
Low-Power Localization Systems with
Hardware-Efficient Deep Neural Networks

by

Yu Chen

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical and Computer Engineering)

in The University of Michigan
2023

Doctoral Committee:

Associate Professor Hun-Seok Kim, Chair
Assistant Professor Maani Ghaffari Jadidi
Assistant Professor Andrew Owens
Professor Dennis Sylvester

Yu Chen

unchenyu@umich.edu

ORCID iD: 0000-0002-3008-9208

© Yu Chen 2023

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to everyone who has helped me

in the completion of this dissertation. First and foremost, I would like to thank my

advisor and committee chair, Professor Hun-Seok Kim, for his guidance and support

throughout my Ph.D. journey. We first met when I was pursuing my master’s degree,

and he introduced me to research in this field. He has been an exceptional mentor

with great patience and dedication to provide assistance whenever I encountered

difficulties in my research. I am also grateful to the members of my dissertation

committee, Professor Maani Ghaffari Jadidi, Professor Andrew Owens, and Professor

Dennis Sylvester, for their insightful comments and suggestions that helped me to

improve the quality of my dissertation.

I would like to thank all the talented lab members: Mingyu Yang, Pierre Abillama,

Bowen Liu, Ziyun Li, Minchang Cho, Seokhyeon Jeong, Changwoo Lee, and Sara

Shoouri, for all the successful collaborations and valuable discussions. I have learned

a lot from you, and I feel so lucky to be part of such a supportive and productive

research team.

Lastly, I want to express my gratitude to my parents and friends for their un-

wavering support and encouragement throughout this long journey. Their love and

support have been my source of strength during all the challenging times.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vi

LIST OF TABLES . ix

ABSTRACT . xi

CHAPTER

I. Introduction . 1

1.1 Localization Systems and Applications 1
1.1.1 Self-Localization . 2
1.1.2 Surrounding Object Localization 3

1.2 Low Power Challenges . 4
1.2.1 Complexity of Deep Neural Network 5
1.2.2 Sensor Selection . 6
1.2.3 Sensor Fusion . 7
1.2.4 Deployment on Hardware 8

1.3 Dissertation Organization . 9

II. Real-Time Simultaneous Localization andMapping for Energy-
Constrained Mobile IoT Applications 12

2.1 Introduction . 12
2.2 Related Work . 14
2.3 A SLAM System Optimized for Hardware 15

2.3.1 Visual Odometry Front-End 16
2.3.2 Graph Optimization Back-End 21

2.4 Experiments . 22
2.4.1 CNN Feature Descriptor 22
2.4.2 SLAM System Evaluation 24

2.5 Summary . 27

iii

III. Efficient Deep Visual-Inertial Odometry with Neural Archi-
tecture Search and Adaptive Visual Modality Selection . . . 29

3.1 Introduction . 29
3.2 Related Work . 32

3.2.1 Visual-Inertial Odometry 32
3.2.2 Neural Architecture Search 33
3.2.3 Adaptive Inference 34

3.3 Method . 34
3.3.1 Deep Visual-Inertial Odometry 35
3.3.2 Neural Architecture Search on Visual Encoder . . . 36
3.3.3 Deep VIO with Adaptive Visual Modality Selection 39

3.4 Experimental Setup . 42
3.4.1 Dataset and Metrics 42
3.4.2 Model Architecture and Training Strategies 44

3.5 Experimental Results . 45
3.5.1 Search for Efficient Visual Encoder 46
3.5.2 Adaptive Visual Modality Selection 48
3.5.3 Comparison to Other Learning Based VO/VIO . . . 52

3.6 Summary . 53

IV. An End-to-End Deep Learning Framework for Multiple Au-
dio Source Separation and Localization 55

4.1 Introduction . 55
4.2 Related Work . 57
4.3 Method . 58

4.3.1 Source Separation 59
4.3.2 TDOA Estimation 60
4.3.3 Training Loss Function 62
4.3.4 DOA Estimation . 62

4.4 Experimental Setup . 62
4.4.1 System Setup and Datasets 62
4.4.2 Model Architecture and Training Details 64

4.5 Experimental Results . 65
4.6 Summary . 68

V. HTNN: Deep Learning in Heterogeneous Transform Domains
with Sparse-Orthogonal Weights 70

5.1 Introduction . 70
5.2 Related Work . 72

5.2.1 Compute Convolutions in Transform Domains . . . 72
5.2.2 Neural Network Compression 73

5.3 HTNN: Heterogeneous Transform-Domain DNN 74

iv

5.3.1 Walsh-Hadamard Transform and Permuted Variants 75
5.3.2 Neural Network in Transform Domains 76

5.4 Learning for Hardware-Efficient Structure 78
5.4.1 Structured Pruning for Sparse-Orthogonal Kernels in

Heterogeneous Domains 79
5.4.2 Structured Sparse Digit Quantization with Canonical-

Signed-Digit Representation 82
5.5 HTNN Complexity Analysis 84
5.6 Experiments . 88

5.6.1 Models and Datasets 88
5.6.2 Evaluation of DNNs with Heterogeneous Transform

Domains . 88
5.6.3 Learning and Training for Hardware-Efficient Struc-

tures . 90
5.7 Summary . 92

VI. Conclusion and Future Work . 94

6.1 Conclusion . 94
6.2 Future Work . 96

BIBLIOGRAPHY . 98

v

LIST OF FIGURES

Figure

1.1 An overview of a localization system for autonomous vehicle that
localizes the car itself as well as other cars or objects around. 2

1.2 The estimated agent trajectory (red track) and sparse map (black
point cloud) from SLAM system LDSO [40]. 3

1.3 3D surrounding object detection and localization (3D bounding box
estimation) for autonomous driving cars, MVX-Net [114]. 4

1.4 Comparison of the network complexity of some famous CNN archi-
tectures, as well as their classification accuracy on ImageNet classifi-
cation challenge (ILSVRC). 6

1.5 An illustration of sensor fusion in an autonomous driving car system
for self-localization and surrounding object detection and localization. 8

2.1 The proposed complete system with visual odometry front-end and
graph optimization back-end. 15

2.2 Left: CNN architecture of the proposed visual feature descriptor.
Right: Training with the triplets, all three CNNs in the figure are
identical and share the same weights. 16

2.3 Region-prediction based matching technique. The search region in
the previous frame (red square) is greatly reduced. 17

2.4 Example of the feature tracking and matching between two con-
secutive frames with proposed CNN feature descriptor and region-
prediction based matching technique. 19

2.5 Estimated trajectories (blue) and ground truth trajectories (red) on
KITTI dataset sequences 00 to 10. 25

3.1 An overview of the adaptive visual modality selection technique. A
policy network is learned to adaptively disable the visual encoder on
the fly without harming the VIO system accuracy, thus saving huge
computation from the visual encoder. 31

3.2 The architecture of the deep VIO model that serves as the baseline.
Visual feature and inertial feature are extracted by the visual encoder
and inertial encoder, respectively, then combined by direct concate-
nation to get the fused future zt. Finally, translation v̂ and rotation
r̂ are estimated through the LSTM network. 35

vi

3.3 The super visual encoder and its search space. The biggest subnet
is equivalent to FlowNetS [32] with 9 convolutional layers. Layer
conv1, conv2 and conv3 can search for different kernel sizes. The
first 8 layers can search for different numbers of channels. And layer
conv3 1, conv4 1 and conv5 1 can be skipped via direct connection. 37

3.4 Deep VIO system with proposed adaptive visual modality selection
technique. At the current time stamp, the policy network takes the
current inertial feature and the previous hidden state of the LSTM
to decide whether to use the visual modality or not. Once the policy
network decides not to use visual modality, the visual encoder is
disabled to save the computation and the visual feature is zero-padded. 40

3.5 Trajectories of 1) ground-truth, 2) full model (baseline model), 3)
searched model with low latency target, and 4) searched model with
adaptive visual modality selection. Left / center / right plot is the
evaluation of KITTI sequence 05 / 07 / 10. 46

3.6 Architectures of searched efficient visual encoders through NAS. Top:
Lowest FLOPs target. Bottom: Lowest latency target. Notice that
the searched model with the lowest latency target makes a trade-off
to skip the conv3 1 layer at the cost of slightly degraded accuracy. . 47

3.7 Visual interpretation of the learned policy on KTTI sequence 10 with
λ = 2× 10−5. The left plot shows the local visual encoder usage rate
at each time step calculated by averaging the decision within a local
window of 31 frames. The vehicle speed heat map is shown on the
right. Four short segments from the path (red circles) are selected
to show the policy network’s behavior. Segment c shows a low speed
with turning scenario, segment a and d show low speed scenarios
whereas segment b is a high speed straight movement scenario. The
policy network tends to activate the visual encoder more frequently
when the vehicle is moving slowly (segments a and d), and decrease
the usage of the visual encoder when the vehicle is moving fast (seg-
ment b) or making turns (segment c). 50

3.8 The average usage rate of the visual modality for different angular
velocities (left) and speeds (right) with two different penalty factors
λ = 2× 10−5 and λ = 3× 10−5 over all KITTI test sequences (05, 07,
10). The learned policy tends to use less visual modality with higher
angular velocity and higher speed. 51

4.1 Localizing multiple audio sources (S1, S2 and S3) by estimating their
DOA or AOA information. 56

4.2 The proposed framework diagram. Source separation network esti-
mates source signals ŝ1, . . . , ŝn from multi-channel mixture x. TDOA
information is estimated from x and ŝ1, . . . , ŝn by TDOA estimation
network. x̂ is reconstructed by adding ŝ1, . . . , ŝn and time-shifted
source signals s̃1, . . . , s̃n. The reconstructed mixture x̂ and discrimi-
nator are only used during the training. 58

vii

4.3 The system setup for estimating the DOA (θ1 and θ2) of multiple
sources (S1 and S2) using a microphone array of 4 microphones placed
in a square with 0.2-meter side length. 63

4.4 The source separation and mixture reconstruction results of one test
sample using the proposed framework. Top left: The original (red)
and reconstructed (blue) mixtures received at microphone 1. Top
right, bottom left and bottom right: Original (red) and separated
(blue) audio signals of source 1, 2 and 3, respectively. 66

5.1 Comparison between a convolutional layer and WHT-domain linear
layer. Red: Datapath of convolutional layer, needs 9 multiplications
to compute 1 output. Green: Datapath of WHT linear layer, only
needs 4 multiplications to compute 1 output. 77

5.2 Heterogeneous-transform neural network (HTNN) linear layer using
sparse-orthogonal kernels in heterogeneous transform domains. . . . 80

5.3 Datapath of a single HTNN linear layer outer loop iteration with
nt = 3 transforms. 85

5.4 Left: HTNN layer vs. sparse CNN layer energy ratio with n = 10.
Right: Transform vs. non-transform energy ratio in HTNN layer,
d = 0.45, nt = 3, and n = 10 . 87

5.5 Hardware-efficient training for ResNet-20. Left: Test accuracy as a
function of weight density for CNN pruning vs. sparse-orthogonal
learning for HTNN. Right: HTNN accuracy as a function of quanti-
zation bits for Q-bit binary representation and k = 2 sparse Q-digit
CSD. 91

viii

LIST OF TABLES

Table

1.1 Power consumption of different types of sensors. 7
2.1 Results from the Multi-view Stereo Correspondence dataset. Num-

bers are reported in terms of FPR95. Lib: Liberty, Yos: Yosemite,
Not: Notredame. 23

2.2 Comparison of the network complexity and power consumption among
different descriptors. 23

2.3 The absolute translation RMSE trmse, relative translation error tre
and relative rotation error rre of the proposed low-power SLAM sys-
tem, ORB-SLAM2 [91] and Stereo LSD-SLAM [36] on KITTI dataset
sequences 00 to 10. 26

2.4 Frame rate on KITTI, deployed platform, system power consumption
and memory usage of the proposed low-power SLAM system, ORB-
SLAM2 [91] and Stereo LSD-SLAM [36]. 27

3.1 FLOPs calculation for each layer type involved in the proposed frame-
work. Non-linear activation functions are ignored. 43

3.2 Evaluation results of the VIO models with biggest visual encoder and
searched encoders targeting low FLOPs and low latency on KITTI
testing sequences 05, 07 and 10. 45

3.3 Evaluation of the full modality baseline with the searched low-latency
visual encoder and visual modality selection models with various
penalty factors λ on the KITTI testing sequences 05, 07 and 10.
Translation and rotation RMSE, visual encoder usage and average
model GFLOPs are reported. 48

3.4 The relative translation and rotation error, and visual encoder usage
of the full modality model as well as visual modality selection models
with different penalty factors λ on KITTI sequences 05, 07, and 10.
All models use the searched visual encoder with low latency target.
The last column shows the averaged results on all three test sequences. 49

3.5 Comparison with state-of-the-art deep learning based VO/VIO sys-
tems on KITTI testing sequences 05, 07 and 10. The evaluation
metrics are: relative translation error (trel), relative rotation error
(rrel), visual encoder usage, and visual encoder GFLOPs. 52

4.1 Separation quality evaluation by SI-SNRi (dB) of the proposed frame-
work. Sep., Recon. and Disc. represent separator, mixture recon-
struction and discriminator, respectively. 65

ix

4.2 MAE of TDOA (ETDOA in millisecond) and DOA (EDOA in degree)
estimation, and localization recall (RDOA in percentage) of the pro-
posed framework. 67

4.3 MAE and RMSE of DOA estimation and percentage of non-anomalous
frames of the proposed framework and SMESLP [123], I-IDIR-UCA
[122], CHB [128] (reported by Sundar et al. [123]). 68

5.1 Number of operations performed in a single 4× 4 HTNN linear layer
and 3× 3 sparse convolutional layer. 86

5.2 Top-1 accuracy and energy estimation for CNN models, proposed
HTNN models, and sparse-Winograd models [81]. Top: ResNet-20
and VGG-nagadomi on CIFAR-10. Middle: ConvPool-CNN-C on
CIFAR-100. Bottom: ResNet-18 on ImageNet. 89

x

ABSTRACT

Localization systems solve the problem of identifying the location of the agent or

surrounding objects with the information gathered from various sensors. It enables a

wide range of practical applications, such as autonomous navigation, self-driving cars,

virtual reality, augmented reality, and enhanced surveillance. In recent years, deep

neural networks have achieved great success in various computer vision and machine

learning tasks, including more accurate localization systems with extensive computa-

tion complexity and power consumption. However, deploying such systems on energy-

constrained mobile Internet-of-Things (IoT) platforms remains a big challenge due to

the contradiction between system performance and power consumption. This thesis

presents several practical approaches to develop energy-efficient localization systems

for real-world applications. First, a real-time visual based simultaneous localization

and mapping system is investigated and optimized for hardware implementation,

which is ported on a low-power, application specific integrated circuit accelerator.

The second work focuses on reducing the complexity of deep learning based visual-

inertial odometry systems by finding the most efficient network architecture through

neural architecture search and adaptively disabling visual sensor modality on the fly.

The third work proposes an accurate learning based end-to-end audio source separa-

tion and localization framework with only low-power microphone sensor array, taking

advantage of self-supervised learning and adversarial learning techniques. Finally, a

new hardware-efficient heterogeneous transform-domain neural network is introduced

to reduce computation complexity by replacing convolution operations with element-

wise multiplications, learning sparse-orthogonal weights in heterogeneous transform

xi

domains, and non-uniform quantization with canonical-signed-digit representation.

These works explore four different yet effective ways to balance the system perfor-

mance and power consumption for mobile IoT platforms, namely reducing deep neu-

ral network complexity, adaptively selecting and fusing sensor modalities, employing

lower power sensors, and developing hardware-efficient systems for specialized accel-

erators.

xii

CHAPTER I

Introduction

1.1 Localization Systems and Applications

Localization systems rely on various kinds of sensors, such as camera, lidar, radar,

inertial measurement unit (IMU), sonar, and microphone array, to obtain environ-

mental information. These systems continuously estimate the position information of

the agent or surrounding objects by analyzing the collected sensor data. Localization

is an important part of various applications, including self-driving cars, autonomous

navigation, virtual reality (VR) and augmented reality (AR). In recent years, there

has been a significant focus on developing reliable and fast localization systems to

advance the development of truly autonomous and intelligent systems.

An autonomous and intelligent system demands the localization subsystem to

perform two main tasks, estimating the agent’s position in an unknown environment,

and detecting and localizing other stationary or moving objects around the agent.

Figure 1.1 provides the overview of a typical perception and localization system in

an autonomous car platform [158], which processes the acquired raw sensor data to

determine its own location and ego-motion, the number of surrounding objects, as well

as their locations and motions. Typically, the two tasks are accomplished separately

with different algorithms and different sets of sensors.

1

Figure 1.1: An overview of a localization system for autonomous vehicle that localizes
the car itself as well as other cars or objects around.

1.1.1 Self-Localization

Localizing the agent itself in an unknown or partially known environment is the

most important step before performing autonomous navigation, path planning, and

other complex tasks. While simple odometry can estimate the position change over

time using data collected from various motion sensors, such as wheel encoder and

IMU, measurement errors accumulate and cause the estimated position to drift. In

recent years, visual odometry (VO) [93] has emerged as a promising alternative to

simple odometry due to its low cost and ability to capture useful information from

the images. And it is proven to outperform simple odometry in most cases [4].

When building the map of the environment is required at the same time while

localizing the agent, the problem is often referred to as simultaneous localization and

mapping (SLAM) [6, 33] (Figure 1.2). SLAM has been extensively studied since the

mid-1980s [115] and plays an important role in many real-world applications, includ-

2

Figure 1.2: The estimated agent trajectory (red track) and sparse map (black point
cloud) from SLAM system LDSO [40].

ing self-driving cars, unmanned aerial vehicles (UAVs), and autonomous underwater

vehicles. Modern SLAM systems achieve relatively good performance thanks to the

global optimization and loop closure [3]. SLAM usually employs multiple sensors of

different types, such as camera, lidar, radar, and IMU, leading to different research

directions with different sets of sensors.

With the rapid expansion of energy-constrained mobile devices and Internet-of-

Things (IoT) platforms, developing hardware-efficient visual odometry and SLAM

algorithms with low-power sensors and fewer sensor types has become one of the

major research focuses in recent years.

1.1.2 Surrounding Object Localization

Localizing other objects within the same space is another critical task for au-

tonomous and intelligent systems since the interaction between agent and environ-

ment requires a good knowledge of the surrounding incidents. Obtaining accurate

3

Figure 1.3: 3D surrounding object detection and localization (3D bounding box esti-
mation) for autonomous driving cars, MVX-Net [114].

positions of other objects helps to avoid collision and entering danger zones, which

is a precondition for safe and efficient robot navigation and movement. Figure 1.3 is

an example of 3D surrounding object detection and localization for an autonomous

driving car platform with camera and lidar sensors. Besides, surrounding object de-

tection and localization is also useful in surveillance systems [28], such as 24-hour

monitoring in industrial facilities and critical environments.

Depending on the characteristic of objects, it is possible to use different sensors

with different algorithms to detect and localize them. For example, surrounding

acoustic sources can be localized with low-power microphones or microphone arrays,

while transparent objects can be efficiently detected and localized using radar instead

of camera or lidar. In the realm of mobile IoT platforms, studying energy-efficient

localization algorithms using passive and low-power sensors is a new trend.

1.2 Low Power Challenges

Recent advances of deep neural networks (DNN) in computer vision and machine

learning enable localization systems to achieve excellent performance in various appli-

cations. However, most of the state-of-the-art DNNs focus on superior performance

regardless of system energy consumption, making it impossible to be directly deployed

4

on energy sensitive platforms, such as battery-powered VR headsets, micro UAVs and

small mobile robots. The challenges of developing energy-efficient localization systems

are summarized in this section.

1.2.1 Complexity of Deep Neural Network

Recent deep neural networks report superb performance in various computer vi-

sion and machine learning tasks. However, while the performance of DNNs evolved

drastically, their complexity has also grown super-linearly. Take the image classifi-

cation task and some famous convolutional neural network (CNN) structures as an

example, the LeNet [74] for handwritten digit classification (MNIST) only requires

0.3 million (M) operations while the winners of the ImageNet classification challenge

(ILSVRC) [104] need 0.7 giga (G) (AlexNet [68]) and even 13.5 giga (G) operations

(VGG [113]) [125]. Later models such as ResNeXt-101 [149] and EfficientNet [126]

achieve higher accuracy on ImageNet classification with more complex structures.

Figure 1.4 shows the comparison of several famous CNN architectures regarding their

computational complexity and classification accuracy on ImageNet.

Modern DNNs are unsuitable to be directly deployed for real-time applications on

low-power and low-cost hardware platforms that cannot afford powerful and energy-

intensive computing devices. Thus, reducing network complexity while maintaining

network performance has become a main premise of the successful adoption of DNN

based algorithms on power- and cost-constrained mobile devices. Although several

different paths have been explored in the literature, the solutions are still far from

perfect.

5

Figure 1.4: Comparison of the network complexity of some famous CNN architectures,
as well as their classification accuracy on ImageNet classification challenge (ILSVRC).

1.2.2 Sensor Selection

Sensors are indispensable parts of the localization system, acting as the eyes to

sense the surrounding environment and collect useful information. Various kinds of

sensor modalities are employed to collect visual, sound, and other forms of data and

information. And the system fuses and processes all the data to estimate the location

of surrounding objects or itself.

State-of-the-art localization systems rely on different kinds of sensors to achieve

the best performance. For example, autonomous vehicle platforms typically incor-

porate multiple sensors, including camera, lidar, radar, IMU and GPS, with camera,

lidar, IMU and GPS primarily used for self-localization, and camera, lidar and radar

for surrounding object detection and localization. However, mobile platforms cannot

afford too many sensors due to space and power limitations. Moreover, different types

6

Sensor Power consumption Commercial product

Camera 120mW OmniVision OVM7692

IMU 2.5mW TDK ICM-20948

Microphone 0.12mW Knowles SPW2430HR5H-B

Lidar 2W Hitachi HLS-LFCD2

Table 1.1: Power consumption of different types of sensors.

of sensors consume different amounts of power, as listed in Table 1.1. Some sensors,

such as lidar, may be too expensive for mobile platforms. Furthermore, raw sen-

sor data processing and sensor fusion modules can consume more energy if multiple

sensors are present, putting additional pressure on the energy budget of mobile IoT

platforms. Therefore, developing more energy-efficient localization algorithms that

utilize fewer sensors with lower power consumption is a major focus.

