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ABSTRACT

Morihiko Saito’s theory of Hodge modules have made an incredible impact in the study of

singularities. So far, the strongest results have been obtained in the case of hypersurface

singularities, using the strong properties of the V -filtration along hypersurfaces which is built

into the theory of Hodge modules.

This thesis extends two important tools from the case of hypersurfaces. The first is a

compatibility property between the Hodge filtration of a mixed Hodge module and the V -

filtration along a higher codimension subvariety. The second is a formula explaining how

to restrict to a smooth subvariety of higher codimension using the V -filtration along that

subvariety. The main tool at work in proving these theorems is the blow-up along the smooth

subvariety.

There are two main applications of these theorems: the first is to analyze the Hodge and

weight filtration on the local cohomology module along a singular locally complete intersec-

tion subvariety. We define the minimal exponent of a locally complete intersection variety

and show that its value dictates when the Hodge filtration on local cohomology is equal to

the pole order filtration. This shows that the minimal exponent understands information

about k-du Bois singularities, and it turns out that the minimal exponent also understands

k-rational singularities, by its relation to the weight filtration on local cohomology.

The second application is to the study of the Fourier-Laplace transform of monodromic

mixed Hodge modules. These modules naturally arise through Verdier’s specialization con-

struction. We explicitly write out the Hodge and weight filtrations for such modules.

viii



CHAPTER I

Introduction

There are various results in algebraic geometry which can be stated without any hypotheses

on the characteristic of the ground field. In this way, one can view varieties in characteristic

p and over the complex numbers as similar objects. In the complex setting, affine varieties

are Stein spaces, and so their sheaf cohomology is well understood thanks to Cartan’s the-

orems A and B. It turns out that affine algebraic varieties in arbitrary characteristic have

well understood quasicoherent sheaf cohomology, thanks to Serre’s algebraic analogues of

those theorems [Ser55]. This is one way in which complex analytic geometry has influenced

algebraic geometry.

As a complex algebraic variety is locally defined by polynomials in Cn, it naturally has

an underlying analytic space, endowed with the Euclidean topology. Serre’s famous GAGA

paper [Ser56] made this connection between complex algebraic varieties and complex analytic

spaces even more precise, in the projective setting. By Chow’s theorem, it was known that

any projective complex analytic variety is actually algebraic, and Serre’s result shows that

not only is it algebraic as a space, but all of the coherent data is algebraic, too. In this way,

complex analytic geometry can have a direct impact on complex algebraic geometry, as we

will see below.

Of course, the topology on an algebraic variety and that on its underlying analytic space

differ immensely. Constant sheaves in the former topology have no higher cohomology,

whereas in the latter topology their cohomology computes the singular cohomology of the
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analytic variety. So when speaking of constant sheaves or local systems (defined in the next

section), it is most interesting to do so in the Euclidean topology.

I.1: Riemann-Hilbert Correspondence, D-modules and Perverse Sheaves

LetX be a smooth complex algebraic variety. The derivative of a polynomial is a polynomial,

and similarly if one differentiates a regular function on X, it remains a regular function. If

Ω1
X is the algebraic cotangent bundle of X (algebraically, the sheaf of Kähler differentials),

this gives a map d : OX → Ω1
X which satisfies the Leibniz rule: d(fg) = fd(g) + gd(f).

Given a coherent sheaf F on X, we define a flat connection on F to be a map

∇ : F → Ω1
X ⊗O F , satisfying ∇(fm) = d(f)⊗m+ f∇(m),

and so that ∇2 : F → Ω2
X ⊗O F is 0. The map ∇ gives a way to differentiate sections of the

sheaf F (compatibly with the O-action), and the condition ∇2 = 0 is essentially equivalent

to Clairaut’s theorem from calculus: ∂xi
∂xj

(m) = ∂xj
∂xi

(m).

In the Euclidean topology, by the classical Riemann-Hilbert correspondence, it turns out

that such an F is always locally trivial, meaning there exists some integer k and an open

cover X =
⋃

i Ui such that F|Ui
∼= O

⊕
k

Ui
, with the trivial connection defined by d. An easy

observation is that the kernel of d is the constant functions, and so for any flat connection

∇ on F , the kernel of ∇ should be a local system, i.e., a sheaf F for which there is an

open cover X =
⋃

i Ui as above such that F |Ui
∼= C

⊕
k

Ui
. The correspondence sending a flat

connection (F ,∇) to the local system ker(∇) is an equivalence of categories.

More generally, one can consider arbitrary O-modules (not necessarily finitely generated)

with a flat connection, as defined above. Such modules are called DX-modules, because they

are modules over the ring DX of differential operators on X. If the tangent bundle of X is

locally trivialized by choice of coordinates ∂x1 , . . . , ∂xn , then an element of DX is of the form∑
α∈Nn hα∂

α
x where each hα ∈ OX . We will focus only on those modules which are locally
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finitely generated over DX , which are called coherent DX-modules. One can associate to any

non-zero coherent DX-module M a notion of dimension (defined precisely in chapter two),

which is always an integer between dimX and 2 dimX. If the dimension is equal to dimX,

we say M is holonomic.

Any flat connection is holonomic, but there are many more holonomic modules than there

are flat connections. It turns out that for any holonomic DX-module M, there exists a dense

open subset U ⊆ X such that M|U is isomorphic to a flat connection. The complement of

the largest such U is then called the singular locus of M. In this way, flat connections are

the smooth objects in the category of holonomic D-modules.

The replacement for the correspondence (F ,∇) 7→ ker(∇) is to send a holonomic D-

module to its de Rham complex DRX(M), which is the complex

M → Ω1
X ⊗M → Ω2

X ⊗M → · · · → ΩdimX
X ⊗M,

placed in cohomological degrees − dimX, . . . , 0.

Roughly, the fact that there exists U ⊆ X such that M|U is isomorphic to a flat connec-

tion leads to the fact that one can stratify X into a disjoint union of smooth subvarieties such

that M restricted (in a suitable sense) to each piece is a flat connection. Making this idea

precise is the content of Kashiwara’s constructibility theorem [Kas75]. A sheaf of C-vector

spaces L on X is constructible if one can stratify X so that the restriction of L to each

stratum is a local system. Kashiwara’s theorem says that if M is holonomic, then DRX(M)

has constructible cohomology sheaves, which we write as DRX(M) ∈ Db
con(X), where the

latter is the bounded derived category of complexes with constructible cohomology sheaves.

There is a parallel aspect to this story which is to allow for certain constructible complexes

C• ∈ Db
con(X) which have “mild singularities”. Goresky and MacPherson [GM83] define

and study “intersection cohomology” for a singular variety. This is a certain constructible

complex which satisfies Poincaré duality, which fails in the non-smooth setting. It is a better
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behaved analogue of the constant sheaf CX on such singular spaces. In their landmark work

[BBDG82], Beilinson, Bernstein, Deligne and Gabber formalized the concept of “perverse

sheaves”, generalizing intersection cohomology complexes.

One can define a subcategory of the category of holonomic modules, which are the regular

holonomic modules. The functor DRX restricted to this subcategory is an equivalence of

categories, which behaves nicely with respect to duality and several naturally defined functors

from geometry, like pushforward and pullback. This fact is known as the Riemann-Hilbert

correspondence, shown independently by [Meb89] and [Kas84].

There are some other naturally defined functors on constructible complexes. Given i :

H → X the inclusion of a closed subvariety of codimension 1, Deligne [Del73] defined

the nearby and vanishing cycles functors ψ, ϕ which refine the restriction functors i!, i∗ :

Db
con(X) → Db

con(H) in the sense that there exist natural exact triangles

ψC• can−−→ ϕC• → i∗C• +1−→

i!C• → ϕC• var−−→ ψC• +1−→ .

By their construction, ψC• and ϕC• come equipped with monodromy operators. Equip-

ping i∗C• and i!C• with the trivial monodromy operators, the complexes above preserve

monodromy. These complexes and their monodromy are sheaf theoretic incarnations of the

cohomology of the Milnor fiber of the hypersurface H, and so contain some data concerning

the singularities of H.

Gabber showed that if C• is a perverse sheaf on X, then ψC•[−1] and ϕC•[−1] are

perverse on H (see [Bry86, Page 14]). A natural question arises: what do ψ and ϕ correspond

to on the regular holonomic DX-module side of the Riemann-Hilbert correspondence? This

was answered by Kashiwara and Malgrange using the theory of V -filtrations. As V -filtrations

are a major tool used in this thesis, we defer their precise definition to Section II.2 below.

Vaguely, for a DX-module M and a smooth hypersurface H defined by t ∈ OX , the V -
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filtration of M along t is a Q-indexed, decreasing, discrete filtration V •M satisfying

tV λM ⊆ V λ+1M, ∂tV
λM ⊆ V λ−1M,

and so that ∂tt− λ is nilpotent on grλVM := V λM/V >λM.

Under the Riemann-Hilbert correspondence, we have

DRH(
⊕

λ∈(0,1]

grλVM) = ψtDRX(M), DRH(
⊕

λ∈[0,1)

grλV ) = ϕtDRX(M),

and the morphisms can and var above correspond to

∂t : gr
1
VM → gr0VM, t : gr0VM → gr1VM,

respectively.

I.2: Various aspects of Hodge Theory

For a smooth, projective variety X (viewed as a complex manifold), Hodge theory endows

the singular cohomology Hk(Xan,C) with a canonical bigrading

Hk(Xan,C) =
⊕

p+q=k

Hp,q(X),

called the Hodge decomposition. Using the real structure induced by Hk(Xan,R), these

subspaces satisfy the conjugation symmetry Hp,q = Hq,p.This is functorial, in the sense

that any morphism of cohomology which comes from geometry between smooth, projective

varieties must preserve this decomposition. Another way to think of this data is through

the Hodge filtration F •Hk(Xan,C) =
⊕

p≥•H
p,k−p(X). Abstractly, one calls the resulting

structure a Hodge structure of weight k.

Of course, Hk(Xan,C) only depends on the underlying topological space of Xan. On the
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other hand, Hp,q(X) can be identified withHq(X,Ωp
X), which depends on the algebraic struc-

ture. In this way, Hodge theory gives a powerful dictionary to translate between topology

and coherent data.

This was generalized in two ways. The first of these was the study of families of smooth,

projective varieties. Again, we will think of the underlying complex analytic spaces. Given

a smooth, projective morphism f : X → S, the higher direct image Rif∗QX is a local

system on S whose stalk at a point s ∈ S is the cohomology of the fiber Xs. For any k, the

kth singular cohomology of any fiber, being a smooth, projective variety, admits a Hodge

decomposition. The individual pieces Hp,q(Xs) need not vary holomorphically in the family

X , but it turns out that the Hodge filtrations F •Hk(Xs,C) do vary holomorphically.

By the classical Riemann-Hilbert correspondence, we obtain a flat connection E i from the

local system Rif∗QX along with subbundles F •E i. This situation was studied by Griffiths

[Gri68a], who called the resulting object a Variation of Hodge structure of weight k. He

noticed the important property (Griffiths transversality), which says that, if∇ : E i → E i⊗Ω1
S

is the connection, that ∇(F •E i) ⊆ F •−1E i⊗Ω1
S. We will see later that this implies that F •E i

gives a good filtration for the DS-module E i. Griffiths generalized this situation to certain

filtered flat connections which do not necessarily come from a family of varieties, and studied

them in [Gri68b, Gri70]. This object is known as a variation of Hodge structures or VHS.

For details, see the textbook of Voisin [Voi02, Voi03].

A bit later, Deligne [Del71, Del74] investigated the problem of dropping the smooth and

projective assumptions on the variety X. The result is that the cohomology of any complex

algebraic variety naturally carries a mixed Hodge structure. The main insight is that these

cohomology spaces should carry a weight filtration W•H
k(Xan,Q) and a Hodge filtration such

that for any i, k ∈ Z, the vector space grWi H
k(Xan,C) with the induced Hodge filtration is

a pure Hodge structure of weight i.

Another place in which mixed Hodge structures arise is in the degeneration of pure Hodge

structures. If one has a VHS on ∆∗, the punctured unit disk in C, the work of Schmid
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[Sch73] showed that this extends to give a Hodge structure over 0, but the Hodge structure

is mixed, with weight filtration coming from the monodromy filtration of the monodromy of

the local system around 0. Similarly, the cohomology of the Milnor fiber of a hypersurface

singularity naturally admits a Hodge structure [Ste77]. Its relation to the singularities of the

hypersurface are a prototype for the relations we will see in the thesis concerning the Hodge

filtration and the V -filtration along a hypersurface.

When studying variations of mixed Hodge structure, if one wants a nice theory of degen-

erations like in the pure case, it is necessary to actually assume the existence of a “relative

monodromy filtration” (more on this in Section II.6 below). This leads to the notion of

admissible variations of mixed Hodge structure, due to Steenbrink and Zucker [SZ85]. This

problem was also studied by Zucker [Zuc79], Cattani, Kaplan and Schmid [CKS86, CKS87],

and several others.

I.3: Hodge Modules

Saito [Sai88, Sai90] developed a striking generalization of the theory of variations of Hodge

structures. We will give more details in Section II.3 below, so we just mention the main

ideas. In essence, Saito uses the theory of regular holonomic D-modules to define variations

of Hodge structures “with singularities”. As in the definition of Hodge structures, one

needs a Q-structure. For variations of Hodge structure (E ,∇, F •), this came from a Q-local

system L such that ker(∇) ∼= L⊗Q C. In analogy with this, Saito uses a Q-perverse sheave

as Q-structure, so if M is a regular holonomic DX-module, he requires the existence of a

Q-perverse sheaf and an isomorphism DRX(M) ∼= K ⊗Q C.

Moreover, the regular holonomic DX-module should come with a good filtration F•M

which is subject to many compatibility properties with respect to V -filtrations along locally

defined functions. Finally, Saito defines the category of MHM(X) inductively on dimX,

by saying an object is a mixed Hodge module if its “refined restrictions” ψf (M), ϕf (M)

underlie mixed Hodge modules on {f = 0}. The base case is that MHM(pt) should be the
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graded polarizable category of mixed Hodge structures. To show that this is a well-defined

and interesting theory is a herculean task. For details, see the original papers of Saito, or

the introductory article by Schnell [Sch14].

I.4: Main Results

As mentioned above, mixed Hodge modules are defined to satisfy many nice properties with

respect to the V -filtration along hypersurfaces. When one is interested in the behavior of

a mixed Hodge module with respect to a smooth subvariety Z = V (t1, . . . , tr), it would

be interesting to understand iterated nearby and vanishing cycles along the hypersurfaces

defined by the functions t1, . . . , tr. This is, understandably, notoriously difficult, as it is

rather optimistic in examples to expect to explicitly compute the V -filtration along a single

hypersurface.

It would be nice, then, to have an understanding of a single V -filtration which contains

much of the information concerning the behavior of a mixed Hodge module M with respect

to the higher codimension subvariety Z. This is the aim of the main two theorems of this

thesis. One thing to note, however, is that one of the main tools to understand this V -

filtration is using Verdier’s specialization [Ver83] [BMS06, Section 1.3], which allows one to

express this V -filtration using the V -filtration along a hypersurface. Then the tools from the

theory of mixed Hodge modules can be immediately applied.

Of course, another way to relate the ideal of a smooth subvariety to that of a divisor is

by blowing up. This trick is at play in the proof of both main theorems, to reduce to known

results for hypersurfaces.

The first result is a higher codimension version of the compatibility between the Hodge

and V -filtrations [Sai88, Section 3.2]. However, for each i, we have maps ti : grλVM →

grλ+1
V M and ∂ti : grλ+1

V M → grλVM. The natural replacement of the var and can maps

in r = 1 are then the corresponding Koszul-like complexes Aλ(M, F ), Bλ(M, F ) (a filtered

and associated graded complex with differentials given by ti) and C
λ(M, F ) (an associated
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graded complex with differentials given by ∂ti). For the precise definition of these complexes

(resp. filtered complexes), see Chapter II (resp. Chapter IV).

The first main theorem is the following:

Theorem I.1. [CD21, Theorem 1.1] Let (M, F ) underlie a mixed Hodge module on X×Ar.

Then for λ > 0 (resp. λ < 0), the complex Aλ(M, F ) (resp. Cλ(M, F )) is filtered acyclic.

For the second main theorem, we set B(M, F ) = B0(M, F ) and C(M) = C0(M, F ).

It is not too hard to see (Theorem IV.5) that, at the D-module level, these compute the

functors i!M and i∗M, respectively. Our next main theorem is a strengthening of this to

the category of mixed Hodge modules.

As griVM need not even be coherent over DX , it is impossible to hope that the terms of

B(M) and C(M) underlie mixed Hodge modules. To remedy this, we use the language of

mixed Hodge complexes, from [Sai00] (see Definition IV.9). This is the mixed Hodge module

analogue of the usual theory of mixed Hodge complexes, see [PS08].

Theorem I.2. [CD21, Theorem 1.2] Let (M, F,W ) underlie a mixed Hodge module on

X ×Ar. Then B0(M, F ) ∼= i!(M, F ) and C0(M, F ) ∼= i∗(M, F ). Moreover, B0(M, F,W )

and C0(M, F,W ) are mixed Hodge complexes, where the filtration W is defined using the

relative monodromy filtration on grjV (M, F ) for all 0 ≤ j ≤ r. Moreover, for any k, ℓ ∈ Z,

the quasi-isomorphisms above induce isomorphisms of pure Hodge modules of weight k + ℓ:

grWk HℓB(M) ∼= grWk+ℓHℓi!M,

grWk HℓC(M) ∼= grWk+ℓHℓi∗M.

As mentioned in Corollary IV.11, this result implies thatB(M, F ) and C(M, F ) are strict

with respect to the Hodge filtration. However, they are not necessarily strict with respect

to the weight filtration. To obtain a strict complex, one uses Deligne’s decalé construction.

Now, we explain some applications of the two main theorems.

9



One of the most important numerical measure of singularities in the minimal model

program is the log canonical threshold of a pair (X,Z), where Z is a closed subvariety of X.

It is defined in terms of data coming from a log resolution of the pair (X,Z). For us, we

let Z ⊆ X be a locally complete intersection subvariety of pure codimension r. We define a

refinement of the log canonical threshold of Z, called the minimal exponent of Z and denoted

α̃(Z). This agrees with the log canonical threshold when α̃(Z) ≤ r. When r = 1, it agrees

with the definition of minimal exponent due to Saito [Sai94].

For the definition, first we assume Z is defined by a regular sequence f1, . . . , fr ∈ OX .

Then we consider the hypersurface g =
∑r

i=1 yifi in Y = X ×Ar.

The definition uses as motivation the main result of [Mus22], which relates the Bernstein-

Sato polynomial of an ideal (f1, . . . , fr) to that of the linear combination hypersurface g =∑r
i=1 yifi. We define α̃(Z) to be α̃(g|U), where U = Y − (X × {0}).

The results concerning singularities of locally complete intersection singularities are ex-

pressed using the D-module Bf (resp. Bg and B̃g). These will be carefully defined in Chapter

V (resp. III). In terms of D-modules, Bf is the pushforward of OX along the graph embed-

ding (f1, . . . , fr), and Bg is the pushforward of OY along the graph of g. Saito [Sai94] defines

the microlocalization B̃g = Bg[∂
−1
z ], where ∂z is the differential along the fiber coordinate of

the target of the graph embedding map Y → Y ×A1. Saito showed that the latter module

carries a V -filtration along z and a Hodge filtration (though it does not underlie a Hodge

module), and elements in B̃g have a “microlocal b-function”. The modules Bf and Bg un-

derlie Hodge modules, and so they too have Hodge and V -filtrations (along t1, . . . , tr and z,

respectively). Here t1, . . . , tr are the fiber coordinates of the target of the graph embedding

X → X ×Ar.

One major tool in the study of this invariant is the following strengthening of the result

in [Mus22]. Here B̃(0)
g is an eigenspace of the operator ∂zz+ θy on B̃g, defined in Chapter V.

Theorem I.3. [CDMO22, Theorem 3.3, Prop. 3.4] Using the notation as above we have a

10



filtered DX-linear isomorphism

φ : (B̃(0)
g , V ) → (Bf , V )

and, moreover, we have equality of b-functions

bm(s) = bφ(m)(s)

where on the left, we use the microlocal b-function for m ∈ B̃g.

Using this, we are able to show that the minimal exponent we define governs when certain

pieces of the Hodge filtration are contained in V rBf .

Theorem I.4. [CDMO22, Theorem 1.2] Let Z ⊆ X be a complete intersection of pure

codimension r in X, defined by f1, . . . , fr ∈ OX . Then

α̃(Z) ≥ r + k ⇐⇒ Fk+rBf ⊆ V rBf .

We relate the condition in the previous theorem to the local cohomology Hr
Z(OX), which

naturally has the structure of a mixed Hodge module. For definitions, see Chapter V.

Theorem I.5. ([CDMO22, Theorem 1.3, Theorem 1.4]) Let Z ⊆ X be a complete intersec-

tion of pure codimension r in X, defined by f1, . . . , fr ∈ OX . Then

FkHr
Z(OX) =


[∑

α

hα

fα1+1
1 . . . fαr+1

r

]
|
∑
|α|≤k

hα∂
α
t δf ∈ V rBf

 .

In particular, FkHr
Z(OX) = PkHr

Z(OX) := {m ∈ Hr
Z(OX) | (f1, . . . , fr)k+1m = 0} iff

α̃(Z) ≥ r + k.

In [MP22a], Mustaţă and Popa related the condition FkHr
Z(OX) = PkHr

Z(OX) to the

following property of Z. Recall that the du Bois complex of a complex algebraic variety

11



Z, defined in [dB81], is an object in the filtered derived category of OZ-modules, denoted

ΩZ . The pth du Bois complex is Ωp
Z := grFp ΩZ [−p], which, if Z is smooth, agrees with

the Kähler differentials Ωp
Z . In general, Ωp

Z need not be concentrated in degree 0, but it

always admits a natural morphism Ωp
Z → Ωp

Z . Steenbrink [Ste83] defined and studied a

class of singularities, du Bois singularities, to be those varieties Z for which OZ → Ω0
Z is a

quasi-isomorphism. Mustaţă, Popa, Olano and Witaszek [MOPW21] studied hypersurfaces

D for which Ωp
D → Ωp

D is a quasi-isomorphism for all p ≤ k. They relate this condition to

the minimal exponent of D as in the “if” part of the last statement in Theorem V.6. This

relationship was also proved in [JKSY22], with its converse, and in that paper they named

any D having this property as having k-du Bois singularities. See [Sch07] for an alternative

definition of the du Bois complex, and [KS11] for a survey article about du Bois singularities.

A stronger condition on singularities was defined [FL22a] and studied [FL22c, FL22b]

by Friedman and Laza. This gives the class of k-rational singularities. Using a resolution

of singularities for Z, one can define a natural map Ωp
Z → RHomOZ

(ΩdZ−p
Z , ω•

Z), where

dZ = dimZ and ω•
Z is the dualizing complex for Z. One says Z has k-rational singularities

if it has k-du Bois singularities and the composition

Ωp
Z → Ωp

Z → RHomOZ
(ΩdZ−p

Z , ω•
Z)

is a quasi-isomorphism for all p ≤ k. In [MP22a, Theorem E] and [FL22b], it was shown

that for hypersurfaces, this property is equivalent to α̃(Z) > k + 1. Our next main theorem

is a generalization of this result to the locally complete intersection case.

Theorem I.6. [CDM22, Theorem 1.1] Let Z ⊆ X be a locally complete intersection of pure

codimension r. Then

α̃(Z) > r + k ⇐⇒ Z has k − rational singularities.

As another application, we use our understanding of the restriction functors for mixed
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Hodge modules to study the Fourier-Laplace transform of a monodromic mixed Hodge mod-

ule on E = X×Ar. Let z1, . . . , zr be the fiber coordinates on E, with vector fields ∂z1 , . . . , ∂zr .

These define the Euler vector field θz =
∑r

i=1 zi∂zi .

We say a DE-module is monodromic if, for all sections m ∈ M, there exists a non-zero

polynomial bm(s) ∈ C[s] such that

bm(θ)m = 0.

Such DE-modules were studied in [Bry86].

Equivalently, there is a decomposition M =
⊕

χ∈C Mχ, where

Mχ =
⋃
ℓ≥1

ker((θz − χ+ r)ℓ).

For mixed Hodge modules, Mχ = 0 unless χ ∈ Q, so we will only consider this case.

A mixed Hodge module M on E is monodromic if its underlying DE-module is mon-

odromic. These modules were studied by T. Saito in [Sai22a] in the r = 1 case and [Sai22b]

in the general case.

Given any DE-module (not necessarily monodromic) M, one can define the Fourier

Laplace transform FL(M), which is a D-module on the dual vector bundle E∨. The OX-

module is the same, and the action of the coordinates w1, . . . , wr and vector fields ∂w1 , . . . , ∂wr

is defined by

wim = −∂zim ∂wi
m := zim.

It is important to note that even if M is regular holonomic, it is possible that FL(M) is

not. For example, on A1, M = D/(∂2zz + 1) gives FL(M) = D/(w2∂w + 1), which is the

D-module corresponding to the essential singularity e1/w.

However, Brylinski [Bry86] showed that if M is monodromic and regular holonomic,

then FL(M) is also regular holonomic. Of course, FL(M) is monodromic with respect to the

variables w1, . . . , wr, with FL(M)χ = Mr−χ.
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Our main result concerning the Fourier-Laplace transform gives an explicit isomorphism

of FL(M) for a monodromic, regular holonomic DE-module with a DE∨-module coming

from geometry. Let p : E = E ×X E∨ → E be the projection, g =
∑r

i=1 ziwi ∈ O(E),

Γ : E → E ×A1 the graph embedding along g, and finally, σ : E∨ → E induced by the zero

section.

Theorem I.7. [CD21, Theorem 1.4] Let M be a monodromic regular holonomic DE-module.

Then, using the above notation, there is a natural isomorphism

FL(M) ∼= H0σ∗ϕtΓ+p
!(M)[−r].

With this theorem, we see that if M underlies a mixed Hodge module, then so does

FL(M). Using Theorem I.2, we are able to study the Hodge and weight filtration on FL(M)

under this isomorphism.

Theorem I.8. [CD21, Theorem 1.4] Let (M, F•) be a filtered DE-module underlying a mixed

Hodge module on E. Then the Hodge filtration on FL(M) satisfies

FpFL(M)r−χ = Fp−⌈χ⌉Mχ

for all p ∈ Z and χ ∈ Q.

Before stating the result for the weight filtration, we mention an important tool concern-

ing the weight filtration of monodromic mixed Hodge modules.

Theorem I.9. [CD21, Theorem 1.5] Let (M,W•) underlie a monodromic mixed Hodge

module on E. Let N =
⊕

χ∈Q(θZ − χ + r) be the nilpotent operator on M. Then W•M is

its own relative monodromy filtration with respect to N , i.e., NW•M ⊆ W•−2M (the other

condition being automatic).
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For a monodromic module N =
⊕

χ∈Q N χ, we define

N λ+Z :=
⊕
k∈Z

N λ+k,

for any λ ∈ [0, 1). Then the weight filtration on FL(M) is given by the following:

Theorem I.10. [CD21, Theorem 1.4] Let (M,W ) be a monodromic D-module with weight

filtrationW•M underlying a mixed Hodge module on E. Then the weight filtration on FL(M)

satisfies

WkFL(M)λ+Z = FL(Wk+r+⌈λ⌉M)λ+Z.

The weight filtration of the Fourier-Transform was studied in [RW22, Section 4] for a

specific class of monodromic mixed Hodge modules. We remark here that, a priori, it seems

that our definition of the Fourier-Laplace transform does not agree with that in this paper,

or that for constructible complexes in [KS90], however, it turns out that they do agree. See

Remark VI.5 in Chapter 6.

I.5: Layout

In Chapter II, we define V -filtrations in the general setting due to Sabbah. We provide many

examples, explain their dependence on the defining functions, and prove their uniqueness

by relating them to Z-indexed filtrations. We prove that certain Koszul-like complexes are

acyclic. We then proceed with a brief introduction to the theory of mixed Hodge modules.

We explain the inductive definition using V -filtrations along hypersurfaces, and various im-

portant structural results about functoriality of the category of mixed Hodge modules. We

end with the Verdier specialization construction, which allows one to study LV -filtrations

for r > 1 in terms of the V -filtration along a hypersurface, using deformations to the normal

bundle.

In Chapter III, we discuss hypersurface singularities. Many of the results of the thesis
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are generalizations of what has been shown so far for hypersurface singularities, and so it

will be helpful to see the results in their easiest to state form, as well as to explain the

history behind those results. We define the Bernstein-Sato polynomial of a hypersurface,

the minimal exponent, and Hodge ideals. We also explain Saito’s microlocalization of Bf ,

which leads to the definition of microlocal multiplier ideals.

