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ABSTRACT

Morihiko Saito’s theory of Hodge modules have made an incredible impact in the study of
singularities. So far, the strongest results have been obtained in the case of hypersurface
singularities, using the strong properties of the V-filtration along hypersurfaces which is built
into the theory of Hodge modules.

This thesis extends two important tools from the case of hypersurfaces. The first is a
compatibility property between the Hodge filtration of a mixed Hodge module and the V-
filtration along a higher codimension subvariety. The second is a formula explaining how
to restrict to a smooth subvariety of higher codimension using the V-filtration along that
subvariety. The main tool at work in proving these theorems is the blow-up along the smooth
subvariety.

There are two main applications of these theorems: the first is to analyze the Hodge and
weight filtration on the local cohomology module along a singular locally complete intersec-
tion subvariety. We define the minimal exponent of a locally complete intersection variety
and show that its value dictates when the Hodge filtration on local cohomology is equal to
the pole order filtration. This shows that the minimal exponent understands information
about k-du Bois singularities, and it turns out that the minimal exponent also understands
k-rational singularities, by its relation to the weight filtration on local cohomology.

The second application is to the study of the Fourier-Laplace transform of monodromic
mixed Hodge modules. These modules naturally arise through Verdier’s specialization con-

struction. We explicitly write out the Hodge and weight filtrations for such modules.

viii



CHAPTER I

Introduction

There are various results in algebraic geometry which can be stated without any hypotheses
on the characteristic of the ground field. In this way, one can view varieties in characteristic
p and over the complex numbers as similar objects. In the complex setting, affine varieties
are Stein spaces, and so their sheaf cohomology is well understood thanks to Cartan’s the-
orems A and B. It turns out that affine algebraic varieties in arbitrary characteristic have
well understood quasicoherent sheaf cohomology, thanks to Serre’s algebraic analogues of
those theorems | |. This is one way in which complex analytic geometry has influenced
algebraic geometry.

As a complex algebraic variety is locally defined by polynomials in C”, it naturally has
an underlying analytic space, endowed with the Euclidean topology. Serre’s famous GAGA
paper | ] made this connection between complex algebraic varieties and complex analytic
spaces even more precise, in the projective setting. By Chow’s theorem, it was known that
any projective complex analytic variety is actually algebraic, and Serre’s result shows that
not only is it algebraic as a space, but all of the coherent data is algebraic, too. In this way,
complex analytic geometry can have a direct impact on complex algebraic geometry, as we
will see below.

Of course, the topology on an algebraic variety and that on its underlying analytic space
differ immensely. Constant sheaves in the former topology have no higher cohomology,

whereas in the latter topology their cohomology computes the singular cohomology of the



analytic variety. So when speaking of constant sheaves or local systems (defined in the next

section), it is most interesting to do so in the Euclidean topology.

I.1: Riemann-Hilbert Correspondence, D-modules and Perverse Sheaves

Let X be a smooth complex algebraic variety. The derivative of a polynomial is a polynomial,
and similarly if one differentiates a regular function on X, it remains a regular function. If
QL is the algebraic cotangent bundle of X (algebraically, the sheaf of Kahler differentials),
this gives a map d : Ox — QY which satisfies the Leibniz rule: d(fg) = fd(g) + gd(f).

Given a coherent sheaf F on X, we define a flat connection on F to be a map
V:F = Q% ®0F, satisfying V(fm) =d(f) @m+ fV(m),

and so that V2 : F — Q% ®0 F is 0. The map V gives a way to differentiate sections of the
sheaf F (compatibly with the O-action), and the condition V? = 0 is essentially equivalent
to Clairaut’s theorem from calculus: 0,,0,,(m) = 0,,0,,(m).

In the Euclidean topology, by the classical Riemann-Hilbert correspondence, it turns out
that such an F is always locally trivial, meaning there exists some integer k£ and an open
cover X = J, U; such that F|y, = Og?_k, with the trivial connection defined by d. An easy
observation is that the kernel of d is the constant functions, and so for any flat connection
V on F, the kernel of V should be a local system, i.e., a sheaf F' for which there is an
open cover X = J,U; as above such that F|y, = ank The correspondence sending a flat
connection (F, V) to the local system ker(V) is an equivalence of categories.

More generally, one can consider arbitrary O-modules (not necessarily finitely generated)
with a flat connection, as defined above. Such modules are called Dx-modules, because they
are modules over the ring Dy of differential operators on X. If the tangent bundle of X is
locally trivialized by choice of coordinates 0, ..., 0,,, then an element of Dy is of the form

ZaeN” ha0S where each h, € Ox. We will focus only on those modules which are locally



finitely generated over Dy, which are called coherent Dx-modules. One can associate to any
non-zero coherent Dx-module M a notion of dimension (defined precisely in chapter two),
which is always an integer between dim X and 2dim X. If the dimension is equal to dim X,
we say M is holonomic.

Any flat connection is holonomic, but there are many more holonomic modules than there
are flat connections. It turns out that for any holonomic Dx-module M, there exists a dense
open subset U C X such that M|y is isomorphic to a flat connection. The complement of
the largest such U is then called the singular locus of M. In this way, flat connections are
the smooth objects in the category of holonomic D-modules.

The replacement for the correspondence (F,V) +— ker(V) is to send a holonomic D-

module to its de Rham complex DRx (M), which is the complex

M=M= M=o = QiImX o A,

placed in cohomological degrees —dim X, ..., 0.

Roughly, the fact that there exists U C X such that M|y is isomorphic to a flat connec-
tion leads to the fact that one can stratify X into a disjoint union of smooth subvarieties such
that M restricted (in a suitable sense) to each piece is a flat connection. Making this idea
precise is the content of Kashiwara’s constructibility theorem | |. A sheaf of C-vector
spaces L on X is constructible if one can stratify X so that the restriction of L to each
stratum is a local system. Kashiwara’s theorem says that if M is holonomic, then DRx (M)
has constructible cohomology sheaves, which we write as DRy(M) € Db (X), where the
latter is the bounded derived category of complexes with constructible cohomology sheaves.

There is a parallel aspect to this story which is to allow for certain constructible complexes
c*e Dl

con

(X) which have “mild singularities”. Goresky and MacPherson | ] define
and study “intersection cohomology” for a singular variety. This is a certain constructible

complex which satisfies Poincaré duality, which fails in the non-smooth setting. It is a better



behaved analogue of the constant sheaf Cy on such singular spaces. In their landmark work
[ |, Beilinson, Bernstein, Deligne and Gabber formalized the concept of “perverse
sheaves”, generalizing intersection cohomology complexes.

One can define a subcategory of the category of holonomic modules, which are the regular
holonomic modules. The functor DRy restricted to this subcategory is an equivalence of
categories, which behaves nicely with respect to duality and several naturally defined functors
from geometry, like pushforward and pullback. This fact is known as the Riemann-Hilbert
correspondence, shown independently by | | and | ).

There are some other naturally defined functors on constructible complexes. Given ¢ :
H — X the inclusion of a closed subvariety of codimension 1, Deligne [ | defined
the nearby and vanishing cycles functors 1, ¢ which refine the restriction functors ', :* :

Db (X)— D’ (H) in the sense that there exist natural exact triangles

con con
YO X 6O Ot T

O = pC* 2 ot

By their construction, »C* and ¢C*® come equipped with monodromy operators. Equip-
ping *C* and i'C*® with the trivial monodromy operators, the complexes above preserve
monodromy. These complexes and their monodromy are sheaf theoretic incarnations of the
cohomology of the Milnor fiber of the hypersurface H, and so contain some data concerning
the singularities of H.

Gabber showed that if C* is a perverse sheaf on X, then C*[—1] and ¢C*®[—1] are
perverse on H (see | , Page 14]). A natural question arises: what do ¢ and ¢ correspond
to on the regular holonomic Dx-module side of the Riemann-Hilbert correspondence? This
was answered by Kashiwara and Malgrange using the theory of V-filtrations. As V-filtrations
are a major tool used in this thesis, we defer their precise definition to Section II.2 below.

Vaguely, for a Dx-module M and a smooth hypersurface H defined by t € Oy, the V-



filtration of M along t is a Q-indexed, decreasing, discrete filtration V*M satisfying
tVIMC VM, 9V M CVTIM,

and so that d;t — X is nilpotent on gripM = VAM/V>* M.

Under the Riemann-Hilbert correspondence, we have

DRy( D gryM) = 4:DRx(M), DRy( €D gry) = $:DRx(M),

Ae(0,1] A€[0,1)

and the morphisms can and var above correspond to
O 1 gryM — grio M, t:grio M — gri M,

respectively.

I.2: Various aspects of Hodge Theory

For a smooth, projective variety X (viewed as a complex manifold), Hodge theory endows

the singular cohomology H*( X" C) with a canonical bigrading

HYX™,C) = @ HM(X),
p+q=Fk
called the Hodge decomposition. Using the real structure induced by H*(X® R), these
subspaces satisfy the conjugation symmetry HP9 = H¢r This is functorial, in the sense
that any morphism of cohomology which comes from geometry between smooth, projective
varieties must preserve this decomposition. Another way to think of this data is through

the Hodge filtration F*H*(X C) = @, ., H?*P(X). Abstractly, one calls the resulting

p=>e

structure a Hodge structure of weight k.

Of course, H*(X, C) only depends on the underlying topological space of X%*. On the



other hand, H™4(X) can be identified with H9(X, Q% ), which depends on the algebraic struc-
ture. In this way, Hodge theory gives a powerful dictionary to translate between topology
and coherent data.

This was generalized in two ways. The first of these was the study of families of smooth,
projective varieties. Again, we will think of the underlying complex analytic spaces. Given
a smooth, projective morphism f : X — S, the higher direct image R'f.Qx is a local
system on S whose stalk at a point s € S is the cohomology of the fiber X,. For any k, the
kth singular cohomology of any fiber, being a smooth, projective variety, admits a Hodge
decomposition. The individual pieces H??(X,) need not vary holomorphically in the family
X, but it turns out that the Hodge filtrations F'*H*(X,, C) do vary holomorphically.

By the classical Riemann-Hilbert correspondence, we obtain a flat connection £° from the
local system R'f,Qx along with subbundles F'*£*. This situation was studied by Griffiths
[ ], who called the resulting object a Variation of Hodge structure of weight k. He
noticed the important property (Griffiths transversality), which says that, if V : £/ — £'@Q}
is the connection, that V(F*E") C F* 1€ @ QL. We will see later that this implies that F*£*
gives a good filtration for the Dg-module £¢. Griffiths generalized this situation to certain
filtered flat connections which do not necessarily come from a family of varieties, and studied
them in | , |. This object is known as a wvariation of Hodge structures or VHS.
For details, see the textbook of Voisin | : ]

A bit later, Deligne | , ] investigated the problem of dropping the smooth and
projective assumptions on the variety X. The result is that the cohomology of any complex
algebraic variety naturally carries a mized Hodge structure. The main insight is that these
cohomology spaces should carry a weight filtration W, H* (X" Q) and a Hodge filtration such
that for any 4, k € Z, the vector space gr!¥ H*(X® C) with the induced Hodge filtration is
a pure Hodge structure of weight i.

Another place in which mixed Hodge structures arise is in the degeneration of pure Hodge

structures. If one has a VHS on A*, the punctured unit disk in C, the work of Schmid



[ | showed that this extends to give a Hodge structure over 0, but the Hodge structure
is mixed, with weight filtration coming from the monodromy filtration of the monodromy of
the local system around 0. Similarly, the cohomology of the Milnor fiber of a hypersurface
singularity naturally admits a Hodge structure | ]. Tts relation to the singularities of the
hypersurface are a prototype for the relations we will see in the thesis concerning the Hodge
filtration and the V-filtration along a hypersurface.

When studying variations of mixed Hodge structure, if one wants a nice theory of degen-
erations like in the pure case, it is necessary to actually assume the existence of a “relative
monodromy filtration” (more on this in Section II.6 below). This leads to the notion of
admissible variations of mixed Hodge structure, due to Steenbrink and Zucker | ]. This
problem was also studied by Zucker | ], Cattani, Kaplan and Schmid | , ],

and several others.

I.3: Hodge Modules

Saito | , | developed a striking generalization of the theory of variations of Hodge
structures. We will give more details in Section 1.3 below, so we just mention the main
ideas. In essence, Saito uses the theory of regular holonomic D-modules to define variations
of Hodge structures “with singularities”. As in the definition of Hodge structures, one
needs a Q-structure. For variations of Hodge structure (€, V, F**), this came from a Q-local
system L such that ker(V) = L ®q C. In analogy with this, Saito uses a Q-perverse sheave
as Q-structure, so if M is a regular holonomic Dx-module, he requires the existence of a
Q-perverse sheaf and an isomorphism DRy (M) = K ®q C.

Moreover, the regular holonomic Dx-module should come with a good filtration F, M
which is subject to many compatibility properties with respect to V-filtrations along locally
defined functions. Finally, Saito defines the category of M H M (X) inductively on dim X,
by saying an object is a mixed Hodge module if its “refined restrictions” (M), ¢(M)
underlie mixed Hodge modules on {f = 0}. The base case is that M HM (pt) should be the



graded polarizable category of mixed Hodge structures. To show that this is a well-defined
and interesting theory is a herculean task. For details, see the original papers of Saito, or

the introductory article by Schnell | ]

1.4: Main Results

As mentioned above, mixed Hodge modules are defined to satisfy many nice properties with
respect to the V-filtration along hypersurfaces. When one is interested in the behavior of
a mixed Hodge module with respect to a smooth subvariety Z = V(ty,...,t,), it would
be interesting to understand iterated nearby and vanishing cycles along the hypersurfaces
defined by the functions tq,...,t.. This is, understandably, notoriously difficult, as it is
rather optimistic in examples to expect to explicitly compute the V-filtration along a single
hypersurface.

It would be nice, then, to have an understanding of a single V-filtration which contains
much of the information concerning the behavior of a mixed Hodge module M with respect
to the higher codimension subvariety Z. This is the aim of the main two theorems of this
thesis. One thing to note, however, is that one of the main tools to understand this V-
filtration is using Verdier’s specialization | 11 , Section 1.3], which allows one to
express this V-filtration using the V-filtration along a hypersurface. Then the tools from the
theory of mixed Hodge modules can be immediately applied.

Of course, another way to relate the ideal of a smooth subvariety to that of a divisor is
by blowing up. This trick is at play in the proof of both main theorems, to reduce to known
results for hypersurfaces.

The first result is a higher codimension version of the compatibility between the Hodge
and V-filtrations | , Section 3.2]. However, for each i, we have maps t; : gri M —
gr‘)}“./\/l and 0y, : gr‘A/HM — gri-M. The natural replacement of the var and can maps
in r = 1 are then the corresponding Koszul-like complexes A*(M, F), B\(M, F) (a filtered

and associated graded complex with differentials given by t;) and C*(M, F') (an associated



graded complex with differentials given by d;,). For the precise definition of these complexes
(resp. filtered complexes), see Chapter II (resp. Chapter IV).

The first main theorem is the following:

Theorem I.1. / , Theorem 1.1] Let (M, F') underlie a mized Hodge module on X x A".
Then for X > 0 (resp. A <0), the complex ANM, F) (resp. C*(M,F)) is filtered acyclic.

For the second main theorem, we set B(M, F) = B°(M, F) and C(M) = C(M, F).
It is not too hard to see (Theorem IV.5) that, at the D-module level, these compute the
functors i'M and i* M, respectively. Our next main theorem is a strengthening of this to
the category of mixed Hodge modules.

As gri, M need not even be coherent over Dy, it is impossible to hope that the terms of
B(M) and C(M) underlie mixed Hodge modules. To remedy this, we use the language of
mized Hodge complezes, from | | (see Definition IV.9). This is the mixed Hodge module

analogue of the usual theory of mixed Hodge complexes, see [ ].

Theorem I1.2. / , Theorem 1.2] Let (M, F,W) underlie a mized Hodge module on
X x A", Then BY(M, F) =i (M, F) and C°(M, F) = i*(M, F). Moreover, BY (M, F,W)
and CO(M, F,W) are mized Hodge complexes, where the filtration W is defined using the
relative monodromy filtration on gr{}(j\/l, F) for all 0 < j < r. Moreover, for any k,l € Z,

the quasi-isomorphisms above induce isomorphisms of pure Hodge modules of weight k + £:

gry H B(M) = gr)l M M,

gri H'C(M) = grily M M.

As mentioned in Corollary IV.11, this result implies that B(M, F') and C(M, F') are strict
with respect to the Hodge filtration. However, they are not necessarily strict with respect
to the weight filtration. To obtain a strict complex, one uses Deligne’s decalé construction.

Now, we explain some applications of the two main theorems.



One of the most important numerical measure of singularities in the minimal model
program is the log canonical threshold of a pair (X, Z), where Z is a closed subvariety of X.
It is defined in terms of data coming from a log resolution of the pair (X, Z). For us, we
let Z C X be a locally complete intersection subvariety of pure codimension r. We define a
refinement of the log canonical threshold of Z, called the minimal exponent of Z and denoted
a(Z). This agrees with the log canonical threshold when a(Z) < r. When r = 1, it agrees
with the definition of minimal exponent due to Saito | ].

For the definition, first we assume Z is defined by a regular sequence fi,..., f, € Ox.
Then we consider the hypersurface g = >, v f; in Y = X x A"

The definition uses as motivation the main result of | |, which relates the Bernstein-
Sato polynomial of an ideal (fi,..., f,) to that of the linear combination hypersurface g =
i1 yifi- We define a(Z) to be a(g|v), where U =Y — (X x {0}).

The results concerning singularities of locally complete intersection singularities are ex-
pressed using the D-module By (resp. B, and gg). These will be carefully defined in Chapter
V (resp. III). In terms of D-modules, By is the pushforward of Oy along the graph embed-
ding (fi,..., f), and B, is the pushforward of Oy along the graph of g. Saito | ] defines
the microlocalization gg = B,[0; '], where 0, is the differential along the fiber coordinate of
the target of the graph embedding map ¥ — Y x A!. Saito showed that the latter module
carries a V-filtration along z and a Hodge filtration (though it does not underlie a Hodge
module), and elements in gg have a “microlocal b-function”. The modules By and B, un-
derlie Hodge modules, and so they too have Hodge and V-filtrations (along ¢, ...,¢,. and z,
respectively). Here t1,...,t, are the fiber coordinates of the target of the graph embedding
X =X xA"

One major tool in the study of this invariant is the following strengthening of the result

in | |. Here gg(,o) is an eigenspace of the operator 0,z + 6, on gg, defined in Chapter V.

Theorem 1.3. [ , Theorem 3.3, Prop. 3.4] Using the notation as above we have a

10



filtered Dx -linear isomorphism

and, moreover, we have equality of b-functions

bm(s) = bw(m) (S)

where on the left, we use the microlocal b-function for m € gg.

Using this, we are able to show that the minimal exponent we define governs when certain

pieces of the Hodge filtration are contained in V"Bjy.

Theorem 1.4. [ , Theorem 1.2] Let Z C X be a complete intersection of pure
codimension r in X, defined by fi,..., f, € Ox. Then

Z)Z(Z) >r+k — Fk+rBf - VTBf.

We relate the condition in the previous theorem to the local cohomology H’,(Ox), which

naturally has the structure of a mixed Hodge module. For definitions, see Chapter V.

Theorem I.5. (/ , Theorem 1.8, Theorem 1.4]) Let Z C X be a complete intersec-

tion of pure codimension r in X, defined by fi,..., f. € Ox. Then

hOé le} (s
FHL(Ox) = [Z 7 ] | > ha0ps; € VB,
1

a B
In particular, FyH,(Ox) = PoHL(Ox) == {m € HL(Ox) | (fi,..., ) 'm = 0} iff
alZ)>r+k.

In | ], Mustata and Popa related the condition FyH%(Ox) = PyH%(Ox) to the

following property of Z. Recall that the du Bois complex of a complex algebraic variety

11



Z, defined in | ], is an object in the filtered derived category of Oz-modules, denoted
Q,. The pth du Bois complex is Y := grg Q,[—p|, which, if Z is smooth, agrees with
the Kéhler differentials Q7. In general, 7 need not be concentrated in degree 0, but it
always admits a natural morphism Y, — Q9. Steenbrink | | defined and studied a
class of singularities, du Bois singularities, to be those varieties Z for which Oz — QY is a
quasi-isomorphism. Mustata, Popa, Olano and Witaszek | | studied hypersurfaces
D for which QF, — QF is a quasi-isomorphism for all p < k. They relate this condition to
the minimal exponent of D as in the “if” part of the last statement in Theorem V.6. This
relationship was also proved in | |, with its converse, and in that paper they named
any D having this property as having k-du Bois singularities. See | | for an alternative
definition of the du Bois complex, and [ ] for a survey article about du Bois singularities.

A stronger condition on singularities was defined | ] and studied | : ]
by Friedman and Laza. This gives the class of k-rational singularities. Using a resolution
of singularities for Z, one can define a natural map Q2 — RHome, (QY 7 w3), where

dz = dim Z and w?, is the dualizing complex for Z. One says Z has k-rational singularities

if it has k-du Bois singularities and the composition
Q — Q — RHomo, (27", w})

is a quasi-isomorphism for all p < k. In | , Theorem EJ] and | ], it was shown
that for hypersurfaces, this property is equivalent to a(Z) > k + 1. Our next main theorem

is a generalization of this result to the locally complete intersection case.

Theorem I.6. [ , Theorem 1.1] Let Z C X be a locally complete intersection of pure

codimension r. Then
a(Z) >r+k < Z has k — rational singularities.

As another application, we use our understanding of the restriction functors for mixed

12



Hodge modules to study the Fourier-Laplace transform of a monodromic mixed Hodge mod-
uleon £ = X xA". Let 21, ..., 2, be the fiber coordinates on F, with vector fields 9,,, ..., 0., .
These define the Euler vector field 6, = 22:1 2i0,,.
We say a Dg-module is monodromic if, for all sections m € M, there exists a non-zero
polynomial b,,(s) € C[s] such that
by (0)m = 0.

Such Dp-modules were studied in | .

Equivalently, there is a decomposition M = @ _~ MX, where

x€C

MY = | Jker((0. — x +1)").

>1

For mixed Hodge modules, MX = 0 unless x € Q, so we will only consider this case.

A mixed Hodge module M on E is monodromic if its underlying Dg-module is mon-
odromic. These modules were studied by T. Saito in | ] in the r = 1 case and [ ]
in the general case.

Given any Dp-module (not necessarily monodromic) M, one can define the Fourier
Laplace transform FL(M), which is a D-module on the dual vector bundle EY. The Ox-
module is the same, and the action of the coordinates wy, ..., w, and vector fields 0y, , ..., Oy,
is defined by

wim = —0,;m  Oy,m 1= z;m.

It is important to note that even if M is regular holonomic, it is possible that FL(M) is
not. For example, on A, M = D/(9%z + 1) gives FL(M) = D/(w?d,, + 1), which is the
D-module corresponding to the essential singularity /.

However, Brylinski | | showed that if M is monodromic and regular holonomic,
then FL(M) is also regular holonomic. Of course, FL(M) is monodromic with respect to the

variables wy, . .., w,, with FL(M)X = M" X,
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Our main result concerning the Fourier-Laplace transform gives an explicit isomorphism
of FL(M) for a monodromic, regular holonomic Dg-module with a Dgv-module coming
from geometry. Let p : &€ = E xx EY — E be the projection, g = > ;_, zw; € O(E),
[': & — & x Al the graph embedding along ¢, and finally, o : EY — £ induced by the zero

section.

Theorem 1.7. [ , Theorem 1.4] Let M be a monodromic regular holonomic Dg-module.

Then, using the above notation, there is a natural isomorphism

FL(M) = HO0" ¢, p' (M)[—r].

With this theorem, we see that if M underlies a mixed Hodge module, then so does
FL(M). Using Theorem 1.2, we are able to study the Hodge and weight filtration on FL(M)

under this isomorphism.

Theorem 1.8. [ , Theorem 1.4] Let (M, F,) be a filtered Dg-module underlying a mized
Hodge module on E. Then the Hodge filtration on FL(M) satisfies

FFLM)™ = Fy g MX

forallp € Z and x € Q.

Before stating the result for the weight filtration, we mention an important tool concern-

ing the weight filtration of monodromic mixed Hodge modules.

Theorem I1.9. / ., Theorem 1.5] Let (M, W,) underlie a monodromic mized Hodge
module on E. Let N = @XEQ(QZ — x + 1) be the nilpotent operator on M. Then W M is
its own relative monodromy filtration with respect to N, i.e., NW M C W, oM (the other

condition being automatic).
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For a monodromic module N' = @XEQN X, we define

NMZ @N)\—i—k’

keZ

for any A € [0,1). Then the weight filtration on FL(M) is given by the following:

Theorem 1.10. / , Theorem 1.4] Let (M, W) be a monodromic D-module with weight
filtration WM underlying a mized Hodge module on E. Then the weight filtration on FL(M)

satisfies

Wi FLIM)MZ = FL(Wjp i ap M)OMZ.

