spatial consistency information for semantic segmen-
tation, in Proceedings of the (ECCV), pp. 217–234.

[158] Xiao, C., B. Li, J.-Y. Zhu, W. He, M. Liu, and D. Song (2018), Generating ad-
versarial examples with adversarial networks, arXiv preprint arXiv:1801.02610.

[159] Xiao, C., D. Yang, B. Li, J. Deng, and M. Liu (2018), Meshadv: Adversarial
meshes for visual recognition, in CVPR.

[160] Xiao, C., J.-Y. Zhu, B. Li, W. He, M. Liu, and D. Song (2018), Spatially
transformed adversarial examples, arXiv preprint arXiv:1801.02612.

[161] Xiao, C., R. Deng, B. Li, T. Lee, B. Edwards, J. Yi, D. Song, M. Liu, and
I. Molloy (2019), Advit: Adversarial frames identifier based on temporal con-
sistency in videos, in Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 3968–3977.

[162] Xiao, C., D. Yang, B. Li, J. Deng, and M. Liu (2019), Meshadv: Adversarial
meshes for visual recognition, in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6898–6907.

[163] Xie, C., and A. Yuille (2020), Intriguing properties of adversarial training at
scale, in International Conference on Learning Representations.

[164] Xie, C., J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille (2017), Adversarial
Examples for Semantic Segmentation and Object Detection, in IEEE Interna-
tional Conference on Computer Vision (ICCV).

166

[165] Xie, C., J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille (2017), Adversarial
Examples for Semantic Segmentation and Object Detection, in IEEE Interna-
tional Conference on Computer Vision (ICCV), IEEE.

[166] Xie, C., M. Tan, B. Gong, J. Wang, A. L. Yuille, and Q. V. Le (2020), Adver-
sarial examples improve image recognition, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 819–828.

[167] Xie, C., M. Tan, B. Gong, A. Yuille, and Q. V. Le (2020), Smooth adversarial
training, arXiv preprint arXiv:2006.14536.

[168] Xie, E., W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo (2021),
Segformer: Simple and efficient design for semantic segmentation with trans-
formers, arXiv preprint arXiv:2105.15203.

[169] Xu, W., D. Evans, and Y. Qi (2017), Feature squeezing: Detecting adversarial
examples in deep neural networks, arXiv preprint arXiv:1704.01155.

[170] Xu, W., D. Evans, and Y. Qi (2017), Feature squeezing: Detecting adversarial
examples in deep neural networks, arXiv preprint arXiv:1704.01155.

[171] Xu, X., X. Chen, C. Liu, A. Rohrbach, T. Darell, and D. Song (2017), Can
you fool ai with adversarial examples on a visual turing test?, arXiv preprint
arXiv:1709.08693.

[172] Xue, H., D. Q. Huynh, and M. Reynolds (2018), Ss-lstm: A hierarchical lstm
model for pedestrian trajectory prediction, in 2018 IEEE Winter Conference
on Applications of Computer Vision (WACV), pp. 1186–1194, IEEE.

[173] Yan, C. (2016), Can you trust autonomous vehicles : Contactless attacks against
sensors of self-driving vehicle.

[174] Yang, C., A. Kortylewski, C. Xie, Y. Cao, and A. Yuille (2020), Patchattack: A
black-box texture-based attack with reinforcement learning, in European Con-
ference on Computer Vision, pp. 681–698, Springer.

[175] Yang, Y., G. Zhang, D. Katabi, and Z. Xu (2019), Me-net: Towards effective ad-
versarial robustness with matrix estimation, arXiv preprint arXiv:1905.11971.

[176] Yang, Y., G. Zhang, D. Katabi, and Z. Xu (2019), Me-net: Towards effective ad-
versarial robustness with matrix estimation, arXiv preprint arXiv:1905.11971.

[177] You, C., Z. Hau, and S. Demetriou (2021), Temporal consistency checks to
detect lidar spoofing attacks on autonomous vehicle perception, in Proceedings
of the 1st Workshop on Security and Privacy for Mobile AI, MAISP’21, p.
13–18, Association for Computing Machinery, New York, NY, USA, doi:10.
1145/3469261.3469406.

167

[178] Yu, C., C. Gao, J. Wang, G. Yu, C. Shen, and N. Sang (2021), Bisenet v2:
Bilateral network with guided aggregation for real-time semantic segmentation,
International Journal of Computer Vision, pp. 1–18.

[179] Yu, F., and V. Koltun (2016), Multi-scale context aggregation by dilated con-
volutions, in International Conference on Learning Representations (ICLR).

[180] Yu, F., and V. Koltun (2016), Multi-scale context aggregation by dilated con-
volutions, in ICLR.

[181] Yu, F., V. Koltun, and T. Funkhouser (2017), Dilated residual networks, in
Computer Vision and Pattern Recognition (CVPR).

[182] Yuan, X., et al. (2018), CommanderSong: A Systematic Approach for Practical
Adversarial Voice Recognition, in USENIX Security Symposium, pp. 49–64.

[183] Yuan, Y., and J. Wang (2018), Ocnet: Object context network for scene parsing.

[184] Yuan, Y., X. Chen, and J. Wang (2020), Object-contextual representations for
semantic segmentation.

[185] Yuan, Y., X. Weng, Y. Ou, and K. Kitani (2021), Agentformer: Agent-aware
transformers for socio-temporal multi-agent forecasting, in Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV).