In Chapter IV, we begin by proving “topological” properties of LV -filtrations for regular

holonomic D-modules onX×Ar. For example, we show that one can compute the restriction

functors i! and i∗ in the category of regular holonomicD-modules, where i : X×{0} → X×Ar

is the zero section. We also use LV -filtrations to characterize when a module has submodules

or quotients supported on X × {0}.

The remainder of Chapter IV is dedicated to the study of mixed Hodge modules. For

mixed Hodge modules, at the moment the proofs only work for L = (1, . . . , 1), i.e., the

standard V -filtration along X × {0}. The two main results are a filtered acyclicity of the

Koszul-like complexes in Chapter II and a bifiltered version of the computation of i! and i∗

in terms of the V -filtration along t1, . . . , tr. The basic idea for the proof is to blow-up along

X × {0} and locally relate the various V -filtrations of higher codimension with that of the

exceptional divisor.

Chapter V is devoted to the application of the main theorems in Chapter IV to the study

of the mixed Hodge module with underlying D-module equal to Hr
Z(OX), when Z ⊆ X

is a complete intersection of codimension r. We show that the V -filtration on Bf along

t1, . . . , tr can be used to study the Hodge and weight filtrations on Hr
Z(OX). As a result,

this V -filtration can characterize when Z has k-rational and k-du Bois singularities. We

define the minimal exponent for Z and, using the previous result, connect it to these classes

of singularities. Interestingly, the definition of the minimal exponent uses a connection

between the V -filtration on Bf and the microlocal V -filtration on Bg for g =
∑r

i=1 yifi a

hypersurface on X ×Ar.

Finally, Chapter VI is devoted to the study of the Fourier-Laplace transform of mon-
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odromic mixed Hodge modules. Using the description of i∗ in terms of the V -filtration, we

can compute the Fourier-Laplace transform as a composition of functors coming from geom-

etry. Then, we are able to study the Hodge and weight filtration on the Fourier transform.

I.6: Conventions

For algebraic varieties, we follow the conventions of [Har13], so varieties are reduced and

irreducible. For D-modules, we follow the conventions of [HTT08], using left D-modules

throughout the entire thesis. We will provide a brief review of the theory of D-modules in

Chapter II. Throughout, the ground field is C.
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CHAPTER II

Background on V -filtrations and Mixed Hodge

Modules

Morihiko Saito’s theory of algebraic mixed Hodge modules is a vast generalization of the

theory of variations of Hodge structure which was studied in the 1980’s. It allows for varia-

tions with singularities and admits a six-functor formalism. In this chapter, we explain what

we will need from the basic theory of D-modules, introduce V -filtrations on D-modules, in

their general version due to Sabbah, which are the backbone to Saito’s theory. We then

give a rough description of the category of mixed Hodge modules on a smooth variety X,

and explain important results about them. The chapter concludes with a description of the

specialization operation, which allows one to talk about general V -filtrations in terms of

those along hypersurfaces, which are much better understood.

II.1: Preliminaries on D-modules

Let X be a smooth, irreducible variety of dimension n. The ring of differential operators on

X, denoted DX , is defined to be the subring of EndC(OX) generated by OX , which acts on

itself by multiplication, and the tangent bundle TX , which we view as C-linear derivations

on OX and so which naturally lies inside EndC(OX). This ring is non-commutative. For

example, by the Leibniz rule, if θ ∈ TX is a derivation, then [θ, h] = θ(h) for any regular

function h ∈ OX .
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Locally, we trivialize the tangent bundle on X by sections ∂x1 , . . . , ∂xn , giving an isomor-

phism

TX =
n⊕

i=1

OX∂xi
,

and then on this open subset, sections of DX are of the form

∑
α∈Nn

hα∂
α
x , hα ∈ OX .

The ring DX comes with a Z-indexed filtration by locally free OX-submodules, called

the order filtration and denoted F•DX . Locally, these are the sections
∑

|α|≤• hα∂
α
x , where

|α| = α1 + · · · + αn. The filtered ring (DX , F•) is almost commutative, in the sense that

grFDX is a graded commutative ring. In fact, if T ∗X is the cotangent bundle with projection

π : T ∗X → X, then there is a natural identification grFDX
∼= π∗OT ∗X , which will be of use

to us below.

As DX is not commutative, when speaking of modules over it, one must specify if DX acts

on the right or the left. Throughout this thesis, all modules will be left DX-modules. The

theory of DX-modules allows for one to go from left modules to right modules without losing

any information, so this is not a restrictive condition. The category of left DX-modules is

abelian. We say a DX-module is coherent if it is quasi-coherent as an OX-module and if it

is locally finitely generated over DX .

Example II.1. As DX ⊆ EndC(OX), by definition it acts on OX on the left, and so OX is

a DX-module. Trivially, DX is also a DX-module.

A more important example is that of integrable connections. These are finite rank vector

bundles E on X along with a connection ∇ : E → Ω1
X ⊗O E , which is not an OX-linear map

but which satisfies

∇(fs) = df ⊗ s+ f∇(s),

where d : OX → Ω1
X is the usual exterior derivative, and which has ∇◦∇ = 0. Without the
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last condition, this says that we know how to apply TX to sections of E . The last condition

ensures that this action extends to the entire ring DX .

From a DX-module, one can associate a complex of C-vector spaces DRX(M), by

M ∇−→ Ω1
X ⊗O M ∇−→ . . .

∇−→ ωX ⊗O M.

The morphisms are not O-linear, as they must satisfy the Leibniz rule.

Given a DX-module M with an increasing filtration F•M by OX-submodules, we say

the filtration F•M is good if grFM is a finitely generated module over grFDX . This implies

in particular that FpM = 0 for p << 0,
⋃

p FpM = M and FpDX · FqM ⊆ Fp+qM.

A module M admits a good filtration if and only if it is coherent. Given a coherent DX-

module M, we can thus find a good filtration F•M and associate to this module a coherent

grFDX-module grFM. Using the isomorphism π∗OT ∗X
∼= grFDX and the fact that π is

an affine map, we can define a coherent sheaf of OT ∗X-modules, which we denote again by

grFM.

The characteristic variety of a coherent DX-module is the reduced variety underlying

Ch(M) := Supp(grFM) ⊆ T ∗X. It turns out that it does not depend on choice of good

filtration on M. It is a conical (i.e., C∗-invariant) subvariety, because grFM is graded.

An extremely important theorem concerning Ch(M) is that if M ̸= 0, its dimension is

always≥ n = dimX. This is known as Bernstein’s inequality. A special class of coherent DX-

modules is the collection which has smallest dimension for Ch(M). A coherent DX-module

M is called holonomic if dimCh(M) = dimX = n.

Example II.2. The module DX has Ch(DX) = T ∗X, and so it is holonomic if and only if

X is a point.

It is a fact that a coherent module M has Ch(M) = T ∗XX , the zero section in the

cotangent bundle, if and only if M is an integrable connection, if and only if it is locally

free as a OX-module, if and only if it is coherent as OX-module. Hence, any integrable
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connection is automatically holonomic.

The subcategory of holonomic DX-modules is an abelian subcategory. In fact, it has

finite length, so every holonomic DX-module admits a composition series. One can define

the dual of a DX-module D(M), which in general is a complex of DX-modules. However,

M is holonomic if and only if this complex has a single non-vanishing cohomology, and then

that cohomology is also a holonomic DX-module.

Given a morphism f : X → Y , there is a pushforward functor f+ and a pullback functor

f ! which send a DX-module to a complex of DY -modules. If the starting module is holo-

nomic, then it turns out that Hjf+(M) and Hjf !(M) are holonomic, too. By conjugating

with the duality operator, one can define f! = DY ◦ F+ ◦ DX and f ∗ = DX ◦ f ! ◦ DY . More-

over, Kashiwara’s theorem [Kas75] shows that DRX(M) is a complex with constructible

cohomology if M is holonomic. In fact, it is a C-perverse sheaf [BBDG82].

A perverse sheaf over a field k on X is a bounded constructible k-complex C• such that

(II.1.1) dim suppHj(C•) ≤ −j for all j ∈ Z

(II.1.2) dim suppHj(DXC
•) ≤ −j for all j ∈ Z,

where DX is the Verdier dual operation on constructible complexes.

As mentioned in the introduction, there is a subcategory of holonomic DX-modules,

called regular holonomic DX-modules, which is equivalent to the category of perverse sheaves

under the de Rham functor. This is called the Riemann-Hilbert correspondence. All functors

mentioned above preserve the property of being regular holonomic, and all DX-modules

considered below are regular holonomic.
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II.2: V -filtrations on D-modules

Let X be a smooth, irreducible algebraic variety. Let Y = X × Ar with fiber coordinates

t1, . . . , tr and corresponding derivations ∂t1 , . . . , ∂tr . For any non-zero L =
∑r

i=1 aisi a linear

form with ai ∈ Z≥0 for all i, we have a Z-indexed filtration

LV
kDY = {

∑
β,γ

Pβ,γt
β∂γt | L(β) ≥ L(γ) + k, Pβ,γ ∈ DX}.

For example, if ai =


1 i ∈ I

0 i /∈ I

for some nonempty subset I ⊆ {1, . . . , r}, then LVDX×Ar

agrees with the usual notion of V -filtration along the subvariety defined by {ti = 0 | i ∈ I}

[BMS06]. Let si = −∂titi ∈ LV
0DX×Ar , so we can consider the operator L(s) ∈ LV

0DX×Ar .

Let M be a coherent DY -module. An LV -filtration on M is a decreasing, Q-indexed

filtration LV
•M which is discrete and left continuous. Here, discrete means that there exists

a Z-indexed increasing sequence αi ∈ Q with limi→∞ αi = ∞, limi→−∞ αi = −∞ and so

that LV
αM only depends on the interval α ∈ (αi, αi+1]. Left-continuous means that, for all

α ∈ Q, we have LV
αM =

⋂
β>α

LV
βM. The filtration must satisfy the following properties:

1. (Compatibility) LV
ℓDX · LV λM ⊆ LV

λ+ℓM.

2. (Coherence) Each LV
λM is a coherent LV

0DX-module.

3. (Discreteness) There exists an integer k ∈ Z>0 such that LV
λM = LV

γM if λ, γ ∈

( i
k
, i+1

k
].

4. (Goodness) For λ≫ 0, we have LV
λM =

∑r
i=1 ti

LV
λ−aiM.

5. (Principle Property) For all λ ∈ Q, the operator L(s) + λ is nilpotent on grλLM :=

LV
λM/LV

>λM, here LV
>λM is defined as

⋃
χ>λ

LV
χM.
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Remark II.3. When L(s) =
∑r

i=1 si, the
LV -filtration just defined is equal to the V -filtration

of [BMS06, Section 1.1]. In particular, it only depends on the ideal (t1, . . . , tr) rather than

the choice of generators. Of course, this is not true for arbitrary L. In fact, even changing

the order of the generators will affect the LV -filtration.

These LV -filtrations were defined and studied in [Sab87b, Sab90], and are used in the

definition of the “canonical multi-indexed V -filtration”, which we do not discuss in this

thesis. We say a coherent DY -module M is L-specializable if it admits an LV -filtration. The

following theorem says that all DY -modules we care about are L-specializable for any L.

Theorem II.4. (L =
∑r

i=1 si case [Kas83, Mal83], general case [Sab87b, Théorèm 3.1.1])

Assume M is a regular holonomic DY -module. Then M is L-specializable.

Example II.5. Let N be a coherent DX-module, and consider the push-forward M = i+N ,

where i : X → X ×Ar is the inclusion of the zero section. By definition of the push-forward

for D-modules, we have

M =
⊕
α∈Nr

N∂αt .

It is not hard to check that

LV
λM =

⊕
L(α)≤⌊−λ⌋

N∂αt .

In particular, LV
>0M = 0.

Example II.6. By Kashiwara’s equivalence, the formula in the previous example holds for

any coherent DX×Ar -module with support contained in X. For example, let Z = {f1 = · · · =

fr = 0} ⊆ X be a closed subvariety and consider the graph embedding Γ : X → X×Ar along

(f1, . . . , fr). Let P be a DX-module supported on Z and let M = Γ+P =
⊕

α∈Nr P∂αt δf .

We can define naturally an isomorphism

τ : P → M0 =
LV

0M = gr0LM
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as follows. Note that by the previous example, LV
0M =

⋂r
i=1 ker(ti : M → M), and so an

element u =
∑

α uα∂
α
t δf lies in LV

0M iff uα+ei =
fiuα

(αi+1)
for all 1 ≤ i ≤ r and α.

Hence, defining

τ(u) =
∑ 1

α!
fαu∂αt δf

gives the desired isomorphism. The inverse is simply given by sending
∑
uα∂

α
t δf ∈ LV

0M

to u0.

If we instead express such an element as u =
∑m

i=0Qi(s1, . . . , sr)uiδf forQi ∈ C[s1, . . . , sr]

and ui ∈ P , then

τ−1(u) =
m∑
i=0

Qi(0, . . . , 0)ui.

Indeed, each Qi can be written

Qi =
∑
α∈Nr

c(i)α

(
s1
α1

)
. . .

(
sr
αr

)

and then

Qiδf =
∑
α

(−1)|α|c
(i)
α

α!
ui∂

α1
t1 t

α1
1 . . . ∂αr

tr t
αr
r δf

=
∑
α

(−1)|α|fαc
(i)
α

α!
ui∂

α
t δf .

Example II.7. ([BMS06, Prop. 2.2]) Let Y = X ×Ar1+r2 . Let M be an X ×Ar1-module

which is L-specializable for some L =
∑r1

i=1 aisi. Let ℓ =
∑r1+r2

i=r1+1 bisi be another linear

form. If i : X × Ar1 → X × Ar1+r2 is the inclusion of the zero section, then i+M is

L+ ℓ-specializable. Moreover, if we write

i+M =
⊕

α∈Nr2

M∂αt ,
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then it is easy to check that

L+ℓV λM =
⊕

α∈Nr2

LV λ+ℓ(α)M∂αt .

This recovers the formula of [BMS06, Prop. 2.2] by taking L =
∑r1

i=1 si and ℓ =∑r2
i=r1+1 si.

Example II.8. Let π : X ×Ar → X be the projection, with coordinates t1, . . . , tr on Ar

factor. Given a coherent DX-module N , the box-product M = N ⊠ OAr is isomorphic as

O-modules to N [t1, . . . , tr] with the obvious D-action. One can check

LV
λM = {mtα | m ∈ M, L(α) ≥ λ− |L|}.

We prove our first result concerning these filtrations.

We fix here some notation: for M an L-specializable module, let

Aα(M) =

LV
αMe0

t−→
⊕
|I|=1

LV
α+LIMeI

t−→
⊕
|I|=2

LV
α+LIMeI

t−→ . . .
t−→ LV

α+|L|Me,



Bα(M) =

grαLMe0
t−→
⊕
|I|=1

grα+LI

L MeI
t−→
⊕
|I|=2

grα+LI

L MeI
t−→ . . .

t−→ gr
α+|L|
L Me



Cα(M) =

grα+|L|
L Me0

∂t−→
⊕
|I|=1

gr
α+|L|−LI

L MeI
∂t−→

⊕
|I|=2

gr
α+|L|−LI

L MeI
∂t−→ . . .

∂t−→ grαLMe


be the various Koszul-like complexes placed respectively in cohomological degrees [0, r], [0, r]

and [−r, 0]. Here, for I = {i1 < · · · < iℓ}, we set eI = ei1 ∧ · · · ∧ eiℓ , e = e1 ∧ · · · ∧ er and

e0 = e∅ to be formal symbols which help keep track of the differential. The differentials are,

respectively

meI 7→
r∑

i=1

timei ∧ eI , where m ∈ LV
α+LIM,

meI 7→
r∑

i=1

timei ∧ eI , where m ∈ grα+LI
V M,
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meI 7→
r∑

i=1

∂timei ∧ eI , where m ∈ grα+|L|−LIM,

where |L| =
∑r

i=1 ai and LI =
∑

i∈I ai.

Lemma II.9. For any α ̸= 0, the complexes Bα(M) and Cα(M) are acyclic.

Proof. We let e∗1, . . . , e
∗
r be the dual basis of e1, . . . , er, i.e., e

∗
i (ej) = δij, the Kronecker delta.

Then e∗k acts on wedge products by the alternating sum

e∗k(ei1 ∧ · · · ∧ eiℓ) =
ℓ∑

j=1

(−1)j−1ei1 ∧ · · · ∧ e∗k(eij) ∧ · · · ∧ eiℓ .

We prove the claim for Cα(M), the claim for Bα(M) being completely analogous. We

shall construct an automorphism of the complex Cα(M) which is nullhomotopic. The −r+

ℓth term of the complex Cα(M) is

⊕
|I|=ℓ

gr
α+|L|−LI

L MeI ,

where LI =
∑

i∈I ai. Define a map sℓ from the −r+ ℓth term to the −r+ (ℓ− 1)th term by

ηeI 7→
r∑

i=1

aitiηe
∗
i (eI).

We compute s ◦ d+ d ◦ s. Given such an element ηeI with η ∈ gr
α+|L|−LI

L , we have

ds(ηeI) =
r∑

i=1

aid(tiηe
∗
i (eI)) =

r∑
i=1

r∑
a=1

ai∂tatiηea ∧ e∗i (eI),

and

sd(ηeI) =
r∑

j=1

s(∂tjηej ∧ eI) =
r∑

j=1

r∑
k=1

aktk∂tje
∗
k(ej ∧ eI).

We show first that all terms with eJ for J ̸= I cancel out in the sum. Note that, by

definition, such a J must be of the form I − {b} ∪ {c} for some b ∈ I and c /∈ I. In the first
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term, this comes from ec ∧ e∗b(eI) and in the second term, it comes from e∗b(ec ∧ eI). The

coefficient is ab∂tctb in both cases, and they come with different signs, so they cancel in the

sum.

The only remaining terms have eI , and so we must have a = i ∈ I in the first term and

j = k /∈ I in the second term. By checking signs, we see that

(sd+ ds)(ηeI) = (L(t∂t)− (|L| − LI) + |L|)(η)eI ,

which is an automorphism of gr
α+|L|−LI

L when α ̸= 0, as a unit plus a nilpotent is a unit.

This proves Cα(M) is acyclic for α ̸= 0.

In Lemma II.16 below, we will strengthen the previous result for Bα(M) by showing that

Aα(M) is acyclic for α > 0.

Remark II.10. We will use Lemma II.9 and II.16 in the following way. By the vanishing of

the rightmost cohomology in Lemma II.9 and Lemma II.16, we see that

LV
χM =

r∑
i=1

∂ti
LV

χ+aiM+ LV
>χM for χ ̸= 0,

and

LV
χM =

r∑
i=1

ti
LV

χ−aiM for χ > |L|.

II.2.1: Relation to Z-indexed Filtrations

We explain here an alternative point of view of LV -filtrations which both proves they are

unique and relates them to b-functions. Later we will give an argument similar to the

standard way of arguing that the V -filtration is unique for L =
∑r

i=1 si. This subsection is

based on the analogous results for r = 1, which can be found, for example, in [SS, Chapter

9] or [Sab87a].

Given a DX×Ar -module M, a Z-indexed filtration U•M is compatible with the filtration
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LV
•DX×Ar if for any j, k ∈ Z, we have

LV
jDX×Ar · UkM ⊆ Uk+jM.

The filtration U•M is good if it is exhaustive, compatible and if there exist m1, . . . ,mℓ ∈

M and integers k1, . . . , kℓ ∈ Z such that for all j ∈ Z, we have

U jM =
ℓ∑

i=1

LV
j−kiDX×Ar ·mi.

By exhaustiveness, if a module admits a good filtration then it is coherent over DX×Ar ,

and conversely, by choosing generators for the module and integers ki ∈ Z, one can define a

good filtration by the above formula. If U•
1M and U•

2M are two good filtrations, then there

exists k ∈ Z≥0 such that

U•+k
1 M ⊆ U•

2M ⊆ U•−k
1 M.

The following lemma is a result of the characterization of good filtrations in terms of the

Rees modules, and the fact that the Rees ring RLV (DX×Ar) is Noetherian, which itself is

proven by realizing this ring as the ring of relative differential operators on a deformation to

the normal bundle Ỹ L. See, for example, [Wu21, Section 4] and [Sab87b].

Lemma II.11. Let N ⊆ M be a submodule of the coherent module M. If U•M is a good

filtration on M, then U•N = N ∩ U•M is a good filtration on N .

A good filtration U•M is specializable if there exists a non-zero polynomial of a single

variable b(w) ∈ C[w] such that

b(L(s) + j)U jM ⊆ U j+1M.

The collection of these polynomials forms an ideal, so there exists a minimal monic

polynomial bU(w) satisfying the relation, which we call the b-function for U•M.
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Lemma II.12. Let U•
1M and U•

2M be two good filtrations on M. Then U•
1M is specializable

iff U•
2M is.

Proof. Let b1(w) be a b-function for U•
1M. Let k be an integer such that U•+k

1 M ⊆ U•
2M ⊆

U•−k
1 M. Then

k∏
ℓ=−k

b1(L(s) + j + ℓ)U j
2M ⊆

k∏
ℓ=−k

b1(L(s) + j + ℓ)U j−k
1 M ⊆ U j+k+1

1 M ⊆ U j+1
2 M.

The other direction is proven in the same way.

This lemma implies that specializability is a property of the coherent module M rather

than a property of U•M. We hence call a module M specializable if it admits a specializable

filtration U•M.

Given a specializable filtration U•M, write its b-function as
∏

λ∈R(U)(w + λ)mλ where

mλ > 0 and R(U) is a finite set, which we call the “roots” (though really, they are negations

of the roots). For D-modules underlying mixed Hodge modules, R(U) ⊆ Q, so we will make

this assumption throughout the rest of this subsection, for ease of notation, though it is not

necessary. We call such modules Q-specializable.

Lemma II.13. Assume M is Q-specializable. Then there exists a unique good filtration

LV
•M with b-function having roots in [0, 1).

Proof. Let U•M be any good filtration on M with b-function bU(w) =
∏

λ∈R(U)(w + λ)mλ .

Order the roots λ1 < · · · < λℓ. By simply shifting U•M, we can assume λ1 < · · · < λℓ < 1.

If λ1 ≥ 0, we are done.

Otherwise, define a filtration U•
1M by the formula

U•
1M = U•+1M+ (L(s) + •+ λ1)

mλ1U•M.

This is clearly good. This has b-function given by (w + λ1 + 1)mλ1

∏
i>ℓ(w + λi)

mλi . We

can repeat this process finitely many times until all roots lie in [0, 1), as desired.
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The filtration constructed in the previous lemma is unique. Indeed, we will show that

it agrees with the order filtration defined in terms of b-functions. For any m ∈ M, the

b-function for m is the unique, non-zero monic polynomial of smallest degree bm(w) such

that

bm(L(s))m ∈ LV
1DX×Ar ·m.

Such b-functions exist for every section if M is specializable. Moreover, their roots are

in Q if M is Q-specializable.

Writing bm(w) =
∏

λ∈R(m)(w + λ)mλ , we define the order ordL(m) := minR(m).

Proposition II.14. Let M be a Q-specializable coherent DX×Ar-module. If U•M is a good

filtration satisfying R(U) ⊆ [0, 1), then

U•M = {m ∈ M | ordL(m) ≥ •}

and so, such a filtration is unique.

Proof. Let m ∈ U jM with b-function bm(w). The module N = DX×Ar · m has two good

filtrations: U•N and LV
•DX×Ar · m. So there exists an integer k such that U•+kN ⊆

LV
•DX×Ar ·m ⊆ U•−kN .

Then
∏k

ℓ=j bU(L(s) + ℓ)m ∈ Uk+1N ⊆ LV
1DX×Ar · m. As R(U) ⊆ [0, 1), this implies

ordL(m) ≥ j. As the roots of bU(w) lie in [0, 1), this implies R(m) ∈ [j, k + 1), and so

ordL(m) ≥ j.

Conversely, assume ordL(m) ≥ j. Let m ∈ U iM for some i ∈ Z. If i ≥ j, we are done.

Otherwise, note that LV
1DX×Ar ·m ⊆ U i+1M. But also bU(L(s)+ i)m ∈ U i+1M. As j > i,

we know bm(w) and bU(w + i) are coprime. Hence, we see that m ∈ U i+1M. Repeating in

this way, we conclude m ∈ U jM, as desired.

Moreover, this filtration is precisely the (integer part) of the LV -filtration defined above,

by the next proposition.
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Proposition II.15. Let M be a DX×Ar-module which admits a Q-indexed LV -filtration as

defined above. Then LV
•M is the unique specializable LV -filtration satisfying R(LV ) ⊆ [0, 1).

Proof. Of course this filtration is exhaustive and compatible. Let N be large enough that

(L(s) + λ)NgrλLM = 0 for all λ ∈ [0, |L|]. Note that such an N exists because there are only

finitely many non-zero such grλLM in the interval [0, |L|], by discreteness of the filtration.

This N satisfies (L(s) + λ)NgrλLM = 0 for all λ ∈ Q. Indeed, this claim is proven by

increasing (resp. decreasing) induction for λ > |L| (resp. λ < 0), using Remark II.10

grλLM =
r∑

i=1

tigr
λ−ai
L M for λ > |L|

(resp.) grλLM =
r∑

i=1

∂tigr
λ+ai
L M for λ < 0.

Let 0 = λ1 < λ2 < · · · < λℓ < 1 be the finitely many indices for which grλi
L M ̸= 0. By

the same argument, we see that grλLM ̸= 0 implies λ − ⌊λ⌋ = λi for some i. Putting these

observations together, we see that
∏ℓ

i=1(w+ λi)
N is a b-function for the Z-indexed filtration

LV
•M. As its roots lie in [0, 1), all that remains to be shown is that LV

•M is good.

For all i ∈ [0, |L|] ∩ Z, we know LV
iM is finitely generated over V 0DX×Ar . Choose

generators m
(i)
1 , . . . ,m

(i)
bi

∈ LV
iM.

Then LV
kM ⊇

∑|L|
i=0

∑bi
c=1

LV
k−iDX×Arm

(i)
c =: UkM for all k. Clearly, these filtrations

agree for any k ∈ [0, |L|]. Both filtrations satisfy the result of Remark II.10 (using the

corresponding property for the filtered ring (DX×Ar , LV ), which is easy to check) so this

implies inductively that they are the same filtration.

By the uniqueness shown above, this implies that the Q-indexed filtration LV
•M is

completely determined by the Z-indexed part. Indeed, if λ ∈ [j, j + 1) for some integer

j, then LV
λM is precisely the LV

0DX×Ar -subspace of LV
jM which contains LV

j+1M and

which, in the quotient LV
jM/LV

j+1M gives the elements which are killed by some power

of L(s) + λ.
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The uniqueness of the filtration LV
•M implies that any morphism φ : M → N between

specializable D-modules is strict with respect to the LV -filtration, meaning for all λ ∈ Q,

im(φ) ∩ LV
λN = φ(LV

λM).

This has the following useful implication: given a short exact sequence

0 → L → M → N → 0

of specializable DX×Ar -modules, the induced sequence

0 → LV
λL → LV

λM → LV
λN → 0

is also exact, for any λ ∈ Q.

To end this subsection, we give the promised proof that Aα(M) is acyclic for α > 0.

Lemma II.16. For any α > 0, the complex Aα(M) is acyclic.

Proof. As Bα(M) is acyclic, it suffices to prove the claim for α ≫ 0. We will show that, for

any Z-indexed good LV -filtration U•M that the corresponding complex Aj(M) is acyclic

for j ≫ 0.

By goodness, there exists a strict surjection
⊕a

i=1(DX×Ar , LV [ki]) → (M, U) → 0 for

some integers k1, . . . , ka ∈ Z. The kernel (K, U) with its induced filtration is also good. By

strictness of these morphisms, we have a short exact sequence of complexes

0 → Aj(K, U) → Aj(
a⊕

i=1

(DX×Ar , LV [ki])) → Aj(M, U) → 0.

Note that for j > max{ki}, the middle complex is acyclic. This is a simple computation

concerning the LV -filtration on the ring DX×Ar and the fact that ti form a regular sequence

in that ring, which can be checked on the associated graded grFDX×Ar .
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Hence, by looking at the long exact sequence in cohomology, we immediately obtain

HrAj(M, U) = 0 for j > max{ki}, and we get isomorphisms

Hb−1Aj(M, U) ∼= HbAj(K, U)

for all 0 ≤ b ≤ r. But U•K is also a good filtration, so by possibly increasing j, we know

HrAj(K, U) = 0, and so Hr−1Aj(M, U) = 0. Repeating in this way, increasing j finitely

many times, we conclude the claim.