The weight filtration of the Fourier-Transform was studied in | , Section 4] for a
specific class of monodromic mixed Hodge modules. We remark here that, a priori, it seems
that our definition of the Fourier-Laplace transform does not agree with that in this paper,
or that for constructible complexes in | |, however, it turns out that they do agree. See

Remark VI.5 in Chapter 6.

I.5: Layout

In Chapter II, we define V-filtrations in the general setting due to Sabbah. We provide many
examples, explain their dependence on the defining functions, and prove their uniqueness
by relating them to Z-indexed filtrations. We prove that certain Koszul-like complexes are
acyclic. We then proceed with a brief introduction to the theory of mixed Hodge modules.
We explain the inductive definition using V-filtrations along hypersurfaces, and various im-
portant structural results about functoriality of the category of mixed Hodge modules. We
end with the Verdier specialization construction, which allows one to study *V-filtrations
for r > 1 in terms of the V-filtration along a hypersurface, using deformations to the normal
bundle.

In Chapter III, we discuss hypersurface singularities. Many of the results of the thesis
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are generalizations of what has been shown so far for hypersurface singularities, and so it
will be helpful to see the results in their easiest to state form, as well as to explain the
history behind those results. We define the Bernstein-Sato polynomial of a hypersurface,
the minimal exponent, and Hodge ideals. We also explain Saito’s microlocalization of By,
which leads to the definition of microlocal multiplier ideals.

In Chapter IV, we begin by proving “topological” properties of *V-filtrations for regular
holonomic D-modules on X x A”". For example, we show that one can compute the restriction
functors i' and i* in the category of regular holonomic D-modules, where i : X x {0} — X x A"
is the zero section. We also use “'V-filtrations to characterize when a module has submodules
or quotients supported on X x {0}.

The remainder of Chapter IV is dedicated to the study of mixed Hodge modules. For
mixed Hodge modules, at the moment the proofs only work for L = (1,...,1), i.e., the
standard V-filtration along X x {0}. The two main results are a filtered acyclicity of the
Koszul-like complexes in Chapter II and a bifiltered version of the computation of ' and i*
in terms of the V-filtration along t1,..., .. The basic idea for the proof is to blow-up along
X x {0} and locally relate the various V-filtrations of higher codimension with that of the
exceptional divisor.

Chapter V is devoted to the application of the main theorems in Chapter IV to the study
of the mixed Hodge module with underlying D-module equal to H%(Ox), when Z C X
is a complete intersection of codimension r. We show that the V-filtration on B; along
t1,...,t. can be used to study the Hodge and weight filtrations on H%(Ox). As a result,
this V-filtration can characterize when Z has k-rational and k-du Bois singularities. We
define the minimal exponent for Z and, using the previous result, connect it to these classes
of singularities. Interestingly, the definition of the minimal exponent uses a connection
between the V-filtration on By and the microlocal V-filtration on B, for ¢ = >/ vifi a
hypersurface on X x A”".

Finally, Chapter VI is devoted to the study of the Fourier-Laplace transform of mon-
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odromic mixed Hodge modules. Using the description of ¢* in terms of the V-filtration, we
can compute the Fourier-Laplace transform as a composition of functors coming from geom-

etry. Then, we are able to study the Hodge and weight filtration on the Fourier transform.

1.6: Conventions

For algebraic varieties, we follow the conventions of | |, so varieties are reduced and
irreducible. For D-modules, we follow the conventions of | ], using left D-modules
throughout the entire thesis. We will provide a brief review of the theory of D-modules in

Chapter II. Throughout, the ground field is C.
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CHAPTER I1
Background on V-filtrations and Mixed Hodge

Modules

Morihiko Saito’s theory of algebraic mixed Hodge modules is a vast generalization of the
theory of variations of Hodge structure which was studied in the 1980’s. It allows for varia-
tions with singularities and admits a six-functor formalism. In this chapter, we explain what
we will need from the basic theory of D-modules, introduce V-filtrations on D-modules, in
their general version due to Sabbah, which are the backbone to Saito’s theory. We then
give a rough description of the category of mixed Hodge modules on a smooth variety X,
and explain important results about them. The chapter concludes with a description of the
specialization operation, which allows one to talk about general V-filtrations in terms of

those along hypersurfaces, which are much better understood.

I1.1: Preliminaries on D-modules

Let X be a smooth, irreducible variety of dimension n. The ring of differential operators on
X, denoted Dy, is defined to be the subring of Endc(Ox) generated by Ox, which acts on
itself by multiplication, and the tangent bundle Tx, which we view as C-linear derivations
on Ox and so which naturally lies inside Endc(Ox). This ring is non-commutative. For
example, by the Leibniz rule, if § € Tx is a derivation, then [0, h] = O(h) for any regular

function h € Ox.
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Locally, we trivialize the tangent bundle on X by sections 0,,, ..., 0., , giving an isomor-
phism

i=1

and then on this open subset, sections of Dx are of the form

> had,  ha € Ox.

aeN"?

The ring Dy comes with a Z-indexed filtration by locally free Ox-submodules, called
the order filtration and denoted F,Dx. Locally, these are the sections Zlal <o a0y, where
la] = a3 4+ -+ + «,. The filtered ring (Dx, F,) is almost commutative, in the sense that
grfDx is a graded commutative ring. In fact, if 7% X is the cotangent bundle with projection
7 :T*X — X, then there is a natural identification grf Dy = 7,Or-x, which will be of use
to us below.

As Dy is not commutative, when speaking of modules over it, one must specify if Dy acts
on the right or the left. Throughout this thesis, all modules will be left Dx-modules. The
theory of Dx-modules allows for one to go from left modules to right modules without losing
any information, so this is not a restrictive condition. The category of left Dx-modules is

abelian. We say a Dy-module is coherent if it is quasi-coherent as an Ox-module and if it

is locally finitely generated over Dy.

Example I1.1. As Dx C Endc(Oyx), by definition it acts on Ox on the left, and so O is
a Dx-module. Trivially, Dy is also a Dx-module.

A more important example is that of integrable connections. These are finite rank vector
bundles £ on X along with a connection V : &€ — QY ®0 &, which is not an Ox-linear map
but which satisfies

V(fs) = df @ s+ fV(s),

where d : Ox — QY% is the usual exterior derivative, and which has Vo V = 0. Without the
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last condition, this says that we know how to apply Tx to sections of £. The last condition

ensures that this action extends to the entire ring Dy.

From a Dx-module, one can associate a complex of C-vector spaces DRx (M), by
M LQ}(@)()M l...le@)oM.

The morphisms are not O-linear, as they must satisfy the Leibniz rule.

Given a Dx-module M with an increasing filtration F,,M by Ox-submodules, we say
the filtration F, M is good if gr¥ M is a finitely generated module over grfDy. This implies
in particular that F, M =0 for p << 0, U, F M = M and F,Dx - FLM C F (M.

A module M admits a good filtration if and only if it is coherent. Given a coherent Dx-
module M, we can thus find a good filtration F, M and associate to this module a coherent
grfDx-module gr’ M. Using the isomorphism 7,Op-x = grfDx and the fact that 7 is
an affine map, we can define a coherent sheaf of Or«x-modules, which we denote again by
grf M.

The characteristic variety of a coherent Dx-module is the reduced variety underlying
Ch(M) = Supp(gr M) C T*X. It turns out that it does not depend on choice of good
filtration on M. It is a conical (i.e., C*-invariant) subvariety, because gr” M is graded.

An extremely important theorem concerning Ch(M) is that if M # 0, its dimension is
always > n = dim X. This is known as Bernstein’s inequality. A special class of coherent D y-
modules is the collection which has smallest dimension for Ch(M). A coherent Dx-module

M is called holonomic if dim Ch(M) = dim X = n.

Example I1.2. The module Dx has Ch(Dx) = T*X, and so it is holonomic if and only if
X is a point.

It is a fact that a coherent module M has Ch(M) = T*Xx, the zero section in the
cotangent bundle, if and only if M is an integrable connection, if and only if it is locally

free as a Ox-module, if and only if it is coherent as Ox-module. Hence, any integrable
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connection is automatically holonomic.

The subcategory of holonomic Dx-modules is an abelian subcategory. In fact, it has
finite length, so every holonomic Dy-module admits a composition series. One can define
the dual of a Dx-module D(M), which in general is a complex of Dx-modules. However,
M is holonomic if and only if this complex has a single non-vanishing cohomology, and then
that cohomology is also a holonomic Dx-module.

Given a morphism f : X — Y there is a pushforward functor f, and a pullback functor
f' which send a Dx-module to a complex of Dy-modules. If the starting module is holo-
nomic, then it turns out that H’f, (M) and H’ f'(M) are holonomic, too. By conjugating
with the duality operator, one can define f; = Dy o F, oDy and f* = Dx o f' o Dy. More-
over, Kashiwara’s theorem | ] shows that DRx(M) is a complex with constructible
cohomology if M is holonomic. In fact, it is a C-perverse sheaf | ]

A perverse sheaf over a field £ on X is a bounded constructible k-complex C*® such that

(IT.1.1) dim suppH? (C*) < —j for all j € Z

(I1.1.2) dim suppH?/ (DxC*) < —j for all j € Z,

where Dx is the Verdier dual operation on constructible complexes.

As mentioned in the introduction, there is a subcategory of holonomic D y-modules,
called regular holonomic Dx-modules, which is equivalent to the category of perverse sheaves
under the de Rham functor. This is called the Riemann-Hilbert correspondence. All functors
mentioned above preserve the property of being regular holonomic, and all Dx-modules

considered below are regular holonomic.
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I1.2: V-filtrations on D-modules

Let X be a smooth, irreducible algebraic variety. Let Y = X x A" with fiber coordinates
t1,...,t, and corresponding derivations 0y, ...,d;,. For any non-zero L = Y\, a;s; a linear

form with a; € Z>( for all 7, we have a Z-indexed filtration

LDy = (Y Ps,t°9) | L(B) > L(~) + k, Py, € Dx}.

By
1 7€l
For example, if a; = for some nonempty subset I C {1,...,r}, then LV Dxa-
0 i¢l

agrees with the usual notion of V-filtration along the subvariety defined by {t;, =0 |i € I}
[ ]. Let s, = —0t; € LVODXXAT, so we can consider the operator L(s) € LVODXXAT.

Let M be a coherent Dy-module. An FV-filtration on M is a decreasing, Q-indexed
filtration “V° M which is discrete and left continuous. Here, discrete means that there exists
a Z-indexed increasing sequence «; € Q with lim; .., a; = 0o, lim; ,_ a; = —o0 and so
that V" M only depends on the interval a € (ay, a;11]. Left-continuous means that, for all

a € Q, we have LV M = B>a LYP M. The filtration must satisfy the following properties:
1. (Compatibility) LV Dy - LV M € LV M.
2. (Coherence) Each “V*M is a coherent “V°Dx-module.

3. (Discreteness) There exists an integer k € Z-q such that LA M = LVIM if A,y €

(

5

x|

4. (Goodness) For A > 0, we have Ly A = S t,;LV’\fai,/\/l_

(S48

. (Principle Property) For all A € Q, the operator L(s) + A is nilpotent on gri M :=

LY M/EVTAM, here LV M is defined as |, ., “VM.

X>A
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Remark 11.3. When L(s) = >_._, s;, the “V-filtration just defined is equal to the V-filtration
of [ , Section 1.1]. In particular, it only depends on the ideal (t1,...,t,) rather than
the choice of generators. Of course, this is not true for arbitrary L. In fact, even changing

the order of the generators will affect the XV -filtration.

These “V-filtrations were defined and studied in | , ], and are used in the
definition of the “canonical multi-indexed V-filtration”, which we do not discuss in this
thesis. We say a coherent Dy-module M is L-specializable if it admits an 'V -filtration. The

following theorem says that all Dy-modules we care about are L-specializable for any L.

Theorem I1.4. (L ="' s; case [ ; |, general case [ , Théoréem 3.1.1])

Assume M s a regqular holonomic Dy -module. Then M is L-specializable.

Example I1.5. Let N be a coherent Dx-module, and consider the push-forward M = i, N,
where i : X — X x A" is the inclusion of the zero section. By definition of the push-forward

for D-modules, we have

M= P Ny

aeNT

It is not hard to check that

VM= P N

La)<[—A]
In particular, Ly=O M =o0.

Example 11.6. By Kashiwara’s equivalence, the formula in the previous example holds for
any coherent Dy« ar-module with support contained in X. For example, let Z = {f; =--- =
fr =0} C X be a closed subvariety and consider the graph embedding I' : X — X x A" along
(fi,---, fr). Let P be a Dx-module supported on Z and let M =T',P = @ n- PO; 5.

We can define naturally an isomorphism

TP = My ="V"M = g M
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as follows. Note that by the previous example, LV M = Mi_; ker(t; : M — M), and so an

element u = ) 1,00y lies in LyO M iff Ugte; = (C{’ e for all 1 <i <r and «.

Hence, defining
1 « e
7(u) = E af ud; oy

gives the desired isomorphism. The inverse is simply given by sending > u,05dy € Lyo m
to Ugp.
If we instead express such an element asu = Y Qi(s1, ..., S, )u;07 for Q; € Clsy, ..., s,]

and u; € P, then

Indeed, each (); can be written

N[ S1 Sr
o= 0 (") (%)

and then
(DI ooy gorgo
Qzéf — Z T 0t11t ! at:trr(Sf
\O¢| e
= Z f ulata(sf.
Example IL.7. (] , Prop. 2.2]) Let Y = X x A", Let M be an X x A"-module

which is L-specializable for some L = > ' a;s;. Let { = 22::11 b;s; be another linear
form. If ¢ : X x A™ — X x A" ig the inclusion of the zero section, then i, M is

L + (-specializable. Moreover, if we write

M= P Moy,

aeNT2

24



then it is easy to check that

HYAM = @ VAT Moy
acNT2
This recovers the formula of | , Prop. 2.2] by taking L = Y ' s, and { =

i=1
r2
Zi:Tl +1 SZ :

Example II1.8. Let 7 : X x A" — X be the projection, with coordinates ty,...,¢, on A"
factor. Given a coherent Dy-module N, the box-product M = N XK O, is isomorphic as

O-modules to N[ty, ..., t,] with the obvious D-action. One can check
LYAM = {mt* | m € M, L(a) > A — |L|}.

We prove our first result concerning these filtrations.

We fix here some notation: for M an L-specializable module, let

A M) =

LV Mey & @ VT Mer b @@ VT Mer b L LV““'Me,]

[1=1 [1]=2

B M) = [grf—f/\/leg = EB gritt Me; 5 @ gro T Mey Looob gTzHLMe]

[]=1 ||=2

CY M) =

L o LI-L ) LI-L ) P
grzﬂ Meo 25 @ gr%ﬂ S VT @ gr%Jrl =L per 2 02 gr¢ Me
[7]=1 |I|=2

be the various Koszul-like complexes placed respectively in cohomological degrees [0, ], [0, 7]
and [—r,0]. Here, for I = {i; < --- < iy}, weset ef =e;; A\---Ney,, e =e A---Ae, and
eo = ey to be formal symbols which help keep track of the differential. The differentials are,

respectively

.
a+L
mey — E t;me; A ey, where m € LV M,
i=1
'8
mey — E t;me; A ey, where m € grf}JrL’/\/l,

=1
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.,
mey — E Oy, me; N ey, where m € grO‘HLl_LIM,
i=1

where |L| =77 ja;and Ly =", a;.
Lemma I1.9. For any o # 0, the complexes B*(M) and C*(M) are acyclic.

Proof. We let e}, ..., e’ be the dual basis of ey, ..., e, i.e., ef(e;) = J;;, the Kronecker delta.

Then e}, acts on wedge products by the alternating sum
¢
erleg N Nej,) = Z(—1)3’1611 N Negleg) N Ney,.

j=1

We prove the claim for C*(M), the claim for B*(M) being completely analogous. We
shall construct an automorphism of the complex C*(M) which is nullhomotopic. The —r +

(th term of the complex C*(M) is

CM—HL‘—L[
@QTL Mey,

I|=¢

where Ly = )., a;. Define a map s, from the —r 4 ¢th term to the —r 4 (¢ — 1)th term by

ner Z a;t;ne;(er).

i=1
We compute sod + dos. Given such an element ne; with n € gT%HL'_LI, we have
ds(ner) = Z a;d(t;ne;(er)) = Z Z a; 0, tmeq N €;(er),
i=1 i=1 a=1
and
sd(ner) = Z s(Oyme; Ner) = Z Z arteOyer(e; Ner).
j=1 j=1 k=1

We show first that all terms with e; for J # I cancel out in the sum. Note that, by

definition, such a J must be of the form I — {b} U {c} for some b € I and ¢ ¢ I. In the first
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term, this comes from e. A ej(e;) and in the second term, it comes from ej(e. A er). The
coefficient is a0y t, in both cases, and they come with different signs, so they cancel in the
sum.

The only remaining terms have e;, and so we must have a = ¢ € [ in the first term and

j =k ¢ I in the second term. By checking signs, we see that

(sd + ds)(ner) = (L(t0) — (|L| = Lr) + [L])(n)er,

which is an automorphism of gTEHL‘*LI when « # 0, as a unit plus a nilpotent is a unit.
This proves C*(M) is acyclic for o # 0. O

In Lemma I1.16 below, we will strengthen the previous result for B*(M) by showing that
A%(M) is acyclic for a > 0.

Remark 11.10. We will use Lemma I1.9 and I1.16 in the following way. By the vanishing of

the rightmost cohomology in Lemma II1.9 and Lemma II.16, we see that
WM =3"0, V" M+ VM for x £ 0,
i=1

and

Ly*m = ZtiLVX_aiM for x > |L|.

i=1
I1.2.1: Relation to Z-indexed Filtrations

We explain here an alternative point of view of L'V-filtrations which both proves they are
unique and relates them to b-functions. Later we will give an argument similar to the
standard way of arguing that the V-filtration is unique for L = >/, s;. This subsection is
based on the analogous results for r = 1, which can be found, for example, in [SS, Chapter
9] or | ].

Given a Dxyar-module M, a Z-indexed filtration U* M is compatible with the filtration
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LV*Dyxyar if for any j, k € Z, we have
LV Dyyar - UAM C UFH M.

The filtration U* M is good if it is exhaustive, compatible and if there exist mq,...,m, €

M and integers ki, ..., k, € Z such that for all j € Z, we have

¢
UM = ZLV]_kiDXxAr M.

=1

By exhaustiveness, if a module admits a good filtration then it is coherent over Dxxar,
and conversely, by choosing generators for the module and integers k; € Z, one can define a
good filtration by the above formula. If U} M and Us M are two good filtrations, then there
exists k € Z>( such that

UM C UM C U M.

The following lemma is a result of the characterization of good filtrations in terms of the
Rees modules, and the fact that the Rees ring Ry (Dxxar) is Noetherian, which itself is
proven by realizing this ring as the ring of relative differential operators on a deformation to

the normal bundle Y. See, for example, | , Section 4] and | .

Lemma II1.11. Let N C M be a submodule of the coherent module M. If UM is a good
filtration on M, then UN =N NU*M is a good filtration on N .

A good filtration U* M is specializable if there exists a non-zero polynomial of a single

variable b(w) € Clw] such that
b(L(s) + UM C U M.

The collection of these polynomials forms an ideal, so there exists a minimal monic

polynomial by (w) satisfying the relation, which we call the b-function for U* M.
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Lemma I1.12. Let U M and U3 M be two good filtrations on M. Then U7 M is specializable
iff Us M is.

Proof. Let bi(w) be a b-function for U M. Let k be an integer such that U™ M C UsM C
Us™*M. Then

F k
H bi(L(s) +j + 0)U3M C H bi(L(s) + ] + OUI M C UM € UITI M.
p— Pt

The other direction is proven in the same way. O]

This lemma implies that specializability is a property of the coherent module M rather
than a property of U* M. We hence call a module M specializable if it admits a specializable
filtration U* M.

Given a specializable filtration U*M, write its b-function as [[\cpqr(w + A)™ where
my > 0 and R(U) is a finite set, which we call the “roots” (though really, they are negations
of the roots). For D-modules underlying mixed Hodge modules, R(U) C Q, so we will make
this assumption throughout the rest of this subsection, for ease of notation, though it is not

necessary. We call such modules Q-specializable.

Lemma I1.13. Assume M is Q-specializable. Then there exists a unique good filtration

LV® M with b-function having roots in [0,1).

Proof. Let U*M be any good filtration on M with b-function by (w) = [[c gy (w + A)™.
Order the roots A\ < --- < Ap. By simply shifting U* M, we can assume A\ < --- < \p < 1.
If Ay > 0, we are done.

Otherwise, define a filtration U M by the formula
UM = UM+ (L(s) + @ + A\ )™ U M.

This is clearly good. This has b-function given by (w 4 Ay 4 1) [T._,(w + X;)™i. We

can repeat this process finitely many times until all roots lie in [0, 1), as desired. O

29



The filtration constructed in the previous lemma is unique. Indeed, we will show that
it agrees with the order filtration defined in terms of b-functions. For any m € M, the
b-function for m is the unique, non-zero monic polynomial of smallest degree b,,(w) such
that

b(L(s))m € “V' Dxyar - m.

Such b-functions exist for every section if M is specializable. Moreover, their roots are
in Q if M is Q-specializable.

Writing by (w) = [[yepm) (w + )™, we define the order ordg(m) := min R(m).

Proposition I1.14. Let M be a Q-specializable coherent Dxyar-module. If U* M is a good

filtration satisfying R(U) C [0,1), then
UM ={me M| ord,(m) > e}

and so, such a filtration is unique.

Proof. Let m € U’ M with b-function b,,(w). The module N' = Dxyar - m has two good
filtrations: U°N and “V°*Dx.ar - m. So there exists an integer k such that U*tFN C
LV*Dyxyar -m CUFN.

Then [Tj_; bu(L(s) + O)m € UM'N C *V'Dyyar - m. As R(U) C [0,1), this implies
ordr(m) > j. As the roots of by(w) lie in [0,1), this implies R(m) € [j,k + 1), and so
ordy(m) > j.

Conversely, assume ordz(m) > j. Let m € U'M for some i € Z. If i > j, we are done.
Otherwise, note that V' Dy yar - m C UL M. But also by (L(s) +i)m € U M. As j > i,
we know b,,(w) and by (w + i) are coprime. Hence, we see that m € U M. Repeating in

this way, we conclude m € UM, as desired. O

Moreover, this filtration is precisely the (integer part) of the L'V-filtration defined above,

by the next proposition.
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Proposition II.15. Let M be a Dxyar-module which admits a Q-indexed *V -filtration as

defined above. Then ©'V° M is the unique specializable “V -filtration satisfying R(*V) C [0, 1).

Proof. Of course this filtration is exhaustive and compatible. Let N be large enough that

(L(s) +A\)NgriM =0 for all X € [0, |L|]. Note that such an N exists because there are only

finitely many non-zero such gry M in the interval [0, |L|], by discreteness of the filtration.
This N satisfies (L(s) + \)VgrpM = 0 for all A € Q. Indeed, this claim is proven by

increasing (resp. decreasing) induction for A > |L| (resp. A < 0), using Remark 11.10

griM = Ztigrfa"/\/l for A > |L|
i=1

(resp.) griM = Z@tigrfai/\/l for A < 0.

i=1

Let 0 = A\, < Ay < --- < Ay < 1 be the finitely many indices for which gry’M # 0. By
the same argument, we see that grf M # 0 implies A — || = \; for some 4. Putting these
observations together, we see that Hle(w + )% is a b-function for the Z-indexed filtration
Ly® M. As its roots lie in [0, 1), all that remains to be shown is that V°* M is good.

For all ¢« € [0,|L]] N Z, we know LV' M is finitely generated over V%Dx,ar. Choose
generators mgi), . ,ml()? e LV' M.