1.2.3 Sensor Fusion

Modern localization systems contain multiple sensors of different types to over-

come the potential limitations of using a single sensor. Sensor fusion is the process

of integrating signals from multiple sensors to reduce the amount of uncertainty that

may be involved in a localization system [130], thus helping the system to utilize all

the collected data effectively and produce more accurate results. Figure 1.5 is an illus-

tration of sensor fusion in a typical autonomous driving car system. The sensor fusion

module processes the IMU, camera, lidar and other sensor inputs for self-localization.

And data collected from camera, lidar and radar are fused for surrounding object

detection and localization.

Sensor fusion requires additional computation to process and fuse data from mul-

tiple sensors, which leads to increased system energy costs and brings high pressure on

7

Figure 1.5: An illustration of sensor fusion in an autonomous driving car system for
self-localization and surrounding object detection and localization.

energy-constrained mobile IoT platforms, especially when using more recent neural

network based fusion methods [19, 114]. To reduce the computational complexity and

lower the power consumption, several practical approaches have been proposed for

energy-efficient sensor fusion [8, 44]. However, these approaches are often limited and

lack robustness due to their reliance on static fusion algorithms with all available sen-

sor modalities. As a result, there is growing interest within the research community

in more flexible approaches like adaptive sensor modality selection and fusion.

1.2.4 Deployment on Hardware

Most localization algorithms are designed to run on general purpose processors

like central processing units (CPUs) and graphics processing units (GPUs). Such

computing platforms are too big and consume too much energy, making them unsuit-

able for mobile IoT applications. To address this issue, one practical approach is to

design specialized hardware accelerators using application specific integrated circuits

8

(ASICs) [64] with much lower energy consumption. However, it is not feasible to run

state-of-the-art localization systems directly on these specialized accelerators. There-

fore, localization systems need to be optimized in terms of computational complexity

and memory usage before deploying on dedicated hardware accelerators.

Although optimizing existing state-of-the-art algorithms by reducing the system’s

computational complexity can be beneficial, it may not always result in optimal so-

lutions. For example, pruning neural network weights and activations [49, 50, 159]

can significantly reduce the number of operations and memory usage, but the pruned

sparse network still requires substantial hardware overhead to implement the sparse

operations [48, 96, 161]. A more effective approach is to design new hardware-efficient

systems through hardware-software co-design [30].

1.3 Dissertation Organization

This dissertation demonstrates four different yet effective approaches to build low-

power localization systems with balanced system performance and power consump-

tion, enabling the potential application to energy-constrained mobile IoT platforms.

The proposed approaches focus on DNN complexity reduction for deep learning based

systems, adaptive sensor modality selection and fusion, utilization of low-power sen-

sors, and hardware-software system co-design for specialized accelerators. The detail

of each work is presented in the following chapters.

In Chapter II, a real-time visual based SLAM system for six degrees of freedom

(6DoF) ego-motion estimation is investigated. The algorithm is optimized for low-

power mobile autonomous navigation and VR/AR applications. Visual features are

extracted by a simple CNN feature descriptor with efficient parallel execution on spe-

cialized DNN hardware accelerators, which outperforms hand-crafted feature extrac-

9

tion algorithms like SIFT [84] and ORB [103]. An aggressive region-prediction based

matching technique is applied to eliminate unnecessary feature matching computa-

tions in the tracking phase. A new keyframe decision scheme is developed to reject

ineffective keyframes and 3D landmarks for global optimization, thus significantly re-

ducing on-chip memory requirements. The system achieves good accuracy with much

lower power consumption and smaller memory usage compared to the state-of-the-art

SLAM algorithms, and it is already ported on a low-power, very large-scale integrated

(VLSI) ASIC accelerator.

In Chapter III, an energy-efficient deep learning based visual-inertial odometry

(VIO) system is proposed. First, the neural architecture search (NAS) technique is

adopted to search for the most efficient VIO network architecture, targeting the low-

est number of operations and lowest inference latency. The searched model achieves

up to 97.4% complexity reduction with no performance degradation and allows the

VIO system to run in real-time on a single laptop CPU core. Then, a policy network

is learned to opportunistically disable the visual modality on the fly from the cur-

rent motion state and IMU measurements. A Gumbel-Softmax trick is adopted to

make the decision process differentiable for end-to-end system training. The learned

strategy is interpretable, and it shows scenario-dependent decision patterns for adap-

tive complexity reduction. The proposed modality selection method achieves similar

performance compared to the full modality baseline with up to 72.0% computational

complexity reduction. Overall, the model complexity can be reduced up to 99.1%

when combining the searched efficient VIO network and the dynamic visual modality

selection technique.

In Chapter IV, an end-to-end deep learning framework is presented to separate

and localize multiple audio sources at the same time with a low-power microphone

10

sensor array. The proposed framework jointly estimates the separated sources and

their time difference of arrival (TDOA) at different microphones, then obtains the

direction-of-arrival (DOA) of each source. Source separation and TDOA estimation

are jointly optimized by adding a similarity loss between the reconstructed mixture

and the original mixed signal. In addition, a discriminator network is added during

the training phase to further improve the separation quality. The system achieves

state-of-the-art accuracy on source separation as well as DOA estimation.

In Chapter V, a new class of transform domain DNNs, the HTNN, is introduced,

where convolution operations are replaced by element-wise multiplications in het-

erogeneous transform domains. The network computational complexity is reduced

by learning sparse-orthogonal weights in heterogeneous transform domains and co-

optimizing with a hardware-efficient accelerator architecture to minimize the over-

head of handling the sparse weights. Furthermore, sparse-orthogonal weights are

non-uniformly quantized with canonical-signed-digit (CSD) representations to sub-

stitute multiplications with simpler additions/subtractions. The proposed framework

achieves up to 6.8× complexity reduction without compromising the DNN accuracy

compared to equivalent CNNs that employ sparse (pruned) weights.

11

CHAPTER II

Real-Time Simultaneous Localization and Mapping

for Energy-Constrained Mobile IoT Applications

2.1 Introduction

In recent years, simultaneous localization and mapping (SLAM) draws lots of at-

tentions in computer vision and robotics communities due to its importance in various

tasks. It has wide applications in autonomous navigation, self-driving cars, unmanned

aerial vehicles, mobile robots, autonomous underwater vehicles and planetary rovers.

SLAM solves the problem of building a consistent map of an unknown environment

while simultaneously localizing the agent within this map. A wild variety of sensors

are used in SLAM systems to catch different kinds of environmental information, in-

cluding camera, inertial measurement unit (IMU), lidar and radar. Due to the low

cost of the camera and rich information provided through images, visual based SLAM

systems, where the main sensors are cameras, are in favor nowadays.

The simplest setup for visual SLAM involves only a single camera, which is referred

to as monocular SLAM. Since the depth information cannot be directly inferred from

just one camera, monocular SLAM often encounters lots of problems. First, monoc-

ular SLAM suffers from scale drift and may fail if the camera is doing pure rotations.

Besides, monocular SLAM requires a careful and accurate initialization of the map to

12

avoid system failure. These disadvantages can be easily overcome by using a stereo

or an RGB-D camera, which leads to much more reliable visual SLAM solutions.

Most SLAM algorithms are designed to run on general purpose processors like

CPUs and GPUs, which are usually too big and require too much energy for mo-

bile IoT applications, such as battery-powered virtual reality (VR) headsets, micro

unmanned aerial vehicles (UAVs), and small moving robots. For this kind of appli-

cation, the power constraint of SLAM processing is only hundreds of micro watts,

much less than the power consumption of the general purpose processors which is

typically more than 10 watts. Such mobile IoT platforms are not powerful enough to

run state-of-the-art SLAM algorithms in real time. To enable SLAM applications in

such energy-constrained situations, a practical approach is to design specialized hard-

ware accelerators using application specific integrated circuits (ASIC) [64] with lower

energy consumption. Apparently, state-of-the-art SLAM systems cannot be directly

deployed on this sort of specialized accelerators. Thus, it is important to investigate

new SLAM algorithms that are more suitable for hardware implementation while still

maintaining good system performance.

This work presents a visual SLAM system that is optimized for hardware VLSI

implementation, using only a stereo or RGB-D camera. A simple convolutional neu-

ral network (CNN) is trained as the visual feature descriptor, which improves the

feature matching accuracy and can be efficiently executed on a dedicated neural en-

gine. The region-prediction based feature matching technique and a new keyframe

decision scheme help to significantly reduce computation cost and on-chip memory

requirement. Moreover, the proposed system has been ported on the first large-scale

low-power SLAM ASIC accelerator [78].

13

2.2 Related Work

There are two mainstreams of state-of-the-art visual SLAM algorithms, namely

the keypoint based SLAM and the direct SLAM, depending on whether the image

pixels are directly used or not.

Keypoint based SLAM methods [29, 91] make use of the images indirectly. First,

important visual features are extracted from the images, then these features are used

for keypoint tracking and camera ego-motion estimation, and the map is built from

the tracked sparse keypoints. The visual features can be either simple geometric

features like corners and edges, or extracted by more sophisticated hand-crafted fea-

ture descriptors, such as SIFT [84], ORB [103] and FAST [102]. For example, the

SOFT-SLAM [29] uses corner-like features while the ORB-SLAM2 [91] employs more

complex ORB features to improve accuracy. Since only indirect and sparse feature

information is used, the performance of keypoint based methods is greatly affected

by the quality of extracted features and the accuracy of feature matching.

Direct SLAM algorithms [36, 40] propose to directly utilize the image pixel in-

tensities for both tracking and mapping, rather than extracting intermediate visual

features and keypoints. The camera poses are estimated by direct image alignment

and the 3D environment is reconstructed with associated semi-dense depth maps.

Direct methods can obtain a much denser map than keypoint based methods thanks

to the use of more image areas and pixels. However, direct SLAM systems are usually

computationally demanding and consume more power due to the need of processing

large amounts of data. Hence, it is not a good choice for this work since the goal is

to develop hardware-efficient SLAM systems for energy-constrained applications.

Recently, some hardware implementations of visual odometry / visual-inertial

odometry (VO/VIO) [31, 58], which often serves as the front-end of visual SLAM

14

Figure 2.1: The proposed complete system with visual odometry front-end and graph
optimization back-end.

systems, have been proposed, including a simple low-power implementation for aug-

mented reality (AR) applications [58]. However, these implementations only target

on the general purpose embedded hardware, which is less efficient than the special-

ized ones. Zhang et al. [160] attempt to design a VIO system for specialized hard-

ware with desired resource-performance trade-off through hardware and algorithm

co-design process. Inspired by their work, this work aims to design and implement a

complete low-power SLAM system through a similar hardware and software co-design

approach. The proposed low-power SLAM system can do long-term and globally con-

sistent localization and mapping in real-time operation.

2.3 A SLAM System Optimized for Hardware

The proposed SLAM system takes the keypoint based approach and can be di-

vided into two parts, the visual odometry front-end and the optimization back-end.

The front-end consists of 4 blocks, i.e., feature extraction, feature tracking, pose es-

timation, and new keyframe decision. The back-end collects all keyframes and 3D

landmarks and applies graph optimization to reduce the accumulated drift in the

front-end estimation. The system inputs are images taken from stereo or RGB-D

cameras where the depth information can be easily acquired through existing algo-

15

Figure 2.2: Left: CNN architecture of the proposed visual feature descriptor. Right:
Training with the triplets, all three CNNs in the figure are identical and share the
same weights.

rithms such as semi-global block matching [55]. Figure 2.1 is the diagram of the

proposed system, the detail of each part is described in the rest of this section.

2.3.1 Visual Odometry Front-End

Recent works have demonstrated that deep learning based local visual feature

descriptors can significantly improve the feature matching performance [9, 112]. In the

proposed SLAM system, instead of using hand-crafted feature descriptors, a simple

CNN is utilized to extract the visual features. It contains three convolutional layers,

and each convolutional layer is followed by a ReLU layer and max pooling layer.

Before the final output, there is a 128 × 64 fully connected layer to convert the

feature vector into the desired dimension. Figure 2.2 left is the network structure of

the proposed CNN based feature descriptor. Given the small image patch (16 × 16

16

Figure 2.3: Region-prediction based matching technique. The search region in the
previous frame (red square) is greatly reduced.

in pixels) around the keypoint obtained by difference of Gaussian (DoG), the CNN

generates a 64-dimension vector as the feature descriptor. The network is trained

with triplets described in [9] and is illustrated on the right of Figure 2.2. In each

training step, three different training samples, the anchor patch, the positive patch (a

different sample from the same class) and the negative patch (a sample from a different

class) are passed through the network to generate three feature vectors. Then the L2

distance between the anchor vector and the negative vector is maximized, and the L2

distance between the anchor vector and the positive vector is minimized. Hence, the

loss function can be defined as

(2.1) L(A,P,N) = max(0, µ+ ∥f(A)− f(P)∥2 − ∥f(A)− f(N)∥2),

where A,P,N are anchor, positive and negative image patches, respectively, and µ

is a margin parameter. Equation 2.1 is a convex approximation to the 0-1 ranking

error loss, which measures the violation of the feature descriptor ranking order inside

the triplets.

The feature tracking step finds the corresponding 2D image keypoints between

the current frame and the previous frame, which are then used for estimating the

relative camera pose between the two frames. Conventionally, after obtaining all

17

the keypoints and their feature descriptors on the current frame, these keypoints are

matched by calculating and minimizing the L2 distance of all the feature descriptors

on the previous frame. However, this process wastes too much time and computation

due to the redundant comparison of all the feature descriptor pairs. Instead, a region-

prediction based matching technique that can significantly reduce the computation is

introduced, which is shown in Figure 2.3. First, the current camera orientation R̂c

and translation t̂c are predicted using the relative pose of the previous two frames,

assuming the camera has no sudden movement between any two consecutive frames.

Next, for each keypoint (x, y) on the current frame, its corresponding 3D world point

(X, Y, Z) can be obtained by

(2.2)



X

Y

Z

1


=

 R̂c t̂c

0 1




1 0 0 −cx

0 1 0 −cy

0 0 0 fx

0 0 fx/b 0





x

y

d

1


,

where d is the disparity that can be obtained from depth information, fx, (cx, cy) and

b are the focal length, the principal point in pixels and the baseline, all known from

camera calibration. Finally, this 3D world point is reprojected back onto the previous

frame to get the center of the search region (u, v):

(2.3)


u

v

1

 = K [Rp tp]



X

Y

Z

1


,

where K is the camera intrinsic matrix, Rp is the previous orientation and tp is

the previous translation. Finally, only feature descriptors in this search region are

compared, which is a n × n square in pixels around the predicted center. Typi-

18

Figure 2.4: Example of the feature tracking and matching between two consecutive
frames with proposed CNN feature descriptor and region-prediction based matching
technique.

cally, thousands of keypoints are extracted on each frame, but the search region only

contains dozens of them. By using this matching technique, the computation can

be reduced by around 100X while maintaining the same matching accuracy. Figure

2.4 shows an example of the feature tracking and matching with the proposed CNN

feature descriptor and region-prediction based matching technique.

The proposed SLAM system performs motion-only bundle adjustment (BA) to

estimate the relative camera pose between two consecutive frames. Bundle adjust-

ment [129] is originally employed as the last step of structure from motion problem

[108, 134], which simultaneously refines the 3D coordinates describing the scene geom-

etry and the parameters of the relative motion according to an optimization criterion

involving the corresponding image projections of all keypoints. Motion-only BA op-

19

timizes the relative camera orientation R and translation t of the current frame by

minimizing the total reprojection errors between the matched 3D world points Xj

and the 2D image keypoints xj:

(2.4) {R∗, t∗} = argmin
R,t

M∑
j=1

ρ(∥K(RXj + t)− xj∥22),

where ρ is the robust Huber cost function [62] and K is the camera intrinsic matrix.

To solve this nonlinear least squares optimization problem, Levenberg–Marquardt

method [69, 83] is often employed. It is also noticeable that the accuracy of relative

pose estimation is greatly affected by the matching quality of the 3D and 2D keypoint

pairs used in motion-only BA. In all experiments, it is observed that doing motion-

only BA twice, where bad matching pairs with large reprojection errors are eliminated

during the first run, could improve the overall system performance, especially in an

environment with lots of moving objects.

The last block of the visual odometry front-end, the new keyframe decision block,

is the preparation step for the back-end optimization, which is critical for dealing

with the accumulated drift and reducing the pose estimation errors. A good keyframe

selection strategy can lead to better back-end optimization results, hence improving

the overall SLAM system performance. An efficient keyframe decision and update

scheme is developed to avoid storing less useful keyframes and landmarks when there

is limited on-chip memory of the mobile platforms. At system startup, the first

frame is set as a keyframe, its pose is set to the origin and an initial map is created.

Then the second frame is also registered as a keyframe and all the 3D landmarks

that can be tracked between the first and second keyframes are stored. During the

system operation, it keeps tracking the keypoints between the current frame and the

previous keyframe. Once the number of tracked keypoints is below 50% of the total

keypoints in the previous keyframe, the current frame is selected as a new keyframe.

20

Besides, only landmarks that can be tracked in multiple keyframes are stored since

only these landmarks are effective during graph optimization. Moreover, the current

frame is registered as a keyframe if there is no keyframe in the past 10 frames. The

proposed keyframe decision and update strategy saves the system’s on-chip memory

significantly, and enables the storage of more keyframes and associated landmarks for

back-end optimization on a larger scale.

2.3.2 Graph Optimization Back-End

For a long time, the SLAM systems are optimized through filtering methods, such

as the well-known extended Kalman filter [17] and its different variants [56, 124].

However, filtering methods are not the optimal back-end optimization strategies for

visual SLAM algorithms. On the other hand, keyframe bundle adjustment is first

introduced for visual SLAM back-end optimization by Klein et al. [66], and is proven

to outperform filtering methods by Strasdat et al. [118]. Given a set of N keyframes

and M associated 3D landmarks appeared in these keyframes, keyframe BA jointly

optimizes all the keyframe poses (rotation Ri and translation ti) and 3D landmarks

Xj by minimizing the total reprojection errors. This optimization problem can be

expressed as:

(2.5) {Ri
∗, ti

∗,Xj
∗} = arg min

Ri,ti,Xj

N∑
i=1

M∑
j=1

wij∥K(RiXj + ti)− xij∥22,

where wij is an indicator function on whether landmark j appears in the keyframe

i, K is the known camera intrinsic matrix, and xij is the actual 2D projection from

landmark j to keyframe i. Again, Levenberg–Marquardt method is employed to solve

this nonlinear optimization problem.

For best system performance, all the keyframes and associated landmarks should

be kept and used in the keyframe BA, which is also called the global BA. However,

21

global BA is not practical in the proposed low-power SLAM system due to the limited

storage availability. It is important to avoid using any off-chip dynamic random access

memory (DRAM) since off-chip DRAM could cause much higher power consumption

and chip cost. Hence, only a reasonable amount of keyframes and landmarks can

be kept in the on-chip memory with the help of the proposed keyframe decision

and update scheme. Every time before inserting a new keyframe and its associated

landmarks, the system checks if there is enough space in the memory. If not, the oldest

keyframes and their associated landmarks are removed to make room for the new ones.

Typically, if 4 megabytes of on-chip memory is available, around 50 keyframes and

4000 landmarks can be stored, which ensures a quite large-scale keyframe BA in the

back-end.

2.4 Experiments

First, this section shows the performance of the proposed CNN based visual feature

descriptor. Then the entire low-power SLAM system is evaluated on one of the

most influential SLAM benchmarks, the KITTI Visual Odometry / SLAM Evaluation

dataset [41].

2.4.1 CNN Feature Descriptor

The proposed CNN feature descriptor is evaluated on one of the most popular

benchmarks in the field of local descriptor matching, the Multi-view Stereo Corre-

spondence dataset [12]. It consists of 64× 64 grayscale image patches sampled from

3D reconstructions of the Statue of Liberty (New York), Notre Dame (Paris), and

Half Dome in Yosemite (Yosemite). All image patches are divided into three sub-

sets: Liberty, Yosemite and Notredame, with each containing more than 500k patch

pairs. Image patches are downsampled to 16 × 16 in all experiments. Following the

22

Training subsets Lib & Yos Lib & Not Yos & Not
Testing subset Not Yos Lib

Descriptor dim mean

SIFT [85] 128 22.53 27.29 29.84 26.55
ImageNet CNN [38] 128 9.64 30.22 14.26 18.04
DeepDesc [112] 128 4.54 16.19 8.82 9.85
Proposed CNN 64 10.59 18.70 18.02 15.77

Proposed CNN (8 bits) 64 10.76 18.92 18.15 15.94

Table 2.1: Results from the Multi-view Stereo Correspondence dataset. Numbers are
reported in terms of FPR95. Lib: Liberty, Yos: Yosemite, Not: Notredame.

Descriptor SIFT [120] Proposed CNN (8 bits) DeepDesc ImageNet CNN

Parameters N/A 92,448 280,096 3,722,592

Power 52.5 mW 150 mW 7.3 W 96.6 W

Table 2.2: Comparison of the network complexity and power consumption among
different descriptors.

prior works [9, 12, 112], any of the two subsets are used for training and the rest

for testing. The evaluation metric is the false positive rate at 95% true positive rate

(FPR95) of all three training and testing combinations, as well as the mean across

all combinations, same as many previous state-of-the-art works.

Table 2.1 summarizes the results of the proposed CNN descriptor with all three

training and testing combinations, as well as its quantized version with 8-bit weights

and activations. The quantized network achieves similar image patch matching per-

formance as the original floating-point network while reducing the network computa-

tional complexity and power consumption by around 18× according to Horowitz [59].

The FPR95 values of SIFT [85] and some of the existing deep learning based feature

descriptors [38, 112] are also reported in Table 2.1 for comparison. Besides, Table

2.2 lists the estimated power consumption of SIFT, the proposed CNN descriptor,

DeepDesc and ImageNet CNN, and the network complexity (number of parameters)

23

of the three learning based descriptors. Although the proposed method consumes 150

mW of power, which is higher than SIFT, it outperforms SIFT in all three cases with

acceptable power consumption for mobile applications. Compared to other learn-

ing based feature descriptors, the proposed network performs slightly worse in some

cases, but with much lower computation cost during the inference stage thanks to the

simpler network structure and 8-bit weights & activations quantization. In addition,

the feature vector dimension of the proposed CNN descriptor is smaller than all other

feature descriptors (64D vs 128D), which could reduce the computation in the feature

matching phase.

2.4.2 SLAM System Evaluation

The entire low-power SLAM system is evaluated on the popular KITTI Visual

Odometry / SLAM Evaluation dataset [41]. It contains stereo video sequences recorded

from a calibrated stereo camera on a driving car platform in real-world environments

including urban, highway and other conditions. The stereo camera works at 10Hz

with a resolution of around 1240 × 376 in pixels after rectification. There are 22

sequences in total, and 11 of them (sequences 00 – 10) have ground truth trajecto-

ries. The proposed system is tested on sequences 00 – 10 and uses only grayscale

stereo images as input. Two different metrics are used for performance evaluation,

the absolute translation root mean square error (RMSE) trmse proposed in [119], and

the average relative translation error tre and relative rotation error rre over various

subsequence path lengths in 100, 200, . . . , 800 meters as proposed in [41].