II.2.2: Monodromic D-modules

Let E = X × Ar be a trivial vector bundle over X with fiber coordinates t1, . . . , tr and

corresponding vector fields ∂t1 , . . . , ∂tr . A coherent DE-module M is L-monodromic if, for

any locally defined section m ∈ M, there exists a non-zero polynomial b(s) ∈ Q[s] of a single

variable such that b(L(s))m = 0. Such a module decomposes into generalized eigenspaces

for the operator L(s)

M =
⊕
χ∈Q

Mχ where Mχ =
⋃
ℓ>0

ker(L(s) + χ)ℓ).

Any subquotient of an L-monodromic DE-module is again L-monodromic. Moreover, if

φ : M → N is a morphism of L-monodromic DE-modules, it satisfies

φ(Mχ) ⊆ N χ.

The LV -filtration on L-monodromic DE-modules is particularly easy to describe:

LV
λM =

⊕
χ≥λ

Mχ.

It is easy to check that modules in Example II.6 (setting Y = X × {0}) and Example

33



II.8 are L-monodromic for any slope L.

II.3: Brief Definition of Mixed Hodge Modules

We give a very brief treatment of the important aspects of the theory of mixed Hodge modules

on smooth, algebraic varieties. For more details, see [Sch14], [Sai88, Sai90]. A mixed Hodge

module on a smooth algebraic variety X consists of the following data: a regular holonomic

DX-module M, an increasing good filtration F•M (called the “Hodge filtration”), a finite,

increasing filtration W•M by DX-submodules (called the “Weight filtration”) and a Q-

perverse sheaf K with an isomorphism DRX(M) ∼= K ⊗Q C. These data are required to

satisfy a laundry list of properties. For example, if X is a point, then a mixed Hodge module

on X is simply a graded polarizable mixed Hodge structure.

For higher dimensional X, the required properties concern the compatibility of the Hodge

filtration and the V -filtration ofM along any locally defined hypersurfaceH = {f = 0} ⊆ X.

Let i : X → X×A1 be the graph embedding along f . As usual, we consider the V -filtration

of i+M along the smooth hypersurface X × {0}. Then the good filtration F•M induces a

good filtration on i+M by

Fpi+M =
⊕
k≥0

Fp−k−1M∂kt δ.

This filtration must satisfy the following compatibility relations:

(II.3.1) FpV
λi+M

t−→ FpV
λ+1i+M is an isomorphism for all p ∈ Z, λ > 0

(II.3.2) Fpgr
λ+1
V i+M

∂t−→ Fp+1gr
λ
V i+M is an isomorphism for all p ∈ Z, λ < 0,

which are filtered versions of the r = 1 case of Lemma II.16 and Lemma II.9, respectively.

Note that, if one looks at the ring DX×A1 with the order filtration F• and the V -filtration

along t, these isomorphisms are satisfied. They are not satisfied for λ < 0, respectively,
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λ > 0. Roughly, these conditions allow for bifiltered free resolutions of (i+M, F, V ).

Moreover, if one sets

ψ(M, F ) :=
⊕

λ∈(0,1]

grλV (i+M, F ), ψ1(M, F ) := gr1V (i+M, F ), ϕ1(M, F ) := gr0V (i+M, F [−1]),

then one requires the filtration induced by F• to be good on these modules, which are DX-

modules supported on H. The inductive definition of mixed Hodge modules then requires

that these objects, with Hodge and weight filtration defined in the next section, underlie

mixed Hodge modules.

If t ∈ OX defines a smooth hypersurface, and M is a mixed Hodge module on X, then

the definition of the restriction functors to H = {t = 0} are

(II.3.3) i!M = [ψt,1(M)
var−−→ ϕt,1(M)], resp. i∗M =

[
ϕt,1(M)

can−−→ ψt,1(M)
]
,

placed in cohomological degree 0, 1 (resp. −1, 0). The D-module maps underlying these

morphisms are t· (resp. ∂t·).

If Z is a singular variety, then by using local embeddings into smooth algebraic varieties,

one can define the category of mixed Hodge modules on Z, too.

II.4: Important Results about Mixed Hodge Modules

II.4.1: Various Theorems for Mixed Hodge Modules

Given X a smooth algebraic variety, the category MHM(X) is abelian. Moreover, if M

is a pure Hodge module of weight d on X, it is polarizable, so there is an isomorphism

D(M) = M(d), where (−)(d) is the Tate twist. More generally, if M is a mixed Hodge

module, we have a natural isomorphism

D(grWd M) ∼= grW−dDM.
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One of the most fundamental results about mixed Hodge modules is that any morphism

between them is bistrict with respect to the Hodge filtration and the V -filtration along any

hypersurface. In practice, this means that, given a short exact sequence

0 → L→M → N → 0

of mixed Hodge modules, the induced sequences

0 → FpV
λL → FpV

λM → FpV
λN → 0

are exact, for all p ∈ Z, λ ∈ Q.

In general, a filtered morphism φ : (M, F ) → (N , F ) is strict if φ(FpM) = FpN ∩ im(φ).

A filtered complex (K•, F ) is strict if all morphisms in the complex are strict. The first main

theorem of Saito is that, for push-forwards of Hodge modules along projective morphisms,

the resulting filtered complex of D-modules is always strict.

Theorem II.17. ([Sai88] )Let f : Y → X be a projective morphism between two smooth

complex algebraic varieties with ℓ ∈ H2(Y,Z) the class of an f -ample line bundle. Let M be

a pure Hodge module on Y of weight w with underlying filtered D-module (M, F ). Then

1. The filtered complex f+(M, F ) is strict and Hif+(M, F ) underlies a pure Hodge module

on X of weight w + i.

2. The map ℓi : H−if+(M, F ) → Hif+(M, F )(i) is an isomorphism of Hodge modules

for all i ≥ 0.

Here the functor (−)(i) is the Tate twist, which shifts the Hodge filtration by i and

decreases the weight by 2i.

When f : Y → {∗} is the constant map, this strictness recovers the fact that the Hodge-

de Rham spectral sequence degenerates at E1. Moreover, the strictness of f+(M, F ) is true
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even if (M, F ) underlies a mixed Hodge module with non-trivial weight filtration, see [Sai90]

and [KS21].

Example II.18. We will make particular use of this theorem when f : Y = X × Z → X is

the projection, where Z is a smooth projective variety. Then the complex f+(M) is given

by the following: consider the relative de Rham complex

K• =
(
M d−→ M⊗O Ω1

Z
d−→ . . .

d−→ M⊗O ΩdimZ
Z

)
,

with a filtration

FpK
• =

(
FpM

d−→ Fp+1M⊗O Ω1
Z

d−→ . . .
d−→ Fp+dimZM⊗O ΩdimZ

Z

)
.

Then strictness tells us that the natural morphism

Rif∗(FpK
•) → Rif∗(K

•) = Hif+(M)

is injective, and the image defines the Hodge filtration on Hif+(M).

As a corollary of Theorem II.17, Saito proves the following strengthening of the Decom-

position Theorem of [BBDG82].

Corollary II.19. Let (M, F•M) underlie a pure polarizable Hodge module on a smooth

algebraic variety Y . Let f : Y → X be a projective morphism. Then

f+(M, F•) =
⊕
k∈Z

Hkf+(M, F•)[−k]

in the filtered derived category of DX-modules.

The second major theorem of Saito’s theory is the structure theorem for pure Hodge

modules. Built into the theory is the stipulation that any pure Hodge moduleM decomposes
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by strict support, a property which can be detected through the V -filtration. Given an

irreducible closed subset Z ⊆ X, a module N has strict support Z if it has no non-trivial

subquotient supported on a closed subset of Z.

Then a pure Hodge moduleM decomposes into strict support if there exists a finite direct

sum decomposition

M =
⊕
Z⊆X

MZ ,

where MZ has strict support Z.

Theorem II.20. ( [Sai88] ) Let X be a smooth algebraic variety and Z ⊆ X a closed

irreducible subset. Then

1. Every polarizable variation of Hodge structure V of weight w − dimZ on a Zariski

open subset of Zreg extends uniquely to a polarized Hodge module of weight w on X

with strict support Z.

2. Every polarized Hodge module of weight w on X with strict support Z arises in this

way.

This theorem gives a structure theorem for the category of polarizable pure Hodge mod-

ules. Another important aspect of this category is that it is semisimple. For this, it is

important to focus on polarizable Hodge modules.

Mixed Hodge modules on algebraic varieties admit a six functor formalism in the sense

of Grothendieck, see [Sai90, Section 4] and [Gal21]. The functors are compatible with the

corresponding functors for regular holonomic D-modules and perverse sheaves. For example,

for any morphism of varieties f : Y → X, there are functors f∗, f
∗, f !, f! so that f ∗ is left

adjoint to f∗, f! is left adjoint to f !, there is a natural morphism f! → f∗ which is an

isomorphism if f is proper, and we have

f ∗DX = DY f
!, f∗DY = DXf!.
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Moreover, if i : Z → X is a closed subvariety with complement U , then for any M• ∈

Db(MHM(X)), we have i∗ = i! (as i is proper) which is exact, j∗ = j! is also exact, which

follows because j is étale. Moreover, i!j∗ = i∗j! = j∗i∗ = 0. Finally, there are exact triangles

i!i
!M• →M• → j∗j

∗M• +1−→

j!j
!M• →M• → i∗i

∗M• +1−→ .

Given any variety Y with constant map a : Y → ∗, by taking the trivial Hodge structure

(viewed as a Hodge module on ∗), one obtains an element QH
Y ∈ Db(MHM(Y )). If Y is

smooth, then QH
Y [dimY ] is a pure Hodge module of weight dimY . In fact, the underlying

filtered D-module is OY with filtration given by grF0 OY = OY .

By functoriality of pullbacks, if f : Y → X is any morphism, then f ∗QH
X = QH

Y . Hence,

for a closed embedding i : Z → X, we have i∗QH
X = QH

Z , though, even if X is smooth (so

QH
X [dimX] is a pure Hodge module) it is certainly not the case that QH

Z [dimZ] is pure,

unless Z is also smooth. In any case, if X is smooth, then using the properties mentioned

above and by choosing a polarization on QH
X [dimX], we get an isomorphism

DQH
Z
∼= i!QH

X(dimX)[2 dimX].

It is known [Sai90, Formula (4.5.7)] that for any variety Z, QH
Z is mixed of weight ≤ 0,

i.e.,

grWi Hj(QH
Z ) = 0 for all i > j.

If Z has pure dimension d, then by [Sai90, Formula (4.5.6)], we have Hj(QH
Z ) = 0 for

j > d, and the intersection cohomology module ICZQ
H is defined as the pure Hodge module

grWd Hd(QH
Z ),
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which is the unique extension of QH
Zreg

[dimZ] to Z with no subquotient supported on Zsing.

If Z is irreducible, this is a simple object. If Z has N irreducible components, then

End(ICZQ
H) = QN ,

where the scalars must be rational so that they respect the Q-structure. Moreover, such an

endomorphism is uniquely determined by its restriction to Zreg, see [Sai90, Formula (4.5.14)].

By definition of ICZ(Q
H
X), there exists a canonical morphism (see [HTT08, Prop. 8.2.15]

for the morphism of perverse sheaves)

γZ : QH
Z [dimZ] → ICZQ

H .

Let i : Z → X be the inclusion of a closed subvariety of pure dimension d into a smooth,

irreducible variety X of dimension n. The following chain of isomorphisms is easy to check

by what we have said already:

i∗D(ICZQ
H) = grW−di∗H−dD(QH

Z ) = grW−di∗H−d(i∗i
!QH

X(n)[2n]).

The underlying mixed Hodge module of Hp(i∗i
!QH

X [n]) is the local cohomology Hp
Z(OX).

Hence, by taking out the cohomological shifts and the Tate twist, and setting r = n− d, we

get that all modules in this chain of equalities are isomorphic to

grWn+rHr
Z(OX)(n) = Wn+rHr

Z(OX)(n)

and grWp Hr
Z(OX)(n) = 0 for p < n + r. This lowest piece of the weight filtration has un-

derlying DX-module given by the intersection cohomology D-module of Brylinski-Kashiwara

[BK81], which is the unique simple D-submodule of Hr
Z(OX) if Z is irreducible.

Finally, we will also γ∨Z = D(γZ)(d), which can be identified through all that we have
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said with a morphism

γ∨Z : D(ICZQ
H)(−d) → i!QH

X [n+ r](r).

Now, let X be a smooth algebraic variety with a mixed Hodge module M on X. The

underlying filtered DX-module (M, F•) gives, via the Riemann-Hilbert correspondence, the

C-perverse sheaf DRX(M), which in this case is endowed with a filtration defined by

FpDRX(M) =
[
0 → FpM → Ω1

X ⊗O Fp+1M → · · · → ωX ⊗O Fp+dimXM
]
.

Note that the morphisms are not O-linear, but they are after taking grF : hence, we

obtain a bounded complex of O-modules, for any p ∈ Z, given by grFp DRX(M). This

construction is compatible with proper pushforwards and satisfies

(II.4.1) RHomO(gr
F
−pDRX(M), ωX [dimX]) = grFp DRX(DM).

or, in other words, it interchanges the duality for mixed Hodge modules with Grothendieck

duality.

II.4.2: Hodge and Weight Filtration Indexing

In this section, we collect the shifts of Hodge and weight filtration which are incurred when

applying functors to a mixed Hodge module. Throughout this thesis, we use left D-modules,

and so these conventions are for those modules. A shift of filtration is necessary when going

from left modules to right, but we will not be concerned with that in this paper. Throughout,

let (M, F,W ) be a bifiltered D-module underlying a mixed Hodge module M on a smooth

complex variety X.

Tate twist: For any k ∈ Z, the kth Tate twist of (M, F,W ) is the mixed Hodge module
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M(k), with the same underlying DX-module and Q-structure, but satisfying

F•(M(k)) := F [k]•M := F•−kM, .W•(M(k)) = W•+2kM,

so that, if M is pure of weight w, then M(k) is pure of weight w − 2k.

Smooth pullback: Let p : X × Y → X be a smooth projection, where Y is another

smooth variety, of dimension r. By [Sai90, (4.4.2)], we set p∗(M) = M ⊠ QH
Y . As shifting

this cohomologically to the left by r gives

p∗(M)[r] =M ⊠QH
Y [r] ∈ MHM(X × Y ),

we see that p∗(M) is concentrated in cohomological degree r. Similarly, p!(M) = M ⊠

QH
Y [2r](r), which, by shifting cohomologically to the right by r, gives the mixed Hodge

module

(II.4.2) p!(M)[−r] =M ⊠QH
Y [r](r) = p∗(M)[r](r).

In particular, the underlying D-module of either mixed Hodge module is p∗O(M), the

O-(and D-)module pullback of M along p. By [Sai90, (2.17.4)], we see that

Fkp
∗(M)[r] = p∗O(FkM), Wkp

∗(M)[r] = p∗O(Wk−rM)

and by using the rule for Tate twists, this gives

(II.4.3) Fkp
!(M)[−r] = p∗O(Fk−rM), Wkp

!(M)[−r] = p∗O(Wk+rM).

Closed Embedding: Let i : X → Y be the inclusion of X as a smooth subvariety in the

smooth variety Y , defined by a system of coordinates t1, . . . , tr with vector fields ∂t1 , . . . , ∂tr .
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Then, under the isomorphism

i+M ∼=
⊕
α∈Nr

M∂αt ,

we have

Fpi+M =
⊕
α∈Nr

Fp−|α|−rM∂αt , Wki+M =
⊕
α∈Nr

WkM∂αt .

Nearby and Vanishing Cycles: Assume t ∈ OX defines a smooth, nonempty hypersurface

H. As mentioned above, we have the nearby cycles

ψt(M) =
⊕

λ∈(0,1]

ψt,λ(M)

and the unipotent vanishing cycles

ϕt,1(M),

with underlying DH-modules

ψt(M) =
⊕

λ∈(0,1]

grλVM,

respectively,

ϕt,1(M) = gr0VM,

where V •M is the V -filtration of M along the hypersurface H.

The Hodge filtration is defined as

(II.4.4) Fkψt(M) =
⊕

λ∈(0,1]

Fkgr
λ
VM =

⊕
λ∈(0,1]

FkV
λM

FkV >λM
,

(II.4.5) Fkϕt(M) = Fk+1gr
0
VM =

Fk+1V
0M

Fk+1V >0M
.

For the weight filtration, we use the relative monodromy filtration as defined in Section

II.6. Set Miϕt,λ(M) = ϕt,λ(Wi+1M) and Miϕt,1(M) = ϕt,1(WiM). Then ϕt,λ(M) carries
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a relative monodromy filtration for (M•, N), where N = ∂tt − λ is the nilpotent operator,

and similarly ϕt,1(M) carries a relative monodromy filtration for (M•, N) where N = ∂tt.

The weight filtration for ψt(M) is defined by taking the direct sum of the various relative

monodromy filtrations for ϕt,λ(M), and the weight filtration for ϕt,1(M) is the relative

monodromy filtration.

We define the total vanishing cycles by setting ϕt,λ(M) = ψt,λ(M), so ϕt(M) =
⊕

λ∈(0,1] ϕt,λ(M).

II.5: Specialization

As mentioned above, Saito made extensive use of the V -filtration along hypersurfaces in the

definition of mixed Hodge modules. In this section, we describe a method, originally due to

Verdier, which allows one to study the LV -filtrations using properties of V -filtrations along

hypersurfaces. This was used to great effect in [BMS06].

For ease of notation, set Y = X ×Ar. Let L(w) =
∑r

i=1 aiwi be a non-degenerate slope.

We define the deformation to the normal bundle of Y along X × {0} in the direction L as

Ỹ L := Spec
Y
(
⊕
k∈Zr

⊗
(ti)

−ki ⊗ uaiki),

where u is a new variable. This admits a smooth morphism u : Ỹ L → A1, so Ỹ L is a

smooth algebraic variety of dimension dimY + 1. Moreover, restricting this morphism to

A1−{0} ⊆ A1, the morphism is isomorphic to the projection p : Y ×(A1−{0}) → A1−{0}.

Let j : {u ̸= 0} = Y × (A1 − {0}) → Ỹ be the open immersion.

Let M be a regular holonomic DX×Ar -module. We can define a DỸ L-module by

M̃ = j∗p
!(M)[−1],

which agrees with the O-module j∗p
∗(M) =

⊕
k∈ZMuk.

We now describe theD-module action. The variety Y has local coordinates x1, . . . , xn, t1, . . . , tr,
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and so Y × (A1 − {0}) has coordinates x1, . . . , xn, t1, . . . , tr, u. However, the variety Ỹ L has

coordinates x1, . . . , xn,
t1
ua1
, . . . , tr

uar , u. We set t̃i =
ti
uai

, and when u is viewed as part of this

latter system of coordinates, we denote it by ũ.

Then the change of variables formula tells us that

∂ti = ∂ti(t̃i)∂t̃i =
1

uai
∂t̃i ,

∂u = ∂u(ũ)∂ũ +
r∑

i=1

∂u(t̃i)∂t̃i .

Rearranging these equalities, we have

∂t̃i = uai∂ti ,

∂ũ = ∂u +
r∑

i=1

aitiu
−1∂ti .

Hence, if muk ∈ M̃ is a section, then

∂t̃i(mu
k) = ∂ti(m)uk+ai ,

∂ũ(mu
k) = (k +

r∑
i=1

aiti∂ti)(m)uk−1.

Using the latter formula, one can prove the following (see [BMS06, (1.3.1)]): let V •M̃

be the V -filtration along u. Then

(II.5.1) V λM̃ =
⊕
k∈Z

LV
λ+|L|−k−1Muk for all λ ∈ Q.

With this in hand, we can define the L-specialization of M as

SpL(M) := ψu(M̃),
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which is a regular holonomic D-module on {u = 0} ∼= NXY = X ×Ar. By definition, it is

given by the formula

SpL(M) =
⊕

λ∈(0,1]

grλV M̃ =
⊕

λ∈(0,1]

⊕
k∈Z

gr
λ+|L|−k−1
L Muk.

Now, assume (M, F ) is a filtered regular holonomic DY -module underlying a mixed

Hodge module on Y . Then, as j∗(−) and p!(−1)[−1] preserve the category of mixed Hodge

modules, M̃ also underlies a mixed Hodge module, now on Ỹ L. Similarly, SpL(M) underlies

a mixed Hodge module on X ×Ar. It is easy to check, using the commutativity of duality

with vanishing cycles [MM04, Sai89], that SpL commutes with the dual functor on mixed

Hodge modules.

One observation is that the Hodge filtration on SpL(M) is the obvious one induced from

the Hodge filtration on M. More generally, we have:

Proposition II.21. Let (M, F ) underlie a mixed Hodge module on Y = X×Ar. Then, for

any p ∈ Z, λ ∈ Q, we have

FpV
γM̃ =

⊕
k∈Z

V γ+|L|−1−kM∩

⌊−γ⌋∑
q=0

(L(t∂t) + k + 1)(L(t∂t) + k + 2) . . . (L(t∂t) + k + q)Fp+1−qV
|L|−1−q−kM

uk,

where if γ > −1, the formula is given by

FpV
γM̃ =

⊕
k∈Z

Fp+1V
γ+|L|−1−kMuk.

We first write out an immediate corollary concerning the Hodge filtration on SpL(M).

Recall that in the definition of nearby cycles for Hodge modules, a Tate twist by 1 is involved:

Corollary II.22. Let (M, F ) underlie a mixed Hodge module on Y = X × Ar. Then for

any p ∈ Z, we have

FpSpL(M) =
⊕

λ∈(0,1]

⊕
k∈Z

Fpgr
λ+|L|−k−1
L Muk.
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Proof of Proposition II.21. We make use of Formula (3.2.3.2) of [Sai88], which in this situ-

ation tells us

Fpj∗(p
!(M)[−1]) =

∑
q≥0

∂qũ(V
0M̃ ∩ j∗j∗(Fp−qM̃)).

Note that j∗M̃ = p!(M)[−1], which, as p is smooth of relative dimension 1, has Hodge

filtration given by

F•p
!(M)[−1] =

⊕
k∈Z

F•+1Muk.

Putting this fact, the formula II.5.1 and the action of ∂ũ together, we see

FpM̃ =
⊕
k∈Z

(∑
q≥0

(L(t∂t) + k + 1) . . . (L(t∂t) + k + q)Fp+1−q
LV

|L|−q−1−kM

)
uk.

If we take q = 0 on the right hand side, we see that

FpM̃ ⊇
⊕
k∈Z

Fp+1
LV

|L|−1−kMuk,

so, after intersecting with V γM̃, we see

FpV
γM̃ ⊇

⊕
k∈Z

Fp+1
LV

max |L|−1−k,|L|+γ−1−kMuk.

Now, let muk ∈ FpV
γM̃, so we can write m =

∑N
q=0(L(t∂t) + k + 1) . . . (L(t∂t) + k +

q)mq for some mq ∈ Fp+1−q
LV

|L|−q−1−kM. Moreover, as muk ∈ V γM̃, we have m ∈
LV

|L|+γ−k−1M. We write m as two sums, stopping at ⌈−γ⌉ in the first one:

m =

⌊−γ⌋∑
q=0

(L(t∂t)+ k+1) . . . (L(t∂t)+ k+ q)mq +
N∑

⌊−γ⌋+1

(L(t∂t)+ k+1) . . . (L(t∂t)+ k+ q)mq.

Note that |L|+ γ− k− 1 ≤ |L|− q− k− 1 iff γ ≤ −q iff −γ ≥ q iff ⌊−γ⌋ ≥ q. Hence, the

first sum is contained in LV
|L|+γ−k−1M. Hence, as m also lies in this piece of LV by choice
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of m, we see that

(L(t∂t)+k+1) . . . (L(t∂t)+k+⌊−γ⌋+1)

N∑
q=⌊−γ⌋+1

(L(t∂t)+k+⌊−γ⌋+2) . . . (L(t∂t)+k+q)mq ∈ LV
|L|+γ−1−kM,

too.

Now, write m′ =
∑N

q=⌊−γ⌋+1(L(t∂t) + k + ⌊−γ⌋ + 2) . . . (L(t∂t) + k + q)mq. As mq ∈
LV

|L|−q−k−1M ⊆ LV
|L|−N−k−1M, we see that m′ ∈ LV

|L|−N−k−1M. By definition of the

LV -filtration, there exists some power of L(t∂t)− (|L|−N −k−1)+ |L| = L(t∂t)+N +k+1

which multplies m′ into LV
>|L|−N−k−1M. But also the operator (L(t∂t)+k+1) . . . (L(t∂t)+

k + ⌊−γ⌋ + 1) does. These operators, as polynomials in L(t∂t) are coprime, as N > ⌊−γ⌋,

so by Bézout’s identity, m′ ∈ LV
>|L|−N−k−1M. Repeating this argument finitely many

times, by discreteness of the LV -filtration, implies that m′ ∈ LV
|L|−⌊−γ⌋−k−1M. Moreover,

as L(t∂t) increases the Hodge filtration by 1, it lies in Fp+1−⌊−γ⌋M. Hence, m⌊−γ⌋ + m′ ∈

Fp+1−⌊−γ⌋
LV

|L|−⌊−γ⌋−k−1M, proving the claim.

II.6: Relative Monodromy Filtrations

In this section, we gather various results about relative monodromy filtrations, for more

details, see [Sai90, Section 1]. This will be useful in understanding the weight filtration

on SpL(M), the weight filtration on i!, i∗ and the weight filtration on FL(M) when M is

monodromic.

First of all, we recall the definition of the relative mondromy filtration. Let A be an

abelian category with an exact subcategory C ⊆ A admitting an additive automorphism

S : C → C. Let A ∈ C be an object with a finite filtrationM•A and a nilpotent endomorphism

N : (A,M) → S−1(A,M).

Then the relative monodromy filtration of (A,M) with respect to N is the unique, in-

creasing filtration W•A which satisfies the following two conditions:
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1. N : (A,W ) → (A,W [2])

2. N i : grWk+igr
M
k A→ grWk−igr

M
k A is an isomorphism for all i and k.

The relative monodromy is not guaranteed to exist, unless M satisfies grMk A = A for a

unique k ∈ Z, in which case it will be called the monodromy filtration. For us, the exact

category will be a filtered category, and S will be shifting the filtration. The notion of

relative monodromy filtration is fundamental in the work of Steenbrink and Zucker [SZ85]

in the study of variations of mixed Hodge structure.

We first prove some general statements about relative monodromy filtrations before look-

ing specifically at what happens for Hodge modules. For details, see [Sch01].

Let (A,M•) be a filtered object as above with the nilpotent endomorphism N , and

assume the relative monodromy filtration W•A exists. Moreover, assume there exists a

splitting operator Y : M → M which is diagonalizable and has integer eigenvalues and

which satisfies

WkM =
⊕
ℓ≤k

Eℓ(Y ),

where Eℓ(Y ) is the ℓ-eigenspace for Y . We say Y is admissible if

(II.6.1) [Y,N ] = −2N and YMiM ⊆MiM for all i.

The first condition says that NEℓ(Y ) ⊆ Eℓ−2(Y ), and the second says that Mi splits into

a direct sum over the eigenspaces for Y , for any i.

Assume moreover that there exists a splitting operator Y ′ for M•M which commutes

with Y . Write N =
∑

i∈ZNi, where [Y
′, Ni] = iNi. As N preserves M , we know that Ni = 0

for i > 0. Hence, N0 is also nilpotent.

The pair (N0, Y − Y ′) satisfies [Y − Y ′, N0] = [Y,N0]− [Y ′, N0] = −2N0, and so we can

extend the pair to an sl2-triple by defining an operator e on the eigenspaces of Y −Y ′ in the
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usual way. This should satisfy

[Y − Y ′, e] = 2e, [Y − Y ′, N0] = −2N0, [e,N0] = Y − Y ′.

For basics on sl2-representations, see for example [SS, Section 3.1]. We will use three

facts:

1. If A is an sl2-representation, then End(A) is, too.

2. For all k ≥ 0, the map N0 : Hk → H−k is an isomorphism. We call ker(Nk+1
0 ) the

primitive part Pk of Hk. It is equal to ker(e) ∩Hk.

3. For any k ≥ 0, we have a the Lefschetz decomposition

Hk =
⊕
j≥0

N j
0Pk+2j ⊆ Pk +N0Pk+2.

We call the tuple (A,M,N, Y, Y ′) a Deligne system after [Sch01] if we have the relation

[e,Nj] = 0 for j ̸= 0,

or, equivalently, [e,N ] = [e,N0].

The following theorem is the main result we will use concerning Deligne systems: it says

that if Y is admissible and there exists any commuting splitting operator Ỹ , then we can

always find a splitting operator which completes the data to a Deligne system. In fact, the

splitting operator Y ′ which makes a Deligne system is unique.

Remark II.23. We will use automorphisms g : A → A to iteratively alter the splitting

operator Ỹ . We spell out the details here. Specifically, let T : A → A be an operator with

ad(Ỹ )(T ) = −kT for some k > 0. Then T is nilpotent, so g = 1 + T is an automorphism of
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A. We define a new operator Ỹg = gỸ g−1, which is a splitting operator. Indeed, we have

A =
⊕
i

Ei(Ỹg), Ei(Ỹg) = {gx | x ∈ Ei(Ỹ )}.