Then “V* M D ZLQO Zi:l LkaiDXXArmgi) =: U*M for all k. Clearly, these filtrations
agree for any k € [0,|L|]. Both filtrations satisfy the result of Remark II1.10 (using the
corresponding property for the filtered ring (Dxxar, “V'), which is easy to check) so this

implies inductively that they are the same filtration. O

By the uniqueness shown above, this implies that the Q-indexed filtration “V°M is
completely determined by the Z-indexed part. Indeed, if A € [j,7 + 1) for some integer
7, then LV M is precisely the LV Dy, ar-subspace of £V’ M which contains £V’ 7' M and
which, in the quotient Ly M / Ly 7+ apm gives the elements which are killed by some power

of L(s)+ .
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The uniqueness of the filtration “V°* M implies that any morphism ¢ : M — A between

specializable D-modules is strict with respect to the “V-filtration, meaning for all A € Q,
. LA LA
im(e) NV N ="V M).
This has the following useful implication: given a short exact sequence
0O=>Lo>M—->N=0
of specializable Dx, ar-modules, the induced sequence
L1\ L1\ L1\
0=V LS V' M—=*"V'N =0

is also exact, for any \ € Q.

To end this subsection, we give the promised proof that A%(M) is acyclic for o > 0.
Lemma I1.16. For any o > 0, the complex A*(M) is acyclic.

Proof. As B“(M) is acyclic, it suffices to prove the claim for a > 0. We will show that, for
any Z-indexed good LV -filtration U® M that the corresponding complex A7(M) is acyclic
for j > 0.

By goodness, there exists a strict surjection @] (Dxxar, “V[ki]) = (M,U) — 0 for
some integers ki, ..., k, € Z. The kernel (IC,U) with its induced filtration is also good. By

strictness of these morphisms, we have a short exact sequence of complexes

0= A(K,U) = A(ED(Dxxar, "VIki])) = A'(M,U) = 0.
i=1
Note that for j > max{k;}, the middle complex is acyclic. This is a simple computation

concerning the “V-filtration on the ring Dy xa- and the fact that ¢; form a regular sequence

in that ring, which can be checked on the associated graded gr'Dxya-.

32



Hence, by looking at the long exact sequence in cohomology, we immediately obtain

HTAI(M,U) =0 for j > max{k;}, and we get isomorphisms
HTLAI (MUY = HP AT (K, U)

for all 0 < b < r. But U*K is also a good filtration, so by possibly increasing j, we know
HTAI(KC,U) = 0, and so H"'A/(M,U) = 0. Repeating in this way, increasing j finitely
many times, we conclude the claim. O]

I11.2.2: Monodromic D-modules

Let E = X x A" be a trivial vector bundle over X with fiber coordinates t;,...,t, and
corresponding vector fields 0y, ,...,0;.. A coherent Dg-module M is L-monodromic if, for
any locally defined section m € M, there exists a non-zero polynomial b(s) € Q[s] of a single
variable such that b(L(s))m = 0. Such a module decomposes into generalized eigenspaces

for the operator L(s)

M = P MX where MX = | Jker(L(s) + x)*).

XEQ £>0

Any subquotient of an L-monodromic Dg-module is again L-monodromic. Moreover, if

¢ : M — N is a morphism of L-monodromic Dg-modules, it satisfies
p(MX) C NX.
The “V-filtration on L-monodromic Pg-modules is particularly easy to describe:

LyIM = P M.

X>A

It is easy to check that modules in Example I1.6 (setting ¥ = X x {0}) and Example
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I1.8 are L-monodromic for any slope L.

I1.3: Brief Definition of Mixed Hodge Modules

We give a very brief treatment of the important aspects of the theory of mixed Hodge modules
on smooth, algebraic varieties. For more details, see | 1, [ , ]. A mixed Hodge
module on a smooth algebraic variety X consists of the following data: a regular holonomic
Dx-module M, an increasing good filtration F, M (called the “Hodge filtration”), a finite,
increasing filtration W, M by Dyx-submodules (called the “Weight filtration”) and a Q-
perverse sheaf K with an isomorphism DRx(M) = K ®q C. These data are required to
satisfy a laundry list of properties. For example, if X is a point, then a mixed Hodge module
on X is simply a graded polarizable mixed Hodge structure.

For higher dimensional X, the required properties concern the compatibility of the Hodge
filtration and the V-filtration of M along any locally defined hypersurface H = {f = 0} C X.
Let i : X — X x A! be the graph embedding along f. As usual, we consider the V-filtration
of i, M along the smooth hypersurface X x {0}. Then the good filtration F, M induces a
good filtration on i, M by

FyizM = P F, o1 MO}6.

k>0

This filtration must satisfy the following compatibility relations:

(I1.3.1) E Vi, M iR E,V*1i, M is an isomorphism for all p € Z, A > 0
(I1.3.2) E,grytiy M &, F,1g77i M is an isomorphism for all p € Z, A < 0,

which are filtered versions of the » = 1 case of Lemma I1.16 and Lemma I1.9, respectively.
Note that, if one looks at the ring Dy a1 with the order filtration F, and the V-filtration

along t, these isomorphisms are satisfied. They are not satisfied for A < 0, respectively,
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A > 0. Roughly, these conditions allow for bifiltered free resolutions of (i, M, F, V).

Moreover, if one sets

VM, F) = @B gri(is M, F), 00 (M, F) i= gri(iy M, F), ¢1(M, F) := g (iy M, F[-1]),
A€(0,1]
then one requires the filtration induced by F, to be good on these modules, which are Dx-
modules supported on H. The inductive definition of mixed Hodge modules then requires
that these objects, with Hodge and weight filtration defined in the next section, underlie
mixed Hodge modules.
If t € Ox defines a smooth hypersurface, and M is a mixed Hodge module on X, then

the definition of the restriction functors to H = {t = 0} are
(I1.3.3) PN = [ (M) 2 00 (M), tesp. i*M = |y (M) < %(M)] ,

placed in cohomological degree 0,1 (resp. —1,0). The D-module maps underlying these
morphisms are - (resp. J;-).
If Z is a singular variety, then by using local embeddings into smooth algebraic varieties,

one can define the category of mixed Hodge modules on Z, too.

I1.4: Important Results about Mixed Hodge Modules

11.4.1: Various Theorems for Mixed Hodge Modules

Given X a smooth algebraic variety, the category MHM(X) is abelian. Moreover, if M
is a pure Hodge module of weight d on X, it is polarizable, so there is an isomorphism
D(M) = M(d), where (—)(d) is the Tate twist. More generally, if M is a mixed Hodge

module, we have a natural isomorphism
D(grV M) = gr' DM.
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One of the most fundamental results about mixed Hodge modules is that any morphism
between them is bistrict with respect to the Hodge filtration and the V-filtration along any

hypersurface. In practice, this means that, given a short exact sequence

O—L—M-—=N=0

of mixed Hodge modules, the induced sequences

0— F,VAL — F,VAM — E,VAN — 0

are exact, for all p € Z, A € Q.

In general, a filtered morphism ¢ : (M, F) — (N, F) is strict if p(F,M) = F,N Nim(yp).
A filtered complex (K*, F') is strict if all morphisms in the complex are strict. The first main
theorem of Saito is that, for push-forwards of Hodge modules along projective morphisms,

the resulting filtered complex of D-modules is always strict.

Theorem I1.17. (/ [ )Let f Y — X be a projective morphism between two smooth
complex algebraic varieties with £ € H*(Y,Z) the class of an f-ample line bundle. Let M be

a pure Hodge module on'Y of weight w with underlying filtered D-module (M, F'). Then

1. The filtered complex f, (M, F) is strict and H' f (M, F) underlies a pure Hodge module

on X of weight w + 1.

2. The map 0 : H' fo (M, F) — H'f (M, F)(i) is an isomorphism of Hodge modules

for all i > 0.

Here the functor (—)(i) is the Tate twist, which shifts the Hodge filtration by i and
decreases the weight by 2i.
When f:Y — {x} is the constant map, this strictness recovers the fact that the Hodge-

de Rham spectral sequence degenerates at ;. Moreover, the strictness of f (M, F) is true
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even if (M, F') underlies a mixed Hodge module with non-trivial weight filtration, see | ]

and | ]-

Example 11.18. We will make particular use of this theorem when f:Y =X x 7 — X is
the projection, where Z is a smooth projective variety. Then the complex f,(M) is given

by the following: consider the relative de Rham complex
K* = <M$M®OQ}$...$M®OQ‘§mZ>,
with a filtration
FK* = <Fp/\/l & FaM @0 QL S S Fygim 2 M @0 Q}imz> .
Then strictness tells us that the natural morphism
Rif(F,K®) = R f,(K*) = H f (M)

is injective, and the image defines the Hodge filtration on H'f, (M).

As a corollary of Theorem I1.17; Saito proves the following strengthening of the Decom-

position Theorem of | |.

Corollary I1.19. Let (M, F,M) underlie a pure polarizable Hodge module on a smooth

algebraic variety Y. Let f 1Y — X be a projective morphism. Then

fr(M,F) = @ H! f (M, F)[=H]

keZ

wn the filtered derived category of Dx-modules.

The second major theorem of Saito’s theory is the structure theorem for pure Hodge

modules. Built into the theory is the stipulation that any pure Hodge module M decomposes
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by strict support, a property which can be detected through the V-filtration. Given an
irreducible closed subset Z C X, a module N has strict support Z if it has no non-trivial
subquotient supported on a closed subset of Z.

Then a pure Hodge module M decomposes into strict support if there exists a finite direct

sum decomposition

M= P My,

ZCX

where My has strict support Z.

Theorem 11.20. ( /. /) Let X be a smooth algebraic variety and Z C X a closed

irreducible subset. Then

1. Every polarizable variation of Hodge structure V of weight w — dim Z on a Zariski
open subset of Z,., extends uniquely to a polarized Hodge module of weight w on X

with strict support Z.

2. Every polarized Hodge module of weight w on X with strict support Z arises in this

way.

This theorem gives a structure theorem for the category of polarizable pure Hodge mod-
ules. Another important aspect of this category is that it is semisimple. For this, it is
important to focus on polarizable Hodge modules.

Mixed Hodge modules on algebraic varieties admit a six functor formalism in the sense
of Grothendieck, see [ , Section 4] and | ]. The functors are compatible with the
corresponding functors for regular holonomic D-modules and perverse sheaves. For example,
for any morphism of varieties f : Y — X, there are functors f., f*, f', fi so that f* is left
adjoint to f., fi is left adjoint to f', there is a natural morphism f, — f, which is an

isomorphism if f is proper, and we have
/"Dx =Dy f, fDy=Dxh.
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Moreover, if ¢ : Z — X is a closed subvariety with complement U, then for any M*® €
D*(MHM(X)), we have i, = i (as i is proper) which is exact, j* = j' is also exact, which

follows because j is étale. Moreover, 3'j, = i*ji = j*i, = 0. Finally, there are exact triangles
.o ° ° Cex o +1
nwi M®* — M® — 5, 5" M®* —

GM® — M — i M

Given any variety Y with constant map a : Y — %, by taking the trivial Hodge structure
(viewed as a Hodge module on *), one obtains an element Qf € D*(MHM(Y)). If YV is
smooth, then Q¥[dim Y] is a pure Hodge module of weight dim Y. In fact, the underlying
filtered D-module is Oy with filtration given by grf Oy = Oy.

By functoriality of pullbacks, if f : Y — X is any morphism, then f*Q¥ = Q¥. Hence,
for a closed embedding i : Z — X, we have i*Q¥ = Q¥ though, even if X is smooth (so
Q4 [dim X] is a pure Hodge module) it is certainly not the case that QX[dim Z] is pure,
unless Z is also smooth. In any case, if X is smooth, then using the properties mentioned

above and by choosing a polarization on Q¥ [dim X], we get an isomorphism

DQY ~i'Q¥ (dim X)[2dim X].

It is known | , Formula (4.5.7)] that for any variety Z, Q¥ is mixed of weight < 0,
ie.,
griV H(QE) =0 for all i > j.
If Z has pure dimension d, then by | , Formula (4.5.6)], we have H/(Q%) = 0 for

j > d, and the intersection cohomology module IC, Q™ is defined as the pure Hodge module

gry HY(QZ),
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which is the unique extension of Qg » [dim Z] to Z with no subquotient supported on Z;,,.

If Z is irreducible, this is a simple object. If Z has N irreducible components, then
End(ICzQ") = Q",

where the scalars must be rational so that they respect the Q-structure. Moreover, such an
endomorphism is uniquely determined by its restriction to Z,.,, see | , Formula (4.5.14)].
By definition of 1C7(QZ), there exists a canonical morphism (see | , Prop. 8.2.15]

for the morphism of perverse sheaves)
vz : QF[dim Z] — IC,Q".

Let 7 : Z — X be the inclusion of a closed subvariety of pure dimension d into a smooth,
irreducible variety X of dimension n. The following chain of isomorphisms is easy to check

by what we have said already:
.D(IC2QY) = gri. H™'D(QY) = grlyi. 1™ (i.i' QX (n)[2n)).

The underlying mixed Hodge module of HP(i,i'Q%[n]) is the local cohomology H%(Ox).
Hence, by taking out the cohomological shifts and the Tate twist, and setting r = n — d, we

get that all modules in this chain of equalities are isomorphic to
grm—rHrZ(OX)(n) = Wy Hz(Ox)(n)

and gr)VH(Ox)(n) = 0 for p < n+r. This lowest piece of the weight filtration has un-
derlying Dx-module given by the intersection cohomology D-module of Brylinski-Kashiwara
[ ], which is the unique simple D-submodule of H%,(Ox) if Z is irreducible.

Finally, we will also 7% = D(vz)(d), which can be identified through all that we have
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said with a morphism

71z DUICLQ")(=d) — ' QX[n + r](r).

Now, let X be a smooth algebraic variety with a mixed Hodge module M on X. The
underlying filtered Dx-module (M, F,) gives, via the Riemann-Hilbert correspondence, the

C-perverse sheaf DRx (M), which in this case is endowed with a filtration defined by
F,DRx(M) = [0 = F,M — Q% ®0 FpriM = -+ = wx ®0 Fpraim xM] .

Note that the morphisms are not O-linear, but they are after taking gr: hence, we
obtain a bounded complex of O-modules, for any p € Z, given by gr]f DRx(M). This

construction is compatible with proper pushforwards and satisfies
(I1.4.1) RHomo(grt,DRx(M),wx[dim X]) = gri DRx(DM).

or, in other words, it interchanges the duality for mixed Hodge modules with Grothendieck

duality.

11.4.2: Hodge and Weight Filtration Indexing

In this section, we collect the shifts of Hodge and weight filtration which are incurred when
applying functors to a mixed Hodge module. Throughout this thesis, we use left D-modules,
and so these conventions are for those modules. A shift of filtration is necessary when going
from left modules to right, but we will not be concerned with that in this paper. Throughout,
let (M, F,W) be a bifiltered D-module underlying a mixed Hodge module M on a smooth
complex variety X.

Tate twist: For any k € Z, the kth Tate twist of (M, F, W) is the mixed Hodge module
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M (k), with the same underlying Dx-module and Q-structure, but satisfying

Fo(M(k)) := Flk]eM := Fo M,  Wo(M(k)) = Wep M,

so that, if M is pure of weight w, then M (k) is pure of weight w — 2k.

Smooth pullback: Let p : X x Y — X be a smooth projection, where Y is another

smooth variety, of dimension r. By | , (4.4.2)], we set p*(M) = M X Q¥. As shifting

this cohomologically to the left by r gives

p(M)[r] = M X Qy[r] € MEM(X x V),

we see that p*(M) is concentrated in cohomological degree r. Similarly, p'(M) = M X
QX1[2r](r), which, by shifting cohomologically to the right by r, gives the mixed Hodge

module

(IL.4.2) P (M)[=r] = MR QY [r](r) = p"(M)[r](r).

In particular, the underlying D-module of either mixed Hodge module is p} (M), the
O-(and D-)module pullback of M along p. By [ , (2.17.4)], we see that

Fip"(M)[r] = po(FeM), - Wip*(M)[r] = po(Wi—rM)

and by using the rule for Tate twists, this gives

(I1.4.3) Fyp'(M)[=1] = po(Fiee M), Wip!(M)[=1] = pio (Wi, M).

Closed Embedding: Let i : X — Y be the inclusion of X as a smooth subvariety in the

smooth variety Y, defined by a system of coordinates t1,...,t, with vector fields 0;,, ..., 0, .
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Then, under the isomorphism
M= Moy,
aEN”

we have

FjizM= P Fppo-e MO, WiizM = P WiMOy.

aeNT” aENT

Nearby and Vanishing Cycles: Assume t € Ox defines a smooth, nonempty hypersurface

H. As mentioned above, we have the nearby cycles

= P v

A€(0,1]

and the unipotent vanishing cycles

(bt,l(M)a

with underlying Dy-modules

= P g M,

Ae(0,1]

respectively,

¢t,l (M) = gT’?/M,

where V* M is the V-filtration of M along the hypersurface H.

The Hodge filtration is defined as

FV*M
(I1.4.4) Fipy(M EB FrgryM = @ F VM
X€(0,1] Ae(0,1]
Frp1VOM
o 0 _ k+1
(1145) Fk¢t(M) = Fk+1g7’vM = m

For the weight filtration, we use the relative monodromy filtration as defined in Section

I1.6. Set M;pi\(M) = dpa(WiaM) and M1 (M) = ¢p1(W;M). Then ¢;\(M) carries
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a relative monodromy filtration for (M,, N), where N = 0;t — X is the nilpotent operator,
and similarly ¢, (M) carries a relative monodromy filtration for (M,, N) where N = 0yt.
The weight filtration for ¢,(M) is defined by taking the direct sum of the various relative
monodromy filtrations for ¢ (M), and the weight filtration for ¢;;(M) is the relative

monodromy filtration.

We define the total vanishing cycles by setting ¢ (M) = ¢ A(M), s0 ¢1(M) = D¢ (g1 Pt (M)

I1.5: Specialization

As mentioned above, Saito made extensive use of the V-filtration along hypersurfaces in the
definition of mixed Hodge modules. In this section, we describe a method, originally due to
Verdier, which allows one to study the *V-filtrations using properties of V-filtrations along
hypersurfaces. This was used to great effect in | ].

For ease of notation, set Y = X x A". Let L(w) = Y _._, a;w; be a non-degenerate slope.

We define the deformation to the normal bundle of Y along X x {0} in the direction L as

yE.= Specy(@ ®(t2)_k ® uih),

keZr

where u is a new variable. This admits a smooth morphism u : YL — Al so Y% is a
smooth algebraic variety of dimension dimY + 1. Moreover, restricting this morphism to
A'—{0} C A, the morphism is isomorphic to the projection p : Y x (A'—{0}) — A!'—{0}.
Let j: {u#0} =Y x (A' — {0}) = Y be the open immersion.

Let M be a regular holonomic Dxar-module. We can define a Dy, -module by

—~

M = j*p! (M>[_1]7

which agrees with the O-module j,p*(M) = @, ., Mur.

We now describe the D-module action. The variety Y has local coordinates 1, ..., x,, t1,. ..
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and so Y x (A' — {0}) has coordinates x,...,Z,,t1,...,t., u. However, the variety YL has

coordinates 1, ..., Ty, 2, ..., 2=,

latter system of coordinates, we denote it by .

Then the change of variables formula tells us that

1

u%i £

O, = 04, (1)0;. =

=1

Rearranging these equalities, we have

O = u“d,,,

ti
8ﬂ = 8u + Z aitiuflati.
i=1

Hence, if mu* € Mis a section, then
Or (muk) = 0}, (m)ukJ”“7

Oa(mu) = (k+ ) ait;0,,) (mu"".
=1

Using the latter formula, one can prove the following (see |

be the V-filtration along u. Then
(IL5.1) VM =@V TTIMGE for all A € Q.
kEZ

With this in hand, we can define the L-specialization of M as

Spr(M) = ¢, (M),

45
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which is a regular holonomic D-module on {u = 0} 2 NxY = X x A”. By definition, it is

given by the formula

Spr(M @ ngM @ @gr’\HLl Mk

Ae(0,1] AE(0,1] k€Z

Now, assume (M, F') is a filtered regular holonomic Dy-module underlying a mixed
Hodge module on Y. Then, as j,(—) and p'(—1)[—1] preserve the category of mixed Hodge
modules, M also underlies a mixed Hodge module, now on YL, Similarly, Spr (M) underlies
a mixed Hodge module on X x A”. It is easy to check, using the commutativity of duality
with vanishing cycles | , |, that Sp;, commutes with the dual functor on mixed
Hodge modules.

One observation is that the Hodge filtration on Spr (M) is the obvious one induced from
the Hodge filtration on M. More generally, we have:

Proposition I1.21. Let (M, F') underlie a mized Hodge module onY = X x A". Then, for
any p € L, \ € Q, we have

kEZ q=0

[—]
F,VIM = P vrtiE=1=k pmn ( D (L(t0y) + k+ 1)(L(tdy) + k+2) ... (L(td) + k + q)FquV'L"l‘q"“M) u”

where if v > —1, the formula is given by
vavﬂ — GB Fp+1V’Y+‘L‘_1_kMuk.
keZ

We first write out an immediate corollary concerning the Hodge filtration on Sp(M).

Recall that in the definition of nearby cycles for Hodge modules, a Tate twist by 1 is involved:

Corollary I1.22. Let (M, F) underlie a mized Hodge module on Y = X x A". Then for

any p € 4, we have

F,Spr(M) = EB @Fpgrfrm_k_l/\/luk.

\e(0,1] keZ
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Proof of Proposition I1.21. We make use of Formula (3.2.3.2) of | ], which in this situ-
ation tells us

Fpju (P (M)[=1]) = > 04VOM N jj* (Fp—yM)).

q>0

Note that j*/\A/T = p'(M)[~1], which, as p is smooth of relative dimension 1, has Hodge

filtration given by
Fp'(M)[-1] = @F,HMUI“.

keZ

Putting this fact, the formula I1.5.1 and the action of 0; together, we see

M= (Z (o) +k+1)...(L(td,) + k + q)FpH_qLV'L'_q_l_’“M) "

keZ \q>0

If we take ¢ = 0 on the right hand side, we see that

FMD@ +1LV‘L|11€MI€

keZ

so, after intersecting with VIM , We see

max |L|—1—k,|L|+y—1—k

FVIM2 @ Fnv MuF,

keZ
Now, let mu* € FpV“’//\/lv, so we can write m = Z(];[:O(L(tat) +k+1)... (L(toy) + k +
q)m, for some m, € Fp+1_qLV‘L‘ M. Moreover, as mu* € VVMV, we have m €

Ly YR AL We write m as two sums, stopping at [—v] in the first one:

[—7] N
m= > (L(td)+k+1)...(Ltd) +k+q)mg+ > (L(t0) +k+1)... (L(td,) +k+q)m
q=0 [—v]+1

Note that |L|+y—k—1<|L|—q—k—1iff y < —qiff —y > ¢ iff |—v]| > ¢. Hence, the

Lv‘LH"Y—k—l

first sum is contained in M. Hence, as m also lies in this piece of “V by choice
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of m, we see that

N
(L(t@t)+k+1) ... (L(t&t)—HH— I_—’YJ—l—l) Z (L(tat)+k_|_|—_fyj +2) o (L(tat)+k+q)mq c LV|L|+’Y_1_I€M,
g=—7v]+1
too.
Now, write m' = Zfl\;LﬂJH(L(tat) +k+ L_'VJ + 2) ces (L(té?t) +k + C])mq- As my €

A7 VR LV‘L‘_N_k_I/\/l, we see that m' € LV/H=NF1 g By definition of the
Ly filtration, there exists some power of L(t0;) — (|[L| = N —k—1)+|L| = L(t0;) + N+ k+1

>|L|-N—k—1

which multplies m/ into £V M. But also the operator (L(t0;) +k+1)...(L(td,) +

k+ |—v] + 1) does. These operators, as polynomials in L(td;) are coprime, as N > |—v],

PILI=N=k=1 0 0 Repeating this argument finitely many

so by Bézout’s identity, m’ € 'V
times, by discreteness of the “V-filtration, implies that m’ € A Ve Moreover,
as L(t0;) increases the Hodge filtration by 1, it lies in Fj,;q_|_, M. Hence, m|_,j +m’ €
F Lv|L|_L_’YJ_k_

pH1—|—) ' M, proving the claim. O

I1.6: Relative Monodromy Filtrations

In this section, we gather various results about relative monodromy filtrations, for more
details, see | , Section 1]. This will be useful in understanding the weight filtration
on Sp; (M), the weight filtration on ',i* and the weight filtration on FL(M) when M is
monodromic.

First of all, we recall the definition of the relative mondromy filtration. Let A be an
abelian category with an exact subcategory C C A admitting an additive automorphism

S :C — C. Let A € C be an object with a finite filtration M, A and a nilpotent endomorphism
N: (A M) — SHA M),

Then the relative monodromy filtration of (A, M) with respect to N is the unique, in-

creasing filtration W, A which satisfies the following two conditions:
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1. N: (A W)— (A W[2])
2. N :gr.grit A — gr)Y,gra’ A is an isomorphism for all ¢ and k.