Detailed results on each sequence (00 to 10) of the proposed system, as well

as two state-of-the-art stereo visual SLAM systems, ORB-SLAM2 [91] and Stereo

LSD-SLAM [36], are reported in Table 2.3. The proposed system achieves relatively

good pose estimation accuracy on sequences 03, 04, 06, 07 and 10, and acceptable

24

Figure 2.5: Estimated trajectories (blue) and ground truth trajectories (red) on
KITTI dataset sequences 00 to 10.

25

Seq.
Proposed system ORB-SLAM2 [91] Stereo LSD-SLAM [36]

tre rre trmse tre rre trmse tre rre trmse

(%) (◦/100m) (m) (%) (◦/100m) (m) (%) (◦/100m) (m)

00 1.78 0.73 22.3 0.70 0.25 1.3 0.63 0.26 1.0
01 5.07 1.06 105.3 1.39 0.21 10.4 2.36 0.36 9.0
02 1.66 0.62 39.5 0.76 0.23 5.7 0.79 0.23 2.6
03 2.03 0.64 0.9 0.71 0.18 0.6 1.01 0.28 1.2
04 2.18 0.58 2.9 0.48 0.13 0.2 0.38 0.31 0.2
05 2.26 0.57 12.5 0.40 0.16 0.8 0.64 0.18 1.5
06 1.80 0.68 2.6 0.51 0.15 0.8 0.71 0.18 1.3
07 1.69 0.64 1.7 0.50 0.28 0.5 0.56 0.29 0.5
08 2.29 0.49 20.6 1.05 0.32 3.6 1.11 0.31 3.9
09 3.03 0.65 12.2 0.87 0.27 3.2 1.14 0.25 5.6
10 2.38 1.01 4.7 0.60 0.27 1.0 0.72 0.33 1.5

Table 2.3: The absolute translation RMSE trmse, relative translation error tre and
relative rotation error rre of the proposed low-power SLAM system, ORB-SLAM2
[91] and Stereo LSD-SLAM [36] on KITTI dataset sequences 00 to 10.

performance on sequences 00, 02, 05, 08 and 09. However, it gets the worst result

on sequence 01 because of the more challenging highway scenario. In sequence 01,

fewer close points can be correctly tracked due to the high speed of the vehicle and

low frame rate of the recorded video, hence camera translation is much harder to

estimate by the proposed system. Besides, some sequences contain a lot of turns,

such as sequences 00, 02, 05 and 08, which could lead to severe drift that is hard to

be dealt with by the proposed system. Moreover, the estimated trajectories versus

the ground truth trajectories of all the 11 sequences are plotted in Figure 2.5 for

quality evaluation.

Although the proposed low-power SLAM system performs slightly worse than

ORB-SLAM2 and Stereo LSD-SLAM in terms of absolute translation RMSE trmse,

relative translation error tre and relative rotation error rre on most of the sequences,

the most important advantages of the proposed system are the low power consump-

tion and small memory usage. Table 2.4 summarizes the power consumption and

26

Proposed system ORB-SLAM2 [91] Stereo LSD-SLAM [36]

Frame rate
72.5 FPS 16.7 FPS 14.3 FPS

(KITTI)

Platform
Specialized Intel i7-4790 Intel i7-4900MQ
VLSI ASIC 2 cores @ >3.5 GHz 1 core @ 2.8 GHz

Power 200 mW 42 W 11.75 W

Memory 13 MB 4 – 6 GB 1 – 3 GB

Table 2.4: Frame rate on KITTI, deployed platform, system power consumption and
memory usage of the proposed low-power SLAM system, ORB-SLAM2 [91] and Stereo
LSD-SLAM [36].

memory requirement of ORB-SLAM2, Stereo LSD-SLAM and the proposed SLAM

system. To achieve real-time operation, i.e. ≥ 10 FPS (frame per second), ORB-

SLAM2 and Stereo LSD-SLAM require desktop CPUs with more than 10 watts of

power, while the proposed low-power system runs on specialized ASIC accelerator

with only 200 mW power. Moreover, the proposed system only requires 13 MB of

on-chip memory, while ORB-SLAM2 and Stereo LSD-SLAM need at least gigabytes

of memory. The proposed low-power SLAM system achieves much lower power con-

sumption and memory usage with reasonable performance, which is more capable for

mobile IoT applications.

2.5 Summary

This work shows a complete low-power visual SLAM system with stereo or RGB-

D cameras for real-time applications. The work mainly focuses on optimizing the

system for hardware-efficient VLSI implementation through hardware and algorithm

co-design. In the visual odometry front-end, a simple CNN based visual feature

descriptor is introduced to help on improving the feature matching and tracking ac-

curacy. To reduce the system’s overall computation cost and on-chip memory usage,

27

a new region-prediction based feature matching technique and a new keyframe selec-

tion and update scheme are proposed. By running the proposed system on the KITTI

Visual Odometry / SLAM Evaluation dataset, satisfactory results are obtained on

most of the evaluation sequences compared to the state-of-the-art algorithms. With

much lower power consumption and memory usage, the proposed system is capable

for mobile IoT applications, and it is already ported on a low-power SLAM ASIC

accelerator.

28

CHAPTER III

Efficient Deep Visual-Inertial Odometry with

Neural Architecture Search and Adaptive Visual

Modality Selection

This work is collaborated with Mingyu Yang. Thanks for his contribution in deep

VIO with adaptive visual modality selection (Section 3.3.3).

3.1 Introduction

Visual-inertial odometry (VIO) continuously determines the position and orien-

tation of the agent from captured sequential images and inertial measurement unit

(IMU) readings. It has a wide range of applications in robotics and computer vi-

sion related tasks, such as localization, navigation, autonomous driving, augmented

reality (AR) and virtual reality (VR). Compared to visual odometry (VO) systems

[13, 35, 39, 90, 151, 152, 164], VIO systems [18, 47, 77, 80, 99] incorporate additional

IMU measurements and are more robust in texture-less environments and under ex-

treme lighting conditions.

With the rapid development and superior performance of deep learning in various

computer vision tasks [32, 68], deep learning based VO/VIO systems [18, 47, 80,

151, 152, 164] have received growing attention from the community in recent years.

Compared with conventional geometric based methods [35, 39, 77, 90, 99], data-driven

29

VIO methods achieve competitive performance in both accuracy and robustness while

avoiding manual interventions for system initialization and parameter tuning (e.g.,

number of features per frame, the threshold of feature matching, keyframe selection

and so on). Moreover, learning based methods extract better features and learn

more efficient fusion mechanisms through deep neural networks (DNNs). However,

the excessive complexity of DNNs [125] incurs a significant burden on computing

platforms. It is impractical to directly deploy learning based VIO models in real-

time without powerful GPUs, which are typically not available on energy-constrained

mobile platforms operating with low-cost, energy-efficient cameras and IMU sensors.

Reducing the complexity of DNNs has drawn significant attention in the commu-

nity, and various kinds of methods have been proposed to combat fast-growing DNN

model sizes. One of the efficient approaches is network weight pruning and quan-

tization [49, 159], where less important weights or channels are iteratively pruned

without loss of accuracy. Designing compact models specialized for certain mobile

platforms [105] is another efficient way, but it is a time-consuming process, heavily

relying on computer architecture expertise. More recently, neural architecture search

(NAS) [162, 163], and its more practical variant one-shot NAS [14, 150] are pro-

posed for automating the DNN model design, making it possible to find the optimal

network structure given certain hardware-specific constraints (e.g., MACs, latency

and/or memory). However, prior NAS works mainly focus on image classification

[14, 21, 150, 154], depth estimation [154], object detection [21] and semantic segmen-

tation [79]. Applying one-shot NAS to VIO is not straightforward because each task

has its own unique structure.

On the other hand, the computation of learning based VIO models heavily lies

on the sensor data encoder (for data processing and feature extraction), especially

30

Figure 3.1: An overview of the adaptive visual modality selection technique. A policy
network is learned to adaptively disable the visual encoder on the fly without harming
the VIO system accuracy, thus saving huge computation from the visual encoder.

the visual modality encoder. The visual encoder is usually much more computation

demanding than the inertial encoder due to the big image dimension and its rich

information. It is observed that some sensor data is not always helpful for accurate

pose estimation, thus the system computational complexity can be reduced by inten-

tionally disabling the visual modality on the fly while keeping IMU always available.

Learning a good policy is the biggest challenge to achieve this strategy.

This work proposes two techniques to reduce the overall computation of the learn-

ing based VIO systems [24, 153]. First, one-shot NAS is applied to identify the most

efficient visual encoder network with low complexity and low latency, which brings

down the system complexity to 2.6% of the baseline model without performance

degradation. The VIO system with searched efficient visual encoder can run in real-

time on a laptop CPU (Intel i7-7700HQ) at the rate of 83.3 frames per second (FPS).

Motivated by recent works on temporal adaptive inference for efficient action recog-

nition [87, 88, 95, 148] and fast text classification [16, 51, 109], the second technique

31

relies on a lightweight policy network to adaptively disable the visual (image) modal-

ity on the fly to alleviate the high computational cost of learning based VIO methods,

as illustrated in Figure 3.1. Since visual information does not always contribute to

accurate motion estimations, especially when the ego-motion is relatively small over

time, occasionally skipping unimportant images could save lots of computation with

almost no performance degradation. According to the experimental results, visual

modality can be disabled up to 72% of the time without compromising VIO accuracy.

Furthermore, these two techniques can be combined together to further reduce the

system complexity down to only 0.9% of the baseline for KITTI dataset evaluation.

With combined techniques, the proposed framework is suitable for mobile platforms

with limited computation resources and energy budgets.

3.2 Related Work

3.2.1 Visual-Inertial Odometry

Conventional VO/VIO systems typically consist of four steps: feature detection,

feature matching and tracking, motion estimation, and local optimization [107]. They

often serve as the front-end of simultaneous localization and mapping (SLAM) sys-

tems [90, 91, 99], followed by 3D environment mapping, global optimization and loop

closure steps to form the complete SLAM systems. The performance of conventional

systems is largely affected by visual feature matching and tracking accuracy, as well as

sensor fusion strategy. Existing state-of-the-art systems rely on superior handcrafted

feature descriptors [84, 103] for better feature matching and tracking accuracy, and

different sensor fusion schemes, such as adaptive filtering [77] and nonlinear optimiza-

tion [57, 76] for better performance.

End-to-end deep learning based VO/VIO models are first introduced in a su-

32

pervised learning manner [18, 26, 151, 152] that regress the six degrees of freedom

(6-DoF) camera relative poses from consecutive image frames and IMU measurements

to minimize the difference from the ground-truth poses. A long short-term memory

(LSTM) network is first introduced by VINet [26] to model the temporal motion cor-

relation. Later, different fusion mechanisms of the visual and inertial features have

been proposed, for example, soft and hard masking techniques proposed by Chen

et al. [19], and attention based fusion module introduced in ATVIO [80]. More re-

cently, self-supervised learning based frameworks [2, 47, 110, 164] propose to train

the model without ground-truth poses and achieve more accurate motion estimations.

These works utilize additional information for self-supervision, such as optical flow

[47], depth information [2] and multi-level online error correction [110]. However,

these learning based VIO systems focus on improving system performance without

considering the system complexity and power consumption, making them unsuitable

for energy-constrained mobile platforms.

3.2.2 Neural Architecture Search

Pioneer NAS works [7, 162] attempt to search for high performance models in

a large sequential search space, which is more representative but computationally

expensive to cover. Later, one-shot NAS [14, 150] treats all architectures as subgraphs

of a supergraph with shared weights [34]. Only the ‘super-network’ (with supergraph)

needs to be trained once and all subnets (subgraphs) can be directly sampled from the

super-network reusing its weights, which greatly speeds up the architecture evaluation

and search process. VONAS [15] is the first work to apply NAS to VO network design,

but it targets on finding the best performance model when the system complexity is

unconstrained. Nevertheless, its performance is far from satisfactory compared to

state-of-the-art VO/VIO systems. Different from VONAS, this work proposes to

33

apply one-shot NAS to find the most hardware-efficient (low complexity, low latency)

VIO network from a carefully designed search space.

3.2.3 Adaptive Inference

Adaptive inference scheme aims to allocate computing resources dynamically based

on the input instance of each task, and eliminates the redundant computation for rel-

atively easy task inputs. Several different techniques have been proposed, including

early exiting [10, 61, 127], layer skipping [46, 137, 141], and dynamic channel pruning

[60, 157]. Recently, the idea of adaptive inference has been extended to sequential

data (e.g., texts [16, 51, 109] and videos [87, 88, 95, 148]) that involves recurrent neu-

ral networks (RNNs). The proposed adaptive modality selection technique is closely

related to adaptive video recognition [148], which introduces a memory-augmented

LSTM to adaptively select relevant frames for fast action recognition. Similarly, AR-

Net [87] learns a policy through the Gumbel-Softmax trick to dynamically select the

optimal resolution of each video frame for efficient action recognition. Later, this idea

was extended to modality selection [95] and image region (patch) selection [142] on

the same task. Motivated by these prior works, the proposed technique is the first

to apply a similar framework for adaptive sensor modality selection on deep learning

based VIO models.

3.3 Method

This section first presents the baseline deep VIO model architecture and its train-

ing strategy. Then the steps to search for the most efficient visual feature encoder

through one-shot NAS are discussed. Finally, the adaptive visual modality selection

technique along with Gumbel-Softmax training trick is introduced to further reduce

the model’s overall computational complexity.

34

Figure 3.2: The architecture of the deep VIO model that serves as the baseline.
Visual feature and inertial feature are extracted by the visual encoder and inertial
encoder, respectively, then combined by direct concatenation to get the fused future
zt. Finally, translation v̂ and rotation r̂ are estimated through the LSTM network.

3.3.1 Deep Visual-Inertial Odometry

Figure 3.2 shows a typical deep learning based VIO system, which involves a visual

encoder Ev to extract features from two consecutive images It, an inertial encoder Ei

to extract features from IMU measurements Xt between two images, a fusion function

f to fuse both features, and an RNN to perform 6-DoF pose regression. This process

can be expressed as:

(3.1) zt = f(Ev(It), Ei(Xt)),

(3.2) v̂t, r̂t, ht = RNN(zt, ht−1),

where zt is the fused feature vector, ht−1 and ht are the RNN hidden states, v̂t and r̂t

are the estimated relative translation and rotation of the camera at time t. Different

sensor fusion methods have been explored by prior works, such as direct concate-

35

nation [26], masking [19] and attention module [80]. This work proposes to simply

concatenate visual and inertial features and let the pose RNN learn their importance

for estimating the pose output. This simple fusion strategy is also beneficial to the

proposed adaptive visual modality selection technique. Since the image dimension is

much larger than that of the IMU measurement, the visual encoder is usually much

bigger than the inertial encoder and the rest of the network. Hence one of the main

focuses is to find a more efficient visual encoder with lower complexity through NAS

while maintaining its compatibility with the rest of the system. Due to the nature

of sequential motion estimation, temporal information such as the estimated motions

and states of previous frames is important for accurate pose estimation of the current

frame. Hence RNNs are typically employed to learn the temporal correlation within

frames.

This VIO system can be trained by minimizing the combined translation and

rotation mean squared error (MSE):

(3.3) Lp = ∥v̂− v∥22 + α∥r̂− r∥22,

where v and r denote the ground-truth translation and rotation vectors. α is a scale

factor for balancing the translation error and rotation error. In all the experiments,

α is set to 100, same as the previous supervised learning VO/VIO methods [18, 26,

80, 140, 152].

3.3.2 Neural Architecture Search on Visual Encoder

VONAS [15] searches for the VO architecture with best performance from scratch.

Thus it has a big and unstructured search space without any prior knowledge. How-

ever, many preceding VO/VIO systems [18, 47, 151, 152, 164] have proven the ef-

fectiveness of adapting Flownet [32], a set of convolutional neural networks (CNNs)

36

Figure 3.3: The super visual encoder and its search space. The biggest subnet is
equivalent to FlowNetS [32] with 9 convolutional layers. Layer conv1, conv2 and
conv3 can search for different kernel sizes. The first 8 layers can search for different
numbers of channels. And layer conv3 1, conv4 1 and conv5 1 can be skipped via
direct connection.

proposed for optical flow estimation, as the visual encoder. Therefore, taking the

advantage of this, the architecture of a simple version, the FlowNetS [32] (without

the last layer), is chosen as the biggest visual encoder network here. The FlowNetS

contains 9 convolutional layers as shown in Figure 3.3.

The search space includes convolution kernel sizes, number of filters and network

depth, as shown in Figure 3.3. The original kernel sizes are 7, 5, 5 for the first 3

layers and 3 for the rest layers in FlowNetS. To avoid adding additional complexity,

the kernel size is selectable in {7, 5, 3} for the first layer, and in {5, 3} for the second

and third layers while no selections are provided for the rest layers. The number

of channels is reduced by multiplying FlowNetS’s original channel sizes by scaling

multipliers, which are selected from {1
8
, 2
8
, . . . , 7

8
, 1} for the first 8 layers. The number

of channels of the last layer remains the same to maintain the final visual feature

dimension, which can be directly fed to the fusion network without additional op-

37

eration. For network depth, instead of directly deciding the total number of layers

of the visual encoder, skipping via direct connections for layer conv3 1, conv4 1 and

conv5 1 is allowed as they do not contain dimension reduction operations and their

input feature maps can be directly passed to the next layer. The search space size

of the proposed method is around 109, which is much smaller than that of VONAS

(1013) [15]. The smaller search space guarantees faster super-network training and

architecture search.

The super visual encoder is jointly trained with the inertial encoder and pose

RNN, and is evaluated by pose estimation accuracy of the entire VIO system. Al-

though NAS is only performed on the visual encoder, training and evaluating it in

isolation is impractical. Besides, good subnet candidates should produce similar vi-

sual feature vectors, leading to accurate pose estimations of the entire VIO system.

To warm up the whole system, the VIO model with the biggest subnet (same as

FlowNetS) is trained for several epochs first, which is initialized with weights pre-

trained on the FlyingChairs dataset [32]. Then following the progressive shrinking

algorithm [14], selections on kernel sizes, number of channels and depth are gradually

added and optimized, with new subnets generated for joint optimization. Although

progressive shrinking helps prevent the ‘interference’ between subnets, noticeable per-

formance degradation of bigger subnets is still observed during the optimization of

newly sampled subnets. Inspired by the sandwich rule [156], the biggest subnet is

sampled every N iterations (N = 500 in all experiments) for optimization to alleviate

such degradation.

Once the super visual encoder is well-trained, the next step is searching for the

optimal architecture given certain constraints. Suppose the super visual encoder with

trained shared weights is W. Denoting the set of architectures of all subnets by A,

38

the neural architecture search algorithm solves the following problem:

a∗ = argmax
a∈A

Ψ(φ(W, a)),

subject to gi(a) ≤ Ci,

(3.4)

where a denotes a subnet architecture in A, φ returns the subnet specified by a from

the super visual encoder network, Ψ is the system performance evaluation function,

and Ci is the ith system constraint such as computation cost, system latency, and

memory usage.

The goal is to search for the most efficient visual encoder architectures without per-

formance degradation. Instead of finding the best performance model under explicit

efficiency constraints (complexity, latency and/or memory usage), the proposed tech-

nique sets a small tolerance range on VIO performance degradation as a constraint

and searches for the models with the lowest FLOPs (floating-point operations) or

lowest inference latency within this constraint. Reinforcement learning [7, 15, 162]

and evolution search [14, 21, 100] are the most commonly used search algorithms and

are proven to be efficient and effective in previous works. Since the evolution search

is more friendly with hard system constraints as in this case, the evolution search

technique proposed by [100] is adapted to find the targeting efficient visual encoder

network structure.

3.3.3 Deep VIO with Adaptive Visual Modality Selection

The overview of the proposed visual modality selection technique is illustrated in

Figure 3.4. For this adaptive method, the goal is to learn a binary decision dt to

determine whether the visual modality can be disabled without a significant motion

estimation accuracy drop. A decision module is introduced to make the decision dt

by sampling from a Bernoulli distribution, whose probability pt ∈ R2 is generated by

39

Figure 3.4: Deep VIO system with proposed adaptive visual modality selection tech-
nique. At the current time stamp, the policy network takes the current inertial feature
and the previous hidden state of the LSTM to decide whether to use the visual modal-
ity or not. Once the policy network decides not to use visual modality, the visual
encoder is disabled to save the computation and the visual feature is zero-padded.

a lightweight policy network P . The policy network takes the previous RNN hidden

state ht−1 and the current inertial feature xt as inputs, where xt is extracted by the

inertial extractor Ei from the current IMU measurements Xt. This can be expressed

as:

(3.5) pt = P (ht−1, xt).

However, sampling from a Bernoulli distribution is discrete and non-differentiable.

One practical solution is to use a score function estimator, such as REINFORCE

[42, 145] or other policy gradient methods. But REINFORCE often suffers from slow

convergence and high variance [147] in many applications. Alternatively, Gumbel-

Softmax scheme [63], a reparametrization trick for categorical distributions [65, 89,

101], is adapted to enable end-to-end training through back-propagation. This kind

of reparameterization trick is easier to implement and exhibits lower variance during

40

training.

Consider a categorical distribution with K categories where the probability of the

kth category is pk for k = 1, . . . , K. Following the Gumbel-Max trick [63], a discrete

sample q that follows the target distribution can be drawn by:

(3.6) q = argmax
k

(log pk + gk), k ∈ {1, 2, . . . , K},

where g1, . . . , gK are i.i.d samples drawn from Gumbel(0, 1). And Gumbel(0, 1) dis-

tribution can be obtained by gk = − log(− log u) with u ∼ Uniform(0, 1). Then,

the softmax function is applied as a continuous and differentiable approximation to

argmax. The sample vector y ∈ RK can be obtained by

(3.7) yk =
exp((log pk + gk)/τ)∑K
j=1 exp((log pj + gj)/τ)

, k = 1, 2, ..., K,

where τ is a temperature parameter that controls the ‘discreteness’ of y. Gumbel-

Softmax distribution is smooth and has a well-defined gradient when τ > 0. When

τ ≈ 0, y is close to a one-hot vector for sampling the discrete variable. For the

proposed decision module, there are only two categories (K = 2) because of the binary

decision. During policy network training, the decision is sampled from the target

Bernoulli distribution through Equation 3.6 in the forward pass whereas Equation

3.7 is used for gradient approximation in the backward pass.