We will only consider T which commutes with Y , i.e., ad(Y )(T ) = 0. Note that the

decomposition N =
∑

i≤0Ni was in terms of Ỹ -weights. We will be interested in computing

the decomposition for N in terms of Ỹg-weights, using this decomposition. We only care

about the terms −k ≤ i ≤ 0 below.

For this, let v = gx ∈ Ei(Ỹg), so x ∈ Ei(Ỹ ). Write

Nx =
∑
ℓ≤0

Nℓx, NTx =
∑
ℓ≤0

NℓTx,

in terms of Ỹ -weights. Then Nv = Nx+NTx. It is clear that for 0 ≤ j < k, the Ỹ -weight

i− j piece is N−jx. We write this as

N−jx+ T (N−jx)− T (N−jx) = g(N−jx)− T (N−jx),

where the last term has Ỹ -weight i− j−k, and so we do not concern ourselves with it unless

j = 0. For j = k, the Ỹ -weight i− k piece is

N−kx+N0Tx− TN0x = (N−k + [N0, T ])x,

where on the left hand side, the third-most term comes from the case j = 0 above.

Hence, writing N g
−i for decomposition of N in terms of Ỹg weights, we have

N g
−i =


gN−ig

−1 0 ≤ i < k

g(N−k + ad(N0)(T ))g
−1 i = k

.

Moreover, it is easy to see that the new e (completing the sl2-triple) is simply geg−1.
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Theorem II.24. Let Y be a splitting operator for W which is admissible as in condition

II.6.1. If there exists a splitting operator Ỹ for M which commutes with Y , then there exists

a unique splitting operator Y ′ so that (A,M,N, Y, Y ′) is a Deligne system.

Proof. Let Ỹ be a splitting operator for M as in the theorem statement.

We construct, by induction on k, a splitting operator Ỹk such that [e,Ni] = 0 for all

0 < i < k, where e and the decomposition N =
∑

i≤0Ni depend on the splitting operator

Ỹk.

We begin with some easy observations. By definition, ad(Ỹ )(N−k) = −kN−k and

ad(Y )(N−k) = −2N−k by Property II.6.1. Hence, ad(H)(N−k) = ad(Y − Ỹ )(N−k) =

(k − 2)N−k.

Now, we construct Ỹ1. We use the fact that

ad(N0) : H1 → H−1 is an isomorphism,

where H• is the •-weight space of the ad(H) action on End(A).

Hence, N−1 = ad(N0)(N
′′
−1) for some unique N ′′

−1 ∈ H1. As ad(Y )(N−1) = −2N−1, we

see that

−2ad(N0)(N
′′
−1) = ad(Y )ad(N0)(N

′′
−1) = ad(N0)ad(Y )(N ′′

−1)− 2ad(N0)(N
′′
−1)

again using Property II.6.1. Hence, ad(N0)ad(Y )(N ′′
−1) = 0. But ad(Y )(N ′′

−1) ∈ H1, too, as

Y commutes with Y − Ỹ . But ad(N0) is injective on H1, so we must have ad(Y )(N ′′
−1) = 0.

Set g = 1−N ′′
−k. We are now in the situation of Remark II.23. For this splitting operator,

as shown in that remark, we use geg−1 and g(N−1 +ad(N0)(N
′′
−1))g

−1. We need to show the

vanishing of the commutator. This follows from the following computation:

[geg−1, g(N−1 + ad(N0)(N
′′
−1))g

−1] = g[e,N−1 + ad(N0)(N
′′
−1)]g

−1 = gad(e)(N ′
−1)g

−1 = 0,
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proving that this new splitting operator is an improvement.

Now, let k ≥ 2, and assume we have a splitting operator for M• giving a decomposition

N =
∑

i≤0Ni and an sl2-triple (N0, Y − Ỹ , e) with [e,N−i] = 0 for 0 < i < k. We construct

one with [e,N−k] = 0, proving the claim by induction.

By definition, N−k has H = (Y − Ỹ )-degree (k − 2) ≥ 0. Hence, by the Lefschetz

decomposition, there exists a decomposition

N−k = N ′
−k + ad(N0)(N

′′
−k)

where N ′
−k is ad(e)-primitive and N ′′

−k has H-degree k. Using ad(Y )N−k = −2N−k (by

Property II.6.1), we have

−2N ′
−k − 2ad(N0)(N

′′
−k) = ad(Y )N ′

−k + ad(Y )ad(N0)(N
′′
−k)

= ad(Y )N ′
−k + ad(N0)ad(Y )(N ′′

−k)− 2ad(N0)(N
′′
−k).

Rearranging, we get

(ad(Y ) + 2)N ′
−k + ad(N0)ad(Y )(N ′′

−k) = 0.

Hence, if we apply ad(N0)
k−1 to both sides of the equality, we get

ad(N0)
kad(Y )(N ′′

−k) = 0,

but ad(Y )(N ′′
−k) ∈ Hk, so ad(N0)

k is injective on Hk, proving ad(Y )(N ′′
−k) = 0.

As in Remark II.23, we use g = 1−N ′′
−k to define a new splitting operator. We use geg−1,

gN−ig
−1 and g(N−k+ad(N0)(−N ′′

−k))g
−1, and we must check the vanishing of commutators.

But this is shown the same as above, proving the claim.

Corollary II.25. Let T : (A1,M,N, Y, Y ′) → (A2,M,N, Y, Y ′) be a morphism of Deligne
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systems, i.e., T : (A1,M) → (A2,M), TY = Y T and TN = NT . Then

TY ′ = Y ′T.

Proof. As T preserves M , we can write T =
∑

i≤0 Ti where Y
′Ti−TiY

′ = iTi. We will prove

the claim by showing T0 = T , i.e., Ti = 0 for all i < 0. We proceed by induction on i. We

will abuse notation and write [Ti, Nj] = TiNj −NjTi, where it is understood that in the first

term, Nj is for A1 and Nj in the second term is for A2. We do the same for e.

As TN = NT , by looking at Y ′ eigenspaces, we have N0T−1 +N−1T0 = T0N−1 + T−1N0.

We write this as

[N0, T−1] + [N−1, T0] = 0.

Using this, we compute [e, [N0, T−1]] = [e, [T0, N−1]] = [[e, T0], N−1] + [T0, [e,N−1]], but

[e, T0] = [e,N−1] = 0. Hence, we have shown that ad(e)ad(N0)(T−1) = 0. But ad(Y −

Y ′)(T−1) = T−1 by definition of the decomposition T =
∑
Tj. Hence, T−1 = 0.

Now, assume inductively T−1 = T−2 = · · · = T−k+1 = 0. We show T−k = 0. The same

argument decomposing TN = NT into Y ′-eigenspaces and using the inductive hypothesis

shows

[N0, T−k] + [N−k, T0] = 0,

and the second computation is exactly the same. Then, use ad(Y − Y ′)(T−k) = kT−k to

conclude T−k = 0, as k > 0.

For Hodge modules, the existence of relative monodromy filtrations is built into the

definition of mixed Hodge modules. Indeed, one requires

1. For any W -filtered D-module (M,W•) underlying a mixed Hodge module and any

locally defined, non-constant function f ∈ OX , the nearby cycles ψf (M) and unipotent

vanishing cycles ϕf,1(M) admit a relative monodromy filtration with respect to the
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induced filtrations

M•ψf (M) = ψf (W•+1M), M•ϕf,1(M) = ϕf,1(W•M)

and the nilpotent operator N .

2. For (M, F•,W•) underlying a mixed Hodge module, the following sequence is exact for

all λ ∈ Q, k, p ∈ Z:

0 → FkV
λWp−1M → FkV

λWpM → FkV
λgrWp M → 0,

where V •M is the V -filtration along f .

Using specialization, we see that the relative monodromy filtration on grλLM exists for

any λ ∈ Q. Moreover, using M̃ as in the specialization construction, we obtain short exact

sequences for all λ ∈ Q, k, p ∈ Z:

0 → Fk
LV

λ
Wp−1M → Fk

LV
λ
WpM → Fk

LV
λ
grWp M → 0.

We are interested in the following statement concerning splitting operators:

Lemma II.26. Let X be smooth and consider for j = 1, 2 bifiltered D-modules (M, F•,W•)

and (Mj, F•,W•) underlying mixed Hodge modules M,Mi on X × Ar with coordinates

t1, . . . , tr on Ar. Let LV be the canonical LV -filtration along t1, . . . , tr. For j = 1, 2 (and for

M), let M•gr
λ
L(Mj) = grλL(W•Mj) and W•gr

λ
L(Mj) the relative monodromy filtration for

M• and the nilpotent operator L(s) + λ. Then

1. For 1 ≤ i ≤ r, we have that the induced filtered morphism

ti : (gr
W
• gr

λ
LM, F ) → (grW• gr

λ+ai
L M, F )
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splits along the decomposition induced by M•, i.e.,

ti : (gr
W
• gr

M
∗ gr

λ
LM, F ) → (grW• gr

M
∗ gr

λ+ai
L M, F ).

2. For 1 ≤ i ≤ r, we have that the induced filtered morphism

∂ti : (gr
W
• gr

λ
LM, F ) → (grW• gr

λ−ai
L M, F [−1])

splits along the decomposition induced by M•, i.e.,

∂ti : (gr
W
• gr

M
∗ gr

λ
LM, F ) → (grW• gr

M
∗ gr

λ−ai
L M, F [−1]).

3. If φ :M1 →M2 is a morphism of mixed Hodge modules, then

grW• φ : (grW• gr
λ
LM1, F ) →)grW• gr

λ
LM2, F )

splits along the decomposition induced by M•.

Proof. It will suffice, by Corollary II.25 to complete to a Deligne system and show that these

morphisms induce morphisms of Deligne systems. Then each morphism will commute with

the splitting operator for M•, which is exactly the claim.

Our object of interest is A = grW• gr
λ
LM (or Ai = grW• gr

λ
LMi), with N = L(s) + λ,

Wkgr
W
• gr

λ
LM =

⊕
j≤k gr

W
j gr

λ
LM and the obvious splitting operator forW . By specialization

and [Sai90, Prop. 1.5], there exists a splitting operator for M• on grW• gr
λ
LM.

Hence, by Theorem II.24, there exists a unique splitting operator which completes this

data into a Deligne system. It is obvious that each morphism described respects N,M and

the splitting Y , hence is a morphism of Deligne systems.
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II.7: Technical Applications of the Specialization Construction

In this section, we prove several technical lemmas which will be fundamental in the proofs

below. The main idea, following [BMS06], is that claims about higher codimension V -

filtrations can be reduced to those for hypersurfaces, where they are better understood.

Lemma II.27. ( [BMS06, Prop. 3.2] ) Let Y = X ×Ar, and let W be a smooth projective

variety. Denote by p : Y ×W → Y the projection to Y , which is smooth and projective. Let

M be a mixed Hodge module on Y ×W , with underlying filtered DY -module (M, F ). Let

LV
•M be the LV -filtration along X×W . Then the bifiltered direct image is bistrict, and the

induced F and LV filtrations are the Hodge and LV -filtrations on the DY -module underlying

Hkp∗M .

Proof. The pushforward is defined using the bifiltered relative de Rham complex whose −ith

term is

ΩdimW−i
W ⊗O (M, F [i], LV ).

Let Ỹ L be the deformation to the normal bundle considered above, and consider Ỹ L×W .

Using the method above, we obtain a mixed Hodge module M̃ on Ỹ L × W , which has

underlying O-module M̃ =
⊕

k∈ZMuk. Let p̃ : Ỹ L ×W → Ỹ L. Then the pushforward is

again defined using the bifiltered relative de Rham complex

ΩdimW−i
W ⊗O (M̃, F [i], V ),

where V is the V -filtration along u.

By [Sai88, Prop. 3.3.17], we have bistrictness of p̃+(M̃, F [−i], V ), as this concerns only

the V -filtration along a hypersurface. We conclude the desired claims now by decomposing

along the uk direct sum and by Proposition II.21.

The next claim concerns the weight filtration, the argument is standard:
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Lemma II.28. Let (M, F ) be a filtered D-module underlying a mixed Hodge module on

Y ×W . Let p : Y ×W → Y be the second projection, and let LV
•M be the LV -filtration

along X ×W . Then

1. The spectral sequence associated to the relative monodromy filtration on p+(gr
α
LM, F )

degenerates at the second page.

2. If (M, F ) underlies a polarizable pure Hodge module, then Ep,q
2 is a filtered direct

summand of Ep,q
1 for all p, q ∈ Z.

3. If (M, F ) underlies a polarizable pure Hodge module and W•r
α
LM is the monodromy

filtration, then the image of

Hip+(Wkgr
α
LM) → Hip+(gr

α
LM)

is the monodromy filtration of Hip+(gr
α
LM), which by the previous Lemma is grαLHip+(M).

4. We have the decomposition in the filtered derived category of D-modules

p+(gr
W
k gr

α
LM, F ) ∼=

⊕
i

(Hip+gr
W
k gr

α
LM, F )[−i].

Proof. As in the previous proposition, we have

p̃+(gr
α
V M̃, F ) =

⊕
k∈Z

p+(gr
|L|+α−k−1
L M, F [−1])uk.

Let Ep,q
r be the spectral sequence associated to the relative monodromy filtrations. Then

dr is compatible with the above decomposition, for example, because it is a morphism of

D-modules. As (grαV M̃, F,W ) underlies a (direct summand of a) mixed Hodge module for

α ∈ [0, 1], the spectral sequence Ep,q
r (grαV M̃, F ) degenerates at the second page, and hence

it does too for the direct summand Ep,q
r (gr

|L|+α−k−1
L M, F ) for any k ∈ Z, proving (a).
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If M is polarizable, then SpL(M) is graded polarizable, and so for every p, q ∈ Z the

module Ep,q
1 is pure polarizable, hence semisimple by [Sai88, 5.2.13]. As Ep,q

2 is a subquotient

of this, it must be a direct summand. Now, decomposing along the uk terms, we see that

the same is true for the spectral sequence associated to M, hence part (b).

By [Sai88, 5.3.4.2], we know that the image of Hip̃W•gr
α
V M̃ in Hip̃grαV M̃ is the mon-

odromy filtration. Again, we decompose along uk, and obtain (c).

Finally, for part (d), we know grWk gr
α
V M̃ is a polarizable Hodge module, so by choosing

an ample class on Y , we can use the Hard Lefschetz theorem to obtain an isomorphism

H−ip̃(grWk gr
α
V M̃, F ) ∼= Hi(grWk gr

α
V M̃, F )(i),

and finally, decomposing along uk, we obtain (d).

59



CHAPTER III

Singularities of Hypersurfaces

In this chapter, we mention the known results in the case of hypersurfaces. We do not give

any proofs, but these results are important to see the motivation for the theorems which

come in the following chapters. Throughout, X is a smooth, irreducible complex algebraic

variety of dimension n.

III.1: Bernstein-Sato polynomials of hypersurfaces

In the previous chapter, we defined b-functions of sections of specializable D-modules. The

motivating example for b-functions is the Bernstein-Sato polynomial, studied independently

by Berstein [Ber72] and Sato. This is defined as the monic polynomial of smallest degree

bf (s) ∈ C[s] such that there exists a differential operator P (s) ∈ DX [s] satisfying

bf (s)f
s = P (s)f s+1,

where f s is a formal symbol on which a derivation acts via the power rule from differential

calculus.

Many computer algebra systems, for example, Macaulay2, have algorithms which allow

for the computation of Bernstein-Sato polynomials, see [BL10].

Kashiwara [Kas77] proved that the roots of bf (s) lie in Q<0. In fact, Kashiwara showed

something more precise. We state here the stronger version due to Lichtin [Lic89]: let
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π : Y → X be a log resolution of the pair (X, {f = 0}). This is a birational morphism

where Y is smooth and KY/X + π∗(f) is a simple normal crossings divisor. Let {Ei}i∈I be

the exceptional divisors of the resolution. Then we can write

π∗(f) =
∑
i∈I

aiEi, KY/X =
∑
i∈I

kiEi.

Then we have

Theorem III.1. ([Lic89, Theorem 5]) With this notation, every root of bf (s) is of the form

−ki+1+ℓ
ai

for some i ∈ I and some ℓ ∈ Z≥0.

The fractions appearing in the theorem statement are related to classical invariants from

birational geometry, the multiplier ideals and log canonical threshold of the hypersurface f .

These are defined to be, for λ > 0,

I(fλ) = π∗(OY (KY/X − ⌊λπ∗(f)⌋)) ⊆ OX ,

lct(f) := min
i

ki + 1 + ℓ

ai
.

It is not hard to see the following:

1. For 0 < λ << 1 we have I(fλ) = OX .

2. For λ = 1, we have I(f 1) = (f).

3. For λ ≤ µ, we have I(fλ) ⊇ I(fµ).

It turns out that lct(f) = sup{λ ∈ Q>0 | I(fλ) = OX}. For details, see [Laz04, Chapter

9].

We see immediately from Lichtin’s theorem that every root of bf (s) is ≤ −lct(f). How-

ever, an argument due to Kollár [Kol97], using the original, analytic definition of multiplier

ideals and integration by parts, showed that −lct(f) is always a root of bf (s). In fact, this
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theorem is strengthened in [ELSV04], again using an integration by parts argument, to show

that all numbers λ ∈ (0, 1) such that

I(fλ−ϵ) ⊋ I(fλ)

satisfy bf (−λ) = 0. These are called the jumping numbers of f in the interval (0, 1).

The connection between the Bernstein-Sato polynomial and the b-function defined in the

previous chapter is the following. Let Γ : X → X×A1 be the graph embedding along f and

consider the direct image Γ+OX = Bf =
⊕

k≥0OX∂
k
t δf , where δf is a formal symbol and t

is the coordinate on A1. By definition, a derivation τ ∈ TX acts on δf by

τ(δf ) = −τ(f)∂tδf ,

and t acts by

tδf = fδf .

The module Bf naturally underlies a pure Hodge module, with Hodge filtration

FpBf =
⊕

k≤p−1

OX∂
k
t .

We can also consider the module OX [s,
1
f
]f s which is free over OX [s] and which inherits

a DX [s]-action via the Leibniz rule and the power rule, meaning that for τ ∈ TX , we have

τ(f s) = sτ(f)f s−1.

This relation is one motivation for, as in the previous chapter, defining s := −∂tt.

We can perform the same constructions with OX replaced by the localization along f ,

OX(∗D). These are related by the following. For details, see [MP20, Prop. 2.5] or [Mal83].
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Proposition III.2. Using the notation above, we have an isomorphism

OX(∗D)[s]f s → Γ+OX(∗D)

defined by

usjf s 7→ u(−∂tt)jδf .

Using this isomorphism, we see that the Bernstein-Sato polynomial bf (s) can be rephrased

as the b-function for the element δf ∈ Γ+OX(∗D). Interestingly, the proof of [Kas77] and

[Lic89] can be strengthened to a computation of the roots of b-functions for other elements

of Γ+OX ⊆ Γ+OX(∗D), as in the main result of [DM22b].

Recall that, in the previous chapter, we showed that the V -filtration on a DX×A1-module

is related to b-functions. The result of Kashiwara on negativity of the roots of bf (s) says

that δf ∈ V >0Bf , and the result of Lichtin tells us that δf ∈ V lct(f)Bf . In fact, Kollár’s result

shows that δf /∈ V >lct(f)Bf .

This relation of V -filtration and log canonical threshold was strengthened in Budur-Saito

[BS05] to the following relation between the V -filtration on Bf and the multiplier ideals:

Theorem III.3. [BS05, Theorem 0.1] Using the notation above, for all α ∈ Q, we have

{h | hδf ∈ V αBf} = I(fα−ϵ)

for 0 < ϵ << 1.

The same result is shown for arbitrary ideals in [BMS06, Theorem 1].

III.1.1: Hodge Ideals

Initially unrelated to the V -filtration, Mustaţă and Popa [MP19] commenced the study of

Hodge ideals for divisors, which put multiplier ideals into a Z≥0-indexed family of ideal

sheaves. The construction is as follows: let U = {f ̸= 0} j−→ X be the inclusion of the
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complement of the hypersurface D defined by f . By applying the mixed Hodge module

pushforward j∗ to QH
U [dimU ], one sees that the underlying module is

j∗OU = OX(∗D),

but the corresponding Hodge filtration F•OX(∗D) is rather subtle. There is another natural

filtration on OX(∗D), the pole order filtration, denoted by

PkOX(∗D) = {u ∈ OX(∗D) | fk+1u ∈ OX} = OX((k + 1)D).

Saito [Sai93] showed that there is always an inclusion

FkOX(∗D) ⊆ PkOX(∗D),

and so Mustaţă and Popa [MP19] defined the Hodge ideals to be

Ik(f) = FkOX(∗D)⊗O OX(−(k + 1)D) ⊆ OX .

Using the exact sequence

0 → OX → OX(∗D) → H1
D(OX) → 0,

whereH1
D(OX) is the local cohomology module alongD, and the fact that the Hodge filtration

on OX is essentially trivial, the study of Hodge ideals is equivalent to the study of the Hodge

filtration on local cohomology. This aspect of the theory has been studied by many authors

[MP22a], [MP22b], [Rai21, Theorem 1.5] to name a few. This is the main subject matter of

Chapter V, using V -filtrations for higher codimension subvarieties to study local cohomology.

Multiplier ideals also make sense for effective Q-divisors, and in [MP20], Mustaţă and

Popa define and study Hodge ideals for Q-divisors. Again, these generalize the multiplier
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ideal, but they are rather mysterious. For example, there is not in general a containment

Ik(D) ⊆ Ik−1(D),

though there is for D a reduced divisor.

There are certain properties of Hodge ideals which are rather well understood and which

are analogues of those properties for multiplier ideals. For example, subadditivity [MP18,

Theorem B], restriction [MP18, Theorem A], and finite pushforward formulas [DM22a, The-

orem 1.3] exist for these ideals. Moreover, they satisfy, in certain situations, analogues of

the celebrated Nadel vanishing theorem for multiplier ideals [MP19, Theorem F], [MP20,

Section C] and [Dut20].

An interesting refinement of Hodge ideals for reduced divisors were defined by Olano in

[Ola22b] for the case k = 0 (i.e., for multiplier ideals) and in [Ola22a] for k > 0. These are

defined by using the weight filtration on the mixed Hodge module OX(∗D) and intersecting

with the Hodge filtration. For example, [Ola22b, Theorem A] gives a characterization of the

adjoint ideal in terms of weighted multiplier ideals.

III.1.2: Microlocal V -Filtration

Given a hypersurface defined by a regular function f ∈ OX(X) on a smooth complex alge-

braic variety X, we consider the D-module Bf =
⊕

k≥0OX∂
k
t δf . Saito [Sai94] defines the

partial algebraic microlocalization to be

B̃f := Bf [∂
−1
t ] =

⊕
k∈Z

OX∂
k
t δf ,

with “Hodge” filtration

FpB̃f :=
⊕

k≤p−1

OX∂
k
t δf .

If f is not a unit, then (s + 1) | bf (s), and so one can consider the reduced Bernstein-
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Sato polynomial bf (s) =
bf (s)

(s+1)
. Then Saito [Sai94] defines the minimal exponent of f to be

the negation of the most positive root of bf (s), denoted α̃(f). Saito [Sai94, Theorem 0.3]

shows that, actually, bf (s) can be interpreted as the microlocal Bernstein-Sato polynomial

for f , defined in terms of a functional equation for δf in B̃f . This interpretation is crucial to

proving many properties of the minimal exponent, for example, the bound α̃(f) ≤ n
2
when

f is singular and the following Thom-Sebastiani type result:

Theorem III.4. [Sai94, Theorem 0.8] Let f ∈ OX and g ∈ OY be regular functions with a

vector field τ ∈ TY satisfying τg = g. Then

α̃(f + g) = α̃(f) + α̃(g).

When the hypersurface defined by f has isolated singularities, the minimal exponent

is actually the smallest of the Steenbrink spectral numbers. The Steenbrink spectrum of a

hypersurface with isolated singularities is a multi-set of rational numbers defined by studying

the action of monodromy on the cohomology of the Milnor fiber of f and how it interacts with

the Hodge structure defined in [Ste77]. Many important properties for the minimal exponent

in the case of isolated singularities were obtained from this viewpoint in the 1980’s. For

example, an interesting result due to Varchenko [Var82] is that, for a family of hypersurfaces

with isolated singularities and constant rank of their top cohomology of the Milnor fiber, the

minimal exponent is constant. The spectrum was related in [BS05] to the V -filtration and

Hodge filtration on Bf .

Using the V -filtration on Bf , one can define a V -filtration on B̃f on which the usual

properties hold and ∂−1 : V •Bf → V •+1Bf . This V -filtration satisfies grλV Bf → grλV B̃f is an

isomorphism for all λ < 1.

This V -filtration can be computed explicitly in many cases: see [Sai16], [Sai09] and

[Zha21].

Using the microlocal V -filtration, Saito [Sai16] defines the microlocal multiplier ideals
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Ṽ γOX by looking at the image of V γB̃f under the projection map to grF0 B̃f
∼= OX , in

analogy with the relation between V -filtration on Bf and multiplier ideals.

Interestingly, in loc. cit. Saito shows the following for a reduced hypersurface D defined

by f :

Theorem III.5. [Sai16, Thm 1] For all p ≥ 0, we have

Ip(D) = Ṽ p+1OX mod (f).

This was strengthened to a similar relationship between the microlocal V -filtration and

Hodge ideals for Q-divisors in [MP20]. This result allows for an algorithmic approach to the

computation of Hodge ideals, see [Bla22].

III.1.3: Local Cohomology and Classes of Singularities

As mentioned above, the study of Hodge ideals of a reduced divisor D is equivalent to the

study of the Hodge filtration on local cohomology H1
D(OX). The following theorem is a

culmination of many of the main ideas in this story:

Theorem III.6. [MOPW21] [JKSY22] Let f ∈ OX define a singular hypersurface D. Let

H1
D(OX) be the local cohomology along D. Then

α̃(f) ≥ k + 1 ⇐⇒ FkH1
D(OX) = PkH1

D(OX) ⇐⇒ Fk+1Bf ⊆ V 1Bf

and

α̃(f) > k + 1 ⇐⇒ FkWn+1H1
D(OX) = PkH1

D(OX) ⇐⇒ Fk+2Bf ⊆ V >0Bf .

Moreover, these properties are equivalent to D having k-du Bois (resp. k-rational) sin-

gularities.
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As mentioned above, α̃(f) ≤ n
2
if f defines a singular hypersurface. We mention here an

interesting result which says when equality can occur.

Theorem III.7. [DM22a, Cor. 6.3] Let f ∈ OX be such that α̃x(f) =
n
2
for some x ∈ X.

Then, up to analytic change of coordinates, we can write f = x21 + · · ·+ x2n with (x1, . . . , xn)

an analytic system of coordinates centered at x.
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CHAPTER IV

Higher Codimension Subvarieties

This chapter contains the main body of the thesis: the study of V -filtrations along higher

codimension smooth subvarieties as found in [CD21]. It contains two main theorems. Before

the theorems, general statements are shown concerning LV -filtrations, similar to those results

for hypersurface V -filtrations in [Sai88, Section 3.1]. The theorems concern only the slope

L =
∑r

i=1 si. The first shows that the Koszul-like complexes defined in Chapter II are

filtered acyclic for filtered D-modules underlying mixed Hodge modules. The second shows

that one can compute i∗ and i! for mixed Hodge modules using the Koszul-like complexes

from Chapter II.

IV.0.1: Topological Properties of V -filtrations

In this subsection, let X × {0} ⊆ X × Ar be the zero section defined by t1, . . . , tr, with

corresponding vector fields ∂t1 , . . . , ∂tr . Let M be a left regular holonomic DX×Ar -module.

Recall that in this case, M admits a canonical LV -filtration, as in Chapter 2, for any slope

L =
∑r

i=1 aisi. We assume from here out that L is non-degenerate, so all ai are nonzero.

Note that, although we state all results for X × {0} ⊆ X × Ar, this is not really a

restrictive setting. For any Z ⊆ X a smooth subvariety, using local defining equations and

the graph embedding, we can always reduce to the case at hand.

We first show that the LV -filtration allows one to detect sub-modules and quotient mod-

ules supported on {t1 = · · · = tr = 0}.
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Lemma IV.1. Let M be a regular holonomic DX×Ar-module. Then M has no submodules

supported on X × {0} if and only if the natural map

gr0LM
t−→

r⊕
i=1

graiL M

is injective.

Proof. First, we see that if m ∈ M satisfies tim = 0 for 1 ≤ i ≤ r, then m ∈ LV
0M. Indeed,

the assumption on m gives (
∑r

i=1 ai∂titi)m = 0. If m ∈ LV
λM− LV

>λM for some λ ≥ 0,

we are done. Otherwise, λ < 0, and by definition of the LV -filtration its class in grλLM is

annihilated by (
∑r

i=1 ai∂titi)− λ = −(L(s) + λ). Hence, it is killed by λ ̸= 0, so its class is 0

in the associated graded. By discreteness of the LV -filtration, we can repeat this argument

finitely many times and arrive at m ∈ LV
0M.