The relative monodromy is not guaranteed to exist, unless M satisfies gri? A = A for a
unique k£ € Z, in which case it will be called the monodromy filtration. For us, the exact
category will be a filtered category, and S will be shifting the filtration. The notion of
relative monodromy filtration is fundamental in the work of Steenbrink and Zucker | ]
in the study of variations of mixed Hodge structure.

We first prove some general statements about relative monodromy filtrations before look-
ing specifically at what happens for Hodge modules. For details, see | ].

Let (A, M,) be a filtered object as above with the nilpotent endomorphism N, and
assume the relative monodromy filtration W, A exists. Moreover, assume there exists a
splitting operator Y : M — M which is diagonalizable and has integer eigenvalues and

which satisfies

WiM =P E(Y),

1<k

where E,(Y) is the (-eigenspace for Y. We say Y is admissible if
(I1.6.1) Y,N]=—-2N and YMM C M;M for all i.

The first condition says that NE,(Y) C Ey,_o(Y), and the second says that M; splits into
a direct sum over the eigenspaces for Y, for any .
Assume moreover that there exists a splitting operator Y’ for M M which commutes

with Y. Write N =Y., N;, where [Y', N;] = iN;. As N preserves M, we know that N; =0

i€Z
for ¢ > 0. Hence, Ny is also nilpotent.
The pair (No, Y — Y') satisfies [Y — Y, No| = [V, No] — [V, No| = —2Nj, and so we can

extend the pair to an sly-triple by defining an operator e on the eigenspaces of Y —Y” in the
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usual way. This should satisfy
Y =Y el=2e [Y—-Y' No=-2Ny, [e,No]=Y —-Y"
For basics on sly-representations, see for example [55, Section 3.1]. We will use three
facts:

1. If A is an sly-representation, then End(A) is, too.

2. For all k > 0, the map Ny : H, — H_j, is an isomorphism. We call ker(NJ™) the

primitive part Py of Hg. It is equal to ker(e) N Hy.

3. For any k& > 0, we have a the Lefschetz decomposition

Hy = @ N3 Pii2j € Py + NoPeya.

Jj=0

We call the tuple (A, M, N,Y,Y") a Deligne system after | | if we have the relation
le, N;] =0 for j # 0,

or, equivalently, [e, N| = [e, Ny].

The following theorem is the main result we will use concerning Deligne systems: it says
that if Y is admissible and there exists any commuting splitting operator }7, then we can
always find a splitting operator which completes the data to a Deligne system. In fact, the

splitting operator Y’ which makes a Deligne system is unique.

Remark 11.23. We will use automorphisms g : A — A to iteratively alter the splitting
operator Y. We spell out the details here. Specifically, let T': A — A be an operator with

ad(Y)(T) = —kT for some k > 0. Then T is nilpotent, so g = 1 + T is an automorphism of
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A. We define a new operator }79 = giN/gfl, which is a splitting operator. Indeed, we have
A=EPE(Y,), E(Y,) ={gr|zeE(Y)}

We will only consider 7" which commutes with Y, i.e., ad(Y)(7) = 0. Note that the
decomposition N =}, N; was in terms of ?-weights. We will be interested in computing
the decomposition for N in terms of }N/g—weights, using this decomposition. We only care

about the terms —k <7 <0 below.

For this, let v = gz € E;(Y,), so v € E;(Y). Write

Nxz}jNﬂ, Nsz}jNﬂ%,

£<0 <0

in terms of ?—Weights. Then Nv = Nz + NTz. It is clear that for 0 < j < k, the ?—Weight

t — 7 piece is N_;x. We write this as
N_jz +T(N_jz) = T(N_jz) = g(N_jz) = T(N_;x),

where the last term has ?—Weight 1 — 7 —k, and so we do not concern ourselves with it unless

j=0. For j =k, the ?—Weight 1 — k piece is
N_jx + NoTx — TNox = (N_j, + [No, T))x,

where on the left hand side, the third-most term comes from the case j = 0 above.

Hence, writing N7, for decomposition of N in terms of }79 weights, we have

gN_;g™* 0<i<k
NY, = .

g(N_ +ad(No)(T))g~" i=k

Moreover, it is easy to see that the new e (completing the sl,-triple) is simply geg—'.
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Theorem I1.24. Let Y be a splitting operator for W which is admissible as in condition
11.6.1. If there exists a splitting operator Y for M which commutes with Y , then there exists

a unique splitting operator Y' so that (A, M, N,Y,Y") is a Deligne system.

Proof. Let Y be a splitting operator for M as in the theorem statement.
We construct, by induction on k, a splitting operator EN/;C such that [e, V;] = 0 for all

0 < i < k, where e and the decomposition N = >_._, N; depend on the splitting operator

i<0
Y.

We begin with some easy observations. By definition, ad(Y)(N_;) = —kN_j and
ad(Y)(N_) = —2N_; by Property 11.6.1. Hence, ad(H)(N_;) = ad(Y — Y)(N_g) =
(k —2)N_.

Now, we construct }71 We use the fact that
ad(No) : Hy — H_; is an isomorphism,

where H, is the e-weight space of the ad(H) action on End(A).
Hence, N_; = ad(Ny)(N”,) for some unique N”; € Hy. As ad(Y)(N_;) = —2N_4, we

see that
—2ad(No)(N",) = ad (¥ )ad(No)(N",) = ad(No)ad(¥)(N",) — 2ad(No)(N",)

again using Property I11.6.1. Hence, ad(Np)ad(Y)(N”,) = 0. But ad(Y)(N”,) € Hy, too, as
Y commutes with Y — Y. But ad(Np) is injective on Hj, so we must have ad(Y)(N”,) = 0.

Set g = 1—N",. We are now in the situation of Remark I1.23. For this splitting operator,
as shown in that remark, we use geg~! and g(N_; + ad(Ny)(N”;))g~*. We need to show the

vanishing of the commutator. This follows from the following computation:

[geg™", g(N_1 + ad(No)(N"))g~ "] = gle, N_1 + ad(No)(N”})]g~" = gad(e)(N';)g~" =0,
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proving that this new splitting operator is an improvement.

Now, let k£ > 2, and assume we have a splitting operator for M, giving a decomposition
N =30 Ni and an sly-triple (No, Y — 17, e) with [e, N_;] =0 for 0 < i < k. We construct
one with [e, N_x] = 0, proving the claim by induction.

By definition, N_, has H = (Y — ?)—degree (k —2) > 0. Hence, by the Lefschetz

decomposition, there exists a decomposition
N_g = N’y +ad(No) (V"))

where N’ is ad(e)-primitive and N”, has H-degree k. Using ad(Y)N_, = —2N_; (by

Property 11.6.1), we have
—2N'", —2ad(Ng)(N",) = ad(Y)N' , + ad(Y)ad(No)(N"})

=ad(Y)N', + ad(Ny)ad(Y)(N",) — 2ad(No)(N",).

Rearranging, we get
(ad(Y) +2)N’, + ad(Ny)ad(Y)(N”,) = 0.
Hence, if we apply ad(No)*~! to both sides of the equality, we get
ad(No)"ad(Y) (") = 0,

but ad(Y)(N”,) € Hy, so ad(Ny)* is injective on Hy, proving ad(Y)(N”,) = 0.

1

I

As in Remark I1.23, we use g = 1 — N”, to define a new splitting operator. We use geg™
gN_;g7' and g(N_j +ad(Ny)(—=N",))g™ !, and we must check the vanishing of commutators.

But this is shown the same as above, proving the claim. O]
Corollary I1.25. Let T' : (A, M,N,Y,Y") — (A2, M, N,Y,Y") be a morphism of Deligne
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systems, i.e., T : (A1, M) — (As, M), TY =YT and TN = NT. Then

TY'=Y'T.

Proof. As T preserves M, we can write T' = Zigo T; where Y'T; — T;Y' = ¢T;. We will prove
the claim by showing Ty = T, i.e., T; = 0 for all i« < 0. We proceed by induction on i. We
will abuse notation and write [T}, N;] = T;N; — N,T;, where it is understood that in the first
term, N; is for A; and N, in the second term is for A,. We do the same for e.

As TN = NT, by looking at Y’ eigenspaces, we have NoT_1 + N_1Ty = TyN_1 + T_1 Ny.
We write this as

[No, T_1] + [N_1,Tp] = 0.

Using this, we compute [e, [No, T_1]] = [e, [To, N_1]] = [le, To], N_1] + [To, [e, N_1]], but
le,To] = [e, N_1] = 0. Hence, we have shown that ad(e)ad(Ny)(7-;) = 0. But ad(Y —
Y’)(T_1) = T_; by definition of the decomposition 7" = ) T};. Hence, T_; = 0.

Now, assume inductively 71 =T o9 = --- =T ;1 = 0. We show T, = 0. The same
argument decomposing TN = NT into Y’'-eigenspaces and using the inductive hypothesis

shows

[No, T_g] + [N_, To] = 0,

and the second computation is exactly the same. Then, use ad(Y — Y')(T_y) = kT to
conclude 7", =0, as k > 0. O

For Hodge modules, the existence of relative monodromy filtrations is built into the

definition of mixed Hodge modules. Indeed, one requires

1. For any W-filtered D-module (M, W,) underlying a mixed Hodge module and any
locally defined, non-constant function f € Ox, the nearby cycles (M) and unipotent

vanishing cycles ¢r1(M) admit a relative monodromy filtration with respect to the

o4



induced filtrations

Mpp(M) = pr(Wea M), Moy 1(M) = @51 (WeM)

and the nilpotent operator V.

2. For (M, F,, W,) underlying a mixed Hodge module, the following sequence is exact for
all A € Q,k,p e Z:

0 = BV W, oM — F VAWM — FVAgr) M — 0,

where V*M is the V-filtration along f.

Using specialization, we see that the relative monodromy filtration on gry M exists for

any A € Q. Moreover, using M as in the specialization construction, we obtain short exact

sequences for all A € Q, k,p € Z:
0 — B VW, oM = BEVI WM — BV grV M — 0.

We are interested in the following statement concerning splitting operators:

Lemma I1.26. Let X be smooth and consider for j = 1,2 bifiltered D-modules (M, Fq, W)
and (M, Fo,W,) underlying mized Hodge modules M, M; on X x A" with coordinates
ti,...,t, on A". Let L'V be the canonical 'V -filtration along t,, ..., t,. For j =1,2 (and for
M), let Mogry(M;) = griy(WeM;) and Wegry (M) the relative monodromy filtration for
M, and the nilpotent operator L(s) + A. Then

1. For1 <1 <r, we have that the induced filtered morphism

ti: (gri grp M, F) = (grl gry™ M, F)
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splits along the decomposition induced by M,, i.e.,

ti: (grd grMgrp ML F) — (gri¥ gr gry ™M, F).

2. For 1 <1 <r, we have that the induced filtered morphism
Oy, : (g1 gri M, F) = (grl gry™ M, F[-1])
splits along the decomposition induced by M,, i.e.,

By, : (gr grl gri M, F) — (grl gry' gry™ " M, F[-1]).

3. If p: My — M is a morphism of mized Hodge modules, then
gr e (grd griMy, F) —=)grl griMs, F)

splits along the decomposition induced by M,.

Proof. 1t will suffice, by Corollary I1.25 to complete to a Deligne system and show that these
morphisms induce morphisms of Deligne systems. Then each morphism will commute with
the splitting operator for M,, which is exactly the claim.

Our object of interest is A = gri¥griM (or A; = grl¥griM,;), with N = L(s) + A,
Wigrl griM = P i<k ngW gr} M and the obvious splitting operator for W. By specialization
and | , Prop. 1.5], there exists a splitting operator for M, on grl gry M.

Hence, by Theorem I1.24, there exists a unique splitting operator which completes this
data into a Deligne system. It is obvious that each morphism described respects N, M and

the splitting Y, hence is a morphism of Deligne systems. O
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I1.7: Technical Applications of the Specialization Construction

In this section, we prove several technical lemmas which will be fundamental in the proofs
below. The main idea, following | |, is that claims about higher codimension V-

filtrations can be reduced to those for hypersurfaces, where they are better understood.

Lemma I1.27. ( / , Prop. 3.2]) Let Y = X x A", and let W be a smooth projective
variety. Denote by p: Y X W — Y the projection to Y, which is smooth and projective. Let
M be a mized Hodge module on'Y x W, with underlying filtered Dy -module (M, F). Let
LV M be the LV -filtration along X x W . Then the bifiltered direct image is bistrict, and the
induced F and YV filtrations are the Hodge and *V -filtrations on the Dy -module underlying
Hrp, M.

Proof. The pushforward is defined using the bifiltered relative de Rham complex whose —ith
term is

QY g (M, FIi), V).

Let Y be the deformation to the normal bundle considered above, and consider Y x W.
Using the method above, we obtain a mixed Hodge module M on YE x W, which has
underlying O-module M = Dicz MuF. Let p: YL x W — YL, Then the pushforward is

again defined using the bifiltered relative de Rham complex
QI @4 (M, F[i], V),

where V' is the V-filtration along w.
By [ , Prop. 3.3.17], we have bistrictness of ﬁ+(ﬂ4v , F[—i],V), as this concerns only
the V-filtration along a hypersurface. We conclude the desired claims now by decomposing

along the u* direct sum and by Proposition I1.21. O]

The next claim concerns the weight filtration, the argument is standard:
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Lemma I1.28. Let (M, F) be a filtered D-module underlying a mized Hodge module on
Y xW. Let p: Y x W — Y be the second projection, and let “V° M be the “V -filtration
along X x W. Then

1. The spectral sequence associated to the relative monodromy filtration on py(gr¢M, F)

degenerates at the second page.

2. If (M, F) underlies a polarizable pure Hodge module, then E5? is a filtered direct

summand of Et"? for all p,q € Z.

3. If (M, F) underlies a polarizable pure Hodge module and Wor® M is the monodromy

filtration, then the image of
Hip, (Wigro M) — Hipy (griM)

is the monodromy filtration of Hip (gre M), which by the previous Lemma is gro¢H'p, (M).

4. We have the decomposition in the filtered derived category of D-modules

p(gri griM, F) = @D (H prgry gri M, F)[—i].

1

Proof. As in the previous proposition, we have

P (gro M, F) = P i (gr M FI-1))

keZ

Let EP4 be the spectral sequence associated to the relative monodromy filtrations. Then

d, is compatible with the above decomposition, for example, because it is a morphism of
D-modules. As (gr{‘}ﬂ, F, W) underlies a (direct summand of a) mixed Hodge module for
€ [0, 1], the spectral sequence Ef’q(gr{‘}/q , F') degenerates at the second page, and hence

it does too for the direct summand E}?’q(grlLLHO‘_k_lM, F) for any k € Z, proving (a).
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If M is polarizable, then Sp; (M) is graded polarizable, and so for every p,q € Z the
module £ is pure polarizable, hence semisimple by [ , 5.2.13]. As ED? is a subquotient
of this, it must be a direct summand. Now, decomposing along the u* terms, we see that
the same is true for the spectral sequence associated to M, hence part (b).

By | , 5.3.4.2], we know that the image of Hiﬁw.gr{‘}./\? in Hiﬁgr{'}/\A/l/ is the mon-
odromy filtration. Again, we decompose along u*, and obtain (c).

Finally, for part (d), we know gr,‘f’gr{’}ﬂ is a polarizable Hodge module, so by choosing

an ample class on Y, we can use the Hard Lefschetz theorem to obtain an isomorphism
H'Plgry gry M, F) 2= Hi (grl gry M, F) (i),

and finally, decomposing along u*, we obtain (d). ]
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CHAPTER III

Singularities of Hypersurfaces

In this chapter, we mention the known results in the case of hypersurfaces. We do not give
any proofs, but these results are important to see the motivation for the theorems which
come in the following chapters. Throughout, X is a smooth, irreducible complex algebraic

variety of dimension n.

II1.1: Bernstein-Sato polynomials of hypersurfaces

In the previous chapter, we defined b-functions of sections of specializable D-modules. The
motivating example for b-functions is the Bernstein-Sato polynomial, studied independently
by Berstein | ] and Sato. This is defined as the monic polynomial of smallest degree

bs(s) € C[s] such that there exists a differential operator P(s) € Dx|[s] satisfying

bp(s)f* = P(s)f*",

where f* is a formal symbol on which a derivation acts via the power rule from differential
calculus.

Many computer algebra systems, for example, Macaulay2, have algorithms which allow
for the computation of Bernstein-Sato polynomials, see | ].

Kashiwara | | proved that the roots of bs(s) lie in Q. In fact, Kashiwara showed

something more precise. We state here the stronger version due to Lichtin | |- let
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m:Y — X be a log resolution of the pair (X,{f = 0}). This is a birational morphism
where Y is smooth and Ky, x + 7*(f) is a simple normal crossings divisor. Let {£;};c; be

the exceptional divisors of the resolution. Then we can write

W*(f) = ZaiEiaKY/X = Zszz
i€l i€l

Then we have

Theorem III.1. (/ , Theorem 5]) With this notation, every root of bs(s) is of the form

— B for some i € I and some { € Zxo.
; >

The fractions appearing in the theorem statement are related to classical invariants from
birational geometry, the multiplier ideals and log canonical threshold of the hypersurface f.

These are defined to be, for A > 0,

I(f*) = . (Oy (Ky)x — |A7*(f)])) € Ox,

ki+1+¢
let(f) := min L
(3 G,,L

It is not hard to see the following:
1. For 0 < A << 1 we have Z(f*) = Ox.
2. For A = 1, we have Z(f') = (f).
3. For X\ < u, we have Z(f*) D Z(f*).
It turns out that let(f) = sup{\ € Qso | Z(f*) = Ox}. For details, see | , Chapter

We see immediately from Lichtin’s theorem that every root of bs(s) is < —let(f). How-
ever, an argument due to Kollar | ], using the original, analytic definition of multiplier

ideals and integration by parts, showed that —lct(f) is always a root of bs(s). In fact, this
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theorem is strengthened in | ], again using an integration by parts argument, to show

that all numbers A € (0, 1) such that

Z(f*) 2Z(f)

satisfy bs(—\) = 0. These are called the jumping numbers of f in the interval (0, 1).

The connection between the Bernstein-Sato polynomial and the b-function defined in the
previous chapter is the following. Let I' : X — X x A! be the graph embedding along f and
consider the direct image I'yOx = By = @kzo Ox0Fé;, where &, is a formal symbol and ¢

is the coordinate on A'. By definition, a derivation 7 € Tx acts on d; by

7(0y) = —7(f)9dy,
and t acts by
toy = foy.

The module By naturally underlies a pure Hodge module, with Hodge filtration

F,By = € 0Ox0;.

k<p—1

We can also consider the module Ox[s, ] f* which is free over Ox|[s] and which inherits

1
o f

a Dx/[s]-action via the Leibniz rule and the power rule, meaning that for 7 € Tx, we have

T(f*) = st(NHf

This relation is one motivation for, as in the previous chapter, defining s := —0jt.
We can perform the same constructions with Ox replaced by the localization along f,

Ox(xD). These are related by the following. For details, see | , Prop. 2.5] or | ).
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Proposition 111.2. Using the notation above, we have an isomorphism
Ox(xD)[s]f* = T Ox(xD)

defined by

us? f* s u(—0;t)’d;.

Using this isomorphism, we see that the Bernstein-Sato polynomial bs(s) can be rephrased
as the b-function for the element 6; € I'y Ox(*D). Interestingly, the proof of | ] and
[ | can be strengthened to a computation of the roots of b-functions for other elements
of TyOx C T Ox(xD), as in the main result of | ].

Recall that, in the previous chapter, we showed that the V-filtration on a Dxya1-module
is related to b-functions. The result of Kashiwara on negativity of the roots of bs(s) says
that 6; € V>By, and the result of Lichtin tells us that 6, € Vit 7. In fact, Kollar’s result
shows that §; ¢ V>IN,

This relation of V-filtration and log canonical threshold was strengthened in Budur-Saito

[ ] to the following relation between the V-filtration on By and the multiplier ideals:

Theorem III.3. / , Theorem 0.1] Using the notation above, for all a € Q, we have
{h | héy e VOBr} =Z(f*)

for 0 <e<< 1.

The same result is shown for arbitrary ideals in | , Theorem 1].

I11.1.1: Hodge Ideals

Initially unrelated to the V-filtration, Mustata and Popa | | commenced the study of
Hodge tideals for divisors, which put multiplier ideals into a Zx>g-indexed family of ideal

sheaves. The construction is as follows: let U = {f # 0} 2y X be the inclusion of the
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complement of the hypersurface D defined by f. By applying the mixed Hodge module

pushforward j, to Q¥ [dim U], one sees that the underlying module is

J:Ou = Ox(xD),

but the corresponding Hodge filtration F,Ox (xD) is rather subtle. There is another natural

filtration on Ox(xD), the pole order filtration, denoted by

P.Ox(xD) = {u € Ox(xD) | f**'u € Ox} = Ox((k +1)D).

Saito | | showed that there is always an inclusion

and so Mustata and Popa | | defined the Hodge ideals to be

Tu(f) = FOx (D) @0 Ox(—(k + 1)D) C Ox.

Using the exact sequence

0— OX — O)((*D) — H})(Ox) — 0,

where H},(Ox) is the local cohomology module along D, and the fact that the Hodge filtration
on Oy is essentially trivial, the study of Hodge ideals is equivalent to the study of the Hodge
filtration on local cohomology. This aspect of the theory has been studied by many authors
[ ], [ I, [ , Theorem 1.5] to name a few. This is the main subject matter of
Chapter V, using V-filtrations for higher codimension subvarieties to study local cohomology.

Multiplier ideals also make sense for effective Q-divisors, and in | ], Mustata and

Popa define and study Hodge ideals for Q-divisors. Again, these generalize the multiplier
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ideal, but they are rather mysterious. For example, there is not in general a containment
I(D) C I 1(D),

though there is for D a reduced divisor.

There are certain properties of Hodge ideals which are rather well understood and which
are analogues of those properties for multiplier ideals. For example, subadditivity | ,
Theorem B|, restriction | , Theorem A], and finite pushforward formulas | , The-
orem 1.3] exist for these ideals. Moreover, they satisfy, in certain situations, analogues of
the celebrated Nadel vanishing theorem for multiplier ideals [ , Theorem F], [ ,
Section C] and | .

An interesting refinement of Hodge ideals for reduced divisors were defined by Olano in
[ | for the case k = 0 (i.e., for multiplier ideals) and in | ] for £ > 0. These are
defined by using the weight filtration on the mixed Hodge module Ox(xD) and intersecting
with the Hodge filtration. For example, | , Theorem A] gives a characterization of the

adjoint ideal in terms of weighted multiplier ideals.

I11.1.2: Microlocal V-Filtration

Given a hypersurface defined by a regular function f € Ox(X) on a smooth complex alge-
braic variety X, we consider the D-module By = @,.,Ox0dfd;. Saito | | defines the

partial algebraic microlocalization to be

By := By[0;'] = @ Ox 0}y,

keZ

with “Hodge” filtration
P;iifSZZ 6{9 C)Xéﬁéf.

k<p—1

If f is not a unit, then (s + 1) | bs(s), and so one can consider the reduced Bernstein-
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Sato polynomial by(s) = (fol)) Then Saito | | defines the minimal exponent of f to be
the negation of the most positive root of bs(s), denoted a(f). Saito | , Theorem 0.3]
shows that, actually, Bf(s) can be interpreted as the microlocal Bernstein-Sato polynomial

for f, defined in terms of a functional equation for d; in B #. This interpretation is crucial to

proving many properties of the minimal exponent, for example, the bound a(f) < 5 when
f is singular and the following Thom-Sebastiani type result:
Theorem II1.4. / , Theorem 0.8] Let f € Ox and g € Oy be regular functions with a

vector field T € Ty satisfying Tg = g. Then

a(f+g) =a(f) +alg).

When the hypersurface defined by f has isolated singularities, the minimal exponent
is actually the smallest of the Steenbrink spectral numbers. The Steenbrink spectrum of a
hypersurface with isolated singularities is a multi-set of rational numbers defined by studying
the action of monodromy on the cohomology of the Milnor fiber of f and how it interacts with
the Hodge structure defined in | |. Many important properties for the minimal exponent
in the case of isolated singularities were obtained from this viewpoint in the 1980’s. For
example, an interesting result due to Varchenko | ] is that, for a family of hypersurfaces
with isolated singularities and constant rank of their top cohomology of the Milnor fiber, the
minimal exponent is constant. The spectrum was related in | ] to the V-filtration and
Hodge filtration on By.

Using the V-filtration on By, one can define a V-filtration on gf on which the usual
properties hold and 97! : V*B; — V*™'B;. This V-filtration satisfies gr{-B; — g?“f}gf is an
isomorphism for all A < 1.