With Gumbel-Softmax, the binary decision dt ∈ {0, 1} can be sampled by:

(3.8) dt ∼ GUMBEL(pt).

When dt = 1, the visual encoder is enabled, and visual and inertial features are con-

catenated before RNN pose regression. When dt = 0, the visual encoder is disabled,

and the visual feature is replaced by a zero-padded vector of the same dimension.

41

This operation can be expressed as:

(3.9) zt =


Ev(It)⊕ Ei(Xt) if dt = 1

0⊕ Ei(Xt) if dt = 0

,

where ⊕ denotes the concatenation operation. The combined feature zt is then fed

to the RNN (a simple two-layer LSTM) for 6-DoF pose regression (v̂t and r̂t) as

in Equation 3.2. Notice that the decisions are sampled from the Gumbel-Softmax

distribution only during the training phase to make the system end-to-end trainable.

During the inference, decisions are sampled from the Bernoulli distribution parame-

terized by the policy network outputs.

For training the policy network, an additional penalty factor λ is applied for using

the visual encoder, thus encouraging the system to disable the visual modality. During

the training process, the averaged penalty is calculated and denoted as the efficiency

loss defined by:

(3.10) Le = λdt.

Finally, the deep VIO with adaptive visual modality selection is trained by com-

bining the pose estimation loss (Equation 3.3) and efficiency loss (Equation 3.10) to

strike a balance between good accuracy and computational efficiency. The joint loss

is defined as:

(3.11) L = Lp + Le.

3.4 Experimental Setup

3.4.1 Dataset and Metrics

The proposed approach is evaluated on one of the most popular VO/VIO bench-

marks, the KITTI Visual Odometry / SLAM Evaluation dataset [41]. The KITTI

42

Layer Total number of FLOPs

2D Convolution Co × Ci × k × k × H
s
× W

s

1D Convolution Co × Ci × k × L
2D BatchNorm Co ×H ×W
1D BatchNorm Co × L

LSTM (each layer) 4× (L+ Lh + 1)× Lh + 4× Lh

Fully connected Lh × L

Co, Ci: output and input channel
k: kernel size, s: stride
H,W : 2D input height and width
L: 1D input length, Lh: hidden state size

Table 3.1: FLOPs calculation for each layer type involved in the proposed framework.
Non-linear activation functions are ignored.

dataset consists of 22 sequences of stereo videos, where only sequences 00 – 10 contain

the ground-truth trajectory. Following previous works [18, 80], sequences 00, 01, 02,

04, 06, 08 and 09 are selected for training, and sequences 05, 07 and 10 are reserved for

testing. Sequence 03 is excluded due to the lack of IMU data. The monocular color

images (from the left camera) and ground-truth poses are sampled at 10 Hz while

IMU is sampled at 100 Hz. Since IMU is not synchronized with other sensors, raw

IMU data is linearly interpolated to time-synchronize with the images and ground-

truth poses. The input images are resized to 512 × 256, and 11 IMU measurements

(input IMU data dimension is 6× 11) are used between two consecutive frames.

For accuracy evaluation, the most common metrics are used, i.e., the root mean

square error (RMSE) on translation and rotation, and the relative rotation error rrel

and relative translation error trel for subsequences whose lengths span in 100, 200, . . . ,

800 meters [41]. To evaluate system complexity reduction with searched efficient

visual encoder, the model FLOPs and the inference speed (frame per second) on

a single laptop CPU core (Intel i7-7700HQ) are calculated. To evaluate the policy

network and adaptive visual modality selection, the average visual encoder usage rate

43

and average model FLOPs are computed. Table 3.1 lists the FLOPs calculation of

each layer type involved in the proposed framework. Computations of all non-linear

activation functions are ignored.

3.4.2 Model Architecture and Training Strategies

The baseline VIO model consists of three main parts, visual encoder, inertial

encoder and RNN pose regression network. The visual encoder is adopted from

FlowNetS network [32] (without the last layer) as described in Section 3.3.2. A

fully connected layer is attached at the end of the visual encoder to produce a 512-

dimensional visual feature vector. The inertial encoder is a 1D CNN with three

convolutional layers followed by a fully connected layer to generate a 256-dimensional

inertial feature vector. Due to richer information of the visual modality, the dimen-

sion of the visual features is deliberately set to be larger than that of the inertial

features. The RNN pose regression network is a two-layer LSTM each with 1024

hidden units. Two fully-connected layers are connected to the LSTM to generate

the final 6-DoF pose estimation. The policy network for adaptive visual modality

selection is a lightweight three-layer multi-layer perceptron (MLP) network.

First, the visual encoder of the baseline VIO network is initialized with weights

pretrained on the FlyingChairs dataset [32], and the entire VIO network is trained for

100 epochs. The learning rate is set to 5× 10−4 in the first 40 epochs, then 5× 10−5

for the next 40 epochs, and 1 × 10−6 for the last 20 epochs for fine-tuning. Next,

VIO with the super visual encoder reuses the weights of the baseline VIO model and

is trained through progressive shrinking. The progressive shrinking training involves

three stages, with selection on kernel sizes, number of channels, and network depth

added, respectively. Each progressive shrinking training stage takes 100 epochs, where

the learning rate is 5×10−5 for the first 80 epochs and 1×10−6 for the last 20 epochs.

44

Model Trans. RMSE (m) Rot. RMSE (◦) GFLOPs CPU FPS

Biggest VE 0.0337 0.0476 7.766 5.9
FLOPs target 0.0339 0.0474 0.198 79.1
Latency target 0.0339 0.0476 0.205 83.3

Table 3.2: Evaluation results of the VIO models with biggest visual encoder and
searched encoders targeting low FLOPs and low latency on KITTI testing sequences
05, 07 and 10.

The evolution search algorithm is applied to the super visual encoder to search for the

most efficient architecture given performance constraints. And the searched network

is fine-tuned for 20 epochs to regain accuracy. Finally, VIO with searched efficient

visual encoder is jointly trained with the policy network for 40 epochs with a learning

rate of 5×10−5, and fine-tuned for additional 20 epochs with a learning rate of 1×10−6.

The initial temperature of Gumbel-Softmax is set to 5 and is decayed exponentially

for each epoch with a factor of −0.05. The visual modality is always used in the first

frame to guarantee a qualified initial pose estimation for both training and inference.

For all the models, a weight decay of 5 × 10−6 is applied to avoid overfitting.

Adam optimizer with α = 0.9 and β = 0.999 is used, and the training batch size is

set to 16. The training subsequences are extracted from the original long sequences

with an overlap of 1 frame between subsequences, and its length is set to 11. During

the training stage, horizontal flipping is applied to images with 50% probability, and

ground-truth poses and IMU data are adjusted accordingly.

3.5 Experimental Results

In this section, the results of the searched efficient visual encoder are presented

first. Then an ablation study on the penalty factor is discussed to compare the

proposed adaptive visual modality selection scheme with the full modality baseline.

Finally, the optimal models obtained in this work are compared to state-of-the-art

45

Figure 3.5: Trajectories of 1) ground-truth, 2) full model (baseline model), 3) searched
model with low latency target, and 4) searched model with adaptive visual modality
selection. Left / center / right plot is the evaluation of KITTI sequence 05 / 07 / 10.

learning based VO/VIO systems to show the huge computation saving without system

performance degradation.

3.5.1 Search for Efficient Visual Encoder

When executing the evolution search, the performance degradation tolerance range

is set to be at most 10% as the hard constraint, then searching for the model with

the lowest FLOPs and lowest latency, respectively. The performance is evaluated by

the combined rotation and translation mean squared error.

Table 3.2 summarises the translation and rotation RMSE, model GFLOPs and

CPU inference frame rate of the VIOs with the biggest visual encoder and two

searched visual encoders (one for the lowest FLOPs and the other for the lowest

latency). The searched model targeting the lowest latency achieves 14.1× higher

frame rate with only 2.6% FLOPs compared to the full model while maintaining

similar accuracy. The proposed search strategy is efficient on reducing most of the

redundancy in the original visual encoder and it consequently allows the optimized

VIO model to run in real-time (≥ 30 FPS) on a single laptop CPU core. For visu-

alizing the accuracy, Figure 3.5 shows the trajectories of the model with the biggest

46

Figure 3.6: Architectures of searched efficient visual encoders through NAS. Top:
Lowest FLOPs target. Bottom: Lowest latency target. Notice that the searched
model with the lowest latency target makes a trade-off to skip the conv3 1 layer at
the cost of slightly degraded accuracy.

visual encoder (equivalent to FlowNetS) and the searched low latency model, along

with the ground-truth trajectories, on KITTI sequence 05, 07 and 10.

The searched network architectures also show some interesting patterns that are

closely related to the search targets. Figure 3.6 depicts the searched visual encoder

architectures with the lowest FLOPs target and lowest latency target, respectively.

The optimal kernel sizes of the first three layers are 5, 5, 3 and 5, 3, 5 for the lowest

FLOPs model and lowest latency model, respectively, showing that a bigger kernel

size is still critical for the first several layers even on smaller models. Big kernels are

capable of extracting features from large receptive fields in the shallow layers, which

helps on improving the pose estimation accuracy. But an even bigger kernel size, such

as 7, has limited performance improvement while incurring higher computation cost

and inference latency, thus it is discarded during the search. It is also observed that

skipping layers results in noticeable accuracy drops. Hence the searched model with

the lowest FLOPs target does not skip any layer. However, as skipping layers could

greatly reduce the computation latency, the searched model with the lowest latency

47

Method Trans. RMSE (m) Rot. RMSE (◦) Visual encoder usage GFLOPs

Full Modality 0.0339 0.0476 100% 0.205
λ = 1× 10−5 0.0417 0.0474 57.5% 0.126
λ = 2× 10−5 0.0431 0.0443 28.0% 0.071
λ = 3× 10−5 0.0475 0.0428 15.1% 0.047
λ = 4× 10−5 0.0596 0.0421 7.5% 0.033

Table 3.3: Evaluation of the full modality baseline with the searched low-latency
visual encoder and visual modality selection models with various penalty factors λ on
the KITTI testing sequences 05, 07 and 10. Translation and rotation RMSE, visual
encoder usage and average model GFLOPs are reported.

target makes a trade-off to skip the conv3 1 layer at the cost of slightly degraded

accuracy.

3.5.2 Adaptive Visual Modality Selection

After obtaining the efficient visual encoder through NAS, the original FlowNetS

visual encoder is replaced by the searched visual encoder with low latency target in

the proposed VIO model. Then it is integrated with the policy network for adaptive

visual modality selection and serves as the full modality baseline. First, models with

four different penalty factors, 1 × 10−5, 2 × 10−5, 3 × 10−5 and 4 × 10−5 are tested

and compared with the full modality baseline. For a fair comparison, all models

are trained with the same optimizer and hyperparameters including the number of

training epochs and learning rate. In Table 3.3, the translation and rotation RMSE,

average usage rate of visual encoder, and average model GFLOPs of each model are

reported. It is observed that both visual encoder usage and GFLOPs decrease as

penalty factor λ increases. In the meantime, as visual encoder usage (and GFLOPs)

drops, the translation RMSE becomes monotonically worse. However, this does not

happen to the rotation RMSE, which indicates that visual features do not always

contribute to improving rotation estimation accuracy. The model with λ = 2× 10−5

48

Method
Seq. 05 Seq. 07 Seq. 10 Average

trel rrel Usage trel rrel Usage trel rrel Usage trel rrel Usage

Full Modality 2.17 0.74 100% 1.98 0.59 100% 3.31 0.74 100% 2.49 0.69 100%
λ = 1× 10−5 2.28 0.81 53.9% 2.71 0.78 59.4% 2.84 0.60 59.2% 2.61 0.73 57.5%
λ = 2× 10−5 2.33 0.97 25.5% 2.20 0.95 30.5% 2.81 0.85 28.0% 2.45 0.92 28.0%
λ = 3× 10−5 2.69 1.02 14.0% 3.11 0.62 16.3% 2.58 0.99 14.9% 2.79 0.88 15.1%
λ = 4× 10−5 3.18 1.00 6.9% 4.16 0.77 8.5% 3.50 0.95 7.1% 3.61 0.91 7.5%

Table 3.4: The relative translation and rotation error, and visual encoder usage of the
full modality model as well as visual modality selection models with different penalty
factors λ on KITTI sequences 05, 07, and 10. All models use the searched visual
encoder with low latency target. The last column shows the averaged results on all
three test sequences.

achieves 72.0% reduction on visual modality usage at the cost of a relatively small loss

in translation RMSE while improving the rotation RMSE. The relative translation

error trel, relative rotation error rrel, and visual encoder usage on each test sequence

of 05, 07 and 10 as well as the average across all three test sequences are summarized

in Table 3.4. Similarly, the proposed visual modality selection technique achieves

comparable accuracy to the full modality baseline with λ = 1× 10−5 and even better

results with λ = 2× 10−5 which reduces 72.0% of the visual modality usage. Models

with more aggressive penalty factors (λ = 3 × 10−5 and λ = 4 × 10−5) experience

mild performance degradation even though more computation is saved. Figure 3.5

also plots the trajectories of the visual modality selection model with λ = 2 × 10−5

evaluated on KITTI test sequences 05, 07 and 10.

In Figure 3.7, the visual interpretation of the learned policy with λ = 2× 10−5 on

KITTI sequence 10 is presented. The left heat map shows the local visual encoder

usage rate with color coding, where darker (lighter) colors represent lower (higher)

usages. The local usage is calculated by averaging the decision within a local window

of 31 frames. The right plot shows the speed of the vehicle at each time step where

darker colors represent lower speed. An obvious correlation is observed between the

49

Figure 3.7: Visual interpretation of the learned policy on KTTI sequence 10 with
λ = 2 × 10−5. The left plot shows the local visual encoder usage rate at each time
step calculated by averaging the decision within a local window of 31 frames. The
vehicle speed heat map is shown on the right. Four short segments from the path
(red circles) are selected to show the policy network’s behavior. Segment c shows a
low speed with turning scenario, segment a and d show low speed scenarios whereas
segment b is a high speed straight movement scenario. The policy network tends
to activate the visual encoder more frequently when the vehicle is moving slowly
(segments a and d), and decrease the usage of the visual encoder when the vehicle is
moving fast (segment b) or making turns (segment c).

visual modality usage and the vehicle speed as well as the turns. Four short segments

from the path (marked by red circles in Figure 3.7) are selected to provide more

insights into the behavior of the policy network. When the vehicle is moving fast

(segment b) or making a sharp turn (segment c), the visual modality is used less

frequently. When the vehicle is moving slowly (segments a and d), the visual encoder

is activated more frequently.

One possible explanation for this behavior is based on the property of IMU. IMU

is capable of estimating the turning angle accurately through a simple first-order

integration because it can directly measure the angular velocity, while visual feature

based estimation methods can only do the estimation indirectly. However, IMU only

measures the acceleration which is the second-order differential of translation. Hence

it cannot provide a good estimation of translation without a qualified initialization

50

Figure 3.8: The average usage rate of the visual modality for different angular ve-
locities (left) and speeds (right) with two different penalty factors λ = 2× 10−5 and
λ = 3× 10−5 over all KITTI test sequences (05, 07, 10). The learned policy tends to
use less visual modality with higher angular velocity and higher speed.

of the velocity. Besides, IMU readings are noisier when the vehicle is moving slowly,

resulting in inaccurate translation estimation. Thus, when the vehicle is moving

slowly, larger translation errors are expected if only IMU is used. And the policy

network enables the visual modality more frequently to reduce the error.

To show the general trend, Figure 3.8 plots the visual modality usage versus

angular velocity and speed on all test sequences with λ = 2× 10−5 and λ = 3× 10−5.

The left plot shows the average visual encoder usage for intervals [0, 0.1), [0.1, 0.2), . . . ,

[0.6, 0.7) rad/s of the angular velocity, and the right plot shows the averaged visual

encoder usage for intervals [0, 2), [2, 4), . . . , [14, 16) m/s of the vehicle speed. It is

observed that the usage is closely related to both the angular velocity and the speed.

In general, the visual encoder usage tends to decrease with higher angular velocity

and higher speed, although there can be occasional spots where this observation does

not necessarily hold due to the stochastic nature of the proposed adaptive selection

technique.

51

Method
Seq. 05 Seq. 07 Seq. 10 Avg.

Usage GFLOPs
trel(%) rrel(

◦) trel(%) rrel(
◦) trel(%) rrel(

◦) trel(%) rrel(
◦)

Zou et al. [164] * 2.63 0.50 6.43 2.10 5.81 1.80 4.96 1.47 100% 14.19
Beyond Tracking [152] * 2.59 1.20 3.07 1.80 3.94 1.70 3.20 1.57 100% 7.747

GFS-VO [151] * 3.27 1.60 3.37 2.20 6.32 2.30 4.32 2.03 100% 7.747
SelectFusion soft fusion [18] † 4.44 1.69 2.95 1.32 3.41 1.41 3.60 1.47 100% 7.747
SelectFusion hard fusion [18] † 4.11 1.49 3.44 1.86 1.51 0.91 3.02 1.42 100% 7.747

DeepVIO [47] † 2.86 2.32 2.71 1.66 0.85 1.03 2.14 1.67 100% 14.03
ATVIO [80] † 4.93 2.40 3.78 2.59 5.71 2.96 4.81 2.65 100% 1.790

Full model baseline † 3.03 1.22 2.55 0.97 2.49 0.53 2.69 0.91 100% 7.747
NAS searched model † 2.17 0.74 1.98 0.59 3.31 0.74 2.49 0.69 100% 0.186

NAS + modality selection † 2.33 0.97 2.20 0.95 2.81 0.85 2.45 0.92 28.0% 0.052

*: Visual odometry (VO), †: Visual-inertial odometry (VIO)

Table 3.5: Comparison with state-of-the-art deep learning based VO/VIO systems
on KITTI testing sequences 05, 07 and 10. The evaluation metrics are: relative
translation error (trel), relative rotation error (rrel), visual encoder usage, and visual
encoder GFLOPs.

3.5.3 Comparison to Other Learning Based VO/VIO

The searched model targeting low latency and the searched model with adaptive

visual modality selection (λ = 2×10−5) are compared to the state-of-the-art learning

based VO/VIO models. The relative translation and rotation errors on KITTI testing

sequences 05, 07 and 10, the visual encoders usage, and the GFLOPs on the visual

encoders are reported in Table 3.5. Among all the models, DeepVIO [47] and [164]

are self-supervised models, and GFS-VO [151], Beyond Tracking [152], ATVIO [80],

and SelectFusion [18] are supervised models. All self-supervised methods are trained

on sequences 00 – 08 and tested on 09 and 10. Among supervised methods, GFS-VO

[151] and Beyond Tracking [152] are trained on sequences 00, 02, 08 and 09. The rest

methods use the same training set as mentioned in Section 3.4.1. DeepVIO [47] uses

FlowNetC [32] as its visual encoder, which is much more complicated than FlowNetS

[32] used by SelectFusion [18], Zou et al. [164], Beyond Tracking [152], GFS-VO [151],

and us. Zou et al. [164] also employ the depth estimation network proposed in [43]

to aid the self-supervised learning, which brings extra computation to the system.

52

ATVIO [80] utilizes the VONAS-A as its visual encoder, which is obtained through

the NAS strategy proposed in [15].

It is noticeable that although the main goal of this work is not necessarily maxi-

mizing the odometry accuracy, the proposed method still achieves better or compara-

ble performance compared to state-of-the-art methods. The searched model archives

comparable or even lower trel and rrel with far fewer FLOPs, which is only 2.4% of

the full model of FlowNetS and 10.4% of the VONAS-A. The optimal model that

combines both searched efficient visual encoder and adaptive visual modality selec-

tion achieves competitive performance compared to previous VO/VIO methods with

only 28.0% visual encoder usage (i.e., it is only active for 28% of the total images),

bringing the average visual encoder FLOPs down to 0.052G, which is only 3.2% of the

previous best model. For the entire VIO system, it saves up to 99.1% of the compu-

tation using both techniques compared to the full model. This is so far the smallest

deep learning base VIO system practically deployable on various energy-constrained

mobile platforms.

3.6 Summary

This work proposes two techniques to obtain an energy-efficient deep learning

based VIO system. First, a one-shot NAS approach is proposed to search for the

most efficient visual encoder with lower complexity. The search space is carefully

designed to align with typical deep VIO systems, and this work targets on searching

for models with low FLOPs and low latency without sacrificing performance. The

searched efficient model targeting low latency brings down the system complexity to

2.6% of the baseline model without performance degradation. The second technique

reduces the system computation overhead and power consumption by opportunisti-

53

cally disabling the visual modality on the fly when visual information is not critical

for maintaining pose estimation accuracy. To learn the selection strategy, a decision

module is introduced and end-to-end trained with the Gumbel-Softmax trick. This

approach can disable the visual modality up to 72.0% of the time without obvious

performance degradation. And the learned policy is interpretable and shows scenario-

dependent adaptive behaviors. The optimal model that combines both techniques can

save up to 99.1% computation, and run in real-time on a single laptop CPU core. The

proposed strategies are model-agnostic and can be easily adapted to other deep VIO

systems.

54

CHAPTER IV

An End-to-End Deep Learning Framework for

Multiple Audio Source Separation and

Localization

4.1 Introduction

Sound source localization is a problem to localize acoustic sources in space using

the captured audio signal from a microphone or microphone array. Typically, the

direction of arrival (DOA) or angle of arrival (AOA) information of each source is

estimated (Figure 4.1). In the case when multiple sound sources are present, such as

the cocktail party problem, a good source separation strategy is the premise for precise

DOA/AOA estimation. Methods that combine both accurate source separation and

localization can enable a wide range of practical applications including autonomous

robot navigation, virtual reality (VR) headsets, and enhanced audio surveillance [28]

in industrial facilities and critical environments.

With the rapid development of deep neural networks (DNNs), and their great

success in various computer vision and natural language processing (NLP) tasks,

learning based sound source localization system draws more attention in the research

community. Compared to the traditional signal processing based source localization

algorithms, learning based approaches usually achieve better performance and can be

55

Figure 4.1: Localizing multiple audio sources (S1, S2 and S3) by estimating their DOA
or AOA information.

easily deployed on different platforms. Moreover, learning based approaches have no

strong assumptions on the signal, noise and environment and hence are more robust to

distortions and challenging scenarios, while signal processing based algorithms require

algorithm-specific insights to deal with such situations.

This work proposes an efficient end-to-end deep learning framework for source

separation and localization [23]. In this approach, separated source signals and their

time difference of arrival (TDOA) information between microphones are jointly es-

timated, then the DOA of each source is estimated using the TDOA information.