We have the short exact sequence of complexes

0 → A>0(M) → A0(M) → B0(M) → 0,

where the leftmost complex is acyclic by Lemma II.16. By the Snake Lemma, we see then

that the natural map

ker

(
LV

0M t−→
r⊕

i=1

LV
aiM

)
→ ker

(
gr0LM

t−→
r⊕

i=1

graiL M

)

is an isomorphism.

Putting this together, we see that M has a submodule supported on X × {0} iff there

exists an element 0 ̸= m ∈ M with tim = 0 for all 1 ≤ i ≤ r iff there exists an element

0 ̸= m ∈ LV
0M with tim = 0 for all 1 ≤ i ≤ r iff ker(gr0LM

t−→
⊕r

i=1 gr
ai
L M) ̸= 0.

Lemma IV.2. Let M be a regular holonomic DX×Ar-module. Then M has no quotient
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modules supported on X × {0} iff the natural map

r⊕
i=1

graiL M ∂t−→ gr0LM

is surjective.

More generally, if U = X ×Ar −X × {0} and M′ ⊆ M is the smallest submodule such

that M′|U = M|U , then

M/M′ = i+coker(
r⊕

i=1

graiL M ∂t−→ gr0LM).

Proof. The first claim follows from the second because if M → N is any quotient module

supported on Z, then the projection map must factor M → M/M′ → N .

So we prove the second claim. First, note that M′ = DX×Ar · LV
λM for any λ > 0.

Indeed, as M′|U = M|U , the quotient M/M′ is supported on X × {0}, and so satisfies

LV
>0
(M/M′) = 0 by Example II.5. Hence, LV

λM′ = LV
λM for any λ > 0. Hence,

DX×Ar · LV λM = DX×Ar · LV λM′ ⊆ M′ for any λ > 0. For the other inclusion, use the

minimality of M′ and the fact that LV
λM|U = M|U .

By Kashiwara’s equivalence applied to the moduleM/M′, which is supported onX×{0},

we have M/M′ = i+gr
0
L(M/M′), where i : X × {0} → X × Ar is the inclusion. But

gr0L(M/M′) = gr0L(M)/gr0L(M′) by strictness. Now,

gr0L(M′) =
LV

0M′

LV >0M′
=

LV
0M∩M′

LV >0M
,

where the second inequality follows from what we have already argued and strictness of the

inclusion (M′, LV ) → (M, LV ).

It thus suffices to prove the following

LV
0M∩M′ =

r∑
i=1

∂ti
LV

aiM+ LV
>0M.
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Define inductively UλM′ = LV
λM if λ > 0 and for λ ≤ 0, define UλM′ =

∑r
i=1 ∂tiU

λ+aiM′+

U>λM′. Then LV
λM′ = UλM′ by uniqueness of the LV -filtration, which proves the

claim.

With these results in hand, we can give a characterization for a module to decompose.

This is related to the decomposition to strict support for mixed Hodge modules.

Proposition IV.3. Let M be a regular holonomic DX×Ar-module. Then M decomposes

as M = M′⊕M′′ with supp(M′) ⊆ X × {0} and M′′ having no submodules or quotient

modules supported on X × {0} if and only if

gr0LM =

(
ker(gr0LM

t−→
r⊕

i=1

graiL M)

)⊕(
r∑

i=1

∂tigr
ai
L M

)
.

Proof. Assume M = M′⊕M′′. By the previous two lemmas, we know

gr0LM′′ =
r∑

i=1

∂tigr
ai
L M′′, ker(gr0LM′′ t−→

r⊕
i=1

graiL M′′).

Also, as M′ is supported on X × {0}, we know gr0LM′ = ker(gr0LM′ t−→ graiL M′), so the

claim follows by applying gr0L to M′ ⊕M′′.

For the other direction, we set M′ = H0
X(M), the submodule of sections supported on

X ×{0}. Also, set M′′ = DX×Ar · LV >0M, which by the proof of the previous lemma is the

smallest submodule of M which agrees with M upon restricting to U = X ×Ar ∖X ×{0}.

This satisfies

M′′ = i+coker(
r⊕

i=1

graiL M ∂t−→ gr0LM)

by the previous lemma.

By assumption, this cokernel is isomorphic to ker(gr0LM
t−→
⊕r

i=1 gr
ai
L M), henceM/M′′ ∼=

M′. But the inclusion M′ → M splits this map, proving the desired decomposition.

We conclude with the following theorem, which says that at the D-module level, the
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complexes B0(M) and C0(M) compute i!M and i∗M, respectively, where i : X × {0} →

X ×Ar is the inclusion of the zero section. This will be enhanced to a statement for mixed

Hodge modules later.

Finally, for the statement of i∗ when L = (1, . . . , 1), we will make use of the following

result of Ginzburg:

Proposition IV.4. [Gin86, Prop. 10.4] Let M be monodromic regular holonomic on X ×

Ar. Then there is a natural quasi-isomorphism

p∗(M) ∼= i∗(M)

for i : X × {0} → X × Ar the inclusion of the zero section and p : X × Ar → X the

projection.

Theorem IV.5. Let M be a regular holonomic DX×Ar-module. Then there is a natural

quasi-isomorphism

B0(M) ∼= i!M.

Moreover, when L = (1, . . . , 1), we have a natural quasi-isomorphism C0(M) ∼= i∗(M).

Proof. By [HTT08, Page 32], we can compute i!M as the derived O-module pullback. As

t1, . . . , tr form a regular sequence, a resolution of OX is given by the Koszul complex on

t1, . . . , tr, and so we have

i!M =
[
M t−→ M

⊕
r t−→ M

⊕
(r2) t−→ . . .

t−→ M
]
=: Kosz(M, t)

, placed in cohomological degrees 0, . . . , r.

We know by Proposition II.16 that the complex Aα(M) is acyclic for all α > 0, and

so the natural quotient map A0(M) → B0(M) is a quasi-isomorphism. We will show that

A0(M) is naturally quasi-isomorphic to Kosz(M, t), which will then finish the proof.
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By Proposition II.9, Bα(M) is acyclic for all α ̸= 0, for λ < 0, the natural inclusion

A0(M) → Aλ(M) is a quasi-isomorphism.

For any α, we have an inclusion of complexes Aα(M) → Kosz(M, t), which is the identity

upon taking the limit (or union) over all α → −∞. Hence, as the limit is exact, the natural

map

A0(M) → lim
λ→−∞

Aλ(M) = Kosz(M, t)

is a quasi-isomorphism.

Now, assume L = (1, . . . , 1). For C0(M) ∼= i∗M, it is easy to check that i∗Sp(M) = i∗M,

and so by replacing M with Sp(M), we can assume M is monodromic. But then, by

Ginzburg’s result, i∗Sp(M) = p∗Sp(M), which is computed using the relative de Rham

complex for p. Using the choice of coordinates ∂t1 , . . . , ∂tr , this is precisely the Koszul-like

complex ⊕
λ∈Q

Cλ(M),

which, by Proposition II.9, is quasi-isomorphic to C0(M).

IV.0.2: Koszul Complexes are Filtered Acyclic for Mixed Hodge Modules

Now, let (M, F,W ) be a left bifiltered regular holonomic DX×Ar -module underlying a mixed

Hodge module M . As mentioned in the introduction, for the remainder of the paper, we

have to restrict our attention to the case L = (1, . . . , 1). We consider throughout this section

the filtered complexes

Aα(M, F ) =

V α(M, F [−r])e0
t−→

⊕
|I|=1

V α+1(M, F [−r])eI
t−→

⊕
|I|=2

V α+2(M, F [−r])eI
t−→ . . .

t−→ V α+r(M, F [−r])e,



Bα(M, F ) =

grαV (M, F [−r])e0
t−→

⊕
|I|=1

grα+1
V (M, F [−r])eI

t−→
⊕
|I|=2

grα+2
V (M, F [−r])eI

t−→ . . .
t−→ grα+r

V (M, F [−r])e



Cα(M, F ) =

grα+r
V (M, F )e0

∂t−−→
⊕
|I|=1

grα+r−1
V (M.F [−1])eI

∂t−−→
⊕
|I|=2

grα+r−2
V (M, F [−2])eI

∂t−−→ . . .
∂t−−→ grαV (M, F [−r])e


where, for any filtration F•, the shifted filtration F [k] satisfies F [k]• = F•−k.

The main theorem of this section is the following:
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Theorem IV.6. [CD21, Theorem 1.1] Let (M, F ) underlie a mixed Hodge module on X ×

Ar. Then for λ > 0 (resp. λ < 0), the complex Aλ(M, F ) (resp. Cλ(M, F )) is filtered

acyclic.

Before beginning the proof, we prove a lemma. We state the lemma in terms of general

LV -filtrations, because it holds true in that generality:

Lemma IV.7. Let Y be a smooth projective variety and consider a filtered regular holonomic

D-module (M, F ) underlying a pure polarizable Hodge module on X × Ar × Y . Let p :

X ×Ar × Y → X ×Ar be the projective, smooth projection. Let t1, . . . , tr be the coordinates

on Ar, and let LV
•M be the LV -filtration along t1, . . . , tr. Then

• If the complex FℓA
α(M) is acyclic for some ℓ ∈ Z, α ∈ Q, then FℓA

α(Hkp+(M)) is

acyclic for all k ∈ Z.

• If the complex FℓC
α(M) is acyclic for some ℓ ∈ Z, α ∈ Q, then FℓC

α(Hkp+(M)) is

acyclic for all k ∈ Z.

Proof. By Lemma II.27, we know that the ith cohomology of

p+(Fq
LV

α
) = Rp∗(DRX×Y/Y (Fq

LV
αM))

is canonically isomorphic to FqV
αHip+M. Moreover, by choosing an ample class ℓ on W ,

the Hard Lefschetz theorem for polarizable Hodge modules , the Lefschetz isomorphism gives

us that

(2π
√
−1ℓ)k : H−kp+M → Hkp+M(k)

is an isomorphism of polarizable Hodge modules, and so restricting to FqV
α, we get isomor-

phisms

(2π
√
−1ℓ)k : FqV

αH−kp+M → Fq−kV
αHkp+M.

By Deligne’s formalism for decomposition theorems from Hard Lefschetz [Del68] and the

fact that these are canonically isomorphic to Hkp+(FqV
αM) (suitably shifted), we get a
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decomposition

p+(FqV
αM) =

⊕
Hk(Fq−kV

αM)[−k]

in Db
coh(X).

Proof. By the short exact sequence 2 (which gives a short exact sequence of complexes),

it suffices to check the claim for a pure polarizable Hodge module M of weight w. Also,

the claims of the theorem statement may obviously be checked on direct summands. Using

the decomposition by strict support, we can thus assume that the Hodge module has strict

support.

If the support is contained in any hypersurface {ti = 0}, then the claim follows by the

inductive hypothesis, using Kashiwara’s equivalence and the result of Example II.7. Hence,

we can assume thatM has strict support which is not contained in any hypersurface {ti = 0}.

For ease of notation, let Y = X ×Ar and denote by X the subvariety X × {0} ⊆ Y . As

acyclicity will be checked locally on Y , we will assume we have coordinates x1, . . . , xn on X,

hence, coordinates (x1, . . . , xn, t1, . . . , tr) on Y .

Let B → Ar be the blowup of Ar along {0} with exceptional divisor E. We view

B ⊆ Ar ×Pr−1, and factor the projection as

X × B X ×Ar ×Pr−1

X ×Ar

π

i

p
,

where i is a closed embedding and p is the projection to the first two factors (which is smooth

and projective).

Now, as B − E ∼= Ar − {0}, we can restrict M to Ar − {0} and minimally extend to B,

getting M̂, which underlies a pure Hodge module of weight w. Also, we know H0π+(M̂) is

a pure Hodge module by Theorem II.17, and M is a direct summand of it by Theorem II.20

and the decomposition by strict support. We show that the property of the theorem holds

for i+M̂, which by Lemma IV.7 implies that it holds for H0π+(M̂), and hence, for M.
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As the property of acyclicity is local, we work in one of the standard open charts of Pr−1

isomorphic to Ar−1, say with coordinates u2, . . . , ur. In this chart, the blowup is defined by

z2 = t2 − u2t1, . . . , zr = tr − urt1. In this chart, we write i+M̂ =
⊕

α∈Nr−1 M̂∂αz . Clearly we

have an equality of ideals (t1, . . . , tr) = (t1, z2, . . . , zr), so as the V -filtration only depends on

the ideal (by Remark II.3), we obtain the formula (as in Example II.7)

V λi+M̂ =
⊕

α∈Nr−1

V λ+|α|M̂∂αz ,

where V •M̂ is the V -filtration along t1 (which defines E in this chart) and hence, by definition

of the Hodge filtration for closed embeddings of codimension r − 1, we have

FℓV
λi+M̂ =

⊕
α∈Nr−1

Fℓ−|k|−(r−1)V
λ+|α|M̂∂αz .

Let λ > 0, then in the Koszul-like complex FℓA
λ(i+M̂), one of the differentials is t1 :

FℓV
λ+ji+M̂ → FℓV

λ+j+1i+M̂. Decomposing along ∂αz (with which t1 commutes), it is the

map

t1 : Fℓ−|α|−(r−1)V
λ+|α|+jM̂ → Fℓ−|α|−(r−1)V

λ+|α|+j+1M̂.

This map is an isomorphism, as V •M̂ is the V -filtration along a hypersurface and λ+|α| >

0 by assumption on λ. Hence, the complex FℓA
λ(i+M̂) is acyclic for all ℓ, λ > 0.

A simple computation for changing bases from (x, t, u) to (x, t1, z, u) shows that ∂z2 =

∂t2 , . . . , ∂zr = ∂tr .

For λ < 0, the complex FℓC
λ(i+M̂), we can again use the computation of F•V

•, now

taking associated graded pieces. The complex splits up along the ∂αz pieces, as ∂zi = ∂ti .

The main observation is that

∂ti : Fℓ−|α|−(r−1)gr
χ
V M̂∂αz → Fℓ+1−|α+ei|−(r−1)gr

χ
V M̂∂α+ei

z

77



is an isomorphism. Any direct summand which involves one of these morphisms must then

be acyclic.

Hence, the only possibly non-trivial part is ∂t1 : Fℓ−(r−1)gr
λ+1
V M̂∂0z → Fℓ+1−(r−1)gr

λ
V M̂∂0z ,

which is an isomorphism as V is the V -filtration along the hypersurface defined by t1. This

completes the proof.

IV.1: Restriction Functors

We set B(M) = B0(M, F ) and C(M) = C0(M, F ). We show, in analogy with the codi-

mension one case (see Equation II.3.3), that the cohomology of these complexes computes

Hki!M, respectively, Hki∗(M). Here i : X ×{0} → X ×Ar is the zero section. Specifically,

we will prove

Theorem IV.8. [CD21, Theorem 1.2] Let (M, F,W ) underlie a mixed Hodge module on

X × Ar. Then B0(M, F,W ) ∼= i!(M, F ) and C0(M, F ). Moreover, B0(M, F,W ) and

C0(M, F,W ) are mixed Hodge complexes, where the filtration W is defined using the relative

monodromy filtration on grjV (M, F ) for all 0 ≤ j ≤ r. Moreover, for any k, ℓ ∈ Z, the

quasi-isomorphisms above induce isomorphisms of pure Hodge modules of weight k + ℓ:

grWk HℓB(M) ∼= grWk+ℓHℓi!M,

grWk HℓC(M) ∼= grWk+ℓHℓi∗M.

We begin by showing that we can naturally endow the complexes B(M) and C(M) with

Q-structure and a weight filtration so that they are mixed Hodge complexes [Sai00].

Definition IV.9. A mixed Hodge complex is a bifiltered complex of D-modules (C•, F,W )

where F is a filtration by O-subcomplexes and W is a filtration by D-subcomplexes, and a
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Q-structure (CQ,WQ), such that, as filtered complexes,

DR(C•,W ) ∼= (CQ,WQ)⊗Q C.

Moreover, we should have a decomposition

(grWk C
•, F ) =

⊕
ℓ

(HℓgrWk C
•, F )[−ℓ],

in the derived category of filtered D-modules. Finally, (HℓgrWk C
•, F ) with the induced

Q-structure should underlie a pure polarizable Hodge module of weight k + ℓ.

Let (M, F,W ) be a bifiltered D-module underlying a mixed Hodge module on X ×Ar.

Each term grjVM of the complex B(M) (resp. C(M)) carries a relative monodromy filtration

for the filtration induced byW• and the nilpotent operator s+j. As the differential in B(M)

(resp. C(M)) preserves the filtration induced by W• and commutes with the nilpotent

operator, the term-wise relative monodromy filtration induces a filtration on B(M) (resp.

C(M)).

Theorem IV.10. Let (M, F,W,K) be a bifiltered D-module with Q-structure K ∈ PervQ(X×

Ar). Then (B(M), F,W, i!K) and (C(M), F,W, i∗K) are mixed Hodge complexes.

Proof. First of all, by Theorem IV.5, we see that, indeed, DR(B(M),W ) ∼= i!(K,W )⊗Q C

and DR(C(M),W ) ∼= i∗(K,W )⊗QC. So the Q-structure claim is OK. If M is supported on

X×{0}, the claim is immediate, as both complexes are actually just mixed Hodge modules.

Case 1: Pure First, assume M is a pure polarizable Hodge module of weight w with strict

support not contained in X ×{0}. We blowup {0} ∈ Ar to get Ŷ = X ×B. As in the proof

of Theorem IV.6, using the blowup, we can minimally extend M to get a pure polarizable

Hodge module M̂ on Ŷ . Then M arises as a direct summand of H0p+i+M̂, and so it suffices

to prove the claim for this module. We do it for i+ and show that it is preserved by H0p+.

Step 1: Closed Embedding As the property of being a mixed Hodge complex is local, we
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can again restrict to the standard open cover of Pr−1 on which the blowup is defined (without

loss of generality) by z2 = t2−u2t1, . . . , zr = tr−urt1. A simple computation using change of

basis shows that, on grλV i+M̂, the nilpotent operator induced by θ−λ+r =
∑r

i=1 ti∂ti−λ+r

is equal to the nilpotent operator θ′ − λ+ r = t1∂t1 +
∑r

i=2 zi∂zi − λ+ r.

Write i+M̂ =
⊕

α∈Nr−1 M̂∂αz . It is easy to check that

(t1∂t1 +
r∑

i=2

zi∂zi − λ+ r)(m∂αz ) = (t1∂t1 − (λ+ |α|) + 1)(m)∂αz .

Hence, we get an identification of monodromy filtrations

W•gr
λ
V i+M̂ =

⊕
α

W•gr
λ+|α|
V M̂∂αz .

The local quasi-isomorphisms described in the proof of Theorem IV.6 then also preserve

the monodromy filtration. Hence, we have shown that, on this chart, B(i+M̂) is bifiltered

quasi-isomorphic to Bt1(M̂), and similarly for the complex C. But for V -filtrations along

hypersurfaces, the resulting complex is of course a mixed Hodge complex (in fact, it is simply

a morphism between mixed Hodge modules), which proves the claim in this step.

Step 2: Projection Assume BX×{0}×Y (N ) is a mixed Hodge complex for N a pure Hodge

module on X ×Ar ×Y for Y smooth and projective. We show then that BX×{0}(Hkp+(N ))

is a mixed Hodge complex for all k ∈ Z.

We have the decomposition grWk B(N ) =
⊕

ℓ(HℓgrWk B(N ))[−ℓ] in the category of fil-

tered D-modules, hence, by applying p+, the decomposition remains. But on the right hand

side, each HℓgrWk B(N ) is a pure polarizable Hodge module. Hence, by Saito’s Decomposi-

tion Theorem II.19, we know p+HℓgrWk B(N ) =
⊕

j(Hjp+HℓgrWk B(N ))[−j]. Putting this

together, we have

p+gr
W
k B(N ) ∼=

⊕
j,ℓ

Hjp+HℓgrWk B(N )[−j − ℓ].

Let F i
k,ℓ = Hℓp+gr

W
k B

i(N ), where Bi(N ) is the ith term of the complex B(N ).
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Note: by Lemma II.27, we have Hℓp+B
i(N ) = BiHℓp+(N ).

Case 2: Mixed We use the splitting grWgrλVM ∼= grWgrMgrλVM which, by Lemma

II.26, is compatible with the morphisms t1, . . . , tr and ∂t1 , . . . , ∂tr . Hence, grWB(M) ∼=

grWB(grWM), and grMM is pure, so we can conclude by the previous step.

By general properties of mixed Hodge complexes [Sai00, Prop. 2.3], we conclude the

following.

Corollary IV.11. The Hodge filtration on B(M) and C(M) is strict, and the weight spectral

sequence of B(M) (resp. C(M)) degenerates at E2.

Using the Hodge filtration strictness, we show that these complexes compute the Hodge

filtration on each cohomology.

Proof of Theorem. By [Sai90, Proof of Prop. 2.19], we can compute i∗i
!M via the Čech

complex

K(M) =

(
M →

r⊕
i=1

M(∗Zi) →
⊕

1≤i<j≤r

M(∗(Zi + Zj)) → . . .→M(∗
r∑

i=1

Zi)

)

placed in cohomological degrees 0, . . . , r. We let K(M) denote the underlying complex of

filtered D-modules. We consider the double complex BK(M)

(IV.1.1)

gr0VM
⊕

|I|=1 gr
1
VM . . . grrVM

⊕r
j=1 gr

0
VM(∗Zj)

⊕r
j=1(

⊕
|I|=1 gr

1
VM(∗Zj)) . . .

⊕r
j=1 gr

r
VM(∗Zj)

... . . . . . . . . .

gr0VM(∗
∑r

j=1 Zj)
⊕

|I|=1 gr
1
VM(∗

∑r
j=1 Zj) . . . grrVM(∗

∑r
j=1 Zj)

δ δ δ

δ δ δ

δ δ δ

.

The top row is B0(M) and the leftmost column is gr0VK(M).
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The jth column is
⊕

|I|=j gr
j
V applied to K(M). The cohomology of K(M) being a

mixed Hodge module supported on t1 = · · · = tr = 0 implies that if j > 1 then grjVK(M) is

bifiltered acyclic.

The ith row is
⊕

|J |=iB
0(M(∗ZJ)), where ZJ =

∑
j∈J Zj. By Corollary IV.11, we know

B0(M(∗ZJ)) is strict with respect to the Hodge filtration. But the underlying complex of

D-modules is acyclic, hence each row is filtered acyclic.

A similar argument works for CK(M).

Finally, we need to compare the weight filtrations mentioned above to the canonically

defined ones on i!M and i∗M . The statement we are after is the following: recall that

the filtration W• on B(M) (resp. C(M)) is induced by the relative monodromy filtration

termwise on each griVM.

Theorem IV.12. [CD21, Theorem 1.2] The bifiltered complexes B0(M, F,W ) and C0(M, F,W )

are mixed Hodge complexes, where the filtrationW is defined using the relative monodromy fil-

tration on grjV (M, F ) for all 0 ≤ j ≤ r. Moreover, for any k, ℓ ∈ Z, the quasi-isomorphisms

B0(M, F ) ∼= i!M, C0(M, F ) ∼= i∗M induce isomorphisms of pure Hodge modules of weight

k + ℓ:

grWk HℓB(M) ∼= grWk+ℓHℓi!M,

grWk HℓC(M) ∼= grWk+ℓHℓi∗M.

Remark IV.13. We remark, once more, that the filtered complexes (B(M),W•) and (C(M),W•)

need not be strict, but the weight spectral sequence does degenerate at E2.

This has the following interpretation: for any ∅ ̸= J ⊆ {1, . . . , r}, we know B(M(∗ZJ))

is an acyclic complex. Hence, as E2 = E∞ in the weight spectral sequence, we see that

E2 = 0 for the weight spectral sequence on B(M(∗ZJ)).

Proof. Recall that the quasi-isomorphisms in the theorem statement are induced by double

complexes BK(M) (resp. CK(M)), see the terms IV.1.1, with horizontal differential de-
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noted δ. Let δ0 : B0K(M) → B1K(M) be the morphism between the first two columns.

In general, we view BK(M) as a complex of complexes (with differential δ), and similarly

for CK(M). We write Hℓ
δ for the ℓth cohomology complex of BK(M) with respect to the

differential δ.

Throughout, when we say “filtered”, we mean with respect to the Hodge filtration, and

we suppress this from the notation. We thus begin with a lemma:

Lemma IV.14. For all ℓ > 0, the complex Hℓ
δgr

WBK(M) is filtered acyclic. The natural

map ker grW δ0 = H0
δgr

WBK(M) → grWB0K(M) is a filtered quasi-isomorphism.

Proof of Lemma. By Lemma II.26, we can choose canonical splittings so that the double

complex grWBK(M) decomposes into

grW grMgr0V M
⊕

|I|=1 gr
W grMgr1V M . . . grW grMgrrV M

⊕r
j=1 gr

W grMgr0V M(∗Zj)
⊕r

j=1(
⊕

|I|=1 gr
W grMgr1V M(∗Zj)) . . .

⊕r
j=1 gr

W grMgrrV M(∗Zj)

... . . . . . . . . .

grW grMgr0V M(∗
∑r

j=1 Zj)
⊕

|I|=1 gr
W grMgr1V M(∗

∑r
j=1 Zj) . . . grW grMgrrV M(∗

∑r
j=1 Zj)

δ δ δ

δ δ δ

δ δ δ

where M•gr
i
V (M(∗ZJ)) = griV (W•M(∗ZJ)).

As K(M) is a complex of mixed Hodge modules on X ×Ar, it is bistrict with respect

to the Hodge and weight filtrations. In particular, HℓgrWi K(M) = grWi HℓK(M). But the

category of polarizable pure Hodge modules on X ×Ar is semisimple, so HℓgrWi K(M) is a

filtered direct summand of grWi K
ℓ(M). In particular, we have a containment

HℓgrWK(M) ⊆ grWKℓ(M),

and so, applying gr0V to both sides, we get

gr0VHℓgrWK(M) ⊆ gr0V gr
WKℓ(M) = grMB0Kℓ(M),
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and so by taking grW (for the relative monodromy filtration), we have containements

grWgr0VHℓgrWK(M) ⊆ grWgrMB0Kℓ(M),

which is the ℓth term of the first column of BK(M).

Now, as grWgr0VHℓgrWK(M) is supported on X × {0}, by the definition of δ0, we see

that actually

grWHℓgrMB0K(M) = grWgr0VHℓgrWK(M) ⊆ ker grW δ0,

where the first equality uses strictness of the V -filtration and the definition of M• on gr0V .

But the left hand side is also HℓgrWgrMB0K(M), which is HℓgrWB0K(M), proving the

desired quasi-isomorphism.

Now, we write BiK(M) = griVK(M), where K(M) is the Čech complex for M. In

particular, the cohomology of K(M) is supported on X × {0}, so griVK(M) = BiK(M)

is a filtered acyclic complex when i > 0. The same is true for grWBiK(M), and so the

total complex grWBK(M) is filtered quasi-isomorphic to its first column grWB0K(M) =

grWgr0VK(M). We have just argued that this first column is quasi-isomorphic toH0δgrWBK(M).

Finally, by Theorem IV.10, we have the decomposition

grWBKj(M) =
⊕
ℓ∈Z

Hℓ(grWBKj(M))[−ℓ],

which implies the other cohomologies must be acyclic, as desired.

We handle the case of B(M), the proof for C(M) being completely analogous. For

0 ≤ j ≤ r, consider the complex BKj(M) with differential δ, i.e., the jth row of the double

complex IV.1.1. This is simply
⊕

|J |=j B(M(∗ZJ)). Hence, by Theorem IV.10, it is a mixed
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Hodge complex, and hence by Corollary IV.11, its weight spectral sequence

Epq
1 = Hp+qgrW−pBK

j(M) =⇒ Hp+qBKj(M)

degenerates at E2. For any k, ℓ ∈ Z and our fixed j, we have a complex from the first page

0 → E−k−ℓ,k+ℓ
1 → E−k−ℓ−1,k+ℓ

1 → · · · → E−k−ℓ−r,k+ℓ
1 → 0,

written as

0 → H0grWk+ℓBK
j(M) → H1grWk+ℓ−1BK

j(M) → · · · → HrgrWk+ℓ−rBK
j(M) → 0.

By naturality, we obtain a double complex Dk,ℓ, with this complex as its jth row.

If j > 0, then by Remark IV.13, as E2 = 0, we see that the jth row of Dk,ℓ is exact.

Hence, the total complex Tot(Dk,ℓ) is quasi-isomorphic to its first row,

(IV.1.2) 0 → H0grWk+ℓB(M) → H1grWk+ℓ−1B(M) → · · · → HrgrWk+ℓ−rB(M) → 0.