This V-filtration can be computed explicitly in many cases: see | I, [ | and
[ J

Using the microlocal V-filtration, Saito [ | defines the microlocal multiplier ideals
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V10x by looking at the image of V”gf under the projection map to grggf = Oy, in
analogy with the relation between V-filtration on By and multiplier ideals.

Interestingly, in loc. cit. Saito shows the following for a reduced hypersurface D defined

by f:

Theorem IIL.5. [ , Thm 1] For all p > 0, we have

L,(D) = V"' Ox mod (f).

This was strengthened to a similar relationship between the microlocal V-filtration and
Hodge ideals for Q-divisors in | ]. This result allows for an algorithmic approach to the
computation of Hodge ideals, see | ].

I11.1.3: Local Cohomology and Classes of Singularities

As mentioned above, the study of Hodge ideals of a reduced divisor D is equivalent to the
study of the Hodge filtration on local cohomology H},(Ox). The following theorem is a

culmination of many of the main ideas in this story:

Theorem IIL.6. / ]/ | Let f € Ox define a singular hypersurface D. Let

H1L(Ox) be the local cohomology along D. Then
a(f) > k+1 < FHH(Ox) = PHp(Ox) <= F..B; CV'B;
and
a(f)>k+1 < EW,Hp(Ox) = PHp(Ox) < F..B; C V8.

Moreover, these properties are equivalent to D having k-du Bois (resp. k-rational) sin-

gularities.
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As mentioned above, a(f) < § if f defines a singular hypersurface. We mention here an

interesting result which says when equality can occur.

Theorem IIL.7. [ , Cor. 6.3] Let f € Ox be such that o, (f) = § for some v € X.
Then, up to analytic change of coordinates, we can write f = x% + -+ z2 with (xy,...,%,)

an analytic system of coordinates centered at x.
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CHAPTER 1V

Higher Codimension Subvarieties

This chapter contains the main body of the thesis: the study of V-filtrations along higher
codimension smooth subvarieties as found in | |. It contains two main theorems. Before
the theorems, general statements are shown concerning ©'V-filtrations, similar to those results
for hypersurface V-filtrations in | , Section 3.1]. The theorems concern only the slope
L =377 ,s;. The first shows that the Koszul-like complexes defined in Chapter II are
filtered acyclic for filtered D-modules underlying mixed Hodge modules. The second shows
that one can compute i* and ' for mixed Hodge modules using the Koszul-like complexes

from Chapter II.

IV.0.1: Topological Properties of V-filtrations

In this subsection, let X x {0} € X x A" be the zero section defined by ti,...,t,, with
corresponding vector fields 0y, ..., 0. Let M be a left regular holonomic Dy, ar-module.
Recall that in this case, M admits a canonical *V-filtration, as in Chapter 2, for any slope
L= 22:1 a;s;. We assume from here out that L is non-degenerate, so all a; are nonzero.

Note that, although we state all results for X x {0} € X x A", this is not really a
restrictive setting. For any Z C X a smooth subvariety, using local defining equations and
the graph embedding, we can always reduce to the case at hand.

We first show that the “V-filtration allows one to detect sub-modules and quotient mod-

ules supported on {t; =--- =t, = 0}.
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Lemma IV.1. Let M be a reqular holonomic Dx«ar-module. Then M has no submodules

supported on X x {0} if and only if the natural map
grim 5 @ gri'M
i=1

18 1njective.

Proof. First, we see that if m € M satisfies t;;n = 0 for 1 < i < r, then m € LyO M. Indeed,
the assumption on m gives (3., a;0,t;)m = 0. If m € LY M — LV M for some A > 0,
we are done. Otherwise, A < 0, and by definition of the L'V-filtration its class in gry M is
annihilated by (3, a;0,t;) — A = —(L(s) + A). Hence, it is killed by A # 0, so its class is 0
in the associated graded. By discreteness of the LV -filtration, we can repeat this argument
finitely many times and arrive at m € © VM.

We have the short exact sequence of complexes
0— A”°(M) — A" (M) — B (M) — 0,

where the leftmost complex is acyclic by Lemma I1.16. By the Snake Lemma, we see then

that the natural map
ker (LVOM N EBLV%M> — ker (gr%/\/l 5N @gr%M)
=1 =1

is an isomorphism.
Putting this together, we see that M has a submodule supported on X x {0} iff there
exists an element 0 # m € M with t;;m = 0 for all 1 < ¢ < r iff there exists an element

0#m e LVOM with t;m =0 for all 1 < i <r iff ker(gri M 5 D,_, griiM) #0. O

Lemma IV.2. Let M be a regular holonomic Dxyar-module. Then M has no quotient
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modules supported on X x {0} iff the natural map
@ gri'M KR gri M
i=1

18 surjective.
More generally, if U = X x A" — X x {0} and M’ C M is the smallest submodule such
that M'|y = M|y, then

MM =iy coker(@ g M L grOM).
i=1

Proof. The first claim follows from the second because if M — A is any quotient module
supported on Z, then the projection map must factor M — M/ M’ — N

So we prove the second claim. First, note that M’ = Dxyar - LY M for any A > 0.
Indeed, as M'|y = M|y, the quotient M /M’ is supported on X x {0}, and so satisfies
Ly=Y(M/M') = 0 by Example IL5. Hence, LV*M’ = LV*M for any A > 0. Hence,
Dxyar - LYAM = Dxxar - Ly A M C M’ for any A > 0. For the other inclusion, use the
minimality of M’ and the fact that ZV M|y = M|y

By Kashiwara’s equivalence applied to the module M /M’ which is supported on X x {0},
we have M/M' = i grf(M/M’), where i : X x {0} — X x A" is the inclusion. But
gri (M /M) = gr (M) /grl (M) by strictness. Now,

WM VMM

0 AN _
grL(M ) - LV>OM, - LV>OM ?

where the second inequality follows from what we have already argued and strictness of the
inclusion (M, FV) — (M, V).

It thus suffices to prove the following

WIMAM =30,V M+ VM.

i=1
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Define inductively U* M’ = LV M if A > 0 and for A < 0, define UM’ = S O UMM+
U>*M'. Then “V*M’ = U M’ by uniqueness of the V-filtration, which proves the

claim. O

With these results in hand, we can give a characterization for a module to decompose.

This is related to the decomposition to strict support for mixed Hodge modules.

Proposition IV.3. Let M be a regular holonomic Dxyar-module. Then M decomposes
as M = M @ M” with supp(M’) C X x {0} and M" having no submodules or quotient

modules supported on X x {0} if and only if

griM = (ker(gr%./\/l 5 @gr%M)) @ (Z @igr?/\/l) :
i=1 i=1
Proof. Assume M = M’ @ M". By the previous two lemmas, we know

griM" = Z OrgryiM”, ker(gr M” LN @gr%i/\/l").
i1 i=1

Also, as M is supported on X x {0}, we know gro M’ = ker(groM’ 5 gré M), so the
claim follows by applying gr? to M’ @& M”.

For the other direction, we set M’ = H% (M), the submodule of sections supported on
X x {0}. Also, set M"” = Dxyar- LV>0M, which by the proof of the previous lemma is the
smallest submodule of M which agrees with M upon restricting to U = X x A"\ X x {0}.
This satisfies

M = i+coker(€B griimM LN griM)
i=1

by the previous lemma.
By assumption, this cokernel is isomorphic to ker(gri M < @_, gr% M), hence M/ M” =

M. But the inclusion M’ — M splits this map, proving the desired decomposition. O

We conclude with the following theorem, which says that at the D-module level, the
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complexes B°(M) and C°(M) compute i*M and i* M, respectively, where i : X x {0} —
X x A" is the inclusion of the zero section. This will be enhanced to a statement for mixed
Hodge modules later.

Finally, for the statement of * when L = (1,...,1), we will make use of the following

result of Ginzburg:

Proposition IV.4. [ , Prop. 10.4] Let M be monodromic reqular holonomic on X X

A". Then there is a natural quasi-isomorphism

fori : X x {0} — X x A" the inclusion of the zero section and p : X x A" — X the

projection.

Theorem IV.5. Let M be a regular holonomic Dxxar-module. Then there is a natural

quasi-isomorphism

B' (M) = i'M.
Moreover, when L = (1,...,1), we have a natural quasi-isomorphism C°(M) = i*(M).
Proof. By | , Page 32], we can compute i'M as the derived O-module pullback. As
ty,...,t,. form a regular sequence, a resolution of Ox is given by the Koszul complex on

t1,...,t,, and so we have

M = [./\/l Lmer L M@0 L L J\/l] =: Kosz(M, t)
, placed in cohomological degrees 0, ..., 7.
We know by Proposition 11.16 that the complex A%(M) is acyclic for all @ > 0, and
so the natural quotient map A°(M) — B%(M) is a quasi-isomorphism. We will show that

AY(M) is naturally quasi-isomorphic to Kosz(M,t), which will then finish the proof.
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By Proposition 1.9, B¥*(M) is acyclic for all @ # 0, for A < 0, the natural inclusion
A% (M) — ANM) is a quasi-isomorphism.

For any «, we have an inclusion of complexes A%*(M) — Kosz(M, t), which is the identity
upon taking the limit (or union) over all « — —oo. Hence, as the limit is exact, the natural
map

A' (M) = lim AN M) = Kosz(M, t)

A——00
is a quasi-isomorphism.

Now, assume L = (1,...,1). For C°(M) = i* M, it is easy to check that i*Sp(M) = i* M,
and so by replacing M with Sp(M), we can assume M is monodromic. But then, by
Ginzburg’s result, i*Sp(M) = p,Sp(M), which is computed using the relative de Rham
complex for p. Using the choice of coordinates 0, ..., 0;,, this is precisely the Koszul-like

complex

P,

AEQ

which, by Proposition I1.9, is quasi-isomorphic to C°(M). O

IV.0.2: Koszul Complexes are Filtered Acyclic for Mixed Hodge Modules

Now, let (M, F, W) be a left bifiltered regular holonomic Dy« a--module underlying a mixed
Hodge module M. As mentioned in the introduction, for the remainder of the paper, we
have to restrict our attention to the case L = (1,...,1). We consider throughout this section
the filtered complexes

AY(M, F) = |:V°‘(M,F[r])eo 5 P Vet M, Fl-rer & @ VO (M, Fl—r)es & ... 5 V‘H'T(M,F[r})e,:|
[T]=1 |1]=2

BY(M,F) = |:g7‘$(/\/l7 Fl—r])eo LN @ grfjJrl(M,F[—r})eI LN @ gr3+2(M,F[—r})61 LN gr‘(fﬁn(/\/l7 F[—r])e:|
[T|=1 |1|=2

C*(M, F) = l:grg'w(/\/l,F)eo 2 @ gt ME[-1)er 25 @D grg M, Fl=2))er 25 2 gr{'}(M,F[—r])e:|

[I]=1 |1]=2
where, for any filtration F,, the shifted filtration F'[k] satisfies F[k]e = Fo_g.

The main theorem of this section is the following:
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Theorem IV.6. [ , Theorem 1.1] Let (M, F) underlie a mized Hodge module on X x
A", Then for X > 0 (resp. A < 0), the complex AN(M,F) (resp. CNM,F)) is filtered
acyclic.

Before beginning the proof, we prove a lemma. We state the lemma in terms of general

Ly -filtrations, because it holds true in that generality:

Lemma IV.7. Let Y be a smooth projective variety and consider a filtered regular holonomic
D-module (M, F) underlying a pure polarizable Hodge module on X x A" x Y. Let p :
X XA"XY — X xX A" be the projective, smooth projection. Let ty, ..., t,. be the coordinates
on A7, and let “V° M be the “V -filtration along t,, ..., t,. Then
o If the complex FyA*(M) is acyclic for some { € Z,a € Q, then FyA*(HEp (M) is
acyclic for all k € Z.

o [f the complex F,C*(M) is acyclic for some { € Z,a € Q, then F,C*(H*p, (M)) is
acyclic for all k € Z.

Proof. By Lemma I1.27, we know that the 7th cohomology of
p+(F V) = Rp.(DRxxy)y (F VI M))

is canonically isomorphic to F,V*H'p, M. Moreover, by choosing an ample class £ on W,
the Hard Lefschetz theorem for polarizable Hodge modules , the Lefschetz isomorphism gives
us that

(2nV/—10F - H ™ p, M — HFp, M (k)

is an isomorphism of polarizable Hodge modules, and so restricting to £,V we get isomor-
phisms

2rvV=10% : EVH "p M — F VoH p M.

By Deligne’s formalism for decomposition theorems from Hard Lefschetz | ] and the

fact that these are canonically isomorphic to H*p, (F,V*M) (suitably shifted), we get a
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decomposition

F,VoM) = @ H* (FyiVOM) [~ K]

in Db

coh

(X). 0

Proof. By the short exact sequence 2 (which gives a short exact sequence of complexes),
it suffices to check the claim for a pure polarizable Hodge module M of weight w. Also,
the claims of the theorem statement may obviously be checked on direct summands. Using
the decomposition by strict support, we can thus assume that the Hodge module has strict
support.

If the support is contained in any hypersurface {t; = 0}, then the claim follows by the
inductive hypothesis, using Kashiwara’s equivalence and the result of Example I1.7. Hence,
we can assume that M has strict support which is not contained in any hypersurface {t; = 0}.

For ease of notation, let Y = X x A" and denote by X the subvariety X x {0} C Y. As
acyclicity will be checked locally on Y, we will assume we have coordinates x1,...,x, on X,
hence, coordinates (z1,..., T, t1,...,t.) on Y.

Let B — A" be the blowup of A" along {0} with exceptional divisor E. We view

B C A" x P"!, and factor the projection as

XxB—“ 5 XxA"xPr!

e ’

X x A"

where 7 is a closed embedding and p is the projection to the first two factors (which is smooth
and projective).

Now, as B— F = A" — {0}, we can restrict M to A" — {0} and minimally extend to B,
getting M , which underlies a pure Hodge module of weight w. Also, we know 7-[07r+(/T/l\) is
a pure Hodge module by Theorem I1.17, and M is a direct summand of it by Theorem I1.20
and the decomposition by strict support. We show that the property of the theorem holds
for i+ﬂ , which by Lemma IV.7 implies that it holds for H%x, (M\), and hence, for M.
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As the property of acyclicity is local, we work in one of the standard open charts of P"1
isomorphic to A", say with coordinates us, ..., u,. In this chart, the blowup is defined by

2y =ty —usty, ..., 2, = t, — u,t;. In this chart, we write i+JT/l\ =6 1 ﬂag. Clearly we

aeN"—
have an equality of ideals (¢1,...,t.) = (t1, 22, ..., 2), so as the V-filtration only depends on

the ideal (by Remark I1.3), we obtain the formula (as in Example I1.7)

VVieM= @ vilelmoe,
aeNT—1
where V* M is the V-filtration along t; (which defines F in this chart) and hence, by definition

of the Hodge filtration for closed embeddings of codimension » — 1, we have

FVNieM= @ Frop—p-nVMo2.
aeNT—1
Let A > 0, then in the Koszul-like complex FZA)‘(Z'+./T/1\), one of the differentials is #; :
EV i M — F,V 9+, M. Decomposing along 0% (with which ¢; commutes), it is the
map

t - Fé_|a|_(r_1)v)\+|a|+j/f/l\_> Fe_|a\_(7~_1)V)‘Ha|+jH./T/l\.

This map is an isomorphism, as V* M is the V-filtration along a hypersurface and \|a| >
0 by assumption on A. Hence, the complex FgA’\(iJr/(/l\) is acyclic for all £, A > 0.
A simple computation for changing bases from (z,t,u) to (z,t1,z,u) shows that 0,, =

(9t2, e ,8% - 3tr.
For A < 0, the complex FgC’\(i+M\), we can again use the computation of F,V*, now
taking associated graded pieces. The complex splits up along the 02 pieces, as 0,, = 0y,.

The main observation is that

ati : F€—|a|—(r—1)gr>\§'Ma§{ — FZ+1—|a+ei\—(r—l)gT%g'Ma?+ei
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is an isomorphism. Any direct summand which involves one of these morphisms must then
be acyclic.

Hence, the only possibly non-trivial part is 9y, : Fy— (1) gr?}“/ﬁ@? — Fri—g-1) gr‘)}/\?@g,
which is an isomorphism as V' is the V-filtration along the hypersurface defined by ¢;. This

completes the proof. O

IV.1: Restriction Functors

We set B(M) = B°(M, F) and C(M) = C°(M, F). We show, in analogy with the codi-
mension one case (see Equation 11.3.3), that the cohomology of these complexes computes
H*i' M, respectively, H*i*(M). Here i : X x {0} — X x A" is the zero section. Specifically,

we will prove

Theorem IV.8. | , Theorem 1.2] Let (M, F,W) underlie a mized Hodge module on
X x A". Then BO(M,F,W) = i{( M, F) and C°(M,F). Moreover, B*(M,F,W) and
C°%(M, F,W) are mized Hodge complexes, where the filtration W is defined using the relative
monodromy filtration on gr{}(M,F) for all 0 < 5 < r. Moreover, for any k,¢ € Z, the

quasi-isomorphisms above induce isomorphisms of pure Hodge modules of weight k + £:
gry H B(M) = gr}" H ' M,

griy HIC(M) = gr,?iﬂ-lzi*/\/l.

We begin by showing that we can naturally endow the complexes B(M) and C'(M) with

Q-structure and a weight filtration so that they are mized Hodge complexes | .

Definition IV.9. A mixed Hodge complex is a bifiltered complex of D-modules (C*, F, W)

where F' is a filtration by O-subcomplexes and W is a filtration by D-subcomplexes, and a
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Q-structure (Cq, Wq), such that, as filtered complexes,
DR(C*, W) = (Cq,Wq) ®q C.
Moreover, we should have a decomposition

(gri’C*. F) = @ (H'gry C*, F)[-1],
¢
in the derived category of filtered D-modules. Finally, (H‘gr}¥ C®, F) with the induced

Q-structure should underlie a pure polarizable Hodge module of weight k + /.

Let (M, F,W) be a bifiltered D-module underlying a mixed Hodge module on X x A’.
Each term gr}, M of the complex B(M) (resp. C(M)) carries a relative monodromy filtration
for the filtration induced by W, and the nilpotent operator s+ j. As the differential in B(M)
(resp. C(M)) preserves the filtration induced by W, and commutes with the nilpotent

operator, the term-wise relative monodromy filtration induces a filtration on B(M) (resp.

C(M)).

Theorem IV.10. Let (M, F, W, K) be a bifiltered D-module with Q-structure IC € Pervg(X x
A"). Then (B(M), F,W,i'K) and (C(M), F,W,i*K) are mized Hodge complezes.

Proof. First of all, by Theorem IV.5, we see that, indeed, DR(B(M), W) = i'(K, W) ®q C
and DR(C(M),W) = i*(K,W)®qC. So the Q-structure claim is OK. If M is supported on
X x {0}, the claim is immediate, as both complexes are actually just mixed Hodge modules.

Case 1: Pure First, assume M is a pure polarizable Hodge module of weight w with strict
support not contained in X x {0}. We blowup {0} € A" to get ¥ = X x B. As in the proof
of Theorem IV.6, using the blowup, we can minimally extend M to get a pure polarizable
Hodge module M onY. Then M arises as a direct summand of H0p+i+ﬂ/l\ , and so it suffices
to prove the claim for this module. We do it for i, and show that it is preserved by H’p,.

Step 1: Closed Embedding As the property of being a mixed Hodge complex is local, we
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can again restrict to the standard open cover of P"~! on which the blowup is defined (without
loss of generality) by zo = to —usty, ..., 2, = t, —u,t;. A simple computation using change of
basis shows that, on gr{\/zqrj\//? , the nilpotent operator induced by 0 —A+r =37 | t;,0;, — A+
is equal to the nilpotent operator 0’ — X\ +r =0, + Y ., 2,0, — A+ .

Write i, M = D enr /\7@3. It is easy to check that

(t10h, + Y 20, = A+ 1) (md?) = (610, — (A + |a]) + 1)(m)d2.

=2

Hence, we get an identification of monodromy filtrations
4% grvz+/\/l @ W, gr’\+|a|M8§‘.

The local quasi-isomorphisms described in the proof of Theorem IV.6 then also preserve
the monodromy filtration. Hence, we have shown that, on this chart, B (2+.K4\) is bifiltered
quasi-isomorphic to By, (M\), and similarly for the complex C. But for V-filtrations along
hypersurfaces, the resulting complex is of course a mixed Hodge complex (in fact, it is simply
a morphism between mixed Hodge modules), which proves the claim in this step.

Step 2: Projection Assume By o}xy (N) is a mixed Hodge complex for A" a pure Hodge

module on X x A" x Y for Y smooth and projective. We show then that By o} (H*p4(N))
is a mixed Hodge complex for all k € Z.

We have the decomposition grf¥ B(N') = @,(H'gr}Y B(N'))[—/] in the category of fil-
tered D-modules, hence, by applying p., the decomposition remains. But on the right hand
side, each H'gr]¥ B(N) is a pure polarizable Hodge module. Hence, by Saito’s Decomposi-
tion Theorem I1.19, we know p, H'gr}" BIN') = @,(H/pyH'gr) B(N))[—j]. Putting this
together, we have

pigry B @ij Higry BWN)[—j — ().

Let Fi, = H'pygry B'(N), where B'(N) is the ith term of the complex B(N).
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Note: by Lemma I1.27, we have H'p, B{(N) = B'H'p (N).

Case 2: Mixed We use the splitting gr'Vgro M = gr'VgrMgri M which, by Lemma

11.26, is compatible with the morphisms t,...,t,. and 8;,,...,0; . Hence, gr'¥B(M) =

gr'V B(gr'V M), and gr™ M is pure, so we can conclude by the previous step. n
By general properties of mixed Hodge complexes | , Prop. 2.3], we conclude the
following.

Corollary IV.11. The Hodge filtration on B(M) and C(M) is strict, and the weight spectral

sequence of B(M) (resp. C(M)) degenerates at Es.

Using the Hodge filtration strictness, we show that these complexes compute the Hodge

filtration on each cohomology.

Proof of Theorem. By | , Proof of Prop. 2.19], we can compute 4,i'M via the Cech

complex

K(M) = (M — @ M(+Zi) = P M(x(Zi+ Z) — ... — M(x Z Z,-))

i=1 1<i<j<r i=1

placed in cohomological degrees 0,...,r. We let K (M) denote the underlying complex of
filtered D-modules. We consider the double complex BK (M)

(IV.1.1)
gryM d > Dyjy 9T M d S g M
D=, g M(xZ;) —= B (B 9rIM(xZ))) — = ... —"= @, gri M(xZ))
e r 4 r d é r e r
griy M > Zi) —— @m:l gry M(* > i125) AERE ygry M35 Z;)

The top row is B°(M) and the leftmost column is grd K (M).
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The jth column is ®\I|:j gri, applied to K(M). The cohomology of K(M) being a
mixed Hodge module supported on t; = --- = t, = 0 implies that if j > 1 then gr{/K (M) is
bifiltered acyclic.

The ith row is @, ;_; B’ (M(xZ,)), where Z; = 3, Z;. By Corollary IV.11, we know
BY%(M(xZy)) is strict with respect to the Hodge filtration. But the underlying complex of
D-modules is acyclic, hence each row is filtered acyclic.

A similar argument works for C K (M). O

Finally, we need to compare the weight filtrations mentioned above to the canonically
defined ones on i'M and i*M. The statement we are after is the following: recall that
the filtration W, on B(M) (resp. C(M)) is induced by the relative monodromy filtration

termwise on each gri, M.

Theorem IV.12. / , Theorem 1.2] The bifiltered complexes BY(M, F, W) and C°(M, F, W)
are mized Hodge complexes, where the filtration W is defined using the relative monodromy fil-
tration on gr{'/(/\/l, F) for all0 < j <r. Moreover, for any k,{ € Z, the quasi-isomorphisms
BY (M, F) 2 i'M,C%(M, F) = i* M induce isomorphisms of pure Hodge modules of weight
k+¢:

griy H B(M) = gr" H ' M,

gri HIC (M) =2 grll MY M.

Remark TV.13. We remark, once more, that the filtered complexes (B(M), W,) and (C (M), W)
need not be strict, but the weight spectral sequence does degenerate at FEs.

This has the following interpretation: for any () # J C {1,...,r}, we know B(M(xZ;))
is an acyclic complex. Hence, as Fy = FE., in the weight spectral sequence, we see that

E5 = 0 for the weight spectral sequence on B(M(xZ;)).

Proof. Recall that the quasi-isomorphisms in the theorem statement are induced by double

complexes BK (M) (resp. CK(M)), see the terms IV.1.1, with horizontal differential de-

82



noted 4. Let dy : B°K(M) — B'K(M) be the morphism between the first two columns.
In general, we view BK (M) as a complex of complexes (with differential ), and similarly
for CK(M). We write Hs for the fth cohomology complex of BK (M) with respect to the
differential .