Although the proposed framework adopts a prior network for source separation, its

performance is improved by introducing a companion TDOA estimation network and

jointly training them with a new framework where one network assists the other to

optimize a similarity loss between the reconstructed and original mixed signals. This

new framework ensures the separated sources are realistic as measured by a discrim-

inator and also sufficient to reproduce the original mixture when combined with the

estimated TDOA. The proposed framework introduces a new multi-network struc-

ture to perform DOA estimation with superior/similar performance compared to the

state-of-the-art methods while producing interpretable intermediate information such

56

as separated sources and TDOA information on microphones. Compared to baseline

cases where individual networks are trained in isolation, the proposed joint-training

scheme achieves superior performance for each task of source separation as well as

TDOA estimation because one network assists another network to reproduce realistic

reconstructed mixtures during the localization process.

4.2 Related Work

In the early stage, source localization problems were mainly solved by analytical

approaches [106, 122, 135] and their robustness is rather limited for practical appli-

cations. Recently, deep learning based methods [1, 53, 111, 123, 138] have shown su-

perior performance over the traditional analytical approaches. Existing DNN based

source localization methods typically take mixed signals as the input and produce

DOA as the output for end-to-end model training and inference without any inter-

pretable intermediate information. However, for the multi-source localization prob-

lem, some intermediate results such as the separated source signals and the TDOA

information between microphones can be explicitly obtained and utilized to evaluate

the loss function to improve the overall end-to-end model performance. Motivated

by such observation, the proposed approach takes advantage of such intermediate

information for more accurate multi-source localization.

It has been shown that the audio source separation problem can be efficiently

solved through deep learning based approaches even with a single channel (micro-

phone) mixture. State-of-the-art performance has been realized in different separation

tasks such as speech separation [20, 121, 132], universal sound separation [133], and

music source separation [117]. For the multi-source localization problem, first sepa-

rating each source from the mixture is a natural intermediate step to attain higher

57

Figure 4.2: The proposed framework diagram. Source separation network estimates
source signals ŝ1, . . . , ŝn from multi-channel mixture x. TDOA information is esti-
mated from x and ŝ1, . . . , ŝn by TDOA estimation network. x̂ is reconstructed by
adding ŝ1, . . . , ŝn and time-shifted source signals s̃1, . . . , s̃n. The reconstructed mix-
ture x̂ and discriminator are only used during the training.

source localization accuracy. Hence, an existing state-of-the-art source separation

model is adapted and integrated into the proposed framework with TDOA and DOA

estimation networks. They are jointly trained with a novel training method to im-

prove both source separation quality and localization accuracy. Besides, the proposed

framework is compatible with different deep learning based source separation models

as long as the separation is performed in the latent domain.

4.3 Method

Figure 4.2 shows the overall datapath of the proposed scheme for joint source

separation, TDOA estimation, and DOA estimation. The proposed model consists of

three parts; the source separation network, the TDOA estimation network, and the

DOA estimation network. TDOA information is estimated from the multi-channel

58

mixture, then sent to the DOA estimation network for localizing each source. The

multi-channel mixture is reconstructed using the separated source signals and the

estimated TDOA between microphones, and the similarity loss between the recon-

structed mixture x̂ and the original mixture x is evaluated for joint optimization of

source separation and TDOA estimation. In the meantime, a discriminator is added

to improve the quality of the separated source signals.

4.3.1 Source Separation

The source separation network extracts each audio source from the multi-channel

mixture. Since various deep learning based audio source separation and speech sepa-

ration models were previously investigated in the literature, some of the best models

[132, 20] are adapted as the source separation network of the proposed framework.

As most of the separation models are designed for single channel (microphone) audio

source separation, models that perform separation in the latent domains are chosen,

where encoder and decoder dimensions can be easily extended to multi-channel (mi-

crophone array) inputs and different numbers of sources. The separated audio quality

is typically measured by the scale-invariant signal to noise ratio (SI-SNR) [73], defined

by

(4.1) SI-SNR(s, ŝ) = 10 log10
∥αs∥2

∥αs− ŝ∥2
,

where α = ŝT s/∥s∥2 is a scalar, s is the target source signal and ŝ is the estimated

source signal. The source separation network is trained to minimize the negative

permutation-invariant SI-SNR [155], defined as

(4.2) Lsep(s
∗, ŝ) = −SI-SNR(s∗, ŝ) = −10 log10

∥αs∗∥2

∥αs∗ − ŝ∥2
,

where s∗ denotes the permutation of the sources that maximizes the SI-SNR, and

α = ŝT s∗/∥s∥2.

59

4.3.2 TDOA Estimation

This work proposes to simultaneously discriminate and localize N sound sources

using the TDOA information estimated with an array of K microphones. The TDOA

∆Tij between a pair of microphones i and j regarding a certain source s is defined as

(4.3) ∆Tij =
fs
c
(∥ls − li∥ − ∥ls − lj∥),

where ls is the location (coordinate) of the source, li and lj are the locations of

microphone i and j, fs is the audio signal sampling frequency, c is the speed of sound,

and ∥ · ∥ denotes the Euclidean norm. There are total K(K − 1)/2 different TDOAs

but only K − 1 of them are independent. So, only ∆T1j values are chosen for the

DOA estimation.

Instead of estimating TDOA by identifying the peak of the cross-correlation of

two signals, this work proposes to use a TDOA estimation neural network, which

can be easily integrated and jointly trained with the source separation network to

build an end-to-end system. Each source signal received at microphone 1 is treated

as the reference (non-shifted version) during the source separation stage. The TDOA

estimation network uses the estimated reference signal together with the mixtures

received at other microphones to estimate the TDOA between microphone pairs re-

garding the same source. Since the TDOA is discretized due to audio signal sampling

and its maximum is limited by the spatial configuration of the microphone array,

TDOA estimation is treated as a classification problem where each class represents a

possible TDOA in terms of the sample index.

At this point, the source separation network and TDOA estimation network can

be independently trained with their own loss functions. For the initial training of the

TDOA estimation network, only the original source signals are used. After this pre-

60

liminary independent training, the source separation network and TDOA estimation

network are combined for joint end-to-end training to improve both the separation

quality and the TDOA estimation accuracy. The joint training stage involves a new

similarity loss (Equation 4.4) between the original mixture x and the reconstructed

mixture x̂ obtained by applying the estimated TDOA information to the separated

source signals. In Equation 4.4, K is the total number of channels (microphones),

and ⟨·, ·⟩ denotes the inner product.

(4.4) Lsm(x, x̂) = −
1

K

K∑
i=1

⟨xT
i , x̂i⟩.

This loss function is designed to ensure the reconstructed multi-channel mixture x̂ is

as close as possible to the original one x. The main issue of applying this similarity

loss to network training is the non-differentiable TDOA time-shifting operation for

reconstructing the mixture signals. This issue is mitigated by treating the softmax

of the output vector yj from the TDOA estimation network as the channel impulse

response, and convolving it with the estimated signal ŝj to obtain a time-shifted

version s̃j of the same source j. Then the reconstructed mixture x̂i of channel i can

be obtained by

(4.5) x̂i =
N∑
j=1

s̃j =
N∑
j=1

softmax(yj) ∗ ŝj,

where N is the number of sources, and ∗ denotes the convolution operation. This

technique allows end-to-end joint training of the source separation network and TDOA

estimation network through back-propagation.

Inspired by the success of generative adversarial networks (GANs) [45], a dis-

criminator network is adopted in the proposed framework to distinguish the esti-

mated/separated source signals (fake samples) from the original source signals (real

samples). The discriminator is only applied during the training phase to help on

61

improving the source separation quality. In the proposed framework, the source sep-

aration network is treated as the ‘generator’ in generative adversarial training, and is

adversarially trained with the discriminator.

4.3.3 Training Loss Function

For joint training of the source separation network and TDOA estimation network,

the total loss function consists of the separation loss, the TDOA estimation loss, the

reconstruction loss, and the subjective discriminator loss, defined as

(4.6) L = Lsep(s
∗, ŝ) + LTDOA + α · Lsm(x, x̂) + β · Eŝ(log (1−D(ŝ))),

where separation loss Lsep(s
∗, ŝ) is Equation 4.2, LTDOA is the cross-entropy loss for

TDOA classification, similarity loss Lsm is Equation 4.4, D(ŝ) is the discriminator

output (probability that estimated source signal ŝ is real), and α and β are weights

for balancing the loss terms.

4.3.4 DOA Estimation

The DOA estimation network is connected to the TDOA estimation network,

taking the estimated TDOA information as the input to estimate the azimuth angle

of each source regarding the microphone array. A simple multi-layer perception model

is sufficient for solving this regression problem. It is trained separately with the

ground-truth TDOA and the corresponding azimuth angles, then it is inserted into

the system for the final DOA inference.

4.4 Experimental Setup

4.4.1 System Setup and Datasets

In all the experiments, speech from different speakers is used as multiple sources

with a sampling rate of 16 kHz. The microphone array contains K = 4 microphones

62

Figure 4.3: The system setup for estimating the DOA (θ1 and θ2) of multiple sources
(S1 and S2) using a microphone array of 4 microphones placed in a square with
0.2-meter side length.

placed in a square shape with 0.2-meter separation per dimension. The distance

between sources and the microphone array is restricted in the range of 1 to 3 meters,

and all sources are placed with an azimuth angle from 0 to 180◦. Since the goal is to

estimate accurate azimuth angles, the microphone array and sources are restricted in

a 2D plane. The system setup is demonstrated in Figure 4.3.

Publicly available datasets for acoustic source localization and tracking, for ex-

ample, the LOCATA challenge [82], have limitations such as a small amount of train-

ing data, preset number of sources, and restricted microphone array configurations.

Hence, synthesized training and testing datasets are generated using LibriSpeech [94],

a large-scale dataset with a corpus of read English speech from hundreds of distinctive

speakers. The training dataset is generated from the train-clean-100 set, and

speech mixtures are created by randomly mixing speech utterances from different

speakers, similar to LibriMix [27]. To simulate microphone array outputs, multi-

channel mixtures are created by mixing speech signals using the data augmentation

process introduced by Tzinis et al. [131]. The distance and azimuth angle of each

63

source are randomly selected. Then, individual speaker sources are TDOA-shifted

and added to create the mixture received at each microphone. The testing dataset

is generated from test-clean set after removing idle periods greater than 0.5 sec-

onds. Datasets with N = 3 and 4 sources are generated for training and evaluation.

The audio length is set to 2 seconds in all experiments.

DOA estimation network is separately trained with a synthesized training dataset

containing 0.36 million samples. For each sample, source distances are randomly

selected from 1 to 3 meters and azimuth angles are randomly selected from 0 to 180°,

then the TDOA information is calculated for the corresponding angles.

4.4.2 Model Architecture and Training Details

Two state-of-the-art speech separation models, SuDoRM-RF [132] and DPTNet

[20] are adapted to serve as the source separation network. These two models perform

separation in the latent domain, thus it is straightforward to adjust the encoder

and decoder latent dimensions to accommodate K = 4 channel inputs and different

numbers of sources (N = 3 or 4). In all the experiments, the SuDoRM-RF model

uses 16 U-ConvBlocks and ReLU as the mask activation function, and the DPTNet

model is shortened by reducing the number of transformer blocks (IntraTransformer

and InterTransformer) to 2. The optimizers and other hyperparameters are set to

be the same as in the original papers. The separation network is pretrained before

jointly training with the TDOA estimation network.

The TDOA estimation network is a 6-layer CNN with four 1D convolutional lay-

ers followed by two fully connected layers. In all the experiments, the maximum

time shift is less than 20 sample indices, thus the TDOA estimation network has 41

classes (with positive and negative TDOA) output in total. To speed up the joint

training process, it is pre-trained with clean speech and time-shifted mixtures from

64

Separator N Sep. Sep. + Recon. Sep + Recon. + Disc.

SuDoRM
3 16.75 17.79 18.64

-RF 4 13.06 14.25 14.57

DPTNet
3 14.69 16.92 17.37

4 10.53 11.77 11.86

Table 4.1: Separation quality evaluation by SI-SNRi (dB) of the proposed framework.
Sep., Recon. and Disc. represent separator, mixture reconstruction and discriminator,
respectively.

the synthesized training dataset before the joint training with the source separation

network. The discriminator is a CNN with four 1D convolutional layers followed by

one fully connected layer, and it is trained with the binary cross-entropy loss and

Adam optimizer. Noisy inputs are sent to the discriminator to stabilize its training

procedure, as introduced by Arjovsky and Bottou [5]. The source separation network

and TDOA estimation network are jointly trained for 200 epochs before adding the

discriminator for alternated adversarial training. The scalar weights are set to α = 1

and β = 0.01 in the loss function (Equation 4.6). The DOA estimation network is a

multi-layer perceptron network with five fully connected layers. The entire framework

is implemented and trained using Pytorch [97].

4.5 Experimental Results

The separation quality is evaluated by scale-invariant signal to noise ratio improve-

ment (SI-SNRi) in dB, which is the gain of SI-SNR on the separated signal over the

mixture signal. SuDoRM-RF and DPTNet source separators are tested with N = 3

and 4 sources, respectively. SI-SNRi values are reported in three cases: training sep-

arator solely, training separator with mixture reconstruction, and training separator

with mixture reconstruction and discriminator. The evaluation results on source sep-

65

Figure 4.4: The source separation and mixture reconstruction results of one test
sample using the proposed framework. Top left: The original (red) and reconstructed
(blue) mixtures received at microphone 1. Top right, bottom left and bottom right:
Original (red) and separated (blue) audio signals of source 1, 2 and 3, respectively.

aration quality are summarized in Table 4.1. The separation quality is improved by

1.3 – 2.7 dB with the proposed reconstruction structure and discriminator. Figure

4.4 shows the sound waves of the source separation and mixture reconstruction of one

test sample using the proposed framework.

Source separation and TDOA estimation are jointly optimized to reduce distor-

tion between the reconstructed mixture and the original mixture. The joint training

with the proposed reconstruction loss improves the separation quality. SI-SNRi of

separated sources further enhances as the discriminator loss is combined with the

reconstruction loss to guide the separated signals to be more realistic speech from

a single speaker. It is worth noting that the proposed framework is generalizable

to other separation network structures. And it can be further improved with better

source separation models in the future.

66

Separator N
Without Recon. & Disc. With Recon. & Disc.

ETDOA (ms) EDOA (◦) RDOA ETDOA (ms) EDOA (◦) RDOA

SuDoRM
3 22.4 2.16 93.9% 21.5 2.10 94.5%

-RF 4 28.2 3.25 87.6% 24.4 2.70 91.4%

DPTNet
3 28.8 3.00 89.8% 24.1 2.46 92.7%

4 44.4 5.38 81.9% 35.6 3.96 86.6%

Table 4.2: MAE of TDOA (ETDOA in millisecond) and DOA (EDOA in degree) esti-
mation, and localization recall (RDOA in percentage) of the proposed framework.

Table 4.2 summarizes the evaluation results on TDOA and DOA estimation of the

proposed framework. Mean absolute error (MAE) on TDOA and DOA estimation are

reported. Besides, the localization recall on DOA estimation is also reported, where

the DOA output is considered true positive only if it is under a threshold of 5◦ absolute

error. Compared to the baseline results without the mixture reconstruction and

discriminator, the proposed framework achieves lower TDOA and DOA estimation

errors, as well as higher localization recall thanks to the improved separation quality

and TDOA estimation accuracy.

Finally, the proposed framework is compared with state-of-the-art DOA estima-

tion algorithms, namely SMESLP [123], I-IDIR-UCA [122] and CHB [128] in Table

4.3. The same recording sequence seq37-3p-0001 from the AV16.3 corpus [71]

with 3 speakers is used for evaluation. For this audio corpus, idle periods are re-

moved and the signal is remixed based on the system microphone array setting since

the original dataset uses a circular array with 8 microphones. Unlike SMESLP [123],

the proposed system contains only K = 4 microphones instead of 8. Results for

SMESLP, I-IDIR-UCA and CHB are reported by Sundar et al. [123]. The proposed

method with 4 microphones outperforms all three methods on DOA estimation in

67

Methods Proposed SMESLP* I-IDIR-UCA CHB

Number of microphones 4 8 8 8

MAE 1.67◦ 2.05◦ - -

RMSE 3.01◦ 2.33◦ 4.1◦ 2.98◦

Non-anomalous frames 98.1% 100% 60% -

* SMESLP uses part of the testing sequence for fine-tuning and validation.
The proposed method uses exclusive sequences for training and validation.

Table 4.3: MAE and RMSE of DOA estimation and percentage of non-anomalous
frames of the proposed framework and SMESLP [123], I-IDIR-UCA [122], CHB [128]
(reported by Sundar et al. [123]).

terms of mean absolute error (MAE) but gets slightly worse root mean square error

(RMSE) compared to MSESLP and CHB using 8 microphones. The percentage of

non-anomalous frames is comparable to SMESLP and better than I-IDIR-UCA and

CHB. Overall, the proposed framework achieves better or comparable performance

with fewer number of microphones. In addition, The proposed scheme produces inter-

pretable intermediate outputs such as separated sources and the TDOA information

between microphones, which are not available from other approaches.

4.6 Summary

This work presents an efficient end-to-end deep learning framework for accurate

source separation and localization in multi-source environments. By joint training of

the source separation network and TDOA estimation network with mixture recon-

struction and a discriminator network, the source separation quality as well as the

TDOA estimation accuracy are improved. The experimental results confirm that the

joint training scheme brings up to 2.7 dB SI-SNR improvement on source separation,

as well as higher TDOA and DOA estimation accuracy versus the baseline. Compared

to the state-of-the-art source localization systems, the proposed framework achieves

68

superior/similar performance while producing interpretable intermediate information

such as separated sources and TDOA information between microphones. The frame-

work is generalizable to other source separation models, and the source separation

quality and localization accuracy can be further improved with better separation

models in the future.

69

CHAPTER V

HTNN: Deep Learning in Heterogeneous

Transform Domains with Sparse-Orthogonal

Weights

5.1 Introduction

Recent deep convolutional neural networks (CNNs) report superb performance

in various computer vision tasks such as image classification and object detection.

Although the accuracy of CNNs evolved drastically, their computation complexity

has also grown super-linearly. The LeNet [74] for handwritten digit classification

(MNIST) only requires 0.3 million (M) operations while the winners of the ImageNet

classification challenge (ILSVRC) [104] need 0.7 giga (G) (AlexNet [68]) and even 13.5

giga (G) operations (VGG [113]) [125]. It is a significant challenge to deploy such large

scale CNNs for real-time applications on energy-constrained Internet-of-Things (IoT)

platforms that cannot afford powerful and energy-intensive GPUs. Since the biggest

portion of computation comes from convolutional layers, implementing convolution

kernels in an efficient way has become a main premise of the successful adoption of

large scale CNNs on power- and cost-constrained mobile devices.

Many efficient strategies have been proposed to reduce the complexity of CNNs.

One main direction is to replace convolution with simpler operations such as element-

70

wise multiplication using Winograd’s minimal filtering algorithm [72] or discrete

Fourier transform (DFT) [86]. Another popular direction is to compress the CNN

models by weight pruning and quantization to reduce the computation and memory

requirements [49, 50, 144, 159]. However, it is not straightforward to apply both

techniques at the same time because the sparse spatial weights obtained by pruning

are no longer sparse after the transformations required by the first technique. Liu et

al. [81] demonstrate the possibility of combining both techniques by applying kernel

weight pruning in the Winograd transform domain.

In this work, a new non-convolution based framework is proposed to take advan-

tage of both techniques [22]. Unlike previous work, it is not limited to convolution

that uses Winograd transform or DFT. Instead, this work explores the possibility

to train deep neural networks (DNNs) in heterogeneous transform domains where

convolution is replaced by element-wise multiplication which is (unlike Winograd) no

longer equivalent to spatial convolution. To further reduce the computation over-

head, this work proposes to use binary-valued fast linear transforms such as the

discrete Walsh-Hadamard transform (WHT) and its pseudo-random permuted vari-

ations. Such transforms have O(N logN) complexity and only require additions and

subtractions (without multiplication).

The proposed networks are trained with sparse-orthogonal kernels in heteroge-

neous transform domains. In this approach, two or more kernels in different trans-

form domains can share a hardware multiplier without conflict as the positions of

non-zero weights are strictly orthogonal to each other. Thus, the proposed approach

is more hardware-friendly compared to conventional weight pruning strategies as it

allows parallelized computation of multiple sparse kernels in DNN hardware accelera-

tors with simple multiplexers. Finally, a canonical-signed-digit (CSD) representation

71

[54] based novel bit-sparse non-uniform quantization is proposed and demonstrated to

reduce the density of non-zero digits in quantized weights (i.e., with a sparse non-zero

digit constraint) and compute each multiplication with additions/subtractions.

The main contributions are summarized as follows:

• Introduction of HTNN: A new class of heterogeneous transform-domain DNNs

to substitute CNNs and their convolution operations with transform-domain

element-wise multiplications.

• Feasibility demonstration and evaluation of sparse-orthogonal weights in het-

erogeneous transform domains that allow hardware multiplier sharing among

different kernels for conflict-free parallel execution in hardware accelerations.

• Application of new CSD based non-uniform quantization with a sparse non-zero

digit numbering system to reduce the computation complexity by replacing each

multiplication with a single addition or subtraction.

• Quantifying the complexity reduction from combined techniques compared to

the equivalent sparse CNNs, exhibiting 4.9 – 6.8× gain for the identical DNN

accuracy.

5.2 Related Work

5.2.1 Compute Convolutions in Transform Domains

Prior works [86, 136, 139, 143] have demonstrated that convolution in CNNs can

be computed with fewer number of operations using DFT or fast Fourier transform

(FFT), even for small convolutional kernels (e.g., 3×3). This complexity reduction

comes from the duality between convolution in the spatial domain and multiplica-

tion in the frequency domain. However, the DFT/FFT transform introduces signif-

72

icant overhead because of complex-numbered operations given real activation input.

Therefore, discrete cosine transform (DCT) is often selected as an alternative method

[139, 143] to avoid any complex computations. Meanwhile, a different transform based

method using Winograd’s minimal filtering algorithm [146] was applied to CNNs by

Lavin et al. [72] for the first time. It outperforms FFT/DCT based method, especially

for small convolution kernels. FFT and Winograd based convolution algorithms are

included in the state-of-the-art deep learning library such as NVIDIA cuDNN [25] to

improve the computation efficiency of convolutions. Unlike the aforementioned previ-

ous work, this work attempts to find different transform domains where element-wise

multiplication is no longer equivalent to convolution while DNNs maintain the same

accuracy with significantly reduced complexity.