By the Lemma, this is filtered quasi-isomorphic to grWk+ℓB
0K(M) = grWk+ℓgr

0
VK(M).

Applying Hℓ gives grWk+ℓgr
0
VHℓK(M) = grWk+ℓHℓi!(M), where we use the fact that K(M) =

i∗i
!M, and so gr0VHℓK(M) = Hℓi!M, as the cohomology is supported on X × {0} (see

Example II.6).

Finally, Hℓ applied to the complex IV.1.2 gives, by definition, E−k−ℓ+ℓ,k+ℓ
2 = E−k,k+ℓ

2 . By

the E2-degneration, this is E
−k,k+ℓ
∞ = grWk HℓB(M), proving the claim.
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CHAPTER V

Minimal Exponent and Application to Local

Cohomology

In this chapter, we will use the results of Chapter IV to study the local cohomology of a

locally complete intersection subvariety Z ⊆ X of codimension larger than one. The data

of the Hodge ideals for reduced divisors is equivalent to the Hodge filtration on the local

cohomology of OX along the divisor D. Similarly, the module Hr
Z(OX), which is familiar to

commutative algebraists, carries a Hodge filtration. This can be compared to the pole order

filtration in the same way as for hypersurfaces.

The main definition of this section is that of the minimal exponent for a local complete

intersection subvariety, α̃(Z). Interestingly, we do not define it in exact analogy with the case

of hypersurfaces, but instead we make use of an auxiliary construction used in Mustaţă’s pa-

per [Mus22]. We show that this invariant does everything which the usual minimal exponent

is known to do for hypersurfaces: it controls when the Hodge filtration and the order filtra-

tion on Hr
Z(OX) agree, which in turn gives information about higher du Bois singularities,

and in fact it can also detect higher rational singularities in the sense of Laza and Friedman.

At the end of this chapter, we will give some examples of local complete intersection varieties

whose minimal exponents we can compute.
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V.0.1: Definition of Local Cohomology

For more details, see [MP22a] and [Har67]. Let Z ⊆ X be a closed subvariety of the smooth

variety X. Working locally, we assume Z is defined by f1, . . . , fr ∈ OX(X). Moreover, we

assume Z is a complete intersection, meaning that codimX(Z) = r, the number of defining

equations. In general, the codimension is bounded above by r.

Let Hi ⊆ X be the hypersurface defined by fi, which is non-empty by assumption that

Z is a complete intersection. We form the Čech complex

K(OX) = OX →
r⊕

i=1

OX(∗Hi) →
⊕
i<j

OX(∗Hi +Hj) → . . .→ OX(∗H),

where H =
∑r

i=1Hi is the union of all Hi. It is well-known that the condition on the

codimension of Z implies that this complex has only one non-vanishing cohomologyHr
Z(OX),

which is the local cohomology of OX along Z.

All terms in the complex naturally underlie mixed Hodge modules on X, and the mor-

phisms are all that of mixed Hodge modules. In particular, Hr
Z(OX) inherits the structure

of a mixed Hodge module on X which is supported on Z. Hence, it has a Hodge filtration

F•Hr
Z(OX) and a finite weight filtration W•Hr

Z(OX).

As Hr
Z(OX) is supported on Z, we can define another filtration on it, the pole order

filtration, as

PkHr
Z(OX) = {m ∈ Hr

Z(OX) | (f1, . . . , fr)k+1 ·m = 0}.

In [MP22a], it is observed that FkHr
Z(OX) ⊆ PkHr

Z(OX) for all k. As in the case of

Hodge ideals, it is interesting to ask when we have equality FkHr
Z(OX) = PkHr

Z(OX).

Remark V.1. In [MP22a], Mustaţă and Popa show the following facts regarding this question:

1. If FkHr
Z(OX) = PkHr

Z(OX), then for all p ≤ k we have FpHr
Z(OX) = PpHr

Z(OX).

2. If Z is singular, then FkHr
Z(OX) ⊊ PkHr

Z(OX) for all k ≥ n− r + 1.
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3. If we set p(Z) = sup{−1, k such that FkHr
Z(OX) = PkHr

Z(OX)}, this number does not

depend on the embedding of Z into a smooth variety and it satisfies restriction and

semicontinuity theorems.

4. The inequality p(Z) ≥ k holds for some k ≥ 0 iff Z has at least k-du Bois singularities.

These singularities are defined by the natural map

Ωp
Z → Ωp

Z := gr−p
F ΩZ [−p]

being a quasi-isomorphism for all p ≤ k.

V.0.2: Relation to the V -filtration

Now, consider the graph embedding i : X → X ×Ar defined by x 7→ (x, f1(x), . . . , fr(x)),

with coordinates t1, . . . , tr onAr. We set Bf := i+OX , which as a set is equal to
⊕

α∈Nr OX∂
α
t δ

and for which the action of OX [∂t1 , . . . , ∂tr ] is the obvious one and

ti(h∂
α
t δ) = fih∂

α
t δ − αih∂

α−ei
t δ, for all 1 ≤ i ≤ r,

τ(h∂αt δ) = τ(h)∂αt δ −
r∑

i=1

τ(fi)h∂
α+ei
t δ, for all τ ∈ TX .

The module Bf is a pure Hodge module of weight n on X ×Ar. The Hodge filtration is

FkBf =
⊕

|α|≤k−r

OX∂
α
t δ,

though in the literature it is often conventionally re-indexed. We will not reindex here.

V.0.3: Definition of Minimal Exponent and Relation to Singularities

Recall that in [Mus22] Mustaţă uses the following construction: let y1, . . . , yr be new vari-

ables, and consider the hypersurface g =
∑r

i=1 yifi on Y = X ×Ar. The main result of loc.
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cit. is the relation between b-functions:

b̃g(s) = bf (s).

Our goal is to strengthen this result to a comparison between certain D-modules. We

will make use of the module Bg = Γ+OY =
⊕

k≥0OY ∂
k
z δg, where Γ : Y → Y × A1 is the

graph embedding along g and z is the coordinate on A1. Let θy =
∑r

i=1 yi∂yi . Then θyg = g,

and so it is easy to check that

θyδg = −∂zzδg = sδg.

More generally,

θyhy
α∂kz δg = (s+ |α| − k)(hyα∂kz δg).

In fact, this relation holds in the microlocalization B̃g = Bg[∂
−1
z ] =

⊕
k∈Z OY ∂

k
z δg. Hence,

B̃g decomposes into eigenspaces for the θy − s operator:

B̃g =
⊕
ℓ∈Z

E(ℓ), where E(ℓ) =
⊕
α∈Nr

OXy
α∂|α|−ℓ

z δg.

By definition, if m ∈ B̃(ℓ)
g , we have (θy − s)m = ℓm. Let V •B̃g be the microlocal V -

filtration along z. Then, as θy − s preserves V γB̃g for all γ ∈ Q, we see that we we have a

decomposition

V γB̃g =
⊕
ℓ∈Z

V γB̃(ℓ)
g , V γB̃g = V γB̃g ∩ B̃(ℓ)

g .

Now we define the map which allows for a comparison of D-modules: let φ : B̃g → Bf be

theOX-linear map sending yα∂kz δg 7→ ∂αt δ. Note that φℓ = φ|B̃(ℓ)
g

is anOX-linear isomorphism

B̃(ℓ)
g → Bf for any ℓ ∈ Z.

Lemma V.2. The map φ defined above satisfies the following properties:

1. φ is DX-linear.
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2. For all m ∈ B̃g and k ∈ Z, we have φ(m) = φ(∂kzm).

3. For all m ∈ B̃g, 1 ≤ i ≤ r, we have φ(yim) = ∂tiφ(m).

4. For all m ∈ B̃g, 1 ≤ i ≤ r, we have φ(∂yim) = −tiφ(m).

5. For all m ∈ B̃(ℓ)
g , we have φ(sm) = (s− ℓ)φ(m).

Proof. For 1., as φ is by definition OX-linear, it suffices to check that φ(τm) = τφ(m) for

any τ ∈ TX and m ∈ B̃g. It suffices to check for m = hyα∂kz δg. By definition,

τ(hyα∂kz δg) = τ(h)yα∂kz δg − (
r∑

i=1

τ(fi)yi)(hy
α∂k+1

z δg)

so applying φ to both sides yields

φ(τ(hyα∂kz δg)) = τ(h)∂αt δ −
r∑

i=1

τ(fi)h∂
α+ei
t δ,

which is clearly τ applied to φ(m) = h∂αt δ.

Properties 2. and 3. are clear by definition of φ.

For property 4., let m = hyα∂kz δg. Then

∂yim = αihy
α−ei∂kz δg − fihy

α∂k+1
z δg,

and so applying φ to both sides, we get

φ(∂yim) = αih∂
α−ei
t δ − fih∂

α
t δ,

which is clearly −ti applied to φ(m) = h∂αt δ.

Finally, let m ∈ B̃(ℓ)
g . Then (θy − s)m = ℓm, so applying φ to both sides yields

φ(θym)− φ(sm) = ℓφ(m),
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which by property 3. and 4. and s =
∑r

i=1−∂titi tells us

sφ(m)− φ(sm) = ℓφ(m),

finishing the proof.

The main technical input of this section is the following Theorem comparing the V -

filtration on Bf and the microlocal V -filtration on B̃g.

Theorem V.3. [CDMO22, Theorem 3.3, Prop. 3.4] Let f1, . . . , fr ∈ OX and define g =∑r
i=1 fiyi on Y = X ×Ar. The map

φ : (B̃(0)
g , V ) → (Bf , V )

is a filtered DX-module isomorphism, and, moreover, we have equality of b-functions

bm(s) = bφ(m)(s)

where on the left, we use the microlocal b-function for m ∈ B̃g.

Proof. Let W •Bf := φ0(V
•B̃(0)

g ). This is an exhaustive, decreasing and discrete filtration,

which by Lemma V.2 above is compatible with the V -filtration V •DX×Ar and which has

s+ γ acting nilpotently on grγWBf .

The proof that W •Bf ⊆ V •Bf is similar to the usual proof [Sai88, Lemme 3.1.2] that the

V -filtration is unique if it exists. As we will use the main idea of this proof for the other

inclusion, we omit the proof of this fact.

For the reverse inclusion, we need to show φ0(V
γB̃(0)

g ) ⊆ V γBf . In fact, we prove the

stronger statement that

V γB̃g ⊆ UγB̃g :=
⊕
m∈Z

∂−m
z φ−1

0 (V γ−mBf ) for all γ ∈ Q.
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This is immediate once we know that the right hand side satisfies most of the properties of

the microlocal V -filtration on B̃(0)
g . In fact, we don’t even need UγB̃g to be finitely generated

over V 0. Clearly, U• is decreasing, discrete, left-continuous and exhaustive. It is trivial to

check that ∂ℓzU
γ = Uγ−ℓ, zUγ ⊆ Uγ+1, and that s+ γ acts nilpotently on grγU B̃g.

We wish to show that V •B̃g ⊆ U•B̃g. If γ ̸= γ′ are distinct rational numbers, then

(V.0.1) grγV gr
γ′

U B̃g =
V γUγ′B̃g

V >γUγ′B̃g + V γU>γ′B̃g

is acted on nilpotently by (s+ γ) and (s+ γ′), hence, by their difference γ − γ′ ̸= 0. So this

quotient is 0.

We use this to see that

(V.0.2) V γB̃g ⊆ UγB̃g + V >γB̃g

Indeed, let m ∈ V γB̃g. Then there exists some λ with m ∈ UλB̃g. We are done if λ ≥ γ.

Otherwise, by the vanishing of the quotient V.0.1, we can write m = u1 + u2 with u1 ∈

V >γUλB̃g and u2 ∈ V γU>λB̃g. We see that m ∈ UγB̃g + V >γB̃g if and only if u2 lies in that

subspace. But then we can repeat this argument for u2, with λ replaced with some λ′ > λ.

Iterating this and using discreteness proves the containment.

Using discreteness of the V -filtration, and by iteratively applying the containment V.0.2,

we get for any γ, λ ∈ Q, the containment

V γB̃g ⊆ W γB̃g + V λB̃g.

By definition of the microlocal V -filtration, there exists some q0 ≥ 0 such that, for all

q ≥ q0, we have

V γ+qB̃g = ∂−(q−q0)V γ+q0B̃g.

As V γ+q0B̃g is finitely generated over V 0DY×A1 [∂−1], there exists some β with V γ+q0B̃g ⊆
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W βB̃g. We choose q large enough such that q − q0 + β ≥ γ. Finally, we have

V γB̃g ⊆ W γB̃g + V γ+qB̃g ⊆ W γB̃g + ∂−(q−q0)V γ+q0B̃g = W γB̃g +W β+q−q0B̃g,

where the rightmost module is contained in W γB̃g by choice of q. This proves the claim.

The proof for the equality of b-functions is easy and left to the reader.

Let U = Y − (X × {0}). Then we define the minimal exponent α̃(Z) to be

α̃(Z) := α̃(g|U).

We will make use of the following lemma:

Lemma V.4. Let γ ∈ Q and α ∈ Zr
≥0 be such that yα∂

|α|
z δg ∈ V γB̃g∖V >γB̃g and y

α∂
|α|
z δU ∈

V >γB̃g|U . Then γ ∈ Z≥r.

Proof. The assumptions tell us that the class of yα∂
|α|
z δg is non-zero in grγV B̃g, but there

exists some integer N such that (y1, . . . , yr)
N · [yα∂|α|z δg] = 0. In particular, there exists some

β ∈ Z≥0 such that v := yβ[yα∂
|α|
z δg] ̸= 0 but (y1, . . . , yr)v = 0.

As yα∂
|α|
z δg ∈ B̃(0)

g , we know v ∈ grγV (B̃
(|β|)
g ). Hence, (θy−s)v = |β|v. But as (y1, . . . , yr)v =

0 and θy + r =
∑r

i=1 ∂yiyi, we see that

0 = (θy + r)v = (s+ r + |β|)v,

and so, since (s+ γ) also acts nilpotently on the element v, we get γ = r + |β|, proving the

claim.

Now, we are in position to prove the main theorem of this subsection.

Theorem V.5. ( [CDMO22] ) Let Z ⊆ X be a local complete intersection of codimension r
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defined by f1, . . . , fr. Then for any γ ∈ (0, 1] and k ≥ 0, we have

α̃(Z) ≥ r + k + γ ⇐⇒ Fk+1Bf ⊆ V r−1+γBf .

Proof. First, assume α̃(Z) ≥ r+ k+ γ. Assume toward contradiction that there exists some

α with |α| = k + 1 and ∂αt δ /∈ V r−1+γBf . Equivalently, by Lemma V.2, this implies yα∂
|α|
z /∈

V r−1+γB̃g. Assume this element defines a non-zero element in grβV B̃g. Then β < r−1+γ ≤ r.

However, by assumption, we have δg ∈ V r+k+γB̃g on U . Hence, by the previous lemma, we

get β ≥ r, a contradiction.

Conversely, assume Fk+1Bf ⊆ V r−1+γBf . This is equivalent to ∂αt δ ∈ V r−1+γBf for all

|α| ≤ k + 1. By Lemma V.2, this is equivalent to yα∂
|α|
z δg ∈ V r−1+γB̃g for all |α| ≤ k + 1.

Applying this for α = (k+1)ei, we see that y
k+1
i ∂k+1

z δg ∈ V r−1+γB̃g. Hence, on Ui = {yi ̸= 0},

we have ∂k+1
z δg ∈ V r−1+γB̃g, which is true if and only if δg ∈ V r+k+γB̃g on Ui. As this

is true for all i, and U = U1 ∪ · · · ∪ Ur, this shows that δg ∈ V r+k+γB̃g on U , and so

α̃(Z) ≥ r + k + γ.

V.0.4: Relation to Local Cohomology

In this section, we relate the V -filtration on Bf to the local cohomology Hodge module

Hr
Z(OX). This gives a relation between k-du Bois singularities and ⌊α̃(Z)⌋, using Theorem

V.5 and Theorem V.6 below. In the next subsection, we use similar ideas to relate k-rational

singularities and α̃(Z).

Assume throughout that Z is defined by f1, . . . , fr ∈ OX(X) and it has pure codimension

r. The goal is the following theorem:

Theorem V.6. Let X be a smooth, irreducible complex algebraic variety. Let Z be a complete

intersection of codimension r defined by f1, . . . , fr ∈ OX(X). Then

FkHr
Z(OX) = {[

∑
|α|≤k

uα

α!fα+1
1 . . . fα+r

r

] |
∑
|α|≤k

uα∂
α
t δf ∈ V rBf}.
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Recall that Hr
Z(OX) is a DX-module which naturally underlies the mixed Hodge module

HrI !QH
X [dimX], where I : Z → X is the inclusion. Let Γ : X → X × Ar be the graph

embedding along f1, . . . , fr, and let i : X × {0} → X × Ar be the inclusion of the zero

section, defined by the coordinates t1, . . . , tr.

Then, by Saito’s base-change [Sai90, Formula (4.4.3)], i!Γ+OX = I+I
!OX . Hence, in

order to compute local cohomology, we can use the module Bf := Γ+OX . By Theorem I.2,

we can compute i!Bf by the Koszul-like complex

T (Bf ) =

[
gr0V (Bf , F [−r])e0

t−→
r⊕

i=1

gr1V (Bf , F [−r])ei
t−→ . . .

t−→ grrV (Bf , F [−r])e1 ∧ · · · ∧ er,

]

where as before, the ei are used to keep track of the Koszul differentials.

By definition, and the fact that we are using left D-modules, the Hodge filtration on

Bf =
⊕

α∈Nr OX · ∂αt δf is defined by

FpBf =
⊕

|α|≤q−r

OX · ∂αt δf .

By Theorem IV.6, we know that T (Bf ) is filtered quasi-isomorphic to

[
V 0(Bf , F [−r])e0

t−→
r⊕

i=1

V 1(Bf , F [−r])ei
t−→ . . .

t−→ V r(Bf , F [−r])e1 ∧ · · · ∧ er.

]
= A0(Bf , F )

Let L =
V rBf∑r

i=1 tiV
r−1Bf

, with its induced Hodge filtration. Then, by what we have said

above, there is an isomorphism of D-modules

σ : L → Hr
Z(OX),

which we plan to make explicit, using the method of Theorem IV.5.
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By the proof of that theorem, we saw that the inclusion of complexes

A0(Bf ) → Kosz(Bf , t) =: T (Bf )

was a quasi-isomorphism. Hence, L is naturally isomorphic to HrT (Bf ).

We also make use of the Čech complex

Č(Bf ) =

[
Bf →

r⊕
i=1

Bf (∗Hi)ξi → · · · → Bf (∗H)ξ1 ∧ · · · ∧ ξr,

]
.

where Hi = {ti = 0} and H =
∑r

i=1Hi. Note that, as a complex, this can be identified with

ι+

[
OX →

r⊕
i=1

OX [
1

fi
] → · · · → OX [

1

f1, . . . , fr
],

]

where ι : X → X ×Ar is the graph embedding. Hence, Č(Bf ) is a resolution of ι+Hr
Z(OX).

This is true by the identification Bf (∗HI) = i+OX [
1
fI
], where fI =

∏
i∈I fi, which is

defined by the formula

1

tβ
u 7→

∑
α

(
s1 − β1
α1

)
. . .

(
sr − βr
αr

)
(−1)|α|α!hα

fα+β
δf ,

where tβ =
∏r

i=1 t
βi

i , u =
∑
hα∂

α
t δf ∈ Bf , si = −∂titi, and

(
si + k

ℓ

)
=

(si + k) . . . (si + k − ℓ+ 1)

ℓ!
.

Let M = ι+Hr
Z(OX). As Hr

Z(OX) is supported on Z, we know M is supported on

X × {0}, and so we have a canonical isomorphism

τ : Hr
Z(OX) → V 0M = gr0V (M),

by Example II.6
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Lemma V.7. Let u ∈ grrV Bf be represented by some u =
∑

α hα∂
α
t δ ∈ V rBf . Then

σ(u) =
∑
α

[
α!hα

fα1+1
1 . . . fαr+1

r

] ∈ Hr
Z(OX).

Proof. We make use of two double complexes. The first double complex mixes the complex

A• and the Čech complex along t1, . . . , tr. For 0 ≤ i, j ≤ r, the terms are

Ai,j =
⊕
|I|=i

⊕
|J |=j

V iBf (∗HJ)eI ⊗ ξJ .

Note that, except for the first, the rows and columns are acyclic. Indeed, we know

A0(Bf (∗HJ)) = i!Bf (∗Hj) is acyclic if J ̸= ∅, so the columns are acyclic. Moreover, we

know that the cohomology of the complex Č(Bf ) is supported on t1 = · · · = tr = 0, so

V iHkČ(Bf ) vanishes for all k. But V
i is an exact functor, so 0 = V iHkČ(Bf ) = HkV iČ(Bf )

is the kth cohomology of the ith row.

The second double complexK•,• mixes the Koszul and Čech complexes along the t1, . . . , tr.

Namely, for 0 ≤ i, j ≤ r, the terms are

Ki,jBf =
⊕
|I|=i

⊕
|J |=j

Bf (∗HJ)eI ⊗ ξJ .

As mentioned before the lemma statement, the rowsKi,•Bf give resolutions of
⊕

|I|=i ι+Hr
Z(OX).

Moreover, the columns compute
⊕

|J |=j i
!Bf (∗HJ), so if j ≥ 1, they are acyclic.

We have a natural inclusion of double complexes A•,• → K•,•, hence, an inclusion of total

complexes

T = Tot(A•,•) → Q = Tot(K•,•).

We have morphisms of complexes going from these total complexes to the rows and
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columns. This is given by the diagram

A0(Bf ) T V 0K(Bf )

Kosz(Bf , t) Q Kosz(M, t)[−r]

,

where by the proof of Theorem IV.5, the leftmost vertical map is a quasi-isomorphism. The

bottom right map is given by the diagram

Qr−1 Qr Qr+1 . . . Q2r

K0,r K1,r . . . Kr,r

0 M
⊕

|I|=1 M . . . M.

=

,

where the first vertical map in any column is the projection, and since Ki,r =
⊕

|I|=i Bf (∗H),

the second vertical map in any column is the quotient map Bf (∗H) → M.

As Hr
Z(OX) is supported on Z, ι+Hr

Z(OX) is supported on t1 = · · · = tr = 0, the Koszul

complex is isomorphic to Hr
Z(OX) placed in degree 0 (via the isomorphism τ). Hence, taking

Hr of the above diagram, we have a diagram

L = V rBf/
∑r

i=1 tiV
r−1Bf HrT Hr

Z(OX)

Bf/
∑r

i=1 tiBf HrQ Hr
Z(OX)

= .

The morphism we are interested in is the composition L → Bf/
∑r

i=1 tiBf → Hr
Z(OX),

using the fact that the bottom left map of the diagram is an isomorphism. As the first map

in the composition is the natural inclusion, we need only make precise the second map.

For any u ∈ Bf and J ⊆ {1, . . . , r}, we can consider 1
tJ
u ∈ Bf (∗HJ). Now, define

η =
∑
I

sgn(I, J)

tJ
ueI ⊗ ξJ ∈ Qr,
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where I ⊔ J = {1, . . . , r}.

The first projection of this element is u ∈ Bf/
∑r

i=1 tiBf , while its projection to Hr
Z(OX)

is [ 1
t1...tr

u]. Hence, we need only show that η is a cocycle.

The differential d of the total complex Q is defined as follows: first of all, it sends an

element of the form η above inside Qr to a tuple of elements which are indexed by subsets

K,κ ⊆ {1, . . . , r} such that |K|+ |κ| = r + 1 and K ∩ κ = {ℓ}, a singleton set.

We write out the component corresponding to K,κ as

(dη)K,κ =
sgn(K − {ℓ}, κ)tℓ

tκ
ueℓ ∧ eK−{ℓ} ⊗ ξκ + (−1)|K| sgn(K,κ− {ℓ})

tκ−{ℓ}
ueK ⊗ ξℓ ∧ ξκ−{ℓ}

=
1

tκ−{ℓ}
u
(
sgn(K − {ℓ}, κ)eℓ ∧ eK−{ℓ} ⊗ ξκ + (−1)|K|sgn(K,κ− {ℓ})eK ⊗ ξℓ ∧ ξκ−{ℓ}.

)
.

Hence, it suffices to show that the term in the parentheses is 0. Assume ℓ is the ith

element of K and the jth element of κ. Then the term in the parentheses is equal to (by

rearranging the wedges)

((−1)i−1sgn(K − {ℓ}, κ) + (−1)j−1+|K|sgn(K,κ− {ℓ}))eK ⊗ ξκ

= ((−1)i+j+|K|−2 + (−1)i+j+|K|−3)sgn({ℓ}, K − {ℓ}, κ− {ℓ})eK ⊗ eκ = 0.

Hence, η is a cocycle, and finally we just need to use the morphism τ to complete the

proof. But τ−1 is given by evaluating the expression at s1 = · · · = sr = 0 as shown in

Example II.6, and so we achieve our claim.

From this, the description of the Hodge filtration is immediate:

Proof of Theorem V.6. We prove the equivalent statement that FkBf ⊆ V rBf iff FkHr
Z(OX) =

PkHr
Z(OX).

Note that the elements [
1

fα1+1
1 . . . fαr+1

r

]
∈ Hr

Z(OX)
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for |α| = p generate PkHr
Z(OX) by [MP22a, Lemma 9.2]. Hence, if FkBF ⊆ V rBf , then

∂αt δf ∈ V rBf for all |α| ≤ k, and so by applying the theorem, we conclude FkHr
Z(OX) =

PkHr
Z(OX).

We prove the converse by induction on k. Note that the containment FkBf ⊆ V rBf is

automatic at points of X which do not lie in Z, since the V -filtration is all of Bf away from

Z. Hence, we need only show the containment at points of Z.

For k = 0, the assumption F0Hr
Z(OX) = P0Hr

Z(OX) implies that the class [ 1
f1...fr

] ∈

F0Hr
Z(OX), so there exists some h ∈ OX with h−1 ∈ (f1, . . . , fr) and such that hδf ∈ V rBf .

In particular, at any point of Z, δf ∈ V rBf .

Now, work inductively. We Fk+1Hr
Z(OX) = Pk+1Hr

Z(OX), hence we can assume ∂αt δf ∈

V rBf for all |α| ≤ k, and we want to show that the same is true for all |α| ≤ k + 1.

By [MP22a, Lemma 9.1,9.2], we know that grPk+1Hr
Z(OX) is a free OZ-module with basis

given by

vα = [
α!

fα+1
1 . . . fα+r

r

]

for |α| = k + 1, because Z is a complete intersection.

The map Fk+1V
rBf → grPk+1Hr

Z(OX) is surjective, so for all α with |α| = k+1 there exists

a lift of vα, say uα ∈ Fk+1V
rBf . We express uα =

∑
|β|≤k+1 hα,β∂

β
t ∈ V rBf . The assumption

that uα maps to vα means that hα,β ∈ (f1, . . . , fr) for β ̸= α and hα,α − 1 ∈ (f1, . . . , fr).

By induction, we can subtract the lower order terms from uα, and so we see
∑

|β|=k+1 hα,β∂
β
t ∈

V rBf . Hence, ∂
α
t ∈ V rBf at all points of Z, proving the claim.

This gives an interpretation of k-du Bois singularities in terms of the V -filtration on Bf .

V.0.5: Characterization of k-rational Singularities

Recall that, given a complex algebraic variety Z, Laza and Friedman [FL22a] have defined

and studied [FL22c, FL22b] the class of k-rational singularities to be those for which the
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natural map

Ωp
Z → Ωp

Z → D(Ωp
Z)

is a quasi-isomorphism for all p ≤ k. Here D(Ωp
Z) = RHomOZ

(Ωp
Z , ω

•
Z) is the shifted

Grothendieck dual functor, with ω•
Z the dualizing complex. The second map is defined

via a resolution of singularities π : Z̃ → Z using functoriality of the du Bois complex and

the fact that, on a smooth variety, Ωp

Z̃
= Ωp

Z̃
, so the isomorphism follows from the usual fact

for Kähler differentials on a smooth variety.

The goal of this section is to show that this property can be understood through the

invariant α̃(Z), which has already been shown for hypersurface singularities by [FL22b], see

also [MP20].

Theorem V.8. Let Z be a local complete intersection of pure codimension r contained in

the smooth, irreducible algebraic variety X. Then Z has k-rational singularities if and only

if α̃(Z) > r + k.

In fact, we can prove more, relating this condition to the intersection cohomology mixed

Hodge module via the weight filtration on local cohomology.

Throughout, let d = n− r be the dimension of Z. We recall the pertinent notions from

Section II.4. In that section, we constructed maps

γZ : QH
Z [dimZ] → ICZQ

H

and

γ∨Z : D(ICZQ
H)(−d) → i!QH

X [n+ r](r).