Throughout, when we say “filtered”, we mean with respect to the Hodge filtration, and

we suppress this from the notation. We thus begin with a lemma:

Lemma IV.14. For all £ > 0, the complex Hsgr'™V BK (M) is filtered acyclic. The natural

map ker gr'V'éy = Higr'V BK (M) — gr'V B K (M) is a filtered quasi-isomorphism.

Proof of Lemma. By Lemma I1.26, we can choose canonical splittings so that the double

complex gr'¥ BK (M) decomposes into

1 s s s
grVgrMgrd, M D= gr'VgrMgri, M . gr'VgrMgri, M

| | |

r y ) r o g 7‘ T
Dy g7 gV g M(xZj) —— D)o (B =y 97" g gy M(xZ5)) —— ... ——= @, gr" grM gryy M(xZ;)

| | |

/ 4 ) )
g grMgry M(x 3051 Z5) —— @z g7 grM gry M(x 305, Zy) ——— o == g grMgriy M(x 307, Z5)

where Mogri,(M(xZ;)) = gri,(WeM(xZ;)).

As K(M) is a complex of mixed Hodge modules on X x A’ it is bistrict with respect
to the Hodge and weight filtrations. In particular, H:gr!¥ K(M) = grlV H*K(M). But the
category of polarizable pure Hodge modules on X x A" is semisimple, so H gr!V K (M) is a

filtered direct summand of gr}¥ K*(M). In particular, we have a containment
Higr K(M) C gr' KY (M),
and so, applying grY, to both sides, we get

gr?/’Hzger(M) C gr%ngKe(M) = ngBOKZ(/\/l),
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and so by taking gr'’' (for the relative monodromy filtration), we have containements
gr'V grbH grV K(M) C grV gr™ BPKY(M),

which is the ¢th term of the first column of BK(M).
Now, as gr'V gr9, H'gr'V K (M) is supported on X x {0}, by the definition of dy, we see

that actually
grV H gr B K (M) = gr' grdHEgr'V K (M) C ker gr' 6,

where the first equality uses strictness of the V-filtration and the definition of M, on gr.
But the left hand side is also Hgr" gr™ BK (M), which is Hgr'"V B°K (M), proving the
desired quasi-isomorphism.

Now, we write B'K(M) = gri, K(M), where K (M) is the Cech complex for M. In
particular, the cohomology of K(M) is supported on X x {0}, so gri, K(M) = B'K(M)
is a filtered acyclic complex when i > 0. The same is true for gr'V B'K (M), and so the
total complex gr'¥ BK (M) is filtered quasi-isomorphic to its first column gr" B°K(M) =
gr'Vgrd, K (M). We have just argued that this first column is quasi-isomorphic to H°dgr" BK (M).

Finally, by Theorem V.10, we have the decomposition
gr" BE? (M) = @ H" (97" BKI (M))[-4],
eZ

which implies the other cohomologies must be acyclic, as desired. O]

We handle the case of B(M), the proof for C'(M) being completely analogous. For
0 < j <, consider the complex BK’(M) with differential §, i.e., the jth row of the double

complex IV.1.1. This is simply ), ;_; B(M(xZ;)). Hence, by Theorem IV.10, it is a mixed
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Hodge complex, and hence by Corollary V.11, its weight spectral sequence
EY = HPgr BKY(M) = HPYBKI (M)
degenerates at Fy. For any k,¢ € Z and our fixed j, we have a complex from the first page
0 —s El—k—é,k—f—ﬁ N El—k—Z—Lk—i—Z NN El—k—f—r,k—l—é 0,
written as
0 — Hogr} yBKI (M) — H'gr'., | BKI (M) — -« — H gr}’,_ . BK/(M) — 0.

By naturality, we obtain a double complex Dy, ¢, with this complex as its jth row.
If 5 > 0, then by Remark IV.13, as Ey = 0, we see that the jth row of Dy, is exact.

Hence, the total complex T'ot(Dy ) is quasi-isomorphic to its first row,
(IV.1.2) 0— Hgry ;BIM) — H'gr}Vy \B(M) — -+ — Hgr',_,B(M) — 0.

By the Lemma, this is filtered quasi-isomorphic to gr, ,B°K(M) = gr/’ g1}, K(M).
Applying H* gives gr* ,gr) H K (M) = gr¥, ;H"' (M), where we use the fact that K (M) =
ii'M, and so griH K (M) = H%' M, as the cohomology is supported on X x {0} (see
Example I1.6).

Finally, H¢ applied to the complex IV.1.2 gives, by definition, £, Pl bkE Ey Rkt By

the Fy-degneration, this is EZP = grlV H B(M), proving the claim. O
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CHAPTER V
Minimal Exponent and Application to Local

Cohomology

In this chapter, we will use the results of Chapter IV to study the local cohomology of a
locally complete intersection subvariety Z C X of codimension larger than one. The data
of the Hodge ideals for reduced divisors is equivalent to the Hodge filtration on the local
cohomology of Ox along the divisor D. Similarly, the module H%,(Ox), which is familiar to
commutative algebraists, carries a Hodge filtration. This can be compared to the pole order
filtration in the same way as for hypersurfaces.

The main definition of this section is that of the minimal exponent for a local complete
intersection subvariety, a(Z). Interestingly, we do not define it in exact analogy with the case
of hypersurfaces, but instead we make use of an auxiliary construction used in Mustata’s pa-
per | |. We show that this invariant does everything which the usual minimal exponent
is known to do for hypersurfaces: it controls when the Hodge filtration and the order filtra-
tion on H%(Ox) agree, which in turn gives information about higher du Bois singularities,
and in fact it can also detect higher rational singularities in the sense of Laza and Friedman.
At the end of this chapter, we will give some examples of local complete intersection varieties

whose minimal exponents we can compute.
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V.0.1: Definition of Local Cohomology

For more details, see | | and | ]. Let Z C X be a closed subvariety of the smooth
variety X. Working locally, we assume Z is defined by fi,..., f. € Ox(X). Moreover, we
assume Z is a complete intersection, meaning that codimy(Z) = r, the number of defining
equations. In general, the codimension is bounded above by r.

Let H; C X be the hypersurface defined by f;, which is non-empty by assumption that

Z is a complete intersection. We form the Cech complex

K(Ox)=0x — é(’)x(*]{i) — P Ox(xH; + Hj) —» ... = Ox(xH),
i=1 i<j
where H = 22:1 H; is the union of all H;. It is well-known that the condition on the
codimension of Z implies that this complex has only one non-vanishing cohomology H% (Ox),
which is the local cohomology of Ox along Z.

All terms in the complex naturally underlie mixed Hodge modules on X, and the mor-
phisms are all that of mixed Hodge modules. In particular, H(Ox) inherits the structure
of a mixed Hodge module on X which is supported on Z. Hence, it has a Hodge filtration
FJH%(Ox) and a finite weight filtration W H(Ox).

As H7(Ox) is supported on Z, we can define another filtration on it, the pole order

filtration, as

PiHy(Ox) = {m € Hy(Ox) | (fi,-.., f)*-m =0},

In | ], it is observed that FyH%(Ox) C PyH,(Ox) for all k. As in the case of

Hodge ideals, it is interesting to ask when we have equality FyH%(Ox) = PyH%(Ox).

Remark V.1. In | |, Mustata and Popa show the following facts regarding this question:
1. If FyHY(Ox) = PyH%(Ox), then for all p < k we have F,H,(Ox) = P,HY%(Ox).

2. If Z is singular, then FyH7,(Ox) C PH,(Ox) for all k > n —r + 1.
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3. If we set p(Z) = sup{—1, k such that F;H,(Ox) = P,H%(Ox)}, this number does not
depend on the embedding of Z into a smooth variety and it satisfies restriction and

semicontinuity theorems.

4. The inequality p(Z) > k holds for some k > 0 iff Z has at least k-du Bois singularities.

These singularities are defined by the natural map
0 — Q= grp"Qy[—p]
being a quasi-isomorphism for all p < k.

V.0.2: Relation to the V-filtration

Now, consider the graph embedding i : X — X x A" defined by = — (z, fi(x),..., f.(z)),

with coordinates t1, ..., ¢, on A". Weset By := i, Ox, which as a set is equal to Ox 0

a€eNT

and for which the action of Ox[d;,, ..., 0] is the obvious one and
t;(hO0) = fihO;6 — a;hd; ™9, forall 1 < i <,

T(hOfS) = T(R)OFS = > T(f)hof 5, for all T € Tx.

i=1

The module By is a pure Hodge module of weight n on X x A". The Hodge filtration is

FBr = P 0xops,

|oe| <k—r

though in the literature it is often conventionally re-indexed. We will not reindex here.

V.0.3: Definition of Minimal Exponent and Relation to Singularities

Recall that in [ ] Mustata uses the following construction: let yi,...,y, be new vari-

ables, and consider the hypersurface g = >"'_, y;fi on Y = X x A”. The main result of loc.
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cit. is the relation between b-functions:

Our goal is to strengthen this result to a comparison between certain D-modules. We
will make use of the module By = I, Oy = @, Oydd,, where ' : Y — Y x Al is the
graph embedding along g and z is the coordinate on A'. Let 6, = > | y;0,,. Then 6,9 = g,
and so it is easy to check that

0,0, = —0.204 = 50,.

More generally,
Oyhy* 070, = (s +|a] — k)(hy955,).

In fact, this relation holds in the microlocalization gg = B,[0:1] = Bz Oy 0%s,. Hence,

B, decomposes into eigenspaces for the 6, — s operator:

gg = @E(@, where B¢ = GB OXyO@'ZO‘l’é(Sg.
teZ a€N”
By definition, if m € f)’y), we have (6, — s)m = ¢m. Let V‘gg be the microlocal V-
filtration along z. Then, as 6, — s preserves V”gg for all v € Q, we see that we we have a

decomposition

VB, =P V'BY. VB, = VB, NBY.

ez
Now we define the map which allows for a comparison of D-modules: let ¢ : gg — By be
the Ox-linear map sending y*9%4, — 02. Note that ¢, = ¢ 5o is an Ox-linear isomorphism
g9

gy) — By for any ¢ € Z.
Lemma V.2. The map ¢ defined above satisfies the following properties:

1. ¢ is Dx-linear.
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2. For allm € Eg and k € Z, we have p(m) = @(0Fm).

3. For allm € gg, 1 <@ <r, we have p(y;m) = O, p(m).
4. For allm € gg, 1 <i<r, we have ¢(0,,m) = —t;o(m).
5. For allm € BY, we have w(sm) = (s — £)p(m).

Proof. For 1., as ¢ is by definition Ox-linear, it suffices to check that p(rm) = 7p(m) for

any 7 € Tx and m € gg. It suffices to check for m = hy*9%§,. By definition,

T

T(hy®056,) = T(h)y 056, — OO 7(fi)y) (hy 0+ d,)

=1

so applying ¢ to both sides yields

ol (hy956,)) = 7(R)3FS — 3w FE,

=1

which is clearly 7 applied to ¢(m) = hogé.
Properties 2. and 3. are clear by definition of .

For property 4., let m = hy®9%5,. Then
Oy,m = aihyo‘_eiﬁfég - fihyo‘ﬁf“ég,
and so applying ¢ to both sides, we get
©(0y,m) = a;h0y 6 — f;h0}9,

which is clearly —¢; applied to ¢(m) = hoé.

Finally, let m € ng). Then (6, — s)m = ¢m, so applying ¢ to both sides yields

p(Oym) — p(sm) = Lp(m),
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which by property 3. and 4. and s =), —0yt; tells us

sp(m) — p(sm) = Lp(m),

finishing the proof. O

The main technical input of this section is the following Theorem comparing the V-

filtration on By and the microlocal V-filtration on gg.

Theorem V.3. [ , Theorem 3.3, Prop. 3.4] Let fi,...,f. € Ox and define g =
S fiyionY =X x A", The map

T2 (B(O)7v> — (Bf,V)
1s a filtered Dx-module isomorphism, and, moreover, we have equality of b-functions

b (5) = bem)(5)

where on the left, we use the microlocal b-function for m € gg.

Proof. Let W*B; = gpo(V‘géo)). This is an exhaustive, decreasing and discrete filtration,
which by Lemma V.2 above is compatible with the V-filtration V*Dxyar and which has
s 4+~ acting nilpotently on gry,B;.

The proof that W*B; C V*B; is similar to the usual proof | , Lemme 3.1.2] that the
V-filtration is unique if it exists. As we will use the main idea of this proof for the other
inclusion, we omit the proof of this fact.

For the reverse inclusion, we need to show @0(V7g§0)) C V7By. In fact, we prove the

stronger statement that

V”gg - Uvgg = @ 9, ™y H(VI™By) for all v € Q.

meZ
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This is immediate once we know that the right hand side satisfies most of the properties of
the microlocal V-filtration on gg(,o). In fact, we don’t even need U ng to be finitely generated
over VY. Clearly, U® is decreasing, discrete, left-continuous and exhaustive. It is trivial to
check that 0‘UY = U"¢, z2U” C U"*!, and that s + 7 acts nilpotently on grggg.

We wish to show that V'gg cU ’gg. If v # ~' are distinct rational numbers, then

VU7 B,
VU By + VU B,

(V.0.1) grigry By =

is acted on nilpotently by (s+ ) and (s +~'), hence, by their difference v —~’ # 0. So this
quotient is 0.

We use this to see that
(V.0.2) VB, CU'B, + V>VBQ

Indeed, let m € V"Ygg. Then there exists some A with m € U’\gg. We are done if A > 7.
Otherwise, by the vanishing of the quotient V.0.1, we can write m = u; + us with u; €
V>TUAB, and uy € VU B,. We see that m € U'B, + V>7B, if and only if u, lies in that
subspace. But then we can repeat this argument for uy, with A replaced with some A > \.
Iterating this and using discreteness proves the containment.

Using discreteness of the V-filtration, and by iteratively applying the containment V.0.2,

we get for any v, A € Q, the containment
VB, CWB, + VB,

By definition of the microlocal V-filtration, there exists some gy > 0 such that, for all
q > qo, we have

V7+ql§g _ a—(q—qo)vv-ﬁ-qogg.
As V”*qogg is finitely generated over VODy, 21[07!], there exists some 3 with V”’Jrqogg c
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Wﬁgg. We choose ¢ large enough such that ¢ — ¢ + 8 > «. Finally, we have
VVgg - Wvgg + V7+q[§g C W’Ygg + 3—(q—qo)vv+qogg - W'ygg + Wﬁ+q_qol§g,

where the rightmost module is contained in Wvgg by choice of ¢g. This proves the claim.

The proof for the equality of b-functions is easy and left to the reader. O]

Let U =Y — (X x {0}). Then we define the minimal exponent a(Z) to be
a(Z) = a(glv)-

We will make use of the following lemma:

Lemma V.4. Let v € Q and a € Z% be such that y"‘&‘f"ég € vag \V>Vgg and y*ol!6; €

V>7gg‘U. Then vy € Z>,.

Proof. The assumptions tell us that the class of ya(?'zalég is non-zero in grq,gg, but there
exists some integer N such that (yi,...,y.)" - [yaa'za‘dg] = 0. In particular, there exists some
B € Z>q such that v := yﬁ[y"‘a‘zalég] # 0 but (yi,...,y.)v =0.

As yo‘a‘za|5g e B, we know v € gr$(z§§'5"). Hence, (0,—s)v = |Blv. Butas (y1,...,y)v =

0and 0, +r=>"._, 0,1, we see that
0=(0,+7r)v=_(s+r+|8])o,

and so, since (s + ) also acts nilpotently on the element v, we get v = r + ||, proving the
claim. O]

Now, we are in position to prove the main theorem of this subsection.

Theorem V.5. ( [ ) Let Z C X be a local complete intersection of codimension r
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defined by f1,..., fr. Then for any v € (0,1] and k > 0, we have
aA(Z)>r+k+y & FuaB CV B,

Proof. First, assume &(Z) > r+ k + . Assume toward contradiction that there exists some
a with |a] = k+ 1 and 976 ¢ V"~'*7B;. Equivalently, by Lemma V.2, this implies yeol! ¢
Vr_lﬂgg. Assume this element defines a non-zero element in gr@gg. Then < r—14v <r.
However, by assumption, we have d, € V”k*'ylgg on U. Hence, by the previous lemma, we
get § > r, a contradiction.

Conversely, assume Fyy 1By C V"1 B;. This is equivalent to 9§ € V"B, for all
la| < k + 1. By Lemma V.2, this is equivalent to y*8\*ls, € V=478, for all || < k + 1.
Applying this for a = (k+1)e;, we see that yF 1954165, € VT_HVZS’Vg. Hence, on U; = {y; # 0},
we have 95t1§, € V"B, which is true if and only if 6, € V"B, on U;. As this
is true for all ¢, and U = Uy U --- U U,, this shows that ¢, € V”kﬂgg on U, and so

alZ)y>r+k+7. O

V.0.4: Relation to Local Cohomology

In this section, we relate the V-filtration on By to the local cohomology Hodge module
H?,(Ox). This gives a relation between k-du Bois singularities and |@(Z) ], using Theorem
V.5 and Theorem V.6 below. In the next subsection, we use similar ideas to relate k-rational
singularities and a(Z).

Assume throughout that Z is defined by fi, ..., f, € Ox(X) and it has pure codimension

r. The goal is the following theorem:

Theorem V.6. Let X be a smooth, irreducible complex algebraic variety. Let Z be a complete

intersection of codimension r defined by fi,..., f, € Ox(X). Then

U
al fort fatr

FHy(0x) ={[>

laf<k

1) wadpsy € ViBy}.

la| <k
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Recall that H%,(Ox) is a Dx-module which naturally underlies the mixed Hodge module
H'I'QY[dim X], where I : Z — X is the inclusion. Let I' : X — X x A" be the graph
embedding along fi,..., f., and let i : X x {0} — X x A" be the inclusion of the zero
section, defined by the coordinates ti,...,¢,.

Then, by Saito’s base-change | , Formula (4.4.3)], iT,Ox = I,I'Ox. Hence, in
order to compute local cohomology, we can use the module By := 'y Ox. By Theorem 1.2,

we can compute i'B ¢ by the Koszul-like complex
T(By) = |gr¥(By. Fl—r))eo = €D gri By, Fl=r])e; = ... = gri(By, F[=r])er A+ Aey,
i=1

where as before, the e; are used to keep track of the Koszul differentials.
By definition, and the fact that we are using left D-modules, the Hodge filtration on
By = @, cn- Ox - 0765 is defined by

F,By= @ 0Ox-0;

la|<q—r

By Theorem IV.6, we know that 7'(By) is filtered quasi-isomorphic to

t

VO(By, Fl—r])eo = @DV (By, Fl—r])e; = ... 5 V(B Fl=r])es A+ Ae,.| = A(By, F)

i=1

Let £ = %, with its induced Hodge filtration. Then, by what we have said

above, there is an isomorphism of D-modules
o:L—H,(Ox),

which we plan to make explicit, using the method of Theorem IV.5.
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By the proof of that theorem, we saw that the inclusion of complexes
A°(By) — Kosz(By,t) =: T(By)

was a quasi-isomorphism. Hence, £ is naturally isomorphic to H"T'(By).

We also make use of the Cech complex
C(By) = [Bf - @Bf(*Hi>§i == Bp(xH)E A - A fm] :
i=1

where H; = {t; =0} and H = ;| H;. Note that, as a complex, this can be identified with

Ly [OX%@OX]C %OX[ﬁL]

where ¢ : X — X x A7 is the graph embedding. Hence, C'(B;) is a resolution of ¢, H%,(Ox).
This is true by the identification By(xH;) = zquX[fiI], where f; = [[;c; fi, which is

defined by the formula
1 1 — ﬁl Sr — ﬁr <_1)|a‘a!ho¢
e (M) () e

where t7 = [[/_, 7, u = Y ha0%0; € By, s; = —0,,t;, and

zlz’

(sizk> _ (si+k)...(,sz!+k—€+1)'

Let M = 1, H%(Ox). As H,(Ox) is supported on Z, we know M is supported on

X x {0}, and so we have a canonical isomorphism
7:H(Ox) = VM = gr). (M),

by Example I1.6
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Lemma V.7. Let u € gr{,B; be represented by some u =Y h,080 € V'By. Then

he
o) =3l o) € Ho(Ox).

Proof. We make use of two double complexes. The first double complex mixes the complex

A* and the Cech complex along t1,...,t.. For 0 <i,j <r, the terms are

Ai’j = @ @ ViBf(*HJ)eI X §J.

=i |J|=j

Note that, except for the first, the rows and columns are acyclic. Indeed, we know
A%By(xHjy)) = i'By(xH;) is acyclic if J # 0, so the columns are acyclic. Moreover, we
know that the cohomology of the complex O(Bf) is supported on t; = --- = t,. = 0, so
ViH*C(B;) vanishes for all k. But V' is an exact functor, so 0 = VIH*C(B;) = H*VIC(By)
is the kth cohomology of the ith row.

The second double complex K** mixes the Koszul and Cech complexes along the tq, . . ., t,.

Namely, for 0 < i,7 < r, the terms are

Ki’jBf = @ @ Bf(*HJ)(B[ (29 fJ.
[I|=i|J|=j
As mentioned before the lemma statement, the rows K**B; give resolutions of @‘ I=i 11 HY(Ox).
Moreover, the columns compute P, ;_; i'By(xHy), so if j > 1, they are acyclic.
We have a natural inclusion of double complexes A** — K**° hence, an inclusion of total

complexes

T = Tot(A**) — Q = Tot(K**).

We have morphisms of complexes going from these total complexes to the rows and
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columns. This is given by the diagram

A%(By) « T » VK (By)

| | _—

Kosz(By,t) « Q » Kosz(M, t)[—r]

where by the proof of Theorem IV.5, the leftmost vertical map is a quasi-isomorphism. The

bottom right map is given by the diagram

Qr—l N Qr N Qr-{-l N N Q2r
| ! I
K" K K™
| I |
0 > M » Dy M > > M.

where the first vertical map in any column is the projection, and since K" = @‘ I=i B(xH),
the second vertical map in any column is the quotient map By(xH) — M.

As H?,(Ox) is supported on Z, 1, H(Ox) is supported on t; = --- = ¢, = 0, the Koszul
complex is isomorphic to H%(Ox) placed in degree 0 (via the isomorphism 7). Hence, taking

‘H" of the above diagram, we have a diagram

L=VB/Y I  t;V' B ¢+—— H'T —— Hy(Ox)

l | I

By i tiBy ¢+———— H'Q —— H,(Ox)

The morphism we are interested in is the composition £ — By/>"'_, t;:8; — H%(Ox),
using the fact that the bottom left map of the diagram is an isomorphism. As the first map
in the composition is the natural inclusion, we need only make precise the second map.

For any w € By and J C {1,...,r}, we can consider %u € Bs(xHjy). Now, define

sgn(/,J ,
U:Z¥U€I®§J€Q,

T J
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where I U J = {1,...,r}.

The first projection of this element is @ € By/ > ;_, t;B, while its projection to H%(Ox)

1
t1...tp

is [ u]. Hence, we need only show that 7 is a cocycle.

The differential d of the total complex () is defined as follows: first of all, it sends an
element of the form 7 above inside Q)" to a tuple of elements which are indexed by subsets
K,k C{1,...,r} such that |[K|+ |s| =7+ 1 and K Nk = {{}, a singleton set.

We write out the component corresponding to K, x as

sgn(K — {l},k)t,
125

K| Sgn(K7 K= {6})
le—{0}

(d?])K,,.C = uey A eK—{K} X f,{ + (-1)

ueg @ & N Ei0y

= _1{e}u (sen(K — {6}, k)er Aex gy @ &+ (D) Flsgn(K, k — {0})erx @ & A &gy -

Hence, it suffices to show that the term in the parentheses is 0. Assume ¢ is the ith
element of K and the jth element of k. Then the term in the parentheses is equal to (by

rearranging the wedges)
(1) sgn(K — {6}, w) + (1) ¥lsgn(K, & — {}))ex @ &

= (=)= ()R son ({0}, K — {0}, k — {{})ex ® e, = 0.

Hence, 7 is a cocycle, and finally we just need to use the morphism 7 to complete the

1

proof. But 77" is given by evaluating the expression at s; = --- = 5, = 0 as shown in

Example I1.6, and so we achieve our claim. O
From this, the description of the Hodge filtration is immediate:

Proof of Theorem V.6. We prove the equivalent statement that Fi,B; C V"B ift FyH},(Ox) =
PH(Ox).