5.2.2 Neural Network Compression

Han et al. [50] are pioneers in CNN weight compression. They present a strategy

to iteratively prune less important weights with relatively small magnitudes and to

perform retraining to maintain accuracy. Their scheme can achieve an impressive

weight pruning ratio of > 10× for fully connected layers and ≈ 3× for convolutional

layers in AlexNet [68] with almost no accuracy degradation. Later, a k-mean cluster-

ing based quantization technique was proposed and combined with weight pruning

to achieve a higher compression rate [49]. That method has been extended and gen-

eralized in multiple directions afterward. For example, Wen et al. [144] propose a

structured sparsity learning method to regularize the structures of CNNs (e.g., filter

shapes). Zhang et al. [159] formulate network weight pruning as a non-convex opti-

mization problem and adopt the alternating direction method of multipliers (ADMM)

framework [11] to solve it. However, these works are still based on spatial convolu-

tion and the complexity reduction is limited by the overhead of implementing sparse

73

convolution both in software and hardware [48, 96, 161]. Liu et al. [81] are the first

to apply CNN compression techniques to the Winograd transform domain. However,

the authors only apply the spatial pruning strategy proposed by Han et al. [50] and

the gain is limited. To overcome limitations in those previous approaches, this work

introduces a new hardware-efficient sparse structure in heterogeneous transform do-

mains where hardware multipliers are shared for parallel execution of multiple kernels

without conflict.

5.3 HTNN: Heterogeneous Transform-Domain DNN

Various kinds of discrete transforms are available in the field of digital signal pro-

cessing. Many are linear transforms defined by a matrix multiplication in discrete

domains. Each transform possesses distinctive properties and some allow fast trans-

form algorithms with complexity of O(N logN) instead of O(N2) for the size-N linear

transform defined with an N ×N matrix.

It is noticed that a convolutional layer in CNN is a special form of a fully connected

layer with weight sharing and pruning in the weight matrix [74]. There exist other

(non-convolution) forms of the linear layer that can be described with computationally

efficient transforms and are still well-trained with back-propagation algorithms. With

a goal of minimizing computational complexity, this work proposes to use Walsh-

Hadamard transform (WHT) and its variants (i.e., pseudo-random permuted WHT

matrix) that only involve binary elements (±1). WHT and its permuted versions only

require additions, subtractions, and vector permutations instead of multiplications.

Using multiple heterogeneous transforms within a DNN enables network training with

sparse-orthogonal kernels to further reduce the complexity (Section 5.4).

In this section, WHT and its properties that drew the attention are introduced

74

first. Then the approach to apply WHT to HTNNs quantifying the complexity re-

duction is discussed.

5.3.1 Walsh-Hadamard Transform and Permuted Variants

Walsh-Hadamard transform (WHT) is a generalized class of Fourier transform

[70]. It is built out of size-2 DFT and is in fact equivalent to a multidimensional

DFT of size 2m [70]. Consider a vector f (x) with size N = 2m and element index

x ∈ {0, 1, ...N − 1}. Using bi (x) to represent the ith bit (from least significant bit) of

x in the binary representation, the 1-dimensional WHT of f (x) is given by:

(5.1) H (u) =
1√
N

N−1∑
x=0

f (x) (−1)
∑m−1

i=0 bi(x)bm−1−i(u),

where u ∈ {0, 1, ...N − 1}. The 1D WHT is a linear transform with the transform

matrix H of size 2m × 2m that can be calculated recursively. Define the 1× 1 WHT

by the identity H0 = 1, then Hm for m > 0 can be obtained by:

(5.2) Hm =
1√
2

 Hm−1 Hm−1

Hm−1 −Hm−1

 = H1 ⊗Hm−1,

where ⊗ denotes Kronecker product. Omitting the normalization factor 1/
√
2, H

only contains +1 and −1. Thus WHT is implementable without any multiplication

or division, and it can be computed using a fast algorithm [37] to reduce the number

of additions/subtractions from N2 to N logN . The 2D WHT (matrix version) is a

straightforward extension of 1D WHT [98] and can be calculated by the following

equation given matrix input f (x, y) of size N ×N (2m × 2m):

(5.3) H (u, v) =
1

N

N−1∑
x=0

N−1∑
y=0

f (x, y) (−1)z,

where

z =
m−1∑
i=1

(bi (x) bm−1−i (u) + bi (y) bm−1−i (v)).

75

Since the 2D WHT is separable and symmetric, it can be implemented as a sequence

of two (row and column-wise) 1D WHT transforms in a fashion similar to that of the

2D DFT/FFT.

A new heterogeneous transform HP = PH is introduced by permuting WHT

matrix H with a permutation matrix P. A transform by HP can be performed

efficiently by first applying fast WHT and then permuting the result.

5.3.2 Neural Network in Transform Domains

To calculate the output of a single linear layer in a transform domain, ordinary

schemes first apply the transform to both the input feature map and the filter kernel,

then apply the inverse transform after element-wise multiplications of the transformed

input map and transformed kernel. Given the input feature map x, spatial kernel w,

binary-valued (±1) transform matrix H, and binary-valued inverse transform H−1,

the output Y can be computed using the formula:

(5.4) Y = H−T
[[

HTxH
]
⊙
[
HTwH

]]
H−1,

where ⊙ denotes the element-wise multiplication. Note that using sparse w does not

result in sparse element-wise multiplications in the transform domain.

This work proposes to train the network kernels directly in the transform domains

by back-propagation given the transformed inputs. In this way, kernels are defined

in the transform domains and there is no need to apply transforms on the spatial

domain kernels. However, applying a transform to the entire activation feature map

significantly increases the number of weights since the transform-domain kernel size

must match the transformed activation size. To avoid this, the activation is divided

into small overlapping patches and transforms are applied to each patch. Patches are

overlapped to learn inter-patch dependency although it leads to more multiplications.

76

Figure 5.1: Comparison between a convolutional layer and WHT-domain linear layer.
Red: Datapath of convolutional layer, needs 9 multiplications to compute 1 output.
Green: Datapath of WHT linear layer, only needs 4 multiplications to compute 1
output.

A proper kernel size (i.e., transform size) needs to be chosen carefully to balance

storage and computation requirements.

Although the proposed approach is generalizable to replace convolution kernels of

any size, the goal is to replace all 3× 3 convolutional layers in CNNs with WHT and

permuted-WHT linear layers. These small convolution kernels are most commonly

used and take a large portion of the overall CNN computations. To avoid a large

increase in the number of transform-domain weights, the proposed approach operates

based on a 4×4 patch extracted with stride of 2×2 from the h×w activation feature

map and 4 × 4 (permuted) WHT is applied. The output patch size is 2 × 2 as it

is obtained by taking the central 2 × 2 block after applying the inverse (permuted)

WHT. For the inverse transform, the calculation of the output patch can be simplified

by applying a 4×2 matrix A, which consists of the middle two columns of the inverse

(permuted) WHT matrix. Denoting the input patch by x and the 4 × 4 transform-

domain kernel by K, the output patch D of 4× 4 WHT layer can be obtained by:

(5.5) D = AT
[[

HP
TxHP

]
⊙K

]
A,

77

Since WHT can be efficiently computed with just additions/subtractions, the multi-

plications needed to compute one output are reduced from 9 to 4 in this approach.

Finally, all the output patches are assembled into an h×w feature map for the next

layer. A graphical illustration is given in Figure 5.1.

5.4 Learning for Hardware-Efficient Structure

Compared to an equivalent CNN, HTNN manages to reduce the number of mul-

tiplications by 2.25× with WHT-domain linear layers. But there is still significant

redundancy in the proposed HTNN models, and the computation can be further re-

duced by eliminating the redundant connections. Inspired by Zhang’s work [159],

this problem can be treated as a non-convex optimization problem with combinato-

rial constraints specifying the sparsity requirements. Before going into detail on the

proposed strategies, this section first defines the sparsity learning problem and briefly

explains how it can be solved by ADMM.

Learning sparse weights in an N -layer DNN can be expressed as the following

optimization problem:

min
{Wi}

f ({Wi}) ,

subject to Wi ∈ Si, i = 1, . . . , N,

(5.6)

where f(·) denotes the total loss function of DNN, Wi denotes the weights of ith

layer, and Si is the desired sparse pattern set for ith layer. Since S1, . . . ,SN are non-

convex sets, it is difficult to solve this optimization problem directly. By introducing

auxiliary variables Zi, this problem is equivalent to:

min
{Wi}

f ({Wi}) +
N∑
i=1

g (Zi) ,

subject to Wi = Zi,

(5.7)

78

where

g (Zi) =

 0 if Zi ∈ Si

+∞ otherwise

.

ADMM [159] solves this non-convex problem (Equation 5.7) by first decomposing

it into two sub-problems (Equation 5.8 and 5.9), and then alternatively solving one

using the solution of the other in an iterative fashion. The first sub-problem is:

(5.8) min
{Wi}

f ({Wi}) +
N∑
i=1

ρ

2

∥∥Wi − Zk
i +Uk

i

∥∥2

F
,

where Wi is the only optimization variable, scalar ρ is the penalty parameter, and

Ui is a scaled dual variable updated by Uk+1
i = Uk

i +Wk+1
i −Zk+1

i in each iteration.

This problem can be solved by stochastic gradient descent. The second sub-problem

is:

(5.9) min
{Zi}

N∑
i=1

g (Zi) +
N∑
i=1

ρ

2

∥∥Wk+1
i − Zi +Uk

i

∥∥2

F
.

As g (·) is an indicator function, the analytical solution of the second subproblem can

be obtained by:

(5.10) Zk+1
i = ΠSi

(
Wk+1

i +Uk
i

)
,

where ΠSi
(·) denotes the Euclidean projection onto the set Si, i.e., applying the de-

sired sparse pattern toWk+1
i +Uk

i with the smallest Euclidean distance for projection.

5.4.1 Structured Pruning for Sparse-Orthogonal Kernels in Heteroge-
neous Domains

Existing CNN weight pruning methods can be broadly separated into two cate-

gories: random position pruning [49, 50, 159] and structured pruning [144]. Random

position pruning allows weights on any position to be pruned while structured pruning

imposes a specific pattern such as an entire channel or kernel filter pruning. Random

79

Figure 5.2: Heterogeneous-transform neural network (HTNN) linear layer using
sparse-orthogonal kernels in heterogeneous transform domains.

position pruning methods can typically achieve a relatively high pruning rate but

there exists significant overhead to compute sparse (randomly patterned) convolu-

tions in software or hardware accelerators [48, 96, 161]. On the opposite, structured

pruning methods can enhance computation efficiency but the achievable pruning rate

is significantly lower.

This work searches and learns heterogeneous transforms that are grouped with

orthogonal (i.e., non-overlapping non-zero positions) sparse weights to allow efficient

parallelized computation of multiple sparse kernels in DNN hardware accelerators.

The proposed approach is depicted in Figure 5.2. Without loss of generality, it is

assumed that the input is multiple channels of 2D activation feature maps. Each

input channel is processed in a patch-by-patch manner with overlaps between adja-

cent patches, then transformed by WHT (H) and pseudo-random permuted WHTs

80

(HP1 ,HP2 , ...). The transformed inputs from different transforms are element-wise

multiplied with kernel weights in corresponding transform domains. Results obtained

from multiple input channels are accumulated together to form an output channel.

Finally inverse transforms are applied and results for different output channels are

concatenated to form the final output feature maps.

To reduce the number of weights and computations in this procedure, An elabo-

rate sparsity constraint Si is imposed on kernel weights of the ith layer. That is, the

non-zero positions of the weights in kernels belonging to different transform domains

are sparse and strictly non-overlapping (i.e., orthogonal) as shown in Figure 5.2. This

sparse-orthogonality constraint allows an efficient hardware accelerator architecture

where an array of multipliers performs parallel element-wise multiplications concur-

rently serving multiple channels with simple multiplexer (MUX) / de-multiplexer

(DEMUX) logic at the input/output of the multiplier array as shown in Figure 5.2.

Sparse convolution [48, 96, 161] does not have the same merit as the proposed strategy.

To preserve the network accuracy while achieving a high pruning rate, hetero-

geneous transforms with different permutations (HP1 ,HP2 , ...) are used deliberately,

thus the position of important features in one transform domain is less likely to over-

lap with the ones in other transform domains. In this way, kernels associated with

different transforms can (be trained to) have minimal impact on the other kernels

when the sparse-orthogonality constraint is imposed. To find the preferred kernel

grouping, the transform-domain layers without a sparse-orthogonality constraint or

grouping are trained first. Then cross-correlations between kernel weights are calcu-

lated and groups that have low cross-correlation are selected as they tend to have less

overlapping on critical weight positions.

81

5.4.2 Structured Sparse Digit Quantization with Canonical-Signed-Digit
Representation

A new structured sparsity constraint for the number representation is proposed to

further reduce the computation complexity of HTNN executed on hardware acceler-

ators. Weight quantization is an efficient way to reduce computation complexity and

weight storage. Previous approaches [49, 75] mainly focus on reducing the number

of bits (i.e., precision) and also the number of possible values of quantized weights.

A quantization strategy with K-mean clustering in [49] reduces the storage require-

ment by using non-uniform quantization while the computation is performed using

a conventional floating point multiplier. Leng et al. [75] apply a uniform quantiza-

tion strategy with ADMM that assumes conventional fixed/floating point multipliers.

Here, this work proposes a canonical-signed-digit (CSD) [54] numbering system with a

new structured sparsity constraint on digits of weight values. This approach replaces

multiplications with much simpler additions/subtractions.

CSD representation [54] is a special way of encoding a value using ternary {1,−1, 0}

digits in which the number of non-zero digits is minimized. For example, an in-

teger 30 requires 4 non-zero digits (bits) in the conventional binary representation

(011110) while it only needs 2 non-zero digits in the CSD form of (1, 0, 0, 0,−1, 0)

since 30 = 32 − 2 = 25 − 21 holds. The number of non-zero digits in CSD can vary

depending on the number but it is always no more than what conventional binary

representation needs. Since multiplying a number x by a power of 2 can be obtained

by bit-shifting x (with much lower complexity than multiplication), fewer number of

non-zero digits in the multiplicand translates to fewer shift and addition operations.

To increase the benefit of this CSD representation, an additional sparse digit con-

straint is imposed to limit the number of non-zero digits to be strictly less than or

82

equal to a predefined parameter k. Using k = 2 and 8-bit (digit) weights, a fixed-point

weight w has the form of:

w = c · 2a + d · 2b,

a, b ∈ {0, 1, ..., 7} & c, d ∈ {1,−1, 0}.
(5.11)

Consequently, fixed-point multiplication x × w can be obtained by ((cx) ≪ a) +

((dx)≪ b) where x≪ a denotes bit-shifting x by a bits. Note that in this example,

multiplication is replaced by a single addition/subtraction of bit-shifted versions of

x because c, d ∈ {1,−1, 0}. The complexity reduction factor of this technique with

k = 2 compared to conventional fixed point multiplication is determined by the

relative complexity of a multiplier vs. adder & shifting. For hardware multipliers and

adders, it is estimated that a ≥ 6-bit fixed point multiplier has at least 5× higher

complexity (energy consumption) compared to an adder with the same precision based

on Horowitz [59] and circuit synthesis results. The estimated energy for multiplication

/ addition is 0.2 / 0.03, and 1.1 / 0.05 pJ for 8-, and 16-bit operations, respectively,

in a 40nm CMOS process. Note that there is no memory overhead to store CSD

numbers because they can be stored in the two’s complement form using only Q-bits.

After reading weights from the memory, a simple decoder logic [54] can on-the-fly

convert two’s complement weights back to k-sparse CSD format. It is also possible

to store a k-sparse CSD number by (entropy) encoding the tuple (a, b, c, d) of the

expression (Equation 5.11).

Imposing k-digit sparsity on the CSD representation requires DNN training with

non-uniform quantization. In the ADMM based back-propagation, all possible k-

digit sparse CSD numbers are enumerated first and then unquantized numbers are

projected to the nearest valid k-digit sparse CSD values during ADMM optimization

(Equation 5.7). Thus, k-digit sparse CSD quantization is jointly applied with the

83

Algorithm 1 HTNN Linear Layer

Input: n× n input feature maps with ci input channels, 4× 4 weight kernels with
co output channels and nt transforms.
for pp = 1 to n

2
× n

2
do

for k = 1 to co
nt

do
for t = 1 to nt do
Reset acct (4× 4) to 0.

end for
for j = 1 to ci do
Load the 4× 4 kernel (j, k).
for t = 1 to nt do
if k == 1 then
Apply transform t to the 4× 4 input patch of channel j located at pp.
Store transformed patch.

else
Load stored transformed 4× 4 input patch of channel j located at pp.

end if
end for
m ← MUX nt transformed patches of channel j at pp using the sparsity
pattern for kernel (j, k).
p← Element-wise multiplication between m and kernel(j, k).
for t = 1 to nt do
dt ← DEMUX p using sparsity pattern for kernel (j, k).
acct ← acct + dt.

end for
end for
for t = 1 to nt do
Obtain the 2 × 2 output feature map patch O(k, t) by applying inverse
transform t−1 to acct.

end for
end for

end for

learning of sparse-orthogonal weights described in Section 5.4.1.

5.5 HTNN Complexity Analysis

Algorithm 1 summarizes all computation steps involved in the HTNN linear layer.

The overall datapath of the algorithm is depicted in Figure 5.3. ci, co, n, and nt de-

note the number of input channels, number of output channels, feature map size

84

Figure 5.3: Datapath of a single HTNN linear layer outer loop iteration with nt = 3
transforms.

per dimension, and number of heterogeneous transforms employed in HTNN, respec-

tively. The ci × co orthogonal-sparse kernels of size 4× 4 are trained offline and then

merged/MUXed to ci × co/nt ‘dense’ kernels stored in the transform-domain weight

buffer shown in Figure 5.3. For each input patch of size 4 × 4, the total number

of computations required on transforms is nt, not co, while nt ≪ co typically holds.

Since the transformed input patch is used co times, the overhead of input transform

is negligible when nt ≪ co holds. nt sparse-orthogonal weight kernels and corre-

sponding transformed input patches are effectively processed and merged at the same

time before element-wise multiplications. The output is then DEMUXed to nt output

channels, which are accumulated across associated input channel indices. Finally, the

accumulated outputs are transformed to 2× 2 output patches. This process repeats

for all the remaining patch locations. Note that the inverse transforms need to be

applied co times per patch, regardless of ci or nt. As the number of kernels (ci × co)

increases, the overhead of the inverse transform diminishes.

Table 5.1 lists the number of additions and multiplications involved in 4 × 4

85

Operation type Number of operations

HTNN WHT add 8× 8× nt × ci × n2

4

HTNN CSD mult 4× 4× ci × co
nt
× n2

4

HTNN accum. add 4× 4× (ci − 1)× co
nt
× n2

4

HTNN 1-WHT add 6× 6× co × n2

4

Sparse CNN mult 3× 3× ci × co × n2 × d
Sparse CNN add (3× 3× ci − 1)× co × n2 × d

co, ci: output and input channel
n: feature map size
nt: number of heterogeneous transforms
d: weight density of sparse convolution

Table 5.1: Number of operations performed in a single 4× 4 HTNN linear layer and
3× 3 sparse convolutional layer.

HTNN linear layer and 3× 3 sparse convolutional layer with non-zero weight density

of d. The average density of HTNN kernels is 1/nt. A 4 × 4 2D fast WHT requires

8× 8 = 64 additions/subtractions. And the inverse transform to produce each 2× 2

patch requires 6× 6 = 36 additions/subtractions.

To compare the estimated energy consumption of the HTNN layer and sparse

CNN layer, it is assumed that all the activations and weights are quantized to 8 bits.

The sparse CNN layer employs 8-bit uniform quantization, thus involving 8-bit fixed-

point multiplications. The HTNN layer uses 8-bit CSD multiplication with k = 2 digit

sparsity, and each 8-bit CSD multiplication is replaced by a 16-bit addition since it

involves adding two 16-bit values (bit-shifted from 8-bit values). Accumulations of

outputs in both the CNN layer and HTNN layer are performed with 16-bit additions.

Estimated energy consumption of the aforementioned fixed point additions and multi-

plications are obtained from circuit synthesis and post-APR SPICE simulation results

in a 40 nm CMOS process. It is observed that sparse CSD multiplication has ≈ 2×

lower energy consumption compared to conventional fixed point multiplication (0.181

86

Figure 5.4: Left: HTNN layer vs. sparse CNN layer energy ratio with n = 10. Right:
Transform vs. non-transform energy ratio in HTNN layer, d = 0.45, nt = 3, and
n = 10

pJ for CSD multiplication vs. 0.353 pJ for regular fixed point multiplication).

The left plot of Figure 5.4 shows the estimated energy ratio (assuming ideal HTNN

and sparse CNN hardware accelerators) between the HTNN layer and sparse CNN

layer with fixed input feature map size n = 10 for different ci, co, nt, and d. The energy

efficiency gain of the HTNN layer over the sparse CNN layer is more evident (about 3.5

– 5×) when they involve a large number of input and/or output channels (ci and/or

co). It is worth noting that this analysis is based on ideal hardware accelerator as-

sumption that only accounts for the number of operations related to non-zero weights

in the sparse CNN, and ignores the substantial overhead of managing sparse convo-

lutions [48, 96, 161]. The advantage of HTNN that allows a simple MUX/DEMUX

structure with less hardware overhead to efficiently merge sparse-orthogonal kernels

is not captured in Figure 5.4. The right plot of Figure 5.4 shows the estimated en-

ergy ratio between transforms (WHT and inverse WHT) and the other operations

(element-wise multiplication and accumulation) in HTNN layer. The transform over-

head becomes insignificant as ci and co increase because a single transform is shared

among multiple kernels.

87

5.6 Experiments

5.6.1 Models and Datasets

The proposed HTNN framework is tested with several famous CNN architec-

tures on different datasets. To ensure that most convolutional layers are replaced

by transform-domain linear layers, CNNs that heavily use 3 × 3 convolution kernels

are chosen. In HTNN versions, all 3 × 3 convolutional layers are replaced by 4 × 4

HTNN linear layers. The architectures evaluated are: ResNet-20 [52], ResNet-18

[52], a lightweight VGGNet VGG-nagadomi [92], and a general convolution-pooling

model ConvPool-CNN-C [116]. For dataset, ResNet-20 and VGG-nagadomi are tested

on CIFAR-10 [67], ConvPool-CNN-C is tested on CIFAR-100 [67], and ResNet-18 is

tested on ImageNet [104]. To replace all 3×3 convolutional layers with 4×4 transform-

domain linear layers, the original ResNet-20 and ResNet-18 architectures are modified

to use stride-1 convolutional layers followed by 2× 2 max-pooling instead of stride-2

convolution. For ResNet-18, the last 2× 2 max-pooling layer is also removed to keep

the output spatial size of the last residual module even instead of odd (14×14 instead

of 7×7). This ensures that 4×4 HTNN linear layer can still be applied to replace the

last 3 × 3 convolutional layers. All experiments are implemented with the Pytorch

[97] framework.