Moreover, we identified

(V.0.3) .i∗D(ICZQ
H) ∼= grW−di∗H−d(i∗i

!QH
X(n)[2n]).

Theorem V.9. For any nonnegative integer k, the following are equivalent:
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1. α̃(Z) > r + k.

2. (s+ r)Fk+rV
rBf ⊆ V >rBf .

3. Wn+rFkHr
Z(OX) = PkHr

Z(OX).

4. The morphism

Fp+ri∗Q
H
Z [d] → Fp+rICZ(Q

H
X)

induced by γZ and the composition

FpWn+rHr
Z(OX) → FpHr

Z(OX) → PpHr
Z(OX)

induced by γ∨ are isomorphisms for all p ≤ k.

5. Z has k-rational singularities, i.e., Z has k-du Bois singularities and the natural map

ψk : Ω
k
Z → RHomOZ

(Ωd−k
Z , ωZ)

is an isomorphism.

6. The canonical morphism

Ωp
Z → grF−pDRX(i∗ICX(Q

H
X))[p− d]

is a quasi-isomorphism for all p ≤ k.

Proof. The proof is in many steps.

Step 0: It is clear that 1) implies 2), as α̃(Z) > r + k is true if and only if

Fk+r+1Bf ⊆ V >r−1Bf ,
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which implies
r∑

i=1

tiFk+r+1Bf ⊆ V >rBf ,

hence (s+ r)Fk+rBf ⊆ V >rBf .

Step 1: 2) ⇐⇒ 3) Assume 2) holds.

As Bf is a pure Hodge module of weight n = dimX, we are concerned with the mon-

odromy filtration W•gr
α
V Bf which is characterized by the properties

1. N = s+ α : (grαV Bf ,W ) → (grαV Bf ,W [2])

2. N i : grWn+igr
α
V Bf

∼= grWn−igr
α
V Bf .

Explicitly, we have

Wn+igr
α
V Bf =

∑
j

ker((s+ α)i+j+1) ∩ Im((s+ α)j).

By Theorem I.2, if σ :
⊕r

i=1(gr
r−1
V Bf ,W )

t−→ (grrV Bf ,W ), then for every i, we have an

isomorphism of filtered D-modules

grWi+rHr
Z(OX) ∼= (grWi coker(σ), F [−r]).

Recall that Wi+rHr
Z(OX) = 0 for all i < n, hence grWn+rHr

Z(OX) = Wn+rHr
Z(OX). By

assumption, we see that

Fk+rgr
r
V Bf ⊆ ker((s+ r)),

which by the description of the monodromy filtration implies Fk+rgr
r
V Bf ⊆ Wngr

r
V Bf . Hence,

FkWn+rHr
Z(OX) = FkHr

Z(OX) = PkHr
Z(OX),

where the last equality follows from the description of the Hodge filtration on Hr
Z(OX) in

terms of V . Hence, we have shown 3), and reading the proof backwards we see that 3)
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implies 2).

Step 2: 3) =⇒ 4) We begin with two lemmas

Lemma V.10. Assume FkWn+rHr
Z(OX) = PkHr

Z(OX). Then for all p ≤ k, we have

FpWn+rHr
Z(OX) = PpHr

Z(OX).

Proof of the Lemma. AsWn+rHr
Z(OX) is supported on Z, it is clear that IZFpWn+rHr

Z(OX) ⊆

Fp−1Wn+rHr
Z(OX) for all p, see [Sai88, Prop. 3.2.6]. Moreover, by definition of the pole order

filtration, we have

IZ · PpHr
Z(OX) = Pp−1Hr

Z(OX),

so this proves the claim by descending induction on p.

Lemma V.11. Assume FpWn+rHr
Z(OX) = FpHr

Z(OX) for some p. Then the surjection

Fp+r+1i∗Q
H
Z [d] → Fp+r+1i∗ICZQ

H

induced by γZ is an isomorphism.

Proof of Lemma. The assumed equality in the theorem statement is equivalent to Fpgr
W
n+r+jHr

Z(OX) =

0 for all j > 0. Each grWn+r+jHr
Z(OX) is a polarizable pure Hodge module of weight n+r+ j,

hence, there is an isomorphism of filtered DX-modules

(V.0.4) DX(gr
W
n+r+jHr

Z(OX)) ∼= grWn+r+jHr
Z(OX)(n+ r + j).

On the other hand,

(V.0.5)

DX(gr
W
n+r+jHr

Z(OX)) ∼= grW−n−r−jDXHr
Z(OX) ∼= grW−n−r−ji∗Q

H
Z [d](n)

∼= (grWd−ji∗Q
H
Z [d])(n),

by isomorphism V.0.3.

104



Putting the isomorphisms V.0.4 and V.0.5 together, we obtain an isomorphism of filtered

DX-modules

grWn+r+jHr
Z(OX)(r + j) ∼= grWd−ji∗Q

H
Z [d].

Taking Fp+r+1 of this isomorphism yields an isomorphism

Fp+1−jgr
W
n+r+jHr

Z(OX) ∼= Fp+r+1gr
W
d−ji∗Q

H
Z [d].

As j > 0, the left hand side is 0, so the right hand side is, too. As W is a bounded below

filtration, this implies Fp+r+1Wd−1i∗Q
H
Z [d] = 0, which completes the proof by definition of

the map γ.

Putting these lemmas together immediately shows that 3) =⇒ 4).

Step 3: 4) =⇒ 5) and 6). By [MP22a, Theorem F], the assumption of 5) implies Z

is k-du Bois. As ψk is defined to be grF−kDRX(i∗ψ)[k − d], the first is an isomorphism iff

the second is. By duality and the fact that Dψ = ψ(d), the latter is an isomorphism iff

grFk−dDRX(i∗ψ)[d− k] is, hence we have 6).

Now, as Z is k-du Bois, to show 7) we need grF−pDRX(i∗γZ) to be an isomorphism for all

p ≤ k. Again, by duality, this is equivalent to grFp−dDRX(i∗γZ) being an isomorphism for all

p ≤ k. This is implied by the map Fp+ri∗γ
∨
Z being an isomorphism for all p ≤ k using the

definition of the functor DRX , but this is precisely the map FpWn+rHr
Z(OX) → FpHr

Z(OX),

proving the claim.

Step 4: 5) =⇒ 4) By the argument of [MP22b] (generalized to the reducible LCI case),

the conditions in 6) imply that Z has rational singularities. Hence, the conditions for k

imply them for all p ≤ k, and in particular, we have that

ψp : gr
F
p−dDRX(i∗ψZ)[p− d]

is a quasi-isomorphism for all p ≤ k. Using Property II.4.1 and the fact that DψZ = ψZ(d),
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we conclude also that grFDRX(i∗ψZ) is a quasi-isomorphism for any p ≤ k.

Also, as Z is k-rational, it must be k-du Bois, too. Hence, FpHr
Z(OX) = PpHr

Z(OX) for

all p ≤ k. Hence, the morphisms in 5) are quasi-isomorphisms, as desired.

Step 5: 6) =⇒ 3) We induce on k. For k = 0, note that by applying RHom(−, ωX [n]) to

the isomorphism in the assumption of 7), and by using Property II.4.1, we get an isomorphism

grF−nDRX(Wn+rHr
Z(OX)) → grF−nDRX(Hr

Z(OX)) → ExtrOX
(OZ , ωx)

where the lattermost module is the only non-vanishing Ext, as Z is a complete intersection

of codimension r. By definition of the filtration on the de Rham complex and the fact that

the Hodge filtration satisfies F−1 = 0 for the modules we are concerned with, we have

grF−nDRX(Wn+rHr
Z(OX)) = ωX ⊗O F0Wn+rHr

Z(OX),

grF−nDRX(Hr
Z(OX)) = ωX ⊗O F0Hr

Z(OX),

and the image of Extr(OZ , ωX) in ωX⊗OHr
Z(OX) is, by definition, ωX⊗OP0Hr

Z(OX), proving

the claim for k = 0.

For higher k, we apply induction to assume FpWn+rHr
Z(OX) = PpHr

Z(OX) for p ≤ k− 1.

Hence, Z has k−1-du Bois singularities, and so satisfies codimXZsing ≥ 2(k−1)+1 = 2k−1

by [MP22a, Cor. 3.40]. We need to prove that the inclusion FkWn+rHr
Z(OX) ↪→ PkHr

Z(OX)

is an isomorphism. But by the inductive hypothesis, this is equivalent to showing that the

natural morphism

grFk−nDRX(Wn+rHr
Z(OX)) → grPk−nDRX(Hr

Z(OX))

is a quasi-isomorphism. Using Property II.4.1 and by applying RHom(−, ωX [r + k]) to the
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isomorphism assumed in 7), we get that the composition

(V.0.6) grFk−nDRX(Wn+rHr
Z(OX)) → grFn−kDRX(Hr

Z(OX)) → RHomOX
(Ωk

Z , ωX [r + k])

is an isomorphism. But as codimX(Zsing) ≥ 2k − 1 ≥ k, using that k > 0, we know by

[MP22a, Section 5.2] that the second map in the composition V.0.6 is the canonical map

grFk−nDRX(Hr
Z(OX)) → grPk−nDRX(Hr

Z(OX)),

proving the claim.

Step 6: 3) =⇒ 1) We use the following notation

σ :
r⊕

i=1

grr−1
V Bf

ti−→ grrV Bf

δ : grrV Bf

∂ti−→
r⊕

i=1

grr−1
V Bf .

By [CD21, Theorem 1.2], we have an isomorphism in the category of filtered DX-modules

grWn+i ker(δ)
∼= grWd+ii∗Q

H
Z [d],

which implies Wn ker(δ) = ker(δ). Similarly, we have Wn−1coker(σ) = 0.

We have the canonical inclusion

Wn ker(δ) ⊆ Wngr
r
V Bf

which we can compose to get a morphism

(V.0.7) grWn ker(δ) → Wncoker(σ) =
Wngr

r
V Bf

WngrrV Bf ∩ im(σ)
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which preserves the Hodge filtration. Indeed, we see that Wn−1 ker(δ) 7→ 0, as

Wn−1 ker(δ) ⊆ Wn−1gr
r
V Bf = (s+ r)Wn+1gr

r
V Bf =

r∑
i=1

ti∂tigr
r
V Bf ⊆ im(σ).

Note that, by Lemma V.11, we have

grFp+ri∗Q
H
Z [d] → grFp+rgr

W
d i∗Q

H
Z [d]

is an isomorphism for all p ≤ k + 1, and so we see that the natural morphisms

grFk+r ker(δ) → grFk+rgr
W
n ker(δ), grFk+rWncoker(σ) → grFk+rcoker(σ)

are isomorphisms. We wish to show that the morphism V.0.7 is a filtered isomorphism.

Note that it is a filtered isomorphism on the open subset Ũ ⊆ X such that Ũ ∩Z = Zreg.

Indeed, in this case,

ker(δ)|Ũ = grrV Bf |Ũ = coker(σ)|Ũ = i+OŨ ,

where i : Ũ → Ũ×Ar is the graph embedding along f1, . . . , fr, and these equalities respect the

Hodge filtration. The morphism V.0.7 has both source and target decomposing into simple

DX-modules, corresponding to the irreducible components of Z. It is thus an isomorphism,

and hence, as the Hodge filtration is determined by the restriction to the regular locus (see

[Sai88, (3.2.2.2)]), it is a filtered isomorphism.

In summary, we have shown that the composition

grFk+r ker(δ) → grFk+rgr
r
V Bf → grFk+rcoker(σ)

is an isomorphism. Now, the assertion in 4) implies α̃(Z) ≥ r + k by Theorem V.6. Hence,

we have

grFk+rgr
r
V Bf = grFk+rBf/IZ · grFk+rBf = grFk+rcoker(σ),
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where the first equality follows from Fk+rV
>rBf =

∑r
i=1 tiFk+rV

>(r−1)Bf by Theorem IV.6.

Hence, by what we have shown, we see that δ = 0 on grFk+rBf , as the composition and the

second morphism are isomorphisms. Hence,

∂tiFk+rBf ⊆ Fk+rBf + V >r−1Bf ⊆ V >r−1Bf ,

where we know as α̃(Z) ≥ r + k that Fk+rBf ⊆ V rBf . Hence, we have shown

Fk+r+1Bf ⊆ V >r−1Bf ,

which implies α̃(Z) > r + k, as desired.

V.0.6: α̃(Z) for locally complete intersections and a local variant

In this section, we define the minimal exponent for a locally complete intersection, show that

α̃(Z) = ∞ iff Z is smooth, and define α̃x(Z) for any x ∈ Z.

Using Theorem V.5, we see that an alternative definition to the minimal exponent is the

following:

α̃(Z) =


sup{λ > 0 | δf ∈ V λBf} δf /∈ V rBf

sup{r − 1 + q + γ | FqBf ⊆ V r−1+γBf , γ ∈ (0, 1]} δ ∈ V rBf

.

Remark V.12. Note that if there are open subsets U1, . . . , UN ⊆ X such that Z ∩Ui ̸= ∅ and

Z ⊆ U1 ∪ · · · ∪ UN , then

α̃(Z) = min
1≤i≤N

α̃(Z ∩ Ui).

Indeed, the containment FqBf ⊆ V r−1+γBf can be checked on these open subsets, as it

trivially holds on X − Z.

Lemma V.13. The definition of α̃(Z) does not depend on the choice of regular sequence

defining Z in X.
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Proof. By the previous remark, we can check this on an affine open cover of X, so we

assume X is affine. Let (f1, . . . , fr) = (g1, . . . , gr) define Z in X. If δf /∈ V rBf , then it lies

in V lct(Z)Bf , and lct(Z) does not depend on choice of generators.

Hence, we need only show that if q > 0 is such that FqBf ⊆ V r−1+γBf , then FqBg ⊆

V r−1+γBg and conversely.

Write gi =
∑r

j=1 aijfj for some aij ∈ OX . Let A be the matrix (aij), with determinant

defining a hypersurface D in X. By choice of the g’s, this hypersurface does not intersect

Z. Hence, we can remove it by the previous remark, and assume the matrix A is invertible.

Now, we have an isomorphism

u : X ×Ar → X ×Ar (x, ti) 7→ (x,
r∑

j=1

aijti),

through which the graph embedding along g1, . . . , gr factors, by first applying the graph

embedding along f1, . . . , fr. In particular, we see that u+Bf = Bg as Hodge modules.

This isomorphism u preserves X × {0} and induces an automorphism on DX×Ar which

maps t1, . . . , tr to linear forms of t1, . . . , tr. We view the identification u+Bf = Bg as an

isomorphism τ : Bf → Bg where Bf is a DX×Ar -module acted on through the automorphism

u∗ of DX×Ar .

It is clear then that τ(FqBf ) = FqBg, and one can show easily using uniqueness of the

V -filtrations and the fact that u preserves X × {0} that τ(V λBf ) = V λBg for all λ. This

proves the claim.

This lemma shows that the following definition does not depend on choices.

Definition V.14. Let Z be a locally complete intersection of pure codimension r. Let

U1, . . . , UN ⊆ X be open subsets such that Z ⊆ U1 ∪ · · · ∪ UN and such that Z ∩ Ui ̸= ∅ is a

complete intersection of codimension r. Then define

α̃(Z) := min
1≤i≤N

α̃(Z ∩ UI).
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Lemma V.15. We have that α̃(Z) ≤ n+r
2

if and only if Z is singular.

Proof. First of all, assume Z is smooth. Then f1, . . . , fr can be taken to be part of a system

of coordinates on X. Let g =
∑r

i=1 yifi be the hypersurface defining the minimal exponent.

It is easy to check that, in general, the singular locus of g|U , where U = (X×Ar)−(X×{0})

is contained in Zsing ×Ar.

Hence, g|U is smooth if Z is smooth, and so α̃(g|U) = α̃(Z) = ∞.

Conversely, if Z is singular, there exists some fi and a point x ∈ Z with multx(fi) ≥ 2.

We assume for ease that i = 1. Then for p = (1, 0, . . . , 0) ∈ Ar, the point (x, p) ∈ U satisfies

mult(x,p)(g|U) ≥ 2, and so α̃(g|U) ≤ n+r
2

by [MP20, Theorem E(3)].

We define now a local variant of the minimal exponent. Let x ∈ Z be a point which

is fixed throughout this discussion. We see immediately that if x ∈ V ⊆ V ′ are two open

subsets, then α̃(Z ∩V ′) ≤ α̃(Z ∩V ). Assume that there exists a decreasing sequence of open

neighborhoods of x, say V1 ⊇ V2 ⊇ . . . so that α̃(Z ∩ Vi) is a strictly increasing sequence.

If this sequence increases to ∞, then it eventually is larger than n+r
2
, and so Z would be

smooth at x, but then the sequence of minimal exponents stabilizes. If the limit strictly

increases to a bounded value, this would contradict discreteness of the V -filtration.

Hence, we have argued that for any x ∈ Z, there exists an open neighborhood x ∈ V ⊆ X

such that if x ∈ V ′ ⊆ V , then

α̃(Z ∩ V ′) = α̃(Z ∩ V ).

We define α̃x(Z) := α̃(Z ∩ V ) for this choice of neighborhood V . Alternatively, it can be

defined as

α̃x(Z) := max
x∈V

α̃(Z ∩ V ).

Remark V.16. By discreteness of the V -filtration and the fact that the possible values for

α̃x(Z) lie in the set (0, n+r
2
] ∪ {∞}, it is easy to see that the set

{α̃x(Z) | x ∈ Z}
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is finite. Moreover, we have

α̃(Z) = min
x∈Z

α̃x(Z),

and the set

{x ∈ Z | α̃x(Z) ≥ γ} ⊆ Z

is an open subset of Z for any γ ∈ Q>0.

V.0.7: Example: Cones over Smooth Complete Intersections in Projective Space

In this section we compute the minimal exponent for a class of complete intersection varieties,

generalizing [CDMO22, Example 4.23].

Let f1, . . . , fr ∈ C[x1, . . . , xn] be weighted homogeneous of degree d ≥ 2 for some weights

(ρ1, . . . , ρn). So for all j, we have

n∑
i=1

ρixi∂xi
fj = d · fj.

Let θ =
∑n

i=1 ρixi∂xi
.

The main result of this section is the following:

Theorem V.17. Let f1, . . . , fr ∈ C[x1, . . . , xn] be weighted homogeneous with weights (ρ1, . . . , ρn)

of degree d. Assume Z = {f1 = · · · = fr = 0} ⊆ An is a complete intersection of codimension

r with an isolated singularity at the origin. Then

α̃(Z) =

∑n
i=1 ρi
d

.

We will prove this by studying the hypersurface g =
∑r

i=1 fiyi. First, we begin with an

important lemma concerning the singular locus of g. This, in part, explains the choice of

actually looking at g|U , where U = X ×Ar − (X × {0}). The proof is left to the reader.

Lemma V.18. Let f1, . . . , fr ∈ OX define a variety Z of codimension r. Let g =
∑r

i=1 yifi.
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Then

Sing(g) = ⊔x∈Zx×Wx,

where Wx = ker J t
f (x) is a linear subspace of Ar and J t

f (x) is the transpose of the Jacobian

matrix of f1, . . . , fr at x. In particular,

Sing(g|U) = ⊔x∈Zsing
(x×Wx − {0}).

Now, assume Z = V (f1, . . . , fr) satisfies Zsing = {0} as in the theorem statement. The

lemma tells us that Sing(g|U) = 0×Ar, as the Jacobian matrix vanishes at 0.

Note that g =
∑r

i=1 yifi, so θ(g) = dg. Hence, in Bg and B̃g, we have

θ∂kz δg = ∂kz (ds)δg = d(s− k)∂kz δg,

for all k. The same relation holds in B̃g|U , which we denote by B̃U .

The goal is to understand for which λ we know δg defines a non-zero element of grλV B̃U .

This λ is, by definition, α̃(g|U) = α̃(Z).

For every α ∈ Q ∩ [0, 1), the filtered DU -module (grαV BU , F ) is a direct summand of a

mixed Hodge module. In particular, it is regular and quasi-unipotent in the sense of Saito

[Sai88, Section 3.2.1]. Moreover, we have a filtered isomorphism for such α

(grαV BU , F ) ∼= (grαV B̃U , F )

by [Sai94, (2.1.4)]. Also, by [Sai94, (2.2.3)], we have filtered isomorphisms for λ = k+α, k ∈ Z

∂kz : (grλV B̃U , F ) → (grαV B̃U , F [−k]),

Hence, (grλV B̃U , F ) is also quasi-unipotent and regular. Moreover, it is supported on Sing(g|U),

which is the vanishing locus of x1, . . . , xn.
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By [Sai88, Lemme 3.2.6], we know that the smallest piece of the Hodge filtration onf

grλV B̃U is killed by (x1, . . . , xn). By definition of the Hodge filtration on B̃U , if δ defines a

non-zero element of grλV B̃U , then it must lie in the lowest Hodge piece. Indeed, F−1B̃U ⊆∑
i<0OX∂

i
zδ ⊆ V λ+1B̃U .

Hence, if λ is such that δ defines a non-zero element of grλV B̃U , we see then that

(x1, . . . , xn)δ = 0 in this associated graded. But then θ +
∑n

i=1 ρi =
∑n

i=1 ρi∂xi
xi also

kills δ. So we have

0 = (θ +
n∑

i=1

ρi)δ = (ds+
n∑

i=1

ρi)δ.

Finally, in grλV B̃U , the operator (s+ λ) is nilpotent, and so we finally get

α̃(Z) = α̃(g|U) = λ =

∑n
i=1 ρi
d

,

as desired.
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CHAPTER VI

Monodromic Mixed Hodge Modules and Fourier

Transform

Here we apply the results on V -filtration for higher codimension subvarieties to the study

of the Fourier-Lagrange transform of mixed Hodge modules. It is known that this opera-

tion need not preserve the category of regular singularities for the underlying D-module,

so we must restrict our attention to monodromic mixed Hodge modules. We give a com-

plete description of the Hodge and weight filtrations for the Fourier-Laplace transform of a

monodromic mixed Hodge module.

VI.1: Monodromic Mixed Hodge Modules

Let X be a smooth complex algebraic variety and let E = X × Ar have fiber coordinates

z1, . . . , zr and vector fields ∂z1 , . . . , ∂zr giving the Euler operator θz =
∑r

i=1 zi∂zi . We say that

a mixed Hodge module M on E is monodromic if its underlying DE-module is monodromic.

Recall that this is equivalent to having a decomposition

(VI.1.1) M =
⊕
χ∈Q

Mχ, where Mχ =
⋃
ℓ≥1

ker((θz − χ+ r)ℓ).

These monodromic pieces Mχ are related by ziMχ ⊆ Mχ+1, ∂ziMχ ⊆ Mχ−1. Moreover,
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if V •M is the V -filtration on M along X × {0}, then

V λM =
⊕
χ≥λ

Mχ.

This class of mixed Hodge modules was studied by T. Saito [Sai22a] in the rank 1 case

and later in the arbitrary rank case [Sai22b]. One interesting result (Theorem 0.1) of loc.

cit. is that the Hodge filtration also decomposes along the monodromic decomposition

(VI.1.2) FpM =
⊕
χ∈Q

FpMχ, where FpMχ = FpM∩Mχ.

Now, we begin a study of the weight filtration of a monodromic mixed Hodge module.

First, assume that M is pure. Then we have the following understanding of the nilpotent

operator N =
⊕

χ∈Q θz − χ+ r. This was shown in the rank 1 case by T. Saito.

Proposition VI.1. Let M be a DE-module underlying a monodromic pure Hodge module

M . Then N = 0, i.e.,

Mχ = ker(θz − χ+ r).

Proof. We can decompose M into simple summands, as the category of polarizable pure

Hodge modules is semi-simple. Hence, we can assume M is simple. But then N being

nilpotent implies it must be 0, as it cannot be an isomorphism.

Interestingly, this has the following consequence in rank 1:

Corollary VI.2. Let M underlie a monodromic pure Hodge module on X ×A1. Then

z : M0 → M1, ∂z : M1 → M0

are identically 0.

Proof. By the previous theorem, we know N = z∂z : M1 → M1 and N = ∂zz : M0 → M0

are identically 0. So, in M0, we have im(∂z) ⊆ ker(z). But, as M allows a decomposition
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by strict support, we have

M0 = ker(z)⊕ im(∂z),

and so we must have im(∂z) = 0, and so ker(z) = M0, proving the claim.

We now proceed to the case of non-trivial weight filtration. It is easy to see that, as

DE-modules, we have an isomorphism Sp(M) = M for any monodromic DE-module M,

using the isomorphism E ∼= TX×{0}E.

Theorem VI.3. [CD21, Theorem 1.5] Let (M,W•) underlie a monodromic mixed Hodge

module on E. Let N =
⊕

χ∈Q θZ − χ+ r be the nilpotent operator on M. Then W•M is its

own relative monodromy filtration with respect to N , i.e., NW•M ⊆ W•−2M.

Note that if M is pure, this theorem is exactly saying that N = 0, the conclusion of

Proposition VI.1. Also note that the other condition in the definition of relative monodromy

filtration obviously holds for the filtration W itself.

Proof. Let (M,W ) underlie a monodromic mixed Hodge module on E. Note that the relative

monodromy filtration for (M,W•) with the nilpotent operator N =
⊕

θz − χ + r exists.

Indeed, for any χ, we know from Chapter II the existence of the relative monodromy filtration

on grχVM with respect to N = θz − χ+ r and the induced filtration M•gr
χ
VM = grχVW•M.

But grχVM = Mχ, so we can just take the direct sum of each of these relative monodromy

filtrations to define the one on M.

Now, grWi M is monodromic for any i, as it is a DE-module subquotient of M. It is

also pure, so by Proposition VI.1, we see that N = 0 on grWi M. Hence, θz − χ + r is 0 on

(grWi M)χ for all χ, and so the relative monodromy filtration is equal to W•M.

VI.2: Fourier-Laplace Transform

Let E∨ be the dual bundle of E, which is also trivial. Say the fiber coordinates are w1, . . . , wr

with derivations ∂w1 , . . . , ∂wr . Given any DE-module M, we can define the Fourier-Laplace

117



transform FL(M), which is a DE∨-module, as follows: as a DX-module, it agrees with the

structure of M. However, we have

wim = −∂zim, ∂wi
m = zim

for all 1 ≤ i ≤ r. In particular, if M is monodromic, then FL(M) is, too, and if FL(M)χ is

the χth monodromic piece (along w1, . . . , wr), we have as DX-modules equality

FL(M)χ = Mr−χ,

where the right hand side is the r − χth monodromic piece of M.

The functor FL need not preserve the category of regular holonomic D-modules, and in

particular it need not preserve the category of mixed Hodge modules. However, Brylinski

showed that if M is regular holonomic and monodromic on DE, then FL(M) is regular

holonomic and monodromic on DE∨ . The main theorem is that FL(M) naturally underlies

a mixed Hodge module on E∨ if M ∈ MHMmon(E).

Let E = E ×X E∨ which, as a variety, is isomorphic to X × Ar × Ar. Let p : E → E

be the projection and i : E∨ → E the inclusion of the zero section. Let g : E → A1 be the

regular function
∑r

i=1 ziwi. For any M ∈ MHM(E), consider the total nearby cycles

ϕg(M) =
⊕

λ∈(0,1]

ϕg,λ(M).

The goal of this section is

Theorem VI.4. [CD21, Theorem 1.4] Let M be a monodromic regular holonomic DE-

module. Then, using the above notation, there is a natural isomorphism

FL(M) ∼= H0σ∗ϕtΓ+p
!(M)[−r].
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Using this and the fact thatH0i∗, ϕg and p
! preserve the category of mixed Hodge modules,

we see that FL(M) naturally underlies a mixed Hodge module on E∨. We will explain the

Hodge and weight filtration on this Hodge module after the proof of the theorem.

Remark VI.5. In [RW22, Definition 4.9] and [KS90, (10.3.31)], the Fourier-Laplace transform

(called Fourier-Sato transform for monodromic objects) is defined in the following way: let

p : E → E, g ∈ OE(E) and Γ : E → E × A1 be defined as in our notation. Then, let

ω = (q× id)◦Γ where q : E → E∨ is the projection onto E∨ (leaving A1 fixed). The Fourier-

Sato transform of a monodromic mixed Hodge module is defined to be the composition

ϕξω∗p
!(M)[−r],

where ξ is the coordinate on A1.

However, this is precisely our definition. Indeed, writing ω∗ = (q × id)∗Γ+, we see easily

that ϕt(q × id)∗ = q∗ϕt, as q × id does not affect t, the coordinate on A1. Also, by Lemma

VI.6, we know ϕξΓ+p
!(M)[−r] is z-monodromic. Then the claim boils down to a mixed

Hodge module version of Proposition IV.4, which is immediate from the proof of Proposition

IV.4. Indeed, the proof amounts to showing the vanishing of a certain D-module, but the

corresponding mixed Hodge module is 0 if the underlying D-module is, too. Hence, p∗ = σ∗

on ϕξΓ+p
!(M), proving the claim.