[186] Zhang, H., H. Chen, C. Xiao, S. Gowal, R. Stanforth, B. Li, D. Boning, and
C.-J. Hsieh (2019), Towards stable and efficient training of verifiably robust
neural networks, arXiv preprint arXiv:1906.06316.

[187] Zhang, H., Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan (2019), Theo-
retically principled trade-off between robustness and accuracy, in International
Conference on Machine Learning, pp. 7472–7482, PMLR.

[188] Zhang, H., H. Chen, C. Xiao, B. Li, D. S. Boning, and C.-J. Hsieh (2020),
Robust deep reinforcement learning against adversarial perturbations on obser-
vations.

[189] Zhang, Q., S. Hu, J. Sun, Q. A. Chen, and Z. M. Mao (2022), On ad-
versarial robustness of trajectory prediction for autonomous vehicles, CoRR,
abs/2201.05057.

[190] Zhang, Q., S. Hu, J. Sun, Q. A. Chen, and Z. M. Mao (2022), On adversar-
ial robustness of trajectory prediction for autonomous vehicles, arXiv preprint
arXiv:2201.05057.

[191] Zhao, H., J. Shi, X. Qi, X. Wang, and J. Jia (2017), Pyramid scene parsing
network, in CVPR.

[192] Zhao, H., Y. Zhang, S. Liu, J. Shi, C. C. Loy, D. Lin, and J. Jia (2018), PSANet:
Point-wise spatial attention network for scene parsing, in ECCV.

168

[193] Zheng, H., Z. Zhang, H. Lee, and A. Prakash (2020), Understand-
ing and diagnosing vulnerability under adversarial attacks, arXiv preprint
arXiv:2007.08716.

[194] Zhong, Z., Z. Q. Lin, R. Bidart, X. Hu, I. B. Daya, Z. Li, W.-S. Zheng, J. Li, and
A. Wong (2020), Squeeze-and-attention networks for semantic segmentation, in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13,065–13,074.

169

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	Overview
	Disseration Organization

	Vulnerability Status of LiDAR-based Perception against the Sensor Spoofing Attack
	Introduction
	Background
	LiDAR-based Perception in AV Systems
	LiDAR Sensor and Spoofing Attacks
	Adversarial Machine Learning

	Attack Goal and Threat Model
	Limitation of Blind sensor spoofing
	Blind LiDAR Spoofing Experiments

	Improved Methodology: Adv-LiDAR
	Technical Challenges
	Adv-LiDAR Methodology Overview

	Input Perturbation Analysis
	Spoofing Attack Capability
	Input Perturbation Modeling

	Generating Adversarial Examples
	Evaluation and Results
	Attack Effectiveness
	Robustness Analysis

	Driving Decision Case Study
	Discussion
	Limitations and Future Work
	Generality on LiDAR-based AV Perception

	Related Work
	Conclusion

	Vulnerability Status of LiDAR-based Perception against the Object Reshaping Attack
	Introduction
	Related work
	Generating Adversarial Object Against LiDAR-based Detection
	Methodology overview
	Approximate differentiable renderer
	Differentiable proxy function for feature aggregation
	Objective functions
	Blackbox Attack

	Experiments
	Experimental setup
	Vulnerability analysis
	LiDAR-Adv with different adversarial goals
	LiDAR-Adv on generating robust physical adversarial objects

	Conclusion

	Vulnerability Causality Analysis on Camera-based Perception
	Introduction
	Preliminaries
	Motivation and Threat Model
	Models
	Dataset

	Remote Adversarial Patch
	Notations
	Generating RAP
	A Special Case: Object Removing Attack

	RAP Vulnerability Analysis
	Micro-benchmark on Receptive Field Size
	RAP Analysis on Representative Architectures

	Object Removing Attack
	Digital Experiments
	Physical Experiments

	Related Works
	Discussion and Future Work
	Conclusion

	Secure and Safe Autonomous Driving with Modular Robustness
	Introduction
	Adversarial Attacks on Trajectory Prediction
	Related works
	Problem Formulation and Challenges
	AdvDO: Adversarial Dynamic Optimization
	Dynamic Parameters Estimation
	Adversarial Trajectory Generation

	Experiments
	Experimental Setting
	Main Results

	Adversarially Robust Trajectory Prediction
	Related Work
	Preliminaries and Formulation
	RobustTraj: Robust Trajectory Prediction
	Experiments and Results
	Experimental setup
	Main results
	Component analysis

	Limitations
	Conclusion

	Secure and Safe Autonomous Driving with Integrated Robustness
	Introduction
	The S2AD Approach
	Simplified AD Pipeline
	Anomaly Detection with Point Cloud Prediction
	Fail-safe Detection with Clustering-based Method

	Evaluation
	Experiment Setup
	Results

	Limitations and Future Works
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work
	APPENDICES
	Algorithm Details and Experiment Settings
	Related works
	Method
	Differential dynamic model
	Reconstruction loss and adversarial loss

	Experiments
	Attack fidelity analysis
	Case studies with planners
	Transferability Analysis
	Ablation Study

	Method and Implementations
	Adversarial Attack on Trajectory Prediction
	Adversarial Training on Generative Models
	Data Augmentation with Dynamic Model
	MPC-based Planner

	Experiment and Results
	More details on Experimental Setup
	Main Results

	BIBLIOGRAPHY