5.6.2 Evaluation of DNNs with Heterogeneous Transform Domains

First, three models are trained for ResNet-20, VGG-nagadomi and ConvPool-

CNN-C architectures: conventional CNN, HTNN with a single WHT transform, and

HTNN with multiple (permuted) WHT transforms. Since the first WHT-domain

layer is most sensitive to weight density, only two heterogeneous transforms (nt = 2)

are applied to it. For the other layers, two heterogeneous transforms (nt = 2) are

88

Model
ResNet-20 VGG-nagadomi

(sparse) CNN 1-WHT 3-WHT (sparse) CNN 1-WHT 2-WHT (sparse) Wino

Dense
network

Accuracy 91.71% 91.73% 91.90% 93.27% 93.16% 93.01% 93.43%
of mult 47.6M 21.2M 21.2M 228M 101M 101M 101M
of add 47.4M 25.3M 31.3M 228M 106M 108M 103M

Learning
kernel
sparsity

Accuracy 91.46% 91.16% 91.55% 93.12% 92.42% 93.06% 93.33%
Density 45.0% 35.2% 35.2% 45.0% 50.0% 50.0% 40%

of mult 21.4M 7.5M 7.5M 103M 50.5M 50.5M 40.4M
of add 21.3M 12.1M 18.1M 103M 55.2M 58.2M 43.2M

Learning
kernel
sparsity
with

quantized
weights

Accuracy 91.44% - 91.56% 93.08% - 93.01% n/a
Density 45.0% - 24.5% 45.0% - 34.9% 40%
Mult 21.4M - 0 103M - 0 40.4M

CSD mult 0 - 5.2M 0 - 35.2M 0
8-bit add 0 - 11.0M 0 - 8.0M 0
16-bit add 21.3M - 5.0M 103M - 35.0M 43.2M
Energy 9.05µJ - 1.45µJ 43.57µJ - 8.93µJ 17.29µJ

Model
ConvPool-CNN-C

(sparse) CNN 1-WHT 3-WHT (sparse) Wino

Dense
network

Accuracy 71.05% 71.09% 71.14% 69.75%
of mult 406M 180M 180M 180M
of add 406M 188M 199M 184M

Learning
kernel
sparsity

Accuracy 70.62% 70.12% 70.71% 69.65%
Density 35.1% 33.4% 33.4% 60%

of mult 143M 60.1M 60.1M 108M
of add 143M 69.2M 79.9M 113M

Learning
kernel
sparsity
with

quantized
weights

Accuracy 70.55% - 70.51% n/a
Density 34.8% - 19.0% 60%
Mult 143M - 0 108M

CSD mult 0 - 34.2M 0
8-bit add 0 - 20.2M 0
16-bit add 143M - 33.9M 113M
Energy 60.49µJ - 8.85µJ 46.03µJ

Model
ResNet-18

(sparse) CNN 3-WHT (sparse) Wino

Dense
network

Accuracy 69.8% 71.2% 66.8%
of mult 1676M 1285M 1285M
of add 1674M 1374M 1320M

Learning
kernel
sparsity

Accuracy 69.6% 70.8% 66.6%
Density 50% 33.7% 35%

of mult 838M 433M 450M
of add 837M 527M 490M

Learning
kernel
sparsity
with

quantized
weights

Accuracy 69.2% 69.8% n/a
Density 50% 17.7% 35%
Mult 838M 0 450M

CSD mult 0 227M 0
8-bit add 0 97M 0
16-bit add 837M 226M 490M
Energy 354.4µJ 58.3µJ 193.2µJ

Table 5.2: Top-1 accuracy and energy estimation for CNN models, proposed HTNN
models, and sparse-Winograd models [81]. Top: ResNet-20 and VGG-nagadomi on
CIFAR-10. Middle: ConvPool-CNN-C on CIFAR-100. Bottom: ResNet-18 on Ima-
geNet.

89

used for VGG-nagadomi whereas three transforms are used (nt = 3) for ResNet-

20 and ConvPool-CNN-C. For ResNet-18 architecture, two models are trained: the

conventional CNN and HTNN with multiple (permuted) WHT transforms. The first

convolutional layer of ResNet-18 is kept since it uses 7× 7 kernels. All the rest 3× 3

convolutional layers are replaced by 4 × 4 HTNN layers with three heterogeneous

transforms (nt = 3). nt is empirically selected according to CNN pruning results with

deep compression [49].

The top-1 accuracy on the test datasets is shown in Table 5.2. The proposed

HTNNmodels can achieve similar or even better accuracy compared to spatial domain

CNNs of all four network architectures. To compare computational complexity, the

total number of multiplications and additions are calculated on all 3×3 convolutional

layers and 4×4 HTNN layers including the overhead of transforms. The total number

of multiplication and addition operations are reported in Table 5.2.

5.6.3 Learning and Training for Hardware-Efficient Structures

For learning the sparse-orthogonal kernels, the proposed method is applied to

all WHT-domain HTNN models. For sparse CNN baselines, the deep compression

strategy described in [49] is applied. Sparse-Winograd pruning results on VGG-

nagadomi, ConvPool-CNN-C and ResNet-18 models from [81] are also added for

comparison. All results are summarized in Table 5.2.

There is around 0.8% accuracy drop from the single-WHT models while almost

no accuracy drop from the multi-WHT models after applying the proposed method.

It confirms that using multiple heterogeneous transforms is beneficial to successfully

learn the desired sparse-orthogonal kernel structures avoiding collisions on important

non-zero weight positions. Besides, the proposed strategy on HTNN models achieves

comparable compression ratios with CNN deep compression pruning. As shown in the

90

Figure 5.5: Hardware-efficient training for ResNet-20. Left: Test accuracy as a func-
tion of weight density for CNN pruning vs. sparse-orthogonal learning for HTNN.
Right: HTNN accuracy as a function of quantization bits for Q-bit binary represen-
tation and k = 2 sparse Q-digit CSD.

left plot of Figure 5.5, the 4×4 HTNN layers achieve 35% weight density (not exactly

1/3 because the first layer uses nt = 2) for the 3-WHT ResNet-20 model while spatial

CNN pruning achieves 45% density on 3×3 convolutional layers of CNN ResNet-20

with similar test accuracy.

All four HTNN models are tested with k = 2 sparse CSD quantization. It does

not incur big accuracy loss compared to learned sparse kernel models with Q = 6.

The right plot in Figure 5.5 shows the test accuracy vs. quantization bits for both

Q-bit binary representation and k = 2 sparse CSD representation (also with Q digits).

Both quantization methods can achieve the same accuracy where the k = 2 sparse

CSD quantization offers a factor of 4× complexity reduction for Q = 6. it is observed

that plenty of near-zero weights are converted to zeros during the CSD quantization

process, thus significantly lowering the non-zero weight density (Table 5.2). However,

weight densities remain almost the same for sparse CNN models after quantization

since weights with smaller magnitudes are already set to zero during the pruning

phase.

To compare the final computation complexity of the CNNmodels and the transform-

domain HTNN models, 8-bit uniform quantization is applied to the spatial CNNs

91

pruned with deep compression, and k = 2 sparse CSD (Q = 6) quantization to the

HTNN models with sparse-orthogonal kernels. All activations are uniformly quan-

tized to 8 bits for HTNN and CNN. The estimated energies for 8- & 16-bit addition,

8-bit multiplication and 8-bit CSD multiplication are 0.014, 0.070, 0.353 and 0.181

pJ, respectively, in a 40nm CMOS process (from post-APR SPICE simulations). For

each model, the total energy is the summation of the energies of all operations es-

timated using the method described in Section 5.5. For 3 × 3 convolutional layers,

HTNNs (including transform overhead) can achieve 4.9 – 6.8× complexity (energy)

reduction compared to quantized sparse spatial CNN models with almost no accuracy

drop on the test datasets. In this comparison, the benefit from simplified hardware

to handle sparse-orthogonal kernels in HTNN is not included although the overhead

of implementing sparse convolution is known to be substantial [48, 96, 161] for sparse

CNN. Table 5.2 shows the energy estimation of sparse-Winograd VGG-nagadomi,

ConvPool-CNN-C and ResNet-18 models with 8-bit uniform quantized weights. Liu

et al. [81] did not provide quantization results and it was not shown whether the

sparse-Winograd model can preserve original accuracy with 8-bit quantization. The

estimated energy consumption of these sparse-Winograd models yields 1.9 – 5.2×

higher energy compared to the HTNN models employing k = 2, Q = 6 CSD quanti-

zation.

5.7 Summary

This work presents a hardware-efficient neural network, HTNN, that uses het-

erogeneous transform domains with sparse-orthogonal weights replacing convolutions

with element-wise multiplications. Feature maps are transformed into heterogeneous

transform domains via fast WHT and its variants, where spatial convolutions are

92

replaced by efficient element-wise multiplications. An effective strategy is proposed

to learn hardware-friendly structures with sparse-orthogonal kernels. Furthermore,

structured sparse-digit quantization with CSD representation is applied to the sparse-

orthogonal weights to substitute multiplications with additions/subtractions. Exper-

imental results strongly demonstrate that neural networks can be trained in hetero-

geneous transform domains and computation complexity is significantly reduced with

learned sparse-orthogonal kernels and structured sparse CSD quantization. Up to

6.8× complexity reduction is achievable without loss of network accuracy compared

to CNNs using sparse convolution with optimally pruned weights. It is expected to

have a higher complexity reduction with bigger/more transforms. More aggressive

computation reduction could be achieved by using variable kernel sharing rates for

different layers while maintaining overall model accuracy.

93

CHAPTER VI

Conclusion and Future Work

6.1 Conclusion

This dissertation focuses on low-power localization systems, especially hardware-

efficient deep learning based localization systems. Deep neural networks are power-

ful tools that achieve tremendous success in various computer vision and machine

learning tasks, yet the complexity of modern deep learning models is enormous and

these models rely on powerful computing platforms such as GPUs and tensor pro-

cessing units (TPUs) for successful deployment. Implementing such big deep learning

models on energy-constrained mobile IoT platforms is a big challenge. This disser-

tation explores four different yet effective ways to balance system performance and

power consumption. That is reducing the complexity of deep learning models, adap-

tive sensor modality selection and fusion, turning to low-power sensors, and system

hardware-software co-design for specialized accelerators.

In Chapter II, a real-time visual SLAM system with low power consumption is

investigated through hardware-software co-design. This SLAM system is specially

optimized for hardware-efficient VLSI implementation while maintaining reasonable

performance. Compared to state-of-the-art SLAM systems, the proposed system

reduces its overall power consumption and on-chip memory usage to only 200 micro

94

watts and 13 MB. With much lower power consumption and memory usage, the

proposed system is capable for mobile IoT applications, and it is already ported on a

low-power SLAM ASIC accelerator.

In Chapter III, an energy-efficient deep learning based VIO system with excellent

accuracy is obtained by reducing the neural network complexity and adaptive sen-

sor modality selection and fusion. A one-shot neural architecture search approach

is proposed to search for the most efficient visual encoder with low complexity and

latency without sacrificing the system performance. Besides, the system computa-

tion overhead and power consumption are reduced by opportunistically disabling the

visual modality on the fly when visual information is not critical for maintaining

pose estimation accuracy. Combining both techniques, the optimal model can save

up to 99.1% computation, and run in real-time on a single laptop CPU core. The

proposed strategies are also model-agnostic and can be easily adapted to other deep

VIO systems.

In Chapter IV, an efficient end-to-end deep learning framework for accurate source

separation and localization in multi-source environments is presented. The system

only relies on a passive low-power microphone sensor array to collect mixed audio

signals from surrounding sound sources and estimate the DOA information of each

source. The separated signals of the sources and their location information are jointly

optimized through self-supervision and adversarial machine learning techniques. The

proposed learning framework successfully improves the source separation quality as

well as the localization accuracy. Compared to existing methods, it achieves supe-

rior/similar performance while producing interpretable intermediate information such

as separated sources and TDOA information between microphones, and it is general-

izable to other source separation models.

95

In Chapter V, a hardware-efficient heterogeneous transform-domain deep neural

network (HTNN) is introduced. HTNN uses heterogeneous transform domains with

hardware-friendly sparse-orthogonal weights to replace convolutions with element-

wise multiplications. Structured sparse-digit quantization with CSD representation

is applied to the sparse-orthogonal weights to substitute multiplications with addi-

tions/subtractions. It is demonstrated that neural networks can be trained in hetero-

geneous transform domains, and computation complexity is significantly reduced with

learned sparse-orthogonal kernels and structured sparse CSD quantization without

performance degradation. More aggressive computation reduction could be achieved

by using bigger/more transforms and variable kernel sharing rates for different layers

without harming the overall accuracy.

6.2 Future Work

There are several directions to explore in the development of low-power hardware-

efficient localization systems. With the development of new network architectures

and new types of layers, reducing the complexity of neural networks is a continuous

research topic. The performance of existing approaches in the literature, such as

neural network compression and transformed domain neural networks, is still far

from perfect. It is interesting to extend the existing algorithms to optimize DNNs

for energy-constrained mobile applications, especially low-power localization systems.

For neural architecture search based methods, it is possible to extend the search

space to include different types of layers, number of quantization bits, and operation

bits, in addition to the CNN kernel sizes, number of channels, and depths. For

transform-domain neural networks, applying heterogeneous transforms of different

types, numbers or sizes is an exciting direction to explore.

96

Another interesting direction is to apply adaptive sensor modality selection and

fusion on other tasks, such as 3D object detection. 3D object detection is a hot

topic in computer vision and one of the core bases for path planning and collision

avoidance in autonomous driving systems. State-of-the-art deep learning based 3D

object detection systems typically employ multiple sensors and involve massive com-

putation, making them unsuitable for energy-constrained mobile platforms such as

unmanned aerial vehicles (UAVs) and small mobile robots. An interesting direction

is to extend the proposed adaptive sensor modality selection and fusion technique

to different sensor modalities, such as lidar and camera in a typical 3D object de-

tection system. By reducing the usage of the energy-intensive lidar sensor, overall

system power consumption can be reduced, enabling the deployment of such systems

on mobile platforms.

97

BIBLIOGRAPHY

98

BIBLIOGRAPHY

[1] Sharath Adavanne, Archontis Politis, Joonas Nikunen, and Tuomas Virtanen.
Sound event localization and detection of overlapping sources using convolu-
tional recurrent neural networks. IEEE Journal of Selected Topics in Signal
Processing, 13(1):34–48, 2018.

[2] Yasin Almalioglu, Mehmet Turan, Alp Eren Sari, Muhamad Risqi U Sapu-
tra, Pedro PB de Gusmão, Andrew Markham, and Niki Trigoni. Selfvio:
Self-supervised deep monocular visual-inertial odometry and depth estimation.
arXiv preprint arXiv:1911.09968, 2019.

[3] Adrien Angeli, David Filliat, Stéphane Doncieux, and Jean-Arcady Meyer. Fast
and incremental method for loop-closure detection using bags of visual words.
IEEE Transactions on Robotics, 24(5):1027–1037, 2008.

[4] Mohammad OA Aqel, Mohammad H Marhaban, M Iqbal Saripan, and Nap-
siah Bt Ismail. Review of visual odometry: types, approaches, challenges, and
applications. SpringerPlus, 5(1):1–26, 2016.

[5] Martin Arjovsky and Léon Bottou. Towards principled methods for training
generative adversarial networks. International Conference on Learning Repre-
sentations (ICLR), 2017.

[6] Tim Bailey and Hugh Durrant-Whyte. Simultaneous localization and mapping
(slam): Part ii. IEEE Robotics & Automation Magazine, 13(3):108–117, 2006.

[7] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Design-
ing neural network architectures using reinforcement learning. arXiv preprint
arXiv:1611.02167, 2016.

[8] Dieter Balemans, Wim Casteels, Simon Vanneste, Jens de Hoog, Siegfried Mer-
celis, and Peter Hellinckx. Resource efficient sensor fusion by knowledge-based
network pruning. Internet of Things, 11:100231, 2020.

[9] Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk.
Learning local feature descriptors with triplets and shallow convolutional neural
networks. In Bmvc, volume 1, page 3, 2016.

99

[10] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive
neural networks for efficient inference. In International Conference on Machine
Learning (ICML), pages 527–536. PMLR, 2017.

[11] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends® in Machine learning, 3(1):1–
122, 2011.

[12] Matthew Brown, Gang Hua, and Simon Winder. Discriminative learning of
local image descriptors. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(1):43–57, 2010.

[13] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza,
José Neira, Ian Reid, and John J Leonard. Past, present, and future of simul-
taneous localization and mapping: Toward the robust-perception age. IEEE
Transactions on Robotics, 32(6):1309–1332, 2016.

[14] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-
all: Train one network and specialize it for efficient deployment. arXiv preprint
arXiv:1908.09791, 2019.

[15] Xing Cai, Lanqing Zhang, Chengyuan Li, Ge Li, and Thomas H Li. Vonas: Net-
work design in visual odometry using neural architecture search. In Proceedings
of the 28th ACM International Conference on Multimedia, pages 727–735, 2020.

[16] Vı́ctor Campos, Brendan Jou, Xavier Giró-i Nieto, Jordi Torres, and Shih-Fu
Chang. Skip rnn: Learning to skip state updates in recurrent neural networks.
arXiv preprint arXiv:1708.06834, 2017.

[17] Jose A Castellanos, José MM Montiel, José Neira, and Juan D Tardós. The
spmap: A probabilistic framework for simultaneous localization and map build-
ing. IEEE Transactions on Robotics and Automation, 15(5):948–952, 1999.

[18] Changhao Chen, Stefano Rosa, Chris Xiaoxuan Lu, Niki Trigoni, and Andrew
Markham. Selectfusion: A generic framework to selectively learn multisensory
fusion. arXiv preprint arXiv:1912.13077, 2019.

[19] Changhao Chen, Stefano Rosa, Yishu Miao, Chris Xiaoxuan Lu, Wei Wu, An-
drew Markham, and Niki Trigoni. Selective sensor fusion for neural visual-
inertial odometry. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10542–10551, 2019.

[20] Jingjing Chen, Qirong Mao, and Dong Liu. Dual-path transformer network: Di-
rect context-aware modeling for end-to-end monaural speech separation. arXiv
preprint arXiv:2007.13975, 2020.

100

[21] Minghao Chen, Jianlong Fu, and Haibin Ling. One-shot neural ensemble ar-
chitecture search by diversity-guided search space shrinking. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 16530–16539, 2021.

[22] Yu Chen, Bowen Liu, Pierre Abillama, and Hun-Seok Kim. Htnn: deep learn-
ing in heterogeneous transform domains with sparse-orthogonal weights. In
IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED), pages 1–6. IEEE, 2021.

[23] Yu Chen, Bowen Liu, Zijian Zhang, and Hun-Seok Kim. An end-to-end deep
learning framework for multiple audio source separation and localization. In
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 736–740. IEEE, 2022.

[24] Yu Chen, Mingyu Yang, and Hun-Seok Kim. Search for efficient deep visual-
inertial odometry through neural architecture search. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023.

[25] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for
deep learning. arXiv preprint arXiv:1410.0759, 2014.

[26] Ronald Clark, Sen Wang, Hongkai Wen, Andrew Markham, and Niki Trigoni.
Vinet: Visual-inertial odometry as a sequence-to-sequence learning problem. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

[27] Joris Cosentino, Manuel Pariente, Samuele Cornell, Antoine Deleforge, and
Emmanuel Vincent. Librimix: An open-source dataset for generalizable speech
separation. arXiv preprint arXiv:2005.11262, 2020.

[28] Marco Crocco, Marco Cristani, Andrea Trucco, and Vittorio Murino. Audio
surveillance: A systematic review. ACM Computing Surveys (CSUR), 48(4):1–
46, 2016.

[29] Igor Cvǐsić, Josip Ćesić, Ivan Marković, and Ivan Petrović. Soft-slam: Com-
putationally efficient stereo visual simultaneous localization and mapping for
autonomous unmanned aerial vehicles. Journal of Field Robotics, 35(4):578–
595, 2018.

[30] Giovanni De Michell and Rajesh K Gupta. Hardware/software co-design. Pro-
ceedings of the IEEE, 85(3):349–365, 1997.

[31] Nicolas de Palézieux, Tobias Nägeli, and Otmar Hilliges. Duo-vio: Fast, light-
weight, stereo inertial odometry. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 2237–2242. IEEE, 2016.

101

[32] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas,
Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox.
Flownet: Learning optical flow with convolutional networks. In Proceedings of
the IEEE International Conference on Computer Vision (ICCV), pages 2758–
2766, 2015.

[33] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping:
part i. IEEE Robotics & Automation Magazine, 13(2):99–110, 2006.

[34] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture
search: A survey. The Journal of Machine Learning Research, 20(1):1997–2017,
2019.

[35] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(3):611–
625, 2017.

[36] Jakob Engel, Jörg Stückler, and Daniel Cremers. Large-scale direct slam with
stereo cameras. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 1935–1942. IEEE, 2015.

[37] Bernard J. Fino and V. Ralph Algazi. Unified matrix treatment of the fast
walsh-hadamard transform. IEEE Transactions on Computers, 25(11):1142–
1146, 1976.

[38] Philipp Fischer, Alexey Dosovitskiy, and Thomas Brox. Descriptor match-
ing with convolutional neural networks: a comparison to sift. arXiv preprint
arXiv:1405.5769, 2014.

[39] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. Svo: Fast semi-direct
monocular visual odometry. In IEEE International Conference on Robotics and
Automation (ICRA), pages 15–22. IEEE, 2014.

[40] Xiang Gao, Rui Wang, Nikolaus Demmel, and Daniel Cremers. Ldso: Direct
sparse odometry with loop closure. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 2198–2204. IEEE, 2018.

[41] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
3354–3361. IEEE, 2012.

[42] Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems.
Communications of the ACM, 33(10):75–84, 1990.

[43] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J Brostow.
Digging into self-supervised monocular depth estimation. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), pages 3828–3838,
2019.

102

[44] Vineet Gokhale, Gerardo Moyers Barrera, and R Venkatesha Prasad. Feel: fast,
energy-efficient localization for autonomous indoor vehicles. In IEEE Interna-
tional Conference on Communications, pages 1–6. IEEE, 2021.

[45] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. Advances in Neural Information Processing Systems (NeurIPS), 27,
2014.