Note that the elements

{ ] ! ] € Hy(Ox)

DT faetd
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for |a] = p generate P,H%(Ox) by | , Lemma 9.2]. Hence, if FyBr C V"By, then
opoy € V'By for all |a] < k, and so by applying the theorem, we conclude FyH%(Ox) =
PHY(Ox).

We prove the converse by induction on k. Note that the containment FiBy C V'By is
automatic at points of X which do not lie in Z, since the V-filtration is all of B away from
7. Hence, we need only show the containment at points of Z.

For k = 0, the assumption FoH%(Ox) = PyH,(Ox) implies that the class | €

o)
FoH;(Ox), so there exists some h € Ox with h—1 € (f,..., f,) and such that hd; € V" By.
In particular, at any point of Z, §; € V"B;.

Now, work inductively. We Fi1HY(Ox) = Pry1H%(Ox), hence we can assume 076y €
V7B for all |a| < k, and we want to show that the same is true for all |a| < k4 1.

By [ , Lemma 9.1,9.2], we know that gr/’ ,H}(Ox) is a free Oz-module with basis

given by
ol

Vo = [W}

for || = k + 1, because Z is a complete intersection.

The map Fj11V"By — grf 15 (Ox) is surjective, so for all a with |a| = k+1 there exists
a lift of vy, say uy € Fr11V"By. We express u, = E|B|§k+1 haﬁaf € V"Bs. The assumption
that u, maps to v, means that ho s € (f1,..., fr) for B # a and hoo —1 € (f1,..., fr).

By induction, we can subtract the lower order terms from u,, and so wesee > 5 has0) €

V"Bs. Hence, 0 € V"B at all points of Z, proving the claim. n

This gives an interpretation of k-du Bois singularities in terms of the V-filtration on By.

V.0.5: Characterization of k-rational Singularities

Recall that, given a complex algebraic variety Z, Laza and Friedman | | have defined

and studied | , | the class of k-rational singularities to be those for which the
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natural map

€y = O = D(Q)

is a quasi-isomorphism for all p < k. Here D(Q)) = RHome, (2, wy) is the shifted
Grothendieck dual functor, with w?, the dualizing complex. The second map is defined
via a resolution of singularities 7 : A/ using functoriality of the du Bois complex and
the fact that, on a smooth variety, Q% = Q%, so the isomorphism follows from the usual fact
for Kahler differentials on a smooth variety.

The goal of this section is to show that this property can be understood through the
invariant a(Z), which has already been shown for hypersurface singularities by | ], see

also | ].

Theorem V.8. Let Z be a local complete intersection of pure codimension r contained in
the smooth, irreducible algebraic variety X. Then Z has k-rational singularities if and only

ifa(Z) >r+k.

In fact, we can prove more, relating this condition to the intersection cohomology mixed
Hodge module via the weight filtration on local cohomology.
Throughout, let d = n — r be the dimension of Z. We recall the pertinent notions from

Section I1.4. In that section, we constructed maps
vz : QF[dim Z] — 1C,QY

and

7z : DUICZQM)(~d) — ' QX[n + r](r).

Moreover, we identified
(V.0.3) 4, D(IC;QY) = gr'™ i, H™(i,i' QY (n)[2n)]).

Theorem V.9. For any nonnegative integer k, the following are equivalent:
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a(Z)>r+k.
. (8 + T)F]H_TVTBf - V>TBf.
Wi FVHL(Ox) = BeHL(Ox).

. The morphism

Fp-I—T/L*Qg[d] — Fp—l—’r‘-[CZ(Qg)

induced by vz and the composition
FpWhirHy (Ox) = FHZ(Ox) = BHZ(Ox)

induced by v are isomorphisms for all p < k.

. Z has k-rational singularities, i.e., Z has k-du Bois singularities and the natural map
Ur : Q5 — RHomo, (Q57F wy)

18 an isomorphism.

. The canonical morphism
0 — grf, DRx (i.ICx (QX))[p — d]

18 a quasi-isomorphism for all p < k.

Proof. The proof is in many steps.

Step 0: It is clear that 1) implies 2), as a(Z) > r + k is true if and only if

Frpr1By CVZTIBy,
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which implies

Z tiFeir1Br C V7T By,

=1
hence (s + ) Fyy, By C V="By.
Step 1: 2) <= 3) Assume 2) holds.
As By is a pure Hodge module of weight n = dim X, we are concerned with the mon-

odromy filtration W,gr{;B; which is characterized by the properties

L N=s+a:(gryBs, W) — (griyBr, W[2])

W

2. N':gr)lgraBy = gr)V .griBy.

Explicitly, we have

Wisagri By =Y ker((s + )™ ™) nIm((s + a)’).

j
By Theorem 1.2, if o : @)_,(gr7 ' By, W) i (gri;Bs, W), then for every i, we have an
isomorphism of filtered D-modules

grl H(Ox) = (gr} coker(a), F[—r]).

Recall that Wi, H5(Ox) = 0 for all i < n, hence gr)\,, H%(Ox) = W, H%(Ox). By
assumption, we see that

Fiyrgry By C ker((s+1)),

which by the description of the monodromy filtration implies Fy,gry, By C W, gri,Bs. Hence,
FkWn—i—rH%(OX) = FkH%<OX) = PkHrZ<OX)a

where the last equality follows from the description of the Hodge filtration on H%(Ox) in

terms of V. Hence, we have shown 3), and reading the proof backwards we see that 3)
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implies 2).

Step 2: 3) = 4) We begin with two lemmas

Lemma V.10. Assume FyW, . H%(Ox) = PyH%(Ox). Then for all p < k, we have
FyW o H(Ox) = PyH(Ox).

Proof of the Lemma. As W, 1, H%(Ox) is supported on Z, it is clear that 1, F,W,, H,(Ox) C
Fy i W Hy (Ox) for all p, see | , Prop. 3.2.6]. Moreover, by definition of the pole order
filtration, we have

Iz - ByH,(Ox) = P, Hy(Ox),
so this proves the claim by descending induction on p. O]

Lemma V.11. Assume F,W, ., H,(Ox) = F,H%(Ox) for some p. Then the surjection

Fp+r+1i*Q§[d] — Fp+r+1i*ICZQH

induced by vz 18 an isomorphism.

Proof of Lemma. The assumed equality in the theorem statement is equivalent to Fpgrmr +HZ(Ox) =
0 for all 5 > 0. Each grmTﬂH}(OX) is a polarizable pure Hodge module of weight n+r+j,

hence, there is an isomorphism of filtered Dx-modules
(V.0.4) D (97mrsjHZ(Ox)) = grots s HZ(Ox) (n 41+ ).

On the other hand,
(V.0.5)

DX(gT'rIZ-'r—l—jHTZ(OX)) = gryﬂ—'r—jDX?—”é(OX) = grm—r—ji*QIZ{[d] (TL) = (QTK]Z*QIZ{[CZ])(HL
by isomorphism V.0.3.
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Putting the isomorphisms V.0.4 and V.0.5 together, we obtain an isomorphism of filtered

Dx-modules

g i 1y (Ox)(r + j) = gri,i.QF [d)].

Taking F,;,41 of this isomorphism yields an isomorphism

Fpﬂ,jgrm,,HHQ(OX) = Fp+r+19"”giﬂ*Qg[d]~

As j > 0, the left hand side is 0, so the right hand side is, too. As W is a bounded below
filtration, this implies F,y, 1 Wy 17.Q¥[d] = 0, which completes the proof by definition of

the map 7. O]

Putting these lemmas together immediately shows that 3) — 4).

Step 3: 4) = 5) and 6). By | , Theorem F|, the assumption of 5) implies Z
is k-du Bois. As 1), is defined to be grf, DRx(i,1))[k — d], the first is an isomorphism iff
the second is. By duality and the fact that Dy = 4 (d), the latter is an isomorphism iff
gri ;DRx(i,1)[d — k] is, hence we have 6).

Now, as Z is k-du Bois, to show 7) we need gr” DRx (i.72) to be an isomorphism for all
p < k. Again, by duality, this is equivalent to gr)” ;DRx (i,7z) being an isomorphism for all
p < k. This is implied by the map F,;,i.7y being an isomorphism for all p < k using the
definition of the functor DRy, but this is precisely the map F,W,,, H%(Ox) — F,H,(Ox),
proving the claim.

Step 4: 5) == 4) By the argument of [ | (generalized to the reducible LCI case),
the conditions in 6) imply that Z has rational singularities. Hence, the conditions for k

imply them for all p < k, and in particular, we have that

Uy gra_DRx (ix7)[p — d
is a quasi-isomorphism for all p < k. Using Property 11.4.1 and the fact that Dyz = 1¢z(d),

105



we conclude also that gr” DRy (i,17) is a quasi-isomorphism for any p < k.

Also, as Z is k-rational, it must be k-du Bois, too. Hence, F,H%(Ox) = P,H%(Ox) for
all p < k. Hence, the morphisms in 5) are quasi-isomorphisms, as desired.

Step 5: 6) = 3) We induce on k. For k = 0, note that by applying RHom(—,wx[n]) to

the isomorphism in the assumption of 7), and by using Property I1.4.1, we get an isomorphism
gr DRx (W, Hy(Ox)) = grf,DRx(H}(Ox)) = Eaty (Oz, w,)

where the lattermost module is the only non-vanishing £xt, as Z is a complete intersection
of codimension r. By definition of the filtration on the de Rham complex and the fact that

the Hodge filtration satisfies F_; = 0 for the modules we are concerned with, we have

grE, DRx(Wyi, Hy (Ox)) = wx ®o0 FoWai Hy(Ox),

gr,DRx(H}(Ox)) = wx ®o FoHy(Ox),

and the image of £2t"(Oz,wx) in wx @ HY(Ox) is, by definition, wx @0 PyH(Ox ), proving
the claim for k£ = 0.

For higher k, we apply induction to assume F,W,, H%(Ox) = P,H%(Ox) for p < k—1.
Hence, Z has k —1-du Bois singularities, and so satisfies codimx Zy;,, > 2(k—1)+1 =2k —1
by | , Cor. 3.40]. We need to prove that the inclusion FpW, , H%(Ox) — PH,(Ox)
is an isomorphism. But by the inductive hypothesis, this is equivalent to showing that the

natural morphism
97—y DRx (Wo, Hy(Ox)) — gri_, DRx(H(Ox))

is a quasi-isomorphism. Using Property I1.4.1 and by applying RHom(—,wx[r + k]) to the
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isomorphism assumed in 7), we get that the composition
(V.0.6) gri ,DRx (W, Hy(Ox)) = grt  , DRx(H}(Ox)) — RHomo, (05, wx[r + k)

is an isomorphism. But as codimx(Zgng) > 2k — 1 > k, using that & > 0, we know by

[ , Section 5.2] that the second map in the composition V.0.6 is the canonical map
97— DRx(H(Ox)) = gri_, DRx(H(Ox)),

proving the claim.

Step 6: 3) = 1) We use the following notation

,
o @gr{/_le Ly gry By
i=1

O 1
0:gryBy — @gr(/_ll’)’f.

i=1

By [ , Theorem 1.2], we have an isomorphism in the category of filtered D x-modules

g?“ZVH ker(d) = gr}ij[—/i-ii*Qg d],

which implies W, ker(0) = ker(d). Similarly, we have W,,_;coker(c) = 0.

We have the canonical inclusion
W, ker(0) C W, gry, By

which we can compose to get a morphism

Wygri By

W _
(V.0.7) gr,, ker(d) — W,coker(o) = Wogrt By N im(o)
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which preserves the Hodge filtration. Indeed, we see that W,,_; ker(d) — 0, as
Wi—1ker(8) C Wy_1gry By = (s + r)Wypagry By = Ztiatigr(/l?f C im(o).
i=1

Note that, by Lemma V.11, we have
gre Q] — grygry i.QF [d)
is an isomorphism for all p < k + 1, and so we see that the natural morphisms
g?“,irr ker(d) — gr,irrgrxv ker(d), gr,errWncoker(J) — gr,irrcoker(a)

are isomorphisms. We wish to show that the morphism V.0.7 is a filtered isomorphism.
Note that it is a filtered isomorphism on the open subset U C X such that UNnz = Zreg-
Indeed, in this case,

ker(0)|z = griBf|z = coker(o)|z = i+ Op,

wherei : U — UxAT is the graph embedding along f, ..., f., and these equalities respect the
Hodge filtration. The morphism V.0.7 has both source and target decomposing into simple
Dx-modules, corresponding to the irreducible components of Z. It is thus an isomorphism,
and hence, as the Hodge filtration is determined by the restriction to the regular locus (see
[ , (3.2.2.2)]), it is a filtered isomorphism.

In summary, we have shown that the composition
gr,fﬂ ker(d) — gr,iﬂgr(/Bf — gr,ircoker(a)

is an isomorphism. Now, the assertion in 4) implies &(Z) > r + k by Theorem V.6. Hence,

we have

97’54_',197’{/8]0 = grl§+r8f/IZ ) grlf—&-rBf = grlf—&-rCOker(O-)a

108



where the first equality follows from Fy,V>"Bf = >\ t;F) o V"B + by Theorem IV.6.
Hence, by what we have shown, we see that § = 0 on gr} By, as the composition and the

second morphism are isomorphisms. Hence,
O FryrBy C Fyyo By + V1B, C V1B,
where we know as &(Z) > r + k that Fi By C V"By. Hence, we have shown
Fyyr1By SV 1By,

which implies a(Z) > r + k, as desired. O

V.0.6: a(Z) for locally complete intersections and a local variant

In this section, we define the minimal exponent for a locally complete intersection, show that
a(Z) = oo iff Z is smooth, and define a,(Z) for any x € Z.
Using Theorem V.5, we see that an alternative definition to the minimal exponent is the

following:

sup{)\ >0 ’ 5f S VABf} 5f §é VTBf

sup{r —1+qg+~ | Ffo - VT71+'YBf,’Y c (O, 1]} o€ VTBf

Remark V.12. Note that if there are open subsets Uy, ..., Uy C X such that ZNU; # () and
Z CUU---UUy, then

a(Z) = min a(ZNU;).

1<i<N

Indeed, the containment F,8; C V""", can be checked on these open subsets, as it

trivially holds on X — Z.

Lemma V.13. The definition of a(Z) does not depend on the choice of regqular sequence

defining Z in X.
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Proof. By the previous remark, we can check this on an affine open cover of X, so we
assume X is affine. Let (f1,...,f) = (¢1,...,9,) define Z in X. If 6y ¢ V" By, then it lies
in V?)B; and lct(Z) does not depend on choice of generators.

Hence, we need only show that if ¢ > 0 is such that F,B; C V"' B;, then F,B, C
V4B, and conversely.

Write g, = Z;Zl a;j f; for some a;; € Ox. Let A be the matrix (a;;), with determinant
defining a hypersurface D in X. By choice of the ¢’s, this hypersurface does not intersect

Z. Hence, we can remove it by the previous remark, and assume the matrix A is invertible.

Now, we have an isomorphism

<

u: X X A" = X x A" (z,t;) = (2, a;ti),

j=1

through which the graph embedding along ¢1,..., g, factors, by first applying the graph
embedding along fi,..., f.. In particular, we see that u,B; = B, as Hodge modules.

This isomorphism u preserves X x {0} and induces an automorphism on Dxxar which
maps ti,...,t, to linear forms of ¢;,...,t¢,. We view the identification u; By = B, as an
isomorphism 7 : By — B, where By is a Dy ar-module acted on through the automorphism
u* of Dxyxar.

It is clear then that 7(F,Bs) = F,B,, and one can show easily using uniqueness of the
V-filtrations and the fact that u preserves X x {0} that 7(V*B;) = VAB, for all \. This

proves the claim. O
This lemma shows that the following definition does not depend on choices.

Definition V.14. Let Z be a locally complete intersection of pure codimension r. Let
Ui,...,Uy C X be open subsets such that Z C U; U---U Uy and such that ZNU; # 0 is a
complete intersection of codimension r. Then define

a(z) = 121SHN04(Z NU;).
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Lemma V.15. We have that a(Z) < ™3 if and only if Z is singular.

Proof. First of all, assume Z is smooth. Then fi,..., f. can be taken to be part of a system
of coordinates on X. Let g = >"'_, y;f; be the hypersurface defining the minimal exponent.
It is easy to check that, in general, the singular locus of g|y, where U = (X x A") — (X x {0})
is contained in Zgp, X A”.

Hence, g|y is smooth if Z is smooth, and so a(g|y) = a(Z) = oc.

Conversely, if Z is singular, there exists some f; and a point z € Z with mult,(f;) > 2.
We assume for ease that ¢ = 1. Then for p = (1,0,...,0) € A", the point (z,p) € U satisfies

mult(z ) (glo) = 2, and so a(gly) < 5* by | , Theorem E(3)]. O

We define now a local variant of the minimal exponent. Let x € Z be a point which
is fixed throughout this discussion. We see immediately that if x € V' C V' are two open
subsets, then a(ZNV’) < a(ZNV). Assume that there exists a decreasing sequence of open

neighborhoods of x, say Vi D Vo, D ... so that a(Z N'V;) is a strictly increasing sequence.

n-+r

5, and so Z would be

If this sequence increases to oo, then it eventually is larger than
smooth at z, but then the sequence of minimal exponents stabilizes. If the limit strictly
increases to a bounded value, this would contradict discreteness of the V-filtration.

Hence, we have argued that for any x € Z, there exists an open neighborhood z € V' C X
such that if x € V/ C V', then

a(ZnV)=a(ZnV).

We define a,(Z) := a(Z NV) for this choice of neighborhood V. Alternatively, it can be
defined as
ay(Z) =maxa(ZNV).

zeV

Remark V.16. By discreteness of the V-filtration and the fact that the possible values for

& (Z) lie in the set (0, 2] U {oc}, it is easy to see that the set

{a.(2) |x e Z}
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is finite. Moreover, we have

a(Z) = mina,(2),

x€Z

and the set

{reZfa(2)2}cZ

is an open subset of Z for any v € Q.

V.0.7: Example: Cones over Smooth Complete Intersections in Projective Space

In this section we compute the minimal exponent for a class of complete intersection varieties,
generalizing | , Example 4.23].
Let fi,..., fr € Clzy,...,x,] be weighted homogeneous of degree d > 2 for some weights

(p1,- -y pn). So for all j, we have
> piwide f;=d- f;.
i=1
Let 0 = >0 | piw;Oy,.

The main result of this section is the following:

Theorem V.17. Let f1,..., f. € Clzy,...,x,] be weighted homogeneous with weights (p1, .. ., ppn)
of degree d. Assume Z = {f; = --- = f, = 0} C A" is a complete intersection of codimension

r with an isolated singularity at the origin. Then

We will prove this by studying the hypersurface g = >, fiy;. First, we begin with an
important lemma concerning the singular locus of g. This, in part, explains the choice of

actually looking at g|y, where U = X x A" — (X x {0}). The proof is left to the reader.

Lemma V.18. Let f1,..., f, € Ox define a variety Z of codimension r. Let g =Y., y;[;.
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Then

San(Q) = l—leZQJ X ny

where W, = ker Ji(x) is a linear subspace of A™ and J§(x) is the transpose of the Jacobian

matriz of fi,..., fr at x. In particular,

Sing(9lv) = Urez,, (z X Wa = {0}).

Now, assume Z = V(fi,..., f.) satisfies Z;,, = {0} as in the theorem statement. The
lemma tells us that Sing(g|y) =0 x A”, as the Jacobian matrix vanishes at 0.

Note that g = >, v; fi, so 6(g) = dg. Hence, in B, and gg, we have
0055, = 0F(ds)é, = d(s — k)96,

for all k. The same relation holds in gg which we denote by gU.

lus

The goal is to understand for which A we know ¢, defines a non-zero element of gr‘A,BVU.
This A is, by definition, a(g|y) = a(Z).

For every a« € QN [0,1), the filtered Dy-module (gr3By, F) is a direct summand of a
mixed Hodge module. In particular, it is regular and quasi-unipotent in the sense of Saito

[ , Section 3.2.1]. Moreover, we have a filtered isomorphism for such «
(gr By, ') = (g7 By, F)
by | , (2.1.4)]. Also, by [ , (2.2.3)], we have filtered isomorphisms for A = k+a, k € Z
o - (gryBu, F) = (gryBu, F—k)),

Hence, ( gr{\/gU, F)) is also quasi-unipotent and regular. Moreover, it is supported on Sing(g|y),

which is the vanishing locus of x4, ..., z,.

113



By | , Lemme 3.2.6], we know that the smallest piece of the Hodge filtration onf
gr‘)}gU is killed by (z1,...,z,). By definition of the Hodge filtration on gU, if 6 defines a
non-zero element of gT‘A/lg’/U, then it must lie in the lowest Hodge piece. Indeed, F_lgU -
S0 Ox0i8 C VM1,

Hence, if X\ is such that ¢ defines a non-zero element of gr%/gU, we see then that
(z1,...,7,)0 = 0 in this associated graded. But then 6 + Y1 p; = >.° | p0y,x; also
kills 6. So we have

0=(0+ Zpi)g = (ds + Zpi)g.
=1 =1

Finally, in grégU, the operator (s + ) is nilpotent, and so we finally get
&(7) = dlgly) = A = =Ll

d Y

as desired.
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CHAPTER VI
Monodromic Mixed Hodge Modules and Fourier

Transform

Here we apply the results on V-filtration for higher codimension subvarieties to the study
of the Fourier-Lagrange transform of mixed Hodge modules. It is known that this opera-
tion need not preserve the category of regular singularities for the underlying D-module,
so we must restrict our attention to monodromic mixed Hodge modules. We give a com-
plete description of the Hodge and weight filtrations for the Fourier-Laplace transform of a

monodromic mixed Hodge module.

VI.1: Monodromic Mixed Hodge Modules

Let X be a smooth complex algebraic variety and let £ = X x A" have fiber coordinates
21, ..., 2 and vector fields 0,,, . . ., 0, giving the Euler operator 8, = »"_, 2;0,,. We say that
a mixed Hodge module M on F is monodromic if its underlying Dg-module is monodromic.

Recall that this is equivalent to having a decomposition

(VL1.1) M = MX, where MX = | Jker((6. — x +1)").

XE€EQ >1

These monodromic pieces MX are related by 2z MX C MXFTL 9, MX C MX~1. Moreover,
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if V*M is the V-filtration on M along X x {0}, then

VM = M~
X>A
This class of mixed Hodge modules was studied by T. Saito | ] in the rank 1 case
and later in the arbitrary rank case | ]. One interesting result (Theorem 0.1) of loc.

cit. is that the Hodge filtration also decomposes along the monodromic decomposition
(VL.1.2) F,M = @) F,MX, where F, M* = F,M N MX.
XEQ

Now, we begin a study of the weight filtration of a monodromic mixed Hodge module.
First, assume that M is pure. Then we have the following understanding of the nilpotent

operator N = @XGQ 0. — x + r. This was shown in the rank 1 case by T. Saito.

Proposition VI.1. Let M be a Dg-module underlying a monodromic pure Hodge module
M. Then N =0, i.e.,
MX =ker(0, — x +r).

Proof. We can decompose M into simple summands, as the category of polarizable pure
Hodge modules is semi-simple. Hence, we can assume M is simple. But then N being

nilpotent implies it must be 0, as it cannot be an isomorphism. O

Interestingly, this has the following consequence in rank 1:

Corollary VI.2. Let M underlie a monodromic pure Hodge module on X x A'. Then
z2: M= Mo, MY — MO

are identically 0.

Proof. By the previous theorem, we know N = 20, : M - M! and N = 0,2 : M® — M°

are identically 0. So, in MY we have im(9,) C ker(z). But, as M allows a decomposition
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by strict support, we have

M = ker(z) @ im(0.),
and so we must have im(9,) = 0, and so ker(z) = M, proving the claim. O

We now proceed to the case of non-trivial weight filtration. It is easy to see that, as
Dg-modules, we have an isomorphism Sp(M) = M for any monodromic Dg-module M,

using the isomorphism E = Ty, (o} E.

Theorem VI.3. [ , Theorem 1.5] Let (M, W,) underlie a monodromic mized Hodge
module on E. Let N = @XGQ 07 — x +r be the nilpotent operator on M. Then W M is its

own relative monodromy filtration with respect to N, i.e., NW M C We_o M.

Note that if M is pure, this theorem is exactly saying that N = 0, the conclusion of
Proposition VI.1. Also note that the other condition in the definition of relative monodromy

filtration obviously holds for the filtration W itself.

Proof. Let (M, W) underliec a monodromic mixed Hodge module on E. Note that the relative
monodromy filtration for (M, W,) with the nilpotent operator N = @6, — x + r exists.
Indeed, for any y, we know from Chapter I the existence of the relative monodromy filtration
on griM with respect to N =6, — x + r and the induced filtration M,gryM = gri WM.
But griM = MX, so we can just take the direct sum of each of these relative monodromy
filtrations to define the one on M.