We introduce some notation to prove the theorem. We can write the underlying DE -

module of p!(M) as M[w], with the obvious DE -module action. Now, g defines a singular

hypersurface, so we must use the graph embedding Γ : E → E × A1 to understand ϕg.

Let ξ be the coordinate on A1 with corresponding derivation ∂. Recall that Γ+M[w] =⊕
k≥0M[w]∂kδg, and the action is given by

P (mwβ∂kδg) = P (mwβ)∂kδg for P ∈ DX +OE ,

∂wi
(mwβ∂kδg) = βimw

β−ei∂kδg − zimw
β∂k+1δg for 1 ≤ i ≤ r,
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∂zi(mw
β∂kδg) = ∂zi(m)wβ∂kδg −mwβ+ei∂k+1δg for 1 ≤ i ≤ r,

ξ(mwβ∂kδg) = gmwβ∂kδg − kmwβ∂k−1δg

∂(mwβ∂kδg) = mwβ∂k+1δg.

Hence, if we define θ̃z by the formula

θ̃z(mw
β∂kδg) = θz(m)wβ∂kδg,

we see that

θz(mw
β∂kδg) = (θ̃z − (k + 1)− ξ∂)(mwβ∂kδg),

and similarly,

θw(mw
β∂kδg) = (|β| − (k + 1)− ξ∂)(mwβ∂kδg).

Note that Γ+M[w] decomposes into eigenspaces for the operators T = θz + ξ∂ + 1 and

S = θw + ξ∂ +1. Indeed, every element can be written uniquely as a sum of elements of the

form mwβ∂kδg for m ∈ Mχ for some χ, β, j. For such an element, we have

(T − λ)a(mwβ∂kδg) = 0 ⇐⇒ (θz − k − λ)am = 0 ⇐⇒ m ∈ Mk+λ+r,

(S − λ)a(mwβ∂kδg) = 0 ⇐⇒ (|β| − k − λ)a = 0 ⇐⇒ |β| = k + λ.

As |β| and k lie in Z, this shows that the only eigenvalues of S are integers. Moreover,

these operators obviously commute with each other, so Γ+M[w] decomposes into simulta-

neous eigenspaces. We shift these for ease of notation and denote

Eβ,ℓ =
∑

α∈Nr,|α|≥−ℓ

Mβ+|α|+ℓwα∂|α|+ℓδg,
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and we pick out the part with a fixed power ∂j, denoted

F j
β,ℓ =

∑
|α|=j−ℓ

Mβ+|α|+ℓwα∂jδg,

hence,

Eβ,ℓ =
⊕
j≥ℓ

F j
β,ℓ.

It is trivial to check that these spaces are moved in the following way with the operators

of DE×A1 :

ziEβ,ℓ ⊆ Eβ+1,ℓ

∂ziEβ,ℓ ⊆ Eβ−1,ℓ

wiEβ,ℓ ⊆ Eβ,ℓ−1

∂wi
Eβ,ℓ ⊆ Eβ,ℓ+1

ξEβ,ℓ ⊆ Eβ+1,ℓ−1

∂Eβ,ℓ ⊆ Eβ−1,ℓ+1.

For any λ ∈ Q, the piece V λΓ+M[w] is invariant under the operators T and S, so it also

decomposes into simultaneous eigenspaces. We write Eλ
β,ℓ = V λΓ+M[w] ∩ Eβ,ℓ.

Lemma VI.6. Let λ ∈ Q. Then

grλV Γ+M[w] =
⊕
β,ℓ

Eλ
β,ℓ/E

>λ
β,ℓ .

Moreover, grλV Γ+M[w] is monodromic along z1, . . . , zr and along w1, . . . , wr. The mon-

odromic pieces are given, respectively, by

(
grλV Γ+M[w]

)χ
z
=
⊕
ℓ∈Z

Eλ
χ+λ,ℓ/E

>λ
χ+λ,ℓ
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(
grλV Γ+M[w]

)χ
w
=
⊕
β∈Q

Eλ
β,r−λ−χ/E

>λ
β,r−λ−χ

Proof. The first claim is trivial. For the last two claims, use the fact that grλV Γ+M[w]

decomposes into its simultaneous eigenspaces for T and S. Also, use the fact that T =

θz + N + λ and S = θw + N + λ, where N = ξ∂ − λ + 1 is the nilpotent operator on

grλV Γ+M[w]. Hence, if an element u lies in an eigenspace for T , and N acts nilpotently, it

must also lie in an eigenspace for θz. Similarly for an element lying in an eigenspace for S

and N acts nilpotently. From here it is just an index check.

Finally, we define morphisms φβ,ℓ : Eβ,ℓ → Mβ+ℓ by

∑
mαw

α∂|α|+ℓδg 7→ (−1)ℓ
∑

∂αz (mα).

By mαw
α∂|α|+ℓδg ∈ Eβ,ℓ, we know mα ∈ Mβ+ℓ+|α|, and so the image does land in Mβ+ℓ.

Moreover, the morphism is DX-linear. It is easy to check that this family of morphisms has

the following behavior with respect to the operators in DE×A1 :

φβ−1,ℓ ◦ ∂zi = 0.

φβ,ℓ−1 ◦ wi = −∂zi ◦ φβ,ℓ

φβ,ℓ+1 ◦ ∂wi
= zi ◦ φβ,ℓ

φβ+1,ℓ−1 ◦ ξ = −(θz − ℓ+ r) ◦ φβ,ℓ

φβ−1,ℓ+1 ◦ ∂ = −φβ,ℓ.

We can strengthen the first property as follows:

Lemma VI.7. Assume ℓ ≥ 0. Then

ker(φβ,ℓ) =
r∑

i=1

∂ziEβ+1,ℓ.
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Proof. We clearly have the containment ⊇.

Now, let η =
∑

|α|≤amαw
α∂|α|+ℓδg lie in the kernel. We prove the claim by induction on

a. Note that if a = 0, then φβ,ℓ(m0∂
ℓδg) = (−1)ℓm0 = 0 implies m0 equals 0, so the base

case is handled.

Assume the claim holds true for any sum with |α| ≤ a− 1 lying in the kernel. As a > 0,

for any α with |α| = a, there exists some non-zero index αi > 0. Choose such an i for each

α, call it iα. Then η +
∑

|α|=a ∂ziα (mαw
α−eiα∂|α|+ℓ−1)δg has no terms wα with |α| = a. Also,

it lies in the kernel, because it is a sum of two elements which lie in the kernel of φβ,ℓ. By

induction, this term lies in
∑r

i=1 ∂zi(Eβ+1,ℓ), and so η does, too.

VI.2.1: Computing the V -filtration on Γ+M[w]

To compute the V -filtration, we first break up M =
⊕

λ∈[0,1)
⊕

j∈Z Mλ+j and then compute

the V -filtration on Mλ+Z =
⊕

j∈ZMλ+j in the two cases: λ = 0 and λ ∈ (0, 1).

First of all, we make the following easy observations. They are

(VI.2.1)
r∑

i=1

wiF
j
β,ℓ−1 = F j

β,ℓ

(VI.2.2) χ+ j ̸= r − 1 =⇒
r∑

i=1

F j
χ,ℓ = F j

χ+1,ℓ

(VI.2.3) χ+ j ̸= r − 1 =⇒
r∑

i=1

∂wi
F j
χ,j = F j+1

χ,j+1,

where the first follows from definition and the second two follow from the fact that Mχ =∑r
i=1 ziMχ−1 for χ ̸= r, by Remark II.10.

We define a filtration U•Γ+M[w] by defining it for • ∈ [0, 1] explicitly and then induc-
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tively defining

Uλ = ξjUλ−j for λ > 1, λ− j ∈ (0, 1],

Uλ = ∂jUλ+j + U>λ for λ < 0, λ+ j ∈ [0, 1).

Then we need only check that the filtration is exhaustive and satisfies the following

properties:

1. For λ ∈ [0, 1], the module Uλ is coherent over V 0DE×A1 .

2. For λ > λ′, we have Uλ ⊆ Uλ′
.

3. We have ξU0 ⊆ U1.

4. We have ∂U1 ⊆ U0.

5. For each λ ∈ [0, 1), there exists a ≥ 0 such that (ξ∂ − λ+ 1)aUλ ∈ U>λ.

Note that in Property 5, we need not check the nilpotency for λ = 1 thanks to the

previous conditions. Indeed, let a be such that (ξ∂ + 1)aU0 ⊆ U>0. Then (ξ∂)a+1U1 =

ξ(∂ξ)a∂U1 ⊆ ξU>0 = U>1.

Case 1: λ = 0. Define

U0 := V 0DE×A1 · F 0
0,0 + V 0DE×A1 · F r

0,r,

U1 := V 0DE×A1 · F 0
1,0 + V 0DE×A1 · F r−1

1,r−1.

Exhaustive: let U =
⋃

k U
k. As U is closed under the action of ∂ and w1, . . . , wr, it

suffices to prove that Mℓδg ⊆ U for all ℓ ∈ Z. Well F 0
0,0 = M0δg ⊆ U by definition, and

so by Remark II.10 we get M1δg, . . . ,Mr−1δg ⊆ U . Moreover, by induction, we see that

Mℓδg ⊆ U for all ℓ ≤ 0. Assume Mℓδg ⊆ U for some ℓ ≤ 0. Then Mℓ[w]∂kδg ⊆ U for all

k ≥ 0 and
∑r

i=1 ∂zi(Mℓδg) ⊆ U . But

∂zi ·mδg = ∂zimδg − wim∂δg,
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and wim∂δg ∈ U , so ∂zi(m)δg ∈ U . Hence, we see that (using Remark II.10) Mℓ−1δg =

(
∑r

i=1 ∂ziMℓ +Mℓ)δg ⊆ U , as desired.

Also, Mrδg = F r
0,r ⊆ U , and so using Remark II.10 and the zi action, we get Mℓδg =

(
∑r

i=1 ziMℓ−1δg) ⊆ U for all ℓ > r, too, which proves exhaustiveness.

1: To see U0 is finitely generated over V 0DE×A1 , let m1, . . . ,mN be finitely many gr0VDE

generators of M0 and let η1, . . . , ηM be generators for Mr over gr0VDE. Then these elements

generate U0, by the following fact: given m∂kδg ∈ U0, we obtain (gr0VDE · m)∂kδg ⊆ U0.

Indeed, we easily get DX ·m∂kδg, and to get zi∂zj(m)δg, we use

zi∂zj(m)δg = zi∂zj(mδg) + wj∂wi
(mδg),

which lies in U0. The same proof works for U1.

For the remaining conditions, we use the following lemma

Lemma VI.8. We have containment F j
χ,ℓ ⊆ U0 for any triple satisfying either of the two

conditions

• χ ≥ 0, j ≥ r, ℓ ≤ j.

• 0 ≤ χ ≤ r − 1, 0 ≤ j < r − χ, ℓ ≤ j.

Also, we have F j
χ,ℓ ⊆ U1 in either of the following cases:

• χ ≥ 1, j ≥ r − 1, ℓ ≤ j

• 1 ≤ χ ≤ r − 1, 0 ≤ j ≤ r − χ, ℓ ≤ j.

In particular, we have

• Eχ,ℓ ⊆ U0 for all χ ≥ 0, ℓ ≥ r,

• Eχ,ℓ ⊆ U1 for all χ ≥ 1, ℓ ≥ r − 1,

• E1,ℓ ⊆ U1 for all ℓ ≤ 0.
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Proof. We make use of the fact that U0 is closed under zi, ∂wi
and wi for all i.

Starting from F r
0,r ⊆ U0, by Formula VI.2.2 we get F r

χ,r ⊆ U0 for all χ ≥ 0. Then by

Formula VI.2.3 we get F j
χ,j ⊆ U0 for all j ≥ r. Finally, by Formula VI.2.1 we get F j

χ,ℓ ⊆ U0

for all χ ≥ 0, j ≥ r, ℓ ≤ j.

Starting from F 0
0,0 ⊆ U0, we get by Formula VI.2.2 F 0

χ,0 ⊆ U0 for all 0 ≤ χ ≤ r − 1. By

applying Formula VI.2.3 we get F j
χ,j ⊆ U0 for all 0 ≤ χ ≤ r − 1 and χ + j < r. Finally,

applying Formula VI.2.1 we get F j
χ,ℓ ⊆ U0 for all 0 ≤ χ ≤ r − 1, χ+ j < r and ℓ ≤ j.

Similarly, we argue for the containment of the other subsets in U1.

The last statements follow easily from these containments. For example, let ℓ ≤ 0, then

F j
1,ℓ ⊆ U1 for all j ≥ 0. Indeed, if j ≥ r − 1, then this comes from the fact that F r−1

1,r−1 is

contained as argued above. If 0 ≤ j < r − 1, then in particular, 1 + j = χ + j < r, so this

follows from the fact that F 0
1,0 is contained as argued above.

2: Obvious, from the lemma and using the fact that F r−1
1,r−1 = (ξ − g)F r

0,r.

3 Indeed, ξF 0
0,0 ⊆ E1,−1 and ξF r

0,r ⊆ E1,r−1, so this follows from the lemma.

4 Indeed, ∂F 0
1,0 = F 1

0,1 ⊆ E0,1, which is in U0 by the lemma, and ∂F r−1
1,r−1 = F r

0,r, which is

in U0 by definition.

5 Note that φ0,0 ◦ (∂ξ)a = (θ+ r)a ◦φ0,0, so since φ0,0 has image in M0, (θ+ r)a kills this

for a ≫ 0. Similarly, φ0,r ◦ (∂ξ)a = (θ − r + r)a ◦ φ0,r, and (θ − r + r)a kills Mr for a ≫ 0.

Thus, we see that (∂ξ)a multiplies F 0
0,0 and F r

0,r into ker(φ0,0) and ker(φ0,r), respectively.

Well, by Lemma VI.7, these are

r∑
i=1

∂zi(E1,0) and
r∑

i=1

∂zi(E1,r)

respectively, and both of these are contained in U1 by the lemma and the fact that U1 is

closed under ∂zi action.

This finishes the proof and shows that U• = V • is the V -filtration along ξ.

Case 2 : λ ∈ (0, 1).
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Define U0 = Uλ := V 0DE×A1 · F 0
λ,0 and U1 := V 0DE×A1 · F 0

λ+1,0.

Exhaustive: As F 0
λ,0 = Mλ ⊗ 1, the fact that the filtration is exhaustive is shown in

exactly the same way as above (using the acyclicity of the Koszul-like complex).

1: By taking finitely many gr0VDE generators of Mλ and Mλ+1, we see that U• are

V 0DE×A1-coherent.

2: This is obvious using the relation VI.2.2 above.

In a similar way to the lemma above, we see that F j
λ+b,ℓ ⊆ U0 and F j

λ+1+b,ℓ ⊆ U1 for all

b ≥ 0, j ≥ 0 and ℓ ≤ j.

3, 4: Note that ξF 0
λ,0 ⊆ Eλ+1,−1, which is contained in U1 by the previous observation.

Similarly, ∂Fλ+1,0 ⊆ Eλ,1 which is contained in U0 by the previous observation.

5: Finally, we need only check (∂ξ − λ)aUλ ⊆ U1 for some a ≫ 0. Just as before,

(∂ξ − λ)a multiplies F 0
λ,0 into ker(φλ,0) =

∑
∂zi(Eλ+1,0). By the above, this is contained in

U1, as desired.

This completes the proof that this is indeed the V -filtration along ξ.

VI.2.2: Constructing the Isomorphism with FL(M)

In this subsection, we construct the isomorphism H0σ∗ϕξΓ+(p
!(M)[−r]) ∼= FL(M), proving

Theorem I.7. Recall that N := ϕξΓ+(p
!(M)[−r]) is monodromic along the z’s (by Lemma

VI.6), and so we know by Theorem I.2

(VI.2.4) H0σ∗(N ) = coker(
r⊕

i=1

N 1 ∂zi−→ N 0).

As N is also monodromic along the w’s (again by Lemma VI.6), this property gets

inherited by N 1,N 0 and the maps ∂zi preserve the monodromic structure. In particular,

H0σ∗(N ) is also monodromic along the w’s, which is exactly what we expect, because FL(M)

is monodromic, too. So we need only identify the individual monodromic pieces in such a

way that the wi and ∂wi
maps are identified between pieces.
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Lemma VI.6 tells us that we can decompose Equation VI.2.4 into the following:

(VI.2.5) coker

 ⊕
λ∈[0,1)

⊕
ℓ∈Z,1≤i≤r

Eλ
λ+1,ℓ/E

>λ
λ+1,ℓ

∂zi−→ Eλ
λ,ℓ/E

>λ
λ,ℓ

 ,
and applying it once more to decompose into w-monodromic pieces, we see that the r−χth

w-monodromic piece of H0σ∗(N ) is

(VI.2.6) (H0σ∗(N ))r−χ = coker

[
r⊕

i=1

Eλ
λ+1,χ−λ/E

>λ
λ+1,χ−λ

∂zi−→ Eλ
λ,χ−λ/E

>λ
λ,χ−λ

]
,

where we necessarily have λ = χ− ⌊χ⌋, as χ− λ must be an integer.

We have the maps

φλ,χ−λ : Eλ
λ,χ−λ → Mλ+χ−λ = Mχ = FL(M)r−χ,

and so we need to see that these induce isomorphisms on the cokernels in Equation VI.2.6.

Of course, the image of ∂zi lies in the kernel, so the only possible issue is the E>λ part.

To see that E>λ
λ,χ−λ lies in the kernel, note that by our computation of the V -filtration

above, E>λ
λ,χ−λ = E1

λ,χ−λ. Now, write an arbitrary element P ∈ V 0DE×A1 as

P =
∑

Pβ,γ,ρ,α,j,k∂
β
z ∂

γ
wz

ρwα(ξ∂)jξk,

with Pβ,γ,ρ,α,j,k ∈ DX . Using the way in which the various operators move the eigenspaces,

we see that

Pβ,γ,ρ,α,j,k · Eλ+1,ℓ ⊆ Eλ+1−|β|+k+|ρ|,ℓ+|γ|−|α|−k.

The only way in which Pβ,γ,ρ,α,j,k can move Eλ+1,ℓ to Eλ,ℓ′ for some ℓ′ ∈ Z, then, is for

|β| > 0, i.e., for Pβ,γ,ρ,α,j,k to have some ∂zi . But by our explicit description of V 1 above, it

is generated over V 0DE×A1 by subspaces of the form F j
λ+1,ℓ for some j, ℓ ∈ Z. In particular,

those elements that land in Eλ,χ−λ must involve a ∂zi , and hence lie in the kernel of φ. So
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we get well-defined maps as desired.

By Lemma VI.7, we see that, indeed, the induced morphisms H0σ∗(N )r−χ → FL(M)r−χ

are injective. We see that they are surjective as follows: recall that, for ℓ ≥ 0, we have seen

that F ℓ
λ,ℓ = Mλ+ℓ∂ℓδg ⊆ V λ. This will hit all of Mλ+ℓ under φ. So we have surjectivity,

and hence isomorphism, when χ − λ ≥ 0, i.e., χ ≥ 0. We obtain the other isomorphisms

using the fact that both FL(M) and H0σ∗(N ) are w-monodromic, so they must satisfy the

acyclicity of Lemma II.9. Thus, we have a morphism between acyclic complexes

H0σ∗(N ) H0σ∗(N ) . . . H0σ∗(N )r−χ

FL(M) FL(M) . . . FL(M)r−χ

w

φ

w

φ

w

φ

w w w

in which, inductively, all but the rightmost map is an isomorphism, so the rightmost map

must also be an isomorphism. This proves the claim.

VI.2.3: Hodge and Weight Filtration Computations

Now, to understand the Hodge filtration on FL(M) given by this isomorphism, we need only

track what happens to the Hodge filtration when applying the functors H0i∗, ϕg and p!.

The statement we are after is the following:

Theorem VI.9. [CD21, Theorem 1.4] Let (M, F•) be a filtered DE-module underlying a

mixed Hodge module on E. Then the Hodge filtration on FL(M) satisfies

FpFL(M)r−χ = Fp−⌈χ⌉Mχ,

for all p ∈ Z and χ ∈ Q.

Proof. As mentioned, we simply need to trace our way through the various functors and
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keep track of the Hodge filtration. We have by Equation II.4.3

Fjp
!(M)[−r] = (Fj−rM)[w]

for any k ∈ Z.

Then, applying the graph embedding along g, we have

FjΓ+p
!(M)[−r] =

⊕
k≥0

(Fj−k−1p
!(M)[−r])∂k =

⊕
k≥0

(Fj−k−1−rM)[w]∂k.

The vanishing cycles ϕu inherits this Hodge filtration, though there is a shift of the Hodge

filtration on the ϕg,̸=1 part, by Equations II.4.5 and II.4.4.

Finally, in Theorem I.2, the complex is strict with respect to the Hodge filtration. We

note, however, that there is a shift by r, as we are looking at the rightmost cohomology of

σ∗. This undoes the shift coming from p!. In summary, we will be interested in the subspace

FpE
λ
λ,ℓ =

∑
|α|≥−ℓ

Fp−⌈λ⌉−ℓ−|α|Mλ+ℓ+|α|wα∂|α|+ℓδg,

Applying φ to an arbitrary element
∑
mαw

α∂|α|+ℓδg, we get

(−1)ℓ
∑
α

∂αz (mα) ⊆ Fp−⌈λ⌉−ℓMλ+ℓ

We get the other containment for ℓ ≥ 0 easily. Again, in this case, F ℓ
λ,ℓ = Mλ+ℓ∂ℓδg ⊆ V λ.

For ℓ < 0, we use induction and Filtered surjectivity of the Koszul-like complexes in the ∂z’s

for M to conclude.

Finally, we handle the weight filtration and conclude this chapter.

Given a monodromic module N =
⊕

N χ, for any λ ∈ Q ∩ [0, 1), denote

N λ+Z =
⊕
ℓ∈Z

N λ+ℓ.
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The goal is the following:

Theorem VI.10. [CD21, Theorem 1.4] Let (M,W ) be a monodromic D-module with weight

filtrationW•M underlying a mixed Hodge module on E. Then the weight filtration on FL(M)

satisfies

WkFL(M)λ+Z = FL(Wk+r+⌈λ⌉M)λ+Z.

We first prove an easy containment: for λ ∈ [0, 1), we have

(VI.2.7) WkFL(M)λ+Z ⊆ FL(Wk+r+⌈λ⌉M)λ+Z.

Again, we want to trace through the various functors and keep track of the weight filtra-

tion. By Equation II.4.3, we have

Wkp
!(M)[−r] = p∗(Wk+rM).

For ϕg, we must use the relative monodromy filtration. Set

M•ϕgp
!(M)[−r] =

⊕
λ∈[0,1)

ϕξ,λΓ+p
!(W•+r+⌈λ⌉M)[−r].

Let W1,•ϕg,λp
!(M)[−r] be the relative monodromy filtration for M• and the nilpotent op-

erator N1 = ξ∂ − λ + 1, which computes the weight filtration on the mixed Hodge module

ϕξ,λΓ+p
!(M)[−r].

Consider the 0th z-monodromic piece N 0 of ϕξ,λΓ+p
!(W•+r+⌈λ⌉M)[−r]. On here, N2 :=

θz + r acts nilpotently. Moreover, it preserves the filtration W1,•, and we let W2,• to be the

relative monodromy filtration for W1,• and N2.

Note that by definition of the D-module action on Γ+p
!(M)[−r], the two operators

ξ∂−λ+1 and θz+r are related by a third operator Ñ , which acts on an element m[w]∂kδg ∈

Mχ[w]∂kδg by (θz − χ+ r).
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By Theorem I.9, we know that (the operator induced by) Ñ mapsW1,• intoW
1
•−2, because

it does so for M•. Then, because it does this for W1,•, by the same reasoning it does so for

W2,•.

But on grW1
k N 0, we know N1 is identically 0, and so Ñ = N2. Hence, W2,• is also the

relative monodromy filtration for Ñ and W1,•. But we have argued that Ñ decreases W1,•

by 2, so actually W1,• is its own relative monodromy filtration, i.e., W2,• = W1,•.

Finally, we have the quotient map N 0 → H0σ∗(ϕgp
!(M)[−r]), and by Theorem I.2 (and

the E2-degeneration mentioned in Corollary IV.11), the weight filtration on the target is

induced by the filtrationW2,• on the domain. But we have argued thatW2,• = W1,•. Finally,

by functoriality of relative monodromy filtrations, this must be contained in the relative

monodromy of the target with respect to the induced operator by N1 and the filtration M•.

But under φ this precisely maps to the relative monodromy filtration, so again by Theorem

I.9, we conclude the desired containment.

To handle the opposite containment, we will make use of the inverse Fourier transform.

Note that applying the Fourier-transform twice makes zi act by −zi and ∂zi act by −∂zi .

This can be remedied using the involution a : E → E defined by zi 7→ −zi. Hence, for

underlying D-modules, we have

ψ : a∗FLE∨FLEM ∼= M.

By [KS90, Thm. 3.7.12(i)] and [Bry86, Prop. 6.13], we know that this isomorphism

preserves the underlying Q-structure. Hence, if we can define a Hodge and weight filtration

for FLE∨(−) which makes the above morphism bifiltered, it will automatically be bistrict,

hence an isomorphism of mixed Hodge modules. As it is clear that whatever structure we

define will act as the inverse of FLE, we will call it the inverse Fourier transform, and denote

it FLE∨ .

It turns out that the definition is very close to that of FL, except we need to Tate twist

132



on the individual components:

Definition VI.11. For E = X×Ar, using the notation above, we define the inverse Fourier

transform FLE : MHM(E) → MHM(E∨) by the formula:

FLE(M) =
⊕

λ∈[0,1)

H0σ∗ϕg,λp
!(M)[−r](−⌈λ⌉ − r).

Proposition VI.12. The map ψ : a∗FLE∨FLEM → M is an isomorphism of mixed Hodge

modules.

Proof. As the map ψ is an isomorphism of D-modules, we really just need to compute

the weight and Hodge filtrations of the domain and show that they are contained in the

corresponding Hodge and weight filtrations for M. We check the claim for monodromic

pieces, so fix χ ∈ Q with χ − ⌊χ⌋ = λ ∈ [0, 1). We will check the claims for λ ∈ (0, 1), the

claim for λ = 0 is similar and left to the reader.

Note that FL is simply a Tate twist of the usual FL by (−1 − r) in this case, so we can

use Theorem I.8 and the containment in Equation VI.2.7, keeping track of the Tate twists.

Well, a∗ being the pullback along an isomorphism does not affect the Hodge or weight

filtrations. So we can ignore it. For the Hodge filtration, we have

FpFL(FL(M))χ = FpFLE∨FLE(M)χ(−1− r)

= Fp+r+1FLE∨FLE(M)χ = Fp+r+1−⌈χ⌉FLE(M)r−χ = Fp+r+1−⌈χ⌉−⌈r−χ⌉Mχ,

and p+ r + 1− ⌈χ⌉ − ⌈r − χ⌉ = p+ 1− ⌈χ⌉ − ⌈−χ⌉ = p.

Finally, for the weight filtration, we have

WkFL(FL(M))χ = WkFLE∨FLE(M)χ(−1− r)

= Wk−2−2rFLE∨FLE(M)χ ⊆ FLE∨(Wk−1−rFL(M)) ⊆ FLE∨FLE(WkM) = WkM,
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proving the claim.

As this is a W -filtered isomorphism, we get the other containment in Equation VI.2.7,

so this completes the proof of Theorem I.10.
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de Monodromie en Géométrie Algébrique, pages 82–115 and 116–164. Springer,
Berlin, 1973.
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44:5–77, 1974.
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[MP20] Mircea Mustaţă and Mihnea Popa. Hodge ideals for Q-divisors, V-filtration,
and minimal exponent. Forum Math. Sigma, 8(e19), 2020.
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l’Institut Fourier, 6:1–42, 1956.

[SS] Claude Sabbah and Christian Schnell. Mixed Hodge Modules Project.

[Ste77] J. H. M. Steenbrink. Mixed Hodge structure on the vanishing cohomology, volume
130. Sijthoff and Noordhoff, Alphen aan den Rijn, 1977.

[Ste83] Joseph H. M. Steenbrink. Mixed Hodge structures associated with isolated
singularities. In Proc. Sympos. Pure Math., volume 40 of Singularities, Part 2,
pages 513–536, Arcata, Calif., 1983. Amer. Math. Soc., Providence, RI,.

[SZ85] Joseph Steenbrink and Steven Zucker. Variation of mixed Hodge structure. I.
Invent. Math., 80(3):489–542, 1985.

[Var82] A. N. Varchenko. The complex singularity index does not change along the
stratum µ = const. Funktsional. Anal. i Prilozhen., 16(1):1–12, 96, 1982.
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