[46] Alex Graves. Adaptive computation time for recurrent neural networks. arXiv
preprint arXiv:1603.08983, 2016.

[47] Liming Han, Yimin Lin, Guoguang Du, and Shiguo Lian. Deepvio: Self-
supervised deep learning of monocular visual inertial odometry using 3d geomet-
ric constraints. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 6906–6913. IEEE, 2019.

[48] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. Eie: Efficient inference engine on compressed
deep neural network. ACM SIGARCH Computer Architecture News, 44(3):243–
254, 2016.

[49] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
In International Conference on Learning Representations (ICLR), 2016.

[50] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights
and connections for efficient neural network. Advances in Neural Information
Processing Systems (NeurIPS), 28, 2015.

[51] Christian Hansen, Casper Hansen, Stephen Alstrup, Jakob Grue Simonsen,
and Christina Lioma. Neural speed reading with structural-jump-lstm. arXiv
preprint arXiv:1904.00761, 2019.

[52] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[53] Weipeng He, Petr Motlicek, and Jean-Marc Odobez. Deep neural networks for
multiple speaker detection and localization. In IEEE International Conference
on Robotics and Automation (ICRA), pages 74–79. IEEE, 2018.

[54] Reid M Hewlitt and ES Swartzlantler. Canonical signed digit representation
for fir digital filters. In IEEE Workshop on Signal Processing Systems (SIPS),
pages 416–426. IEEE, 2000.

[55] Heiko Hirschmuller. Accurate and efficient stereo processing by semi-global
matching and mutual information. In Proceedings of the IEEE Conference on

103

Computer Vision and Pattern Recognition (CVPR), volume 2, pages 807–814.
IEEE, 2005.

[56] Steven A Holmes, Georg Klein, and David W Murray. An o (n2) square root
unscented kalman filter for visual simultaneous localization and mapping. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 31(7):1251–1263,
2008.

[57] Euntae Hong and Jongwoo Lim. Visual inertial odometry using coupled nonlin-
ear optimization. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 6879–6885. IEEE, 2017.

[58] Injoon Hong, Gyeonghoon Kim, Youchang Kim, Donghyun Kim, Byeong-Gyu
Nam, and Hoi-Jun Yoo. A 27 mw reconfigurable marker-less logarithmic camera
pose estimation engine for mobile augmented reality processor. IEEE Journal
of Solid-State Circuits, 50(11):2513–2523, 2015.

[59] Mark Horowitz. 1.1 computing’s energy problem (and what we can do about
it). In IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), pages 10–14. IEEE, 2014.

[60] Weizhe Hua, Yuan Zhou, Christopher M De Sa, Zhiru Zhang, and G Edward
Suh. Channel gating neural networks. Advances in Neural Information Pro-
cessing Systems (NeurIPS), 32, 2019.

[61] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens Van Der Maaten, and
Kilian Q Weinberger. Multi-scale dense networks for resource efficient image
classification. arXiv preprint arXiv:1703.09844, 2017.

[62] Peter J Huber. Robust estimation of a location parameter. In Breakthroughs
in Statistics, pages 492–518. Springer, 1992.

[63] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with
gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.

[64] J Kin, M Gupta, and WH Mangione Smith. Application specific integrated
circuits. 1997.

[65] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[66] Georg Klein and David Murray. Parallel tracking and mapping for small ar
workspaces. In 6th IEEE and ACM International Symposium on Mixed and
Augmented Reality, pages 225–234. IEEE, 2007.

[67] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from
tiny images. 2009.

104

[68] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in Neural Information
Processing Systems (NeurIPS), 25, 2012.

[69] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wol-
fram Burgard. g 2 o: A general framework for graph optimization. In IEEE
International Conference on Robotics and Automation (ICRA), pages 3607–
3613. IEEE, 2011.

[70] Henry O. Kunz. On the equivalence between one-dimensional discrete walsh-
hadamard and multidimensional discrete fourier transforms. IEEE Transac-
tions on Computers, 28(03):267–268, 1979.

[71] Guillaume Lathoud, Jean-Marc Odobez, and Daniel Gatica-Perez. Av16. 3:
An audio-visual corpus for speaker localization and tracking. In International
Workshop on Machine Learning for Multimodal Interaction, pages 182–195.
Springer, 2004.

[72] Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural net-
works. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4013–4021, 2016.

[73] Jonathan Le Roux, Scott Wisdom, Hakan Erdogan, and John R Hershey. Sdr–
half-baked or well done? In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 626–630. IEEE, 2019.

[74] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[75] Cong Leng, Zesheng Dou, Hao Li, Shenghuo Zhu, and Rong Jin. Extremely
low bit neural network: Squeeze the last bit out with admm. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[76] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul
Furgale. Keyframe-based visual–inertial odometry using nonlinear optimiza-
tion. The International Journal of Robotics Research, 34(3):314–334, 2015.

[77] Mingyang Li and Anastasios I Mourikis. High-precision, consistent ekf-based
visual-inertial odometry. The International Journal of Robotics Research,
32(6):690–711, 2013.

[78] Ziyun Li, Yu Chen, Luyao Gong, Lu Liu, Dennis Sylvester, David Blaauw, and
Hun-Seok Kim. An 879gops 243mw 80fps vga fully visual cnn-slam processor for
wide-range autonomous exploration. In IEEE International Solid-State Circuits
Conference (ISSCC), pages 134–136. IEEE, 2019.

105

[79] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua,
Alan L Yuille, and Li Fei-Fei. Auto-deeplab: Hierarchical neural architecture
search for semantic image segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 82–92, 2019.

[80] Li Liu, Ge Li, and Thomas H Li. Atvio: Attention guided visual-inertial odom-
etry. In IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 4125–4129. IEEE, 2021.

[81] Xingyu Liu, Jeff Pool, Song Han, andWilliam J Dally. Efficient sparse-winograd
convolutional neural networks. In International Conference on Learning Rep-
resentations (ICLR), 2018.

[82] Heinrich W Löllmann, Christine Evers, Alexander Schmidt, Heinrich Mellmann,
Hendrik Barfuss, Patrick A Naylor, and Walter Kellermann. The locata chal-
lenge data corpus for acoustic source localization and tracking. In IEEE 10th
Sensor Array and Multichannel Signal Processing Workshop (SAM), pages 410–
414. IEEE, 2018.

[83] Manolis IA Lourakis and Antonis A Argyros. Sba: A software package for
generic sparse bundle adjustment. ACM Transactions on Mathematical Soft-
ware (TOMS), 36(1):1–30, 2009.

[84] David G Lowe. Object recognition from local scale-invariant features. In Pro-
ceedings of the IEEE International Conference on Computer Vision (ICCV),
volume 2, pages 1150–1157. IEEE, 1999.

[85] David G Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision, 60(2):91–110, 2004.

[86] Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolu-
tional networks through ffts. In International Conference on Learning Repre-
sentations (ICLR), 2014.

[87] Yue Meng, Chung-Ching Lin, Rameswar Panda, Prasanna Sattigeri, Leonid
Karlinsky, Aude Oliva, Kate Saenko, and Rogerio Feris. Ar-net: Adaptive
frame resolution for efficient action recognition. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 86–104. Springer, 2020.

[88] Yue Meng, Rameswar Panda, Chung-Ching Lin, Prasanna Sattigeri, Leonid
Karlinsky, Kate Saenko, Aude Oliva, and Rogerio Feris. Adafuse: Adap-
tive temporal fusion network for efficient action recognition. arXiv preprint
arXiv:2102.05775, 2021.

[89] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte
carlo gradient estimation in machine learning. The Journal of Machine Learning
Research, 21(1):5183–5244, 2020.

106

[90] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a
versatile and accurate monocular slam system. IEEE Transactions on Robotics,
31(5):1147–1163, 2015.

[91] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics,
33(5):1255–1262, 2017.

[92] Nagadomi. Code for kaggle-cifar10 competition, 5th place. https://github.com/
nagadomi/kaggle-cifar10-torch7, 2014.

[93] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), volume 1, pages I–I. Ieee, 2004.

[94] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Lib-
rispeech: an asr corpus based on public domain audio books. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
5206–5210. IEEE, 2015.

[95] Rameswar Panda, Chun-Fu Richard Chen, Quanfu Fan, Ximeng Sun, Kate
Saenko, Aude Oliva, and Rogerio Feris. Adamml: Adaptive multi-modal learn-
ing for efficient video recognition. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 7576–7585, 2021.

[96] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and
William J Dally. Scnn: An accelerator for compressed-sparse convolutional
neural networks. ACM SIGARCH Computer Architecture News, 45(2):27–40,
2017.

[97] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-performance deep learning library.
Advances in Neural Information Processing Systems (NeurIPS), 32, 2019.

[98] William K Pratt, Julius Kane, and Harry C Andrews. Hadamard transform
image coding. Proceedings of the IEEE, 57(1):58–68, 1969.

[99] Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and versa-
tile monocular visual-inertial state estimator. IEEE Transactions on Robotics,
34(4):1004–1020, 2018.

[100] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized
evolution for image classifier architecture search. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 4780–4789, 2019.

107

[101] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic
backpropagation and approximate inference in deep generative models. In In-
ternational Conference on Machine Learning (ICML), pages 1278–1286. PMLR,
2014.

[102] Edward Rosten and Tom Drummond. Machine learning for high-speed corner
detection. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 430–443. Springer, 2006.

[103] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An
efficient alternative to sift or surf. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 2564–2571. Ieee, 2011.

[104] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International Journal of Com-
puter Vision, 115:211–252, 2015.

[105] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4510–4520, 2018.

[106] Hiroshi Sawada, Ryo Mukai, Shoko Araki, and S Malcino. Multiple source
localization using independent component analysis. In IEEE Antennas and
Propagation Society International Symposium, volume 4, pages 81–84. IEEE,
2005.

[107] Davide Scaramuzza and Friedrich Fraundorfer. Visual odometry [tutorial].
IEEE robotics & automation magazine, 18(4):80–92, 2011.

[108] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revis-
ited. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4104–4113, 2016.

[109] Minjoon Seo, Sewon Min, Ali Farhadi, and Hannaneh Hajishirzi. Neural speed
reading via skim-rnn. arXiv preprint arXiv:1711.02085, 2017.

[110] E Jared Shamwell, Sarah Leung, and William D Nothwang. Vision-aided ab-
solute trajectory estimation using an unsupervised deep network with online
error correction. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2524–2531. IEEE, 2018.

[111] Kazuki Shimada, Yuichiro Koyama, Naoya Takahashi, Shusuke Takahashi, and
Yuki Mitsufuji. Accdoa: Activity-coupled cartesian direction of arrival repre-
sentation for sound event localization and detection. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 915–
919. IEEE, 2021.

108

[112] Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas Kokkinos, Pascal Fua,
and Francesc Moreno-Noguer. Discriminative learning of deep convolutional
feature point descriptors. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), pages 118–126, 2015.

[113] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. In International Conference on Learning Repre-
sentations (ICLR), 2015.

[114] Vishwanath A Sindagi, Yin Zhou, and Oncel Tuzel. Mvx-net: Multimodal
voxelnet for 3d object detection. In IEEE International Conference on Robotics
and Automation (ICRA), pages 7276–7282. IEEE, 2019.

[115] Randall C Smith and Peter Cheeseman. On the representation and estimation
of spatial uncertainty. The international Journal of Robotics Research, 5(4):56–
68, 1986.

[116] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-
miller. Striving for simplicity: The all convolutional net. In International
Conference on Learning Representations workshop (ICLR), 2015.

[117] Daniel Stoller, Sebastian Ewert, and Simon Dixon. Wave-u-net: A multi-
scale neural network for end-to-end audio source separation. arXiv preprint
arXiv:1806.03185, 2018.

[118] Hauke Strasdat, José MM Montiel, and Andrew J Davison. Visual slam: why
filter? Image and Vision Computing, 30(2):65–77, 2012.

[119] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel
Cremers. A benchmark for the evaluation of rgb-d slam systems. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 573–
580. IEEE, 2012.

[120] Yu-Chi Su, Keng-Yen Huang, Tse-Wei Chen, Yi-Min Tsai, Shao-Yi Chien, and
Liang-Gee Chen. A 52 mw full hd 160-degree object viewpoint recognition
soc with visual vocabulary processor for wearable vision applications. IEEE
Journal of Solid-State Circuits, 47(4):797–809, 2012.

[121] Cem Subakan, Mirco Ravanelli, Samuele Cornell, Mirko Bronzi, and Jianyuan
Zhong. Attention is all you need in speech separation. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 21–25.
IEEE, 2021.

[122] Harshavardhan Sundar, Thippur V Sreenivas, and Chandra Sekhar Seelaman-
tula. Tdoa-based multiple acoustic source localization without association am-
biguity. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
26(11):1976–1990, 2018.

109

[123] Harshavardhan Sundar, Weiran Wang, Ming Sun, and Chao Wang. Raw wave-
form based end-to-end deep convolutional network for spatial localization of
multiple acoustic sources. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4642–4646. IEEE, 2020.

[124] Niko Sunderhauf, Sven Lange, and Peter Protzel. Using the unscented kalman
filter in mono-slam with inverse depth parametrization for autonomous air-
ship control. In IEEE International Workshop on Safety, Security and Rescue
Robotics, pages 1–6. IEEE, 2007.

[125] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient process-
ing of deep neural networks: A tutorial and survey. Proceedings of the IEEE,
105(12):2295–2329, 2017.

[126] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for con-
volutional neural networks. In International Conference on Machine Learning
(ICML), pages 6105–6114. PMLR, 2019.

[127] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung.
Branchynet: Fast inference via early exiting from deep neural networks. In In-
ternational Conference on Pattern Recognition (ICPR), pages 2464–2469. IEEE,
2016.

[128] Ana M Torres, Maximo Cobos, Basilio Pueo, and Jose J Lopez. Robust acoustic
source localization based on modal beamforming and time–frequency processing
using circular microphone arrays. The Journal of the Acoustical Society of
America, 132(3):1511–1520, 2012.

[129] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and AndrewW Fitzgibbon.
Bundle adjustment—a modern synthesis. In International Workshop on Vision
Algorithms, pages 298–372. Springer, 1999.

[130] Spyros G Tzafestas. Introduction to mobile robot control. Elsevier, 2013.

[131] Efthymios Tzinis, Shrikant Venkataramani, Zhepei Wang, Cem Subakan, and
Paris Smaragdis. Two-step sound source separation: Training on learned latent
targets. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 31–35. IEEE, 2020.

[132] Efthymios Tzinis, Zhepei Wang, and Paris Smaragdis. Sudo rm-rf: Efficient net-
works for universal audio source separation. In IEEE 30th International Work-
shop on Machine Learning for Signal Processing (MLSP), pages 1–6. IEEE,
2020.

[133] Efthymios Tzinis, Scott Wisdom, John R Hershey, Aren Jansen, and Daniel PW
Ellis. Improving universal sound separation using sound classification. In IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 96–100. IEEE, 2020.

110

[134] Shimon Ullman. The interpretation of structure from motion. Proceedings of
the Royal Society of London. Series B. Biological Sciences, 203(1153):405–426,
1979.

[135] J-M Valin, François Michaud, Jean Rouat, and Dominic Létourneau. Robust
sound source localization using a microphone array on a mobile robot. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
volume 2, pages 1228–1233. IEEE, 2003.

[136] Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan
Piantino, and Yann LeCun. Fast convolutional nets with fbfft: A gpu perfor-
mance evaluation. arXiv preprint arXiv:1412.7580, 2014.

[137] Andreas Veit and Serge Belongie. Convolutional networks with adaptive infer-
ence graphs. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 3–18, 2018.

[138] Juan Manuel Vera-Diaz, Daniel Pizarro, and Javier Macias-Guarasa. Towards
end-to-end acoustic localization using deep learning: From audio signals to
source position coordinates. Sensors, 18(10):3418, 2018.

[139] Vinay Verma, Nikita Agarwal, and Nitin Khanna. Dct-domain deep convo-
lutional neural networks for multiple jpeg compression classification. Signal
Processing: Image Communication, 67:22–33, 2018.

[140] Sen Wang, Ronald Clark, Hongkai Wen, and Niki Trigoni. Deepvo: Towards
end-to-end visual odometry with deep recurrent convolutional neural networks.
In IEEE International Conference on Robotics and Automation (ICRA), pages
2043–2050. IEEE, 2017.

[141] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skip-
net: Learning dynamic routing in convolutional networks. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 409–424, 2018.

[142] Yulin Wang, Zhaoxi Chen, Haojun Jiang, Shiji Song, Yizeng Han, and Gao
Huang. Adaptive focus for efficient video recognition. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), pages 16249–
16258, 2021.

[143] Yunhe Wang, Chang Xu, Shan You, Dacheng Tao, and Chao Xu. Cnnpack:
Packing convolutional neural networks in the frequency domain. Advances in
Neural Information Processing Systems (NeurIPS), 29, 2016.

[144] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning
structured sparsity in deep neural networks. Advances in Neural Information
Processing Systems (NeurIPS), 29, 2016.

[145] Ronald J Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8(3):229–256, 1992.

111

[146] Shmuel Winograd. Arithmetic complexity of computations, volume 33. Siam,
1980.

[147] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S
Davis, Kristen Grauman, and Rogerio Feris. Blockdrop: Dynamic inference
paths in residual networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 8817–8826, 2018.

[148] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher, and Larry S Davis.
Adaframe: Adaptive frame selection for fast video recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1278–1287, 2019.

[149] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Ag-
gregated residual transformations for deep neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1492–1500, 2017.

[150] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural
architecture search. arXiv preprint arXiv:1812.09926, 2018.

[151] Fei Xue, Qiuyuan Wang, Xin Wang, Wei Dong, Junqiu Wang, and Hongbin
Zha. Guided feature selection for deep visual odometry. In Asian Conference
on Computer Vision, pages 293–308. Springer, 2018.

[152] Fei Xue, Xin Wang, Shunkai Li, Qiuyuan Wang, Junqiu Wang, and Hongbin
Zha. Beyond tracking: Selecting memory and refining poses for deep visual
odometry. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 8575–8583, 2019.

[153] Mingyu Yang, Yu Chen, and Hun-Seok Kim. Efficient deep visual and iner-
tial odometry with adaptive visual modality selection. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 233–250. Springer,
2022.

[154] Tien-Ju Yang, Yi-Lun Liao, and Vivienne Sze. Netadaptv2: Efficient neural
architecture search with fast super-network training and architecture optimiza-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2402–2411, 2021.

[155] Dong Yu, Morten Kolbæk, Zheng-Hua Tan, and Jesper Jensen. Permutation
invariant training of deep models for speaker-independent multi-talker speech
separation. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 241–245. IEEE, 2017.

[156] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kinder-
mans, Mingxing Tan, Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc
Le. Bignas: Scaling up neural architecture search with big single-stage models.

112

In Proceedings of the European Conference on Computer Vision (ECCV), pages
702–717. Springer, 2020.

[157] Zhihang Yuan, Bingzhe Wu, Guangyu Sun, Zheng Liang, Shiwan Zhao, and
Weichen Bi. S2dnas: Transforming static cnn model for dynamic inference
via neural architecture search. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 175–192. Springer, 2020.

[158] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A
survey of autonomous driving: Common practices and emerging technologies.
IEEE Access, 8:58443–58469, 2020.

[159] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Far-
dad, and Yanzhi Wang. A systematic dnn weight pruning framework using
alternating direction method of multipliers. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 184–199, 2018.

[160] Zhengdong Zhang, Amr AbdulZahir Suleiman, Luca Carlone, Vivienne Sze, and
Sertac Karaman. Visual-inertial odometry on chip: An algorithm-and-hardware
co-design approach. Robotics: Science and Systems, 2017.

[161] Xuda Zhou, Zidong Du, Qi Guo, Shaoli Liu, Chengsi Liu, Chao Wang, Xuehai
Zhou, Ling Li, Tianshi Chen, and Yunji Chen. Cambricon-s: Addressing ir-
regularity in sparse neural networks through a cooperative software/hardware
approach. In 51st Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 15–28. IEEE, 2018.

[162] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578, 2016.

[163] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
8697–8710, 2018.

[164] Yuliang Zou, Pan Ji, Quoc-Huy Tran, Jia-Bin Huang, and Manmohan Chan-
draker. Learning monocular visual odometry via self-supervised long-term mod-
eling. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 710–727. Springer, 2020.

113

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Localization Systems and Applications
	Self-Localization
	Surrounding Object Localization

	Low Power Challenges
	Complexity of Deep Neural Network
	Sensor Selection
	Sensor Fusion
	Deployment on Hardware

	Dissertation Organization

	Real-Time Simultaneous Localization and Mapping for Energy-Constrained Mobile IoT Applications
	Introduction
	Related Work
	A SLAM System Optimized for Hardware
	Visual Odometry Front-End
	Graph Optimization Back-End

	Experiments
	CNN Feature Descriptor
	SLAM System Evaluation

	Summary

	Efficient Deep Visual-Inertial Odometry with Neural Architecture Search and Adaptive Visual Modality Selection
	Introduction
	Related Work
	Visual-Inertial Odometry
	Neural Architecture Search
	Adaptive Inference

	Method
	Deep Visual-Inertial Odometry
	Neural Architecture Search on Visual Encoder
	Deep VIO with Adaptive Visual Modality Selection

	Experimental Setup
	Dataset and Metrics
	Model Architecture and Training Strategies

	Experimental Results
	Search for Efficient Visual Encoder
	Adaptive Visual Modality Selection
	Comparison to Other Learning Based VO/VIO

	Summary

	An End-to-End Deep Learning Framework for Multiple Audio Source Separation and Localization
	Introduction
	Related Work
	Method
	Source Separation
	TDOA Estimation
	Training Loss Function
	DOA Estimation

	Experimental Setup
	System Setup and Datasets
	Model Architecture and Training Details

	Experimental Results
	Summary

	HTNN: Deep Learning in Heterogeneous Transform Domains with Sparse-Orthogonal Weights
	Introduction
	Related Work
	Compute Convolutions in Transform Domains
	Neural Network Compression

	HTNN: Heterogeneous Transform-Domain DNN
	Walsh-Hadamard Transform and Permuted Variants
	Neural Network in Transform Domains

	Learning for Hardware-Efficient Structure
	Structured Pruning for Sparse-Orthogonal Kernels in Heterogeneous Domains
	Structured Sparse Digit Quantization with Canonical-Signed-Digit Representation

	HTNN Complexity Analysis
	Experiments
	Models and Datasets
	Evaluation of DNNs with Heterogeneous Transform Domains
	Learning and Training for Hardware-Efficient Structures

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	BIBLIOGRAPHY