Now, gr!¥ M is monodromic for any i, as it is a Dg-module subquotient of M. Tt is
also pure, so by Proposition VI.1, we see that N = 0 on gr!” M. Hence, 0, — x + r is 0 on

(grl¥ M)x for all y, and so the relative monodromy filtration is equal to WM. O

VI1.2: Fourier-Laplace Transform

Let EV be the dual bundle of E, which is also trivial. Say the fiber coordinates are wy, . . ., w,

with derivations Oy, ..., 0y,. Given any Dg-module M, we can define the Fourier-Laplace
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transform FL(M), which is a Dgv-module, as follows: as a Dx-module, it agrees with the

structure of M. However, we have
wim = —0,,;m, Op,m = 2;m

for all 1 < ¢ <r. In particular, if M is monodromic, then FL(M) is, too, and if FL(M)X is

the yth monodromic piece (along wy,...,w,), we have as Dx-modules equality
FLIM)X = M™™X

where the right hand side is the r — yth monodromic piece of M.

The functor FL need not preserve the category of regular holonomic D-modules, and in
particular it need not preserve the category of mixed Hodge modules. However, Brylinski
showed that if M is regular holonomic and monodromic on Dg, then FL(M) is regular
holonomic and monodromic on Dgv. The main theorem is that FL(M) naturally underlies
a mixed Hodge module on EY if M € MHM,,,,,,(E).

Let £ = E xx EY which, as a variety, is isomorphic to X x A" x A". Let p: & — E
be the projection and i : EY — £ the inclusion of the zero section. Let g : & — A be the

regular function >, z;w;. For any M € MHM(E), consider the total nearby cycles

0y(M) = P dya(M).

Ae€(0,1]
The goal of this section is

Theorem VI4. [ , Theorem 1.4] Let M be a monodromic regular holonomic Dg-

module. Then, using the above notation, there is a natural isomorphism

FLIM) = H00* ¢, Ly p (M) [ 7]
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Using this and the fact that Hi*, ¢, and p' preserve the category of mixed Hodge modules,
we see that FL(M) naturally underlies a mixed Hodge module on EY. We will explain the

Hodge and weight filtration on this Hodge module after the proof of the theorem.

Remark VL.5. In | , Definition 4.9] and | , (10.3.31)], the Fourier-Laplace transform
(called Fourier-Sato transform for monodromic objects) is defined in the following way: let
p:E = E ge Og€)and T : &€ — &€ x A! be defined as in our notation. Then, let
w = (¢ xid) ol where q : &€ — E" is the projection onto EY (leaving A' fixed). The Fourier-

Sato transform of a monodromic mixed Hodge module is defined to be the composition

Gewep (M)[=7],

where £ is the coordinate on Al

However, this is precisely our definition. Indeed, writing w, = (¢ x id),I';, we see easily
that ¢;(q x id), = q.¢, as q x id does not affect ¢, the coordinate on Al. Also, by Lemma
VL6, we know ¢¢I'yp'(M)[—r] is z-monodromic. Then the claim boils down to a mixed
Hodge module version of Proposition IV.4, which is immediate from the proof of Proposition
IV.4. Indeed, the proof amounts to showing the vanishing of a certain D-module, but the
corresponding mixed Hodge module is 0 if the underlying D-module is, too. Hence, p, = o*

on ¢ p'(M), proving the claim.

We introduce some notation to prove the theorem. We can write the underlying Deg-
module of p'(M) as M[w], with the obvious De-module action. Now, g defines a singular
hypersurface, so we must use the graph embedding I' : &€ — & x A! to understand ¢,.
Let & be the coordinate on A' with corresponding derivation 0. Recall that I'y M[w] =

D=0 M[w]0*5,, and the action is given by
P(mw®d*s,) = P(mw”)0*s, for P € Dx + O,

O, (MwPOF8,) = Brmw?~410%6, — zymwP "6, for 1 <i <,

i
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0.,(mwPo*s,) = 0..(m)w’ s, — mw T oF1s, for 1 <i <,
E(mwPoks,) = gmuw’ 06, — kmw’9+14,
O(mw’9*s,) = muw’ 9" 14,
Hence, if we define é; by the formula
é;(mwﬁﬁkég) = 0.(m)w’9*s,,
we see that
0. (mw’d",) = (0. — (k + 1) — £9)(mw’9"s,),

and similarly,

Hw(mwﬂﬁkég) =8 —(k+1)— 58)(mw’38k(5g).

Note that I'; M[w] decomposes into eigenspaces for the operators T'= 6, + £0 + 1 and
S =0,+ &0+ 1. Indeed, every element can be written uniquely as a sum of elements of the

form mwﬁakég for m € MX for some Y, (3, j. For such an element, we have
(T — /\)a(mwﬂakég) =0 <— (Qz — k- )\)am —0) = me Mk—l-/\—l-r’

(S =N (muwPds,) =0 <= (|| —k—N)"=0 < |8 =k+\

As |B| and k lie in Z, this shows that the only eigenvalues of S are integers. Moreover,
these operators obviously commute with each other, so I'; M[w] decomposes into simulta-

neous eigenspaces. We shift these for ease of notation and denote

Eﬁ,é —_ Z Mﬁ+|a\+£waa\a|+é(5g’

€N, |a|>—¢
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and we pick out the part with a fixed power &7, denoted

,BZ_ Z Mﬁ+|a|+é ozajé

la|=5—¢

hence,

By =EPF

g2t

It is trivial to check that these spaces are moved in the following way with the operators

of DgXAll
2By C Egiiy

0., B30 C Eg_14
wiEge C Egi
Ow, Ese C Eg i1
§Es0 C Egy1-1

OFgy C Eg_1041.

For any A € Q, the piece VAT M[w] is invariant under the operators T and S, so it also

decomposes into simultaneous eigenspaces. We write E3 , = VAT M[w] N Eg .

Lemma VI.6. Let A € Q. Then

Moreover, griyI'y M[w] is monodromic along 2, . . .,

odromic pieces are given, respectively, by

(ngF+M GB X+A ﬁ/E;-‘f)-\)\ ¢

LeZ
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(gTVF+M @Eﬁr A— X/ ,87‘ A—Xx
BeQ

Proof. The first claim is trivial. For the last two claims, use the fact that griT'y Mw)
decomposes into its simultaneous eigenspaces for T and S. Also, use the fact that T =
0,4+ N+ Xxand S = 60, + N + A\, where N = £€0 — A + 1 is the nilpotent operator on
griyTy M[w]. Hence, if an element u lies in an eigenspace for T, and N acts nilpotently, it
must also lie in an eigenspace for 6,. Similarly for an element lying in an eigenspace for S

and N acts nilpotently. From here it is just an index check. O]

Finally, we define morphisms ¢g,: Eg, — M° by

Zm w1 ( Zaa Me)-

By mawaala\%sg € Egy, we know m, € M2l and so the image does land in MP+.
Moreover, the morphism is Dx-linear. It is easy to check that this family of morphisms has

the following behavior with respect to the operators in Dgy a1:
Yp-1,000,, =0

V-1 0 W; = —0;, 0 Pg g
©8,0+1 0 Ow, = 210 g
0pr10-10&=—(0. —L+1)0psy
©p-1,41 00 = —pgy.

We can strengthen the first property as follows:

Lemma VI.7. Assume ¢ > 0. Then

ker ( 90,8 0) Z 0z Epi1,0-
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Proof. We clearly have the containment D.

Now, let n = Z\alsa mawo‘éﬂo“”dg lie in the kernel. We prove the claim by induction on
a. Note that if a = 0, then ¢g,(med°,) = (—1)*mo = 0 implies mg equals 0, so the base
case is handled.

Assume the claim holds true for any sum with |a| < a — 1 lying in the kernel. As a > 0,
for any o with |a| = a, there exists some non-zero index a; > 0. Choose such an ¢ for each
a, call it 4. Thenn+ 32, _, 0z, (maw® e 9le+=1)5, has no terms w® with |a| = a. Also,
it lies in the kernel, because it is a sum of two elements which lie in the kernel of ¢g,. By

induction, this term lies in Y _, 0., (Es41.¢), and so 7 does, too. O

VI.2.1: Computing the V-filtration on I', M[w]

To compute the V-filtration, we first break up M = P51, D M?*J and then compute

jez
the V-filtration on M*? = @._, M7 in the two cases: A =0 and X € (0, 1).

First of all, we make the following easy observations. They are

(VI.2.1) Z wiFé,z_1 = F/g,z
=1
(V1.2.2) X+i#Fr—1= ) Fl,=F_,
=1
(V1.2.3) XHi#Er—1= ) 0uFl;=Fi,
=1

where the first follows from definition and the second two follow from the fact that MX =
S zMXL for x # r, by Remark I1.10.

We define a filtration U*T'y M[w] by defining it for e € [0, 1] explicitly and then induc-
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tively defining
UN=8U I for \>1,\—j € (0,1],

UN=UMI 4+ U for A\ < 0,\+7j €[0,1).

Then we need only check that the filtration is exhaustive and satisfies the following

properties:

1. For X € [0,1], the module U* is coherent over VD¢, 1.
2. For A > X, we have U* C UV

3. We have £UY C U1,

4. We have oU' C U°.

5. For each A € [0, 1), there exists a > 0 such that (€0 — A\ + 1)2U* € U™

Note that in Property 5, we need not check the nilpotency for A = 1 thanks to the
previous conditions. Indeed, let a be such that (€0 + 1)*U° C U>° Then (£9)*T'U! =
£(0€)20U C €U0 = UL,

Case 1: A = 0. Define

UD = VODgXAl : F0070 + VODgXAl : F(;,r’

Ul = VODgXAl . FRO + VOD(‘,‘XAl . Flr;il

Exhaustive: let U = |J, U*. As U is closed under the action of 9 and wy,...,w,, it
suffices to prove that M*5, C U for all ¢ € Z. Well F&O = MY, C U by definition, and
so by Remark I1.10 we get M4, ..., M" 15, C U. Moreover, by induction, we see that
/\/ledg C U for all ¢ < 0. Assume Mfég C U for some ¢ < 0. Then ./\/lé[w]akég C U for all
k>0and Y, 0. (M‘,) CU. But

0., - mdy = 0,,mdy — w;mddg,
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and w;mds, € U, so d,,(m)d, € U. Hence, we see that (using Remark 11.10) M*~15, =
> 0 M+ MBS, C U, as desired.

Also, M"6, = Fj, C U, and so using Remark I1.10 and the z; action, we get M‘d, =
(> zM15,) C U for all £ > r, too, which proves exhaustiveness.

1: To see U" is finitely generated over V'Dg, a1, let my, ..., my be finitely many gr)Dg
generators of M and let 7, ...,my be generators for M" over gr%Dg. Then these elements
generate U, by the following fact: given md*ds, € U, we obtain (gry,Dg - m)9*s, C U°.

Indeed, we easily get Dy - md*d,, and to get 2i0.,(m)d,, we use

[

2i0.,(m)6g = 2;0,(mdy) + w;0y, (Mmdy),
which lies in U®. The same proof works for U*.
For the remaining conditions, we use the following lemma

Lemma VI.8. We have containment F;,z C UY for any triple satisfying either of the two

conditions
e x=>0,j=2rl<y.
e 0<xy<r—1,0<j<r—x,0<y.
Also, we have Fi,e C U' in either of the following cases:
e x>Lj>r—10<]
e 1< x<r—-1,0<j<r—x,¢<y
In particular, we have
e £, CU° forallx >0,0>r,
e E.,CU' forallx>1,0>r—1,

e E1,CU! forall ¢ <0.
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Proof. We make use of the fact that U is closed under z;, d,,, and w; for all .

Starting from Fy, C U by Formula VI.2.2 we get Fy, C UY for all y > 0. Then by
Formula VI.2.3 we get Ff” C U for all j > r. Finally, by Formula VI.2.1 we get Fig cuy°
forall x > 0,5 >r ¢ <.

Starting from Fgy € U°, we get by Formula VI.2.2 F( C U° for all 0 < y <r —1. By
applying Formula VI1.2.3 we get F;] CU%orall 0 <y <r—1and xy+j < r. Finally,
applying Formula VI.2.1 we get Fi,ﬁ CU%orall 0<x<r—1,x+j<rand/{<j.

Similarly, we argue for the containment of the other subsets in U*.

The last statements follow easily from these containments. For example, let £ < 0, then
Ff;g C U? for all j > 0. Indeed, if j > r — 1, then this comes from the fact that Ff;il is
contained as argued above. If 0 < j < r — 1, then in particular, 1 +7 = x + j < r, so this

follows from the fact that F{; is contained as argued above. O

2: Obvious, from the lemma and using the fact that F}, 1, = (¢ — g)Fy,.

3 Indeed, £F0070 C Ey_; and SF&T C FEy,_1, so this follows from the lemma.

4 Indeed, OFY, = Fy, C Ey1, which is in U° by the lemma, and 8Ff;i1 = Fg,., which is
in U by definition.

5 Note that ¢g g0 (0€)* = (6 +71)" 0 g, 0 since g has image in MY, (6 +r)? kills this
for a > 0. Similarly, ¢g, 0 (0)* = (6 —r +r)* 0 @y, and (0 — r + ) kills M" for a > 0.
Thus, we see that (0¢)* multiplies Fg, and Ff, into ker(pgo) and ker(gq, ), respectively.
Well, by Lemma VI.7, these are

> 0.(Ei) and > 0.(Ei,)
=1 =1

respectively, and both of these are contained in U! by the lemma and the fact that U? is
closed under 0,, action.
This finishes the proof and shows that U® = V* is the V-filtration along &.

Case 2: X € (0,1).
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Define U? = U* := VODgyp1 - FYy and U' := VODeyp1 - FY 4.

Exhaustive: As FY; = M* ® 1, the fact that the filtration is exhaustive is shown in
exactly the same way as above (using the acyclicity of the Koszul-like complex).

1: By taking finitely many gr{,Dp generators of M?* and M1 we see that U® are
VODg¢, a1-coherent.

2: This is obvious using the relation VI.2.2 above.

In a similar way to the lemma above, we see that F)J\'—i—b,ﬂ C U and F£+1+b7K C U! for all
b>0,7>0and /¢ <.

3, 4: Note that £FY; € Ejy1,_1, which is contained in U" by the previous observation.
Similarly, 0F\;+1,0 € E) 1 which is contained in U O by the previous observation.

5: Finally, we need only check (9¢ — \)*U* C U! for some a > 0. Just as before,
(0€ — A\)* multiplies FY, into ker(pxo) = > 0, (Ex10)- By the above, this is contained in
U!, as desired.

This completes the proof that this is indeed the V-filtration along &.

VI.2.2: Constructing the Isomorphism with FL(M)

In this subsection, we construct the isomorphism H°c* ¢, (p'(M)[—r]) = FL(M), proving
Theorem 1.7. Recall that N := ¢y (p'(M)[—7]) is monodromic along the z’s (by Lemma

VI.6), and so we know by Theorem 1.2
(VI.2.4) HOo*(N) = coker(@ Nt 2 NO).
i=1

As N is also monodromic along the w’s (again by Lemma VI.6), this property gets
inherited by N'', N and the maps 9., preserve the monodromic structure. In particular,
HO0*(N) is also monodromic along the w’s, which is exactly what we expect, because FL(M)
is monodromic, too. So we need only identify the individual monodromic pieces in such a

way that the w; and 0, maps are identified between pieces.
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Lemma VI.6 tells us that we can decompose Equation VI.2.4 into the following:

o,
(VI.2.5) coker @ @ B3 10/ B — Bxo/ERG

A€[0,1) L€Z,1<i<r

and applying it once more to decompose into w-monodromic pieces, we see that the » — yth

w-monodromic piece of H0*(N) is

* r— T azi
(VI.2.6) (H0"(N))"™X = coker @Ej\\+1,xf/\/Eii\l,x—/\ — E,Q\,Xf,\/E,\%;_,\ )

=1

where we necessarily have A = x — | x|, as x — A must be an integer.

We have the maps
Prx=A EQ,X—A — MMXTA = MY = FL(M)™X,

and so we need to see that these induce isomorphisms on the cokernels in Equation VI.2.6.
Of course, the image of d,, lies in the kernel, so the only possible issue is the E>* part.
To see that E;;f ) lies in the kernel, note that by our computation of the V-filtration

above, Y%\ = Ej 5. Now, write an arbitrary element P € V'Dg, a1 as
P =" P paisd 0wl (0)'E",

with P, ,qjx € Dx. Using the way in which the various operators move the eigenspaces,
we see that

The only way in which Ps. ;% can move Eyq, to Ey g for some ¢ € Z, then, is for
18] >0, i.e., for Ps. ,a;r to have some 0,,. But by our explicit description of V! above, it
is generated over V°Dg, a1 by subspaces of the form F/{ 11 for some j,¢ € Z. In particular,

those elements that land in E),_) must involve a d,,, and hence lie in the kernel of ¢. So
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we get well-defined maps as desired.

By Lemma VI.7, we see that, indeed, the induced morphisms H%c*(N)" X — FL(M)"x
are injective. We see that they are surjective as follows: recall that, for ¢ > 0, we have seen
that F§, = M 9%, C VA This will hit all of M*** under ¢. So we have surjectivity,
and hence isomorphism, when y — A > 0, i.e., x > 0. We obtain the other isomorphisms
using the fact that both FL(M) and H%0*(N) are w-monodromic, so they must satisfy the

acyclicity of Lemma I1.9. Thus, we have a morphism between acyclic complexes

Hoo*(N) —— H0*(N) —— ... —= HO'o*(N) X

[ [ [

FLIM) —%— FL(M) —%— ... —“— FL(M)"X

~

in which, inductively, all but the rightmost map is an isomorphism, so the rightmost map

must also be an isomorphism. This proves the claim.

VI1.2.3: Hodge and Weight Filtration Computations

Now, to understand the Hodge filtration on FL(M) given by this isomorphism, we need only
track what happens to the Hodge filtration when applying the functors H%*, ¢, and p'.

The statement we are after is the following;:

Theorem VI.9. [ , Theorem 1.4] Let (M, F,) be a filtered Dg-module underlying a
mized Hodge module on E. Then the Hodge filtration on FL(M) satisfies

FpFL(M)T_X = Fp, (X]MX,

forallp € Z and x € Q.

Proof. As mentioned, we simply need to trace our way through the various functors and
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keep track of the Hodge filtration. We have by Equation 11.4.3
Fyp (M)[=r] = (Fj—p M) [u]

for any k € Z.

Then, applying the graph embedding along ¢, we have

ETp M) 1] = P E i 1p M) = BD(Fyiorr M) )",

k>0 k>0

The vanishing cycles ¢, inherits this Hodge filtration, though there is a shift of the Hodge
filtration on the ¢4 part, by Equations I1.4.5 and I1.4.4.

Finally, in Theorem 1.2, the complex is strict with respect to the Hodge filtration. We
note, however, that there is a shift by r, as we are looking at the rightmost cohomology of

o*. This undoes the shift coming from p'. In summary, we will be interested in the subspace

FpEi\’[ — Z Fp_l_/\_l_Z_|a|M)\+£+|a|waa|aH-5597

| >—¢

Applying ¢ to an arbitrary element » mawaéﬂa‘“dg, we get
(_1)6 Z 02 (ma) C Fp*D\]—EM)\—M

We get the other containment for £ > 0 easily. Again, in this case, F' f,e = M LS, C VA
For ¢ < 0, we use induction and Filtered surjectivity of the Koszul-like complexes in the 0,’s

for M to conclude. O]

Finally, we handle the weight filtration and conclude this chapter.

Given a monodromic module N' = @ NX, for any A € QN [0, 1), denote

NMZ @ N

LeZ
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The goal is the following:

Theorem VI.10. / , Theorem 1.4] Let (M, W) be a monodromic D-module with weight
filtration WM underlying a mized Hodge module on E. Then the weight filtration on FL(M)
satisfies

WiFL(M)MZ = FL(W)py g M)MZ

We first prove an easy containment: for A € [0, 1), we have
(VL.2.7) WiFL(M)*2 C FL(Wyypy g M)

Again, we want to trace through the various functors and keep track of the weight filtra-

tion. By Equation 11.4.3, we have
Wi (M)[=1] = p*(Wisr M).
For ¢4, we must use the relative monodromy filtration. Set

M, ¢gp @ 3 ,\F+p erre M) [T
A€[0,1)

Let Wi e¢,2p' (M)[—7] be the relative monodromy filtration for M, and the nilpotent op-
erator N = £0 — A + 1, which computes the weight filtration on the mixed Hodge module
Gl 4D (M)[-7].

Consider the 0th z-monodromic piece N of ¢¢ \I'1p'(WeiriaM)[—7]. On here, Ny :=
6. 4+ r acts nilpotently. Moreover, it preserves the filtration W ,, and we let W5, to be the
relative monodromy filtration for W, , and Ns.

Note that by definition of the D-module action on I'yp'(M)[—r], the two operators
£0—A+1 and 0, +r are related by a third operator /\7, which acts on an element m[w]9*, €
MX[w]d%5, by (0, — x + ).
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By Theorem 1.9, we know that (the operator induced by) N maps W, . into W,_,, because
it does so for M,. Then, because it does this for W, ,, by the same reasoning it does so for
W3 ..

But on gr,‘:vl./\/'o, we know Nj is identically 0, and so N = Ny. Hence, Wy, is also the
relative monodromy filtration for N and Wi.. But we have argued that N decreases Wie
by 2, so actually W, , is its own relative monodromy filtration, i.e., Wy o = Wi,.

Finally, we have the quotient map N° — H%*(¢,p'(M)[—r]), and by Theorem 1.2 (and
the Fs-degeneration mentioned in Corollary IV.11), the weight filtration on the target is
induced by the filtration W5, on the domain. But we have argued that Wy, = W, ,. Finally,
by functoriality of relative monodromy filtrations, this must be contained in the relative
monodromy of the target with respect to the induced operator by Ny and the filtration M,.
But under ¢ this precisely maps to the relative monodromy filtration, so again by Theorem
1.9, we conclude the desired containment.

To handle the opposite containment, we will make use of the inverse Fourier transform.
Note that applying the Fourier-transform twice makes z; act by —z; and 0,, act by —0.,.
This can be remedied using the involution a : £ — FE defined by z; — —z;. Hence, for

underlying D-modules, we have
Y a*FLgvFLEM = M.

By | , Thm. 3.7.12(i)] and | , Prop. 6.13], we know that this isomorphism
preserves the underlying Q-structure. Hence, if we can define a Hodge and weight filtration
for FLgv(—) which makes the above morphism bifiltered, it will automatically be bistrict,
hence an isomorphism of mixed Hodge modules. As it is clear that whatever structure we
define will act as the inverse of FLg, we will call it the inverse Fourier transform, and denote
it FLpv.

It turns out that the definition is very close to that of FL, except we need to Tate twist
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on the individual components:

Definition VI.11. For £ = X x A", using the notation above, we define the inverse Fourier

transform FLg : MHM(E) — MHM(E"Y) by the formula:

FLo(M) = @D H 0" ¢yap' (M)[—r](—[A] = 7).
A€[0,1)
Proposition VI.12. The map ¢ : a*FLgvFLgM — M is an isomorphism of mized Hodge

modules.

Proof. As the map 1 is an isomorphism of D-modules, we really just need to compute
the weight and Hodge filtrations of the domain and show that they are contained in the
corresponding Hodge and weight filtrations for M. We check the claim for monodromic
pieces, so fix y € Q with x — [x| = A € [0,1). We will check the claims for A € (0, 1), the
claim for A = 0 is similar and left to the reader.

Note that FL is simply a Tate twist of the usual FL by (—1 — r) in this case, so we can
use Theorem 1.8 and the containment in Equation VI.2.7, keeping track of the Tate twists.

Well, a* being the pullback along an isomorphism does not affect the Hodge or weight

filtrations. So we can ignore it. For the Hodge filtration, we have
F,FL(FL(M))X = E,FLpvFLp(M)X(—1 — 1)

= FprraFLpv FLp(M)* = Fp i1 g FLE(M) ™ = Fp 1 - M5,

and p+r+1—[x]—=[r—xl=p+1—[x]—[-x]=p

Finally, for the weight filtration, we have
Wi, FL(FL(M))X = WiFLgvFLg(M)X(—1 — 1)

= Wk,Q,QTFLEVFLE(M)X Q FLEV(kalfrFLL/\/l)) Q FLEVFLE(WkM) - WkM,
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proving the claim. O]

As this is a W-filtered isomorphism, we get the other containment in Equation VI.2.7,

so this completes the proof of Theorem 1.10.
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